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Abstract

O estudo dos fendomenos ondulatérios que surgem em meios dispersivos é de amplo
interesse cientifico e pertence a uma moderna linha de pesquisa que é importante, tanto
cientificamente, quanto para potenciais aplicagoes. O progresso no desenvolvimento de
modelos matematicos tornou possivel compreender tais fendmenos em campos bastante
distintos e resolver problemas que vem a tona nas discussoes. Neste trabalho, o objetivo
¢ avancar no estudo de problemas de valor inicial e de contorno explorando a dinamica
de modelos dispersivos usando analise matematica do ponto de vista da controlabilidade
e continuacao unica. Consideragoes serao dadas para um sistema de Boussinesq, para a
equacao de Kawahara e para uma equacao Korteweg-de Vries - Benjamin-Bona-Mahony
(equagao KAV-BBM) de ordem superior, definida em um dominio periédico. Primeiro
provamos que o sistema de Boussinesq ¢ exatamente controlavel com controles atuando nas
condigoes de fronteira. Em seguida, a propriedade de controlabilidade nula da equacao de
Kawahara é obtida por meio de um controle interno. Finalmente, provamos um resultado

de continuacao tnica para uma equacao KdV-BBM de ordem superior.

Palavras-chave: Sistema de Boussinesq, controlabilidade, expansao de Fourier, anélise
nao harmonica, Korteweg-de Vries, problema de momentos, propriedade de continuacao

Unica.






Abstract

The study of wave phenomena arising in dispersive media is of broad scientific interest
and pertains to a modern line of research which is important both scientifically and for
potential applications. Progress in the development of mathematical models has made it
possible to understand such phenomena in quite distinct fields and to solve problems that
come to the fore. In this work, the goal is to advance the study of the initial-boundary
value problems exploring the dynamics of dispersive models by using mathematical analysis
from both controllability and unique continuation point of view. Considerations will be
given for a Boussinesq system, the Kawahara equation and a higher order Korteweg-de
Vries-Benjamin-Bona-Mahony equation (KdV-BBM equation), posed on a periodic domain.
We first prove that the Boussinesq system is exactly controllable with controls acting on
the boundary conditions. Next, the null-controllability property of the Kawahara equation
is derived by means of an internal control. Finally, we prove a unique continuation result
for a higher order KdV-BBM equation.

Keywords: Boussinesq system, controllability, Fourier expansion, nonharmonic analysis,

Korteweg-de Vries, moment problem, unique continuation property.
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13

1 Introduction

This thesis is composed of three chapters devoted to the study of the controllability
and unique continuation properties for a class of dispersive models, posed on a periodic
domain. More precisely, the second chapter deals with the exact boundary controllability
of a higher order Boussinesq system [8, 9], in the third chapter we study the internal
null-controllability for the Kawahara equation and, finally, the fourth chapter is devoted
to study of the unique continuation property for a higher order KdV-BBM equation

(Kortewg-de Vries - Benjaming- Bona-Mahony equation).

1.1 Boundary controllability of a Boussinesq system

Water wave propagation phenomena is a classic research topic that has attracted
researchers from many different areas with various objectives. Due to the complexity of
the governing equations for water waves, physicists and mathematicians are led to derive
simpler sets of equations which are likely to describe the dynamics of the water waves in
some specific physical regimes. Because of their simplicity, Boussinesq systems have been
used in the study of a variety of water wave phenomena in ports, channels, coastal areas,
and in the open sea. They have also been used in studies of tsunami wave generation and
propagation. In this context, Bona, Chen, and Saut [8, 9] derived a family of Boussinesq
systems to describe the two-way propagation of small amplitude gravity waves on the
surface of water in a canal. The systems were obtained from the classical Euler equations
and have the following form:

N+ Wa + QWaae — Oos + Q1 Waseae + 01 Ntwaws
= —(Mw)z + b(NW) sz — A(NMWzz)e 1)

Wy + Ny + Cllzza — dwtmx + CNezzzx + dlwtmmmx

In (1.1), n is the elevation of the fluid surface from the equilibrium position, w = wy is
the horizontal velocity in the flow at height 6h, where h is depth of the undisturbed liquid.

The parameters a, b, c,d, a,,cq, b1, d; are required to fulfill the relations
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a:a—l—b—%, b=c+d—1 p=c+d,

where 0 € [0, 1], specifies which horizontal velocity the variable w represents. Contrary
to some classical wave models which assume that the waves travel only in one direction,
system (1.1) is free of the presumption of unidirectionality and may have a wider range of

applicability.

In mathematical studies, consideration has been given principally to pure initial-
value problems where the wave profile is imagined to be determined everywhere at a given
instant of time and the corresponding solution models the further wave motion. However,
the practical use of the Boussinesq systems and their relatives does not always involve
the pure initial-value problem. At this respect, a natural example arises when modeling
the effect in a channel of a wave maker mounted at one end, or in modeling near-shore
zone motions generated by waves propagating from deep water. The mathematical theory
pertaining to the study of such boundary value problem is considerably less advanced,

specially in what concerns the study of the controllability properties.

In this spirit, the present work is devoted to the study of initial-boundary-value
problems associated to linearized Boussinesq system (1.1). We first consider the case in
which the parameters given in (1.2) are such that b = by = d = d; = 0. The resulting
system couples two Korteweg-de Vries type equations and it is called purely KdV-type

Boussinesq system. Our attention, in particular, is given to the following system

Ut 4 Uy + Qg + Q1Vggzze = 0, in (0,7) x (0,27)

Ut + Uy + CUgpy + ClUgpeer = 0, in (0,7) x (0,27), 1-3)
with boundary conditions
dlu(t,2m) — du(t,0) = f;(t), in (0,7) (1.4)
do(t,2r) — do(t,0) = g;(t), in (0,7),
for 5 = 0,1, 2,3,4, and initial conditions
u(0,2) = u’(z), ©v(0,2) =), in (0,27). (1.5)

In (1.4), the external forcing terms f; and g;, with j = 0, 1,2, 3,4, are considered as control
inputs. The purpose is to see whether one can force the solutions of the system to have
certain desired properties by choosing appropriate control inputs acting at one end of the
channel. More precisely, we are mainly concerned with the following problem which are

fundamental in control theory:
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Given T > 0, initial states (u®,v°) and terminal states (u',v') in a certain space,

can one find appropriate control inputs f; and g;, with j = 0,1,2,3,4, so that the sys-
tem (1.3)-(1.5) admits a solution (u,v) which satisfies (u(0,z),v(0,z)) = (u°,2°) and
(u(T, 2), o(T, 2)) = (u, v1)?

If one can always find a control input to guide the system described by (1.3) from

any given initial state to any given terminal state, then the system is said to be exactly

controllable.

Our analysis does not depend on formulas (1.2) nor on other particular relations
between the coefficients, but some sign conditions have to be imposed. More precisely, we

first shall be mainly concerned with the case
a,c1 >0 and a <0,¢<0. (1.6)
As it will become clear during the proofs, assumptions (1.6) provide the tools needed to

deal with the controllability, as well as, the well-posedness of the system.

The problem we address here was first addressed for the scalar KdV equation
Yt + Yuze = 0, in (0,7) x (0, 2m), (1.7)
with the boundary conditions
dly(t,2m) — dly(t,0) = hy(t), in (0,7), and j =0,1,2, (1.8)

and initial condition
y(0,z) = yo(x), in (0,2m). (1.9)

By using the classical duality approach (see, for instance, [27]), the exact controllability
of (1.7)-(1.9) was established by Rosier in [38]. More precisely, the following result was

proved:

Theorem 1.1.1 (see, [38]). Let H2(0,2n) = {w € H*(0,27) : w(0) = w(27r) = w'(0) =
w'(2m)} and T > 0. Then, for any yo,yr € (H2(0,2m))’, the dual space of H}(0,2m),
there exist ho, h1,hy € L*(0,T), such that the solution y € C([0,T]; (H3(0,2m))") of the
initial-boundary-value KdV equation (1.7)-(1.7) satisfies y(T,x) = yr(x).

Notice that explicit controls may be given, but since the state y is only known to
belong to C([0, T]; (H2(0,27))"), the controllability results for nonlinear KAV equation was

not studied.
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Inspired by the work [38], we have proved that the higher-order linearized Boussinesq
system (1.3)-(1.5) is exactly controllable as well. Following the classical duality approach,
the exact controllability property is equivalent to an observability inequality for the adjoint
system. Then, by means of a detailed spectral analysis developed in [3], the Fourier
expansion of the solution and some results due to Komornik [25], condition (1.6) on
the parameters of the system ensures that the observability property mentioned above
holds. In what concerns the nonlinear model, the controllability properties are usually
studied linearizing the problem at an equilibrium state, proving exact controllability
results for this linear problem and applying next a fixed point argument (or the implicit
function theorem). However, due to the structure of the nonlinear terms and the lack
of a priori bound, including when higher order Sobolev norms are considered (e. g. H*-
norm), we only succeeded in deriving exact controllability results for the linear system.
Indeed, the space of the controlled data for the associated linear system is a Hilbert space
V ~ [H)(0,27) x H}(0,27)]', therefore it seems quite difficult to derive a controllability

results for the nonlinear system.

As we remarked above, a similar approach was used in [38]. However, due to the
complexity of the system, which couples two fifth-order KdV terms, the control problem
presents new difficulties we have to deal with. Moreover, the techniques applicable to this
more complicated situation can also be applied to other Boussinesq systems to derive

positive controllability results:

e The linear KAV-BBM system (b; = d; = 0)

U + Uy — Dlygy + AUy + 1 Vsz20e = 0, in (0,7) x (0, 27)

Vg + Uy — dutxx + ClUgry + ClUzzoze = 07 in (07 T) X (07 27T)7

with the following boundary conditions

Mu(t,2m) — du(t,0) = 0, in (0,7)
du(t,2m) — du(t,0) = 0, in (0,7)
D2u(t,2m) — O*u(t,0) = fo(t), in (0,7
0?v(t,21) — D%v(t,0) = ¢go(t), in (0,7)
Odu(t,2m) — Otu(t,0) = f4(t), in (0,7)
Odv(t,2m) — Otv(t,0) = g4(t), in (0,7T),

for j = 0,1, 3.
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e The full system (1.1) with the boundary conditions

Hu(t,2m) — du(t,0) =0 in (0,7)
Hu(t,2m) — dv(t,0) =0 in (0,7
Odu(t,2m) — Otu(t,0) = fu(t) in (0,7)
Odv(t,2m) — Otv(t,0) = g4(t) in (0,7),

for j = 0,1,2,3.

Observe that the presence of the BBM terms allow to control the system with less
controls then boundary conditions. In addition, the presence of the higher-order terms in
(1.3) (by = dy # 0) provides a regularizing effect which allows to address the boundary
controllability problem for the full system (1.1). By contrast, when two higher-order BBM
type equations are coupled and both fifth order KAV term are not present (b; = d; # 0 and
a; = ¢; = 0), the controllability property fails (see [5, 35]). This lack of exact controllability
of the BBM-BBM system comes from the existence of a limit point in the spectrum of the
operator associated with the state equations, a phenomenon already noticed in [29] for

the single linear BBM equation.

It is also important to mention that the study of controllability and stabilization
properties for Boussinesq systems was initiated in [30] by considering the following reduced

form of the model (1.1), posed on a periodic domain:

N+ Wy + AWapy — Wiz = —(qw),, t >0, x € (0,2m)

(1.10)
Wy + Nz + Clgga — AWipe = —WWy, t>0, z¢€ (O, 27’(’)
The parameters a, b, c and d are required to fulfill the relations
1 1 1 1
b= ~(0*>— = d= (6 —-2)> 1.11

with 6 € [0, 1]. The work [30] deals with the internal controllability and stabilization of
(1.10) on the torus. First, the space of the controllable data for the associated linear system
is established for each possible value of the four parameters given in (1.11). Then, when
b,d > 0 and a, ¢ < 0 the local exact controllability of the nonlinear system is shown to hold.
As an application of the established exact controllability results, some simple feedback
controls are constructed for particular choices of the parameters a, b, c and d, such that
the resulting closed-loop systems are exponentially stable. In [11], the exact boundary
controllability of the linear Boussinesq system [11] of KdV-KdV type was studied. It was
discovered that whether the associated linear system is exactly controllable or not depends

on the length of the spatial domain. The extension of the exact controllability for the
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Boussinesq system (1.10), when b = d = 0, is derived in the energy space by considering
a control of Neumann type. It is obtained by incorporating a boundary feedback in the
control in order to ensure the so-called Kato smoothing effect. In addition, proceeding
as in [36], a local exponential stability result was also derived. As we mention above, the
controllability problem was also addressed when (1.1) and (1.10) couples two BBB type
equations. In [5, 35], the authors show that the model is approximately controllable but
not spectrally controllable. This means that any state can be steered arbitrarily close to
another state, but no finite linear combination of eigenfunctions, other than zero, can be

steered to zero.

As far as we know, exact the controllability problem for the full system has been
only addressed in when the model is posed on a periodic domain. General conditions are
given to ensure both the well-posedness and the local exact controllability of the nonlinear
problem by means of a control localized in the interior of the domain and acting on one

equation only.

The chapter is organized as follows: In Section 1 we present some preliminary
results used in our proofs, Section 2 are devoted to prove our main results and, finally,
In Section 3 we describe some possible extensions of our results and also indicate open

problems on the subject.

1.2 Null-controllability for the Kawahara equation

The study of wave phenomena arising in dispersive media is of broad scientific
interest and pertains to a modern line of research which is important both scientifically and
for potential applications. Progress in the development of mathematical models has made
it possible to understand such phenomena in quite distinct fields and to solve problems
that come to the fore. Within this context, the Korteweg-de Vries equation (KdV) has
been derived as a model for the unidirectional propagation of nonlinear, dispersive waves
in an impressive array of physical situations. In most cases when it is derived from more

complex systems, the KdV equation appears in the form
U + Uy + EUUL + OUgzy = 0,

where the small positive parameters ¢ and § are related to a small-amplitude and a
long-wavelength assumption, respectively. The unknown w is a real valued functions of the

variables x and t and subscripts indicate partial differentiation.

Another relevant dispersive wave model is the Kawahara equation [23], also referred
as fifth-order KdV equation. The Kawahara equation occurs in the theory of magneto-
acoustic waves in a plasma and in the theory of shallow water waves with surface tension.

In order to balance the nonlinear effect, Kawahara took into account the higher order effect
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of dispersion and established the following equation to describe solitary-wave propagation
in media:

The parameters v, o, 5, p € R with § # 0, and « and [ represent the effect of dispersion.

There is a vast literature devoted to the study of water waves ranging from coastal
engineering preoccupations to a very theoretical mathematical analysis of the equations.
For instance, a large body of literature has been concerned with the questions of existence,
uniqueness and continuous dependence of solutions corresponding to initial data. However,
there are many issues still open that deserves further attention. In this work, the goal
is to advance the study of the initial-boundary value problems exploring the dynamics
of dispersive equations by using mathematical analysis from the controllability point
of view. Due to the rapid development of new mathematical tools, since the late 1980s
control theory of nonlinear dispersive wave equations have attracted a lot of attention.
Particularly, control properties of the KdV equation has been intensively studied and
significant progresses have been made. In contrast, there are relative few works on the

Kawahara equation for its control theory.

Without loss of generality, we assume that the parameters given in (1.12) are such
that v = a =1 and § = —1. Thus, our attention is given to the following control system

described by the linearized Kawahara equation posed on a periodic domain:

Uy — Usg + Use + up = f(x)v(t), in (0,7) x (0,2m),
M u(t,0) = du(t,2m), in (0,7), (1.13)
u(0,z) = up(x), in (0,2m),

for j =0,1,2,3,4. The goal is to drive the initial data uy to rest by using a control v(t),
depending only on time and acting on the system through a given function in space f(x).

This type of control is often used and sometimes called lumped or bilinear.

To be more precise, considerations will be given to the following null-controllability

problem:
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Given T > 0, an initial state ug and a profile f in a certain Hilbert space, find an
appropriate control v € L*(0,T), so that system (1.13) admits a solution u which satisfies
u(T,z) = 0.

If one can always find a control input to quide the system described by (1.13) from

any given initial state to zero, then the system is said to be null-controllable.

In order to make more precise the tools we employ to study this question, we
introduce some notations: Given any v € L?*(0,27) and k € Z, we denote by v}, the

k—Fourier coefficient of v,

= 1 2n —ikx
Uk / v(x)e dz.
0

T o

Then, for any s € R, we define the Hilbert space

H3(0,2m) = {v =Y o™ e L*(0,2)

kEZ

S luP(1+ £ < oo} (1.14)

kEZ

endowed with the inner product

(v,w)s = > Tpwg(1 + k?)°. (1.15)
keZ
We denote by || - ||s the norm corresponding to the inner product given by (2.2). Then, we

consider the following operator associated to the space variable:

(D(A), A), where D(A) = H)(0,2r) and
(1.16)
A:D(A) C L2(0,2m) — L2(0,2m), such that Au = dJu — dpu — O,u.

Controllability properties of linear systems have been studied for a long time with
the aid of Fourier techniques. In what concerns system (1.13), we employ Fourier series
expansion to reduce the null control problem to a equivalent moment problem, whose
solution is given in terms of an explicit biorthogonal sequence to a family of exponential
() ez in L2(0,T). Here, ), are the eigenvalues of the differential operator A defined
in (1.16). We recall that a family of functions (¢,,)mez C L*(0,T) with the property that

T _
/ gbm(t)e’\’"tdt =mn, Vm,n€Z,
0

where 4,,, is the Kronecker symbol, is a biorthogonal sequence to (e*!),,cz. In order
to obtain this sequence, we introduce a family ¥,,(2) of entire functions of exponential
type (see, for instance, [42]), such that U,,(i\,) = d,n. Then, by applying Paley—Wiener
Theorem we obtain ¢,, as the inverse Fourier transform of ¥,,. Each ¥,, is obtained from

a Weierstrass product P, multiplied by an appropriate function M,, with rapid decay on
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the real axis. Such a method was used for the first time by Paley and Wiener [34] and, in
the context of control problems, by Fattorini and Russell [17, 18].

Once such family (¢,,)mez is given, the control v(t) for (1.13) is obtained by consid-
ering a linear combinations of functions ¢,,. Indeed, if we consider ug(z) = ¥,,c7 U0, ™"
and f(z) = Xnez fm€™®, frm # 0, the Fourier expansions of ug and f, respectively, the

function

A

oty = Y Smemg, (T —1),  te(0,T), (1.17)

is a control for (1.13) in time 7', if the series converges in L?(0, T'). The convergence depends
on some uniform boundedness, with respect to m, of the the family (¢, )mez in L2(0,T),
which are obtained by applying Plancherel Theorem. In additon, some assumptions on f

and wug are necessary. More precisely, let f € L?(0,27) be, such that

f@) =Y fre™, with f, #0, Vk € Z. (1.18)

keZ

Assuming (1.18), for a given constant 8 > 0 define the space

~

e
e oo} . (1.19)
k

H = {h € LZQ)(O,QF) Py

kEZ

If ug € H and f satisfies (1.18), the convergence of (1.17) holds in L2(0,27) and v(t)
is a control for (1.13). We remark that the choice of the space H defined in (1.19) is
related to the form of the eigenvalues of the operator A defined in (1.16) and the growth
of ¢, in L*(0,T). Indeed, the eigenvalues of the state operator corresponding to (1.13)
are given by \,, = —im(m* +m? — 1) and ||¢,|| 1207 increases exponentially with m, i.
e, ||mllr20m) < ce’™’" where ¢ and v are positive constants. The choice of the initial
data in H compensates the growth of ¢, and ensure the converge of (1.17) in L?(0,T).
When considering models in which the corresponding state operator has eigenvalues with

negative real part, we can take 5 =0 in (1.19).

