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Resumo

Nos ultimos anos, curvas algébricas sobre corpos finitos e semigrupos de Weierstrass
tém sido intensamente estudados devido as suas diversas aplicagoes em outras areas
da Matematica, como a teoria de cédigos. Nesta tese, construimos curvas algébricas
com muitos pontos racionais de duas maneiras diferentes. Primeiro, beneficiando-se de
representacoes adequadas do grupo de automorfismos da curva BM introduzida por Beelen
e Montanucci em [7], construimos equagoes explicitas para familias de curvas maximais
como subcoberturas de Galois da curva BM. Em segundo lugar, usando polinémios
reciprocos e extensoes de Kummer, fornecemos um método simples e eficaz para construir
curvas algébricas com muitos pontos racionais. Por outro lado, damos uma descri¢ao
explicita do semigrupo de Weierstrass no unico lugar no infinito ), de uma curva X
definida pela equagao Y™ = f(X), onde f(X) € F,[X] é um polindémio satisfazendo
ged(m,degf) = 1 e Char(FF,) t m. Como consequéncia, discutimos condi¢oes suficientes
para que o semigrupo de Weierstrass H(Q ) seja simétrico. Além disso, deduzimos uma
férmula fechada para a cota de Geil-Matsumoto associada ao semigrupo H(()o,) sobre o

numero de pontos racionais da curva X e caracterizamos certas curvas Castle maximais

do tipo (X, Q).

Palavras-chave: Corpos finitos, corpo de fungoes, curvas algébricas, curvas maximais,
curvas quocientes, curvas com muitos pontos racionais, extensoes de Kummer, semigrupos

de Weierstrass, polindomios reciprocos.






Abstract

In recent years, algebraic curves over finite fields and Weierstrass semigroups have been
intensively studied due to their various applications in other areas of mathematics, such
as coding theory. In this thesis, we construct algebraic curves with many rational points
in two different ways. First, benefiting from suitable representations of the automorphism
group of the BM curve introduced by Beelen and Montanucci in [7], we construct explicit
equations for families of maximal curves as Galois subcovers of the BM curve. Second,
using reciprocal polynomials and Kummer extensions, we provide a simple and effective
method for the construction of algebraic curves with many rational points. On the other
hand, we give an explicit description of the Weierstrass semigroup at the only place at
infinity Qo of a curve X defined by the equation Y™ = f(X), where f(X) € F,[X] is a
polynomial satisfying ged(m,degf) = 1 and Char(F,) { m. As a consequence, we discuss
sufficient conditions for the Weierstrass semigroup H (@) to be symmetric. Furthermore,
we deduce a closed formula for the Geil-Matsumoto bound associated to the semigroup
H((Q)~) on the number of rational points of the curve X and characterize certain maximal
Castle curves of the type (X, Qu).

Keywords: Finite fields, function fields, algebraic curves, maximal curves, quotient curves,
curves with many rational points, Kummer extensions, Weierstrass semigroups, reciprocal

polynomials.
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Introduction

Algebraic curves over finite fields and their function fields have been a source
of great fascination since the seminal work of Hasse and Weil in the 1930s and 1940s.
Many important and fruitful ideas have arisen out of this area, where algebra, number
theory, and geometry meet. In 1977, Goppa [28] constructed linear error-correcting codes
using algebraic curves over finite fields. These are called algebraic geometry codes and
usually have good parameters. In order to construct such codes one requires curves with a
large number of rational points and explicit equations for such curves. Also, such curves
have applications in other areas such as low-discrepancy sequences, stream ciphers, hash
functions, and finite geometries. On the other hand, Weierstrass semigroups at one and
many rational points on a curve have been shown to have interesting applications. For
instance, in [45] and [13] the authors construct algebraic geometry codes with good
parameters using Weierstrass semigroups at one and two points respectively. In [39], the
authors determine the automorphism group of the cyclotomic function field with modulus
X" for n € N using explicit descriptions of Weierstrass semigroup at one point. In
addition, knowing the internal structure of the Weierstrass semigroup allows us to obtain
upper bounds for the number of rational points on a curve, see for instance [23] and [38].
These are some of the important reasons that leads the study of algebraic curves over finite

fields with many rational points to have been a subject of great interest in recent years.

Let IF, be the finite field with ¢ elements, where ¢ is a power of a prime p, and
K be the algebraic closure of F,. For a non-singular, projective, absolutely irreducible
algebraic curve (or simply curve) X over F, with genus ¢g(X'), we denote by X (F,) its set
of IF-rational points. The celebrated Hasse-Weil Theorem states that the number #X'(F,)

of F,-rational points on the curve X’ satisfies

[#X(Fy) —q — 1] <29(X)V/q.

A curve X over 2 is called maximal if the number of F-rational points #X'(F2) attains
the Hasse-Weil bound, that is, #X(Fz2) = ¢* + 1 + 2¢g(X)q. One of the most studied
maximal curve is the Hermitian curve over Fg 2, whose affine model is given by the equation
Yt = X494 X . Tt has genus g = ¢(¢ — 1)/2 and a large automorphism group isomorphic
to PGU(3,q) compared to its genus, meaning that the order of the automorphism group
#Aut(X) does not satisfy the classical Hurwitz bound #Aut(X) < 84(¢g — 1). It is a
well-known result that the Hermitian curve has the highest genus a maximal curve over

F

2 can attain and is, up to isomorphism, the only maximal curve with such a genus.

By a known result of Kleiman [37], any curve ) over F ;2 which is F2-covered by an

[F 2-maximal curve & is itself F 2-maximal. This result allows the construction of maximal
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curves as quotients of known maximal curves. In fact, let X be a maximal curve over [Fg
and F' = F(X) its function field. Then given a subgroup H of Aut(X), the curve ) can
be obtained as the fixed field Fix(H) of F. The genus, the explicit defining equations,
and the automorphism group H associated to the quotient curve of a known F2-maximal
curve, such as the Hermitian curve, the Suzuki curve, the GK curve, the GGS curve and
the BM curve are all objects of significant interest (see [2—4,8,17,22,24,25] and [27]).
However, sometimes it can be hard to give explicit equations for a quotient curve. This
problem is relevant for applications to coding theory since maximal curves have been used
in the construction of some good linear codes, such as differential and linear algebraic
geometry codes (see [12,13,40] and references therein). Still another area benefiting from
explicit equations of maximal curves is finite geometry, for example in the construction of

certain arcs over maximal curves (see [5,9] and [26]).

On the other hand, several methods, such as class field theory, Drinfeld module,
and character theory, to find algebraic curves with many rational points (not necessarily
maximal curves) have been studied (see for instance [19,21,33,35,36,52,53,59,62] and [63]).
More explicit details about these methods can be found in [61]. However, the computation
of the exact number of rational points on a given curve has always been a challenging
problem and a general method to do such computations seems out of reach. Nevertheless,
for certain very specific curves, some methods, such as evaluation of exponential sums
and Kloosterman sums, as well as function field theory, have been helpful. For instance,
Coulter [15] used exponential sums to compute the number of rational points on a class of
Artin-Schreier curves and Moisio [44] used exponential sums and Kloosterman sums to
compute the number of rational points on some families of Fermat curves. In [50,51], the
authors considered fibre products of Kummer covers of the projective line over F,. In [49],
the authors gave a full description of the number of rational points in some extension F,r
of IF, in terms of Legendre symbol and quadratic characters for the Artin-Schreier curve
Y9 —Y = XP(X) — X where P(X) = X? — X and ) € F,. For more details about these
methods, we refer to [8,15,44, 50, 51].

With respect to the Weierstrass semigroups at many rational points on algebraic
curves, there are several results in the literature. For instance, in [6,13,41,45] the authors
determine the Weierstrass semigroup at one and many rational points of specific maximal
curves such as the Suzuki curve, the GK curve, the BM curve, and the Hermitian curve.
In [48], the authors provide an algorithm to calculate Weierstrass semigroups over an
optimal tower of function fields, giving an explicit description of such objects in some
cases. In [12], the authors provide an explicit description of the Weierstrass semigroup
at one and two totally ramified places of a Kummer extension defined by the equation
Y™ = f(X)*, where pfm, A € N, and f(X) € K[X] is a separable polynomial such that
ged(Adegf,m) = 1. These results were generalized in [64], where the authors determine

the Weierstrass semigroup at many totally ramified places of Kummer extensions defined
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by the same equation. For Kummer extensions defined by the equation Y = f(X), where

f(X) € K[X] has possibly roots with different multiplicities, few results are known.

In this work, we construct algebraic curves with many rational points in two different
ways: by constructing quotient curves of known maximal curves, and by using reciprocal
polynomials to define Kummer extensions with many rational points. In addition, we
study Weierstrass semigroups in Kummer extensions defined by the equation Y™ = f(X),
where f(X) € K[X] is a polynomial such that ged(m,degf) = 1. This thesis compiles the

original work contained in the following articles and preprints:

o [43] Mendoza, Erik A. R.; Quoos, Luciane. Explicit equations for mazimal curves as
subcovers of the BM curve. Finite Fields and Their Applications 77 (2022): 101945.

» [32] Gupta, Rohit; Mendoza, Erik A. R.; Quoos, Luciane. Reciprocal polynomials
and curves with many points over a finite field. arXiv preprint arXiv:2110.10620
(2021).

o [42] Mendoza, Erik A. R. On Kummer extensions with one place at infinity. arXiv
preprint arXiv:2208.09729 (2022).

The content of this thesis is presented in 4 chapters. In Chapter 1, we present the
preliminaries and some previous results on numerical semigroups and algebraic curves.

Furthermore, we introduce the notations that will be used throughout the thesis.

In Chapter 2, we apply suitable morphisms to the Beelen-Montanucci curve (BM
curve) to provide two new equations for this curve and, benefiting from these models,
obtain certain subgroups of Aut(BM) for which the fixed field and genus can be completely
determined. In particular, we obtain a plane model for the BM curve, a generalization of
the family of Galois subcovers given in [7, Remark 4.6], a family of subcovers of the curve
presented in [7, Corollary 3.7], and generalizations of results in [27]. We finish the chapter
by presenting parameters for which some of the curves obtained in this chapter are not

covered by the Hermitian curve.

In Chapter 3, we present a family of Kummer covers of the projective line over F

defined by an affine equation of the type
Y= XCF(X) (XN (1)

where €, A\ € {1, —1}, s is a non-negative integer, p t m, f(X) is a polynomial in F,[X] and
f*(X) is the reciprocal polynomial of f(X). We compute the genus of this family of curves
and study the particular case e = —1 and A =1, e = 1 and A = —1. We provide the exact
number of rational points for some families of curves. Finally, we study fibre products of

Kummer extensions defined by Equation (1). As a consequence of these constructions, we
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obtain several improvements on the manYPoints table [60]. More precisely, we obtain 10

new records and 119 new entries.

In Chapter 4, we provide an explicit description of the Weierstrass semigroup
H(Q+) and the gap set G((Q) at the only place at infinity @, of the Kummer extension
defined by the affine equation

X: Y"=fX)= ﬁ(X—oci))‘i, AMeN, and 1<)\ <m,
i=1
where r > 2 and m > 2 are integers such that ptm, a1,...,q, € K are pairwise distinct
elements, \g := Y., A;, and ged(m, \g) = 1. As a consequence, we generalize the closed
formula for the Geil-Matsumoto bound on the number of rational points of a curve given
by Bras-Amords and Vico-Oton in [11, Theorem 3.2]. Furthermore, we study the Frobenius
number and the multiplicity of the semigroup H () establishing a relationship between
them, and we provide sufficient conditions for the semigroup H(Q.,) to be symmetric.

Finally, we characterize certain F,-maximal Castle curves of type (X, Qo).
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1 Preliminaries and notations

In this chapter, we introduce the notations that will be used throughout the thesis
and present some general results on the theory of numerical semigroups and algebraic

curves over finite fields.

We denote by N the set of positive integers and by Ny := N U {0} the set of
non-negative integers. For ¢ € R we denote by [c|, [¢] and {c} the floor, ceiling and
fractional part functions of ¢ respectively, and for a,b € Z we denote by (a, b) the greatest
common divisor of a and b, and by b mod a the smallest non-negative integer congruent
with b modulo a. Moreover, to differentiate standard sets from multisets (that is, sets that
can contain repeated occurrences of elements), we use the usual symbol ‘{}’ for standard
sets and the symbol ‘{ }’ for multisets. For a multiset M, the set of distinct elements of M
is called the support of M and is denoted by M*, the number of occurrences of an element
x € M* in the multiset M is called the multiplicity of x and is denoted by m,(x), and the
cardinality of the multiset M is defined as the sum of the multiplicities of all elements of
M*. We say that two multisets M; and M, are equal if M = M and myy, (x) = may, ()

for each x in the support. For more on multisets, see [14].

1.1 Numerical semigroups

We start by presenting some known results related to numerical semigroups. For

more on numerical semigroups, we refer to the book [55].

Definition 1.1.1. A numerical semigroup is a subset H of Ny such that H is closed under

addition, H contains the zero, and the complement set No \ H is finite.

The elements in the complement set G := N\ H are called the gaps of the numerical
semigroup H and gy := #G is its genus. The largest gap is called the Frobenius number
of H and is denoted by Fy, the smallest nonzero element of H is called the multiplicity of
the semigroup and is denoted by mpyg, and the numerical semigroup H is called symmetric
it Fg =29y — 1.

A subset {ai,...,aq} C H is called a system of generators of the numerical

semigroup H if
H ={ay,...,aq) = {tiay + -~ +tqaq : t1, ..., tq € No}.

We say that a system of generators of H is a minimal system of generators if none of

its proper subsets generates the numerical semigroup H. The cardinality of a minimal
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system of generators of H is called the embedding dimension of H and will be denoted by
ey . For the case of numerical semigroups generated by two elements, that is H = (aq, as)
with (a1, as) = 1, we have that gy = (a1 — 1)(ag — 1)/2, Fy = ajas — a1 — as and ey = 2,
see [55, Proposition 2.13]. Furthermore, we can characterize the elements of (ay, as) as

follows.

Proposition 1.1.2. [5/, Lemma 1] Let x € 7 and let ay,as > 2 be integers such that

(a1,a2) = 1. Then = & (ay,as) if and only if x = ajas — na; — may for some n,m € N.

On the other hand, one of the most useful tools in the theory of numerical semigroups
are Apéry sets since many of the properties of numerical semigroups can be characterized

by these sets.

Definition 1.1.3. Let n be a nonzero element of the numerical semigroup H. The Apéry
set of n in H is defined by

Ap(H,n):={seH:s—n¢ H}.

It is known that the cardinality of Ap(H,n) is n and that several useful results are

associated with the Apéry set as shown in the following results.

Proposition 1.1.4. [55, Proposition 2.12] Let H be a numerical semigroup and S C H
be a subset that consists of n elements that form a complete set of representatives for the

congruence classes of Z modulo n € H. Then

S =Ap(H,n) ifand only if gy = VLJ.
a€esS n
Proposition 1.1.5. [55, Proposition 4.10] Let H be a numerical semigroup and let n be
a nonzero element of H. Let Ap(H,n) = {ap < a1 < --- < a,—1} be the Apéry set of n in
H. Then H is symmetric if and only if

a; + ap_1_; = ap_1 foreachi=0,...,n—1.

1.2 Algebraic curves over finite fields

Let g be the power of a prime p, IF, the finite field with ¢ elements, and K the
algebraic closure of IF,. For a nonsingular, projective, absolutely irreducible algebraic curve
(or simply curve) X with genus g(X), we denote by F' = K (X) its function field, by Pg the
set of places of F', and by vp the discrete valuation of I’ associated to the place P € Pp.
Also, we denote by Div(F') the group of divisors of F', and for a function z € F' we let
(2)F, (2)0 and (2)o stand for the principal, pole and zero divisors of the function z in F’

respectively. Furthermore, when the curve X is defined over F,, we denote by X'(F,) its set
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of F-rational points and, due to the one-to-one correspondence between algebraic function
fields of one variable and algebraic curves, we consider a rational point on the curve is the

same as a rational place (place of degree one) on the function field of the curve.
One of the main objects to study in this thesis are the Weierstrass semigroups

associated to a place, which are defined below.

Definition 1.2.1. Let P € Pr be a place of F'. The Weierstrass semigroup associated to
P is defined by the set

H(P)={neNy: (2)o =nP for some z € F'}
and the complementary set G(P) := Ny \ H(P) is called the gap set at P.

As a consequence of Riemann-Roch Theorem [56, Theorem 1.5.15], we obtain
that the gap set at a place is finite and therefore Weierstrass semigroups are numerical

semigroups. More specifically, we have the following result.

Theorem 1.2.2. [56, Theorem 1.6.8] Let F' = K (X)) be the function field of the curve X
with genus g(X) > 0 and P € Pr be a place. Then #G(P) = g(X) and

G(P)={1 =i <iy <+ <iga) < 29(X) —1}.

It is a well-known fact that for all but finitely many places P € Pp, the gap set is
always the same. This set is called the gap sequence of X'. The places for which the gap

set is not equal to the gap sequence of X are called Weierstrass places.

Now, let X and Y be algebraic curves with function fields F' = K(X) and F' = K())
respectively. Assume that I C F’ and F'/F is an algebraic extension. Next, we present

some results about extensions of function fields.

Definition 1.2.3. A place P € P is said to lie over P € P if P C P'. We also say

that P' is an extension of P and we write P'|P.

Proposition 1.2.4. [56, Proposition 3.1.4] Let P € Pg and P" € Pg:. Then the following

statements are equivalents:
i) P'|P.

it) There exists a positive integer e(P'|P) called ramification index of the extension P'|P
satisfying vp (z) = e(P'|P)vp(x) for all z € F.

Since for each P’ € P there exists a unique P € Ppg such that P'|P, then for
simplicity we will often denote by e(P’) the ramification index of the extension P’|P
in F’/F. In the case that the extension [F’ : F| is finite, we say that a place P € Pp



26 Chapter 1. Preliminaries and notations

is totally ramified in the extension F'/F' if there is a place P’ € Pp with P'|P and
e(P'|P) = [F' : F], and we say that P splits completely in F’/F if there are exactly
[ : F] distinct places P’ € Pp with P'|P.

Definition 1.2.5. For a place P € Pgr, we define the conorm of P with respect to the

extension F'/F as
COHF//F(P) = Z G(PI‘P)P/
P'ePpr
P'|P
Note that the conorm can be extended to a group homomorphism from Div(F') to
Div(F") by setting
COHF//F (Z TLPP> = ZTLPCOHF//F(P).
Furthermore, one of the most interesting properties of the conorm is that it preserves

principal divisors.

Proposition 1.2.6. [50, Proposition 3.1.9] For a function 0 # z € F, we have that
Conpryr((2)r) = (2) .

