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Summary

We study the relationship between the dynamic properties of a geodesic flow ¢! : SM — SM
and the rigidity of the geometry of the manifold M.

We study some conditions for two geodesic flows defined in compact Riemannian manifolds of
the same dimension, admit a certain type of conjugacy. Such conditions are imposed on the
sectional curvatures of the manifolds. For this purpose, we extend a result on conjugacy and
rigidity of Romania - Melo, they show that under some condition in the sectional curvatures of
two compact Riemannian manifolds of the same dimension, if there is a certain special type of
conjugacy (1-conjugacy) between the corresponding geodesic flows then the sectional curvatures
are constants.

On the other hand, a result that relates Lyapunov exponents and rigidity is due to Clark
Butler, he shows that if all Lyapunov exponents of a geodesic flow ¢! : SM — SM defined in
a compact Riemannian manifold of negative curvature are constants along periodic orbits then
the sectional curvature of M is a negative constant. We extend that result in the following two
context. First, for non-compact manifold of finite volume with pinched negative curvature and
some restriction on the values of Lyapunov exponents. Second, for compact surfaces, changing
the negative curvature condition for the geodesic flow to be Anosov.

Keywords: Conjugacy, Lyapunov exponents, Rigidity and Anosov geodesic
flow.



Resumo

No6s estudamos a relagio entre as propriedades dinAmicas de um fluxo geodésico ' : SM — SM
e a rigidez da geometria da variedade M.

Noés estudaremos algumas condigoes para dois fluxos geodésicos definidos em variedades Rie-
mannianas compactas da mesma dimensao, admitam certo tipo de conjugacao. Tais condigoes
sdo impostas sobre as curvaturas seccionais das variedades. Especificamente, na intersecao dos
intervalos de curvatura seccional. Para isso, nés estendemos um resultado sobre conjugacao e
rigidez de Romana-Melo, eles mostram que baixo alguma condi¢ao nas curvaturas seccionais de
duas variedades compactas da mesma dimensao, se existe um certo tipo especial de conjugagao
(1-conjugagao) entre os correspondentes fluxos geodésicos entdao as curvaturas seccionais das
variedades sao constantes.

Por outro lado, um resultado que relaciona exponentes de Lyapunov e rigidez é devido a
Clark Butler, quem mostra que se todos os exponentes de Lyapunov de um fluxo geodésico
o' SM — SM definido em uma variedade Riemanniana compacta de curvatura negativa
sao constantes ao longo de orbitas periodicas, entao a curvatura seccional de M ¢é constante
negativa. Nos estendemos esse resultado nos seguintes dois contextos. Primeiro, para variedades
nao compactas de volume finito com curvatura pinched negativa e alguma restricao nos valores
dos exponentes de Lyapunov. E segundo, para superficies compactas, trocando a condi¢ao de
curvatura negativa pela condi¢ao do fluxo geodésico ser Anosov.

Palavras-Chaves: Conjugagao, exponente de Lyapunov, Rigidez e Fluxo
Geodésico Anosov.



Abstract

The density property of periodic orbits for an Anosov flow in a compact manifold is well known.
We prove that this property is still valid for an Anosov geodesic flow on manifolds of finite
volume (Theorem [1.1)). This property will be used to know when two geodesic flows defined in
manifolds of the same dimension admit certain types of conjugacy (See Chapter 4} Section .
Finally, we prove, for the Anosov geodesic flow, a rigidity result on the sectional curvature
under the condition that the Lyapunov exponents are constant along periodic orbits, which
is an extension of the Butler result [Bu] in the following two contexts: in any n-dimensional
manifold of finite volume (Theorem and in the compact case in dimension 2 (Theorem |1.5]).
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Chapter 1

Introduction

The geodesic flow plays a significant role in modern theories of both differential geometry and
dynamical systems and, primarily on Riemannian manifolds, has been extensively studied (cf.
[P] and [Kn|] for a comprehensive introduction).

In several works some properties of an Anosov geodesic flow are highlighted. For example in
[AK], for a compact Riemannian manifold negatively curved (M, g), we have that the geodesic
flow ¢! : SM — SM is Anosov, which implies that the geodesic flows has special submanifolds
W and W** called stable and unstable manifolds, respectively. Using these submanifolds
we have special properties of the geodesic flow as Shadowing, expansiveness, local structure
product, and ergodicity.

In the non-compact case, this mean when the manifold M is a complete Riemannian manifold;
the hyperbolicity of the geodesic flow is proved under restriction over negative pinched curvature
Ky (this mean, —c? < Ky < —a? < 0, for some 0 < a < ¢) (cf. [Knl). In [E], Eberlein gives
equivalent conditions for the geodesic flow to be Anosov. In this case, there is no reference
where the basic properties of the stable and unstable are studied to obtain good properties
of the periodic orbits. In the chapter 1, we study the existence of local stable and unstable
manifolds for non-compact case and local product structure.

On the other hand, with the property of the hyperbolicity of a flow W' : N — N, it is of interest
to know the density of periodic orbits, the shadowing property and transitivity. In the compact
case, when the flow is Anosov, we have that density of periodic orbits of ¥* on N is equivalent
to transitivity of W' (See [FH]). In the non-compact case, if ¢ : SM — SM is an Anosov
geodesic flow, it is not know the density of the periodic orbits in SM, although is results seen
easy. In the chapter 3, we deal with the density of the periodic orbits for an Anosov geodesic
flow on a manifold of vol(M) < co. Thus, we prove

Theorem 1.1. If ¢ : SM — SM is an Anosov geodesic flow and M has finite volume, then
then Per(yp) = SM.
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We hope that this kind of result can be used to understand the topological entropy of Anosov
geodesic flow on manifold of finite volume.

In the chapter 4, we deal with a problem of rigidity and conjugacy between the geodesic flow of
two manifolds. An interesting related problem in this context is knowing that types of manifolds
admit a certain type of conjugacy between their geodesic flows under some conditions of their
curvatures. In this chapter, we extended a result of Romana and Melo [MR] and we use it to
find results of rigidity of conjugacy (see [CLUV], for more details).

Moreover, we have the result of Feldman and Ornstein [FO] on the regularity of conjugacy of
horocycle flows defined on surfaces of negative curvature. In the case of Anosov flows in a com-
pact 3 dimensional manifold, we have the result due to De la LLave and Moriy6n [DM]. They
show that if two C'*° transitive Anosov Flows in a 3-dimensional manifold are topologically con-
jugate and the Lyapunov exponents on corresponding periodic orbits agree, then the conjugacy
homeomorphism is C*°. Recently Gogolev and Rodriguez Hertz in [GE] introduce the matching
functions technique in the setting of Anosov flows, that can be used to improve regularity of
the conjugacy between conservative codimension one Anosov flows defined in manifolds with
dimension > 4. Specifically they prove that a continuous conjugacy must, in fact, be a C!
diffeomorphism for an open and dense set of codimension one conservative Anosov flows. In
this context, we prove the following result, which improved the result of [MR]

Theorem 1.2. Let M and N be two compact Riemannian manifolds with the same dimension.
Assume that the sectional curvature satisfies inf Ky; > a?sup Ky for some a > 0 and M has no
conjugate points. If h is a 1-conjugacy in orbits between ', and ©' with odd reparametrization
f(t) satisfying f(t) > at for all t >0, then Ky = a*sup Ky = a*Ky.

Other interesting problems related to the rigidity of Lyapunov exponents of a geodesic flow
appear in [Bul, where Butler show that if all Lyapunov exponents of a geodesic flow ¢’ :
SM — SM defined on a compact negatively curved Riemannian manifold M are constant
on periodic orbits, then the sectional curvature of M is negative constant. In chapter 5, we
extended the result of Butler in two context, first for non-compact manifolds of finite volume,
with pinched negative curvature and some restriction on the value of the Lyapunov exponents
(see Theorem , and second for compact surfaces, change the condition of negative curvature
by the condition of Anosov geodesic flow (see Theorem [1.5)). More specifically, we prove the
following two theorem:

Theorem 1.3. Let (M, g) be a complete Riemannian manifold of finite volume and such that
—2 < Ky < —a?<0. Let o' : SM — SM be the geodesic flow. Consider b € {c,a} and
assume that for all 8 € Per(¢") we have

1
X0, = lim_—log [[do' ()] =,

for all € € EY\{0}. Then K = —1?.
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Note that the condition —c? < Kj; < —a? implies that a < x7(0,€) < ¢ for all § € Per(¢!)
and £ € Ey\{0}. So, the Theorem claims that if x™(6,€) (unstable Lyapunov exponent)
is equal to « or c¢(the endpoints of closed interval [« c]) then we have rigidity in the sectional
curvature of M.

The case case b = ¢ has been prove by Melo - Romana (cf. MR Corollary 3.6]). Our proof,
to the case b = «a, used the Theorem and one Mané-Freire result (cf. [MF]).

In [MRI], support by the Butler’s result and [MR] Corollary 3.6] was conjectured that

Conjecture 1.4. Let M be a complete Riemannian manifold with finite volume, whose geodesic
flow is Anosov. If the unstable Lyapunov exponents are constants over all periodic orbits, then
M has constant negative sectional curvature.

The Theorem shows the conjecture in the case of pinched negative curvature, when the
unstable Lyapunov exponent is the minimal or maximal possible. The conjecture remains open
for general case, even in compact manifolds. Thus, our last result in this work is to give a
positive answer of this conjecture in the 2-dimensional compact case.

Theorem 1.5. [Main Theorem]| Let ¢! : SM — SM be the C*-geodesic flow with k > 5 and
M a compact surface. Suppose that @' is Anosov and for all § € Per(p) holds

o1
X0, = lim_—log|ldeg’ ()] = o
for all £ € E\{0}. Then K = —a?.

The idea behind of the proof of this theorem is to use a Kalinin’s result (cf. [Kal]) to show that
the Liouville measure is a measure of maximum entropy (MME), so find some rigidity on the

curvature. In fact, we prove that the Theorem is equivalent to having the Liouville measure
as a MME in the 2-dimensional case (see Corollary |5.14]).

As the Liouville measure is ergodic for Anosov geodesic flow defined on the unitary tangent
bundle of a compact Riemannian surface (cf. [VO]), then using the Kalinin result (cf. [Kal|)
and the hypothesis of the Theorem (in any dimension) implies that the Liouville measure
is a measure of maximal entropy (see Theorem . This property is linked with the Katok
Entroy Conjecture (see Conjecture and Section [5.2)).



Chapter 2

Preliminaries

2.1 Anosov Geodesic Flow

In this section we will give some definitions of Anosov flows and results concerning the Anosov
geodesic flow.

Definition 2.1. Let N be a complete Riemannian manifold and ¢* : N — N a flow of class C"
(r > 1). We say that the flow Y' is Anosov if there is a Y'-invariant continuous splitting of the
tangent bundle of TN, given by TN = E* @ E° ® E*, where E° is the line bundle tangent to
the flow Yt and E*, E* satisfy the following conditions: There are C > 0 and 0 < X\ < 1 such
that for all 6 € N:

|det)!| s (a)]| < CA', V>0
|de ™ | guey]| < O, ¥ >0

E? and E* are called the stable and unstable subbundles of TN, respectively.

Let (M, g) be a complete Riemannian manifold. Denote by SM = {0 = (p,v) : p € M,v €
T,M} unit tangent bundle of M. For 6§ = (p,v) € SM. Let 7y(t) denote the unique geodesic
with initial conditions 75(0) = p and 4(0) = v. For t € R, let ¢' : SM — SM be the
diffeomorphism given by ©'(0) = (79(¢),v4(t)). Recall that this family is a flow, it is called the
Geodesic flow in the sense that !+ = @' o ©® for all s,t € R.

Let V := ker Dr (where 7 : TM — M is the canonical projection) denote the vertical sub-
bundle of TT M (tangent bundle of TM). Let K : TTM — T M be the Levi-Civita connection
map of M. Recall K is definded as follow: let £ € TyT'M and z : (—e,e) — TM be a curve
adapted to &, that is, z(0) = 6 and 2/(0) = £, where 2(t) = (a(t), Z(t)), a(—e,e) — M,
a=moz, and Z is a vector field along of a.

Define



Ko(§) = Var Z(1)]i=0

Let H :=ker K be the horizontal sub-bundle. For each 6, the maps dy7|w ) : H(0) — T,M
and Ky|v ) : V(0) = T,M are linear isomorphisms. Furthermore, TyTM = H(0) ® V(§) and
the map jg : TyT'M — T,M x T,M given by

Jo(&) = (dom(0), Kp(&))

is a linear isomorphism.

From now on, whenever we write £ = (£,,§,) we mean that we identify £ with j,(§), where
&n = dom(§) and & = Ky(§).

V=ker(dny) =T, M

Tp(TM)

Ko(®)=2, =y

ldﬂo i
v

0 dmy(S)

M

Figure 2.1: Decomposition on horizontal and vertical bundle.

Using the decomposition TyT'M = H(6) @ V (), we can define in a natural way a Riemannian
metric on 7'M that makes H(6) and V' (#) orthogonal subspaces. This metric is called the
Sasaki’s metric and is given by

g5 (&,m) = (dem(€), dom(n)) + (K4(€), Ko(n))

for all £ and n € TTM.

Using the identification jy, the geodesic vector field has a very simple expression. The geodesic
vector field G : TM — TTM is given by:



c() = 2

= ot o'(0) = o

e CHORHO)

t=0

t=0

where 6§ = (p,v) and 7 is, as usual, the unique geodesic with initial conditions 74(0) = p
and 7,(0) = v. Note that t — 75(t) is the parallel transport of v along ~y. So, using the
identification jy, we have G(0) = (v,0).

From now on, we consider the Sasaki’s metric restricted to the unit tangent bundle SM. It is
easy to proof that the geodesic flow preserves the volume measure generated by this Riemannian
metric on SM. However, this volume measure on SM coincides with the Liouville measure £
up to a constant. When M has finite volume, the Liouville measure is finite. (for more details
see [P])

Consider the one-form 5 in TM define for § = (p,v) by
Bo(€) = g5 (€, G(B)) = (dogm(€), ).

