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Resumo
Nos últimos anos, curvas algébricas sobre corpos finitos e semigrupos de Weierstrass
têm sido intensamente estudados devido às suas diversas aplicações em outras áreas
da Matemática, como a teoria de códigos. Nesta tese, construímos curvas algébricas
com muitos pontos racionais de duas maneiras diferentes. Primeiro, beneficiando-se de
representações adequadas do grupo de automorfismos da curva BM introduzida por Beelen
e Montanucci em [7], construímos equações explícitas para famílias de curvas maximais
como subcoberturas de Galois da curva BM . Em segundo lugar, usando polinômios
recíprocos e extensões de Kummer, fornecemos um método simples e eficaz para construir
curvas algébricas com muitos pontos racionais. Por outro lado, damos uma descrição
explícita do semigrupo de Weierstrass no único lugar no infinito Q∞ de uma curva X
definida pela equação Y m = f(X), onde f(X) ∈ Fq[X] é um polinômio satisfazendo
gcd(m, degf) = 1 e Char(Fq) - m. Como consequência, discutimos condições suficientes
para que o semigrupo de Weierstrass H(Q∞) seja simétrico. Além disso, deduzimos uma
fórmula fechada para a cota de Geil-Matsumoto associada ao semigrupo H(Q∞) sobre o
número de pontos racionais da curva X e caracterizamos certas curvas Castle maximais
do tipo (X , Q∞).

Palavras-chave: Corpos finitos, corpo de funções, curvas algébricas, curvas maximais,
curvas quocientes, curvas com muitos pontos racionais, extensões de Kummer, semigrupos
de Weierstrass, polinômios recíprocos.





Abstract
In recent years, algebraic curves over finite fields and Weierstrass semigroups have been
intensively studied due to their various applications in other areas of mathematics, such
as coding theory. In this thesis, we construct algebraic curves with many rational points
in two different ways. First, benefiting from suitable representations of the automorphism
group of the BM curve introduced by Beelen and Montanucci in [7], we construct explicit
equations for families of maximal curves as Galois subcovers of the BM curve. Second,
using reciprocal polynomials and Kummer extensions, we provide a simple and effective
method for the construction of algebraic curves with many rational points. On the other
hand, we give an explicit description of the Weierstrass semigroup at the only place at
infinity Q∞ of a curve X defined by the equation Y m = f(X), where f(X) ∈ Fq[X] is a
polynomial satisfying gcd(m, degf) = 1 and Char(Fq) - m. As a consequence, we discuss
sufficient conditions for the Weierstrass semigroup H(Q∞) to be symmetric. Furthermore,
we deduce a closed formula for the Geil-Matsumoto bound associated to the semigroup
H(Q∞) on the number of rational points of the curve X and characterize certain maximal
Castle curves of the type (X , Q∞).

Keywords: Finite fields, function fields, algebraic curves, maximal curves, quotient curves,
curves with many rational points, Kummer extensions, Weierstrass semigroups, reciprocal
polynomials.
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Introduction

Algebraic curves over finite fields and their function fields have been a source
of great fascination since the seminal work of Hasse and Weil in the 1930s and 1940s.
Many important and fruitful ideas have arisen out of this area, where algebra, number
theory, and geometry meet. In 1977, Goppa [28] constructed linear error-correcting codes
using algebraic curves over finite fields. These are called algebraic geometry codes and
usually have good parameters. In order to construct such codes one requires curves with a
large number of rational points and explicit equations for such curves. Also, such curves
have applications in other areas such as low-discrepancy sequences, stream ciphers, hash
functions, and finite geometries. On the other hand, Weierstrass semigroups at one and
many rational points on a curve have been shown to have interesting applications. For
instance, in [45] and [13] the authors construct algebraic geometry codes with good
parameters using Weierstrass semigroups at one and two points respectively. In [39], the
authors determine the automorphism group of the cyclotomic function field with modulus
Xn+1 for n ∈ N using explicit descriptions of Weierstrass semigroup at one point. In
addition, knowing the internal structure of the Weierstrass semigroup allows us to obtain
upper bounds for the number of rational points on a curve, see for instance [23] and [38].
These are some of the important reasons that leads the study of algebraic curves over finite
fields with many rational points to have been a subject of great interest in recent years.

Let Fq be the finite field with q elements, where q is a power of a prime p, and
K be the algebraic closure of Fq. For a non-singular, projective, absolutely irreducible
algebraic curve (or simply curve) X over Fq with genus g(X ), we denote by X (Fq) its set
of Fq-rational points. The celebrated Hasse-Weil Theorem states that the number #X (Fq)
of Fq-rational points on the curve X satisfies

|#X (Fq)− q − 1| ≤ 2g(X )√q.

A curve X over Fq2 is called maximal if the number of Fq2-rational points #X (Fq2) attains
the Hasse-Weil bound, that is, #X (Fq2) = q2 + 1 + 2g(X )q. One of the most studied
maximal curve is the Hermitian curve over Fq2 , whose affine model is given by the equation
Y q+1 = Xq +X. It has genus g = q(q − 1)/2 and a large automorphism group isomorphic
to PGU(3, q) compared to its genus, meaning that the order of the automorphism group
#Aut(X ) does not satisfy the classical Hurwitz bound #Aut(X ) ≤ 84(g − 1). It is a
well-known result that the Hermitian curve has the highest genus a maximal curve over
Fq2 can attain and is, up to isomorphism, the only maximal curve with such a genus.

By a known result of Kleiman [37], any curve Y over Fq2 which is Fq2-covered by an
Fq2-maximal curve X is itself Fq2-maximal. This result allows the construction of maximal
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curves as quotients of known maximal curves. In fact, let X be a maximal curve over Fq2

and F = Fq2(X ) its function field. Then given a subgroup H of Aut(X ), the curve Y can
be obtained as the fixed field Fix(H) of F . The genus, the explicit defining equations,
and the automorphism group H associated to the quotient curve of a known Fq2-maximal
curve, such as the Hermitian curve, the Suzuki curve, the GK curve, the GGS curve and
the BM curve are all objects of significant interest (see [2–4, 8, 17, 22, 24, 25] and [27]).
However, sometimes it can be hard to give explicit equations for a quotient curve. This
problem is relevant for applications to coding theory since maximal curves have been used
in the construction of some good linear codes, such as differential and linear algebraic
geometry codes (see [12, 13,40] and references therein). Still another area benefiting from
explicit equations of maximal curves is finite geometry, for example in the construction of
certain arcs over maximal curves (see [5, 9] and [26]).

On the other hand, several methods, such as class field theory, Drinfeld module,
and character theory, to find algebraic curves with many rational points (not necessarily
maximal curves) have been studied (see for instance [19,21,33,35,36,52,53,59,62] and [63]).
More explicit details about these methods can be found in [61]. However, the computation
of the exact number of rational points on a given curve has always been a challenging
problem and a general method to do such computations seems out of reach. Nevertheless,
for certain very specific curves, some methods, such as evaluation of exponential sums
and Kloosterman sums, as well as function field theory, have been helpful. For instance,
Coulter [15] used exponential sums to compute the number of rational points on a class of
Artin-Schreier curves and Moisio [44] used exponential sums and Kloosterman sums to
compute the number of rational points on some families of Fermat curves. In [50,51], the
authors considered fibre products of Kummer covers of the projective line over Fq. In [49],
the authors gave a full description of the number of rational points in some extension Fqr
of Fq in terms of Legendre symbol and quadratic characters for the Artin-Schreier curve
Y q − Y = XP (X)− λ where P (X) = Xqi −X and λ ∈ Fq. For more details about these
methods, we refer to [8, 15, 44,50,51].

With respect to the Weierstrass semigroups at many rational points on algebraic
curves, there are several results in the literature. For instance, in [6, 13, 41, 45] the authors
determine the Weierstrass semigroup at one and many rational points of specific maximal
curves such as the Suzuki curve, the GK curve, the BM curve, and the Hermitian curve.
In [48], the authors provide an algorithm to calculate Weierstrass semigroups over an
optimal tower of function fields, giving an explicit description of such objects in some
cases. In [12], the authors provide an explicit description of the Weierstrass semigroup
at one and two totally ramified places of a Kummer extension defined by the equation
Y m = f(X)λ, where p - m, λ ∈ N, and f(X) ∈ K[X] is a separable polynomial such that
gcd(λdegf,m) = 1. These results were generalized in [64], where the authors determine
the Weierstrass semigroup at many totally ramified places of Kummer extensions defined
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by the same equation. For Kummer extensions defined by the equation Y m = f(X), where
f(X) ∈ K[X] has possibly roots with different multiplicities, few results are known.

In this work, we construct algebraic curves with many rational points in two different
ways: by constructing quotient curves of known maximal curves, and by using reciprocal
polynomials to define Kummer extensions with many rational points. In addition, we
study Weierstrass semigroups in Kummer extensions defined by the equation Y m = f(X),
where f(X) ∈ K[X] is a polynomial such that gcd(m, degf) = 1. This thesis compiles the
original work contained in the following articles and preprints:

• [43] Mendoza, Erik A. R.; Quoos, Luciane. Explicit equations for maximal curves as
subcovers of the BM curve. Finite Fields and Their Applications 77 (2022): 101945.

• [32] Gupta, Rohit; Mendoza, Erik A. R.; Quoos, Luciane. Reciprocal polynomials
and curves with many points over a finite field. arXiv preprint arXiv:2110.10620
(2021).

• [42] Mendoza, Erik A. R. On Kummer extensions with one place at infinity. arXiv
preprint arXiv:2208.09729 (2022).

The content of this thesis is presented in 4 chapters. In Chapter 1, we present the
preliminaries and some previous results on numerical semigroups and algebraic curves.
Furthermore, we introduce the notations that will be used throughout the thesis.

In Chapter 2, we apply suitable morphisms to the Beelen-Montanucci curve (BM
curve) to provide two new equations for this curve and, benefiting from these models,
obtain certain subgroups of Aut(BM) for which the fixed field and genus can be completely
determined. In particular, we obtain a plane model for the BM curve, a generalization of
the family of Galois subcovers given in [7, Remark 4.6], a family of subcovers of the curve
presented in [7, Corollary 3.7], and generalizations of results in [27]. We finish the chapter
by presenting parameters for which some of the curves obtained in this chapter are not
covered by the Hermitian curve.

In Chapter 3, we present a family of Kummer covers of the projective line over Fq2

defined by an affine equation of the type

Y m = Xεsf(X)f ∗(X)λ, (1)

where ε, λ ∈ {1,−1}, s is a non-negative integer, p - m, f(X) is a polynomial in Fq[X] and
f ∗(X) is the reciprocal polynomial of f(X). We compute the genus of this family of curves
and study the particular case ε = −1 and λ = 1, ε = 1 and λ = −1. We provide the exact
number of rational points for some families of curves. Finally, we study fibre products of
Kummer extensions defined by Equation (1). As a consequence of these constructions, we
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obtain several improvements on the manYPoints table [60]. More precisely, we obtain 10
new records and 119 new entries.

In Chapter 4, we provide an explicit description of the Weierstrass semigroup
H(Q∞) and the gap set G(Q∞) at the only place at infinity Q∞ of the Kummer extension
defined by the affine equation

X : Y m = f(X) =
r∏
i=1

(X − αi)λi , λi ∈ N, and 1 ≤ λi < m,

where r ≥ 2 and m ≥ 2 are integers such that p - m, α1, . . . , αr ∈ K are pairwise distinct
elements, λ0 := ∑r

i=1 λi, and gcd(m,λ0) = 1. As a consequence, we generalize the closed
formula for the Geil-Matsumoto bound on the number of rational points of a curve given
by Bras-Amorós and Vico-Oton in [11, Theorem 3.2]. Furthermore, we study the Frobenius
number and the multiplicity of the semigroup H(Q∞) establishing a relationship between
them, and we provide sufficient conditions for the semigroup H(Q∞) to be symmetric.
Finally, we characterize certain Fq2-maximal Castle curves of type (X , Q∞).
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1 Preliminaries and notations

In this chapter, we introduce the notations that will be used throughout the thesis
and present some general results on the theory of numerical semigroups and algebraic
curves over finite fields.

We denote by N the set of positive integers and by N0 := N ∪ {0} the set of
non-negative integers. For c ∈ R we denote by bcc, dce and {c} the floor, ceiling and
fractional part functions of c respectively, and for a, b ∈ Z we denote by (a, b) the greatest
common divisor of a and b, and by b mod a the smallest non-negative integer congruent
with b modulo a. Moreover, to differentiate standard sets from multisets (that is, sets that
can contain repeated occurrences of elements), we use the usual symbol ‘{}’ for standard
sets and the symbol ‘{{}}’ for multisets. For a multiset M , the set of distinct elements of M
is called the support of M and is denoted by M∗, the number of occurrences of an element
x ∈M∗ in the multiset M is called the multiplicity of x and is denoted by mM (x), and the
cardinality of the multiset M is defined as the sum of the multiplicities of all elements of
M∗. We say that two multisets M1 and M2 are equal if M∗

1 = M∗
2 and mM1(x) = mM2(x)

for each x in the support. For more on multisets, see [14].

1.1 Numerical semigroups
We start by presenting some known results related to numerical semigroups. For

more on numerical semigroups, we refer to the book [55].

Definition 1.1.1. A numerical semigroup is a subset H of N0 such that H is closed under
addition, H contains the zero, and the complement set N0 \H is finite.

The elements in the complement set G := N0\H are called the gaps of the numerical
semigroup H and gH := #G is its genus. The largest gap is called the Frobenius number
of H and is denoted by FH , the smallest nonzero element of H is called the multiplicity of
the semigroup and is denoted by mH , and the numerical semigroup H is called symmetric
if FH = 2gH − 1.

A subset {a1, . . . , ad} ⊂ H is called a system of generators of the numerical
semigroup H if

H = 〈a1, . . . , ad〉 := {t1a1 + · · ·+ tdad : t1, . . . , td ∈ N0}.

We say that a system of generators of H is a minimal system of generators if none of
its proper subsets generates the numerical semigroup H. The cardinality of a minimal
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system of generators of H is called the embedding dimension of H and will be denoted by
eH . For the case of numerical semigroups generated by two elements, that is H = 〈a1, a2〉
with (a1, a2) = 1, we have that gH = (a1 − 1)(a2 − 1)/2, FH = a1a2 − a1 − a2 and eH = 2,
see [55, Proposition 2.13]. Furthermore, we can characterize the elements of 〈a1, a2〉 as
follows.

Proposition 1.1.2. [54, Lemma 1] Let x ∈ Z and let a1, a2 ≥ 2 be integers such that
(a1, a2) = 1. Then x 6∈ 〈a1, a2〉 if and only if x = a1a2 − na1 −ma2 for some n,m ∈ N.

On the other hand, one of the most useful tools in the theory of numerical semigroups
are Apéry sets since many of the properties of numerical semigroups can be characterized
by these sets.

Definition 1.1.3. Let n be a nonzero element of the numerical semigroup H. The Apéry
set of n in H is defined by

Ap(H,n) := {s ∈ H : s− n /∈ H}.

It is known that the cardinality of Ap(H,n) is n and that several useful results are
associated with the Apéry set as shown in the following results.

Proposition 1.1.4. [55, Proposition 2.12] Let H be a numerical semigroup and S ⊆ H

be a subset that consists of n elements that form a complete set of representatives for the
congruence classes of Z modulo n ∈ H. Then

S = Ap(H,n) if and only if gH =
∑
a∈S

⌊
a

n

⌋
.

Proposition 1.1.5. [55, Proposition 4.10] Let H be a numerical semigroup and let n be
a nonzero element of H. Let Ap(H,n) = {a0 < a1 < · · · < an−1} be the Apéry set of n in
H. Then H is symmetric if and only if

ai + an−1−i = an−1 for each i = 0, . . . , n− 1.

1.2 Algebraic curves over finite fields
Let q be the power of a prime p, Fq the finite field with q elements, and K the

algebraic closure of Fq. For a nonsingular, projective, absolutely irreducible algebraic curve
(or simply curve) X with genus g(X ), we denote by F = K(X ) its function field, by PF the
set of places of F , and by νP the discrete valuation of F associated to the place P ∈ PF .
Also, we denote by Div(F ) the group of divisors of F , and for a function z ∈ F we let
(z)F , (z)∞ and (z)0 stand for the principal, pole and zero divisors of the function z in F
respectively. Furthermore, when the curve X is defined over Fq, we denote by X (Fq) its set
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of Fq-rational points and, due to the one-to-one correspondence between algebraic function
fields of one variable and algebraic curves, we consider a rational point on the curve is the
same as a rational place (place of degree one) on the function field of the curve.

One of the main objects to study in this thesis are the Weierstrass semigroups
associated to a place, which are defined below.

Definition 1.2.1. Let P ∈ PF be a place of F . The Weierstrass semigroup associated to
P is defined by the set

H(P ) = {n ∈ N0 : (z)∞ = nP for some z ∈ F}

and the complementary set G(P ) := N0 \H(P ) is called the gap set at P .

As a consequence of Riemann-Roch Theorem [56, Theorem 1.5.15], we obtain
that the gap set at a place is finite and therefore Weierstrass semigroups are numerical
semigroups. More specifically, we have the following result.

Theorem 1.2.2. [56, Theorem 1.6.8] Let F = K(X ) be the function field of the curve X
with genus g(X ) > 0 and P ∈ PF be a place. Then #G(P ) = g(X ) and

G(P ) = {1 = i1 < i2 < · · · < ig(X ) ≤ 2g(X )− 1}.

It is a well-known fact that for all but finitely many places P ∈ PF , the gap set is
always the same. This set is called the gap sequence of X . The places for which the gap
set is not equal to the gap sequence of X are called Weierstrass places.

Now, let X and Y be algebraic curves with function fields F = K(X ) and F ′ = K(Y)
respectively. Assume that F ⊆ F ′ and F ′/F is an algebraic extension. Next, we present
some results about extensions of function fields.

Definition 1.2.3. A place P ∈ PF ′ is said to lie over P ∈ PF if P ⊆ P ′. We also say
that P ′ is an extension of P and we write P ′|P .

Proposition 1.2.4. [56, Proposition 3.1.4] Let P ∈ PF and P ′ ∈ PF ′. Then the following
statements are equivalents:

i) P ′|P .

ii) There exists a positive integer e(P ′|P ) called ramification index of the extension P ′|P
satisfying νP ′(x) = e(P ′|P )νP (x) for all x ∈ F .

Since for each P ′ ∈ PF ′ there exists a unique P ∈ PF such that P ′|P , then for
simplicity we will often denote by e(P ′) the ramification index of the extension P ′|P
in F ′/F . In the case that the extension [F ′ : F ] is finite, we say that a place P ∈ PF
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is totally ramified in the extension F ′/F if there is a place P ′ ∈ PF ′ with P ′|P and
e(P ′|P ) = [F ′ : F ], and we say that P splits completely in F ′/F if there are exactly
[F ′ : F ] distinct places P ′ ∈ PF ′ with P ′|P .

Definition 1.2.5. For a place P ∈ PF , we define the conorm of P with respect to the
extension F ′/F as

ConF ′/F (P ) :=
∑

P ′∈PF ′
P ′|P

e(P ′|P )P ′.

Note that the conorm can be extended to a group homomorphism from Div(F ) to
Div(F ′) by setting

ConF ′/F
(∑

nPP
)

:=
∑

nPConF ′/F (P ).

Furthermore, one of the most interesting properties of the conorm is that it preserves
principal divisors.

Proposition 1.2.6. [56, Proposition 3.1.9] For a function 0 6= z ∈ F , we have that

ConF ′/F ((z)F ) = (z)F ′ .

In the theory of algebraic curves, the Riemann-Hurwitz formula is one of the
fundamental theorems. This result relates, by means of a closed formula, the genus of
the algebraic curves X and Y when K(Y)/K(X ) is a finite separable extension. Here
we present a particular case of the Riemann-Hurwitz formula that will be useful in the
development of the thesis. For a more general version see [56, Theorem 3.4.13].

Theorem 1.2.7 (Riemann-Hurwitz formula). Let X and Y be algebraic curves with
function fields F = K(X ) and F ′ = K(Y) respectively. Suppose that F ′/F is a finite
separable extension and assume that p - e(P ′|P ) for all extensions of places P ′|P in the
extension F ′/F . Then

2g(Y)− 2 = (2g(X )− 2)[F ′ : F ] +
∑
P∈PF

∑
P ′∈PF ′
P ′|P

(e(P ′|P )− 1).

Next, we introduce a special type of extension of function fields called Kummer
extensions. These types of extensions are a fundamental part of this thesis.

Proposition 1.2.8. [56, Proposition 3.7.3] Let X be a curve defined over Fq and
F = Fq(X ) be its function field. Suppose that Fq contains a primitive m-th root of unity
where m > 1 and p - m, and that u ∈ F is an element satisfying

u 6= wd for all w ∈ F and d | m, d > 1.

Let
F ′ = F (y) with ym = u.
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Such an extension F ′/F is said to be a Kummer extension of F . This extension is Galois
of degree [F ′ : F ] = m and for P ∈ PF and P ′ ∈ PF ′ an extension of P , the ramification
index of P ′|P is given by

e(P ′|P ) = m

(m, νP (u)) .

Now, to finish this chapter, we present some preliminary results with respect to
the number of rational points on a curve over a finite field.

Several upper bounds for the number of rational points of algebraic curves are
available in the literature. Next, we present some of these upper bounds starting with the
best known, the Hasse Weil bound [56, Theorem 5.2.3].

Theorem 1.2.9 (Hasse-Weil bound). Let X be a curve defined over Fq with genus g(X ).
Then

#X (Fq) ≤ q + 1 + 2g(X )√q.

