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Resumo

Neste trabalho, consideramos dois sistemas dispersivos; inicialmente, consideramos

um sistema derivado por Gear e Grimshaw para descrever a interação forte entre

ondas longas fracamente não lineares. O modelo tem a estrutura de um par de

equações de Korteweg-de Vries acopladas por efeitos dispersivos e não lineares. Nosso

objetivo com este sistema é investigar suas propriedades de controlabilidade, num

intervalo limitado, por meio de controles distribuídos. Quando a região de controle é

uma vizinhança do ponto �nal direito do intervalo, provamos a controlabilidade exata

local do problema não linear em uma classe de espaços L2 com peso. Inicialmente, os

resultados são estabelecidos para o sistema linearizado por meio de uma abordagem

clássica de dualidade e depois são estendidos para o sistema completo por meio de

um argumento de ponto �xo.

Em seguida, consideramos um sistema de Boussinesq que acopla duas equações do

tipo Benjamin-Bona-Mahony linares de ordem superior. Inicialmente, investigamos

as propriedades de controlabilidade do modelo linearizado em um intervalo limi-

tado. Mais precisamente, por meio de controles que atuam no ponto extremo direito

do intervalo, mostramos que o modelo é aproximadamente controlável, mas não

espectralmente controlável. Isso signi�ca que qualquer estado pode ser conduzido

arbitrariamente próximo a outro estado, mas nenhuma combinação linear �nita de

autofunções, diferente de zero, pode ser conduzida a zero. Nossas provas dependem

fortemente de uma análise espectral cuidadosa do operador associado às equações

estacionárias. Também propomos vários mecanismos dissipativos que conduzem a

sistemas para os quais todas as trajetórias são atraídas pela origem sempre que a

propriedade de continuação única de soluções fracas seja veri�cada.

Palavras chave: Controlabilidade, estabilização, sistema de Gear-Grimshaw,

equação de Korteweg-de Vries, sistema Boussinesq de ordem superior , equação de

Benjamin-Bona-Mahony, propriedade de continuação única.
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Abstract

In this work, we consider two dispersive systems; initially, we consider a system

derived by Gear and Grimshaw to describe the strong interaction of weakly nonlinear

long waves. It has the structure of a pair of Korteweg-de Vries equations coupled

through both dispersive and nonlinear e�ects. Our purpose for this system is to

investigate its controllability properties, when posed on a bounded interval, by means

of distributed controls. When the control region is a neighborhood of the right end

point of the interval, we prove the local exact controllability of the nonlinear problem

in some well chosen weighted L2-spaces. The results are �rst established for the

linearized system through a classical duality approach and then extended for the

full system via a �xed point argument.

Next, a Boussinesq system which couple two linearized higher-order Benjamin-Bona-

Mahony type equations is considered. We �rst investigate the boundary controllabil-

ity properties of the linearized model posed on a bounded interval. More precisely,

by means of controls acting on the right endpoint of the interval, we show that the

model is approximately controllable but not spectrally controllable. Our proofs relies

strongly on a careful spectral analysis of the operator associated with the state equa-

tions. We also propose several dissipation mechanisms leading to systems for which

all the trajectories are attracted by the origin provided that the unique continuation

of weak solutions holds.

Key words: Controllability, stabilization, Gear-Grimshaw system, Korteweg-de

Vries equation, higher order Boussinesq system, Benjamin-Bona-Mahony equation,

unique continuation property.
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Chapter 1

Introduction

The study of nonlinear wave phenomena is of broad scienti�c interest and pertains to a modern
line of research which is important both scienti�cally and for potential applications. Progress
in the development of new tools for modern applied mathematics resulted in a better scienti�c
understanding of nonlinear waves in various and quite distinct �elds. The mathematical models
arising in nonlinear dispersive media are among the illustrations of successful outcomes resulting
from the e�orts to understand various nonlinear phenomena. Starting in the latter half of the
1960s, the mathematical theory for nonlinear dispersive wave equations came to the fore as a
major topic within nonlinear analysis. Since then, physicists and mathematicians were led to
derive sets of equations to describe the dynamics of the waves in some speci�c physical regimes
and much e�ort has been expended on various aspects of the initial and boundary value problems.

The purpose of this work is present some mathematical results concerning two families of
such systems. The �rst one is a model derived by Gear and Grimshaw [21] to describe strong
interactions of two long internal gravity waves in a strati�ed �uid, where the two waves are
assumed to correspond to di�erent modes of the linearized equations of motion. It can be
written as {

ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = 0,

b1vt + rvx + vvx + vxxx + b2a3uxxx + b2a2uux + b2a1(uv)x = 0.
(1.1)

The parameters r, a1, a2, a3, b1, b2 are real constants with b1, b2 positive, the unknowns u and v
are real valued functions of the variables x and t and subscripts indicate partial di�erentiation.
We also refer to [11] for an extensive discussion on the physical relevance of the model.

System (1.1) has the structure of a pair of Korteweg-de Vries (KdV) equations coupled
through both dispersive and nonlinear e�ects and has been the object of research in recent years.
It also appears as a special case of a broad class of nonlinear evolution equations that can also
be interpreted as a coupled nonlinear version of generalized KdV equations of the form

ut + uxxx + f(u, v)x = 0,
vt + vxxx + g(u, v)x = 0,

with f and g satisfying f(u, v) = Hu(u, v) and g(u, v) = Hv(u, v) for a smooth function H.
The other system that shall be study here is a higher-order generalization of the classical

Boussinesq system introduced and studied by J. J. Bona, M. Chen and J.-C. Saut in [9, 10],
more precisely,

ηt + wx +awxxx − bηtxx + a1wxxxxx + b1ηtxxxx

= −(ηw)x + b(ηw)xxx −
(
a+ b− 1

3

)
(ηwxx)x,

wt + ηx +cηxxx − dwtxx + c1ηxxxxx + d1wtxxxx

= −wwx − c(wwx)xx − (ηηxx)x + (c+ d− 1)wxwxx + (c+ d)wwxxx.

(1.2)
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Here, the dependent variables η = η(x, t) and w = w(x, t) are real-valued functions of the vari-
ables x and t and subscripts indicate partial di�erentiation. The parameters a, b, c, d, a1, c1, b1, d1

are required to ful�ll the relations

a+ b =
1

2
(θ2 − 1

3
), c+ d =

1

2
(1− θ2),

a1 − b1 = −1

2
(θ2 − 1

3
)b+

5

24
(θ2 − 1

5
)2,

c1 − d1 =
1

2
(1− θ2)c+

5

24
(1− θ2)(θ2 − 1

5
),

(1.3)

where θ ∈ [0, 1]. Conditions (1.3) come from the physics of the problem and we tacitly assume
them to hold throughout the entire paper. Depending on the problem under study, additional
restrictions on the sign of these parameters will be imposed later on.

The original system was derived by Boussinesq to describe the two-way propagation of small-
amplitude, long wavelength, gravity waves on the surface of water in a canal, but these systems
arise also when modeling the propagation of long-crested waves on large lakes or the ocean and
in other contexts. The variable, x, is proportional to the distance in the direction of propagation
while t is proportional to elapsed time. The quantity η(t, x) + h0 corresponds to the total depth
of the liquid at the point x and at time t, where h0 is the undisturbed water depth. The variable
w(t, x) represents the horizontal velocity at the point (x, y) = (x, θh0), at time t, where y is the
vertical coordinate, with y = 0 corresponding to the channel bottom or sea bed. Thus, w is the
horizontal velocity �eld at the height θh0, where θ is a �xed constant in the interval [0, 1].

Notice that, when the parameters given in (1.3) are such that a = a1 = c = c1 = 0, the
resulting system couples two higher order Benjamin-Bona-Mahony (BBM) type equations. If
b = b1 = d = d1 = 0, we have a coupled system of two higher order Korteweg-de Vries (KdV)
type equations.

1.1 Problems and main results

1.1.1 Controllability of the Gear-Grimshaw system in a weighted L2-space

As it was pointed out in the previous section, system (1.1) appears as a special case of a broad
class of nonlinear evolution equations that can also be interpreted as a coupled nonlinear version
of generalized KdV equations of the form (1.2). Such mathematical formulations have received
considerable attention in the past, and a satisfactory theory pertaining to the pure initial-value
problem is available in the literature. However, the practical use of the waves systems and its
relatives does not always involves such mathematical formulation. Therefore, it is also of interest
to study the mathematical properties of the KdV family on a �nite spatial interval.

In this chapter we shall be concerned with the study of an initial boundary value problem
associated to (1.1) when x ∈ [0, L] and t ∈ R+. Our main purpose is to address two mathematical
issues connected to (1.1); well-posedness and controllability in a weighted Hilbert space. With
this purpose, we introduce a function ρ ∈ C∞([0, L]) with

ρ(x) =

{
0 if 0 < x < L− ν,
1 if L− ν

2
< x < L,

(1.4)

for some ν ∈ (0, L). Then, the control system reads as
ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = (ρ(x)h1)x in (0, T )× (0, L),

b1vt + rvx + vvx + vxxx + b2a3uxxx + b2a2uux

+b2a1(uv)x = (ρ(x)h2)x in (0, T )× (0, L),

(1.5)
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with boundary conditions{
u(0, t) = u(L, t) = ux(L, t) = 0 on (0, T ),

v(0, t) = v(L, t) = vx(L, t) = 0 on (0, T ),
(1.6)

and initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x) on (0, L). (1.7)

In (1.5)-(1.7), the external forcing terms h1 and h2 are considered as control inputs. Their
choice were motivated by the results on the controllability properties for the single KdV equation
obtained in [14], from which we borrow some ideas. Our purpose is to see whether one can force
the solutions of the system to have certain desired properties by choosing appropriate control
inputs acting on a neighborhood of x = L. More precisely, we are mainly concerned with the
following problem which are fundamental in control theory:

Given T > 0, initial states (u0, v0) and terminal states (u1, v1) in a certain space, can one �nd
appropriate control inputs h1 and h2 (actually, (ρ(x)h1)x and (ρ(x)h2)x), so that the system (1.5)-
(1.7) admits a solution (u, v) which satis�es (u(·, 0), v(·, 0)) = (u0, v0) and (u(·, T ), v(·, T )) =
(u1, v1)?

If one can always �nd a control input to guide the system described by (1.5)-(1.7) from any
given initial state to any given terminal state, then the system (1.5)-(1.7) is said to be exactly
controllable.

Inspired by the results obtained for the single KdV equation [12, 19, 39], signi�cant progress
has been made for system (1.1) on its boundary controllability properties (see, for instance, [6]
for a nice review of the contributions). By contrast, the study of the internal controllability is
still at its early stage. Recently, in [6], the authors proved the local null controllability property
for system (1.1), posed on a �nite interval, by means of a control supported on an interior open
subset of the domain and acting on one equation only. The proof consists mainly on proving
the controllability of the linearized system, which is done by getting a Carleman estimate for
the adjoint system. A local inversion Theorem is then applied to get the result for the nonlinear
system. By using the same approach, similar results were obtained in [16] for the Hirota-Satsuma
system. Another related work is [13], where the authors consider the problem of controlling
pointwise, by means of a time dependent Dirac measure supported at a given point, the linear
system associated with (1.1) on the unit circle. In this case, the results are obtained by means
of spectral analysis and Fourier expansion of the solutions.

As pointed before, the problem we address here was motivated by the analysis developed in
[14] for the KdV equation. Indeed, after studying a single equation, it is natural and physically
motivating to consider coupled systems of such equations. So, assuming that the control region
is a neighborhood of the right end point of the interval (0, L), we prove an exact controllability
result in a weighted L2-space. This is done under additional assumptions on some coe�cients of
the system (1.5). More precisely, we assume that

b1, b2 > 0 and 0 < a2
3b2 < 1.

According to [11, 42], the parameters b1 and b2 are automatically positive and r is a non-
dimensional parameter that could be assumed very small.

In order to state our main result, we need some notation: For any measurable function
w : (0, L) → (0,+∞) (not necessarily in L1(0, L)), throughout the chapter we consider the
weighted space

[L2
w(x)dx]2 =

{
(u1, u2) ∈ [L1

loc(0, L)]2;

∫ L

0
(u2

1(x) + u2
2(x))w(x)dx <∞

}
,
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which is a Hilbert space endowed with the inner product

(~u,~v)[L2
w(x)dx

]2 = ((u1, u2), (v1, v2))[L2
w(x)dx

]2

=
b2
b1

∫ L

0
u1(x)v1(x)w(x)dx+

∫ L

0
u2(x)v2(x)w(x)dx.

With the notation above, we introduce

H = [L2
(L−x)−1dx]2 and V =

{
~u ∈ [H1

0 (0, L)]2, ~ux ∈ [L2
(L−x)−2dx]2

}
,

endowed with the norms

||~u||2H :=
b2
b1
||(L− x)−

1
2u1||2L2 + ||(L− x)−

1
2u2||2L2

and

||~v||2V :=
b2
b1
||(L− x)−1v1,x||2L2 + ||(L− x)−1v2,x||2L2 ,

where ~u = (u1, u2) and ~v = (v1, v2). Remark that b1 and b2 are positive.
We are now in position to state the main result of this chapter. It concerns the local exact

controllability of (1.5)-(1.7) in the space H and can be summarized as follows:

Theorem 1.1.1. Let T > 0. Then, there exists δ > 0, such that, for any (u0, v0), (u1, v1) ∈ H
satisfying

||(u0, v0)||H ≤ δ and ||(u1, v1)||H ≤ δ,

one can �nd a control function ~h := (h1, h2) ∈ L2(0, T ; [L2(0, L)]2), such that the solution (u, v) ∈
C([0, T ];H) ∩ L2(0, T ;V ) of (1.5)-(1.7) satis�es (u(·, T ), v(·, T )) = (u1, v1) in (0, L). Moreover,
the forcing term ~f = (ρ(x)h1, ρ(x)h2)) is a function in L2

(T−t)dt(0, T ; [L2(0, L)]2) supported in

(0, T )× (L− ν, L), where 0 < ν < L.

It will be also demonstrated that (1.5)-(1.7) is well-posed in C([0, T ];H) ∩ L2(0, T ;V ) when
the initial data and the forcing terms h1 and h2 are small enough. As with other, dispersive wave
equations, well-posedness seems to depend on the conservation laws, or energy-type inequalities
satis�ed by the solutions, and on the linear theory. Therefore, we �rst show that the correspond-
ing linear problem generates a semigroup of continuous operator in H and [L2

xdx]2. This is done
introducing an abstract framework, successfully applied in [14, 22], which combines Hille-Yosida
theory and a generalized Lax-Milgram Theorem due to J.-L. Lions (see, for instance,[23, 28]). In
particular, we also establish the so-called Kato smoothing e�ect, i.e., the solutions whose initial
datum lies in H not only lie in C([0, T ];H) but also in C([0, T ];H) ∩ L2(0, T ;V ). This prop-
erty made it possible to combine the Duhamel formula and a contraction mapping argument to
prove directly the local well-posedness result. As it will become clear in our proofs, assumption
0 < a2

3b2 < 1 allows to obtain a priori estimates leading to the local global well-posedness results.
Those a priori estimate are also useful to establish the well-posedness of the adjoint system in
the dual space [L2

(L−x)dx]2, which is crucial to derive the controllability properties.
With the well-posedness established we investigate the controllability properties of (1.5)-

(1.7). We combine the analysis of the linearized system and a contraction mapping argument
for the full system. In order to analyze the linearized system, we follow a duality approach
[20, 29], which reduces the exact controllability property to prove an observability inequality for
the solutions of the corresponding adjoint system. Here, this is done combining multipliers and
the so-called compactness-uniqueness argument, which leads one to apply a unique continuation
result. Since we are dealing with a linear system, this has been shown to be true by means of
Holmgren's uniqueness theorem. At that point we remark that some of the multipliers mentioned
above were introduced in [39] to study the KdV equation and applied later in [34] in the context
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of the system (1.5)-(1.7). This justify in part the choice of the weight spaces and the assumption
on the support of the function ρ.

The analysis described above is organized in three sections: In Section 2.1 we establish the
well-posedness of the linear system and Section 2.2 is devoted to study its controllability proper-
ties. In both sections we split the results into several steps in order to make the reading easier.
In Section 2.3, we prove the local well-posedness and the controllability of the full nonlinear
system.

1.1.2 On the lack of controllability of a higher-order regularized long-wave

system

Despite the success in studying dispersive models, the mathematical theory have been concerned
with either the pure initial value problem posed on the entire real line or the periodic-initial value
problem posed on the one-dimensional torus. A large body of literature has been concerned with
the questions of existence, uniqueness and continuous dependence of solutions corresponding
to initial data. The study of initial-boundary value problems with nonhomogeneous boundary
conditions has not progressed to the same extent.

In this chapter, the goal is to advance the study of the initial-boundary value problems ex-
ploring the dynamics of dispersive equations using mathematical analysis from the controllability
point of view. Consideration is given to an initial-boundary value problem associated to the lin-
earized Boussinesq system (1.2) when the parameters given in (1.3) are such that a1 = c1 = 0.
Our attention, in particular, is given to the following distributed control system:

ηt + ωx + aωxxx − bηtxx + b1ηtxxxx = 0 for x ∈ (0, L), t > 0,

ωt + ηx + cηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, L), t > 0,

η(t, 0) = 0, η(t, L) = f1(t) for t ≥ 0,

ω(t, 0) = 0, ω(t, L) = g1(t) for t ≥ 0,

ηx(t, 0) = 0, ηx(t, L) = f2(t) for t ≥ 0,

ωx(t, 0) = 0, ωx(t, L) = g2(t) for t ≥ 0,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, L).

(1.8)

In (1.8), the external forcing terms fi and gi, i = 1, 2, are considered as control inputs. The
purpose is to see whether one can force the solutions of the system to have certain desired prop-
erties by choosing appropriate control inputs acting at one end of the interval. More precisely,
we are mainly concerned with the following problems which are fundamental in control theory:

Exact controllability: Given T > 0, initial conditions (η0, ω0) and terminal states (η1, ω1)
in a certain space H, there exist control inputs (f1, g1) and (f2, g2) so that the system (1.8) admits
a solution (η, ω) which satis�es

(η(0, ·), ω(0, ·)) = (η0, ω0) and (η(T, ·), ω(T, ·)) = (η1, ω1).

If any given initial condition can be drive to (0, 0), the system is said to be null controllable.
Approximate controllability: Given T > 0, ε > 0, initial conditions (η0, ω0) and terminal

states (η1, ω1) in a certain space H, there exist control inputs (f1, g1) and (f2, g2) so that the
system (1.8) have a solution (η, ω) which satis�es

||(η(T, ·), ω(T, ·))− (η1, ω1)||H < ε.

Spectral controllability: Any �nite linear nontrivial combination of eigenvectors of the
operator associated with the state equations can be driven to zero in �nite time by using control
inputs (f1, g1) and (f2, g2).
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Observe that exact controllability is essentially stronger notion than approximate control-
lability. In other words, exact controllability always implies approximate controllability. The
converse statement is generally false.

Throughout this chapter, we assume that b, d, b1, d1 > 0 and consider the space

[H2
0 (0, L)]2 =

{
(ϕ,ψ) ∈ [H2(0, L)]2

∣∣∣∣∂rϕ∂xr (0) =
∂rϕ

∂xr
(L) =

∂rψ

∂xr
(0) =

∂rψ

∂xr
(L) = 0, r = 0, 1

}
endowed with the inner product〈(

η
ω

)
,

(
ϕ
ψ

)〉
=

∫ L

0
(ηϕ+ ωψ)dx+

∫ L

0
(bηxϕx + dωxψx)dx

+

∫ L

0
(b1ηxxϕxx + d1ωxxψxx)dx.

(1.9)

The space [H−2(0, L)]2 is de�ned as the dual space of [H2
0 (0, L)]2.

In what concerns system (1.8), our results can be summarized as follows:

• The approximate controllability holds for any T > 0. In more details, we prove that there
exist control inputs fi, gi ∈ H1(0, T ), i = 1, 2, such that the set of reachable states is dense
in [L2(0, L)]2, for any (η0, ω0) ∈ [H−2(0, L)]2 and T > 0.

On the other hand, we give a negative result for the �rst problem introduced above.

• System (1.8) is not spectrally controllable if (η0, ω0) ∈ [H2
0 (0, L)]2.

Remark 1.1.2. The following remarks are in order.

(i) When (η0, ω0) ∈ [H−2(0, L)]2, the solution of (1.8) has to be understood in a weak sense.
For instance, it can be de�ned by transposition. With this approach, we have to impose that
fi, gi ∈ H1(0, T ), i = 1, 2 in order to obtain a well-posedness result.

(ii) Throughout the work, it will become clear that the lack of exact controllability of the model
comes from the existence of a limit point in the spectrum of the operator associated with
the state equations, a phenomenon already noticed in [33] for the single BBM equation.

By means of a series expansion of the solution in terms of the eigenvectors of the state
operator, the approximate controllability is reduced to a unique continuation problem of the
eigenvectors. In what concerns the lack of exact controllability, it is addressed through a spectral
problem which is solved combining Paley-Wiener theorem and the asymptotic behavior of the
eigenvalues. Such approach requires a careful spectral analysis of the operator associated to
the state equation. Indeed, it provides important developments to justify the use of eigenvector
expansions for the solutions, as well as, the asymptotic behavior of the eigenvalues. However, due
to the the structure of the system, the eigenvalues can not be computed explicitly. To overcome
this di�culty we prove that they are close to the eigenvalues of a well chosen di�erential operator.
This is done by using less common two dimensional versions of the shooting method and Rouché's
Theorem. Our approach was inspired by the techniques presented in [4] and [36]. In [36], the
same strategy was successfully used to study the stabilization of a linear Boussinesq system
of BBM-BBM type (a = a1 = c = c1 = b1 = d1 = 0) when a localized damping term acts
on one equation only. By considering homogeneous Dirichlet boundary conditions, the authors
prove that the energy associated to the model converges to zero as time goes to in�nity. In the
conservative case, i. e., in the absence of the damping term, the results obtained in [36] were
properly adapted in [4] to study the controllability problems we address here. This approach
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does not apply directly in our case, since we are dealing with a higher order Boussinesq system.
Therefore, further developments are required.

Before closing this section we emphasize that the problems we address here remain open for
the corresponding nonlinear models, including for the single BBM equation. To our knowledge,
the only result on the subject was obtained in [41] for the BBM equation on the torus T =
R/(2πZ). The authors show that, when an internal control acting on a moving interval is
applied in the BBM equation, it is locally exactly controllable in Hs(T), for any s > 0, and
globally exactly controllable in Hs(T), for any s > 1, in a su�ciently large time depending on
the Hs-norms of the initial and terminal states. When (1.2) is posed on a periodic domain, the
controllability problem has been addressed in [2]. General conditions are given to ensure both
the well-posedness and the local exact controllability of the nonlinear problem by means of a
control localized in the interior of the domain and acting on one equation only.

This chapter is organized as follows: In Section 3.1, we show that system (1.8) is globally well-
posed. Additionally, the adjoint system associated to the homogeneous system is also presented.
Section 3.2 is intended to show the controllability results. Finally, in Section 3.3, we develop the
spectral analysis of the operator associated with the state equations which is used in our proofs.
We choose this presentation in order to make the reading easier.

1.1.3 Asymptotic behavior of a linear higher-order Boussinesq system with

damping

The study of �uid dynamics often leads to the study of equations that describe several physical
situations, as the motion of the water waves under some physical regimes. Such equations can
have a conservative nature, therefore, at least in that case, it is important to investigate the
stability properties of the solutions by adding some dissipative e�ects.

It is well known that a good model to describe the physical phenomena concerning the
unidirectional small amplitude long waves in nonlinear dispersive media is the Korteweg-de Vries
(KdV) equation [27]

ut + ux + uxxx + uux = 0.

As a rational alternative to the (KdV) equation is the so-called regularized long wave equation
or Benjamin-Bona-Mahony (BBM) equation [7, 38]

ut + ux − utxx + uux = 0.

On the other hand, in order to obtain a better agreement between models for the two-way
propagation of waves and surface-wave experiments in a laboratory setting, �eld studies of wave-
generated sediment transport, J. J. Bona, M. Chen and J.-C. Saut [9, 10] derived, from the
classical Euler equations under a speci�c physical regime, the higher-order system (1.2) and the
lower-order system {

ηt + wx + awxxx − bηtxx = −(ηw)x,

wt + ηx + cηxxx − dwtxx = −wwx.
(1.10)

As pointed out before, the dependent variables η = η(x, t) and w = w(x, t) are real-valued
functions of the variables x and t and subscripts indicate partial di�erentiation. The parameters
a, b, c and d obey the consistency conditions

a+ b =
1

2
(θ2 − 1

3
), c+ d =

1

2
(θ2 − 1

2
) ≥ 0, where θ ∈ [0, 1].

Since it is important both scienti�cally and for potential applications, system (1.10) has
been attracted the interests of mathematicians in recent years. Particularly, in what concerns
the study of control and stabilization properties, it is important to consider the stabilization
problem when dissipative e�ects are generated by internal and boundary damping. This issue
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becomes easier provided that the models have a strong intrinsic dissipative nature. Nevertheless,
since the systems (1.2) and (1.10) are meant to replace the Euler equations, it is expected the
preservation of energy, which suggests to include appropriated damping mechanisms for the decay
of solutions.

The study of the stabilization and controllability properties for Boussinesq systems was ini-
tiated in [32] considering model (1.10). The work [32] deals with the internal controllability and
stabilization of (1.10) on the torus and, when b, d > 0 and a, c < 0, the local exact control-
lability of the nonlinear system is shown to hold. As an application of the established exact
controllability results, some simple feedback controls are constructed for particular choices of the
parameters a, b, c and d, such that the resulting closed-loop systems are exponentially stable.
Later on, in [37], the authors investigated the boundary stabilization of the Boussinesq system
(1.10) of KdV-KdV type (b = d = 0) posed on a bounded interval. More precisely, they design a
two-parameter family of feedback laws for which the solutions issuing from small data are glob-
ally de�ned and exponentially decreasing in the energy space. More recently, in [15], the exact
boundary controllability of the Boussinesq system (1.10) of KdV-KdV type was studied. It was
discovered that whether the associated linear system is exactly controllable or not depends on
the length of the spatial domain. The extension of the exact controllability for the Boussinesq
system (1.10) is derived in the energy space in the case of a control of Neumann type. It is
obtained by incorporating a boundary feedback in the control in order to ensure the so-called
Kato smoothing e�ect. In addition, proceeding as in [37], a local exponential stability result was
also derived.

In the absence of the nonlinear terms and letting a = c = 0 and b, d > 0, the stabilization
problem for the resulting linearized system of BBM-type was studied in [35] (see also [5, 18]).
The authors consider the periodic case and, by introducing generalized damping operators in
each equation, it is proved that whether the solutions of the system decay uniformly or not to
zero depend on the parameters of the damping operators. When the model is posed on an
bounded interval, the stabilization problem was studies in [36]. By means of a localized damping
term acting in one equation and Dirichlet boundary conditions, it was proved that the energy
associated to the model converges to zero as time tends to in�nity.

Under the assumption of unique continuation property (UCP Conjecture) on the conservative
scalar BBM equation, Rosier [40] answers a�rmatively the issue. In fact, all the trajectories are
attracted by the origin provided that some feedback laws (internal and boundary damping) are
incorporated in the BBM equation. We remark that the unique continuation property for the
BBM equation is still an open problem. Inspired by the ideas developed by Rosier, in [3] the
authors propose several dissipation mechanisms for the linear system associated to (1.10) with
the parameters a, b, c, d satisfying a = c = 0 and b, d > 0. They proved that the origin is
asymptotically stable for the corresponding damped linear BBM-BBM model.

Motivated by the works mentioned above, in this chapter we investigate the stabilization
properties for system (1.2) dropping the nonlinear terms and assuming that the parameters in
(1.3) are such that a1 = c1 = 0 and b, b1, d, d1 > 0, a, c < 0 or a = c ≥ 0. The resulting
system couples two linear higher-order Benjamin-Bona-Mahony type equations, the so-called
higher-order regularized long-wave system or higher-order BBM-system.

We �rst address the boundary stabilization problem. More precisely, we consider the system
ηt + ωx + aωxxx − bηtxx + b1ηtxxxx = 0 for x ∈ (0, L), t > 0,

ωt + ηx + aηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, L), t > 0,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, L),

(1.11)
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with the following boundary conditions

b1ηtxxx(t, 0)− bηtx(t, 0) = −(b+ b1)η(t, 0)− aωxx(t, 0)− ω(t, 0)

2
for t ≥ 0,

b1ηtxxx(t, L)− bηtx(t, L) = (b+ b1)η(t, L)− aωxx(t, L)− ω(t, L)

2
for t ≥ 0,

d1ωtxxx(t, 0)− dωtx(t, 0) = −(d+ d1)ω(t, 0)− aηxx(t, 0)− η(t, 0)

2
for t ≥ 0,

d1ωtxxx(t, L)− dωtx(t, L) = (d+ d1)ω(t, L)− aηxx(t, L)− η(t, L)

2
for t ≥ 0,

(1.12)



ηtxx(t, 0) = ηx(t, 0)− aωx(t, 0)

2b1
for t ≥ 0,

ηtxx(t, L) = −ηx(t, L)− aωx(t, L)

2b1
for t ≥ 0,

ωtxx(t, 0) = ωx(t, 0)− aηx(t, 0)

2d1
for t ≥ 0,

ωtxx(t, L) = −ωx(t, L)− aηx(t, L)

2d1
for t ≥ 0.

(1.13)

The natural energy associated to the Boussinesq system is given by

E(t) =
1

2

∫ L

0
|η(t)|2 + |ω(t)|2 + b|ηx(t)|2 + d|ωx(t)|2 + b1|ηxx(t)|2 + d1|ωxx(t)|2dx

and, if we multiply the �rst (resp. second) equation in (??) by η (resp. ω), integrate by parts
over (0, L) and add the resulting equations, we obtain (at least formally)

dE(t)

dt
=− (b+ b1)(|η(t, L)|2 + |η(t, 0)|2)− (d+ d1)(|ω(t, L)|2 + |ω(t, 0)|2)

− b1(|ηx(t, L)|2 + |ηx(t, 0)|2)− d1(|ωx(t, L)|2 + |ωx(t, 0)|2).
(1.14)

Thus, the energy E(t) is decreasing and the boundary conditions play the role of a feedback
damping mechanism.

Next, we study the case in which a localized damping mechanism acts in one equation of the
system: 

ηt + ωx + aωxxx − bηtxx + b1ηtxxxx + Bη = 0 for x ∈ (0, 2π), t > 0,

ωt + ηx + cηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, 2π), t > 0,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, 2π),

(1.15)

where B is a linear bounded operator which will act only on an open subset Ω ⊂ (0, 2π). In the
next sections, we will specify the election of the feedback law Bη. In each case, the following
boundary conditions will be imposed on the system (1.15):{

∂rη

∂xr
(t, 0) =

∂rη

∂xr
(t, 2π),

∂rω

∂xr
(t, 0) =

∂rω

∂xr
(t, 2π) for t > 0, r = 0, 1.

Then, when L = 2π, the energy E(t) de�ned above satis�es

dE(t)

dt
= −

∫
Ω
Bη(t)η(t)dx. (1.16)

So, if
∫

Ω Bη(t)η(t)dx > 0, the energy decreases along the trajectories of the system. In both
cases, (1.14) and (1.16), the question is whether E(t) is asymptotically stable, as t→∞.

Following the approach developed in [40] and [3] we �rst prove the unique continuation
property for solutions of the conservative system. The proof makes use of the explicit Fourier
series expansion of the solution in terms of the eigenvectors of the di�erential operator associated
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to the space variable. In what concerns the systems above, the well-posedness is obtained by
converting them into integral equations and applying the contraction-mapping principle. Then,
by proving the convergence towards a solution which is null on a band, the unique continuation
property implies that the origin is asymptotically stable. As it will become clear during our
proofs, to ensure the global well-posedness of (1.11)-(1.13) in the energy space we will assume
additional conditions on the parameters.

It is important to emphasize that the energy identities (1.14) and (1.16) do not imply any
global in time a priori estimates for the nonlinear system. Thus, it does not conduct to the global
existence of solutions in the energy space.

This chapter is outlined as follows. Section 4.1 is dedicated to prove the unique continuation
property for solutions of the conservative system. In Section 4.2 it is studied the Boussinesq
system with boundary damping and �nally, in Section 4.3 we consider the system with a pair of
internal damping terms.

