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aqui.

Agradeço aos meus pais, pela educação que me deram, que apesar de ter sido

bem simples, foi eficiente.

Agradeço ao meu orientador e mestre Hamid Hassanzadeh por ter me aceitado
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em deixar às escuras que as ideias centrais desta tese são dele. Obrigado, meu

mestre!
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muito orgulho de ter o nome dessa instituição na minha história.
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conhecer professores que me incentivaram. Foi lá que sonhei e decidi me dedicar
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Resumo

O principal objetivo deste trabalho é dimensionar a resolução livre minimal grad-

uada de um ideal homogêneo em termos dos graus de seus geradores. Em geral,

isto é um um objetivo ambicioso. Conforme entendido, dimensionar significa olhar

atentamente para os dois parâmetros dispońıveis: os shifts e os números Betti.

Como em geral as cotas para os shifts podem se comportar de forma bastante

abrupta, filtramos esta dificuldade pela subaditividade das siźıgias. Espera-se que

o método que aplicamos seja novo e dê luz sobre a estrutura da resolução livre

minimal. Para os números de Betti, aplicamos as técnicas de Boij-Söderberg para

obter cotas superiores polinomiais para eles. Damos uma atenção especial para

ideais que possuem resolução livre minimal graduada linear ou linear até uma certa

etapa. A teoria de grafos se mostrou proṕıcia para aplicarmos os resultados aqui

estabelecidos, justamente por oferecer muitos exemplos de ideais com resoluções

livres minimais graduadas lineares até uma certa etapa.

Palavras-chave: resoluções, números de Betti, regularidade, álgebra de Koszul,

condição Nd,q.
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Abstract

The main goal of this work is to size up the minimal graded free resolution of a

homogeneous ideal in terms of its generating degrees. By and large, this is too

ambitious an objective. As understood, sizing up means looking closely at the two

available parameters: the shifts and the Betti numbers. Since, in general, bounds

for the shifts can behave quite steeply, we filter the difficulty by the subadditivity

of the syzygies. The method we applied is hopefully new and sheds additional

light on the structure of the minimal free resolution. For the Betti numbers, we

apply the Boij-Söderberg techniques in order to get polynomial upper bounds for

them. We give a special attention to ideals which have linear or linear graded

minimal free resolution up to a determined stage. The Graph theory proved to

be suitable for us to apply the results here established, precisely because it offers

several examples of ideals with linear graded minimal free resolution up to a certain

stage.

Keywords: resolution, Betti numbers, regularity, Koszul algebra, Nd,q conditions.
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Introduction

Let S = k[x0, . . . , xn] be a standard graded polynomial ring over a field k,

I = (f1, · · · , fr) ⊂ S be a homogeneous ideal, p := pdimS(S/I) the projective

dimension of S/I over S and c := ht(I) the height of I. Our main purpose is to

understand the numerical details of the graded minimal free resolution of R := S/I

over S, by which one means the sequence of degrees (shifts) and the sequence of

the Betti numbers. More specifically, in this work we are interested in obtaining

bounds for the Betti numbers and shifts. By and large, the tese draws upon two

major tools: spectral sequences and the Boij–Söderberg theory of Betti diagrams.

Each of these is applied in a different direction to be detailed in a minute. It is

importante to let clear that the choice of this research topic, as well as the main

ideas of this work, came from the notable capacity and experience of Professor

Hamid Hassanzadeh, especially after his works [19]. It is also worth to note that

a large part of this thesis intersects with [6].

As for the Betti numbers, we focus on the d-equigenerated ideals. One of the

questions that guided this research was:

There are polynomial upper bounds on d for Betti numbers?

We were able to answer this question positively in some cases as we can see in

Propositions 3.1.6 and 3.2.1. In such cases, the ith Betti number of R has as its

upper bound the polynomial function of d of degree p− 1:
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(
d+ i− 2

i− 1

)(
d+ p− 1

p− i

)
. (1)

Furthermore, these bounds are attained.

Regarding the lower bounds for the Betti numbers, it is known [9, Proposition

1.9] that if an ideal I ⊂ S has a d-linear free resolution, then the ith expression(
d+ i− 2

i− 1

)(
d+ c− 1

c− i

)
,

is a lower bound for the i-th Betti number.

In this work, in Corollary 3.1.8, we show that these lower bounds are still valid

only assuming that I satisfies condition Nd,c, that is, when the minimal graded

free resolution is linear up to step c.

The ith shifts of R is defined by

tSi (R) := sup{j ∈ N ; (TorSi (R, k))j ̸= 0}.

It is known that, in general, the limits for the shifts in terms of tS1 (R) have dou-

bly exponential behavior that cannot be avoided. However, when R is a Koszul

algebra, that is , when tRi (k) ≤ i for all i ≥ 0, Backelin [2] and Kempf [24] showed

that the situation is totally different. They proved that

tSi (R) ≤ 2i for 1 ≤ i ≤ p. (2)

In the paper [1] published in 2015, the authors relaxed the hypothesis. They

only assumed

tRi (k) ≤ i for i ≤ p+ 1. (3)

In the Chapter 3, as a consequence of Proposition 2.1.1, we will relax even

more the hypothesis above. In Corollary 2.2.5, we will prove (2) by requiring only

that

tRi (k) ≤ i+ 1 for i ≤ p+ 1. (4)
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We will give an example of a ring R which is not a koszul algebra and (3) is not

satisfied, but corollary 2.2.5 can be applied.

We next briefly describe the contents of the thesis. Throughout, S denotes a

standard graded k-algebra and R = S/I, where I is a homogeneous S-ideal.

Chapter 1 presents the preliminary concepts necessary to understand this work.

The purpose of the Section 1.2 is to state a theorem of Boij-Söderberg Theory that

is widely used in Chapter 3. In the Section 1.3 we briefly summarize the spectral

sequence theory focused on spectral sequences that come from a bicomplex. This

tool is only used in the demonstration of Proposition 2.1.1.

Chapter 2 is devoted to subadditivity estimates for the degrees of a resolution.

The gist of the typical assertion, as compared, e.g., to the subadditivity results in

[1], lies in two directions: first, we assume that the standard graded k-algebra S is

a Koszul algebra (not just a polynomial ring); second, the subadditivity estimates

involve the degrees of both the minimal free S-resolution of R and the minimal free

R-resolution of k. Note that neither of the two free resolutions is finite in general.

The basic subadditivity result is Proposition 2.1.1, where the results depend on a

certain intertwining of the degrees from the two free resolutions. The main tool

employed in the proof is the change of ring spectral sequence

TorSr (k,R)⊗k Tor
R
s (k, k) ⇒ TorSr+s(k, k).

We draw some corollaries, first regarding estimates of the degrees of the S-resolution

of R in a so-called ‘linear slope” case; second, regularity intertwining estimates;

third, estimates for the Green–Lazarsfeld invariant in certain condition.

In chapter 3 we assume again that S is a standard graded polynomial ring and

deal with a more direct estimate of the degrees and Betti numbers of the minimal

free S-resolution of R = S/I, where I is homogeneous and besides d-equigenerated.

One main tool here is the Boij–Söderberg theory of Betti diagrams. Our first

concern is to bound the first Betti number of I, which is its minimal number of

x



generators under the present hypothesis. Though a well-know upper bound is

known in terms of the generating degree d and the projective dimension of S/I

over S, no efficient lower bound seems to be exhibited earlier. The first result of

the section gives a lower bound for β1(S/I) in terms of the upper degree sequence

of the minimal free S-resolution of S/I and ht I (Proposition 3.1.1). We believe

that this lower bound in the non-pure case is new even in the case where S/I is

Cohen–Macaulay. In addition, in the case the free resolution is d-linear it implies

a binomial coefficient kind as lower bound. There is also a lower bound in terms

of the Green–Lazarsfeld Nq condition.

In addition, in the case of projective dimension 4, assuming quadratic upper

bounds for the upper degree terms of the resolution we deduce cubic upper bounds

for the corresponding Betti numbers. The expressions involved are too technical

to reproduce here, so we refer to the details in the appropriate proposition (Propo-

sition 3.2.1).

In Chapter 4, we apply the results established in the Chapters 2 and 3 to

the graph theory. Chordal, co-chordal, gap-free and Cameron-Walker graphs have

been shown to be suitable to receiving such applications. The main results of this

chapter are Propositions 4.2.5 and 4.2.6. The first one provides a linear lower

bound for the number of edges of a q-co-chordal in terms of the vertex covering

number, while the second provides a quadratic lower bound for the number of

edges of a co-chordal graph in terms of the vertex covering number.

As a final note we mention a connection with the recent [7], where the authors

pose questions on the Betti numbers of certain monomial ideals satisfying the

Nd,q property, Definition 1.1.8. Our results in Section 3 (Corollaries 3.1.2, 3.1.3,

3.1.5, 3.1.8 and 3.2.2) provide answers to some of these questions and not just for

monomial ideals. For example, Corollary 3.1.2 explains why ideals with Nd,q must

have many generators.
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Chapter 1

Preliminaries

In this thesis, by a ring we always understand as a commutative ring with unit.

The objective of this chapter is to establish notations and expose concepts

necessary for the understanding of this work.

1.1 Resolutions and Betti diagrams

Let S denote a graded Noetherian ring over a field k. Let d ∈ Z and S(−d) denote

the rank one free S-module whose generator is in degree d. In other words, the

ith graded part of S(−d) is S(−d)i = Si−d. Given any finitely generated graded

S-module M , we form the minimal graded free resolution.

· · · →
⊕
j

S(−j)βl,j(M) → · · · →
⊕
j

S(−j)β1j(M) →
⊕
j

S(−j)β0,j(M) → M → 0.

(1.1)

Definition 1.1.1. βi,j(M) are called the (i, j)th graded Betti numbers of M ,

βi(M) =
∑

j βi,j(M) is the ith Betti number of M and (β0(M), β1(M), · · · ) is

called the Betti sequence of M .
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The integers βi,j(M) are commonly displayed in a matrix called the Betti dia-

gram of M :

βS
• (M) 0 1 · · · i · · ·

0 β0,0(M) β1,1(M) · · · βi,i(M) · · ·

1 β0,1(M) β1,2(M) · · · βi,i+1(M) · · ·
...

...
...

...
...

...

j β0,j(M) β1,j+1(M) · · · βi,i+j(M) · · ·
...

...
...

...
...

...

.

When the module M is explicit, we will write βi,j instead of βi,j(M).

Definition 1.1.2. The projective dimension of M is

pdimS(M) := max{i ∈ N0 | βi,j ̸= 0 for some j}.

Definition 1.1.3. Given an integer n, the nth Castelnuovo-Mumford regularity of

M (or just nth regularity of M) over S is

regSn(M) := max{j | βi,i+j ̸= 0 | i ≤ n}

and the Castelnuovo-Mumford regularity of M , or simply regularity of M , over S

is

regS(M) := max{regSn(M) |n ∈ Z}.

We set

tSi (M) := sup{j ∈ N ; (TorSi (M,k))j ̸= 0} = max{j|βi,j ̸= 0}.

Note that regularity also can be defined as

reg(M) = max{ti(M)− i | 0 ≤ i ≤ pdim(M)}.

Definition 1.1.4. The graded ring S is said to be a Koszul algebra over a field k

if regS(k) = 0.

2



Examples of Koszul algebras abound and include graded polynomial rings (see

[5] for an account).

Now we will define two sequences of integers that are important for this work.

