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Resumo

Neste trabalho, consideramos dois sistemas dispersivos; inicialmente, consideramos
um sistema derivado por Gear e Grimshaw para descrever a interagao forte entre
ondas longas fracamente ndo lineares. O modelo tem a estrutura de um par de
equacoes de Korteweg-de Vries acopladas por efeitos dispersivos e ndo lineares. Nosso
objetivo com este sistema é investigar suas propriedades de controlabilidade, num
intervalo limitado, por meio de controles distribuidos. Quando a regiao de controle é
uma vizinhanga do ponto final direito do intervalo, provamos a controlabilidade exata
local do problema nio linear em uma classe de espacos L? com peso. Inicialmente, os
resultados sao estabelecidos para o sistema linearizado por meio de uma abordagem
classica de dualidade e depois sao estendidos para o sistema completo por meio de
um argumento de ponto fixo.

Em seguida, consideramos um sistema de Boussinesq que acopla duas equacoes do
tipo Benjamin-Bona-Mahony linares de ordem superior. Inicialmente, investigamos
as propriedades de controlabilidade do modelo linearizado em um intervalo limi-
tado. Mais precisamente, por meio de controles que atuam no ponto extremo direito
do intervalo, mostramos que o modelo é aproximadamente controlavel, mas nao
espectralmente controlavel. Isso significa que qualquer estado pode ser conduzido
arbitrariamente préximo a outro estado, mas nenhuma combinacao linear finita de
autofuncoes, diferente de zero, pode ser conduzida a zero. Nossas provas dependem
fortemente de uma analise espectral cuidadosa do operador associado as equacoes
estacionérias. Também propomos varios mecanismos dissipativos que conduzem a
sistemas para os quais todas as trajetorias sao atraidas pela origem sempre que a
propriedade de continuacao tnica de solucoes fracas seja verificada.

Palavras chave: Controlabilidade, estabilizagdo, sistema de Gear-Grimshaw,
equacao de Korteweg-de Vries, sistema Boussinesq de ordem superior , equagao de
Benjamin-Bona-Mahony, propriedade de continuacao tnica.
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Abstract

In this work, we consider two dispersive systems; initially, we consider a system
derived by Gear and Grimshaw to describe the strong interaction of weakly nonlinear
long waves. It has the structure of a pair of Korteweg-de Vries equations coupled
through both dispersive and nonlinear effects. Our purpose for this system is to
investigate its controllability properties, when posed on a bounded interval, by means
of distributed controls. When the control region is a neighborhood of the right end
point of the interval, we prove the local exact controllability of the nonlinear problem
in some well chosen weighted L?-spaces. The results are first established for the
linearized system through a classical duality approach and then extended for the
full system via a fixed point argument.

Next, a Boussinesq system which couple two linearized higher-order Benjamin-Bona-
Mahony type equations is considered. We first investigate the boundary controllabil-
ity properties of the linearized model posed on a bounded interval. More precisely,
by means of controls acting on the right endpoint of the interval, we show that the
model is approximately controllable but not spectrally controllable. Our proofs relies
strongly on a careful spectral analysis of the operator associated with the state equa-
tions. We also propose several dissipation mechanisms leading to systems for which
all the trajectories are attracted by the origin provided that the unique continuation
of weak solutions holds.

Key words: Controllability, stabilization, Gear-Grimshaw system, Korteweg-de
Vries equation, higher order Boussinesq system, Benjamin-Bona-Mahony equation,
unique continuation property.
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Chapter 1

Introduction

The study of nonlinear wave phenomena is of broad scientific interest and pertains to a modern
line of research which is important both scientifically and for potential applications. Progress
in the development of new tools for modern applied mathematics resulted in a better scientific
understanding of nonlinear waves in various and quite distinct fields. The mathematical models
arising in nonlinear dispersive media are among the illustrations of successful outcomes resulting
from the efforts to understand various nonlinear phenomena. Starting in the latter half of the
1960s, the mathematical theory for nonlinear dispersive wave equations came to the fore as a
major topic within nonlinear analysis. Since then, physicists and mathematicians were led to
derive sets of equations to describe the dynamics of the waves in some specific physical regimes
and much effort has been expended on various aspects of the initial and boundary value problems.

The purpose of this work is present some mathematical results concerning two families of
such systems. The first one is a model derived by Gear and Grimshaw [21] to describe strong
interactions of two long internal gravity waves in a stratified fluid, where the two waves are
assumed to correspond to different modes of the linearized equations of motion. It can be
written as

{ut + Uy + Ugpr + A3Vgee + G1VV, + CLQ(U’U)x =0, (1 1)

b1v + TUg + VUg + Vppg + D2a3ULes + boasuuy, + baag (uv), = 0.

The parameters r, a1, asz, as, b, bo are real constants with by, by positive, the unknowns v and v
are real valued functions of the variables x and ¢t and subscripts indicate partial differentiation.
We also refer to [11] for an extensive discussion on the physical relevance of the model.

System (1.1) has the structure of a pair of Korteweg-de Vries (KdV) equations coupled
through both dispersive and nonlinear effects and has been the object of research in recent years.
It also appears as a special case of a broad class of nonlinear evolution equations that can also
be interpreted as a coupled nonlinear version of generalized KdV equations of the form

Ut + Ugge + f(uav):c = 0,
Vg + Vggg + g(u,v)y =0,

with f and g satisfying f(u,v) = Hy(u,v) and g(u,v) = H,(u,v) for a smooth function H.

The other system that shall be study here is a higher-order generalization of the classical
Boussinesq system introduced and studied by J. J. Bona, M. Chen and J.-C. Saut in [9, 10],
more precisely,

N+ Wy +aWggqy — bntxx + a1 Weprrr + blntxa:xz
= —(nw)z + b(NW)zze — (a +b— %) (NMWzz )z,

(1.2)
Wt + Ny +CNzzz — dwize + C1Mzzzzr + A\ Wizzar

= —wwy — c(WWy)ze — (Maz)z + (¢ + d — Dwywes + (¢ + d)wwygy.



Here, the dependent variables n = n(z,t) and w = w(x,t) are real-valued functions of the vari-
ables x and t and subscripts indicate partial differentiation. The parameters a, b, ¢, d, a1, c1, b1, dy
are required to fulfill the relations

_Lop 1 _ 1o g
atb= 50— 3), ctd=(1-6%),
1, 1 5 5 1.,
o Lo 1 5 s 1 1.3
ar — b 2(9 3)b+24(9 5>7 (1.3)
dy = (1= et (1 - 62)(62 - 1)
a-a=g “T o 5

where 0 € [0,1]. Conditions (1.3) come from the physics of the problem and we tacitly assume
them to hold throughout the entire paper. Depending on the problem under study, additional
restrictions on the sign of these parameters will be imposed later on.

The original system was derived by Boussinesq to describe the two-way propagation of small-
amplitude, long wavelength, gravity waves on the surface of water in a canal, but these systems
arise also when modeling the propagation of long-crested waves on large lakes or the ocean and
in other contexts. The variable, z, is proportional to the distance in the direction of propagation
while ¢ is proportional to elapsed time. The quantity 7(t,x) 4+ ho corresponds to the total depth
of the liquid at the point z and at time ¢, where hg is the undisturbed water depth. The variable
w(t, z) represents the horizontal velocity at the point (z,y) = (z,0ho), at time ¢, where y is the
vertical coordinate, with y = 0 corresponding to the channel bottom or sea bed. Thus, w is the
horizontal velocity field at the height Ohg, where 6 is a fixed constant in the interval [0, 1].

Notice that, when the parameters given in (1.3) are such that a = a1 = ¢ = ¢; = 0, the
resulting system couples two higher order Benjamin-Bona-Mahony (BBM) type equations. If
b=0b =d=d; =0, we have a coupled system of two higher order Korteweg-de Vries (KdV)
type equations.

1.1 Problems and main results

1.1.1 Controllability of the Gear-Grimshaw system in a weighted L?-space

As it was pointed out in the previous section, system (1.1) appears as a special case of a broad
class of nonlinear evolution equations that can also be interpreted as a coupled nonlinear version
of generalized KdV equations of the form (1.2). Such mathematical formulations have received
considerable attention in the past, and a satisfactory theory pertaining to the pure initial-value
problem is available in the literature. However, the practical use of the waves systems and its
relatives does not always involves such mathematical formulation. Therefore, it is also of interest
to study the mathematical properties of the KdV family on a finite spatial interval.

In this chapter we shall be concerned with the study of an initial boundary value problem
associated to (1.1) when z € [0, L] and ¢t € R*. Our main purpose is to address two mathematical
issues connected to (1.1); well-posedness and controllability in a weighted Hilbert space. With
this purpose, we introduce a function p € C*°([0, L]) with

0 if0<z<L-—v,
) =9, ifL—%<a:<L, (14)

for some v € (0, L). Then, the control system reads as

Ut + Uy + Ugpgy + A3Vzr + a100; + az(uv), = (p(x)h1), in (0,7) x (0,L),
blvt + TV + VVg + Vppx + 62a3ua:acx + b2a2uux (15)
+boai(uv), = (p(x)he), in (0,T) x (0,L),



with boundary conditions

uw(0,t) = u(L,t) = uy(L,t) =0 on (0,T), (1.6)
v(0,t) = v(L,t) = vy (L,t) = on (0,7), '
and initial conditions
u(x,0) = up(z), v(z,0)=uvo(x) on (0,L). (1.7)

In (1.5)-(1.7), the external forcing terms hy and hsy are considered as control inputs. Their
choice were motivated by the results on the controllability properties for the single KdV equation
obtained in [14], from which we borrow some ideas. Our purpose is to see whether one can force
the solutions of the system to have certain desired properties by choosing appropriate control
inputs acting on a neighborhood of x = L. More precisely, we are mainly concerned with the
following problem which are fundamental in control theory:

Given T > 0, initial states (ug,vo) and terminal states (u1,v1) in a certain space, can one find
appropriate control inputs hy and hy (actually, (p(x)h1)s and (p(x)ha)s), so that the system (1.5)-
(1.7) admits a solution (u,v) which satisfies (u(-,0),v(-,0)) = (uo,v0) and (u(-,T),v(-,T)) =
(ul, 1}1) ¢

If one can always find a control input to guide the system described by (1.5)-(1.7) from any
given initial state to any given terminal state, then the system (1.5)-(1.7) is said to be exactly
controllable.

Inspired by the results obtained for the single KAV equation [12, 19, 39], significant progress
has been made for system (1.1) on its boundary controllability properties (see, for instance, [6]
for a nice review of the contributions). By contrast, the study of the internal controllability is
still at its early stage. Recently, in [6], the authors proved the local null controllability property
for system (1.1), posed on a finite interval, by means of a control supported on an interior open
subset of the domain and acting on one equation only. The proof consists mainly on proving
the controllability of the linearized system, which is done by getting a Carleman estimate for
the adjoint system. A local inversion Theorem is then applied to get the result for the nonlinear
system. By using the same approach, similar results were obtained in [16] for the Hirota-Satsuma
system. Another related work is [13], where the authors consider the problem of controlling
pointwise, by means of a time dependent Dirac measure supported at a given point, the linear
system associated with (1.1) on the unit circle. In this case, the results are obtained by means
of spectral analysis and Fourier expansion of the solutions.

As pointed before, the problem we address here was motivated by the analysis developed in
[14] for the KdV equation. Indeed, after studying a single equation, it is natural and physically
motivating to consider coupled systems of such equations. So, assuming that the control region
is a neighborhood of the right end point of the interval (0, L), we prove an exact controllability
result in a weighted L2-space. This is done under additional assumptions on some coefficients of
the system (1.5). More precisely, we assume that

bi,by >0 and 0 <aby <1.

According to [11, 42|, the parameters b; and by are automatically positive and r is a non-
dimensional parameter that could be assumed very small.

In order to state our main result, we need some notation: For any measurable function
w : (0,L) — (0,400) (not necessarily in L'(0, L)), throughout the chapter we consider the
weighted space

L
22l = {un,00) € 2,00 [ 030 + @)t < oo,



which is a Hilbert space endowed with the inner product

(i, 17)[L 2= ((ug,uz), (121,1)2))[143(1)“}2

_ao

2
w(z)dz
L
up(x)vy (z)w(x)dr + / ug(z)vo(x)w(x)de.
0
With the notation above, we introduce
H=[L}, ,14,)° and V = {ﬂ' € [H}(0,0)]?, i, € [L?L_x),zdﬁ} ,
endowed with the norms
" b2 _1 _1
|7 = p (L —2) 2up|[7a +||(L — 2) 2|7

and b
112 2 —1 2 -1 2
|51l == E\I(L — )" va|le + (L = 2) " v2l[72,
where @ = (u1,u2) and ¥ = (v1,v2). Remark that b; and by are positive.
We are now in position to state the main result of this chapter. It concerns the local exact

controllability of (1.5)-(1.7) in the space H and can be summarized as follows:

Theorem 1.1.1. Let T' > 0. Then, there exists § > 0, such that, for any (ug,vo), (u1,v1) € H
satisfying
(o, vo)|lm <6 and ||(ur,v1)||g <9,

one can find a control function b := (hy, hy) € L2(0,T; [L2(0, L)]2), such that the solution (u,v) €
C([0,T); H) N L20,T; V) of (1.5)-(1.7) satisfies (u(-,T),v(-,T)) = (u1,v1) in (0,L). Moreover,
the forcing term f = (p(x)hy, p(x)hs)) is a function in L%T_t)dt(O,T; [L%(0,L))?) supported in
(0,7) x (L —v,L), where 0 <v < L.

It will be also demonstrated that (1.5)-(1.7) is well-posed in C([0,T]; H) N L?(0,T; V) when
the initial data and the forcing terms h; and hg are small enough. As with other, dispersive wave
equations, well-posedness seems to depend on the conservation laws, or energy-type inequalities
satisfied by the solutions, and on the linear theory. Therefore, we first show that the correspond-
ing linear problem generates a semigroup of continuous operator in H and [Lidx]2. This is done
introducing an abstract framework, successfully applied in [14, 22|, which combines Hille-Yosida
theory and a generalized Lax-Milgram Theorem due to J.-L. Lions (see, for instance,|23, 28]). In
particular, we also establish the so-called Kato smoothing effect, i.e., the solutions whose initial
datum lies in H not only lie in C([0,7]; H) but also in C([0,T]; H) N L?(0,T; V). This prop-
erty made it possible to combine the Duhamel formula and a contraction mapping argument to
prove directly the local well-posedness result. As it will become clear in our proofs, assumption
0 < a3by < 1 allows to obtain a priori estimates leading to the local global well-posedness results.
Those a priori estimate are also useful to establish the well-posedness of the adjoint system in
the dual space [L%L_x) dw]z, which is crucial to derive the controllability properties.

With the well-posedness established we investigate the controllability properties of (1.5)-
(1.7). We combine the analysis of the linearized system and a contraction mapping argument
for the full system. In order to analyze the linearized system, we follow a duality approach
[20, 29], which reduces the exact controllability property to prove an observability inequality for
the solutions of the corresponding adjoint system. Here, this is done combining multipliers and
the so-called compactness-uniqueness argument, which leads one to apply a unique continuation
result. Since we are dealing with a linear system, this has been shown to be true by means of
Holmgren’s uniqueness theorem. At that point we remark that some of the multipliers mentioned
above were introduced in [39] to study the KdV equation and applied later in [34] in the context
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of the system (1.5)-(1.7). This justify in part the choice of the weight spaces and the assumption
on the support of the function p.

The analysis described above is organized in three sections: In Section 2.1 we establish the
well-posedness of the linear system and Section 2.2 is devoted to study its controllability proper-
ties. In both sections we split the results into several steps in order to make the reading easier.
In Section 2.3, we prove the local well-posedness and the controllability of the full nonlinear
systermn.

1.1.2 On the lack of controllability of a higher-order regularized long-wave
system

Despite the success in studying dispersive models, the mathematical theory have been concerned
with either the pure initial value problem posed on the entire real line or the periodic-initial value
problem posed on the one-dimensional torus. A large body of literature has been concerned with
the questions of existence, uniqueness and continuous dependence of solutions corresponding
to initial data. The study of initial-boundary value problems with nonhomogeneous boundary
conditions has not progressed to the same extent.

In this chapter, the goal is to advance the study of the initial-boundary value problems ex-
ploring the dynamics of dispersive equations using mathematical analysis from the controllability
point of view. Consideration is given to an initial-boundary value problem associated to the lin-
earized Boussinesq system (1.2) when the parameters given in (1.3) are such that a; = ¢; = 0.
Our attention, in particular, is given to the following distributed control system:

M+ Wy + GWezr — WMizr + b1Mtgzae =0 for € (0, L), t > 0,

Wi + Mo + Nagr — dWigr + d1Wizger =0 for € (0,L),t > 0,

n(t,0) =0, n(t, L) = fi(t) for t >0,

w(t,0) =0, w(t,L)=g(t) for t >0, (1.8)
nx(tao) =0, nx(tvL) = fZ(t) for t >0,

wyz(t,0) =0, wy(t,L) = ga(t) for t >0,

n(0,z) = n%(z); w(0,z) = w(z) for z € (0, L).

In (1.8), the external forcing terms f; and g;, i = 1,2, are considered as control inputs. The
purpose is to see whether one can force the solutions of the system to have certain desired prop-
erties by choosing appropriate control inputs acting at one end of the interval. More precisely,
we are mainly concerned with the following problems which are fundamental in control theory:

Exact controllability: Given T > 0, initial conditions (n°,w°) and terminal states (n*,w!)
in a certain space H, there exist control inputs (f1,91) and (fa2, g2) so that the system (1.8) admits
a solution (n,w) which satisfies

(77(0, ')7w(0a )) = (7707000) and (U(Ta '>,W(T, )) = (7717001)-

If any given initial condition can be drive to (0,0), the system is said to be null controllable.

Approximate controllability: Given T > 0, ¢ > 0, initial conditions (n°,w°) and terminal
states (n',w') in a certain space H, there exist control inputs (f1,g1) and (f2,g2) so that the
system (1.8) have a solution (n,w) which satisfies

1(0(T, ), (T, ) = (" ')l < e.

Spectral controllability: Any finite linear nontrivial combination of eigenvectors of the
operator associated with the state equations can be driven to zero in finite time by using control

inputs (f1,91) and (f2, g2).



Observe that exact controllability is essentially stronger notion than approximate control-
lability. In other words, exact controllability always implies approximate controllability. The
converse statement is generally false.

Throughout this chapter, we assume that b,d, b;,d; > 0 and consider the space

o, . O O, 0 B _
50 = 52w = 0 = T =0, r=o.1

HR(0, 1)) = {(W) e [H2(0, L))

endowed with the inner product

< ( Z > ’ < z ) > = /()L(U%0+w¢)dm+ /OL(bnxgpz + dwythy)da

L (1.9)
0

The space [H2(0, L)]? is defined as the dual space of [HZ(0, L)]?.

In what concerns system (1.8), our results can be summarized as follows:

e The approximate controllability holds for any 7" > 0. In more details, we prove that there
exist control inputs f;, g; € H'(0,T), i = 1,2, such that the set of reachable states is dense
in [L2(0, L)]?, for any (n°,w®) € [H=2(0, L)]? and T > 0.

On the other hand, we give a negative result for the first problem introduced above.

e System (1.8) is not spectrally controllable if (n°,w®) € [HZ(0, L)]%.
Remark 1.1.2. The following remarks are in order.

(i) When (n°,w®) € [H=2(0,L)]?, the solution of (1.8) has to be understood in a weak sense.
For instance, it can be defined by transposition. With this approach, we have to tmpose that
fi,gi € HY(0,T), i = 1,2 in order to obtain a well-posedness result.

(13) Throughout the work, it will become clear that the lack of exact controllability of the model
comes from the existence of a limit point in the spectrum of the operator associated with
the state equations, a phenomenon already noticed in [33] for the single BBM equation.

By means of a series expansion of the solution in terms of the eigenvectors of the state
operator, the approximate controllability is reduced to a unique continuation problem of the
eigenvectors. In what concerns the lack of exact controllability, it is addressed through a spectral
problem which is solved combining Paley-Wiener theorem and the asymptotic behavior of the
eigenvalues. Such approach requires a careful spectral analysis of the operator associated to
the state equation. Indeed, it provides important developments to justify the use of eigenvector
expansions for the solutions, as well as, the asymptotic behavior of the eigenvalues. However, due
to the the structure of the system, the eigenvalues can not be computed explicitly. To overcome
this difficulty we prove that they are close to the eigenvalues of a well chosen differential operator.
This is done by using less common two dimensional versions of the shooting method and Rouché’s
Theorem. Our approach was inspired by the techniques presented in [4] and [36]. In [36], the
same strategy was successfully used to study the stabilization of a linear Boussinesq system
of BBM-BBM type (a = a1 = ¢ = ¢; = by = di = 0) when a localized damping term acts
on one equation only. By considering homogeneous Dirichlet boundary conditions, the authors
prove that the energy associated to the model converges to zero as time goes to infinity. In the
conservative case, i. e., in the absence of the damping term, the results obtained in [36] were
properly adapted in [4] to study the controllability problems we address here. This approach



does not apply directly in our case, since we are dealing with a higher order Boussinesq system.
Therefore, further developments are required.

Before closing this section we emphasize that the problems we address here remain open for
the corresponding nonlinear models, including for the single BBM equation. To our knowledge,
the only result on the subject was obtained in [41] for the BBM equation on the torus T =
R/(27Z). The authors show that, when an internal control acting on a moving interval is
applied in the BBM equation, it is locally exactly controllable in H*(T), for any s > 0, and
globally exactly controllable in H*(T), for any s > 1, in a sufficiently large time depending on
the H%-norms of the initial and terminal states. When (1.2) is posed on a periodic domain, the
controllability problem has been addressed in [2|. General conditions are given to ensure both
the well-posedness and the local exact controllability of the nonlinear problem by means of a
control localized in the interior of the domain and acting on one equation only.

This chapter is organized as follows: In Section 3.1, we show that system (1.8) is globally well-
posed. Additionally, the adjoint system associated to the homogeneous system is also presented.
Section 3.2 is intended to show the controllability results. Finally, in Section 3.3, we develop the
spectral analysis of the operator associated with the state equations which is used in our proofs.
We choose this presentation in order to make the reading easier.

1.1.3 Asymptotic behavior of a linear higher-order Boussinesq system with
damping

The study of fluid dynamics often leads to the study of equations that describe several physical
situations, as the motion of the water waves under some physical regimes. Such equations can
have a conservative nature, therefore, at least in that case, it is important to investigate the
stability properties of the solutions by adding some dissipative effects.

It is well known that a good model to describe the physical phenomena concerning the
unidirectional small amplitude long waves in nonlinear dispersive media is the Korteweg-de Vries
(KdV) equation |27]

Ut + Uy + Uprr + v, = 0.

As a rational alternative to the (KdV) equation is the so-called regularized long wave equation
or Benjamin-Bona-Mahony (BBM) equation |7, 38|

U + Ugp — Upgr + wty = 0.

On the other hand, in order to obtain a better agreement between models for the two-way
propagation of waves and surface-wave experiments in a laboratory setting, field studies of wave-
generated sediment transport, J. J. Bona, M. Chen and J.-C. Saut [9, 10| derived, from the
classical Euler equations under a specific physical regime, the higher-order system (1.2) and the
lower-order system

{m + We + Wane — Wtz = —(W)a, (1.10)

Wt + N + CNgzz — dwtww = ~WwWyg.

As pointed out before, the dependent variables n = n(x,t) and w = w(x,t) are real-valued

functions of the variables x and ¢ and subscripts indicate partial differentiation. The parameters
a,b,c and d obey the consistency conditions

1,5, 1 1, 5

a—l—b:§(9 —g), c+d:§(«9 —=)>0, where#6€]0,1].

Since it is important both scientifically and for potential applications, system (1.10) has

been attracted the interests of mathematicians in recent years. Particularly, in what concerns

the study of control and stabilization properties, it is important to consider the stabilization

problem when dissipative effects are generated by internal and boundary damping. This issue



becomes easier provided that the models have a strong intrinsic dissipative nature. Nevertheless,
since the systems (1.2) and (1.10) are meant to replace the Euler equations, it is expected the
preservation of energy, which suggests to include appropriated damping mechanisms for the decay
of solutions.

The study of the stabilization and controllability properties for Boussinesq systems was ini-
tiated in [32] considering model (1.10). The work [32] deals with the internal controllability and
stabilization of (1.10) on the torus and, when b,d > 0 and a,c¢ < 0, the local exact control-
lability of the nonlinear system is shown to hold. As an application of the established exact
controllability results, some simple feedback controls are constructed for particular choices of the
parameters a,b,c and d, such that the resulting closed-loop systems are exponentially stable.
Later on, in [37], the authors investigated the boundary stabilization of the Boussinesq system
(1.10) of KAV-KdV type (b = d = 0) posed on a bounded interval. More precisely, they design a
two-parameter family of feedback laws for which the solutions issuing from small data are glob-
ally defined and exponentially decreasing in the energy space. More recently, in [15], the exact
boundary controllability of the Boussinesq system (1.10) of KdV-KdV type was studied. It was
discovered that whether the associated linear system is exactly controllable or not depends on
the length of the spatial domain. The extension of the exact controllability for the Boussinesq
system (1.10) is derived in the energy space in the case of a control of Neumann type. It is
obtained by incorporating a boundary feedback in the control in order to ensure the so-called
Kato smoothing effect. In addition, proceeding as in [37], a local exponential stability result was
also derived.

