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Resumo
Esta tese é dedicada ao estudo da propriedade N -distal para homeomorfismos em espaços
métricos compactos. Definimos a N -equicontinuidade e provamos que cada sistema N -
equicontínuo é N -distal. Introduzimos a noção de extensões N -distais e fatores N -distais.
Também provamos que uma extensão M -distal de todo homeomorfismo N -distal é MN -
distal e que se o semigrupo de Ellis de um homeomorfismo N -distal têm um único ideal
mínimal então dito homeomosfismo têm um fator N -distal não trivial. Além disso, é
mostrado que os homeomorfismos transitivos N -distais têm no máximo N ´ 1 subsistemas
minimais própios. Finalmente, mostramos que a entropia topológica de sistemas N -distais
em espaços métricos compactos com certo comportamento no conjunto não-errante é zero.
Estes resultados generalizam os já conhecidos para sistemas distais [24],[48].

Palavras-chave: Distalidade, N -distalidade, N -equicontinuidade, Extensão N -distal,
Entropia Topológica.





Abstract
This thesis is dedicated to the study of N -distal property for homeomorphisms on com-
pact metric spaces. For instance, we define N -equicontinuity and prove that every N -
equicontinuous systems are N -distal. We introduce the notion of N -distal extensions and
N -distal factors. We also prove that a M -distal extension of N -distal homeomorphisms is
MN -distal and present a non-trivial N -distal factor for N -distal homeomorphisms having
Ellis semigroup with a unique minimal ideal. It is also shown that transitive N -distal
homeomorphisms have at most N ´ 1 minimal proper subsystems. Finally, we prove that
topological entropy vanishes for N -distal systems on compact metric spaces with some
nice behavior on the non-wandering set. These results generalize previous ones for distal
systems [24],[48].

Keywords: Distal, N -distal, N -equicontinuous, N -distal extensions, Topological Entropy.
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Introduction

The distal homeomorphisms were introduced by Hilbert in order to give a topological
characterization for the concept of a rigid group of motions (see [61]). Such homeomorphisms
have been widely studied in the literature. For instance, in [19] Ellis reduced them to
the enveloping semigroups and the minimal distal systems, Fürstenberg proved in [24]
a structure theorem and Parry without using Furstenberg’s theorem on the structure of
distal flows proved that they have zero entropy in [48].

Generalizations of distal systems include the point distal flows by Veech [56] who
obtained a structure theorem from them and the more recent mean distal systems by
Ornstein and Weiss [47]. From the measure-theoretic viewpoint we can mention Parry’s
systems with separating sieve also known as measure distal systems, see [48]. In [60] Zimmer
proved a structure theorem for the measure distal systems. Lindenstrauss proved in [37]
that any ergodic measure distal system can be realized as a minimal distal system with
a fully supported invariant Borel measure. Fürstenberg introduced the notion of a tight
system as one in which, after removing a negligible set, there are no distinct mean proximal
points. Ornstein and Weiss also proved in [47] that tight systems have no finite positive
entropy.

New classes of systems which generalize the notion of distality were recently
introduced by Lee and Morales in [4] and [36]. They included the notion of N -distal,
countably distal, cw-distal and measurable distal.

In this work we study N -distal self-homeomorphisms on compact metric spaces,
discuss some of their basic dynamical properties and consider the extent to which certain
classical results that are already available for distal systems are also valid for N -distal
systems. Consequently we are interested in studying the relation between N -distality and
other dynamical properties. For instance, in connection with the fact that equicontinuous
systems are always distal, we introduce the notion of N -equicontinuity (see Definition 2.2.4)
and prove a generalization of this result showing that every N -equicontinuous systems are
N -distal in Theorem 2.2.6.
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In addition we show how the N -distality behaves under homomorphisms. In this
way we extend the notion of distal extensions and distal factors defining N -distal extensions
and N -distal factors (see Definition 2.3.2) and prove in Theorem 2.3.3 that a M -distal
extension of a N -distal homeomorphism is MN -distal. This result generalizes the previous
one in [7]. Using the Ellis semigroups theory we give a criterion for the existence of a non
trivial N -distal factor for N -distal homeomorphisms in Theorem 2.3.4.

We further investigate how N -distality interacts with topological transitivity and
expansivity. Actually, in Theorem 3.1.5 we use the Ellis semigroups theory to obtain a
restriction on the number of minimal subsystems for a transitive N -distal homeomorphism.
This result is a N -distal version for the one given in [7]. On the other hand, after
summarizing without proofs the relevant material on the relation between distality and
expansivity, in Example 3.2.7 we present a cw-distal expansive homeomorphism which is
not N -distal for every positive integer N .

Finally, we study the topological entropy of N -distal systems. In [48] W. Parry
showed that the topological entropy of a distal system vanishes. One of the key facts for
this result is that the phase space of a distal systems decomposes into a union of minimal
subsets [19]. On the other hand, the same is not valid for N -distal systems as we show in
Example 2.1.2. Thus, under a condition that guarantees this kind of decomposition on the
non-wandering set, in Theorem 4.2.1, we prove that N -distal homeomorphims have zero
topological entropy.

This work is divided as follows. In Chapter 1 we summarize the relevant preliminary
material set up notation and terminology used through out this work. In Chapter 2 some
basic properties, examples of N -distal systems and generalizations of classical results are
established. In Chapter 3 we investigate how N -distality behaves together with topological
transitivity and discuss the relation between N -distality and expansivity. The final Chapter
4 is devoted to the proof of the Theorem 4.2.1.

An appendix was added with the purpose of making the conceptual line proposed
continuous, since although the topics they contain are a fundamental tool throughout the
work, the insertion in a specific point where the theory established in them is used could
divert the reader’s attention subtracting intuitive properties in the configuration of the
developed concepts. With the same purpose, the reference of the bibliographical source of
each of the concepts that are presented without a previous development is given.

This thesis contains the work [49] joint work with Elias Rego.
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Chapter 1
Preliminaries

In this chapter we define and give previous theory that we will use in this work. In
sections 1.1 and 1.3 we summarize without proofs the relevant material on Topological
Dynamics and Ergodic Theory, respectively. In section 1.2 we develop the Ellis semigroup
theory that we will use throughout this work.

To start we set some basic notation. Throughout this work unless otherwise stated
the pair pX, fq will be a dynamical system where X will denote a compact metric space
with metric d and without loss of generality f : X Ñ X will be a homeomorphism (or
continuous). fn is the n-fold self-composition of the map f if n ą 0, on the other hand the
n-fold composition of f´1 if n ă 0 and f 0 is the identity map, denoted by Id. The orbit
of a point x under f is the set tfnpxq; n P Zu which we denote as Of pxq. The closure of
A Ď X is be denoted by A while the cardinality of A is be denoted by #A . If x P X and
δ ą 0 we denote the open ball around x by Bδpxq.

1.1 Topological Dynamics
In any mathematical system, one is interested in the maps which respect the

structure of the system. The appropriate maps in topological dynamics are those which
are continuous and equivariant. To be precise, this notion of equivalence is

Definition 1.1.1 (cf. [7, p. 21]). Let pX, fq and pY, gq be dynamical systems. A homo-
morphism (or semiconjugacy) from pY, gq to pX, fq is a continuous onto map π : Y Ñ X

satisfying f ˝ π “ π ˝ g.

If there is a homomorphism π from pX, fq onto pY, gq, we say that pY, gq is a factor
of pX, fq, and that pX, fq is an extension of pY, gq. The map π : Y Ñ X is also called a
factor map or projection. The simplest example of an extension is the direct product

f1 ˆ f2 : X1 ˆ X2 Ñ X1 ˆ X2
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of the dynamical systems pX1, f1q and pX2, f2q, where pf1 ˆ f2qpx1, x2q “ pf1px1q, f2px2qq.
If f1 and f2 are homeomorphisms. The direct product turns out to be a homeomor-
phism on X1 ˆ X2 if we equip the space X1 ˆ X2 with the metric d2ppx1, z1q, px2, z2qq “

maxtd1px1, z1q, d2px2, z2qu where d1 and d2 are the metrics on X1 and X2, respectively.

Note that pX1, f1q and pX2, f2q are factors of pX1ˆX2, f1ˆf2q, since the projections
of X1 ˆ X2 onto X1 and X2 are homomorphisms. An extension pY, gq of pX, fq with factor
map π : Y Ñ X is called a skew product over pX, fq if Y “ X ˆ F , and π is the projection
onto the first factor or, more generally, if Y is a fiber bundle over X with projection π.

Let pX, fq be a dynamical system and x, y P X. The point x is said to be proximal
to y if

inf
nPZ

dpfn
pxq, fn

pyqq “ 0.

Clearly, the proximal relation is reflexive, symmetric and invariant, but is in general neither
transitive (see example 2.1.3) nor closed, example 2.1.3 also is not closed by [6, Corollary
1]. The pair px, yq is a proximal pair if x is proximal to y and px, yq is a distal pair if it is
not a proximal pair. Let us denote by P pxq the set of points y P X such that px, yq are
proximal pairs, i.e. the proximal cell (cf. [7, p. 66]) of x.

P pxq “ ty P X : inf
nPZ

dpfn
pxq, fn

pyqq “ 0u.

Notation Pf pxq will be used to indicate dependence on f if necessary. Let us recall the
definition of distality.

Definition 1.1.2 (cf. [14, p. 45]). Let pX, fq be a dynamical system. A point x P X is
said to be distal point for f if P pxq reduces to txu. Let Distpfq denote the set of distal
points of f . We say that pX, fq is distal if Distpfq “ X.

Remark 1.1.3. If we assume that f is just continuous in the definition above. The
distality implies that the function f is bijective and so a homeomorphism [44, Theorem
26.6]. Indeed, the injectivity clearly follows from the distal definition. On the other hand,
the innocent looking fact that distality also implies surjectivity is not transparent from
the definition. In Proposition 1.2.10 we will present a proof for this fact using the Ellis
enveloping semigroup of f , another proof via βN the Stone-Čech compactification of N
can be found in [10, p. 33].

Basic examples of distal homeomorphisms are the identity map and isometries
of a metric space. To give more examples let us recall the concept of equicontinuous
homeomorphism.

Definition 1.1.4 (cf. [14, p. 45]). A homeomorphism f of a compact metric space pX, dq

is said to be equicontinuous if the family of all iterates of f is an equicontinuous family,
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i.e., for any ϵ ą 0, there exists δ ą 0 such that

d pfn
pxq, fn

pyqq ă ϵ whenever dpx, yq ă δ

for all x, y P X and n P Z

Clearly, equicontinuity implies continuity, but the converse is not true in general.
For instance, consider f : r0, 1s Ñ r0, 1s defined by fpxq “ x2. We claim that the family of
all iterates tfnpxq “ x2n

unPZ is not equicontinuous. Indeed, we choose ϵ “ 1
2 and x “ 1.