The technique we describe above was used in the study of several control problems,
being the pioneering articles of Fattorini and Russell [17, 18] one of the most relevant
examples in the context of scalar parabolic equations. This method is very efficient in the
one-dimensional space setting and has also been successfully applied in [10, 20, 31]. In
particular, our analysis was inspired by the results obtained in [10, 28, 31| of the which

we borrow some ideas.

Concerning the Kawahara equation posed on a periodic domain, the internal
controllability and the stabilization problems were studied in [44, 45]. Particularly, in
[45], the authors use the same approach as that developed in [26] to obtain the global

exact control and global exponential stability for periodic solutions in H?®, for s > 0.
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Bourgain spaces associated to the Kawahara equation, propagation of compactness and
propagation of regularity for the linear Kawahara equation are three key ingredients in
their proofs. More recently, in [19], the authors establish local exact control and local
exponential stability of periodic solutions of fifth order Korteweg-de Vries type equations
in H®, for s > 2. A dissipative term is incorporated into the control which, along with a
propagation of regularity property, yields a smoothing effect permitting the application
of the contraction principle. It is important to emphasize that the results obtained in all
papers mentioned above [19, 44, 45] do not give an answer to the null control problem
addressed here. Moreover, they have been proved employing a different approach with a
control input supported in a given open set w C (0,27). To the best of our knowledge,
the study we develop for the linear Kawahara equation has not been addressed in the

literature yet. Moreover, the available results do not give an immediate answer to it.

This chapter is organized as follows: in Section 2, we present the well-posedness
of the system and give an equivalent characterization of the controllability problem in
terms of the moment problem. Section 3 is devoted to the construction of a biorthogonal
sequence and in Section 4 we prove our main result. Finally, in Section 5, we present some

open problems.

1.3  Unique continuation for a higher order KdV-BBM equation

In this section we investigate the Unique Continuation Property (UCP) of the

following equation

7o, 1

@(ux)x—f(u:)’)x =0, (1.20)

3 2
Uy +Ux - bl Utzz +a1 Ugzz +butxa::caz +auzxxac:c + iuux +’7 (U )x:cac - 8

where (z,t) € T x (0,7). The parameters by, ai,b,a,v € R with b;,b > 0. This higher
order water wave model describing the unidirectional propagation of water waves was
recently introduced by Bona et al. [7] by using the second order approximation in the
two-way model, the so-called abcd-system introduced in [8; 9]. It is also known as the fifth
order KAV-BBM type equation and, when posed on R and T, it has been proved that the

corresponding initial value problems are global well-posed [7, 13].

We say that the UCP holds in some class X of functions if, given any nonempty
open set w C T, the only solution v € X of (1.20) fulfilling

u(z,t) =0 for (z,t) € w x (0,7,

is the trivial one u = 0. Such a property is very important in Control Theory, as it is
equivalent to the approximate controllability for linear PDE, and it is involved in the
classical uniqueness/compactness approach in the proof of the stability for a PDE with a

localized damping. The UCP is usually proved with the aid of some Carleman estimate and,
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in the case of the KdV equations, it was established in [16, 40, 41]. For the BBM equation,
the study of the UCP is only at its early age. However, it is important to note that, for
the BBM equation, the underlying Cauchy problem is a characteristic one. Therefore, one
cannot expect to apply Carleman-type estimates or the classical Holmgren uniqueness
theorem to verify the UCP. This property has been proved in [46, Theorem 1.3] for the
linearized BBM equation with a potential and in [39, Theorem 3.1] for the nonlinear BBM
equation, under additional conditions concerning the initial data. We remark that the
UCP for the nonlinear BBM equation does not follow from the UCP of the linearized
BBM equation with only space dependent potential and, in the general case, it is still an

open problem.

In what concerns model (1.20), the presence of the higher order KdV term at/,,pqs
results in much better properties and allows to establish a unique continuation result. The
equation is first split into a coupled system of an elliptic equation and a transport equation.
Next, we prove some Carleman estimates with the same singular weights for both the
elliptic and the hyperbolic equations, and we derive the UCP for (1.20) by combining
these Carleman estimates with a regularization process. Our analysis was inspired by the
results obtained in [39] from which we borrow some ideas. The authors prove the UCP for
a KdV-BBM equation (by means of Carleman inequality) and apply the result to prove the
exact controllability and the semiglobal exponential stability of the same equation with
a localized damping term. We remark that the same arguments cannot be applied here,
since the regularity of the solution required to apply the UCP is not fulfilled. Nonetheless,

we address the issue in an appendix.
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2 Boundary controllability of a Boussinesq

system

In this chapter we consider a family of Boussinesq systems proposed by J. L.
Bona, M. Chen and J.-C. Saut to describe the two-way propagation of small amplitude
gravity waves on the surface of water in a canal. Our aim is to investigate the boundary
controllability properties of this system posed on the interval (0,27). Then, employing
a classical duality approach, we prove that the linear system is exactly controllable by
means of controls acting on the right endpoint of the interval. Moreover, we show that the
spaces of the controllable data depend on the parameters involved in the system. When
all the parameters are different from zero, the local exact controllability of the nonlinear

system is also established.

2.1 Preliminaries
We first introduce a few notations. Given any ¢ € L?(0,27) and k € Z, we denote
by ggk the k—Fourier coefficient of ¢,

~ 1

O = gy /0% o(z)e ™ dax.

Then, for any s > 0, we define the Hilbert space

H:(0,2m) {¢ 3 pett™ € L*(0,2m)

keZ

3 low2(1 + ) <oo} (2.1)

keZ

with respect to the inner product

=" dpwp(1 + ke (2.2)

keZ
We denote by || - ||s the corresponding norm to the inner product given by (2.2).

For s < 0 we define the space H;(0,27) as the topological dual of H (0, 27):
S —S !
H3(0,2m) = (H,*(0,2)) .

Riesz representation theorem ensures that any ¢ € Hg((), 2m) = L*(0,2m) can be identified
with an element w, € (HS(O, 27?))/ such that

wile) = [ Ti@)o@) dv (=€ HY(0,2m)).
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Traditionally, the same notation is used for ¢ and w, (the spaces (H (0, 27r))l and H) (0, 27)

are identified). Given s < 0, any element w € H;(0,27) can be uniquely expanded as

follows
w="Y wpe™, (2.3)
keZ
where Wy, = iw (e*ik"f) for each k € Z. The slight abuse of notation in (2.3) (the element

w on the left hand side is not a function of = and the exponential function e*** on the
right hand side is actually the representant of this L?—function in the dual space) is
compensated by the fact that expansion (2.3) looks exactly like one corresponding to an
element in a space H® with positive exponent s. On the other hand, the following map is
a duality product between H(0,27) and H,*(0,27), for any s > 0,

(Gw)e = drtii_r (6 € H30,27), w € Hy*(0,27)) . (2.4)

kEZ

Consequently, if s < 0, the space H,(0,27) can be also defined by (2.1) and can be viewed

as a Hilbert space with respect to the inner product (2.2).

Finally, for given d, §; > 0, we introduce the operator L;s, defined in the following

way:
Lss, + H3(0,2m) — Hy70(0, 27),
3 (2.5)
Lss | S hpe™ | =3 u ;
(keZ ez 1t 0k? + o,k
4, if 6 # 0,
where sp = 2, if 6y =0 and 6 #0, Let us remark that L;; represents the inverse of
0, if 6 =0=0.

the elliptic operator I — §9% + 6,01 with periodic boundary conditions in (0, 27).

Let us also introduce the numbers

1 — ak? + a1 k* 1 —ck? + ¢ k*

Troe okt ) = T g 00 = Venlkjea(®)
and the number [ € Z with the property that

wl(k‘)

’w1<k)

~ Clkl', when [|k| — oo,
o~ O K

where C'is a positive constant that does not depend on k. Then, for each s € R and [

defined above, we define the space
s s s+l
Ve = H3(0,2m) x Hy(0,2m), (2.6)

endowed with the inner product given by

<( fi ) 7 ( 9 )> = (f1,91), + (Hfo, Hga)s,
I2 92 )1y
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where the operator H : H;“(O, 2m) — H(0,2m) is defined in the following way

k)

wl( T ikx
w2(k;)¢k€ '

keZ keZ

H (Z (gkez‘kx) _ Z

Let v € Z be the number defined by the relation
o(k) = \Jwi(k)wy(k) ~ C|k|”, when |k] — oo,

where C' is a positive constant not depending on k.

2.1.1 The linearized system: homogeneous boundary conditions
The aim of this section is to study the the following system
Uy + Vy — butxm + blutmzx:p + AUgzx + W Vpgrzr = f(t, ZL’), in (07 T) X (O, 271—)
Ut + Uy — dvtxz + dlvt:m:xz’ + CUger + ClUzzzer = g(ta CL'), in (07 T) X (Oa 27T)

with periodic boundary conditions

oru(t,2m) = du(t,0), in (0,7), 0<r<rg

dfv(t,2m) = 0dv(t,0), in (0,7), 0<qg<qo

T

and initial condition
u(0,2) = u’(z), ©v(0,z) ="x), in (0,27).

The number of boundary conditions depend on the parameters of the system.

Let us first remark that (2.8)-(2.10) can be written as

w\ U f* u ) — ()
()72 C) () ()= (35),

where A is the unbounded linear operator defined by

A — 0 £b7b1 (ax + a'aazwx + alawxx:m:)
N Ed,dl (am + Ca&:xw + Cla:m?x:rx) 0

and

f5 =L, [, g = Laaq,g-

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Then, using Fourier analysis, we obtain a group associated to the linear problem

(2.11).

Theorem 2.1.1. Let D(A) = Vesttrmax{=1v} gnd A be given by (2.12). The operator

(D(A), A) is the infinitesimal generator of a group of isometries (S(t))ier in V*.
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As a consequence, the following well-posedness result holds:
u? I
Theorem 2.1.2. Let T > 0, s € R and v given by (2.7). If o | €V*oand . | €
v g
LY (0,T;V*), then (2.8)-(2.10) admits a unique solution
( ! ) e C' ([0, T); vt ) A C ([0, T); V7).
v

Moreover, the following estimate holds

S/ [N (9 I
Y Jlleqo,rive) g LY(0,T;Vs) v Vs
Furthermore, the following remarks are in order:
Remark 2.1.1. The eigenvalues of the operator A defined by (2.12) are given by
A = iko(k), k € Z, (2.14)

where o was defined in (2.7). Note that not all the eigenvalues in (2.14) are different. If
we count only the distinct eigenvalues, we obtain the sequence (A\g)rer, where 1 C Z has
the property that A\, # Mg, for any ki, ko € 1. For each ky € Z set

I(ky)={k€Z : ko(k)=kio(ky)}

and |I(k1)| = m(ky). We have the following properties of m(ky):

e m(ky) < 10. This is a consequence of the fact that m(ky) is less than the number
of entire roots of the equation xo(x) = o, where g is an arbitrary real number. The

roots of this equation are also roots of a polynomial of degree less or equal to 10.

e Ifthe sequence of eigenvalues tends to infinity, there exists ki € N such that m(k;) = 1
for all |ky| > ki. This is a consequence of the fact that the function xo(x) is strictly

increasing for |x| large enough. Notice that, if v > 0, then

|k]|—o00

and the above mentioned property holds.

e The number of the eigenfunctions corresponding to an eigenvalue A\, # 0 is 2m(ky),

for each ki € 1. These eigenfunctions read then

eikx efikw
, , . , ke l(ky).
( _%’j)ezkx %’j)e—zkx ( 1)

On the other hand, under conditions (1.6) on the parameters of the system, the zero

etgenvalue has multiplicity two, with associated eigenfunctions

() ()
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Then, taking into account the previous remark concerning the multiplicity of the

eigenvalues of the operator A, we can give an equivalent expression for the solution of

problem (2.11) when f = g = 0. Indeed, if the initial data are given by (uo(x)) =

vo()
AN
e, we have that

keZ @Ig
U 1 . 1 ‘ _Jwi(m) '
(t, iC) — 5 Z ezka(k)t Z ol ezmxa?n + wa(m) ezmx@\%
v kel mel(k) A wi(m) 1
1 | wim) \
4 o) efzmma(lm + wa(m) 6fzmxi}\9m
w1 (m) 1
(2.15)

Remark 2.1.2. Theorem 2.1.2 shows that, depending on the choice of the parameters,
system (2.11) has an important regularizing property. For instance, if by # 0 and d; # 0,

then ( / ) € LY (0,T; Vs~ implies (

g
/ € L' (0, T;V*=4), then “ € C([0,T];V*). This reqularizing effect is
g v
crucial in the study of the nonlinear system. Let us also mention that, under the above

*

f . T
. | €LY(0,T; V). Consequently, if | | | €
g v

Vs and

conditions on the parameters by and dy, there exists a constant M > 0, such that the
w0
L0

In order to characterize the controllability properties of our problem we need to

following estimate for the solutions of (2.11) holds

Y/ lleqomve) g

2.1.2 The adjoint system

+
L1(0,T;Vs—4)

(2.16)

Vs

introduce and study the following adjoint system:

Ot + Vo — 0Ptz + b1Ptaver + Woze + C1¥ssaae =0, € (0,T),2 € (0,27)

Yy + O3 — Atpge + d1Vtpger + 0220 + 1 Pz002s = 0, t € (0,T), 2 € (0,2m)

dyp(t,0) = Opep(t, 2m), te(0,T), 0<r<r, (2.17)
O(t,0) = 9%Y(t, 2), te(0,T), 0<q<qo

p(T,2) =" (x), (T )=y (2), z € (0,2n).

Again, we remark that the number of boundary conditions depends on the values of the

parameters of the system.
In order to show the well-posedness of (2.17), let us first define the spaces
/s s s+l
Ve = H;(0,2m) x Hy"(0,27), (2.18)
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where the number [ € Z has the property that

wy (k)
wy (k)

~ Clk|', when k| — oo,

being C' a positive constant not depending on k. Furthermore, let

_1—ck2+clk4 ad~(k)_1—ak:2+a1k4
Tl ok 4 bkt R T T e

o(k) = Jwi(k)ws(k),

where o (k) is defined in (2.7). Moreover, the eigenvalues of the state operator associated

wy (k)

Observe that

to the adjoint system (2.17) coincide with g, the eigenvalues of the operator A given by
(2.14).

Following the notation introduced above, the properties of the solutions of the
adjoint problem can be obtained proceeding as in Theorem 2.1.2. More precisely, we have

the following result:

T
Theorem 2.1.3. Let T > 0, s € R and v given by (2.7). If ( ZT ) € V*, then (2.17)

admits a unique solution
( Z ) e C" ([0, 1); vty A ([0, T7; V)
and the energy of solutions is conserved:

(7)) -(2)

Moreover, if the final data are given by

( Z; ) (x) = % ( gz; ) ¢k (2.20)

the following representation formula holds:

, Ytelo,T], (2.19)
‘75

¥ 1 iko — —imx wo (m —imx
(G kel mel(k) N\ @i(m) 1
1 wi(m) A
+ etme (107_“ + wa(m) ezmzw?_“ )
wa(m) m 1 m

~

T
m
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2.2 Controllability

2.2.1 Higher order KdV-KdV system

This section is devoted to the study of the system

U + Vg + AUpzz + A1Vzzz0e = 0, in (0,7) x (0,27)
Uy + Uy + CUppy + ClUzzzze = 0, in (0,7) x (0,27),

with boundary conditions

du(t,2m) — du(t,0) = f;(t), in (0,7)
dlv(t, 2m) — v(t,0) = g;(t), in (0,7),

for 7 =0,1,2,3,4, and initial conditions
u(0,7) = u’(z), v(0,2) =vx), in (0,27).

The following result will be needed:

(2.22)

(2.23)

(2.24)

Proposition 2.2.1. For any s € R, let V* be the Hilbert space defined by (2.6) and
X(0,T) := (L*(0,T))* x (L*(0,7))?, for T > 0. Then, the following well-posedness results

hold:

0
(i) Suppose that f;(t),q;(t) € CZ[0,T], for j = 0,1,2,3,4, and (uo) € V5. Then,
v

there exists a unique solution (U e CH[0,T; VO NC([0,T]; V?) of (2.22)-(2.24).
v

T

Moreover, for any (ZT) € V5 and S € [0,T], we have

(o) G, (o))
v(S,) ¥(S,) Voxyo 0, VOxV
B < oY [0 + a1, 0) + c1Praral, 0))>

90(t) ) "\, 0) + appu(t,0) + 010100 (t, 0) X(0,5)
+< fl(t) Cq/Ja:(t 0) +Cl¢a:a:x( ) ))>

gl(t) 7 agpz(t O) + al@zzx( 70) X(0,8)
_< fa(t) c(t,0) + 1. (t,0)

92(t) ) " \ag(t,0) 4+ a19..(t,0)

f3(1) 1. (t, 0 1 ap(t,0)
+< 9s(t) 7 a4 (t, 0 >> <(Q4 ) ’ (CHSD(@O)

0

) >X(O,S)

(2.25)
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where (Z) e CH[0,T]; V) N C([0,T];V®) is the solution of the adjoint system
o7
(2.17) with initial data o given by Theorem 2.1.3.

T
(ii) If (ZT> € V4, there exist a unique solution (z) e C([0,T];V*) of (2.17) and

makes sense in (L*(0,T))2.

(iii) Assume that (uo € [VY and f;,g; € L*(0,T), for j = 0,1,2,3,4. Then, there
v

U) e C([0,T];[VY), such that, for any (:ZT> € V4 and any

v T
S € [0,T], we have

exists a unique (

(S, ¢<s,.>) _ (u) (som,»)
( S> ) (¢( >'> >[V4]/><V4 < v? ¢(0>') >[V4]’><V4
< Fo()\ [O(6,0) + nn(t, 0) + 1 pmmn(F, >)>
90(t> ’ (t O) + a§0$x(t O) + algpwx.tz( 0 X(0,5)
fl(t) wa(t 0) + Clwx:px< ) )
a 0(t) \apalt o>+a1%<,o>> - (2:20)
< Fot)\ [cd(t,0) + 1t )
92(t) ] " \ap(t,0) + a1 (t X(0.5)
+< f(t) clwx<t,o)> <(4<t>) (clw<t,o>)>
g3(t) ) " \a1p.(t,0) (1)) \are(0))/ (o6

where (i) € C([0,T); V) is the solution of the adjoint system (2.17) with initial

o7
data o given by (ii).

Proof. (i) Consider 0;,¢; € C*(0,27), with 9§k)(0) =0 = ¢§k)(0) and Qﬁk)(Qw) =
—6; = ¢, (2m), for j,k = 0,1,2,3,4. Denoting by o the solution of the corresponding
homogeneous system given by Theorem 2.1.2, the change of functions

A I A Y ?:oej(x)fj(t)
(w) (U) (m) * (Z?:o ¢j(x)9j<t>)
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yields an equivalent problem: Find (Z) , such that
w

4

2 We + AWy + Wiz = D [05(2) f1(8) + 5 (D)(S}(2) + ad? (2) + arg (2))] := F
3

Wy + 2y + C2ppr + CLZTTTTT = Z[gzﬁ]( )g ( )+ fi(t)(0 ( )+ 093(3)@) + 019](-5)@))] =G
=0

D 2(t,2m) = 922(t,0), dw(t,2n) = dw(t,0)

2(0,2) =0, w(0,z)=0.

(2.27)
Since F,G € L'(0,T;V?), from Theorem 2.1.2 we deduce that (2.27) admits a unique

solution [~ | € C([0,T); V3) N CY([0,T]; V°)). Hence, we have a unique solution u) €
w v

C([0,T); V3) N CY([0,T); V?)) of (2.22)-(2.24). To obtain identity (2.25), we multiply the
first equation of (2.22) by %, the second one by 1, integrate in time and space over
(0,7) x (0,27) and add the resulting identities.