In the absence of the nonlinear terms and letting a = ¢ = 0 and b,d > 0, the stabilization
problem for the resulting linearized system of BBM-type was studied in [35] (see also [5, 18]).
The authors consider the periodic case and, by introducing generalized damping operators in
each equation, it is proved that whether the solutions of the system decay uniformly or not to
zero depend on the parameters of the damping operators. ~ When the model is posed on an
bounded interval, the stabilization problem was studies in [36]. By means of a localized damping
term acting in one equation and Dirichlet boundary conditions, it was proved that the energy
associated to the model converges to zero as time tends to infinity.

Under the assumption of unique continuation property (UCP Conjecture) on the conservative
scalar BBM equation, Rosier [40] answers affirmatively the issue. In fact, all the trajectories are
attracted by the origin provided that some feedback laws (internal and boundary damping) are
incorporated in the BBM equation. We remark that the unique continuation property for the
BBM equation is still an open problem. Inspired by the ideas developed by Rosier, in [3] the
authors propose several dissipation mechanisms for the linear system associated to (1.10) with
the parameters a,b,c,d satisfying a = ¢ = 0 and b,d > 0. They proved that the origin is
asymptotically stable for the corresponding damped linear BBM-BBM model.

Motivated by the works mentioned above, in this chapter we investigate the stabilization
properties for system (1.2) dropping the nonlinear terms and assuming that the parameters in
(1.3) are such that a; = ¢; = 0 and b,b1,d,d; > 0, a,¢c < 0 or a = ¢ > 0. The resulting
system couples two linear higher-order Benjamin-Bona-Mahony type equations, the so-called
higher-order regularized long-wave system or higher-order BBM-system.

We first address the boundary stabilization problem. More precisely, we consider the system

M+ We + QWzer — Wizz + 01Mtzzee =0 for z € (Oa L)a >0,
Wt + Mg + ANpgz — AWigz + d1Wizger =0 for z € (0,L),t > 0, (1.11)
n(0,7) = n°(z); w(0,2) = w(x) for x € (0, L),



with the following boundary conditions

t,0
b1 Mtzrz (t,0) — b (8,0) = — (b + b1)n(t,0) — awy,(t,0) — w(2,) for t>0,
t, L
b1 Mtgwa (B, L) — by (t, L) = (b+ b1)n(t, L) — awgs(t, L) — M for t >0, ( )
1.12
t,0
A Wigze (t,0) — dwiy (t,0) = —(d + d1)w(t,0) — ang,(t,0) — 77%2’) for t>0,
t, L
A Wigza (t, L) — dwiz(t, L) = (d 4 di)w(t, L) — ang,(t, L) — 17(5) for t >0,
( (0
Neze (t,0) = n2(t,0) — a” Z(b ) for t >0,
1
x(t, L
Miax(t, L) = —ny(t, L) — a (¢, L) for t >0,
) (t%’)l (1.13)
Wiz (t,0) = wy(t,0) — a I2d, for t >0,
1
2 (l, L
Wizg(t, L) = —wy(t, L) — al (t, 1) for ¢t > 0.
2dy
The natural energy associated to the Boussinesq system is given by
1 L
B0 = 5 [ IOF + ) + U0 + dios 0 + blnes(OF + il ()

and, if we multiply the first (resp. second) equation in (?7?) by n (resp. w), integrate by parts
over (0, L) and add the resulting equations, we obtain (at least formally)

WEW) (o ba) (s D)2 + (1, 0)[2) — (d -+ o) (w(t, D) + o1, 0)2)

dt (1.14)
= bi(Ine(t, D) > + n2(t,0)?) = di(Jw (¢, L)* + |wz (£, 0)[).

Thus, the energy E(t) is decreasing and the boundary conditions play the role of a feedback
damping mechanism.
Next, we study the case in which a localized damping mechanism acts in one equation of the
system:
M+ Wy + GWaze — Otgr + 01 Mtgzze + By =0 for x € (0,27), t > 0,
Wt + Ne + Nezr — dWizgr + d1Wtzgze = 0 for x € (0,2m), t >0, (1.15)
n(0,z) = n%(z); w(0,z) = w(x) for z € (0, 2m),
where B is a linear bounded operator which will act only on an open subset Q C (0, 27). In the

next sections, we will specify the election of the feedback law Bn. In each case, the following
boundary conditions will be imposed on the system (1.15):

d"n _Jd'n 0w _Jw B
{8:67" (t,0) = ST (t,2m), ST (t,0) = o (t,2mr) fort>0, r=0,1.

Then, when L = 27, the energy E(t) defined above satisfies

LA —/QBn(t)n(t)dx. (1.16)

So, if [, Bn(t)n(t)dz > 0, the energy decreases along the trajectories of the system. In both
cases, (1.14) and (1.16), the question is whether E(t) is asymptotically stable, as t — oo.
Following the approach developed in [40] and [3] we first prove the unique continuation
property for solutions of the conservative system. The proof makes use of the explicit Fourier
series expansion of the solution in terms of the eigenvectors of the differential operator associated
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to the space variable. In what concerns the systems above, the well-posedness is obtained by
converting them into integral equations and applying the contraction-mapping principle. Then,
by proving the convergence towards a solution which is null on a band, the unique continuation
property implies that the origin is asymptotically stable. As it will become clear during our
proofs, to ensure the global well-posedness of (1.11)-(1.13) in the energy space we will assume
additional conditions on the parameters.

It is important to emphasize that the energy identities (1.14) and (1.16) do not imply any
global in time a priori estimates for the nonlinear system. Thus, it does not conduct to the global
existence of solutions in the energy space.

This chapter is outlined as follows. Section 4.1 is dedicated to prove the unique continuation
property for solutions of the conservative system. In Section 4.2 it is studied the Boussinesq
system with boundary damping and finally, in Section 4.3 we consider the system with a pair of
internal damping terms.

1.1.4 Comments and perspectives

During the development of this work some natural questions came to the fore. Therefore, in this
section we will mention a list of problems that we can study thereafter.

11



Chapter 2

Controllability of the Gear-Grimshaw
system in a weighted L2-space

In this chapter we are concerned with the controllability properties of system (1.5), posed on a
bounded interval, by means of distributed controls. When the control region is a neighborhood of
the right end point of the interval, we prove the local exact controllability of the nonlinear problem
in some well chosen weighted L?-spaces. The results are first established for the linearized system
through a classical duality approach and then extended for the full system via a fixed point
argument.

2.1 The linear system

In this section we prove the well-posedness of the linear system associated to (1.5)-(1.7). The
results will be obtained for both homogeneous and nonhomogeneous systems.
Throughout the section, we consider the Hilbert spaces [Li)(x) 4.)7 defined before.

2.1.1 The homogeneous system

Let us first consider the homogeneous system

Ut + Uggy + QUpzz = 0 in (0,7) x (0, L),

v + 10z + Vppr + batigy, =0 in (0,7) x (0,L),

u(0,t) =u(L,t) = u,(L,t) =0 on (0,7), (2.1)
v(0,t) = v(L,t) = vy (L,t) =0 on (0,7),

u(z,0) = up(z), v(x,0)=7vo(x) on (0,L).
The well-posedness results will be established in the spaces

[L2 ]2 and [L%L—x)*ldac]z'

zdx

This is done by using the semigroup approach, combining Hille-Yosida Theorem and the following
generalized Lax-Milgram Theorem due to J.-L. Lions (see, for instance, [22, 23]).

Theorem 2.1.1. Let W C V C H be three Hilbert spaces with continuous and dense embeddings.
Let a(u,v) be a bilinear form defined on V- x W that satisfies the following properties:

(i) (Continuity)
a(v,w) < M|pllv||w||lw, YveV, YweW

12



(i) (Coercivity)
a(w,w) > m||w|[}, YweW.

Then, for all f € V' (the dual of V), there exists v € V', such that
a(v,w) = f(w), Yw e W.

Assume that, in addition to (i) and (ii), a(v,w) satisfies:
(113) (Regularity) For all g € H, any solution v € V' of

a(v,w) = (g, w)g, YweW, (2.2)

belongs to W . Then, equation (2.2) has a unique solutionv = v(g) € W. Let D(A) :={v(g);9g € H} C
W C H and set Av := —g, for v € D(A). (Note that there is a unique g € H satisfying (2.2).)
Then, A is a mazimal dissipative operator, and hence it generates a continuous semigroup of
contractlions in H.
Well-posedness in [L? ]2

zdxr

By using Theorem 2.1.1, we prove that the state operator associated to (2.1) generates a strongly
continuous semigroup in [L2, ]2

— — ab 1 T
Theorem 2.1.2. Let i = (uy,u2) and A1t = (—U1e0e — QU2 220, — S UL zee — U220z — SU2,2)
with domain

D(Ay) = {@ € [H*(0, L) N H}(0, L) Gs € L2

a:da:]Z’ﬁx(L) = 6} C [L2 ]2.

rdx

Then, Ay generates a strongly continuous semigroup in [Lide

Proof. We first introduce the spaces

H = [L2 ]27 V= [H(%(Ov L)]27 W= {U_j € [H&(OvL)]Z’U_}II € [L.Z’2d$]2}’

xdx
endowed with the norms
. b . b
il = EH\/EulH%Q(O,L) + "\/5“2”%2(0@7 1315 = EHUL:BH%Q(O,L) + H”Zm”%?(o,L)?

- b
10117 1= ~ll2wieallT2(0,0) + 2w eal 7201,

where @ = (uy,us2), U= (v1,v2) and @ = (wq, w2).
Observe that V' C H with continuous and dense embeddings and D(A;) C W. Moreover,
using the following inequality proved in [14]

l|wel|r2 < Cllzwgs||r2, Yw € {w € H&(O,L),wm € Lide}, (2.3)

it follows that W is a Hilbert space and the embedding W C V is dense and continuous.
Next, we define the bilinear form

a) (¥, W) := a(V, W) + \(¥, W) g, with A >>1,

where
b L
a(v,w) = c/ U1,z [(Zw1) e + a(zw2)q] do
0
1 L
+ c/ vz [ba(zw)ge + (ZW2) 3y + r(zw2)|dz, VUV, WeW,
0
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to prove that conditions (i), (ii) and (iii) given by Theorem 2.1.1 are satisfied for any ¢ € V' and
weWw.

(i) Continuity

Combining Cauchy-Schwarz and Poincaré inequalities with (2.3) it follows that

(@, @) < [lvrellzz ([lewres + 2wiellr2 +lal[lewzee + 2w2l]12)

1
+ - llvaallzz (Jabl 2w ee + 2willr2 + [l2waee + 2wl + [rllowellr2)

< Cola, bye;n)|[V]lv (lrwizallr2 + [|lowa ee| |2 + [1Wall122 + Cllzwa,e + wall12)
< Ci(a, b, e,r, L[|y ([[@llw + [[wa,zll22) < MI[@]|v[[]|w,

where Cy, Cq and M are positive constant. The above estimate allows us to conclude that a(,-),
as well as ay (-, ), are well defined and continuous on V' x W.

(ii) Coercivity

For any @ = (w1, ws) € [C([0, L]) N H(0, L))?, we have

b

L 1 L
a(w, W) = C/o w1z [(TW1)gr + a(zwe) ] dz + C/o wa 5 [ba(zwr)ze + (2W2) e + r(zw2)] da

b L
— c/ W1 g [TW1 gz + 2W1 2] + QW1 g [FW 3y + 2w2 5] da
0

I ’
+ c/ baws g [TwW1 gz + 2W1 5] + Wo g [TW2 40 + 2w2 5] + §az[w§]xda§
0

After integration by parts, a(w,w) can be written as

U I SR 1,
a(w, w) = 3z x (Wi, + 20w pwo gz + ~W5 , | dx
C 0 ’ b ’ .
b [* 2 Ly ro [t 2
+ 25 ; wi , + 20w zw2 4 + 7 Was dz — % ; wydx
=3 w1 (L) + 2aw1 5 (L)w25(L) + ng,x(L)
3b [ 1 r (L
20/0 [wiw + 20w1 zw2 5 + bwg’z] dr — % ; w%da:.
Then,
L . Lb 2 1 2\ 2
i, ) = 5 - (W (L) + awsa(L)? + (5 — ) wd, (D)

3b (FT 1, ro[r,
—1—52 ; w17$+2aw17xw27x+gw27m dx—2—c ; wydz.

For any ¢y > 0, an application of Young inequality gives

Lo 3 b (L 3b /1 a L r (L
a(w,w) > 2 (1—¢) /0 wixd:c + 5% <b — > /0 w%’mdaz - 20/0 widz. (2.4)

& €

Thus, taking into account the assumptions on the coefficients of the system, we can choose ¢g > 0,
such that |a|vb < (/g < 1 to obtain

L
o o N T
o) > mo il 5 [ wids (2.5)
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where m, = min{ (1—-e€), %g (% - } Observe that, if » = 0, the coercivity of a(,-)
follows from (2.5), for any L > 0. When r # 0
inequality:

, the result is obtained making use of the Poincaré

D b [T 3b (1 a® |r|L?\ [F .
a(w, W) > 2(1—60)6/0 w%,xd$+§g (b_eo— 3b7r2>/0 wg,zdfﬂsz,meH%’a

for any L > 0 satisfying

and mp ¢, > 0 given by

ML := Min §(1—6)3b 7_a72_|7“|L2
Lo == 2 09\ b e 3bm? ’

When L > 7y /3 ﬁ (% ) instead of a, we consider the bilinear form

ax(7,0) = a(¥, %) + (T, %)y, with A >> 1.

To prove the coercivity of ay, we need the following claim:

Claim: For any § > 0,

22 < 8llwl %y + 5 Lllwl2_, Yw e C(0, 1)) H(0, L),

Combining the Claim and (2.5), it follows that

r|L 4
g 0 Mhwallze

Y o D
> (e~ 510 a1~ o

Then, choosing dp < m,, |2"i and A\ > L‘ |(5 L we get

- 5 Y e (o TPt
(@) 2 (e = 100 ) Il -+ (3= 205" )

Consequently, ay is continuous and coercive. Finally, since [C*°([0, L]) N H{ (0, L)]? is dense in
W, the result is valid for any @ € W.
It remains to prove the Claim.

. e 7]
a0, ) > me, ][5 = 5ol [wal |7y —

Proof of the Claim: From Cauchy-Schwarz and Hardy inequalities, we have

1 1
2 1 k -1,2 ’ k 2 ?
lw||]72 < [|z2w]|p2 x wodx :||w||L2d zx2w?dzx
0 7 \Jo
L 3 L 2
< \/ZHwHde (/ [x_lw]Qd:p> < Q\FLH@UHLQd (/ widaz)
zdx 0 raw 0

= 2V[wllgz, [l -
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Then, from Young inequality it follows that

22 < BlhwllZyy + 67 L2, ¥6>0.

Consequently, for given § = (g1, g2) € H, Theorem 2.1.1 guarantees the existence of a function
¥ € V which solves the problem

a)(0, W) = (¢, W)y, Y e W. (2.6)
The next steps are devoted to prove that ¥ € D(A;) C W.
(iii) Regularity
We first write (2.6) as

b

L L

1

a) (0, 4) = - / U1z [(2W1) e + a(zw2) s dx + p / V2.5 [ba(xwi)gr + (FW2) gz + r(zwe)] dx
0 0

LT LT
+ )\/ x [vlwl + ’U2’LUQ:| dr = / T [glwl + ggwg] dx.
0 c 0 ¢

(2.7)
Then, (2.7) allows us to conclude that
b 1
E<$[Ul,zmaj + av2 prx + )\Ul]aw1>D’,D + E(x[bavl,zzm + V2 pxx T TV2 1 + C/\’U2]a w2>D’,D
b o
= E<x917w1>D’,D + (xga, wa)p p, Vi € [D(0, L)},
where (-, )p/ p denotes the duality between [D(0, L)]* and its dual space. Consequently,
UV1,zzx + av2 rxx + AUl = g1, in D/(O, L), (2 8)
bavy g + V2,250 + V25 + cAvg = cga, in D'(0, L). '
From now on, we proceed in several steps:
e Step 1: 7€ [H3(e, L)]?, for all € € (0,L), and Typzp € H.
Indeed, from (2.8) it follows that
Vo002 = (1 — ba2)_1 [A(bavy — cvy) — Tv24 + cg2 — bagi], in D'(0,L). (2.9)

Then, for any € € (0, L), we get
L L
/ (Va2 < C|JT2 + O / tgil? + lg22de < ClI313 + Ce Y Ig113,
€ €

for some constants C, C’ > 0. Hence, vo € H3(e, L) and, from (2.8), we deduce that v; € H?(e, L),
which proves the first part of Step 1. On the other hand, from (2.9) we obtain the estimate

L
/0 tvg.aae P < C(L) (1712 + 13113)

where C'(L) > 0, which shows that vy gz, € Lidx. Thus, from (2.8) we also conclude that
V1,zzx € L?, . and the proof of Step 1 ends.

zdz?
e Step 2: ¥ € [H?(0, L)]?, and hence 7 € W.
Since Uz, € H, we obtain a positive constant C' > 0, such that, for any e € (0, L),

1 1
L 2 L 2
|vm(e)—vm(L)|g(/ x!vimx|2d:ﬁ> (/ x—ldx> <C4Clin(e)], i=1,2 (210)
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On the other hand,

L
|Viz(€) — iz (L) < / |[Viga (%) — Viga (L)|dz + (L — €)|igs(L)]
¢ L (2.11)
<C [ inta)ids + (L - 9 e (D] + €, i=1.2,

for some C > 0. From (2.10) we deduce that ¢ € [H*(0,L)]* and, therefore, Uy € [L2,,
which gives that v € W.

e Step 3: ¥ € D(A;).

]2

Y

We first multiply the first equation in (2.8) by %xwl and integrate over (e, L), where wy €
C>([0,L]) N H}(0, L) and € € (0,L). After integrating by parts over (e, L), we get

b L
- [xwl(vl,a::c + av2,:cr) - (ﬂjwl,x + wl)(vl,x + av?,x)]
C
¢ (2.12)
b (F b [F b (F
+ / [zw1 ] g [V1,2 + avo z]dx + )\/ rwivide = / Twi grdz.
c € c € c €

Next, multiplying the second equation in (2.8) by fzws, with w, € C*°([0, L]) N H}(0, L), and
proceeding in a similar way, it follows that

L
- [zwa (bavy gz + V2 22) — (W2 4z + w2)(bavy & + v2 4 )]
€
1 L r L L
+ / [zws] gz [bavi » + v2 g]dx + — / Twav2 pdx + /\/ TWwovadr (2.13)
c € c € €

L
= / TwogodT.
€

Adding (2.12) and (2.13) hand to hand, we obtain the identity

L [iwm(L)(va(L) + ave 5 (L)) + %w2,$(L) (bavy 2 (L) + vgvx(L))}
b

+ - [ew1 (€) (V1,22 (€) + av2 22 (€)) — (€wr z(€) + wi(€))(v1z(€) + ava z(€))]
42 fewn(e) (bava(€) 4 02,00(0)) — (cw0(0) + w3(6)) (bavn o(6) + v2()] (2.14)
b

L 1 (L
= C/ U1z [(2w1) e + a(zw2) s dz + C/ vz [ba(zw) gy + (TW2) 2y + r(zws)] do

LT Lo
+ )\/ T [vlwl + vgw% dr — / T [glwl + ggwg] dx.
€ c € c

Observe that (2.10) and (2.11) allow us to pass (2.14) to the limit, as e — 0. Hence, from
(2.7) we get

- L [iwl,x(L)(vl,x(L) + aUZ,x(L)) + %wlx(L) (bavl,l‘(L) + UQ»I(L))]

= lim {b [ew1 (€) (V1,22 (€) + av2 22 (€)) — (€wr z(€) + wi(€))(v1z(€) + ava z(€))]

e—0 | ¢

+ % [ewa(€) (bavy zq(€) + v2,zz(€)) — (ewz z(€) + wa(€)) (bavy 4 (€) + va,z(€))] }

=0.
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Since @ = (wy,we) is arbitrary, we conclude that

Ul,a:(L) + aUQ,:E(L) =0,
bavi (L) + va (L) = 0.

Solving the system above we obtain (1 — ba2) v2, (L) = 0 and, due to the assumptions on the
coefficients of the system, it follows that vy ;(L) = va (L) = 0. Then, ¥ € D(A;). Reciprocally,
from the analysis developed above, it follows that the operator A1 — A : D(A;) — H is onto.
Then, A1 — X\ generates a strongly semigroup of contractions in H.

[ ]
Well-posedness in [L%L_m),ldm]2

Combining Hille-Yosida Theorem and (partially) Theorem 2.1.1, we prove that the state operator
associated to (2.1) generates a strongly continuous semigroup in [L%fo)—l dx]2.

— — b 1
Theorem 2.1.3. Let i = (uy,u2) and Ayl = (U1 000 — QU2 220, — S UL zoe — U220z — SU2,2)
with domain

D(A) = {i € [H*(0, L) NV HY (0, D) tas € (L7 gy100]% (L) = O} € [LE_ 1)
Then, Ao generates a strongly continuous semigroup in [L%L—:c)—ld:c]Q

Proof. We first introduce the spaces
= [L%L—:B)’ldxp’ V= {ﬂ € [H(% (O’ L)]Q’,Jx € [L?L—x)*de]Q} , W= [Hg(ov L)]27 (215)

endowed with the norms

R b _1 1 . b
WM%:EWL—@ 2u[72 + (L — @) 2ual[72, [l w122 720.1) + llw2,02[72,

e

. b - -
HW%:EWL—@IWME+H@—@1WM@,

where @ = (u1,u2), U= (v1,v2) and W = (wq, w2).
We first remark that:

(i) V is a Hilbert space and V C H with continuous embedding.
Indeed, according to [22], the space V := {u € H}(0,L);u, € L%L_x),zdx}, endowed with

the norm ||u||y := ||(L — #) tug||z2, is a Hilbert space and
9 2
L= 2)ull 2 < SlJully, Vu e V. (2.16)
Consequently, V C L%fo)—l 4 With continuous embedding, since
L 3 3
L 9 223

The results above allow us to deduce that V' is a Hilbert space and, in addition, that the
embedding V C H is continuous as well.
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(i) W is a Hilbert space and W C V with continuous embedding.

Poincaré inequality guarantees that the norms || - ||y and the H?-norm are equivalent.
Now, observe that, from Hardy inequality we have that

L 2 L
/ %dw < C/ v2dz, Yov e HY(0,L) with v(L) = 0. (2.18)
o (L—=x) 0

Thus, for any v € W, it follows that vy z,v2, € H'(0,L) and v1,2(L) = v2 (L) = 0. Then,
from (2.18), we get
|l < Cllvllw, VieW. (2.19)

This shows that W C V with continuous embedding. It is easily seen that [D(0, L)]?
dense in H, V and W.
Next, we proceed as in the proof of Theorem 2.1.2 and define the bilinear form
CL)\(U, w) = a’(U7 ZU) + )‘(177 ZE)H,

where A > 0 will be defined later, and

b [F
a(U,w):C/O Ul [(Lw—lx> +a<Luizx> :|d£6

1 (L w1 w9 w2
- 2 1o dz, VG €V, @ € W.
+C/O . |:a<L_m)xx+(L_‘r>:c:c+r<L_$ ! v s v

Then, in order to apply Theorem 2.1.1, the next steps are devoted to prove that ay(-,-) is
continuous and coercive.

(i) Continuity

First, observe that, for any v = (v1,v2) € V and w = (w1, wy) € W

la (T, @)| < lc)/OL ™ wi, :va; +2(Lw_1’”;)2 +2(L 1f1x)3 dx
+ b|Ca‘ OL’ 1z wn; +2(Lw7272)2 +2(LI—UZ:1:)3 dzx
A e
+ % /OL V2 4| zUz_xZ + 2(ij’i)2 + 2(L f2$)3 + rLuf:r dx.

Then, from Cauchy-Schwarz inequality, (2.16), (2.17) and (2.19), we obtain a positive constant
C > 0, such that

(7,0 _
er|ca| [|w2’m|L2 H L2 +2H(L152 L2 Lvlfl‘ L2:|
2 ool 22| 4ol 22| |2 |+ ol 2]
T ([ ;T’lﬁ+4u?z =]

1

c

V2«
L—z

w2 i U
2(%@_@2 +vwmm>gmwwwm,
L

L2
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which shows that a(-,-) and a)(-,-) are well defined and continuous on V' x W.

(ii) Coercivity

For any @ = (w1, wz) € W, we have

b [ W1,zx W1,z w1
U,w) = : 2 : 2 d
o, @) c /0 Wie [L -z + (L — x)2 * (L —x)? v

After integration by parts, if follows that

N 3b L 2 1 2 1
a(, i) = 5 || Wi + 20wt + gy | g
) L, (2.20)
_Bb/ w? + 2aww +1w2 1dﬂf—r/ Ldl‘
cJo ! 2 (L —z)* 2¢Jo (L—x)*

Then, for any € > 0, we can apply Young inequality to obtain

3b L w} 3b 1 L w?
7. > Z=(1— T 4 S22 —g2e! T 4
a(w,w)_2c( 6)/0 (L —x)? x+2c(b ‘e )/0 ( !