Let 1 ą δ ą 0 be given and fix y P p1 ´ δ, 1q. Since fnpyq Ñ 0 as n Ñ 8, we can choose
n P N large enough that fnpyq ă 1

2 . Then d pfnpxq, fnpyqq ą 1
2 and dpx, yq ă δ.

By the following Theorem other non-trivial examples of distal homeomorphisms
are the equicontinuous homeomorphisms or equivalently uniform almost periodic homeo-
morphisms. Although its proof is very easy (cf., e.g., [24, 21, 7, 14]), yet it is a very useful
important fact in topological dynamics that

Theorem 1.1.5 (cf. [14, Proposition 2.7.2.]). Equicontinuous homeomorphisms are distal.

An interesting proof of the above proposition that use the idea of Ellis semigroup (or
Ellis enveloping semigroup) can be found in [21, p. 36]. In contrast, distal homeomorphisms
are not necessary equicontinuous, the dynamical system given below is a counterexample.

Example 1.1.6 (cf. [33, p. 618]). Let f : D1 Ñ D1 defined on the unit disc D1 “ tz P C :
}z} ď 1u and given by the formula fpzq “ z expp2πi|z|q.

Now let us recall that a subset A Ď X is said to be minimal if it is closed, non-empty,
f -invariant (i.e. fpAq Ă A) and has no proper closed, non-empty, f -invariant subsets (cf.
[14, p. 29]). Last condition is equivalent to the orbit of any point in A be dense in A. A
homeomorphism f is minimal if X is a minimal set.

The example 1.1.6 is not minimal. However, there are examples of distal and
minimal homeomorphism that are not equicontinuous.

The examples [7, Theorem 5.14] were constructed by L. Auslander, F. Hahn, and L.
Markus, and were the first examples of distal minimal flows which are not equicontinuous.
Their work in this general area is contained in the monograph [8]. An interesting historical
sidelight is that at the time they were not aware of the notion of distal, but were trying to
construct minimal actions of the real line on nilmanifolds. They were able to produce dense
orbits, but could not prove minimality. W.H. Gottschalk suggested that these examples
might be distal (and therefore necessarily minimal).

Independently and at about the same time, H. Furstenberg noted that the skew
products over an equicontinuous basis with compact group translations as fiber maps
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are always distal, often minimal, but rarely equicontinuous. A typical examples are skew
products on the torus (see Example 2.2.8), which are actually simpler than the flow on
nilmanifolds.

Remark 1.1.7. The nature of these examples led Fürstenberg to his path-breaking
structure theorem [24], describing the structure of a general minimal distal system as
a (countable but maybe transfinite) inverse limit of isometric extensions starting with
the one-point dynamical system. Modify the map in the Example 2.2.8 to F px, yq “

px ` α pmod 1q, y ` 2x ` α pmod 1qq. Again show that pX, F q is minimal and distal. Check
that F p0, 0q “ pnα, n2αq and deduce that the sequence tn2αunPN is dense in S1; see
Fürstenberg’s book [25] for further development of these ideas.

There is a natural generalization of the distal notion to homomorphisms. This
notion is defined in such a way that the trivial homomorphism pX, fq Ñ ptpu, fq is distal
if and only if the system pX, fq is distal.

Definition 1.1.8 (cf. [18, Definition 4.14]). Let pX, fq and pY, gq be dynamical systems.
We say that a map π : Y Ñ X is distal if

inf
nPZ

dpgn
py1q, gn

py2qq ą 0

for every distinct y1, y2 P Y satisfying πpy1q “ πpy2q. We say that pY, gq is a distal extension
of pX, fq (resp. pX, fq is a distal factor of pY, gq) if there is a distal homomorphism from
pY, fq to pX, fq.

The map F : T2 Ñ T2 in the Example 2.2.8 is a distal extension of a circle rotation
Rα : S1 Ñ S1 given by Rαpxq “ x ` α pmod 1q, with projection on the first coordinate as
the distal homomorphism.

Theorem 1.1.9 (cf. [7, Proposition 5.8]). A distal extension of a distal homeomorphism
is distal.

A more suitable problem is an analogous result for distal factors.

Let us recall that A Ă Z is said to be syndetic if there is F Ă Z finite such that
Z “ F `A. We say that a point x P X is almost periodic with respect to a homeomorphism
f : X Ñ X if tn P Z : fnpxq P Uu is syndetic for every neighborhood U of x (cf. [3, p.
390]). A homeomorphism f is said to be pointwise almost periodic if every x P X is almost
periodic w.r.t. f . Oftenly, almost periodic points are called minimal points. This is because
a point x is almost periodic if and only if the closure of Opxq is a minimal set, for more
details see [14, Section 2.1]. We note in this regard that

Proposition 1.1.10 (cf. [14, Proposition 2.7.5]). A distal homeomorphism on a compact
Hausdorff space X is pointwise almost periodic.
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That is a consequence of the following fact

Theorem 1.1.11 (cf. [14, Theorem 2.7.4])). Let f be a homeomorphism of a compact
Hausdorff space X. Then every point is proximal to an almost periodic point.

From the Proposition 1.1.10 it follows that pX, fq is distal if and only if the product
pX ˆ X, f ˆ fq is pointwise almost periodic [14, Proposition 2.7.6]. This in turn implies
that a factor of a distal homeomorphism is distal [14, Corollary 2.7.7].

The class of distal dynamical systems is of special interest because it is closed under
factors and isometric extensions. The class of minimal distal systems is the smallest such
class of minimal systems: According to Fürstenberg’s structure theorem [24], every minimal
distal homeomorphism (or flow) can be obtained by a (possibly transfinite) sequence of
isometric extensions starting with the one-point dynamical system.

On the other hand, recall that a homeomorphism f : X Ñ X is transitive if for
any pair of non-empty open sets U and V there is an integer n such that fnpUq X V is
nonempty (cf. [3, p. 36]). We say that a point x is a transitive point of f if its orbit is
dense on X. Every point of minimal homeomorphism is a transitive point. We say that a
f is pointwise transitive if there exists some transitive point for f .

We remark that for second countable spaces and in absence of isolated points, point
transitivity is equivalent to topological transitivity; for more details we refer the reader to
[3].

If the distal homeomorphism f : X Ñ X is pointwise transitive with a transitive
point x, i.e., Opxq “ X. Any point z in X is almost periodic by Proposition 1.1.10, and
consequently Opzq is minimal. It follows that Opzq “ X. Therefore we have proved:

Proposition 1.1.12 (cf. [7, Corollary 5.7]). A distal homeomorphism is minimal if and
only if is pointwise transitive.

The first researcher who considered the expansivity in dynamics was Utz in his
seminal paper [54]. Indeed, he defined the notion of unstable homeomorphisms (today
known as expansive homeomorphisms [30]) and studied their basic properties. Since then
an extensive literature about these homeomorphisms has been developed.

Recall that a homeomorphism (resp. continuous map) f : X Ñ X of a metric
space X is expansive (res. positively expansive) if there is δ ą 0 such that for any two
distinct points x, y P X, there is some n P Z (resp. n P N) such that dpfnpxq, fnpyqq ě

δ, or, equivalently, if ty P X : dpfnpxq, fnpyqq ă δ, @n P Zu “ txu (resp. ty P X :
dpfnpxq, fnpyqq ă δ, @n P Nu “ txu) for all x P X. Any number δ ą 0 with this property
is called an expansiveness constant for f (cf. [14, p. 35]).
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Proposition 1.1.13 ([14, Proposition 2.7.1]). An expansive homeomorphism of an infinite
compact metric space is not distal.

Indeed, this result is a direct consequence of the following Theorem. Recall that
two points x, y P X are positively (negatively) asymptotic if x ‰ y and dpfnpxq, fnpyqq Ñ 0
as n Ñ 8 (n Ñ ´8). A space is self-dense if it has no isolated point.

Theorem 1.1.14 ([54, Theorem 2.1]). For every expansive homeomorphism of a self-dense
compact metric space there are two points asymptotic in at least one sense.

Currently, some authors consider the Theorem 1.1.14 as a direct consequence of
the Theorem bellow due to Schwartzman.

Theorem 1.1.15 ([52]). If a compact metric space admits a positively expansive homeo-
morphism then it is finite.

Utz [55, p. 222] recognized Theorem 1.1.15 as Schwartzman’s improvement of his
result Theorem 1.1.14. Also, Utz [55] explained that Schwartzman in his Thesis did not
assume the self-dense hypothesis. In any case, in 1960 Bryant [5, Theorem 2] explained
how to extend the result to spaces which are not self-dense.

The fact that the authors’ result [1, Theorem p. 316] in 1965 implies Theorem 1.1.15
was noticed by Bryant and Walters [15] in 1969 and following the same techniques they
essentially proved in [15, Theorem 6] that f being surjective is not a necessary hypothesis
in Theorem 1.1.15. In 2010 Mai and Sun [38] gave another interesting proof where they
just assume that f is continuous and injective. Furthermore, one cannot state a same
theorem for noninvertible dynamical systems. For instance, the doubling map on S1 is a
positively expansive continuous map, for more details see [5]

1.2 Ellis Semigroup Theory
An extremely useful tool to study the theory of topological dynamical systems

is the enveloping semigroup of a dynamical system was introduced by R. Ellis in [23].
Henceforth, we refer to enveloping semigroup as Ellis semigroup. Let us briefly introduce
this notion and some interesting facts about it that help us in our study of N -distality.

To start recall that a semigroup G is a nonempty set together with a closed binary
associative operation. Any non-empty subset H Ă G closed under the binary operation is
a subsemigroup of G. A simple example of semigroup is the natural numbers set N with
the sum operation and 2N is a subsemigroup of N.

Let G be a semigroup and a P G. The a-left multiplication map La : G Ñ G and
the a-right multiplication map Ra : G Ñ G are defined by Lapbq “ ab and Rapbq “ ba.
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A right topological semigroup consists of a semigroup G and a topology T on G

such that for all a P G, the right action La is a continuous mapping of the space G to
itself.

Definition 1.2.1. [23, Definition 8] An Ellis semigroup is a compact hausdorff right
topological semigroup.

Example 1.2.2. Let X be a compact Hausdorff space. The set XX of all (not necessarily
continuous) functions from X to itself, provided with the topology of pointwise convergence,
is a Ellis semigroup.

