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Abstract

Investigamos propriedades ergddicas, topoldgicas e estocdsticas de Sistemas de Fungdes Iteradas
(IFS) de mapas continuos em um espaco métrico que sao escolhidos de forma aleatoria, idéntica

e independente.

Investigamos as condi¢des de contragdo ap6s mudangas de métricas. Estamos principalmente
interessados em mudancas de métricas que tornem um IFS em um que seja contrativo em
média. Para um IFS de C'-difeomorfismos do circulo que é proximal e ndo tem uma medida
de probabilidade simultaneamente invariante por cada mapa, obtemos uma métrica fortemente

equivalente que contrai em média.

Para IFSs de C*-difeomorfismos no circulo estabelecemos uma lei forte dos grandes niimeros
e um teorema central do limite. Além disso, descrevemos grandes desvios para a derivada em

orbitas aleatdrias em relagdo ao expoente de Lyapunov esperado.

Finalmente, estudamos IFSs no circulo que sdo induzidos por cociclos de matrices. Mostramos a
equivaléncia entre certas fungdes de pressdo: para o cociclo e para o produto torcido. Provamos

a unicidade dos estados de equilibrio para alguns potenciais.

Palavras-chave: Sistemas de fung¢des iteradas, contracdo em média, sincronizacdo, sistemas
dinamicos aledtorios, difeomorfismos no circulo, exponente de Lyapunov, teorema central do

limite, grandes desvios, produtos torcidos, cociclos de matrices.






Abstract

We investigate ergodic, topological and stochastic properties of Iterated Function Systems (IFS)

of continuous maps on a metric space which are chosen randomly, identically and independently.

We investigate contraction conditions after metric changes. We are mainly interested in changes
of metrics which turn the IFS into one which is contractive on average. For the particular case of
a system of C''-diffeomorphisms of the circle which is proximal and does not have a probability
measure simultaneously invariant by every map, we derive a strongly equivalent metric which

contracts on average.

For IFSs of C!-diffeomorphisms on the circle we establish a strong law of large numbers and a
central limit theorem. Moreover, we describe large deviations for the derivative on random orbits

relative to the expected Lyapunov exponent.

Finally, we study IFSs on the circle which are induced by matrix cocycles. We establish equiva-
lence between pressure functions: for the cocycle and for the associated skew-product. Moreover,

we prove the uniqueness of the equilibrium states for some potentials.

Keywords: Iterated function systems, contracting on average, synchronization, random dynam-
ical systems, diffeomorphisms on the circle, Lyapunov exponent, central limit theorem, large

deviation, skew-product map, matrix cocycles.
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1 Introduction

For the quantitative understanding of deterministic dynamical systems, the use of proba-
bilistic methods has become of increasing importance. In fact, the long-time behavior of “chaotic”
systems shows many features of stochastic systems. Such features can rigorously be analyzed and
effectively described for so-called hyperbolic dynamical systems. The theory of uniformly hyper-
bolic dynamical systems has been well studied since the 1960s, based on the fundamental works
of Smale. However, such systems fail to contemplate a large number of interesting examples such
as the Lorenz flow, as time-continuous system, and the Hénon map, as time-discrete system. So
it is necessary to extend their foundations to systems that do not present uniform hyperbolicity.
Thus, naturally arises the interest in studying dynamical systems that generalize the uniformly
hyperbolic ones, such as non-uniformly hyperbolic or partially hyperbolic ones. The latter still
show uniformity, but complete hyperbolicity is replaced by “some hyperbolicity”. Understanding
its behavior from the topological point of view (structure of the attractors), from the statistical
point of view (stationarity of dynamics) and from the ergodic point of view (average behavior

along the orbits) is, therefore, of fundamental interest and has guided several works.

One most challenging problem is to study quantifiers of “chaotic” behavior and of objects
that remain invariant under the time-evolution of a dynamical system, such as fractal dimensions
or entropies, or the scaling and self-similar properties of invariant probability distributions. A
second aspect is to investigate statistical properties of a system by means of certain limit laws
(for example, a central limit theorem) and to reveal its stochastic-like behavior. Part of this can
be achieved using the so-called thermodynamic formalism, originally developed by theoretical
physicists. One main object there is the topological pressure, that is, a particular functional on the
space of observables, which encodes several important quantities of the underlying dynamical
system. The pressure functional ties together, for example, Lyapunov exponents, entropy, fractal

dimensions, multifractal spectra, correlation decay rates.

The main focus of this work is on random dynamical systems, in particular on iterated
function systems with probabilities. A special focus will be on systems on the circle. Hutchinson
[Hut81] was the pioneer in studying iterated function systems. Assuming contraction, he showed
various properties of these systems, such as existence and uniqueness of a stationary measure.
He also characterized the support of the stationary measure, specified its Hausdorff dimension
and showed that this set has only three options: it is either the full space, a finite set, or a fractal
(which in 1-dimension this is a Cantor set). In the case of an iterated function system on the
circle, instead of contraction other, purely topological, conditions such as minimality guarantee
analogous properties. This is for instance studied in [Nav11]. Another topological property,
which is in a certain sense an opposing effect, is synchronization. For iterated function systems

on the circle the following so-called Invariance Principle [Mall7, Theorem F] holds true:
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* either each map of the iterated function system preserves a common probability measure,

* or the iterated function system has the local contraction property: given any point of the
circle, typical compositions of the homeomorphisms contract some neighborhood of the

point.

The synchronization properties studied in [Mal17] play an important role in this thesis.

1.1 Contracting on average lterated Function Systems

Given a complete metric space (M, d), an iterated function system (IFS) is a finite
set F = {fo,...,fv_1}, N > 2, of continuous maps f;: M — M,i =10,...,N — 1. One
important goal is to understand the asymptotic behavior of consecutive concatenations of maps
in F where the choice at each step is according to probabilities p;, 2 = 0,..., N — 1, of some
probability vector p = (po, ..., pn—_1), defining the triple (F, p, d). This behavior is very well
understood under the hypothesis that every map contracts uniformly. However, this is a rather
strong requirement. Several weaker hypotheses imply also good stochastic properties of the
associated Markov chain generated by the IFS. For example, an IFS which is contracting on
average (the concatenated maps do not necessarily shrink the distance between two points at
every step and everywhere, but in expectation they do; see (1.1.1)) has a contracting (hence

unique) stationary Borel probability measure.

Though, much less is known for an IFS of maps which either “just do not expand” or
have simultaneously some “contracting regions” and some “‘expanding regions” or even repelling
fixed points (compare the examples depicted in Figure 4). In such a general context, to gain any
average contraction, one least topological requirement was coined in [Ste01] is that “the orbit of
a point wanders sufficiently around the space to pick up an average contraction”. Such property

would, for example, call for an IFS which is minimal’.

Observe that the existence and uniqueness of a Markov chain-stationary measure does
not depend on the metric (as long as metrics generate the same topology), while contraction
properties do. A natural question is when for (F,p,d) there exists some metric D on M
equivalent to d such that (F, p, D) is, for example, contracting on average. Besides surveys
such as [Kai81, DF99, 1os09], we point out [Ste12] which provides an ample discussion of many
kinds of contracting conditions and [LSS20] which reviews IFSs from a more topological point
of view, both mentioning also the method of metric change. In Section 3.1 we briefly discuss
some stochastic properties that remain true for the contracting on average IFS after a metric

change.

' The IFS F is forward minimal if for every nonempty closed set A C M satisfying f;(A) C A for every

i=0,...,N —1litholds A = M. The IFS F is backward minimal if F~* = { f; '} is forward minimal.
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One step towards this direction was done in [GS17] where a convenient metric change
turns a backward minimal IFS of homeomorphisms on S' into a non-expansive on average one
(see also [SZ20]). Here, for a non-expansive on average IFS of Lipschitz maps on a compact
metric space, we give (sufficient and necessary) conditions to guarantee a metric change which
turns an IFS into a contracting on average one. Moreover, we thoroughly discuss several local

and global contraction-like properties intimately related with it.

b

The existence of a metric which makes a dynamical system “contracting” or “expanding’
has been widely studied. Let us cite some key results. If a map “eventually” contracts (expands)
in the sense that its kth iteration has this property, a convenient change of the metric turns it into
a contraction (expansion) in its first iteration (see, for example, [PU10, Chapter 4]). As explained,
for example, in [Shu87, Chapter 4] a hyperbolic structure of a diffeomorphism is independent
of the Riemannian metric on the ambient manifold. In [Fri87, Fat89], using Frink’s metrization
theorem, it is shown that for any expansive homeomorphism of a compact topological space
there exists an equivalent metric such that the map contracts (expands) on stable (unstable) sets.
Analogously, there exists a metric which turns a (positively) expansive continuous map of a

compact metric space into an expanding one (see [PU10, Chapter 4]).

Before stating the first main result, let us introduce the main contraction properties which
we are going to investigate. A precursor in [DF99] requires contraction in mean: f; are Lipschitz
with Lipschitz constants Lip(f;), i =0, ..., N — 1, satisfying

N-1

1=0

Weaker concepts are proposed in [BDEG88, Pei93], where (F, p, d) is assumed to contract on
average (CA) in the sense that there exists A € (0, 1) so that

N-1
> pid(fi(z), fily)) < Ad(z,y)  forevery z,y € M. (1.1.1)
i=0

In fact, [BDEGS88] requires even weaker assumptions allowing for place-dependent probabilities
and for contraction in L? norm, ¢ > 0, while [Pei93] assumes “contraction on average after some
iterations” (that is, it is k-eventually contracting in average, for some £ € N, in the sense defined
in (2.1.6) below). Less is known about an IFS if we put only the weaker hypothesis that (F, p, d)

1s non-expansive on average (NEA) in the sense that

N-1
> pid(fi(x), fily)) < d(z,y) forevery z,y € M.
i=0

This property implies, for example, that the associated Markov chain is non-expansive (see

[Sza03] and references therein). There are variations of these definitions such as being eventually

2 The existence of so-called adapted metrics in partially hyperbolic dynamics and dynamics with a dominated

splitting was investigated in [Gou07, HPS77]. The use of adapted norms and metrics is also common in the
study of nonuniform hyperbolicity when analyzing the size of local un-/stable manifolds (see, for example,
[BPO7] in the C'*¢ case and [ABC11, Section 8] for a C'' dominated setting).
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strongly contracting on average (ESCA), synchronizing (S), synchronizing on average (SA),
locally eventually contractive on average (LECA), and proximal, that we postpone to Section 2.1.

To simplify the exposition, we will mainly use these short notations.

Recall that metrics d and D on some common space M are (topologically) equivalent if
they generate the same topology. They are strongly equivalent if there exist positive constants a
and b such that ad(z,y) < D(z,y) < bd(x,y) for every x,y € M. Clearly, strong equivalence
implies topological one, but not vice versa. Given «a € (0, 1), note that d*: M x M — [0, 00)

defined by d*(x, ) = (d(x,y))® is a metric on M, and d and d* are equivalent.

NEA (assuming compactgess)

ESCA
(Theorem A)

LECA

for all
eguivalcjn_t metrics
(Proposition 2.2.4)

(Lemma 2.1.28

Figure 1 — Some implications, assuming non-expansive on average (NEA) on a compact metric
space: eventually strongly contracting on average (ESCA), contracting on average
(CA), synchronizing on average (SA), locally eventually contractive on average
(LECA).

Let us now state our first main result. Let X5 = {0,..., N — 1}" be the space of
one-sided sequences and denote by p the Bernoulli measure on X} determined by p. For any
sequence £ = (& ...) € XL, n>1,andz € M let

f?(x) o fﬁlgn s ffn o fgn—l 0---0 fél(x)7 fgo(x) def T

Given x,y € M and n € N, let

Zya(©) Ed(fi(x), fEW),  Zd(©) = d(x,y).

Given A > 0 and n € N, consider the metric defined by

1

1 X T
B(Zyf) +- -+ WE(Zn’_y1,d)7

dn,A('T?y) = d(l’,y) + W

where E(-) denotes the expected value according to the probability distribution.

The following result, Theorem A, is proved in Section 2.2.
Theorem A. Consider a compact metric space (M,d) and a triple (F,p,d), where p is a
non-degenerate probability vector and F is an IFS of Lipschitz maps that is non-expansive on

average. If (F, p, d) satisfies LECA and ESCA, then there exist A € (0,1) and n € N such that

(F,p,dn) is contracting on average. Moreover, LECA is equivalent to SA.
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The second main result concerns the particular case of an IFS of C! diffeomorphisms of
def

the circle S* equipped with the usual metric d(z,y) = min{|z — y|,1 — |z — y|}. Theorem B is

proved in Section 2.3

Theorem B. Assume that F is an IFS of C*-diffeomorphisms on S'. Assume that (F,d) is
proximal and there does not exist a probability measure which is invariant by every map in F.
Then for every non-degenerate probability vector p there exist o € (0,1, A € (0,1), andn € N
such that (F,p, D), with D £ (d®),,.», is contracting on average. Moreover, d < D < C'd® for

some C' > 0, and hence d and D are strongly equivalent.

In Section 2.4 we illustrate and discuss our results in two classes of homeomorphisms on

S! (compare Figure 4). We summarize their main properties.

74 1h
~ o Ffo

s
’ |
/ 1
7 1
e 1
s 1
’ |
< 1
- :
» >

- J T I
Figure 2 — Examples studied in Section 2.4.2 (left) and Section 2.4.3 (right)

Example 1.1.1 ((F, p,d) in Section 2.4.2, see Figure 4 (left)). This example of an IFS of
C'-diffeomorphisms is proximal (and hence SA and LECA) but fails to be NEA. The choice
of metric p in [GS17] forces (F, p, p) to satisfy NEA, SA, and LECA, but (F, p, p) fails to be
ESCA. As (F, p, p) verifies the hypotheses of Theorem B, there exist a € (0,1], A € (0,1) and
n € N such that for D = (d®),, , the triple (F,p, D) is CA. In particular, (F,p, D) satisfies
NEA, SA, LECA, and ESCA. However, for all § € (0, 1] the metric D? fails to be strongly

equivalent to d.

Example 1.1.2 ((F, p, d) in Section 2.4.3, see Figure 4 (right)). In this example the approach in
[GS17] does not apply. This example fails to be NEA and e-LCA, but it is proximal, S, SA, and
LECA. For this example, it is shown that for appropriate o € (0, 1] the metric

D(z,y) & ]E(Sup Z;:ga),

n>0

is strongly equivalent to d* and (F, p, ﬁ) satisfies NEA, SA (and hence LECA), and ESCA.
Hence, by Theorem A, there is a metric D which is strongly equivalent to D (and hence to d)
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such that (F, p, D) is CA. In particular, (F, p, D) satisfies NEA, LECA, and ESCA. Moreover,
if fo and f; are C'-diffeomorphisms which have no common fixed points, then Theorem B

applies.

k-ECA log-CA

“a,
..
.

for some equivalent

¢ alent Tt A e for some d* and o € (0, 1]
metric (Proposition 2.1.12) ,¢ CA &~ (Proposition 2.1.24)
’
for some strongly-equivalent metric, # y 271
assuming compactness PRe -
(Theorem A) e
’
at for bounded metric SAexp
NEA
+
Y
LECA
e-LCA]
+
ESCA
LCWS e-local log-CAl

Figure 3 — Implications between: contracting on average (CA), eventually contracting on average
(ECA), locally eventually contractive on average (LECA), non-expansive on average
(NEA), eventually strongly contracting on average (ESCA), log-contractive on average
(log-CA), e-local contractive on average (¢-LCA), locally contractive in the weak
sense (LCWS), and e-local log-CA

1.2 Stochastic properties for contracting on average IFSs

As discussed above, a change of metrics does not alter the distribution of orbits in the
space. Thus, a statistical property for (F, p, d) holds also for (F, p, D), provided that d and D
are equivalent. We describe stochastic properties for contracting on average IFSs and discuss the
impact of a metric change. The main results of Chapter 3 are established for IFS on the circle
satisfying the hypotheses of Theorem B, because in this case we have satisfied the contraction
on average property after metric change. Recall again that contraction on average implies the
existence and uniqueness of a stationary measure which in turn implies interesting statistical
properties. The first result is immediate consequence of [BDEGS88, Theorem 2.1] and Theorem
B and establishes a strong law of large numbers and a central limit theorem. The second result

states large deviations for the derivative on random orbits with respect to Lyapunov exponent.

Recall that a Borel probability measure v on S! is stationary for the IFS (F, p) if

N—-1
Fow=v, where F.=> p(fi).. (1.2.1)
=0
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We will provide some further details and justification of the term stationary below, see Section
3.1.

For x € S! consider the Dirac measure 9, at x. Fixed x € S!, define the Markov chain
(W2®),.en on the probability space (X3, i) taking values in S with initial distribution &, given
by

WE(E) = fi(x), W) =, (1.2.2)

where £ = (£, &,...) € ¥} and J& = Je, 0+ 0o fe,. We will study the following asymptotic

behavior of (W?*),cn: given an integrable function  : St — R

(SLLN) (F,p) satisfies the strong law of large numbers for h, if for every x € S*,

—Zh(W,f)‘Exu(h)d:d/hdu as 1 — oo, (1.2.3)

N l;)h (WgZ) — N(v(h),0°(h)) asn — o (1.2.4)
where )
0=t & [ (S re(e) - wn) dpevica. 29

The following result is proved in Section 3.1.

Theorem C. Assume that F is an IFS of C'-diffeomorphisms on S'. Assume that (F,d) is
proximal and there does not exist a probability measure which is invariant by every map in F.
Then for every non-degenerate probability vector p there is a unique stationary probability v for
(F, p). Moreover, for every x € S', the Markov chain (W?),cn associated to (F, p) defined in
(1.2.2) satisfies (SLLN) and (CLT) for any Lipschitz function h: S* — R, further, for a*(h) as in
(1.2.5) we have o(h) > 0 whenever there does not exist a function g such that h = g — g o f,
forall f € F.

The assertion of uniqueness of the stationary measure is not new, to the best of our
knowledge a first reference under the hypotheses of Theorem C is in [DKNO7, Proposition 5.5.].
Theorem C provides new sufficient conditions for the CLT to hold. It complements the central
limit theorem [SZ21, Theorem 9] which is stated for Holder observables ¢ and an IFS of circle

homeomorphisms additionally assuming that (F, d) acts minimally.