L—x)?
b Lw? b 1 Lw?
~32(1 U g 32 2—1/ Mg
c( +6)/0 (L —x)* v c(b+a6 ) o (L—ux)* v
L 2
_?“/ Y2 g
2¢ Jy (L—x)?

Using (2.16), we can estimate the right hand side of the above inequality as follows

1b Lowi, 1b 1 2,1 Lows,
U, W 1-17 ——d 17a%€™ ——d
o, @) 2 ( 6)/0 (L —x)? $+60(b )/0 (L —x)? o
P (2.21)
_ Wa

Mg
2 Jo (L—22™"

In order to estimate the last term in the above inequality, we apply Cauchy-Schwarz and Young
inequalities and (2.16). More precisely, for any § > 0, we get

Lo w2 5 ,
| e < =0 Rl ) Rl

< gXCH( z)” 1HDwHL2H(L-—$)_%uuHL2 (2.22)

<6lI(L — )7

L _1
2z - ) Fwnli
Combining (2.22) and (2.21) it follows that

r|L 1 1 b _
ol = o) 2wlffe > (1 =17 |(L - 2)~!

16,1 _ r
T S [T N

a(W, W) +

w1 :v”%ﬁ
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Then, taking into account the assumptions on the coefficients of the system, we can choose € > 0,

such that |a|v/b < /€/17 < 1/17. For this choice of € we fix § < ﬁ (1 —17ba*e™') and define

= —(1-17 —— | = =17 — 01— .
Mes mln{G( 6),|:66<b a e > 5120

Then, for any @ € [D(0, L)]? we have that

7| L
18051

a(W, ) + 1211 = me, 61015 (2.23)

By density, the result also holds for any @ € W, which shows that the bilinear form

a) (v, W) = a(v, W) + X\, W) g

|r|L

is coercive for \ > 1805 -

Then, for given § = (g1, g2) € H, Theorem 2.1.1 guarantees the existence of a function v € V
which solves the problem
a)\(ﬁa U?) = (§7 w)f‘h Vi € W. (224)

In what follows, we prove that 7 € D(A3).
(iii) Regularity
We proceed in several steps:
e Step 1: ¥ € [H?3(0,L)]>.
Arguing as in the proof of Theorem 2.1.2, from (2.24) we deduce that

{Ul,xa:ac + av2 zrx + vy = g1 in D/(07 L)7 (2 25)

bavy yoz + V2,zz0 + T2 + cAva = cgo  in D'(0, L),

where D’(0, L) denotes the dual space of D(0,L). Moreover, since § € [L?(0,L)]? and ¥ €
[H1(0, L))?, it follows that @y, € [L?(0, L)]? and hence # € [H3(0, L)]2.
e Step 2: ¥(L) = 0.

Let us introduce the function w(z) = (22(L — x)%wy(z),2%(L — z)%wo(x)), where w; €
C*>([0, L]) are arbitrary chosen, for i = 1,2. Observe that @ € W and (L —z)~ 1@ € [H}(0, L) N
C>=([0,L])]?. Then, since v € [H3(0,L)]?, we can multiply the first equation in (2.25) by
bwy/c(L — x) and integrate by parts in (0, L) to obtain

b [F b
c / < - ) (V1020 + V2,020 + Av1]dz = =[L*01(L) (v o (L) 4+ ave(L))]
clo \L—=x c

(2.26)

b (L[ b (/7 w b (Y w
- - zd A— dr = — dx.
+C/0 <L_‘T>x:p[v17 +av27] v C~/0 <L_x>v1 ! C/O <L_x>g1 !

Analogously, if we multiply the second equation in (2.25) by we/c(L — z) and integrate by parts
in (0, L), it follows that

I !
c / <Lw2x> [bavi gzz + V2,200 + TV2, 5 + cAV]dr = E[szz(m(ba”l,x([’) +v2,5(L))]
0 _

1 [ L L
+ - / w2 [bavy o + vo p]dx + T/ w2 V. pda + )\/ _w2 vodz (2.27)
clo \L—x/_, ' ' clo \L—x ’ o \L—x
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Adding identities (2.26) and (2.27) hand to hand, we get

(2201 (1) (01 () + e (D) 4 [E205(L)(bavn (L) + w2 (E))] + 0(7, ) = (30

Then, from (2.24), the following holds

2201 (L) (010(E) + e (D)] + - [E20a(L) bavn (1) + 02 ()] = 0.

Since wy and wy were arbitrary chosen, the identity above allows to conclude that

V1,2(L) + ava (L) =0,
bavy 4(L) + va (L) = 0.

Solving the system above we deduce that (1 — a?b)vs (L) = 0 and, due to the assumptions on

the coefficients of the systems, we obtain vy (L) = va (L) = 0.

e Step 3: Uppsr € [L?fo)—ldz]Q

We first prove that vs zq, € L?L—x)*lda:' Indeed, from (2.25) it follows that
V2, paz = (1 — baQ)_l[)\(bavl — cv) + (cg2 — bagr) — rva 4.

Since g;, v; € L%fo)—ldw for i = 1,2, we claim that v, € L%fo)_ldx‘ Taking into account that
va, € HY(0, L) and ve (L) = 0, we can apply (2.18) to obtain

L 42 L g2 L
/ 2’ﬂcda;<L/275"dgc<LC/ V9 4p
o L—z" =~ " Jo (L-x)* — o

for some constant C' > 0, which proves the claim. Thus, from (2.25) we conclude that v; gz, €
for i =1,2. Then, v € D(As) € W.

L2
(L—z)~ldz’
From the analysis developed above, it follows that, for A > llglél, the operator Ay — X :
D(Ay) — H is onto. Thus, in order to conclude the proof, is sufficient to show that Ay — A is
dissipative in H. In fact, for any @ € D(A3) we can integrate by parts to obtain

S oo 1b 1
(a8 = =5 3.400) + 2010w 0) + 503, 0]

2Lc
3b (" ! !
— 20/0 [w%z + 2aw gw2,e + bwg,x] mdw
) . ) ro L w2
N sy el v oo 7wy
+ C/o |:'UJ1+ aw1w2+bw2] (L —z)* x+2¢ 0 (L—x)Qx

Proceeding as in the proof of the coercitivity of ax(-,-) (see, for instance, (2.20)), we obtain a
positive constant, denoted by m,, 5,, such that

(Ao — M, @) g < —me, 5, |0} <0,
|r|L

which allows us to conclude that the operator As — A is maximal dissipative for A > 18e; - Then,
by Hille-Yosida theorem, it generates a strongly continuous semigroup in H. |

The results proved above combined with the semigroup theory give us the global well-
posedness for (2.1). Moreover, an additional regularity result for solutions of (2.1) is given
by the next proposition.
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Proposition 2.1.4. Let H and V the Hilbert spaces defined in (2.15), and let T > 0 be given.
Then, for any (uo,vo) € H, system (2.1) has a unique solution (u,v) € C([0,T); H)NL*(0,T;V),
such that

(s )| oo 0,701y + 11(ws V)| 220,75y < Cll (2o, v0) || 1, (2.28)
where C(T, L) is a positive constant.

Proof. With the notation introduced above, system (2.1) can be written in following equivalent
form

{ﬁt = Agii, t >0, (2.29)

w(0) = 1,
where @ = (u,v),ud; = (ut,v¢) and @y = (up,vp). Since D(Ag) is dense in H, it is sufficient to
prove the result when @y € D(As). We first remark that the estimate

||| oo 0,75 < Cllo| |1 (2.30)

is a consequence of the semigroup theory. On the other hand, if Wy € D(A3), the solution
i € C([0,T); D(A2)) N C*([0,T); H) and satisfies (2.29) in the classical sense. Then, taking the
inner product in H with @ and proceeding as in (2.23), we obtain positive constants m,, 5, and
41, such that

Lo ld, S _ rlL
(@ @)1 = 5 TN = —a(@. ) < —me, s TON} + 50 1T
Since V C H with continuous embedding, the following holds
d, . "L, -
01 <~ (2me5 - 5 YOI

|r|L
9cdo

for some 8 > 0. Hence, choosing d2 < 67 satisfying 2m, 5, — 8
estimate over (0,7), we get

> (0 and integrating the above

. . Ir|LY | -
O + 0l > (200 = B a1
Then,
1220020, < Cllo |l (2.31)
where C' is a positive constant. From (2.30) and (2.31) we obtain (2.28). [

2.1.2 The nonhomogeneous system

In this subsection, attention will be given to the nonhomogeneous system

Ut + Ugze + WVzze = f1 em (0,7)
CVt + TUz + Vpgr + bQULze = fo em (0,7)
w(0,t) = u(L,t) = uy(L,t) =0 em (0,7), (2.32)
v(0,t) = v(L,t) = v (L, t) =0 em (0,7)
u(x,0) =ug(z), v(x,0)=wvo(x) em (0,L)

We start with the following result:

12 and (f1, f2) € L?(0,T;[H'(0,L)]?) system

Proposition 2.1.5. For any (ug,vo) € [L? ;
12) N L2(0,T;[H(0, L)]?), such that

zdx

(2.32) has a unique solution (u,v) € C([0,T]; [L?

xdzx

(s 0)[ oo 0,13122, 12y H (W V) 200,701 (0,1072) < © (H(umUO)H[LidI]Q + H(fbfQ)"L2(0,T;[H*1(0,L)]2)) :
(2.33)

where C(T, L) is a positive constant.
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Proof. We first write system (2.32) as

5(0) = @, (2.34)

{ﬁt:Alw—f—ﬁ t>0,
where A; was introduced above, @ = (u,v), Wy = (ug,vo) and f = (f1, f2/c). Since D(A;) is
dense in [L2, ]?, it is sufficient to prove the result when wy € D(4;) and f e C(0,T); D(Ay)).
In this case, the solution @ € C([0,T); D(A1)) N CY([0,T); [L?,,]?) and satisfies @; = Alw +f
in the classical sense, which allows us to take the inner product in [L?(0, L)]? with ( TU, TV).
Thus, after integration by parts over (0, L), from the first and the second equations in (2 32) we

obtain . . . .
1bd b b b
——— zulde + 3/ uidw — a/ TULVppdr — a/ UVzpdT
2 C dt 0 2 (& 0 C 0 C 0
I (2.35)
b
= / zufrdx
€Jo
and L L L L
1d 3 b b
3q zvde + 2/ Uid:p - a/ TV UgedT — a/ VUgprdr
0 €Jo ¢ Jo ¢ Jo (2.36)

L L
1
_7’/ vide = / v fodx,
2c 0 cJo

respectively. Adding identities (2.35) and (2.36) hand to hand and integrating over (0, 7), with
0 <7 <T,it follows that

! / o]t o] e / Co [P g
5 u v? | da >/, x uo va | da
/ / { + v%} dmdt+3/ / Ug Vg dadt (2.37)
—/ / videdt = / / xufldxdt+/ / xv fodxdt.
2¢ Jo Jo cJo Jo cJo Jo

Since Hg(0,L) C L?(0,L) ¢ H~1(0,L), for all ¢ > 0 we obtain a positive constant C, > 0
satisfying

T L T T L T
/ / xw; fidxdt = / (fi,xw) gr—q adt < 6/ / w?  dadt + CE/ | fil|5;—2dt,  (2.38)
o Jo 0 o 2Jo Jo 0

where we have set w; = u, wy = v, i =1,2, and (, >H-1,H§ denotes the duality pairing between
H~Y0,L) and H}(0, L). Moreover, from Young inequality, we get

b T prL b T
a/ / UgVgpdxdt < — <61/ / 2d$dt+/ / 2dxdt> (2.39)
c Jo 0 C 2 0

for all e; > 0. Combining (2.37), (2.38) and (2.39) we obtain the following estimate

STz, p =5 IIonLz P

1—61 //ud:rdt—i—(—)// dedt—// vdzdt  (2.40)
< / [ Bz ] avv o [0
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In order to conclude the proof, we apply an inequality proved in [14]: For 0 < € < L2 we have

T L T
1/ / vidzdt < 6/ / 2dxdt—|—/ / zvdzdt.
2Jo Jo 2 Jo

The above inequality and (2.40) leads to

- 3 el (7 [t
100+ (30— 5] 2 [ [ idaat
3b a? |1"| )
*[u»(b‘q)‘( )]// adeds
. ]
§7Hw0||[2L2 2+20f xUdedt+C 17 ()3 rjedt

T —
< Lol '/r| mgpﬁ+c/W [

Hence, we can conclude that
Bz o+ 112 a1 0. < € (mmu2p+/°| Ol

o [ Na@ls pt
0 zdx

for some C,C" > 0. Applying Gronwall lemma we obtain (2.33). The uniqueness follows from
the semigroup theory. |

In order to obtain the controllability property we need a similar result in the spaces H and
V, defined in (2.15), when (f1, f2) = (p(z)h)z, with h := (h1, he) € L?(0,T;[L?(0, L)]?).

Proposition 2.1.6. For any (ug,vo) € H and h := (hy, hy) € L2(0,T; [L2(0, L)]?) set (f1, f2) =
(p(x)h)z, where p € C([0,L]) is given by (1.4). Then, system (2.32) has a unique solution
(u,v) € C([0,T); H) N L*(0,T; V), such that

[[(w, 0)|| oo 0,750y + (1w, 0)|[ 200,y < C (1[0, vo)llv + [1(ha, b))l 20,3 1220,0)2)) » (2:41)
where C(T, L) is a positive constant.

Proof. We proceed as in the proof of Proposition 2.1.5. By using the same notation, we first write
system (2.32) as (2.34) considering As instead of A;. Since D(A2) is dense in H, it is sufficient
to prove the result when @y € D(As) and h € C§°((0,T) x (0,L)), so that f e cyo,T); H).
In this case, the solution @ € C([0,T]; D(A2)) N C([0,T]; H) and satisfies @, = Ao + f in the
classical sense, which allows us to take the inner product in H with @ = (u,v). Thus, arguing
as in (2.23) we obtain

r|L
18651

(@, @) g = —a(@, @) + (f, @) < —me, |03 + @[3 + (0, (2.42)

where m,, 5, and 01 are positive constants. On the other hand, Cauchy-Schwarz inequality gives
us that

Kﬁwmw=ﬁA?mmm»Lﬁfm+iAQmwmhLﬁxm
gg /OLP(:E)M (L“_ +(Lf )Q)dx+i /OLp(m)h2<Lv_zx—|—(Li}$)2>d:v

< C|[n|] 20,02 ([ Tellir2(n—o)-22 + [[0]l[z2(—2)-112) »
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for some C' > 0. Moreover, from (2.16) we have

_— N R C R N
((Fr @)l < Ol yplldlly < SAEIR + ORI (2.43)

where 0 < v < 2C~'my, 5, and Cy > 0. Combining (2.43), (2.42) and integrating the resulting
estimate over (0,7), for 7 € (0,7), it follows that

Hw@+Awm%wgwm@+d(AHmm%ﬁ+A|W&WMMQ7

which allows us to conclude the result by applying Gronwall lemma. |

2.2 Controllability of the linearized system

In this section we study the main controllability properties of the linearized model corresponding
to (1.5)-(1.7). More precisely, we consider the following linear system with two distributed control
inputs:

Ut + Ugzr + Wz = f1 = (p(2)h1)s em (0,7) x (0, L),

cvp + Vg + Vggy + batiyzy = fo = (p(x)h2)r em (0,7) x (0, L),

w(0,t) = u(L,t) = u, (L, t) =0 em (0,7), (2.44)
v(0,t) = v(L,t) = v, (L,t) =0 em (0,7),

u(x,0) = up(z), v(z,0)=1vy(x) em (0,L),

where p was defined in (1.4) and hy, he € L2(0,T; L%(0, L)).
From now on we denote by

H the Hilbert space defined in (2.15) and by H* = [ZL%L_I)dI]2 its dual space.

In order to characterize the controllability properties of the system above we use the Hilbert
Uniqueness Method (HUM). Therefore, it is necessary to introduce the following adjoint system
corresponding to (2.44):

— ¢t — Puzx — Aygz =0 in (0,7 x (0, L),

—cthy — 1Yy — Yoy — bAGrpr =0 in (0,7) x (0, L),

#(0,t) = ¢(L,t) = ¢.(0,t) =0 in (0,7), (2.45)
¥(0,8) = ¥(L,t) = 2(0,2) =0 in (0,7),

o(z,T) = ¢r(x), Y(z,T)=1r(x) in (0,L)

We remark that, except for the coefficients, the change of variables x - L —z and t — T — ¢
in (2.45) leads to the system (2.32) with f; = fo = 0. Then, in a similar way, the global well-
posedness results obtained in the previous section can be proved for the adjoint system . In
particular, an analogous estimate given by Proposition 2.1.5 remains valid for the solutions of
(2.45):

Proposition 2.2.1. For any (¢p,¢r) € H* system (2.45) has a unique solution (¢p,v) €
C([0,T); H*) N L*(0, T; [H*(0, L))?), such that

(05 D) poe 0,750y + (s D) 20,751 0,0)2) < Cll(@T, 1) 17, (2.46)
where C is a posilive constant.

We can pass now to study the controllability properties of (2.44). The main result of this
section reads as follows:
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Theorem 2.2.2. Let T' > 0, v € (0,L) and p(x) as in (1.4). Then, there exists a continuous
operator ' : H — L?(0,T;L?(0,L)) N L%T 1t)a,/t(() T;[H(0,L)]?), such that, for any iy, @ € H,
the solution @ of (2.44) with h =T(i,) satisfies ©(T,x) = ul( ) in (0, L). Note that the forcing
term f = (p(x)Ih)y is actually a function in L( (0 T L?(0, L)) supported in (0,T) x (L —
v,L).

T—t

Proof. Due to Proposition 2.1.6 we can assume that (ug,v9) = (0,0).
The proof will be done in several steps:

e Step 1: For for any h := (hy, hy) € L2(0,T;[L2(0, L)]2) and ®p := (¢p,1br) € H*, it follows
that

-

T
((T, ), 7) 1.1 :-—jg (s () B 20,2, (2.47)

where @ := (u,v) and ® := (¢,) denote the solutions of (2.44) and (2.45), respectively, Ci;c,x =
(¢z,z/c) and (-, ) g g+ denotes the duality pairing between H and H*.

We start with more regular data ®7 € [D(0,L)]2 and h € [D(0,T) x (0,L)]%. Next, we
multiply the first equation in (2.44) by gqb, the second one by %@Z) and integrate by parts over
(0,T) x (0, L) to obtain

b L b T L
E /O U(T)(,Z5(T)d$ + C/O /0 (_ud)t - u¢xzm_va¢zmx)dxdt
(2.48)
- —/ / 2)hidpdrdt
and
L T L
/ ’U(TW(T)dl" +/ / (_th - 'Ufwx - Ul"ﬂxw:ﬂ_ubjwrxx)dindt
0 o Jo ¢ ¢ (2.49)

=_= / / 2)hotpdadt,

respectively. Adding (2.48) and (2.49) hand to hand, we get

=

T
(W(T), D7) [r2(0,))2 = —/0 (hs p(2) Pz ) (220,02t

Then, Proposition 2.2.1 allows us to conclude the proof by using a density argument.

e Step 2: Let 7y := (20,wo) € [L?;,]%. Then, for all v € (0, L) there exists a positive constant
C =C(T,L,v), such that

T
il e < C QIO gy + 17O e e (2.50)

where 77 := (z,w) solves the problem

(24 + 2z22 + QGWege = 0 in (0,7) % (0,L),
cwt + TWy + Wage + bazggy =0 in (0,7) x (0, L),
2(0,t) = z(L,t) = zx(L,t) =0 in (0,7), (2.51)
w(0,t) =w(L,t) =wz(L,t) =0 in (0,7),
[ 2(2,0) = 20(2), w(z,0) =wo(x) in (0,L).
Moreover, if 7o € HZ (0, L), then 7 € L*(0,T; [H?(0, L)]?) and
T
| 10 Byt < Cllil By e (2.52)
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for some C > 0.

Before proving estimate (2.50), we remark that the existence of solutions is guaranteed by
Proposition 2.1.5. Thus, we first recall an identity derived in [34]. For any ¢ € C*°([0,T] x [0, L])
multiply the first equation in (2.51) by ng and the second one by %qw. After integrating by
parts over (0,7') x (0, L) and adding the resulting identities we obtain

;AL F@2+w]dx _.L/ / %[z:+w]dmﬁ

1
/ [z + 202,y + bw ] (0)dt / / Qoo [z + 2azw + bw dxdt (2.53)

1
//qm [z + 2azpwy + 7 g}dxdt—/ / QW 2dzdt = 0.

In particular, if we choose ¢q(z,t) = (T — t)p(x), where p € C*°([0, L]) is nondecreasing and
satisfies

p(x) =

z if 0<z<v/4,
1 if v/2<a<lL,

from (2.53) it follows that

b
/ p(z ){zo+w0]dx</ / [z +w]d:1cdt
0
2 Lo ro(trr 2
+ 37 px(x) 25 + 2023wy + —wy | dedt — — P (x)wdxdt.
¢Jo Jo b ¢Jo Jo

Moreover, from Young inequality we get

L b T - .
[ o) |25+ ot do < 0@) [ QRO 00 + 10Ny

Hence,

_ L b
H’?OH[ZLidm]z < C(L,u)/O p(x) [ng —i—w[ﬂ dx

T
< C(T,L,v) /0 (7 (ONE20, 52 + IO Brago o).

To prove (2.52) let us consider the operator A : D(A) C [L?(0,L)]?)*> — [L*(0,L)]]? with
domain

D(A) = {77 € [H 0 H}(0, L)% 77(0) = (L) = 7,(L) = 0}

and defined by

R ab 1 T
AT] = (_Z:c:m: — QWxxx, _?Zzzx - Ewmcm - Ewaz)

Then, proceeding as in the proof of Proposition 2.1.5 (see also Theorem 2.2 in [34]) we obtain

T
/0 |[7(t)||? 3 (0,22 < Cl1iol 1Pz 0, )2

On the other hand, if 7o € D(A), Theorem 2.2 in |34]| guarantees the existence of a unique
solution 77 € C([0,T]; D(A)) of (2.51). Let 5 = ;. Then, 3 solves the system



where 50 = E(O) = Afjo = (=20 zaz — W0 gz —%bzo,mx — %wowm — %wo@) € [LQ(O, L)]Q. Hence,
by Theorem 2.2 in [34], it follows that there exists Cp > 0, such that

HBHL%O,T;[H&(O,L)P) < COHﬁW[L%O,L)P

and, therefore, 77 € L?(0,T; [H*(0, L)]?). Finally, by a standard interpolation argument (see [8]),
we derive (2.52).

e Step 3: For any dp = (¢, 9r) € H*, the following observability inequality holds

T
IBrlfh < C [ lloel iz et (2540

where & := (¢, ) is the solution of (2.45) corresponding to &, and C is a positive constant.

-

If we set 7j(z,t) = ®(L — z,T — t), inequality (2.54) is equivalent to

T
il w<C / 1p(L = 77el B0 e (2.55)
xTdx 0

where 7 solves (2.51). Therefore, we will focus on the proof of (2.55).
We argue by contradiction and suppose that (2.55) does not hold. Then, we can find a
sequence {fjo,} C [L2,,]%, such that

T
L= lonlyz, e = 0 [ Winel s gyt (2.56)

where, for each n € N, the function 77, denotes the solution of (2.51) with initial data 7.
From (2.33) and (2.56) we deduce that {7,} is bounded in L?(0,7T;[H'(0,L)]?). Then, by
(2.51) {#fns} is bounded is L2(0,T;[H~2(0,L)]?). Hence, Aubin-Lions lemma guarantees the
existence of a subsequence, still denoted by the same index n, such that {7,} converges strongly
in L2(0,T;[L?(0, L)]?). On the other hand, (2.50) and (2.56) gives

- o 1
||7707n||[2Lidz]2 <C ||77n||%2(0,T;[L2(0,L)]2) + o

which shows that {7j,} is a Cauchy sequence in [L?, ]*. Denoting by 7o its strongly limit in
[L2,.]* we get

ollzz,, )2 = 1-

Moreover, if 77 denotes the solution of (2.51) corresponding to 7y, from Proposition 2.1.5 the
following convergence holds

il — i in L*(0,T;[H'(0,L)]%)

and then, from (2.56),

oo — 0in L2(0,T; [H(0, g)]Q).
The convergences above imply that 7, = 0 in (0,7) x (0,v/2). Hence 7j(z,t) = g(t) in (0,T) x
(0,v/2), for some function § = g(t). Since 7 satisfies (2.51), from the boundary condition
7(0,t) = 0 we deduce that 7= 0in (0,7) x (0,v/2). Then, from Holmgren theorem, 7 = 0 in
(0,T) x (0, L), which implies that 7(x,0) = 0 contradicting HﬁOH[Lide = 1. This concludes the
proof of Step 3.