Definition 1.2.10. A curve X defined over Fq with genus g(X ) is called Fq-maximal if
equality holds in the Hasse-Weil bound, that is,

#X (Fq) = q + 1 + 2g(X )√q.

Due to the following result given by Kleiman [37], we can construct new maximal
curves as quotients of known maximal curves.

Theorem 1.2.11. Let X and Y be algebraic curves defined over Fq. If X is Fq-maximal
and Y is an Fq-subcover of X , that is Fq(Y) ⊆ Fq(X ), then Y is also Fq-maximal.

Among other upper bounds for the number of rational points we have the Lewittes
bound [38], and the Geil-Matsumoto bound [23] that improved the bound given by Lewittes.

Theorem 1.2.12 (Lewittes bound). Let X be a curve defined over Fq and let P be an
Fq-rational place of X . Then

#X (Fq) ≤ qmH(P ) + 1,

where mH(P ) is the multiplicity of the Weierstrass semigroup H(P ).

Theorem 1.2.13 (Geil-Matsumoto bound). Let X be a curve defined over Fq and let P
be an Fq-rational place of X . Then

#X (Fq) ≤ GMq(H(P )) := 1 + #(H(P ) \ (qH∗(P ) +H(P ))),

where H∗(P ) = H(P ) \ {0} and qH∗(P ) +H(P ) = {qa+ b : a ∈ H∗(P ), b ∈ H(P )}.
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In general, there is no closed formula for the Geil-Matsumoto bound. However,
for Weierstrass semigroups generated by two elements, Bras-Amorós and Vico-Oton [11]
provided the following closed formula for the Geil-Matsumoto bound.

Theorem 1.2.14. [11, Theorem 3.2] The Geil-Matsumoto bound for the Weierstrass
semigroup generated by two elements a and b with a < b is given by

GMq(〈a, b〉) = 1 +
a−1∑
n=0

min
{
q,
⌈
q − n
a

⌉
b
}
.

On the other hand, the Lewittes bound allows us to define a new class of algebraic
curves: the Castle curves. The notion of Castle curves were introduced by Munuera,
Sepúlveda, and Torres in [47], and have been studied due to their interesting properties
related to the construction of algebraic geometry codes with good parameters and its
duals, see [46,47].

Definition 1.2.15. A pointed algebraic curve (X , P ) over Fq, where P is an Fq-rational
place of X , is called a Castle curve if the semigroup H(P ) is symmetric and equality holds
in the Lewittes bound.

Finally, we present the following remark that will be useful for the calculation of
the number of rational points of a curve defined by a Kummer extension. For a more
general version see [50, Theorems 3 and 4].

Remark 1.2.16. Let Fq(x, y)/Fq(x) be a Kummer extension of degree m defined by the
equation Y m = h(X), where m is a divisor of q − 1 and h ∈ Fq(X). For each α ∈ Fq, we
write

h(X) = (X − α)kαhα(X),

where kα ∈ Z, hα ∈ Fq(x), and α is neither a zero nor a pole of hα. Then there exist
either no or exactly (m, kα) Fq-rational places of Fq(x, y) over Pα. In fact, there exists
an Fq-rational place of Fq(x, y) over Pα if and only if gα(α) is a (m, kα)-power in F∗q.
Moreover, suppose

h(X) = c∞
g1(X)
g2(X)

where c∞ ∈ F∗q and g1, g2 are monic polynomials in Fq[X] with (g1, g2) = 1. Then there
exist either no or exactly (m, deg g2 − deg g1) Fq-rational places of Fq(x, y) over P∞. In
the case of P∞, there exists an Fq-rational place of Fq(x, y) over P∞ if and only if c∞ is a
(m, deg g2 − deg g1)-power in F∗q.

For more on function fields and algebraic curves, we refer to the books [18] and [56].
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2 Maximal curves as subcovers of the Beelen-
Montanucci curve

For decades many of the known maximal curves were obtained as, or proved to
be, Galois subcovers of the Hermitian curve. This raised the question of whether any
maximal curve could be covered by the Hermitian curve. In 2009, Giulietti and Korchmáros
introduced the first example of a maximal curve not covered by the Hermitian curve,
see [24]. This curve is defined over Fq6 by the affine equations

GK :
 Zq2−q+1 = Y

∑q
i=0(−1)i+1X i(q−1)

Y q+1 = Xq +X
. (2.1)

In the following years, two generalizations of the GK curve were presented, that is, maximal
curves over Fq2n for n ≥ 3 odd and isomorphic to the GK in the case n = 3. The first
such generalization is the so-called GGS curve, described in [20] by Garcia, Güneri and
Stichtenoth

GGS :
 Z

qn+1
q+1 = Y q2 − Y

Y q+1 = Xq +X
. (2.2)

This curve is maximal over Fq2n with genus g(GGS) = (q − 1)(qn+1 + qn − q2)/2, and for
n ≥ 5 its full automorphism group over Fq2n has size #Aut(GGS) = q3(q − 1)(qn + 1),
see [30, Theorem 3.10].

Applying a suitable Fq2-projectivity, a new equation for the GK curve over Fq6 was
introduced in [27] by Giulietti, Quoos, and Zini. It is defined by the complete intersection

GQZ :
 Zq2−q+1 = Y Xq2−X

Xq+1−1

Y q+1 = Xq+1 − 1
. (2.3)

This new equation allowed the determination of some explicit equations of maximal curves
covered by the GK curve, as well as that of the Galois group corresponding to the cover
in some cases.

For n ≥ 3 odd, a natural generalization of the GQZ curve was investigated in [7]
by Beelen and Montanucci, and we denote it by BM . It is defined by the affine equations

BM :

 Z
qn+1
q+1 = Y

(
Xq2−X
Xq+1−1

)
Y q+1 = Xq+1 − 1

. (2.4)

The BM curve can also be seen as a generalization of the GK curve since it is maximal over
Fq2n with genus satisfying g(BM) = g(GGS) for n ≥ 3. Surprisingly, despite being maximal
and having the same genus as the GGS curve, the BM curve is not isomorphic to GGS
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for n ≥ 5. In fact, for n ≥ 5, the full automorphism group Aut(BM) ∼= SL(2, q) o Cqn+1

has order q(q2 − 1)(qn + 1), see [7, Theorem 4.3].

In [8], Beelen and Montanucci determined genera of Galois subcovers of the BM
curves for n ≥ 5. They work from the point of view of finite group theory, using the classi-
fication of maximal subgroups of PGU(3, q) and studying the action of the automorphism
group on the rational points on the curve. For the cases (n, q + 1) = 1 and q a power of 2,
or (n, q + 1) = 1 and q ≡ 1 (mod 4), they obtain all the genera.

From the point of view of applications, our goal in this chapter is to provide a
number of explicit equations for Galois subcovers of the BM curve over Fq2n . These curves
are obtained as fixed field of certain subgroups of the automorphism group of the BM
curve for n odd and n ≥ 3. The genus, as well an explicit description of the Galois subgroup
of Aut(BM) associated to the covering are provided.

Throughout the chapter we let p be a prime number, q a power of p, and for n ≥ 3
an odd integer we write m = (qn + 1)/(q + 1). For k ≥ 1 we let Ck stand for the cyclic
group of order k. Moreover, for H a subgroup of the automorphism group Aut(X ) of a
curve X defined over Fq, we denote by Fix(H) ⊂ Fq(X ) the field fixed by H. Then we
have that the extension Fq(X )/Fix(H) is Galois and the function field Fix(H) corresponds
to the quotient curve X/H of X with respect to the automorphism subgroup H.

2.1 Quotient curves from the first new model of the BM curve
In this section, we present two families of maximal curves over Fq2n depending on

certain parameters given by divisors of q + 1, q − 1,m, and qn + 1.

Applying the morphism ϕ(X, Y, Z) = (X
Y
, 1
Y
, Z
Y

) to the curve (2.3) defined by the
equations  Zq2−q+1 = Y Xq2−X

Xq+1−1

Y q+1 = Xq+1 − 1
,

we obtain a birationally equivalent curve

X :
 Zq2−q+1 = Xq2

Y −XY q2

Y q+1 = Xq+1 − 1
,

which will prove useful for dealing with subgroups of the automorphism group of the curve
explicitly. For n ≥ 3 odd, it is natural to consider the following generalization of the curve
X given by

Xn :
 Zm = Xq2

Y −XY q2

Y q+1 = Xq+1 − 1
. (2.5)

We now show that the curves Xn and BM in (2.4) are in fact isomorphic. Let x, y, w
be functions in the function field Fq2n(BM) satisfying wm = y

(
xq

2−x
xq+1−1

)
and yq+1 = xq+1−1;
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and x, y, z ∈ Fq2n(Xn) be such that zm = xq
2
y − xyq2 and yq+1 = xq+1 − 1. Then

zm = xq
2
y − xyq2 = xy(xq2−1 − yq2−1)

= xy(xq2−1 − (xq+1 − 1)q−1)

= xy

(
xq

2−1 − xq
2+q − 1

xq+1 − 1

)
(2.6)

= −xy
(
xq

2−1 − 1
xq+1 − 1

)
= −wm = (−w)m,

and we conclude that w = −ζz, for some ζ ∈ Fq2n , ζm = 1. This yields equality of the
function fields Fq2n(Xn) and Fq2n(BM). In particular, the automorphisms groups Aut(Xn)
and Aut(BM) are isomorphic. It is easy to check that the full automorphism group
Aut(BM) as described in [8, Section 2] acts on the curve Xn, so

Aut(Xn) = {σa,c,ξ : aq+1 − cq+1 = 1, ξqn+1 = 1}, (2.7)

where

σa,c,ξ : (X, Y, Z) 7→ (aX + cqξmY, cX + aqξmY, ξZ).

Let d1 and d2 be divisors of q + 1, and d be a divisor of qn + 1. Consider the
functions

u := x(q+1)/d1 , v := y(q+1)/d2 and w := z(qn+1)/d.

From Equation (2.5), we conclude the functions u, v and w satisfy the following algebraic
relations

• vd2 = ud1 − 1, and
•wd = xq+1yq+1((xq+1)q−1 − (yq+1)q−1)q+1

= xq+1(xq+1 − 1)((xq+1)q−1 − (xq+1 − 1)q−1)q+1

= xq+1(xq+1 − 1)
(

(xq+1)q−1 − (xq+1)q − 1
xq+1 − 1

)q+1

= xq+1(1− (xq+1)q−1)q+1

(xq+1 − 1)q

= ud1(1− ud1(q−1))q+1

(ud1 − 1)q

= ud1(ud1 − 1)
(
ud1(q−1) − 1
ud1 − 1

)q+1

.

Thus, we can present the following result.
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Theorem 2.1.1. Let d1 and d2 be divisors of q + 1, and d be a divisor of qn + 1 such that(
d2, d,

dd1
(d,2d1)

)
= 1. Then the affine equations

 W d = Ud1(Ud1 − 1)
(
Ud1(q−1)−1
Ud1−1

)q+1

V d2 = Ud1 − 1
(2.8)

define an Fq2n-maximal curve Yd1,d2,d of genus

g = 1 + 1
2(dd1d2(q − 1)− d1d2(q − 2)(d, q + 1)− d2(d, d1)− d1(d, d2)− (2d1d2, dd1, dd2)).

Moreover, the curve Yd1,d2,d is the quotient curve Xn/Hd1,d2,d, where the subgroup Hd1,d2,d

is given by

Hd1,d2,d =
{
σa,0,ξ : (X, Y, Z) 7→ (aX, aqξmY, ξZ) : a

q+1
d1 = 1, (aqξm)

q+1
d2 = 1, ξ

qn+1
d = 1

}
.

Proof. We start by proving that Hd1,d2,d is a Fq2n-automorphism subgroup of Aut(Xn)
and Fq2n(u, v, w) ⊆ Fix(Hd1,d2,d). It is clear that Hd1,d2,d 6= ∅ is a finite subset of Aut(Xn),
therefore to prove that Hd1,d2,d is a subgroup of Aut(Xn) it is enough to prove that Hd1,d2,d

is closed under multiplication. For σa1,0,ξ1 , σa2,0,ξ2 ∈ Hd1,d2,d, we have that

σa2,0,ξ2σa1,0,ξ1 =


a2 0 0
0 aq2ξ

m
2 0

0 0 ξ2



a1 0 0
0 aq1ξ

m
1 0

0 0 ξ1



=


a1a2 0 0

0 (a1a2)q(ξ1ξ2)m 0
0 0 ξ1ξ2


= σa1a2,0,ξ1ξ2

and
(a1a2)

q+1
d1 = [(a1a2)q(ξ1ξ2)m]

q+1
d2 = (ξ1ξ2)

qn+1
d = 1.

This implies that Hd1,d2,d is subgroup of Aut(Xn). On the other hand, it is clear the
functions u = x(q+1)/d1 , v = y(q+1)/d2 , and w = z(qn+1)/d ∈ Fq2n(Xn) satisfy Equation (2.8).
Furthermore, for σa,0,ξ ∈ Hd1,d2,d,

σa,0,ξ(U) = σa,0,ξ(X
q+1
d1 ) = (aX)

q+1
d1 = a

q+1
d1 X

q+1
d1 = U,

σa,0,ξ(V ) = σa,0,ξ(Y
q+1
d2 ) = (aqξmY )

q+1
d2 = (aqξm)

q+1
d2 Y

q+1
d2 = V, and

σa,0,ξ(W ) = σa,0,ξ(Z
qn+1
d ) = (ξZ)

qn+1
d = ξ

qn+1
d Z

qn+1
d = W.

This implies that Fq2n(u, v, w) ⊆ Fix(Hd1,d2,d).

Now, consider the double extension of function fields

Fq2n(u, v, w) ⊆ Fix(Hd1,d2,d) ⊆ Fq2n(x, y, z) = Fq2n(Xn).
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As Fq2n(Xn)/Fix(Hd1,d2,d) is Galois, we have [Fq2n(Xn) : Fix(Hd1,d2,d)] = #Hd1,d2,d. From
(2.6) we get y ∈ Fq2n(x, z). So

[Fq2n(x, y, z) : Fq2n(u, v, w)] = [Fq2n(x, z) : Fq2n(u, v, w)] = [Fq2n(x, z) : Fq2n(u,w)]
[Fq2n(u, v, w) : Fq2n(u,w)]

≤ (q + 1)(qn + 1)
d1d2d

.

To conclude that Fq2n(u, v, w) = Fix(Hd1,d2,d), it remains to show that the subgroup
Hd1,d2,d has cardinality (q+1)(qn+1)

d1d2d
. Let τ ∈ Fq2n be a primitive (qn + 1)-th root of unity.

For each a ∈ C q+1
d1

, let i ∈ Z be such that a = τ imd1 and Ra be the set defined by

Ra :=
{
ξ ∈ C qn+1

d
: (aqξm)

q+1
d2 = 1

}
, then #Hd1,d2,d = ∑

a∈C(q+1)/d1
#Ra. We notice that

(
d,

dd1

(d, 2d1)

)
=
 d, if d is odd,

d
2

(
2, 2d1

(d,2d1)

)
, if d is even.

Therefore, from the condition
(
d2, d,

dd1
(d,2d1)

)
= 1, we deduce that (d, d2) = 1 or (d, d2) = 2.

Now we analyze both cases.

Case 1: (d, d2) = 1. We prove that #Ra = qn+1
d2d

for any a. For this, it is sufficient
to prove that Ra is not empty, since if γ ∈ Ra, then Ra = γC qn+1

d2d
. Also, since (d2, d) = 1,

there are k, j ∈ Z such that kd2 − jd = iqd1. Thus, % = τ jd ∈ C qn+1
d

and

(aq%m)
q+1
d2 = (τ iqmd1τ jmd)

q+1
d2 = (τm(iqd1+jd))

q+1
d2 = τ (qn+1)k = 1.

This implies % = τ jd ∈ Ra.

Case 2: (d, d2) = 2. Note that necessarily q and d1 are odd, and q+1
d1

is even. In
this case, we prove that

#Ra =


2(qn+1)
d2d

, if i is even,
0, if i is odd.

Suppose that i is odd and Ra 6= ∅, then there exists ξ ∈ Ra and j ∈ Z such that ξ = τ jd.
Thus,

1 = (aqξm)
q+1

2 = (τ iqmd1τ jdm)
q+1
d2 = τ

(iqd1+jd)(qn+1)
d2

and therefore d2 divides iqd1 + jd. This is a contradiction since iqd1 + jd is odd and d2 is
even.

Now suppose that i is even. For this, it is sufficient to prove that Ra is not
empty, since if γ ∈ Ra, then Ra = γC 2(qn+1)

d2d
. Also, since i is even and (d, d2) = 2, then

there are k, j ∈ Z such that kd2 − jd = iqd1. Using an argument analogous to the
one used in the case (d, d2) = 1 it is easy to show that Ra 6= ∅. We conclude that
#Hd1,d2,d = ∑

a∈C(q+1)/d1
#Ra = (q+1)(qn+1)

d1d2d
.

Let Fq2n(Yd1,d2,d) = Fq2n(u, v, w). Denote by α1, α2, . . . , αd1(q−1) the roots in K of
the separable polynomial f(U) = Ud1(q−1) − 1, where the first d1 elements α1, α2, . . . , αd1
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are the roots of the polynomial g(U) = Ud1−1. We compute the following principal divisor
in K(u):

(
ud1f(u)q+1

g(u)q

)
K(u)

= d1(u)K(u) + (q + 1)(f(u))K(u) − q(g(u))K(u)

= d1P0 +
d1∑
i=1

Pαi + (q + 1)
d1(q−1)∑
i=d1+1

Pαi − d1q(q − 1)P∞,

where Pαi , P0, and P∞ are the places corresponding to αi, 0, and the pole of u respectively.
We conclude that K(u,w)/K(u) is a Kummer extension of degree d. For P a place in
PK(u,w), the ramification indices of the ramified places in the extension K(u,w)/K(u) are
given by

e(P ) =



d/(d, d1), if P is over P0,

d, if P is over Pαi for i = 1, . . . , d1,

d/(d, q + 1), if P is over Pαi for i = d1 + 1, . . . , d1(q − 1),
d/(d, 2d1), if P is over P∞.

By the Riemann-Hurwitz formula, the genus of the function field K(u,w) is given by

g(K(u,w)) = dd1(q − 1)− d1 − d1(q − 2)(d, q + 1)− (d, d1)− (d, 2d1) + 2
2 .

We now show that the extension K(u,w, v)/K(u,w) is a Kummer extension and compute
the genus of K(Yd1,d2,d). We start by computing the principal divisor of ud1 − 1 in K(u, v)

(ud1 − 1)K(u,w) = d
d1∑
i=1

Qαi −
dd1

(d, 2d1)

(d,2d1)∑
i=1

Q∞,i,

where Qαi and Q∞,i are the extensions of the places Pαi and P∞, respectively. From the
condition

(
d2, d,

dd1
(d,2d1)

)
= 1, we conclude the extension K(u,w, v)/K(u,w) is a Kummer

extension of degree d2 with ramification indices given by

e(P ) =


d2/(d2, d), if P is over Qαi ,

d2(2d1, d)/(2d1d2, dd1, dd2), if P is over Q∞,i,
1, in the other cases.

Thus we conclude that Equation (2.8) defines an absolutely irreducible curve. The calcu-
lation of the genus g of the function field K(u, v, w) follows from the Riemann-Hurwitz
formula

2g − 2 = d2(2g(K(u,w))− 2) + d1d2 − d1(d2, d) + d2(d, 2d1)− (2d1d2, dd1, dd2).



2.1. Quotient curves from the first new model of the BM curve 35

Remark 2.1.2. In Theorem 2.1.1, for n = 3 (d1 and d2 divisors of q + 1, and d a divisor
of q2 − q + 1), we obtain quotient curves of the GK curve defined by W d = Ud1V d2

(
Ud1(q−1)−1
Ud1−1

)q+1

V d2 = Ud1 − 1

corresponding to the subgroup

Hd1,d2,d =
{
σa,0,ξ : a

q+1
d1 = 1, (aqξq2−q+1)

q+1
d2 = 1, ξ

q3+1
d = 1

}
< Aut(X3).

These quotient curves were studied in [27], where the genus was computed for d = d3(q2 −
q + 1) and d3 is a divisor of q + 1, see [27, Theorem 3.3]. Moreover, assuming

(d1, d2, d) = 1,

the corresponding subgroups were provided for two particular cases: (1) d1 | 3d3 and
(d1, d2) = 1, and (2) d1 | d2 and (d1, d) = 1, see [27, Section 4].

Theorem 2.1.1 generalizes this result, providing the genus and the corresponding
subgroups for all values of d1, d2 and d satisfying the condition

(
d2, d,

dd1
(d,2d1)

)
= 1. Also the

families of curves provided in [27, Section 5] for d4 a divisor of q2 − q + 1 given by

Z :
 W d4

1 = V1(1 + Ud1
1 + U2d1

1 + · · ·+ U
(q−2)d1
1 )

V q+1
1 = U2d1

1 − Ud1
1

are covered by the curve in Theorem 2.1.1. To see this, notice that the functions w1 and u1

satisfy

w
d4(q+1)
1 = (v1(1 + ud1

1 + u2d1
1 + · · ·+ u

(q−2)d1
1 ))q+1

= vq+1
1

ud1(q−1)
1 − 1
ud1

1 − 1

q+1

= ud1
1 (ud1

1 − 1)
ud1(q−1)

1 − 1
ud1

1 − 1

q+1

.

Thus Fq6(Z) = Fq6(u1, v1, w1) = Fq6(u1, w1) = Fq6(Yd1,1,d4(q+1)). Moreover, the curve
defined by the second equation W d4(q+1) = Ud1(Ud1 − 1)

(
Ud1(q−1)−1
Ud1−1

)q+1
also appears in [7,

Remark 4.6] and corresponds to the subgroup

Hd1,1,d4(q+1) =
{
σa,0,ξ : (X, Y, Z) 7→ (aX, aqY, ξZ) : a

q+1
d1 = 1, ξ

m
d4 = 1

}
.

