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Abstract

This thesis collects the material developed in the course of three lines of investigation concerning
arithmetic and algebraic aspects of rational elliptic surfaces. We organize the text as follows.

In Chapter 1 we present the three lines of investigation and explain their connection with one
another. In short, they are:

1. Over an algebraically closed field, classify the fibers of conic bundles on rational elliptic
surfaces and describe the interplay between the fibers of the elliptic fibration and the fibers
of the conic bundle.

2. Given a rational elliptic surface over an algebraically closed field, investigate the numbers
that cannot occur as the intersection number of a pair of sections, which we call gap numbers.
More precisely, try to answer when gap numbers exist, how they are distributed and how to
identify them.

3. Given a rational elliptic surface over a number field, study the set of fibers whose Mordell-
Weil rank is higher than the generic rank. More specifically, present conditions to guarantee
that the collection of fibers where the rank jumps of at least 3 is not thin.

Chapter 2 is dedicated to establishing notations, definitions and well-known results on which
this work is based. The results related to each of the three topics mentioned receive an individual
chapter, namely Chapters 3, 4 and 5. The appendix in Chapter 6 stores data relevant to Chapter 4.

The results in Chapters 3, 4 and 5 also appear separately in the following preprints:

• [Cosa] R.D. Costa.Classification of conic bundles on a rational elliptic surface in any char-
acteristic. arXiv:2206.03549.

• [Cosb] R.D. Costa. Gaps on the intersection numbers of sections on a rational elliptic surface.
arXiv: to appear.

• [CS] R.D. Costa, C. Salgado. Large rank jumps on elliptic surfaces and the Hilbert property.
arXiv:2205.07801.
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Agradecimentos

É um dever e uma alegria agradecer àqueles que estiveram ao meu lado nos últimos quatro anos.
Tive a sorte de trabalhar com Cecília Salgado, que me deu um exemplo de como pensa uma

profissional de verdade e de como é possível transitar entre a academia e a vida em família. Agradeço
pela paciência, principalmente no início, de repetir as mesmas explicações mil vezes até me fazer
entender que alho não é bugalho. Cecília acabou se revelando uma boa professora de redação, o
que foi uma grata surpresa. Agradeço por ter acreditado em mim, às vezes mais do que eu acreditei
em mim mesmo: este trabalho teria sido muito mais difícil sem esse apoio.

Sou grato a Alice Garbagnati pela generosidade de ler meu primeiro artigo com tanto cuidado
e sugerir investigações posteriores. Também ao meu colega Felipe Zingali, pelas chances de com-
partilhar nossas dificuldades em descobrir como alguém descobre alguma coisa.

Não posso perder a ocasião de mencionar um professor dos mais notáveis, Rodrigo José Gondim
Neves. Foi a primeira pessoa que conheci com disposição e competência para entender a matemática
não apenas em nome de suas aplicações mas, como escreveu Jacobi, pour l’honneur de l’esprit
humain. Suas aulas sobre polinômios ciclotômicos estão entre minhas lembranças mais queridas:
devo a ele mais do que ele suspeita.

Ao meu pai e minha mãe, devo minha vida e tantas outras coisas que nunca vou poder retribuir.
À minha família, agradeço pelo apoio e pela torcida, principalmente no início do doutorado, quando
minha filha acabava de nascer. A presença diária da minha esposa Edlaura e da minha filha Cecília
sempre manteve meus pés no chão e tem deixado minha vida cada vez mais cheia de sentido e afeto.
Espero que, entre as nossas conquistas juntos, este trabalho represente uma delas.

Agradeço aos membros da banca Rodrigo Salomão, Carolina Araújo, Maral Mostafazadehfard,
Ariel Molinuevo, Luciane Quoos e Miriam Abdon por seus comentários e sugestões, dos quais tirei
muito proveito.

Agradeço ainda às agências de fomento CAPES, CNPq e FAPERJ pelo auxílio financeiro, sem
o qual este trabalho não teria sido possível.



Contents

1 Introduction 5
1.1 Classification of conic bundle fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Intersection gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Large rank jumps and the Hilbert property . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Correspondence between sections, curves and points on the generic fiber . . . 12
2.1.2 Singular Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Euler number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Rational elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Rational vs. geometrically rational surfaces . . . . . . . . . . . . . . . . . . . 18
2.2.2 Construction from pencils of cubics . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Properties of rational elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Conic bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Thin sets and the Hilbert property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 General facts about the geometry of surfaces . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Mordell-Weil lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Bounds cmax, cmin for the contribution term . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 The difference ∆ = cmax − cmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 The quadratic form QX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Conic bundles on rational elliptic surfaces 32
3.1 Numerical characterization of conic bundles . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Classification of conic bundle fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Fibers of conic bundles vs. fibers of the elliptic fibration . . . . . . . . . . . . . . . . 38
3.4 Examples of conic bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Construction and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Gaps on the intersection numbers of sections 47
4.1 Gap numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Intersection with a torsion section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



4.3 Necessary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Sufficient conditions when ∆ ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 The case ∆ < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 The case ∆ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Necessary and sufficient conditions when ∆ ≤ 2 . . . . . . . . . . . . . . . . . . . . . 52
4.6 Summary of sufficient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7.1 No gap numbers in r ≥ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7.2 Gaps with probability 1 in r ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7.3 Identification of gaps when E(K) is torsion-free with rank r = 1 . . . . . . . 56
4.7.4 Surfaces with a 1-gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Large rank jumps and the Hilbert property 60
5.1 Nonreduced fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Conic bundles ramified at a nonreduced fiber (RNRF) . . . . . . . . . . . . . . . . . 65
5.3 RNRF and multiple base changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Rank Jump three times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Appendix 74

4



Chapter 1

Introduction

The central object of this thesis are rational elliptic surfaces (see Definitions 2.1.1 and 2.2.3).
Our investigation stems from three motivating problems regarding both arithmetic and geometric
aspects of these surfaces. We introduce each problem in its particular context, explain our strategy
for approaching it and state our results.

From a historical perspective, elliptic surfaces emerge from number theoretic problems and
receive a progressively more geometric treatment over time. From the viewpoint of elliptic curves
over a function field, they have first been studied over a finite field of constants by Artin [Art24] in
the search for an analogue of the Riemann Hypothesis, later proved in generality by Weil [Wei48].
In the framework of algebraic surfaces over the complex numbers, elliptic fibrations were already
known to Enriques [Enr49], but only as a class of examples among others.

A much more dedicated treatment was given by Kodaira [Kod63a, Kod63b] using the language
of complex geometry, which laid the foundations for a profound study of elliptic surfaces. The
algebraic theory was soon advanced by Néron [Né64] and Shafarevich [SAV+65] and received an
important contribution from Tate [Tat75] with a simplified algorithm for identifying singular fibers.

A key aspect of elliptic surfaces is the bijective correspondence between sections of the elliptic
fibration and points on the generic fiber (Subsection 2.1.1), first properly emphasized by Shioda
in [Shi72]. This correspondence is a fundamental ingredient in the construction of the Mordell-
Weil lattice (Section 2.7) by Shioda [Shi89] and Elkies [Elk90] independently. This proved to be a
powerful tool of both geometric and arithmetic interest, with applications in various topics such as
Galois representations, moduli spaces of K3 surfaces and crystallography.

Our focus on rational elliptic surfaces is due to their convenient geometric properties (Theo-
rem 2.2.6), the simplicity with which examples can be produced (Section 3.4) and the fact that
their possible fiber configurations and possible Mordell-Weil lattices have been completely classified
in [Per90] and [OS91] respectively.

In what follows X is a geometrically rational elliptic surface with elliptic fibration π : X → P1

over a field k which is either a number field or an algebraically closed field. We let K := k(P1)
be the function field of the base curve P1 and define the Mordell-Weil group of π as the group
of K-points on the generic fiber E, denoted by E(K). We note that every geometrically rational
elliptic surface admits precisely one elliptic fibration (Proposition 2.2.6), hence we may refer to
E(K) as the Mordell-Weil group of the surface X. We use r to denote the rank of E(K), called
the Mordell-Weil rank or generic rank.

We present our three problems of interest.
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1.1 Classification of conic bundle fibers
In a broad sense, a conic bundle can be understood as a genus zero fibration on a variety (see

Definition 2.3.1 for surfaces). Conic bundles arise in different forms in many important contexts,
from the classification of k-minimal rational surfaces to the Minimal Model Program (Section 2.3
and Chapter 3 for a more precise account). In this thesis we are concerned more specifically with
conic bundles on a rational elliptic surface π : X → P1. This has been motivated by results from
[Sal12], [LS22], where the presence of conic bundles is used as a condition to guarantee that rank
jumps occur (Section 1.3 and Chapter 5); from [GS17, GS20], where conic bundles are used to
classify elliptic fibrations on certain K3 surfaces; and from [AGL16], where conic bundles appear
in the study of generators of the Cox ring of X.

These applications seem to justify a further study of conic bundles on rational elliptic surfaces.
More specifically, we propose two questions: first, in which ways can we construct a divisor D on
X such that the linear system |D| induces a conic bundle on X? Second, to what extent is this
construction obstructed by the fiber configuration of the elliptic fibration?

Our starting point is an observation, already implicit in [AGL16], [GS17, GS20], that there is a
bijective correspondence between conic bundles onX and certain Néron-Severi classes [D] ∈ NS(X),
which we call conic classes (Definition 3.1.1), which indicates that all information we need can be
derived from the numerical behavior of a divisor D representing a conic class.

We note that this study is essentially geometric, therefore it makes sense to work over an
algebraic closure of the base field. Moreover, except for minor difficulties, there is no reason to
restrict ourselves to characteristic zero, which is the case in [Sal12, LS22] over number fields, in
[AGL16, GS17] over C or in [GS20] over a field of characteristic zero.

Our first result is a complete classification of the fibers of a conic bundle on X and answers our
first question about the possibilities of D such that |D| induces a conic bundle ϕ|D| : X → P1.

Theorem 3.2.2. Let π : X → P1 be a rational elliptic surface over an algebraically closed field
and let ϕ : X → P1 be a conic bundle. If D is a fiber of ϕ, then the intersection graph of D
(multiplicities considered) fits one of the types below. Conversely, if the intersection graph of a
divisor D fits any of these types, then |D| induces a conic bundle ϕ|D| : X → P1.
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Type Intersection graph
(with multiplicities)

0 ?
1

A2 1 1

An (n ≥ 3) 1 •1 •1 •1 •1 1

D3 •1 2 •1

Dm (m ≥ 4)
2 •2 •2 •2 •2

•1

•
1

? smooth, irreducible curve of genus 0
◦ (−1)-curve (section of π)
• (−2)-curve (component of a reducible fiber of π)

Our second result answers our second question and consists in a precise description of the in-
terplay between fibers of conic bundles on X and the fiber configuration of the elliptic fibration.
We use Kodaira’s notation for the singular fibers of π (see Theorem 2.1.8).

Theorem 3.3.2. Let X be a rational elliptic surface with elliptic fibration π : X → P1. Then
the following statements hold:

a) X admits a conic bundle with an A2 fiber ⇔ π has positive generic rank and no III∗ fiber.

b) X admits a conic bundle with an An≥3 fiber ⇔ π has a reducible fiber distinct from II∗.

c) X admits a conic bundle with a D3 fiber ⇔ π has at least two reducible fibers.

d) X admits a conic bundle with a Dm≥4 fiber ⇔ π has a nonreduced fiber or a fiber In≥4.

Theorems 3.2.2 and 3.3.2 are proven in Chapter 3 and, for the most part, are also the main
results in [Cosa].
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1.2 Intersection gaps
We note that a complete proof of item a) in Theorem 3.3.2 is not possible without a detailed

study on how sections of π : X → P1 intersect one another. Indeed, in order to answer precisely
when X admits a conic bundle with an A2 fiber one must know precisely which rational elliptic
surfaces admit sections P1, P2 ∈ E(K) such that the intersection number P1 · P2 is equal to 1.
This answer was not available at the time of [Cosa], hence only a partial version of item a) could
be proven in that context and the complete one remained as a conjecture. We present our next
investigation, which provides the tools to prove item a) and several other results.

We ask the following question: as P1, P2 run through E(K), what values can P1 · P2 attain?
On surfaces in general, the computation of intersection numbers of curves can be a very difficult
problem. In our case, however, we are only concerned with sections of an elliptic surface, which has
the additional advantage of being rational. The tool that allows us to attack this problem is the
Mordell-Weil lattice, a notion first introduced by Elkies [Elk90] and Shioda [Shi89, Shi90]. It involves
the definition of a Q-valued pairing on E(K), called the height pairing, which induces a positive-
definite lattice on the quotient E(K)/E(K)tor, which is the Mordell-Weil lattice (Section 2.7). A key
aspect of its construction is the connection with the Néron-Severi lattice, so that the height pairing
and the intersection pairing of sections are strongly intertwined. Fortunately, the possibilities for
the Mordell-Weil lattice on a rational elliptic surface have already been classified in [OS91], which
gives us a convenient starting point.

Another aspect of this investigation is the connection with a classic theme in number theory,
namely the representation of integers by positive-definite quadratic forms. Indeed, since E(K) has
rank r, its free part is generated by r terms, so the height h(P ) := 〈P, P 〉 induces a positive-definite
quadratic form on r variables with coefficients in Q. If O ∈ E(K) is the neutral section and R is
the set of reducible fibers of π, then by the height formula (2.3)

h(P ) = 2 + 2(P ·O)−
∑
v∈R

contrv(P ),

where the sum over v is a rational number which can be easily estimated. By clearing denominators,
we see that the possible values of P · O depend on a certain range of integers represented by a
positive-definite quadratic form with coefficients in Z. This point of view is explored in some parts
of Chapter 4, where we apply results such as the classical Lagrange four-square theorem [HW79,
§20.5], the counting of integers represented by a binary quadratic form [Ber12, p. 91] and the more
recent Bhargava-Hanke’s 290-theorem on universal quadratic forms [BH, Thm. 1].

We say that k ∈ Z≥0 is a gap number of X, or that or that X has a k-gap if there are no sections
P1 ·P2 ∈ E(K) such that P1 ·P2 = k. We try to answer under which conditions gap numbers exist,
how they are distributed and try to identify them in some cases. Our first result states that gap
numbers do not exist for a big enough Mordell-Weil rank.

Theorem 4.7.2. If r ≥ 5, then X has no gap numbers.

On the other hand, if the rank is low enough, then gap numbers occur with probability 1.
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Theorem 4.7.4. If r ≤ 2, then the set of gap numbers G := {k ∈ N | k is a gap number of X}
has density 1 in N, i.e.

lim
n→∞

#G ∩ {1, ..., n}
n

= 1.

As to the explicit identification of gap numbers, we point out some cases where a complete
identification is possible.

Theorem 4.7.7. If E(K) is torsion-free with rank r = 1, then all the gap numbers of X are
described below, according to the lattice T associated with the reducible fibers of π (see Defini-
tion 2.7.3).

T
k is a gap number⇔ none of

the following are perfect squares

E7 k + 1, 4k + 1

A7
k+1

4 , 16k, ..., 16k + 9

D7
k+1

2 , 8k + 1, ..., 8k + 4

A6 ⊕A1
k+1

7 , 28k − 3, ..., 28k + 21

E6 ⊕A1
k+1

3 , 12k + 1, ..., 12k + 9

D5 ⊕A2
k+1

6 , 24k + 1, ..., 24k + 16

A4 ⊕A3
k+1
10 , 40k − 4, ..., 40k + 25

A4 ⊕A2 ⊕A1
k+1
15 , 60k − 11, ..., 60k + 45

Table 1.1: Description of gap numbers when E(K) is torsion-free with r = 1.

We conclude by fixing k = 1 and identifying all rational elliptic surfaces with a 1-gap. This
is tantamount to describing when X admits a conic bundle with an A2 fiber, hence we solve our
motivating problem of proving item a) in Theorem 3.3.2.

Theorem 4.7.8. X has a 1-gap if and only if r = 0 or r = 1 and π has a III∗ fiber.

The four theorems above are proven in Chapter 4 and are also the main results in [Cosb].
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1.3 Large rank jumps and the Hilbert property
Let k be a number field. We address a prominent theme in Diophantine Geometry, namely the

variation of the Mordell-Weil rank of a fiber π−1(t) as t varies in P1
k. In the search for elliptic curves

with large rank, the use of this phenomenon has been a major source of examples, as done by Mestre
[Mes92], Fermigier [Fer92, Fer97], Nagao [Nag92, Nag93, NK94], Martin-McMillen [MM98, MM00]
and ultimately Elkies [Elk06], whose record of rank ≥ 28 over Q still holds.

We begin by considering two important results; first by Néron [Né52, Thm. 6], which states
that the Mordell-Weil rank rt (over k) of the fiber π−1(t) is greater or equal to the generic rank r
for all t ∈ P1

k outside a thin subset of P1
k (see Definition 2.4.1); and another by Silverman [Sil83,

Thm. C], built on the first, stating that rt ≥ r outside a set of points of bounded height. In this
thesis we study the possibility of having rt > r, in which case we say that the rank jumps, and
study the nature of subsets of P1

k where rank jumps occur.
This problem has received attention not only in the case of rational elliptic surfaces [Bil98,

Sal12, LS22] but also of K3 surfaces [Sal15] and Abelian varieties [HS19]. We note that in [LS22]
the authors show that under some conditions the set of fibers where the rank jumps of at least 2,
i.e. {t ∈ P1

k | rt ≥ r + 2} is not a thin set (Definition 2.4.1), which calls attention to the nature of
the rank jump set and brings back the notion of thin sets in Néron’s specialization theorem.

Our strategy is to use Néron’s geometric methods already applied in [Shi91, Sal12, Sal15, HS19,
CT20] to produce rank jumps and use ideas from [LS22] to study the nature of the rank jump set.
More precisely, we look for conditions to guarantee that rank jumps of at least 3 occur on a non-thin
set. We show in fact that it suffices to require the existence of a certain genus zero fibration on X,
which we call an RNRF-conic bundle (see Definitions 2.3.1 and 5.2.2). The following theorem is,
to our knowledge, the largest rank jump observed in this level of generality.

Theorem 5.0.1. If X admits a RNRF-conic bundle, then {t ∈ P1
k | rt ≥ r + 3} is not thin.

Theorem 5.0.1 is proven in Chapter 5 and is also the main result in [CS].
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Chapter 2

Preliminaries

Throughout the text, all surfaces are projective and smooth over a field k, which is either
a number field or an algebraically closed field of arbitrary characteristic. The ground field k is
specified only when necessary. We reserve the letter X to denote a geometrically rational elliptic
surface with elliptic fibration π : X → P1 (Definitions 2.1.1, 2.2.1). The letter S denotes a surface
in general, which may or may not be rational elliptic.

For the general theory of elliptic surfaces we refer the reader to the classical books by Miranda
[Mir89], Cossec and Dolgachev [CD89, Ch. V], Silverman [Sil94, Ch. III], a survey paper by Schuett
and Shioda [SS10] and the more recent book by the same authors [SS19, Ch. 5].

2.1 Elliptic surfaces
Definition 2.1.1. We call S an elliptic surface if there is smooth projective curve C and a surjective
morphism f : S → C, called an elliptic fibration, such that
i) The fiber f−1(t) is a smooth genus-1 curve for all but finitely many t ∈ C.

ii) (existence of a section) There is a morphism σ : C → S such that f ◦σ = idC , called a section.

iii) (relative minimality) No fiber of f contains an exceptional curve in its support (i.e., a smooth
rational curve with self-intersection −1).

Remark 2.1.2. Condition iii) can be understood as an extra hypothesis on f . For our purposes
it is a natural one, as it assures that the fibers agree with Kodaira’s classification (Theorem 2.1.8)
and that, for rational elliptic surfaces, the fibration is uniquely determined by the anticanonical
system (Theorem 2.2.6).
Definition 2.1.3. Let f : S → C be an elliptic fibration. If η ∈ C is the generic point of C, we
call E := f−1(η) the generic fiber of π. In particular, E is an elliptic curve over the function field
K := k(C) and the set E(K) of K-points has a group structure, which we call the Mordell-Weil
group of S.

As the generic fiber is an elliptic curve over K := k(C), the elliptic surface S may be locally
represented in the Weierstrass form, namely

y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6, where ai ∈ K for all i, (2.1)

which is an affine model of the generic fiber in A2
K .
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We also introduce a notion related to that of section.

Definition 2.1.4. A curve D ⊂ S is called a multisection of degree d when f |D : D → C is a flat,
finite morphism of degree d. In particular, a section of f : S → C is a multisection of degree 1.

Remark 2.1.5. In Chapter 5 we deal with multisections of degree 2, which we call bisections.

2.1.1 Correspondence between sections, curves and points on the generic fiber

Let f : S → C be an elliptic fibration and E the generic fiber of f , which is an elliptic curve
over the function field K := k(C). We describe the natural correspondence between sections of f ,
certain curves on S and K-points in E.

Given a section σ : C → S, the curve σ(C) on S is isomorphic to C via σ. Moreover σ(C) meets
the generic fiber E at exactly one K-point, say P ∈ E(K).

Figure 2.1: Correspondence between sections σ : C → S and points P ∈ E(K).

Conversely, a point P ∈ E(K) gives rise to a section in the following manner. Since E is
the generic fiber, P ∈ E(K) corresponds to a point Pv ∈ f−1(v) for almost all v ∈ C. We take
the scheme-theoretic closure of {Pv}v in S and obtain a curve Γ ⊂ S. Because C is smooth, the
restriction f |Γ : Γ→ C is an isomorphism, which induces a section σ : C → S such that Im(σ) = Γ.
This correspondence between sections and K-points in the generic fiber is, in fact, bijective.

Proposition 2.1.6. [SS19, Prop. 5.4] The sections of f : S → C are in a natural bijection
correspondence with the points in E(K) via σ 7→ σ(C) ∩ E(K), where σ : C → S is a section.

Remark 2.1.7. We also identify a section σ : C → S with the image σ(C), which is a curve on S,
hence calling it a section as well. We note that when S is rational, the sections correspond to the
exceptional curves of S (Theorem 2.2.6).

2.1.2 Singular Fibers

The singular fibers of an elliptic fibration play an important role in the study of elliptic sur-
faces. The first classification of singular fibers was made by Kodaira [Kod63a] over the base field C,
followed by Tate [Tat75], who introduced a simplified classifying algorithm also valid over perfect
fields. Although in Tate’s algorithm one finds the same fiber types as Kodaira’s, new fiber types
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may appear over non-perfect fields [Szy04]. As our base field k is either a number field or alge-
braically closed, hence perfect, we may rely on the usual classification (Theorem 2.1.8).

