• Geometria Diferencial Global das superfícies em R3.
  • Teorema de rigidez da esfera em R3.
  • Teorema de Hopf-Rinow.
  • primeira e segunda variação do comprimento de arco.
  • Teorema de Bonnet.
  • Teorema de Hadamard.
  • Superfícies com curvatura zero.
  • Teorema de Jacobi.
  • Teorma de Hilbert, Introduição à Geometria Riemanniana.
  • Introdução às Variedades Diferenciáveis.
  • Métricas Riemannianas.
  • Conexão de Levi-Civitta.
  • Geodésicas.
  • Vizinhanças normais e totalmente normais.
  • Tensor de curvatura.
  • Derivação covariante de tensores.
  • Campos de Jacobie e pontos conjugados.
  • Imersões isométricas: equções de Gauss, Ricci e Codazzi.
Topo