It remains to apply the Hilbert Uniqueness Method (HUM). Let A denote the linear map
A:H* — H*
Sy — (L — )" Ta(-, T),
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where @ is the solution of (2.44) with h(z,t) = —p(2)(¢s, ¢tb,) and @y = (0,0). We first remark
that A is continuous. Indeed, from (2.41) and (2.46) we have

MA@ |+ = [[(L = &) @ (-, )| e < ]| oo o150
< C|n]|p20,1322(0,)12) < ClldallL2(0,73122(0,L)2)
< C||@r| |-

Moreover, taking (2.47) and (2.54) into account it follows that

T
(M@1), B1)) 1+ = (B T), ) e = /0 106l Pago et = I,

which shows that A is invertible and A~! is continuous in H*.
Hence, we can define the operator
I':H— L*0,T;[L*0, L)%
@ b= () (6o, cva),

where & = (¢, ¥) solves the adjoint system (2.45) with &p = A~ (( ) Lii1). Then, we have
that I' is continuous and the solution @ of the problem (2.44) with h( = I'(t1) and @y = (0,0)
satisfies W(-,T) = @;. To show that I' is continuous from H into L( 1t (0 T;[HY(0,L1)]?) it is
sufficient to prove that

T
| @ = 01181 et < OBy sy (2.57)

for ® solution of (2.45). Indeed, if (2.57) holds the continuity of A1 give us that

T
IP@ONZ2 oo _/0 (T = 8)llp(éw: va) Il o,y

(T—t)dt
<C ! T —1)||®|[? dt
¢ ( M@ a2(0,1)2
S CHq_;TH[ZLQ(L—x)de S CHﬁlH%h

for some C' > 0. If we make the change of variables z — (L — z) and ¢t — (T — t) estimate
(2.57) is equivalent to

T
| O Rz e < Cllol sz, o 259
0 raxr

where 77 solves (2.51). Estimate (2.58) can be proved as follows, combining (2.52) and Fubini
theorem:

T T T T
| sl s = [ (/ ’|77(3)||[2H2]2d5>dt<0 | 0O iy et < Cllillz,

The proof is now complete. |

2.3 Controllability of the nonlinear system

This section is devoted do analyze the local exact controllability properties of the full system in

the space H = [L%L_x),lde defined in (2.15).

We note that the solutions @ = (u,v) of (1.5)-(1.7) can be written as
W=1ur+y+ 72,
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where w7, is the solution of (2.1) with initial data @y € H, ¥ = (y1,y2) solves the problem

Y1t + Y1, zxx + Y2 zrxx = (p(l‘)hl)z em (07 T) X (0, L)7
cyat + Y20 + Y202z + 0aY1 gze = (p(x)h2), em (0,T) x (0,L),
y1(0,t) = y1(L,t) = y1.(L,t) =0 em (0,7), (2.59)
y2(07t) = yZ(Lvt) = y2,x(Lat) =0 em (OaT)>
y1(x,0) =0, ya(z,0)=0 em (0,L),
with k= (hy, hy) € L2(0,T; [L2(0, L)]?), and Z = (21, 23) is solution of
21t + 21,222 + 22 33z = G1 €1m (Oa T) X (07 L)v
czot + 1225 + 22 gax + 0021 goo = G2 em (0,7) x (0,L),
zl((), t) = Zl(L, t) = 21737([/, t) =0 em (0, T), (2.60)
22(0,t) = 22(L,t) = 29 ,(L,t) =0 em (0,7),
21(z,0) =0, 22(z,0) =0 em (0,L),

with G = (G1,G2) = (—uuy — a1vvy — ag(uv),, —vv, — baguuy — bag (uv)y).
The following result will be needed to study the solutions of (2.60). In order to prove it
we recall that the space V defined in (2.15) can be written as V = [V]?, where the space

V= {u € HY0,L);u, € L%L_x),de}, endowed with the norm ||ul|y := ||(L — )~ tug|| 2.
Proposition 2.3.1. Let H and V be as in (2.15).
(i) If u,v € L*(0,T; V), then (wig, vvg, uv,, uzv) € L(0,T; [L%fo)*ldxyl) and the map
(4, 0) € L2(0, T3 V) = (utty, 00y, v, wg0) € LY(0, T3 (L2, 1))
s continuous. Moreover, there exists a constant C > 0, such that

| (utis, v, wvs, uﬂv””|L1(0,T;[LfL_I),1dz]4) < Cllullz20, 7010l L200,7v) -

(ii) For G € LY(0,T; H), the mild solution Z of (2.60), given by

t
o, t) = / So(t — 5)G(s)ds,
0
where (S2(t))i>0 is the semigroup giwen by Theorem 2.1.3, satisfies
7e C([0,T); H)NL*0,T;V) = X
and the following estimate holds

2l Lo 0,750y + 1ZN 220,70 < NGllLr0,7:m)-

Proof. For u,v € V we first apply inequality (2.17) to obtain

_1
luvellz, < fulleee (L = 2)"20e][ 2 < Clluly[lvlly.

z)~1ld

The remaining terms can be estimated in a similar way and (i) follows.

To prove (ii), we first assume that G € CY([0,7]; H). In this case, the solution z €
C([0,T); D(A2))NCY([0,T]; H) and, from the classical semigroup theory, the following estimate
holds

12]] Lo (0,750) < HéHLl(O,T;H)- (2.61)
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On the other hand, if we write (2.60) as (2.34), with Ay and G instead of A; and f, we have
that 2z, = A2+ G is satisfied in the classical sense. Then, we can take the inner product in H
with 2’ to obtain

_1d
S 24t

= =

(2, 2)m 1217 < —ClIZOIF + CNZOE + (G, 2

where C,C" are positive constants. Integrating the estimate above over (0,7), from (2.61) it
follows that

t
‘|5|‘%W(O,T;H) + HZH%Q(O,T;V) <C (/0 Hg(S)H%IdS + |’Z‘|L°°(0,T;H)HG”Ll(O,T;H))

< C(T)HéHil(o,T;H)’

for some C(T') > 0, which proves the result when GeCt ([0,T]; H). Then, by a density argument
we obtain the result for G € L'(0,T; H). [

We remark that, for all @, v € L?(0,T; V) and G given in (2.60), Proposition 2.3.1 guarantees
the existence of a constant C' > 0, such that

IG@ 2 0 < Ol (2.62)
1G (i) = G(0)|| 1 0,31 < C (HﬁH%?(O,T;V) + |’17H%2(0,T;V)) @ = [ 20,7, (2.63)
Then, for some R > 0, to be defined latter, we introduce the ball
Br ={id € L*(0,T;V) : ||l 2(0,r5v) < R}
and the operator T : L?(0,T;V) — X, as follows

- —

T(@) = Sa(t)iiy + /0 Salt — 5) [(p(a) R, + Gii(s))] ds,

for X given in Proposition 2.3.1. Since T (@) = @y + § + Z, for all 4, v € B, from Propositions
2.1.4, 2.1.6, 2.3.1 and estimates (2.62)-(2.63), we obtain constants C7,C2 > 0 (which dos not
depend on ||to||g and |[h]|z2(0,1:[r2(0,1)2))> Such that

T @0y < O (Iollar -+ 1Lz, ) + CoB2

[T (@) = T ()||r2(0,m5vy < 2C2R|[4 = V| 12(0,1;v)-

Choosing R = (4C5)! and 65 = (16C1Cy) L, if @ and h satisfy
ldol|ir < 0k, 1Bl L2(0.712(0.02) < O,
the corresponding solutions @, v € Br and
T (@)|r20,1v) < R,
[T (@) — T (O)|r200,m3v) < %Hﬁ — U200,

Then, by Banach fixed-point Theorem the operator 7 has a fixed point in Bg.
From the discussion above, we obtain the following result:

Theorem 2.3.2. There exists § > 0, such that for any @ € H and h € L*(0,T;[L2(0, L)]?)
satisfying
\ldoller <6 and |[|h||r20,1:1L2(0,0))2) < s

problem (1.5)-(1.7) has a unique solution W € X.
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We are now in position to show the main result of this work. Let us first introduce the
operators ©1 : L%(0,T;[L?(0,L))?) — X, with ©1(h) = ¢, and ©y : L'(0,T; H) — X, with

—

©2(G) = Z, where ¢ and 2 are the solutions of (2.59) and (2.60), respectively. Due to Propositions
2.1.6 and 2.3.1 the operators ©; and ©s are well defined and continuous. Then, we have the
following local exact controllability result:

Theorem 2.3.3. Let T > 0. Then, there exists § > 0, such that, for any uy, U1 € H satisfying
ldo||lr <6 and ||d1||m <6,

one can find a control function h € L2(0,T;[L*(0,L)]2), such that the solution @ € X of (1.5)-
(1.7) satisfies W(-,T) =y in (0,L).

Proof. We apply the Banach fixed-point theorem. Let G(@) as in (2.60) and F the nonlinear
map

F:L*0,T;V) = X,

— —

defined by F(u) = tur +©10T [ﬂ’l —dr(-,T) — @g(G(ﬁ))(-,T)] + O3(G(u)). Here, uy, is the
solution of (2.1) with initial data @y € H, ©1 and O3 are defined as above and I' is the control

operator given by Theorem 2.2.2.
If @ is a fixed point of F, then @ is a solution of (1.5)-(1.7) with control h given by h =

r [al —@r(-,T) — 0(G(@))(-, T)}, which satisfies
B, T) = @

For some R > 0, to be chosen later, we define the closed ball Br in L?(0,T;V). Then, arguing
as in the proof of Theorem 2.3.2 and using the continuity of the control operator I', we obtain
positive constants C7, Ch > 0, such that, for all @, 7 € Bg, the following estimates holds

|\ F (@) 20,050y < C1 (ol + ||| ) + CoR?,
|F (@) — F@)|L20,75v) < 2C5R[|T — V|| 20,11y

Choosing R = (4C%)~! and dr = (16C,C%)~" it follows that, for any o, @ € H satisfying
|[to|lr < 6r e |lt1|ln < Or,

the operator F is a contraction which maps the closed ball Bg into itself. Then, by Banach fixed
point theorem, F has a fixed point in Br. The proof is now complete. |
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Chapter 3

On the lack of controllability of a
higher-order regularized long-wave
system

Considered here is a class of two higher-order Benjamin-Bona-Mahony type equations. Our aim
is to investigate the controllability properties of the linearized model posed on a bounded interval.
More precisely, we study whether the solutions can be driven to a given state at a given final
time by means of controls acting on the right endpoint of the interval. We show that the model
is approximately controllable but not spectrally controllable. This means that any state can be
steered arbitrarily close to another state, but no finite linear combination of eigenfunctions, other
than zero, can be steered to zero. Our proofs relies strongly on a careful spectral analysis of the
operator associated with the state equations.

3.1 Global well-posedness

In this section we show the well-posedness of the homogeneous and non-homogeneous systems
associated with (1.8).

3.1.1 The homogeneous system

Let us first consider the following homogeneous system

N+ Wy + GWezr — WMizr + b1Migzae =0 for z € (0, L), t >0,

Wt + Nz + Naze — AWizg + d1Wipzae =0 for € (0,L),¢ > 0,

n(t,0) =n(t,L) =0 for t >0,

w(t,0) =w(t,L) =0 for t >0, (3.1)
Ne(t,0) =nz(t, L) =0 for t >0,

wz(t,0) = wy(t,L) =0 for t >0,

n(0,2) = n°(z); w(0,2) = w(x) for x € (0,L).

System (3.1) can be written in the following vectorial form

(&) oea(2)0=(5) (2)o=(5)

where A is the operator belonging to £ ([H§(0, L)]?) defined by

0 (1 — 002 + 0103) "1 (0, + ad?)
A=
(1 —do? + d102) =10, + ¢02) 0
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Recall that, for a, 8 > 0 the operator (1 — ad? + B92)~! is defined in the following way:

9 A1 V— QUgg + /Bvacmmx = ¢ in (07 L)
(1 — aa,p + ﬁa'p) (ZS =V = v v (32)
SO =5tw),  r=01

Then, if ¢ € L?(0, L), the elliptic equation (3.2) has an unique solution v € H*(0, L) N HZ(0, L),
the operator (1 — ad? + 393)~! is a well-defined, compact operator in L?(0, L).

Remark 3.1.1. Due to the regularizing effect of the operators
(1 =002 4+010H7" and (1 —dd? + d10h)~!

it follows that A takes values in [H3(0, L)YNHZ(0, L)]? which is compactly embedded in [HZ (0, L))?.
Hence A is compact.

From the classical semigroup theory, we have the following well-posedness result:

Theorem 3.1.1. Let b,d,b1,d; >0 and a = ¢ > 0. For any (n°,w°) € [H3(0, L)]?, system (3.1)
has a unique classical solution (n,w) € C(R; [HZ(0, L)]?). Moreover, (n,w) € C¥(R;[H3(0, L)]?),
the class of analytic functions in t € R with values in [HZ(0, L))%.

Proof. We first show that A is a skew-adjoint operator in [HZ(0, L)]%. For any ¢;,1; € HZ N
H*(0,L), i = 1,2, and some integrations by parts, we have from (1.9) that

(a( ). ()= (G hon oo ) ()

L L
= / (333 + a@i)dzlgpgdﬂc + / (ax + 683)9011/12611'
0 0

L L
= —/ P1(0z + aﬁi)apgdw — / ©1(0r + c@i’)wgdx
0 0
L
= —/ P1(1 — dd? + d192)(1 — dO? + dy02) 71 (0, + ad2)pada
0

L
—/ @1(1 = b02 4+ b103)(1 — bI2 + b10;) ™ (0r + cO3)hada
0
_ $1 (1 =003 + 010;) 1 (0 + 012
- 1 )7\ (1= d8§ + dl(‘?;*)‘l(agg + ac‘)ﬁ)m
¥1 ¥2
_ A .
((5)-(2))
By a density argument, the identity above holds for any ¢;,1; € HZ(0, L), i = 1,2. Then, Stone
Theorem guarantees that A generates a group of isometries {S(¢) }+er in [H3 (0, L)]?, which allows
us to obtain the well-posedness result. The second part of the Theorem follows from the fact that
A is a compact operator in [HZ(0, L)]? (see, for instance, [24, Theorem 11.4.1, Chap. XI]). W

3.1.2 The nonhomogeneous system

In this subsection, attention will be given to the full system (1.8). We begin with the following
result:

Theorem 3.1.2. Let b,d,by,d;y > 0 and a = ¢ > 0. For any (n°,w°) € [HZ(0,L)]?, and
(f1,91), (f2, 92) € [CE(0,00)]?, system (1.8) has a unique classical solution (n,w) € C(]
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Proof. Let @;,1; € C*°(]0, L)), i = 1,2, be functions, such that

©1(0) = 91(0) = ¢12(0) = ¢12(0) = @12(L) = ¥1,(L) = 0,
¢1(L) =1 (L) = -1

and
©2(0) = 12(0) = w2(L) = ¥2(L) = ¢2:(0) = 12:(0) = 0,

¢2z(L) = ¢2x(L) = -1

For instance,

3 2, 2 3 Lo 1 3
v1(x) =1 (z) = Nk + T3¢ and pa(x) = o(x) = T~ 2%
satisfy the conditions above. Then, if we consider the change of functions
(2)=(2)- ()= (P moe ) 53
m w v g1 (O Y1(x) + g2(t)pa(z) )7

where (u,v) € C([0, 00); [HZ(0, L)]?) is the solution of the system

Ut + Vg + AUz — Dlpzgy + O1Utgzar = 0 for x € (0,L), t > 0,
Ut + Up + ClUzgy — AVigy + d1Vtgzee =0 for x € (0,L),t > 0,
u(t,0) =u(t,L) =0 for t >0,

v(t,0) =v(t,L) =0 for t >0,

uz(t,0) =ugy(t,L) =0 for t >0,

vz (t,0) = v, (¢, L) =0 for t >0,

uw(0,2) = n°(x); v(0,2) = w'(z) for z € (0, L),

given by Theorem 3.1.1, the couple (z,m) solves the problem

(24 + My + aMaze — b2tas + b1 2tazes = F for z € (0,L), t >0,
My + 2z + C2uapx — AdMygy + diMyggee = G for € (0, L), > 0,
2(t,0) = 2(t,L) =0 for t >0,
m(t,0) =m(t,L) =0 for ¢t >0, (3.4)
2(t,0) = 2, (t, L) =0 for t >0,
mg(t,0) = mg(t,L) =0 for t >0,
(2(0,2) = 0; m(0,2) =0 for x € (0, L),

with F' and G given by

where (i), i = 2,3,4, denotes the derivative of order i. With the notation introduced in the
previous section, system (3.4) can be written as an abstract evolution equation as follows

Wi + AW =
W(0) =0,
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where W = (z,m) and H = Ag(F,G) € L*(0,00; [HZ N H*(0, L)]?), being
Ao @ [L?(0, L))> — [HZ N H*(0, L))? defined by
0 (1 =002+ b192)~t
Ay = . (3.5)
(1—do%+dyod)~1 0

Since A generates a group of isometries in [HZ(0, L)]?, we have that system (3.4) has a unique
solution W = (z,m) € C([0,00); [HZ(0, L)]?). Then, returning to (3.3), we conclude the proof.
|

Using the previous well-posedness results, we will study the existence of solutions of the
system (1.8) in the sense of transposition:

Definition 3.1.2. Let (n°,w°) € [H72(0,L)]? and (f1,91), (f2, 92) € [H*(0,T)]2. A solution of
system (1.8) is a couple (n,w) € C([0, T); [L?(0, L)]?), such that, for any (h,k) € L*(0,T;[L?(0, L)]?),

satisfies
T (L 0
/ / (77h+wk)dxdt+<< m >< w(0) )>
o Jo w v(0) /) / 20,02, 130,02

T
= /0 f1 (t) [blumm + Cva:x](t) L)dt

. (3.6)

+/ 91(t)[d1Vigze + augs)(t, L)dt

" T T
by /O FolO)tsaa(t, L)dt — dy /0 g2(8)vraalt, L)dt,

where (u,v) is solution of the adjoin system

Ut + Vg + CUgzy — DUtzy + b1Utggee = h  for x € (0,L), t >0,
Ut + Uy + QUzgr — AUtgy + d1Vtggee =k for x € (0,L),t > 0,
u(t,0) =u(t,L) =0 for t>0,
v(t,0) =v(t,L) =0 for t >0, (3.7)
Uz (t,0) = ug(t, L) =0 for t>0,
vz (t,0) = vy (t,L) =0 for t>0,
u(T,z)=0; v(T,z)=0 for x € (0,L).

The existence of solutions for system (3.7) can be proved following the arguments used in the
proof of Theorem 3.1.2. Moreover, due to the regularizing effect of the operator (1—ad2+3094)71,
with «, 8 > 0, we obtain the following result:

Theorem 3.1.3. If (h,k) € L'(0,7T;[L?(0,L))?), system (3.7) has a unique solution (u,v) €
C([0,T; [HE(0, L)]?). Moreover,

H(uav)|‘Ll(O,T;[HgﬂH?’(O,L)]?) + ”(ut7Ut)HLl(O,T;[HgmH‘l(O,L)]Q) < Cll(h, B)l| L2 0,1y22(0,L02),  (3.8)
for some constant C > 0.

Proof. System (3.7) can be written as an abstract evolution equation as follows

Wi+ AW = F
w(0) =0,

where W = (u,v) and F = Ag(h, k) € L*(0,T;[HZ N H*(0, L)]?), being
Ao : [L*(0,L))> — [HZN H*(0, L)]? defined by (3.5). Since A generates a group of isometries in
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[H3(0, L)]?, we have that system (3.7) has a unique solution W = (u,v) € C([0,T]; [H3(0, L)]?).
Moreover, using the equations in (3.7), we deduce that (ut,v;) € L*(0,T;[H3 N H3(0,L)]?) and
estimate (3.8) holds. Indeed, first, observe that each term of the equations in (3.7) belongs to
L?(0,T; H=2(0, L)). Thus, scaling the first equation by u and the second by v we obtain

L
e, ), ot DIz e ZLK;(hu%kv)dx. (3.9)

Integrating the above identity from ¢ up to T, from Young inequality it follows that
[[(u(t, ), o(t, '))H[2H§(O,L)]2 < C<||hHL1(O,T;L2(O,L))Hu|C([O,T];LQ(O,L))
+ HkHLl(O,T;LQ(O,L))HU"C([O,T];L2(O,L))> (3.10)

1 €
<C <26||(h’ L om0 + 51l “)||20<[07T1;[L2<0,L>}2>>v

for any € > 0, where C' is a positive constant. Then, by choosing € > 0 sufficiently small in (3.10)
we obtain
1w, )l o,z 0,0y12) < ClI(Rs B)| L1 0,15122(0,2)12) (3.11)

for some C' > 0. On the other hand, due to the regularizing effect of the operator
(1 —ad?+B0H~Y a,B >0, it follows
(1 —b3% 4+ 0107 h(t,-), (1 — dd? + d10%)~ k(t,-) € H*(0,L)

and the operator A takes values in [HZ N H?3(0, L)]?, which is compactly embedded in [H3(0, L)]?.
Thus, combining (3.11) and the equations in (3.7), it follows that

[[(ue(t, ), ve(t, Dzso,0)2 <

[1((1 =007+ 0105) ™ (9 + ad3)u, (1 = dO; + dr0;) ™ (05 + ad)0)l | rrao,yp2

+ CII((1 = b0 + b193) " b, (1 — D2 + d103) ™ k)| ra0,1)2

< C (1@ + ad)u, (9 + ad)o) i1 0.p2 + 110 ) liz20,2012) (3.12)
< € (I 0)llzco,p2 + 10 D) 220,112
<C (
By integrating (3.12) on (0,7) we get (u¢,v;) € LY(0,T;[HZ N H3(0,7)]?). On the other hand,
since (u(t,x),v(t,z)) = (/t us(s,:c)ds,/t vs(s,x)ds), (3.12) allows us to deduce that (u,v) €
LY0,T;[HE N H3(0, T)]Q),Otherefore, progeeding as in (3.12), it follows that

| (w, )l o, r1:m2(0,Ly12) + (s k)H[LQ(O,L)P> :

(et ), vt Daso,nyz < C (10w )| o,pye + (s Bl 2200,02) -
After integration over (0,7") we deduce (3.8). [

The next Theorem establishes the existence and uniqueness of solutions for system (1.8) in
the sense of transposition.

Theorem 3.1.4. Let (n°,w®) € [H2(0,L)]? and (f1,91), (f2,92) € [H'(0,T)]?. Then, there
exists a unique solution (n,w) € C([0,T); [L?(0, L)]?) of system (1.8) which verifies (3.6).
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Proof. The result is proved in two steps. We first use the Riesz Representation Theorem to prove
the existence of a solution in L'(0,7;[L?(0, L)]?). Then, the continuity in the time variable is
proved by using density arguments.

We start by introducing the linear operator T : L1 (0, T [L?(0, L)]?) — R as follows

71000~ (£).(59) )y e

T T
+ / fl (t)[blut:v:mc + Cvxx](ta L)dt + / g1 (t> [dlvtmmx + auxm] (tv L)dt
0 0

T T
b, /0 Fo(t)tmn (b, L)t — d /O o) vuma(t, L)t

where (u,v) is a solution of (3.7). We have that 7 is well defined and continuous. Indeed,
proceeding as in the proof of Theorem 3.1.3, we obtain identity (3.9). Then, integrating over
(0,7), it follows that

[1(w(0); vON 20,232 < ClI(Rs B)lIL10,73122(0,2)12) (3.13)

for some constant C' > 0. On the other hand, by using Cauchy-Schwarz inequality, the Sobolev
embedding and estimate (3.8), the following estimate holds

T T
‘/ fl(t)[blutmx+cvm](t,L)dt+/ 91(t)[d1V1zgr + aug,](t, L)dt
0 0
T T
by / Fo(#)ugma (£, L)t — dy / 0o(t)vran(t, L)t (3.14)
0 0
< c(|<f1,g1>mm<o,m n r\<f2,gz>|\[m(o,mz> N[ —

where C' > 0. Finally, (3.13) and (3.14) allow us to conclude that 7 € L(L'(0,T;[L*(0, L)]?); R).
Then, from Riesz Representation Theorem, we obtain the existence a unique

(n,w) € L=(0, T3 [L*(0, L)]?)
satisfying (3.6). Moreover,

(1, )| oo (0,7512200,0012) = I T 12zt 0,7:122(0,0)12):R)

< C (1% )iz, + 1 (F1s g oy + 11(F2s 92)l i 0,my12) -

(3.15)

By using density arguments, starting with more regular data, we can also get the regularity in

the time variable. Indeed, since (f1, 1), (f2,92) € [H'(0,T)]? and (n°,w°) € [H2(0, L)]? there
exist sequences (f1.u, 91.0); (fons g2.0) € [D(0, T)]? and (12,) € [D(0, L)[2, such that

(fl,n) gl,n) — (flu gl) in [Hl (0’ T)]27
(fom, 92.0) — (f2,92) in [H'(0,T))?,
(s win) — (n%,0°) in [H2(0, L)),
when n — oo. Let us denote by (1, wy, ) the solution of the system (1.8), corresponding to the data
(fl,nv gl,n)7 (f?,rwgln) and (77270')73)7 given by Theorem 3.1.2. Then7 (nn7wn) € C([07 T]u [Lz(oa L)]Q)

and, for each n € N, the solution (7,,w,) satisfies (3.6). Thus, if (n,w) is a solution by
transposition of (1.8), it follows that (n,,w,) — (n,w) is a solution by transposition with data
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(fim> 91.0) — (f1.91)5 (fo.ms 920) — (f2,92) and (), w)) — (n°,w). Hence, by (3.15), we obtain
|| (1 i) — (777W)HLOO(O,T;[LQ(O,L)P)

< C(H(ng,wg) — (% W)l izr-2(0.0002 + 1 (frms 91.0) — (Fr, 90|z o2
a2 = (sl oy )

When n — oo, from the above inequality, we deduce that (1, wn,) — (7,w) in L>(0,T; [L?(0, L)]?)
and, since (n,,wy,) € C([0, T]; [L%(0, L)]?), it follows that (n,w) € C([0,T7]; [L?(0, L)]?). [ |

3.2 Controllability results

In this section we study some boundary controllability properties of the Boussinesq system. We
begin with the following exact controllability problem:

Given' T > 0 and an initial data (n°,w°) € [H2(0, L))?, can we find control inputs (f1,g1), (f2, g2) €
[H1(0,T)]2, such that the solution (n,w) of (1.8) satisfies

(T’ x), (T, z)) = (0,0) forz € (0,L)7
We have the following characterization of a control driving system (1.8) to the rest.