Notation. We follow Kodaira’s notation [Kod63a] for fiber types. A smooth fiber is labeled as I0,
while singular fibers receive one of the following labels: In, I∗n for some n ≥ 1, II, II∗, III, III∗, IV, IV∗,
where ∗ indicates a nonreduced fiber. By Theorem 2.1.8, every reducible fiber (i.e. all types except
I1, II) is associated with an ADE lattice (Figure 2.2). More precisely, the intersection graph of a
reducible fiber forms an extended Dynkin diagram [Hum90, I.4.7] of type Ãn (n ≥ 2), D̃k (k ≥ 4)
or Ẽ` (` = 6, 7, 8), where ∼ indicates that the Dynkin diagram for An, Dk or E` is extended with
one extra node. In Table 2.2 the extra node corresponds to the neutral component Θ0.

Theorem 2.1.8. [Tat75, §6] Let f : S → C be an elliptic fibration. If F a singular fiber of f , then
all possibilities for F are listed below.

Moreover, when F is irreducible (namely of type I1 or II), it is a singular, integral curve of arith-
metic genus 1. When F is reducible, all members in its support are smooth, rational curves with
selfintersection −2.

Remark 2.1.9. Tate’s algorithm consists in identifying singular fibers by analyzing local Weier-
strass forms. This local analysis can be pathological in char(k) = 2, 3, but even in these cases the
possibilities for singular fibers are still the ones listed in Theorem 2.1.8 [Tat75, Section 6]. In our
classification of conic bundles in Chapter 3 we do not deal with local Weierstrass forms, but only
with the numerical behavior of fibers as divisors, hence we are free to use Theorem 2.1.8 in any
characteristic.
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One way to detect singular fibers is by considering a local Weierstrass form (2.1) and identifying
the zeros of the discriminant, namely [Tat75]

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where:

b2 := a2
1 + 4a2,

b4 := a1a3 + 2a4,

b6 := a2
3 + 4a6,

b8 := a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4.

Remark 2.1.10. In char(k) 6= 2, 3 a suitable change of coordinates yields a simpler Weierstrass
form, namely y2 = x3 + A(t)x + B(t) for some A(t), B(t) ∈ k(C) whose discriminant is given by
∆(t) = −16 · (4A(t)3 + 27B(t)2) [Sil94, III.1].

Tate’s algorithm for identifying fiber types was later refined by the Dokchitser brothers [DD13],
which reduced the identification to a simple inspection of the coefficients ai of the Weierstrass form
(2.1). More precisely, given a point v ∈ C and its corresponding discrete valuation v : k(C)× → Z,
the fiber type of f−1(v) is given by Table 2.1 [DD13, Thm. 1].

II III IV I∗0 I∗n>0 IV∗ III∗ II∗

mini v(ai)
i

1
6

1
4

1
3

1
2

1
2

2
3

3
4

5
6

extra condition v(b6) = 2 v(d) = 6
v(d) > 6

v(a2
2 − 3a4) = 2 v(b6) = 4

Table 2.1: Dokchitsers’ refinement of Tate’s algorithm.

(where b6 := a2
3 + 4a6 = Disc(y2 + a3y − a6) and d := Disc(x3 + a2x

2 + a4x+ a6))

We introduce some notation for the components of the reducible fibers. If Fv := f−1(v) is a
reducible fiber of the elliptic fibration f : S → C, we write it as:

Fv =
mv−1∑
i=0

µv,iΘv,i for each v ∈ R,

where

mv : number of irreducible components of Fv.
Θv,i : irreducible components with 0 ≤ i ≤ mv − 1.
µv,i : multiplicity of Θv,i in Fv.
m(1)
v : number of simple components of Fv, i.e. such that µv,i = 1.
R : set of reducible fibers of f.
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For a fixed v, we order the i-indices of the components Θv,i in the fashion of [Kod63a] as
indicated in Table 2.2 (we include the multiplicities but omit the index v for simplicity). We warn
the reader that the i-indices in I∗n do not follow the usual order of the respective Dynkin diagram
for the lattice Dn+4 (Figure 2.2).

II∗ (Ẽ8)
•

2Θ7 •
4Θ6 •

6Θ5

•3Θ8

•
5Θ4 •

4Θ3 •
3Θ2 •

2Θ1 •
Θ0

III∗ (Ẽ7)
•

Θ0 •
2Θ1 •

3Θ2 •
4Θ3

•2Θ7

•
3Θ4 •

2Θ5 •
Θ6

IV∗ (Ẽ6)
•

Θ0 •
2Θ1 •

3Θ2

•2Θ5

•Θ6

•
2Θ3 •

Θ4

I∗n (D̃n+4)

•Θ0

•Θ1

•2Θ4 •
2Θ5

•
2Θn+3

•2Θn+4

•Θ2

•Θ3

In (Ãn−1)
•Θ0

•
Θ1

•Θ2

•Θ3
•

Θn−1

Table 2.2: Reducible fibers according to its Kodaira type and
its respective extended Dynkin diagram.
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2.1.3 Euler number

We introduce the formula for the Euler number (or Euler-Poincaré characteristic) of S, denoted
by e(S). When working over the complex numbers, this corresponds to the topological Euler
number. Over general fields, however, the Euler number is defined by the alternating sum of Betti
numbers, i.e. dimensions of the `-adic étale cohomology [SS19, §5.12].

For a fiber Fv of f : S → C with mv components, we have

e(Fv) =


0, if Fv is smooth;
mv, if Fv is singular of type In;
mv + 1, if Fv is singular and not of type In.

It is worth noting that, when there is no wild ramification, the number e(Fv) coincides with the
valuation v(∆(t)) of the discriminant of the Weierstrass form [SS19, §5.9]. In particular, assuming
char(k) 6= 2, 3 is enough to avoid wild ramification [SS19, §5.12] and we obtain the following formula.

Theorem 2.1.11. [CD89, Prop. 5.16] Let f : S → C over k with char(k) 6= 2, 3. Then

e(S) =
∑
v∈C

e(Fv).

2.1.4 Base change

We explain the relationship between base change on elliptic surfaces and changes in the Mordell-
Weil rank. We show how this is relevant to the study of rank jumps in Chapter 5, particularly in
the case of base changes of degree 2.

Base change and Mordell-Weil rank

In the study of an elliptic curve E over a field L it is a common operation to extend the base
field, i.e. to consider a field extension L′/L and analyze the elliptic curve E over L′. In this case
the set of L′-points on E is at least as large as the set of L-points, which implies a possibly higher
Mordell-Weil rank over L′ than over L.

In the case of an elliptic fibration f : S → C, whose generic fiber E is an elliptic curve over
the function field K := k(C), this construction has a geometric counterpart. Indeed, a finite field
extension K ′/K of degree d corresponds to a finite morphism of curves ϕ : C ′ → C of degree d,
and we obtain a commutative diagram from base change

S′ S

C ′ C

ϕ′

f ′ f

ϕ

where S′ := S ×C C ′ is a new elliptic surface with fibration f ′ : S′ → C ′. Notice in particular
that the Mordell-Weil rank of f ′ is greater or equal to the Mordell-Weil rank of f , since each section
σ : C → S of f has a natural corresponding section (σ, id) : C ′ = C ×C C ′ → S ×C C ′ = S′ of f ′.
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Base change and rank jumps

If we are able to find a section of f ′ distinct from those of the form (σ, id) : C ′ → S′, then
there is a legitimate reason to ask whether f ′ has strictly higher Mordell-Weil rank than f . It
turns out that this new section does exists when C ′ is a multisection of f , i.e. a curve C ′ ⊂ S
such that f |C′ : C ′ → C is a finite morphism. Indeed, the inclusion ι : C ′ ↪→ S induces a section
(ι, id) : C ′ = C ×C C ′ → S′ distinct from those of the form (σ, id).

As we now explain, the observation in the previous paragraph is crucial to our investigation to
our investigation of rank jumps (Chapter 5), i.e. of the occurrence of fibers of f whose Mordell-Weil
rank is greater than the generic rank.

Indeed, assume that the new section (ι, id) is independent from the ones of the form (σ, id) in
the Mordell-Weil group of f ′ : S′ → C ′. In particular r′ > r, where r, r′ are the generic ranks
of f, f ′ respectively. Assuming moreover that C ′ has infinitely many k-points, then Silverman’s
specialization theorem [Sil83, Thm. C] guarantees that rank f ′−1(t) ≥ r′ for infinitely many t ∈
C ′(k). By construction, the fiber f ′−1(t) corresponds to f−1(ϕ(t)), hence rank f−1(ϕ(t)) ≥ r′ > r
for infinitely many t ∈ C ′(k). In particular, rank jumps occur at infinitely many fibers of f .

Conclusion: if C ′ is a multisection of f : S → C which contains infinitely many k-points and
induces a new independent section of f ′ : S′ → C ′, then there are infinitely many fibers of f for
which the rank jumps.

Quadratic base change

In Chapter 5 we address the problem of rank jumps on a rational elliptic surface π : X → P1

over a number field k. The following result from [Sal09] tells us of the possibility of having infinitely
many curves D ⊂ X inducing a new independent section of the base-changed fibration π′ : X ′ → D.

Theorem 2.1.12. [Sal09] Let L be a pencil of curves on X not all contained in a fiber of π. Then
after base change under ϕ := π|D : D → P1, the elliptic fibration π′ : X ′ = X ×P1 D → D has
Mordell-Weil rank strictly greater than that of π for all but finitely many D ∈ L .

As mentioned earlier, in order to conclude that rank jumps occur at infinitely many fibers, we
still need that there be some curve in L with infinitely many k-points. One way to obtain such L
is by finding a pencil of genus 0 curves over k (a conic bundle, as in Section 2.3). By Lemma 2.3.5,
this is tantamount to finding a bisection over k, i.e. a curve D ⊂ X such that ϕ : D → P1 is finite
of degree 2, in which case we perform a quadratic base change.

Singular fibers after quadratic base change

In Chapter 5, more specifically in Lemma 5.2.5, we need to describe how singular fibers of
π′ : X ′ → D relate to those of π : X → P1 in a quadratic base change. This information depends
on how the degree 2 morphism ϕ = π|D : D → P1 ramifies, as explained in what follows.

If t ∈ P1 is not a branch point of ϕ : D → P1, then ϕ−1(t) = {t1, t2} and the fibers
π′−1(t1), π′−1(t2) are both isomorphic to π−1(t). On the other hand, if t is a branch point of
ϕ, then ϕ−1(t) = {t1} and the fiber type of π′−1(t1) is determined by the fiber type of π−1(t)
according to Table 2.3 below.
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Fibre of π Fibre of π′
In, n ≥ 0 I2n
I∗n, n ≥ 0 I2n

II IV
II∗ IV∗
III I∗0
III∗ I∗0
IV IV∗
IV∗ IV

Table 2.3: Singular fibers above branch points in a quadratic base change [Mir89, VI.4.1].

Example. Consider the rational elliptic surface X : y2 = x3 + t. By Dokchitsers’ algorithm
(Table 2.1), we identify the fiber types II, II∗ at t = 0 and t = ∞ respectively. Let ϕ : P1 → P1

be given by (s : t) 7→ (s2 : t2), whose branch points are t = 0 and t = ∞. The Weierstrass form
of the base-changed surface is obtained by pull-back under ϕ, namely X ′ : y2 = x3 + t2. Again by
Dokchitsers’ algorithm, we identify types IV, IV∗ at t = 0 and t = ∞ respectively, which agrees
with Table 2.3.

2.2 Rational elliptic surfaces
Among the many examples of nontrivial elliptic surfaces, the most easy to construct, describe

and manipulate are rational elliptic surfaces, which is the central object of this thesis. In the present
section we make the distinction between rational and geometrically rational, explain how rational
elliptic surfaces can be constructed from pencils of cubics on P2 and list some of their properties.

Definition 2.2.1. We say that S is a rational elliptic surface if S is birational to P2
k and admits

an elliptic fibration f : S → C.

Remark 2.2.2. Since S is rational, C is isomorphic to P1
k by Lüroth’s theorem.

2.2.1 Rational vs. geometrically rational surfaces

When dealing with surfaces over a non-algebraically closed field (in our case, a number field in
Chapter 5), we must distinguish between a rational surface and a geometrically rational surface.

Definition 2.2.3. A surface S over k is called geometrically rational if S ×k k is birational to P2
k
.

In Chapter 5 we deal with elliptic surfaces when k is a number field, in which case the following
criterion can be used to determine whether a surface is geometrically rational.
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Lemma 2.2.4. Let f : S → C be a relatively minimal elliptic surface over a number field k and
let e(S) be its Euler number. Then S is geometrically rational if and only if e(S) = 12.

Proof. Regardless of whether S is geometrically rational, K2
S = 0 by relative minimality [Bea96,

Prop. IX.3], hence by Noether’s formula e(S) = 12χ(S). If e(S) = 12 holds, then χ(S) = 1, which
implies that S is geometrically rational [Mir89, Lemma III.4.6]. Conversely, let S be geometrically
rational, i.e. S := S ×k k is birational to P2

k
. As χ is a birational invariant, χ(S) = 1. From the

inclusions H i(S,OS) ⊂ H i(S,OS) for i = 1, 2 we conclude that χ(S) = 1, hence e(S) = 12.

2.2.2 Construction from pencils of cubics

We exhibit a standard method for constructing rational elliptic surfaces over an arbitrary field.
We apply this in Chapter 3 to produce examples of rational elliptic surfaces.

Let L be a field and F,G cubics on P2
L, at least one of them smooth. Assume moreover that

F,G only meet at L-rational points. The intersection F ∩ G has precisely 9 points counted with
multiplicity, and the pencil of cubics P := {sF + tG = 0 | (s : t) ∈ P1

L} has F ∩G as its base locus.
Let φ : P2

L 99K P1
L be the rational map associated to P. The blowup p : X → P2

L of the 9 points of
the base locus resolves the indeterminacies of φ and we get an elliptic fibration π : X → P1

L.

X P2
L P1

L
p

π

φ

By construction, X is birational to P2
L. Moreover, the blowup of each base point induces a

(−1)-curve on X, which is a section of π : X → P1. If we assume moreover that L is algebraically
closed, it turns out that every rational elliptic surface can be obtained by this procedure.

Theorem 2.2.5. [CD89, Theorem 5.6.1] Let X be a rational elliptic surface with elliptic fibration
π : X → P1 over an algebraically closed field. Then X is isomorphic to the blowup of P2 at the base
locus of a pencil of cubics.

2.2.3 Properties of rational elliptic surfaces

In addition to the property in Theorem 2.2.5, we mention some other distinguished properties of
rational elliptic surfaces. As these properties are geometric in nature, we assume k is algebraically
closed throughout the rest of this section.

Theorem 2.2.6. [SS10, Section 8.2] Assume k algebraically closed and let X be a rational elliptic
surface with elliptic fibration π : X → P1. Then

i) χ(X) = 1, where χ(X) := h0(X,OX)− h1(X,OX) + h2(X,OX).

ii) −KX is linearly equivalent to any fiber of π. In particular, −KX is nef and X admits precisely
one elliptic fibration (namely, the one defined by the anticanonical system | −KX |).

iii) Every section of π is an exceptional curve (smooth, rational curve with selfintersection −1).

The following property is related to torsion sections of rational elliptic surfaces and plays an
important role in the study of intersection numbers in Chapter 4.
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Theorem 2.2.7. [MP89, Lemma 1.1] On a rational elliptic surface, Q1 · Q2 = 0 for any distinct
Q1, Q2 ∈ E(K)tor. In particular, if O is the neutral section, then Q·O = 0 for all Q ∈ E(K)tor\{O}.

Remark 2.2.8. Theorem 2.2.7 holds for elliptic surfaces over C even without assuming the surface
is rational. Over an arbitrary algebraically closed field, however, the rationality hypothesis is needed
[SS19, Cor. 8.30].

We include two more results. Lemma 2.2.9 provides a simple test to detect fibers of the elliptic
fibration, whereas Lemma 2.2.10 describes the negative curves on a rational elliptic surface.

Lemma 2.2.9. Let π : X → P1 be a rational elliptic surface and E an integral curve in X. If
E ·KX = 0, then E is a component of a fiber of π. If moreover E2 = 0, then E is a fiber.

Proof. If P ∈ E, then the fiber F := π−1(π(P )) intersects E at P , i.e. E ∩ F 6= ∅. On the other
hand, −KX is linearly equivalent to F by Theorem 2.2.6, so E · F = −E ·KX = 0. Hence E must
be a component of F . Assuming moreover that E2 = 0, we prove that E = F . In case F is smooth,
this is clear. So we assume F is singular and analyze its Kodaira type according to Theorem 2.1.8.
Notice that F is not reducible, otherwise E would be a (−2)-curve, which contradicts E2 = 0.
Hence F is either of type I1 or II. In both cases F is an integral curve, therefore E = F .

Lemma 2.2.10. Let π : X → P1 be a rational elliptic surface. Every negative curve on X is either
a (−1)-curve (section of π) or a (−2)-curve (component from a reducible fiber of π).

Proof. Let E be any integral curve in X with E2 < 0. By Theorem 2.2.6, −KX is nef and linearly
equivalent to any fiber of π. So E · (−KX) ≥ 0 and by adjunction [Bea96, I.15] 2pa(E) − 2 =
E2 + E · KX < 0, which only happens if pa(E) = 0. Consequently E2 = −1 or −2. In case
E2 = −2 we have E · KX = 0, so E is fiber a component by Lemma 2.2.9 and this fiber is
reducible by Theorem 2.1.8. If E2 = −1, by adjunction [Bea96, I.15] E · (−KX) = 1. But −KX is
lineary equivalent to any fiber, so E meets a general fiber at one point, therefore E is a section by
Proposition 2.1.6.

Remark 2.2.11. The adjunction formula in [Bea96, I.15] is proven over the complex numbers. As
the proof only relies on sheaf cohomology and Riemann-Roch [Har77, V.1.6], it can be extended to
algebraically closed fields (in fact, to arbitrary fields).

2.3 Conic bundles
We define conic bundles and explain where they appear the general theory of algebraic surfaces

and in this thesis more specifically.

Definition 2.3.1. A conic bundle on a surface S is a surjective morphism onto a smooth curve
ϕ : S → C whose general fiber is a smooth, irreducible curve of genus zero.

Remark 2.3.2. When S is rational, C is isomorphic to P1 by Lüroth’s theorem.

Remark 2.3.3. Definition 2.3.1 is essentially identical to the ones in [LS22, Definition 2.5], [GS17,
Definition 3.1]. The only difference here is that we allow the base field k to be algebraically closed
of any characteristic.
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A prominent case where conic bundles arise is in the classification of minimal models of L-
rational surfaces, where L is an arbitrary field. As shown by Iskovskikh [Isk79, Theorem 1], if S is
an L-minimal rational surface, then S is either (a) P2

L, (b) a quadric on P3
L with Pic(S) ' Z, (c)

a del Pezzo surface with Pic(S) = Z〈−KS〉, or (d) a surface with Pic(S) ' Z2 admitting a conic
bundle whose singular fibers are isomorphic to a pair of lines meeting at a point. The latter was
named a standard conic bundle by Manin and Tsfasman [MT86, Subsection 2.2]. We remark that
the notion of standard conic bundle is often extended to higher dimension and plays a role in the
classification of threefolds over C in the Minimal Model Program (see, for example, [Sar80], [Isk87]
and the survey [Pro18]).

Remark 2.3.4. Definition 2.3.1 is more general than that of standard conic bundle in [MT86,
Subsection 2.2], in which every singular fiber is isomorphic to a pair of lines meeting at a point. In
our definition, such a singular fiber is of one among four possible types, namely of type A2 as in
Theorem 3.2.2.

As explained in Subsection 2.1.4, the existence of a pencil of genus 0 curves (i.e. a conic bundle)
on a geometrically rational elliptic surface π : X → P1 is relevant to the study of rank jumps in
Chapter 5. The following result by [LS22] tells us that, over a number field k, the presence of a
conic bundle over k is in fact equivalent the the existence of a bisection over k (Remark 2.1.5).

Lemma 2.3.5. [LS22, Lemma 2.6] Let π : X → P1 be a geometrically rational elliptic surface
over a number field k. Then X admits a conic bundle over k if and only if π admits a bisection of
arithmetic genus 0 over k.

2.4 Thin sets and the Hilbert property
We define thin sets and the Hilbert property following Serre [Ser08, §3.1]. We provide a brief

explaination of why these concepts are relevant and how they appear in this thesis.

Definition 2.4.1. Let V be a variety over a field k. A subset T ⊆ V (k) is called thin if it is a finite
union of subsets which are either contained in a proper closed subvariety of V ; or in the image
f(W (k)) where f : W → V is a generically finite dominant morphism of degree at least 2 and W
is an integral variety over k.

Definition 2.4.2. A variety V over a field k is said to satisfy the Hilbert property if the set V (k)
is not thin.

A classical example of a variety satisfying the Hilbert property is Pnk when k is a numbert field,
as a consequence of Hilbert’s irreducibility theorem [Ser08, Thm. 3.4.1]. A still unproven conjecture
by Colliot-Thélène states that, moreover, every unirational variety over a number field satisfies the
Hilbert property [Ser08, Thm. 3.5.7 and Conjecture 3.5.8]. If proven true, this is enough to give
an affirmative answer to the inverse Galois problem [Ser08, Thm. 3.5.9].

In Chapter 5 we are concerned specifically with non-thin subsets of P1, which is the base of
the rational elliptic fibration π : X → P1. We note that any proper Zariski-closed subset of P1

is finite and that in order to prove that an infinite subset T ⊂ P1(k) is not thin, it suffices to
show that for any finite number of finite covers ϕi : Yi → P1 there is a point P ∈ T such that
P /∈ ϕi(Yi)(k) ⊂ P1(k) for each i.
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2.5 General facts about the geometry of surfaces
We list some elementary results involving divisors, fibers of morphisms S → P1 and linear

systems, which are needed in the classification of conic bundle fibers in Chapter 3. We remark that
these results are valid for smooth surfaces in general, hence do not depend on the theory of elliptic
surfaces.

Lemma 2.5.1. Let D be an effective divisor on a surface S such that D ·C = 0 for all C ∈ Supp D.
Then D is nef and D2 = 0.

Proof. To see that D is nef, just notice that D ·C ′ ≥ 0 for every C ′ /∈ Supp D. To prove that D2 = 0
let D =

∑
i niCi, where each Ci is in Supp D. Then D2 = D · (

∑
i niCi) =

∑
i niD · Ci = 0.

The most natural application of Lemma 2.5.1 is when D is a fiber of a surjective morphism
S → P1. In the next lemma, we explore some properties of such morphisms needed in Chapter 3.

Lemma 2.5.2. Let F be a fiber of a surjective morphism f : S → P1. Then the following hold:

a) F · C = 0 for all C ∈ Supp F .

b) If F is connected and E is a divisor such that Supp E ⊂ Supp F , then E2 ≤ 0. Moreover
E2 = 0 if and only if E = rF for some r ∈ Q.

c) If F1, ..., Fn are the connected components of F , then each Fi is nef with F 2
i = 0 and Fi ·KS ∈ 2Z.

