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Summary

We study the relationship between the dynamic properties of a geodesic flow ϕt : SM → SM
and the rigidity of the geometry of the manifold M .
We study some conditions for two geodesic flows defined in compact Riemannian manifolds of
the same dimension, admit a certain type of conjugacy. Such conditions are imposed on the
sectional curvatures of the manifolds. For this purpose, we extend a result on conjugacy and
rigidity of Romaña - Melo, they show that under some condition in the sectional curvatures of
two compact Riemannian manifolds of the same dimension, if there is a certain special type of
conjugacy (1-conjugacy) between the corresponding geodesic flows then the sectional curvatures
are constants.
On the other hand, a result that relates Lyapunov exponents and rigidity is due to Clark
Butler, he shows that if all Lyapunov exponents of a geodesic flow ϕt : SM → SM defined in
a compact Riemannian manifold of negative curvature are constants along periodic orbits then
the sectional curvature of M is a negative constant. We extend that result in the following two
context. First, for non-compact manifold of finite volume with pinched negative curvature and
some restriction on the values of Lyapunov exponents. Second, for compact surfaces, changing
the negative curvature condition for the geodesic flow to be Anosov.

Keywords: Conjugacy, Lyapunov exponents, Rigidity and Anosov geodesic
flow.



Resumo

Nós estudamos a relação entre as propriedades dinâmicas de um fluxo geodésico ϕt : SM → SM
e a rigidez da geometria da variedade M .
Nós estudaremos algumas condições para dois fluxos geodésicos definidos em variedades Rie-
mannianas compactas da mesma dimensão, admitam certo tipo de conjugação. Tais condições
são impostas sobre as curvaturas seccionais das variedades. Especificamente, na interseção dos
intervalos de curvatura seccional. Para isso, nós estendemos um resultado sobre conjugação e
rigidez de Romaña-Melo, eles mostram que baixo alguma condição nas curvaturas seccionais de
duas variedades compactas da mesma dimensão, se existe um certo tipo especial de conjugação
(1-conjugação) entre os correspondentes fluxos geodésicos então as curvaturas seccionais das
variedades são constantes.
Por outro lado, um resultado que relaciona exponentes de Lyapunov e rigidez é devido a
Clark Butler, quem mostra que se todos os exponentes de Lyapunov de um fluxo geodésico
ϕt : SM → SM definido em uma variedade Riemanniana compacta de curvatura negativa
são constantes ao longo de orbitas periódicas, então a curvatura seccional de M é constante
negativa. Nós estendemos esse resultado nos seguintes dois contextos. Primeiro, para variedades
não compactas de volume finito com curvatura pinched negativa e alguma restrição nos valores
dos exponentes de Lyapunov. E segundo, para superfícies compactas, trocando a condição de
curvatura negativa pela condição do fluxo geodésico ser Anosov.

Palavras-Chaves: Conjugação, exponente de Lyapunov, Rigidez e Fluxo
Geodésico Anosov.



Abstract

The density property of periodic orbits for an Anosov flow in a compact manifold is well known.
We prove that this property is still valid for an Anosov geodesic flow on manifolds of finite
volume (Theorem 1.1). This property will be used to know when two geodesic flows defined in
manifolds of the same dimension admit certain types of conjugacy (See Chapter 4, Section 4.3).
Finally, we prove, for the Anosov geodesic flow, a rigidity result on the sectional curvature
under the condition that the Lyapunov exponents are constant along periodic orbits, which
is an extension of the Butler result [Bu] in the following two contexts: in any n-dimensional
manifold of finite volume (Theorem 1.3) and in the compact case in dimension 2 (Theorem 1.5).
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Chapter 1

Introduction

The geodesic flow plays a significant role in modern theories of both differential geometry and
dynamical systems and, primarily on Riemannian manifolds, has been extensively studied (cf.
[P] and [Kn] for a comprehensive introduction).
In several works some properties of an Anosov geodesic flow are highlighted. For example in
[AK], for a compact Riemannian manifold negatively curved (M, g), we have that the geodesic
flow ϕt : SM → SM is Anosov, which implies that the geodesic flows has special submanifolds
W ss and W uu called stable and unstable manifolds, respectively. Using these submanifolds
we have special properties of the geodesic flow as Shadowing, expansiveness, local structure
product, and ergodicity.
In the non-compact case, this mean when the manifold M is a complete Riemannian manifold;
the hyperbolicity of the geodesic flow is proved under restriction over negative pinched curvature
KM (this mean, −c2 ≤ KM ≤ −α2 < 0, for some 0 < α < c) (cf. [Kn]). In [E], Eberlein gives
equivalent conditions for the geodesic flow to be Anosov. In this case, there is no reference
where the basic properties of the stable and unstable are studied to obtain good properties
of the periodic orbits. In the chapter 1, we study the existence of local stable and unstable
manifolds for non-compact case and local product structure.
On the other hand, with the property of the hyperbolicity of a flow Ψt : N → N , it is of interest
to know the density of periodic orbits, the shadowing property and transitivity. In the compact
case, when the flow is Anosov, we have that density of periodic orbits of Ψt on N is equivalent
to transitivity of Ψt (See [FH]). In the non-compact case, if ϕt : SM → SM is an Anosov
geodesic flow, it is not know the density of the periodic orbits in SM , although is results seen
easy. In the chapter 3, we deal with the density of the periodic orbits for an Anosov geodesic
flow on a manifold of vol(M) <∞. Thus, we prove

Theorem 1.1. If ϕ : SM → SM is an Anosov geodesic flow and M has finite volume, then
then Per(ϕ) = SM .
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We hope that this kind of result can be used to understand the topological entropy of Anosov
geodesic flow on manifold of finite volume.
In the chapter 4, we deal with a problem of rigidity and conjugacy between the geodesic flow of
two manifolds. An interesting related problem in this context is knowing that types of manifolds
admit a certain type of conjugacy between their geodesic flows under some conditions of their
curvatures. In this chapter, we extended a result of Romaña and Melo [MR] and we use it to
find results of rigidity of conjugacy (see [CLUV], for more details).
Moreover, we have the result of Feldman and Ornstein [FO] on the regularity of conjugacy of
horocycle flows defined on surfaces of negative curvature. In the case of Anosov flows in a com-
pact 3 dimensional manifold, we have the result due to De la LLave and Moriyón [DM]. They
show that if two C∞ transitive Anosov Flows in a 3-dimensional manifold are topologically con-
jugate and the Lyapunov exponents on corresponding periodic orbits agree, then the conjugacy
homeomorphism is C∞. Recently Gogolev and Rodriguez Hertz in [GF] introduce the matching
functions technique in the setting of Anosov flows, that can be used to improve regularity of
the conjugacy between conservative codimension one Anosov flows defined in manifolds with
dimension ≥ 4. Specifically they prove that a continuous conjugacy must, in fact, be a C1

diffeomorphism for an open and dense set of codimension one conservative Anosov flows. In
this context, we prove the following result, which improved the result of [MR]

Theorem 1.2. Let M and N be two compact Riemannian manifolds with the same dimension.
Assume that the sectional curvature satisfies inf KM ≥ a2 supKN for some a > 0 and M has no
conjugate points. If h is a 1-conjugacy in orbits between ϕtM and ϕtN with odd reparametrization
f(t) satisfying f(t) ≥ at for all t ≥ 0, then KM ≡ a2 supKN ≡ a2KN .

Other interesting problems related to the rigidity of Lyapunov exponents of a geodesic flow
appear in [Bu], where Butler show that if all Lyapunov exponents of a geodesic flow ϕt :
SM → SM defined on a compact negatively curved Riemannian manifold M are constant
on periodic orbits, then the sectional curvature of M is negative constant. In chapter 5, we
extended the result of Butler in two context, first for non-compact manifolds of finite volume,
with pinched negative curvature and some restriction on the value of the Lyapunov exponents
(see Theorem 1.3), and second for compact surfaces, change the condition of negative curvature
by the condition of Anosov geodesic flow (see Theorem 1.5). More specifically, we prove the
following two theorem:

Theorem 1.3. Let (M, g) be a complete Riemannian manifold of finite volume and such that
−c2 ≤ KM ≤ −α2 < 0. Let ϕt : SM → SM be the geodesic flow. Consider b ∈ {c, α} and
assume that for all θ ∈ Per(ϕt) we have

χ+(θ, ξ) = lim
t→+∞

1
t

log ‖dθϕt(ξ)‖ = b,

for all ξ ∈ Eu
θ \{0}. Then K = −b2.

iv



Note that the condition −c2 ≤ KM ≤ −α2 implies that α ≤ χ+(θ, ξ) ≤ c for all θ ∈ Per(ϕt)
and ξ ∈ Eu

θ \{0}. So, the Theorem 1.3 claims that if χ+(θ, ξ) (unstable Lyapunov exponent)
is equal to α or c(the endpoints of closed interval [α, c]) then we have rigidity in the sectional
curvature of M .
The case case b = c has been prove by Melo - Romaña (cf. [MR, Corollary 3.6]). Our proof,
to the case b = α, used the Theorem 1.1 and one Mañé-Freire result (cf. [MF]).
In [MR], support by the Butler’s result and [MR, Corollary 3.6] was conjectured that

Conjecture 1.4. LetM be a complete Riemannian manifold with finite volume, whose geodesic
flow is Anosov. If the unstable Lyapunov exponents are constants over all periodic orbits, then
M has constant negative sectional curvature.

The Theorem 1.3 shows the conjecture in the case of pinched negative curvature, when the
unstable Lyapunov exponent is the minimal or maximal possible. The conjecture remains open
for general case, even in compact manifolds. Thus, our last result in this work is to give a
positive answer of this conjecture in the 2-dimensional compact case.

Theorem 1.5. [Main Theorem] Let ϕt : SM → SM be the Ck-geodesic flow with k ≥ 5 and
M a compact surface. Suppose that ϕt is Anosov and for all θ ∈ Per(ϕ) holds

χ+(θ, ξ) = lim
t→+∞

1
t

log ‖dθϕt(ξ)‖ = α,

for all ξ ∈ Eu
θ \{0}. Then K = −α2.

The idea behind of the proof of this theorem is to use a Kalinin’s result (cf. [Kal]) to show that
the Liouville measure is a measure of maximum entropy (MME), so find some rigidity on the
curvature. In fact, we prove that the Theorem 1.5 is equivalent to having the Liouville measure
as a MME in the 2-dimensional case (see Corollary 5.14).
As the Liouville measure is ergodic for Anosov geodesic flow defined on the unitary tangent
bundle of a compact Riemannian surface (cf. [VO]), then using the Kalinin result (cf. [Kal])
and the hypothesis of the Theorem 1.5 (in any dimension) implies that the Liouville measure
is a measure of maximal entropy (see Theorem 5.13). This property is linked with the Katok
Entroy Conjecture (see Conjecture 5.9 and Section 5.2).

v



Chapter 2

Preliminaries

2.1 Anosov Geodesic Flow

In this section we will give some definitions of Anosov flows and results concerning the Anosov
geodesic flow.

Definition 2.1. Let N be a complete Riemannian manifold and ψt : N → N a flow of class Cr

(r ≥ 1). We say that the flow ψt is Anosov if there is a ψt-invariant continuous splitting of the
tangent bundle of TN , given by TN = Es ⊕ E0 ⊕ Eu, where E0 is the line bundle tangent to
the flow ψt and Es, Eu satisfy the following conditions: There are C > 0 and 0 < λ < 1 such
that for all θ ∈ N :

‖dθψt|Es(θ)‖ ≤ Cλt, ∀ t ≥ 0
‖dθψ−t|Eu(θ)‖ ≤ Cλt, ∀ t ≥ 0

Es and Eu are called the stable and unstable subbundles of TN, respectively.

Let (M, g) be a complete Riemannian manifold. Denote by SM = {θ = (p, v) : p ∈ M, v ∈
TpM} unit tangent bundle of M . For θ = (p, v) ∈ SM . Let γθ(t) denote the unique geodesic
with initial conditions γθ(0) = p and γ′θ(0) = v. For t ∈ R, let ϕt : SM → SM be the
diffeomorphism given by ϕt(θ) = (γθ(t), γ′θ(t)). Recall that this family is a flow, it is called the
Geodesic flow in the sense that ϕt+s = ϕt ◦ ϕs for all s, t ∈ R.
Let V := kerDπ (where π : TM → M is the canonical projection) denote the vertical sub-
bundle of TTM (tangent bundle of TM). Let K : TTM → TM be the Levi-Civita connection
map of M. Recall K is definded as follow: let ξ ∈ TθTM and z : (−ε, ε) → TM be a curve
adapted to ξ, that is, z(0) = θ and z′(0) = ξ, where z(t) = (α(t), Z(t)), α(−ε, ε) → M ,
α = π ◦ z, and Z is a vector field along of α.
Define
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Kθ(ξ) = ∇α′Z(t)|t=0

Let H := kerK be the horizontal sub-bundle. For each θ, the maps dθπ|H(θ) : H(θ)→ TpM
and Kθ|V (θ) : V (θ) → TpM are linear isomorphisms. Furthermore, TθTM = H(θ) ⊕ V (θ) and
the map jθ : TθTM → TpM × TpM given by

jθ(ξ) = (dθπ(θ), Kθ(ξ))

is a linear isomorphism.
From now on, whenever we write ξ = (ξh, ξv) we mean that we identify ξ with jθ(ξ), where
ξh = dθπ(ξ) and ξv = Kθ(ξ).

Figure 2.1: Decomposition on horizontal and vertical bundle.

Using the decomposition TθTM = H(θ)⊕ V (θ), we can define in a natural way a Riemannian
metric on TM that makes H(θ) and V (θ) orthogonal subspaces. This metric is called the
Sasaki’s metric and is given by

gSθ (ξ, η) = 〈dθπ(ξ), dθπ(η)〉+ 〈Kθ(ξ), Kθ(η)〉

for all ξ and η ∈ TTM .
Using the identification jθ, the geodesic vector field has a very simple expression. The geodesic
vector field G : TM → TTM is given by:

2



G(θ) := ∂

∂t

∣∣∣∣∣
t=0

ϕt(θ) = ∂

∂t

∣∣∣∣∣
t=0

(γθ(t), γ′θ(t))

where θ = (p, v) and γθ is, as usual, the unique geodesic with initial conditions γθ(0) = p
and γ′θ(0) = v. Note that t → γ′θ(t) is the parallel transport of v along γθ. So, using the
identification jθ, we have G(θ) = (v, 0).
From now on, we consider the Sasaki’s metric restricted to the unit tangent bundle SM . It is
easy to proof that the geodesic flow preserves the volume measure generated by this Riemannian
metric on SM . However, this volume measure on SM coincides with the Liouville measure L
up to a constant. When M has finite volume, the Liouville measure is finite. (for more details
see [P])
Consider the one-form β in TM define for θ = (p, v) by

βθ(ξ) = gSθ (ξ,G(θ)) = 〈dθπ(ξ), v〉p.

Observed that ker βθ ⊃ V (θ). It is possible prove that a vector ξ ∈ TθTM lies in TθSM with
θ = (p, v) if and only if 〈Kθ(ξ), v〉 = 0. Furthermore, when restricted to SM the one-form β
becomes a contact form invariant by the geodesic flow whose Reeb vector field is the geodesic
vector field G. However, the sub-bundle S = ker β is the orthogonal complement of the subspace
spanned by G. Since β is invariant by the geodesic flow, then the sub-bundle S is invariant by
ϕt, that is, ϕt(S(θ)) = S(ϕt(θ)) for all θ ∈ SM and for all t ∈ R.
To understand the behavior of dθϕt let us introduce the definition of Jacobi field. A vector
field J along of a geodesic γθ is called a Jacobi field if it satisfies the following equation:

J ′′ +R(γ′θ, J)γ′θ = 0

where R is the Riemannian curvature tensor of M and ”′” denotes the covariant derivative
along γθ. Note that, for ξ = (w1, w2) ∈ TθSM (in the horizontal and vertical decomposition),
with w1, w2 ∈ TpM and 〈v, w2〉 = 0, it is known that dθϕt(ξ) = (Jξ(t), J ′ξ(t)), where Jξ denotes
the unique Jacobi field along γθ such that Jξ(0) = w1 and J ′ξ(0) = w2. (for more details see [P])
An important example historically and mathematically of a hyperbolic flow is the geodesic
flow of a negatively curved manifold. Indeed, the concept of an Anosov flow arose as Anosov
axiomatized the arguments used in working with geodesic flow on manifolds of negative sectional
curvature. The motivation was that these are mechanical (in particular, physical) systems
because this represents the motion of a free particle on the manifold. From that point of view, it
is natural to think of geodesic flow as Hamiltonian flows for the Hamiltonian H(x, v) = 1

2g(v, v),
which is the kinetic energy.
One result that relationed the hyperbolicity of the geodesic flow and the sectional curvature of
the manifold is the following result. (See [Kn] and [E])

3



Theorem 2.2. [Anosov] The geodesic flow on the unit tangent bundle SM of a complete Rie-
mannian manifold M with negative pinched sectional curvature is an Anosov flow with respect
to the Sasaki metric on SM .

The negative pinched condition of the sectional curvature KM means: −c2 ≤ KM ≤ −α2 <
0, for some constants c ≥ α > 0.

Example 2.3. The pseudosphere is a surface of revolution generated by a curve called tractrix
about its asypmtote. It has constant negative curvature and finite volume. By Theorem 2.2 we
have that the geodesic flow on the unit tangent bundle is Anosov.

Figure 2.2: Pseudosphere.