As a direct consequence of Theorem 2.1.1, we provide a plane model for the curve
Xn.

Corollary 2.1.3. The curve Xn is birationaly equivalent over Fq2n to the plane curve with
affine equation

Zqn+1 = Xq+1(Xq+1 − 1)((Xq+1 − 1)q−1 −Xq2−1)q+1. (2.9)
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Proof. In Theorem 2.1.1, for d1 = q + 1, d2 = 1, and d = qn + 1 we get

wq
n+1 = uq+1(uq+1 − 1)

(
uq

2−1 − 1
uq+1 − 1

)q+1

= uq+1(uq+1 − 1)((uq+1 − 1)q−1 − uq2−1)q+1

and g(K(u,w)) = g(Xn).

Now consider the Fq2n-automorphism subgroup of Aut(Xn) defined by

H =
{
σa,c,ξ ∈ Aut(Xn) : aq+1 − cq+1 = 1, ξm = 1

}
of order q(q − 1)(qn + 1). In the following, we provide a family of quotient curves corre-
sponding to subgroups of H.

Theorem 2.1.4. Let d1 and d be divisors of q − 1 and m respectively. The equation

W d = 1− Ud1(q+1)

Ud1
(2.10)

defines an Fq2n-maximal curve Yd1,d covered by the curve Xn of genus g = d1(d−1)(q+1)
2 . This

curve is the quotient curve Xn/Hd1,d, where

Hd1,d =
{
σa(bq+1),ab,ξ : (bq + b+ 1)a2 = 1, a

q−1
d1 = 1, ξmd = 1

}
and

σa(bq+1),ab,ξ : (X, Y, Z) 7→ (a(bq + 1)X + abqY, abX + a(b+ 1)Y, ξZ).

Proof. Note thatHd1,d 6= ∅ is a finite subset of Aut(Xn) and for σa1(bq1+1),a1b1,ξ1 , σa2(bq2+1),a2b2,ξ2

elements in Hd1,d,

σa2(bq2+1),a2b2,ξ2σa1(bq1+1),a1b1,ξ1 =


a2(bq2 + 1) a2b

q
2 0

a2b2 a2(b2 + 1) 0
0 0 ξ2



a1(bq1 + 1) a1b

q
1 0

a1b1 a1(b1 + 1) 0
0 0 ξ1



=


A(Bq + 1) ABq 0

AB A(B + 1) 0
0 0 ξ1ξ2


= σA(Bq+1),AB,ξ1ξ2 ,

where A = a1a2 and B = b2a
−2
1 + b1. Since A

q−1
d1 = (ξ1ξ2)md = 1 and

(Bq +B + 1)A2 = ((bq2 + b2)a−2
1 + bq1 + b1 + 1)a2

1a
2
2

= (bq2 + b2)a2
2 + a2

2

= (bq2 + b2 + 1)a2
2

= 1,
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we conclude that Hd1,d is a subgroup of Aut(Xn) of order q(q−1)m
d1d

.

Now, consider the functions u := (x + y)(q−1)/d1 and w := zm/d in Fq2n(Xn). For
σa(bq+1),ab,ξ ∈ Hd1,d, we have that

σa(bq+1),ab,ξ(U) = (a(bq + b+ 1)(X + Y ))
q−1
d1 = (a−1(X + Y ))

q−1
d1 = U and

σa(bq+1),ab,ξ(W ) = σa(bq+1),ab,ξ(Z
m
d ) = (ξZ)md = ξ

m
d Z

m
d = W.

Thus, Fq2n(u,w) ⊆ Fix(Hd1,d). Furthermore, from Equation (2.5) we deduce that the
functions x and y satisfy the following relation

(xq+1 − 1)((x+ y)− (x+ y)q2) = (xq+1 − 1)(x− xq2) + (xq+1 − 1)(y − yq2)
= yq+1x(1− xq2−1) + y(xq+1 − 1)(1− (xq+1 − 1)q−1)
= yq+1x(1− xq2−1) + yxq+1(1− xq2−1)
= xy(x+ y)q(1− xq2−1)
= xy(x+ y)q((xq+1 − 1)xq2−1 − (xq2+q − 1)),

that is,

(x+ y)− (x+ y)q2 = xy(x+ y)q
(
xq

2−1 − xq
2+q − 1

xq+1 − 1

)
. (2.11)

Hence, we conclude

wd = zm = xq
2
y − xyq2 = xy

(
xq

2−1 − xq
2+q − 1

xq+1 − 1

)
from Equation (2.6)

= (x+ y)− (x+ y)q2

(x+ y)q from Equation (2.11)

= 1− (x+ y)q2−1

(x+ y)q−1

= 1− ud1(q+1)

ud1
.

From this algebraic relation, we conclude that the extension Fq2n(u,w)/Fq2n(u) is a Kummer
extension of degree d. By Theorem 2.1.1 we have [Fq2n(x, y, z) : Fq2n(x, y)] = m and
by [7, Lemma 3.1], [Fq2n(x, y) : Fq2n(x+y)] = q. Therefore [Fq2n(x, y, z) : Fq2n(x+y)] = qm

and we get that

[Fq2n(x, y, z) : Fq2n(u,w)] = [Fq2n(x, y, z) : Fq2n(x+ y)][Fq2n(x+ y) : Fq2n(u)]
[Fq2n(u,w) : Fq2n(u)] ≤ q(q − 1)m

d1d
.

This implies Fix(Hd1,d) = Fq2n(u,w). In order to calculate the genus of K(u,w) we compute
the principal divisor

(
1− ud1(q+1)

ud1

)
K(u)

=
d1(q+1)∑
i=1

Pαi − d1P0 − d1qP∞,
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where α1, . . . , αd1(q+1) are the roots of the separable polynomial Ud1(q+1) − 1. Thus all the
places over Pαi , P0 or P∞ are totally ramified in the extension K(u,w)/K(u).

The genus g of K(u,w) follows from the Riemann-Hurwitz formula, g = d1(d −
1)(q + 1)/2.

In particular, for d1 = q − 1 and d = m in Theorem 2.1.4, we obtain the quotient
curve Wm = 1−Uq2−1

Uq−1 corresponding to the subgroup Hq−1,m = {σbq+1,b,1 : bq + b = 0}. This
curve already appeared in [7, Corollary 3.7] where it played an important role in the proof
of the maximality of the BM curve.

2.2 Quotient curves from a second new model for the BM curve

In this section, we apply a morphism to the curve Xn in order to obtain new
subgroups of Aut(Xn). Consider Fq2n(Xn) = Fq2n(x, y, z), the function field of the curve
Xn, and let ρ ∈ Fq2n be such that ρqn+1 = 1 and ρm 6= 1. Applying the morphism

φ(X, Y, Z) =
(

ρm

ρm − 1(X − Y ), X − ρmY, ρZ
)

(2.12)

to the curve

Xn :
 Zm = Xq2

Y −XY q2

Y q+1 = Xq+1 − 1

we have that the functions u := ρm

ρm−1(x− y), v := x− ρmy, and w := ρz in Fq2n(Xn) satisfy

uqv + uvq = ρmq

ρmq − 1(xq − yq)(x− ρmy) + ρm

ρm − 1(x− y)(xq − ρmqyq)

= ρmq

ρmq − 1(xq+1 − ρmxqy − xyq + ρmyq+1)+

ρm

ρm − 1(xq+1 − ρmqxyq − xqy + ρmqyq+1)

=
(

ρmq

ρmq − 1 + ρm

ρm − 1

)
xq+1 +

(
1

ρmq − 1 + 1
ρm − 1

)
yq+1

−
(

ρmq

ρmq − 1 + 1
ρm − 1

)
xyq −

(
1

ρmq − 1 + ρm

ρm − 1

)
xqy

= xq+1 − yq+1
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and

vq
2
u− uq2

v = ρm

ρm − 1(xq2 − ρmyq2)(x− y)− ρm

ρm − 1(xq2 − yq2)(x− ρmy)

= ρm

ρm − 1(xq2+1 − xq2
y − ρmxyq2 + ρmyq

2+1 − xq2+1 + ρmxq
2
y

+ xyq
2 − ρmyq2+1)

= ρm(xq2
y − xyq2)

= ρmzm

= wm.

Thus, we obtain an isomorphic curve with equations

Fn :
 Zm = Y q2

X −Xq2
Y

XqY +XY q = 1
. (2.13)

Recall that

Aut(Xn) =
{
σa,c,ξ : aq+1 − cq+1 = 1, ξqn+1 = 1

}
,

where
σa,c,ξ : (X, Y, Z) 7→ (aX + cqξmY, cX + aqξmY, ξZ).

By conjugation, we retrieve a representation for the automorphism group of the curve Fn

Aut(Fn) = φAut(Xr)φ−1 =
{
τ̃a,c,ξ : aq+1 − cq+1 = 1, ξqn+1 = 1

}
,

where

τ̃a,c,ξ :


X 7→ ρm

ρm−1 ((a− c)− (a− c)qξmρmq)X − ρm

(ρm−1)2 ((a− c)− (a− c)qξm)Y,

Y 7→ ((a− cρm)− (a− cρm)qξm)X − 1
ρm−1((a− cρm)− (a− cρm)qξmρm)Y,

Z 7→ ξZ.

From the equality

(X − Y )q(X − Y ρm)− ρm(X − Y ρm)q(X − Y ) = (1− ρm)(Xq+1 − Y q+1)

we can represent

Aut(Fn) =
{
τa,c,ξ : aqc− ρmacq = 1− ρm, ξqn+1 = 1

}
,

where

τa,c,ξ :


X 7→ ρm

ρm−1 (a− aqξmρmq)X − ρm

(ρm−1)2 (a− aqξm)Y,

Y 7→ (c− cqξm)X − 1
ρm−1(c− cqξmρm)Y,

Z 7→ ξZ.

The equations defining the curve Fn allow to obtain, by simple inspection, automorphisms
that had not been previously considered, yielding new quotient curves. In the following
theorem, we provide a quotient curve of the curve Fn corresponding to the subgroup
generated by a single automorphism.
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Theorem 2.2.1. Let d1 and d2 be divisors of q − 1 and m respectively. The following
equations define an Fq2n-maximal curve which is a subcover of the curve Fn:

Yd1,d2 :
 W d2 = 1−V Ud1−(V Ud1 )q

V q

V q = Ud1 − V U2d1
. (2.14)

The curve Yd1,d2 has genus

g = d1(q + 1)(d2(q + 1)− q)− (d1(q + 1, 2), q − 1)
2

and corresponds to the quotient curve Fn/L, where L is the subgroup of Aut(Fn) generated
by the automorphism

τθd1 ,θ−d1 ,ε : (X, Y, Z) 7→
(
θ−d1X, θd1Y, εZ

)
,

where θ is a primitive element of Fq and ε is a primitive (m/d2)-th root of unity.

Proof. First of all, note that the functions u := x(q−1)/d1 , v := xy and w = zm/d2 are in
the fixed field Fix(L). In fact, we have that

τθd1 ,θ−d1 ,ε(U) = τθd1 ,θ−d1 ,ε(X
q−1
d1 ) = (θ−d1X)

q−1
d1 = X

q−1
d1 = U,

τθd1 ,θ−d1 ,ε(V ) = τθd1 ,θ−d1 ,ε(XY ) = (θ−d1X)(θd1Y ) = XY = V, and
τθd1 ,θ−d1 ,ε(W ) = τθd1 ,θ−d1 ,ε(Z

m
d2 ) = (εZ)

m
d2 = Z

m
d2 = W.

Furthermore, since τ i
θd1 ,θ−d1 ,ε(X, Y, Z) = (θ−id1X, θid1Y, εiZ) for i ∈ N, θ is a primitive

element of Fq, and ε is a primitive (m/d2)-th root of unity, we have that L is a subgroup
of Aut(Fn) of order (q−1)m

d1d2
. Moreover, since

[Fq2n(x, y, z) : Fq2n(u, v, w)] = [Fq2n(x, xy, z) : Fq2n(u, v, w)] ≤ (q − 1)m
d1d2

= #L,

we conclude that Fix(L) = Fq2n(u, v, w).

In order to provide irreducible equations for Yd1,d2
∼= Fn/L, we use Equation (2.13)

to conclude that the functions u, v and w satisfy the relations

vq = (xy)q = xq−1(xyq) = xq−1(1− yxq) = xq−1 − (xy)x2(q−1) = ud1 − vu2d1

and

wd2 = zm = xy((yq−1)q+1 − (xq−1)q+1) = xy

( 1
xy
− xq−1

)q+1

− (xq−1)q+1


= 1− (xy)xq−1 − ((xy)xq−1)q

(xy)q

= 1− vud1 − (vud1)q
vq

.
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This implies that the equations given in (2.14) define a quotient curve of Fn. For convenience,
in order to calculate the genus of the algebraic function field K(u, v, w), we write t = vud1 .
Consider the following extensions of function fields:

K(t) ⊆ K(t, v) ⊆ K(t, v, w) ⊆ K(t, v, w, u) = K(u, v, w).

From (2.14), the functions t, v and w satisfy the relations

wd2 = (1− t− tq)/vq and vq+1 = t(1− t).

We conclude that the function field extension K(t, v)/K(t) is a Kummer extension of
degree q + 1 of genus

g(K(t, v)) = (q + 1− (q + 1, 2))/2.

Moreover, if P0 and P1 are the zeros of t and t − 1 respectively, and P∞ the pole of t
in K(t), then P0 and P1 are totally ramified, P∞ has (q + 1, 2) extensions and the other
places are completely split in K(t, v)/K(t).

On the other hand, for α1, α2, . . . , αq the roots of the separable polynomial f(T ) =
1−T −T q in K, let Pαj be the place in K(t) associated to the function t−αj . After some
computations, we get the principal divisors

(t− αj)K(t,v) =
q+1∑
i=1

Qαj ,i −
q + 1

(q + 1, 2)

(q+1,2)∑
i=1

Q∞,i

and

(v)K(t,v) = Q0 +Q1 −
2

(q + 1, 2)

(q+1,2)∑
i=1

Q∞,i,

where Qαj ,i, Qi and Q∞,i are extensions of Pαj , Pi and P∞ in K(t, v) respectively. Hence,
we obtain the following divisor in K(t, v):(

f(t)
vq

)
K(t,v)

=
q∑
j=1

q+1∑
i=1

Qαj ,i − q(Q0 +Q1)− q(q − 1)
(q + 1, 2)

(q+1,2)∑
i=1

Q∞,i.

Therefore the extension K(t, v, w)/K(t, v) is also a Kummer extension of degree d2, and
all the ramified places in the extension are totally ramified.

By the Riemann-Hurwitz formula, we obtain

g(K(t, v, w)) = d2(q + 1)2 − (q2 + q + (q + 1, 2))
2 .

To conclude the proof, we prove that K(t, v, w, u)/K(t, v, w) is a Kummer extension
and compute the genus of K(t, v, w, u) = K(u, v, w). We have ud1 = t/v and start by
computing the divisors of the functions t and v:

(t)K(t,v,w) = d2(q + 1)R0 −
d2(q + 1)
(q + 1, 2)

(q+1,2)∑
i=1

R∞,i,
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(v)K(t,v,w) = d2

R0 +R1 −
2

(q + 1, 2)

(q+1,2)∑
i=1

R∞,i

 .
Therefore

(t/v)K(t,v,w) = d2qR0 − d2R1 −
d2(q − 1)
(q + 1, 2)

(q+1,2)∑
i=1

R∞,i,

where Ri and R∞,i are the unique extensions in K(t, v, w) of the places Qi and Q∞,i

respectively. Since (d1, d2) = 1, we conclude that K(t, v, w, u)/K(t, v, w) is a Kummer
extension of degree d1. For S a place in PK(t,v,w,u) we have the following ramification
indices

e(S) =


d1, if S is over Ri,

d1(q + 1, 2)/(d1(q + 1, 2), q − 1), if S is over R∞,i,
1, in the other cases.

By the Riemman-Hurwitz formula, we can finally obtain the genus

g(K(u, v, w)) = g(K(t, v, w, u)) = d1(q + 1)(d2(q + 1)− q)− (d1(q + 1, 2), q − 1)
2 .

Choosing d2 = 1 in Theorem 2.2.1 we obtain a family of quotient curves V q =
Ud1 − V U2d1 of the Hermitian curve over Fq2 defined by XqY +XY q = 1. This quotient
curve has genus

g = d1(q + 1)− (d1(q + 1, 2), q − 1)
2 =


d1(q+1)−(2d1,q−1)

2 , if q is odd,
d1

q
2 , if q is even,

and corresponds to the subgroup generated by the automorphism τ : (X, Y ) 7→
(
θ−d1X, θd1Y

)
.

Now we consider a second automorphism of the curve Fn given by

τd : (X, Y, Z) 7→ (Y,X,−εZ),

where d is a divisor of m and ε is a primitive (m/d)-th root of unity. We provide the
quotient curve corresponding to the subgroup Ld of Aut(Fn) generated by τd. For this, it
is necessary to distinguish between the two cases of odd and even characteristic. We start
with the case of odd characteristic.

Consider the functions u := x + y and w := z2m/d. We start by determining an
algebraic relation between these functions. From Equation (2.13) we have

(x− y)q+1 = (x+ y)q+1 − 2 (2.15)

and, after some calculations,

yq
2
x− xq2

y = −(x− y)
(

(x+ y)q2 − (x+ y)
(x+ y)q+1 − 2

)
. (2.16)
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Thus,

wd(q+1)/2 = zq
n+1 = (yq2

x− xq2
y)q+1

= (x− y)q+1
(

(x+ y)q2 − (x+ y)
(x+ y)q+1 − 2

)q+1

from Equation (2.16)

= ((x+ y)q+1 − 2)
(

(x+ y)q2 − (x+ y)
(x+ y)q+1 − 2

)q+1

from Equation (2.15)

= (x+ y)q+1((x+ y)q2−1 − 1)q+1

((x+ y)q+1 − 2)q

= uq+1(uq2−1 − 1)q+1

(uq+1 − 2)q .

Therefore the functions u and w satisfy the irreducible equation

W d(q+1)/2 = U q+1(U q2−1 − 1)q+1

(U q+1 − 2)q . (2.17)

Furthermore, it is clear that Fq2n(u,w) ⊆ Fix(Ld) ⊆ Fq2n(x, y, z). From Equation (2.16),
x− y ∈ Fq2n(x+ y, z) and therefore

[Fq2n(x, y, z) : Fq2n(u,w)] = [Fq2n(x+ y, x− y, z) : Fq2n(u,w)]

= [Fq2n(x+ y, z) : Fq2n(u,w)] ≤ 2m
d
.

Since #Ld = 2m/d, we conclude that Fq2n(u,w) = Fix(Ld) and therefore the curve defined
by the Equation (2.17) corresponds to the quotient curve Fn/Ld. This curve is isomorphic
to the curve Yq+1,1,d(q+1)/2 given in Theorem 2.1.1. In fact, ν(U,W ) = (α−1U,W ), where
α ∈ Fq2n such that αq+1 = 2, is a morphism between the curves defined by Equation (2.17)
and Yq+1,1,d(q+1)/2.

For the case q even, we first need the following result.

Lemma 2.2.2. Suppose q = 2s. Then we have the following polynomial identity in
K[X, Y ]:

s−1∑
m=0

(XY )2m(X + Y )2s−2m+1+1 = X2sY +XY 2s .

Proof. We prove this identity by induction. For s = 1, the identity is trivial. Assume the
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validity of the identity for s ≥ 1. Then,

(X + Y )
(

s∑
m=0

(XY )2m(X + Y )2s+1−2m+1+1
)

=
s∑

m=0
(XY )2m(X + Y )2s+1−2m+1+2

= XY (X + Y )2s+1 +
s∑

m=1
(XY )2m(X + Y )2s+1−2m+1+2

= XY (X + Y )2s+1 +
s−1∑
m=0

(XY )2m+1(X + Y )2s+1−2m+2+2

= XY (X + Y )2s+1 +
(
s−1∑
m=0

(XY )2m(X + Y )2s−2m+1+1
)2

= XY (X + Y )2s+1 + (X2sY +XY 2s)2

= Y X2s+1+1 +XY 2s+1+1 +X2s+1
Y 2 +X2Y 2s+1

= (X + Y )(X2s+1
Y +XY 2s+1).

Theorem 2.2.3. Suppose q = 2s and let d be a divisor of m. The equationsW
d = Uq

2−1+1
Uq−1∑s−1

m=0 V
2mU2s−2m+1+1 = 1

(2.18)

define an Fq2n-maximal curve Yd covered by the curve Fn. Moreover, the curve Yd corre-
sponds to the quotient curve Fn/Ld and has genus g = d(q+1)(q2−2)−(q3−2)

4 .

Proof. We start defining the functions u := x + y, v := xy and w := zm/d. By Lemma
2.2.2, the functions u and v satisfy the algebraic relation

s−1∑
m=0

v2mu2s−2m+1+1 = 1.

Moreover, from the defining equations of the curve Fn in (2.13) it follows that

yq(x+ y) + y(x+ y)q = yqx+ yxq = 1.

So, (
y

x+ y

)q
+
(

y

x+ y

)
=
(

1
x+ y

)q+1

, (2.19)

(
y

x+ y

)q2

+
(

y

x+ y

)q
=
(

1
x+ y

)q2+q

and therefore, after some computations, we conclude(
y

x+ y

)q2

+
(

y

x+ y

)
=
(

1
x+ y

)q+1

+
(

1
x+ y

)q2+q

.
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Since
zm = yq

2
x+ yxq

2 = (x+ y)q2
y + (x+ y)yq2

we get that

zm

(x+ y)q2+1 =
(

y

x+ y

)
+
(

y

x+ y

)q2

=
(

1
x+ y

)q+1

+
(

1
x+ y

)q2+q

and therefore
wd = zm = (x+ y)q2 + (x+ y)

(x+ y)q = uq
2−1 + 1
uq−1 .