Lemma 3.2.1. The initial data (n°,w°) € [H=2(0,L)]? is controllable to zero in time T > 0
with controls (f1,q1), (f2, 92) € [H*(0,T)]? if and only if

)N 0O) ) a0 mp o,
T
Fu () brttgams + cvsa](t, L)dt + / 91(t)[d1Vtzan + atiag](t, L)dt (3.16)
0

T T
b [ fo(t)usme(t, L)t — dy / g2 () vewa (1, D),
0 0

for any solution (u,v) of the adjoin system

Ut + Vg 4 CUzze — Dpzy + b1Utzgee =0 for z € (0,L), t € (0,7T),
Vg + Uy + QUgge — AUty + d1Vtgpee =0 for x € (0,L),t € (0,T),
u(t,0) =u(t,L) =0 for te(0,T),
v(t,0) =v(t,L) =0 for t€(0,7), (3.17)
ug(t,0) = uy (¢, L) =0 for t€(0,7),
vg(,0) = vm(t L) = for te(0,T),
u(T,x) = o(T, ) for x € (0,L),

with (uT,vT) € [H3(0, L)]2.

Proof. Remark that the change of variables t — T'— ¢ and © — L — = reduces the system (3.17)
to (1.8) with f; = ¢g; = 0, for i = 1,2. Then, we can apply to (u,v) the well-posedness results
obtained in the previous section.

First, we prove the result for regular solutions. The less regular framework can be proved
using density arguments as in the proof of Theorem 3.1.4. Let (n,w) be a solution of (1.8) and
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(u,v) solution of (3.17). After some integrations by parts, we have
T L
0= /0 /0 u (nt + Wy + QGWgge — bnmx + blntx:px:v) dxdt
T /L
+ /0 /0 v (Wt + Mg + Nz — dwtzr + dlwtzxwx) dxdt
L L
= [ ) — w0 o +b [ e TnlT) = ua(Ona(0)] d
L
01 [ i (T)en (D) — 022 O (0))
0
L L
+ /0 [v(T)w(T) — v(0)w(0)] dx + d/o [V2(T)wz(T) — v2(0)w, (0)] dz
L
+dy / an(T)waa(T) — Ve (0)aa(0)] d
0
T T T
+ a/o Uaca:(L)gldt - bl /0 Ut:va:(-L)det + bl A utaca:ac(L)fldt

T T T
+ c/ Vg (L) f1dt — dy / Uiz (L) godt + dy / Vigza (L) g1dt.
0 0 0

By using the density of HZ(0,T) in H=2(0,T), we can pass the identity above to the limit to
obtain

((5)-(:)) -((un)- ()
w v(0) ) [ ia-20.Lyp m20.02 w(T) v [H~2(0,L)]2 [H3(0,L)]2

T T
+ / f1()[brutgas + cvg](t, L)dt + / 91(t)[d1Vigze + aug](t, L)dt
0 0

T T
— b1 /0 fg(t)utm(t, L)dt — d1 /0 gz (t)’()mx(t, L)dt

Hence, (n°,w") is controllable to zero in time T' > 0 if and only if (3.16) holds. [ |

The next result is devoted to show that system (1.8) is not spectrally controllable. This
means that no nontrivial finite linear combinations of eigenvectors of the operator A defined in
(4.4) can be driven to zero in finite time by using controls (f1,g1), (f2,92) € [H'(0,T)]%.

Theorem 3.2.1. No eigenfunctions of the operator A can be driven to zero in finite time.

Proof. We first note that, according to Theorem 3.3.2, the operator A has a sequence of purely
imaginary eigenvalues () nezs je {1,2}- Moreover, the corresponding eigenfunctions (Ph)nez je (1,2}
form an orthogonal basis of [HZ(0, L)]?. For each k # 0, let us consider

(mpwi) = @1 = (ol v7), j=1,2,

eigenfunctions of the operator A. In a similar way, if we consider

<u )_ ) ntk
v o n =k,

the corresponding solution of (3.17) can be written as

SN

< tn > = ei)‘gl(T*t)CI){L, where i\, = —i,

Un, ,U%
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being 4, (j = 1,2) the eigenvalues of the operator A (uh A®), = &), given by Theorem 3.3.2.
Moreover, '
lim M =0.
[n]—o0

On the other hand, since the sequence ((I)gl)nEZ*,jG{IQ} forms an orthonormal basis of [HZ(0, L)]?,
we get

0 . i
() (208 - 512
Wk Un [H3(0,L)]2

Thus, if (72, w?) is controllable to zero in time T’ > 0, from (3.16) it follows that

/ eMZL(T_t) |:f1 (t) (_l)‘%blgpgz,:cwz + ayrj;,,:c.t) (L) + 91 (t) (_fL)\"I]’Ldl ng,za:a: + a@%,zz) (L)
0

+ blfQ(t)ZAgz(piz,xz(L) + dlg?(t)i)‘?ml/%,:m:(l’) = 6517k€i)\%T7 .7 = 17 2.

For j = 1, the identity above can be written as follows

(3.18)

2 h(t)ez)\%(%ft)dt — 51 ei)\%T

T n,k ’
2

where

T T
h’(t> :fl <t + 2) (_’L>‘711b1907117x1’x + aV7ll,xx) (L) + a9 (t + =

2 ) (_iA}ldlyi,xmc + a(P:TLL,xJ:) (L)
T T
+ X by fo (t + 2) Pn 2e(L) + A d1g2 (t + 2) Vp oo (L)
Since h € L*(—%, 1), if we define F : C — C by

from Paley-Wiener Theorem, we have that F' is an entire function. Moreover, since lim|,,| N, =
0, it follows that F' is zero on a set with a finite accumulation point. Then, F' = 0 and,
consequently,

fl (t) (_Z)‘}zblgpé,xxx + C”V}l,xx) (L) + 9 (t) (_iArlldlyv}L,xmx + agp}z,mc) (L)

+b1fo (1M g (L) + d1ga(8)idn 1y

3.19
n n,:va:(L) 0? ( )
for all ¢t € [0, 7.
For j = 2, we can use (3.18) and proceed in a similar way to obtain
fl (t) (_Z)\?’Lbl@%,xxx + aV?L,:m:) (L) + 9 (t) (_Z}‘?Ldlyg,zmx + a@?z,mc) (L) (3 20)
+ b1f2 (t)l/\gz(pgz,;m’ (L) + dng (t)l)‘iyfz,:va:(L) 0, '
for all ¢t € [0,T7].

Thus, by dividing (3.19) and (3.20) by i\l and i\2, respectively, we deduce that (f1,g1) and
(f2,92) should satisfy the system
A®AL +g1(t) By + f2(t)C + g2(t) Dy, = 0

(3.21)
FI)AZ + g1(t) B2 + fo(t)C2 + go(t) D2 = 0,
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where
a a

A;L = WV%,xx(L) - bl@%,zxw<L)7 BZL = i/\ij(PzL,:c:e(L) - dl’/%,xmc([’)?
n n
O = b1 2a(L), and Dj, = div ,,(L), for j=1,2.

,zm(

From the asymptotic behavior of the eigenvectors of A given by Lemma 3.3.8, we obtain that,
for a subsequence, if necessary, the following holds:

lim ¢4 = lim D)= lim A% = lim B. =0, j=1,2 (3.22)
Vbid
lim Al = lim B? =g§~——", for some dy € C*, (3.23)
and ) )
Cn Dn 2
—L*bid
~ L £0, forall n€Z*, (3.24)

02 D2 [(2’”’ + 1)7T - 26”]2 +4

where ¢, € (0,1). By using (3.22) and (3.23) in (3.21) we obtain
Vbidy

L

R0 A%+ (1B + (103 + (10D = 80 Y g1 (1) =0,

fl(t)A}l + a0 (t)BqlI + f2(t)C% + gz(?f)D}1 — dg

fl(t) =0,

as |n| — oo. Then, (f1,91) = (0,0) and the system (3.21) becomes simpler:

f2(t)Cpy + g2(t) D}, =0

fo(t)C2 + g2(t) D2 = 0.

Hence, from (3.24) we deduce that (f1,91) = (f2,92) = (0,0) is the unique solution of the system
(3.21), which contradicts (3.18) and the proof ends. [

Remark 3.2.2. X\ = 0 is not a eigenvalue of the operator A. Indeed, if (¢,v) satisfies A(p,v) =
0, then, it shall be solution of the uncoupled system

Vg + aUgpz = 0 for x € (0, L),
Pz + Pzzz =0 for x € (0,L),
(£(0),1(0)) = (¢(L), (L)) = (0,0),

(2(0), v2(0)) = (pa(L),v2(L)) = (0,0).

By setting v = v, we obtain v(x) = cleﬁm + C2€_ﬁx, for some constants c1,co. Then, from the
boundary condition v(0) = 0, we deduce that v(x) = 2icy sin (%) and the boundary condition

v(L) = 0 implies that 2icy sin (%) = 0. Thus, if L # /amn, with n € Z*, we have that ¢y = 0

and v = const. Then, from the boundary condition v(0) = 0 we conclude that v = 0. On the

other hand, if L = \/amn, for some n € Z*, we have that v(z) = —2i\/acy cos (%) and the

condition v(L) = 0 implies that ¢; = 0. Hence, v = 0. Since the system is uncoupled, we can
arguing as above to obtain p = 0.

Now, we pass to study the approximate controllability of the system (1.8). In order to do
that, we introduce the following definition.
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Definition 3.2.3. System (1.8) is said to be approzimately controllable in time T > 0 if, for
every initial data (n°,w®) € [H=2(0, L)]?, the set of reachable states

r((8) ) ={(2E5) - ((5)-(&)) emtone<uronr)
is dense in [L*(0, L)]?.

The corresponding approximate controllability result reads as follows.

Theorem 3.2.2. System (1.8) is approzimately controllable in time T > 0 with controls (f1,91), (f2,92) €
[0, 7).

Proof. Due to the linearity of the system (1.8), it is sufficient to prove the result for any 7' > 0

and (n°,w") = (0,0). Thus, we will prove the density of the set R < < 8 ) ,T ) in [L?(0, L)]?.

Let (n,w) € C([0,T]; [L?(0, L)]?) the corresponding solution of (1.8) given by Theorem 3.1.4
and (u,v) solution of the adjoin system (3.17). Then, it follows that

<< (T, ) > <UT>>
w(Tyz) )7\ ) 20,02 20,02

T T
_ / FL ) brtass + aves] (t, L)t — /0 01 (D) [d1vimes + auns](t, D)t (3:25)

T
by / Fo( e (t, L)dt + dy / 02(t)vran (£, L)dt.
0

Assume that R ( ( ) ) is not dense in [HZ(0, L)]?. In this case, there exists (ul,v?) #
(0,0) in [HZ(0, L)]?, satisfying

UT
(dan)- () -0
(20,0 [H(0,L)?

for all << ! ) < f >) € [H'(0,T)]? x [H*(0,T)]?. Consequently, from (3.25) we obtain
2
< ( fl < blutmxm +avwm]( 7L) > >
g1 dlvtxx:c + auxm] (t7 L) [L2(0,T)]2
n < ( f2 ) 7 < b1uza(t, L) ) > _0,
g2 dlvt.l’l‘(t7 L) [L2(0,T)]2
for all << h ) ( >> € [H1(0,7)]? x [H'(0,T))*. Thus,
[bluta:mx + avmc] (t7 L) _ 0 blutmx (tv L) _ 0

< [dlvtmxx + au:vx] (t, L) N 0 and dlvtzx(ta L) N 0 ' vie (07 T) (326)
Next, we want to write (3.26) as an infinite sum. From the proof of Theorem 3.1.1 we know that A
is a skew adjoint operator in [HZ(0, L)]?. Hence, it has a sequence of eigenvalues (i), )nezs C iR,

each i\, = (un)~! with geometric multiplicity at most .#,. The corresponding eigenfunctions
form an orthonormal basis for [H3(0, L)]?, which we denote by

U {5 1.

nez*
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Then, if (u”,vT) € [HZ(0, L)]?, we have
-y S
neZ* k=1

and the corresponding solution (u,v) can be written as

Mn
v) = Z Zaﬁ@ﬁe")‘”(T*t). (3.27)

nezZ* k=1

Thus, from (3.26) and (3.27), it follows that

0= ut;w:(t L Z —iAn Z an(pn xx Mn(T?t)'

nez*

Since (u,v) is analytic in time (see Theorem 3.1.1), we can integrate the identity above over
(=S, 95), for any S > 0. Then, for each m € Z*, we deduce that

I .
0= lim S/Sumx(s L)e*msds = —i\y, Zam(pmm(L)ez,\mT’

s—>+00 1
hence,
Z af ok, (L) =0. (3.28)
Analogously, from vy, (t, L) = 0, it results that
'ﬂTW/
> ab vk (L) = 0. (3.29)
k=1

On the other hand, from (3.26)-(3.27) we have

My,
0= s+ 0vee) (1) = 3 30 [0l (1) 4 (1] 7
nezZ* k=1

and

Mn
0 = [d1Vigar + aUzy] (8, L) = Z Zoz [ i\ dll/n won(L) + agplfbym(L)] eMn(T=1),
nezZ* k=1

Next, we proceed as before and use (3.28) and (3.29) to obtain

0= Z afn[_lAmblﬁpfn,xx:p(L) + ayfn,x:r<L)]eMmT

= [_7’)‘ blzam@ma‘xw +azam ma:a:

_ zAmT
= —iAmb Z O‘msom p—
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and

M
0= Z [ 2 dlym xx:c(L) + a@ﬁl,xx(L)]ei)\MT
k=1
Mm
= | —tAmdy Z AV m ac:c;r ) ta Z O‘sﬁogi,za:([’) eD\mT
k=1

iAm T
= —iA dlE am m:m:z e )

respectively. Then,
k=1

Now, for each m € Z*, we consider ®,, = (¢m, Vm) defined as follows
O™ =l ®L + . 4 afm;m,
Thus, from (3.28), (3.29) and (3.30) we have that

(om,zz(L), Vmax(L)) = (Pmaze(L); Vmgza (L)) = (0,0)

and ®,, = (¢m, Vm) solves the initial value problem

—m + bPm e — b1Omzzzr + ((Am) Wi + a(idn) Wi aee =0 for z € (0, L),
—VUm + AV 20 — A1V gaze + (iAm) " Oma + a(iAy)” 1cpm,mz =0 forxze(0,L),
(em(L),vm(L)) = (0,0),

(¢m,a(L), vm,z(L)) = (0,0),

(Ymee(L), Vmae(L)) = (0,0),

(m.zzz(L); Vmazea (L)) = (0,0).

Then, by uniqueness,
D, = al, @ + ...+ @& = (0,0).

Since {®F, } m are linearly independent, it follows that o}, = ... = ;%™ =0 for all m € Z*.
Thus, from (3. 27) it follows that (u,v) = (0,0) and, in particular, (u”,v”) = (0,0). This is a
contradiction and the proof ends. |

3.3 Spectral Analysis

This section is devoted to develop a spectral analysis of the operator A introduced above. We
start by presenting some explicit formula and properties of a family of initial value problems
depending on several parameters. These results allow us to obtain the asymptotic behavior of
the eigenvalues and eigenfunctions of the differential operator associated to (1.8).

Study of some initial value problems

Firstly, we study the properties of the following simple initial value problem, where o € C* is a
complex nonzero parameter:
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A0Vyzy — D1Pazas = f for x € (0, L),

A0 Prpe — AN Vpzza = ¢ for x € (0, L),

((0), v(0)) = (", 1), (3.31)
(102(0), 7(0)) = (¢, "),

(022(0), v22(0)) = (9%, v7),
L (Pa22(0), V222 (0)) = (7, 1%).

In (3.31) a,b; and d; are positive real numbers. We have the following result.

Lemma 3.3.1. Given (¢°, o', 02, 3,00, vt 12 13) € C® and (f,g) € [L?(0, L))?, there exists a
unique solution (p,v) to the problem (3.31) given by the formula

where

b :
/ / [( osh(Z e 7“)) - 1> f(r)+ \/ZSinh(CW(Z\/l%:))g(r)] drds.

v) we deduce that

(ﬂm) i< (ﬂ@) (w3)
(x) %) 7 7(0) )

Proof. By setting (Yuza, Vogs) =

) 3

consequently,
3() v . i
= A® - / eAlr=s) ds, (3.33)
~ 3 0 (z)
v(z) v ng
where
aocx d aocx
) cosh( Tldl) \/ bl sinh( bldl)
et =

by .
Vo smh(\;‘%) cosh( “b‘fil)
By integrating the equations in (3.31) we obtain

Paa(T) p? — LS 4 Dp(z)+ L [T g(s)ds
= (3.34)
Vaa () v = ot o) + o [y f(s)ds
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and, from (3.33), it follows that

( Paa(T) ) v + msmh(ﬁ)@ +4 (Cosh(m) - 1) 3
Vae () vi4 b (cosh( %Zl) 1) @3+ YAa bldl sinh( oen Wi

[/ s () £(s) + <cosh<a;<;%;>) 1) g(s)] ds

After integration, we get

* fao]?

( . ) o ok (cosh&ﬁ“;zzn - 1) O s
Vel bivbidy 3 bi1dy acx _\ __ 3
(z) v+ o]? sinh( % ) (cosh( b1d1) 1) v (3.35)

2 d 3 1
(" — V)T — 45

3 8
Ez
>
QL
V)
N——

(= Bz — L [T G(s)ds

Fa= [ [\/CT sn( ") )+ (ewhf"fﬁ aolz —s)y 1) g<s>] ds,

" ao(z — s) by . . ,ac(x—s)
G(z) = /0 [(cosh(m) - 1> f(s) + \/;smh(m)g(s)] ds.

Finally, by integrating (3.35), we obtain

where

3
0 (bid1)2 . aox bld aozx 3
( e ) ¢+ i sinb ()0 + i (cosh((fgt) — 1) v
b2d aozx bid 5 : aox é
v(z) 0+ [ala]13 (cosh( b1d1) — 1) 03 + ([1101]2? slnh(m)ys
(3.36)
597 = B)a? + (0! — PP — oL [5 Fls)ds
+
T2 = Bp®)a? + (v - [I;lf]lz Ve — oo fy G(s)ds
Rearranging the terms in (3.36) we obtain (3.32). u

We define the set .
Z = {ZG(C: |z| > §,|9{(z)] < 1}
and show that the following estimates for the solution (¢, v) of (3.31) hold if o € Z.

Lemma 3.3.2. Let (¢, v) be the solution of (3.31). There exists a positive constant C > 0, such
that the following estimates hold for all x € [0,L] and 0 € Z :

>[4

1=0

Z

dx’

)| < 1e°1+C (Io' + 1¢?)) + ,[lwl+!v3|+/|f )+ lg(s)lds| , (3.37)
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l

daltZ

2 2 x
S| < WP+ 0 @+ ) + [!w3|+\1/3!+ / |f<s>\+rg<s>\ds], (3.38)

=0

x| @ (@) [Vasa ()]} < C [w s+ [ 1)+ |g<s>ds} | (3.39)

Proof. First, let us note that the following estimates hold for (¢, ) given by (3.33):

- dy 19 (0)] —az— T (o) ale=2) [ 1 ]
x)| < 3 + \/7 e NG _|_/ e NI [ S+ —ja(s :| s
= (’(p T 0 b O g 19te)

dy ! 1 [R(o)| =
< 3+ V3+/ { s)|+ s }ds e bidy
< (!w W [+ e vndh
and
N b, 3 3| |R(0) -2 /’f m<a>“<“>[ 1 ]
< —|vl + e i+ e P14 + —lg(s)|| ds
o(z)] < ( 1| [+l I> v ; bldl\f( s)| a lg(s)l
bi, 3 3 /w[ 1 } | ()| 7=
< — — d bydy
_< W [ £+ et ds ) VR,

which allow us to deduce (3.39). Moreover, taking into account formulas (3.34), we obtain

3 S
(rala )!<|s0|+| [reor+|vr+/ ()] + lg(s >|d]7

1% X 1/2 g 3 VS S S S
paal) < W21 (181 0L [ 1+ gt

Then, from the first estimate above and by using that
1 xX
sl < 1!+ [ lonlo)lds.
0 X
@I < 11+ [ lealo)lds,

for all z € [0, L], we obtain estimate (3.37). This argument also holds for the function v. Thus,
we obtain estimate (3.38). [

Let us now consider the following slightly more complicated system,

(€ + bag — b1€agan + 0Co + a0Crpe =0 for z € (0, L),

—(+ dpe — d1Cuzan + & + a0&pn =0 for z € (0, L),

(£00).€(0)) = (€%,¢") 5.0
(£:(0),¢:(0)) = (¢4, ¢Y),

(€42(0), G (0)) = (€2, ¢2),

(5:5 ( ) Cxxa:( )) = (537C3)7

for which we have the following result.

\
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Proposition 3.3.3. There exists a positive constant C > 0, such that

2
1€, )l 2.0 0,12 Z €5+ [¢F) - ,(rf3r+\<3r) : (3.41)
=0

for any o € Z and any solution (§,() of (3.40).

Proof. Let o € Z, and let (§,¢) be a solution of (3.40). Then, (£, () satisfies

a0 Gz — 01&ppze = & — 0 — by for x € (0, L),
a0&pzr — d1Coaze = ¢ — 0& — d(yy  for x € (0, L),
(£(0),¢(0)) = (€%, ¢"),

(£2(0), ¢ (0)) = (€%, ¢1),

(£22(0), ¢z (0)) = (£2,¢?),

(€22 (0), Caaa (0)) = (€2, 7).

Since (3.42) is a system of type (3.31) with f = £ —0(y — bz, and g = ( — 0&; — d(y, We obtain
from Lemma 3.3.2 a constant C' > 0, such that

3|

=0

(3.42)

l

2
3 3
e €81+ 1]

lol
H[2))a

[

0

<1+ C (1€ +1€7]) +

and
’L

da:Z

2
<11+ C (¢ +1¢%)) + ol [1€3]+1¢3]]

02 T 2 dzg dzc
- WI/O 2@% (‘dﬂ(s)‘ + |5 (S)D ds.

By adding the estimates above we obtain
2 .

d'¢ c? 3
>( @)) =c (1] + I¢?)

i=0 \ff|
e[y ( #5500 ) s

for every x € [0,L] and o € Z. Then, from Gronwall’s inequality we have that (§,() satisfies
(3.41). n

>

i=0

~.

dif
dxt

2
Z(Ww +IC) |+

@) +

dz? '

The following result compares solutions of (3.40) and (3.31).

Proposition 3.3.4. There exists a positive constant C > 0, such that

2\ [ & '
16.0) — (0 )l waeonpe < (1 i M) [Z (161 +1¢7) + ;‘ (18] +1¢%) (3.43)
1=0

for any o € Z and any initial data (€°,&1,€2,63,¢0,¢1, (2, ¢3) € C8, where (&,¢) and (p,v) are
the solutions, with precisely these initial data, of equations (3.40) and (3.31) with f = g = 0,
respectively.
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Proof. We define 8 = { — ¢, u = ( — v and note that (6, u) is solution of

a0Uzzz — 0102220 = & — 0C — bz for z € (0, L),
002z — d1Uzzze = C — 08y — d(ze  for z € (0, L),
(6(0),u(0)) = (0,0),

(02(0), uz(0)) = (0,0),

(022(0), uz2(0)) = (0,0),

(0222 (0), uzzz (0)) = (0,0).

\

Therefore, from Lemma 3.3.2 we obtain a constant C' > 0, such that, for every = € [0, L] and
o€ Z,

2

(e

1=

diu
dat

(z)

)|+ )|} = S [ e+l + 1) + antsls
+ [ loltea(o) + 166 s

From the estimate above and (3.41) if follows that

3 (149 ] 1 [ Z €1+ 1) + — (1€%] +1¢?])
— dxt dx’ por o]
2
022 (I +1¢D) + |(|£3|+|<3|)-
=0
Then, the solutions (&, () and (p,v) satisfy (3.43). [

Finally, we consider systems (3.31) and (3.40) with distinct parameters o. The difference
between the respective solutions are given by the following result.