When the IFS is formed by diffeomorphisms, to know the behavior of the derivative
(f&) () helps to predict the behavior of the orbits f{(y) with y € S' near . We are now going
to discuss large deviation of finite-time Lyapunov exponents + log |(f¢)’(z)|. The theory of large
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deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small
as a function of some parameter, e.g., the number of random components of a system, the time
over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical
system or the temperature of a chemical reaction. The theory has applications in many different
scientific fields, ranging from queuing theory to statistics and from finance to engineering. In its
basic form, the theory of large deviations considers the asymptotic behavior of log P(E,,) for
a sequence of events { F,, } with asymptotically vanishing probability. To be more precise, for
e > 0 and a sequence { X, } of random R-valued variables, consider S,, E Xo+ X144+ X
If this process is independent, identically distributed and if its first moment is finite, then the
average %Sn converges almost surely to the mean E(Xj). In particular it also converges in
measure:

P H:LS” — E(Xo)

>5]—>O asn — 0.

The event |25, — E(X)| > ¢ is called a tail event. The asymptotic behavior of tail events is the
object of the theory of large deviations (see [RAS15]). A classical result in this theory is, for
example, the Large deviation principle by H. Cramér in [DZ98, Theorem 2.2.3].

Consider (F, d) satisfying the hypothesis of Theorem C. Let F' be the skew-product map
given by
F(¢& ) = (0(§), fe, (2))- (1.2.6)

Note that, the product measure p ® v is F-invariant (this is immediate consequence of the
stationarity of v). Hence, by Birkhoff’s Ergodic Theorem, for (1 ® v)-almost every (£, x) €

Y5 x S we have

n—oo n,

lin g [(/2) () =1(p) 2 [ loa|(fe) @ldp @ vE ). (127)

The constant v = ~(p) is called Lyapunov exponent and depends on the probability vector p.
Lyapunov exponents are natural quantifiers that characterize dynamical systems attractors and

their sensitivity on initial conditions. Note that v < 0 (see, for example, [Mall7, Theorem F]).

In the following result, we describe the deviation of finite-time Lyapunov exponents from
7(p). In the second item, we strengthen the exponential pointwise synchronization obtained in
[Mal17] in two aspects (see Remark 2.3.3): we obtain that the “expected” exponential synchro-
nization rate is y(p) and we describe the exponentially small large deviations. We will prove it
in Section 3.2.4.

Theorem D. Assume that F is an IFS of C'*? diffeomorphisms, for some 3 > 0, on S* so that
(F,d) is proximal and there does not exist a probability measure which is invariant by every
element of F. For every non-degenerate probability vector p consider the Bernoulli measure |1
on X, determined by p, the stationary probability measure v for (F,p,d) and the Lyapunov
exponent v = (p) < 0. Then there exist h,co > 0 and ¢ > 0 such that for all € € (0,¢) and
neN
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1. foreveryx € S!

2

H (5 eyt ‘log |(f&) ()] — n'y’ > n€> < ce~mhe

2. forevery x,y € S, x # v, there exists C = C(x,y) > 0 so that

Z,a(§)
Eext: |10g o — ny
! ( M d(y)

> TL€> < Ce—nmin{a/?,h62/4}/2.

One further interesting property of an IFS is the convergence on average of the orbits.
From Lemma 2.1.8 and Proposition 2.2.1, when the metric space is bounded the conditions
CA and SA.,, are equivalent, after a possible metric change. Additionally, we show in Section
3.2.2 that SA, with rate A € (0,1) implies exponential decay of the amount of functions
that do not synchronize any two orbits with the same rate A\. One more time, in the context of
C'-diffeomorphisms on S* we show SA.y, with respect d*, for d usual metric on S' and some
a e (0,1).

1.3 Matrix cocycles

In Chapter 4, we restrict ourselves further and study diffeomorphisms on the projective
space which are generated by matrix cocycles. As the projective space is homeomorphic to the
circle, this means, that we study a very special class of circle diffeomorphisms. This restriction is
due to some technical tools which, up to now, could not yet be put into larger generality. Indeed,
matrix cocycles provide much stronger tools. One of them is a type of quasi-multiplicativity.
This property was first shown in the case of non-negative matrices in [FL02] and, recently in
almost complete generality in [Fen09a]. So far it was very little explored further. It has very

strong immediate consequences, for example to investigate thermodynamic aspects.

To formulate the main results of Chapter 4, let us introduce some notation. Let SL(2, R)
be the set of 2 x 2 matrices with real coefficients and determinant one. One can associate to
any matrix A € SL(2,R) a circle diffeomorphism as follows. Consider the projective map

fa: P! — P! defined by
w Av

fA(U) = W’

where P! denotes the projective line, which topologically is the circle S!.

Denoting by o: ¥} — X} the usual left shift (see (3.2.4)).Let us fix a finite family
M = {My, ..., My_1} C SL(2,R)". Let Fy be the IFS on the projective space formed by the
maps induced by the matrices in M, that is, Fiy = {fur, - - -, fary_, - The linear cocycle over

(X4, i, o) associated to M is the skew-product map (analogous to (1.2.6)) given by

Fishx P =S x P, F(6,2) 2 (0(8), fu, (2)).
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Let M(X};) denote the set of all shift-invariant Borel probability measures on 7. Let
Mere (X4 ) be the set of the measures in M(X3;) which is ergodic. Let M(X x P') be the set of
all F-invariant Borel probability measures on X}, x P!, and let M, (X} x P') be the set of the
ergodic measures. Denote by 7: X3 x P' — ¥ the projection 7(£, v) = €. It is not hard to see

that for any p € Mg (X8 x P') the measure v = 7.1 is in Mg (X 7).

For £ € X7, let

M™M(&) < M, 0...0Me, and  f8= fune) = fare, ©---© S,

By Kingman’s subadditive ergodic theorem, for any o-ergodic Borel probability measure v on

Y1, for almost every & the following limit exists
ef 1. 1 n
A(M, ) = lim —log [M"(&)]| = M.(v), (1.3.1)
where M., (v) is called Lyapunov exponent relative to v and is given by

M.(v) £ lim — /log||M"( ) dv(é). (13.2)

Following [BLS8S5, page 48], a family M is irreducible if there is no non-zero proper
linear subspace V' of R? such that M;V C V foralli € {0,..., N — 1}. As we will see, this
property implies a type of quasi-multiplicativity of the matrix norm over M (see Proposition
4.3.1).

Remark. It is not hard to show that M is irreducible if and only if there is no common fixed
point by all maps in the IFS Fy. Indeed, for all A € SL(2,R) every proper linear subspace of
R? is associated to a unique fixed point of f 4, and vice versa. More specifically, if a proper linear
subspace V of R? holds AV C V, then there exists a € R such that Av = av, forallv € V.
Thus, for v € P! representing the space V we have f4(v) = v. On the other hand, if there exists
v € P! such that f4(v) = v, thenfor V = {tv : t € R} we have Aw = rw for all w € V, where
r = +||Av||. That is, V is a proper linear subspace of R? invariant by A. Consequently, there is
a proper linear subspace of R? invariant by all matrices in M, if and only if there is a fixed point

by all maps in Fy.

Let us consider a particular case that Ml contains (at least) two elements: a hyperbolic
matrix and a matrix representing an irrational rotation. Note that this induces an IFS which is
a particular case of the example studied in Section 2.4.2. Further, this is a particular example
of elliptic cocycles having “some hyperbolicity" as defined in [DGR19, Sect. 11.7]. This set
~,shyp’ 1s defined as follows. The set &
M C SL(2,R)" having the following properties:

of cocycles, denoted by & consists of cocycles

N,shyp

* Some hyperbolicity: There exist ¢ € Y} and n € N such that the matrix M"() is
hyperbolic, that is, has one eigenvalue with absolute value bigger than one and one smaller

than one.
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* Transitions in finite time: There exist ¢ € X}, and m € N such that M™(() is an irrational

rotation.

In fact, in [DGR19], there is studied a slightly more general class of cocycles.

Remark 1.3.1. It is not hard to check that any Ml € & is irreducible.

~N,shyp

To state our next result, let us define pressure function and equilibrium states. The

pressure function, relative to the cocycle, is given by

def . 1 n
P(q) = lim “log >, MO =0, (1.3.3)

n—oo
617---7571

where the above limit exists by sub-additivity arguments. Let us also consider the following

variational pressure given by

Pul(q) = sup (hy(0) +¢M,(v)), q€R. (1.3.4)

VEM(EE)

By [CFHO8, Corollary 1.2], for every ¢ > 0 we have the following variational principle

P(q) = Pu(q). (1.3.5)

A measure v € M(X}) is an g-equilibrium state for P if it realizes the supremum in (1.3.4). Let
T, be the set of g- equilibrium states. Note that both ML, (-) and /() (c') are upper semi-continuous
on M(X}). Hence, Z, is a non-empty closed convex subset of M(X},). In particular, Z, contains

ergodic elements (each extreme point of Z, is an ergodic measure).

Remark. A priori, the definition of the pressure function in (1.3.3) can be extended to the domain
q € R. Indeed, for ¢ = 0 it is easy to check that P(0) = log N. By sup-additivity, for ¢ < 0 the
above limit exists. However, in the present state of the art, further tools such as, a variational
principle as in (1.3.5) were not established, except for the case when M is formed by strictly
positive matrices, see [Fen04, Theorem 1.1]. Moreover, the uniqueness of equilibrium states fails

in general in the case q < 0, see [Fen09a, Example 6.6].

The following theorem answers parts of open questions stated in [DGR19, Remark
2.2] in the context of step skew-products induced by SL(2, R) cocycles. Denote by dimy the
Hausdorff dimension, and by h,, the topological entropy. As we consider sets that in general
are non-compact, we use the concept of entropy defined by Bowen in [Bow73]. It is shown in
Section 4.3.3.
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Theorem E. I[fM € €, shyp’ then for any q > 0 there exists a unique q-equilibrium state
v, € M(X}) for P, P is differentiable at q, P'(q) = M..(v,) and for o = P'(q) we have

1
log N

dimy E(M, ) = (P(q) — aq)

) 1
B Iz])nelﬂg log N
1
— h,,
log N (0)
1
~log N

(P(p) — ap)

hm]’<E<M7 O‘))J

where .
EM,0) 2 {¢ e x5 lim - log [MM()] = a

There exists a "translation" between matrix-Lyapunov exponents as defined in (1.3.1)
and Lyapunov exponents relative to the circle diffeomorphisms induced by the matrix cocycles.
This we will explain in Section 4.1. First note that, every vector in P! is the form (cos 6, sin 6)
for some 6 € [0, 7), so we can identify P! by [0, 7). Hence, the function f¢* can be considered a

real function and so we can calculate its derivative, moreover

1

(&) (v)] = TV (€02 (1.3.6)

see Section C.1 for more details. Consider also the potential ¢: ¥} x P — R, given by

p(&,v) = log|ft (v)] (1.3.7)

and for every u € M(X} x P') denote

o(p) = / pdp,

Again, by Birkhoff’s ergodic theorem, for every j € Mg, (X3 X P') and for y-almost every
(&, v) it holds

XML € ) < Tim ~log|(72) ()| = [Toalf, ()l du(e,v) = o). (138)

Let us also consider the following variational pressure function for the skew-product F' and
q €R,
e q
Pr(g) = sup (hu(F) + go(u)) : (1.3.9)

HEM(S T, xP1) 2
A measure i € M(X} x P1) is called g-equilibrium state for Py if it realizes the supremum

in (1.3.9). We will see in Proposition 4.1.4 that, in fact, the pressure functions in (1.3.4) and in
(1.3.9) coincide.

Our final main result is a translation of [FK11, Proposition 1.2] (see Proposition 4.3.2)

to the skew-product F'. It is proved in Section 4.3.2.
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Theorem F. I[f M € €& N.shyp’ then for any q > 0 there exists a unique q-equilibrium state
1tq € M(E}, x PY) for Pp, Py is differentiable at q, P}(q) = 3¢(14) and there exists C > 1
such that for every n € N and £ € X} there exists v, € P! such that, with o = P}(q)

L ({(G) €[ & X P x(M,Gu) = 20}) _
= exp(—nPla)) [(JE) (v =T

Ql

In fact,
1 < 7*“q<[§1'--§n]) <C.

C = exp(=nP()I(f¢) (vn)[~4> ~

Let us briefly summarize the content of the thesis. Chapter 2 deals with contracting
on average IFSs and the effect of metric change. In Section 2.1, we introduce the concepts of
synchronization and contraction and we discuss their relation. In Section 2.2, we investigate
sufficient and necessary conditions for contraction on average. Section 2.3 discusses the particular
case of IFSs on the circle. In Section 2.4 we discuss some examples, in particular those indicated
in Figure 4. Chapter 3 explores stochastic properties with special focus on IFSs on the circle. In
Section 3.1, we briefly discuss what impact a metric change has on stochastic properties for a
contracting on average system. Convergence on average at an exponential rate is stated in Section
3.2 where we also investigate the phenomenon of synchronization in more detail. Chapter 4
investigates IFSs induced by matrix cocycles. In Section 4.2 we provide details of the cocycle.
Section 4.1 discusses relations between ergodic measures for the skew-product and for the base

map. Finally, in Section 4.3 we prove Theorems E and F.
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2 Contracting on average lterated Func-
tion Systems

2.1 Synchronization and contraction (on average)

In this section we discuss several types of synchronization-like and contraction conditions
and their relations between each other. Unless stated otherwise, we always assume that (M, d) is
a general metric space, F = {fo, ..., fx_1} an IFS of continuous maps, and p a non-degenerate
probability vector. Let 4 be the Bernoulli measure on 3 determined by p. When X is a random

variable on (X%, 11), we write
E(X) & / Xdp.
=N

2.1.1 Synchronization

The study of synchronization effects goes back to, at least, the 17th century, when
Huygens [Huy73] observed the synchronization of linked pendulums. In the theory of dynamical
systems, synchronization usually refers to the phenomenon that for any two initially fixed distinct
points their randomly chosen trajectories converge to each other. Let us now recall related

concepts and some properties.

One says that (F, p, d) is synchronizing (S) if random orbits of different initial points
converge to each other with probability 1, that is, for every z, y € M and almost every ¢ € X3
it holds

lim Zﬁf;g(f) =0. (2.1.1)

n—oo

The triple (F, p, d) is exponentially synchronizing (S..,) if the convergence in (2.1.1) is exponen-
tially fast, that is, if for every z,y € M and almost every £ € X}, there exist A € (0,1),n € N
and C' > 0 such that

Zyg(e) < OX. (2.12)

The pair (F, d) is proximal if for every z,y € M, there exist £ € ¥}, and an increasing sequence
(nk)ren such that
lim 727, (£) = 0. (2.1.3)

k—o0 Ty

The triple (F, p, d) is synchronizing on average (SA)" if for every x,y € M it holds

lim E(Z%) = 0. (2.1.4)

n—oo

' Note that the definition in [MM20, GK16] differs from the one given here: (F, p, d) is synchronizing on average
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The triple (F,p,d) is called exponentially synchronizing on average (SA,) if there exist
A € (0,1) and C' > 0 such that for every x,y € M and n > 1 it holds

E(Zy4) < CA™ (2.1.5)
The following general relations hold between the above defined properties.

Remark 2.1.1. The systems studied in [MS21] (see Section 2.4.1) are an example of IFSs S.,,
and SA.,.

Lemma 2.1.2. Assuming that (M, d) is bounded, S implies SA.

Proof. This is an immediate consequence of the Dominated Convergence Theorem. ]

Lemma 2.1.3. S and proximal are invariant under change of equivalent metrics.

Proof. 1t is enough to note that if d and D are equivalent then a sequence in M converges in
(M, d) if and only if it converges in (M, D). O

Lemma 2.1.4. Let d and D be two metrics on M. Assume that there exist C > 0 and o € (0, 1]
such that D < Cd®. If (F,p, d) is SA.y,, then (F,p, D) is SAey.

Proof. Assume that (F,p,d) is SAep and let ¢ > 0, A € (0,1) and a € (0, 1] such that
]E(fo,’fj) < c\'foralln > 1and x,y € M. Hence, using Jensen’s inequality we get

E(Z%) < CE(Z%) < C(E(Z2)" < e,
that is, (F, p, D) is SAcxp. ]
Lemma 2.1.5. The following implications hold

Sep = S = SA = proximal.

Proof. The first two implications are immediate. Let us assume (F, p,d) is SA. Fix z,y € M.
Then ij;g converges to 0 in L' as n — co. Hence, applying Chebyshev’s inequality, for every
€ > 0 it holds

Zyg =€) < e "E(Zyg) — 0

as n — oo, that is, Z;f:g converges to 0 in probability. By [Durl9, Theorem 2.3.2], there exists
a sub-sequence (7 ) such that Zf{:{d converges almost surely to 0 as k& — oo. This implies

proximality. ]

if for every x,y € M, for almost every £ € E} it holds
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Remark 2.1.6. If F = {f;};! is an IFS of homeomorphisms of the circle S' which do note
have a common fixed point and p a non-degenerate probability vector, then by [Mall7, Theorem

E] the concepts S.p, S, and proximal (and hence SA) are equivalent.

2.1.2 Global average contraction conditions

The IFS F is contracting (C) if every map in F is a contraction. Given k£ € N, denote
FEE A fe e (61,0, &) €10,..., N — 1}¥}. The IFS F is k-eventually contracting (k-EC)
if 7* is contracting and F is eventually contracting (EC) if it is k-eventually contracting for
some k € N.

2.1.21 CA

The triple (F, p, d) is called contractive on average (CA) if there is some contraction
rate \ € (0, 1) such that

E(Z7]) < Ad(z,y) forevery z,y € M.

Remark 2.1.7. CA is a particular case of the first hypothesis of [BDEGS88, Theorem 2.1], which

guarantees the existence and uniqueness of a stationary measure.
Lemma 2.1.8. If (F, p, d) is CA with contraction rate A € (0, 1), then for everyn € N

E(Zyq) < A'd(x,y) foreveryx,y € M.

Proof. Let us proceed by induction. For n = 1 just apply the definition of CA. Suppose now that
for k > 1, we have
E(ZyY) < Ad(z,y) forevery z,y € M.

Using that (F, p, d) is CA, for every x,y € M we have
Z]fﬁld Z pz Zfz(x fz( ))
N—
< \F Z pid(fi(z), fi(y))
i=0
< ANd(z,y).

This prove the lemma. [

Remark 2.1.9. If (M, d) is bounded, then it follows from Lemma 2.1.8 that CA implies SAcp.

Given k € N, the triple (F, p, d) is called k-eventually contractive on average (k-ECA)

if there exist some contraction rate X € (0, 1) such that

E(Z{) < Ad(w,y) forevery v,y € M. (2.1.6)
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The triple (F, p, d) is eventually contracting on average (ECA) if it is k-ECA for some k € N.

The following lemma justifies that a, perhaps obvious, first choice of a metric to establish
CA is well defined.