Thus, the functions u, v and w satisfy the equations given in (2.18). On the other hand, to
calculate the genus of the function field K(u, v, w) note that, from the second equation of
(2.18), we have (

v

u2

)2s−1

+
(
v

u2

)2s−2

+ · · ·+
(
v

u2

)2
+ v

u2 = 1
uq+1 . (2.20)

By [56, Proposition 3.7.10], the extension Fq2n(u−1, vu−2)/Fq2n(u−1) is an Artin-Schreier
extension of degree q/2 and has genus g(K(u−1, vu−2)) = q(q−2)

4 . If P∞ ∈ PK(u−1) is the
pole of u−1, then P∞ is the unique place totally ramified and the other places are completely
split in such extension. Also, since

uq
2−1 + 1
uq−1 = (u−1)q2−1 + 1

(u−1)q2−q ,

we have (
uq

2−1 + 1
uq−1

)
K(u−1)

= −q(q − 1)P0 +
∑

α∈Fq2\{0}
Pα − (q − 1)P∞

and therefore(
uq

2−1 + 1
uq−1

)
K(u−1,vu−2)

= −q(q − 1)
q/2∑
i=1

Q0,i +
q/2∑
i=1

∑
α∈Fq2\{0}

Qα,i −
q(q − 1)

2 Q∞,

where Q0,i, Qα,i and Q∞ are the extensions in PK(u−1,vu−2) of the places P0, Pα and P∞
respectively. This implies that the extension K(u−1, vu−2, w)/K(u−1, vu−2) is a Kummer
extension of degree d. For R a place in PK(u−1,vu−2,w), the ramification indices are given by

e(R) =
 d, if R is over Q0,i, Qα,i or Q∞,

1, in the other cases,

and therefore the genus of K(u−1, vu−2, w) satisfies

2g(K(u−1, vu−2, w))− 2 = d

(
q(q − 2)

2 − 2
)

+ (d− 1)
(
q

2 + q

2(q2 − 1) + 1
)
.

This yields

g(K(u, v, w)) = g(K(u−1, vu−2, w)) = d(q + 1)(q2 − 2)− (q3 − 2)
4 .
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To show that the curve (2.18) is a quotient curve of Fn, note that by (2.19) we have
[Fq2n(x, y) : Fq2n(u)] = q and therefore

[Fq2n(x, y, z) : Fq2n(u)] = [Fq2n(x, y, z) : Fq2n(x, y)][Fq2n(x, y) : Fq2n(u)] = qm.

Thus,

[Fq2n(x, y, z) : Fq2n(u, v, w)] = [Fq2n(x, y, z) : Fq2n(u)]
[Fq2n(u, v, w) : Fq2n(u, v)][Fq2n(u, v) : Fq2n(u)] = 2m

d
.

Since u, v and w are elements of the fixed field Fix(Ld) and the subgroup Ld has order
2m
d
, we conclude that Fix(Ld) = Fq2n(u, v, w).

For q even, the curve Yq−1,d presented in Theorem 2.1.4 is covered by the curve Yd
presented in Theorem 2.2.3, and Yq−1,d ∼= Yd if and only if q = 2.

The curves in Theorem 2.2.1 for q even, and the ones in Theorem 2.2.3 are not
isomorphic for q 6= 4. In fact, if the genera obtained in Theorems 2.2.1 and 2.2.3 were
equal, we could conclude that

−(q3 − 2) ≡ −2d1 (mod q + 1),

that is −2d1 ≡ 3 (mod q + 1), which implies q = 4 and d1 = 1.

We also notice that, in the particular case of d = 1 in Theorem 2.2.3 and q = 2s,
we obtain a curve defined by

s∑
i=1

Y q/2i = Xq+1

of genus g = q(q−2)/4. This curve first appeared in a paper of Abdón and Torres [3], where
it was proved that any maximal curve in characteristic 2 such that q/2 is a Weierstrass
non-gap at a certain point of the curve and has genus q(q − 2)/4 is isomorphic to it.

The genus of the explicit quotient curve Yd given in Theorem 2.2.3 appears in the
classification given by Beelen and Montanucci [8]. In fact, following the same notations
introduced in [8], let π : Aut(Xn)→ Aut(H) be the group homomorphism given by natural
restriction to the Hermitian curve H and Cm := Ker(π) = {σ1,0,ξ ∈ Aut(Xn) : ξm = 1}.
In even characteristic, for Ld the subgroup of Aut(Fn) considered in Theorem 2.2.3 and
φ : Xn → Fn the morphism defined in (2.12), we consider the subgroup C2 of Aut(H) and
note that π ◦ φ−1(Ld) ∼= C2. By [8, Lemma 4.1],

N = q3 + 2
2 and gπ◦φ−1(Ld) = q(q − 2)

4 ,

where N is the number of orbits in the set Xn(Fq2) under the action of φ−1(Ld), and
gπ◦φ−1(Ld) is the genus of the fixed field Fix(π◦φ−1(Ld)) ⊆ K(H). Also, since φ−1(Ld)∩Cm ∼=
Cm
d
, by [8, Theorem 2.1], we conclude

g(Yd) = m

#Cm
d

(gπ◦φ−1(Ld) − 1) + N

2

(
m

#Cm
d

− 1
)

+ 1 = d(q + 1)(q2 − 2)− (q3 − 2)
4 .
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Now we present parameters for which some curves provided in this chapter are
not covered by the Hermitian curve. For this note that, by Equation (1.2.7), it easily
follows that the degree degφ of a subcover Y of a maximal curve X over Fq2 given by an
Fq2-rational map φ : X → Y must satisfy the relation

dLX ,Ye ≤ degφ ≤ bUX ,Yc, (2.21)

where LX ,Y = #X (Fq2 )
#Y(Fq2 ) and UX ,Y = 2g(X )−2

2g(Y)−2 . With this argument, we have that the quotient
curve Yd1,d2 defined in Theorem 2.2.1 does not satisfy the condition (2.21) for n = 3,
d1 = q − 1 and d2 = q2−q+1

k
, where k | q2 − q + 1 and 1 ≤ k ≤ √q − 1. In this case, we

obtain the following family of genus corresponding to curves not covered by the Hermitian
curve

g = (q2 − 1)(q3 + 1)− k(q3 − 1)
2k .

Comparing the obtained genus with the genus of maximal curves not covered by the
Hermitian curve over Fq2 given in [24,27] and [57], we obtain for k = 3 the following new
genera over the indicated finite field:

• F230 : 50.136.579,

• F176 : 2.100.744,

• F236 : 9.582.309, and

• F296 : 30.621.654.
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3 Curves with many points and reciprocal
polynomials

For a curve X defined over Fq with genus g(X ) ≤ 50, the webpage www.manypoints.
org [60] collects the current intervals in which the number of Fq-rational points #X (Fq)
of the curve X is known to lie for some values of q. For a pair (q, g), the tables record an
interval [a, b] where b is the best upper bound for the maximum number of points of a
curve over Fq with genus g, and a gives a lower bound obtained from an explicit example
of a curve defined over Fq with a (or at least a) Fq-rational points. At some places in
manYPoints table in [60], the lower bound a of the interval [a, b] is replaced by the symbol
‘−’ where ‘−’ represents the lower bound L(q, g) given in Remark 3.0.1.

In this chapter, we improve upon the lower bounds of many of the intervals in [60]
by constructing new examples of curves with many rational points. We provide a simple
and effective construction of Kummer extensions and fibre products of Kummer extensions
over finite fields with many rational points using reciprocal polynomials. We give a general
lower bound for the number of rational points under certain hypothesis and we calculate
the exact number of rational points for some particular constructions. As a consequence of
these constructions, we obtain several improvements on the manYPoints table [60]. More
precisely, we obtain 10 new records and 119 new entries. All the examples were obtained
using the software Magma [10].

Given a polynomial f in Fq[X] and a subset A ⊆ Fq2 , we let Nf (A) := #{α ∈ A :
f(α) = 0} stand for the number of roots of f in A, and for polynomials f1, f2 ∈ K[X] we
denote by (f1, f2) the greatest common divisor of f1 and f2. Furthermore, we denote by ξq
a primitive element of Fq. Next, we set some notation about curves with many points in
the following remark.

Remark 3.0.1. We say that a curve X over Fq with genus g has many points if the
number of Fq-rational points of X , denoted by #X (Fq), satisfies

#X (Fq) ≥ L(q, g) :=
⌊
U(q, g)− q − 1√

2

⌋
+ q + 1, (3.1)

where U(q, g) denotes the upper bound given in manYPoints table [60] for the number
of Fq-rational points of a curve over Fq with genus g. In particular, for a pair (q, g) and
a curve X over Fq with genus g, we say that X gives a new record (resp. meets the
record) if the number #X (Fq) is strictly larger than (resp. is equal to) the lower bound
registered in manYPoints table corresponding to (q, g). Further, we say that a curve X over

www.manypoints.org
www.manypoints.org
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Fq with genus g is a new entry if there was no earlier lower bound entry in manYPoints
table corresponding to (q, g) and #X (Fq) satisfies the relation (3.1).

In Subsections 3.1.1 and 3.1.2, and in Section 3.2, we provide tables of curves with
many rational points. In the tables where we provide a new record, the notation OLB (old
lower bound) stands for the lower bound on the number #X (Fq) of rational points for a
curve over Fq with genus g registered in the table [60]. Instead, when we provide a new
entry, the notation OLB stands for the lower bound given in (3.1). Moreover, the symbol †
indicates a maximal curve over Fq2.

3.1 A construction of curves over Fq2.
In this section, we propose a construction of algebraic curves over Fq2 using

reciprocal polynomials. We will see that certain specific polynomials provide interesting
algebraic curves with many points. This idea is explored in more detail in the subsequent
sections.

Given a polynomial f(X) = a0 + a1X + · · ·+ adX
d ∈ Fq[X] of degree d, denote by

f ∗(X) = Xdf(1/X) the reciprocal polynomial of f . For m ≥ 2 an integer not divisible
by p and s a non-negative integer, consider the algebraic curve X over Fq2 defined by the
affine equation

X : Y m = Xεsf(X)f ∗(X)λ where ε, λ ∈ {1,−1}. (3.2)

With some assumptions on f , we compute the genus of these curves in the following
proposition.

Proposition 3.1.1. Let d > 0 and let f(X) = a0 + a1X + · · · + adX
d ∈ K[X] be a

separable polynomial of degree d satisfying f(0) 6= 0. Let s be a non-negative integer, d1 be
the degree of (f, f ∗) and m ≥ 2 be such that p - m. If d1 < d, then the algebraic function
field K(x, y) defined by the affine equation

Y m = Xεsf(X)f ∗(X)λ, where ε, λ ∈ {1,−1},

has genus

g = (m− 1)d+ 1− (m, s) + (m, εs+ d+ dλ) + d1(m,λ+ 1) + d1(m− 2)
2 .

Proof. At first, we write

Xεsf(X)f ∗(X)λ = Xεs(f(X)/h(X))(f ∗(X)/h(X))λh(X)1+λ

where h = (f, f ∗). The polynomials h, f/h and f ∗/h are separable and α ∈ K is a root of
f if and only if α−1 is a root of f ∗. So, without loss of generality, we can suppose that

f/h = β1

d−d1∏
i=1

(X − αi), f ∗/h = β2

d−d1∏
j=1

(X − γj) and h = β
d∏

k=d−d1+1
(X − αk),
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where β1, β2, β are in K, α1, α2, . . . , αd are the roots of the polynomial f , γj = α−1
i for some

1 ≤ i ≤ d, and αi, γj, αk are pairwise distinct for all 1 ≤ i, j ≤ d−d1 and d−d1 +1 ≤ k ≤ d.
The principal divisor of the function xεsf(x)f ∗(x)λ in K(x) is given by

(xεsf(x)f ∗(x)λ)K(x) = εs(P0 − P∞) +
d−d1∑
i=1

Pαi − (d− d1)P∞ + λ
d−d1∑
j=1

Pγj

− λ(d− d1)P∞ + (λ+ 1)
d∑

k=d−d1+1
Pαk − d1(λ+ 1)P∞

= εsP0 +
d−d1∑
i=1

Pαi + λ
d−d1∑
j=1

Pγj + (λ+ 1)
d∑

k=d−d1+1
Pαk

− (εs+ d+ λd)P∞.

This implies that the extension K(x, y)/K(x) is a Kummer extension of degree m and, for
a place P of K(x, y), the ramification index is given by

e(P ) =



m/(m, s), if P is over P0,

m, if P is over Pαi or Pγi , for i = 1, . . . , d− d1,

m/(m,λ+ 1), if P is over Pαi , for i = d− d1 + 1, . . . , d,
m/(m, εs+ d+ dλ), if P is over P∞,
1, otherwise.

By the Riemann-Hurwitz formula, the genus g of K(x, y) satisfies

2g−2 = −2m+m− (m, s)+2(m−1)(d−d1)+d1(m− (m,λ+1))+m− (m, εs+d+ dλ),

which gives

g = (m− 1)d+ 1− (m, s) + (m, εs+ d+ dλ) + d1(m,λ+ 1) + d1(m− 2)
2 .

In the subsequent subsections, we investigate the number of Fq2-rational points on
the curve (3.2) for the cases ε = −1 and λ = 1, and ε = 1 and λ = −1 separately. Note
that the curves X for ε = λ = 1 and ε = λ = −1 are isomorphic to the curves with ε = −1
and λ = 1, and ε = 1 and λ = −1 respectively.

3.1.1 The case of ε = −1 and λ = 1.

In this subsection, we restrict ourselves to the curve X in (3.2) with ε = −1 and
λ = 1. We impose certain conditions on the polynomial f ∈ Fq[X] to provide a lower
bound for the number of Fq2-rational points on the curve X . Moreover, for some of these
algebraic curves, we compute the exact number of Fq2-rational points.
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Theorem 3.1.2. Let m ≥ 2 be a divisor of q + 1, f ∈ Fq[X] be a separable polynomial
of degree d satisfying f(0) 6= 0 and (f, f ∗) = 1, and s be an integer such that 0 ≤ s < m.
Then the algebraic curve defined by

X : Y m = f(X)f ∗(X)
Xs

(3.3)

has genus
g = (2md− 2(d− 1)− (m, s)− (m, 2d− s))/2.

Further if (f,Xq+1− 1) = 1, then the number of rational points #X (Fq2) over Fq2 satisfies

#X (Fq2) ≥ m[(q + 1, 2(d− s)) + q − 3− 2Nf (F∗q)] + 2Nf (Fq2).

In particular, for s = d, we have #X (Fq2) ≥ 2m(q − 1−Nf (F∗q)) + 2Nf (Fq2).

Proof. A direct application of Proposition 3.1.1 gives the genus of the curve defined in
(3.3). We now provide an expression for the number of Fq2-rational points on this curve.
Let α ∈ F∗q2 be such that f(α)f ∗(α) 6= 0. Then f(α)f∗(α)

αs
is a m-th power in Fq2 if and only

if
(
f(α)f∗(α)

αs

) q2−1
m = 1, which is equivalent to

(f(α)f ∗(α)
αs

)q−1

− 1



q+1
m
−1∑

i=0

(
f(α)f ∗(α)

αs

)(q−1)i
 = 0,

that is,

((f(α)f ∗(α))q−1 − αs(q−1))


q+1
m
−1∑

i=0
(f(α)f ∗(α))(q−1)iαs(q−1)( q+1

m
−1−i)

 = 0.

Let
h1(X) = (f(X)f ∗(X))q−1 −Xs(q−1)

and

h2(X) =
q+1
m
−1∑

i=0
(f(X)f ∗(X))(q−1)iXs(q−1)( q+1

m
−1−i).

Then h1 and h2 are coprime polynomials. In fact, if α is a root of h1, then (f(α)f ∗(α))q−1 =
αs(q−1) and

h2(α) =
q+1
m
−1∑

i=0
(f(α)f ∗(α))(q−1)iαs(q−1)( q+1

m
−1−i)

=
q+1
m
−1∑

i=0
αs(q−1)iαs(q−1)( q+1

m
−1−i)

=
(
q + 1
m

)
αs(q+1)( q+1

m
−1) 6= 0.
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It is also clear that (h1, ff
∗) = (h2, ff

∗) = 1. We conclude that

#
{
α ∈ F∗q2 : f(α)f ∗(α) 6= 0 and f(α)f ∗(α)

αs
is a m-th power in F∗q2

}
= Nh1(Fq2) +Nh2(Fq2).

From Remark 1.2.16, each α ∈ Fq2 such that f(α)f ∗(α) = 0 gives one rational point on
the curve. From Remark 1.2.16, we also conclude that each one of x = 0 and x =∞ (that
is, each one of the places P0 and P∞ of Fq(x)) contributes (m, s) and (m, 2d− s) rational
points on the curve, respectively. So the number of rational points on the curve X is

#X (Fq2) = (m, s) + (m, 2d− s) + 2Nf (Fq2) +m(Nh1(Fq2) +Nh2(Fq2)). (3.4)

Now we assume that (f,Xq+1 − 1) = 1. Note that, for β ∈ {ω ∈ Fq2 : ω(q+1,2(d−s)) = 1},
we have βq = β−1, and thus we write

h1(β) = (f(β)f ∗(β))q−1 − βs(q−1) = (f(β)f ∗(β))q
f(β)f ∗(β) − β

−2s

= f(βq)f ∗(βq)
f(β)f ∗(β) − β

−2s = f(1/β)f ∗(1/β)
f(β)f ∗(β) − β−2s

= f(β)f ∗(β)
β2df(β)f ∗(β) − β

−2s = β−2d − β−2s = 0.

Also, for β ∈ F∗q such that f(β)f ∗(β) 6= 0, we have h1(β) = 0. Therefore

Nh1(Fq2) ≥ (q + 1, 2(d− s)) + q − 1− 2Nf (F∗q)− (q − 1, 2).

Hence we get

#X (Fq2) ≥ 2Nf (Fq2) +m[(q + 1, 2(d− s)) + q − 3− 2Nf (F∗q)].

In what follows we compute the genus and the exact number of rational points for
some families of algebraic curves as constructed in (3.3).

Theorem 3.1.3. Let b ∈ F∗q be such that b2 6= 1, and d be a positive divisor of q+ 1. Then
the algebraic curve defined by

X : Y q+1 = bX2d + (b2 + 1)Xd + b

Xd

has genus
g = d(q − 1) + 1

and its number of Fq2-rational points is given by

#X (Fq2) = d(q2 − 1) + (d, 2)(q + 1)2 + 4d− d(q + 1)((q − 1, 2) + 2).

In particular, if q ≥ 17 is odd and d = 2, then this curve has many points.
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Proof. The curve X corresponds to the construction in (3.3) for f(X) = Xd + b, s = d,
and m = q + 1. Since b2 6= 1, we have (f, f ∗) = 1. The genus of the curve follows from
Theorem 3.1.2. Now we compute the number of Fq2-rational points on the curve following
the proof and notation as in Theorem 3.1.2. Since b ∈ F∗q and d is a divisor of q + 1, each
one of f and f ∗ has d distinct roots in F∗q2 and therefore Nff∗(Fq2) = 2d. Note that each
root of ff ∗ contributes one rational point on the curve. From Remark 1.2.16, we also
conclude that each one of x = 0 and x =∞ contributes (q + 1, d) = d rational points on
the curve, respectively.

On the other hand, we have that

#
{
α ∈ F∗q2 : f(α)f ∗(α) 6= 0 and f(α)f ∗(α)

αd
is a (q + 1)-th power in F∗q2

}
= Nh1(Fq2) +Nh2(Fq2),

where

h1(X) = (f(X)f ∗(X))q−1 −Xd(q−1) = b(Xd(q+1) − 1)(Xd(q−1) − 1)
f(X)f ∗(X) and h2(X) ≡ 1.

Clearly Nh2(Fq2) = 0. Next we show that the polynomial h1 ∈ Fq[X] has d(q − 1) + 2(q +
1)− 4d distinct roots in F∗q2 . In fact, since

(Xd(q+1) − 1, Xq2−1 − 1) = X(d,2)(q+1) − 1,
(Xd(q−1) − 1, Xq2−1 − 1) = Xd(q−1) − 1, and
(X(d,2)(q+1) − 1, Xd(q−1) − 1) = Xd(q−1,2) − 1,

we obtain d(q− 1) + (d, 2)(q+ 1)−d(q− 1, 2) distinct roots of (Xd(q+1)− 1)(Xd(q−1)− 1) in
F∗q2 . Since Nff∗(Fq2) = 2d, we conclude that h1 has d(q−1)+(d, 2)(q+1)−d(q−1, 2)−2d
distinct roots in F∗q2 . Hence the number of Fq2-rational points on the curve X is given by

#X (Fq2) = 4d+ (q + 1)(d(q − 1) + (d, 2)(q + 1)− d(q − 1, 2)− 2d)
= d(q2 − 1) + (d, 2)(q + 1)2 + 4d− d(q + 1)((q − 1, 2) + 2).

Next we show that for q ≥ 17 odd and d = 2, this curve has many points. By
Remark 3.0.1, a curve is considered to have many points if and only if L(q2, g) ≤ #X (Fq2).
From the Hasse-Weil bound, we have

L(q2, g) ≤
⌊
q2 + 1 + 2gq − q2 − 1√

2

⌋
+ q2 + 1 =

⌊√
2gq

⌋
+ q2 + 1.

