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obtenção do t́ıtulo de Doutor em Matemática.
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Wrapped Floer Cohomology and the Symmetric Symplectic Capacity

Aloizio Tadeu Sampaio Alves Macedo

Advisor: Leonardo Magalhães Macarini

The purpose of this dissertation is to use wrapped Floer cohomology, which is basically an
homology theory similar to standard (periodic) Floer homology but intended for open strings
with Lagrangian boundary conditions instead of closed orbits, to conclude some results which
have been discovered in the periodic case. Particularly, we focus on the symmetric symplectic
capacity, the analogue of the symplectic capacity but accounting for an anti-symplectic
involution on the manifold.

We arrive on a result of finiteness of the symmetric symplectic capacity under the
hypothesis of vanishing wrapped Floer cohomology which can then be applied to prove the
finiteness of such capacity under some conditions. This can be pushed further by introducing
local coefficients suitable for vanishing the wrapped Floer cohomology while still restricting
to the trivial local system when restricted to the Lagrangian L.
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Chapter 1

Introduction

Poincaré’s contributions and interest on the dynamical aspects of the solar system and,
more generally, astronomy mechanics is often regarded as the origin of the modern study of
dynamical systems as a Mathematical area. A major point of curiosity was whether planetary
movement was bound to repeat itself. This curiosity has evolved through time into the study
of periodic orbits, which receives attention from a lot of professionals from different areas
and from different points of view.

A similar question can be asked, although it is a more specific one. To keep the same
context as above, we phrase it as follows: given an ensemble of planets, starting from rest,
is this ensemble bound to return to rest at some other point in time? This type of orbit is
called a brake orbit, and is the motivation for the definitions that will come in place later.

The main objective of this dissertation is to present adaptations to the aforementioned
context of brake orbits of some tools and invariants that are commonly used in symplectic
topology in the case of periodic orbits of Hamiltonian flows. Most notably, we will deal with an
adaptation of the Hofer-Zehnder capacity which we will refer to as symmetric Hofer-Zehnder
capacity. The reason for the use of the term “symmetric” will soon become clear. This
invariant was introduced in [15], although we make an adaptation to its definition in order to
encompass the case of compact manifolds more appropriately.

Let us briefly recall the definition of the Hofer-Zehnder capacity: Given a symplectic
manifold (M,ω), possibly with boundary, the Hofer-Zehnder capacity is defined as

c(M,ω) := sup{max(H) | H ∈ H},

where H is the set of smooth functions H such that:

� There is a compact set K, depending on H, such that K ⊂ int(M) and H is constant
and equal to its maximum outside K.

� There is an open set, also depending on H, where H is constant and equal to zero, zero
being the minimum value of H.

� Every periodic orbit is either constant or has minimal period greater than 1.

Even though the definition mentions periodic orbits, it is not clear why this value can help
in finding them. Formally, this happens due to results such as the classical statement of
existence of periodic orbits in level-sets corresponding to a set of real values of full Lebesgue
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measure if the capacity of the thickening is finite. (More information will be given in Chapter
4.) More intuitively, we can see that the capacity is actually measuring the supremum of the
oscillations (in the sense of maxH −minH) of Hamiltonians which respect some “boundary”
conditions and that do not have periodic orbits which are “fast”. We could hope that if we
take Hamiltonians of sufficiently high oscillation, that the gradient of H should be large, and
thus also the speed of the orbits, and we could expect some periodic one to be fast enough.
When the capacity is finite, this expectation is somewhat fulfilled. But, of course, it should
be said that we have plenty of cases where the capacity is not finite.

Let us now briefly introduce the framework that we are mainly studying in this dissertation.
We have a symplectic manifold (X,ω), together with an involution ϕ : X → X that is anti-
symplectic, i.e. ϕ∗ω = −ω. We suppose that the fixed-point set of this involution is not
empty. In this case, it is a Lagrangian submanifold of X, which we will call L. This data
will be referred to as (X,ω, ϕ, L). Since L is determined by ϕ, we may suppress it in the
notation. We usually also suppress ω since it is the symplectic form, resulting in the notation
being often simply (X,ϕ). We will call such manifold a symmetric symplectic manifold. A
Hamiltonian satisfying H ◦ ϕ = H is called a symmetric Hamiltonian, and an orbit x of the
Hamiltonian flow for which there is a T ∈ R such that

x(−t) = ϕ(x(t)), x(t+ T ) = x(t)

is called a brake orbit.

The connection between the above and the situation described as the motivation for brake
orbits is seen by looking at the case of X being the cotangent bundle of some manifold M ,
i.e. X = T ∗M . In this case, if we take ϕ = (x, p) 7→ (x,−p) and H(x, p) = ‖p‖2 + V (x)
where V (x) is some potential, then brake orbits in this last sense correspond precisely to
brake orbits in the mechanical sense of beginning and ending with zero momentum. Indeed,
note that the condition of being a brake orbit says that x is a periodic orbit and x(0) is a
fixed point of ϕ, and thus is a point of zero momentum. Reciprocally, if x is an orbit of the
Hamiltonian flow that begins and ends at the zero section, then by continuing x we get a
periodic orbit which is a brake orbit.

With the framework of symmetric symplectic manifolds in mind, we then investigate a
notion of capacity that takes ϕ into consideration by considering only symmetric Hamiltonians.
In order to have some grounded and easily visualized examples, we investigate how this notion
of capacity behaves in surfaces. (It is known that the Hofer-Zehnder capacity is equal to the
area in closed surfaces, c.f. [29]. We reach similar results for the symmetric Hofer-Zehnder
capacity with mild assumptions.)

Some main results of this dissertation illustrate nicely that the way in which L is positioned
topologically inside M may be of great relevance for the symmetric capacity. More specifically,
we have results for the finiteness of the symmetric capacity which include hypotheses such as
the inclusion L ↪→M being nullhomotopic, or H2(M,L;R) being nonzero.

The dissertation is structured as follows, where we do not mention this chapter as it is an
introduction.

Chapter 2 gives a quick description of Floer homology in aspherical manifolds with
vanishing first Chern class. This is arguably the most traditional, well-known and simple
example of Floer homology. The analytical details of the construction are not the focus of
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this dissertation so we will not provide much, but we will give references and brief discussions.
This observation also holds for the other chapters which deal with different kinds of Floer
homology.

Chapter 3 has as its core objective to describe wrapped Floer homology. In order to
do so, we start by dealing with symplectic homology, as it is a midpoint between the Floer
homology case of chapter 2 and the wrapped Floer homology case.

Chapter 4 contains a large bulk of the content of the dissertation and discusses the
symmetric capacity, which is the symmetric analogue of the Hofer-Zehnder capacity. We also
introduce the symmetric Gromov capacity. We give definitions and prove basic theorems
similar to the standard case. We also explore the symmetric capacity in the realm of surfaces
and prove an equivariant version of the Moser theorem on volume-preserving diffeomorphisms
on closed surfaces being symplectomorphisms.

Chapter 5 involves the application of the wrapped Floer homology to conclude that, if
the wrapped Floer homology vanishes, then the symmetric capacity is finite. The proof of
this follows very closely the strategy of the standard case via spectral invariants, although
some significant differences arise considering the restriction to symmetric Hamiltonians in
the interior of the symmetric manifold. We will point the differences out explicitly so that
the reader can be aware.

Chapter 6 makes use of the results of Chapter 5 by searching for suitable local systems
that make the wrapped Floer homology vanish.

The appendix is intended as a brief look in how the isomorphism between the symplectic
homology of the cotangent bundle and the homology of the free loop space of the base
manifold can fail when we don’t take into account a twist in the orientations. This is relevant
since we use results in this direction in Chapter 6.
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Chapter 2

Floer Homology

In this chapter, we will briefly recall the main facts regarding Floer homology on the simplified
compact aspherical case with vanishing first Chern class.

2.1 Introduction and motivation from Morse homology

The definition of Floer homology is inspired by the case of Morse homology. Let us briefly
describe the idea of Morse homology.

Let M be a compact manifold together with a nondegenerate smooth function f : M → R.
Here, nondegenerate means that all critical points have an invertible Hessian. For each
natural number i, we define the abelian group Ci to be the free abelian group generated by
the critical points with index i, where the index of a critical point is given by the maximum
number of different linearly independent eigenvectors with negative eigenvalues. We can then
define a map

∂iCi → Ci−1

which takes a critical point qi to
∑
ncici, where nci is the number of minus-gradient-flow

paths that tend to qi as t→ −∞ and to ci as t→ +∞, counted with orientations in mind,
and considering two such paths equivalent if they are just shifts of one another.

If the unstable manifolds intersect the stable manifolds transversely, we then have a chain
complex, and thus an homology. This homology is the so-called Morse homology, usually
denoted by HM(M ;Z). For quick explicit examples and details about the orientation, c.f.
[18]. It can be proved that HM(M ;Z) ' H(M ;Z), where the latter is singular homology.
This can be found in [25], for example. The technical details about Morse homology can also
be seen there.

Leaving aside these details about the construction, note that it seems natural from the
definition that we can infer facts about critical points when we know the Morse homology.
Indeed, a trivial observation is that given any compact manifold M and non-degenerate
smooth function f : M → R, then there are at least as many critical points of f as the total
rank of the homology. For example, every non-degenerate smooth function on S1 × S1 must
have at least 4 critical points. 1

1Non-degeneracy is important here. There are smooth functions on the torus with 3 critical points.
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This ability of Morse homology to find critical points can be seen as a hook for an idea to
investigate periodic orbits of Hamiltonian flows via a similar strategy: that of considering
those orbits as critical points of a certain action functional on the loop space.

2.2 Floer homology of compact symplectic aspherical

manifolds with vanishing first Chern class

For the purposes of this section, we assume that ω|π2(M) = 0, which is to say that
∫
s
ω = 0

for any s : S2 →M , and that the first Chern class of M is zero, which will be relevant for
grading the homology.

The situation can be seen to arise from a variational principle: we consider Λ0(M)
(the connected component of the contractible orbits of the free loop space2) and, given a
Hamiltonian H on M , we define the action functional

AH : Λ0(M)→ R

x→ −
∫
u∗ω +

∫
H ◦ x,

where u is a capping disk for x. (i.e., a map from the disk which coincides with x in the
boundary.) This is possible due to the fact that x is contractible, and well-defined since M is
assumed to satisfy the requirement of ω|π2(M) = 0.

The critical points of such a functional are the periodic orbits of the Hamiltonian flow, as
can be seen by the following calculation.

Proposition 2.2.1. The critical points of AH are precisely the periodic orbits of the
Hamiltonian flow.

Proof. Let xs be a variation of x which gives rise to a variational vector field Y and a variation
v of u. Then

dAH(Y ) =
d

ds
Ah(xs) = −

∫
D2

j∗0L∂sv∗θ +

∫ 1

0

dH(Y )dt

= −
∫
D2

j∗0(dι∂sv
∗ω) +

∫ 1

0

dH(Y )dt

= −
∫
D2

d(j∗0ι∂sv
∗ω) +

∫ 1

0

dH(Y )dt

= −
∫
S1

j∗0ι∂sv
∗ω +

∫ 1

0

dH(Y )dt

= −
∫
S1

j∗0ω(∂sv∗, v∗) +

∫ 1

0

dH(Y )dt

2Of course, more care should be taken when considering the smoothness of paths, and the proper course
of action is easily seen a posteriori to be to consider a Sobolev space of curves. But this will not be relevant
here. We assume Λ0(M) to consist of smooth paths.
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=

∫ 1

0

−ω(Y, ẋ) + dH(Y )dt.

Since xs is arbitrary and therefore also Y , we have that dAH = 0 if and only if dH = ω(·, ẋ),
from which the result follows.

Following now the analogy with Morse theory, we would like to know what is the gradient
of AH so that we can study what should be the gradient flow. This is almost contained in
the previous proposition.

Proposition 2.2.2. Let g, J be a compatible Riemann metric and J-complex structure,
respectively, with the symplectic form ω. Then the gradient of AH with respect to the inner
product

〈X, Y 〉 =

∫
S1

g(X, Y )

is given by
(∇AH)x = Jẋ+∇H.

Proof. From Proposition 2.2.1, we have that

dAH(Y ) =

∫ 1

0

−ω(Y, ẋ) + dH(Y )dt

Therefore,

dAH(Y ) =

∫ 1

0

g(Y, Jẋ) + g(∇H, Y )dt

=

∫ 1

0

g(Jẋ+∇H,Y )dt

Therefore, if we are looking for the flow of −∇, we are searching for cylinders u : S1×R→
M that satisfy

∂su = −J∂tu−∇H,

i.e. solutions u for the equation

∂su+ J∂tu+∇H ◦ u = 0. (2.1)

Equation 2.1 is called Floer’s equation. We will denote the operator ∂s + J∂t +∇H by F .

It would be convenient if we could proceed a la Morse Theory, but this is not the case:
the flow of −∇AH is not well-behaved enough for that. (e.g., the indices of the critical points
can very well be infinite. Furthermore, the flow is also not globally defined.)

The workaround is to directly consider a moduli space of solutions connecting two critical
points and build the theory from there, establishing the boundary map and the fact that
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∂2 = 0, for instance. In a sense, we avoid considering the unstable manifold of a critical point
x and instead consider just the paths that converge to some other critical point.

Recall that in Morse homology we can assign indices to the critical points by taking the
largest possible number of linearly independent negative eigenvectors. Here this assignment
would not be possible, since that number is infinite in general. Instead, we assign to each
periodic orbit x an index in the following way:

� We pick a trivialization of x∗TM .

� We look at the symplectic path x̃ : S1 → Sp(2n) that the linearized flow of x gives with
respect to such trivialization.

� We take the Conley-Zehnder index of such path, and denote this by i(x). (c.f. [6].)

The fact that this does not depend on the chosen trivialization of x∗TM is due to the
vanishing of the first Chern class. This discussion of the assignment of indices exists since we
are attempting to keep a close parallel with the Morse case in this first moment. However,
we will not need the grading of the homology for our future purposes. This will become clear
later.

In any case, we now have an index assignment for the periodic orbits, and thus we can
construct a chain complex like in the Morse case: we consider Ci to be the free Z2-module
generated by the periodic orbits. We are now using Z2 coefficients to avoid further discussions
about orientation.

Now, given two periodic orbits x1, x2, define

M̃(x1, x2) := {u : S1 × R→M | Fu = 0; lim
s→−∞

u(·, s) = x1; lim
s→+∞

u(·, s) = x2}.

In other words, M̃(x1, x2) consists of the solutions of Floer’s equation which converge
uniformly to x1 as s→ −∞ and to x2 as s→ +∞. In a sense, we are looking at the negative
gradient flow, but we are restricting our attention to the ones that converge to some other
periodic orbit. It can be shown that, if H is generic in a certain sense, then M̃(x1, x2) is a
manifold with dimension being i(x1)− i(x2).

Note that if u satisfies the Floer equation, then so does u(·, c + ·) where c is constant.

Therefore, there is an R-action on M̃(x1, x2) given by such translation. This is a free (if
x1 6= x2) and proper action, and thus the quotient is a manifold, which we denote by
M(x1, x2).

It can be shown that M(x1, x2) can be compactified by adding broken orbits, which are
essentially concatenations of intermediary solutions to the Floer equation. If i(x1) = i(x2) + 1,
it follows that M(x1, x2) is already compact. Being also zero-dimensional, we have a finite
number of elements inM(x1, x2). This is what we need to define the boundary map, which is

∂i : Ci → Ci−1

x 7→
∑
y

(#M(x, y) mod 2)y.

The fact that M(x1, x2) can be compactified by adding broken orbits also proves that
∂i+1∂i = 0, establishing that this is indeed a chain complex and therefore it generates an
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homology
HF (M, (H,ω, J);Z2).

We are intentionally overloading the notation in order to point out that, a priori, the definition
of the Floer homology depends on that entire data.

These aspects of compactness (i.e. compactification by broken trajectories, the compact-
ness of the set of solutions of the Floer equation with finite energy etc) come up in the
development of other Floer-like homology theories and are important for the same reasons
that they are here. It is often a subtle issue; indeed, if we do not assume asphericity (i.e.,
ω|π2(M) = 0), then we do not have compactness of the set of Floer solutions with finite energy.
This phenomenom is usually referred to as “bubbling”, due to it being associated with the
creation of extraneous spheres under a limit process. (For more information, c.f. [6].)

The fact that M̃(x1, x2) is a manifold for a generic H is related to the issue of transversality.
Just as compactness appears many times as an important point in construction of Floer-like
homologies, transversality also does. The situation is this:

We have a map

F : C∞(S1 × R;M)→ C∞(S1 × R;TM)

u 7→ F(u).

The space C∞(S1 × R;TM) projects in C∞(S1 × R;M) by Π : U 7→ π ◦ U , where π is
the projection π : TM →M . As such, we have that Π−1(u) consists of vector fields along u.
We then have that C∞(S1 × R;TM) can be understood as a bundle over C∞(S1 × R;TM).
Let us denote this bundle by E.

Under this point of view, F is a section of E. It follows that if F is transverse to the
zero-section, then the space of solutions to the Floer equation is a manifold3, and so the issue
of transversality manifests itself.

It will also be relevant to make a quick comment regarding why

H(M, (H1, J1);Z2) ∼= H(M(H2, J2);Z2).

We can consider an homotopy Hs between H1 and H2, an homotopy Js between J1 and J2

and look at the solutions of the modified Floer equation

∂su+ Js∂tu+∇Hs ◦ u = 0.

We can, just as before, consider moduli spaces for this equation. This allows us to define
chain maps between the two chain complexes, and those end up inducing isomorphisms on
the homology level. These types of maps are called continuation maps and are important
due to several reasons, the above being only one. They also are used in the construction of
the symplectic homology which we will see in the next section.

One thing which is also worthy of notice is that we can also do a filtration in the chain
complex by considering only orbits in a given interval of action, i.e. given an interval I ⊂ R,
define

CI
i := {c =

∑
nαxα ∈ Ci | ∀xα, AH(xα) ∈ I}.