2.2 No Conjugate Points and Riccati Equation

Suppose p and q are two points on a Riemannian manifold, we say that p and q are conjugates
if there is a geodesic γ that connects p and q and a non-zero Jacobi field along γ that van-
ishes at p and q. When neither two points in M are conjugated, we say the manifold M
has no conjugate points. Another important kind of manifolds are the manifold without focal
points, we say that a manifold M has no focal points, if for any unit speed geodesic γ in M and
for any Jacobi field J on γ such that J(0) = 0 and J ′(0) 6= 0 we have (‖J‖2)′(t) > 0, for any
t > 0. It is clear that if a manifold has no focal points, then it has no conjugate points.
The more classical example of manifolds without focal points and therefore without conjugate
points, are the manifolds of non-positive sectional curvature. It is possible to construct a
manifold having positive curvature in somewhere, and without conjugate points. There are
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many examples of manifold without conjugate points. We emphasize here, for example, in [M]
Mañé proved that, when the volume is finite and the geodesic flow is Anosov, then the manifold
has no conjugate points. This latter had been proved by Klingenberg in the compact case (see
[K]). In the case of infinite volume the result of Mañé was solved by Melo - Romaña in one
pre-print paper [MR2] over the assumption of below bounded of sectional curvature.
Now suppose that M has no conjugate points and its sectional curvatures are bounded below
by −c2. In this case, if the geodesic flow ϕt : SM → SM is Anosov, then in [B] Bolton showed
that there exists a positive constant δ such that for all θ ∈ SM the angle between Es

θ and Eu
θ

is greather than δ. Furthermore, if J is a perpendicular Jacobi vector field along γθ such that
J(0) = 0 then exist A > 0 and s0 ∈ R such that ‖J(t)‖ ≥ A‖J(s)‖ for t ≥ s ≥ s0. Therefore,
for ξ ∈ Es

θ and η ∈ Eu
θ since ‖Jξ(t)‖ → 0 as t→ +∞ and ‖Jη(t)‖ → 0 as t→ −∞ follows that

Jξ(0) 6= 0 and Jη(0) 6= 0. In particular, Es
θ ∩ V (θ) = {0} and Eu

θ ∩ V (θ) = {0} for all θ ∈ SM .
For θ = (p, v) ∈ SM , we denote by N(θ) := {w ∈ TpM : 〈w, v〉 = 0}. Moreover, by
the identification with the horizontal and vertical space, the horizontal space can be write as
H(θ) = {0} × N(θ) and the vertical space as V (θ) = N(θ) × {0}. Thus, if E ⊂ S(θ) :=
ker β = N(θ) × N(θ) is a subspace, dimE = n − 1, and E ∩ (V (θ) ∩ S(θ)) = {0} then
E∩(H(θ)∩S(θ))⊥ = {0}. Hence, there exist a unique linear map T : H(θ)∩S(θ)→ V (θ)∩S(θ)
such that E is the graph of T . In other words, there exists a unique linear map T : N(θ)→ N(θ)
such that E = {(v, Tv) : v ∈ N(θ)}. Furthermore, the linear map T is symmetric if and only
if E is Lagrangian (see [P]).
It is known that if the geodesic flow is Anosov, then for each θ ∈ SM , the subbundles Eu

θ

and Es
θ are Lagrangian (see [P] for the definition of Lagrangian subspace). Therefore, for each

t ∈ R, we can write dθϕt(Es
θ) = Es

ϕt(θ) = Graph(Us(t)) and dθϕt(Eu
θ ) = Eu

ϕt(θ) = Graph(Uu(t)),
where Us(t) : N(ϕt(θ))→ N(ϕt(θ)) and Uu(t) : N(ϕt(θ))→ N(ϕt(θ)) are symmetric maps.
Now we describe a usefull method of L. Green (see [L]) to see what properties the maps Us(t)
and Uu(t) satisfies.
Let γθ be a geodesic and consider V1, V2, . . . , Vn a system of parallel orthonormal vector fields
along γθ with Vn(t) = γ′θ(t). If Z(t) is a perpendicular vector field along γθ(t), we can write

Z(t) =
n−1∑
i=1

yi(t)Vi(t).

Note that the covariant derivative Z ′(s) is identified with the curve α′(s) = (y′1(t), y′2(t), . . . , y′n−1(t)).
Conversely, any curve in Rn−1 (where n = dim(M)) can be identified with a perpendicular vec-
tor field on γθ(t).
For each t ∈ R, consider the symmetric matrix R(t) = (Ri,j(t)), where 1 ≤ i, j ≤ n−1, Ri,j(t) =
〈R(γ′θ(t), Vi(t))γ′θ(t), Vj(t))〉 and R is the curvature tensor of M . Consider (n − 1) × (n − 1)
matrix Jacobi equation

Y ′′(t) +R(t)Y (t) = 0 (2.1)

5



If Y (t) is a solution of (2.1) then for each x ∈ Rn−1, the curve B(t) = Y (t)x corresponds
to a Jacobi perpendicular vector field on γθ(t). For θ ∈ SM , r ∈ R, we consider Yθ,r(t) be
the unique solution of (2.1) satisfying Yθ,r(0) = I and Yθ,r(r) = 0. In [L], Green proved that
limr→−∞ Yθ,r(t) exists for all θ ∈ SM (see also [E], Sect. 2). Moreover, if we define:

Yθ,u(t) := lim
r→−∞

Yθ,r(t), (2.2)

we obtain a solution of Jacobi equation (2.1) such that detYθ,u(t) 6= 0. Furthermore, it is proved
in [L] (see also [MF] and [E]) that

DYθ,u
dt

(t) = lim
r→−∞

DYθ,r
dt

(t).

However, if

Ur(θ) = DYθ,r
dt

(0); Uu(θ) = DYθ,u
dt

(0)

then
Uu(θ) = lim

r→−∞
Ur(θ),

and follows that (see [MF])
Uu(ϕt(θ)) = DYθ,u

dt
(t)Y −1

θ,u (t)

for all t ∈ R. Therefore, Uu is a symmetric solution of the matrix Riccati equation:

U ′(t) + U2(t) +R(t) = 0. (2.3)

Analogously, taking the limit when r → +∞, we have defined Us(θ), that also satisfies the
Riccati equation (2.3). Furthermore, in [L], Green also showed that, in the case of curvature
bounded below by −c2, symmetric solutions of the Riccati equation which are definded for all
t ∈ R are bounded by c, that means

sup
t
‖Us(t)‖ ≤ c and sup

t
‖Uu(t)‖ ≤ c. (2.4)

2.3 Stable and Unstable Foliations

For compact manifold, Anosov flows have an important result called the Stable - Unstable
Manifold Theorem, which guarantees that the condition of hyperbolicity implies the existence
of certain submanifolds W ss and W uu, called Stable and Unstable Manifolds, whose tangent
spaces are the subspaces Es and Eu, respectively. They are smoothly immersed manifolds and
these manifolds form foliations tangent to the stable and unstable subbundles.
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2.3.1 Compact Case

Theorem 2.4. [Stable and Unstable Manifold Theorem] Let ϕt : M → M be a Anosov
Cr - flow (with r ≥ 1), M compact and t0 > 0. Then for each x ∈ M there is a pair of
embedded Cr disks W s

loc, W u
loc, depending continuosly on x in the C1- topology and called the

local strong-stable and the local strong-unstable manifold of x, respectively, such that

(1) TxW s
loc(x) = Es

x, TxW u
loc = Eu

x ,

(2) ϕt(W s
loc(x)) ⊂ W s

loc(ϕt(x)) and ϕ−t(W u
loc(x)) ⊂ W u

loc(ϕ−t(x)) for t ≥ t0,

(3) for every δ > 0 there exist C(δ) such that

d(ϕt(x), ϕt(y)) < C(δ)(λ+ δ)td(x.y) for y ∈ W s
loc(x), t > 0

d(ϕ−t(x), ϕ−t(y)) < C(δ)(λ−1 − δ)−td(x.y) for y ∈ W u
loc(x), t > 0,

(4) there exists a continuous family Ux of neighborhoods of x such that

W s
loc(x) = {y|ϕt(y) ∈ Uϕt(x) for t > 0, lim

t→+∞
d(ϕt(x), ϕt(y)) = 0},

W u
loc(x) = {y|ϕ−t(y) ∈ Uϕ−t(x) for t > 0, lim

t→+∞
d(ϕ−t(x), ϕ−t(y)) = 0}.

Observation 2.5. A proof of Theorem 2.4 is using the Hadamard-Perron Theorem (See [AK])
applied to the time t0 map ϕt0 with TxM = Es

x ⊕ (E0
x ⊕Eu

x) to obtains the existence of W s
loc(x)

satisfying (1)-(4) for t ∈ Nt0 = {nt0 : n ∈ N}. The same with TxM = (Es
x ⊕ E0

x) ⊕ Eu
x yields

W u
loc(x) satisfying (1)-(4) with t ∈ Nt0. Once (3) holds for t ∈ Nt0 then holds for t > 0 by

adjusting the constant C(δ) since {ϕt}t∈[0,t0] is equicontinuous and M is compact (see [AK]).

Remark 2.6. With a little care one can replace the condition t ≥ t0 in (2) by t > 0. The sets

W ss(x) :=
⋃
t>0

ϕ−t(W s
loc(ϕt(x))) = {y ∈M : lim

t→+∞
d(ϕt(x), ϕt(y)) = 0},

W uu(x) :=
⋃
t>0

ϕt(W u
loc(ϕ−t(x))) = {y ∈M : lim

t→+∞
d(ϕ−t(x), ϕ−t(y)) = 0}

are defined independently of a particular choice of local stable and unstable manifolds, and are
smooth injectively immersed manifolds called the global strong-stable and strong-unstable
manifolds. The manifolds

W cs(x) :=
⋃
t∈R

ϕt(W ss(x)) and W cu(x) :=
⋃
t∈R

ϕt(W uu(x))

are called center-stable and cente-unstable manifolds (or weak-stable and weak-unstable
manifolds) of x. Note that TxW cs = Es

x ⊕ E0
x and TxW cu = E0

x ⊕ Eu
x . (See Figure 2.3)
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Figure 2.3: Local center-stable and center-unstable leaves.

2.3.2 Finite Volume Case

An important observation in the Theorem 2.4 on the proof of existence of the local stable-
unstable manifolds is the construction of special charts depending of the injectivity radius of
exponential map for its construction. (see [AK])
Now in the non compact case, with the only condition of hyperbolicity of our manifold M ,
we can imitated the proof of the Stable-Unstable Manifold Theorem (Theorem 2.4) for the
construction of local stable-unstable manifold on each point x ∈ M , one crucial diference here
in the non compact case is that the sizes of local stable-unstable manifolds vary with the point
x ∈M . Since in the non compact case, for every point x ∈M there exists ε(x) > 0 (injectivity
radius of exponential map) such that the exponential map expx : B(0x, ε(x)) ⊂ TxM → M
is an diffeomorphism over its image and that charts are used in the construction. Now in the
compact case, we can choose 0 < εM := inf{ε(x) > 0 : x ∈ M}. In the non compact case,
we can not guarantee that εM > 0. Even in the Finite Volume case, it could happen that the
injectivity radius of exponential map tends to 0 in the ends.
However, by the observation above, in the finite volume case we can proof the existence of local
stable-unstable manifolds, but in this case we have the size of local stable-unstable manifold
vary with the point x ∈M . This mean, the size of local stable-unstable manifold is not uniform.
Other important observation on the proof of the existence of local stable-unstable manifold
(Theorem 2.4), as already mentioned, is that as the size of local stable-unstable manifolds
depends of injectivity radius of exponential map over each point x ∈M , we can restrict ourselves
to any compact set K of M for choose ε

K
:= inf{ε(x) > 0 : x ∈ K} > 0 (injectivity radius of

exponential map restricted to the compact set K ⊂M) and thus we can choose one fix size of
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the local stable-unstable manifolds for every point x ∈ K.

Figure 2.4: Action of the exponential map of three different initial velocities u, k, v ∈ TpM .

We summarize the observations above over existence of local stable-unstable manifold in the
following theorem:

Theorem 2.7. [Finite Volume] Let ϕt : M → M be a Anosov Cr - flow (with r ≥ 1) and
V ol(M) < +∞. Then for each x ∈ M there is a pair of embedded C1 disks W s

ε(x), W u
ε(x) ⊂ M

called the local strong-stable and local strong-unstable manifolds of x ∈M of size ε(x) > 0
such that:

(1) TxW s
ε(x)(x) = Es

x, TxW u
ε(x)(x) = Eu

x .

(2) For every compact subset K ⊂M there exists εK := inf{ε(x) > 0 : x ∈ K} > 0 such that
for every x ∈ K we have that W s

ε
K

(x) and W u
ε
K

(x) with uniform size.

(3) W s
ε(x)(x) ∩W u

ε(x)(x) = {x}.

Proof. The proof follows the same arguments that ([AK]),
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2.3.3 Local Product Structure

In this subsection we comment about the Local Product Structure on the compact case and
the non compact case. The following result appears in the compact case and characterizes the
local maximility through local stable and stable manifolds. (See [FH])

Theorem 2.8. [Bowen Bracket] For a hyperbolic flow ϕt : M → M and ε > 0 sufficiently
small there exists a δ > 0 such that if x, y ∈ M such that d(x, y) < ε, then there exists some
t = t(x, y) ∈ (−ε, ε) such that

W s
ε (ϕt(x)) ∩W u

ε (y)) = {[x, y]}

consists of a single point. This intersection point [x, y] of W cs
ε (x) and W u

ε (y) is called the
Bowen Bracket of x and y, and there exists C0 = C0(δ) > 0 such that if x, y ∈ M and
d(x, y) < δ, then ds(ϕt(x,y)(x), [x, y]) < C0d(x, y) and du(y, [x, y]) < C0d(x, y), where ds and du
denote the distances along the stable and unstable manifolds.

Remark 2.9. In the Theorem above a complementary choice would be W s
ε (x) ∩ W cu

ε (y) =
{[x, y]}.

Now, when we have a hiperbolic flow ϕt : M → M and M is not necessarily compact, the
Theorem 2.8 above is still true for compact balls of M , more specifically:

Theorem 2.10. Given x0 ∈ M and ε > 0. Consider the compact ball B[x0, ε] ⊂ M . Then
there exist δ > 0 and η > 0 such that for all x, y ∈ B(x0, δ) we have W cu

η (x)∩W ss
η (y) = {w} ∈

B(x0, ε).

Proof. The same proof on [FH] holds in this case because we restrict ourselves to one compact
ball and the compactness of ball allows us to obtain uniform constants δ > 0 and η > 0.

An analogous result holds for W cs
η (x) and W uu

η (y).
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Chapter 3

Anosov geodesic flow and periodic
orbits

3.1 Shadowing Lemma

The orbit structure of hyperbolic dynamical system has a distinctive and iconic richness and
complexity, and these features can be derived from what thereby appears as a core feature of
hyperbolic dynamics: the shadowing of orbits. In this section, we remember the Shadowing
Lemma for flows and the expansivity in the compact case (See [FH] and [AK]).

Definition 3.1. Let ϕt : M →M be a flow on a complete Riemannian manifold.

1 [Pseudo Orbit] An ε-pseudo orbit or ε-chain for ϕt on M is a map h : I → M on a
non trivial interval I ⊂ R such that

d(h(t+ τ), ϕτ (h(t))) < ε, for t, t+ τ ∈ I and |τ | < 1

2 [Shadowing] Let h be an ε-pseudo orbit for ϕt. Then h is said to be δ-shadowed if there
exist a point p ∈ M and a homeomorphism α : R → R such that α(t) − t has Lipschitz
constant δ and d(h(t), ϕα(t)(p)) ≤ δ for all t ∈ R. A set K ⊂ M has the Shadowing
property if for any δ > 0 there is an ε > 0 such that any ε-pseudo orbit in K is δ-
shadowed by a point p ∈ M . We say that ϕt has the shadowing property if this holds for
K = M . A set K ⊂M has L-Lipschitz shadowing for ε0 > 0 if any ε-pseudo orbit in
K with ε ≤ ε0 is Lε-shadowed by a point p ∈M .

Definition 3.2. [Expansiveness] Let ϕt : M → M be a flow on a compact Riemannian
manifold. We said that ϕt is expansive if for all ε > 0 there exists a δ > 0, called an
expansivity constant (for ε), such that if p, q ∈ M , h : R → R continuous, h(0) = 0, and
d(ϕt(p), ϕh(t)(q)) < δ, for all t ∈ R, then q = ϕt0(p) for some t0 ∈ (−ε, ε).
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Theorem 3.3. [Shadowing Lemma] A hyperbolic flow has a property of L-Lipschitz shadow-
ing for some ε0 > 0 and for some L > 0. The shadowing point need not be unique because neither
is the choice of the parametrization. But the shadowing orbit is unique and the shadowing point
is determined up to a small shift within that orbit.

The uniqueness assertion of Theorem 3.3 implies that no two orbits can shadow each other:

Corollary 3.4. A hyperbolic flow ϕt : M →M in a compact Riemannian manifold is expansive.

The uniqueness assertion of Theorem 3.3 implies not only expansivity but also that the shad-
owing orbit is periodic when one starts with a periodic pseudo orbit.

Theorem 3.5. [Anosov Closing Lemma] For a Anosov flow ϕt : M → M in a compact
Riemannian manifold there exist ε0, L > 0 such that for ε ≤ ε0 any periodic ε-pseudo orbit is
Lε-shadowed by a unique periodic orbit for ϕt.