(ii) If t1,t5 € [0, 7], from (2.21) we obtain

1
¥ ¥ 1 iko — iko — 1M A
() o= (7] i - g wrny = e

kel mel(k) w1 (m)
TGN . 1 | wi(m) .
+ wa(m) ezmxwg; + @(m) e~ tmz @Tm + wa(m) e—zmmme
1 w1(m) !

T
Since (zT € V4, we have > (oL + [ 1?)(1 + k*)* < co. Moreover, observe that, as
keZ

wo (K wy (k
k — oo, z,Uf( ) M and UL1< ) a, Then, we obtain a constant C' > 0 satisfying
w1 (k) C1 U}Q(/{?) aq
1 . . 1 _ Jwmm
5 Z (elka(k)(Tftl) . ezka(k)(Tftz)) Z () 'megbﬁ + wa (m) ezmxwg;
k mel(k) |\ A/ ==, | 1
w1 (m)
— 2
1 am\
+ o) me(,OTm‘i‘ wi(m) efzm:ﬁlpzjm (1—|—]{32>4
wi (m)

< C«Z zko (K)(T—t1) _ eika(k)(T t2) )’ ‘AT|2 + ‘¢g|2)(1 + k’2)4.

o) (2]

Hence, by Lebesgue’s theorem, it follows that — 0, as t; — 1o,
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T
which implies that (:) e C([0,T); V4. If <zT> € V* the same argument shows that

Pawan(t, 0) 1 iko (k) (T—t) 1 ~a —yae T
Vreee(t.0) ) 285 S omt | e || VO
zxzx\ls ke mel(k) w: (m) 1
1 an(m) \ ]
+ wa(m) SOzm + w2(m) wzm € (L2(07 T))2
w1 (m) ]
o 1
(2.28)
o7
Remark that, if o € V* the sum above also makes sense in (L?(0,7))?, since
4 ! T -yl o
Z Z m wa(m) Pm + wz(m) 1/}m
kel mel(k) T\ @i(m) 1
1 wi(m) \
+ wa(m) @Tm + w2(m) wr{m < 00.
w1(m) 1

(2.29)

SOT Prrzx (t7 O)
Moreover, the map — is continuous. Indeed, from (2.28) and (2.29)

¢T wcc:w:x (ta 0
I
wazxmc (t7 0) ¢T v

for some constant C' > 0. Thus, due to the considerations above, from now on (

we deduce that

<C

(L2(0,1))?

Praa(t, 0) )

T
denotes the sum (2.28), whenever 7 )ev
¢T

(iii) We proceed in several steps.

0 T

e (2.26) holds when (uo) € Vo, (zT) € VY and fi,g; € C3([0,T)), for 4,5 =
v

0,1,2,3,4.

T

€ V? and invoke (2.28). Since V* C V° C [V*], where

First, suppose that (SDT

each embedding is dense, the result follows from (ii) and the density of V' in V4.

u(S,-)

v(S, )

e Let S € [0,77] be fixed. Then, (2.26) defines (

) in [V4]" in a unique manner.
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Observe that, from the proof of (i) we deduce that the map ' : V* — C, given by
. ((ﬂ)) _ <( (t)) (m 0) + O (£,0) + €1z, 0>)>
T o(t) (t,0) + apua(t, 0) + 0100002 (t,0) ) | o 10 2002
(ﬁ@)(wxmwwwm@m)>
91(1) )\l 0) + 01000 (60)] 1 (120 e 120,12
(fQ(t)) (cw<t,0>+clwm< >)>
92(t) )" \agp(t,0) + a190a(£,0) ) / 120 70025 120002
<<ﬁ@j’(qwaam)> __<<ﬁ<j7(quov> |
93(8) ) Na@=(t:0) )/ o mypeazomye 94(8) ) N (t.0)) /1o meiaaiorye

is linear and continuous, where (Z) is the solution of the adjoint system (2.17) with initial

T
data (iT) . On the other hand, the well-posedness of the adjoint system (see Theorem

2.1.3) allows us to conclude that the map Ts : V4 — V4, given by

)
wT w(Sv ) ’

S. .
is an automorphism of Hilbert space. This implies that, for each S € [0, 7], (UES’ ;) is
v(S, -

uniquely defined in [V4]'. Moreover, for S € [0,T], we obtain the following estimate:

() ()G
U(Sf) U(Sf) ’ ¢(S7>

= sup

(V4] <<,o(S, ))
1/)(5’ )

<1
v4

_ U U 90(07 ) T er
a1 LD,
¥ )| ya
2 07 ) (QOT) )
< sup + T (2.30)
24 <1 ( ( ) V4]/ (w 07 ¢T
<¢T> va
<C((W ( ) (f@
Y0/ Ny (12(0,7))? D) ) | 201y
(ﬁ@) (3w) . (ﬁ@)
g2 (t) (L2(0 T) (t) LQ(O T)) g4 (t) (L2 (O,T))Q ’

where C' is a positive constant which does not depend on S or on wy, vy, f;, g, for j =
0,1,2,3,4.
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. (Z) € O(O0.TLIV)).

u
First, observe that, from (i) we have that (
v

)eamﬂw%caMHmwm

whenever (u()) € V?and f;,9; € C3[(0,T)], for j = 0,1,2,3,4. Since V? is dense in V°
Vo

and C2[(0,T)] is dense in L*(0,T), from (2.30) it follows that (u) e C([0,T]; V). O
v
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Proposition 2.2.1 leads to the following definition:
Definition 2.2.1. For (U()) € [V* and f;,9; € L*(0,T), with j =0,1,2,3,4, a weak
Vo
solution of (2.22)-(2.24) is a function u) € C([0,T]; [V*Y), such that (2.26) holds true
v

for all (ZT) e V* and all S € [0,T].
T

In order to prove the controllability result applying the Hilbert Uniqueness Method,
we have to prove an observability inequality for the solutions of the corresponding adjoint
system. Here, this is done using the so-called Ingham’s inequality. For the sake of complete-
ness and in order to facilitate the reading of the thesis, let us give below a generalization

of Ingham’s inequality (see, for instance, [2, 22] ).
Theorem 2.2.1. Let (juy),., be a sequence of distinct real numbers verifying

l|i£|ninf (fth1 — p) = v > 0. (2.31)
—00

2
For any T > —W, there exist constants C;(T) > 0, i = 1,2, such that
Y

dt <y |agl?, (2.32)
keZ

Clz|ak| </

keZ

Z ake’“’“t

keZ

for any sequence of scalars (ay),c, € 0*.

Then, we have the following result:

Proposition 2.2.2. Let T > 0. Then, there exist positive constants C' and 6, such that,
T
for any (ZT) c V4,

).

2

C
¢ + 01/111 + Cl¢m¢xm

( (L2(0,1))?
+ 2 + 2
n (CLSOQ: al@mxm) (t, O) + H (CLQO al(p%x) (t) O) (233)
e + 1 Vsaa (L2(0,T))2 Y+ 1y (L2(0,T))2
a1pz aip : s
+ + (t, 0) < C T )
c1¥a womy 1NV (L2(0,1))2 ) s

T
where (z is a solution of the adjoint system (2.17) with initial data 7 )
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Proof. We first prove the left inequality assuming that the right one holds. Let us consider
M, k € Z, the eigenvalues of the operator A*, the state operator associate to the adjoint
system. Remark that they coincide with the eigenvalues of A defined by (2.14). Since
b:d:blzdlz(),

lim || =
|k|—o00

Then, according to Remark 2.1.1, there exists N; > 0, such that, for |k| > Ny, the

eigenvalues has multiplicity one. In particular, for |k| > Ny,

1 _Jum)\
Zezk’a(k N(T—t) Z ) zmz(ﬁﬁ + wa(m) ezma:,(/)z;l
2% mel(k A oiim 1
—imz AT Wa(m —ima, T _ ika(k)(T—t) | Pk ikx
T Pl | Vi) Jemimel 1= 37 et )(¢) :
wi(m) 1 k>N I
In addition, if we take T} € (0,7") and ~ > , there exists Ny € N, such that
keZ, |kl >Ny = (k+1)o(k+1)—ko(k) >~. (2.35)
6zkz efikx
Also, taking Remark 2.1.1 into account, we introduce W,, = Span o) ke |0 | o) ik ,
_761 z Le—z T
w1 w1

for k € I(n) and n € I, and consider W = @,,¢; W,, C V*, whose embedding is dense. In

W we define the following semi-norm:
[p (u)] : _ ‘ (u(O) + au”(0) + a;u""(0 )) ‘2 N ‘ (au/(O) + alu”’(O)) ‘2
v v(0) + cv”(0) + 0™ (0) cv'(0) + 10" (0)
au(0) + aqu”(0) a;u'(0) ’ a;u(0) ’ u
[ ) L ) [ e R W R

(0) + ¢10"(0)
T o 0
€ Wﬂ(®|n\<N Wn)Lv that iS, 12; = 0 for |k’ < N

T n
or for |k| large enough. Then, by (2.34), (2.35) and Ingham’s inequality, we obtain C** > 0,

such that

YT
Yr
2 3 A\ AT ’
<ch /T1 ‘ (ar 4+ ain + an® + ayn’® + an )ion ino(m)(T—1) Zdt
o I.5n \(a+an+ cin? + ein® + eynt)yl

_|_

Let N = max{N;, N»} and (Z

2
< (a1 +an + a1n2 + a1n3 +an ) ‘QOn ’2
~ mon \ (c1+emn+ an® 4+ an® + ant)? WﬂQ

V4
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thus

()

V4 ‘n‘ZN

clcijc(c - 01712)1%

T
<ch /
- 0

+ Z |%|(G_aln2)?g 2
v \ %] (c = en®)i)

+ Z c%—cl+ccl+c2 T
In|>N c? Clwn

a1+a _ 2\ AT ai+a AT
_( a1 ((l an )¢n> + ( a1 ainy,

c1+c T
o A niy,

T t
dt < CT1/ p (tha
0 )

2
con (U] y (U ey (on e
~ 0 (1 —cn?+en*)yl (en — en®)Y)

. W%@Z
%cﬂgg

’ S (1 —an® + ain*)pl

sy \ (L —cn? + eyt

D

In[>N

2

dt

eina(n) (T—1)

2 2

i Z (an — alng)(ﬁg
sy \ (en —cin®)dl
|92 |aingy | |2
| e ey,

’>) dt.
)

Since T' > Tj, from the above estimate, [25, Theorem 5.3] and the right inequality in

(2.33), we obtain CT > 0, such that

(2 )
Ur )

CT

V4

2 2
< (‘P Pee T 019 ) (t,0) + H (‘w e ) (t,0)
Y+ e + C1Usr00 (L2(0,T))2 W + 1o (L2(0,T))?
2 2 2
ap + a1Pzz 1Pz a
Pt 1t wrome  I\¥s womyr  I\a¥ (L2(0,1))?

¢T

T
v (SO ) € W. The general case follows from a density argument.

Now, we prove the right inequality in (2.33). Observe that, from the considerations

above it follows that

przmc
¢$$$IE

1
+ oty | Pl T
wi(m)
1 ko (k)(T—t) 7.4
4= iko k
2 |k|>N1
1 +
+ wa(k) | Pk
w1 (k)

mel(k)

1 , 1 _
(t,()): - Z ezko(k)(T—t) Z m4 —= @;{1-1—
2 |]€|<N1 -

w1 (m) R
s | g
w1 (m) 1
wi(m N
wa(m) me
1
1 T —\/ e T
wa (k) Y t w2 (k) ’lvbk’
T\ wik) 1
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Then,
9 2
H( (pxxxm ) (t7 O) S Z k4eik‘7(k)(T7t) ( ()0]{ )
wxxx:c (LQ(O,T))Q |I€|<N1 wk“ L2 0 T))
2 2
Z oA ik (k) (T—t) Pk <C o'
¢ >~ 2 77DT )
|k|>N1 k (L2(0,T))2 v

where C and Cy are positive constants. Analogously, we obtain C3 > 0, such that

2 T 2
() ol ==l
o (L*(0,7))2 V4
Thus,
2 2 2
H(s@ererawxm) (t,0) <3 H(w) (t,0) n (asom) (t,0)
Y+ ur + 12200 (L2072 (0 (L20.1))? Yoy (L2072
2 T 2
n (aﬂ@mm) (,0) < C, ( SOT )
(R — (L2(0,T))? (0 V4

for some constant C;y > 0. The remaining terms in (2.33) are estimated in a similar

way. O]

Using Proposition 2.2.2 we prove our main result:

0 T
Theorem 2.2.2. Let T' > 0. Then, for any (uo) , (UT) € [V, there exist fj,g; €
v v
L*(0,T), with j = 0,1,2,3,4, such that the solution “) e C([0,T);[VY) of problem
v

. U(T>) uT
.22)-(2.24) satisfies = .
(2.22)-(2.24) satisfi (U(T,-)) (UT>

Proof. We can assume that ( ) ( ) Let A denote the map
c Vvt

QOT u<T7 ) 471
(W) (vw ->) =V

where (u) is the solution (weak) of (2.22)-(2.24) with f;, g; given by
v

—(¥(t,0) + chea(t,0) + C1¥zaa(t, 0), 92 = —(ap(t,0) + a14(t,0))
= —(p(t,0) + ape(t,0) + @102222(t, 0)), fs = 1, (t,0)
fi = c(t,0) + c1¥eaa (¢, 0), g3 = a1p4(t, 0) (2.36)
91 = asox( 0)a1 + Paua(t, 0), fi=—c19(t,0)

( (t ) + Cx%z(t 0))7 g4 = _al@(t’ O)»



2.2.  Controllability 41

where v is the solution of the adjoint system associated with @T . A is linear and

continuous (see (2.30) and (2.33)). Moreover, using Propositions 2.2.1 and 2.2.2 it follows

that A is coercive, since

() (7))

o 2 + APy + A1 Prrxx (t O
1/1 + szz + Clwxmcm

2
(CLQO + algpzm) (t O)

2

APy + A1 Prxx (t 0)
sz + Clq/j:m:m 7

(zzz;::)

(L2(0,7))*

() o

(L*(0,1))?

_l’_
(L2(0,1))?

+

Cw + Clwmc (L2(0,T))?

(),

Thus, by Lax-Milgram theorem it follows that A is invertible. Consequently, given (

>C

4y ot (et ;o ‘p 4
V%), we can define =A | to solve the adjoint system and get eV
v

wT
Then, if the boundary functions f;, g;, with j = 0,1,2,3,4, are given by ( 2 36), the

corresponding solution (u of the system (2.22)-(2.24) satisfies
v
u(0, ) 0 uw(T, ) u?
= and = :
v(0,-) 0 o(T,-) vl

0
If we assume that fo) = <f2> = (0 in (2.22)-(2.24), the same arguments as

O

90 92
above yield the following result in smaller spaces of initial data.

Theorem 2.2.3. For everyT > 0 and ( ) ( ) [V3]', there exist (fl) (f3> (f4> €
g1 93 94

(L?(0,T))?, such that the solution € C([0,T];[V3]) of (2.22)-(2.24), with fo} _
9o
Ja (0 ) u(T, - ~[u
o) = ) s (27 - ()

Proof. Let (Z) be a solution of the adjoint system with final data (ZT) € V3. Pro-
T

ceedings as in (2.28)-(2.29) it can be shown that ) makes sense in (L?(0,7))2.

X t)
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42
Moreover, the following observability inequality holds

CTl 2y
Ur

apz(t,0) + a1p.ee(t, 0)
2 (t,0) + c19220(t, 0)

2

2 2 2

_l’_
(L2(0,1))?

_|_
(L*(0,1))?

a1y
(C1¢) 0

(o) e

<
(L2(0,T))2

for some C™t > 0. Indeed,

@)

(1+n®)|@,
<
V3 - |n|z>:N ((1 +n’)? |¢g|2>

N AT 2
< led! /T1 (1 + ng)f; eina(n)t dt
0 In|>N (1 +n )7%
— CTl n _ é(an - alng)?g ino(n)t a QD,,L zna n)t zno n)t
1 3 T € + T
0 N \ o (cn —en?)idy, gmﬂ
o (|5 (o () ()7
0 In|>N é(m — )l In|>N ém/z}f In|>N oT
2
T .
S CTl/ lﬁ gp(t7 ) dt,
0 ¢(t> )
where
2

2 2 2
_(u au/(0) + au"(0) a;u'(0) au(0)
p = + T
v cv'(0) + c1v™(0) c1v'(0) c1v(0)
Then, the result is obtained following the arguments developed in the proofs of Proposition
O

2.2.2 and Theorem 2.2.2, respectively.
The following remarks are in order:

Remark 2.2.1.
1. If T = 2m the left inequality in Proposition 2.2.2 is easy to prove. Indeed, for any

)
Vi

. ‘ ((a - am%-f)
(C - 01712)%{

(SOT € V* it follows that

.-

T
a1¥y,
<C
I;Z ‘ (Cﬂﬂi{)

2

(1+n +nt4nd +n)

keZ
2

alnSO;‘g

+ T

‘QWJ

2

L |t -
(cn —en®)yf;
((1 —an? + a1n4)go;‘f)

(1 —cn®+ ern*)yf

2

+
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thus
2 n n 2 n 2
APyq A1 Prrzx aPz A1Pzza
wT V4 w + sz:r + Clwaczzx (L2(0,27)? C’I/JQE + Clwzzx (L2(0,27)2

2 2

+ +

(L2(0,27)2

+ H (ago + algpcc:c) (t, 0)

Cw + C1 wacz

1P
(Clwm) <t7 0>

where C' only depends on the parameters a,aq,c,cy.

o) o

(L2(0,27)2

(L2(0727r)2)

2. A similar approach as the one given in the proofs of Theorems 2.2.2 and 2.2.3 allows
to show that the lower order Boussinesq system of KdV-KdV type (system (1.10) with

b=d=0) is controllable.

2.2.2 KdV-BBM

This section is devoted to the study of the system

=0, in

Uy + Uy — but:c;r + AUgpgq + W Vgprxr
in (0,7 x (0,2m),

Vg + Uy — dut:m: + CUppe + ClUzzzze = 07

with boundary conditions

u(t,2m) — du(t,0) = 0, in (0,7
du(t,2r) — dw(t,0) = 0, in (0,7)
O2u(t,2m) — O*u(t,0) = fo(t), in (0,7T)
O2v(t,2m) — O?v(t,0) = go(t), in (0,7T)
Otu(t,2m) — Otu(t,0) = f4(t), in (0,7)
Ohu(t, 2m) — D0(t,0) = gu(t), i (0,7),
for 7 = 0,1, 3, and initial conditions
u(0,2) = u’(z), v(0,z) =), in (0,27).

We first prove that system (2.37)-(2.39) is well-posed.

(2.37)

(2.38)

(2.39)

Proposition 2.2.3. For any s € R, let V* be the Hilbert space defined by (2.6). Then,

the following well-posedness results hold:

0
(i) Suppose that fa(t), g2(t), fa(t), ga(t) € CZ[0,T] and (uo) € V5. Then, there exists a
v

unique solution (u e CH[0,T; VH N C([0,T]; V°) of (2.37)-(2.39). Moreover, for
v
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T
any (Z ) € V5 and S € 0,T], we have

(e N2

_ < (“ — by ) (90(0 ) (2.40)
1/}<07 VOx 0
_ < (f2<t)) ( t? O) + Clwxz@ 0)) >
g2 (t) ’ <t7 O) + Q1P (t O) (L2(0,5))2x (L2(0,27))2
B <(f4(75)) (01¢( 70))>
94(t) ) \@@(t:0)) 7 10 5yraozmy:

where (Z) e CY([0,T];V*) N C([0,T];V?) is the solution of the adjoint system

T
(2.17) with initial data (:ZT) given by Theorem 2.1.35.

