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graduação do Instituto de Matemática, da Universidade Federal do Rio de Janeiro
- UFRJ, como parte dos requisitos necessários à obtenção do tı́tulo de Doutor em
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últimos 7 anos. Você foi o responsável por me fazer continuar na matemática quando
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Resumo

Nesta tese investigamos as implicações da expansivadade para a teoria de entropia
de sistemas dinâmicos. Precisamente, investigamos condições para garantir que sis-
temas dinâmicos com algum tipo de expansividade tenham entropia positiva em algum
sentido. Nós investigamos este problema em 4 contextos distintos, são eles, fluxos sin-
gulares R-expansivos, fluxos singulares com pontos expansivos, ações expansivas de
grupos finitamente gerados em espaços de dimensão positiva e ações expansivas local-
mente livres de grupos de Lie conexos.

No primeiro contexto, nós determinamos condições para que fluxos R-expansivos
tenham conjutos estáveis e instáveis não trivias. Em seguida usamos esses conjun-
tos para obter entropia topológica positiva para fluxos Komuro-expansivos. No se-
gundo contexto, nós encontramos condições pontuais para a existência de ferraduras
topológicas em fluxos singulares. Para ações de grupos finitamente gerados, mostramos
que toda tal ação tem entropia geométrica positiva se o espaço de fase não for totalmente
desconexo. No quarto contexto, nós introduzimos o conceito de ações expansivas de
grupos de Lie conexos em variedades fechadas. Este conceito estende os conceitos
de fluxos expansivos não singulares e ações expansivas de Rk. Estudamos problemas
relacionados a existência de tais ações, suas simetrias e por fim provamos que qualquer
ação expansiva localmente livre desse tipo tem entropia geométrica positiva.

Nós também introduzimos um novo conceito de entropia topológica: A R-entropia
topológica. Mostramos que essa entropia é de fato um conceito novo que pode ser útil
para o estudo de fluxos em superfı́cies.
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Abstract

In this thesis we investigate the implications of expansiveness for the entropy theory
of dynamical systems. We are precisely looking for conditions to ensure that dynamical
systems with some kind of expansiveness have positive entropy in some sense. We have
investigated this problem in 4 different contexts. They are singular R-expansive flows,
singular flows with expansive points, expansive actions of finitely groups generated
in spaces non totally disconnected and expansive locally-free actions of connected Lie
groups.

In the first context, we found conditions for R-expansive flows to have non-trivial
stable and unstable sets. We then use these sets to obtain positive topological entropy
for Komuro-expansive flows. In the second context we find specific conditions for
the existence of topological horseshoes in singular flows. For finitely generated group
actions, we show that all such action has a positive geometric entropy if the phase
space is not totally disconnected. In the fourth context, we introduce the concept of
expansive action of connected Lie group on closed manifolds, extending the concepts of
non-singular expansive flows and expansive actions of Rk. We study problems related
to the existence of such actions, their symmetries and finally we prove that any locally
free expansive action of this type has positive geometric entropy.

We have also introduced a new type of topological entropy: Topological R-entropy.
We show that this entropy is in fact a new concept that can be useful for the study of
flows on surfaces.
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Introduction

Entropy theory is a very strong research topic in dynamical systems. The origin of
the modern concept of entropy goes back to Shannon’s work in information theory,
but entropy was quickly perceived as a strong instrument to study dynamical systems.
Initially the entropy for dynamical systems was defined in the measurable context
by Kolmogorov ( [Kol]) and Sinai ([Si]). Later, its topological version was defined in
[AKM] by Adler, Konheim and McAndrew.

Topological entropy can be understood as a measure of complexity for dynamical
systems. Roughly speaking, it is a non-negative number (possibly +∞) which mea-
sures the mean exponential growth of distinct possible states as times passes. Positive
entropy is closely associated with chaotic behavior. While several chaotic systems
such as Horseshoes, Anosov diffeormorphisms and the Lorenz Attractor have positive
entropy(see [Rob]), also positive topological entropy implies some type of chaotic be-
havior. For instance, we can cite instance the work of Sumi ([Su]) where it is proved that
a C2 diffeomorphism with positive entropy is chaotic in the Li-Yorke sense. Previous
considerations lead us naturally to the following question:

”How to ensure that a given dynamical system has positive topological entropy?”

This question has attracted the interest of many researchers for decades. In fact,
there are many studies in the direction of relate positive entropy to other dynamical
properties, such as uniform hyperbolicity, partial hyperbolicity, Lyapunov exponents,
among others.

A property that is usually related to positive topological entropy is expansiveness.
The expansiveness theory is of great importance on dynamical systems theory. Ex-
pansiveness is a purely topological property and was introduced by Utz in [U] in the
context of homeomorphisms. It is deeply related with the hyperbolic theory introduced
by S. Smale in [Sma]. Expansive systems share many chaotic features. In fact, many
expansive systems exhibit complex behavior.

In [Ka] and [Fa] it was proved that expansive homeomorphisms always have pos-
itive entropy, if the phase space is sufficiently rich. The main techniques used in the
homeomorphism scenario were extended to continuous flows in [KS] and later it was
proved in [ACP] the positiveness of topological entropy for cw-expansive non-singular
flows. We remark that the results in [ACP] includes the expansive case. In this thesis we
propose to pursuit the problem of obtaining positive topological entropy for dynamical
systems that present the expansiveness property in some form.

1
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This text is divided in two parts. The first part deals with singular flows. In the
second part we investigate more general expansive group actions. We have chosen to
make this division due to the great distinction of the techniques used in each scenario.
We believe this can help the reader to have a better understanding of the subjects treated
here. It also makes possible to the reader to study each topic separately. Next we will
describe the content of each part.

Part I

Part I is devoted to study the entropy theory of expansive singular flows. Despite the
well-established results concerning entropy of expansive non-singular flows ([KS] and
[ACP]), there are not similar results for the case of singular flows. This is because the
presence of singularities accumulated by regular orbits increases the complexity of the
context. Some aspects that obstruct the use of the same techniques of the non-singular
case to treat singular flows are:

• Not every point admits a cross-section.

• We may not control the size of the existent cross-sections near the singularities.

• The presence of singularities can distorts a lot reparametrization of orbits close to
the singularities .

In particular, the previous obstructions turns make very challenging the task of
obtain stable and unstable sets for expansive flows without additional ergodic or dif-
ferentiable strucuturestructure, such as, dominated decomposition.

To overcome these difficulties we work with the rescaled techniques introduced on
[WW] by L. Wen and X. Wen. These techniques are inspired in the ideas of S. Liao on
rescaled-tubular neighborhoods for singular flows (see [L1] and [L2]). In this text any
rescaled-property will be called a R-property. In [WW] the authors also introduced
a new concept of expansiveness called R-expansiveness, which is suitable for R-flow
boxes. Our first main goal on this thesis is to construct a theory of local stable and
local unstable sets suitable to this type of expansiveness. Actually we obtained the
following:

Theorem A. Let φ be a R-expansive Cr-flow(r ≥ 1) on a closed manifold M with dim(M) >
1. Let K ⊂M be a non-singular compact invariant set, then there is some point y ∈ K such that
y has a non-trivial connected local R-stable or R-unstable set.

It is desirable to improve previous result in order to obtain non-trivial connected
R-stable and R-unstable sets for any point on K. To do this we define R-stable points
and R-Unstable points and extend part of the theory developed by M. Paternain on
[Pa]. But now in the singular case, it is not clear if R-expansiveness forbids the existence
of R-stable of R-unstable points. As a consequence, we obtained the following result:

Theorem B. Let φ be a R-expansive Cr-flow(r ≥ 1) on a closed manifold M with dim(M) >
1. Let K ⊂ M be non-singular compact invariant set. If K do not contain stable points, then
every p ∈ O(x) has non-trivial connected local R-stable and R-unstabe sets.
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Once we have the existence of R-stable or R-unstable sets, we can use them to
study the topological entropy of flows. Indeed, we obtained the following criteria to
R-expansive flows to possess positive topological entropy.

Theorem C. Let φ be a R-expansive flow. If there is some non-singular Lyapunov stable
set Γ ⊂M such that one can finds a point with a non-trivial piece of connected local R-unstable
set, then h(φ) > 0.

As consequence of Theorem B, we obtain the following:

Corollary D. Let φ be a R-expansive flow. If there is some non-singular Lyapunov stable
set Γ ⊂M without R-stable and R-unstable points, then h(φ) > 0.

Since attractors are examples of Lyapunov Stable sets, then we have the following
results:

Theorem E. Let φ be a R-expansive flow. If there exists a non-periodic attractor Γ ⊂
M \ Sing(φ), then h(φ) > 0.

Combining the previous theorem with the techniques contained on [Art2] we obtain
the two following results.

Theorem F. Let k∗-expansive flow with non-degenerated singularities. If there exists a
non-periodic attractor Γ ⊂M \ Sing(φ), then h(φ) > 0.

Theorem G. Let k∗-expansive flow with hyperbolic singularities. If there exists a non-
periodic attractor Γ ⊂M \ Sing(φ), then h(φ) > 0.

In the spirit of the R-properties, we define a new version of topological entropy, the
so called R-topological entropy. This concept of entropy is based on ideas of [WW]. We
study some of its properties and how R-topological entropy is related to the classical
topological entropy. For instance, we exhibit an example of R-expansive surface flow
with positive R-entropy. This is an interesting fact because there are not surface flows
with classical positive topological entropy, so R-entropy can be useful to capture some
kind of complexity that are not perceived by topological entropy.