Definition 1.1.5. Set d̄i := tSi (M) = max{j|βi,j(M) ̸= 0} and di := min{j|βi,j(M) ̸=

0}. The upper degree sequence of M is d̄(M) := (d̄0, . . . , d̄p) and the lower degree

sequence of M is d(M) := (d0, . . . , dp), where p = pdim(M).

Example 1.1.6. Let S = Q[x, y, z, w] be the polynomial ring, I = (x2, y2, z2, xy, xz, xw)

an ideal of S and M := S/I. The graded minimal free resolution of M is given by

0 → S(−5) → S(−5)⊕ S4(−4) → S(−4)⊕ S8(−3) → S6(−2) → S → M → 0.

On this example, we have that pdim(M) = 4, that the Betti sequence of M is

(1, 6, 9, 5, 1) and that its Betti diagram is

βS
• (M) 0 1 2 3 4

0 1 0 0 0 0

1 0 6 8 4 1

2 0 0 1 1 0

Furthermore, note that regS(M) = 2, the upper degree sequence is d̄(M) = (0, 2, 4, 5, 5)

and the lower degree sequence is d(M) = (0, 2, 3, 4, 5).

The following result is well-known. We give a proof for the reader’s convenience.

Proposition 1.1.7. With the above notation, let S = k[x1, . . . , xn] is a standard

graded polynomial ring over a field k and M be a finitely generated graded S-module.

Then:

(i) d(M) is strictly increasing.

(ii) If M is Cohen-Macaulay then d̄(M) is also strictly increasing.

3



Proof. (i) Given 0 ≤ v ≤ p, let

fv :
⊕
j

S(−j)βv,j →
⊕
j

S(−j)β(v−1),j

stand for the differential in the complex (1.1). Denote the basis of the free module

S(−j)βv,j by {ei} and that of S(−j)β(v−1),j by {ti}. Let deg(eh) = dv and deg(tr) =

dv−1. Set fv(eh) =
∑

i aiti. Since the resolution is minimal, there are no null

columns in the presentation matrix of fv. Say, ai ̸= 0, for some i. Then

dv = deg(eh) = deg(fv(eh)) ≥ deg(ai) + deg(ti) ≥ 1 + deg(tr) = 1 + dv−1.

(ii) Since M is Cohen-Macaulay, ExtjS(M,S) = 0 if and only if j ̸= n − p.

Dualizing the minimal resolution 1.1 into S, we obtain a minimal free resolution of

Extn−p
S (M,S). Moreover, d̄(M) = d(Extn−p

S (M,S)). Thus, the result follows from

part (i).

The example (1.1.6) shows that the Cohen-Macaulayness property on the hy-

pothesis is necessary in order to d̄(M) be strictly increasing.

Definition 1.1.8. Let S be a graded Noetherian ring over a field k and I be a

homogeneous ideal in S generated by elements of degree d. Let q ≥ 1.

(i) We say that S/I satisfies the Green-Lazarsfeld condition Nq over S if tSi (R) =

i+ 1 for all 1 ≤ i ≤ q, or equivalently, if regSq (R) = 1.

(ii) We say that S/I satisfies the condition Nd,q over S if tSi (R) = d + i− 1 for

1 ≤ i ≤ q, or equivalently, if regSq (R) = d− 1.

(iii) We say that S/I has a d-linear free resolution over S if tSi (R) = d+ i− 1 for

1 ≤ i ≤ p, or equivalently, if regS(R) = d− 1.

Although the last definition refers to the S-module S/I, in practice we will refer

to the ideal I. For example, when we write that I has a d-linear free resolution,

we mean that S/I has a d-linear free resolution over S.

4



Example 1.1.9. Let S = Q[x, y, z, w, t, s, l] be the polynomial ring, I1 = (xz, xw,

xt, ys, zs, ws, yt, zt, yw), I2 = (xys, xyz, xtl, xyt, xws, xwl, xwt, xzl, ytl, yws, ywl, tsl)

and I3 = (xy, yz, zw, wt, xt, xz) ideals of S. The graded minimal free resolution of

S/I1, S/I2 and S/I3 are given respectively by

0 → S(−6) → S9(−4) → S16(−3) → S9(−2) → S → S/I1 → 0

0 → S(−7) → S(−6)⊕ S9(−5) → S20(−4) → S12(−3) → S → S/I2 → 0

0 → S3(−4) → S8(−3) → S6(−2) → S → S/I3 → 0

Note that by definition, I1 satisfies the Green-Lazarsfeld condition N3, I2 satisfies

the condition N3,2 and I3 has a 2-linear free resolution.

Ideals with d-linear free resolution are not rare. For example, edge ideals of

co-chordal graphs have 2-linear free resolution (see [16]). To know more examples

of ideals with d-linear free resolution, see [28]. Below we present a simple example

of a non-monomial ideal that has a 2-linear free resolution.

Example 1.1.10. Let S = Q[x, y, z, w, t, s, l] be the polynomial ring and

I = (x2 − xz, x2 + xz, xy − xz, x2 − z2, xy − xz − yz + z2, xy − xz + yz − z2) ideal

of S. The graded minimal free resolution of S/I is given by

0 → S2(−4) → S6(−3) → S5(−2) → S → S/I → 0.

Therefore, I has a d-linear free resolution.

In the case that the ideal I has 2-linear free resolution, we already know the

lower bound for the Betti numbers.

5



Theorem 1.1.11. (Herzog–Kühl, 1984 [21]) If M is a graded S-module of projec-

tive dimension p with a linear resolution, then βi(M) ≥
(
p
i

)
.

Definition 1.1.12. By a diagram we shall mean a collection of rational numbers

(βi,j), i = 1, · · · , n and j ∈ Z, with only a finite number of them being nonzero.

By a pure diagram (of type d = (d0, · · ·dt), we shall mean a diagram such that for

each column i there is only one nonzero entry βi,di, and the di form an increasing

sequence.

We finish this section with the construction of a pure diagram which is very

important to our study.

Let d = (d0, ...,dt) be a strictly increasing sequence of integers, the pure

diagram having β0,d0 = 1 and

βi,di =
∏

1≤j≤t, j ̸=i

|dj − d0|
|dj − di|

, for 1 ≤ i ≤ t (1.2)

is called the Herzog–Kühl diagram of d and will be denoted by β(π(d)). We set

βi,di = 0 if i > t.

Example 1.1.13. Let d = (0, 2, 5, 6), The pure diagram β(π(d)) has β0,0 =

1, β1,2 = β3,6 = 5/2 and β2,5 = 4. In the same way as we represent the Betti

diagrams, β(π(d)) also can be displayed in a matrix

0 1 2 3

0 1 0 0 0

1 0 5
2

0 0

2 0 0 0 0

3 0 0 4 5
2

.

1.2 A little about Boij-Söderberg theory

In Chapter 2 we deal with the question how the Betti sequence of the cyclic

module S/I can be bounded by polynomial functions in terms of the degree of the

6



generators of I. In order to do that, we need to know a fundamental result of the

Boij-Söderberg theory. We start the explanation of this result through a simple

example.

Throughout, we assume S = k[x1, · · · , yn] is a standard graded polynomial ring

over a field k.

Example 1.2.1. Let M be the S-module S/(x2, xy, y3). Its minimal resolution is

given by

0 → S(−4)⊕ S(−3) → S(−3)⊕ S2(−2) → S → M → 0.

Hence its Betti diagram is

βS
• (M) 0 1 2

0 1 0 0

1 0 2 1

2 0 1 1

Now we will denote this Betti diagram just by

β(M) =


1 0 0

0 2 1

0 1 1

 .

Note that

β(M) =
1

2


1 0 0

0 3 2

0 0 0

+
1

4


1 0 0

0 2 0

0 0 1

+
1

4


1 0 0

0 0 0

0 4 3

 .

The interesting fact about the decomposition of β(M) is that its coefficients are

all positive rationals and their sum is 1. Furthermore, the diagrams that appear in

this decomposition have only a single nonzero entry in each column, that is, they

7



are pure diagrams. Then we could consider the following question: Will we always

have a decomposition for the Betti diagram with such properties? A Theorem

within the Boij-Söderberg theory answers this question in a positively and tells

us how this decomposition is given. Eisenbud and Schreyer showed that the Betti

diagram of any graded Cohen-Macaulay S-module M is a positive rational sum

of pure diagrams. Boij and Söderberg extended this result to the non Cohen-

Macaulay case.

Definition 1.2.2. Fix an integer t ≤ n. A sequence d = (d0, ..., dt) ∈ Zt+1 is a

degree sequence of length t+ 1 if di−1 < di for i = 1, ..., t.

Let Zt+1
deg denote the set of all degree sequences of length t+1. Given two degree

sequences d and d′ in Zt+1
deg , we say that d ≼ d′ if di ≤ d′i for i = 0, ..., t.

For a,b ∈ Zt+1
deg with a ≼ b, we introduce the “window”

D(a,b) := {d ∈ Zt+1
deg |a ≼ d ≼ b}.

If d = (d0, . . . , dt) ∈ Zt+1
deg and s ≤ t, then we set τs(d) = (d0, . . . , ds).

Theorem 1.2.3. ( [12], [3]) Let M be a graded S-module of projective dimension

p and codimension c. Then the Betti diagram β(M) can be decomposed as a sum:

β(M) =
∑
c≤s≤p

∑
d∈D(τs(d(M)),τs(d(M)))

qdβ(π(d)), (1.3)

where qd’s are nonnegative rational numbers.

As an example, in the Example 1.2.1 the decomposition given by Theorem 1.2.3 is

β(M) =
1

2
β(π(0, 2, 3)) +

1

4
β(π(0, 2, 4)) +

1

4
β(π(0, 3, 4)).

In this section, we only establish the notations for understanding of Theorem

1.2.3. For more details about the Boij-Soderberg theory, the interested reader can

consult [14]
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1.3 Spectral sequences

The spectral sequence theory that was introduced by the French mathematician

Jean Leray has a fundamental role in this work, more specifically in Chapter 2.

Therefore, in order that the reader can remember this theory, we make a brief

summary at this section. Case the reader does not know this tool, we recommend

to consult [27] and [30].

We start by recalling the definitions of complex, bicomplex and total complex.

In this section S is a ring.

Definition 1.3.1. A complex C• of S-modules is a family {Cn}n∈Z of S-modules,

together with S-module maps d• = {dn : Cn → Cn−1} such that each composite

d o d : Cn → Cn−2 is zero. The maps dn are called the differentials of C•. The

kernel of dn is the module of n-cycles of C, denoted Zn = Zn(C•). The image

of dn+1 : Cn+1 → Cn is the module of n-boundaries of C, denoted Bn = Bn(C•).

Because d o d = 0, we have

0 ⊂ Bn ⊂ Zn ⊂ Cn

for all n. The nth homology module of C• is the subquotient Hn(C•) = Zn/Bn of

Cn.

A chain complex Ccan also be represented by a diagram as below

C• : · · · → Cn+1
dn+1−−−→ Cn

dn−−→ Cn−1 → . . .