Proposition 3.3.5. Let (p,v) and (§,() solutions of (3.31) with o = u and (3.40) with o = [,
respectively, and f = g = 0. Then, there exists a positive constant C > 0, such that

1(€,¢) = (v, V)H[WQ@O(O,L)]?

= 7 7 7 7 1 3 3 3 3 ~ 3 3 (344)
<D (1€-¢+1K —V!)er(!f — @[ +1¢° = 7| + [ — al(1e? + V7))
i=0

Proof. We define 8 = £ — ¢, u = ( — v, and note that (0, u) is solution of

ApUUgry — blezvxacz = 5 - MC:E - ngac + a(,a - ,U)Vx:p:p for z € (O> L)>

allgx:m: A Ugzgr = C - ,U{:L‘ - dC:r:a: + CL([L - H)Soxmc for x € (07 L))

(0(0), (0 )) (€0 — ¢, " =),

(02(0),ux(0)) = (€' — ', ¢t = o),

(022:(0), UM( ) = (52 - 9027C2 - V2)7

(0222:(0), Uzzz(0)) = (53 - ‘nggg - V3)-
Therefore, from Lemma 3.3.2 we obtain (3.44). [ |
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Spectral analysis of the operator A
Given by, d; > 0, let us first introduce the operator B : (HZ(0,27))% — (HZ(0,2))? given by

0 (b193) " (ad3)
B= . (3.45)
(d193) 7" (ad3) 0

Recall that, for a > 0, the operator (—ad?)~!: L2(0,27) — L?(0,27) defined by

—QVgggr = @
(—adp) o =ve gy v
ox” )= ox”
is a well-defined, compact operator in L?(0, 27).
In this section, u € C is called eigenvalue of the operator A(B) if exists a nontrivial vector
® = (p,v) € [HZ(0,L)]?, called eigenfunction corresponding to p, such that uA® = ® (uBP =
®). The following two theorems are devoted to the spectral analysis of these operators.

(L)v r=0,1,

Theorem 3.3.1. The eigenvalues of the operator B defined by (3.45) are
Vbidy
alL

where e, € (0,1), with n € Z*. Each eigenvalue [i, is double and has two independent eigenfunc-
tions given by

fin, = sgn(n) ((2n] + 1)m — 2e,)1, (3.46)

S(—Gin T di o (_ajin
$1 Vbidi ]’ i) ) Vhidi° Svorekd)
o = o , o = o , (3.47)
n b afin L afin
di ( /blidlfx) S( /bliidl’x)
where

- N - 2 -1
afin . afinT afinT afin afin 9
S ,x | = sinh — + [ ] L [ L} —4 x°,
(\/bldl > (\/bldl) Vbidy Vbidy < Vbidy

~ 2 ~ 4 ~ 2 -1 2
. |: apfin, :| o |: afln :| 1.2 |: afln L:| 4 -
NG NOT NGO 2
Moreover, the set {Ci)% n e jE {1,2}} forms an orthogonal basis of [H3(0, L)]?.

Proof. By using Lemma 3.3.1, with ¢ = ¢! =10 = ! = 0and f = g = 0, we deduce that
(p,v) is a eigenfunction of B corresponding to the eigenvalue p if and only if

o(z) [sinh(ka) — K] ¢ + \/% [(cosh(m) —1) - Bl ys
— ? ]
V(@) % {(COSh("%’) -1) - @} % + [sinh(k) — K] V3
(3.48)
P
+
VQ%

52



( (L) ) ( ¢x(L) ) ( 0 )
= = , (3.49)
v(L) vy (L) 0

where £ = ap/v/bidy. The data (2, %) can be written as function of x and (2, 3). Indeed,
from (3.48) and (3.49) we obtain the following systems

[sinh(kL) — kL] 03 + % [(cosh(mL) -1)— @} 34 K3L72¢2 —0

b [(cosh(mL) —1)— @} @3 + [sinh(kL) — kL] V3 + m3%21/2 =0

1

and
(cosh(kL) — 1) @ + \/% (sinh(kL) — kL) 13 + k2Lp? = 0

[b1 (o 3 3., ,27,2 _
& (sinh(kL) — kL) ¢” + (cosh(kL) — 1) v° + k*Lv* = 0.

Thus, we deduce that (¢?,v?) should satisfy

d
<p2 r 2 ﬁLH 803
- — 3.50
2 [KL]Q —4 3 ’ ( )
v Z—ILF; 2 v
1

with k # £2/L. Replacing (3.50) in (3.48) we obtain

o(z) . S(k,x) %C(/{,m) 3
= aE (3.51)
v(z) 2—11(3(/{, r) Sk, o) v
where 5p
S(k,x) = sinh(kx) — kx + [’{[1{7]2_]4352
_ W7 22
C(k,x) = (cosh(kzx) — 1) — (/{2 - [HL]2—4> -

The next steps are devoted to obtain the eigenvalue associated to the eigenfunction given by
(3.51). First, we note that S;(k, L) = kC(k, L) and Cy(k, L) = kS(k, L). Then, from (3.51) and
the boundary conditions (3.49) we have

( o(L) ) ) S(k, L) —21116(,%, L) ( P ) ( 0 )

v(L) W —Zi C(k,L)  S(w,L) v? 0

( 0a (L) ) . C(k,L) —‘IfllS(m, L) ( o ) ( 0 )
vz (L) " —Zi S(k,L)  C(r,L) v 0 |

The systems above imply that « is a root of the equation

and

C(xk,L)* — S(k,L)* =0,
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which can be written as

M‘;_LL <[KL] cosh <’””2L> — 2sinh (“;))2 — 0. (3.52)

The following result allows us to localize the roots of (3.52).

Lemma 3.3.6. The nontrivial roots (zy)nez+ of

£(2) = zcosh (g) — 2sinh (g) (3.53)

satisfy zn = tn, where (Yn)nez+ C R are the roots of the transcendental equation

Y Y
w®)-4
an 9 9

Proof. First, we show that (3.53) has no roots z with %(z) # 0 : Indeed, if z = x + iy we have
that

U(z,y) = z cosh (g) cos (%) — sinh (g) (2 cos (%) + ysin (g)) ,

V(x,y) = cosh (g) (y cos <%) — 2sin (%)) + x sinh (g) sin (%) .
For y € R fixed, we define the nonnegative function K,(z) := |f(z,y)|>. Then,

where

o K(z) . = z cos(y) — z cosh(z) + 5(2? + y?) sinh(z)

o Kj(z)= 2(2? + y? — 2) cosh(z) + cos(y) > 0, for all z € R.

=0

The statement above is proved by noting that = ~— KJ/(x) is increasing (decreasing) for z > 0
(z <0) and K;(0) = $(y? —2) 4 cos(y) > 0, for all y € R.

Both statements above imply that, for y € R fixed, the convex function x — |f(x,y)|* has a
global minimum value at (0,y). This shows that (zo,yo) is root of (3.53) if and only if g = 0
and yo is a root of the real valued function g(y) = ycos (4) — 2sin (4). Then,

Y (YN AN
ycos<2> 2sm(2>—0<:)tan<2) 5"

‘ 2

|
By analyzing the graphs of the functions tan(xz) and x (see Figure 3.1), we deduce that
the points of intersection (z,)nez+, can be written as x,, = (2”27“)7? — €p, T_p = —XIn, Where

€ (0,1), for all n > 1.
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Figure 3.1: The distance &, between the root z, of the equation tan(zr) = z and the asymptotic
r = sgn(n)LQHl)w tends to 0, when |n| — oco.

From the analysis above, we conclude that the roots (Lky,)nez+ of (3.52) satisfy Lk, € iR
and iLk, = —sgn(n)((2|n| + 1)m — 2¢,,), for all n € Z*. Then, the eigenvalues (fi,,)nez+ satisfy

fin = sgn(n) Y2 ((2n| + 1)m — 2¢,,)i, where &, € (0,1), with n € Z*. |

Remark 3.3.7. If ji,, is an eigenvalue of the operator B, from (3.50) we have that (%, v?)
satisfies

2 aLjfin
14 bydi L 2 3 bidi L g 3
= = ©° + 5 Ve,
1/2 [aL,unP — 4b1d1 aLdﬂn [aL,un] — 4b1d1 9
1

By using (3.46) we obtain

(’02 ! 1 1 3 3
o )5 (=g * ety 71+
< |Tn|<\¢31+rv3\>,

where 7 and C' are positive constants.

We pass to analyze the spectral properties of the operator A. The main difference with respect
to B is that we do not have an explicit representation formula as (3.47) for the eigenfunctions
of A. Therefore, in order to prove the next theorem, we use a strategy which combines two
dimensional versions of the shooting method and Rouché’s Theorem.

Theorem 3.3.2. The eigenvalues of the operator

0 (1 —b0? + b102) "1 (0p + ad?)
A=
(1 —dd? + d10) =1 (0, + ad?) 0

are purely imaginary numbers (Mvjz)neZ*,je{l,Q} with the property that

1

u%:ﬂnJr(’)(W) (neZ* je{l,2}). (3.54)

Moreover, to each eigenvalue i3, corresponds an eigenfunction ®3, given by

®l =PI + 0O <1> (n€Z*je{1,2}), (3.55)

]

with the property that the sequence ((I)ZL)nEZ*,jG{lﬂ} forms an orthogonal basis of [HZ(0, L)]%.
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Proof. According to the proof of Theorem 3.1.1, A is a compact skew-adjoint operator in
[H2(0,L)]%. Then, it has a sequence of purely imaginary eigenvalues tending to infinity. In
order to localize these eigenvalues, let us define, for given § > 0 and N € N, the sets

nlo) = {(“’%ﬁ) eCh i lu—pl + il < 2,|ﬁ| P \}
[.(0) = 0D, (5), (In| > N),
bid
o {(Mﬁ) e il < 1.l < VIR (0N - 2)m —22), 1l < 1,151 < m}

'y = 0Dy,

where 7 is given in Remark 3.3.7 and 3 € C?. Also, let us define the maps F7,G7 : C* — C*,
j€{1,2}, by
' : T (s, B, )) % (1,7, 87, L)
FJ sV 7)) = v ) S )
(5 ( (Do )i

) i ( P50 > &r(1,7, 87, 1)
7 < < vy, B2, L) )7\ oy, 87, L) ’
where 87 = (8, 8]) € C2?, for j € {1,2}, and

( (101'(”777ﬁ1?') ) < (102(/~La77527') > < @%(Maf}/aﬁl?') ) ( (752(:u’77527') >
’/J(M777/817') ’ V2(:u'777ﬁ2a‘) ’ DJ(M?V?ﬁlv') ’ D2(ﬂ777627‘)

are solutions of the initial values problems

(3.56)

—p! + bl — b1Prpey + s+ aprg,, =0 for z € (0,L),
—V1+dV1 — A1V + B0y + Aoy, =0 for z € (0, L),
(¢'(0),(0)) = (0,0),
(22(0),v4(0)) = (0,0),
(032:(0),v2,(0)) = (81, 83),
(

1
T
1
T

Praz(0); Ve (0) = (1,7),

(3.57)

—? + b3y — D1 Prag + 1y +apvy,, =0 for x € (0,L),
—v2+dvi, — div2, ., + el 4 app?,, =0 for x € (0,L),
(902(0)71/2(0)) = (0,0),

(¥2(0), v, ())_(00)

(#2:(0),v2,(0)) = (67, 53),

(0322(0), m(O)) = (7 1),

(a:u Vexa bl(pmxx:v 0 for z € (0, L),
a”@mxw - dly:m:x:p 0 for z € (07 L)v
(¢1(0),7'(0)) = (0,0)

(3.58)

Y

(#2(0),7;(0)) = (0,0),
(822(0), 72(0)) = (81, By),
($222(0), 7242(0)) = (1,7),
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.
apv xx:v bl(pxzxw for z € (0, L),

0
Py — 12y =0 for z € (0, L),
(#%(0), 7%(0)) = (0,0),
(2%(0), 72(0)) = (0,0),
(£3.(0),72,(0)) = (51, 53),
(

Pr02(0), 7222 (0)) = (7, 1),

respectively.
According to Theorem 3.3.1 and Remark 3.3.7, we observe that £ is an eigenvalue of B if and
only if G1(ji,0,3') = 0, where 8! = (31, 33) satisfies

- 2b1d1 L < braL?fi

= d gl= ——=1
0= i —and, ™ P2 T i = abdy

or G2(f1,0, %) = 0, where 3% = (32, 52) satisfies

~ diaL?fi ~ 2b1d1 L

2 1 I 2 101

— d =V
fi (aLj1)? — 4b1d, and B3 (aLj1)? — 4b1dy

Moreover, from the definition (3.56) and (3.57)-(3.58), we deduce that u is an eigenvalue of A if
and only if there exists (v, 3) € C3, such that F(u,v, 8) = 0 or F2(u,, ) = 0. Hence, we have
reduced the problem of finding the eigenvalues of A to the problem of determining the zeros of
the maps (F7);—1 2. We analyze only the zeros of the map F'!, since the analysis of those of F
is similar. First, we note that the maps F'' and G' are analytic and that

F (7, 8) — G (17, B)]| < W (wr<1rur> hl<Liss D |) (3.59)

G108 = T2 (7 8) € Tald)), (3.60)

for some positive constants C1,Ca. Indeed, since p € Z,|y| < 1 and |5] < R (3.59) is a direct

consequence of Proposition 3.3.4. On the other hand, since G*(jiy, 0, Bn) =0, we can find C > 0,
such that

|ul|G* (11,7, B)] = 8Cs,

for (p,7,6) € I'y(0) and we obtain (3.60). It follows from the multidimensional version of
Rouché’s Theorem [30, Theorem 1] (see, also, [31, Theorem 3|) that there exist 6 > 0 and N > 0,
such that the maps F! and G' have the same number of zeros in Dy, (), for each |n| > N. Since
G' has exactly one zero (fin,0,5)) in D, (8), then F! has a unique zero (ul, ., 81) in D, (8).
Thus, we have obtained the eigenvalues ( ,u,ll)|n|2 ~ of A and proved the corresponding asymptotic
estimate (3.54). Arguing as before, we get the existence of a family of zeros (13,73, 52)n>N
for the map F2. Then, we obtain the other sequence of eigenvalues (H%)Inlz ~ of A and the
corresponding asymptotic estimate. To obtain the remaining eigenvalues, we note that, since

afin afn
S< ,L>:C< ,L>zOforalll§n§N,
Vbidy Vbid; Il

then, there exist a positive constant C3, such that

. ap ap
min< |S L C L > C
{‘ <\/b1d1 ) <vbld1 )‘} ’
for ped (\%ul < 1,[3p <

Vbidq
alL

(2N + 2)7 — 25N)> .
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This implies that |G*(p, v, 8)| > (SI% ((u,y,B) € I'y) for some Cy > 0. Combining the last
estimate with (3.59) and applying again the multidimensional Rouché’s Theorem, we obtain the
eigenvalues (/‘}L)In\é ~ of Ain Dy. From the analysis of the map F? we get the existence of the
remaining eigenvalues (12),1<n-

Let us pass to the analysis of the eigenfunctions. To each eigenvalue /ﬂl corresponds a unique
normalized eigenfunction &, satisfying (3.57) with v = ! and g = g} = (Bll,n’ﬁ%,n) or (3.58)

with v = 2 and 8 = 82 = (5% n752 n)» respectively. Since

. 5 . ) L 1 1
W< o lah =l < o and (8- Bl <7 (b o | for =12,
i i ln| ||
then, from Proposition 3.3.5, we deduce that (3.55) is verified. Finally, since A is a skew-adjoint
operator, these eigenfunctions are orthogonal in [HZ(0, L)% [

The next steps are devoted to analyze carefully the asymptotic behavior of the eigenvalues
of the operator A. More precisely, we analyze the coefficients A7, B,,Cs and D}, (j = 1,2) of
the systems (3.21).

Lemma 3.3.8. For a subsequence, if necessary, the following holds,

lim €Y = lim DJ = lim A lim B =0, j=1,2,

lim A1 = lim 32—5 bldl,

for some §y € C*,

and ) )
Cn Dn L%y,

@]+ D — 22,2 + 47

for all neZ”.
C? D?

Proof. In order to prove the result, we first consider the solutions of the following problems

_aﬂn TIL:ELEI bl@%,mx:px =0 for z € (07 L)?
_aﬂngpn,azxx - dlﬁrlt,m::m: =0 for x € (07 L)?
51(0),71(0)) = (0,0
(#0).70) = 0.0), -
(21,2(0).78,.0) = (0.0),
(Pn,20(0); 722 (0)) = (B1 15 B2.0)
( 711,30150( )7V71L :(::rx(o)) = (17O>7
and
—afin?, nxa:ac bl@% rrrr — 0 for z € (O?L)>
_aun¢n,xxw len T =0 for z € (07 L)?
52(0), 7%(0)) = (0,0
22,(0).72,0)) = (0.0),
721,3595( )’ 721:1:;3( )) = (B%,n’ﬁg,n)v
P aaa(0): U 202(0)) = (0, 1).
For each fi,, = —sgn(n) ledl ((2In] + 1)m — 2ey,)i (n € Z*, ey, € (0,1)), (Blln,len) satisfying

2byd; L I braL?fi,
(aLfin)? —4bidy” "*™ " (aLjin)? — 4b1dy

Bln= (3.63)
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and (ﬂ?n, Bgn) satisfying

diaL?fi,
(aLfin)? — 4bydy’

2bydy L
(aLjfin)? — 4bydy’

the solutions of (3.61) and (3.62) are given by formula (3.47) and will be denoted by

22 22
/Bl,n = - /82,77, -

ol = and @721 =

n

respectively. We set k,, = —\;”LL Then, from Theorem 3.3.1, we get S(kpn, L) = C(kn, L) = 0,
which implies that

' B [k, L] B 4[kn L)

sinh(kpL) = kpL — [knL]2 — 4 - [knL]?2 — 4
 2[kL)?

cosh(k,L) — 1= —m-

Then,

oo 2kn L _ 3 2L
Sez(kin, L) = K, [Slnh(/inL) +—— | =—kK L —1]

L)? Ko L
TT nL: 2 h nL—l 7[,{% — 3|
Coz(fin, L) = K3, |:(COS (knL) —1)+ on L2 _4} K, L2 — 4
Consequently, the functions i)%, 7 =1,2, satisfy
) Phaa(L) = 2
DTIL,I:E (L) [Rn B KnL\ [ =
and
& (L) B @%,x:c(L) B —L kL bl (3 65)
n,Tx - ~ - m ) .
U (L) in L 2

for n € N*. Now, we pass to the study of the asymptotic behavior of the eigenvectors of the
operator —A. From the proof of Theorem 3.3.2 we have that, for each eigenvalue —u,, the
corresponding eigenfunctions ®. = (¢l vl) and ®2 = (p2,12) are solutions of

(—auk %m D1Ph rawz = P — EnVig — 0fp o for z € (0, L),
— AP vrx — D1V prwe = Vi — M — AV, oy for z € (0, L),
(¢'(0),#(0)) = (0,0), 566
(2,2(0),14.,(0)) = (0,0), .
(2022(0), V3 22(0)) = (B 1> Ban)s
(120 (0), V21 (0)) = (1,72),

and ) ) ,
OV vy — D1PR e = 1 — un e — b e for z € (0, 1),
— Q15O v — DV e = Vi — i — AV 4y for z € (0, L),
(£2(0),2(0)) = (0,0), 6
(¢ +(0), v ,(0)) = (0,0), '
(02 22(0), v . (0)) = (B3 ., 53.);
(23 202 (0), V5 12 (0)) = (72, 1),
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respectively. We also note that, according to Theorem 3.3.2, the data in (3.66) and (3.67) satisfies
: 5 S )
[al < Tl |k, = fin] < 7
n| Id

Since |87, — 8| — 0, as |n| — oo, for j = 1,2, we can extract a subsequence, if necessary, such

that
)

‘Bll,n_ 1, —| |2’ ’/8271 62n‘

- ‘ ‘ (3.68)
|B2,n _52,77, <

_Wa

0

‘512,77, Bl TL| = ﬂ

for a given positive §. Therefore, from Proposition 3.3.5, the eigenfunction (pl,v}) satisfies
’90711,33:1:(11) - @111,:)393(‘[’” + |V71L,1‘£E(L) - ﬁ}L,xz(L”

- ~ 1 -
C (18t~ Bhal + 1880 = Bhal) + Lo (9414 1k = L+ 12D)
n

cel(oe )i e )]

Similarly, the eigenfunction (p2,v2) satisfies

’ﬁﬂi,m(L) - 95721,:)%([/” + ‘Vg,zx([/) - Dﬁ,xz(‘L”
1) 1) 1 1) 1) 1)
cof(Se IV (5 S )
mE ) T el T )

From the estimates above and (3.64)-(3.65), we conclude that

C7lz b1 (P}z,cca: (L) —L 2by
- ~ T2 -4
D,,ll dll/rlL@x(L) [ﬁnL] 4 IQnL\/ b1d1
and
CEL 1)1(,0,217$$ (L) L KnL\/ b1d1
- Y7124
D'rZL dy V;L,m:s(L) [KlnL] 4 2dy
Thus,
1 1
Cn Dn L2b1d1
~ et A0,
c2 D2 [/inL] —4

which gives the behavior of the coefficients C? and D%, for j =1,2.
On the other hand, by integrating the equations in (3.66) over (0, L) we obtain the coefficients
Al and B}:

L
A%L = ( GM%L %x:p - blgp}L,xmz) (L) = / @}L(x)dx + a“}zﬁ%,n - b17
0 (3.69)

L
B = (~aihphae ~ divhows) (B) = [ vh@)de + apifl, - i

The next steps are devoted to study the term on the right hand side of the equations in
(3.69). First, we note that, from Theorem 3.3.2,

/OL¢;(m)dx=/OL L )d;v—l—(’)<‘ |>
/OLu;(x)d:c:/OL 1y )dx—i—(’)(’i’)
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Then, from the formula (3.47) we conclude that

L L
lim ol (z)dz = lim v(z)dz = 0. (3.70)

In|—=00 Jo In|—o0 Jo

On the other hand, from (3.68) we get

anhfl, =a (M”*O (| r)) <B1”+O (|$|2)>

_ 1 5oL 1
a:u'nﬁl Ne} + CL,U,nO <|n|2> + aﬁl,no <’n> + CLO <’n3 9

o =o (140 (1) (B0 ()
= afinPan + 0O <|n|> + 4830 <| r) a0 <| 11?)

From (3.63), we note that the right side of (3.71) tends to 0 as |n| — oo, the last two terms on
the right side of (3.72) tend to 0 as |n| — oo, and, finally, the first two terms satisfy

1 <1>—6Vbld1
ﬁ — 00 L

for some §p € C*. Then, from (3.70), (3.71) and (3.72), we conclude that

lim A1 = dy lzdl and lim Bl—O

(3.71)

and

(3.72)

lim a,unﬁzn——bl and lim afi

In order to conclude the proof, we integrate the equations in (3.67) over (0, L) to obtain
L
A% = ( a:un nmc bl(Pn :ca:x) (L) = A (p%(.’lf)dl’ + GMELBZQ,TL - bl’}’g,

L
B721 = (_auzﬁpi,zx - le?l,xxz) (L) = / V,%(x)dx + au%/@in —d
0

Then, by arguing as in the previous steps, we deduce that

lim A2 =0 and lim 32—5 bldl.
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Chapter 4

Asymptotic behavior of a linear
higher-order Boussinesq system with
damping

We introduce several mechanisms to dissipate the energy associated to a linear higher-order
Benjamin-Bona-Mahony-type system. We consider either a distributed (localized) feedback law,
or a boundary feedback law. In each case, we prove the global well-posedness of the system
and the convergence towards a solution which is null on a band. If the Unique Continuation
Property holds for the conservative model, this implies that the origin is asymptotically stable
for the corresponding damped one.

4.1 Unique Continuation Property

The aim of this section is to study some unique continuation properties for the following higher-
order system

Nt + W + AWzzr — ONize + b1Mtzzze = 0 for x € (0,2m), t > 0,

Wt + Ny + Naze — dwige + d1Wigzer = 0 for z € (0,27),t > 0, (41)
90(t,0) = 21(t,2m), F(t,0) = F(t,2r) fort>0, r=0,1, '
n(0,z) = n°(z); w(0,z) = w(z) for z € (0, 27),

where b,b1,d,dy > 0 and a,c <0 ora=c>0.
We first introduce a few notations. Given any v € L?(0,27) and k € Z, we denote by v, the

k—Fourier coefficient of v,
1 2 )
Uk = — v(x)e”H d.
2 0

Then, for any s € R, we define the Hilbert space

ST+ R < oo}

H5(0,2m) = {v = Tee’ ™ € L*(0,2n)
keZ

keZ

with respect to the inner product

(v,w)s = Y kOp@g(1 + k)",

keZ
We denote by || - ||s the corresponding norm to the inner product given above, more precisely,
1/2
lvlls = (2 017 (1 + k2)5> :
keZ
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Under the considerations above, for o, 3 > 0 we can define the operator (1 — ad? + ,88;1);1 in
the following way:

V= QUyz + PUgzze = ¢ in (0,2m)
(1—adi+B0,), o=ve (4.2)
8v(0) = &2 (2n) r=0,1,2,3.