3.2 Density of Periodic Orbits in the Compact Case

The knowledge of the distribution and density of periodic orbits of Anosov flows and more
generally hyperbolic flows is a very interesting problem because it gives us more information
about the dynamics of the system. One classical example is the Anosov geodesic flow over
the unit tangent bundle SM of a compact manifold M with negative curvature (see [A]). A
proof for the density of the periodic orbits of a hyperbolic flow over one compact manifold
is using the Spectral Decomposition Theorem for flows (see [AK] and [FH]). Moreover, the
information about the density of periodic orbits of a hyperbolic flow over a compact manifold
also guarantees the topological transitivity of the flow. We can summarize all remarks above
in the case of the hyperbolic flow on a compact Riemannian manifold in the following result:
(see [AK] and [FH])

Theorem 3.6. Let ϕt : M → M be an Anosov flow defined over a compact Riemannian
manifold M . The following are equivalent:

(1) The spectral decomposition has one piece (the whole manifold),

(2) The flow is topologically transitive,

(3) Periodic points are dense,

(4) All center-unstable leaves are dense,

(5) All center-stable leaves are dense.
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3.3 Density of Periodic Orbits in the Finite Volume Case

For η > 0, we will consider the following sets:

W ss(x) = {z ∈ SM : lim
t→+∞

d(ϕt(z), ϕt(x)) = 0},

W uu(x) = {z ∈ SM : lim
t→+∞

d(ϕ−t(z), ϕ−t(x)) = 0},

W cs(x) =
⋃
t∈R

W ss(ϕt(x)),

W cu(x) =
⋃
t∈R

W uu(ϕt(x)),

W ss
η (x) = {z ∈ SM : d(ϕt(x), ϕt(z)) ≤ λtη, ∀ t ≥ 0},

W uu
η (x) = {z ∈ SM : d(ϕ−t(x), ϕ−t(z)) ≤ λtη, ∀ t ≥ 0},

W cu
η (x) = {z ∈ SM : ∃ θ1 ∈ W uu

η (x) and ϕs1(θ1) = z for some |s1| < η},
W cs
η (x) = {z ∈ SM : ∃ θ2 ∈ W ss

η (x) and ϕs2(θ2) = z for some |s2| < η}.

Lemma 3.7. Let x ∈ SM . Then

(a) For all t ∈ R holds ϕt(W uu(x)) = W uu(ϕt(x)).

(b) For all t ∈ R holds ϕt(W cu(x)) = W cu(x).

(c) If y ∈ W cu(x) then W cu(y) ⊂ W cu(x).

Proof. (a) Apply the definition of W uu(x).
(b) Let t ∈ R fixed, using (a) we have that:

ϕt(W cu(x)) = ϕt

⋃
s∈R

W uu(ϕs(x)))


=
⋃
s∈R

ϕt(W uu(ϕs(x)))

=
⋃
s∈R

W uu(ϕt+s(x))

=
⋃
s∈R

W uu(ϕs(x))

= W cu(x).

(c) Let y ∈ W cu(x) = ∪t∈RW uu(ϕt(x)) then by (b) for all t ∈ R holds ϕt(W cu(x)) = W cu(x).
Now, let z ∈ W cu(y) then there exists t1 ∈ R sucha that z ∈ W uu(ϕt1(y)), so

lim
t→+∞

d(ϕ−t(z), ϕ−t(ϕt1(y))) = 0. (3.1)
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As y ∈ W cu(x) then ϕt1(y) ∈ W cu(x), thus there exists t2 ∈ R such that ϕt1(y) ∈ W uu(ϕt2(x)),
so

lim
t→+∞

d(ϕ−t(ϕt1(y)), ϕ−t(ϕt2(x))) = 0, (3.2)

thus of (3.1) and (3.2) we have that:

0 ≤ lim
t→+∞

d(ϕ−t(z), ϕ−t(ϕt2(x)))

≤ lim
t→+∞

d(ϕ−t(z), ϕ−t(ϕt1(y))) + lim
t→+∞

d(ϕ−t(ϕt1(y)), ϕ−t(ϕt2(x)))
= 0,

this implies that
lim
t→+∞

d(ϕ−t(z), ϕ−t(ϕt2(x))) = 0.

Hence z ∈ W uu(ϕt2(x)) ⊂ W cu(x).

Lemma 3.8. Let A = W cu(x) and B = ⋃
y∈AW

cu(y). Then A = B. Moreover ⋃y∈AW cu(y) =
A = W cu(x).

Proof. Let z ∈ A, then there exist t1 ∈ R such that z ∈ W uu(ϕt1(x)) ⊂ W cu(ϕt1(x)). Note that
x ∈ W uu(x) ⊂ W cu(x) and by Lemma 3.7 we have that ϕt1(x) ∈ ϕt1(W cu(x)) = W cu(x) = A,
hence z ∈ ⋃y∈AW cu(y) = B.

On the other hand, if z ∈ B there exists y ∈ A such that z ∈ W cu(y). As y ∈ A by Lemma
3.7, (c), we have that W cu(y) ⊂ W cu(x) = A. Hence A = B. The subset A ⊂ SM is called
saturated in W cu, and by property of foliations we have that A = W cu(x) is saturated, and this
means ⋃

y∈A

W cu(y) = A = W cu(x).

Proposition 3.9. Let ϕ : SM → SM be a Anosov geodesic flow with M connected and
vol(M) <∞. If Per(ϕ)=SM then for all x ∈ SM we have W cu(x) and W cs(x) are denses on
SM.

Proof. Consider x ∈ SM and W cu(x) (the proof for W cs is analogous). We know that W cu(x)
is a closed subset of SM. We will show that W cu(x) is an open subset, thus by connectedness
of SM we have W cu(x) = SM .
Let z ∈ W cu(x), U ⊂ SM a neighborhood of z and p ∈ U ∩ Per(ϕ) (this last is possible
because Per(ϕ) = SM). Taking U sufficiently small such that local structure product hold‘s,
then φ 6= W cs(p) ∩W cu(z). Thus take y ∈ W cs(p) ∩W cu(z). Denote A = W cu(x) and consider
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B = ∪v∈AW cu(v) as on Lema 3.8 we have W cu(x) = ⋃
v∈W cu(x) W

cu(v). As z ∈ W cu(x) then
there is y0 ∈ W cu(x) such that z ∈ W cu(y0). By Lemma 3.7, (c) we obtain:

W cu(z) ⊂ W cu(y0) ⊂
⋃

v∈W cu(x)

W cu(v) = W cu(x),

thus W cu(z) ⊂ W cu(x). As y ∈ W cu(z) then by Lemma 3.7, (b), O(y) ⊂ W cu(z) ⊂ W cu(x).
On the other hand, y ∈ W cs(p), then for all t ∈ R, ϕt(y) ∈ ϕt(W cs(p)) = W cs(p), this implies
O(y) ⊂ W cs(p).
Now fixed r ∈ R, we have ϕr(y) ∈ W cs(p) = ∪t∈RW ss(ϕt(p)), then there is tr ∈ R such that
ϕr(y) ∈ W ss(ϕtr(p)), this implies limt→+∞ d(ϕt(ϕr(y)), ϕt(ϕtr(p))) = 0, thus O(y) accumulates
in the orbit O(p) and as O(y) ⊂ W cu(x), we have O(p) ⊂ W cu(x). Hence p ∈ W cu(x) and as
Per(ϕ) is dense on SM , then Per(ϕ) is dense in U , this implies U ⊂ W cu(x).

Theorem 3.10. Let ϕt : SM → SM be a Anosov geodesic flow with vol(M) < ∞. If W cs(x)
and W cu(x) are dense on SM for all x ∈ SM then ϕ is transitive.

Proof. Let U and V be two open sets of SM . Fix x ∈ V such that α(x) 6= φ. Take y ∈ α(x),
then there is nk → +∞ such that lim

nk→+∞
ϕ−nk(x) = y. Now by hypothesis W cs(y) = SM then

W cs(y) ∩ U 6= φ, thus there exists z ∈ W cs(y) ∩ U .
As z ∈ W cs(y) = ∪t∈RW ss(ϕt(y)), then there is t1 ∈ R such that z ∈ W ss(ϕt1(y) ∩ U . By
continuity of flow ϕt1 we obtain

lim
nk→+∞

ϕ−nk(ϕt1(x)) = lim
nk→+∞

ϕt1(ϕ−nk(x)) = ϕt1(y)

As W ss(ϕt1(y)) ∩ U and U is a open set, we can fix a real number b > 0 such that for all k
large there is a disk Dk ⊂ W ss(ϕ−nk(ϕt1(x))) centered at ϕ−nk(ϕt1(x)) of radius at most b > 0
such that Dk ∩ U 6= φ.
Since ϕ−t1 is continuous and x ∈ V , we can fix a neighbourhoodQ of ϕt1(x) such that ϕ−t1(Q) ⊂
V . So for all k large we have ϕnk(Dk) ⊂ Q (here by Lambda Lemma, we choose Dk ⊂
W ss(ϕ−nk(ϕt1(x))) such that ϕnk(Dk) ⊂ Q). Thus as ϕnk(Dk) ⊂ Q then ϕ−t1(ϕnk(Dk)) ⊂
ϕ−t1(Q) ⊂ V . Now taking k large we have

Dk ∩ U ⊂ U =⇒ ϕ−t1(ϕnk(Dk ∩ U)) ⊂ ϕ−t1(ϕnk(U))
Dk ∩ U ⊂ Dk =⇒ ϕ−t1(ϕnk(Dk ∩ U)) ⊂ ϕ−t1(ϕnk(Dk)) ⊂ V

by the last two inequalities above we get ϕ−t1(ϕnk(Dk∩U)) ⊂ ϕ−t1(ϕnk(U))∩V and as Dk∩U 6=
φ then φ 6= ϕ−t1(ϕnk(U)) ∩ V .
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3.3.1 Shadowing and Expansiveness in Finite Volume Case

In this section we will give some definitions about the shadowing and expansiveness that we
need for proof the density of periodic orbits when we have a geodesic flow on a finite volume
manifold.

Definition 3.11. [Shadowing forward and backward]
Let x0, y ∈ SM , t0 > 0 and ε > 0. Consider the orbit segment ϕ[0,t0](x0) = {ϕt(x0) : t ∈ [0, t0]}
and the future orbit and past orbit of y, O+(y) = {ϕt(y) : t ≥ 0} and O−(y) = {ϕt(y) : t ≤ 0},
respectively.

1 We said that O+(y) ε-shadowed forward by piecewise the orbit segment ϕ[0,t0](x0) if

d(ϕt(y), ϕt(x0)) ≤ ε, ∀ t ∈ [0, t0],

and there exists a sequence {sj}j≥0 with sj ≥ 0 (called transitions times), such that
for all k ≥ 1 holds

d(ϕt(ϕkt0+
∑k−1

i=0 si(y)), ϕt(x0)) ≤ ε, ∀ t ∈ [0, t0].

2 Analogously we said that O−(y) ε-shadowed backward by piecewise the orbit segment
ϕ[0,t0](x0) if there exists a sequence {rj}j≥0 with rj ≥ 0 (called transitions times) such
that for all k ≥ 0 holds

d(ϕ−t(ϕ−kt0−
∑k

j=0 rj(y)), ϕ−t(ϕt0(x0))) ≤ ε, ∀ t ∈ [0, t0],

and we said that O(y) = O+(y)∪O−(y) ε-shadowed by piecewise the orbit segment ϕ[0,t0](x0)
if O+(y) ε-shadowed forward and O−(y) ε-shadowed backward by piecewise respectively the orbit
segment ϕ[0,t0](x0).

The definition above of the shadowing forward and backward by piecewise is similar to the
specification property for flows (see [FH]), the diference between specification property and the
shadowing by piecewise above, is that the specification property its appling for orbit segment
arising from a recurrent point. (see Proposition 3.12 below)

Proposition 3.12. Let ϕ : SM → SM be a Anosov geodesic flow with V ol(M) < +∞. Fix
x0 ∈ Rec(ϕ). For all ε > 0 there are t0 > 0 and ỹ ∈ SM such that O(ỹ) = {ϕt(ỹ) : t ∈ R}
ε-shadowed by piecewise the segment orbit ϕ[0,t0](x0).

Proof. As x0 ∈ Rec(ϕ) then given ε > 0, there is t0 ∈ N such that ϕt0(x0) ∈ B(x0, ε).
By the hypothesis V ol(M) < ∞, we still have a local product structure (see Theorem 2.10),
this mean for all ε > 0 there exists δ > 0 and η > 0 such that for all x, y ∈ B(x0, δ) we have
W cu
η (x) t W ss

η (y) = {w} ∈ B(x0, ε).
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Figure 3.1: Shadowing forward by piecewise.

On the other hand, we denote by λ ∈ (0, 1) the hyperbolicity constant. We define the following
sequence: for all m ∈ N

Sm(t) =
m∑
j=1

λt+jt0+
∑j

i=1 ci

= λt
m∑
j=1

(
λt0+ 1

j

∑j

i=1 ci
)j
, (3.3)

where for all i ∈ N, ci ∈ R and |ci| < η.
As for all i ∈ N, |ci| < η then for all j ∈ N we have

−η < ci < η

j(−η) < ∑j
i=1 ci < jη

−η < 1
j

∑j
i=1 ci < η

t0 − η < t0 + 1
j

∑j
i=1 ci < t0 + η
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Thus if we choose t0 > 0 such that t0 − η < t0
2 then for all j ∈ N we have

0 < t0
2 − η ≤ t0 + 1

j

j∑
i=1

ci

λ(t0+ 1
j

∑j

i=1 ci) ≤ λ
t0
2(

λ(t0+ 1
j

∑j

i=1 ci)
)j
≤ (λ

t0
2 )j

summing over j ∈ N
m∑
j=1

(
λt0+ 1

j

∑j

i=1 ci
)j
≤

m∑
j=1

(λ
t0
2 )j

≤
∞∑
j=1

(λ
t0
2 )j

= λ
t0
2

1− λ
t0
2

= L

Now as 0 < λ < 1 then for all t ∈ [0, t0] we have 0 < λt ≤ 1 and 0 < λt0−t ≤ 1, thus for all
t ∈ [0, t0] holds

λt + λt0−t +
m∑
j=1

λt+jt0+
∑j

i=1 ci ≤ 2 + L = K, ∀ m ∈ N (3.4)

We denote f(t) = ε(1− λ t
2 )

2− λ t
2

. Since, lim
t→+∞

f(t) = ε

2 , then given ε > 0 we can choose δ > 0,
η > 0 and t0 > 0 such that

η <
ε

4 < f(t0) = ε

K
and λt0η < δ. (3.5)

Moreover we can choose t0 > 0 such that x1 = ϕt0(x0) ∈ B(x0, δ), thus by local product
structure (see Theorem 2.10) there is z1 ∈ W cu

η (x1) t W ss
η (x0), this means

z1 ∈ W cu
η (x1) =⇒ ∃ θ1 ∈ W uu

η (x1) : ϕs1(θ1) = z1, for some |s1| < η,

θ1 ∈ W uu
η (x1) =⇒ d(ϕ−t(θ1), ϕ−t(x1)) ≤ λtη, ∀ t ≥ 0,

taking y1 = ϕ−t0(θ1), for all 0 ≤ t ≤ t0 we have

d(ϕt(y1), ϕt(x0)) = d(ϕt−t0(θ1), ϕt−t0(ϕt0(x0)))
= d(ϕt−t0(θ1), ϕt−t0(x1))
≤ λt0−tη, (3.6)
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thus by (3.5) for t = 0 on (3.6) we get that d(y1, x0) ≤ λt0η < δ, this implies y1 ∈ B(x0, δ)
and again by local product structure (see Theorem 2.10) there is z2 ∈ W cu

η (x1) t W ss
η (y1), this

means

z2 ∈ W cu
η (x1) =⇒ ∃ θ2 ∈ W uu

η (x1) : ϕs2(θ2) = z2, for some |s2| < η,

θ2 ∈ W uu
η (x1) =⇒ d(ϕ−t(θ2), ϕ−t(x1)) ≤ λtη, ∀ t ≥ 0,

z2 ∈ W ss
η (y1) =⇒ d(ϕt(z2), ϕt(y1)) ≤ λtη, ∀ t ≥ 0, (3.7)

taking y2 = ϕ−t0(θ2) ( where ϕt0+s2(y2) = ϕs2(θ2) = z2), for all 0 ≤ t ≤ t0 we have

d(ϕt(y2), ϕt(x0)) = d(ϕt−t0(θ2), ϕt−t0(x1))
≤ λt0−tη, (3.8)

also by (3.6) and (3.7) we get

d(ϕt(z2), ϕt(x0)) ≤ d(ϕt(z2), ϕt(y1)) + d(ϕt(y1), ϕt(x0))
≤ λtη + λt0−tη = (λt + λt0−t)η, (3.9)

thus by (3.5) for t = 0 on (3.8) we get that d(y2, x0) ≤ λt0η < δ, this implies y2 ∈ B(x0, δ)
and again by local product structure (see Theorem 2.10) there is z3 ∈ W cu

η (x1) t W ss
η (y2), this

means

z3 ∈ W cu
η (x1) =⇒ ∃ θ3 ∈ W uu

η (x1) : ϕs3(θ3) = z3, for some |s3| < η,

θ3 ∈ W uu
η (x1) =⇒ d(ϕ−t(θ3), ϕ−t(x1)) ≤ λtη, ∀ t ≥ 0,

z3 ∈ W ss
η (y2) =⇒ d(ϕt(z3), ϕt(y2)) ≤ λtη, ∀ t ≥ 0, (3.10)

taking y3 = ϕ−t0(θ3), for all 0 ≤ t ≤ t0 we have

d(ϕt(y3), ϕt(x0)) = d(ϕt−t0(θ3), ϕt−t0(x1))
≤ λt0−tη, (3.11)

also by (3.10) and (3.8) we get

d(ϕt(z3), ϕt(x0)) ≤ d(ϕt(z3), ϕt(y2)) + d(ϕt(y2), ϕt(x0))
≤ λtη + λt0−tη = (λt + λt0−t)η (3.12)

remember that ϕt0+s2(y2) = z2, by (3.10) and (3.9) we get

d(ϕt(ϕt0+s2(z3)), ϕt(x0)) ≤ d(ϕt0+s2(z3)), ϕt(ϕt0+s2(y2))) + d(ϕt(z2), ϕt(x0))
≤ λt+t0+s2η + (λt + λt0−t)η
= (λt+t0+s2 + λt + λt0−t)η (3.13)
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thus by (3.5) for t = 0 on (3.11) we get that d(y3, x0) ≤ λt0η < δ, this implies y3 ∈ B(x0, δ)
and again by local product structure (see Theorem 2.10) there is z4 ∈ W cu

η (x1) t W ss
η (y3)

z4 ∈ W cu
η (x1) =⇒ ∃ θ4 ∈ W uu

η (x1) : ϕs4(θ4) = z4, for some |s4| < η,

θ4 ∈ W uu
η (x1) =⇒ d(ϕ−t(θ4), ϕ−t(x1)) ≤ λtη, ∀ t ≥ 0,

z4 ∈ W ss
η (y3) =⇒ d(ϕt(z4), ϕt(y3)) ≤ λtη, ∀ t ≥ 0, (3.14)

taking y4 = ϕ−t0(θ4) and proceeding as we did in the case of y1, y2 and y3, we get that for all
0 ≤ t ≤ t0 holds

d(ϕt(y4), ϕt(x0)) ≤ λt0−tη

d(ϕt(z4), ϕt(x0)) ≤ (λt + λt0−t)η
d(ϕt(ϕt0+s3(z4)), ϕt(x0)) ≤ (λt+t0+s3 + λt + λt0−t)η

d(ϕt(ϕ2t0+s2+s3(z4)), ϕt(x0)) ≤ (λt+2t0+s2+s3 + λt+t0+s2 + λt0−t + λt)η.