3Here it is important to consider Sobolev maps instead of smooth ones in order to have a Banach manifold,
but as previously mentioned we do not enter in technical details.
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Since the action is decreasing from one orbit to its boundaries, it follows that CI
∗ together

with ∂ is still a chain complex. Indeed, it suffices to show that δ2x = 0 for x a closed orbit,
where we are denoting the restriction of ∂ to the subcomplex by δ for clarity.. We have that

δδx = δ(
∑

nαyα +
∑̂

nβyβ)∑
nαδyα +

∑̂
nβδyβ

=
∑

nαnα′yαα′ +
̂∑
nαnα′′yαα′′ +

̂∑
nβnβ′yββ′ ,

where a hat indicates that the term is not present in the filtration due to the action of its
elements not being in I. Since ∂2 = 0, this last term without the hats is equal to 0. But since
each term under the hats must necessarily have lower action than what is not in the hat, it
follows that in order for things to cancel out,

∑
nαnα′yαα′ must itself be zero, and thus it

follows that the filtered complex is indeed a chain complex. Its homology will be denoted by

HF I(M, (H1, J1);Z2).

2.3 Grading

Although for our purposes we do not need to develop the index theory to make (wrapped)
Floer homology graded, it is nonetheless worth it to address it.

In the periodic case, the procedure is summarized as follows:

(i) Given a periodic orbit x and a capping disk u, we trivialize u∗TM , inducing a trivial-
ization on the boundary and thus a trivialization of x∗TM . Therefore, we have a path
x̃ : S1 → Sp(2n) given by the linearized flow. By the assumption of nondegeneracy,
this path ends at a matrix which does not have 1 as an eigenvalue.

(ii) Using an appropriate map ρ : Sp(2n)→ S1 that induces as isomorphism in homology
groups and has good properties, we can compose ρ with the inclusion ι : Sp(2n)∗ →
Sp(2n), where Sp(2n)∗ consists of symplectic matrices which do not have 1 as eigenvalue.

(iii) Given a path γ : [0, 1]→ Sp(2n), ρ ◦ γ lifts to a map to the universal cover of S1, which
is R. Call this lift Lγ, and define

∆(γ) :=
Lγ(0)− Lγ(1)

π
.

(iv) Having fixed matrices A+, A− on the two connected components of Sp(2n)∗, we define
the Maslov index of an orbit x to be

µ(x) := ∆(x̃) + ∆(γx̃(1),A±),

where γx̃(1),A± is a path on Sp(2n)∗ connecting x̃(1) and A±, the later depending on
which connected component of Sp(2n)∗ is x̃(1).
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Remark 2.3.1. There are some choices done in the previous construction. The choice of the
path connecting γx̃(1),A± is a nonissue because the inclusion of Sp(2n)∗ → Sp(2n) induces the
zero map on the fundamental group. This is a nontrivial topological fact of the symplectic
group which can be found in [6], along with a full description of this entire approach to
grading. Furthermore, the choice of a capping disk made in item (i) is a nonissue since we
assume that the first Chern class vanishes.

As we can see, the fundamental part is essentially the isomorphism π1(Sp(2n)) ∼= S1. We
will return to this when we discuss Floer homology from the Lagrangian point of view in the
next chapter. However, we seize the opportunity and mention that the set of Lagrangian
subspaces of R2n is diffeomorphic to U(n)/O(n), and thus also has fundamental group
isomorphic to Z.

The relationship between the (difference of) the indices and the dimension of the moduli
space is not clear at all from the above definition, but can be seen to follow from Riemann-
Roch-type procedures.

2.4 Symplectic homology of Liouville domains

We now turn to describe symplectic homology of Liouville domains, which is close to the
wrapped Floer homology context which we are ultimately aiming at. Indeed, the domain of
discourse will be the same (i.e., Liouville domains); what will change are the orbits and the
action functional.

A Liouville domain is a symplectic 2n-manifold X with boundary where the symplectic
form is given by dλ, with λ being a contact form positively-oriented on the boundary, in the
sense that λ ∧ dλn−1 > 0. Liouville domains come automatically equipped with a special
vector field Z, the Liouville vector field, determined by the equation ιZdλ = λ.

This vector field allows us to complete X with rays in order to embed it into a symplectic
manifold without boundary. We do this as follows:

� Consider the embedding Tub : ∂X × (0, 1]→ X defined by

Tub(z, 1) = z, ∂rTub(z, r) =
1

r
Z(Tub(z, r)).

This is essentially just integrating radially the Liouville vector field to parametrize a
tubular neighbourhood of the boundary of X.

� Then, glue ∂X × [1,+∞) along ∂X via Tub. More precisely, let

X̂ := X ∪Tub ∂X × (0,+∞)

and define λ̂ as

λ̂(x) :=

{
λ(x), x ∈ X
rλ(z), x ∈ ∂X × (0,+∞).

The manifold X̂ obtained above is called the completion of X. We will often refer to the
second coordinate of ∂X × (0,+∞) as the radial coordinate.
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Figure 2.1: On the left, we have the image of Tub. On the right, we have ∂X × [0,+∞). The
[0, 1) part is shown with the corresponding segments.

A Hamiltonian is said to be homology-admissible 4 if all its periodic orbits are nondegen-
erate and there exists R > 0 such that H is linear with respect to the radial coordinate when
r > R, i.e. there exists aH , bH such that H(z, r) = aHr + bH for r > R.

Before defining the symplectic homology for those Hamiltonians, we need one further
restriction: we will require that almost-complex structures J are of contact type on ∂X × I,
meaning that dr ◦ J = −λ.

Now, given an homology-admissible H, we consider the action functional

AH : Λ(X̂)→ R

x 7→ −
∫
x∗λ+

∫
H ◦ x.

A similar computation to that of Proposition 2.2.1 shows that the critical points are the
periodic orbits. Note that the actional functional is almost equal to the previous case, but
this time the fact that the symplectic form is exact simplifies it. For example, we do not need
to choose capping disks for x, nor do we need to restrict to contractible orbits. Also just as
before, given x, y periodic orbits, we have the moduli space M(x, y), which is the space of
solutions of Floer equations which converge to x, y as s→ −∞ and +∞ respectively.

As before, some restriction on the first Chern class must be imposed if a Z-grading is
desired. In any case, though, we can define the total complex

C(X̂,H) := FreeAb({Periodic orbits of XH}),
4This nomenclature is nonstandard. We introduce it due to the fact that the term admissible is overused

in the literature among different non-equivalent meanings.
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where, given a set S, FreeAb(S) stands for the free abelian group generated by S, and the
boundary map

∂x =
∑
α

nαyα,

where yα runs over all periodic orbits such that M(x, yα) is zero-dimensional, and nα is the
cardinality of M(x, yα) mod 2.

The homology of this complex will be denoted by

SH(X̂,H).

Note that the construction above does not give a grading. As mentioned, in order for a
grading to exist, we need to have some topological hypothesis related to how trivializations
behave, which is codified by the first Chern class, so that we can consistently assign indices
to the orbits.

Differently from the case of the previous section, changing H here can yield different
homologies. This is inherently related to the behaviour of the slope at infinity of H. (Recall
that our Hamiltonians must be linear at infinity.) It is now crucial then to understand what
happens when we change H, and the continuation maps alluded to in the previous section
are fundamental for that.

Let H−, H+ be two homology-admissible Hamiltonians, J−, J+ be two contact-type almost-
complex structures and (Hs, Js)s∈R be an interpolation between (H−, J−) and (H+, J+) in
the sense that for large |s|, we have Hs, Js = H±, J±. Some care should be taken: we need
this deformation to be monotone for large enough r in order for the maximum principle to
apply and deal with compactness, and we need it to be generic in order to solve the issues of
transversality. This means that for large enough r, the Hamiltonians are a radial function h
with respect to the second variable of the parametrization (z, r) and ∂sh

′
z ≤ 0 there.

We then consider the parametrized Floer equation

∂su+ Js∂tu+∇Hs ◦ u = 0.

This allows us to define a continuation map between the homologies with respect to the data
(H+, J+) and (H−, J−), by defining on the chain level

Ψ(H+,J+),(H−,J−)(x) =
∑

nαyα,

where the yα run over all periodic orbits for which the space of solutions of the Floer equation
is a 0-dimensional manifold, and nα is the cardinality of such space mod 2. Note that in this
case there is no quotient by a R-action, indeed the solutions do not respect translation on
the s-coordinate this time.

Moreover, we have the following result which can be found in [23]:

Lemma 2.4.1. With the previous context in mind, the following are true.

(i) Different interpolations induce chain homotopic maps on the chain level, and thus equal
maps in homology. More precisely, if (H1

s , J
1
s ) and (H2

s , J
2
s ) are interpolations between

(H−, J−) and (H+, J+) respecting the aforementioned asymptotic requirement, then
Ψ1

(H+,J+),(H−,J−) is chain homotopic to Ψ2
(H+,J+),(H−,J−), and thus these maps coincide

on the homology level.
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(ii) The constant interpolation induces the identity on homology.

(iii) If we have an interpolation between H− and K, and then K and H+, those interpolations
provide a composition of continuation maps

SH(X̂,H−)→ SH(X̂,K)→ SH(X̂,H+)

that coincides with ΨH−,H+ .

(iv) If H− and H+ have the same slope at infinity, then ΨH−,H+ is an isomorphism.

Note that (iv) is a consequence of the others. Indeed, since they have the same slope at
infinity, we can interpolate them in a way that is constant for large enough r, and thus the
interpolation and its reverse are both monotone. Therefore, we have

SH(X̂,H−)→ SH(X̂,H+)→ SH(X̂,H−).

By (iii), this coincides with the map originated from the constant interpolation. By (ii), this
is the identity, so (iv) follows.

If H−, H+ are two different Hamiltonians, then if their linear coefficients at infinity a−, a+,
respectively, are such that a− ≥ a+, then we have a continuation map

ΨH−,H+ : SH(X̂,H−)→ SH(X̂,H+)

by taking a monotone homotopy, which is possible due to the fact that a− ≥ a+. This tells us
that the homologies SH(X̂,H) together with the continuation maps form an inverse system.

The inverse limit of such system is defined as the symplectic homology of X̃, i.e.

SH(X̂) := lim
←
SH(X̂,H).

We should note that there are various ways of constructing symplectic homology. This
one is due to Viterbo, but one can also find others such as the one by Cieliebak-Floer-Hofer.
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Chapter 3

Wrapped Floer (co)homology

3.1 Introduction

In this chapter, we will define the wrapped Floer (co)homology. As it will become clear, it
can be seen as an adaptation of symplectic (co)homology that switches the attention towards
orbits that connect a Lagrangian to itself instead of periodic orbits.

3.2 Action functional

Let (X2n, λ) be a Liouville domain. Let Ln ⊂ X be an exact Lagrangian submanifold, i.e.,
the pull-back λ|L is exact, i.e., λ|L = df for some smooth function f , and that λ|L vanishes
near ∂L. Suppose also that ∂L = L ∩ ∂X and that ∂L is Legendrian. Similarly to the
extension of X to the completion X̂ that was done in the last chapter, we can extend L to

L̂ = L ∪ ([1,∞)× ∂L),

and f will be locally constant in L̂\L since λ|L vanishes near ∂L and we naturally extend it
to 0.

Given a Hamiltonian H : X̂ → R, a Hamiltonian chord is a path x : [0, 1]→ X̂ satisfying

Hamilton’s equation ẋ = XH and such that x(0), x(1) ∈ L̂. The space of smooth paths

connecting L̂ to L̂, i.e.

Ω(X̂, L̂) = {x ∈ C∞([0, 1],M) : x(0), x(1) ∈ L̂}

is where we define our action functional

AH : Ω(X̂, L̂)→ R

x 7→ f(x(1))− f(x(0))−
∫
x∗λ+

∫
H ◦ x.

The additional term f(x(1))−f(x(0)) when compared to the action functional in standard
Floer (co)homology (i.e., of periodic orbits) comes from the freedom of the boundary condition,
and is required for recovering the fact that the critical points are the Hamiltonian chords.
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Theorem 3.2.1. A path is a critical point for the action functional if and only if it is a
Hamiltonian chord.

Proof. By essentially repeating the proof of the case of the free loop space, we arrive at the
following formula:

dAH(Y ) =
d

ds
Ah(xs) =

d

ds
f(xs(1))− d

ds
f(xs(0))−

∫ 1

0

j∗0L∂sv∗λ+

∫ 1

0

dH(Y )dt

= λ(Y1)− λ(Y0)−
∫ 1

0

j∗0(dι∂sv
∗λ− ι∂sv∗ω) +

∫ 1

0

dH(Y )dt

= λ(Y1)− λ(Y0)−
∫ 1

0

d(j∗0ι∂sv
∗λ)−

∫ 1

0

j∗0ι∂sv
∗ω +

∫ 1

0

dH(Y )dt

= λ(Y1)− λ(Y0)− (λ(Y1)− λ(Y0))−
∫ 1

0

j∗0ι∂sω(v∗·, v∗·) +

∫ 1

0

dH(Y )dt

= −
∫ 1

0

j∗0ω(∂sv, v∗) +

∫ 1

0

dH(Y )dt

=

∫ 1

0

−ω(Y, ẋ) + dH(Y )dt,

from which the result follows.

We now define the end-point Floer cohomology in very much the same way by following
the procedure outlined below.

(i) We define the spaces Ŵ(x−, x+) of the solutions of the Floer equation

∂su+ J(∂tu−X) = 0,

this time with Lagrangian boundary conditions (i.e., u(·, 0) and u(·, 1) both belonging to

L̂), which converge in s→ ±∞ to x± and then consider the moduli spaceW(x−, x+) :=

Ŵ(x−, x+)/R, where the R-action is given by translation in the s-coordinate.

(ii) Given a field K, we define CW ∗(L,H) as the K-vector space generated by the Hamilto-
nian chords.

(iii) We define a differential in CW ∗(L,H) given by the counting with orientation sign of
the isolated trajectories connecting the elements of the basis. Explicitly, we define d on
a basis element y by

dy =
∑

u∈W0(x,y)

εux,

where W0(x, y) consists of the isolated points of W(x, y), except the constant solutions.

Remark 3.2.2. The change of defining

dy =
∑

u∈W0(x,y)

εux
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instead of
dx =

∑
u∈W0(x,y)

εuy

is what defines the difference between cohomology and homology respectively, at least as
far as basic definitions go. We opt for cohomology because this seems more natural for
our applications, since spectral invariants are defined via the (singular) cohomology of the
Lagrangian L. (Recall that singular cohomology has a distinguished element, the unit
1 ∈ H0.)

Transversality and compactness for a generic time-dependent perturbation of J both hold
true, as in the Floer case. Indeed, the wrapped Floer homology is a special case of Lagrangian
Floer homology. We make a brief commentary in the next section.

We will not enter the discussion of the orientation signs, since it suffices to consider the
homology with Z2 coefficients in our applications. We will also not use any grading on the
homology. This is possible if the relative Chern class c1(M,L) vanishes, similarly to what
occurs in the Floer case. (Of course, there it is the Chern class of the manifold in question
only.)

3.3 Lagrangian Floer Homology

Although we have explored the fundamentals of Floer homology through its focus on periodic
and brake orbits, there is an alternate more general Lagrangian approach which encompasses
both. We discuss it briefly since it will be useful in order to talk about the index in the
wrapped context and also because it is another way to be at ease with the analytical aspects
of the wrapped Floer homology instead of thinking it in terms of reproducing everything
done for the periodic case.

Let (M,ω) be a symplectic manifold with two compact Lagrangians L0, L1 that intersect
transversally. We again make an assumption of asphericity on M . We can consider the space
of paths

Ω(L0, L1) := {γ : [0, 1]→M | γ(0) ∈ L0, γ(1) ∈ L1}.
Fixed some α ∈ Ω(L0, L1), we take Ω(L0, L1;α) to mean the connected component that

contains α. Consider the universal covering Ω̃(L0, L1;α) of Ω(L0, L1;α),. By using the usual

construction of the universal covering, we can see elements of Ω̃(L0, L1;α) as homotopy

classes, and thus an element of Ω̃(L0, L1;α) can be represented by a pair J(γ, h)K, where
h : [0, 1]× [0, 1]→M is such that h(s, ·) ∈ Ω(L0, L1; γ) for all s, h(0, ·) = α and h(1, ·) = γ.

The action functional is then defined as the symplectic area of w. More specifically,

A : Ω̃(L0, L1;α)→ R

J(γ, h)K→
∫
h∗ω.

Assuming for simplicity that the Lagrangians are simply connected, it is relatively straight-
forward to conclude that A is well-defined. 1 If we want to compute the critical points, we

1If this were not the case, then we would need to make an adaptation for the space Ω̃(L0, L1;α).
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see that after fixing some compatible structure g, J we get

dA(γ,h)(Y ) =

∫ 1

0

ιY ω(∂tγ, ·)dt

=

∫ 1

0

ω(∂tγ, Y )dt

=

∫ 1

0

g(∂tγ,−JY )dt.

=

∫ 1

0

g(J∂tγ, Y )dt,

so that J(γ, h)K is a critical point if and only if J∂tγ = 0, which is to say that γ is constant,
meaning that γ is actually an intersection point between L0 and L1. Not only that, but the
above computation shows us that the L2-gradient of the actional functional is given by

J∂tγ,

so that the equation for the minus gradient flow becomes

∂su+ J∂tu = 0,

which is just a Cauchy-Riemann equation, contrasted to the Floer equation, which is a
perturbed Cauchy-Riemann equation.

The solutions of this Cauchy-Riemann equation with the appropriate boundary require-
ments are called J-holomorphic strips, and are the analogues of the Floer equation’s solutions
in the periodic case.

We now establish the relationship between this construction and the traditional (periodic)
Floer homology, and also the wrapped Floer homology.