Since for any ¢ € L%(0,27), the elliptic equation (4.2) has an unique solution v € H;‘;(O, 27), the
operator (1 — ad? + 689%);1 is a well-defined, compact operator in L2(0, 27).
Given s € R, let us introduce the Hilbert space

V*® = H,(0,2m) x H,(0,2m),
endowed with the inner product defined by

((f1, f2), (91, 92)) = (f1,91)s + (Hf2, Hga)s,

and the operator H defined in the following way

R . w R .
H <§ akezk:c> — E : / akezkaz’
w
kEZ kez V2

where, for b,b1,d,d; > 0 and a,c < 0 or a = ¢ > 0, we set

1—ak? 1 — ck?
= Y= ——Fr—— d = k)= ————. 4.3
wr=wilk) = gy g v =) = (4.8)
Thus, wiws, wy/we > 0.
System (4.1) can be written in the following vectorial form
1 1 _ (0 1 (P
(&) oea(2)o=(0) (D)o=(k)
where A is the linear compact operator in V* defined by
0 (1 =002+ b103), (8, + ad)
A= . (4.4)
2 4y—1 3
(1 —do; + d10;),  (Oz + c0;) 0
Thus, if we assume that the initial date in (4.1) is given by
(n”,w%) = Y _ (R, aR)e™,
keZ
then, at least formally, the solution of (4.1) can be written as
(7% (,U)(t, Q?) = Z(ﬁk(t)7 d-)k(t))elkxa
keZ
where (7 (t), 0k (t)) fulfill
(14 bk% + b1 k) (Mk): + ik(1 — ak?), =0, t € (0,7)
(1 + dk? 4 dikY) ()¢ + ik(1 — ck®)i, =0, t € (0,7T) (4.5)

Mk(0) =7, &r(0) = &Y.

Hence, we have the following result:
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Lemma 4.1.1. Let o(k) = \Jwiws. The eigenvalues of the operator A defined by (4.4) are given

by
AE = +ilklo(k) (k€ z"). (4.6)

The solution (Mg (t), Wk (t)) of (4.5) is given by

A(t) = cos[ko (k)7 — z\/% sin[ko (k)@

4.7
Wk (t) = cos[ka (k)t)&? — i, [ w2 sin[ka (k)t]nY. (4.7
Proof. System (4.5) can be written in the following equivalent form
Mk Tk _ (0 Mk _ (W )
! H+AER) (™) @) = ™ oy=( T ),
(&), 00 (5 )o=(0) (& )o-(2
where
0 ikw1
A(k) =
ik?WQ 0
Hence, we deduce that the solution of (4.5) is given by
- 50
Nk _ —Ak) [ Tk
(2 )0-c($)

and it is easy to see that the eigenvalues i of the matrix A(k) are given by (4.6). Thus, in
order to obtain (4.7), we will make use of the following result from |[1|:
Proposition 4.1.2. Let A a 2 X 2 matriz with eigenvalues Ay #£ Ao, If
A—XoI A— NI
= RS ;
)\1 — )\2 )\2 - >\1

1

then
L A=XMQ1 + AQy;
2.Q1=Q1; Q5=0Qn @Q0Q1=01Q2=0;
3. A" = ATQ1 + M5Q2, Wk EN;
4 M = NIQ, 4 Q.
Moreover, if \f = A = Ao and Q = A — X\oI, then et = (I +tQ)e o,
Then, we have that

e AW — e ALQ, (k) + e M Qo (K), (4.9)
where
A(R) =M 1 1 sgn(k),/ o
k)= —F—"=3 (4.10)
A=A 2\ sgn(k), [ 1
and
Ak) = MNT 1 1 —sgn(k),/
Q2(k) = (_)74’? == - 1. (4.11)
Ak~ AL 2\ —sgn(k), /2 1
Then, from (4.8)-(4.11) we obtain
7 1| (@4 e+ sgn(k) /2 (e — e Moy
o =3 Wy (oAt ALt A0 N4 A0 | (4.12)
k sgn(k)y /w2 (e7 et —em )i+ (e " + e )y
By using (4.6) and the Euler’s formula, we see that (4.12) is equivalent to (4.7). [
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Using Lemma 4.1.1 we can prove that the operator A generates an analytic group in V*.

Theorem 4.1.1. The family of linear operators (S(t))i>0 defined by
S(t)(noawo) = Z(ﬁk(t)awk(t))elkzv (7707@0) € Vsa
kEZ

where the coefficients (Mk(t),wi(t)) are given by (4.7), is a group of isometries in V*, for any
seR.

Proof. First, we prove that S(t) is a well-defined linear and continuos operator for any t € R. If
(1%, w0) = 3 cn (7Y, 02)etk® € VS, then, we claim that the series Y, (i, & )e™™® converges in
C([0,00), V#). This is equivalent to say that the sequence

P = § : (ﬁk,wk)elkm
|k|<N N>1

is a Cauchy sequence in C(]0,00), V*). From (4.7), we obtain

2
A~ o~ ; ~ W1 | .
o || o] = o S (1P + LaoP) 0+
tE[0,00) N§|/€|§N+p Vs tE[0,00) N§|k|§N+p 2
~ W1, .
= 5 (IR MaRR) a2y
N<|k[<N+p 2

Thus, P is a Cauchy sequence in C([0,00), V?®). Hence, the operator S(t) is well-defined in V*
and S(-)(n°,w?) € C([0,00), V*). Moreover, since
2
Z (ﬁk,d}k)eikx Z <’ ~0 2 ‘A0’2> (1 + k?)
k<N vs  IKISN 2

we have that (S()):er is a family of linear and continuous operators which are also isometries.
It is easy to see that S(0) = I. On the other hand, we have

S(s) 0 S(H)(n°,w°) = 5(5) > (Mk(t), @r(t))e’™

kEZ
=5(s) kez% (Cos[k‘a(kz)t]ﬁg - i\/gsin[k‘a(k)t]djg, cos[ka (k)]0 — i\/fsin[ka(k)t]ﬁ,g) eike
= Z <cos [ko(k)s| cosl[ko(k % cos[ka (k)s] sin[ka (k)t)&))
keZ
— sin[ko (k) s] sin[ko (k)t]7) — i Z—; sin[ko (k)s] cos[ka (k)t]wy,
cos[ka (k)s] cos[ka (k)t]0Y — i Z—j cos[ka (k)s] sin[ka (k)t]7)
— sin[ko (k) s| sin[ko (k)t]wy — i Z—i sin[ko (k)s] cos[ka(k:)t]ﬁg) eike
= o(k)(s 70 — i [ L sinfko (k) (s o2
= 3= (cotbotts + ik - iyt sinfeo (s + 018

cos[ka (k) (s + 1) — i\/fsin[ka(k)(s + t)]ﬁ,g) etke

= (ks + 1), k(s +1)e™™ = S(s + ) (n°, ),
kEZ
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for any t, s € R and, in addition,
1S (n°, w®) = (", O)[74

=5 ((coslko(bye] - 17+ snleo(iyr) |12 + 2 |ap| 1+ 42

kEZ
. k‘U(k‘)t - w1 | . s
—aysin? | SR g o] gy
kEZ
Consequently lim;_,0 S(t)(n",w?) = (n°,w?) in V. [

Theorem 4.1.2. The infinitesimal generator of the group (S(t))ier is the bounded operator
(D(—A),—A), where D(—A) =V* and A is given by (4.4).

Proof. We will show that

0 0y _ 0 0
lim St)(n,w”) — (n”,w”)
t—0 t

- _A(Tl07 UJO),

if and only if (n°,w®) € V*. This is equivalent to show that the derivative in zero of the series
> kez (L), Ox(t))e™®, where (fx(t),0x(t)) is given by (4.7), is convergent to —A(n°,w?) in V*,
if and only if (n°,w®) € V. If we denote by

Sn(t) =Y (i(t), or(t))e™,

[k|<N

a partial sum of the series, a straightforward computation which takes into account (4.5) shows
that

[Sn]¢(0) = —A(SN)(0). (4.13)

Now, let (D(B), B) be the infinitesimal generator of the group (S(t))ier. If (n°,w°) € D(B),
from (4.13) we obtain that

t—0 t

0 WO _ (0 wO )
Bl ) = liy ST ) [ka(t),wk(t))em] 0

= Jlim [Sn]¢(0) = lim —A(Sn)(0) = —A(n", o).

N—oo

Hence, (n°,w%) € D(=A) = V* and B(n°,w’) = —A(n°,w?), for any (n°,w’) € D(B). On the
other hand, if we take (n°,w®) € D(—A) = V¥, then we have to show that the series

[Z(ﬁk<t>,wk<t>>e“”] (0)

kEZ t

is convergent. This is equivalent to show that

[SxJe(0) = | > (e (t), @k ()™ | (0)

E<N ,
is a Cauchy sequence. Indeed,
N w1 | . s
[1Sw230) ~ kIR = 30 (I + Lo @F ) @+ 2. (a0
N<[K[<N+p 2
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From (4.3) and the equations in (4.5) we deduce that

10(0)]* = k*wi|@g(0)]* and |@r(0)]* = kw3 |k (0)[>. (4.15)

Then, from (4.15) we have that
~ w1 ~ ~
e (O)2 - Mt (O = K2 (0)* + K wrwwali (0)
2 A 2, Wi,. 2
_ Ry [|nk<o>| 0 50)] ] (4.16)
w2
R 2 wy | . 2
<M [|nk<o>| Y10 ] ,
w2

where M is a positive constant depending only on a,b,c,d,b; and dy. Thus, from (4.14) and
(4.16) we obtain the following estimate

liSwashO) = 5L O <M S0 (1O + 22 an(0)7) (14 2)°

N<|k|<N+p
_ ~0 ~0\ tkx ~0 ~0\ tkx
=M E (nkv ) - § (nkv )
k|<N+p lk|<N ve

and, since (n°,w") € D(—A) = V*, we have that ([Sy]+(0))ys is a Cauchy sequence. Conse-
quently,

N—o0 N—oo

SO, w’) — (n°,w’)

_A(nﬂ’wo) = lim —A(Sy)(0) = hm [Sn]:(0) = [Z(ﬁk(t),@k(t))elm] (0)

— _ 0,0
Hence, (n°,w°) € D(B) and —A(n°,w°) = B(n°,w"), for any (n°,w%) € D(-A) = V?*, |

Remark 4.1.3. In fact, much more can be said about the reqularity of solutions of (4.1). Since
(4.1) is linear and —A is a bounded operator, we can easily deduce that (n,w) € C¥([0,00); V¥),
where C¥([0,00); V*®) represents the class of the analytic functions defined in [0, 00) with values
in V5. Indeed, for ty € [0, 00)

o0

ar (t —to)" |t—t0|” n
dtn(naw)(t()) n! § n! dtn(n’w)(to) s
n=0 Vs =
|t
< [l(m,w)o)lly E HAHL ve) S

Hence, the series y - %(n,w)(to) (tfn’f!o)n is absolutely convergent and

(m,w)(t) = exp(=A(t — t0))(n,w)(to) = ) (t_nfO)n

n=0
(t — to)
- Z i I

From Theorem 4.1.2 and the semigroup theory, we obtain the following global well-posedness
result:

(=A)"(n,w)(to)
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Theorem 4.1.3. Let T > 0 and s € R. For each (n°,w®) € V* and (f,g) € L*(0,T;V?), there
exists a unique solution (n,w) € WHL([0,T]; V*) of the system

(2)oa(D)o=(3) (D)o-(5)

which verifies the constant variation formula

(Z>(t)=S(t)<ZZ>+/OtS(t—s)<§>(5)d&

Moreover, if (f,g) = (0,0) it follows that (n,w) € C¥(R;V?®), the class of analytic functions in
t € R with values in V?*.

The main result of this section reads as follows:

Theorem 4.1.4. Let (n,w) solution of system (4.1) given by Theorem 4.1.3. Suppose that there
exist an open set Q C [0,27] and T > 0, such that

n(t,z) =0, ¥t z) € (0,T) x Q. (4.17)

Then,
(n,w) =(0,0) in R x (0,2m).

Proof. We note that (4.12) can be written as

{ﬁk(t) = a,ﬁe*)‘:t + a,;e*)‘l;t,

- 4.18
Op(t) = b e T b e M, (4.18)

where af =1 (772 + sgn(k), /%@2) and bki =1 (@2 + sgn(k) %ﬁg) . Since the solution (7, w)

is an analytic function of ¢, from (4.17) we deduce that
n(t,z) =0, V(t,z) e R x Q.

Consequently, for any S > 0 and x € Q, if we multiply n(¢,z) by e/\zt, and integrate between
—S and S, from (4.18) we obtain

1 o + - i +
0= lim / Z (a-*e_kf brare™ t) eI | eMrtdt
$m0025 J s \ iz N’ ’ (4.19)
= a;em—i-af e in 0

+ —AT g ij +
0= n(t,z)eMt = Z(a;re )‘Jt—i—aje )\]t) oiiz | At

JEL
= (a +a;€2,\;t) eikr | (afk +a:k62’\tkt) o—ike (4.20)
+ Z (aje(_)‘jJrA’j)t + aj_e(_’\;JrA’Dt) e’ in Q.
JELN{—k K}

Then, if we integrate n(t,m)e)‘zt on [—S,S] and by using the fact that, for @ € R the following
holds

S .
- ~ lim sin(a.S) _



from (4.20) we obtain

1 S . .
0= lim 2S/ n(t,w)e/\:t =a; e +at, e in Q.
-5

S—o00

On the other hand, if we multiply (¢, z) by e* !, similar computations yields

1 s + - .. _
0= lim — E ( te Nt 4ar —’\'t) bz | Ml
Slm 25/_ aje s aje i) e e (421)

Since both functions on the right hand side of (4.19) and (4.21) are analytic in z, it follows that
akieikz + aj_[ke_ikz =0 in [0,2n7].

By using the orthogonality of {€?*}cz and {e=**}4cz in [0, 27], we deduce that ai = a*, = 0.
This implies directly that 72 = @9 = 0 for any k € Z. Hence, (n,w) = (0,0) in R x (0, 2).

As consequence of Theorem 4.1.4, we have the following result:

Theorem 4.1.5. Let (n,w) solution of system (4.1) given by Theorem 4.1.4. Suppose that there
exist an open set Q C [0,2x] and T > 0 such that

ne(t,z) =0, Y(t,z) € (0,T) x Q. (4.22)

Then,
(n,w) = (e1,c2) in R x (0,27),

for some constants ¢1 and co.

Proof. From the Lemma 4.1.1, we have that

Ne(t, ) = Zikﬁk(t)eim = Z (ikaze_kzt + ikalzeq‘lzt) etke

keZ keZ (4 23)
wy(t, z) = Z ik (t)e*® = Z (ik‘b,je_/\:t + ik:b,;e_Alzt> etk
kEZ kEZ

Then, proceeding as in the proof of Theorem 4.1.4, from (4.22) and (4.23) the following identities
holds

kakieikx + k‘ajfke_ik” =0 in [0,27],
for any k € Z*. From the orthogonality of {e?**};cz and {e**},cz in [0,27], it follows that
af = afk = 0. This implies directly that 7} = @) = 0 for any k € Z*. Hence, (n,w) = (c1,¢2) in
R x (0,27), for some c1,c2 € R. |

4.2 Boundary Stabilization

In this section we are concerned with the study of the boundary stabilization of the higher-
order Boussinesq system posed on a bounded domain. More precisely, we consider the following
problem

N+ Wy + GWerr — Wigr + O1Mtgzes =0 for x € (0,L), t >0,
Wt + N + ANgar — dwtxx + dlwta:ma:x =0 forze (O, L), t > 07 (424)
20.2) = (@) w(0.2)=0(x)  forae (0,L),
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with the following boundary conditions

( t
b1Mtzar(t,0) — b (t,0) = —(b+ b1)n(t,0) — aws,(t,0) — w(2, 0) for t >0,
t, L
i (b L) — biea (£, L) = (b b)(t, L) — awpa (£, L) — X % ) for t>0, )
A )
d1Wizas(t,0) — dwiy (t,0) = —(d + di)w(t,0) — ang.(t,0) — i 2’0) for ¢t >0,
t, L
dyWigas(t, L) — dwiy(t, L) = (d + di)w(t, L) — ang,(t, L) — n( é ) for t >0,
(
z(Es
Ntza (t,0) = n2(t,0) — aw 2(b 0) for t >0,
1
«(t, L
Mz (t, L) = —ny(t, L) — aw (. L) for t >0,
2b 4.26
1x(t,0) (4.26)
Wiz (t,0) = w(t,0) — a 2d’ for t >0,
1
(¢, L
Wize(t, L) = —wy(t, L) — a” (¢, L) for t>0.
2d,

If we multiply the first equation in (4.24) by 7, the second one by w and integrate by parts
over (0, L), we obtain (at least formally)

1d
5 (), 0D 20,2 = — (0-+ )t L)+ [n(t,0)P)
— (d+d)((t, D) + w(t,0)) 420)
= ba(|ma(t, L)* + [n2(t,0)%) — di (Jws (¢, L)* + |wa (2, 0) ).
Hence, [|(n(t),w(t))|l[zr2(0,0))> is nonincreasing and the boundary conditions play the role of a
feedback damping mechanism. Before to establish the stabilization result, we first show the
following well-posedness theorem for (4.24)-(4.26):

Theorem 4.2.1. Let s € (5/2,7/2). For any (n°,w°) € [H5(0,L)]?, there exist T > 0 and a
unique solution (n,w) of (4.24)-(4.26) in the class C([0,T); [H*(0, L)]*). Moreover, the map

F (10, L)) — C((0,T]; [H*(0, L)]*)
(1°,w%) = (1, )
is Lipschitz continuous.

Proof. In order to simplify the notation, we will denote the operator
Lo = (1—adi + ;)

where a, 8 > 0. The proof will be done by using a fixed point argument. Therefore, in order to
write the problem as an integral equation, we set (1, &) = (1, wt) and remark that (7, o) solves
the elliptic problem

<£b,b1ﬁa ['d,dl‘«:)) = < - (1- aaﬁ)axw, —(1- ac’)ﬁ)@xn) (4.28)
(01722 (0) — b12(0), d1@z2:2:(0) — dioz(0)) = (b1 Bg — bB1,d1 Big — dBa) (4.29)
(blﬁx:px(L) - bﬁx(L)a dlw:mz(L) - dd)x(L)) = (blBll - bB3, dlBl2 - dB4) (4.30)
('f/xx(o)ﬂ;)xx(o)) = (BSaBG) (4.31)
(Naar (L) Wz (L)) = (Br, Bs). (4.32)

70



where we have set

(B, B) = <w(;fé)O) a(t.0), n(;;l ) ¢t 0)>

(Bs, Ba) = (w(;’bL) —n(t, L), %’dL) —w(t,L))

(8. 50) = (m(t,0) — 2252 0, (0,0) - o200 )
(Br.5) = (= molt. 1) = a5 e, ) - )
(By, Big) = < —(t,0) — a%‘b(fo) (6,0 amxc(l?o)>
(Bu.B1) = (ot 0) 2208 oy 1) - 22,

Now, we set the polynomials g; ,, .)(), i = 1,2 defined as

B: Bo
91,y () = g1(2) = Biz + 7:}5 + 5 23

5 1 3

1

2 (B;-B B 3pve Lip _ap
+ 1573 (Bs = B1) = 73(Br + 5 B5) + o7 (Bu = 3 9)]

S , 1 ) 5
—I—_—E(Bg—Bﬂ 5L3(7B7+8B5) 5L2<B11 239)]55
+—1(B BY) - L (Bt By) 4 —- (By - Bo)e®

| L5 ’ Vo opattt 5) T 1973\ T P9I

and
BG BIO
92n) (%) = 92(x) = Bow + = 2+T$3
or3 7t L2 8 6) + o7 (P12 10) |@

1
(7Bs + 8Bg) —

3
+ | — 5 (Bs—Ba) + =73

1
B —-B 5
L (Bi2 — 10)]

512

_l’_

3
2
1 1 5
75(B4 - BQ) 2L4 (B8 + BG) 12L3 B12 Blo €T

Thus, we have that (g1(x), g2(z)) satisfies the following boundary conditions

(91,2(0), 92,2(0)) = (B1, B2)
(91,2(L), 92,2(L)) = (Bs, By)
(91,02(0), 92,22(0)) = (Bs, Bs)
(91,02(L), 92,22(L)) = (Br, Bs)
(91,022(0); 92,222(0)) = (Bo, Bio)
(91,200(L), 92,000(L)) = (B11, Bi2).
Consequently, (g1,92) will satisfy the boundary conditions (4.29)-(4.32). Then, the solution
(7,&) of (4.28)-(4.32) can be written as

(n,@) = (h1 + g1, ha + g2),

where

(i, ) = ( (=1 = 0810 = La0). £, (=1 = 00D0m — L))
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is solution of
(Lyp b1, Lag ho) = < — (1 — ad2)0pw — Lyp, 91, —(1 — ad?)0yn — »Cd,d192>7

with boundary conditions

d'hy d'hs B d'hy d’ho _ .

where, for any a, 8 > 0, L, 58 = (1 — ad? + B92) N denotes the elliptic operator with homoge-
neous Neumann boundary conditions. Thus,

me =1 =—Lyy (1 —ad2)dw+ (1 =Ly vLop)gn, (4.33)
and
wp=w= _Ec;jth(l —ad?)dyn + (1 — ﬁcﬁthﬁd,«h)gl (4.34)
We remark that
(1 — ad? + B0;)5' (1 - ad2)d,(H*(0, L)) C H*(0, L) (4.35)
and
(1 = ad? + B3) ' (1 — ad2)u fllus(0.Ly < ClIf (0.0, (4.36)
for s € (%, %) and any «, 8 > 0, where C is a positive constant.

The linear and bounded operator (1 — E;lﬁ ~La,p) will be denoted by B, 3. Then, motivated
by the above considerations, for any (n°,w") € [H*(0, L)]?, we define the following operator

L(n,w)(t) := (C1n(t), Taw(t)),

where

t t
Fy(t) = + / L) (1 - a02)(@u)(r)dr + / By, g1 (2)(7)dr,
0 0

t t
Pgw(t) = -+ / —ﬁ;iLN(l — a@%)(&xn)(r)dr/ Bd,dng(fL') (T)dT,
0 0

with

t
B
¢ 0 t 0 2
:/ By b, [W(T’ ) + (T, 0)] :L‘dT—i—/ Be.b, [771(7‘, 0) —awxz(;’ )] %dT
0 0 1

72



— 1 770))

(
T (7 (—nw(r, L) - a”x;Z’lL) +8 (nw(r, 0) - a“’g(; O))>
- =73 <n(7, L)—a me — = =n(r,0) - awmgo)» ]x5d7
S e - 250 r0)

2
1 wy (7, L) wz(7,0)
— o7 (—m(n D) - (7, 0) -
ot \ e L) —amoy = A (7, 0) — e

]' Trx 7L T 9
+—= | n(r,L)— aw (. L) +n(7,0) + aw (.0) 28dr,
3 by b1

:/0 i {”(Qdo)w( 0)] :cd7'+/0 Bua [w( 0) - ”édlo)} 22
+/0t8dd1 [—w( 0) “C(Z’O)}fd
+/0t8dd o3 <”(2dL) —w(t,L)—n(zclo)—w(T,O))
_L12<_“(’L>_ n;dL)+g<w$( 0) - n2(d0)>>
—1—81L<w( 1) - a2 L)—3<—w(7',0) tal 0)>>} d
n

+/0 B [ng) (”(;’d” —w(t, L) — 77(2d0) —w(T,O)>
(ot D ek
+12le3< (r. 1) 77x5l72',L)+w( 0) nch(;l',o)>:| 64
Then, we seck (5, w) as a fixed point of the integral equation
L(n(t),w(t)) = (n(t),w(t)). (4.37)
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By using the Sobolev embedding H*(0, L) — C([0, L]) for s > 5/2, we have that

In(t,0)],[n(t, L)] < sup |n(t,z)[ < Clnlls(o,L);
z€[0,L]

72(,0)], [m2(t, L)] < P 2 (t, )| < Cllnallms-10,) < Clinlla=(o,1), (4.38)
xze|0,

M2z (, 0)], 12 (8, L)] < Sl[lpL} M (8, )| < CHUMHHS*Q(O,L) < CHUHHS(O,L)a
z€|0,

for some constant C' > 0. From (4.38) we obtain that
Byt @) Baan92(2)] < CIE, 0O o0y (4:39)

Let T > 0 to be chosen later. Then, for each (n',w'), (n2,w?) € C([0,T"]; [H*(0, L)]?), from
(4.36) and (4.39) it follows that

0w = D0 Pl omme) = 5 L0 @) E) = TR @) Ol e
o<t<T’

T/
< /0 <||£b,1}1(1 — a02)0p (W' = W) () ars(0,2) + [1Bo,bs (91,11 1) — 91,[n2,w2])(7)||Hs(o,L)>dT

T/
+/o <\|£§,}h(1 —ad)0:(n" = 1*)(T)|rr=(0,0) + 1By (92,1 1] — 92,[7]2,w2])(7_)||HS(0,L)>dT
< CT'||(n",w') — (772>wg)\|c([07T];[Hs(O7L)]2),

where C' is a positive constant. Choosing T' > 0 satisfying CT < %, from the estimate above we
obtain

1
IT(n",w!) — P(772aW2)‘|c([o,T];[Hs(o,L)}2) < §‘|(7717W1) - (7727WQ)‘|c([o,T];[Hs(o,L)]2)~ (4.40)

Let (n,w) € Br(0) = {(n,w) € C([0, T} [H*(0, L)) : [|(n,@)llcqomsms= o)z < R}, where
R =2||(n°, (/JO)”[HS(O’L)}Q. From (4.40), we obtain the following estimate

T (0, )l oqo.m s 0.y2) < 107 W)z 0,02 + 1T (0, w) = (0,0l o770 0,02)
o ] (4.41)
<" w ) lias 0,02 + §||(77aW)||C([0,T];[HS(O,L)}2) <R,

which allows us to conclude that T'(Br(0)) C Bgr(0). Hence, from (4.40) and (4.41) it follows
that I : Br(0) — Bgr(0) is a contraction. Consequently, by Banach fixed-point Theorem, there
exists a unique solution (n,w) € Br(0) of the integral equation (4.37) for all ¢t € (0,7).