T
(ii) If (;ZT> € V2, there exists a unique solution (Z) € C([0,T);V?) of (2.17) and

(ng? 8)) makes sense in (LQ(O’ T))Z‘

0
(iii) Assume that (uo) e VO and f;,9; € L*(0,T), for j = 2,4. Then, there exists a
v

unique (u) € C([0,T1;[VY?), such that, for any (SDT) € V% and any S € 0,7,
v T
we have
/U(S7 ) dUII S? ’ ’ S ’ VQ]/Xv2 UO - dv(z)x 7 w([)? ) [VQ]/XVQ
t
(f2< )) ( £,0) + et >)> (2.41)
g2 (t) ’ + Cl1(,03;gg< ) 0) (L2(0,5))2x (L2(0,21))2
(f4(t)) (Cﬂ/f ) )
9(t) arp(t, 0 (L2(0,5))2x (L(0,2))?
where (:Z) C([0,T); V?) is the solution of the adjoint system (2.17) with initial
o7
data o given by (ii).
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Proof. (i) Consider 6;,¢; € C*(0,2n), with 6”(0) = 0 = ¢{”(0) and 6\" (27) = —% =

(b§~k)(27r), for y =2,4, k=0,1,2,3,4. Denoting by “ the solution of the corresponding
U1

homogeneous system given by Theorem 2.1.2, the change of functions

(2) _ (u) B (m) N (Zj:2,4‘9j(95)fj(t))
w v vy > j=2,4 0 ()g;(t)

Z) , such that

yields an equivalent problem: Find (
w

2zt + Wy — bzppy + QWi + 1 Wegage =

3 [(6,(x) ~ b7 @DF5(E) + G (D0}(@) + 00" (2) + 6 (w))] = F
wy + 2y — dwt; + CZaz + Cl2zzzzw =

3 [(64(@) = d6j(@)g; (1) + fi(E;@) + o8 (@) + 16" (@))] = G

D z(t,2m) = 322(¢,0), dw(t,2n) = dw(t0), j=0,1,2,34,
2(0,2) =0, w(0,z) =0.

(2.42)
Since F,G € C'([0,T]; C>(0,27)) C L'((0,T); V?), from Theorem 2.1.2 we deduce that

z
(2.42) admits a unique solution € C([0,T);V°) N CY([0,T]; V?). Hence, we have a
w

u) € C([0,T); V3) N CH([0,T];V?) of (2.42). To obtain identity (2.40),

v
we multiply the first equation of (2.37) by @, the second one by v, integrate in time and

space over (0,7) x (0,27) and add the resulting identities.

unique solution (

(i) If ¢1,t9 € [0, 7], from (2.21) we obtain

1
¥ ¥ 1 ko — ko — TMx A
R L e ol | W

_jwm) 1 . wi (m) o
+ wa(m) ezmxw% =+ ) p—tma @Tm + wa(m) e—zmwwzm )
1 w1 (m) 1

T
Since (ZZT) € V2, we have > (|¢r|* + [¢f*)(1 + k*)* < co. Moreover, observe that, as
keZ

wa(k) ar Lwik)
"y (k) €1 wy (k) ap’

k — o0




46 Chapter 2. Boundary controllability of a Boussinesq system

Then, we obtain a constant C' > 0 satisfying

1 _Jwitm)
72 tko(k)(T—t1) eika(k)(T—tg)) Z () zmxgbg; + wa (m) ezmxwgﬂl
ke]l melk) |\ A= 1

w1 (m)
— 2
wm) )

_mengm—{_ wa(m) e—zm:pwi_“m (1+k‘2)2
1
C zka(k WT—t1) 1kcr(k)(T t2) )‘ |AT|2+ |1/;£|2)(1+/€2)2.
keZ

Hence, by Lebesgue’s theorem, it follows that — 0, as t; — 1o,

o) ren(c) e

T
which implies that (22) e C([0,T];V?). If (ZT> € V5, the same argument shows that

Pua(t, 0) iko (k)(T—t) 2 ! ~T o :%1(2) T
Z@ Z m wa (m) Pm + 2(m) wm
wm(, ) ke]l mel(k) T\ wm) 1
1 wi (m) N
| [ | EEm | Ve 9L € (L2(0,T))%
w1 (m) 1
(2.43)

T
Remark that, if (ZT) € V2 the sum above also makes sense in (L?(0,7))?, since

1 _ 1}1(m) R
> 2 m o) | Pt walm) [ 4pr
kel mel(k) N\ wi(m) 1
1 @(m) N
+ LEz(m) SOTm + w2(m) Q/]Tm < o0.
wi (m) 1

(2.44)

rxr t? O . .
Moreover, the map (90 > ( 7 (t 0) ) is continuous. Indeed, from (2.43) and (2.44)

wT
(3l

,0
for some constant C' > 0. Thus, due to the considerations above, from now on ( #ra(£,0) )

we deduce that

<C

(L*(0,7))?

9

V2

T
denotes the sum (2.43), whenever 7 )eve
wT

(iii) We proceed in several steps.
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0 T
e (2.41) holds when (ZO> c Ve, (ZT> e VZand fi,g; € C3([0,T)), for 4,5 = 2, 4.

T

First, suppose that ((p € V?® and invoke (2.43). Since V? C V° C [V?], where

wT
each embedding is dense, the result follows from (ii) and the density of V® in V2.

u(S,+) — Uz (S, -)

e Let S € [0,7] be fixed. Then, (2.41) defines
v(S, ) — vz(S, )

) in [V?]' in a
unique manner.

Observe that, from the proof of (i) we deduce that the map ' : V2 — C, given by
r ((w)) . << 2<t>) (cw<t,o>+c1wm<t,o>)>
=
w Q(t (t, O) + 1Pz (ta O) (L2(0,8))2 x (L2(0,27))2
a1 t’ (LQ(O,S))ZX(LQ(O,Zw))Q

is linear and continuous, where (Z) is the solution of the adjoint system (2.17) with initial

T
data (:ZT) . On the other hand, the well-posedness of the adjoint system (see Theorem

2.1.3) allows us to conclude that the map Ts : V? — V2, given by

T (s@) _ (sa(S, ->) |
IDT 7vZ)(S7 )

is an automorphism of Hilbert space. This implies that, for each S € [0, T, (

u(S, -) — bug, (S, -)
v(S, ) — dvg (S, )
is uniquely defined in [V?]". Moreover, for S € [0,T], we obtain the following estimate:
= sup
<1

‘ (u<s, ) = e (S, ->> <(u<s, ) =t (S, ->) (go(S, ~>) >‘
U(S7'> —UM;(S,') vy ‘ (@(S,-)) U(S,-) _Ux:v(sa') ’ 1/}(87)
659 ||y

W Up — U0z ©(0,-) _rp|¥r
(w)p <1 < (UO - Uo,m) | (¢(0’ )> >[V2yxv2 (dJT)
Yr )2
()

Yr

Uy — Uo,zx 90<07 )
S () ( (—) )y (w<o~>) .
TZJT) V2§1 7 '
(2.45)
Ug f2<t> f4(t)
C 9
- ( (UO) voJr (QQ(t)) (LQ(O,T))2+ (94(t)) (L2(0,T))2>




48 Chapter 2. Boundary controllability of a Boussinesq system

where C' is a positive constant which does not depend on S or on wy, v, f;, g, for j = 2,4.

. (“) e C([0,T); V).
v
First, observe that, from (i) we have that (u) e C([0,T);V°) c C([0,T); VY,
v

whenever (uo) e V? and f;,9; € C3[(0,T)], for j = 2,4. Since V?° is dense in V? and

Vo

CZ2(0,T) is dense in L?(0,T), it is follow from (2.45) that (u e C([0,T]; VY). O
v

Proposition 2.2.3 leads to the following definition:

Definition 2.2.2. For (
Vo

uo) e V% and f;,g; € L*(0,T), with j = 2,4, a weak solution

of (2.37)-(2.39) is a function (u) € C([0,T]; V%), such that (2.41) holds true for all
v

YT

e V% and all S €[0,T).
Ur

In order to prove the controllability result applying the Hilbert Uniqueness Method,
we have to prove an observability inequality for the solutions of the corresponding adjoint
system. Here, this is done using the so-called Ingham’s inequality (see, for instance, [2, 22])
. For the sake of completeness and in order to facilitate the reading of the tese, we give a

generalization of Ingham’s inequality in Theorem 2.2.1.

Then, we have the following result:

Proposition 2.2.4. Let T > 0. Then, there exist positive constants C' and C, such that,
for any T e V2
Ur
arp
(t,0)
(ﬁw)

)

2 2

C <

V2

+ (2.46)

(CLSO + a190m~) (t,0)
)+ 1y
2
YT
)

where (:Z) is the solution of the adjoint system with data (ZT)
T

(L*(0,1))? (L2(0,1))?

<C

I
V2

Proof. We first prove the left inequality assuming that the right one holds.

Let us consider \g, k € Z, the eigenvalues of the operator A*, the state operator

associate to the adjoint system. Remark that they coincide with the eigenvalues of A,
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defined by (2.14). Since by = d; =0,

|k|—o00

Then, according to Remark 2.1.1, there exists N; > 0, such that, for |k| > Nj, the

eigenvalues has multiplicity one. In particular, for |k| > Ny,

;Z ez‘ka(k)(T—t) Z = eime @5 + "\ wa(m) eiquﬁz;
kel mel(k A m ) 1
y <1 i (2.47)
1 . wim) \ . T\ .
+ wNQ(m) e—zmx@Tm + wa (m) e—zmxl/}z‘m — Z ezko(k)(T—t) o ezkx.
w1 (m) 1 |k|> N1 Py,
In addition, if we take 77 € (0,7) and ~ > %v there exists Ny € N, such that
keZ|kl|>Ny—= (k+ 1)o(k+1)—ko(k) > . (2.48)

. a(k) eik:p a(k) efik:r
w1 w1

for k € I(n) and n € I, and consider W = @,,¢; W,, C V2, whose embedding is dense. In

W we define the following semi-norm:
2 0 2
+ aru(0) , v " e W.
c1v(0) v

lp (z)] _ (au(O) + alu”(O))

cv(0) 4 c10"(0)
or Pn 0
Let N = max{Ny, N»} and ¢ € WN(Bny<n Wa)*, that is, zﬁ’ =1, for [k] < N

ikx —ikx
e e
Also, taking Remark 2.1.1 into account, we introduce W,, = Span { ( ) , ( ) },

T
or for |k| large enough. Then, by (2.59), (2.60) and Ingham’s inequality, we obtain C** > 0,

such that

2
YT < (1 + a1n2>2‘gf£’2 < CTl /T1 ‘ Z (1 + CL177,2> AZ 6ino’(n)t
br ). ey \(L+an?)?er]? o [ \(A+ean®)y)

n

_ CT1 /Tl Z —((I o an2)¢’71": eina(n)t + 1%1@@1@5 eina(n)t 2dt
2\, )T l+c . 7T
0 sy \—(c—an)i, ey,
< CTl /T1 [ ((I - alnz)@g eina(n)t + Z |1ai1‘1|a1¢5 eina(n)t 2} dt
B 0 |n|>N (c —cn®)) In|>N |1TJ;C|CI¢Z:
< OTl /T1 [ (CL - a’an)@g eina(n)t + Z al@z; eina(n)t 2] dt
0 e \ (¢ —an?)dy v\t

Since T" > T}, from the above estimate, [25, Theorem 5.3] and the right inequality in

(2.46), we obtain CT > 0, such that
ag@ + al@xz (t’ O) al@ (t, 0)
c¢ + Clwxx Clw

)

2 2

o’ +

(L*(0,1))?

Y

(£2(0,7))?

T (,D(t,') i
Lo p(ww) S‘
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T
v (ZT) € W. The general case follows from a density argument.

Now, we prove the right inequality in (2.33). Observe that, from the considerations

above it follows that

P 1 zka(k NT—t) 1 ST o % T
wx k|<N mel (k) w1 (m) 1
1 w1 (m)
+ wa(m) @Tm + w2(m) Tm
w1 (m) 1

(0
1 iko (k) (T—t 1 T - “”(Z) T
+2 Z 61 o(k)(T— )k wa () P + wa (k) wk

|k|> Ny w1 (k) 1
1 (k T
+ wa (k) b Qrb—k
w1 (k) 1
Then,
2 2
H( Paz ) (t,0) <C Z 1.2 giko (k) (T—t) ( Pr )
¢xac (L2(0,T))2 |k|<N1 77Z)k (L2(0,T))2
2 2
2zka(th(<P;‘g) <C <90T>
T = V2 W7 )
k[>N Y (L2(0,T))2 V2

2

()
o )

< Cy

where C and Cy are positive constants. Analogously, we obtain C3 > 0, such that

H( ) (L2(0,T))2

2
(L2(0,7))2 oy (L2(0.1))?
2

a1 Pz e
t,0
(Clwx:p> ( ) ( ¢T ) V2

for some constant Cy > 0. Then, the right inequality in (2.46) follows from (2.49) and the

(2.49)

Thus,

ay + 1Pz (t 0)
Cw + Clwxw 7

2

2

+ <y

(L2(0,7))?

estimate above. O]
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Using Proposition 2.2.4 we prove our main result:

20

0 T
Theorem 2.2.4. Let T > 0. Then, for any (u ) ) (UT) e VO, there exist f;,g; € L*(0,T),
v

with j = 2,4, such that the solution Y e C([0,T); V°) of problem (2.37)-(2.39) satisfies
v

v

QOT c V2 s U(Tv ) - bumr(T’ ) c [VQ]/
YT o(T, ) — dvge (T, ) ’

0 0
Proof. We can assume that (u0> = (O) . Let A denote the map

where (u) is the solution (weak) of (2.37)-(2.39) with f3, g2, f4 and g4 given by
v

f2 - _(Cw(ta O) + Cﬂbm(t? 0))
= — t,0 2z (t, 0
Ja= _Clw(tao)
91 = —a1p(t,0),
v ot
where is the solution of the adjoint system associated with o) A is linear and

continuous (see (2.45) and (2.46)). Moreover, using Propositions 2.2.3 and 2.2.4 it follows
T (o) " (w.0)
Cd} + Clwmx CW

)

u
Thus, by Lax-Milgram theorem it follows that A is invertible. Consequently, given | €
v

that A is coercive, since

((2) ()

> o7

2 2

+

(L2(0,1))? (L*(0,1))?

V2

T v

Then, if the boundary functions f;, g;, with j = 2,4, are given by (2.50), the corresponding

T T
V0, we can define $ ) = A1 (uT) to solve the adjoint system and get (Z) e V2.

, U
solution
)

) of the system (2.37)-(2.39) satisfies
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92
yields the following result in smaller spaces of initial data.

0
If we assume that <f2) =1, in (2.37)-(2.39), the same arguments as above

0 T
Theorem 2.2.5. For everyT > 0 and (uo) , (UT) € V2, there exists (f4> € (L*(0,7))?,
v v 94

such that the solution (u) € C([0,T)];V?) of (2.37)-(2.39), with (fZ) = (8)’ satisfies
v 92
u(T,-)\  (u”
o(T,))  \WT)’

Proof. Let (80) be a solution of the adjoint system with final data (wT
(

T

e V0. Pro-
(0

t,0
ceedings as in (2.43)-(2.44) it can be shown that zgt’ O;) makes sense in (L%(0,7))2.

Moreover, the following observability inequality holds

(aﬁp(t? 0))
Cl¢(t7 O)

“n ino(n)t
|n2>:N <¢T)

2

2

r) |,

2 il

_ ‘907}’2 S CTI/
1o |n|>N W | 0

()] - |

Then, the result is obtained following the arguments developed in the proofs of Proposition
2.2.4 and Theorem 2.2.4, respectively. [

2

ch <

: (2.51)
(12(0,7))2

for some CTt > (. Indeed,

.-

where

ﬁ<0@[ﬁcﬁﬁ)ﬁ

The following remarks are in order:

Remark 2.2.2.

1. If T = 2m the left inequality in Proposition 2.2.} is easy to prove. Indeed, for any

2 . gDT
<C 1¥k
B Igz ‘(011/}1?)

2
a1
t,0
(Cl¢)< |

(SOT € V2 it follows that

Ur
or\ [ 2| (or
T _ 1+n2 k
().~ z e

2

+
(L2(0,27))2

~—

—o||[ TP 0
Cw =+ Clwx:p

(L2(0,2m))?
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where C' only depends on the parameters a,aq,c,c;.

2. A similar approach as the one given in the proofs of Theorems 2.2.4 and 2.2.5 allows to

show that the lower order Boussinesq system (see (1.10)) is controllable.

2.2.3 Higher order KdV-BBM system

This section is devoted to study the system

{ut + = Dty + bilzzzs + e+ 10iree =0 10 OT) X 020)
Uy 4 Uy — Ay + d1Vigrse + Clger + ClUzzzee =0 in (0,7T) x (0,27),
with boundary conditions
Hu(t,2m) — du(t,0) =0 in (0,7)
Do(t,2m) — Pu(t,0) =0 in (0,7) (2.53)
Otu(t,2m) — Ou(t,0) = fu(t) in (0,7)
Odv(t,2m) — tu(t,0) = g4(t) in (0,7),
for 7 = 0,1, 2,3, and initial data
u(0,7) = u’(z), v(0,2) =v"x), in (0,27). (2.54)

We first prove that system (2.52)-(2.54) is well-posed.

Proposition 2.2.5. For any s € R, let V*® be the Hilbert space defined by (2.6) and
X(0,T) := (L*(0,7))* x (L*(0,7))%, T > 0. Then, the following well-posedness results
hold:

0
(i) Suppose that f(t),gs(t) € C30,T] and (UO) € V5. Then, there erists a unique

v
solution (u) e CH[0,T;; VY N C([0,T]; V) of (2.52)-(2.54). Moreover, for any

v
o7
e V® and S € 10,T), we have
¢T

< (S, ) = biga(S, ) + brttases (S, x)) (S, x)) >
(S, @) = dvge (S, @) + divgn (S,2) ) " \0(S,2) ) [ o

< u’ — bug:v + blugmx 90(07 ‘T) > . < f4(t) Cl¢(t7 0) >
v — dvgx + dlvga}m: ’ 1/1(07 ‘1') VOO g4<t> 7 a190<t7 0) X(0,5) 7

(2.55)

where (Z) e CY[0,T;; VY nC([0,T];V®) is the solution of the adjoint system

T
2.17) with initial data 7 given by Theorem 2.1.3.
¢T
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t
(ii) If T eV then |7 € C([0,T); V) and #(,0) makes sense in (L*(0,T))2.
Yr (0 ¥(t,0)
0
(iii) Assume that (uo) e VY and f4,94 € L*(0,T). Then, there exists a unique (u) €
v v

C([0,T]; V*), such that, for any (:ZT) € V% and any S € [0,T), we have
T

U(S, ZE) - dUz;c(S7 ~T> + dlvwx:c:c(s7 :L‘) 7 ID(S, :E) VOxV0

< (u — bul, + blugm> (@(0, x)) > B < (f4(t)) (c1w<t, o>) >
UO - dvgz + dlvgx:pw ’ ¢(07 .T) V050 g4(t) ’ algo(t, O) X(0,5) ’

(2.56)

where (z) € C([0,T]; V) is the solution of the adjoint system (2.17) with initial data
o7
given by Theorem 2.1.5.

wT

Proof. (i) The proof of (2.55) is similar to the proof of (2.40), therefore we omit it.