Lemma 2.1.10. For every n € N, the function 1,,: M x M — R defined by
Un(,y) = E(Z,7)

is continuous and defines a pseudometric on M. For every x,y € M, it holds

N-1
Y piton(fi(2), fi(y)) = Yuia(2,y).
i=0
Moreover, if F is an IFS of homeomorphisms then 1,, is a metric on M which is equivalent to d.

Proof. The continuity, symmetry and triangle inequality are immediate consequences of the fact

that d is a metric. Thus, 1), is a pseudo metric on M. The second property is immediate.

Finally note that 1, (x,y) = 0 if and only if, d(fe ¢, (2), fe. ¢, (y)) = 0 for all
&,...,& € {0,..., N — 1}. Hence, if every f; is a homeomorphism, then z = y. In this
case, it also is immediate to see that ¢),, generates the same topology as d. ]

Given k € Nand X € (0,1), consider dj, »: M x M — [0, c0) defined by

c 1 v
di(r.y) = d(@,y) + 7EZ200) + - +

NI E(ZY, ). (2.1.7)

Nk—1)/k

The following is an immediate consequence of Lemma 2.1.10.

Lemma 2.1.11. The function dy, » defined in (2.1.7)is a metric which is equivalent to d. Moreover,

if all the maps in F are Lipschitz, then in dy, y is strongly equivalent to d.

Proof. First note that by Lemma 2.1.10 and definition (2.1.7), dj, » is indeed a metric. It is easy
to see that a sequence (z,,),>; converges is (M, d) if only it converges in (M, dy. ). Thus, d and
dy, » are equivalent. Moreover, for every x,y € M

E(Zy4)

. 1
B Zid) o o

where L is the maximum of Lipschitz constants of the maps in . Thus, with

k—1 L]
C = —
k?
= N/
we have
d < dpy < cd,

that is, d and dj, ) are strongly equivalent. ]
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Proposition 2.1.12. If (F, p, d) is k-ECA with contraction rate \ € (0, 1), then (F,p,dy») is

CA with contraction rate \'/*.

Proof. Assume that (F, p, d) is k-ECA with contraction rate A € (0,1) and k € N. If k = 1,
then d;, \ = d and (F, p,d) is CA. If k > 2, then it follows from the definition of dj, , that

E<chll/m> Z pidia(fi(2), fi(y))

D N e ) R e G )
—E Z;{g) + /\11/]€E<Z§,§’> + 2)/kE< 1d) + 1a 11)/kE<Z§,’3>
<E(20) + 57 B(Z0) o+ B () + sy

= N (dw ) + B (20) + B (280) + o+ B (Zi)

= Mk (2, y).

Hence, (F,p, dx.) is CA with contraction rate A\/¥. O

2.1.22 NEA

The triple (F, p, d) is said to be non-expansive on average (NEA) if
E(Z7]) <d(x,y) foreveryz,y € M. (2.1.8)

Remark 2.1.13. The NEA property was introduced in [JTO1] as non-separating on average. See
also [Sza03, Part II] for a study of NEA iterated function systems and associated non-expansive

Markov operators.

The following is an immediate consequence of Jensen’s inequality.
Lemma 2.1.14. [f (F, p, d) is NEA then for any o € (0, 1) the triple (F,p,d*) is NEA.

Lemma 2.1.15. Assume (M, d) is bounded. If (F,p, d) is SA and D is a metric equivalent to d
such that (F,p, D) is NEA, then (F,p, D) is SA.

Proof. If (F,p,d) is SA, then E(Zﬁjg) — 0asn — oo forevery x,y € M. Arguing as in the
proof of Lemma 2.1.5, there exists a sub-sequence (ny ) such that Z x’yd — 0 almost surely to
0 as k — oo. Since D and d are assumed to be equivalent, Z, ¥, — almost surely as k — oc.
Hence, by the Dominated Convergence Theorem, E(Z,"Y,) — 0 as k — oc. Since (F,p, D) is

NEA, E(Z,f:%) — 0 as n — oo. This proves that (F, p, D) is SA. O

Lemma 2.1.16. The following implications hold
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1. C= CA,
2. CA = NEA, and
3. k-EC = k-ECA.

Proof. To prove the implication (1.), assume that (F, p, d) is C and take \; € (0, 1) the contrac-
tion constant of f; € F. Then, for every x,y € M we have

(220 = 3 pd(f(o) ) < (z m) d(z.y).

and note that,
N-—1

Z pidi € (0,1)
i=0
to conclude that (F, p,d) is CA.
Item (2.) is an immediate consequence of the definition.

Applying (1.) to the IFS F*, we obtain (3.). O

Remark 2.1.17. If (F, p, d) is NEA, then for all £ € N and A € (0, 1) the metric dj, , defined in
(2.1.7) is strongly equivalent to d.

Lemma 2.1.18. Forn > 0, let ¢, (x,y) < E(Z, ) be as in Lemma 2.1.10. If (F,p, d) is NEA,
then for every x,y € M it holds

1. 1/}1('r7y) < d(ZE, y)’

2. Yn(x,y) is non-increasing in n and hence the limit lim,,_, . ¥, (x,y) exists,

3. Assuming that M is compact, if for every x,y € M we have lim,,_,, ¥, (z,y) = 0, then
Un — 0 uniformly.

In the following proof and below we use the following simplifying notation

def

p51~~~£n = p£1 o .pgn'

Proof. Property (1.) just restates the definition of NEA. To show (2.), check that

N-1
¢n+1($,y):E(Z§de): z Pey,..., §n+1d(f§1 ----- §n+1<x)7f§1 ----- €n+1(y))
&1yesén+1=0
N-1 N
= > b oped(felfer (@), filferen ()
51 77777 gn:() (=1
N-1
Jeqo, n (@) e, n(Y)
(g )
51 7777 én:O
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This, together with v,, > 0 implies item (2.).
To prove (3.), assume that M is compact and 1, — 0 point-wise. As the limit function is

continuous, by Dini’s theorem, convergence is uniform. O]

Remark 2.1.19. By [GS17, Proposition 1], for any IFS F = {f;};! of homeomorphisms of
(S', d) which is backward minimal there exists a metric p on S! equivalent to d on S' such that
(F,p, p)is NEA.

2.1.2.3 log-CA

The triple (F, p, d) is called log-contractive on average (log-CA) if there exists A < 1
such that

N-1
11 d(fi(z), fi(y))? < Ad(z,y) forevery z,y € M,
j=0
or, equivalently,
z;y
E|In : <InA<0 foreveryx,y€e M,z #y. (2.1.9)
d(z,y)

Remark 2.1.20. Let F be an IFS of Lipschitz maps. In [DF99], the condition

E <l Zid ) <0
nsup : ,
Ty d([E, y)

was called contracting on average which is stronger than log-CA. The condition log-CA was
introduced in [EIt87, Page 84].

Lemma 2.1.21. CA implies log-CA.

Proof. Assuming CA with contraction rate A € (0, 1), note that E(Z}"//d(x,y)) < \. Hence,

by Jensen’s inequality

AV Z
E(ln-—2 | <IhE 4 ) <In) <0,
d(x,y) d(x,y)

proving the lemma. [

Remark 2.1.22. The concept of log-CA was introduced in [BE88]. Assuming (M, d) to be a
complete metric space, F to be an IFS of Lipschitz maps, and (F, p, d) to be log-CA, they prove
the existence of an attractive (hence unique) stationary measure (extending previous results

obtained in the case when M is compact, see references in [BESS]).

The following example is presented in [Eda96] to illustrate that log-CA is weaker than
C. Indeed, it also shows that log-CA is weaker than CA.
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Example 2.1.23 (log-CA, but not NEA and not CA). Let M = [0, 1] and d(z,y) = |z — y|. Let
p = (3, 3). Consider the IFS F = {f,, f1} given by

Jorfus M= M. fofw) 2 5, fu(@) £ min{1, 20).
Note that for all z,y € [0, 1] it holds

A fofa). Sl A (), Fi ()] < Sl o]

and hence (F, p, d) is log-CA. On the other hand, for z,y € [0,1/2] it holds fi(z) = 2z and
fi(y) = 2y, so that

E(Z5)) - (Gew0) +2d(2.0))

DN | —

(d(fo(z), fo(y)) + d(f1(x), f1(y))) =

N[ —

which implies that (F, p, d) is not NEA and thus not CA.

The proof of the following proposition is a bit technical. For completeness, we provided
all the details.

Proposition 2.1.24. Assume that F is an IFS of Lipschitz maps and (F, p,d) is log-CA. Then,
there exists o € (0, 1] such that (F,p,d*) is CA.

Proof. Following the proof of [BDEGS88, Lemma 2.6], we apply auxiliary Lemma B.0.1 to the
function h, , : ¥ — (0,400), x # y, given by

e 2 {229,(3)).

Here

* s > 1is a constant greater than all Lipschitz constants of maps in /. Hence for every
r#yand & € TF

d € (0,1) is the minimum of the entries of p, and

A € (0,1) is so that (2.1.9) holds.

Note that for every z,y € M, x # v,
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Therefore, for » > 0, using that x — 1 > In x and Jensen’s inequality as in proof of Lemma B.0.1

(see (B.0.3), for more details), we get

0< </ (hay)" alu)i — exp </ In h%ydp)
< exp (i </(hx7y)rd,u — 1)> — exp </ In hwdp>
< exp (/ In hx,ydu> {exp </ (i ((hyy) —1)—In hx,y> du) — 1} .

Note that the function

1
r— —(2"—1)—Inzx
r

is increasing for x > 1 and decreasing for 0 < z < 1, so that

/ (1 ((hay)” —1) —In hx’y) d

r

A\ S 1
r_1 A —1 s
< (S —lns> dup + <<s)ln <A> )du
{he,y>1} T {he,y<1} r S
S <S 1 —1n8>+ ((5>1n <)\> ,
T T S

0< ( / (hx,y)’“du)’l” _ exp ( [m hx,ydu)
< (i (Sr_1)—1ns> + (i ((2)5 —1) I (2)6) .

Consequently, the following convergence is uniform on x,y € M, x # v,

so that

tm ([ (e (€)) dn(©)) = exp ([ (€)dn(©)).

rl0

Therefore,

r

tim sup ( [ () dp())" = sup exp ([ Iy ()

™0 aty a#y

On the other hand, for = # y we have

[ 1y (€)d(€)

A2 z
— oy In|—] du(&)+ @y In —= du(§),
=0t (2 [t )

s

using the hypothesis we get

[y (©)du(€) <A
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which implies that

1
T

timsup ( [ (e, (€)) du(©)) " < A

0 2y

and so the existence of a € (0, 1] such that

Ziq(O\" o
it;g/<d($’y)> du(€) < sup (hay(§))" dp(§) <1,

thus we conclude this proof. L
Remark 2.1.25. It is common in the literature to assume a log-CA condition instead of CA,

see for example [Stel2]. In the present setting, by Lemma 2.1.21 and Proposition 2.1.24, these

conditions are equivalent (changing d by d* if necessary, for some « € (0, 1]).

2.1.3 Local average contraction conditions: LECA and ESCA

In this section, we discuss several types of local average contraction conditions for IFSs.
In particular, we introduce LECA and ESCA, which are, besides NEA, key properties towards
Theorem A. Such conditions have been studied, for example, in [Kai78] and later, independently,
in [Ste99, Ste01] and [Car02]. See also [JTO1, LsSO5]. Here our focus is on conditions which

are sufficient or necessary for CA, possibly after some change of metric.
The first property is a generalization of CA. We say that (F, p, d) is locally eventually
contractive on average (LECA) if
forevery x,y € M,z # y, there exists £ > 1:  E(Z}) < d(z,y). (2.1.10)

Remark 2.1.26. If (F, p, d) is LECA then for any o € (0, 1) the triple (F, p, d®) is LECA.

Lemma 2.1.27. The following implications hold

1. CA= LECA, and

2. SA = LECA.

Proof. To prove (1.) assume that (F, p, d) is CA with contraction rate A € (0, 1), Then, take for
every z,y € M, ¢ =1to get
E(Z74) < Ad(z,y),

therefore, (F, p,d) is LECA.

Now, let us prove (2.). If (F,p,d) is SA, then for every z, y there exists ¢ > 1 large
enough such that

E(Z;) < 5d(z,y).

The last statement is clear when x = y. In the case x # y, use that lim,, E(Zig) = 0 and that
d(z,y) > 0. O

DO | —
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Lemma 2.1.27 shows that synchronization (on average) is intimately related with con-
traction (on average). The next result indeed proves that, assuming NEA, those properties are
equivalent. For its proof we need to recall some more concepts. The set X3; is naturally equipped
with the product topology on {0,..., N — 1}, where {0,..., N — 1} is given the discrete
topology. A basis is given by the family of cylinders

361, &l ENEDh i =& i = G-

We simply write [€1, ..., &] = [1:&1, . . ., &]. Every cylinder is clopen. Every open set in ¥} is
a countable union of cylinders.

Lemma 2.1.28. Suppose that (F,p,d) is NEA on some compact metric space (M, d). Then,
(F,p,d) is SA if and only if it is LECA.

Proof. Assume that (F, p, d) is NEA. By Lemma 2.1.27, SA implies LECA. To prove the reverse
implication, let us assume that (F, p, d) is LECA. By Lemma 2.1.18 (2), for every x,y € M the
limit

O(z,y) < lim dn(z,y) >0, where oy (z,y) L E(Z;5), (2.1.11)

exists. Arguing by contradiction, let us suppose that (F, p, d) is not SA and hence there exist
x,y € M such that § = 6(x,y) > 0. Define

B; ¥ {(z,w): d(z,w) > g},

which is a closed subset of M x M and hence compact. Note that d and 1),, are continuous on
M x M. Thus, forn > 1and ¢ € (0, 1) the set

Cue = {(z,w): E(Z77) < td(z,w)}

isopenin M x M and so
An,t = Bé N Cn,t

is open in B;. As we assume LECA, for each (z,w) € Bs there exist £ > 1 and A" € (0, 1) such
that E(Z; ;") < Nd(z,w) and hence, (z,w) € Ay, for every t € (X, 1). In particular, it holds

Bg - U U An,t'

te(0,1) neN

By compactness of B, there exist ny,...,n; € Nand ¢y,...,t; € (0, 1) such that
B5 - Anl,tl U ce U Ankytk'

Define

N Zmax{n,...,n,} and \=max{t;,...,}.
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If (2, w) in By, then (z,w) € A,,;, forsome i € {1,...,k}. This together with Lemma 2.1.18
(2) implies that
E(Z5q) <E(Z;"%) < td(z,w) < Md(z,w). (2.1.12)
Let
T, 2 {e: (f2 @), f£(y) € B}

Note that ', is the union of cylinder sets. Indeed, if £ € T',, then every ) € [£1,...,&,] € T,.
For n > 0, we have

E(Z5a) = B (234,411, ) + E (25, 4y, - (2.1.13)

For the first term, we observe

= > Yo DepreeninPerend(feroen i (2), ferenin (Y)

Ent1sm€Ntn [€1...6n]CTn

= Z Py tn Z p€n+1---§N+nd(f€1---§N+n (:L’), f£n+1---§N+n (y))

[61 ----- gn]crn En+1 77777 §N+n
Jeq.en(@)sfeq. 60 (Y)
= T pegB (o),
[51 ----- fn]crn

By definition of I',, it holds (f¢, ¢, (%), fe,..¢,(y)) € Bs, it follows from (2.1.12) that

E(Z§lnalr,) < Y. Paerd(fae (@) fo.c )

[€1,--n]CTn (2.1.14)
= AE(Z,41r,)
For the second term, we have
I (Z]I\f—y&-n,dlrfz) = Z p&l-.{nE (Z]]:ildmgn(x)7f§1m£n (y)) .
[gl 7777 g’ﬂ]cl—‘%

Since (F, p,d) is NEA, again using Lemma 2.1.18 (2), we get

E(Zilnalrs) < Y Paed(foe(2), foe. ).

[£1 ----- gn] CF%

By definition of I',, we have that (f¢, ¢, (), fe,..¢,(y)) ¢ Bs so that

T 6 C
E (23, alrs) < (5 (2.1.15)

From (2.1.13), (2.1.14) and (2.1.15) we get

X T (5 C
E(Z3na) < AE(Z741r,) + 50 (T7).
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Moreover, by induction on k € N, it follows

E(Zlf]’\g,d) =E (Zlf}\g,d]lﬂkqw) +E (Z’f}g,d]lr(ck—nN)

< \E (Z{,ﬁmN’dILp(k_l)N) + gu (F((:k—l)N)

x d . .
S )\Q]E (Z(k;:LiQ)N’d]lF(k_1)NF‘IF(;€_2>N) + 5/11 (F(kfl)N U F(k*Q)N)

. ) k—1 .
<. <NE (Zo;gﬂnf_é er) + 2u< UO F].N>
]:
N k—1 ) k—1
=A d(%!/)ﬂ( OOFJ'N> + 2#( .UOF;N)
Jj= Jj=

Hence, recalling that A € (0,1) and using u(-) < 1, we get

which is a contradiction. This implies SA. [

The following is a consequence of Lemmas 2.1.28 and 2.1.15.

Corollary 2.1.29. Assume (M, d) is compact. Assume that d and D are equivalent metrics such
that (F,p,d) and (F,p, D) are NEA. Then (F,p, d) is LECA if and only if (F,p, D) is LECA.

The following is a generalization of the definition of locally contractive with respect to
the reverse system [Ste99, Definition 5] and of the definition e-local (average) contractive [Stel2,
Definition 1]. We say that (F, p, d) is eventually strongly contracting on average (ESCA) if for
every v € M there exist £ > 1 and an open neighborhood V|, ;) C M x M of (z, x) such that

sup E(Z;])
(1,9)EViwmywe A(2,Y)

<1 (2.1.16)

Lemma 2.1.30. If (F, p, d) is ESCA then for any o € (0, 1) the triple (F,p,d") is ESCA.

Proof. Let o € (0, 1). Using Jensen’s inequality, we get

E(Z7]) - E(Z] )
 (9.2)

sup sup - ,
(y,Z)E‘/(z’z),y#Z d(’Z? y) E‘/(z,z)vy#z d (27 y)

which implies that, if (F, p, d) is ESCA then (F, p, d*) is ESCA. O

Remark 2.1.31. The example (F, p,d*) given in Section 2.4.3 is ESCA with parameter ¢ # 1.
Moreover, (F, p,d®) is LECA, but fails to be NEA.

Lemma 2.1.32. If (F,p,d) is CA, then for every a € (0, 1] and a metric D which is strongly
equivalent to d*, for every k € N large enough the triple (F,p, D) is k-ECA.
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Proof. Suppose (F, p, d) be CA with contracting rate A € (0, 1). Given « € (0, 1] and a metric
D on M strongly equivalent to d“, take b > a > 0 and such that aD < d* < bD. Note that
(F,p,d*) is CA with contracting rate \* € (0, 1). Take k£ € N so that

é/\“’“ < 1.
a

First, strong equivalence implies that

al(Z;)) < E(Z5.) foreveryx,y € M.