Since the topology of pointwise convergence is the same as convergence in the
product topology on the space XX “

ś

xPX

Xx, where Xx “ X for all x P X. Clearly, XX

is Hausdorff and by Tychonoff’s Theorem is also compact. XX has a natural semigroup
structure defined by function composition. Evidently, if f P XX then Rf is continuous.

Remark 1.2.3. In general the left multiplication is not continuous. For example, let
X “ r0, 1s, fpxq “ 0 for x P X, fnpxq “ x

n
for x P X, gpxq “ 1 for x P p0, 1s and gp0q “ 0.

Clearly, fn Ñ f but Lgpfnq Û Lgpfq since pg ˝ fnqpxq “ 1 and pg ˝ fqpxq “ 0 for every
x P p0, 1s.

However, a direct computation shows that if f P XX is continuous then Lf is
continuous.

Note that, any closed subsemigroup subset H of a Ellis semigroup E, is also an
Ellis semigroup.

Example 1.2.4. Let pX, fq be a dynamical system. The closure tfn : n P Zu in XX is a
closed semigroup, and so it is an Ellis group.

First we denote EpX, fq “ tfn : n P Zu. Trivially EpX, fq is closed. Let g, h P

EpX, fq then there is a sequence tfnku such that fnk Ñ g. Thus,

fnk ˝ h “ Rhpfnkq Ñ Rhpgq “ g ˝ h,

analogously fnk ˝ h is the limit of some sequence tfnj u. Since EpX, fq is closed, fnk ˝ h P

EpX, fq and then we have g ˝ h P EpX, fq. Hence EpX, fq2 “ EpX, fqEpX, fq Ă EpX, fq,
and EpX, fq is a semigroup of XX .

Definition 1.2.5. [23, Definition 8] Let pX, fq be a dynamical system. We define the Ellis
semigroup of f by Epfq “ tfn : n P Zu.

Explicit computations of Ellis semigroups are not very common. Some examples
are to be found in [24, 29, 46, 40, 41, 22, 27, 9, 2, 16, 26]. One of the reasons for the
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scarcity of concrete examples of Ellis semigroups when X is a compact Hausdorff space is
that these objects are usually non-metrizable, a notable exception is the case of weakly
almost periodic metric systems (see [17] and [28, Theorem 1.48]).

Definition 1.2.6 (c.f. [20, Definition 3]). A nonempty closed subset I of an Ellis semigroup
E is said to be a left (resp. right) ideal if EI Ă I (resp. IE Ă E). A left (resp. right) ideal
is said to be minimal if it does not properly contain a left (resp. right) ideal.

In particular, every left (resp. right) ideal is a closed subsemigroup, and so too an
Ellis semigroup.

Let X be a compact metric space. As a first example of a minimal left (right) ideal
of XX , we have the collection of constant maps on X.

Example 1.2.7. Let pX, fq be a dynamical system. A nonempty subset I of Epfq such
that EI Ă I (resp. IE Ă E) is left (resp. right) ideal.

Recall that an element a of a semigroup is called idempotent if a2 “ a. Let E be a
semigroup and a, b P E, we write a ď b if a “ ab “ ba. Clearly, “ď” is a partial order on
the collection of idempotents in E. An idempotent a P E is said to be minimal if for any
idempotent b P E, b ď a implies b “ a.

Example 1.2.8. Let X be a compact Hausdorff space. Then

1. g P XX is an idempotent if and only if g restricted to gpXq is the identity map.

2. IdX and the constant maps of X are idempotents in XX .

3. The minimal idempotents in XX are the constant maps.

In fact if g P XX is an idempotent. Let z P gpXq, then there is x P X such that
gpxq “ z and then

gpzq “ gpgpxqq “ gpxq “ z.

Conversely, if g “ IdgpXq (in particular, if g is continuous, this means that g is a retraction
onto gpXq), fix x P X, we have

g2
pxq “ gpgpxqq “ Idpgpxqq “ gpxq.

It is clear that Id and constants maps are idempotent elements of XX .

Let h be a minimal idempotent in XX . Fix z P X. Let g be the constant function
define by gpyq “ hpzq for every y P X. Let x P X, we have

gpxq “ hpzq “ gphpxqq and
gpxq “ hpzq “ h2pzq “ hphpzqq “ hpgpxqq,
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that is, g “ g ˝ h “ h ˝ g. Therefore g ď h, and h “ g by minimality.

On the other hand, when pX, fq is a dynamical system the case for Epfq is different,
for instance Epfq may not contain constant maps. However, some results are adapted from
the Ellis semigroup of a dynamical systems [19, 20] to general case.

Proposition 1.2.9. Let E be an Ellis semigroup. Then

(i) There is an idempotent in E.

(ii) E has a minimal left ideal.

(iii) Every left ideal of E contains idempotents.

(iv) If I is a (minimal) left ideal of E, then so is Ia for every a P E.

(v) If u P E is a minimal idempotent and I is a left ideal of E, then u P Iu.

(vi) An idempotent u P E is minimal if and only if u P I for some minimal left ideal
I Ă E.

Proof. Define
A “ tA Ă E : A closed s.t. A2

Ă Au.

A ‰ H since E P A. The set inclusion is a partial order in A, then applying Zorn’s
lemma we obtain a minimal element A P A. Let a P A, we claim that a2 “ a. Indeed,
set B “ RapAq “ Aa Ă AA Ă A. Since Ra is continuous, B P A. By minimality, B “ A.
Then, there is b P A such that ba “ a. Consider

C “ A X R´1
a pAq “ ta P A : ba “ au Ă A,

hence C P A. Consequently C “ A, the claim follows and piq is proved.

To deduce piiq, note that E is a left ideal, applying Zorn’s lemma to the collection
of all left ideals of E.

As we have already note that a left ideal is in particular an Ellis semigroup. Then,
piiiq follows from piq.

To prove pivq, let a P E, if I is a left ideal then Ia “ RapIq is a left ideal by
associativity. To prove it is minimal when I is minimal, consider a left ideal J of E with
J Ă Ia, and define

K “ I X R´1
a pJq “ ti P I ia P Ju.

Since I and J are ideals, it is easy to check that K is a left ideal. Hence K “ I by the
minimality of I. Consequently, I Ă R´1

a pJq, and thus

Ia “ RapIq Ă Ra

`

R´1
a

˘

pJq Ă J.
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From pivq and piiiq, there is an idempotent iu P Iu, where i P I. Let b “ uiu P Iu.
We have b is an idempotent because

bb “ uiuuiu “ uiuiu “ upiuq
2

“ uiu “ b.

Moreover, b ď u since

ub “ uuiu “ uiu “ b and bu “ uiuu “ uiu “ b.

Since u is minimal, u “ b, and so u P Iu. This proves pvq.

Let u P E be a minimal idempotent. E has a minimal left ideal I by piiq. It
follows from pivq and pvq that Iu is minimal and u P Iu. Conversely, suppose that u is an
idempotent belongs to a minimal left ideal I Ă E. Let b P E be an idempotent with b ď u,
then b “ bu P I and b “ ub P Ib. By pivq, Ib is a minimal left ideal. Thus, I X Ib ‰ H and
is a left ideal. As I is minimal we have Ib “ I. So u “ cb for some c P I, which implies

b “ ub “ cbb “ cb “ a.

Therefore u is minimal proving pviq.

As an application we present the following result. It is proved as in [51, p. 959].

Proposition 1.2.10. A distal continuous function on a compact metric space X is
surjective.

Proof. Let f be a distal continuous function on X. fpXq is closed, since X is compact. If
we prove that the image of f is dense, the assertion follows. For this purpose, we fix x P X

and U be an open neighborhood of x. We proceed to show that U intersect fpXq. By the
1.2.9(i) there is an idempotent u P Epfq. Let V be a neighborhood of upxq “ upupxqq,
it follows from the definition of Epfq that there is n P N such that fnpupxqq, fnpxq P V .
As f is distal we have x “ upxq. Taking V “ U we have fnpxq P U . That is, there is
z “ fn´1pxq such that fpzq P U .

The following Proposition is proved as in [23, Lemma 4] and [20, Remark 6].

Proposition 1.2.11. Let pX, fq be a dynamical system and x, y P X. The following
properties are equivalent:

(i) y P P pxq.

(ii) gpxq “ gpyq for some g P Epfq.

(iii) gpxq “ gpyq for some minimal idempotent g P Epfq.

(iv) There is a minimal left ideal I Ă Epfq such that hpxq “ hpyq for every h P I.
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Proof. Clearly pivq implies piiiq and in turn piiiq implies piiq. It is sufficient to show that
piq is equivalent to piiq and piiq implies pivq.

To deduce piiq from piq, assume that y P P pxq. Let tnku be the subsequence such
that d pfnkpxq, fnkpyqq Ñ 0. Since Epfq is compact, there is g P Epfq and a subsequence
tnαu of tnku such that fnα Ñ g. Thus gpxq “ gpyq. Conversely, suppose that gpxq “ gpyq

for some g P Epfq. If g “ fn for some n P N, we are done. For the other case, if g ‰ fn

for every n P N, there is an eventually non-constant subsequence tnαu such that fnα Ñ g.
Since X is compact, there are a, b P X such that fnαpxq Ñ a and fnαpyq Ñ b. It follows
that a “ gpxq “ gpyq “ b. Therefore y P P pxq.

It remains to prove that piiq implies pivq. To this end, define

I “ th P Epfq : hpxq “ hpyqu

is non-empty by hypothesis. Moreover, I is closed and EI Ă I. That is, I is a left ideal.
The result follows from applied Proposition 1.2.9piiq to I.

As a consequence of the above results the following fact due to Robert Ellis is
obtained.

Theorem 1.2.12 (cf. [20, Theorem 2]). Let pX, fq be a dynamical system. The following
statements are equivalent.

(i) The proximal relation is a equivalence relation in X.

(ii) Epfq contains exactly one minimal right ideal.

1.3 Ergodic Theory

Let pX, B, µq be a probability space and f : X Ñ X be a measurable transformation.
We say that the measure is f -invariant (or invariant under f) if

µpBq “ µpf´1
pBqq for every measurable set B.

We also say that f preserves µ, to mean just the same. A probability space and a measure-
preserving transformation on it pX, B, µ, fq is called measure-preserving dynamical system.

Recall that a measurable set B is called f -invariant if f´1pBq “ B modulo zero.

Definition 1.3.1. A measure µ is said to be f-ergodic (or simply ergodic) if every
f -invariant measurable set has either total measure or null measure.