(ii) Arguing as in (ii) of Proposition 2.2.3, we deduce that, if (SOT) € VO, the sum
T
¥ 1 iko (k)t 1 T Y mLim) T
(& (t,0) = 2 Ze Z ~ fwa(m) | Pm + walm) Yo
kel mel(k) w1 (m) 1

1 . w1 (m) -
+ _ Jwa(m) @—m_ w2(m) @/J_m
wi (m) 1

makes sense in L?*(0, 7). Moreover, we have the following estimate

(0)eol,.,...=<l(z)

where C' > 0 is a positive constant.

<C

?
VO

(L2(0,7))?

(iii) We proceed in several steps.

e (2.56) holds when (u0> ev4 (zT> e VY and f4, g4 € C3([0,T)).
Yo T

YT

First, suppose that (
T

) € V®. Since V?° is dense in V°, using (ii) we obtain the

result.
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e Let S € [0,T] be fixed. Then, (2.56) defines (u(S) taz () + by (S)> in

v(S) — dvgz(S) + d1Vsz22(S)

V? in a unique manner.

Observe that, from the proof of (ii) we deduce that the map I': V? — C given by

- ((@)) . <( f4(t)) <c1w<t,0>)>
Yr 94(t) ’ algp(t,O) (L2(0,T))2

is linear and continuous. On the other hand, the well-posedness of the adjoint system (see

Theorem 2.1.3) allows us to conclude that the map Ts : VO — VO given by

Ts (QOT> _ (90<Sv )) :
wT w(Sv )
U(S, ) — bum(S, ) + blu;m:a:a;(57 ))
)

U(S, ) - dUmZ<S, + dlux:mmc(su )

is an automorphism of Hilbert space. This implies that (
is uniquely defined in V°, for each S € [0,T]. Moreover, for S € [0,T], we obtain the

following estimate:

VO

‘ <<p(5w)>
w(sv ) Vo

UO — bugx + bluga:a:x @(07 ) YT
=  sup < oo — a4 i)\ (0. > - ’ (2.57)
<§0T) <1 0 T 1Y% zzx ’ VOxV0 T
Yr B
vo — dv?, + d;0° vo | \#(0,-) o Ur
Y

<c ( f4(t)) ’
940 ) 20,12

where C' is a positive constant which does not depend on S or on uyg, vo, f1, g4

/-~

IN

sup (
(@T) <1
vo -

uO - bugx + blugz‘mc
vo — dv?, + d;v?

TXTIT

+

Vo

o uc C(0,T; VY

First, observe that, from (i) we have that (u) e C([0,T;V®) c C([0,T]; V1),

v

Uo
whenever
Vo

) € V® and f;,9; € C3[(0,T)], for j = 4. Since V? is dense in V* and

CZ(0,T) is dense in L?(0,T), it is follow from (2.57) that (u) € C([0,T]; VY. O

v
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Proposition 2.2.5 leads to the following definition:

Uop

Definition 2.2.3. For ( ) € V* and fj,g9; € L*(0,T), with j = 4, a weak solution

Vo

of (2.52)-(2.54) is a function “ € C([0,T); V1), such that (2.56) holds true for all
v

) VO and all S € [0,T].
Ur

In order to prove the controllability result applying the Hilbert Uniqueness Method,
we have to prove an observability inequality for the solutions of the corresponding adjoint
system. Here, this is done using the so-called Ingham’s inequality (see, for instance, [2, 22])
. For the sake of completeness and in order to facilitate the reading of the tese, we give a

generalization of Ingham’s inequality in Theorem 2.2.1.

Then, we have the following result:

Proposition 2.2.6. Let T > 0. Then, there exist positive constants C' and C, such that,

for any (wi) evy,
( T) (al )<t70) ( T)
Ur 1y Yr

C
where (@, 1)) is solution of the adjoint system with data (or,7) € VO.

2 2 2

, (2.58)
VO

<C
(L2(0,1))2

<

VO

Proof. We first prove the left inequality assuming that the right one holds.

Let us consider A\, k € Z, the eigenvalues of the operator A*, the state operator
associate to the adjoint system. Remark that they coincide with the eigenvalues of A,
defined by (2.14), and

|k]—o00

Then, according to Remark 2.1.1, there exists N; > 0, such that, for |k| > Nj, the

eigenvalues has multiplicity one. In particular, for |k| > Ny,

1 iko (k) (T—t 1 imz AT - g(:) imz, 1T
Y S [ L 2m) | gima T
kel mel (k) wo1(m) 1

(2.59)

1 i E(m) i N iko(k)(T—t @% ik
| fmm | € R | V) el = 37 IO T ) et
w1 (m) 1 k>N, Uy,

In addition, if we take Ty € (0,7) and v > %, there exists Ny € N, such that

keZ, |kl >Ny = (k+1)o(k+1)—ko(k) >~. (2.60)
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6zk’x 6—zkr
Also, taking Remark 2.1.1 into account, we introduce W,, = Span { ( o) ik |0 | olk) ik ,
— B pthT Le—z T

w1 w1

for k € I(n) and n € I, and consider W = @,,; W,, C V°, whose embedding is dense. In
W we define the following semi-norm:
2
, vV (u) e W.
v

()] - |

/\T 0
Let N = max{Ny, N2} and (27) € W (e Wa)*, that is, (i;) - (0) for [k| < N
T

or for |k| large enough. Then, by (2.59), (2.60) and Ingham’s inequality, we obtain Ct > 0,

such that
H( ) ( ; 2) ’ j ( ) "
Ur yo  |n|>N In|>N

[T
T T 2
:ch/O 1 dt < CT1/0 p (ZZ ;) dt.

1 AT 2
> a1 M1%n | no(n)t
1 v €

>N \ o €1¥n

Since T' > T}, from the above estimate, [25, Theorem 5.3] and the right inequality in
(2.58), we obtain CT > 0, such that
2
a1
(t,0)
(qw>

or v (ot )\
(w) Vog/o p(wm) =

for all (@T> € W. The general case follows from a density argument.
T

n

2

dt

2

CT

(L2(0,T))2

Now, we prove the right inequality in (2.58). Observe that, from the considerations

above it follows that

'd 1 tko(k)(T—t) 1 ~T B Z;EZ; T
(t70) = 5 Z Z wa(m) Pm + wm
(0 k<N mel(k) |\ "\ wim) 1
1 w1 (m) N
| fwmem | Pt [ V0L,
w1 (m) 1
1 _jwk) |
+ Z tko(k)(T—t) " @g + wa (k) wg
w2
|k|>N1 A\ wi(k) 1
1 wl(/]z) R
+ wa(k) o w2k T,

w1 (k) 1
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Then,
2 2
(2)eo z o (%)
v (L2(0,7))? Ikl<N1 vk (L2(0,7))?
2 2
Z piko (k)(T—t) ( @f ) <0, ( 90; )
k|> N oF (L2012 (0 -

where C and Cs are positive constants. O

Using Proposition 2.2.6 we prove our main result:

0 T
Theorem 2.2.6. Let T > 0. Then, for any (uo) , (uT) € V4, there exist f4, 94 € L*(0,T),
v v

such that the solution (u) € C([0,T; V*) of (2.52)-(2.54) satisfies (U(T’ )) = (UT)
v U(Tv ) vt

0 0
Proof. We can assume that (uo) = (O) Let A denote the map
v

YT e VO — - bu + bluzxaxz e VO,
YT d’U e T dlvzx:m:
where (u) is the solution (weak) of (2.52)-(2.54) with f4, g4 given by
v

f4 = _Clw(ta O) and g4 = —Cl1%0(t7 0)7 (261)

YT

Yr
continuous (see (2.57) and (2.58)). Moreover, using Propositions 2.2.5 and 2.2.6 it follows
that A is coercive, since

(o LV A (v

Thus, by Lax-Milgran theorem it follows that A is invertible. Consequently, given T €
T

where 7 is a solution of adjoint system with initial condition . A is linear and

> C"
(L2(0,T))?

T T
V0 we can define (zT) = A1 <UT> to solve the adjoint system and get (Z) e Vo
v

Then, if the boundary functions fy, g4 are given by (2.61), the corresponding solution

of the system (2.52)-(2.54) satisfies

)= ) e (r3) - ()
v(0, ) 0 o(T, ") vl
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2.2.3.1 The nonlinear system

In this section we are concerned with the analyze of the controllability properties
of the full system (1.1)-(1.2):

Uy + Vg — bligze + D1Uizzes + AVzez + 01Vsz000 =
—(uv)z + b(uv) zze — A(UWVLg) s, in (0,7) x (0,2m)

U + Uy — AUty + d1Utgze + Clgge + ClUszres =

—00; — C(VUg) gz — (Wlgy)z + BUzVze + pUUgey, in (0,7T) x (0,27)
Hu(t,2m) — du(t,0) = 0, in (0,7)
do(t,2m) — du(t,0) = 0, in (0,7)
Adu(t, 2m) — Otu(t,0) = fa(¢), in (0,7)
Odv(t,2m) — Oto(t,0) = g4(t), in (0,7)
u(0,2) = u’(z), v(0,2)="(x), in (0,2m),

(2.62)
for j =0,1,2,3.

Let us begin introducing the nonlinear operator N : V4 — V* defined by

Some of its most important properties are given in the following result. The proof can be
found in [3]:

Theorem 2.2.7. Suppose that by,d; > 0. Then, the operator N : V4 — V* given in (2.63)
is well-defined and there is K > 0, such that the following estimates are verified:
<K

@)L=
=00

2

: (2.64)

JIO-C)

+
V4

, (2.65)

V4

wo(t) ()
s (1), () v

To study the nonlinear system, we observe that the solutions of (2.62) can be

(=50 )+ () ()

written as
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where (S(t))ier is the group of isometries associated to the linear homogeneous system

(see Theorem 2.1.1) and (z) and (2) satisfy, respectively,

Ot + Ve — 0ptae + 01@trane + Wzze + G1V022e = 0, in (0,T) x (0, 27)
Ui+ o — rae + diragee + CPrae + Q1 Pursae = 0, I (0,T) x (0,2m)
I p(t,2m) — dip(t,0) = 0, in (0,7
03w(t 27) — &(t,0) = 0, in (0,7) (2.66)
Lo(t,2m) — Otp(t,0) = fu(t), in (0,7)
a‘%p(t 2m) — O4p(t,0) = gu(t), in (0,7)
©(0,z) =0, ¢(0,z) =0, in (0,2m)
and
M+ Co = Otzw + UiMtazas + @oez + A1Ceazee = b1, in (0,7 x (0,2m)
G+ Mo — dGiae + diGagza + CMage + C1Magzas = ha, I (0,T) x (0,27)
dn(t,2r) — dn(t,0) = 0, in (0,7)
(t 2m) — 01¢(t,0) =0, in (0,7) (2.67)
2n(t, 2m) — Opn(t,0) = fa(t), in (0,7)
1C(t, 2m) — O2C(L,0) = gu(t), in (0,7)
n(0,z) =0, ((0,z)=0, in (0,2m),
with hy = —(uv), + b(uv) gze — (WU ), and ho = —VU, — (VU2 ) pr — (Ulgy )z + BUzVze +
Ut

The existence and uniqueness of solutions of the nonlinear system (2.62) can be
proved if the initial data and the boundary conditions are small enough. More precisely,

we have the following result:

Theorem 2.2.8. Assume that by,dy # 0 and let T > 0. Then, there exists a constant

6 > 0, such that, for any (uo € V* and any (f4) € (L*(0,7))?* satisfying
Vo

Gl 1)

system (2.62) has an unique weak solution (u) e C([0,T); V4.
v

< 0, (2.68)

(L2(0,T))2

Proof. The arguments used to prove this result are similar to those used to prove the main

result of this section. So, we have omitted the details.



2.2.  Controllability 61

Let us define the maps
O : (L*0,7))* — C([0,T]; V*)

o (f) _ (¢> | (2.69)
94 (G
where (Z) is the solution of (2.66), and

O : LY(0,T; (L2(0,2m))%) — C([0,T); V4

5 (hl) B (77) | (2.70)
hs ¢
where (2) solves (2.67). Remark that (2) is given by (Z) (t) := /0 ¢ S(t—1)N (Z;) dr.

With the notation introduced above, we define the map G : C([0,T];V*) —

C([0,T]; V*) by
~ (h
al") =se (™) +o () +o (™).
v Vg 94 ha
with
hy = —(u0)+b(uv) goe—(UVy ), and  hy = =00 —C(VUg) gz — (Wl ) o+ BV Vg PUU g

(2.71)

From Proposition 2.2.5 it follows that © is linear, continuous and well defined.

Theorem 2.2.7 and [3, Theorem 5.1] ensure that the same properties remains valid for ©.

Consequently, we deduce that GG has a unique fixed point (u) € C([0,T); V), which is

v
the unique solution of the system (2.62). O
Theorem 2.2.9. Assume that by, dy,a1,c1 # 0 and let T > 0. Then, there exists a constant
0 > 0, such that, for any (UO ) “ € V* satisfying
Vo U1
o <d and n <0, (2.72)
Yo V4 U1 V4

there exist controls fy,gs € L*(0,T), such that the solution of system (2.62) satisfies

Proof. Let us first define the following map
0, : V* = (L*(0,7))?

o ()= ()
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where fy, g4 € L?(0,T) are the controls given by the Theorem 2.2.6, which take the solution
of (2.52)-(2.54) from the initial data (0,0) to the final data (u;,v;). Remark that the

observability inequality (2.58) ensures that ©; is continuous, this is, there exists K; > 0,

such that
. (U1) (U1)
(o (%1

Next, we define the nonlinear map F : C([0,T]; V*) — C([0,T]; V*) as follows:

(s orn()- o) (2 o)

h ~
where hl , © and © are given in (2.71), (2.69) and (2.70), respectively. Remark that, if

2
T
is a solution of (2.62) and satisfies T ) = (™).
v (T, x) vy

Therefore, we show that there exists R > 0 with the following properties:

< K;

(L2(0,T))2 V4

(u) is a fixed point of F', then
v

(i) F maps the ball Bg(0) C C([0,T]; V*) into itself.

From Proposition 2.2.5 it follows that © is linear, continuous and well defined.

Therefore, we obtain K > 0, such that
Ja
94

o(7)

Theorem 2.2.7 and [3, Theorem 5.1] ensure that the same properties remains valid for o.

Thus,
_(h .
ha C(0,T];V4)

Let R > 0, to be chosen latter on, and (u) € B(0, R). Then, we have that
v

(2
(2]

<0+4+2KK6 + KK\ K

<K

c([0,7}v4) (L?(0,1))?

c([o,7];v4)

C([0,T];V4) )

< + KK,

(o) -5 (z) o () e
()

<0+4+2KK6 + (KK, +1)KR?.

V4 v

V4) C([0,T};V4)

c(lo,Tj;v)
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Therefore, F'(Bg(0)) C Bg(0) for any R > 0 satisfying

(1+2KK,)0+ (KK, +1)KR?* < R. (2.73)

(ii) F is a contraction

o)) e
(o) v o)) +()- )

where iy = — (@), + b(W0)gaw — (@ps)o and hy = —0, — (00, )aw — (llan o + B4 0ss +

<) )

PUU g -

Then, we obtain
2

v v Y/ leo.rve v Y leqorve
< ORR(KK, +1) |( ) ( )
c([0,7;v4)

Consequently, F'is a contraction if R verifies
IRK(KK;+1) <1. (2.74)
H if R satisfies (2.74), by choosing d 1t it follows that (2.73) also hold
ence, if R satisfies (2. choosing 6 = ——————— it follows that (2.73) also holds

’ Y 50T o1+ 2K K, M

and the proof ends. n

2.3  Further Coments

In this section, we present an extension of our results. More precisely, we have that
the absence of the BBM terms, as well as, the higher order KdV terms in the first equation

of the linear system also provides positive controllability result.

We consider the following system

Uy + Vg + AQUgpe = 0, in (0,7) x (0,2m)
Uy + Uy — dvt:ca: + dlvtxx:ca: + Clgpr = 07 in (Oa T) X (07 27T)a

with periodic boundary conditions

du(t,2m) — do(t,0) = g;(t), in (0,7) (2.76)
2
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with 5 =0, 1,2, and initial data
u(0,2) = u’(z), v(0,z) =%=x), in (0,27). (2.77)

Again, we remark that the number of boundary conditions depends on the values of the

parameters of the system.

Proposition 2.3.1. For any s € R, let V*® be the Hilbert space defined by (2.6) and
X(0,T) = (L*0,T))? x (L?(0,T))?. Then, the following well-posedness results hold:

u

(%

0
(i) Suppose that f;(t), g;(t), g3(t) € CZ[0,T), for j =0,1,2 and ( 0) € V3. Then, there

u) e C([0,T); V3) of (2.75)-(2.76). Moreover, for any

exists a unique solution (
v

o7
e V?and S € [0,T), we have
¢T

(s, ) ) (W» -
V(S,) = dver (S, ) + divasen(S,7) ) T\OS ) ) ] g a2 0.2y

ul ) (90(0,-)) >
0 _ o0 v "\(0,")
dvy, + d1vV,,.0 ¥(0,-) [L2(0,2m) x L2(0,27))]2

(t D(t,0) + ctbya(t, 0) ) >
X(0,5)

O(t 90<t7 O) - dwtaz(ta 0) + dlwtx:rx(ta 0) + APy (ta O)

)
)
10, (1, 0) ) > (2.78)
1(t) ’ agox(t, O) - d¢t(t7 0) + d1¢tzz(t7 0) X(0,5)
)
)

~

Q

o

(t

2(t

@

c(t,0) )>
\ap(t,0) + diu(t.0)) /4 o

0 0 ) >
93(t> ’ dlwt(t7 0) X(0,5) 7

|
P i N 7 N
s =

where (z) € C([0,T); V3) is the solution of the adjoint system (2.17) with initial
o7

data given by Theorem 2.1.3.
wT

T
(ii) If (:ZT € VO, there exist a unique solution z e C([0,T]; V% of (2.17) and

Vtzee(1,0), ©uz(t,0) makes sense in H2(0,T), tu.(t,0), ©.(t,0) make sense in
H=Y0,T) and 1 (t,0) make sense in L*(0,T).
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0
(”Z) Assume that (uo) S VO7 f2 S HQ(O,T), flvg3 S Hl(O,T), f07g2 S LQ(O,T), g1 €
v
H=Y0,T) and go € H2(0,T) . Then, there erists a unique (u) e C([0,T]; V),
v

such that, for any (SDT) € V% and any S € [0,T], we have

T

( ul(S, ) ) (go(s, >>> _
U(S7 ) — d"Uxx<S, ) + dlvxmcx(sv ) ’ w<S? ) [VO]/XVO

0— dvaocm + dlvg:p:m w(()? ) [VO) x VO

U(t,0) + Cthaa (£, 0) ) >
7 QO(t, O) - d¢tz(t> 0) + dld)txwx(ta 0) + a@m (t, O) [LQ(Ojs)XH_Q(Oys)]Z

< )
)
fi(@) ciby (t,0)
+< au®) CLSOx(t,O)d?ﬂt(t,())+d1¢txx(t,0)>>[Hl(o7S)XH1(055)]2 (2.79)
< )
)

ap(t,0) + dit(t,0) [H2(0,8)x L2(0,9)]?

0 0 )>
g5(t) ) " \dita(t,0) [H3(0,5)x H'(0,5)]2 |
where (SO) € C([0,T); V°) is the solution of the adjoint system (2.17) with initial
o7
data o given by (ii).
Proof. (i) To obtain (2.78) we proceed as in the proof of (2.25) in Proposition 2.2.1.