In the theory of algebraic curves, the Riemann-Hurwitz formula is one of the
fundamental theorems. This result relates, by means of a closed formula, the genus of
the algebraic curves X and ) when K())/K(X) is a finite separable extension. Here
we present a particular case of the Riemann-Hurwitz formula that will be useful in the

development of the thesis. For a more general version see [56, Theorem 3.4.13].

Theorem 1.2.7 (Riemann-Hurwitz formula). Let X and Y be algebraic curves with
function fields F = K(X) and F' = K()) respectively. Suppose that F'/F is a finite
separable extension and assume that p{ e(P'|P) for all extensions of places P'|P in the
extension F'/F. Then

29(37)—2:(QQ(X)—Q)[F'iFHPZP /Z (e(P[P) —1).
Pip

Next, we introduce a special type of extension of function fields called Kummer

extensions. These types of extensions are a fundamental part of this thesis.

Proposition 1.2.8. [56, Proposition 3.7.3] Let X be a curve defined over F, and
F =T,(X) be its function field. Suppose that F, contains a primitive m-th root of unity

where m > 1 and ptm, and that uw € F' is an element satisfying
u#w forallw € F andd|m, d > 1.

Let
F'=F(y) with y™ =u.
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Such an extension F'/F is said to be a Kummer extension of F. This extension is Galois
of degree [F' : F] = m and for P € Pr and P’ € Pp an extension of P, the ramification

index of P'|P is given by
m

e(P'|P) = 7(m, o))’

Now, to finish this chapter, we present some preliminary results with respect to

the number of rational points on a curve over a finite field.

Several upper bounds for the number of rational points of algebraic curves are
available in the literature. Next, we present some of these upper bounds starting with the
best known, the Hasse Weil bound [56, Theorem 5.2.3].

Theorem 1.2.9 (Hasse-Weil bound). Let X' be a curve defined over F, with genus g(X).
Then

#X(F,) < q+1+29(X)/q

Definition 1.2.10. A curve X' defined over F, with genus g(X) is called F,-mazimal if
equality holds in the Hasse-Weil bound, that is,

#X(Fy) = q+1+29(X)/q.

Due to the following result given by Kleiman [37], we can construct new maximal

curves as quotients of known maximal curves.

Theorem 1.2.11. Let X and Y be algebraic curves defined over IF,. If X is F,-maximal
and Y is an F -subcover of X, that is F () C F (X), then Y is also F,-mazimal.

Among other upper bounds for the number of rational points we have the Lewittes
bound [38], and the Geil-Matsumoto bound [23] that improved the bound given by Lewittes.

Theorem 1.2.12 (Lewittes bound). Let X be a curve defined over F, and let P be an
F,-rational place of X. Then

#X(Fy) < gmpup) + 1,
where mpy(py is the multiplicity of the Weierstrass semigroup H(P).

Theorem 1.2.13 (Geil-Matsumoto bound). Let X be a curve defined over F, and let P
be an F,-rational place of X. Then

#X(Fy) < GM(H(P)) := 1+ #(H(P)\ (¢H"(P) + H(P))),

where H*(P) = H(P) \ {0} and ¢H*(P)+ H(P)={qa+b:ac H(P),be H(P)}.
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In general, there is no closed formula for the Geil-Matsumoto bound. However,
for Weierstrass semigroups generated by two elements, Bras-Amords and Vico-Oton [11]

provided the following closed formula for the Geil-Matsumoto bound.

Theorem 1.2.14. [11, Theorem 3.2] The Geil-Matsumoto bound for the Weierstrass

semigroup generated by two elements a and b with a < b is given by

GM,({a,b)) =1+ :z_::)min {q, {q ; Tﬂb} :

On the other hand, the Lewittes bound allows us to define a new class of algebraic
curves: the Castle curves. The notion of Castle curves were introduced by Munuera,
Septlveda, and Torres in [47], and have been studied due to their interesting properties
related to the construction of algebraic geometry codes with good parameters and its
duals, see [46,47].

Definition 1.2.15. A pointed algebraic curve (X, P) over F,, where P is an F,-rational
place of X, is called a Castle curve if the semigroup H(P) is symmetric and equality holds

in the Lewittes bound.

Finally, we present the following remark that will be useful for the calculation of
the number of rational points of a curve defined by a Kummer extension. For a more

general version see [50, Theorems 3 and 4].

Remark 1.2.16. Let F (z,y)/F,(x) be a Kummer extension of degree m defined by the
equation Y™ = h(X), where m is a divisor of ¢ — 1 and h € F,(X). For each a € F,, we

write
B(X) = (X - a)*ha(X),

where ko € Z, hy € Fy(x), and o is neither a zero nor a pole of h,. Then there exist
either no or exactly (m,k,) F,-rational places of Fy(x,y) over P,. In fact, there exists
an Fy-rational place of Fy(x,y) over P, if and only if go(a) is a (m, ka)-power in F;.

Moreover, suppose

hX) = coo

where ¢, € Fy and g1, g2 are monic polynomials in F,[X] with (g1, 92) = 1. Then there
exist either no or exactly (m,deg g, — deg g1) F,-rational places of F(z,y) over Ps. In
the case of P, there exists an F-rational place of Fy(x,y) over P if and only if ¢ is a

(m, deg g2 — deg g1)-power in F;.

For more on function fields and algebraic curves, we refer to the books [18] and [56].
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2 Maximal curves as subcovers of the Beelen-

Montanucci curve

For decades many of the known maximal curves were obtained as, or proved to
be, Galois subcovers of the Hermitian curve. This raised the question of whether any
maximal curve could be covered by the Hermitian curve. In 2009, Giulietti and Korchméaros
introduced the first example of a maximal curve not covered by the Hermitian curve,

see [24]. This curve is defined over F s by the affine equations

(2.1)

Z¢—atl — y 54 ()it xile—1)
- { Sho(=1)
yorl = X4 4 X

In the following years, two generalizations of the G K curve were presented, that is, maximal
curves over [F2n for n > 3 odd and isomorphic to the GK in the case n = 3. The first
such generalization is the so-called GG'S curve, described in [20] by Garcia, Giineri and
Stichtenoth

q"+1 2
q et [ p—
Gas : { grm=rter (2.2)
Yo — X0 4 X

This curve is maximal over F 2. with genus ¢(GGS) = (¢ — 1)(¢"™ + ¢" — ¢*)/2, and for
n > 5 its full automorphism group over F,2. has size #Aut(GGS) = ¢*(¢ — 1)(¢" + 1),
see [30, Theorem 3.10].

Applying a suitable F2-projectivity, a new equation for the GK curve over s was
introduced in [27] by Giulietti, Quoos, and Zini. It is defined by the complete intersection
70—+l — YqufX

XTT (2.3)

GQZ : { varl _ et

This new equation allowed the determination of some explicit equations of maximal curves
covered by the GK curve, as well as that of the Galois group corresponding to the cover

In some cases.

For n > 3 odd, a natural generalization of the GQZ curve was investigated in [7]
by Beelen and Montanucci, and we denote it by BM. It is defined by the affine equations
25—y ()

Xatl—1

yaet+tl — xatl _q

BM (2.4)

The BM curve can also be seen as a generalization of the GK curve since it is maximal over
IF 2n with genus satisfying g(BM) = g(GGS) for n > 3. Surprisingly, despite being maximal

and having the same genus as the GGS curve, the BM curve is not isomorphic to GG.S
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for n > 5. In fact, for n > 5, the full automorphism group Aut(BM) = SL(2,q) X Cyniq
has order ¢(¢* — 1)(¢™ + 1), see [7, Theorem 4.3].

In [8], Beelen and Montanucci determined genera of Galois subcovers of the BM
curves for n > 5. They work from the point of view of finite group theory, using the classi-
fication of maximal subgroups of PGU(3, ¢) and studying the action of the automorphism
group on the rational points on the curve. For the cases (n,q+ 1) = 1 and ¢ a power of 2,

or (n,g+1)=1and ¢ =1 (mod 4), they obtain all the genera.

From the point of view of applications, our goal in this chapter is to provide a
number of explicit equations for Galois subcovers of the BM curve over IF2n. These curves
are obtained as fixed field of certain subgroups of the automorphism group of the BM
curve for n odd and n > 3. The genus, as well an explicit description of the Galois subgroup

of Aut(BM) associated to the covering are provided.

Throughout the chapter we let p be a prime number, ¢ a power of p, and for n > 3
an odd integer we write m = (¢" + 1)/(q¢+ 1). For k > 1 we let Cj stand for the cyclic
group of order k. Moreover, for H a subgroup of the automorphism group Aut(X’) of a
curve X defined over F,, we denote by Fix(H) C F,(X) the field fixed by H. Then we
have that the extension F,(X')/Fix(H) is Galois and the function field Fix(H) corresponds
to the quotient curve X'/H of X with respect to the automorphism subgroup H.

2.1 Quotient curves from the first new model of the BM curve

In this section, we present two families of maximal curves over F2» depending on

certain parameters given by divisors of ¢+ 1,¢ — 1, m, and ¢" + 1.

Applying the morphism (X,Y, Z) = (3£, &, Z) to the curve (2.3) defined by the

equations

XOFT_]

Yq+1 _ Xq+1 -1

)

{ 70—+l — YX‘ZQfX

we obtain a birationally equivalent curve

|zt = Xy - Xy
") yetl — xatl _q

which will prove useful for dealing with subgroups of the automorphism group of the curve
explicitly. For n > 3 odd, it is natural to consider the following generalization of the curve
X given by

| zm=XTY - XY7

X, : { ey (2.5)

We now show that the curves X,, and BM in (2.4) are in fact isomorphic. Let z, y, w
2
be functions in the function field F 2. (BM) satisfying w™ =y (;;:1_ _x1> and y?t = 27t —1;
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and z,y, z € Fpen(A,) be such that 2™ = 27y — zy? and y?t! = 29t — 1. Then

M=ty —ay” =yt =y
_ a:y(:ch -1 (xq+1 1)q—1)
2
s A |
— Sljy (xq 1 — xq—‘,—l — 1 ) (2 6)

and we conclude that w = —(z, for some ¢ € Fgp2n,(™ = 1. This yields equality of the
function fields F 2. (AX;,) and F 2. (BM). In particular, the automorphisms groups Aut(A,)
and Aut(BM) are isomorphic. It is easy to check that the full automorphism group
Aut(BM) as described in [8, Section 2] acts on the curve X,,, so

Aut(X,) = {0gee s a?™ — AT =1, €T =1}, (2.7)
where

Oaee (X,Y, Z) = (aX + 1Y, X +a?8"Y, E2).

Let d; and dy be divisors of ¢ + 1, and d be a divisor of ¢" + 1. Consider the

functions

q+1)/d1 (g+1)/d2 q"+1)/d

u = vi=y and w = 2! :
From Equation (2.5), we conclude the functions u, v and w satisfy the following algebraic

relations

ev® =y — 1, and

d_ xq+1yq+1((xq+1>q71 _ (yq+1)q*1)q+1
— Iq+1<xq+1 - 1)<(Iq+1)q—1 . (xq+1 - 1)q—1)q+1

patya 1\ 9!
— xq—i-l(Iq-&-l _ 1) <(xq+1)q—1 . (xq+1)_ : )
xq+1<1 _ (xq—l—l)q—l)q-kl
(watt —1)a
udl(l _ udl(q_l))Q+1
(uh —1)2

di(g-1) _ 1\ 7!
_ dif,di w4
= u™(u™ 1)( T ) :

Thus, we can present the following result.
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Theorem 2.1.1. Let dy and dy be divisors of ¢+ 1, and d be a divisor of ¢" + 1 such that

(dg, d, (dC,ZQdclzl)) = 1. Then the affine equations

(2.8)

dy(g—1)_1\ 9+
W =uh(uh - 1) (Yt
Vi =yh —1

define an FF 2n-mazximal curve Vg, 4,4 of genus
1
g = 14 5(dd1d2<q — 1) — dldg(q — 2)(d, q + 1) - dg(d, d1> — d1<d, dg) — (2d1d2, ddl, ddg))

Moreover, the curve Ya, 4,4 5 the quotient curve X, /Hg, 4, 4, where the subgroup Hg, a4

is given by

Hyy gy = {a(w,g C(X,Y, Z) s (aX,a%€MY,E7) s ah = 1, (a%¢™) B =1, €5 = 1}.

Proof. We start by proving that Hy, 4,4 is a Fpn-automorphism subgroup of Aut(AX,,)
and Fn (u, v,w) C Fix(Hy, 4,4)- It is clear that Hy, 4,4 # () is a finite subset of Aut(X},),
therefore to prove that Hy, 4,4 is a subgroup of Aut(X,,) it is enough to prove that Hy, 4,4

is closed under multiplication. For 04, 0¢,, 0,06, € Ha, dy,a, We have that

a2 0 0 aq 0 0
0a2,0,6200a1,0,61 = 0 agg;n 0 0 atlzéu{n 0

0 0 &/\0 0 &

a1a9 0 0
= 0 (a1a2)q(f1f2)m 0
0 0 SIS

= Oayaz,0,6162

and

"+1
d — 1

a1 i LEL

o= [(a102)"(£162)"] = = (&&2)
This implies that Hy, 4,4 is subgroup of Aut(X,,). On the other hand, it is clear the
functions u = x(@+D/d ¢ = ¢@HD/d2 and w = 20" TD/d € F 20 (X,) satisfy Equation (2.8).

Furthermore, for oq0¢ € Hy, dy,4

(araz)

a1 afl atl g+l
Ua,O,ﬁ(U) = Ua,O,f(X 41 ) == (aX) 1 = a dy X dy — U’
Oape(V) = Uaog(YqT;) = (aqﬁmY)%l = (aqgm)%y% =V, and
GaneW) = 000e(2°77) = (€2)F =T 25 =W,

This implies that Fgn(u, v, w) C Fix(Hg, 4,,4)-

Now, consider the double extension of function fields

F2n(u, v, w) C Fix(Hg, ay.a) C Fpen (2, y, 2) = Fpen(X,).
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As Fpon (X,)/Fix(Hg, 4,.4) is Galois, we have [Fn(X,,) : Fix(Hg, d,0)] = #Ha, dy,a- From
(2.6) we get y € Fpn(z, 2). So
[Foon (2, 2) : Foon (u, w)]
[Fp2n (u, v, w) : Fpan(u, w)]
(¢ + (" +1)
dydyd '

To conclude that Fgn(u,v, w) = Fix(Hg, 4,4), it remains to show that the subgroup
(q+1)(q +1
1

[Fn(z,y,2) : Fpn(u,v,w)] = [Fpn(x, 2) : Fpen(u,v,w)] =

<

Hyg, a,.0 has cardinality . Let 7 € Fp2n be a primitive (¢" + 1)-th root of unity.

For each a € qui, let + € Z be such that a = 7% and R, be the set defined by
a+l .
= {§ € C#j—l (ate™) T = 1}, then #Hy, 4,4 = Zaec(q+1)/d1 #R,. We notice that
(d dd, ) ] 4, if d is odd,
" (d, 2dy) B g (2, %) , if d is even.

Therefore, from the condition (dg, d, ( ddgclll)> = 1, we deduce that (d,ds) =1 or (d,dy) =

Now we analyze both cases.
Case 1: (d,dy) = 1. We prove that #R, = % for any a. For this, it is sufficient
to prove that R, is not empty, since if v € R,, then R, = 7Cqn11. Also, since (dg,d) = 1,
' dad
there are k,j € Z such that kdy — jd = iqd,. Thus, 0 = 7% € C4ns1 and
d

(aqgm)% — (Tiqmd1 ]md> qul B (Tm(iqdl+jd))% _ T(qn+1)k —1.

This implies o = 77¢ € R,.

Case 2: (d,ds) = 2. Note that necessarily ¢ and d; are odd, and % is even. In

this case, we prove that

LR, — 2('1;;1), if 7 is even,
0, if 4 is odd.
Suppose that 7 is odd and R, # (), then there exists £ € R, and j € Z such that ¢ = 794,
Thus,
1= (aqgm)% _ (Tiqmd17_jdm)%21 _ 7_4<qu1+];2)<(1 U
and therefore dy divides iqd; + jd. This is a contradiction since iqd; 4 jd is odd and ds is

even.

Now suppose that i is even. For this, it is sufficient to prove that R, is not
empty, since if v € R,, then R, = yCaun+1). Also, since i is even and (d,ds) = 2, then
there are k,j € Z such that kdy, — jddi 1qd;. Using an argument analogous to the
one used in the case (d,dy) = 1 it is easy to show that R, # (). We conclude that

_ — (e+D("+1)
#Hdhdmd - Eaec(q+l)/d1 #Ra o didad

Let Fo2n (Vi d5,0) = Fgen(u, v, w). Denote by a1, as, ..., ag,(g—1) the roots in K of

the separable polynomial f(U) = U1 — 1, where the first d; elements ay, as, . .., ag,
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are the roots of the polynomial g(U) = U% — 1. We compute the following principal divisor
in K(u):

( V<V“>():dﬂwKw+wq+nqwnmm—qQWDmm

g(u)?
di di(g—1)
:d1P0+ZPai+(Q+1 Z Pozz dqu_l)P
=1 i=d1+1

where P, ., Py, and P, are the places corresponding to «;, 0, and the pole of u respectively.
We conclude that K(u,w)/K(u) is a Kummer extension of degree d. For P a place in
Pk (uw), the ramification indices of the ramified places in the extension K(u,w)/K (u) are

given by

d/(d,dy), if P is over Py,

d, it Pisover P,, fori=1,...,d;,
d/(d,q+1), if Pisover P, fori=d;+1,...,d1(q¢—1),
d/(d,2dy), if P is over P,.

e(P) =

By the Riemann-Hurwitz formula, the genus of the function field K (u,w) is given by

(K () = .

We now show that the extension K (u,w,v)/K (u,w) is a Kummer extension and compute

the genus of K (Y4, 4,.4). We start by computing the principal divisor of u® — 1 in K (u,v)

(d,2d1)

dy
| =d -
(U )K(u,w) ;Qal (d 2d1 Z CQoo i

=1
where )., and (), are the extensions of the places P,, and P, respectively. From the
condition (dg, d, %) = 1, we conclude the extension K (u,w,v)/K (u,w) is a Kummer
extension of degree dy with ramification indices given by

dy/(dy, d), if P is over Qq,,
€(P> = d2(2d1, d)/(2d1d2, ddl, ddg), if P is over Qoo,ia
1, in the other cases.

Thus we conclude that Equation (2.8) defines an absolutely irreducible curve. The calcu-
lation of the genus g of the function field K (u,v,w) follows from the Riemann-Hurwitz

formula

2g — 2= d2(2g(K(U, U))) — 2) + d1d2 — dl(dg, d) + dg(d, 2d1) — (2d1d2, ddl, ddg)
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Remark 2.1.2. In Theorem 2.1.1, for n = 3 (dy and dy divisors of ¢+ 1, and d a divisor
of ¢* — q+ 1), we obtain quotient curves of the GK curve defined by

di(g—1)_1\ 911
Wd — diy/dz (U;]:l—l 1)
Vi = ydh —1

corresponding to the subgroup

a+1 a>+1

q+1 2 1 g+l
Hay dya = {Ua,(),g radt =1, (a7 =1, ¢a = 1} < Aut(A3).