Proof. a) Taking an arbitrary C ∈ Supp F and another fiber F ′ 6= F , we have F · C = F ′ · C = 0.

b) This is Zariski’s lemma [Pet95, Ch. 6, Lemma 6].

c) Fix i. To prove that Fi is nef and F 2
i = 0 we show that Fi ·Ci = 0 for any Ci ∈ Supp Fi then

apply Lemma 2.5.1. Indeed, if j 6= i, the components of Fi, Fj are disjoint, so Fj ·Ci = 0. Since F is a
fiber and Ci ∈ Supp Fi ⊂ Supp F , then F ·Ci = 0 by a). Hence Fi·Ci = (F1+...+Fn)·Ci = F ·Ci = 0,
as desired. For the last part, by Riemann-Roch Fi ·KS = 2(χ(S)− χ(S, Fi)) ∈ 2Z.

We end this section with a simple observation on linear systems without fixed components.

Lemma 2.5.3. Let E,E′ be effective divisors such that E′ ≤ E and that the linear systems |E|, |E′|
have the same dimension. If |E| has no fixed components, then E′ = E.

Proof. As E′ ≤ E, we have an inclusion of vector spaces H0(S,E′) ⊂ H0(S,E). By hypothesis,
their dimensions coincide, therefore H0(S,E′) = H0(S,E). Hence

|E| = {E + div(f) | f ∈ H0(S,E)}
= {E′ + div(f) + (E − E′) | f ∈ H0(S,E′)}
= |E′|+ (E − E′).

Assuming |E| has no fixed components, we must have E − E′ = 0.
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2.6 Lattices
We stablish some basic terminology regarding lattices, which we adopt throughout the text,

and present ADE lattices, which are the most important for us when dealing with Mordell-Weil
lattices in Section 2.7.

Definition 2.6.1. A lattice is a pair (L, 〈·, ·〉), where L is a Z-module and 〈·, ·〉 : L × L → R a
non-degenerate symmetric bilinear pairing. We say that the lattice is

i) positive-definite (resp. negative-definite) when 〈x, x〉 > 0 (resp. 〈x, x〉 < 0) for all x ∈ L \ {0}.

ii) an integer lattice when 〈x, y〉 ∈ Z for all x, y ∈ L.

iii) an even lattice when 〈x, x〉 ∈ 2Z for all x ∈ L.

Definition 2.6.2. The dual lattice of an integral latice (L, 〈·, ·〉) is a sublattice of L⊗ZQ given by

L∗ := {x⊗ r ∈ L⊗Z Q | r · 〈x, y〉 ∈ Z for all y ∈ L},

with a symmetric non-degenerate bilinear pairing naturally defined by:

〈x⊗ r, x′ ⊗ r′〉 := r · r′ · 〈x, x′〉 for all x, x′ ∈ L, r, r′ ∈ Q.

In particular, there is a natural embedding L ↪→ L∗ via x 7→ x⊗ 1.

Definition 2.6.3. We use L− to denote the opposite lattice of (L, 〈·, ·〉), i.e. the lattice defined by
the same Z-module L with the opposite pairing −〈·, ·〉.

Definition 2.6.4. Let (L, 〈·, ·〉) be a lattice generated by α1, ..., αr ∈ L. We define the determinant
of L as the determinant of the Gram matrix

detL := det(〈αi, αj〉)i,j
Remark 2.6.5. The determinant does not depend on the choice of the generators. Indeed, if
β1, ..., βr generate L, then the base-change matrix U is an invertible matrix with integer coefficients.
In particular, detU = ±1, hence det(〈βi, βj〉)i,j = (detU)2 det(〈αi, αj〉)i,j = det(〈αi, αj〉)i,j .

We introduce the notion of root lattices, which is central to many apparently unrelated areas
of mathematics such as combinatorics, singular theory, Lie algebras and, in our case, Mordell-Weil
lattices.

Definition 2.6.6. A positive-definite (resp. negative-definite) integer lattice L is called a root
lattice if it is generated by elements x ∈ L such that 〈x, x〉 = 2 (resp. 〈x, x〉 = −2). Such
generators are called the roots of L.

We define the fundamental root lattices, namely the ADE lattices.

Definition 2.6.7. A positive-definite root lattice L of rank r is said to be of type Ar (r ≥ 1), Dr

(r ≥ 4) or Er (r = 6, 7, 8) if it is generated by some set of roots α1, ..., αr such that 〈αi, αj〉 = 0 for
every i < j except in the following cases:

(Ar) 〈αi, αj〉 = −1⇔ i+ 1 = j.

(Dr) 〈αi, αj〉 = −1⇔ i+ 1 = j < r, or i = r − 2, j = r.

(Er) 〈αi, αj〉 = −1⇔ i+ 1 = j < r, or i = 3, j = r.
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Figure 2.2: Dynkin diagrams associated with each ADE lattice.

Remark 2.6.8. ADE lattices may also be defined as negative-definite, in which case all signs
should be inverted in Definition 2.6.7.

The importance of ADE lattices is explained by the following result.

Theorem 2.6.9. [Ebe13, Thm 1.2] Let L be a positive-definite (or negative-definite) integer lattice.
Then L is a root lattice if and only if it is isometric to a direct sum of ADE lattices.

2.7 Mordell-Weil lattices
We introduce the Mordell-Weil lattice, which is our central tool for Chapter 4. Its notion was

first put forward by Elkies and Shioda independently in [Elk90], [Shi90], [Shi89] and consists of a
lattice structure on the Mordell-Weil group E(K) with an explicit connection with the Néron-Severi
lattice, in a sense made precise in this seciton.

Historically, many attempts have been made, in different contexts, to define a bilinear pairing
on E(K). This dates back to [Man64], [BSD65] and [Tat66], whose objects of interest were, re-
spectively, heights on Abelian varieties, the Birch and Swinnerton-Dyer conjecture and the Tate
conjecture. The further step of connecting a lattice structure on E(K) with the Néron-Severi lat-
tice was made by [CZ79], whose original goal was to determine whether a given set of sections can
generate E(K). The idea of a Mordell-Weil lattice was already implicit in the latter, but a precise
definition only appears a few years later in [Elk90], [Shi90], [Shi89].

Since then, many applications have been found for Mordell-Weil lattices of both arithmetic and
geometric interest (see, for instance, [SS19, Chapter 10]). In this thesis we make a specific use of
it, namely, we take advantage of the fact that Mordell-Weil lattices have been explicitly classified
for rational elliptic surfaces [OS91] in order to obtain information about intersection numbers of
sections in Chapter 4.
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This section is dedicated to introducing the Mordell-Weil lattice, and is organized as follows.
First we make some observations about the Néron-Severi lattice NS(S) and define two sublattices,
namely the lattice T (Definition 2.7.3) and the trivial lattice (Definition 2.7.5). We proceed with
the construction of the height pairing, which leads to the definition of the Mordell-Weil lattice.
We also present the explicit formula for computing the height pairing and introduce the narrow
Mordell-Weil lattice.

We begin with a peculiar property of elliptic surfaces f : S → C in general, namely that
numerical and algebraic equivalences coincide on S. By this feature, we may consider the Néron-
Severi group NS(S) equipped with the intersection form, called the Néron-Severi lattice.

Theorem 2.7.1. [Shi90, Thm. 3.1] On an elliptic surface S, algebraic and numerical equivalences
coincide, i.e. D1, D2 ∈ Div(S) are equivalent in NS(S) if and only if D1 · D = D2 · D for every
D ∈ Div(S). Equivalently stated, NS(S) is torsion-free.

Remark 2.7.2. The fact that NS(S) is torsion-free allows us to extend scalars to Q, i.e. to define
NS(S)Q := NS(S)⊗Z Q without annihilating elements.

We define two important sublattices of NS(S), both of which contain information about the
reducible fibers of f : S → C. We use the notation from Subsection 2.1.2.

Definition 2.7.3. For each v ∈ R we define the lattices Tv and T as

Tv := Z〈Θv,i | i > 0〉,

T :=
⊕
v∈R

Tv.

Remark 2.7.4. By Kodaira’s classification (Theorem 2.1.8), each Tv can be represented by a
Dynkin diagram. More precisely, the opposite lattice T−v is isomorphic to an ADE lattice (Fig-
ure 2.2).

The next lattice we define plays an important role in the construction of the Mordell-Weil lattice.
Like the lattice T , it contains information about the reducible fibers, only with the addition of the
neutral section O and the neutral components Θv,0 for v ∈ R in the generator set.

Definition 2.7.5. If O ∈ E(K) be the neutral section, we define the trivial lattice as

Triv(S) := Z〈O,Θv,i | v ∈ R, i ≥ 0〉.

At this point we call the reader’s attention to the distinction between the group operations in
the Mordell-Weil group and in the Néron-Severi group. As explained in Subsection 2.1.1, sections
P1, P2 ∈ E(K) may also be seen as curves, hence defining classes P 1, P 2 ∈ NS(S). However,

P 1 + P 2 6= P1 + P2.

The following theorem states that, modulo the trivial lattice Triv(S), these different operations
actually induce a group isomorphism.

Theorem 2.7.6. [Shi90, Thm 1.3] The following map is a group isomorphism:

E(K)→ NS(S)/Triv(S)
P 7→ P mod Triv(S)
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We proceed to define a bilinear pairing on E(K). We note that, in order to do it, we cannot
use the intersection pairing directly, which only defines a lattice on NS(S) but not on E(K). This
difficulty is overcome by a geometric construction which involves the orthogonal projection with
respect to Triv(S) in the Q-vectors space NS(S)Q := NS(S)⊗Z Q.
Lemma 2.7.7. [Shi90, Lemma 8.1] There is a unique function ϕ : E(K) → NS(X)Q with the
following properties:
(i) ϕ(P ) ≡ P mod Triv(S)Q for all P ∈ E(K).

(ii) ϕ(P ) ⊥ Triv(S) for all P ∈ E(K).
Moreover, the class ϕ(P ) ∈ NS(S)Q is represented by the following Q-divisor:

DP := P −O − (P ·O + χ(S))F +
∑
v∈R

(Θv,1, ...,Θv,mv−1)(−A−1
v )

 P ·Θv,1
...

P ·Θv,mv−1

 ,
where F is a fiber of π and Av is the matrix (Θv,i ·Θv,j)1≤i,j≤mv−1.

In fact, the map ϕ is a group morphism and induces an embedding E(K)/E(K)tor ↪→ NS(S)Q.
Lemma 2.7.8. [Shi90, Lemma 8.2] The map ϕ : E(K) → NS(X)Q is a group homomorphism.
Moreover, kerϕ = E(K)tor, hence ϕ induces an injective morphism E(K)/E(K)tor ↪→ NS(S).

We are ready to define a bilinear pairing on E(K), which we call the height pairing.
Theorem 2.7.9. [Shi90, Thm 6.20] We define the height pairing as

〈·, ·〉 : E(K)× E(K)→ Q
P,Q 7→ −ϕ(P ) · ϕ(Q),

which induces a positive-definite pairing on E(K)/E(K)tor. The lattice (E(K)/E(K)tor, 〈·, ·〉) is
called the Mordell-Weil lattice.

Once the height pairing is constructed, we also define the height of a section and the minimal
norm of the Mordell-Weil lattice.
Definition 2.7.10. The height of a section and the minimal norm of E(K) are defined as

h(P ) := 〈P, P 〉 for each P ∈ E(K),

µ := min{h(P ) > 0 | P ∈ E(K)}.
A convenient feature of the height pairing is that it can be computed explicitly. Before we

introduce the explicit formula, we define one of the terms it involves, namely the local contribution.
Definition 2.7.11. Let v ∈ R and P,Q ∈ E(K). If P,Q meet the fiber Fv at Θv,i,Θv,j respectively,
we define the local contribution as

contrv(P,Q) :=
{

(−A−1
v )i,j if i, j ≥ 1,

0 otherwise.
contrv(P ) := contrv(P, P ).

where (−A−1
v )i,j is the (i, j)-entry of the matrix −A−1

v in Lemma 2.7.7.
The explicit values for the local contributions are in Table 2.4 [SS19, Table 6.1].
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Type of Fv III III∗ IV IV∗ In I∗n

Tv A1 E7 A2 E6 An−1 Dn+4

contrv(P ) 1
2

3
2

2
3

4
3

i(n−i)
n

{
1 (i = 1)
1 + n

4 (i > 1)

contrv(P,Q) - - 1
3

2
3

i(n−j)
n

{1
2 (i = 1)
1
2 + n

4 (i > 1)

Table 2.4: Local contributions assuming Fv meets P at Θv,i and Q at Θv,j with i < j.

We are ready to present the explicit formula for the height pairing, called the height formula.

Theorem 2.7.12. [Shi90, Thm. 8.6] Let P,Q ∈ E(K) and O ∈ E(K) the neutral section. Then

〈P,Q〉 = χ(S) + P ·O +Q ·O − P ·Q−
∑
v∈R

contrv(P,Q), (2.2)

h(P ) = 2χ(S) + 2(P ·O)−
∑
v∈R

contrv(P ). (2.3)

Remark 2.7.13. In this thesis we focus on rational elliptic surfaces, in which case χ(S) = 1 in
equations 2.2 and 2.3 by Theorem 2.2.6.

An important sublattice of E(K) is the narrow Mordell-Weil lattice E(K)0, defined as

E(K)0 := {P ∈ E(K) | P intersects Θv,0 for all v ∈ R}
= {P ∈ E(K) | contrv(P ) = 0 for all v ∈ R}.

As a subgroup, E(K)0 is torsion-free; as a sublattice, it is a positive-definite even integral lattice
with finite index in E(K) [SS19, Thm. 6.44]. The importance of the narrow lattice can be explained
by its considerable size as a sublattice and by the easiness to compute the height pairing on it,
since all contribution terms vanish. A complete classification of the lattices E(K) and E(K)0 on
rational elliptic surfaces is found in [OS91, Main Thm.].
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2.8 Bounds cmax, cmin for the contribution term
We define the bounds cmax, cmin for the contribution term

∑
v contrv(P ) and state some simple

facts about them in the case of rational elliptic surfaces. We also provide an example to illustrate
how they are computed.

In our investigation of intersection numbers in Chapter 4, the need for these bounds arise
naturally. Indeed, suppose we are given a section P ∈ E(K) whose height h(P ) is known and
we want to determine P · O. In case P ∈ E(K)0 we have a direct answer, namely P · O =
h(P )/2− 1 by the height formula (2.3). However, if P /∈ E(K)0 the computation of P ·O depends
on the contribution term cP :=

∑
v contrv(P ), which by Table 2.4 depends on how P intersects the

reducible fibers of π. Usually we do not have this intersection data at hand, hence an estimate for
cP becomes imperative.

Definition 2.8.1. Assuming R 6= ∅, we define

cmax :=
∑
v∈R

max{contrv(P ) | P ∈ E(K)},

cmin := min {contrv(P ) > 0 | P ∈ E(K), v ∈ R} .

Remark 2.8.2. In a rational elliptic surface, R = ∅ only occurs when the Mordell-Weil rank is
r = 8 (No. 1 in Table 6.1). In this case E(K)0 = E(K) and

∑
v contrv(P ) = 0 ∀P ∈ E(K), hence

we adopt the convention cmax = cmin = 0.

Remark 2.8.3. We use cmax, cmin as bounds for cP :=
∑
v contrv(P ). For our purposes it is not

necessary to know whether cP actually attains one of these bounds for some P , therefore cmax, cmin
should be understood as hypothetical values.

We state some facts about cmax, cmin.

Lemma 2.8.4. Let X be a rational elliptic surface with Mordell-Weil rank r ≥ 1. Then

i) cmin > 0 if R 6= ∅.

ii) cmax < 4.

iii) cmin ≤
∑
v∈R contrv(P ) ≤ cmax ∀P /∈ E(K)0. For P ∈ E(K)0, only the second inequality holds.

iv) If
∑
v∈R contrv(P ) = cmin, then contrv′(P ) = cmin for some v′ and contrv(P ) = 0 for v 6= v′.

Proof. Item i) is immediate from the definition of cmin. For ii) it is enough to check the values of
cmax directly in Table 6.1. For iii), the second inequality follows from the definition of cmax and
clearly holds for any P ∈ E(K). If P /∈ E(K)0, then cP :=

∑
v contrv(P ) > 0, so contrv0(P ) > 0

for some v0. Therefore cP ≥ contrv0(P ) ≥ cmin.
At last, we prove iv). If R = ∅, then cmin = 0 and the claim is trivial. Hence let R 6= ∅ and∑

v contrv(P ) = cmin. Assume by contradiction that there are v1 6= v2 such that contrvi(P ) > 0 for
i = 1, 2. By definition of cmin, we have cmin ≤ contrvi(P ) for i = 1, 2, thus

cmin =
∑
v

contrv(P ) ≥ contrv1(P ) + contrv2(P ) ≥ 2cmin,

which is absurd because cmin > 0 by i). Hence there is only one v′ with contrv′(P ) > 0, while
contrv(P ) = 0 for all v 6= v′. In particular, contrv′(P ) = cmin.
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Explicit computation. Once we know the lattice T associated with the reducible fibers of π, the
computation of cmax, cmin is simple. For a fixed v ∈ R, the extreme values for the local contribution
contrv(P ) are given in Table 2.5, which is derived from Table 2.4. We provide an example to
illustrate this computation.

Tv max{contrv(P ) | P ∈ E(K)} min{contrv(P ) > 0 | P ∈ E(K)}

An−1
`(n−`)
n , where ` :=

⌊
n
2
⌋ n−1

n

Dn+4 1 + n
4 1

E6
4
3

4
3

E7
3
2

3
2

Table 2.5: Extreme values of the local contribution contrv(P ).

Example: Assume π has fiber configuration (I4, IV, III, I1). The reducible fibers are I4, IV, III,
so T = A3 ⊕ A2 ⊕ A1. By Table 2.5, the maximal contributions for A3, A2, A1 are 2·2

4 = 1, 2
3 ,

1
2

respectively. The minimal positive contributions are 1·3
4 = 3

4 ,
2
3 ,

1
2 respectively. Hence

cmax = 1 + 2
3 + 1

2 = 13
6 ,

cmin = min
{3

4 ,
2
3 ,

1
2

}
= 1

2 .

2.9 The difference ∆ = cmax − cmin

We explain why the value of ∆ := cmax − cmin is relevant to the investigation in Chapter 4,
specially in Section 4.4. For rational elliptic surfaces, we verify that ∆ < 2 in most cases and
identify the exceptional ones in Table 2.6 and Table 2.7.

As noted in Section 2.8, in case P /∈ E(K)0 and h(P ) is known, the difficulty of determining
P ·O lies in the contribution term cP :=

∑
v contrv(P ). In particular, the range of possible values

for cP determines the possibilities for P ·O. This range is measured by the difference

∆ := cmax − cmin.

Hence a smaller ∆ means a better control over the intersection number P ·O, which is why ∆
plays an important role in determining possible intersection numbers. In Section 4.5 we assume
∆ ≤ 2 and state necessary and sufficient conditions for having a pair P1, P2 such that P1 · P2 = k
for a given k ≥ 0. If however ∆ > 2, the existence of such a pair is not guaranteed a priori, so a
case-by-case treatment is needed. Fortunately by Lemma 2.9.1 the case ∆ > 2 is rare.
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Lemma 2.9.1. Let X be a rational elliptic surface with Mordell-Weil rank r ≥ 1. The only cases
with ∆ = 2 and ∆ > 2 are in Table 2.6 and 2.7 respectively. In particular we have ∆ < 2 whenever
E(K) is torsion-free.

No. T E(K) cmax cmin

24 A⊕5
1 A∗1

⊕3 ⊕ Z/2Z 5
2

1
2

38 A3 ⊕A⊕3
1 A∗1 ⊕ 〈1/4〉 ⊕ Z/2Z 5

2
1
2

53 A5 ⊕A⊕2
1 〈1/6〉 ⊕ Z/2Z 5

2
1
2

57 D4 ⊕A⊕3
1 A∗1 ⊕ (Z/2Z)⊕2 5

2
1
2

58 A⊕2
3 ⊕A1 A∗1 ⊕ Z/4Z 5

2
1
2

61 A⊕3
2 ⊕A1 〈1/6〉 ⊕ Z/3Z 5

2
1
2

Table 2.6: Cases with ∆ = 2

No. T E(K) cmax cmin ∆

41 A2 ⊕A⊕4
1

1
6

(
2 1
1 2

)
⊕ Z/2Z 8

3
1
2

13
6

42 A⊕6
1 A∗1

⊕2 ⊕ (Z/2Z)⊕2 3 1
2

5
2

59 A3 ⊕A2 ⊕A⊕2
1 〈1/12〉 ⊕ Z/2Z 8

3
1
2

13
6

60 A3 ⊕A⊕4
1 〈1/4〉 ⊕ (Z/2Z)⊕2 3 1

2
5
2

Table 2.7: Cases with ∆ > 2

Proof. By searching Table 6.1 for all cases with ∆ = 2 and ∆ > 2, we obtain Table 2.6 and Table 2.7
respectively. Notice in particular that in both tables the torsion part of E(K) is always nontrivial.
Consequently, if E(K) is torsion-free, then ∆ < 2.

2.10 The quadratic form QX

We define the positive-definite quadratic form with integer coefficients QX derived from the
height pairing. The relevance of QX is due to the fact that some conditions for having P1 · P2 = k
for some P1, P2 ∈ E(K) can be stated in terms of what integers can be represented by QX (see
Corollary 4.3.2 and Proposition 4.6.1).
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We define QX simply by clearing denominators of the rational quadratic form induced by the
height pairing; the only question is how to find a scale factor that works in every case. More
precisely, if E(K) has rank r ≥ 1 and P1, ..., Pr are generators of its free part, then q(x1, ..., xr) :=
h(x1P1 + ... + xrPr) is a quadratic form with coefficients in Q; we define QX by multiplying q by
some integer d > 0 so as to produce coefficients in Z. We show that d may always be chosen as the
determinant of the narrow lattice E(K)0.

Definition 2.10.1. Let X with r ≥ 1. Let P1, ..., Pr be generators of the free part of E(K). Define

QX(x1, ..., xr) := (detE(K)0) · h(x1P1 + ...+ xrPr).

We check that the matrix representing QX has entries in Z, therefore QX has coefficients in Z.

Lemma 2.10.2. Let A be the matrix representing the quadratic form QX , i.e. Q(x1, ..., xr) = xtAx,
where x := (x1, ..., xr)t. Then A has integer entries. In particular, QX has integer coefficients.

