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Abstract
O estudo dos fenômenos ondulatórios que surgem em meios dispersivos é de amplo
interesse científico e pertence a uma moderna linha de pesquisa que é importante, tanto
cientificamente, quanto para potenciais aplicações. O progresso no desenvolvimento de
modelos matemáticos tornou possível compreender tais fenômenos em campos bastante
distintos e resolver problemas que vem à tona nas discussões. Neste trabalho, o objetivo
é avançar no estudo de problemas de valor inicial e de contorno explorando a dinâmica
de modelos dispersivos usando análise matemática do ponto de vista da controlabilidade
e continuação única. Considerações serão dadas para um sistema de Boussinesq, para a
equação de Kawahara e para uma equação Korteweg-de Vries - Benjamin-Bona-Mahony
(equação KdV-BBM) de ordem superior, definida em um domínio periódico. Primeiro
provamos que o sistema de Boussinesq é exatamente controlável com controles atuando nas
condições de fronteira. Em seguida, a propriedade de controlabilidade nula da equação de
Kawahara é obtida por meio de um controle interno. Finalmente, provamos um resultado
de continuação única para uma equação KdV-BBM de ordem superior.

Palavras-chave: Sistema de Boussinesq, controlabilidade, expansão de Fourier, análise
não harmônica, Korteweg-de Vries, problema de momentos, propriedade de continuação
única.





Abstract
The study of wave phenomena arising in dispersive media is of broad scientific interest
and pertains to a modern line of research which is important both scientifically and for
potential applications. Progress in the development of mathematical models has made it
possible to understand such phenomena in quite distinct fields and to solve problems that
come to the fore. In this work, the goal is to advance the study of the initial-boundary
value problems exploring the dynamics of dispersive models by using mathematical analysis
from both controllability and unique continuation point of view. Considerations will be
given for a Boussinesq system, the Kawahara equation and a higher order Korteweg-de
Vries-Benjamin-Bona-Mahony equation (KdV-BBM equation), posed on a periodic domain.
We first prove that the Boussinesq system is exactly controllable with controls acting on
the boundary conditions. Next, the null-controllability property of the Kawahara equation
is derived by means of an internal control. Finally, we prove a unique continuation result
for a higher order KdV-BBM equation.

Keywords: Boussinesq system, controllability, Fourier expansion, nonharmonic analysis,
Korteweg-de Vries, moment problem, unique continuation property.
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1 Introduction

This thesis is composed of three chapters devoted to the study of the controllability
and unique continuation properties for a class of dispersive models, posed on a periodic
domain. More precisely, the second chapter deals with the exact boundary controllability
of a higher order Boussinesq system [8, 9], in the third chapter we study the internal
null-controllability for the Kawahara equation and, finally, the fourth chapter is devoted
to study of the unique continuation property for a higher order KdV-BBM equation
(Kortewg-de Vries - Benjaming- Bona-Mahony equation).

1.1 Boundary controllability of a Boussinesq system
Water wave propagation phenomena is a classic research topic that has attracted

researchers from many different areas with various objectives. Due to the complexity of
the governing equations for water waves, physicists and mathematicians are led to derive
simpler sets of equations which are likely to describe the dynamics of the water waves in
some specific physical regimes. Because of their simplicity, Boussinesq systems have been
used in the study of a variety of water wave phenomena in ports, channels, coastal areas,
and in the open sea. They have also been used in studies of tsunami wave generation and
propagation. In this context, Bona, Chen, and Saut [8, 9] derived a family of Boussinesq
systems to describe the two-way propagation of small amplitude gravity waves on the
surface of water in a canal. The systems were obtained from the classical Euler equations
and have the following form:

ηt + wx + awxxx − bηtxx + a1wxxxxx + b1ηtxxxx

= −(ηw)x + b(ηw)xxx − α(ηwxx)x

wt + ηx + cηxxx − dwtxx + c1ηxxxxx + d1wtxxxx

= −wwx − c(wwx)xx − (ηηxx)x + βwxwxx + ρηηxxx.

(1.1)

In (1.1), η is the elevation of the fluid surface from the equilibrium position, w = wθ is
the horizontal velocity in the flow at height θh, where h is depth of the undisturbed liquid.
The parameters a, b, c, d, a1, c1, b1, d1 are required to fulfill the relations
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a+ b = 1
2(θ2 − 1

3), c+ d = 1
2(θ2 − 1

2),

a1 − b1 = −1
2(θ2 − 1

3)b+ 5
24(θ2 − 1

5)2,

c1 − d1 = 1
2(1 − θ2)c+ 5

24(1 − θ2)(θ2 − 1
5),

α = a+ b− 1
3 , β = c+ d− 1, ρ = c+ d,

(1.2)

where θ ∈ [0, 1], specifies which horizontal velocity the variable w represents. Contrary
to some classical wave models which assume that the waves travel only in one direction,
system (1.1) is free of the presumption of unidirectionality and may have a wider range of
applicability.

In mathematical studies, consideration has been given principally to pure initial-
value problems where the wave profile is imagined to be determined everywhere at a given
instant of time and the corresponding solution models the further wave motion. However,
the practical use of the Boussinesq systems and their relatives does not always involve
the pure initial-value problem. At this respect, a natural example arises when modeling
the effect in a channel of a wave maker mounted at one end, or in modeling near-shore
zone motions generated by waves propagating from deep water. The mathematical theory
pertaining to the study of such boundary value problem is considerably less advanced,
specially in what concerns the study of the controllability properties.

In this spirit, the present work is devoted to the study of initial-boundary-value
problems associated to linearized Boussinesq system (1.1). We first consider the case in
which the parameters given in (1.2) are such that b = b1 = d = d1 = 0. The resulting
system couples two Korteweg-de Vries type equations and it is called purely KdV-type
Boussinesq system. Our attention, in particular, is given to the following systemut + vx + avxxx + a1vxxxxx = 0, in (0, T ) × (0, 2π)

vt + ux + cuxxx + c1uxxxxx = 0, in (0, T ) × (0, 2π),
(1.3)

with boundary conditions∂
j
xu(t, 2π) − ∂jxu(t, 0) = fj(t), in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = gj(t), in (0, T ),
(1.4)

for j = 0, 1, 2, 3, 4, and initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π). (1.5)

In (1.4), the external forcing terms fj and gj , with j = 0, 1, 2, 3, 4, are considered as control
inputs. The purpose is to see whether one can force the solutions of the system to have
certain desired properties by choosing appropriate control inputs acting at one end of the
channel. More precisely, we are mainly concerned with the following problem which are
fundamental in control theory:
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Given T > 0, initial states (u0, v0) and terminal states (u1, v1) in a certain space,
can one find appropriate control inputs fj and gj, with j = 0, 1, 2, 3, 4, so that the sys-
tem (1.3)-(1.5) admits a solution (u, v) which satisfies (u(0, x), v(0, x)) = (u0, v0) and
(u(T, x), v(T, x)) = (u1, v1)?

If one can always find a control input to guide the system described by (1.3) from
any given initial state to any given terminal state, then the system is said to be exactly
controllable.

Our analysis does not depend on formulas (1.2) nor on other particular relations
between the coefficients, but some sign conditions have to be imposed. More precisely, we
first shall be mainly concerned with the case

a1, c1 ≥ 0 and a ≤ 0, c ≤ 0. (1.6)

As it will become clear during the proofs, assumptions (1.6) provide the tools needed to
deal with the controllability, as well as, the well-posedness of the system.

The problem we address here was first addressed for the scalar KdV equation

yt + yxxx = 0, in (0, T ) × (0, 2π), (1.7)

with the boundary conditions

∂jxy(t, 2π) − ∂jxy(t, 0) = hj(t), in (0, T ), and j = 0, 1, 2, (1.8)

and initial condition
y(0, x) = y0(x), in (0, 2π). (1.9)

By using the classical duality approach (see, for instance, [27]), the exact controllability
of (1.7)-(1.9) was established by Rosier in [38]. More precisely, the following result was
proved:

Theorem 1.1.1 (see, [38]). Let H2
p (0, 2π) = {w ∈ H2(0, 2π) : w(0) = w(2π) = w′(0) =

w′(2π)} and T > 0. Then, for any y0, yT ∈ (H2
p (0, 2π))′, the dual space of H2

p (0, 2π),
there exist h0, h1, h2 ∈ L2(0, T ), such that the solution y ∈ C([0, T ]; (H2

p (0, 2π))′) of the
initial-boundary-value KdV equation (1.7)-(1.7) satisfies y(T, x) = yT (x).

Notice that explicit controls may be given, but since the state y is only known to
belong to C([0, T ]; (H2

p (0, 2π))′), the controllability results for nonlinear KdV equation was
not studied.
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Inspired by the work [38], we have proved that the higher-order linearized Boussinesq
system (1.3)-(1.5) is exactly controllable as well. Following the classical duality approach,
the exact controllability property is equivalent to an observability inequality for the adjoint
system. Then, by means of a detailed spectral analysis developed in [3], the Fourier
expansion of the solution and some results due to Komornik [25], condition (1.6) on
the parameters of the system ensures that the observability property mentioned above
holds. In what concerns the nonlinear model, the controllability properties are usually
studied linearizing the problem at an equilibrium state, proving exact controllability
results for this linear problem and applying next a fixed point argument (or the implicit
function theorem). However, due to the structure of the nonlinear terms and the lack
of a priori bound, including when higher order Sobolev norms are considered (e. g. Hs-
norm), we only succeeded in deriving exact controllability results for the linear system.
Indeed, the space of the controlled data for the associated linear system is a Hilbert space
V ∼ [H5

p (0, 2π) ×H5
p (0, 2π)]′, therefore it seems quite difficult to derive a controllability

results for the nonlinear system.

As we remarked above, a similar approach was used in [38]. However, due to the
complexity of the system, which couples two fifth-order KdV terms, the control problem
presents new difficulties we have to deal with. Moreover, the techniques applicable to this
more complicated situation can also be applied to other Boussinesq systems to derive
positive controllability results:

• The linear KdV-BBM system (b1 = d1 = 0)

ut + vx − butxx + avxxx + a1vxxxxx = 0, in (0, T ) × (0, 2π)

vt + ux − dutxx + cuxxx + c1uxxxxx = 0, in (0, T ) × (0, 2π),

with the following boundary conditions



∂jxu(t, 2π) − ∂jxu(t, 0) = 0, in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = 0, in (0, T )

∂2
xu(t, 2π) − ∂2

xu(t, 0) = f2(t), in (0, T )

∂2
xv(t, 2π) − ∂2

xv(t, 0) = g2(t), in (0, T )

∂4
xu(t, 2π) − ∂4

xu(t, 0) = f4(t), in (0, T )

∂4
xv(t, 2π) − ∂4

xv(t, 0) = g4(t), in (0, T ),

for j = 0, 1, 3.
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• The full system (1.1) with the boundary conditions

∂jxu(t, 2π) − ∂jxu(t, 0) = 0 in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = 0 in (0, T )

∂4
xu(t, 2π) − ∂4

xu(t, 0) = f4(t) in (0, T )

∂4
xv(t, 2π) − ∂4

xv(t, 0) = g4(t) in (0, T ),

for j = 0, 1, 2, 3.

Observe that the presence of the BBM terms allow to control the system with less
controls then boundary conditions. In addition, the presence of the higher-order terms in
(1.3) (b1 = d1 ̸= 0) provides a regularizing effect which allows to address the boundary
controllability problem for the full system (1.1). By contrast, when two higher-order BBM
type equations are coupled and both fifth order KdV term are not present (b1 = d1 ≠ 0 and
a1 = c1 = 0), the controllability property fails (see [5, 35]). This lack of exact controllability
of the BBM-BBM system comes from the existence of a limit point in the spectrum of the
operator associated with the state equations, a phenomenon already noticed in [29] for
the single linear BBM equation.

It is also important to mention that the study of controllability and stabilization
properties for Boussinesq systems was initiated in [30] by considering the following reduced
form of the model (1.1), posed on a periodic domain:

ηt + wx + awxxx − bηtxx = −(ηw)x, t > 0, x ∈ (0, 2π)

wt + ηx + cηxxx − dwtxx = −wwx, t > 0, x ∈ (0, 2π).
(1.10)

The parameters a, b, c and d are required to fulfill the relations

a+ b = 1
2(θ2 − 1

3), c+ d = 1
2(θ2 − 1

2) ≥ 0, (1.11)

with θ ∈ [0, 1]. The work [30] deals with the internal controllability and stabilization of
(1.10) on the torus. First, the space of the controllable data for the associated linear system
is established for each possible value of the four parameters given in (1.11). Then, when
b, d > 0 and a, c < 0 the local exact controllability of the nonlinear system is shown to hold.
As an application of the established exact controllability results, some simple feedback
controls are constructed for particular choices of the parameters a, b, c and d, such that
the resulting closed-loop systems are exponentially stable. In [11], the exact boundary
controllability of the linear Boussinesq system [11] of KdV-KdV type was studied. It was
discovered that whether the associated linear system is exactly controllable or not depends
on the length of the spatial domain. The extension of the exact controllability for the
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Boussinesq system (1.10), when b = d = 0, is derived in the energy space by considering
a control of Neumann type. It is obtained by incorporating a boundary feedback in the
control in order to ensure the so-called Kato smoothing effect. In addition, proceeding
as in [36], a local exponential stability result was also derived. As we mention above, the
controllability problem was also addressed when (1.1) and (1.10) couples two BBB type
equations. In [5, 35], the authors show that the model is approximately controllable but
not spectrally controllable. This means that any state can be steered arbitrarily close to
another state, but no finite linear combination of eigenfunctions, other than zero, can be
steered to zero.

As far as we know, exact the controllability problem for the full system has been
only addressed in when the model is posed on a periodic domain. General conditions are
given to ensure both the well-posedness and the local exact controllability of the nonlinear
problem by means of a control localized in the interior of the domain and acting on one
equation only.

The chapter is organized as follows: In Section 1 we present some preliminary
results used in our proofs, Section 2 are devoted to prove our main results and, finally,
In Section 3 we describe some possible extensions of our results and also indicate open
problems on the subject.

1.2 Null-controllability for the Kawahara equation
The study of wave phenomena arising in dispersive media is of broad scientific

interest and pertains to a modern line of research which is important both scientifically and
for potential applications. Progress in the development of mathematical models has made
it possible to understand such phenomena in quite distinct fields and to solve problems
that come to the fore. Within this context, the Korteweg-de Vries equation (KdV) has
been derived as a model for the unidirectional propagation of nonlinear, dispersive waves
in an impressive array of physical situations. In most cases when it is derived from more
complex systems, the KdV equation appears in the form

ut + ux + εuux + δuxxx = 0,

where the small positive parameters ε and δ are related to a small-amplitude and a
long-wavelength assumption, respectively. The unknown u is a real valued functions of the
variables x and t and subscripts indicate partial differentiation.

Another relevant dispersive wave model is the Kawahara equation [23], also referred
as fifth-order KdV equation. The Kawahara equation occurs in the theory of magneto-
acoustic waves in a plasma and in the theory of shallow water waves with surface tension.
In order to balance the nonlinear effect, Kawahara took into account the higher order effect
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of dispersion and established the following equation to describe solitary-wave propagation
in media:

ut + γux + αuxxx + βuxxxxx + ρuux = 0. (1.12)

The parameters γ, α, β, ρ ∈ R with β ̸= 0, and α and β represent the effect of dispersion.

There is a vast literature devoted to the study of water waves ranging from coastal
engineering preoccupations to a very theoretical mathematical analysis of the equations.
For instance, a large body of literature has been concerned with the questions of existence,
uniqueness and continuous dependence of solutions corresponding to initial data. However,
there are many issues still open that deserves further attention. In this work, the goal
is to advance the study of the initial-boundary value problems exploring the dynamics
of dispersive equations by using mathematical analysis from the controllability point
of view. Due to the rapid development of new mathematical tools, since the late 1980s
control theory of nonlinear dispersive wave equations have attracted a lot of attention.
Particularly, control properties of the KdV equation has been intensively studied and
significant progresses have been made. In contrast, there are relative few works on the
Kawahara equation for its control theory.

Without loss of generality, we assume that the parameters given in (1.12) are such
that γ = α = 1 and β = −1. Thus, our attention is given to the following control system
described by the linearized Kawahara equation posed on a periodic domain:

ut − u5x + u3x + ux = f(x)v(t), in (0, T ) × (0, 2π),

∂jxu(t, 0) = ∂jxu(t, 2π), in (0, T ),

u(0, x) = u0(x), in (0, 2π),

(1.13)

for j = 0, 1, 2, 3, 4. The goal is to drive the initial data u0 to rest by using a control v(t),
depending only on time and acting on the system through a given function in space f(x).
This type of control is often used and sometimes called lumped or bilinear.

To be more precise, considerations will be given to the following null-controllability
problem:
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Given T > 0, an initial state u0 and a profile f in a certain Hilbert space, find an
appropriate control v ∈ L2(0, T ), so that system (1.13) admits a solution u which satisfies
u(T, x) = 0.

If one can always find a control input to guide the system described by (1.13) from
any given initial state to zero, then the system is said to be null-controllable.

In order to make more precise the tools we employ to study this question, we
introduce some notations: Given any v ∈ L2(0, 2π) and k ∈ Z, we denote by v̂k the
k−Fourier coefficient of v,

v̂k = 1
2π

∫ 2π

0
v(x)e−ikx dx.

Then, for any s ∈ R, we define the Hilbert space

Hs
p(0, 2π) =

v =
∑
k∈Z

v̂ke
ikx ∈ L2(0, 2π)

∣∣∣∣∣∣
∑
k∈Z

|v̂k|2(1 + k2)s < ∞

 (1.14)

endowed with the inner product

(v, w)s =
∑
k∈Z

v̂kŵk(1 + k2)s. (1.15)

We denote by ∥ · ∥s the norm corresponding to the inner product given by (2.2). Then, we
consider the following operator associated to the space variable:

(D(A), A), where D(A) = H5
p (0, 2π) and

A : D(A) ⊂ L2
p(0, 2π) → L2

p(0, 2π), such that Au = ∂5
xu− ∂3

xu− ∂xu.
(1.16)

Controllability properties of linear systems have been studied for a long time with
the aid of Fourier techniques. In what concerns system (1.13), we employ Fourier series
expansion to reduce the null control problem to a equivalent moment problem, whose
solution is given in terms of an explicit biorthogonal sequence to a family of exponential
(eλmt)m∈Z in L2(0, T ). Here, λm are the eigenvalues of the differential operator A defined
in (1.16). We recall that a family of functions (ϕm)m∈Z ⊂ L2(0, T ) with the property that

∫ T

0
ϕm(t)eλmtdt = δmn, ∀m,n ∈ Z,

where δmn is the Kronecker symbol, is a biorthogonal sequence to (eλmt)m∈Z. In order
to obtain this sequence, we introduce a family Ψm(z) of entire functions of exponential
type (see, for instance, [42]), such that Ψm(iλn) = δmn. Then, by applying Paley–Wiener
Theorem we obtain ϕm as the inverse Fourier transform of Ψm. Each Ψm is obtained from
a Weierstrass product Pm multiplied by an appropriate function Mm with rapid decay on
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the real axis. Such a method was used for the first time by Paley and Wiener [34] and, in
the context of control problems, by Fattorini and Russell [17, 18].

Once such family (ϕm)m∈Z is given, the control v(t) for (1.13) is obtained by consid-
ering a linear combinations of functions ϕm. Indeed, if we consider u0(x) = ∑

m∈Z û
0
me

imx

and f(x) = ∑
m∈Z f̂me

imx, f̂m ≠ 0, the Fourier expansions of u0 and f , respectively, the
function

v(t) =
∑
m∈Z

û0
m

f̂m
eTλmϕm (T − t) , t ∈ (0, T ), (1.17)

is a control for (1.13) in time T , if the series converges in L2(0, T ). The convergence depends
on some uniform boundedness, with respect to m, of the the family (ϕm)m∈Z in L2(0, T ),
which are obtained by applying Plancherel Theorem. In additon, some assumptions on f

and u0 are necessary. More precisely, let f ∈ L2(0, 2π) be, such that

f(x) =
∑
k∈Z

f̂ke
ikx, with f̂k ̸= 0, ∀ k ∈ Z. (1.18)

Assuming (1.18), for a given constant β > 0 define the space

H =
h ∈ L2

p(0, 2π) :
∑
k∈Z

∣∣∣∣∣ ĥkf̂k
∣∣∣∣∣
2

eβk
6
< ∞

 . (1.19)

If u0 ∈ H and f̂k satisfies (1.18), the convergence of (1.17) holds in L2
p(0, 2π) and v(t)

is a control for (1.13). We remark that the choice of the space H defined in (1.19) is
related to the form of the eigenvalues of the operator A defined in (1.16) and the growth
of ϕm in L2(0, T ). Indeed, the eigenvalues of the state operator corresponding to (1.13)
are given by λm = −im(m4 +m2 − 1) and ||ϕm||L2(0,T ) increases exponentially with m, i.
e., ||ϕm||L2(0,T ) ≤ ceνm

6t, where c and ν are positive constants. The choice of the initial
data in H compensates the growth of ϕm and ensure the converge of (1.17) in L2(0, T ).
When considering models in which the corresponding state operator has eigenvalues with
negative real part, we can take β = 0 in (1.19).

The technique we describe above was used in the study of several control problems,
being the pioneering articles of Fattorini and Russell [17, 18] one of the most relevant
examples in the context of scalar parabolic equations. This method is very efficient in the
one-dimensional space setting and has also been successfully applied in [10, 20, 31]. In
particular, our analysis was inspired by the results obtained in [10, 28, 31] of the which
we borrow some ideas.

Concerning the Kawahara equation posed on a periodic domain, the internal
controllability and the stabilization problems were studied in [44, 45]. Particularly, in
[45], the authors use the same approach as that developed in [26] to obtain the global
exact control and global exponential stability for periodic solutions in Hs, for s ≥ 0.
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Bourgain spaces associated to the Kawahara equation, propagation of compactness and
propagation of regularity for the linear Kawahara equation are three key ingredients in
their proofs. More recently, in [19], the authors establish local exact control and local
exponential stability of periodic solutions of fifth order Korteweg-de Vries type equations
in Hs, for s > 2. A dissipative term is incorporated into the control which, along with a
propagation of regularity property, yields a smoothing effect permitting the application
of the contraction principle. It is important to emphasize that the results obtained in all
papers mentioned above [19, 44, 45] do not give an answer to the null control problem
addressed here. Moreover, they have been proved employing a different approach with a
control input supported in a given open set ω ⊂ (0, 2π). To the best of our knowledge,
the study we develop for the linear Kawahara equation has not been addressed in the
literature yet. Moreover, the available results do not give an immediate answer to it.

This chapter is organized as follows: in Section 2, we present the well-posedness
of the system and give an equivalent characterization of the controllability problem in
terms of the moment problem. Section 3 is devoted to the construction of a biorthogonal
sequence and in Section 4 we prove our main result. Finally, in Section 5, we present some
open problems.

1.3 Unique continuation for a higher order KdV-BBM equation
In this section we investigate the Unique Continuation Property (UCP) of the

following equation

ut+ux−b1utxx+a1uxxx+butxxxx+auxxxxx+3
2uux+γ(u2)xxx− 7

48(u2
x)x−

1
8(u3)x = 0, (1.20)

where (x, t) ∈ T × (0, T ). The parameters b1, a1, b, a, γ ∈ R with b1, b > 0. This higher
order water wave model describing the unidirectional propagation of water waves was
recently introduced by Bona et al. [7] by using the second order approximation in the
two-way model, the so-called abcd-system introduced in [8, 9]. It is also known as the fifth
order KdV-BBM type equation and, when posed on R and T, it has been proved that the
corresponding initial value problems are global well-posed [7, 13].

We say that the UCP holds in some class X of functions if, given any nonempty
open set ω ⊂ T, the only solution u ∈ X of (1.20) fulfilling

u(x, t) = 0 for (x, t) ∈ ω × (0, T ),

is the trivial one u ≡ 0. Such a property is very important in Control Theory, as it is
equivalent to the approximate controllability for linear PDE, and it is involved in the
classical uniqueness/compactness approach in the proof of the stability for a PDE with a
localized damping. The UCP is usually proved with the aid of some Carleman estimate and,
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in the case of the KdV equations, it was established in [16, 40, 41]. For the BBM equation,
the study of the UCP is only at its early age. However, it is important to note that, for
the BBM equation, the underlying Cauchy problem is a characteristic one. Therefore, one
cannot expect to apply Carleman-type estimates or the classical Holmgren uniqueness
theorem to verify the UCP. This property has been proved in [46, Theorem 1.3] for the
linearized BBM equation with a potential and in [39, Theorem 3.1] for the nonlinear BBM
equation, under additional conditions concerning the initial data. We remark that the
UCP for the nonlinear BBM equation does not follow from the UCP of the linearized
BBM equation with only space dependent potential and, in the general case, it is still an
open problem.