These quotient curves were studied in [27], where the genus was computed for d = dz(q* —

q+1) and ds is a divisor of ¢+ 1, see [27, Theorem 3.3]. Moreover, assuming
(dh d27 d) = 17

the corresponding subgroups were provided for two particular cases: (1) di | 3ds and

(dy,d2) =1, and (2) dy | dy and (dy,d) =1, see [27, Section 4.

Theorem 2.1.1 generalizes this result, providing the genus and the corresponding
subgroups for all values of dy,dy and d satisfying the condition (dg, d, %) = 1. Also the

families of curves provided in [27, Section 5] for dy a divisor of ¢* —q+ 1 given by

z . { VVld4 = ‘/1(1—|—U1d1 —|—U12d1 -|-..._|_U1(‘1—2)d1)

q+1 2d1 _ Ud1
1

1 1

are covered by the curve in Theorem 2.1.1. To see this, notice that the functions wy and u,

satisfy

wil4(q+1) = (v (1+ uih + ,u/%dl 4t ug‘I*Q)dl))qul

di(g—1 q+1
e ull(q )_ 1
U u‘fl -1
di(g—1) _ 1 a+l
= uclll (u(fl - 1) (UIuCh 1 ) ’
T —

Thus Fys(Z) = Fys(ur,vi,w1) = Fes(ur,w1) = Fys(Vay1.duq+1))- Moreover, the curve

a—1) NG+
defined by the second equation W+ = yd(yh — 1) (wyﬁ

o also appears in [7,

Remark 4.6] and corresponds to the subgroup
1 m
Hd1,l,d4(q+l) = {Ua,0,£ : (X7 Yv Z) = ((IX, an7 52) : CL% = ]-7 6@ = ]-} .
As a direct consequence of Theorem 2.1.1, we provide a plane model for the curve
X,.

Corollary 2.1.3. The curve &, is birationaly equivalent over Fn to the plane curve with

affine equation

7 = X (e - (X - 1)t - Xy, (2.9)
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Proof. In Theorem 2.1.1, for dy =q+1,dy =1, and d = ¢" + 1 we get

uq2_1 . 1>Q+1

q"+1 _ ,q+1¢, q+1
w =u U -1 —
( ) < uitl — 1

_ uq+1(uq+1 _ 1)((uq+1 _ 1)q—1 _ uq"’—l)q+1

and g(K (u,w)) = g(X,). O

Now consider the Fzn-automorphism subgroup of Aut(X,,) defined by
H = {Ua,cé c Aut(&,) 1 a?™ — T =1,6m = 1}

of order ¢(q — 1)(¢™ + 1). In the following, we provide a family of quotient curves corre-

sponding to subgroups of H.

Theorem 2.1.4. Let di and d be divisors of ¢ — 1 and m respectively. The equation
1 — Uhlet+l)

d _
W=

(2.10)

defines an F2n-mazimal curve Vg, q covered by the curve X, of genus g = M. This

curve is the quotient curve X,,/Hg, 4, where

m

—1
Hg,a = {Ua(bq+1),ab,§ b+ a? =100 =1,6% = 1}

and
Ta(bi41),ab,¢ (X,Y,Z) = (a(d?+ 1) X + ab?Y,abX + a(b+ 1)Y, 7).

Proof. Note that Hg, 4 # (1 is a finite subset of Aut(&X),) and for 04, (4041).a,61,6,» Tan(b3+1)

,a2b2,&2
elements in Hy, 4,
ag(bg -+ ].) agbg 0 aq (b({ + 1) alb‘f 0
Oy (b3+1),a2b2.62 Tar (09 +1),a1b1.6 = 2o az(bo+1) 0 a1by ar(br+1) 0
0 0 & 0 0 &1
A(B?+1) AB1? 0
= AB AB+1) 0
0 0 SIS
= 0A(B1+1),AB,¢1&2)
where A = aja, and B = bya;? + by. Since Aqd;ll = (£6)7 =1 and

(BY+ B +1)A% = ((b3 + by)ay® + b + by + 1)ajas
(b + by)az + a3

L,
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a(g=Dm

we conclude that Hy, 4 is a subgroup of Aut(X),) of order £4—

Now, consider the functions u := (z + y)@~V/% and w := 2™? in F2a(X,,). For

Taa+1),abe € Hay g, we have that

g—1 q—1
Tapat1),abe(U) = (a0 + b+ 1) (X +Y)) 0 = (e (X +Y)) @ =U and
Taprr1)abe (W) = Oapastyave(Z7) = (£2)d =i 27 = W.

m
d

Thus, Fpen(u, w) C Fix(Hyg, 4). Furthermore, from Equation (2.5) we deduce that the

functions x and y satisfy the following relation

@ (1)~ @+ 9)7) = @ = Dl -2+ @ = 1)y - ")
= (1 = ) (et D (@ 1)
=yl — xq2’1) 4yt (1 — :chZ’l)
— (o (1)
= ay(@+y)(@* - e’ = @ 1)),

that is,
2+q o 1
_ ¢ _ s a*
(w9) = ot =yt (o - S0, 2.1)
Hence, we conclude
2 2 2 :L,q2+q —1
wh = 2" =2y — 2yt =y (xq -1_ q+11> from Equation (2.6)
m —_—

_ 7
_ (z+y) — (z+y) from Equation (2.11)

(z +y)e
1= (z+ y)e !
o (rty)rt

1 — gdalatl)
=

From this algebraic relation, we conclude that the extension F2n (u, w) /F 20 (u) is a Kummer
extension of degree d. By Theorem 2.1.1 we have [Fpn(x,y,2) : Fpen(z,y)] = m and
by [7, Lemma 3.1, [Fpn (2, y) : Fpen(x+y)] = q. Therefore [Fpen(z,y, 2) : Fpen(z+y)] = gm
and we get that

Foan ()] = [Fan (@9, 2) : Fn (@ + y)][Fgn (@ +y) : Fen ()] _ alg = 1)m
[Foee (@, 2) : Fgon (1, w)] [Fpen(u, w) : Fopon(u) = did

This implies Fix(Hg, 4) = Fg2n (u, w). In order to calculate the genus of K (u, w) we compute

the principal divisor

di(g+1)
) = Z Py, — diPy — d1qPx,
K(u) i=1

1 —_ udl (Q+1)
uh
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where o, ..., ag,(g+1) are the roots of the separable polynomial U di(¢+1) _ 1. Thus all the

places over P,,, Py or P, are totally ramified in the extension K(u,w)/K (u).

The genus g of K (u,w) follows from the Riemann-Hurwitz formula, g = d;(d —
1)(q+1)/2. N

In particular, for d; = ¢ — 1 and d = m in Theorem 2.1.4, we obtain the quotient

1-ya -1
Ua—1

curve already appeared in [7, Corollary 3.7] where it played an important role in the proof

curve W™ =

corresponding to the subgroup H, 1, = {0pa+11 : b7 +b = 0}. This

of the maximality of the BM curve.

2.2 Quotient curves from a second new model for the BM curve

In this section, we apply a morphism to the curve X, in order to obtain new
subgroups of Aut(X,,). Consider Fn(X,,) = Fpn(x,y, 2), the function field of the curve
X, and let p € F 2. be such that p?" ' =1 and p™ # 1. Applying the morphism

mn

¢><X,Y,Z)=< £

o 1(X -Y), X -p"Y, ,oZ) (2.12)

to the curve

| zm =Xy - XxY7
") yetl — yatl _q

we have that the functions u := pﬁfil (x—y),v:=x—pTy, and w := pz in Fpen(X,) satisfy

mq m
ulv +uv? = pm’; — (@ =y (z = p"y) + o (z —y) (@’ = p"™y’)
= 4pmq (qu _ pquy _ :Eyq + pmyq+1)+
pra—1
pmp — (@ = My =ty + "y

— P P q+1 1 1 q+1
_<pmq_1+pm_1>m +<pmq—1+pm—1 Yy

pmq 1 q 1 pm q
(pmq—1+pm—1>$y (pmq—1+pM—1 xhy

— xq+1 _ yq+1
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and
o — o = L (57— gy — ) -~ (@ — )z — )
pm—1 pm—1
= L@ =ty — ey 4 gy = ey
pm—

Thus, we obtain an isomorphic curve with equations

{ Zm = Y¢X — XCY

n -

(2.13)
XY + XY =1

Recall that
Aut(X,) = {0@075 cqdtt — ot = 1, fqn'H = 1} ,

where
Oace: (XY, Z) = (aX + MY, X +aE"Y, ).

By conjugation, we retrieve a representation for the automorphism group of the curve £,

Aut(F,) = oAut(X,)op ' = {%a,c,f Lttt et g = 1}’

where
X o £ (0= ¢) — (a— 0)1Emp™) X — £ ((a— o) — (a — )€™)Y,
Tace  \Y = ((a—cp™) — (a—cp™) ™)X — q((a—cp™) = (a— cp™)Emp™)Y,

Z— &,
From the equality
(X =YV)UX =Yp") = p"(X =Yp")UX =Y) = (1 - p") (X — Yo
we can represent

Aut(fn) — {Ta,c,§ . aqc_ pmacq — 1 _ pm’ fqn"l‘]- _ 1}’

where
X o £ (0 — afgm ) X — £ (0 — atgm)Y,
Taee ' (Y = (¢ — c1€™)X — —L—(c— c1Empm)Y,

pm—1
AR IA

The equations defining the curve F,, allow to obtain, by simple inspection, automorphisms

that had not been previously considered, yielding new quotient curves. In the following

theorem, we provide a quotient curve of the curve F, corresponding to the subgroup

generated by a single automorphism.
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Theorem 2.2.1. Let dy and dy be divisors of ¢ — 1 and m respectively. The following

equations define an Fgn-maximal curve which is a subcover of the curve F,:

Wiz — 1-VUh —(VU%4)e
ydl7d2 :

Va
SRR (2.14)

The curve Ya, 4, has genus

di(q+1)(da(q+1) —q) — (di(g+1,2),g— 1)
2

and corresponds to the quotient curve F, /L, where L is the subgroup of Aut(F,) generated

by the automorphism
Ty g+ (X, Y, Z) = (07X, 01V, eZ)
where 0 is a primitive element of F, and € is a primitive (m/dy)-th root of unity.

Proof. First of all, note that the functions v := 2@ V/% 4 := zy and w = 2"/% are in
the fixed field Fix(L). In fact, we have that

e ng176—d176(X%) — (e_le)% et qu;ll — U’
o1 g1 (V) = Tpar g1 (XY) = (efle)(edIY) =XY =V, and
Ty g-ir (W) = Tedl,eﬂh,e(zﬁ) = (GZ)% — Zh = W.

ngl ’g—dl ,E(U

Furthermore, since 744, o4, (X,Y,Z) = (07" X,0""Y,'Z) for i € N, 0 is a primitive
element of F,, and € is a primitive (m/dy)-th root of unity, we have that L is a subgroup

of Aut(F,) of order %. Moreover, since
142

-1
[Feen(z,y, 2) : Fen(u,v,w)] = [Fpen(z, 2y, 2) : Fpen(u, v, w)] < (qdd)m =#L,
1d2

we conclude that Fix(L) = Fn(u, v, w).

In order to provide irreducible equations for Y, 4, = F,,/L, we use Equation (2.13)

to conclude that the functions u, v and w satisfy the relations

v? = (zy)? = 29 N ay?) = 29711 — ya?) = 297! — (zy)2207D = yh — g2

and
d m —1\q+1 —1\q+1 1 -1 o —1\g+1
wh = 27 = () — (@) >=xy(<xy—xq ) e )
T O e ()

(zy)e
1 —oudt — (vuh)?

v4
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This implies that the equations given in (2.14) define a quotient curve of F,,. For convenience,

in order to calculate the genus of the algebraic function field K (u,v,w), we write t = vu®.

Consider the following extensions of function fields:
K(t) C K(t,v) C K(t,v,w) C K(t,v,w,u) = K(u,v,w).
From (2.14), the functions ¢, v and w satisfy the relations
=(1—t—t9)/v? and o =¢1-1).

We conclude that the function field extension K(¢,v)/K(t) is a Kummer extension of
degree ¢ + 1 of genus
g(K(t,v) = (¢+1—(q+1,2))/2.

Moreover, if Py and P; are the zeros of t and t — 1 respectively, and P, the pole of ¢
in K (t), then Py and P, are totally ramified, P, has (¢ + 1,2) extensions and the other
places are completely split in K (¢,v)/K(t).

On the other hand, for oy, ay, ..., a, the roots of the separable polynomial f(T") =
1-T—T7in K, let P,, be the place in K(t) associated to the function ¢ — ay;. After some

computations, we get the principal divisors

q+1 (g+1,2)
(=0 = 2 Qi ~ gy 2 @
and
9 (g+1,2)
(V) tw) = Qo+ Q1 — ( +1.2) ; Qoosis

where Qq, i, Q; and Qu; are extensions of P, P; and Py, in K (t,v) respectively. Hence,

we obtain the following divisor in K (¢, v):

v4

f(t) B q q+1 q o 1) (g+1,2)
()K(tm) - Z ZQaJ,Z - 0 + Ql) ( + 1 2 Z Qooz

Therefore the extension K (t,v,w)/K(t,v) is also a Kummer extension of degree dy, and

all the ramified places in the extension are totally ramified.

By the Riemann-Hurwitz formula, we obtain

dy(q+1)° = (¢ +q+(¢+1,2)
. .

g(K(t, U, w)) =

To conclude the proof, we prove that K (¢, v, w,u)/K(t,v,w) is a Kummer extension
and compute the genus of K(t,v,w,u) = K(u,v,w). We have u® = t/v and start by

computing the divisors of the functions ¢ and v:

da(q +1) TR
<t>K(t,v,w) = d2<q -+ 1)R0 — ( (q 1 2 Z Rooz;

=1
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) (¢+1,2)
oy = [ Bo+ Ry — ——— S Ry
(V) K (t,0,w) 2 | Ro 1 G+ 12) Z ,

9 =1

Therefore
ds (q o 1 (g+1,2)

(t/V) K (tww) = d2qRo — da Ry — 0+ Z R,
where R; and R, ; are the unique extensions in K (t,v,w) of the places @; and Q ;
respectively. Since (dy,ds) = 1, we conclude that K (t,v,w,u)/K(t,v,w) is a Kummer

extension of degree d;. For S a place in Pg(tv,w,u) We have the following ramification

indices
dy, it S is over R;,
e(S) =19 di(qg+1,2)/(di(qg+1,2),g—1), if Sis over R,
1, in the other cases.

By the Riemman-Hurwitz formula, we can finally obtain the genus

di(q+1)(da(q+1) —q) — (di(g+1,2),q — 1)‘

9(K (u,v,w)) = g(K(t,v,w,u)) = X

]

Choosing dy = 1 in Theorem 2.2.1 we obtain a family of quotient curves V¢ =
Uh — VU?% of the Hermitian curve over F2 defined by X9Y 4+ XY? = 1. This quotient

curve has genus

2
2 di, if ¢ is even,

di(q+1) = (d(g+1,2),g—1) { Blat=Cha=l) it g s odd,

and corresponds to the subgroup generated by the automorphism 7 : (X,Y) — (G_le , GdlY) .

Now we consider a second automorphism of the curve F,, given by
i (X,Y, 2)— (Y, X, —€Z),

where d is a divisor of m and € is a primitive (m/d)-th root of unity. We provide the
quotient curve corresponding to the subgroup L, of Aut(F,,) generated by 74. For this, it
is necessary to distinguish between the two cases of odd and even characteristic. We start

with the case of odd characteristic.

Consider the functions u := = + y and w := 2>™/?. We start by determining an

algebraic relation between these functions. From Equation (2.13) we have
(z—y)™ = (z+y)? -2 (2.15)

and, after some calculations,

e 0 ) 10

N
yrr—aty=—(z y)( (o + )7 —2



2.2.  Quotient curves from a second new model for the BM curve 43

Thus,

wHat/2 — a"+1 <yq2x _ xq2y)q+1

+1
Y (z+y)” —(@+y))’ from Equation (2.16)
— y S om Equation (2.

= ((z+y)" -2) (<(Z T
_ @y @y -1

((z +y)rt = 2)
B uq+1(uq2—1 — 1)t

- (ua+l — 2)a

g+1
) from Equation (2.15)

Therefore the functions u and w satisfy the irreducible equation

/2 Uq+1(Uq2—1 — 1)t

d(g+1)
w (Uat! — 2)4

(2.17)

Furthermore, it is clear that F 2. (u, w) C Fix(Lg) C Fpen(z,y, 2). From Equation (2.16),
x—y € Fpen(z+y,2) and therefore

[Feen(z,y, 2) : Fen(u,w)] = [Fen(r +y, 2 —y, 2) : Fean (u, w)]
2m

= [Fpen(z+y,2): Fen(u,w)] < R

Since #L4 = 2m/d, we conclude that 2 (u, w) = Fix(Lg) and therefore the curve defined
by the Equation (2.17) corresponds to the quotient curve F,,/L4. This curve is isomorphic
to the curve Vyi11,4(g+1)/2 given in Theorem 2.1.1. In fact, v(U, W) = (a~'U, W), where
« € F 2. such that a4*! = 2, is a morphism between the curves defined by Equation (2.17)

and YVyi1,1,d(g+1)/2-

For the case ¢ even, we first need the following result.

Lemma 2.2.2. Suppose q = 2°. Then we have the following polynomial identity in
K[X,Y]:

s—1
Y(XY)T(X +Y)TH = XY 4 XYY

m=0

Proof. We prove this identity by induction. For s = 1, the identity is trivial. Assume the
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validity of the identity for s > 1. Then,

(X +Y) (Z (XY)?"(X + Y)QSH‘T"H“)

m=0

= S (XY (X 4 Y)FT e
m=0

= XY(X +Y)? 4 S(XY)? (X 4 Y)¥ 2

m=1

s—1
= XY(X + V)2 (XY (X 4y e
m=0
s—1 2
= XY(X+Y)"" + (Z (XV)*" (X + Y)282’”+1+1>

m=0
— XY(X + V)" + (XY + XY?)?
=YX L Xy Xy 4 xR
= (X +V)(X¥Y + Xy¥T).

Theorem 2.2.3. Suppose ¢ = 2° and let d be a divisor of m. The equations

2
Wd — U4 il—i-l

et (2.18)
O e L AR |

define an Fpen-mazimal curve Yy covered by the curve F,. Moreover, the curve Yy corre-

sponds to the quotient curve F, /Ly and has genus g = d(‘JH)(qu)f(qB*z).

