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Abstract

Investigamos propriedades ergódicas, topológicas e estocásticas de Sistemas de Funções Iteradas
(IFS) de mapas contínuos em um espaço métrico que são escolhidos de forma aleatória, idêntica
e independente.

Investigamos as condições de contração após mudanças de métricas. Estamos principalmente
interessados em mudanças de métricas que tornem um IFS em um que seja contrativo em
média. Para um IFS de C1-difeomorfismos do círculo que é proximal e não tem uma medida
de probabilidade simultaneamente invariante por cada mapa, obtemos uma métrica fortemente
equivalente que contrai em média.

Para IFSs de C1-difeomorfismos no círculo estabelecemos uma lei forte dos grandes números
e um teorema central do limite. Além disso, descrevemos grandes desvios para a derivada em
órbitas aleatórias em relação ao expoente de Lyapunov esperado.

Finalmente, estudamos IFSs no círculo que são induzidos por cociclos de matrices. Mostramos a
equivalência entre certas funções de pressão: para o cociclo e para o produto torcido. Provamos
a unicidade dos estados de equilíbrio para alguns potenciais.

Palavras-chave: Sistemas de funções iteradas, contração em média, sincronização, sistemas
dinamicos aleátorios, difeomorfismos no circulo, exponente de Lyapunov, teorema central do
limite, grandes desvios, produtos torcidos, cociclos de matrices.





Abstract

We investigate ergodic, topological and stochastic properties of Iterated Function Systems (IFS)
of continuous maps on a metric space which are chosen randomly, identically and independently.

We investigate contraction conditions after metric changes. We are mainly interested in changes
of metrics which turn the IFS into one which is contractive on average. For the particular case of
a system of C1-diffeomorphisms of the circle which is proximal and does not have a probability
measure simultaneously invariant by every map, we derive a strongly equivalent metric which
contracts on average.

For IFSs of C1-diffeomorphisms on the circle we establish a strong law of large numbers and a
central limit theorem. Moreover, we describe large deviations for the derivative on random orbits
relative to the expected Lyapunov exponent.

Finally, we study IFSs on the circle which are induced by matrix cocycles. We establish equiva-
lence between pressure functions: for the cocycle and for the associated skew-product. Moreover,
we prove the uniqueness of the equilibrium states for some potentials.

Keywords: Iterated function systems, contracting on average, synchronization, random dynam-
ical systems, diffeomorphisms on the circle, Lyapunov exponent, central limit theorem, large
deviation, skew-product map, matrix cocycles.
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1 Introduction

For the quantitative understanding of deterministic dynamical systems, the use of proba-
bilistic methods has become of increasing importance. In fact, the long-time behavior of “chaotic”
systems shows many features of stochastic systems. Such features can rigorously be analyzed and
effectively described for so-called hyperbolic dynamical systems. The theory of uniformly hyper-
bolic dynamical systems has been well studied since the 1960s, based on the fundamental works
of Smale. However, such systems fail to contemplate a large number of interesting examples such
as the Lorenz flow, as time-continuous system, and the Hénon map, as time-discrete system. So
it is necessary to extend their foundations to systems that do not present uniform hyperbolicity.
Thus, naturally arises the interest in studying dynamical systems that generalize the uniformly
hyperbolic ones, such as non-uniformly hyperbolic or partially hyperbolic ones. The latter still
show uniformity, but complete hyperbolicity is replaced by “some hyperbolicity”. Understanding
its behavior from the topological point of view (structure of the attractors), from the statistical
point of view (stationarity of dynamics) and from the ergodic point of view (average behavior
along the orbits) is, therefore, of fundamental interest and has guided several works.

One most challenging problem is to study quantifiers of “chaotic” behavior and of objects
that remain invariant under the time-evolution of a dynamical system, such as fractal dimensions
or entropies, or the scaling and self-similar properties of invariant probability distributions. A
second aspect is to investigate statistical properties of a system by means of certain limit laws
(for example, a central limit theorem) and to reveal its stochastic-like behavior. Part of this can
be achieved using the so-called thermodynamic formalism, originally developed by theoretical
physicists. One main object there is the topological pressure, that is, a particular functional on the
space of observables, which encodes several important quantities of the underlying dynamical
system. The pressure functional ties together, for example, Lyapunov exponents, entropy, fractal
dimensions, multifractal spectra, correlation decay rates.

The main focus of this work is on random dynamical systems, in particular on iterated
function systems with probabilities. A special focus will be on systems on the circle. Hutchinson
[Hut81] was the pioneer in studying iterated function systems. Assuming contraction, he showed
various properties of these systems, such as existence and uniqueness of a stationary measure.
He also characterized the support of the stationary measure, specified its Hausdorff dimension
and showed that this set has only three options: it is either the full space, a finite set, or a fractal
(which in 1-dimension this is a Cantor set). In the case of an iterated function system on the
circle, instead of contraction other, purely topological, conditions such as minimality guarantee
analogous properties. This is for instance studied in [Nav11]. Another topological property,
which is in a certain sense an opposing effect, is synchronization. For iterated function systems
on the circle the following so-called Invariance Principle [Mal17, Theorem F] holds true:
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• either each map of the iterated function system preserves a common probability measure,

• or the iterated function system has the local contraction property: given any point of the
circle, typical compositions of the homeomorphisms contract some neighborhood of the
point.

The synchronization properties studied in [Mal17] play an important role in this thesis.

1.1 Contracting on average Iterated Function Systems

Given a complete metric space (M,d), an iterated function system (IFS) is a finite
set F = {f0, . . . , fN−1}, N ≥ 2, of continuous maps fi : M → M , i = 0, . . . , N − 1. One
important goal is to understand the asymptotic behavior of consecutive concatenations of maps
in F where the choice at each step is according to probabilities pi, i = 0, . . . , N − 1, of some
probability vector p = (p0, . . . , pN−1), defining the triple (F ,p, d). This behavior is very well
understood under the hypothesis that every map contracts uniformly. However, this is a rather
strong requirement. Several weaker hypotheses imply also good stochastic properties of the
associated Markov chain generated by the IFS. For example, an IFS which is contracting on
average (the concatenated maps do not necessarily shrink the distance between two points at
every step and everywhere, but in expectation they do; see (1.1.1)) has a contracting (hence
unique) stationary Borel probability measure.

Though, much less is known for an IFS of maps which either “just do not expand” or
have simultaneously some “contracting regions” and some “expanding regions” or even repelling
fixed points (compare the examples depicted in Figure 4). In such a general context, to gain any
average contraction, one least topological requirement was coined in [Ste01] is that “the orbit of
a point wanders sufficiently around the space to pick up an average contraction”. Such property
would, for example, call for an IFS which is minimal1.

Observe that the existence and uniqueness of a Markov chain-stationary measure does
not depend on the metric (as long as metrics generate the same topology), while contraction
properties do. A natural question is when for (F ,p, d) there exists some metric D on M

equivalent to d such that (F ,p, D) is, for example, contracting on average. Besides surveys
such as [Kai81, DF99, Ios09], we point out [Ste12] which provides an ample discussion of many
kinds of contracting conditions and [LSS20] which reviews IFSs from a more topological point
of view, both mentioning also the method of metric change. In Section 3.1 we briefly discuss
some stochastic properties that remain true for the contracting on average IFS after a metric
change.

1 The IFS F is forward minimal if for every nonempty closed set A ⊂ M satisfying fi(A) ⊂ A for every
i = 0, . . . , N − 1 it holds A = M . The IFS F is backward minimal if F−1 = {f−1

i } is forward minimal.
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One step towards this direction was done in [GS17] where a convenient metric change
turns a backward minimal IFS of homeomorphisms on S1 into a non-expansive on average one
(see also [SZ20]). Here, for a non-expansive on average IFS of Lipschitz maps on a compact
metric space, we give (sufficient and necessary) conditions to guarantee a metric change which
turns an IFS into a contracting on average one. Moreover, we thoroughly discuss several local
and global contraction-like properties intimately related with it.

The existence of a metric which makes a dynamical system “contracting” or “expanding”
has been widely studied. Let us cite some key results. If a map “eventually” contracts (expands)
in the sense that its kth iteration has this property, a convenient change of the metric turns it into
a contraction (expansion) in its first iteration (see, for example, [PU10, Chapter 4]). As explained,
for example, in [Shu87, Chapter 4] a hyperbolic structure of a diffeomorphism is independent
of the Riemannian metric on the ambient manifold. In [Fri87, Fat89], using Frink’s metrization
theorem, it is shown that for any expansive homeomorphism of a compact topological space
there exists an equivalent metric such that the map contracts (expands) on stable (unstable) sets.
Analogously, there exists a metric which turns a (positively) expansive continuous map of a
compact metric space into an expanding one (see [PU10, Chapter 4]).2

Before stating the first main result, let us introduce the main contraction properties which
we are going to investigate. A precursor in [DF99] requires contraction in mean: fi are Lipschitz
with Lipschitz constants Lip(fi), i = 0, . . . , N − 1, satisfying

N−1∑
i=0

pi Lip(fi) < 1.

Weaker concepts are proposed in [BDEG88, Pei93], where (F ,p, d) is assumed to contract on

average (CA) in the sense that there exists λ ∈ (0, 1) so that

N−1∑
i=0

pid(fi(x), fi(y)) ≤ λd(x, y) for every x, y ∈ M. (1.1.1)

In fact, [BDEG88] requires even weaker assumptions allowing for place-dependent probabilities
and for contraction in Lq norm, q > 0, while [Pei93] assumes “contraction on average after some
iterations” (that is, it is k-eventually contracting in average, for some k ∈ N, in the sense defined
in (2.1.6) below). Less is known about an IFS if we put only the weaker hypothesis that (F ,p, d)
is non-expansive on average (NEA) in the sense that

N−1∑
i=0

pid(fi(x), fi(y)) ≤ d(x, y) for every x, y ∈ M.

This property implies, for example, that the associated Markov chain is non-expansive (see
[Sza03] and references therein). There are variations of these definitions such as being eventually
2 The existence of so-called adapted metrics in partially hyperbolic dynamics and dynamics with a dominated

splitting was investigated in [Gou07, HPS77]. The use of adapted norms and metrics is also common in the
study of nonuniform hyperbolicity when analyzing the size of local un-/stable manifolds (see, for example,
[BP07] in the C1+ε case and [ABC11, Section 8] for a C1 dominated setting).
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strongly contracting on average (ESCA), synchronizing (S), synchronizing on average (SA),
locally eventually contractive on average (LECA), and proximal, that we postpone to Section 2.1.
To simplify the exposition, we will mainly use these short notations.

Recall that metrics d and D on some common space M are (topologically) equivalent if
they generate the same topology. They are strongly equivalent if there exist positive constants a
and b such that ad(x, y) ≤ D(x, y) ≤ bd(x, y) for every x, y ∈ M . Clearly, strong equivalence
implies topological one, but not vice versa. Given α ∈ (0, 1), note that dα : M ×M → [0,∞)
defined by dα(x, y) def= (d(x, y))α is a metric on M , and d and dα are equivalent.

+

NEA (assuming compactness)

ESCA

CA

LECA

SA

(Theorem A)

(Lemma 2.1.28)
for all
equivalent metrics
(Proposition 2.2.4)

Figure 1 – Some implications, assuming non-expansive on average (NEA) on a compact metric
space: eventually strongly contracting on average (ESCA), contracting on average
(CA), synchronizing on average (SA), locally eventually contractive on average
(LECA).

Let us now state our first main result. Let Σ+
N

def= {0, . . . , N − 1}N be the space of
one-sided sequences and denote by µ the Bernoulli measure on Σ+

N determined by p. For any
sequence ξ = (ξ1ξ2 . . .) ∈ Σ+

N , n ≥ 1, and x ∈ M let

fn
ξ (x) def= fξ1...ξn

def= fξn ◦ fξn−1 ◦ · · · ◦ fξ1(x), f 0
ξ (x) def= x.

Given x, y ∈ M and n ∈ N, let

Zx,y
n,d(ξ) def= d(fn

ξ (x), fn
ξ (y)), Zx,y

0,d (ξ) def= d(x, y).

Given λ > 0 and n ∈ N, consider the metric defined by

dn,λ(x, y) def= d(x, y) + 1
λ1/n

E(Zx,y
1,d ) + · · · + 1

λ(n−1)/n
E(Zx,y

n−1,d),

where E(·) denotes the expected value according to the probability distribution.

The following result, Theorem A, is proved in Section 2.2.

Theorem A. Consider a compact metric space (M,d) and a triple (F ,p, d), where p is a

non-degenerate probability vector and F is an IFS of Lipschitz maps that is non-expansive on

average. If (F ,p, d) satisfies LECA and ESCA, then there exist λ ∈ (0, 1) and n ∈ N such that

(F ,p, dn,λ) is contracting on average. Moreover, LECA is equivalent to SA.



1.1. Contracting on average Iterated Function Systems 23

The second main result concerns the particular case of an IFS of C1 diffeomorphisms of
the circle S1 equipped with the usual metric d(x, y) def= min{|x− y|, 1 − |x− y|}. Theorem B is
proved in Section 2.3

Theorem B. Assume that F is an IFS of C1-diffeomorphisms on S1. Assume that (F , d) is

proximal and there does not exist a probability measure which is invariant by every map in F .

Then for every non-degenerate probability vector p there exist α ∈ (0, 1], λ ∈ (0, 1), and n ∈ N
such that (F ,p, D), with D def= (dα)n,λ, is contracting on average. Moreover, d ≤ D ≤ Cdα for

some C > 0, and hence d and D are strongly equivalent.

In Section 2.4 we illustrate and discuss our results in two classes of homeomorphisms on
S1 (compare Figure 4). We summarize their main properties.

f0

f1

IJ J∗

f0

f1

Figure 2 – Examples studied in Section 2.4.2 (left) and Section 2.4.3 (right)

Example 1.1.1 ((F ,p, d) in Section 2.4.2, see Figure 4 (left)). This example of an IFS of
C1-diffeomorphisms is proximal (and hence SA and LECA) but fails to be NEA. The choice
of metric ρ in [GS17] forces (F ,p, ρ) to satisfy NEA, SA, and LECA, but (F ,p, ρ) fails to be
ESCA. As (F ,p, ρ) verifies the hypotheses of Theorem B, there exist α ∈ (0, 1], λ ∈ (0, 1) and
n ∈ N such that for D def= (dα)n,λ the triple (F ,p, D) is CA. In particular, (F ,p, D) satisfies
NEA, SA, LECA, and ESCA. However, for all β ∈ (0, 1] the metric Dβ fails to be strongly
equivalent to d.

Example 1.1.2 ((F ,p, d) in Section 2.4.3, see Figure 4 (right)). In this example the approach in
[GS17] does not apply. This example fails to be NEA and ε-LCA, but it is proximal, S, SA, and
LECA. For this example, it is shown that for appropriate α ∈ (0, 1] the metric

D̂(x, y) def= E
(

sup
n≥0

Zx,y
n,dα

)
,

is strongly equivalent to dα and (F ,p, D̂) satisfies NEA, SA (and hence LECA), and ESCA.
Hence, by Theorem A, there is a metric D which is strongly equivalent to D̂ (and hence to dα)
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such that (F ,p, D) is CA. In particular, (F ,p, D) satisfies NEA, LECA, and ESCA. Moreover,
if f0 and f1 are C1-diffeomorphisms which have no common fixed points, then Theorem B
applies.

+

+

ε-local log-CALCWS

CA

k-ECA

NEA

LECA

ESCA

log-CA

SAexp

ε-LCA

for some equivalent
metric (Proposition 2.1.12)

for some strongly-equivalent metric
assuming compactness
(Theorem A)

for some dα and α ∈ (0, 1]
(Proposition 2.1.24)

for some equivalent metric
(Proposition 2.2.1)

for bounded metric

Figure 3 – Implications between: contracting on average (CA), eventually contracting on average
(ECA), locally eventually contractive on average (LECA), non-expansive on average
(NEA), eventually strongly contracting on average (ESCA), log-contractive on average
(log-CA), ε-local contractive on average (ε-LCA), locally contractive in the weak
sense (LCWS), and ε-local log-CA

1.2 Stochastic properties for contracting on average IFSs

As discussed above, a change of metrics does not alter the distribution of orbits in the
space. Thus, a statistical property for (F ,p, d) holds also for (F ,p, D), provided that d and D
are equivalent. We describe stochastic properties for contracting on average IFSs and discuss the
impact of a metric change. The main results of Chapter 3 are established for IFS on the circle
satisfying the hypotheses of Theorem B, because in this case we have satisfied the contraction
on average property after metric change. Recall again that contraction on average implies the
existence and uniqueness of a stationary measure which in turn implies interesting statistical
properties. The first result is immediate consequence of [BDEG88, Theorem 2.1] and Theorem
B and establishes a strong law of large numbers and a central limit theorem. The second result
states large deviations for the derivative on random orbits with respect to Lyapunov exponent.

Recall that a Borel probability measure ν on S1 is stationary for the IFS (F ,p) if

F∗ν = ν, where F∗ν
def=

N−1∑
i=0

pi(fi)∗ν. (1.2.1)
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We will provide some further details and justification of the term stationary below, see Section
3.1.

For x ∈ S1 consider the Dirac measure δx at x. Fixed x ∈ S1, define the Markov chain
(W x

n )n∈N on the probability space (Σ+
N , µ) taking values in S1 with initial distribution δx given

by

W x
n (ξ) def= fn

ξ (x), W x
0 (ξ) def= x, (1.2.2)

where ξ = (ξ1, ξ2, . . .) ∈ Σ+
N and fn

ξ = fξn ◦ · · · ◦ fξ1 . We will study the following asymptotic
behavior of (W x

n )n∈N: given an integrable function h : S1 → R

(SLLN) (F ,p) satisfies the strong law of large numbers for h, if for every x ∈ S1,

1
n

n−1∑
k=0

h (W x
k ) a.s.→ ν(h) def=

∫
h dν as n → ∞. (1.2.3)

(CLT) (F ,p) satisfies the central limit theorem for h, if for every x ∈ S1,

1√
n

n−1∑
k=0

h (W x
k ) → N(ν(h), σ2(h)) as n → ∞ (1.2.4)

where

σ2(h) def= lim
n→∞

1
n

∫ (
n−1∑
k=0

h (W x
k (ξ)) − nν(h)

)2

d(µ⊗ ν)(ξ, x). (1.2.5)

The following result is proved in Section 3.1.

Theorem C. Assume that F is an IFS of C1-diffeomorphisms on S1. Assume that (F , d) is

proximal and there does not exist a probability measure which is invariant by every map in F .

Then for every non-degenerate probability vector p there is a unique stationary probability ν for

(F ,p). Moreover, for every x ∈ S1, the Markov chain (W x
n )n∈N associated to (F ,p) defined in

(1.2.2) satisfies (SLLN) and (CLT) for any Lipschitz function h : S1 → R, further, for σ2(h) as in

(1.2.5) we have σ2(h) > 0 whenever there does not exist a function g such that h = g − g ◦ f ,

for all f ∈ F .

The assertion of uniqueness of the stationary measure is not new, to the best of our
knowledge a first reference under the hypotheses of Theorem C is in [DKN07, Proposition 5.5.].
Theorem C provides new sufficient conditions for the CLT to hold. It complements the central
limit theorem [SZ21, Theorem 9] which is stated for Hölder observables φ and an IFS of circle
homeomorphisms additionally assuming that (F , d) acts minimally.

When the IFS is formed by diffeomorphisms, to know the behavior of the derivative
(fn

ξ )′(x) helps to predict the behavior of the orbits fn
ξ (y) with y ∈ S1 near x. We are now going

to discuss large deviation of finite-time Lyapunov exponents 1
n

log |(fn
ξ )′(x)|. The theory of large
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deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small
as a function of some parameter, e.g., the number of random components of a system, the time
over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical
system or the temperature of a chemical reaction. The theory has applications in many different
scientific fields, ranging from queuing theory to statistics and from finance to engineering. In its
basic form, the theory of large deviations considers the asymptotic behavior of logP(En) for
a sequence of events {En} with asymptotically vanishing probability. To be more precise, for
ε > 0 and a sequence {Xn} of random R-valued variables, consider Sn

def= X0 +X1 + . . .+Xn−1.
If this process is independent, identically distributed and if its first moment is finite, then the
average 1

n
Sn converges almost surely to the mean E(X0). In particular it also converges in

measure:
P
[∣∣∣∣ 1nSn − E(X0)

∣∣∣∣ > ε
]

→ 0 as n → 0.

The event | 1
n
Sn − E(X0)| > ε is called a tail event. The asymptotic behavior of tail events is the

object of the theory of large deviations (see [RAS15]). A classical result in this theory is, for
example, the Large deviation principle by H. Cramér in [DZ98, Theorem 2.2.3].

Consider (F , d) satisfying the hypothesis of Theorem C. Let F be the skew-product map

given by
F (ξ, x) def= (σ(ξ), fξ1(x)). (1.2.6)

Note that, the product measure µ ⊗ ν is F -invariant (this is immediate consequence of the
stationarity of ν). Hence, by Birkhoff’s Ergodic Theorem, for (µ ⊗ ν)-almost every (ξ, x) ∈
Σ+

N × S1 we have

lim
n→∞

1
n

log |(fn
ξ )′(x)| = γ(p) def=

∫
Σ+

N ×S1
log |(fξ1)′(x)|dµ⊗ ν(ξ, x). (1.2.7)

The constant γ def= γ(p) is called Lyapunov exponent and depends on the probability vector p.
Lyapunov exponents are natural quantifiers that characterize dynamical systems attractors and
their sensitivity on initial conditions. Note that γ < 0 (see, for example, [Mal17, Theorem F]).

In the following result, we describe the deviation of finite-time Lyapunov exponents from
γ(p). In the second item, we strengthen the exponential pointwise synchronization obtained in
[Mal17] in two aspects (see Remark 2.3.3): we obtain that the “expected” exponential synchro-
nization rate is γ(p) and we describe the exponentially small large deviations. We will prove it
in Section 3.2.4.

Theorem D. Assume that F is an IFS of C1+β diffeomorphisms, for some β > 0, on S1 so that

(F , d) is proximal and there does not exist a probability measure which is invariant by every

element of F . For every non-degenerate probability vector p consider the Bernoulli measure µ

on Σ+
N determined by p, the stationary probability measure ν for (F ,p, d) and the Lyapunov

exponent γ = γ(p) < 0. Then there exist h, ε0 > 0 and c > 0 such that for all ε ∈ (0, ε0) and

n ∈ N
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1. for every x ∈ S1

µ
(
ξ ∈ Σ+

N :
∣∣∣log |(fn

ξ )′(x)| − nγ
∣∣∣ > nε

)
≤ ce−nhε2

2. for every x, y ∈ S1, x ̸= y, there exists C = C(x, y) > 0 so that

µ

(
ξ ∈ Σ+

N :
∣∣∣∣∣log

Zx,y
n,d(ξ)
d(x, y) − nγ

∣∣∣∣∣ > nε

)
≤ Ce−n min{ε/2,hε2/4}/2.

One further interesting property of an IFS is the convergence on average of the orbits.
From Lemma 2.1.8 and Proposition 2.2.1, when the metric space is bounded the conditions
CA and SAexp are equivalent, after a possible metric change. Additionally, we show in Section
3.2.2 that SAexp with rate λ ∈ (0, 1) implies exponential decay of the amount of functions
that do not synchronize any two orbits with the same rate λ. One more time, in the context of
C1-diffeomorphisms on S1 we show SAexp with respect dα, for d usual metric on S1 and some
α ∈ (0, 1).