In what concerns model (1.20), the presence of the higher order KdV term auxxxxx

results in much better properties and allows to establish a unique continuation result. The
equation is first split into a coupled system of an elliptic equation and a transport equation.
Next, we prove some Carleman estimates with the same singular weights for both the
elliptic and the hyperbolic equations, and we derive the UCP for (1.20) by combining
these Carleman estimates with a regularization process. Our analysis was inspired by the
results obtained in [39] from which we borrow some ideas. The authors prove the UCP for
a KdV-BBM equation (by means of Carleman inequality) and apply the result to prove the
exact controllability and the semiglobal exponential stability of the same equation with
a localized damping term. We remark that the same arguments cannot be applied here,
since the regularity of the solution required to apply the UCP is not fulfilled. Nonetheless,
we address the issue in an appendix.
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2 Boundary controllability of a Boussinesq
system

In this chapter we consider a family of Boussinesq systems proposed by J. L.
Bona, M. Chen and J.-C. Saut to describe the two-way propagation of small amplitude
gravity waves on the surface of water in a canal. Our aim is to investigate the boundary
controllability properties of this system posed on the interval (0, 2π). Then, employing
a classical duality approach, we prove that the linear system is exactly controllable by
means of controls acting on the right endpoint of the interval. Moreover, we show that the
spaces of the controllable data depend on the parameters involved in the system. When
all the parameters are different from zero, the local exact controllability of the nonlinear
system is also established.

2.1 Preliminaries
We first introduce a few notations. Given any ϕ ∈ L2(0, 2π) and k ∈ Z, we denote

by ϕ̂k the k−Fourier coefficient of ϕ,

ϕ̂k = 1
2π

∫ 2π

0
ϕ(x)e−ikx dx.

Then, for any s ≥ 0, we define the Hilbert space

Hs
p(0, 2π) =

ϕ =
∑
k∈Z

ϕ̂ke
ikx ∈ L2(0, 2π)

∣∣∣∣∣∣
∑
k∈Z

|ϕ̂k|2(1 + k2)s < ∞

 (2.1)

with respect to the inner product

(ϕ,w)s =
∑
k∈Z

ϕ̂kŵk(1 + k2)s. (2.2)

We denote by ∥ · ∥s the corresponding norm to the inner product given by (2.2).

For s < 0 we define the space Hs
p(0, 2π) as the topological dual of H−s

p (0, 2π):

Hs
p(0, 2π) =

(
H−s
p (0, 2π)

)′
.

Riesz representation theorem ensures that any ϕ ∈ H0
p (0, 2π) = L2(0, 2π) can be identified

with an element wϕ ∈
(
H0
p (0, 2π)

)′
such that

wϕ(z) =
∫ 2π

0
z(x)ϕ(x) dx

(
z ∈ H0

p (0, 2π)
)
.
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Traditionally, the same notation is used for ϕ and wϕ (the spaces
(
H0
p (0, 2π)

)′
and H0

p (0, 2π)
are identified). Given s < 0, any element w ∈ Hs

p(0, 2π) can be uniquely expanded as
follows

w =
∑
k∈Z

ŵke
ikx, (2.3)

where ŵk = 1
2πw

(
e−ikx

)
for each k ∈ Z. The slight abuse of notation in (2.3) (the element

w on the left hand side is not a function of x and the exponential function eikx on the
right hand side is actually the representant of this L2−function in the dual space) is
compensated by the fact that expansion (2.3) looks exactly like one corresponding to an
element in a space Hs with positive exponent s. On the other hand, the following map is
a duality product between Hs

p(0, 2π) and H−s
p (0, 2π), for any s ≥ 0,

⟨ϕ,w⟩s =
∑
k∈Z

ϕ̂kŵ−k
(
ϕ ∈ Hs

p(0, 2π), w ∈ H−s
p (0, 2π)

)
. (2.4)

Consequently, if s < 0, the space Hs
p(0, 2π) can be also defined by (2.1) and can be viewed

as a Hilbert space with respect to the inner product (2.2).

Finally, for given δ, δ1 ≥ 0, we introduce the operator Lδ,δ1 defined in the following
way:

Lδ,δ1 : Hs
p(0, 2π) → Hs+s0

p (0, 2π),

Lδ,δ1

∑
k∈Z

ψ̂ke
ikx

 =
∑
k∈Z

ψ̂k
1 + δk2 + δ1k4 ,

(2.5)

where s0 =


4, if δ1 ̸= 0,
2, if δ1 = 0 and δ ̸= 0,
0, if δ1 = δ = 0.

Let us remark that Lδ,δ1 represents the inverse of

the elliptic operator I − δ∂2
x + δ1∂

4
x with periodic boundary conditions in (0, 2π).

Let us also introduce the numbers

w1(k) = 1 − ak2 + a1k
4

1 + bk2 + b1k4 , w2(k) = 1 − ck2 + c1k
4

1 + dk2 + d1k4 , σ(k) =
√
w1(k)w2(k)

and the number l ∈ Z with the property that√√√√w1(k)
w2(k) ∼ C|k|l, when |k| → ∞,

where C is a positive constant that does not depend on k. Then, for each s ∈ R and l

defined above, we define the space

V s = Hs
p(0, 2π) ×Hs+l

p (0, 2π), (2.6)

endowed with the inner product given by〈 f1

f2

 ,
 g1

g2

〉
V s

= (f1, g1)s + (Hf2,Hg2)s,
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where the operator H : Hs+l
p (0, 2π) → Hs

p(0, 2π) is defined in the following way

H

∑
k∈Z

ϕ̂ke
ikx

 =
∑
k∈Z

√√√√w1(k)
w2(k) ϕ̂ke

ikx.

Let ν ∈ Z be the number defined by the relation

σ(k) =
√
w1(k)w2(k) ∼ C|k|ν , when |k| → ∞, (2.7)

where C is a positive constant not depending on k.

2.1.1 The linearized system: homogeneous boundary conditions

The aim of this section is to study the the following systemut + vx − butxx + b1utxxxx + avxxx + a1vxxxxx = f(t, x), in (0, T ) × (0, 2π)

vt + ux − dvtxx + d1vtxxxx + cuxxx + c1uxxxxx = g(t, x), in (0, T ) × (0, 2π)
(2.8)

with periodic boundary conditions∂
r
xu(t, 2π) = ∂rxu(t, 0), in (0, T ), 0 ≤ r ≤ r0

∂qxv(t, 2π) = ∂qxv(t, 0), in (0, T ), 0 ≤ q ≤ q0

(2.9)

and initial condition

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π). (2.10)

The number of boundary conditions depend on the parameters of the system.

Let us first remark that (2.8)-(2.10) can be written asu
v


t

= A

u
v

+
f ∗

g∗

 ,
u
v

 (0, x) =
u0(x)
v0(x)

 , (2.11)

where A is the unbounded linear operator defined by

A = −

 0 Lb,b1(∂x + a∂xxx + a1∂xxxxx)
Ld,d1(∂x + c∂xxx + c1∂xxxxx) 0

 (2.12)

and
f ∗ = Lb,b1f, g∗ = Ld,d1g.

Then, using Fourier analysis, we obtain a group associated to the linear problem
(2.11).

Theorem 2.1.1. Let D(A) = V s+1+max{−1,ν} and A be given by (2.12). The operator
(D(A), A) is the infinitesimal generator of a group of isometries (S(t))t∈R in V s.
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As a consequence, the following well-posedness result holds:

Theorem 2.1.2. Let T > 0, s ∈ R and ν given by (2.7). If
 u0

v0

 ∈ V s and
 f ∗

g∗

 ∈

L1 (0, T ;V s), then (2.8)-(2.10) admits a unique solution u

v

 ∈ C1
(
[0, T ];V s−1−max{−1,ν}

)
∩ C ([0, T ];V s) .

Moreover, the following estimate holds∥∥∥∥∥∥
 u

v

∥∥∥∥∥∥
C([0,T ];V s)

≤

∥∥∥∥∥∥
 f ∗

g∗

∥∥∥∥∥∥
L1(0,T ;V s)

+
∥∥∥∥∥∥
 u0

v0

∥∥∥∥∥∥
V s

. (2.13)

Furthermore, the following remarks are in order:

Remark 2.1.1. The eigenvalues of the operator A defined by (2.12) are given by

λk = ikσ(k), k ∈ Z, (2.14)

where σ was defined in (2.7). Note that not all the eigenvalues in (2.14) are different. If
we count only the distinct eigenvalues, we obtain the sequence (λk)k∈I, where I ⊆ Z has
the property that λk1 ̸= λk2 for any k1, k2 ∈ I. For each k1 ∈ Z set

I(k1) = {k ∈ Z : kσ(k) = k1σ(k1)}

and |I(k1)| = m(k1). We have the following properties of m(k1):

• m(k1) ≤ 10. This is a consequence of the fact that m(k1) is less than the number
of entire roots of the equation xσ(x) = ϱ, where ϱ is an arbitrary real number. The
roots of this equation are also roots of a polynomial of degree less or equal to 10.

• If the sequence of eigenvalues tends to infinity, there exists k∗
1 ∈ N such that m(k1) = 1

for all |k1| > k∗
1. This is a consequence of the fact that the function xσ(x) is strictly

increasing for |x| large enough. Notice that, if ν ≥ 0, then

lim
|k|→∞

|λk| = ∞,

and the above mentioned property holds.

• The number of the eigenfunctions corresponding to an eigenvalue λk1 ̸= 0 is 2m(k1),
for each k1 ∈ I. These eigenfunctions read then eikx

−σ(k)
w1
eikx

 ,
 e−ikx

σ(k)
w1
e−ikx

 , k ∈ I(k1).

On the other hand, under conditions (1.6) on the parameters of the system, the zero
eigenvalue has multiplicity two, with associated eigenfunctions 1

0

 ,
 0

1

 .
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Then, taking into account the previous remark concerning the multiplicity of the
eigenvalues of the operator A, we can give an equivalent expression for the solution of

problem (2.11) when f = g ≡ 0. Indeed, if the initial data are given by
u0(x)
v0(x)

 =

∑
k∈Z

û0
k

v̂0
k

 eikx, we have that

 u

v

 (t, x) = 1
2
∑
k∈I

eikσ(k)t ∑
m∈I(k)


 1

−
√

w2(m)
w1(m)

 eimxû0
m +

 −
√

w1(m)
w2(m)

1

 eimxv̂0
m

+

 1√
w2(m)
w1(m)

 e−imxû0
−m +


√

w1(m)
w2(m)

1

 e−imxv̂0
−m

 .
(2.15)

Remark 2.1.2. Theorem 2.1.2 shows that, depending on the choice of the parameters,
system (2.11) has an important regularizing property. For instance, if b1 ̸= 0 and d1 ̸= 0,

then
 f

g

 ∈ L1 (0, T ;V s−4) implies
 f ∗

g∗

 ∈ L1 (0, T ;V s). Consequently, if
 u0

v0

 ∈

V s and
 f

g

 ∈ L1 (0, T ;V s−4), then
 u

v

 ∈ C([0, T ];V s). This regularizing effect is

crucial in the study of the nonlinear system. Let us also mention that, under the above
conditions on the parameters b1 and d1, there exists a constant M > 0, such that the
following estimate for the solutions of (2.11) holds∥∥∥∥∥∥

 u

v

∥∥∥∥∥∥
C([0,T ];V s)

≤ M


∥∥∥∥∥∥
 f

g

∥∥∥∥∥∥
L1(0,T ;V s−4)

+
∥∥∥∥∥∥
 u0

v0

∥∥∥∥∥∥
V s

 . (2.16)

2.1.2 The adjoint system

In order to characterize the controllability properties of our problem we need to
introduce and study the following adjoint system:

φt + ψx − bφtxx + b1φtxxxx + cψxxx + c1ψxxxxx = 0, t ∈ (0, T ), x ∈ (0, 2π)
ψt + φx − dψtxx + d1ψtxxxx + aφxxx + a1φxxxxx = 0, t ∈ (0, T ), x ∈ (0, 2π)
∂rxφ(t, 0) = ∂rxφ(t, 2π), t ∈ (0, T ), 0 ≤ r ≤ r0

∂qxψ(t, 0) = ∂qxψ(t, 2π), t ∈ (0, T ), 0 ≤ q ≤ q0

φ(T, x) = φT (x), ψ(T, x) = ψT (x), x ∈ (0, 2π).

(2.17)

Again, we remark that the number of boundary conditions depends on the values of the
parameters of the system.

In order to show the well-posedness of (2.17), let us first define the spaces

Ṽ s = Hs
p(0, 2π) ×Hs+l̃

p (0, 2π), (2.18)
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where the number l̃ ∈ Z has the property that√√√√w̃1(k)
w̃2(k) ∼ C|k|l̃, when |k| → ∞,

being C a positive constant not depending on k. Furthermore, let

w̃1(k) = 1 − ck2 + c1k
4

1 + bk2 + b1k4 , and w̃2(k) = 1 − ak2 + a1k
4

1 + dk2 + d1k4 .

Observe that
σ(k) =

√
w̃1(k)w̃2(k),

where σ(k) is defined in (2.7). Moreover, the eigenvalues of the state operator associated
to the adjoint system (2.17) coincide with λk, the eigenvalues of the operator A given by
(2.14).

Following the notation introduced above, the properties of the solutions of the
adjoint problem can be obtained proceeding as in Theorem 2.1.2. More precisely, we have
the following result:

Theorem 2.1.3. Let T > 0, s ∈ R and ν given by (2.7). If
 φT

ψT

 ∈ Ṽ s, then (2.17)

admits a unique solution φ

ψ

 ∈ C1
(
[0, T ]; Ṽ s−1−max{−1,ν})

)
∩ C

(
[0, T ]; Ṽ s

)

and the energy of solutions is conserved:∥∥∥∥∥∥
 φ

ψ

 (t)
∥∥∥∥∥∥
Ṽ s

=
∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
Ṽ s

, ∀ t ∈ [0, T ], (2.19)

Moreover, if the final data are given by φT

ψT

 (x) =
∑
k∈Z

 φ̂Tk

ψ̂Tk

 eikx (2.20)

the following representation formula holds:
 φ

ψ

 (t, x) = 1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)


 1

−
√

w̃2(m)
w̃1(m)

 e−imxφ̂Tm +

 −
√

w̃1(m)
w̃2(m)

1

 e−imxψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 eimxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 eimxψ̂T−m
 .
(2.21)
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2.2 Controllability

2.2.1 Higher order KdV-KdV system

This section is devoted to the study of the systemut + vx + avxxx + a1vxxxxx = 0, in (0, T ) × (0, 2π)

vt + ux + cuxxx + c1uxxxxx = 0, in (0, T ) × (0, 2π),
(2.22)

with boundary conditions∂
j
xu(t, 2π) − ∂jxu(t, 0) = fj(t), in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = gj(t), in (0, T ),
(2.23)

for j = 0, 1, 2, 3, 4, and initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π). (2.24)

The following result will be needed:

Proposition 2.2.1. For any s ∈ R, let V s be the Hilbert space defined by (2.6) and
X(0, T ) := (L2(0, T ))2 × (L2(0, T ))2, for T > 0. Then, the following well-posedness results
hold:

(i) Suppose that fj(t), gj(t) ∈ C2
0 [0, T ], for j = 0, 1, 2, 3, 4, and

u0

v0

 ∈ V 5. Then,

there exists a unique solution
u
v

 ∈ C1([0, T ];V 0) ∩ C([0, T ];V 5) of (2.22)-(2.24).

Moreover, for any
φT
ψT

 ∈ V 5 and S ∈ [0, T ], we have

〈u(S, ·)
v(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉
V 0×V 0

=
〈u0

v0

 ,
φ(0, ·)
ψ(0, ·)

〉
V 0×V 0

−
〈f0(t)

g0(t)

 ,
ψ(t, 0) + cψxx(t, 0) + c1ψxxxx(t, 0)
φ(t, 0) + aφxx(t, 0) + a1φxxxx(t, 0)

〉
X(0,S)

+
〈f1(t)

g1(t)

 ,
cψx(t, 0) + c1ψxxx(t, 0)
aφx(t, 0) + a1φxxx(t, 0)

〉
X(0,S)

(2.25)

−
〈f2(t)

g2(t)

 ,
cψ(t, 0) + c1ψxx(t, 0)
aφ(t, 0) + a1φxx(t, 0)

〉
X(0,S)

+
〈f3(t)

g3(t)

 ,
c1ψx(t, 0)
a1φx(t, 0)

〉
X(0,S)

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
X(0,S)

,
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where
φ
ψ

 ∈ C1([0, T ];V 0) ∩ C([0, T ];V 5) is the solution of the adjoint system

(2.17) with initial data
φT
ψT

 given by Theorem 2.1.3.

(ii) If
φT
ψT

 ∈ V 4, there exist a unique solution
φ
ψ

 ∈ C([0, T ];V 4) of (2.17) andφxxxx(t, 0)
ψxxxx(t, 0)

 makes sense in (L2(0, T ))2.

(iii) Assume that
u0

v0

 ∈ [V 4]′ and fj, gj ∈ L2(0, T ), for j = 0, 1, 2, 3, 4. Then, there

exists a unique
u
v

 ∈ C([0, T ]; [V 4]′), such that, for any
φT
ψT

 ∈ V 4 and any

S ∈ [0, T ], we have

〈u(S, ·)
v(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉
[V 4]′×V 4

=
〈u0

v0

 ,
φ(0, ·)
ψ(0, ·)

〉
[V 4]′×V 4

−
〈f0(t)

g0(t)

 ,
ψ(t, 0) + cψxx(t, 0) + c1ψxxxx(t, 0)
φ(t, 0) + aφxx(t, 0) + a1φxxxx(t, 0)

〉
X(0,S)

+
〈f1(t)

g1(t)

 ,
cψx(t, 0) + c1ψxxx(t, 0)
aφx(t, 0) + a1φxxx(t, 0)

〉
X(0,S)

(2.26)

−
〈f2(t)

g2(t)

 ,
cψ(t, 0) + c1ψxx(t, 0)
aφ(t, 0) + a1φxx(t, 0)

〉
X(0,S)

+
〈f3(t)

g3(t)

 ,
c1ψx(t, 0)
a1φx(t, 0)

〉
X(0,S)

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
X(0,S)

,

where
φ
ψ

 ∈ C([0, T ];V 4) is the solution of the adjoint system (2.17) with initial

data
φT
ψT

 given by (ii).

Proof. (i) Consider θj, ϕj ∈ C∞(0, 2π), with θ
(k)
j (0) = 0 = ϕ

(k)
j (0) and θ

(k)
j (2π) =

−δkj = ϕ
(k)
j (2π), for j, k = 0, 1, 2, 3, 4. Denoting by

u1

v1

 the solution of the corresponding

homogeneous system given by Theorem 2.1.2, the change of functionsz
w

 =
u
v

−

u1

v1

+
∑4

j=0 θj(x)fj(t)∑4
j=0 ϕj(x)gj(t)


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yields an equivalent problem: Find
z
w

, such that



zt + wx + awxxx + a1wxxxxx =
4∑
j=0

[θj(x)f ′
j(t) + gj(t)(ϕ′

j(x) + aϕ
(3)
j (x) + a1ϕ

(5)
j (x))] := F

wt + zx + czxxx + c1zxxxxx =
4∑
j=0

[ϕj(x)g′
j(t) + fj(t)(θ′

j(x) + cθ
(3)
j (x) + c1θ

(5)
j (x))] := G

∂jxz(t, 2π) = ∂jxz(t, 0), ∂jxw(t, 2π) = ∂jxw(t, 0)

z(0, x) = 0, w(0, x) = 0.
(2.27)

Since F,G ∈ L1(0, T ;V 5), from Theorem 2.1.2 we deduce that (2.27) admits a unique

solution
z
w

 ∈ C([0, T ];V 5) ∩ C1([0, T ];V 0)). Hence, we have a unique solution
u
v

 ∈

C([0, T ];V 5) ∩ C1([0, T ];V 0)) of (2.22)-(2.24). To obtain identity (2.25), we multiply the
first equation of (2.22) by φ, the second one by ψ, integrate in time and space over
(0, T ) × (0, 2π) and add the resulting identities.

(ii) If t1, t2 ∈ [0, T ], from (2.21) we obtain

φ
ψ

 (t1, x) −

φ
ψ

 (t2, x) = 1
2
∑
k∈I

(eikσ(k)(T−t1) − eikσ(k)(T−t2))
∑

m∈I(k)


 1

−
√

w̃2(m)˜̃w1(m)

 eimxφ̂Tm

+

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm +

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m

 .

Since
φT
ψT

 ∈ V 4, we have
∑
k∈Z

(|φ̂Tk |2 + |ψ̂Tk |2)(1 + k2)4 < ∞. Moreover, observe that, as

k → ∞, w̃2(k)
w̃1(k) → a1

c1
and w̃1(k)

w̃2(k) → c1

a1
. Then, we obtain a constant C > 0 satisfying

1
2
∑
k∈I

∣∣∣∣∣∣∣∣(e
ikσ(k)(T−t1) − eikσ(k)(T−t2))

∑
m∈I(k)


 1

−
√

w̃2(m)˜̃w1(m)

 eimxφ̂Tm +

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m


∣∣∣∣∣∣∣
2

(1 + k2)4

≤ C
∑
k∈Z

(|(eikσ(k)(T−t1) − eikσ(k)(T−t2))|2|φ̂Tk |2 + |ψ̂Tk |2)(1 + k2)4.

Hence, by Lebesgue’s theorem, it follows that
∣∣∣∣∣∣
φ
ψ

 (t1, x) −

φ
ψ

 (t2, x)
∣∣∣∣∣∣ → 0, as t1 → t2,
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which implies that
φ
ψ

 ∈ C([0, T ];V 4). If
φT
ψT

 ∈ V 4, the same argument shows that

 φxxxx(t, 0)
ψxxxx(t, 0)

 = 1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)

m4


 1

−
√

w̃2(m)
w̃1(m)

 φ̂Tm +

 −
√

w̃1(m)
w̃2(m)

1

 ψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 φ̂T−m +


√

w̃1(m)
w̃2(m)

1

 ψ̂T−m
 ∈ (L2(0, T ))2.

(2.28)

Remark that, if
φT
ψT

 ∈ V 4, the sum above also makes sense in (L2(0, T ))2, since

∑
k∈I

∑
m∈I(k)

m4


 1

−
√

w̃2(m)
w̃1(m)

 φ̂Tm +

 −
√

w̃1(m)
w̃2(m)

1

 ψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 φ̂T−m +


√

w̃1(m)
w̃2(m)

1

 ψ̂T−m
 < ∞.

(2.29)

Moreover, the map
φT
ψT

 7→

 φxxxx(t, 0)
ψxxxx(t, 0)

 is continuous. Indeed, from (2.28) and (2.29)

we deduce that ∥∥∥∥∥∥
φxxxx(t, 0)
ψxxxx(t, 0)

∥∥∥∥∥∥
(L2(0,T ))2

≤ C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 4

,

for some constant C > 0. Thus, due to the considerations above, from now on
 φxxxx(t, 0)
ψxxxx(t, 0)


denotes the sum (2.28), whenever

φT
ψT

 ∈ V 4.

(iii) We proceed in several steps.

• (2.26) holds when
u0

v0

 ∈ V 5,
φT
ψT

 ∈ V 4 and fi, gi ∈ C2
0([0, T ]), for i, j =

0, 1, 2, 3, 4.

First, suppose that
φT
ψT

 ∈ V 5 and invoke (2.28). Since V 4 ⊂ V 0 ⊂ [V 4]′, where

each embedding is dense, the result follows from (ii) and the density of V 5 in V 4.

• Let S ∈ [0, T ] be fixed. Then, (2.26) defines
u(S, ·)
v(S, ·)

 in [V 4]′ in a unique manner.
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Observe that, from the proof of (ii) we deduce that the map Γ : V 4 → C, given by

Γ
φT

ψT

 = −
〈 f0(t)

g0(t)

 ,
ψ(t, 0) + cψxx(t, 0) + c1ψxxxx(t, 0)
φ(t, 0) + aφxx(t, 0) + a1φxxxx(t, 0)

〉
(L2(0,T ))2×(L2(0,T ))2

+
〈 f1(t)

g1(t)

 ,
cψx(t, 0) + c1ψxxx(t, 0)
aφx(t, 0) + a1φxxx(t, 0)

〉
(L2(0,T ))2×(L2(0,T ))2

−
〈 f2(t)

g2(t)

 ,
cψ(t, 0) + c1ψxx(t, 0)
aφ(t, 0) + a1φxx(t, 0)

〉
(L2(0,T ))2×(L2(0,T ))2〈 f3(t)

g3(t)

 ,
c1ψx(t, 0)
a1φx(t, 0)

〉
(L2(0,T ))2×(L2(0,T ))2

−
〈 f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
(L2(0,T ))2×(L2(0,T ))2

,

is linear and continuous, where
φ
ψ

 is the solution of the adjoint system (2.17) with initial

data
φT
ψT

. On the other hand, the well-posedness of the adjoint system (see Theorem

2.1.3) allows us to conclude that the map TS : V 4 → V 4, given by

TS

φT
ψT

 =
φ(S, ·)
ψ(S, ·)

 ,

is an automorphism of Hilbert space. This implies that, for each S ∈ [0, T ],
u(S, ·)
v(S, ·)

 is

uniquely defined in [V 4]′. Moreover, for S ∈ [0, T ], we obtain the following estimate:∥∥∥∥∥∥
u(S, ·)
v(S, ·)

∥∥∥∥∥∥
[V 4]′

= sup∥∥∥∥(φ(S, ·)
ψ(S, ·)

)∥∥∥∥
V 4

≤1

∣∣∣∣∣∣
〈u(S, ·)

v(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉∣∣∣∣∣∣

= sup∥∥∥∥(φT

ψT

)∥∥∥∥
V 4

≤1

∣∣∣∣∣∣∣
〈u0

v0

 ,
φ(0, ·)
ψ(0, ·)

〉
[V 4]′×V 4

− Γ
φT
ψT


∣∣∣∣∣∣∣

≤ sup∥∥∥∥(φT

ψT

)∥∥∥∥
V 4

≤1


∥∥∥∥∥∥
u0

v0

∥∥∥∥∥∥
[V 4]′

∥∥∥∥∥∥
φ(0, ·)
ψ(0, ·)

∥∥∥∥∥∥
V 4

+
∣∣∣∣∣∣Γ
φT
ψT

∣∣∣∣∣∣
 (2.30)

≤ C


∥∥∥∥∥∥
u0

v0

∥∥∥∥∥∥
[V 4]′

+
∥∥∥∥∥∥
 f0(t)
g0(t)

∥∥∥∥∥∥
(L2(0,T ))2

+
∥∥∥∥∥∥
 f1(t)
g1(t)

∥∥∥∥∥∥
(L2(0,T ))2

+
∥∥∥∥∥∥
 f2(t)
g2(t)

∥∥∥∥∥∥
(L2(0,T ))2

+
∥∥∥∥∥∥
 f3(t)
g3(t)

∥∥∥∥∥∥
(L2(0,T ))2

+
∥∥∥∥∥∥
 f4(t)
g4(t)

∥∥∥∥∥∥
(L2(0,T ))2

 ,
where C is a positive constant which does not depend on S or on u0, v0, fj, gj, for j =
0, 1, 2, 3, 4.
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•

u
v

 ∈ C([0, T ]; [V 4]′).