Finally, in order to prove that the map F is Lipschitz continuous, we proceed as in the proof of
(4.41). In fact, for any (n%!,w%!) and (n®2 w%2) € [H*(0, L)]? if we consider the corresponding
solutions

(n',w") € C([0,T1]; [H(0, L)) and (n?,w?) € C([0, T3]; [H*(0, L)]?),
respectively, it follows that
IF (™) - ]:(770’27W0’2)|\c([o,T];[Hs(o,L)]Q)
= 11tn",w0") = (P )l o211+ 0.1 (4.42)
1
<™, W) - (UO’QaWO’Q)H[Hs(o,L)]? + 5”(771,(*11) - (7727w2)||C([0’T};[HS(0,L)]2)7

where T = min{T}, Tz }. Since (n'—n?, w! —w?) also solves the system (4.24) with initial conditions
(%t — %2 WOt — w02) we deduce that

1F (0™, ™) — ]:(7)0’27WO’Q)Hc([o,T];[Hs(o,L)]Q) <2/|(n™!, ™) — (UO’QaWO’Q)H[Hs(o,L)P-

The proof is complete.
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Remark 4.2.1. Theorem 4.2.1 does not cover the well-posedness in the energy space [H?(0, L)]?.
Indeed, i order to estimate the boundary terms involving the second derivatives, we have to
assume that s > 5/2. Therefore, to prove the stabilization result, we assume that a = ¢ =
0 and consider a higher-order Boussinesq system of BBM-type. Then, from the proof of the
Theorem 4.2.1, we note that such boundary term do not appear and (4.35)-(4.36) hold for s €
(3/2,5/2). Then, by using the Sobolev embedding H*(0,L) — C([0,L]) for s > 3/2, we can
prove that the respective integral equation (4.37) has a fized point in C([0,T];[H*(0,L)]?), for
s € (3/2,5/2). Thus, we obtain the following result that guarantees the well-posedness in the
energy space [H%(0, L)%

Corollary 4.2.2. Let a = ¢ = 0 and s € (3/2,5/2). For any (n°,w°) € [H*(0,L)]*, there exist
T > 0 and a unique solution (n,w) of (4.24)-(4.26) in the class C([0,T]; [H*(0, L)]*). Moreover,

the map
(n°,w°) € [H*(0, L)]* — (n,w) € C([0,T]; [H*(0, L)]?)

18 Lipschitz continuous.
Now, we will prove the stabilization result of this section.

Theorem 4.2.2. For any (n°,w°) € [HQ(O,L)]z, the solution (n,w) of (4.24)-(4.26) given by
Corollary 4.2.2 satisfies

(1)) = (0,0) weakly in [H?(0,L)]”
(t)) = (0,0) strongly in [H*(0,L))*, for all s <2,

—~
3 3
—~~
~ ~
~— ~—
€ &

as t — oo.

Proof. From Corollary 4.2.2 and equations (4.33)-(4.34) with a = ¢ = 0, we deduce that (1, w;) €
C([0,T); [H?(0, L)]?), then (4.27) holds. Consequently, the solution is global in time and the map
t = {|(n(t), wE)lz2(0,0)2 8 nomncreasmg and has a nonnegative limit, as t — oco. Moreover,
we obtain the ex1stence of (7°,&%) € [H?(0, L)]? and a sequence (t,)n>0, such that t, 1 —t, > T
and

(n(t),w(t)) — (7°,&°) weakly in [H?(0,L)]*, (4.43)
(n(t),w(t)) — (f]o,(bo) strongly in [HS(O,L)P, (4.44)
and
(n(tn + ‘)7w(tn + )) - (ﬁva)) in C([OvT]; [Hs(ov 271-)]2)7

for s < 2 where (7,@) € C([0,T7]; [H?(0, 27r)]2) denotes the solution of (4.24)-(4.26) with initial
data (7°,&0).
On the other hand, from (4.27) we get

1((tnt1)s Wt ) ez o 2y2 = 10(E)s @ &) Frrz 0. 2y2 =
—2(b+by) ttn+l(|77(t,L)]2+ (¢, 0)[2)dt — 2(d + dy) /ttm lw(t, L) + |w(t, 0)[?)dt

tn+t1 lny1
o, / (e (8. L)% + 0 (£,0)2)dt — 24y / (ot L) 2 + [ (£, 0)[2)dt,
tn tn
which allows us to conclude that

(000 [ e DP + e 0P+ @) [ ole, 2P 4 ot )Pt

tht1 tn+1
b / (no(t, L) + Ina(t, 0)?)dt + dy / (walt, )P + lwal, o>|2>dt) -
tn tn
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Thus,
T

T
(b+by) /0 (1t D) + 17(t, 0) [2)dt + (d + ) /0 (o(t, D) + (L, 0)[2)dt

T T
by / (ot D) + |7 (1, 0) )t + dy / (0t D)2 + (1, 0))dt = 0

and therefore
n(t, L) =7(t,0) = 7,(t, L) = 7(¢t,0) = w(t, L) = @(t,0) = @, (t, L) = @0,(¢t,0) =0, t e (0,7T).

Let us consider (7,w) the extended function by zero of (7,&) for z € (—I,1)\(0,L), where
(0, L) C (—1,1) is an interval. Then, (7, @) solves

M+ Wz — bMgat + b1Mtzgze = 0 for z € (—1,1), t € (0,7,

(Dt + 1z — d@mt + dlo_Jmmx =0 for z € (=1,1),t € (0,T),

0, 1) = 20(t,1) = T2(t,~1) = T2(t,1) =0 fort e (0,T), r=0,1,
7(0,z) = 7°(z); @(0,7) = @°(x) for z € (—1,1).

and satisfies

(n(t, x),0(t,x)) = (0,0) for (t,x) € (0,T) x ((=1,D)\(0, L)),

where
_O(CL‘) — ﬁo(x) € (07L)
0 we(-LI\OL)
and
0 @)  x€(0,L)
w'(z) =
0 x € (=1,)\(0,L).
We remark that Theorems 4.1.3 and 4.1.4 can be proved for a domain of the form (—I,[). There-
fore, since (7°,&%) € [HZ(—1,1)]?, from Theorem 4.1.3 it follows that (7, © ) € C*([0,T); [HE(—1,1)]?),

and from Theorem 4.1.4 we deduce that (7°,0%) = (0,0). Hence, (7°,&0%) = (0,0). Finally, from
(4.43) and (4.44) we have that, as t — oo,

(n(t),w(t)) — (0,0) weakly in [H?(0,L)]”
(n(t),w(t)) = (0,0) strongly in [H*(0,L)]*,for all s < 2.

4.3 Internal Stabilization

In this section, we are interested in the asymptotic behavior of the solutions of the following
higher-order system

M+ We + QWgzxr — bnta::c + blnt:carxx + 877 =0 forxe (0, 277)7 t> 07

wt + Mg + Nazr — AdWtzs + dlwmm =0 for x € (0,2m),t > 0, (4.45)
g0(t,0) = gx:z (t,2m), 92(t,0)= G2 (t,2m) fort>0, r=0,1, '
(O,CL‘) - 77 ( )a (O,ZE) - O(l‘) fOT HAIS (05277)’

where a = ¢ >0, b,d,b1,d; >0 and B: H;(0,2m) — H;(0,27) is a bounded operator. More
precisely, let

{p € C;°(0,2m) a nonnegative function on (0, 27) (4.46)

with p(z) >0 on a given open set €y C (0,2m).

We analyze the following cases for the operator B :

Bo = p(z)p and By = (p(x)¢ps), -
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Internal Stabilization with the Feedback By = p(z)¢
First, by using a fixed point argument, we prove that the system is globally well-posed, therefore

we write the solution of (4.45) in its integral form

t
n(t) = n® — / (1-— b@% + blﬁé‘)_l(&xw + a@iw + Bn)(7)dT,
°, (4.47)
w(t) = w® — / (1= do2 + dy0*) " (Ben + adPn) (7)dr
0

where (1 — ad? + BO2)~1f denotes, for f € L?(0,27) and a, 8 > 0, the unique solution v €
H2(0,27) of the elliptic equation (1 — ad2 + 89;)v = f. Moreover, for any s > 0,

(1 — b2 + 53§)71f|’Hg(0,27r) < CHfHHZ(O,27r)7
(1 — ad? + Ba:%)_lafoHg(O,%) < ClIf [l 50,27 (4.48)

1(1 = ad2 + B 05 fll130.0m) < CI1 130,27

for all @ > 0, where C is a positive constant. Then we have the following result:

Theorem 4.3.1. Let s > 0. For any (n°,u°) € [H;(O,QW)]Q, there exist T' > 0 and a unique
solution (n,w) of (4.45) with By = p(x)¢ in the class C([0,T]; [H;(O,Qﬂ')]2). If s = 2, the
solution exists for every T > 0. Moreover, the map F defined as follows

F: [H3(0,2m)]* — C([0,T]; [H(0,2m)]?)
(n°,w”) — (n,w)
18 Lipschitz continuous.

Proof. Motivated by (4.47), for any (n°,w") € [H;’(O, 2#)]2, we introduce the operator

fg Eb_’;l (Opw + aB2w + p(x)n)(7)dT !

T(n,w)(t) = (n°,&°)
Jo £33 (9en + adn)(r)dr

Let 0 < T" < T, to be chosen later. Then, for each (n!,w!), (n? w?) € C([0,T"]; [H;(O,QW)]2),
from (4.48) it follows that

1 1 2 2
HF(U , W )_F(T] , W )HC([O,T’];[H;(U,QW)F)
= L(n',wh () — T(n?, w?)(t

Ogsgng,H (75w () = L% ) O 175 0,2m)?

Tl

</ (!\Eb‘,él@x(wl )l s02m) + 125k 03w — ) () |02
1L pa) (o — n2><7>\|H;<o,%))dT

Tl

- (||cd,}hax<n1 YO lgoam + 1655, 0020 = ) lgom )
<1’ (o' = "), = w1011 0 =70t =N 0t
([OT [Hz(0,2m)] ) ([OT :[H3(0,2m)] )

/ 1.1 2
SCTH(?] , W >_ (77 y W )H ([OT/] [Hb(027r)] )
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where C' is a positive constant. Choosing 77 > 0 satisfying CT" < %, from the estimate above
we obtain

1
”F(n17w1) - F(n27w2)HC([O,T’];[H;(O,QW)]Q) S 7H<T’17w1) - (7727("‘)2)” <0T’} [H‘S(OQ )] > (449)

Let (n,w) € Br(0) = {(n,w) € C([0,T"); [H3(0,2m)]%) : [|(n. w)lle(o,r)im02m)2) < R}, where
R =2||(n°, wO)H[HS(O’QW)]g. From (4.49), we obtain the following estimate

T, ) oo as0.2mp2) < 101° W) 30,202 + IT(1,0) = T(0,0)lleo2: 150,2m12)
o . (4.50)
< " ) g 0,22 + S lloqo s 0.2my2) < By

which allows us to conclude that T'(Br(0)) C Bgr(0). Hence, from (4.50) and (4.49) it follows
that T is a contraction. Consequently, by Banach fixed-point Theorem, there exists a unique
solution (n,w) € Br(0) of the integral equation (4.47) for all ¢ € (0,7").

Let (n,w) a smooth solution of (4.45), then, we multiply the first (resp. second) equation
in (4.45) by n (resp. w), integrate by parts over (0,27), and add the two obtained equations to
obtain

1d 21
— /0 ()2 + [w(®)* + blne (8) P +d|ws (6) > + bi 1122 (8)* + di o () [Pdee

2 dt
2
+/ p()n’de =0,
0

which implies that
1n(1)s w )z 0.2m < 0% ) ia30.2m25

for any ¢ > 0. The estimate above, can be extended for any (n°,w?) € [Hg(O, 27)]? by a density
argument. Consequently, for every 7' > 0 and (n° w%) € [H2(0,27)]?, (4.45) admits a unique
solution (n,w) € C([0,T]; [H(0,2m)]?). Proceeding as in the proof of (4.42), from (4.49) we
obtain the Lipschitz continuity of the flow map F :

0,2

IF @, %) = Fn*2, 02|, Lo = (o ,wo’Q)H[Hg(O,%)f- (4.51)

0
c([0,T7]; [Hs (0,27 )] 2||(77
and the proof ends. |

We are now concerned with the respective stabilization result:

Theorem 4.3.2. For any (n°,w°) € [H2(0, 2%)]2, the solution (n,w) of (4.45) given by Theorem
4.3.1 satisfies

(1), w(t)) =+ (0,0) weakly in [H2(0,27)]”,
(t)) — (0,0) strongly in [H;(0, 27r)]2, for all s <2,

—~
3
~—~
~~
S~—
&

as t — oo.

Proof. When s = 2, we can use Theorem 4.3.1 and the equations of the system (4.45) to deduce
that
N = _Eb_,gl(l — ad?)Opw — E;glp(x)n and wy=—L d1( — ad?)d.n

belong to C(]0,T]; HS(O, 2m)). Thus, each term in (4.45) belongs to L?(0, T} Hlj (0,27)). Con-
sequently, scaling the first (resp. second) equation in (4.45) by 1 (resp. w), we obtain

d 2w
), 0D P o ey +2 /O pl@)In(t, 2)2dz = 0. (4.52)
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Integrating (4.52), we get

t 2w
1)) By e = 0 gz +2 [ [ plolnts.)Pdads =0 (453
Identity (4.52) shows that the map ¢ — ||(n(t),w(t))|/[m2(0,2x)2 is nonincreasing and

(), w@)lzz(0,2m)2 < "(7707("}0)"[H§(0,27r)}27 for all ¢ > 0. (4.54)
Hence, there exist [ € RT, such that

lim {|(n(t), w(E)lmz0.2m2 = I-

t——+o0

Moreover, from (4.54) we infer the existence of a sequence ¢, — 400, such that t,41 —t, > T
and
(n(tn),w(ty)) — (ﬁo,d)o) weakly in [Hg((), 27r)]2, (4.55)

for some (7%, &%) € [HS(O7 2m)]2. Then, proceeding as in the proof of (4.53) we obtain

0t ) (D)) Bz 0 2mg2 =1 000, 0t Bz 2

tn+1 2
+ 2/ / p(x)n(t, z)|*dzdt = 0.
tn 0

Consequently,
tn+1 27
lim / o)l (t, 2)2dadt = 0. (4.56)
0

n—-+o0o t
n

On the other hand, from (4.55) and the Sobolev embedding, for s € [0, 2) we obtain the following
convergence
(n(tn),w(tn)) = (7°,&°) strongly in [H;(0,27r)]2. (4.57)

Since the couple (n(t,+t,z),w(t,+1t,x)) solves the system (4.45) with initial data (n(t,),w(tn)),
from (4.51) and (4.57) we get

(ntn + ) ltn + ) = (73,0) i C(0,T]; [H3(0,2n)]2), as n — +oc,

where (77,0) € C([0,T]; [H5(0,2m)]?) denotes the solution with initial data (7°,&°). The conver-
gence above combined with (4.56) yields

tn41 21 T 21
0= lim / p(x)|n(t, z)|*dedt > lim / / p(x)|n(t + tn, x)|*dedt
tn 0 o Jo

n—-+oo n—-+oo

_ /O ! /0 T @)t ) Pedt = 0.

Thus, (77,@) € C([0,T]; [H5(0,2m)]?) solves the following system

(4.58)

M + Oz + AWz — ONzzt + 01Mizzze = 0 for z € (0,2m), t > 0,
Wt + Nz + aNzge — AWzt + d1Wtzzze = 0 for x € (0,2m),t > 0,
P0(t,0) = Tt 2m), LE(t,0) = Z2(t,2m) fort >0, r=0,1,
7(0,z) = %(z); @(0,2) = &%(x) for z € (0,2m),

and (4.58) allows us to conclude that
ﬁ(t,l‘) = 07 in (ta J:) € (OuT) X Qla

where 1 was defined in (4.46). Finally, from Theorem 4.1.4 we have (7°,&°) = (0,0) and, as
t — oo, the following holds

(n(t),w()) = (0,0) weakly in [HZ(0,2)]”,
(n(t),w(t)) — (0,0) strongly in [H3(0,2m)]%, for all s < 2,
which completes the proof. |
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Internal Stabilization with the Feedback By = (p(z)y.).
The well-posedness of the system (4.45) is proved by arguing as in the proof of Theorem 4.3.1:
Theorem 4.3.3. Let s > 0. For any (n°,u°) € [H5(0,27T)]2, there exist T' > 0 and a unique
solution (n,w) of (4.45) with Bo = (p(x)@a)e i the class C([0,T]; [Hy(0, 27r)}2). If s = 2, the
solution exists for every T > 0. Moreover, the map F defined as follows

F: [H3(0,2m)]? — C([0,T]; [H(0,2m)]?)

(1°,w") — (n,w)

is Lipschitz continuous.

Proof. Proceeding as in the proof of the Theorem 4.3.1, for any (n°,w?) € [HS(O,ZW)]Q we
introduce the operator

Lt (Do + a0 + (p(a)ne)a) ()T |

T(n,w)(t) == (1°,w°) -
L7 (8am + ad3n)(r)dr

Then, by using the following estimative:

(1 — 002 + 53§)_1(Pum)x|\H;(o,27r) < Cllullms (0,27

for s > 0, a, 8 > 0, where C' a positive constant, it can be showed that I' contracts in a ball of
the space C([0,T7; [H3(0, 271)}2). Therefore, we omit the details. [ |

Remark 4.3.1. From Theorem /.3.3 and by integrating on (0, 2m) the equations in system (4.45)
we obtain the following conservations laws

21 21

n(t,z)dr =0 and — w(t, z)dx = 0.

dt Jo dt Jo

This implies that

2m 27 2w 27
/ n(t, z)dx :/ n°(x)dz and / w(t,x)dz :/ WO (z)dx
0 0 0 0

We are now in a position to prove the stabilization result:

Theorem 4.3.4. For any (n°,u°) € [Hg(O, 2%)]2, the solution (n,w) of (4.45) given by Theorem
4.8.8 satisfies

(n(t),w(t)) = (1), [W°]) weakly in  [H2(0,2m)]%,

(n(t),w(t)) — ([n°], [w°]) strongly in [H;(0, 2#)]2, forall s <2,

as t — oo, where [f] : ! /%f(m)dx.
0

T2

Proof. We first remark that, if ¢ € Hg(O,Qw), from (4.46) we have that (pp,). € L?(0,27).
Thus, we can proceed as in the proof of (4.53) to obtain

d 2
SO0, O) Bz 0 my +2 /0 (@) 12 (1, ) 2z = 0. (4.59)
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Moreover, arguing as in the proof of Theorem 4.3.2, we obtain (7°,&°%) € [H;%(0,27r)]2 and a
sequence t, — 400, such that t,41 —t, > 7T and

(n(t),w(t)) = (7°,@°) weakly in  [H2(0,2m)]?, (4.60)
(n(t),w(t)) — (ﬁo,&)o) strongly in [H;(O,QF)]Q, (4.61)

and
(1(tn + ) w(tn + ) = (7.@) in C([0,T]; [H3(0,2m)]°), (4.62)

for any s < 2, where (77,0) € C([0,T]; [HE(O,QW)]Q) denotes the solution of (4.45) with initial
data (7°,@°). From (4.62) it follows that

(1t + ), w(tn + ) is bounded in L(0,T; [H3(0,2m)]%).
Then, we can extract a subsequence (if necessary), satisfying
(Mt + ), w(tn + ) = (7,&) weakly in L2(0,T; [H2(0,2)]°). (4.63)
On the other hand, from (4.59) we get

1(tn), ()2 0 2z = 1) 0t Bz oy

n+1 2T
+2/ / ) |1z (¢, x)[Pdxdt = 0,
tn

which leads to

tnt1 2
lim / p(x) |0 (t, 2)|*dxdt = 0, (4.64)
since || - [|{g2(0,2m)2 15 nonincreasing, and therefore has a limit, as t — oo. (See (4.59)). By

combining (4.63) and (4.64), we deduce that

T 2 tn+1 2
/ / ()i (1, 2)[Pdadt < lim inf / / (@)t 2)Pdadt = 0. (4.65)
0 0 tn 0

n—o0

Thus, we have that (7, @) solves

Nt + Wg + aW0gpr — bﬁ:pxt + blﬁtﬂczmx =0 for x € (0, 27’(‘), t >0,

Wt + Nz + aNggr — da)azxt + dlwtxx:c:(: =0 for x € (0,2m),t > 0,

g (t,0) = g;z(t 2m), G2(t,0) = $2(t,21) fort>0, r=0,1,
7(0,z) = 77 r); @(0,x) = 0(30) for z € (0,2m),

and (4.65) allows us to conclude that
Ne(t,z) =0, V(t,z) € (0,T) x Ly,

for 1 defined in (4.46). Thus, from Theorem 4.1.5 we have that (7, &) = (¢1,¢2) on (0,7)x (0, 27)
for some ¢y, c2 € R. From the Remark 4.3.1 and (4.60)-(4.61) it follows that

(c1,¢2) = ([1°], ("))

and
(t)) = ([n°], [«°]) weakly in [HZ2(0,2m)]%,

n°], [w°]) strongly in [H;(O, 27r)]2, for all s < 2,

e e
I 3
—~
~+ ~+
S~—
€ &
—
~~
S~—
S~—
~~
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Chapter 5

Comments and perspectives

During the development of this work some natural questions came to the fore. Therefore, in this
section we will mention a list of problems that we can study thereafter.

5.1 One control only

The problem we address in Chapter 2 is open when the control acts in one equation only (hy =0
or hg = 0) or the control region does not contain a neighborhood of the right end point of
the interval. This is probably a purely technical problem that could be overcome by proving
unique continuation results. But, as far as we know, this remains to be done, including for the
single KdV equation. On the other hand, following the approach in [14] one may expect null
controllability results in the classical Sobolev spaces H®, which also remains to be done.

The results obtained in Chapter 2 were published in

On the controllability of a nonlinear dispersive system in a weighted L?-space, Differential and
Integral Equations, Volume 34, Number 3-4 (2021), 127-164.

5.2 Higher order KdV terms and asymptotic behavior

In Chapter 3, the conditions on the coefficients of the highest order BBM terms (b; > 0 and
dy > 0) provide a regularizing effect which is very useful for the well-posedness of the system
(1.8). On the other hand, from the controllability point of view, KdV type models are known to
have a much better behavior (see, for instance, [33, 39]). Therefore, it is an interesting issue to
study what can be done in the presence of the highest KdV terms (a; > 0 and ¢; > 0), including
the full system (1.2).

In the spirit of the problem mention above, the controllability problem also remains open
when by = dy = 0 and aq,c¢; > 0, i.e, in the absence of the highest BBM terms. The KdV terms
should provide good controllability properties, but in order to prove the well-posedness of the
resulting nonlinear system, more regularity of the solutions is needed.

The spectral analysis developed in Chapter 3 also leads to the study of the stabilization
problem when the time ¢ is sufficiently large. By considering homogeneous Dirichlet boundary
conditions and a damping term acting in one equation of (1.8), the asymptotic behavior of
the energy associated to the model can be studied. Indeed, proceeding as in Section 3.3, a
similar spectral analysis can be developed to construct a Riesz basis of [H3 (0, L)]? consisting
of generalized eigenvalues of the corresponding differential operator. Then, by using arguments
similar to those developed in [36], we can conclude that [|(n(-,z),w(, @))|[gz(0,Ly2 — 0, as
t — oo.

The results obtained in Chapter 3 are available in
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On the lack of controllability of a higher-order regularized long-wave system, preprint (2021).

5.3 Another dissipative effects

In Chapter 4, we introduce some damping mechanisms that make the energy associated to the
linear higher-order Boussinesq system converge to zero. However, our results do not provide any
decay rate. In this sense, the results obtained in [18] for the lower order Boussinesq system could
be extended for the full system (1.2), posed in R, when complete and partial dissipations are

considered.
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