Perhaps simpler is the relationship with the wrapped Floer homology. Indeed, it is
equivalent to the Lagrangian Floer homology with the Lagrangians L and φ1

H(L), where φ1
H

is the time-one flow map generated by the Hamiltonian flow of H.

The (periodic) Floer homology can be recovered by taking the Lagrangians on M ×M
instead, with one Lagrangian being the diagonal and the other being the graph of the time-one
flow, i.e. the set {(x, φ1

H(x)) | x ∈M}.

3.4 Grading

We will present two alternatives for the index: one is more directly related to the idea of
winding number of the previous chapter, and the other is related to the counting of regular
crossings.

The first one is as follows: First we consider the case of a compact surface with boundary
S and a pseudo-holomorphic curve u : S → M which takes its boundary components Ci
to Lagrangians Li, we consider the pull-back bundle u∗TM . This is a complex bundle.
The Maslov indexes of the restriction of this bundle to the boundary components impose a
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quantifiable condition on whether the subbundles u∗TLi over the boundary components Ci
are trivializable or not. To be explicit, let Ci be a boundary component. Then a trivialization
of u∗TM yields a map ũi : Ci → L(Cn) given by taking x to the representation of u∗TLi on
this trivialization. This yields a loop on L(Cn), and the integer associated to it under the
isomorphism µ : π1(L(Cn))→ π1(S1) is the index which we are associating to Ci.

An holomorphic strip is a map from S = R × [0, 1] to M , and thus we are not exactly
in the same situation as above. We adapt the index to this situation as follows: letting the
boundaries R× {0} and R× {1} be denoted by B0 and B1 respectively, it is clear that both
are lines instead of circles as per the case we mentioned above. Choosing a trivialization of
u∗TM such that the induced ones of u∗TL0 and u∗TL1 are constant for |s| > R for some big
enough R, we can build a loop on L(Cn) in the following way:

(i) Truncate the map u to some region |s| < R′ such that R′ > R. Effectively, what we are
doing is restricting to a manifold with boundary (actually, corners) in order to adapt
the situation described above.

(ii) Once done so, there are two obvious paths of Lagrangians: the restrictions of u to
the top interval and the bottom interval. What is left to be done is an interpolation
between both in order to give a loop on L(Cn).

(iii) In order to do this interpolation, we take the pseudo-complex structure J on M in
such a way that JTxL0 = TxL1 in TxM and JTyL0 = TyL1 in TyM , where x, y are the
asymptoptic points of the holomorphic strip. Then, we just interpolate via

exp((−tπ/2)J)TxL1

in the left side of the strip (the one that converges to x) and

exp((tπ/2)J)TxL0

in the right side (the one that converges to y).

With this done, we have a loop on L(Cn), and we assign to a given holomorphic strip u
with asymptoptics x, y the index µ(x, y, u) being the Maslov index of this loop. (c.f. [19].)

Setting aside the technical aspects of dependency on the holomorphic strip u, note that this
construction does not assing an index to a given intersection point. It assigns an index having
chosen two points, so this is only responsible a priori for indirectly computing the dimension
of the moduli space. In other words, it gives a relative index. In order to grade the homology
properly, we of course need some index-like function ν such that ν(x)− ν(y) = µ(x, y).

In order for this to be possible, the dependency on u must be addressed. It turns out
that by taking different u’s, the index µ(x, y, u) changes by factors depending on the Maslov
classes of the two Lagrangians and the first Chern class of TM . So under the hypothesis that
all those vanish, then we can grade the homology. (For more information, c.f. [20].)

Now let us briefly discuss the alternate point of view related to crossings. This is useful
since it touches upon the concept of the Robin-Salamon index, which allows us to talk about
indices for a great range of paths which can allow degeneracies, for example, and are applicable
to other situations. Recalling that we wish to assign to a path of Lagrangians on Cn an index,
we proceed as follows:
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(i) Let Λ0,Λ1 be Lagrangians and suppose without loss of generality that Λ0 = Rn × {0}.
Then Λ1, which we assume to complement Λ0 in the sense of Cn = L0 ⊕ L1, can be
written as

Λ1 = {(Bx, x) | x ∈ Rn}

for some real symmetric linear map B : Rn → Rn.

(ii) Let now Λ : (−ε, ε)→ L(Cn) denote a path of Lagrangians and A : (−ε, ε)→ Sym(n)
be a path of symmetric linear operators on Rn such that

Λ(t) = {(x,A(t)x) | x ∈ Rn}.

Since Cn = Λ0⊕Λ1, it follows that for each (x, 0) ∈ Λ0 there is a unique xt ∈ Λ(t) such
that x = (x, 0) + xt if ε is small enough.

(iii) Using the above, we can define the functional

Qt((x, 0)) = ω((x, 0), xt),

where ω is the canonical symplectic form on Cn.

(iv) In a similar way to item (ii), we can find using item (i) for each t a unique yt ∈ Rn

such that xt = (Byt, yt), so that

(x, 0) + xt = (x+Byt, yt),

and thus by the defining property of A we have the equation yt = A(t)(x + Byt).
Differentiating this with respect to t we get that ẏ0 = Ȧ(0)x. Also, we have

Qt((x, 0)) = ω((x, 0), xt)

= ω((x, 0), (Byt, yt))

= ω((x, 0), (yt − A(t)x, yt))

= 〈(0, x), (yt − A(t)x, yt)〉
= 〈x, yt〉,

so that the derivative of Qt with respect to t at 0 is 〈x, Ȧ(0)x〉. We will call this value
ΩΛ, noting that it only depends on Λ.

(v) Now, given a Lagrangian V ∈ L(Cn) and a Lagrangian path L, we define the crossing
form

C(L, V, t) := ΩL(t+·)|V ∩L(t).

The Robbin-Salamon index of the path L is then defined as

µRS(L, V ) =
1

2
(sgn(C(L, V, 0)) + sgn(C(L, V, T ))) +

∑
0<t<T

sgn(C(L, V, t))

in case all crossings are regular, so that the sum in the above expression is finite.
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Returning to the context of wrapped Floer homology, given a contractible brake orbit c
connecting x and y, we can consider a capping half-disk, i.e. a map u : (D+, D+

R )→ (X̂, L̂).
where D+ is the closed upper half disk of the complex plane and D+

R is its intersection with
the real numbers and the mapping notation means, as usual, that D+

R is sent to L, such that

u restricted to the upper half circle is x. We then trivialize c∗TX̂ such that the Lagrangian
TxL0 corresponds to Rn ⊂ Cn and then, if x is nondegenerate, define the index of x as

µ(x) = µRS(ΨcTxL0, TxL0),

where Ψc is the path of symplectic matrices on the trivialization given by the linearized
Hamiltonian flow, and we are making a slight abuse of notation in reusing TxL0 to mean its
realization in the trivialization.

One immediate question is: in the case where we have a symmetric Hamiltonian H,
as is our case of interest, how does the index of the brake orbit relate to the index of the
associated periodic orbit? The answer is given by the following proposition proved in [16],
[13]. (Proposition 4.3. of [13] .)

Proposition 3.4.1. If c is a nondegenerate brake orbit connecting x and y and α is its
associated periodic orbit, then

µ(α) = µ(ΨTxL0, TxL0) + µ(Ψ−cTyL1, TyL1).

3.5 Examples

We will have two main examples in mind in this dissertation regarding the Liouville domain
X: that of the sublevel set of a Hamiltonian of the form kinectic energy plus potential energy
on the cotangent bundle and L being the zero section, and the cotangent unit disk bundle
with L being the conormal bundle of a given submanifold of the base manifold. To be more
specific, in this last example we want to focus on the conormal bundle of fixed point sets of
involutions of the base manifold. As we show next, this lifts to the conormal bundle being
the fixed point set of an anti-symplectic involution of the cotangent bundle.

Proposition 3.5.1. Let K ⊂M be the fixed point set of a smooth involution g : M →M
and assume that K is non-empty. Then g̃ = flip ◦ g# : T ∗M → T ∗M 2 is an anti-symplectic
involution which has as fixed-point set the conormal bundle of K, where g# denotes the lift
map of a diffeomorphism g given by g#(x, v) = (g(x), (dg∗)−1v).

Proof. The map g̃ is given by
(x, dg∗ξ) 7→ (g(x),−ξ).

It is clear that g̃ is an anti-symplectic involution. It is also evident that if (x, p) is a fixed-point,
the first component must be an element of K.

On the other hand, ξ must satisfy

ξ = −ξ(dg·).
2The map flip is defined by flip : T ∗M → T ∗M , (x, p) 7→ (x,−p).
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Since g is an involution, dg is an involution, hence can be diagonalizable since its characteristic
polynomial is X2 − 1. Moreover, all the eigenvalues are either 1 or −1, with the 1’s being
associated with the elements of TxK.

We will show that ξ|TqK must be zero. Indeed, if v ∈ TqK then ξ(v) = −ξ(dgv) implies
ξ(v) = −ξ(v), hence ξ(v) = 0.

Conversely, if ξ|TqK = 0, then letting v+
i denote the eigenvectors with eigenvalue +1 and

v−j denote the eigenvectors with eigenvalue −1, we get

ξ(
∑

aiv
+
i +

∑
ajv
−
j ) = ξ(

∑
ajv
−
j )

= −ξ(
∑

ajdg(v−j ))

= −ξ(dg(
∑

ajv
−
j ))

= −ξ(
∑

aiv
+
i + dg(

∑
ajv
−
j ))

= −ξ(
∑

aidg(v+
i ) + dg(

∑
ajv
−
j ))

= −ξ(dg(
∑

aiv
+
i +

∑
ajv
−
j )),

so that the equation required of ξ is satisfied. This establishes the proof.

This case is of geometric interest since, for example, if we let the Hamiltonian be the
kinectic energy, then brake orbits in this example constitute geodesics which have projections
on the base manifold leaving and arriving at K orthogonally.

In the context of the previous discussion, we will refer to the conormal bundle of K as
N ∗K.
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Chapter 4

Symmetric Capacity

Different notions of capacities are of central importance in symplectic topology. As explained
in the introduction of this dissertation, one key example is the Hofer-Zehnder capacity.
The symmectric capacity is essentially just an adaptation of this notion that takes into
consideration the symmetry ϕ of a symmetric symplectic manifold (M,ϕ).

In this chapter, we introduce its definition and also investigate the case of closed surfaces.
Furthermore, we make sure to check that the fundamental result that relates finiteness of the
capacity of a thickening with the existence of a full-measure set of values possessing brake
orbits in its level-sets is true, which is an adaptation of the well-known case of closed orbits.

Let us establish the following notation:

Definition 4.0.1. A symmetric symplectic manifold is a quadruple (M,L, ω, ϕ), where (M,ω)
is a symplectic manifold and ϕ is an anti-symplectic involution with non-empty fixed-point
set L.

4.1 Definition and basic properties

We have the following definition given in [15].

Definition 4.1.1. For a symmetric symplectic manifold (M,L, ω, ϕ) , possibly with boundary,
we define the set of ϕ-admissible Hamiltonians, denoted here by Ha(M,L, ω, ϕ), to be the
set of C2 functions satisfying the following properties.

(i) There is a compact set K ⊂ M depending on H such that K ⊂ int(M) and H is
constant equal to its maximum outside K.

(ii) There exists an open set O, also depending on H, which intersects L and where H is
constant and equal to 0.

(iii) H ≥ 0.

(iv) H ◦ ϕ = H.

(v) H is ϕ-slow, which is to say that all brake orbits are either constant or have minimal
period greater than 1.
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We can then define the symmetric capacity of (M,L, ω, ϕ) to be

cϕ(M,L, ω, ϕ) := sup{max(H) | H ∈ Ha(M,L, ω, ϕ)}.

Note that there are mainly three main factors which distinguish the symmetric capacity as
defined above from the Hofer-Zehnder capacity as commonly defined in the literature. (Fcf.
[11], for instance.)

The more subtle one is perhaps that we demand that the open set where H attains its
minimum intersects L. The two other ones are more natural: we demand H to be invariant
under ϕ and for it to be slow relative to brake orbits.

We should note that this definition, as is, attributes to every closed symmetric manifold
(M,L, ω, ϕ) an infinite symmetric capacity.

For example, consider the unit sphere S2 with its canonical symplectic form given by its
volume form as a submanifold of R3, with ϕ(x, y, z) = (x, y,−z). Then, the Hamiltonian
H(x, y, z) = λ(z)z2, where λ(z) is a smooth real function which is zero at a neighbourhood
of zero, symmetric and non-decreasing in the positive reals, is such that all the closed orbits
are given by circles of latitude, and the equator and a small neighbourhood of it consists of
constant orbits.

As such, H is trivially ϕ-slow, since there are no brake orbits except the constant ones. It
is also clear that H satisfies all other requirements. The same holds true for aH, where a is
any positive real number. It follows that cϕ(S2, S1, ω, ϕ) = +∞.

We now prove that this is true for any closed symmetric manifold.

Theorem 4.1.2. If M is a closed symmetric manifold, then cϕ(M,L, ω, ϕ) = +∞.
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Proof. By Weinstein’s Lagrangian neighbourhood theorem1, there is a neighbourhood U of L
which is symplectomorphic via some g to a neighbourhood U ′ of the zero section of T ∗L and
L is taken to the zero-section under g. Define

K : U ′ → R;

(x, p) 7→ λ(p)‖p‖2,

where λ is real smooth function which is non-decreasing in [0,+∞), symmetric, 0 at a small
neighbourhood of 0 and constant equal to 1 outside a small enough interval.

K ◦ g defines a function on U which can be extended smoothly to a function H̃ on M
by making it constant equal to 1 U . Then, letting H := H̃ + H̃ ◦ ϕ we still have that
H−1(0) = L and L consists of critical points of H. Since orbits stay in a level-set of a
time-independent Hamiltonian, it follows that an orbit in any other level-set of H except
H−1(0) will not intersect L, and thus there are no brake orbits there. On H−1(0), all points
are critical points. Therefore, H is slow. It trivially satisfies all other requirements for being
a ϕ-admissible Hamiltonian. Likewise, aH is also ϕ-admissible for every a > 0, and it follows
that cϕ(M,L, ω, ϕ) = +∞.

Note that in the examples we treat in this dissertation (i.e., Liouville domains), we
are dealing with manifolds with boundary. The further assumption that we make that
∂L = ∂M ∩ L makes it so that the maximum of a ϕ-admissible Hamiltonian is attained on
L. Since the Hofer-Zehnder capacity hopes to find orbits by increasing the oscillation of the
Hamiltonian, it is sensible in our case of brake orbits to require that the maximum is attained
on L in case it is not automatic, as it is the case for a compact manifold with no boundary.
So we propose the following definition.

Definition 4.1.3. For a symmetric symplectic manifold (M,L, ω, ϕ), possibly with boundary,
we define the set of ϕ-strongly-admissible Hamiltonians, denoted here by Hstr

a (M,L, ω, ϕ), to
be the set of C2 functions satisfying the following properties.

(i) There is a compact set K ⊂ M depending on H such that K ⊂ int(M) and H is
constant equal to its maximum outside K.

(ii) There exists an open set O, also depending on H, which intersects L and where H is
constant and equal to 0.

(iii) H ≥ 0.

(iv) H ◦ ϕ = H.

(v) max |LH = maxH and H(L) = [0,maxH].

(vi) H is ϕ-slow, which is to say that all brake orbits are either constant or have minimal
period greater than 1.

Likewise, we define the strong symmetric capacity as

cstrϕ (M,L, ω, ϕ) = sup{m(H) | H ∈ Hstr
a (M,L, ω, ϕ)}.

1We actually only need the tubular neighbourhood theorem, since the fact that the diffeomorphism is a
symplectomorphism is irrelevant to the argument.
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This definition makes it so that the case of a closed manifold does not degenerate as we
have seen in Theorem 4.1.2.

Just as in the non-symmetric case, we can filter the capacity by relative homotopy class.
Namely, we can make the following definition:

Definition 4.1.4. Given a relative homotopy class of paths JγK in (M,L), we define

cϕ(M,L, ω, ϕ, JγK) = sup{m(H) | H ∈ Ha(M,L, ω, ϕ, JγK)},

where H ∈ Ha(M,L, ω, ϕ, JγK) is the space of those Hamiltonians which satisfy all required
properties to be ϕ−admissible, except that the ϕ-slow property is only required to hold on
paths which are in the same homotopy class as JγK.

Likewise, we define cstrϕ (M,L, ω, ϕ, JγK) in a similar way.

Using the fact that the symmetric capacity of the unit disk is π (c.f. [15], [26]) helps us
define in a relevant way a symmetric Gromov capacity as follows.

Definition 4.1.5. The symmetric Gromov capacity cgrϕ of a symmetric manifold (M,L, ω, ϕ)
is defined as the supremum of the capacities of the balls B2n(r) of the same dimension which
can be equivariantly simpletically embedded in M .

In this case, there is a filtration of the symmetric Gromov capacity that does not exist
in the non-symmetric case: we can filtrate it by the connected components of L. Since an
equivariant embedding f must preserve fixed points and the fixed-point set of the involution
on the disk is connected, f must send the fixed-point set of the involution on the disk to
some connected component of L. This allows us to make the following definition.

Definition 4.1.6. Given a connected component Li of a symmetric manifold (M,L, ω, ϕ),
we define the symmetric Gromov capacity with respect to Li, c

gr
ϕ,Li

, as the supremum of the
capacities of the balls B2n(r) of the same dimension which can be equivariantly simpletically
embedded in M such that the fixed point set of the involution in B2n(r) is taken into Li.

It might be worthy to point out that it is always possible to embed some ball equivariantly
around any given connected component Li. In the non-symmetric case this follows directly
from Darboux’s theorem. In the symmetric case this follows from the Weinstein’s Lagrangian
neighbourhood theorem.