In particular, algebraic curves satisfying
√

2gq + q2 + 1 ≤ #X (Fq2) have many points.
Therefore the curve X has many points if
√

2q(d(q− 1) + 1) + q2 + 1 ≤ d(q2− 1) + (d, 2)(q+ 1)2 + 4d−d(q+ 1)((q− 1, 2) + 2). (3.5)

The condition (3.5) is never satisfied when q is even or when q is odd and d 6= 2. For q
odd and d = 2, this condition is satisfied if and only if q ≥ 17.
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Note that for b2 = 1 the curve X in Theorem 3.1.3 is isomorphic to the curve
with affine equation Y q+1 = (Xd + b)2/Xd. In order to complete the analysis of the
curve X , we study in Proposition 3.1.4 an absolutely irreducible component of the curve
Y q+1 = (Xd + b)2/Xd obtained when d is even, and in Proposition 3.1.5 we study this
curve for d odd.

Proposition 3.1.4. Assume q is odd. Let d ≥ 1 be a positive integer such that 4d divides
q2− 1, and let b ∈ Fq be such that b2 = 1. Then the algebraic curve X defined by the affine
equation

Y (q+1)/2 = X2d + b

Xd
(3.6)

has genus
g = d(q − 1) + 2− (2d, q + 1)

2
and its number of Fq2-rational points is given by

#X (Fq2) = (q + 1)2(2d, q − 1) + (q2 + 1)(2d, q + 1)− 2d(3q + 1)
2 .

In particular, this curve is maximal over Fq2 if and only if (2d, q+1)+(2d, q−1) = 2(d+1).

Proof. By Remark 1.2.16, each one of the points x = 0 and x = ∞ contributes with
(d, q+1

2 ) rational points on the curve. Now we consider the roots of X2d+b. Since 4d | q2−1,
we have #{α ∈ Fq2 : α2d + b = 0} = 2d and each root of X2d + b contributes with one
rational point. On the other hand, for α ∈ F∗q2 such that α2d + b 6= 0, we have

α2d + b

αd
is a (q + 1)

2 -th power in F∗q2 ⇔
(
α2d + b

αd

)2(q−1)

= 1

⇔ (α2d(q+1) − 1)(α2d(q−1) − 1) = 0. (3.7)

Since

(X2d(q+1) − 1, Xq2−1 − 1) = X(q+1)(2d,q−1) − 1,
(X2d(q−1) − 1, Xq2−1 − 1) = X(q−1)(2d,q+1) − 1, and
(X(q+1)(2d,q−1) − 1, X(q−1)(2d,q+1) − 1) = X4d − 1,

we obtain that there are (q + 1)(2d, q − 1) + (q − 1)(2d, q + 1) − 4d elements α ∈ F∗q2

satisfying (3.7). Also, since

X2d + b | (X2d(q+1) − 1)(X2d(q−1) − 1),

we conclude that the polynomial (X2d(q+1) − 1)(X2d(q−1) − 1) has (q + 1)(2d, q − 1) + (q −
1)(2d, q + 1)− 6d distinct roots in F∗q2 \ {α ∈ F∗q2 : α2d + b = 0}. Consequently,

#X (Fq2) = 2d+ 2
(
d,
q + 1

2

)
+ q + 1

2 ((q + 1)(2d, q − 1) + (q − 1)(2d, q + 1)− 6d)

= (q + 1)2(2d, q − 1) + (q2 + 1)(2d, q + 1)− 2d(3q + 1)
2 .
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Finally, we note that

#X (Fq2)− q2 − 1− 2gq = (q + 1)2

2 ((2d, q − 1) + (2d, q + 1)− 2− 2d).

This completes the proof.

Proposition 3.1.5. Assume q is odd. Let d ≥ 1 be an odd integer such that p - d, and let
b ∈ Fq be such that b2 = 1. Then the algebraic curve X defined by the equation

Y q+1 = (Xd + b)2

Xd
(3.8)

has genus

g = d(q − 1) + 2− 2(d, q + 1)
2

and its number of Fq2-rational points is given by

#X (Fq2) = (q2 + 1)(d, q + 1) + (q + 1)2(d, q − 1)− (3q + 1)(d, q2 − 1).

In particular, for a divisor d of q2 − 1, the curve X is Fq2-maximal if and only if either
(d, q + 1) = 1 or (d, q − 1) = 1.

Proof. The computation of the genus is analogous to the one in Proposition 3.1.1 and the
computation of the number of Fq2-rational points on the curve is analogous to the proof of
Proposition 3.1.4. For a divisor d of q2 − 1, we have

#X (Fq2)− q2 − 1− 2gq = (q2 + 1)(d, q + 1) + (q + 1)2(d, q − 1)− (3q + 1)d− q2 − 1
− dq(q + 1) + 2dq + 2q(d, q + 1)− 2q

= (q + 1)2((d, q + 1) + (d, q − 1)− 1)− d(q + 1)2

= (q + 1)2((d, q + 1) + (d, q − 1)− 1− d)
= −(q + 1)2((d, q + 1)− 1)((d, q − 1)− 1).

Remark 3.1.6. The curve in Proposition 3.1.5 is isomorphic to Y q+1 = Xq+1−d(Xd + b)2.

We point out that for some values of d (for instance, when d is a divisor of q + 1), this
curve has appeared in [22, Example 6.4 (case 2)] as a subcover of the Hermitian curve
over Fq2 given by

Y m1 = (−1)kXbm(Xm + 1)k,

where m, m1 are divisors of q + 1, and k, b are positive integers.

We now provide examples of curves with many points from the constructions
obtained in this subsection. For this, we use the notation given in Remark 3.0.1.
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Example 3.1.7. Let f(X) = X + b where b ∈ F∗q is such that b2 6= 1. In the following
tables, we list q,m, b, s, g and #X (Fq2) where m, s,X and f satisfy the hypotheses of
Theorem 3.1.2.

Meet record

q m b s g #X (Fq2)
32 5 ξ2

32 3 4 154†

32 10 ξ2
32 4 8 226†

5 6 2 4 4 66†

52 13 ξ52 0 6 926†

52 13 2 1 12 1226†

52 26 2 4 24 1826†

7 4 2 3 3 92†

72 5 ξ3
72 1 4 2794†

72 10 3 4 8 3186†

72 25 ξ72 0 12 3578†

72 50 ξ12
72 10 44 6714†

72 50 ξ12
72 4 48 7106†

13 14 2 0 6 326†

Meet record

q m b s g #X (Fq2)
13 14 5 4 12 482†

132 10 ξ4
132 3 9 31504

132 34 8 4 32 39378†

17 18 2 0 8 562†

17 18 4 6 14 766†

17 18 4 4 16 834†

19 5 2 0 2 438†

19 20 2 0 9 704†

New entry
q m b s g #X (Fq2) OLB
72 50 ξ4

72 5 47 5708 5658

Example 3.1.8. Let f(X) = X2 + b where b ∈ F∗q such that b2 6= 1. We list q,m, b, s, g
and #X (Fq2) in the following tables where m, s,X and f satisfy the hypotheses of Theorem
3.1.2. We note that if m = q + 1 and s = 2 in the following tables, then the genus g and
the number of Fq2-rational points #X (Fq2) satisfies Theorem 3.1.3.

Meet record

q m b s g #X (Fq2)
32 5 ξ32 0 6 190†

32 10 ξ32 2 17 288
5 6 2 5 10 126†

52 26 ξ52 2 49 2400
72 5 ξ3

72 0 6 2990†

72 25 3 0 36 5930†

11 2 3 1 2 166†

11 3 3 2 4 210†

11 6 3 5 10 342†

13 2 5 1 2 222†

13 14 2 2 25 624

Meet record

q m b s g #X (Fq2)
13 14 5 9 26 846†

132 5 8 2 8 31266†

132 10 5 2 17 34208
17 2 3 1 2 358†

17 3 3 2 4 426†

17 6 3 5 10 630†

17 9 5 0 12 698†

172 5 4 2 8 88146†

19 5 4 0 6 590†

19 10 14 5 16 970†



58 Chapter 3. Curves with many points and reciprocal polynomials

New entry

q m b s g #X (Fq2) OLB
72 25 ξ3

72 5 46 6910† 5589
132 34 ξ5

132 0 49 41112 40273
17 18 2 2 33 1088 1083
172 10 5 2 17 92928 90470
19 20 2 2 37 1368 1356

New record

q m b s g #X (Fq2) OLB
72 10 ξ3

72 0 13 3576 3258
72 10 ξ3

72 2 17 3968 3808

Example 3.1.9. Let f(X) = X3 + b ∈ Fq[X], m ≥ 2 be a divisor of q + 1, and s be an
integer such that 0 ≤ s < m. We consider the algebraic curve defined by

X : Y m = f(X)f ∗(X)
Xs

.

The following tables consists of q,m, b, s, g and #X (Fq2) which leads to meet record/new
entry in the manYPoints table in [60]. Further, if m = q + 1, s = 3 and b2 = 1, then the
genus g and the number of Fq2-rational points #X (Fq2) satisfies Proposition 3.1.5.

Meet record

q m b s g #X (Fq2)
17 18 4 0 40 1650†

New entry

q m b s g #X (Fq2) OLB
52 13 1 3 18 1526† 1262
52 26 1 3 36 2426† 1898
72 10 ξ2

72 8 26 4444 4203
72 10 ξ3

72 3 27 4748 4273
132 10 ξ2

132 8 26 36604 34776

Remark 3.1.10. For q = 52 in Example 3.1.9, we obtain an explicit equation for a maximal
curve of genus 36 over F54 given by Y 26 = (X3+1)2

X3 . The covered curve Y 13 = (X3+1)2

X3 of
genus 18 also provides a maximal curve. Moreover, in Example 3.1.8 we get a new maximal
curve over F74 of genus 46. These genera already appeared in [16] as the genus of a curve
covered by the Hermitian curve.

These three examples of explicit maximal curves are new entries in the manYPoints
table [60] and rise a natural question, to decide if these curves are or not covered by the
Hermitian curve.

Example 3.1.11. Let f(X) = X4 + b where b ∈ F∗q is such that b2 6= 1. In the following
table, we list q,m, b, s, g and #X (Fq2) where m, s,X and f satisfy the hypotheses of
Theorem 3.1.2.
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Meet record

q m b s g #X (Fq2)
32 10 ξ2

32 9 36 730†

52 2 2 1 4 826†

52 13 2 4 48 3026†

112 2 ξ30
112 1 4 15610†

17 3 4 4 8 562†

17 9 4 4 32 1378†

Next, we provide some more examples of curves with many points.

Example 3.1.12. In the following tables, we list q,m, f, s, g and #X (Fq2) where m, s,X
and f ∈ Fq[X] satisfy the hypotheses of Theorem 3.1.2.

Meet record

q m f s g #X (Fq2)
2 3 X3 +X + 1 0 4 15†

3 4 X2 + 2X + 2 0 3 28†

32 5 X4 +X2 + 2 4 16 370†

7 4 X4 +X2 + 5 0 5 120†

7 8 X2 + 3X + 3 6 9 176†

72 5 X4 + 2X2 + 3 4 16 3970†

11 6 X2 + 3X + 10 0 7 276†

11 6 X2 + 3X + 10 2 9 320†

11 12 X2 + 3X + 10 0 15 452†

11 12 X2 + 3X + 10 8 19 540†

19 10 X2 + 6X + 18 0 13 856†

19 10 X2 + 6X + 18 2 17 1008†

19 20 X2 + 6X + 18 8 35 1692†

19 10 X4 +X2 + 7 9 36 1730†

New entry

q m f s g #X (Fq2) OLB
72 10 X2 + ξ72X + ξ39

72 3 18 3726 3649
72 10 X4 + ξ72X2 + ξ29

72 4 25 4272 4134
72 10 X4 + 2X2 + 3 4 35 5052 4827
17 6 X4 + 6X2 + 16 1 20 826 770
17 18 X3 + 14X + 2 3 23 892 842
19 10 X4 + 2X2 + 16 4 25 1072 1033
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Inspired by the previous constructions, we present some improvements obtained by
using Artin-Schreier extensions.

Example 3.1.13. Let X be the curve defined by the equation

X : Y q + Y = f(X)f ∗(X)
Xs

,

where f ∈ Fq[X] and s ≥ 0 is an integer. We have the following improvements in the
manYPoints table [60].

New entry

q f s g #X (Fq2) OLB
7 X2 + 1 2 12 170 165
11 X2 + 1 2 20 442 430
13 X2 + 1 2 24 626 611

3.1.2 The case of ε = 1 and λ = −1

In this subsection, we consider the curve X in (3.2) with ε = 1 and λ = −1. As
in Subsection 3.1.1, we provide a lower bound for the number of Fq2-rational points on
the curve X when the polynomial f ∈ Fq[X] satisfies certain conditions. We also provide
some examples of curves with many points.

Theorem 3.1.14. Let m ≥ 2 be a divisor of q − 1, f ∈ Fq[X] be a separable polynomial
of degree d satisfying f(0) 6= 0 and (f, f ∗) = 1, and s be an integer such that 0 ≤ s < m.
Then the algebraic curve defined by the affine equation

X : Y m = Xsf(X)
f ∗(X) (3.9)

has genus
g = d(m− 1) + 1− (m, s).

Further if (f,Xq+1− 1) = 1, then the number of rational points #X (Fq2) over Fq2 satisfies

#X (Fq2) ≥ 2Nf (Fq2) +m(q + 1).

Proof. A direct application of Proposition 3.1.1 gives the genus of the curve defined in
(3.9). To obtain an expression for the number of rational points for this curve, we observe
that for α ∈ F∗q2 with f(α)f ∗(α) 6= 0, we have that αsf(α)

f∗(α) is a m-th power in Fq2 if and

only if
(
αsf(α)
f∗(α)

) q2−1
m = 1, which is equivalent to

(
(αsf(α))q+1 − f ∗(α)q+1

)
q−1
m
−1∑

i=0
(αsf(α))(q+1)if ∗(α)(q+1)( q−1

m
−1−i)

 = 0.



3.1. A construction of curves over Fq2 . 61

Let
h1(X) = (Xsf(X))q+1 − f ∗(X)q+1

and

h2(X) =
q−1
m
−1∑

i=0
(Xsf(X))(q+1)if ∗(X)(q+1)( q−1

m
−1−i).

Then h1 and h2 are coprime. In fact, if α is a root of h1 we have (αsf(α))q+1 = f ∗(α)q+1

and

h2(α) =
q−1
m
−1∑

i=0
(αsf(α))(q+1)if ∗(α)(q+1)( q−1

m
−1−i) =

q−1
m
−1∑

i=0
f ∗(α)(q+1)if ∗(α)(q+1)( q−1

m
−1−i)

=
q−1
m
−1∑

i=0
f ∗(α)(q+1)( q−1

m
−1) =

(
q − 1
m

)
f ∗(α)(q+1)( q−1

m
−1) 6= 0.

Also, since (h1, ff
∗) = (h2, ff

∗) = 1, we obtain

#
{
α ∈ F∗q2 : f(α)f ∗(α) 6= 0 and αsf(α)

f ∗(α) is a m-th power in F∗q2

}
= Nh1(Fq2) +Nh2(Fq2).

On the other hand, from Remark 1.2.16, we know that each root in Fq2 of the polynomial
ff ∗ gives one rational point on the curve. Thus

#X (Fq2) ≥ 2Nf (Fq2) +m(Nh1(Fq2) +Nh2(Fq2)). (3.10)

Next we assume (f,Xq+1 − 1) = 1. Then for β ∈ Fq2 such that βq+1 = 1, we have

h1(β) = (βsf(β))q+1 − f ∗(β)q+1

= βs(q+1)f(β)q+1 − βd(q+1)f(β)q+1

= 0.

Therefore Nh1(Fq2) ≥ q + 1. Hence the assertion on the number of rational points follows
from (3.10).

From the constructions given in Theorem 3.1.14, we obtain the following examples
of curves with many points.

Example 3.1.15. Let f(X) = X + b ∈ Fq[X] be such that b 6= 0 and b2 6= 1, and m, s,X
be as defined in Theorem 3.1.14. Then (f, f ∗) = (f,Xq+1 − 1) = 1 and the curve X has
genus g = m− (m, s). We obtain the following tables of curves with many points.

Meet record

q m b s g #X (Fq2)
7 6 2 4 4 102

112 8 ξ30
112 4 4 15610†

112 8 ξ37
112 3 7 16308

13 12 2 4 8 362

New record

q m b s g #X (Fq2) OLB
17 16 3 9 15 708 692
112 15 ξ26

112 5 10 16952 16942
19 18 2 3 15 866 782
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New entry

q m b s g #X (Fq2) OLB
52 24 ξ3

52 8 16 1202 1191
52 24 2 4 20 1450 1333
52 24 2 9 21 1400 1368
72 16 ξ3

72 6 14 3558 3372
72 16 ξ5

72 7 15 3684 3441
72 24 ξ13

72 5 23 4276 3995
112 15 ξ2

112 4 14 17674 17037
112 24 ξ25

112 8 16 18050 17379
112 24 5 3 21 18968 18235
112 24 ξ21

112 7 23 19204 18577
112 30 ξ9

112 3 27 19988 19262
112 30 ξ2

112 4 28 20106 19433
112 40 ξ7

112 4 36 20962 20802

New entry

q m b s g #X (Fq2) OLB
112 40 ξ13

112 6 38 22246 21144
132 12 ξ23

132 5 11 31972 31191
132 14 ξ10

132 9 13 32260 31669
132 21 ξ2

132 5 20 34318 33342
132 24 ξ23

132 5 23 35428 34059
132 28 ξ5

132 9 27 35452 35015
132 42 ξ11

132 7 35 37550 36927
172 12 ξ4

172 9 9 87938 87200
172 12 ξ6

172 5 11 88828 88017
172 16 ξ7

172 5 15 91044 89652
172 24 ξ4

172 5 23 94996 92922
172 32 ξ7

172 5 31 97604 96191
172 48 ξ4

172 5 47 105124 102731

Example 3.1.16. Let f(X) = X2 + b ∈ Fq[X] be such that b 6= 0 and b2 6= 1, and
m, s,X be as defined in Theorem 3.1.14. Then (f, f ∗) = 1 and the curve X has genus
g = 2m− 1− (m, s). For this case, we have the following tables.

New entry

q m b s g #X (Fq2) OLB
52 8 ξ52 2 13 1128 1085
52 24 ξ52 10 45 2216 2216
72 12 ξ6

72 2 21 4040 3857
72 16 ξ13

72 2 29 4552 4411
72 24 ξ5

72 6 41 5380 5243
72 24 ξ3

72 4 43 5476 5381
72 24 ξ10

72 10 45 5672 5520
11 10 3 2 17 408 386
112 8 ξ18

112 4 11 16940 16524
112 8 ξ7

112 2 13 17480 16866
112 10 ξ19

112 2 17 18128 17551
112 12 ξ43

112 4 19 18436 17893
112 15 ξ2

112 5 24 18964 18748
112 15 ξ31

112 3 26 19564 19091
112 30 ξ112 0 29 19684 19604

New entry

q m b s g #X (Fq2) OLB
112 20 ξ26

112 5 34 20644 20460
112 20 ξ37

112 8 35 20964 20631
112 20 ξ13

112 2 37 21528 20973
112 24 ξ25

112 4 43 22372 22000
112 24 ξ21

112 2 45 22472 22342
13 12 2 8 19 532 519
132 12 ξ5

132 4 19 33748 33103
132 12 ξ44

132 1 22 34374 33820
132 14 ξ8

132 2 25 35400 34537
132 21 8 3 38 38314 37644
132 24 ξ23

132 10 45 40136 39317
17 16 2 4 27 972 939
172 8 ξ172 6 13 89224 88835
172 18 ξ172 7 34 97494 97418
19 18 2 6 29 1156 1141
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New entry

q m b s g #X (Fq2) OLB
192 6 ξ192 1 10 136782 135427
192 12 ξ192 0 11 136612 135937
192 9 ξ192 3 14 138208 137469
192 9 ξ192 2 16 139650 138490
192 24 ξ192 0 23 142372 142064

New record

q m b s g #X (Fq2) OLB
17 8 4 2 13 648 612

Example 3.1.17. Let f(X) = X3 + b ∈ Fq[X] be such that b 6= 0 and b2 6= 1, and
m, s,X be as defined in Theorem 3.1.14. Then (f, f ∗) = 1 and the curve X has genus
g = 3m− 2− (m, s). In this case, we obtain the following tables.

New entry

q m b s g #X (Fq2) OLB
72 12 ξ2

72 3 31 4680 4550
112 8 ξ15

112 4 18 18486 17722
112 12 ξ2

112 0 22 19080 18406
112 12 ξ9

112 3 31 20820 19946
112 15 ξ30

112 6 40 22242 21486
112 24 ξ2

112 0 46 22608 22513
132 7 ξ4

132 3 18 33980 32864
132 12 ξ23

132 3 31 36792 35971
132 14 ξ21

132 7 33 37568 36449
132 14 ξ3

132 3 39 38732 37883
19 9 4 6 22 972 953

New record

q m b s g #X (Fq2) OLB
112 5 ξ6

112 0 8 16566 16546

Example 3.1.18. Let f(X) = X4 + b ∈ Fq[X] be such that b 6= 0 and b2 6= 1, and
m, s,X be as defined in Theorem 3.1.14. Then (f, f ∗) = 1 and the curve X has genus
g = 4m− 3− (m, s). We have the following tables of curves with many points.

New entry

q m b s g #X (Fq2) OLB
72 8 3 5 28 4522 4342
112 6 ξ20

112 0 15 17672 17208
112 8 ξ7

112 4 25 19456 18919
112 12 ξ14

112 6 39 22184 21315
13 6 2 1 20 554 537
132 6 ξ22

132 0 15 32216 32147
132 8 ξ4

132 0 21 34584 33581
132 12 ξ23

132 8 41 38784 38361
172 6 ξ172 5 20 91826 91696
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We finish this section by giving some additional improvements in the manYPoints
table [60].