Observed that ker By D V(0). It is possible prove that a vector & € TpT'M lies in TySM with
0 = (p,v) if and only if (Ky(&),v) = 0. Furthermore, when restricted to SM the one-form
becomes a contact form invariant by the geodesic flow whose Reeb vector field is the geodesic
vector field G. However, the sub-bundle S = ker (3 is the orthogonal complement of the subspace

spanned by G. Since [ is invariant by the geodesic flow, then the sub-bundle S is invariant by
¢!, that is, ¢'(S(0)) = S(©'(#)) for all # € SM and for all t € R.

To understand the behavior of dgp® let us introduce the definition of Jacobi field. A vector
field J along of a geodesic 7y is called a Jacobi field if it satisfies the following equation:

J"+ R(7g, J )y =0

where R is the Riemannian curvature tensor of M and ™” denotes the covariant derivative
along 7g. Note that, for £ = (w1, we) € TySM (in the horizontal and vertical decomposition),
with wy, wy € T,M and (v, wy) = 0, it is known that dpp’(§) = (Je(t), J{(t)), where J¢ denotes
the unique Jacobi field along 5 such that J¢(0) = w; and J;(0) = wy. (for more details see [P])

An important example historically and mathematically of a hyperbolic flow is the geodesic
flow of a negatively curved manifold. Indeed, the concept of an Anosov flow arose as Anosov
axiomatized the arguments used in working with geodesic flow on manifolds of negative sectional
curvature. The motivation was that these are mechanical (in particular, physical) systems
because this represents the motion of a free particle on the manifold. From that point of view, it
is natural to think of geodesic flow as Hamiltonian flows for the Hamiltonian H (z,v) = 3g(v,v),
which is the kinetic energy.

One result that relationed the hyperbolicity of the geodesic flow and the sectional curvature of
the manifold is the following result. (See [Kn] and [E])



Theorem 2.2. [Anosov| The geodesic flow on the unit tangent bundle SM of a complete Rie-
mannian manifold M with negative pinched sectional curvature is an Anosov flow with respect
to the Sasaki metric on SM.

The negative pinched condition of the sectional curvature Kj; means: —c? < Ky < —a? <
0, for some constants ¢ > a > 0.

Example 2.3. The pseudosphere is a surface of revolution generated by a curve called tractriz
about its asypmtote. It has constant negative curvature and finite volume. By Theorem [2.2] we
have that the geodesic flow on the unit tangent bundle is Anosov.

Figure 2.2: Pseudosphere.

2.2 No Conjugate Points and Riccati Equation

Suppose p and ¢ are two points on a Riemannian manifold, we say that p and q are conjugates
if there is a geodesic v that connects p and ¢ and a non-zero Jacobi field along v that van-
ishes at p and ¢q. When neither two points in M are conjugated, we say the manifold M
has no conjugate points. Another important kind of manifolds are the manifold without focal
points, we say that a manifold M has no focal points, if for any unit speed geodesic v in M and
for any Jacobi field J on « such that J(0) = 0 and J’(0) # 0 we have (||J]|?)'(t) > 0, for any
t > 0. It is clear that if a manifold has no focal points, then it has no conjugate points.

The more classical example of manifolds without focal points and therefore without conjugate
points, are the manifolds of non-positive sectional curvature. It is possible to construct a
manifold having positive curvature in somewhere, and without conjugate points. There are
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many examples of manifold without conjugate points. We emphasize here, for example, in [M]
Mané proved that, when the volume is finite and the geodesic flow is Anosov, then the manifold
has no conjugate points. This latter had been proved by Klingenberg in the compact case (see
[K]). In the case of infinite volume the result of Mané was solved by Melo - Romana in one
pre-print paper [MR2] over the assumption of below bounded of sectional curvature.

Now suppose that M has no conjugate points and its sectional curvatures are bounded below
by —c?. In this case, if the geodesic flow ' : SM — SM is Anosov, then in [B] Bolton showed
that there exists a positive constant 6 such that for all § € SM the angle between Ej and Ej
is greather than . Furthermore, if J is a perpendicular Jacobi vector field along vy such that
J(0) = 0 then exist A > 0 and so € R such that ||J(¢)|| > A||J(s)| for t > s > so. Therefore,
for £ € Ej and n € Ej since || Je(t)|| — 0 as t — 400 and ||.J,(t)|| — 0 as t — —oo follows that
Je(0) # 0 and J,,(0) # 0. In particular, £5 NV (0) = {0} and E§ NV (0) = {0} for all § € SM.

For § = (p,v) € SM, we denote by N(0) := {w € T,M : (w,v) = 0}. Moreover, by
the identification with the horizontal and vertical space, the horizontal space can be write as
H(0) = {0} x N(0) and the vertical space as V() = N(0) x {0}. Thus, if E C S(0) :=
ker 3 = N(#) x N(0) is a subspace, dimE = n — 1, and E N (V(0) N S(#)) = {0} then
EN(H(0)NS(H))*+ = {0}. Hence, there exist a unique linear map 7' : H(0)NS(0) — V(0)NS(0)
such that F is the graph of T'. In other words, there exists a unique linear map 7" : N(6) — N(6)
such that £ = {(v,Tv) : v € N(0)}. Furthermore, the linear map 7" is symmetric if and only
if £ is Lagrangian (see [P]).

It is known that if the geodesic flow is Anosov, then for each § € SM, the subbundles Ej
and Ej are Lagrangian (see [P] for the definition of Lagrangian subspace). Therefore, for each
t € R, we can write dop'(Ef) = L3y = Graph(Us(t)) and dop'(E) = Ei ) = Graph(Uy(1)),
where Us(t) : N(¢'(0)) — N('(9)) and U,(t) : N(¢(0)) — N(¢"(0)) are symmetric maps.
Now we describe a usefull method of L. Green (see [L]) to see what properties the maps Ug(?)
and U,(t) satisfies.

Let vy be a geodesic and consider Vi, V5, ...V, a system of parallel orthonormal vector fields
along vy with V,,(t) = v,(t). If Z(t) is a perpendicular vector field along v4(t), we can write

200 = ¥ w®Vi()

Note that the covariant derivative Z'(s) is identified with the curve o/ (s) = (¥} (t), y5(t), ..., y.,_1(t)).
Conversely, any curve in R"! (where n = dim(M)) can be identified with a perpendicular vec-

tor field on ~y(t).

For each t € R, consider the symmetric matrix R(¢) = (R;;(t)), where 1 <i,5 <n—1, R; ;(t) =
(R(vp(t), Vi(t))vy(t), V;(t))) and R is the curvature tensor of M. Consider (n — 1) x (n — 1)
matrix Jacobi equation

Y"(t) + R)Y(t) = 0 (2.1)



If Y(t) is a solution of then for each x € R™! the curve B(t) = Y (t)x corresponds
to a Jacobi perpendicular vector field on ~y(t). For 6 € SM, r € R, we consider Yy, (t) be
the unique solution of satisfying Yy,.(0) = I and Yp,(r) = 0. In [L], Green proved that
lim, ,_ Yp,(t) exists for all # € SM (see also [E], Sect. 2). Moreover, if we define:

Youl(t) i= lim Yy, (t), (2.2)

we obtain a solution of Jacobi equation ([2.1)) such that det Yy, (¢) # 0. Furthermore, it is proved
in [L] (see also [ME] and [E]) that

D;;f’"(t): lim DYy,

r——oco (t

QF

However, if

DYy, DYy,
0 — ’ . — )
then
Uu(8) = im U,(6),
and follows that (see [ME])
DYpu /vy -
Ul (0)) = =2 (Y5 (1)

for all t € R. Therefore, U, is a symmetric solution of the matrix Riccati equation:
U'(t) + U*(t) + R(t) = 0. (2.3)

Analogously, taking the limit when r — +oo, we have defined U(6), that also satisfies the
Riccati equation . Furthermore, in [L], Green also showed that, in the case of curvature
bounded below by —c?, symmetric solutions of the Riccati equation which are definded for all
t € R are bounded by ¢, that means

sup [|Us(8)[| < ¢ and  sup [U(t)]| < c. (2:4)
t t

2.3 Stable and Unstable Foliations

For compact manifold, Anosov flows have an important result called the Stable - Unstable
Manifold Theorem, which guarantees that the condition of hyperbolicity implies the existence
of certain submanifolds W?** and W** called Stable and Unstable Manifolds, whose tangent
spaces are the subspaces E® and E“, respectively. They are smoothly immersed manifolds and
these manifolds form foliations tangent to the stable and unstable subbundles.



2.3.1 Compact Case

Theorem 2.4. [Stable and Unstable Manifold Theorem| Let ¢ : M — M be a Anosov

- flow (with r > 1), M compact and ty > 0. Then for each x € M there is a pair of
embedded C™ disks W§,., Wi, depending continuosly on x in the C'- topology and called the
local strong-stable and the local strong-unstable manifold of x, respectively, such that

(1) TxVVlf)c(I) = Eii TCCVVZOC = Eu

(2) &' (Wige(z)) C Wie(@'(x)) and o~ (Wig(x)) C Wig (™" (x)) fort = to,
(3) for every § > 0 there exist C(0) such that

d(¢'(x),¢'(y)) < CO)A+0d)d(zy) for y € W.(z), t>0
A~ (x),¢7(y)) < CO)N'=08) d(zy) for y € Wi (z), t>0,

(4) there exists a continuous family U, of neighborhoods of x such that

Wiew) = {ule'(y) € Upiiwy for >0, lim d(e'(x),¢'(y)) = 0},
Wige(w) = {yle™'(y) € Uptw) for t>0, lim d(p™"(x),¢"(y)) = 0}.

Observation 2.5. A proof of Theorem|[2.4] is using the Hadamard-Perron Theorem (See [AK])
applied to the time to map @ with T,M = E* & (E° & EY) to obtains the existence of W (z)
satisfying (1)-(4) for t € Ntg = {nto : n € N}. The same with T,M = (E5 @ E°) & E* yields
We.(x) satisfying (1)-(4) with t € Ntyg. Once (3) holds for t € Nty then holds for t > 0 by

adjusting the constant C(0) since {¢"}icjo] s equicontinuous and M is compact (see [AK]).

Remark 2.6. With a little care one can replace the condition t >ty in (2) by t > 0. The sets

W UOsD (Wig'@) = yeM: lm dg'(x).¢'(y) =0},
W) = U (Wie @) = e M lim dip™(@)7'(0)) =0}

are defined independently of a particular choice of local stable and unstable manifolds, and are
smooth injectively immersed manifolds called the global strong-stable and strong-unstable
manifolds. The manifolds

We(z) = {J @' (W*(2)) and W (x):= [J ¢"(W"(2))

teR teR

are called center-stable and cente-unstable manifolds (or weak-stable and weak-unstable
manifolds) of x. Note that T,W* = E5 @ E2 and T,W = E? & E*. (See Figure



Wcu(p)

Wcs(p)

Figure 2.3: Local center-stable and center-unstable leaves.

2.3.2 Finite Volume Case

An important observation in the Theorem on the proof of existence of the local stable-
unstable manifolds is the construction of special charts depending of the injectivity radius of
exponential map for its construction. (see [AK])

Now in the non compact case, with the only condition of hyperbolicity of our manifold M,
we can imitated the proof of the Stable-Unstable Manifold Theorem (Theorem for the
construction of local stable-unstable manifold on each point z € M, one crucial diference here
in the non compact case is that the sizes of local stable-unstable manifolds vary with the point
x € M. Since in the non compact case, for every point z € M there exists €(x) > 0 (injectivity
radius of exponential map) such that the exponential map exp, : B(0,,e(z)) C T,M — M
is an diffeomorphism over its image and that charts are used in the construction. Now in the
compact case, we can choose 0 < €y := inf{e(z) > 0 : z € M}. In the non compact case,
we can not guarantee that ,;, > 0. Even in the Finite Volume case, it could happen that the
injectivity radius of exponential map tends to 0 in the ends.

However, by the observation above, in the finite volume case we can proof the existence of local
stable-unstable manifolds, but in this case we have the size of local stable-unstable manifold
vary with the point x € M. This mean, the size of local stable-unstable manifold is not uniform.

Other important observation on the proof of the existence of local stable-unstable manifold
(Theorem , as already mentioned, is that as the size of local stable-unstable manifolds
depends of injectivity radius of exponential map over each point x € M, we can restrict ourselves
to any compact set K of M for choose ¢, := inf{e(x) > 0: 2 € K} > 0 (injectivity radius of
exponential map restricted to the compact set K C M) and thus we can choose one fix size of



the local stable-unstable manifolds for every point z € K.

0 e

™ ' BN,

L=

Figure 2.4: Action of the exponential map of three different initial velocities u, k,v € T, M.

We summarize the observations above over existence of local stable-unstable manifold in the
following theorem:

Theorem 2.7. [Finite Volume| Let o' : M — M be a Anosov C" - flow (with r > 1) and
Vol(M) < +o0o. Then for each x € M there is a pair of embedded C* disks W7y, Wi,y C M
called the local strong-stable and local strong-unstable manifolds of x € M of size e(x) > 0

such that:

T

(2) For every compact subset K C M there exists i := inf{e(x) > 0: 2 € K} > 0 such that
for every x € K we have that W (x) and we (x) with uniform size.

(3) Wi (@) N Wi,y (x) = {z}.

Proof. The proof follows the same arguments that ([AK]), O



2.3.3 Local Product Structure

In this subsection we comment about the Local Product Structure on the compact case and
the non compact case. The following result appears in the compact case and characterizes the
local maximility through local stable and stable manifolds. (See [E'H])

Theorem 2.8. [Bowen Bracket] For a hyperbolic flow o' : M — M and € > 0 sufficiently
small there exists a 6 > 0 such that if x,y € M such that d(z,y) < e, then there exists some
t =t(x,y) € (—¢,¢) such that

W2(e' () N W2(y)) = {[z,y]}

consists of a single point. This intersection point [x,y] of W (x) and W*(y) is called the
Bowen Bracket of x and y, and there exists Co = Co(6) > 0 such that if x, y € M and
d(z,y) <9, then dy(o" ™ (2), [2,y]) < Cod(w,y) and du(y, [z,y]) < Cod(,y), where dy and d,

denote the distances along the stable and unstable manifolds.