Similarly to the standard case, finiteness of the symmetric capacity of a neighbourhood of
a regular energy-level also establishes the existence of brake orbits in a dense set. (Actually a
full-measure set.) We prove this in the next propositions, which follow closely the ideas in [29],
which were discovered by Macarini and Schlenk. ([17].). The proof of this next proposition
can also be found in [15].

Proposition 4.1.7. Let (M,L, ϕ, ω) be a symmetric manifold and H : M → R be a C2

symmetric Hamiltonian such that 1 is a regular value for H such that H−1(1) ∩ L 6= ∅
transversely. Let Sλ := H−1(λ). Given a small enough neighbourhood U of H−1(1) such that
the modified gradient flow (for some chosen metric) foliates U with regular energy levels with
energies belonging in some interval I = (1− ε, 1 + ε), if cϕ(U,U ∩ L) <∞, then there is a
dense set D for which every λ ∈ D is such that Sλ possesses a brake orbit.
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Proof. Let δ < ε and choose a smooth real function f : R→ R for which

f(s) = cϕ(U,U ∩ L) + 1 for s ≤ 1− δ and s ≥ 1 + δ

f(s) = 0 for 1− δ/2 ≤ s ≤ 1 + δ/2

f ′(s) < 0 for 1− δ < s < 1− δ/2
f ′(s) > 0 for 1 + δ/2 < s < 1 + δ.

Letting F := f ◦H, it is clear that F satisfies properties (i), (ii), (iii), (iv) for an admissible
Hamiltonian. Since max f > cϕ(U,U ∩L), we must have that f does not satisfy property (v),
i.e. it is not ϕ-slow, therefore admitting a non-constant brake orbit x with minimal period
lesser than or equal to 1.

The Hamiltonian vector field XF for F satisfies

XF (x) = f ′(H(x)) ·XH(x)

and we have that H(x(t)) is constant, say equal to some λ. Indeed,

(H ◦ x)′(t) = dHx(t)(x
′(t))

= ω(x′(t), XH(x(t))

= ω(XF (x(t)), XH(x(t))

= ω(f ′(H(x))XH(x(t)), XH(x(t)))

= 0.

Since XF (x) = f ′(H(x)) ·XH(x) and x is not a constant solution, we must have f ′(H(x(t))) 6=
0, and thus f ′(λ) 6= 0, which tells us that λ is either on (1− δ, 1− δ/2) or (1 + δ/2, 1 + δ)
by our requirements on f , which implies that |λ − 1| < δ. Letting τ := f ′(λ) we can now
reparametrize x in order to get a brake orbit for H: Define

y(t) := x(t/τ).

Then

y′(t) =
1

τ
x′(t/τ)

=
1

τ
f ′(H(x(t/τ))XH(x(t/τ))

= XH(x(t/τ))

= XH(y(t)),

thus establishing that y is indeed an orbit of the Hamiltonian flow of H. Note that a
reparametrization of a brake orbit is a brake orbit. So, y is a brake orbit on Sλ. Since
|λ− 1| < δ and δ < ε is arbitrary, the result follows.

As a corollary, we have that given a regular value λ of H for which H−1(λ) ∩ L 6= ∅
transversely, then there is a sequence λj → λ which consists of values for which their level
sets have brake orbits. This sets up the next proposition, which is intended to understand
when those brake orbits can give rise to a brake orbit in H−1(λ) itself.
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Proposition 4.1.8. Consider the local thickening as in Proposition 4.1.7 and λ a regular
value of H. Take a sequence λj → λ which consists of values for which their level set has
brake orbits. Choose for each such λj a brake orbit xj with period Tj. If these periods are
uniformly bounded by some C, then there is a brake orbit in Sλ which has period T ≤ C.

Proof. Let g be a Riemannian metric on M . Since XH is non-zero with constant norm on
H−1(1), it follows that we can shrink U in order to guarantee that there exists a constant C
for which

C−1 ≤ ‖XH(x)‖ ≤ C

for all x ∈ U . Letting L be the length of a path according to g, we get that

C−1 · Tj ≤ L(xj) ≤ C · Tj

for all j. Let yj(t) := xj(T · t), i.e. the orbits xj with normalized period equal to 1. Note
then that

ẏj(t) = TjXH(yj(t)). (4.1)

The hypothesis implies then that the family yj is equicontinuous. It is also pointwise relatively
compact, since S is compact and the yj lies from some point forward in a small tubular
neighbourhood of S. It follows from the Arzelà-Ascoli theorem that there exists a subsequence
of yj that converges uniformly to some y. By passing to subsequences successively, we can
find a further subsequence of y such that the periods Tj converge to some T . In order not to
overload indices, we will call this subsequence yj.

Then, note that by equation 4.1 we have locally that

‖ẏn(t)− ẏm(t)‖ = ‖TnXH(yn(t))− TmXH(ym(t))‖
= ‖TnXH(yn(t))− TnXH(ym(t)) + TnXH(ym(t))− TmXH(ym(t))‖
≤ Tn‖XH(yn(t))−XH(ym(t))‖+ ‖XH(ym(t))‖ · |Tn − Tm|.

Therefore, ẏj also converges uniformly and it follows that the convergence of yj to y is actually
C1. Since yj(1) = yj(0), it follows that y(1) = y(0) and thus y has period 1. Also, considering
the C1 convergence and equation 4.1, we have

ẏ(t) = TXH(y(t)).

So it suffices to show that T 6= 0, so that we can reparametrize y to give an orbit for Xh.

Suppose T = 0. If that were the case, then y is a constant orbit since ẏ = 0. Let y∗

denote the point representing such constant orbit. Let V = XH(y∗). The fact that S is a
regular energy level implies that V 6= 0. Since XH(yj(t)) → XH(y∗), we have that given
1 > ε > 0, in local coordinates

〈XH(yj), V 〉 ≥ (1− ε)‖V ‖2

for all sufficiently large j. Fix any such j. Therefore

T−1
j 〈ẏj, V 〉 ≥ (1− ε)‖V ‖2.

27



Since given a path connecting two different points of a manifold there is a chart containing
the path, we can pick a chart containing the path yj up to a time k arbitrarily close to t = Tj .
Then, by integrating up to k, we get∫ k

0

T−1
j 〈ẏj, V 〉 ≥ k(1− ε)‖V ‖2

=⇒ T−1
j 〈yj(k)− yj(0), V 〉 ≥ k(1− ε)‖V ‖2.

Since this holds for every k < Tj, by computing the limit as k → Tj we get

0 ≥ Tj(1− ε)‖V ‖2,

which is an absurd since V 6= 0.

We now have what is needed to refine Proposition 4.1.7, concluding that we can have D
as in the conclusion of that proposition to be a set of full measure. This result has been
proved in the non-symmetric case by Macarini and Schlenk ([17]) and the symmetric case
follows the exact same proof, mutatis mutandis.

Proposition 4.1.9. Consider the thickening as in Proposition 4.1.7 and S = {x ∈ M |
H(x) = 0}.2 If cϕ(U,U ∩L) < +∞, then there exists a subset Λ ⊂ I of full Lebesgue measure
such that for every λ ∈ Λ, Sλ carries a brake orbit.

Proof. Since we will use the capacity several times, we will denote cϕ(U,U ∩ L) simply by
cϕ(U).

Let Λn ⊂ I be the set of values on I for which Sλ carries a periodic solution with period
0 < T ≤ n. Proposition 4.1.8 implies that Λn is closed, thus measurable. Therefore it follows
that Λ is also measurable, since it is the (countable) union of all Λn’s. Let

Uα :=
⋃
|λ|<α

Sλ ∩ U = {x ∈ U | −α < H(x) < α}.

The function

C : I → R
α 7→ cϕ(Uα, Uα ∩ L)

is monotone due to the monotonicity property of the symmetric capacity. It follows that C
is differentiable almost everywhere. Therefore, for almost every α∗ ∈ I, we have that there
exists K ′ and a sufficiently small neighbourhood Vα∗ = (α∗ − δ, α∗ + δ) such that

cϕ(Uα)− cϕ(Uα∗) ≤ K ′(α− α∗).

for all α ∈ Vα∗ , and therefore

cϕ(Uα) ≤ K ′(α− α∗) + cϕ(Uα∗).

2The value being zero is of course just for simplification. If the value was something else, we could just
translate H.

28



Since C is bounded, it follows that

K := max{K ′, sup
α≥α∗+δ

{cϕ(Uα)− cϕ(Uα∗)

α− α∗
}},

is a real number. Therefore, for α ∈ Vα∗ ,

cϕ(Uα) ≤ K ′(α− α∗) + cϕ(Uα∗) ≤ K(α− α∗) + cϕ(Uα∗)

and for α ≥ α∗ + δ,

cϕ(Uα)− cϕ(Uα∗)

α− α∗
≤ K

=⇒ cϕ(Uα) ≤ K(α− α∗) + cϕ(Uα∗).

So, we have that for every α > α∗ − δ,

cϕ(Uα) ≤ K(α− α∗) + cϕ(Uα∗).

It is useful to recall here that K and δ depend on α∗, which is a point where cϕ is differentiable.

We will show in a separate lemma (Lemma 4.1.10), using the above estimate, that if cϕ is
differentiable at α∗ and B is an interval with α∗ as one of its endpoints, then either α∗ or the
other end of the interval B belong to Λ.

Assume m(Λ) < m(I), and thus m(I\Λ) > 0. Let A := I\Λ, and consider f = 1A. By
Lebesgue’s differentiation theorem (c.f. [24]), the set of those x for which

lim
J→0

∫
J
f

µ(J)
6= f(x),

where the J ’s are intervals around x, is of null measure. Therefore, since µ(A) 6= 0, there is
some x ∈ A for which the limit is equal to f(x), which is 1.

It follows that for every δ > 0, we can find a small enough interval J such that∫
J
f

µ(J)
≥ 1− δ,

i.e.
µ(A ∩ J) ≥ (1− δ)µ(J).

So, consider now cJ to be the midpoint of J and ψ to be reflection with respect to this
midpoint. By the preceding observations, the measure of the set

{x ∈ J ∩ (cJ ,+∞) | x or ψ(x) belong to Λ}

is precisely half of the measure of J , so

m(J ∩ Λ) ≥ m(J)

2
.

Choosing δ sufficiently small (for example, less than 1/3), we then have that

m(J) = m(J ∩ A) +m(J ∩ Λ) ≥ (1− δ + 1/2)m(J) > m(J),

a contradiction.
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Let us now show the required lemma of the previous proof.

Lemma 4.1.10. With the notation as in the proof of Proposition 4.1.9, if C is differentiable
at α∗, then α∗ or −α∗ belong to Λ.

Likewise, the same result holds for symmetry around another point instead of 0. Explicitly,
if α∗ − c and α∗ − 2c belong to I, then either α∗ or α∗ − 2c belong to Λ.

Proof. As in the previous proposition, we omit the Lagrangian U ∩ L in the notation of the
symmetric capacity.

Recall that if C is differentiable at α∗, then there exists δ > 0 and K such that

cϕ(Uα) ≤ cϕ(Uα∗) +K(α− α∗) (4.2)

for all α > α∗ − δ.
Fix α∗. For α > α∗, we have by definition of the symmetric capacity that there exists

some symmetric-Hofer-Zehnder-admissible Hamiltonian G on Uα∗ for which

maxG > c(Uα∗)− (α− α∗).

Choose now a smooth function f : R→ R for which

f(x) =

{
c(Uα) + (α− α∗), s ≤ −α and s ≥ α,

m(G), s ∈ [−α∗, α∗]

and such that it has negative derivative on (−α, α∗) and positive derivative on (α∗, α).
Moreover, we require that |f ′(s)| < K + 3, which can be done and due to (4.2) this same
requirement on the modulus of f ′ can be done for any α > α∗. Now, define F : M → R by

F (x) =

{
f ◦H(x), x /∈ Uα∗
G(x), x ∈ Uα∗ .

Then F is obviously symmetric-Hofer-Zehnder admissible and m(F ) = c0(Uα) + (α− α∗) >
c0(Uα). It follows that F has some fast brake orbit x, i.e. a non-constant brake orbit with
period less than or equal to 1. G on the other hand does not have a fast brake orbit, so the
fast brake orbit x of F must lie on Uα\Uα∗ . Since there F = f ◦H, we have that

XF = (f ′ ◦H)XH

on that region. As a consequence, H is constant on x, so x must lie on Sλ or S−λ for
some λ ∈ (α∗, α) and |f ′ ◦H(x(t))|, which is some constant τ , is such that 0 < τ < K + 3.
Reparametrizing x by y = x(t/τ), we have that y is a brake orbit of H with period smaller
than or equal to K + 3.

So we found, for a given α > α∗, a brake orbit on Sλ or S−λ for some λ ∈ (α, α∗) which
has period less than K+3. Since α > α∗ is arbitrary, we can take a sequence of such λj → α∗.
We can now pick a subsequence of that sequence for which all of its terms are such that the
brake orbit is either on Sλj or S−λj . So, by Proposition 4.1.8, it follows that either α∗ or −α∗
belong to Λ.

In order to verify the last assertion of the proposition, it suffices to analyze change our
Hamiltonian H to H − α∗ + c and apply the theorem for c instead of α∗. Indeed, we have
that either c or −c belongs to Λ, and those values give H(x)− α∗ + c = c =⇒ H(x) = α∗

and H(x)− α∗ + c = −c =⇒ H(x) = α∗ − 2c.
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4.2 Surfaces

The case of surfaces, as in the non-symmetric case, allows for significant reduction from the
symplectic to the topological.

The first manifestation of this can be seen by the fact that a orientation-reversing involution
is always anti-symplectic. Before proving this, we will show some examples of symmetric
symplectic surfaces (M,L, ω, ϕ).

Example 4.2.1 (Sphere). Take M = S2, ω the standard area form on S2 and ϕ = (x, y, z) 7→
(x, y,−z). Then L = S1 as in Figure 4.1

Figure 4.1: Sphere with vertical reflection as involution.

Example 4.2.2 (Torus). Take M as an embedding of the torus in R3 as in Figure 4.2, with
ω being the induced area form, together with ϕ being ϕ = (x, y, z) 7→ (x,−y, z). Then L is
the union of two circles.

Figure 4.2: Torus with horizontal reflection as involution.

Example 4.2.3 (Rhombic torus). Taking M again as the torus, but instead consider it as
the square I × I with opposite sides identified as usual, ω the standard area form as inherited
by R2 and take ϕ as the orthogonal reflection along this diagonal. Then L is just one circle,
and in the usual visualization as a doughnut we have Figure 4.3.
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Figure 4.3: Rhombic torus seen as a doughnut.

Example 4.2.4 (Higher genus surfaces). The reflections obviously work well for higher genus
surfaces embedded in R3 in symmetric ways. For instance, we can take a vertical (as in
Figure 4.4) or horizontal (as in Figure 4.5) reflection on a genus-two surface.

Figure 4.4: Genus-two surface with vertical reflection.

Figure 4.5: Genus-two surface with horizontal reflection.

Proposition 4.2.5. Let (M,ϕ) be a compact connected surface together with an orientation-
reversing involution ϕ. Then ϕ is anti-symplectic.

Proof. We have that ϕ∗ωp = λϕ(p)ωϕ(p) for some real number λϕ(p) for each p. Since ϕ2 = Id,
then

ω = λ2ω.

Since ω is nondegenerate and M is connected, it follows that λ = ±1. Since ϕ reverses
orientation, it is −1.

In the same vein of reducing the symplectic case to the topological, we introduce the
following specialized version of the Moser theorem.
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Theorem 4.2.6. Let α, β be volume forms in a symmetric compact manifold M such that
ϕ∗α = −α and ϕ∗β = −β and ∫

M

α =

∫
M

β.

Then, there exists a self-diffeomorphism f for which f ∗β = α and

f ◦ ϕ = ϕ ◦ f.

Proof. Since
∫
M
β−α = 0, we have that α−β is exact, i.e. β−α = dθ for some n− 1-form θ.

The usual proof of the Moser theorem proceeds by taking the vector field Xt that represents
−θ considering the family of volume forms ηt := (1− t)α + tβ in the sense that

ιXtηt = −θ

and integrates it to find that at time 1 it satisfies what is needed. We adapt this proof by
changing θ to

Ω :=
1

2
(θ − ϕ∗θ) .

Note that applying ϕ∗ to both sides of the equation

β − α = dθ

yields that
−β + α = dϕ∗θ,

therefore

dΩ =
1

2
(dθ − dϕ∗θ)

=
1

2
(β − α + β − α)

= β − α

and it is immediate that ϕ∗Ω = −Ω. So, let Xt be defined by

ιXtηt = −Ω.

Due to Cartan’s formula, letting φt be the flow of Xt, we have that

d

dt
(φt)∗ηt = (φt)∗

(
LXtηt +

d

dt
ηt

)
= (φt)∗ (dιXtηt + β − α)

= 0,

and we have that (φ1)∗β = α. Letting f := φ1, we just need to prove that f ◦ ϕ = ϕ ◦ f .

It suffices to show that the path ϕ(φt(x)) satisfies

ηt(dϕ(Xt), ·, · · · , ·) = −Ω.
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Since ηt = (1− t)α + tβ, we have that the left side is

(1− t)α(dϕ(Xt), ·, · · · , ·) + tβ(dϕ(Xt), ·, · · · , ·) = −(1− t)α(Xt, dϕ(·), · · · , dϕ(·))
− tβ(Xt, dϕ(·), · · · , dϕ(·))
= −ηt(Xt, dϕ(·), · · · , dϕ(·))
= Ω(dϕ(·), · · · , dϕ(·))
= ϕ∗Ω

= −Ω,

as we wanted.

This version allows us to simplify the problem of existence of equivariant symplectomor-
phisms to finding just equivariant diffeomorphisms between compact surfaces. More precisely,
we have the following:

Corollary 4.2.7. Let (M1, ϕ1, ω1) and (M2, ϕ2, ω2) be symmetric compact surfaces such that
their area coincides and there exists a diffeomorphism f : M1 →M2 such that f ◦ϕ1 = ϕ2 ◦ f .
Then there exists a symplectomorphism g such that g ◦ ϕ1 = ϕ2 ◦ f .