34 1. PRELIMINARES

1.3.1 Metric and Topological Entropy

One way to determine the complexity of a dynamical is its topological entropy.
Indeed, its positiveness is always related to some kind o chaoticity.

Let pX, B, µq be a probability space. By partition of pX, B, µq we mean a countable
(finite or infinite) disjoint collection of elements of B whose union has full measure (see
[58, Definition 4.1]).

Definition 1.3.2 (cf. [32, p. 74]). Let α “ tA1, A2, . . .u be a partition of a probability
space pX, B, µq. The entropy of α is defined to be

Hµpαq “ ´
ÿ

APα

µpAq logpµpAqq.

where 0 logp0q :“ 0.

Suppose α “ tA1, A2, . . .u and β “ tB1, B2, . . .u are two partitions. The join of α

and β is the partition

α _ β “ tAi X Bj : Ai P α, Bj P βu .

Let be a measure-preserving dynamical system.

Let ξ “ tE1, E2, . . .u be a partition of a measure-preserving dynamical system
pX, B, µ, fq. f´jpξq denotes the partition tf´jpE1q, f´jpE2q, . . .u (cf. [58, Definition 4.4]).

Definition 1.3.3 (cf. [53, Definition 14.5]). A finite measurable partition ξ of the space
X is called generating for f if

8
ł

j“0
f´j

pξq “ ϵ,

Where ϵ is the partition of ξ into points and equality is understood modulo zero.

Let ξ “ tE1, E2, . . .u be a partition of a measure-preserving dynamical system
pX, B, µ, fq. We denote and define

ξn
“ ξ _ f´1

pξq _ ¨ ¨ ¨ _ f´pn´1q
pξq

Since the sequence Hµpξnq is subadditive and Hµpξq ă 8, the following concept is well
defined (see fro instance [58, Theorem 4.9]).

Definition 1.3.4 (cf. [32, Definition 3.7.2]). The metric entropy of the transformation f

relative to the partition ξ.
hµpf, ξq “ lim

nÑ8

1
n

Hµpξn
q.

Finally, we are in position to define
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Definition 1.3.5 (cf. [32, p. 77]). The metric entropy of f with respect to µ is defined by

hµpfq “ supthµpf, ξqu,

where the supremum is taken over all finite or countable partitions ξ with Hµpξq ă 8.

In the above two definitions, finite or countable partitions with finite entropy are
taken since the set of finite partitions is dense in the set of countable partitions with finite
entropy (cf. [50, Section 6]).

On the other hand, topological entropy is defined in a similar way but in topological
terms. The variational principle tells us that topological entropy is achieved by the
supremum of the metric entropies (see [58, Theorem 8.6]). Moreover, this supremum can
be taken on the metric entropies of ergodic measures (see for instance [58, Corollary 8.6.1]).
Thus we can define

Definition 1.3.6. topological entropy of a continuous map f : X Ñ X in a compact
metric space as follows.

hpfq “ sup hµpfq,

where the supremum is taken over the set of ergodic f -invariant measures of f .

Remark 1.3.7. In particular, it follows that the topological entropy of f is zero if and
only if hµpfq “ 0 for every ergodic f -invariant measures µ.

Kolmogorov-Sinai Theorem 1.3.8 (cf. [53, Theorem 14.3]). Let ξ a measurable partition
of the space X. If ξ is generating for f and Hµpξq ă 8, then hpfq “ hµpf, ξq
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Chapter 2
N -distal homeomorphisms

In this chapter we introduce the class of N -distal systems, study some of its
dynamical properties and their connection with other dynamical concepts. In section 2.1
we define the N -distality for homeomorphisms, prove its basic properties and give some
examples. In section 2.2 we introduce the notion of N -equicontinuity for homeomorphism,
prove that N -equicontinuos homeomosrphisms are N -distal and show that the Fürstenberg’s
example is a minimal distal homeomorphism that is not N -equicontunuos for every positive
integer N . Setting the hierarchy between the two concepts. In section 2.3 we define the
idea of proximal cell for a homomorpohism and used it to generalize the distal extension
(distal factor) of an homeomorphism. Using this concepts to extend the Theorem 1.1.9 and
give a criterion for existence of non-trivial N -distal factors for N -distal homeomorphisms.

2.1 N -distal homeomorphisms

Here we define the N -distal homeomorphims, state some of its properties and give
a few examples. Recently in [4] the authors defined the following new classes of systems.

Definition 2.1.1. We say that f is a N-distal (for some N P N`) map if P pxq has at
most N points and f is a countably-distal map if the set P pxq is a countable subset of X,
for all x P X.

Our first remark is that distality clearly implies N -distality and N -distality clearly
implies countably-distality, but the converse do not always hold. For instance, consider
the following examples.

Example 2.1.2. There is a compact metric space X and a 3-distal homeomorphism
f : X Ñ X which is not 2-distal.
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Proof. To see this, let D “ tpθ, rq P R2 : 1 ď |r| ď 2u be the annulus in polar coordinates.
Define F : D Ñ D through

F pθ, rq “ pθ ` k pmod 1q, pr ´ 1q
2

` 1q (2.1)

with k an irrational number. Consider p “ p0, 3
2q and X “ S1p0q Y OF ppq Y S2p0q where

0 “ p0, 0q and Srpxq denotes the circle of radius r centered at x. Set f “ F |X , the
restriction of F to X. Thus the pairs pp, p0, 1qq and pp, p0, 2qq form proximal pairs for f ,
therefore f is 3-distal but it is not 2-distal.

Figure 1 – 3-distal that is not 2-distal

If we slightly modify the previous example, we obtain

Example 2.1.3. There are N-distal homeomorphisms which are not N ´ 1-distal for
N ě 4 and there is a countably-distal homeomorphisms which is not N-distal for every
positive integer N .

Proof. Let F : D Ñ D be the function defined in the previous example.

1. In D consider pn “ p0, 1
n

` 1q with 2 ď n ď N ´ 1 for N ě 3. Define X “

BD Y pYN´1ěně2Oppnqq, where BD denotes the boundary of D. Let f be given by
f “ F |X . Then f is a N -distal homeomorphism which is not N ´ 1-distal, since
Pf p0, 3

2q “ tp0, 1q, p0, 2qu Y tpn : 2 ď n ď N ´ 1u.

2. Similarly, consider in D the points pn “ p0, 1
n

` 1q with n ě 2. Define Y “ BD Y

pYnPNOppnqq and the homeomorphism g : Y Ñ Y by g “ F |Y . Thereby Pgp0, 3
2q “

tp0, 1q, p0, 2qu Y tpn : n ě 2u, hence g countably-distal map but it is not N -distal
for every positive integer N .
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Figure 2 – 5-distal that is not 4-distal

Example 2.1.4. There is a compact metric space X and a 2-distal homeomorphism
f : X Ñ X which is not distal.

Proof. A modification of Example 2.1.2 can be made to obtain a 2-distal homeomorphism
which is not distal. Indeed, the space in this example is the union of two concentric circles
and the orbit of the point p “ p0, 3

2q between them. The application of the homeomorphism
f makes the points in the circles stay in the circles, while the point p approach the inner
circle in future and the outer circle in the past. If we consider only one circle S1p0q (or
S2p0q) a change in the dynamics of the point p to approach the circle S1p0q (or S2p0q) for
both future and past, we have the desired example.

The above examples show that these three levels of distality are different.

Remark 2.1.5. It is well known that every distal homeomorphism is pointwise almost
periodic (see Proposition 1.1.10). Nevertheless, this is not true in general for N -distal
homeomorphisms for the example 2.1.2.

Now we state our first result that deals with some elementary properties of N -distal
homeomorphism.

Proposition 2.1.6. Let f : X Ñ X and g : Y Ñ Y be homeomorphisms on X and Y

compact metric spaces. The following properties hold:

(i) Let k be a non-zero intenger. Then f is N-distal if and only if fk is N-distal.

(ii) If f is N-distal and g is M-distal, then f ˆ g is MN-distal.

(iii) If f and g are conjugated homeomorphisms, f is N -distal if and only if g is N -distal.
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Proof. Observe that by the definition of proximal cell we have Pfkpxq Ď Pf pxq for every
x P X and therefore the if part follows. Conversely, let y P Pf pxq, there is a sequence tnju

goes to infinity such that
dpfnj pxq, fnj pyqq Ñ 0.

If k | nj for infinite j. Set the subsequence tljm : njm “ kljmu. Then there is a sequence
tljmu goes to infinity such that

dppfk
q

lj mpxq, pfk
q

lj mpyqq “ dpfnj mpxq, fnj mpyqq Ñ 0.

Otherwise, there is i0 P t1, . . . , k ´ 1u such that nj “ klj ´ i0 for infinite j. Set the
subsequence tljm : njm “ kljm ´ i0u. Since f is uniformly continuous, for every ϵ ą 0
there is δ ą 0 such that

dppfk
q

lj mpxq, pfk
q

lj mpyqq ă ϵ whenever dpfklj m´i0pxq, fklj m´i0pyqq ă δ,

which implies that for every ϵ ą 0 there is M P Z such that

dppfk
q

lj mpxq, pfk
q

lj mpyqq ă ϵ for every ljm ą M,

so y P Pfkpxq proving piq.

Similarly, piiq is a consequence of Pfˆgpx, yq Ď Pf pxqˆPgpyq for every px, yq P XˆY ,
and this follows from the definitions of d2 on X ˆ Y and proximal cell.

Finally to prove piiiq, suppose that h is the conjugacy homeomorphism between
f and g. If g is not N -distal. Then, there exists y P Y such that Pgpyqztyu has at least
N points. Set x “ h´1pyq. We claim that Pf pxqztxu has at least N points. Indeed, let
p1, . . . , pN be distinct points in Pgpyqztyu. It follows that

dpgni
kpyq, gni

kppiqq Ñ 0 as k Ñ 8

for i “ 1, . . . , N . Since h´1 is continuous, we have

dph´1
pgni

kpyqq, h´1
pgni

kppiqqq “ dpfni
kph´1

pyqq, fni
kph´1

ppiqqq Ñ 0.

Thus h´1ppiq P Pf pxqztxu for every i P t1, . . . , Nu. Therefore f is not N -distal.

Remark 2.1.7. The above results are also valid for countably-distal homeomorphisms.

2.2 N -equicontinuity and N -distality
Now, we are going to investigate the relation between equicontinuity and N -distality.

Since equicontinuous systems are examples of distal systems (see Theorem 1.1.5), every
N -distal and equicontinuous homeomorphism must be distal.