Remark 2.9. In the Theorem above a complementary choice would be Wi(z) N W (y) =

{lz, ]}

Now, when we have a hiperbolic flow ¢! : M — M and M is not necessarily compact, the
Theorem above is still true for compact balls of M, more specifically:

Theorem 2.10. Given zog € M and € > 0. Consider the compact ball Blxg,e] C M. Then
there exist 0 > 0 and 1 > 0 such that for all v,y € B(xo,§) we have W (z) NW;*(y) = {w} €
B(ZL’(), 5).

Proof. The same proof on [F'H| holds in this case because we restrict ourselves to one compact
ball and the compactness of ball allows us to obtain uniform constants 6 > 0 and n > 0. O

An analogous result holds for W*(x) and Wi (y).

10



Chapter 3

Anosov geodesic flow and periodic
orbits

3.1 Shadowing Lemma

The orbit structure of hyperbolic dynamical system has a distinctive and iconic richness and
complexity, and these features can be derived from what thereby appears as a core feature of
hyperbolic dynamics: the shadowing of orbits. In this section, we remember the Shadowing
Lemma for flows and the expansivity in the compact case (See [FH] and [AK]).

Definition 3.1. Let ' : M — M be a flow on a complete Riemannian manifold.

1 [Pseudo Orbit] An e-pseudo orbit or e-chain for ©' on M is a map h : I — M on a
non trivial interval I C R such that

dh(t+7),0"(h(t))) <e, for t,t+7€l and |7| <1

2 [Shadowing]| Let h be an e-pseudo orbit for p'. Then h is said to be d-shadowed if there
exist a point p € M and a homeomorphism o« : R — R such that «(t) — t has Lipschitz
constant § and d(h(t), p*®(p)) < § for allt € R. A set K C M has the Shadowing
property if for any 6 > 0 there is an € > 0 such that any e-pseudo orbit in K is J-
shadowed by a point p € M. We say that ©' has the shadowing property if this holds for
K =M. A set K C M has L-Lipschitz shadowing for ¢y > 0 if any e-pseudo orbit in
K with € < gy is Le-shadowed by a point p € M.

Definition 3.2. [Expansiveness| Let ' : M — M be a flow on a compact Riemannian
manifold. We said that o' is expansive if for all ¢ > 0 there exists a 6 > 0, called an
expansivity constant (for €), such that if p,q € M, h : R — R continuous, h(0) = 0, and
d(p'(p), "D (q)) < 8, for all t € R, then q = ¢ (p) for some ty € (—¢,¢).

11



Theorem 3.3. [Shadowing Lemma] A hyperbolic flow has a property of L-Lipschitz shadow-
ing for some eg > 0 and for some L > 0. The shadowing point need not be unique because neither
is the choice of the parametrization. But the shadowing orbit is unique and the shadowing point
is determined up to a small shift within that orbit.

The uniqueness assertion of Theorem implies that no two orbits can shadow each other:

Corollary 3.4. A hyperbolic flow ' : M — M in a compact Riemannian manifold is expansive.

The uniqueness assertion of Theorem implies not only expansivity but also that the shad-
owing orbit is periodic when one starts with a periodic pseudo orbit.

Theorem 3.5. [Anosov Closing Lemma] For a Anosov flow ¢' : M — M in a compact
Riemannian manifold there exist g, L > 0 such that for € < g¢ any periodic e-pseudo orbit is
Le-shadowed by a unique periodic orbit for ¢t

3.2 Density of Periodic Orbits in the Compact Case

The knowledge of the distribution and density of periodic orbits of Anosov flows and more
generally hyperbolic flows is a very interesting problem because it gives us more information
about the dynamics of the system. One classical example is the Anosov geodesic flow over
the unit tangent bundle SM of a compact manifold M with negative curvature (see [A]). A
proof for the density of the periodic orbits of a hyperbolic flow over one compact manifold
is using the Spectral Decomposition Theorem for flows (see [AK] and [FH|). Moreover, the
information about the density of periodic orbits of a hyperbolic flow over a compact manifold
also guarantees the topological transitivity of the flow. We can summarize all remarks above

in the case of the hyperbolic flow on a compact Riemannian manifold in the following result:
(see [AK] and [FH])

Theorem 3.6. Let o' : M — M be an Anosov flow defined over a compact Riemannian
manifold M. The following are equivalent:

1) The spectral decomposition has one piece (the whole manifold),

2) The flow is topologically transitive,

4

(1)

(2)

(3) Periodic points are dense,

(4) All center-unstable leaves are dense,
(5)

5

All center-stable leaves are dense.

12



3.3 Density of Periodic Orbits in the Finite Volume Case

For n > 0, we will consider the following sets:
W) = (=€ SM: lim d(e'(z). ' (2) = 0},
W) = {zeSM: lim d(p(z). ¢ (x)) = 0},
we(z) = [JW(¢'(2))

teR

We(z) = U W™ (¢ (x),

(z) = {z€SM :d(¢'(x),$"(2)) < \'m, Vt >0},

Wyt(z) = {z€SM:d(p"(x),¢ " (2)) < X', Yt >0},
() = {z€SM:30, € W (x) and ps,(0h) =z for some |s1] < n},
() = {2€SM:30, e W*(x) and ¢, (02) = 2 for some |sa] < n}.

Lemma 3.7. Let x € SM. Then

(a) For allt € R holds o' (W™ (x)) = W (¢! (z)).
(b) For allt € R holds o' (W (x)) = W (x).
(c) If y € W(z) then W (y) C W (z).

Proof. (a) Apply the definition of W**(x).
(b) Let t € R fixed, using (a) we have that:

W (x) = wt<U W““(sos(:v))))

seR

= U W™ (p'(2)))

seR

= UWrettw)

seR

= Uw (@)

seR

= W(a).

(c) Let y € W (x) = UierW"(¢"(x)) then by (b) for all t € R holds ' (W (z)) = W (x).
Now, let z € W< (y) then there exists t; € R sucha that z € W"(p" (y)), so

lim d(¢™"(2), ¢ " (¢"(y))) = 0. (3.1)

t——+o0
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As y € We(x) then " (y) € W (z), thus there exists ty € R such that ¢ (y) € W ("2 (z)),
S0

- —t —t
Jim d(e™ (0" (), ¢ (¢ (@) = 0, (3.2)
thus of (3.1)) and (3.2)) we have that:
' —t —t( t2
0 < lim d(e™(2),¢ " (¢*(2)))
i —t “t(pt ; —t( ot —t( ¢
< im d(e™(2), 07 (0" () + dim d(e™ (¢ (y), ¢~ (¢ (2)))
— 07
this implies that
- —t —t( t _
i d(g~'(), 7 (¢ (2))) = 0,
Hence z € W (o2 (z)) C W (z). O
Lemma 3.8. Let A=W (x) and B = Uyca W(y). Then A= B. Moreover U,z W (y) =

A =We(z).

Proof. Let z € A, then there exist t; € R such that z € W" (o™ (z)) C W (p" (z)). Note that
x € W (x) Cc We(z) and by Lemma [3.7| we have that ¢ (z) € o' (W (x)) = W(x) = A,
hence z € Uyea W (y) = B.

On the other hand, if z € B there exists y € A such that z € W(y). As y € A by Lemma
3.7, (c), we have that W (y) C W (x) = A. Hence A = B. The subset A C SM is called

saturated in W, and by property of foliations we have that A = Weu(x) is saturated, and this
means

U We(y) = 4 = Worla).

O

Proposition 3.9. Let ¢ : SM — SM be a Anosov geodesic flow with M connected and

vol(M) < oo. If Per(p)=SM then for all x € SM we have W (z) and W (z) are denses on
SM.

Proof. Consider x € SM and W (x) (the proof for W is analogous). We know that We(x)
is a closed subset of SM. We will show that We(x) is an open subset, thus by connectedness

of SM we have Wet(z) = SM.

Let z € Wev(x), U C SM a neighborhood of z and p € U N Per(p) (this last is possible
because Per(yp) = SM). Taking U sufficiently small such that local structure product hold‘s,
then ¢ # W (p) NW(2). Thus take y € W (p) N W(2). Denote A = W (z) and consider

14



B = UyeaW(v) as on Lema we have Wet(x) = U, _wwerrs W(v). As z € Wet(x) then

veEWeu(x)

there is yg € We4(z) such that z € W(yp). By Lemma , (¢c) we obtain:

W (z) CWy) < J W(v) = Weu(a),
veWeu(x)
thus We(z) C Wev(x). As y € W(z) then by Lemma (b), O(y) C W (z) C Weu(z).
On the other hand, y € W¢(p), then for all t € R, ¢'(y) € ' (W(p)) = W(p), this implies
O(y) € W=(p).

Now fixed r € R, we have ¢"(y) € W(p) = UierW**(©'(p)), then there is ¢, € R such that

©"(y) € W*5(p'(p)), this implies limy o d("(¢"(y)), ¢* (" (p))) = 0, thus O(y) accumulates
in the orbit O(p) and as O(y) C We(z), we have O(p) C We(z). Hence p € Weu(z) and as
Per(y) is dense on SM, then Per(y) is dense in U, this implies U C We¥(x). O

Theorem 3.10. Let ¢' : SM — SM be a Anosov geodesic flow with vol(M) < oo. If W (z)
and W (z) are dense on SM for all x € SM then ¢ is transitive.

Proof. Let U and V' be two open sets of SM. Fix z € V such that a(z) # ¢. Take y € a(x),
then there is n;, — 400 such that lggrl ¢ " (x) = y. Now by hypothesis Wes(y) = SM then
ng [%9)

Wes(y) NU # ¢, thus there exists z € We(y) N U.

As z € W(y) = UierW*5(p'(y)), then there is t; € R such that z € W (" (y) N U. By
continuity of flow ¢ we obtain

Hm o ™ (p"(z)) = lim " (p " (x)) = ¢" ()

N —>+00 N —>+00

As W' (y)) N U and U is a open set, we can fix a real number b > 0 such that for all &
large there is a disk Dy C W5 (™" (" (x))) centered at ¢ ™ (" (z)) of radius at most b > 0
such that D N U # ¢.

Since ¢~ is continuous and = € V', we can fix a neighbourhood @ of o' (x) such that ¢~ (Q) C
V. So for all k large we have ¢"(Dy) C @ (here by Lambda Lemma, we choose D, C
Wes(o~™ (o' (2))) such that ™ (Dy) C Q). Thus as ™ (D) C Q then ¢ (o™ (Dy)) C
¢ 1 (Q) C V. Now taking k large we have

Dy N UcCU= ¢ 1 (¢"(D,NU)) C (o™ (U))
Dy N UC D= ¢ " (¢"(DyNU)) C o "(p"(Dy)) CV

by the last two inequalities above we get ¢~ (¢ (D,NU)) C o (™ (U))NV and as DNU #
¢ then ¢ # o (™ (U))NV. O
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3.3.1 Shadowing and Expansiveness in Finite Volume Case

In this section we will give some definitions about the shadowing and expansiveness that we
need for proof the density of periodic orbits when we have a geodesic flow on a finite volume
manifold.

Definition 3.11. [Shadowing forward and backward]

Let v,y € SM, ty > 0 and € > 0. Consider the orbit segment %%l (xq) = {¢!(x0) : t € [0,%0]}
and the future orbit and past orbit of y, O (y) = {p'(y) : t > 0} and O~ (y) = {¢'(y) : t < 0},
respectively.

1 We said that O™ (y) e-shadowed forward by piecewise the orbit segment 0%l (z4) if

d(@' (), ¢'(z0)) <&, V t€[0,tg],

and there exists a sequence {s;};>o with s; > 0 (called transitions times), such that
for all k > 1 holds

d(g! (0 (), (o)) S &, ¥t € (0,8,

2 Analogously we said that O~ (y) e-shadowed backward by piecewise the orbit segment
@lOtl(20) if there exists a sequence {r;};>0 with r; > 0 (called transitions times) such
that for all k > 0 holds

k

(™ (M2 (), 07N (0 (20)) < &, V€ [0,

and we said that O(y) = O (y)UO~ (y) e-shadowed by piecewise the orbit segment 0%l (1)
if Ot (y) e-shadowed forward and O~ (y) e-shadowed backward by piecewise respectively the orbit
segment @0l (z).

The definition above of the shadowing forward and backward by piecewise is similar to the
specification property for flows (see [F'H]), the diference between specification property and the
shadowing by piecewise above, is that the specification property its appling for orbit segment
arising from a recurrent point. (see Proposition below)

Proposition 3.12. Let ¢ : SM — SM be a Anosov geodesic flow with Vol(M) < +oo. Fix
xo € Rec(p). For all € > 0 there are ty > 0 and § € SM such that O(y) = {¢"(y) : t € R}
e-shadowed by piecewise the segment orbit %l (x).

Proof. As xy € Rec(p) then given ¢ > 0, there is ty € N such that ¢™(xg) € B(xy,¢).

By the hypothesis Vol(M) < oo, we still have a local product structure (see Theorem [2.10)),
this mean for all ¢ > 0 there exists 6 > 0 and > 0 such that for all x,y € B(x¢,0) we have
Wet(z) i Wes(y) = {w} € B(xo,¢).
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Figure 3.1: Shadowing forward by piecewise.

On the other hand, we denote by A € (0,1) the hyperbolicity constant. We define the following
sequence: for all m € N

. (t) — i )\t—l—jto-&-zzzl ¢

=1
m

Y ()\toJr; > Ci>j 7 (3.3)

Jj=1

where for all i € N, ¢; € R and |¢;| < n.
As for all i € N, |¢;| < n then for all 7 € N we have

-n < Ci <n
j=m < Yiaa o <jn
1 .

