Ementa:
Capítulo 1 (2 x 2h). Espaços Métricos: motivação, definição, exemplos, isometrias, distância entre conjuntos, bolas e esferas.
Capítulo 2 (2 x 2h). Elementos de Análise: funções contínuas e noções fundamentais da topologia, conjuntos abertos e fechados, métricas equivalentes, transformações lineares.
Capítulo 3 (2 x 2h). Limites e continuidade: sequências, limites de funções, continuidade e continuidade uniforme, aplicações.

Capítulo 4 (3 x 2h). Espaços métricos completos: sequências de Cauchy, espaços de Banach, espaços de Hilbert, completamento de um espaço, extensão de aplicações contínuas, Teorema de Baire, teorema das aproximações sucessivas e aplicações. 

Capítulo 5 (3 x 2h). Espaços métricos compactos: espaços compactos, Teorema de Cantor-Tychonov, equicontinuidade, Teoremas de Stone-Weierstrass e aplicações.

Bibliografia
[1] Elon Lages Lima: Espaços Métricos. Projeto Euclides, IMPA-CNPq, 1977. (texto principal)
[2] Elon Lages Lima: Curso de Análise, Volume I, Projeto Euclides, IMPA-CNPq, 1976

Acesse AQUI o curso completo.

Topo