1.1.4 Comments and perspectives

During the development of this work some natural questions came to the fore. Therefore, in this
section we will mention a list of problems that we can study thereafter.
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Chapter 2

Controllability of the Gear-Grimshaw

system in a weighted L2-space

In this chapter we are concerned with the controllability properties of system (1.5), posed on a
bounded interval, by means of distributed controls. When the control region is a neighborhood of
the right end point of the interval, we prove the local exact controllability of the nonlinear problem
in some well chosen weighted L2-spaces. The results are �rst established for the linearized system
through a classical duality approach and then extended for the full system via a �xed point
argument.

2.1 The linear system

In this section we prove the well-posedness of the linear system associated to (1.5)-(1.7). The
results will be obtained for both homogeneous and nonhomogeneous systems.

Throughout the section, we consider the Hilbert spaces [L2
w(x)dx]2 de�ned before.

2.1.1 The homogeneous system

Let us �rst consider the homogeneous system

ut + uxxx + avxxx = 0 in (0, T )× (0, L),

cvt + rvx + vxxx + bauxxx = 0 in (0, T )× (0, L),

u(0, t) = u(L, t) = ux(L, t) = 0 on (0, T ),

v(0, t) = v(L, t) = vx(L, t) = 0 on (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) on (0, L).

(2.1)

The well-posedness results will be established in the spaces

[L2
xdx]2 and [L2

(L−x)−1dx]2.

This is done by using the semigroup approach, combining Hille-Yosida Theorem and the following
generalized Lax-Milgram Theorem due to J.-L. Lions (see, for instance, [22, 23]).

Theorem 2.1.1. Let W ⊂ V ⊂ H be three Hilbert spaces with continuous and dense embeddings.
Let a(u, v) be a bilinear form de�ned on V ×W that satis�es the following properties:

(i) (Continuity)
a(v, w) ≤M ||v||V ||w||W , ∀v ∈ V, ∀w ∈W
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(ii) (Coercivity)
a(w,w) ≥ m||w||2V , ∀w ∈W.

Then, for all f ∈ V ′ (the dual of V ), there exists v ∈ V , such that

a(v, w) = f(w), ∀w ∈W.

Assume that, in addition to (i) and (ii), a(v, w) satis�es:

(iii) (Regularity) For all g ∈ H, any solution v ∈ V of

a(v, w) = (g, w)H , ∀w ∈W, (2.2)

belongs toW .Then, equation (2.2) has a unique solution v = v(g) ∈W . Let D(A) := {v(g); g ∈ H} ⊂
W ⊂ H and set Av := −g, for v ∈ D(A). (Note that there is a unique g ∈ H satisfying (2.2).)
Then, A is a maximal dissipative operator, and hence it generates a continuous semigroup of
contractions in H.

Well-posedness in [L2
xdx]2

By using Theorem 2.1.1, we prove that the state operator associated to (2.1) generates a strongly
continuous semigroup in [L2

xdx]2.

Theorem 2.1.2. Let ~u = (u1, u2) and A1~u = (−u1,xxx − au2,xxx,−ab
c u1,xxx − 1

cu2,xxx − r
cu2,x)

with domain

D(A1) =
{
~u ∈ [H2(0, L) ∩H1

0 (0, L)]2; ~uxxx ∈ [L2
xdx]2, ~ux(L) = ~0

}
⊂ [L2

xdx]2.

Then, A1 generates a strongly continuous semigroup in [L2
xdx]2.

Proof. We �rst introduce the spaces

H = [L2
xdx]2, V = [H1

0 (0, L)]2, W =
{
~w ∈ [H1

0 (0, L)]2, ~wxx ∈ [L2
x2dx]2

}
,

endowed with the norms

||~u||2H :=
b

c
||
√
xu1||2L2(0,L) + ||

√
xu2||2L2(0,L), ||~v||2V :=

b

c
||v1,x||2L2(0,L) + ||v2,x||2L2(0,L),

||~w||2W :=
b

c
||xw1,xx||2L2(0,L) + ||xw2,xx||2L2(0,L),

where ~u = (u1, u2), ~v = (v1, v2) and ~w = (w1, w2).
Observe that V ⊂ H with continuous and dense embeddings and D(A1) ⊂ W . Moreover,

using the following inequality proved in [14]

||wx||L2 ≤ C||xwxx||L2 , ∀w ∈
{
w ∈ H1

0 (0, L), wxx ∈ L2
x2dx

}
, (2.3)

it follows that W is a Hilbert space and the embedding W ⊂ V is dense and continuous.
Next, we de�ne the bilinear form

aλ(~v, ~w) := a(~v, ~w) + λ(~v, ~w)H , with λ >> 1,

where

a(~v, ~w) =
b

c

∫ L

0
v1,x [(xw1)xx + a(xw2)xx] dx

+
1

c

∫ L

0
v2,x [ba(xw1)xx + (xw2)xx + r(xw2)] dx, ∀~v ∈ V, ~w ∈W,
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to prove that conditions (i), (ii) and (iii) given by Theorem 2.1.1 are satis�ed for any ~v ∈ V and
~w ∈W .

(i) Continuity

Combining Cauchy-Schwarz and Poincaré inequalities with (2.3) it follows that

|a(~v, ~w)| ≤ b

c
||v1,x||L2 (||xw1,xx + 2w1,x||L2 + |a|.||xw2,xx + 2w2,x||L2)

+
1

c
||v2,x||L2 (|ab|.||xw1,xx + 2w1,x||L2 + ||xw2,xx + 2w2,x||L2 + |r|||xw2||L2)

≤ C0(a, b, c, r)||~v||V
(
||xw1,xx||L2 + ||xw2,xx||L2 + ||~wx||[L2]2 + C||xw2,x + w2||L2

)
≤ C1(a, b, c, r, L)||~v||V (||~w||W + ||w2,x||L2) ≤M ||~v||V ||~w||W ,

where C0, C1 andM are positive constant. The above estimate allows us to conclude that a(·, ·),
as well as aλ(·, ·), are well de�ned and continuous on V ×W .

(ii) Coercivity

For any ~w = (w1, w2) ∈ [C∞([0, L]) ∩H1
0 (0, L)]2, we have

a(~w, ~w) =
b

c

∫ L

0
w1,x [(xw1)xx + a(xw2)xx] dx+

1

c

∫ L

0
w2,x [ba(xw1)xx + (xw2)xx + r(xw2)] dx

=
b

c

∫ L

0
w1,x [xw1,xx + 2w1,x] + aw1,x [xw2,xx + 2w2,x] dx

+
1

c

∫ L

0
baw2,x [xw1,xx + 2w1,x] + w2,x [xw2,xx + 2w2,x] +

r

2
x[w2

2]xdx.

After integration by parts, a(~w, ~w) can be written as

a(~w, ~w) =
1

2

b

c

∫ L

0
x

[
w2

1,x + 2aw1,xw2,x +
1

b
w2

2,x

]
x

dx

+ 2
b

c

∫ L

0

[
w2

1,x + 2aw1,xw2,x +
1

b
w2

2,x

]
dx− r

2c

∫ L

0
w2

2dx

=
L

2

b

c

[
w2

1,x(L) + 2aw1,x(L)w2,x(L) +
1

b
w2

2,x(L)

]
+

3

2

b

c

∫ L

0

[
w2

1,x + 2aw1,xw2,x +
1

b
w2

2,x

]
dx− r

2c

∫ L

0
w2

2dx.

Then,

a(~w, ~w) =
L

2

b

c

[
(w1,x(L) + aw2,x(L))2 +

(
1

b
− a2

)
w2

2,x(L)

]
+

3

2

b

c

∫ L

0

[
w2

1,x + 2aw1,xw2,x +
1

b
w2

2,x

]
dx− r

2c

∫ L

0
w2

2dx.

For any ε0 > 0, an application of Young inequality gives

a(~w, ~w) ≥ 3

2
(1− ε) b

c

∫ L

0
w2

1,xdx+
3

2

b

c

(
1

b
− a2

ε

)∫ L

0
w2

2,xdx−
r

2c

∫ L

0
w2

2dx. (2.4)

Thus, taking into account the assumptions on the coe�cients of the system, we can choose ε0 > 0,
such that |a|

√
b <
√
ε0 < 1 to obtain

a(~w, ~w) ≥ mε0 ||~w||2V −
r

2c

∫ L

0
w2

2dx (2.5)
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where mε0 := min
{

3
2 (1− ε0) , 3

2
b
c

(
1
b −

a2

ε0

)}
. Observe that, if r = 0, the coercivity of a(·, ·)

follows from (2.5), for any L > 0. When r 6= 0, the result is obtained making use of the Poincaré
inequality: ∫ L

0
w2dx ≤

(
L

π

)2 ∫ L

0
w2
xdx.

Indeed, from (2.4) we get

a(~w, ~w) ≥ 3

2
(1− ε0)

b

c

∫ L

0
w2

1,xdx+
3

2

b

c

(
1

b
− a2

ε0
− |r|L

2

3bπ2

)∫ L

0
w2

2,xdx ≥ mL,ε0 ||~w||2V ,

for any L > 0 satisfying

L < π

√
3b

|r|

(
1

b
− a2

ε0

)
and mL,ε0 > 0 given by

mL,ε0 := min

{
3

2
(1− ε0),

3

2

b

c

(
1

b
− a2

ε0
− |r|L

2

3bπ2

)}
.

When L ≥ π
√

3b
|r|

(
1
b −

a2

ε0

)
, instead of a, we consider the bilinear form

aλ(~v, ~w) := a(~v, ~w) + λ(~v, ~w)H , with λ >> 1.

To prove the coercivity of aλ, we need the following claim:

Claim: For any δ > 0,

||w||2L2 ≤ δ||w||2H1
0

+ δ−1L||w||2L2
xdx
, ∀w ∈ C([0, L]) ∩H1

0 (0, L).

Combining the Claim and (2.5), it follows that

a(~w, ~w) ≥ mε0 ||~w||2V −
|r|
2c
δ||w2||2H1

0
− |r|L

2c
δ−1||w2||2L2

xdx

≥
(
mε0 −

|r|
2c
δ

)
||~w||2V −

|r|L
2c

δ−1||~w||2H .

Then, choosing δ0 < mε0
2c
|r| and λ > L |r|2c δ

−1
0 , we get

aλ(~w, ~w) ≥
(
mε0 −

|r|
2c
δ0

)
||~w||2V +

(
λ− |r|L

2c
δ−1

0

)
||~w||2H .

Consequently, aλ is continuous and coercive. Finally, since [C∞([0, L]) ∩H1
0 (0, L)]2 is dense in

W , the result is valid for any ~w ∈W.
It remains to prove the Claim.

Proof of the Claim: From Cauchy-Schwarz and Hardy inequalities, we have

||w||2L2 ≤ ||x
1
2w||L2

(∫ L

0
x−1w2dx

) 1
2

= ||w||L2
xdx

(∫ L

0
xx−2w2dx

) 1
2

≤
√
L||w||L2

xdx

(∫ L

0
[x−1w]2dx

) 1
2

≤ 2
√
L||w||L2

xdx

(∫ L

0
w2
xdx

) 1
2

= 2
√
L||w||L2

xdx
||w||H1

0
.
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Then, from Young inequality it follows that

||w||2L2 ≤ δ||w||2H1
0

+ δ−1L||w||2L2
xdx
, ∀ δ > 0.

Consequently, for given ~g = (g1, g2) ∈ H, Theorem 2.1.1 guarantees the existence of a function
~v ∈ V which solves the problem

aλ(~v, ~w) = (~g, ~w)H , ∀~w ∈W. (2.6)

The next steps are devoted to prove that ~v ∈ D(A1) ⊂W .

(iii) Regularity

We �rst write (2.6) as

aλ(~v, ~w) =
b

c

∫ L

0
v1,x [(xw1)xx + a(xw2)xx] dx+

1

c

∫ L

0
v2,x [ba(xw1)xx + (xw2)xx + r(xw2)] dx

+ λ

∫ L

0
x

[
b

c
v1w1 + v2w2

]
dx =

∫ L

0
x

[
b

c
g1w1 + g2w2

]
dx.

(2.7)
Then, (2.7) allows us to conclude that

b

c
〈x[v1,xxx + av2,xxx + λv1], w1〉D′,D +

1

c
〈x[bav1,xxx + v2,xxx + rv2,x + cλv2], w2〉D′,D

=
b

c
〈xg1, w1〉D′,D + 〈xg2, w2〉D′,D, ∀~w ∈ [D(0, L)]2,

where 〈·, ·〉D′,D denotes the duality between [D(0, L)]2 and its dual space. Consequently,{
v1,xxx + av2,xxx + λv1 = g1, in D′(0, L),

bav1,xxx + v2,xxx + rv2,x + cλv2 = cg2, in D′(0, L).
(2.8)

From now on, we proceed in several steps:

• Step 1: ~v ∈ [H3(ε, L)]2, for all ε ∈ (0, L), and ~vxxx ∈ H.

Indeed, from (2.8) it follows that

v2,xxx =
(
1− ba2

)−1
[λ(bav1 − cv2)− rv2,x + cg2 − bag1], in D′(0, L). (2.9)

Then, for any ε ∈ (0, L), we get∫ L

ε
|v2,xxx|2dx ≤ C||~v||2V + C ′ε−1

∫ L

ε
x[|g1|2 + |g2|2]dx ≤ C||~v||2V + C ′ε−1||~g||2H ,

for some constants C,C ′ > 0. Hence, v2 ∈ H3(ε, L) and, from (2.8), we deduce that v1 ∈ H3(ε, L),
which proves the �rst part of Step 1. On the other hand, from (2.9) we obtain the estimate∫ L

0
x|v2,xxx|2dx ≤ C(L)

(
||~v||2V + ||~g||2H

)
,

where C(L) > 0, which shows that v2,xxx ∈ L2
xdx. Thus, from (2.8) we also conclude that

v1,xxx ∈ L2
xdx, and the proof of Step 1 ends.

• Step 2: ~v ∈ [H2(0, L)]2, and hence ~v ∈W .

Since ~vxxx ∈ H, we obtain a positive constant C > 0, such that, for any ε ∈ (0, L),

|vixx(ε)− vixx(L)| ≤
(∫ L

ε
x|vixxx|2dx

) 1
2
(∫ L

ε
x−1dx

) 1
2

≤ C + C|ln(ε)|, i = 1, 2. (2.10)
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On the other hand,

|vix(ε)− vix(L)| ≤
∫ L

ε
|vixx(x)− vixx(L)|dx+ (L− ε)|vixx(L)|

≤ C
∫ L

ε
|ln(x)|dx+ (L− ε) [|vixx(L)|+ C] , i = 1, 2,

(2.11)

for some C > 0. From (2.10) we deduce that ~v ∈ [H2(0, L)]2 and, therefore, ~vxx ∈ [L2
x2dx]2,

which gives that ~v ∈W .

• Step 3: ~v ∈ D(A1).

We �rst multiply the �rst equation in (2.8) by b
cxw1 and integrate over (ε, L), where w1 ∈

C∞([0, L]) ∩H1
0 (0, L) and ε ∈ (0, L). After integrating by parts over (ε, L), we get

b

c
[xw1(v1,xx + av2,xx)− (xw1,x + w1)(v1,x + av2,x)]

∣∣∣∣L
ε

+
b

c

∫ L

ε
[xw1]xx[v1,x + av2,x]dx+ λ

b

c

∫ L

ε
xw1v1dx =

b

c

∫ L

ε
xw1g1dx.

(2.12)

Next, multiplying the second equation in (2.8) by 1
cxw2, with w2 ∈ C∞([0, L]) ∩H1

0 (0, L), and
proceeding in a similar way, it follows that

1

c
[xw2(bav1,xx + v2,xx)− (xw2,x + w2)(bav1,x + v2,x)]

∣∣∣∣L
ε

+
1

c

∫ L

ε
[xw2]xx[bav1,x + v2,x]dx+

r

c

∫ L

ε
xw2v2,xdx+ λ

∫ L

ε
xw2v2dx

=

∫ L

ε
xw2g2dx.

(2.13)

Adding (2.12) and (2.13) hand to hand, we obtain the identity

L

[
b

c
w1,x(L)(v1,x(L) + av2,x(L)) +

1

c
w2,x(L) (bav1,x(L) + v2,x(L))

]
+
b

c
[εw1(ε)(v1,xx(ε) + av2,xx(ε))− (εw1,x(ε) + w1(ε))(v1,x(ε) + av2,x(ε))]

+
1

c
[εw2(ε) (bav1,xx(ε) + v2,xx(ε))− (εw2,x(ε) + w2(ε)) (bav1,x(ε) + v2,x(ε))]

=
b

c

∫ L

ε
v1,x [(xw1)xx + a(xw2)xx] dx+

1

c

∫ L

ε
v2,x [ba(xw1)xx + (xw2)xx + r(xw2)] dx

+ λ

∫ L

ε
x

[
b

c
v1w1 + v2w2

]
dx−

∫ L

ε
x

[
b

c
g1w1 + g2w2

]
dx.

(2.14)

Observe that (2.10) and (2.11) allow us to pass (2.14) to the limit, as ε → 0. Hence, from
(2.7) we get

− L
[
b

c
w1,x(L)(v1,x(L) + av2,x(L)) +

1

c
w2,x(L) (bav1,x(L) + v2,x(L))

]
= lim

ε→0

{
b

c
[εw1(ε)(v1,xx(ε) + av2,xx(ε))− (εw1,x(ε) + w1(ε))(v1,x(ε) + av2,x(ε))]

+
1

c
[εw2(ε) (bav1,xx(ε) + v2,xx(ε))− (εw2,x(ε) + w2(ε)) (bav1,x(ε) + v2,x(ε))]

}
= 0.
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Since ~w = (w1, w2) is arbitrary, we conclude that

v1,x(L) + av2,x(L) = 0,

bav1,x(L) + v2,x(L) = 0.

Solving the system above we obtain
(
1− ba2

)
v2,x(L) = 0 and, due to the assumptions on the

coe�cients of the system, it follows that v1,x(L) = v2,x(L) = 0. Then, ~v ∈ D(A1). Reciprocally,
from the analysis developed above, it follows that the operator A1 − λ : D(A1) → H is onto.
Then, A1 − λ generates a strongly semigroup of contractions in H.

�

Well-posedness in [L2
(L−x)−1dx]2

Combining Hille-Yosida Theorem and (partially) Theorem 2.1.1, we prove that the state operator
associated to (2.1) generates a strongly continuous semigroup in [L2

(L−x)−1dx]2.

Theorem 2.1.3. Let ~u = (u1, u2) and A2~u = (−u1,xxx − au2,xxx,−ab
c u1,xxx − 1

cu2,xxx − r
cu2,x)

with domain

D(A2) =
{
~u ∈ [H3(0, L) ∩H1

0 (0, L)]2; ~uxxx ∈ [L2
(L−x)−1dx]2, ~ux(L) = ~0

}
⊂ [L2

(L−x)−1dx]2.

Then, A2 generates a strongly continuous semigroup in [L2
(L−x)−1dx]2.

Proof. We �rst introduce the spaces

H = [L2
(L−x)−1dx]2, V =

{
~u ∈ [H1

0 (0, L)]2, ~ux ∈ [L2
(L−x)−2dx]2

}
, W = [H2

0 (0, L)]2, (2.15)

endowed with the norms

||~u||2H :=
b

c
||(L− x)−

1
2u1||2L2 + ||(L− x)−

1
2u2||2L2 , ||~w||2W :=

b

c
||w1,xx||2L2(0,L) + ||w2,xx||2L2 ,

||~v||2V :=
b

c
||(L− x)−1v1,x||2L2 + ||(L− x)−1v2,x||2L2 ,

where ~u = (u1, u2), ~v = (v1, v2) and ~w = (w1, w2).
We �rst remark that:

(i) V is a Hilbert space and V ⊂ H with continuous embedding.

Indeed, according to [22], the space V :=
{
u ∈ H1

0 (0, L);ux ∈ L2
(L−x)−2dx

}
, endowed with

the norm ||u||V := ||(L− x)−1ux||L2 , is a Hilbert space and

||(L− x)−2u||L2 ≤
2

3
||u||V , ∀u ∈ V. (2.16)

Consequently, V ⊂ L2
(L−x)−1dx with continuous embedding, since

||u||L2
(L−x)−1dx

≤
(∫ L

0

L3

(L− x)4
|u|2dx

) 1
2

≤ 2

3
L

3
2 ||u||V , ∀u ∈ V. (2.17)

The results above allow us to deduce that V is a Hilbert space and, in addition, that the
embedding V ⊂ H is continuous as well.
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(ii) W is a Hilbert space and W ⊂ V with continuous embedding.

Poincaré inequality guarantees that the norms || · ||W and the H2-norm are equivalent.
Now, observe that, from Hardy inequality we have that∫ L

0

v2

(L− x)2
dx ≤ C

∫ L

0
v2
xdx, ∀ v ∈ H1(0, L) with v(L) = 0. (2.18)

Thus, for any ~v ∈W , it follows that v1,x,v2,x ∈ H1(0, L) and v1,x(L) = v2,x(L) = 0. Then,
from (2.18), we get

||~v||V ≤ C||~v||W , ∀~v ∈W. (2.19)

This shows that W ⊂ V with continuous embedding. It is easily seen that [D(0, L)]2 is
dense in H, V and W .

Next, we proceed as in the proof of Theorem 2.1.2 and de�ne the bilinear form

aλ(~v, ~w) = a(~v, ~w) + λ(~v, ~w)H ,

where λ > 0 will be de�ned later, and

a(~v, ~w) =
b

c

∫ L

0
v1,x

[(
w1

L− x

)
xx

+ a

(
w2

L− x

)
xx

]
dx

+
1

c

∫ L

0
v2,x

[
ba

(
w1

L− x

)
xx

+

(
w2

L− x

)
xx

+ r

(
w2

L− x

)]
dx, ∀~v ∈ V, ~w ∈W.

Then, in order to apply Theorem 2.1.1, the next steps are devoted to prove that aλ(·, ·) is
continuous and coercive.

(i) Continuity

First, observe that, for any v = (v1, v2) ∈ V and w = (w1, w2) ∈W

|a(~v, ~w)| ≤ b

c

∫ L

0
|v1,x|

∣∣∣∣ w1,xx

L− x
+ 2

w1,x

(L− x)2
+ 2

w1

(L− x)3

∣∣∣∣dx
+
b|a|
c

∫ L

0
|v1,x|

∣∣∣∣ w2,xx

L− x
+ 2

w2,x

(L− x)2
+ 2

w2

(L− x)3

∣∣∣∣dx
+
b|a|
c

∫ L

0
|v2,x|

∣∣∣∣ w1,xx

L− x
+ 2

w1,x

(L− x)2
+ 2

w1

(L− x)3

∣∣∣∣dx
+

1

c

∫ L

0
|v2,x|

∣∣∣∣ w2,xx

L− x
+ 2

w2,x

(L− x)2
+ 2

w2

(L− x)3
+ r

w2

L− x

∣∣∣∣dx.
Then, from Cauchy-Schwarz inequality, (2.16), (2.17) and (2.19), we obtain a positive constant
C > 0, such that

|a(~v, ~w)|

≤ b

c

[
||w1,xx||L2

∣∣∣∣∣∣∣∣ v1,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w1,x

L− x

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v1,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w1

(L− x)2

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v1,x

L− x

∣∣∣∣∣∣∣∣
L2

]
+
b|a|
c

[
||w2,xx||L2

∣∣∣∣∣∣∣∣ v1,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w2,x

L− x

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v1,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w2

(L− x)2

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v1,x

L− x

∣∣∣∣∣∣∣∣
L2

]
+
b|a|
c

[
||w1,xx||L2

∣∣∣∣∣∣∣∣ v2,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w1,x

L− x

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v2,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w1

(L− x)2

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v2,x

L− x

∣∣∣∣∣∣∣∣
L2

]
+

1

c

[
||w2,xx||L2

∣∣∣∣∣∣∣∣ v2,x

L− x

∣∣∣∣∣∣∣∣
L2

+ 2

∣∣∣∣∣∣∣∣ w2,x

L− x

∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣∣∣ v2,x

L− x

∣∣∣∣∣∣∣∣
L2

]
+

1

c

∣∣∣∣∣∣∣∣ v2,x

L− x

∣∣∣∣∣∣∣∣
L2

(
2

∣∣∣∣∣∣∣∣ w2

(L− x)2

∣∣∣∣∣∣∣∣
L2

+ |r|||w2||L2

)
≤ C||~v||V ||~w||W ,
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which shows that a(·, ·) and aλ(·, ·) are well de�ned and continuous on V ×W .

(ii) Coercivity

For any ~w = (w1, w2) ∈W , we have

a(~w, ~w) =
b

c

∫ L

0
w1,x

[
w1,xx

L− x
+ 2

w1,x

(L− x)2
+ 2

w1

(L− x)3

]
dx

+
ba

c

∫ L

0
w1,x

[
w2,xx

L− x
+ 2

w2,x

(L− x)2
+ 2

w2

(L− x)3

]
dx

+
ba

c

∫ L

0
w2,x

[
w1,xx

L− x
+ 2

w1,x

(L− x)2
+ 2

w1

(L− x)3

]
dx

+
1

c

∫ L

0
w2,x

[
w2,xx

L− x
+ 2

w2,x

(L− x)2
+ 2

w2

(L− x)3
+ r

w2

L− x

]
dx.

After integration by parts, if follows that

a(~w, ~w) =
3

2

b

c

∫ L

0

[
w2

1,x + 2aw1,xw2,x +
1

b
w2

2,x

]
1

(L− x)2
dx

− 3
b

c

∫ L

0

[
w2

1 + 2aw1w2 +
1

b
w2

2

]
1

(L− x)4
dx− r

2c

∫ L

0

w2
2

(L− x)2
dx.

(2.20)

Then, for any ε > 0, we can apply Young inequality to obtain

a(~w, ~w) ≥ 3

2

b

c
(1− ε)

∫ L

0

w2
1,x

(L− x)2
dx+

3

2

b

c
(
1

b
− a2ε−1)

∫ L

0

w2
2,x

(L− x)2
dx

− 3
b

c
(1 + ε)

∫ L

0

w2
1

(L− x)4
dx− 3

b

c
(
1

b
+ a2ε−1)

∫ L

0

w2
2

(L− x)4
dx

− r

2c

∫ L

0

w2
2

(L− x)2
dx.

Using (2.16), we can estimate the right hand side of the above inequality as follows:

a(~w, ~w) ≥ 1

6

b

c
(1− 17ε)

∫ L

0

w2
1,x

(L− x)2
dx+

1

6

b

c
(
1

b
− 17a2ε−1)

∫ L

0

w2
2,x

(L− x)2
dx

− r

2c

∫ L

0

w2
2

(L− x)2
dx.

(2.21)

In order to estimate the last term in the above inequality, we apply Cauchy-Schwarz and Young
inequalities and (2.16). More precisely, for any δ > 0, we get∫ L

0

w2
2

(L− x)2
dx ≤ ||(L− x)−

3
2w2||L2 ||(L− x)−

1
2w2||L2

≤ 2
√
L

3
||(L− x)−1w2,x||L2 ||(L− x)−

1
2w2||L2

≤ δ||(L− x)−1w2,x||2L2 +
L

9δ
||(L− x)−

1
2w2||2L2 .

(2.22)

Combining (2.22) and (2.21) it follows that

a(~w, ~w) +
|r|L
18cδ

||(L− x)−
1
2w2||2L2 ≥

1

6
(1− 17ε)

b

c
||(L− x)−1w1,x||2L2

+

[
1

6

b

c
(
1

b
− 17a2ε−1)− δ |r|

2c

]
||(L− x)−1w2,x||2L2 .
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Then, taking into account the assumptions on the coe�cients of the system, we can choose ε > 0,
such that |a|

√
b <

√
ε/17 < 1/17. For this choice of ε we �x δ < 1

3|r|
(
1− 17ba2ε−1

)
and de�ne

mε,δ := min

{
1

6
(1− 17ε) ,

[
1

6

b

c

(
1

b
− 17a2ε−1

)
− δ1
|r|
2c

]}
.

Then, for any ~w ∈ [D(0, L)]2 we have that

a(~w, ~w) +
|r|L

18cδ1
||~w||2H ≥ mε1,δ1 ||~w||2V . (2.23)

By density, the result also holds for any ~w ∈W , which shows that the bilinear form

aλ(~v, ~w) = a(~v, ~w) + λ(~v, ~w)H

is coercive for λ > |r|L
18cδ .

Then, for given ~g = (g1, g2) ∈ H, Theorem 2.1.1 guarantees the existence of a function ~v ∈ V
which solves the problem

aλ(~v, ~w) = (~g, ~w)H , ∀~w ∈W. (2.24)

In what follows, we prove that ~v ∈ D(A2).

(iii) Regularity

We proceed in several steps:

• Step 1: ~v ∈ [H3(0, L)]2.

Arguing as in the proof of Theorem 2.1.2, from (2.24) we deduce that{
v1,xxx + av2,xxx + λv1 = g1 in D′(0, L),

bav1,xxx + v2,xxx + rv2,x + cλv2 = cg2 in D′(0, L),
(2.25)

where D′(0, L) denotes the dual space of D(0, L). Moreover, since ~g ∈ [L2(0, L)]2 and ~v ∈
[H1(0, L)]2, it follows that ~vxxx ∈ [L2(0, L)]2 and hence ~v ∈ [H3(0, L)]2.

• Step 2: ~vx(L) = 0.

Let us introduce the function ~w(x) = (x2(L − x)2w̄1(x), x2(L − x)2w̄2(x)), where w̄i ∈
C∞([0, L]) are arbitrary chosen, for i = 1, 2. Observe that ~w ∈W and (L−x)−1 ~w ∈ [H1

0 (0, L)∩
C∞([0, L])]2. Then, since ~v ∈ [H3(0, L)]2, we can multiply the �rst equation in (2.25) by
bw1/c(L− x) and integrate by parts in (0, L) to obtain

b

c

∫ L

0

(
w1

L− x

)
[v1,xxx + av2,xxx + λv1]dx =

b

c
[L2w̄1(L)(v1,x(L) + av2,x(L))]

+
b

c

∫ L

0

(
w1

L− x

)
xx

[v1,x + av2,x]dx+ λ
b

c

∫ L

0

(
w1

L− x

)
v1dx =

b

c

∫ L

0

(
w1

L− x

)
g1dx.

(2.26)

Analogously, if we multiply the second equation in (2.25) by w2/c(L− x) and integrate by parts
in (0, L), it follows that

1

c

∫ L

0

(
w2

L− x

)
[bav1,xxx + v2,xxx + rv2,x + cλv2]dx =

1

c
[L2w̄2(L)(bav1,x(L) + v2,x(L))]

+
1

c

∫ L

0

(
w2

L− x

)
xx

[bav1,x + v2,x]dx+
r

c

∫ L

0

(
w2

L− x

)
v2,xdx+ λ

∫ L

0

(
w2

L− x

)
v2dx

=

∫ L

0

(
w2

L− x

)
g2dx.

(2.27)
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Adding identities (2.26) and (2.27) hand to hand, we get

b

c
[L2w̄1(L)(v1,x(L) + av2,x(L))] +

1

c
[L2w̄2(L)(bav1,x(L) + v2,x(L))] + aλ(~v, ~w) = (~g, ~w)H .

Then, from (2.24), the following holds

b

c
[L2w̄1(L)(v1,x(L) + av2,x(L))] +

1

c
[L2w̄2(L)(bav1,x(L) + v2,x(L))] = 0.

Since w1 and w2 were arbitrary chosen, the identity above allows to conclude that

v1,x(L) + av2,x(L) = 0,

bav1,x(L) + v2,x(L) = 0.

Solving the system above we deduce that (1 − a2b)v2,x(L) = 0 and, due to the assumptions on
the coe�cients of the systems, we obtain v1,x(L) = v2,x(L) = 0.

• Step 3: ~vxxx ∈ [L2
(L−x)−1dx]2.

We �rst prove that v2,xxx ∈ L2
(L−x)−1dx. Indeed, from (2.25) it follows that

v2,xxx = (1− ba2)−1[λ(bav1 − cv2) + (cg2 − bag1)− rv2,x].

Since gi, vi ∈ L2
(L−x)−1dx, for i = 1, 2, we claim that v2,x ∈ L2

(L−x)−1dx. Taking into account that

v2,x ∈ H1(0, L) and v2,x(L) = 0, we can apply (2.18) to obtain∫ L

0

v2
2,x

L− x
dx ≤ L

∫ L

0

v2
2,x

(L− x)2
dx ≤ LC

∫ L

0
v2,xxdx,

for some constant C > 0, which proves the claim. Thus, from (2.25) we conclude that vi,xxx ∈
L2

(L−x)−1dx, for i = 1, 2. Then, ~v ∈ D(A2) *W .