—n < —Yic <n
J

1 .
to—n< t0+325=10i <to+n
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Thus if we choose ty > 0 such that ty —n < %0 then for all j € N we have

summing over 7 € N

]z
N
>
S
%
I\
I
o
N———
<.
AN (VAN
NERNNGE
RS
NSy NSy
< <

1— )%

Now as 0 < A < 1 then for all ¢ € [0,%] we have 0 < A < 1 and 0 < A°o~* < 1, thus for all
t € [0, %] holds

A Mot p SO <924 L= K, ¥V meN (3.4)
j=1
e(1—A2) , € _
We denote f(t) = T Since, tlELn f(t) = 2 then given € > 0 we can choose § > 0,
n > 0 and ¢y > 0 such that
n < Z < f(ty) = % and \"n < 4. (3.5)

Moreover we can choose to > 0 such that x; = ¢ (z9) € B(wo,9), thus by local product
structure (see Theorem [2.10) there is 2, € W (1) h Wi*(), this means

2 € Wy(my) = 30, € W) (1) : 9™ (01) = 21, for some |s1| <,

81(
91 € W;Lu(wl) == d(907t<01)7907t(x1)) < )‘tna Vi 07
taking y; = ¢ 0(6;), for all 0 < t <ty we have

d(e' (1), ¢ (x0)) = d(@ ™" (61), " " (¢"(x0)))
= d(p""(61), 9" (21))
< Moy, (3.6)
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thus by (3.5) for ¢ = 0 on we get that d(y1,xo) < Aon < §, this implies y; € B(xo,9)
and again by local product structure (see Theorem [2.10) there is zo € W (z1) th W:*(y1), this
means

z € Wy(wy) = 30, € W) (1) : ¢™(02) = 22, for some |sq| <,
O € Wy (z1) = d(@ ' (02),¢ "(21)) < X'y, Yt >0,
2 €W () = d(¢'(22), ¢ (1) < A'n, V>0, (3.7)

taking yo = ©70(6,) ( where 52(yy) = p*2(6y) = 23), for all 0 < ¢ <t we have

d(0'(12), 0" (20)) = d(@"7"(6s), 0" (1))
< Moy, (3.8)

also by (3.6 and (3.7)) we get

(' (), ' (20)) (' (22), ' (1)) + d(¢'(11), ' (20))

<
< A4 oty = (A4 X, (3.9)

thus by (3.5)) for ¢t = 0 on (3.8) we get that d(y2,z9) < Aoy < ¢, this implies yo € B(xg,0)
and again by local product structure (see Theorem [2.10)) there is z3 € Wi (z1) h W% (y2), this
means

z € W)(ry) = F03€ W™ (z1) : 0™ (0 ) =z3, for some |s3| <m,
O3 € Wy'(z1) = d(e™'(0s), " (21)) < A'm, V>0,
7 €W (ye) = d(¢'(23),¢'(12) < A'm, V>0, (3.10)

taking y3 = ¢ 7'0(63), for all 0 < t <ty we have

d('(ys), ¢'(x0)) = d("(03), """ (21))
< Moty (3.11)

also by (3.10) and (3.8]) we get

d('(z3), ¢'(20)) < d(@'(23), 9" (12)) + d(¢'(y2), ' (20))
< ANp+ oty = (A4 Xomhy (3.12)

remember that ¢0752(yy) = 25, by (3.10) and (3.9) we get

d(p' ("% (23)), @' (w0)) < d(@"T2(23)), " ("7 (y2))) + d('(22), ' (o))
S >\t+to+8277+ ()\t_l_)\to—t)n
= (Aot A Nty (3.13)
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thus by (3.5) for ¢ = 0 on we get that d(ys,z9) < Aon < 0, this implies y3 € B(zg,9)
and again by local product structure (see Theorem [2.10) there is 24 € W (1) h Wrs(ys3)

zg € Wy(wy) = 30, € W (1) : 9™ (04) = 24, for some |s4| <,
0, € Wy (z1) = d(@ " (6s), ¢ "(21)) < X'y, Yt >0,
2z € W (ys) = d(p'(z1), 0" (y3)) < X', V>0, (3.14)

taking y, = ¢~ "(64) and proceeding as we did in the case of yi, y and ys, we get that for all
0 <t <ty holds

t

Atoftn

(A" A h)p

(/\t+to+83 + A + )\to—t)n

(>\t+2t0+s2+53 _'_)\t+t0+52 4 )\t()*t 4 )\t)n

t

d(SOt(?/4)7
d(¢"(24),
) t

)

d(p" (" (24)),
d(p! (p0te2t5 (2y)

8
=

(z0))
(z0))
(z0))
(z0))

VAN VAN VAR VAN

v
v
¥
, "

Thus we get four sequence {yy,}n>0, {0n}n>0, {2n}tn>0 on SM and {s,} in R satisfying vy, =
©(0,), ¢ (0,) = z, with |s,| < n,and for 0 < ¢ <t we have:

A (yn), ' (z0)) < Ao7'p
0 . p—
d(pH (T Lm0 (), ot (wg)) < (NOH 4 M)y
1 1 . ji—1
d(g! ("o im0 (y,)), @l (xg)) < (APTH AT 3 AT ey
j=1
2 .
A ("0 (), ¢ (@0) S (AT N 3 ATIEES Sy
Jj=1

(3.15)

n—2 n-2 . -1
d(! (Dm0 i (), ph @) < (TN 4 DD NI sy,

J=1

Note that on the right side of ([3.15)) appear sums of the following type:

m ) -1
Z )\t+Jt0+Zi=0 S(nfm)wLi’

J=1

for 0 < m < mn — 1. This sum is same as in (3.3)), except for an index change and where ¢; are
defined in function of s; and by (3.4) we have

A=t N § 0 AT S mys < K

=1
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Hence all the summations that appear on the right side of (3.15)) are less than or equal to Kn
and this last by (3.5]) is less than ¢, this means

(@' (yn), ' (x0)) < Kn < ¢, (3.16)

and forall j =1,2,...n—1

Jj—1

d(p! (Lm0 =i (y,)), ¢l (20)) < Ky < e (3.17)

Now taking ¢t = 0 in the first inequality in (3.15) we have d(y,,zo) < A°n < ¢ this implies
Yn € B(x0,9) C Blzo,d] C B(xo,€), then passing to subsequence of {y,, }n>¢ if necessary, there is

y € B(xo,¢) such that lim,,, o ¥, = y. Moreover, by (3.16) for all n € N, d(¢'(yy), ¢ (z0)) < ¢,
for 0 <t < ty, by continuity of low we have

d(@' (), ¢ (x0)) = lim d(p"(yn), @' (w0)) <&, YO <t < ty.

n—-+4o0o

As for all n € N, |s,| < 71, again passing to subsequence if necessary, there is s € R such
that lim,, ;. s, = s and |s| < n. Also as for all n € N, p'o*sn(y,) = 2,, then by continuity
of flow, lim, 1 @ (y,) = ¢"(y). We denote by z = p(y); by for all n € N,
d(¢"(2n), ¢'(w0)) < € then

A" (" (1)), ¢'(w0)) = d('(2), ¢"(w0)) = lim_d(¢'(2n), ¢'(x0)) <&, YO <t <to;

n—-+00

continuing like this way, by (3.17)), for all £ € N we get

(' (H ) (), ' (o)) <&, VO <t <ty (3.18)

In summary, by (3.18) we have y € B(xg,¢) and such that Ot (y) e-shadowed forward by
piecewise the orbit segment

P (20) = {¢'(20) : 0 <t <to},

with transitions times of size |s| < 1. Moreover, analogously to the construction of y € SM,
as OF(y) = {¢'(y) : t > 0} e-shadowed forward by piecewise the orbit segment @%l(z), we
can find § € B(xg,¢) such that O~ (g) e-shadowed backward by piecewise the orbit segment
@l0%l(24), and hence we can find § € B(xg, <) such that O(4) e-shadowed by piecewise the orbit
segment %] (z).

O
The Proposition and the local product structure still hold in the finite volume case (The-

orem [2.10)), allows us to conclude that for Anosov geodesic flow of a complete Riemannian
manifold of finite volume, the periodic orbits are dense over the unit tangent bundle.
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Proof of the Theorem 1.1l As Vol(M) < oo then Q(¢) = SM (see [P]). Now we consider
the recurrent points set
Rec(p) ={r € SM : z € w(z)}.

By hypothesis we also know that the Liouville measure is ¢-invariant, thus Liouville almost
every point on SM is recurrent and Rec(p) = SM.

Now let zy € SM, if zy € SM\Rec(p) then we can take x; € Rec(yp) sufficiently close to .
Thus we can suppose that xy € Rec(p). Given € > 0, on the proof of Proposition we
obtain § > 0 and 1 > 0 satisfying

Va,y € B(xo,d): W) hW5(y) = {w}. (3.19)

Moreover 6 > 0 and 1 > 0 can be choose satisfying (3.5). Now taking [ € N such that 7 < ¢
then for 57 > 0 by Prop0s1t10nthere isy € B(xo, ;) C B(xo,¢) such that O(y) g}-shadowed
pleceW1se the orbit arc go[ogto}(xo) for some ty > 0, this mean that for some s € R we have:

VjeL: dip' (" (y) e(w)) < o VOt <t (3.20)

On the other hand, if there is § such that O(§) 2-shadowed piecewise the arc orbit ¢%](z)
(this is, O(g) sitisfy (3.20)) then

VieZ: dp (@@ (9), ol(z)) < 2l VO<t<t (3.21)

this implies that for all j € Z and 0 <t < t3 holds

A" () (), " (@ () < d( (@O (), ' (x0)) + d( (PO (), o (0))
n.on_n

< = 3.22
TR TR (3.22)
if in addition holds (suppose that s > 0)
Vi e, d@ @), P w) < T vre 09 (3.23)
then by (3.22) and (3.23]) we obtain
A" (). ') S 7 <n VIER (3:24)

and this last equation implies

V>0, de'(7), ¢ (y))
V>0, die™(9), ¢ (y))

IA A



then j € Wp*(y) h W (y), but as y € B(xo, }) C B(wo,0) then by Wes(y) h Wet(y) =
{y}, thus g = v.

Now consider the point § = ¢"**(y), then this point satisfies , hence for the above we
obtain y = § = ¢"5(y), this is O(y) is a periodic orbit such that y € B(xg,¢).

[]
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Chapter 4
Conjugacy and Rigidity

In this section we will see some aspects related between the conjugacy and rigidity of the
two Geodesic flows defined over two complete Riemannian manifolds. Specifically, we want to
answer the following question:

Question 4.1. When two geodesic flows defined in manifolds of the same dimension admit a
certain type o conjugacy?. (1-conjugacy)

4.1 Conjugacy Rigid, Conjugacy and Equivalence

In this section, we will see the definitions of conjugacy and equivalence between two flows. We
will also see the definition of conjugacy rigid.

Definition 4.2. If M, and My are two Riemannian manifold without boundary, a map F :
SM, — SM, between the unit tangent bundles is called a C* conjugacy between the geodesic
flows if it is a C* diffeomorphism and oo F = F ol where ! and @b are the geodesic flows on
SM, and SM, respectively. F*U (M) will refer to the C* conjugacy class of the geodesic flow
on M. That is, My € F*U(M) if there is a C* conjugacy between the geodesic flows of My and
M. A manifold M is called C* conjugacy rigid if it is isometric to all spaces M, € F*U(M).

Some examples of C'™ conjugacy rigid manifolds are given by the real projectives spaces RP"
with the standard metric, compact surfaces of nonpositive curvature, compact flat manifolds
and compact locally symmetric spaces of negative curvature. (see [CLUV])

Some properties are preserved under C* conjugacies. For example, C! conjugacies always
preserve the volume (see [C-K]). It is still not known if C° conjugacies do, even in the negative
curvature setting. It is also known that the property of no conjugate points is preserved
under C? conjugacies. (see [CK2])

Now in the nonpositive curvature setting, we have that conjugacy rigid in two-dimensional
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manifolds. Some works was done by Otal [Otl], [Ot2] and [Cy] under a negative curvature
assumption and was extended to the nonpositive case (using the method of Otal) in [CEF].

The best statement in the 2 dimensional case can be found in [CLUV] and the statement is
follow:

Theorem 4.3. [Croke| FEvery 2-dimensional compact Riemannian manifold of nonpositively
curvature is C° conjugacy rigid.

One important observation in all results above is that the Gauss Bonnet Theorem is used in
some stages of the proofs, which seems to be why the arguments have not extended to higher
dimensions.

Now let (M,g,,) and (N, g,) be two complete Riemannian manifolds and ¢4, : SM — SM
and Y : SN — SN the geodesic flows of M and N, respectively.

Definition 4.4. The flows ¢!, and o' are said orbit equivalents if there exists a continuous

map h : SM — SN and a real function f : R — R such that h o ¢, = goN(t) o h for all
t € R. The function h is called an “equivalence in orbits” between ', and oY and [ a
reparametrization. When h is a homeomorphism it is called a “conjugacy in orbits” We say
that h is a a—equivalence (a—conjugacy) in orbits between @', and oY if h is a equivalence

(conjugacy) in orbits and there are two constants C; > 0 and Cy > 0 such that for all 6y,
0, € SM

Crdpr(61,65)* < dn(h(01),h(62)) < Codpr(64,62)°. (4.1)

Note that 1-equivalences are actually bi-Lipschitz equivalences.

4.2 Conjugacy and Rigidity

In [MRI Corollary 1.4] was proved the following result:

Theorem 4.5. [Melo-Romana| Let M and N be two compact Riemannian manifolds of the
same dimension. Assume that inf Ky, > sup Ky > —b* and that geodesic flow @4, is Anosov.
If h is a 1-conjugacy in orbits between ', and @' with reparametrization f(t) >t fort >0
and odd, then Ky = sup Ky = Ky.

Next we prove the Theorem [I.2] which improve the above theorem.

Proof of the Theorem [1.2] Since that M has no conjugate points and the hypothesis on the
sectional curvatures, we obtain that sup Ky < 0. Thus we consider two cases:

Case 1. sup Ky < 0.
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Case 2. sup Ky = 0.