Definition 1.3.2. A bicomplex C•• of S-modules is a family {Cp,q}(p,q)∈Z×Z of

S-modules, together with S-module maps

dhp,q : Cp,q → Cp−1,q and dvp,q : Cp,q → Cp,q−1

such that dh o dh = dv o dv = dvdh + dhdv = 0. We will denote the bicomplex C••

9



by C•• = (Cp,q, d
h, dv) . It is useful to picture the bicomplex C•• as a lattice

· · ·

��

· · ·

��

· · ·

��
· · · Cp−1,q+1

dv

��

oo Cp,q+1

dv

��

dhoo Cp+1,q+1

dv

��

dhoo · · ·oo

· · · Cp−1,q
oo

dv

��

Cp,q
dhoo

dv

��

Cp+1,q
dhoo

dv

��

· · ·oo

· · · Cp−1,q−1
oo

��

Cp,q−1
dhoo

��

Cp+1,q−1
dhoo

��

· · ·oo

· · · · · · · · ·

(1.4)

in which the maps dh go horizontally, the maps dv go vertically, and each square

anticommutes. Each row C∗q and each column Cp∗ is a complex. We say that a

double complex C is bounded if C has only finitely many nonzero terms along each

diagonal line p + q = n, for example, if C is concentrated in the first quadrant of

the plane (a first quadrant bicomplex).

Definition 1.3.3. Let C•• = (Cp,q, d
h, dv) be a bicomplex of S-modules, its total

complex, denoted by Tot(C••), is the complex with nth term

Tot(C••)n =
⊕

n=p+q

Cp,q

and with differentials Dn : Tot(C••)n → Tot(C••)n−1 given by

Dn =
∑

n=p+q

(dhp,q + dvp,q)

.

Lemma 1.3.4. If C•• is a bicomplex of S-modules, then (Tot(C••), D) is a com-

plex.

Proof. See [27, Lemma 10.5].
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Definition 1.3.5. A spectral sequence of S-modules (starting with Ea ) consists

of the following data:

(1) for each r ≥ a, a family {Er
p,q}(p,q)∈Z×Z of S-modules.

(2) Maps drp,q : E
r
p,q → Er

p−r,q+r−1 that are differentials in the sense that drdr = 0.

(3) Er+1
p,q

∼= Ker(drp,q)/(d
r
p+r,q−r+1).

The total degree of the term Er
p,q is n = p+ q.

Note that Er+1
p,q is a subquotient of Er

p,q and each differential drp,q decreases the

total degree by one. We can think that for each r we have a page of the spectral

sequence and for each (p, q) we have a point on this page.

Definition 1.3.6. A spectral sequence of S-modules {Er
p,q} starting with Ea is said

to be bounded if for all n there are t(n) and s(n) such that for p, q with p+ q = n,

Ea
p,q = 0 whenever p < t(n) or p > s(n). If so, then for each p and q there is an

r0 such that Er
p,q = Er+1

p,q for all r ≥ r0. We write E∞
p,q for this stable value of Er

p,q.

Definition 1.3.7. A bounded spectral sequence of S-modules {Er
p,q} starting with

Ea converges to a family of S-modules {Hn}n∈Z , denoted by

Ea
p,q ⇒ Hp+q,

if for all n and p, q with p+ q = n, there is a filtration of Hn

0 = FsHn ⊂ · · · ⊂ Fp−1Hn ⊂ FpHn ⊂ · · ·FtHn = Hn,

such that E∞
p,q

∼= FpHn/Fp−1Hn

The next theorem is one of the main results of spectral sequence theory.

Theorem 1.3.8. Let C•• = (Cp,q, d
h, dv) be a bicomplex of S-modules in the

first quadrant. Then there are two spectral sequences starting with E1 denoted

by {horEr
p,q} and {verEr

p,q} such that

11



(1) horE1
p,q = Hp(C•,q) and

horE2
p,q = Hv

qH
h
p (C••).

(2) verE1
p,q = Hq(Cp,•) and

verE2
p,q = Hh

pH
v
q (C••).

(3) horE1
p,q⇒Hp+q(Tot(C••)) and

verE1
p,q⇒Hp+q(Tot(C••))

Proof. Consult [27, Proposition 10.17] and [27, Proposition 10.18].

Many spectral sequences that appear in applications are quite simple in the

sense that: They start with E1, E∞
p,q = E2

p,q and the terms on the second page are

almost all null. The next result is focused on these cases.

Definition 1.3.9. Let {Er
p,q} be a spectral sequence of S-modules. We say that

{Er
p,q} collapses on the p-axis if E2

p,q = 0 for all q ̸= 0 and that {Er
p,q} collapses on

the q-axis if E2
p,q = 0 for all p ̸= 0.

Proposition 1.3.10. Let {Er
p,q} be a spectral sequence of S-modules starting with

Ea such that Ea
p,q ⇒ Hp+q.

(1) If {Er
p,q} collapses on either axis, then E∞

p,q = E2
p,q for all p, q.

(2) If {Er
p,q} collapses on the p-axis, then Hn

∼= E2
n,0.

(3) If {Er
p,q} collapses on the q-axis, then Hn

∼= E2
0,n.

Proof. [27, Proposition 10.21]

For the reader to adapt to the notation, we finish this section with a classic

application of the spectral sequence theory. Let M, N be S - modules and P• a

deleted projective resolution of M . Remember that

TorSn(M,N) := Hn(P• ⊗S N).
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Example 1.3.11. Let M,N be S - modules and Q• a deleted projective resolution

of N . Then TorSn(M,N) = Hn(M ⊗S Q•).

Denote

Q• : · · · → Q2
v2−→ Q1

v1−→ Q0 → 0.

Let P• be a deleted projective resolution of M , denoted by

P• : · · · → P2
h2−→ P1

h1−→ P0 → 0.

Consider the bicomplex C•• in the first quadrant

...

��

...

��

...

��
0 P0 ⊗Q2

dv02
��

oo P1 ⊗Q2

dv12
��

dh12oo P2 ⊗Q2

dv22
��

dh22oo · · ·oo

0 P0 ⊗Q1
oo

dv01
��

P1 ⊗Q1

dh11oo

dv11
��

P2 ⊗Q1

dh21oo

dv21
��

· · ·oo

0 P0 ⊗Q0
oo

��

P1 ⊗Q0

dh10oo

��

P2 ⊗Q0

dh20oo

��

· · ·oo

0 0 0 ,

(1.5)

where dvi,j = IPi
⊗ vj with IPi

the identity map in Pi and dhi,j = hi ⊗ IQj
with IPJ

the identity map in Qj.

Let {horEr
p,q} and {verEr

p,q} be the spectral sequences of Theorem 1.3.8. By

this same theorem,we know what are the initial pages of these sequences and that

horE1
p,q⇒Hp+q(Tot(C••)) and

verE1
p,q⇒Hp+q(Tot(C••)).

The first page of {horEr
p,q} is constructed by calculating the homology of hori-

zontal complexes of the bicomplex above. As each Qi is a projective module, and

in particular they are flat. We use the first isomorphism theorem to conclude that

horE1
p,q =

 M ⊗Qi if p = 0

0 p ̸= 0.
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We can also represent this first page by the diagram below

...

��

...

��

...

��
M ⊗Q2

dv02
��

0

��

0

��

· · ·

M ⊗Q1

dv01
��

0

��

0

��

· · ·

M ⊗Q0

��

0

��

0

��

· · ·

0 0 0 · · · .

(1.6)

By Theorem 1.3.8, the second page of the {horEr
p,q} is constructed by calculating

the homology of the above complexes. Therefore,

horE1
p,q =

 Hq(M ⊗Q•) if p = 0

0 p ̸= 0.

This is, {horEr
p,q} collapses on the q-axis. By the Theorem 1.3.10 Tot(C••)n =

E2
0,n = Hn(M ⊗Q•).

For the spectral sequence {verEr
p,q}, we repeat an analogous argument as done

above to show that Tot(C••)n = E2
n,0 = Hn(P• ⊗N). Hence

TorSn(M,N) = Hn(M,Q•) = Hn(P• ⊗N)

as we wanted to show.
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Chapter 2

Subadditivity bounds via change of ring

Throughout this chapter we assume that S is a standard graded Koszul algebra

over the field k and R = S/I is a homogeneous residual algebra. We make use of

the notations established in the first chapter

In the sequel we will consider the above invariants both over S and R, in

particular the intertwining along the change of rings from S to R, both for the

‘degrees’ as for the regularity.

The main result of this chapter is Theorem 2.1.1 which was put separately in

the Section 2.1

Section 4.2 is dedicated to obtain consequences of the Theorem 2.1.1

2.1 The key result

This section is devoted to prove the following proposition.

Proposition 2.1.1. Let S be a standard graded Koszul algebra over k, and let

R = S/I denote a residual graded algebra with p := pdimS(R), possibly infinite.

Then, for any i ≥ 0,

(1) tSi (R) ≤ max{tSi−j(R) + tRj+1(k) | j = 1, · · · , i}.
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(2) tRi+1(k) ≤ max{tSi−j(R) + tRj (k) | j = max{0, i− p}, · · · , i− 1}, with the con-

vention that max{0, i− p} = 0 if p is infinite.

In particular, tR2 (k) = tS1 (R).

Proof. The proof is based on the change of ring spectral sequence

TorSr (k,R)⊗k Tor
R
s (k, k) ⇒ TorSr+s(k, k).

In order to study the maps in this spectral sequence, we introduce some basic

intervening complexes. Thus, let KS
• and F• denote the minimal free resolution of

k over S and the minimal free resolution of k over R, respectively. Since S is a

Koszul algebra, we can write

KS
• (k) : · · · → S(−i)β

S
i (k) → S(−i+ 1)β

S
i−1(k) → · · · → S.

Set Ki = S(−i)β
S
i (k). Consider the bicomplex (KS

• ⊗S R) ⊗R F• in the second

quadrant

(K2 ⊗S R)⊗R F0

��
· · · (K1 ⊗S R)⊗R F1

��

// (K1 ⊗S R)⊗R F0

��
(K0 ⊗S R)⊗R F2

// (K0 ⊗S R)⊗R F1
// (K0 ⊗S R)⊗R F0

(2.1)

The horizontal spectral sequence collapses at the first step

1 E−j,i
hor =

 0 if j ̸= 0

kβS
i (k)(−i) j = 0.

(2.2)

Note that the shifts in this convergence are due to the fact that S is a Koszul

algebra.

The vertical spectral sequence has first terms 1 E−i,j
ver = TorSj (k,R) ⊗R Fi with

connecting homorphisms TorSj (k,R)⊗Fi → TorSj (k,R)⊗Fi−1. The map ϕi : Fi →
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Fi−1 comes from the minimal free resolution F•, hence ϕi(Fi) ⊂ mFi−1, where m

is the irrelevant maximal ideal of R. On the other hand TorSj (k,R) is annihilated

by m. Then, the connecting homomorphism TorSj (k,R)⊗ Fi → TorSj (k,R)⊗ Fi−1

is the zero map. Thus 2 E−i,j
ver = TorSj (k,R)⊗R Fi. By setting Ti := TorSi (k,R), we

draw the second vertical spectral as follows:

· · · T3 ⊗ F1 T3 ⊗ F0

· · · · · · T2 ⊗ F2

d2
44hhhhhhhhhh

T2 ⊗ F1 T2 ⊗ F0

· · · T1 ⊗ F3

kkkkkkkkkkkkkkkkkk
T1 ⊗ F2 T1 ⊗ F1 T1 ⊗ F0

T0 ⊗ F4 T0 ⊗ F3 T0 ⊗ F2 T0 ⊗ F1 T0 ⊗ F0

(2.3)

Let i ≥ 0 be an integer. Consider the ith diagonal in the above picture. Since 1 Ehor

collapses, kβS
i (k)(−i) is the ith homology of the total complex. The convergence

of the vertical spectral sequence implies that the ∞ Ever terms on the ith diagonal

filter kβS
i (k)(−i).