Proof. We start defining the functions u := = 4y, v := 2y and w := z™/?. By Lemma

2.2.2, the functions v and v satisfy the algebraic relation

s—1 1
m s_om
} : 1)2 u2 2 +1 _ 1.

m=0

Moreover, from the defining equations of the curve F, in (2.13) it follows that

yi(x+y) +ylr+y)! =ylz+yz? =1

(x—yky>q+ (miy> <$iy>q+1’ (2.19)
) ) - )

and therefore, after some computations, we conclude

So,

2 2

q q+1 q°+q
1 1
i + i = + .
r+y r+y r+y Tty
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Since
m q? 7 q° 7
M=ytrtyr® =(x+y)Ty+(@+yy

we get that

2 2

Zm y y q 1 q+1 1 q°+q
q2+1: —|— — +
(z+y) T4y T4y T4y T4y

and therefore

it @Y @ty w1
R
Thus, the functions u, v and w satisfy the equations given in (2.18). On the other hand, to

calculate the genus of the function field K (u, v, w) note that, from the second equation of

(2.18), we have
v \2~ v 2 v\2 v 1
() +(e) () remae (2.20)

By [56, Proposition 3.7.10], the extension Fzn(u™" vu™2)/F 2 (u™!) is an Artin-Schreier
extension of degree ¢/2 and has genus g(K (u™!,vu?)) = @. If P € Pg(u—y is the

1

pole of u~!, then Py is the unique place totally ramified and the other places are completely

split in such extension. Also, since

w41 B (w1 1
uq—l o (u—l)qz—q ’

we have -
ul t+1
() - glg-DR+ Y Pa—(g—-1)Px
K(u1)

1
ul acF 2\(0)
and therefore

(“) SR SCIRS S > Qu- "1V,
K(uflvu*2)

q—1
u i=1 acF 2\{0}

where Qo ;, Qo and Qo are the extensions in Pg(y-1,,-2) of the places Py, P, and Py
respectively. This implies that the extension K (u™t, vu=2 w)/K (u™!, vu~?) is a Kummer

extension of degree d. For R a place in Pg (-1 yy—2 ), the ramification indices are given by

e(R) = { d, if R is over Qo,i, Qa,i O Qoo,

1, in the other cases,

and therefore the genus of K (u™!, vu=2 w) satisfies

29(K (u~t, vu2,w)) — 2 = d (q(q;?) - 2) 4 (d—1) (g + %((f 1)+ 1) .

This yields

dlg+1)(¢*—2)— (¢ ~2)

9(E (w,v,w)) = g(K (u™ vu™, w)) = 1
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To show that the curve (2.18) is a quotient curve of F,, note that by (2.19) we have
[Fpen(2,y) : Fyen(u)] = ¢ and therefore

[Fpn(z,y,2) : Fan(u)] = [Fpen(x,y, 2) : Fen(z, y)][Fen(z,y) : Fpen(u)] = gm.
Thus,

[Foen(2,y, 2) : Foen(u)] _2m
[Fg2n (w, v, w) : Fpan(u, 0)][Fgzn(u, v) : Fpen(u)] d -

[Fpen(z,y,2) : Fpen(u,v,w)] =

Since u, v and w are elements of the fixed field Fix(Ly) and the subgroup Ly has order
2 we conclude that Fix(Lq) = Fyzn (u, v, w). O
For g even, the curve ),_; 4 presented in Theorem 2.1.4 is covered by the curve Y,

presented in Theorem 2.2.3, and V,_1 4 = Vg if and only if ¢ = 2.

The curves in Theorem 2.2.1 for ¢ even, and the ones in Theorem 2.2.3 are not
isomorphic for ¢ # 4. In fact, if the genera obtained in Theorems 2.2.1 and 2.2.3 were

equal, we could conclude that
—(¢* —2)=—-2d; (mod q+1),
that is —2d; =3 (mod ¢ + 1), which implies ¢ = 4 and d; = 1.

We also notice that, in the particular case of d = 1 in Theorem 2.2.3 and ¢ = 27,

we obtain a curve defined by
S ye? = xatt
i=1

of genus g = g(¢—2)/4. This curve first appeared in a paper of Abdén and Torres [3], where
it was proved that any maximal curve in characteristic 2 such that ¢/2 is a Weierstrass

non-gap at a certain point of the curve and has genus ¢(q — 2)/4 is isomorphic to it.

The genus of the explicit quotient curve ), given in Theorem 2.2.3 appears in the
classification given by Beelen and Montanucci [8]. In fact, following the same notations
introduced in [8], let 7 : Aut(AX,,) — Aut(H) be the group homomorphism given by natural
restriction to the Hermitian curve H and C,, := Ker(7) = {o10¢ € Aut(X,) : &™ = 1}.
In even characteristic, for L, the subgroup of Aut(F,) considered in Theorem 2.2.3 and
¢ : X, — F, the morphism defined in (2.12), we consider the subgroup Cy of Aut(#) and
note that o ¢~ (Ly) = Cy. By [8, Lemma 4.1],

3
¢ +2 q(qg —2)
B and Grop—1(Lg) = T4

where N is the number of orbits in the set X, (F,2) under the action of ¢~*(L4), and
Jrop—1(Ly) is the genus of the fixed field Fix(mo¢™!(Lq)) C K (H). Also, since ¢~ (Lg)NC,y, =
Cm, by [8, Theorem 2.1], we conclude

N dlg+1)(¢* —2) — (¢* — 2
g(yd>—£g(gm¢1@d)—1)+2<#77C%7;—1>+1— (9+Dlg 4) (g )

N =
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Now we present parameters for which some curves provided in this chapter are
not covered by the Hermitian curve. For this note that, by Equation (1.2.7), it easily
follows that the degree deg¢ of a subcover ) of a maximal curve & over F,. given by an

[F o-rational map ¢ : X — ) must satisfy the relation

[Lxy]| < dego < [Uxy], (2.21)
_ #X(Fp2) _2g(X)—2 : . )
where Ly y = TV o) and Uy y = 20 V)—2" With this argument, we have that the quotient
q

curve Vg, 4, defined in Theorem 2.2.1 does not satisfy the condition (2.21) for n = 3,
di =q—1and dy = ‘F_Tqﬂ,wherek: > —qg+1land 1 <k < v/q — 1. In this case, we
obtain the following family of genus corresponding to curves not covered by the Hermitian

curve
(@ —=D(*+1)—k(¢®—1)
2%k

g:

Comparing the obtained genus with the genus of maximal curves not covered by the
Hermitian curve over 2 given in [24,27] and [57], we obtain for £ = 3 the following new

genera over the indicated finite field:

e Fyo : 50.136.579,
o F176 . 2100744,
. F236 . 9582309, and

L] FQQG . 30621654
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3 Curves with many points and reciprocal

polynomials

For a curve X defined over F, with genus g(&X’) < 50, the webpage www.manypoints.
org [60] collects the current intervals in which the number of F -rational points #X (F,)
of the curve X is known to lie for some values of ¢. For a pair (g, g), the tables record an
interval [a, b] where b is the best upper bound for the maximum number of points of a
curve over IF, with genus g, and a gives a lower bound obtained from an explicit example
of a curve defined over F, with a (or at least a) F,-rational points. At some places in
manY Points table in [60], the lower bound a of the interval [a, b] is replaced by the symbol

4

—" where ‘—’ represents the lower bound L(q, g) given in Remark 3.0.1.

In this chapter, we improve upon the lower bounds of many of the intervals in [60]
by constructing new examples of curves with many rational points. We provide a simple
and effective construction of Kummer extensions and fibre products of Kummer extensions
over finite fields with many rational points using reciprocal polynomials. We give a general
lower bound for the number of rational points under certain hypothesis and we calculate
the exact number of rational points for some particular constructions. As a consequence of
these constructions, we obtain several improvements on the manYPoints table [60]. More
precisely, we obtain 10 new records and 119 new entries. All the examples were obtained

using the software Magma [10].

Given a polynomial f in F [X] and a subset A C F2, we let N;(A) :=#{a e A:
f(a) = 0} stand for the number of roots of f in A, and for polynomials fi, fo € K[X] we
denote by (fi, f2) the greatest common divisor of f; and f,. Furthermore, we denote by &,
a primitive element of F,. Next, we set some notation about curves with many points in

the following remark.

Remark 3.0.1. We say that a curve X over F, with genus g has many points if the
number of F,-rational points of X, denoted by #X(F,), satisfies

Ulg,9) —q—1
V2

$E(E) > L) | [+a+1, 31)
where U(q,g) denotes the upper bound given in manYPoints table [60] for the number
of F,-rational points of a curve over F, with genus g. In particular, for a pair (q,g) and
a curve X over F, with genus g, we say that X gives a new record (resp. meets the
record) if the number #X(F,) is strictly larger than (resp. is equal to) the lower bound

registered in manYPoints table corresponding to (q, g). Further, we say that a curve X over


www.manypoints.org
www.manypoints.org
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F, with genus g is a new entry if there was no earlier lower bound entry in manYPoints
table corresponding to (q,g) and #X(F,) satisfies the relation (3.1).

In Subsections 3.1.1 and 3.1.2, and in Section 3.2, we provide tables of curves with
many rational points. In the tables where we provide a new record, the notation OLB (old
lower bound) stands for the lower bound on the number #X (F,) of rational points for a
curve over IF, with genus g registered in the table [60]. Instead, when we provide a new
entry, the notation OLB stands for the lower bound given in (3.1). Moreover, the symbol t

indicates a mazimal curve over F .

3.1 A construction of curves over qu.

In this section, we propose a construction of algebraic curves over F, using
reciprocal polynomials. We will see that certain specific polynomials provide interesting
algebraic curves with many points. This idea is explored in more detail in the subsequent

sections.

Given a polynomial f(X) = ag+ a1 X + -+ asX? € F,[X] of degree d, denote by
f*(X) = X9f(1/X) the reciprocal polynomial of f. For m > 2 an integer not divisible
by p and s a non-negative integer, consider the algebraic curve X over F . defined by the

affine equation

X Y™ =XSf(X)f(X)" where e, \ € {1,—1}. (3.2)

With some assumptions on f, we compute the genus of these curves in the following

proposition.

Proposition 3.1.1. Let d > 0 and let f(X) = ap + a1 X + - + agX? € K[X] be a
separable polynomial of degree d satisfying f(0) # 0. Let s be a non-negative integer, dy be
the degree of (f, f*) and m > 2 be such that ptm. If di < d, then the algebraic function
field K (x,y) defined by the affine equation

Y™ = XCF(X)f(X), wheree X € {1, -1},

has genus

g=(m—1d+1— (m,s) + (m,es +d+ d\) +dy(m, A+ 1)+ dy(m — 2)
— . |

Proof. At first, we write
XOFX) (X)) = X (F(X)/RXO) (f*(X) /(X)) h(X)

where h = (f, f*). The polynomials h, f/h and f*/h are separable and a € K is a root of

1

f if and only if =" is a root of f*. So, without loss of generality, we can suppose that

d—di d—dy

flh=0 [ (X —ai), f/h=0[[(X—9) and h=8 ] (X —a)

i=1 j=1 k=d—di+1
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where (1, 2, B are in K, ay, g, . . . , o are the roots of the polynomial f, v; = ;' for some
1 <1 <d, and oy, 7j, o, are pairwise distinct for all 1 < 4,5 <d—d; andd—d; +1 < k < d.
The principal divisor of the function 2 f(z) f*(z)* in K (z) is given by

d—d1 d_dl
(@ f(@) [ (@) k@) =€es(Po— Po) + Y Pay — (d—di1)P+ X > P,
i=1 j=1
d
—AMd—d)Ps+(A+1) > P, —di(A+1)Py
k=d—d;+1
d—d; d—d; d
=esPo+ > Po,+AD> P4+ (A+1) DY P,
i=1 j=1 k=d—d1+1
— (es+d+ Ad)Px.

This implies that the extension K(z,y)/K(z) is a Kummer extension of degree m and, for

a place P of K(x,y), the ramification index is given by

m/(m,s), if P is over Py,

m, it Pisover P,, or P,,, fort=1,...,d—dj,
e(P)=4¢ m/(m,\+1), if Pisover P,,, fori=d—d, +1,...,d,

m/(m,es +d+ dX), if P is over Py,

1, otherwise.

By the Riemann-Hurwitz formula, the genus g of K (x,y) satisfies
29—2=-2m+m—(m,s)+2(m—1)(d—dy)+di(m—(m,A\+1))+m—(m,es+d+ dX),

which gives

(m,s)+ (m,es+d+ d\) +di(m, A+ 1) +di(m —2)

g=m-1)d+1- 5

O

In the subsequent subsections, we investigate the number of F .-rational points on
the curve (3.2) for the cases e = —1 and A = 1, and € = 1 and A = —1 separately. Note
that the curves X for e = A = 1 and € = A = —1 are isomorphic to the curves with e = —1

and A =1, and ¢ = 1 and A = —1 respectively.

3.11 Thecaseof e=—1and A = 1.

In this subsection, we restrict ourselves to the curve X' in (3.2) with ¢ = —1 and
A = 1. We impose certain conditions on the polynomial f € F,[X] to provide a lower
bound for the number of F2-rational points on the curve X'. Moreover, for some of these

algebraic curves, we compute the exact number of [F-rational points.
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Theorem 3.1.2. Let m > 2 be a divisor of ¢+ 1, f € F,[X] be a separable polynomial
of degree d satisfying f(0) # 0 and (f, f*) =1, and s be an integer such that 0 < s < m.
Then the algebraic curve defined by

SX)f1(X)

X: Y"=
Xs

(3.3)
has genus
g=02md—-2(d—1)— (m,s) — (m,2d — s))/2.

Further if (f, X7 —1) = 1, then the number of rational points #X (F2) over F,2 satisfies
BX(Fz) > ml(g+1,2(d — 5)) +q — 3 — ANG(F)] + 2N, (Fp).
In particular, for s = d, we have #X (Fq2) > 2m(q — 1 — N¢(F;)) + 2N5(Fg2).

Proof. A direct application of Proposition 3.1.1 gives the genus of the curve defined in
(3.3). We now provide an expression for the number of F-rational points on this curve.
Let a € F7, be such that f(a)f*(a) # 0. Then [/ 5 g m-th power in [F 2 if and only

oS

#-1
if (M) "™ =1, which is equivalent to

(s )

that is,
(@) f* ()™ = a"e=1) (Z <f<a>f*<a>><“”&“q”<ﬁ’”l”)) =0,
Let
m(X) = (FO)F () = X0
and .
he(X) = 73: (f(X>f*(X))(q_l)iXs(qfl)(imlflﬂ').

Then h; and hy are coprime polynomials. In fact, if « is a root of hy, then (f(a)f*(a))?™! =
a*@=1 and

a+l_ g

ho(a) = (f(a)f*(a))(q—l)ias(Q—l)(qmi—l—i)

d

=}

+

=l
o

-1
_ Z 5@ Di g s(a=1) (L ~1-i)

— <q+1) aS(qul)("mi—l) £ 0.

|

<.
[en]

m
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It is also clear that (hy, ff*) = (he, ff*) = 1. We conclude that

#{a €Fyp o fla)f*(a) #0 and W

= Nh1 (Fq2) + NhQ(Fq2).

is a m-th power in F;Q}

From Remark 1.2.16, each a € F2 such that f(a)f*(«) = 0 gives one rational point on
the curve. From Remark 1.2.16, we also conclude that each one of z = 0 and x = oo (that
is, each one of the places Py and P, of F,(z)) contributes (m,s) and (m,2d — s) rational

points on the curve, respectively. So the number of rational points on the curve X is
#X(Fp)=(m,s)+ (m,2d —s) + 2N;(F2) + m(Np, (Fp2) + Np, (Fp2)). (3.4)

Now we assume that (f, X77' — 1) = 1. Note that, for 8 € {w € Fp : w@+12d=) = 1}

we have 39 = 7!, and thus we write

m(B) = (F(B) f(8))" — gray — LSBT g,

7(B)1(5)
FENBY g _ SUBFQ/A) _ o
GG 7(B)F(5)

LIS g g g
I 1(5)1(5) |

Also, for g € IF; such that f(8)f*(8) # 0, we have hy(3) = 0. Therefore
Np (Fg2) > (g +1,2(d —8)) +q— 1 =2N(F;) — (¢ — 1,2).
Hence we get
#X(Fg2) > 2Np(Fp2) +m[(q+1,2(d — 5)) + ¢ — 3 — 2N(F})].
O
In what follows we compute the genus and the exact number of rational points for
some families of algebraic curves as constructed in (3.3).

Theorem 3.1.3. Let b € F| be such that b2 #£ 1, and d be a positive divisor of ¢+ 1. Then
the algebraic curve defined by
bX% + (B + 1) X2+ b

. +1
X yrt = i

has genus
g=dlg—1)+1

and its number of F2-rational points is given by
BX(Fp) = d(q* — 1)+ (d,2)(q + 1) +4d — d(q + 1)((a — 1,2) +2).

In particular, if ¢ > 17 is odd and d = 2, then this curve has many points.
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Proof. The curve X corresponds to the construction in (3.3) for f(X) = X%+ b, s = d,
and m = ¢ + 1. Since b*> # 1, we have (f, f*) = 1. The genus of the curve follows from
Theorem 3.1.2. Now we compute the number of I 2-rational points on the curve following
the proof and notation as in Theorem 3.1.2. Since b € F; and d is a divisor of ¢ + 1, each
one of f and f* has d distinct roots in F}, and therefore Ny« (F,2) = 2d. Note that each
root of ff* contributes one rational point on the curve. From Remark 1.2.16, we also
conclude that each one of z = 0 and x = co contributes (¢ + 1, d) = d rational points on

the curve, respectively.
On the other hand, we have that

#{a €Fy: f(a)f*(a) # 0 and W is a (¢ + 1)-th power in Fzg}

= Np, (Fp2) + Npy (F2),

p(X Ut — 1) (xda=) 1)
F(X)f+(X)
Clearly Np,(F,2) = 0. Next we show that the polynomial hy € F,[X] has d(¢ — 1) + 2(q +

1) — 4d distinct roots in Fy.. In fact, since

h(X) = (F(X)f5 (X))t = xUaD =

and ho(X) = 1.

(Xd(qul) . 17Xq271 . 1) — x(d2)(g+1) _ 1,

(Xda=b) _ 1 X1 1) = X4=D _ 1 and

(X@2@) _p xda=) _ 1y = yda-12) _
we obtain d(q— 1)+ (d, 2)(¢+1) —d(q— 1,2) distinct roots of (XD —1)(X4=H —1) in
F?2. Since Ny« (Fy2) = 2d, we conclude that hy has d(g—1)+(d,2)(g+1) —d(¢—1,2) —2d
distinct roots in F.. Hence the number of F2-rational points on the curve X' is given by

$X(F) = 4d+ (g +1)(d(g — 1)+ (d,2)(g + 1) — d(g — 1,2) — 2d)
=d(¢* = 1)+ (d,2)(q + 1)* +4d — d(g + 1)((¢ — 1,2) +2).