Case 1. Put —b* = sup Ky < 0, then ¢f is Anosov and we denote by E* and E* the stable

and unstable bundle on SN. By hypothesis ho ¢h, = f (t) o h where h is 1—conjugacy then by
Definition [4.4] there exist two constants C; > 0 and CQ > 0 such that:

Crdnr (£ (01), 053, (02)) < dn(R(Dhr(01)), h(£hr(02))) < Codar(@h(61), 0 (62)),

hence

Crdar(94(01), s (82)) < dn (X (1)), &7 (1(62))) < Cadar (94 (1), Pl (B)).  (4.2)

Let T" the set of points of SM where there exists dgh, then as h is a Lipschitz map then I' has
full Liouville measure. Let 6 € I', £ € TySM and §(r) C SM a curve differentiable such that
B(0) =60 and 5'(0) = & by Lemma 4.1 in [MR] for all ¢ € R, we have

}911)% dM(@?\J(ﬁ(S)S)ﬂOl}W(ﬁ(O))) — ||d090t(§)||
and 1) f(®)
?E%d (o (h(ﬂ(s))s)w (h(6(0)))) _ o2 (dah(€)-

The last two equalities above and the equation (4.2) imply that for all ¢t € R,
C o'y (E)]] < lldnia) X (dsh(€)]] < Calldatps (E)II- (4.3)
In particular for ¢ = 0 above we obtain that

Cillll < [ldoh (&) < Coi€]

and this last inequality implies that dyh is an isomorphism. For 0 # £ € TpSM the equation

(4.3]) implies

loh )l Ty (b (@) Idah(©l _ . o (©)]
O ST a@T el S e (44)

Now as dph is an isomorphism we can define the subspaces F ) of Ty S M satisfying the equation

doh(F;™) = E;).

Note that T is ¢f,—invariant and
dyt yh = el o doh o ()™,
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(u)

which implies that the subspaces F, " are dy',;—invariants. Thus, for all ¢ € R

Tot,0(SM) = Fy ) @ {0ar) @ Fy ) (4.5)
Now for & € Fj' by (4.4)) for all ¢ € R we have

C, ) (1) Cy ¢
@-Hde%w g | < dn@yen lep,, I < a-HdWM |y |- (4.6)

Analogously, for £ € Fjj by (4.4) we obtain

Cy

o, ol i

< ||dh(9)S0{V(t (4.7)

Cs
Fy B, I < a-“%@ﬁw Fs

By classical result (see [Kn]) e vV~ sWH~N = ¢7b is a constant of contraction for ¢k, then the
equations (4.6)) and (4.7) and the hypothesis on the reparametrization f(t) be odd, provide that
forallt >0

Cy ) Cy _,
SC’ée " and ||dewyt |ry || SC’ée g (4.8)

||d0S0§w F§

The last inequalities and (4.5)) provide a hyperbolic behavior of ¢!, along of the orbit of 6 |
therefore as M has no conjugate points and Kj; > a?sup Ky = —a?b? = —(ab)? then the by
similar arguments used in the proof of the Theorem 1.1 in [MR], provides that for all § € T

lim / " Ric(3,(6))ds = —(ab)>. (4.9)

t—+4oo {

Since I" has full Liouville measure then the Birkhoff ergodic theorem and (4.9)) give us
/ Ric(0)dLy = —(ab)?,
SM

where L£;; denotes the Liouville measure on SM.

Since Kj; > —(ab)? then the last equality implies that Ric() = —(ab)? for Ly — a.e. point
6 € SM. Thus we conclude that Kj; = —(ab)? and therefore the splitting given by (4.5)
coincide with its hyperbolic splitting.

To conclude the proof, we will show that Ky = —b*. For this sake, since Ky, = —(ab)? for
¢ € Fy (cf. [Knl]) we have that

ol (€)1 = /1 + (ab)2e™™[|m (&),

where 7 (+) is the projection on the first coordinate in the horizontal and vertical decomposition
of TSM. Thus

. 1
Jim =~ og [dyit (€)= ab
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uniformly in bounded regions of pair (6,&) with 6 € SM and £ € Fj}'. Put A = h(T"), then as h
is Lipschitz and I" has full Liouville measure on SM, then A has full Liouville measure on SN.

So, by (4.3)) we obtain
lim ~ log [[due @@ (dph(€))]| = ab (4.10)
i 2 1og [[doyen” (d - -
1
Claim 4.6. tEer i log ||dw©'y(n)]| = b, where w = h() and n = dah(£).

Proof of the Claim [4.6l As sup Ky = —b? < 0 then we know that the function ¢
| J.(¢)||* is strictly increasing (where J,(t) is the unstable Jacobi field associated to 7), this
implies that the function ¢t — ||J,,(t)|| is also strictly incrasing. Since the reparametrization
f(t) satisfies f(t) > at for all t > 0 then
[ Ju(FENI = ([ Julat)]]
for all ¢ > 0, thus
b = lim log |duel® ()]
e 7 wPnN 7N
1
— im Llog |
1
> Jlim - log || Ju(at)]
= lim flog [y (). (4.11)
On the other hand, as n € E then for all ¢ > 0

ldwly (]| = Cse™ ]|

Thus,
.1 u
i~ 1og [|due ()] = ab,

this last inequality and (4.11)) imply that
Jim flongwwN( )| = ab.

Hence
lim flongwsoN( ) =10

t—fo0
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Then by Claim[4.6] we have
o1
Jim—log [[duly (n)]] = b

uniformly in bounded regions of pair (w,n) with w € A and n € E.

Now, to conclude, we follow similar arguments of the proof of [MRl Theorem 1.1]

Claim 4.7. For w € SN and n € E;, hold that
li ! log ||d., ¢ =b
Jim = logldupy (n)l| = .

Proof of the Claim [4.7l Let w € SN be and n € E¥. By density of A and continuity of E*,
we have that there are w,, € A and 7,, € E}, such that (wy,,n,) converge to (w,n). On the
other hand, for ¢ € R holds:

. 1 Lo [, (9" ()
b— - log dwgot n ‘ < ‘b o 710g dwmso hm ’ * ‘ log d
- log |duiv(n)] 7108 lldun, e ()l +13 Jog =0 220 N

By the uniformity in the convergence in the Claim [4.6] given £ > 0 there is ¢y such that:

1 €
o= 5 10g ldu, ()| < 5.

for each t >ty and all m € N. Also by continuity of dyl, for each t > ty there is m(t) such

that Id D
log wn ‘
‘ t IIdwso

for each m > m(t). Hence for each t > ¢, holds:

1
b= log ldugh )| < =

]

Finally by the Claim. above and Theorem 1.1 at [Bul imply that K = —b* which concluded
the proof of Case 1.

Case 2. Assume that sup Ky = 0, then as inf K3; > a?sup Ky = 0 and by hipothesis M has
no conjugate points then K, = 0 (cf. [G]). We will show that Ky = 0. For this sake, note
that the condition on the curvature on M implies that

) 1
tlg-noo " log ||do}; (€)]] =0
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uniformly in bounded regions of pair (0,&) with # € SM and £ € TySM. We can conclude by
similar arguments as Case 1, that

.1 F(t) _
Jim, 3 log [dugh )] = 0

for each pair (w,n) with w € SN and n € T,,SN.

As sup Ky = 0 then N has no conjugate points and as N is compact, there is a constant ¢ > 0
such that —c? < Ky < 0.

Now for each w = (y,v) € SN we denote N(w) the subspace of T, N orthogonal to v. Then by
construction, for all x € N(w) the Jacobi field Y%(¢)z is a unstable Jacobi field (where Y.%(t)
is a unstable Jacobi tensor). We know that

EGe ) = graph(Uy (1)) = {(z, Ug(t)z) : v € N(w)},

w

where UY(t) = (Y,“(t))"(Y,“(¢)) ! is the unstable Riccati tensor.
t

Let 7, : E¥ — N(w) the projection in the first coordinate. Then

7! (v) = (0, U4(0)0).

w

Note that for all w € SN hold

|moll <1 and 1 < ||| < V1 + 2 (4.12)
and
dwiply |Eu= ﬂ;,i(w) o YU (t) o Ty (4.13)

Thus (4.12)) and (4.13) imply that for all n € E hold
1 , 1.
0= lim_~log [duek” ()] < lim sup + Vi (£(6)) (o ()] (4.14)
e e} t—+o00 t
On the other hand, by (4.13]) we also have
1Y (f ) mu(m)] = | (dueR” ()] < |l I llduwel” ()]
w T (7 T @ (o QwPN ()] = (T 10, wfN 1]
oy (w) oy (w)

Again by (4.12)) we obtain

. 1w o1

lim sup —[[Y;(£(1) (mu(m) | < lim_~ log [lduei” (m)]] = 0 (4.15)

t——+o0
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Thus of (4.14) and (4.15)) we conclude

i sup V(1)) ()| = 0 (4.16)

t——+00

On the other hand, as Ky < 0 then the function ¢ — ||Y,%(¢)(7w(n))|| is increasing. As by
hipothesis f(t) > at for all t > 0, then

1V (@) ()| = (1Y, (at) (o (m)) -

Thus, the last inequality with (4.12)), (4.13)) and (4.16]) give us

. 1 . . 1o
lim sup —log [|dwy (n)|| < limsup —[[Y,7(f (£)) (7w ()] = 0. (4.17)
t—4o00 t t——+o00 t

Claim 4.8. For each w € SN hold that
1 ft
limsup — [ Ric(p%(w))ds = 0.

t——+oo t Jo

Proof of the Claim [4.8. By contradiction, assume that exist w € SN such that:
1 ot
lim sup n Ric(o¥ (w))ds = B < 0. (4.18)
0

t——+o00

As the function t — ||Y,%(¢)x||? is increasing, for x € R"™!, then

(y,U%(t)y) >0, for yc R

Since UY(t) is symmetric, the last equation implies that all eigenvalues of U!(t) are non-
negative. Let A\i(t) > ... > A\,_1(f) > 0 the eigenvalues of U!(t). We have that |U%(t)| < c,
then

tr(UM(t)? = X))+ A3t) +...+22_ (1)
< c-trUg(t) (4.19)

Taking trace in the equation ({2.3) and integrating we obtain:

1 rt 1 rt 1 rt
0 = < [ty + [ or(Usr)dr+ 5 [ R
t Jo tJo tJo

trUk(t) —trU%(0) 1

_ t i (UL 4 / b R(r)dr. (4.20)

Remember that R(t) = (R;;(t)) is a matrix, where R;;(t) = (R(vp(t), Vi(t))75(t), V;(t)) and R

is the curvature tensor.
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By our hypothesis (equation [4.18)) we have that there exists ¢, > 0 such that for ¢ > ¢, holds

1/; trR(r)dr < (n—1)B, t > t. (4.21)
From , and there is t; > 0 such that for ¢t > t;:
B(n—1) > t/ trR(r
> / tr (U (r))2dr

> —7/ trug(r (4.22)

Remember the Liouville’s formula (see [ME]), which state that:

d
7 log|det Y, (r)| = trUg(r), Y, (0)=Id. (4.23)
Integrating (4.23) and using (4.22)) we have that:
1
log|detY,2(t)| > ——(n—1)Bt, t>t. (4.24)
c

Finally, the Proposition [£.9] below implies that

‘> _B(n-1)

> 0.
- 2c

lim sup
t——+o00

As | detdoly| g | < || doylg. |4™F%) and dim(EY) = dim(N) — 1, then the last inequality
provides that

B
hmsup | >——>0,
t——+o00 EY 2c
which is a contradiction to (4.17)). O

Thus by using a change of variable on Claim. [4.§ we obtain

1 at
lim sup —/ Ric(oy(w))ds = 0.
t—>+oo at Jo
Hence
1 ft
limsup — [ Ric(py(w))ds = 0. (4.25)

t——+oo t 0
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Now the Birkhoff ergodic theorem implies that for Liouville almost every point w € SN

Lot B :
t£+moo¥/0 Ric(py(w))ds = /SN Ric(w)dLy.
Thus (4.25) implies that

/ Ric(w)dLy = 0.

SN

Since Ric(+) is a continuous function and —c? < Ric(w) < 0 then should be Ric(-) = 0. Also,
since —c? < Ky < 0 and the definition of Ric(-) we have Ky = 0. O

Proposition 4.9. In the same conditions of the Case 2, there exists to > 0 such that for each
w € SN we have that:

B(n—1)

1
“log|det dgly| | >~
- log | de @N‘Eg‘— P

t > 1s.

Proof. The projection 7, : B — N(w) satisfies:

n—2

1< |det7r;t;(w)| <(1+&)7. (4.26)

By hypothesis there is 5 > 0 such that for ¢ > ¢5, using the equation (4.13) and remember
n—2

that |det 7, | = |det 7 '|™* > (1 + ¢*)~ 2, we have that:

1 . 1 » 1 ) 1
7 log | det dSON‘E;j | = ;log | det W%(w)‘ + log | det VX (¢)| + ;log | det |
(n—1)B (1+&) "=
> - -
c t
(n—1)B
- 2c

]

The Theorem above gives us a rigidity between the sectional curvatures of the two compact
Riemannian manifolds when we have some relation over the sectional curvatures and the exis-
tence of a 1-conjugacy between the geodesic flows of them. In fact, on the conditions above, if
there exist a 1-conjugacy between the geodesic flows then we have that the sectional curvatures
are constants, in general, could be different up to a positive constant a > 0 that is related with
the parametrization of the conjugacy h.

Another observation on the Theorem [I.2]is that in the relationship over the sectional curvatures
inf Ky > a?sup Ky, the sectional curvature of M could be zero in some regions.

Now we could ask what happens if we change the condition of the sectional curvatures by
inf K); < a?sup Ky, the Theorem in the next section below gives us an answer in the case
that sup Ky < 0 and some condition on the reparametrization of the conjugacy.
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4.3 Conjugacy between certain types of manifolds

In this section, first, we will study some relation between the geodesic flows defined on the same
manifold but with different metrics. Specifically, we will be interested in conformal metrics with
a positive constant. After we will see how the existence of a certain type between geodesic flows
of two manifolds of the same dimension implies rigidity in the sectional curvatures.