For every x,y € M, x # y, CA with contraction rate A\® together with the above implies

Lo BUZR) _E(ZEL) BB D) | BEH) 1
~d*(z,y)  E(Zg)h) D(zy) d*(zy) — D(zy) b
Hence, it follows ;
E(Z;p) < -A**D(z,y),
’ a
which proves that (F, p, D) is k-ECA with contraction rate 2A°* € (0, 1). O

2.1.4 Further contraction conditions

In this section, we continue our discussion of contraction conditions and put them into
the context of the ones defined above. Although, none of the concepts defined in this section will
be implemented in the remainder of this paper. Let us define for every x € M the sequence of

random variables (X}\), ., on (X3, 1) by

XE(€) i= fe, 0 fe, .00 fe, (v);  XF(€) === (2.1.17)

For A C M measurable, denote by 74(z) = inf{n > 1: X* € A} the first time the process
X7 hits the set A. Following [JTO1], (F, p, d) satisfies the local contraction property relative to
A C M ifthereis A € (0,1) such that

E<d(XfA(m)vTA(y)), XﬁA(z)VTA(y))>> < Xd(z,y) foreveryz,y e M, (2.1.18)

that is, “there is some contraction after the set A C M is reached”. In other terms, this condition
states that if we start two chains, at x and y, respectively, and run them simultaneously using the
same maps, then at the time both of them have visited A, in average they will be closer to each

other by a factor \.

Remark 2.1.33. In [JTOI, Section 3], it is shown that 74(z) V 74(y) < oo almost surely,
assuming that there exists a function V': M — [1,00), satisfying sup,.4 V(z) < oo, and

constants € (0,1) and b < oo such that for every = € M

EV (X7) <rV(z) + bla(z). (2.1.19)
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Furthermore, in [JTO1] the function V' is used to control the behavior outside of A. Moreover,
assuming that (F, p, d) is NEA and M is complete separable metric space with bounded metric d,
thus guaranteeing the existence of a unique stationary probability measure (see [JTO1, Theorem
2.1]).

Lemma 2.1.34. Assume that (F, p, d) satisfies the local contraction property relative to A = M,
then (F,p,d) is CA and (2.1.19) is satisfied for V = 1.

Proof. 1f (2.1.18) holds for A = M, then 74(x) = 1, for every x € M, and

E(Zi4) = E(d( mA(@)VTA®)): XfA(@vTA(y)))) < Md(z,y) forevery z,y € M,
that is, (F, p, d) is CA.

Moreover, in the case A = M consider V = 1,any r € (0,1) and b = 1 — r, to get
(2.1.19) holds. L]

The following example (F, p, d) satisfies the local contraction property (2.1.18), but is
not CA. Furthermore, it is NEA and satisfies (2.1.19).

Example 2.1.35 (NEA, but not CA). Adapting an example in [JTO1, Section 6] to our context,
let M = [0,2] and d(z,y) = |z —y|. Let p = (p, 1 — p) for some p € (1/2, 1). Consider the IFS
F = {fo, f1} given by

fo it M — M, fo(z) = and fi(x) = min {x + 2,2}.

3 r <1, 3

It is easy to see that (F, p, d) is NEA. On the other hand, for x,y € [1,4/3] it holds
E(Z77)) = E(d(XY, X{)) = d(z,y) = |z — y|
and hence (F, p, d) is not CA.
Now let us show that (F, p, d) satisfies the local contraction property (2.1.18) relative to

A =0, 1]. Since f; and f; are non-decreasing functions we have that for every =,y € M, such
that z < vy,

Ta(x) < 7a(y)
and if y € A, then x € A. Also, note that for =,y € A we have that

B(Zi)) = (5+(1-p) d(z.y).

Therefore, (2.1.18) holds with \ = P+(1-p <L

On the other hand, consider f(t) = pe~3'+ (1—p)e3’. Note that f(0) = 1 and f'(0) < 0.
Thus, to see that (2.1.19) holds fix ¢ > 0 such that f(¢) < 1. Letr £ f(¢) € (0,1), b = e3" and
V(z) £ e If x € A, then

EV(XT) = pe's + (1 - p)e'(*5),
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and hence

Ifx € (1,2 = M \ A, then
2

EV(XY) < pet(x_g) +(1— p)et<x+%) =V(x) (peit% + (1 — p)egt) =7rV(z) + La(x).

This proves (2.1.19).

The idea of locally contractive Markov chains can be expressed in several ways. Globally
contracting on average-type CA and log-CA are convenient because they can be analysed
by many different methods. In [Stel2], the following local average contraction conditions is
considered. Given € > 0, the triple (F, p, d) is called e-local contractive on average (¢-LCA) if
there exists A € (0, 1) such that

wy EED
0<d(z,y)<e d(.’L’, y)
The triple (F, p, d) is called e-local log-CA if for some A € (0,1)

<\ (2.1.20)

Zey
sup E (m Ld ) <In\<O0. (2.1.21)
0<d(z,y)<e d(x7 y)

Lemma 2.1.36. ¢-LCA implies e-local log-LCA.

Proof. By Jensen’s inequality,
zZ7Y 7Y
sup E (hl Ld > < sup lnE< 1.d ) )
0<d(w,y)<e d(z,y) 0<d(z,y)<e d(z,y)

Since logarithm is an increasing function, we get

Zx,y E vay
sup E <ln 1.d > < ln( sup (1(1)) ,

0<d(z,y)<e d(l’, y) 0<d(z,y)<e d({L’, y)

which implies the lemma. L

The triple (F, p, d) is locally contractive in the weak sense (LCWS), if for some A € (0, 1)
it holds

. E(Ziy)
sup |lim sup <A\ (2.1.22)
rEM y—x d(fE, y)

It is clear that (2.1.20) implies (2.1.22). In [Ste12, Remark 9] an example of a triple (F, p, d)
that is e-local log-CA but not LCWS is shown.

Lemma 2.1.37. -LCA implies LCWS and ESCA.

Proof. The first implication is immediate. To check the second one, take £ = 1 and V{, ;) =
{(y,2): d(y,z) < e} forevery x € M. O



2.2. Conditions to guarantee CA 49

2.2 Conditions to guarantee CA

Let us begin this section by presenting a sufficient condition for the existence of a metric

D equivalent to d for which the system is CA. We always consider an IFS F of a metric space
(M, d).

Proposition 2.2.1. Assume that (F,p,d) is SA., that is, there exist constants C' > 0 and
A € (0,1) such that

E(Zy5) < CA* forevery x,y € M andn € N. (2.2.1)
For every q € (A, 1)
D(z,y) < Z E (Z2y). (2.2.2)
n>0 A"

defines a metric on M which is equivalent to d such that (F,p, D) is CA.

Proof. Pick ¢ € (A, 1) and define D: M x M — R by (2.2.2). Note that it follows from our
hypothesis that D is well-defined. It is easy to check that D is a metric. It remains to show that

D has the claimed properties. By Lemma 2.1.10, for every z,y € M

N-1 n N—1
> pD(fil), fiy) = 3 1 > pE(Z") = > TEzzn.)
1=0

n>0 3 n>0
A A
= E = E(Zy4) = =D(x,y).
n; An ~q 22: g

Hence, (F,p, D) is CA with contraction rate A/q € (0, 1).

It remains to see that D and d are equivalent. First note that d < D, which implies that
the topology of (M, d) is a subset of the topology of (M, D). Now, let us prove that the topology
of (M, D) is a subset of the topology of (M, d). Given V' an open set of (M, D) and z € V,
there exists > 0 such that Bp(z,7) C V, where Bp(z, r) is the open ball relative to the metric

def

D with center = and radius r. Let e = (1 — ¢)r/(2 — q) > 0. Take L € N such that

C Z q" < e.
n>L
It follows from Lemma 2.1.10, that
L—-1
U=E (U, where U,={yeM:E(Z}) <A}
n=0

is an open set of (M, d). Furthermore, for every y € U

L-1 n 0o n L-1

1
D(z,y) < Z %E(Zﬁfj) + Z %E(szj) < Z eq" +e < T +e=r
n=0 n=L n=0

Thus, x € U C Bp(z,r) and hence x € U C V, which proves the desired. Therefore, the
topologies of (M, d) and (M, D) coincide. O
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Remark 2.2.2. Proposition 2.2.1 can be applied to IFS F on S! induced by the projective action
of GL(2,R) matrix cocycles and implies the existence of a metric D that makes (F, p, D) CA.
We refrain from providing the details. In this context, the existence of a unique stationary measure
is well known (see, for example, [BL85, Chapter I1]) and no further immediate application of
CA is given.

However, in this respect, it is reasonable to ask if the existence of a unique stationary

measure implies the existence of some metric that preserves the topology and makes the system
CA?

Remark 2.2.3. If (F, p, d) is not ESCA, then D provided by Proposition 2.2.1 is in general not
strongly equivalent. Indeed, if ESCA fails, then there exists z € M such that for every n > 1

there exists a sequence {z} }ren in M such that limy_,, 2} = z in (M, d) and

Therefore, we can find a sequence {¥,, } nen such that

D

n=co d(z,yp) =

We now invoke the results obtained in Sections 2.1.2 and 2.1.3 to prove Theorem A.

Proof of Theorem A. We will prove Theorem A as follows. Using the LECA and ESCA condi-
tions we will cover M x M by open sets. The compactness of M will allow us to find a finite
subcover. On each set of coverage we will have the condition CA satisfied. Finally, since the

NEA condition controls the iterates on average, we can conclude the condition CA globally.

Ma

» M

Figure 4 — Using conditions LECA (blue colour) and ESCA (red colour), respectively, to find
coverings of the product space M x M.
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Assume that (F, p, d) is NEA, LECA, and ESCA.

First, let us construct for every (x,y) € M x M an open neighborhood V/, , as follows.
For (z,y) € M x M, x # y, take { = {(z,y) € Nand A(z,y) € (0,1) as in the definition of
(see (2.1.10)) satisfying
E(Z;]) < Mz, y)d(z,y)
and let E(Z)
Tew)

V(w,y)d:“{(z,w)EMXM:z#wand )\(x,y)}.

As the function
E(Z;y)
d(z,w)’

frMxM\{(2,2): 2€ M} = R, f(z,w) =

is continuous and the set {(z, 2): z € M} is closed, V{,,) is an open subset of M/ x M containing
(x,y). Forx =y € M, take { = {(z,x) € N and an open neighborhood V{, ) of (z, x) as in the
definition of ESCA (see (2.1.16)) satisfying

Mz, x) = sup E(Z) <1
(2w)EVipyy - yz A(2, W)
to get
E(Z:2) < Ma, 2)d(z,w),
for all (z,w) € V(g ).
As M x M is compact, it has a finite sub-cover {V(z, 4.),- -, V(z,.4m) }- Hence, for

every i € {1,...,m} there are {; = {(x;,y;) € Nand \; = A(x;, ;) € (0, 1) such that for all
(2,w) € Vig,y, it holds
E(Z;) < Nid(z,w).

Take k = max<;<m {; and A e max <;<m ;. Hence, together with Lemma 2.1.18 (2), for every
(x,y) € M x M there exists i € {1,...,m} such that

E(Zpq) < E(Z; ) < Md(z,y) < Ad(z,y).

But this implies that (F, p, d) is k-ECA with contraction rate A € (0, 1). By Proposition 2.1.12,
(F,p, D), where D = dj, » 1s defined in (2.1.7), is CA with contraction rate Ak Hence, invoking

Lemma 2.1.11, d and D are strongly equivalent.

Together with Lemma 2.1.28, this proves the theorem. O]

The following provides a necessary condition for the existence of a metric D equivalent
to d for which the system is CA.

Proposition 2.2.4. Suppose that (F, p,d) is NEA on some compact metric space (M, d). If there
exists a metric D on K equivalent to d such that (F,p, D) is CA, then (F,p,d) is SA.
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Proof. Assuming that (F, p, D) is CA, by Lemma 2.1.8 for every n € N it holds

E(Z,D) < AX"D(x,y) forevery z,y € M.

Fix x,y € M. By the above, it holds

lim E(Z%) =0, (2.2.3)

n—oo

that is, Z,fj’) converges to 0 in L'. By Chebyshev’s inequality, for every € > 0 it holds
w(Zyh > e) < e 'B(Zyh).

and hence it follows that Zf;’yD converges to 0 in probability. By [Dur19, Theorem 2.3.2], there

Y

exists a sub-sequence (ny) such that 7}, converges almost surely to 0 as k — oo.

k

The fact that D and d are equivalent implies foﬁfd converges almost surely to 0 as k — oo.

By dominated convergence theorem, we conclude that
: T,y _
kh_}rgo E(Z,%;) = 0.

As we assume that (F, p, d) is NEA on a compact space and x, y were arbitrary, by Lemma
2.1.18 (2)—(3) it follows
lim E(Z{Y) =0

n—o00 n,

uniformly. This implies SA. []

2.3 CAforlIFSsonS!

In this section, we will study the particular case of an IFS F of homeomorphisms on
def

M = S! (equipped with the usual metric d(z,y) = min{|z — y|,1 — |z — y|}. In particular, we
prove Theorem B.

We first recall the following results which are an immediate consequence of [Mall7,

Theorem A and Proposition 4.2], respectively.

Proposition 2.3.1. Let F be an IFS of homeomorphisms of S' and assume that there does
not exist a probability measure which is invariant by every element of F. Then for every non-
degenerate probability vector p there is a constant X € (0, 1) such that for every x € S* and
almost every & € ¥}, there exists an open neighborhood I,(£) C S of x such that for all n € N
it holds

Zpa(§) = d(f¢ (w), fi'(2)) < X" for every w, z € L(§).
For the statement of the next proposition, consider the shift o: X% — X7 defined by

(0(8); =&r1, J=1

Recall that it is continuous.
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Proposition 2.3.2. Under the hypotheses of Proposition 2.3.1, consider the map
G: Y4 xS'xS' = Sk xS xS G 2, y) Z(a(6), o (2), fo (1))
Let & = Ugezp{f} x U(€) C X5 x ST x S! such that G™1(E) C € and U (€) is openin S' x S!

or eve € Y 1. Let p be a non-degenerate probability vector and 1 its its associate Bernoulli
ry N p g 4 H

measure i on .3, and assume that
(p@v)(€)>0
for every stationary® probability measure v on S' x S!. Then actually,
(h@v)(€) =1
for every probability measure v on S' x S! (not necessarily stationary).
Remark 2.3.3. Under the hypothesis of Proposition 2.3.1, the local contraction property holds.

Now, let us show that if (F, d) is proximal then we have Sy, (as defined in (2.1.2)) holds with

the same rate.

Now, let us prove the following lemma.

Lemma 2.3.4. Assume that (F,p,d) and A € (0,1) are as in Proposition 2.3.1. If (F,d) is
proximal, then

w(QY) =1 foreveryx,y € S,
where

QY L (¢ e Nf: there exists C > 0 such that Zyq(§) < CX" foralln € N}. (2.3.1)

Proof. Forevery z € St and k € N let
Tu(z) = {7) € XN d(f)(z), fy(z)) < Atforalln € N, 2y, 2 € (z - li,z - l]%;)}
Clearly, T'y(2) C T'y41(2). By Proposition 2.3.1, for every z € S*
,u( U Fk(z)> =1
keN

Hence, there is kg = ko(z) € N such that

1t (D (2)) > 0. (2.3.2)

Let & be the set of points (£, z,y) € X} x S! x S! such that there exist z € S!, kg € N,
and k; € N satisfying

1 1
£ (@), S ) € (= -

R
By the following claim, £ is nonempty. More precisely, for every (z,y) € S! x S! the set
&N (Z} X {(:p,y)}) is nonempty.

2

), ceoh (T(2) and pu(Ty(2)) > 0.

Recall that here v is stationary if and only if 4 ® v is invariant by the skew product G.
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Claim 2.3.5. For every x,y € S' it holds (/L ® 5(x,y)) (&) > 0, where 6, is the Dirac measure
at (z,y).

Proof. Fix x,y € S'. By proximality, there exist £ € ¥}, and an increasing sequence (1 )gen

such that we have

n
k—o0

By compactness of S!, there are 2 € S! and a subsequence (nk;)j>1 such that

Nk .

fe7(x) =z and f;kj(y)—>z,

as j — oo. Hence, taking ky = ko(z) as in (2.3.2), there exists k; € N large enough such that
ffk1 (x) and fgkl(y) are both in (z - é, Z 4+ ,}0)
As p is o-invariant, it holds (o =%1 (', (2))) = u(Tk,(2)) > 0. Furthermore,

o™ (T (2)) = TF X -+ x BF T (2),

k1-times

which implies that 1 ([¢1, .., &,] N o™ (T'x,(2))) > 0. Since

([1 - & No™ Ty (2))) x {(wy)} C €,

this implies the claim. []

Integrating over (z,y) € S' x S! with respect to any stationary probability measure v on
S' x S, it follows that

(p@v)(€)>0.
Claim 2.3.6. The set £ is G-invariant, that is, G™'(€) C &.

Proof. If (&, z,y) € G71(E) then (0(§), fe, (), fe, (y)) € €. Hence there are ki1, ko € N and
z € S! satisfying

o Ua @) Shg ) € (2= o+ ).
7€) € TR (T 2), 1 (Tlz) > 0.

As fj(lg) o fe, = f§kl+1, this implies

ki+1 k141 1 1
@) W) € (- et ).

¢ o BTy (2),  p(Tk(2) >0.

But this implies (£, z,y) € €. Il
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Claim 2.3.7. For every & € X the set U(E) £ {(z,y) € S* x S': (€, 2,y) € £} is open in
St x St

Proof. Fix £ € X%. Given z,y € S! such that (¢, z,y) € &, there exist z € S! and ko, k1 € N
satisfying

@ fEw e (2 ey ),
£eoh <Fk0(z)>, #(Ty(2)) > 0.

The continuity of ffkl implies that the set

Vo= (1) (= gpee i) < (#) (e 5)

is an open neighborhood of (z,y) in S! x S. For every (w1, ws) € Visy), it holds f* (wy),
fé“ (we) € (2 —1/ko, 2z + 1/ko). Thus, V() C U(&). This proves the claim. O

By Proposition 2.3.2, for every z,y € S! we have

(16 () = 1.

Therefore, by definition of the sets 'y, (z) for every z,y € S! and almost every £ € ¥}, there
exists k; € N such that

Zoty a(&) = d(fET (), fE(y) <A™

This proves the lemma. ]

The following is an immediate consequence of Lemma 2.3.4 by the dominated conver-

gence theorem.