Proof. Let P1, ..., Pr be generators of the free part of E(K) and let L := E(K)0. The free part of
E(K) is isomorphic to the dual lattice L∗ [OS91, Main Thm.], so we may find generators P 0

1 , ..., P
0
r

of L such that the Gram matrix B0 := (〈P 0
i , P

0
j 〉)i,j of L is the inverse of the Gram matrix

B := (〈Pi, Pj〉)i,j of L∗.
We claim that QX is represented by the adjugate matrix of B0, i.e. the matrix adj(B0) such

that B0 · adj(B0) = (detB0) · Ir, where Ir is the r × r identity matrix. Indeed, by construction B
represents the quadratic form h(x1P1 + ...+ xrPr), therefore

QX(x1, ..., xr) = (detE(K)0) · h(x1P1 + ...+ xrPr)
= (detB0) · xtBx
= (detB0) · xt(B0)−1x

= xtadj(B0)x,

as claimed. To prove that A := adj(B0) has integer coefficients, notice that the Gram matrix
B0 of L = E(K)0 has integer coefficients (as E(K)0 is an even lattice), then so does A.

We close this section with a simple consequence of the definition of QX .

Lemma 2.10.3. If h(P ) = m for some P ∈ E(K), then QX represents d·m, where d := detE(K)0.

Proof. Let P1, ..., Pr be generators for the free part of E(K). Let P = a1P1 + ...+ arPr +Q, where
ai ∈ Z and Q is a torsion element (possibly zero). Since torsion sections do not contribute to the
height pairing, then h(P −Q) = h(P ) = m. Hence

QX(a1, ..., ar) = d · h(a1P1 + ...+ arPr)
= d · h(P −Q)
= d ·m.
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Chapter 3

Conic bundles on rational elliptic
surfaces

In Section 2.3 we explain how conic bundles appear in the general theory of algebraic surfaces.
In this chapter we focus on conic bundles on a rational elliptic surface, which is motivated by results
and techniques from [Sal12], [LS22], [GS17], [GS20] and [AGL16]. In [Sal12], [LS22] the existence
of conic bundles on X is used as a central condition for having rank jumps, in a sense made precise
in Subsection 2.1.4 and specially in Chapter 5. The relevance of conic bundles in [GS17], [GS20]
and [AGL16] is due to other reasons, which we now briefly explain.

Over an algebraically closed field of characteristic zero, the existence of conic bundles on X is
used in [GS17], [GS20] in order to classify elliptic fibrations on K3 surfaces that are quadratic covers
of X. More precisely, given a degree two morphism f : P1 → P1 ramified away from nonreduced
fibers of π, the induced K3 surface is X ′ := X ×f P1. The base change also gives rise to an elliptic
fibration π′ : X ′ → P1 and a degree two map f ′ : X ′ → X. By composition with f ′, every conic
bundle on X induces a genus 1 fibration on X ′, in which case we may obtain elliptic fibrations
distinct from π.

In [AGL16] conic bundles are also useful, although in a very different context. In this case
the base field is C and the goal is to find generators for the Cox ring R(X) :=

⊕
[D]H

0(X,D),
where [D] runs through Pic(X). Given a rational elliptic fibration π : X → P1, the ring R(X)
is finitely generated if and only if X is a Mori Dream Space [HK00, Proposition 2.9], which in
turn is equivalent to π having generic rank zero [AL09, Corollary 5.4]. Assuming this is the case,
the authors show that in many configurations of π each minimal set of generators of R(X) must
contain an element g ∈ H0(X,D), where D is a fiber of a conic bundle on X, whose possibilities
are explicitly described.

We take these instances as motivators for a detailed study of conic bundles, which is the theme of
this chapter. Here we consider a rational elliptic surface π : X → P1 over an arbitrary algebraically
closed field and proceed by the following plan. In Section 3.1 we characterize conic bundles in terms
of certain Néron-Severi classes and deduce some geometric properties using this point of view. By
applying these results in Section 3.2, we completely describe the possible types of conic bundle
fibers. Section 3.3 is dedicated to the study of how the fiber configuration of π interferes with the
possible fiber configuration of conic bundles on X. Finally in Section 3.4 we present a method to
construct conic bundles and produce some examples to illustrate our results.
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3.1 Numerical characterization of conic bundles
We give a characterization of conic bundles on a rational elliptic surface X from a numerical

standpoint. The motivation for this approach comes from the following. Let ϕ : X → P1 be a conic
bundle and let C be a general fiber of ϕ, hence a smooth, irreducible curve of genus zero. Clearly C
is a nef divisor with C2 = 0 and, by adjunction, C · (−KX) = 2. These three numerical properties
are enough to prove that |C| is a base point free pencil and consequently the induced morphism
ϕ|C| : X → P1 gives ϕ itself.

Conversely, let D be a nef divisor with D2 = 0 and D · (−KX) = 2. Since numerical and
algebraic equivalence coincide by Theorem 2.7.1, it makes sense to consider the class [D] ∈ NS(X).
The natural question is whether [D] induces a conic bundle on X. The answer is yes, moreover
there is a natural correspondence between such classes and conic bundles (Theorem 3.1.9), which
is the central result of this section.

In order to prove this correspondence we need a numerical analysis of a given class [D] ∈ NS(X)
so that we can deduce geometric properties of the induced morphism ϕ|D| : X → P1, such as
connectivity of fibers (Proposition 3.1.6) and composition of their support (Proposition 3.1.4).
These properties are also crucial to the classification of fibers in Section 3.2.

Definition 3.1.1. A class [D] ∈ NS(X) is called a conic class when

i) D is nef.

ii) D2 = 0.

iii) D · (−KX) = 2.

Lemma 3.1.2. Let [D] ∈ NS(X) be a conic class. Then |D| is a base point free pencil and therefore
induces a surjective morphism ϕ|D| : X → P1.

Proof. By [Har95, Theorem III.1(a)], |D| is base point free and h1(X,D) = 0. We have χ(X) = 1
by Theorem 2.2.6, and Riemann-Roch gives h0(X,D) + h2(X,D) = 2, so we only need to prove
h2(X,D) = 0. Assume by contradiction that h2(X,D) ≥ 1. By Serre duality h0(KX − D) ≥ 1,
so KX −D is linearly equivalent to an effective divisor. Since D is nef, (KX −D) ·D ≥ 0, which
contradicts D2 = 0 and D · (−KX) = 2.

Remark 3.1.3. It follows from Lemma 3.1.2 that a conic class has an effective representative.

Notice that we do not know a priori that the morphism ϕ|D| : X → P1 in Lemma 3.1.2 is a
conic bundle. At this point we can only say that if C is a smooth, irreducible fiber of ϕ|D|, then
g(C) = 0 by adjunction. However it is still not clear whether a general fiber of ϕ|D| is irreducible
and smooth. We prove that this is the case in Proposition 3.1.7. In order to do that we need
information about the components of D from Proposition 3.1.4 and the fact that D is connected
from Proposition 3.1.6.
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Proposition 3.1.4. Let [D] ∈ NS(X) be a conic class. If D is an effective representative, then
every curve E ∈ Supp D is a smooth rational curve with E2 ≤ 0.

Proof. Take an arbitrary E ∈ Supp D. By Lemma 3.1.2, D is a fiber of the morphism ϕ|D| : X → P1

induced by |D|, hence D ·E = 0 by Lemma 2.5.2. Assuming E2 > 0 by contradiction, the fact that
D2 = 0 implies that D is numerically equivalent to zero by the Hodge index theorem [Har77, Thm.
V.1.9, Rmk. 1.9.1]. This is absurd because D · (−KX) = 2 6= 0, so indeed E2 ≤ 0.

To show that E is a smooth rational curve, it suffices to prove that pa(E) = 0. By Theorem 2.2.6,
−KX is linearly equivalent to any fiber of π, in particular −KX is nef and E ·KX ≤ 0. By adjunction
[Bea96, I.15] 2pa(E)−2 = E2 +E ·KX ≤ 0, so pa(E) ≤ 1. Assume by contradition that pa(E) = 1.
This can only happen if E2 = E ·KX = 0, so E is a fiber of π by Lemma 2.2.9. In this case E is
linearly equivalent to −KX , so D · E = D · (−KX) = 2, which contradicts D · E = 0.

Remark 3.1.5.

While Proposition 3.1.4 provides information about the support of D, the next proposition
states that D is connected, which is an important fact about the composition of D as a whole.

Proposition 3.1.6. Let [D] ∈ NS(X) be a conic class. If D is an effective representative, then D
is connected.

Proof. Let D = D1 + ...+Dn, where D1, ..., Dn are connected components. By Lemma 2.5.2 c) each
Di is nef with D2

i = 0 and Di ·KX ∈ 2Z. Since −KX is nef by Theorem 2.2.6 and D · (−KX) = 2,
then Di0 · (−KX) = 2 for some i0 and Di · (−KX) = 0 for i 6= i0. In particular [Di0 ] ∈ NS(X) is a
conic class. By Lemma 2.5.3, both |D| and |Di0 | are pencils, so D = Di0 by Lemma 2.5.3.

We use Propositions 3.1.4 and 3.1.6 to conclude that ϕ|D| : X → P1 is indeed a conic bundle.

Proposition 3.1.7. Let [D] ∈ NS(X) be a conic class. Then all fibers of ϕ|D| : X → P1 are
smooth, irreducible curves of genus 0 except for finitely many which are reducible and supported on
negative curves. In particular, ϕ|D| is a conic bundle.

Proof. Let F a fiber of ϕ|D|. Since F is linearly equivalent to D, then [F ] = [D] ∈ NS(X), so F is
connected by Proposition 3.1.6. By Proposition 3.1.4 every E ∈ Supp F has g(E) = 0 and E2 ≤ 0.

First assume E2 = 0 for some E ∈ Supp F . Since F is a connected fiber of ϕ|D|, then E = rF
for some r ∈ Q by Lemma 2.5.2. Because F · (−KX) = 2, we have E ·KX = −2r. By adjunction
[Bea96, I.15], r = 1, so F = E is a smooth, irreducible curve of genus 0.

Now assume E2 < 0 for every E ∈ Supp F . Then F must be reducible, otherwise F 2 = E2 < 0,
which is absurd since F is a fiber of ϕ|D|. Conversely, if F is reducible, then E2 < 0 for all
E ∈ Supp F , otherwise E2 = 0 for some E and by the last paragraph F is irreducible, which is a
contradiction.

This shows that either F is smooth, irreducible of genus 0 or F is reducible, in which case F is
supported on negative curves. We are left to show that ϕ|D| has finitely many reducible fibers.

Assume by contradiction that there is an infinite set {Fn}n∈N of reducible fibers of ϕ|D|. In
particular each Fn is supported on negative curves, which are either (−1)-curves (sections of π) or
(−2)-curves (components of reducible fibers) by Lemma 2.2.10.
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Since π has finitely many singular fibers, the number of (−2)-curves in X is finite, so there are
finitely many Fn with (−2)-curves in its support. Excluding such Fn, we may assume all members
in {Fn}n∈N are supported on (−1)-curves. For each n, take Pn ∈ Supp Fn. The fibers Fn, Fm
are disjoint, so Pn, Pm are disjoint when n 6= m. By contracting finitely many exceptional curves
P1, ..., P`, we are still left with an infinite set {Pm}m>` of exceptional curves, so we cannot reach a
minimal model for X, which is absurd.

Remark 3.1.8. In characteristic zero the proof of Proposition 3.1.7 can be made simpler by
applying Bertini’s theorem [Har77, Cor. 10.9], which guarantees that all but finitely many fibers
are smooth from the fact that X is smooth.

We now prove the numerical characterization of conic bundles.
Theorem 3.1.9. Let X be a rational elliptic surface. If [D] ∈ NS(X) is a conic class, then |D| is a
base point free pencil whose induced morphism ϕ|D| : X → P1 is a conic bundle. Moreover, the map
[D] 7→ ϕ|D| has an inverse ϕ 7→ [F ], where F is any fiber of ϕ. This gives a natural correspondence
between conic classes and conic bundles.
Proof. Given a conic class [D] ∈ NS(X), by Proposition 3.1.7 the general fiber of ϕ|D| : X → P1 is
a smooth, irreducible curve of genus 0, so ϕ|D| is a conic bundle.

Conversely, if ϕ : X → P1 is a conic bundle and C is a smooth, irreducible fiber of ϕ, in
particular C2 = 0, g(C) = 0 and by adjunction [Bea96, I.15] C · (−KX) = 2. Clearly C is nef, so
[C] ∈ NS(X) is a conic class. Moreover, any other fiber F of ϕ is linearly equivalent to C, therefore
[F ] = [C] ∈ NS(X) and the map ϕ 7→ [F ] is well defined.

We verify that the maps are mutually inverse. Given a class [D] we may assume D is effective
since |D| is a pencil, so D is a fiber of ϕ|D|, hence ϕ|D| 7→ [D]. Conversely, given a conic bundle ϕ
with a fiber F , then ϕ|F | coincides with ϕ tautologically, so [F ] 7→ ϕ.

3.2 Classification of conic bundle fibers
We prove one of the main results the chapter, which is the complete description of fibers of a

conic bundle on X. We start with a description of fiber components in Lemma 3.2.1, define some
terminology related to intersection graphs and proceed with the proof of Theorem 3.2.2.
Lemma 3.2.1. Let ϕ : X → P1 be a conic bundle and D any fiber of ϕ. Then D is connected and
(i) D is either a smooth, irreducible curve of genus 0, or

(ii) D = P1 +P2 +D′, where P1, P2 are (−1)-curves (sections of π), not necessarily distinct, and
D′ is either zero or supported on (−2)-curves (components of reducible fibers of π).

Proof. By Proposition 3.1.7, all fibers of ϕ fall into category (i) except for finitely many that are
reducible and supported on negative curves. Let D be one of such finitely many.

From Lemma 2.2.10, Supp D contains only (−1)-curves (sections of π) or (−2)-curves (compo-
nents of reducible fibers of π). By adjunction [Bea96, I.15], if C ∈ Supp D is a (−2)-curve, then
C · (−KX) = 0, and if P ∈ Supp D is a (−1)-curve, then P · (−KX) = 1. But D · (−KX) = 2, hence
D must have a term P1 +P2 where P1, P2 are possibly equal (−1)-curves; and a possibly zero term
D′ containing (−2)-curves, as desired.

At this point we have enough information about the curves that support a conic bundle fiber.
It remains to investigate their multiplicities and how they intersect one another.
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Theorem 3.2.2. Let X be a rational elliptic surface with elliptic fibration π : X → P1 and let
ϕ : X → P1 be a conic bundle. If D is a fiber of ϕ, then the intersection graph of D fits one of the
types below. Conversely, if the intersection graph of a divisor D fits any of these types, then |D|
induces a conic bundle ϕ|D| : X → P1.

Type Intersection Graph

0 ?
1

A2 1 1

An (n ≥ 3) 1 •1 •1 •1 •1 1

D3 •1 2 •1

Dm (m ≥ 4)
2 •2 •2 •2 •2

•1

•
1

? smooth, irreducible curve of genus 0
◦ (−1)-curve (section of π)
• (−2)-curve (component of a reducible fiber of π)

Terminology. Before we prove Theorem 3.2.2, we introduce a natural terminology for dealing
with the intersection graph of D. When C,C ′ ∈ Supp D are distinct, we say that C ′ is a neighbour
of C when C · C ′ > 0. If C has exactly one neighbour, we call C an extremity. We denote the
number of neighbours of C by n(C). A simple consequence of these definitions is the following.

Lemma 3.2.3. If D =
∑
i niEi is a fiber of a morphism X → P1, then n(Ei) ≤ −n2

iE
2
i for all i.

Proof. By definition of n(Ei), clearly n(Ei) ≤
∑
j 6=iEi ·Ej . Since D ·Ei = 0 by Lemma 2.5.2, then

0 = D · Ei =
∑
j

njEj · Ei

= niE
2
i +

∑
j 6=i

njEj · Ei

≥ niE2
i +

∑
j 6=i

Ej · Ei

≥ niE2
i + n(Ei).
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Proof of Theorem 3.2.2. We begin by the converse. If D fits one of the types, we must prove
[D] ∈ NS(X) is a conic class, so that ϕ|D| : X → P1 is a conic bundle by Theorem 3.1.9. A
case-by-case verification gives D · C = 0 for all C ∈ Supp D. Since D is effective, it is nef with
D2 = 0 by Lemma 2.5.1. The condition D ·(−KX) = 2 is satisfied in type 0 by adjunction. We have
D · (−KX) = 2 in types A2, An for they contain two distinct sections of π and also in types D3, Dm

for they contain a section with multiplicity 2. Hence [D] ∈ NS(X) is a conic class, as desired.
Now let D be a fiber of ϕ. By Lemma 3.2.1, D is connected and has two possible forms. If

D is irreducible, we get type 0. Otherwise D = P1 + P2 + D′, where P1, P2 are (−1)-curves and
D′ is either zero or supported on (−2)-curves. If D′ =

∑
i niCi then n(Ci) ≤ 2ni by Lemma 3.2.3.

The bounds for n(P1), n(P2) depend on whether i) P1 6= P2 or ii) P1 = P2. In what follows we use
Lemma 2.5.2 a) implicitly several times.

i) P1 6= P2. In this case n(P1) ≤ 1 and n(P2) ≤ 1. Since D is connected, both P1, P2 must have
some neighbour, so n(P1) = n(P2) = 1, therefore P1, P2 are extremities. If the extremities P1, P2
meet, they form the whole graph, so D = P1 + P2. This is type A2.

If P1, P2 do not meet, by connectedness there must be a path on the intersection graph join-
ing them, say P1, C1, ..., Ck, P2. Since P1 is an extremity, it has only C1 as a neighbour, so
0 = D · P1 = −1 + n1 gives n1 = 1. Moreover n(C1) ≤ 2 and by the position of C1 in the
path we have n(C1) = 2. We prove by induction that ni = 1 and n(Ci) = 2 for all i = 1, ..., k.
Assume this is true for i = 1, ..., ` < k. Then 0 = D · C` = 1 − 2 + n`+1, so n`+1 = 1. Moreover,
n(C`+1) ≤ 2 and by the position of C`+1 in the path we have n(C`+1) = 2. So the graph is precisely
the chain P1, C1, ..., Ck, P2. This is type An (n ≥ 3).

ii) P1 = P2. In this case n(P1) ≤ 2. We cannot have n(P1) = 0, otherwise D2 = (2P1)2 = −4,
so n(P1) = 1 or 2. If P1 has two neighbours, say C1, C2, then 0 = D · P1 = −2 + n1 + n2, which
only happens if n1 = n2 = 1. Moreover, n(C1) ≤ 2, so C1 can possibly have another neighbour
C3 in addition to P1. But then D · P1 = 0 gives n3 = 0, which is absurd, so C1 has only P1 as a
neighbour. By symmetry C2 also has only P1 as a neighbour. This is type D3.

Finally let n(P1) = 1 and C1 be the only neighbour of P1. Then Ci ·P1 = 0 when i > 1. Notice
that C1, Ci come from the same fiber of π, say F , otherwise Ci would be in a different connected
component as C1, P1, which contradicts D being connected. The possible Dynkin diagrams for F
are listed in Theorem 2.1.8. Since P1 intersects F in a simple component, the possibilities are

(a) (b) (c)

2 •
n0 •

n1 •
nm

2 •
n0 •

n1 •
nm

branch 1

branch 2
2 •

n0
•
n1

•
n2

•
n3•

nm

In (a), (b) and (c), D · P1 = 0 implies n1 = 2. In (c), D · C1 = 0 gives n2 + nm = 2, hence
n2 = nm = 1. But D · C2 = 0 gives n3 = 0, which is absurd, so (c) is ruled out. For (a), (b) we
proceed by induction: if k < m and n1 = ... = nk = 2, then D · Ck = 0 gives nk+1 = 2, therefore
n1 = ... = nm = 2. But in (a), D ·Cm = 0 implies nm = 1, which is absurd, so (a) is also ruled out.

In (b), let Cm+1, Cm+2 be the first elements in branches 1 and 2 respectively. Then D ·Cm = 0
gives nm+1 = nm+2 = 1. Consequently n(Cm+1) ≤ 2 and n(Cm+2) ≤ 2. If Cm+1 has another
neighbour Cm+3 in addition to Cm, then D ·Cm+1 = 0 implies nm+3 = 0, which is absurd, so Cm+1
is an extremity. By symmetry, Cm+2 is also an extremity. This is type Dm (m ≥ 4).
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3.3 Fibers of conic bundles vs. fibers of the elliptic fibration
Let X be a rational elliptic surface with elliptic fibration π : X → P1. The existence of a conic

bundle ϕ : X → P1 with a given fiber type is strongly dependent on the fiber configuration of π.
This relationship is explored in Theorem 3.3.2, which provides simple criteria to identify when a
certain fiber type is possible. Before we prove it, we need the following result about the existence
of disjoint sections.

Lemma 3.3.1. If X is a rational elliptic surface with nontrivial Mordell-Weil group, then there
exists a pair of disjoint sections.

Proof. Let E(K) be the Mordell-Weil group of π, whose neutral section we denote by O. By
[OS91, Thm. 2.5], E(K) is generated by sections which are disjoint from O. Hence there must be
a generator P 6= O disjoint from O, otherwise E(K) = {O}, which contradicts the hypothesis.

We now state and prove the main result of this section.

Theorem 3.3.2. Let X be a rational elliptic surface with elliptic fibration π : X → P1. Then the
following statements hold:

a) X admits a conic bundle with an A2 fiber ⇔ π has positive generic rank and no III∗ fiber.

b) X admits a conic bundle with an An≥3 fiber ⇔ π has a reducible fiber distinct from II∗.

c) X admits a conic bundle with a D3 fiber ⇔ π has at least two reducible fibers.

d) X admits a conic bundle with a Dm≥4 fiber ⇔ π has a nonreduced fiber or a fiber In≥4.