Let (M, g) be a Riemannian manifold and consider a family of conformal metrics g, = €*" g, with
r € R, on M. It is easy to see that V,, = V where V, and V are the conections compatible with
g, and g, respectively. This implies R, = R, where R, and R are the curvature tensors of M,
and M respectively. Hence g.(R,(X;, X;) Xk, Xs) = e*g(R(X;, X;) Xk, X;), where X;, X;, Xy,
and X, are the coordinates fields around a neighborhood, thus the sectional curvatures K, and
K of M, and M, respectively are equal up to a constant. More specifically, for all z € M and
v,w € T, M linearly independent we have:

K.(v,w) = e K (v,w). (4.27)

Since V,. = V, we can see that the geodesics of (M, g,) and (M, g) are the same but they have
different velocities, this means, if v(t) is a geodesic of (M, g,), then ||[v/'(t)]|, = €"||7/(¢)]|, where
| - ||- and || - || are the norms induced by the metrics ¢, and g on M, respectively.

Now if (t) is a geodesic on (M,g,) and V(t) is a vector field along 7(t), as V,, = V then

DV DV . . . .
e where o and 7 are the covariant derivatives of (M, g,) and (M, g), respectively.

This last with R, = R implies that (M,g,) and (M, g) has the same Jacobi fields but with
differents norms, this means, that if J(¢) is a Jacobi field along of v(t) then ||.J(¢)||, = e"||J(t)]|
. With this we can conclude the following:

Lemma 4.10. (M, g,) has no conjugate points if and only if (M, g) has no conjugate points.
Proof. Tt is enough to note that ||J(¢)||, = €"||J(t)]]. O

Let (M, g) be a complete Riemannian manifold and for » € R fixed we consider (M, g,) where
g, = €*g. Let ¢4 : SM — SM and ¢}, : SM, — SM, be the geodesic flows of M and M,
respectively.

First, we want to see if there exists some conjugacy h as in Definition above, between the
geodesic flows induced by the metrics || - ||, and || - || on M.

Lemma 4.11. Let (M,g) be a complete Riemannian manifold and consider (M, = M,g,).
Then there exists h : SM — SM, 1-conjugacy in orbits between o', and gpﬁwr.

Proof. We define the function h : SM — SM, by h(x,v) = (z,e”"v) and f : R — R define by
f(t) = e"t. Note that h is a C'—diffeomorphism. Let § = (z,v) € SM and 0 = (z,e "v) =
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h(0) € SM, and ~(t) and ~5(t) the geodesic satisfying 79(0) = z, 15(0) = v, 7;(0) = = and
vé([)) = e "v. By definition of h and the geodesic flows ¢, and ¢}, we have that for all t € R

howl, (0) = hows ()
= h(ve(e™"t),7(e™"t))
= (va(e™"t),e " ype™"t))
= (95(t),75(t)
= O, (2,7t
= ¢ (0)
— ¢§\4Toh(9).

Hence for all ¢ € R holds h o ¢, = cpﬁ? o h.
[l

Now we will see how the existence of a certain type of conjugacy between the geodesic flows
of certain kinds of manifolds of the same dimension implies rigidity in the sectional curvatures.

Theorem 4.12. Let M and N be two compact Riemannian manifolds with the same dimension.
Fized a > 0 and assume that the sectional curvatures satisfy inf Ky < a?sup Ky < 0 and
M has no conjugate points. If h is a 1—conjugacy in orbits between @', and pY with odd

inf K
reparametrization (t) satisfying [(t) > 4/ - KMt for allt > 0 then Ky and Ky are constant.
sSup An

Proof. We consider the deformation (M, = M, g, = €*g) of (M, g). As inf Kj; and sup Ky has
the same sign, then there exist 5o > 0 such that inf Ky, = a®sup Ky. As Ky, = e >0 Ky
then

e~ 20 inf K, = inf KMSO = g2 sup Ky

—so _ sup Ky 19
e a’/ianM. (4.28)

Now, by Lemma [4.11] we know that there is hy : SM,, — SM a 1—conjugacy in orbits between

and this implies

©ir,, and @)y, this means hy o ¢l = gpﬂl(t) o hy, where f~1(t) = e %¢.

On the other hand, by hipothesis, we have that h o ¢, = goé\(,t) o h. Thus we consider the
composition h o hy : SMs, — SN. Nothe that

hohlogp}t\/]so = hocpﬂl(t)Ohl
= gpé\(,f_l(t))ohohl.

35



Since h and h; are 1—conjugacy in orbits, then the last equality above gives us that h o hy is
a 1—conjugacy in orbits between ¢}, ~and ¢}y with the reparametrization I(f —L(t)).

Now for all ¢ > 0 we have e=*¢ > 0 then (4.28]) and the hypothesis in [(¢) implies

1 _ —501) > IIlfKM L s0p
W(f(t) =1(e t>_”supKN et = at.

As M has no conjugate points and h o hy satisfies the conditions of Theorem then Ky,
a’sup Ky = a®?Ky and this implies that K, = e*°a?sup Ky = e*°a’Ky.

O

The Theorem and help us to know when two compact manifolds of the same dimension
have a certain type of conjugacy in orbits and therefore answers the Question 4.1} For this sake,
for two compacts Riemannian manifolds M and N we denote by I, = [inf Ky, sup K] and
Iy = [inf Ky,sup Ky] the intervals of sectional curvature of M and N, respectively. Then we
have two cases or Iy NIy =0 or Iy NIy # 0.

The following two results below (Corollary and Corollary give us some information
about when a conjugacy does not exist between two compact manifolds of the same dimension
under the hypothesis that one of them has no conjugate points and the other one has negative
curvature and the intersection of the intervals of curvature are empty or not empty.

Corollary 4.13. Let M and N be two compact Riemannian manifolds with the same dimension
and Iy and Iy the intervals of curvature of M and N, respectively. Suppose that M has no
conjugate points, sup Ky < 0 and Iy N Iy = (. Then:

(a) If inf Ky > sup Ky then there is no h : SM — SN a 1—conjugacy in orbits between ¢,
and @ (i.e. hogl, = gpfv(t) o h) with reparametrization odd f(t) satisfying f(t) >t for
allt > 0.

(b) If inf Ky > sup Ky then there is no h : SN — SM a 1—conjugacy in orbits between '
and @4, (i.e. holy = gpﬁt) o h) with reparametrization odd f(t) satisfying f(t) >t for
all t > 0.

Proof. a) If there is h : SM — SN a 1—conjugacy in orbits between ¢, and % (i.e. hoyl, =
gp{v(t) o h) with reparametrization odd f(t) satisfying f(t) > ¢ for all t > 0, then by Theorem |1.2
with a = 1 implies that Kj; = sup Ky = Ky, hence Iy N Iy # () contradiction!.

(b) Analogous to item (a). O
Now when I, N Iy # () we have two cases, or Iy N Iy = {ko}(in this case we have I); and Iy

intersect at the endpoints or one of the curvature intervals is unitary) or Iy N Iy = I where
I C R is a non-degenerate interval.
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Corollary 4.14. Let M and N be two compact Riemannian manifolds with the same dimension
and Iy and Iy the intervals of curvature of M and N respectively. Suppose that M has no
conjugate points, sup Ky < 0 and Iy N In = {ko}. Then:

(1) Iy and Iy intersect at endpoints

(a) Ifsup Ky = inf Ky and there is h : SM — SN a 1—conjugacy in orbits between ¢,
and @' (i.e. hoph, = gpfi,(t) o h) with reparametrization odd f(t) satisfying f(t) >t
for all t > 0 then Ky =sup Ky = Ky = {ko}.

(b) Ifsup Ky = inf Ky and there is h : SN — SM a 1—conjugacy in orbits between o'
and @' (i.e. hoply = gpﬁt) o h) with reparametrization odd f(t) satisfying f(t) >t
for allt >0 then Ky =sup Ky = Ky = {ko}-

(2) Iy =A{ko} or In = {ko}

(a) If Iy is a non-degenerate interval and Iy = {ko} C int(Iy) then there is no h :
SM — SN a 1—conjugacy in orbits between ¢4y, and ©' (i.e. hoh, = gp{v(t) oh)

inf Ky

sup Ky

(b) If I is a non-degenerate interval and Iy = {ko} C int(Ip) then there is no h :
SN — SM a 1—conjugacy in orbits between @' and @4y, (i.e. holy = gpﬁt) oh)

inf Ky,

sup Ky

with reparametrization odd f(t) satisfying f(t) >

-t, for allt > 0.

with reparametrization odd f(t) satisfying f(t) > -t, for all t > 0.

Proof. (1), (a) (the proof of item (b) is similar) Apply the Theorem [1.2] with a = 1.

(2), (a) (the proof of item (b) is similar) As {ko} = )y C int(Iy) then inf Kp, = {ko} <
sup Ky < 0. Now if there is h : SM — SN satisfying such conditions then by Theorem [4.12
with a = 1 implies that Ky is constant, thus I is unitary, contradiction! O]

Corollary 4.15. Let M and N be two compact Riemannian manifolds with the same dimension
and Iy and Iy the intervals of curvature of M and N, respectively. Suppose tha M has no
conjugate points, sup Ky < 0 and Iny NIy = I where I C R is a non degenerate interval. If
inf Ky < sup Ky then there is no h : SM — SN a 1—conjugacy in orbits between ph, and ol

lIlfKM

(i.e. hot, = @{V(t) o h) with reparametrization odd f(t) satisfying f(t) > e - t, for all
N

t>0.

sup

Proof. By Theorem [4.12] with a = 1 we can conclude that Kj; and K are constants and this
implies that I, and Iy are unitaries, contradiction!. O

Looking at the proof of Theorem [I.2] Case 1 more carefully, one can find that the hyperbolic
behavior of ¢f; is passed to that of ¢}, by the 1—conjugacy in orbits h : SM — SN at each
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point, where h is diferentiable and the set of such points has full Liouville measure. Specifically
if we assume that h is C! and K, has some relation with Ay, the constant contraction of ¢,
then we can conclude the following:

Theorem 4.16. Let M and N be two compact Riemannian manifolds with the same dimension
and fixed a > 0. Assume that go{v(t) is Anosov with contraction constant Ay = e~ for some
a>0. If h is C' and a 1—conjugacy in orbits between 4, and p' with odd reparametrization
f(t) satisfying f(t) > at for all t > 0 then @', is also Anosov and Ay = \% 1is a contraction
constant. Moreover if Ky > —(aa)? then Ky = —(aa)?.

To prove the Theorem [4.16| we need the following theorem:

Theorem 4.17. [Theorem 1.1 in [MRI] Let M be a complete Riemannian manifold with finite
volume and sectional curvature bounded below by —c? If the geodesic flow is Anosov with constant
of contraction \, then A > e~¢. Moreover, the equality hold if and only if the sectional curvature
of M is constant equal to —c>.

Proof of the Theorem [4.16] Assume that ¢’ is Anosov and we denote by E* and E* the

stable and unstable bundle. By hypohese ho ¢}, = go{v(t) o h where h is a 1—conjugacy then by
definition [£.4] there exists two constants C; > 0 and Cy > 0 such that:

Chdnr (£ (01), @ (02)) < dn (s (61)), h(2hr(02)) < Codar (@5, (61), 93 (62))-

Hence
Crdar(94(01), s (02)) < dn (X ((61)), & (1(62))) < Codar (947 (61), £l (0)).  (4.29)

Let 0 € SM, ¢ € TySM and (r) C SM a curve differentiable such that 3(0) = 6 and '(0) = ¢
by Lemma 4.1 in [MR], for all t € R, we have

iy D (Par (B(s)): ¢ (5(0)))

= [ldo¢" ()

and

F@® s @)
lim dN(‘PN (h(ﬁ( )))790N (h(ﬁ(())))) _ Hdh(gyp{\;(t)(dah(f))H.

s—0 S

The last two equalities above and the equation imply that for all t € R
Culldo" ()l < Ndnoyek” (doh(©)]| < Calldoe" ()] (4.30)
in particular for ¢t = 0 above we obtain that
CiliEll < lldoh(E)]] < Call€]l-
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This last inequality implies that dgh is an isomorphism and as M and N are compacts then A
is a C'— diffeomorphism. For 0 # & € TpSM the equation (4.30) implies

ldo"©)1l _ lldnoyoh” (doh()] ldeh ()] _ Idoe' ()]

C .
G- [dgh(€)]] HE

(4.31)

Now, as dyh is an isomorphism we can define the subspaces Fe of TySM satisfying the

equation w w
deh(F; b ) = EZ(Z)

and
d‘»"ﬁu(a)h = dh(g)wfv(t) odph o (d@(p?\/[)il,

s(u)

which implies that the subspaces F,'" are dy',—invariants. Thus for all t € R

Tt @ (SM) = Fy ) @ {onr) ® Fy ) (4.32)

Now for & € Fj' by (4.31]) for all t € R we have

C
= lldoflys ey || < Nldnoyoh” iz, I < = ||d090M g Il (4.33)
C, ®
Analogously for £ € F; by (4.31)) we obtain
19 1, 1< G2l I 11 (4:34)

Since Ay = e~ is a contraction constant for %, then (4.33) and (4.34)), and the hypothesis
over the reparametrization f(t) provide that for all ¢ > 0

C _aa C _aa
< 002 “and ||depif |rp |l < 002 g

ldons |5 (4.35)

1

Thus ¢4, is Anosov and Ay = 7% is a contraction constant. Now if Kj; > —(a«)? then by

Theorem conclude that Ky = —(aa)?. O
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Chapter 5

Lyapunov Exponents and Rigidity

In this chapter, we will see that under certain conditions on the Lyapunov exponents of an
Anosov geodesic flow that is define on the unitary tangent bundle SM with M a compact
Riemannian manifold, we can obtain rigidity on the sectional curvature of M.

The goal of this chapter is to extend the result over the rigidity of equality of Lyapunov
exponents for geodesic flows of Butler in [Bul.