Another approach we use in this work to deal with flows is pointwise dynamics. By
pointwise dynamics we mean to study the evolution of dynamical systems requiring
the existence of points on the phase space with nice dynamical properties. See for
instance the work of W. Reddy on pointwise expansive homeomorphisms ([R]), where
a point x is said to be expansive if any other point y must to be separated from x by
the dynamics at some instant of time. Notice that in this case the expansiveness is
considered only with respect to x and not globally on the whole phase space.

Pointwise dynamics has attracted much interest on last years. We can mention the
works [Moo], [Mor], [YZ] [AV] where sensitive points, entropy points and shadowable
points were considered.

On a previous work we have introduced the theory of uniformly expansive points
for homeomorphisms and have established a criteria to obtain positive entropy from
these points ([AR]). In this thesis, we extend these results to the setting of continuous
flows. This extension is not a trivial task, since the techniques used here are totally
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distinct from the ones for homeomorphisms. Next we state the main results we have
obtained in this direction.

Theorem H. Let φ be a non-singular continuous flow on a compact metric space. If there
is some point x ∈ Ω(φ) \ Per(φ) which is uniformly expansive and shadowable, then h(φ) > 0.

To treat the singular case, only pointwise shadowableness is not enough to obtain
a result similar to the previous one. This is due to the temporal distortion caused by
the singularities on the shadow reparametrizations. In [K2], M. Komuro exposed the
distinction between the behavior of shadowing in the singular and non-singular cases.
To recover some properties from the non-singular case to singular flows, he introduced
a stronger form of shadowing property. Here we introduce its pointwise version and
use it to obtain the following result:

Theorem I. Let φ be a continuous flow. Suppose there is some point x ∈ Ω(φ) \ Crit(φ)
uniformly expansive and strongly shadowable, then there is some compact and φ-invaritant set
Y ⊂M such that φ|Y is semiconjugated to a suspension of subshift with positive entropy.

An interesting remark about the two previous results is that they can be used in low
dimensional scenario, in contrast with the other results of this part.

Part II

The second part of this thesis aims to extend the expansiveness theory for systems
which are more general than homeomorphisms and flows. Specifically, we consider
group actions on compact spaces and investigate how expansive behaviour rules their
dynamics. In particular, we are interested in the influences of expansiveness to the
entropy of such systems.

Similarly to the case of homeomorphisms and flows, we need to use distinct defi-
nitions of expansiveness to treat group actions depending on the nature of the acting
group. There are some known efforts in to study expansive group actions. In [Hur]
and [BDS], the authors studied expansive actions of countable and finitely generated
groups. For connected groups we have the definition introduced by W. Bonomo, J.
Rocha and P. Varandas introduced in [BRV], where the symmetry properties of such
actions were considered.

One of our goals is to extend this definition to actions of general connected Lie
groups and study its consequences, as well as, study the entropy theory for the finitely
generated case. Next we state our main results on this part.

For the entropy of actions of finitely generated groups, S. Hurder proved in [Hur]
that any expansive action of the circle has positive geometric entropy. Here we extend
this result to expansive actions on any space which is not totally disconnected.

Theorem K. Suppose that Φ is a continuous action of a finitely generated group G by
homemomphisms on a compact metric space . If the topological dimension of X is positive, then
h(φ,K) > 0 for any generator K.

When the acting group is connected the study of dynamics is closely related to
the study of foliations. Since singular foliations can be very complicated, we restrict
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ourselves to locally-free actions, in order to obtain a foliated action. In this scenario
we prove a generalization of a result of [LG] and [Fl]which states that there are not
non-singular expansive flows on surfaces.

Theorem L. There are not codimesion one locally-free Cr expansive actions of nilpotent
and connected Lie groups.

We also deal with the the question of positiveness of entropy in the setting of actions
of connected Lie groups. We study the geometric entropy of expansive actions which
is a concept closely related to the entropy for pseudo-groups and foliations introduced
by A. Bis in [B]. In [IT] T. Inaba and N. Tsuchiya introduced a concept of expansiveness
for foliations and proved that expansive codimension one foliations have positive
geometric entropy. On the general condimensional case they obtained positiveness of
geometric entropy assuming a stronger form of expansiveness on the foliation. Here
we improve their results to any codimensional context.

Theorem N. Any Cr expansive foliation has positive geometric entropy.

We will see that the orbit foliation of an expansive foliation must be expansive and
this as has as consequence the following result.

Corollary O. Any expansive locally-free action of a connected Lie group on a closed
manifold has positive geometric entropy.

We also studied the symmetries of expansive actions. There are many efforts in the
direction of understanding the symmetries of Cr-actions. We reefer the reader to the
works of D. Obata, M. Leguil and B. Santiago for actions ofZ andR ([LOS] and [O]). In
the setting of expansive homeomorphisms P. Walters proved in [W] that such systems
has discrete centralizer. Here, we extended this result to the finitely generated case
obtaining:

Theorem J. The centralizer of any expansive C0-action of a finitely generated group G on
a closed manifold is a discrete set on the space of C0-actions of G on M.

If the group is connected then this question is challenging. In [BRV] the authors
proved that expansive Rk-actions have quasi-trivial centralizers. Here we extend the
definition of quasi-triviality for expansive actions of more general Lie group action and
extend their results. But we need an additional hypothesis on G.

Theorem M. Any expansive Cr-action of an exponential Lie group on a closed manifold
has quasi-trivial centralizer.

This text is divided as follows.

- On chapter 1 we investigate the Lewowicz’s Theorem and study in details its
proof. In this chapter This chapter intends to introduce to the reader the basic tools of
the theory of expansive systems and to establish the guidelines for the results we seek
on this work.

-Chapter 2 starts the first part of this work where we deal with singular flows. In
this chapter we give the basic definitions and results needed to obtain our results.
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- In Chapter 3 we introduce the rescaled-theory of singular flows. We present the
concept of R-expansiveness and introduce our definition of R-entropy. We study some
of the properties of R-topological entropy and exhibit an examples that gives a clear
distinction between R-topological entropy and classical topological entropy.

- In Chapter 4 we study the R-stable and R-unstable sets of R-expansive flows. We
also prove theorems A, B, C, D, E,F and G.

- Chapter 5 is devoted to introduce to the reader the setting of pointwise dynamics.
We define expansive points, uniformly-expansive points and shadowable points for
flows.

- In chapter 6 we prove our mains theorem on the pointwise setting, namely, Theo-
rem H and I.

- Chapter 7 introduces the second part of this work, where we deal with expansive
group actions. We introduce these systems and study the finitely generated case. In
particular we prove Theorems J and K.

- In Chapter 8 we introduce the concept of expansive actions of connected Lie groups
and study its properties. In this section we prove Theorems L, M, N and O.

- The final Chapter 9 is devoted to state some problems and questions derived from
the results developed on this thesis. With this chapter we intend to offer the reader
some possible research directions for future works on the subject treated here.

- Additionally, we include two appendix, where the reader can find some basic
background on group and foliations theory.



Chapter 1

Topological Entropy of Expansive
Homeomorphism

This initial chapter aims to introduce the reader to the central problem of this work,
which is to explore the relationship between expansiveness and entropy. Maybe one of
the first efforts in this direction was the classical work of the Uruguayan mathematician
Jorge Lewowicz on expansive homeomorphisms. Although it was widely known at
that time that hyperbolicity has strong implications on entropy, Lewowicz’s results
relates purely expansiveness with entropy. Actually, Lewowicz proved that expan-
siveness alone is enough to imply positive topological entropy for homeomeorphism
whose phase spaces are not too poor. Although we will call this result as Lewowicz’s
Theorem through this text, we stress that other authors also have proved this result
independently, for instance, see the works of Kato in [Ka] and Fathi in [Fa].

The above quoted result has deeply influenced us to pursuit the main problems dealt
on this thesis. Because of this, we decided to write this chapter in order to introduce
the reader to the Lewowicz’s work. We also intend to make clear to the reader the
philosophy and the techniques we will be inspired in future chapters.

This chapter is constructed in the following way: first we establish all the notation
and concepts needed to work in the setting of discrete-time systems. Next we introduce
the reader to Lewowicz’s Theorem and then we will give its proof.

1.1 Discrete-Time Systems

In this section we define the basic concepts of discrete-time dynamical systems. A
discrete-time dynamical system is a pair (M, f ) where M is a set with some additional
structure and f : M → M is a invertible transformation preserving this structure. Dy-
namical sytems are classified according this structure. For instance if M is a topological
space and f is a homeomorphism, then (M, f ) is a topological dynamical system. If M
is a smooth manifold and f is a diffeormorphism, then (M, f ) is a smooth dynamical
system. We will often replace the notation (M, f ) by f when the phase space M is under-

7
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stood. Through out this chapter, we will work in the setting of topological dynamics,
therefore f we will always be a self-homeomorphisms on a compact metric space M.

A central scope in dynamical systems theory is to understand the long-term behavior
of systems. For a given homeomorphism f the concept of time is played by the iterates
of f . To precise this idea let us set some notation. Let f : M→M be a homeomorphism.
For a given n ∈ Z, we denote

f n =


IdM, n = 0
f ◦ · · · ◦ f , n-times,n > 0
f −1
◦ · · · ◦ f −1, n-times,n < 0

.

With previous definition we can understand time as follows: if x is some point on
the space X, then the state of x after n units of time is the point f n(x).

Now let us define the orbit of x to be the set

O(x) = { f n(x); n ∈ Z}.