First, observe that, from (i) we have that
u
v

 ∈ C([0, T ];V 0) ⊂ C([0, T ]; [V 4]′),

whenever
u0

v0

 ∈ V 5 and fj, gj ∈ C2
0 [(0, T )], for j = 0, 1, 2, 3, 4. Since V 5 is dense in V 0

and C2
0 [(0, T )] is dense in L2(0, T ), from (2.30) it follows that

u
v

 ∈ C([0, T ]; [V 4]′).
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Proposition 2.2.1 leads to the following definition:

Definition 2.2.1. For
u0

v0

 ∈ [V 4]′ and fj, gj ∈ L2(0, T ), with j = 0, 1, 2, 3, 4, a weak

solution of (2.22)-(2.24) is a function
u
v

 ∈ C([0, T ]; [V 4]′), such that (2.26) holds true

for all
φT
ψT

 ∈ V 4 and all S ∈ [0, T ].

In order to prove the controllability result applying the Hilbert Uniqueness Method,
we have to prove an observability inequality for the solutions of the corresponding adjoint
system. Here, this is done using the so-called Ingham’s inequality. For the sake of complete-
ness and in order to facilitate the reading of the thesis, let us give below a generalization
of Ingham’s inequality (see, for instance, [2, 22] ).

Theorem 2.2.1. Let (µk)k∈Z be a sequence of distinct real numbers verifying

lim inf
|k|→∞

(µk+1 − µk) ≥ γ > 0. (2.31)

For any T >
2π
γ

, there exist constants Ci(T ) > 0, i = 1, 2, such that

C1
∑
k∈Z

|ak|2 ≤
∫ T

0

∣∣∣∣∑
k∈Z

ake
i µkt

∣∣∣∣2 dt ≤ C2
∑
k∈Z

|ak|2, (2.32)

for any sequence of scalars (ak)k∈Z ∈ ℓ2.

Then, we have the following result:

Proposition 2.2.2. Let T > 0. Then, there exist positive constants C and C̃, such that,

for any
φT
ψT

 ∈ V 4,

C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 4

≤

∥∥∥∥∥∥
φ+ aφxx + a1φxxxx

ψ + cψxx + c1ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφx + a1φxxx

cψx + c1ψxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φx

c1ψx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C̃

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 4

,

(2.33)

where
φ
ψ

 is a solution of the adjoint system (2.17) with initial data
φT
ψT

.
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Proof. We first prove the left inequality assuming that the right one holds. Let us consider
λk, k ∈ Z, the eigenvalues of the operator A∗, the state operator associate to the adjoint
system. Remark that they coincide with the eigenvalues of A defined by (2.14). Since
b = d = b1 = d1 = 0,

lim
|k|→∞

|λk| = ∞.

Then, according to Remark 2.1.1, there exists N1 > 0, such that, for |k| > N1, the
eigenvalues has multiplicity one. In particular, for |k| > N1,

1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)


 1

−
√

w̃2(m)
w̃1(m)

 eimxφ̂Tm +

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm
+

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m

 =
∑

|k|>N1

eikσ(k)(T−t)

φ̂Tk
ψ̂Tk

 eikx.
(2.34)

In addition, if we take T1 ∈ (0, T ) and γ > 2π
T1

, there exists N2 ∈ N, such that

k ∈ Z, |k| ≥ N2 =⇒ (k + 1)σ(k + 1) − kσ(k) ≥ γ. (2.35)

Also, taking Remark 2.1.1 into account, we introduceWn = Span

 eikx

−σ(k)
w1
eikx

 ,
 e−ikx

σ(k)
w1
e−ikx

,

for k ∈ I(n) and n ∈ I, and consider W = ⊕
n∈IWn ⊂ V 4, whose embedding is dense. In

W we define the following semi-norm:

p
u
v

2

=
∣∣∣∣∣∣
u(0) + au′′(0) + a1u

′′′′(0)
v(0) + cv′′(0) + c1v

′′′′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
au′(0) + a1u

′′′(0)
cv′(0) + c1v

′′′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
au(0) + a1u

′′(0)
cv(0) + c1v

′′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
a1u

′(0)
c1v

′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
a1u(0)
c1v(0)

∣∣∣∣∣∣
2

, ∀

u
v

 ∈ W.

Let N = max{N1, N2} and
φT
ψT

 ∈ W ∩(⊕|n|<N Wn)⊥, that is,
φ̂Tn
ψ̂Tn

 =
0

0

 for |k| < N

or for |k| large enough. Then, by (2.34), (2.35) and Ingham’s inequality, we obtain CT1 > 0,
such that

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 4

≲
∑

|n|≥N

(a1 + a1n+ a1n
2 + a1n

3 + a1n
4)2|φ̂Tn |2

(c1 + c1n+ c1n
2 + c1n

3 + c1n
4)2|ψ̂Tn |2


≤ CT1

∫ T1

0

∣∣∣∣ ∑
|n|≥N

(a1 + a1n+ a1n
2 + a1n

3 + a1n
4)φ̂Tn

(c1 + c1n+ c1n
2 + c1n

3 + c1n
4)ψ̂Tn

 einσ(n)(T−t)
∣∣∣∣2dt

,
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thus ∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 4

≲ CT1

∫ T1

0

∣∣∣∣ ∑
|n|≥N

[(1 − an2 + a1n
4)φ̂Tn

(1 − cn2 + c1n
4)ψ̂Tn

−

(an− a1n
3)φ̂Tn

(cn− c1n
3)ψ̂Tn



−

a1+a
a1

(a− a1n
2)φ̂Tn

c1+c
c1

(c− c1n
2)ψ̂Tn

+
a1+a

a1
a1nφ̂

T
n

c1+c
c1
c1nψ̂

T
n

+
a2

1−a1+aa1+a2

a2
1

a1φ̂
T
n

c2
1−c1+cc1+c2

c2
1

c1ψ̂
T
n

]einσ(n)(T−t)
∣∣∣∣2dt

≤ CT1

∫ T1

0

[ ∣∣∣∣ ∑
|n|≥N

(1 − an2 + a1n
4)φ̂Tn

(1 − cn2 + c1n
4)ψ̂Tn

 ∣∣∣∣2 +
∣∣∣∣ ∑

|n|≥N

(an− a1n
3)φ̂Tn

(cn− c1n
3)ψ̂Tn

 ∣∣∣∣2

+
∣∣∣∣ ∑

|n|≥N

|a1+a
a1

|(a− a1n
2)φ̂Tn

| c1+c
c1

|(c− c1n
2)ψ̂Tn

 ∣∣∣∣2 +
∣∣∣∣ ∑

|n|≥N

|a1+a
a1

|a1nφ̂
T
n

| c1+c
c1

|c1nψ̂
T
n

 ∣∣∣∣2

+
∣∣∣∣ ∑

|n|≥N

a2
1−a1+aa1+a2

a2
1

a1φ̂
T
n

c2
1−c1+cc1+c2

c2
1

c1ψ̂
T
n

 ∣∣∣∣2]dt ≤ CT1
∫ T1

0
p

φ(t, ·)
ψ(t, ·)

2

dt.

Since T > T1, from the above estimate, [25, Theorem 5.3] and the right inequality in
(2.33), we obtain CT > 0, such that

CT

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 4

≤
∫ T

0
p

φ(t, ·)
ψ(t, ·)

2

dt

≤

∥∥∥∥∥∥
φ+ aφxx + a1φxxxx

ψ + cψxx + c1ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφx + a1φxxx

cψx + c1ψxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φx

c1ψx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

,

∀

φT
ψT

 ∈ W. The general case follows from a density argument.

Now, we prove the right inequality in (2.33). Observe that, from the considerations
above it follows that φxxxx

ψxxxx

 (t, 0) = 1
2
∑

|k|<N1

eikσ(k)(T−t) ∑
m∈I(k)

m4


 1

−
√

w2(m)
w1(m)

 φ̂Tm +

 −
√

w1(m)
w2(m)

1

 ψ̂Tm
+

 1√
w2(m)
w1(m)

 φ̂T−m +


√

w1(m)
w2(m)

1

 ψ̂T−m


+1
2
∑

|k|≥N1

eikσ(k)(T−t)k4


 1

−
√

w2(k)
w1(k)

 φ̂Tk +

 −
√

w1(k)
w2(k)

1

 ψ̂Tk
+

 1√
w2(k)
w1(k)

 φ̂+
−k


√

w1(k)
w2(k)

1

 ψ̂T−k
 .
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Then,∥∥∥∥∥∥
 φxxxx

ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C1


∥∥∥∥∥∥
∑

|k|<N1

k4eikσ(k)(T−t)

 φ̂Tk

ψ̂Tk

∥∥∥∥∥∥
2

(L2(0,T ))2

+
∥∥∥∥∥∥
∑

|k|≥N1

k4eikσ(k)(T−t)

 φ̂Tk

ψ̂Tk

∥∥∥∥∥∥
2

(L2(0,T ))2

 ≤ C2

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 4

,

where C1 and C2 are positive constants. Analogously, we obtain C3 > 0, such that∥∥∥∥∥∥
 φxx

ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C3

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 4

.

Thus,∥∥∥∥∥∥
φ+ aφxx + a1φxxxx

ψ + cψxx + c1ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ 3


∥∥∥∥∥∥
φ
ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφxx
cψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φxxxx

c1ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

 ≤ C4

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 4

,

for some constant C4 > 0. The remaining terms in (2.33) are estimated in a similar
way.

Using Proposition 2.2.2 we prove our main result:

Theorem 2.2.2. Let T > 0. Then, for any
u0

v0

 ,
uT
vT

 ∈ [V 4]′, there exist fj, gj ∈

L2(0, T ), with j = 0, 1, 2, 3, 4, such that the solution
u
v

 ∈ C([0, T ]; [V 4]′) of problem

(2.22)-(2.24) satisfies
u(T, ·)
v(T, ·)

 =
uT
vT

.

Proof. We can assume that
u0

v0

 =
0

0

. Let Λ denote the map

φT
ψT

 ∈ V 4 7→

u(T, ·)
v(T, ·)

 ∈ [V 4]′,

where
u
v

 is the solution (weak) of (2.22)-(2.24) with fj, gj given by

f0 = −(ψ(t, 0) + cψxx(t, 0) + c1ψxxxx(t, 0), g2 = −(aφ(t, 0) + a1φxx(t, 0))
g0 = −(φ(t, 0) + aφxx(t, 0) + a1φxxxx(t, 0)), f3 = c1ψx(t, 0)
f1 = cψx(t, 0) + c1ψxxx(t, 0), g3 = a1φx(t, 0)
g1 = aφx(t, 0)a1 + φxxx(t, 0), f4 = −c1ψ(t, 0)
f2 = −(cψ(t, 0) + cxψxx(t, 0)), g4 = −a1φ(t, 0),

(2.36)
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where
φ
ψ

 is the solution of the adjoint system associated with
φT
ψT

. Λ is linear and

continuous (see (2.30) and (2.33)). Moreover, using Propositions 2.2.1 and 2.2.2 it follows
that Λ is coercive, since
〈

Λ
φT
ψT

 ,
φT
ψT

〉

=
∥∥∥∥∥∥
φ+ aφxx + a1φxxxx

ψ + cψxx + c1ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφx + a1φxxx

cψx + c1ψxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φx

c1ψx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≥ C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 4

.

Thus, by Lax-Milgram theorem it follows that Λ is invertible. Consequently, given
uT
vT

 ∈

[V 4]′, we can define
φT
ψT

 := Λ−1

uT
vT

 to solve the adjoint system and get
φ
ψ

 ∈ V 4.

Then, if the boundary functions fj, gj, with j = 0, 1, 2, 3, 4, are given by (2.36), the

corresponding solution
u
v

 of the system (2.22)-(2.24) satisfies

u(0, ·)
v(0, ·)

 =
0

0

 and
u(T, ·)
v(T, ·)

 =
uT
vT

 .

If we assume that
f0

g0

 =
f2

g2

 =
0

0

 in (2.22)-(2.24), the same arguments as

above yield the following result in smaller spaces of initial data.

Theorem 2.2.3. For every T > 0 and
u0

v0

 ,
uT
vT

 ∈ [V 3]′, there exist
f1

g1

 ,
f3

g3

 ,
f4

g4

 ∈

(L2(0, T ))2, such that the solution
u
v

 ∈ C([0, T ]; [V 3]′) of (2.22)-(2.24), with
f0

g0

 =f2

g2

 =
0

0

, satisfies
u(T, ·)
v(T, ·)

 =
uT
vT

.

Proof. Let
φ
ψ

 be a solution of the adjoint system with final data
φT
ψT

 ∈ V 3. Pro-

ceedings as in (2.28)-(2.29) it can be shown that
φxxx(t, 0)
ψxxx(t, 0)

 makes sense in (L2(0, T ))2.
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Moreover, the following observability inequality holds

CT1

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 3

≤

∥∥∥∥∥∥
aφx(t, 0) + a1φxxx(t, 0)
cψx(t, 0) + c1ψxxx(t, 0)

∥∥∥∥∥∥
2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φx

c1ψx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

,

for some CT1 > 0. Indeed,∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 3

≲
∑

|n|≥N

(1 + n3)2|φ̂Tn |2

(1 + n3)2|ψ̂Tn |2


≤ CT1

∫ T1

0

∣∣∣∣ ∑
|n|≥N

(1 + n3)φ̂Tn
(1 + n3)ψ̂Tn

 einσ(n)t
∣∣∣∣2dt

= CT1

∫ T1

0

∣∣∣∣− ∑
|n|≥N

 1
a1

(an− a1n
3)φ̂Tn

1
c1

(cn− c1n
3)ψ̂Tn

 einσ(n)t +
 a
a1
nφ̂Tn

c
c1
nψ̂Tn

 einσ(n)t +
φ̂Tn
ψ̂Tn

 einσ(n)t
∣∣∣∣2dt

≤ CT1

∫ T1

0

∣∣∣∣ ∑
|n|≥N

 1
a1

(an− a1n
3)φ̂Tn

1
c1

(cn− c1n
3)ψ̂Tn

 ∣∣∣∣2 +
∣∣∣∣ ∑

|n|≥N

 a
a1
nφ̂Tn

c
c1
nψ̂Tn

 ∣∣∣∣2 +
∣∣∣∣ ∑

|n|≥N

φ̂Tn
ψ̂Tn

 ∣∣∣∣2
 dt

≤ CT1

∫ T1

0
p̃

φ(t, ·)
ψ(t, ·)

2

dt,

where p̃
u
v

2

=
∣∣∣∣∣∣
au′(0) + a1u

′′′(0)
cv′(0) + c1v

′′′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
a1u

′(0)
c1v

′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
a1u(0)
c1v(0)

∣∣∣∣∣∣
2

.

Then, the result is obtained following the arguments developed in the proofs of Proposition
2.2.2 and Theorem 2.2.2, respectively.

The following remarks are in order:

Remark 2.2.1.

1. If T = 2π the left inequality in Proposition 2.2.2 is easy to prove. Indeed, for anyφT
ψT

 ∈ V 4 it follows that

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 4

=
∑
k∈Z

(
1 + n2 + n4 + n6 + n8

) ∣∣∣∣∣∣
φTk
ψTk

∣∣∣∣∣∣
2

≤ C
∑
k∈Z


∣∣∣∣∣∣
a1φ

T
k

c1ψ
T
k

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
a1nφ

T
k

c1nψ
T
k

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
(a− a1n

2)φTk
(c− c1n

2)ψTk

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
(an− a1n

3)φTk
(cn− c1n

3)ψTk

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
(1 − an2 + a1n

4)φTk
(1 − cn2 + c1n

4)ψTk

∣∣∣∣∣∣
2
 ,
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thus∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 4

≤ C


∥∥∥∥∥∥
φ+ aφxx + a1φxxxx

ψ + cψxx + c1ψxxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π)2

+
∥∥∥∥∥∥
aφx + a1φxxx

cψx + c1ψxxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π)2

+
∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π)2

+
∥∥∥∥∥∥
a1φx

c1ψx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π)2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π)2

 ,
where C only depends on the parameters a, a1, c, c1.

2. A similar approach as the one given in the proofs of Theorems 2.2.2 and 2.2.3 allows
to show that the lower order Boussinesq system of KdV-KdV type (system (1.10) with
b = d = 0) is controllable.

2.2.2 KdV-BBM

This section is devoted to the study of the systemut + vx − butxx + avxxx + a1vxxxxx = 0, in (0, T ) × (0, 2π)

vt + ux − dutxx + cuxxx + c1uxxxxx = 0, in (0, T ) × (0, 2π),
(2.37)

with boundary conditions

∂jxu(t, 2π) − ∂jxu(t, 0) = 0, in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = 0, in (0, T )

∂2
xu(t, 2π) − ∂2

xu(t, 0) = f2(t), in (0, T )

∂2
xv(t, 2π) − ∂2

xv(t, 0) = g2(t), in (0, T )

∂4
xu(t, 2π) − ∂4

xu(t, 0) = f4(t), in (0, T )

∂4
xv(t, 2π) − ∂4

xv(t, 0) = g4(t), in (0, T ),

(2.38)

for j = 0, 1, 3, and initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π). (2.39)

We first prove that system (2.37)-(2.39) is well-posed.

Proposition 2.2.3. For any s ∈ R, let V s be the Hilbert space defined by (2.6). Then,
the following well-posedness results hold:

(i) Suppose that f2(t), g2(t), f4(t), g4(t) ∈ C2
0 [0, T ] and

u0

v0

 ∈ V 5. Then, there exists a

unique solution
u
v

 ∈ C1([0, T ];V 2) ∩ C([0, T ];V 5) of (2.37)-(2.39). Moreover, for
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any
φT
ψT

 ∈ V 5 and S ∈ [0, T ], we have

〈u(S, ·) − buxx(S, ·)
v(S, ·) − dvxx(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉
V 0×V 0

=
〈u0 − bu0

xx

v0 − dv0
xx

 ,
φ(0, ·)
ψ(0, ·)

〉
V 0×V 0

(2.40)

−
〈f2(t)

g2(t)

 ,
cψ(t, 0) + c1ψxx(t, 0)
aφ(t, 0) + a1φxx(t, 0)

〉
(L2(0,S))2×(L2(0,2π))2

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
(L2(0,S))2×(L2(0,2π))2

,

where
φ
ψ

 ∈ C1([0, T ];V 2) ∩ C([0, T ];V 5) is the solution of the adjoint system

(2.17) with initial data
φT
ψT

 given by Theorem 2.1.3.

(ii) If
φT
ψT

 ∈ V 2, there exists a unique solution
φ
ψ

 ∈ C([0, T ];V 2) of (2.17) andφxx(t, 0)
ψxx(t, 0)

 makes sense in (L2(0, T ))2.

(iii) Assume that
u0

v0

 ∈ V 0 and fj, gj ∈ L2(0, T ), for j = 2, 4. Then, there exists a

unique
u
v

 ∈ C([0, T ]; [V 0]2), such that, for any
φT
ψT

 ∈ V 2 and any S ∈ [0, T ],

we have〈u(S, ·) − buxx(S, ·)
v(S, ·) − dvxx(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉
[V 2]′×V 2

=
〈u0 − bu0

xx

v0 − dv0
xx

 ,
φ(0, ·)
ψ(0, ·)

〉
[V 2]′×V 2

−
〈f2(t)

g2(t)

 ,
cψ(t, 0) + c1ψxx(t, 0)
aφ(t, 0) + a1φxx(t, 0)

〉
(L2(0,S))2×(L2(0,2π))2

(2.41)

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
(L2(0,S))2×(L2(0,2π))2

,

where
φ
ψ

 ∈ C([0, T ];V 2) is the solution of the adjoint system (2.17) with initial

data
φT
ψT

 given by (ii).
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Proof. (i) Consider θj, ϕj ∈ C∞(0, 2π), with θ
(k)
j (0) = 0 = ϕ

(k)
j (0) and θ

(k)
j (2π) = −δkj =

ϕ
(k)
j (2π), for j = 2, 4, k = 0, 1, 2, 3, 4. Denoting by

u1

v1

 the solution of the corresponding

homogeneous system given by Theorem 2.1.2, the change of functions

z
w

 =
u
v

−

u1

v1

+
∑j=2,4 θj(x)fj(t)∑

j=2,4 ϕj(x)gj(t)



yields an equivalent problem: Find
z
w

, such that



zt + wx − bztxx + awxxx + a1wxxxxx =∑
j=2,4

[(θj(x) − bθ′′
j (x))f ′

j(t) + gj(t)(ϕ′
j(x) + aϕ

(3)
j (x) + a1ϕ

(5)
j (x))] := F

wt + zx − dwtxx + czxxx + c1zxxxxx =∑
j=2,4

[(ϕj(x) − dϕ′′
j (x))g′

j(t) + fj(t)(θ′
j(x) + cθ

(3)
j (x) + c1θ

(5)
j (x))] := G

∂jxz(t, 2π) = ∂jxz(t, 0), ∂jxw(t, 2π) = ∂jxw(t, 0), j = 0, 1, 2, 3, 4,

z(0, x) = 0, w(0, x) = 0.
(2.42)

Since F,G ∈ C1([0, T ];C∞(0, 2π)) ⊂ L1((0, T );V 5), from Theorem 2.1.2 we deduce that

(2.42) admits a unique solution
z
w

 ∈ C([0, T ];V 5) ∩ C1([0, T ];V 2). Hence, we have a

unique solution
u
v

 ∈ C([0, T ];V 5) ∩ C1([0, T ];V 2) of (2.42). To obtain identity (2.40),

we multiply the first equation of (2.37) by φ, the second one by ψ, integrate in time and
space over (0, T ) × (0, 2π) and add the resulting identities.

(ii) If t1, t2 ∈ [0, T ], from (2.21) we obtain

φ
ψ

 (t1, x) −

φ
ψ

 (t2, x) = 1
2
∑
k∈I

(eikσ(k)(T−t1) − eikσ(k)(T−t2))
∑

m∈I(k)


 1

−
√

w̃2(m)˜̃w1(m)

 eimxφ̂Tm

+

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm +

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m

 .

Since
φT
ψT

 ∈ V 2, we have
∑
k∈Z

(|φ̂Tk |2 + |ψ̂Tk |2)(1 + k2)2 < ∞. Moreover, observe that, as

k → ∞, w̃2(k)
w̃1(k) → a1

c1
and w̃1(k)

w̃2(k) → c1

a1
.
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Then, we obtain a constant C > 0 satisfying

1
2
∑
k∈I

∣∣∣∣∣∣∣∣(e
ikσ(k)(T−t1) − eikσ(k)(T−t2))

∑
m∈I(k)


 1

−
√

w̃2(m)˜̃w1(m)

 eimxφ̂Tm +

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m


∣∣∣∣∣∣∣
2

(1 + k2)2

≤ C
∑
k∈Z

(|(eikσ(k)(T−t1) − eikσ(k)(T−t2))|2|φ̂Tk |2 + |ψ̂Tk |2)(1 + k2)2.

Hence, by Lebesgue’s theorem, it follows that
∣∣∣∣∣∣
φ
ψ

 (t1, x) −

φ
ψ

 (t2, x)
∣∣∣∣∣∣ → 0, as t1 → t2,

which implies that
φ
ψ

 ∈ C([0, T ];V 2). If
φT
ψT

 ∈ V 5, the same argument shows that

 φxx(t, 0)
ψxx(t, 0)

 = 1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)

m2


 1

−
√

w̃2(m)
w̃1(m)

 φ̂Tm +

 −
√

w̃1(m)
w̃2(m)

1

 ψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 φ̂T−m +


√

w̃1(m)
w̃2(m)

1

 ψ̂T−m
 ∈ (L2(0, T ))2.

(2.43)

Remark that, if
φT
ψT

 ∈ V 2, the sum above also makes sense in (L2(0, T ))2, since

∑
k∈I

∑
m∈I(k)

m2


 1

−
√

w̃2(m)
w̃1(m)

 φ̂Tm +

 −
√

w̃1(m)
w̃2(m)

1

 ψ̂Tm

+

 1√
w̃2(m)
w̃1(m)

 φ̂T−m +


√

w̃1(m)
w̃2(m)

1

 ψ̂T−m
 < ∞.