For a periodic point 6 of the geodesic flow ' : SM — SM defined on a compact Riemannian
manifold M, let {(f) be the period of #. Let Xﬁ‘”, ce ng)_l are the complex eigenvalues of
de'?) . BY — E¥, counted with the multiplicity of their generalized eigenspaces.

Theorem 5.1. [Butler| Let M be an m-dimensional closed negatively curved Riemannian
manifold. Suppose that

Xl =P 1< <m—1,
for every periodic point 6 of the geodesic flow p : SM — SM. Then M is homothetic to a
compact quotient of Hy'.

In particular, the Butler’s result above claims that if each periodic orbit of the geodesic flow
defined on a manifold of negative curvature, has exactly one Lyapunov exponent on the unstable
(or stable) bundle then the manifold has constant negative curvature.

One first extension of the result of Butler is in the finite volume case and can be done using
the techniques of Romaiia and Melo in [MR]. More specifically, if —c? < Ky, Vol(M) < 400,
Anosov geodesic flow, and such that every periodic point has exactly the Lyapunov exponent

on the unstable bundle equal to ¢ then K = —c?.

If the curvature satisfies —c?> < K < —a?, we expect that if only every periodic point has
exactly the Lyapunov exponent on the unstable bundle equal to o then Kj; = —a?. In fact, in
the next section we prove it, which is the prove of the Conjecture in this case.
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5.1 Pinched Negative Curvature, Lyapunov Eponents and
Rigidity in the Finite Volume Case

We consider (M, g) a Complete Riemannian manifold with pinched negative curvature —c? <
Ky < —a? for some ¢ > a > 0. Let 6 = (z,v) € SM, ~(t) the geodesic throught x € M
and initial velocity v € S, M. Let Yy4(t) and Yy, (¢) the stable and unstable Jacobi tensor
along 7y (t), respectively and Uy (t) = Yy ()Y, (t) and Uy, (t) = Yy, (£)Y,,, (t) the stable and
unstable Riccati solution, respectively.

Now for each x € R"'\{0} consider the following functions f, : R — R and f; : R — R define
by fu(t) = |You(t)z|* and fy(t) = |Yo.s(t)z|*, respectively.

Lemma 5.2. [[Ku]], [[E]] Let (M,g) be a complete Riemannian manifold with —c* < Ky <
—a?. Let 0 = (z,v) € SM and ~(t) the geodesic such that v4(0) = x and v,(0) = v. Then for
all y € R™\{0} the functions fi(t) = |Yos(t)y|> and f.(t) = [Yo.u(t)y|? are strictly decreasing
and increasing, respectively. Therefore, f!(t) and f.(t) are strictly increasing and for all t € R
we have f(t) >0 and fl(t) < 0.

Proof. Since Ky < —a? then have that the functions f,(t) and f,(¢) are increasing and de-
creasing respectively, this means: (see [E])

% (Fult)) = 20 (1), You(t)a) > 0 (5.1)
and

D) = 205, (1) Yoult)r) <0 (52)

Therefore, by the Jacobi equation and the condition on the curvature we obtain that for all
teR

TR = 20 YoulD2) + ¥ Ol

2((=R()Ypu(t)z, You(t)z) + Yy, (t)2]*)

> 2(a?|You(t)z® + Yy, (t)z]?)
> 0. (5.3)
Analogously for all t € R
d2
C0) >0 (54

Thus of (5.3) and (5.4), f.(t) and fs(t) are convex functions (strictly) in R.
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Of (5.1) and (5.3)(resp. (5.2) and (5.4)), we obtain that f,(t) (fs(t)) is strictly incrasing

(strictly decreasing).

Also (5.3)) and (b.4)) implies that f/(¢) and f!(t) are strictly increasing. Thus, the convexity of
f+(t) implies that f,(t) # 0, for all t € R, » = u, s. O

Now, for x = u,s we know that Up.(t) = Yy *(t)YQ;I (t) are symmetric solutions of Riccati

equation. Since for x = u, s, Yy, () are invertible, by and we obtain that

(. Uss(t)y) = (. Yy ()Y, (t)y) <0, y eR™ (5.5)
and

(Y, Usu(t)y) = (4, Y5, ()Yy,, (t)y) 20, y € R™. (5.6)

Fix y € R"\{0}, if there is ¢, € R such that 0 = (y, Up.u(to)y) = (y, Yy, (to) Yy (t)y) then put
x = Yejul(to)y € R"1\{0} we obtain

0 = (y,Upu(to)y)
= (y,Yy.(t0)Yy, (to)y)
= (Yy.(to)z, You(to)),

thus f,(to) = 2(Yy,(to)z, Yo.u(to)r) = 0 which contradicts the Lemma [5.2 Hence of (5.6) we
conclude that (y, Up,(t)y) > 0 for all t € R. Analogously using (5.5)), (y, Ugs(t)y) < 0, for all
teR.

Now, we will show that for all ¢ € R and for all 2 € R"! holds (U, (t)z,x) > oz, z). (see
[Knl).

Proposition 5.3. Suppose that R(t) < —a? for allt € R and M has no conjugate points. Let
A(t) be a solution of the Jacobi equation

A"(t)+ R(t)A(t) =0
and satisfying the initial conditions A(0) = 0 and A’(0) = Id. Then for all y € R™!
(A'()A®) 'y, y) > aly, y) coth(at),
forallt > 0.

We denote by s,(t) € C*°(R) the solution of the following Jacobi equation:
s"(t) — a?s(t) = 0,

inh (ot
with initial conditions s(0) = 0 and s'(0) = 1, this mean s,(t) = M'
Q
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Lemma 5.4. Suppose that R(t) < —a? for allt € R and M without conjugate points. Let J(t)
be a solution of Jacobi equation:

J'(t) + R(t)J(t) =0,
with the initial conditions J(0) =0 and ||J'(0)|| = 1. Then for allt >0
[T@)] = sa(t)-

Proof. Fix ty > 0 and consider the following two functions X (t) = s.(t)J(tp) and Y (t) =
Sa(to)J(t). We denote R(t) = —a?Id, then X (1) satisfies that

X"+ ROX(t) = X"(t) — a?X(t) = 0.
Also Y (t) satisfies
Y'(t) + R(t)Y(t) = 0.
Note that X (0) =Y (0) and X (ty) = Y (o), this implies that
If (X, X) < If,,(Y,Y)
to i
= [T, @) - RBEOY (@), Y @)
to

< (Y(t0).Y () = [ (V) + ROY (@)Y (1)t

= sa(to)*(J'(to), J(to)).
Where 17 is the index form with relation to the curvature operator R (see Appendix).
On the other hand:

@mxm=fwxwxw—mwwwwmwﬂwm%mmmm

Hence by inequality above, we can conclude that

(5a(t0))*(J"(to), I (to)) — I|7(to)|I*s4(to)sa(to) > 0.

d (101
it <<sa<t>>2> o 20

As ty > 0 was fixed arbitrarily, then the last inequality holds for all ¢ > 0. Hence the function
1)1

(sa(t))?
43

This last implies




is increassing on (0, +00). Finally, note that

2
. EG]

=0t 84(1)?

=1

and the Lemma [5.4] follows. O

Proof of the Proposition [5.3] Let A(t) be a Jacobi tensor with A(0) = 0 and A’(0) = Id.
Let x € R"! with ||z|| = 1 and consider the Jacobi field J(t) = A(t)z which satisfies J(0) = 0
and ||J'(0)]| = 1. By the Lemma [5.4] we have that the function

(A(t)x, A(t)z)
a(sa(t))?

is increassing on [0, +00). Thus for all ¢ > 0 we have

d ({Altz), A(t)x)
ﬁ( (50 (D))? )ZO

and this implies

(A ()2, A(t)z) > af|A(t)z||? coth(at).

The last inequality above holds for all z € R"™! with [|z|| = 1 and for all ¢ > 0. Now given
y € R"! and fixed t5 > 0, define zy = A(ty) 'y. By above we obtain

(A'(to) A (to)y, y) = allyl® coth(ato).

Thus as y € R*! and 5 > 0 are arbitrary, the Proposition follows. O

Proposition 5.5. Suppose that M has no conjugate points and R(t) < —a?, for all t € R.
Let Y, (t) be the unstable Jacobi tensor of Jacobi equation Y"(t) + R(t)Y (t) = 0. Then for all
y € R holds (Y/(0)y,4) > ady, y).

Proof. Let r > 0 and consider A(t) the solution of Jacobi equation
A"(s) + R(—r + s)A(s) = 0,
with A(0) = 0 and A’(0) = Id. Also consider the Jacobi equation:
B"(t) + R(t)B(t) = 0. (5.7)

Let S_,(t) be the solution of with S_.(0) = Id and S_.(—r) = 0. Now define G(t) =
A(t+7)A(r)~! and note that it satisfies the equation: G”(t)+ R(t)G(t) = 0 with G(0) = S_,.(0)
and G(—r) = S_.(—r). This means that G(t) is the solution of with G(0) = S_,.(0) and
G(—r)=S_,(—r), then S_.(t) = G(t) = A(t +r)A(r)".
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By Proposition [5.3| for all ¥ € R"~! we obtain that
(S, (0)y,y) = (A'(A(r) "y, y) > aly,y) coth(ar).

Taking of limit when 7 goes to 400 on the last inequality above:

(Ya(0)y,y) = lim (ST (0)y,y)

r—+

> a(y,y) lim coth(ar)
= a(y,y).
O

Finally, suppose that R(t) < —a?, for all t € R and Y,,(t) the unstable tensor of Jacobi equation
B"(t) + R(t)B(t) = 0. For t; € R, the Jacobi tensor Y, (t) = Y, (t + to)Yu.(to) ™" is the unstable
solution of the Jacobi equation B”( )+ R(t+tg)B(t) = 0. As R(t +ty) < —a? for all t € R,
then by Proposition [5.5] for all x € R"™! holds

(Y (t0)Yu(to) Lz, z) = (Y/(0)z,z) > oz, ).
As ty € R was arbitrary, then for all ¢ € R and for all z € R"! holds

(Upu(t)z, ) = (Y ()Y, (t) 2, 2) > alz, 1), (5.8)

u

For analogous arguments, for all ¢ € R, and for all z € R""! we can obtain:
(Ups(t)x,z) < —afz, x). (5.9)

Proof of the Theorem [I.3]
(1) If b = . Note that the hypothesis x*(6,&) = « for all £ € Ej implies that

.1 o

t£+moo{10g|detd990t|E3| =a-dimEy = a(n —1).
Now by [MFE], we obtain
li ! tt U“(¢*(0)))ds = i 11 det dg’ = 1 5.10
im_~ [ (U (¢ (0))ds = lim_ 7 log|det do'[ | = a(n — 1) (5.10)

for all 8 € Per(yp).

On the other hand, as K < —a? and U“(¢"(0)) := Uy, (t) is symmetric. By (5.8) we can
conclude that all eigenvalues of U%(¢'(6)) are non-negative and they are great than or equal to
a. Let Ay_1(t) > A\p_a(t) > -+ > A\ (t) > a the eigenvalues of U*(¢"()). Then

tr(U"(p Z)\ ) > aln—1).
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As 6 € Per(yp), we have that the function ¢t — ¢r(U"(p'(f))) is periodic. Thus the last
inequality and ([5.10]) imply that for all ¢ € R:

tr(U"(¢'(0))) = a(n - 1).

Hence, for all j =1,2,...,n — 1 holds \;(t) = a for all ¢ € R. Finally this implies for all ¢ € R

n—1

tr((U"(#"(0)))%) = 2_(N(1)* = a®(n — 1).

j=1

Then, since [|[U"(¢*(#))]| < ¢, integrating the Riccati equation and taking of limit when t goes
+00, we obtain:

W2n—1) = Tim ~ [ (U ((0))2)ds

Hence L
lim f/ Ric(p*(0))ds = —a’.
0

t——+oo ¢

As 0 € Per(p) and K < —a? this implies that for all ¢ € R we have Ric(p'(0)) = —a?. Hence
we show that for all § € Per(y) holds Ric() = —a?. As Vol(M) < +oo then by Theorem
we have that Per(p) = SM and by continuity of function Ric(-) we get for all § € SM holds
Ric(f) = —a? and hence K = —a?.

(2) If b = c¢. Here we use the same arguments of [MR]. By the hypothesis x*(6,&) = ¢ for all
¢ € By we have that

1 N
tl}inoo : log | det dg’|gy| = ¢ - dimEg = c(n —1).
Now by [MFE], we obtain

N U o 1 0ol
lim 7 [ r(U*(p(0))ds = lim_~log |det dag'|y| = c(n — 1). (5.11)

The last inequality above holds for all § € Per(yp).
Since U"(¢*(0)) is symmetric then easy to see that

(tr(U"(¢"(0)))* < (n = Dtr(U"(£"(6)))*)-
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As the sectional curvature satisfies K > —c?, then taking trace and integrating of 0 to ¢ the
Riccati equation, we have that by Cauchy-Schwarz inequality that

1/0ttr(Uu(<ps(e)))ds < \/1/Ot(tr(Uu(¢s(0))))2ds

< ¢ C (@ 0
_ % (n—1) ( / (U ((0)))ds + / t tr(R(s))ds)

_ %“ L) - o) - " [ Ricer@)as

< e o)) - e o + -1

Hence, since ||[U“(p(9))]| < ¢, we get

t—+00

T . ) (tr(U™(£(0))) = tr(U"())) = 0.
Thus, taking the limit as ¢ — 400 in the last inequality above, we have that

S Y LA o
tl}erOO;/o Ric(p®(0))ds = —c”.
As 0 € Per(p) and K > —c?, this implies that for all ¢ € R we have Ric('(0)) = —c*. Hence
we show that for all § € Per(p) holds Ric(f) = —c*. As Vol(M) < +oo then by Theorem
we have that Per(y) = SM and by continuity of function Ric(-) we get for all § € SM holds
Ric(f) = —c? and hence K = —c2.

O

5.2 Rigidity in Dimension 2

5.2.1 Setting

In this subsection, we will extend the Butler’s result [Bu| for dimension 2.

Now we assume that (M, g) is a compact Riemannian manifold of dim(M) = 2. this means M
is a compact surface. Also we assume that the metric g is Holder C3.