1.3 Matrix cocycles

In Chapter 4, we restrict ourselves further and study diffeomorphisms on the projective
space which are generated by matrix cocycles. As the projective space is homeomorphic to the
circle, this means, that we study a very special class of circle diffeomorphisms. This restriction is
due to some technical tools which, up to now, could not yet be put into larger generality. Indeed,
matrix cocycles provide much stronger tools. One of them is a type of quasi-multiplicativity.
This property was first shown in the case of non-negative matrices in [FL02] and, recently in
almost complete generality in [Fen09a]. So far it was very little explored further. It has very
strong immediate consequences, for example to investigate thermodynamic aspects.

To formulate the main results of Chapter 4, let us introduce some notation. Let SL(2,R)
be the set of 2 × 2 matrices with real coefficients and determinant one. One can associate to
any matrix A ∈ SL(2,R) a circle diffeomorphism as follows. Consider the projective map
fA : P1 → P1 defined by

fA(v) def= Av

∥Av∥
,

where P1 denotes the projective line, which topologically is the circle S1.

Denoting by σ : Σ+
N → Σ+

N the usual left shift (see (3.2.4)).Let us fix a finite family
M def= {M0, . . . ,MN−1} ⊂ SL(2,R)N . Let FM be the IFS on the projective space formed by the
maps induced by the matrices in M, that is, FM

def= {fM0 , . . . , fMN−1}. The linear cocycle over
(Σ+

N , µ, σ) associated to M is the skew-product map (analogous to (1.2.6)) given by

F : Σ+
N × P1 → Σ+

N × P1, F (ξ, x) def= (σ(ξ), fMξ1
(x)).
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Let M(Σ+
N) denote the set of all shift-invariant Borel probability measures on Σ+

N . Let
Merg(Σ+

N) be the set of the measures in M(Σ+
N) which is ergodic. Let M(Σ+

N × P1) be the set of
all F -invariant Borel probability measures on Σ+

N × P1, and let Merg(Σ+
N × P1) be the set of the

ergodic measures. Denote by π : Σ+
N × P1 → Σ+

N the projection π(ξ, v) def= ξ. It is not hard to see
that for any µ ∈ M erg(Σ+

N × P1) the measure ν = π∗µ is in M erg(Σ+
N).

For ξ ∈ Σ+
N , let

Mn(ξ) def= Mξn ◦ . . . ◦Mξ1 and fn
ξ

def= fMn(ξ) = fMξn
◦ . . . ◦ fMξ1

.

By Kingman’s subadditive ergodic theorem, for any σ-ergodic Borel probability measure ν on
Σ+

N , for almost every ξ the following limit exists

λ(M, ξ) def= lim
n→∞

1
n

log ∥Mn(ξ)∥ = M∗(ν), (1.3.1)

where M∗(ν) is called Lyapunov exponent relative to ν and is given by

M∗(ν) def= lim
n→∞

1
n

∫
log ∥Mn(ξ)∥ dν(ξ). (1.3.2)

Following [BL85, page 48], a family M is irreducible if there is no non-zero proper
linear subspace V of R2 such that MiV ⊂ V for all i ∈ {0, . . . , N − 1}. As we will see, this
property implies a type of quasi-multiplicativity of the matrix norm over M (see Proposition
4.3.1).

Remark. It is not hard to show that M is irreducible if and only if there is no common fixed

point by all maps in the IFS FM. Indeed, for all A ∈ SL(2,R) every proper linear subspace of

R2 is associated to a unique fixed point of fA, and vice versa. More specifically, if a proper linear

subspace V of R2 holds AV ⊂ V , then there exists a ∈ R such that Av = av, for all v ∈ V .

Thus, for v ∈ P1 representing the space V we have fA(v) = v. On the other hand, if there exists

v ∈ P1 such that fA(v) = v, then for V = {tv : t ∈ R} we have Aw = rw for all w ∈ V , where

r = ±∥Av∥. That is, V is a proper linear subspace of R2 invariant by A. Consequently, there is

a proper linear subspace of R2 invariant by all matrices in M, if and only if there is a fixed point

by all maps in FM.

Let us consider a particular case that M contains (at least) two elements: a hyperbolic
matrix and a matrix representing an irrational rotation. Note that this induces an IFS which is
a particular case of the example studied in Section 2.4.2. Further, this is a particular example
of elliptic cocycles having “some hyperbolicity" as defined in [DGR19, Sect. 11.7]. This set
of cocycles, denoted by E

N,shyp, is defined as follows. The set E
N,shyp consists of cocycles

M ⊂ SL(2,R)N having the following properties:

• Some hyperbolicity: There exist ξ ∈ Σ+
N and n ∈ N such that the matrix Mn(ξ) is

hyperbolic, that is, has one eigenvalue with absolute value bigger than one and one smaller
than one.
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• Transitions in finite time: There exist ζ ∈ Σ+
N and m ∈ N such that Mm(ζ) is an irrational

rotation.

In fact, in [DGR19], there is studied a slightly more general class of cocycles.

Remark 1.3.1. It is not hard to check that any M ∈ E
N,shyp is irreducible.

To state our next result, let us define pressure function and equilibrium states. The
pressure function, relative to the cocycle, is given by

P (q) def= lim
n→∞

1
n

log
∑

ξ1,...,ξn

∥Mn(ξ)∥q, q ≥ 0, (1.3.3)

where the above limit exists by sub-additivity arguments. Let us also consider the following
variational pressure given by

Pvar(q) def= sup
ν∈M(Σ+

N )
(hν(σ) + qM∗(ν)) , q ∈ R. (1.3.4)

By [CFH08, Corollary 1.2], for every q ≥ 0 we have the following variational principle

P (q) = Pvar(q). (1.3.5)

A measure ν ∈ M(Σ+
N) is an q-equilibrium state for P if it realizes the supremum in (1.3.4). Let

Iq be the set of q- equilibrium states. Note that both M∗(·) and h(·)(σ) are upper semi-continuous
on M(Σ+

N). Hence, Iq is a non-empty closed convex subset of M(Σ+
N). In particular, Iq contains

ergodic elements (each extreme point of Iq is an ergodic measure).

Remark. A priori, the definition of the pressure function in (1.3.3) can be extended to the domain

q ∈ R. Indeed, for q = 0 it is easy to check that P (0) = logN . By sup-additivity, for q < 0 the

above limit exists. However, in the present state of the art, further tools such as, a variational

principle as in (1.3.5) were not established, except for the case when M is formed by strictly

positive matrices, see [Fen04, Theorem 1.1]. Moreover, the uniqueness of equilibrium states fails

in general in the case q < 0, see [Fen09a, Example 6.6].

The following theorem answers parts of open questions stated in [DGR19, Remark
2.2] in the context of step skew-products induced by SL(2,R) cocycles. Denote by dimH the
Hausdorff dimension, and by htop the topological entropy. As we consider sets that in general
are non-compact, we use the concept of entropy defined by Bowen in [Bow73]. It is shown in
Section 4.3.3.
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Theorem E. If M ∈ E
N,shyp, then for any q > 0 there exists a unique q-equilibrium state

νq ∈ M(Σ+
N) for P , P is differentiable at q, P ′(q) = M∗(νq) and for α = P ′(q) we have

dimH E(M, α) = 1
logN (P (q) − αq)

= min
p∈R

1
logN (P (p) − αp)

= 1
logN hνq(σ)

= 1
logN htop(E(M, α)),

where

E(M, α) def=
{
ξ ∈ Σ+

N : lim
n→∞

1
n

log ∥Mn(ξ)∥ = α
}
.

There exists a "translation" between matrix-Lyapunov exponents as defined in (1.3.1)
and Lyapunov exponents relative to the circle diffeomorphisms induced by the matrix cocycles.
This we will explain in Section 4.1. First note that, every vector in P1 is the form (cos θ, sin θ)
for some θ ∈ [0, π), so we can identify P1 by [0, π). Hence, the function fn

ξ can be considered a
real function and so we can calculate its derivative, moreover

|(fn
ξ )′(v)| = 1

∥Mn(ξ)v∥2 , (1.3.6)

see Section C.1 for more details. Consider also the potential φ : Σ+
N × P1 → R, given by

φ(ξ, v) def= log |f ′
ξ1(v)| (1.3.7)

and for every µ ∈ M(Σ+
N × P1) denote

φ(µ) def=
∫
φdµ,

Again, by Birkhoff’s ergodic theorem, for every µ ∈ Merg(Σ+
N × P1) and for µ-almost every

(ξ, v) it holds

χ(M, ξ, v) def= lim
n→∞

1
n

log |(fn
ξ )′(v)| =

∫
log |f ′

ξ1(v)| dµ(ξ, v) = φ(µ). (1.3.8)

Let us also consider the following variational pressure function for the skew-product F and
q ∈ R,

PF (q) def= sup
µ∈M(Σ+

N ×P1)

(
hµ(F ) + q

2φ(µ)
)
. (1.3.9)

A measure µ ∈ M(Σ+
N × P1) is called q-equilibrium state for PF if it realizes the supremum

in (1.3.9). We will see in Proposition 4.1.4 that, in fact, the pressure functions in (1.3.4) and in
(1.3.9) coincide.

Our final main result is a translation of [FK11, Proposition 1.2] (see Proposition 4.3.2)
to the skew-product F . It is proved in Section 4.3.2.
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Theorem F. If M ∈ E
N,shyp, then for any q > 0 there exists a unique q-equilibrium state

µq ∈ M(Σ+
N × P1) for PF , PF is differentiable at q, P ′

F (q) = 1
2φ(µq) and there exists C > 1

such that for every n ∈ N and ξ ∈ Σ+
N there exists vn ∈ P1 such that, with α = P ′

F (q)

1
C

≤ µq ({(ζ, v) ∈ [ξ1 . . . ξn] × P1 : χ(M, ζ, v) = 2α})
exp(−nP (q))|(fn

ξ )′(vn)|−q/2 ≤ C.

In fact,
1
C

≤ π∗µq([ξ1 . . . ξn])
exp(−nP (q))|(fn

ξ )′(vn)|−q/2 ≤ C.

Let us briefly summarize the content of the thesis. Chapter 2 deals with contracting
on average IFSs and the effect of metric change. In Section 2.1, we introduce the concepts of
synchronization and contraction and we discuss their relation. In Section 2.2, we investigate
sufficient and necessary conditions for contraction on average. Section 2.3 discusses the particular
case of IFSs on the circle. In Section 2.4 we discuss some examples, in particular those indicated
in Figure 4. Chapter 3 explores stochastic properties with special focus on IFSs on the circle. In
Section 3.1, we briefly discuss what impact a metric change has on stochastic properties for a
contracting on average system. Convergence on average at an exponential rate is stated in Section
3.2 where we also investigate the phenomenon of synchronization in more detail. Chapter 4
investigates IFSs induced by matrix cocycles. In Section 4.2 we provide details of the cocycle.
Section 4.1 discusses relations between ergodic measures for the skew-product and for the base
map. Finally, in Section 4.3 we prove Theorems E and F.
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2 Contracting on average Iterated Func-
tion Systems

2.1 Synchronization and contraction (on average)

In this section we discuss several types of synchronization-like and contraction conditions
and their relations between each other. Unless stated otherwise, we always assume that (M,d) is
a general metric space, F = {f0, . . . , fN−1} an IFS of continuous maps, and p a non-degenerate
probability vector. Let µ be the Bernoulli measure on Σ+

N determined by p. When X is a random
variable on (Σ+

N , µ), we write
E(X) def=

∫
Σ+

N

Xdµ.

2.1.1 Synchronization

The study of synchronization effects goes back to, at least, the 17th century, when
Huygens [Huy73] observed the synchronization of linked pendulums. In the theory of dynamical
systems, synchronization usually refers to the phenomenon that for any two initially fixed distinct
points their randomly chosen trajectories converge to each other. Let us now recall related
concepts and some properties.

One says that (F ,p, d) is synchronizing (S) if random orbits of different initial points
converge to each other with probability 1, that is, for every x, y ∈ M and almost every ξ ∈ Σ+

N

it holds

lim
n→∞

Zx,y
n,d(ξ) = 0. (2.1.1)

The triple (F ,p, d) is exponentially synchronizing (Sexp) if the convergence in (2.1.1) is exponen-
tially fast, that is, if for every x, y ∈ M and almost every ξ ∈ Σ+

N there exist λ ∈ (0, 1), n ∈ N
and C > 0 such that

Zx,y
n,d(ξ) ≤ Cλn. (2.1.2)

The pair (F , d) is proximal if for every x, y ∈ M , there exist ξ ∈ Σ+
N and an increasing sequence

(nk)k∈N such that
lim

k→∞
Zx,y

nk,d(ξ) = 0. (2.1.3)

The triple (F ,p, d) is synchronizing on average (SA)1 if for every x, y ∈ M it holds

lim
n→∞

E
(
Zx,y

n,d

)
= 0. (2.1.4)

1 Note that the definition in [MM20, GK16] differs from the one given here: (F , p, d) is synchronizing on average
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The triple (F ,p, d) is called exponentially synchronizing on average (SAexp) if there exist
λ ∈ (0, 1) and C > 0 such that for every x, y ∈ M and n ≥ 1 it holds

E
(
Zx,y

n,d

)
≤ Cλn. (2.1.5)

The following general relations hold between the above defined properties.

Remark 2.1.1. The systems studied in [MS21] (see Section 2.4.1) are an example of IFSs Sexp

and SAexp.

Lemma 2.1.2. Assuming that (M,d) is bounded, S implies SA.

Proof. This is an immediate consequence of the Dominated Convergence Theorem.

Lemma 2.1.3. S and proximal are invariant under change of equivalent metrics.

Proof. It is enough to note that if d and D are equivalent then a sequence in M converges in
(M,d) if and only if it converges in (M,D).

Lemma 2.1.4. Let d and D be two metrics on M . Assume that there exist C > 0 and α ∈ (0, 1]
such that D ≤ Cdα. If (F ,p, d) is SAexp, then (F ,p, D) is SAexp.

Proof. Assume that (F ,p, d) is SAexp and let c > 0, λ ∈ (0, 1) and α ∈ (0, 1] such that
E
(
Zx,y

n,d

)
≤ cλn for all n ≥ 1 and x, y ∈ M . Hence, using Jensen’s inequality we get

E
(
Zx,y

n,D

)
≤ C E

(
Zx,y

n,dα

)
≤ C

(
E
(
Zx,y

n,d

))α
≤ cα C(λα)n,

that is, (F ,p, D) is SAexp.

Lemma 2.1.5. The following implications hold

Sexp ⇒ S ⇒ SA ⇒ proximal.

Proof. The first two implications are immediate. Let us assume (F ,p, d) is SA. Fix x, y ∈ M .
Then Zx,y

n,d converges to 0 in L1 as n → ∞. Hence, applying Chebyshev’s inequality, for every
ε > 0 it holds

µ(Zx,y
n,d ≥ ε) ≤ ε−1E(Zx,y

n,d) → 0

as n → ∞, that is, Zx,y
n,d converges to 0 in probability. By [Dur19, Theorem 2.3.2], there exists

a sub-sequence (nk)k such that Zx,y
nk,d converges almost surely to 0 as k → ∞. This implies

proximality.

if for every x, y ∈ M , for almost every ξ ∈ Σ+
N it holds

lim
n→∞

1
n

n−1∑
j=0

Zx,y
j,d (ξ) = 0.
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Remark 2.1.6. If F = {fi}N−1
i=0 is an IFS of homeomorphisms of the circle S1 which do note

have a common fixed point and p a non-degenerate probability vector, then by [Mal17, Theorem
E] the concepts Sexp, S, and proximal (and hence SA) are equivalent.

2.1.2 Global average contraction conditions

The IFS F is contracting (C) if every map in F is a contraction. Given k ∈ N, denote
Fk def= {fξ1...ξk

: (ξ1, . . . , ξk) ∈ {0, . . . , N − 1}k}. The IFS F is k-eventually contracting (k-EC)

if Fk is contracting and F is eventually contracting (EC) if it is k-eventually contracting for
some k ∈ N.

2.1.2.1 CA

The triple (F ,p, d) is called contractive on average (CA) if there is some contraction

rate λ ∈ (0, 1) such that

E(Zx,y
1,d ) ≤ λd(x, y) for every x, y ∈ M.

Remark 2.1.7. CA is a particular case of the first hypothesis of [BDEG88, Theorem 2.1], which
guarantees the existence and uniqueness of a stationary measure.

Lemma 2.1.8. If (F ,p, d) is CA with contraction rate λ ∈ (0, 1), then for every n ∈ N

E(Zx,y
n,d) ≤ λnd(x, y) for every x, y ∈ M.

Proof. Let us proceed by induction. For n = 1 just apply the definition of CA. Suppose now that
for k ≥ 1, we have

E(Zx,y
k,d ) ≤ λkd(x, y) for every x, y ∈ M.

Using that (F ,p, d) is CA, for every x, y ∈ M we have

E(Zx,y
k+1,d) =

N−1∑
i=0

piE(Zfi(x),fi(y)
k,d )

≤ λk
N−1∑
i=0

pid(fi(x), fi(y))

≤ λk+1d(x, y).

This prove the lemma.

Remark 2.1.9. If (M,d) is bounded, then it follows from Lemma 2.1.8 that CA implies SAexp.

Given k ∈ N, the triple (F ,p, d) is called k-eventually contractive on average (k-ECA)

if there exist some contraction rate λ ∈ (0, 1) such that

E(Zx,y
k,d ) ≤ λd(x, y) for every x, y ∈ M. (2.1.6)
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The triple (F ,p, d) is eventually contracting on average (ECA) if it is k-ECA for some k ∈ N.

The following lemma justifies that a, perhaps obvious, first choice of a metric to establish
CA is well defined.

Lemma 2.1.10. For every n ∈ N, the function ψn : M ×M → R defined by

ψn(x, y) def= E(Zx,y
n,d)

is continuous and defines a pseudometric on M . For every x, y ∈ M , it holds

N−1∑
i=0

piψn(fi(x), fi(y)) = ψn+1(x, y).

Moreover, if F is an IFS of homeomorphisms then ψn is a metric on M which is equivalent to d.

Proof. The continuity, symmetry and triangle inequality are immediate consequences of the fact
that d is a metric. Thus, ψn is a pseudo metric on M . The second property is immediate.

Finally note that ψn(x, y) = 0 if and only if, d(fξ1...ξn(x), fξ1...ξn(y)) = 0 for all
ξ1, . . . , ξn ∈ {0, . . . , N − 1}. Hence, if every fi is a homeomorphism, then x = y. In this
case, it also is immediate to see that ψn generates the same topology as d.

Given k ∈ N and λ ∈ (0, 1), consider dk,λ : M ×M → [0,∞) defined by

dk,λ(x, y) def= d(x, y) + 1
λ1/k

E(Zx,y
1,d ) + · · · + 1

λ(k−1)/k
E(Zx,y

k−1,d). (2.1.7)

The following is an immediate consequence of Lemma 2.1.10.

Lemma 2.1.11. The function dk,λ defined in (2.1.7) is a metric which is equivalent to d. Moreover,

if all the maps in F are Lipschitz, then in dk,λ is strongly equivalent to d.

Proof. First note that by Lemma 2.1.10 and definition (2.1.7), dk,λ is indeed a metric. It is easy
to see that a sequence (xn)n≥1 converges is (M,d) if only it converges in (M,dk,λ). Thus, d and
dk,λ are equivalent. Moreover, for every x, y ∈ M

dk,λ(x, y) = d(x, y) + 1
λ1/k

E(Zx,y
1,d ) + · · · + 1

λ(k−1)/k
E(Zx,y

k−1,d)

≤
k−1∑
j=0

Lj

λj/k
d(x, y),

where L is the maximum of Lipschitz constants of the maps in F . Thus, with

c =
k−1∑
j=0

Lj

λj/k
,

we have
d ≤ dk,λ ≤ cd,

that is, d and dk,λ are strongly equivalent.
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Proposition 2.1.12. If (F ,p, d) is k-ECA with contraction rate λ ∈ (0, 1), then (F ,p, dk,λ) is

CA with contraction rate λ1/k.

Proof. Assume that (F ,p, d) is k-ECA with contraction rate λ ∈ (0, 1) and k ∈ N. If k = 1,
then dk,λ = d and (F ,p, d) is CA. If k ≥ 2, then it follows from the definition of dk,λ that

E
(
Zx,y

1,dk,λ

)
=

N−1∑
i=0

pidk,λ(fi(x), fi(y))

=
N−1∑
i=0

pi

(
d(fi(x), fi(y)) + 1

λ1/k
E
(
Z

fi(x),fi(y)
1,d

)
+ · · · + 1

λ(k−1)/k
E
(
Z

fi(x),fi(y)
k−1,d

))

= E
(
Zx,y

1,d

)
+ 1
λ1/k

E
(
Zx,y

2,d

)
+ · · · + 1

λ(k−2)/k
E
(
Zx,y

k−1,d

)
+ 1
λ(k−1)/k

E
(
Zx,y

k,d

)
≤ E

(
Zx,y

1,d

)
+ 1
λ1/k

E
(
Zx,y

2,d

)
+ · · · + 1

λ(k−2)/k
E
(
Zx,y

k−1,d

)
+ 1
λ(k−1)/k

λd(x, y)

= λ1/k
(
d(x, y) + 1

λ1/k
E
(
Zx,y

1,d

)
+ 1
λ2/k

E
(
Zx,y

2,d

)
+ · · · + 1

λ(k−1)/k
E
(
Zx,y

k−1,d

))
= λ1/kdk,λ(x, y).

Hence, (F ,p, dk,λ) is CA with contraction rate λ1/k.

2.1.2.2 NEA

The triple (F ,p, d) is said to be non-expansive on average (NEA) if

E(Zx,y
1,d ) ≤ d(x, y) for every x, y ∈ M. (2.1.8)

Remark 2.1.13. The NEA property was introduced in [JT01] as non-separating on average. See
also [Sza03, Part II] for a study of NEA iterated function systems and associated non-expansive
Markov operators.

The following is an immediate consequence of Jensen’s inequality.

Lemma 2.1.14. If (F ,p, d) is NEA then for any α ∈ (0, 1) the triple (F ,p, dα) is NEA.

Lemma 2.1.15. Assume (M,d) is bounded. If (F ,p, d) is SA and D is a metric equivalent to d

such that (F ,p, D) is NEA, then (F ,p, D) is SA.

Proof. If (F ,p, d) is SA, then E
(
Zx,y

n,d

)
→ 0 as n → ∞ for every x, y ∈ M . Arguing as in the

proof of Lemma 2.1.5, there exists a sub-sequence (nk)k such that Zx,y
nk,d → 0 almost surely to

0 as k → ∞. Since D and d are assumed to be equivalent, Zx,y
nk,D → almost surely as k → ∞.

Hence, by the Dominated Convergence Theorem, E(Zx,y
nk,D) → 0 as k → ∞. Since (F ,p, D) is

NEA, E
(
Zx,y

n,D

)
→ 0 as n → ∞. This proves that (F ,p, D) is SA.

Lemma 2.1.16. The following implications hold
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1. C ⇒ CA,

2. CA ⇒ NEA, and

3. k-EC ⇒ k-ECA.

Proof. To prove the implication (1.), assume that (F ,p, d) is C and take λi ∈ (0, 1) the contrac-
tion constant of fi ∈ F . Then, for every x, y ∈ M we have

E(Zx,y
1,d ) =

N−1∑
i=0

pid(fi(x), fi(y)) ≤
(

N−1∑
i=0

piλi

)
d(x, y),

and note that,
N−1∑
i=0

piλi ∈ (0, 1)

to conclude that (F ,p, d) is CA.