In order to state a weaker form of equicontinuity we use the concept of N -diameter
(for some N P N`) defined by the authors in [39], which in turn were inspired by the
definition of N-sensitivity given by Xiong in [59], namely,
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Definition 2.2.1. Let X be a compact metric space and N be a positive integer. If A is
a subset of X, define the N-diameter of A by

diamN pAq “ sup
BĎA

t min
x,yPB

tdpx, yq : x ‰ yu : B P CN`1pXqu. (2.2)

where CN pXq denotes the set of subsets of X with N elements.

This concept satisfies the following properties

Lemma 2.2.2. [39] Let X be a compact metric space and N a positive integer. If A,B
are subsets of X. Then

(i) diam1pAq “ diampAq, where diampAq is the usual diameter of A.

(ii) diamN pAq ď diamM pAq, whenever M ď N .

(iii) diamN pAq ď diamN pBq, whenever A Ď B.

(iv) diamN pAq “ diamN pĀq.

(v) diamN pAq “ 0 if and only if #A ď N .

(vi) diampAq

N
ď diamN pAq, whenever A is connected.

Proof. By direct computation we have

diam1pAq “ sup
BĎA

t min
x,yPB

tdpx, yq : x ‰ yu : B P C2pXqu “ sup
x,yPA

tdpx, yqu “ diampAq.

proving piq.

Observe that piiq and piiiq follows from minimum and supremum definitions,
respectively. Similarly, pivq is a consequence of supremum properties.

Now to prove pvq, first suppose that diamN pAq “ 0. By Definition 2.2.1, we have

min
xi,xjPB

#B“N`1

tdpxi, xjq : i ‰ ju “ 0

for all B Ď A. It follows that xi “ xj for some xi, xj P B, then #B ď N . Since B

is arbitrary we conclude that #A ď N .

We will proof the contrapositive of the only if part. So, suppose that diamN pAq ą 0.
By Definition 2.2.1 there is B Ď A with #B “ N ` 1 such that

min
xi,xjPB

#B“N`1

tdpxi, xjq : i ‰ ju ą 0,

Thus N ` 1 “ #B ď A.
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Finally we prove pviq, if diampAq “ 0, there is nothing to prove. Otherwise, there
is x, x1 P A such that dpx, x1q ą diampAq ´ ϵ for every ϵ ą 0, by supremum’s definition.
Define φ : A Ñ R by φpyq “ dpx, yq. If follows that φ is continous, φpxq “ 0 and
φpx1q ą diampAq ´ ϵ. Since A is connected, we have

r0, diampAq ´ ϵs Ď φpAq.

Hence there are x0 “ x, x2, . . . , xN such that

φpxiq “
i

N
pdiampAq ´ ϵq, for all i “ 0, . . . , N.

Thus, for all i, j P t0, . . . , Nu such that i ă j, we have

dpxi, xjq ě dpxj, x0q ´ dpx0, xiq

“ φpxjq ´ φpxiq

“
j

N
pdiampAq ´ ϵq ´

i

N
pdiampAq ´ ϵq

“
j ´ i

N
pdiampAq ´ ϵq

ě
diampAq ´ ϵ

N
.

It follows that

diamN pAq ě min
i,jPt0,...,Nu

tdpxi, xjq : i ‰ ju

ě
diampAq ´ ϵ

N
.

Since ϵ is arbitrary, we are done.

Example 2.2.3. Consider S1 as a subset of R2 equipped with the induced metric. Then
diamN pS1q “ 2 sinp π

N`1q.

Proof. The problem to calculate 2.3 on S1, that is

diamN pS1
q “ sup

BĎS1
t min

x,yPB
tdpx, yq : x ‰ yu : B P CN`1pR2

qu. (2.3)

Reduces to calculate the length of the side of a regular polygon of N ` 1 points inscribed
in S1 . Indeed, the minimum of the distances between N ` 1 points in S1 is the smallest
length of the sides of the polygon connecting these points. The supremum over these
minimums, is precisely the length of any regular polygon connecting N ` 1 points in S1

that is equal to 2 sinp π
N`1q, as is illustrate in the Figure 2.2.
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π
3

2sen
`

π
3

˘

r “ 1
π
5

2sen
`

π
5

˘

r “ 1

N “ 2 N “ 4

Figure 3 – diamN pS1q

Also we need the following notation for δ ą 0 and x P X

Rδpxq “ ty P X : dpfm
pyq, fm

pxqq ă δ, for some m P Zu. (2.4)

Notation Rf
δ pxq will be useful to indicate dependence of f . Note that

y P Rδpxq ô dpfm
pyq, fm

pxqq ă δ, for some m P Z

ô fm
pyq P Bδpfm

pxqq, for some m P Z

ô y P f´m
pBδpfm

pxqqq , for some m P Z

ô y P
ď

mPZ
f´m

pBδpfm
pxqqq ,

then Rδpxq “
Ť

mPZ
f´m pBδpfmpxqqq. Clearly Rδpxq is an open set and a superset of Bδpxq.

We can now define a generalization of equicontinuity. To motivate this definition we
rewrite the classical definition of equicontinuity (see Definition 1.1.4). To be equicontinuous
homeomorphism, it equivalent to say that for every ε ą 0 there exists δ ą 0 such that

diampfn
pBδpxqqq ă ε for all x P X and n P Z.

This definition suggests the following one.

Definition 2.2.4. We say that f is N -equicontinuous (for some N P N`) if for every ε ą 0
there exists δ ą 0 such that

diamN pfn
pRδpxqqq ă ε for all x P X and n P Z. (2.5)

The 1-equicontinuous homeomorphisms are precisely the equicontinuous ones. In
fact, by piq and piiiq for N “ 1 in Lemma 2.2.2, we have

diampfn
pBδpxqqq “ diam1pfn

pBδpxqqq ď diam1pfn
pRδpxqqq
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for all x P X and n P Z. Thus, from N -equicontinuous definition we concluded that
1-equicontinuity implies equicontinuity.

Conversely, if f : X Ñ X is equicontinuous. Let ε ą 0 and x P X, by equicontinuity,
for y, z P X exists δ1, δ2 ą 0 such that if

d
`

fk1pxq, fk1pyq
˘

ă δ1 and d
`

fk2pxq, fk2pzq
˘

ă δ2,

for some k1, k2 P Z. Then

d pfn
pxq, fn

pyqq ă
ϵ

2 and d pfn
pxq, fn

pzqq ă
ϵ

2 ,

for all n P Z. Set δ “ mintδ1, δ2u. Hence it follows from the triangle inequality and
supremum definition that

diam1pfn
pRδpxqqq “ sup

y,zPfnpRδpxqq

tdpy, zqu “ sup
y,zPRδpxq

td pfn
pyq, fn

pzqqu ă ε,

for all n P Z. Therefore, f is 1-equicontinuous.

Clearly, every M -equicontinuous homeomorphism is N -equicontinuous homeomor-
phism for all M ď N by Lemma 2.2.2(ii). It follows that every equicontinuous homeomor-
phism is N -equicontinuous homeomorphism for every N ě 1 and thus such dynamical
systems exist. A more subtle problem is to find N -equicontinuous homeomorphisms which
are not M -equicontinuous homeomorphisms for some M ď N . Indeed, this question is
answered positively in Example 2.2.7. Before we present this and a related example we
first establish the following results.

Let x P X, n P Z and δ ą 0, we have

fn
pRδpxqq “ fn

˜

ď

mPZ
f´m

pBδpfm
pxqqq

¸

“
ď

mPZ
f´pm´nq

pBδpfm
pxqqq

“
ď

mPZ
f´k

`

Bδpfk`n
pxqq

˘

, where k “ m ´ n

“
ď

mPZ
f´k

`

Bδpfk
pfn

pxqqq
˘

“ Rδpfn
pxqq. (2.6)

Using it we obtain the lemma below.

Lemma 2.2.5. Let N P N`. The following properties are equivalent for every homeomor-
phism f : X Ñ X on a compact metric spaces X:

(i) f is N-equicontinuous.
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(ii) For every ε ą 0 there exists δ ą 0 such that diamN pRδpxqq ă ε @x P X.

Proof. Clearly piq implies piiq so it remains to prove that piiq implies piq. To see this, let
ε ą 0 and x P X, by piiq for each M P Z there is δpMq such that

diamN pRδpMqpf
M

pxqqq ă ε.

Define

δ “ inf
MPZ

tδpMq : diamN pRδpMqpf
M

pxqqq ă ε ^ N ă #RδpMqpf
M

pxqqu.

Observe that δ ą 0. Indeed, if δ “ 0 then there exists a M0 P Z such that #RδpM0qpf
M0pxqq ă

N , a contradiction. Therefore, there is δ ą 0 such that

diamN pRδpfn
pxqqq ă ε

for all n P Z. As x and ε are arbitrary we conclude from (2.6) that f is N -equicontinuous
proving piq.

A direct application of the above Lemma is the following result that generalizes
the Theorem 1.1.5.

Theorem 2.2.6. N-equicontinuous homeomorphisms are N-distal.

Proof. Let f : X Ñ X be a N -equicontinuous homeomorphism of a compact metric space
X. Suppose by contradiction that f is not N -distal. Then, there exists x P X such that
#P pxq ą N . Thus let A P CN`1pXq be such that x P A and A Ď P pxq. Set εn “ 1

n
and let

0 ă δn ď εn be given by the N -equicontinuity of f for each n P N. Notice that since any
y P A is proximal to x, then

A Ď Rδnpxq

for every n P N`. Therefore by Lemma 2.2.5

diamN pRδnpxqq ă εn

for every n P N. Since A is finite, then there exists y P A and a sequence nj Ñ 8 such
that dpx, yq ă 1

nj
for every j P N. It follows that x “ y and #A ď N which is absurd.

Therefore, f must be N -distal.

We now present some related examples. Combining the above Theorem with
examples 2.1.4, 2.1.2 and 2.1.3.2.1 we obtain the following sentence.

Example 2.2.7. There are N-equicontinuous homeomorphisms which are not N ´ 1-
equicontinuous for every N ě 2.
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Proof. A simple computation shows that the N -distal homeomorphisms in Examples 2.1.4,
2.1.2 and 2.1.3.2.1 are also N -equicontinuous for N “ 2, N “ 3 and N ě 4, respectively.
As already verified these examples are not N ´ 1-distal homeomorphisms. Consequently,
are not N ´ 1-equicontinuous homeomorphims by Theorem 2.2.6.

The converse direction of the Theorem 2.2.6 motivate the question whether there
are N -distal homeomorphims which are not N -equicontinuous. As is well known the answer
for N “ 1 is positive, as already mentioned an example can be found in [7, Theorem 5.14].
The answer also turns out to be positive for N ě 2 by the following result. Even more, in
the next remarkable Fürstenberg’s example we deal with a more general problem on the
existence of distal and minimal systems that are not necessarily N -equicontinuous.