Proof. Consider M1 equipped with f ∗ω2. We will show that this is a symmetric manifold
with respect to ϕ1. Indeed,

ϕ∗1(f ∗ω2) = (f ◦ ϕ1)∗ω2

= (ϕ2 ◦ f)∗ω2

= f ∗ϕ∗2ω2

= f ∗(−ω2)

= −f ∗ω2.

The above establishes that f is an equivariant symplectomorphism between (M1, ϕ1, f
∗ω2)

and (M2, ϕ2, ω2). Since the specialized version of the Moser theorem implies that (M1, ϕ1, f
∗ω2)

will be symplectomorphic to (M1, ϕ1, ω), the result follows from transitivity.

With the previous results, it is clear that the existence of an equivariant diffeomorphism
plays a central role. We show some results in that direction.

First, we show that if the fixed-point set of an orientation-reversing involution on the
sphere is non-empty, then it is a single circle.

Theorem 4.2.8. Let ϕ : S2 → S2 be an orientation-reversing involution. If the fixed-point
set is non-empty, then it is a circle.

Remark 4.2.9. We know that the fixed point set of an orientation-reversing involution on
a closed surface is a union of circles (possibly empty). Indeed, such fixed-point set is a
Lagrangian submanifold, thus one-dimensional. It is also closed as a subset of the manifold,
hence compact, and thus it is a union of circles by the characterization of one-dimensional
manifolds.
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Proof. Suppose the fixed-point set has more than one component. Choose one of the
components, say c1, such that all other components are either in one component of the
complement of c1 or on the other. That this is possible follows from the Jordan curve theorem.
We know by the Schoenflies theorem, which is a strengthened version of the Jordan curve
theorem for the two-dimensional case via the Riemann mapping theorem (c.f. [8]), that the
complement of c1 consists of two disks D1, D2. On the disk which has all other connected
components of the fixed point set, let us say it is D2, consider a diffeomorphism with R2 and
denote by c2 the largest curve in this representation.

The unbounded component of the complement of c2 is the one that ϕ sends D1 to. Since
ϕ is supposed to be a diffeomorphism and the unbounded component is not simply-connected
but the disk is, we have a contradiction.

This result obviously does not hold in general. Indeed, given a suitable embedding of the
surface of genus two in R3, the reflection around the plane xy has as its fixed-point set three
circles, whereas the reflection around the plane xz has only one.

Likewise, there are involutions in the torus with two circles as fixed-point set by embedding
it in R3 in the obvious way and also only one by looking at the torus as S1×S1 and considering
the reflection around the diagonal circle.

The next proposition is a result to shed some light on this issue and, together with the
Moser theorem and its corollary, gives us nice criteria to know when two symmetric surfaces
are equivariantly symplectomorphic.

Proposition 4.2.10. Let M be a closed (compact without boundary) orientable surface. If
ϕ1, ϕ2 are two orientation-reversing involutions such that their their fixed-point sets have
the same number of connected components and the quotient spaces by such involutions
(after removing small annuli around the fixed circles) are either both orientable or both non-
orientable, then there is an equivariant self-diffeomorphism with respect to those involutions,
i.e. a diffeomorphism f : M →M such that

f ◦ ϕ1 = ϕ2 ◦ f.

Proof. The core idea is passing to the quotient and using the classification of surfaces to
induce a homeomorphism there, which then lifts to the original spaces since we either have
the orientation double cover or a trivial double cover. Since the quotient is a manifold with
boundary, some care is necessary.

We proceed as follows to implement the strategy above: remove small annuli around
the circles which constitute the fixed-point set; do this separately for each involution, and
consider the quotient maps π1, π2 with respect to the orbit spaces obtained when making the
quotient by the involutions. We have that these orbit spaces are manifolds with boundary
which have Euler characteristic given by half of the original space. By classification of surfaces
and the fact that we are assuming both to be orientable or non-orientable, we have that they
are diffeomorphic. Since the cover is an orientation double cover or a trivial double cover,
this diffeomorphism lifts to a diffeomorphism between the manifold M without the annuli.
This lift is obviously equivariant. We can now attach annuli back equivariantly in order to
finish our construction.
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Proposition 4.2.10 also holds if we allow M to have boundary. Since we do not need
the result in that generality and there is some minor technicality arising from the fact that
removing anulli can result in manifolds with boundary when the fixed-point set has arcs
connecting the boundary, we will not give more details.

However, we need the result in the case of the disk and a single arc as the fixed-point set.
We state this below as a consequence of the Riemann mapping theorem.

Proposition 4.2.11. Let ϕ1, ϕ2 be two involutions on the closed disk for which the fixed-
point sets are individually a single arc connecting the boundary to itself. Then there is a
self-diffeomorphism which is equivariant with respect to those involutions.

Proof. First, we prove that D minus an arc connecting the boundary consists of two compo-
nents which are simply-connected. Embed D as the bottom hemisphere of S2, take L to be
the closed upper hemisphere together with the arc of D. The Poincaré-Alexander-Lefschetz
duality (c.f. [8]) implies that

H1(Sn, L) ' H1(D − L).

and
H2(Sn, L) ' H0(D − L).

The long exact reduced cohomology sequence of the pair (Sn, L) contains

0 ' H̃0(L)→ H1(S2, L)→ H̃1(S2) ' 0.

Therefore H1(S2, L) = 0. Consequently, by the aforementioned duality, H1(D − L) = 0.
Since D−L is homeomorphic to an open subset of the plane and an open subset of the plane
must have a free fundamental group, it follows that π1(D − L) = 0, since H1(D − L) is the
abelianization of π1(D − L).

The long exact cohomology sequence of the pair (Sn, L) also contains

0 ' H1(S2)→ H1(L)→ H2(S2, L)→ H2(S2) ' Z→ H2(L) ' 0.

Since H1(L) = Z (it is a disk with an arc attached on the boundary, pictorically a bucket),
we have that the above sequence can be simplified to

0→ Z→ H2(S2, L)→ Z→ 0.

Since Ext(Z,Z) = 0, we have that H2(S2, L) = Z⊕ Z, and consequently due to duality so is
H0(D − L), establishing that we have two connected components.

The result now follows from removing an annuli around the arcs, applying the Riemann
mapping theorem and then reattaching the annuli equivariantly as before.

Recall that the Hofer-Zehnder capacity equals the area when we are dealing with two-
dimensional manifolds. (c.f. [11].) In a similar note, we prove the following statement.

Theorem 4.2.12. Let (M,L, ω, ϕ) be a two-dimensional closed symmetric manifold. Then

cstrϕ (M,L, ω, ϕ) ≤
∣∣∣∣∫
M

ω

∣∣∣∣ .
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If an equivariant version of the Dacorogna-Moser theorem holds for disks and if there exists
a ϕ-invariant set of measure zero such that, when removed from M , we are left with an open
disk such that the intersection of the fixed-point set with this disk consists only of a single
arc, then

cstrϕ (M,L, ω, ϕ) ≥
∣∣∣∣∫
M

ω

∣∣∣∣ .
Remark 4.2.13. Some remarks are in order.

First, the hypothesis of existence of the invariant set of measure zero satisfying the
required condition is not a strong requirement: all examples we gave satisfy this. Indeed, we
are not aware of a case which does not satisfy this hypothesis.

We suspect that the equality may hold in general, but the argument for the second
inequality needs to be refined for that since the approach via Gromov capacity from below
may not necessarily work. Of course, the equivariant Dacorogna-Moser also needs to hold in
order for equality to hold.

Let us also be precise about what we mean by “equivariant Dacorogna-Moser”:

Conjecture 4.2.14. Let (D1, ω1), (D2, ω2) be two symplectic disks equipped with anti-symplectic
involutions ϕ1 and ϕ2, respectively, such that their symplectic area coincide. Then there
exists a symplectomorphism f : D1 → D2 such that f ◦ ϕ1 = ϕ2 ◦ f .

Note that we have a similar statement in Proposition 4.2.6, the difference being the
presence of a boundary. Note that the proof does not follow through since we do not have
completeness of the flow as we do in the closed (compact, without boundary) case. Indeed,
the Dacorogna-Moser theorem is much more analytically subtle. (c.f. [9].)

Proof of Theorem 4.2.12. The proof follows an adaptation of the idea on [11].

First, we prove that

cstrϕ (M,L, ω, ϕ) ≤
∣∣∣∣∫
M

ω

∣∣∣∣ .
Due to conformality, we can assume the area to be positive. Fix ε > 0 and choose now
H ∈ Hstr

a (M,L, ω, ϕ) such that

m(H) ≥
∫
M

ω + ε.

If we manage to prove that there is some brake-orbit of H which is fast, i.e. has period ≤ 1,
we conclude that cstrϕ ≤

∫
M
ω + ε. Since ε > 0 is arbitrary, the result will follows.

So we must be able to find a fast orbit. Due to Sard’s theorem, the set of critical values of
H has measure zero. Since it is also compact due to the fact that H is C1 and the manifold
is closed, we can find disjoint intervals Ij = [aj, bj] of regular values for which∑

bj − aj ≥ m(H)− ε/2 ≥
∫
M

ω + ε/2.

Given h a regular value, we have that H−1(h) consists of disjoint embedded circles. Since
H(L) = [0,m(H)]), at least one of them intersects L and is therefore a brake orbit. Choose
for each j one of the connected components of H−1(Ij) which intersects L and call it Aj.
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First, we prove that if H−1(h′) ∩ Aj intersects L for some h′ ∈ Ij, then H−1(h) ∩ Aj
intersects L for all h ∈ Ij. To see this, it suffices to note that any intersection of H−1(h) ∩ L
is transverse, since a brake orbit is either constant, which is not the case since otherwise h
would not be a regular value of H, or intersects L transversely. With this established, we
have that each Aj is such that all H−1(h) for h ∈ Aj are brake orbits.

Fixing a transversal line of initial points with respect to the Hamiltonian vector field, we
can define the diffeomorphism

ψj : (t, h)→ γ(t, h),

where γ(t, h) is the flow of the Hamiltonian vector field of responsible for the circle on
H−1(h) ∩ Aj and 0 < t < T (h), where T (h) is the period of said circle.

Since H(γ(t, h)) = h, it follows that ω(∂tψj, ∂hψj) = dH(∂hψj) = 1. Therefore,

ψ∗jω(ξ, η) = ω(dψj(ξ), dψj(η))

= ω(ξ1∂tψj + ξ2∂hψj, η1∂tψj + η2∂hψj)

= ξ1η2 − ξ2η1

= (dt ∧ dh)(ξ, η).

By the change of variables theorem, we have that∫
Aj

ω =

∫
ψ−1
j (Aj)

ψ∗jω =

∫ bj

aj

T (h)dh.

Since all of those periods pertain to brake orbits, assuming that T (h) > 1 for all h ∈ R yields
that ∫

M

ω ≥
∑
j

∫
Aj

∑
j

(bj − aj) ≥
∫
M

ω + ε/2,

a contradiction. This establishes that there must exist a fast brake orbit somewhere, as we
wanted to show.

We now show the next part. For that, it suffices to prove that under those hypotheses,

cstrϕ (M,L, ω, ϕ) ≥
∣∣∣∣∫
M

ω

∣∣∣∣ .
Let D̃ be the disk given by the hypothesis. Given ε > 0, we can pick a large enough set D in
the interior of such disk which is diffeomorphic to a closed disk D0 on the plane such that∣∣∣∣∫

D

ω

∣∣∣∣ ≥ ∣∣∣∣∫
M

ω

∣∣∣∣− ε.
We can scale D0 in order for its area to agree with

∣∣∫
D
ω
∣∣, and we assume this has been done.

By assumption (the equivariant Dacorogna-Moser), D0 is equivariantly symplectomorphic to
D. Due to monotonicity of the symmetric capacity and the fact that the capacity of the disk
is its area, the result follows.
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Theorem 4.2.12 allows us to establish the strong symmetric capacity for a large class of
compact surfaces. For example, the sphere and all obvious embeddings of surfaces of genus g
with the involutions being reflections along planes. From these cases, the specialized Moser
theorem (or rather, its corollary) establishes all topologically similar cases.
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Chapter 5

Spectral invariants on wrapped Floer
Homology

We now discuss the adaptation of the spectral invariant and the arguments given in [12]
for the case of wrapped Floer homology. The main interest is the result that if a certain
cohomological class associated to a given filtration of the action by a value a vanishes, then
the symmetric capacity is bounded above by a.

5.1 Brake orbits

Proposition 5.1.1. Let x be a brake orbit in the sense of beginning and ending on L. Then,
by continuing with x(1 + t) = ϕ(x(1 − t)), we have that x is a periodic orbit satisfying
ϕ(x(t)) = x(2− t).

Proof. We need to show that

ω((ϕ(x(1− t)))′, ·) = dH(·).

By the chain rule, this is equivalent to

ω(dϕ(−x′(1− t)), ·) = dH(·) = dH(dϕ−1(·)),

since H ◦ ϕ−1 = H. Since ϕ∗ω = −ω, this is equivalent to

ω(x′(1− t), dϕ−1·) = dH(dϕ−1(·)),

which is equivalent to the fact that x itself is an orbit of the Hamiltonian flow. Thus, the
result follows once we show that this continuation is smooth at time 0 and 1. The argument
for both is the same: we just need the fact that if γ is a continuous path on Rn such that
limt→a+ γ̇(t) = limt→a− γ̇(t), then γ is differentiable at a and γ̇(a) is equal to those limits.
This is a straightforward result from the mean value theorem.

Corollary 5.1.2. Paths beginning and ending on L at time 0 and 1 respectively are in
correspondence with periodic orbits x of period 2 satisfying ϕ(x(t)) = x(−t).
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Proof. We only need to verify that restricting a periodic orbit of period 2 satisfying ϕ(x(t)) =
x(−t) will yield a path beginning and ending on L at time 0 and 1 respectively.

Plugging 0 in, we have that ϕ(x(0)) = x(0), so that x(0) is a fixed point of ϕ, hence
an element of L. Likewise, ϕ(x(1)) = x(−1) and since x has period 2, we have that
ϕ(x(1)) = x(−1 + 2) = x(1), showing that x(1) is also a fixed point and hence an element of
L.

On a similar note, we have the following:

Proposition 5.1.3. It holds that

φtH ◦ ϕ = ϕ ◦ φ−tH

for all t for which the flow is defined.

Proof. We have that φtH(ϕ(x)) = cϕ(x)(t), where c is such that dH = ω(c′ϕ(x)(t), ·) and

cϕ(x)(0) = ϕ(x). These properties define cϕ(x), so it suffices to prove that γ : t 7→ ϕ(φ−tH (x))
also satisfies these properties.

Note that γ(0) = ϕ(φ−0
H (x)) = ϕ(x). Now, we have that

ω(γ′(t), ·) = ω(dϕ(−c′x), ·)
= −ω(−c′x, dϕ·)
= ω(c′x, dϕ·)
= dH(dϕ·)
= d(H ◦ ϕ) = dH,

5.2 Preliminary results and definitions

We will use the conventions and the definitions of Chapter 3. Specifically, those pertaining to
the construction of the wrapped Floer cohomology.

We define for I, I ′ ⊂ R the intervals I+ := (−∞, inf I] ∪ I and I− := I+\I. We then have
the following.

Proposition 5.2.1. If I, I ′ are non-empty intervals such that I± ⊂ I ′±, there exists a natural

homomorphism ΨII′
H : WFHI′,α →WFHI,α.

Proof. The condition that I± ⊂ I ′± just states that all elements x of the complex WC∗ which
are in the filtered complex WCI

∗ are such that ι∂x and ∂ιx either persist together or vanish
together, where ι : WCI

∗ →WCI′

∗ is the map that on the chain level takes x to x or to 0 in
case the action of x is not on I ′. See figure 5.1 below.

41



Figure 5.1: Illustration of the maps ι and ∂. (Horizontal and vertical arrows, respectively.)

It follows that ι is a chain map. The map Ψ is the induced map on cohomology.

From the above proposition, it follows that we have the following triangle on cohomology.

WFH(a,c](H)

WFH(a,b](H) WFH(b,c](H),

Ψ

∂

Ψ
(5.1)

where −∞ ≤ a < b < c ≤ +∞. We prove next that it is exact.

Proposition 5.2.2. The triangle 5.1 is exact.

Proof. First we prove exactness at WFH(a,b](H). To prove that ∂Ψ(JxK) = 0, we look at the
chain level. Either ∂x = 0 and we are already done, or its action lives in (−∞, b] and we are
also done, or it lives in (b, c]. In this last case, we must have ∂x = 0, otherwise x would not

be an element of WFH(a,c](H). (i.e., ∂̃ JxK would not be zero.)

To prove that ker ∂ = Im Ψ, note that if ∂ JxK = 0, then ∂x is either 0 or its action lives

on [c,+∞). In any case, then it is already an element of WFH(a,c](H) because ∂̃ JxK will be
zero on that chain complex.

Similar reasonings hold for the exactness elsewhere.

The usual arguments of proving invariance under changing the Hamiltonian through a
map induced by a homotopy of Hamiltonians yield the following proposition.

Proposition 5.2.3. Let H,H ′ be two admissible Hamiltonians and assume that aH ≤ aH′ .
Let

∆ :=

∫
S1

max(Ht −H ′t)dt,
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and let I, I ′ ⊂ R be intervals satisfying I± + ∆ ⊂ I ′±. Then there exists a natural ho-

momorphism ΨII′

HH′ : WFHI,α(H) → WFHI′,α(H ′). Furthermore, the following properties
hold:

� If H = H ′, then ΨII′
HH = ΨII′

H , i.e., the map induced by inclusion as described above.