Example 3.1.19. In the following tables, we list q,m, f, s, g and #X (Fq2) where m, s,X
and f ∈ Fq[X] satisfy the hypotheses of Theorem 3.1.14.

New entry

q m f s g #X (Fq2) OLB
52 4 X4 + ξ52X2 + ξ7

52 4 9 984 944
52 8 X2 + 2X + ξ7

52 4 11 1092 1014
52 8 X2 + ξ3

52X + 2 7 14 1206 1120
52 6 X4 +X2 + ξ14

52 6 15 1160 1156
52 12 X2 + ξ2

52X + ξ8
52 6 17 1252 1227

52 6 X4 +X2 + ξ7
52 4 19 1308 1297

72 6 X4 + ξ44
72X2 + 5 4 19 3780 3718

72 8 X6 + ξ6
72 3 42 5486 5312

112 5 X8 + ξ14
112 2 32 20482 20117

112 5 X12 + ξ4
112 0 44 22800 22171

132 6 X7 + 2 0 30 35966 35732

3.2 Curves with many points from fibre products

In this section, we construct new curves with many rational points by considering
the fibre product of the curves constructed in Subsections 3.1.1 and 3.1.2. To provide a
lower bound for the number of Fq2-rational points for these new constructions, we use a
generalization of Remark 1.2.16 given in [50, Theorem 4] for fibre products of Kummer
extensions.

Theorem 3.2.1. For i ∈ {1, 2}, let mi ≥ 2 be a divisor of q + 1, si be an integer with
0 ≤ si < mi, and fi be a separable polynomial in Fq[X] of degree di satisfying fi(0) 6= 0
and (fi, f ∗i ) = (f1f

∗
1 , f2f

∗
2 ) = 1. Then the curve X defined by the affine equations

X :
 Y m2

2 = f2(X)f∗2 (X)
Xs2

Y m1
1 = f1(X)f∗1 (X)

Xs1

(3.11)

has genus

g = m1m2(d1 + d2)− d1m2 − d2m1 + 1− κ+ (m1m2,m2(2d1 − s1),m1(2d2 − s2))
2

where κ = (m1m2, s1m2, s2m1). Further, if Fq2 is the full constant field of Fq2(X ),
[Fq2(X ),Fq2(x)] = m1m2, and (fi, Xq+1 − 1) = 1 for i ∈ {1, 2}, then the number of
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Fq2-rational points #X (Fq2) of the curve X satisfies

#X (Fq2) ≥ m1m2((q + 1, 2(d1 − s1), 2(d2 − s2)) + q − 3− 2Nf1f2(F∗q))
+ 2m2Nf1(F∗q) + 2m1Nf2(F∗q).

In particular, for s1 = d1 and s2 = d2, we have

#X (Fq2) ≥ 2m1m2(q − 1−Nf1f2(F∗q)) + 2m2Nf1(F∗q) + 2m1Nf2(F∗q).

Proof. We start by computing the genus of the function field K(x, y1, y2). By Theorem
3.1.2, we have g(K(x, y1)) = (2m1d1 − 2(d1 − 1)− (m1, s1)− (m1, 2d1 − s1))/2. Also, for
the roots γ1, . . . , γd1 of f1 in K, we have the following ramification indices e(P ) in the
extension K(x, y1)/K(x).

e(P ) =



m1/(m1, s1), if P is over P0,

m1, if P is over Pγi or Pγ−1
i
,

m1/(m1, 2d1 − s1), if P is over P∞,
1, otherwise.

Now we show that the extension K(x, y1, y2)/K(x, y1) is a Kummer extension. Let
α1, . . . , αd2 ∈ K be the roots of f2. The principal divisor of the function x−s2f2(x)f ∗2 (x) in
K(x) is given by

(x−s2f2(x)f ∗2 (x))K(x) =
d2∑
i=1

(Pαi + Pα−1
i

)− s2P0 − (2d2 − s2)P∞,

and consequently

(x−s2f2(x)f ∗2 (x))K(x,y1) =
m1∑
j=1

d2∑
i=1

(Qαi,j +Qα−1
i ,j)−

s2m1

(m1, s1)

(m1,s1)∑
i=1

Q0,i

− m1(2d2 − s2)
(m1, 2d1 − s1)

(m1,2d1−s1)∑
i=1

Q∞,i,

where Qαi,j , Qα−1
i ,j , Q0,i, and Q∞,i are the extensions in K(x, y1) of the places Pαi , Pα−1

i
, P0,

and P∞ respectively. Thus the ramification indices in the extension K(x, y1, y2)/K(x, y1)
are given by

e(R) =



m2(m1, s1)
κ

, if R is over Q0,i,

m2(m1, 2d1 − s1)
(m1m2,m1(2d2 − s2),m2(2d1 − s1)) , if R is over Q∞,i,

m2, if R is over Qαi,j or Qα−1
i ,j,

1, otherwise.

We conclude that the equations (3.11) define an absolutely irreducible curve. Its genus
follows from the Riemann-Hurwitz formula applied to K(x, y1, y2)/K(x, y1).

Next, we provide a lower bound for the number of Fq2-rational points. From [50,
Theorem 4], it follows that:
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• for α ∈ F∗q2 such that f1f
∗
1 f2f

∗
2 (α) 6= 0, the curve X has m1m2 points with coordinate

x = α if and only if fi(α)f∗i (α)
αsi

is a mi-th power in F∗q2 for i ∈ {1, 2},

• for α ∈ F∗q2 such that f1f
∗
1 (α) = 0, the curve X has m2 points with coordinate x = α

if and only if f2(α)f∗2 (α)
αs2 is a m2-th power in F∗q2 ,

• for α ∈ F∗q2 such that f2f
∗
2 (α) = 0, the curve X has m1 points with coordinate x = α

if and only if f1(α)f∗1 (α)
αs1 is a m1-th power in F∗q2 .

From the proof of Theorem 3.1.2, for i ∈ {1, 2}, we have

(
fi(α)f ∗i (α)

αsi

) q2−1
mi

= 1 ⇔ α is a root of hi,1hi,2,

where
hi,1(X) = (fi(X)f ∗i (X))q−1 −Xsi(q−1)

and

hi,2(X) =
q+1
mi
−1∑

j=0
(fi(X)f ∗i (X))(q−1)jX

si(q−1)
(
q+1
mi
−1−j

)
.

From the proof of Theorem 3.1.2, we also have that if β ∈ Fq2 satisfies β(q+1,2(d1−s1),2(d2−s2)) =
1, then hi,1(β) = 0. Further, for i ∈ {1, 2}, if β ∈ F∗q and fi(β)f ∗i (β) 6= 0, then hi,1(β) = 0.
Hence,

#X (Fq2) ≥ m1m2((q + 1, 2(d1 − s1), 2(d2 − s2)) + q − 3− 2Nf1f2(F∗q))
+ 2m2Nf1(F∗q) + 2m1Nf2(F∗q).

Example 3.2.2. For polynomials f1, f2 ∈ Fq[X] satisfying the conditions of Theorem 3.2.1
and the curve X as defined in (3.11), we have the following table.

New entry

q m1 m2 s1 s2 f1 f2 g #X (Fq2) OLB
19 2 4 4 4 X4 + 2 X4 + 7 33 1280 1248

Also, for a self-reciprocal polynomial f1 ∈ Fq[X], we have the following improvements in
the manYPoints table [60].

New entry

q m1 m2 s1 s2 f1 f2 g #X (Fq2) OLB
11 3 3 2 2 X2 + 1 X2 + 7 16 402 370
11 3 6 0 1 X2 + 1 X2 + 10 22 462 459
17 3 6 2 2 X2 + 1 X2 + 3 37 1224 1179



3.2. Curves with many points from fibre products 67

New record

q m1 m2 s1 s2 f1 f2 g #X (Fq2) OLB
5 3 6 2 5 X2 + 1 X2 + 4 22 174 168

Analogously to Theorem 3.2.1, we have the following result corresponding to another
type of fibre product.

Theorem 3.2.3. For i ∈ {1, 2}, let mi ≥ 2 be a divisor of q− 1, si be an integer such that
0 ≤ si < mi, and fi be a separable polynomial in Fq[X] of degree di satisfying fi(0) 6= 0
and (fi, f ∗i ) = (f1f

∗
1 , f2f

∗
2 ) = 1. Then the curve X defined by the affine equations

X :
 Y m2

2 = Xs2f2(X)
f∗2 (X)

Y m1
1 = Xs1f1(X)

f∗1 (X)
(3.12)

has genus
g = m1m2(d1 + d2)− d1m2 − d2m1 + 1− κ

where κ = (m1m2, s1m2, s2m1). Furthermore, if Fq2 is the full constant field of Fq2(X ),
[Fq2(X ),Fq2(x)] = m1m2, and (fi, Xq+1 − 1) = 1 for i ∈ {1, 2}, then the number of
Fq2-rational points #X (Fq2) of the curve X satisfies

#X (Fq2) ≥ m1m2(q + 1).

Proof. We start by computing the genus of the function field K(x, y1, y2). By Theorem
3.1.14, we have that g(K(x, y1)) = (m1− 1)d1 + 1− (m1, s1). Also, for γ1, . . . , γd1 ∈ K the
roots of f1, we have the following ramification indices in the extension K(x, y1)/K(x)

e(P ) =


m1/(m1, s1), if P is over P0 or P∞,
m1, if P is over Pγi or Pγ−1

i
,

1, otherwise.

Now we show that the extension K(x, y1, y2)/K(x, y1) is a Kummer extension and obtain
its genus. Let α1, . . . , αd2 ∈ K be the roots of f2. The principal divisor of the function
xs2f2(x)f ∗2 (x)−1 in K(x) is given by

(xs2f2(x)f ∗2 (x)−1)K(x) = s2(P0 − P∞) +
d2∑
i=1

(Pαi − Pα−1
i

),

and consequently

(xs2f2(x)f ∗2 (x)−1)K(x,y1) = s2m1

(m1, s1)

(m1,s1)∑
i=1

(Q0,i −Q∞,i) +
m1∑
j=1

d2∑
i=1

(Qαi,j −Qα−1
i ,j),

where Qαi,j , Qα−1
i ,j , Q0,i, and Q∞,i are the extensions in K(x, y1) of the places Pαi , Pα−1

i
, P0,

and P∞ respectively. Thus, the ramification indices in the extension K(x, y1, y2)/K(x, y1)
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are given by

e(R) =


m2(m1, s1)/κ, if R is over Q0,i or Q∞,i,
m2, if R is over Qαi,j or Qα−1

i ,j,

1, otherwise.

We conclude that the equations (3.12) define an absolutely irreducible curve. Its genus
follows from the Riemann-Hurwitz formula applied to K(x, y1, y2)/K(x, y1).

To provide a lower bound for the number of Fq2-rational points, note that, by [50,
Theorem 4], we have that for α ∈ F∗q2 such that f1f

∗
1 f2f

∗
2 (α) 6= 0, the curve X has m1m2

points with coordinate x = α if and only if αsifi(α)/f ∗i (α) is a mi-th power in F∗q2 for
i = 1, 2, and by Theorem 3.1.14,

(
αsifi(α)
f ∗i (α)

) q2−1
mi

= 1 for i = 1, 2 ⇔ α is a root of (h1,1h1,2, h2,1h2,2),

where
hj,1(X) = (Xsjfj(X))q+1 − f ∗j (X)q+1

and

hj,2(X) =

q−1
mj
−1∑

i=0
(Xsjfj(X))(q+1)if ∗j (X)(q+1)

(
q−1
mj
−1−i

)
.

From the same Theorem 3.1.14, we have that if β ∈ Fq2 satisfies βq+1 = 1 then hj,1(β) = 0
for j = 1, 2. Thus, #X (Fq2) ≥ m1m2(q + 1).

Example 3.2.4. For polynomials f1, f2 ∈ Fq[X] satisfying the conditions of Theorem
3.2.3, and the curve X as defined in (3.12), we have the following tables.

New entry

q m1 m2 s1 s2 f1 f2 g #X (Fq2) OLB
13 3 3 0 2 X2 + 3X + 3 X + 4 16 558 464
13 4 4 1 1 X + 2 X + 6 21 568 556
17 4 4 1 1 X + 3 X + 8 21 808 794

New record

q m1 m2 s1 s2 f1 f2 g #X (Fq2) OLB
13 2 4 0 2 X2 + 4 X + 5 11 444 400
13 2 6 0 2 X + 3 X + 6 13 444 438
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4 Weierstrass semigroup in Kummer exten-
sions

Let K be the algebraic closure of the finite field Fq. In this final chapter, we
investigate Weierstrass semigroups of Kummer extensions with one place at infinity, that
is, algebraic curves defined by the affine equation

X : Y m = f(X) =
r∏
i=1

(X − αi)λi , λi ∈ N, and 1 ≤ λi < m, (4.1)

where r ≥ 2 and m ≥ 2 are integers such that Char(Fq) - m, α1, . . . , αr ∈ K are pairwise
distinct elements, λ0 := ∑r

i=1 λi, and (m,λ0) = 1.

Abdón, Borges, and Quoos [1] provided an arithmetical criterion to determine
if a positive integer is an element of the gap set of H(Q), where Q ∈ PK(X ) lies over a
totally ramified place in the extension K(X )/K(x). As a consequence, they explicitly
described the semigroup H(Q) when f(X) is a separable polynomial, that is, when
λ1 = λ2 = · · · = λr = 1. This description was generalized by Castellanos, Masuda, and
Quoos in [12], where they study the curve X given in (4.1) for the case λ1 = λ2 = · · · = λr.

The Weierstrass semigroup H(Q∞) at the only place at infinity Q∞ ∈ PK(X ) of X
was explicitly described in the following particular cases:

i) For λ1 = λ2 = · · · = λr, see [12, Theorem 3.2].

ii) For any λ1 and λ2 = λ3 = · · · = λr = 1, see [58, Remark 2.8].

This chapter aims to explicitly describe the Weierstrass semigroup H(Q∞) in the general
case, that is, we determine the Weierstrass semigroup at the only place at infinity Q∞ of
the curve X given in (4.1). Moreover, we provide a system of generators for the semigroup
H(Q∞), and as a consequence, we provide an explicit description of the gap set G(Q∞)
and generalize the closed formula for the Geil-Matsumoto bound given by Bras-Amorós
and Vico-Oton in Theorem 1.2.14. Furthermore, we study the Frobenius number and the
multiplicity of the semigroup H(Q∞) establishing a relationship between them, and provide
sufficient conditions for the semigroup H(Q∞) to be symmetric. Finally, we characterize
certain Fq2-maximal Castle curves of type (X , Q∞).
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4.1 The semigroup H(Q∞)

Consider the algebraic curve

X : Y m =
r∏
i=1

(X − αi)λi , λi ∈ N, and 1 ≤ λi < m,

where m ≥ 2 and r ≥ 2 are positive integers such that Char(Fq) - m, α1, . . . , αr ∈ K are
pairwise distinct elements, λ0 := ∑r

i=1 λi, and (m,λ0) = 1. From Proposition 1.2.8 and the
Riemann-Hurwitz formula, we obtain that the genus of the curve X is given by

g(X ) = (m− 1)(r − 1) + r −∑r
i=1(m,λi)

2 . (4.2)

In this section, as one of our main results, we provide an explicit description of the
Weierstrass semigroup H(Q∞) at the only place at infinity Q∞ of X . We start by recalling
the property described in [29, p. 94], which states that for m and λ positive integers,

λ−1∑
i=1

⌊
im

λ

⌋
= (m− 1)(λ− 1) + (m,λ)− 1

2 . (4.3)

To prove the main result of this chapter, we need the following technical lemma.

Lemma 4.1.1. Let r,m, λ0, λ1, λ2, . . . , λr be positive integers such that λ0 = ∑r
i=1 λi and

r < λ0. For k ∈ {r, . . . , λ0 − 1}, we define

ηk := max
{
ρs1,...,sr :

r∑
i=1

si = k, 1 ≤ si ≤ λi

}
, where ρs1,...,sr := min

1≤i≤r

⌊
sim

λi

⌋
.

Then the sequence ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 is characterized by the following equality of
multisets {{

ηk : r ≤ k ≤ λ0 − 1
}}

=
{{⌊

sim

λi

⌋
: 1 ≤ si < λi, 1 ≤ i ≤ r

}}
. (4.4)

In particular, we have

λ0−1∑
k=r

ηk = (m− 1)(λ0 − r)− r +∑r
i=1(m,λi)

2 .

Proof. First of all, note that, from the definition of ηk, we have that ηk < m for each k.
Furthermore, if ηk = ρu1,...,ur =

⌊
ujm

λj

⌋
for some j, where ∑r

i=1 ui = k and r ≤ k ≤ λ0 − 2,
then uj < λj and

ηk = ρu1,...,ur ≤ ρu1,...,uj+1,...,ur ≤ ηk+1.

This proves that ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 < m is a non-decreasing sequence. Let
S1 := {{ηk : r ≤ k ≤ λ0 − 1}} and S2 := {{bsim/λic : 1 ≤ si < λi, 1 ≤ i ≤ r}}. Now we are
going to prove that S1 = S2. From the definition of ηk, we have that S∗1 ⊆ S∗2 . Furthermore,
since the multisets S1 and S2 have the same cardinality, to prove that S1 = S2 it is
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sufficient to show that mS1(ηk) ≤ mS2(ηk) for each k, that is, if mS1(ηk) = n ≥ 1 then
there exist distinct elements j1, j2, . . . , jn ∈ {1, . . . , r} and elements sj1 , sj2 , . . . , sjn with
1 ≤ sji ≤ λji − 1 such that

ηk =
⌊
sj1m

λj1

⌋
= · · · =

⌊
sjnm

λjn

⌋
.

If n = 1, there is nothing to prove, so we can assume that n > 1. Without loss of generality,
suppose that

ηk−1 < ηk = ηk+1 = · · · = ηk+n−1, (4.5)

where ηk−1 := 0 if k = r. From the inclusion S∗1 ⊆ S∗2 , there exist j1 ∈ {1, . . . , r} and
sj1 ∈ {1, . . . , λj1 − 1} such that ηk =

⌊
sj1m

λj1

⌋
. Now, for each i ∈ {1, . . . , r} we define the set

Γi :=
{
s ∈ N : ηk ≤

⌊
sm

λi

⌋
and 1 ≤ s ≤ λi

}
.

Next, we prove that Γi 6= ∅ for each i. Since sj1 < λj1 , for i 6= j1 we have that⌊
sj1λi
λj1

⌋
+ 1 ≤ λi and ηk =

⌊
sj1m

λj1

⌋
=
⌊(

sj1λi
λj1

)
m

λi

⌋
≤
⌊(⌊

sj1λi
λj1

⌋
+ 1

)
m

λi

⌋
,

which implies that
⌊
sj1λi
λj1

⌋
+ 1 ∈ Γi for i 6= j1 and sj1 ∈ Γj1 . Let ti be the smallest element

of Γi. From definition of the set Γj1 , we have that tj1 ≤ sj1 . If tj1 < sj1 then

1 < m

λj1
≤ m

λj1
+
⌊
tj1m

λj1

⌋
− ηk ≤

m

λj1
+
⌊

(sj1 − 1)m
λj1

⌋
−
⌊
sj1m

λj1

⌋
≤ sj1m

λj1
−
⌊
sj1m

λj1

⌋
,

a contradiction, therefore tj1 = sj1 . Also, from definition of the sets Γi, we have that⌊
(ti − 1)m

λi

⌋
< ηk = ρt1,...,tr for i = 1, . . . , r.

Note that k = ∑r
i=1 ti. In fact, let k′ := ∑r

i=1 ti. By definition of ηk′ , we have that
ηk = ρt1,...,tr ≤ ηk′ , and from (4.5) we deduce that k ≤ k′. On the other hand, suppose that
(u1, . . . , ur) is an r-tuple such that ηk = ρu1,...,ur ,

∑r
i=1 ui = k, and 1 ≤ ui ≤ λi. If there

exists j ∈ {1, . . . , r} such that uj < tj, then

ηk = ρu1,...,ur = min
1≤i≤r

⌊
uim

λi

⌋
≤
⌊
ujm

λj

⌋
≤
⌊

(tj − 1)m
λj

⌋
< ηk,

a contradiction. Therefore ti ≤ ui for each i = 1, . . . , r, and this implies that k′ ≤ k. Thus,
we conclude that k = k′ = ∑r

i=1 ti.

Now, we show that there exist distinct elements j2, . . . , jn ∈ {1, . . . , r} \ {j1} such
that

ηk =
⌊
tj1m

λj1

⌋
= · · · =

⌊
tjnm

λjn

⌋
.
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Suppose that ηk <
⌊
tjm

λj

⌋
for each j ∈ {1, . . . , r}\{j1}, then ηk < ρt1,...,tj1+1,...,tr ≤ ηk+1 since∑r

i=1 ti = k. This is a contradiction to (4.5). Therefore there exists j2 ∈ {1, . . . , r} \ {j1}
satisfying

ηk =
⌊
tj1m

λj1

⌋
=
⌊
tj2m

λj2

⌋
and tj2 < λj2 ,

where the strict inequality tj2 < λj2 follows from the fact that ηk < m. If ηk <
⌊
tjm

λj

⌋
for

each j ∈ {1, . . . , r} \ {j1, j2}, then ηk < ρt1,...,tj1+1,...,tj2+1,...,tr ≤ ηk+2, again a contradiction
to (4.5). Therefore there exists j3 ∈ {1, . . . , r} \ {j1, j2} such that

ηk =
⌊
tj1m

λj1

⌋
=
⌊
tj2m

λj2

⌋
=
⌊
tj3m

λj3

⌋
and tj3 < λj3 .