Corollary 2.3.8. Assume that (F,p,d) and A € (0,1) are as in Proposition 2.3.1. Then (F, p, d)
is SA (and hence LECA).

In the rest of this section, JF is a finite family of C''-diffeomorphisms. Hence, there exist
L > 1such that foralli € {0,...,N — 1}

L7 d(z,y) < d(fi(2), fiy)) < Ld(z,y). (2.3.3)

Lemma 2.3.9. Assume that (F,p,d) and \ € (0, 1) are as in Proposition 2.3.1. Assume also
that each map in F is a C*-diffeomorphism. Then, for every t € (\,1) and x € S' and almost
every £ there exists an open neighborhood J,(€) C S* of x such that there exists C > 0 satisfying
for alln € N we have

< .
g}g@( M) (2)] < Ct
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Proof. Fixt € (A, 1) and z € S*. By Proposition 2.3.1, for almost every £ € X} there exists an
open arc I,(£) C S* of z such that for every n € Nand y, 2 € I.(§)

Z03(€) < A" (2.3.4)

Denote by we(-) the modulus of continuity of In | f¢ |. Since we(e) tends to 0 as ¢ — 0 and is

uniformly bounded, by dominated convergence it follows

lim [ we(e)du(§) = 0.

e—0

Fix £ > 0 such that

A
/ we(e)dp(€) < 2t A,
By Birkhoff ergodic theorem, almost every £ € ¥},
n—1
nhj{,lo; Z Woi(e) (€) = /wn(g)du(ﬁ)- (2.3.5)

Now, fix £ € ¥} such that (2.3.4) and (2.3.5) hold. Take k& > 1 so that \* < . Define
def k G\ —1 j 9 j g
L) 2 LN N (@) - 5 7@+ 3),
§=0
and note that 1,(, €) is an open arc containing x. For every y, z € I,.(§, €) it holds

U W)
|<fg>'

Let x; and x5 be the extreme points of I, (£, ). Note that for every z € I,,(¢, €), it holds

n|(ff)(z)] _ 1 (Z“”) 1'&
d

1 oile
n nn (1, x2) T Zw

Zlnlfaa (W) = | fos e (F(2))] < 2%(@@

Hence, using (2.3.4)foralln > 1

1 1 1
ln< max |(f)'(z )|> <ln)\——lnd(x1,mg +nZwU; £),

n z€ILL(&,€) =0

so that
A+t

n—oco NN z€lz(&e)

limsup11n< max |(f§)( )|> <In

Then, there exists C' > 0 such that for all n > 1
max |(/2)(2)] < Cr".

z€l(§,€)

This proves the lemma. []

The following result together with Proposition 2.1.12 immediately implies Theorem B.
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Proposition 2.3.10. Assume the hypotheses of Theorem B. Then there exist k € N and oy € (0, 1)
such that for all o« € (0, a) the triple (F,p,d®) is k-ECA with rate \*.

Proof. Fix points z,y € S*. Let

A, = sup
vty JIN

s (Z?f’fi(f )
In :
The sequence (A,,),>o is a subadditive. Indeed,

om0 (S 400

Zytm.a&) Zﬁ’y(5)>
o 1 +m,d ,d d
=S [ < Z0e) dla,y) )
Zy (5)) <Z§’3(5)>
In [ —2tmd>l ) g In | =~ d
<oup [ (2 i) g [ (Z85) )

using that p 1s a Bernoulli measure, we get

Zmal€) Zad(€) _
om0 )01 (G ) 0 = et

Hence, by Fekete’s Lemma, the limit A = lim,,_,o, A, /n = inf,>1 A,/n € [—00, 00) exists.

All hypotheses of Proposition 2.3.1 are satisfied and we can consider A € (0,1) as
provided by this proposition.

Claim 2.3.11. A <InA\.

Proof. Arguing by contradiction, suppose that In A < A. Then, foralln € N

def 1 Z:?g(g)
In\ < A <sup n(x,y,f) du(€), where F,(z,y,§) = Eln ’ :
TAY

Thus, for all n € N there exist x,, y, in S, x,, # y,, such that
mA</ (s s €) dpa(£). (2.3.6)

By compactness, there exist a subsequence (ny),>1 and points =,y € S! such that

lim z,, ==, lim y,, =v. (2.3.7)

k—o00 k—o00

In the following two cases we consider £ in a appropriate set of measure 1 to obtain that the limit
superior of F,,, (Z,, , Yn,, &) as k — oo is less than or equal to In A\. We then will apply Fatou’s
Lemma to contradict (2.3.6). Note that all hypotheses of Lemmas 2.3.4 and 2.3.9 are satisfied.

Given x, y as above, let 2™ be as in (2.3.1).
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Case x # y. Fix any ¢t € (), 1). Denote by I'; the set of sequences £ € X7, such that there exist
C > 0 and open arcs J,(£) and J, () containing = and y, respectively, and satisfying

max ny/ 2)| < Ctn’ nyy < CN'foralln € N
zeJac(f)uJy(g)Kff) ( )‘ — n,d(f) =

By Lemma 2.3.4 and Lemma 2.3.9, the set ['; has measure 1. Given £ € I', by the triangle

inequality and the mean value inequality it follows

Zy(E) < Z T (6) + Zat (&) + 20 ()
= d(fi" (wn,), [ () +d(f* (), £ () + dfEF ), £ (Yn))
<) (@) d( g, ©) + Z75(8) + 1) (G 1d (Y v),

for some points Z; and g, between z,, and x and between vy, and y, respectively. By (2.3.7),
% — w and g, — y as k — oo. Then, for k large enough &), € J,(¢) and g, € J,(¢) and it
follows
Zy(€) < O™ d(@ng, ) + ON™ + CE*d (Y, y).
This implies
limsup F,, (@, , Yn,, &) < Int.

k—oo

Given L > 1 satisfying (2.3.3), as
—InL < F,, (n,, Y, §) <Int <0,
Fatou’s Lemma implies

limsup [ Fy, (s Un,, §) du(€) < [ limsup Fy,, (Tn,, Yn,» &) dp(§) < Int.

k—o0 k—o0

Ast € (A, 1) was arbitrary, it follows

limsup [ Fy, (T, Yn,, §)dp(€) < In A,

k—o00

which contradicts (2.3.6).

Case v = y. By Lemma 2.3.9, for every ¢t € (\, 1) and z € S! and for almost every ¢ there exist
an open neighborhood J,(¢) C S' of x and a constant C' > 0 such that for all n € N it holds

max

Jmax |(f)(2)] < Ct". (2.3.8)

Fix £ € ¥} such that (2.3.8) holds. Take k; € N large enough so that x,,, and y,, are both J,(€),
for all £ > k;. By the mean value inequality,

1
Eo @y, Y, §) < — InC + Int,
nk
for all k£ > k;. Thus,

limsup F,, (n,, Yn,, &) < Int.

k—o0
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By Fatou’s lemma and using again that ¢ € (A, 1) was arbitrary, it follows

limsup [ F,, ("Enm Yny> §)dp(§) < [ limsup Fo, (xnm Yny §)du(§) <In A,

k—o0 k—o00

which contradicts (2.3.6).

This proves the claim. 0

By Claim 2.3.11, there exists £ € N sufficiently large so that £ > 4 and

1 1

Consider again L > 1 as in (2.3.3).
Hence, for € € X and z # y

d(f¢(x), fE())
d(z,y)

Using the above and that e* < 1 + z + z2¢l®! /2, for every a € (0, 1) it follows that

/ d*(fE(x), fE(y)) du(é’):/ (O ATE@LFEW /) g1
st d(z,y) =N

</ (1+a1n (fk(‘g fely ))+

d k
+71 2< f& ) Ind >/d(my>>) au(€)
kd L@
2

<l+af In (d( y)>du(§)

<1—|—aAk+ (klnL)L <1—|—ak:ln)\—|— (k:lnL)L

—kInL < |In <klnL

(kln L)*L*

To finish this proof, note that for o small enough such that

B In A
= T ok(n L)2LF
e (7). JE)
3 ¢\X), Je \Y @ a
d <14 —klnA <\ < 1.
/24— da<x7y) ,U(f) <1+ 4 nA~
This implies the assertion. ]

Proof of Theorem B. By Proposition 2.3.10, there exist &« € (0,1), A € (0,1), and k£ € N so that
(F,p,d*) is k-ECA with rate A. By Proposition 2.1.12, (F, p, D) is CA with contraction rate
Ak where

1
NE—1)/k
is as in (2.1.7) for d* instead of d. By Lemma 2.1.11, it holds d < D < C'd* for some C' > 0
and hence D is strongly equivalent to d®. [

- e 1 x Z,
D(z,y) = d*(z,y) + WE(ZL’(?&) +eeet E(Z%) 4e)
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2.4 Examples

The first example illustrates an application of Proposition 2.2.1. The last two examples
illustrate that the hypotheses in Theorems A and B are sharp. For the examples in Sections 2.4.2

ef

and 2.4.3, we consider S! equipped with the usual metric d(z,y) = min{|z —y|,1 — |z — y|}.

2.4.1 |IFSson RF

Let us introduce the class of IFSs studied in [MS21]. First, let’s define a partial order on
R*. Given J C {1,...,k}, define a partial order as follows: for z,y € R¥, we write x < y if
and only if
r;<y; for i€J and z; >y, for i¢.J

Let S C R*. A function f : S — S is called .J-increasing (or, J-decreasing) if

v<yy=flx)<; fly) (o z<;y= fly) <;[f(x)).

And, f is called J-monotone if f is either J-increasing or .J-decreasing.

Now, let us consider F a IFS of functions from S itself, p a non-degenerate probability
vector and d the taxicab distance on R*. In this context, the triple (F, p, d) satisfies the J-splitting

condition if all maps in F are .J-monotone and there exist m € N, &, € X} such that
JE(S) < ().

By [MS21, Theorem 2], if S is bounded in R* and (F, p, d) satisfies the .J-splitting
condition, then there exists A € (0,1) and an integrable map ¢ : ¥} — [0, 00) such that for

almost every £ € ¥ and alln € N
diamf{'(S) < c(§)A™.

That is, (F, p, d) is Sex, and by integrability of ¢ the triple (F, p, d) is also SAc,. Therefore,
Proposition 2.2.1 applies to get existence of a metric D given by (2.2.2) equivalent to d such that
(F,p, D) is CA.

2.4.2 LECA, but not ESCA

Let F = {fo, f1} be the family of two diffeomorphisms of S! such that f; has two
fixed points, one attracting and one repelling, and f is an irrational rotation. Note that (F, d) is
proximal. Let p = (p, 1 — p) be a non-degenerate probability vector. Note that (F, p, d) fails to
be NEA. The triple (F, p, d) satisfies the hypotheses of Theorem B (and hence of Proposition
2.3.1). Hence, by Corollary 2.3.8, (F, p, d) is SA and LECA. It is easy to check that for (F, p, d)
condition (2.1.8) for NEA and condition (2.1.6) for k-ECA (k € N arbitrary) are violated at the
repelling fixed point of fj.
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Note that (F, p, d) verifies the hypotheses of Theorem B. Hence, there exist « € (0, 1],
A € (0,1) and n € N such that for D = (d%),, the triple (F,p, D) is CA. In particular,
(F,p, D) satisfies NEA, SA, LECA, and ESCA. However, by the latter together with Lemma
2.1.32, for all 3 € (0, 1] the metric D? cannot be strongly equivalent to d.

Let 1 be a stationary probability for IFS with probabilities (F, p). By stationarity, it
holds

p=p (fo)wpr + (1 =p) (f1)wps-

By [GS17, Lemma 2.6], i is non-atomic and has full support. Consider the metric p on S!, given
by p(z,y) = min{u([z,y]), u([y, z])}. By [GS17, Proposition 1.2], (F, p, p) is NEA.

Lemma 2.4.1. (F,p,p) is SA and LECA.

Proof. Since (F,p,d)is SA and (F, p, p) is NEA, Lemma 2.1.15 implies that (F, p, p) is SA.
By Lemma 2.1.27, (F, p, p) is LECA. N

The following result checking that the IFS is “p-isometric in average” if and only if it is

“p-isometric” is straightforward.

Claim 2.4.2. Assume p(v,y) = u([z,y]). Then, it holds E(Z;Y) = p(x,y) if only if for all

&y, & we have

P(fer.0(@), fer.6, W) = 1 fer..c ([, 9]))-
Lemma 2.4.3. The triple (F,p, p) is not ESCA.

Proof. Given x € S' and € € (0, 1), denote by Arc(x, ¢) the open arc centered at = and with
p-measure equal to e (recall that i is nonatomic and has full support, hence Arc(zx,¢) is a

nontrivial interval). Given x and ¢ € N, consider the set

W(Qf) = ArC(Jj’ 4_1) N m (f&mfz)il Arc(f&miz(x)’ 4_1) - AI”C(QZ, 4_1)a

which is also a nontrivial open interval. For every y, z € V;(x) such that [y, z] C V,(z) for every
&1, ..,& € 40,1}, it hence holds

f&---fz([ya Z]) - Arc(f&---fz (ZE), 4_1)

and therefore
47> p(fer e ([y:2]) = p(fer e (W), fere(2)).

Hence, from Claim 2.4.2, it follows
p(y, 2) = u(ly, 2]) = E(Z77). (2.4.1)

Any other neighborhood V' of z, contains an open arc W containing z, so that for all
¢ > 1, WNV,(z) C V is and open arc containing z. Now it is enough to consider y, z € WNV,(z)
to get (2.4.1). This completes the proof that (F, p, p) is not ESCA. O



62 Chapter 2. Contracting on average Iterated Function Systems

2.4.3 LECA, but not NEA

Let p = (p, 1 — p) be a non-degenerate probability vector and y its associated Bernoulli
measure. Without loss of generality, we can assume p = max{p,1 — p}. Let fo, fi: S' — S!
be orientation preserving homeomorphisms, such that there exist two open arcs /,.J C S! with

disjoint closures having the following properties (compare also Figure 4):
1. The extreme points of .J are fixed points 1o and 3, of fy and f,, respectively. Here we are
assuming that yo # ;.
2. There exists an open arc J* C J such that fo(J*), f1(J*) C S'\ J.
3. The arc [ is (forward) invariant, that is, fo(/), f1(I) C I.
4. Forevery x € S\ J there exists n > 0 such that f?(z) € I forall £ € X3
5. Thereis r € (0, 1) so that

d (fg(x), fg‘(y)> <r"d(xz,y) foreveryn € Nandz,y € I.

6. d(fi(x), fiy)) > d(x,y) forevery z,y € TN fg'(J) N fi'(J) and i = 0, 1.
7. Every f; is Lipschitz: there is ¢ > 1 so that

d(fi(z), fi(y)) < cd(x,y) forevery z,y € S'andi =0, 1.

By (6), for the IFS F = {fo, f1} the triple (F, p,d) is not e-LCA. An appropriately chosen
example also fails to be NEA (just choose fy, fi being expanding in J). Since J C S! and
fotufit (j) C J we have that F fails to be backward minimal, hence methods from [GS17]

do not apply immediately. Below we prove the following.

Lemma 2.4.4. The triple (F,p, d) is proximal, S, SA, and LECA.

We will construct a metric D that will be equivalent to d, for which (F, p, D) is NEA,
LECA, and ESCA. Then we will construct a metric D equivalent to D (and hence d), such that
(F,p, D) is CA.

By (3) and (5), F induces a contracting IFS on I. Together with (4), every x ¢ J

eventually enters and remains in /. On the other hand, it follows from (2) that
fo 'O, fi(T) c T
and there is a set of points in X C J and for every z € X some sequence & = £(z) such that

fé(x) € X for every n € N, though other forward iterates under the IFS F eventually leave J.

Though, as counterpart and first preliminary result we show that for every z

{€¢exy: fi(x)eJ forall neN}
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has measure zero. For £ > 1 and x € S', define

Lo & vy ifzel,
’ 0 otherwise,
hE{cesy: flw) el ff (@) ¢ 1}, T.2JTE
k>0
Lemma 2.4.5. There exists N € N such that
N+1
u( U F’;) >0 foreveryz €St (2.4.2)
k=0
and for allm > 1
N+m
p(Tim) < M(Eg\ U r’;) <p" (2.4.3)
k=0

Moreover, for every x € S it holds 11 (T') = 1.

Proof. Fix y € J*. By (4), itholds fy(y), fi(y) ¢ J. Let K, L. C S'\ J be the open arcs with
extremes fo(y) and y; and fi(y) and yo, respectively. By (4), there are k = k(K) € N and
¢ =((L) € N so that

JEK), fE(L) € I forevery £ € 2.

Let N =k + (. By (3), forall ¢ € ¥5
JETUE), fET(L) € I forevery & € X7 .

Let W C S'\ J be the closed arc with extremes fo(y) and fi(y). As fo and f; preserve

orientation, f¢' preserves orientation. Hence, fg‘(W) C Iforall £ € 2.

Now, let us prove (2.4.2) and (2.4.3). Fix z € S'.
Case x € W. As fé“’e(x) € I for every £ € X7, (2.4.2) and (2.4.3) are immediate.

Case 2 ¢ W. Let us construct a sequence & € 3 such that for all m > 1

m+N
U, & U Ul e, &n] € U T, (2.4.4)

k=0
where 7; € {0,1}\{&}. Since z is either between y and fy(y) or between y and f1(y), there
exists & € {0, 1} such that x is between y and f¢, (). As fe, preserves orientation, fe, (z) € W.

So that
NA+1

[51] - U F:’fw
k=0

that is, (2.4.4) holds for m = 1. Letn; € {0, 1}\{&}. If f,,, (z) € W then UL} T* = 5 which
implies (2.4.4) for all m > 2 and &, € {0,1}. If f,, () ¢ W then f,, (x) is either between y
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and fy(y) or between y and f(y) so there exists & € {0, 1} such that f, () is between y and
feo(y). As fe, preserves orientation, fe,(f,, (z)) € W. So that

N+2

[51 Th ) 52 U F

that is, (2.4.4) holds for m = 2. Let n, € {0, 1}\{&}. If f,,(fo, (7)) € W then Up 2 Tk = ¥F
which implies (2.4.4) for all m > 3 and &, € {0,1}. If f,,(f,, (x)) ¢ W then f,,(f, (x)) is
either between y and fj(y) or between y and f;(y) so that there exists {3 € {0, 1} such that

foo(fo(x)) is between y and fe,(y). Continuing this process inductively on m we conclude
(2.4.4).