Example 2.2.8. There is a compact metric space X and a minimal distal homeomorphism
f : X Ñ X which is not N-equicontinuous for every positive integer N .

Proof. In order to see this consider the homeomorphism defined by

F : T2 ÝÑ T2

px, yq ÞÑ px ` α pmod 1q, y ` x pmod 1qq
, (2.7)

where α P p0, 1qzQ. We view T2 represented as r0, 1q ˆ r0, 1q, the unit square with
opposite sides identified and use the metric inherited from the Euclidean metric.

First, note that

F npx, yq “ px ` nαpmod 1q, y ` nx `
řn´1

j“0 jαpmod 1qq and
F ´npx, yq “ px ´ nαpmod 1q, y ´ nx `

řn
j“1 jαpmod 1qq

for all n ě 1. Therefore, the distance between n-th iterate by F of two points px, yq

and px
1

, y
1

q in T2 is

dpF n
px, yq, F n

px
1

, y
1

qq “

$

&

%

b

px ´ x1
q

2
` py ´ y1

` npx ´ x1
qq

2 if n ě 0
b

px ´ x1
q

2
` py ´ y1

` npx1
´ xqq

2 if n ă 0
, (2.8)

where the operations of the terms in parentheses are done in modulo 1.

We begin by verifying that F is distal. To see this, let px0, y0q and px1, y1q be
distinct points in T2. If x0 ‰ x1, then

dpF n
px0, y0q, F n

px1, y1qq ě dppx0, y0q, px1, y0qq (2.9)

which is a positive constant. Analogously, if x0 “ x1, then y0 ‰ y1 and by (2.8) clearly

dpF n
px0, y0q, F n

px1, y1qq “ dppx0, y0q, px1, y1qq. (2.10)
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In both cases 2.2 and 2.10 this hold for all n P Z. Thus, ppx0, y0q, px1, y1qq is a distal pair.
Since px0, y0q and px1, y1q are arbitrary we are done. Additionally, F is also minimal, see
[25, Lemma 1.25] for details.

Finally, fix N P N`, now we prove that F is not N -equicontinuous. For this
purpose, let δ ą 0, in T2 consider q “ p0, 0q and pk “ p δ

k
, 0q for 1 ď k ď N . Define

B0 “ tqu Y tpk : 1 ď k ď Nu, then for each n P Z.

diamN pF n
pRδpqqqq “ sup

BPCN`1pXq

BĎfnpRδpqqq

t min
z‰w

z,wPB

tdpz, wquu

ě min
z‰w

z,wPB0

tdpF n
pzq, F n

pwqqu

“

d

ˆ

δ

M
pmod 1q

˙2

`

ˆ

n
δ

M
pmod 1q

˙2

ě |n
δ

M
pmod 1q|,

for some 1 ď M ď N . Since δ
M

ą 0 we can find n P N` such that |n δ
M

mod 1| ě 1
4 . As N is

arbitrary we are done.

Thus, as a consequences of the Theorem 2.2.6, and Definitions 2.1.1 and 2.2.4
we obtain the following diagram which shows how the concepts of N -distality and N -
equicontinuity interact.

Distality +3
KS N -Distality +3

KS M -DistalityKS

Equicontinuity +3 N -Equicontinuity +3M -Equicontinuity

for all 2 ď N ă M . Moreover, the converse is not true in general for the Examples
2.1.2, 2.1.3.2.1, 2.1.4, 2.2.7 and 2.2.8.

2.3 Factors and extensions
Now we study how N -distality behaves under factors and extensions. In order to

generalize the distal extensions (see Definition 1.1.8) to the setting of N -distal homeomor-
phisms, we introduce the following auxiliary definition.

Definition 2.3.1. Let f : X Ñ X and g : Y Ñ Y be homeomorphisms of compact metric
spaces and π : Y Ñ X a homomorphism from g to f . Let y P Y with πpyq “ x for some
x P X we define and denote the proximal cell of y under π by

P π
pyq “ tz P π´1

pxq : inf
nPZ

tdpgn
pyq, gn

pzqqu “ 0u.

Notation P π
g pyq will be used to indicate dependence on g if necessary.
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We can now define the following notions. As in the case of distal homeomorphisms,
we define a generalization of the N -distal notion to homomorphisms in such a way that
the trivial homomorphism pX, fq Ñ ptpu, fq is N -distal if and only if the system pX, fq is
N -distal.

Definition 2.3.2. We say that homomorphism π : Y Ñ X is N -distal if P πpyq has at
most N points for every y P Y . We say that g is a N-distal extension of f (or f is a
N-distal factor of g) if there is a N -distal homomorphism π from g to f .

As we known (see Theorem 1.1.9) a distal extension of a distal homeomorphism is
distal. Next we prove a generalization of this fact.

Theorem 2.3.3. A M-distal extension of a N-distal homeomorphism is MN-distal.

Proof. Let X and Y be compact metric spaces, g : Y Ñ Y be a M -distal extension of a
N -distal homeomorphism f : X Ñ X, with π : Y Ñ X the N -distal homomorphism from
g to f . Suppose by contradiction that g is not MN -distal. Then there is y P Y such that
Pgpyq has at lest MN ` 1 elements. Let p1, . . . , pMN , pMN`1 “ y be the different points in
Pgpyq. As a consequence of the definition of proximal cell, we obtain

dpgni
kppiq, gni

kpyqq Ñ 0 as k Ñ 8

for i “ 1, . . . , NM . Since π is continuous and f ˝ π “ π ˝ g, we have

dpπpgni
kppiqqπpgni

kpyqqq “ dpfni
kpπppiqq, fni

kpπpyqqq Ñ 0.

as k Ñ 8 for i “ 1, . . . , NM . Since #Pf pπpyqq ď N , it follows that there are pl1 , . . . , plM`1

different points such that pl1 , . . . , plM P π´1pplM`1q. Thus pl1 , . . . , plM P P π
g pplM`1q and

therefore there is a point z “ plM`1 in Y such that #P π
g pzq ą M , a contradiction.

We end this chapter by dealing with the problem of determining when a N -
distal system has a non-trivial distal N -factor. Next, we use the Ellis semigroup (see
Section 1.2) to obtain a criterion for existence of non-trivial N -distal factors for N -distal
homeomorphisms.

Theorem 2.3.4. Let f be a N-distal homeomorphism. If the Ellis semigroup Epfq of f

has a unique minimal ideal I, then f has a nontrivial N-distal factor. Moreover, if there
is a continuous element in I, then this factor is distal.

Proof. Suppose that Epfq has a unique minimal ideal I. It is a classical fact that this
condition is equivalent to the proximal relation “„” in X be an equivalence relation (see
Theorem 1.2.12). Then define Y “ X{ „ to be the quotient space of X by proximality
relation and let π denote the natural projection map. Let g be the homeomorphism induced
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on Y by f through the projection π. We notice that the conjugacy equation is trivially
satisfied for g and f . It follows from the N -distality of f that P π

f pyq has at most N points
for all y P Y . Then g is a N -distal factor of f .

Since there is a continuous element in I and the proximal relation is an equivalence
relation, we have that the proximal relation is closed (c.f. [35, Lemma 2.1]). It follows from
[12, ch. I, Proposition 3.8] that Y is hausdorff. Therefore, Y is metrizable by [13, ch. IX,
Proposition 10.17].

Next we prove that the homeomorphism g is distal. Indeed, suppose that y, y1 P Y

are distinct proximal points for g. Let us take x P π´1pyq and x1 P π´1py1q. By construction
x and x1 are distal. Compactness of Y implies that there are a sequence of k Ñ 8 and a
point z P Y such that gkpyq, gkpy1q Ñ z. We can assume by compactness of X that there
exists p, p1 P X such that fkpxq Ñ p a and fkpx1q Ñ p1.

We claim that p and p1 are distal. Indeed, suppose that there is i Ñ 8 and z1 such
that f ippq, f ipp1q Ñ z1. Fix ε ą 0 and i0 such that f i0ppq, f i0pp1q P Bεpz1q. So there exists
δ ą 0 such that

dpf j
puq, f j

pwqq ă ϵ whenever dpu, wq ď δ

for j “ 0, ..., i0 and every u, w P X. Take k big enough such that

fk
pxq P Bδppq and fk

px1
q P Bδpp1

q.

But this implies
dpfk`i0pxq, fk`i0px1

qq ď 4ε.

Remember x and x1 are distal and therefore it is impossible since ε ą 0 was chosen
arbitrarily. Thus p and p1 must be distal.

Finally we must have πppq “ πpp1q “ z by continuity of π, but this is impossible
since p and p1 cannot be in the same equivalent class.
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Chapter 3
Transitive N -distal Systems and
Expansiveness

In this chapter we study the relation betwenn N -distal property with transitivity
and expansivity. Section 3.1 deals with the transitive N -distal systems, some results are
proved in particular a generalization of the Proposition 1.1.12. Section 3.2 contains a brief
summary of the close relation between distality and expansivity and present an example of
a cw-distal expansive homeomorphism which is not N -distal for every positive integer N .

3.1 Transitive N -distal Systems
In this section we study some consequences of the topological transitivity for

N -distal systems. In particular, we use the Ellis semigroup theory to prove the Theorem
3.1.5.

Next results deals with the existence of periodic orbits. But previously we need the
following proposition.

Proposition 3.1.1. Let f : X Ñ X be a N -distal homeomorphism for N ě 2. If x P X is
periodic for f , then x is a distal point.

Proof. Let x be a periodic point of f with period T . If P pxq ‰ txu, take y P P pxqztxu.
Then, there is a sequence tnku goes to infinity such that

dpfnkpxq, fnkpyqq Ñ 0.

Since x is periodic and y ‰ x then y cannot be periodic. Moreover, since the orbit
of x is finite, we can assume that fnkpxq “ p for any k P N and some p P Opxq. Last
assumption implies that nk ´ nk1 is a multiple of T for any k, k1 P Z. For any k P N we
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set yk “ fnkpyq. We claim that yk is proximal to p for every k. Indeed, fix k and define
mk

j “ nj ´ nk for j ě k. Then we obtain that

dpfmk
j pykq, fmk

j ppqq “ dpfnj pyq, fnj ppqq “ dpfnj pyq, pq Ñ 0

and this proves the claiming.

Finally, notice that y cannot be a periodic. Thus, we have infinitely many yk’s and
therefore #P ppq “ 8, a contradiction.