The set O(x) contains the information about the point x in any instant of time. So, study
the time-behavior of some point is the same as study its orbit.

There are two central concepts on this work, namely, expansiveness and topological
entropy. We will postpone a more detailed discussion on the former to Section 3 of this
chapter. Now we spend some time defining topological entropy and explaining what
it represents. As mentioned before, we are seeking for study the behavior of points in
X through time, but for some homeomorphisms these behaviors are quite simple. To
see this, let us investigate some examples.

Example 1.1.1 (Identity Map). Let M be some compact metric space and let f : M → M be
the identity map of X. Since f n(x) = x for any n ∈ Z, we have that O(x) = {x} for any x ∈ S1.

Example 1.1.2 (Rational Rotation). Let X be the unitary circle S1. Here we see S1 as the
quotient space R/Z under the equivalence relation x ∼ y if, and only if, x − y ∈ Z. Let α ∈ R
and consider the rotation homeomorphism Rα : S1

→ S1 defined by Rα(x) = (x + a)mod(Z).

Suppose that α ∈ Q, then there are q, r ∈ Z such that α =
q
r . Thus f r(x) = x+

qr
r mod(Z) = x

and then O(x) is finite set for any x ∈ S1

Example 1.1.3 (Irrational Rotation). Now let α ∈ R \ Q and consider Rα : S1 → S1. We
claim that O(x) = S1 for every x ∈ S1. Indeed, fix some x ∈ S1 and ε > 0. To prove the claim
we need to observe three facts.

1. Rα is an isometry and therefore d(Rn+1
α (x),Rn

α(x)) = d(Rα(x), x) for every n ∈ Z.

2. For any n ∈ Z the arcs (Rn+1
α (x),Rn

α(x)) and (Rn
α(x),Rn−1

α (x)) are disjoint.

3. Since α ∈ R \Q, then the orbit of x is an infinite set.
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Now suppose that O(x)∩Bε(y) = ∅. Then combining the above facts we have that the length
of S1 should be infinite, but this contradicts the compactness of S1.

A feature shared by the three above examples is that for each of then, all the orbits
have the same behavior. While this is a good thing for understanding dynamical
systems, for a huge number dynamical system, this is not the case. Indeed, many
dynamical systems have, at same time, orbits with the three above behaviors and this
can make things more complex. An attempt to quantify this complexity is made by
computing the system’s topological entropy.

Before to introduce topological entropy for homeomorphisms we need first to in-
troduce some definitions. Fix some ε > 0 and some natural number n. We say that a
pair of points is n-ε-separated if there is some 0 ≤ i ≤ n such that d( f i(x), f i(y)) > ε, i.e.
if the pair does not spend more than n units of time to be ε-apart.

Let us make some remarks about separated sets. First notice that if we define a
new metric dn on M by dn(x, y) = max0≤i≤n{d( f i(x), f i(y))} then dn is a metric equivalent
to d and therefore they induce the same topology at M. But now a pair x, y ∈ M is
n-ε-separated if, and only if, dn(x, y) > ε.

Consider K ⊂ M and E ⊂ K. We say that E is a n-ε-separated subset of K if any
pair of distinct points of E is n-ε-separated. Let Sε(n,K) be the maximal cardinality of a
n-ε-separated subset of K. This number is always finite due the compactness of M and
the equivalence between the metrics d and dn.

We define the topological entropy of f on K to be the quantity:

h( f ,K) = lim
ε→0

lim sup
n→∞

1
n

log Sε(n,K)

and finally, the topological entropy of f is the quantity h( f ) = h( f ,M)

An intuitive way to see what topological entropy means is to think on ε as an error
to distinguish distinct orbits. If we fix ε and n, then Sε(n) counts how many orbits we
can distinguish up to time n. Then the first limit measures the exponential growth of
this number as n goes to infinity. The second limit refines the error allowed in counting
distinct orbits. So entropy is a way to measure the exponential growth of distinct orbits
of f as time passes.

Above discussion shows us that for some homeomorphism to have positive entropy
we need that many points be separated as time grows. Since all previous examples are
isometries, no pair of points is separated by these systems and this implies that their
entropy vanishes.

Next example displays a homeomorphism with positive entropy.

Example 1.1.4 (The Shift Map). Let A be a finite alphabet with n elements. Denote Σn = AZ

for the bilateral sequences formed by the elements of A. Define on Σn the following metric:

• d(s, s′) = 0 if, and only if s = s′.
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• d(s, s′) = 1
2i if i > 0 is the maximal integer such that sk = s′k, for every |k| ≤ i.

The metric d turns Σn into a compact metric space.

Define the shift map σ : Σn → Σn as σ(sk) = sk+1. We say that s ∈ Σn is a periodic sequence
if there is some k ∈ N such that si+k = si for any i ∈ Z. Notice that the periodic sequences are
exactly the points whose orbits are periodic for σ.

We claim that h(σ) > 0. Indeed, first notice that by a combinatorial argument, for each
k > 1 we can find exactly nk periodic sequences of period k.

Moreover, if s and s′ are two distinct periodic sequences of period k, then they are k-ε-
separated by σ for any ε < 1

2 . To see this, let i > 0 denote the first positive integer such that
si , s′i . Thus d(σi(s), σi(s′)) = 1

2 . Now this implies that

h(σ) = lim
ε→0

lim sup
k→∞

1
k

log(Sε(k)) ≥ log n

.

Actually, it is easy to see that in fact h(σ) = log n.

1.2 The Lewowicz’s Theorem

In this section we introduce the theorem that we call on this text as Lewowicz’s The-
orem. This remarkable was proved independently by Fathi and Lewowicz, and later
it was generalized by Kato to the context of cw-expansivity. Here we will expose the
techniques developed by Lewowicz to prove this result. These techniques will fur-
nish us the guidelines for the kind of problems treated in this work. For instance,
we will prove more general versions of this theorem on the second part of this thesis.
Lewowicz’s Theorem explores the relationship between expansiveness and entropy.
Since we already have discussed about topological entropy on previous section, we
now introduce and explore expansiveness.

Definition 1.2.1. A homeomorphism f : M → M is called expansive if there is some e > 0
such that if d( f n(x), f n(y)) < e for every n ∈ Z, then x = y. The constant e is called the
expansiveness constant of f and we will also refer to f as an e-expansive homeomorphism.

Now we are able to state the main result of this chapter.

Theorem 1.2.2 (Lewowicz’s Theorem). Let f : M→ M be an expansive homeomorpism. If
dim(M) > 0, then h( f ) > 0

Lewowicz’s Theorem essentially says that expansiveness implies positive topologi-
cal entropy if the phase space of f is sufficiently rich. Indeed, the result is not valid for
zero dimensional space as the following example shows:
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Example 1.2.3. Let M be a finite set and define f in a way that M is a union of periodic orbits
for f . Then f is clearly expansive, we just need to consider

e < min{d(x, y); x, y ∈M, x , y}.

Furthermore, since the phase space is finite, then f cannot have positive entropy.

In order to have a better understanding for the ideas on the proof of Theorem 1.2.2,
let us think about the following informal meaning of expansiveness:

”Any two distinct point of X must be e-apart in some time”

The above informal definition provides us clues that expansiveness can be related
with the positiveness of topological entropy. Indeed, a homeomorphism has positive
topological entropy if f does not take so long to separate a large amount of points. So a
way to try to obtain positive entropy from expansiveness, is to force that expansiveness
separates many points in controlled time. Next result precisely guarantees this.

Theorem 1.2.4. (Uniformly Expansiveness) A homeormphism is e-expansive if, and only if,
for any δ > 0 there is some n ∈ N such that if d(x, y) ≥ δ, then d( f i(x), f i(y)) > e, for some
−n ≤ i ≤ n.

Proof. Suppose f is e-expansive. Suppose that there is some δ > 0 such that one can
find sequences xn, yn ∈ M and a sequence of integers mn → ∞ satisfying d(xn, yn) ≥ δ
and d( f i(xn), f i(yn)) < e for every n ∈ N and −mn ≤ i ≤ mn.

The compactness of M allows us to assume that xn → x and yn → y. Therefore we
have d(x, y) ≥ δ and by the continuity of f one has d( f n(x), f n(y)) < e for ever n ∈ Z. But
this is impossible since f is e-expansive.

The converse is obvious. �

Before presenting the proof of Lewowicz’s Theorem, we provide some ideas to help
the reader to have a more clear intuition about the steps of the proof . We will need to
find a huge number of points that are separated, so we will follow the steps bellow.

Step 1- First we have by uniform expansiveness that if two point are at least at
distance δ ≤ e

4 apart, then they will not spend much time to be e-separated.

Step 2- Since dim(X) > 0 some point has non-trivial connected component.

Step 3- Step 2 will allow us to find a connected curve C satisfying the following:
Any arc of C with length at least δ will not spend more than N units of time in the
future or in the past to achieve length e. Previous property will be valid for the images
of C at any time n.

Step 4- We take the curve C and apply f until the image of C has length e
2 .

Step 5- Subdivide this image on two disjoint subarcs of length at least δ.

step 6 - Apply again step 4 on the arcs obtained on step 5 and repeat the steps 4
through 6 inductively. This process will generate the separated sets we are looking for.
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In next section we will execute precisely all above steps and then prove Lewowicz’s
Theorem.

1.3 Proof of Lewowicz’s Theorem

Now we will prove Lewowicz theorem. To this we need to obtain more ingredients
for the proof. We begin this chapter defining stable and unstable sets. Actually, the
unstable sets will contain the n-ε-separated sets used to estimate topological entropy.
Next we define these sets precisely.