From the analysis developed above, it follows that, for λ > |r|L
18cδ1

, the operator A2 − λ :
D(A2) → H is onto. Thus, in order to conclude the proof, is su�cient to show that A2 − λ is
dissipative in H. In fact, for any ~w ∈ D(A2) we can integrate by parts to obtain

(A2 ~w, ~w)H = − 1

2L

b

c

[
w2

1,x(0) + 2aw1,x(0)w2,x(0) +
1

b
w2

2,x(0)

]
− 3

2

b

c

∫ L

0

[
w2

1,x + 2aw1,xw2,x +
1

b
w2

2,x

]
1

(L− x)2
dx

+ 3
b

c

∫ L

0

[
w2

1 + 2aw1w2 +
1

b
w2

2

]
1

(L− x)4
dx+

r

2c

∫ L

0

w2
2

(L− x)2
dx.

Proceeding as in the proof of the coercitivity of aλ(·, ·) (see, for instance, (2.20)), we obtain a
positive constant, denoted by mε1,δ1 , such that

(A2 ~w − λ~w, ~w)H ≤ −mε1,δ1 ||~w||2V ≤ 0,

which allows us to conclude that the operator A2−λ is maximal dissipative for λ > |r|L
18cδ1

. Then,
by Hille-Yosida theorem, it generates a strongly continuous semigroup in H. �

The results proved above combined with the semigroup theory give us the global well-
posedness for (2.1). Moreover, an additional regularity result for solutions of (2.1) is given
by the next proposition.
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Proposition 2.1.4. Let H and V the Hilbert spaces de�ned in (2.15), and let T > 0 be given.
Then, for any (u0, v0) ∈ H, system (2.1) has a unique solution (u, v) ∈ C([0, T ];H)∩L2(0, T ;V ),
such that

||(u, v)||L∞(0,T ;H) + ||(u, v)||L2(0,T ;V ) ≤ C||(u0, v0)||H , (2.28)

where C(T, L) is a positive constant.

Proof. With the notation introduced above, system (2.1) can be written in following equivalent
form {

~ut = A2~u, t > 0,

~u(0) = ~u0,
(2.29)

where ~u = (u, v), ~ut = (ut, vt) and ~u0 = (u0, v0). Since D(A2) is dense in H, it is su�cient to
prove the result when ~u0 ∈ D(A2). We �rst remark that the estimate

||~u||L∞(0,T ;H) ≤ C||~u0||H (2.30)

is a consequence of the semigroup theory. On the other hand, if ~u0 ∈ D(A2), the solution
~u ∈ C([0, T ];D(A2)) ∩ C1([0, T ];H) and satis�es (2.29) in the classical sense. Then, taking the
inner product in H with ~u and proceeding as in (2.23), we obtain positive constants mε1,δ1 and
δ1, such that

(~ut, ~u)H =
1

2

d

dt
||~u(t)||2H = −a(~u, ~u) ≤ −mε1,δ1 ||~u(t)||2V +

|r|L
18cδ1

||~u(t)||2H .

Since V ⊂ H with continuous embedding, the following holds

d

dt
||~u(t)||2H ≤ −

(
2mε1,δ1 − β

|r|L
9cδ1

)
||~u(t)||2V ,

for some β > 0. Hence, choosing δ2 ≤ δ1 satisfying 2mε1,δ2−β
|r|L
9cδ2

> 0 and integrating the above
estimate over (0, T ), we get

−||~u(t)||2H + ||~u0||2H ≥
(

2mε1,δ1 − β
|r|L
9cδ1

)
||~u||2L2(0,T ;V ).

Then,
||~u||2L2(0,T ;V ) ≤ C||~u0||2H , (2.31)

where C is a positive constant. From (2.30) and (2.31) we obtain (2.28). �

2.1.2 The nonhomogeneous system

In this subsection, attention will be given to the nonhomogeneous system

ut + uxxx + avxxx = f1 em (0, T )× (0, L),

cvt + rvx + vxxx + bauxxx = f2 em (0, T )× (0, L),

u(0, t) = u(L, t) = ux(L, t) = 0 em (0, T ),

v(0, t) = v(L, t) = vx(L, t) = 0 em (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) em (0, L).

(2.32)

We start with the following result:

Proposition 2.1.5. For any (u0, v0) ∈ [L2
xdx]2 and (f1, f2) ∈ L2(0, T ; [H−1(0, L)]2) system

(2.32) has a unique solution (u, v) ∈ C([0, T ]; [L2
xdx]2) ∩ L2(0, T ; [H1(0, L)]2), such that

||(u, v)||L∞(0,T ;[L2
xdx]2)+||(u, v)||L2(0,T ;[H1(0,L)]2) ≤ C

(
||(u0, v0)||[L2

xdx]2 + ||(f1, f2)||L2(0,T ;[H−1(0,L)]2)

)
,

(2.33)
where C(T, L) is a positive constant.
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Proof. We �rst write system (2.32) as{
~wt = A1 ~w + ~f, t > 0,

~w(0) = ~w0,
(2.34)

where A1 was introduced above, ~w = (u, v), ~w0 = (u0, v0) and ~f = (f1, f2/c). Since D(A1) is
dense in [L2

xdx]2, it is su�cient to prove the result when ~w0 ∈ D(A1) and ~f ∈ C([0, T ];D(A1)).
In this case, the solution ~w ∈ C([0, T ];D(A1)) ∩ C1([0, T ]; [L2

xdx]2) and satis�es ~wt = A1 ~w + ~f
in the classical sense, which allows us to take the inner product in [L2(0, L)]2 with ( bcxu, xv).
Thus, after integration by parts over (0, L), from the �rst and the second equations in (2.32) we
obtain

1

2

b

c

d

dt

∫ L

0
xu2dx+

3

2

b

c

∫ L

0
u2
xdx−

ba

c

∫ L

0
xuxvxxdx−

ba

c

∫ L

0
uvxxdx

=
b

c

∫ L

0
xuf1dx

(2.35)

and
1

2

d

dt

∫ L

0
xv2dx+

3

2c

∫ L

0
v2
xdx−

ba

c

∫ L

0
xvxuxxdx−

ba

c

∫ L

0
vuxxdx

− r

2c

∫ L

0
v2dx =

1

c

∫ L

0
xvf2dx,

(2.36)

respectively. Adding identities (2.35) and (2.36) hand to hand and integrating over (0, τ), with
0 < τ < T , it follows that

1

2

∫ L

0
x

[
b

c
u2 + v2

]
dx− 1

2

∫ L

0
x

[
b

c
u2

0 + v2
0

]
dx

+
3

2

b

c

∫ τ

0

∫ L

0

[
u2
x +

1

b
v2
x

]
dxdt+ 3

ba

c

∫ τ

0

∫ L

0
uxvxdxdt

− r

2c

∫ τ

0

∫ L

0
v2dxdt =

b

c

∫ τ

0

∫ L

0
xuf1dxdt+

1

c

∫ τ

0

∫ L

0
xvf2dxdt.

(2.37)

Since H1
0 (0, L) ⊂ L2(0, L) ⊂ H−1(0, L), for all ε > 0 we obtain a positive constant Cε > 0

satisfying

∫ τ

0

∫ L

0
xwifidxdt =

∫ τ

0
〈fi, xwi〉H−1,H1

0
dt ≤ ε

2

∫ τ

0

∫ L

0
w2
i,xdxdt+ Cε

∫ τ

0
||fi||2H−1dt, (2.38)

where we have set w1 = u, w2 = v, i = 1, 2, and 〈 , 〉H−1,H1
0
denotes the duality pairing between

H−1(0, L) and H1
0 (0, L). Moreover, from Young inequality, we get

ba

c

∫ τ

0

∫ L

0
uxvxdxdt ≤

b

c

(
ε1
2

∫ τ

0

∫ L

0
u2
xdxdt+

a2

2ε1

∫ τ

0

∫ L

0
v2
xdxdt

)
, (2.39)

for all ε1 > 0. Combining (2.37), (2.38) and (2.39) we obtain the following estimate

1

2
||~w(τ)||2[L2

xdx]2 −
1

2
||~w0||2[L2

xdx]2

+
3

2
(1− ε1)

b

c

∫ τ

0

∫ L

0
u2
xdxdt+

3

2

b

c

(
1

b
− a2

ε1

)∫ τ

0

∫ L

0
v2
xdxdt−

r

2c

∫ τ

0

∫ L

0
v2dxdt

≤ ε

2

∫ τ

0

∫ L

0

[
b

c
u2
x + v2

x

]
dt+ Cε

∫ τ

0
||~f(t)||2[H−1]2dt.

(2.40)
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In order to conclude the proof, we apply an inequality proved in [14]: For 0 < ε < L2, we have

1

2

∫ τ

0

∫ L

0
v2dxdt ≤ ε

2

∫ τ

0

∫ L

0
v2
xdxdt+

1

2
√
ε

∫ τ

0

∫ L

0
xv2dxdt.

The above inequality and (2.40) leads to

1

2
||~w(τ)||2[L2

xdx]2 +

[
3

2
(1− ε1)− ε

2

]
b

c

∫ τ

0

∫ L

0
u2
xdxdt

+

[
3

2

b

c

(
1

b
− a2

ε1

)
− ε

2

(
|r|
c

+ 1

)]∫ τ

0

∫ L

0
v2
xdxdt

≤ 1

2
||~w0||2[L2

xdx]2 +
|r|

2c
√
ε

∫ τ

0

∫ L

0
xv2dxdt+ Cε

∫ τ

0
||~f(t)||2[H−1]2dt

≤ 1

2
||~w0||2[L2

xdx]2 +
|r|

2c
√
ε

∫ τ

0
||~w(t)||2[L2

xdx]2dt+ Cε

∫ τ

0
||~f(t)||2[H−1]2dt.

Hence, we can conclude that

||~w(τ)||2[L2
xdx]2 + ||~w||2L2(0,T ;[H1(0,L)]2) ≤ C

(
||~w0||2[L2

xdx]2 +

∫ τ

0
||~f(t)||2[H−1]2dt

)
+ C ′

∫ τ

0
||~w(t)||2[L2

xdx]2dt,

for some C,C ′ > 0. Applying Gronwall lemma we obtain (2.33). The uniqueness follows from
the semigroup theory. �

In order to obtain the controllability property we need a similar result in the spaces H and
V , de�ned in (2.15), when (f1, f2) = (ρ(x)~h)x, with ~h := (h1, h2) ∈ L2(0, T ; [L2(0, L)]2).

Proposition 2.1.6. For any (u0, v0) ∈ H and ~h := (h1, h2) ∈ L2(0, T ; [L2(0, L)]2) set (f1, f2) =
(ρ(x)~h)x, where ρ ∈ C∞([0, L]) is given by (1.4). Then, system (2.32) has a unique solution
(u, v) ∈ C([0, T ];H) ∩ L2(0, T ;V ), such that

||(u, v)||L∞(0,T ;H) + ||(u, v)||L2(0,T ;V ) ≤ C
(
||(u0, v0)||V + ||(h1, h2)||L2(0,T ;[L2(0,L)]2)

)
, (2.41)

where C(T, L) is a positive constant.

Proof. We proceed as in the proof of Proposition 2.1.5. By using the same notation, we �rst write
system (2.32) as (2.34) considering A2 instead of A1. Since D(A2) is dense in H, it is su�cient
to prove the result when ~w0 ∈ D(A2) and ~h ∈ C∞0 ((0, T ) × (0, L)), so that ~f ∈ C1([0, T ];H).
In this case, the solution ~w ∈ C([0, T ];D(A2)) ∩C1([0, T ];H) and satis�es ~wt = A2 ~w + ~f in the
classical sense, which allows us to take the inner product in H with ~w = (u, v). Thus, arguing
as in (2.23) we obtain

(~wt, ~w)H = −a(~w, ~w) + (~f, ~w)H ≤ −mε1,δ1 ||~w||2V +
|r|L

18cδ1
||~w||2H + (~f, ~w)H , (2.42)

where mε1,δ1 and δ1 are positive constants. On the other hand, Cauchy-Schwarz inequality gives
us that

|(~f, ~w)H | =
∣∣∣∣bc
∫ L

0
(ρ(x)h1)x

u

L− x
dx+

1

c

∫ L

0
(ρ(x)h2)x

v

L− x
dx

∣∣∣∣
≤ b

c

∣∣∣∣ ∫ L

0
ρ(x)h1

(
ux

L− x
+

u

(L− x)2

)
dx

∣∣∣∣+
1

c

∣∣∣∣ ∫ L

0
ρ(x)h2

(
vx

L− x
+

v

(L− x)2

)
dx

∣∣∣∣
≤ C||~h||[L2(0,L)]2

(
||~wx||[L2(L−x)−2]2 + ||~w||[L2(L−x)−4]2

)
,
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for some C > 0. Moreover, from (2.16) we have

|(~f, ~w)H | ≤ C||~h||[L2(0,L)]2 ||~w||V ≤
C

2
γ||~w||2V + Cγ ||~h||2[L2(0,L)]2 , (2.43)

where 0 < γ < 2C−1mε1,δ1 and Cγ > 0. Combining (2.43), (2.42) and integrating the resulting
estimate over (0, τ), for τ ∈ (0, T ), it follows that

||~w||2H +

∫ τ

0
||~w(t)||2V dt ≤ ||~w0||2H + C ′′

(∫ τ

0
||~w(t)||2Hdt+

∫ τ

0
||~h||2[L2(0,L)]2dt

)
,

which allows us to conclude the result by applying Gronwall lemma. �

2.2 Controllability of the linearized system

In this section we study the main controllability properties of the linearized model corresponding
to (1.5)-(1.7). More precisely, we consider the following linear system with two distributed control
inputs: 

ut + uxxx + avxxx = f1 = (ρ(x)h1)x em (0, T )× (0, L),

cvt + rvx + vxxx + bauxxx = f2 = (ρ(x)h2)x em (0, T )× (0, L),

u(0, t) = u(L, t) = ux(L, t) = 0 em (0, T ),

v(0, t) = v(L, t) = vx(L, t) = 0 em (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) em (0, L),

(2.44)

where ρ was de�ned in (1.4) and h1, h2 ∈ L2(0, T ;L2(0, L)).
From now on we denote by

H the Hilbert space de�ned in (2.15) and by H∗ = [L2
(L−x)dx]2 its dual space.

In order to characterize the controllability properties of the system above we use the Hilbert
Uniqueness Method (HUM). Therefore, it is necessary to introduce the following adjoint system
corresponding to (2.44):

−φt − φxxx − aψxxx = 0 in (0, T )× (0, L),

−cψt − rψx − ψxxx − baφxxx = 0 in (0, T )× (0, L),

φ(0, t) = φ(L, t) = φx(0, t) = 0 in (0, T ),

ψ(0, t) = ψ(L, t) = ψx(0, t) = 0 in (0, T ),

φ(x, T ) = φT (x), ψ(x, T ) = ψT (x) in (0, L).

(2.45)

We remark that, except for the coe�cients, the change of variables x → L − x and t → T − t
in (2.45) leads to the system (2.32) with f1 ≡ f2 ≡ 0. Then, in a similar way, the global well-
posedness results obtained in the previous section can be proved for the adjoint system . In
particular, an analogous estimate given by Proposition 2.1.5 remains valid for the solutions of
(2.45):

Proposition 2.2.1. For any (φT , ψT ) ∈ H∗ system (2.45) has a unique solution (φ, ψ) ∈
C([0, T ];H∗) ∩ L2(0, T ; [H1(0, L)]2), such that

||(φ, ψ)||L∞(0,T ;H∗) + ||(φ, ψ)||L2(0,T ;[H1(0,L)]2) ≤ C||(φT , ψT )||H∗ , (2.46)

where C is a positive constant.

We can pass now to study the controllability properties of (2.44). The main result of this
section reads as follows:
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Theorem 2.2.2. Let T > 0, ν ∈ (0, L) and ρ(x) as in (1.4). Then, there exists a continuous
operator Γ : H → L2(0, T ;L2(0, L)) ∩ L2

(T−t)dt(0, T ; [H1(0, L)]2), such that, for any ~u0, ~u1 ∈ H,
the solution ~w of (2.44) with ~h = Γ(~u1) satis�es ~w(T, x) = ~u1(x) in (0, L). Note that the forcing
term ~f = (ρ(x)I~h)x is actually a function in L2

(T−t)dt(0, T ;L2(0, L)) supported in (0, T ) × (L −
ν, L).

Proof. Due to Proposition 2.1.6 we can assume that (u0, v0) = (0, 0).
The proof will be done in several steps:

• Step 1: For for any ~h := (h1, h2) ∈ L2(0, T ; [L2(0, L)]2) and ~ΦT := (φT , ψT ) ∈ H∗, it follows
that

〈~w(T, ·), ~ΦT 〉H,H∗ = −
∫ T

0
(~h, ρ(x)~Φc,x)[L2(0,L)]2dt, (2.47)

where ~w := (u, v) and ~Φ := (φ, ψ) denote the solutions of (2.44) and (2.45), respectively, ~Φc,x :=
(φx, ψx/c) and 〈·, ·〉H,H∗ denotes the duality pairing between H and H∗.

We start with more regular data ~ΦT ∈ [D(0, L)]2 and ~h ∈ [D(0, T ) × (0, L)]2. Next, we
multiply the �rst equation in (2.44) by b

cφ, the second one by 1
cψ and integrate by parts over

(0, T )× (0, L) to obtain

b

c

∫ L

0
u(T )φ(T )dx+

b

c

∫ T

0

∫ L

0
(−uφt − uφxxx−vaφxxx)dxdt

= −b
c

∫ T

0

∫ L

0
ρ(x)h1φxdxdt

(2.48)

and∫ L

0
v(T )ψ(T )dx+

∫ T

0

∫ L

0
(−vψt − v

r

c
ψx − v

1

c
ψxxx−u

ba

c
ψxxx)dxdt

= −1

c

∫ T

0

∫ L

0
ρ(x)h2ψxdxdt,

(2.49)

respectively. Adding (2.48) and (2.49) hand to hand, we get

(~w(T ), ~ΦT )[L2(0,L)]2 = −
∫ T

0
(~h, ρ(x)~Φc,x)[L2(0,L)]2dt.

Then, Proposition 2.2.1 allows us to conclude the proof by using a density argument.

• Step 2: Let ~η0 := (z0, ω0) ∈ [L2
xdx]2. Then, for all ν ∈ (0, L) there exists a positive constant

C = C(T, L, ν), such that

||~η0||2[L2
xdx]2 ≤ C

∫ T

0
(||~ηx(t)||2[L2(0, ν

2
)]2 + ||~η(t)||2[L2(0,L)]2)dt, (2.50)

where ~η := (z, ω) solves the problem

zt + zxxx + aωxxx = 0 in (0, T )× (0, L),

cωt + rωx + ωxxx + bazxxx = 0 in (0, T )× (0, L),

z(0, t) = z(L, t) = zx(L, t) = 0 in (0, T ),

ω(0, t) = ω(L, t) = ωx(L, t) = 0 in (0, T ),

z(x, 0) = z0(x), ω(x, 0) = ω0(x) in (0, L).

(2.51)

Moreover, if ~η0 ∈ H1
0 (0, L), then ~η ∈ L2(0, T ; [H2(0, L)]2) and∫ T

0
||~η(t)||2[H2(0,L)]2dt ≤ C||~η0||2[H1

0 (0,L)]2 , (2.52)
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for some C > 0.

Before proving estimate (2.50), we remark that the existence of solutions is guaranteed by
Proposition 2.1.5. Thus, we �rst recall an identity derived in [34]. For any q ∈ C∞([0, T ]× [0, L])
multiply the �rst equation in (2.51) by b

cqz and the second one by 1
c qω. After integrating by

parts over (0, T )× (0, L) and adding the resulting identities we obtain

1

2

∫ L

0
q

[
b

c
z2 + ω2

]
dx

∣∣∣∣T
0

− 1

2

∫ T

0

∫ L

0
qt

[
b

c
z2 + ω2

]
dxdt

+
b

2c

∫ T

0
q

[
z2
x + 2azxωx +

1

b
ω2
x

]
(0)dt− b

2c

∫ T

0

∫ L

0
qxxx

[
z2 + 2azω +

1

b
ω2

]
dxdt

+
3b

2c

∫ T

0

∫ L

0
qx

[
z2
x + 2azxωx +

1

b
ω2
x

]
dxdt− r

2c

∫ T

0

∫ L

0
qxω

2dxdt = 0.

(2.53)

In particular, if we choose q(x, t) = (T − t)p(x), where p ∈ C∞([0, L]) is nondecreasing and
satis�es

p(x) =

{
x if 0 < x < ν/4,

1 if ν/2 < x < L,

from (2.53) it follows that∫ L

0
p(x)

[
b

c
z2

0 + ω2
0

]
dx ≤ 1

T

∫ T

0

∫ L

0
p(x)

[
b

c
z2 + ω2

]
dxdt

+ 3
b

c

∫ T

0

∫ L

0
px(x)

[
z2
x + 2azxωx +

1

b
ω2
x

]
dxdt− r

c

∫ T

0

∫ L

0
px(x)ω2dxdt.

Moreover, from Young inequality we get∫ L

0
p(x)

[
b

c
z2

0 + ω2
0

]
dx ≤ C(T )

∫ T

0
(||~ηx(t)||2[L2(0,ν/2)]2 + ||~η(t)||2[L2(0,L)]2)dt.

Hence,

||~η0||2[L2
xdx]2 ≤ C(L, ν)

∫ L

0
p(x)

[
b

c
z2

0 + ω2
0

]
dx

≤ C(T, L, ν)

∫ T

0
(||~ηx(t)||2[L2(0, ν

2
)]2 + ||~η(t)||2[L2(0,L)]2)dt.

To prove (2.52) let us consider the operator A : D(A) ⊂ [L2(0, L)]2]2 → [L2(0, L)]]2 with
domain

D(A) =
{
~η ∈ [H3 ∩H1

0 (0, L)]2; ~η(0) = ~η(L) = ~ηx(L) = ~0
}

and de�ned by

A~η = (−zxxx − aωxxx,−
ab

c
zxxx −

1

c
ωxxx −

r

c
ωx).

Then, proceeding as in the proof of Proposition 2.1.5 (see also Theorem 2.2 in [34]) we obtain∫ T

0
||~η(t)||2[H1

0 (0,L)]2dt ≤ C||~η0||2[L2(0,L)]2 .

On the other hand, if ~η0 ∈ D(A), Theorem 2.2 in [34] guarantees the existence of a unique
solution ~η ∈ C([0, T ];D(A)) of (2.51). Let ~β = ~ηt. Then, ~β solves the system{

~βt = A~β, t > 0,
~β(0) = ~β0,
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where ~β0 := ~β(0) = A~η0 = (−z0,xxx− aω0,xxx,−ab
c z0,xxx− 1

cω0,xxx− r
cω0,x) ∈ [L2(0, L)]2. Hence,

by Theorem 2.2 in [34], it follows that there exists C0 > 0, such that

||~β||L2(0,T ;[H1
0 (0,L)]2) ≤ C0||~β0||[L2(0,L)]2

and, therefore, ~η ∈ L2(0, T ; [H4(0, L)]2). Finally, by a standard interpolation argument (see [8]),
we derive (2.52).

• Step 3: For any ~ΦT := (φT , ψT ) ∈ H∗, the following observability inequality holds

||~ΦT ||2H∗ ≤ C
∫ T

0
||ρ~Φx||2[L2(0,L)]2dt, (2.54)

where ~Φ := (φ, ψ) is the solution of (2.45) corresponding to ~ΦT , and C is a positive constant.

If we set ~η(x, t) = ~Φ(L− x, T − t), inequality (2.54) is equivalent to

||~η0||2[L2
xdx]2 ≤ C

∫ T

0
||ρ(L− ·)~ηx||2[L2(0,L)]2dt, (2.55)

where ~η solves (2.51). Therefore, we will focus on the proof of (2.55).
We argue by contradiction and suppose that (2.55) does not hold. Then, we can �nd a

sequence {~η0,n} ⊂ [L2
xdx]2, such that

1 = ||~η0,n||2[L2
xdx]2 ≥ n

∫ T

0
||~ηn,x||2[L2(0, ν

2
)]2dt, (2.56)

where, for each n ∈ N, the function ~ηn denotes the solution of (2.51) with initial data ~η0,n.
From (2.33) and (2.56) we deduce that {~ηn} is bounded in L2(0, T ; [H1(0, L)]2). Then, by
(2.51) {~ηn,t} is bounded is L2(0, T ; [H−2(0, L)]2). Hence, Aubin-Lions lemma guarantees the
existence of a subsequence, still denoted by the same index n, such that {~ηn} converges strongly
in L2(0, T ; [L2(0, L)]2). On the other hand, (2.50) and (2.56) gives

||~η0,n||2[L2
xdx]2 ≤ C

[
||~ηn||2L2(0,T ;[L2(0,L)]2) +

1

n

]
,

which shows that {~ηn} is a Cauchy sequence in [L2
xdx]2. Denoting by ~η0 its strongly limit in

[L2
xdx]2 we get

||~η0||[L2
xdx]2 = 1.

Moreover, if ~η denotes the solution of (2.51) corresponding to ~η0, from Proposition 2.1.5 the
following convergence holds

~ηn → ~η in L2(0, T ; [H1(0, L)]2)

and then, from (2.56),

~ηn,x → ~0 in L2(0, T ; [H1(0,
ν

2
)]2).

The convergences above imply that ~ηx ≡ 0 in (0, T )× (0, ν/2). Hence ~η(x, t) = ~g(t) in (0, T )×
(0, ν/2), for some function ~g = g(t). Since ~η satis�es (2.51), from the boundary condition
~η(0, t) = 0 we deduce that ~η ≡ 0 in (0, T ) × (0, ν/2). Then, from Holmgren theorem, ~η ≡ 0 in
(0, T )× (0, L), which implies that ~η(x, 0) = 0 contradicting ||~η0||[L2

xdx]2 = 1. This concludes the
proof of Step 3.

It remains to apply the Hilbert Uniqueness Method (HUM). Let Λ denote the linear map

Λ : H∗ −→ H∗

~ΦT 7−→ (L− x)−1I ~w(·, T ),
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where ~w is the solution of (2.44) with ~h(x, t) = −ρ(x)(φx, cψx) and ~u0 = (0, 0). We �rst remark
that Λ is continuous. Indeed, from (2.41) and (2.46) we have

||Λ(~ΦT )||H∗ = ||(L− x)−1 ~w(·, T )||H∗ ≤ ||~w||L∞(0,T ;H)

≤ C||~h||L2(0,T ;[L2(0,L)]2) ≤ C||~φx||L2(0,T ;[L2(0,L)]2)

≤ C||~ΦT ||H∗ .

Moreover, taking (2.47) and (2.54) into account it follows that

(Λ(~ΦT ), ~ΦT ))H∗ = 〈~w(·, T ), ~ΦT 〉H,H∗ =

∫ T

0
||ρ~φx||2[L2(0,L)]2dt ≥ C||~ΦT ||2H∗ ,

which shows that Λ is invertible and Λ−1 is continuous in H∗.
Hence, we can de�ne the operator

Γ : H −→ L2(0, T ; [L2(0, L)]2)

~u1 7−→ ~h := −ρ(x)(φx, cψx),

where ~Φ = (φ, ψ) solves the adjoint system (2.45) with ~ΦT = Λ−1((L− x)−1~u1). Then, we have
that Γ is continuous and the solution ~w of the problem (2.44) with ~h(x, t) = Γ(~u1) and ~u0 = (0, 0)
satis�es ~w(·, T ) = ~u1. To show that Γ is continuous from H into L2

(T−t)dt(0, T ; [H1(0, L)]2) it is
su�cient to prove that ∫ T

0
(T − t)||~Φ||2[H2(0,L)]2dt ≤ C||~ΦT ||2[L2(L−x)dx]2 , (2.57)

for ~Φ solution of (2.45). Indeed, if (2.57) holds the continuity of Λ−1 give us that

||Γ(u1)||2L2
(T−t)dt(0,T ;[H1(0,L)]2) =

∫ T

0
(T − t)||ρ(φx, cψx)>||2[H1(0,L)]2dt

≤ C
∫ T

0
(T − t)||~Φ||2[H2(0,L)]2dt

≤ C||~ΦT ||2[L2(L−x)dx]2 ≤ C||~u1||2H ,

for some C > 0. If we make the change of variables x 7−→ (L − x) and t 7−→ (T − t) estimate
(2.57) is equivalent to ∫ T

0
t||~η(t)||2[H2(0,L)]2dt ≤ C||~η0||2[L2

xdx]2 , (2.58)

where ~η solves (2.51). Estimate (2.58) can be proved as follows, combining (2.52) and Fubini
theorem:∫ T

0
s||~η(s)||2[H2]2ds =

∫ T

0

(∫ T

t
||~η(s)||2[H2]2ds

)
dt ≤ C

∫ T

0
||~η(t)||2[H1

0 (0,L)]2dt ≤ C||~η0||[L2
xdx]2 .

The proof is now complete. �

2.3 Controllability of the nonlinear system

This section is devoted do analyze the local exact controllability properties of the full system in
the space H = [L2

(L−x)−1dx]2 de�ned in (2.15).
We note that the solutions ~w = (u, v) of (1.5)-(1.7) can be written as

~w = ~uL + ~y + ~z,
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where ~uL is the solution of (2.1) with initial data ~u0 ∈ H, ~y = (y1, y2) solves the problem

y1,t + y1,xxx + ay2,xxx = (ρ(x)h1)x em (0, T )× (0, L),

cy2,t + ry2,x + y2,xxx + bay1,xxx = (ρ(x)h2)x em (0, T )× (0, L),

y1(0, t) = y1(L, t) = y1,x(L, t) = 0 em (0, T ),

y2(0, t) = y2(L, t) = y2,x(L, t) = 0 em (0, T ),

y1(x, 0) = 0, y2(x, 0) = 0 em (0, L),

(2.59)

with ~h = (h1, h2) ∈ L2(0, T ; [L2(0, L)]2), and ~z = (z1, z2) is solution of

z1,t + z1,xxx + az2,xxx = G1 em (0, T )× (0, L),

cz2,t + rz2,x + z2,xxx + baz1,xxx = G2 em (0, T )× (0, L),

z1(0, t) = z1(L, t) = z1,x(L, t) = 0 em (0, T ),

z2(0, t) = z2(L, t) = z2,x(L, t) = 0 em (0, T ),

z1(x, 0) = 0, z2(x, 0) = 0 em (0, L),

(2.60)

with ~G = (G1, G2) = (−uux − a1vvx − a2(uv)x,−vvx − ba2uux − ba1(uv)x).
The following result will be needed to study the solutions of (2.60). In order to prove it

we recall that the space V de�ned in (2.15) can be written as V = [V]2, where the space

V :=
{
u ∈ H1

0 (0, L);ux ∈ L2
(L−x)−2dx

}
, endowed with the norm ||u||V := ||(L− x)−1ux||L2 .

Proposition 2.3.1. Let H and V be as in (2.15).

(i) If u, v ∈ L2(0, T ;V), then (uux, vvx, uvx, uxv) ∈ L1(0, T ; [L2
(L−x)−1dx]4) and the map

(u, v) ∈ L2(0, T ;V )→ (uux, vvx, uvx, uxv) ∈ L1(0, T ; [L2
(L−x)−1dx]4)

is continuous. Moreover, there exists a constant C > 0, such that

||(uux, vvx, uvx, uxv)||L1(0,T ;[L2
(L−x)−1dx

]4) ≤ C||u||L2(0,T ;V)||v||L2(0,T ;V).

(ii) For ~G ∈ L1(0, T ;H), the mild solution ~z of (2.60), given by

~z(x, t) =

∫ t

0
S2(t− s)~G(s)ds,

where (S2(t))t≥0 is the semigroup given by Theorem 2.1.3, satis�es

~z ∈ C([0, T ];H) ∩ L2(0, T ;V ) =: X

and the following estimate holds

||~z||L∞(0,T ;H) + ||~z||L2(0,T,V ) ≤ ||~G||L1(0,T ;H).

Proof. For u, v ∈ V we �rst apply inequality (2.17) to obtain

||uvx||L2
(L−x)−1dx

≤ ||u||L∞ ||(L− x)−
1
2 vx||L2 ≤ C||u||V ||v||V .