As a consequence we show that the only way a transitive N -distal system can
possess a periodic orbit is if the whole space is a periodic orbit.

Proposition 3.1.2. Let f : X Ñ X be a pointwise transitive N-distal homeomorphism
which is not distal. Then either X is a periodic orbit, or f has not periodic points.

Proof. Suppose that X is not a periodic orbit and let p be a periodic point. Suppose
x P X is a transitive point. Since Opxq is dense, then for any point of q P Oppq we can
find a sequence nk Ñ 8 such that fnk

pxq Ñ q. Let T denote the period of p. Since f is
continuous, for every k P N we can find 0 ă δk ă 1

k
such that

dpf i
pxq, f i

pyqq ď
1
k

whenever dpx, yq ď δk

for |i| ď T . Up to take a subsequence of nk, we can suppose that fnkpxq P Bδk
ppq

for any k P N.

Now, by the choice of δk we have that

f i
pxkq P B 1

k
pf i

ppqq.

for i “ 0, 1, ..., T . By the euclidean algorithm any nk can be wrote as nk “ qkT ` rk with
qk P N and 0 ă rk ă T . Since the orbit of p is finite, we can assume that rk “ c for every
k. Put xk “ fnkpxq for every k P N.

We claim that the points xk are proximal to p. Indeed, fix k and for any j ą k

define mk
j “ nj ´ nk ` T “ T pqj ´ qk ` 1q. Then we have that

dpfmk
j pxq, fmk

j ppqq “ dpfnj´nk`T
pxkq, fnj´nk`T

pp1
qq

“ dpfnj pxq, fT pqj´qk`1q
ppqq

“ dpfnj`T
pxq, pq

ď
1
j

.
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Since this, in addiction to the fact that txku is an infinite set implies that #P ppq “

8, we obtain a contradiction by Proposition 3.1.1. This proves the result.

As it is well known, a distal homeomorphism is pointwise transitive if and only if
is minimal (see Proposition 1.1.12). This is not valid for N -distal homeomorphism by the
Example 2.1.2. Nevertheless, the transitive 3-distal homeomorphism given in this example
has two minimal subsystems. It is then natural to ask if there is a relation between the
number of minimal subsystems of a dynamical system and the transitive N -distal property.
Indeed, the Theorem 3.1.5 gives an answer for this question.

An old result by Auslander [6, Lemma 2] that we will need is stated below. For
completeness we include its proof here.

Lemma 3.1.3. Let f : X Ñ X be a homeomorphism on a compact metric space X and
x P X. If A Ă Opxq be a minimal set, then there is y P A such that y P P pxq.

Proof. Let Epfq “ E be the Ellis semigroup of f . We claim that H “ th P E : hpxq P Au

is a minimal left ideal of E. Indeed, let g P E and h P H. Then, there is a sequence nk Ñ 8

such that fnk Ñ g. It follows that

fnkphpxqq Ñ gphpxqq “ pg ˝ hqpxq.

Since A is f -invariant, fnkphpxqq P A. As A is closed we have pg ˝ hqpxq P A. So g ˝ h P H.
Hence, H is a left ideal. Moreover, the minimality condition for H follows from that of A.
The claim is proved.

We have from Proposition 1.2.9piiiq, 1.2.9pviq and the claim that there is a minimal
idempotent element k in H. Let upxq “ y, then upyq “ u2pxq “ upxq. Therefore y P P pxq

by 1.2.11piiiq, which completes the proof.

Using this lemma we obtain the proposition below.

Proposition 3.1.4. If f is a N-distal homeomorphism, then f |Opxq
has at most N ´ 1

proper minimal subsystems.

Proof. First notice that two minimal subsets A, B Ă X have non-empty intersection
then they must be equal. Now, suppose f is N -distal and fix x P X. Let us analyze the
subsystem f |Opxq

. If f is distal then Opxq is minimal [7, Corollary 5.7] or f is minimal, in
both cases we are done. If it is not minimal, it is well known that there exists a non-trivial
minimal subset A Ă Opxq. By Lemma 3.1.3 we have that there exists a y P A proximal to
x. Clearly x ‰ y. The latter fact is valid for any minimal subset of Opxq. Thus N -distality
implies that there are at most N ´ 1 minimal subsets on Opxq and the proposition is
proved.
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A direct consequence of the preceding Proposition is the following N -distal version
for the one given in [7]. Indeed, we just need to notice that if a system is transitive there
exists some point x P X such that Opxq “ X.

Theorem 3.1.5. A transitive N -distal homeomorphism has at most N ´ 1 minimal proper
subsystems.

3.2 Expansiveness vs distality
In this section we proceed to study the relation between N -distality and expansivity.

It is a classical result that a distal system cannot be expansive if the phase is
sufficiently rich (see Proposition 1.1.13). We ask if the same is true for the weaker forms of
distality and expansiveness. Actually, it is answered by the authors in [4] when the phase
space has positive topological dimension. Before stating this result precisely, let us recall
some weaker notions of distality and expansiveness.

The δ-dynamical ball centered at x (or δ-Bowen ball) is the set defined by

Γδpxq “ ty P X : dpfn
pxq, fn

pyqq ă δ, @n P Zu.

Clearly,
Γδpxq Ď Bδpxq Ď Rδpxq

for all x P X and δ ą 0.

We can now define the notions of n-expansiveness and countably-expansiveness
were defined in [42] and [43] respectively, and redefine expansiveness [54] in terms of the
dynamical ball. Namely

Definition 3.2.1. Let f : X Ñ X be a homeomorphism of a metric space. We say that

1. f is expansive if there exists δ ą 0 such that Γδpxq “ txu for every x P X.

2. f is N- expansive if there exists δ ą 0 such that #Γδpxq ď N for every x P X.

3. f is countably-expansive if there exists δ ą 0 such that Γδpxq is countable for every
x P X.

In each case the number δ ą 0 is called an expansiveness constant for f .

In [34] incorporated the expansive systems into the Continuum Theory. In fact,
Kato recognized that the equivalently a homeomorphism f : X Ñ X of a metric space is
expansive if there is δ ą 0 such that if C P 2X
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diam pfn
pCqq ď δ for every n P Z ñ diampCq “ 0. (3.1)

where diampCq “ suptdpx, yq : x, y P Cu denotes the diameter of C and 2X denotes
the set of subsets of X.

Recall that a continuum is a nonempty, compact, connected metric space and
subcontinuum is a subset which is itself a continuum under the induced topology. We say
that a continuum is trivial if it is a singleton (cf. [45]). By restricting C to the class of
nonempty continuum subsets of X Kato introduced the notion of continuum-wise expansive
homeomorphisms and studied several properties [34].

Definition 3.2.2 (cf. [34]). A homeomorphism f : X Ñ X of a metric space is cw-
expansive if there exists δ ą 0 such that if a non-empty continuum C Ď X satisfies
diampfnpCqq ă δ for every n P Z, then C is a singleton.

Clearly, expansive implies N -expansive and N -expansivity implies countably-
expansivity. The following proposition completes this hierarchy.

Proposition 3.2.3. Any countably-expansive homeomorphism is cw-expansive.

Proof. Let δ ą 0 be the countably-expansivity constant of f . If a continuum C satisfies
diampfnpCqq ă δ for every n P Z, then C Ă Γδpxq for any x P C. Thus, C must to be
countable, and this implies that C is a singleton.

Previous proposition allows us to classify the levels of expansiveness accordingly
the following hierarchy.

Expansivity ñ N ´ Expansivity ñ Countably ´ Expansivity ñ cw ´ Expansivity.

In contrast, the converse is not true in general(see for instance [42] and [34] for
examples).

On the other hand. In [4] the authors incorporated distal systems into the Con-
tinuum Theory in the same way that Kato. They noted that the definition 3.2.2 holds
if we replace diam pfnpCqq by supnPZ diam pfnpCqq. Also they noticed that to be distal
homeomorphism is then equivalent to say that if C P 2X

inf
nPZ

diam fn
pCq “ 0 ñ diampCq “ 0. (3.2)

If we incorporate supnPZ in 3.1, the only difference between 3.1 and 3.2 is that the
supremum in the former was replaced by infimum in the latter.
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By restricting C to the class of nonempty continuum subsets of X the authors [4]
introduced the notion of continuum-wise distal homeomorphisms.

Definition 3.2.4 (cf. [4, Definition 1.1]). A homeomorphism of a compact metric space
f : X Ñ X is cw-distal if every subcontinuum C Ă X satisfying infnPZ diampfnpCqq “ 0
is degenerated, i.e. reduces to a singleton.

It is easy to see that for distality we have the following hierarchy.

Distality ñ N ´ Distality ñ Countably ´ Distality ñ cw ´ Distality.

For the examples 2.1.3.2.1 and 2.1.4 the converse of the first two implications is
false in general. Also, the converse of the last implication do not always hold,

Example 3.2.5 (cf. [4, Example 1.7]). There are cw-distal homeomorphisms which are
not countably distal.

Proof. Consider X “ r0, 1s ˆ C where C is the ternary Cantor set of r0, 1s. By [31] there
is a homeomorphism g : C Ñ C such that

gp0q “ 0, gp1q “ 1 and tgn
pyq : n P Zu

is dense in C for every y P Czt0, 1u. Define

f : X ÝÑ X

px, yq ÞÑ px, gpyqq
.

Clearly, P px, yq Ď x ˆ C and so P px, yq is totally disconnected for every px, yq P X.
It follows from [4, Theorem 1.3] that f is cw-distal.

On the other hand, since gp0q “ 0 and tgnpyq : n P Zu is dense in C for every
y P Czt0, 1u, we get that P px, 0q “ x ˆ pCzt0, 1uq is uncountable for every x P r0, 1s.
Therefore, f is not countably distal.

Next results gives us a distinction between all these levels of distality and expan-
siveness.

Theorem 3.2.6 (cf. [4, Theorem 1.2]). A cw-expansive homeomorphism of a compact
metric space of positive topological dimension cannot be cw-distal.

Despite above result, we cannot distinguish between cw-expansivity and cw-distality
in zero dimension. Indeed, by definition any system in a totally disconnected space is
cw-distal and cw expansive. But as we see in the following example, as an application of
the Theorem 3.1.5, we cannot say the same for N -distal and N -expansive.
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Example 3.2.7. There is cw-distal expansive homeomorphism which is not N-distal for
every positive integer N .