Definition 1.3.1. For any point x ∈M and γ > 0 its γ-local stable set is defined as follows:

Ws
γ(x) = {y ∈M; d( f i(x), f i(y)) ≤ γ,∀i ≥ 0}

The γ-local unstable set Wu
γ(x) of x is defined as follows:

Ws
γ(x) = {y ∈M; d( f i(x), f i(y)) ≤ γ,∀i ≤ 0}

Next we state a powerful tool on expansive systems theory.

Theorem 1.3.2. Suppose that f is an e-expansive homeomorphism. For any γ > 0, there exists
N > 0 such that:

f n(Ws
e(x)) ⊂Ws

γ( f n(x)) and f −n(Wu
e (x)) ⊂Wu

γ( f −n(x))

For every n ≥ N and any x ∈M.

Proof. We will only prove the theorem for the stables sets, the proof for the unstable
case is analogous.

Fix γ > 0 and let N > 0 be given by the uniform expansiveness of f with respect to
γ. We claim that this N satisfies the wanted condition. Indeed, if not there exists some
x ∈ X and y ∈ Ws

e(x) such that for some k > 0 one has d( f k+N(y), f k+N(x)) > γ. But this
implies that for some −N ≤ i ≤ N we must have d( f N+k+i(x), f N+k+i(y)) > e. But this is
impossible since y ∈Ws

e(x). Therefore we conclude that the result holds. �

The previous result is a key tool for proving Lewowicz’s Theorem since it allows us
to obtain that unstable local sets expands in controlled positive time. This is necessary,
since in the definition of topological entropy we need to find points which are separated
in the future.

The following result is the last ingredient and it says that some point at X must have
in its unstable set a non-trivial piece of connected set containing x. Let us denote C(A, x)
for the connected component of A containing x and let us denote CWs

γ(x) = C(Ws
γ(x), x).

Let us define K(M) to be the set of compact subsets of M and C(M) to be the set of
continuum subset of M. Recall that a continuum is a compact and connected set. We
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can regard K(M) and C(M) into metric spaces by endowing them with the following
Hausdorff metric:

D(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}

Theorem 1.3.3 ([Her]). The hyperspace K(M) and the continuum hyperspace C(M) are com-
pact for the Hausdorff metric.

Now we can prove the following

Theorem 1.3.4. Let f be an e-expansive homeomorphism and suppose dim(M) > 0. For any
0 < γ ≤ e there exists some x ∈M such that

CWs
γ(x) , {x} or CWu

γ(x) , {x}.

Proof. Since dim(M) > 0, there exists some y ∈ X such that C(M, y) , {y}. Fix γ > 0
and suppose that Ws

γ(x) = {x} for every x ∈ X. Set B0 = (Bγ(y) ∩ C(M, y). Then
B0 is a non-trivial continuum containing y. Now since Ws

γ(y) = {y}, there is some
n > 0 such that diam( f n(B0)) ≥ γ. Let n0 be the minimal natural satisfying previous
condition. Set B1 = f n0(B0). By the continuity of f we have that B1 is a compact and
connected set containing y1 = f n(y). Again, since Ws

γ(y1) = {y1}, for some n > 0 one
has diam( f n(B1)) ≥ γ. We set n1 to be the minimal natural number satisfying previous
condition. Inductively, we can construct a sequence of non-trivial continuum sets Bk

and a sequence of times nk such that:

• diam(Bk) ≥ γ and diam( f i(Bk)) < γ for i < nk.

• f nk(Bk−1) ⊂ Bk

• f nk(yk−1) ∈ Bk+1

Then by the compactness of the continuum hyperspace we can assume that Bk → B.
Now B is a nontrivial continuum containing x = lim yk. We claim that B ⊂ Wu

γ(x).
Indeed, take z ∈ B and fix i ≤ 0. Thus we have that

d( f i(x), f i(z)) ≤ d( f i(x), f i(yk)) + d( f i(yk), f i(zk)) + d( f i(zk), f i(z))

Where where zk ∈ Bk and zk → z. Now taking k large enough we can conclude that

d( f i(x), f i(z)) ≤ γ.

�

Now we are able to prove lewowicz theorem.
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Proof of Lewowicz’s Theorem. We shall follow the steps of on previous section.

Step 1 - Fix some 0 < δ < e
4 and let Nδ be given by the uniform e

2 -expansiveness of f .

Step 2 - Since dim(X) > 0 there is some x ∈ X such that C(M, x) , {x}.

Step 3 - Now use Theorem 1.3.4 to obtain a point x0
0 ∈ X such that diam(CWu

δ (x0
0)) ≥ δ.

Thus we can find a closed curve [x0
0, x

0
1] on CWu

δ (x0
0) such that d(x0

0, x
0
1) ≥ δ.

Step 4 - Uniformly expansiveness implies that

E1 = {x0
0, x

0
1}

is an N- e
2 -separated set.

Step 5 - Call f i00(x0) = x1
0 and f i00(x1) = x1

3. By Step 4, we have that d(x1
0, x

1
3) > e.

This allows us to divide the arc [x1
0, x

1
3] in two disjoint sub arcs [x1

0, x
1
1] and [x1

2, x
1
3] with

d(x1
0, x

1
1) ≥ δ and d(x1

2, x
1
3) ≥ δ. Now uniformly expansiveness of f implies that there are

0 ≤ i1
0, i

1
1 ≤ N such that d( f i10(x1

0), f i10(x1
1)) ≥ δ and d( f i11(x1

2), f i11(x1
3) ≥ δ. But this implies

that

E2 = f −i00({x1
0, x

1
1, x

1
2, x

1
3})

is a 2N- e
2 -separated set.

Step 6 - Now applying recursively the Steps 4 and 5 on the segments

[ f i10(x1
0), f i10(x1

1)] = [x2
0, x

2
3] and [ f i11(x1

2), f i11(x1
3)] = [x2

4, x
2
7],

we obtain the set

E3 = f −i00( f −i10({x2
0, x

2
1, x

2
2, x

3
3}) ∪ f −i11({x2

4, x
2
5, x

2
6, x

2
7}))

which is a 3N- e
2 -separated set for f . Inductively, for each n > 0 there is some set

En = {x0, ....x2n−1}which is nN- e
2 -separated set for f .

Now we can estimate the entropy of f using the sets En. Indeed, we have:

h( f ) = lim
ε→0

lim sup
n→∞

1
n

log Sε(n,X) ≥ lim
n→∞

1
nN

log #En = lim
n→∞

1
nN

log #En = lim
n→∞

1
nN

log 2n

But this implies

h( f ) ≥ lim
n→∞

1
nN

log 2n
≥

log 2
N

> 0

Thus the Lewowicz’s Theorem is proved. �
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Figure 1.1: Proof of Lewowicz’s Theorem
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Part I

Entropy of Expansive Flows
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Chapter 2

General Results of Flows Theory

This chapter begins the first part of this thesis where we investigate the relationship of
expansiveness and topological entropy for continuous-time systems. We will see that
already exist versions of Lewowicz’s Theorem for flows, but these versions only take
of non-singular flows into account. For the singular case, the problem is much harder,
and because of this it remains open. There are some interesting results about entropy
of expansive singular flows, but considering strong assumptions, such as dominated
decomposition, non-uniform hyperbolicity, multi-singular hyperbolicity. But there are
not results of this nature only supposing expansiveness. Much of this lack of results
with few structure is due to the fact that it is not so easy to develop a theory of stable
or unstable sets without additional hypothesis. In this work we propose a rescaled-
theory of stable and unstable sets which is suitable for singular flows with some kind of
expansiveness. We also propose some pointwise techniques which allows us to obtain
positive entropy, even the phase space is low-dimensional.

Before to begin, let us state some concepts and results that will be often used in
this text. Through out this text M will denote the phase space of the systems under
consideration. The nature of M will depend on the nature of the studied system, but
in general, M will be a compact metric space. When we are dealing with differentiable
systems, then M denotes a closed manifold, that is, compact and boundaryless. We say
that a map is Cr if it is r-times differentiable and all of its derivatives are continuous
until order r.

2.1 Preliminaires

In this section we define flows (continuous-time dynamical systems) and study some
of their basic features. The theory of flows emerged from the classical problems of
solving ordinary differential equations. Since the age of I. Newton and his models to
understand nature it has attracted attention from scientists. But the modern approach
on flows theory raised from the works of H. Poincaré on the qualitative theory of
differential equations. The precise definition of flow given is as follows:

19
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Definition 2.1.1. A flow φ on M is a Cr-map φ : R × M → M satisfying the following
conditions:

1. φ(0, x) = x, for every x ∈M.

2. φ(t + s, x) = φ(t, φ(s, x))), for every t, s ∈ R and every x ∈M.

The notation φt stands for the map φ(t, ·) : M → M, when t is fixed. The previous
definition has some immediate consequences. For instance, φ0 = IdM, φ−t = φ−1

t and
φt+s = φs+t. Previous features implies that for any t ∈ M, the maps φt are homeomor-
phisms if r = 0 and diffeormorphisms if r ≥ 1. Thus another way to define flows is
through a family of homeomormphisms (diffeormorphisms if r > 0) {φt : M → M}t∈R
such that φ0 = IdM and φt+s = φt ◦φs. Analogously to the case of discrete-time systems,
we define the orbit of a point x under φ to be the set

O(x) = {φt(x); t ∈ R}.