Item (2.) is an immediate consequence of the definition.

Applying (1.) to the IFS Fk, we obtain (3.).

Remark 2.1.17. If (F ,p, d) is NEA, then for all k ∈ N and λ ∈ (0, 1) the metric dk,λ defined in
(2.1.7) is strongly equivalent to d.

Lemma 2.1.18. For n ≥ 0, let ψn(x, y) def= E(Zx,y
n,d) be as in Lemma 2.1.10. If (F ,p, d) is NEA,

then for every x, y ∈ M it holds

1. ψ1(x, y) ≤ d(x, y),

2. ψn(x, y) is non-increasing in n and hence the limit limn→∞ ψn(x, y) exists,

3. Assuming that M is compact, if for every x, y ∈ M we have limn→∞ ψn(x, y) = 0, then

ψn → 0 uniformly.

In the following proof and below we use the following simplifying notation

pξ1...ξn

def= pξ1 · · · pξn .

Proof. Property (1.) just restates the definition of NEA. To show (2.), check that

ψn+1(x, y) = E(Zx,y
n+1,d) =

N−1∑
ξ1,...,ξn+1=0

pξ1,...,ξn+1d(fξ1,...,ξn+1(x), fξ1,...,ξn+1(y))

=
N−1∑

ξ1,...,ξn=0
pξ1,...,ξn

N∑
ℓ=1

pℓ d
(
fℓ(fξ1,...,ξn(x)), fℓ(fξ1,...,ξn(y))

)

=
N−1∑

ξ1,...,ξn=0
pξ1,...,ξnE

(
Z

fξ1,...,ξn (x),fξ1,...,ξn (y)
1,d

)

(by NEA) ≤
N−1∑

ξ1,...,ξn=0
pξ1,...,ξnd(fξ1,...,ξn(x), fξ1,...,ξn(y)) = E(Zx,y

n,d) = ψn(x, y).
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This, together with ψn ≥ 0 implies item (2.).

To prove (3.), assume that M is compact and ψn → 0 point-wise. As the limit function is
continuous, by Dini’s theorem, convergence is uniform.

Remark 2.1.19. By [GS17, Proposition 1], for any IFS F = {fi}N−1
i=0 of homeomorphisms of

(S1, d) which is backward minimal there exists a metric ρ on S1 equivalent to d on S1 such that
(F ,p, ρ) is NEA.

2.1.2.3 log-CA

The triple (F ,p, d) is called log-contractive on average (log-CA) if there exists λ < 1
such that

N−1∏
j=0

d(fj(x), fj(y))pj ≤ λd(x, y) for every x, y ∈ M,

or, equivalently,

E
(

ln
Zx,y

1,d

d(x, y)

)
≤ ln λ < 0 for every x, y ∈ M,x ̸= y. (2.1.9)

Remark 2.1.20. Let F be an IFS of Lipschitz maps. In [DF99], the condition

E
(

ln sup
x̸=y

Zx,y
1,d

d(x, y)

)
< 0,

was called contracting on average which is stronger than log-CA. The condition log-CA was
introduced in [Elt87, Page 84].

Lemma 2.1.21. CA implies log-CA.

Proof. Assuming CA with contraction rate λ ∈ (0, 1), note that E(Zx,y
1,d /d(x, y)) ≤ λ. Hence,

by Jensen’s inequality

E
(

ln
Zx,y

1,d

d(x, y)

)
≤ lnE

(
Zx,y

1,d

d(x, y)

)
≤ ln λ < 0,

proving the lemma.

Remark 2.1.22. The concept of log-CA was introduced in [BE88]. Assuming (M,d) to be a
complete metric space, F to be an IFS of Lipschitz maps, and (F ,p, d) to be log-CA, they prove
the existence of an attractive (hence unique) stationary measure (extending previous results
obtained in the case when M is compact, see references in [BE88]).

The following example is presented in [Eda96] to illustrate that log-CA is weaker than
C. Indeed, it also shows that log-CA is weaker than CA.
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Example 2.1.23 (log-CA, but not NEA and not CA). Let M = [0, 1] and d(x, y) def= |x− y|. Let
p = (1

2 ,
1
2). Consider the IFS F = {f0, f1} given by

f0, f1 : M → M, f0(x) def= x

3 , f1(x) def= min{1, 2x}.

Note that for all x, y ∈ [0, 1] it holds

[d(f0(x), f0(y))]1/2 [d(f1(x), f1(y))]1/2 ≤ 2
3 |x− y|

and hence (F ,p, d) is log-CA. On the other hand, for x, y ∈ [0, 1/2] it holds f1(x) = 2x and
f1(y) = 2y, so that

E(Zx,y
1,d ) = 1

2 (d(f0(x), f0(y)) + d(f1(x), f1(y))) = 1
2

(1
3d(x, y) + 2d(x, y)

)
,

which implies that (F ,p, d) is not NEA and thus not CA.

The proof of the following proposition is a bit technical. For completeness, we provided
all the details.

Proposition 2.1.24. Assume that F is an IFS of Lipschitz maps and (F ,p, d) is log-CA. Then,

there exists α ∈ (0, 1] such that (F ,p, dα) is CA.

Proof. Following the proof of [BDEG88, Lemma 2.6], we apply auxiliary Lemma B.0.1 to the
function hx,y : Σ+

N → (0,+∞), x ̸= y, given by

hx,y(ξ) def= max

Z
x,y
1,d (ξ)
d(x, y) ,

(
λ

s

)1/δ
 .

Here

• s ≥ 1 is a constant greater than all Lipschitz constants of maps in F . Hence for every
x ̸= y and ξ ∈ Σ+

N

Zx,y
1,d (ξ)
d(x, y) ≤ s.

• δ ∈ (0, 1) is the minimum of the entries of p, and

• λ ∈ (0, 1) is so that (2.1.9) holds.

Note that for every x, y ∈ M , x ̸= y,

(
λ

s

) 1
δ

≤ hx,y ≤ s.
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Therefore, for r > 0, using that x− 1 ≥ ln x and Jensen’s inequality as in proof of Lemma B.0.1
(see (B.0.3), for more details), we get

0 ≤
(∫

(hx,y)r dµ
) 1

r

− exp
(∫

ln hx,ydµ
)

≤ exp
(1
r

(∫
(hx,y)rdµ− 1

))
− exp

(∫
ln hx,ydµ

)
≤ exp

(∫
ln hx,ydµ

) [
exp

(∫ (1
r

((hx,y)r − 1) − ln hx,y

)
dµ
)

− 1
]
.

Note that the function
x 7→ 1

r
(xr − 1) − ln x

is increasing for x > 1 and decreasing for 0 < x < 1, so that∫ (1
r

((hx,y)r − 1) − ln hx,y

)
dµ

≤
∫

{hx,y>1}

(
sr − 1
r

− ln s
)
dµ+

∫
{hx,y≤1}


(

λ
s

) r
δ − 1
r

− ln
(
λ

s

) 1
δ

 dµ

≤
(
sr − 1
r

− ln s
)

+


(

λ
s

) r
δ − 1
r

− ln
(
λ

s

) 1
δ

 ,
so that

0 ≤
(∫

(hx,y)r dµ
) 1

r

− exp
(∫

ln hx,ydµ
)

≤
(1
r

(sr − 1) − ln s
)

+
1
r

(λ
s

) r
δ

− 1
− ln

(
λ

s

) 1
δ

 .
Consequently, the following convergence is uniform on x, y ∈ M , x ̸= y,

lim
r↓0

(∫
(hx,y(ξ))r dµ(ξ)

) 1
r

= exp
(∫

ln hx,y(ξ)dµ(ξ)
)
.

Therefore,

lim
r↓0

sup
x ̸=y

(∫
(hx,y(ξ))r dµ(ξ)

) 1
r

= sup
x ̸=y

exp
(∫

ln hx,y(ξ)dµ(ξ)
)

On the other hand, for x ̸= y we have∫
ln hx,y(ξ)dµ(ξ)

=
∫{

Z
x,y
1,d

(ξ)

d(x,y) ≤(λ
s )

1
δ

} ln
(
λ

s

) 1
δ

dµ(ξ) +
∫{

Z
x,y
1,d

(ξ)

d(x,y) >(λ
s )

1
δ

} ln
Zx,y

1,d (ξ)
d(x, y) dµ(ξ),

using the hypothesis we get ∫
ln hx,y(ξ)dµ(ξ) ≤ ln λ.
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which implies that

lim
r↓0

sup
x,y

(∫
(hx,y(ξ))r dµ(ξ)

) 1
r

≤ λ,

and so the existence of α ∈ (0, 1] such that

sup
x ̸=y

∫ (
Zx,y

1,d (ξ)
d(x, y)

)α

dµ(ξ) ≤ sup
x,y

∫
(hx,y(ξ))α dµ(ξ) < 1,

thus we conclude this proof.

Remark 2.1.25. It is common in the literature to assume a log-CA condition instead of CA,
see for example [Ste12]. In the present setting, by Lemma 2.1.21 and Proposition 2.1.24, these
conditions are equivalent (changing d by dα if necessary, for some α ∈ (0, 1]).

2.1.3 Local average contraction conditions: LECA and ESCA

In this section, we discuss several types of local average contraction conditions for IFSs.
In particular, we introduce LECA and ESCA, which are, besides NEA, key properties towards
Theorem A. Such conditions have been studied, for example, in [Kai78] and later, independently,
in [Ste99, Ste01] and [Car02]. See also [JT01, LsS05]. Here our focus is on conditions which
are sufficient or necessary for CA, possibly after some change of metric.

The first property is a generalization of CA. We say that (F ,p, d) is locally eventually

contractive on average (LECA) if

for every x, y ∈ M , x ̸= y, there exists ℓ ≥ 1: E(Zx,y
ℓ,d ) < d(x, y). (2.1.10)

Remark 2.1.26. If (F ,p, d) is LECA then for any α ∈ (0, 1) the triple (F ,p, dα) is LECA.

Lemma 2.1.27. The following implications hold

1. CA ⇒ LECA, and

2. SA ⇒ LECA.

Proof. To prove (1.) assume that (F ,p, d) is CA with contraction rate λ ∈ (0, 1), Then, take for
every x, y ∈ M , ℓ = 1 to get

E(Zx,y
1,d ) ≤ λd(x, y),

therefore, (F ,p, d) is LECA.

Now, let us prove (2.). If (F ,p, d) is SA, then for every x, y there exists ℓ ≥ 1 large
enough such that

E(Zx,y
ℓ,d ) ≤ 1

2d(x, y).

The last statement is clear when x = y. In the case x ̸= y, use that limn→∞ E(Zx,y
n,d) = 0 and that

d(x, y) > 0.
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Lemma 2.1.27 shows that synchronization (on average) is intimately related with con-
traction (on average). The next result indeed proves that, assuming NEA, those properties are
equivalent. For its proof we need to recall some more concepts. The set Σ+

N is naturally equipped
with the product topology on {0, . . . , N − 1}N, where {0, . . . , N − 1} is given the discrete
topology. A basis is given by the family of cylinders

[i; ξ1, . . . , ξn] def= {η ∈ Σ+
N : ηi+1 = ξ1, . . . , ηi+n = ξn}.

We simply write [ξ1, . . . , ξn] def= [1; ξ1, . . . , ξn]. Every cylinder is clopen. Every open set in Σ+
N is

a countable union of cylinders.

Lemma 2.1.28. Suppose that (F ,p, d) is NEA on some compact metric space (M,d). Then,

(F ,p, d) is SA if and only if it is LECA.

Proof. Assume that (F ,p, d) is NEA. By Lemma 2.1.27, SA implies LECA. To prove the reverse
implication, let us assume that (F ,p, d) is LECA. By Lemma 2.1.18 (2), for every x, y ∈ M the
limit

δ(x, y) def= lim
n→∞

ψn(x, y) ≥ 0, where ψn(x, y) def= E(Zx,y
n,d), (2.1.11)

exists. Arguing by contradiction, let us suppose that (F ,p, d) is not SA and hence there exist
x, y ∈ M such that δ = δ(x, y) > 0. Define

Bδ
def=
{

(z, w) : d(z, w) ≥ δ

2

}
,

which is a closed subset of M ×M and hence compact. Note that d and ψn are continuous on
M ×M . Thus, for n ≥ 1 and t ∈ (0, 1) the set

Cn,t
def= {(z, w) : E(Zz,w

n,d ) < td(z, w)}

is open in M ×M and so

An,t
def= Bδ ∩ Cn,t

is open in Bδ. As we assume LECA, for each (z, w) ∈ Bδ there exist ℓ ≥ 1 and λ′ ∈ (0, 1) such
that E(Zz,w

ℓ,d ) ≤ λ′d(z, w) and hence, (z, w) ∈ Aℓ,t for every t ∈ (λ′, 1). In particular, it holds

Bδ =
⋃

t∈(0,1)

⋃
n∈N

An,t.

By compactness of Bδ, there exist n1, . . . , nk ∈ N and t1, . . . , tk ∈ (0, 1) such that

Bδ = An1,t1 ∪ · · · ∪ Ank,tk
.

Define

N
def= max{n1, . . . , nk} and λ

def= max{t1, . . . , tk}.
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If (z, w) in Bδ, then (z, w) ∈ Ani,ti
for some i ∈ {1, . . . , k}. This together with Lemma 2.1.18

(2) implies that

E(Zz,w
N,d) ≤ E(Zz,w

ni,d
) < tid(z, w) ≤ λd(z, w). (2.1.12)

Let

Γn
def=
{
ξ : (fn

ξ (x), fn
ξ (y)) ∈ Bδ

}
.

Note that Γn is the union of cylinder sets. Indeed, if ξ ∈ Γn then every η ∈ [ξ1, . . . , ξn] ∈ Γn.
For n ≥ 0, we have

E(Zx,y
N+n,d) = E

(
Zx,y

N+n,d1Γn

)
+ E

(
Zx,y

N+n,d1Γc
n

)
. (2.1.13)

For the first term, we observe

E
(
Zx,y

N+n,d1Γn

)
=

∑
ξn+1,...,ξN+n

∑
[ξ1...ξn]⊂Γn

pξn+1...ξN+n
pξ1...ξnd(fξ1...ξN+n

(x), fξ1...ξN+n
(y))

=
∑

[ξ1,...,ξn]⊂Γn

pξ1...ξn

∑
ξn+1,...,ξN+n

pξn+1...ξN+n
d(fξ1...ξN+n

(x), fξn+1...ξN+n
(y))

=
∑

[ξ1,...,ξn]⊂Γn

pξ1...ξnE
(
Z

fξ1...ξn (x),fξ1...ξn (y)
N,d

)
.

By definition of Γn it holds (fξ1...ξn(x), fξ1...ξn(y)) ∈ Bδ, it follows from (2.1.12) that

E
(
Zx,y

N+n,d1Γn

)
≤

∑
[ξ1,...,ξn]⊂Γn

pξ1...ξnλ d (fξ1...ξn(x), fξ1...ξn(y))

= λE(Zx,y
n,d1Γn).

(2.1.14)

For the second term, we have

E
(
Zx,y

N+n,d1Γc
n

)
=

∑
[ξ1,...,ξn]⊂Γc

n

pξ1...ξnE
(
Z

fξ1...ξn (x),fξ1...ξn (y)
N,d

)
.

Since (F ,p, d) is NEA, again using Lemma 2.1.18 (2), we get

E
(
Zx,y

N+n,d1Γc
n

)
≤

∑
[ξ1,...,ξn]⊂Γc

n

pξ1...ξnd (fξ1...ξn(x), fξ1...ξn(y)) .

By definition of Γn we have that (fξ1...ξn(x), fξ1...ξn(y)) /∈ Bδ so that

E
(
Zx,y

N+n,d1Γc
n

)
<
δ

2µ(Γc
n). (2.1.15)

From (2.1.13), (2.1.14) and (2.1.15) we get

E(Zx,y
N+n,d) < λE

(
Zx,y

n,d1Γn

)
+ δ

2µ (Γc
n) .
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Moreover, by induction on k ∈ N, it follows

E(Zx,y
kN,d) = E

(
Zx,y

kN,d1Γ(k−1)N

)
+ E

(
Zx,y

kN,d1Γc
(k−1)N

)
≤ λE

(
Zx,y

(k−1)N,d1Γ(k−1)N

)
+ δ

2µ
(
Γc

(k−1)N

)
≤ λ2 E

(
Zx,y

(k−2)N,d1Γ(k−1)N ∩Γ(k−2)N

)
+ δ

2µ
(
Γc

(k−1)N ∪ Γc
(k−2)N

)
≤ . . . ≤ λk E

(
Zx,y

0,d1
⋂k−1

j=0 ΓjN

)
+ δ

2µ
( k−1⋃

j=0
Γc

jN

)

= λkd(x, y)µ
( k−1⋂

j=0
ΓjN

)
+ δ

2µ
( k−1⋃

j=0
Γc

jN

)
.

Hence, recalling that λ ∈ (0, 1) and using µ(·) ≤ 1, we get

lim
k→∞

E(Zx,y
kN,d) ≤ δ

2 ,

which is a contradiction. This implies SA.

The following is a consequence of Lemmas 2.1.28 and 2.1.15.

Corollary 2.1.29. Assume (M,d) is compact. Assume that d and D are equivalent metrics such

that (F ,p, d) and (F ,p, D) are NEA. Then (F ,p, d) is LECA if and only if (F ,p, D) is LECA.

The following is a generalization of the definition of locally contractive with respect to
the reverse system [Ste99, Definition 5] and of the definition ε-local (average) contractive [Ste12,
Definition 1]. We say that (F ,p, d) is eventually strongly contracting on average (ESCA) if for
every x ∈ M there exist ℓ ≥ 1 and an open neighborhood V(x,x) ⊂ M ×M of (x, x) such that

sup
(y,z)∈V(x,x),y ̸=z

E(Zz,y
ℓ,d )

d(z, y) < 1. (2.1.16)

Lemma 2.1.30. If (F ,p, d) is ESCA then for any α ∈ (0, 1) the triple (F ,p, dα) is ESCA.

Proof. Let α ∈ (0, 1). Using Jensen’s inequality, we get sup
(y,z)∈V(x,x),y ̸=z

E(Zz,y
ℓ,d )

d(z, y)

α

≥ sup
(y,z)∈V(x,x),y ̸=z

E(Zz,y
ℓ,dα)

dα(z, y) ,

which implies that, if (F ,p, d) is ESCA then (F ,p, dα) is ESCA.

Remark 2.1.31. The example (F ,p, dα) given in Section 2.4.3 is ESCA with parameter ℓ ̸= 1.
Moreover, (F ,p, dα) is LECA, but fails to be NEA.

Lemma 2.1.32. If (F ,p, d) is CA, then for every α ∈ (0, 1] and a metric D which is strongly

equivalent to dα, for every k ∈ N large enough the triple (F ,p, D) is k-ECA.
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Proof. Suppose (F ,p, d) be CA with contracting rate λ ∈ (0, 1). Given α ∈ (0, 1] and a metric
D on M strongly equivalent to dα, take b > a > 0 and such that aD ≤ dα ≤ bD. Note that
(F ,p, dα) is CA with contracting rate λα ∈ (0, 1). Take k ∈ N so that

b

a
λαk < 1.

First, strong equivalence implies that

aE(Zx,y
k,D) ≤ E(Zx,y

k,dα) for every x, y ∈ M.

For every x, y ∈ M , x ̸= y, CA with contraction rate λα together with the above implies

λαk ≥
E(Zx,y

k,dα)
dα(x, y) =

E(Zx,y
k,dα)

E(Zx,y
k,D) ·

E(Zx,y
k,D)

D(x, y) · D(x, y)
dα(x, y) ≥ a ·

E(Zx,y
k,D)

D(x, y) · 1
b
.

Hence, it follows

E(Zx,y
k,D) ≤ b

a
λαkD(z, y),

which proves that (F ,p, D) is k-ECA with contraction rate b
a
λαk ∈ (0, 1).

2.1.4 Further contraction conditions

In this section, we continue our discussion of contraction conditions and put them into
the context of the ones defined above. Although, none of the concepts defined in this section will
be implemented in the remainder of this paper. Let us define for every x ∈ M the sequence of
random variables (Xx

n)n≥0 on (Σ+
N , µ) by

Xx
n(ξ) := fξn ◦ fξn−1 ◦ · · · ◦ fξ1(x); Xx

0 (ξ) := x. (2.1.17)

For A ⊂ M measurable, denote by τA(x) def= inf{n ≥ 1: Xx
n ∈ A} the first time the process

Xx
n hits the set A. Following [JT01], (F ,p, d) satisfies the local contraction property relative to

A ⊂ M if there is λ ∈ (0, 1) such that

E
(
d
(
Xx

τA(x)∨τA(y)), X
y
τA(x)∨τA(y))

))
≤ λd(x, y) for every x, y ∈ M, (2.1.18)

that is, “there is some contraction after the set A ⊂ M is reached”. In other terms, this condition
states that if we start two chains, at x and y, respectively, and run them simultaneously using the
same maps, then at the time both of them have visited A, in average they will be closer to each
other by a factor λ.

Remark 2.1.33. In [JT01, Section 3], it is shown that τA(x) ∨ τA(y) < ∞ almost surely,
assuming that there exists a function V : M → [1,∞), satisfying supx∈A V (x) < ∞, and
constants r ∈ (0, 1) and b < ∞ such that for every x ∈ M

EV (Xx
1 ) ≤ rV (x) + b1A(x). (2.1.19)



2.1. Synchronization and contraction (on average) 47

Furthermore, in [JT01] the function V is used to control the behavior outside of A. Moreover,
assuming that (F ,p, d) is NEA andM is complete separable metric space with bounded metric d,
thus guaranteeing the existence of a unique stationary probability measure (see [JT01, Theorem
2.1]).

Lemma 2.1.34. Assume that (F ,p, d) satisfies the local contraction property relative to A = M ,

then (F ,p, d) is CA and (2.1.19) is satisfied for V ≡ 1.

Proof. If (2.1.18) holds for A = M , then τA(x) = 1, for every x ∈ M , and

E(Zx,y
1,d ) = E

(
d
(
Xx

τA(x)∨τA(y)), X
y
τA(x)∨τA(y))

))
≤ λd(x, y) for every x, y ∈ M,

that is, (F ,p, d) is CA.

Moreover, in the case A = M consider V ≡ 1, any r ∈ (0, 1) and b = 1 − r, to get
(2.1.19) holds.

The following example (F ,p, d) satisfies the local contraction property (2.1.18), but is
not CA. Furthermore, it is NEA and satisfies (2.1.19).

Example 2.1.35 (NEA, but not CA). Adapting an example in [JT01, Section 6] to our context,
let M = [0, 2] and d(x, y) def= |x− y|. Let p = (p, 1 − p) for some p ∈ (1/2, 1). Consider the IFS
F = {f0, f1} given by

f0, f1 : M → M, f0(x) def=

x− 2
3 x ≥ 1,

x
3 x ≤ 1,

and f1(x) def= min
{
x+ 2

3 , 2
}
.

It is easy to see that (F ,p, d) is NEA. On the other hand, for x, y ∈ [1, 4/3] it holds

E(Zx,y
1,d )) = E(d(Xx

1 , X
y
1 )) = d(x, y) = |x− y|

and hence (F ,p, d) is not CA.