Next we show that for ¢ > 17 odd and d = 2, this curve has many points. By
Remark 3.0.1, a curve is considered to have many points if and only if L(¢?, g) < #X(Fp2).

From the Hasse-Weil bound, we have

2 2
+1+29g—¢?—1
Lg% g) < |2 j’g d J+q2+1:[\/§gqj+q2+1.

In particular, algebraic curves satisfying v2gq + ¢> + 1 < #X (F,2) have many points.

Therefore the curve X has many points if
V2q(d(g—1)+1) +¢*+1 < d(¢* = 1)+ (d,2)(¢+1)* +4d — d(q+1)((g— 1,2) +2). (3.5)

The condition (3.5) is never satisfied when ¢ is even or when ¢ is odd and d # 2. For ¢
odd and d = 2, this condition is satisfied if and only if ¢ > 17. O
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Note that for b> = 1 the curve X in Theorem 3.1.3 is isomorphic to the curve
with affine equation Y9! = (X2 + b)2/X% In order to complete the analysis of the
curve X, we study in Proposition 3.1.4 an absolutely irreducible component of the curve
Y+t = (X + b)2/X? obtained when d is even, and in Proposition 3.1.5 we study this

curve for d odd.

Proposition 3.1.4. Assume q is odd. Let d > 1 be a positive integer such that 4d divides
¢*—1, and let b € F, be such that b* = 1. Then the algebraic curve X defined by the affine
equation

_ XM 4b

(¢+1)/2
Yy ~d

(3.6)
has genus
_d(g—1)+2—(2d,q+1)
2
and its number of F2-rational points is given by

HX(Fp) = (¢+1)%*2d,q—1)+ (¢ —|—21)(2d, q+1)—2d(3qg + 1).

In particular, this curve is maximal over F 2 if and only if (2d,q+1)+(2d,q—1) = 2(d+1).

Proof. By Remark 1.2.16, each one of the points x = 0 and x = oo contributes with
(d, “t1) rational points on the curve. Now we consider the roots of X??+b. Since 4d | ¢* —1,
we have #{a € Fpz : a** 4+ b = 0} = 2d and each root of X?* 4+ b contributes with one
rational point. On the other hand, for o € Fy. such that a? + b+ 0, we have

2d | p, 1 2d | p)\ 2D
ot isa(Q+ )—thpowerinIFZg e <a +> =1

ad 2 ol

& (@2t) _ 1)) _ 1) =0.  (3.7)
Since

(XQd(qH) _ 1’Xq2—1 —1) = X (¢+1)(2dg=1) _ q

(X2 1, X0 — 1) = x(-DCdatl) _ 9 and
(X(qul)(?d,qfl) — 1, X (@ Ddat+l) _ 1) = X% 1,

we obtain that there are (¢ + 1)(2d,q — 1) + (¢ — 1)(2d,q + 1) — 4d elements o € F},
satisfying (3.7). Also, since

X?d + b | (X2d(Q+1) _ 1)(X2d(q—1) . 1)

Y

we conclude that the polynomial (X24e+D) — 1)(X244a=Y — 1) has (¢ +1)(2d,q — 1) + (¢ —
1)(2d, q + 1) — 6d distinct roots in F, \ {o € F» : o 4 b = 0}. Consequently,

#X(Fp2) =2d + 2 (d, q‘; 1) + q;rl((q+1)(2d,q— )+ (¢ —1)(2d,q+ 1) — 6d)

(g+1)22d,q—1)+ (> +1)(2d,q + 1) — 2d(3¢g + 1)
5 .
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Finally, we note that

#X(Fp) — ¢ —1—299 =

<q21)2((2d,q— 1)+ (2d,g+1) — 2 - 2d).

This completes the proof. ]

Proposition 3.1.5. Assume q is odd. Let d > 1 be an odd integer such that p1d, and let
b € F, be such that b* = 1. Then the algebraic curve X defined by the equation

(X9 +0)?

+1 _
Yo = i

(3.8)

has genus
dlg—1)+2—2(dg+1)
2

and its number of F2-rational points is given by

g:

#X(Fp) = (> +1)(d,q+ 1)+ (g+ 1)*(d,qg — 1) — (3¢ + 1)(d,¢" — 1).

In particular, for a divisor d of ¢* — 1, the curve X is F,2-mazimal if and only if either
(dig+1)=1o0r(dqg—1)=1.

Proof. The computation of the genus is analogous to the one in Proposition 3.1.1 and the
computation of the number of F2-rational points on the curve is analogous to the proof of

Proposition 3.1.4. For a divisor d of ¢*> — 1, we have

#X(Fp2) —¢* —1—299 = (" +1)(d, g +1) + (¢ + 1)*(d,g = 1) = (3¢ + 1)d — ¢* — 1
—dg(q+ 1)+ 2dqg+2q(d,q+ 1) — 2¢
=(¢+1)*((d,qg+1) + (d,g—1) = 1) —d(q + 1)*
=(¢+1)*((d,qg+1) + (d,g —1) = 1 —d)
= —(¢+1)*((d,g+1) = 1)((d,g — 1) = 1).

]

Remark 3.1.6. The curve in Proposition 3.1.5 is isomorphic to Y+t = Xa+t1=d(Xd 4 p)2,
We point out that for some values of d (for instance, when d is a divisor of ¢+ 1), this
curve has appeared in [22, Example 6.4 (case 2)] as a subcover of the Hermitian curve
over Fp2 given by

Y™ = (SRR 4 1),

where m, my are divisors of ¢+ 1, and k, b are positive integers.

We now provide examples of curves with many points from the constructions

obtained in this subsection. For this, we use the notation given in Remark 3.0.1.



3.1. A construction of curves over Fgz. 57

Example 3.1.7. Let f(X) = X + b where b € F} is such that b> # 1. In the following
tables, we list ¢, m,b,s,g and #X(F,2) where m,s, X and [ satisfy the hypotheses of

Theorem 35.1.2.

Meet record
Meet record

q | m| b | s | g |#XFpe) g | m| b | s | g |#XFe)
32| 5 | &% | 3| 4| 1541 T
516 ; 4| 4| 66 131 10 | &he| 3 | 9 | 31504
52 | 13 0o T6 | o2 13234 | 8 | 4 | 32| 39378
> 6;2 T 26 17118 2| 0 | 8 5621
52 ;3 5 i o 1 26T 17|18 | 4 | 6 | 14| 766
L i f 17|18 | 4 | 4 | 16| 834

4 | 2 2
72 3 ’ 29 " 195120 438t
L R 7 1920209 704
7?7110 3| 4 3186f
72025 | &= | 0 | 12| 3578t .

t

72 | 50 5%22 10 | 44 67141 ew entry
2 50 | e2| 4 | 48| 7060 |4 ™ b s |9 |#XFe) | OLB
13 | 14 ; 0| 6 3261 72150 [ &h | 5 | 47| 5708 5658

Example 3.1.8. Let f(X) = X* + b where b € F} such that b* # 1. We list ¢, m,b, s, g
and #X (F,2) in the following tables where m, s, X and f satisfy the hypotheses of Theorem
3.1.2. We note that if m = q+ 1 and s = 2 in the following tables, then the genus g and
the number of F2-rational points #X (F2) satisfies Theorem 3.1.3.

Meet record
Meet record

g | m| b | s | g |#XFp)
m b S X(TF 2
25 |¢p| 0| 6| 190 a 9 | #X(Egz)
5 131459 |26 8461
32110 [ €| 2 | 17 288 5
132 5 | 8 | 2 | 8 | 31266t
5162|510 126f
. 132110 | 5 | 2 | 17| 34208
52126 | &2 | 2 | 49 2400
7] 23| 1 358"
15|06 29901
5 171313 2] 4 4267
721250 310 |36]| 5930f
1716 | 3] 5110 6307
11 311 166f
7195|012 698"
11 3|1 2 210t
1720 5 | 4 | 2 881467
1116|315 |10 3497
19 5410 5901
13 511 | 2 2297
1911014 5 | 16 9707
1314 21 2125 624
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New entry

q m b S g | #X (Fq2) OLB New record
721025 | &, | 5|46 | 69107 | 5589

g |m|b|s| g |#XFpe) OLB
132| 34 | &, 0 | 49 | 41112 | 40273

72010 [ & ] 0| 13| 3576 | 3258
17 (18] 2 | 2 33| 1088 | 1083

72110 &, 2| 17| 3968 | 3808
172010 | 5 | 2 | 17 | 92928 | 90470
1920 ] 2 | 2|37 | 1368 | 1356

Example 3.1.9. Let f(X) = X3+ b€ F,[X], m > 2 be a divisor of ¢+ 1, and s be an
integer such that 0 < s < m. We consider the algebraic curve defined by

JX)[(X)
X: Y'=—. "7
Xs
The following tables consists of ¢, m,b,s,g and #X(F2) which leads to meet record/new
entry in the manYPoints table in [60]. Further, if m = q+1, s =3 and b?> = 1, then the
genus g and the number of F2-rational points #X (F2) satisfies Proposition 3.1.5.

New entry

g | m| b | s | g |#XFp) OLB

Meet record 52113 1| 3 | 18| 1526 1262

g lm| b s ]| g |#XEa] [52]26] 1| 3]36] 2426 1898
1718 4 | 0 |40 16500 72110 | €& | 8 | 26 | 4444 1203
7?10 e | 3 |27 | amas 1273

132 10 | €2,] 8 | 26 | 36604 | 34776

Remark 3.1.10. For ¢ = 52 in Ezample 5.1.9, we obtain an explicit equation for a maximal

(X341)? (X341)2
X3 X3 Of

genus 18 also provides a mazximal curve. Moreover, in Example 3.1.8 we get a new mazximal

curve of genus 36 over Fsa given by Y26 = . The covered curve Y13 =
curve over Fra of genus 46. These genera already appeared in [16] as the genus of a curve

covered by the Hermitian curve.

These three examples of explicit maximal curves are new entries in the manYPoints
table [60] and rise a natural question, to decide if these curves are or not covered by the

Hermatian curve.

Example 3.1.11. Let f(X) = X*+b where b € IFy is such that b # 1. In the following
table, we list ¢,m,b,s,g and #X(F2) where m,s, X and f satisfy the hypotheses of
Theorem 3.1.2.
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Meet record

g | m| b | s | g |#XFp)
32110 &1 9 |36 7301
501212114 8261
52 113 | 2 | 4 | 48| 3026
1120 2 | &% 1 | 4 | 15610
1703|4418 562
1719 | 4| 4 |32] 1378

Next, we provide some more examples of curves with many points.

Example 3.1.12. In the following tables, we list ¢, m, f,s, g and #X(Fpz) where m,s, X

and f € F,[X] satisfy the hypotheses of Theorem 3.1.2.
Meet record

q | m f s| g | #X(Fp)

2 13 X3+X+1 |0 157

314 X24+2X+2 |0 28t

32|15 | X*4+ X242 |4]16| 3707

714 ] X*+X24+5 1|0 1207

718 | X2+3X+3 |6 176

7205 | X*+2X2+3 416 | 3970

116 | X24+3X+101|0 2761

116 | X?24+3X+10]2 3201

1112 X24+3X+10|0 |15 452f

1112 X243X+10|8119 540t

1910 | X2 46X +18| 0| 13| 856f

1910 | X24+6X +18| 2| 17| 1008"

19120 | X24+6X +18 |8 (35| 1692

1910 X*4+ X247 19(36| 1730

New entry

q | m f s| g | #X(Fp) | OLB
7210 | X2+ & X 4+E3 | 318 3726 | 3649
7210 | XP 4+ X2+ 2 | 425 4272 | 4134
72110 X*4+2X%2+3 |4(35| 5052 | 4827
17 6 | X*+6X2+16 |1]20 826 770
17118 X*+14X+2 |3]23 892 842
1910 | X*+2X2+16 [4|25| 1072 | 1033
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Inspired by the previous constructions, we present some improvements obtained by

using Artin-Schreier extensions.

Example 3.1.13. Let X be the curve defined by the equation

fSX)f(X)

X: Yi4+Y =
+ X ;

where f € F[X] and s > 0 is an integer. We have the following improvements in the
manYPoints table [60].

New entry

q f1s| g |#X®F) | OLB
7 1X2+1|2|12] 170 165
11| X24+1[2|20| 442 430
13| X2+1]2(24| 626 611

3.12 Thecaseofe=1and A = —1

In this subsection, we consider the curve X in (3.2) with e = 1 and A = —1. As
in Subsection 3.1.1, we provide a lower bound for the number of F -rational points on
the curve X when the polynomial f € F,[X] satisfies certain conditions. We also provide

some examples of curves with many points.

Theorem 3.1.14. Let m > 2 be a divisor of ¢ — 1, f € F,[X] be a separable polynomial
of degree d satisfying f(0) # 0 and (f, f*) =1, and s be an integer such that 0 < s < m.
Then the algebraic curve defined by the affine equation
X*f(X)
X: Y'=——~= 3.9
F(X) 3
has genus

g=dm—1)+1—(m,s).

Further if (f, X7 —1) = 1, then the number of rational points #X (F2) over F,2 satisfies
HX(F) > 2N, (Fye) + mlg + ).

Proof. A direct application of Proposition 3.1.1 gives the genus of the curve defined in
(3.9). To obtain an expression for the number of rational points for this curve, we observe

that for a € Fy» with f(a)f*(a) # 0, we have that O}f((a‘;) is a m-th power in F if and

9 -
only if (O}*f((:;)> ™ =1, which is equivalent to

g—1 -1

m

((QSf(@))q+1 _ f*(g)q+1) (asf(a>>(q+1)z‘f*(a>(q+1)(q;f—1—i) =0.

=0
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Let
hi(X) = (X°f(X)) — fH(X)7+

and
a—1_4
m

ho(X) = 3 (XOf(X) @D pr ()5 -1-0),

i=0
Then h; and hy are coprime. In fact, if « is a root of hy we have (o f(a))?™ = f*(a)it!

and

ho(a) = mz (an(a))(le)z‘f*(a)(qﬂ)(%fbi) — mz f‘*(a)(q+l)if*(a)(q+1)(q;mlflii)
i=0 —
— Tz:_ f*(a>(Q+1)(%—1) — (q_l) f*(a)(q-i-l)(%_l) £0.
i=0 m

Also, since (hy, ff*) = (he, ff*) = 1, we obtain

a’ f(a)
f(e)

On the other hand, from Remark 1.2.16, we know that each root in F of the polynomial

# {a €y, f(a)f*(a) # 0 and is a m-th power in FZQ} = Np, (Fp2) + Np, (Fj2).

f [ gives one rational point on the curve. Thus
#X(FqQ) > 2Nf(]Fq2) + m(Nhl (qu) + Nh2 (FqQ)) (310)
Next we assume (f, X9*! — 1) = 1. Then for 8 € F2 such that 497 = 1, we have

hi(B) = (B°F(B)* = f*(B)**
— 58(q+1)f(/3)q+1 _ 5d(q+1)f(5)q+1
= 0.

Therefore N, (Fp2) > ¢ + 1. Hence the assertion on the number of rational points follows
from (3.10). O

From the constructions given in Theorem 3.1.14, we obtain the following examples

of curves with many points.

Example 3.1.15. Let f(X) = X +b € F,[X] be such that b # 0 and b* # 1, and m, s, X
be as defined in Theorem 3.1.14. Then (f, f*) = (f, X7 — 1) = 1 and the curve X has

genus g = m — (m,s). We obtain the following tables of curves with many points.

Meet record
New record

g |m | b | s | g |#X[Fp)
m | b S X(F 2 OLB
716244 102 1 g | #X(Fqp)
1716 3 |9 15| 708 692
112 8 | &% 4 | 4 | 156107
= 112 15 | €6,) 5 | 10 | 16952 | 16942
12| 8 | &L 3 | 7 | 16308
19|18 2 | 3 15| 866 782
1312 2| 4|8 362
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New entry

New entry

g |m| b | s | g |#X{Fpe)| OLB q|m| b | s | g |#X[Fpe)| OLB
52 |24 | ¢, | 8 [ 16| 1202 | 1191 || 112] 40 | €3] 6 [ 38| 22246 | 21144
52 [ 24| 2 | 4 [ 20| 1450 | 1333 || 132[ 12 [¢%] 5 [ 11| 31972 | 31191
52 24| 2 [ 9 [21| 1400 | 1368 || 132] 14 [ €9 9 [ 13 | 32260 | 31669
72016 | ¢, 6 [ 14| 3558 | 3372 | |132] 21 | €2, 5 | 20 | 34318 | 33342
16 | & 7 [ 15| 3684 | 3441 || 132] 24 [ ¢2,] 5 [ 23 | 35428 | 34059
72024 | 3] 5 [ 23| 4276 | 3995 || 132] 28 | ¢D,) 9 | 27 | 35452 | 35015
2] 15 [ €2,] 4 | 14 | 17674 | 17037 | | 132 42 | €lL| 7 | 35 | 37550 | 36927
112] 24 | €25,0 8 [ 16 | 18050 | 17379 | | 17| 12 | €4,] 9 | 9 | 87938 | 87200
12 24 | 5 | 3 | 21 | 18968 | 18235 | | 172 12 | &5, 5 | 11 | 88828 | 88017
112] 24 | ¢2,] 7 | 23| 19204 | 18577 || 172] 16 | 7| 5 | 15 | 91044 | 89652
2] 30 [ €9,] 3 | 27 | 19988 | 19262 | | 172 24 | €2, 5 | 23 | 94996 | 92922
112] 30 | €2, 4 | 28 | 20106 | 19433 | | 172 32 | €7.| 5 | 31 | 97604 | 96191
112] 40 | ] 4 | 36| 20962 | 20802 | | 172] 48 | ¢i,| 5 | 47 | 105124 | 102731

Example 3.1.16. Let f(X)

= X?+b € F,[X] be such that b # 0 and b* # 1, and

m, s, X be as defined in Theorem 3.1.14. Then (f, f*) = 1 and the curve X has genus

g=2m—1—(m,s). For this case, we have the following tables.