(2.44)

Moreover, the map
φT
ψT

 7→

 φxx(t, 0)
ψxx(t, 0)

 is continuous. Indeed, from (2.43) and (2.44)

we deduce that ∥∥∥∥∥∥
φxx(t, 0)
ψxx(t, 0)

∥∥∥∥∥∥
(L2(0,T ))2

≤ C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 2

,

for some constant C > 0. Thus, due to the considerations above, from now on
 φxx(t, 0)
ψxx(t, 0)


denotes the sum (2.43), whenever

φT
ψT

 ∈ V 2.

(iii) We proceed in several steps.
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• (2.41) holds when
u0

v0

 ∈ V 5,
φT
ψT

 ∈ V 2 and fi, gi ∈ C2
0 ([0, T ]), for i, j = 2, 4.

First, suppose that
φT
ψT

 ∈ V 5 and invoke (2.43). Since V 2 ⊂ V 0 ⊂ [V 2]′, where

each embedding is dense, the result follows from (ii) and the density of V 5 in V 2.

• Let S ∈ [0, T ] be fixed. Then, (2.41) defines
u(S, ·) − uxx(S, ·)
v(S, ·) − vxx(S, ·)

 in [V 2]′ in a

unique manner.

Observe that, from the proof of (ii) we deduce that the map Γ : V 2 → C, given by

Γ
φT

ψT

 = −
〈f2(t)

g2(t)

 ,
cψ(t, 0) + c1ψxx(t, 0)
aφ(t, 0) + a1φxx(t, 0)

〉
(L2(0,S))2×(L2(0,2π))2

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
(L2(0,S))2×(L2(0,2π))2

,

is linear and continuous, where
φ
ψ

 is the solution of the adjoint system (2.17) with initial

data
φT
ψT

. On the other hand, the well-posedness of the adjoint system (see Theorem

2.1.3) allows us to conclude that the map TS : V 2 → V 2, given by

TS

φT
ψT

 =
φ(S, ·)
ψ(S, ·)

 ,

is an automorphism of Hilbert space. This implies that, for each S ∈ [0, T ],
u(S, ·) − buxx(S, ·)
v(S, ·) − dvxx(S, ·)


is uniquely defined in [V 2]′. Moreover, for S ∈ [0, T ], we obtain the following estimate:∥∥∥∥∥∥
u(S, ·) − uxx(S, ·)
v(S, ·) − vxx(S, ·)

∥∥∥∥∥∥
[V 2]′

= sup∥∥∥∥(φ(S, ·)
ψ(S, ·)

)∥∥∥∥
V 2

≤1

∣∣∣∣∣∣
〈u(S, ·) − uxx(S, ·)

v(S, ·) − vxx(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉∣∣∣∣∣∣

= sup∥∥∥∥(φT

ψT

)∥∥∥∥
V 2

≤1

∣∣∣∣∣∣∣
〈u0 − u0,xx

v0 − v0,xx

 ,
φ(0, ·)
ψ(0, ·)

〉
[V 2]′×V 2

− Γ
φT
ψT


∣∣∣∣∣∣∣

≤ sup∥∥∥∥(φT

ψT

)∥∥∥∥
V 2

≤1


∥∥∥∥∥∥
u0 − u0,xx

v0 − v0,xx

∥∥∥∥∥∥
[V 2]′

∥∥∥∥∥∥
φ(0, ·)
ψ(0, ·)

∥∥∥∥∥∥
V 2

+
∣∣∣∣∣∣Γ
φT
ψT

∣∣∣∣∣∣


(2.45)

≤ C


∥∥∥∥∥∥
u0

v0

∥∥∥∥∥∥
V 0

+
∥∥∥∥∥∥
 f2(t)
g2(t)

∥∥∥∥∥∥
(L2(0,T ))2

+
∥∥∥∥∥∥
 f4(t)
g4(t)

∥∥∥∥∥∥
(L2(0,T ))2

 ,
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where C is a positive constant which does not depend on S or on u0, v0, fj, gj , for j = 2, 4.

•

u
v

 ∈ C([0, T ];V 0).

First, observe that, from (i) we have that
u
v

 ∈ C([0, T ];V 5) ⊂ C([0, T ];V 0),

whenever
u0

v0

 ∈ V 5 and fj, gj ∈ C2
0 [(0, T )], for j = 2, 4. Since V 5 is dense in V 0 and

C2
0(0, T ) is dense in L2(0, T ), it is follow from (2.45) that

u
v

 ∈ C([0, T ];V 0).

Proposition 2.2.3 leads to the following definition:

Definition 2.2.2. For
u0

v0

 ∈ V 0 and fj, gj ∈ L2(0, T ), with j = 2, 4, a weak solution

of (2.37)-(2.39) is a function
u
v

 ∈ C([0, T ];V 0), such that (2.41) holds true for allφT
ψT

 ∈ V 2 and all S ∈ [0, T ].

In order to prove the controllability result applying the Hilbert Uniqueness Method,
we have to prove an observability inequality for the solutions of the corresponding adjoint
system. Here, this is done using the so-called Ingham’s inequality (see, for instance, [2, 22])
. For the sake of completeness and in order to facilitate the reading of the tese, we give a
generalization of Ingham’s inequality in Theorem 2.2.1.

Then, we have the following result:

Proposition 2.2.4. Let T > 0. Then, there exist positive constants C and C̃, such that,

for any
φT
ψT

 ∈ V 2,

C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 2

≤

∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

(2.46)

≤ C̃

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 2

,

where
φ
ψ

 is the solution of the adjoint system with data
φT
ψT

.

Proof. We first prove the left inequality assuming that the right one holds.

Let us consider λk, k ∈ Z, the eigenvalues of the operator A∗, the state operator
associate to the adjoint system. Remark that they coincide with the eigenvalues of A,
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defined by (2.14). Since b1 = d1 = 0,

lim
|k|→∞

|λk| = ∞.

Then, according to Remark 2.1.1, there exists N1 > 0, such that, for |k| > N1, the
eigenvalues has multiplicity one. In particular, for |k| > N1,

1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)


 1

−
√

w̃2(m)
w̃1(m)

 eimxφ̂Tm +

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm
+

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m

 =
∑

|k|>N1

eikσ(k)(T−t)

φ̂Tk
ψ̂Tk

 eikx.
(2.47)

In addition, if we take T1 ∈ (0, T ) and γ > 2π
T1

, there exists N2 ∈ N, such that

k ∈ Z, |k| ≥ N2 =⇒ (k + 1)σ(k + 1) − kσ(k) ≥ γ. (2.48)

Also, taking Remark 2.1.1 into account, we introduceWn = Span

 eikx

−σ(k)
w1
eikx

 ,
 e−ikx

σ(k)
w1
e−ikx

,

for k ∈ I(n) and n ∈ I, and consider W = ⊕
n∈IWn ⊂ V 2, whose embedding is dense. In

W we define the following semi-norm:p
u
v

2

=
∣∣∣∣∣∣
au(0) + a1u

′′(0)
cv(0) + c1v

′′(0)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
a1u(0)
c1v(0)

∣∣∣∣∣∣
2

, ∀

u
v

 ∈ W.

Let N = max{N1, N2} and
φT
ψT

 ∈ W ∩(⊕|n|<N Wn)⊥, that is,
φ̂Tn
ψ̂Tn

 =
0

0

 for |k| < N

or for |k| large enough. Then, by (2.59), (2.60) and Ingham’s inequality, we obtain CT1 > 0,
such that∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 2

≲
∑

|n|≥N

(1 + a1n
2)2|φ̂Tn |2

(1 + c1n
2)2|ψ̂Tn |2

 ≤ CT1
∫ T1

0

∣∣∣∣ ∑
|n|≥N

(1 + a1n
2)φ̂Tn

(1 + c1n
2)ψ̂Tn

 einσ(n)t
∣∣∣∣2dt

= CT1
∫ T1

0

∣∣∣∣ ∑
|n|≥N

−(a− an2)φ̂Tn
−(c− c1n

2)ψ̂Tn

 einσ(n)t +
1+a

a1
a1φ̂

T
n

1+c
c1
c1ψ̂

T
n

 einσ(n)t
∣∣∣∣2dt

≤ CT1
∫ T1

0

[ ∣∣∣∣ ∑
|n|≥N

(a− a1n
2)φ̂Tn

(c− c1n
2)ψ̂Tn

 einσ(n)t
∣∣∣∣2 +

∣∣∣∣ ∑
|n|≥N

|1+a
a1

|a1φ̂
T
n

|1+c
c1

|c1ψ̂
T
n

 einσ(n)t
∣∣∣∣2]dt

≤ CT1
∫ T1

0

[ ∣∣∣∣ ∑
|n|≥N

(a− a1n
2)φ̂Tn

(c− c1n
2)ψ̂Tn

 einσ(n)t
∣∣∣∣2 +

∣∣∣∣ ∑
|n|≥N

a1φ̂
T
n

c1ψ̂
T
n

 einσ(n)t
∣∣∣∣2]dt

≤ CT1
∫ T1

0
p

φ(t, ·)
ψ(t, ·)

2

dt.

Since T > T1, from the above estimate, [25, Theorem 5.3] and the right inequality in
(2.46), we obtain CT > 0, such that

CT

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 2

≤
∫ T

0
p

φ(t, ·)
ψ(t, ·)

2

≤

∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

,
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∀

φT
ψT

 ∈ W . The general case follows from a density argument.

Now, we prove the right inequality in (2.33). Observe that, from the considerations
above it follows that φxx

ψxx

 (t, 0) = 1
2
∑

|k|<N1

eikσ(k)(T−t) ∑
m∈I(k)

m2


 1

−
√

w2(m)
w1(m)

 φ̂Tm +

 −
√

w1(m)
w2(m)

1

 ψ̂Tm
+

 1√
w2(m)
w1(m)

 φ̂T−m +


√

w1(m)
w2(m)

1

 ψ̂T−m


+1
2
∑

|k|≥N1

eikσ(k)(T−t)k2


 1

−
√

w2(k)
w1(k)

 φ̂Tk +

 −
√

w1(k)
w2(k)

1

 ψ̂Tk
+

 1√
w2(k)
w1(k)

 φ̂+
−k


√

w1(k)
w2(k)

1

 ψ̂T−k
 .

Then,∥∥∥∥∥∥
 φxx

ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C1


∥∥∥∥∥∥
∑

|k|<N1

k2eikσ(k)(T−t)

 φ̂Tk

ψ̂Tk

∥∥∥∥∥∥
2

(L2(0,T ))2

+
∥∥∥∥∥∥
∑

|k|≥N1

k2eikσ(k)(T−t)

 φ̂Tk

ψ̂Tk

∥∥∥∥∥∥
2

(L2(0,T ))2

 ≤ C2

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 2

,

where C1 and C2 are positive constants. Analogously, we obtain C3 > 0, such that∥∥∥∥∥∥
 φ

ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C3

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 4

. (2.49)

Thus,∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ 2


∥∥∥∥∥∥
aφ
cψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φxx

c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

 ≤ C4

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 2

,

for some constant C4 > 0. Then, the right inequality in (2.46) follows from (2.49) and the
estimate above.
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Using Proposition 2.2.4 we prove our main result:

Theorem 2.2.4. Let T > 0. Then, for any
u0

v0

 ,
uT
vT

 ∈ V 0, there exist fj, gj ∈ L2(0, T ),

with j = 2, 4, such that the solution
u
v

 ∈ C([0, T ];V 0) of problem (2.37)-(2.39) satisfiesu(T, ·)
v(T, ·)

 =
uT
vT

.

Proof. We can assume that
u0

v0

 =
0

0

. Let Λ denote the map

φT
ψT

 ∈ V 2 7→

u(T, ·) − buxx(T, ·)
v(T, ·) − dvxx(T, ·)

 ∈ [V 2]′,

where
u
v

 is the solution (weak) of (2.37)-(2.39) with f2, g2, f4 and g4 given by

f2 = −(cψ(t, 0) + c1ψxx(t, 0))
g2 = −(aφ(t, 0) + a1φxx(t, 0))
f4 = −c1ψ(t, 0)
g4 = −a1φ(t, 0),

(2.50)

where
φ
ψ

 is the solution of the adjoint system associated with
φT
ψT

. Λ is linear and

continuous (see (2.45) and (2.46)). Moreover, using Propositions 2.2.3 and 2.2.4 it follows
that Λ is coercive, since〈

Λ
φT
ψT

 ,
φT
ψT

〉 =
∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≥ CT

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 2

.

Thus, by Lax-Milgram theorem it follows that Λ is invertible. Consequently, given
uT
vT

 ∈

V 0, we can define
φT
ψT

 := Λ−1

uT
vT

 to solve the adjoint system and get
φ
ψ

 ∈ V 2.

Then, if the boundary functions fj, gj , with j = 2, 4, are given by (2.50), the corresponding

solution
u
v

 of the system (2.37)-(2.39) satisfies

u(0, ·)
v(0, ·)

 =
0

0

 and
u(T, ·)
v(T, ·)

 =
uT
vT

 .
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If we assume that
f2

g2

 =
0

0

 in (2.37)-(2.39), the same arguments as above

yields the following result in smaller spaces of initial data.

Theorem 2.2.5. For every T > 0 and
u0

v0

 ,
uT
vT

 ∈ V 2, there exists
f4

g4

 ∈ (L2(0, T ))2,

such that the solution
u
v

 ∈ C([0, T ];V 2) of (2.37)-(2.39), with
f2

g2

 =
0

0

, satisfiesu(T, ·)
v(T, ·)

 =
uT
vT

.

Proof. Let
φ
ψ

 be a solution of the adjoint system with final data
φT
ψT

 ∈ V 0. Pro-

ceedings as in (2.43)-(2.44) it can be shown that
φ(t, 0)
ψ(t, 0)

 makes sense in (L2(0, T ))2.

Moreover, the following observability inequality holds

CT1

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 0

≤

∥∥∥∥∥∥
a1φ(t, 0)
c1ψ(t, 0)

∥∥∥∥∥∥
2

(L2(0,T ))2

, (2.51)

for some CT1 > 0. Indeed,∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 0

=
∑

|n|≥N

|φ̂Tn |2

|ψ̂Tn |2

 ≤ CT1
∫ T1

0

∣∣∣∣ ∑
|n|≥N

φ̂Tn
ψ̂Tn

 einσ(n)t
∣∣∣∣2dt ≤ CT1

∫ T1

0
p̃

φ(t, ·)
ψ(t, ·)

2

dt,

where p̃
u
v

2

=
∣∣∣∣∣∣
a1u(0)
c1v(0)

∣∣∣∣∣∣
2

.

Then, the result is obtained following the arguments developed in the proofs of Proposition
2.2.4 and Theorem 2.2.4, respectively.

The following remarks are in order:

Remark 2.2.2.

1. If T = 2π the left inequality in Proposition 2.2.4 is easy to prove. Indeed, for anyφT
ψT

 ∈ V 2 it follows that

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 2

=
∑
k∈Z

(
1 + n2

)2
∣∣∣∣∣∣
φTk
ψTk

∣∣∣∣∣∣
2

≤ C
∑
k∈Z


∣∣∣∣∣∣
a1φ

T
k

c1ψ
T
k

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
(a− a1n

2)φTk
(c− c1n

2)ψTk

∣∣∣∣∣∣
2


= C


∥∥∥∥∥∥
aφ+ a1φxx

cψ + c1ψxx

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π))2

+
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,2π))2

 ,
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where C only depends on the parameters a, a1, c, c1.

2. A similar approach as the one given in the proofs of Theorems 2.2.4 and 2.2.5 allows to
show that the lower order Boussinesq system (see (1.10)) is controllable.

2.2.3 Higher order KdV-BBM system

This section is devoted to study the systemut + vx − butxx + b1utxxxx + avxxx + a1vxxxxx = 0 in (0, T ) × (0, 2π)

vt + ux − dvtxx + d1vtxxxx + cuxxx + c1uxxxxx = 0 in (0, T ) × (0, 2π),
(2.52)

with boundary conditions

∂jxu(t, 2π) − ∂jxu(t, 0) = 0 in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = 0 in (0, T )

∂4
xu(t, 2π) − ∂4

xu(t, 0) = f4(t) in (0, T )

∂4
xv(t, 2π) − ∂4

xv(t, 0) = g4(t) in (0, T ),

(2.53)

for j = 0, 1, 2, 3, and initial data

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π). (2.54)

We first prove that system (2.52)-(2.54) is well-posed.

Proposition 2.2.5. For any s ∈ R, let V s be the Hilbert space defined by (2.6) and
X(0, T ) := (L2(0, T ))2 × (L2(0, T ))2, T > 0. Then, the following well-posedness results
hold:

(i) Suppose that f4(t), g4(t) ∈ C2
0 [0, T ] and

u0

v0

 ∈ V 5. Then, there exists a unique

solution
u
v

 ∈ C1([0, T ];V 4) ∩ C([0, T ];V 5) of (2.52)-(2.54). Moreover, for anyφT
ψT

 ∈ V 5 and S ∈ [0, T ], we have

〈u(S, x) − buxx(S, x) + b1uxxxx(S, x)
v(S, x) − dvxx(S, x) + d1vxxxx(S, x)

 ,
φ(S, x)
ψ(S, x)

〉
V 0×V 0

=
〈u0 − bu0

xx + b1u
0
xxxx

v0 − dv0
xx + d1v

0
xxxx

 ,
φ(0, x)
ψ(0, x)

〉
V 0×V 0

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
X(0,S)

,

(2.55)

where
φ
ψ

 ∈ C1([0, T ];V 4) ∩ C([0, T ];V 5) is the solution of the adjoint system

(2.17) with initial data
φT
ψT

 given by Theorem 2.1.3.
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(ii) If
φT
ψT

 ∈ V 0, then
φ
ψ

 ∈ C([0, T ];V 0) and
φ(t, 0)
ψ(t, 0)

 makes sense in (L2(0, T ))2.

(iii) Assume that
u0

v0

 ∈ V 4 and f4, g4 ∈ L2(0, T ). Then, there exists a unique
u
v

 ∈

C([0, T ];V 4), such that, for any
φT
ψT

 ∈ V 0 and any S ∈ [0, T ], we have

〈u(S, x) − buxx(S, x) + b1uxxxx(S, x)
v(S, x) − dvxx(S, x) + d1vxxxx(S, x)

 ,
φ(S, x)
ψ(S, x)

〉
V 0×V 0

=
〈u0 − bu0

xx + b1u
0
xxxx

v0 − dv0
xx + d1v

0
xxxx

 ,
φ(0, x)
ψ(0, x)

〉
V 0×V 0

−
〈f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
X(0,S)

,

(2.56)

where
φ
ψ

 ∈ C([0, T ];V 0) is the solution of the adjoint system (2.17) with initial dataφT
ψT

 given by Theorem 2.1.3.

Proof. (i) The proof of (2.55) is similar to the proof of (2.40), therefore we omit it.

(ii) Arguing as in (ii) of Proposition 2.2.3, we deduce that, if
φT
ψT

 ∈ V 0, the sum

φ
ψ

 (t, 0) = 1
2
∑
k∈I

eikσ(k)t ∑
m∈I(k)


 1

−
√

w2(m)
w1(m)

 φ̂Tm +

−
√

w1(m)
w2(m)

1

 ψ̂Tm
+

 1
−
√

w2(m)
w1(m)

 φ̂T−m −


√

w1(m)
w2(m)

1

 ψ̂T−m


makes sense in L2(0, T ). Moreover, we have the following estimate∥∥∥∥∥∥
φ
ψ

 (t, 0)
∥∥∥∥∥∥

(L2(0,T ))2

≤ C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 0

,

where C > 0 is a positive constant.

(iii) We proceed in several steps.

• (2.56) holds when
u0

v0

 ∈ V 4,
φT
ψT

 ∈ V 0 and f4, g4 ∈ C2
0([0, T ]).

First, suppose that
φT
ψT

 ∈ V 5. Since V 5 is dense in V 0, using (ii) we obtain the

result.
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• Let S ∈ [0, T ] be fixed. Then, (2.56) defines
u(S) − buxx(S) + b1uxxxx(S)
v(S) − dvxx(S) + d1vxxxx(S)

 in

V 0 in a unique manner.

Observe that, from the proof of (ii) we deduce that the map Γ : V 0 → C given by

Γ
φT

ψT

 = −
〈 f4(t)

g4(t)

 ,
c1ψ(t, 0)
a1φ(t, 0)

〉
(L2(0,T ))2

is linear and continuous. On the other hand, the well-posedness of the adjoint system (see
Theorem 2.1.3) allows us to conclude that the map TS : V 0 → V 0, given by

TS

φT
ψT

 =
φ(S, ·)
ψ(S, ·)

 ,

is an automorphism of Hilbert space. This implies that
u(S, ·) − buxx(S, ·) + b1uxxxx(S, ·)
v(S, ·) − dvxx(S, ·) + d1uxxxx(S, ·)


is uniquely defined in V 0, for each S ∈ [0, T ]. Moreover, for S ∈ [0, T ], we obtain the
following estimate:∥∥∥∥∥∥

u(S) − buxx(S) + b1uxxxx(S)
v(S) − dvxx(S) + d1vxxxx(S)

∥∥∥∥∥∥
V 0

=

sup∥∥∥∥(φ(S, ·)
ψ(S, ·)

)∥∥∥∥
V 0

≤1

∣∣∣∣∣∣
〈u(S) − buxx(S) + b1uxxxx(S)

v(S) − dvxx(S) + d1vxxxx(S)

 ,
φ(S, ·)
ψ(S, ·)

〉∣∣∣∣∣∣
= sup∥∥∥∥(φT

ψT

)∥∥∥∥
V 0

≤1

∣∣∣∣∣∣
〈u0 − bu0

xx + b1u
0
xxxx

v0 − dv0
xx + d1v

0
xxxx

 ,
φ(0, ·)
ψ(0, ·)

〉
V 0×V 0

− Γ
φT
ψT

∣∣∣∣∣∣ (2.57)

≤ sup∥∥∥∥(φT

ψT

)∥∥∥∥
V 0

≤1

∥∥∥∥∥∥
u0 − bu0

xx + b1u
0
xxxx

v0 − dv0
xx + d1v

0
xxxx

∥∥∥∥∥∥
V 0

∥∥∥∥∥∥
φ(0, ·)
ψ(0, ·)

∥∥∥∥∥∥
V0

+
∣∣∣∣∣∣Γ
φT
ψT

∣∣∣∣∣∣


≤ C


∥∥∥∥∥∥
u0 − bu0

xx + b1u
0
xxxx

v0 − dv0
xx + d1v

0
xxxx

∥∥∥∥∥∥
V 0

+
∥∥∥∥∥∥
 f4(t)
g4(t)

∥∥∥∥∥∥
[L2(0,T )]2

 ,
where C is a positive constant which does not depend on S or on u0, v0, f4, g4.

• u ∈ C([0, T ];V 4)

First, observe that, from (i) we have that
u
v

 ∈ C([0, T ];V 5) ⊂ C([0, T ];V 4),

whenever
u0

v0

 ∈ V 5 and fj, gj ∈ C2
0 [(0, T )], for j = 4. Since V 5 is dense in V 4 and

C2
0(0, T ) is dense in L2(0, T ), it is follow from (2.57) that

u
v

 ∈ C([0, T ];V 4).
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Proposition 2.2.5 leads to the following definition:

Definition 2.2.3. For
u0

v0

 ∈ V 4 and fj, gj ∈ L2(0, T ), with j = 4, a weak solution

of (2.52)-(2.54) is a function
u
v

 ∈ C([0, T ];V 4), such that (2.56) holds true for allφT
ψT

 ∈ V 0 and all S ∈ [0, T ].

In order to prove the controllability result applying the Hilbert Uniqueness Method,
we have to prove an observability inequality for the solutions of the corresponding adjoint
system. Here, this is done using the so-called Ingham’s inequality (see, for instance, [2, 22])
. For the sake of completeness and in order to facilitate the reading of the tese, we give a
generalization of Ingham’s inequality in Theorem 2.2.1.

Then, we have the following result:

Proposition 2.2.6. Let T > 0. Then, there exist positive constants C and C̃, such that,

for any
φT
ψT

 ∈ V 0,

C

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 0

≤

∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C̃

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 0

, (2.58)

where (φ, ψ) is solution of the adjoint system with data (φT , ψT ) ∈ V 0.

Proof. We first prove the left inequality assuming that the right one holds.

Let us consider λk, k ∈ Z, the eigenvalues of the operator A∗, the state operator
associate to the adjoint system. Remark that they coincide with the eigenvalues of A,
defined by (2.14), and

lim
|k|→∞

|λk| = ∞.