Proof. a) We leave the proof of this item to Chapter 4, since the claim is equivalent to Theorem 4.7.8
in Section 4.7.4.

b) Assume X admits a conic bundle with an An≥3 fiber. Since type An contains a (−2)-curve,
by Lemma 2.2.10, π has a reducible fiber F . We claim that F 6= II∗, which is equivalent to saying
that the lattice T (see Definition 2.7.3) is not E8. Indeed, if this were so, then Mordell-Weil group
E(K) would be trivial [OS91, Main Thm.], which is impossible, since the An fiber of the conic
bundle contains two distinct sections. Conversely, assume π has a reducible fiber F 6= II∗. Then
E(K) is not trivial [OS91, Main Thm.] and by Lemma 3.3.1 we may find two disjoint sections
P, P ′. Let C,C ′ ∈ Supp F be the components hit by P, P ′. Since F is connected, there is a path
C,C1, ..., C`, C

′ in the intersection graph of F . Let D := P + C + C1 + ... + C` + C ′ + P ′. By
Theorem 3.2.2, ϕ|D| : X → P1 is a conic bundle and D is an An fiber of it.
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c) Assume X admits a conic bundle with a D3 fiber D = C1 + 2P + C2, where C1, C2 are
(−2)-curves and P is a section with C1 · P = C2 · P = 1. Since P hits each fiber of π at exactly
one point, then C1, C2 must come from two distinct reducible fibers of π. Conversely, let F1, F2 be
two reducible fibers of π. If P is a section, then P hits Fi at some (−2)-curve Ci ∈ Supp Fi. Let
D := C1 + 2P + C2. By Theorem 3.2.2, ϕ|D| : X → P1 is a conic bundle and D is a D3 fiber of it.

d) Assume X admits a conic bundle with a Dm fiber D = 2P + 2C1 + ...+ 2C` + (C`+1 +C`+2),
where all Ci’s come from a reducible fiber F of π. Notice that if ` > 1 then C` meets three
(−2)-curves, namely C`−1, C`+1, C`+2 (see picture below). Going through the list in Theorem 2.1.8,
we see that this intersection behavior only happens if F is I∗n, II∗, III∗ or IV∗, all of which are
nonreduced. If ` = 1, then C1 meets the section P and two (−2)-curves which do not intersect,
namely C2, C3. Again by examining the list in Theorem 2.1.8, F must be In with n ≥ 4. Conversely,
let F be nonreduced or of type In with n ≥ 4. Take a section P that hits F at C1. Now take a
chain C2, ..., C` so that C` meets two other components of F . We name these two C`+1, C`+2 and
define D := 2P + 2C1 + ... + 2C` + (C`+1 + C`+2). By Theorem 3.2.2, ϕ|D| : X → P1 is a conic
bundle and D is a type Dm fiber of it.
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3.4 Examples of conic bundles
We present examples of conic bundles over rational elliptic surfaces to illustrate how the fiber

types in Theorem 3.2.2 may appear. For simplicity, in this section we work over k = C, although
similar constructions are possible over different fields. In Subsection 3.4.1 we describe how the
examples are constructed and stablish some notation, then present the examples in Subsection 3.4.2.

3.4.1 Construction and notation

As explained in Section 2.2, π is induced by a pencil of cubics P from the blowup p : X → P2

of the base locus of P. We describe a method for constructing a conic bundle ϕ : X → P1 from a
pencil of curves with genus zero on P2.

Construction. Let Q be a pencil of conics (or a pencil of lines) given by a dominant rational map
ψ : P2 99K P1 with the following properties:

(a) ψ−1(t) is smooth for all but finitely many t ∈ P1, i.e. the general member of Q is smooth.

(b) The indeterminacy locus of ψ (equivalently, the base locus of Q) is contained in the base locus
of P (including infinitely near points).

Now define a surjective morphism ϕ : X → P1 by the composition

X P2 P1p

ϕ

ψ

Notice that ϕ is a well defined conic bundle. Indeed, by property (b) the points of indeterminacy
of ψ are blown up under p, so ϕ is a morphism. By property (a) the general fiber of ϕ is a smooth,
irreducible curve. Since Q is composed of conics (or lines), the general fiber of ϕ has genus zero.

Example. Let C be a smooth cubic and let L1, L2, L3 be concurrent lines. Define P as the
pencil generated by C and L1 + L2 + L3. Let P1, P2 ∈ L1 ∩ C and P3, P4 ∈ L3 ∩ C and let Q be
pencil of conics through P1, P2, P3, P4. In the following picture, Q ∈ Q is a general conic, so the
strict transform of Q under p is a general fiber of the conic bundle ϕ : X → P1.

Remark 3.4.1. Since the base points P1, P2, P3, P4 of Q are blown up under p, then the pullback
pencil p∗Q has four fixed components, namely the exceptional divisors E1, E2, E3, E4. By eliminat-
ing these we obtain a base point free pencil p∗Q− E1 − E2 − E3 − E4, which is precisely the one
given by ϕ : X → P1.
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Notation.

P pencil of cubics on P2 inducing π.
p blowup p : X → P2 at the base locus of P.
Q pencil of conic (or lines) on P2.

Q conic in Q, not necessarily smooth.
L line in Q.
ϕ conic bundle ϕ : X → P1 induced by Q.
D singular fiber of ϕ such that ϕ(D) = Q (or ϕ(D) = L).
D′ another singular fiber of ϕ.

Remark 3.4.2. For simplicity, the strict transform of a curve E ⊂ P2 under p is also denoted by
E instead of the usual Ẽ.

3.4.2 Examples

We exhibit two classes of examples: the extreme cases, i.e. where the conic bundle admits only
one type of single fiber; and the ones with various fiber types.

Extreme cases

By Theorem 3.3.2, there are two cases in which X can only admit conic bundles with exactly
one type of singular fiber.

(1) When π has a II∗ fiber: X only admits conic bundles with singular fibers of type Dm≥4.

(2) When π has no reducible fibers: X only admits conic bundles with singular fibers of type A2.

In Persson’s classification list [Per90], case (1) corresponds to the first two entries in the list (the
ones with trivial Mordell-Weil group) and case (2) corresponds to the last six entries (the ones with
maximal Mordell-Weil rank). Examples 3.4.2.1 and 3.4.2.2 illustrate cases (1) and (2) respectively.
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Example 3.4.2.1. Let P be induced by a smooth cubic C and a triple line 3L as defined below. We
blow up the base locus {9P1} and obtain a rational elliptic surface whose configuration of singular
fibers is (II∗, II). By Theorem 3.3.2, X can only admit conic bundles with singular fibers of type
Dm≥4. We construct a conic bundle from the pencil Q of lines through P1. The curve D := p∗L−E1
is in the base point free pencil p∗Q−E1, which induces the conic bundle ϕ|D| : X → P1. The curve
D is a D9 fiber of ϕ|D|.

C : x3 + y3 − yz2 = 0.
L : y = 0.
P : pencil of cubics induced by C and 3L.
Q : pencil of lines through P1.

D = 2E9 + 2E8 + 2E7 + 2E6 + 2E5 + 2E4 + 2E3 + (E2 + L), type D9.

Sequence of contractions:E9, E8, E7, E6, E5, E4, E3, E2, E1.

Remark 3.4.3. The conic bundle in Example 3.4.2.1 is in fact the only conic bundle on X. This
follows from the fact that II∗ is the only reducible fiber of π and that E9 is the only section of
X, since the Mordell-Weil group is trivial [Per90]. By examining the intersection graph of II∗, we
conclude that D is the only divisor that constitutes a Dm≥4 fiber.

Remark 3.4.4. A similar construction can be made to obtain π : X → P1 with configuration
(II∗, 2I1), in which case Remark 3.4.3 also applies.
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Example 3.4.2.2. Let P be induced by a smooth cubic C and a cubic C ′ with a node, as given
below. By blowing up the base locus {P1, ..., P9} we obtain π : X → P1 with configuration (II, 10I1).
By Theorem 3.3.2, X can only admit conic bundles with singular fibers of type A2. Let Q be the
pencil of lines through P1. The curve D:= p∗L−E1 is in the base point free pencil p∗Q−E1, which
induces the conic bundle ϕ|D| : X → P1. The curve D is an A2 fiber of ϕ|D|.

Notice moreover that D is not the only singular fiber of the conic bundle. Indeed, each line L1i
through P1 and Pi with i = 2, ..., 9 corresponds to an A2 fiber of ϕ|D|, namely L1i + Ei.

C : y2z − 4x3 + 4xz2 = 0.
C ′ : y2z − 4x3 + 4xz2 + (127/100)(xz2 − 4y3 + 4yz2) = 0.
L : line through P1, P2.

P : pencil of cubics induced by C and C ′.
Q : pencil of lines through P1.

D = p∗L− E1 = L+ E2, type A2.

Sequence of contractions:E9, E8, E7, E6, E5, E4, E3, E2, E1.

Remark 3.4.5. Since the conic bundle in Example 3.4.2.2 only admits singular fibers of type A2,
which are isomorphic to a pair of lines meeting at a point, we have a standard conic bundle in the
sense of Manin and Tsfasman [MT86, Subsection 2.2].

43



Mixed fiber types

Example 3.4.2.3. Let P be induced by a cubic C with a cusp and the triplet of lines L1 +L2 +L3
as below. By blowing up the base locus {P1, ..., P9} we obtain π : X → P1 with configuration
(IV, II, 6I1). By Theorem 3.3.2, X admits only conic bundles with singular fibers of types A2 or
An≥3. We construct a conic bundle with singular fibers of types A2 and A3. Let Q be the pencil
of lines through P1. We define L as the line through P1, P4 and L′ := L1.

Then D := p∗L − E1 and D′ := p∗L′ − E1 are curves in the base point free pencil p∗Q − E1,
which induces the conic bundle ϕ|D| : X → P1. The curves D, D′ are fibers of ϕ|D| of type A2, A3
respectively. In addition to D and D′, the conic bundle has five other singular fibers, each of type
A2. Indeed, each line L1i through P1, Pi with i ∈ {2, 3, 5, 7, 8} induces the A2 fiber L1i + Ei.

C : x3 + y3 − y2z = 0.
L1 : y + 2x− z = 0.
L2 : y + 4x− 2z = 0.
L3 : y + 8x− 4z = 0.
L : line through P1, P4.

L′ = L1.

P : pencil of cubics induced by C and L1 + L2 + L3.

Q : pencil of lines through P1.

D = L+ E4, type A2.

D′ = E6 + L′ + E9, type A3.

Sequence of contractions:E9, E8, E7, E6, E5, E4, E3, E2, E1.
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Example 3.4.2.4. Let P be induced by a smooth cubic C and a triplet of lines L1+L2+L3 as below.
By blowing up the base locus {2P1, 3P2, 2P3, P4, P5} we obtain π : X → P1 with configuration
(I7, II, 3I1). By Theorem 3.3.2, X admits conic bundles with singular fibers of types An≥3, Dm≥4
or A2. We construct a conic bundle with types A2, A4, D4. Let Q be the pencil of lines through
P1. We also define L := L1, L′ := L2 and L′′ as the line through P1, P5.

Then D := p∗L − E1, D′ := p∗L′ − E1 and D′′ := p∗L′′ − E1 are curves in the base point free
pencil p∗Q− E1, which induces the conic bundle ϕ|D| : X → P1. The curves D, D′, D′′ are fibers
of ϕ|D| of types D4, A4, A2 respectively.

C : yz2 − 2x2(x− z) = 0.
L1 : y = 0.
L2 : 2x− 9y − 2z = 0.
L3 : 4x+ 9y = 0.
L = L1.

L′ = L2.

L′′ : line through P1, P5.

P : pencil of cubics induced by C and L1 + L2 + L3.

Q : pencil of lines through P1.

D = 2G2 + 2F2 + (E2 + L), type D4.

D′ = E4 + L′ + E3 + F3, type A4.

D′′ = L′′ + E5, type A2.

Sequence of contractions:E5, E4, F3, E3, G2, F2, E2, F1, E1.
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Example 3.4.2.5. Let P be induced by a cubic with C with a cusp and a triplet of lines L1+L2+L3
as given below. By blowing up the base locus {P1, ..., P9} we obtain π : X → P1 with configuration
(I∗2, III, I1). By Theorem 3.3.2, X admits conic bundles with singular fibers of types An≥3, D3,
Dm≥4 or A2. We construct a conic bundle with singular fiber of types A3, D3, D5. The elliptic
surface X is constructed by blowing up the base locus {P1, ..., P9} of the pencil of cubics P induced
by C and L1 +L2 +L3. Let Q be the pencil of lines through P1. We also define L := L2, L′ := L3
and L′′ := L1.

Then D := p∗L − E1, D′ := p∗L′ − E1 and D′′ := p∗L′′ − E1 are curves in the base point free
pencil p∗Q− E1, which induces the conic bundle ϕ|D| : X → P1. The curves D, D′, D′′ are fibers
of ϕ|D| of types A3, D3, D5 respectively.

C : x3 + y3 − y2z = 0.
L1 : y − z = 0.
L2 : x = 0.
L3 : y + 2x− z = 0.
L := L2.

L′ := L3.

L′′ := L1.

P : pencil of cubics induced by C and L1 + L2 + L3.

Q : pencil of lines through P1.

D = E2 + L+ E3, type A3.

D′ = E4 + 2F4 + L′, type D3.

D′′ = 2I1 + 2H1 + 2G1 + (L′′ + F1), type D5.

Sequence of contractions:F4, E4, E3, E2, I1, H1, G1, F1, E1.
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Chapter 4

Gaps on the intersection numbers of
sections

As in Chapter 3, we let π : X → P1 be a rational elliptic surface over any algebraically closed
field k. We remind the reader that in the proof of Theorem 3.3.2 we leave item a) to be treated in
the present chapter. This involves answering the following question: which rational elliptic surfaces
admit a pair of sections P1, P2 ∈ E(K) such that P1 ·P2 = 1? The answer is given in Theorem 4.7.8,
which was only a conjecture at the time of our investigation on conic bundles and could only be
proven after a more careful study of intersection numbers of sections. This motivating problem
lead to a broader broader investigation of the possible values of intersection numbers of sections,
whose results are gathered in this chapter.

The main tool we need is the Mordell-Weil lattice (Section 2.7), which consists of a lattice
structure on E(K)/E(K)tor having a close connection with the Néron-Severi lattice. We take
advantage of the fact that all possibilities for the Mordell-Weil lattices of X have been classified
in [OS91], so that the well-know information of the height-pairing gives us information about the
intersection numbers of sections of X.

By adopting this strategy, we often come across a classical problem in number theory, which
is the representation of integers by positive-definite quadratic forms. Indeed, if the free part of
E(K) is generated by r terms, then the height h(P ) := 〈P, P 〉 induces a positive-definite quadratic
form on r variables with coefficients in Q. If O ∈ E(K) is the neutral section and R is the set of
reducible fibers of π, then by the height formula (2.3)

h(P ) = 2 + 2(P ·O)−
∑
v∈R

contrv(P ),

where the sum over v is a rational number which can be estimated (Table 2.4). By clearing
denominators, we see that the possible values of P · O depend on a certain range of integers
represented by a positive-definite quadratic form with coefficients in Z.
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We organize this chapter as follows. In Section 4.1 we define some terminology and dedicate
Section 4.2 to explaining the role of torsion sections in our investigation. The technical core of
this chapter is in Sections 4.3, 4.4 and 4.5, where we find necessary and sufficient conditions for
k ∈ Z≥0 to be the intersection number of two sections. In Section 4.6 we list the total of sufficient
conditions obtained. The main results are in Section 4.7, namely: the description of gap numbers
when E(K) is torsion-free with r = 1 (Subsection 4.7.3), the absence of gap numbers for r ≥ 5
(Subsection 4.7.1), density of gap numbers when r ≤ 2 (Subsection 4.7.2) and the classification
of surfaces with a 1-gap (Subsection 4.7.4). We use the appendix in Chapter 6 to obtain the
information we need about Mordell-Weil lattices.

4.1 Gap numbers
We introduce some convenient terminology to express the possibility of finding a pair of sections

with a given intersection number.

Definition 4.1.1. If there are no sections P1, P2 ∈ E(K) such that P1 ·P2 = k, we say that X has
a k-gap or that k is a gap number of X.

Definition 4.1.2. We say that X is gap-free if for every k ∈ Z≥0 there are sections P1, P2 ∈ E(K)
such that P1 · P2 = k.

Remark 4.1.3. In case the Mordell-Weil rank is r = 0, we have E(K) = E(K)tor. In particular,
any two distinct sections are disjoint [SS19, Cor. 8.30], hence every k ≥ 1 is a gap number of X.
For positive rank, the description of gap numbers is less trivial, hence our focus on r ≥ 1.

4.2 Intersection with a torsion section
Before dealing with more technical details in Sections 4.3 and 4.4, we explain how torsion

sections can be of help in our investigation.
We first note some general properties of torsion sections. As the height pairing is positive-

definite on E(K)/E(K)tor, torsion sections are inert in the sense that for each Q ∈ E(K)tor we
have 〈Q,P 〉 = 0 for all P ∈ E(K). Moreover, in the case of rational elliptic surfaces, torsion
sections also happen to be mutually disjoint by Theorem 2.2.7.

By considering the properties above, we use torsion sections to help us find P1, P2 ∈ E(K) such
that P1 ·P2 = k for a given k ∈ Z≥0. This is particularly useful when ∆ ≥ 2, in which case E(K)tor
is not trivial by Lemma 2.9.1.

The idea works as follows. Given k ∈ Z≥0, suppose we can find P ∈ E(K)0 with height
h(P ) = 2k. By the height formula (2.3), P ·O = k − 1 < k, which is not yet what we need. In the
next lemma we show that replacing O with a torsion section Q 6= O gives P ·Q = k, as desired.
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Lemma 4.2.1. Let P ∈ E(K)0 such that h(P ) = 2k. Then P ·Q = k for all Q ∈ E(K)tor \ {O}.

Proof. Assume there is some Q ∈ E(K)tor \ {O}. By Theorem 2.2.7, Q · O = 0 and by the height
formula (2.3), 2k = 2 + 2(P · O) − 0, hence P · O = k − 1. We use the height formula (2.2) for
〈P,Q〉 in order to conclude that P ·Q = k. Since P ∈ E(K)0, it intersects the neutral component
Θv,0 of every reducible fiber π−1(v), so contrv(P,Q) = 0 for all v ∈ R. Hence

0 = 〈P,Q〉
= 1 + P ·O +Q ·O − P ·Q−

∑
v∈R

contrv(P,Q)

= 1 + (k − 1) + 0− P ·Q− 0
= k − P ·Q.

4.3 Necessary conditions
If k ∈ Z≥0, we state necessary conditions for having P1 ·P2 = k for some sections P1, P2 ∈ E(K).

We note that the value of ∆ is not relevant in this section, but plays a decisive role for sufficient
conditions in Section 4.4.

Lemma 4.3.1. Let k ∈ Z≥0. If P1 · P2 = k for some P1, P2 ∈ E(K), then one of the following
holds:

i) h(P ) = 2 + 2k for some P ∈ E(K)0.

ii) h(P ) ∈ [2 + 2k − cmax, 2 + 2k − cmin] for some P /∈ E(K)0.

Proof. Without loss of generality we may assume that P2 is the neutral section, so that P1 ·O = k.
By the height formula (2.3), h(P1) = 2 + 2k − c, where c :=

∑
v contrv(P1). If P1 ∈ E(K)0, then

c = 0 and h(P1) = 2 + 2k, hence i) holds. If P1 /∈ E(K)0, then cmin ≤ c ≤ cmax by Lemma 2.8.4.
But h(P1) = 2 + 2k − c, therefore 2 + 2k − cmax ≤ h(P1) ≤ 2 + 2k − cmin, i.e. ii) holds.

Corollary 4.3.2. Let k ∈ Z≥0. If P1 · P2 = k for some P1, P2 ∈ E(K), then QX represents some
integer in [d · (2 + 2k − cmax), d · (2 + 2k)], where d := detE(K)0.

Proof. We apply Lemma 4.3.1 and rephrase it in terms of QX . If i) holds, then QX represents
d · (2 + 2k) by Lemma 2.10.3. If ii) holds, then h(P ) ∈ [2 + 2k − cmax, 2 + 2k − cmin] and by
Lemma 2.10.3, QX represents d · h(P ) ∈ [d · (2 + 2k − cmax), d · (2 + 2k − cmin)]. In both i) and ii),
QX represents some integer in [d · (2 + 2k − cmax), d · (2 + 2k)].

4.4 Sufficient conditions when ∆ ≤ 2
In this section we state sufficient conditions for having P1 · P2 = k for some P1, P2 ∈ E(K)

under the assumption that ∆ ≤ 2. By Lemma 2.9.1, this covers almost all cases (more precisely,
all but No. 41, 42, 59, 60 in Table 6.1). We treat ∆ < 2 and ∆ = 2 separately, as the latter needs
more attention.
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4.4.1 The case ∆ < 2
We first prove Lemma 4.4.1, which gives sufficient conditions assuming ∆ < 2, then Corol-

lary 4.4.3, which states sufficient conditions in terms of integers represented by QX . This is followed
by Corollary 4.4.4, which is a simplified version of Corollary 4.4.3.

Lemma 4.4.1. Assume ∆ < 2 and let k ∈ Z≥0. If h(P ) ∈ [2 + 2k − cmax, 2 + 2k − cmin] for some
P /∈ E(K)0, then P1 · P2 = k for some P1, P2 ∈ E(K).

Proof. Let O ∈ E(K) be the neutral section. By the height formula (2.3), h(P ) = 2 + 2(P ·O)− c,
where c :=

∑
v contrv(P ). Since h(P ) ∈ [2 + 2k − cmax, 2 + 2k − cmin], then

2 + 2k − cmax ≤ 2 + 2(P ·O)− c ≤ 2 + 2k − cmin

⇒ c− cmax
2 ≤ P ·O − k ≤ c− cmin

2 .

Therefore P ·O− k is an integer in I :=
[ c−cmax

2 , c−cmin
2

]
. We prove that 0 is the only integer in

I, so that P · O − k = 0, i.e. P · O = k. First notice that c 6= 0, as P /∈ E(K)0. By Lemma 2.8.4
iii), cmin ≤ c ≤ cmax, consequently c−cmax

2 ≤ 0 ≤ c−cmin
2 , i.e. 0 ∈ I. Moreover ∆ < 2 implies that I

has length cmax−cmin
2 = ∆

2 < 1, so I contains no integer except 0 as desired.

Remark 4.4.2. Lemma 4.4.1 also applies when cmax = cmin, in which case the closed interval
degenerates into a point.

The following corollary of Lemma 4.4.1 states a sufficient condition in terms of integers repre-
sented by the quadratic form QX (Subsection 2.10).

Corollary 4.4.3. Assume ∆ < 2 and let d := detE(K)0. If QX represents an integer not divisible
by d in the interval [d · (2 + 2k− cmax), d · (2 + 2k− cmin)], then P1 ·P2 = k for some P1, P2 ∈ E(K).

Proof. Let a1, ..., ar ∈ Z such that QX(a1, ..., ar) ∈ [d · (2 + 2k − cmax), d · (2 + 2k − cmin)] with
d - QX(a1, ..., ar). If P1, ..., Pr are generators of the free part of E(K), let P := a1P1 + ... + arPr.
Then d - QX(a1, ..., ar) = d · h(P ), which implies that h(P ) /∈ Z. In particular P /∈ E(K)0 since
E(K)0 is an integer lattice. Moreover h(P ) = 1

dQX(a1, ..., ar) ∈ [2 + 2k − cmax, 2 + 2k − cmin] and
we are done by Lemma 4.4.1.

The next corollary, although weaker than Corollary 4.4.3, is more practical for concrete examples
and is frequently used in Subsection 4.7.4. It does not involve finding integers represented by QX ,
but only finding perfect squares in an interval depending on the minimal norm µ (Definition 2.7.10).