New entry

New entry

g | m| b | s | g |#X[Fpe)| OLB g | m| b | s | g |#X[Fpe)| OLB
520 8 | &e | 2 | 13| 1128 | 1085 || 112| 20 | €%5,| 5 | 34 | 20644 | 20460
52124 | &e | 10 | 45 | 2216 | 2216 || 11%2| 20 | &7, 8 | 35 | 20964 | 20631
72012 (&% | 2 [ 21| 4040 | 3857 || 11220 | &%| 2 | 37 | 21528 | 20973
7216 | &5 | 2 | 29| 4552 | 4411 || 117 24 | &) 4 | 43 | 22372 | 22000
72024 | €| 6 [ 41| 5380 | 5243 || 117 | 24 | | 2 | 45 | 22472 | 22342
72024 | &L | 4 [ 43| 5476 | 5381 || 13 | 12| 2 | 8 | 19| 532 519
72024 | €910 [ 45 | 5672 | 5520 | | 13%| 12 | &2.| 4 | 19 | 33748 | 33103
1110 3 | 2 |17 | 408 386 132] 12 | €l 1 | 22| 34374 | 33820
112 Gh| 4 | 11| 16940 | 16524 | [ 13%| 14 | | 2 | 25 | 35400 | 34537
112 €] 2 | 13| 17480 | 16866 | | 132 21 | 8 | 3 | 38 | 38314 | 37644
11| 10 | &2 2 | 17 | 18128 | 17551 | | 13%| 24 | &5,| 10 | 45 | 40136 | 39317
112012 | €8, 4 | 19| 18436 | 17893 || 17 | 16 | 2 | 4 | 27 | 972 939
11215 | €2 5 | 24 | 18964 | 18748 | | 17| 8 | &2 6 | 13 | 89224 | 88835
1121 15 | & 3 | 26 | 19564 | 19091 | [ 17%| 18 | &p2| 7 | 34 | 97494 | 97418
112130 | &u2| O [ 29 | 19684 | 19604 | | 19 | 18 | 2 | 6 |29 | 1156 | 1141
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New entry

g |m| b | s | g |#X[Fpe)| OLB

192] 6 | &9 1 | 10 | 136782 | 135427 New record

19| 12 | €102| 0 | 11| 136612 | 135037| [ ¢ | m | b | s | ¢ | #X(Fz)| OLB
192 €07| 3 | 14| 138208 | 137469|| 17 | 8 | 4 | 2 | 13| 648 | 612
192 €02| 2 | 16 | 139650 | 138490

192] 24 | €00 0 | 23 | 142372 | 142064
Example 3.1.17. Let f(X) = X3 + b € F,[X] be such that b # 0 and b* # 1, and

m,s, X be as defined in Theorem 3.1.14. Then (f, f*) = 1 and the curve X has genus

g=3m—2—(m,s). In this case, we obtain the following tables.

New entry

q | m| b | s | g |#X[Fpe)| OLB

72112 & | 3 | 31| 4680 | 4550

112 8 [ €5, 4 | 18 | 18486 | 17722

12| 12 | €. 0 | 22 | 19080 | 18406

112 12 | €0.] 3 | 31| 20820 | 19946 New record

112 15 [ €30, 6 | 40 | 22242 | 21486 || ¢ | m | b g | #X(F,z)| OLB
112] 24 | €25 0 | 46 | 22608 | 22513 | | 112 5 | €5, 0 | 8 | 16566 | 16546
132 7 | €k, 3 | 18| 33980 | 32864

132 12 | €3, 3 | 31 | 36792 | 35971

132 14 | €2 7 | 33| 37568 | 36449

132| 14 | &, 3 | 39 | 38732 | 37883

199 4|6 [22] 972 953

Example 3.1.18. Let f(X) = X* +b € F,[X] be such that b # 0 and b* # 1, and
m,s, X be as defined in Theorem 3.1.14. Then (f, f*) = 1 and the curve X has genus

g =4m —3—(m,s). We have the following tables of curves with many points.
New entry

g |m | b | s | g |#XFe)| OLB
7208 | 3| 5 | 28| 4522 | 4342
12) 6 [ €9 0 | 15| 17672 | 17208
112 8 | &, 4 | 25| 19456 | 18919
12| 12 | €4 6 | 39 | 22184 | 21315
13 2 | 1|20 554 537

132 2,00 | 15| 32216 | 32147
132 Ela| O | 21| 34584 | 33581
132] 12 | €%,] 8 | 41 | 38784 | 38361
172 6 | &2l 5 | 20 | 91826 | 91696
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We finish this section by giving some additional improvements in the manYPoints
table [60].

Example 3.1.19. In the following tables, we list ¢, m, f,s, g and #X(F2) where m,s, X
and f € F,[X] satisfy the hypotheses of Theorem 3.1.14.

New entry

¢ [ m f s| g | #X(Fp) | OLB
52 | 4 | X4+ X2 +¢&L 4] 9 984 944

52| 8 | XZ4+2X +¢&, |4(11] 1092 | 1014
52 | 8 | XP+&LX 42 | 7|14 1206 1120
516 | X*+X?4&F |6]15| 1160 1156
52 12| X2+ &LX+& | 617 1252 1227
5216 | X'+ X24¢L [419] 1308 | 1297
7?6 | X'+ &HX?+5 [ 4(19] 3780 3718
78 X0 +&5 3142 | 5486 | 5312
12| 5 X5+ ¢t 2|32 20482 | 20117
12| 5 X" 4 & 0|44 22800 | 22171
132 | 6 X"+2 0|30 | 35966 | 35732

3.2 Curves with many points from fibre products

In this section, we construct new curves with many rational points by considering
the fibre product of the curves constructed in Subsections 3.1.1 and 3.1.2. To provide a
lower bound for the number of F-rational points for these new constructions, we use a
generalization of Remark 1.2.16 given in [50, Theorem 4] for fibre products of Kummer

extensions.

Theorem 3.2.1. Fori € {1,2}, let m; > 2 be a divisor of ¢+ 1, s; be an integer with
0 <s; <my, and f; be a separable polynomial in F,[X| of degree d; satisfying f;(0) # 0
and (fi, ) = (fifs, fofs) = 1. Then the curve X defined by the affine equations

ymz _ LOF0
X 2

XS
ym — B0 (3.11)

Xo1
has genus

+ (myma, m2(2dy — s1),m1(2dy — $2))
2

g = mlmg(dl + dQ) — d1m2 — d2m1 + 1— P

where k = (mimg, syma, Somy). Further, if Fpe is the full constant field of Fp(X),
[Fp2(X),Fpe(x)] = mimg, and (f;, X9 — 1) = 1 for i € {1,2}, then the number of
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[ 2-rational points #X (F2) of the curve X satisfies
#X(F2) = mima((q + 1,2(dy — s1),2(d2 — 82)) + q — 3 — 2Ny, 1, (Fy))
In particular, for sy = di and sy = dy, we have
#XGFqQ) = 2m1m2(q —-1- Nflfz(]F )) + 27n?jvf1 (F;) + 2m1Nf2 (FZ)
Proof. We start by computing the genus of the function field K (x,y,y2). By Theorem
3.1.2, we have g(K(z,y1)) = (2midy — 2(dy — 1) — (my, $1) — (m1,2dy — s1))/2. Also, for

the roots v1,...,7q, of fi in K, we have the following ramification indices e(P) in the
extension K (x,y;)/K(x).

my/(ma, $1), if P is over R,

my, if P is over P, or P -1,
€(P> = ! ! 15 OV i i !

ml/(ml,le—sl), if P is over Pooa

1, otherwise.

Now we show that the extension K(x,y1,y2)/K(z,y1) is a Kummer extension. Let
ai,...,aq, € K be the roots of fo. The principal divisor of the function 72 fo(x) f5 () in
K(x) is given by

da2
(@7 fa(@) 3 (@) k(@) = D_(Pa; + Pyr) — 52P — (2d2 — 52) P,
i=1
and consequently
mi1 da (ml 51

(72 (@) f5(2)) Koy = 3 Qo + Qo) = 7 S Qua

j=1i=1 m1,31 =1

_ ma(2dy — s) (ma, % 1) 0
(my,2d; — s1) oob
where @, ;, Qaifl’j, Qo.i, and Qo ; are the extensions in K (z,y;) of the places P,,, Pa;17 P,
and P, respectively. Thus the ramification indices in the extension K(z,y1,y2)/K(z,y1)
are given by

m2(m1, 81)

, if R is over Qo,

ma(mq, 2d; — s1) if R is over Qo ;
00,05

6<R) - (mlmg, m1(2d2 — 82),m2(2d1 — 81))’
ma, if R is over (g, ; or Q, -1,
1 otherwise.

Y

We conclude that the equations (3.11) define an absolutely irreducible curve. Its genus

follows from the Riemann-Hurwitz formula applied to K (x,y1,y2)/ K (x,y1).

Next, we provide a lower bound for the number of Fp-rational points. From [50,
Theorem 4], it follows that:
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o for o € Fp, such that fi f{ f2 fo(a) # 0, the curve X has m;ms points with coordinate

r = « if and only if W

is a m;-th power in I, for i € {1, 2},
o for a € F}2 such that fi f(«) =0, the curve X has my points with coordinate z = «

ff2 fz( )

if and only i is a mo-th power in F.,

o for a € F}, such that f5f5 () = 0, the curve X' has m; points with coordinate z = «

f1 (a)

if and only if file is a my-th power in Fy,.

From the proof of Theorem 3.1.2, for i € {1,2}, we have

-1

) =1 <& «aisaroot of h;h;o,

(fi<&)fi*(a)

s
where
hia(X) = (fi( X) f7 (X))o~ = Xla=D
and
%_1 g+1 .
hio(X) = Z (fl.<X)fi*(X>>(Q*1)sz¢(q71)(W,I,J)'
Jj=0

From the proof of Theorem 3.1.2, we also have that if 3 € F 2 satisfies gla12(d1=s1).2(d2=52)) =
1, then h; (B) = 0. Further, for 7 € {1,2}, if 3 € F; and f;(3)f7(5) # 0, then h;(5) = 0.
Hence,

#X(F2) = mima((q + 1,2(dy — 51),2(d2 — 52)) + q — 3 = 2Ny, 1, (F}))
+ 2my Ny, (F%) + 2my Ny, (F2).

]

Example 3.2.2. For polynomials fi, fo € F,[X] satisfying the conditions of Theorem 3.2.1
and the curve X as defined in (3.11), we have the following table.

New entry

q | my | my | 81| S2 S I2 g | #X(Fpe) | OLB
19 2 | 4 | 44| X*+2|X*+7]33 1280 1248

Also, for a self-reciprocal polynomial f1 € F,[X], we have the following improvements in
the manYPoints table [60].

New entry

q | mi|mg| S| S fi f2 g | #X(Fpe) | OLB
11 3|3 |22 |X?2+1| X247 |16 402 370
1103 [ 6 | 0|1 ]|X%2+1]X2+10]|22 462 459
171 3 |6 | 22| X2+1| X243 |37 1224 | 1179
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New record

q | my | mg | S1| S2 fi fo g | #X(Fpe) | OLB
5| 3 6 215 | X241 | X?24+4|22 174 168

Analogously to Theorem 3.2.1, we have the following result corresponding to another

type of fibre product.

Theorem 3.2.3. Fori € {1,2}, let m; > 2 be a divisor of ¢ — 1, s; be an integer such that
0 <s; <my, and f; be a separable polynomial in F,[X]| of degree d; satisfying f;(0) # 0
and (fi, f7) = (fify, fafs) = 1. Then the curve X defined by the affine equations

=Sy
X { ym X511 (X) (3.12)
G

has genus

g =mime(d; +dg) — dymg —domy +1 — kK

where k = (mymg, S1Ma, somy). Furthermore, if Fp is the full constant field of Fp(X),
[Fp2(X),Fpe(x)] = mimg, and (f;, X9 — 1) = 1 for i € {1,2}, then the number of
[F2-rational points #X (F2) of the curve X satisfies

#X(Fp2) > mima(qg+1).

Proof. We start by computing the genus of the function field K (z,y,y2). By Theorem
3.1.14, we have that g(K(z,y1)) = (mq — 1)dy + 1 — (myq, s1). Also, for v1,...,7q4, € K the

roots of fi, we have the following ramification indices in the extension K(z,y;)/K(x)

my/(ma, s1), if P is over Py or Py,
e(P) =14 my, if P is over P,, or P -1,

1, otherwise.

Now we show that the extension K (x,y;,y2)/K(x,y;) is a Kummer extension and obtain

its genus. Let oy, ..., a4, € K be the roots of f;. The principal divisor of the function
%2 fo(z) f5(x)~" in K(z) is given by

(2% f2(2) f5 (@) k(@) = s2(Po = Poo) + Z

and consequently

(m1,s1) mi1 dg
(@ B ) = s D (@i = Qo) 23 (Qas = Q)
) i=1 Jj=li=1

where Qq, j, Q41 j; Qo and Qo ; are the extensions in K (x, y1) of the places P, P,-1, P,
and P, respectively. Thus, the ramification indices in the extension K(z,y1,y2)/K(z,v1)
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are given by
ma(mq, $1)/k, if Ris over Qo; or Qs
e(R) =1 mao, if Ris over Qq,; or Q -1,
1, otherwise.
We conclude that the equations (3.12) define an absolutely irreducible curve. Its genus

follows from the Riemann-Hurwitz formula applied to K (z,y1,y2)/ K (x,y1).

To provide a lower bound for the number of F2-rational points, note that, by [50,
Theorem 4], we have that for a € F}, such that fif7 f2f5 () # 0, the curve X has mymy
points with coordinate x = « if and only if o* fi(a)/f; () is a m;-th power in Fy, for
1= 1,2, and by Theorem 3.1.14,

2,

) =1 for i= 1,2 & «isaroot of (hy1hia, haihoyo),

(asifz(oc)

fia)
where
hia(X) = (X% f;(X)™ = f7(X)"+!
and y
-1
halX) = 3 (X 00 @ (),
=0

From the same Theorem 3.1.14, we have that if § € F 2 satisfies 897! =1 then h;;(8) =0
for j =1,2. Thus, #X(F,2) > mima(q + 1).

Example 3.2.4. For polynomials f1, fo € F,[X] satisfying the conditions of Theorem
3.2.8, and the curve X as defined in (3.12), we have the following tables.

New entry

q | my | mo| S| S fi fa g | #X(Fpe) | OLB
131 3 3102 | X?2+3X+3|X+4]16 558 464
13| 4 4 |1 |1 X+2 X+6121 568 556
17| 4 4 |1 1]1 X+3 X+8 |21 808 794

New record

qg | My | Mg | S1 | S2 f1 f2 g #X(Eﬁ) OLB
13/ 21402 X%244X+5]11 444 400
13/ 216 |02 X+3|X+6]13 444 438
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4 \Weierstrass semigroup in Kummer exten-

sions

Let K be the algebraic closure of the finite field F,. In this final chapter, we
investigate Weierstrass semigroups of Kummer extensions with one place at infinity, that

is, algebraic curves defined by the affine equation

r

X: Y"=fX)=][(X—a)™ MNEN, and 1<) <m, (4.1)

=1

where r > 2 and m > 2 are integers such that Char(F,) { m, aq,...,a, € K are pairwise
distinct elements, Ao := >_I_; A;, and (m, Ag) = 1.

Abdon, Borges, and Quoos [1] provided an arithmetical criterion to determine
if a positive integer is an element of the gap set of H(Q), where Q € Pg(x) lies over a
totally ramified place in the extension K(X)/K(x). As a consequence, they explicitly
described the semigroup H(Q) when f(X) is a separable polynomial, that is, when
A = Ay = --- =\, = 1. This description was generalized by Castellanos, Masuda, and

Quoos in [12], where they study the curve X’ given in (4.1) for the case Ay = Ag = -+ = A,.

The Weierstrass semigroup H(()o) at the only place at infinity Qo € Px(x) of X

was explicitly described in the following particular cases:

i) For Ay = Ay =--- =\, see [12, Theorem 3.2].

ii) For any A\ and Ay = A3 =--- =\, = 1, see [58, Remark 2.8|.

This chapter aims to explicitly describe the Weierstrass semigroup H(Qs ) in the general
case, that is, we determine the Weierstrass semigroup at the only place at infinity ()., of
the curve X given in (4.1). Moreover, we provide a system of generators for the semigroup
H(Q), and as a consequence, we provide an explicit description of the gap set G(Q)
and generalize the closed formula for the Geil-Matsumoto bound given by Bras-Amoros
and Vico-Oton in Theorem 1.2.14. Furthermore, we study the Frobenius number and the
multiplicity of the semigroup H((Q) ) establishing a relationship between them, and provide
sufficient conditions for the semigroup H((Q.,) to be symmetric. Finally, we characterize

certain Fp-maximal Castle curves of type (X, Q).
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4.1 The semigroup H(Q)

Consider the algebraic curve
X Ym:H(X—ai))‘i, A EeEN, and 1<\ <m,
i=1

where m > 2 and r > 2 are positive integers such that Char(F,) tm, ay,...,qa, € K are
pairwise distinct elements, \g := >_I_; A\;, and (m, A\g) = 1. From Proposition 1.2.8 and the
Riemann-Hurwitz formula, we obtain that the genus of the curve X is given by
(m—1)(r —1)+r—>0,(m \)

5 )

9(X) = (4.2)

In this section, as one of our main results, we provide an explicit description of the
Weierstrass semigroup H(()s ) at the only place at infinity o, of X'. We start by recalling
the property described in [29, p. 94], which states that for m and A positive integers,

Z{TJ:(m_D()\_lQ)jL(m’/\)_l' (4.3)

=1

To prove the main result of this chapter, we need the following technical lemma.

Lemma 4.1.1. Let r,m, Ao, A1, A2, ..., A\, be positive integers such that \g = > \; and
r<X. Forke{r ..., \— 1}, we define

" sim
Mk ‘= Mmax {psl,...,sr : Zs,- =k 1<s < )\Z} , where ps, 5 = min { : J

= <i<r| )\

Then the sequence 0, < Ny < -+ < My,—1 @S characterized by the following equality of

{{nk:rgkng—l}}:{{R:”J 1< s <A 199}}. (4.4)

In particular, we have

multisets

X, _ M= Do —r) =+ S (m )

Igﬁk: 5

Proof. First of all, note that, from the definition of 7, we have that n, < m for each k.

Furthermore, if ny = pu;y..w, = Vj\mJ for some j, where YI_ju; =k and r < k < A\ — 2,
J

then u; < A; and
Ne = Pus,...,ur < Py ui+1,.ur < Nee+1-

This proves that 7, < 41 < -+ < 1y-1 < m is a non-decreasing sequence. Let
Sii={n:r <k <X—1} and Sy := {[sim/Ni] : 1 <s; <\, 1 <7 <r}. Now we are
going to prove that S; = S;. From the definition of 7, we have that ST C 5. Furthermore,

since the multisets S; and S; have the same cardinality, to prove that S; = Sy it is
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sufficient to show that mg, (nx) < mg,(n;) for each k, that is, if mg, (ng) = n > 1 then

there exist distinct elements ji, j2,...,jn € {1,...,7} and elements sj,, s,, ..., s;, with

1 <s;, < Aj, — 1 such that
/,’Ik_ — L, e — — .
{ Aji Ajn

If n = 1, there is nothing to prove, so we can assume that n > 1. Without loss of generality,

suppose that
M1 <Mk = Nk+1 = *** = Nktn—1, (4.5)

where n,_; := 0 if & = r. From the inclusion ST C S}, there exist j; € {1,...,r} and
s;; € {1,...,Aj;, — 1} such that n, = ff\l—mJ Now, for each i € {1,...,r} we define the set

FzIZ{SGNiﬁkSF;n

%

Jandlgsg)\l}.