The remaining terms can be estimated in a similar way and (i) follows.
To prove (ii), we �rst assume that ~G ∈ C1([0, T ];H). In this case, the solution ~z ∈

C([0, T ];D(A2))∩C1([0, T ];H) and, from the classical semigroup theory, the following estimate
holds

||~z||L∞(0,T ;H) ≤ ||~G||L1(0,T ;H). (2.61)
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On the other hand, if we write (2.60) as (2.34), with A2 and ~G instead of A1 and ~f , we have
that ~zt = A2~z + ~G is satis�ed in the classical sense. Then, we can take the inner product in H
with ~z to obtain

(~zt, ~z)H =
1

2

d

dt
||~z(t)||2H ≤ −C||~z(t)||2V + C ′||~z(t)||2H + (~G, ~z)H ,

where C,C ′ are positive constants. Integrating the estimate above over (0, T ), from (2.61) it
follows that

||~z||2L∞(0,T ;H) + ||~z||2L2(0,T ;V ) ≤ C
(∫ t

0
||~z(s)||2Hds+ ||~z||L∞(0,T ;H)||~G||L1(0,T ;H)

)
≤ C(T )||~G||2L1(0,T ;H),

for some C(T ) > 0, which proves the result when ~G ∈ C1([0, T ];H). Then, by a density argument
we obtain the result for ~G ∈ L1(0, T ;H). �

We remark that, for all ~u,~v ∈ L2(0, T ;V ) and ~G given in (2.60), Proposition 2.3.1 guarantees
the existence of a constant C > 0, such that

||~G(~u)||L1(0,T ;H) ≤ C||~u||2L2(0,T ;V ), (2.62)

||~G(~u)− ~G(~v)||L1(0,T ;H) ≤ C
(
||~u||2L2(0,T ;V ) + ||~v||2L2(0,T ;V )

)
||~u− ~v||L2(0,T ;V ). (2.63)

Then, for some R > 0, to be de�ned latter, we introduce the ball

BR = {~u ∈ L2(0, T ;V ) : ||~u||L2(0,T ;V ) ≤ R}

and the operator T : L2(0, T ;V )→ X, as follows

T (~u) = S2(t)~u0 +

∫ t

0
S2(t− s)

[
(ρ(x)I~h)x + ~G(~u(s))

]
ds,

for X given in Proposition 2.3.1. Since T (~u) = ~uL + ~y + ~z, for all ~u,~v ∈ BR, from Propositions
2.1.4, 2.1.6, 2.3.1 and estimates (2.62)-(2.63), we obtain constants C1, C2 > 0 (which dos not
depend on ||~u0||H and ||~h||L2(0,T ;[L2(0,L)]2)), such that

||T (~u)||L2(0,T ;V ) ≤ C1

(
||~u0||H + ||~h||L2(0,T ;[L2(0,L)]2)

)
+ C2R

2,

||T (~u)− T (~v)||L2(0,T ;V ) ≤ 2C2R||~u− ~v||L2(0,T ;V ).

Choosing R = (4C2)−1 and δR = (16C1C2)−1, if ~u0 and ~h satisfy

||~u0||H ≤ δR, ||~h||L2(0,T ;[L2(0,L)]2) ≤ δR,

the corresponding solutions ~u,~v ∈ BR and

||T (~u)||L2(0,T ;V ) ≤ R,

||T (~u)− T (~v)||L2(0,T ;V ) ≤
1

2
||~u− ~v||L2(0,T ;V ).

Then, by Banach �xed-point Theorem the operator T has a �xed point in BR.
From the discussion above, we obtain the following result:

Theorem 2.3.2. There exists δ > 0, such that for any ~u0 ∈ H and ~h ∈ L2(0, T ; [L2(0, L)]2)
satisfying

||~u0||H ≤ δ and ||~h||L2(0,T ;[L2(0,L)]2) ≤ δ,

problem (1.5)-(1.7) has a unique solution ~w ∈ X.
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We are now in position to show the main result of this work. Let us �rst introduce the
operators Θ1 : L2(0, T ; [L2(0, L)]2) → X, with Θ1(~h) = ~y, and Θ2 : L1(0, T ;H) → X, with
Θ2(~G) = ~z, where ~y and ~z are the solutions of (2.59) and (2.60), respectively. Due to Propositions
2.1.6 and 2.3.1 the operators Θ1 and Θ2 are well de�ned and continuous. Then, we have the
following local exact controllability result:

Theorem 2.3.3. Let T > 0. Then, there exists δ > 0, such that, for any ~u0, ~u1 ∈ H satisfying

||~u0||H ≤ δ and ||~u1||H ≤ δ,

one can �nd a control function ~h ∈ L2(0, T ; [L2(0, L)]2), such that the solution ~w ∈ X of (1.5)-
(1.7) satis�es ~w(·, T ) = ~u1 in (0, L).

Proof. We apply the Banach �xed-point theorem. Let ~G(~u) as in (2.60) and F the nonlinear
map

F : L2(0, T ;V )→ X,

de�ned by F(~u) = ~uL + Θ1 ◦ Γ
[
~u1 − ~uL(·, T )−Θ2(~G(~u))(·, T )

]
+ Θ2(~G(~u)). Here, ~uL is the

solution of (2.1) with initial data ~u0 ∈ H, Θ1 and Θ2 are de�ned as above and Γ is the control
operator given by Theorem 2.2.2.

If ~w is a �xed point of F , then ~w is a solution of (1.5)-(1.7) with control ~h given by ~h =

Γ
[
~u1 − ~uL(·, T )−Θ2(~G(~w))(·, T )

]
, which satis�es

~w(·, T ) = ~u1.

For some R > 0, to be chosen later, we de�ne the closed ball BR in L2(0, T ;V ). Then, arguing
as in the proof of Theorem 2.3.2 and using the continuity of the control operator Γ, we obtain
positive constants C ′1, C

′
2 > 0, such that, for all ~u,~v ∈ BR, the following estimates holds

||F(~u)||L2(0,T ;V ) ≤ C ′1 (||~u0||H + ||~u1||H) + C ′2R
2,

||F(~u)−F(~v)||L2(0,T ;V ) ≤ 2C ′2R||~u− ~v||L2(0,T ;V ).

Choosing R = (4C ′2)−1 and δR = (16C ′1C
′
2)−1 it follows that, for any ~u0, ~u1 ∈ H satisfying

||~u0||H ≤ δR e ||~u1||H ≤ δR,

the operator F is a contraction which maps the closed ball BR into itself. Then, by Banach �xed
point theorem, F has a �xed point in BR. The proof is now complete. �
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Chapter 3

On the lack of controllability of a

higher-order regularized long-wave

system

Considered here is a class of two higher-order Benjamin-Bona-Mahony type equations. Our aim
is to investigate the controllability properties of the linearized model posed on a bounded interval.
More precisely, we study whether the solutions can be driven to a given state at a given �nal
time by means of controls acting on the right endpoint of the interval. We show that the model
is approximately controllable but not spectrally controllable. This means that any state can be
steered arbitrarily close to another state, but no �nite linear combination of eigenfunctions, other
than zero, can be steered to zero. Our proofs relies strongly on a careful spectral analysis of the
operator associated with the state equations.

3.1 Global well-posedness

In this section we show the well-posedness of the homogeneous and non-homogeneous systems
associated with (1.8).

3.1.1 The homogeneous system

Let us �rst consider the following homogeneous system

ηt + ωx + aωxxx − bηtxx + b1ηtxxxx = 0 for x ∈ (0, L), t > 0,

ωt + ηx + cηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, L), t > 0,

η(t, 0) = η(t, L) = 0 for t ≥ 0,

ω(t, 0) = ω(t, L) = 0 for t ≥ 0,

ηx(t, 0) = ηx(t, L) = 0 for t ≥ 0,

ωx(t, 0) = ωx(t, L) = 0 for t ≥ 0,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, L).

(3.1)

System (3.1) can be written in the following vectorial form(
η
ω

)
t

(t) +A
(
η
ω

)
(t) =

(
0
0

)
,

(
η
ω

)
(0) =

(
η0

ω0

)
,

where A is the operator belonging to L
(
[H2

0 (0, L)]2
)
de�ned by

A =

 0 (1− b∂2
x + b1∂

4
x)−1(∂x + a∂3

x)

(1− d∂2
x + d1∂

4
x)−1(∂x + c∂3

x) 0

 .
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Recall that, for α, β > 0 the operator (1− α∂2
x + β∂4

x)−1 is de�ned in the following way:

(1− α∂2
x + β∂4

x)−1φ = v ⇔

v − αvxx + βvxxxx = φ in (0, L)
∂rv

∂xr
(0) =

∂rv

∂xr
(L), r = 0, 1.

(3.2)

Then, if φ ∈ L2(0, L), the elliptic equation (3.2) has an unique solution v ∈ H4(0, L)∩H2
0 (0, L),

the operator (1− α∂2
x + β∂4

x)−1 is a well-de�ned, compact operator in L2(0, L).

Remark 3.1.1. Due to the regularizing e�ect of the operators

(1− b∂2
x + b1∂

4
x)−1 and (1− d∂2

x + d1∂
4
x)−1

it follows that A takes values in [H3(0, L)∩H2
0 (0, L)]2 which is compactly embedded in [H2

0 (0, L)]2.
Hence A is compact.

From the classical semigroup theory, we have the following well-posedness result:

Theorem 3.1.1. Let b, d, b1, d1 > 0 and a = c > 0. For any (η0, ω0) ∈ [H2
0 (0, L)]2, system (3.1)

has a unique classical solution (η, ω) ∈ C(R; [H2
0 (0, L)]2). Moreover, (η, ω) ∈ Cω(R; [H2

0 (0, L)]2),
the class of analytic functions in t ∈ R with values in [H2

0 (0, L)]2.

Proof. We �rst show that A is a skew-adjoint operator in [H2
0 (0, L)]2. For any ϕi, ψi ∈ H2

0 ∩
H4(0, L), i = 1, 2, and some integrations by parts, we have from (1.9) that〈

A
(
ϕ1

ψ1

)
,

(
ϕ2

ψ2

)〉
=

〈(
(1− b∂2

x + b1∂
4
x)−1(∂x + a∂3

x)ψ1

(1− d∂2
x + d1∂

4
x)−1(∂x + c∂3

x)ϕ1

)
,

(
ϕ2

ψ2

)〉
=

∫ L

0
(∂x + a∂3

x)ψ1ϕ2dx+

∫ L

0
(∂x + c∂3

x)ϕ1ψ2dx

= −
∫ L

0
ψ1(∂x + a∂3

x)ϕ2dx−
∫ L

0
ϕ1(∂x + c∂3

x)ψ2dx

= −
∫ L

0
ψ1(1− d∂2

x + d1∂
4
x)(1− d∂2

x + d1∂
4
x)−1(∂x + a∂3

x)ϕ2dx

−
∫ L

0
ϕ1(1− b∂2

x + b1∂
4
x)(1− b∂2

x + b1∂
4
x)−1(∂x + c∂3

x)ψ2dx

= −
〈(

ϕ1

ψ1

)
,

(
(1− b∂2

x + b1∂
4
x)−1(∂x + c∂3

x)ψ2

(1− d∂2
x + d1∂

4
x)−1(∂x + a∂3

x)ϕ2

)〉
= −

〈(
ϕ1

ψ1

)
,A
(
ϕ2

ψ2

)〉
.

By a density argument, the identity above holds for any ϕi, ψi ∈ H2
0 (0, L), i = 1, 2. Then, Stone

Theorem guarantees that A generates a group of isometries {S(t)}t∈R in [H2
0 (0, L)]2, which allows

us to obtain the well-posedness result. The second part of the Theorem follows from the fact that
A is a compact operator in [H2

0 (0, L)]2 (see, for instance, [24, Theorem 11.4.1, Chap. XI]). �

3.1.2 The nonhomogeneous system

In this subsection, attention will be given to the full system (1.8). We begin with the following
result:

Theorem 3.1.2. Let b, d, b1, d1 > 0 and a = c > 0. For any (η0, ω0) ∈ [H2
0 (0, L)]2, and

(f1, g1), (f2, g2) ∈ [C1
0 (0,∞)]2, system (1.8) has a unique classical solution (η, ω) ∈ C([0,∞); [H2

0 (0, L)]2).
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Proof. Let ϕi, ψi ∈ C∞([0, L]), i = 1, 2, be functions, such that

ϕ1(0) = ψ1(0) = ϕ1x(0) = ψ1x(0) = ϕ1x(L) = ψ1x(L) = 0,

φ1(L) = ψ1(L) = −1

and
ϕ2(0) = ψ2(0) = ϕ2(L) = ψ2(L) = ϕ2x(0) = ψ2x(0) = 0,

φ2x(L) = ψ2x(L) = −1.

For instance,

ϕ1(x) = ψ1(x) = − 3

L2
x2 +

2

L3
x3 and ϕ2(x) = ψ2(x) =

1

L
x2 − 1

L2
x3

satisfy the conditions above. Then, if we consider the change of functions(
z
m

)
=

(
η
ω

)
−
(
u
v

)
+

(
f1(t)ϕ1(x) + f2(t)ϕ2(x)
g1(t)ψ1(x) + g2(t)ψ2(x)

)
, (3.3)

where (u, v) ∈ C([0,∞); [H2
0 (0, L)]2) is the solution of the system

ut + vx + avxxx − butxx + b1utxxxx = 0 for x ∈ (0, L), t > 0,

vt + ux + cuxxx − dvtxx + d1vtxxxx = 0 for x ∈ (0, L), t > 0,

u(t, 0) = u(t, L) = 0 for t ≥ 0,

v(t, 0) = v(t, L) = 0 for t ≥ 0,

ux(t, 0) = ux(t, L) = 0 for t ≥ 0,

vx(t, 0) = vx(t, L) = 0 for t ≥ 0,

u(0, x) = η0(x); v(0, x) = ω0(x) for x ∈ (0, L),

given by Theorem 3.1.1, the couple (z,m) solves the problem

zt +mx + amxxx − bztxx + b1ztxxxx = F for x ∈ (0, L), t > 0,

mt + zx + czxxx − dmtxx + d1mtxxxx = G for x ∈ (0, L), t > 0,

z(t, 0) = z(t, L) = 0 for t ≥ 0,

m(t, 0) = m(t, L) = 0 for t ≥ 0,

zx(t, 0) = zx(t, L) = 0 for t ≥ 0,

mx(t, 0) = mx(t, L) = 0 for t ≥ 0,

z(0, x) = 0; m(0, x) = 0 for x ∈ (0, L),

(3.4)

with F and G given by(
F (t, x)
G(t, x)

)
=

(
f ′1(t)[ϕ1(x)− bϕ(2)

1 (x) + b1ϕ
(4)
1 (x)] + g1(t)[ψ′1(x) + aψ

(3)
1 (x)]

g′1(t)[ψ1(x)− dψ(2)
1 (x) + d1ψ

(4)
1 (x)] + f1(t)[ϕ′1(x) + aϕ

(3)
1 (x)]

)

+

(
f ′2(t)[ϕ2(x)− bϕ(2)

2 (x) + b1ϕ
(4)
2 (x)] + g2(t)[ψ′2(x) + aψ

(3)
2 (x)]

g′2(t)[ψ2(x)− dψ(2)
2 (x) + d1ψ

(4)
2 (x)] + f2(t)[ϕ′2(x) + aϕ

(3)
2 (x)]

)
∈ [C([0,∞)× [0, L])]2,

where (i), i = 2, 3, 4, denotes the derivative of order i. With the notation introduced in the
previous section, system (3.4) can be written as an abstract evolution equation as follows{

Wt +AW = H
W (0) = 0,
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where W = (z,m) and H = A0(F,G) ∈ L1(0,∞; [H2
0 ∩H4(0, L)]2), being

A0 : [L2(0, L)]2 −→ [H2
0 ∩H4(0, L)]2 de�ned by

A0 =

 0 (1− b∂2
x + b1∂

4
x)−1

(1− d∂2
x + d1∂

4
x)−1 0

 . (3.5)

Since A generates a group of isometries in [H2
0 (0, L)]2, we have that system (3.4) has a unique

solution W = (z,m) ∈ C([0,∞); [H2
0 (0, L)]2). Then, returning to (3.3), we conclude the proof.

�

Using the previous well-posedness results, we will study the existence of solutions of the
system (1.8) in the sense of transposition:

De�nition 3.1.2. Let (η0, ω0) ∈ [H−2(0, L)]2 and (f1, g1), (f2, g2) ∈ [H1(0, T )]2. A solution of
system (1.8) is a couple (η, ω) ∈ C([0, T ]; [L2(0, L)]2), such that, for any (h, k) ∈ L1(0, T ; [L2(0, L)]2),
satis�es ∫ T

0

∫ L

0
(ηh+ ωk)dxdt+

〈(
η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

=

∫ T

0
f1(t)[b1utxxx + cvxx](t, L)dt

+

∫ T

0
g1(t)[d1vtxxx + auxx](t, L)dt

− b1
∫ T

0
f2(t)utxx(t, L)dt− d1

∫ T

0
g2(t)vtxx(t, L)dt,

(3.6)

where (u, v) is solution of the adjoin system

ut + vx + cvxxx − butxx + b1utxxxx = h for x ∈ (0, L), t > 0,

vt + ux + auxxx − dvtxx + d1vtxxxx = k for x ∈ (0, L), t > 0,

u(t, 0) = u(t, L) = 0 for t ≥ 0,

v(t, 0) = v(t, L) = 0 for t ≥ 0,

ux(t, 0) = ux(t, L) = 0 for t ≥ 0,

vx(t, 0) = vx(t, L) = 0 for t ≥ 0,

u(T, x) = 0; v(T, x) = 0 for x ∈ (0, L).

(3.7)

The existence of solutions for system (3.7) can be proved following the arguments used in the
proof of Theorem 3.1.2. Moreover, due to the regularizing e�ect of the operator (1−α∂2

x+β∂4
x)−1,

with α, β > 0, we obtain the following result:

Theorem 3.1.3. If (h, k) ∈ L1(0, T ; [L2(0, L)]2), system (3.7) has a unique solution (u, v) ∈
C([0, T ]; [H2

0 (0, L)]2). Moreover,

||(u, v)||L1(0,T ;[H2
0∩H3(0,L)]2) + ||(ut, vt)||L1(0,T ;[H2

0∩H4(0,L)]2) ≤ C||(h, k)||L1(0,T ;[L2(0,L)]2), (3.8)

for some constant C > 0.

Proof. System (3.7) can be written as an abstract evolution equation as follows{
Wt +AW = F
W (0) = 0,

where W = (u, v) and F = A0(h, k) ∈ L1(0, T ; [H2
0 ∩H4(0, L)]2), being

A0 : [L2(0, L)]2 −→ [H2
0 ∩H4(0, L)]2 de�ned by (3.5). Since A generates a group of isometries in
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[H2
0 (0, L)]2, we have that system (3.7) has a unique solution W = (u, v) ∈ C([0, T ]; [H2

0 (0, L)]2).
Moreover, using the equations in (3.7), we deduce that (ut, vt) ∈ L1(0, T ; [H2

0 ∩H3(0, L)]2) and
estimate (3.8) holds. Indeed, �rst, observe that each term of the equations in (3.7) belongs to
L2(0, T ;H−2(0, L)). Thus, scaling the �rst equation by u and the second by v we obtain

1

2

d

dt
||(u(t, ·), v(t, ·))||2[H2

0 (0,L)]2 =

∫ L

0
(hu+ kv)dx. (3.9)

Integrating the above identity from t up to T , from Young inequality it follows that

||(u(t, ·), v(t, ·))||2[H2
0 (0,L)]2 ≤ C

(
||h||L1(0,T ;L2(0,L))||u||C([0,T ];L2(0,L))

+ ||k||L1(0,T ;L2(0,L))||v||C([0,T ];L2(0,L))

)
≤ C

(
1

2ε
||(h, k)||2L1(0,T ;[L2(0,L)]2) +

ε

2
||(u, v)||2C([0,T ];[L2(0,L)]2)

)
,

(3.10)

for any ε > 0, where C is a positive constant. Then, by choosing ε > 0 su�ciently small in (3.10)
we obtain

||(u, v)||C([0,T ];[H2
0 (0,L)]2) ≤ C||(h, k)||L1(0,T ;[L2(0,L)]2), (3.11)

for some C > 0. On the other hand, due to the regularizing e�ect of the operator
(1− α∂2

x + β∂4
x)−1, α, β > 0, it follows

(1− b∂2
x + b1∂

4
x)−1h(t, ·), (1− d∂2

x + d1∂
4
x)−1k(t, ·) ∈ H4(0, L)

and the operator A takes values in [H2
0 ∩H3(0, L)]2, which is compactly embedded in [H2

0 (0, L)]2.
Thus, combining (3.11) and the equations in (3.7), it follows that

||(ut(t, ·), vt(t, ·))||[H3(0,L)]2 ≤
||((1− b∂2

x + b1∂
4
x)−1(∂x + a∂3

x)u, (1− d∂2
x + d1∂

4
x)−1(∂x + a∂3

x)v)||[H3(0,L)]2

+ C||((1− b∂2
x + b1∂

4
x)−1h, (1− d∂2

x + d1∂
4
x)−1k)||[H4(0,L)]2

≤ C
(
||((∂x + a∂3

x)u, (∂x + a∂3
x)v)||[H−1(0,L)]2 + ||(h, k)||[L2(0,L)]2

)
≤ C

(
||(u, v)||[H2

0 (0,L)]2 + ||(h, k)||[L2(0,L)]2

)
≤ C

(
||(u, v)||C([0,T ];[H2

0 (0,L)]2) + ||(h, k)||[L2(0,L)]2

)
.

(3.12)

By integrating (3.12) on (0, T ) we get (ut, vt) ∈ L1(0, T ; [H2
0 ∩H3(0, T )]2). On the other hand,

since (u(t, x), v(t, x)) = (

∫ t

0
us(s, x)ds,

∫ t

0
vs(s, x)ds), (3.12) allows us to deduce that (u, v) ∈

L1(0, T ; [H2
0 ∩H3(0, T )]2), therefore, proceeding as in (3.12), it follows that

||(ut(t, ·), vt(t, ·))||[H4(0,L)]2 ≤ C
(
||(u, v)||[H3(0,L)]2 + ||(h, k)||[L2(0,L)]2

)
.

After integration over (0, T ) we deduce (3.8). �

The next Theorem establishes the existence and uniqueness of solutions for system (1.8) in
the sense of transposition.

Theorem 3.1.4. Let (η0, ω0) ∈ [H−2(0, L)]2 and (f1, g1), (f2, g2) ∈ [H1(0, T )]2. Then, there
exists a unique solution (η, ω) ∈ C([0, T ]; [L2(0, L)]2) of system (1.8) which veri�es (3.6).
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Proof. The result is proved in two steps. We �rst use the Riesz Representation Theorem to prove
the existence of a solution in L1(0, T ; [L2(0, L)]2). Then, the continuity in the time variable is
proved by using density arguments.

We start by introducing the linear operator T : L1(0, T ; [L2(0, L)]2) −→ R as follows

T ((h, k)) =−
〈(

η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

+

∫ T

0
f1(t)[b1utxxx + cvxx](t, L)dt+

∫ T

0
g1(t)[d1vtxxx + auxx](t, L)dt

− b1
∫ T

0
f2(t)utxx(t, L)dt− d1

∫ T

0
g2(t)vtxx(t, L)dt,

where (u, v) is a solution of (3.7). We have that T is well de�ned and continuous. Indeed,
proceeding as in the proof of Theorem 3.1.3, we obtain identity (3.9). Then, integrating over
(0, T ), it follows that

||(u(0), v(0))||[H2
0 (0,L)]2 ≤ C||(h, k)||L1(0,T ;[L2(0,L)]2), (3.13)

for some constant C > 0. On the other hand, by using Cauchy-Schwarz inequality, the Sobolev
embedding and estimate (3.8), the following estimate holds∣∣∣∣ ∫ T

0
f1(t)[b1utxxx + cvxx](t, L)dt+

∫ T

0
g1(t)[d1vtxxx + auxx](t, L)dt

−b1
∫ T

0
f2(t)utxx(t, L)dt− d1

∫ T

0
g2(t)vtxx(t, L)dt

∣∣∣∣
≤ C

(
||(f1, g1)||[H1(0,T )]2 + ||(f2, g2)||[H1(0,T )]2

)
||(h, k)||L1(0,T ;[H1(0,L)]2),

(3.14)

where C > 0. Finally, (3.13) and (3.14) allow us to conclude that T ∈ L(L1(0, T ; [L2(0, L)]2);R).
Then, from Riesz Representation Theorem, we obtain the existence a unique

(η, ω) ∈ L∞(0, T ; [L2(0, L)]2)

satisfying (3.6). Moreover,

||(η, ω)||L∞(0,T ;[L2(0,L)]2) = ||T ||L(L1(0,T ;[L2(0,L)]2);R)

≤ C
(
||(η0, ω0)||[H−2(0,L)]2 + ||(f1, g1)||[H1(0,T )]2 + ||(f2, g2)||[H1(0,T )]2

)
.

(3.15)
By using density arguments, starting with more regular data, we can also get the regularity in
the time variable. Indeed, since (f1, g1), (f2, g2) ∈ [H1(0, T )]2 and (η0, ω0) ∈ [H−2(0, L)]2 there
exist sequences (f1,n, g1,n), (f2,n, g2,n) ∈ [D(0, T )]2 and (η0

n, ω
0
n) ∈ [D(0, L)]2, such that

(f1,n, g1,n) −→ (f1, g1) in [H1(0, T )]2,

(f2,n, g2,n) −→ (f2, g2) in [H1(0, T )]2,

(η0
n, ω

0
n) −→ (η0, ω0) in [H−2(0, L)]2,

when n→∞. Let us denote by (ηn, ωn) the solution of the system (1.8), corresponding to the data
(f1,n, g1,n), (f2,n, g2,n) and (η0

n, ω
0
n), given by Theorem 3.1.2. Then, (ηn, ωn) ∈ C([0, T ]; [L2(0, L)]2)

and, for each n ∈ N, the solution (ηn, ωn) satis�es (3.6). Thus, if (η, ω) is a solution by
transposition of (1.8), it follows that (ηn, ωn) − (η, ω) is a solution by transposition with data
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(f1,n, g1,n)− (f1, g1), (f2,n, g2,n)− (f2, g2) and (η0
n, ω

0
n)− (η0, ω0). Hence, by (3.15), we obtain

||(ηn, ωn)− (η, ω)||L∞(0,T ;[L2(0,L)]2)

≤ C
(
||(η0

n, ω
0
n)− (η0, ω0)||[H−2(0,L)]2 + ||(f1,n, g1,n)− (f1, g1)||[H1(0,T )]2

+ ||(f2,n, g2,n)− (f2, g2)||[H1(0,T )]2

)
.

When n→∞, from the above inequality, we deduce that (ηn, ωn)→ (η, ω) in L∞(0, T ; [L2(0, L)]2)
and, since (ηn, ωn) ∈ C([0, T ]; [L2(0, L)]2), it follows that (η, ω) ∈ C([0, T ]; [L2(0, L)]2). �

3.2 Controllability results

In this section we study some boundary controllability properties of the Boussinesq system. We
begin with the following exact controllability problem:

Given T > 0 and an initial data (η0, ω0) ∈ [H−2(0, L)]2, can we �nd control inputs (f1, g1), (f2, g2) ∈
[H1(0, T )]2, such that the solution (η, ω) of (1.8) satis�es

(η(T, x), ω(T, x)) = (0, 0) for x ∈ (0, L)?

We have the following characterization of a control driving system (1.8) to the rest.

Lemma 3.2.1. The initial data (η0, ω0) ∈ [H−2(0, L)]2 is controllable to zero in time T > 0
with controls (f1, g1), (f2, g2) ∈ [H1(0, T )]2 if and only if〈(

η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2
=∫ T

0
f1(t)[b1utxxx + cvxx](t, L)dt+

∫ T

0
g1(t)[d1vtxxx + auxx](t, L)dt

− b1
∫ T

0
f2(t)utxx(t, L)dt− d1

∫ T

0
g2(t)vtxx(t, L)dt,

(3.16)

for any solution (u, v) of the adjoin system

ut + vx + cvxxx − butxx + b1utxxxx = 0 for x ∈ (0, L), t ∈ (0, T ),

vt + ux + auxxx − dvtxx + d1vtxxxx = 0 for x ∈ (0, L), t ∈ (0, T ),

u(t, 0) = u(t, L) = 0 for t ∈ (0, T ),

v(t, 0) = v(t, L) = 0 for t ∈ (0, T ),

ux(t, 0) = ux(t, L) = 0 for t ∈ (0, T ),

vx(t, 0) = vx(t, L) = 0 for t ∈ (0, T ),

u(T, x) = uT ; v(T, x) = vT for x ∈ (0, L),

(3.17)

with (uT , vT ) ∈ [H2
0 (0, L)]2.

Proof. Remark that the change of variables t→ T − t and x→ L− x reduces the system (3.17)
to (1.8) with fi ≡ gi ≡ 0, for i = 1, 2. Then, we can apply to (u, v) the well-posedness results
obtained in the previous section.

First, we prove the result for regular solutions. The less regular framework can be proved
using density arguments as in the proof of Theorem 3.1.4. Let (η, ω) be a solution of (1.8) and
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(u, v) solution of (3.17). After some integrations by parts, we have

0 =

∫ T

0

∫ L

0
u (ηt + ωx + aωxxx − bηtxx + b1ηtxxxx) dxdt

+

∫ T

0

∫ L

0
v (ωt + ηx + cηxxx − dωtxx + d1ωtxxxx) dxdt

=

∫ L

0
[u(T )η(T )− u(0)η(0)] dx+ b

∫ L

0
[ux(T )ηx(T )− ux(0)ηx(0)] dx

+ b1

∫ L

0
[uxx(T )ηxx(T )− uxx(0)ηxx(0)] dx

+

∫ L

0
[v(T )ω(T )− v(0)ω(0)] dx+ d

∫ L

0
[vx(T )ωx(T )− vx(0)ωx(0)] dx

+ d1

∫ L

0
[vxx(T )ωxx(T )− vxx(0)ωxx(0)] dx

+ a

∫ T

0
uxx(L)g1dt− b1

∫ T

0
utxx(L)f2dt+ b1

∫ T

0
utxxx(L)f1dt

+ c

∫ T

0
vxx(L)f1dt− d1

∫ T

0
vtxx(L)g2dt+ d1

∫ T

0
vtxxx(L)g1dt.

By using the density of H2
0 (0, T ) in H−2(0, T ), we can pass the identity above to the limit to

obtain〈(
η0

ω0

)
,

(
u(0)
v(0)

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2
=

〈(
η(T )
ω(T )

)
,

(
uT

vT

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

+

∫ T

0
f1(t)[b1utxxx + cvxx](t, L)dt+

∫ T

0
g1(t)[d1vtxxx + auxx](t, L)dt

− b1
∫ T

0
f2(t)utxx(t, L)dt− d1

∫ T

0
g2(t)vtxx(t, L)dt.

Hence, (η0, ω0) is controllable to zero in time T > 0 if and only if (3.16) holds. �

The next result is devoted to show that system (1.8) is not spectrally controllable. This
means that no nontrivial �nite linear combinations of eigenvectors of the operator A de�ned in
(4.4) can be driven to zero in �nite time by using controls (f1, g1), (f2, g2) ∈ [H1(0, T )]2.

Theorem 3.2.1. No eigenfunctions of the operator A can be driven to zero in �nite time.

Proof. We �rst note that, according to Theorem 3.3.2, the operator A has a sequence of purely
imaginary eigenvalues (µjn)n∈Z∗,j∈{1,2}.Moreover, the corresponding eigenfunctions (Φj

n)n∈Z∗,j∈{1,2}
form an orthogonal basis of [H2

0 (0, L)]2. For each k 6= 0, let us consider

(η0
k, ω

0
k) = Φj

k = (ϕjk, ν
j
k), j = 1, 2,

eigenfunctions of the operator A. In a similar way, if we consider(
uTn
vTn

)
=

{
Φj
n n 6= k

0 n = k,

the corresponding solution of (3.17) can be written as(
un
vn

)
= eiλ

j
n(T−t)Φj

n, where iλjn = − 1

µjn
,
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being µjn, (j = 1, 2) the eigenvalues of the operator A (µjnAΦj
n = Φj

n), given by Theorem 3.3.2.
Moreover,

lim
|n|→∞

λjn = 0.

On the other hand, since the sequence (Φj
n)n∈Z∗,j∈{1,2} forms an orthonormal basis of [H2

0 (0, L)]2,
we get 〈(

η0
k

ω0
k

)
,

(
un(0)
vn(0)

)〉
[H2

0 (0,L)]2
= δjn,ke

iλjnT , j = 1, 2.