Therefore
N+1 N+1
[&]c U I andhence ( U F’;) >1-p>0,
k=0 k=0

and so (2.4.2) holds. Moreover

m+N
AR e N I Nl [/ P
k=0

so that p(I¥+m+1) < p™_ This proves the lemma. O

Proof of Lemma 2.4.4. Given any z,y € S*,let ¢ € T, N T, and choose k € N such that
fE(2), fE(y) € 1. By (4), it holds

lim d(f¢ (), [ (y)) = Jim d(fe™ (), fe(y)) = 0.

n—o0 n—oo

As by Lemma 2.4.5, u(I', N I'y) = 1 holds, it follows that (F, p,d) is S. By Lemma 2.1.5, it is
SA and proximal. By Lemma 2.1.27, it is LECA. L

Fix ¢ > 1 and pick a € (0, 1) such that

1
rle<1 and ¢ <D < 2 (2.4.5)
p

The choice of these numbers will be apparent in the proof of Lemma 2.4.7. Consider the metric
d* on S! and define the metric D on S! by

D(z,y) £E <supZ )

n>0
Since d and d* are equivalent, D and d are equivalent by Lemma 2.1.10.

Lemma 2.4.6. It holds

d*< D <Cd* where €% cN+e (1 +2) (Cap)k)

k>1
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Proof. Clearly d* < D. Let us show the other inequality. For k > 1 and x,y € S! define

Lry {6 €2 @) €L fEw) € Tpn{§ € XF: @) ¢ Tor E7(w) ¢ 1}

def

If,y € I, thenletI') = XF . Ifx ¢ Jory ¢ I, thenlet T'9 = (). Note that {I'* }, is a family

of pairwise disjoint sets and I'; | C I U I'j. Moreover, it is immediate from the definition that
def
r,NT, c,, 2 I,
n>0
Hence, together with Lemma 2.4.5, it follows

1= pleNly) = p(lay) = Z H (FZ,y> :

n>0

Fix 2,y € S'. For every £ € I'* | by (7) and (5), we have that

x?y,

sup Z,, 4 (€) = sup d*(f¢ (x), f¢'(y)) < *d*(,y).

n>0 n>0

It follows that

A

D(z,y) = E(sup Z;”’ga) = ZE(sup Z e L >
n>0 ’ ’ &Y

k>0 n20

< (o (10, UL U ) b d @) Y don(Th,)
E>N+2

Sc(N“)ada(x,y)(H > c(’“N”“(u(Fﬁ)Jru(F';)))

k>N+2

Sc(N+1)ada(x7y)<1+2 3 C(k:—N—l)apk—N—1>
k>N+2

< Cd*(z,y).
As z,y were arbitrary, this finishes the proof. 0

Lemma 2.4.7. The triple (F,p, D) is SA, NEA, LECA and ESCA.

Proof. By Lemmas 2.4.6 and 2.1.3, (F,p, D) is S. Hence, by which Lemma 2.1.2, (F,p, D) is

SA, proving the first assertion.

To show NEA and LECA, check that
E(254) = p D(fo(2). foly) + (1 = p) D(fu(2). fu(y)

=pE <sup Zi?éi’)vfo(y)> + (1 i p) E (sup Zg}é;’f)’fl(y))

n>0 n>0

=pE <IL[0] Sli% ZZfl,cN) +(1-pE (1[1] sg% szl,da> =FE <sup Zﬁga> )

n>1

This implies E(Z}) < D(z,y), that is, (F,p, D) is NEA. Hence, as (F, p, D) is NEA. As
(F.p, D) is NEA and SA, Lemma 2.1.28 property LECA follows.
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Now, let us prove that (F, p, 15) is ESCA. Let N be as in Lemma 2.4.5, / as in (2.4.5),
and C'is as in Lemma 2.4.6. Recalling that r, p € (0, 1), we can fix n € N sufficiently large such

that )
L \no n(l+1)a, n—N < )
(rie)"™ +c¢ P 50

Recall that [Jp ) T'* # () for every x € S'. Note that ;' T'* is covered by cylinders of length

(2.4.6)

N and, in particular, { ffN . € € UpA! TR Y is a collection of at most 2 homeomorphisms. Hence,

given z € S*, the set

nEN (),

3 eUkN:O s
is, as an intersection of finitely many open intervals containing x, an open neighborhood of z.

Moreover, for every y, z € V. it holds
Y,z _ Y,z Y,z
E (Z(z+1)n,da) =E (EUZZO rk Z(£+1)n,da) +E (12;\U::0 Ik Z(e+1)n,da>
o phn n In n 2
= E (1 e @ (famie (SEW)): Fare(FE@)) +E (TnpUr, 06 281 me)

by ) < A (y, 2) <U P];Z) + g (y, ) (EJ \U Fi)
k=0

k=0
< ((Tzc)na + C(Z-i—l)napn—N) da(y,Z)
1
< —d° .

By Lemma 2.4.6, for every y,z € V,,

y7z y?Z
E(Z(mH)N,[)) < IE<Z(m+1)1\f,d"‘> < 1
Dly.2) e 2

which implies that
E <Z Yoz R >
(m+1)N,D < 1

sup = < -<1
(y,2)EVe XV D(y, Z) 2
Since x is arbitrary, this proves ESCA, and completes the proof. ]

Remark 2.4.8. The constant % in equation (2.4.6) is insignificant, in fact, we can change % for

any t € (0,1) and get the same result.

By Theorem A, Lemma 2.4.7 allows us to conclude that there exists a metric D strongly

equivalent to D such that (F,p, D) is CA. Hence, D is strongly equivalent to d*.

Remark 2.4.9. Note that in the proof of Lemma 2.4.7 we show that (F, p,d®) is ESCA. The
triple (F, p, d“) is an example of a system that is ESCA such that the ¢ required in the definition

1s not the constant 1.
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3 Stochastic properties for contracting
on average lterated Function Systems

3.1 Stochastic properties after metric change

Let us provide some details on how a change of metric impacts (or not) statistical
properties of an IFS which is contracting on average (CA, recall this definition in (1.1.1)). As

before, consider F an IFS on S!, p a probability vector and d the usual metric on S.

Let us first comment on the concept of stationarity. This term is justified by the fact that
if (I,)nen is a stochastic sequence taking values in {0,..., N — 1} and being independently
and equally distributed according to the probability vector p and X is a v-distributed random

variable, independent of (1,,),cn, then
WX E (fryo00 fr)(X), Wi EX, (3.1.1)

defines a stationary stochastic sequence. Even more, (IW;X),,cx is a Markov chain with initial
distribution v. The continuity of the maps in F and the compactness of S! imply that the chain
in (3.1.1) has the weak Feller property' and hence there exists at least one stationary measure
v. Note that, as i is a Bernoulli measure, the Markov chains (3.1.1) and (1.2.2) coincide, but
have different initial distributions. Under the hypothesis that there is no measure simultaneously
invariant by all maps in F, it follows from [Mal17, Theorem F] that the stationary measure can
not be Dirac. Although, if a statistical property holds for the Markov chain in (1.2.2) for every

x € S!, then it holds also for the Markov chain in (3.1.1).

If there exists a metric D such that (F,p, D) is CA, then [BDEG88, Theorem 2.1]

implies that there exists a unique stationary Borel probability measure  on S!.

Remark 3.1.1. In the case of a unique stationary measure, its support is a closed set invariant by
all maps in the IFS, which is either a finite set, a Cantor set, or the full circle (for a proof in the
case orientation preserving homeomorphisms on the circle see [Nav11, Theorem 2.1.1]). For an
IFS of homeomorphisms acting minimally on the circle there exists a unique stationary measure

which is fully supported (see for example [GS17, Corollary 2 and Remark 7]).

' The transfer operator T associated to the pair (F,p) acts on the space of bounded measurable functions

w: M — R by
N-1

To(x) £ pie(fi(x)).

=0

It has the weak Feller property if it maps the space of real valued continuous functions on S' to itself.
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It is relevant to know under what conditions such stationary measure v is unique and,

moreover, under what hypotheses it is true that for every Borel set B C S!
P"(z,B) = p{W; € B} - v(B)

as n — oo, and what is the speed of such a convergence. By [JTO1, Corollary 2.1], for any initial
conditions z, the distribution of ¥ converges exponentially fast to v in the Prokhorov metric,

that is, for every measurable set B and n € N it holds
P"(z,B) <v(B,)+ A", v(B) < P*(z,B,)+ A",

where B, = {y € M: D(y,B) < A,r"}. Here the rate of convergence r € (0, 1) does
neither depend on n nor on x. Furthermore, the constant A, does not depend on n and is
uniformly bounded. Note that all previous facts do not depend on the metric on S! (within
the class of metrics which generate the same topology). Only the explicit convergence in the
Prokhorov metric was given in terms of D. Observe that if D and another metric d are such
that C~'d* < D < Cd" for some constants C~', o € (0,1] (that is, D and d* are strongly

equivalent), then we still obtain exponential contraction taking

B, e {y c M: d(y, B) < ern/a}, where C, = (CAI>1/(X'

Assuming CA, in [Elt87, page 484] an Ergodic Theorem was shown, whose assertion is
unaltered under any metric change. Assuming the slightly more general property k-ECA for any
k € N, in [Pei93, Theorem 5.1] a strong law of large numbers and a central limit theorem are

stated; again these assertions remain the same under metric change.

We are now ready to prove Theorem C.

Proof of Theorem C. We first invoke the idea of metric change to prove Theorem C. By Theorem
B, there exist a, A € (0, 1) such that the metric D on S' defined by

1
/\1/n

. 1
D(x,y) = d*(x,y) + /d‘“(Wf,Wf’)du+---+ /d‘"( @ WY )dp (3.1.2)

)\(n—l)/n

is equivalent to the usual metric d on S' and has the property that (F, p) is contracting on

average on (S!, D).

Note that none of the assertions of Theorem C depends on the chosen metric on S!
(within the class of metrics which generate the same topology). By Theorem B, the system is
contracting on average with respect to the metric D in (3.1.2). In particular, [Pei93, condition
(H3)] is satisfied for ky = 1. By Theorem B and [BDEGS8S8, Theorem 2.1], there is a unique
stationary probability and by [Pei93, Theorem 5.1], the strong law of large numbers SLLN and
the central limit theorem CLT hold true. [
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3.2 Synchronization on average at an exponential rate

In this section, we study in more detail synchronization on average of orbits with respect
to an IFS. In very rough terms, given two points we are interested in the amount of functions that
at time n have not yet sufficiently synchronized the orbit of those points. When an IFS is SAy,,
in Proposition 3.2.3 we prove that this amount decays exponentially. Here, "the amount" refers to

the v-measure of the set of sequences { whose associated functions f¢" have the desired property.

In the context of IFSs of circle homeomorphism, by [Mall7, Theorems A], the local
contraction property holds (see Proposition 2.3.1 for more details). Recall the concept of proxi-
mality given in (2.1.3). Moreover, [Mall7, Theorem E], proximality is equivalent to exponential
synchronization, where exponential synchronization means that for every z,y € S! and almost
every £ € X} the sequence {Z,%(€) }nen converges to 0 exponentially fast as n — oo. Note
that here a priori the rate of convergence of {Z"}(¢) }nen depends on z,y and &. In this section,
we show that for an IFS of C*-diffeomorphisms on S! proximality implies synchronization on

average with uniform exponential decay rate.

3.2.1 Some auxiliary CA results

Let us state the following result which complements Theorem C. We will use it below to

prove our large deviation results.

Proposition 3.2.1. Assume that F satisfies hypotheses in Theorem C. Let p a non-degenerate
probability vector. There exist A € (0,1), ¢ > 0, k € N, and oy € (0, 1) such that for all
a € (0, ap) the following hold

1. foreveryx,y € S,z #y,

2. foreveryx € S,

n

[ [0@)]" ante) < e (a%)

Remark 3.2.2. For n € N large enough, ¢ (A%)n < 1, therefore item (1.) implies that (F, p, d®)
is ECA.

Proof of Proposition 3.2.1. Let us start this proof by remembering that for all « € (0,1), n € N,
¢exfandx,y €St
Zniaa(§) = d*(f{'(x), ¢ (y)
By Proposition 2.3.10, there exist k£ € N and « € (0, 1) such that for a € (0, og] we have
[ ZEe(®
oty Iot do(x,y)

dp(€) < \°. (3.2.1)
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On the other hand, define the sequence (b,,),>1 by

Zyae (§)
by = sup/ nud dp(§).
0 S o) )

The sequence (b,,),>1 is submultiplicative, that is, b, 1., < b,b,, for all n,m > 0. Indeed, using

that

@I, z
ando‘ © (U (5)) = anm,da <€)7

we get

Son Jsg do(z,0) oy It 4o ()

= sup ( u Z;:ZUD‘ (n)d ( )) Z’rgi;%:ia <§>

ety I8 \aw /55, d¥(2,w) de(z,y)
Fr (@) (y)

o ()

bnbm, = <sup Fndc Wdu(n)) (sup Wdu(f))

dp(§)

75 20 (6)
25w [ Ly a7y 0 | ey

Using that 1 is a Bernoulli measure and that 7%, (£) depends only on the first m entries of the

sequence &, we conclude that
fE @) 8 (y) z,
U T et sy 208 d(@y)

57 @), 58 W)
Zyar S (0™(E))

dp(n)du(§)

- =5 d*(z,y) a(e)
x,Y
—op [ Lo e (3.22)

TH#Y E; da ($7 y)

Therefore, for k satisfying (3.2.1) and n = mk +r € Nwithr € {0,...,k — 1} we have
bn S (bk)mbr

that is, foralln € N

sup [ 20 ©) g6 < e (A1),

] Z} da($7y)

where ¢ = max,co,.. k—1} O ()\a)_i. Hence, for z,y € S, x # y, since the integral

Zy e (€)
/. Ty )

is a finite sum, we make y tend to z to get

L [0 @)]" du(e) < e (x1)".

+
N

The proof of Proposition 3.2.1 is finished. [
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3.2.2 Some large deviation results

In this section, we first state a general large deviation results, which holds for a general
metric space (in particular we do not require that it is bounded). We also establish SA, for IFSs

on the circle.

Let F be an IFS on a metric space (M, d). Consider p a probability vector and its

associated Bernoulli measure .

Proposition 3.2.3. Assume that (F,p,d) is SA.., that is, there exist constants C > 0 and
A € (0,1) such that

E(Zyq) < CA" foreveryx,y € M andn € N.

For every e > 0 and x,y € M we have

W ({f eXy: ;ln Zyg(8) >1n A —i—a}) < Ce ™.
Proof. Givene > 0, x,y € M. Note that,

BUZTD 2 i puepienyy ZtE1()

> (N p({e ek 20O > (V"))
so that, by hypothesis
p({€ ek 20O > (N)'}) < Cem .

This proposition is proved. 0

Remark 3.2.4. Proposition 3.2.3 does not require (M, d) to be bounded and applies to the

example studied in Section 2.4.1.

Corollary 3.2.5. If (F, p,d) is CA with contraction rate \ € (0,1) and (M, d) is bounded, then
there exists C' > 0 such that for every € > 0 and x,y € M we have

1
U ({5 eXy:—In Z,%(¢) >In A+ 5}) < Ce ™.
n b
Proof. By Lemma 2.1.8, for every z,y
E(Zyq) < Ad(z,y).

Now, using that d is bounded we conclude that (F, p, d) is SAexp. Taking C' < diamM, Proposi-
tion 3.2.3 applies. [

Remark 3.2.6. The Corollary 3.2.5 applies to examples of Section 2.4 with the respective metric
change.
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In the context of IFSs on the circle, we have the following result, which slightly extends

Proposition 3.2.1). It implies that the IFS is SA., with respect to the original metric d on S'.

Proposition 3.2.7. Assume that F satisfies hypotheses in Theorem C. For every probability
vector p, (F, P, d) is SAcx.

Remark 3.2.8. Assuming the hypotheses in Proposition 3.2.7, by Proposition 2.2.1, for every
g€ M1

Dixy) 2 Y L [ Zi4©dn(s).

n>0
defines a metric on S! which is equivalent to d such that (F, p, D) is contracting on average

with contraction rate A/q € (0, 1).

Proof of Proposition 3.2.7. By Theorem B and Lemma 2.1.8 there exist e € (0, 1) and A € (0, 1)
such that for the metric D as in Theorem B, for C' = sup, ,cs: D(7,y), for all n > 1 and for
every z,y € St

L, Za€du(©) < [ Zib(€du() < N"Dlw,y) < OX',
) DI

N

therefore the desired result follows. ]

The following is a consequence of Proposition 3.2.3 and Proposition 3.2.7.

Corollary 3.2.9. Assume that F is an IFS of C'-diffeomorphisms on S'. If (F, p, d) is proximal
and there does not exist a probability measure which is invariant by every element of F, then

there exist X € (0,1) and ¢ > 0 such that for every ¢ > 0 and x,y € S' we have

1
" ({5 eXf: ~In ZEHE) > A+ g}) < Ceen.

3.2.3 A Markov system for IFSs

In this section, we collect some preliminary results about Markov systems. They will be

used to prove Theorem D. For more details about Markov systems see Appendix D.2.
Let d be the usual metric on S'. Fix N > 2 and define A = {0,..., N — 1}. For k € A,
let f; : S! — S' be a C!-diffeomorphism. Let F = {fy, ..., fv_1}. Let L > 1 be such that

L7 d(z,y) < d(f;(x), f;(y)) < Ld(z,y), (3.2.3)

forall j € A and every z,y € S'.

Let p = (po, - - -, pPn—1) be a non-degenerate probability vector and let i be the Bernoulli
measure on Y& = A" determined by p. Define the probability 6 on A by
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where §; denotes the Dirac at i. Let o : ¥}, — X, be the left shift map defined by

(0(8)); = &1, forj > 1. (3.2.4)

Consider the Markov kernel by
K : A x S' = Prob(A x SY), ,;‘ef/(s(&f (o d0(i Zpl

For a set X denote by #(x) the o-algebra of Borel sets in X.
Lemma 3.2.10. (K, 0 ® v) is a Markov System on A x S'.
Proof. Let A x B € B(\) x B(S!), then

/ K;.(Ax B)d(§ @ / / (A x B)dO(j)dv(z)
AxSt st
_ / Z piK;o(A x B)dv(z).
Sl

Applying the definition of K, we get

| KAx B0 v(j,) = [ 3 1y 3 pidiA)d ) (B)dv(a)
AxSt St =0 =1
N-1 N-1
= Dj pidi(A) ) 5fj(3«“)(B)dV(x)
7=0 =1 S
N-1 N-1
= > pibi(A) > pi(f;)v(B)
i=1 =0
Hence, the stationarity of v implies the following
K;,(Ax B)d(0®@v Z pi0i( =0®v(A X B).