Corollary 4.4.4. Assume ∆ < 2. If there is a perfect square n2 ∈
[

2+2k−cmax
µ , 2+2k−cmin

µ

]
such that

n2µ /∈ Z, then P1 · P2 = k for some P1, P2 ∈ E(K).

Proof. Take P ∈ E(K) such that h(P ) = µ. Since h(nP ) = n2µ /∈ Z, we must have nP /∈ E(K)0

as E(K)0 is an integer lattice. Moreover h(nP ) = n2µ ∈ [2 + 2k − cmax, 2 + 2k − cmin] and we are
done by Lemma 4.4.1.
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4.4.2 The case ∆ = 2
The statement of sufficient conditions for ∆ = 2 is almost identical to the one for ∆ < 2,

the only difference being that the closed interval Lemma 4.4.1 is substituted by a right half-open
interval in Lemma 4.4.6. This small change, however, is associated with a technical difficulty in the
case of a section with minimal contribution term, hence the separate treatment for ∆ = 2.

The results are presented in the following order. First we prove a statement about sections with
minimal contribution term (Lemma 4.4.5). Next we provide sufficient conditions when ∆ = 2 in
Lemma 4.4.6, then prove Corollaries 4.4.7 and 4.4.8.

Lemma 4.4.5. Assume ∆ = 2. If there is P ∈ E(K) such that
∑
v∈R contrv(P ) = cmin, then

P ·Q = P ·O + 1 for every Q ∈ E(K)tor \ {O}.

Proof. If Q ∈ E(K)tor \ {O}, then Q ·O = 0 by Theorem 2.2.7. By the height formula (2.2),

0 = 〈P,Q〉 = 1 + P ·O + 0− P ·Q−
∑
v

contrv(P,Q). (∗)

Hence it suffices to show that contrv(P,Q) = 0 ∀v ∈ R. By Lemma 2.8.4 iv), contrv′(P ) = cmin
for some v′ and contrv(P ) = 0 for all v 6= v′. In particular P meets Θv,0, hence contrv(P,Q) = 0
for all v 6= v′. Thus from (∗) we see that contrv′(P,Q) is an integer, which we prove is 0.

We claim that Tv′ = A1, so that contrv′(P,Q) = 0 or 1
2 by Table 2.4. In this case, as contrv′(P,Q)

is an integer, it must be 0, and we are done. To see that Tv′ = A1 we analyse contrv′(P ). Since
∆ = 2, then cmin = 1

2 by Table 2.6 and contrv′(P ) = cmin = 1
2 . By Table 2.4, this only happens if

Tv′ = An−1 and 1
2 = i(n−i)

n for some 0 ≤ i < n. The only possibility is i = 1, n = 2, Tv′ = A1.

With the aid of Lemma 4.4.5 we are able to state sufficient conditions for having P1 · P2 = k
for some P1, P2 ∈ E(K) when ∆ = 2.

Lemma 4.4.6. Assume that ∆ = 2 and let k ∈ Z≥0. If h(P ) ∈ [2 + 2k − cmax, 2 + 2k − cmin) for
some P /∈ E(K)0, then P1 · P2 = k for some P1, P2 ∈ E(K).

Proof. By the height formula (2.3), h(P ) = 2+2(P ·O)−c, where c :=
∑
v contrv(P ). We repeat the

arguments from Lemma 4.4.1, in this case with the right half-open interval, so that the hypothesis
that h(P ) ∈ [2+2k−cmax, 2+2k−cmin), implies that P ·O−k is an integer in I ′ :=

[ c−cmax
2 , c−cmin

2
)
.

Since I ′ is half-open with length cmax−cmin
2 = ∆

2 = 1, then I ′ contains exactly one integer. If
0 ∈ I ′, then P ·O − k = 0, i.e. P ·O = k and we are done. Hence we assume 0 /∈ I ′.

We claim that P ·O = k−1. First, notice that if c > cmin, then the inequalities cmin < c ≤ cmax
give c−cmax

2 ≤ 0 < c−cmin
2 , i.e. 0 ∈ I ′, which is a contradiction. Hence c = cmin. Since ∆ = 2, then

I ′ = [−1, 0). Thus P ·O − k = −1, i.e. P ·O = k − 1, as claimed.
Finally, let Q ∈ E(K)tor \ {O}, so that P ·Q = P ·O+ 1 = k by Lemma 4.4.5 and we are done.

We remark that E(K)tor is not trivial by Table 2.6, therefore such Q exists.

The following corollaries are analogues to Corollary 4.4.3 and Corollary 4.4.4 adapted to ∆ = 2.
Similarly to the case ∆ < 2, Corollary 4.4.7 is stronger than Corollary 4.4.8, although the latter
is more practical for concrete examples. We remind the reader that µ denotes the minimal norm
(Definition 2.7.10).

Corollary 4.4.7. Assume ∆ = 2 and let d := detE(K)0. If QX represents an integer not divisible
by d in the interval [d · (2 + 2k− cmax), d · (2 + 2k− cmin)), then P1 ·P2 = k for some P1, P2 ∈ E(K).
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Proof. We repeat the arguments in Corollary 4.4.3, in this case with the half-open interval.

Corollary 4.4.8. Assume ∆ = 2. If there is a perfect square n2 ∈
[

2+2k−cmax
µ , 2+2k−cmin

µ

)
such that

n2µ /∈ Z, then P1 · P2 = k for some P1, P2 ∈ E(K).

Proof. We repeat the arguments in Corollary 4.4.4, in this case with the half-open interval.

4.5 Necessary and sufficient conditions when ∆ ≤ 2
For completeness, we present a unified statement of necessary and sufficient conditions for

having P1 · P2 = k for some P1, P2 ∈ E(K) assuming ∆ ≤ 2, which follows naturally from results
in Sections 4.3 and 4.4.

Lemma 4.5.1. Assume ∆ ≤ 2 and let k ∈ Z≥0. Then P1 · P2 = k for some P1, P2 ∈ E(K) if and
only if one of the following holds:

i) h(P ) = 2 + 2k for some P ∈ E(K)0.

ii) h(P ) ∈ [2 + 2k − cmax, 2 + 2k − cmin) for some P /∈ E(K)0.

iii) h(P ) = 2 + 2k − cmin and
∑
v∈R contrv(P ) = cmin for some P ∈ E(K).

Proof. If i) or iii) holds, then P · O = k directly by the height formula (2.3). But if ii) holds, it
suffices to to apply Lemma 4.4.1 when ∆ < 2 and by Lemma 4.4.6 when ∆ = 2.

Conversely, let P1 · P2 = k. Without loss of generality, we may assume that P2 = O, so that
P1 ·O = k. By the height formula (2.3), h(P1) = 2 + 2k − c, where c :=

∑
v contrv(P1).

If c = 0, then P1 ∈ E(K)0 and h(P1) = 2+2k, so i) holds. Hence we let c 6= 0, i.e. P1 /∈ E(K)0,
so that cmin ≤ c ≤ cmax by Lemma 2.8.4. In case c = cmin, then h(P1) = 2+2k−cmin and iii) holds.
Otherwise cmin < c ≤ cmax, which implies 2 + 2k − cmax ≤ h(P1) < 2 + 2k − cmin, so ii) holds.

4.6 Summary of sufficient conditions
For the sake of clarity, we summarize in a single proposition all sufficient conditions for having

P1 · P2 = k for some P1, P2 ∈ E(K) proven in this chapter.

Proposition 4.6.1. Let k ∈ Z≥0. If one of the following holds, then P1 · P2 = k for some
P1, P2 ∈ E(K).

1) h(P ) = 2 + 2k for some P ∈ E(K)0.

2) h(P ) = 2k for some P ∈ E(K)0 and E(K)tor is not trivial.

3) ∆ < 2 and there is a perfect square n2 ∈
[

2+2k−cmax
µ , 2+2k−cmin

µ

]
with n2µ /∈ Z, where µ is the

minimal norm (Definition 2.7.10). In case ∆ = 2, consider the right half-open interval.

4) ∆ < 2 and the quadratic form QX represents an integer not divisible by d := detE(K)0 in the
interval [d · (2 + 2k − cmax), d · (2 + 2k − cmin)]. In case ∆ = 2, consider the right half-open
interval.
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Proof. In 1) a height calculation gives 2 + 2k = h(P ) = 2 + 2(P · O) − 0, so P · O = k. For
2), we apply Lemma 4.4.5 to conclude that P · Q = k for any Q ∈ E(K)tor \ {O}. In 3) we use
Corollary 4.4.4 when ∆ < 2 and Corollary 4.4.8 when ∆ = 2. In 4), we apply Corollary 4.4.3 if
∆ < 2 and Corollary 4.4.7 if ∆ = 2.

4.7 Applications
We prove the four main theorems of this chapter, which are independent applications of the

results from Sections 4.3 and 4.4. The first two are general attempts to describe when and how gap
numbers occur: Theorem 4.7.2 tells us that large Mordell-Weil groups prevent the existence of gap
numbers, more precisely for Mordell-Weil rank r ≥ 5; in Theorem 4.7.4 we show that for a smaller
Mordell-Weil group, more precisely when r ≤ 2, gap numbers occur with probability 1. The last
two theorems, on the other hand, deal with explicit values of gap numbers: Theorem 4.7.7 provides
a complete description of gap numbers in certain cases, whereas Theorem 4.7.8 is a classification
of all cases with a 1-gap.

4.7.1 No gap numbers in r ≥ 5
We show that if E(K) has rank r ≥ 5, then X is gap-free. Our strategy is to prove that for

every k ∈ Z≥0 there is some P ∈ E(K)0 such that h(P ) = 2 + 2k, and by Proposition 4.6.1 1)
we are done. We accomplish this in two steps. First we show that this holds when there is an
embedding of A⊕1 or of A4 in E(K)0 (Lemma 4.7.1). Second, we show that if r ≥ 5, then such
embedding exists, hence X is gap-free (Theorem 4.7.2).

Lemma 4.7.1. Assume E(K)0 has a sublattice isomorphic to A⊕4
1 or A4. Then for every ` ∈ Z≥0

there is P ∈ E(K)0 such that h(P ) = 2`.

Proof. First assume A⊕4
1 ⊂ E(K)0 and let P1, P2, P3, P4 be generators for each factor A1 in A⊕4

1 .
Then h(Pi) = 2 and 〈Pi, Pj〉 = 0 for distinct i, j = 1, 2, 3, 4. By Lagrange’s four-square theorem
[HW79, §20.5] there are integers a1, a2, a3, a4 such that a2

1 + a2
2 + a2

3 + a2
4 = `. Defining P :=

a1P1 + a2P2 + a3P3 + a4P4 ∈ A⊕4
1 ⊂ E(K)0, we have

h(P ) = 2a2
1 + 2a2

2 + 2a2
3 + 2a2

4 = 2`.

Now let A4 ⊂ E(K)0 with generators P1, P2, P3, P4. Then h(Pi) = 2 for i = 1, 2, 3, 4 and
〈Pi, Pi+1〉 = −1 for i = 1, 2, 3. We need to find integers x1, ..., x4 such that h(P ) = 2`, where
P := x1P1 + ...+ x4P4 ∈ A4 ⊂ E(K)0. Equivalently, we need that

` = 1
2〈P, P 〉 = x2

1 + x2
2 + x2

3 + x2
4 − x1x2 − x2x3 − x3x4.

Therefore ` must be represented by q(x1, ..., x4) := x2
1 + x2

2 + x2
3 + x2

4− x1x2− x2x3− x3x4. We
prove that q represents all positive integers. Notice that q is positive-definite, since it is induced
by 〈·, ·〉. By Bhargava-Hanke’s 290-theorem [BH][Thm. 1], q represents all positive integers if and
only if it represents the following integers:

2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,

29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290.
The representation for each of the above is found in Table 4.1.
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We now prove the main theorem of this section.

Theorem 4.7.2. If r ≥ 5, then X is gap-free.

Proof. We show that for every k ≥ 0 there is P ∈ E(K)0 such that h(P ) = 2 + 2k, so that by
Proposition 4.6.1 1) we are done. By Lemma 4.7.1 it suffices to prove that E(K)0 has a sublattice
isomorphic to A⊕4

1 or A4.
The cases with r ≥ 5 are No. 1-7 (Table 6.1). In No. 1-6, E(K)0 = E8, E7, E6, D6, D5, A5

respectively. Each of these admit an A4 sublattice [Nis96, Lemmas 4.2, 4.3]. In No. 7 we claim
that E(K)0 = D4⊕A1 has an A⊕4

1 sublattice. This is the case because D4 admits an A⊕4
1 sublattice

[Nis96, Lemma 4.5 (iii)].

n x1, x2, x3, x4 with x2
1 + x2

2 + x2
3 + x2

4 − x1x2 − x2x3 − x3x4 = n

1 1, 0, 0, 0
2 1, 0, 1, 0
3 1, 1, 2, 0
5 1, 0, 2, 0
6 1, 1,−2,−1
7 1, 1,−2, 0
10 1, 0, 3, 0
13 2, 0, 3, 0
14 1, 2, 5, 1
15 1, 5, 5, 2
17 1, 0, 4, 0
19 1, 5, 3,−1
21 1, 5, 0, 0
22 1, 5, 0,−1
23 1, 6, 6, 2
26 1, 0, 5, 0
29 2, 0, 5, 0
30 1, 5, 0,−3
31 1, 3,−4,−2
34 3, 0, 5, 0
35 1, 2,−2, 4
37 1, 0, 6, 0
42 1, 1,−4, 3
58 3, 0, 7, 0
93 1, 1,−10, 0
110 1,−2, 3,−8
145 1, 0, 12, 0
203 1,−5,−9, 8
290 1, 0, 17, 0

Table 4.1: Representation of the critical integers in Bhargava-Hanke’s 290-theorem.
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4.7.2 Gaps with probability 1 in r ≤ 2
Fix a rational elliptic surface π : X → P1 with Mordell-Weil rank r ≤ 2. We prove that if k is

a uniformly random natural number, then k is a gap number with probability 1. More precisely, if
G := {k ∈ N | k is a gap number of X} is the set of gap numbers, then G ⊂ N has density 1, i.e.

d(G) := lim
n→∞

#G ∩ {1, ..., n}
n

= 1.

We adopt the following strategy. If k ∈ N \G, then P1 · P2 = k for some P1, P2 ∈ E(K) and by
Corollary 4.3.2 the quadratic form QX represents some integer t depending on k. This defines a
function f : N \G→ T , where T is the set of integers represented by QX . Since QX is a quadratic
form on r ≤ 2 variables, T has density 0 in N by Lemma 4.7.3. By analyzing the pre-images of f ,
in Theorem 4.7.4 we conclude that d(N \G) = d(T ) = 0, hence d(G) = 1 as desired.
Lemma 4.7.3. Let Q be a positive-definite quadratic form on r = 1, 2 variables with integer
coefficients. Then the set of integers represented by Q has density 0 in N.
Proof. Let S be the set of integers represented by Q. If d is the greatest common divisor of the
coefficients of Q, let S′ be the set of integers representable by the primitive form Q′ := 1

d ·Q. By
construction S′ is a rescaling of S, so d(S) = 0 if and only if d(S′) = 0.

If r = 1, then Q′(x1) = x2
1 and S′ is the set of perfect squares, so clearly d(S′) = 0. If r = 2,

then Q′ is a binary quadratic form and the number of elements in S′ bounded from above by x > 0
is given by C · x√

log x + o(x) with C > 0 a constant and limx→∞
o(x)
x = 0 [Ber12, p. 91]. Thus

d(S′) = lim
x→∞

C√
log x

+ o(x)
x

= 0.

We now prove the main result of this section.
Theorem 4.7.4. Let π : X → P1 be a rational elliptic surface with Mordell-Weil rank r ≤ 2. Then
the set G := {k ∈ N | k is a gap number of X} of gap numbers of X has density 1 in N.
Proof. If r = 0, then all sections are torsion sections and the claim is obvious by Theorem 2.2.7.
Assume r = 1, 2. We prove that S := N \G has density 0. If S is finite, there is nothing to prove.
Otherwise, let k1 < k2 < ... be the increasing sequence of all elements of S. By Corollary 4.3.2, for
each n there is some tn ∈ Jkn := [d · (2 + 2kn − cmax), d · (2 + 2kn)] represented by the quadratic
form QX . Let T be the set of integers represented by QX and define the function f : S → T by
kn 7→ tn. Since QX has r = 1, 2 variables, T has density 0 by Lemma 4.7.3.

For N > 0, let SN := S ∩ {1, ..., N} and TN := T ∩ {1, ..., N}. Since T has density zero,
#TN = o(N), i.e. #TN

N → 0 when N → ∞ and we need to prove that #SN = o(N). We analyze
the function f restricted to SN . Notice that as tn ∈ Jkn , then kn ≤ N implies tn ≤ d · (2 + 2kn) ≤
d · (2 + 2N). Hence the restriction g := f |SN

can be regarded as a function g : SN → Td·(2+2k).
We claim that #g−1(t) ≤ 2 for all t ∈ Td·(2+2N), in which case #SN ≤ 2 ·#Td·(2+2N) = o(N)

and we are done. Assume by contradiction that g−1(t) contains three distinct elements, say k`1 <
k`2 < k`3 with t = t`1 = t`2 = t`3 . Since t`i ∈ Jk`i

for each i = 1, 2, 3, then t ∈ Jk`1
∩Jk`2

∩Jk`3
. We

prove that Jk`1
and Jk`3

are disjoint, which yields a contradiction. Indeed, since k`1 < k`2 < k`3 , in
particular k`3−k`1 ≥ 2, therefore d · (2+2k`1) ≤ d · (2+2k`3−4). But cmax < 4 by Lemma 2.8.4, so
d · (2 + 2k`1) < d · (2 + 2k`3 − cmax), i.e. max Jk`1

< min Jk`3
. Thus Jk`1

∩ Jk`3
= ∅, as desired.
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4.7.3 Identification of gaps when E(K) is torsion-free with rank r = 1
The results in Subsections 4.7.1 and 4.7.2 concern the existence and the distribution of gap

numbers. In the following subsections we turn our attention to finding gap numbers explicitly. In
this subsection we give a complete description of gap numbers assuming E(K) is torsion-free with
rank r = 1. Such descriptions are difficult in the general case, but our assumption guarantees that
each E(K), E(K)0 is generated by a single element and that ∆ < 2 by Lemma 2.9.1, which makes
the problem more accessible.

We organize this subsection as follows. First we point out some trivial facts about generators
of E(K), E(K)0 when r = 1 in Lemma 4.7.5. Next we state necessary and sufficient conditions for
having P1 · P2 = k when E(K) is torsion-free with r = 1 in Lemma 4.7.6. As an application of the
latter, we prove Theorem 4.7.7, which is the main result of the subsection.

Lemma 4.7.5. Let X be a rational elliptic surface with Mordell-Weil rank r = 1. If P generates
the free part of E(K), then

a) h(P ) = µ.

b) 1/µ is an even integer.

c) E(K)0 is generated by P0 := (1/µ)P and h(P0) = 1/µ.

Proof. Item a) is clear. Items b), c) follow from the fact that E(K)0 is an even lattice and that
E(K) ' L∗ ⊕ E(K)tor, where L := E(K)0 [OS91, Main Thm.].

In what follows we use Lemma 4.7.5 and results from Section 4.4 to state necessary and sufficient
conditions for having P1 · P2 = k for some P1, P2 ∈ E(K) in case E(K) is torsion-free with r = 1.

Lemma 4.7.6. Assume E(K) is torsion-free with rank r = 1. Then P1 · P2 = k for some P1, P2 ∈
E(K) if and only if one of the following holds:

i) µ · (2 + 2k) is a perfect square.

ii) There is a perfect square n2 ∈
[

2+2k−cmax
µ , 2+2k−cmin

µ

]
such that µ · n /∈ Z.

Proof. By Lemma 4.7.5, E(K) is generated by some P with h(P ) = µ and E(K)0 is generated by
P0 := n0P , where n0 := 1

µ ∈ 2Z.
First assume that P1 ·P2 = k for some P1, P2. Without loss of generality we may assume P2 = O.

Let P1 = nP for some n ∈ Z. We show that P1 ∈ E(K)0 implies i) while P1 /∈ E(K)0 implies ii).
If P1 ∈ E(K)0, then n0 | n, hence P1 = nP = mP0, where m := n

n0
. By the height formula

(2.3), 2 + 2k = h(P1) = h(mP0) = m2 · 1
µ . Hence µ · (2 + 2k) = m2, i.e. i) holds.

If P1 /∈ E(K)0, then n0 - n, hence µ · n = n
n0

/∈ Z. Moreover, h(P1) = n2h(P ) = n2µ and by
the height formula (2.3), n2µ = h(P ) = 2 + 2k− c, where c :=

∑
v contrv(P1) 6= 0. The inequalities

cmin ≤ c ≤ cmax then give 2+2k−cmax
µ ≤ n2 ≤ 2+2k−cmin

µ . Hence ii) holds.
Conversely, assume i) or ii) holds. Since E(K) is torsion-free, ∆ < 2 by Lemma 2.9.1, so we

may apply Lemma 4.4.1. If i) holds, then µ · (2 + 2k) = m2 for some m ∈ Z. Since mP0 ∈ E(K)0

and h(mP0) = m2

µ = 2 + 2k, we are done by Lemma 4.4.1 i). If ii) holds, the condition µ · n /∈ Z is
equivalent to n0 - n, hence nP /∈ E(K)0. Moreover n2 ∈

[
2+2k−cmax

µ , 2+2k−cmin
µ

]
, implies h(nP ) =

n2µ ∈ [2 + 2k − cmax, 2 + 2k − cmin]. By Lemma 4.4.1 ii), we are done.
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An application of Lemma 4.7.6 to all possible cases where E(K) is torsion-free with rank r = 1
yields the main result of this subsection.

Theorem 4.7.7. If E(K) is torsion-free with rank r = 1, then all the gap numbers of X are
described in Table 4.2.

No. T
k is a gap number⇔ none of

the following are perfect squares first gap numbers

43 E7 k + 1, 4k + 1 1, 4

45 A7
k+1

4 , 16k, ..., 16k + 9 8, 11

46 D7
k+1

2 , 8k + 1, ..., 8k + 4 2, 5

47 A6 ⊕A1
k+1

7 , 28k − 3, ..., 28k + 21 12, 16

49 E6 ⊕A1
k+1

3 , 12k + 1, ..., 12k + 9 3, 7

50 D5 ⊕A2
k+1

6 , 24k + 1, ..., 24k + 16 6, 11

55 A4 ⊕A3
k+1
10 , 40k − 4, ..., 40k + 25 16, 20

56 A4 ⊕A2 ⊕A1
k+1
15 , 60k − 11, ..., 60k + 45 22, 27

Table 4.2: Description of gap numbers when E(K) is torsion-free with r = 1.