Thus, if (η0
k, ω

0
k) is controllable to zero in time T > 0, from (3.16) it follows that

∫ T

0
eiλ

j
n(T−t)

[
f1(t)

(
−iλjnb1ϕjn,xxx + aνjn,xx

)
(L) + g1(t)

(
−iλjnd1ν

j
n,xxx + aϕjn,xx

)
(L)

+ b1f2(t)iλjnϕ
j
n,xx(L) + d1g2(t)iλjnν

j
n,xx(L)

]
= δjn,ke

iλjnT , j = 1, 2.

(3.18)

For j = 1, the identity above can be written as follows∫ T
2

−T
2

h(t)eiλ
1
n(T2 −t)dt = δ1

n,ke
iλ1nT ,

where

h(t) =f1

(
t+

T

2

)(
−iλ1

nb1ϕ
1
n,xxx + aν1

n,xx

)
(L) + g1

(
t+

T

2

)(
−iλ1

nd1ν
1
n,xxx + aϕ1

n,xx

)
(L)

+ iλ1
nb1f2

(
t+

T

2

)
ϕ1
n,xx(L) + iλ1

nd1g2

(
t+

T

2

)
ν1
n,xx(L).

Since h ∈ L2(−T
2 ,

T
2 ), if we de�ne F : C −→ C by

F (z) =

∫ T
2

−T
2

h(t)eizt,

from Paley-Wiener Theorem, we have that F is an entire function. Moreover, since lim|n|→∞ λ
j
n =

0, it follows that F is zero on a set with a �nite accumulation point. Then, F ≡ 0 and,
consequently,

f1(t)
(
−iλ1

nb1ϕ
1
n,xxx + aν1

n,xx

)
(L) + g1(t)

(
−iλ1

nd1ν
1
n,xxx + aϕ1

n,xx

)
(L)

+ b1f2(t)iλ1
nϕ

1
n,xx(L) + d1g2(t)iλ1

nν
1
n,xx(L) = 0,

(3.19)

for all t ∈ [0, T ].
For j = 2, we can use (3.18) and proceed in a similar way to obtain

f1(t)
(
−iλ2

nb1ϕ
2
n,xxx + aν2

n,xx

)
(L) + g1(t)

(
−iλ2

nd1ν
2
n,xxx + aϕ2

n,xx

)
(L)

+ b1f2(t)iλ2
nϕ

2
n,xx(L) + d1g2(t)iλ2

nν
2
n,xx(L) = 0,

(3.20)

for all t ∈ [0, T ].
Thus, by dividing (3.19) and (3.20) by iλ1

n and iλ2
n, respectively, we deduce that (f1, g1) and

(f2, g2) should satisfy the system
f1(t)A1

n + g1(t)B1
n + f2(t)C1

n + g2(t)D1
n = 0

f1(t)A2
n + g1(t)B2

n + f2(t)C2
n + g2(t)D2

n = 0,

(3.21)
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where
Ajn =

a

iλjn
νjn,xx(L)− b1ϕjn,xxx(L), Bj

n =
a

iλjn
ϕjn,xx(L)− d1ν

j
n,xxx(L),

Cjn = b1ϕ
j
n,xx(L), and Dj

n = d1ν
j
n,xx(L), for j = 1, 2.

From the asymptotic behavior of the eigenvectors of A given by Lemma 3.3.8, we obtain that,
for a subsequence, if necessary, the following holds:

lim
|n|→∞

Cjn = lim
|n|→∞

Dj
n = lim

|n|→∞
A2
n = lim

|n|→∞
B1
n = 0, j = 1, 2, (3.22)

lim
|n|→∞

A1
n = lim

|n|→∞
B2
n = δ0

√
b1d1

L
, for some δ0 ∈ C∗, (3.23)

and ∣∣∣∣∣∣
C1
n D1

n

C2
n D2

n

∣∣∣∣∣∣ ∼ −L2b1d1

[(2|n|+ 1)π − 2εn]2 + 4
6= 0, for all n ∈ Z∗, (3.24)

where εn ∈ (0, 1). By using (3.22) and (3.23) in (3.21) we obtain

f1(t)A1
n + g1(t)B1

n + f2(t)C1
n + g2(t)D1

n → δ0

√
b1d1

L
f1(t) = 0,

f1(t)A2
n + g1(t)B2

n + f2(t)C2
n + g2(t)D2

n → δ0

√
b1d1

L
g1(t) = 0,

as |n| → ∞. Then, (f1, g1) ≡ (0, 0) and the system (3.21) becomes simpler:
f2(t)C1

n + g2(t)D1
n = 0

f2(t)C2
n + g2(t)D2

n = 0.

Hence, from (3.24) we deduce that (f1, g1) ≡ (f2, g2) ≡ (0, 0) is the unique solution of the system
(3.21), which contradicts (3.18) and the proof ends. �

Remark 3.2.2. λ = 0 is not a eigenvalue of the operator A. Indeed, if (ϕ, ν) satis�es A(ϕ, ν) =
0, then, it shall be solution of the uncoupled system

νx + aνxxx = 0 for x ∈ (0, L),

ϕx + aϕxxx = 0 for x ∈ (0, L),

(ϕ(0), ν(0)) = (ϕ(L), ν(L)) = (0, 0),

(ϕx(0), νx(0)) = (ϕx(L), νx(L)) = (0, 0).

By setting ν̃ = νx we obtain ν̃(x) = c1e
i√
a
x

+ c2e
− i√

a
x
, for some constants c1, c2. Then, from the

boundary condition ν̃(0) = 0, we deduce that ν̃(x) = 2ic1 sin
(

x√
a

)
and the boundary condition

ν̃(L) = 0 implies that 2ic1 sin
(
L√
a

)
= 0. Thus, if L 6=

√
aπn, with n ∈ Z∗, we have that c1 = 0

and ν ≡ const. Then, from the boundary condition ν(0) = 0 we conclude that ν ≡ 0. On the

other hand, if L =
√
aπn, for some n ∈ Z∗, we have that ν(x) = −2i

√
ac1 cos

(
x√
a

)
and the

condition ν(L) = 0 implies that c1 = 0. Hence, ν ≡ 0. Since the system is uncoupled, we can
arguing as above to obtain ϕ ≡ 0.

Now, we pass to study the approximate controllability of the system (1.8). In order to do
that, we introduce the following de�nition.
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De�nition 3.2.3. System (1.8) is said to be approximately controllable in time T > 0 if, for
every initial data (η0, ω0) ∈ [H−2(0, L)]2, the set of reachable states

R

((
η0

ω0

)
, T

)
=

{(
η(T, x)
ω(T, x)

)
:

((
f1

g1

)
,

(
f2

g2

))
∈ [H1(0, T )]2 × [H1(0, T )]2

}
is dense in [L2(0, L)]2.

The corresponding approximate controllability result reads as follows.

Theorem 3.2.2. System (1.8) is approximately controllable in time T > 0 with controls (f1, g1), (f2, g2) ∈
[H1(0, T )]2.

Proof. Due to the linearity of the system (1.8), it is su�cient to prove the result for any T > 0

and (η0, ω0) = (0, 0). Thus, we will prove the density of the set R

( (
0
0

)
, T

)
in [L2(0, L)]2.

Let (η, ω) ∈ C([0, T ]; [L2(0, L)]2) the corresponding solution of (1.8) given by Theorem 3.1.4
and (u, v) solution of the adjoin system (3.17). Then, it follows that〈(

η(T, x)
ω(T, x)

)
,

(
uT

vT

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2

= −
∫ T

0
f1(t)[b1utxxx + avxx](t, L)dt−

∫ T

0
g1(t)[d1vtxxx + auxx](t, L)dt

+ b1

∫ T

0
f2(t)utxx(t, L)dt+ d1

∫ T

0
g2(t)vtxx(t, L)dt.

(3.25)

Assume that R

( (
0
0

)
, T

)
is not dense in [H2

0 (0, L)]2. In this case, there exists (uT , vT ) 6=

(0, 0) in [H2
0 (0, L)]2, satisfying〈(

η(T, x)
ω(T, x)

)
,

(
uT

vT

)〉
[H−2(0,L)]2,[H2

0 (0,L)]2
= 0,

for all

((
f1

g1

)
,

(
f2

g2

))
∈ [H1(0, T )]2 × [H1(0, T )]2. Consequently, from (3.25) we obtain

−
〈(

f1

g1

)
,

(
[b1utxxx + avxx] (t, L)
[d1vtxxx + auxx] (t, L)

)〉
[L2(0,T )]2

+

〈(
f2

g2

)
,

(
b1utxx(t, L)
d1vtxx(t, L)

)〉
[L2(0,T )]2

= 0,

for all

((
f1

g1

)
,

(
f2

g2

))
∈ [H1(0, T )]2 × [H1(0, T )]2. Thus,

(
[b1utxxx + avxx] (t, L)
[d1vtxxx + auxx] (t, L)

)
=

(
0
0

)
and

(
b1utxx(t, L)
d1vtxx(t, L)

)
=

(
0
0

)
, ∀t ∈ (0, T ). (3.26)

Next, we want to write (3.26) as an in�nite sum. From the proof of Theorem 3.1.1 we know thatA
is a skew adjoint operator in [H2

0 (0, L)]2. Hence, it has a sequence of eigenvalues (iλn)n∈Z∗ ⊂ iR,
each iλn = (µn)−1 with geometric multiplicity at most Mn. The corresponding eigenfunctions
form an orthonormal basis for [H2

0 (0, L)]2, which we denote by⋃
n∈Z∗
{Φk

n}
Mn
k=1.
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Then, if (uT , vT ) ∈ [H2
0 (0, L)]2, we have

(uT , vT ) =
∑
n∈Z∗

Mn∑
k=1

αknΦk
n

and the corresponding solution (u, v) can be written as

(u, v) =
∑
n∈Z∗

Mn∑
k=1

αknΦk
ne
iλn(T−t). (3.27)

Thus, from (3.26) and (3.27), it follows that

0 = utxx(t, L) =
∑
n∈Z∗

−iλn
Mn∑
k=1

αknϕ
k
n,xx(L)eiλn(T−t).

Since (u, v) is analytic in time (see Theorem 3.1.1), we can integrate the identity above over
(−S, S), for any S > 0. Then, for each m ∈ Z∗, we deduce that

0 = lim
s→+∞

1

S

∫ S

−S
utxx(s, L)eiλmsds = −iλm

Mm∑
k=1

αkmϕ
k
m,xx(L)eiλmT ,

hence,
Mm∑
k=1

αkmϕ
k
m,xx(L) = 0. (3.28)

Analogously, from vtxx(t, L) = 0, it results that

Mm∑
k=1

αkmν
k
m,xx(L) = 0. (3.29)

On the other hand, from (3.26)-(3.27) we have

0 = [b1utxxx + avxx] (t, L) =
∑
n∈Z∗

Mn∑
k=1

αkn

[
−iλnb1ϕkn,xxx(L) + aνkn,xx(L)

]
eiλn(T−t)

and

0 = [d1vtxxx + auxx] (t, L) =
∑
n∈Z∗

Mn∑
k=1

αkn

[
−iλnd1ν

k
n,xxx(L) + aϕkn,xx(L)

]
eiλn(T−t).

Next, we proceed as before and use (3.28) and (3.29) to obtain

0 =

Mm∑
k=1

αkm[−iλmb1ϕkm,xxx(L) + aνkm,xx(L)]eiλmT

=

[
−iλmb1

Mm∑
k=1

αkmϕ
k
m,xxx(L) + a

Mm∑
k=1

αkmν
k
m,xx(L)

]
eiλmT

= −iλmb1
Mm∑
k=1

αkmϕ
k
m,xxx(L)eiλmT
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and

0 =

Mm∑
k=1

αkm[−iλmd1ν
k
m,xxx(L) + aϕkm,xx(L)]eiλmT

=

[
−iλmd1

Mm∑
k=1

αkmν
k
m,xxx(L) + a

Mm∑
k=1

αkmϕ
k
m,xx(L)

]
eiλmT

= −iλmd1

Mm∑
k=1

αkmν
k
m,xxx(L)eiλmT ,

respectively. Then,
Mm∑
k=1

αkmϕ
k
m,xxx(L) =

Mm∑
k=1

αkmν
k
m,xxx(L) = 0. (3.30)

Now, for each m ∈ Z∗, we consider Φm = (ϕm, νm) de�ned as follows

Φm = α1
mΦ1

m + ...+ αMm
m ΦMm

m .

Thus, from (3.28), (3.29) and (3.30) we have that

(ϕm,xx(L), νm,xx(L)) = (ϕm,xxx(L), νm,xxx(L)) = (0, 0)

and Φm = (ϕm, νm) solves the initial value problem

−ϕm + bϕm,xx − b1ϕm,xxxx + (iλm)−1νm,x + a(iλm)−1νm,xxx = 0 for x ∈ (0, L),

−νm + dνm,xx − d1νm,xxxx + (iλm)−1ϕm,x + a(iλm)−1ϕm,xxx = 0 for x ∈ (0, L),

(ϕm(L), νm(L)) = (0, 0),

(ϕm,x(L), νm,x(L)) = (0, 0),

(ϕm,xx(L), νm,xx(L)) = (0, 0),

(ϕm,xxx(L), νm,xxx(L)) = (0, 0).

Then, by uniqueness,
Φm = α1

mΦ1
m + ...+ αMm

m ΦMm
m = (0, 0).

Since {Φk
m}

Mm
k=1 are linearly independent, it follows that α1

m = ... = αMm
m = 0 for all m ∈ Z∗.

Thus, from (3.27) it follows that (u, v) = (0, 0) and, in particular, (uT , vT ) = (0, 0). This is a
contradiction and the proof ends. �

3.3 Spectral Analysis

This section is devoted to develop a spectral analysis of the operator A introduced above. We
start by presenting some explicit formula and properties of a family of initial value problems
depending on several parameters. These results allow us to obtain the asymptotic behavior of
the eigenvalues and eigenfunctions of the di�erential operator associated to (1.8).

Study of some initial value problems

Firstly, we study the properties of the following simple initial value problem, where σ ∈ C∗ is a
complex nonzero parameter:
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

aσνxxx − b1ϕxxxx = f for x ∈ (0, L),

aσϕxxx − d1νxxxx = g for x ∈ (0, L),

(ϕ(0), ν(0)) = (ϕ0, ν0),

(ϕx(0), νx(0)) = (ϕ1, ν1),

(ϕxx(0), νxx(0)) = (ϕ2, ν2),

(ϕxxx(0), νxxx(0)) = (ϕ3, ν3).

(3.31)

In (3.31) a, b1 and d1 are positive real numbers. We have the following result.

Lemma 3.3.1. Given (ϕ0, ϕ1, ϕ2, ϕ3, ν0, ν1, ν2, ν3) ∈ C8 and (f, g) ∈ [L2(0, L)]2, there exists a
unique solution (ϕ, ν) to the problem (3.31) given by the formula ϕ(x)

ν(x)

 =


(b1d1)

3
2

[aσ]3

[
sinh( aσx√

b1d1
)− aσx√

b1d1

]
ϕ3 +

b1d21
[aσ]3

[(
cosh( aσx√

b1d1
)− 1

)
− [aσ]2

b1d1
x2

2

]
ν3

b21d1
[aσ]3

[(
cosh( aσx√

b1d1
)− 1

)
− [aσ]2

b1d1
x2

2

]
ϕ3 + (b1d1)

3
2

[aσ]3

[
sinh( aσx√

b1d1
)− aσx√

b1d1

]
ν3



+

 ϕ2 x2

2 + ϕ1x+ ϕ0 − 1
aσ

∫ x
0 F̄ (s)ds

ν2 x2

2 + ν1x+ ν0 − 1
aσ

∫ x
0 Ḡ(s)ds



(3.32)

where

F̄ (x) =

∫ x

0

∫ s

0

[√
d1

b1
sinh(

aσ(s− r)√
b1d1

)f(r) +

(
cosh(

aσ(s− r)√
b1d1

)− 1

)
g(r)

]
drds,

Ḡ(x) =

∫ x

0

∫ s

0

[(
cosh(

aσ(s− r)√
b1d1

)− 1

)
f(r) +

√
b1
d1

sinh(
aσ(s− r)√

b1d1
)g(r)

]
drds.

Proof. By setting (ϕxxx, νxxx) = (ϕ̃, ν̃) we deduce that ϕ̃x(x)

ν̃x(x)

 =

 0 aσ
b1

aσ
d1

0

 ϕ̃(x)

ν̃(x)

−


f(x)
b1

g(x)
d1

 ,

 ϕ̃(0)

ν̃(0)

 =

 ϕ3

ν3

 ;

consequently,  ϕ̃(x)

ν̃(x)

 = eAx

 ϕ3

ν3

− ∫ x

0
eA(x−s)


f(x)
b1

g(x)
d1

 ds, (3.33)

where

eAx =


cosh( aσx√

b1d1
)

√
d1
b1

sinh( aσx√
b1d1

)

√
b1
d1

sinh( aσx√
b1d1

) cosh( aσx√
b1d1

)

 .

By integrating the equations in (3.31) we obtain ϕxx(x)

νxx(x)

 =

 ϕ2 − d1
aσν

3 + d1
aσ ν̃(x) + 1

aσ

∫ x
0 g(s)ds

ν2 − b1
aσϕ

3 + b1
aσ ϕ̃(x) + 1

aσ

∫ x
0 f(s)ds

 (3.34)
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and, from (3.33), it follows that

 ϕxx(x)

νxx(x)

 =


ϕ2 +

√
b1d1
aσ sinh( aσx√

b1d1
)ϕ3 + d1

aσ

(
cosh( aσx√

b1d1
)− 1

)
ν3

ν2 + b1
aσ

(
cosh( aσx√

b1d1
)− 1

)
ϕ3 +

√
b1d1
aσ sinh( aσx√

b1d1
)ν3



− 1

aσ


∫ x

0

[√
d1
b1

sinh(aσ(x−s)√
b1d1

)f(s) +
(

cosh(aσ(x−s)√
b1d1

)− 1
)
g(s)

]
ds

∫ x
0

[(
cosh(aσ(x−s)√

b1d1
)− 1

)
f(s) +

√
b1
d1

sinh(aσ(x−s)√
b1d1

)g(s)
]
ds

 .

After integration, we get

 ϕx(x)

νx(x)

 =


ϕ1 + b1d1

[aσ]2

(
cosh( aσx√

b1d1
)− 1

)
ϕ3 + d1

√
b1d1

[aσ]2
sinh( aσx√

b1d1
)ν3

ν1 + b1
√
b1d1

[aσ]2
sinh( aσx√

b1d1
)ϕ3 + b1d1

[aσ]2

(
cosh( aσx√

b1d1
)− 1

)
ν3


+

 (ϕ2 − d1
aσν

3)x− 1
aσ

∫ x
0 F (s)ds

(ν2 − b1
aσϕ

3)x− 1
aσ

∫ x
0 G(s)ds

 ,

(3.35)

where

F (x) =

∫ x

0

[√
d1

b1
sinh(

aσ(x− s)√
b1d1

)f(s) +

(
cosh(

aσ(x− s)√
b1d1

)− 1

)
g(s)

]
ds,

G(x) =

∫ x

0

[(
cosh(

aσ(x− s)√
b1d1

)− 1

)
f(s) +

√
b1
d1

sinh(
aσ(x− s)√

b1d1
)g(s)

]
ds.

Finally, by integrating (3.35), we obtain

 ϕ(x)

ν(x)

 =


ϕ0 + (b1d1)

3
2

[aσ]3
sinh( aσx√

b1d1
)ϕ3 +

b1d21
[aσ]3

(
cosh( aσx√

b1d1
)− 1

)
ν3

ν0 +
b21d1
[aσ]3

(
cosh( aσx√

b1d1
)− 1

)
ϕ3 + (b1d1)

3
2

[aσ]3
sinh( aσx√

b1d1
)ν3



+


1
2(ϕ2 − d1

aσν
3)x2 + (ϕ1 − b1d1

[aσ]2
ϕ3)x− 1

aσ

∫ x
0 F̄ (s)ds

1
2(ν2 − b1

aσϕ
3)x2 + (ν1 − b1d1

[aσ]2
ν3)x− 1

aσ

∫ x
0 Ḡ(s)ds

 .

(3.36)

Rearranging the terms in (3.36) we obtain (3.32). �

We de�ne the set

Z =

{
z ∈ C : |z| ≥ 1

2
, |R(z)| ≤ 1

}
and show that the following estimates for the solution (ϕ, ν) of (3.31) hold if σ ∈ Z.

Lemma 3.3.2. Let (ϕ, ν) be the solution of (3.31). There exists a positive constant C > 0, such
that the following estimates hold for all x ∈ [0, L] and σ ∈ Z :

2∑
i=0

∣∣∣∣diϕdxi (x)

∣∣∣∣ ≤ |ϕ0|+ C
(
|ϕ1|+ |ϕ2|

)
+
C2

|σ|

[
|ϕ3|+ |ν3|+

∫ x

0
|f(s)|+ |g(s)|ds

]
, (3.37)
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2∑
i=0

∣∣∣∣diνdxi (x)

∣∣∣∣ ≤ |ν0|+ C
(
|ν1|+ |ν2|

)
+
C2

|σ|

[
|ϕ3|+ |ν3|+

∫ x

0
|f(s)|+ |g(s)|ds

]
, (3.38)

max {|ϕxxx(x)|, |νxxx(x)|} ≤ C
[
|ϕ3|+ |ν3|+

∫ x

0
|f(s)|+ |g(s)|ds

]
. (3.39)

Proof. First, let us note that the following estimates hold for (ϕ̃, ν̃) given by (3.33):

|ϕ̃(x)| ≤

(
|ϕ3|+

√
d1

b1
|ν3|

)
e
|R(σ)| ax√

b1d1 +

∫ x

0
e
|R(σ)|a(x−s)√

b1d1

[
1

b1
|f(s)|+ 1√

b1d1
|g(s)|

]
ds

≤

(
|ϕ3|+

√
d1

b1
|ν3|+

∫ x

0

[
1

b1
|f(s)|+ 1√

b1d1
|g(s)|

]
ds

)
e
|R(σ)| ax√

b1d1

and

|ν̃(x)| ≤

(√
b1
d1
|ν3|+ |ϕ3|

)
e
|R(σ)| ax√

b1d1 +

∫ x

0
e
|R(σ)|a(x−s)√

b1d1

[
1√
b1d1
|f(s)|+ 1

d1
|g(s)|

]
ds

≤

(√
b1
d1
|ν3|+ |ϕ3|+

∫ x

0

[
1√
b1d1
|f(s)|+ 1

d1
|g(s)|

]
ds

)
e
|R(σ)| ax√

b1d1 ,

which allow us to deduce (3.39). Moreover, taking into account formulas (3.34), we obtain

|ϕxx(x)| ≤ |ϕ2|+ C

|σ|

[
|ϕ3|+ |ν3|+

∫ x

0
|f(s)|+ |g(s)|ds

]
,

|νxx(x)| ≤ |ν2|+ C

|σ|

[
|ϕ3|+ |ν3|+

∫ x

0
|f(s)|+ |g(s)|ds

]
.

Then, from the �rst estimate above and by using that

|ϕx(x)| ≤ |ϕ1|+
∫ x

0
|ϕxx(s)|ds,

|ϕ(x)| ≤ |ϕ0|+
∫ x

0
|ϕx(s)|ds,

for all x ∈ [0, L], we obtain estimate (3.37). This argument also holds for the function v. Thus,
we obtain estimate (3.38). �

Let us now consider the following slightly more complicated system,

−ξ + bξxx − b1ξxxxx + σζx + aσζxxx = 0 for x ∈ (0, L),

−ζ + dζxx − d1ζxxxx + σξx + aσξxxx = 0 for x ∈ (0, L),

(ξ(0), ζ(0)) = (ξ0, ζ0),

(ξx(0), ζx(0)) = (ξ1, ζ1),

(ξxx(0), ζxx(0)) = (ξ2, ζ2),

(ξxxx(0), ζxxx(0)) = (ξ3, ζ3),

(3.40)

for which we have the following result.
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Proposition 3.3.3. There exists a positive constant C > 0, such that

‖(ξ, ζ)‖[W 2,∞(0,L)]2 ≤ C

[
2∑
i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)]
, (3.41)

for any σ ∈ Z and any solution (ξ, ζ) of (3.40).

Proof. Let σ ∈ Z, and let (ξ, ζ) be a solution of (3.40). Then, (ξ, ζ) satis�es

aσζxxx − b1ξxxxx = ξ − σζx − bξxx for x ∈ (0, L),

aσξxxx − d1ζxxxx = ζ − σξx − dζxx for x ∈ (0, L),

(ξ(0), ζ(0)) = (ξ0, ζ0),

(ξx(0), ζx(0)) = (ξ1, ζ1),

(ξxx(0), ζxx(0)) = (ξ2, ζ2),

(ξxxx(0), ζxxx(0)) = (ξ3, ζ3).

(3.42)

Since (3.42) is a system of type (3.31) with f = ξ−σζx− bξxx and g = ζ−σξx−dζxx, we obtain
from Lemma 3.3.2 a constant C > 0, such that

2∑
i=0

∣∣∣∣diξdxi (x)

∣∣∣∣ ≤ |ξ0|+ C
(
|ξ1|+ |ξ2|

)
+
C2

|σ|
[
|ξ3|+ |ζ3|

]
+
C2

|σ|

∫ x

0
2|σ|

2∑
i=0

(∣∣∣∣diξdxi (s)
∣∣∣∣+

∣∣∣∣diζdxi (s)
∣∣∣∣) ds

and
2∑
i=0

∣∣∣∣diζdxi (x)

∣∣∣∣ ≤ |ζ0|+ C
(
|ζ1|+ |ζ2|

)
+
C2

|σ|
[
|ξ3|+ |ζ3|

]
+
C2

|σ|

∫ x

0
2|σ|

2∑
i=0

(∣∣∣∣diξdxi (s)
∣∣∣∣+

∣∣∣∣diζdxi (s)
∣∣∣∣) ds.

By adding the estimates above we obtain

2∑
i=0

(∣∣∣∣diξdxi (x)

∣∣∣∣+

∣∣∣∣diζdxi (x)

∣∣∣∣) ≤ C
[

2∑
i=0

(|ξi|+ |ζi|)

]
+
C2

|σ|
(|ξ3|+ |ζ3|)

+ C2

∫ x

0

2∑
i=0

(∣∣∣∣diξdxi (s)
∣∣∣∣+

∣∣∣∣diζdxi (s)
∣∣∣∣) ds,

for every x ∈ [0, L] and σ ∈ Z. Then, from Gronwall's inequality we have that (ξ, ζ) satis�es
(3.41). �

The following result compares solutions of (3.40) and (3.31).

Proposition 3.3.4. There exists a positive constant C > 0, such that

‖(ξ, ζ)− (ϕ, ν)‖[W 2,∞(0,L)]2 ≤
(

1 +
C2

|σ|

)[ 2∑
i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)]
, (3.43)

for any σ ∈ Z and any initial data (ξ0, ξ1, ξ2, ξ3, ζ0, ζ1, ζ2, ζ3) ∈ C8, where (ξ, ζ) and (ϕ, ν) are
the solutions, with precisely these initial data, of equations (3.40) and (3.31) with f ≡ g ≡ 0,
respectively.
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Proof. We de�ne θ = ξ − ϕ, u = ζ − ν and note that (θ, u) is solution of

aσuxxx − b1θxxxx = ξ − σζx − bξxx for x ∈ (0, L),

aσθxxx − d1uxxxx = ζ − σξx − dζxx for x ∈ (0, L),

(θ(0), u(0)) = (0, 0),

(θx(0), ux(0)) = (0, 0),

(θxx(0), uxx(0)) = (0, 0),

(θxxx(0), uxxx(0)) = (0, 0).

Therefore, from Lemma 3.3.2 we obtain a constant C > 0, such that, for every x ∈ [0, L] and
σ ∈ Z,

2∑
i=0

(∣∣∣∣diθdxi (x)

∣∣∣∣+

∣∣∣∣diudxi (x)

∣∣∣∣) ≤ C2

|σ|

[ ∫ x

0
(|ξ(s)|+ |ξxx(s)|+ |ζ(s)|+ |ζxx(s)|)ds

+

∫ x

0
|σ|(|ξx(s)|+ |ζx(s)|)ds

]
.

From the estimate above and (3.41) if follows that

2∑
i=0

(∣∣∣∣diθdxi (x)

∣∣∣∣+

∣∣∣∣diudxi (x)

∣∣∣∣) ≤ C2

|σ|

[
2∑
i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)]

+ C2
2∑
i=0

(
|ξi|+ |ζi|

)
+

1

|σ|
(
|ξ3|+ |ζ3|

)
.

Then, the solutions (ξ, ζ) and (ϕ, ν) satisfy (3.43). �

Finally, we consider systems (3.31) and (3.40) with distinct parameters σ. The di�erence
between the respective solutions are given by the following result.

Proposition 3.3.5. Let (ϕ, ν) and (ξ, ζ) solutions of (3.31) with σ = µ and (3.40) with σ = µ̃,
respectively, and f ≡ g ≡ 0. Then, there exists a positive constant C > 0, such that

‖(ξ, ζ)− (ϕ, ν)‖[W 2,∞(0,L)]2

≤ C

[
2∑
i=0

(
|ξi − ϕi|+ |ζi − νi|

)
+

1

|µ|
(
|ξ3 − ϕ3|+ |ζ3 − ν3|+ |µ− µ̃|(|ϕ3|+ |ν3|)

)]
.

(3.44)

Proof. We de�ne θ = ξ − ϕ, u = ζ − ν, and note that (θ, u) is solution of

aµuxxx − b1θxxxx = ξ − µζx − bξxx + a(µ̃− µ)νxxx for x ∈ (0, L),

aµθxxx − d1uxxxx = ζ − µξx − dζxx + a(µ̃− µ)ϕxxx for x ∈ (0, L),

(θ(0), u(0)) = (ξ0 − ϕ0, ζ0 − ν0),

(θx(0), ux(0)) = (ξ1 − ϕ1, ζ1 − ν1),

(θxx(0), uxx(0)) = (ξ2 − ϕ2, ζ2 − ν2),

(θxxx(0), uxxx(0)) = (ξ3 − ϕ3, ζ3 − ν3).

Therefore, from Lemma 3.3.2 we obtain (3.44). �
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Spectral analysis of the operator A

Given b1, d1 > 0, let us �rst introduce the operator B : (H2
0 (0, 2π))2 → (H2

0 (0, 2π))2 given by

B =

 0 (b1∂
4
x)−1(a∂3

x)

(d1∂
4
x)−1(a∂3

x) 0

 . (3.45)

Recall that, for α > 0, the operator (−α∂4
x)−1 : L2(0, 2π)→ L2(0, 2π) de�ned by

(−α∂4
x)−1ϕ = v ⇔


−αvxxxx = ϕ

∂rv

∂xr
(0) =

∂rv

∂xr
(L), r = 0, 1,

is a well-de�ned, compact operator in L2(0, 2π).
In this section, µ ∈ C is called eigenvalue of the operator A(B) if exists a nontrivial vector

Φ = (ϕ, ν) ∈ [H2
0 (0, L)]2, called eigenfunction corresponding to µ, such that µAΦ = Φ (µBΦ =

Φ). The following two theorems are devoted to the spectral analysis of these operators.

Theorem 3.3.1. The eigenvalues of the operator B de�ned by (3.45) are

µ̃n = sgn(n)

√
b1d1

aL
((2|n|+ 1)π − 2εn)i, (3.46)

where εn ∈ (0, 1), with n ∈ Z∗. Each eigenvalue µ̃n is double and has two independent eigenfunc-
tions given by

Φ̃1
n =

[√
b1d1

aµ̃n

]3

 S( aµ̃n√
b1d1

, x)

√
b1
d1
C( aµ̃n√

b1d1
, x)

 , Φ̃2
n =

[√
b1d1

aµ̃n

]3


√

d1
b1
C( aµ̃n√

b1d1
, x)

S( aµ̃n√
b1d1

, x)

 , (3.47)

where

S
(

aµ̃n√
b1d1

, x

)
= sinh(

aµ̃nx√
b1d1

)− aµ̃nx√
b1d1

+

[
aµ̃n√
b1d1

]3

L

([
aµ̃n√
b1d1

L

]2

− 4

)−1

x2,

C
(

aµ̃n√
b1d1

, x

)
=

(
cosh(

aµ̃nx√
b1d1

)− 1

)

−

[ aµ̃n√
b1d1

]2

−
[
aµ̃n√
b1d1

]4

L2

([
aµ̃n√
b1d1

L

]2

− 4

)−1
 x2

2
.