Thus we get four sequence {yn}n≥0, {θn}n≥0, {zn}n≥0 on SM and {sn} in R satisfying yn =
ϕ−t0(θn), ϕsn(θn) = zn with |sn| < η,and for 0 ≤ t ≤ t0 we have:

d(ϕt(yn), ϕt(x0)) ≤ λt0−tη

d(ϕt(ϕt0+
∑0

i=0 sn−i(yn)), ϕt(x0)) ≤ (λt0−t + λt)η

d(ϕt(ϕ2t0+
∑1

i=0 sn−i(yn)), ϕt(x0)) ≤ (λt0−t + λt +
1∑
j=1

λt+jt0+
∑j−1

i=0 s(n−1)+i)η

d(ϕt(ϕ3t0+
∑2

i=0 sn−i(yn)), ϕt(x0)) ≤ (λt0−t + λt +
2∑
j=1

λt+jt0+
∑j−1

i=0 s(n−2)+i)η

... (3.15)

d(ϕt(ϕ(n−1)t0+
∑n−2

i=0 sn−i(yn)), ϕt(x0)) ≤ (λt0−t + λt +
n−2∑
j=1

λt+jt0+
∑j−1

i=0 s2+i)η.

Note that on the right side of (3.15) appear sums of the following type:
m∑
j=1

λt+jt0+
∑j−1

i=0 s(n−m)+i ,

for 0 < m < n− 1. This sum is same as in (3.3), except for an index change and where ci are
defined in function of si and by (3.4) we have

λt0−t + λt +
m∑
j=1

λt+jt0+
∑j−1

i=0 s(n−m)+i ≤ K.
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Hence all the summations that appear on the right side of (3.15) are less than or equal to Kη
and this last by (3.5) is less than ε, this means

d(ϕt(yn), ϕt(x0)) ≤ Kη < ε, (3.16)

and for all j = 1, 2, ..., n− 1

d(ϕt(ϕjt0+
∑j−1

i=0 sn−i(yn)), ϕt(x0)) ≤ Kη < ε. (3.17)

Now taking t = 0 in the first inequality in (3.15) we have d(yn, x0) ≤ λt0η < δ this implies
yn ∈ B(x0, δ) ⊂ B[x0, δ] ⊂ B(x0, ε), then passing to subsequence of {yn}n≥0 if necessary, there is
y ∈ B(x0, ε) such that limn→+∞ yn = y. Moreover, by (3.16) for all n ∈ N, d(ϕt(yn), ϕt(x0)) ≤ ε,
for 0 ≤ t ≤ t0, by continuity of flow we have

d(ϕt(y), ϕt(x0)) = lim
n→+∞

d(ϕt(yn), ϕt(x0)) ≤ ε, ∀ 0 ≤ t ≤ t0.

As for all n ∈ N, |sn| < η, again passing to subsequence if necessary, there is s ∈ R such
that limn→+∞ sn = s and |s| ≤ η. Also as for all n ∈ N, ϕt0+sn(yn) = zn, then by continuity
of flow, limn→+∞ ϕ

t0+sn(yn) = ϕt0+s(y). We denote by z = ϕt0+s(y); by (3.17) for all n ∈ N,
d(ϕt(zn), ϕt(x0)) ≤ ε then

d(ϕt(ϕt0+s(y)), ϕt(x0)) = d(ϕt(z), ϕt(x0)) = lim
n→+∞

d(ϕt(zn), ϕt(x0)) ≤ ε, ∀ 0 ≤ t ≤ t0;

continuing like this way, by (3.17), for all k ∈ N we get

d(ϕt(ϕk(t0+s)(y)), ϕt(x0)) ≤ ε, ∀ 0 ≤ t ≤ t0. (3.18)

In summary, by (3.18) we have y ∈ B(x0, ε) and such that O+(y) ε-shadowed forward by
piecewise the orbit segment

ϕ[0,t0](x0) = {ϕt(x0) : 0 ≤ t ≤ t0},

with transitions times of size |s| ≤ η. Moreover, analogously to the construction of y ∈ SM ,
as O+(y) = {ϕt(y) : t ≥ 0} ε-shadowed forward by piecewise the orbit segment ϕ[0,t0](x0), we
can find ŷ ∈ B(x0, ε) such that O−(ŷ) ε-shadowed backward by piecewise the orbit segment
ϕ[0,t0](x0), and hence we can find ỹ ∈ B(x0, ε) such that O(ỹ) ε-shadowed by piecewise the orbit
segment ϕ[0,t0](x0).

The Proposition 3.12 and the local product structure still hold in the finite volume case (The-
orem 2.10), allows us to conclude that for Anosov geodesic flow of a complete Riemannian
manifold of finite volume, the periodic orbits are dense over the unit tangent bundle.
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Proof of the Theorem 1.1. As V ol(M) < ∞ then Ω(ϕ) = SM (see [P]). Now we consider
the recurrent points set

Rec(ϕ) = {x ∈ SM : x ∈ ω(x)}.

By hypothesis we also know that the Liouville measure is ϕ-invariant, thus Liouville almost
every point on SM is recurrent and Rec(ϕ) = SM .
Now let x0 ∈ SM , if x0 ∈ SM\Rec(ϕ) then we can take x1 ∈ Rec(ϕ) sufficiently close to x0.
Thus we can suppose that x0 ∈ Rec(ϕ). Given ε > 0, on the proof of Proposition 3.12 we
obtain δ > 0 and η > 0 satisfying

∀ x, y ∈ B(x0, δ) : W cu
η (x) t W ss

η (y) = {w}. (3.19)

Moreover δ > 0 and η > 0 can be choose satisfying (3.5). Now taking l ∈ N such that η
l
< δ

then for η
2l > 0 by Proposition 3.12 there is y ∈ B(x0,

η
2l) ⊂ B(x0, ε) such that O(y) η

2l -shadowed
piecewise the orbit arc ϕ[0,t0](x0) for some t0 > 0, this mean that for some s ∈ R we have:

∀ j ∈ Z : d(ϕt(ϕj(t0+s)(y)), ϕt(x0)) ≤ η

2l , ∀ 0 ≤ t ≤ t0. (3.20)

On the other hand, if there is ỹ such that O(ỹ) η
2l -shadowed piecewise the arc orbit ϕ[0,t0](x0)

(this is, O(ỹ) sitisfy (3.20)) then

∀ j ∈ Z : d(ϕt(ϕj(t0+s)(ỹ)), ϕt(x0)) ≤ η

2l , ∀ 0 ≤ t ≤ t0; (3.21)

this implies that for all j ∈ Z and 0 ≤ t ≤ t0 holds

d(ϕt(ϕj(t0+s)(y)), ϕt(ϕj(t0+s)(ỹ))) ≤ d(ϕt(ϕj(t0+s)(y)), ϕt(x0)) + d(ϕt(ϕj(t0+s)(ỹ)), ϕt(x0))
≤ η

2l + η

2l = η

l
; (3.22)

if in addition holds (suppose that s > 0)

∀ j ∈ Z, d(ϕj(t0+r)(ỹ), ϕj(t0+r)(y)) ≤ η

l
, ∀ r ∈ (0, s) (3.23)

then by (3.22) and (3.23) we obtain

d(ϕt(ỹ), ϕt(y)) ≤ η

l
≤ η, ∀ t ∈ R, (3.24)

and this last equation implies

∀ t ≥ 0, d(ϕt(ỹ), ϕt(y)) ≤ η =⇒ ỹ ∈ W ss
η (y),

∀ t ≥ 0, d(ϕ−t(ỹ), ϕ−t(y)) ≤ η =⇒ ỹ ∈ W uu
η (y) ⊂ W cu

η (y),
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then ỹ ∈ W ss
η (y) t W cu

η (y), but as y ∈ B(x0,
η
l
) ⊂ B(x0, δ) then by (3.19) W ss

η (y) t W cu
η (y) =

{y}, thus ỹ = y.
Now consider the point ỹ = ϕt0+s(y), then this point satisfies (3.23), hence for the above we
obtain y = ỹ = ϕt0+s(y), this is O(y) is a periodic orbit such that y ∈ B(x0, ε).
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Chapter 4

Conjugacy and Rigidity

In this section we will see some aspects related between the conjugacy and rigidity of the
two Geodesic flows defined over two complete Riemannian manifolds. Specifically, we want to
answer the following question:

Question 4.1. When two geodesic flows defined in manifolds of the same dimension admit a
certain type o conjugacy?. (1-conjugacy)

4.1 Conjugacy Rigid, Conjugacy and Equivalence

In this section, we will see the definitions of conjugacy and equivalence between two flows. We
will also see the definition of conjugacy rigid.

Definition 4.2. If M1 and M2 are two Riemannian manifold without boundary, a map F :
SM1 → SM2 between the unit tangent bundles is called a Ck conjugacy between the geodesic
flows if it is a Ck diffeomorphism and ϕt2◦F = F ◦ϕt1 where ϕt1 and ϕt2 are the geodesic flows on
SM1 and SM2 respectively. FkU(M) will refer to the Ck conjugacy class of the geodesic flow
on M . That is, M1 ∈ FkU(M) if there is a Ck conjugacy between the geodesic flows of M1 and
M . A manifold M is called Ck conjugacy rigid if it is isometric to all spaces M1 ∈ FkU(M).

Some examples of C∞ conjugacy rigid manifolds are given by the real projectives spaces RPn
with the standard metric, compact surfaces of nonpositive curvature, compact flat manifolds
and compact locally symmetric spaces of negative curvature. (see [CLUV])
Some properties are preserved under Ck conjugacies. For example, C1 conjugacies always
preserve the volume (see [C-K]). It is still not known if C0 conjugacies do, even in the negative
curvature setting. It is also known that the property of no conjugate points is preserved
under C0 conjugacies. (see [CK2])
Now in the nonpositive curvature setting, we have that conjugacy rigid in two-dimensional
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manifolds. Some works was done by Otal [Ot1], [Ot2] and [Cr] under a negative curvature
assumption and was extended to the nonpositive case (using the method of Otal) in [CFF].
The best statement in the 2 dimensional case can be found in [CLUV] and the statement is
follow:

Theorem 4.3. [Croke] Every 2-dimensional compact Riemannian manifold of nonpositively
curvature is C0 conjugacy rigid.

One important observation in all results above is that the Gauss Bonnet Theorem is used in
some stages of the proofs, which seems to be why the arguments have not extended to higher
dimensions.
Now let (M, g

M
) and (N, g

N
) be two complete Riemannian manifolds and ϕtM : SM → SM

and ϕtN : SN → SN the geodesic flows of M and N , respectively.

Definition 4.4. The flows ϕtM and ϕtN are said orbit equivalents if there exists a continuous
map h : SM → SN and a real function f : R → R such that h ◦ ϕtM = ϕ

f(t)
N ◦ h for all

t ∈ R. The function h is called an “equivalence in orbits” between ϕtM and ϕtN and f a
reparametrization. When h is a homeomorphism it is called a “conjugacy in orbits”. We say
that h is a α−equivalence (α−conjugacy) in orbits between ϕtM and ϕtN if h is a equivalence
(conjugacy) in orbits and there are two constants C1 > 0 and C2 > 0 such that for all θ1,
θ2 ∈ SM

C1dM(θ1, θ2)α ≤ dN(h(θ1), h(θ2)) ≤ C2dM(θ1, θ2)α. (4.1)

Note that 1-equivalences are actually bi-Lipschitz equivalences.

4.2 Conjugacy and Rigidity

In [MR, Corollary 1.4] was proved the following result:

Theorem 4.5. [Melo-Romaña] Let M and N be two compact Riemannian manifolds of the
same dimension. Assume that inf KM ≥ supKN ≥ −b2 and that geodesic flow ϕtM is Anosov.
If h is a 1-conjugacy in orbits between ϕtM and ϕtN with reparametrization f(t) ≥ t for t ≥ 0
and odd, then KM = supKN = KN .

Next we prove the Theorem 1.2, which improve the above theorem.

Proof of the Theorem 1.2. Since thatM has no conjugate points and the hypothesis on the
sectional curvatures, we obtain that supKN ≤ 0. Thus we consider two cases:

Case 1. supKN < 0.
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Case 2. supKN = 0.

Case 1. Put −b2 = supKN < 0, then ϕtN is Anosov and we denote by Es and Eu the stable
and unstable bundle on SN . By hypothesis h ◦ϕtM = ϕ

f(t)
N ◦ h where h is 1−conjugacy then by

Definition 4.4, there exist two constants C1 > 0 and C2 > 0 such that:

C1dM(ϕtM(θ1), ϕtM(θ2)) ≤ dN(h(ϕtM(θ1)), h(ϕtM(θ2))) ≤ C2dM(ϕtM(θ1), ϕtM(θ2)),

hence

C1dM(ϕtM(θ1), ϕtM(θ2)) ≤ dN(ϕf(t)
N (h(θ1)), ϕf(t)

N (h(θ2))) ≤ C2dM(ϕtM(θ1), ϕtM(θ2)). (4.2)

Let Γ the set of points of SM where there exists dθh, then as h is a Lipschitz map then Γ has
full Liouville measure. Let θ ∈ Γ, ξ ∈ TθSM and β(r) ⊂ SM a curve differentiable such that
β(0) = θ and β′(0) = ξ by Lemma 4.1 in [MR] for all t ∈ R, we have

lim
s→0

dM(ϕtM(β(s)), ϕtM(β(0)))
s

= ‖dθϕt(ξ)‖

and

lim
s→0

dN(ϕf(t)
N (h(β(s))), ϕf(t)

N (h(β(0))))
s

= ‖dh(θ)ϕ
f(t)
N (dθh(ξ))‖.

The last two equalities above and the equation (4.2) imply that for all t ∈ R,

C1‖dθϕtM(ξ)‖ ≤ ‖dh(θ)ϕ
f(t)
N (dθh(ξ))‖ ≤ C2‖dθϕtM(ξ)‖. (4.3)

In particular for t = 0 above we obtain that

C1‖ξ‖ ≤ ‖dθh(ξ)‖ ≤ C2‖ξ‖

and this last inequality implies that dθh is an isomorphism. For 0 6= ξ ∈ TθSM the equation
(4.3) implies

C1
‖dθϕtM(ξ)‖
‖ξ‖

≤
‖dh(θ)ϕ

f(t)
N (dθh(ξ))‖
‖dθh(ξ)‖ .

‖dθh(ξ)‖
‖ξ‖

≤ C2
‖dθϕtM(ξ)‖
‖ξ‖

. (4.4)

Now as dθh is an isomorphism we can define the subspaces F s(u)
θ of TθSM satisfying the equation

dθh(F s(u)
θ ) = E

s(u)
h(θ).

Note that Γ is ϕtM−invariant and

dϕtM (θ)h = dh(θ)ϕ
f(t)
N ◦ dθh ◦ (dθϕtM)−1,
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which implies that the subspaces F s(u)
θ are dϕtM−invariants. Thus, for all t ∈ R

TϕtM (θ)(SM) = F s
ϕtM (θ) ⊕ 〈ϕM〉 ⊕ F u

ϕtM (θ). (4.5)

Now for ξ ∈ F u
θ by (4.4) for all t ∈ R we have

C1

C2
.‖dθϕtM |Fuθ ‖ ≤ ‖dh(θ)ϕ

f(t)
N |Eu

h(θ)
‖ ≤ C2

C1
.‖dθϕtM |Fuθ ‖. (4.6)

Analogously, for ξ ∈ F s
θ by (4.4) we obtain

C1

C2
.‖dθϕtM |F sθ ‖ ≤ ‖dh(θ)ϕ

f(t)
N |Es

h(θ)
‖ ≤ C2

C1
.‖dθϕtM |F sθ ‖. (4.7)

By classical result (see [Kn]) e−
√
− supKN = e−b is a constant of contraction for ϕtN , then the

equations (4.6) and (4.7) and the hypothesis on the reparametrization f(t) be odd, provide that
for all t ≥ 0

‖dθϕtM |F sθ ‖ ≤ C
C2

C1
e−abt and ‖dθϕ−tM |Fuθ ‖ ≤ C

C2

C1
e−abt. (4.8)

The last inequalities and (4.5) provide a hyperbolic behavior of ϕtM along of the orbit of θ ,
therefore as M has no conjugate points and KM ≥ a2 supKN = −a2b2 = −(ab)2 then the by
similar arguments used in the proof of the Theorem 1.1 in [MR], provides that for all θ ∈ Γ

lim
t→+∞

1
t

∫ t

0
Ric(ϕsM(θ))ds = −(ab)2. (4.9)

Since Γ has full Liouville measure then the Birkhoff ergodic theorem and (4.9) give us∫
SM

Ric(θ)dLM = −(ab)2,

where LM denotes the Liouville measure on SM .
Since KM ≥ −(ab)2 then the last equality implies that Ric(θ) = −(ab)2 for LM − a.e. point
θ ∈ SM . Thus we conclude that KM ≡ −(ab)2 and therefore the splitting given by (4.5)
coincide with its hyperbolic splitting.
To conclude the proof, we will show that KN ≡ −b2. For this sake, since KM ≡ −(ab)2 for
ξ ∈ F u

θ (cf. [Kn]) we have that

‖dθϕtM(ξ)‖ =
√

1 + (ab)2eabt‖π1(ξ)‖,

where π1(·) is the projection on the first coordinate in the horizontal and vertical decomposition
of TSM . Thus

lim
t→+∞

1
t

log ‖dθϕtM(ξ)‖ = ab,
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uniformly in bounded regions of pair (θ, ξ) with θ ∈ SM and ξ ∈ F u
θ . Put Λ = h(Γ), then as h

is Lipschitz and Γ has full Liouville measure on SM , then Λ has full Liouville measure on SN .
So, by (4.3) we obtain

lim
t→+∞

1
t

log ‖dh(θ)ϕ
f(t)
N (dθh(ξ))‖ = ab. (4.10)

Claim 4.6. lim
t→+∞

1
t

log ‖dwϕtN(η)‖ = b, where w = h(θ) and η = dθh(ξ).