Proof. For the sake of brevity we restrict ourselves to No. 55. The other cases are treated similarly.
Here cmax = 2·3

5 + 2·2
4 = 11

5 , cmin = min
{

4
5 ,

3
4

}
= 3

4 and µ = 1/20.
By Lemma 4.7.6, k is a gap number if and only if neither i) nor ii) occurs. Condition i) is that

2+2k
20 = k+1

10 is a perfect square. Condition ii) is that
[

2+2k−cmax
µ , 2+2k−cmin

µ

]
= [40k − 4, 40k + 25]

contains some n2 with 20 - n. We check that 20 - n for every n such that n2 = 40k + `, with
` = −4, ..., 25. Indeed, if 20 | n, then 400 | n2 and in particular 40 | n2. Then 40 | (n2 − 40k) = `,
which is absurd.

4.7.4 Surfaces with a 1-gap
In Subsection 4.7.3 we take each case in Table 4.2 and describe all its gap numbers. In this

subsection we do the opposite, namely, we fix a number and describe all cases having it as a gap
number. We remind the reader that our motivating problem was to determine when there are
sections P1, P2 such that P1 · P2 = 1, which induce a conic bundle having P1 + P2 as a reducible
fiber. The answer for this question is the main theorem of this subsection:

Theorem 4.7.8. Let X be a rational elliptic surface. Then X has a 1-gap if and only if r = 0 or
r = 1 and π has a III∗ fiber.
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Our strategy for the proof is the following. We already know that a 1-gap exists whenever r = 0
(Theorem 2.2.7) or when r = 1 and π has a III∗ fiber (Theorem 4.7.7, No. 43). Conversely, we
need to find P1, P2 with P1 · P2 = 1 in all cases with r ≥ 1 and T 6= E7.

First we introduce two lemmas, which solve most cases with little computation, and leave the
remaining ones for the proof of Theorem 4.7.8. In both Lemma 4.7.9 and Lemma 4.7.11 our goal is
to analyze the narrow lattice E(K)0 and apply Proposition 4.6.1 to detect cases without a 1-gap.

Lemma 4.7.9. If one of the following holds, then h(P ) = 4 for some P ∈ E(K)0.

a) The Gram matrix of E(K)0 has a 4 in its main diagonal.

b) There is an embedding of An ⊕Am in E(K)0 for some n,m ≥ 1.

c) There is an embedding of An, Dn or En in E(K)0 for some n ≥ 3.

Proof. Case a) is trivial. Assuming b), we take generators P1, P2 from An, Am respectively with
h(P1) = h(P2) = 2. Since An, Am are in direct sum, 〈P1, P2〉 = 0, hence h(P1 +P2) = 4, as desired.
If c) holds, then the fact that n ≥ 3 allows us to choose two elements P1, P2 among the generators
of L1 = An, Dn or En such that h(P1) = h(P2) = 2 and 〈P1, P2〉 = 0. Thus h(P1 + P2) = 4 as
claimed.

Corollary 4.7.10. In the following cases, X does not have a 1-gap.

• r ≥ 3 : all cases except possibly No. 20.

• r = 1, 2 : cases No. 25, 26, 30, 32-36, 38, 41, 42, 46, 52, 54, 60.

Proof. We look at column E(K)0 in Table 6.1 to find which cases satisfy one of the conditions a),
b), c) from Lemma 4.7.9.

a) Applies to No. 12, 17, 19, 22, 23, 25, 30, 32, 33, 36, 38, 41, 46, 52, 54, 60.

b) Applies to No. 10, 11, 14, 15, 18, 24, 26, 34, 35, 42.

c) Applies to No. 1-10, 13, 16, 21.

In particular, this covers all cases with r ≥ 3 (No. 1-24) except No. 20. By Lemma 4.7.9 in
each of these cases there is P ∈ E(K)0 with h(P ) = 4 and we are done by Proposition 4.6.1 1).

In the next lemma we also analyze E(K)0 to detect surfaces without a 1-gap.

Lemma 4.7.11. Assume E(K)0 ' An for some n ≥ 1 and that E(K) has nontrivial torsion part.
Then X does not have a 1-gap. This applies to cases No. 28, 39, 44, 48, 51, 57, 58 in Table 6.1.

Proof. Take a generator P of E(K)0 with h(P ) = 2 and apply Proposition 4.6.1 2).
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We are ready to prove the main result of this subsection.

Proof of Theorem 4.7.8. We need to show that in all cases where r ≥ 1 and T 6= E7 there are
P1, P2 ∈ E(K) such that P1 · P2 = 1. This corresponds to cases No. 1-61 except 43 in Table 6.1.

The cases where r = 1 and E(K) is torsion-free can be solved by Theorem 4.7.7, namely No.
45-47, 49, 50, 55, 56. Adding these cases to the ones treated in Corollary 4.7.10 and Lemma 4.7.11,
we have therefore solved the following:

No. 1-19, 21-26, 28, 30, 32-36, 38, 39, 41-52, 54-58, 60.

For the remaining cases, we apply Proposition 4.6.1 3), which involves finding perfect squares
in the interval

[
4−cmax

µ , 4−cmin
µ

]
(see Table 4.3), considering the half-open interval in the cases with

∆ = 2 (No. 53, 61).

No. T E(K) µ I n2 ∈ I

20 A⊕2
2 ⊕A1 A∗2 ⊕ 〈1/6〉 1

6 [13, 23] 42

27 E6 A∗2
2
3 [4, 4] 22

29 A5 ⊕A1 A∗1 ⊕ 〈1/6〉 1
6 [12, 21] 42

31 A4 ⊕A2
1
15

(
2 1
1 8

)
2
15 [16, 21] 42

37 A3 ⊕A2 ⊕A1 A∗1 ⊕ 〈1/12〉 1
12 [22, 28] 52

40 A⊕2
2 ⊕A

⊕2
1 〈1/6〉⊕2 1

6 [10, 21] 42

53 A5 ⊕A⊕2
1 〈1/6〉 ⊕ Z/2Z 1

6 [9, 12] 32

59 A3 ⊕A2 ⊕A⊕2
1 〈1/12〉 ⊕ Z/2Z 1

12 [16, 42] 42, 52, 62

61 A⊕3
2 ⊕A1 〈1/6〉 ⊕ Z/3Z 1

6 [9, 12] 32

Table 4.3: Perfect squares in the interval I :=
[

4−cmax
µ , 4−cmin

µ

]
.

In No. 59 we have ∆ > 2, so a particular treatment is needed. Let T = Tv1 ⊕ Tv2 ⊕ Tv3 ⊕ Tv4 =
A3 ⊕ A2 ⊕ A1 ⊕ A1. If P generates the free part of E(K) and Q generates its torsion part, then
h(P ) = 1

12 and 4P +Q meets the reducible fibers at Θv1,2,Θv2,1,Θv3,1,Θv4,1 [Kur14][Example 1.7].
By Table 2.4 and the height formula (2.3),

42

12 = h(4P +Q) = 2 + 2(4P +Q) ·O − 2 · 2
4 − 1 · 2

3 − 1
2 −

1
2 ,

hence (4P +Q) ·O = 1, as desired.
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Chapter 5

Large rank jumps and the Hilbert
property

Throughout this chapter k denotes a number field and X a geometrically rational elliptic
surface over k with elliptic fibration π : X → P1 and Mordell-Weil rank r over k. We study the
variation of Mordell-Weil rank rt (over k) of the fiber π−1(t) as t runs through t ∈ P1

k in comparison
to the generic rank r and say that there is a rank jump if rt > r. We cover some of the approaches
used in the literature, explain their limitations and how we adapt them in order to prove the main
theorem of this chapter, namely

Theorem 5.0.1. Let π : X → P1 be a geometrically rational elliptic surface over a number field
k with generic rank r. Assume that π admits a RNRF-conic bundle (Definition 5.2.2). Then the
subset of the base of the elliptic fibration

{t ∈ P1
k | rt ≥ r + 3} ⊂ P1

k

is not thin (Definition 2.4.1).

The starting point for our investigation is a specialization theorem by Silverman [Sil83, Thm.
C], which states that rt ≥ r for all but finitely many t ∈ P1

k. We remark that this result is a
development from a more general theorem by Néron [Né52, Thm. 6] over higher-dimensional bases
which says that the rank is at least the generic rank outside of a thin subset (see Definition 2.4.1)
of the base curve. In light of this, our natural guiding question is: what is the nature of the set of
fibers where rank jumps occur?

Techniques to deal with this question include the study of the behavior of the root numbers in
families first carried out by Rohrlich [Roh93]; height theory estimations as done by Billard [Bil98]
and geometric techniques, more precisely base change, introduced by Néron [Né52].

A considerable limitation of the root number approach is that it relies on the Birch and
Swinnerton-Dyer conjecture and, even with that assumption, one is restricted to Q since the func-
tional equation is only conjectural over number fields in general. As for the use of height theory,
oftentimes one is also restricted to Q, as many properties of the height machinery are proven only
over the rationals. The geometric techniques, on the other hand, tend to allow more flexibility on
the base field and have been used by several autors, such as [Shi91, Sal12, Sal15, HS19, CT20]
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We explain Néron’s geometric method. His goal in [Né56, §5] is to start with X with generic
rank 8 and build an elliptic surface f : Y → C such that Y is a degree 6 cover of X with generic
rank at least 11 = 8 + 3. More precisely, the elliptic fibrations π : X → P1 and f : Y → C are
related by the following commutative diagram.

Y C

X P1

6:1

f

π

By applying Néron’s specialization theorem, the fact that f : Y → C has rank at least 11
implies that there are infinitely many fibers of π whose ranks are at least 11 = 8 + 3, hence a rank
jump of 3. The construction of Y is performed by taking three rational bisections L1, L2, L3 in X
(Definition 2.1.4) such that the base change of π : X → P1 by C := L1×P1 L2×P1 L3 gives the new
fibration f : Y → C, which he shows admits 3 new and independent sections. A key feature of this
construction is the fact that the morphisms of the base Li → P1 share a common branch point,
hence the curve L1 ×P1 L2 ×P1 L3 has genus 1.

A generalization of this technique was made by Salgado in [Sal12] when X is any rational elliptic
surface admitting a conic bundle over k. One key difference in comparison to Néron’s construction
is that the curves Li need not to be given explicitly. Instead, she shows a more general result for
elliptic surfaces considering base change with respect to curves on a linear system, which produce
a strictly greater rank:

Theorem 5.0.2. [Sal12, Cor. 4.3] Let f : S → C be an elliptic surface over a number field and L
a pencil of curves on S which does not contain a fiber of f . Then for all but finitely many D ∈ L ,
the base-changed fibration S ×C D → D has generic rank strictly greater than that of f : S → C.

A drawback in this construction, however, is that the morphisms to the base D → P1 which
play role of Li → P1 in Néron’s construction do not necessarily admit a common branch point. In
this case D1 ×P1 D2 may already have genus 1, which limits the number of base changes to 2. As
a consequence, one is only allowed to conclude about rank jumps of at least 2, but not 3, which is
precisely the case in [Sal12] and [LS22]. One way to overcome this difficulty is to consider conic
bundles with certain ramification properties, which we call RNRF-conic bundles (for ramified at a
nonreduced fiber, Definition 5.2.2), which allows us to detect rank jumps of at least 3.

We want, moreover, to study the structure of set of fibers with rank jump of at least 3. Given
Néron’s specialization theorem, it is natural to ask whether this set is thin or not. In the case of
Néron’s construction of rank jump 3, the fact that the curves Li are rigid imply that the set is thin.
On the other hand, in Salgado’s construction [Sal12], the pencil of curves implies a larger set of
rank jumps which turns out to be not thin, as proven later in collaboration with Loughran [LS22].
By combining the technique from [Sal12] with the later developments from [LS22], we arrive at
Theorem 5.0.1, which we prove in this chapter.

We organize the chapter as follows. In Section 5.1 we explore some properties of rational elliptic
surfaces which admit a nonreduced fiber. In Section 5.2 we introduce a key tool, which are the
RNRF conic bundles and present their constructions. Section 5.3 is a commentary on the need to
consider nonreduced fibers, which introduces the proof of the main theorem in Section 5.4. At last,
a series of examples is provided in Section 5.5.
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5.1 Nonreduced fibers
The central hypothesis of Theorem 5.0.1 is the presence of an RNRF conic bundle, i.e. a conic

bundle ramified at a nonreduced fiber (Definition 5.2.2). By nonreduced we mean a fiber with
one or more components with multiplicity ≥ 2, which by Kodaira’s classification (Theorem 2.1.8)
correspond to starred types, i.e. I∗n≥0, II∗, III∗, IV∗. In this section we present some results for the
case when π : X → P1 admits a nonreduced fiber (Proposition 5.1.1, Corollaries 5.1.2 and 5.1.3)
and prove Lemma 5.1.5, which is helpful in the construction of conic bundles in Section 5.2.

We begin by considering a local Weierstrass form for our rational elliptic surface, namely

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where ai ∈ k(P1) for all i.

Dokchitsers’ Table 2.1 allows us to readily see that rational elliptic fibrations with a nonreduced
fiber at t = ∞, except possibly I∗0, admit a conic bundle over the x-line. More precisely, we have
the following result.

Proposition 5.1.1. Let π : X → P1 be a rational elliptic surface defined over k with a nonreduced
fiber F at t =∞ which is not of type I∗0 . Then X admits a Weierstrass equation of the form

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t), with deg ai ≤ 2 for all i.

In particular, X admits a conic bundle by projection over the x-line.

Proof. To analyze the behavior of the fiber at infinity, i.e. t = (1 : 0) ∈ P1, we write the (long)
Weierstrass equation of X with homogeneous coefficients:

y2 + a1(t, u)xy + a3(t, u)y = x3 + a2(t, u)x2 + a4(t, u)x+ a6(t, u).

Since X is rational, deg ai(t, u) = i. Dokchitsers’ Table 2.1 tells us that v∞(ai
i ) ≥ 2

3 , if F is
of type IV∗, III∗ or II∗. Hence degu ai ≥ 2i

3 or ai = 0, which immediately bounds the degrees of
a1, a2, a3, a4 and a6 in the variable t from above by 2, as claimed.

It remains to check that this also holds for fibers of type I∗n with n 6= 0. In this case, Dokschitsers’
table tells us that v∞(ai

i ) ≥ 1
2 and v∞(d) ≥ 6. The former implies that degt ai(u, t) ≤ 2 or ai = 0,

for i = 1, 2, 3 and 4, while the latter gives us degt a6(u, t) ≤ 2, or a6 = 0.

Corollary 5.1.2. Let π : X → P1 be a geometrically rational elliptic surface over k. Suppose that
π admits a unique nonreduced fiber. Then X is k-unirational.

Proof. We apply [KM17, Thm. 7] to the surface obtained by contracting the zero section, which is
a conic bundle of degree 1.

Corollary 5.1.3. Let π : X → P1 be a rational elliptic fibration defined over k with a nonreduced
fiber that is not of type I∗0. Then the subset

{t ∈ P1
k | rt ≥ r + 2} ⊂ P1

k

is not thin.

Proof. Proposition 5.1.1 puts us in a position to apply [LS22, Theorem 1.1].
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Remark 5.1.4.

i) Rational elliptic surfaces with 2 fibers of type I∗0 have been treated separately in [LS22].

ii) Unfortunately one might not be able to use the conic bundles from Proposition 5.1.1 to show
that there is a rank jump of 3, which is our main goal. Indeed, the hypothesis that the
restriction of π to the conics has a common ramification is crucial. By [LS22, Lemma 2.10],
this can only happen over nonreduced fibers. Example 5.5.0.2 presents a surface with a fiber
of type IV∗ whose conic bundle over the x-line is not ramified over the nonreduced fiber.

The following lemma is relevant for the construction of conic bundles in Section 5.2. It provides
a supply of divisors that can be used to form the support of a genus 0 bisection over k.

Lemma 5.1.5. Let π : X → P1 be a rational elliptic surface defined over k with a nonreduced fiber
F with components Θi’s as in Table 2.2. Then one of the following holds:

i) If F = II∗ or III∗, then all its components are defined over k.

ii) If F = IV∗, then Θ0,Θ1,Θ2 are defined over k. The other components are defined over some
extension of k of degree at most 2.

iii) If F = I∗n (n ≥ 1), then Θ0,Θ1 and all the nonreduced components are defined over k. The far
components Θ2,Θ3 are defined over some extension of k of degree at most 2.

iv) If F = I∗0 and F is the only reducible fiber of π, then Θ0 and Θ4 are defined over k. The other
components are defined over an extension of k of degree at most 3.

Proof. The fibration π is defined over k, and, by assumption, so is its zero section O. The Galois
group G := Gal(k/k) acts on the Néron-Severi group preserving intersection multiplicities. Since
F is assumed to be the unique fiber of its type, the elements of G permute the components of F .

In particular, the presence of conjugate components implies symmetries in the intersection graph
of F . For the sake of clarity and to avoid repetition in what follows, we state as a fact one of the
immediate consequences of the intersection-preserving action of G in the Néron-Severi group. We
refer to it as I.F. in what follows.

Intersection Fact (I.F.): Let C,D,E ⊂ X be integral curves such that C meets D but not
E. If C is stable under G, then D,E cannot be conjugate.

We also note that since O is defined over k (hence stable under G) and meets Θ0, then Θ0
is necessarily stable under G. We now analyze i), ii), iii), iv) with the notation from Table 5.1.
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II∗ (Ẽ8)
•

2Θ7 •
4Θ6 •

6Θ5

•3Θ8

•
5Θ4 •

4Θ3 •
3Θ2 •

2Θ1 •
Θ0

III∗ (Ẽ7)
•

Θ0 •
2Θ1 •

3Θ2 •
4Θ3

•2Θ7

•
3Θ4 •

2Θ5 •
Θ6

IV∗ (Ẽ6)
•

Θ0 •
2Θ1 •

3Θ2

•2Θ5

•Θ6

•
2Θ3 •

Θ4

I∗n (D̃n+4)

•Θ0

•Θ1

•2Θ4 •
2Θ5

•
2Θn+3

•2Θn+4

•Θ2

•Θ3

Table 5.1: Nonreduced fibers of π

i) Let F = II∗. For lack of symmetry, each component of F is stable under G, as desired. Now let
F = III∗. By symmetry Θ3,Θ7 are stable and the possible conjugate pairs are (Θ0,Θ6), (Θ1,Θ5),
(Θ2,Θ4). Since Θ0 is stable, then so is Θ6. We use I.F. with (C,D,E) = (Θ0,Θ1,Θ5) so that
Θ1,Θ5 are stable. Then for (C,D,E) = (Θ1,Θ2,Θ4) we conclude Θ2,Θ4 are stable.

ii) Let F = IV∗. By symmetry, Θ2 is stable and the possible G-orbits are (Θ0,Θ4,Θ6) and
(Θ1,Θ3,Θ5). Since Θ0 is stable, then Θ4,Θ6 are possibly conjugates, in which case both are de-
fined over some L/k with [L : k] ≤ 2. Applying I.F. with (C,D,E) = (Θ0,Θ1,Θ3) and then with
(C,D,E) = (Θ0,Θ1,Θ5) we conclude that Θ1 is stable and (Θ3,Θ5) is possibly an orbit. In this
case, Θ3,Θ5 are defined over some L/k with [L : k] ≤ 2.

iii) Let F = I∗n≥1. By symmetry, the following pairs is a possible G-orbits: (Θi,Θn+j) where
both Θi,Θn+j are components with multiplicity 2 in F and i + j = 8. Since Θ0 is stable, we
apply I.F. with (C,D,E) = (Θ0,Θ4,Θn+4) to conclude that Θ4,Θn+4 are stable. We now use
induction on i: assuming Θi is stable and applying I.F. to (C,D,E) = (Θi,Θi+1,Θn+j+1) with
j + i = 8, we conclude that Θi+1,Θn+j+1 are stable, hence all components with multiplicity 2 are
stable. We are left with Θ2,Θ3. By symmetry, (Θ0,Θ1,Θ2,Θ3) is a possible orbit. But Θ0,Θ4
are stable, so Θ2,Θ3 are possibly conjugates, hence both are defined over some L/k with [L : k] ≤ 2.

iv) Let F = I∗0. By symmetry, Θ4 is stable and (Θ0,Θ1,Θ2,Θ3) is a possible G-orbit. But Θ0 is
stable, so Θ1,Θ2,Θ3 are possibly conjugates, all three defined over some L/k with [L : k] ≤ 3.
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5.2 Conic bundles ramified at a nonreduced fiber (RNRF)
We introduce conic bundles with the property that the restriction of the elliptic fibration to

all conics share a ramification point, which are the main tool in the proof of Theorem 5.0.1.
We begin by defining a multisection ramified at a fiber of π : X → P1, which leads to the central

object of this chapter, namely the RNRF-conic bundle. We remind the reader that the presence of
a conic bundle over k is equivalent to the existence of a bisection of genus 0 over k by Lemma 2.3.5.

Definition 5.2.1. Let C ⊂ X be a multisection π : X → P1. We say that C is ramified at the
fiber π−1(t) if the finite morphism π|C : C → P1 branches at t.

Definition 5.2.2. Let ϕ|D| : X → P1 be a conic bundle induced by a bisection D ⊂ X. If π
has a unique nonreduced fiber F , we say that this is an RNRF-conic bundle if D is ramified at
F . Equivalently, if each C ∈ |D| intersects (transversally) a nonreduced component of F . The
acronym RNRF stands for Ramified at a Nonreduced Fiber.

RNRF-conic bundles arise naturally on rational elliptic surfaces with a nonreduced fiber. The
following result tells us that they exist over k without any further assumption depending on the
type of nonreduced fiber, and gives conditions for it to happen in the remaining configurations.

Proposition 5.2.3. Let π : X → P1 be a rational elliptic surface over k. Assume that one of the
following holds:

1. It admits a fiber of type II∗, III∗ or I∗n for n ∈ {2, 3, 4}.

2. It admits a fiber of type IV∗ or I∗m, for m ∈ {0, 1} and a reducible, reduced fiber.

3. It admits a fiber of type IV∗ and a non-trivial section defined over k.

4. It admits a fiber of type I∗1 and a non-trivial section defined over k that intersects the near
component.

5. It admits a fiber of type I∗1 and two non-intersecting sections that are conjugate under Gal(k/k).

6. It admits 2 fibers of type I∗0 and a non-trivial 2-torsion section defined over k.

Then X admits a RNRF-conic bundle over k.

Proof. For each possible configuration listed in the hypothesis of the theorem, we provide an ef-
fective divisor D on X (see Table 5.2) such that D2 = 0, D · F = 2 and such that every D′ ∈ |D|
intersects a nonreduced component of F . Moreover, by Lemma 5.1.5, the divisor D is defined over
k, i.e. it remains invariant by the action of Gal(k/k).