� Suppose that H,H ′ and H ′′ are all admissible Hamiltonians and satisfy aH ≤ aH′ ≤ aH′′
and let I, I ′, I ′′ be nonempty intervals. Then, if the maps below are defined, we have
that the diagram is commutative.

WFHI′,α(H ′)

WFHI′′,α(H) WFHI,α(H ′′).

ΨII
′

H′H′′

ΨII
′′

HH′′

ΨII
′′

HH′

Remark 5.2.4. It might be reasonable to expect some term concerning the primitive f in ∆
since it appears in the action functional. But ∆ comes from the energy estimate which comes
from integration of ‖∂su‖2 of a Floer solution, which does not involve f . If this is not clear,
see the computation in Theorem 3.2.1.

We obtain the following corollary.

Corollary 5.2.5. Let (X,λ) be a Liouville domain and H,H ′ be admissible Hamiltonians.
Then

� If aH = aH′ , then the natural homomorphism described above is indeed an isomorphism
in the case I = I ′.

� If Ht ≤ H ′t for every t ∈ S1, then there exists a natural homomorphism WFHI,α(H)→
WFHI,α(H ′) for any nonempty interval I.

5.3 Truncated Floer cohomology

Let now Hneg
ad (X,λ) denote the space of admissible Hamiltonians which are negative on X,

and define
WFHI,α(X,λ) := lim→

H∈Hnegad (X,λ)

WFHI,α(H).

Lemma 5.3.1. Given an admissible H, there exists a natural isomorphism ΨH : WFHα(H)→
WFH>−aH ,α(X,λ).

Proof. Consider the following isomorphisms.

1. WFHα(H)→ lim−→
G∈Had
aG≤aH

WFHα(G);

2. lim−→
G∈Hnegad
aG≤aH

WFHα(G)→ lim−→
G∈Had
aG≤aH

WFHα(G);
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3. lim−→
G∈Hnegad
aG≤aH

WFH>−aH ,α(G)→ lim−→
GHnegad
aG≤aH

WFHα(G);

4. lim−→
G∈Hnegad
aG≤aH

WFH>−aH ,α(G)→ lim−→
G∈Hnegad

WFH>−aH ,α(G) = WFH>−aH ,α(X,λ)

The first isomorphism comes from the maps Ψ′Hs. The second isomorphism is just a
matter of shifting the Hamiltonians. The third isomorphism is obtained directly by the
universal property of the direct limit. And the last isomorphism is trivial.

We will now need the fact that the wrapped Floer cohomology of a pair (X,L) reduces itself
to the Morse cohomology of L when the Hamiltonian is sufficiently C2-small on X and has
sufficiently low inclination at infinity. This is similar to the case of (periodic) Floer homology,
where Floer solutions “degenerate” to Morse trajectories and the only periodic orbits are the
critical points. Intuitively, since our trajectories are Hamiltonian paths beginning and ending
on L, we could expect that taking a C2-small Hamiltonian would lead us to critical points on
L and therefore we would have an isomorphism with the cohomology of L. However, this line
of thought has some issues. For instance, we could be missing important critical points of
H|L for the computation of the cohomology, since our argument was getting critical points of
H, as a function on M , that are contained in L.

Nevertheless, the isomorphism is true by using the fact that WFH∗(H) ' HF ∗(φ1
H(L), L)

(see Chapter 3), where H is C2-small and HF ∗ is Lagrangian Floer cohomology. (It is
worth noticing that H being C2-small with low inclination reduces the problem to a compact
scenario. For more information, see [23].) The latter is known to be isomorphic to H∗(L).
(c.f. [10].)

Proposition 5.3.2. For δ sufficiently small, we have the following isomorphisms:⊕
∗

H∗(L) ∼= WFH(−δ,δ)(X,λ) ∼= WFH(−δ,+∞)(X,λ) ∼= WFH(−δ,+∞),cX (X,λ),

Proof. Let δ be smaller than the length of all Reeb chords. Now, let H be a C2-small
homology-admissible Hamiltonian. Note that we still can get rid of the chords in the collar
when filtering for (−δ, δ) even though there is a term f(x(1))−f(x(0)) in the action functional.
Indeed, since the action in the collar is given by

f(x(1))− f(x(0))−Rh′(R) + h(R)

and f is locally constant outside L (therefore bounded), it suffices to require h′ to grow
sufficiently fast in order for those orbits to disappear of the filtered complex. (Recall that the
only thing that matters for the cohomology is the slope at infinity.)

Then, the filtered complex WC(−δ,δ)(H) consists only of chords on X, as also does
WC(−δ,+∞)(H). Therefore,

WFH(−δ,δ)(H) ∼= WFH(−δ,+∞)(H) ∼= WFH(Hδ),
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where Hδ coincides with H on X but has δ as its inclination at infinity. As was observed,
we have that this last group is isomorphic to H∗(L). Since this is not dependent on the
Hamiltonian H (and note that δ does not depend on the Hamiltonian either), we have that
WFH(−δ,δ)(H) ∼= WFH(−δ,δ)(X,λ).

It follows that for every 0 < a ≤ ∞, one can define a natural homomorphism

ιa :
⊕
∗

H∗(L) 'WFH>−δ,cX (X,λ)→WFH>−a,cX (X,λ)

if we take a sufficiently small δ. If δ is sufficiently small, it is clear that this does not depend
on δ. We will refer to the image of the canonical class 1 ∈ H0(L) under this map by Fa. Note
that Fa ∈WFH>−a,cX (X,λ) and that it only depends on a.

For any admissible Hamiltonian H, we define FH as Ψ−1(FaH ) ∈WFH(H).

5.4 Spectral invariants

As a particular instance of Triangle 5.1, the triangle 5.2 is exact, where a is any real number.

WFH(H)

WFH≤−a(H) WFH>−a(H),

ja

∂

ia
(5.2)

We now recall that the natural homomorphism ΨH : WFH(H)→WFH>−aH (X,λ) is in
fact an isomorphism. Therefore, for a given class x ∈ WFH>−aH (X,λ), we can define the
spectral invariant ρ(H : x) by

ρ(H : x) := inf{a ∈ R | Ψ−1
H (x) ∈ im ia}.

This definition represents when (i.e., the “minimal” a for which) the class x effectively appears,
in cohomology, as an element of the inclusion of the complex WFH>−a

∗ (H) → WFH∗(H).
Note that ρ(H : 0) = −∞, and also that if x 6= 0, then ρ(H : x) is indeed a real number.
Furthermore, due to exactness, we also have that ρ(H : x) = {a ∈ R | ja(Ψ−1

H (x)) = 0}.
We summarize some properties of the spectral invariant below.

Lemma 5.4.1. (1) For any admissible Hamiltonian and any nonzero x ∈WFH>−aH ,α(X,λ),

ρ(H : x) ∈ Specα(H).

(2) If H,K are admissible Hamiltonians such that the support of H −K is compact, then
for any nonzero x ∈WFH(X,λ) it holds that

|ρ(H : x)− ρ(K : x)| ≤ ‖H −K‖,

where the norm is the Hofer-norm given by ‖H‖ :=
∫
S1(maxHt −minHt)dt.
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(3) Let H be an admissible Hamiltonian and 2aH /∈ Spec(X,λ). If K is linear at +∞ and
∂rtH|t=0 = ∂rtKt=0 for any integer r ≥ 0, then, for any x, y ∈WFH>−aH (X,λ),

ρ(H ∗K : x ∗ y) ≤ ρ(H : x) + ρ(K : y).

Proof. (1) Suppose ρ(H : x) does not belong to Specα(H). Since Specα(H) is closed
and x is nonzero, there exists an interval around −ρ(H : x) with radius ε such that
there is no orbit with action in that interval. Therefore, triangle 5.1 tells us that
WFH>−ρ(H:x)−ε(H)→WFH>−ρ(H:x)+ε is an isomorphism, since

WFH(−ρ(H:x)−ε,−ρ(H:x)+ε](H) = 0,

being the cohomology of an empty complex. It follows that

Im(WFH>−ρ(H:x)−ε,α(H)→WFHα(H)) = Im(WFH>−ρ(H:x)+ε(H)→WFHα(H)).

Since the spectral invariant is by definition the infimum of the set of those a’s such
that Ψ−1

H (x) ∈ Im ia, it follows that Ψ−1
H (x) is not in Im i−ρ(H:x)+ε, and thus by what

we have seen above it cannot be in Im i−ρ(H:x)−ε) as well, a contradiction.

(2) Due to proposition 5.2.3, there is, for every a ∈ R, a monotonicity homomorphism
WFH>−a(H)→WFH>−a−‖H−K‖(K). The commutativity of the diagram

WFH>−a(H) WFH>−a−‖H−K‖(K)

WFH(H) WFH(K)

ia ia+‖H−K‖

shows us that if Ψ−1
H (x) ∈ Im ia, then Ψ−1

K (x) ∈ Im ia+‖H−K‖. Therefore,

ρ(K : x) ≤ ρ(H : x) + ‖H −K‖.

The same argument with the roles reversed yield that

ρ(H : x) ≤ ρ(K : x) + ‖K −H‖

and we can conclude the inequality as stated.

5.5 Bounding the capacity

Before proceeding with our discussion, we make the following conventions:

� For any H ∈ C∞0 (intX), a ∈ R and ν ∈ C∞([1,∞)), we define Ha,ν : S1 × X̂ → R by

Ha,ν(t, x) :=

{
aH(x), x ∈ intX;

ν(r), x = (z, r) ∈ ∂X × [1,∞).
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� For any K ∈ C∞(S1 × X̂) which is linear at ∞ and aK /∈ Spec(X,λ)., we abbreviate
ρ(K : FaK ) as ρ(K).

We now aim to prove the result in which we are able to bound the symmetric capacity by
a when Fa = 0. We temporarily alter the definition of Symmetric-Hofer-Zehnder admissibility
for the purposes of the end of this chapter in order to facilitate the proofs. Instead of
a non-negative Hamiltonian which is equal to its maximum outside a compact set as in
Definition 4.1.3, we will define it as a non-positive Hamiltonian which is equal to zero outside
a compact set. Then, we set the capacity as the sup of the values −minH. Note that by
translation these two definitions give the same value for the capacity; the only thing being
different is the set of admissible Hamiltonians.

For that, we need the following proposition.

Proposition 5.5.1. Let (X,L, λ) be a Liouville domain equipped with an anti-symplectic
involution ϕ for which L is its (non-empty) fixed-point set satisfying the properties described
in Section 3.2, H ∈ C∞0 (int(X)), ν ∈ C∞([1,∞)). Suppose that:

(1) There exists r0 > 1 such that ν(r) ≡ 0 on [1, r0].

(2) There exists r1 > 1 and aν ∈ (0,−minH), where this aν is not in Spec(X,λ), such
that ν ′(r) ≡ aν on [r1,∞).

(3) S(ν) := infr≥1(−rν ′(r) + ν(r)) > minH.

(4) f is constant on L̂\L.1

Under these assumptions, if H is Symmetric-Hofer-Zehnder admissible, 2 with respect
to cX , then ρ(H1,ν) = −minH.

It will be useful for the proof of Proposition 5.5.1 to have the next lemma at hand.

Lemma 5.5.2. Given r > 1, suppose that K is an admissible Hamiltonian which is time
independent and linear on ∂X × [r,∞). If the C2-norm of K|X(r) is sufficiently small and K
has a unique point of mimimum, then ρ(K) = −minK.

Proof. The fact that K is time independent allows us to treat K as a function on X̂. Having
sufficiently small C2-norm, we know that it reduces the wrapped Floer complex to the Morse
complex of L, and thus we have H∗(L) 'WFH∗(K). By definition, FK is represented by the
canonical element 1 under this isomorphism, which is to say that it is given by the point of
minimum of K.

For each critical point q, we have that, if seen as a brake orbit,

AK(q) =

∫
K ◦ qdt = K(q).

Note now that for the minimum to appear as the image of ia : WFH>−a(K)→WFH(K),
we then need −a < minK, and thus a > −minK. Since any a > −minK will do, that is to
say that ρ(K : FK) = −minK.

1For example, this happens if ∂L is connected, or if θ|L = 0 as per the notation in Section 3.2.
2For emphasis, recall that this is not the same as being homology-admissible.
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As a last observation, take note of the fact that we are still not using the assumption
over the primitive f at this moment. Indeed, since q is a constant path, f(x(1))− f(x(0)) =
f(q)− f(q) = 0, thus making f disappear in the computation of the action that was done
above.

We are now on grounds for proving Proposition 5.5.1. We proceed as follows.

Proof. Suppose H ∈ C∞0 (intX) is symmetric-Hofer-Zehnder-admissible. We will show that
for any ε > 0, there exists an equivariant K ∈ C∞0 (intX) such that

� Any nonconstant contractible periodic orbit of XK has period larger than one.

� minK < minH.

� minK is isolated in the set of critical values of K.

� minK|L is attained by a unique point in L.

To see this, take g : [0,+∞) → R a smooth function which satisfies the following
requirements:

(1) g is C2-close to zero on (0, ε/2);

(2) 0 ≤ g′ ≤ 1;

(3) g′(x) = 1 for every x > ε.

Let K1 = −g◦(−H). Note that this is still equivariant. By making a C2-small perturbation
of K1 on K−1((0, ε/2)) such that it is still equivariant but now Morse there 3, we know that
low values of K1 are isolated and no nonconstant periodic orbits are being added. We consider
a negative bump function ρ supported on a neighbourhood of some point p which achieves
the minimum on the restriction to L. Then, by letting K2 := K1 + ρ+ ρ ◦ ϕ, we have that K
satisfies our requirements.

With such available K’s at hand, note that it is then enough to show that ρ(K1,ν) =
maxK, due to our result about continuity of ρ with respect to the Hofer-norm. (Note that
‖H −K‖ ≤ |H −K|C0 .)

We will divide the proof in steps.

Step 1 . There exist 0 < ε0 < 1 and 0 < δ0 < min Spec(X,λ)/aν such that ρ(Kε,δν) =
εmaxK for any ε ∈ (0, ε0] and δ ∈ (0, δ0].

It is clear that for ε, δ sufficiently small, the C2-norm of Kε,δν |X(r1) is also small.
So it suffices to approximate this Kε,δν by admissible Hamiltonians.

Step 2 . It is true that ρ(K1,δν) = −minK for any 0 < δ < min{δ0, (−ε0 minK/S(ν)}.
For any ε ∈ (0, 1], PcX (εK) consists of only constant loops at critical points of K,
since nonconstant contractible periodic orbits of XK have period larger than 1. If

3This is possible due to an analogue of the standard result of density of Morse functions, but taking into
account invariance under a compact Lie group action. For more information, see [28]. Here, the group action
is given by applying the involution, thus giving rise to a Z2-action.
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we compute the action of an element x ∈ P(Kε,δν) which is not contained in X,
we get

AKε,δν (x) = f(x(1))− f(x(0))−
∫
x∗λ+

∫
Kε,δν(x(t))dt

= −
∫
λ(ẋ) +

∫ 1

0

δν(r(t))dt

=

∫
−rδν ′(r(t)) + δν(r(t))dt

≥ S(ν)δ,

where f(x(1)) = f(x(0)) since we are assuming f is constant in the collar.

It follows that SpeccX (Kε,δν) ⊂ [δS(ν),+∞) ∪ εCrV (K), where CrV (K) refers to
the set of critical values of K. Since δaν < min Spec(X,λ), we have that Fδaν is
nonzero, and therefore ρ(Kε,δν) ∈ (−∞,−δS(ν)] ∪ −εCrV (K).

Let I := {ε ∈ [ε0, 1] | ρ(Kε,δν) = −εminK}. Since ρ(Kε,δν) depends continuously
on ε, we have that I is closed. That I is open follows from the fact that −δS(ν) <
−ε0 minK and that the set of critical values is nowhere dense. Noting that Step 1
says that ε0 ∈ I, we can conclude that I = [ε0, 1]. In particular, we conclude that
ρ(Kε,δν) = −minK.

Step 3 . It is true that ρ(K1,ν) = −minK.

Since S(ν) > minH > minK, it follows that Spec(K1,ν) ⊂ [minK,+∞) by the
computation of the action on Step 2. Thus, ρ(K1,ν) ≤ −minK.

In order to show that −minK ≤ ρ(K1,ν), we proceed as follows. Take δ such that
0 < δ < min{δ0, (−ε0 minK/S(ν)}. Take c > 0 such that CrV (K)∩(−∞,minK+
c] = {minK} and S(ν) > minK + c. Consider now the following commutative
diagram:

WFH(K1,δν) WFH≤minK+c(K1,δν)

WFH(K1,ν) WFH≤minK+c((K1,ν),

where the horizontal arrows are just the maps induced by inclusion and the vertical
arrows are the monocity homomorphisms. Since S(ν) > minK + c, the only
elements of the chain complexes that generate the cohomology on the right is the
critical point which realizes minK. Since K1,δν |S1×X = K1,ν |S1×X , we have that
both coincide near the critical point, so that the monocity homomorphism is just
the identity and thus the induced map (the right arrow) is an isomorphism.

By the previous step, ρ(K1,δν) = −minK. Since the top map is j−minK−c, it follows
that FK1,δν

does not vanish. Since the right map is an isomorphism, it continues
to be non-zero down in the bottom right corner. Therefore, by commutativity, it
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must be non-zero down in the bottom-left corner. Since it is F1,ν there we conclude
that ρ(K1,ν) ≥ −minK − c. Since this holds for every c > 0 small enough, we
conclude that ρ(K1,ν) ≥ −minK.

We are now able to bound the symmetric capacity when Fa = 0 for some a. (In particular,
when the wrapped Floer cohomology vanishes.)

Corollary 5.5.3. Let (X,L, λ) be a Liouville domain equipped with an anti-symplectic
involution ϕ for which L is its (non-empty) fixed-point set satisfying the properties described

in Section 3.2 and such that f is constant on L̂\L. If Fa = 0, then csym(intX, dλ : {cX}) ≤ a.