Now let us show that (F ,p, d) satisfies the local contraction property (2.1.18) relative to
A = [0, 1]. Since f0 and f1 are non-decreasing functions we have that for every x, y ∈ M , such
that x < y,

τA(x) ≤ τA(y)

and if y ∈ A, then x ∈ A. Also, note that for x, y ∈ A we have that

E(Zx,y
1,d ) =

(
p

3 + (1 − p)
)
d(x, y).

Therefore, (2.1.18) holds with λ def= p
3 + (1 − p) < 1.

On the other hand, consider f(t) = pe− 2
3 t +(1−p)e 2

3 t. Note that f(0) = 1 and f ′(0) < 0.
Thus, to see that (2.1.19) holds fix t > 0 such that f(t) < 1. Let r def= f(t) ∈ (0, 1), b = e

5
3 t and

V (x) def= etx. If x ∈ A, then

EV (Xx
1 ) = pet x

3 + (1 − p)et(x+ 2
3),
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and hence

EV (Xx
1 ) ≤ pe

t
3 + (1 − p)e 5

3 t ≤ e
5
3 t ≤ r + b ≤ rV (x) + b1A(x).

If x ∈ (1, 2] = M \ A, then

EV (Xx
1 ) ≤ pet(x− 2

3) + (1 − p)et(x+ 2
3) = V (x)

(
pe−t 2

3 + (1 − p)e 2
3 t
)

= rV (x) + 1A(x).

This proves (2.1.19).

The idea of locally contractive Markov chains can be expressed in several ways. Globally
contracting on average-type CA and log-CA are convenient because they can be analysed
by many different methods. In [Ste12], the following local average contraction conditions is
considered. Given ε > 0, the triple (F ,p, d) is called ε-local contractive on average (ε-LCA) if
there exists λ ∈ (0, 1) such that

sup
0<d(x,y)<ε

E(Zx,y
1,d )

d(x, y) ≤ λ. (2.1.20)

The triple (F ,p, d) is called ε-local log-CA if for some λ ∈ (0, 1)

sup
0<d(x,y)<ε

E
(

ln
Zx,y

1,d

d(x, y)

)
≤ ln λ < 0. (2.1.21)

Lemma 2.1.36. ε-LCA implies ε-local log-LCA.

Proof. By Jensen’s inequality,

sup
0<d(x,y)<ε

E
(

ln
Zx,y

1,d

d(x, y)

)
≤ sup

0<d(x,y)<ε

lnE
(

Zx,y
1,d

d(x, y)

)
.

Since logarithm is an increasing function, we get

sup
0<d(x,y)<ε

E
(

ln
Zx,y

1,d

d(x, y)

)
≤ ln

 sup
0<d(x,y)<ε

E
(
Zx,y

1,d

)
d(x, y)

 ,
which implies the lemma.

The triple (F ,p, d) is locally contractive in the weak sense (LCWS), if for some λ ∈ (0, 1)
it holds

sup
x∈M

[
lim sup

y→x

E(Zx,y
1,d )

d(x, y)

]
≤ λ. (2.1.22)

It is clear that (2.1.20) implies (2.1.22). In [Ste12, Remark 9] an example of a triple (F ,p, d)
that is ε-local log-CA but not LCWS is shown.

Lemma 2.1.37. ε-LCA implies LCWS and ESCA.

Proof. The first implication is immediate. To check the second one, take k = 1 and V(x,x) =
{(y, z) : d(y, z) < ε} for every x ∈ M .
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2.2 Conditions to guarantee CA

Let us begin this section by presenting a sufficient condition for the existence of a metric
D equivalent to d for which the system is CA. We always consider an IFS F of a metric space
(M,d).

Proposition 2.2.1. Assume that (F ,p, d) is SAexp, that is, there exist constants C > 0 and

λ ∈ (0, 1) such that

E(Zx,y
n,d) ≤ Cλn for every x, y ∈ M and n ∈ N. (2.2.1)

For every q ∈ (λ, 1)
D(x, y) def=

∑
n≥0

qn

λn
E(Zx,y

n,d). (2.2.2)

defines a metric on M which is equivalent to d such that (F ,p, D) is CA.

Proof. Pick q ∈ (λ, 1) and define D : M × M → R by (2.2.2). Note that it follows from our
hypothesis that D is well-defined. It is easy to check that D is a metric. It remains to show that
D has the claimed properties. By Lemma 2.1.10, for every x, y ∈ M

N−1∑
i=0

piD(fi(x), fi(y)) =
∑
n≥0

qn

λn

N−1∑
i=0

piE
(
Z

fi(x),fi(y)
n,d

)
=
∑
n≥0

qn

λn
E(Zx,y

n+1,d)

= λ

q

∑
n≥1

qn

λn
E(Zx,y

n,d) ≤ λ

q

∑
n≥0

qn

λn
E(Zx,y

n,d) = λ

q
D(x, y).

Hence, (F ,p, D) is CA with contraction rate λ/q ∈ (0, 1).

It remains to see that D and d are equivalent. First note that d ≤ D, which implies that
the topology of (M,d) is a subset of the topology of (M,D). Now, let us prove that the topology
of (M,D) is a subset of the topology of (M,d). Given V an open set of (M,D) and x ∈ V ,
there exists r > 0 such that BD(x, r) ⊂ V , where BD(x, r) is the open ball relative to the metric
D with center x and radius r. Let ε def= (1 − q)r/(2 − q) > 0. Take L ∈ N such that

C
∑
n≥L

qn < ε.

It follows from Lemma 2.1.10, that

U
def=

L−1⋂
n=0

Un, where Un = {y ∈ M : E(Zx,y
n,d) < λnε}

is an open set of (M,d). Furthermore, for every y ∈ U

D(x, y) ≤
L−1∑
n=0

qn

λn
E(Zx,y

n,d) +
∞∑

n=L

qn

λn
E(Zx,y

n,d) <
L−1∑
n=0

εqn + ε < ε
1

1 − q
+ ε = r.

Thus, x ∈ U ⊂ BD(x, r) and hence x ∈ U ⊂ V , which proves the desired. Therefore, the
topologies of (M,d) and (M,D) coincide.
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Remark 2.2.2. Proposition 2.2.1 can be applied to IFS F on S1 induced by the projective action
of GL(2,R) matrix cocycles and implies the existence of a metric D that makes (F ,p, D) CA.
We refrain from providing the details. In this context, the existence of a unique stationary measure
is well known (see, for example, [BL85, Chapter II]) and no further immediate application of
CA is given.

However, in this respect, it is reasonable to ask if the existence of a unique stationary
measure implies the existence of some metric that preserves the topology and makes the system
CA?

Remark 2.2.3. If (F ,p, d) is not ESCA, then D provided by Proposition 2.2.1 is in general not
strongly equivalent. Indeed, if ESCA fails, then there exists x ∈ M such that for every n ≥ 1
there exists a sequence {xn

k}k∈N in M such that limk→∞ xn
k = x in (M,d) and

lim
k→∞

E(Zx,xn
k

n,d )
d(x, xn

k) ≥ 1.

Therefore, we can find a sequence {yn}n∈N such that

lim
n→∞

D(x, yn)
d(x, yn) = ∞,

We now invoke the results obtained in Sections 2.1.2 and 2.1.3 to prove Theorem A.

Proof of Theorem A. We will prove Theorem A as follows. Using the LECA and ESCA condi-
tions we will cover M ×M by open sets. The compactness of M will allow us to find a finite
subcover. On each set of coverage we will have the condition CA satisfied. Finally, since the
NEA condition controls the iterates on average, we can conclude the condition CA globally.

M

M

Figure 4 – Using conditions LECA (blue colour) and ESCA (red colour), respectively, to find
coverings of the product space M ×M .
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Assume that (F ,p, d) is NEA, LECA, and ESCA.

First, let us construct for every (x, y) ∈ M ×M an open neighborhood V(x,y) as follows.
For (x, y) ∈ M × M , x ̸= y, take ℓ = ℓ(x, y) ∈ N and λ(x, y) ∈ (0, 1) as in the definition of
(see (2.1.10)) satisfying

E(Zx,y
ℓ,d ) ≤ λ(x, y)d(x, y)

and let

V(x,y)
def=
{

(z, w) ∈ M ×M : z ̸= w and
E(Zz,w

ℓ,d )
d(z, w) <

√
λ(x, y)

}
.

As the function

f : M ×M \ {(z, z) : z ∈ M} → R, f(z, w) def=
E(Zz,w

ℓ,d )
d(z, w) ,

is continuous and the set {(z, z) : z ∈ M} is closed, V(x,y) is an open subset ofM×M containing
(x, y). For x = y ∈ M , take ℓ = ℓ(x, x) ∈ N and an open neighborhood V(x,x) of (x, x) as in the
definition of ESCA (see (2.1.16)) satisfying

λ(x, x) def= sup
(z,w)∈V(x,y) : y ̸=z

E(Zz,w
ℓ,d )

d(z, w) < 1

to get
E(Zz,w

ℓ,d ) ≤ λ(x, x)d(z, w),

for all (z, w) ∈ V(x,y).

As M × M is compact, it has a finite sub-cover {V(x1,y1), . . . , V(xm,ym)}. Hence, for
every i ∈ {1, . . . ,m} there are ℓi = ℓ(xi, yi) ∈ N and λi = λ(xi, yi) ∈ (0, 1) such that for all
(z, w) ∈ V(xi,yi) it holds

E(Zz,w
ℓi,d

) ≤ λid(z, w).

Take k def= max1≤i≤m ℓi and λ def= max1≤i≤m λi. Hence, together with Lemma 2.1.18 (2), for every
(x, y) ∈ M ×M there exists i ∈ {1, . . . ,m} such that

E(Zx,y
k,d ) ≤ E(Zx,y

ℓi,d
) ≤ λid(x, y) ≤ λd(x, y).

But this implies that (F ,p, d) is k-ECA with contraction rate λ ∈ (0, 1). By Proposition 2.1.12,
(F ,p, D), whereD def= dk,λ is defined in (2.1.7), is CA with contraction rate λ1/k. Hence, invoking
Lemma 2.1.11, d and D are strongly equivalent.

Together with Lemma 2.1.28, this proves the theorem.

The following provides a necessary condition for the existence of a metric D equivalent
to d for which the system is CA.

Proposition 2.2.4. Suppose that (F ,p, d) is NEA on some compact metric space (M,d). If there

exists a metric D on K equivalent to d such that (F ,p, D) is CA, then (F ,p, d) is SA.
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Proof. Assuming that (F ,p, D) is CA, by Lemma 2.1.8 for every n ∈ N it holds

E(Zx,y
n,D) ≤ λnD(x, y) for every x, y ∈ M.

Fix x, y ∈ M . By the above, it holds

lim
n→∞

E(Zx,y
n,D) = 0, (2.2.3)

that is, Zx,y
n,D converges to 0 in L1. By Chebyshev’s inequality, for every ε > 0 it holds

µ(Zx,y
n,D ≥ ε) ≤ ε−1E(Zx,y

n,D).

and hence it follows that Zx,y
n,D converges to 0 in probability. By [Dur19, Theorem 2.3.2], there

exists a sub-sequence (nk)k such that Zx,y
nk,D converges almost surely to 0 as k → ∞.

The fact thatD and d are equivalent implies Zx,y
nk,d converges almost surely to 0 as k → ∞.

By dominated convergence theorem, we conclude that

lim
k→∞

E(Zx,y
nk,d) = 0.

As we assume that (F ,p, d) is NEA on a compact space and x, y were arbitrary, by Lemma
2.1.18 (2)–(3) it follows

lim
n→∞

E(Z(·),(·)
n,d ) = 0

uniformly. This implies SA.

2.3 CA for IFSs on S1

In this section, we will study the particular case of an IFS F of homeomorphisms on
M = S1 (equipped with the usual metric d(x, y) def= min{|x− y|, 1 − |x− y|}. In particular, we
prove Theorem B.

We first recall the following results which are an immediate consequence of [Mal17,
Theorem A and Proposition 4.2], respectively.

Proposition 2.3.1. Let F be an IFS of homeomorphisms of S1 and assume that there does

not exist a probability measure which is invariant by every element of F . Then for every non-

degenerate probability vector p there is a constant λ ∈ (0, 1) such that for every x ∈ S1 and

almost every ξ ∈ Σ+
N there exists an open neighborhood Ix(ξ) ⊂ S1 of x such that for all n ∈ N

it holds

Zw,z
n,d (ξ) = d(fn

ξ (w), fn
ξ (z)) ≤ λn for every w, z ∈ Ix(ξ).

For the statement of the next proposition, consider the shift σ : Σ+
N → Σ+

N defined by

(σ(ξ))j = ξj+1, j ≥ 1.

Recall that it is continuous.
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Proposition 2.3.2. Under the hypotheses of Proposition 2.3.1, consider the map

G : Σ+
N × S1 × S1 → Σ+

N × S1 × S1, G(ξ, x, y) def= (σ(ξ), fξ1(x), fξ1(y)).

Let E = ⋃
ξ∈Σ+

N
{ξ} ×U(ξ) ⊂ Σ+

N × S1 × S1 such that G−1(E) ⊂ E and U(ξ) is open in S1 × S1

for every ξ ∈ Σ+
N . Let p be a non-degenerate probability vector and µ its its associate Bernoulli

measure µ on Σ+
N and assume that

(µ⊗ ν) (E) > 0

for every stationary2 probability measure ν on S1 × S1. Then actually,

(µ⊗ ν) (E) = 1

for every probability measure ν on S1 × S1 (not necessarily stationary).

Remark 2.3.3. Under the hypothesis of Proposition 2.3.1, the local contraction property holds.
Now, let us show that if (F , d) is proximal then we have Sexp (as defined in (2.1.2)) holds with
the same rate.

Now, let us prove the following lemma.

Lemma 2.3.4. Assume that (F ,p, d) and λ ∈ (0, 1) are as in Proposition 2.3.1. If (F , d) is

proximal, then

µ(Ωx,y) = 1 for every x, y ∈ S1,

where

Ωx,y def= {ξ ∈ Σ+
N : there exists C > 0 such that Zx,y

n,d(ξ) ≤ Cλn for all n ∈ N}. (2.3.1)

Proof. For every z ∈ S1 and k ∈ N let

Γk(z) def=
{
η ∈ Σ+

N : d(fn
η (z1), fn

η (z2)) ≤ λn for all n ∈ N, z1, z2 ∈
(
z − 1

k
, z + 1

k

)}
.

Clearly, Γk(z) ⊂ Γk+1(z). By Proposition 2.3.1, for every z ∈ S1

µ
( ⋃

k∈N
Γk(z)

)
= 1.

Hence, there is k0 = k0(z) ∈ N such that

µ (Γk0(z)) > 0. (2.3.2)

Let E be the set of points (ξ, x, y) ∈ Σ+
N × S1 × S1 such that there exist z ∈ S1, k0 ∈ N,

and k1 ∈ N satisfying

fk1
ξ (x), fk1

ξ (y) ∈
(
z − 1

k0
, z + 1

k0

)
, ξ ∈ σ−k1 (Γk0(z)) and µ (Γk0(z)) > 0.

By the following claim, E is nonempty. More precisely, for every (x, y) ∈ S1 × S1 the set
E ∩

(
Σ+

N × {(x, y)}
)

is nonempty.
2 Recall that here ν is stationary if and only if µ ⊗ ν is invariant by the skew product G.
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Claim 2.3.5. For every x, y ∈ S1 it holds
(
µ⊗ δ(x,y)

)
(E) > 0, where δ(x,y) is the Dirac measure

at (x, y).

Proof. Fix x, y ∈ S1. By proximality, there exist ξ ∈ Σ+
N and an increasing sequence (nk)k∈N

such that we have

lim
k→∞

Zx,y
nk,d(ξ) = 0.

By compactness of S1, there are z ∈ S1 and a subsequence (nkj
)j≥1 such that

f
nkj

ξ (x) → z and f
nkj

ξ (y) → z,

as j → ∞. Hence, taking k0 = k0(z) as in (2.3.2), there exists k1 ∈ N large enough such that
fk1

ξ (x) and fk1
ξ (y) are both in

(
z − 1

k0
, z + 1

k0

)
.

As µ is σ-invariant, it holds µ(σ−k1(Γk0(z))) = µ(Γk0(z)) > 0. Furthermore,

σ−k1 (Γk0(z)) = Σ+
N × · · · × Σ+

N︸ ︷︷ ︸
k1-times

×Γk0(z),

which implies that µ
(
[ξ1, . . . , ξk1 ] ∩ σ−k1 (Γk0(z))

)
> 0. Since

(
[ξ1, . . . , ξk1 ] ∩ σ−k1 (Γk0(z))

)
× {(x, y)} ⊂ E ,

this implies the claim.

Integrating over (x, y) ∈ S1 × S1 with respect to any stationary probability measure ν on
S1 × S1, it follows that

(µ⊗ ν) (E) > 0.

Claim 2.3.6. The set E is G-invariant, that is, G−1(E) ⊂ E .

Proof. If (ξ, x, y) ∈ G−1(E) then (σ(ξ), fξ1(x), fξ1(y)) ∈ E . Hence there are k1, k0 ∈ N and
z ∈ S1 satisfying

fk1
σ(ξ)(fξ1(x)), fk1

σ(ξ)(fξ1(y)) ∈
(
z − 1

k0
, z + 1

k0

)
,

σ(ξ) ∈ σ−k1(Γk0(z)), µ (Γk0(z)) > 0.

As fk1
σ(ξ) ◦ fξ1 = fk1+1

ξ , this implies

fk1+1
ξ (x), fk1+1

ξ (y) ∈
(
z − 1

k0
, z + 1

k0

)
,

ξ ∈ σ−(k1+1)(Γk0(z)), µ (Γk0(z)) > 0.

But this implies (ξ, x, y) ∈ E .
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Claim 2.3.7. For every ξ ∈ Σ+
N the set U(ξ) def= {(x, y) ∈ S1 × S1 : (ξ, x, y) ∈ E} is open in

S1 × S1.

Proof. Fix ξ ∈ Σ+
N . Given x, y ∈ S1 such that (ξ, x, y) ∈ E , there exist z ∈ S1 and k0, k1 ∈ N

satisfying

fk1
ξ (x), fk1

ξ (y) ∈
(
z − 1

k0
, z + 1

k0

)
,

ξ ∈ σ−k1

(
Γk0(z)

)
, µ

(
Γk0(z)

)
> 0.

The continuity of fk1
ξ implies that the set

V(x,y)
def=
(
fk1

ξ

)−1(
z − 1

k0
, z + 1

k0

)
×
(
fk1

ξ

)−1(
z − 1

k0
, z + 1

k0

)

is an open neighborhood of (x, y) in S1 × S1. For every (w1, w2) ∈ V(x,y), it holds fk1
ξ (w1),

fk1
ξ (w2) ∈ (z − 1/k0, z + 1/k0). Thus, V(x,y) ⊂ U(ξ). This proves the claim.

By Proposition 2.3.2, for every x, y ∈ S1 we have(
µ⊗ δ(x,y)

)
(E) = 1.

Therefore, by definition of the sets Γk0(z) for every x, y ∈ S1 and almost every ξ ∈ Σ+
N there

exists k1 ∈ N such that

Zx,y
n+k1,d(ξ) = d(fk1+n

ξ (x), fk1+n
ξ (y)) ≤ λn.

This proves the lemma.

The following is an immediate consequence of Lemma 2.3.4 by the dominated conver-
gence theorem.

Corollary 2.3.8. Assume that (F ,p, d) and λ ∈ (0, 1) are as in Proposition 2.3.1. Then (F ,p, d)
is SA (and hence LECA).

In the rest of this section, F is a finite family of C1-diffeomorphisms. Hence, there exist
L > 1 such that for all i ∈ {0, . . . , N − 1}

L−1d(x, y) ≤ d(fi(x), fi(y)) ≤ Ld(x, y). (2.3.3)

Lemma 2.3.9. Assume that (F ,p, d) and λ ∈ (0, 1) are as in Proposition 2.3.1. Assume also

that each map in F is a C1-diffeomorphism. Then, for every t ∈ (λ, 1) and x ∈ S1 and almost

every ξ there exists an open neighborhood Jx(ξ) ⊂ S1 of x such that there exists C > 0 satisfying

for all n ∈ N we have

max
z∈Jx(ξ)

|(fn
ξ )′(z)| ≤ Ctn.



56 Chapter 2. Contracting on average Iterated Function Systems

Proof. Fix t ∈ (λ, 1) and x ∈ S1. By Proposition 2.3.1, for almost every ξ ∈ Σ+
N there exists an

open arc Ix(ξ) ⊂ S1 of x such that for every n ∈ N and y, z ∈ Ix(ξ)

Zy,z
n,d(ξ) ≤ λn. (2.3.4)

Denote by ωξ(·) the modulus of continuity of ln |f ′
ξ1|. Since ωξ(ε) tends to 0 as ε → 0 and is

uniformly bounded, by dominated convergence it follows

lim
ε→0

∫
ωξ(ε)dµ(ξ) = 0.

Fix ε > 0 such that ∫
ωξ(ε)dµ(ξ) ≤ ln λ+ t

2 − ln λ.

By Birkhoff ergodic theorem, almost every ξ ∈ Σ+
N

lim
n→∞

1
n

n−1∑
j=0

ωσj(ξ)(ε) =
∫
ωη(ε)dµ(η). (2.3.5)

Now, fix ξ ∈ Σ+
N such that (2.3.4) and (2.3.5) hold. Take k ≥ 1 so that λk < ε. Define

Ix(ξ, ε) def= Ix(ξ) ∩
k⋂

j=0
(f j

ξ )−1
(
f j

ξ (x) − ε

2 , f
j
ξ (x) + ε

2

)
,

and note that Ix(ξ, ε) is an open arc containing x. For every y, z ∈ Ix(ξ, ε) it holds

ln
|(fn

ξ )′(y)|
|(fn

ξ )′(z)| =
n−1∑
j=0

ln |f ′
σj(ξ)(f

j
ξ (y))| − ln |f ′

σj(ξ)(f
j
ξ (z))| ≤

n−1∑
j=0

ωσj(ξ)(ε).

Let x1 and x2 be the extreme points of Ix(ξ, ε). Note that for every z ∈ Ix(ξ, ε), it holds

ln |(fn
ξ )′(z)|
n

≤ 1
n

ln
(

Zx1,x2
n,d

d(x1, x2)

)
+ 1
n

n−1∑
j=0

ωσj(ξ)(ε).

Hence, using (2.3.4) for all n ≥ 1

1
n

ln
(

max
z∈Ix(ξ,ε)

|(fn
ξ )′(z)|

)
≤ ln λ− 1

n
ln d(x1, x2) + 1

n

n−1∑
j=0

ωσj(ξ)(ε),

so that

lim sup
n→∞

1
n

ln
(

max
z∈Ix(ξ,ε)

|(fn
ξ )′(z)|

)
≤ ln λ+ t

2 .

Then, there exists C > 0 such that for all n ≥ 1

max
z∈Ix(ξ,ε)

|(fn
ξ )′(z)| ≤ Ctn.

This proves the lemma.

The following result together with Proposition 2.1.12 immediately implies Theorem B.
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Proposition 2.3.10. Assume the hypotheses of Theorem B. Then there exist k ∈ N and α0 ∈ (0, 1)
such that for all α ∈ (0, α0] the triple (F ,p, dα) is k-ECA with rate λα.

Proof. Fix points x, y ∈ S1. Let

An
def= sup

x ̸=y

∫
Σ+

N

ln
(
Zx,y

n,d(ξ)
d(x, y)

)
dµ(ξ).