Proof. Let Σ2 “ t0, 1uZ with the metric dps, s1q “ 1
2n where n “ mint|n| : sn ‰ s1

nu and
dps, s1q “ 0 if si “ s1

i @i P Z. The shift map σ : Σ2 Ñ Σ2 is defined by σppsiqq “ psi`1q.
It is well known that the shift is a transitive and expansive system. Since Σ2 is totally
disconnected it it also cw-distal. On the other hand, σ has infinitely many periodic orbits
and therefore it cannot be N -distal by Theorem 3.1.5.





59

Chapter 4
Topological Entropy

In [48] W. Parry proved that distal homeomorphisms on a compact metric space
have zero entropy. The purpose of this chapter is to extend this result to N -distal
homeomorphisms. In section 4.1 some previous results are stated. In section 4.2 we prove
the main theorem of this chapter.

4.1 Previous Lemmas
Before stating the main result to be proved in this chapter. In this section we give

some necessary previous results and facts.

Lemma 4.1.1. Let f : X Ñ X be a minimal N-distal homeomorphism on a compact
metric space X and µ a non-atomic f -invariant measure. There is a partition ξ such that

8
ł

j“0
f´j

pξq “ ϵN ,

where ϵN is the partition of X in sets with N or less elements. Furthermore, Hµpξq ă 8.

Proof. By Sierpiński’s Theorem A.0.8 we can fix 0 ă r ă 1
e

and chose a sequence of open
sets

X “ S0 Ě S1 Ě ¨ ¨ ¨ Ě Sn Ě ¨ ¨ ¨

Such that

µpSnq ď rn for all n P N and
8
č

n“0
Sn “ tzu for some z P X.

Define ξ “ tE0, E1, . . .u, where

E0 “ tzu Y pS0zS1q and En “ SnzSn`1 for all n P N`. (4.1)
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Clearly ξ is a partition of X. Now we claim that
8

ł

j“0
f´j

pξq “ ϵN ,

where ϵN is the partition of X in sets with N or less elements. Indeed, take B P
8
Ž

j“0
f´jpξq

and x P B. If y P B, then fnpxq, fnpyq P Ein for the same sequence. In fact, since

8
ł

j“0
f´j

pξq “ tEi0 X f´1
pEi1q X ¨ ¨ ¨ X f´n`1

pEin´1q X ¨ ¨ ¨ : Eij
P ξu,

it follows that x, y P B Ď f´npEinq for some sequence pi0, i1, . . . q.

By the minimality of f , for each m P N there is kpmq such that fkpmqpxq P Sm.
Then fkpmq P Eikpmq

Ď Sm for all ikpmq ě m, by (4.1). We have diampSnq Ñ 0 when n Ñ 8

because Sn Ñ tzu when n Ñ 8, therefore

inf
n

td pfn
pxq, fn

pyqqu “ 0.

Hence y P P pxq and then #pBq ď #pP pxqq ď N , by N -distality of f . The claim is proved.

Moreover, since the function ´x logpxq is increasing on p0, 1
e
q. It follows that

Hµpξq ď ´
ÿ

n

µ pSnq log pµ pSnqq ď ´
ÿ

n

e´n log
`

e´n
˘

“
ÿ

n

ne´n
“

e

pe ´ 1q
2 ă 8. (4.2)

Remark 4.1.2. For non atomic measures ϵN “ ϵ mod µ (see Definition A.0.9), where ϵ

and ϵN are the partition of X into singletons and a partition of X into sets with N or less
elements, respectively. Then, the Lemma above can be rewrite saying that for f satisfying
the conditions stated above there is a generator ξ (see Definition 1.3.3).

Finally consider a measure-preserving dynamical system pX, B, µ, fq. If µ is atomic
and ergodic then there is x P X such that µpxq ą 0 since Opxq is invariant and µpOpxqq ě

µpxq ą 0, then µpOpxqq “ 1. Therefore we have proved:

Lemma 4.1.3. Let pX, B, µ, fq be a measure-preserving dynamical system. If µ is atomic
and ergodic then µ is concentrated on a single f orbit.

4.2 Topological Entropy of N -distal homeomorphisms
Now we are in position to prove the main result of this chapter in which AP pfq

and Ωpfq denotes the set of almost periodic points and the set of non-wandering points of
f , respectively.
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Theorem 4.2.1. Let f : X Ñ X be a N-distal homeomorphism on a compact metric
space X. If Ωpfq Ď AP pfq, then f has zero entropy.

Proof. We first prove the Theorem for minimal systems and later we will show how to
remove this hypothesis.

By Remark 1.3.7 it is sufficient to prove that the metric entropy of f is zero for all
ergodic f -invariant measure. Let µ be an ergodic f -invariant measure. By Lemma 4.1.3, if
µ is atomic then it must be supported on a periodic orbit or a fixed point and therefore
its entropy is null, thus we will assume µ is non-atomic.

By Lemma 4.1.1 there is a partition ξ such that
8
Ž

j“0
f´jpξq “ ϵN , where ϵN is the

partition of X in sets with N or less elements and Hµpξq ă 8.

Moreover, as previously remarked 4.1.2, since µ is non-atomic, ϵN “ ϵ mod µ.
Thus, ξ is a generating partition (see Definition 1.3.3).

Then, ξ satisfies the hypotheses of Kolmogorov-Sinai Theorem 1.3.8. We can use it
and take r as in Lemma 4.1.1 to obtain

hµpfq “ hµpf, ξq ď Hµpξq

“ ´

8
ÿ

n“0
µpEnq logpµpEnqq

“ ´µpE0q logpµpE0qq ´

8
ÿ

n“1
µpEnq logpµpEnqq

ď ´ logpµpE0qq ´

8
ÿ

n“1
rn logprn

q

“ ´ logpµpE0qq ´

8
ÿ

n“1
nrn logprq

“ ´ logpµpE0qq ´
r

p1 ´ rq
2 logprq

ď log
ˆ

1 ´ r

1 ´ 2r

˙

´
1

p1 ´ rq
2 r logprq.

As the last expression converges to zero when r goes to zero, we have hpfq “ 0.

We now deal with the general case. If f is not minimal. Let ν be an f -invariant
measure. It is well-known that hνpfq “ hνpf |Ωpfqq (cf. [58, Theorem 6.15]). Since Ωpfq Ď

AP pfq, it follows from [7, Corollary 1.10] that Ωpfq “
Ť

Mλ, where in the previous
(necessarily disjoint) union each Mλ is a minimal subset. Moreover, η “ tMλu is a
measurable partition of ΩpF q by minimality of each Mλ and second countable property of
X. Then there exists a family of measures tνλu decomposing ν. According to the above
case, we have hνλ

pf |Mλ
q “ 0. Therefore,
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hνpf |Ωpfqq “

ż

Ωpfqη

hνλ
pf |Mλ

qdνη “ 0,

where Ωpfqη denotes the factor space of X with respect to η, and νη is the factor
measure on Ωpfqη. This completes the proof.
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APPENDIX A
Measure Theory Elements

In this chapter some definitions and results of the measure theory that will be used
throughout the work are presented.

Definition A.0.1 (cf. [11, Vol I pp.4-5]). Let X be a set and B Ď PpXq, then

1. B is an algebra if X P B and AzB P B whenever A, B P B.

2. An algebra is called σ-algebra if is closed under countable unions, i.e.
8
ď

n“1
Bn P B

for any sequence of sets tBnu in B.

3. A measurable space is a pair pX, Bq consisting of a set X and a σ-algebra B of subsets
of X. The elements of B are called measurable sets.

Proposition A.0.2 (cf. [11, Proposition 1.2.6]). Let X be a set. For any family F of
subsets of X there is a unique σ-algebra generated by F . Defined by

σpFq “

8
č

FĂA
Bn P B,

the intersection of all σ-algebras of subsets of the space X containing F .

Definition A.0.3 (cf. [11, Vol II p. 10]). The Borel σ-algebra on a topological space a X

be a topological is the σ-algebra generated by all open sets. The elements of the Borel
σ-algebra are called the Borel sets of X.

It is clear that the Borel σ-algebra is generated by all closed sets, too.
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Definition A.0.4 (cf. [11, Vol I pp. 9-10]).

1. A real-valued set function µ on a class of sets A is called countably additive if

µ

˜

8
ď

n“1
An

¸

“

8
ÿ

n“1
µ pAnq

for all pairwise disjoint sets An in A such that
Ť8

n“1 An P A. A countably additive
set function defined on an algebra is called a measure.

2. A countably additive measure µ on a σ-algebra of subsets of a space X is called a
probability measure if µ ě 0 and µpXq “ 1.

Definition A.0.5 (cf. [11, Definition 1.3.5]). A triple pX, B, µq is called a measure space
if µ is a nonnegative measure on a σ-algebra B of subsets of the set X. If µ is a probability
measure, then pX, B, µq is called a probability space.

Definition A.0.6 (cf. [11, Definition 1.12.7]). A measurable set A is called an atom of
the measure µ if µpAq ą 0 and every measurable subset of A has measure either 0 or µpAq.
A measure µ is called non-atomic if it has not atoms.

Clearly, a measure µ is non-atomic if for every measurable set with µpAq ą 0 there
is E a measurable subset of A such that µpAq ą µpEq ą 0.

Remark A.0.7 (cf. [11, Vol II p. 136]). A non-atomic measure has no points of positive
mass, and conversely for regular Borel probability measures on compact Hausdorff spaces
(cf. [11, Vol II, p. 136]). Further a non-atomic measure has no finite sets of positive measure.

Sierpiński’s Theorem A.0.8 (cf. [11, Corollary 1.12.10]). Let µ be a non-atomic measure.
Then, µ is surjective onto r0, 1s.

Definition A.0.9 (cf. [57, p. 435]). Given subsets ξ1 and ξ2 of the σ-algebra B. We write
ξ1 Ď ξ2 mod µ, if for every E1 P ξ1 there exists E2 P ξ2 such that µpE1 △ E2q “ 0. (A △ B

denotes the symmetric difference of the sets A, B.) Thereby, we write ξ1 “ ξ2 mod µ, if
both inclusions hold mod µ.

Remark A.0.10 (cf. [11, Vol I, p. 53]). The expression µpA △ Bq used in the above
definition, is also defined as

dpA, Bq “ µpA △ Bq,

where µ is a bounded nonnegative additive set function on an algebra A and A, B P A.
The function d is called the Fréchet–Nikodym metric.

Definition A.0.11 (cf. [11, Definition 2.1.3]). Let pX1, A1q and pX2, A2q be two spaces
with σ-algebras. A transformation f : X1 Ñ X2 is called measurable with respect to the
pair pA1, A2q (or pA1, A2q-measurable) if

f´1
pBq P A1 for all B P A2.



73

In the case where pX1, A1q “ pX2, A2q, f is called measurable.
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