Proof. If csym > a, then there exists a Hamiltonian H which is symmetric-Hofer-Zehnder
admissible with respect to cX such that −minH > a. Taking ν that satisfies the hypothesis
of Proposition 5.5.1 and aν = a, we then have that ρ(H1,ν) = −minH. We have reached a
contradiction, since Fa = 0 implies ρ(H1,ν) = −∞.
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Chapter 6

Local coefficients

6.1 Introduction

In [5] we can see the idea that even though the (in their case, symplectic) homology may
not vanish, introducing a suitable system of local coefficients can make it possible to get a
vanishing (symplectic) homology, and effectively employ the result obtained in chapter 5 in
order to guarantee finiteness of the Hofer-Zehnder capacity. This allows us to expand the
finiteness of the symmetric capacity to larger classes of domains.

Since the concept of a local system of coefficients may effectively not be common knowledge,
we introduce it in this section. The core idea is that we have at each point of our topological
space an R-module and, given a path between x, y, a way of sending the R-module over x to
the one over y in a way that is consistent under homotopy. Formally, we have the following
definition.

Definition 6.1.1. Let X be a path-connected topological space which admits a universal
cover and R be a commutative ring with unit. In summary, a local system of coefficients on
X is a collection of R-modules Mx for each x ∈ X and a natural transformation T between
the category of points of X with morphisms being homotopy classes of paths connecting
them, and the category of the modules Mx with morphisms being module homomorphisms.

Expanded, it is a collection of R-modules Mx as above, together with a collection of
homomorphisms T[α] : Mx →My for every x, y ∈ X sand homotopy class of paths connecting
x, y such that

T[cnst] = Id

and
T[α]·[β] = T[β]T[α],

where [α] · [β] is concatenation of paths.

An alternative more abstract point of view of the above definition can be done by
clumping down the entire data as an element of Hom(π1(X), G)/G, where G is the group of
automorphisms of the module M . This equivalence arises from the fact that by choosing a
basepoint and an isomorphism Mx 'M , where M is a fixed module which is isomorphic to all
Mx’s (note that by the functoriality of the definition and the fact that we can always reverse
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the path, all homomorphisms are in fact isomorphisms), we can associate to every class α ∈
π1(X, x) an automorphism of M . Thus, the data gives us an element of Hom(π1(X),Aut(M)).
Since changing the isomorphism Mx →M changes M up to an inner automorphism, we get an
element of Hom(π1(X),Aut(M))/Aut(M) as mentioned before. That these two viewpoints
are indeed equivalent can be seen in [27].

Local systems can be useful for a variety of reasons. For instance, we will present two
examples before proceeding: a computation which shows that we can make the homology of a
non-acyclic manifold to vanish after introducing local systems (in the spirit of the introduction
to this section), and a computation which shows that an orientation local system can save
Poincaré duality in a non-orientable manifold. But before that, it might be useful to recall
how orientations are taken into account in Morse homology.

6.2 Orientations in Morse homology

Let us recall that the boundary map in Morse homology is given by

∂x =
∑
y,

ind(y)=ind(x)−1

∑
u∈M(x,y)

ε(u, x, y)y,

where M(x, y) is the space of unparametrized paths connecting x, y asymptotically (i.e., the
quotient of the space of paths by the R-action induced by translation), and ε(u, x, y) is either
±1, with the signs determined after the following procedure:

1. We orient each unstable manifold arbitrarily.

2. This determines an orientation on each intersection of unstable and stable manifolds,
as shall be explained.

3. If the orientation determined above coincides with the direction of the gradient flow for
the given flow line u ∈M(x, y), then ε(u, x, y) = 1. Otherwise, it is −1.

So the point to be explained is item (2). Establishing some notation, let T ux (p), T sx(p) be,
respectively, the tangent spaces of the unstable and stable manifolds W u(x) and W s(x) at p,
and let T u,sx,y (p) be the tangent space of the intersection of the unstable manifold of x with
the stable manifold of y some point p.

Fix some Riemannian metric on M and let x, y be two critical points such that index(y) =
index(x)−1. Given a point p ∈ W u(x)∩W s(y), we have that T ux (p) = T u,sx,y (p)⊕Nu,s

y (p), where
Nu,s
y (p) is a complement of T u,sx,y (p) coming from parallel transportation of the orthogonal

complement of T sy (y) along the compactified curve given by the connected component of
W u(x) ∩W s(y) where p lies. Since this orthogonal complement at y is precisely T uy (y), we
have orientations both for T ux (p) and Nu,s

y (p), and therefore this induces an orientation of
T u,sx,y (p). Note that none of this required the manifold M to be orientable.

For instance, consider the following image.
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Figure 6.1: Orienting the unstable manifolds.

In Figure 6.2, we have done the first step of the procedure as outlined previously: we have
oriented all unstable manifolds. In the cases of the red and green pairs, we are considering
the first vector of the orientation to be the horizontal one.

By proceeding with the second step as explained, we should obtain the following induced
orientations on the intersections of unstable and stable manifolds (represented in pink, yellow
and purple):

Figure 6.2: Orienting the intersections of unstable and stable manifolds.

Note that the orientations of the flow line coincide with the orientation given by the
second step only in the case of the intersection of the unstable manifold leaving the critical
point of index 1 and the stable manifold of the bottom critical point. By representing each
generator of the Morse homology with its color and letting F (A) denote the free abelian
group generated by the set A, we then get that the map is the following.
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F ({•, •}) ∂2→ F ({•}) ∂1→ F ({•}),

where

∂2 =

{
• 7→ −•,
• 7→ −•

and
∂1(•) = • − • = 0.

As expected, we get HMorse
2 (M) = Z = HMorse

0 (M) and 0 for all other degrees.

6.3 Examples of local coefficients in Morse homology

In what follows, we will employ Morse homology with local coefficients. Since our objective
is to use symplectic and wrapped Floer homology with local coefficients, Morse homology is
more close to this goal than, say, singular homology. For more elaboration on this twisted
version of Morse homology, see [7].

In order to compute Morse homology with local coefficients, we will restrict ourselves
to local coefficients being M ' Z and the difference in the complex being the free modules⊕

q∈Critk
Zq and the boundary map is

∂gx =
∑
y

∑
u∈M0(x,y)

ε(u)τu(gp)y.

Note that if the local system is trivial, then this reduces itself to the common Morse homology.

First example: Circle.

Pick f to be the height function on the unit circle, and the local coefficients T to be
determined by ρ = −1 ∈ Hom(π1(S

1),Z2) ' Z2. So if x is the top point and y the bottom
one, the boundary map becomes

∂1x = τu1(1x)y − τu2(1x)y,

where u1 is the right half-circle and u2 is the left half-circle, both oriented pointed downwards.
On a trivial local system, this would vanish and we would recover the fact that x represents a
non-trivial homology class on H1(S1). However, we must have that τu1(1x) = −τu2(1x), since
−u2 ◦ u1 is a generator of π1, hence τ−1

u2
◦ τu1 = −1. Therefore, we have

∂1x = 2y

and it follows that
HMorse

0 (S1, T ) ' Z2

and
HMorse

1 (S1, T ) ' 0.

Note that if instead of coefficients being based on Z we considered R instead, then the
homology would vanish completely.
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Second example: RP 2

In this case, it is convenient to consider X = RP 2 as an ellipsoid with different semi-axes
a, b, c and identified antipodes, and the Morse function coming from the function x 7→ ‖x‖2

on the quotient.

We can consider the local coefficients to be determined by ρ = −1 ∈ Hom(π1(RP 2),Z2) '
Z2. This local system has the interpretation of being the identity if a loop preservers
orientation or minus the identity if it reverses.

The Morse complex then is composed of only the fiber Zx over each critical point x. Let
p, q, r stand for the maximum, the saddle and the minimum respectively. Then, after fixing
orientations for the unstable manifolds (c.f. [18] for example), the boundary maps are

1p 7→ τu1(1p)1q + τu2(1p)1q

1q 7→ τv1(1q)1r − τv1(1q)1r.

By a similar reason as in the case of the circle, those maps are

∂1p 7→ 0

∂1q 7→ 2r,

so that

HMorse
∗ (RP 2, T ) =


Z if ∗ = 0, 2

Z2 if ∗ = 1

0 otherwise.

6.4 Interlude explaining the thought process

As we have mentioned previously, our main purpose behind using local coefficients is to find
some system for which the wrapped Floer homology vanishes so that we can apply the results
of chapter 5. Specifically, we want to apply the following result, which is a direct consequence
of corollary 5.5.3.

Corollary 6.4.1. Let (X,L, ϕ) be a Liouville quadruple such that WFH(X,L) = 0. Then
csym(intX, dλ : {cX}) < +∞.

All algebraic constructs done in that chapter are still possible for the case of wrapped
Floer homology with coefficients, which will be introduced in the following section. However,
the key factor that relates the capacity with the homology is done by Lemma 5.5.2 and an
observation is necessary: In order for it to hold, since for a small enough Hamiltonian the
wrapped Floer homology reduces itself to the Morse homology of the Lagrangian, we need
the critical points to effectively appear in this homology. So, for the argument to go through,
the safest assumption would be that the local system is trivial on the base manifold, so that
the Morse homology of L with this local system is simply the standard Morse homology of L
and the arguments go on unaltered. With this is mind, in the same spirit of [5], we conclude
the following.
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Proposition 6.4.2. Let (X,L, ϕ) be a Liouville quadruple and T be a local system of
coefficients on Ω(X,L) such that WFH(X,L; T ) = 0 and T |L is trivial.1 Then csym(intX, dλ :
{cX}) < +∞.

The objective of this chapter is to explain symplectic homology with coefficients and
attempts to provide organic situations where we have such a situation as described above.

6.5 Symplectic cohomology with local coefficients

A way to introduce local coefficients in symplectic cohomology is by considering Novikov
fields attached at every point of the free loop space Λ(X̂), where the Novikov field over a
field K is defined as the K-algebra of formal series

N := {
∞∑
k=0

kjt
aj | kj ∈ K, aj ∈ R, aj → +∞}.

Now, in order to build the maps between those fields, we fix a real singular 1-cocycle α of
Λ(X̂). Given two loops x, y ∈ Λ(X̂), we define

Tx,y,[u] : Λx → Λy

s 7→ tα(u)s.

It is easy to see that if we change α to another representative of its cohomological class, then
we get an isomorphic local system. We will denote this local system associated to α as Nα.
Also worth noticing is that if α is zero, then the local system is trivial, since Tx,y,[u] becomes
s 7→ t0s = s.

The symplectic homology with local coefficients is then built upon using this data by just
changing the algebra of the boundary and continuation maps in the following way:

C∗(H)a = C∗(H;Nα) := Free N -module generated by the periodic orbits;

∂x =
∑
M0(x,y)

ε(u)tα(u)y;

SH∗(H)α = SH∗(H;Nα) = H∗(C∗(H; Λα); ∂);

ΨH−,H+(x−) =
∑

v∈MHs (x−,x+)

ε(v)tα(v)x+.

As before,
SH∗(X)α = SH∗(X;Nα) := lim

←−
SH∗(H)α.

It would be useful to insert twists by cochain classes of the manifold instead of its loop (or
path) spaces. We can do this by looking at some relationships between the homology of the

path spaces of a base space and of the space itself. For instance, a 2-cochain class of X̂ can be
traced to a 1-cochain class in the loop space by going through the maps defined in homology

1Here, we are considering M as the space of constant paths.
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by the evaluation map ev : ΛX̂ × S1 → X̂ and the projection on the first coordinate of the
Kunneth isomorphism. The intuition for this construction is of course reminiscent of the
underlying principle that paths in the free loop space are homotopies between two paths, and
hence define a two-dimensional object when seen from the perspective of the base space.

If we trace out the maps defined above, we can see that it corresponds to the following
map

η 7→
(
u 7→

∫
u∗η

)
,

where we are picking a smooth representative of the singular class of u, seen as a cylinder
u : [0, 1]× S1 →M . This composition is usually called transgression in the literature, and
denoted by τ . Note that any form obtained by transgression will yield a trivial local system
when restricted to X̂ as the set of constant loops, since

∫
u∗η =

∫
η(∂su, ∂tu)dsdt will always

be zero since u will be a time-independent map. This is an important observation, since we
are searching for non-trivial local systems that restrict to trivial ones on the base manifold.

It is worth noticing that τ is not an isomorphism in general. If M is simply connected, it is.
If it is not, we can instead look at the universal cover M̃ .2 Then the composition defined above,
usually called transgression in the literature, becomes an isomorphism τ : H2(M̃)→ H1(ΛM̃).
Note that we also have the following chain of isomorphisms

H1(ΛM̃) ' Hom(H1(ΛM̃),Z) ' Hom(π1(ΛM̃),Z) ' Hom(π2(M̃),Z),

the first arising from the universal coefficients theorem, the second due to the fact that π1

is the abelianization of H1 and Z is abelian, the last due to the relationship between the
fundamental groups of a manifold and its free loop space.

6.6 Local system of coefficients in wrapped Floer ho-

mology

Having done the symplectic case, the wrapped case consists of minor adaptations. Evidently,
we do not introduce a local system on Λ(X̂), but on Ω(X̂, L̂), i.e. the space of paths with

endpoints lying on L̂. With this distinction in mind, the procedure is similar: we pick a real
singular relative 1-cocycle α ∈ H1(X̂, L̂) ' H1(X,L) and we then have a local system of

coefficients T on Ω(X̂, L̂). Analogously, we define

WC∗(H)a = WC∗(H;Nα) := Free N -module generated by the brake orbits;

∂x =
∑
M0(x,y)

ε(u)tα(u)y;

WFH∗(H)α = WFH∗(H;Nα) = H∗(C∗(H; Λα); ∂);

ΨH−,H+(x−) =
∑

v∈MHs (x−,x+)

ε(v)tα(v)x+;

WFH∗(X)α = WFH∗(X;Nα) := lim
←−

WFH∗(H)α.

2Note the difference between the notation for the universal cover, a tilde, and the notation for the
symplectization, a hat.
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Given a class η ∈ H2(X̂, L̂;R) ' H2(X,L;R), this defines a transgressed class τη in the
same way as before, i.e. by defining

τη(u) =

∫
C

u∗η,

where u is seen as a map from the cylinder C = [0, 1]× S1 to M . This is an isomorphism if
π1(X/L) = 1, in particular if M is simply-connected.

By the exact sequence of a pair (X,L), we have a map

H2(X,L;R)→ H2(X;R),

which is just the pull-back by the inclusion ι : X → (X,L). This allows us to associate to a
given η ∈ H2(X,L;R), a class η ∈ H2(X;R). In our present context, this gives us a way to
retrieve a local system of coefficients for the symplectic homology given one for the wrapped
Floer homology.

The next result, which can be seen in [23], is then useful for our purposes.

Proposition 6.6.1. If SH∗(X)η = 0, then WFH(X,L)η = 0.

This is a direct consequence of the algebraic structure involving these homologies, more
specifically the fact that the wrapped Floer homology is a module over the symplectic
homology. This structure arises from the aforementioned map H2(X,L)→ H2(X) and the
TQFT structure on those homologies. Since the detailed algebraic construction would perhaps
be too much of a sidetrack, we refer the reader to the given reference for the details.

From [21] and [23], we have the next theorem.

Theorem 6.6.2. If M is a closed manifold of finite type3 and η ∈ H2(M ;R) is a class such
that τη 6= 0 ∈ H1(ΛM), then

SH∗(T ∗M)η ' Hn−∗(ΛM ;Nτη) = 0

Putting Proposition 6.6.1 and theorem 6.6.2 together, we get the following theorem.

Theorem 6.6.3. Let η ∈ H2(M,L;R) be such that τη 6= 0. Then

WFH(D∗TM,N ∗L)η = 0.

A concrete way to check that τη 6= 0 is accomplished by using the fact that τη 6= 0 if and
only if π∗η 6= 0, where π stands for the universal cover. In particular, if M is simply-connected,
then τη 6= 0 if and only if η 6= 0.

So, with these facts in mind, we obtain the following result.

Theorem 6.6.4. Let M be a manifold equipped with a smooth involution ϕ such that
its fixed-point set is L. Suppose there is η ∈ H2(M,L;R) such that τη 6= 0. Then
csym(D∗TM,N ∗L, ϕ̃) < +∞.

3A topological space is said to be of finite type if all its homotopy groups, with perhaps the exception of
the fundamental group, are finitely generated.
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In particular, we have the following result.

Corollary 6.6.5. Let M be a simply-connected manifold equipped with a smooth involution
ϕ such that its fixed-point set L is also simply-connected. Suppose H2(M,L;R) 6= 0. Then
csym(D∗TM,N ∗L, ϕ̃) < +∞.

Proof. By the universal coefficients theorem we have that H1(L;R) = 0 since L is simply-
connected, and therefore the map H2(M,L;R)→ H2(M,R) is injective. Therefore, if we take
η 6= 0 in H2(M,L;R), then η 6= 0. This is equivalent to τη 6= 0 since M is simply-connected,
so the result follows from theorem 6.6.4.

Another class of examples is that of ALE spaces4 , as given by the next result.

Proposition 6.6.6. Let M be an ALE space and ϕ : M → M be an anti-symplectic
involution with fixed-point set being L. Then csym(M,L, ϕ) < +∞.

Proof. By [22], we have that SH∗(M)η = 0 for a generic η ∈ H2(M ;R). Since M is four-
dimensional, L is a two-dimensional compact manifold with boundary, thus H2(L;R) = 0.
Therefore, by the exact sequence of the pair (M,L) we have that η lifts to a non-zero element
η ∈ H2(M,L;R), and thus we can apply Proposition 6.6.1 to infer that the wrapped Floer
homology vanishes.

6.7 Path spaces and local systems

As always, let Ω(M,L) denote the space of paths on M with endpoints on L. We assume
that M and L are connected.