The sequence (An)n≥0 is a subadditive. Indeed,

An+m = sup
x ̸=y

∫
Σ+

N

ln
(
Zx,y

n+m,d(ξ)
d(x, y)

)
dµ(ξ)

= sup
x ̸=y

∫
Σ+

N

ln
(
Zx,y

n+m,d(ξ)
Zx,y

n,d(ξ)
Zx,y

n,d(ξ)
d(x, y)

)
dµ(ξ)

≤ sup
x ̸=y

∫
Σ+

N

ln
(
Zx,y

n+m,d(ξ)
Zx,y

n,d(ξ)

)
dµ(ξ) + sup

x ̸=y

∫
Σ+

N

ln
(
Zx,y

n,d(ξ)
d(x, y)

)
dµ(ξ),

using that µ is a Bernoulli measure, we get

An+m ≤ sup
x ̸=y

∫
Σ+

N

ln
(
Zx,y

m,d(ξ)
d(x, y)

)
dµ(ξ) + sup

x ̸=y

∫
Σ+

N

ln
(
Zx,y

n,d(ξ)
d(x, y)

)
dµ(ξ) = Am + An.

Hence, by Fekete’s Lemma, the limit A def= limn→∞ An/n = infn≥1 An/n ∈ [−∞,∞) exists.

All hypotheses of Proposition 2.3.1 are satisfied and we can consider λ ∈ (0, 1) as
provided by this proposition.

Claim 2.3.11. A ≤ ln λ.

Proof. Arguing by contradiction, suppose that ln λ < A. Then, for all n ∈ N

ln λ < A ≤ sup
x ̸=y

∫
Σ+

N

Fn(x, y, ξ) dµ(ξ), where Fn(x, y, ξ) def= 1
n

ln
(
Zx,y

n,d(ξ)
d(x, y)

)
.

Thus, for all n ∈ N there exist xn, yn in S1, xn ̸= yn, such that

ln λ <
∫

Σ+
N

Fn(xn, yn, ξ) dµ(ξ). (2.3.6)

By compactness, there exist a subsequence (nk)k≥1 and points x, y ∈ S1 such that

lim
k→∞

xnk
= x, lim

k→∞
ynk

= y. (2.3.7)

In the following two cases we consider ξ in a appropriate set of measure 1 to obtain that the limit
superior of Fnk

(xnk
, ynk

, ξ) as k → ∞ is less than or equal to ln λ. We then will apply Fatou’s
Lemma to contradict (2.3.6). Note that all hypotheses of Lemmas 2.3.4 and 2.3.9 are satisfied.
Given x, y as above, let Ωx,y be as in (2.3.1).
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Case x ̸= y. Fix any t ∈ (λ, 1). Denote by Γt the set of sequences ξ ∈ Σ+
N such that there exist

C > 0 and open arcs Jx(ξ) and Jy(ξ) containing x and y, respectively, and satisfying

max
z∈Jx(ξ)∪Jy(ξ)

|(fn
ξ )′(z)| ≤ Ctn, Zx,y

n,d(ξ) ≤ Cλn for all n ∈ N

By Lemma 2.3.4 and Lemma 2.3.9, the set Γt has measure 1. Given ξ ∈ Γt, by the triangle
inequality and the mean value inequality it follows

Z
xnk

,ynk
nk,d (ξ) ≤ Z

xnk
,x

nk,d (ξ) + Zx,y
nk,d(ξ) + Z

y,ynk
nk,d (ξ)

= d(fnk
ξ (xnk

), fnk
ξ (x)) + d(fnk

ξ (x), fnk
ξ (y)) + d(fnk

ξ (y), fnk
ξ (ynk

))

≤ |(fnk
ξ )′(x̂k)|d(xnk

, x) + Zx,y
n,d(ξ) + |(fnk

ξ )′(ŷk)|d(ynk
, y),

for some points x̂k and ŷk between xnk
and x and between ynk

and y, respectively. By (2.3.7),
x̂k → x and ŷk → y as k → ∞. Then, for k large enough x̂k ∈ Jx(ξ) and ŷk ∈ Jy(ξ) and it
follows

Z
xnk

,ynk
nk,d (ξ) ≤ Ctnkd(xnk

, x) + Cλnk + Ctnkd(ynk
, y).

This implies
lim sup

k→∞
Fnk

(xnk
, ynk

, ξ) ≤ ln t.

Given L > 1 satisfying (2.3.3), as

− lnL ≤ Fnk
(xnk

, ynk
, ξ) ≤ ln t < 0,

Fatou’s Lemma implies

lim sup
k→∞

∫
Fnk

(xnk
, ynk

, ξ) dµ(ξ) ≤
∫

lim sup
k→∞

Fnk
(xnk

, ynk
, ξ) dµ(ξ) ≤ ln t.

As t ∈ (λ, 1) was arbitrary, it follows

lim sup
k→∞

∫
Fnk

(xnk
, ynk

, ξ)dµ(ξ) ≤ ln λ,

which contradicts (2.3.6).

Case x = y. By Lemma 2.3.9, for every t ∈ (λ, 1) and x ∈ S1 and for almost every ξ there exist
an open neighborhood Jx(ξ) ⊂ S1 of x and a constant C > 0 such that for all n ∈ N it holds

max
z∈Jx(ξ)

|(fn
ξ )′(z)| ≤ Ctn. (2.3.8)

Fix ξ ∈ Σ+
N such that (2.3.8) holds. Take k1 ∈ N large enough so that xnk

and ynk
are both Jx(ξ),

for all k ≥ k1. By the mean value inequality,

Fnk
(xnk

, ynk
, ξ) ≤ 1

nk

lnC + ln t,

for all k ≥ k1. Thus,
lim sup

k→∞
Fnk

(xnk
, ynk

, ξ) ≤ ln t.
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By Fatou’s lemma and using again that t ∈ (λ, 1) was arbitrary, it follows

lim sup
k→∞

∫
Fnk

(xnk
, ynk

, ξ) dµ(ξ) ≤
∫

lim sup
k→∞

Fnk
(xnk

, ynk
, ξ) dµ(ξ) ≤ ln λ,

which contradicts (2.3.6).

This proves the claim.

By Claim 2.3.11, there exists k ∈ N sufficiently large so that k > 4 and

1
k
Ak <

1
2 ln λ < 0.

Consider again L > 1 as in (2.3.3).

Hence, for ξ ∈ Σ+
N and x ̸= y

−k lnL ≤
∣∣∣∣∣ln d(f

k
ξ (x), fk

ξ (y))
d(x, y)

∣∣∣∣∣ ≤ k lnL

Using the above and that ex ≤ 1 + x+ x2e|x|/2, for every α ∈ (0, 1) it follows that∫
Σ+

N

dα(fk
ξ (x), fk

ξ (y))
dα(x, y) dµ(ξ) =

∫
Σ+

N

eα ln(d(fk
ξ (x),fk

ξ (y))/d(x,y)) dµ(ξ)

≤
∫

Σ+
N

(
1 + α ln

d(fk
ξ (x), fk

ξ (y))
d(x, y) +

+ α2

2 ln2
(
d(fk

ξ (x), fk
ξ (y))

d(x, y)

)
e|ln(d(fk

ξ (x),fk
ξ (y))/d(x,y))|

)
dµ(ξ)

≤ 1 + α
∫

Σ+
N

ln
(
Zx,y

k,d (ξ)
d(x, y)

)
dµ(ξ) + α2

2 (k lnL)2Lk

≤ 1 + αAk + α2

2 (k lnL)2Lk < 1 + α

2 k ln λ+ α2

2 (k lnL)2Lk.

To finish this proof, note that for α small enough such that

α ≤ − ln λ
2k(lnL)2Lk

we have ∫
Σ+

N

dα(fk
ξ (x), fk

ξ (y))
dα(x, y) dµ(ξ) ≤ 1 + α

4 k ln λ ≤ λα < 1.

This implies the assertion.

Proof of Theorem B. By Proposition 2.3.10, there exist α ∈ (0, 1), λ ∈ (0, 1), and k ∈ N so that
(F ,p, dα) is k-ECA with rate λ. By Proposition 2.1.12, (F ,p, D) is CA with contraction rate
λ1/k, where

D(x, y) def= dα(x, y) + 1
λ1/k

E(Zx,y
1,dα) + · · · + 1

λ(k−1)/k
E(Zx,y

k−1,dα)

is as in (2.1.7) for dα instead of d. By Lemma 2.1.11, it holds d ≤ D ≤ Cdα for some C > 0
and hence D is strongly equivalent to dα.
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2.4 Examples

The first example illustrates an application of Proposition 2.2.1. The last two examples
illustrate that the hypotheses in Theorems A and B are sharp. For the examples in Sections 2.4.2
and 2.4.3, we consider S1 equipped with the usual metric d(x, y) def= min{|x− y|, 1 − |x− y|}.

2.4.1 IFSs on Rk

Let us introduce the class of IFSs studied in [MS21]. First, let’s define a partial order on
Rk. Given J ⊂ {1, . . . , k}, define a partial order as follows: for x, y ∈ Rk, we write x <J y if
and only if

xi < yi for i ∈ J and xi > yi for i /∈ J.

Let S ⊂ Rk. A function f : S → S is called J-increasing (or, J-decreasing) if

x <J y ⇒ f(x) <J f(y) (or, x <J y ⇒ f(y) <J f(x)) .

And, f is called J-monotone if f is either J-increasing or J-decreasing.

Now, let us consider F a IFS of functions from S itself, p a non-degenerate probability
vector and d the taxicab distance on Rk. In this context, the triple (F ,p, d) satisfies the J-splitting

condition if all maps in F are J-monotone and there exist m ∈ N, ξ, η ∈ Σ+
N such that

fm
ξ (S) <J fη(S).

By [MS21, Theorem 2], if S is bounded in Rk and (F ,p, d) satisfies the J-splitting
condition, then there exists λ ∈ (0, 1) and an integrable map c : Σ+

N → [0,∞) such that for
almost every ξ ∈ Σ+

N and all n ∈ N

diamfn
ξ (S) ≤ c(ξ)λn.

That is, (F ,p, d) is Sexp and by integrability of c the triple (F ,p, d) is also SAexp. Therefore,
Proposition 2.2.1 applies to get existence of a metric D given by (2.2.2) equivalent to d such that
(F ,p, D) is CA.

2.4.2 LECA, but not ESCA

Let F = {f0, f1} be the family of two diffeomorphisms of S1 such that f0 has two
fixed points, one attracting and one repelling, and f1 is an irrational rotation. Note that (F , d) is
proximal. Let p = (p, 1 − p) be a non-degenerate probability vector. Note that (F ,p, d) fails to
be NEA. The triple (F ,p, d) satisfies the hypotheses of Theorem B (and hence of Proposition
2.3.1). Hence, by Corollary 2.3.8, (F ,p, d) is SA and LECA. It is easy to check that for (F ,p, d)
condition (2.1.8) for NEA and condition (2.1.6) for k-ECA (k ∈ N arbitrary) are violated at the
repelling fixed point of f0.
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Note that (F ,p, d) verifies the hypotheses of Theorem B. Hence, there exist α ∈ (0, 1],
λ ∈ (0, 1) and n ∈ N such that for D def= (dα)n,λ the triple (F ,p, D) is CA. In particular,
(F ,p, D) satisfies NEA, SA, LECA, and ESCA. However, by the latter together with Lemma
2.1.32, for all β ∈ (0, 1] the metric Dβ cannot be strongly equivalent to d.

Let µ be a stationary probability for IFS with probabilities (F ,p). By stationarity, it
holds

µ = p (f0)∗µ+ (1 − p) (f1)∗µ.

By [GS17, Lemma 2.6], µ is non-atomic and has full support. Consider the metric ρ on S1, given
by ρ(x, y) def= min{µ([x, y]), µ([y, x])}. By [GS17, Proposition 1.2], (F ,p, ρ) is NEA.

Lemma 2.4.1. (F ,p, ρ) is SA and LECA.

Proof. Since (F ,p, d) is SA and (F ,p, ρ) is NEA, Lemma 2.1.15 implies that (F ,p, ρ) is SA.
By Lemma 2.1.27, (F ,p, ρ) is LECA.

The following result checking that the IFS is “ρ-isometric in average” if and only if it is
“ρ-isometric” is straightforward.

Claim 2.4.2. Assume ρ(x, y) = µ([x, y]). Then, it holds E(Zx,y
n,ρ) = ρ(x, y) if only if for all

ξ1, . . . , ξn we have

ρ(fξ1...ξn(x), fξ1...ξn(y)) = µ(fξ1...ξn([x, y])).

Lemma 2.4.3. The triple (F ,p, ρ) is not ESCA.

Proof. Given x ∈ S1 and ε ∈ (0, 1), denote by Arc(x, ε) the open arc centered at x and with
µ-measure equal to ε (recall that µ is nonatomic and has full support, hence Arc(x, ε) is a
nontrivial interval). Given x and ℓ ∈ N, consider the set

Vℓ(x) def= Arc(x, 4−1) ∩
⋂

ξ1,...,ξℓ

(fξ1...ξℓ
)−1 Arc(fξ1...ξℓ

(x), 4−1) ⊂ Arc(x, 4−1),

which is also a nontrivial open interval. For every y, z ∈ Vℓ(x) such that [y, z] ⊂ Vℓ(x) for every
ξ1, . . . , ξℓ ∈ {0, 1}, it hence holds

fξ1...ξℓ
([y, z]) ⊂ Arc(fξ1...ξℓ

(x), 4−1)

and therefore
4−1 ≥ µ(fξ1...ξℓ

([y, z])) = ρ(fξ1...ξℓ
(y), fξ1...ξℓ

(z)).

Hence, from Claim 2.4.2, it follows

ρ(y, z) = µ([y, z]) = E(Zy,z
ℓ,ρ ). (2.4.1)

Any other neighborhood V of x, contains an open arc W containing x, so that for all
ℓ ≥ 1,W∩Vℓ(x) ⊂ V is and open arc containing x. Now it is enough to consider y, z ∈ W∩Vℓ(x)
to get (2.4.1). This completes the proof that (F ,p, ρ) is not ESCA.
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2.4.3 LECA, but not NEA

Let p = (p, 1 − p) be a non-degenerate probability vector and µ its associated Bernoulli
measure. Without loss of generality, we can assume p = max{p, 1 − p}. Let f0, f1 : S1 → S1

be orientation preserving homeomorphisms, such that there exist two open arcs I, J ⊂ S1 with
disjoint closures having the following properties (compare also Figure 4):

1. The extreme points of J are fixed points y0 and y1 of f0 and f1, respectively. Here we are
assuming that y0 ̸= y1.

2. There exists an open arc J∗ ⊂ J such that f0(J∗), f1(J∗) ⊂ S1 \ J .

3. The arc I is (forward) invariant, that is, f0(I), f1(I) ⊂ I .

4. For every x ∈ S1 \ J there exists n ≥ 0 such that fn
ξ (x) ∈ I for all ξ ∈ Σ+

2 .

5. There is r ∈ (0, 1) so that

d
(
fn

ξ (x), fn
ξ (y)

)
≤ rnd(x, y) for every n ∈ N and x, y ∈ I.

6. d(fi(x), fi(y)) ≥ d(x, y) for every x, y ∈ J ∩ f−1
0 (J) ∩ f−1

1 (J) and i = 0, 1.

7. Every fi is Lipschitz: there is c > 1 so that

d(fi(x), fi(y)) ≤ cd(x, y) for every x, y ∈ S1 and i = 0, 1.

By (6), for the IFS F = {f0, f1} the triple (F ,p, d) is not ε-LCA. An appropriately chosen
example also fails to be NEA (just choose f0, f1 being expanding in J). Since J ⊊ S1 and
f−1

0 ∪ f−1
1

(
J
)

⊂ J we have that F fails to be backward minimal, hence methods from [GS17]
do not apply immediately. Below we prove the following.

Lemma 2.4.4. The triple (F ,p, d) is proximal, S, SA, and LECA.

We will construct a metric D̂ that will be equivalent to d, for which (F ,p, D̂) is NEA,
LECA, and ESCA. Then we will construct a metric D equivalent to D̂ (and hence d), such that
(F ,p, D) is CA.

By (3) and (5), F induces a contracting IFS on I . Together with (4), every x ̸∈ J

eventually enters and remains in I . On the other hand, it follows from (2) that

f−1
0 (J), f−1

1 (J) ⊂ J

and there is a set of points in X ⊂ J and for every x ∈ X some sequence ξ = ξ(x) such that
fn

ξ (x) ∈ X for every n ∈ N, though other forward iterates under the IFS F eventually leave J .
Though, as counterpart and first preliminary result we show that for every x

{ξ ∈ Σ+
2 : fn

ξ (x) ∈ J for all n ∈ N}
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has measure zero. For k ≥ 1 and x ∈ S1, define

Γ0
x

def=

Σ+
2 if x ∈ I,

∅ otherwise,

Γk
x

def= {ξ ∈ Σ+
2 : fk

ξ (x) ∈ I, fk−1
ξ (x) /∈ I}, Γx

def=
⋃
k≥0

Γk
x.

Lemma 2.4.5. There exists N ∈ N such that

µ
(N+1⋃

k=0
Γk

x

)
> 0 for every x ∈ S1. (2.4.2)

and for all m ≥ 1

µ
(
ΓN+m+1

x

)
≤ µ

(
Σ+

2 \
N+m⋃
k=0

Γk
x

)
≤ pm. (2.4.3)

Moreover, for every x ∈ S1 it holds µ (Γx) = 1.

Proof. Fix y ∈ J∗. By (4), it holds f0(y), f1(y) /∈ J . Let K,L ⊂ S1 \ J be the open arcs with
extremes f0(y) and y1 and f1(y) and y0, respectively. By (4), there are k = k(K) ∈ N and
ℓ = ℓ(L) ∈ N so that

fk
ξ (K), f ℓ

ξ (L) ∈ I for every ξ ∈ Σ+
2 .

Let N def= k + ℓ. By (3), for all ξ ∈ Σ+
2

fk+ℓ
ξ (K), fk+ℓ

ξ (L) ∈ I for every ξ ∈ Σ+
2 .

Let W ⊂ S1 \ J be the closed arc with extremes f0(y) and f1(y). As f0 and f1 preserve
orientation, fn

ξ preserves orientation. Hence, fn
ξ (W ) ⊂ I for all ξ ∈ Σ+

2 .

Now, let us prove (2.4.2) and (2.4.3). Fix x ∈ S1.

Case x ∈ W . As fk+ℓ
ξ (x) ∈ I for every ξ ∈ Σ+

2 , (2.4.2) and (2.4.3) are immediate.

Case x ̸∈ W . Let us construct a sequence ξ ∈ Σ+
2 such that for all m ≥ 1

[ξ1] ∪ [η1, ξ2] ∪ · · · ∪ [η1, . . . , ηm−1, ξm] ⊂
m+N⋃
k=0

Γk
x, (2.4.4)

where ηi ∈ {0, 1}\{ξi}. Since x is either between y and f0(y) or between y and f1(y), there
exists ξ1 ∈ {0, 1} such that x is between y and fξ1(y). As fξ1 preserves orientation, fξ1(x) ∈ W .
So that

[ξ1] ⊂
N+1⋃
k=0

Γk
x,

that is, (2.4.4) holds for m = 1. Let η1 ∈ {0, 1}\{ξ1}. If fη1(x) ∈ W then
⋃N+1

k=0 Γk
x = Σ+

2 which
implies (2.4.4) for all m ≥ 2 and ξm ∈ {0, 1}. If fη1(x) /∈ W then fη1(x) is either between y
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and f0(y) or between y and f1(y) so there exists ξ2 ∈ {0, 1} such that fη1(x) is between y and
fξ2(y). As fξ2 preserves orientation, fξ2(fη1(x)) ∈ W . So that

[ξ1] ∪ [η1, ξ2] ⊂
N+2⋃
k=0

Γk
x,

that is, (2.4.4) holds for m = 2. Let η2 ∈ {0, 1}\{ξ2}. If fη2(fη1(x)) ∈ W then
⋃N+2

k=0 Γk
x = Σ+

2

which implies (2.4.4) for all m ≥ 3 and ξm ∈ {0, 1}. If fη2(fη1(x)) /∈ W then fη2(fη1(x)) is
either between y and f0(y) or between y and f1(y) so that there exists ξ3 ∈ {0, 1} such that
fη2(fη1(x)) is between y and fξ3(y). Continuing this process inductively on m we conclude
(2.4.4).

Therefore

[ξ1] ⊂
N+1⋃
k=0

Γk
x and hence µ

(N+1⋃
k=0

Γk
x

)
≥ 1 − p > 0,

and so (2.4.2) holds. Moreover

ΓN+m+1
x ⊂ Σ+

2 \
m+N⋃
k=0

Γk
x ⊂ [η1, . . . , ηm]

so that µ(ΓN+m+1
x ) ≤ pm. This proves the lemma.

Proof of Lemma 2.4.4. Given any x, y ∈ S1, let ξ ∈ Γx ∩ Γy and choose k ∈ N such that
fk

ξ (x), fk
ξ (y) ∈ I . By (4), it holds

lim
n→∞

d(fn
ξ (x), fn

ξ (y)) = lim
n→∞

d(fk+n
ξ (x), fk+n

ξ (y)) = 0.

As by Lemma 2.4.5, µ(Γx ∩ Γy) = 1 holds, it follows that (F ,p, d) is S. By Lemma 2.1.5, it is
SA and proximal. By Lemma 2.1.27, it is LECA.

Fix ℓ ≥ 1 and pick α ∈ (0, 1) such that

rℓc < 1 and cα < c(ℓ+1)α <
1
p
. (2.4.5)

The choice of these numbers will be apparent in the proof of Lemma 2.4.7. Consider the metric
dα on S1 and define the metric D̂ on S1 by

D̂(x, y) def= E
(

sup
n≥0

Zx,y
n,dα

)
.

Since d and dα are equivalent, D̂ and d are equivalent by Lemma 2.1.10.

Lemma 2.4.6. It holds

dα ≤ D̂ ≤ Cdα where C
def= c(N+1)α

(
1 + 2

∑
k≥1

(cαp)k
)
.
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Proof. Clearly dα ≤ D̂. Let us show the other inequality. For k ≥ 1 and x, y ∈ S1 define

Γk
x,y

def=
{
ξ ∈ Σ+

2 : fk
ξ (x) ∈ I, fk

ξ (y) ∈ I
}

∩
{
ξ ∈ Σ+

2 : fk−1
ξ (x) /∈ I or fk−1

ξ (y) /∈ I
}
.

If x, y ∈ I , then let Γ0
x,y

def= Σ+
2 . If x /∈ I or y /∈ I , then let Γ0

x
def= ∅. Note that {Γk

x,y}k is a family
of pairwise disjoint sets and Γk

x,y ⊂ Γk
x ∪ Γk

y . Moreover, it is immediate from the definition that

Γx ∩ Γy ⊂ Γx,y
def=
⋃

n≥0
Γn

x,y.

Hence, together with Lemma 2.4.5, it follows

1 = µ(Γx ∩ Γy) = µ(Γx,y) =
∑
n≥0

µ
(
Γn

x,y

)
.

Fix x, y ∈ S1. For every ξ ∈ Γk
x,y, by (7) and (5), we have that

sup
n≥0

Zx,y
n,dα(ξ) = sup

n≥0
dα(fn

ξ (x), fn
ξ (y)) < ckαdα(x, y).