Then, according to Remark 2.1.1, there exists N1 > 0, such that, for |k| > N1, the
eigenvalues has multiplicity one. In particular, for |k| > N1,

1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)


 1

−
√

w̃2(m)
w̃1(m)

 eimxφ̂Tm +

−
√

w̃1(m)
w̃2(m)

1

 eimxψ̂Tm
+

 1√
w̃2(m)
w̃1(m)

 e−imxφ̂T−m +


√

w̃1(m)
w̃2(m)

1

 e−imxψ̂T−m

 =
∑

|k|>N1

eikσ(k)(T−t)

φ̂Tk
ψ̂Tk

 eikx.
(2.59)

In addition, if we take T1 ∈ (0, T ) and γ > 2π
T1

, there exists N2 ∈ N, such that

k ∈ Z, |k| ≥ N2 =⇒ (k + 1)σ(k + 1) − kσ(k) ≥ γ. (2.60)
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Also, taking Remark 2.1.1 into account, we introduceWn = Span

 eikx

−σ(k)
w1
eikx

 ,
 e−ikx

σ(k)
w1
e−ikx

,

for k ∈ I(n) and n ∈ I, and consider W = ⊕
n∈IWn ⊂ V 0, whose embedding is dense. In

W we define the following semi-norm:

p
u
v

2

=
∣∣∣∣∣∣
a1u(0)
c1v(0)

∣∣∣∣∣∣
2

, ∀

u
v

 ∈ W.

Let N = max{N1, N2} and
φT
ψT

 ∈ W ∩(⊕|n|<N Wn)⊥, that is,
φ̂Tn
ψ̂Tn

 =
0

0

 for |k| < N

or for |k| large enough. Then, by (2.59), (2.60) and Ingham’s inequality, we obtain CT1 > 0,
such that

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 0

=
∑

|n|≥N

|φ̂Tn |2

|ψ̂Tn |2

 ≤ CT1
∫ T1

0

∣∣∣∣ ∑
|n|≥N

φ̂Tn
ψ̂Tn

 enσ(n)t
∣∣∣∣2dt

= CT1
∫ T1

0

∣∣∣∣ ∑
|n|≥N

 1
a1
a1φ̂

T
n

1
c1
c1ψ̂

T
n

 enσ(n)t
∣∣∣∣2dt ≤ CT1

∫ T1

0
p

φ(t, ·)
ψ(t, ·)

2

dt.

Since T > T1, from the above estimate, [25, Theorem 5.3] and the right inequality in
(2.58), we obtain CT > 0, such that

CT

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
2

V 0

≤
∫ T

0
p

φ(t, ·)
ψ(t, ·)

2

≤

∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

,

for all
φT
ψT

 ∈ W . The general case follows from a density argument.

Now, we prove the right inequality in (2.58). Observe that, from the considerations
above it follows that

 φ

ψ

 (t, 0) = 1
2
∑

|k|<N1

eikσ(k)(T−t) ∑
m∈I(k)


 1

−
√

w2(m)
w1(m)

 φ̂Tm +

 −
√

w1(m)
w2(m)

1

 ψ̂Tm
+

 1√
w2(m)
w1(m)

 φ̂T−m +


√

w1(m)
w2(m)

1

 ψ̂T−m


+1
2
∑

|k|≥N1

eikσ(k)(T−t)


 1

−
√

w2(k)
w1(k)

 φ̂Tk +

 −
√

w1(k)
w2(k)

1

 ψ̂Tk
+

 1√
w2(k)
w1(k)

 φ̂+
−k


√

w1(k)
w2(k)

1

 ψ̂T−k
 .
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Then,∥∥∥∥∥∥
 φ

ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≤ C1


∥∥∥∥∥∥
∑

|k|<N1

eikσ(k)(T−t)

 φ̂Tk

ψ̂Tk

∥∥∥∥∥∥
2

(L2(0,T ))2

+
∥∥∥∥∥∥
∑

|k|≥N1

eikσ(k)(T−t)

 φ̂Tk

ψ̂Tk

∥∥∥∥∥∥
2

(L2(0,T ))2

 ≤ C2

∥∥∥∥∥∥
 φT

ψT

∥∥∥∥∥∥
2

V 4

.

where C1 and C2 are positive constants.

Using Proposition 2.2.6 we prove our main result:

Theorem 2.2.6. Let T > 0. Then, for any
u0

v0

 ,
uT
vT

 ∈ V 4, there exist f4, g4 ∈ L2(0, T ),

such that the solution
u
v

 ∈ C([0, T ];V 4) of (2.52)-(2.54) satisfies
u(T, ·)
v(T, ·)

 =
uT
vT

.

Proof. We can assume that
u0

v0

 =
0

0

. Let Λ denote the map

φT
φT

 ∈ V 0 7→

uT − buTxx + b1u
T
xxxx

vT − dvTxx + d1v
T
xxxx

 ∈ V 0,

where
u
v

 is the solution (weak) of (2.52)-(2.54) with f4, g4 given by

f4 = −c1ψ(t, 0) and g4 = −a1φ(t, 0), (2.61)

where
φ
ψ

 is a solution of adjoint system with initial condition
φT
ψT

. Λ is linear and

continuous (see (2.57) and (2.58)). Moreover, using Propositions 2.2.5 and 2.2.6 it follows
that Λ is coercive, since〈

Λ
φT
ψT

 ,
φT
ψT

〉 =
∥∥∥∥∥∥
a1φ

c1ψ

 (t, 0)
∥∥∥∥∥∥

2

(L2(0,T ))2

≥ CT

∥∥∥∥∥∥
φT
ψT

∥∥∥∥∥∥
V 0

.

Thus, by Lax-Milgran theorem it follows that Λ is invertible. Consequently, given
φT
ψT

 ∈

V 0, we can define
φT
ψT

 := Λ−1

uT
vT

 to solve the adjoint system and get
φ
ψ

 ∈ V 0.

Then, if the boundary functions f4, g4 are given by (2.61), the corresponding solution
u
v


of the system (2.52)-(2.54) satisfiesu(0, ·)

v(0, ·)

 =
0

0

 and
u(T, ·)
v(T, ·)

 =
uT
vT

 .
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2.2.3.1 The nonlinear system

In this section we are concerned with the analyze of the controllability properties
of the full system (1.1)-(1.2):

ut + vx − butxx + b1utxxxx + avxxx + a1vxxxxx =

−(uv)x + b(uv)xxx − α(uvxx)x, in (0, T ) × (0, 2π)

vt + ux − dvtxx + d1vtxxxx + cuxxx + c1uxxxxx =

−vvx − c(vvx)xx − (uuxx)x + βvxvxx + ρuuxxx, in (0, T ) × (0, 2π)

∂jxu(t, 2π) − ∂jxu(t, 0) = 0, in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = 0, in (0, T )

∂4
xu(t, 2π) − ∂4

xu(t, 0) = f4(t), in (0, T )

∂4
xv(t, 2π) − ∂4

xv(t, 0) = g4(t), in (0, T )

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π),
(2.62)

for j = 0, 1, 2, 3.

Let us begin introducing the nonlinear operator N : V 4 → V 4 defined by

N

η
ζ

 =
 Lb,b1 [−(ηζ)x + b(ηζ)xxx − α(ηζxx)x]

Ld,d1 [−ζζx − c(ζζx)xx − (ηηxx)x + βζxζxx + ρηηxxx]

 . (2.63)

Some of its most important properties are given in the following result. The proof can be
found in [3]:

Theorem 2.2.7. Suppose that b1, d1 > 0. Then, the operator N : V 4 → V 4 given in (2.63)
is well-defined and there is K̃ > 0, such that the following estimates are verified:∥∥∥∥∥∥N

η
ζ

∥∥∥∥∥∥
V 4

≤ K̃

∥∥∥∥∥∥
η
ζ

∥∥∥∥∥∥
2

V 4

, (2.64)

∥∥∥∥∥∥N
η
ζ

− N

θ
γ

∥∥∥∥∥∥
V 4

≤ K̃

∥∥∥∥∥∥
η
ζ

∥∥∥∥∥∥
V 4

+
∥∥∥∥∥∥
θ
γ

∥∥∥∥∥∥
V 4

∥∥∥∥∥∥
η
ζ

−

θ
γ

∥∥∥∥∥∥
V 4

, (2.65)

for any
η
ζ

 ,
θ
γ

 ∈ V 4.

To study the nonlinear system, we observe that the solutions of (2.62) can be
written as u

v

 = S(t)
u0

v0

+
φ
ψ

+
η
ζ

 ,
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where (S(t))t∈R is the group of isometries associated to the linear homogeneous system

(see Theorem 2.1.1) and
φ
ψ

 and
η
ζ

 satisfy, respectively,



φt + ψx − bφtxx + b1φtxxxx + aψxxx + a1ψxxxxx = 0, in (0, T ) × (0, 2π)

ψt + φx − dψtxx + d1ψtxxxx + cφxxx + c1φxxxxx = 0, in (0, T ) × (0, 2π).

∂jxφ(t, 2π) − ∂jxφ(t, 0) = 0, in (0, T )

∂jxψ(t, 2π) − ∂jxψ(t, 0) = 0, in (0, T )

∂4
xφ(t, 2π) − ∂4

xφ(t, 0) = f4(t), in (0, T )

∂4
xψ(t, 2π) − ∂4

xψ(t, 0) = g4(t), in (0, T )

φ(0, x) = 0, ψ(0, x) = 0, in (0, 2π)

. (2.66)

and 

ηt + ζx − bηtxx + b1ηtxxxx + aζxxx + a1ζxxxxx = h1, in (0, T ) × (0, 2π)

ζt + ηx − dζtxx + d1ζtxxxx + cηxxx + c1ηxxxxx = h2, in (0, T ) × (0, 2π).

∂jxη(t, 2π) − ∂jxη(t, 0) = 0, in (0, T )

∂jxζ(t, 2π) − ∂jxζ(t, 0) = 0, in (0, T )

∂4
xη(t, 2π) − ∂4

xη(t, 0) = f4(t), in (0, T )

∂4
xζ(t, 2π) − ∂4

xζ(t, 0) = g4(t), in (0, T )

η(0, x) = 0, ζ(0, x) = 0, in (0, 2π),

. (2.67)

with h1 = −(uv)x + b(uv)xxx − α(uvxx)x and h2 = −vvx − c(vvx)xx − (uuxx)x + βvxvxx +
ρuuxxx.

The existence and uniqueness of solutions of the nonlinear system (2.62) can be
proved if the initial data and the boundary conditions are small enough. More precisely,
we have the following result:

Theorem 2.2.8. Assume that b1, d1 ̸= 0 and let T > 0. Then, there exists a constant

δ > 0, such that, for any
u0

v0

 ∈ V 4 and any
f4

g4

 ∈ (L2(0, T ))2 satisfying

∥∥∥∥∥∥
u0

v0

∥∥∥∥∥∥
V 4

< δ and
∥∥∥∥∥∥
f4

g4

∥∥∥∥∥∥
(L2(0,T ))2

< δ, (2.68)

system (2.62) has an unique weak solution
u
v

 ∈ C([0, T ];V 4).

Proof. The arguments used to prove this result are similar to those used to prove the main
result of this section. So, we have omitted the details.
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Let us define the maps

Θ : (L2(0, T ))2 → C([0, T ];V 4)

Θ
f4

g4

 =
φ
ψ

 , (2.69)

where
φ
ψ

 is the solution of (2.66), and

Θ̃ : L1(0, T ; (L2(0, 2π))2) → C([0, T ];V 4)

Θ̃
h1

h2

 =
η
ζ

 , (2.70)

where
η
ζ

 solves (2.67). Remark that
η
ζ

 is given by
η
ζ

 (t) :=
∫ t

0
S(t− τ)N

h1

h2

 dτ .

With the notation introduced above, we define the map G : C([0, T ];V 4) →
C([0, T ];V 4) by

G

u
v

 = S(·)
u0

v0

+ Θ
f4

g4

+ Θ̃
h1

h2

 ,
with

h1 = −(uv)x+b(uv)xxx−α(uvxx)x and h2 = −vvx−c(vvx)xx−(uuxx)x+βvxvxx+ρuuxxx.
(2.71)

From Proposition 2.2.5 it follows that Θ is linear, continuous and well defined.
Theorem 2.2.7 and [3, Theorem 5.1] ensure that the same properties remains valid for Θ̃.

Consequently, we deduce that G has a unique fixed point
u
v

 ∈ C([0, T ];V 4), which is

the unique solution of the system (2.62).

Theorem 2.2.9. Assume that b1, d1, a1, c1 ≠ 0 and let T > 0. Then, there exists a constant

δ > 0, such that, for any
u0

v0

 ,
u1

v1

 ∈ V 4 satisfying

∥∥∥∥∥∥
u0

v0

∥∥∥∥∥∥
V 4

< δ and
∥∥∥∥∥∥
u1

v1

∥∥∥∥∥∥
V 4

< δ, (2.72)

there exist controls f4, g4 ∈ L2(0, T ), such that the solution of system (2.62) satisfiesu
v

 (T ) =
u1

v1

 .
Proof. Let us first define the following map

Θ1 : V 4 → (L2(0, T ))2

Θ1

u1

v1

 =
f4

g4

 ,
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where f4, g4 ∈ L2(0, T ) are the controls given by the Theorem 2.2.6, which take the solution
of (2.52)-(2.54) from the initial data (0, 0) to the final data (u1, v1). Remark that the
observability inequality (2.58) ensures that Θ1 is continuous, this is, there exists K1 > 0,
such that ∥∥∥∥∥∥Θ1

u1

v1

∥∥∥∥∥∥
(L2(0,T ))2

≤ K1

∥∥∥∥∥∥
u1

v1

∥∥∥∥∥∥
V 4

.

Next, we define the nonlinear map F : C([0, T ];V 4) → C([0, T ];V 4) as follows:

F

u
v

 = S(·)
u0

v0

+ Θ ◦ Θ1

u1

v1

− S(T )
u0

v0

+ Θ̃
−h1

−h2

 (T, ·)
+ Θ̃

h1

h2

 ,

where
h1

h2

, Θ and Θ̃ are given in (2.71), (2.69) and (2.70), respectively. Remark that, ifu
v

 is a fixed point of F , then
u
v

 is a solution of (2.62) and satisfies
u(T, x)
v(T, x)

 =
u1

v1

.

Therefore, we show that there exists R > 0 with the following properties:

(i) F maps the ball BR(0) ⊂ C([0, T ];V 4) into itself.

From Proposition 2.2.5 it follows that Θ is linear, continuous and well defined.
Therefore, we obtain K > 0, such that∥∥∥∥∥∥Θ

f4

g4

∥∥∥∥∥∥
C([0,T ];V 4)

≤ K

∥∥∥∥∥∥
f4

g4

∥∥∥∥∥∥
(L2(0,T ))2

.

Theorem 2.2.7 and [3, Theorem 5.1] ensure that the same properties remains valid for Θ̃.
Thus, ∥∥∥∥∥∥Θ̃

h1

h2

∥∥∥∥∥∥
C([0,T ];V 4)

≤ K̃

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
2

C([0,T ];V 4)

.

Let R > 0, to be chosen latter on, and
u
v

 ∈ B(0, R). Then, we have that

∥∥∥∥∥∥F
u
v

∥∥∥∥∥∥
C([0,T ];V 4)

≤

∥∥∥∥∥∥
u0

v0

∥∥∥∥∥∥
V 4)

+KK1

∥∥∥∥∥∥
u1

v1

− S(T )
u0

v0

+ Θ̃
−h1

−h2

 (T, ·)
∥∥∥∥∥∥
V 4

+ K̃

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
2

C([0,T ];V 4)

≤ δ + 2KK1δ +KK1K̃

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
2

C([0,T ];V 4)

+ K̃

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
2

C([0,T ];V 4)

≤ δ + 2KK1δ + (KK1 + 1)K̃R2.
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Therefore, F (BR(0)) ⊂ BR(0) for any R > 0 satisfying

(1 + 2KK1)δ + (KK1 + 1)K̃R2 ≤ R. (2.73)

(ii) F is a contraction

If
u
v

 ,
û
v̂

 ∈ B(0, R),

F

u
v

− F

û
v̂

 = Θ ◦ Θ1

Θ̃
−h1

−h2

−

−ĥ1

−ĥ2

 (T, ·)
+ Θ̃

h1

h2

−

ĥ1

ĥ2

 ,
where h1 = −(ûv̂)x + b(ûv̂)xxx − α(ûv̂xx)x and h2 = −v̂v̂x − c(v̂v̂x)xx − (ûûxx)x + βv̂xv̂xx +
ρûûxxx.

Then, we obtain∥∥∥∥∥∥F
u
v

− F

û
v̂

∥∥∥∥∥∥ ≤ KK1K̃

∥∥∥∥∥∥
u
v

−

û
v̂

∥∥∥∥∥∥
2

C([0,T ];V 4)

+ K̃

∥∥∥∥∥∥
u
v

−

û
v̂

∥∥∥∥∥∥
2

C([0,T ];V 4)

≤ 2RK̃(KK1 + 1)
∥∥∥∥∥∥
u
v

−

û
v̂

∥∥∥∥∥∥
C([0,T ];V 4)

.

Consequently, F is a contraction if R verifies

2RK̃(KK1 + 1) ≤ 1. (2.74)

Hence, if R satisfies (2.74), by choosing δ = R

2(1 + 2KK1)
, it follows that (2.73) also holds

and the proof ends.

2.3 Further Coments
In this section, we present an extension of our results. More precisely, we have that

the absence of the BBM terms, as well as, the higher order KdV terms in the first equation
of the linear system also provides positive controllability result.

We consider the following systemut + vx + avxxx = 0, in (0, T ) × (0, 2π)

vt + ux − dvtxx + d1vtxxxx + cuxxx = 0, in (0, T ) × (0, 2π),
(2.75)

with periodic boundary conditions
∂jxu(t, 2π) − ∂jxu(t, 0) = fj(t), in (0, T )

∂jxv(t, 2π) − ∂jxv(t, 0) = gj(t), in (0, T )

∂3
xv(t, 2π) − ∂3

xv(t, 0) = g3(t), in (0, T )

(2.76)
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with j = 0, 1, 2, and initial data

u(0, x) = u0(x), v(0, x) = v0(x), in (0, 2π). (2.77)

Again, we remark that the number of boundary conditions depends on the values of the
parameters of the system.

Proposition 2.3.1. For any s ∈ R, let V s be the Hilbert space defined by (2.6) and
X(0, T ) = (L2(0, T ))2 × (L2(0, T ))2. Then, the following well-posedness results hold:

(i) Suppose that fj(t), gj(t), g3(t) ∈ C2
0 [0, T ], for j = 0, 1, 2 and

u0

v0

 ∈ V 3. Then, there

exists a unique solution
u
v

 ∈ C([0, T ];V 3) of (2.75)-(2.76). Moreover, for anyφT
ψT

 ∈ V 3 and S ∈ [0, T ], we have

〈 u(S, ·)
v(S, ·) − dvxx(S, ·) + d1vxxxx(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉
[L2(0,2π)×L2(0,2π))]2

=

〈 u0

v0 − dv0
xx + d1v

0
xxxx

 ,
φ(0, ·)
ψ(0, ·)

〉
[L2(0,2π)×L2(0,2π))]2

−
〈f0(t)

g0(t)

 ,
 ψ(t, 0) + cψxx(t, 0)
φ(t, 0) − dψtx(t, 0) + d1ψtxxx(t, 0) + aφxx(t, 0)

〉
X(0,S)

+
〈f1(t)

g1(t)

 ,
 cψx(t, 0)
aφx(t, 0) − dψt(t, 0) + d1ψtxx(t, 0)

〉
X(0,S)

(2.78)

−
〈f2(t)

g2(t)

 ,
 cψ(t, 0)
aφ(t, 0) + d1ψtx(t, 0)

〉
X(0,S)

+
〈 0

g3(t)

 ,
 0
d1ψt(t, 0)

〉
X(0,S)

,

where
φ
ψ

 ∈ C([0, T ];V 3) is the solution of the adjoint system (2.17) with initial

data
φT
ψT

 given by Theorem 2.1.3.

(ii) If
φT
ψT

 ∈ V 0, there exist a unique solution
φ
ψ

 ∈ C([0, T ];V 0) of (2.17) and

ψtxxx(t, 0), φxx(t, 0) makes sense in H−2(0, T ), ψtxx(t, 0), φx(t, 0) make sense in
H−1(0, T ) and ψtx(t, 0) make sense in L2(0, T ).
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(iii) Assume that
u0

v0

 ∈ V 0, f2 ∈ H2(0, T ), f1, g3 ∈ H1(0, T ), f0, g2 ∈ L2(0, T ), g1 ∈

H−1(0, T ) and g0 ∈ H−2(0, T ) . Then, there exists a unique
u
v

 ∈ C([0, T ];V 0),

such that, for any
φT
ψT

 ∈ V 0 and any S ∈ [0, T ], we have

〈 u(S, ·)
v(S, ·) − dvxx(S, ·) + d1vxxxx(S, ·)

 ,
φ(S, ·)
ψ(S, ·)

〉
[V 0]′×V 0

=

〈 u0

v0 − dv0
xx + d1v

0
xxxx

 ,
φ(0, ·)
ψ(0, ·)

〉
[V 0]′×V 0

−
〈f0(t)

g0(t)

 ,
 ψ(t, 0) + cψxx(t, 0)
φ(t, 0) − dψtx(t, 0) + d1ψtxxx(t, 0) + aφxx(t, 0)

〉
[L2(0,S)×H−2(0,S)]2

+
〈f1(t)

g1(t)

 ,
 cψx(t, 0)
aφx(t, 0) − dψt(t, 0) + d1ψtxx(t, 0)

〉
[H1(0,S)×H−1(0,S)]2

(2.79)

−
〈f2(t)

g2(t)

 ,
 cψ(t, 0)
aφ(t, 0) + d1ψtx(t, 0)

〉
[H2(0,S)×L2(0,S)]2

+
〈 0

g3(t)

 ,
 0
d1ψt(t, 0)

〉
[H3(0,S)×H1(0,S)]2

,

where
φ
ψ

 ∈ C([0, T ];V 0) is the solution of the adjoint system (2.17) with initial

data
φT
ψT

 given by (ii).

Proof. (i) To obtain (2.78) we proceed as in the proof of (2.25) in Proposition 2.2.1.

(ii) Since
φT
ψT

 ∈ V 0, we have
∑
k∈Z

(|φ̂Tk |2 + |ψ̂Tk |2(1 + k2)2) < ∞. Moreover, observe that,

w̃2(k)
w̃1(k) ∼ c

(1 + k2)2 , w̃1(k)
w̃2(k) ∼ C(1 + k2)2 and σ(k) ∼ C̃, for some positive constants

c, C and C̃. Since

ψtxxx(t, x) = 1
2
∑
k∈I

kσ(k)eikσ(k)(T−t) ∑
m∈I(k)

−

√√√√w̃2(m)
w̃1(m)e

−imxφ̂Tm + e−imxψ̂Tm

+

√√√√w̃2(m)
w̃1(m)e

imxφ̂T−m + eimxψ̂T−m


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we have that

ψtxxx(t, 0) =1
2
∑
k∈I

kσ(k)eikσ(k)(T−t) ∑
m∈I(k)

m3

−

√√√√w̃2(m)
w̃1(m) φ̂

T
m + ψ̂Tm

+

√√√√w̃2(m)
w̃1(m) φ̂

T
−m + ψ̂T−m


∼ 1

2
∑
k∈I

keikσ(k)(T−t) ∑
m∈I(k)

m3
[
− c

1 +m2 φ̂
T
m + ψ̂Tm + 1

1 +m2 φ̂
T
−m + ψ̂T−m

]

∼ 1
2
∑
k∈I

∑
m∈I(k)

[
m2φ̂Tm +m4ψ̂Tm + m2φ̂T−m +m4ψ̂T−m

]
.

Then,

∥ψtxxx∥2
H−2(0,T ) ∼ 1

2
∑
k∈I

∑
m∈I(k)

[
m4|φ̂Tm|2 +m8|ψ̂Tm|2

+ m4|φ̂T−m|2 +m8|ψ̂T−m|2
]

(1 + k2)−2

∼ (∥φT∥2
L2(0,2π) + ∥ψT∥2

H2(0,2π)).

The remaining cases are proved in a similar way.

(iii) We proceed in several steps.

• (2.79) holds when
u0

v0

 ∈ V 3,
φT
ψT

 ∈ V 0 and f0, f1, f2, g0, g1, g2, g3 ∈ C2
0 ([0, T ]).

First, suppose that
φT
ψT

 ∈ V 3. Since V 3 is dense in V 0, using (ii) we obtain the

result.

• Let S ∈ [0, T ] be fixed. Then, (2.79) defines
 u(S)
v(S) − dvxx(S) + d1vxxxx(S)

 in V 0

in a unique manner.

Observe that, from the proof of (ii) we deduce that the map Γ : V 0 → C given by

Γ
φT

ψT

 =

−
〈f0(t)

g0(t)

 ,
 ψ(t, 0) + cψxx(t, 0)
φ(t, 0) − dψtx(t, 0) + d1ψtxxx(t, 0) + aφxx(t, 0)

〉
[L2(0,S)×H−2(0,S)]2

+
〈f1(t)

g1(t)

 ,
 cψx(t, 0)
aφx(t, 0) − dψt(t, 0) + d1ψtxx(t, 0)

〉
[H1(0,S)×H−1(0,S)]2

−
〈f2(t)

g2(t)

 ,
 cψ(t, 0)
aφ(t, 0) + d1ψtx(t, 0)

〉
[H2(0,S)×L2(0,S)]2

+
〈 0

g3(t)

 ,
 0
d1ψt(t, 0)

〉
[H3(0,S)×H1(0,S)]2

,
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is linear and continuous. On the other hand, the well-posedness of the adjoint system
(see Theorem 2.1.3) allows us to conclude that the map TS : V 0 → V 0, given by

TS

φT
ψT

 =
φ(S, ·)
ψ(S, ·)

 ,
is an automorphism of Hilbert space. This implies that

 u(S, ·)
v(S, ·) − dvxx(S, ·) + d1uxxxx(S, ·)


is uniquely defined in V 0, for each S ∈ [0, T ].