As mentioned before, flows are related to the problem of solving a ordinary differ-
ential equation. To see this, suppose initially that φ is Cr with r > 0 and fix x ∈ M.
Then φ(t, x) = α(t) is a Cr-curve on M such that α(0) = x. For any x ∈ M let us denote
X(x) = α′(0) ∈ TxM. Then we can define a vector field X : M→ TM which is called the
vector field associated to φ. This vector field is called in this way because the generated
curves of the flow are the solutions of the following ordinary differential equation:

X(x) =
dφt

dt
(x)|t=0

Conversely, if we have some vector field X : M → TM which is locally-Lipschitz,
then by the Picard-Lindelöff Theorem we can find local unique solution curves for the
above ODE. Moreover, if M is closed these solutions are globally defined on M and
generate a flow φ on M. The class of differentiability of φ is the same as the class of
differentiability of the vector field X. Hereafter, we always denote X for the vector field
generated by φ.

We say that a point x ∈ M is a singularity for φ if φt(x) = x for every t ∈ R. If the
flow is smooth, last condition is equivalent to X(x) = 0. A point x is regular if it is not
singular. We say that a flow is non-singular if all of its points are regular. A regular point
x is said to be periodic if O(x) is a compact set. The period π(x) of a periodic point x is
defined to be smallest positive real number such that φπ(x)(x) = x. Let us denote Pert(φ)
for the set of periodic points of φ with period smaller than t and Per(φ) = ∪t>0Pert(φ).
We define the set of critical points of φ as

Crit(φ) = Per(φ) ∪ Sing(φ).

A useful tool to study flows is the concept of cross-section through a regular point
of φ.
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Definition 2.1.2. Let x be a regular point for φ. A compact set Sx is a cross section of time
η > 0 for φ trough x if x ∈ Sx, φ[−η,η](Sx) is a neighborhood of x and φ[−η,η](y) ∩ Sx = {y}, for
any y ∈ Sx.

If φ is a continuous flow, then any regular point x has a cross section through x (See
[Whi]). Moreover, in [BW] it is proved that if φ is non-singular , then there is some
ξ > 0 such that for any 0 < δ < ξ, one can find a finite family of cross section {Sx1 , ...,Sxn}

with time ξ and satisfying:

1. diam(Sxi) ≤ δ, for any i = 1, ...,n.

2. M =
⋃n

i=1 φ[−δ,0](Sxi) =
⋃n

i=1 φ[0,δ](Sxi)

Later, the above result was improved in [KS] obtaining the following:

Theorem 2.1.3. If φ is a non-singular continuous flow, there is some ξ > 0 such that:

For any 0 < δ < ξ, there are two families of finite compact cross-sections {Si}
n
i=1 and {Ti}

n
i=1

such that Ti ⊂ S∗i , diam(Ti) ≤ δ and

M =

n⋃
i=1

φ[−δ,0](Txi) =

n⋃
i=1

φ[0,δ](Txi) =

n⋃
i=1

φ[−δ,0](S∗xi
) =

n⋃
i=1

φ[0,δ](S∗xi
)

Where S∗i = Int(φ|[δ,δ](Si)) ∩ Si, for every 0 ≤ i ≤ n.

Remark: Denote S+ for ∪n
i=1Sxi . If we put β = sup{t > 0;∀x ∈ S+, φt(x) < S+

}, then
0 < β < ξ and once a point x ∈ X crosses a cross section S ∈ S, it takes at most time β to
cross another cross section.

If the flow is smooth, there is a natural choice of cross-sections for regular points.
To see this, let x ∈M be a regular point. Thus we have that X(x) , 0. The normal space
of x in TxM is the set

Nx = {v ∈ TxM; v ⊥ X(x)}.

Let us denoteNx(r) = Nx ∩Br(0), where Br(0) is the ball in TxM of radius r and centered
at 0.

The tubular flow theorem for smooth flows asserts that for any regular point x there
are εx > 0 and rx > 0 such that the set

Nx(r) = expx(Nx(rx))

is a cross section of time εx through x. Moreover, any y ∈ Nx(rx) is regular.

Now if −εx < t < εx, the continuity of φ implies that for some δ > 0 we have that the
points in Nx(δ) meet the cross section Nφt(x)(rφt(x)) in a time close to t. Thus we define
the holonomy map between Nx(rx) and Nφt(x)(rφt(x)) to be the map:

Px,t : Nx(δ)→ Nφt(x)(rφt(x))
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defined by Px,t(y) = φt(y), where t is the only −εx < t < εx such that φt(y) ∈
Nφt(x)(rφt(x)) .

One of the main difficulties in the use of cross-sections for singular flows is the fact
that the radius rx can goes to zero when x approaches some singularity. To overcome
this difficulty S. Liao developed a theory that allows us to have a control over how rx

collapses. Later these ideas were widely used to work with singular flows in several
contexts. Next we state some results that will be used later.

Theorem 2.1.4 ([WW]). Suppose that X is a C1-vector field and let φ be the flow induced by X.
Then there exist L > 0 and a small β0 such that for any 0 < β < β0, t > 0 and x ∈M \ Sing(φ)
we have:

1. The setφ|[−β||X(x)||,β||X(x)||](Nr
β(x)) is a flow box, in particular it does not contain singularities.

2. The ball Bβ||X(x)||(x) is contained on φ|[−β||X(x)||,β||X(x)||](Nr
β(x))

3. The holonomy map Px,t is well defined and injective from Nx( βLt ||X(x)||) to Nφt(x)(β||X(φt(x))||).
Moreover, for any y ∈ Nx( βLt ||X(x)||) its orbit segment φ[0,t](y) is entirely contained in the
β-scaled tubular neighborhood of φ[0,t](x). The same statement is valid for t < 0.

Here, the β-scaled flow box of φ[0,t](x) is the set⋃
s∈[0,t]

Nφs(x)(β||X(φs(x))||).

Since the holonomy maps and rescaled-tubular neighborhoods will be often used
through this text, we will present a figure to illustrate them and improve the un-
derstanding of the reader.

Figure 2.1: Rescaled Flow Boxes

By the previous theorem, if 0 < β ≤ β0 we can define for any x ∈ M \ Sing(φ) and
t ∈ R a family of injective holonomy maps {Pr

x,nt}n∈Z, where

Pr
x,nt = Pφnt(x),t : Nφnt(x)

(
β

Lt ||X(φnt(x)||
)
→ Nφ(n+1)t(x)(β||X(φ(n+1)t(x))||)
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Let us denote Cφ(M) for the set of non-negative functions f : M → [0,∞) such that
f (x) = 0 if, and only if x ∈ Sing(φ). Next result will help us to find continuity properties
for the R-holonomy maps.

Theorem 2.1.5 ([JNY]). Let φ be a continuous flow on M.

1. For any e ∈ Cφ(M) and T > 0 we can find r ∈ Cφ(M) such that if d(x, y) ≤ r(x), then
d(φt(x), φt(y)) ≤ e(φt(x)), for every t ∈ [−T,T]

2. For any e ∈ Cφ(M) there is some r ∈ Cφ(M) such that r(x) ≤ max{e(y); y ∈ Br(x)(x)}.

Note that the functions δX = δ||X(x)|| ∈ Cφ(M). This allow us to apply the previous
theorem for these functions.

Suppose that φ is a Cr-flow and let Λ ⊂ M be a compact invariant set. We say that
Λ is a hyperbolic set if there are C, λ > 0 and a decomposition TΛ = Es

⊕ < X > ⊕Eu of
the tangent bundle such that:

• < X > is the subspace generated by the velocity direction of φ.

• ||Dφt|Es || ≤ Ce−λt, for t > 0.

• ||Dφt|Eu || ≤ Ceλt, for t < 0.

A classical fact about hyperbolic sets is that above decomposition varies continu-
ously on Λ. Since < X >= 0 on singularities, this implies that any singularity on
Λ cannot be accumulated by regular orbits of Λ.

Let f : M→M be a homeomorphism and let r : M→ R+ be a continuous map. Let
us consider the quotient space

Mr = {(t, x); 0 ≤ t ≤ r(x), x ∈M}/(r(x), x) ∼ (0, f (x)).

One can endow Mr with a metric and consider it as a compact metric space (See [BW]
for details).

Definition 2.1.6. We define the suspension flow of f with roof r as the flow φσt : Mr → Mr

induced by the quotient projection on the time translation flow Tt(s, x) = (t + s, x).

During this text all the suspension flows in consideration will be taken with the
function r being constant and equal to 1.

2.2 Expansiveness

In this section we discuss expansiveness for flows. Recall form chapterr one that a
homeomorphism is expansive if it separates any distinct pair of points by a uniform
distance in some time. If we move from the discrete-time to the continuous-time setting,
we cannot define expansiveness in the same way. Next proposition illustrates this fact.
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Proposition 2.2.1 ([BW]). Let φ be a continuous flow, then for any δ > 0 there is ε > 0 such
that if y = φs(x) with |s| ≤ ε then d(φt(x), φt(y)) ≤ δ for every t ∈ R

Proof. Since φ is continuous, it is a continuous mapping φ : M×R→M. Now fix δ > 0,
since φ is continuous on R and M is compact, there is some ε > 0 such that if |s| < ε
then d(φs(x), x) ≤ δ for every x ∈ M. Now suppose that y = φs(x). Then for any t ∈ R,
the choice of ε implies

d(φt(x), φt(y)) = d(φt(x), φs(φt(x)) ≤ δ

This concludes the proof. �

By the previous proposition, given ε > 0 we can find δ > 0 such that if two points
are in the same orbit and are at most ε-close in time, we will never see a separation
between then. So a way to try to generalize expansiveness is to require that points
which are not in a temporally-small piece of orbit be separated by φ. But only this is
not enough, because when we work with flows, reparametrizations play an important
role in the theory.