It follows that

D̂(x, y) = E
(

sup
n≥0

Zx,y
n,dα

)
=
∑
k≥0

E
(

sup
n≥0

Zx,y
n,dα1Γk

x,y

)

≤ c(N+1)αdα(x, y)µ
(

Γ0
x,y ∪ . . . ∪ ΓN+1

x,y

)
+ dα(x, y)

∑
k≥N+2

ckαµ
(

Γk
x,y

)

≤ c(N+1)αdα(x, y)
(

1 +
∑

k≥N+2
c(k−N−1)α

(
µ(Γk

x) + µ(Γk
y)
))

≤ c(N+1)αdα(x, y)
(

1 + 2
∑

k≥N+2
c(k−N−1)αpk−N−1

)
≤ Cdα(x, y).

As x, y were arbitrary, this finishes the proof.

Lemma 2.4.7. The triple (F ,p, D̂) is SA, NEA, LECA and ESCA.

Proof. By Lemmas 2.4.6 and 2.1.3, (F ,p, D̂) is S. Hence, by which Lemma 2.1.2, (F ,p, D̂) is
SA, proving the first assertion.

To show NEA and LECA, check that

E
(
Zx,y

1,D̂

)
= p D̂(f0(x), f0(y)) + (1 − p) D̂(f1(x), f1(y))

= pE
(

sup
n≥0

Z
f0(x),f0(y)
n,dα

)
+ (1 − p)E

(
sup
n≥0

Z
f1(x),f1(y)
n,dα

)

= pE
(
1[0] sup

n≥0
Zx,y

n+1,dα

)
+ (1 − p)E

(
1[1] sup

n≥0
Zx,y

n+1,dα

)
= E

(
sup
n≥1

Zx,y
n,dα

)
.

This implies E(Zx,y

1,D̂
) ≤ D̂(x, y), that is, (F ,p, D̂) is NEA. Hence, as (F ,p, D̂) is NEA. As

(F ,p, D̂) is NEA and SA, Lemma 2.1.28 property LECA follows.
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Now, let us prove that (F ,p, D̂) is ESCA. Let N be as in Lemma 2.4.5, ℓ as in (2.4.5),
and C is as in Lemma 2.4.6. Recalling that r, p ∈ (0, 1), we can fix n ∈ N sufficiently large such
that

(rℓc)nα + cn(ℓ+1)αpn−N <
1

2C . (2.4.6)

Recall that
⋃N+1

k=0 Γk
x ̸= ∅ for every x ∈ S1. Note that

⋃N+1
k=0 Γk

x is covered by cylinders of length
N and, in particular, {fN

ξ : ξ ∈ ⋃N+1
k=0 Γk

x} is a collection of at most 2N homeomorphisms. Hence,
given x ∈ S1, the set

Vx
def=

⋂
ξ∈
⋃N

k=0 Γk
x

(
fN

ξ

)−1
(I),

is, as an intersection of finitely many open intervals containing x, an open neighborhood of x.
Moreover, for every y, z ∈ Vx it holds

E
(
Zy,z

(ℓ+1)n,dα

)
= E

(
1
⋃n

k=0 Γk
x
Zy,z

(ℓ+1)n,dα

)
+ E

(
1Σ+

2 \
⋃n

k=0 Γk
x
Zy,z

(ℓ+1)n,dα

)
= E

(
1
⋃n

k=0 Γk
x
dα(f ℓn

σn(ξ)(fn
ξ (y)), f ℓn

σn(ξ)(fn
ξ (z))

)
+ E

(
1Σ+

2 \
⋃n

k=0 Γk
x
Zy,z

(ℓ+1)n,dα

)
(by (7)) ≤ cnαrℓnαdα(y, z)µ

(
n⋃

k=0
Γk

x

)
+ c(ℓ+1)nαdα(y, z)µ

(
Σ+

2 \
n⋃

k=0
Γk

x

)

≤
(
(rℓc)nα + c(ℓ+1)nαpn−N

)
dα(y, z)

≤ 1
2Cd

α(y, z).

By Lemma 2.4.6, for every y, z ∈ Vx

E
(
Zy,z

(m+1)N,D̂

)
D̂(y, z)

≤ C
E
(
Zy,z

(m+1)N,dα

)
dα(y, z) ≤ 1

2 ,

which implies that

sup
(y,z)∈Vx×Vx

E
(
Zy,z

(m+1)N,D̂

)
D̂(y, z)

≤ 1
2 < 1.

Since x is arbitrary, this proves ESCA, and completes the proof.

Remark 2.4.8. The constant 1
2 in equation (2.4.6) is insignificant, in fact, we can change 1

2 for
any t ∈ (0, 1) and get the same result.

By Theorem A, Lemma 2.4.7 allows us to conclude that there exists a metric D strongly
equivalent to D̂ such that (F ,p, D) is CA. Hence, D is strongly equivalent to dα.

Remark 2.4.9. Note that in the proof of Lemma 2.4.7 we show that (F ,p, dα) is ESCA. The
triple (F ,p, dα) is an example of a system that is ESCA such that the ℓ required in the definition
is not the constant 1.
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3 Stochastic properties for contracting
on average Iterated Function Systems

3.1 Stochastic properties after metric change

Let us provide some details on how a change of metric impacts (or not) statistical
properties of an IFS which is contracting on average (CA, recall this definition in (1.1.1)). As
before, consider F an IFS on S1, p a probability vector and d the usual metric on S.

Let us first comment on the concept of stationarity. This term is justified by the fact that
if (In)n∈N is a stochastic sequence taking values in {0, . . . , N − 1} and being independently
and equally distributed according to the probability vector p and X is a ν-distributed random
variable, independent of (In)n∈N, then

WX
n

def= (fIn ◦ · · · ◦ fI1)(X), WX
0

def= X, (3.1.1)

defines a stationary stochastic sequence. Even more, (WX
n )n∈N is a Markov chain with initial

distribution ν. The continuity of the maps in F and the compactness of S1 imply that the chain
in (3.1.1) has the weak Feller property1 and hence there exists at least one stationary measure
ν. Note that, as µ is a Bernoulli measure, the Markov chains (3.1.1) and (1.2.2) coincide, but
have different initial distributions. Under the hypothesis that there is no measure simultaneously
invariant by all maps in F , it follows from [Mal17, Theorem F] that the stationary measure can
not be Dirac. Although, if a statistical property holds for the Markov chain in (1.2.2) for every
x ∈ S1, then it holds also for the Markov chain in (3.1.1).

If there exists a metric D such that (F ,p, D) is CA, then [BDEG88, Theorem 2.1]
implies that there exists a unique stationary Borel probability measure ν on S1.

Remark 3.1.1. In the case of a unique stationary measure, its support is a closed set invariant by
all maps in the IFS, which is either a finite set, a Cantor set, or the full circle (for a proof in the
case orientation preserving homeomorphisms on the circle see [Nav11, Theorem 2.1.1]). For an
IFS of homeomorphisms acting minimally on the circle there exists a unique stationary measure
which is fully supported (see for example [GS17, Corollary 2 and Remark 7]).

1 The transfer operator T associated to the pair (F , p) acts on the space of bounded measurable functions
φ : M → R by

Tφ(x) def=
N−1∑
i=0

piφ(fi(x)).

It has the weak Feller property if it maps the space of real valued continuous functions on S1 to itself.
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It is relevant to know under what conditions such stationary measure ν is unique and,
moreover, under what hypotheses it is true that for every Borel set B ⊂ S1

P n(x,B) def= µ{W x
n ∈ B} → ν(B)

as n → ∞, and what is the speed of such a convergence. By [JT01, Corollary 2.1], for any initial
conditions x, the distribution of W x

n converges exponentially fast to ν in the Prokhorov metric,
that is, for every measurable set B and n ∈ N it holds

P n(x,B) ≤ ν(Bn) + Axr
n, ν(B) ≤ P n(x,Bn) + Axr

n,

where Bn
def= {y ∈ M : D(y,B) < Axr

n}. Here the rate of convergence r ∈ (0, 1) does
neither depend on n nor on x. Furthermore, the constant Ax does not depend on n and is
uniformly bounded. Note that all previous facts do not depend on the metric on S1 (within
the class of metrics which generate the same topology). Only the explicit convergence in the
Prokhorov metric was given in terms of D. Observe that if D and another metric d are such
that C−1dα ≤ D ≤ Cdα for some constants C−1, α ∈ (0, 1] (that is, D and dα are strongly
equivalent), then we still obtain exponential contraction taking

Bn
def= {y ∈ M : d(y,B) < Cxr

n/α}, where Cx
def= (CAx)1/α.

Assuming CA, in [Elt87, page 484] an Ergodic Theorem was shown, whose assertion is
unaltered under any metric change. Assuming the slightly more general property k-ECA for any
k ∈ N, in [Pei93, Theorem 5.1] a strong law of large numbers and a central limit theorem are
stated; again these assertions remain the same under metric change.

We are now ready to prove Theorem C.

Proof of Theorem C. We first invoke the idea of metric change to prove Theorem C. By Theorem
B, there exist α, λ ∈ (0, 1) such that the metric D on S1 defined by

D(x, y) def= dα(x, y) + 1
λ1/n

∫
dα(W x

1 ,W
y
1 )dµ+ · · · + 1

λ(n−1)/n

∫
dα(W x

n−1,W
y
n−1)dµ (3.1.2)

is equivalent to the usual metric d on S1 and has the property that (F ,p) is contracting on
average on (S1, D).

Note that none of the assertions of Theorem C depends on the chosen metric on S1

(within the class of metrics which generate the same topology). By Theorem B, the system is
contracting on average with respect to the metric D in (3.1.2). In particular, [Pei93, condition
(H3)] is satisfied for k0 = 1. By Theorem B and [BDEG88, Theorem 2.1], there is a unique
stationary probability and by [Pei93, Theorem 5.1], the strong law of large numbers SLLN and
the central limit theorem CLT hold true.
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3.2 Synchronization on average at an exponential rate

In this section, we study in more detail synchronization on average of orbits with respect
to an IFS. In very rough terms, given two points we are interested in the amount of functions that
at time n have not yet sufficiently synchronized the orbit of those points. When an IFS is SAexp,
in Proposition 3.2.3 we prove that this amount decays exponentially. Here, "the amount" refers to
the ν-measure of the set of sequences ξ whose associated functions fn

ξ have the desired property.

In the context of IFSs of circle homeomorphism, by [Mal17, Theorems A], the local

contraction property holds (see Proposition 2.3.1 for more details). Recall the concept of proxi-
mality given in (2.1.3). Moreover, [Mal17, Theorem E], proximality is equivalent to exponential
synchronization, where exponential synchronization means that for every x, y ∈ S1 and almost
every ξ ∈ Σ+

N the sequence {Zx,y
n,d(ξ)}n∈N converges to 0 exponentially fast as n → ∞. Note

that here a priori the rate of convergence of {Zx,y
n,d(ξ)}n∈N depends on x, y and ξ. In this section,

we show that for an IFS of C1-diffeomorphisms on S1 proximality implies synchronization on
average with uniform exponential decay rate.

3.2.1 Some auxiliary CA results

Let us state the following result which complements Theorem C. We will use it below to
prove our large deviation results.

Proposition 3.2.1. Assume that F satisfies hypotheses in Theorem C. Let p a non-degenerate

probability vector. There exist λ ∈ (0, 1), c > 0, k ∈ N, and α0 ∈ (0, 1) such that for all

α ∈ (0, α0) the following hold

1. for every x, y ∈ S1, x ̸= y, ∫
Σ+

N

Zx,y
n,dα(ξ)
dα(x, y) dµ(ξ) ≤ c

(
λ

α
k

)n
,

2. for every x ∈ S1, ∫
Σ+

N

[
(fn

ξ )′(x)
]α
dµ(ξ) ≤ c

(
λ

α
k

)n
.

Remark 3.2.2. For n ∈ N large enough, c
(
λ

α
k

)n
< 1, therefore item (1.) implies that (F ,p, dα)

is ECA.

Proof of Proposition 3.2.1. Let us start this proof by remembering that for all α ∈ (0, 1), n ∈ N,
ξ ∈ Σ+

N and x, y ∈ S1

Zx,y
n,dα(ξ) = dα(fn

ξ (x), fn
ξ (y))

By Proposition 2.3.10, there exist k ∈ N and α0 ∈ (0, 1) such that for α ∈ (0, α0] we have

sup
x ̸=y

∫
Σ+

N

Zx,y
k,dα(ξ)

dα(x, y) dµ(ξ) ≤ λα. (3.2.1)
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On the other hand, define the sequence (bn)n≥1 by

bn
def= sup

x ̸=y

∫
Σ+

N

Zx,y
n,dα(ξ)
dα(x, y) dµ(ξ).

The sequence (bn)n≥1 is submultiplicative, that is, bn+m ≤ bnbm for all n,m ≥ 0. Indeed, using
that

Z
fm

ξ (x),fm
ξ (y)

n,dα (σm(ξ)) = Zx,y
n+m,dα(ξ),

we get

bnbm =
(

sup
z ̸=w

∫
Σ+

N

Zz,w
n,dα(η)

dα(z, w)dµ(η)
)(

sup
x ̸=y

∫
Σ+

N

Zx,y
m,dα(ξ)
dα(x, y) dµ(ξ)

)

= sup
x ̸=y

∫
Σ+

N

(
sup
z ̸=w

∫
Σ+

N

Zz,w
n,dα(η)

dα(z, w)dµ(η)
)
Zx,y

m,dα(ξ)
dα(x, y) dµ(ξ)

≥ sup
x ̸=y

∫
Σ+

N

∫
Σ+

N

Z
fm

ξ (x),fm
ξ (y)

n,dα (η)
dα(fm

ξ (x), fm
ξ (y))dµ(η)

 Zx,y
m,dα(ξ)
dα(x, y) dµ(ξ).

Using that µ is a Bernoulli measure and that Zx,y
m,dα(ξ) depends only on the first m entries of the

sequence ξ, we conclude that

bnbm ≥ sup
x ̸=y

∫
Σ+

N

∫
Σ+

N

Z
fm

ξ (x),fm
ξ (y)

n,dα (η)
Zx,y

m,dα(ξ)
Zx,y

m,dα(ξ)
dα(x, y) dµ(η)dµ(ξ)

= sup
x ̸=y

∫
Σ+

N

Z
fm

ξ (x),fm
ξ (y)

n,dα (σm(ξ))
dα(x, y) dµ(ξ)

= sup
x ̸=y

∫
Σ+

N

Zx,y
n+m,dα(ξ)
dα(x, y) dµ(ξ) = bn+m. (3.2.2)

Therefore, for k satisfying (3.2.1) and n = mk + r ∈ N with r ∈ {0, . . . , k − 1} we have

bn ≤ (bk)mbr

that is, for all n ∈ N

sup
x ̸=y

∫
Σ+

N

Zx,y
n,dα(ξ)
dα(x, y) dµ(ξ) ≤ c

(
λ

α
k

)n
,

where c = maxr∈{0,...,k−1} br (λα)− r
k . Hence, for x, y ∈ S1, x ̸= y, since the integral

∫
Σ+

N

Zx,y
n,dα(ξ)
dα(x, y) dµ(ξ)

is a finite sum, we make y tend to x to get∫
Σ+

N

[
(fn

ξ )′(x)
]α
dµ(ξ) ≤ c

(
λ

α
k

)n
.

The proof of Proposition 3.2.1 is finished.
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3.2.2 Some large deviation results

In this section, we first state a general large deviation results, which holds for a general
metric space (in particular we do not require that it is bounded). We also establish SAexp for IFSs
on the circle.

Let F be an IFS on a metric space (M,d). Consider p a probability vector and its
associated Bernoulli measure µ.

Proposition 3.2.3. Assume that (F ,p, d) is SAexp, that is, there exist constants C > 0 and

λ ∈ (0, 1) such that

E(Zx,y
n,d) ≤ Cλn for every x, y ∈ M and n ∈ N.

For every ε > 0 and x, y ∈ M we have

µ
({
ξ ∈ Σ+

N : 1
n

ln Zx,y
n,d(ξ) > ln λ+ ε

})
≤ Ce−εn.

Proof. Given ε > 0, x, y ∈ M . Note that,

E(Zx,y
n,d) ≥

∫
{ξ∈Σ+

N : Zx,y
n,d

(ξ)>(eελ)n}
Zx,y

n,d(ξ)dµ(ξ)

≥ (eελ)n µ
({
ξ ∈ Σ+

N : Zx,y
n,d(ξ) > (eελ)n

})
,

so that, by hypothesis

µ
({
ξ ∈ Σ+

N : Zx,y
n,d(ξ) > (eελ)n

})
≤ Ce−εn.

This proposition is proved.

Remark 3.2.4. Proposition 3.2.3 does not require (M,d) to be bounded and applies to the
example studied in Section 2.4.1.

Corollary 3.2.5. If (F ,p, d) is CA with contraction rate λ ∈ (0, 1) and (M,d) is bounded, then

there exists C > 0 such that for every ε > 0 and x, y ∈ M we have

µ
({
ξ ∈ Σ+

N : 1
n

ln Zx,y
n,d(ξ) > ln λ+ ε

})
≤ Ce−εn.

Proof. By Lemma 2.1.8, for every x, y

E(Zx,y
n,d) ≤ λnd(x, y).

Now, using that d is bounded we conclude that (F ,p, d) is SAexp. Taking C def= diamM , Proposi-
tion 3.2.3 applies.

Remark 3.2.6. The Corollary 3.2.5 applies to examples of Section 2.4 with the respective metric
change.
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In the context of IFSs on the circle, we have the following result, which slightly extends
Proposition 3.2.1). It implies that the IFS is SAexp with respect to the original metric d on S1.

Proposition 3.2.7. Assume that F satisfies hypotheses in Theorem C. For every probability

vector p, (F ,p, d) is SAexp.

Remark 3.2.8. Assuming the hypotheses in Proposition 3.2.7, by Proposition 2.2.1, for every
q ∈ (λ, 1)

D(x, y) def=
∑
n≥0

qn

λn

∫
Σ+

N

Zx,y
n,d(ξ)dµ(ξ).

defines a metric on S1 which is equivalent to d such that (F ,p, D) is contracting on average
with contraction rate λ/q ∈ (0, 1).

Proof of Proposition 3.2.7. By Theorem B and Lemma 2.1.8 there exist α ∈ (0, 1) and λ ∈ (0, 1)
such that for the metric D as in Theorem B, for C = supx,y∈S1 D(x, y), for all n ≥ 1 and for
every x, y ∈ S1

∫
Σ+

N

Zx,y
n,d(ξ)dµ(ξ) ≤

∫
Σ+

N

Zx,y
n,D(ξ)dµ(ξ) ≤ λnD(x, y) ≤ Cλn,

therefore the desired result follows.

The following is a consequence of Proposition 3.2.3 and Proposition 3.2.7.

Corollary 3.2.9. Assume that F is an IFS of C1-diffeomorphisms on S1. If (F ,p, d) is proximal

and there does not exist a probability measure which is invariant by every element of F , then

there exist λ ∈ (0, 1) and c > 0 such that for every ε > 0 and x, y ∈ S1 we have

µ
({
ξ ∈ Σ+

N : 1
n

ln Zx,y
n,d(ξ) > ln λ+ ε

})
≤ Ce−εn.

3.2.3 A Markov system for IFSs

In this section, we collect some preliminary results about Markov systems. They will be
used to prove Theorem D. For more details about Markov systems see Appendix D.2.

Let d be the usual metric on S1. Fix N ≥ 2 and define Λ = {0, . . . , N − 1}. For k ∈ Λ,
let fk : S1 → S1 be a C1-diffeomorphism. Let F = {f0, . . . , fN−1}. Let L ≥ 1 be such that

L−1d(x, y) ≤ d(fj(x), fj(y)) ≤ Ld(x, y), (3.2.3)

for all j ∈ Λ and every x, y ∈ S1.

Let p = (p0, . . . , pN−1) be a non-degenerate probability vector and let µ be the Bernoulli
measure on Σ+

N = ΛN determined by p. Define the probability θ on Λ by

θ
def=

N−1∑
i=0

piδi,
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where δi denotes the Dirac at i. Let σ : Σ+
N → Σ+

N be the left shift map defined by

(σ(ξ))j = ξj+1, for j ≥ 1. (3.2.4)

Consider the Markov kernel by

K : Λ × S1 → Prob(Λ × S1), Kj,x
def=
∫

Λ
δ(ξ1,fj(x))dθ(i) =

N−1∑
i=1

piδ(i,fj(x)).

For a set X denote by B(x) the σ-algebra of Borel sets in X .

Lemma 3.2.10. (K, θ ⊗ ν) is a Markov System on Λ × S1.

Proof. Let A×B ∈ B(Λ) × B(S1), then∫
Λ×S1

Kj,x(A×B)d(θ ⊗ ν)(j, x) =
∫
S1

∫
Λ
Kj,x(A×B)dθ(j)dν(x)

=
∫
S1

N−1∑
j=0

pjKj,x(A×B)dν(x).

Applying the definition of Kj,x we get

∫
Λ×S1

Kj,x(A×B)dθ ⊗ ν(j, x) =
∫
S1

N−1∑
j=0

pj

N−1∑
i=1

piδi(A)δfj(x)(B)dν(x)

=
N−1∑
j=0

pj

N−1∑
i=1

piδi(A)
∫
S1
δfj(x)(B)dν(x)

=
N−1∑
i=1

piδi(A)
N−1∑
j=0

pj(fj)∗ν(B).

Hence, the stationarity of ν implies the following

∫
Λ×S1

Kj,x(A×B)d(θ ⊗ ν)(j, x) =
N−1∑
i=1

piδi(A)ν(B) = θ ⊗ ν(A×B).

Since B(Λ) × B(S1) generates the product σ-algebra B(Λ × S1), we conclude that for all
E ∈ B(Λ × S1) ∫

Λ×S1
Kj,x(E)d(θ ⊗ ν)(j, x) = (θ ⊗ ν)(E),

which implies that θ⊗ν isK-stationary and hence (K, θ⊗ν) is a Markov System on Λ×S1.

From now on consider α0 ∈ (0, 1) and λ ∈ (0, 1) be as in Proposition 3.2.1. Consider
α

def= min{β, α0}. Then, the compactness of S1 implies that each map in F is C1+α. Consider
the space L∞(Λ × S1) of bounded measurable functions ϕ : Λ × S1 → C. Given a function
ϕ ∈ L∞(Λ × S1), define

∥ϕ∥α
def= |ϕ|α + ∥ϕ∥∞, where |ϕ|α

def= sup
j∈Λ,x ̸=y

|ϕ(j, x) − ϕ(j, y)|
dα(x, y) , (3.2.5)
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and set

Hα(Λ × S1) def= {ϕ ∈ L∞(Λ × S1) : ∥ϕ∥α < ∞}.

It is not hard to show that (Hα(Λ × S1), ∥ϕ∥α) is a Banach algebra with unity.

Note that K determines the Markov operator Q : L∞(Λ × S1) → L∞(Λ × S1) given by

Q(ϕ)(j, x) def=
∫

Λ
ϕ(i, fj(x))dθ(i) =

∫
Σ+

N

ϕ(ξ1, fj(x))dθ(ξ1) =
N−1∑
i=1

piϕ(i, fj(x)).

Let us show a relation between the operator Q and the map F defined in (1.2.6). Define π :
Σ+

N × S1 → Λ × S1 as the projection given by π(ξ, x) def= (ξ1, x).