Now, let a be an integer such that a > max{tSi−j(R) + tRj+1(k)|j = 1, · · · , i}.

Since F• is minimal, if tSi−j(R) ≥ i−j and tRj+1(k) ≥ j+1 then a > i+1. Therefore,

considering these spectral sequences in degree a, one has (1E0,i
hor)a = 0, and hence,

(∞E−j,i−j
ver )a = 0 for all j.

We now show that (∞E0,i
ver)a = (Ti ⊗ F0)a = TorSi (k,R)a. To see this, consider

the map

(Ti−1 ⊗ F2)a
d2 // (Ti ⊗ F0)a.

Since a > end(Ti−1) + tR2 (k) = end(Ti−1 ⊗ F2) then (Ti−1 ⊗ F2)a = 0. Thus,

(3E0,i
ver)a = (2E0,i

ver)a = (Ti⊗F0)a. In the next page (3E0,i
ver)a is target of a map from

(3E−3,i−2
ver )a which is a subquotient of (Ti−2 ⊗ F3)a. By a similar reasoning, the
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latter vanishes, hence eventually (∞E0,i
ver)a = TorSi (k,R)a which must be zero since

the abutment is zero. Therefore tSi (R) ≤ max{tSi−j(R) + tRj+1(k) : j = 1, · · · , i},

thus proving item (1).

To prove item (2), we regard the above spectral sequences from a different

angle. The vertical spectral in the second step is the following

· · · TorS2 (k,R)⊗ F1 TorS2 (k,R)⊗ F0

TorS1 (k,R)⊗ F2 TorS1 (k,R)⊗ F1 TorS1 (k,R)⊗ F0

TorS0 (k,R)⊗ F3

d2
22eeeeeeeeeeeeeeeeeeeeeeeeeeee

d3

33ggggggggggggggggggggggggggg

TorS0 (k,R)⊗ F2 TorS0 (k,R)⊗ F1 TorS0 (k,R)⊗ F0

Set ti := tSi (R) and τi := tRi (k). We may assume that in the presentation R = S/I,

the ideal I has no linear form; so that ti ≥ i+ 1 for any i ≥ 1.

Notice that if p is finite it is the last index i for which TorSi (k,R) ̸= 0. Let

i ≥ 1 and consider the (i + 1)th diagonal in the above vertical spectral sequence

(i = 2 is shown in the above picture). Let a > max{tSi−j(R) + tRj (k) : j =

max{0, i − p} · · · , i − 1}. Then k(−i − 1)a = 0 since a > i + 1. This implies

that the infinity terms(in degree a) on the (i+ 1)th diagonal in the above vertical

spectral sequence are all null. Next, since a > ti−j+τj, (Ti−j⊗RFj)a = 0. Therefore

in any page, n > 2, (nE−j,(i−j)
ver )a = 0. Hence any map with source in (2Ei+1,0

ver )a

maps to zero. This shows that 0 = (∞Ei+1,0
ver )a = (2Ei+1,0

ver )a = (TorS0 (k,R)⊗Fi+1)a.

The latter shows that a > τi+1, since (TorS0 (k,R) ⊗ Fi+1)τi+1
̸= 0. Hence, τi+1 ≤

max{ti−j + τj : j = max{0, i− p} · · · , i− 1}, as was to be shown.

Next, we will see that the bounds given by Proposition 2.1.1 can be reached.

Example 2.1.2. Let S = Q[x, y, z, w] be the polynomial ring, I = (x3, y3, xz2 −

yw2) be an ideal of S and R = S/I. Using Macaulay2, we have the following Betti

tables:
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βS
• (R) 0 1 2 3 4

0 1 – – – –

1 – – – – –

2 – 3 – – –

3 – – – – –

4 – – 3 – –

5 – – 1 2 –

6 – – 1 2 1

7 – – 1 2 1

and

βR
• (Q) 0 1 2 3 4 5

0 1 4 6 4 1 –

1 – – 3 12 18 12

2 – – – – 6 24

3 – – – – – –

4 – – – 1 6 15

5 – – – 1 6 21

6 – – – 1 6 21

7 – – – – – 6

Note that 9 = tS2 (R) ≤ max{tS1 (R) + tR2 (Q), tR3 (Q)} = max{6, 9} and 9 = tR3 (Q) ≤

max{tS2 (R), tS1 (R) + tR1 (Q)} = max{9, 4}.

We finish this section by showing that hypothesis that S is a Koszul algebra in

Proposition 2.1.1 can not be suppressed.

Example 2.1.3. Let H = Q[x, y, z, w] be the polynomial ring, I = (x3, y3, xz2 −

yw2) an ideal of H and S := H/I. Since I is not generated in degree two, S is not

a Koszul algebra. Let I = (x2, y2, xz − yw) be an ideal of S and R := S/I. Using

Macaulay2, we have the following Betti tables

βS
• (R) 0 1 2 3 4 5

0 1 – – – – –

1 – 3 2 – – –

2 – – 7 14 4 –

3 – – – – 21 33

4 – – – 1 2 1

5 – – – 1 5 12

6 – – – 1 5 19

7 – – – – 3 18

8 – – – – – 7

and

βR
• (Q) 0 1 2 3 4 5

0 1 4 9 16 25 36

1 – – 1 8 33 98

2 – – – – 1 12
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Note that 9 = tS3 (R) ̸≤ max{tS2 (R) + tR2 (Q), tS1 (R) + tR3 (Q), tR4 (Q)} = max{7, 6}.

2.2 Its consequences

In this section we will develop consequences of Theorem 2.1.1. The first of these

concerns the special situation informally known as ‘linear slope’.

Corollary 2.2.1. Let S and R be as in Proposition 2.1.1. Suppose that 2 ≤ i ≤

pdimS(R) and that for any 2 ≤ j < i, tSj (R) ̸= tRj+1(k). Then either tSi (R) =

tRi+1(k) or else the following inequalities hold:

• tSi (R) < tRi+1(k) ≤ (i− 1)tS1 (R) + 1, or

• tRi+1(k) < tSi (R) ≤ itS1 (R).

Proof. The proof is by induction on i for which we consider the two sets of in-

equalities in Proposition 2.1.1. Setting ti := tSi (R) and τi := tRi (k), we have

τi+1 ≤ max{ti, ti−1 + τ1, · · · , t1 + τi−1}and (2.4)

ti ≤ max{τi+1, t1 + τi, · · · , ti−1 + τ2}. (2.5)

The case i = 2 easily follows from 2.4 and 2.5. Assume that the result is valid

for 2 ≤ k ≤ i− 1. Let i ≥ 3

Consider the case that ti ≤ τi+1, by 2.5 we have

τi+1 ≤ max{ti−1 + τ1, · · · , t1 + τi−1} = max{ti−j + τj | j = 1, · · · , i− 1}.

By the inductive hypothesis, for j = 1, . . . i− 2, we have
ti−j < τi−j+1 ≤ (i− j − 1)t1 + 1

or

τi−j+1 < ti−j ≤ (i− j)t1.

(2.6)
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and for j = 3, . . . i− 1


tj−1 < τj ≤ (j − 2)t1 + 1

or

τj < tj−1 ≤ (j − 1)t1.

(2.7)

Hence, for j = 2, . . . i − 2, in any of the above alternatives, we conclude that

ti−j + τj ≤ (i − 1)t1 + 1. The verification that ti−j + τj ≤ (i − 1)t1 + 1 for

j ∈ {1, 2, i− 1} is done separately, using again 2.6 and 2.7.

The other case is shown in a similar way.

Corollary 2.2.2. Let S and R be as in Proposition 2.1.1. Then, for any i ≥ 0,

(1) tSi (R) ≤ 2i+
∑i+1

l=2 reg
R
l (k).

(2) regSi (R) ≤ regSi−1(R) + regRi+1(k) + 1.

(3) regRi+1(k) ≤ regSi (R) + regRi−1(k)− 1 for i ≤ p; and

regRi+1(k) ≤ regSp (R) + regRi−1(k)− 1 for i ≥ p, provided p < ∞.

(4) ([20, Proposition 5.8]) If regS(R) = 1, then R is a Koszul algebra.

Proof. (1) The proof is by induction on i. Setting ti := tSi (R) and τi := tRi (k). The

case i = 0 is trivial. Assume that the result is valid for 1 ≤ k ≤ i− 1. By 2.1.1

tSi (R) ≤ max{ti−j + τj+1 | j = 1, · · · , i}.

Now, use the induction hypothesis to show that ti−j + τj+1 ≤ 2i +
∑i+1

j=2 reg
R
j (k),

for 1 ≤ j ≤ i.

Item (2) is merely the definition of the regularity as applied in Proposition 2.1.1(1),

noting that regRj+1(k) ≥ regRj (k). Similarly, (3) follows from Proposition 2.1.1(2).

To see (4), notice that (3) implies that regR(k) ≤ max{regR1 (k), regR0 (k)} = 0.
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Recall that, given an integer q ≥ 0, R satisfies the Green–Lazarsfeld condition

Nq over S if tSi (R) = i+ 1 for 1 ≤ i ≤ q; or equivalently, if regSq (R) = 1.

Corollary 2.2.3. Let S and R be as in Proposition 2.1.1. Suppose that regRn+1(k) =

0 for some n ≥ 1. Then, for every i ≤ n,

(1) tSi (R) ≤ 2i.

(2) regSi (R) ≤ regSi−1(R) + 1.

(3) tSi (R) ≤ tSi−1(R) + 2 for i ≤ min{n, depth(S)− dim(R)}.

Proof. (1) It is an immediate consequence of Corollary 2.2.2(1).

(2) It follows from Corollary 2.2.2 (2).

(3) Set m(R) : = min{i ≥ 0|tSi (R) ≥ tSi+1(R)}. By the proof of [1, Lemma 6.1]

we have Ext
m(R)
S (R, S) ̸= 0 hence m(R) ≥ depth(S) − dim(R). The result now

follows from Proposition 2.1.1(1) as tRj+1(k) = j + 1 for j ≤ n.

Corollary 2.2.4. Let S and R be as in Proposition 2.1.1. Suppose that regRn+1(k) ≤

1 for some n ≥ 1 and that R satisfies the Green-Lazarsfeld condition Nq over S

for some q ≥ 1. Then

tSi (R) ≤ 2i− q + 1 for q + 1 ≤ i ≤ n.

Proof. Setting ti := tSi (R) and τi := tRi (k).

First we show that regSq (R) ≤ 1 implies that regRq+1(k) = 0. This is done by

induction on i, we will show that τi = i for 1 ≤ i ≤ q + 1.

For i = 1, τ1 = 1. Assume that i ≥ 2 and that the result holds for i < q + 1.

By Proposition 2.1.1(2)

τi+1 ≤ max{ti−j + τj | j = max{0, i− p}, · · · , i− 1}.
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Note that i − j ≤ i ≤ q. Since R satisfies the Green-Lazarsfeld condition Nq,

ti−j = i− j + 1. By the inductive hypothesis τj = j, hence τi+1 ≤ i+ 1.