Considering these facts, R. Bowen and P. Walters defined in [BW] the first version
of expansiveness for flows.

Definition 2.2.2 (BW-Expansiveness). We say that a continuous flow is BW-Expansive if
for every ε > 0, there is δ > 0 such that the following holds: If x, y ∈ M, ρ : R → R is a
continuous function with ρ(0) = 0 and d(φt(x), φρ(t)(y)) ≤ δ for every t ∈ R, then y = φs(x)
for some |s| ≤ ε.

An easy consequence of above definition is the following.

Proposition 2.2.3 ([BW]). Let φ be a continuous flow and let x ∈ Sing(φ). If φ is BW-
expansive, then x is an isolated point of M.

Proof. Fix ε > 0 and let δ > 0 be given by the expansiveness of φ. Now take any
y ∈ BM

δ (x) and consider the constant function ρ(x) = 0. Then we have

d(φt(x), φh(t)(y)) ≤ δ

for any t ∈ R. Now expansiveness implies that y = φs(x) = x. Thus BM
δ (x) = {x} and the

proof is complete. �

BW-expansiveness is a successful tool to study non-singular flows such as Axiom
A and Anosov flows, but the previous proposition shows that it is not suitable to deal
with flows containing singularities accumulated by regular orbits such as the Lorenz
Attractor. Later, M. Komuro gave in [K1] a definition of expansiveness which is suitable
for this attractor, the so called k∗-expansiveness. Let us fix the following notation.

Rep(R) = {ρ : R→ R;ρ is an increasing homemorphism and ρ(0) = 0}
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Definition 2.2.4 (k∗-Expansiveness). We say that a continuous flow φ is k∗-expansive if for
every ε > 0, there is some δ > 0 such that the following holds:

If x, y ∈ M, ρ ∈ Rep(R) and we have d(φt(x), φρ(t)(y)) ≤ δ for every t ∈ R, then there is
some t0 ∈ R such that y = φt0+s(x) for some |s| ≤ ε.

In the absence of singularities k∗-expansiveness and BW-expansiveness are equiva-
lent, and then we will aways refer to a K∗-expansive flow only as expansive.

2.3 Shadowing Property

The shadowing property is the second main topological feature of hyperbolic systems.
Indeed, it is vastly used to prove many important properties of smooth systems, such
as generic properties, stability and entropy properties. In the topological dynamics
setting, it is also of great interest.

The shadowing property is a feature of approximating flavor. It allows one to obtain
a real orbit of the flow, approximating a set formed by pieces of orbits which behaves
almost as a real orbit, but with some approximation errors. Hereafter we will work in
order to state precisely this concept.

Let S = (xi, ti)b
i=a be a sequence with −∞ ≤ a < b ≤ ∞, xi ∈ M and ti ∈ R. We say that

S is a (δ,T)-pseudo-orbit for φ, if ti ≥ T and

d(φti(xi), xi+1) < δ

for every a ≤ i ≤ b.

Figure 2.2: Pseudo-Orbits

Let (xi, ti)b
i=a be a (δ,T)-pseudo-orbit. Define si to be

si =


∑i−1

n=0 tn, i ≥ 0∑
−1
n=i tn, i < 0.

We say that S is ε-T-shadowed if there exists a point z and h ∈ Rep(R) such that
d(φh(t)(z), φt−si(xi)) < ε for every i and si ≤ t ≤ si+1.
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Definition 2.3.1. We say that φ has the shadowing property if for every ε > 0 there exists
δ > 0 such that any (δ, 1)-pseudo-orbit is ε-shadowed.

Figure 2.3: Shadowing Property

The next proposition shows that there is not difference between use (δ,T) or (δ, 1)
pseudo-orits to define shadowing.

Proposition 2.3.2 ([K2]). A flow φ has the shadowing property if, and only if, for any ε > 0
and any T > 0 there is some δ > 0 such that every (δ,T)-pseudo-orbit is ε-shadowed.

Similarly to the case of expansiveness, there are some distinctions between shad-
owing for the singular and the non-singular case. For instance, next theorem exhibits
one of these distinctions.

Theorem 2.3.3 ([K2]). A non-singular flow φ has the shadowing property if, and only if, for
every ε > 0, there is some δ > 0 such that every finite δ-T-pseudo-orbit S is ε-shadowed.

To see some examples of singular flows for which the previous result is not valid,
we refer the reader to [K2]. In the same work, M. Komuro introduced a stronger form
of shadowing, in order to recover Theorem 2.3.3. We now introduce this concept. First
we define the following set:

Repε(φ) =

{
ρ ∈ Rep(φ);

∣∣∣∣∣ρ(s) − ρ(t)
s − t

− 1
∣∣∣∣∣ ≤ ε,∀s, t ∈ R

}
We say that a δ-T-pseudo orbit S = (xi, ti) is ε-strongly-shadowed if there exists a

point x and h ∈ Repε(φ) such that d(φh(t)(x), φt−si(xi)) < ε for every i and si ≤ t ≤ si+1.

Definition 2.3.4. A flow φ has the strongly shadowing property if for every ε > 0, there is
some δ > 0 such that every δ-T-pseudo orbit is ε-strongly shadowed.

This stronger version of shadowing allows us to recover a version of the Theorem
2.3.3 and will be crucial to prove Theorem I in Chapter 6.
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2.4 Topological Entropy

In this section we will define the topological entropy of flows. We follow the same ideas
as in the case of homeomorphisms and define entropy using separated and generator
sets. We also provide to the reader some classical results that will be used in further
sections.

Fix ε > 0 and t > 0. We say that a pair of points is t-ε-separated by φ if there is some
0 ≤ s ≤ t such that d(φs(x), φs(y)) > ε. Let K ⊂ M. We say that E ⊂ K is a t-ε-separated
set if any pair of distinct point of E is t-ε-separated. Let st(ε,K) denote the maximal
cardinality of a t-ε-separated subset of K. This number is finite due to the compactness
of M. Now we will define the generator sets. We say that K is t-ε-generated by F if for
any point x ∈ K, there is some y ∈ F such that d(φs(x), φs(y)) ≤ ε for any 0 ≤ s ≤ t. Let
rt(ε,K) denote the minimal cardinality of an t-ε-generator set for K. This quantity is
also finite by compactness of M. We define the topological entropy of φ on K to be the
number h(φ,K) defined by

h(φ,K) = lim
ε→0

lim sup
t∈∞

1
t

log st(ε, k) = lim
ε→0

lim sup
t∈∞

1
t

log rt(ε, k).

We need to make two comments on the above definition. First, this limits always exists
(it can be infinity), since the lim sup always exists and that st(ε) is monotone as ε goes
to 0. The second point is that it does not matter if we are using separated or generator
sets, the result will be the same. This is pretty similar to the case of homeomorphisms.
Finally we can define:

Definition 2.4.1. The topological entropy h(φ) of φ is defined to be h(φ) = h(φ,M).

Since if K0 ⊂ K1 we have that h(φ,K0) ≤ h(φ,K1) it is easy to see that

h(φ) = sup
K⊂M
{h(φ,K)}.

Next we will prove an elementary result that states that the topological entropies of
homeomorphisms and flows are related.

Theorem 2.4.2. Let φ be a continuous flow and φ1 be its time one homeomorphism. Then
h(φ) = h(φ1).

Proof. First notice that h(φ) ≥ h(φ1). Indeed, for any ε > 0 and t ∈N, we have

st(ε, φ) ≥ st(ε, φ1).

To prove the other inequality we begin by fixing ε > 0 and choosing some 0 ≤ δ ≤ ε
such that if d(x, y) ≤ δ, then d(φt(x), φt(y)) ≤ ε with t ∈ [0, 1]. Now let F be an n-δ-
generator set for φ1 with minimal cardinality. Then by the choice of δwe have that E is
an n-ε-generator set for φ. Since δ→ 0 as ε→ 0, we conclude h(φ) ≤ h(φ1). �
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The topological entropy of flows and homeomorphisms shares many interesting
properties. For instance both are invariant by conjugacy.

Theorem 2.4.3. If φ and ψ are conjugated flows then h(φ) = h(ψ).

Proof. Let φt : M → M and ψ : M → N be two conjugated flows on M and fix ε > 0.
Let h : M → N be the conjugacy homeomorphism. Let 0 < δ ≤ ε be given such that if
d(x, y) ≤ δ, then d(h(x), h(y)) ≤ ε. Fix T > 0 and let E ⊂ M be a T-δ-generator subset for
φ, with minimal cardinality.

We claim that h(E) is an T-ε-generator set for ψ. Indeed, since d(φt(x), φt(y)) ≤ δ for
t ∈ [0,T], then

ψt(h(x)), ψt(h(y))) = d(h(φt(x), h(φt(y))) ≤ ε

For t ∈ [0,T]. Thus we have that rt(ε, ψ) ≤ rt(δ, φ), and since δ → 0 as ε → 0, we have
that h(ψ) ≤ h(φ).

The reverse inequality is proved in a analogous way. �

Although topological entropy is invariant by conjugacy, the same is not true for
times changes.

Proposition 2.4.4. Let φ be a flow, fix k ∈ R and define ψt = φkt. Then h(ψ) = |k|h(φ).