T
(ii) Since (:ZT> € VO we have Y _(|¢f | + ¢ |*(1+&%)*) < oo. Moreover, observe that,
keZ

S

nk) o mk)
an(k) " T+ K22 (k)
¢,C and C'. Since

~ C(1+ k*? and o(k) ~ C, for some positive constants

1 .
Viwea(t, ) = 3 Zk0-<k)€lkcr(k)(T_t) >

kel mel(k)

[_ w2(m) e—imm@?’n + e—imm,{p\g;
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we have that

Ytane(1,0) =5 3~ ko ()e kT e e
2 mel(k wy (m)
Wo (M) ~
b | 2o g
wy(m)
- 1 N
N S R L+ oL,
2 e mel(k) 14+ m? 1+ m?
“IYY [ et BT, i,

2 e mel(k)
Then,

||Q/}txzmHH 2(0,T) ~5 Z Z [m4|§0\£¢|2 +m8|{/;rj7;|2

kE]I mel(k)
+ QL mf L, ] (14 k)
~ (HSDTH%2(0,2W) + ’|¢T’|?¥2(0,27l‘)>'

The remaining cases are proved in a similar way.

(ili) We proceed in several steps.

b (279) holds when (ZO) € V37 (ZZT) € VO and f07f17f27907glag27g3 S C§<[07T])
0 T

"2

First, suppose that (
T

) € V3. Since V3 is dense in V°, using (ii) we obtain the

result.

S
e Let S € [0,7] be fixed. Then, (2.79) defines ( u(S)

in V0
v(S) — dvg. (S) + dlvmm(S)>

in a unique manner.

Observe that, from the proof of (ii) we deduce that the map ' : V° — C given by

((2))-

e T )
90(t) ) "\ (t,0) = dos(,0) + d1 ¥ (£,0) + apsa (£, 0) [L2(0,8)x H=2(0,9)]?
+< fi®) Yalt, 0) )>
91(t)) " \aps(t,0) — diy(t,0) + di¥.(t, 0) [H1(0,8)x H=1(0,5)]2
_< fa(t) c(t,0) )>
g2(1) ’ ap(t,0) + di(t, 0) [H2(0,5)x L2(0,5)]2
(o) (o)
+ y —_ )
g3(t) d1ti(t, 0) [H3(0,S)x H(0,5)]2
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is linear and continuous. On the other hand, the well-posedness of the adjoint system
(see Theorem 2.1.3) allows us to conclude that the map Ts : VY — VO, given by

et _ [#(S,)
Ts | ] = ,
is an automorphism of Hilbert space. This implies that
U( ’ ) dvxw(57 ) + dlua:mcx(sa )
O

is uniquely defined in V. for each S € [0, 7]

Proposition 2.3.2. Let T' > 0. Then, there is C; > 0, such that
(lerlZ202m + 1¥rllizom) < 19t 0) + ctus(t, 0)] 7207y

+ [l(t,0) = dira(t, 0) + apa(t, 0) + ditbraas (t, 0) | F-2(0.ry + | (t, 0) [ o 1
dipy(0, T) + di ez (0, T) | H-10.7) + Nlct0(0, T) 3207

+ [lap.(0,T) —
+ [lap(t, 0) + dithr(t, 0)||%2(0,T) + (| (t, O) |5 0.7
where (p,1)) is solution of the adjoint system with data (or,¢r) € VO

~C. Then, for
[_ U)Q(TTL) efimx(ﬁg; +

Proof. Recall that, o(k)

3 piko (k)(T—1) 3

@1 (m)

kel mel(k)
+ Al =
wl(m)

we have that
zko W(T—t) Z m3

77Z)t$zz t 0 Zka
ke]l mel(k)
Tl =
wy (m)

90_ +97,

3 S

m R
[ oL+ UL +
mEI(k m

Z keZkU k)(T—t)

ke]l
o (m)

{ AT+¢ +

m

mel(k)

Zezkak‘)Tt Z m

2
¥, (t,0). Now, applying the same
]

Hence
wtxzx (ta O)
Y2 (t,0) and Yy (t, 0)

Similarly, we get 1, (t,0)
previous technique, we obtain the desired result for our new norm
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0

T
Theorem 2.3.1. LetT > 0. Then, for any (u()) , (UT € VY, there exist fo, go € L*(0,T),
v v

fo € H*0,T), f1,93 € HY(0,T), g1 € HY(0,T) and go € H2(0,T), such that the solution

u . 1/0 . u(T,-)\  [ur
(v) € C([0,T]; V) of (2.75)-(2.76) satisfies (U(T,-)) = (UT),

0 0
Proof. We can assume that (UO) = (O) Let A denote the map
v

(pT 0 u(T7 ) o
(wT) eVl (U(T, ) = dvge (T, -) + d1Vpeee (T, )) e [V,

where (u) is the solution (weak) of (2.75)-(2.76) with fo, go, f1, 91, f2, g2 and g3 given by
v

Jo= _(w(tv O) + Cl/’ﬂ:m(tﬂ 0))
go = _(90(t7 0) - dwtm(t’ O) + dl¢taomm(ta O) + CMPM;@, 0))

f1 = c.(t,0)
g1 = a@z(@ 0) - d%ﬁ(t, O) + dlwtxx(ta O)
fo=—c(t,0)

g2 = —(ap(t,0) + dytx(t,0))
g3 = di(t,0).

Then, proceding as in the previos cases, we obtain the result. [



69

3 Null-controllability for the Kawahara equa-

tion.

This chapter deals with the controllability properties of the linear Kawahara
equation posed on a periodic domain. We show that the equation is null-controllable by
means of a control depending only on time and acting on the system through a given
shape function in space. The method we apply is based on Fourier expansion of solutions

and the analysis of a biorthogonal sequence to a family of complex exponential functions.

3.1 The Moment Problem

Let us first present a well-posedness result for system (1.13).

Theorem 3.1.1. Given any T > 0, F € L'(0,T; L*(0,27)) and u° € L*(0,2m), there
exists a unique weak solution u € C([0,T]; L*(0,2m)) of the problem

Up — Usg + Usy + U, = F(t,2), in (0,T) x (0,2m),
Blult,0) = Blu(t, 2), in (0,7), (3.1
u(0,z) = up(x), in (0,2m),

for j=0,1,2,3,4.

Proof. According to [44], the operator A defined in (1.16) generates a group of isometries

in L}%(O, 27). Hence, the result follows from the semigroup theory. O]

Having the well-posedness of (1.13) in hand, we can give now the characterization
of the controllability property in terms of a moment problem. We refer to [1, 25, 43] for a

detailed discussion of the subject.

Theorem 3.1.2. Let T >0, f € L*(0,2r) and ug € L2(0,27), such that

up(z) = > ape™ and f(z)=> Fe™®.

nez neL

Then, there exists a control v € L*(0,T) such that the solution u of (1.13) wverifies
uw(T,z) = 0 if, and only if, v € L*(0,T) satisfies

T
fn/o v(T — s)esds = —ale™, (3.2)

where A\, = —in(n* +n? — 1) are the eigenvalues of the operator A defined in (1.16).
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Proof. We consider the “adjoint” system

Yt — Psz + P3z + P = O, in (Oa T) X (07 27T)7
dlp(t,0) = dp(t,2m),  in (0,T), (3.3)
SO(T7 I’) = QOT(‘T)? in (07 27T)7

for j =0,1,2,3,4. If we multiply the equation in (1.13) by  and integrate for parts in
(0,T) x (0,27), we deduce that v € L*(0,T) is a control for (1.13) if, and only if, it verifies

T 2 27
/ v(t)/ f(x)p(t, x)dxdt = —/ uo(2)p(0, z)dz, (3.4)
0 0 0
for any solution ¢ of (3.3). Since (e™"*)
check (3.4) for solutions of (3.3) of the form p(t, ) = et=DAre=m= 5 € 7. Thus, it is

straightforward to deduce that (3.2) holds. O

nez 18 a basis for L2(0,27), it is sufficient to

3.2 A Biorthogonal Sequence

This section is devoted to construct a biorthogonal sequence (®,,),ez mentioned in
the previous sections. By using Paley-Wiener Theorem, it is obtained as the inverse Fourier
transform of a family W,, of entire functions of exponential type, such that V,,(i)\,) = dyn,
where §,,,, is the Kronecker symbol. Each ¥,, is obtained from a Weierstrass product P,,
multiplied by an appropriate function M,, with rapid decay on the real axis. Therefore,

for any m € Z*, we first introduce the function

P.(z)= ] (1 + Z) (AHA—HA,) (3.5)

neZ* n#m

where )\, are the eigenvalues of the operator A defined in (1.16). Since A\_,,, = \,,, we

prove the following result:
Lemma 3.2.1. P, is an entire function of the exponential type, such that
Po(iX,) = 0pn, mEZL,

where O,y 1S the Kronecker symbol.

Proof. We obtain the result by analyzing the following products:

. A,
En(z)= ]I ‘1 +2 and Qu= J[ |-~ (3.6)
n€Z* n#m An nEZ* n#m An = Am
First, observe that, for any z € C,
1z 1z 1z 12
En(2)= ]I ‘HA 11 ‘1+>\: I1 ’1+A 1+ =
neZt n#m "N neZ— n#m n neEN* n#£m n An
00 22 1 00 22
= exp Zln 1- 2—|—2iz7€<> = exp Zln 1- 51 -
=t |An] An =t |An]




3.2. A Biorthogonal Sequence 71

Since

Zln

1—

Els > Els > Els
<Zln 1+2|)\ E SZln 142 §/ In{1+2—/ |dx,
0

= fﬂzl,

we get
Ep(2) < exp(v2rlz]). (3.7)
For @),, have that:
An 1 ’)‘n|2
on= I 211
neZ* n#Em )\n - )\m 2 nEN* n£m |)\n - )\m”)\n + )\m|
= l H L H | An—m | Antm] '
2 neN*,n#m ’)‘n—m||/\n+m‘ neEN* n#£m |)\n - >‘m|’)‘n + )\m‘
@ Q2
Then, the next steps are devoted to estimate Q}n and an.
Qb= 1] 5 !/\ﬁlj ’ < AP A2 A [P A 2 - - - |)\2m;o1‘2|)\2m‘20’o)\2m+1|2 e
neN* n#m | \n—m||Antm |/\m_1| .. |)\1||/\m+1| . |)\2m_1| H |)\n| H |)\n|
= n=2m+1

5 3
Ao _ [32m° + 8m %n|<(1
Al |m>+m3 —m| —

where C' is a positive constant.

To evaluate Q?,, we proceed as follows:
| Al Ansm| 10 (1 L Pl D] = P = Al A + )\m|>
neN* n#m |)\n _)\m||/\”+/\m| neN* n#£m |>‘n_/\m||)‘n+)\m|
- ] LHM%%WMMM—MM%+MM
A = A An + A

< I <1+¢AnmAn+ms—(An——Ang<An+-Amn>

= n—m\n+m n_>\m )‘n )\m
=exp| ) 1n<1—|—|>\ An (A JOn + N))

<en( 3 ('An—mmm—<An—Am><An+Am>\>>

n=1,n#m ‘)‘n - )‘mH)\n +)\m‘
s 8f(n 6, (n 41 (n
cep| 3 5m®f(2) +4mPg(2) + 13m h(m)) |

n=1,n#m a(m, Tl)

neN* n#m

where

ft) =t —t*+1* gt)=t*+t* h(t) =1t

a(m,n) = (n* +n’m + n*m? + nm® + m* + 0’ +nm+m? — 1)x

In* — ndm + n?m? —nm® + m* +n? —nm +m? —1].
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In the remaining part of the proof C' will denote a positive constant that may

change from one estimate to another, but it is independent of m.

Observe that the function f(¢) satisty

t2,if 0<t<1
t) < - =
f()_{tﬁ, if t>1.

Then, if n < m,

m—1 5 8r(n m—1 n* m=1 4 -1 2
m f(m) < 5mS8 m—z Z — < Hm / —dt—Smﬁm < 5m
n=1 a(m,n) =1 = n? m —
Ifn>m,
00 5 8r/n 00 nb 00 2
B a(m,n) nm+1”(” m) nmﬂ(n—m

In what concerns the function g(t), have that

g(t)<{ (t+1)%if 0<t <1,

26, if t>1.
When n < m,
! 2mbg (L) —1—1)2 (At m)? n? +2nm+m
< 2m°® < 2m! < 2m*
5 Sy <o S o S b
m=1,1  2m m?
4 6

If n > m, we proceed as in (3.8). In this case, we use the fact that g(t) < 4t°, for ¢ > 1.

Finally, to estimate the term involving the function h, we also proceed as before using the

h(t)<{t2’ if 0<t<l,

following estimate:

o if t>1.
Combining the estimates above, we deduce that
Qm = Q?angn < exp(Cmﬁ).
From (3.6), (3.7) and the above estimate we conclude the proof. O

Remark 3.2.1. Lemma 3.2.1 remains valid if we consider the following linear equation
associated to (1.12): up + Yuy + QUgpy — BUgrpeae = 0. In fact, the differential operator
associated to the space variable is given by Ay = B0>u — ad3u — vOu : HS(O, 27) —

L?(0,27), whose eigenvalues are

M = —ik(BK* + ak? — ), ke Z.
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Hence, it may occur that not all eigenvalues are different. If we count only the distinct
eigenvalues, we get a sequence {\}rer, where I C Z have a property of \g, # Ak, for any
ki, ko € 1. Then, for all ki € Z, we define

I(ky) = {k € Z: k(Bk* + ak® — v) = k1 (B} + ak? — )}

and |I(k1)| = m(ky), which has the following properties:

o m(k)) < 5. This is a consequence of the fact that the polynomial p(z) = x(Bx* +

ax? — ) has a mazimum of 5 distinct roots.

e \y = 00, as k — doo. Then, there exists k* € N, such that m(k) = 1, for all
k| > k*.

To prove Lemma 3.2.1, we have assumed that I(ky) is a unitary set. This is due to the fact
that, in the original model, we have assumed that o« = =~ = 1. If this is not the case,
we can also prove the result by using the same approach. Indeed, following the notation
introduced in the proof of the lemma, we have that
2
A= I nth
neN* ngI(m) 17\n—mll/\ntm
mi—1 A2 ma—1 2 00 |2

- II

n=1 |/\n—m||)‘n+m| mi+1 |)\n—m||/\n+m| m];[rl |/\n—m||/\n+m| '

Then, proceeding in a similar way, we can estimate each term of the product above. For
2

m?’

we use a similar argument.

From Lemma 3.2.1 we obtain the following estimate for P,,, defined in (3.5):
|Po(2)] < exp(Crr(|2] +m®),
where C' is a positive constant. Consequently, on the real axis, it follows that
| P ()] < exp(Cy(|z] +m®), (3.9)
for some C] > 0.

The next proposition guarantees the existence of a entire function (of exponential
type) which plays an important role in the construction of the biorthogonal sequence. It is
an appropriate multiplier that compensates the growth of P,, on the real axis. In order to

prove the proposition, the following technical lemma is needed.

Lemma 3.2.2. If x > m5, then

7] : z B _ 6 1
3 1nm:—/6 (W =—m+1,, (3.10)

u

j=mS

where B(u) = #{n :n < u}.
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Proof. Firstly, we remark that the function B has the following properties:

o If j <wu<j+1, we have B(u) = j.

o If [z] <wu <z, then B(u) = [z] and B(u) > x — 1.

Hence, we have that

_* B(u) _ [%_:1 /m Biu) i /H B(u) "
/ "I

mé U j=m$ ()

/ mdu

[w] 1 [2]—1 N .
TR e
]ngjln |+ [1'] In =1 jl_n[l6 (] _|_1)J (x)
| e ) (] = D ([
(S + D7 (S 21 ()R (o)E

(m6)m6—1 [x]-1 ] T m6 _ [] 'j ‘
s Il = — d 1
G AL dut 3

j=ms x mb

j=m®

O

As remarked above, Lemma 3.2.2 allows us to prove the following result, inspired
n [21]:

Proposition 3.2.1. For each m > 1, there exists a function M,, : C — C and positive
constants Ky, Ky > 0, such that:

e M,, is a function of the exponential type,
o |M,(2)| <exp(Ki(mb—|z|)),Vz €R,
o |Mn(idm)] > exp(—Kam®),
where Ay, = —im(m* +m? — 1) are the eigenvalues of the operator A defined in (1.16).

Proof. We follow the ideas introduced in [21] and define a function M, : C — C as follows:

> sin
M) = I1 ), G.1)
n=m3 n2
Since Z — < 00, the first property is a consequence of the following estimate:
n=1
N sin( %
11 ~ < H exp <"> = exp(]z] Z ) < exp(Clz|),
n=m3 n2 n=m3 n= m3
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for some C > 0.
To prove the second property, we proceed in two steps, as follows:

o If || < m®, then

o0

(M ()] = ]1

n=m3

sin(-3)

<1 <exp(m®—|z).

z
n2

o If [z| > mS%, we apply Lemma 3.2.2 to deduce that

1 1
0 |gip(L (l=12] 2 (lz12] 2 [|[] 2
M (z)] = ] Slni"2> < II n—:exp > In <exp| Y In
n=m3 n2 n=m?3 |93| n=m3 |:L”| n—=mb6 |1'|
lzl B(u) —m®+1
= exp <— ) (w) =m” + du) .
m u

Since m® < [|z|], from the estimate above, we obtain a positive constant satisfying

2l B(u) —mS +1 || —1-mf+1
| M, (7)] < exp <—/“ () = m” + du> < exp (—/[ i met du)

|

~exp (<m6 - \xmnz) < Cexpm® — [a]),

where C' is a positive constant.