Now we prove that tSi (R) ≤ 2i− q + 1 for q ≤ i ≤ n. Proceed by induction on

i. The result holds for i = q by hypothesis. Assume that i ≥ q + 1 and that the

result holds for i and below. By Proposition 2.1.1(1)

ti+1 ≤ max{ti+1−j + τj+1 | j = 1, · · · , i+ 1}.

First let’s analyze the elements ti+1−j + τj+1 for j = 1 . . . q. By the initial

part of proof, τj+1 = j + 1. On the other hand, using the hypothesis or induction

hypothesis, ti+1−j ≤ i + 2 − j or ti+1−j ≤ 2(i + 1 − j) − q + 1. In both cases,

ti+1−j + τj+1 ≤ 2(i+ 1)− q + 1.

Now we analyze the terms ti+1−j + τj+1 for j = q + 1, . . . i. By hypothesis

τj+1 ≤ j + 2. On the other hand, using the hypothesis or induction hypothesis,

ti+1−j ≤ i+2−j or ti+1−j ≤ 2(i+1−j)−q+1. In both cases, ti+1−j+τj+1 ≤ 2(i+1)−

q+1. Finally, the case that j = i+1, ti+1−j+τj+1 = τj+2 ≤ i+3 ≤ 2(i+1)−q+1.

Thus concluding the proof.

Corollary 2.2.5. Let S and R = S/I be as in Proposition 2.1.1. Suppose that

regRp+1(k) ≤ 1 and that I is a 2-equigenerated ideal. Then

tSi (R) ≤ 2i for i ≤ p.

Proof. Follows from Corollary 2.2.4

Next we will see an example of a ring that is not a koszul algebra and that does

not satisfy the condition regRp+1(k) ≤ 0, but satisfies the hypothesis of Corollary

2.2.5

Example 2.2.6. Let S = Q[x, y, z, w] be the polynomial ring, I = (x2, y2, z2, w2, xy+

zw) be an ideal of S and R = S/I. Using Macaulay2, we have the following Betti

tables.
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βR
• (Q) 0 1 2 3 4 5 6

0 1 4 11 24 46 80 130

1 – – – 5 36 159 536

2 – – – – – – 25

and

βS
• (R) 0 1 2 3 4

0 1 – – – –

1 – 5 – – –

2 – – 15 16 5

Note that regR5 (k) ≤ 1.

Remark 2.2.7. (a) Granted the assumption regRn+1(k) = 0, the inequality in

Corollary 2.2.3(1) has been proved earlier in [1, Corollary 5.2] in the case where

S is a polynomial ring. The argument there uses the structure of minimal model,

a tool that may not be available for a Koszul algebra. Note that Corollary 2.2.5 is

an extension of the Corollary 2.2.3(1).

(b) Corollary 2.2.3(2) shows how the jumps happen along the way to compute

the regularity of Koszul algebras. This inequality has also been shown in [1, Propo-

sition 6.7] in the case where S is a polynomial ring and k has characteristic zero

or prime characteristic p such that p ∤
(
n
j

)
for any j ≤ n.

(c) Corollary 2.2.4 is a characteristic-free result, hence it improves the bound

in [1, Theorem 7.1] in the case where k is a field, q ≥ 3 and char(k) fails for the

above restriction.
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Chapter 3

Bounding the Betti sequence

Throughout this part, S = k[x1, . . . , xn] is a standard graded polynomial ring over

a field k and I ⊂ S is a homogeneous d-equigenerated ideal.

In this chapter we apply Theorem 1.2.3 to obtain bounds for the Betti se-

quence of modules of the form S/I. As before, let (β0, β1, · · · , βp) denote the Betti

sequence of S/I, where p is the projective dimension of S/I.

In the early of the Section 3.1 we will deal with the first and cth Betti numbers

of S/I, where c is height of the ideal I. For β1(S/I), we give a lower bound in

terms of height of I and the lower degree sequence of S/I. At the same time we

produce an upper bound already known in terms of d and p. As for βc(S/I), we

give a upper bound in terms of lower and upper degree sequence of ideal I and its

height .

These lower bound for β1(S/I) provide us attractive consequences in the case

that the ideal I satisfies the condition Nd,q. For example, Corollary 3.1.2 shows

that such ideals have many generators, while Corollary 3.1.5 establishes a robust

lower bound for the number of generators of monomial ideals. We finish this section

showing bounds for all Betti numbers of ideals admiting d-linear free resolution

and lower bounds for the Betti numbers of ideals satisfying the condition Nd,c.
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In Section 2 we will establish upper bounds for the Betti numbers in terms of

polynomial functions in d with degree p− 1. In projective dimension 3 the bounds

are best as possible in general. In projective dimension 4 we get cubic bounds

whenever the highest degrees in a graded free resolution have certain quadratic

upper bounds. We finish this section showing upper bounds for the Betti numbers

of ideals satisfying the condition Nd,q.

3.1 Bounding β1 and βc

By assumption, β1(S/I) = dimk[I]d = µ(I), the minimal number of generators

of I. The latter has an obvious upper bound in terms of d and p = pdim(S/I).

To see this, we may assume that k is an infinite field. Since pdim(S/I) = p,

depth(S/I) = n− p. Thus, one can specialize modulo a linear sequence of length

n − p which is regular both in S and on S/I. Letting S̄ denote the residue of S

modulo this regular sequence, one has TorS̄i (S/I, k) = TorSi (S/I, k) for all i ([25, p

140, Lemma 2], also [4, Proposition 1.1.5]). Thus, to compute the Betti numbers

of S/I we may assume that p = n. Therefore,

dimk[I]d ≤ dimk(Sd) =

(
d+ p− 1

p− 1

)
.

By drawing upon Theorem 1.2.3, in the next proposition we recover this bound,

but also establish a non-trivial lower bound for β1 and βc, where c = ht(I).

Proposition 3.1.1. Let S = k[x1, . . . , xn] be a standard graded polynomial ring

over the field k and let I ⊂ S be a homogeneous d-equigenerated ideal of height

c ≥ 2. With the notation of the previous chapters, one has

(1)
dd2 · · · dc−1

(dc − d)(dc − d2) . . . (dc − dc−1)
≤ βc(S/I).
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(2)
d2 . . . dc

(d2 − d) . . . (dc − d)
≤ µ(I) ≤

(
d+ p− 1

p− 1

)
.

Proof. Theorem 1.2.3 says that

β(S/I) =
∑
c≤s≤p

∑
d∈D(τs(d(S/I)),τs(d(S/I)))

qdβ(π(d)), (3.1)

An element ofD(τs(d(S/I)), τs(d(S/I))) is the form di2,...,is = (0, d, d2+i2, · · · , ds+

is). Here for any 2 ≤ j ≤ s− 1,

dj + ij + 1 ≤ dj+1 + ij+1, and (3.2)

0 ≤ ij ≤ dj − dj. (3.3)

Let b
{j}
i2,...,is

denote the nonzero entry on the jth column of β(π(di2,...,is)). That

is,

b
{j}
i2,...,is

=
d(d2 + i2) . . . ̂(dj + ij) . . . (ds + is)

(dj + ij − d) . . . (dj + ij − dj−1 − ij−1)(dj+1 + ij+1 − dj − ij)(ds + is − dj − ij)
.

(3.4)

(1) According to the decomposition 3.1

βc(S/I) =
∑
c≤s≤p

∑
(i2,...,is)

qi2...is · b
{c}
i2,...,is

(3.5)

Note that by definition b
{c}
i2,...,is

≥ b
{c}
i2,...,ic

for all s ≥ c. Consequently,

βc(S/I) ≥
∑
c≤s≤p

∑
(i2,...,is)

qi2...is · b
{c}
i2,...,ic

. (3.6)

Theorem 1.2.3 also says that
∑

c≤s≤p

∑
(i2,...,is)

qi2...is = 1. Therefore, an lower

bound for b
{c}
i2,...,ic

which is independent of (i2, ..., ic) provides an lower bound for

βc(S/I).
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Recall that

b
{c}
i2,...,ic

=
d(d2 + i2) . . . (dc−1 + ic−1)

(dc + it − d)(dc + ic − d2 − i2) . . . (dc + ic − dc−1 − ic−1)
.

Obviously,

dj + ij

dc + ic − dj − ij
≥

dj
dc + ic − dj

≥
dj

dc − dj
for 2 ≤ j ≤ c− 1.

Hence,

βc(S/I) ≥
dd2 · · · dc−1

(dc − d)(dc − d2) . . . (dc − dc−1)
.

(2) We first consider the case where S/I is Cohen-Macaulay. Then c = p, hence

the formula of Theorem 1.2.3 becomes

β(S/I) =
∑

d∈D((d(S/I)),(d(S/I)))

qd(β(π(d))). (3.7)

b
{1}
i2,...,ip

=
(d2 + i2) . . . (dp + ip)

(d2 + i2 − d) . . . (dp + ip − d)
, (3.8)

According to the decomposition (3.7),

β1(S/I) =
∑

(i2,...,ip)

qi2...ip · b
{1}
i2,...,ip

.

Since
∑

(i2,...,ip)
qi2...ip = 1, an upper bound (respectively, a lower bound) for b

{1}
i2,...,ip

which is independent of (i2, ..., ip) provides an upper bound (respectively, a lower

bound) for β1(S/I).

Now, we can think of b
{1}
i2,...,ip

as a positive real function. In terms of any of the

variables i2, · · · , ip, it is a hyperbolic function with negative vertical asymptotic;

thus, the maximum value of b
{1}
i2,...,ip

is attained at the minimum values of ij’s and

the minimum values are attained at the maximum values of ij’s. We then have

d2 . . . dp

(d2 − d) . . . (dp − d)
≤ b

{1}
i2,...,ip

≤
d2 . . . dp

(d2 − d) . . . (dp − d)
.
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The function in the right hand side is hyperbolic in terms of any among d2, · · · , dp
in the domain [d+1,∞). Thus, the maximum values are attained at the minimum

values of each variable, so one gets

d2 . . . dp

(d2 − d) . . . (dp − d)
≤ b

{1}
i2,...,ip

≤ (d+ 1) . . . (d+ p− 1)

(p− 1)!
=

(
d+ p− 1

p− 1

)
.

Consequently, the decomposition (3.7) yields

d2 . . . dp

(d2 − d) . . . (dp − d)
≤ β1(S/I) ≤

(
d+ p− 1

p− 1

)
.

Now, assume the general case, where c ≤ p. Then, according to (3.7),

β1(S/I) =
∑
c≤s≤p

∑
(i2,...,is)

qi2...is · b
{1}
i2,...,is

.

According to (3.8), a similar argument as above shows that

d2 . . . ds

(d2 − d) . . . (dt − d)
≤ b

{1}
i2,...,is

≤ d2 . . . ds
(d2 − d) . . . (ds − d)

.

Obviously,

d2 . . . ds
(d2 − d) . . . (ds − d)

≤
d2 . . . dp

(d2 − d) . . . (dp − d)
for s ≤ p

and
d2 . . . ds

(d2 − d) . . . (ds − d)
≥ d2 . . . dc

(d2 − d) . . . (dc − d)
for s ≥ c.

Finally, since
∑

c≤s≤p

∑
(i2,...,is)

qi2...is = 1, we get

d2 . . . dc

(d2 − d) . . . (dc − d)
≤

∑
c≤s≤p

∑
(i2,...,is)

qi2...is · b
{1}
i2,...,is

≤
d2 . . . dp

(d2 − d) . . . (dp − d)
.

This yields the assertion.

The first consequence of Proposition 3.1.1(2) shows that an ideal satisfying the

condition Nd,q has many generators.