Proof of the Claim 4.6. As supKN = −b2 < 0 then we know that the function t 7−→
‖Ju(t)‖2 is strictly increasing (where Ju(t) is the unstable Jacobi field associated to η), this
implies that the function t 7−→ ‖Ju(t)‖ is also strictly incrasing. Since the reparametrization
f(t) satisfies f(t) ≥ at for all t ≥ 0 then

‖Ju(f(t))‖ ≥ ‖Ju(at)‖,

for all t ≥ 0, thus

ab = lim
t→+∞

1
t

log ‖dwϕf(t)
N (η)‖

= lim
t→+∞

1
t

log ‖Ju(f(t))‖

≥ lim
t→+∞

1
t

log ‖Ju(at)‖

= lim
t→+∞

1
t

log ‖dwϕatN(η)‖. (4.11)

On the other hand, as η ∈ Eu
w then for all t ≥ 0

‖dwϕtN(η)‖ ≥ C3e
bt‖η‖.

Thus,
lim
t→+∞

1
t

log ‖dwϕatN(η)‖ ≥ ab,

this last inequality and (4.11) imply that

lim
t→+∞

1
t

log ‖dwϕatN(η)‖ = ab.

Hence
lim
t→+∞

1
at

log ‖dwϕatN(η)‖ = b.
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Then by Claim.4.6 we have
lim
t→+∞

1
t

log ‖dwϕtN(η)‖ = b

uniformly in bounded regions of pair (w, η) with w ∈ Λ and η ∈ Eu
w.

Now, to conclude, we follow similar arguments of the proof of [MR, Theorem 1.1]
Claim 4.7. For w ∈ SN and η ∈ Eu

w hold that

lim
t→+∞

1
t

log ‖dwϕtN(η)‖ = b.

Proof of the Claim 4.7. Let w ∈ SN be and η ∈ Eu
w. By density of Λ and continuity of Eu,

we have that there are wm ∈ Λ and ηm ∈ Eu
wm such that (wm, ηm) converge to (w, η). On the

other hand, for t ∈ R holds:∣∣∣∣b− 1
t

log ‖dwϕtN(η)‖
∣∣∣∣ ≤ ∣∣∣∣b− 1

t
log ‖dwmϕt(ηm)‖

∣∣∣∣+
∣∣∣∣∣1t log ‖dwm(ϕt(ηm))‖

‖dwϕt(η)‖

∣∣∣∣∣
By the uniformity in the convergence in the Claim 4.6, given ε > 0 there is t0 such that:∣∣∣∣b− 1

t
log ‖dwmϕt(ηm)‖

∣∣∣∣ < ε

2 ,

for each t ≥ t0 and all m ∈ N. Also by continuity of dϕtN , for each t ≥ t0 there is m(t) such
that ∣∣∣∣∣1t log ‖dwm(ϕt(ηm))‖

‖dwϕt(η)‖

∣∣∣∣∣ < ε

2 ,

for each m ≥ m(t). Hence for each t ≥ t0 holds:∣∣∣∣b− 1
t

log ‖dwϕtN(η)‖
∣∣∣∣ < ε.

Finally by the Claim.4.7 above and Theorem 1.1 at [Bu] imply thatKN ≡ −b2, which concluded
the proof of Case 1.
Case 2. Assume that supKN ≡ 0, then as inf KM ≥ a2 supKN = 0 and by hipothesis M has
no conjugate points then KM ≡ 0 (cf. [G]). We will show that KN ≡ 0. For this sake, note
that the condition on the curvature on M implies that

lim
t→+∞

1
t

log ‖dθϕtM(ξ)‖ = 0
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uniformly in bounded regions of pair (θ, ξ) with θ ∈ SM and ξ ∈ TθSM . We can conclude by
similar arguments as Case 1, that

lim
t→+∞

1
t

log ‖dwϕf(t)
N (η)‖ = 0

for each pair (w, η) with w ∈ SN and η ∈ TwSN .
As supKN ≡ 0 then N has no conjugate points and as N is compact, there is a constant c ≥ 0
such that −c2 ≤ KN ≤ 0.
Now for each w = (y, v) ∈ SN we denote N(w) the subspace of TyN orthogonal to v. Then by
construction, for all x ∈ N(w) the Jacobi field Y u

w (t)x is a unstable Jacobi field (where Y u
w (t)

is a unstable Jacobi tensor). We know that

Eu
ϕtN (w) = graph(Uu

w(t)) = {(x, Uu
w(t)x) : x ∈ N(w)},

where Uu
w(t) = (Y u

w (t))′(Y u
w (t))−1 is the unstable Riccati tensor.

Let πw : Eu
w → N(w) the projection in the first coordinate. Then

π−1
w (v) = (v, Uu

w(0)v).

Note that for all w ∈ SN hold

‖πw‖ ≤ 1 and 1 ≤ ‖π−1
w ‖ ≤

√
1 + c2 (4.12)

and

dwϕ
t
N |Euw= π−1

ϕtN (w) ◦ Y
u
w (t) ◦ πw. (4.13)

Thus (4.12) and (4.13) imply that for all η ∈ Eu
w hold

0 = lim
t→+∞

1
t

log ‖dwϕf(t)
N (η)‖ ≤ lim sup

t→+∞

1
t
‖Y u

w (f(t))(πw(η))‖. (4.14)

On the other hand, by (4.13) we also have

‖Y u
w (f(t))(πw(η))‖ = ‖π

ϕ
f(t)
N (w)(dwϕ

f(t)
N (η))‖ ≤ ‖π

ϕ
f(t)
N (w)‖ · ‖dwϕ

f(t)
N (η)‖.

Again by (4.12) we obtain

lim sup
t→+∞

1
t
‖Y u

w (f(t))(πw(η))‖ ≤ lim
t→+∞

1
t

log ‖dwϕf(t)
N (η)‖ = 0 (4.15)
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Thus of (4.14) and (4.15) we conclude

lim sup
t→+∞

1
t
‖Y u

w (f(t))(πw(η))‖ = 0 (4.16)

On the other hand, as KN ≤ 0 then the function t 7−→ ‖Y u
w (t)(πw(η))‖ is increasing. As by

hipothesis f(t) ≥ at for all t ≥ 0, then

‖Y u
w (f(t))(πw(η))‖ ≥ ‖Y u

w (at)(πw(η))‖.

Thus, the last inequality with (4.12), (4.13) and (4.16) give us

lim sup
t→+∞

1
t

log ‖dwϕatN(η)‖ ≤ lim sup
t→+∞

1
t
‖Y u

w (f(t))(πw(η))‖ = 0. (4.17)

Claim 4.8. For each w ∈ SN hold that

lim sup
t→+∞

1
t

∫ t

0
Ric(ϕasN (w))ds = 0.

Proof of the Claim 4.8. By contradiction, assume that exist w ∈ SN such that:

lim sup
t→+∞

1
t

∫ t

0
Ric(ϕasN (w))ds = B < 0. (4.18)

As the function t 7−→ ‖Y u
w (t)x‖2 is increasing, for x ∈ Rn−1, then

〈y, Uu
w(t)y〉 ≥ 0, for y ∈ Rn−1.

Since Uu
w(t) is symmetric, the last equation implies that all eigenvalues of Uu

w(t) are non-
negative. Let λ1(t) ≥ . . . ≥ λn−1(t) ≥ 0 the eigenvalues of Uu

w(t). We have that |Uu
w(t)| ≤ c,

then

tr(Uu
w(t))2 = λ2

1(t) + λ2
2(t) + . . .+ λ2

n−1(t)
≤ c · trUu

w(t) (4.19)

Taking trace in the equation (2.3) and integrating we obtain:

0 = 1
t

∫ t

0
tr(Uu

w)′(r)dr + 1
t

∫ t

0
tr(Uu

w(r))2dr + 1
t

∫ t

0
trR(r)dr

= trUu
w(t)− trUu

w(0)
t

+ 1
t

∫ t

0
tr(Uu

w(r))2dr + 1
t

∫ t

0
trR(r)dr. (4.20)

Remember that R(t) = (Rij(t)) is a matrix, where Rij(t) = 〈R(γ′θ(t), Vi(t))γ′θ(t), Vj(t)〉 and R
is the curvature tensor.
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By our hypothesis (equation 4.18) we have that there exists t0 > 0 such that for t ≥ t0 holds

1
t

∫ t

0
trR(r)dr < (n− 1)B, t ≥ t0. (4.21)

From (4.19), (4.20) and (4.21) there is t1 > 0 such that for t ≥ t1:

B(n− 1) >
1
t

∫ t

0
trR(r)dr

≥ −1
t

∫ t

0
tr(Uu

w(r))2dr

≥ −c
t

∫ t

0
trUu

w(r)dr. (4.22)

Remember the Liouville’s formula (see [MF]), which state that:

d

dt
log | detY u

w (r)| = trUu
w(r), Y u

w (0) = Id. (4.23)

Integrating (4.23) and using (4.22) we have that:

log | detY u
w (t)| ≥ −1

c
(n− 1)Bt, t ≥ t1. (4.24)

Finally, the Proposition 4.9 below implies that

lim sup
t→+∞

1
t

log | det dϕatN
∣∣∣
Euw
| ≥ −B(n− 1)

2c > 0.

As | det dϕtN |Euw | ≤ ‖ dϕ
t
N |Euw ‖

dim(Euw) and dim(Eu
w) = dim(N) − 1, then the last inequality

provides that
lim sup
t→+∞

1
t

log ‖ dϕatN
∣∣∣
Euw
‖ ≥ −B2c > 0,

which is a contradiction to (4.17).

Thus by using a change of variable on Claim. 4.8 we obtain

lim sup
t→+∞

1
at

∫ at

0
Ric(ϕsN(w))ds = 0.

Hence

lim sup
t→+∞

1
t

∫ t

0
Ric(ϕsN(w))ds = 0. (4.25)
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Now the Birkhoff ergodic theorem implies that for Liouville almost every point w ∈ SN

lim
t→+∞

1
t

∫ t

0
Ric(ϕsN(w))ds =

∫
SN

Ric(w)dLN .

Thus (4.25) implies that ∫
SN

Ric(w)dLN = 0.

Since Ric(·) is a continuous function and −c2 ≤ Ric(w) ≤ 0 then should be Ric(·) ≡ 0. Also,
since −c2 ≤ KN ≤ 0 and the definition of Ric(·) we have KN ≡ 0.

Proposition 4.9. In the same conditions of the Case 2, there exists t2 > 0 such that for each
w ∈ SN we have that:

1
t

log | det dϕtN
∣∣∣
Euw
| ≥ −B(n− 1)

2c , t ≥ t2.

Proof. The projection πw : Eu
w → N(w) satisfies:

1 ≤ |detπ−1
ϕtN (w)| ≤ (1 + c2)n−2

2 . (4.26)

By hypothesis there is t2 > 0 such that for t ≥ t2, using the equation (4.13) and remember
that | detπw| = | detπ−1

w |−1 ≥ (1 + c2)−n−2
2 , we have that:

1
t

log | det dϕtN
∣∣∣
Euw
| = 1

t
log | detπ−1

ϕtN (w)|+
1
t

log | detY u
w (t)|+ 1

t
log | detπw|

≥ −(n− 1)B
c

+ (1 + c2)−n−2
2

t

≥ −(n− 1)B
2c

The Theorem 1.2 above gives us a rigidity between the sectional curvatures of the two compact
Riemannian manifolds when we have some relation over the sectional curvatures and the exis-
tence of a 1-conjugacy between the geodesic flows of them. In fact, on the conditions above, if
there exist a 1-conjugacy between the geodesic flows then we have that the sectional curvatures
are constants, in general, could be different up to a positive constant a > 0 that is related with
the parametrization of the conjugacy h.
Another observation on the Theorem 1.2 is that in the relationship over the sectional curvatures
inf KM ≥ a2 supKN , the sectional curvature of M could be zero in some regions.
Now we could ask what happens if we change the condition of the sectional curvatures by
inf KM ≤ a2 supKN , the Theorem 4.12 in the next section below gives us an answer in the case
that supKN < 0 and some condition on the reparametrization of the conjugacy.
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4.3 Conjugacy between certain types of manifolds

In this section, first, we will study some relation between the geodesic flows defined on the same
manifold but with different metrics. Specifically, we will be interested in conformal metrics with
a positive constant. After we will see how the existence of a certain type between geodesic flows
of two manifolds of the same dimension implies rigidity in the sectional curvatures.
Let (M, g) be a Riemannian manifold and consider a family of conformal metrics gr = e2rg, with
r ∈ R, on M . It is easy to see that Or = O where Or and O are the conections compatible with
gr and g, respectively. This implies Rr = R, where Rr and R are the curvature tensors of Mr

and M respectively. Hence gr(Rr(Xi, Xj)Xk, Xs) = e2rg(R(Xi, Xj)Xk, Xs), where Xi, Xj, Xk,
and Xs are the coordinates fields around a neighborhood, thus the sectional curvatures Kr and
K of Mr and M , respectively are equal up to a constant. More specifically, for all x ∈ M and
v, w ∈ TxM linearly independent we have:

Kr(v, w) = e−2rK(v, w). (4.27)

Since Or = O, we can see that the geodesics of (M, gr) and (M, g) are the same but they have
different velocities, this means, if γ(t) is a geodesic of (M, gr), then ‖γ′(t)‖r = er‖γ′(t)‖, where
‖ · ‖r and ‖ · ‖ are the norms induced by the metrics gr and g on M , respectively.
Now if γ(t) is a geodesic on (M, gr) and V (t) is a vector field along γ(t), as Or = O then
DrV

dt
= DV

dt
where Dr

dt
and D

dt
are the covariant derivatives of (M, gr) and (M, g), respectively.

This last with Rr = R implies that (M, gr) and (M, g) has the same Jacobi fields but with
differents norms, this means, that if J(t) is a Jacobi field along of γ(t) then ‖J(t)‖r = er‖J(t)‖
. With this we can conclude the following:

Lemma 4.10. (M, gr) has no conjugate points if and only if (M, g) has no conjugate points.

Proof. It is enough to note that ‖J(t)‖r = er‖J(t)‖.

Let (M, g) be a complete Riemannian manifold and for r ∈ R fixed we consider (Mr, gr) where
gr = e2rg. Let ϕtM : SM → SM and ϕtMr

: SMr → SMr be the geodesic flows of M and Mr

respectively.
First, we want to see if there exists some conjugacy h as in Definition 4.4 above, between the
geodesic flows induced by the metrics ‖ · ‖r and ‖ · ‖ on M .

Lemma 4.11. Let (M, g) be a complete Riemannian manifold and consider (Mr = M, gr).
Then there exists h : SM → SMr 1-conjugacy in orbits between ϕtM and ϕtMr

.

Proof. We define the function h : SM → SMr by h(x, v) = (x, e−rv) and f : R→ R define by
f(t) = ert. Note that h is a C1−diffeomorphism. Let θ = (x, v) ∈ SM and θ̃ = (x, e−rv) =

34



h(θ) ∈ SMr and γθ(t) and γ
θ̃
(t) the geodesic satisfying γθ(0) = x, γ′θ(0) = v, γ

θ̃
(0) = x and

γ′
θ̃
(0) = e−rv. By definition of h and the geodesic flows ϕtM and ϕtMr

we have that for all t ∈ R

h ◦ ϕf
−1(t)
M (θ) = h ◦ ϕe−rtM (θ)

= h(γθ(e−rt), γ′θ(e−rt))
= (γθ(e−rt), e−rγ′θ(e−rt))
= (γ

θ̃
(t), γ′

θ̃
(t))

= ϕtMr
(x, e−rt)

= ϕtMr
(θ̃)

= ϕtMr
◦ h(θ).

Hence for all t ∈ R holds h ◦ ϕtM = ϕ
f(t)
Mr
◦ h.

Now we will see how the existence of a certain type of conjugacy between the geodesic flows
of certain kinds of manifolds of the same dimension implies rigidity in the sectional curvatures.

Theorem 4.12. LetM and N be two compact Riemannian manifolds with the same dimension.
Fixed a > 0 and assume that the sectional curvatures satisfy inf KM ≤ a2 supKN < 0 and
M has no conjugate points. If h is a 1−conjugacy in orbits between ϕtM and ϕtN with odd

reparametrization l(t) satisfying l(t) ≥
√

inf KM

supKN

t for all t ≥ 0 then KM and KN are constant.