The main result of this section is a generalization in dimension 2 of a result of Butler in ([Bul).

The Theorem extend the Butler's result since we only assume that the geodesic flow is
Anosov without any restrictions on the sectional curvature of the manifold.
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To prove the Theorem [I.5] we will use some results about the aproximation of Lyapunov
exponents of an invariant measure of a flow by Lyapunov exponents of measures concentrated
on periodic orbits.

The result about values of Lyapunov exponents along periodic orbits due to Kalinin [Kall,
which enable us to aproximate the Lyapunov exponents of any ergodic ¢!- invariant measure
by Lyapunov exponents of measures concentrated on periodic orbits.

For each periodic point 0, we let g denote the unique ¢'-invariant probability measure sup-
ported on the orbit of A, which may be obtained as the normalized push-forward of Lebesgue
measure on R by the map ¢t — ©'(9).

Theorem 5.6. [Kalinin| Let £ be an n-dimensional Holder continuous vector bundle over a
manifold N and A a Holder continuous cocycle on £ over ¢'. Let i be an ergodic ©'-invariant
measure and let \y < Ay < --- <\, be the Lyapunov exponents of A with respect to u, counted
with the multiplicity. Then for every € > 0, there is a periodic point 6 € N of p' such that the
Lyapunov exponents X{ < \§ < -+ < \? of A with respect to ugy satisfy

N — M| <,
for each 1 <i<n.

In our case, N = SM, the vector bundle £ = T'N, and the cocycle A is the cocycle derivative
of the geodesic flow !, this means:
A:NxR — GL(n,R)
(z,t) = Az,t) = doy,

and n = 2dim(M) — 1.
Now for the following step, we need the following definition of Algebraic flows, which can be
found in [SLVY] and [T].

Definition 5.7. An Anosov flow ® : N — N on a 3-dimensional compact manifold N is
algebraic if it is finitely covered by

(1) a suspension of a hyperbolic automorphism of the 2-torus T? = R?/7Z?;

(2) or the geodesic flow on some closed Riemannian surface of constant negative curvature,
i.e., a flow on a homogeneous space I'\SL(2,R) corresponding to the right translations

by diagonal matrices diag(et,e™), t € R, where SL(2,R) denotes the universal cover of
SL(2,R) and T is a uniform subgroup.

The following result can be found in [SLVY], it gives us a characterization of the conjugacy of

a flow to an algebraic flow when we have that the Liouville measure is a measure of maximal
entropy.
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Theorem 5.8. [De Simoi, Leguil, Vinhage and Yang]| Let k > 5 be some integer and let ®
be a C* anosov flow on a compact connected 3-manifold N such that ®,ju = p for some smooth
volume . Then hyy(®) = h,(®) if and only if ® is C*“-conjugate to an algebraic flow, for
€ > 0 arbitrarily small.

The Theorem is related with the following conjecture:

Conjecture 5.9. [Katok Entropy Conjecture| Let (M, g) be a connected Riemannian man-
ifold of negative curvature and v be the corresponding geodesic flow. Then hi,,(¢Y) = he () if
and only if (M, g) is a locally symmetric space. Here L is the Liouville measure in SM.

A weak version of this was obtained by [BCGI|, which still highly depends on the structures
coming from the geometry of the flow. Other generalizations work with broader classes of
Anosov flows. Foulon in [E], showed that in the case of a contact Anosov flow ® on a closed
three-manifold, ® is, up to finite cover, smoothly conjugate to the geodesic flow of a metric of
constant negative curvature on a closed surface if and only if the measure of maximal entropy
is the contact volume. There, he asks the following question generalizing Conjecture [5.9}

Question 5.10. Let ® be a smooth Anosov flow on a 3-manifold which preserves a smooth
volume fu. If hyop(P®) = h, (@), smoothly conjugate to an algebraic flow?

Recall that the geodesic flow on M occurs on the unit tangent bundle SM, which has dimension
2dim(M) — 1. Therefore, the Question corresponds to the case of the geodesic flow on
surfaces, which was proved by Katok in [Ka|] and [Ka2]. The low-dimensionality assumption of
Question [5.10] is required for a theorem in this generality, It is not difficult to construct non-
algebraic systems whose maximal entropy measure is a volume when the stable an unstable
distributions are multidimensional. The Theorem provides a positive answer to Question

0. 1Ol

We need the following result, which is due to Plante (see [PI]). Basically, the result gives us
two alternatives for the strong stable and strong unstable manifold are or not dense on the
manifold when the Anosov flow satisfy Q(¢) = M.

Theorem 5.11. [Plante] Let o' : M — M be an Anosov flow such that Q) = M. Then
there are two possibilities:

(a) Fach strong stable and each strong unstable manifold is dense in M, or

(b) ¥ is a suspension (modulo time scale change by a constant factor) of an Anosov diffeo-
morphism of a compact C* submanifold of codimension one in M.

We use the Theorem [5.8 Theorem Ruelle’s inequality and Pesin’s formula to prove the
Theorem discarding some cases that may appear for our geodesic flow.
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Proof of the Theorem [1.5.

We denote by M. () the set of all ergodic p'-invariant measures.

Let p € Mc(p) and A\; < Ay < A3 be the Lyapunov exponents concerning for to u. Let
0 € Per(p) and py € M.(p) the unique p'-invariant probability measure supported on the
orbit of 8. Let A{ < A\ < A} the Lyapunov exponents concerning for to pg. In our case
by hypothesis \Y = —a, X\§ = 0 and \§ = a. Then by Theorem we can aproximate the
Lyapunov exponents of p by Lyapunov exponents of 119 and we can conclude that for € M. ()
holds Ay = —a, Ay =0 and A3 = a.

We denote by £ the Liouville measure on SM. Note that in this case, £ is ergodic. (see [VOI
)

Now we will show that the Liouville measure on SM is a maximal measure of entropy. Indeed,
by Ruelle’s inequality, for p € M.(¢) we have that

h(e) < [ X (0)du(o)

= /SM Asdp ()

= /S , adu(t)
= a (5.12)

Since ¢! is C?, by Pesin’s formula we obtain that
hele) = [ xH(O)aL(o
9) = [ X0

- /S _ adc(6)
= . (5.13)

Thus by (5.12)) and ((5.13)), we conclude that for all € M.(p) holds

hu(p) < a=he(p).

Thus
hiop(p) = sup  hu(p) < a=he(p).
HEMe(p)
Hence
hiop(1p) = o = he (). (5.14)

In our case taking the smooth measure y = £ as the Liouville measure on SM and the flow
® = ¢ as an Anosov geodesic flow on SM, then by ([5.14) we have that the topological entropy
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is equal to metric entropy of Liouville measure, then the Theorem [5.8 above implies that our
Anosov geodesic is C*~“-conjugate to an algebraic flow, for € > 0 arbitrarily small.

Now by Definition of Algebraic flow, we have that our Anosov geodesic flow is C*~¢-
conjugate up to finite covers to a suspension of hyperbolic automorphism of the 2-torus or to
the geodesic flow on some Riemannian surface of negative curvature.

Since our flow ¢ is an Anosov geodesic flow, then it can not be conjugate to a suspension of
an automorphism of the 2-torus T? (that by Theorem [5.11)), thus it should be conjugate to the
geodesic flow of some closed Riemannian surface of constant negative curvature.

To conclude the proof of Theorem , we use the Theorem , the result about C* conjugacy
rigidity in dimension 2 due to Croke (see [CLUV]).

[]

The Theorem provides the following Corollary, following the techniques of Chapter 4, which
has some relation to the Theorem [4.3 by Croke.

Corollary 5.12. If o' : SM — SM is Anosov geodesic flow, then ©' can not be 1-conjugacy to
the geodesic flow of a manifold of constant negative curvature, unless M has constant negative
curvature.

On the other hand, note that the Theorem due to Kalinin is true in any dimension and
any C? Anosov geodesic flow where the Liouville measure is ergodic (see [VO]) then we obtain
the following result:

Theorem 5.13. If (M,qg) is a compact Riemannian manifold with the same hypothesis of
Theorem and assuming that the Liouville measures L is ergodic, we have that:

hiop() = he(p).

In other words, the Liouville measure is a measure of maximal entropy (MME).

Now, in dimension 2 joing the Theorem and the Theorem [5.13] we have the following
Corollary:

Corollary 5.14. Let (M, g) be a compact Riemannian surface. If o' : SM — SM is C*,
k > 5, an Anosov geodesic flow. Then the following are equivalents:

(1) For all 8 € Per(p) hold:
1
X0, = lim —log|ldeg’ ()] = o

for all £ € Ef\{0}.

(2) The Liouville measure L is a measure of mazimal entropy.
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(3) The surface M has constant negative curvature Ky = —a?.

On the hypothesis of Theorem over the geodesic flow be C*, k > 5, we believe the theorem
is true for k > 2, beacuse observation of the Theorem on [SLVY] says that this theorem
can be true for £k > 2, but technical obstructions prevent finding the precise boundary of
required regularity. Also it is emphasized that regularity is extremely important for the rigidity
phenomenon.
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Appendix A

Index Form

Let (E, (,)) be a vector space with scalar product (,). Let End(E) denote the set of endomor-
phisms and let Sym(FE) denote the set of symmetric endomorphisms on E. If R : R — Sym/(FE)
is a C'*°-map (curvature operator), the linear differential equation:

J(t)+ R(t)J(t) =0, (A.1)

is called the Jacobi equation and its solutions J : R — FE are called Jacobi fields. If
B :R — End(F) is a solution of the matrix equation

B(t) + R()B(t) = 0, (A.2)

we call B a Jacobi tensor. B is a Jacobi tensor if and only if B(t)x is a Jacobi field for all
x € E. The solutions of the Jacobi equations are generated by a time-dependent Hamiltonian
function. Define for each ¢ € R the Hamiltonian

Hy(z,y) = ;((y,m + (R(t)z, r)), (A.3)

then the Jacobi equation is equivalent to the Hamiltonian equation:

L) = aaZt<J1<t>,Jz<t>>=J2<t>
Bt = =S80, h(0) = ~ROAD)

Definition A.1. Let R: R — Sym(FE) be a C*®-map. We say that Jacobi equation

J(t) + R(t)J(t) = 0

has no conjugate points on [a,b] if for all Jacobi fields J with J(a) =0 and J(a) # 0, we have
that J(t) # 0 for all t € (a,b).
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The variational spects of the Jacobi equation are revealed by the index form.

Definition A.2. Let R : R — Sym(FE) be a curvature operator and V- = {X : [a,b] —
E|X is piecewise dif ferentiable} be the vector space continuous and piecewise differentiable
curves in E. The symmetric bilinear form

[Z:[[(Lb]ZEXE—)R,

with

b

Tun(X,Y) = [ (X0, (1) = (ROX @), Y (1)) at (A4)

a

is called the index form. If we want to specify the curvature tensor operator, we write I or

R
I[a7b] .

Let X,Y € V be differentiable on each interval of the subdivision a = tg < t; < ... <ty = b.
Then, using integration by parts, we obtain:

_ /6<X(t) + R()X (), Y (t))dt. (A.5)

ti—1

This implies that X is a Jacobi field if and only if I(X,X) = 0 for all Y : [a,b] — E with
Y(a) =Y (b) = 0. Since

0

5| I sYIX 4 sY) =20(X,Y), (A.6)

s=0

X is a Jacobi field if and only if it is a critical point of the action I(X) := I(X, X) on the space
vector fields with fixed endpoints.

Lemma A.3. (Index Lemma) Assume that the Jacobi equation has no conjugate points on
la,b]. Then Ij,y is positive definite on the subspace

VO={X € V|X(a) = X(b) =0},

this mean,

I(X,X)=0, for all X €V° X #0.

95



Proof. Let us first assume that X € V0 is smooth. Consider the Jacobi tensor A with initial
conditions A(a) = 0 and A(a) = Id. Since the Jacobi equation has no conjugate points, there
is a smooth curve Y € V such that X (¢t) = A(¢t)Y(¢). In particular, Y (b) = 0. Then we obtain

I(X,X) = <X,X)Z—/b(X+R(t)X,X>dt

b . b .. .
— / (AY + R(t)AY, AY )dt — / (2AY + oV, AY)dt

a

b .. .
— / 2(AY AY) + (V, ATAY )t

b . . b . ——
= 2 [V, AT)dt+ [V, ATAY )at.

Since
0=ATA—- A" 4,
we obtain
(ATAY) = ATAY + ATAY + ATAY = 2ATAY + ATAY.
Hence

b . .
I(X, X) = / (v, AT AV )dt.
In the general case, we deduce the same formula by integrating piecewise. This shows (X, X) >
0 for X € V°. Furthermore, I(X, X) = 0 implies that Y is constant. Since Y'(b) = 0, we deduce
that 0 =Y (t) = X (¢) for all ¢ € [a, b].

O

This lemma shows for Jacobi equations without conjugate points on [a,b] that there are no
conjugate points inside the interval [a, b] as well. To see this, one considers for a <t} <ty <b
be piecewise differentiable curve X which is 0 on [a,t1] and [t2, b] and coincides with a Jacobi
field J on [ty,ts] with J(t1) = J(t2) = 0. Then it follows from that (X, X) = 0 and the
index Lemma implies that X vanishis identically.

The next corollary shows that for Jacobi equations without conjugate points, Jacobi fields
are not only critical points but minimize of the action I(X,X) on the space of piecewise
differentiable curves with fixed endpoints.
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Corollary A.4. (Minimizing property of Jacobi fields) Assume that the Jacobi equation

J(t) + R(t)J(t) = 0 has no conjugate points on [a,b]. Let J be a Jacobi field and X € V be a
piecewise differentiable field with X (a) = J(a) and X (b) = J(b). Then

1(7,7) < I(X, X)), (A7)
where the inequality is strict unless J = X.

Proof. From the Index Lemma and (A.5), we deduce

0<I(J—X,J—X)=1(J,J)=2I(J,X)+ I(X,X) = —I(J,J) + I(X, X). (A.8)

]
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