29



Corollary 3.1.2. Let S be a standard graded polynomial ring over a field k and

let I ⊂ S be an ideal of height c ≥ 2 satisfying the condition Nd,q

(1) If q ≥ c then µ(I) ≥
(
d+c−1
c−1

)
.

(2) If q < c then µ(I) ≥
(
d+q−1
q−1

)
+ 1.

Proof. (1) By hypothesis, we have dj = d+j−1 for 2 ≤ j ≤ c. Now use Proposition

3.1.1(2).

(2) By hypothesis, we have dj = d + j − 1 for 2 ≤ j ≤ q < c. Now use

Proposition 3.1.1(2),

µ(I) ≥
(
d+ q − 1

q − 1

)
dq+1 . . . dc

(dq+1 − d) . . . (dc − d)
>

(
d+ q − 1

q − 1

)

because dq+1...dc

(dq+1−d)...(dc−d)
> 1. Therefore µ(I) ≥

(
d+q−1
q−1

)
+ 1.

When I is a Cohen Macaulay ideal and satisfies the condition Nd,p−1, where

p := pdimS(S/I), Proposition 3.1.1(2) together with [26, Theorem 4.4 ] gives us

an interesting lower bound for the minimum number of generators of I.

Corollary 3.1.3. Let S = k[x1, . . . , xn] be a standard graded polynomial ring over

a field k and let I ⊂ S be a Cohen Macaulay ideal of height c ≥ 2 and projective

dimension p. If I satisfies condition Nd,p−1, then

µ(I) ≥
(
d+ p− 2

p− 2

)
+

(
d+ p− 3

p− 2

)
.

Proof. (1) By hypothesis, we have dj = d + j − 1 for 2 ≤ j ≤ p − 1. Now use

Proposition3.1.1(2),

µ(I) ≥
(
d+ p− 2

p− 2

)
dp

(dp − d)
.
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But, by the results [26, Theorem 4.4 ] or [22, Corollary 3], we have dp ≤ dp−1+d1 =

2d+ p− 2. So, dp
(dp−d)

≥ 2d+p−2
d+p−2

and therefore

µ(I) ≥
(
d+ p− 2

p− 2

)
2d+ p− 2

d+ p− 2
=

(
d+ p− 2

p− 2

)(
2d+ p− 2

d+ p− 2
− 1 + 1

)
=

(
d+ p− 2

p− 2

)
+

(
d+ p− 2

p− 2

)
d

d+ p− 2

=

(
d+ p− 2

p− 2

)
+

(
d+ p− 3

p− 2

)
.

Remark 3.1.4. The results in Proposition 3.1.3 has been proved earlier in [11,

Proposition 11.1] on the condition that I is an ideal (x1, . . . , xn)-primary. Thus

we got here an improvement of [11, Proposition 11.1].

When I is a monomial ideal, we can generalize the inequality established in

Corollary 3.1.3.

Corollary 3.1.5. Let S be a standard graded polynomial ring over a field k and

let I ⊂ S be a monomial ideal of height c ≥ 2 and projective dimension p. If I

satisfies condition Nd,q with q < c, then

µ(I) ≥
(
d+ q − 1

q − 1

)
(c− q + 1)d+ q − 1

d+ q − 1
.

In particular, if q = c− 1, then

µ(I) ≥
(
d+ c− 2

c− 2

)
+

(
c+ c− 3

c− 2

)
.

Proof. (1) By hypothesis, we have dj = d + j − 1 for 2 ≤ j ≤ q. By Proposition

3.1.1(2),

µ(I) ≥ (d+ 1)(d+ 2) . . . (d+ q − 1)

1.2 . . . (q − 1)

dq+1 . . . dc

(dq+1 − d) . . . (dc − d)
.
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Since I is monomial, [22, Corollary 4] says that dj ≤ (j − q + 1)d + q − 1 for

j ≥ q + 1. So,

µ(I) ≥
(
d+ q − 1

q − 1

)
(2d+ q − 1)(3d+ q − 1) . . . (c− q + 1)d+ q − 1

(d+ q − 1)(2d+ q − 1) . . . (c− q)d+ q − 1

≥
(
d+ q − 1

q − 1

)
(c− q + 1)d+ q − 1

d+ q − 1
.

So far we have worked with bounds only for the first Betti number. Next,

under the condition that the ideal I has d-linear free resolution, we will give lower

bounds for all Betti numbers and not only for β1 and βc. Furthermore, we will

show that Betti numbers have polynomial upper bounds, in terms of p and d, and

that a Betti number reaches such a bound if and only if all Betti numbers reach

their bounds.

Proposition 3.1.6. Let S be a standard graded polynomial ring over a field k and

let I ⊂ S be an ideal of height c ≥ 2, with projective dimension p and with d-linear

free resolution.

(1) max
{(

p
t

)
,
(
d+t−2
t−1

)(
d+c−1
c−t

)}
≤ βt(S/I) ≤

(
d+t−2
t−1

)(
d+p−1
p−t

)
=: Ct, for 1 ≤ t ≤ p;

(2) βt(S/I) = Ct for some t if and only if βt(S/I) = Ct for all t;

(3) ([21]) If S/I is a Cohen-Macaulay ring, then βt(S/I) = Ct for all t.

Proof. (1). We keep the notation of Proposition 3.1.1. By Theorem 1.1.11 we

already know that βi ≥
(
p
i

)
. Keep the notation of Proposition 3.1.1. According to

the decomposition 3.1

βt(S/I) =
∑
c≤s≤p

∑
(i2,...,is)

qi2...is · b
{t}
i2,...,is

.
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Note that by definition b
{t}
i2,...,ic

≤ b
{t}
i2,...,is

≤ b
{t}
i2,...,ip

for all c ≤ s ≤ p and that

b
{t}
i2,...,ic

= 0 whenever t > c. Therefore, the next inequality from the left will be

considered only for t¡c.∑
t≤s≤p

∑
(i2,...,is)

qi2...is · b
{t}
i2,...,ic

≤ βt(S/I) ≤
∑
t≤s≤p

∑
(i2,...,is)

qi2...is · b
{t}
i2,...,ip

. (3.9)

To shorten the notation, when i2 = · · · = is = 0, we denote qi2...is by qs0.

Similarly, b
{t}
0,...,0 with s zeros in the index will be denoted b

{t}
s0 . By hypothesis,

dj = dj = d+ j − 1, for 2 ≤ j ≤ p and i2 = i3 = · · · = ip = 0. Hence,

p∑
s=c

qs0 · b{t}c0 ≤ βt(S/I) ≤
p∑

s=c

qs0 · b{t}p0 , and

p∑
s=c

qs0 = 1.

Since

b
{t}
p0 =

d(d+ 1) . . . ̂(d+ t− 1) . . . (d+ p− 1)

(t− 1)!(p− t)!
=

(
d+ t− 2

t− 1

)(
d+ p− 1

p− t

)
and

b
{t}
c0 =

d(d+ 1) . . . ̂(d+ t− 1) . . . (d+ c− 1)

(t− 1)!(c− t)!
=

(
d+ t− 2

t− 1

)(
d+ c− 1

c− t

)
we have the desired inequalities.

(2) Suppose that for some t βt(S/I) = Ct, then

βt(S/I) = Ct =

p∑
s=c

qsb
{t}
s = qcb

{t}
c + · · ·+ qp−1b

{t}
p−1 + qpCt. (3.10)

Adding the fact that
∑p

s=c qs = 1, we concluded that

qc(Ct − b{t}c ) + · · ·+ qp−1(Ct − b
{t}
p−1) = 0.

How Ct − b
{t}
s > 0 for c ≤ s ≤ p− 1 and qs ≥ 0 for s, then qc = · · · = qp−1 = 0 and

qp = 1. Now, by 3.10 βl(S/I) = Cl for all l.

(3) Follows from item (2) with c = p
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Remark 3.1.7. The bounds deduced in Proposition 3.1.6(1) has been proved earlier

in [9, Proposition 1.9(c) and Proposition 1.12]. However, it is easy to observe that

the proof we presented for the lower bound is still valid if we only assume that the

ideal I satisfies the condition Nd,c. So we have the following.

Corollary 3.1.8. Let S be a standard graded polynomial ring over a field k and

let I ⊂ S be a homogeneous ideal of height c ≥ 2. If I satisfies condition Nd,c (i.e.,

the minimal graded resolution is linear up to step c) then(
d+ t− 2

t− 1

)(
d+ c− 1

c− t

)
≤ βt(S/I) for 1 ≤ t ≤ c.

3.2 General polynomial bounds for Betti numbers

As mentioned earlier, in this section we will establish upper bounds for the Betti

numbers in terms of polynomial functions in d with degree p− 1.

Proposition 3.2.1. Let S be a standard graded polynomial ring over the field k

and let I ⊂ S be a d-equigenerated ideal of height c ≥ 2 and projective dimension

p. Then:

(1) If p = 3 then β2 ≤ d(d+ 2) and β3 ≤ d(d+ 1)/2.

(2) If p = 4, then

(a) If d2 ≤ d2 + 4d+ 2 then β2 ≤ d(d+ 2)(d+ 3)/2, otherwise

β2 ≤
d(d2 + 1)(d2 + 2)

2(d2 − d)
≤ ((3d− 2)d2 + 3)((3d− 2)d2 + 4)

2((3d− 2)d2 − d+ 2)
< (d+

1

8
)((3d−2)d2+2).

(b) If d3 ≤ max{d+2, (1/2)(d2+2d−1)} then β3 ≤ d(d+1)(d+3)/2; else,

β3 ≤
d(d3 − 1)(d3 + 1)

(d3 − d)
≤ d((3d− 2)d2 + 2)((3d− 2)d2 + 4)

((3d− 2)d2 − d+ 3)
.
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(c) If d4 ≤ max{d+ 3, (1/3)(d2 + 2)} then β4 ≤ d(d+ 1)(d+ 2)/6; else

β4 ≤
d(d4 − 2)(d4 − 1)

2(d4 − d)
≤ d((3d− 2)d2 + 2)((3d− 2)d2 + 3)

((3d− 2)d2 − d+ 4)
.

(3) If p ≥ 5 then for any 2 ≤ j ≤ p,

βj ≤ dmax

{
1

j − 1

(
d+ j − 2

j − 2

)(
d+ p− 1

p− j

)
,

1

(dj − d)

(
dj + p− j

p− j

)(
dj − 1

j − 2

)}
.

Proof. We follow the same schedule of proof as in Proposition 3.1.1, where one

could assume the Cohen–Macaulay case, as the general case will work quite the

same way. Recall from this proof that b
{j}
i2,...,ip

denotes the nonzero entry on the jth

column of the diagram β(π(di2,...,ip)). One has:

b
{j}
i2,...,ip

=
d(d2 + i2) . . . ̂(dj + ij) . . . (dp + ip)

(dj + ij − d) . . . (dj + ij − dj−1 − ij−1)(dj+1 + ij+1 − dj − ij)(dp + ip − dj − ij)

=
d

dj + ij − d

j−1∏
k=2

dk + ik
dj + ij − dk − ik

p∏
l=j+1

dl + il
dl + il − dj − ij

.

The relations (3.2) and (3.3) imply the inequalities

dk + ik
dj + ij − dk − ik

≤
dj + ij − j + k

j − k
and

dl + il
dl + il − dj − ij

≤
dj + ij + l − j

l − j
.