Proof. We consider the deformation (Ms = M, gs = e2sg) of (M, g). As inf KM and supKN has
the same sign, then there exist s0 ≥ 0 such that inf KMs0

= a2 supKN . As KMs0
= e−2s0KM

then
e−2s0 inf KM = inf KMs0

= a2 supKN

and this implies

e−s0 = a

√
supKN

inf KM

. (4.28)

Now, by Lemma 4.11, we know that there is h1 : SMs0 → SM a 1−conjugacy in orbits between
ϕtMs0

and ϕtM , this means h1 ◦ ϕtMs0
= ϕ

f−1(t)
M ◦ h1, where f−1(t) = e−s0t.

On the other hand, by hipothesis, we have that h ◦ ϕtM = ϕ
l(t)
N ◦ h. Thus we consider the

composition h ◦ h1 : SMs0 → SN . Nothe that

h ◦ h1 ◦ ϕtMs0
= h ◦ ϕf

−1(t)
M ◦ h1

= ϕ
l(f−1(t))
N ◦ h ◦ h1.
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Since h and h1 are 1−conjugacy in orbits, then the last equality above gives us that h ◦ h1 is
a 1−conjugacy in orbits between ϕtMs0

and ϕtN with the reparametrization l(f−1(t)).

Now for all t ≥ 0 we have e−s0t ≥ 0 then (4.28) and the hypothesis in l(t) implies

l(f−1(t)) = l(e−s0t) ≥
√

inf KM

supKN

· e−s0t = at.

As M has no conjugate points and h ◦ h1 satisfies the conditions of Theorem 1.2 then KMs0
≡

a2 supKN ≡ a2KN and this implies that KM ≡ e2s0a2 supKN ≡ e2s0a2KN .

The Theorem 1.2 and 4.12 help us to know when two compact manifolds of the same dimension
have a certain type of conjugacy in orbits and therefore answers the Question 4.1. For this sake,
for two compacts Riemannian manifolds M and N we denote by IM = [inf KM , supKM ] and
IN = [inf KN , supKN ] the intervals of sectional curvature of M and N , respectively. Then we
have two cases or IM ∩ IN = ∅ or IM ∩ IN 6= ∅.
The following two results below (Corollary 4.13 and Corollary 4.14) give us some information
about when a conjugacy does not exist between two compact manifolds of the same dimension
under the hypothesis that one of them has no conjugate points and the other one has negative
curvature and the intersection of the intervals of curvature are empty or not empty.

Corollary 4.13. LetM and N be two compact Riemannian manifolds with the same dimension
and IM and IN the intervals of curvature of M and N , respectively. Suppose that M has no
conjugate points, supKN < 0 and IM ∩ IN = ∅. Then:

(a) If inf KM > supKN then there is no h : SM → SN a 1−conjugacy in orbits between ϕtM
and ϕtN (i.e. h ◦ ϕtM = ϕ

f(t)
N ◦ h) with reparametrization odd f(t) satisfying f(t) ≥ t for

all t ≥ 0.

(b) If inf KN > supKM then there is no h : SN → SM a 1−conjugacy in orbits between ϕtN
and ϕtM (i.e. h ◦ ϕtN = ϕ

f(t)
M ◦ h) with reparametrization odd f(t) satisfying f(t) ≥ t for

all t ≥ 0.

Proof. a) If there is h : SM → SN a 1−conjugacy in orbits between ϕtM and ϕtN (i.e. h◦ϕtM =
ϕ
f(t)
N ◦h) with reparametrization odd f(t) satisfying f(t) ≥ t for all t ≥ 0, then by Theorem 1.2

with a = 1 implies that KM ≡ supKN ≡ KN , hence IM ∩ IN 6= ∅ contradiction!.
(b) Analogous to item (a).

Now when IM ∩ IN 6= ∅ we have two cases, or IM ∩ IN = {k0}(in this case we have IM and IN
intersect at the endpoints or one of the curvature intervals is unitary) or IM ∩ IN = I where
I ⊂ R is a non-degenerate interval.
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Corollary 4.14. LetM and N be two compact Riemannian manifolds with the same dimension
and IM and IN the intervals of curvature of M and N respectively. Suppose that M has no
conjugate points, supKN < 0 and IM ∩ IN = {k0}. Then:

(1) IM and IN intersect at endpoints

(a) If supKN = inf KM and there is h : SM → SN a 1−conjugacy in orbits between ϕtM
and ϕtN (i.e. h ◦ ϕtM = ϕ

f(t)
N ◦ h) with reparametrization odd f(t) satisfying f(t) ≥ t

for all t ≥ 0 then KM ≡ supKN ≡ KN = {k0}.
(b) If supKM = inf KN and there is h : SN → SM a 1−conjugacy in orbits between ϕtN

and ϕtM (i.e. h ◦ ϕtN = ϕ
f(t)
M ◦ h) with reparametrization odd f(t) satisfying f(t) ≥ t

for all t ≥ 0 then KN ≡ supKM ≡ KM = {k0}.

(2) IM = {k0} or IN = {k0}

(a) If IN is a non-degenerate interval and IM = {k0} ⊂ int(IN) then there is no h :
SM → SN a 1−conjugacy in orbits between ϕtM and ϕtN (i.e. h ◦ ϕtM = ϕ

f(t)
N ◦ h)

with reparametrization odd f(t) satisfying f(t) ≥
√

inf KN

supKM

· t, for all t ≥ 0.

(b) If IM is a non-degenerate interval and IN = {k0} ⊂ int(IM) then there is no h :
SN → SM a 1−conjugacy in orbits between ϕtN and ϕtM (i.e. h ◦ ϕtN = ϕ

f(t)
M ◦ h)

with reparametrization odd f(t) satisfying f(t) ≥
√

inf KM

supKN

· t, for all t ≥ 0.

Proof. (1), (a) (the proof of item (b) is similar) Apply the Theorem 1.2 with a = 1.
(2), (a) (the proof of item (b) is similar) As {k0} = IM ⊂ int(IN) then inf KM = {k0} <
supKN < 0. Now if there is h : SM → SN satisfying such conditions then by Theorem 4.12
with a = 1 implies that KN is constant, thus IN is unitary, contradiction!

Corollary 4.15. LetM and N be two compact Riemannian manifolds with the same dimension
and IM and IN the intervals of curvature of M and N , respectively. Suppose tha M has no
conjugate points, supKN < 0 and IM ∩ IN = I where I ⊂ R is a non degenerate interval. If
inf KM < supKN then there is no h : SM → SN a 1−conjugacy in orbits between ϕtM and ϕtN
(i.e. h ◦ ϕtM = ϕ

f(t)
N ◦ h) with reparametrization odd f(t) satisfying f(t) ≥

√
inf KM

supKN

· t, for all
t ≥ 0.

Proof. By Theorem 4.12 with a = 1 we can conclude that KM and KN are constants and this
implies that IM and IN are unitaries, contradiction!.

Looking at the proof of Theorem 1.2, Case 1 more carefully, one can find that the hyperbolic
behavior of ϕtN is passed to that of ϕtM by the 1−conjugacy in orbits h : SM → SN at each
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point, where h is diferentiable and the set of such points has full Liouville measure. Specifically
if we assume that h is C1 and KM has some relation with λN , the constant contraction of ϕtN ,
then we can conclude the following:

Theorem 4.16. Let M and N be two compact Riemannian manifolds with the same dimension
and fixed a > 0. Assume that ϕf(t)

N is Anosov with contraction constant λN = e−α for some
α > 0. If h is C1 and a 1−conjugacy in orbits between ϕtM and ϕtN with odd reparametrization
f(t) satisfying f(t) ≥ at for all t ≥ 0 then ϕtM is also Anosov and λM = λaN is a contraction
constant. Moreover if KM ≥ −(αa)2 then KM = −(αa)2.

To prove the Theorem 4.16 we need the following theorem:

Theorem 4.17. [Theorem 1.1 in [MR]] Let M be a complete Riemannian manifold with finite
volume and sectional curvature bounded below by −c2 If the geodesic flow is Anosov with constant
of contraction λ, then λ ≥ e−c. Moreover, the equality hold if and only if the sectional curvature
of M is constant equal to −c2.

Proof of the Theorem 4.16. Assume that ϕtN is Anosov and we denote by Es and Eu the
stable and unstable bundle. By hypohese h ◦ ϕtM = ϕ

f(t)
N ◦ h where h is a 1−conjugacy then by

definition 4.4, there exists two constants C1 > 0 and C2 > 0 such that:

C1dM(ϕtM(θ1), ϕtM(θ2)) ≤ dN(h(ϕtM(θ1)), h(ϕtM(θ2))) ≤ C2dM(ϕtM(θ1), ϕtM(θ2)).

Hence

C1dM(ϕtM(θ1), ϕtM(θ2)) ≤ dN(ϕf(t)
N (h(θ1)), ϕf(t)

N (h(θ2))) ≤ C2dM(ϕtM(θ1), ϕtM(θ2)). (4.29)

Let θ ∈ SM , ξ ∈ TθSM and β(r) ⊂ SM a curve differentiable such that β(0) = θ and β′(0) = ξ
by Lemma 4.1 in [MR], for all t ∈ R, we have

lim
s→0

dM(ϕtM(β(s)), ϕtM(β(0)))
s

= ‖dθϕt(ξ)‖

and

lim
s→0

dN(ϕf(t)
N (h(β(s))), ϕf(t)

N (h(β(0))))
s

= ‖dh(θ)ϕ
f(t)
N (dθh(ξ))‖.

The last two equalities above and the equation (4.29) imply that for all t ∈ R

C1‖dθϕt(ξ)‖ ≤ ‖dh(θ)ϕ
f(t)
N (dθh(ξ))‖ ≤ C2‖dθϕt(ξ)‖, (4.30)

in particular for t = 0 above we obtain that

C1‖ξ‖ ≤ ‖dθh(ξ)‖ ≤ C2‖ξ‖.
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This last inequality implies that dθh is an isomorphism and as M and N are compacts then h
is a C1− diffeomorphism. For 0 6= ξ ∈ TθSM the equation (4.30) implies

C1
‖dθϕt(ξ)‖
‖ξ‖

≤
‖dh(θ)ϕ

f(t)
N (dθh(ξ))‖
‖dθh(ξ)‖ .

‖dθh(ξ)‖
‖ξ‖

≤ ‖dθϕ
t(ξ)‖
‖ξ‖

. (4.31)

Now, as dθh is an isomorphism we can define the subspaces F s(u)
θ of TθSM satisfying the

equation
dθh(F s(u)

θ ) = E
s(u)
h(θ)

and
dϕtM (θ)h = dh(θ)ϕ

f(t)
N ◦ dθh ◦ (dθϕtM)−1,

which implies that the subspaces F s(u)
θ are dϕtM−invariants. Thus for all t ∈ R

TϕtM (θ)(SM) = F s
ϕtM (θ) ⊕ 〈ϕM〉 ⊕ F u

ϕtM (θ). (4.32)

Now for ξ ∈ F u
θ by (4.31) for all t ∈ R we have

C1

C2
.‖dθϕtM |Fuθ ‖ ≤ ‖dh(θ)ϕ

f(t)
N |Eu

h(θ)
‖ ≤ C2

C1
.‖dθϕtM |Fuθ ‖. (4.33)

Analogously for ξ ∈ F s
θ by (4.31) we obtain

C1

C2
.‖dθϕtM |F sθ ‖ ≤ ‖dh(θ)ϕ

f(t)
N |Es

h(θ)
‖ ≤ C2

C1
.‖dθϕtM |F sθ ‖. (4.34)

Since λN = e−α is a contraction constant for ϕtN , then (4.33) and (4.34), and the hypothesis
over the reparametrization f(t) provide that for all t ≥ 0

‖dθϕtM |F sθ ‖ ≤ C
C2

C1
e−aαt and ‖dθϕ−tM |Fuθ ‖ ≤ C

C2

C1
e−aαt. (4.35)

Thus ϕtM is Anosov and λM = e−aα is a contraction constant. Now if KM ≥ −(aα)2 then by
Theorem 4.17 conclude that KM ≡ −(aα)2.
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Chapter 5

Lyapunov Exponents and Rigidity

In this chapter, we will see that under certain conditions on the Lyapunov exponents of an
Anosov geodesic flow that is define on the unitary tangent bundle SM with M a compact
Riemannian manifold, we can obtain rigidity on the sectional curvature of M .
The goal of this chapter is to extend the result over the rigidity of equality of Lyapunov
exponents for geodesic flows of Butler in [Bu].
For a periodic point θ of the geodesic flow ϕt : SM → SM defined on a compact Riemannian
manifold M , let l(θ) be the period of θ. Let χ(θ)

1 , . . . , χ
(θ)
m−1 are the complex eigenvalues of

dθϕ
l(θ) : Eu

θ → Eu
θ , counted with the multiplicity of their generalized eigenspaces.

Theorem 5.1. [Butler] Let M be an m-dimensional closed negatively curved Riemannian
manifold. Suppose that ∣∣∣χ(θ)

i

∣∣∣ =
∣∣∣χ(θ)
j

∣∣∣ ; 1 ≤ i, j ≤ m− 1,

for every periodic point θ of the geodesic flow ϕ : SM → SM . Then M is homothetic to a
compact quotient of Hm

R .

In particular, the Butler’s result above claims that if each periodic orbit of the geodesic flow
defined on a manifold of negative curvature, has exactly one Lyapunov exponent on the unstable
(or stable) bundle then the manifold has constant negative curvature.
One first extension of the result of Butler is in the finite volume case and can be done using
the techniques of Romaña and Melo in [MR]. More specifically, if −c2 ≤ KM , V ol(M) < +∞,
Anosov geodesic flow, and such that every periodic point has exactly the Lyapunov exponent
on the unstable bundle equal to c then KM = −c2.
If the curvature satisfies −c2 ≤ KM ≤ −α2, we expect that if only every periodic point has
exactly the Lyapunov exponent on the unstable bundle equal to α then KM = −α2. In fact, in
the next section we prove it, which is the prove of the Conjecture 1.4 in this case.
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5.1 Pinched Negative Curvature, Lyapunov Eponents and
Rigidity in the Finite Volume Case

We consider (M, g) a Complete Riemannian manifold with pinched negative curvature −c2 ≤
KM ≤ −α2 for some c ≥ α > 0. Let θ = (x, v) ∈ SM , γθ(t) the geodesic throught x ∈ M
and initial velocity v ∈ SxM . Let Yθ,s(t) and Yθ,u(t) the stable and unstable Jacobi tensor
along γθ(t), respectively and Uθ,s(t) = Y ′θ,s(t)Y −1

θ,s (t) and Uθ,u(t) = Y ′θ,u(t)Y −1
θ,u (t) the stable and

unstable Riccati solution, respectively.
Now for each x ∈ Rn−1\{0} consider the following functions fu : R→ R and fs : R→ R define
by fu(t) = |Yθ,u(t)x|2 and fs(t) = |Yθ,s(t)x|2, respectively.

Lemma 5.2. [[Kn]], [[E]] Let (M, g) be a complete Riemannian manifold with −c2 ≤ KM ≤
−α2. Let θ = (x, v) ∈ SM and γθ(t) the geodesic such that γθ(0) = x and γ′θ(0) = v. Then for
all y ∈ Rn−1\{0} the functions fs(t) = |Yθ,s(t)y|2 and fu(t) = |Yθ,u(t)y|2 are strictly decreasing
and increasing, respectively. Therefore, f ′u(t) and f ′s(t) are strictly increasing and for all t ∈ R
we have f ′u(t) > 0 and f ′s(t) < 0.

Proof. Since KM ≤ −α2 then have that the functions fu(t) and fs(t) are increasing and de-
creasing respectively, this means: (see [E])

d

dt
(fu(t)) = 2〈Y ′θ,u(t)x, Yθ,u(t)x〉 ≥ 0 (5.1)

and

d

dt
(fs(t)) = 2〈Y ′θ,u(t)x, Yθ,u(t)x〉 ≤ 0. (5.2)

Therefore, by the Jacobi equation and the condition on the curvature we obtain that for all
t ∈ R

d2

dt2
(fu(t)) = 2(〈Y ′′θ,u(t)x, Yθ,u(t)x〉+ |Y ′θ,u(t)x|2)

= 2(〈−R(t)Yθ,u(t)x, Yθ,u(t)x〉+ |Y ′θ,u(t)x|2)
≥ 2(α2|Yθ,u(t)x|2 + |Y ′θ,u(t)x|2)
> 0. (5.3)

Analogously for all t ∈ R

d2

dt2
(fs(t)) > 0. (5.4)

Thus of (5.3) and (5.4), fu(t) and fs(t) are convex functions (strictly) in R.
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Of (5.1) and (5.3)(resp. (5.2) and (5.4)), we obtain that fu(t) (fs(t)) is strictly incrasing
(strictly decreasing).
Also (5.3) and (5.4) implies that f ′u(t) and f ′s(t) are strictly increasing. Thus, the convexity of
f?(t) implies that f?(t) 6= 0, for all t ∈ R, ? = u, s.

Now, for ? = u, s we know that Uθ,?(t) = Y ′θ,?(t)Y −1
θ,? (t) are symmetric solutions of Riccati

equation. Since for ? = u, s, Yθ,?(t) are invertible, by (5.1) and (5.2) we obtain that

〈y, Uθ,s(t)y〉 = 〈y, Y ′θ,s(t)Y −1
θ,s (t)y〉 ≤ 0, y ∈ Rn−1 (5.5)

and

〈y, Uθ,u(t)y〉 = 〈y, Y ′θ,u(t)Y −1
θ,u (t)y〉 ≥ 0, y ∈ Rn−1. (5.6)

Fix y ∈ Rn−1\{0}, if there is t0 ∈ R such that 0 = 〈y, Uθ,u(t0)y〉 = 〈y, Y ′θ,u(t0)Y −1
θ,u (t)y〉 then put

x = Y −1
θ,u (t0)y ∈ Rn−1\{0} we obtain

0 = 〈y, Uθ,u(t0)y〉
= 〈y, Y ′θ,u(t0)Y −1

θ,u (t0)y〉
= 〈Y ′θ,u(t0)x, Yθ,u(t0)x〉,

thus f ′u(t0) = 2〈Y ′θ,u(t0)x, Yθ,u(t0)x〉 = 0 which contradicts the Lemma 5.2. Hence of (5.6) we
conclude that 〈y, Uθ,u(t)y〉 > 0 for all t ∈ R. Analogously using (5.5), 〈y, Uθ,s(t)y〉 < 0, for all
t ∈ R.
Now, we will show that for all t ∈ R and for all x ∈ Rn−1 holds 〈Uθ,u(t)x, x〉 ≥ α〈x, x〉. (see
[Kn]).