Proof. Fix k ≥ 0, ε > 0 and T > 0. By the definition ofψwe have that ST(ε, ψ) = SkT(ε, φ).
Therefore

1
k

h(ψ) =
1
k

lim sup
t→∞

lim
ε

Skt(ε, φ) = h(φ).

Thus we conclude that h(ψ) = kh(φ).

The proof for k ≤ 0 relies on the following claiming:

Claim: h(φt) = h(φ−t).

To prove the claiming, fix ε,T > 0 ad let E ⊂M be a T-ε-generator set with minimal
cardinality. Clearly, we have that φT(E) is a T-ε-separated set for φ−t and this proves
the claiming.

Finally, if k ≤ 0, we have that

1
|k|

h(ψt) = h(φ|k|t) = h(φkt).

and the proof is complete. �

By the previous proposition, we have that the topological entropy is not preserved
by time-changes. More generally, we have that the topological entropy is not preserved
by topological equivalences.
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Definition 2.4.5. Two flows φt : M → M and φ : N → N are said to be topologically
equivalent if there is some homeomorphism h : M→ N satisfying:

1. h maps orbits of φ into orbits of ψ

2. h preserves the orientation of the orbits.

In [SYZ] it is proved that the positiveness of the entropy of two non-singular flows
is preserved by topological equivalence. This result will be useful to us, so we will state
it precisely.

Theorem 2.4.6. [[SYZ]] Let φ and ψ be two topologically equivalent non-singular flows. If
h(φ) > 0, then h(ψ) > 0.

We mention that the above result is false in the presence of singularities. We refer
the reader to the works [SYZ], [SV] and [SZ] for examples of flows whose positiveness
of topological entropy is no preserved by topological equivalence.

2.5 Topological Entropy of Non-Singular Expansive Flows

In this section we will discuss some extensions of Lewowicz’s Theorem. In particular,
we will see some generalizations to non-singular continuous flows. The first of its
generalization is due to Kato for CW-expansive homeomorphisms.

Definition 2.5.1. A homeomorphism is CW-expansive if there is e > 0 such that for any
non-degenerate continuum C ⊂M, there is n ∈ Z such that diam( f n(C)) > e

Actually, Kato realized that assuming that the space is not totally disconnected, to
obtain a proof for Lewowicz’s theorem, we just need to have that continuums expands
in uniformly controlled time. He obtained the following:

Theorem 2.5.2 ([Ka]). Suppose that dim(M) > 0. If f : M → M is a CW-expansive
homeomorphism, then h( f ) > 0.

Once we have results relating positive entropy to expansiveness for discrete-time
systems, a natural question arises:

”Is it possible to extend these results to continuous-time systems?”

The problem of generalizing some of the techniques used in Lewowicz Theorem’s
proof such as uniformly expansiveness and existence of non-trivial stable sets was first
addressed by H.B. Keynes and M. Sears in [KS]. But this problem is not simple since
the structures can be more complicated while we are working with flows. As we have
see in previous sections, expansiveness is not immediately generalized to the context of
continuous flows. Moreover, there are distinct ways to define expansiveness for flows
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depending on the kind o flow that is being considered. Keynes and Sears dealt with
the non-singular case.

Later, following the ideas of Kato and the techniques developed in [KS], a version
of Lewowicz’s Theorem was established for CW-expansive flows by A. Arbieto, W.
Cordero and M. J. Pacı́fico in [ACP].

Theorem 2.5.3 ([ACP]). Let φ be a continuous flow and suppose dim(M) > 1. If φ is
CW-expansive, then h(φ) > 0.

We remark that the previous result also applies to expansive non-singular flows.
Once the above results are in the setting of non-singular flows, it is worth to mention
that there are not similar results for the singular case. One of our goals in this thesis
is to explore the relationship between expansiveness and entropy for the singular case.
In next chapters we will see some results on this direction. In particular, some of
our results will allow us to obtain positive entropy for systems with some kind of
expansiveness, even if they are defined in low dimensional phase spaces.



Chapter 3

Rescaled Properties of Flows

In this section we will discuss a new family of dynamical properties, the so called the
rescaled-properties of flows (for simplicity, we will always replace the prefix ”rescaled”
by ”R” through this text). These are very recent dynamical features that are deeply
related with the Liao’s ideas of R-tubular neighborhoods for flows. We will study
R-expansiveness which is a new dynamical feature introduced by L. Wen and X. Wen
in [WW]. We will also introduce a new concept of entropy, the so called R-entropy and
illustrate its relation with the classical topological entropy for flows.

We would like to stress that from this chapter until the end of this work every
time we state some result which is not an original result of this work, we will cite the
reference where the reader can find all the details and proofs. In this way, every result
in this and in the next chapters which are not referenced are original results of our
work.

3.1 R-Expansiveness

Expansiveness theory for singular flows is quite complicated. As we have discussed
before, since there is no trivial extension of the definition from the discrete-time setting
to flows, many distinct definitions of expansiveness exist. In the previous chapter we
have studied some basic features of BW-expansive and k∗-expansive flows. But there
exist other distinct definitions of expansiveness. For instance, we can cite kinematic-
expansiveness and geometric-expansiveness (See [Art1] for the details). In this chapter
we are interested in other kind of expansiveness introduced by L. Wen and X. Wen in
[WW], the so called rescaled-expansiveness (R-expansiveness for short).

The concept R-expansiveness is very close to the BW-expansiveness, but the distance
of separation of the orbits is ”resized” by the size of the vector field. Next we precise
this idea.

Definition 3.1.1. A Cr-flow φ on M is said to be R-expansive if for every ε > 0, there is some
δ > 0 such that the following is satisfied:

31
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”If x, y ∈ M, ρ ∈ Rep(φ) and d(φt(x), φρ(t)(y)) ≤ δ||X(φt(x))|| for every t ∈ R, then
φρ(t)(y) ∈ φ|[−ε,ε](x) for any t ∈ R.”

Although the previous definition has a high level of similarity with the previous
versions of expansiveness that we have studied before, there are crucial distinctions
here. For instance, it is surprising that some highly non-expansive flows (in the classical
sense), satisfies R-expansiveness.

Example 3.1.2. The identity flow is R-expansive. Indeed, if φt = IdM for any t ∈ R, then
||X(x)|| = 0 for any x ∈ M. Therefore, for any δ > 0 we have that d(φt(x), φρ(t)(y)) ≤ δ||X(x)||
is satisfied if, and only if, x = y. Thus φ is trivially R-expansive.

Beside the above trivial example, many highly non-trivial flows are R-expansive.
Indeed, in [WW] it is proved the following resut:

Theorem 3.1.3 ([WW]). If φ is a multi-singular hyperbolic flow. Then φ|Ω(φ) is R-expansive

In face of previous result, we can the following question:

”How can we interpret previous theorem and example?”

Or in other words

”How can R-expansiveness includes such a trivial example as well as many examples with
highly chaotic behaviour?”

To answer the previous questions we need to have in mind that the behind the idea
of the rescaled-features of dynamical systems there is a fight between the geometric
distance of M and the velocity of φ. Indeed, when the generating vector-field of φ is
away from zero, then the separation of R-expansiveness is big in the geometric sense.
On the other hand, when the velocity field is close to zero, then it distorts a lot the
separation distances, then one see just small separation in the geometric meaning.

In Example 3.1.2, the influence caused by the vector field on the separation distances
is the biggest possible, since X(x) = 0 for every x. On the other hand, in multi-singular
examples, such as the Lorenz’s attractor, the influence caused by the vector field is not
big enough to prevent the appearance of geometric separation.

Besides the results in [WW], A. Artigue studied in [Art2] another criteria to conclude
that a flow is R-expansive. First notice that it is easy to show that if φ is non-singular,
then R-expansiveness is equivalent to BW-expansiveness. So, the hard case is exactly
the singular one.

One of the central goals of Artigue in [Art2] was to establish under which hypothesis
k∗-expansiveness is related with R-expansiveness. Next we state some of his main
results which will be used by us on next chapters.

Theorem 3.1.4. Let φ be a k∗-expansive flow. If Sing(φ) contains only non-degenerate singu-
larities, then φ is R-expansive.
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On above result, non-degenerate means that any p ∈ Sing(φ) satisfies

DX(p) : TpM→ TpM

is invertible for any t ∈ R. An easy corollary of previous theorem is the following
result:

Theorem 3.1.5. Ifφ is k∗-expansive flow such that Sing(φ) is formed by hyperbolic singularities,
then φ is R-expansive.

3.2 R-Topological Entropy

In this section we introduce a new concept for flows which is a rescaled version of topo-
logical entropy, the so called R-topological entropy. The idea behind the R-topological
entropy is to study how the flow separates points until some time, but requiring the
separation distance to be scaled by the norm of X.

Given a point x ∈M, we define the t-ε-r-dynamical ball centered at x to be the set

Br(x, t, ε) = {y ∈M; d(φs(x), φs(y)) ≤ ε||X(φs(x)||, 0 ≤ s ≤ t}

Note that if x ∈ Sing(φ) then Br(x, t, ε) = {x} for every ε, t > 0. On the other hand,
Theorem 2.1.4 implies that if x is regular we can take ε > 0 small enough to guarantee
that the t-ε-r-dynamical balls avoid singularities. Moreover, this small ε can be taken
uniformly in M \ Sing(φ).