One then gets

b
{j}
i2,...,ip

≤ d

dj + ij − d

j−1∏
k=2

dj + ij − j + k

j − k

p∏
l=j+1

dj + ij + l − j

l − j
.

We now inspect for which value of dj+ij the right hand side of the above inequality

attains its maximum value. Setting x = dj + ij, it becomes a hyperbolic function

of x = dj + ij

f(x) =
d

(x− d)

(x− j + 2) . . . (x− 1)

(j − 2)!

(x+ 1) . . . (x+ p− j)

(p− j)!
, (3.11)

which we wish to analyze in the range [d+ j − 1, dj].
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The behavior of f(x) for p = 3 and that for p > 3 will be quite different.

(1) (p = 3) If j = 2, f(x) = d(x+1)
(x−d)

. The maximum value of this hyperbolic

function occurs at the minimum value of x; so that β2 ≤ f(d + 1) = d(d + 2).

When j = 3, f(x) = d(x−1)
(x−d

, similarly, β3 ≤ f(d+ 2) = d(d+ 1)/2.

(2) (p = 4) Say, j = 2. f(x) = d(x+1)(x+2)
2(x−d)

. We look for x ∈ [d + 1, d2]

wherein f(x) = f(d + 1) = d(d + 2)(d + 3)/2. This amounts to find the roots of

(x+1)(x+2) = (x−d)(d+2)(d+3). One of the roots of this equation is d+1 hence

the other root is d2 +4d+2. Therefore, if d2 ≤ d2 +4d+2 the maximum value in

the range [d+ 1, d2] is d(d+ 2)(d+ 3)/2. Otherwise, the maximum value is f(d2).

To settle the last inequality, we appeal to the bound for the Castelnuovo-Mumford

regularity [4, Theorem 3.5(ii)]. Accordingly, reg(S/I) ≤ (3d − 2)d2 whenever

dim(S/I) ≤ 2. Then the last inequality follows by the fact that d2−2 ≤ reg(S/I).

The argument for j = 3, 4 is similar.

(3) (p ≥ 5) Consider again the function f(x) in (3.11). Since the numerator is

a convex function in the range x > j − 2, the intersection of y = f(x) with any

straight line in A2, in this range, consists of at most two points. Consequently,

f(x) has only one local minimum for x > d+ j − 1. Therefore

max
x∈[d+j−1,dj ]

{f(x)} = max{f(d+ j − 1), f(dj)}.

It is straightforward to see that

f(d+j−1) =
d

j − 1

(
d+ j − 2

j − 2

)(
d+ p− 1

p− j

)
, f(dj) =

d

(dj − d)

(
dj − 1

j − 2

)(
dj + p− j

p− j

)

Corollary 3.2.2. Let S be a standard graded polynomial ring over the field k and

let I ⊂ S be an ideal of height c ≥ 2, projective dimension p and satisfying the

condition Nd,q. Then

βt ≤
(
d+ t− 2

t− 1

)(
d+ p− 1

p− t

)
for 2 ≤ t ≤ q.

36



Proof. Follows from Proposition 3.2.1

The results in Proposition 3.1.6, Proposition 3.2.1 and Corollary 3.2.2 encour-

age us to make the following Conjecture:

Conjecture 3.2.3. Let S be a standard graded polynomial ring over the field k and

let I ⊂ S be a homogenous ideal generated in degree d and of projective dimension

p. Then all of the Betti numbers of S/I are bounded by polynomials function of d

of degree at most p− 1.
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Chapter 4

Applications to graph theory

Let G be a graph with n vertices and I = I(G) ⊂ S = K[x1, . . . , xn] the edge ideal

of the graph G, where k is a field. It is known that R = S/I is a Koszul algebra

and thus regR(k) = 0, by Corollary 2.2.3(1), the minimal free resolution of I is of

the form.

· · · → S(−6)β3,6⊕S(−5)β3,5⊕S(−4)β3,4(R) → S(−4)c⊕S(−3)b → S(−2)q → S → R → 0.

In addition, we can determine b = β2,3(R) and c = β2,4(R) combinatorially (see

Proposition 4.1.8).

The spacial form of this resolution motivated us to apply the results of the

previous chapters in graph theory, mainly for gap-free and co-chordal graphs that

have even more particular minimal free resolutions.

In the Section 1 we will establish the notations necessary to understand this

chapter and remember some concepts of graph theory. For more coverage of this

subject, see [29]. In the Section 2, we will apply the results obtained in this thesis

in graph theory. The main results of this chapter are Propositions 4.2.1 and 4.2.6
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4.1 Graph and edge ideals

Throughout this part, G = (V (G), E(G)) is a finite simple graph (i.e., a graph

with no loops and no multiple edges) on the vertex set V (G) = {v1, . . . , vn} and

edge set E(G).

If z = {vi, vj} is an edge of G one says that the vertices vi and vj are adjacent

or connected by z, in this case it is also usual to say that the edge z is incident

with the vertices vi and vj. The degree of a vertex v in V (G), denoted by deg(v),

is the number of edges incident with v.

Definition 4.1.1. Let G be a graph with vertex set V . A subset A ⊂ V is a

minimal vertex cover for G if (i) every edge of G is incident with one vertex in A,

and (ii) there is no proper subset of A with the first property. The vertex covering

number of G, α0(G), is the smallest number of vertices in any minimal vertex

cover. The largest number of vertices in any minimal vertex cover of G, is denoted

by τmax(G),

Example 4.1.2. The graph of the figure 4.1 has α0(G) = 1 and τmax(G) = 6.

Figure 4.1: The star graph with seven vertices

Let G be a graph with vertices v1, . . . , vn and S = k[x1, . . . , xn] a polynomial

ring over a field K, with one variable xi for each vertex vi.

Definition 4.1.3. The edge ideal I(G) associated to the graph G is the ideal of S

generated by the set of square-free monomials xixj such that vi is adjacent to vj,
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that is, I(G) = ({xixj|{vi, vj} ∈ E(G)}) ⊂ S If all the vertices of G are isolated

we set I(G) = (0).

Proposition 4.1.4. (Corollary 6.1.18 [29]) If G is a graph and I(G) its edge ideal,

then the vertex covering number α0(G) is equal to the height of the ideal I(G).

Definition 4.1.5. The edge graph of G, denoted by L(G), has vertex set equal to

E = E(G) with two vertices of L(G) adjacent whenever the corresponding edges of

G have exactly one common vertex.

Example 4.1.6. In the figure 4.2 we have the graphs G and its corresponding edge

graph L(G).

Figure 4.2: The graph G (left) and the graph L(G) (right).

Proposition 4.1.7. (Proposition 6.6.1 [29]) If G is a graph with vertices x1, . . . , xn

and edge set E(G), then the number of edges of the edge graph L(G) is given by

|E(L(G))| =
n∑

i=1

(
deg(xi)

2

)
= −|E(G)|+

n∑
i=1

deg2xi

2
.

Proposition 4.1.8. [13] Let I ⊂ S be the edge ideal of a graph G, let V be the

vertex set of G, and let L(G) be the edge graph of G. Let

· · · → S(−4)c ⊕ S(−3)b → S|E|(−2) → S → R → 0. (4.1)
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be the minimal graded resolution of S/I. Then

b = |E(L(G))| − T (G),

where T(G) is the number of triangles of G and c := c(G) is the number of un-

ordered pairs of edges {f, g} such that f ∩ g = ∅ and f and g cannot be joined by

an edge.

Definition 4.1.9. G is called gap-free if c(G) = 0. Equivalently, G is gap-free if

for any two disjoint edges e, f ∈ E(G), there exists an edge g ∈ E(G) such that

e ∩ g ̸= ∅ and f ∩ g ̸= ∅.

Example 4.1.10. In the figure 4.3 we have a gap-free graph and a non-gap-free

graph

Figure 4.3: A gap-free graph (left) and a non-gap-free graph (right).

Definition 4.1.11. Let G be a graph with vertex set V . The complement G of G

is the graph whose vertex set is V and whose edges are the pairs of nonadjacent

vertices of G.

Definition 4.1.12. We say that a graph G is triangulated or chordal if every cycle

Cn in G of length n ≥ 4 has a chord in G. A chord of Cn is an edge joining two

non adjacent vertices of Cn. We say a graph G is co-chordal if its complement G

is chordal.

It is easy to see that a graph G is gap-free if and only if every cycle of length 4

in the complement G has a chord. In particular, all co-chordal graphs are gap-free.
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The co-chordal graphs are interesting because their edge ideals are well behaved

as it is expressed by the following theorem.

Theorem 4.1.13. ( Fröberg[16]) Let G be a graph and I(G) its edge ideal. Then

I(G) has a 2-linear free resolution if and only if G is co-chordal.

Example 4.1.14. In figure 4.4 we present a graph G and its complement graph

G. Note that G is co-chordal.

Figure 4.4: The graph G (left) and its complement graph G (right).

4.2 Applicatioins

In this Section we will apply the results of the previous chapters to graph theory.

Keep the notations established so far.

Proposition 4.2.1. Let G be a graph with edge set E and α0(G) its vertex covering

number. If G is a tree or is gap-free, then

|E| ≥ 2α0(G)− 1.

Furthermore, This bound is sharp whenever |E| is odd

Proof. Firstly we will show the case where G is a gap-free graph.

Let G be a graph with vertices v1, . . . , vn, S = k[x1, . . . , xn] a polynomial ring

over a field k and I(G) ⊂ S the edge ideal of G with c = ht(I(G)).
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Keeping the notation established in Chapter 1. By Proposition 3.1.1(2)

|E| ≥ d2d3 . . . dc

(d2 − 2) . . . (dc − 2)
.

Since G is gap-free, by Proposition 4.1.8 the edge ideal I(G) ⊂ S satisfies the

condition N2, that is, d2 = 3. By Corollary 2.2.4, di ≤ 2i− 1 for 3 ≤ i ≤ p, where

p = pdim(S/I(G)). So

|E| ≥ 3.5.7 . . . (2c− 1)

1.3.5 . . . (2c− 3)
= 2c− 1.

However, ht(I(G)) = α0(G)(Proposition 4.1.4) and so we get the desired inequality.

The proof for the case that G is a tree is done by induction on the number of

vertices of G. Note that the proof is trivial in case G is a star. Suppose then that

G is not a star.

If G has 4 vertices, it is easy to verify that the desired inequality is valid. Thus,

let n ≥ 4 and suppose the result is valid for trees with n− 1 vertices or less.

Let G be a tree with n vertices. Denote by V the vertex set of G. Let v1, v2 ∈ V

such that d(v′, v′′) ≤ d(v1, v2) := r for all v′, v′′ ∈ V . Note that deg(v1) = 1. Let u1

be the unique vertice adjacent of v1 and {v1, u1, u2, . . . , ur−2, v2} the unique path

from v1, v2.

Since G is not a star, deg(u2) ≥ 2. Furthermore, as G is a tree and v1 and v2

were taken with maximum distance, u2 is the unique vertice adjacent to u1 with

degree greater than 1. Set B = {v ∈ V ; d(v, u1) = 1} ∪ {u1} and G′ = G \ B. We

have that G′ is a tree with less than n vertices. By the induction hypothesis, we

have

|E| − deg(u1) = |E(G′)| ≥ 2α0(G
′)− 1. (4.2)

We claim that α0(G
′) ≥ α0(G) − 1. In fact, suppose by contradiction that

α0(G
′) ≤ α0(G) − 2 := α0 − 2. So there is V1 = {vi1, . . . vi(α0−2)} ⊂ V such that

every edge of G′ is incident with one vertex in V1, em particular, every edge of G
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is incident with one vertex in V1 ∪ {u1}, which is a contradiction. Thus we prove

the claim.