Proposition 5.3. Suppose that R(t) ≤ −α2 for all t ∈ R and M has no conjugate points. Let
A(t) be a solution of the Jacobi equation

A′′(t) +R(t)A(t) = 0

and satisfying the initial conditions A(0) = 0 and A′(0) = Id. Then for all y ∈ Rn−1

〈A′(t)A(t)−1y, y〉 ≥ α〈y, y〉 coth(αt),

for all t > 0.

We denote by sα(t) ∈ C∞(R) the solution of the following Jacobi equation:

s′′(t)− α2s(t) = 0,

with initial conditions s(0) = 0 and s′(0) = 1, this mean sα(t) = sinh(αt)
α

.
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Lemma 5.4. Suppose that R(t) ≤ −α2 for all t ∈ R and M without conjugate points. Let J(t)
be a solution of Jacobi equation:

J ′′(t) +R(t)J(t) = 0,

with the initial conditions J(0) = 0 and ‖J ′(0)‖ = 1. Then for all t > 0

‖J(t)‖ ≥ sα(t).

Proof. Fix t0 > 0 and consider the following two functions X(t) = sα(t)J(t0) and Y (t) =
sα(t0)J(t). We denote R(t) = −α2Id, then X(t) satisfies that

X ′′(t) +R(t)X(t) = X ′′(t)− α2X(t) = 0.

Also Y (t) satisfies
Y ′′(t) +R(t)Y (t) = 0.

Note that X(0) = Y (0) and X(t0) = Y (t0), this implies that

IR[0,t0](X,X) ≤ IR[0,t0](Y, Y )

=
∫ t0

0
(〈Y ′(t), Y ′(t)〉 − 〈R(t)Y (t), Y (t))dt

≤ 〈Y ′(t0), Y (t0)〉 −
∫ t0

0
〈Y ′′(t) +R(t)Y (t), Y (t)〉dt

= sα(t0)2〈J ′(t0), J(t0)〉.

Where IR is the index form with relation to the curvature operator R (see Appendix).
On the other hand:

IR[0,t0](X,X) =
∫ t0

0

(
〈X ′(t), X ′(t)〉 − 〈R(t)X(t), X(t)〉

)
dt = ‖J(t0)‖2s′α(t0)sα(t0).

Hence by inequality above, we can conclude that

(sα(t0))2〈J ′(t0), J(t0)〉 − ‖J(t0)‖2s′α(t0)sα(t0) ≥ 0.

This last implies
d

dt

(
‖J(t)‖2

(sα(t))2

)
|t=t0 ≥ 0.

As t0 > 0 was fixed arbitrarily, then the last inequality holds for all t > 0. Hence the function

‖J(t)‖2

(sα(t))2
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is increassing on (0,+∞). Finally, note that

lim
t→0+

‖J(t)‖2

sα(t)2 = 1

and the Lemma 5.4 follows.

Proof of the Proposition 5.3. Let A(t) be a Jacobi tensor with A(0) = 0 and A′(0) = Id.
Let x ∈ Rn−1 with ‖x‖ = 1 and consider the Jacobi field J(t) = A(t)x which satisfies J(0) = 0
and ‖J ′(0)‖ = 1. By the Lemma 5.4 we have that the function

〈A(t)x,A(t)x〉
α(sα(t))2

is increassing on [0,+∞). Thus for all t > 0 we have

d

dt

(
〈A(tx), A(t)x〉
α(sα(t))2

)
≥ 0

and this implies
〈A′(t)x,A(t)x〉 ≥ α‖A(t)x‖2 coth(αt).

The last inequality above holds for all x ∈ Rn−1 with ‖x‖ = 1 and for all t > 0. Now given
y ∈ Rn−1 and fixed t0 > 0, define x0 = A(t0)−1y. By above we obtain

〈A′(t0)A−1(t0)y, y〉 ≥ α‖y‖2 coth(αt0).

Thus as y ∈ Rn−1 and t0 > 0 are arbitrary, the Proposition follows.

Proposition 5.5. Suppose that M has no conjugate points and R(t) ≤ −α2, for all t ∈ R.
Let Yu(t) be the unstable Jacobi tensor of Jacobi equation Y ′′(t) + R(t)Y (t) = 0. Then for all
y ∈ Rn−1 holds 〈Y ′(0)y, y〉 ≥ α〈y, y〉.

Proof. Let r > 0 and consider A(t) the solution of Jacobi equation

A′′(s) +R(−r + s)A(s) = 0,

with A(0) = 0 and A′(0) = Id. Also consider the Jacobi equation:

B′′(t) +R(t)B(t) = 0. (5.7)

Let S−r(t) be the solution of (5.7) with S−r(0) = Id and S−r(−r) = 0. Now define G(t) =
A(t+r)A(r)−1 and note that it satisfies the equation: G′′(t)+R(t)G(t) = 0 with G(0) = S−r(0)
and G(−r) = S−r(−r). This means that G(t) is the solution of (5.7) with G(0) = S−r(0) and
G(−r) = S−r(−r), then S−r(t) = G(t) = A(t+ r)A(r)−1.
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By Proposition 5.3 for all y ∈ Rn−1 we obtain that

〈S ′−r(0)y, y〉 = 〈A′(r)A(r)−1y, y〉 ≥ α〈y, y〉 coth(αr).

Taking of limit when r goes to +∞ on the last inequality above:

〈Y ′u(0)y, y〉 = lim
r→+∞

〈S ′−r(0)y, y〉

≥ α〈y, y〉 lim
r→+∞

coth(αr)

= α〈y, y〉.

Finally, suppose that R(t) ≤ −α2, for all t ∈ R and Yu(t) the unstable tensor of Jacobi equation
B′′(t) + R(t)B(t) = 0. For t0 ∈ R, the Jacobi tensor Ỹu(t) = Yu(t+ t0)Yu(t0)−1 is the unstable
solution of the Jacobi equation B′′(t) + R(t + t0)B(t) = 0. As R(t + t0) ≤ −α2 for all t ∈ R,
then by Proposition 5.5 for all x ∈ Rn−1 holds

〈Y ′u(t0)Yu(t0)−1x, x〉 = 〈Ỹ ′u(0)x, x〉 ≥ α〈x, x〉.

As t0 ∈ R was arbitrary, then for all t ∈ R and for all x ∈ Rn−1 holds

〈Uθ,u(t)x, x〉 = 〈Y ′u(t)Yu(t)−1x, x〉 ≥ α〈x, x〉. (5.8)

For analogous arguments, for all t ∈ R, and for all x ∈ Rn−1 we can obtain:

〈Uθ,s(t)x, x〉 ≤ −α〈x, x〉. (5.9)

Proof of the Theorem 1.3.
(1) If b = α. Note that the hypothesis χ+(θ, ξ) = α for all ξ ∈ Eu

θ implies that

lim
t→+∞

1
t

log | det dθϕt|Eu
θ
| = α · dimEu

θ = α(n− 1).

Now by [MF], we obtain

lim
t→+∞

1
t

∫ t

0
tr(Uu(ϕs(θ)))ds = lim

t→+∞

1
t

log | det dθϕt|Eu
θ
| = α(n− 1), (5.10)

for all θ ∈ Per(ϕ).
On the other hand, as K ≤ −α2 and Uu(ϕt(θ)) := Uθ,u(t) is symmetric. By (5.8) we can
conclude that all eigenvalues of Uu(ϕt(θ)) are non-negative and they are great than or equal to
α. Let λn−1(t) ≥ λn−2(t) ≥ · · · ≥ λ1(t) ≥ α the eigenvalues of Uu(ϕt(θ)). Then

tr(Uu(ϕt(θ))) =
n−1∑
i=1

λi(t) ≥ α(n− 1).
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As θ ∈ Per(ϕ), we have that the function t → tr(Uu(ϕt(θ))) is periodic. Thus the last
inequality and (5.10) imply that for all t ∈ R:

tr(Uu(ϕt(θ))) = α(n− 1).

Hence, for all j = 1, 2, ..., n− 1 holds λj(t) = α for all t ∈ R. Finally this implies for all t ∈ R

tr((Uu(ϕt(θ)))2) =
n−1∑
j=1

(λj(t))2 = α2(n− 1).

Then, since ‖Uu(ϕs(θ))‖ ≤ c, integrating the Riccati equation and taking of limit when t goes
+∞, we obtain:

α2(n− 1) = lim
t→+∞

1
t

∫ t

0
tr((Uu(ϕs(θ)))2)ds

= − lim
t→+∞

1
t

∫ t

0
tr(R(ϕs(θ)))ds

= − lim
t→+∞

(n− 1)
t

∫ t

0
Ric(ϕs(θ))ds.

Hence
lim
t→+∞

1
t

∫ t

0
Ric(ϕs(θ))ds = −α2.

As θ ∈ Per(ϕ) and K ≤ −α2 this implies that for all t ∈ R we have Ric(ϕt(θ)) = −α2. Hence
we show that for all θ ∈ Per(ϕ) holds Ric(θ) = −α2. As V ol(M) < +∞ then by Theorem 1.1
we have that Per(ϕ) = SM and by continuity of function Ric(·) we get for all θ ∈ SM holds
Ric(θ) = −α2 and hence K = −α2.
(2) If b = c. Here we use the same arguments of [MR]. By the hypothesis χ+(θ, ξ) = c for all
ξ ∈ Eu

θ we have that

lim
t→+∞

1
t

log | det dθϕt|Eu
θ
| = c · dimEu

θ = c(n− 1).

Now by [MF], we obtain

lim
t→+∞

1
t

∫ t

0
tr(Uu(ϕs(θ)))ds = lim

t→+∞

1
t

log
∣∣∣det dθϕt|Eu

θ

∣∣∣ = c(n− 1). (5.11)

The last inequality above holds for all θ ∈ Per(ϕ).
Since Uu(ϕs(θ)) is symmetric then easy to see that

(tr(Uu(ϕs(θ))))2 ≤ (n− 1)tr((Uu(ϕs(θ)))2).
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As the sectional curvature satisfies K ≥ −c2, then taking trace and integrating of 0 to t the
Riccati equation, we have that by Cauchy-Schwarz inequality that

1
t

∫ t

0
tr(Uu(ϕs(θ)))ds ≤

√
1
t

∫ t

0
(tr(Uu(ϕs(θ))))2ds

≤
√

(n− 1)
t

∫ t

0
tr((Uu(ϕs(θ)))2)ds

=
√
−(n− 1)

t

(∫ t

0
tr((Uu)′(ϕs(θ)))ds+

∫ t

0
tr(R(s))ds

)

=
√
−n− 1

t
(tr(Uu(ϕt(θ)))− tr(Uu(θ)))− (n− 1)2

t

∫ t

0
Ric(ϕs(θ))ds

≤
√
−n− 1

t
(tr(Uu(ϕt(θ)))− tr(Uu(θ))) + (n− 1)2c2.

Hence, since ‖Uu(ϕt(θ))‖ ≤ c, we get

lim
t→+∞

−(n− 1)
t

(
tr(Uu(ϕt(θ)))− tr(Uu(θ))

)
= 0.

Thus, taking the limit as t→ +∞ in the last inequality above, we have that

lim
t→+∞

1
t

∫ t

0
Ric(ϕs(θ))ds = −c2.

As θ ∈ Per(ϕ) and K ≥ −c2, this implies that for all t ∈ R we have Ric(ϕt(θ)) = −c2. Hence
we show that for all θ ∈ Per(ϕ) holds Ric(θ) = −c2. As V ol(M) < +∞ then by Theorem 1.1
we have that Per(ϕ) = SM and by continuity of function Ric(·) we get for all θ ∈ SM holds
Ric(θ) = −c2 and hence K = −c2.

5.2 Rigidity in Dimension 2

5.2.1 Setting

In this subsection, we will extend the Butler’s result [Bu] for dimension 2.
Now we assume that (M, g) is a compact Riemannian manifold of dim(M) = 2. this means M
is a compact surface. Also we assume that the metric g is Hölder C3.
The main result of this section is a generalization in dimension 2 of a result of Butler in ([Bu]).
The Theorem 1.5 extend the Butler‘s result since we only assume that the geodesic flow is
Anosov without any restrictions on the sectional curvature of the manifold.
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To prove the Theorem 1.5, we will use some results about the aproximation of Lyapunov
exponents of an invariant measure of a flow by Lyapunov exponents of measures concentrated
on periodic orbits.
The result about values of Lyapunov exponents along periodic orbits due to Kalinin [Kal],
which enable us to aproximate the Lyapunov exponents of any ergodic ϕt- invariant measure
by Lyapunov exponents of measures concentrated on periodic orbits.
For each periodic point θ, we let µθ denote the unique ϕt-invariant probability measure sup-
ported on the orbit of θ, which may be obtained as the normalized push-forward of Lebesgue
measure on R by the map t→ ϕt(θ).

Theorem 5.6. [Kalinin] Let E be an n-dimensional Hölder continuous vector bundle over a
manifold N and Λ a Hölder continuous cocycle on E over ϕt. Let µ be an ergodic ϕt-invariant
measure and let λ1 ≤ λ2 ≤ · · · ≤ λn be the Lyapunov exponents of Λ with respect to µ, counted
with the multiplicity. Then for every ε > 0, there is a periodic point θ ∈ N of ϕt such that the
Lyapunov exponents λθ1 ≤ λθ2 ≤ · · · ≤ λθn of Λ with respect to µθ satisfy

|λi − λθi | < ε,

for each 1 ≤ i ≤ n.

In our case, N = SM , the vector bundle E = TN , and the cocycle Λ is the cocycle derivative
of the geodesic flow ϕt, this means:

Λ : N × R → GL(n,R)
(x, t) 7→ Λ(x, t) = dxϕ

t,

and n = 2 dim(M)− 1.
Now for the following step, we need the following definition of Algebraic flows, which can be
found in [SLVY] and [T].

Definition 5.7. An Anosov flow Φ : N → N on a 3-dimensional compact manifold N is
algebraic if it is finitely covered by

(1) a suspension of a hyperbolic automorphism of the 2-torus T2 = R2/Z2;

(2) or the geodesic flow on some closed Riemannian surface of constant negative curvature,
i.e., a flow on a homogeneous space Γ\ ˜SL(2,R) corresponding to the right translations
by diagonal matrices diag(et, e−t), t ∈ R, where ˜SL(2,R) denotes the universal cover of
SL(2,R) and Γ is a uniform subgroup.

The following result can be found in [SLVY], it gives us a characterization of the conjugacy of
a flow to an algebraic flow when we have that the Liouville measure is a measure of maximal
entropy.
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Theorem 5.8. [De Simoi, Leguil, Vinhage and Yang] Let k ≥ 5 be some integer and let Φ
be a Ck anosov flow on a compact connected 3-manifold N such that Φ∗µ = µ for some smooth
volume µ. Then htop(Φ) = hµ(Φ) if and only if Φ is Ck−ε-conjugate to an algebraic flow, for
ε > 0 arbitrarily small.

The Theorem 5.8 is related with the following conjecture:

Conjecture 5.9. [Katok Entropy Conjecture] Let (M, g) be a connected Riemannian man-
ifold of negative curvature and ψ be the corresponding geodesic flow. Then htop(ψ) = hL(ψ) if
and only if (M, g) is a locally symmetric space. Here L is the Liouville measure in SM .

A weak version of this was obtained by [BCG], which still highly depends on the structures
coming from the geometry of the flow. Other generalizations work with broader classes of
Anosov flows. Foulon in [F], showed that in the case of a contact Anosov flow Φ on a closed
three-manifold, Φ is, up to finite cover, smoothly conjugate to the geodesic flow of a metric of
constant negative curvature on a closed surface if and only if the measure of maximal entropy
is the contact volume. There, he asks the following question generalizing Conjecture 5.9:

Question 5.10. Let Φ be a smooth Anosov flow on a 3-manifold which preserves a smooth
volume µ. If htop(Φ) = hµ(Φ), smoothly conjugate to an algebraic flow?

Recall that the geodesic flow onM occurs on the unit tangent bundle SM , which has dimension
2 dim(M) − 1. Therefore, the Question 5.10 corresponds to the case of the geodesic flow on
surfaces, which was proved by Katok in [Ka] and [Ka2]. The low-dimensionality assumption of
Question 5.10 is required for a theorem in this generality, It is not difficult to construct non-
algebraic systems whose maximal entropy measure is a volume when the stable an unstable
distributions are multidimensional. The Theorem 5.8 provides a positive answer to Question
5.10.
We need the following result, which is due to Plante (see [Pl]). Basically, the result gives us
two alternatives for the strong stable and strong unstable manifold are or not dense on the
manifold when the Anosov flow satisfy Ω(ψ) = M .

Theorem 5.11. [Plante] Let ψt : M → M be an Anosov flow such that Ω(ψ) = M . Then
there are two possibilities:

(a) Each strong stable and each strong unstable manifold is dense in M , or

(b) ψt is a suspension (modulo time scale change by a constant factor) of an Anosov diffeo-
morphism of a compact C1 submanifold of codimension one in M .

We use the Theorem 5.8, Theorem 5.11, Ruelle’s inequality and Pesin’s formula to prove the
Theorem 1.5 discarding some cases that may appear for our geodesic flow.
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Proof of the Theorem 1.5.