Moreover, the set
{

Φ̃j
n : n ∈ Z∗, j ∈ {1, 2}

}
forms an orthogonal basis of [H2

0 (0, L)]2.

Proof. By using Lemma 3.3.1, with ϕ0 = ϕ1 = ν0 = ν1 = 0 and f ≡ g ≡ 0, we deduce that
(ϕ, ν) is a eigenfunction of B corresponding to the eigenvalue µ if and only if

 ϕ(x)

ν(x)

 =
1

κ3


[sinh(κx)− κx]ϕ3 +

√
d1
b1

[
(cosh(κx)− 1)− [κx]2

2

]
ν3

√
b1
d1

[
(cosh(κx)− 1)− [κx]2

2

]
ϕ3 + [sinh(κx)− κx] ν3



+

 ϕ2 x2

2

ν2 x2

2


(3.48)
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and  ϕ(L)

ν(L)

 =

 ϕx(L)

νx(L)

 =

 0

0

 , (3.49)

where κ = aµ/
√
b1d1. The data (ϕ2, ν2) can be written as function of κ and (ϕ3, ν3). Indeed,

from (3.48) and (3.49) we obtain the following systems
[sinh(κL)− κL]ϕ3 +

√
d1
b1

[
(cosh(κL)− 1)− [κL]2

2

]
ν3 + κ3L2

2 ϕ
2 = 0

√
b1
d1

[
(cosh(κL)− 1)− [κL]2

2

]
ϕ3 + [sinh(κL)− κL] ν3 + κ3L2

2 ν
2 = 0

and 
(cosh(κL)− 1)ϕ3 +

√
d1
b1

(sinh(κL)− κL) ν3 + κ2Lϕ2 = 0

√
b1
d1

(sinh(κL)− κL)ϕ3 + (cosh(κL)− 1) ν3 + κ2Lν2 = 0.

Thus, we deduce that (ϕ2, ν2) should satisfy

 ϕ2

ν2

 =
L

[κL]2 − 4


2

√
d1
b1
Lκ

√
b1
d1
Lκ 2


 ϕ3

ν3

 , (3.50)

with κ 6= ±2/L. Replacing (3.50) in (3.48) we obtain

 ϕ(x)

ν(x)

 =
1

κ3


S(κ, x)

√
d1
b1
C(κ, x)

√
b1
d1
C(κ, x) S(κ, x)


 ϕ3

ν3

 , (3.51)

where

S(κ, x) = sinh(κx)− κx+
[κ3L]

[κL]2 − 4
x2

C(κ, x) = (cosh(κx)− 1)−
(
κ2 − [κ4L2]

[κL]2 − 4

)
x2

2
.

The next steps are devoted to obtain the eigenvalue associated to the eigenfunction given by
(3.51). First, we note that Sx(κ, L) = κC(κ, L) and Cx(κ, L) = κS(κ, L). Then, from (3.51) and
the boundary conditions (3.49) we have

 ϕ(L)

ν(L)

 =
1

κ3


S(κ, L)

√
d1
b1
C(κ, L)

√
b1
d1
C(κ, L) S(κ, L)


 ϕ3

ν3

 =

 0

0


and  ϕx(L)

νx(L)

 =
1

κ2


C(κ, L)

√
d1
b1
S(κ, L)

√
b1
d1
S(κ, L) C(κ, L)


 ϕ3

ν3

 =

 0

0

 .

The systems above imply that κ is a root of the equation

C(κ, L)2 − S(κ, L)2 = 0,
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which can be written as

4

[κL]2 − 4

(
[κL] cosh

(
κL

2

)
− 2 sinh

(
κL

2

))2

= 0. (3.52)

The following result allows us to localize the roots of (3.52).

Lemma 3.3.6. The nontrivial roots (zn)n∈Z∗ of

f(z) = z cosh
(z

2

)
− 2 sinh

(z
2

)
(3.53)

satisfy zn = iyn, where (yn)n∈Z∗ ⊂ R are the roots of the transcendental equation

tan
(y

2

)
=
y

2
.

Proof. First, we show that (3.53) has no roots z with R(z) 6= 0 : Indeed, if z = x + iy we have
that

f (x+ iy) = f(x, y) = U(x, y) + iV (x, y)

where
U(x, y) = x cosh

(x
2

)
cos
(y

2

)
− sinh

(x
2

)(
2 cos

(y
2

)
+ y sin

(y
2

))
,

V (x, y) = cosh
(x

2

)(
y cos

(y
2

)
− 2 sin

(y
2

))
+ x sinh

(x
2

)
sin
(y

2

)
.

For y ∈ R �xed, we de�ne the nonnegative function Ky(x) := |f(x, y)|2. Then,

• K ′y(x)

∣∣∣∣
x=0

= x cos(y)− x cosh(x) + 1
2(x2 + y2) sinh(x)

∣∣∣∣
x=0

= 0,

• K ′′y (x) = 1
2(x2 + y2 − 2) cosh(x) + cos(y) ≥ 0, for all x ∈ R.

The statement above is proved by noting that x 7→ K ′′y (x) is increasing (decreasing) for x > 0

(x < 0) and K ′′y (0) = 1
2(y2 − 2) + cos(y) ≥ 0, for all y ∈ R.

Both statements above imply that, for y ∈ R �xed, the convex function x 7→ |f(x, y)|2 has a
global minimum value at (0, y). This shows that (x0, y0) is root of (3.53) if and only if x0 = 0
and y0 is a root of the real valued function g(y) = y cos

(y
2

)
− 2 sin

(y
2

)
. Then,

y cos
(y

2

)
− 2 sin

(y
2

)
= 0⇔ tan

(y
2

)
=
y

2
.

�

By analyzing the graphs of the functions tan(x) and x (see Figure 3.1), we deduce that
the points of intersection (xn)n∈Z∗ , can be written as xn = (2n+1)

2 π − εn, x−n = −xn, where
εn ∈ (0, 1), for all n ≥ 1.
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Figure 3.1: The distance εn between the root xn of the equation tan(x) = x and the asymptotic

x = sgn(n) (2|n|+1)
2 π tends to 0, when |n| → ∞.

From the analysis above, we conclude that the roots (Lκn)n∈Z∗ of (3.52) satisfy Lκn ∈ iR
and iLκn = −sgn(n)((2|n| + 1)π − 2εn), for all n ∈ Z∗. Then, the eigenvalues (µ̃n)n∈Z∗ satisfy

µ̃n = sgn(n)
√
b1d1
aL ((2|n|+ 1)π − 2εn)i, where εn ∈ (0, 1), with n ∈ Z∗. �

Remark 3.3.7. If µ̃n is an eigenvalue of the operator B, from (3.50) we have that (ϕ2, ν2)
satis�es  ϕ2

ν2

 =
b1d1L

[aLµ̃n]2 − 4b1d1

 2

aLµ̃n
d1

ϕ3 +
b1d1L

[aLµ̃n]2 − 4b1d1

 aLµ̃n
b1

2

 ν3.

By using (3.46) we obtain∣∣∣∣∣∣
 ϕ2

ν2

∣∣∣∣∣∣ ≤ C ′
(

1

((2|n|+ 1)π − 2εn)2
+

1

((2|n|+ 1)π − 2εn)

)
(|ϕ3|+ |ν3|)

≤ τ

|µ̃n|
(|ϕ3|+ |ν3|),

where τ and C ′ are positive constants.

We pass to analyze the spectral properties of the operator A. The main di�erence with respect
to B is that we do not have an explicit representation formula as (3.47) for the eigenfunctions
of A. Therefore, in order to prove the next theorem, we use a strategy which combines two
dimensional versions of the shooting method and Rouché's Theorem.

Theorem 3.3.2. The eigenvalues of the operator

A =

 0 (1− b∂2
x + b1∂

4
x)−1(∂x + a∂3

x)

(1− d∂2
x + d1∂

4
x)−1(∂x + a∂3

x) 0


are purely imaginary numbers (µjn)n∈Z∗,j∈{1,2} with the property that

µjn = µ̃n +O
(

1

|n|

)
(n ∈ Z∗, j ∈ {1, 2}). (3.54)

Moreover, to each eigenvalue µjn corresponds an eigenfunction Φj
n given by

Φj
n = Φ̃j

n +O
(

1

|n|

)
(n ∈ Z∗, j ∈ {1, 2}), (3.55)

with the property that the sequence (Φj
n)n∈Z∗,j∈{1,2} forms an orthogonal basis of [H2

0 (0, L)]2.
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Proof. According to the proof of Theorem 3.1.1, A is a compact skew-adjoint operator in
[H2

0 (0, L)]2. Then, it has a sequence of purely imaginary eigenvalues tending to in�nity. In
order to localize these eigenvalues, let us de�ne, for given δ > 0 and N ∈ N, the sets

Dn(δ) =

{
(µ, γ, β) ∈ C4 : |µ− µ̃n|2 + |γ|2 < δ2

n2
, |β| < τ

|µ|

}
,

Γn(δ) = ∂Dn(δ), (|n| > N),

DN =

{
(µ, γ, β) ∈ C4 : |Rµ| ≤ 1, |Iµ| ≤

√
b1d1

aL
((2N + 2)π − 2εN ), |γ| ≤ 1, |β| ≤ τ

|µ|

}
,

ΓN = ∂DN ,

where τ is given in Remark 3.3.7 and β ∈ C2. Also, let us de�ne the maps F j , Gj : C4 → C4,
j ∈ {1, 2}, by

F j(µ, γ, βj) =

( (
ϕj(µ, γ, βj , L)
νj(µ, γ, βj , L)

)
,

(
ϕjx(µ, γ, βj , L)

νjx(µ, γ, βj , L)

) )
,

Gj(µ, γ, βj) =

( (
ϕ̃j(µ, γ, βj , L)
ν̃j(µ, γ, βj , L)

)
,

(
ϕ̃jx(µ, γ, βj , L)

ν̃jx(µ, γ, βj , L)

) )
,

(3.56)

where βj = (βj1, β
j
2) ∈ C2, for j ∈ {1, 2}, and(

ϕ1(µ, γ, β1, ·)
νj(µ, γ, β1, ·)

)
,

(
ϕ2(µ, γ, β2, ·)
ν2(µ, γ, β2, ·)

)
,

(
ϕ̃1(µ, γ, β1, ·)
ν̃j(µ, γ, β1, ·)

)
,

(
ϕ̃2(µ, γ, β2, ·)
ν̃2(µ, γ, β2, ·)

)
are solutions of the initial values problems

−ϕ1 + bϕ1
xx − b1ϕ1

xxxx + µν1
x + aµν1

xxx = 0 for x ∈ (0, L),

−ν1 + dν1
xx − d1ν

1
xxxx + µϕ1

x + aµϕ1
xxx = 0 for x ∈ (0, L),

(ϕ1(0), ν1(0)) = (0, 0),

(ϕ1
x(0), ν1

x(0)) = (0, 0),

(ϕ1
xx(0), ν1

xx(0)) = (β1
1 , β

1
2),

(ϕ1
xxx(0), ν1

xxx(0)) = (1, γ),

(3.57)



−ϕ2 + bϕ2
xx − b1ϕ2

xxxx + µν2
x + aµν2

xxx = 0 for x ∈ (0, L),

−ν2 + dν2
xx − d1ν

2
xxxx + µϕ2

x + aµϕ2
xxx = 0 for x ∈ (0, L),

(ϕ2(0), ν2(0)) = (0, 0),

(ϕ2
x(0), ν2

x(0)) = (0, 0),

(ϕ2
xx(0), ν2

xx(0)) = (β2
1 , β

2
2),

(ϕ2
xxx(0), ν2

xxx(0)) = (γ, 1),

(3.58)



aµν̃1
xxx − b1ϕ̃1

xxxx = 0 for x ∈ (0, L),

aµϕ̃1
xxx − d1ν̃

1
xxxx = 0 for x ∈ (0, L),

(ϕ̃1(0), ν̃1(0)) = (0, 0),

(ϕ̃1
x(0), ν̃1

x(0)) = (0, 0),

(ϕ̃1
xx(0), ν̃1

xx(0)) = (β1
1 , β

1
2),

(ϕ̃1
xxx(0), ν̃1

xxx(0)) = (1, γ),
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

aµν̃2
xxx − b1ϕ̃2

xxxx = 0 for x ∈ (0, L),

aµϕ̃2
xxx − d1ν̃

2
xxxx = 0 for x ∈ (0, L),

(ϕ̃2(0), ν̃2(0)) = (0, 0),

(ϕ̃2
x(0), ν̃2

x(0)) = (0, 0),

(ϕ̃2
xx(0), ν̃2

xx(0)) = (β2
1 , β

2
2),

(ϕ̃2
xxx(0), ν̃2

xxx(0)) = (γ, 1),

respectively.
According to Theorem 3.3.1 and Remark 3.3.7, we observe that µ̃ is an eigenvalue of B if and

only if G1(µ̃, 0, β̃1) = 0, where β̃1 = (β̃1
1 , β̃

1
2) satis�es

β̃1
1 =

2b1d1L

(aLµ̃)2 − 4b1d1
and β̃1

2 =
b1aL

2µ̃

(aLµ̃)2 − 4b1d1
,

or G2(µ̃, 0, β̃2) = 0, where β̃2 = (β̃2
1 , β̃

2
2) satis�es

β̃2
1 =

d1aL
2µ̃

(aLµ̃)2 − 4b1d1
and β̃2

2 =
2b1d1L

(aLµ̃)2 − 4b1d1
.

Moreover, from the de�nition (3.56) and (3.57)-(3.58), we deduce that µ is an eigenvalue of A if
and only if there exists (γ, β) ∈ C3, such that F 1(µ, γ, β) = 0 or F 2(µ, γ, β) = 0. Hence, we have
reduced the problem of �nding the eigenvalues of A to the problem of determining the zeros of
the maps (F j)j=1,2. We analyze only the zeros of the map F 1, since the analysis of those of F 2

is similar. First, we note that the maps F 1 and G1 are analytic and that

∣∣F 1(µ, γ, β)−G1(µ, γ, β)
∣∣ ≤ C1

|µ|

(
|Rµ| ≤ 1, |µ| ≥ 1

2
, |γ| ≤ 1, |β| ≤ τ

|µ|

)
, (3.59)∣∣G1(µ, γ, β)

∣∣ ≥ δC2

|µ|
((µ, γ, β) ∈ Γn(δ)) , (3.60)

for some positive constants C1, C2. Indeed, since µ ∈ Z, |γ| ≤ 1 and |β| ≤ τ
|µ| , (3.59) is a direct

consequence of Proposition 3.3.4. On the other hand, since G1(µ̃n, 0, β̃
1
n) = 0, we can �nd C2 > 0,

such that
|µ||G1(µ, γ, β)| ≥ δC2,

for (µ, γ, β) ∈ Γn(δ) and we obtain (3.60). It follows from the multidimensional version of
Rouché's Theorem [30, Theorem 1] (see, also, [31, Theorem 3]) that there exist δ > 0 and N > 0,
such that the maps F 1 and G1 have the same number of zeros in Dn(δ), for each |n| ≥ N. Since
G1 has exactly one zero (µ̃n, 0, β̃

1
n) in Dn(δ), then F 1 has a unique zero (µ1

n, γ
1
n, β

1
n) in Dn(δ).

Thus, we have obtained the eigenvalues (µ1
n)|n|≥N of A and proved the corresponding asymptotic

estimate (3.54). Arguing as before, we get the existence of a family of zeros (µ2
n, γ

2
n, β

2
n)|n|≥N

for the map F 2. Then, we obtain the other sequence of eigenvalues (µ2
n)|n|≥N of A and the

corresponding asymptotic estimate. To obtain the remaining eigenvalues, we note that, since

S
(

aµ̃n√
b1d1

, L

)
= C

(
aµ̃n√
b1d1

, L

)
= 0 for all 1 ≤ |n| ≤ N,

then, there exist a positive constant C3, such that

min

{∣∣∣∣S ( aµ√
b1d1

, L

) ∣∣∣∣,∣∣∣∣C ( aµ√
b1d1

, L

) ∣∣∣∣} ≥ C3

for µ ∈ ∂
(
|Rµ| ≤ 1, |Iµ| ≤

√
b1d1

aL
((2N + 2)π − 2εN )

)
.
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This implies that
∣∣G1(µ, γ, β)

∣∣ ≥ δC4
|µ| ((µ, γ, β) ∈ ΓN ) for some C4 > 0. Combining the last

estimate with (3.59) and applying again the multidimensional Rouché's Theorem, we obtain the
eigenvalues (µ1

n)|n|≤N of A in DN . From the analysis of the map F 2 we get the existence of the
remaining eigenvalues (µ2

n)|n|≤N .

Let us pass to the analysis of the eigenfunctions. To each eigenvalue µjn corresponds a unique
normalized eigenfunction Φj

n satisfying (3.57) with γ = γ1
n and β = β1

n = (β1
1,n, β

1
2,n) or (3.58)

with γ = γ2
n and β = β2

n = (β2
1,n, β

2
2,n), respectively. Since

|γjn| ≤
δ

|n|
, |µjn − µ̃n| ≤

δ

|n|
and |βjn − β̃jn| ≤ τ

(
1

|µjn|
+

1

|µ̃jn|

)
for j = 1, 2,

then, from Proposition 3.3.5, we deduce that (3.55) is veri�ed. Finally, since A is a skew-adjoint
operator, these eigenfunctions are orthogonal in [H2

0 (0, L)]2. �

The next steps are devoted to analyze carefully the asymptotic behavior of the eigenvalues
of the operator A. More precisely, we analyze the coe�cients Ajn, B

j
n, C

j
n and Dj

n (j = 1, 2) of
the systems (3.21).

Lemma 3.3.8. For a subsequence, if necessary, the following holds,

lim
|n|→∞

Cjn = lim
|n|→∞

Dj
n = lim

|n|→∞
A2
n = lim

|n|→∞
B1
n = 0, j = 1, 2,

lim
|n|→∞

A1
n = lim

|n|→∞
B2
n = δ0

√
b1d1

L
, for some δ0 ∈ C∗,

and ∣∣∣∣∣∣
C1
n D1

n

C2
n D2

n

∣∣∣∣∣∣ ∼ −L2b1d1

[(2|n|+ 1)π − 2εn]2 + 4
, for all n ∈ Z∗.

Proof. In order to prove the result, we �rst consider the solutions of the following problems

−aµ̃nν̃1
n,xxx − b1ϕ̃1

n,xxxx = 0 for x ∈ (0, L),

−aµ̃nϕ̃1
n,xxx − d1ν̃

1
n,xxxx = 0 for x ∈ (0, L),

(ϕ̃1(0), ν̃1(0)) = (0, 0),

(ϕ̃1
n,x(0), ν̃1

n,x(0)) = (0, 0),

(ϕ̃1
n,xx(0), ν̃1

n,xx(0)) = (β̃1
1,n, β̃

1
2,n),

(ϕ̃1
n,xxx(0), ν̃1

n,xxx(0)) = (1, 0),

(3.61)

and 

−aµ̃nν̃2
n,xxx − b1ϕ̃2

n,xxxx = 0 for x ∈ (0, L),

−aµ̃nϕ̃2
n,xxx − d1ν̃

2
n,xxxx = 0 for x ∈ (0, L),

(ϕ̃2(0), ν̃2(0)) = (0, 0),

(ϕ̃2
n,x(0), ν̃2

n,x(0)) = (0, 0),

(ϕ̃2
n,xx(0), ν̃2

n,xx(0)) = (β̃2
1,n, β̃

2
2,n),

(ϕ̃2
n,xxx(0), ν̃2

n,xxx(0)) = (0, 1).

(3.62)

For each µ̃n = −sgn(n)
√
b1d1
aL ((2|n|+ 1)π − 2εn)i (n ∈ Z∗, εn ∈ (0, 1)), (β̃1

1,n, β̃
1
2,n) satisfying

β̃1
1,n =

2b1d1L

(aLµ̃n)2 − 4b1d1
, β̃1

2,n = − b1aL
2µ̃n

(aLµ̃n)2 − 4b1d1
(3.63)

58



and (β̃2
1,n, β̃

2
2,n) satisfying

β̃2
1,n = − d1aL

2µ̃n
(aLµ̃n)2 − 4b1d1

, β̃2
2,n =

2b1d1L

(aLµ̃n)2 − 4b1d1
,

the solutions of (3.61) and (3.62) are given by formula (3.47) and will be denoted by

Φ̃1
n =

 ϕ̃1
n

ν̃1
n

 and Φ̃2
n =

 ϕ̃2
n

ν̃2
n

 ,

respectively. We set κn = − aµ̃n√
b1d1

. Then, from Theorem 3.3.1, we get S(κn, L) = C(κn, L) = 0,
which implies that

sinh(κnL) = κnL−
[κnL]3

[κnL]2 − 4
= − 4[κnL]

[κnL]2 − 4
,

cosh(κnL)− 1 = − 2[κnL]2

[κnL]2 − 4
.

Then,

Sxx(κn, L) = κ2
n

[
sinh(κnL) +

2κnL

[κnL]2 − 4

]
= −κ3

n

[
2L

[κnL]2 − 4

]
,

Cxx(κn, L) = κ2
n

[
(cosh(κnL)− 1) +

[κnL]2

[κnL]2 − 4

]
= −κ3

n

[
κnL

2

[κnL]2 − 4

]
.

Consequently, the functions Φ̃j
n, j = 1, 2, satisfy

Φ̃1
n,xx(L) =

 ϕ̃1
n,xx(L)

ν̃1
n,xx(L)

 =
−L

[κnL]2 − 4

 2

κnL
√

b1
d1

 (3.64)

and

Φ̃2
n,xx(L) =

 ϕ̃2
n,xx(L)

ν̃2
n,xx(L)

 =
−L

[κnL]2 − 4

 κnL
√

d1
b1

2

 , (3.65)

for n ∈ N∗. Now, we pass to the study of the asymptotic behavior of the eigenvectors of the
operator −A. From the proof of Theorem 3.3.2 we have that, for each eigenvalue −µjn, the
corresponding eigenfunctions Φ1

n = (ϕ1
n, ν

1
n) and Φ2

n = (ϕ2
n, ν

2
n) are solutions of

−aµ1
nν

1
n,xxx − b1ϕ1

n,xxxx = ϕ1
n − µ1

nν
1
n,x − bϕ1

n,xx for x ∈ (0, L),

−aµ1
nϕ

1
n,xxx − d1ν

1
n,xxxx = ν1

n − µ1
nϕ

1
n,x − dν1

n,xx for x ∈ (0, L),

(ϕ1(0), ν1(0)) = (0, 0),

(ϕ1
n,x(0), ν1

n,x(0)) = (0, 0),

(ϕ1
n,xx(0), ν1

n,xx(0)) = (β1
1,n, β

1
2,n),

(ϕ1
n,xxx(0), ν1

n,xxx(0)) = (1, γ1
n),

(3.66)

and 

−aµ2
nν

2
n,xxx − b1ϕ2

n,xxxx = ϕ2
n − µ2

nν
2
n,x − bϕ2

n,xx for x ∈ (0, L),

−aµ2
nϕ

2
n,xxx − d1ν

2
n,xxxx = ν2

n − µ2
nϕ

2
n,x − dν2

n,xx for x ∈ (0, L),

(ϕ2(0), ν2(0)) = (0, 0),

(ϕ2
n,x(0), ν2

n,x(0)) = (0, 0),

(ϕ2
n,xx(0), ν2

n,xx(0)) = (β2
1,n, β

2
2,n),

(ϕ2
n,xxx(0), ν2

n,xxx(0)) = (γ2
n, 1),

(3.67)
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respectively. We also note that, according to Theorem 3.3.2, the data in (3.66) and (3.67) satis�es

|γjn| ≤
δ

|n|
, |µjn − µ̃n| ≤

δ

|n|
.

Since |βjn − β̃jn| → 0, as |n| → ∞, for j = 1, 2, we can extract a subsequence, if necessary, such
that

|β1
1,n − β̃1

1,n| ≤
δ

|n|2
, |β1

2,n − β̃1
2,n| ≤

δ

|n|
,

|β2
1,n − β̃2

1,n| ≤
δ

|n|
, |β2

2,n − β̃2
2,n| ≤

δ

|n|2
,

(3.68)

for a given positive δ. Therefore, from Proposition 3.3.5, the eigenfunction (ϕ1
n, ν

1
n) satis�es

|ϕ1
n,xx(L)− ϕ̃1

n,xx(L)|+ |ν1
n,xx(L)− ν̃1

n,xx(L)|

≤ C
[(
|β1

1,n − β̃1
1,n|+ |β1

2,n − β̃1
2,n|
)

+
1

|µ1
n|
(
|γ1
n|+ |µ1

n − µ̃n|(1 + |γ1
n|)
)]

≤ C
[(

δ

|n|2
+

δ

|n|

)
+

1

|µ1
n|

(
δ

|n|
+

δ

|n|
(1 +

δ

|n|
)

)]
.

Similarly, the eigenfunction (ϕ2
n, ν

2
n) satis�es

|ϕ2
n,xx(L)− ϕ̃2

n,xx(L)|+ |ν2
n,xx(L)− ν̃2

n,xx(L)|

≤ C
[(

δ

|n|2
+

δ

|n|

)
+

1

|µ2
n|

(
δ

|n|
+

δ

|n|
(1 +

δ

|n|
)

)]
.

From the estimates above and (3.64)-(3.65), we conclude that C1
n

D1
n

 =

 b1ϕ
1
n,xx(L)

d1ν
1
n,xx(L)

 ∼ −L
[κnL]2 − 4

 2b1

κnL
√
b1d1


and  C2

n

D2
n

 =

 b1ϕ
2
n,xx(L)

d1ν
1
n,xx(L)

 ∼ −L
[κnL]2 − 4

 κnL
√
b1d1

2d1

 .

Thus, ∣∣∣∣∣∣
C1
n D1

n

C2
n D2

n

∣∣∣∣∣∣ ∼ L2b1d1

[κnL]2 − 4
6= 0,

which gives the behavior of the coe�cients Cjn and Dj
n, for j = 1, 2.

On the other hand, by integrating the equations in (3.66) over (0, L) we obtain the coe�cients
A1
n and B1

n:

A1
n =

(
−aµ1

nν
1
n,xx − b1ϕ1

n,xxx

)
(L) =

∫ L

0
ϕ1
n(x)dx+ aµ1

nβ
1
2,n − b1,

B1
n =

(
−aµ1

nϕ
1
n,xx − d1ν

1
n,xxx

)
(L) =

∫ L

0
ν1
n(x)dx+ aµ1

nβ
1
1,n − d1γ

1
n.

(3.69)

The next steps are devoted to study the term on the right hand side of the equations in
(3.69). First, we note that, from Theorem 3.3.2,∫ L

0
ϕ1
n(x)dx =

∫ L

0
ϕ̃1
n(x)dx+O

(
1

|n|

)
,∫ L

0
ν1
n(x)dx =

∫ L

0
ν̃1
n(x)dx+O

(
1

|n|

)
.
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Then, from the formula (3.47) we conclude that

lim
|n|→∞

∫ L

0
ϕ1
n(x)dx = lim

|n|→∞

∫ L

0
ν1
n(x)dx = 0. (3.70)

On the other hand, from (3.68) we get

aµ1
nβ

1
1,n = a

(
µ̃1
n +O

(
1

|n|

))(
β̃1

1,n +O
(

1

|n|2

))
= aµ̃1

nβ̃
1
1,n + aµ̃1

nO
(

1

|n|2

)
+ aβ̃1

1,nO
(

1

|n|

)
+ aO

(
1

|n|3

)
,

(3.71)

and

aµ1
nβ

1
2,n = a

(
µ̃1
n +O

(
1

|n|

))(
β̃1

2,n +O
(

1

|n|

))
= aµ̃1

nβ̃
1
2,n + aµ̃1

nO
(

1

|n|

)
+ aβ̃1

2,nO
(

1

|n|

)
+ aO

(
1

|n|2

)
.

(3.72)

From (3.63), we note that the right side of (3.71) tends to 0 as |n| → ∞, the last two terms on
the right side of (3.72) tend to 0 as |n| → ∞, and, �nally, the �rst two terms satisfy

lim
|n|→∞

aµ̃1
nβ̃

1
2,n = −b1 and lim

|n|→∞
aµ̃1

nO
(

1

|n|

)
= δ0

√
b1d1

L
,

for some δ0 ∈ C∗. Then, from (3.70), (3.71) and (3.72), we conclude that

lim
|n|→∞

A1
n = δ0

√
b1d1

L
and lim

|n|→∞
B1
n = 0.

In order to conclude the proof, we integrate the equations in (3.67) over (0, L) to obtain

A2
n =

(
−aµ2

nν
2
n,xx − b1ϕ2

n,xxx

)
(L) =

∫ L

0
ϕ2
n(x)dx+ aµ2

nβ
2
2,n − b1γ2

n,

B2
n =

(
−aµ2

nϕ
2
n,xx − d1ν

2
n,xxx

)
(L) =

∫ L

0
ν2
n(x)dx+ aµ2

nβ
2
1,n − d1.

Then, by arguing as in the previous steps, we deduce that

lim
|n|→∞

A2
n = 0 and lim

|n|→∞
B2
n = δ0

√
b1d1

L
.

�
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Chapter 4

Asymptotic behavior of a linear

higher-order Boussinesq system with

damping

We introduce several mechanisms to dissipate the energy associated to a linear higher-order
Benjamin-Bona-Mahony-type system. We consider either a distributed (localized) feedback law,
or a boundary feedback law. In each case, we prove the global well-posedness of the system
and the convergence towards a solution which is null on a band. If the Unique Continuation
Property holds for the conservative model, this implies that the origin is asymptotically stable
for the corresponding damped one.

4.1 Unique Continuation Property

The aim of this section is to study some unique continuation properties for the following higher-
order system

ηt + ωx + aωxxx − bηtxx + b1ηtxxxx = 0 for x ∈ (0, 2π), t > 0,

ωt + ηx + cηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, 2π), t > 0,
∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π), ∂rω
∂xr (t, 0) = ∂rω

∂xr (t, 2π) for t > 0, r = 0, 1,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, 2π),

(4.1)

where b, b1, d, d1 > 0 and a, c < 0 or a = c ≥ 0.
We �rst introduce a few notations. Given any v ∈ L2(0, 2π) and k ∈ Z, we denote by v̂k the

k−Fourier coe�cient of v,

v̂k =
1

2π

∫ 2π

0
v(x)e−ikx dx.

Then, for any s ∈ R, we de�ne the Hilbert space

Hs
p(0, 2π) =

{
v =

∑
k∈Z

v̂ke
ikx ∈ L2(0, 2π)

∣∣∣∣∣∑
k∈Z
|v̂k|2(1 + k2)s <∞

}
with respect to the inner product

(v, w)s =
∑
k∈Z

kv̂kŵk(1 + k2)s.

We denote by ‖ · ‖s the corresponding norm to the inner product given above, more precisely,

||v||s =

(∑
k∈Z
|v̂k|2(1 + k2)s

)1/2

.
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Under the considerations above, for α, β > 0 we can de�ne the operator (1 − α∂2
x + β∂4

x)−1
p in

the following way:

(1− α∂2
x + β∂4

x)−1
p φ = v ⇔


v − αvxx + βvxxxx = φ in (0, 2π)

∂rv
∂xr (0) = ∂rv

∂xr (2π) r = 0, 1, 2, 3.

(4.2)

Since for any ϕ ∈ L2(0, 2π), the elliptic equation (4.2) has an unique solution v ∈ H4
p (0, 2π), the

operator (1− α∂2
x + β∂4

x)−1
p is a well-de�ned, compact operator in L2(0, 2π).