In what concerns the third property, we observe that mb > |\,|, i. e., —7; <1
n
Then,
00 1 WAm 00 : [Am | 00 2
. sin n2 SlH(T> 1 |)\m’
| Mo (iAm)| = H igm ) - H |>\m|2 = H T e 4
n=m3 n2 n=m3 nZ n=m3 6 n
- LA Al o5 1
= In(1-—-= > — —
o £ n(1-5F)) 2o (5 25
mﬁ o0 1 6
> - — ——C
=P ( 30 &, n2) = eXp( 30 ) ’
for some C' > 0. L

Now we have the tools we need to construct a biorthogonal sequence to the family
(€M) nezs in L*(=%, %), T > 0.
Theorem 3.2.1. There exists a constant Ty > 0 and a biorthogonal sequence (©,)mez+ to

the family (e=*"),ez- in L*(—L, L1). Moreover,

1Ol 2z 1) < Cexp(bm®), (3.12)

where C' and b are positive constants.
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Proof. For all m € Z*, let P,, and M,, be the functions defined in (3.5) and (3.11),

respectively. We also define the function

- My (2) 1% sin(d(z —i\y))

where § > 0 is an arbitrary constant, C} is given in (3.9) and K; in Proposition 3.2.1. Let
1 .
On(t) = — / U, (2)eit dz. (3.13)
27 JR

From Lemma 3.2.1 and Proposition 3.2.1, we deduce that there exists T> 0, such that
¥, is an entire function of the exponential type % Moreover, from the estimates for P,

and M,, on the real axis (see (3.9) and Proposition 3.2.1) we obtain

sin(8(z — i) |

C1 Ko
/|\If 2)|%dz < e 1’6/ . dx
R (5(.%2— Z)\m) (3_14)
C1K 1
< ?62(20 1+ 12) 6/ sin ¢ dt < Cleme,
R

where b = 2 (201 + Ck—?) Taking into account the properties of ¥,, and applying Paley-

Wiener Theorem, we deduce that ©,, has support included in (—g, g) and ©,, €

L*(-1, 5) Moreover, from the properties of the inverse Fourier transform we have that

the sequence ©,, is biorthogonal to (e *mt),,cz in L? (—T, T). In fact,

z z sin(0i(An — Am))

- OnOe = [ O P dt = W (ida) = Pu(id, ) .
/5 enoe [ Onle (i) = Palid) =50
Finally, the estimative (3.12) follows from (3.14) by using Plancherel Theorem. ]

Remark 3.2.2. Let ©,, be given by (3.13). From the proof of Theorem 3.2.1, it follows
that ©,, has support included in (— L.L) and

b«

18 L z) < Cexp(bm?®).

The following result gives the existence of a new biorthogonal sequence with better
norm properties than the one from Theorem 3.2.1. In order to prove it, for a > 0, we
define the following auxiliary functions:

V2 .
7 (Xa*Xa) and  pp(z) = ™

Ka(T), (3.15)

Rg =

where x, is the characteristic function of the interval [—%, §]. Observe that s, and py,

satisfy the following properties:

° Supp(/fa) - [_a7a]7

. @(f) _ 4 sin®(($)9)

a2 52 )
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Then, we have the following result:

Theorem 3.2.2. There exist positive constants T > 2w, b and C' and a biorthogonal

sequence (G )mez to the family (e=*m%),,cz in L*(—L, L), with the property

272
2
_T

2

2
dt<C > e 22

nez*

Z CmGm (t)

nez*

for any sequence (¢;,)nen-

Proof. Let (©,)mez- C L*(=T,T) be the biorthogonal sequence given by Theorem 3.2.1.
Define

1

Gmt) = 27 pm(iAm)

(Om * p)(t), meZ,
where p,, is the Fourier transform of p,, defined in (3.15). Since ¢, € L*(=T — a, T + a),
take % =T +a. Then, applying the properties of convolution, it follows that ((y)mez is a

biorthogonal sequence to (e=*m!),.cz. In fact,

T T
2 D) L ~ 271' ~
: Ant gy — [ 2 —i(ida)t g — 9 Ny AT N A g
[  GnlO)ea [ 1 GO0 Ol = 21 (i) = 5= O (i) (i)
1
5y ()i
Moreover,

2
</ ( > \cm||rém|rmwa<x—Amn) da

/OO
—0o0

a
<

—a

2

> lenl|Omllemma(t)e™*) dt

meZ*

2

3 lem|Omll e @e™t| dt.

mezL*
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Remark that |A,+1 — Ap| > 1, for all m € Z*. Hence, from Ingham inequality and Remark
3.2.2, we get

L.

2

a iAm o mO
> lemlll®mlle@e™™| dt < 3 lem|*[Omlem < D lemle™ . (3.16)

mezZ* mezZ* meZ*

]

3.3 Controllability

This section is devoted to prove the main result of the chapter. In order to do that,

for any S > b, where b is given by Theorem 3.2.2, and f as in (1.18), we define the space

2

A

hy,

~

Jr

H= he L*0,2m): > pke

keZ

e’V < ooy (3.17)

Then, our main result reads as follows:

Theorem 3.3.1. Let f € L(0,27) a function verifying (1.18) and H defined by (3.17).
There exists T' > 0, such that, for any initial data ug € 77, there exist a control v € L*(0,T)
for which the solution of (1.13) satisfies u(T,x) = 0.

Proof. Let T > 2w and ((n)mez- given by Theorem 3.2.2. For ug € H given by up(x) =

> e, define v as follows:
keZ

o(t) = —mzejz fi A, ( _ :2r> C te(0,T). (3.18)

From the properties of the biorthogonal sequence ((y,)mez, we deduce that v is a control
that satisfies (3.2), i. e., leads the solution to zero. Moreover, v € L*(0,T). In fact,

2
r 29, r . ﬂgn T . Z m|2 b’
lo(t)|?dt = > e Mg, (¢ dt < C Z <C, (3.19)
0 0 meZ fm 2 meZ | m‘2
for some C > 0. O

3.4 Comments and Open Problems

We close this chapter with some comments and open problems:

« Following the approach employed in this work, Theorem 3.3.1 can be proved for the
KdV equation with similar statements. In this case, our analysis can be simplified

due to the absence of the fifth order dispersive term.
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« In [31], the authors consider the following parabolic type control system

wp +i(—02)2u — ed2u = f(x)v.(t), in (0,T) x (0,7),
u(t,0) = u(t,m) =0 in (0,7),
u(0,x) = ug(x), in (0,m),

where v, is a control and f is a given profile. For € = 0 the system is of hyperbolic
type and the authors show that the control steering the hyperbolic system to rest
can be approximated by a sequence (v.).s¢ of controls of the parabolic system when
€ — 0. The proof is based on the moment problem with respect to the nonharmonic
Fourier family (e*),ecn, where \, = in —en?, n > 1, are the eigenvalues of the
corresponding differential state operator. More recently, in [10], the same problem
was studied for the linear wave equation by introducing a viscous term which contains
a fractional power of the Dirichlet Laplace operator. It is a difficult problem that

remains unanswered for the Kawahara equation.
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4 Unique continuation for a higher order KdV-
BBM equation

In this chapter we are interested in the unique continuation issue for the initial
value problem associated with a higher order water wave model on a one dimensional torus
T = R/(27Z). In the literature, the model under consideration is also known as the higher
order KdV-BBM type equation.

4.1 Carleman estimates

In this section we prove some UCP for the following KdV-BBM equation
Ut_blUt:c:s+bUtzmmz+auxmzzz+q<u>Um +p(U>ng;m+T(u)uzz = 0, ((L’7 t) (- T x (O, T), (41)
where g(u) = 1+ Ju — 3u’, p(u) = a1 + 2yu and 7(u) = (67 — 57)us.

Theorem 4.1.1. Let a,b # 0, T > %Ib and q,p,r € L>(0,T;L>*(T)). Let w C T be a
nonempty open set. Let w € L*(0,T; HY(T)) U L>(0,T; H3(T)) satisying (4.1) and

w(z,t) =0 fora.e (x,t) €wx(0,T). (4.2)
Then uw =0 inT x (0,7T)

Proof. Assume that
u € L*(0,T; HY(T)). (4.3)

Let w = u — byUgy + bgper € L*(0,T; L*(T)). Then (u,w) solves the following system

U — DjUpy + OUpppy = W (4.4)
b
wy + %wx = (% — q)Uy — (% + D) Uz — Ty (4.5)

We shall establish some Carleman estimates for the elliptic equation (4.4) and the transport
equation (4.5) with the “same weights”, and combine both Carleman estimates into the

single one for (4.1).

Remark 4.1.1. There is a finite speed propagation for KdV-BBM: assuming for simplicity
that g(z) = %, p(z) = =2 and r(z) = 0 for all x € T, where a > 0 is given, and that
w = (27 — €,2m) for a small € > 0, then the UCP fails in time T < 17(2%:25). Indeed,
picking any nontrivial initial state uy € C§°(0,¢€), we easily see that the solution (u,w)
of (4.4)-(4.5) is u(w,t) = ug(x — $t), w(z,t) = wo(x — §t) where wy = (I — 02)ug. Then
u(z,t) =0 for (x,t) € w x (0, @) although w # 0. Hence, the condition T > % in
the Theorem 4.1.1 is sharp.



82 Chapter 4. Unique continuation for a higher order KdV-BBM equation

Introduce a few notations. We identify T with [0,27) by chossing a system of
coordinates. Without loss of generality, we can assume that ¢ > 0, and that w = (27 —
n,2m+n) ~ [0,7)U(21 —n, 27) for some n € (0, 7)(by choosing the origin of the coordinates

inside w). Assume given a time 7" fulfilling

T > %—W (4.6)
a
Pick some numbers § > 0 and p € (0,1), such that
pcT > 21 + 0 (4.7)
and a function ¢ € C*°([0, 271] x R) satisfying
b(z) = (x + )2 for z € [g, o — g], (4.8)
Zl;f (0) = ZZZ: (2r)  fork=1,2,3,4,56,7, (4.9)
26 < jli)(x) <227 +9) for x €0, 27]. (4.10)
Introduce the function ¢ € C*°([0,27] x R) defined by
o(x,t) = p(x) — pc*t?. (4.11)

Then, the following Carleman estimate for (4.1) will be derived.

Proposition 4.1.1. Let w,c and T be as above. Then, there exists some positive numbers
sy and Cy, such that, for all s > sy and all uw € L*(0,T; HX(T)) satisfying (4.1), we have

/OT /T[s|umm|2+s|uxm|2 + 8% |ty |? 4 8% ug|* 4 57 |u|?]e**Pdadt (4.12)
+s /THU — b1y + Dllgrs|* €] i—odx
<Oy /OT /w[s\umm|2 + 83| uge |* + 57 |ul?|e** P dadt.
Note that the Carleman estimate (4.12) yields at once the observability inequality

T
[u(, )l ma(r) < C/O e, )1 dt- (4.13)

Proof. The proof of Proposition 4.1.1 is outlined as follows. In the first step, we prove a
Carleman estimate for the elliptic equation (4.4) with the weight e*¥. In the second step,
we prove a Carleman estimate for the transport equation (4.5) with the weight e*#. In the
last step, we combine the two above Carleman estimates into a single one to obtain (4.12).

Step 1. Carleman estimate for the elliptic equation

Lemma 4.1.1. There exist sy > 1 and Cy > 0 such that for all s > sy and all v € H*(T)
the following holds

/[s]umzl2 + 83 Uge |2 45%|ug|? + 87 |ul?]e*Vdx (4.14)
T

S C’0 (/ |uxmmx|262swdx + / (S7|U|2 + 33|ux1»|2)€28¢dl'> .
T w
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Proof. Let v = e*¥u and P = 9. Then,
e Pu = e* P(e™*“v) = Py + P
where
Pyv = (") + 3522, + 45*Wupo e )V + 128200005 + 65°Y 2000 + Vsgaas 4.15)
Pov = — (65120 + 5Uppea)V — (48°02 + 45000 )V — 65U0aVps — 480aVspe.  (4.16)

It follows that
le*? Pull® = || Bol|* + [| Pavll” 4 2(Ppv, Pov),

where (f,g) = Jy fgdz, and |[f]| = (f, f). Then,
(va> an) = ((34¢§ + 332 ix + 432wmcx¢:r:)va —(633%25%1 + Swazmcx)v)

+ ((s*2 + 3522 4 48" Ppaathe )V, — (45303 + 451400 )0,
(s"vy + 352 R N DRSS Ly

+ (
+ ("3 + 3522, + 48" Wppathe )V, —48U0V0zn) + (1282030000, —(65° Y2000 + 5Vpran)V)
+ (128 ¢w¢$xvzu (433¢2 + 48¢mz)%) + (1282¢$¢$zvxa _68¢$zvx$)
+ (128 wx,lvz)xa:va:a 4S¢xvx$x) + (682¢2v$m _(633¢i¢xac + Swmxmx)v)
+ (65°Y 205, — (45°12 + 48Upr)V2) + (68°120,0, —68Uass) + (65°0 2000, —4804 V00
+ (Ux:r::vxa (683¢§wx9§ + STATI:L‘Q:)”) + (Uxxxﬂm —(433%% + 4waxx)vx) + (Uxxx:m _6Swmﬁvxaz)
+ (sz:pxa 437%%3:9@)

16

~S°1,

n=1

After some integrations by parts in x, from (4.9) we obtain that

Ii= = (5004 3202, At (65 + St
Iy =— /T ("9 + 35°02, + 45 Vuuaths) (48°Y2 + AsUgps ) v0d2
=[50+ 35202, + 4530t (2575 + 250U i
Iy = = [ (5" + 35%02, 4+ 45%00ut) (650000 )00yad
= [I(" 08 4 35202, + 45 00a) Ot vy
1%+ 35202, + 4%ty (65, ) oda
= — [ 15" + 35502, + 45 uauth) (351500 o d
1" 08+ 88202, + A5 aths) (G562
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I = = [ ("0 + 3%, + 45, Ut 00
= [I(s"08 4+ 88702, + 4%t sl vtyada
(5 + B8, + A5t st e
= — [1(" 0 4 38202, + 45t st asvvyde
- /T (52 + 35202+ 4s?,putb, )dstb ] vde
- /T (518 + 35202+ 4s,uuty ) 250,02 de
= /T[(841/1§ + 3522, + 450000 ) 25U ) pa v da
— LM+ 3202, + AP )50
Is = = [ 125500000 (65" 0000 + Strns)vada
= [ 1652060 (65020 + SV v d
Is = — /T 125203000 (48°2 4 48400 )02 d0
I; = —/Tl232¢xwm6swmvxvmdx = /T[36s3¢x 2 Jevide
Iy = = [ 1282000500000 = = [ 4850200,
= /T[4853wzwm]zvwidx + /T4833¢2¢mvixdx
= — [RAs* R ide + [ 48572002 de
Iy = = [ 655026520 + SVsaza )V
= 10520265 2 + U av0a + [ 657020502 + 502
= — [BPUO e + 5t a4 [ 6520205V g + )0
Iio=— /T 65%12 (455> + 45V 400 )UpVpedr = /T[3521/1§(4s3¢2 + 480400 )| 202 dT
Iy = = [ 65265002, dr = — [ 365%020,0kd
Iy = _A652¢245wxvzmvxxxdx = /T[12531p3]xvixdx
hs = = (0502 0s + $tarne)Vrsaat = [ [05020s + $tsree) s0ruadls
+ /T (65° V20000 + $UVsaa)VaVagada
=— /T [65° Y2000 + $Upaen) e VVzpda — /T [65° V21000 + $Usnan)]aVaVaad

- /[653%201%1 + S¢xzxz)]xvzvxxd$ - /(633¢§¢m + wamcx)vizdw
T T
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= 16550200+ $thaasr 002 + [ (65020 + S st
b [105°020e + U)ot = [ (65 0200s + St
= — /T ;[63%5% + Vugen) | eaavda + /T 2[65°020s + 5Uaran)|aav>dr
— (650200 + )i
Ly =— /T (45°Y2 + 45100 Vs Ve d = /T [(48*92 + 4stpy4)] 0 Ve Vgupd
+ /T (45°2 + 480 400 ) VenVppadT
= — [15™2 + 4500 artivarde = [ [As3 + Asthar)0?, do
— [l25"02 + 2500 da
= 1250 4+ 250 ran)luavld — [ 3[(250 + 280 ltde
I = = | 650ustrstareads = [ 6500startipnede + [ Ostp?, da
= — [ 3svrmlde + [ G5t do
T T
Iig = —/ 45 Vpa Vaprrdr = / 281/1mv§mdx.
T T
Therefore,
eV Pul|? = || B2 + || ool + 2/ ha () v?da + 2/Th2<¢)v§dx+ (4.1
2 /T ha ()02, d + 2 /T ha(0)o?, do

where

ha(¢)

("2 + 3522, + 48P0 tly) (25°03 + 250000 )],

— (") + 35%Y2, + 45" Yuuathy) (65° 200 + Sz

— [(s"y + 35°0%, + 45" raths) (35w )|

+ (5" + 35°02, + 45" ua0tha) 25U ]ara

+ (12570850 (65°0 2000 + $Uiaea)o — [38*Y2(65° 02000 + $¥in)aa

1

ha(9) = [(5"0; + 35°0%, + 45™naathe) (6510s)] — [(8"05 + 35°0%, + 4% 0aths) 6510 ],
— 125° 0,000 (45° 02 + 48t00) + [365° 00002, ] — [245° 02000 )00
+ [35%2(45%)3 + 45¢00) o
+ 2[65% %000 + SUszen)]ze + [(25°0° + 25800 |vwe + 6572 (6502 W0y + SUpens)
ha(1) = 485 Y ey — 365703 0ne + [125°030]0 — (65°03 000 + $Yaan)
3[(25%0% + 250400)|e — 35V sa0a
ha(¥) = 65Uy + 250p = 85Uy,

7)
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From (4.8), we infer that there exist some numbers sy > 1, K > 0 and K; > 0 such that
for all s > s,

2h () > Ks"  for (z,t) € (5,27r - 5) x (0,7),
2ho(1)) > Ks°  for (z,t) € (g,% - g) % (0,T),
2hs(1)) > Ks®  for (z,t) € (gzw - g) % (0,T),
2hi(h) > Ks for (z,t) € (g,27r - g) % (0,T),

while, setting wo = [0, 2) U (27 — 2,27 )

2 (¥)] < Kis' for (1) (
2ha(¥)] < Kus” for (1) (
|2hs(v)]| < for (z,t) € wy x (
2ha(P)| < Kys for (x,1) (

_/\
N

Then, from (4.17)
1Pl + [[57[0f + $leul? + 5%fvre 4 s[vaze }da
=Bl + [ 5Tl el 5 + el
wo
TP+ 0l foaal? o+ el
wo
<Pl + [ 5710 4 5% [0af? + 5% + 5[0z ]
wo
O [2h1 () [0]* + 2ha () va]* + 23 () [vaw* + 24 () Vs |*]de
< [Pl + / (8710 + 8°[vs|” + 8°[vga]* + 8[Vzaal]d2
wo
+ CA[2h1(¢)|U|2 + 2ha ()] + 2ha (V) [vas|* + 2ha(¥) [Vaa|*]d
<C <||e‘”z’PuH2 +/ [s7|0]? + 8°|ve|* + 8% |vae|® + s|vxm|2]das> .
wo
We conclude that for s > sg and C' > 0
151* + /T[37|U|2 + 8% (Vo l* + 8 vae* + 8[vgss|’]da (4.18)
< C (e Pull* + [ (STl + 5luuf? + 5%[0caf? + sltea ).
wo
Next we show that [ 87 |vgsee|*dz is also less than the rigth hand side of (4.18). We have
/ “MNpeee P dr = / sTHPw — (8" + 35%02, + 48°Wppan )V — 128%0,00,,0, — 68°020,,[*da
< C ST + 1% 4 350, + 45t 0 + 12820 e onf? + 0502 2 v )
<Cs! (HPpUH2 + /T(38]v|2 + st |2 + s4|vm\2))

= O (7Bl + [Tl + 5o+ o))
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Combined with (4.18), this gives
/T{s’l|vmf,x,;|2 + 8Vpzx|? + 8% Vea|® + 8% 0?4 87 |0]* }da
<C (TR0 + [Tl + a4 5 lel®) + [ (sloaael? + 5 el + 5°lenf? + 5710 )
<C <s‘1\|va|]2 + /T(s\vxm\z + 8 v |* + 8% |vg|* + 37]U|2)) :
then we have
A{s’llvmzmxIZ + 8|Vgaz|* + 8%V |® + 8|0z |* + 8T |0]*}dx
<C (TR + [(slowaal + 5%0ael? + l0af? + 7o) ) (4.19)

where C' does not depend on s and v. Finally, we show that we can drop the terms v,, vz,
on the right hand side of (4.19). Let £ € C§°(w) with 0 < ¢ <1 for x € wy. Then,

/wo v |*dz < /M«S|vx|2da: = /wgvxvxdz
== /w (&xvs + &gy )vda

1
= §/§mv2d:t—/§vmvdx

so that
2/ s|vg[Pdx < HfszLoo(T)/ s]v|2dx+/<c/ s’llvm|2dx+/ s*|v|*dx (4.20)
wo w w w
and
/ |Vpaa| *dac S/€|szm|2dx:/£vmmxvxzmdx
wo w w
=— /w (€eVaaz + EVr022)VaadT
= ; /w EaaVppd — /w VrraaVead.
Then,

2 [ 5|Upgs|?dr < ||§m||Loo(1r)/ s|vm|2da:—|—/i/ S_1|vmm|2dm+/€_l/ §%|vge|*d, (4.21)

wo

where k > 0 is a constant that can be chosen as small as desired. Combining (4.20) and
(4.21) with s small enough gives for s > so(with a possibly incresed value of sy) and some

constant C' that does not depend on s and v
R e O RO e [ i (4.22)

C (e Pull*+ [ (5Tl + 5*luel)da ).