Note that Ω(M,L) is the pull-back by the inclusion i : L× L→M ×M of the fibration
M [0,1] →M{0,1} given by evaluation at the endpoints. Therefore, the evaluation map

ev : Ω(M,L)→ L× L
c 7→ (c(0), c(1))

is also a fibration. (That these maps are indeed fibrations is a consequence of foundational
results about fibrations which can be found in [8].) It follows that we have an exact sequence
of fundamental groups

· · · → πn(Ω(M, {l1, l2}))→ πn(Ω(M,L))→ πn(L× L)→ · · ·

Note that πn(Ω(M, {l1, l2})) ' πn(Ω(M)), the standard based loop space.

Comparing with [5], we should observe that there they analyze

0→ π1(Ω0(M))→ π1(L0M)
π→ π1(M)→ 1.

This exact sequence emerges due to the existence of the map s : M → L0M embedding M as
constant loops on L0M . This map gives a section to π in each dimension, thus showing that

4In summary, M is said to be an asymptotically locally Euclidean space (ALE space) if M is a simply-
connected hyperkähler 4-manifold which at infinity looks like C2/G for a finite subgroup G of SL(2,C)

59



π is surjective and hence the long exact sequence of this fibration fragments itself as short
exact sequences of each dimension.

Of course, in the present case we do not have a straightforward way to include L×L into
Ω(M,L). We could hope that taking (p, q) to a path connecting p to q could provide us with
such a map, but this can depend heavily on the chosen path.

Therefore, we want the existence of a section

s : L× L→ Ω(M,L),

i.e. a map such that ev ◦ s = Id. This can be guaranteed, for instance, if the inclusion
ι : L→M is null-homotopic, as the next proposition states.

Proposition 6.7.1. Suppose the inclusion ι : L→M is null-homotopic. Then the evaluation
ev : Ω(M,L)→ L admits a section s.

Proof. Fix a, b ∈ L and let H : L× I →M be the null-homotopy. Then the map

s(a, b) = t 7→

{
H(a, 2t), t ∈ [0, 1/2]

H(b, 2− 2t), t ∈ [1/2, 1],

or in other words s(a, b) = H|a×I ∗H|−1
b×I , is a section for ev.

Corollary 6.7.2. Suppose the inclusion ι : L → M is null-homotopic. Then there is the
following exact sequence

0→ π1(Ω0(M))
f→ π1(Ω0(M,L))

g→ π1(L× L)→ 1.

Moreover, the sequence splits as a direct product, i.e.

π1(Ω0(M,L)) ' π1(Ω0(M))× π1(L× L).

Proof. Note that, in principle, π1(Ω(M,L)) splits as a semi-direct product. However, since
the inclusion is null-homotopic, the action of π1(L× L) on π1(Ω(M)) given by

(π1(L× L), π1(Ω9(M)))→ π1(Ω0(M))

(α, γ) 7→ f−1(s∗(α)f(a)s∗(α)−1)

is the identity.

Illustrative examples of the inclusion ι : L→M being null-homotopic is given by inclusions
ι : Sm → Sn with m < n. The case of the inclusion of S1 into S2 as an equator admits a good
visualization of the previous proof. In this case we can take the null-homotopy as in Figure
6.3, collapsing the equator to a point by moving it up in the sphere. In this scenario, the
section constructed in 6.7.1 is given by the concatenation of fragments of geodesics connecting
the respective points to the north pole, as seen in Figure 6.4.
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Figure 6.3: Null-homotopy of the inclusion S1 ↪→ S2 as an equator.

Figure 6.4: The section s : L× L→ Ω(M,L).

Recall that if we have an exact sequence

0→ A
i→ B

j→ C → 0

that splits as a direct product with a section s : C → B, then B is the inner direct sum

B = ι(A)⊕ s(C).

In the previous case, we have π1(L× L) representing s∗(π1(L× L)). When we take the Hom
of both sides, we get

Hom(π1(Ω0(M,L));Zl) ' Hom(π1(Ω0(M));Zl)× Hom(π1(L× L);Zl) (6.1)
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The projection on the second factor then corresponds to the restriction of the local system
associated to α ∈ Hom(π1(Ω0(M,L);Zl)) to the space L× L. More precisely, it is the local
system given by the pull-back via s. If we consider the diagonal map d : L→ L×L, then the
pull-back via (d◦s) provides us with the restriction of the local system to L, as seen in Ω(M,L)
as constant paths. If the pull-back via s is trivial, then the pull-back via (d ◦ s) also is due to
functoriality. In particular, it follows that a non-trivial element η ∈ Hom(π1(Ω0(M,L));Zl)
which is, under isomorphism 6.1, trivial in the second coordinate provides us with a non-trivial
local system on Ω0(M,L) which restricts to a trivial one in L.

We also have the following chain of isomorphisms.

Hom(π1(Ω0(M));Zl) ' Hom(π2(M));Zl) ' Hom(π2(M̃);Zl) ' H2(M̃ ;Zl).

The first one is due to the fact that π1(Ω0(M)) ' π2(M), as can be seen from the long exact
sequence given by the fibration (M [0,1], x0)→M given by evaluation at 1, where (M [0,1], x0)
stands for paths in M starting at x0. Since this space is contractible the result follows.

The second one can be seen by looking at the cover M̃ → M as a fibration. Since the
fibers are discrete, their fundamental groups for n ≥ 1 vanish and we get that πi(M) ' πi(M̃)
for i ≥ 2.

The last isomorphism is a result of the universal coefficients theorem together with the
fact that H1(M̃ ;Zl) = 0 due to Hurewicz’s theorem and the fact that the universal cover is
simply connected.

It follows from this discussion that non-trivial local systems on Ω(M,L) which are pulled-
back via s to trivial local systems on L× L (and thus restrict to trivial local systems on L)

are in bijection with elements of Hom(π1(Ω0(M));Zl) ' H2(M̃ ;Zl).
We will need some results mentioned in [5]. The following is a variant of the Leray-Serre

spectral sequence.

Proposition 6.7.3. Let F
i→ E

j→ B be a fibration over a CW-complex and let T be a
local system on E. Then there is a spectral sequence (Er, dr), r ≥ 2, converging to H∗(E; T )
which has as second page

E2
p,q ' Hp(B;Hq(F ; i∗T )), p, q ≥ 0,

where Hq(F ; i∗T ) stands for the local system on B given by the q-th homology (with local
system given by T of the fiber F ).

This next proposition can also be seen in [5].

Proposition 6.7.4. Let M be a path-connected space fixed basepoint. Let R be a ring and
G ⊂ R∗ be a subgroup such that

1− g ∈ R∗

for any g ∈ G with g 6= 1. Then any non-trivial G-local system T of rank one R-modules on
Ω0M has the property that H∗(Ω0M ; T ) = 0.

With Propositions 6.7.3 and 6.7.4, we have the following.
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Theorem 6.7.5. Let M be a manifold with submanifold L such that the inclusion ι : L→M
is null-homotopic and H2(M̃ ;Zl) 6= 0. Then for any rank-one local system C on L× L there
exists a local system T on Ω(M,L) which restricts via s to a local system isomorphic to C
on L× L and such that

H∗(Ω(M,L); T ) = 0.

Proof. By the discussion following Corollary 6.7.2, we have the existence of a non-trivial
Zl-local system S on Ω0(M,L) which restricts to the trivial local system on L× L by s, and
thus to the trivial local system on L. By Proposition 6.7.4, it follows that H∗(Ω0M ; i∗S) = 0.

Consider now again the fibration given by the evaluation ev : Ω(M,L)→ L×L, and take
T := S ⊗ ev∗C. We have that this local system restricted to the fiber Ω0(M) is isomorphic
to i∗S, and thus by Proposition 6.7.3 it follows that H∗(Ω(M,L); T ) = 0. Furthermore,
s∗T = C, showing that T indeed satisfies the conclusion of the theorem.

With Theorem 6.7.5 in hand, we can now find a local system which restricts to the trivial
on M but is so that the symplectic homology with such local system vanishes. In fact, we
get a slightly more general result:

Theorem 6.7.6. Let M be a manifold with submanifold L such that the inclusion ι : L→M
is null-homotopic and H2(M̃ ;Z2) 6= 0. Then for any rank-one local system C on L × L
there exists a local system L on Ω(T ∗M,N ∗L) which restricts by s to C and such that
WFH(T ∗M,N ∗L;L) = 0.

Proof. By Theorem 6.7.5, there is a rank-one local system T on Ω(M,L) which restricts to C
for which H·(Ω0(M,L); T ) = 0. The projection π : Ω0(T ∗M,N ∗L)→ Ω0(M,L) gives rise to
the extension (i.e., pull-back) of the local system T to π∗T .

We know that
WFH∗(T

∗M ; π∗T ) ' H∗(Ω0(M,L); T )

due to [1], and hence we have the result by taking L := π∗T .

We also state the case of Zl for other primes l as a conjecture. The reason for this is that
we did not give much attention to the issue of orientation when defining the homology since
most of the thesis does not need to do so, but this is now relevant since the isomorphism
between the homology of the path space and the symplectic homology of the cotangent
bundle is more subtle when orientations are involved. We elaborate on the Appendix, but
to summarize: the isomorphism between those homologies comes from the fact that we can
define a Morse complex on the relevant path space of the manifold in such a way that it
corresponds to the symplectic-homology complex. But the boundary maps in those two
theories are not coherent. More precisely, the natural isomorphism between those complexes
is not a chain map. The way to fix this is by introducing a suitable local system of coefficients.
Since Z2-coefficients are blind to this orientation problem, this issue does not show up in the
first part of the proof. This “fix” is known to work for the periodic case, but in our case
one would need to check whether the local system can be implemented successfully and this
might require some care.
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Conjecture 6.7.7. Let M be a manifold with submanifold L such that the inclusion
ι : L→M is null-homotopic and H2(M̃ ;Zl) 6= 0. Then for any rank-one local system C on
L×L there exists a local system L on Ω(T ∗M,N ∗L) which restricts by s to C and such that
WFH(T ∗M,N ∗L;L) = 0.

“Proof”. Due to Theorem 6.7.5, we can pick a rank-one local system T on Ω(M,L) which
restricts to C ⊗ oL×L, where oL×L is the orientation local system of L× L (i.e. the Z2-local
system that assigns to each loop either ±1 whether it reverses orientation or not) for which
H·(Ω0(M,L); T ) = 0.

If the result mentioned in the appendix is valid for the endpoint case, we know that there
is a local system η on the Ω(T ∗M,N ∗L) which restricts to oL×L and such that

WFH∗(T
∗M ; π∗T ⊗ η) ' H∗(Ω(M,L); T ).

Since π∗T ⊗ η restricts to (C ⊗ oL×L)⊗ oL×L ' C ⊗ (oL×L ⊗ oL×L) ' C, we have our result.

As expected, we can now apply Theorem 6.7.6 to get a new range of examples where the
symmetric capacity is finite. Explicitly, we have the following theorem.

Theorem 6.7.8. Let M be a manifold with an involution ϕ : M →M with non-empty fixed
point set L such that the inclusion ι : L→M is null-homotopic and H2(M̃ ;Z2) 6= 0. Then
csym(D∗TM,N ∗L, ϕ̃) < +∞.

Proof. The theorem follows directly by using Theorem 6.7.6 with C being the trivial Z local
system together with Proposition 6.4.2.
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Chapter 7

Appendix - Symplectic homology of
the cotangent bundle

7.1 Introduction

This appendix is intended mainly to explain the isomorphism between the wrapped Floer
homology of the pair (T ∗M,N ∗L), as in Chapter 6 and the (singular) homology of the
path-space Ω(M,L). The main idea is to make an equivalence between the wrapped Floer
homology and a Morse homology on such path-space. It turns out, however, that under this
equivalence, the orientations that the Floer homology and the Morse homology dictate for
their boundary maps disagree. In order to fix for this issue, we must consider a suitable local
system of coefficients that corrects for this defect.

Of course, if we are taking Z2 coefficients, this point is moot as explained before. However,
in order to phrase Theorem 6.7.8 in more generality, we must consider the case of other
coefficients, and thus this issue must be addressed.

Although the relationship between the Floer homology of the cotangent bundles and the
homology of the free loop space of the base manifold was established by Abbondandolo and
Schwarz in [2] (for the endpoint case, c.f. [1]), this mismatch of the orientations was not
accounted for, and it ended up being solved relatively recently by Abouzaid (c.f. [4]).

We will present the main ideas behind the isomorphism and show where the correction
must take place, but we will not enter in much detail. In particular, we will not show how
to solve the issue. For a detailed exposition, please see the above references. In order to
be coherent with the aforementioned literature, we will make the exposition of the periodic
case. The endpoint case is treated in [1], although with a different point of view. There, the
boundary conditions are codified as the conormal bundle of a submanifold Q ⊂M ×M . This
contains the case of (T ∗M,N ∗L) in particular, by taking Q := L× L.

We will follow the notation and exposition of [2].
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7.2 Morse-theoretic approach

Morse theory has been known to work for some particular action functionals in infinite
dimension for quite some time. Perhaps the most simple example is the energy functional,
capturing closed geodesics. (c.f. [14].) However, such functionals must be well-behaved in
order for the theory to be comfortable and resemble the finite-dimensional case. Explicitly,
they must satisfy a condition known in the literature as “Condition (C) of Palais-Smale”,
which essentially emulates compactness for sequences which have bounded energy and have
their gradients converging to zero in the W 1,2-sense. The action functional we have seen for
Floer homology is not well-behaved (for instance, it is not bounded by below), and thus
Morse homology does not go through, which is essentially the entire reason behind the shift
towards the Floer-theoretical approach.

However, in the case of the cotangent bundle, we can choose the Hamiltonian involved
in the definition of SH(T ∗M,H) to be the Legendre transform of a Lagrangian L which is
strongly convex in the fibers of the cotangent bundle, i.e:

H(t, q, p) = sup
v∈TqM

(p(v)− L(t, q, v)).

The assumption of convexity is related to the transform being well-defined. As usual
in Lagrangian mechanics, we then have the correspondence of the periodic orbits of the
Hamiltonian flow with the critical points of the functional

E(c) :=

∫ 1

0

L(t, q(t), q̇(t))dt.

This functional is more well-behaved than the functional AH and can be shown to be suitable
for Morse theory. Moreover, it can be shown that the Morse index of an orbit coincides
with the Conley-Zehnder index, and thus we have readily a graded bijection between the
generators of the Morse complex and the generators of the Floer complex. This bijection, as
expected, does not necessarily go down to homology as a chain isomorphism. In order to do
so, we need essentially to account for the fact that in one hand we have the negative gradient
flow of the action functional related to L, and on the other we have Floer solutions related to
H. The way this is done is by considering a moduli space which accounts for this change.

Explicitly, we consider the space Γx,y of maps γ : (−∞, 0) → Λ(M) which converge as
s→ −∞ to some q ∈ C∗(L) and, for s = 0, lift to a loop in T ∗M which is u(0, ·) of a solution
u(s, t) of the Floer equation associated to H which converges to some y ∈ C∗(H), where we
are denoting the Morse chain complex by C∗(L) and the Floer chain complex by C∗(H). For
a generic choice of the almost-complex structure, the space of such maps is a compact smooth
manifold of dimension m(q)− µCZ(y), and thus when the indexes coincide we have a finite
number of points. We define the chain isomorphism to be

Θ(qk) =
∑

yk∈C∗(H)

∑
γ∈Γqk,yk

ε(γ, qk, yk)yk,

where the subscript indicates the index and ε is dependent on the orientation conventions
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In case we have Z2 coefficients, this map would be just counting the number of elements
in Γxk,yk . Explicitly,

Θ(qk) =
∑

yk∈C∗(H)

(#Γqk,yk)yk.

It is possible to prove the following estimate relating the base loop to its lifts:

AH(x) ≤ E(q), (7.1)

with equality holding only if x and q are related via the Legendre transform, where x(t) =
(q(t), p(t)) represents a loop in T ∗M . By using 7.1, which is of theoretical interest, we can
prove that this map is an isomorphism. Indeed, this estimate establishes that the moduli
space Γq,y is empty if E(q) ≤ A(x), unless q and x correspond to the same orbit, and in such
case Γq,y consists of only one point: the stationary solution. Therefore, Θ(q) = ±q in such
cases. Thus, by taking ordered basis with increasing action, we see that Θ is lower triangular
and has ±1 entries in the diagonals. It follows that Θ is an isomorphism.

The orientation problem enters precisely at the next step: we would wish for Θ to be a
chain map, so that it would be a chain isomorphism and then would descend to homology.
But this is not necessarily the case. This is directly related to how we define the boundary
maps in each homology, since being a chain map is, explicitly, satisfying

∂1Θ = Θ∂2.

And, of course, those boundary maps are intrinsically related to how we orient each moduli
space in each homology theory. There are different ways to solve this. As expected, we can
“manually” change the definition of either boundary operator in order to account for the defect.
Or we can introduce a suitable local system in one of the homologies. Of course, all of them
are equivalent, their difference being a just a matter of personal taste. In the corrigendum of
[2] (c.f. [3]), they adopt the point of view of changing ∂2. In [4], it is done by introducing a
local system of coefficients on the loop space for the Morse homology. The advantage of this
later point of view is that it comes naturally equipped to deal with other local systems as
well. More precisely, Remark 4.1.2 of [4] states that not only there is an isomorphism

V : SH∗(T ∗M ;Z)→ H−∗(Λ(M); η),

where η is a suitable local system of coefficients, but the proof also extends directly to show
that there is also an isomorphism

V : SH∗(T ∗M ; ν)→ H±∗(Λ(M); η ⊗ ν),

for any local system ν on ΛM , where ±∗ indicates a possible grading reversal.

The endpoint version of this last isomorphism is precisely what is needed for the argument
of Theorem 6.7.8 and is known to be true with Z2 coefficients by [1]. The case of Zl coefficients
would need to be checked for possible subtleties in the adaptation of the orientations for the
endpoint case.
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