Proposition 2.3.2. Let T > 0. Then, there is C1 > 0, such that

C(∥φT∥2
L2(0,2π) + ∥ψT∥2

H2(0,2π)) ≤ ∥ψ(t, 0) + cψxx(t, 0)∥2
L2(0,T )

+ ∥φ(t, 0) − dψtx(t, 0) + aφxx(t, 0) + d1ψtxxx(t, 0)∥2
H−2(0,T ) + ∥cψx(t, 0)∥2

H1(0,T )

+ ∥aφx(0, T ) − dψt(0, T ) + d1ψtxx(0, T )∥2
H−1(0,T ) + ∥cψ(0, T )∥2

H2(0,T )

+ ∥aφ(t, 0) + d1ψtx(t, 0)∥2
L2(0,T ) + ∥dψt(t, 0)∥2

H1(0,T ),

where (φ, ψ) is solution of the adjoint system with data (φT , ψT ) ∈ V 0.

Proof. Recall that, σ(k) ∼ C̃. Then, for

ψ(t, x) = 1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)

−

√√√√w̃2(m)
w̃1(m)e

−imxφ̂Tm + e−imxψ̂Tm

+

√√√√w̃2(m)
w̃1(m)e

imxφ̂T−m + eimxψ̂T−m

 ,
we have that

ψtxxx(t, 0) = 1
2
∑
k∈I

kσ(k)eikσ(k)(T−t) ∑
m∈I(k)

m3

−

√√√√w̃2(m)
w̃1(m) φ̂

T
m + ψ̂Tm

+

√√√√w̃2(m)
w̃1(m) φ̂

T
−m + ψ̂T−m



∼ 1
2
∑
k∈I

keikσ(k)(T−t) ∑
m∈I(k)

m3

−

√√√√w̃2(m)
w̃1(m) φ̂

T
m + ψ̂Tm +

√√√√w̃2(m)
w̃1(m) φ̂

T
−m + ψ̂T−m



∼ 1
2
∑
k∈I

eikσ(k)(T−t) ∑
m∈I(k)

m4

−

√√√√w̃2(m)
w̃1(m) φ̂

T
m + ψ̂Tm +

√√√√w̃2(m)
w̃1(m) φ̂

T
−m + ψ̂T−m

 = ψxxxx(t, 0).

Hence
ψtxxx(t, 0) ∼ ψxxxx(t, 0).

Similarly, we get ψtx(t, 0) ∼ ψxx(t, 0) and ψt(t, 0) ∼ ψx(t, 0). Now, applying the same
previous technique, we obtain the desired result for our new norm.
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Theorem 2.3.1. Let T > 0. Then, for any
u0

v0

 ,
uT
vT

 ∈ V 0, there exist f0, g0 ∈ L2(0, T ),

f2 ∈ H2(0, T ), f1, g3 ∈ H1(0, T ), g1 ∈ H−1(0, T ) and g0 ∈ H−2(0, T ), such that the solutionu
v

 ∈ C([0, T ];V 0) of (2.75)-(2.76) satisfies
u(T, ·)
v(T, ·)

 =
uT
vT

.

Proof. We can assume that
u0

v0

 =
0

0

. Let Λ denote the map

φT
ψT

 ∈ V 0 7→

 u(T, ·)
v(T, ·) − dvxx(T, ·) + d1vxxxx(T, ·)

 ∈ [V 0]′,

where
u
v

 is the solution (weak) of (2.75)-(2.76) with f0, g0, f1, g1, f2, g2 and g3 given by

f0 = −(ψ(t, 0) + cψxx(t, 0))
g0 = −(φ(t, 0) − dψtx(t, 0) + d1ψtxxx(t, 0) + aφxx(t, 0))
f1 = cψx(t, 0)
g1 = aφx(t, 0) − dψt(t, 0) + d1ψtxx(t, 0)
f2 = −cψ(t, 0)
g2 = −(aφ(t, 0) + d1ψtx(t, 0))
g3 = d1ψt(t, 0).

Then, proceding as in the previos cases, we obtain the result.
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3 Null-controllability for the Kawahara equa-
tion.

This chapter deals with the controllability properties of the linear Kawahara
equation posed on a periodic domain. We show that the equation is null-controllable by
means of a control depending only on time and acting on the system through a given
shape function in space. The method we apply is based on Fourier expansion of solutions
and the analysis of a biorthogonal sequence to a family of complex exponential functions.

3.1 The Moment Problem
Let us first present a well-posedness result for system (1.13).

Theorem 3.1.1. Given any T > 0, F ∈ L1(0, T ;L2(0, 2π)) and u0 ∈ L2(0, 2π), there
exists a unique weak solution u ∈ C([0, T ];L2(0, 2π)) of the problem


ut − u5x + u3x + ux = F (t, x), in (0, T ) × (0, 2π),

∂jxu(t, 0) = ∂jxu(t, 2π), in (0, T ),

u(0, x) = u0(x), in (0, 2π),

(3.1)

for j = 0, 1, 2, 3, 4.

Proof. According to [44], the operator A defined in (1.16) generates a group of isometries
in L2

p(0, 2π). Hence, the result follows from the semigroup theory.

Having the well-posedness of (1.13) in hand, we can give now the characterization
of the controllability property in terms of a moment problem. We refer to [1, 25, 43] for a
detailed discussion of the subject.

Theorem 3.1.2. Let T > 0, f ∈ L2(0, 2π) and u0 ∈ L2
p(0, 2π), such that

u0(x) =
∑
n∈Z

û0
ne
inx and f(x) =

∑
n∈Z

f̂ne
inx.

Then, there exists a control v ∈ L2(0, T ) such that the solution u of (1.13) verifies
u(T, x) = 0 if, and only if, v ∈ L2(0, T ) satisfies

f̂n

∫ T

0
v(T − s)eλnsds = −û0

ne
Tλn , (3.2)

where λn = −in(n4 + n2 − 1) are the eigenvalues of the operator A defined in (1.16).
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Proof. We consider the “adjoint” system
φt − φ5x + φ3x + φx = 0, in (0, T ) × (0, 2π),

∂jxφ(t, 0) = ∂jxφ(t, 2π), in (0, T ),

φ(T, x) = φT (x), in (0, 2π),

(3.3)

for j = 0, 1, 2, 3, 4. If we multiply the equation in (1.13) by φ and integrate for parts in
(0, T ) × (0, 2π), we deduce that v ∈ L2(0, T ) is a control for (1.13) if, and only if, it verifies

∫ T

0
v(t)

∫ 2π

0
f(x)φ(t, x)dxdt = −

∫ 2π

0
u0(x)φ(0, x)dx, (3.4)

for any solution φ of (3.3). Since (e−inx)n∈Z is a basis for L2
p(0, 2π), it is sufficient to

check (3.4) for solutions of (3.3) of the form φ(t, x) = e(t−T )λne−inx, n ∈ Z. Thus, it is
straightforward to deduce that (3.2) holds.

3.2 A Biorthogonal Sequence
This section is devoted to construct a biorthogonal sequence (Φm)m∈Z mentioned in

the previous sections. By using Paley-Wiener Theorem, it is obtained as the inverse Fourier
transform of a family Ψm of entire functions of exponential type, such that Ψm(iλn) = δmn,
where δmn is the Kronecker symbol. Each Ψm is obtained from a Weierstrass product Pm
multiplied by an appropriate function Mm with rapid decay on the real axis. Therefore,
for any m ∈ Z∗, we first introduce the function

Pm(z) =
∏

n∈Z∗,n ̸=m

(
1 + iz

λn

)(
λn

λn − λm

)
, (3.5)

where λm are the eigenvalues of the operator A defined in (1.16). Since λ−m = λm, we
prove the following result:

Lemma 3.2.1. Pm is an entire function of the exponential type, such that

Pm(iλn) = δmn, m ∈ Z∗,

where δmn is the Kronecker symbol.

Proof. We obtain the result by analyzing the following products:

Em(z) =
∏

n∈Z∗,n̸=m

∣∣∣∣1 + iz

λn

∣∣∣∣ and Qm =
∏

n∈Z∗,n̸=m

∣∣∣∣∣ λn
λn − λm

∣∣∣∣∣ . (3.6)

First, observe that, for any z ∈ C,

Em(z) =
∏

n∈Z+,n̸=m

∣∣∣∣1 + iz

λn

∣∣∣∣ ∏
n∈Z−,n ̸=m

∣∣∣∣1 + iz

λn

∣∣∣∣ =
∏

n∈N∗,n̸=m

∣∣∣∣1 + iz

λn

∣∣∣∣
∣∣∣∣∣1 + iz

λn

∣∣∣∣∣
= exp

( ∞∑
n=1

ln
∣∣∣∣∣1 − z2

|λn|2
+ 2izR

( 1
λn

)∣∣∣∣∣
)

= exp
( ∞∑
n=1

ln
∣∣∣∣∣1 − z2

|λn|2

∣∣∣∣∣
)
.
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Since
∞∑
n=1

ln
∣∣∣∣∣1 − z2

|λn|2

∣∣∣∣∣ ≤
∞∑
n=1

ln
(

1 + 2 |z|2

|λn|2

)
≤

∞∑
n=1

ln
(

1 + 2 |z|2

n2

)
≤
∫ ∞

0
ln
(

1 + 2 |z|2

x2

)
dx,

=
√

2π|z|,

we get
Em(z) ≤ exp(

√
2π|z|). (3.7)

For Qm have that:

Qm =
∏

n∈Z∗,n ̸=m

∣∣∣∣∣ λn
λn − λm

∣∣∣∣∣ = 1
2

∏
n∈N∗,n ̸=m

|λn|2

|λn − λm||λn + λm|

= 1
2

∏
n∈N∗,n̸=m

|λn|2

|λn−m||λn+m|︸ ︷︷ ︸
Q1

m

∏
n∈N∗,n ̸=m

|λn−m||λn+m|
|λn − λm||λn + λm|︸ ︷︷ ︸

Q2
m

.

Then, the next steps are devoted to estimate Q1
m and Q2

m.

Q1
m =

∏
n∈N∗,n ̸=m

|λn|2

|λn−m||λn+m|
≤ |λ1|2|λ2|2 · · · |λm−1|2|λm+1|2 · · · |λ2m−1|2|λ2m|2|λ2m+1|2 · · ·

|λm−1| · · · |λ1||λm+1| · · · |λ2m−1|
∞∏
n=1

|λn|
∞∏

n=2m+1
|λn|

≤ |λ2m|
|λm|

= |32m5 + 8m3 − 2m|
|m5 +m3 −m|

≤ C,

where C is a positive constant.

To evaluate Q2
m, we proceed as follows:

Q2
m =

∏
n∈N∗,n̸=m

|λn−m||λn+m|
|λn − λm||λn + λm|

=
∏

n∈N∗,n̸=m

(
1 + |λn−m||λn+m| − |λn − λm||λn + λm|

|λn − λm||λn + λm|

)

=
∏

n∈N∗,n ̸=m

(
1 + |λn−mλn+m| − |(λn − λm)(λn + λm)|

|λn − λm||λn + λm|

)

≤
∏

n∈N∗,n̸=m

(
1 + |λn−mλn+m − (λn − λm)(λn + λm)|

|λn − λm||λn + λm|

)

= exp
 ∞∑
n=1,n̸=m

ln
(

1 + |λn−mλn+m − (λn − λm)(λn + λm)|
|λn − λm||λn + λm|

)
≤ exp

 ∞∑
n=1,n ̸=m

(
|λn−mλn+m − (λn − λm)(λn + λm)|

|λn − λm||λn + λm|

)
≤ exp

 ∞∑
n=1,n ̸=m

5m8f( n
m

) + 4m6g( n
m

) + 13m4h( n
m

)
α(m,n)

 ,
where

f(t) = t6 − t4 + t2, g(t) = t4 + t2, h(t) = t2,

α(m,n) = (n4 + n3m+ n2m2 + nm3 +m4 + n2 + nm+m2 − 1)×
|n4 − n3m+ n2m2 − nm3 +m4 + n2 − nm+m2 − 1|.
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In the remaining part of the proof C will denote a positive constant that may
change from one estimate to another, but it is independent of m.

Observe that the function f(t) satisfy

f(t) ≤

 t2, if 0 ≤ t ≤ 1
t6, if t ≥ 1.

Then, if n ≤ m,
m−1∑
n=1

5m8f( n
m

)
α(m,n) ≤ 5m8

m−1∑
n=1

n2

m2

n4 ≤ 5m6
m−1∑
n=1

1
n2 ≤ 5m6

∫ m−1

1

1
t2
dt = 5m6m− 2

m− 1 ≤ 5m6.

If n ≥ m,
∞∑

n=m+1

5m8f( n
m

)
α(m,n) ≤ 5m8

∞∑
n=m+1

n6

m6

n4(n−m)4 ≤ 5m2
∞∑

n=m+1

n2

(n−m)4 ≤ 5m2
∞∑
k=1

(k +m)2

k4 ≤ Cm4.

(3.8)

In what concerns the function g(t), have that

g(t) ≤

 (t+ 1)2, if 0 ≤ t ≤ 1,
2t6, if t ≥ 1.

When n ≤ m,
m−1∑
n=1

2m6g( n
m

)
α(m,n) ≤ 2m6

m−1∑
n=1

( n
m

+ 1)2

n4 ≤ 2m4
m−1∑
n=1

(n+m)2

n4 ≤ 2m4
m−1∑
n=1

n2 + 2nm+m2

n4

≤ 2m4
∫ m−1

1

(
1
t2

+ 2m
t3

+ m2

t4

)
dt ≤ Cm6.

If n ≥ m, we proceed as in (3.8). In this case, we use the fact that g(t) ≤ 4t6, for t ≥ 1.
Finally, to estimate the term involving the function h, we also proceed as before using the
following estimate:

h(t) ≤

 t2, if 0 ≤ t ≤ 1,
t6, if t ≥ 1.

Combining the estimates above, we deduce that

Qm = Q1
mQ

2
m ≤ exp(Cm6).

From (3.6), (3.7) and the above estimate we conclude the proof.

Remark 3.2.1. Lemma 3.2.1 remains valid if we consider the following linear equation
associated to (1.12): ut + γux + αuxxx − βuxxxxx = 0. In fact, the differential operator
associated to the space variable is given by A1 := β∂5

xu − α∂3
xu − γ∂xu : H5

p (0, 2π) →
L2(0, 2π), whose eigenvalues are

λk = −ik(βk4 + αk2 − γ), k ∈ Z.
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Hence, it may occur that not all eigenvalues are different. If we count only the distinct
eigenvalues, we get a sequence {λk}k∈I, where I ⊂ Z have a property of λk1 ≠ λk2 for any
k1, k2 ∈ I. Then, for all k1 ∈ Z, we define

I(k1) = {k ∈ Z : k(βk4 + αk2 − γ) = k1(βk4
1 + αk2

1 − γ)}

and |I(k1)| = m(k1), which has the following properties:

• m(k1) ≤ 5. This is a consequence of the fact that the polynomial p(x) = x(βx4 +
αx2 − γ) has a maximum of 5 distinct roots.

• λk → ±∞, as k → ±∞. Then, there exists k∗ ∈ N, such that m(k) = 1, for all
|k| ≥ k∗.

To prove Lemma 3.2.1, we have assumed that I(k1) is a unitary set. This is due to the fact
that, in the original model, we have assumed that α = β = γ = 1. If this is not the case,
we can also prove the result by using the same approach. Indeed, following the notation
introduced in the proof of the lemma, we have that

Q1
m =

∏
n∈N∗,n/∈I(m)

|λn|2

|λn−m||λn+m|

=
m1−1∏
n=1

|λn|2

|λn−m||λn+m|

m2−1∏
m1+1

|λn|2

|λn−m||λn+m|
· · ·

∞∏
m5+1

|λn|2

|λn−m||λn+m|
.

Then, proceeding in a similar way, we can estimate each term of the product above. For
Q2
m, we use a similar argument.

From Lemma 3.2.1 we obtain the following estimate for Pm, defined in (3.5):

|Pm(z)| ≤ exp(Cπ(|z| +m6),

where C is a positive constant. Consequently, on the real axis, it follows that

|Pm(x)| ≤ exp(C1(|x| +m6), (3.9)

for some C1 > 0.

The next proposition guarantees the existence of a entire function (of exponential
type) which plays an important role in the construction of the biorthogonal sequence. It is
an appropriate multiplier that compensates the growth of Pm on the real axis. In order to
prove the proposition, the following technical lemma is needed.

Lemma 3.2.2. If x ≥ m6, then
[x]∑

j=m6

ln
∣∣∣∣ jx
∣∣∣∣ = −

∫ x

m6

B(u) −m6 + 1
u

du, (3.10)

where B(u) = #{n : n ≤ u}.
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Proof. Firstly, we remark that the function B has the following properties:

• If j ≤ u < j + 1, we have B(u) = j.

• If [x] ≤ u ≤ x, then B(u) = [x] and B(u) ≥ x− 1.

Hence, we have that

−
∫ x

m6

B(u)
u

du = −
[x]−1∑
j=m6

∫ j+1

j

B(u)
u

du−
∫ x

[x]

B(u)
u

du

= −
[x]−1∑
j=m6

∫ j+1

j

j

u
du−

∫ x

[x]

[x]
u
du

=
[x]−1∑
j=m6

j ln
∣∣∣∣∣ j

j + 1

∣∣∣∣∣+ [x] ln
∣∣∣∣∣ [x]
x

∣∣∣∣∣ = ln
∣∣∣∣∣∣
[x]−1∏
j=m6

(j)j
(j + 1)j

([x])[x]

(x)[x]

∣∣∣∣∣∣
= ln

∣∣∣∣∣ (m6)m6

(m6 + 1)m6

(m6 + 1)m6+1

(m6 + 2)m6+1 · · · ([x] − 1)[x]−1

([x])[x]−1
([x])[x]

(x)[x]

∣∣∣∣∣
= ln

∣∣∣∣∣∣(m
6)m6−1

([x])m6−1

[x]−1∏
j=m6

j

x

∣∣∣∣∣∣ = −
∫ x

m6

m6 − 1
u

du+
[x]∑

j=m6

ln
∣∣∣∣ jx
∣∣∣∣ .

As remarked above, Lemma 3.2.2 allows us to prove the following result, inspired
in [21]:

Proposition 3.2.1. For each m ≥ 1, there exists a function Mm : C → C and positive
constants K1, K2 > 0, such that:

• Mm is a function of the exponential type,

• |Mm(x)| ≤ exp(K1(m6 − |x|)),∀x ∈ R,

• |Mm(iλm)| ≥ exp(−K2m
6),

where λm = −im(m4 +m2 − 1) are the eigenvalues of the operator A defined in (1.16).

Proof. We follow the ideas introduced in [21] and define a function Mm : C → C as follows:

Mm(z) =
∞∏

n=m3

sin( z
n2 )
z
n2

. (3.11)

Since
∞∑
n=1

1
n2 < ∞, the first property is a consequence of the following estimate:

N∏
n=m3

∣∣∣∣∣sin( z
n2 )
z
n2

∣∣∣∣∣ ≤
N∏

n=m3

exp
(∣∣∣∣ zn2

∣∣∣∣) = exp(|z|
N∑

n=m3

1
n2 ) ≤ exp(C|z|),
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for some C > 0.

To prove the second property, we proceed in two steps, as follows:

• If |x| ≤ m6, then

|Mm(x)| =
∞∏

n=m3

∣∣∣∣∣sin( x
n2 )
x
n2

∣∣∣∣∣ ≤ 1 ≤ exp(m6 − |x|).

• If |x| > m6, we apply Lemma 3.2.2 to deduce that

|Mm(x)| =
∞∏

n=m3

∣∣∣∣∣sin( x
n2 )
x
n2

∣∣∣∣∣ ≤
[|x|

1
2 ]∏

n=m3

n2

|x|
= exp

 [|x|
1
2 ]∑

n=m3

ln n2

|x|

 ≤ exp
 [|x|]∑
n=m6

ln n2

|x|


= exp

(
−
∫ |x|

m6

B(u) −m6 + 1
u

du

)
.

Since m6 ≤ [|x|], from the estimate above, we obtain a positive constant satisfying

|Mm(x)| ≤ exp
(

−
∫ |x|

[|x|]

B(u) −m6 + 1
u

du

)
≤ exp

(
−
∫ |x|

[|x|]

|x| − 1 −m6 + 1
u

du

)

= exp
(

(m6 − |x|) ln |x|
[|x|]

)
≤ C exp(m6 − |x|),

where C is a positive constant.

In what concerns the third property, we observe that m6 ≥ |λm|, i. e.,
∣∣∣∣∣λmn2

∣∣∣∣∣ ≤ 1.

Then,

|Mm(iλm)| =
∞∏

n=m3

∣∣∣∣∣∣
sin

(
iλm

n2

)
iλm

n2

∣∣∣∣∣∣ =
∞∏

n=m3

sin( |λm|
n2 )

|λm|
n2

≥
∞∏

n=m3

∣∣∣∣∣1 − 1
6

|λm|2

n4

∣∣∣∣∣
= exp

 ∞∑
n=m3

ln
(

1 − 1
6

|λm|2

n4

) ≥ exp
−|λm|2

30

∞∑
n=m3

1
n4


≥ exp

−m6

30

∞∑
n=m3

1
n2

 ≥ exp
(

−m6

30 C
)
,

for some C > 0.

Now we have the tools we need to construct a biorthogonal sequence to the family
(eλnt)n∈Z∗ in L2(−T

2 ,
T
2 ), T > 0.

Theorem 3.2.1. There exists a constant T1 > 0 and a biorthogonal sequence (Θm)m∈Z∗ to
the family (e−λnt)n∈Z∗ in L2(−T1

2 ,
T1
2 ). Moreover,

∥Θm∥
L2(− T1

2 ,
T1
2 ) ≤ C exp(bm6), (3.12)

where C and b are positive constants.
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Proof. For all m ∈ Z∗, let Pm and Mm be the functions defined in (3.5) and (3.11),
respectively. We also define the function

Ψm(z) = Pm(z)
(

M|m|(z)
M|m|(iλm)

) C1
K1 sin(δ(z − iλm))

δ(z − iλm) ,

where δ > 0 is an arbitrary constant, C1 is given in (3.9) and K1 in Proposition 3.2.1. Let

Θm(t) = 1
2π

∫
R

Ψm(x)eitxdx. (3.13)

From Lemma 3.2.1 and Proposition 3.2.1, we deduce that there exists T̃ > 0, such that
Ψm is an entire function of the exponential type T̃

2 . Moreover, from the estimates for Pm
and Mm on the real axis (see (3.9) and Proposition 3.2.1) we obtain

∫
R

|Ψm(x)|2dx ≤ Ce
2(2C1+ C1K2

K1
)m6

∫
R

∣∣∣∣∣sin(δ(x− iλm))
δ(x− iλm)

∣∣∣∣∣
2

dx

≤ C

δ
e

2(2C1+ C1K2
K1

)m6
∫

R

∣∣∣∣sin tt
∣∣∣∣2 dt ≤ C1e

bm6
,

(3.14)

where b = 2
(
2C1 + C1K2

K1

)
. Taking into account the properties of Ψm and applying Paley-

Wiener Theorem, we deduce that Θ̂m has support included in
(

− T̃
2 ,

T̃
2

)
and Θm ∈

L2(− T̃
2 ,

T̃
2 ). Moreover, from the properties of the inverse Fourier transform we have that

the sequence Θm is biorthogonal to (e−λmt)m∈Z in L2(−T̃ , T̃ ). In fact,

∫ T̃
2

− T̃
2

Θm(t)eλntdt =
∫ T̃

2

− T̃
2

Θm(t)e−i(iλn)tdt = Ψm(iλn) = Pm(iλn)sin(δi(λn − λm))
δi(λn − λm) = δnm.

Finally, the estimative (3.12) follows from (3.14) by using Plancherel Theorem.

Remark 3.2.2. Let Θm be given by (3.13). From the proof of Theorem 3.2.1, it follows
that Θ̂m has support included in (− T̃

2 ,
T̃
2 ) and

∥Θ̂m∥L∞(R) ≤ C exp(bm6).

The following result gives the existence of a new biorthogonal sequence with better
norm properties than the one from Theorem 3.2.1. In order to prove it, for a > 0, we
define the following auxiliary functions:

κa =
√

2π
a2 (χa ∗ χa) and ρm(x) = exλmκa(x), (3.15)

where χa is the characteristic function of the interval [−a
2 ,

a
2 ]. Observe that κa and ρm

satisfy the following properties:

• supp(κa) ⊂ [−a, a],

• κ̂a(ξ) = 4
a2

sin2(( a
2 )ξ)

ξ2 ,
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• κ̂a(0) = 1,

• supp(ρm) ⊂ [−a, a],

• ρ̂m(x) = κ̂a(x− λm).

Then, we have the following result:

Theorem 3.2.2. There exist positive constants T > 2π, b and C and a biorthogonal
sequence (ζm)m∈Z to the family (e−λmt)m∈Z in L2(−T

2 ,
T
2 ), with the property

∫ T
2

− T
2

∣∣∣∣∣∣
∑
n∈Z∗

cmζm(t)
∣∣∣∣∣∣
2

dt ≤ C
∑
n∈Z∗

|cn|2e2bm6
,

for any sequence (cn)n∈N.