Hence, by 4.2,

|E| ≥ 2α0(G)− 3 + deg(u1) ≥ 2α0(G)− 1,

because deg(u1) ≥ 2.

Now let’s show that the bound in question is sharp. Suppose that |E| is an

odd number. Consider G the tree below

Figure 4.5

where s = (E + 5)/2. It is possible to show that α0(G) = (|E|+ 1)/2. Therefore,

|E| = 2α0(G)− 1.

Corollary 4.2.2. If I is an edge ideal of a gap-free graph or a tree, then

ht(I) ≤ µ(I) + 1

2
,

where µ(I) denotes the minimum number of generators of I.

Remark 4.2.3. The inequality in Corollary 4.2.1 has been proved earlier in [17] in

a more general context, just assuming that G is a connected graph. The argument

used is purely combinatorial.

Now we will see that for a gap-free graph G, the lower bounds for the number

of edges in terms of α0(G) grow as G ‘approaches’ of being a co-chordal graph.
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Definition 4.2.4. Let q ≥ 2. We say that a graph G is q-co-chordal if every cycle

Ci in the complement graph G in of length i ≤ q + 2 has a chord in G. Note that

a gap-free graph is a 2-co-chordal graph and that G is co-chordal if and only if G

is q-co-chordal for all q.

Proposition 4.2.5. Let G be a graph with edge set E and α0(G) its vertex covering

number. If G is q-co-chordal, then

|E| ≥ q

2
(2α0(G)− q + 1).

Proof. The proof is similar to that given in Proposition 4.2.1.

Let G be a graph with vertices v1, . . . , vn, S = k[x1, . . . , xn] a polynomial ring

over a field and I(G) ⊂ S the edge ideal of G with c = ht(I(G)) = α0(G).

Keeping the notation established in Chapter 1. By Proposition 3.1.1(2)

|E| ≥ d2d3 . . . dc

(d2 − 2) . . . (dc − 2)

Since G is q-co-chordal, by [10, Theorem 2.1] the edge ideal I(G) ⊂ S satisfies

the condition Nq, that is, di = i+1 for 1 ≤ i ≤ q. By Corollary 2.2.4 di ≤ 2i−q+1

for q + 1 ≤ i ≤ p, where p = pdim(S/I(G)). If q < c, then

|E| ≥ 3.4.5 . . . q(q + 1)(q + 3) . . . (2c− q + 1)

1.2.3 . . . (q − 2)(q − 1)(q + 1) . . . (2c− q − 1)
=

q

2
(2c− q + 1).

If q ≥ c, then

|E| ≥ 3.4 . . . c+ 1

1.2 . . . c− 1
=

c(c+ 1)

2
≥ q

2
(2c− q + 1).

We have the desired inequalities.

Proposition 4.2.6. Let G be a graph with edge set E, n vertices and α0(G) its

vertex covering number. If G is α0(G)-co-chordal, then
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(1) |E| ≥ α0(G)(α0(G)+1)
2

.

(2) |E(L(G))| − T (G) ≥ α0(G)(α0(G)+1)(α0(G)−1)
3

.

Furthermore, these bounds are sharp for all n.

Proof. Follows from Proposition 4.2.5.

(2) By Proposition 4.1.8 β2(I(G)) = |E(L(G))| − T (G). We can assume that

α0(G) ≥ 2. Since G is α0(G)-co-chordal, by [10, Theorem 2.1] the edge ideal

I(G) satisfies the condition Nα0(G). Now we use Corollary 3.1.8 to conclude that

|E(L(G))| − T (G) ≥ α0(G)(α0(G)+1)(α0(G)−1)
3

.

To see that the bounds in (1) and (2) are sharp, consider complete graphs.

Definition 4.2.7. Let G be a graph with edge set E. A set M ⊂ E is said to be a

matching if for all e, e′ ∈ M with e ̸= e′ we have e∩e′ = ∅. The matching number,

denoted mat(G) is defined to be

mat(G) := max{|M | : M is a matching in G}.

Definition 4.2.8. Let G be a graph with edge set E. A set M ⊂ E is said to be an

induced matching if for all e, e′ ∈ M with e ̸= e′ there does not exist f ∈ E such

that e∩ f ̸= ∅ and e′∩ f ̸= ∅. The induced matching number, denoted indmat(G)

is defined to be

indmat(G) := max{|M | : M is an induced matching in G}

Because an induced matching is also a matching, we always have indmat(G) ≤

mat(G). For example, if G is a cycle of length 6, then indmat(G) = 2 and

mat(G) = 3.

The numbers defined above are important. It is known that (see [18])

indmat(G) ≤ reg(S(I(G))) ≤ mat(G) and
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indmat(G) = reg(S(I(G))) if G is chordal.

As a consequence of these results and Proposition 3.1.1(2), we have.

Proposition 4.2.9. Let G be a graph with edge set E and α0(G) its vertex covering

number. Then

|E| ≥ (mat(G) + α0(G)− 1)(mat(G) + α0(G))

mat(G)(mat(G) + 1)
and

|E| ≥ (indmat(G) + α0(G)− 1)(indmat(G) + α0(G))

(indmat(G))(indmat(G) + 1)
if G is chordal.

Remember that c(G) is the number of unordered pairs of edges {f, g} such that

f ∩ g = ∅ and f and g cannot be joined by an edge, L(G) is the edge graph of G

and T (G) is the number of triangles de G.

Let’s finish this chapter by giving an upper bounds for the number c(G) +

|E(L(G))|−T (G) in function of τmax(G), whenG is a graph such that pdim(S/(I(G)))) =

τmax(G). Dao–Schweig proved in 2013 [8] who in general, pdim(S/(I(G)))) ≥

τmax(G). However, the equality is valid when G is a chordal graph (see[15]) or a

Cameron-Walker graphs(see[23]).

Definition 4.2.10. A graph G is a star graph when G joining some paths of length

1 at one common vertex (see Figure 4.6). A graph G is a star triangle when G

joining triangles at one common vertex (see Figure 4.6). A finite connected simple

graph G is said to be a Cameron–Walker graph if indmat(G) = mat(G) and if G

is neither a star graph nor a star triangle.

Example 4.2.11. The figure 4.7 represents a Cameron-Walker graph with mat(G) =

4

Recall that for a graph G, c(G) is is the number of unordered pairs of edges

{f, g} such that f ∩ g = ∅ and f and g cannot be joined by an edge.
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Figure 4.6: The star graph (left) and the star triangle (right).

Figure 4.7: Example of Cameron-Walker graph.

Proposition 4.2.12. Let G be a chordal graph or a Cameron-Walker and τ(G) :=

τmax(G) the largest number of vertices in any minimal vertex cover of G. Then:

(1) If 2 ≤ τ(G) ≤ 6 then

c(G) + |E(L(G))| − T (G) ≤ (τ(G) + 1)(τ(G)τ(G)− 1)

3
.

(2) If τ(G) ≥ 7 then

c(G) + |E(L(G))| − T (G) ≤ (τ(G) + 2)(τ(G) + 1)τ(G)(τ(G)− 1)

4!
.

(3) If in addition, G is gap-free then

|E(L(G))| − T (G) ≤ (τ(G) + 1)τ(G)(τ(G)− 1)/3 for τ(G) > 2.

Proof. We already know that pdim(S/I(G)) = τmax(G) and that β2(S/I(G)) =

c(G) + |E(L(G))| − T (G). Now just use Proposition 3.2.1
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[3] M. Boij and J. Söderberg. Betti numbers of graded modules and the multiplic-

ity conjecture in the non-cohen–macaulay case. Algebra & Number Theory,

6(3):437–454, 2012.

[4] W. Bruns and H. J. Herzog. Cohen-macaulay rings. Number 39. Cambridge

university press, 1998.

[5] A. Conca. Koszul algebras and their syzygies. In Combinatorial algebraic

geometry, pages 1–31. Springer, 2014.

[6] W. da Silva, S. Hassanzadeh, and A. Simis. Bounds for the degree and betti

sequences along a graded resolution. arXiv preprint arXiv:2201.09994, 2022.

[7] H. Dao and D. Eisenbud. Linearity of free resolutions of monomial ideals.

Research in the Mathematical Sciences, 9(2):1–15, 2022.

49



[8] H. Dao and J. Schweig. Projective dimension, graph domination parame-

ters, and independence complex homology. Journal of Combinatorial Theory,

Series A, 120(2):453–469, 2013.

[9] D. Eisenbud and S. Goto. Linear free resolutions and minimal multiplicity.

Journal of Algebra, 88(1):89–133, 1984.

[10] D. Eisenbud, M. Green, K. Hulek, and S. Popescu. Restricting linear syzygies:

algebra and geometry. Compositio Mathematica, 141(6):1460–1478, 2005.

[11] D. Eisenbud, C. Huneke, and B. Ulrich. The regularity of tor and graded

betti numbers. American Journal of Mathematics, 128(3):573–605, 2006.

[12] D. Eisenbud and F.-O. Schreyer. Betti numbers of graded modules and co-

homology of vector bundles. Journal of the American Mathematical Society,

22(3):859–888, 2009.

[13] S. Eliahou and R. H. Villarreal. The second betti number of an edge ideal. In

XXXI National Congress of the Mexican Mathematical Society (Hermosillo,

1998), volume 25, pages 115–119. Soc. Mat. Mexicana México, 1999.
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[21] J. Herzog and M. Kühl. On the bettinumbers of finite pure and linear reso-

lutions. Communications in Algebra, 12(13):1627–1646, 1984.

[22] J. Herzog and H. Srinivasan. On the subadditivity problem for maximal shifts

in free resolutions. In Commutative algebra and noncommutative algebraic

geometry. Vol. II, pages 245–249, 2015.

[23] T. Hibi, A. Higashitani, K. Kimura, and A. B. O’Keefe. Algebraic study on

cameron–walker graphs. Journal of Algebra, 422:257–269, 2015.

[24] G. R. Kempf. Some wonderful rings in algebraic geometry. Journal of Algebra,

134(1):222–224, 1990.

[25] H. Matsumura. Commutative ring theory. Number 8. Cambridge university

press, 1989.

[26] J. McCullough. A polynomial bound on the regularity of an ideal in terms of

half of the syzygies. Math. Res. Lett, 19(03):555–565, 2012.

[27] J. J. Rotman and J. J. Rotman. An introduction to homological algebra,

volume 2. Springer, 2009.

51



[28] S. O. Tohaneanu. On some ideals with linear free resolutions. arXiv preprint

arXiv:1906.02422, 2019.

[29] R. H. Villarreal. Monomial algebras, volume 238. Marcel Dekker New York,

2001.

[30] C. A. Weibel. An introduction to homological algebra. Number 38. Cambridge

university press, 1995.

52


	Introduction
	Preliminaries
	Resolutions and Betti diagrams
	A little about Boij-Söderberg theory
	Spectral sequences

	Subadditivity bounds via change of ring
	The key result
	Its consequences

	Bounding the Betti sequence
	Bounding 1 and c
	General polynomial bounds for Betti numbers 

	Applications to graph theory
	Graph and edge ideals
	Applicatioins

	Bibliography