To prove that π|D : D → P1 is ramified above F , we only need to observe that each D
constructed meets F at a nonreduced component.
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Remark 5.2.4.

i) Conics in a RNRF-conic bundle are distinguished in the following sense. Generally, a degree 2
base change of a rational elliptic surface produces a K3 surface. This is true if the base change
is ramified in smooth fibers, and remais true even if it ramifies at reduced singular fibers if one
considers the desingularization of the base changed surface. On the other hand, if a degree 2
base change ramifies at a nonreduced fiber, then by an Euler number calculation one can show
that the base changed surface is still rational (see Lemma 5.2.5).

ii) It is natural to wonder about the extra conditions on surfaces with fibers of type IV∗, I∗1, I∗0.
One can show that surfaces with such fiber configuration always admit a conic bundle over k.
Nevertheless, such a conic bundle is not necessarily a RNRF-conic bundle. It is worth noticing
that, on the other hand, the isotrivial rational surfaces with 2I∗0 admit a RNRF-conic bundle.
In this particular setting it is called a Châtelet bundle (see [LS22, Lemma 3.3]) since they
occur as conic bundles on a Châtelet surface obtained after blowing down the sections of π.
Still, they are useless for our purposes as all fibers ramify above the same 2 nonreduced fibers,
not leaving the degree of freedom needed to avoid certain covers when verifying that the rank
jump occurs on a not thin subset.

The following result justifies the study of RNRF-conic bundles on rational elliptic surfaces. It
tells us that the base change of a rational elliptic fibration by a bisection in an RNRF-conic bundle
is again a rational elliptic fibration. This allows us to apply [LS22, Thm. 1.1] to the base-changed
rational elliptic surface and achieve a higher rank jump.

Lemma 5.2.5. Let π : X → P1 be a rational elliptic surface with only one nonreduced fiber F . Let
D ⊂ X be a genus 0 bisection ramified at F , and let XD be the normalization of the base change
surface X ×P1 D. Then XD is a rational elliptic surface and |D| induces a conic bundle on XD.

Proof. Let ϕ := π|D : D → P1 be the base change map. The curve D is rational, so by Hurwitz
formula ϕ has two branch points. By hypothesis, these two points correspond to F and some other
reduced fiber. By inspection of possible singular fibers in a rational elliptic surface [Per90], F is
one of the following:

I∗nwith 0 ≤ n ≤ 4, II∗, III∗ or IV∗.

By the ramification of ϕ, there is precisely one fiber F ′ in XD above F . An inspection of
Table 2.3, confirms a pattern for the Euler number, namely, e(F ′) = 2 e(F )− 12 (∗).

Moreover, if G is any singular fiber of π distinct from F , we claim that
∑
G′ e(G′) = 2e(G)

(∗∗), where G′ runs through the fibers of XD above G (since ϕ has degree 2, there are at most 2
possibilities for G′). Indeed, if there is no ramification associated to G, then there are two fibers
G′1, G

′
2 isomorphic to G, hence e(G′1) + e(G′2) = 2 e(G). In case there is ramification, there is only

one possibility for G′ and e(G′) = 2 e(G) for all cases by Table 2.3. This proves (∗∗).
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We prove that XD is rational by checking that e(XD) = 12 and applying Lemma 2.2.4. Since
X is rational, then e(X) = 12 and combining (∗), (∗∗) we get

e(XD) = e(F ′) +
∑
G′ 6=F ′

e(G′)

= e(F ′) +
∑
G 6=F

∑
G′

e(G′)

= 2 e(F )− 12 + 2
∑
G 6=F

2 e(G)

= 2 e(X)− 12
= 12,

as desired. In order to prove that |D| induces a conic bundle on XD, take an arbitrary C ∈ |D|
and let ψ := π|C : C → P1. As in ϕ, the map ψ has 2 branch points. Let ν : XD → X ×P1 D be
the normalization map and E ⊂ XD the strict transform of C ×P1 D under ν. We prove that E is
smooth of genus 0, so that |E| induces a conic bundle on XD. We have the following diagram:

E

C ×P1 D

C D

P1

ν

ϕ′ ψ′

ψ ϕ

The singularities of C ×P1 D are the points (c, d) ∈ C ×D such that ψ,ϕ ramify at c, d respec-
tively. These are also singular points of X ×P1 D, which are eliminated by ν, hence E is smooth.
Since ϕ has degree 2, then E → C has degree 2 and, moreover, has 2 branch points, namely the
ones where ψ ramifies. By Hurwitz formula, g(E) = 0 as desired.
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5.3 RNRF and multiple base changes
In [Sal12] and [LS22], the authors use 2 base changes by curves in a conic bundle to show that

the rank jumps by at least 2. The final base for the base changed fibration is an elliptic curve with
positive Mordell-Weil rank. One is tempted to consider a third base change to increase the rank
jump further. Unfortunately, this cannot be done in such generality. Indeed, the genus of a new
base after a third base change would be at least 2. In particular, the base curve would have a finite
set of k-points thanks to Faltings’ theorem [Fal83].

Rational elliptic surfaces with a nonreduced fiber on the other hand allow for a sequence of
3 base changes with final base curve of genus 1. Further hypotheses on the surface allow us to
show that the genus 1 curve is an elliptic curve with positive Mordell–Weil rank. Indeed, Lemma
5.2.5 assures that the first base change by an RNRF-conic bundle produces a surface that is again
rational and moreover admits a conic bundle. In other words, admits a bisection of arithmetic
genus 0 as in the hypothesis of [LS22, Theorem 2]. One can then take the latter as the starting
point and apply [LS22, Theorem 2] to conclude. This is explained in detail in the following section.

5.4 Rank Jump three times
In this section we make use of an RNRF-conic bundle on a rational elliptic surface with a

unique nonreduced fiber to show that the collection of fibers for which the Mordell–Weil rank is at
least the generic rank plus 3 is not thin as a subset of the base of the fibration.

Throughout this section, π : X → P1 is a geometrically rational elliptic surface with a unique
nonreduced fiber F and D is a bisection of π such that |D| is a RNRF-conic bundle.

We let ψi : Yi → P1, for i ∈ I, be an arbitrary finite collection of finite morphisms of degree ≥ 2,
as in the discussion at the end of Section 2.4. Our goal is to show that there is a curve X ⊃ C ϕ→P1

such that:

1. C(k) is infinite;

2. rank(X ×P1 C)(k(C)) ≥ r + 3;

3. ∃P ∈ ϕ(C(k)) ⊂ P1(k) such that P /∈
⋃
i ψ(Yi(k)).

Lemma 5.4.1. Assume π : X → P1 has a unique non-reduced fiber. Then for all D1 ∈ |D|, there
are infinitely many pairs (D2, D3) ∈ |D| × |D| such that D1 ×P1 D2 ×P1 D3 is a curve of genus 1.

Proof. For a given a D1, there are only finitely many D2, D3 ∈ |D| such that D2 or D3 share 2
common ramification points with D1. We exclude these. The 3 quadratic extensions k(Di) are
non-isomorphic as they have precisely one ramification point in common. Hence they are linearly
disjoint and the curve C = D1 ×P1 D2 ×P1 D3 is geometrically integral. Our hypothesis on the
common ramification implies moreover that the curve D1 ×P1 D2 has genus 0 (see [LS22, Lemma
5.2]). Let t, ti ∈ P1(k) be the two branch points of Di → P1 where t is the common branch point
corresponding to the nonreduced fiber, and ti 6= tj , for i 6= j. Consider the degree 2 morphism
φ : D1 ×P1 D2 ×P1 D3 → D1 ×P1 D2. Then φ is ramified at the four points above t3 ∈ P1(k). A
direct application of the Hurwitz formula gives that C is a curve of genus 1.
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Proposition 5.4.2. Assume π : X → P1 has a unique nonreduced fiber and let P = {P1, · · · , Pm}
be a finite subset of P1

k. Then there are infinitely many D1, D2, D3 ∈ |D| such that:

a) C := D1 ×P1 D2 ×P1 D3 is an elliptic curve with positive Mordell-Weil rank over k;

b) k(D1)⊗ k(D2)⊗ k(D3) is linearly disjoint with every k(Yi);

c) The rank of the generic fiber of XC → C is at least r + 3;

d) C ramifies above exactly one of Pj.

Proof. This proof is analogous to the proof of [LS22, Prop. 4.1]. We may assume that P contains
all branch points of Yi and the singular locus of π. In particular, it contains a ramification point
of all conics in |D|. We call this point P1. After choosing D1 and D2 in an infinite set such that
the rank of the generic fiber of the elliptic fibration π12 : XD1×BD2 → D1 ×P1 D2 is at least r + 2
and D1 ×P1 D2(k) is infinite and XD1×P1D2(k) is Zariski dense as in [LS22], allowing D3 to vary in
|D| gives by Lemma 5.4.1 an infinite family of elliptic curves with positive Mordell-Weil rank that
are bisections of π12. By Theorem 5.0.2, all but finitely many of such curves can be used to base
change and obtain an elliptic surface XC → C with C = D1 ×P1 D2 ×P1 D3 and generic fiber of
rank at least r + 3.

The fibration π has a unique nonreduced fiber so after excluding finitely many curves when
picking D1, D2 and D3 we may assume that Di’s are not ramified over other singular fibers of π,
nor do they share ramification points with Yi other than possibly P1. This proves d).

The following result is parallel to [LS22, Lemma 5.5]. Since we construct conic bundles whose
members are always ramified at a nonreduced singular fiber, we need to reprove the result. For-
tunately, that comes with no cost as elliptic fibrations defined over global fields have at least two
singular fibers.

Lemma 5.4.3. The elliptic surface X×P1C → C is nonconstant, i.e. not isomorphic to E×C → C,
where E is an elliptic curve.

Proof. The surface X → P1 is a relatively minimal geometrically rational elliptic surface defined
over a global field. In particular, it has at least 2 singular fibers. Hence there is at least 1 reduced
singular fiber F . Since we chose C such that C → P1 is not ramified at F , the pull-back of F to
X ×P1 C → C is a singular fiber.

We have at hand all the tools needed to prove our main result.

Proof of Theorem 5.0.1. We choose C as in Proposition 5.4.2. By construction, the curvesD1, D2, D3,
and Yi are smooth and the respective maps to P1 share at most one branch point. On the other
hand, the map C×P1Yi → C is branched on the ramification points of Yi → P1. A direct application
of the Riemann-Hurwitz formula gives g(C×P1 Yi) ≥ 2. In particular, by Faltings’ theorem [Fal83],
C ×P1 Yi(k) is finite. To conclude, we invoke part c) of Proposition 5.4.2 and apply Theorem 5.0.2
to the nonconstant elliptic surface X ×P1 C → C.
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5.5 Examples

Example 5.5.0.1. Let X be an elliptic surface with Weierstrass equation

y2 = x3 + a(t)x+ b(t),

with deg a(t), b(t) ≤ 1 and a(t) and b(t) not simultaneously constant. Then X admits a nonreduced
fiber at infinity. More precisely: if deg a(t) = 1 thenX admits a fiber of type III∗; and if deg a(t) = 0
then X admits a fiber of type II∗.

The surface X admits a RNRF-conic bundle over the x-line. In case ii) this is the unique conic
bundle on the surface. A nice geometric description for this case is as follows. Let C be a plane
cubic with an inflection point P defined over k. Let L be the line tangent to C at P . We consider
the following pencil of plane cubics

uC + t(3L) = 0, (t : u) ∈ P1,

whose base locus is the nonreduced scheme {9P}. We consider its 9-fold blow up and obtain a
rational elliptic surface with a fiber of type II∗ at infinity. The unique conic bundle on it is given
by the strict transforms of the pencil of lines through P . By following the blow ups one sees readily
that all conics intersect the unique double component of the fiber of type II∗ (Figure 5.1).

Figure 5.1: RNRF-conic bundle (pink) on X with a II∗ fiber.
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Example 5.5.0.2. Let F = y2z− x3 + x2z+ xz2− z3 and G = z2(y− z) be two plane cubics. Let
P1 = (0 : 1 : 0) and Pi = (xi : 1 : 1) with xi, for i = 2, 3, 4, the 3 roots of the polynomial x3−x2−x.
Hence F,G meet at the nonreduced scheme F ∩G = {6P1, P2, P3, P4}. Let X be the blow up of P2

in F ∩G. Then its (affine) Weierstrass equation is

y2 − ty = x3 − x2 − x+ (t− 1).

In particular, X has a fiber of type IV∗ at t =∞ and, as expected by Proposition 5.1.1, it admits
a conic bundle over the x-line. Geometrically, the fiber of type IV∗ is given by G′−E1−E2−E3−E4,
where G′ is the proper transform of G and Ei is the exceptional divisor above Pi. If D is a fiber of
the conic bundle over the x-line then D = `1−E1, where `1 is the proper transform of a line through
P1. In particular, for all lines through P1, except the 3 lines that pass through P2, P3 or P4, the
curve D intersects the fiber IV∗ transversally in the simple component given by m−E2 −E3 −E4
where m is the proper transform of the line y = z, and in a simple component above the blow up
of P1. Hence the restriction of the elliptic fibration to all but 3 conics is not ramified at IV∗ and,
in particular, cannot all share a common ramification. In other words, the conic bundle over the
x-line is not a RNRF-conic bundle.

Nevertheless, X admits a RNRF-conic bundle, namely the one given by |`2 − E2|, where `2 is
the proper transform of a line through P2. Indeed, `2 intersects the double component of IV∗ above
the strict transform of z2 = 0. Since P2 = (0 : 1 : 1), the conic bundle is defined over Q. Thus
there are infinitely many t ∈ Q such that rt ≥ 1 + 3 = 4 (Figure 5.2).

Example 5.5.0.3. Let X be the rational elliptic surface studied by Washington in [Was87] with
Weierstrass equation

y2 = x3 + tx2 − (t+ 3)x+ 1.

The generic Mordell-Weil rank of this surface over Q is 1. Its singular fibers are of type (I∗2, 2II).
In particular, by Proposition 5.2.3, it admits a RNRF-conic bundle defined over Q. We can apply
Theorem 5.0.1 to conclude that the subset of fibers of rank at least 4 is not thin.

For this surface, we can expect an even higher rank jump on a non-thin set. Indeed, Rizzo
proved in [Riz03, Thm. 1] that the root number of each fiber is −1. Hence, under the Parity
conjecture [Dok13], the rank of all fibers is odd. This together with Theorem 5.0.1 would imply
that the set of fibers with rank at least 5 is not thin. In other words, under the Parity conjecture,
there is a rank jump of at least 4 for a non-thin set of fibers.
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Figure 5.2: RNRF-conic bundle (pink) and a non-RNRF conic bundle (orange) on X with a IV∗
fiber.
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MW rank nonreduced fiber class of conics extra information

0 II∗
O

2 •
Θ0

2 •2
Θ1

•2
Θ2

•2
Θ3

•2
Θ4

•2
Θ5

•Θ8

•Θ6

0,1 III∗
O

2 •
Θ0

2 •2
Θ1

•2
Θ2

•2
Θ3

•Θ7

•Θ4

0 IV∗ P1
•

Θ0
•

Θ1
•

Θ2
•

Θ3
•

Θ4 P2

0 I∗4 O

2 •
Θ0

2 •2
Θ1

•Θ2

•Θ3

0,1 I∗3 O

2 •
Θ0

2 •2
Θ1

•Θ3

•Θ2

0,1,2 I∗2
2 •2 •2

•

•

0 I∗1 • • •

1,2 I∗1 •
Θ1

0

2
O
•

Θ2
0

3 I∗1 P1
• • •

P2

P1, P2 conjugate sections
intersecting near

components

1 IV∗ •
Θ1

0

2
O
•

Θ2
0

2 IV∗ P1
• • • • •

P2
P1, P2 non-intersecting

conjugate sections

Table 5.2: Class of conics for the proof of Proposition 5.2.3
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Chapter 6

Appendix

We reproduce part of the table in [OS91, Main Th.] with data on Mordell-Weil lattices of
rational elliptic surfaces with Mordell-Weil rank r ≥ 1. We add columns cmax, cmin,∆.

No. r T E(K)0 E(K) cmax cmin ∆
1 8 0 E8 E8 0 0 0

2 7 A1 E7 E∗8
1
2

1
2 0

3 6 A2 E6 E∗6
2
3

2
3 0

4 A⊕2
1 D6 D∗6

3
2 1 1

2

5 5 A3 D5 D∗5 1 3
4

1
4

6 A2 ⊕A1 A5 A∗5
7
6

1
2

2
3

7 A⊕3
1 D4 ⊕A1 D∗4 ⊕A∗1 3

2
1
2 1

8 4 A4 A4 A∗4
6
5

4
5

2
5

9 D4 D4 D∗4 1 1 0

10 A3 ⊕A1 A3 ⊕A1 A∗3 ⊕A∗1 3
2

1
2 1

11 A⊕2
2 A⊕2

2 A∗2
⊕2 4

3
2
3

2
3

12 A2 ⊕A⊕2
1


4 −1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2

 1
6


2 1 0 −1
1 5 3 1
0 3 6 3
−1 1 3 5

 5
3

1
2

7
6

13 A⊕4
1 D4 D∗4 ⊕ Z/2Z 2 1

2
3
2

14 A⊕4
1 A⊕4

1 A∗1
⊕4 2 1

2
3
2
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15 3 A5 A2 ⊕A1 A∗2 ⊕A∗1 3
2

5
6

2
3

16 D5 A3 A∗3
5
4 1 1

4

17 A4 ⊕A1

 4 −1 1
−1 2 −1
1 −1 2

 1
10

 3 1 −1
1 7 3
−1 3 7

 17
10

1
2

6
5

18 D4 ⊕A1 A⊕3
1 A∗1

⊕3 3
2

1
2 1

19 A3 ⊕A2

 2 0 −1
0 2 −1
−1 −1 4

 1
12

7 1 2
1 7 2
2 2 4

 5
3

2
3 1

20 A⊕2
2 ⊕A1 A2 ⊕ 〈6〉 A∗2 ⊕ 〈1/6〉 11

6
1
2

4
3

21 A3 ⊕A⊕2
1 A3 A∗3 ⊕ Z/2Z 2 1

2
3
2

22 A3 ⊕A⊕2
1 A1 ⊕ 〈4〉 A∗1 ⊕ 〈1/4〉 2 1

2
3
2

23 A2 ⊕A⊕3
1 A1 ⊕

(
4 −2
−2 4

)
A∗1 ⊕ 1

6

(
2 1
1 2

)
13
6

1
2

5
3

24 A⊕5
1 A⊕3

1 A∗1
⊕3 ⊕ Z/2Z 5

2
1
2 2

25 2 A6

(
4 −1
−1 2

)
1
7

(
2 1
1 4

)
12
7

6
7

6
7

26 D6 A⊕2
1 A∗1

⊕2 3
2 1 1

2

27 E6 A2 A∗2
4
3

4
3 0

28 A5 ⊕A1 A2 A∗2 ⊕ Z/2Z 2 1
2

3
2

29 A5 ⊕A1 A1 ⊕ 〈6〉 A∗1 ⊕ 〈1/6〉 2 1
2

3
2

30 D5 ⊕A1 A1 ⊕ 〈4〉 A∗1 ⊕ 〈1/4〉 7
4

1
2

5
4

31 A4 ⊕A2

(
8 −1
−1 2

)
1
15

(
2 1
1 8

)
28
15

2
3

6
5

32 D4 ⊕A2

(
4 −2
−2 4

)
1
6

(
2 1
1 2

)
5
3

2
3 1

33 A4 ⊕A⊕2
1

(
6 −2
−2 4

)
1
10

(
2 1
1 3

)
11
5

1
2

17
10

34 D4 ⊕A⊕2
1 A⊕2

1 A∗1
⊕2 2 1

2
3
2
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35 A⊕2
3 A⊕2

1 A∗1
⊕2 ⊕ Z/2Z 2 3

4
5
4

36 A⊕2
3 〈4〉⊕2 〈1/4〉⊕2 2 3

4
5
4

37 A3 ⊕A2 ⊕A1 A1 ⊕ 〈12〉 A∗1 ⊕ 〈1/12〉 13
6

1
2

5
3

38 A3 ⊕A⊕3
1 A1 ⊕ 〈4〉 A∗1 ⊕ 〈1/4〉 ⊕ Z/2Z 5

2
1
2 2

39 A⊕3
2 A2 A∗2 ⊕ Z/3Z 2 2

3
4
3

40 A⊕2
2 ⊕A

⊕2
1 〈6〉⊕2 〈1/6〉⊕2 7

3
1
2

11
6

41 A2 ⊕A⊕4
1

(
4 −2
−2 4

)
1
6

(
2 1
1 2

)
8
3

1
2

13
6

42 A⊕6
1 A⊕2

1 A∗1
⊕2 ⊕ (Z/2Z)2 3 1

2
5
2

43 1 E7 A1 A∗1
3
2

3
2 0

44 A7 A1 A∗1 ⊕ Z/2Z 2 7
8

11
8

45 A7 〈8〉 〈1/8〉 2 7
8

11
8

46 D7 〈4〉 〈1/4〉 7
4 1 3

4

47 A6 ⊕A1 〈14〉 〈1/14〉 31
14

1
2

12
7

48 D6 ⊕A1 A1 A∗1 2 3
2

1
2

49 E6 ⊕A1 〈6〉 〈1/6〉 11
6

1
2

4
3

50 D5 ⊕A2 〈12〉 〈1/12〉 23
12

2
3

5
4

51 A5 ⊕A2 A1 A∗1 ⊕ Z/3Z 13
6

2
3

3
2

52 D5 ⊕A⊕2
1 〈4〉 〈1/4〉 ⊕ Z/2Z 9

4
1
2

7
4

53 A5 ⊕A⊕2
1 〈6〉 〈1/6〉 ⊕ Z/2Z 5

2
1
2 2

54 D4 ⊕A3 〈4〉 〈1/4〉 ⊕ Z/2Z 2 3
4

5
4

55 A4 ⊕A3 〈20〉 〈1/20〉 11
5

3
4

29
20

56 A4 ⊕A2 ⊕A1 〈30〉 〈1/30〉 71
30

1
2

28
15

57 D4 ⊕A⊕3
1 A1 A∗1

5
2

1
2 2
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58 A⊕2
3 ⊕A1 A1 A∗1 ⊕ Z/4Z 5

2
1
2 2

59 A3 ⊕A2 ⊕A⊕2
1 〈12〉 〈1/12〉 ⊕ Z/2Z 8

3
1
2

13
6

60 A3 ⊕A⊕4
1 〈4〉 〈1/4〉 ⊕ Z/2Z 3 1

2
5
2

61 A⊕3
2 ⊕A1 〈6〉 〈1/6〉 ⊕ Z/3Z 5

2
1
2 2

Table 6.1: Mordell-Weil lattices of rational elliptic surfaces with Mordell-Weil rank r ≥ 1.
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