Proof. Let (Θm)m∈Z∗ ⊂ L2(−T̃ , T̃ ) be the biorthogonal sequence given by Theorem 3.2.1.
Define

ζm(t) = 1
2πρ̂m(iλm)(Θm ∗ ρm)(t), m ∈ Z∗,

where ρ̂m is the Fourier transform of ρm defined in (3.15). Since ζm ∈ L2(−T̃ − a, T̃ + a),
take T

2 = T̃ + a. Then, applying the properties of convolution, it follows that (ζm)m∈Z is a
biorthogonal sequence to (e−λmt)m∈Z. In fact,

∫ T
2

− T
2

ζm(t)eλntdt =
∫ T

2

− T
2

ζm(t)e−i(iλn)tdt = 2πζ̂m(iλn) = 2π
2πρ̂m(iλm)Θ̂m(iλn)ρ̂m(iλn)

= 1
ρ̂m(iλm)Ψm(iλn)ρ̂m(iλn) = δnm.

Moreover,

∫ T
2

− T
2

∣∣∣∣∣∣
∑
m∈Z∗

cmζm(t)
∣∣∣∣∣∣
2

dt =
∫ ∞

−∞

∣∣∣∣∣∣
∑
m∈Z∗

cmΘ̂m(x)ρ̂m(x)
∣∣∣∣∣∣
2

dx

≤
∫ ∞

−∞

 ∑
m∈Z∗

|cm|∥Θ̂m∥L∞(R)|κ̂a(x− λm)|
2

dx

=
∫ ∞

−∞

∣∣∣∣∣∣
∑
m∈Z∗

|cm|∥Θ̂m∥L∞(R)κa(t)eiλmt

∣∣∣∣∣∣
2

dt

≤
∫ a

−a

∣∣∣∣∣∣
∑
m∈Z∗

|cm|∥Θ̂m∥L∞(R)e
iλmt

∣∣∣∣∣∣
2

dt.
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Remark that |λm+1 −λm| > 1, for all m ∈ Z∗. Hence, from Ingham inequality and Remark
3.2.2, we get

∫ a

−a

∣∣∣∣∣∣
∑
m∈Z∗

|cm|∥Θ̂m∥L∞(R)e
iλmt

∣∣∣∣∣∣
2

dt ≤
∑
m∈Z∗

|cm|2∥Θ̂m∥2
L∞(R) ≤

∑
m∈Z∗

|cm|2ebm6
. (3.16)

3.3 Controllability
This section is devoted to prove the main result of the chapter. In order to do that,

for any β ≥ b, where b is given by Theorem 3.2.2, and f as in (1.18), we define the space

H̃ =

h ∈ L2(0, 2π) :
∑
k∈Z

∣∣∣∣∣∣ ĥkf̂k
∣∣∣∣∣∣
2

eβk
6
< ∞

 . (3.17)

Then, our main result reads as follows:

Theorem 3.3.1. Let f ∈ L2(0, 2π) a function verifying (1.18) and H̃ defined by (3.17).
There exists T > 0, such that, for any initial data u0 ∈ H̃, there exist a control v ∈ L2(0, T )
for which the solution of (1.13) satisfies u(T, x) = 0.

Proof. Let T > 2π and (ζm)m∈Z∗ given by Theorem 3.2.2. For u0 ∈ H̃ given by u0(x) =∑
k∈Z

û0
ke
ikx, define v as follows:

v(t) = −
∑
m∈Z

û0
m

f̂m
e

T
2 λmζm

(
t− T

2

)
, t ∈ (0, T ). (3.18)

From the properties of the biorthogonal sequence (ζm)m∈Z, we deduce that v is a control
that satisfies (3.2), i. e., leads the solution to zero. Moreover, v ∈ L2(0, T ). In fact,

∫ T

0
|v(t)|2dt =

∫ T

0

∣∣∣∣∣∣−
∑
m∈Z

û0
m

f̂m
e− T

2 λmζm

(
t− T

2

)∣∣∣∣∣∣
2

dt ≤ C
∑
m∈Z

|û0
m|2

|f̂m|2
ebm

6 ≤ C, (3.19)

for some C > 0.

3.4 Comments and Open Problems
We close this chapter with some comments and open problems:

• Following the approach employed in this work, Theorem 3.3.1 can be proved for the
KdV equation with similar statements. In this case, our analysis can be simplified
due to the absence of the fifth order dispersive term.
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• In [31], the authors consider the following parabolic type control system
ut + i(−∂2

xx)
1
2u− ε∂2

xxu = f(x)vε(t), in (0, T ) × (0, π),

u(t, 0) = u(t, π) = 0 in (0, T ),

u(0, x) = u0(x), in (0, π),

where vε is a control and f is a given profile. For ε = 0 the system is of hyperbolic
type and the authors show that the control steering the hyperbolic system to rest
can be approximated by a sequence (vε)ε>0 of controls of the parabolic system when
ε → 0. The proof is based on the moment problem with respect to the nonharmonic
Fourier family (eλn)n∈N, where λn = in − εn2, n ≥ 1, are the eigenvalues of the
corresponding differential state operator. More recently, in [10], the same problem
was studied for the linear wave equation by introducing a viscous term which contains
a fractional power of the Dirichlet Laplace operator. It is a difficult problem that
remains unanswered for the Kawahara equation.





81

4 Unique continuation for a higher order KdV-
BBM equation

In this chapter we are interested in the unique continuation issue for the initial
value problem associated with a higher order water wave model on a one dimensional torus
T = R/(2πZ). In the literature, the model under consideration is also known as the higher
order KdV-BBM type equation.

4.1 Carleman estimates
In this section we prove some UCP for the following KdV-BBM equation

ut−b1utxx+butxxxx+auxxxxx+q(u)ux+p(u)uxxx+r(u)uxx = 0, (x, t) ∈ T×(0, T ), (4.1)

where q(u) = 1 + 3
2u− 3

8u
2, p(u) = a1 + 2γu and r(u) = (6γ − 7

24)ux.

Theorem 4.1.1. Let a, b ̸= 0, T > 2πb
|a| and q, p, r ∈ L∞(0, T ;L∞(T)). Let ω ⊂ T be a

nonempty open set. Let u ∈ L2(0, T ;H4(T)) ∪ L∞(0, T ;H3(T)) satisying (4.1) and

u(x, t) = 0 for a.e (x, t) ∈ ω × (0, T ). (4.2)

Then u = 0 in T × (0, T )

Proof. Assume that

u ∈ L2(0, T ;H4(T)). (4.3)

Let w = u− b1uxx + buxxxx ∈ L2(0, T ;L2(T)). Then (u,w) solves the following system

u− b1uxx + buxxxx = w (4.4)

wt + a

b
wx = (a

b
− q)ux − (ab1

b
+ p)uxxx − ruxx. (4.5)

We shall establish some Carleman estimates for the elliptic equation (4.4) and the transport
equation (4.5) with the “same weights”, and combine both Carleman estimates into the
single one for (4.1).

Remark 4.1.1. There is a finite speed propagation for KdV-BBM: assuming for simplicity
that q(x) = a

b
, p(x) = −ab1

b
and r(x) = 0 for all x ∈ T, where a > 0 is given, and that

ω = (2π − ϵ, 2π) for a small ϵ > 0, then the UCP fails in time T ≤ b(2π−2ϵ)
a

. Indeed,
picking any nontrivial initial state u0 ∈ C∞

0 (0, ϵ), we easily see that the solution (u,w)
of (4.4)-(4.5) is u(x, t) = u0(x− a

b
t), w(x, t) = w0(x− a

b
t) where w0 = (I − ∂2

x)u0. Then
u(x, t) = 0 for (x, t) ∈ ω × (0, b(2π−2ϵ)

a
) although u ̸= 0. Hence, the condition T > 2bπ

|a| in
the Theorem 4.1.1 is sharp.
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Introduce a few notations. We identify T with [0, 2π) by chossing a system of
coordinates. Without loss of generality, we can assume that c > 0, and that ω = (2π −
η, 2π+η) ∼ [0, η)∪(2π−η, 2π) for some η ∈ (0, π)(by choosing the origin of the coordinates
inside ω). Assume given a time T fulfilling

T >
2bπ
a
. (4.6)

Pick some numbers δ > 0 and ρ ∈ (0, 1), such that

ρcT > 2π + δ (4.7)

and a function ψ ∈ C∞([0, 2π] × R) satisfying

ψ(x) = (x+ δ)2 for x ∈ [η2 , 2π − η

2 ], (4.8)

dkψ

dxk
(0) = dkψ

dxk
(2π) for k = 1, 2, 3, 4, 5, 6, 7, (4.9)

2δ ≤ dψ

dx
(x) ≤ 2(2π + δ) for x ∈ [0, 2π]. (4.10)

Introduce the function φ ∈ C∞([0, 2π] × R) defined by

φ(x, t) = ψ(x) − ρc2t2. (4.11)

Then, the following Carleman estimate for (4.1) will be derived.

Proposition 4.1.1. Let ω, c and T be as above. Then, there exists some positive numbers
s2 and C2, such that, for all s ≥ s2 and all u ∈ L2(0, T ;H4(T)) satisfying (4.1), we have∫ T

0

∫
T
[s|uxxxx|2+s|uxxx|2 + s3|uxx|2 + s5|ux|2 + s7|u|2]e2sφdxdt (4.12)

+ s
∫
T
[|u− b1uxx + buxxxx|2e2sφ]t=0dx

≤ C2

∫ T

0

∫
ω
[s|uxxxx|2 + s3|uxx|2 + s7|u|2]e2sφdxdt.

Note that the Carleman estimate (4.12) yields at once the observability inequality

∥u(·, 0)∥H4(T) ≤ C
∫ T

0
∥u(·, t)∥2

H4(ω)dt. (4.13)

Proof. The proof of Proposition 4.1.1 is outlined as follows. In the first step, we prove a
Carleman estimate for the elliptic equation (4.4) with the weight esψ. In the second step,
we prove a Carleman estimate for the transport equation (4.5) with the weight esφ. In the
last step, we combine the two above Carleman estimates into a single one to obtain (4.12).
Step 1. Carleman estimate for the elliptic equation

Lemma 4.1.1. There exist s0 ≥ 1 and C0 > 0 such that for all s ≥ s0 and all u ∈ H4(T)
the following holds∫

T
[s|uxxx|2 + s3|uxx|2+s5|ux|2 + s7|u|2]e2sψdx (4.14)

≤ C0

(∫
T

|uxxxx|2e2sψdx+
∫
ω
(s7|u|2 + s3|uxx|2)e2sψdx

)
.
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Proof. Let v = esψu and P = ∂4
x. Then,

esψPu = esψP (e−sψv) = Ppv + Pnv

where

Ppv = (s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)v + 12s2ψxψxxvx + 6s2ψ2
xvxx + vxxxx, (4.15)

Pnv = −(6s3ψ2
xψxx + sψxxxx)v − (4s3ψ3

x + 4sψxxx)vx − 6sψxxvxx − 4sψxvxxx. (4.16)

It follows that
∥esψPu∥2 = ∥Ppv∥2 + ∥Pnv∥2 + 2(Ppv, Pnv),

where (f, g) =
∫
T fgdx, and ∥f∥ = (f, f). Then,

(Ppv, Pnv) = ((s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)v,−(6s3ψ2
xψxx + sψxxxx)v)

+ ((s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)v,−(4s3ψ3
x + 4sψxxx)vx)

+ ((s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)v,−6sψxxvxx)
+ ((s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)v,−4sψxvxxx) + (12s2ψxψxxvx,−(6s3ψ2

xψxx + sψxxxx)v)
+ (12s2ψxψxxvx,−(4s3ψ3

x + 4sψxxx)vx) + (12s2ψxψxxvx,−6sψxxvxx)
+ (12s2ψxψxxvx,−4sψxvxxx) + (6s2ψ2

xvxx,−(6s3ψ2
xψxx + sψxxxx)v)

+ (6s2ψ2
xvxx,−(4s3ψ3

x + 4sψxxx)vx) + (6s2ψ2
xvxx,−6sψxxvxx) + (6s2ψ2

xvxx,−4sψxvxxx)
+ (vxxxx,−(6s3ψ2

xψxx + sψxxxx)v) + (vxxxx,−(4s3ψ3
x + 4sψxxx)vx) + (vxxxx,−6sψxxvxx)

+ (vxxxx,−4sψxvxxx)

=
16∑
n=1

In.

After some integrations by parts in x, from (4.9) we obtain that

I1 = −
∫
T
(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(6s3ψ2

xψxx + sψxxxx)v2dx

I2 = −
∫
T
(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(4s3ψ3

x + 4sψxxx)vxvdx

=
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(2s3ψ3

x + 2sψxxx)]xv2dx

I3 = −
∫
T
(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(6sψxx)vvxxdx

=
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(6sψxx)]xvvxdx

+
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(6sψxx)]v2

xdx

= −
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(3sψxx)]xxv2dx

+
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)(6sψxx)]v2

xdx
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I4 = −
∫
T
(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)4sψxvvxxxdx

=
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)4sψx]xvvxxdx

+
∫
T
(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)4sψxvxvxxdx

= −
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)4sψx]xxvvxdx

−
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)4sψx]xv2

xdx

−
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)2sψx]xv2

xdx

=
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)2sψx]xxxv2dx

−
∫
T
[(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)6sψx]xv2

xdx

I5 = −
∫
T

12s2ψxψxx(6s3ψ2
xψxx + sψxxxx)vvxdx

=
∫
T
[6s2ψxψxx(6s3ψ2

xψxx + sψxxxx)]xv2dx

I6 = −
∫
T

12s2ψxψxx(4s3ψ3
x + 4sψxxx)v2

xdx

I7 = −
∫
T

12s2ψxψxx6sψxxvxvxxdx =
∫
T
[36s3ψxψ

2
xx]xv2

xdx

I8 = −
∫
T

12s2ψxψxx4sψxvxvxxxdx = −
∫
T

48s3ψ2
xψxxvxvxxxdx

=
∫
T
[48s3ψ2

xψxx]xvxvxxdx+
∫
T

48s3ψ2
xψxxv

2
xxdx

= −
∫
T
[24s3ψ2

xψxx]xxv2
xdx+

∫
T

48s3ψ2
xψxxv

2
xxdx

I9 = −
∫
T

6s2ψ2
x(6s3ψ2

xψxx + sψxxxx)vvxxdx

=
∫
T
[6s2ψ2

x(6s3ψ2
xψxx + sψxxxx)]xvvxdx+

∫
T

6s2ψ2
x(6s3ψ2

xψxx + sψxxxx)v2
xdx

= −
∫
T
[3s2ψ2

x(6s3ψ2
xψxx + sψxxxx)]xxv2dx+

∫
T

6s2ψ2
x(6s3ψ2

xψxx + sψxxxx)v2
xdx

I10 = −
∫
T

6s2ψ2
x(4s3ψ3

x + 4sψxxx)vxvxxdx =
∫
T
[3s2ψ2

x(4s3ψ3
x + 4sψxxx)]xv2

xdx

I11 = −
∫
T

6s2ψ2
x6sψxxv2

xxdx = −
∫
T

36s3ψ2
xψxxv

2
xxdx

I12 = −
∫
T

6s2ψ2
x4sψxvxxvxxxdx =

∫
T
[12s3ψ3

x]xv2
xxdx

I13 = −
∫
T
(6s3ψ2

xψxx + sψxxxx)vvxxxxdx =
∫
T
[6s3ψ2

xψxx + sψxxxx)]xvvxxxdx

+
∫
T
(6s3ψ2

xψxx + sψxxxx)vxvxxxdx

= −
∫
T
[6s3ψ2

xψxx + sψxxxx)]xxvvxxdx−
∫
T
[6s3ψ2

xψxx + sψxxxx)]xvxvxxdx

−
∫
T
[6s3ψ2

xψxx + sψxxxx)]xvxvxxdx−
∫
T
(6s3ψ2

xψxx + sψxxxx)v2
xxdx
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=
∫
T
[6s3ψ2

xψxx + sψxxxx)]xxxvvxdx+
∫
T
[6s3ψ2

xψxx + sψxxxx)]xxv2
xdx

+
∫
T
[6s3ψ2

xψxx + sψxxxx)]xxv2
xdx−

∫
T
(6s3ψ2

xψxx + sψxxxx)v2
xxdx

= −
∫
T

1
2[6s3ψ2

xψxx + sψxxxx)]xxxv2dx+
∫
T

2[6s3ψ2
xψxx + sψxxxx)]xxv2

xdx

−
∫
T
(6s3ψ2

xψxx + sψxxxx)v2
xxdx

I14 = −
∫
T
(4s3ψ3

x + 4sψxxx)vxvxxxxdx =
∫
T
[(4s3ψ3

x + 4sψxxx)]xvxvxxxdx

+
∫
T
(4s3ψ3

x + 4sψxxx)vxxvxxxdx

= −
∫
T
[(4s3ψ3

x + 4sψxxx)]xxvxvxxdx−
∫
T
[(4s3ψ3

x + 4sψxxx)]xv2
xxdx

−
∫
T
[(2s3ψ3

x + 2sψxxx)]xv2
xxdx

=
∫
T
[(2s3ψ3

x + 2sψxxx)]xxxv2
xdx−

∫
T

3[(2s3ψ3
x + 2sψxxx)]xv2

xxdx

I15 = −
∫
T

6sψxxvxxvxxxxdx =
∫
T

6sψxxxvxxvxxxdx+
∫
T

6sψxxv2
xxxdx

= −
∫
T

3sψxxxxv2
xxdx+

∫
T

6sψxxv2
xxxdx

I16 = −
∫
T

4sψxvxxxvxxxxdx =
∫
T

2sψxxv2
xxxdx.

Therefore,

∥esψPu∥2 = ∥Ppv∥2 + ∥Pnv∥2 + 2
∫
T
h1(ψ)v2dx+ 2

∫
T
h2(ψ)v2

xdx+ (4.17)

2
∫
T
h3(ψ)v2

xxdx+ 2
∫
T
h4(ψ)v2

xxxdx

where

h1(ψ) = [(s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)(2s3ψ3
x + 2sψxxx)]x

− (s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)(6s3ψ2
xψxx + sψxxxx)

− [(s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)(3sψxx)]xx
+ [(s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)2sψx]xxx

+ [12s2ψxψxx(6s3ψ2
xψxx + sψxxxx)]x − [3s2ψ2

x(6s3ψ2
xψxx + sψxxxx)]xx

− 1
2[6s3ψ2

xψxx + sψxxxx)]xxx

h2(ψ) = [(s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)(6sψxx)] − [(s4ψ4
x + 3s2ψ2

xx + 4s2ψxxxψx)6sψx]x
− 12s2ψxψxx(4s3ψ3

x + 4sψxxx) + [36s3ψxψ
2
xx]x − [24s3ψ2

xψxx]xx
+ [3s2ψ2

x(4s3ψ3
x + 4sψxxx)]x

+ 2[6s3ψ2
xψxx + sψxxxx)]xx + [(2s3ψ3

x + 2sψxxx)]xxx + 6s2ψ2
x(6s3ψ2

xψxx + sψxxxx)
h3(ψ) = 48s3ψ2

xψxx − 36s3ψ2
xψxx + [12s3ψ3

x]x − (6s3ψ2
xψxx + sψxxxx)

− 3[(2s3ψ3
x + 2sψxxx)]x − 3sψxxxx

h4(ψ) = 6sψxx + 2sψxx = 8sψxx.
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From (4.8), we infer that there exist some numbers s0 ≥ 1, K > 0 and K1 > 0 such that
for all s ≥ s0,

2h1(ψ) ≥ Ks7 for (x, t) ∈ (η2 , 2π − η

2) × (0, T ),

2h2(ψ) ≥ Ks5 for (x, t) ∈ (η2 , 2π − η

2) × (0, T ),

2h3(ψ) ≥ Ks3 for (x, t) ∈ (η2 , 2π − η

2) × (0, T ),

2h4(ψ) ≥ Ks for (x, t) ∈ (η2 , 2π − η

2) × (0, T ),

while, setting ω0 = [0, η2) ∪ (2π − η
2 , 2π),

|2h1(ψ)| ≤ K1s
7 for (x, t) ∈ ω0 × (0, T ),

|2h2(ψ)| ≤ K1s
5 for (x, t) ∈ ω0 × (0, T ),

|2h3(ψ)| ≤ K1s
3 for (x, t) ∈ ω0 × (0, T ),

|2h4(ψ)| ≤ K1s for (x, t) ∈ ω0 × (0, T ).

Then, from (4.17)

∥Ppv∥2 +
∫
T
[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx

= ∥Ppv∥2 +
∫
ω0

[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx

+
∫
T\ω0

[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx

≤ ∥Ppv∥2 +
∫
ω0

[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx

+ C
∫
T\ω0

[2h1(ψ)|v|2 + 2h2(ψ)|vx|2 + 2h3(ψ)|vxx|2 + 2h4(ψ)|vxxx|2]dx

≤ ∥Ppv∥2 +
∫
ω0

[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx

+ C
∫
T
[2h1(ψ)|v|2 + 2h2(ψ)|vx|2 + 2h3(ψ)|vxx|2 + 2h4(ψ)|vxxx|2]dx

≤ C
(

∥esψPu∥2 +
∫
ω0

[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx
)
.

We conclude that for s ≥ s0 and C > 0

∥Ppv∥2 +
∫
T
[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx (4.18)

≤ C
(

∥esψPu∥2 +
∫
ω0

[s7|v|2 + s5|vx|2 + s3|vxx|2 + s|vxxx|2]dx
)
.

Next we show that
∫
T s

−1|vxxxx|2dx is also less than the rigth hand side of (4.18). We have∫
T
s−1|vxxxx|2dx =

∫
T
s−1|Ppv − (s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx)v − 12s2ψxψxxvx − 6s2ψ2

xvxx|2dx

≤ C
∫
T
s−1(|Ppv|2 + |s4ψ4

x + 3s2ψ2
xx + 4s2ψxxxψx|2|v|2 + |12s2ψxψxx|2|vx|2 + |6s2ψ2

x|2|vxx|2)dx

≤ Cs−1
(

∥Ppv∥2 +
∫
T
(s8|v|2 + s4|vx|2 + s4|vxx|2)

)
= C

(
s−1∥Ppv∥2 +

∫
T
(s7|v|2 + s3|vx|2 + s3|vxx|2)

)
.
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Combined with (4.18), this gives∫
T
{s−1|vxxxx|2 + s|vxxx|2 + s3|vxx|2 + s5|vx|2 + s7|v|2}dx

≤ C
(
s−1∥Ppv∥2 +

∫
T
(s7|v|2 + s3|vx|2 + s3|vxx|2) +

∫
T
(s|vxxx|2 + s3|vxx|2 + s5|vx|2 + s7|v|2)

)
≤ C

(
s−1∥Ppv∥2 +

∫
T
(s|vxxx|2 + s3|vxx|2 + s5|vx|2 + s7|v|2)

)
,

then we have ∫
T
{s−1|vxxxx|2 + s|vxxx|2 + s3|vxx|2 + s5|vx|2 + s7|v|2}dx

≤ C
(
s−1∥Ppv∥2 +

∫
T
(s|vxxx|2 + s3|vxx|2 + s5|vx|2 + s7|v|2)

)
(4.19)

where C does not depend on s and v. Finally, we show that we can drop the terms vx, vxxx
on the right hand side of (4.19). Let ξ ∈ C∞

0 (ω) with 0 ≤ ξ ≤ 1 for x ∈ ω0. Then,∫
ω0

|vx|2dx ≤
∫
ω
ξ|vx|2dx =

∫
ω
ξvxvxdx

= −
∫
ω
(ξxvx + ξvxx)vdx

= 1
2

∫
ω
ξxxv

2dx−
∫
ω
ξvxxvdx

so that

2
∫
ω0
s|vx|2dx ≤ ∥ξxx∥L∞(T)

∫
ω
s|v|2dx+ κ

∫
ω
s−1|vxx|2dx+

∫
ω
s3|v|2dx (4.20)

and ∫
ω0

|vxxx|2dx ≤
∫
ω
ξ|vxxx|2dx =

∫
ω
ξvxxxvxxxdx

= −
∫
ω
(ξxvxxx + ξvxxxx)vxxdx

= 1
2

∫
ω
ξxxv

2
xxdx−

∫
ω
ξvxxxxvxxdx.

Then,

2
∫
ω0
s|vxxx|2dx ≤ ∥ξxx∥L∞(T)

∫
ω
s|vxx|2dx+ κ

∫
ω
s−1|vxxxx|2dx+ κ−1

∫
ω
s3|vxx|2dx, (4.21)

where κ > 0 is a constant that can be chosen as small as desired. Combining (4.20) and
(4.21) with κ small enough gives for s ≥ s0(with a possibly incresed value of s0) and some
constant C that does not depend on s and v∫

ω
{s−1|vxxxx|2 + s|vxxx|2 + s3|vxx|2 + s5|vx|2 + s7|v|2}dx ≤ (4.22)

C
(

∥esψPu∥2 +
∫
ω
(s7|v|2 + s3|vxx|2)dx

)
.

Replacing v by esψu in (4.22) gives at once (4.14). The proof of Lemma 4.1.1 is complete.
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Step 2. Carleman estimate for the transport equation.