Given s ∈ R, let us introduce the Hilbert space

V s = Hs
p(0, 2π)×Hs

p(0, 2π),

endowed with the inner product de�ned by

〈(f1, f2), (g1, g2)〉 = (f1, g1)s + (Hf2,Hg2)s,

and the operator H de�ned in the following way

H

(∑
k∈Z

âke
ikx

)
=
∑
k∈Z

√
w1

w2
âke

ikx,

where, for b, b1, d, d1 > 0 and a, c < 0 or a = c ≥ 0, we set

w1 = w1(k) =
1− ak2

1 + bk2 + b1k4
and w2 = w2(k) =

1− ck2

1 + dk2 + d1k4
. (4.3)

Thus, w1w2, w1/w2 > 0.
System (4.1) can be written in the following vectorial form(

η
ω

)
t

(t) +A

(
η
ω

)
(t) =

(
0
0

)
,

(
η
ω

)
(0) =

(
η0

ω0

)
,

where A is the linear compact operator in V s de�ned by

A =

 0 (1− b∂2
x + b1∂

4
x)−1
p (∂x + a∂3

x)

(1− d∂2
x + d1∂

4
x)−1
p (∂x + c∂3

x) 0

 . (4.4)

Thus, if we assume that the initial date in (4.1) is given by

(η0, ω0) =
∑
k∈Z

(η̂0
k, ω̂

0
k)e

ikx,

then, at least formally, the solution of (4.1) can be written as

(η, ω)(t, x) =
∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx,

where (η̂k(t), ω̂k(t)) ful�ll
(1 + bk2 + b1k

4)(η̂k)t + ik(1− ak2)ω̂k = 0, t ∈ (0, T )

(1 + dk2 + d1k
4)(ω̂k)t + ik(1− ck2)η̂k = 0, t ∈ (0, T )

η̂k(0) = η̂0
k, ω̂k(0) = ω̂0

k.

(4.5)

Hence, we have the following result:
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Lemma 4.1.1. Let σ(k) =
√
w1w2. The eigenvalues of the operator A de�ned by (4.4) are given

by
λ±k = ±i|k|σ(k) (k ∈ Z∗). (4.6)

The solution (η̂k(t), ω̂k(t)) of (4.5) is given byη̂k(t) = cos[kσ(k)t]η̂0
k − i

√
w1
w2

sin[kσ(k)t]ω̂0
k,

ω̂k(t) = cos[kσ(k)t]ω̂0
k − i

√
w2
w1

sin[kσ(k)t]η̂0
k.

(4.7)

Proof. System (4.5) can be written in the following equivalent form(
η̂k
ω̂k

)
t

(t) +A(k)

(
η̂k
ω̂k

)
(t) =

(
0
0

)
,

(
η̂k
ω̂k

)
(0) =

(
η̂0
k

ω̂0
k

)
,

where

A(k) =

 0 ikw1

ikw2 0

 .

Hence, we deduce that the solution of (4.5) is given by(
η̂k
ω̂k

)
(t) = e−A(k)t

(
η̂0
k

ω̂0
k

)
(4.8)

and it is easy to see that the eigenvalues λ±k of the matrix A(k) are given by (4.6). Thus, in
order to obtain (4.7), we will make use of the following result from [1]:

Proposition 4.1.2. Let A a 2× 2 matrix with eigenvalues λ1 6= λ2. If

Q1 =
A− λ2I

λ1 − λ2
; Q2 =

A− λ1I

λ2 − λ1
,

then

1. A = λ1Q1 + λ2Q2;

2. Q2
1 = Q1; Q2

2 = Q2; Q2Q1 = Q1Q2 = 0;

3. Ak = λk1Q1 + λk2Q2, ∀k ∈ N;

4. eAt = eλ1tQ1 + eλ2tQ2.

Moreover, if λ1 = λ2 = λ0 and Q = A− λ0I, then e
At = (I + tQ)eλ0t.

Then, we have that
e−A(k)t = e−λ

+
k tQ1(k) + e−λ

−
k tQ2(k), (4.9)

where

Q1(k) =
A(k)− λ−k I
λ+
k − λ

−
k

=
1

2

 1 sgn(k)
√

w1
w2

sgn(k)
√

w2
w1

1

 (4.10)

and

Q2(k) =
A(k)− λ+

k I

λ−k − λ
+
k

=
1

2

 1 −sgn(k)
√

w1
w2

−sgn(k)
√

w2
w1

1

 . (4.11)

Then, from (4.8)-(4.11) we obtain(
η̂k
ω̂k

)
(t) =

1

2

 (e−λ
+
k t + e−λ

−
k t)η̂0

k + sgn(k)
√

w1
w2

(e−λ
+
k t − e−λ

−
k t)ω̂0

k

sgn(k)
√

w2
w1

(e−λ
+
k t − e−λ

−
k t)η̂0

k + (e−λ
+
k t + e−λ

−
k t)ω̂0

k

 . (4.12)

By using (4.6) and the Euler's formula, we see that (4.12) is equivalent to (4.7). �
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Using Lemma 4.1.1 we can prove that the operator A generates an analytic group in V s.

Theorem 4.1.1. The family of linear operators (S(t))t≥0 de�ned by

S(t)(η0, ω0) =
∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx, (η0, ω0) ∈ V s,

where the coe�cients (η̂k(t), ω̂k(t)) are given by (4.7), is a group of isometries in V s, for any
s ∈ R.

Proof. First, we prove that S(t) is a well-de�ned linear and continuos operator for any t ∈ R. If
(η0, ω0) =

∑
k∈Z(η̂0

k, ω̂
0
k)e

ikx ∈ V s, then, we claim that the series
∑

k∈Z(η̂k, ω̂k)e
ikx converges in

C([0,∞), V s). This is equivalent to say that the sequence

P =

 ∑
|k|≤N

(η̂k, ω̂k)e
ikx


N≥1

is a Cauchy sequence in C([0,∞), V s). From (4.7), we obtain

sup
t∈[0,∞)

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
N≤|k|≤N+p

(η̂k, ω̂k)e
ikx

∣∣∣∣∣∣
∣∣∣∣∣∣
2

V s

= sup
t∈[0,∞)

∑
N≤|k|≤N+p

(
|η̂k(t)|2 +

w1

w2
|ω̂k(t)|2

)
(1 + k2)s

=
∑

N≤|k|≤N+p

(
|η̂0
k|2 +

w1

w2
|ω̂0
k|2
)

(1 + k2)s.

Thus, P is a Cauchy sequence in C([0,∞), V s). Hence, the operator S(t) is well-de�ned in V s

and S(·)(η0, ω0) ∈ C([0,∞), V s). Moreover, since∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|k|≤N

(η̂k, ω̂k)e
ikx

∣∣∣∣∣∣
∣∣∣∣∣∣
2

V s

=
∑
|k|≤N

(
|η̂0
k|2 +

w1

w2
|ω̂0
k|2
)

(1 + k2)s,

we have that (S(t))t∈R is a family of linear and continuous operators which are also isometries.
It is easy to see that S(0) = I. On the other hand, we have

S(s) ◦ S(t)(η0, ω0) = S(s)
∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx

= S(s)
∑
k∈Z

(
cos[kσ(k)t]η̂0

k − i
√
w1

w2
sin[kσ(k)t]ω̂0

k, cos[kσ(k)t]ω̂0
k − i

√
w2

w1
sin[kσ(k)t]η̂0

k

)
eikx

=
∑
k∈Z

(
cos[kσ(k)s] cos[kσ(k)t]η̂0

k − i
√
w1

w2
cos[kσ(k)s] sin[kσ(k)t]ω̂0

k

− sin[kσ(k)s] sin[kσ(k)t]η̂0
k − i

√
w1

w2
sin[kσ(k)s] cos[kσ(k)t]ω̂0

k,

cos[kσ(k)s] cos[kσ(k)t]ω̂0
k − i

√
w2

w1
cos[kσ(k)s] sin[kσ(k)t]η̂0

k

− sin[kσ(k)s] sin[kσ(k)t]ω̂0
k − i

√
w2

w1
sin[kσ(k)s] cos[kσ(k)t]η̂0

k

)
eikx

=
∑
k∈Z

(
cos[kσ(k)(s+ t)]η̂0

k − i
√
w1

w2
sin[kσ(k)(s+ t)]ω̂0

k,

cos[kσ(k)(s+ t)]ω̂0
k − i

√
w2

w1
sin[kσ(k)(s+ t)]η̂0

k

)
eikx

=
∑
k∈Z

(η̂k(s+ t), ω̂k(s+ t))eikx = S(s+ t)(η0, ω0),
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for any t, s ∈ R and, in addition,

||S(t)(η0, ω0)− (η0, ω0)||2V s

=
∑
k∈Z

(
(cos[kσ(k)t]− 1)2 + sin2[kσ(k)t]

) [
|η̂0
k|2 +

w1

w2
|ω̂0
k|2
]

(1 + k2)s

= 4
∑
k∈Z

sin2

[
kσ(k)t

2

] [
|η̂0
k|2 +

w1

w2
|ω̂0
k|2
]

(1 + k2)s.

Consequently limt→0 S(t)(η0, ω0) = (η0, ω0) in V s. �

Theorem 4.1.2. The in�nitesimal generator of the group (S(t))t∈R is the bounded operator
(D(−A),−A), where D(−A) = V s and A is given by (4.4).

Proof. We will show that

lim
t→0

S(t)(η0, ω0)− (η0, ω0)

t
= −A(η0, ω0),

if and only if (η0, ω0) ∈ V s. This is equivalent to show that the derivative in zero of the series∑
k∈Z(η̂k(t), ω̂k(t))e

ikx, where (η̂k(t), ω̂k(t)) is given by (4.7), is convergent to −A(η0, ω0) in V s,
if and only if (η0, ω0) ∈ V s. If we denote by

SN (t) =
∑
|k|≤N

(η̂k(t), ω̂k(t))e
ikx,

a partial sum of the series, a straightforward computation which takes into account (4.5) shows
that

[SN ]t(0) = −A(SN )(0). (4.13)

Now, let (D(B), B) be the in�nitesimal generator of the group (S(t))t∈R. If (η0, ω0) ∈ D(B),
from (4.13) we obtain that

B(η0, ω0) = lim
t→0

S(t)(η0, ω0)− (η0, ω0)

t
=

[∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx

]
t

(0)

= lim
N→∞

[SN ]t(0) = lim
N→∞

−A(SN )(0) = −A(η0, ω0).

Hence, (η0, ω0) ∈ D(−A) = V s and B(η0, ω0) = −A(η0, ω0), for any (η0, ω0) ∈ D(B). On the
other hand, if we take (η0, ω0) ∈ D(−A) = V s, then we have to show that the series[∑

k∈Z
(η̂k(t), ω̂k(t))e

ikx

]
t

(0)

is convergent. This is equivalent to show that

[SN ]t(0) =

∑
k≤N

(η̂k(t), ω̂k(t))e
ikx


t

(0)

is a Cauchy sequence. Indeed,

||[SN+p]t(0)− [SN ]t(0)||2V s =
∑

N≤|k|≤N+p

(
|η̂k,t(0)|2 +

w1

w2
|ω̂k,t(0)|2

)
(1 + k2)s. (4.14)
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From (4.3) and the equations in (4.5) we deduce that

|η̂k,t(0)|2 = k2w2
1|ω̂k(0)|2 and |ω̂k,t(0)|2 = k2w2

2|η̂k(0)|2. (4.15)

Then, from (4.15) we have that

|η̂k,t(0)|2 +
w1

w2
|ω̂k,t(0)|2 = k2w2

1|ω̂k(0)|2 + k2w1w2|η̂k(0)|2

= k2w1w2

[
|η̂k(0)|2 +

w1

w2
|ω̂k(0)|2

]
≤M

[
|η̂k(0)|2 +

w1

w2
|ω̂k(0)|2

]
,

(4.16)

where M is a positive constant depending only on a, b, c, d, b1 and d1. Thus, from (4.14) and
(4.16) we obtain the following estimate

||[SN+p]t(0)− [SN ]t(0)||2V s ≤M
∑

N≤|k|≤N+p

(
|η̂k(0)|2 +

w1

w2
|ω̂k(0)|2

)
(1 + k2)s

= M

∣∣∣∣∣∣∣∣ ∑
|k|≤N+p

(η̂0
k, ω̂

0
k)e

ikx −
∑
|k|≤N

(η̂0
k, ω̂

0
k)e

ikx

∣∣∣∣∣∣∣∣
V s

and, since (η0, ω0) ∈ D(−A) = V s, we have that ([SN ]t(0))N≥0 is a Cauchy sequence. Conse-
quently,

−A(η0, ω0) = lim
N→∞

−A(SN )(0) = lim
N→∞

[SN ]t(0) =

[∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx

]
t

(0)

= lim
t→0

S(t)(η0, ω0)− (η0, ω0)

t
= B(η0, ω0).

Hence, (η0, ω0) ∈ D(B) and −A(η0, ω0) = B(η0, ω0), for any (η0, ω0) ∈ D(−A) = V s. �

Remark 4.1.3. In fact, much more can be said about the regularity of solutions of (4.1). Since
(4.1) is linear and −A is a bounded operator, we can easily deduce that (η, ω) ∈ Cω([0,∞);V s),
where Cω([0,∞);V s) represents the class of the analytic functions de�ned in [0,∞) with values
in V s. Indeed, for t0 ∈ [0,∞)∣∣∣∣∣

∣∣∣∣∣
∞∑
n=0

dn

dtn
(η, ω)(t0)

(t− t0)n

n!

∣∣∣∣∣
∣∣∣∣∣
V s

≤
∞∑
n=0

|t− t0|n

n!

∣∣∣∣∣∣∣∣ dndtn (η, ω)(t0)

∣∣∣∣∣∣∣∣
V s

≤ ||(η, ω)(t0)||V s
∞∑
n=0

|t− t0|n

n!
||A||nL(V s) ≤ ∞.

Hence, the series
∑∞

n=0
dn

dtn (η, ω)(t0) (t−t0)n

n! is absolutely convergent and

(η, ω)(t) = exp(−A(t− t0))(η, ω)(t0) =

∞∑
n=0

(t− t0)n

n!
(−A)n(η, ω)(t0)

=

∞∑
n=0

dn

dtn
(η, ω)(t0)

(t− t0)n

n!
.

From Theorem 4.1.2 and the semigroup theory, we obtain the following global well-posedness
result:
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Theorem 4.1.3. Let T > 0 and s ∈ R. For each (η0, ω0) ∈ V s and (f, g) ∈ L1(0, T ;V s), there
exists a unique solution (η, ω) ∈W 1,1([0, T ];V s) of the system(

η
ω

)
t

(t) +A

(
η
ω

)
(t) =

(
f
g

)
,

(
η
ω

)
(0) =

(
η0

ω0

)
,

which veri�es the constant variation formula(
η
ω

)
(t) = S(t)

(
η0

ω0

)
+

∫ t

0
S(t− s)

(
f
g

)
(s)ds.

Moreover, if (f, g) ≡ (0, 0) it follows that (η, ω) ∈ Cω(R;V s), the class of analytic functions in
t ∈ R with values in V s.

The main result of this section reads as follows:

Theorem 4.1.4. Let (η, ω) solution of system (4.1) given by Theorem 4.1.3. Suppose that there
exist an open set Ω ⊂ [0, 2π] and T > 0, such that

η(t, x) = 0, ∀(t, x) ∈ (0, T )× Ω. (4.17)

Then,
(η, ω) = (0, 0) in R× (0, 2π).

Proof. We note that (4.12) can be written as{
η̂k(t) = a+

k e
−λ+k t + a−k e

−λ−k t,

ω̂k(t) = b+k e
−λ+k t + b−k e

−λ−k t,
(4.18)

where a±k = 1
2

(
η̂0
k ± sgn(k)

√
w1
w2
ω̂0
k

)
and b±k = 1

2

(
ω̂0
k ± sgn(k)

√
w2
w1
η̂0
k

)
. Since the solution (η, ω)

is an analytic function of t, from (4.17) we deduce that

η(t, x) = 0, ∀(t, x) ∈ R× Ω.

Consequently, for any S > 0 and x ∈ Ω, if we multiply η(t, x) by eλ
+
k t, and integrate between

−S and S, from (4.18) we obtain

0 = lim
S→∞

1

2S

∫ S

−S

∑
j∈Z

(
a+
j e
−λ+j t + a−j e

−λ−j t
)
eijx

 eλ
+
k tdt

= a+
k e

ikx + a+
−ke
−ikx in Ω.

(4.19)

Indeed, we have that

0 = η(t, x)eλ
+
k t =

∑
j∈Z

(
a+
j e
−λ+j t + a−j e

−λ−j t
)
eijx

 eλ
+
k t

=
(
a+
k + a−k e

2λ+k t
)
eikx +

(
a+
−k + a−−ke

2λ+−kt
)
e−ikx

+
∑

j∈Z\{−k,k}

(
a+
j e

(−λ+j +λ+k )t + a−j e
(−λ−j +λ+k )t

)
eijx in Ω.

(4.20)

Then, if we integrate η(t, x)eλ
+
k t on [−S, S] and by using the fact that, for α ∈ R the following

holds

lim
S→∞

1

2S

∫ S

−S
eiαtdt = lim

S→∞

sin(αS)

αS
= 0,
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from (4.20) we obtain

0 = lim
S→∞

1

2S

∫ S

−S
η(t, x)eλ

+
k t = a+

k e
ikx + a+

−ke
−ikx in Ω.

On the other hand, if we multiply η(t, x) by eλ
−
k t, similar computations yields

0 = lim
S→∞

1

2S

∫ S

−S

∑
j∈Z

(
a+
j e
−λ+j t + a−j e

−λ−j t
)
eijx

 eλ
−
k tdt

= a−k e
ikx + a−−ke

−ikx in Ω.

(4.21)

Since both functions on the right hand side of (4.19) and (4.21) are analytic in x, it follows that

a±k e
ikx + a±−ke

−ikx = 0 in [0, 2π].

By using the orthogonality of {eikx}k∈Z and {e−ikx}k∈Z in [0, 2π], we deduce that a±k = a±−k = 0.
This implies directly that η̂0

k = ω̂0
k = 0 for any k ∈ Z. Hence, (η, ω) = (0, 0) in R× (0, 2π). �

As consequence of Theorem 4.1.4, we have the following result:

Theorem 4.1.5. Let (η, ω) solution of system (4.1) given by Theorem 4.1.4. Suppose that there
exist an open set Ω ⊂ [0, 2π] and T > 0 such that

ηx(t, x) = 0, ∀(t, x) ∈ (0, T )× Ω. (4.22)

Then,
(η, ω) = (c1, c2) in R× (0, 2π),

for some constants c1 and c2.

Proof. From the Lemma 4.1.1, we have that

ηx(t, x) =
∑
k∈Z

ikη̂k(t)e
ikx =

∑
k∈Z

(
ika+

k e
−λ+k t + ika−k e

−λ−k t
)
eikx

ωx(t, x) =
∑
k∈Z

ikω̂k(t)e
ikx =

∑
k∈Z

(
ikb+k e

−λ+k t + ikb−k e
−λ−k t

)
eikx.

(4.23)

Then, proceeding as in the proof of Theorem 4.1.4, from (4.22) and (4.23) the following identities
holds

ka±k e
ikx + ka±−ke

−ikx = 0 in [0, 2π],

for any k ∈ Z∗. From the orthogonality of {eikx}k∈Z and {e−ikx}k∈Z in [0, 2π], it follows that
a±k = a±−k = 0. This implies directly that η̂0

k = ω̂0
k = 0 for any k ∈ Z∗. Hence, (η, ω) = (c1, c2) in

R× (0, 2π), for some c1, c2 ∈ R. �

4.2 Boundary Stabilization

In this section we are concerned with the study of the boundary stabilization of the higher-
order Boussinesq system posed on a bounded domain. More precisely, we consider the following
problem 

ηt + ωx + aωxxx − bηtxx + b1ηtxxxx = 0 for x ∈ (0, L), t > 0,

ωt + ηx + aηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, L), t > 0,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, L),

(4.24)
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with the following boundary conditions

b1ηtxxx(t, 0)− bηtx(t, 0) = −(b+ b1)η(t, 0)− aωxx(t, 0)− ω(t, 0)

2
for t ≥ 0,

b1ηtxxx(t, L)− bηtx(t, L) = (b+ b1)η(t, L)− aωxx(t, L)− ω(t, L)

2
for t ≥ 0,

d1ωtxxx(t, 0)− dωtx(t, 0) = −(d+ d1)ω(t, 0)− aηxx(t, 0)− η(t, 0)

2
for t ≥ 0,

d1ωtxxx(t, L)− dωtx(t, L) = (d+ d1)ω(t, L)− aηxx(t, L)− η(t, L)

2
for t ≥ 0,

(4.25)



ηtxx(t, 0) = ηx(t, 0)− aωx(t, 0)

2b1
for t ≥ 0,

ηtxx(t, L) = −ηx(t, L)− aωx(t, L)

2b1
for t ≥ 0,

ωtxx(t, 0) = ωx(t, 0)− aηx(t, 0)

2d1
for t ≥ 0,

ωtxx(t, L) = −ωx(t, L)− aηx(t, L)

2d1
for t ≥ 0.

(4.26)

If we multiply the �rst equation in (4.24) by η, the second one by ω and integrate by parts
over (0, L), we obtain (at least formally)

1

2

d

dt
||(η(t), ω(t))||2[H2(0,L)]2 =− (b+ b1)(|η(t, L)|2 + |η(t, 0)|2)

− (d+ d1)(|ω(t, L)|2 + |ω(t, 0)|2)

− b1(|ηx(t, L)|2 + |ηx(t, 0)|2)− d1(|ωx(t, L)|2 + |ωx(t, 0)|2).

(4.27)

Hence, ||(η(t), ω(t))||[H2(0,L)]2 is nonincreasing and the boundary conditions play the role of a
feedback damping mechanism. Before to establish the stabilization result, we �rst show the
following well-posedness theorem for (4.24)-(4.26):

Theorem 4.2.1. Let s ∈ (5/2, 7/2). For any (η0, ω0) ∈ [Hs(0, L)]2 , there exist T > 0 and a
unique solution (η, ω) of (4.24)-(4.26) in the class C([0, T ]; [Hs(0, L)]2). Moreover, the map

F : [Hs(0, L)]2 −→ C([0, T ]; [Hs(0, L)]2)

(η0, ω0) 7−→ (η, ω)

is Lipschitz continuous.

Proof. In order to simplify the notation, we will denote the operator

Lα,β := (1− α∂2
x + β∂4

x)

where α, β > 0. The proof will be done by using a �xed point argument. Therefore, in order to
write the problem as an integral equation, we set (η̂, ω̂) = (ηt, ωt) and remark that (η̂, ω̂) solves
the elliptic problem

(
Lb,b1 η̂,Ld,d1ω̂

)
=

(
− (1− a∂2

x)∂xω,−(1− a∂2
x)∂xη

)
(4.28)

(b1η̂xxx(0)− bη̂x(0), d1ω̂xxx(0)− dω̂x(0)) = (b1B9 − bB1, d1B10 − dB2) (4.29)

(b1η̂xxx(L)− bη̂x(L), d1ω̂xxx(L)− dω̂x(L)) = (b1B11 − bB3, d1B12 − dB4) (4.30)

(η̂xx(0), ω̂xx(0)) = (B5, B6) (4.31)

(η̂xx(L), ω̂xx(L)) = (B7, B8). (4.32)
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where we have set

(B1, B2) =

(
ω(t, 0)

2b
+ η(t, 0),

η(t, 0)

2d
+ ω(t, 0)

)
(B3, B4) =

(
ω(t, L)

2b
− η(t, L),

η(t, L)

2d
− ω(t, L)

)
(B5, B6) =

(
ηx(t, 0)− aωx(t, 0)

2b1
, ωx(t, 0)− aηx(t, 0)

2d1

)
(B7, B8) =

(
− ηx(t, L)− aωx(t, L)

2b1
,−ωx(t, L)− aηx(t, L)

2d1

)
(B9, B10) =

(
− η(t, 0)− aωxx(t, 0)

b1
,−ω(t, 0)− aηxx(t, 0)

d1

)
(B11, B12) =

(
η(t, L)− aωxx(t, L)

b1
, ω(t, L)− aηxx(t, L)

d1

)
.

Now, we set the polynomials gi,[η,ω](x), i = 1, 2 de�ned as

g1,[η,ω](x) = g1(x) = B1x+
B5

2
x2 +

B9

6
x3

+

[
5

2L3
(B3 −B1)− 1

L2
(B7 +

3

2
B5) +

1

8L
(B11 − 3B9)

]
x4

+

[
− 3

L4
(B3 −B1) +

1

5L3
(7B7 + 8B5)− 1

5L2
(B11 −

3

2
B9)

]
x5

+

[
1

L5
(B3 −B1)− 1

2L4
(B7 +B5) +

1

12L3
(B11 −B9)

]
x6,

and

g2,[η,ω](x) = g2(x) = B2x+
B6

2
x2 +

B10

6
x3

+

[
5

2L3
(B4 −B2)− 1

L2
(B8 +

3

2
B6) +

1

8L
(B12 − 3B10)

]
x4

+

[
− 3

L4
(B4 −B2) +

1

5L3
(7B8 + 8B6)− 1

5L2
(B12 −

3

2
B10)

]
x5

+

[
1

L5
(B4 −B2)− 1

2L4
(B8 +B6) +

1

12L3
(B12 −B10)

]
x6.

Thus, we have that (g1(x), g2(x)) satis�es the following boundary conditions

(g1,x(0), g2,x(0)) = (B1, B2)

(g1,x(L), g2,x(L)) = (B3, B4)

(g1,xx(0), g2,xx(0)) = (B5, B6)

(g1,xx(L), g2,xx(L)) = (B7, B8)

(g1,xxx(0), g2,xxx(0)) = (B9, B10)

(g1,xxx(L), g2,xxx(L)) = (B11, B12).

Consequently, (g1, g2) will satisfy the boundary conditions (4.29)-(4.32). Then, the solution
(η̂, ω̂) of (4.28)-(4.32) can be written as

(η̂, ω̂) = (h1 + g1, h2 + g2),

where

(h1, h2) =

(
L−1
b,b1,N

(−(1− a∂2
x)∂xω − Lb,b1g1),L−1

d,d1,N
(−(1− a∂2

x)∂xη − Ld,d1g2)

)
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is solution of

(Lb,b1h1,Ld,d1h2) =

(
− (1− a∂2

x)∂xω − Lb,b1g1,−(1− a∂2
x)∂xη − Ld,d1g2

)
,

with boundary conditions(
dih1

dxi
(0),

dih2

dxi
(0)

)
=

(
dih1

dxi
(L),

dih2

dxi
(L)

)
= (0, 0) for i = 1, 2, 3,

where, for any α, β > 0, Lα,β,N := (1− α∂2
x + β∂4

x)N denotes the elliptic operator with homoge-
neous Neumann boundary conditions. Thus,

ηt = η̂ = −L−1
b,b1,N

(1− a∂2
x)∂xω + (1− L−1

b,b1,N
Lb,b1)g1, (4.33)

and
ωt = ω̂ = −L−1

d,d1,N
(1− a∂2

x)∂xη + (1− L−1
d,d1,N

Ld,d1)g2. (4.34)

We remark that
(1− α∂2

x + β∂4
x)−1
N (1− a∂2

x)∂x(Hs(0, L)) ⊂ Hs(0, L) (4.35)

and
||(1− α∂2

x + β∂4
x)−1
N (1− a∂2

x)∂xf ||Hs(0,L) ≤ C||f ||Hs(0,L), (4.36)

for s ∈ (5
2 ,

7
2) and any α, β > 0, where C is a positive constant.

The linear and bounded operator (1−L−1
α,β,NLα,β) will be denoted by Bα,β. Then, motivated

by the above considerations, for any (η0, ω0) ∈ [Hs(0, L)]2, we de�ne the following operator

Γ(η, ω)(t) := (Γ1η(t),Γ2ω(t)),

where

Γ1η(t) := η0 +

∫ t

0
−L−1

b,b1,N
(1− a∂2

x)(∂xω)(τ)dτ +

∫ t

0
Bb,b1g1(x)(τ)dτ,

Γ2ω(t) := ω0 +

∫ t

0
−L−1

d,d1,N
(1− a∂2

x)(∂xη)(τ)dτ

∫ t

0
Bd,d1g2(x)(τ)dτ,

with ∫ t

0
Bb,b1g1(x)(τ)dτ

=

∫ t

0
Bb,b1

[
ω(τ, 0)

2b
+ η(τ, 0)

]
xdτ +

∫ t

0
Bb,b1

[
ηx(τ, 0)− aωx(τ, 0)

2b1

]
x2

2
dτ

+

∫ t

0
Bb,b1

[
−η(τ, 0)− aωxx(τ, 0)

b1

]
x3

6
dτ

+

∫ t

0
Bb,b1

[
5

2L3

(
ω(τ, L)

2b
− η(t, L)− ω(τ, 0)

2b
− η(τ, 0)

)
− 1

L2

(
−ηx(τ, L)− aωx(τ, L)

2b1
+

3

2

(
ηx(τ, 0)− aωx(τ, 0)

2b1

))
+

1

8L

(
η(τ, L)− aωxx(τ, L)

b2
− 3

(
−η(τ, 0)− aωxx(τ, 0)

b1

))]
x4dτ
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+

∫ t

0
Bb,b1

[
− 3

L4

(
ω(τ, L)

2b
− η(t, L)− ω(τ, 0)

2b
− η(τ, 0)

)
+

1

5L3

(
7

(
−ηx(τ, L)− aωx(τ, L)

2b1

)
+ 8

(
ηx(τ, 0)− aωx(τ, 0)

2b1

))
− 1

5L2

(
η(τ, L)− aωxx(τ, L)

b2
− 3

2

(
−η(τ, 0)− aωxx(τ, 0)

b1

))]
x5dτ

+

∫ t

0
Bb,b1

[
1

L5

(
ω(τ, L)

2b
− η(t, L)− ω(τ, 0)

2b
− η(τ, 0)

)
− 1

2L4

(
−ηx(τ, L)− aωx(τ, L)

2b1
+ ηx(τ, 0)− aωx(τ, 0)

2b1

)
+

1

12L3

(
η(τ, L)− aωxx(τ, L)

b2
+ η(τ, 0) + a

ωxx(τ, 0)

b1

)]
x6dτ,

and ∫ t

0
Bd,d1g2(x)(τ)dτ

=

∫ t

0
Bd,d1

[
η(τ, 0)

2d
+ ω(τ, 0)

]
xdτ +

∫ t

0
Bd,d1

[
ωx(τ, 0)− aηx(τ, 0)

2d1

]
x2

2
dτ

+

∫ t

0
Bd,d1

[
−ω(τ, 0)− aηxx(τ, 0)

d1

]
x3

6
dτ

+

∫ t

0
Bd,d1

[
5

2L3

(
η(τ, L)

2d
− ω(t, L)− η(τ, 0)

2d
− ω(τ, 0)

)
− 1

L2

(
−ωx(τ, L)− aηx(τ, L)

2d1
+

3

2

(
ωx(τ, 0)− aηx(τ, 0)

2d1

))
+

1

8L

(
ω(τ, L)− aηxx(τ, L)

d2
− 3

(
−ω(τ, 0)− aηxx(τ, 0)

d1

))]
x4dτ

+

∫ t

0
Bd,d1

[
− 3

L4

(
η(τ, L)

2d
− ω(t, L)− η(τ, 0)

2d
− ω(τ, 0)

)
+

1

5L3

(
7

(
−ωx(τ, L)− aηx(τ, L)

2d1

)
+ 8

(
ωx(τ, 0)− aηx(τ, 0)

2d1

))
− 1

5L2

(
ω(τ, L)− aηxx(τ, L)

d2
− 3

2

(
−ω(τ, 0)− aηxx(τ, 0)

d1

))]
x5dτ

+

∫ t

0
Bd,d1

[
1

L5

(
η(τ, L)

2d
− ω(t, L)− η(τ, 0)

2d
− ω(τ, 0)

)
− 1

2L4

(
−ωx(τ, L)− aηx(τ, L)

2d1
+ ωx(τ, 0)− aηx(τ, 0)

2d1

)
+

1

12L3

(
ω(τ, L)− aηxx(τ, L)

d2
+ ω(τ, 0) + a

ηxx(τ, 0)

d1

)]
x6dτ.