We denote byMe(ϕ) the set of all ergodic ϕt-invariant measures.
Let µ ∈ Me(ϕ) and λ1 ≤ λ2 ≤ λ3 be the Lyapunov exponents concerning for to µ. Let
θ ∈ Per(ϕ) and µθ ∈ Me(ϕ) the unique ϕt-invariant probability measure supported on the
orbit of θ. Let λθ1 ≤ λθ2 ≤ λθ3 the Lyapunov exponents concerning for to µθ. In our case
by hypothesis λθ1 = −α, λθ2 = 0 and λθ3 = α. Then by Theorem 5.6 we can aproximate the
Lyapunov exponents of µ by Lyapunov exponents of µθ and we can conclude that for µ ∈Me(ϕ)
holds λ1 = −α, λ2 = 0 and λ3 = α.
We denote by L the Liouville measure on SM . Note that in this case, L is ergodic. (see [VO]
)
Now we will show that the Liouville measure on SM is a maximal measure of entropy. Indeed,
by Ruelle’s inequality, for µ ∈Me(ϕ) we have that

hµ(ϕ) ≤
∫
SM

χ+(θ)dµ(θ)

=
∫
SM

λ3dµ(θ)

=
∫
SM

αdµ(θ)

= α. (5.12)

Since ϕt is C2, by Pesin’s formula we obtain that

hL(ϕ) =
∫
SM

χ+(θ)dL(θ)

=
∫
SM

αdL(θ)

= α. (5.13)

Thus by (5.12) and (5.13), we conclude that for all µ ∈Me(ϕ) holds

hµ(ϕ) ≤ α = hL(ϕ).

Thus
htop(ϕ) = sup

µ∈Me(ϕ)
hµ(ϕ) ≤ α = hL(ϕ).

Hence

htop(ϕ) = α = hL(ϕ). (5.14)

In our case taking the smooth measure µ = L as the Liouville measure on SM and the flow
Φ = ϕ as an Anosov geodesic flow on SM , then by (5.14) we have that the topological entropy
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is equal to metric entropy of Liouville measure, then the Theorem 5.8 above implies that our
Anosov geodesic is Ck−ε-conjugate to an algebraic flow, for ε > 0 arbitrarily small.
Now by Definition 5.7 of Algebraic flow, we have that our Anosov geodesic flow is Ck−ε-
conjugate up to finite covers to a suspension of hyperbolic automorphism of the 2-torus or to
the geodesic flow on some Riemannian surface of negative curvature.
Since our flow ϕ is an Anosov geodesic flow, then it can not be conjugate to a suspension of
an automorphism of the 2-torus T2 (that by Theorem 5.11), thus it should be conjugate to the
geodesic flow of some closed Riemannian surface of constant negative curvature.
To conclude the proof of Theorem 1.5, we use the Theorem 4.3, the result about Ck conjugacy
rigidity in dimension 2 due to Croke (see [CLUV]).

The Theorem 1.5 provides the following Corollary, following the techniques of Chapter 4, which
has some relation to the Theorem 4.3 by Croke.

Corollary 5.12. If ϕt : SM → SM is Anosov geodesic flow, then ϕt can not be 1-conjugacy to
the geodesic flow of a manifold of constant negative curvature, unless M has constant negative
curvature.

On the other hand, note that the Theorem 5.6 due to Kalinin is true in any dimension and
any C2 Anosov geodesic flow where the Liouville measure is ergodic (see [VO]) then we obtain
the following result:

Theorem 5.13. If (M, g) is a compact Riemannian manifold with the same hypothesis of
Theorem 1.5 and assuming that the Liouville measures L is ergodic, we have that:

htop(ϕ) = hL(ϕ).

In other words, the Liouville measure is a measure of maximal entropy (MME).
Now, in dimension 2 joing the Theorem 1.5 and the Theorem 5.13, we have the following
Corollary:

Corollary 5.14. Let (M, g) be a compact Riemannian surface. If ϕt : SM → SM is Ck,
k ≥ 5, an Anosov geodesic flow. Then the following are equivalents:

(1) For all θ ∈ Per(ϕ) hold:

χ+(θ, ξ) = lim
t→+∞

1
t

log ‖dθϕt(ξ)‖ = α,

for all ξ ∈ Eu
θ \{0}.

(2) The Liouville measure L is a measure of maximal entropy.
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(3) The surface M has constant negative curvature KM = −α2.

On the hypothesis of Theorem 1.5 over the geodesic flow be Ck, k ≥ 5, we believe the theorem
is true for k ≥ 2, beacuse observation of the Theorem 5.8 on [SLVY] says that this theorem
can be true for k ≥ 2, but technical obstructions prevent finding the precise boundary of
required regularity. Also it is emphasized that regularity is extremely important for the rigidity
phenomenon.
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Appendix A

Index Form

Let (E, 〈, 〉) be a vector space with scalar product 〈, 〉. Let End(E) denote the set of endomor-
phisms and let Sym(E) denote the set of symmetric endomorphisms on E. If R : R→ Sym(E)
is a C∞-map (curvature operator), the linear differential equation:

J̈(t) +R(t)J(t) = 0, (A.1)

is called the Jacobi equation and its solutions J : R → E are called Jacobi fields. If
B : R→ End(E) is a solution of the matrix equation

B̈(t) +R(t)B(t) = 0, (A.2)

we call B a Jacobi tensor. B is a Jacobi tensor if and only if B(t)x is a Jacobi field for all
x ∈ E. The solutions of the Jacobi equations are generated by a time-dependent Hamiltonian
function. Define for each t ∈ R the Hamiltonian

Ht(x, y) = 1
2(〈y, y〉+ 〈R(t)x, x〉), (A.3)

then the Jacobi equation is equivalent to the Hamiltonian equation:

J̇1(t) = ∂Ht

∂y
(J1(t), J2(t)) = J2(t)

J̇2(t) = −∂Ht

∂x
(J1(t), J2(t)) = −R(t)J1(t))

Definition A.1. Let R : R→ Sym(E) be a C∞-map. We say that Jacobi equation

J̈(t) +R(t)J(t) = 0

has no conjugate points on [a, b] if for all Jacobi fields J with J(a) = 0 and J̇(a) 6= 0, we have
that J(t) 6= 0 for all t ∈ (a, b].
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The variational spects of the Jacobi equation are revealed by the index form.

Definition A.2. Let R : R → Sym(E) be a curvature operator and V = {X : [a, b] →
E|X is piecewise differentiable} be the vector space continuous and piecewise differentiable
curves in E. The symmetric bilinear form

I := I[a,b] : E × E → R,

with

I[a,b](X, Y ) =
∫ b

a

(
〈Ẋ(t), Ẏ (t)〉 − 〈R(t)X(t), Y (t)〉

)
dt (A.4)

is called the index form. If we want to specify the curvature tensor operator, we write IR or
IR[a,b].

Let X, Y ∈ V be differentiable on each interval of the subdivision a = t0 < t1 < ... < tk = b.
Then, using integration by parts, we obtain:

I(X, Y ) =
k∑
i=1
〈Ẋ, Y 〉

∣∣∣∣∣
ti

ti−1

−
∫ b

a
〈Ẍ(t) +R(t)X(t), Y (t)〉dt. (A.5)

This implies that X is a Jacobi field if and only if I(X,X) = 0 for all Y : [a, b] → E with
Y (a) = Y (b) = 0. Since

∂

∂s

∣∣∣∣∣
s=0

I(X + sY,X + sY ) = 2I(X, Y ), (A.6)

X is a Jacobi field if and only if it is a critical point of the action I(X) := I(X,X) on the space
vector fields with fixed endpoints.

Lemma A.3. (Index Lemma) Assume that the Jacobi equation has no conjugate points on
[a, b]. Then I[a,b] is positive definite on the subspace

V 0 := {X ∈ V |X(a) = X(b) = 0},

this mean,

I(X,X) = 0, for all X ∈ V 0, X 6= 0.
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Proof. Let us first assume that X ∈ V 0 is smooth. Consider the Jacobi tensor A with initial
conditions A(a) = 0 and Ȧ(a) = Id. Since the Jacobi equation has no conjugate points, there
is a smooth curve Y ∈ V such that X(t) = A(t)Y (t). In particular, Y (b) = 0. Then we obtain

I(X,X) = 〈Ẋ,X〉
∣∣∣b
a
−
∫ b

a
〈Ẍ +R(t)X,X〉dt

= −
∫ b

a
〈ÄY +R(t)AY,AY 〉dt−

∫ b

a
〈2ȦẎ + aŸ , AY 〉dt

= −
∫ b

a
2〈ȦẎ , AY 〉+ 〈Ÿ , ATAY 〉dt

= 2
∫ b

a
〈Ẏ , ȦT 〉dt+

∫ b

a
〈Ẏ , ˙̂

ATAY 〉dt.

Since

0 = AT Ȧ− ȦTA,

we obtain

( ˙̂
ATAY ) = ȦTAY + AT ȦY + ATAẎ = 2ȦTAY + ATAẎ .

Hence

I(X,X) =
∫ b

a
〈Ẏ , ATAẎ 〉dt.

In the general case, we deduce the same formula by integrating piecewise. This shows I(X,X) ≥
0 for X ∈ V 0. Furthermore, I(X,X) = 0 implies that Y is constant. Since Y (b) = 0, we deduce
that 0 = Y (t) = X(t) for all t ∈ [a, b].

This lemma shows for Jacobi equations without conjugate points on [a, b] that there are no
conjugate points inside the interval [a, b] as well. To see this, one considers for a ≤ t1 < t2 ≤ b
be piecewise differentiable curve X which is 0 on [a, t1] and [t2, b] and coincides with a Jacobi
field J on [t1, t2] with J(t1) = J(t2) = 0. Then it follows from (A.5) that I(X,X) = 0 and the
index Lemma A.3 implies that X vanishis identically.
The next corollary shows that for Jacobi equations without conjugate points, Jacobi fields
are not only critical points but minimize of the action I(X,X) on the space of piecewise
differentiable curves with fixed endpoints.
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Corollary A.4. (Minimizing property of Jacobi fields) Assume that the Jacobi equation
J̈(t) + R(t)J(t) = 0 has no conjugate points on [a, b]. Let J be a Jacobi field and X ∈ V be a
piecewise differentiable field with X(a) = J(a) and X(b) = J(b). Then

I(J, J) ≤ I(X,X), (A.7)

where the inequality is strict unless J = X.

Proof. From the Index Lemma A.3 and (A.5), we deduce

0 ≤ I(J −X, J −X) = I(J, J)− 2I(J,X) + I(X,X) = −I(J, J) + I(X,X). (A.8)

57



Bibliography

[A] D. Anosov, Geodesic flow on compact manifolds of negative curvature, Proc. Steklov Math.
Inst. AMS. translation, 1969.

[AK] Anatole B. Katok and Boris Hasselblatt, Introduction to the Modern theory of dynamical
systems. Encyclopedia of Mathematics and Its Applications, vol 54, Cambridge University
Press, Cambridge, 1995.

[B] J. Bolton, Conditions under which a geodesic flow is Anosov type, Mathematische An-
nalen, 240(2): 103-113, Jun 1979.

[BCG] G. Besson, G. Courtois, and S. Gallot. Entropies et rigidités des espace localement
symétriques de courbure strictement négative, Geom Funct. Anal. 5 (1995), no. 5, pp.
731-799.

[Bu] Clark Butler, Rigidity of Equality of Lyapunov exponents for geodesic flow, J. Differential
Geometry 109(1), 39-79, 2018.

[C] Conell, C.: Minimal Lyapunov Exponents, Quasiconformal Structures and Rigidity of
Nonpositively Curved Manifolds, Ergodic Theory and dynamical Systems 23(2): 429-446,
2003.

[CLUV] Book: Christopeher b. Croke, Irena Lasiecka, Gunther Uhlmann, Michael S. Vogelius.
Geometric Methods in Inverse Problems and PDE Control. The IMA volumes in Mathe-
matics and its applications (2003).

[CFF] C. Croke, A. Fathi, and J. Feldman, The marked length-spectrum of a surface of non-
positive curvature, Topology 31 (1992), no. 4, 847-855.

[Cn] Constantine, D., 2-Frame flow Dynamics and Hyperbolic Rank Rigidity in Nonpositive
Curvature. J. Mod. Dyn., 2(4): 719-740, 2008.

[C-K] C. Croke, B. Kleiner, Conjugacy and rigidity for manifolds with a parallel vector field.
J.Diff. Geom. 39(1994), 659-680.

[Cr] C. Croke, Rigidity for surfaces of non-positive curvature, Comm. Math. Helv. 65 (1990),
no. 1, 150-169.

58



[CK2] C. Croke and B. Kleiner, A rigidity theorem for simply connected manifolds without
conjugate points, Erg. Th. and Dyn. Syst. 18 (1998), pt. 4, 807-812.

[DM] R., de la LLave, R., Moriyón: Invariants for Smooth Conjugacy of Hyperbolic Dynamical
Systems. IV. Commun. Math. Phys. 116, 185-192 (1988).

[E] Patrick Eberlein, When is a geodesic flow of Anosov type?, i. J. differential Geom. 8(3):
437-463 (1973).

[F] Foulon, P.: Entropy rigidity of Anosov Flows in Dimension three Ergodic Theory and
Dynamical Systems 21(4)(2001), pp. 1101-1112.

[FH] Todd Fisher and Boris Hasselblatt, Hyperbolic Flows. EMS Zurich Lectures in Avanced
Mathematics. Vol 25. 2020.

[FO] Feldman, J., Ornstein, D.: Semi-rigidity of horocycle flows over compact surfaces of
variable negative curvature. Ergodic Theory Dyn. Syst. 7, 49-73 (1987).

[G] F.F. Guimarães, The integral of the scalar curvature of complete manifolds without con-
jugate points, Journal of Differential Geometry. 36, 651-662, (1992).

[GF] Gogolev, A., Rodriguez Hertz, F., Smooth Rigidity for Codimension one Anosov Flows,
arXiv:2112.01595v2.

[K] Wilhelm Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Annals
of Mathematics, 99(1): 1-13, 1974

[Ka] Katok, A.; Entropy and Closed Geodesics Ergodic Theory Dynamical Systems, 2 (1982),
339-366.

[Ka2] Katok, A.; Four Applications of Conformal Equivalence to Geometry and Dynamics Er-
godic heory Dynamical Systems, 8 (1988), 139-152.

[Kal] Kalinin, B.; Livs̃ic theorem for Matrix Cocycle Ann. of Math. (2) 173(2): 1025-1042,
2011.

[KB] Burns, K., Gelfert, K.: Lyapunov Spectrum for Geodesic Flows of Rank 1 Surfaces, Dis-
crete and Continuous Dynamical Systems - A 14 (2014), 1841-1872.

[Kn] G. Knieper, Chapter 6, Hyperbolic dynamics and riemannian geometry, Handbook of
Dynamical Systems, vol. 1A, 453-545, Elsevier Science, 2002.

[L] Gree, L. W., A Theorem of Hopf. Michigan Math. J., 5(1): 31-34, 1958.

[M] R. Mañé, On a Theorem of Klingenberg, Dynamical Systems and Bifurcation Theory, M.
Camacho, M. Pacifico and F. Takens, eds., Pitman Research Notes in Math, 160 (1987),
319-345.

59



[MF] Freire, A.; Mañé, R. On the entropy of the geodesic flow in manifolds without conjugate
points. Math. 69 (1982): 375-392.

[MR] I. Dowell and S. Romaña, A rigidity Theorem for Anosov geodesic flows in Manifolds of
Finite Volume, arXiv.: 1709.09524, 2017.

[MR1] I. Dowell and S. Romaña, Contributions to the study of Anosov Geodesic Flows in non-
compact manifolds. Discrete and Continuous Dynamical Systems. Vol 40, number 9. pp.
5149-1171. September 2020.

[MR2] I. Dowell and S. Romaña, Riemannian manifolds with Anosov geodesic flow do not have
conjugate points. arXiv:2008.12898.

[N] Cavalluci, N.: Volume Entropy and Rigidity of Locally Symmetric Riemannian Manifolds
with Negative Curvature (2016)

[Ot1] J.-P. Otal, Le spectre marqué des loungueurs des surfaces à courbure négative, Ann. of
Math. 131 (1990), 151-162.

[Ot2] J.-P. Otal, Sur les longueurs des géodésiques d’une métrique à courbure négative dans le
disque, Comment Math. Helv. 65 (1990), no. 2, 334-347.

[P] Gabriel P. Paternain, Geodesic flows. Progress in Mathematics, Birkhauser, Vol 180, 1999.

[Pl] Joshep F. Plante, Anosov Flows, American Journal of Math. Vol 94, No 3 (Jul, 1972), pp
729-754.

[SLVY] De Simoi, J., Leguil, M., Vinhage, K., Yang, Y. Entropy Rigidity for 3D Conservative
Anosov Flows and Dispersing Billiards (2020)

[T] Tomter, P.; Anosov Flows on infra-homogeneous Spaces, Global analysis (Proc. Sympos
Pure Math., Vol XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.L.: (1968),
pp. 299-327.

[VO] Marcelo Viana, Krerley Oliveira.: Fundamentos da Teoria Ergódica. SBM. 2019.

60


	Introduction
	Preliminaries
	Anosov Geodesic Flow
	No Conjugate Points and Riccati Equation
	Stable and Unstable Foliations
	Compact Case
	Finite Volume Case
	Local Product Structure


	Anosov geodesic flow and periodic orbits
	Shadowing Lemma
	Density of Periodic Orbits in the Compact Case
	Density of Periodic Orbits in the Finite Volume Case
	Shadowing and Expansiveness in Finite Volume Case


	Conjugacy and Rigidity
	Conjugacy Rigid, Conjugacy and Equivalence
	Conjugacy and Rigidity
	Conjugacy between certain types of manifolds

	Lyapunov Exponents and Rigidity
	Pinched Negative Curvature, Lyapunov Eponents and Rigidity in the Finite Volume Case
	Rigidity in Dimension 2
	Setting


	Appendix
	Index Form