By continuing this process, we obtain distinct elements j1, j2, . . . , jn such that

ηk =
⌊
tj1m

λj1

⌋
= · · · =

⌊
tjnm

λjn

⌋
and tji < λji for each i = 1, . . . , n.

Finally, from (4.3), we conclude that

λ0−1∑
k=r

ηk =
r∑
i=1

λi−1∑
s=1

⌊
sm

λi

⌋
=

r∑
i=1

(m− 1)(λi − 1)− 1 + (m,λi)
2

= (m− 1)(λ0 − r)− r +∑r
i=1(m,λi)

2 .

Theorem 4.1.2. Let m ≥ 2 and r ≥ 2 be integers such that Char(Fq) - m. Let X be the
algebraic curve defined by the affine equation

X : Y m =
r∏
i=1

(X − αi)λi , λi ∈ N, and 1 ≤ λi < m, (4.6)

where α1, . . . , αr are pairwise distinct elements of K. Define λ0 := ∑r
i=1 λi, and suppose

that (m,λ0) = 1. Then the Weierstrass semigroup at the only place at infinity Q∞ ∈ PK(X )

is given by the disjoint union

H(Q∞) = 〈m,λ0〉 ∪·
λ0−1⋃
·

k=r
Bk,

where Bk = {mk − k′λ0 : k′ = 1, . . . , ηk}, and ηk are defined as in Lemma 4.1.1. In partic-
ular,

H(Q∞) = 〈m,λ0,mk − λ0ηk : k = r, . . . , λ0 − 1〉. (4.7)

Proof. Clearly the result holds if r = λ0, therefore we can assume that r < λ0. We start by
computing some principal divisors in K(X ). Let Pαi ∈ PK(x) be the place corresponding
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to αi ∈ K. For k ∈ {r, . . . , λ0− 1}, let s1, . . . , sr be positive integers such that 1 ≤ si ≤ λi

and ∑r
i=1 si = k. Then, from Propositions 1.2.6 and 1.2.8,

(x− αi)K(X ) = m

(m,λi)
∑
Q|Pαi

Q∈PK(X )

Q−mQ∞, (y)K(X ) =
r∑
i=1

λi
(m,λi)

∑
Q|Pαi

Q∈PK(X )

Q− λ0Q∞,

and (∏r
i=1(x− αi)si
yρs1,...,sr

)
K(X )

=
r∑
i=1

sim− λiρs1,...,sr

(m,λi)
∑
Q|Pαi

Q∈PK(X )

Q− (mk − λ0ρs1,...,sr)Q∞.

By the definition of ηk, we have that 0 < mk−λ0ηk ∈ H(Q∞) for r ≤ k < λ0 and therefore

〈m,λ0〉 ∪
λ0−1⋃
k=r

Bk ⊆ H(Q∞). (4.8)

Now, we prove that the union given in (4.8) is disjoint. For k ∈ {r, . . . , λ0 − 1} and
k′ ∈ {1, . . . , ηk}, an element of Bk can be written as

mk − k′λ0 = mλ0 − (λ0 − k)m− k′λ0.

Therefore, from Proposition 1.1.2, Bk ∩ 〈m,λ0〉 = ∅. On the other hand, we have that
Bk1 ∩ Bk2 = ∅ for k1 6= k2. In fact, if mk1 − λ0k

′
1 = mk2 − λ0k

′
2 for r ≤ k1, k2 < λ0,

1 ≤ k′1 ≤ ηk1 , and 1 ≤ k′2 ≤ ηk2 then m(k1 − k2) = λ0(k′1 − k′2). Since (m,λ0) = 1 and
2− λ0 ≤ k1 − k2 ≤ λ0 − 2, we conclude that k1 = k2.

Finally, we prove that equality holds in (4.8). Since

g(X ) = (m− 1)(r − 1) + r −∑r
i=1(m,λi)

2 and g〈m,λ0〉 = (m− 1)(λ0 − 1)
2 ,

from Lemma 4.1.1 we obtain that

#
λ0−1⋃
·

k=r
Bk

 =
λ0−1∑
k=r

ηk = (m− 1)(λ0 − r)− r +∑r
i=1(m,λi)

2 = # (H(Q∞) \ 〈m,λ0〉)

and the result follows.

In general, we have that a minimal system of generators of a numerical semigroup
H has cardinality at most the multiplicity of the semigroup, that is, eH ≤ mH , see [55,
Proposition 2.10]. Since m ∈ H(Q∞), eH(Q∞) ≤ mH(Q∞) ≤ m. However, in general, it is
difficult to obtain a minimal system of generators to H(Q∞) from the system of generators
given in (4.7).

For example, for the curve Y 5 = X(X − 1)2 defined over Fq with 5 - q, the system
of generators for the semigroup H(Q∞) provided by Theorem 4.1.2 is given by H(Q∞) =
〈3, 4, 5〉 and therefore is a minimal system of generators. However, this does not happen in
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general. In fact, if ηk = ηk+1 for some k then we can remove the element m(k+ 1)−λ0ηk+1

of the system of generators given in (4.7) since m(k+ 1)− λ0ηk+1 = mk− λ0ηk +m. More
generally, define λ := max1≤i≤r λi. If λ = 1 then H(Q∞) = 〈m,λ0〉 and eH(Q∞) = 2. If
λ > 1, then for i ∈ {bm/λc, . . . ,m−dm/λe} define ki := 0 if there is no k ∈ {r, . . . , λ0−1}
such that ηk = i, and ki := min{k : r ≤ k < λ0, ηk = i} otherwise. Thus, for each i such
that ki 6= 0 and k such that ηk = i, we can write mk − λ0ηk = mki − λ0ηki + m(k − ki).
Therefore, by removing the element mk − λ0ηk from the system of generators given in
(4.7) we obtain that

H(Q∞) =
〈
m,λ0,mki − λ0ηki : i =

⌊
m

λ

⌋
, . . . ,m−

⌈
m

λ

⌉
and ki 6= 0

〉

and eH(Q∞) ≤ m−
⌈
m
λ

⌉
−
⌊
m
λ

⌋
+ 3 ≤ m.

Example 4.1.3 (Plane model of theGGS curve). The GGS curve is the first generalization
of the GK curve, which is the first example of a maximal curve not covered by the Hermitian
curve, see [20]. The GGS curve is an Fq2n-maximal curve for n ≥ 3 an odd integer, and it
is described by the following plane model:

Y qn+1 = (Xq +X)h(X)q+1, where h(X) =
q∑
i=0

(−1)i+1X i(q−1).

This curve only has one place at infinity Q∞. In order to calculate the Weierstrass
semigroup H(Q∞), note that h(X) is a separable polynomial of degree q(q − 1). Using
our standard notation as in Theorem 4.1.2, we have that m = qn + 1, r = q2, λ0 = q3,
λ1 = · · · = λq = 1, and λq+1 = · · · = λq2 = q+ 1. From the characterization of the multiset
S = {{ηk : r ≤ k ≤ λ0 − 1}} given in Lemma 4.1.1, we have that

S∗ =
{

(β + 1)(qn + 1)
q + 1 : 0 ≤ β ≤ q − 1

}
.

Furthermore, since λ1 = · · · = λq = 1 and λq+1 = · · · = λq2 = q+1, we have mS(a) = q2−q
for each a ∈ S∗. Thus, since ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 is a non-decreasing sequence, we
obtain that

ηr = ηr+1 = . . . = ηr+q2−q−1 = qn+1
q+1

ηr+q2−q = ηr+q2−q+1 = . . . = ηr+2(q2−q)−1 = 2(qn+1)
q+1

...
ηr+β(q2−q) = ηr+β(q2−q)+1 = . . . = ηr+(β+1)(q2−q)−1 = (β+1)(qn+1)

q+1
...

ηr+(q−1)(q2−q) = ηr+(q−1)(q2−q)+1 = . . . = ηr+q(q2−q)−1 = q(qn+1)
q+1 .

Therefore,

ηr+β(q2−q)+i = (β + 1)(qn + 1)
q + 1 for 0 ≤ β ≤ q − 1 and 0 ≤ i ≤ q2 − q − 1.
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Moreover, since

m(r + β(q2 − q))− λ0ηr+β(q2−q) = (q − β)q(q
n + 1)
q + 1 for 0 ≤ β ≤ q − 1,

it follows from Theorem 4.1.2 that

H(Q∞) =
〈
qn + 1, q3,

q(qn + 1)
q + 1

〉
.

As expected, this description of H(Q∞) matches the result given in [31, Corollary 3.5].

Let n ≥ 3 be an odd integer, m be a divisor of qn + 1, and d be a divisor of q + 1
such that (m, d(q − 1)) = 1. From Theorem 2.1.1, the curve Yd,1,m given by the affine
equation

Yd,1,m : Y m = Xd(Xd − 1)
(
Xd(q−1) − 1
Xd − 1

)q+1

is a subcover of the BM curve and has only one place at infinity Q∞. In the following
result, using Theorem 4.1.2, we compute the Weierstrass semigroup H(Q∞).

Proposition 4.1.4. Let n ≥ 3 be an odd integer, m be a divisor of qn + 1, and d be a
divisor of q + 1 such that (m, d(q − 1)) = 1. Consider the curve

Yd,1,m : Y m = Xd(Xd − 1)
(
Xd(q−1) − 1
Xd − 1

)q+1

.

Then the Weierstrass semigroup at the only place at infinity Q∞ is given by

H(Q∞) =
〈
m,λ0,mkβ − λ0

⌊
(β + 1)m
q + 1

⌋
: β = 0, . . . , q − 1

〉
,

where λ0 = dq(q − 1) and kβ = d(q − 1)(β + 1) + 1 +
⌊
βd
q+1

⌋
− βd.

Proof. Using our standard notation, we have that r = d(q− 1) + 1, λ0 = dq(q− 1), λ1 = d,
λ2 = · · · = λd+1 = 1 and λd+2 = · · · = λd(q−1)+1 = q + 1. From the characterization of
S = {{ηk : r ≤ k ≤ λ0 − 1}} given in Lemma 4.1.1, we obtain that

S∗ =
{⌊

(β + 1)m
q + 1

⌋
: 0 ≤ β ≤ q − 1

}
.

Now, define δβ :=
⌈

(β+1)d
q+1

⌉
−
⌊

(β+1)d
q+1

⌋
for 1 ≤ β ≤ q− 1. Since λ1 = d, λ2 = · · · = λd+1 = 1,

and λd+2 = · · · = λd(q−1)+1 = q + 1, we have

mS

(⌊
(β + 1)m
q + 1

⌋)
=
 d(q − 2), if δβ = 1,
d(q − 2) + 1, if δβ = 0,

or, equivalently,

mS

(⌊
(β + 1)m
q + 1

⌋)
= d(q − 2) + 1− δβ. (4.9)
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In order to calculate the semigroup H(Q∞), let kβ,i := r + β(d(q − 2) + 1)−∑β−1
j=0 δj + i

for 0 ≤ β ≤ q− 1 and 0 ≤ i ≤ d(q− 2)− δβ. From (4.9) and since ηr ≤ ηr−1 ≤ · · · ≤ ηλ0−1

is a non-decreasing sequence, we obtain that

ηr = ηr+1 = . . . = ηr+d(q−2)−δ0 =
⌊
m
q+1

⌋
ηr+d(q−2)+1−δ0 = ηr+d(q−2)+2−δ0 = . . . = ηr+2(d(q−2)+1)−1−δ0−δ1 =

⌊
2m
q+1

⌋
...

ηkβ,0 = ηkβ,1 = . . . = ηkβ,d(q−2)−δβ
=

⌊
(β+1)m
q+1

⌋
...

ηkq−1,0 = ηkq−1,1 = . . . = ηkq−1,d(q−2)−δq−1
=

⌊
qm
q+1

⌋
.

Therefore ηkβ,i =
⌊

(β+1)m
q+1

⌋
for 0 ≤ β ≤ q − 1 and 0 ≤ i ≤ d(q − 2) − δβ. From Theorem

4.1.2, we conclude that

H(Q∞) =
〈
m,λ0,mkβ,0 − λ0

⌊
(β + 1)m
q + 1

⌋
: β = 0, . . . , q − 1

〉
.

Now the proposition follows from the fact that β−∑β−1
j=0 δj =

⌊
βd
q+1

⌋
for 0 ≤ β ≤ q− 1.

Henceforth, to simplify the notation, we define

ηs :=
 0, if 0 ≤ s < r,

m− 1, if λ0 ≤ s,
and εk := mk − λ0(ηk + 1) for k ∈ N0. (4.10)

Therefore we obtain that

H(Q∞) = 〈εk + λ0 : k = 1, r, . . . , λ0〉. (4.11)

We complete this section by generalizing Theorem 1.2.14 given by Bras-Amorós and
Vico-Oton. For this purpose, suppose that the curve X given in (4.6) is defined over Fq.
From (4.11) and Theorem 1.2.13, the Geil-Matsumoto bound associated to the semigroup
H(Q∞), denoted by GMq(H(Q∞)), is given by

GMq(H(Q∞)) = #
H(Q∞) \

⋃
k=1,r,...,λ0

((εk + λ0)q +H(Q∞))
+ 1. (4.12)

Proposition 4.1.5. Let X be the curve given in Theorem 4.1.2. If X is defined over Fq
then

#X (Fq) ≤ 1 +
λ0−1∑
k=0

max
{

0, min
`∈{1,r,...,λ0}

{
ηk − qη` − ηk` −m

⌊
k − q`
λ0

⌋}}
,

where k` := (k − q`) mod λ0.

Proof. From (4.12), we obtain that

GMq(H(Q∞)) = #


s ∈ H(Q∞) :

s− (ε1 + λ0)q /∈ H(Q∞)
s− (εr + λ0)q /∈ H(Q∞)

...
s− (ελ0 + λ0)q /∈ H(Q∞)


+ 1.
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Therefore, to obtain a closed formula for GMq(H(Q∞)), we need to count the elements
s ∈ H(Q∞) such that s − (εk + λ0)q 6∈ H(Q∞) for each k = 1, r, . . . , λ0. From Theorem
4.1.2, the semigroup H(Q∞) is given by the disjoint union H(Q∞) = 〈m,λ0〉 ∪· B, where
B := ∪· λ0−1

k=r Bk and Bk = {mk − k′λ0 : k′ = 1, . . . , ηk}. Thus, it is necessary to analyze two
cases, when s ∈ 〈m,λ0〉 and when s ∈ B.

Our strategy will be to use the result given in [11, Lemma 2.1], which states that,
for an integer i,

i /∈ 〈m,λ0〉 ⇔ m(ic mod λ0) > i,

where c is the inverse of m modulo λ0.

Case A: s ∈ 〈m,λ0〉. Then s = am+ bλ0, where a and b are non-negative integers
such that a ≤ λ0 − 1. For ` ∈ {1, r, . . . , λ0} and k ∈ {r, . . . , λ0 − 1} we have that

s− (ε` + λ0)q /∈ 〈m,λ0〉 ⇔ (a− `q)m+ (b+ qη`)λ0 /∈ 〈m,λ0〉

⇔ m[((a− `q)m+ (b+ qη`)λ0)c mod λ0] > (a− `q)m
+ (b+ qη`)λ0

⇔ m((a− `q) mod λ0) > (a− `q)m+ (b+ qη`)λ0

⇔ m((a− `q) mod λ0 − (a− `q)) > (b+ qη`)λ0

⇔ m

⌈
`q − a
λ0

⌉
− qη` > b

and

s− (ε` + λ0)q ∈ Bk ⇔ am+ bλ0 − (m`− λ0η`)q = mk − k′λ0 for some 1 ≤ k′ ≤ ηk

⇔ m(q`+ k − a) = λ0(b+ qη` + k′)

⇔ k = (a− `q) mod λ0 and k′ = m

⌈
`q − a
λ0

⌉
− b− qη`.

Therefore s− (ε` + λ0)q /∈ H(Q∞) if and only if b < m
⌈
`q−a
λ0

⌉
− qη` − ηa` .

Case B: s ∈ B. Then s = ma− bλ0, where a and b are positive integers such that
r ≤ a < λ0 and 1 ≤ b ≤ ηa. For ` ∈ {1, r, . . . , λ0} and k ∈ {r, . . . , λ0 − 1} we have that

s− (ε` + λ0)q /∈ 〈m,λ0〉 ⇔ (a− `q)m+ (qη` − b)λ0 /∈ 〈m,λ0〉

⇔ m[((a− `q)m+ (qη` − b)λ0)c mod λ0] > (a− `q)m
+ (qη` − b)λ0

⇔ m((a− `q) mod λ0) > (a− `q)m+ (qη` − b)λ0

⇔ m((a− `q) mod λ0 − (a− `q)) > (qη` − b)λ0

⇔ qη` −m
⌈
`q − a
λ0

⌉
< b
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and

s− (ε` + λ0)q ∈ Bk ⇔ ma− bλ0 − (m`− λ0η`)q = mk − k′λ0 for some 1 ≤ k′ ≤ ηk

⇔ m(a− q`− k) = λ0(b− qη` − k′)

⇔ k = (a− q`) mod λ0 and k′ = b− qη` +m

⌈
`q − a
λ0

⌉
.

Therefore s− (ε` + λ0)q /∈ H(Q∞) if and only if qη` −m
⌈
`q−a
λ0

⌉
+ ηa` < b. Consequently,

GMq(H(Q∞)) = 1 +
λ0−1∑
a=0

max
{

0, min
`∈{1,r,...,λ0}

{
m

⌈
`q − a
λ0

⌉
− qη` − ηa`

}}

+
λ0−1∑
a=r

max
{

0, ηa −max
{

0, max
`∈{1,r,...,λ0}

{
qη` + ηa` −m

⌈
`q − a
λ0

⌉}}}

= 1 +
λ0−1∑
a=0

max
{

0, min
`∈{1,r,...,λ0}

{
m

⌈
`q − a
λ0

⌉
− qη` − ηa`

}}

+
λ0−1∑
a=r

max
{

0, ηa + min
{

0, min
`∈{1,r,...,λ0}

{
m

⌈
`q − a
λ0

⌉
− qη` − ηa`

}}}

= 1 +
r−1∑
a=0

max
{

0, min
`∈{1,r,...,λ0}

{
m

⌈
`q − a
λ0

⌉
− qη` − ηa`

}}

+
λ0−1∑
a=r

max
{

0, min
`∈{1,r,...,λ0}

{
ηa +m

⌈
`q − a
λ0

⌉
− qη` − ηa`

}}

= 1 +
λ0−1∑
a=0

max
{

0, min
`∈{1,r,...,λ0}

{
ηa +m

⌈
`q − a
λ0

⌉
− qη` − ηa`

}}
.

In particular, for λ1 = λ2 = · · · = λr = 1 we obtain that λ0 = r, H(Q∞) = 〈m, r〉,
and from Proposition 4.1.5 we have

GMq(〈m, r〉) = 1 +
r−1∑
k=0

max
{

0, min
`∈{1,r}

{
−qη` −m

⌊
k − q`
r

⌋}}

= 1 +
r−1∑
k=0

max
{

0,min
{
q,

⌈
q − k
r

⌉
m

}}

= 1 +
r−1∑
k=0

min
{
q,

⌈
q − k
r

⌉
m

}
.

As expected, for this case the closed formula coincides with the one described in Theorem
1.2.14.

4.2 The Frobenius number FH(Q∞) and the multiplicity mH(Q∞)

With the explicit description of the Weierstrass semigroupH(Q∞) given in Theorem
4.1.2, in this section we study the Frobenius number FH(Q∞), the multiplicity mH(Q∞), and
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the relationship between them. We start by noticing that not all the elements εr−1, . . . , ελ0−1

defined in (4.10) are necessarily positive, however the following result states that the
largest of them is equal to the Frobenius number FH(Q∞). Moreover, we explicitly describe
the gap set G(Q∞).

Proposition 4.2.1. Using the same notation as in Theorem 4.1.2, we have that

FH(Q∞) = max{εr−1, . . . , ελ0−1}

and
G(Q∞) =

{
ma− bλ0 : 1 ≤ a ≤ λ0 − 1, ηa + 1 ≤ b ≤

⌊
am

λ0

⌋}
.

Proof. From Theorem 4.1.2, we have that

G(Q∞) = N \

〈m,λ0〉 ∪·
λ0−1⋃
·

k=r
Bk

 = (N \ 〈m,λ0〉) \
λ0−1⋃
·

k=r
Bk

 ,
where Bk = {mλ0 − (λ0 − k)m− k′λ0 : 1 ≤ k′ ≤ ηk}. Moreover, from Proposition 1.1.2 we
know that the elements of N \ 〈m,λ0〉 are of the form mλ0 − am− bλ0, where a and b are
positive integers. Therefore,

G(Q∞) = {mλ0 − am− bλ0 : the pair (a, b) is in ∆} ∩ N,

where ∆ = {(a, b) ∈ N2 : ηλ0−a + 1 ≤ b}, and

FH(Q∞) = max
(a,b)∈∆

{mλ0 − am− bλ0}.

By the definition of the set ∆, max(a,b)∈∆{mλ0 − am − bλ0} is attained at an element
in ∆ of the form (k, ηλ0−k + 1) for some k ∈ {1, . . . , λ0 − r + 1}, see Figure 1. Thus,
FH(Q∞) = max{εr−1, . . . , ελ0−1}. Moreover,

G(Q∞) = {mλ0 − am− bλ0 : the pair (a, b) is in ∆} ∩ N

= {m(λ0 − a)− bλ0 : 1 ≤ a ≤ λ0 − 1, ηλ0−a + 1 ≤ b} ∩ N

=
{
ma− bλ0 : 1 ≤ a ≤ λ0 − 1, ηa + 1 ≤ b ≤

⌊
am

λ0

⌋}
.