Lemma 3.2.11. For any function ϕ ∈ L∞(Λ × S1) and for all n ≥ 1 we have

(Qn(ϕ))(j, x) =
∫

Σ+
N

ϕ ◦ π ◦ F n−1(ξ, fj(x))dµ(ξ). (3.2.6)

Proof. The case n = 1 is clear. By induction on n, suppose that (3.2.6) holds for n = k and let
us prove that (3.2.6) holds for n = k + 1. Indeed, using the inductive hypothesis we get

(Qk+1(ϕ))(j, x) =
∫

Σ+
N

Qk(ϕ)(ξ1, fj(x))dµ(ξ)

=
∫

Σ+
N

∫
Σ+

N

ϕ ◦ π ◦ F k−1(η, fξ1(fj(x)))dµ(η)dµ(ξ)

=
N−1∑
i=0

pi

∫
Σ+

N

ϕ ◦ π ◦ F k−1(η, fi(fj(x)))dµ(η).

Since µ is σ-invariant, we get

(Qk+1(ϕ))(j, x) =
N−1∑
i=0

pi

∫
Σ+

N

ϕ ◦ π ◦ F k−1(σ(η), fi(fj(x)))dµ(σ(η)).

Note that σ(η) = σ(i, η2, η3, . . . , ηn, . . .) for all i ∈ Λ. Hence,

(Qk+1(ϕ))(j, x) =
N−1∑
η1=0

pη1

∫
Σ+

N

ϕ ◦ π ◦ F k−1(σ(η), fη1(fj(x)))dµ(σ(η))

=
∫

Σ+
N

ϕ ◦ π ◦ F k−1(σ(η), fη1(fj(x)))dµ(η)

=
∫

Σ+
N

ϕ ◦ π ◦ F k(η, fj(x))dµ(η),

which concludes the proof.

Proposition 3.2.12. The Markov operator Q acts simply and quasi-compactly on Hα(Λ × S1)
with stationary measure θ ⊗ ν.
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Proof. To prove this proposition, we need to show that there are constants C > 0 and γ ∈ (0, 1)
such that for all ϕ ∈ Hα(Λ × S1) and all n ≥ 0∥∥∥∥Qn

Kϕ−
(∫

M
ϕdθ

)
1
∥∥∥∥

α
≤ Cσn∥ϕ∥α.

We split the proof into two parts. First, we show that

|Qnϕ|α =
∣∣∣∣Qnϕ−

(∫
ϕd(θ ⊗ ν)

)
1
∣∣∣∣
α

is bounded above by C ′λn|ϕ|α. Second, we show that the norm of Qnϕ − (
∫
ϕd(θ ⊗ ν)) 1 is

also bounded above by C ′′λn|ϕ|α, which allows us to conclude that is norm in Hα(Λ,S1) is also
bounded above by Cλn|ϕ|α, for some constant C > 0. Therefore, the Markov operator Q acts
simply and quasi-compactly on Hα(Λ × S1).

Claim 3.2.13. There exist C > 0 and r ∈ (0, 1) such that for all ϕ ∈ L∞(Λ × S1) and n ∈ N

|Qnϕ|α ≤ Crn|ϕ|α.

Proof. Recall that π(ξ, x) = (ξ1, x). By Lemma 3.2.11, together with (3.2.3) we get

|Qnϕ|α = sup
j∈Λ,x ̸=y

∣∣∣∣∣
∫

Σ+
N

(
ϕ ◦ π ◦ F n−1(ξ, fj(x)) − ϕ ◦ π ◦ F n−1(ξ, fj(y))

)
dα(x, y) dµ(ξ)

∣∣∣∣∣
≤ sup

j∈Λ,x ̸=y

∫
Σ+

N

∣∣∣ϕ ◦ π(σn−1(ξ), fn−1
ξ ◦ fj(x)) − ϕ ◦ π(σn−1(ξ), fn−1

ξ ◦ fj(y))
∣∣∣

dα(x, y) dµ(ξ),

Multiplying and dividing the integrand by dα
(
fn−1

ξ ◦ fj(x), fn−1
ξ ◦ fj(y)

)
we obtain

|Qnϕ|α ≤ |ϕ|α

 sup
j∈Λ,x ̸=y

∫
Σ+

N

dα
(
fn−1

ξ ◦ fj(x), fn−1
ξ ◦ fj(y)

)
dα (fj(x), fj(y))

dα (fj(x), fj(y))
dα(x, y) dµ(ξ)


≤ Lα|ϕ|α

 sup
j∈Λ,x ̸=y

∫
Σ+

N

dα
(
fn−1

ξ ◦ fj(x), fn−1
ξ ◦ fj(y)

)
dα (fj(x), fj(y)) dµ(ξ)

 ,

where L is as in (3.2.3). Using Proposition 3.2.1, we get

|Qnϕ|α ≤ Lαcλα(n−1)/k|ϕ|α.

Letting C def= Lαcλ−α/k and r def= λα/k, this proves the claim.

Claim 3.2.14. There exist C > 0 and r ∈ (0, 1) such that for all ϕ ∈ L∞(Λ × S1) and n ∈ N∥∥∥∥Qnϕ−
(∫

Λ×S1
ϕ(j, x)d(θ ⊗ ν)(j, x)

)
1
∥∥∥∥

∞
≤ Crn|ϕ|α.

Proof. Let ϕ ∈ L∞(Λ × S1). As ν is stationary, µ⊗ ν is F -invariant. Thus,∫
Σ+

N ×S1
ϕ ◦ π(ξ, x)d(µ⊗ ν)(ξ, x) =

∫
Σ+

N ×S1
ϕ ◦ π ◦ F n−1(ξ, x)d(µ⊗ ν)(ξ, x)
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so that, using Lemma 3.2.11∥∥∥∥Qnϕ−
(∫

Λ×S1
ϕ(j, x)d(θ ⊗ ν)(j, x)

)
1
∥∥∥∥

∞

= sup
i∈Λ,y∈S1

∣∣∣∣∣Qnϕ(i, y) −
(∫

Σ+
N ×S1

ϕ ◦ π(ξ, x)d(µ⊗ ν)(ξ, x)
)∣∣∣∣∣

= sup
i∈Λ,y∈S1

∣∣∣∣∣
∫

Σ+
N

ϕ ◦ π ◦ F n−1(ξ, fi(y))dµ(ξ) −
(∫

Σ+
N ×S1

ϕ ◦ π ◦ F n−1(ξ, x)d(µ⊗ ν)(ξ, x)
)∣∣∣∣∣ .

By definition of |ϕ|α and Proposition 3.2.1, we get∥∥∥∥Qnϕ−
(∫

Λ×S1
ϕ(j, x)d(θ ⊗ ν)(j, x)

)
1
∥∥∥∥

∞

≤ sup
j∈Λ,y∈S1

∫
S1

∫
Σ+

N

∣∣∣ϕ ◦ π ◦ F n−1(ξ, fj(y)) − ϕ ◦ π ◦ F n−1(ξ, x)
∣∣∣ dµ(ξ)dν(x)

≤ |ϕ|α
(

sup
j∈Λ,y∈S1

∫
S1

∫
Σ+

N

dα
(
fn−1

ξ (fj(y)), fn−1
ξ (x)

)
dµ(ξ)dν(x)

)

≤ cλα(n−1)/k|ϕ|α
(

sup
j∈Λ,y∈S1

∫
S1
dα (fj(y), x) dν(x)

)
.

Letting C = cλ−α/k|ϕ|α and r = λα/k proves the claim.

Recalling the definition of ∥·∥α in (3.2.5), it follows from Claim 3.2.13 and Claim 3.2.14
that there exist C > 0 and r ∈ (0, 1) so that

∥Qnϕ−
( ∫

ϕ dθ
)
1∥α ≤ 2Crn|ϕ|α ≤ 2Crn∥ϕ∥α.

This proves the proposition.

3.2.4 Proof of Theorem D

Proof of Theorem D (1.) We will apply the Proposition D.3.1 to the function ϕ : Λ × S1 → R
given by

ϕ(j, x) def= ln |(fj)′(x)|. (3.2.7)

Let us start by establishing a appropriate space of functions where ϕ belongs. Let ϕ be as in
(3.2.7). Consider k ∈ N and α0 ∈ (0, 1) as in Proposition 2.3.10, such that (3.2.1) satisfies
for α ∈ (0, α0]. Fix α ∈ (0,min{β, α0}]. Since every fξ1 is C1+β-diffeomorphism is also
C1+α-diffeomorphism. Hence, ϕ ∈ Hα(Λ × S1).

We are now in the position to apply Proposition D.3.1 to the Markov system (K, θ ⊗ ν)
and the function ϕ. It guarantees that there exist constants ε0, c, h > 0 such that for all ε ∈ (0, ε0),
(j, x) ∈ Λ × S1 and n ∈ N,

µ
({
ξ ∈ Σ+

N : ξ1 = j,
∣∣∣ln |(fn

ξ )′(x)| − nγ
∣∣∣ > nε

})
≤ ce−nhε2

.
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Averaging in j ∈ Λ with respect to θ, for every x ∈ S1 we get

µ
({
ξ ∈ Σ+

N :
∣∣∣ln |(fn

ξ )′(x)| − nγ
∣∣∣ > nε

})
≤ ce−nhε2

.

This proves the first assertion of Theorem D.

Proof of Theorem D (2.) Let x, y ∈ S1. For ξ ∈ Ωx,y, by mean value theorem and the triangle
inequality ∣∣∣∣∣ln Z

x,y
n,d(ξ)
d(x, y) − nγ

∣∣∣∣∣ ≤ ln
(

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)

+ | ln |(fn
ξ )′(x)| − nγ|.

Therefore,

µ

(
ξ :
∣∣∣∣∣ln Z

x,y
n,d(ξ)
d(x, y) − nγ

∣∣∣∣∣ > nε

)
(3.2.8)

≤ µ

(
ξ : ln

(
max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)
>
nε

2

)
+ µ

(
ξ : | ln |(fn

ξ )′(x)| − nγ| > nε

2

)
.

Let us limit the first term of the right-hand sum in (3.2.8). Note that,

µ

(
ξ : ln

(
max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)
>
nε

2

)
= µ

(
ξ : max

z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ > e
nε
2

)
.

It follows from Chebyshev’s inequality, that

µ

(
ξ : ln

(
max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)
>
nε

2

)
≤ e−nε/2

∫
Σ+

N

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ dµ(x). (3.2.9)

From (3.2.12) we have

lim
n→∞

1
n

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ = 1,

so that dominated convergence theorem implies

lim
n→∞

1
n

∫
Σ+

N

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ dµ(ξ) = 1.

Consequently, there exists a constant ĉ > 0 (depending on x and y) such that for all n ≥ 1∫
Σ+

N

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ dµ(ξ) ≤ ĉn,

and so from (3.2.9) we obtain

µ

(
ξ : ln

(
max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)
>
nε

2

)
≤ ĉne−nε/2. (3.2.10)

Now, for the second term of the sum on the right-hand sum in (3.2.8) apply Theorem D
to obtain that there exists c, h, ε0 > 0 such that for all ε ∈ (0, ε0)

µ
(
ξ : | ln |(fn

ξ )′(x)| − nγ| > nε

2

)
≤ ce−nhε2/4. (3.2.11)

By (3.2.8), (3.2.10) and (3.2.11), for all n ≥ 1

µ

(
ξ :
∣∣∣∣∣ln Z

x,y
n,d(ξ)
d(x, y) − nγ

∣∣∣∣∣ > nε

)
≤ ĉne−nε/2 + ce−nhε2/4,

with which we conclude this proof.
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3.2.5 Application of Theorem D

In this section, we discuss some consequences of Theorem D. Let us start with the
following result:

Theorem 3.2.15. Assume that F is an IFS of C1+β diffeomorphisms, for some β > 0, on S1 so

that (F , d) is proximal and there does not exist a probability measure which is invariant by every

element of F . Then, for every non-degenerate probability vector p and the Bernoulli measure µ

determined by p, the following hold

1. for every x ∈ S1,

lim
n→∞

1
n

∫
Σ+

N

ln |(fn
ξ )′(x)|dµ(ξ) = γ < 0,

2. and for every x, y ∈ S1,

lim
n→∞

1
n

∫
Σ+

N

lnZx,y
n,d(ξ)dµ(ξ) = lim

n→∞

1
n

∫
Σ+

N

ln
Zx,y

n,d(ξ)
d(x, y) dµ(ξ) = γ.

Remark 3.2.16. As we discussed in Chapter 1, we have that

γ = lim
n→∞

1
n

∫
Σ+

N ×S1
ln |(fn

ξ )′(x)|d(µ⊗ ν)(ξ, x).

Note that item (1.) in Theorem 3.2.15 improves this result slightly. Analogously, we have that
the process (lnZx,y

n,d(ξ))n∈N is additive, in the following sense

ln
Zx,y

n+m,d(ξ)
d(x, y) = ln

Z
fn

ξ (x),fn
ξ (y)

m,d (σn(ξ))
d(fn

ξ (x), fn
ξ (y)) + ln

Zx,y
n,d(ξ)
d(x, y) .

Therefore, by Birkhoff’s Ergodic Theorem, we get

lim
n→∞

1
n

∫
Σ+

N

ln
Zx,y

n,d(ξ)
d(x, y) d(µ⊗ ν ⊗ ν)(ξ, x, y) = γ.

As before, item (2.) in Theorem 3.2.15 slightly improves this result.

Proof Theorem 3.2.15 (1). Let ε0, h, c > 0 be as in Theorem D. For ε ∈ (0, ε0) define

Λε
def=
{
ξ ∈ Σ+

N : γ − ε ≤ lim inf
n→∞

1
n

ln |(fn
ξ )′(x)| ≤ lim sup

n→∞

1
n

ln |(fn
ξ )′(x)| ≤ γ + ε

}
.

For all n ∈ N, by Theorem D we have

µ
(
ξ ∈ Σ+

N :
∣∣∣ln |(fn

ξ )′(x)| − nγ
∣∣∣ > nε

)
≤ ce−nhε2

.

The Borel–Cantelli lemma implies µ(Λε) = 1, for all ε ∈ (0, ε0). Then, for k ≥ 1 and εk ∈ (0, ε0)
such that εk → 0 as k → ∞, we have that

µ (∩∞
k=1Λεk

) = 1.
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Since
∩∞

k=1Λεk
= {ξ ∈ Σ+

N : lim
n→∞

1
n

ln |(fn
ξ )′(x)| = γ}

we conclude that for almost every ξ ∈ Σ+
N

lim
n→∞

1
n

ln |(fn
ξ )′(x)| = γ.

Note that for every n ∈ N and ξ ∈ Σ+
N we have

− lnL ≤ 1
n

ln |(fn
ξ )′(x)| ≤ lnL,

where L ≥ 1 are as in (3.2.3). This proof ends by applying the Dominated Convergence
Theorem.

Now, before proving (2) of the Theorem 3.2.15 let us establish some general properties of
the system. For every x, y ∈ S1 let Ωx,y as in (2.3.1). Since (F ,p, d) is proximal, by Proposition
2.3.1 we get that for every x, y ∈ S1

µ(Ωx,y) = 1.

If x ̸= y, for ξ ∈ Ωx,y define

Iξ
def=

[x, y], if limn→∞

∣∣∣fn
ξ ([x, y]

∣∣∣ = 0

[y, x], if limn→∞

∣∣∣fn
ξ ([y, x]

∣∣∣ = 0
and δn(ξ) def= |fn

ξ (Iξ)|.

Consider the following modulus of continuity

ω(δ) def= max
i∈Λ

max
d(z,w)≤δ

|ln |f ′
i(z)| − ln |f ′

i(w)||

and note that limδ→0+ ω(δ) = 0.

In this context let us prove the following lemma:

Lemma 3.2.17.
lim

n→∞

1
n

∫
Σ+

N

ln
(

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)
dµ(ξ) = 0.

Proof. For ξ ∈ Ωx,y we have that

ln
(

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)

≤
n−1∑
k=0

ω(δk(ξ)).

Recall that ξ ∈ Ωx,y implies that δk(ξ) → 0, as k → ∞, and hence

lim
k→∞

ω(δk(ξ)) = 0.

It follows that

lim
n→∞

1
n

ln
(

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)

= 0. (3.2.12)
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Since µ(Ωx,y) = 1 and

0 ≤ 1
n

ln
(

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)

≤ 2 lnL,

the dominated convergence theorem implies the claim.

Proof of Theorem 3.2.15 (2). Let x, y ∈ S1, x ̸= y. By the mean value inequality, for every
x, y ∈ S1, x ̸= y, and ξ ∈ Ωx,y

min
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ |(fn
ξ )′(x)| ≤

Zx,y
n,d(ξ)
d(x, y) ≤ max

z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ |(fn
ξ )′(x)|.

Notice that

min
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣ =
(

max
z,w∈Iξ

∣∣∣∣∣ (f
n
ξ )′(z)

(fn
ξ )′(w)

∣∣∣∣∣
)−1

.

Hence, by Lemma 3.2.17, for almost every ξ ∈ Σ+
N

lim
n→∞

1
n

lnZx,y
n,d(ξ) = lim

n→∞

1
n

ln
Zx,y

n,d(ξ)
d(x, y) = lim

n→∞

1
n

ln |(fn
ξ )′(x)| = γ.

Applying dominated convergence theorem, we conclude that

lim
n→∞

1
n

∫
Σ+

N

lnZx,y
n,d(ξ)dµ(ξ) = lim

n→∞

1
n

∫
Σ+

N

ln
Zx,y

n,d(ξ)
d(x, y) dµ(ξ) = γ.

This proves the theorem.
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4 Matrix cocycles

4.1 The twin measures

As there is a relation between Lyapunov exponents of the cocycles and the associated
skew-product, analogously for invariant measures for cocycles and the skew-product and their
averages. In this section, we explore this relation and, in particular, we prove the equality of the
pressure functions (1.3.4) and (1.3.9).

Let us first establish a relation between the Lyapunov exponents. By [DGR19, Theorem
11.1] for every α > 0 and for ξ it holds λ(M, ξ) = α if only if there are v, w ∈ P1 such that

2α = χ(M, ξ, v) = −χ(M, ξ, w). (4.1.1)

By Oseledets’ Theorem (for example, for context of cocycles see [Via14, Theorem 3.14]), for
ξ ∈ Σ+

N such that λ(M, ξ) = α there exist two unique non-collinear vectors v+
ξ and v−

ξ in P1

satisfying

1. fMξ1
(v±

ξ ) = v±
σ(ξ)

2. χ(M, ξ, v+
ξ ) = χ(M−1, ξ, v−

ξ ) = 2α and χ(M, ξ, v−
ξ ) = −2α,

where M−1 = {M−1
0 , . . . ,M−1

N−1}. Let L±
ξ be the sub-space generated by v±, respectively. The

decomposition R2 = L+
ξ ⊕ L−

ξ is known as Oseledets decomposition [Ose68].

The following result is proved in [Led84, Proposition 5.1], below we give an alternative
proof. Given ν ∈ Merg(Σ+

N), we denote by M(ν) the set of the F -ergodic measures µ such that
π∗µ = ν.

Lemma 4.1.1. For every ν ∈ Merg(Σ+
N) with M∗(ν) > 0, there exist two unique F -ergodic

measures µ± satisfying π∗µ
± = ν and

2M∗(ν) = φ(µ+) = −φ(µ−) = sup
µ∈M(ν)

φ(µ).

Moreover, µ+ and µ− are the only elements in M(ν).

Proof. Let us first prove the existence of µ+, the existence of µ− is demonstrated analogously.
Let ξ be ν-generic. By (4.1.1), there exists v ∈ P1 such that

α
def= M∗(ν) = λ(M, ξ) = 1

2χ(M, ξ, v).

Consider the probability measures

µn
def= 1
n

(
δξ,v + F∗δξ,v + . . .+ (F n−1)∗δξ,v

)
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and let µ be some weak∗ accumulation point of the sequence (µn)n. Note that

2α = χ(M, ξ, v) = lim
n→∞

φ(µn) = φ(µ),

where the last equality follows from weak∗ convergence and the continuity of φ. It is immediate
to check that µ is F -invariant Borel probability measure. Moreover, π∗µ = ν. Consider its
ergodic decomposition µ =

∫
µθ dτ(θ) into F -ergodic measures µθ. Note that τ -almost every

ergodic component satisfies π∗µθ = ν. Let us check that additionally, it holds φ(µθ) = 2α.

Indeed, consider an ergodic component µθ. Then µθ-almost every point (η, w) is µθ-
generic, and in particular it holds χ(M, η, w) = φ(µθ). Moreover, it holds that η is ν-generic
and λ(M, η) is well defined. Moreover, by (4.1.1),

α = λ(M, η) = 1
2 |χ(M, η, w)| = 1

2 |φ(µθ)| .

As

2α = φ(µ) =
∫
φ(µθ) dτ(θ)

it follows that for τ -almost every θ, φ(µθ) = 2α.

This proves the existence of µ+ and the inequality 2M∗(ν) ≤ supµ φ(µ). To prove the
opposite inequality, take µ ∈ M(ν). Let (ξ, v) be µ-generic. Without loss of generality, we can
assume that ξ is ν-generic and λ(M, ξ) is well defined and equal to M∗(ν). Check that

φ(µ) = χ(M, ξ, v) = lim
n→∞

1
n

ln |(fn
ξ )′(v)| ≤ lim

n→∞

2
n

ln ∥Mn(ξ)∥ ≤ 2M∗(ν). (4.1.2)

This finishes the proof of the three equalities.

Let us finally prove the uniqueness of µ+ (for µ− it is analogous). The following was
shown in [Led84, Ch. I, sect. 5], see also [Via14, Theorem 6.1]. If µ ∈ M(ν) is a F -ergodic
measure, then

µ
(
{(ξ, v+

ξ ) : λ(M, ξ) = α}
)

= 1, and φ(µ) = 2α,

or

µ
(
{(ξ, v−

ξ ) : λ(M, ξ) = α}
)

= 1, and φ(µ) = −2α,

where v±
ξ are as in Section 4.2.1.

Let µ+
1 and µ+

2 be F -ergodic measures such that π∗µ
+
i = ν and 2α = φ(µ+

i ), for i = 1, 2.
Let G1, G2 ⊂ {(ξ, v+

ξ ) : λ(M, ξ) = α} be F -invariant sets such that µ+
i (Gi) = 1, for i = 1, 2.

As was discussed in Section 4.2.1, we have that fMξ1
(v+

ξ ) = v+
σ(ξ), so that the projections π(G1)

and π(G2) are σ-invariant sets. Then, ν(π(G1)) = ν(π(G2)) = 1. Hence, for ν-almost every
ξ we have that (ξ, v+

ξ ) ∈ G1 ∩ G2 and so (by ergodicity) µ+
1 = µ+

2 . This ends the proof of the
Lemma.
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Remark 4.1.2. Assume that ν is a Bernoulli measure on Σ+
N . By [BL85, Part A, Ch. II, sec. 4,

Theorem 4.4], if there is no distribution m on P1 simultaneously invariant for all matrices in M,
then M∗(ν) > 0 and there exists a unique ν-stationary1 distribution for M.

Remark 4.1.3. Let ν be a Bernoulli measure on Σ+
N . By [Via14, Lemma 5.25], if M∗(ν) > 0

then µ+ and µ− in Lemma 4.1.1 are unique. When M∗(ν) = 0, [Via14, Linear invariance
principle] implies that every µ ∈ M(ν) there exists a distribution m on P1 which is both ν-
stationary distribution for M and ν-stationary distribution for M−1 = {M−1

0 , . . . ,M−1
N−1} such

that µ = ν ⊗m.

Now let us show the relationship between the pressure functions for the cocycle in (1.3.4)
and for the skew-product in (1.3.9).

Proposition 4.1.4. For every q ∈ R, we have

Pvar(|q|) = PF (q).