Next, we prove that I'; # @ for each 4. Since s;, < Aj,, for i # j; we have that

Sj1)\i S5, Sjl)\i m 3]'1)\1' m
Al <) and = - < 1) =,
e 5O 5 = L0 )

which implies that {%J +1eT;fori# j; and 55 € I'j,. Let ¢; be the smallest element
1
of I';. From definition of the set I';, we have that ¢;, <s; . If t;, < s;, then

m m t;,m m (s;;, — )m S4,M Sj,m Sj,m
1o m J1 < j1 _ | %n < 2t 50
<)‘j1_>‘j1+{)‘ J nk_/\jl—i_{ /\jl J \‘)‘ J_)‘ {)‘ J7

J1 J1 J1 J1

a contradiction, therefore ¢;, = s;,. Also, from definition of the sets I';, we have that

Vti—l)m

b\ J <M =Pyt forie=1...7

Note that & = YI_,¢;. In fact, let ¥’ := I, ¢;. By definition of 7, we have that
Me = Pty...t, < M, and from (4.5) we deduce that k& < k’. On the other hand, suppose that
(ui,...,u,) is an r-tuple such that m = puy. u.» 2oreg i = k, and 1 < u; < \;. If there
exists j € {1,...,r} such that u; < t;, then

. R L KT (t; —1)m
Ne = Pur,ur = 1211,1?7“{ /\Z J ~ \ = . < Mk,

J J

a contradiction. Therefore ¢; < u; for each i = 1,...,r, and this implies that & < k. Thus,

we conclude that k = k' = Y7_, ¢;.

Now, we show that there exist distinct elements ja, ..., 7, € {1,...,r} \ {j1} such

TIk — \‘t‘hmJ [ — \‘tjnmJ

that
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Suppose that n, < { J foreach j € {1,...,r}\{j1}, then mp. < ps, ;1,4 < Miy1 since
" t; ="k Thisis a Contradlctlon to (4.5). Therefore there exists jo € {1,...,7} \ {j1}

satisfying
t; t;

J1 J2

where the strict inequality ¢;, < A;, follows from the fact that n, < m. If n, < Vf\—TJ for
each j € {1,...,r} \ {j1, 2}, then mp < pt, 4 +1.4j,41,.t, < NMk+2, again a contradiction

0 (4.5). Therefore there exists j3 € {1,...,r} \ {1, 72} such that

tjlm t]ém tj3m
T \‘ )‘Ji J \‘ >‘j2 J \‘ )‘j3 o 2 = s

By continuing this process, we obtain distinct elements ji, jo, ..., 7, such that
t;,m t; m
Mk = {le == {J”J and t;, < \j, foreachi=1,...,n
Ajn Ajn

Finally, from (4.3), we conclude that

OZ nk—gizlfmJ _ ; (m—l)()\i—12)—1+(m,)\i)
(m—=1)(X—1)—r+ Z;‘Zl(m,,\i).

2
]

Theorem 4.1.2. Let m > 2 and r > 2 be integers such that Char(F,) { m. Let X be the

algebraic curve defined by the affine equation

r

X: Y"=[[(X—a)™ MNEN, andl <)\ <m, (4.6)
i=1
where a, ..., a, are pairwise distinct elements of K. Define Ao := >_;_; \i, and suppose

that (m, \o) = 1. Then the Weierstrass semigroup at the only place at infinity Qo € Pr(x)
is given by the disjoint union

Ao—1

H(Qwx) = (m, Aoy U |-) By,

k=r

where By = {mk — kE'X\g : k' = 1,...,n}, and ny, are defined as in Lemma 4.1.1. In partic-

ular,

H(Qw) = (m,Ag,mk — Aom : k=1,..., A0 — 1). (4.7)

Proof. Clearly the result holds if r = Ay, therefore we can assume that » < A\q. We start by
computing some principal divisors in K(X). Let P,, € Pk () be the place corresponding
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toa; € K. For k€ {r,...,\g— 1}, let s1,...,s, be positive integers such that 1 <s; < \;
and Y7, s; = k. Then, from Propositions 1.2.6 and 1.2.8,

m T Ai
(x - CYz‘)K(X) = Z Q — mQw, (y)K(X) = Z - Z Q — M@,
(m:A) - Gim, = () G,
QEPK (x) QEPK (x)

I, (z — 041)81) "L 8im — NiPsy s
- = — Q_(mk_)‘p& ..... sr)Qoo-
( R Y :

By the definition of 7, we have that 0 < mk —Aomp € H(Qs) for r < k < A¢ and therefore

Ao—1

(m.20) U U By € H(Qu). (48)
k=r

Now, we prove that the union given in (4.8) is disjoint. For k& € {r,...; \g — 1} and

K e {1,...,m}, an element of By can be written as
mk — k’,)\o = m)\() — ()\0 — k)m — ]{?I>\0.

Therefore, from Proposition 1.1.2, By N {(m, Ag) = (). On the other hand, we have that
By, N By, = 0 for ki # k. In fact, if mk; — Aok} = mky — Xk} for r < ki, ko < Ao,
1 <K} <, and 1 < k) < my, then m(ky — ko) = Ao(k] — k). Since (m, Ag) = 1 and
2— X < ki — ky < Ao — 2, we conclude that k; = ks.

Finally, we prove that equality holds in (4.8). Since

g(X) _ (m B 1)(7” — 1) —;T B Z::1<m7 )\l) and Gimrg) =

(m—1)(\—1)
5 ;

from Lemma 4.1.1 we obtain that

Ao—1 Ao—1 — 1\ — . '(‘_ )\z
4 ( U Bk) =3 g - P ) g (1(Q.) (o)
k=r k=r
and the result follows. O

In general, we have that a minimal system of generators of a numerical semigroup
H has cardinality at most the multiplicity of the semigroup, that is, ey < my, see [55,
Proposition 2.10]. Since m € H(Qw); €r(0.) < MuQ.) < m. However, in general, it is
difficult to obtain a minimal system of generators to H(() ) from the system of generators

given in (4.7).

For example, for the curve Y° = X (X — 1)? defined over F, with 5 1 ¢, the system
of generators for the semigroup H(Q.,) provided by Theorem 4.1.2 is given by H(Q) =

(3,4,5) and therefore is a minimal system of generators. However, this does not happen in
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general. In fact, if n, = ng4 for some k then we can remove the element m(k+ 1) — Aonk+1
of the system of generators given in (4.7) since m(k + 1) — Xonr+1 = mk — Ao + m. More
generally, define A := maxi<;<, A;. If A = 1 then H(Qw) = (m, o) and eyg.) = 2. If
A > 1, then fori € {{m/A],...,m—[m/A]|} define k; := 0 if thereisno k € {r,..., \g—1}
such that n, =4, and k; := min{k : r < k < Ao, mx = i} otherwise. Thus, for each i such
that k; # 0 and k such that n, = i, we can write mk — \gnp = mk; — Xone, + m(k — k;).
Therefore, by removing the element mk — A\gn; from the system of generators given in
(4.7) we obtain that

m

H(Qx) = <m,)\0,mki—)\onki:i: {AJ,...,m— P/ﬂ and kﬁ£0>

and eyg.) < m — [%W — {%J +3 < m.

Example 4.1.3 (Plane model of the GGS curve). The GGS curve is the first generalization
of the GK curve, which is the first example of a mazimal curve not covered by the Hermitian
curve, see [20]. The GGS curve is an Fen-mazimal curve for n > 3 an odd integer, and it

is described by the following plane model:

q
VO = (X4 X)R(X)T, where h(X) = (—1) XD,
i=0
This curve only has one place at infinity Q. In order to calculate the Weierstrass
semigroup H(Qs), note that h(X) is a separable polynomial of degree q(q — 1). Using

our standard notation as in Theorem 4.1.2, we have that m = ¢" + 1, r = ¢%, Ao = ¢°,

M=-=X=1,and A\jy1 = --- = A2 = g+ 1. From the characterization of the multiset
S={ne:r <k<X—1} given in Lemma 4.1.1, we have that
1)(g"+1
q+1
Furthermore, since \y = -+- =X, =1 and \gy1 = -+ = A\ = q+1, we have mg(a) = ¢*—¢q
for each a € S*. Thus, since n, < Npy1 < -+ < Myy—1 1S @ non-decreasing sequence, we
obtain that
M = Mr+1 = ... = Nr+q2—q—1 - q;—izl
_ _ _ _ 2(q"+1)
Nr+q2—q = Mr+q2—q+1 = ... = Nr+2(q2—q)—1 = pas)
_ _ _ _ (BD(g"+1
h+p?—a) = Th@-a+1 = -0 = (B (P -1 = ( q)J(rql :
7L+1
r+(@-1)(a?—q) = Thr+g-1)(?-9+1 = - =  Thte(®—9)-1 = q(g+1 2

Therefore,

1)(g" + 1
nrw(qz,q)ﬂ-:(ﬁ—i_ )—i(—q1+ )forogﬁgq—landogigtf—q—l.
q
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Moreover, since

nq
m(r+ B8(¢* — q)) — AWt pg2—q) = (¢ — ﬁ)q<cq]:1) for0<p<q-1,

it follows from Theorem 4.1.2 that

H(Qw) = <q” +1,¢°, q<q”+1>> .

qg+1
As expected, this description of H(Qs) matches the result given in [31, Corollary 3.5].
Let n > 3 be an odd integer, m be a divisor of ¢" + 1, and d be a divisor of ¢ + 1

such that (m,d(¢ — 1)) = 1. From Theorem 2.1.1, the curve Y, ,, given by the affine

equation

X4—1

is a subcover of the BM curve and has only one place at infinity (). In the following

Xda-1) _ 1\
Vitm: Y™m=X4(X4-1) ()

result, using Theorem 4.1.2, we compute the Weierstrass semigroup H(Q).

Proposition 4.1.4. Let n > 3 be an odd integer, m be a divisor of ¢" + 1, and d be a
divisor of ¢ + 1 such that (m,d(q — 1)) = 1. Consider the curve

Xda—1) _ 1)‘”1

mi YT =XYX1-1
Va1, ( )( ~d ]

Then the Weierstrass semigroup at the only place at infinity Qo s given by

H(Q.) = <m,)\0,mkrg—>\0{WJ :B:O,...,q—1>,

where \g =dq(q—1) and ks =d(g—1)(B+1)+ 1+ L]—HJ — fd.

Proof. Using our standard notation, we have that r = d(q¢—1)+1, \g = dq(q— 1), \; = d,
Ay =+ = Agy1 = 1L and Agy2 = -+ = A\g(g-1)+1 = ¢ + 1. From the characterization of
S={ne:r<k<X—1} given in Lemma 4.1.1, we obtain that

({5 essea)

g+1
Now, define dg :[ifl {ﬂ+1Jfor1<ﬁ<q—1 Since \y =d, Ay =---=Agy1 =1,
and \j o = = Ad(g-1)+1 = ¢ + 1, we have

- < (ﬁ—l—l)mJ)_ d(q —2), if 65 = 1,
S\ g+t ) Vdg—2+1, ités =0,

or, equivalently,

ms (| X0 ) —dta-2) 41~ (19)

qg+1
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In order to calculate the semigroup H(Qx), let kg, :==r+ B(d(¢ —2) + 1) — Z?;& 0; +1
for 0 < B <g—1and 0<i<d(q—2)— s From (4.9) and since n, <y < --- < my_1

is a non-decreasing sequence, we obtain that

r = Mr+1 = ... = Mr+d(g—2)—do = \‘q_%J
77T+d(q—2)+1—50 = 77r+d(q—2)+2—50 = .. = 77r+2(d(q—2)+1)—1—60—61 = \‘%J
— — _ _ B+1)m
Nkg o - Mks 1 — e nkﬁ,d(qu)féﬁ - V q+i J
Mkq—1,0 = Tkq—1,1 = - = Mhkq—1,d4-2)-5, 1 - L;ZTmlJ :
Therefore g, , = L(ﬁ;%)mj for 0 < <g—1and0<i<d(q—2)— s From Theorem

4.1.2, we conclude that

H(Qu) = <m,)\0,mk570—)\0{(6q++1imJ ;5:0,...,q—1>.

Now the proposition follows from the fact that g — Zf;& 0; = {%J for0<pg<qg—1. 0O

Henceforth, to simplify the notation, we define

0, if 0 <s<r,
s i= 1 =75" and € :=mk — Xo(nx + 1) for k € Ny. (4.10)
m—1, if \g <s,

Therefore we obtain that
H(Qoo):<€k—|—)\0Ik:1,7’,...,>\0>. (411)

We complete this section by generalizing Theorem 1.2.14 given by Bras-Amorés and
Vico-Oton. For this purpose, suppose that the curve X given in (4.6) is defined over F,.
From (4.11) and Theorem 1.2.13, the Geil-Matsumoto bound associated to the semigroup
H(Qx), denoted by GM,(H(Qw)), is given by

GM,(H(Qwo)) = # (H(Qoo) VU e+t H(Qoo))) +1. (4.12)

k=1,r,....,0
Proposition 4.1.5. Let X be the curve given in Theorem 4.1.2. If X is defined over IF,
then

= k—ql
#X(Fq)§1+2max{0, min {nk—qm—nke—m{ By J}},
0

k=0 36{1,7‘ ,,,,, )\0}
where ky := (k — gf) mod \.

Proof. From (4.12), we obtain that

s — (&1 4 Xo)g & H(Q)

= (6 4+ A)a & H(Qu)

GMy(H(Qx)) = # {5 € H(Qsx) : +1.

s = (ex, + Ao)q ¢ H(Qu)
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Therefore, to obtain a closed formula for GM,(H(Q)), we need to count the elements
s € H(Qw) such that s — (e, + A\o)g & H(Qw) for each k = 1,r,..., Ag. From Theorem
4.1.2, the semigroup H(Q) is given by the disjoint union H(Q) = (m, A\g) U B, where
B = Uko !By and By, = {mk — k'\g: K’ = 1,...,m;}. Thus, it is necessary to analyze two
cases, when s € (m, A\o) and when s € B.

Our strategy will be to use the result given in [11, Lemma 2.1], which states that,
for an integer i,

i ¢ (m,N) <  mic mod N\g) > 1,
where ¢ is the inverse of m modulo \g.

Case A: s € (m, \g). Then s = am + b\, where a and b are non-negative integers
such that a < X\g— 1. For £ € {1,7,..., Ao} and k € {r,..., A\g — 1} we have that

s — (€01 Ao)g & (m, Ao) < (a — Lg)m + (b + qne) Ao & (M, Ao)
< m[((a—Lg)m + (b4 qne)Xo)c mod Ao > (a — lg)m
+ (b + qne) Xo
< m((a—Lg) mod Ng) > (a—Lg)m + (b+ qne) Ao
< m((a—~Lq) mod A\g— (a—Lq)) > (b+ qne) o

((
Vq—a

and

s — (€14 Xo)q € B, & am + bhg — (ml — \ong)q = mk — k' for some 1 < k' <,
s m(gl+k—a)=X(b+qne+ k)
lg—a

& k=(a—{g) mod )\ and k:':m{ -‘—b—qm.

0

Therefore s — (e, + M\g)q ¢ H(Q) if and only if b < qux\;‘ﬂ — N — Nay-

Case B: s € B. Then s = ma — b)\g, where a and b are positive integers such that
r<a<Xandl<b<mn, Forle{l,r,..., o} and k € {r,..., Ao — 1} we have that

s = (e + Xo)q & (m, o) & (a —Lg)m + (gne = b)Ao & (M, Ao)
< ml((a—Lg)m + (gne — b)Xo)c mod Ao > (a — lg)m
+ (gne — b) Ao
< m((a—»Lqg) mod \g) > (a—Lg)m + (qne — b)\o
< m((a—»Lq) mod A\g— (a—Lq)) > (qgne — b) Ao

(g —
@qm—m{ q ﬂ <b
Ao
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and

s — (€04 Xo)q € B, & ma — brg — (ml — \gny)qg = mk — k' N for some 1 < k' <,
< mla—ql — k)= X (b—qne — k)

& k=(a—ql) mod), and k;’:b_qurqu—a]

Ao

Therefore s — (e, + \o)q ¢ H(Q) if and only if gn, — qu_q + Mg, < b. Consequently,

Ao
Ao—1 ‘ lg—a
GM,(H(Qu)) =1+ 3 max {%e{%}%i%o} {m{ A W S ”}}
Ao—1 lg—a
+ azz; max {(), Mg — Max {O’ZG{E}?{,M} {QW + Nay — m{ o —‘ }}}
Xo—1 lg—a
=1+ 112:;) max {O,ee{lrﬁi?’/\o} {m{ q>\o —‘ —qne — 77(1@}}

Xo—1 gq_a
0,7, + min<0, mi e — .
+azz;max{ 1) +mln{ ée{g%}?,m}{m{ ” -‘ ane Ue}}}
r—1
lg—a
=1 0, . e
+a§]max{ ee{f?,l?,xo}{m{ Ao w qne 77@}}

= lg—a
0 i . I
+a;max{ ’ze{g},l?,xo}{n “’{ ~ l qme m}}
= lg—a
=1+Zmax{o, 11 {m+m{q/\0 W—qw—naz}}.

a—0 86{1,’!’ ..... )\0}

]

In particular, for Ay = Ay = --- = A\, = 1 we obtain that \g =7, H(Q) = (m, 1),

and from Proposition 4.1.5 we have

11 S -2

=0 Le{l,r

1o )

S [,

k=0

As expected, for this case the closed formula coincides with the one described in Theorem
1.2.14.

4.2 The Frobenius number Fy (. ) and the multiplicity my (g,

With the explicit description of the Weierstrass semigroup H(Q ) given in Theorem

4.1.2, in this section we study the Frobenius number Fy(q..), the multiplicity my .., and
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the relationship between them. We start by noticing that not all the elements €,_1, ..., €x,-1
defined in (4.10) are necessarily positive, however the following result states that the

largest of them is equal to the Frobenius number F(q.. ). Moreover, we explicitly describe
the gap set G(Qwo)-

Proposition 4.2.1. Using the same notation as in Theorem 4.1.2, we have that

Fro.) = max{e_1,...,€x-1}

and

G(Qm):{ma—b)\g:1§a§/\0—1,77a—|—1§b§ V;mJ}
0

Proof. From Theorem 4.1.2; we have that

Ao—1

G(Qu) = N\ ((m, Mo U kU Bk) — (N (m, o)) \ (kL_] Bk) ,

where By, = {mAo— (Ao — k)m — k'\g : 1 < k' < ni}. Moreover, from Proposition 1.1.2 we
know that the elements of N\ (m, \g) are of the form mAy, — am — bX, where a and b are

positive integers. Therefore,
G(Qx) = {mAo — am — by : the pair (a,b) is in A} NN,
where A = {(a,b) € N? : gy, + 1 < b}, and

Frg.) = (grll);cxg(A{m)\o —am — b)o}.