Then, we seek (η, ω) as a �xed point of the integral equation

Γ(η(t), ω(t)) = (η(t), ω(t)). (4.37)
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By using the Sobolev embedding Hs(0, L) ↪→ C([0, L]) for s > 5/2, we have that

|η(t, 0)|, |η(t, L)| ≤ sup
x∈[0,L]

|η(t, x)| ≤ C||η||Hs(0,L),

|ηx(t, 0)|, |ηx(t, L)| ≤ sup
x∈[0,L]

|ηx(t, x)| ≤ C||ηx||Hs−1(0,L) ≤ C||η||Hs(0,L),

|ηxx(t, 0)|, |ηxx(t, L)| ≤ sup
x∈[0,L]

|ηxx(t, x)| ≤ C||ηxx||Hs−2(0,L) ≤ C||η||Hs(0,L),

(4.38)

for some constant C > 0. From (4.38) we obtain that

|Bb,b1g1(x)| , |Bd,d1g2(x)| ≤ C||(η(t), ω(t))||[Hs(0,L)]2 . (4.39)

Let T > 0 to be chosen later. Then, for each (η1, ω1), (η2, ω2) ∈ C([0, T ′]; [Hs(0, L)]2), from
(4.36) and (4.39) it follows that

||Γ(η1, ω1)− Γ(η2, ω2)||C([0,T ];[Hs(0,L)]2) = sup
0≤t≤T ′

||Γ(η1, ω1)(t)− Γ(η2, ω2)(t)||[Hs(0,L)]2

≤
∫ T ′

0

(
||L−1

b,b1
(1− a∂2

x)∂x(ω1 − ω2)(τ)||Hs(0,L) + ||Bb,b1(g1,[η1,ω1] − g1,[η2,ω2])(τ)||Hs(0,L)

)
dτ

+

∫ T ′

0

(
||L−1

d,d1
(1− a∂2

x)∂x(η1 − η2)(τ)||Hs(0,L) + ||Bd,d1(g2,[η1,ω1] − g2,[η2,ω2])(τ)||Hs(0,L)

)
dτ

≤ CT ′||(η1, ω1)− (η2, ω2)||C([0,T ];[Hs(0,L)]2),

where C is a positive constant. Choosing T > 0 satisfying CT ≤ 1
2 , from the estimate above we

obtain

||Γ(η1, ω1)− Γ(η2, ω2)||C([0,T ];[Hs(0,L)]2) ≤
1

2
||(η1, ω1)− (η2, ω2)||C([0,T ];[Hs(0,L)]2). (4.40)

Let (η, ω) ∈ BR(0) = {(η, ω) ∈ C([0, T ]; [Hs(0, L)]2) : ||(η, ω)||C([0,T ];[Hs(0,L)]2) ≤ R}, where
R = 2||(η0, ω0)||[Hs(0,L)]2 . From (4.40), we obtain the following estimate

||Γ(η, ω)||C([0,T ];[Hs(0,L)]2) ≤ ||(η0, ω0)||[Hs(0,L)]2 + ||Γ(η, ω)− Γ(0, 0)||C([0,T ];[Hs(0,L)]2)

≤ ||(η0, ω0)||[Hs(0,L)]2 +
1

2
||(η, ω)||C([0,T ];[Hs(0,L)]2) ≤ R,

(4.41)

which allows us to conclude that Γ (BR(0)) ⊂ BR(0). Hence, from (4.40) and (4.41) it follows
that Γ : BR(0) → BR(0) is a contraction. Consequently, by Banach �xed-point Theorem, there
exists a unique solution (η, ω) ∈ BR(0) of the integral equation (4.37) for all t ∈ (0, T ).

Finally, in order to prove that the map F is Lipschitz continuous, we proceed as in the proof of
(4.41). In fact, for any (η0,1, ω0,1) and (η0,2, ω0,2) ∈ [Hs(0, L)]2 if we consider the corresponding
solutions

(η1, ω1) ∈ C([0, T1]; [Hs(0, L)]2) and (η2, ω2) ∈ C([0, T2]; [Hs(0, L)]2),

respectively, it follows that

||F(η0,1, ω0,1)−F(η0,2, ω0,2)||C([0,T ];[Hs(0,L)]2)

= ||(η1, ω1)− (η2, ω2)||C([0,T ];[Hs(0,L)]2)

≤ ||(η0,1, ω0,1)− (η0,2, ω0,2)||[Hs(0,L)]2 +
1

2
||(η1, ω1)− (η2, ω2)||C([0,T ];[Hs(0,L)]2),

(4.42)

where T = min{T1, T2}. Since (η1−η2, ω1−ω2) also solves the system (4.24) with initial conditions
(η0,1 − η0,2, ω0,1 − ω0,2), we deduce that

||F(η0,1, ω0,1)−F(η0,2, ω0,2)||C([0,T ];[Hs(0,L)]2) ≤ 2||(η0,1, ω0,1)− (η0,2, ω0,2)||[Hs(0,L)]2 .

The proof is complete.
�
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Remark 4.2.1. Theorem 4.2.1 does not cover the well-posedness in the energy space [H2(0, L)]2.
Indeed, in order to estimate the boundary terms involving the second derivatives, we have to
assume that s > 5/2. Therefore, to prove the stabilization result, we assume that a = c =
0 and consider a higher-order Boussinesq system of BBM-type. Then, from the proof of the
Theorem 4.2.1, we note that such boundary term do not appear and (4.35)-(4.36) hold for s ∈
(3/2, 5/2). Then, by using the Sobolev embedding Hs(0, L) ↪→ C([0, L]) for s > 3/2, we can
prove that the respective integral equation (4.37) has a �xed point in C([0, T ]; [Hs(0, L)]2), for
s ∈ (3/2, 5/2). Thus, we obtain the following result that guarantees the well-posedness in the
energy space [H2(0, L)]2.

Corollary 4.2.2. Let a = c = 0 and s ∈ (3/2, 5/2). For any (η0, ω0) ∈ [Hs(0, L)]2 , there exist
T > 0 and a unique solution (η, ω) of (4.24)-(4.26) in the class C([0, T ]; [Hs(0, L)]2). Moreover,
the map

(η0, ω0) ∈ [Hs(0, L)]2 −→ (η, ω) ∈ C([0, T ]; [Hs(0, L)]2)

is Lipschitz continuous.

Now, we will prove the stabilization result of this section.

Theorem 4.2.2. For any (η0, ω0) ∈
[
H2(0, L)

]2
, the solution (η, ω) of (4.24)-(4.26) given by

Corollary 4.2.2 satis�es

(η(t), ω(t))→ (0, 0) weakly in
[
H2(0, L)

]2
,

(η(t), ω(t))→ (0, 0) strongly in [Hs(0, L)]2 , for all s < 2,

as t→∞.

Proof. From Corollary 4.2.2 and equations (4.33)-(4.34) with a = c = 0, we deduce that (ηt, ωt) ∈
C([0, T ]; [H5(0, L)]2), then (4.27) holds. Consequently, the solution is global in time and the map
t → ||(η(t), ω(t))||[H2(0,L)]2 is nonincreasing and has a nonnegative limit, as t → ∞. Moreover,
we obtain the existence of (η̃0, ω̃0) ∈ [H2(0, L)]2 and a sequence (tn)n≥0, such that tn+1− tn ≥ T
and

(η(t), ω(t))→ (η̃0, ω̃0) weakly in
[
H2(0, L)

]2
, (4.43)

(η(t), ω(t))→ (η̃0, ω̃0) strongly in [Hs(0, L)]2 , (4.44)

and
(η(tn + ·), ω(tn + ·))→ (η̃, ω̃) in C([0, T ]; [Hs(0, 2π)]2),

for s < 2, where (η̃, ω̃) ∈ C([0, T ];
[
H2(0, 2π)

]2
) denotes the solution of (4.24)-(4.26) with initial

data (η̃0, ω̃0).
On the other hand, from (4.27) we get

||(η(tn+1), ω(tn+1))||2[H2(0,L)]2 − ||(η(tn), ω(tn))||2[H2(0,L)]2 =

− 2(b+ b1)

∫ tn+1

tn

(|η(t, L)|2 + |η(t, 0)|2)dt− 2(d+ d1)

∫ tn+1

tn

(|ω(t, L)|2 + |ω(t, 0)|2)dt

− 2b1

∫ tn+1

tn

(|ηx(t, L)|2 + |ηx(t, 0)|2)dt− 2d1

∫ tn+1

tn

(|ωx(t, L)|2 + |ωx(t, 0)|2)dt,

which allows us to conclude that

lim
n→∞

(
(b+ b1)

∫ tn+1

tn

(|η(t, L)|2 + |η(t, 0)|2)dt+ (d+ d1)

∫ tn+1

tn

(|ω(t, L)|2 + |ω(t, 0)|2)dt

+ b1

∫ tn+1

tn

(|ηx(t, L)|2 + |ηx(t, 0)|2)dt+ d1

∫ tn+1

tn

(|ωx(t, L)|2 + |ωx(t, 0)|2)dt

)
= 0.
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Thus,

(b+ b1)

∫ T

0
(|η̃(t, L)|2 + |η̃(t, 0)|2)dt+ (d+ d1)

∫ T

0
(|ω̃(t, L)|2 + |ω̃(t, 0)|2)dt

+ b1

∫ T

0
(|η̃x(t, L)|2 + |η̃x(t, 0)|2)dt+ d1

∫ T

0
(|ω̃x(t, L)|2 + |ω̃x(t, 0)|2)dt = 0

and therefore

η̃(t, L) = η̃(t, 0) = η̃x(t, L) = η̃x(t, 0) = ω̃(t, L) = ω̃(t, 0) = ω̃x(t, L) = ω̃x(t, 0) = 0, t ∈ (0, T ).

Let us consider (η̄, ω̄) the extended function by zero of (η̃, ω̃) for x ∈ (−l, l)\(0, L), where
(0, L) ⊂ (−l, l) is an interval. Then, (η̄, ω̄) solves

η̄t + ω̄x − bη̄xxt + b1η̄txxxx = 0 for x ∈ (−l, l), t ∈ (0, T ),

ω̄t + η̄x − dω̄xxt + d1ω̄txxxx = 0 for x ∈ (−l, l), t ∈ (0, T ),
∂r η̄
∂xr (t,−l) = ∂r η̄

∂xr (t, l) = ∂rω̄
∂xr (t,−l) = ∂rω̄

∂xr (t, l) = 0 for t ∈ (0, T ), r = 0, 1,

η̄(0, x) = η̄0(x); ω̄(0, x) = ω̄0(x) for x ∈ (−l, l).

and satis�es
(η̄(t, x), ω̄(t, x)) = (0, 0) for (t, x) ∈ (0, T )× ((−l, l)\(0, L)),

where

η̄0(x) =

{
η̃0(x) x ∈ (0, L)

0 x ∈ (−l, l)\(0, L)

and

ω̄0(x) =

{
ω̃0(x) x ∈ (0, L)

0 x ∈ (−l, l)\(0, L).

We remark that Theorems 4.1.3 and 4.1.4 can be proved for a domain of the form (−l, l). There-
fore, since (η̄0, ω̄0) ∈ [H2

0 (−l, l)]2, from Theorem 4.1.3 it follows that (η̃, ω̃) ∈ Cω([0, T ]; [H2
0 (−l, l)]2),

and from Theorem 4.1.4 we deduce that (η̄0, ω̄0) = (0, 0). Hence, (η̃0, ω̃0) = (0, 0). Finally, from
(4.43) and (4.44) we have that, as t→∞,

(η(t), ω(t))→ (0, 0) weakly in
[
H2(0, L)

]2
,

(η(t), ω(t))→ (0, 0) strongly in [Hs(0, L)]2 , for all s < 2.

�

4.3 Internal Stabilization

In this section, we are interested in the asymptotic behavior of the solutions of the following
higher-order system

ηt + ωx + aωxxx − bηtxx + b1ηtxxxx + Bη = 0 for x ∈ (0, 2π), t > 0,

ωt + ηx + cηxxx − dωtxx + d1ωtxxxx = 0 for x ∈ (0, 2π), t > 0,
∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π), ∂rω
∂xr (t, 0) = ∂rω

∂xr (t, 2π) for t > 0, r = 0, 1,

η(0, x) = η0(x); ω(0, x) = ω0(x) for x ∈ (0, 2π),

(4.45)

where a = c ≥ 0, b, d, b1, d1 > 0 and B : Hs
p(0, 2π) −→ Hs

p(0, 2π) is a bounded operator. More
precisely, let {

ρ ∈ C∞p (0, 2π) a nonnegative function on (0, 2π)

with ρ(x) > 0 on a given open set Ω1 ⊂ (0, 2π).
(4.46)

We analyze the following cases for the operator B :

Bϕ = ρ(x)ϕ and Bϕ = (ρ(x)ϕx)x .
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Internal Stabilization with the Feedback Bϕ = ρ(x)ϕ

First, by using a �xed point argument, we prove that the system is globally well-posed, therefore
we write the solution of (4.45) in its integral form

η(t) = η0 −
∫ t

0
(1− b∂2

x + b1∂
4
x)−1(∂xω + a∂3

xω + Bη)(τ)dτ,

ω(t) = ω0 −
∫ t

0
(1− d∂2

x + d1∂
4
x)−1(∂xη + a∂3

xη)(τ)dτ,

(4.47)

where (1 − α∂2
x + β∂4

x)−1f denotes, for f ∈ L2(0, 2π) and α, β > 0, the unique solution v ∈
H4
p (0, 2π) of the elliptic equation (1− α∂2

x + β∂4
x)v = f. Moreover, for any s ≥ 0,

||(1− α∂2
x + β∂4

x)−1f ||Hs
p(0,2π) ≤ C||f ||Hs

p(0,2π),

||(1− α∂2
x + β∂4

x)−1∂xf ||Hs
p(0,2π) ≤ C||f ||Hs

p(0,2π),

||(1− α∂2
x + β∂4

x)−1∂3
xf ||Hs

p(0,2π) ≤ C||f ||Hs
p(0,2π),

(4.48)

for all α > 0, where C is a positive constant. Then we have the following result:

Theorem 4.3.1. Let s ≥ 0. For any (η0, ω0) ∈
[
Hs
p(0, 2π)

]2
, there exist T > 0 and a unique

solution (η, ω) of (4.45) with Bϕ = ρ(x)ϕ in the class C([0, T ];
[
Hs
p(0, 2π)

]2
). If s = 2, the

solution exists for every T > 0. Moreover, the map F de�ned as follows

F :
[
Hs
p(0, 2π)

]2 −→ C([0, T ];
[
Hs
p(0, 2π)

]2
)

(η0, ω0) 7−→ (η, ω)

is Lipschitz continuous.

Proof. Motivated by (4.47), for any (η0, ω0) ∈
[
Hs
p(0, 2π)

]2
, we introduce the operator

Γ(η, ω)(t) := (η0, ω0)−


∫ t

0 L
−1
b,b1

(∂xω + a∂3
xω + ρ(x)η)(τ)dτ

∫ t
0 L
−1
d,d1

(∂xη + a∂3
xη)(τ)dτ


t

.

Let 0 < T ′ < T, to be chosen later. Then, for each (η1, ω1), (η2, ω2) ∈ C([0, T ′];
[
Hs
p(0, 2π)

]2
),

from (4.48) it follows that

||Γ(η1, ω1)− Γ(η2, ω2)||
C
(

[0,T ′];[Hs
p(0,2π)]

2
)

= sup
0≤t≤T ′

||Γ(η1, ω1)(t)− Γ(η2, ω2)(t)||
[Hs

p(0,2π)]
2

≤
∫ T ′

0

(
||L−1

b,b1
∂x(ω1 − ω2)(τ)||Hs

p(0,2π) + ||L−1
b,b1

a∂3
x(ω1 − ω2)(τ)||Hs

p(0,2π)

+ ||L−1
b,b1

ρ(x)(η1 − η2)(τ)||Hs
p(0,2π)

)
dτ

+

∫ T ′

0

(
||L−1

d,d1
∂x(η1 − η2)(τ)||Hs

p(0,2π) + ||L−1
d,d1

a∂3
x(η1 − η2)(τ)||Hs

p(0,2π)

)
dτ

≤ CT ′
(
||(ρ(η1 − η2), ω1 − ω2)||

C
(

[0,T ′];[Hs
p(0,2π)]

2
) + ||(η1 − η2, ω1 − ω2)||

C
(

[0,T ′];[Hs
p(0,2π)]

2
))

≤ CT ′||(η1, ω1)− (η2, ω2)||
C
(

[0,T ′];[Hs
p(0,2π)]

2
),
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where C is a positive constant. Choosing T ′ > 0 satisfying CT ′ ≤ 1
2 , from the estimate above

we obtain

||Γ(η1, ω1)− Γ(η2, ω2)||
C
(

[0,T ′];[Hs
p(0,2π)]

2
) ≤ 1

2
||(η1, ω1)− (η2, ω2)||

C
(

[0,T ′];[Hs
p(0,2π)]

2
). (4.49)

Let (η, ω) ∈ BR(0) = {(η, ω) ∈ C([0, T ′]; [Hs
p(0, 2π)]2) : ||(η, ω)||C([0,T ′];[Hs

p(0,2π)]2) ≤ R}, where
R = 2||(η0, ω0)||[Hs

p(0,2π)]2 . From (4.49), we obtain the following estimate

||Γ(η, ω)||C([0,T ′];[Hs
p(0,2π)]2) ≤ ||(η0, ω0)||[Hs

p(0,2π)]2 + ||Γ(η, ω)− Γ(0, 0)||C([0,T ′];[Hs
p(0,2π)]2)

≤ ||(η0, ω0)||[Hs
p(0,2π)]2 +

1

2
||(η, ω)||C([0,T ′];[Hs

p(0,2π)]2) ≤ R,
(4.50)

which allows us to conclude that Γ (BR(0)) ⊂ BR(0). Hence, from (4.50) and (4.49) it follows
that Γ is a contraction. Consequently, by Banach �xed-point Theorem, there exists a unique
solution (η, ω) ∈ BR(0) of the integral equation (4.47) for all t ∈ (0, T ′).

Let (η, ω) a smooth solution of (4.45), then, we multiply the �rst (resp. second) equation
in (4.45) by η (resp. ω), integrate by parts over (0, 2π), and add the two obtained equations to
obtain

1

2

d

dt

∫ 2π

0
|η(t)|2 + |ω(t)|2 + b|ηx(t)|2+d|ωx(t)|2 + b1|ηxx(t)|2 + d1|ωxx(t)|2dx

+

∫ 2π

0
ρ(x)η2dx = 0,

which implies that
||(η(t), ω(t))||[H2

p(0,2π)]2 ≤ ||(η0, ω0)||[H2
p(0,2π)]2 ,

for any t ≥ 0. The estimate above, can be extended for any (η0, ω0) ∈ [H2
p (0, 2π)]2 by a density

argument. Consequently, for every T > 0 and (η0, ω0) ∈ [H2
p (0, 2π)]2, (4.45) admits a unique

solution (η, ω) ∈ C([0, T ]; [H2
p (0, 2π)]2). Proceeding as in the proof of (4.42), from (4.49) we

obtain the Lipschitz continuity of the �ow map F :

||F(η0,1, ω0,1)−F(η0,2, ω0,2)||
C([0,T ];[Hs

p(0,2π)]
2
)
≤ 2||(η0,1, ω0,1)− (η0,2, ω0,2)||

[Hs
p(0,2π)]

2 . (4.51)

and the proof ends. �

We are now concerned with the respective stabilization result:

Theorem 4.3.2. For any (η0, ω0) ∈
[
H2
p (0, 2π)

]2
, the solution (η, ω) of (4.45) given by Theorem

4.3.1 satis�es

(η(t), ω(t))→ (0, 0) weakly in
[
H2
p (0, 2π)

]2
,

(η(t), ω(t))→ (0, 0) strongly in
[
Hs
p(0, 2π)

]2
, for all s < 2,

as t→∞.

Proof. When s = 2, we can use Theorem 4.3.1 and the equations of the system (4.45) to deduce
that

ηt = −L−1
b,b1

(1− a∂2
x)∂xω − L−1

b,b1
ρ(x)η and ωt = −L−1

d,d1
(1− a∂2

x)∂xη

belong to C([0, T ];H3
p (0, 2π)). Thus, each term in (4.45) belongs to L2(0, T ;H−1

p (0, 2π)). Con-
sequently, scaling the �rst (resp. second) equation in (4.45) by η (resp. w), we obtain

d

dt
||(η(t), ω(t))||2[H2

p(0,2π)]2 + 2

∫ 2π

0
ρ(x)|η(t, x)|2dx = 0. (4.52)
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Integrating (4.52), we get

||(η(t), ω(t))||2[H2
p(0,2π)]2 − ||(η

0, ω0)||2[H2
p(0,2π)]2 + 2

∫ t

0

∫ 2π

0
ρ(x)|η(s, x)|2dxds = 0. (4.53)

Identity (4.52) shows that the map t 7→ ||(η(t), ω(t))||[H2
p(0,2π)]2 is nonincreasing and

||(η(t), ω(t))||[H2
p(0,2π)]2 ≤ ||(η0, ω0)||[H2

p(0,2π)]2 , for all t ≥ 0. (4.54)

Hence, there exist l ∈ R+, such that

lim
t→+∞

||(η(t), ω(t))||[H2
p(0,2π)]2 = l.

Moreover, from (4.54) we infer the existence of a sequence tn → +∞, such that tn+1 − tn ≥ T
and

(η(tn), ω(tn))→ (η̃0, ω̃0) weakly in [H2
p (0, 2π)]2, (4.55)

for some (η̃0, ω̃0) ∈ [H2
p (0, 2π)]2. Then, proceeding as in the proof of (4.53) we obtain

||(η(tn+1), ω(tn+1))||2[H2
p(0,2π)]2−||(η(tn), ω(tn))||2[H2

p(0,2π)]2

+ 2

∫ tn+1

tn

∫ 2π

0
ρ(x)|η(t, x)|2dxdt = 0.

Consequently,

lim
n→+∞

∫ tn+1

tn

∫ 2π

0
ρ(x)|η(t, x)|2dxdt = 0. (4.56)

On the other hand, from (4.55) and the Sobolev embedding, for s ∈ [0, 2) we obtain the following
convergence

(η(tn), ω(tn))→ (η̃0, ω̃0) strongly in [Hs
p(0, 2π)]2. (4.57)

Since the couple (η(tn+t, x), ω(tn+t, x)) solves the system (4.45) with initial data (η(tn), ω(tn)),
from (4.51) and (4.57) we get

(η(tn + ·), ω(tn + ·))→ (η̃, ω̃) in C([0, T ]; [Hs
p(0, 2π)]2), as n→ +∞,

where (η̃, ω̃) ∈ C([0, T ]; [Hs
p(0, 2π)]2) denotes the solution with initial data (η̃0, ω̃0). The conver-

gence above combined with (4.56) yields

0 = lim
n→+∞

∫ tn+1

tn

∫ 2π

0
ρ(x)|η(t, x)|2dxdt ≥ lim

n→+∞

∫ T

0

∫ 2π

0
ρ(x)|η(t+ tn, x)|2dxdt

=

∫ T

0

∫ 2π

0
ρ(x)|η̃(t, x)|2dxdt = 0.

(4.58)

Thus, (η̃, ω̃) ∈ C([0, T ]; [Hs
p(0, 2π)]2) solves the following system

η̃t + ω̃x + aω̃xxx − bη̃xxt + b1η̃txxxx = 0 for x ∈ (0, 2π), t > 0,

ω̃t + η̃x + aη̃xxx − dω̃xxt + d1ω̃txxxx = 0 for x ∈ (0, 2π), t > 0,
∂r η̃
∂xr (t, 0) = ∂r η̃

∂xr (t, 2π), ∂rω̃
∂xr (t, 0) = ∂rω̃

∂xr (t, 2π) for t > 0, r = 0, 1,

η̃(0, x) = η̃0(x); ω̃(0, x) = ω̃0(x) for x ∈ (0, 2π),

and (4.58) allows us to conclude that

η̃(t, x) = 0, in (t, x) ∈ (0, T )× Ω1,

where Ω1 was de�ned in (4.46). Finally, from Theorem 4.1.4 we have (η̃0, ω̃0) = (0, 0) and, as
t→∞, the following holds

(η(t), ω(t))→ (0, 0) weakly in
[
H2
p (0, 2π)

]2
,

(η(t), ω(t))→ (0, 0) strongly in
[
Hs
p(0, 2π)

]2
, for all s < 2,

which completes the proof. �
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Internal Stabilization with the Feedback Bϕ = (ρ(x)ϕx)x

The well-posedness of the system (4.45) is proved by arguing as in the proof of Theorem 4.3.1:

Theorem 4.3.3. Let s ≥ 0. For any (η0, ω0) ∈
[
Hs
p(0, 2π)

]2
, there exist T > 0 and a unique

solution (η, ω) of (4.45) with Bϕ = (ρ(x)ϕx)x in the class C([0, T ];
[
Hs
p(0, 2π)

]2
). If s = 2, the

solution exists for every T > 0. Moreover, the map F de�ned as follows

F :
[
Hs
p(0, 2π)

]2 −→ C([0, T ];
[
Hs
p(0, 2π)

]2
)

(η0, ω0) 7−→ (η, ω)

is Lipschitz continuous.

Proof. Proceeding as in the proof of the Theorem 4.3.1, for any (η0, ω0) ∈
[
Hs
p(0, 2π)

]2
we

introduce the operator

Γ(η, ω)(t) := (η0, ω0)−


∫ t

0 L
−1
b,b1

(∂xω + a∂3
xω + (ρ(x)ηx)x)(τ)dτ

∫ t
0 L
−1
d,d1

(∂xη + a∂3
xη)(τ)dτ


t

.

Then, by using the following estimative:

||(1− α∂2
x + β∂4

x)−1(ρux)x||Hs
p(0,2π) ≤ C||u||Hs

p(0,2π),

for s ≥ 0, α, β > 0, where C a positive constant, it can be showed that Γ contracts in a ball of
the space C([0, T ];

[
Hs
p(0, 2π)

]2
). Therefore, we omit the details. �

Remark 4.3.1. From Theorem 4.3.3 and by integrating on (0, 2π) the equations in system (4.45)
we obtain the following conservations laws

d

dt

∫ 2π

0
η(t, x)dx = 0 and

d

dt

∫ 2π

0
ω(t, x)dx = 0.

This implies that∫ 2π

0
η(t, x)dx =

∫ 2π

0
η0(x)dx and

∫ 2π

0
ω(t, x)dx =

∫ 2π

0
ω0(x)dx

We are now in a position to prove the stabilization result:

Theorem 4.3.4. For any (η0, ω0) ∈
[
H2
p (0, 2π)

]2
, the solution (η, ω) of (4.45) given by Theorem

4.3.3 satis�es

(η(t), ω(t))→ ([η0], [ω0]) weakly in
[
H2
p (0, 2π)

]2
,

(η(t), ω(t))→ ([η0], [ω0]) strongly in
[
Hs
p(0, 2π)

]2
, for all s < 2,

as t→∞, where [f ] :=
1

2π

∫ 2π

0
f(x)dx.

Proof. We �rst remark that, if ϕ ∈ H2
p (0, 2π), from (4.46) we have that (ρϕx)x ∈ L2(0, 2π).

Thus, we can proceed as in the proof of (4.53) to obtain

d

dt
||(η(t), ω(t))||2[H2

p(0,2π)]2 + 2

∫ 2π

0
ρ(x)|ηx(t, x)|2dx = 0. (4.59)
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Moreover, arguing as in the proof of Theorem 4.3.2, we obtain (η̃0, ω̃0) ∈ [H2
p (0, 2π)]2 and a

sequence tn → +∞, such that tn+1 − tn ≥ T and

(η(t), ω(t))→ (η̃0, ω̃0) weakly in
[
H2
p (0, 2π)

]2
, (4.60)

(η(t), ω(t))→ (η̃0, ω̃0) strongly in
[
Hs
p(0, 2π)

]2
, (4.61)

and
(η(tn + ·), ω(tn + ·))→ (η̃, ω̃) in C([0, T ];

[
Hs
p(0, 2π)

]2
), (4.62)

for any s < 2, where (η̃, ω̃) ∈ C([0, T ];
[
H2
p (0, 2π)

]2
) denotes the solution of (4.45) with initial

data (η̃0, ω̃0). From (4.62) it follows that

(η(tn + ·), ω(tn + ·)) is bounded in L2(0, T ;
[
Hs
p(0, 2π)

]2
).

Then, we can extract a subsequence (if necessary), satisfying

(η(tn + ·), ω(tn + ·))→ (η̃, ω̃) weakly in L2(0, T ;
[
H2
p (0, 2π)

]2
). (4.63)

On the other hand, from (4.59) we get

||(η(tn+1), ω(tn+1))||2[H2
p(0,2π)]2−||(η(tn), ω(tn))||2[H2

p(0,2π)]2

+ 2

∫ tn+1

tn

∫ 2π

0
ρ(x)|ηx(t, x)|2dxdt = 0,

which leads to

lim
n→∞

∫ tn+1

tn

∫ 2π

0
ρ(x)|ηx(t, x)|2dxdt = 0, (4.64)

since || · ||[H2(0,2π)]2 is nonincreasing, and therefore has a limit, as t → ∞. (See (4.59)). By
combining (4.63) and (4.64), we deduce that∫ T

0

∫ 2π

0
ρ(x)|η̃x(t, x)|2dxdt ≤ lim inf

n→∞

∫ tn+1

tn

∫ 2π

0
ρ(x)|ηx(t, x)|2dxdt = 0. (4.65)

Thus, we have that (η̃, ω̃) solves
η̃t + ω̃x + aω̃xxx − bη̃xxt + b1η̃txxxx = 0 for x ∈ (0, 2π), t > 0,

ω̃t + η̃x + aη̃xxx − dω̃xxt + d1ω̃txxxx = 0 for x ∈ (0, 2π), t > 0,
∂r η̃
∂xr (t, 0) = ∂r η̃

∂xr (t, 2π), ∂rω̃
∂xr (t, 0) = ∂rω̃

∂xr (t, 2π) for t > 0, r = 0, 1,

η̃(0, x) = η̃0(x); ω̃(0, x) = ω̃0(x) for x ∈ (0, 2π),

and (4.65) allows us to conclude that

η̃x(t, x) = 0, ∀(t, x) ∈ (0, T )× Ω1,

for Ω1 de�ned in (4.46). Thus, from Theorem 4.1.5 we have that (η̃, ω̃) = (c1, c2) on (0, T )×(0, 2π)
for some c1, c2 ∈ R. From the Remark 4.3.1 and (4.60)-(4.61) it follows that

(c1, c2) = ([η0], [ω0])

and
(η(t), ω(t))→ ([η0], [ω0]) weakly in

[
H2
p (0, 2π)

]2
,

(η(t), ω(t))→ ([η0], [ω0]) strongly in
[
Hs
p(0, 2π)

]2
, for all s < 2,

�

81



Chapter 5

Comments and perspectives

During the development of this work some natural questions came to the fore. Therefore, in this
section we will mention a list of problems that we can study thereafter.

5.1 One control only

The problem we address in Chapter 2 is open when the control acts in one equation only (h1 ≡ 0
or h2 ≡ 0) or the control region does not contain a neighborhood of the right end point of
the interval. This is probably a purely technical problem that could be overcome by proving
unique continuation results. But, as far as we know, this remains to be done, including for the
single KdV equation. On the other hand, following the approach in [14] one may expect null
controllability results in the classical Sobolev spaces Hs, which also remains to be done.

The results obtained in Chapter 2 were published in

On the controllability of a nonlinear dispersive system in a weighted L2-space, Di�erential and
Integral Equations, Volume 34, Number 3-4 (2021), 127-164.

5.2 Higher order KdV terms and asymptotic behavior

In Chapter 3, the conditions on the coe�cients of the highest order BBM terms (b1 > 0 and
d1 > 0) provide a regularizing e�ect which is very useful for the well-posedness of the system
(1.8). On the other hand, from the controllability point of view, KdV type models are known to
have a much better behavior (see, for instance, [33, 39]). Therefore, it is an interesting issue to
study what can be done in the presence of the highest KdV terms (a1 > 0 and c1 > 0), including
the full system (1.2).

In the spirit of the problem mention above, the controllability problem also remains open
when b1 = d1 = 0 and a1, c1 > 0, i.e, in the absence of the highest BBM terms. The KdV terms
should provide good controllability properties, but in order to prove the well-posedness of the
resulting nonlinear system, more regularity of the solutions is needed.

The spectral analysis developed in Chapter 3 also leads to the study of the stabilization
problem when the time t is su�ciently large. By considering homogeneous Dirichlet boundary
conditions and a damping term acting in one equation of (1.8), the asymptotic behavior of
the energy associated to the model can be studied. Indeed, proceeding as in Section 3.3, a
similar spectral analysis can be developed to construct a Riesz basis of [H2

0 (0, L)]2 consisting
of generalized eigenvalues of the corresponding di�erential operator. Then, by using arguments
similar to those developed in [36], we can conclude that ||(η(·, x), ω(·, x))||[H2

0 (0,L)]2 → 0, as
t→∞.

The results obtained in Chapter 3 are available in
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On the lack of controllability of a higher-order regularized long-wave system, preprint (2021).

5.3 Another dissipative e�ects

In Chapter 4, we introduce some damping mechanisms that make the energy associated to the
linear higher-order Boussinesq system converge to zero. However, our results do not provide any
decay rate. In this sense, the results obtained in [18] for the lower order Boussinesq system could
be extended for the full system (1.2), posed in R, when complete and partial dissipations are
considered.
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