AxSt

Since Z(A) x B(S') generates the product o-algebra (A x S'), we conclude that for all
E e B(A xS

[ Kia(E)(6 ©v)(.x) = (08 v)(E),

which implies that § ® v is K -stationary and hence (K, § @ v) is a Markov System on A x S*. [

From now on consider a € (0,1) and A € (0, 1) be as in Proposition 3.2.1. Consider

o= min{/3, ap}. Then, the compactness of S! implies that each map in F is C' . Consider

the space L>°(A x S') of bounded measurable functions ¢ : A x S* — C. Given a function
¢ € L®(A x S'), define

[6lla & @la + 6], Where [d]o & sup 907, 2) = 80 9| (3.2.5)

JjEN Ay d* (l’, y)
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and set
Ho(A x SYH E {p € L®(A x SY) : [|¢]la < 00}

It is not hard to show that (H,(A x S'), ||¢||») is a Banach algebra with unity.
Note that K determines the Markov operator Q : L=(A x S') — L*>°(A x S') given by

Qo)) 2 [ 00 fe)abti) = [, 6(6r, fi(0))db(Er) = zm

Let us show a relation between the operator Q and the map F' defined in (1.2.6). Define 7 :
5 x ST — A x S as the projection given by 7(£,2) = (£, ).

Lemma 3.2.11. For any function ¢ € L>°(A x S) and for all n > 1 we have

(Q™(¢))( / $omo FY(e, fi(2))du(e). (3.2.6)

Proof. The case n = 1 is clear. By induction on n, suppose that (3.2.6) holds for n = k and let
us prove that (3.2.6) holds for n = k£ + 1. Indeed, using the inductive hypothesis we get

(@1 6)G.2) = [, QO)E Si()du(e)
- /E o 0o P, fa (@ n(n)di(e)

= o [, oomo I . AL (@) duto)

Since p is o-invariant, we get

Q" (), 7) = / pomo F*"a(n), fi(fi(x)))dulo(n).

Note that o(n) = o(i,72,73, .., M, - . .) for all i € A. Hence,

(Q"(¢) me/ pomo F* (o (n), fu (f;(x)))dp(o(n))

11=0

_ /E+ 8070 P (o), fo (F5(2))di)
= [ bomo P, f(@)du)

which concludes the proof. [

Proposition 3.2.12. The Markov operator Q acts simply and quasi-compactly on H.(A x S')

with stationary measure 0 @ v.
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Proof. To prove this proposition, we need to show that there are constants C' > 0 and y € (0, 1)
such that for all ¢ € H,(A x S') and all n > 0

50/, o0)1

We split the proof into two parts. First, we show that

< Co"[|¢lla-

@0l =|@¢ - ([sa0en)1

«

is bounded above by C’'\"|¢|,. Second, we show that the norm of Q"¢ — ([ ¢d(f @ v)) 1 is
also bounded above by C”\"|¢|,, which allows us to conclude that is norm in H, (A, S!) is also
bounded above by C'\"|¢
simply and quasi-compactly on H, (A x S').

«» for some constant C' > (. Therefore, the Markov operator Q acts

Claim 3.2.13. There exist C > 0 and r € (0,1) such that for all € L*(A x S*) andn € N
1Q"Bla < CT"[0a-

Proof. Recall that 7(§, x) = (&1, z). By Lemma 3.2.11, together with (3.2.3) we get

e (¢ om0 F'1(E, f5(x) — pom o F* L&, f5(1))
1Q ¢|“_j€SAl,lf¢y /Ex () du(§)
(60 m(e™1(E), f270 o fi(@) = do (0™ HE), F2 o fi(w))]
= ]Gf\l,lal?yéy ~/E$ da(iC,y) d'u(g),

Multiplying and dividing the integrand by d ( fg‘_l o fi(x), fg‘_l o fj(y)) we obtain

da fnilof‘x,fnflofj o (o ‘
0 < m( w | (Fe"0 S0, £270 0 S5(0)) do (1 ),fg(y)>dﬂ(£))

jeNaty IST d* (f(z), fi(y)) d*(x,y)
X d* (f27V 0 f5(2), £ 0 f(w)
= LHiet (jei?fﬂ s w Gy ©)

where L is as in (3.2.3). Using Proposition 3.2.1, we get
Q"o < LA E|g),,
Letting C' = L¥A\~%/* and r = A\*/*, this proves the claim. O
Claim 3.2.14. There exist C > 0 and r € (0,1) such that for all € L*(A x S*) andn € N
jomo— ([, oG 2)d00G.a))1| < Crlola.
Proof. Let ¢ € L>=(A x S'). As v is stationary, y ® v is F-invariant. Thus,

/E+ o Pom(& a)d(p®v)(E, x) = / pomo F" M& x)d(p® v)(E, x)

2f xst
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so that, using Lemma 3.2.11

jomo— ([, ebmdwento)1|
R R )|

= sup
i€\,yeSt

b |, pomo P e AlIdn(e) - (/2 ¢O7roF”1(€,w)d(u®l/)(€,w)>|-

16/\ yGSl 1 xst

By definition of |¢|, and Proposition 3.2.1, we get

joro— ([ ., eUoo@nG.o)1|
_]EAyESl/Sl /2+ pomo F"™ 1(5 fiy ))—¢o7roF"71(§,ac)‘d,u(§)du(x)

<toba (s [ [ (50057 @) du©yivto) )

JEAyeST
<o ol ([0 >du<x>) .
jcA,yeSt /St
Letting C' = cA~*/%|$|, and r = \*/* proves the claim. O

Recalling the definition of ||-||, in (3.2.5), it follows from Claim 3.2.13 and Claim 3.2.14
that there exist C' > 0 and € (0, 1) so that

1" — ( [ 6d6)1]a < 2C1[9l0 < 2776l

This proves the proposition. [

3.2.4 Proof of Theorem D

Proof of Theorem D (1.) We will apply the Proposition D.3.1 to the function ¢ : A x S* — R
given by

o(j,z) S |(f;) (z). (3.2.7)

Let us start by establishing a appropriate space of functions where ¢ belongs. Let ¢ be as in
(3.2.7). Consider k£ € N and « € (0,1) as in Proposition 2.3.10, such that (3.2.1) satisfies
for o € (0,ap). Fix @ € (0, min{3, ap}]. Since every f;, is C'™’-diffeomorphism is also
C'ro-diffeomorphism. Hence, ¢ € H,(A x St).

We are now in the position to apply Proposition D.3.1 to the Markov system (K, 0 ® v)
and the function ¢. It guarantees that there exist constants €, ¢, h > 0 such that for all € € (0, &),
(j,7) € A x S'and n € N,

2

i ({f eyl & =7, ‘ln [(f&) ()| = n”y‘ > ne}) < ce e
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Averaging in j € A with respect to @, for every z € S* we get

2

v ({5 ext: ‘ln |(f&) ()| = n’y‘ > ne}) < ce e

This proves the first assertion of Theorem D. [

Proof of Theorem D (2.) Let z,y € S*. For ¢ € Q%Y, by mean value theorem and the triangle

inequality
In j?ﬁ(j)) —ny| <In (zn;.lufé}fi //z) ) + |In |(f£”)/(x)| — nyl.
Therefore,
Y
W (f :n j?; (5)) —ny| > ns) (3.2.8)
. ( ne . n\/ ne
<o(esm (g [ T ) 5) (s iyl mi> ).

Let us limit the first term of the right-hand sum in (3.2.8). Note that,

It follows from Chebyshev’s inequality, that

. &)@ _ ne e (/&) (2)
(s (m i ) >5) < o gt e @29
From (3.2.12) we have

[N
lim — max =1,
n—oo n z,welg (f£ )’(w)
so that dominated convergence theorem implies
(f8)'(2)
lim — d =1
nthoo  Ju zwele | (f2)(w) &)

Consequently, there exists a constant ¢ > 0 (depending on x and y) such that for all n > 1

[y [V
s, 2wele | (fE) (w)
and so from (3.2.9) we obtain
. (f&)'(2)
oo ey () w)

Now, for the second term of the sum on the right-hand sum in (3.2.8) apply Theorem D

dp(§) < én,

) > ”;) < éne 12, (3.2.10)

to obtain that there exists ¢, h, g9 > 0 such that for all € € (0, &¢)

p (€ Il @) =l > 50) < et (3.2.11)
By (3.2.8), (3.2.10) and (3.2.11), for all n > 1

o Zpa(é)
. (5 ' |ln day) "

with which we conclude this proof. [

~ _ _ 2
> na) < ene "2 4 cemhe /4,
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3.2.5 Application of Theorem D

In this section, we discuss some consequences of Theorem D. Let us start with the

following result:

Theorem 3.2.15. Assume that F is an IFS of C'*? diffeomorphisms, for some 3 > 0, on S! so
that (F, d) is proximal and there does not exist a probability measure which is invariant by every
element of F. Then, for every non-degenerate probability vector p and the Bernoulli measure |1

determined by p, the following hold

1. forevery x € SY,
: 1 n\/
ti [ I (2 () du(€) = <,
EN

n—oo n,

2. and for every x,y € S,

lim I Z74(&)dp(€) = lim 1 /Z . In Zﬁ;g@du(&) =

n—oon Jot ) n—oo n d(x’ y)

Remark 3.2.16. As we discussed in Chapter 1, we have that

v=dim [ (Y @)l ) ().

n—oon Juf xst

Note that item (/.) in Theorem 3.2.15 improves this result slightly. Analogously, we have that

the process (In Z,,4(§))nen is additive, in the following sense

2 (@),

Zitaal) _, 2o M)

d(z.y) (fg (), f&(y)) d(z.y)
Therefore, by Birkhoff’s Ergodic Theorem, we get

In

n—oo n,

1 Znia(€)
lim /2; In (1) dprvev) x,y) =17.
As before, item (2.) in Theorem 3.2.15 slightly improves this result.

Proof Theorem 3.2.15 (1). Leteg, h,c > 0 be as in Theorem D. For ¢ € (0, £¢) define

1
A= {f exliv—e< liggicgfﬁln](fg) (z)] <hmsup ln\(fg) (z)] Sv—l—&?}.
For all n € N, by Theorem D we have
=+ . n\/ —nh£2
u(SEZN.’1n|(ff)(:v)|—n7’>n5>Sce .

The Borel-Cantelli lemma implies /4(A;) = 1, foralle € (0, g). Then, for £ > land ¢, € (0, &)
such that £, — 0 as k — oo, we have that

w (mzozlAEk) =1
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Since )
M, = (€€ Tht lim —In|(f2)'(@)] = 7)

we conclude that for almost every & € ¥13,

lim I (2 ()] = 7.

n—oo n,

Note that for every n € N and £ € X}, we have
1
—InL < —In|(f)(z)] <InL,
n

where L > 1 are as in (3.2.3). This proof ends by applying the Dominated Convergence
Theorem. =

Now, before proving (2) of the Theorem 3.2.15 let us establish some general properties of
the system. For every z,y € S* let Q¥ as in (2.3.1). Since (F, p, d) is proximal, by Proposition
2.3.1 we get that for every =,y € S!

p(Q27Y) = 1.

If x # y, for £ € Q%Y define

def O def n
Ie = . and  0,(8) = [f¢ (L)l

[z, y], if  lim,e ‘ fgl([x’y]‘ _
y,2], i Timy e | £2((y 7]

Consider the following modulus of continuity

def / - /
w(0) = max max |In|fi(z)] —In|fi(w)]]

and note that lims o+ w(d) = 0.

In this context let us prove the following lemma:

Lemma 3.2.17.

. :)' (%)
i o (e ] e =
Proof. For ¢ € Q)™Y we have that
(f¢)'(2) =
(e {7y ]) < Zeto©)

Recall that £ € Q*¥ implies that §;(£) — 0, as k — oo, and hence

lim w(dx(§)) = 0.

k—o00

It follows that
1
lim —In (max

n—oo n, z,welg

(g()) ) = 0. (3.2.12)
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Since p(2%Y) = 1 and
(f&)'(2)

(fe)(w)

the dominated convergence theorem implies the claim. ]

n z,welg

1
0< ln<max

) <2InlL,

Proof of Theorem 3.2.15 (2). Let x,y € S', z # y. By the mean value inequality, for every
r,y €SL,z#y,and £ € Q%Y
f8)(2)

£
(fe) (w)

min
z,welg

(

Notice that

SC)

Ny~
Hence, by Lemma 3.2.17, for almost every £ € ¥}

1 1. Zy 1

lim —1In Z5(§) = lim —1In nd(®) = lim —In|(f¢) ()] = 7.

Applying dominated convergence theorem, we conclude that

zZ
1/2 In "’d(Odu(S):v-

lim ~ /E I ZI(E)du(€) = lim ~

n—oo n, e n—oo n E d(x’ y)

This proves the theorem. ]
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4 Matrix cocycles

4.1 The twin measures

As there is a relation between Lyapunov exponents of the cocycles and the associated
skew-product, analogously for invariant measures for cocycles and the skew-product and their
averages. In this section, we explore this relation and, in particular, we prove the equality of the

pressure functions (1.3.4) and (1.3.9).

Let us first establish a relation between the Lyapunov exponents. By [DGR19, Theorem
11.1] for every a > 0 and for ¢ it holds A(M, &) = « if only if there are v, w € P! such that

2a = x(M, &,v) = —x (M, &, w). 4.1.1)

By Oseledets’ Theorem (for example, for context of cocycles see [Vial4, Theorem 3.14]), for
£ € ¥} such that A\(M, £) = « there exist two unique non-collinear vectors v? and v in P!

satisfying
L far, (Ugt) = Uf(g)
2. x(M,&,vF) = x(M™',€,v) = 2a and x(M, &, v; ) = —2a,

where M~! = {M;",..., My!,}. Let L be the sub-space generated by v, respectively. The
decomposition R? = Lg &> Lf_ is known as Oseledets decomposition [Ose68].

The following result is proved in [Led84, Proposition 5.1], below we give an alternative
proof. Given v € Mg (37 ), we denote by M(v) the set of the F-ergodic measures f such that

Tufb = V.

Lemma 4.1.1. For every v € M, (X}) with M,(v) > 0, there exist two unique F-ergodic

measures i~ satisfying T, u*t = v and
2ML(v) = p(u") = —p(p™) = sup o(p).
Moreover, it and p~ are the only elements in M(v).

Proof. Let us first prove the existence of p, the existence of 1~ is demonstrated analogously.
Let ¢ be v-generic. By (4.1.1), there exists v € P! such that

o 2 ML(v) = A(M, ) = 5x(ML,v).

Consider the probability measures

defl -1
n=—(0cw+ Filep+ ...+ (F")iden
ft n<§,+ e oo (F")0¢)
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and let ;1 be some weak* accumulation point of the sequence (i, ),. Note that

2a = x(M, &, v) = lim @(un) = @(p),

where the last equality follows from weak™* convergence and the continuity of ¢. It is immediate
to check that p is F-invariant Borel probability measure. Moreover, 7, = v. Consider its
ergodic decomposition p = [ 119 d7(0) into F-ergodic measures ji9. Note that T-almost every

ergodic component satisfies 7,y = v. Let us check that additionally, it holds ¢ (1) = 2a.

Indeed, consider an ergodic component /9. Then j9-almost every point (1, w) is -
generic, and in particular it holds x (M, n, w) = (). Moreover, it holds that 7 is v-generic
and A\(M, n) is well defined. Moreover, by (4.1.1),

1 1

As
20 = (1) = [ () dr(0)

it follows that for 7-almost every 0, ¢(uy) = 2a.

This proves the existence of 1 and the inequality 2M.,(v) < sup, ¢(u). To prove the
opposite inequality, take 1 € M(v). Let (£, v) be p-generic. Without loss of generality, we can
assume that ¢ is v-generic and A\(M €) is well defined and equal to M, (). Check that

2
p(1) = X(M, &, 0) = lim I |(f2Y(0)] < lim > In [M(Q)] < ML) @12)

This finishes the proof of the three equalities.

Let us finally prove the uniqueness of p* (for p~ it is analogous). The following was
shown in [Led84, Ch. I, sect. 5], see also [Vial4, Theorem 6.1]. If 1 € M(v) is a F-ergodic

measure, then
p({&vd): MM, &) =a}) =1, and p(p) = 2a,
or
p({(Eve): MM ) =a}) =1, and (p) = —2,
where ng are as in Section 4.2.1.

Let pf and 5 be F-ergodic measures such that 7, ;7 = v and 2o = (u), fori = 1, 2.
Let G1, Gy C {(€,v7): MM, §) = a} be F-invariant sets such that ;" (G;) = 1, fori = 1,2.
As was discussed in Section 4.2.1, we have that fy; (v;) = v;“(g), so that the projections 7 (G )
and 7(G9) are o-invariant sets. Then, v(7(G;)) = v(n(G3)) = 1. Hence, for v-almost every
¢ we have that (&, v;) € G1 N G5 and so (by ergodicity) ui = p4 . This ends the proof of the
Lemma. [
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Remark 4.1.2. Assume that v is a Bernoulli measure on Z}. By [BLS8S5, Part A, Ch. II, sec. 4,
Theorem 4.4], if there is no distribution m on P! simultaneously invariant for all matrices in M,

then ML, (v) > 0 and there exists a unique v-stationary' distribution for M.

Remark 4.1.3. Let v be a Bernoulli measure on X3;. By [Vial4, Lemma 5.25], if ML (v) > 0
then " and p~ in Lemma 4.1.1 are unique. When M, (v) = 0, [Vial4, Linear invariance
principle] implies that every p € M(v) there exists a distribution m on P! which is both v-
stationary distribution for M and v-stationary distribution for M~* = {M;!, ..., My',} such

that p = v @ m.

Now let us show the relationship between the pressure functions for the cocycle in (1.3.4)

and for the skew-product in (1.3.9).

Proposition 4.1.4. For every q € R, we have

Pur(lgl) = Pr(q).

Proof. Given v € My,(X7), we have h,(F) = h, (o) for all 1 € M(v) (see Appendix C.2).
f. (2N " I pp

For ;* as in Lemma 4.1.1 and ¢ > 0 we have

sup ((F) + 31) ) = hu(0) + 506%) = hufo) + aML (1),

HEM(v) 2 2
and for g < 0
q B q , _
sup (1(F) + So(1)) = hu(0) + L)
HEM(v) 2 2

= hu(0) = ¢M.(v)
= hu(0) + [g[M.(v).

Now, taking supremum over v € M, (X}) we conclude this result. ]

4.2 Properties of the cocycle

421 The level sets

Given o > 0, consider the following level set of Lyapunov exponents of the cocycle
E(M,a) £ {¢ € f: AM,€) = .