Now, we provide sufficient conditions to determine whether the semigroup H(Q∞)
is symmetric. In particular, by [34, Proposition 50], we give sufficient conditions for Q∞ to
be a Weierstrass place. For this, we need a remark and a lemma.

Remark 4.2.2. Due to the characterization of the sequence ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 given
in Lemma 4.1.1, we can see that, for s ∈ N0, ηs+ηr+λ0−1−s = m or ηs+ηr+λ0−1−s = m−1.
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1 2 3 λ0−r λ0−r+1

ηλ0−1+1

ηr−1+1

ηλ0−2+1
ηλ0−3+1

ηr+1

...

· · ·

Figure 1 – Description of the set ∆

In fact, if 0 ≤ s ≤ r− 1 or λ0 ≤ s the assertion is clear. Let k ∈ {r, . . . , λ0− 1} and n ∈ N
be such that

ηk−1 < ηk = ηk+1 = · · · = ηk+n−1 < ηk+n.

From Lemma 4.1.1, there exist exactly n distinct elements j1, . . . , jn ∈ {1, . . . , r} and
positive integers sj1 , . . . , sjn such that 1 ≤ sji < λji and

ηk =
⌊
sj1m

λj1

⌋
=
⌊
sj2m

λj2

⌋
= · · · =

⌊
sjnm

λjn

⌋
.

Without loss of generality, we can assume that⌈
sj1m

λj1

⌉
≤
⌈
sj2m

λj2

⌉
≤ · · · ≤

⌈
sjnm

λjn

⌉

and therefore⌊
(λjn − sjn)m

λjn

⌋
≤
⌊

(λjn−1 − sjn−1)m
λjn−1

⌋
≤ · · · ≤

⌊
(λj1 − sj1)m

λj1

⌋
.

This leads to
ηr+λ0−1−(k+i) =

⌊
(λji+1 − sji+1)m

λji+1

⌋
for i = 0, . . . , n− 1

and, consequently,

ηk+i + ηr+λ0−1−(k+i) =
⌊
sji+1m

λji+1

⌋
+
⌊

(λji+1 − sji+1)m
λji+1

⌋
= m−

(⌈
sji+1m

λji+1

⌉
−
⌊
sji+1m

λji+1

⌋)

for i = 0, . . . , n−1. In particular, if (m,λj) = 1 for each j, we obtain that ηs+ηr+λ0−1−s =
m− 1 for s ∈ N0, and if λj divides m for each j, we obtain that ηs + ηr+λ0−1−s = m for
s = r, . . . , λ0 − 1.
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Lemma 4.2.3. For k ∈ N0, the following statements hold:

i) If ηk + ηr+λ0−1−k = m then εk + εr+λ0−1−k = εr−1 − λ0 and εr−1 > εk.

ii) If ηk + ηr+λ0−1−k = m− 1 then εk + εr+λ0−1−k = εr−1, and εr−1 > εk if and only if
0 < εr+λ0−1−k.

iii) εk < 0 if and only if ηk =
⌊
km
λ0

⌋
.

Proof. i) It is enough to note that

εr+λ0−1−k = m(r + λ0 − 1− k)− λ0(ηr+λ0−1−k + 1)
= m(r + λ0 − 1− k)− λ0 (m− ηk + 1)
= m(r − 1)− λ0 −mk + λ0ηk

= εr−1 − εk − λ0.

Therefore, εr−1 − εk = εr+λ0−1−k + λ0 > 0.

ii) Similar to item i).

iii) Since mk = λ0ηk + (mk − λ0ηk) and 0 ≤ mk − λ0ηk, we conclude that
ηk = bkm/λ0c if and only if mk − λ0ηk < λ0.

Theorem 4.2.4. With the same notation as in Theorem 4.1.2, the following statements
are equivalent:

i) FH(Q∞) = εr−1 and H(Q∞) is symmetric.

ii) λj divides m for each j = 1, . . . , r.

Proof. Suppose that H(Q∞) is symmetric and FH(Q∞) = εr−1. From (4.2) we obtain that

FH(Q∞) = m(r − 1)− λ0 = m(r − 1)−
r∑
j=1

(m,λj).

This implies that λj divides m for each j = 1, . . . , r.

Conversely, assume that λj divides m for each j = 1, . . . , r. From Remark 4.2.2
we have that ηk + ηr+λ0−1−k = m for k = r, . . . , λ0 − 1, and from item i) of Lemma
4.2.3, εr−1 > εk for k = r, . . . , λ0 − 1. Therefore, from Proposition 4.2.1, FH(Q∞) =
max{εr−1, . . . , ελ0−1} = εr−1 and

2g(X )− 1 = m(r − 1)−
r∑
i=j

(m,λj) = m(r − 1)− λ0 = εr−1 = FH(Q∞).
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Example 4.2.5. From Example 4.1.3, we know that the Weierstrass semigroup at the
only place at infinity of the GGS curve is given by H(Q∞) = 〈qn + 1, q3, q(qn + 1)/(q+ 1)〉.
Therefore, we can determine if H(Q∞) is symmetric and we can calculate the Frobenius
number FH(Q∞). However, due to Theorem 4.2.4, it is possible to know this without
computing the semigroup H(Q∞) explicitly. In fact, since q + 1 divides qn + 1, H(Q∞) is
symmetric and

FH(Q∞) = (qn + 1)(q2 − 1)− q3 = qn+2 − qn − q3 + q2 − 1.

Next, we improve Proposition 4.2.1 to compute the Frobenius number FH(Q∞) and
establish a relationship between FH(Q∞) and the multiplicity mH(Q∞).

Proposition 4.2.6. Using the same notation as in Theorem 4.1.2, the following statements
hold:

i) FH(Q∞) = εr−1 if and only if ηs < bsm/λ0c for each s ∈ {r, . . . , λ0 − 1} such that
ηs + ηr+λ0−1−s = m− 1.

ii) FH(Q∞) = maxr−1≤k<λ0

{
εk : ηk =

⌊
(k+1−r)m

λ0

⌋}
.

iii) If (m,λj) = 1 for each j = 1, . . . , r then mH(Q∞) = min{m,m(r − 1)− FH(Q∞)}.

iv) If λj dividesm for each j = 1, . . . , r thenmH(Q∞) = min {m,λ0, εr−1 −maxr≤k<λ0 εk}.

Proof. i) It follows from Lemma 4.2.3 and the fact that ηs ≤ bsm/λ0c for all s ∈ N0.

ii) It is enough to note that, from Lemma 4.2.3, we can rewrite the Frobenius
number FH(Q∞) as

FH(Q∞) = max
r≤k<λ0

{εr−1, εk : εr+λ0−1−k < 0, ηk + ηr+λ0−1−k = m− 1}

= max
r≤k<λ0

{
εr−1, εk : ηr+λ0−1−k =

⌊
(r + λ0 − 1− k)m

λ0

⌋
, ηk + ηr+λ0−1−k = m− 1

}

= max
r≤k<λ0

{
εr−1, εk : ηk =

⌊
(k + 1− r)m

λ0

⌋}

= max
r−1≤k<λ0

{
εk : ηk =

⌊
(k + 1− r)m

λ0

⌋}
.

iii) From (4.11) and Lemma 4.2.3, we obtain that

mH(Q∞) = min
{
m,λ0, λ0 + min

r≤k<λ0
εk

}
= min

{
m,λ0, λ0 + min

r≤k<λ0
{εr−1 − εr+λ0−1−k}

}
= min

{
m,λ0, λ0 + εr−1 − max

r≤k<λ0
εr+λ0−1−k

}
= min

{
m,λ0, λ0 + εr−1 − max

r≤k<λ0
εk

}
= min

{
m,m(r − 1)− FH(Q∞)

}
.
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iv) Similar to the proof of item iii).

Next, we observe that for the curve X defined in (4.6), the elements of the set
{εk + λ0 : k = 0, . . . , λ0 − 1} ⊆ H(Q∞) form a complete set of representatives for the
congruence classes of Z modulo λ0 and

λ0−1∑
k=0

⌊
εk + λ0

λ0

⌋
= g(X ).

Therefore, from Proposition 1.1.4, the Apéry set of λ0 in the Weierstrass semigroup H(Q∞)
is given by

Ap(H(Q∞), λ0) = {εk + λ0 : k = 0, . . . , λ0 − 1} .

We use this description of the Apéry set Ap(H(Q∞), λ0) to characterize the symmetric
Weierstrass semigroups H(Q∞) when (m,λj) = 1 for each j = 1, . . . , r.

Theorem 4.2.7. Suppose that (m,λj) = 1 for j = 1, . . . , r. Then the followings statements
are equivalent:

i) H(Q∞) = 〈m, r〉.

ii) λ1 = λ2 = · · · = λr.

If in addition r < m then all these statements are equivalent to the following:

iii) H(Q∞) is symmetric.

Proof. Clearly the result holds if r = λ0. Suppose that r < λ0.

i) ⇒ ii) : We start by proving that r divides λ0. In fact, since λ0,mr − λ0 ∈
H(Q∞) = 〈m, r〉, there exist α, α′, τ, τ ′ ∈ N0, where τ, τ ′ ≤ m − 1 and τ 6= 0, such that
λ0 = αm + τr and mr − λ0 = α′m + τ ′r. Therefore m(r − α − α′) = r(τ + τ ′). Since
H(Q∞) = 〈m, r〉, (m, r) = 1 and therefore m divides τ + τ ′, where 1 ≤ τ + τ ′ ≤ 2m− 2.
This implies that τ + τ ′ = m and α = −α′. It follows that α = α′ = 0 and λ0 = τr.

Now, let λ := max1≤i≤r λi and note that τr = λ0 = ∑r
i=1 λi ≤ λr, therefore τ ≤ λ.

In the following, we prove that τ = λ, which implies that λ1 = λ2 = · · · = λr.

For β ∈ {1, . . . , τ − 1} and i ∈ {0, . . . , r − 1} we have that

εβr+i + λ0 = mr − (r − i)m− (τηrβ+i −mβ)r ∈ H(Q∞) = 〈m, r〉.

Therefore, from Proposition 1.1.2, it follows that

ηrβ+i ≤
⌊
βm

τ

⌋
for 1 ≤ β ≤ τ − 1 and 0 ≤ i ≤ r − 1. (4.13)



84 Chapter 4. Weierstrass semigroup in Kummer extensions

For β = 1 in (4.13) we obtain that⌊
m

λ

⌋
= ηr ≤ ηr+i ≤

⌊
m

τ

⌋
for 0 ≤ i ≤ r − 1,

and for β = τ − 1 and i = r − 1 in (4.13),

m−
⌈
m

λ

⌉
=
⌊

(λ− 1)m
λ

⌋
= ηλ0−1 = ηr(τ−1)+r−1 ≤

⌊
(τ − 1)m

τ

⌋
= m−

⌈
m

τ

⌉
.

Since (m,λ) = (m, τ) = 1, then
⌊
m
λ

⌋
=
⌊
m
τ

⌋
and therefore ηr+i =

⌊
m
λ

⌋
for 0 ≤ i ≤ r − 1.

Thus, from the characterization of the sequence ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 given in (4.4), we
have that

ηr =
⌊
m

λ1

⌋
=
⌊
m

λ2

⌋
= · · · =

⌊
m

λr

⌋
= η2r−1

and therefore η2r =
⌊

2m
λ

⌋
. Moreover, from Remark 4.2.2, ηλ0−1−i = m−1−ηr+i =

⌊
(λ−1)m

λ

⌋
for 0 ≤ i ≤ r − 1 and hence ηλ0−r−1 =

⌊
(λ−2)m

λ

⌋
.

For β = 2 in (4.13) we have that⌊2m
λ

⌋
= η2r ≤ η2r+i ≤

⌊2m
τ

⌋
for 0 ≤ i ≤ r − 1,

and for β = τ − 2 and i = r − 1 in (4.13),

m−
⌈2m
λ

⌉
=
⌊

(λ− 2)m
λ

⌋
= ηλ0−r−1 = ηr(τ−2)+r−1 ≤

⌊
(τ − 2)m

τ

⌋
= m−

⌈2m
τ

⌉
.

Similarly to the previous case, we deduce that
⌊

2m
λ

⌋
=
⌊

2m
τ

⌋
, η2r+i =

⌊
2m
λ

⌋
and ηλ0−r−1−i =⌊

(λ−2)m
λ

⌋
for 0 ≤ i ≤ r − 1. This implies that η3r =

⌊
3m
λ

⌋
and ηλ0−2r−1 =

⌊
(λ−3)m

λ

⌋
.

By continuing this process, we obtain that

ηrβ+i =
⌊
βm

λ

⌋
for 1 ≤ β ≤ τ − 1 and 0 ≤ i ≤ r − 1.

In particular, for β = τ − 1 and i = r − 1 we have that⌊
(τ − 1)m

λ

⌋
= ηr(τ−1)+r−1 = ηrτ−1 = ηλ0−1 =

⌊
(λ− 1)m

λ

⌋
.

This implies that τ = λ.

ii)⇒ i) : Suppose that λ1 = λ2 = · · · = λr. Then λ0 = rλr and ηβr+i =
⌊
βm
λr

⌋
for

1 ≤ β ≤ λr − 1 and 0 ≤ i ≤ r − 1. On the other hand, from Theorem 4.1.2,

H(Q∞) =
〈
m, rλr, r

(
βm− λr

⌊
βm

λr

⌋)
: β = 1, . . . , λr − 1

〉

=
〈
m, rλr, rλr

{
βm

λr

}
: β = 1, . . . , λr − 1

〉
.



4.2. The Frobenius number FH(Q∞) and the multiplicity mH(Q∞) 85

Since (m,λr) = 1, there exists β′ ∈ {1, . . . , λr − 1} such that
{
β′m
λr

}
= 1

λr
and therefore

H(Q∞) = 〈m, r〉.

Now, suppose that r < m.

i)⇒ iii) : It is clear.

iii)⇒ i) : We are going to prove that (m, r) = 1. We start by noting two important
facts. First, note that

(εk + λ0) ≡ 0 mod m if and only if 0 ≤ k ≤ r − 1. (4.14)

Second, since r < m and (m,λj) = 1 for each j, then H(Q∞) is symmetric if and only if
mH(Q∞) = r. In fact, for this case we have that g(X ) = (m− 1)(r − 1)/2. Furthermore,
from item iii) of Proposition 4.2.6, mH(Q∞) = min{m,m(r − 1)− FH(Q∞)}. If H(Q∞) is
symmetric, then FH(Q∞) = 2g(X )− 1 = m(r − 1)− r and

mH(Q∞) = min{m,m(r − 1)− FH(Q∞)} = min{m, r} = r.

Conversely, if mH(Q∞) = r then m(r− 1)−FH(Q∞) = r and therefore FH(Q∞) = 2g(X )− 1.
This implies that H(Q∞) is symmetric.

Let σ be the permutation of the set {0, . . . , λ0 − 1} such that

Ap(H(Q∞), λ0) = {0 = εσ(0) + λ0 < εσ(1) + λ0 < · · · < εσ(λ0−1) + λ0}.

Since (m,λj) = 1 for j = 1, . . . , r and H(Q∞) is symmetric, then FH(Q∞) = εσ(λ0−1) =
m(r − 1)− r. Thus, from Proposition 1.1.5, we have that

εσ(i) + εσ(λ0−1−i) = m(r − 1)− λ0 − r for i = 0, . . . , λ0 − 1. (4.15)

On the other hand, from Proposition 4.2.3, we know that

εσ(i) + εr+λ0−1−σ(i) = m(r − 1)− λ0 for i = 0, . . . , λ0 − 1. (4.16)

Let λ > 0 and 0 ≤ r′ < r be integers such that λ0 = λr+r′, and i1 ∈ {0, . . . , λ0−1}
be such that σ(λ0 − 1− i1) = r − 1. Then, from (4.15),

εσ(i1) = m(r − 1)− λ0 − r − εσ(λ0−1−i1) = m(r − 1)− λ0 − r − εr−1 = −r.

If (εσ(i1) + λ0) ≡ 0 mod m, then m divides λ0 − r and therefore λ0 = ms+ r for
some integer s. Since (m,λ0) = 1, we conclude that 1 = (m,λ0) = (m,ms+ r) = (m, r).
Otherwise, from (4.14), σ(i1) ≥ r and therefore there exists i2 ∈ {0, . . . , λ0 − 1} such that
σ(λ0 − 1− i2) = r + λ0 − 1− σ(i1). From (4.15) and (4.16), we have that

εσ(i2) = m(r−1)−λ0−r−εσ(λ0−1−i2) = m(r−1)−λ0−r−εr+λ0−1−σ(i1) = εσ(i1)−r = −2r.
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If (εσ(i2) + λ0) ≡ 0 mod m, then m divides λ0 − 2r and therefore (m, r) = 1.
Otherwise, σ(i2) ≥ r and therefore there exists i3 ∈ {0, . . . , λ0−1} such that σ(λ0−1−i3) =
r + λ0 − 1− σ(i2) and

εσ(i3) = m(r−1)−λ0−r−εσ(λ0−1−i3) = m(r−1)−λ0−r−εr+λ0−1−σ(i2) = εσ(i2)−r = −3r.

By continuing this process, we have that (m, r) = 1 or we obtain a sequence
i1, . . . , iλ such that

σ(ij) ≥ r and εσ(ij) = −jr for 1 ≤ j ≤ λ.

If the latter happens then 0 < εσ(iλ) + λ0 = λ0 − λr = r′ < r, a contradiction because
mH(Q∞) = r. Therefore, (m, r) = 1. Finally, since 〈m, r〉 ⊆ H(Q∞) and g(X ) = (m −
1)(r − 1)/2, we conclude that H(Q∞) = 〈m, r〉.

4.3 Maximal Castle curves
In this section, as an application of the results obtained in this chapter, we

characterize certain classes of Fq2-maximal Castle curves of type (X , Q∞), where X is the
curve defined by the equation Y m = f(X), f(X) ∈ Fq2 [X] and (m, degf) = 1, and Q∞ is
the only place at infinity of the curve X . Some examples of Fq2-maximal Castle curves of
this type are presented below:

• The Hermitian curve
Y q+1 = Xq +X.

• The curve over Fq2 defined by the affine equation

Y q+1 = a−1(Xq/p +Xq/p2 + · · ·+Xp +X),

where p = Char(Fq) and a ∈ Fq2 is such that aq + a = 0 and a 6= 0.

Note that, in all cases, the places corresponding to the roots of the polynomial f(X) are
totally ramified in the extension Fq2(x, y)/Fq2(x), the multiplicities of the roots of f(X)
are equals, and m = q + 1. We will show that, under certain conditions, all Fq2-maximal
Castle curves of type (X , Q∞) have these characteristics.

Lemma 4.3.1. Let X be the algebraic curve given in Theorem 4.1.2, and let Q∞ be its
only place at infinity. Suppose that X is defined over Fq2, (m,λi) = 1 for i = 1, . . . , r,
(X , Q∞) is a Castle curve, and r < m. Then

X is Fq2-maximal if and only if m = q + 1.
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Proof. From the assumptions, we obtain that g(X ) = (m− 1)(r − 1)/2. Since (X , Q∞) is
a Castle curve, H(Q∞) is symmetric and therefore FH(Q∞) = 2g(X ) − 1 = mr −m − r.
Moreover, from item iii) of Proposition 4.2.6, mH(Q∞) = min{m, r} = r. Therefore, X is
Fq2-maximal if and only if

#X (Fq2) = q2r + 1 = q2 + 1 + q(m− 1)(r − 1).

Thus, the result follows.

Lemma 4.3.2. Let X be the algebraic curve given in Theorem 4.1.2, and let Q∞ be its only
place at infinity. Suppose that X is defined over Fq2, m = q + 1, r < q + 1, (q + 1, λi) = 1
for i = 1, . . . , r, and X is Fq2-maximal. The following statements are equivalent:

i) H(Q∞) is symmetric.

ii) #X (Fq2) = q2mH(Q∞) + 1.

iii) λ1 = · · · = λr.

Proof. Note that from the hypotheses we have that g(X ) = q(r − 1)/2 and therefore
#X (Fq2) = q2 + 1 + 2g(X )q = q2r + 1.

i)⇔ ii) : It is enough to note that

H(Q∞) is symmetric ⇔ FH(Q∞) = qr − q − 1
⇔ mH(Q∞) = r (from Proposition 4.2.6)
⇔ #X (Fq2) = q2mH(Q∞) + 1.

i)⇔ iii) : This follows directly from Theorem 4.2.7.

We summarize these results in the following theorem.

Theorem 4.3.3. Let X be the algebraic curve defined in Theorem 4.1.2, and let Q∞ be
its only place at infinity. Suppose that X is defined over Fq2, (m,λi) = 1 for i = 1, . . . , r,
and r < m. Then the following statements are equivalent:

i) (X , Q∞) is a Fq2-maximal Castle curve.

ii) (X , Q∞) is a Castle curve and m = q + 1.

iii) X is Fq2-maximal, H(Q∞) is symmetric, and m = q + 1.

iv) X is Fq2-maximal, #X (Fq2) = q2mH(Q∞) + 1, and m = q + 1.

v) X is Fq2-maximal, λ1 = · · · = λr, and m = q + 1.



88 Chapter 4. Weierstrass semigroup in Kummer extensions

Finally, we note that for the case when λi divides m for each i = 1, . . . , r, the
Weierstrass semigroup H(Q∞) is symmetric, see Theorem 4.2.4. Therefore, by assuming
that X is Fq2-maximal, we conclude that

(X , Q∞) is Fq2-maximal Castle curve if and only if #X (Fq2) = q2mH(Q∞) + 1.
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