Lemma 4.1.2. There exist s1 ≥ s0 and C1 > 0 such that for all s ≥ s1 and all
w ∈ L2(T × (0, T )) with wt + a

b
wx ∈ L2(T × (0, T )), the following holds

∫ T

0

∫
T
s|w|2e2sφdxdt+

∫
T
s[|w|2e2sφ]t=0dx+

∫
T
s[|w|2e2sφ]t=Tdx (4.23)

≤ C1

(∫ T

0

∫
T

|wt + a

b
wx|2e2sφdxdt+

∫ T

0

∫
ω
s|w|2e2sφdxdt

)
.

Proof. The result was proved in [39, Lemma 5.5]. For the sake of completeness we have
included the proof in Appendix 4.3.

Let us complete the proof of Proposition 4.1.1. Let u ∈ L2(0, T ;H4(T)) satisfying (4.1)
and let w = u− b1uxx + buxxxx ∈ L2(0, T ;L2(T)).
Then wt + a

b
wx = (a

b
− q)ux − (ab1

b
+ p)uxxx − ruxx ∈ L2(0, T ;L2(T)). Combining

(4.4),(4.5),(4.14) (multiplied by e−2sρc2t2 and next integrated over (0, T )), and (4.23),
we obtain for s ≥ s1 that∫ T

0

∫
T
[s|uxxx|2 + s3|uxx|2 + s5|ux|2 + s7|u|2 + s|u− b1uxx + buxxxx|2]e2sφdxdt (4.24)

+
∫
T
[s|u− b1uxx + buxxxx|2e2sφ]t=0dx

≤ C
∫ T

0

∫
T
[|uxxxx|2 + |(a

b
− q)ux − (ab1

b
+ p)uxxx − ruxx|2]e2sφdxdt

+ C
∫ T

0

∫
ω
[s|u− b1uxx + buxxxx|2 + s7|u|2 + s3|uxx|2]]e2sφdxdt.

Then choosing s2 ≥ s1 and C2 > C large enough, we obtain (4.12) for any s ≥ s2 and any
u ∈ L2(0, T ;H4(T)) satisfying (4.1).

We are now in a position to prove Theorem 4.1.1. Pick any function fulfilling (4.1)
and (4.2). If u ∈ L2(0, T ;H4(T)), then it follows from (4.12) that u = 0 in T × (0, T ).
Assume now that u ∈ L∞(0, T ;H3(T)). We proceed as in [39]. Since u and w = u− b1uxx +
buxxxx are not regulat enough to apply Lemmas 4.1.1 and 4.1.2, we smooth them by some
convolution in time. For any function v = v(x, t) and any number h > 0, we set

v[h](x, t) = 1
h

∫ t+h

t
v(x, s)ds.

Recall that if v ∈ Lp(0, T,X), where 1 ≤ p ≤ ∞ and X denote any Banach space, then
v[h] ∈ W 1,p(0, T − h;X), ∥v[h]∥Lp(0,T−h;X) ≤ ∥v∥Lp(0,T ;X) and, for p < ∞ and T ′ < T ,

v[h] → v in Lp(0, T ′;X) as h → 0.

In the sequel, v[h]
t denote (v[h])t, v[h]

x denote (v[h])x, etc. Assume again that a > 0. Pick any
T ′ ∈ (2bπ

a
, T ), any pair (ρ, δ) such that (4.7) still holds with T ′, and define the functions ψ
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and φ as above. Then, for any positive number h < h0 = T − T ′, u[h] ∈ W 1,∞(0, T ′, H3(T))
and it solves

u
[h]
t − b1u

[h]
txx + bu

[h]
txxxx + au[h]

xxxxx + (q(u)ux)[h] + (p(u)uxxx)[h]+(r(u)uxx)[h] (4.25)
= 0 in L∞(0, T ′;H−2(T))

u[h](x, t) = 0 in (x, t) ∈ ω × (0, T ′). (4.26)

From (4.25), we infer that

u[h]
xxxxx

= a−1(−u[h]
t + b1u

[h]
txx − bu

[h]
txxxx − (q(u)ux)[h] − (p(u)uxxx)[h] − (r(u)uxx)[h]) ∈ L∞(0, T ′;H−1(T)),

hence

u[h] ∈ L∞(0, T ′;H4(T)). (4.27)

This yields, with (4.4)-(4.5),

w[h] = u[h] − b1u
[h]
xx + bu[h]

xxxx ∈ L∞(0, T ′;L2(T)) (4.28)

w
[h]
t + a

b
w[h]
x = [(a

b
− q)ux][h] − [(ab1

b
+ p)uxxx][h] − [ruxx][h] ∈ L∞(0, T ′;L2(T)). (4.29)

From (4.25)-(4.29) and Lemma 4.1.1 and 4.1.2, we infer that exist some constants s1 > 0
and C1 > 0, such that, for all s ≥ s1 and all h ∈ (0, h0), we have

∫ T ′

0

∫
T
[s|u[h]

xxx|2 + s3|u[h]
xx|2 + s5|u[h]

x |2 + s7|u[h]|2 + s|u[h]
xxxx|2]e2sφdxdt (4.30)

≤ C
∫ T ′

0

∫
T
[|u[h]

xxxx|2 +
∣∣∣∣∣[(ab − q)ux][h] − [(ab1

b
+ p)uxxx][h] − [ruxx][h]

∣∣∣∣∣
2

]e2sφdxdt

≤ C
∫ T ′

0

∫
T
[|u[h]

xxxx|2 +
∣∣∣∣[(ab − q)ux][h]

∣∣∣∣2 +
∣∣∣∣∣[(ab1

b
+ p)uxxx][h]

∣∣∣∣∣
2

+
∣∣∣[ruxx][h]

∣∣∣2]e2sφdxdt

≤ C
∫ T ′

0

∫
T
[|u[h]

xxxx|2 +
∣∣∣∣[(ab − q)u[h]

x

∣∣∣∣2 +
∣∣∣∣∣[(ab1

b
+ p)u[h]

xxx

∣∣∣∣∣
2

+
∣∣∣[ru[h]

xx

∣∣∣2]e2sφdxdt

+
∫ T ′

0

∫
T

∣∣∣∣[(ab − q)ux][h] − (a
b

− q)u[h]
x

∣∣∣∣2 e2sφdxdt

+
∫ T ′

0

∫
T

∣∣∣∣∣[(ab1

b
+ p)uxxx][h] − (ab1

b
+ p)u[h]

xxx

∣∣∣∣∣
2

e2sφdxdt (4.31)

+
∫ T ′

0

∫
T

∣∣∣[ruxx][h] − ru[h]
xx

∣∣∣2 e2sφdxdt.

Comparing the powers of s in (4.30), we obtain that for s ≥ s3 > s1, h ∈ (0, h0) and some
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constant C3 > C1(That does depend of s, h)

∫ T ′

0

∫
T
[s|u[h]

xxx|2 + s3|u[h]
xx|2 + s5|u[h]

x |2 + s7|u[h]|2 + s|u[h]
xxxx|2]e2sφdxdt

≤ C
∫ T ′

0

∫
T

|[(a
b

− q)ux][h] − (a
b

− q)u[h]
x |2e2sφdxdt

+ C
∫ T ′

0

∫
T

|[(ab1

b
+ p)uxxx][h] − (ab1

b
+ p)u[h]

xxx|2e2sφdxdt

+ C
∫ T ′

0

∫
T

|[ruxx][h] − ru[h]
xx|2e2sφdxdt.

Fix s to value s3 and let h → 0, we claim that
∫ T ′

0

∫
T

|[(a
b

− q)ux][h] − (a
b

− q)u[h]
x |2e2s3φdxdt → 0, as h → 0.

∫ T ′

0

∫
T

|[(ab1

b
+ p)uxxx][h] − (ab1

b
+ p)u[h]

xxx|2e2s3φdxdt → 0, as h → 0.

and ∫ T ′

0

∫
T

|[ruxx][h] − ru[h]
xx|2e2s3φdxdt → 0, as h → 0.

Indeed, if h → 0,

[(a
b

− q)ux][h] → (a
b

− q)ux in L2(0, T ′;L2(T))

(a
b

− q)u[h]
x → (a

b
− q)ux in L2(0, T ′;L2(T))

[(ab1

b
+ p)uxxx][h] → (ab1

b
+ p)uxxx in L2(0, T ′;L2(T))

(ab1

b
+ p)u[h]

xxx → (ab1

b
+ p)uxxx in L2(0, T ′;L2(T))

[ruxx][h] → ruxx in L2(0, T ′;L2(T))
ru[h]

xx → ruxx in L2(0, T ′;L2(T))

while e2s3φ ∈ L∞(T × (0, T ′)). Therefore,

∫ T ′

0

∫
T

|u[h]|2e2s3φdxdt → 0, as h → 0.

On the other hand, u[h] → u in L2(0, T ′;L2(T)), hence

∫ T ′

0

∫
T

|u[h]|2e2s3φdxdt →
∫ T ′

0

∫
T

|u|2e2s3φdxdt,

as h → 0. We conclude that u = 0 in T× (0, T ′). As T ′ may be taken arbitrarily close to T ,
we infer that u = 0 in T × (0, T ) as desired. The proof of Theorem 4.1.1 is complete.
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4.2 Appendix-Unique Continuation Property Conjecture
Having the UCP in hands, it is natural to expect that some stability property

could be derived by incorporating some dissipation in a fixed subset of the domain. The
conclusion is that the solutions indeed decay to zero in the energy space H2(T), as t → ∞,
provided that the following conjecture is true:
Unique Continuation Property Conjecture: For any u0 ∈ H2(T), if the solution
u = u(x, t) ofut + ux − b1utxx + a1uxxx + butxxxx + auxxxxx + 3

2uux + γ(u2)xxx − 7
48(u2

x)x − 1
8(u3)x = 0,

u(x, 0) = u0(x),

with x ∈ T, satisfies
u(x, t) = 0, ∀ (x, t) ∈ ω × (0, T ),

for some nonempty open set ω ⊂ T and some T > 0, then u0 = 0 (and hence u ≡ 0).

We are concerned with the stabilization of
ut + ux − b1utxx+ a1uxxx + butxxxx + auxxxxx

= −3
2uux − γ(u2)xxx + 7

48(u2
x)x + 1

8(u3)x + a(x)h,

u(x, 0) = u0(x),

(4.32)

where (x, t) ∈ T × (0, T ) and a ∈ C∞(T) is a given nonzero function. Let

ω = {x ∈ T : a(x) ̸= 0} ≠ ∅.

To guess the expression of h, it is convenient to write the linearized system of (4.32) as

ut = Au+Bk, (4.33)
u(0) = u0, (4.34)

where A = −(I − b1∂
2
x + b∂4

x)−1(∂x + a1∂
3
x + a∂5

x), k(t) = (I − b1∂
2
x + b∂4

x)−1h(t) ∈
L2(0, T ;Hs(T)) is a control input and

B = (I − b1∂
2
x + b∂4

x)−1a(I − b1∂
2
x + b∂4

x).

We already noticed that A is skew adjoint in Hs(T), and that (4.33)-(4.34) is exactly
controllable in Hs(T) (see [6]). If we choose the simple feedback law

k = −B∗,su (4.35)

the resulting closed-loop system

ut = Au−BB∗,su, (4.36)
u(0) = u0 (4.37)
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is exponentially stable in Hs(T), where B∗,s denotes the adjoint of B in L(Hs(T)). B∗,s is
given by

B∗,s = (1 − b∂2
x + b1∂

4
x)1− s

2a(1 − b∂2
x + b1∂

4
x)

s
2 −1. (4.38)

Indeed, observe that

cb,b1(1 + bx2 + b1x
4) s

2 ≤ [(1 + x2)2] s
2 ≤ Cb,b1(1 + bx2 + b1x

4) s
2 ,

for s ≥ 2 and some positive constants cb,b1 , Cb,b1 . Then, we can define the following
equivalent inner product in Hs(T) as

(u, v)s =
∫
T
(1 + bx2 + b1x

4) s
2 Fu(x)Fv(x)d,

where Fφ denote the Fourier transform of φ. Hence, employing Plancherel Theorem, we
get

(Bφ,ψ)s =
∫
T
(1 + bx2 + b1x

4) s
2 F [(1 − b∂2

x + b1∂
4
x)−1a(x)(1 − b∂2

x + b1∂
4
x)φ(x)] Fψ(x)dx

=
∫
T
(1 + bx2 + b1x

4) s
2 −1F [a(x)(1 − b∂2

x + b1∂
4
x)φ(x)]Fψ(x)dx

=
∫
T

F [a(x)(1 − b∂2
x + b1∂

4
x)φ(x)]F [(1 − b∂2

x + b1∂4
x)

s
2 −1ψ(x)]dx

= (a(1 − b∂2
x + b1∂

4
x)φ, (1 − b∂2

x + b1∂
4
x)

s
2 −1ψ)L2(T)

= ((1 − b∂2
x + b1∂

4
x)φ, a(1 − b∂2

x + b1∂
4
x)

s
2 −1ψ)L2(T)

=
∫
T

F [(1 − b∂2
x + b1∂

4
x)φ(x)]F [a(x)(1 − b∂2

x + b1∂4
x)

s
2 −1ψ(x)]dx

=
∫
T
(1 + bx2 + b1x

4) s
2 Fφ(x)(1 + bx2 + b1x

4)1− s
2 F [a(x)(1 − b∂2

x + b1∂4
x)

s
2 −1ψ(x)]dx

=
∫
T
(1 + bx2 + b1x

4) s
2 Fφ(x)F [(1 − b∂2

x + b1∂4
x)1− s

2a(x)(1 − b∂2
x + b1∂4

x)
s
2 −1ψ(x)]dx

= (φ, (1 − b∂2
x + b1∂

4
x)1− s

2a(x)(1 − b∂2
x + b1∂

4
x)

s
2 −1ψ)s,

for all φ, ψ ∈ Hs(T). From the computation above we deduce that

B∗,2u = au.

Let Ã = A − BB∗,2, where (BB∗,2)u = (I − b1∂
2
x + b∂4

x)[a(I − b1∂
2
x + b∂4

x)(au)]. Since
BB∗,2 ∈ L(Hs(T)) and A is skew adjoint in Hs(T), Ã is the infinitesimal generator of a
group {Wa(t)}t∈R on Hs(T) (See [37, Theorem 3.4]).

We have the following exponentially stabilization result for (4.33)-(4.32) in Hs(T)
for s ≥ 2 proved in [6].

Lemma 4.2.1. Let a ∈ C∞(T) with a ̸= 0. Then, there exist a constant β > 0, such that,
for s ≥ 2, one can find constant Cs > 0 for which the following holds for all u0 ∈ Hs(T):

∥Wa(t)u0∥Hs ≤ Cse
−βt∥u0∥Hs for all t ≥ 0. (4.39)
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Plugging the feedback law k = −B∗,2u = −au in the nonlinear equation gives the
following closed-loop system

ut + ux − b1utxx + a1uxxx + butxxxx + auxxxxx =

−3
2uux − γ(u2)xxx + 7

48(u2
x)x + 1

8(u3)x − a(I − b1∂
2
x + b∂4

x)[au]

u(x, 0) = u0(x),

(4.40)

where (x, t) ∈ T × (0, T ). Proceding as in [13], we can show that the system (4.40) is
globally well-posed in the space Hs(T) for s ≥ 1.

Theorem 4.2.1. Let s ≥ 2 and T > 0 be given. For any u0 ∈ Hs(T), the system (4.40)
admits a unique solution u ∈ C([0, T ];Hs(T)).

Now we show that the system (4.40) is globally exponentially stable in the space
H2(T), but first we show a observability inequality.

Proposition 4.2.1. Let R0 > 0 be given. Then, there exist two positive number T and θ,
such that for any u0 ∈ H2(T) satisfying

∥u0∥H2(T) ≤ R0, (4.41)

the corresponding solution u of (4.40) satisfies

∥u0∥2
H2(T) ≤ θ

∫ T

0
∥au(t)∥2

H2(T)dt. (4.42)

Proof. Let T > 2bπ
a

. We prove the estimate (4.42) by contradiction. If (4.42) is not true,
for any n ≥ 1, (4.40) admits a solution un ∈ C([0, T ];H2(T)) satisfying

∥u0,n∥H2(T) ≤ R0, (4.43)

and ∫ T

0
∥aun(t)∥2

H2(T)dt ≤ 1
n

∥u0,n∥2
H2(T), (4.44)

where u0,n = un(0). Since αn = ∥u0,n∥H2(T) ≤ R0 we can choose a subsequence of (αn), still
denoted by (αn)n∈N, such that limn→∞ αn = α. Note that αn > 0 by (4.44). Set vn = un

αn

for all n ≥ 1. Then,

vn,t + vn,x − b1vn,txx + a1vn,xxx+bvn,txxxx + avn,xxxxx + 3
2αnvnvn,x − γαn(v2

n)xxx

− 7
48αn(v2

n,x)x − 1
8α

2
n(v3

n)x = −a(I − b1∂
2
x + b∂4

x)avn

and ∫ T

0
∥avn(t)∥2

H2(T)dt ≤ 1
n
. (4.45)
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Moreover

∥vn(0)∥H2(T) = 1. (4.46)

Since ∥vn(0)∥H2(T) = 1, for all n ∈ N, the sequence (vn)n∈N is bounded in L∞(0, T ;H2(T))
and (vn,t)n∈N is bounded in L∞(0, T ;H1(T)). From Aubin-Lions Lemma (vn)n∈N is bounded
in C(0, T ;Hs(T)) with 1 < s < 2, then we infer that we can extract a subsequence of
(vn)n∈N, still denoted (vn)n∈N, such that

vn → v in C(0, T ;Hs(T)), (4.47)
vn → v in L∞(0, T ;H2(T)) weak-*, (4.48)

for some v ∈ L∞(0, T ;H2(T)) ∪ C([0, T ];Hs(T)), for all 1 < s < 2. Note that, from
(4.47)-(4.48), we have that

αnvnvn,x → αvvx in L∞(0, T, L2(T)) weak-*, (4.49)
αn(v2

n)xxx → α(v2)xxx in L∞(0, T,H−1(T)) weak-*, (4.50)
αn(v2

n,x)x → α(v2
x)x in L∞(0, T, L2(T)) weak-*, (4.51)

α2
n(v3

n)x → α2(v3)x in L∞(0, T, L2(T)) weak-*. (4.52)

Furthermore, by (4.45),∫ T

0
∥av∥2

H2(T)dt ≤ lim inf
n→∞

∫ T

0
∥avn∥2

H2(T)dt = 0. (4.53)

Thus, v solves

vt + vx − b1vtxx + a1vxxx + bvtxxxx + avxxxxx

+ 3
2αvvx − γα(v2)xxx − 7

48(v2
x)x − 1

8α
2(v3)x = −a(I − b1∂

2
x + b∂4

x)av, (x, t) ∈ T × (0, T ),

v = 0, in ω × (0, T ).

If the UCP holds, v = 0 in T× (0, T ). We claim that (vn)n∈N is linearizable in the sense of
[15, Proposition 9]; that is, if (wn)n∈N denotes the sequence of solution of the linear higher
order KdV-BBM equation with the same initial datawn,t + wn,x − b1wn.txx + a1wxxx + bwtxxxx + awxxxxx = −a(I − b1∂

2
x + b∂4

x)[awn],

wn(x, 0) = vn(x, 0),

then

sup
0≤t≤T

∥vn(t) − wn(t)∥H2(T) → 0, as n → ∞. (4.54)

Indeed, if dn = vn − wn, then dn solves

dn,t + dn,x − b1dn,txx + a1dn,xxx + bdtxxxx + adxxxxx =

− 3
2αnvnvn,x − γαn(v2

n)xxx + 7
48αn(v2

n,x)x + 1
8α

2
n(v3

n)x − a(I − b1∂
2
x + b∂4

x)[adn], (4.55)

dn(0) = 0.



4.2. Appendix-Unique Continuation Property Conjecture 95

Since ∥Wa(t)∥L(H2(T)) ≤ Meωt ≤ MeωT with ω,M > 0, we have from Duhamel formula
that, for t ∈ [0, T ],

∥dn(t)∥H2(T) ≤ MeωT
(∫ T

0
∥(I − b1∂

2
x + b∂4

x)−1 3
2αnvnvn,x∥H

2(T)dt

+
∫ T

0
∥(I − b1∂

2
x + b∂4

x)−1γαn(v2
n)xxx∥H2(T)dt

+
∫ T

0
∥(I − b1∂

2
x + b∂4

x)−1 7
48αn(v2

n,x)x∥H2(T)dt

+
∫ T

0
∥(I − b1∂

2
x + b∂4

x)−1 1
8αn(v3

n)x∥H2(T)dt

)
.

The above estimate combined with (4.47)-(4.48) and the fact of v = 0 give us (4.54). By
Lemma 4.2.1, we have that

∥wn(t)∥H2(T) ≤ c1e
−βt∥wn(0)∥H2(T) for all t ≥ 0. (4.56)

From the energy identity for (4.55), we get

∥wn(t)∥2
H2(T) − ∥wn(0)∥2

H2(T) = −2
∫ T

0
∥awn(t)∥2

H2(T)dt

or

∥wn(0)∥2
H2(T) − ∥wn(t)∥2

H2(T) = 2
∫ T

0
∥awn(t)∥2

H2(T)dt.

Therefore, from (4.56) it follows that

∥wn(0)∥2
H2(T) ≤ 2(1 − c2

1e
−2βT )−1

[∫ T

0
∥awn(t) − avn(t)∥2

H2(T)dt+
∫ T

0
∥avn(t)∥2

H2(T)dt

]
.

Combining (4.54) and (4.45), this yields ∥vn(0)∥2
H2(T) = ∥wn(0)∥2

H2(T) → 0, which contra-
dicts (4.46).

Theorem 4.2.2. Let a ∈ C∞(T) with a ̸= 0, and β > 0 be as given in Lemma 4.2.1.
Then, for any R0 > 0, there exists a constant C > 0, such that, for any u0 ∈ H3(T) with
∥u0∥H3(T) ≤ R0, the corresponding solution u of (4.40) satisfies

∥u(·, t)∥H2(T) ≤ Ce−βt∥u0∥H2(T). (4.57)

Proof. From Proposition 4.2.1 and the energy identity

∥u(t)∥2
H2(T) = ∥u(0)∥2

H2(T) − 2
∫ t

0
∥au(τ)∥2

H2(T)dτ, t ≥ 0,

we have
∥u(T )∥2

H2(T) ≤ (1 − 2θ−1)∥u(0)∥2
H2(T).

Thus,
∥u(kT )∥2

H2(T) ≤ (1 − 2θ−1)k∥u(0)∥2
H2(T), k ∈ N,

which gives by the semigroup property

∥u(t)∥2
H2(T) ≤ Ce−κt∥u(0)∥2

H2(T), for all t ≥ 0.
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4.3 Appendix-A
Proof of Lemma 4.1.2: (See [39, Lemma 5.5])

Proof. We first assume that w ∈ H1(T × (0, T )). Let v = esφ and P = ∂t + a
b
∂x. Then

esφPw = esφP (e−sφv)

= (−sφtv − a

b
sφxv) + (vt + a

b
vx)

= Pnv + Ppv.

It follows that

∥esφPw∥2
L2(T×(0,T )) = ∥Ppv∥2

L2(T×(0,T )) + ∥Pnv∥2
L2(T×(0,T )) + 2(Ppv, Pnv)2

L2(T×(0,T )) (4.58)

After some integrations by parts in t and x in the last term in (4.58), we obtain

2(Ppv, Pnv)2
L2(T×(0,T )) =

∫ T

0

∫
T
s(φtt + 2a

b
φxt + a2

b2φxx)v
2dxdt

−
∫
T
s(φt + a

b
φx)v2|T0 dx− −

∫ T

0

a

b
s(φt + a

b
φx)v2|2π0 dt (4.59)

Using (4.9)-(4.11) and the fact that v(0, t) = v(2π, t), we notice that the last term in
(4.59) is null. From (4.8)-(4.11), we infer that

φtt + 2a
b
φtx+ a2

b2φxx = 2(1 − ρ)a
2

b2 > 0 for (x, t) ∈ (η2 , 2π − η

2) × (0, T ),

− (φt + a

b
φx) ≥ 2a

b
(aTρ
b

− 2π − δ) > 0 for x ∈ (0, 2π), t = T

φt + a

b
φx ≥ 2a

b
δ > 0 for x ∈ (0, 2π), t = 0.

Thus∫ T

0

∫
T
s|v|2dxdt+

∫
T
s(|v|2t=0 + |v2

t=T )dx ≤ C

(∫ T

0

∫
T

|esφPw|2dxdt+
∫ T

0

∫
ω
s|v|2dxdt

)
.

Which gives at once (4.23) by replacing v by esφw. The proof of Lemma 4.1.2 is achieved
when w ∈ H1(T × (0, T )). We now claim that Lemma 4.1.2 is still true when w and f are
in L2(0, T ;L2(T)). Indeed, in the case w ∈ C([0, T ];L2(T)), and if (w0

n) and fn are two
sequences in H1(T) and L2(0, T ;H1(T)), respectively, such that

w0
n → w(0) in L2(T)

fn → f in L2(0, T ;L2(T),

then the solution wn ∈ C([0, T ];H1(T)) of

wnt + a

b
wnx + fn,

wn(0) = wn0

satisfies wn ∈ H1(T × (0, T )) and wn → w in C([0, T ];L2(T)), so that we can apply (4.23)
to wn and next pass to the limit n → ∞ in (4.23). The proof of Lemma 4.1.2 is complete.
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