We also study in parallel the exponents for the induced skew-product. Analogously, we consider
the following level set
E(F,20) = {(&,v): x(M, &, v) = 20} (4.2.1)

Analogous to the context of IFSs on the circle defined in (1.2.1). In the context of cocycles, a probability measure
m on P! is v-stationary for M if m(B) = [ m(M," B)dv(€) for every measurable set B C P'.
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The following variational principle was proved in [DGR19, Lemma 5.2]. Let us rewrite

it in terms of the cocycle.

Lemma 4.2.1. Let M € €& For a > 0 such that E(M, ) # () we have

N,shyp

huop(0, E(M, @) = sup{h,(0): v € Me(X5), Mi(v) = a}.

Proof. Given v € Me,(X}), note that M, (v) = « if and only if v(E(M, a)) = 1. Then, by
[Bow73, Theorem 1] we get

sup{h,(0): v € Me(28), M (v) = a} < Iuop(o, E(M, a)).

On the other hand, by [DGR19, Theorem A] (in the case o > 0) and [DGR, Theorem A] (in the
case a = (), the following restricted variational principle holds for every o > 0:

hop(F. €(F, 2)) = sup {h (F): j1 € Ma(S5 x 1), [ In|(f5) ()] dp(€, v) = 20},

where £(F, 2a) is as in (4.2.1). From (4.1.1) we have that (¢,v) € £(F, 2a) for some v € P, if
and only if £ € E(M, «). Therefore,

EM, a) =7n(E(F,2a)).

Hence,
hiop (0, E(M, @) = hyop(0, m(E(F, 200))) < hyop(F, E(F, 2cx)).

Given p1 € Meg (X% x P') satisfying [In|(f{,)(v)|du(&,v) = 2a, v = m,u is ergodic and,
again by Remark 4.2.1, Ml,v = «. Moreover, from the fact that the fiber entropy is zero we get
h,(F) = h,(0), see Section C.2. This implies

sup{hu(F): 1 € Me(S5 x B, [ In|(£4)(0)] dp(€,v) = 20}
< sup{h,(0): v € Mee(XF), M.(v) = a}

and hence equality of both expressions, and equality with
hiop (F, E(F, 2a0)) = hyop(0, E(M, @),

proving the assertion. []

4.3 Proof of results

4.3.1 Gibbs property for equilibrium states

We know that the standard matrix norm ||-|| is sub-multiplicative, that is, ||[AB|| <

||Al/||B]|. The following result establishes a kind of quasi-super-multiplicativity.
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Proposition 4.3.1 ([Fen09b, Proposition 2.8]). If Ml is irreducible, then there exist D > 0 and
k € N such that for any n,m € N and £,n € X}, there exist v < k, ( € X} so that

IM(€) - M"(C) - M™ ()| = DM (E)|.[[M™ ()]

The above result is the key in the proof of the following proposition.

Proposition 4.3.2 ([FK11, Proposition 1.2]). If M is irreducible, then for every g > 0, P(q) has
a unique q-equilibrium state v,, P is differentiable at q, and P'(q) = M..(v,). Moreover, v, has
the following Gibbs property: there exists C' > 1 such that for every n € N and £ € ¥} it holds

1 vallEr . &)
C = en(—nP@)Mr @ =

Remark 4.3.3. Under the hypothesis of Proposition 4.3.2 we have that for every ¢ > 0
ve (E(M, P'(q))) = 1,

where v, is the g-equilibrium state of P. Indeed, since v, is the unique element in Z,, v, is

o-ergodic. By Kingman’s subadditive ergodic theorem, for v,-almost every &
A(IMLf) = M*(’/q) = P/(Q)7

which proves the claim.

4.3.2 Proof of Theorem F

Proof of Theorem F. Let v, as in Proposition 4.3.2. By Claim 4.1.4, we get

q
hl/q(0-> + qM*<Vq) - PVEII(q) = sup (h,u(F> + 290<:U’)) .
HEMerg (F)
Now, applying Lemma 4.1.1 there exists a unique F-ergodic measure 1, € M(v,) such that

2ML..(vy) = ©(kq) and so P'(q) = 30(p,). Hence,

iy (0) + ML (v) = by (F) + S ().

To see that /i, is the only measure in M (F') that realizes the supremum, take p € Mo (F)

such that

hu,(0) + ML (v) = hu(F) + S(p).

Then, there exists v € My (X4 ) such that 1 € M(v). Applying Lemma 4.1.1 for v, we get

hu(F) + 5¢(1) < hy (o) + gV (v).

The uniqueness of the equilibrium state v, implies that v = v, and so . = p,. With which we

conclude the first part of the proposition.
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Now, let us prove the last conclusion. Since ({(C, vl): MM, Q) = a}) = 1 we have
foreveryn € Nand € € X

te ({(G o) Celé &, AMLQ) = af) = mupsg([6r - &) = v([&1 - &),

and, there exists v,, € P! such that

M) = M (€)vall-
Therefore, it only remains to apply the equality (1.3.6) to conclude. U

Remark 4.3.4. Given £ € X7, there exists a unique vector v € P! such that x (M, ¢, v) = 2a,
see Section 4.2.1 for more details. Moreover, for n € N take v,, € P! as in Theorem F. By [Vial4,
Lemma 3.16], the sequence (v,,) is Cauchy in projective space and its limit is vg . Moreover, the

angle £ (v, v,+1) decreases exponentially:

1
limsup — In |sin £(v,,, vp11)| < —2a.
n—oo T

4.3.3 Proof of Theorem E

Proposition 4.3.2 states already the uniqueness of g-equilibrium state. Hence, it only
remains we prove statements about the level sets. The proof will be based on the study of the

Li-spectrum t — 7,,(t) of a probability measure v on X3, defined by

7,(t) = liminf ! In > v(é... &)

vee nin (€1 €n]

We follow some arguments standard in multifractal analysis (see, for example [FL0O2, Proof of
Theorem 1.3]).

Proof of Theorem E. Given o = P'(q) for some g, let v, be the corresponding Gibbs measure in
Proposition 4.3.2. Note that the Gibbs property of v, implies

Ty, (t) = lim inf _1N In (e‘”tP(Q) 3 ’|Mn(5)|lqt) _ w,

v nin [€1...6n) In N
and
Bit0) = {e e 5 Jim a6 = T
It follows b P
T, (q) = Q(l)n;\[@

Hence, by [LN99, Theorem 4.1]

dimy E(M, «r) < 2,2112 (QP%BJ\;O‘ — T, (q)) = inf L(P(q) —aq)
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On the other hand, the Gibbs property implies that for { € E(M, «) (hence, v,-almost every &)

1
"~ InN

Invg([& - - - &) (P(q) — aq).

Note that for r € ( —— }, we have B(£,r) = [£4, ..., &,]. Hence, for v,-almost every &

Nn+1 ) N©
o Ve(B(E ) 1 1
| f L2 22— Jim — 1 L&) = P(q) — .
pa In(r) TN nvg((&r--- &) lnN( (9) — ag)
it follows from the mass distribution principle that
1
i > ——(P(q) —
dimy E(M, ) > -—(P(q) — ag),

which shows the first two equalities.

To prove the last two equalities, note that v, is a g-equilibrium state and so
P(q) = hu, (o) + qM. ().
By Proposition 4.3.2

P(q) = hy,(0) + ag, and dimy E(M, o) = (P(q) — aq).

In N

Therefore,

1
dimy E(M, o) = mhl,q(a).

On the other hand, since v, is the g-equilibrium state of P. For all v € M (XF) with ML (v) = «

we have
h,(0) < P(q) — g = hy, (o).

Thus, applying Lemma 4.2.1, we get h,(E(M, ) = h,, (o), which finishes the proof. O
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APPENDIX A — Equivalences between
metrics

Let us recall some standard definitions and facts, see [Sea07]. A metric on a set M is a

map d : M x M — [0, 00), required to satisfy the following axioms for all z,y, z € M:

1. d(xz,y) = 0if and only if z = y;

2. d(z,y) = d(y, y);
3. the triangle inequality d(x,y) < d(x, z) + d(z,y).
Two metrics d; and dy on the same space M are said to be equivalent if they generate

the same topology on M, or equivalent, every convergent sequence of (X, d;) is convergent in

(X, dy) with the same limit, and vice versa.

Two metrics d; and ds on the same space M are strongly equivalent if there exist positive

constants a and b such that
CLd1<I, y) < dQ(xu y) < bd1<x7 y)

for every x,y € M. Of course, strong equivalence of two metrics implies equivalence, but not

vice versa.
Lemma A.0.1. For a € (0, 1] the function d* : M x M — [0, 00) given by
d*(z,y) £ (d(z,y))*

is a metric on M.

Proof. The identity and symmetry properties of d* are an immediate consequence of the fact
that d is a metric. For the triangular inequality we use the following inequality. For = € [0, 1] we

have
(1+2)*<1l+4+z<1+2z" (A.0.1)
Let z,y,z € M. Since d is a metric,
d*(x,y) < (d(z,z) +d(z,y))". (A.0.2)

We assume, without loss of generality, that d(x, z) < d(z,y). If d(z,y) = 0, then it is clear that
(A.0.2) implies
d*(z,y) < d¥(z,z) + d%(z,y).
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If d(z,y) = 0, then (A.0.2) and (A.0.1) imply

d*(z,y) < d*(z,y) (ZEZ’ Z§ + 1)

e (522 1)

=d%(z,z) + d¥(z,y),

so that the triangular inequality holds for d®. Therefore, d is a metric on M. L

Remark A.0.2. For a € (0, 1) and d a metric, we have that d and d* are equivalent, but not

necessarily strongly equivalent.
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APPENDIX B — Properties of the
Integral

In this section, let us enunciate some classic results in probability theory for integrals,

see for example [Durl9] for more details.

Jensen’s inequality. Given a probability space (2, B, 1) and a convex function ¢ : R — R. If
f: Q — R is a measurable function such that f, o(f) € L*(u), then

w(/fdu> < /w(f)du

Fatou’s lemma. Let (2, B, i) be a probability space. Assume (f,)nen be a sequence of -
measurable non-negative functions f, : 2 — [0, 400]. Define the function f : Q2 — [0, +o0] by
setting f(x) = liminf, ., fn(z), for every x € Q. Then

lim inf / Fodp > / (liﬂgf fn) dp.

Monotone convergence theorem. Let (2, B, i) be a probability space. Consider a pointwise
non-decreasing sequence ( f,)nen of p-measurable non-negative functions f, : Q — [0, +00].
Define the function [ : Q — [0, +o0] by setting f(x) = lim,,_,o fn(2), for every x € Q. Then

[ fudnt [ san.

Dominated convergence theorem. Let (2, B, 1) be a probability space. Consider a sequence
(fn)nen of p-measurable functions f,, : 0 — R converging pointwise to a ji-measurable function
f:Q =R Ifg:Q — [0,+00] is a p-measurable function such that |f,| < g a.e., for all n,
and g € L*(u), then

[ fudie > [ san.
The following result is the unique proved here, we are guided by [HS69, p. 201].

Lemma B.0.1. Let (2, B, i) be a probability space. Consider a ji-measurable function f : Q) —
(0,+00). If f € L' () then

tim ( / f’”(E)du(S))i —exp [ In f(€)du(¢). (B.0.1)

Proof. It is known that for every &

lim © (f7(6) — 1) = In f(€).

r—0 7r
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Since, 7 — + (f"(§) — 1) is increasing on r > 0,

lim - (f(€) = 1) = I f(E).

rl0 r

Applying Monotone Convergence Theorem, we get

i ([ 77 @0 1) = [ 6t

Now, using the inequality z — 1 > In z and Jensen’s Inequality, we get

L([ r@iue 1) = ( [ reme)’
>~ [In S ©du(e)
= [mf(©an(s).

which implies (B.0.1).

(B.0.2)

(B.0.3)
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APPENDIX C — Some properties of
Matrix cocycles

C.1 Derivative of the projective map

Consider the group GL™(2,R) of all 2 x 2 matrices with real coefficients and positive

determinant. For

b
A=1" " ecrL*2,R)
C
define the map f4 by
Av
falv) & o for v e R (C.1.1)
[ Av]]

The map f{ : P' — P! induces a diffeomorphism on the circle g¢ : S' — S'. Let us
identify P! by [0, ) and S* by [0, 27). Define g : S* — P! by

g9(0) £ 0/2, 0€0,2m),

which is differentiable and invertible, its inverse g_1 - P! — S is also differentiable. Therefore,

f& P! — P! induces the differentiable map g7 : S' — S* given by
gE=gloflog,
with
(9¢)'(0) = (f¢)'(6/2).
For vectors v = (vy, v2),w = (wy, ws) € R? we define

. |v1w2 - v2w1|
(S(U, U)) = Sln(l('l), w)) = W,

it is easily seen that this defines a distance on P!,

Lemma C.1.1. Ifv = (v, v2), w = (w1, wsy) and A € SL(2,R), then

o]l [l

OSav), faw)) = [det Al g mm

d(v,w)
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Proof.

|advywe + bevaw; — bevywy — advgwy |
_ |(ad — be)viws — (ad — be)vow |
[ Av]] || Aw]]
[v1wy — vaw |
[ Av|[ | Aw]]
[[o]] [[w]l

= |det A|/——————0 (v, w).
[ Av]] {| Aw]

= | det A|

]

We now consider the subgroup SL(2,R) C GLT(2,R) of 2 x 2 matrices with real
coefficients and determinant one. Then for A € SL(2,R), the map f4 : P! — P! definided in

C.1.1 is called projective map. By Lemma C.1.1, for every v € P! we have

/ _im5(fA(v),fA(w)): 1
R T | Av]?

C.2 The fiber entropy

Fixed v € M (X3). Let p be a F-invariant measure such that 7, = v. By Rokhlin
disintegration theorem, for v-almost every £ € 3} there exists a probability measure y¢ on P!
such that

NZ/%W@-

Let P be an at most countable partition of the fiber P! in measurable sets with finite
entropy H¢(P) < oo for almost every £ € X%, where He(P) = — S cep te(C) In e (C). Let

us put
n—1

P =\ (f)(P).
k=0
By [AR62], the following limit exists and it is finite

h L) = i+ [ He(PEd(E)
The supremum of A7 (M, P) over all measurable partitions
R (M) = s%p h? (M, P)
is called the fiber entropy. Again by [AR62], we have
Bu(F) = hy() + ho (M)

Since fy, ..., fn_1 are difeomorphisms (so homeomorphisms) on P!, h? (M) = 0. Therefore,
h,(F) = h,(c). Indeed, since fy, ..., fy—1 are homeomorphisms on P!, for every sequence
¢ € ¥} and for all n € N the function J¢ is also a homeomorphism on PL. And so for every
partition P the cardinality of P is at most n times the cardinality of P. Since the number
H¢(P¢) is bounded by the logarithm of the cardinality of P#, we conclude that h7 (M) = 0.
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APPENDIX D — Large deviations for
Markov system

D.1  Markov kernel

Let M be a compact metric space and Z(M) be its Borel o-field. Let Prob(A/) denote
the space of Borel probability measures on M. We denote by L°°(M) the Banach space of

bounded measurable functions f : M — C, endowed with the norm || - || given by

£l = sup | f(w)].
weM

A Markov kernel is a function K : M — Prob(M ), w — K, such that for any Borel set
E € (M), the function w — K, (F) is (M )-measurable. A Markov kernel K determines
the following linear operator Qf : L>®(M) — L>*(M),

(Quf)w) ™ [ FO)AKD).

Following [DK17], we refer to K as the kernel of Qf and to Q as the Markov operator of K.

The topological product space M is compact and metrizable. Its Borel o-field Z(M™)

is generated by the cylinders, i.e., sets of the form
C(Ey,...,E,) = {(wj)jen :w; € Ejforj e {1,...,n}}

with By, ..., E, € B(M). Given § € Prob(M) and a Markov kernel K, the following expres-

sion determines a pre-measure over the cylinder semi-algebra on MY

P[C(E., ..., E, det/ /E1 df(wo) HdK (Wjt1).

By Carathéodory’s extension theorem this pre-measure extends to a unique probability measure
Py on (MY, 2(MY)). Following Kolmogorov, we define the process X,, : MY — M by

X, (@) £ w,, where @ = (w;);en.

Recall that it satisfies for all £ € #(M),

1. Pg[Xl € E] = Q(E),

2. Py[X, € E|X,—1 =w| = K,(F)forallw € M and n > 2.
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By construction {X,, },cy is a time-homogeneous' Markov process with initial distribution ¢
and transition kernel K on the probability space (MY, Z(MYN) Py).

To simplify notation, the probability PPy for a Dirac mass 6 = ¢, with w € M, will be
denoted by IP,,. Notice that P,(X; = w) = 1, that is, the Markov process { X, },c starts in state

Ww.

D.2 Markov system

Given a Markov kernel K on (M, %(M)), a measure § € Prob(M) is said to be K-
stationary when for all E € #(M),

mm:@m@w@.

If K is a Markov kernel K on (M, Z(M)) and 6 € Prob(X) is a K -stationary probability

measure, then the pair (K, 6) is called Markov system.

Let (B, | - ||5) be a complex Banach algebra with unity, that is, 1 € 3. A Markov system
(K, 0) is said to act simply and quasi-compactly on B if there are constants C' > 0 and o € (0, 1)
such that forall p € Bandalln > 0

HQ’}& - (/M sod9> 1HB < Co"||o|s. D.2.1)

Let £(B) be the Banach algebra of bounded linear operators on 5 and denote by |||7'|||; the
operator norm of 7' € L(B).

Remark D.2.1. If a Markov system (X, ) acts simply and quasi-compactly on B then Qf €
L(B).

D.3 Large deviations

For ¢ € L>(M), define the sum process S,,(p) : MY — C by

Su(9) (w) Z ¢ (X1 (@) + ¢ (Xo(@)) + - + ¢ (Xn(@))

where w = (Wj>jeN-

Let (B, ] - ||5) be a complex Banach algebra with unity which is also a lattice’. Assume
also B C L°°(M) and that the inclusion B — L (M) is continuous, that is, ||¢||. < ||l for
all p € B.

The following result is proved in [DK17, Theorem 4.4].

1
2

The transition probability is independent of n.
A complex Banach algebra (B, || - ||g) is a lattice if ||, p € Bforall ¢ € B.
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Proposition D.3.1. Let (K, 0) be a Markov system which acts simply and quasi-compactly on
a Banach sub-algebra B C L*° (M) satisfying the above assumptions. Then given ¢ € B there
exist constants h,eq > 0 and C' > 0 such that for allw € M, ¢ € (0,e0) andn € N

1

_ _ < —nh€2.
P, [ nSn(gp) /M gpd,u’ > 5} < Ce
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