Replacing v by e*¥u in (4.22) gives at once (4.14). The proof of Lemma 4.1.1 is complete. [
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Step 2. Carleman estimate for the transport equation.

Lemma 4.1.2. There exist s; > sg and C7 > 0 such that for all s > s1 and all
w e L*(T x (0,T)) with wy + $w, € L*(T x (0,T)), the following holds

T
/ /s\w\2625“’d1‘dt+/s[|w|2625‘p]t:0d3¢+/s[|w\262w]t:de (4.23)
0 Jr T T

T T
<C </0 /T]wt + %wxPeQS‘dedt —i—/o / 5|w|2625“’d:6dt> :

Proof. The result was proved in [39, Lemma 5.5]. For the sake of completeness we have

included the proof in Appendix 4.3. ]

Let us complete the proof of Proposition 4.1.1. Let u € L?(0,T; H*(T)) satisfying (4.1)
and let w = u — b1Uyy + DUgeer € L2(0,T; L3(T)).

Then w; + 4w, = (% — Quy — (L + P)Uygs — TUze € L*(0,T; L*(T)). Combining
(4.4),(4.5),(4.14) (multiplied by e2“* and next integrated over (0,7)), and (4.23),

we obtain for s > s; that

T
/ /[s|u$m|2 4 8|y |? + 8% ug|? 4 57| ul? + s|u — bitlee + bligees|?]e®Pdadt  (4.24)
o Jr

+ / [S|U - bluaxz: + buzz$$|2e2s¢]t:0dl’
T

ab1

T
S C/ /HUUCCEJEI‘2 + |(g - q)uﬂﬂ - (7 +p)uxmx - Tuzx’2]€28<pdxdt
0 JT b b

T
+ C’/ /[s|u — iUy + DUgrga|® + 8 [ul® 4 53| use [*]]e** P dadt.
0 Jw

Then choosing s > s and Cy > C' large enough, we obtain (4.12) for any s > s, and any
u € L*(0,T; H4(T)) satisfying (4.1). O

We are now in a position to prove Theorem 4.1.1. Pick any function fulfilling (4.1)
and (4.2). If w € L?(0,T; H*(T)), then it follows from (4.12) that =0 in T x (0, 7).
Assume now that v € L>(0,T; H3(T)). We proceed as in [39]. Since u and w = u — byuz, +
bu .. are not regulat enough to apply Lemmas 4.1.1 and 4.1.2, we smooth them by some

convolution in time. For any function v = v(x,t) and any number h > 0, we set
1 yt+h
oM (z,t) = ﬁ./ v(z, s)ds.
t

Recall that if v € LP(0,T, X), where 1 < p < oo and X denote any Banach space, then
ol e Wp(0,T — b; X), |0 2oo.r—n:x) < ||v]|Leor.x) and, for p < oo and T" < T,

oM — v in LP(0,7";X) as h — 0.

In the sequel, v denote (v");, vl denote (v[M),, etc. Assume again that a > 0. Pick any
T € (2=, T), any pair (p,d) such that (4.7) still holds with 77, and define the functions v
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and ¢ as above. Then, for any positive number h < hg = T — T", ul") € W>(0,T', H3(T))

and it solves

! — bty + biig, + aulll, o+ (q(w)un) + (p(1) ) P (r () ) (4.25)
=0in L>®(0,7’; H*(T))
u(z,t) =0 in (2,t) €wx (0,T"). (4.26)

From (4.25), we infer that

[h]

uIL‘III$1E:IJ

= a N (—u  oyulld, — bul L — ()™ — (p(W)tgen) ™ — (r(w)ug,) ™) € L0, T'; HY(T)),

hence

u"h € L0, T'; HY(T)). (4.27)
This yields, with (4.4)-(4.5),
wh = oM — ot 4 pulh e 1200, T L3(T)) (4.28)
a ab
wi' -+ bw[’“ =[(5 —a)ua]" - [(71 D)t = [ruge]® € L°(0,T'; LA(T)).  (4.29)

From (4.25)-(4.29) and Lemma 4.1.1 and 4.1.2, we infer that exist some constants s; > 0
and C7 > 0, such that, for all s > s; and all h € (0, hg), we have

Tl
/ /[s\u[h] 12 + 2l + P ul)? 4 TP 4 s|ul | P)e? P dadt (4.30)

TTT TTTT
2

le**?dxdt

a61

<O " LIl (I = @] = [ ] — (]

2

aby + ‘ [T [~ ’2]625“"dxdt

5+

2

<O [" [l + |12 = gy

by

2
<c [ [+ [@—@wl+wz—wm% + [l e edrat
. W _ (2 gyal| s
+ [ LG =] = (G — gt >dadt
T b 2
+/O A [(% +p>ua3a7:c][h] - (alljl —l—p)ugﬂx 62Swd‘%‘dt (431)

? 250t

T/
+/ / [Pt ] — rul?)
o Jr

Comparing the powers of s in (4.30), we obtain that for s > s3 > s;,h € (0, hg) and some
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constant C3 > C}(That does depend of s, h)
[ sl 2+ S + P2 5T ol e
T/
< C’/ / I[( 2 — q)ug " — (% — q)ul Pe*?dxdt
T ab ab

Tl
—|—C’/ / |[Ftuge] ™ — rull|2e252 dydt.

Fix s to value s3 and let h — 0, we claim that

T/
/0 /T H(% - Q)Ux][h} - (% - q)u:[,:h]|26253“”dxdt — 0, as h — 0.

b
[ LU ] — (P 4 gyl Pedadt 0, as b 0.

and

T/
/ / |[Ftge] ™ — rulll Pe?**°dadt — 0, as h — 0.
o Jr

Indeed, if h — 0,

(G =@l = (2 = Qu i L0, T LX(T))

(% —qu)! — (% —q)u, in L*(0,7" L*(T))

Ot D] (P s in 20,7 L(T))
(4Pl = (4 D i L0, T I(T))

[rum][h]—)rum in  L*0,T"; L*(T))
rul = rug, in L?(0,7'; L*(T))

while e3¢ € L>(T x (0,7")). Therefore,
Tl
/ / juMPe23dzdt — 0, as h— 0.
o Jr
On the other hand, u! — « in L?(0,7"; L*(T)), hence

' i
/ /\u[h]|26253‘ﬁdxdt—>/ /|u|26253“’da:dt,
o Jr o Jr

as h — 0. We conclude that u = 0 in T x (0,7"). As 7" may be taken arbitrarily close to T,
we infer that w = 0 in T x (0,7) as desired. The proof of Theorem 4.1.1 is complete. [
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4.2  Appendix-Unique Continuation Property Conjecture

Having the UCP in hands, it is natural to expect that some stability property
could be derived by incorporating some dissipation in a fixed subset of the domain. The
conclusion is that the solutions indeed decay to zero in the energy space H*(T), as t — oo,
provided that the following conjecture is true:

Unique Continuation Property Conjecture: For any uy, € H?(T), if the solution

u = u(x,t) of
Uy + Uy — blutmr + AUz + butmxw:p + Ugrzrs + %uu:v + 7(u2>mx:r - %(ui)az - %(ug)m = O
u(z,0) = uo(x),

with z € T, satisfies
u(z,t) =0, V(z,t) € wx (0,7),

for some nonempty open set w C T and some 7" > 0, then uy = 0 (and hence u = 0).
We are concerned with the stabilization of
Ut + Uy — blut:c:r;_l' AUz + butrxmx + QUgrrre

T 02),+ 2, +a@)h,  (432)

_ Y o 2
= —gUts = V(W )saa + 2 8

u(z,0) = ug(x),
where (z,t) € T x (0,7) and a € C*°(T) is a given nonzero function. Let
w={zeT:a(x)#0} #0.
To guess the expression of h, it is convenient to write the linearized system of (4.32) as

u = Au + Bk, (4.33)
u(0) = uy, (4.34)

where A = —(I — 0102 4 b03) " H(0r + a102 + ad3), k(t) = (I — 0102 + bd;) 'h(t) €
L*(0,T; H*(T)) is a control input and

B = (I —b,0> + b0 'a(l — b,0> +b02).

We already noticed that A is skew adjoint in H*(T), and that (4.33)-(4.34) is exactly
controllable in H*(T) (see [6]). If we choose the simple feedback law

k=—B"u (4.35)
the resulting closed-loop system

u; = Au — BB™*u, (4.36)
u(0) = uyg (4.37)
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is exponentially stable in H*(T), where B**® denotes the adjoint of B in L(H*(T)). B** is
given by

B** = (1 — 00?4 019 " 2a(1 — bd? + b0%)5 71 (4.38)
Indeed, observe that
Copy (14 b2® + bizt)s < [(1422)?)% < Chp, (14 ba? + byat)3,

for s > 2 and some positive constants cyp,, Cpp,. Then, we can define the following

equivalent inner product in H*(T) as

(u, v)y = /1r (1 + ba? + biz)s Fu(e) Fo(z)d,

where F¢ denote the Fourier transform of ¢. Hence, employing Plancherel Theorem, we
get

(Bp, ), = /T(l + bx? + bat) 3 F(1 — b0% 4 0,0) " a(z) (1 — bd? + 0103 p(2)] Foo(x)da

- /T (1 4+ ba? + b3 1 Fla(z) (1 — b92 + b,0Y) ()| Fo (x)dar

- /T Fla(z)(1 — b2 + b0 (2)) F[(L — b2 + b,01)5 ()] da
= (a1 = b2 + b, (1 — B2 + 510)5~46) gy
= (1= b02 + 0193)p, a1 — 0O + b107) 7~ ) L2
- /T FI(L = 082 + b,0Y0(2)| Fla(z) (1 — b02 + 0,01)5 (x)|dz

/1r<1 + 02?4 byazt) 2 Fo(x) (1 + ba? + biz*) =2 Fla(z) (1 — 02 + b,0%) 2~ (x)]da

/T(l + b2 + by 2 Fo(x) F[(1 — b02 + b194)' " 3a(x) (1 — b2 + b194) 3~ 1ap(2)]da
= (p, (1= 002 + 010)' " 2a(2)(1 = 007 + b10;) =~ )s,

for all ¢,1 € H*(T). From the computation above we deduce that

B**u = au.

Let A = A — BB*?, where (BB**)u = (I — b;0? + bd*)[a(I — b,0? + b0*)(au)]. Since
BB*? ¢ L(H*(T)) and A is skew adjoint in H*(T), A is the infinitesimal generator of a
group {W,(t)}+er on H*(T) (See [37, Theorem 3.4]).

We have the following exponentially stabilization result for (4.33)-(4.32) in H*(T)
for s > 2 proved in [6].

Lemma 4.2.1. Let a € C*°(T) with a # 0. Then, there ezist a constant 5 > 0, such that,
for s > 2, one can find constant Cs > 0 for which the following holds for all uy € H*(T):

W () uol| s < Cse™|ug|| s for all ¢ > 0. (4.39)
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Plugging the feedback law k = —B*?u = —au in the nonlinear equation gives the

following closed-loop system

Uy + Uy — blut:vm + A1 Ugyy + buthmm + AQUgggze =

Sty (0 )+ 478(%2”)”” + ;(u3)z — a(l = 5, + b au] (4.40)
u(z,0) = uo(z),

where (z,t) € T x (0,7T). Proceding as in [13], we can show that the system (4.40) is
globally well-posed in the space H*(T) for s > 1.

Theorem 4.2.1. Let s > 2 and T > 0 be given. For any ug € H*(T), the system (4.40)
admits a unique solution u € C([0,T]; H*(T)).

Now we show that the system (4.40) is globally exponentially stable in the space
H?(T), but first we show a observability inequality.

Proposition 4.2.1. Let Ry > 0 be given. Then, there exist two positive number T and 0,
such that for any ug € H?*(T) satisfying

2o 2(ry < Ro, (4.41)
the corresponding solution u of (4.40) satisfies

T
lollmcey < 0 [ la(®) eyt (4.42)

Proof. Let T > 2. We prove the estimate (4.42) by contradiction. If (4.42) is not true,
for any n > 1, (4.40) admits a solution u, € C([0,T]; H*(T)) satisfying

o, | m2(my < Ro, (4.43)
and
r 2 1 2
| Nt (@)t < <ol (4.44)
where g, = u,(0). Since a,, = [[ug || m2(m) < Ro wWe can choose a subsequence of (a,), still

denoted by (ay)nen, such that lim,, . @, = . Note that «,, > 0 by (4.44). Set v,, = o
for all n > 1. Then,

3
Un,t + Un,x - blvn,tmz + alvn,mxx+bvn,txxxx + avn,x:ca:xx + ianvnvn,x — Y0y (’Uz)xmx
7 2 1 20,3 2 4
— —a, (V2 e — —at (V) = —a(l — b0 + bO)av,
48a ( n,w) ] n( n) ( 1Y% w)
and

(4.45)



94 Chapter 4. Unique continuation for a higher order KdV-BBM equation

Moreover

[0 (0) [ r2my = 1. (4.46)
Since ||v5,(0) | m2(r) = 1, for all n € N, the sequence (v,,)nen is bounded in L>(0,T; H*(T))
and (vp¢)nen is bounded in L>°(0, T; H'(T)). From Aubin-Lions Lemma (v,,),en is bounded
in C(0,7; H*(T)) with 1 < s < 2, then we infer that we can extract a subsequence of

(Un )nen, still denoted (v, )nen, such that

v, > v in  C(0,T; H*(T)), (4.47)

v, —v in  L®(0,T; H*(T)) weak-*, (4.48)

for some v € L>(0,T; H*(T)) U C([0,T]; H*(T)), for all 1 < s < 2. Note that, from
(4.47)-(4.48), we have that

U UpUnp — @vv, in L0, T, L*(T)) weak-*, (4.49)

(V) 22w — (V) gee in L0, T, H Y(T)) weak-*, ( )

an(V: e — a(v?), in L=(0,T,L*(T)) weak-*, (4.51)

(4.52)

n, T

a2(v3), — a?(v*), in L=(0,T,L*(T)) weak-*.

n

Furthermore, by (4.45),

T T
/0 a5 mydt < h?{gg}lf/o [lavn || 32y dt = 0. (4.53)
Thus, v solves

Ut + Uy — blvtacac + 1 Vgpq + bvtacxza: + AVprzas

1
478(03)90 — gaQ(v?’)x = —a(l — blﬁi + b@i)av, (z,t) € T x (0,7),

+ 5041)% — v (v?) gz —
v=0, in wx(0,7).
If the UCP holds, v = 0 in T x (0,7"). We claim that (v,)nen is linearizable in the sense of

[15, Proposition 9|; that is, if (w,)nen denotes the sequence of solution of the linear higher
order KAV-BBM equation with the same initial data

W, t + Wn,z — blwn.tmm + A1 Wyzy + bwtx:caca: + QWzgraxr = _a(I - bla% + baﬁ)[awnh
wy(2,0) = v,(x,0),
then

sup ||vn(t) — wn ()| g2ery = 0, as n — oo. (4.54)
0<t<T

Indeed, if d,, = v, — w,, then d,, solves

dn,t + dn,x - bldn,txz + aldn,x:m: + bdtxmzz + adzxacmx =

7 1
2002 )a+ 502(03), — all = b0 + b0 [ady ], (4.55)

2
- ianvnvn,x - ’Yan(vn)aca:ac +

d,,(0) = 0.
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Since [|[Wo(t) |l cemzery < Me®t < Me*™ with w, M > 0, we have from Duhamel formula
that, for ¢ € [0, 7],

T 3
| dn ()] g2(ry < Me®T ( /O (I — 6,07 + bai)*lianvnvw||mmdt

T
[ = 0102 4 002) (022l

v 7
[ = 0102 4+ 000 an (w2 ooyt

T 41
The above estimate combined with (4.47)-(4.48) and the fact of v = 0 give us (4.54). By
Lemma 4.2.1, we have that
1w () || 2y < ere” P ||w,, (0) || 2y for all ¢ > 0. (4.56)
From the energy identity for (4.55), we get
T

e 0y — e (O) ey = 2 [ a6 oy

or
2 2 4 2
i 0) oy = I8 ey = 2 [l (0) oyt

Therefore, from (4.56) it follows that

T T
[ (0) 322y < 200 = 3™ )71 | Jlawa(t) — ava(t)[Fgmydt + [ lava(t) |2yt | -
0 0

Combining (4.54) and (4.45), this yields [|v,(0)[|%2(p) = I|wn(0)||7r2() — 0, which contra-
dicts (4.46). O

Theorem 4.2.2. Let a € C™(T) with a # 0, and 5 > 0 be as given in Lemma 4.2.1.
Then, for any Ry > 0, there exists a constant C' > 0, such that, for any ug € H>(T) with
luo|| g3y < Ry, the corresponding solution u of (4.40) satisfies

[, )| g2y < CefﬁtHUoHHQ(Try (4.57)

Proof. From Proposition 4.2.1 and the energy identity

() e = 10Oy = 2 [ Nl adr,  ¢2 0,
we have
(T 2y < (1= 207 [[w(0) 72 ).
Thus,
[u(kT) [Fr2emy < (1= 207" [[u(0)[[72(ry, K €N,
which gives by the semigroup property

Hu(t)H%{z(T) < Ce’“tHu(O)H%Iz(T), for all ¢ > 0.
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4.3 Appendix-A
Proof of Lemma 4.1.2: (See [39, Lemma 5.5])

Proof. We first assume that w € H'(T x (0,T)). Let v = ** and P = 0, 4+ $9,. Then

e Pw = e*? P(e”*%v)
a a
= (—spw — gsgva) + (v + gvgc)

= P, v+ Pyv.
It follows that

e PwllZ2(rw 0.1y = 150 122 ex 01y + 1P| 220y + 2(Bpvs Pav)22ew oy  (4-58)
After some integrations by parts in ¢ and z in the last term in (4.58), we obtain
2 T a a’ 2
2(Fyv, PHU)L2(’J1‘><(0,T)) = /0 /TS(%t + 26%“ + ﬁ@m)’l} dxdt
B / s(pu + 100 )0 [Tz — — /T Ls(pr+ Spa)o?2dt (4.59)
po T T o b T T '
Using (4.9)-(4.11) and the fact that v(0,t) = v(27,t), we notice that the last term in

(4.59) is null. From (4.8)-(4.11), we infer that
2 2

a a a n n

Ort —i—2gg0tx+ 2 Poe = 2(1 - p)b—2 >0 for (z,t) € (5,27{' - 5) x (0,7),
T

—(¢t+%%)22%(“—bp—2w—5)>0 for z € (0,2r),t =T

cpt+%g0122%5>0 for z € (0,2m),t =0.

Thus
T T T
/ /5|v|2dxdt + / s(Jv)Psy + |viyp)dr < C </ / ]es“"Pw|2dacdt+/ / s\v]2dxdt> :
0 Jr T 0 Jr 0 Ju

Which gives at once (4.23) by replacing v by e*?w. The proof of Lemma 4.1.2 is achieved
when w € HY(T x (0,7)). We now claim that Lemma 4.1.2 is still true when w and f are
in L*(0,T; L*(T)). Indeed, in the case w € C([0,T]; L*(T)), and if (w?) and f, are two
sequences in H'(T) and L?(0,T; H'(T)), respectively, such that

w® — w(0) in L*(T)

fr—= f in L*0,T; L*(T),
then the solution w™ € C([0,T]; H'(T)) of
a
b

w"(0) = wg

wy' + wy + [

satisfies w™ € HY(T x (0,T)) and w" — w in C([0, T]; L*(T)), so that we can apply (4.23)
to w™ and next pass to the limit n — oo in (4.23). The proof of Lemma 4.1.2 is complete.

]
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