Proof. Given ν ∈ Merg(Σ+
N), we have hµ(F ) = hν(σ) for all µ ∈ M(ν) (see Appendix C.2).

For µ± as in Lemma 4.1.1 and q ≥ 0 we have

sup
µ∈M(ν)

(
hµ(F ) + q

2φ(µ)
)

= hν(σ) + q

2φ(µ+) = hν(σ) + qM∗(ν),

and for q < 0

sup
µ∈M(ν)

(
hµ(F ) + q

2φ(µ)
)

= hν(σ) + q

2φ(µ−)

= hν(σ) − qM∗(ν)

= hν(σ) + |q|M∗(ν).

Now, taking supremum over ν ∈ Merg(Σ+
N) we conclude this result.

4.2 Properties of the cocycle

4.2.1 The level sets

Given α ≥ 0, consider the following level set of Lyapunov exponents of the cocycle

E(M, α) def= {ξ ∈ Σ+
N : λ(M, ξ) = α}.

We also study in parallel the exponents for the induced skew-product. Analogously, we consider
the following level set

E(F, 2α) def= {(ξ, v) : χ(M, ξ, v) = 2α}. (4.2.1)
1 Analogous to the context of IFSs on the circle defined in (1.2.1). In the context of cocycles, a probability measure

m on P1 is ν-stationary for M if m(B) =
∫

m(M−1
ξ1

B)dν(ξ) for every measurable set B ⊂ P1.
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The following variational principle was proved in [DGR19, Lemma 5.2]. Let us rewrite
it in terms of the cocycle.

Lemma 4.2.1. Let M ∈ E
N,shyp. For α ≥ 0 such that E(M, α) ̸= ∅ we have

htop(σ,E(M, α)) = sup{hν(σ) : ν ∈ Merg(Σ+
N),M∗(ν) = α}.

Proof. Given ν ∈ Merg(Σ+
N), note that M∗(ν) = α if and only if ν(E(M, α)) = 1. Then, by

[Bow73, Theorem 1] we get

sup{hν(σ) : ν ∈ Merg(Σ+
N),M∗(ν) = α} ≤ htop(σ,E(M, α)).

On the other hand, by [DGR19, Theorem A] (in the case α > 0) and [DGR, Theorem A] (in the
case α = 0), the following restricted variational principle holds for every α > 0:

htop(F, E(F, 2α)) = sup
{
hµ(F ) : µ ∈ Merg(Σ+

N × P1),
∫

ln |(f ′
ξ1)(v)| dµ(ξ, v) = 2α

}
.

where E(F, 2α) is as in (4.2.1). From (4.1.1) we have that (ξ, v) ∈ E(F, 2α) for some v ∈ P1, if
and only if ξ ∈ E(M, α). Therefore,

E(M, α) = π(E(F, 2α)).

Hence,

htop(σ,E(M, α)) = htop(σ, π(E(F, 2α))) ≤ htop(F, E(F, 2α)).

Given µ ∈ Merg(Σ+
N × P1) satisfying

∫
ln |(f ′

ξ1)(v)| dµ(ξ, v) = 2α, ν def= π∗µ is ergodic and,
again by Remark 4.2.1, M∗ν = α. Moreover, from the fact that the fiber entropy is zero we get
hµ(F ) = hν(σ), see Section C.2. This implies

sup
{
hµ(F ) : µ ∈ Merg(Σ+

N × P1),
∫

ln |(f ′
ξ1)(v)| dµ(ξ, v) = 2α

}
≤ sup{hν(σ) : ν ∈ Merg(Σ+

N),M∗(ν) = α}

and hence equality of both expressions, and equality with

htop(F, E(F, 2α)) = htop(σ,E(M, α)),

proving the assertion.

4.3 Proof of results

4.3.1 Gibbs property for equilibrium states

We know that the standard matrix norm ∥·∥ is sub-multiplicative, that is, ∥AB∥ ≤
∥A∥∥B∥. The following result establishes a kind of quasi-super-multiplicativity.
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Proposition 4.3.1 ([Fen09b, Proposition 2.8]). If M is irreducible, then there exist D > 0 and

k ∈ N such that for any n,m ∈ N and ξ, η ∈ Σ+
N there exist r ≤ k, ζ ∈ Σ+

N so that

∥Mn(ξ) · Mr(ζ) · Mm(η)∥ ≥ D∥Mn(ξ)∥.∥Mm(η)∥.

The above result is the key in the proof of the following proposition.

Proposition 4.3.2 ([FK11, Proposition 1.2]). If M is irreducible, then for every q > 0, P (q) has

a unique q-equilibrium state νq, P is differentiable at q, and P ′(q) = M∗(νq). Moreover, νq has

the following Gibbs property: there exists C > 1 such that for every n ∈ N and ξ ∈ Σ+
N it holds

1
C

≤ νq([ξ1 . . . ξn])
exp(−nP (q))∥Mn(ξ)∥q

≤ C.

Remark 4.3.3. Under the hypothesis of Proposition 4.3.2 we have that for every q > 0

νq (E(M, P ′(q))) = 1,

where νq is the q-equilibrium state of P . Indeed, since νq is the unique element in Iq, νq is
σ-ergodic. By Kingman’s subadditive ergodic theorem, for νq-almost every ξ

λ(M, ξ) = M∗(νq) = P ′(q),

which proves the claim.

4.3.2 Proof of Theorem F

Proof of Theorem F. Let νq as in Proposition 4.3.2. By Claim 4.1.4, we get

hνq(σ) + qM∗(νq) = Pvar(q) = sup
µ∈Merg(F )

(
hµ(F ) + q

2φ(µ)
)
.

Now, applying Lemma 4.1.1 there exists a unique F -ergodic measure µq ∈ M(νq) such that
2M∗(νq) = φ(µq) and so P ′(q) = 1

2φ(µq). Hence,

hνq(σ) + qM∗(νq) = hµq(F ) + q

2φ(µq).

To see that µq is the only measure in Merg(F ) that realizes the supremum, take µ ∈ Merg(F )
such that

hνq(σ) + qM∗(νq) = hµ(F ) + q

2φ(µ).

Then, there exists ν ∈ Merg(Σ+
N) such that µ ∈ M(ν). Applying Lemma 4.1.1 for ν, we get

hµ(F ) + q

2φ(µ) ≤ hν(σ) + qM∗(ν).

The uniqueness of the equilibrium state νq implies that ν = νq and so µ = µq. With which we
conclude the first part of the proposition.
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Now, let us prove the last conclusion. Since µq

(
{(ζ, v+

ζ ) : λ(M, ζ) = α}
)

= 1 we have
for every n ∈ N and ξ ∈ Σ+

N

µq

({
(ζ, v+

ζ ) : ζ ∈ [ξ1 . . . ξn], λ(M, ζ) = α
})

= π∗µq([ξ1 . . . ξn]) = νq([ξ1 . . . ξn]),

and, there exists vn ∈ P1 such that

∥Mn(ξ)∥ = ∥Mn(ξ)vn∥.

Therefore, it only remains to apply the equality (1.3.6) to conclude.

Remark 4.3.4. Given ξ ∈ Σ+
N , there exists a unique vector v+

ξ ∈ P1 such that χ(M, ζ, v+
ξ ) = 2α,

see Section 4.2.1 for more details. Moreover, for n ∈ N take vn ∈ P1 as in Theorem F. By [Via14,
Lemma 3.16], the sequence (vn) is Cauchy in projective space and its limit is v+

ξ . Moreover, the
angle ∡(vn, vn+1) decreases exponentially:

lim sup
n→∞

1
n

ln |sin∡(vn, vn+1)| ≤ −2α.

4.3.3 Proof of Theorem E

Proposition 4.3.2 states already the uniqueness of q-equilibrium state. Hence, it only
remains we prove statements about the level sets. The proof will be based on the study of the
Lq-spectrum t 7→ τν(t) of a probability measure ν on Σ+

N , defined by

τν(t) def= lim inf
n→∞

−1
n lnN ln

∑
[ξ1...ξn]

ν([ξ1 . . . ξn])t.

We follow some arguments standard in multifractal analysis (see, for example [FL02, Proof of
Theorem 1.3]).

Proof of Theorem E. Given α = P ′(q) for some q, let νq be the corresponding Gibbs measure in
Proposition 4.3.2. Note that the Gibbs property of νq implies

τνq(t) = lim inf
n→∞

−1
n lnN ln

e−ntP (q) ∑
[ξ1...ξn]

∥Mn(ξ)∥qt

 = tP (q) − P (tq)
lnN ,

and

E(M, α) =
{
ξ ∈ Σ+

N : lim
n→∞

−1
n lnN ln ν1([ξ1 . . . ξn]) = P (1) − α

lnN

}
.

It follows

τν1(q) = qP (1) − P (q)
lnN

Hence, by [LN99, Theorem 4.1]

dimH E(M, α) ≤ inf
q∈R

(
q
P (1) − α

lnN − τν1(q)
)

= inf
q∈R

1
lnN (P (q) − αq)
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On the other hand, the Gibbs property implies that for ξ ∈ E(M, α) (hence, νq-almost every ξ)

lim
n→∞

− 1
n lnN ln νq([ξ1 . . . ξn]) = 1

lnN (P (q) − αq).

Note that for r ∈
(

1
Nn+1 ,

1
Nn

]
, we have B(ξ, r) = [ξ1, . . . , ξn]. Hence, for νq-almost every ξ

lim inf
r→0+

νq(B(ξ, r))
ln(r) = lim − 1

n lnN ln νq([ξ1 . . . ξn]) = 1
lnN (P (q) − αq).

it follows from the mass distribution principle that

dimH E(M, α) ≥ 1
lnN (P (q) − αq),

which shows the first two equalities.

To prove the last two equalities, note that νq is a q-equilibrium state and so

P (q) = hνq(σ) + qM∗(νq).

By Proposition 4.3.2

P (q) = hνq(σ) + αq, and dimH E(M, α) = 1
lnN (P (q) − αq).

Therefore,
dimH E(M, α) = 1

lnN hνq(σ).

On the other hand, since νq is the q-equilibrium state of P . For all ν ∈ Merg(Σ+
N) with M∗(ν) = α

we have
hν(σ) ≤ P (q) − qα = hνq(σ).

Thus, applying Lemma 4.2.1, we get htop(E(M, α)) = hνq(σ), which finishes the proof.
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APPENDIX A – Equivalences between
metrics

Let us recall some standard definitions and facts, see [Sea07]. A metric on a set M is a
map d : M ×M → [0,∞), required to satisfy the following axioms for all x, y, z ∈ M :

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, y);

3. the triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

Two metrics d1 and d2 on the same space M are said to be equivalent if they generate
the same topology on M , or equivalent, every convergent sequence of (X, d1) is convergent in
(X, d2) with the same limit, and vice versa.

Two metrics d1 and d2 on the same space M are strongly equivalent if there exist positive
constants a and b such that

ad1(x, y) ≤ d2(x, y) ≤ bd1(x, y)

for every x, y ∈ M . Of course, strong equivalence of two metrics implies equivalence, but not
vice versa.

Lemma A.0.1. For α ∈ (0, 1] the function dα : M ×M → [0,∞) given by

dα(x, y) def= (d(x, y))α

is a metric on M .

Proof. The identity and symmetry properties of dα are an immediate consequence of the fact
that d is a metric. For the triangular inequality we use the following inequality. For x ∈ [0, 1] we
have

(1 + x)α ≤ 1 + x ≤ 1 + xα. (A.0.1)

Let x, y, z ∈ M . Since d is a metric,

dα(x, y) ≤ (d(x, z) + d(z, y))α. (A.0.2)

We assume, without loss of generality, that d(x, z) ≤ d(z, y). If d(z, y) = 0, then it is clear that
(A.0.2) implies

dα(x, y) ≤ dα(x, z) + dα(z, y).
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If d(z, y) = 0, then (A.0.2) and (A.0.1) imply

dα(x, y) ≤ dα(z, y)
(
d(x, z)
d(z, y) + 1

)α

≤ dα(z, y)
(
dα(x, z)
dα(z, y) + 1

)
= dα(x, z) + dα(z, y),

so that the triangular inequality holds for dα. Therefore, dα is a metric on M .

Remark A.0.2. For α ∈ (0, 1) and d a metric, we have that d and dα are equivalent, but not
necessarily strongly equivalent.
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APPENDIX B – Properties of the
Integral

In this section, let us enunciate some classic results in probability theory for integrals,
see for example [Dur19] for more details.

Jensen’s inequality. Given a probability space (Ω,B, µ) and a convex function φ : R → R. If

f : Ω → R is a measurable function such that f, φ(f) ∈ L1(µ), then

φ
(∫

fdµ
)

≤
∫
φ(f)dµ

Fatou’s lemma. Let (Ω,B, µ) be a probability space. Assume (fn)n∈N be a sequence of µ-

measurable non-negative functions fn : Ω → [0,+∞]. Define the function f : Ω → [0,+∞] by

setting f(x) = lim infn→∞ fn(x), for every x ∈ Ω. Then

lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf

n→∞
fn

)
dµ.

Monotone convergence theorem. Let (Ω,B, µ) be a probability space. Consider a pointwise

non-decreasing sequence (fn)n∈N of µ-measurable non-negative functions fn : Ω → [0,+∞].
Define the function f : Ω → [0,+∞] by setting f(x) = limn→∞ fn(x), for every x ∈ Ω. Then∫

fndµ ↑
∫
fdµ.

Dominated convergence theorem. Let (Ω,B, µ) be a probability space. Consider a sequence

(fn)n∈N of µ-measurable functions fn : Ω → R converging pointwise to a µ-measurable function

f : Ω → R. If g : Ω → [0,+∞] is a µ-measurable function such that |fn| ≤ g a.e., for all n,

and g ∈ L1(µ), then ∫
fndµ →

∫
fdµ.

The following result is the unique proved here, we are guided by [HS69, p. 201].

Lemma B.0.1. Let (Ω,B, µ) be a probability space. Consider a µ-measurable function f : Ω →
(0,+∞). If f ∈ L1(µ) then

lim
r↓0

(∫
f r(ξ)dµ(ξ)

) 1
r

= exp
∫

ln f(ξ)dµ(ξ). (B.0.1)

Proof. It is known that for every ξ

lim
r→0

1
r

(f r(ξ) − 1) = ln f(ξ).
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Since, r 7→ 1
r

(f r(ξ) − 1) is increasing on r ≥ 0,

lim
r↓0

1
r

(f r(ξ) − 1) = ln f(ξ).

Applying Monotone Convergence Theorem, we get

lim
r↓0

1
r

(∫
f r(ξ)dµ(ξ) − 1

)
=
∫

ln f(ξ)dµ(ξ). (B.0.2)

Now, using the inequality x− 1 ≥ ln x and Jensen’s Inequality, we get

1
r

(∫
f r(ξ)dµ(ξ) − 1

)
≥ ln

(∫
f r(ξ)dµ(ξ)

) 1
r

≥ 1
r

∫
ln f r(ξ)dµ(ξ) (B.0.3)

=
∫

ln f(ξ)dµ(ξ),

which implies (B.0.1).
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APPENDIX C – Some properties of
Matrix cocycles

C.1 Derivative of the projective map

Consider the group GL+(2,R) of all 2 × 2 matrices with real coefficients and positive
determinant. For

A =
a b

c d

 ∈ GL+(2,R)

define the map fA by

fA(v) def= Av

∥Av∥
, for v ∈ R2. (C.1.1)

The map fn
ξ : P1 → P1 induces a diffeomorphism on the circle gn

ξ : S1 → S1. Let us
identify P1 by [0, π) and S1 by [0, 2π). Define g : S1 → P1 by

g(θ) def= θ/2, θ ∈ [0, 2π),

which is differentiable and invertible, its inverse g−1 : P1 → S1 is also differentiable. Therefore,
fn

ξ : P1 → P1 induces the differentiable map gn
ξ : S1 → S1 given by

gn
ξ

def= g−1 ◦ fn
ξ ◦ g,

with

(gn
ξ )′(θ) = (fn

ξ )′(θ/2).

For vectors v = (v1, v2), w = (w1, w2) ∈ R2 we define

δ(v, w) := sin(∠(v, w)) = |v1w2 − v2w1|
∥v∥ ∥w∥

,

it is easily seen that this defines a distance on P1.

Lemma C.1.1. If v = (v1, v2), w = (w1, w2) and A ∈ SL(2,R), then

δ(fA(v), fA(w)) = | detA| ∥v∥ ∥w∥
∥Av∥ ∥Aw∥

δ(v, w)
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Proof.

δ(fA(v), fA(w)) = |adv1w2 + bcv2w1 − bcv1w2 − adv2w1|
∥Av∥ ∥Aw∥

= |(ad− bc)v1w2 − (ad− bc)v2w1|
∥Av∥ ∥Aw∥

= | detA| |v1w2 − v2w1|
∥Av∥ ∥Aw∥

= | detA| ∥v∥ ∥w∥
∥Av∥ ∥Aw∥

δ(v, w).

We now consider the subgroup SL(2,R) ⊂ GL+(2,R) of 2 × 2 matrices with real
coefficients and determinant one. Then for A ∈ SL(2,R), the map fA : P1 → P1 definided in
C.1.1 is called projective map. By Lemma C.1.1, for every v ∈ P1 we have

(fA)′(v) = lim
w→v

δ(fA(v), fA(w))
δ(v, w) = 1

∥Av∥2 .

C.2 The fiber entropy

Fixed ν ∈ Merg(Σ+
N). Let µ be a F -invariant measure such that π∗µ = ν. By Rokhlin

disintegration theorem, for ν-almost every ξ ∈ Σ+
N there exists a probability measure µξ on P1

such that
µ =

∫
µξdν(ξ).

Let P be an at most countable partition of the fiber P1 in measurable sets with finite
entropy Hξ(P) < ∞ for almost every ξ ∈ Σ+

N , where Hξ(P) = −∑
C∈P µξ(C) lnµξ(C). Let

us put

Pn
ξ =

n−1∨
k=0

(fk
ξ )−1(P).

By [AR62], the following limit exists and it is finite

hσ(M,P) = lim
n→∞

1
n

∫
Hξ(Pn

ξ )dν(ξ).

The supremum of hσ(M,P) over all measurable partitions

hσ(M) = sup
P
hσ(M,P)

is called the fiber entropy. Again by [AR62], we have

hµ(F ) = hν(σ) + hσ(M)

Since f0, . . . , fN−1 are difeomorphisms (so homeomorphisms) on P1, hσ(M) = 0. Therefore,
hµ(F ) = hν(σ). Indeed, since f0, . . . , fN−1 are homeomorphisms on P1, for every sequence
ξ ∈ Σ+

N and for all n ∈ N the function fn
ξ is also a homeomorphism on P1. And so for every

partition P the cardinality of Pn
ξ is at most n times the cardinality of P . Since the number

Hξ(Pn
ξ ) is bounded by the logarithm of the cardinality of Pn

ξ , we conclude that hσ(M) = 0.
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APPENDIX D – Large deviations for
Markov system

D.1 Markov kernel

Let M be a compact metric space and B(M) be its Borel σ-field. Let Prob(M) denote
the space of Borel probability measures on M . We denote by L∞(M) the Banach space of
bounded measurable functions f : M → C, endowed with the norm ∥ · ∥∞ given by

∥f∥∞
def= sup

ω∈M
|f(ω)|.

A Markov kernel is a function K : M → Prob(M), ω 7→ Kω, such that for any Borel set
E ∈ B(M), the function ω 7→ Kω(E) is B(M)-measurable. A Markov kernel K determines
the following linear operator QK : L∞(M) → L∞(M),

(QKf)(ω) def=
∫

M
f(ϑ)dKω(ϑ).

Following [DK17], we refer to K as the kernel of QK and to QK as the Markov operator of K.

The topological product space MN is compact and metrizable. Its Borel σ-field B(MN)
is generated by the cylinders, i.e., sets of the form

C(E1, . . . , En) def= {(ωj)j∈N : ωj ∈ Ej for j ∈ {1, . . . , n}}

with E1, . . . , En ∈ B(M). Given θ ∈ Prob(M) and a Markov kernel K, the following expres-
sion determines a pre-measure over the cylinder semi-algebra on MN

Pµ[C(E1, . . . , En)] def=
∫

En

· · ·
∫

E1
dθ(ω0)

n−1∏
j=1

dKωj
(ωj+1).

By Carathéodory’s extension theorem this pre-measure extends to a unique probability measure
Pθ on (MN,B(MN)). Following Kolmogorov, we define the process Xn : MN → M by

Xn(ϖ) def= ωn, where ϖ = (ωj)j∈N.

Recall that it satisfies for all E ∈ B(M),

1. Pθ[X1 ∈ E] = θ(E),

2. Pθ[Xn ∈ E|Xn−1 = ω] = Kω(E) for all ω ∈ M and n ≥ 2.
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By construction {Xn}n∈N is a time-homogeneous1 Markov process with initial distribution θ
and transition kernel K on the probability space (MN,B(MN),Pθ).

To simplify notation, the probability Pθ for a Dirac mass θ = δω with ω ∈ M , will be
denoted by Pω. Notice that Pω(X1 = ω) = 1, that is, the Markov process {Xn}n∈N starts in state
ω.

D.2 Markov system

Given a Markov kernel K on (M,B(M)), a measure θ ∈ Prob(M) is said to be K-

stationary when for all E ∈ B(M),

θ(E) =
∫

M
Kx(E)dθ(x).

IfK is a Markov kernelK on (M,B(M)) and θ ∈ Prob(X) is aK-stationary probability
measure, then the pair (K, θ) is called Markov system.

Let (B, ∥ · ∥B) be a complex Banach algebra with unity, that is, 1 ∈ B. A Markov system
(K, θ) is said to act simply and quasi-compactly on B if there are constants C > 0 and σ ∈ (0, 1)
such that for all φ ∈ B and all n ≥ 0∥∥∥∥Qn

Kφ−
(∫

M
φdθ

)
1
∥∥∥∥

B
≤ Cσn∥φ∥B. (D.2.1)

Let L(B) be the Banach algebra of bounded linear operators on B and denote by |||T |||B the
operator norm of T ∈ L(B).

Remark D.2.1. If a Markov system (K, θ) acts simply and quasi-compactly on B then QK ∈
L(B).

D.3 Large deviations

For φ ∈ L∞(M), define the sum process Sn(φ) : MN → C by

Sn(φ) (ϖ) def= φ (X1(ϖ)) + φ (X2(ϖ)) + · · · + φ (Xn(ϖ))

where ϖ = (ωj)j∈N.

Let (B, ∥ · ∥B) be a complex Banach algebra with unity which is also a lattice2.Assume
also B ⊂ L∞(M) and that the inclusion B ↪→ L∞(M) is continuous, that is, ∥φ∥∞ ≤ ∥φ∥B for
all φ ∈ B.

The following result is proved in [DK17, Theorem 4.4].
1 The transition probability is independent of n.
2 A complex Banach algebra (B, ∥ · ∥B) is a lattice if |φ|, φ ∈ B for all φ ∈ B.
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Proposition D.3.1. Let (K, θ) be a Markov system which acts simply and quasi-compactly on

a Banach sub-algebra B ⊂ L∞(M) satisfying the above assumptions. Then given φ ∈ B there

exist constants h, ε0 > 0 and C > 0 such that for all ω ∈ M , ε ∈ (0, ε0) and n ∈ N

Pω

[∣∣∣∣ 1nSn(φ) −
∫

M
φdµ

∣∣∣∣ > ε
]

≤ Ce−nhε2
.
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