By the definition of the set A, max(,pea{mAo — am — bAo} is attained at an element
in A of the form (k,n\,—x + 1) for some k € {1,..., g — r + 1}, see Figure 1. Thus,

Fr(e) = max{€,_1,...,€x—1}. Moreover,

G(Qoo) = {mAg — am — b : the pair (a,b) isin A} NN
={mA—a)—br:1<a<A—1,nMy-0+1<b}NN

:{ma—b)\oz1§a§)\0—1,77a—|—1§b§ R’”J}
0

O

Now, we provide sufficient conditions to determine whether the semigroup H(Qx)
is symmetric. In particular, by [34, Proposition 50|, we give sufficient conditions for @, to

be a Weierstrass place. For this, we need a remark and a lemma.

Remark 4.2.2. Due to the characterization of the sequence n, < 141 < -+ < Myy—1 given

in Lemma 4.1.1, we can see that, for s € No, Ns+Mr4rg—1—5 = M 07 Ns+Mpyrg—1—5s = M — 1.
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“ . . .
Mo—1FtL =—¢ . . .
I . . .
I
| . . .
I . . .
g2l b e .
nA0—3+1 ****I***J‘»*** . .
o : .
e Tt B . . .
| ! | | . .
| ! | | . .
| ! | |
————\———‘L———\ ——————— R . .
I | I .
I ! | I :
I ! | | | .
I : | | | .
| | I
| | | I : .
nr+1 77747——:————| 7777777 [ e — — - .
| | |
| : | 1 : : .
| I ! | | .
| ! I
L it St ol i oo -
L Il >
1 2 3 Ao—r  Ag—r+l

Figure 1 — Description of the set A

In fact, if 0 < s <r—1 or Ay < s the assertion is clear. Let k € {r,...,;\g— 1} andn € N
be such that

Me—1 < Mk = Mk+1 = =+ = Nktn—1 < Nk+n-
From Lemma 4.1.1, there exist exactly n distinct elements jyi,...,jn € {1,...,7} and
positive integers s;,, ..., s;, such that 1 < s; < \;, and

n {SjlmJ {ShmJ {SjnmJ
L = = | = = = | =—.
>‘j1 )‘j2 )\jn

Without loss of generality, we can assume that
’VSjlm-‘ S ’78‘7'2771—‘ S .. S ’VSJnm-‘
Ay Ajo Ajn

{(Ajn - Sjn)mJ < {()\jnl - Sjnl)mJ

and therefore

A Y

In In—1

< {(Ajl - Sjl)mJ‘

This leads to

A — 8. )m .
Mt Ao—1—(kti) = V JZ“)\‘ jizt) J fori=0,...,n—1
Ji+1

and, consequently,

Si, .M X —s.. m P s m
st s =t (Dl o ([fan] -

Jit1 Jit1 Jit1 Jit1

fori=0,...,n—1. In particular, if (m, \;) =1 for each j, we obtain that ns+n,+r,—1-s =
m — 1 for s € Ny, and if \; divides m for each j, we obtain that ns + M4 r,—1-s = m for

S=7T,..., 0 — L.
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Lemma 4.2.3. For k € Ny, the following statements hold:

i) If Nk 4 Nrang—1-k = M then €, + €,4xg—1-k = €21 — No and €,_1 > €.

i) If e + Dryrg—1-k = m — 1 then €, + €,40g—1-k = €1, and €,_1 > € if and only if

0 < é€ryrg—1-k-

ii1) €, < 0 if and only if n, = V‘;—’:J

Proof. 1) It is enough to note that

Eriro—1-k = M(r + X — 1 —k) = Xo(Mrgrg—1-k + 1)
=mr+X—1—k)—=X(m—np+1)
=m(r —1) — Ag — mk + A7

= €_1— € — Ao.
Therefore, €,_1 — €, = €,4x9—1-% + Ao > 0.
i) Similar to item 7).

i1i) Since mk = Xonx + (mk — Xom) and 0 < mk — Agng, we conclude that
e = [km/ o] if and only if mk — Agne < Ao. O

Theorem 4.2.4. With the same notation as in Theorem 4.1.2, the following statements

are equivalent:
i) FrQw) = €r—1 and H(Qw) is symmetric.
i) \; divides m for each j =1,...,r.

Proof. Suppose that H(Q) is symmetric and Fy g, ) = €—1. From (4.2) we obtain that

r

Frg.y=m(r—1) =X =m(r—1) — Z(m, Aj).

j=1

This implies that A; divides m for each j =1,...,r.
Conversely, assume that A; divides m for each j = 1,...,r. From Remark 4.2.2
we have that ng + 71a-1-k = m for k = r,..., Ao — 1, and from item ¢) of Lemma

4.2.3, ¢-1 > ¢ for k = r,..., Ao — 1. Therefore, from Proposition 4.2.1, Fyg.) =
max{€,_1,...,€x,_1} = €_1 and

2g(X)—1=m(r—1)— zr:(m, Aj)=m(r—=1) =X =61 = Fu.)

i=j
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Example 4.2.5. From FExample 4.1.3, we know that the Weierstrass semigroup at the
only place at infinity of the GGS curve is given by H(Qso) = (¢"+ 1, ¢, q(q" +1)/(q+1)).
Therefore, we can determine if H(Qw) is symmetric and we can calculate the Frobenius
number Fyq..). However, due to Theorem 4.2.4, it is possible to know this without
computing the semigroup H(Qs) explicitly. In fact, since q + 1 divides ¢" + 1, H(Qx) 1

symmetric and
Fuuw ="+ 1)(¢* 1) -’ =" —¢"—¢’ + ¢ - L.
Next, we improve Proposition 4.2.1 to compute the Frobenius number Fp (g, ) and
establish a relationship between Fi(qg,,) and the multiplicity mpq..)-.
Proposition 4.2.6. Using the same notation as in Theorem 4.1.2, the following statements

hold:

i) FrQw) = €—1 if and only if n, < [sm/Xo] for each s € {r,..., \g — 1} such that
Ns + Mrrg—1—s = M — 1.
ii) Fii(gu) = max, 1<hex, {er e = | E502 |1
wi) If (m, \;) =1 for each j =1,...,r then MHQx) = min{m,m(r — 1) — FH(QOO)}.

w) If \j divides m for eachj =1,... 7 then mp g,y = min {m, Ao, €,—1 — Max,<p<x, €k }-

Proof. i) It follows from Lemma 4.2.3 and the fact that n, < [sm/\o] for all s € Np.

i1) It is enough to note that, from Lemma 4.2.3, we can rewrite the Frobenius

number Fpq..) as

Fr@u) = max {er—1s ekt €rprg-1-k <0, Mk + Mryng—1-6 =m — 1}
B (r+X—1—Fkm N B )
= Tgllcagf\o €r—1,€k * NMryro—1—k = )\0 » Tk Nr4Xo—1—k = M

B (k+1—r)m
= TISI}E/(\O €r—1,€k < Tk = —/\0

B B+ 1=r)m
- r—Ilrglif}i/\o Tk = )\0 ’

i7i) From (4.11) and Lemma 4.2.3, we obtain that

MH(Qu) = mln{m Ao, Ao + I%1<H)\0€k}

m, Ao, Ao + H]%Hl {621 — €r+)\0—1—k}}

<k<Xo

min < m, A\g, \g + €,_1 — max €
r<k<M\o

min {m, Ao, Ao + €1 — AX € a1 k}

in{m,m(r —1) FH(QOO)}-

I
=]
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iv) Similar to the proof of item 7iz). O

Next, we observe that for the curve X defined in (4.6), the elements of the set
{ex+Xo:k=0,....,00 — 1} € H(Qx) form a complete set of representatives for the

congruence classes of Z modulo \g and

Therefore, from Proposition 1.1.4, the Apéry set of A\ in the Weierstrass semigroup H (Qx)
is given by
Ap(H(QOO)a)\O) = {Ek+>\0 k :Oa"'>)\0_ 1}

We use this description of the Apéry set Ap(H (Qs ), o) to characterize the symmetric

Weierstrass semigroups H(Q~) when (m,\;) =1 for each j =1,...,7.

Theorem 4.2.7. Suppose that (m, \;) =1 for j =1,...,r. Then the followings statements

are equivalent:

i) H(Qoo) = (m,r).

ZZ) >\1:)\2:"':)\r-
If in addition v < m then all these statements are equivalent to the following:
iii) H(Qw) s symmetric.

Proof. Clearly the result holds if r = \y. Suppose that r < .

i) = i) : We start by proving that r divides A\g. In fact, since A\g,mr — Ay €
H(Qx) = (m,r), there exist o, a’, 7,7 € Ny, where 7,77 < m — 1 and 7 # 0, such that
Ao = am + 7r and mr — \g = &'m + 7'r. Therefore m(r — o — o) = r(7 + 7). Since

H(Qw) = (m,r), (m,r) =1 and therefore m divides 7 + 7/, where 1 <7+ 7' < 2m — 2.

This implies that 7 + 7 = m and a = —a/. It follows that & = o/ = 0 and \g = 77.
Now, let A := max;<;<, A; and note that 7r = \g = >_7_; A\; < Ar, therefore 7 < A
In the following, we prove that 7 = A\, which implies that Ay = Ay = --- = A,

For p e {1,...,7—1} and i € {0,...,r — 1} we have that
€prii + Ao =mr — (r—i)m — (s — mP)r € HQx) = (m,1).
Therefore, from Proposition 1.1.2, it follows that

nrgﬂ-g{ﬁmJ for1<pg<rt—land0<i<r-—1. (4.13)
-
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For =1 in (4.13) we obtain that

{mJ_mgmﬂ»g {mJ for 0 < <r—1,
A T

and for f=7—1landi=r—11in (4.13),

_[m"_ A=1)m| B <
m N Mo—1 = Nr(r=1)+r—1 =

W—W?lJ:m_[m]

T T

Since (m,A) = (m,7) = 1, then [mJ = {%J and therefore n,; = {%J for 0 <¢<r—1.

By
Thus, from the characterization of the sequence 7, < 7,41 < -+ < m),—1 given in (4.4), we
have that
-5 =) == 15 -
777” - )\1 - )\2 - - )\r - 7727’—1
_ 2m o o (A*l)m
and therefore 7y, = {TJ Moreover, from Remark 4.2.2, ny\,—1—; =m—1—n,4; = { 5 J
. A—2)m
for 0 <7 <7 —1 and hence ny,_,_1 = {%J
For f =2 in (4.13) we have that
2 2
0| = S < | T for 0 i<y -1,
T

and for f =7 —2and i =r—11in (4.13),

Similarly to the previous case, we deduce that {%”J = VTmJ, Norii = VT’”J and Myy—r—1-; =

LWJ for 0 <4 <r — 1. This implies that 73, = 3TmJ and Ny —2,—1 = {@J

By continuing this process, we obtain that
pm :
Mrpti = ~ forl1<pg<r—land0<i<r-—1.

In particular, for 5 =7 — 1 and ©+ = r — 1 we have that

—1)m A—=1)m
\\@—)\)J = Mr(r=1)+r—1 = NMrr—=1 = To—1 = \‘<)\)J .

This implies that 7 = A.

i1) = 1) : Suppose that \y = Ay = --- = A\,. Then A\g = r\, and 7z, = V/\—TJ for
1< <A —1and 0<i<r—1.0n the other hand, from Theorem 4.1.2,

H(Qx) = <m,r)\r,r<ﬁm—>\{ﬁ)\mJ> (B = 1,...,)\T—1>

- <m,m7,,mr{im} :6:1,...,)\T—1>.
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Since (m, A,) = 1, there exists 5’ € {1,..., A, — 1} such that {B/{—:”} = % and therefore
H(Qoo) = {m, 7).

Now, suppose that r < m.

i) = i) : It is clear.

i1i) = i) : We are going to prove that (m,r) = 1. We start by noting two important
facts. First, note that

(s +X) =0 modm ifandonlyif 0<k<r—1. (4.14)

Second, since r < m and (m, A;) =1 for each j, then H(Q) is symmetric if and only if
MmuQ.) = 7. In fact, for this case we have that g(X) = (m — 1)(r — 1)/2. Furthermore,
from item 7i) of Proposition 4.2.6, mp(q. ) = min{m, m(r — 1) — Fyo.)}.- If H(Q) is
symmetric, then F g, ) =29(X) —1=m(r —1) —r and

ME(Qu) = min{m,m(r — 1) — FH(QOO)} = min{m,r} =r.

Conversely, if mp .y = r then m(r — 1) — Fy(q.) = r and therefore Fyqg_ ) = 29(X) — 1.
This implies that H(Q) is symmetric.

Let o be the permutation of the set {0, ..., Ay — 1} such that
AP(H (Qoo), Ao) = {0 = €50) + Ao < €x1) + Ao < -+ < €x20-1) T Ao}

Since (m, ;) =1 for j = 1,...,7 and H(Q) is symmetric, then Fy. ) = €;(x-1) =

m(r — 1) — r. Thus, from Proposition 1.1.5, we have that
€o(i) T €cro—1—) =m(r—1) = Xg—7r fori=0,..., 0 — 1. (4.15)
On the other hand, from Proposition 4.2.3, we know that

€o (i) + Ertro—1—0(i) = m(r - 1) - )\0 for 1 = 0, ey )\0 — 1. (416)

Let A > 0 and 0 < 7’ < r be integers such that \g = Ar+7’, and 7; € {0,..., \g—1}
be such that o(A\g — 1 —41) = — 1. Then, from (4.15),

€otiy) =Mm(r—1) =X =7 — €s00—1-i1) =M(r —1) = Ao — 1 — €1 = —7.

If (€5(:,) + Ao) =0 mod m, then m divides A\g — 7 and therefore A\g = ms + r for
some integer s. Since (m, A\g) = 1, we conclude that 1 = (m, A\g) = (m,ms + 1) = (m,r).
Otherwise, from (4.14), o(i1) > r and therefore there exists i € {0,..., A\ — 1} such that
o(A—1—iy) =74+ X —1—0(i1). From (4.15) and (4.16), we have that

Eg(iQ) = m(r— 1) —)\0—7"—60()\0_1_1'2) = m(r— 1) —)\0 —7’—67«+)\0_1_g(i1) = Eo(il) —r = —27".
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If (€5(i5) + Ao) = 0 mod m, then m divides A\ — 2r and therefore (m,r) = 1.
Otherwise, o(iz) > 7 and therefore there exists i3 € {0, ..., \g—1} such that o(A\g—1—1i3) =
r+ X —1—0(iz) and

€oliz) = MUT—1) = Xo =T —€5(rg—1—ig) = M(T—1) = Xo =T — €400~ 1—0(ia) = €o(iz) =T = —OT-
By continuing this process, we have that (m,r) = 1 or we obtain a sequence
1,...,%y such that

o(ij) >r and €)= —jr for1<j <A

If the latter happens then 0 < €,(;,) + Ao = Ag — Ar = 7’ < r, a contradiction because
Mu@Q.) = - Therefore, (m,r) = 1. Finally, since (m,r) C H(Qs) and g(X) = (m —
1)(r —1)/2, we conclude that H(Qs) = (m,r). O

4.3 Maximal Castle curves

In this section, as an application of the results obtained in this chapter, we
characterize certain classes of F-maximal Castle curves of type (X, @), where X is the
curve defined by the equation Y™ = f(X), f(X) € F2[X] and (m,degf) =1, and Q« is
the only place at infinity of the curve X. Some examples of F -maximal Castle curves of

this type are presented below:

e The Hermitian curve
Yyttt = X974 X,

e The curve over F,. defined by the affine equation
Yot = (X 4 X9P L XP 4 X),
where p = Char(FF,) and a € Fp is such that a? +a =0 and a # 0.

Note that, in all cases, the places corresponding to the roots of the polynomial f(X) are
totally ramified in the extension Fp(z,y)/F2(x), the multiplicities of the roots of f(X)
are equals, and m = ¢ + 1. We will show that, under certain conditions, all F -maximal

Castle curves of type (X, Q) have these characteristics.

Lemma 4.3.1. Let X be the algebraic curve given in Theorem 4.1.2, and let Qo be its
only place at infinity. Suppose that X is defined over Fpz, (m,\;) =1 fori=1,...,r,
(X, Q) is a Castle curve, and r < m. Then

X is Fp2-maximal if and only if m = q + 1.
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Proof. From the assumptions, we obtain that g(X) = (m — 1)(r — 1)/2. Since (X, Q) is
a Castle curve, H(Qo) is symmetric and therefore Fyg. ) = 29(X) =1 =mr —m —r.
Moreover, from item 7ii) of Proposition 4.2.6, mpq..y = min{m,r} = r. Therefore, X is

F 2-maximal if and only if
#X(Fe)=¢r+1=¢+1+qm—1)(r—1).
Thus, the result follows. O

Lemma 4.3.2. Let X be the algebraic curve given in Theorem 4.1.2, and let Qo be its only
place at infinity. Suppose that X is defined over Fo, m=q+1, r<qg+1, (¢+1,))=1

fori=1,...,r, and X is Fp-mazximal. The following statements are equivalent:

i) H(Qx) is symmetric.

Qi) Ay == A,

Proof. Note that from the hypotheses we have that g(X) = ¢(r — 1)/2 and therefore
#X(Fp) = +1+29(X)g=¢*r+ 1.

i) < it) : It is enough to note that

S MHQo) =T (from Proposition 4.2.6)
& #X(Fp) = q2mH(QOO) + 1.

i) < it) : This follows directly from Theorem 4.2.7. O

We summarize these results in the following theorem.

Theorem 4.3.3. Let X be the algebraic curve defined in Theorem 4.1.2, and let Qs be
its only place at infinity. Suppose that X is defined over Fp2, (m,\;) =1 fori=1,...,r,

and r < m. Then the following statements are equivalent:

i) (X,Qx) is a Fp-mazimal Castle curve.
i) (X, Q) s a Castle curve and m = q+ 1.
iii) X is Fp-mazimal, H(Qw) is symmetric, and m = ¢+ 1.
w) X is Fpe-mazimal, #X (Fp2) = ¢*mpg.) + 1, and m = ¢+ 1.

v) X is Fpa-mazimal, \y =--- =\, and m = ¢+ 1.
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Finally, we note that for the case when \; divides m for each ¢+ = 1,... r, the
Weierstrass semigroup H((Q)s) is symmetric, see Theorem 4.2.4. Therefore, by assuming

that X is F2-maximal, we conclude that

(X, Qo) is Fpe-maximal Castle curve if and only if #X(F2) = ¢*mpuq.) + 1.
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