Let P ⊂M and P ⊂ A. We say that A t-ε-r-generates P if

P ⊂ ∪x∈ABr(x, t, ε)

If p ∈ P is a singularity, then it can only be r-generated by the dynamical ball {p}.
This fact implies that we cannot generate P with a finite set if Sing(φ)∩P is not isolated
on P. On the other hand, if Sing(φ)∩P is isolated in P then it is a finite set and therefore
it does not add information to the computation of R-entropy for P.

The previous facts make us to consider only compact sets without singular points
to compute the topological R-entropy. Let K0(M) denote the set of compact subsets of
M without singular points.

We can also define a R-version of separated sets. We say that two points x, y ∈ M
are t-ε-r-separated if y < Br(x, t, ε) or x < Br(y, t, ε).

Let us take P ∈ K0(M). Consider Rε(P, t) the minimal cardinality of a t-ε-R-generator
set of X and Sε(P, t) the maximal cardinality of a t-ε-R-seperated subset for P. Since P is
compact and has not singularities, then Rε(P, t),Sε(P, t) < ∞ for any t and ε > 0.

Proposition 3.2.1. If P ∈ K0(M), then for any t > 0 and ε > 0 one has

R(P, t, ε) ≤ S(P, t, ε) ≤ R
(
P, t,

ε
2

)
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Proof. Let E be a t-ε-R-separated set for P with maximal cardinality. We claim that
E is a t-ε-R-generator set for P. Indeed, if the claim does not hold, we can find
z ∈ P \ ∪x∈EBr(x, t, ε). But this implies that z and x are t-ε-R-separated for any x ∈ E.
Then S(P, t, ε) ≤ R(P, t, ε).

To prove the second inequality, fix E a t-ε-R-separated subset of P with maximal
cardinality and let F be a set t- ε2 -R-generator set for P. Then for any x ∈ E let x′ ∈ F be
a point such that x ∈ Br(x′, t, ε2 ). Therefore, this choice is made injectively. This implies
that S(P, t, ε) ≤ R(P, t, ε2 ) and the proposition is proved.

�

Now we can define the R-topological entropy of P to be the number:

hr(φ,P) = lim
ε→0

lim sup
t→∞

1
t

log Sε(P, t) = lim
ε→0

lim sup
t→∞

1
t

log Rε(P, t)

Finally, the topological R-entropy of φ is defined to be

hr(φ) = sup
P∈K0(M)

{hr(P, φ)}.

Let P,Q ∈ K0(M) and suppose that P ⊂ Q. Let E ⊂ M be an t-ε-r-generator with
minimal cardinality for Q. Then

P ⊂
⋃
x∈E

Br(x, t, ε)

and it implies hr(P, φ) ≤ hr(Q, ε).

Our first result exhibits a relation between topological entropy and topological
r-entropy.

Theorem 3.2.2. If X is a C1 vector field, then h(φ,P) ≤ hr(φ,P) for any P ∈ K0(M). Moreover,
if X is non-singular these quantities coincide.

Proof. Let K = supx∈M{||X(x)||}. By definition of the dynamical balls, we have that
Br(x, t, ε) ⊂ B(x, t,Kε) for any point x ∈ M and ε, t > 0. This implies rKε(P, t) ≤ Rε(P, t)
for any P ∈ K0(M). Taking the limits in both sides of previous inequality we obtain
h(P, φ) ≤ hr(P, φ)

If X is non-singular we have that K′ = infx∈M{||X(x)||} > 0. By definition B(x, t,Kε) ⊂
Br(x, t, ε) and then Rε(P, t) ≤ rK′ε(P, t). Then we obtain hr(P, φ) ≤ h(P, φ). �

Previous result says us that R-topological entropy gives us more chaotic information
about the flow than topological entropy.

Next example shows that these two quantities may not coincide if the flow has
singularities.
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Example 3.2.3. We start defining a periodic flow ψ on T2 with constant velocity equal to one.
Here we will see the torus as a square S with sides of length 4 in the plane R2 with vertices at
the points (−2, 0), (2, 0), (−2, 4) and (2, 4) and identifying first the lower and upper sides and
then identifying the right and left sides. Let us consider on S the vector field X constant and
equal to (1, 0). Thus X generates the flow ψ desired.

Now we modify this flow to obtain a flow with positive R-entropy. First consider the function
ρ on S satisfying the following conditions:

1. ρ is constant along the vertical segments x × [0, 4].

2. ρ((x, y)) = 1, if (x, y) ∈ [−2,−1] × [0, 4] or (x, y) ∈ [1, 2] × [0, 4].

3. ρ((x, y)) = 0, if (x, y) ∈ {0} × [0, 4].

4. ρ((x, y)) = −x, if p ∈ [−1, 0] × [0, 4]

5. ρ((x, y)) = x, if p ∈ [0, 1] × [0, 4].

Let φ be the flow generated by the field ρX (see the figure).

Figure 3.1: Flow in T2

We claim that hr(φ) > 0. Indeed, consider the circle C on the torus transversal to the orbit
segments and represented on S by the vertical segment {−1} × [0, 4]. Notice that the orbit of
any point on C converges to a singularity when t→ ∞. Now fix a point x ∈ X. By the choice
of the function ρ it is easy to see that ||ρX(φn(x))|| = e−n. Keeping this in mind, we construct a
n-ε-r-separated set for φ as follow:

For each n ≥ 1 choose a set Pn ⊂ C with 2n points dividing the circle on 2n segments of
equal lenght. If we denote L for lenght of C, then if we choose two distinct points x, y ∈ Pn we
have that d(φt(x), φt(y)) ≥ L

2n for every t ∈ R.
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Now fix ε > 0 and set N > 0 such that L2−n
≥ εe−n for every n ≥ N. This implies that if

n ≥ N then for any two point in x, y ∈ Pn we have that

d(φn(x), φn(y)) ≥ L2−n
≥ εe−n = εmax{||ρX(φn(x))||, ||ρX(φn(y)||}.

This implies that Pn is a n-ε-r-separated set for φ and then:

hr(φ) ≥ lim
ε→0

lim sup
t→∞

1
t

log S(t, ε,C) ≥ lim sup
n→∞

1
n

log #Pn = log 2.

On the other hand h(φ) = 0 since the topological entropy of any surface flow vanishes (see
[LG]).

Now we extend a classical result about the finiteness of topological entropy for
smooth systems to the context of R-topological entropy.

Theorem 3.2.4. If X is a Lipschitz vector feld, then hr(φ) ≤ d log(L), where L is the Lipschitz
constant of X and d = dim(M).

Proof. Let P ∈ K0(M) and ε > 0. Since P is compact we can cover it with a family
{ fi,Ui}

n
i=1 of charts satisfying the following assumptions:

• fi(Ui) = B2(0) ⊂ Rd, for i = 1, ...,n

• P ⊂ ∪n
i=1 f −1

i (B1(0))

• The maps f −1
i are A-Lipschitz. for i = 1, ...,n.

Now fix t > 0, the Lipchitz property of f −1
i implies that

f −1
i (B ε

ALt
(x)) ⊂ BM

ε
Lt

( f −1
i (x))

if B ε
ALt

(x)) ⊂ Ui.

By a classical result of geometry of Rd the number N(ε, t) of balls r needed to cover
the ball B1(0) is at most C5

r
d, where C is given by the riemannian metric of Rr.

Let P(r, t, i) = {xi
1, ..., x

i
N} denote the image of f −1

i of the centers of these r-balls. If
r = ε

ALt , then Theorem 2.1.4 implies that P(r, t, i) is a t-ε-r-generator set for Ui. Then the
r-entropy of K is estimated as follows

hr(φ,K) ≤ lim
t→∞

1
t

log n#P(r, t, i) ≤ lim
t→∞

1
t

log nC
5
r

d

≤ lim
t→∞

1
t

log nC
(

5
ε

ALt

)d

= d log L

and this concludes the proof.

�



Chapter 4

Topological Entropy of Expansive Flows

In this chapter we discuss the relationship between expansiveness and topological
entropy for singular flows. We obtain here our first main results. Section 4.1 is devoted
to develop a new theory of stable sets based on Liao’s ideas and rescaled holonomy
maps. These new stable sets will share some interesting features with the stable sets
defined for non-singular expansive flows. They will also be crucial to prove the main
theorems of Section 4.2, which are criteria for obtain positive entropy for some R-
expansive flows. It will also imply positive topological entropy for some classes of
k∗-expansive flows.

4.1 R-Stable and R-Unstable Sets for R-Expansive Flows

This section is intended to construct a theory of R-stable and R-unstable sets for singular
flows. This construction is directly inspired by the R-techniques which were introduced
in the works of by S. Liao and later used in [WW]. Hereafter, φ denotes a Cr-flow and
x ∈ M denotes a regular point. We use the estimatives from Theorem 2.1.4 on the size
of the cross-sections to obtain our versions of stable sets for flows.

Fix some regular point x ∈M. As discussed in Chapter 2, the tubular flow theorem
gives us some ε(x) > 0 and δ(x) > 0 such that the set

Nr
x(δ(x)) = expx(Bδ(x)(0)∩ < X(x) >⊥)

is a cross section of time ε(x) through x. If X is non-singular we can obtain that
ε(x), δ(x) > C > 0 for any x ∈ M. If X has singularities, we may have ε(x), δ(x) → 0
when x → Sing(φ). On the other hand, Theorem 2.1.4 gave us a ”uniform” control on
how these constants collapse. Actually, for any β > 0 sufficiently small the set

Nr
β(x) = expx(Bβ||X(x)||(0)∩ < X(x) >⊥)

is a cross section of time β||X(x)|| for the flow. Moreover, the holonomy map Px,t is well
defined on Nr

β(x) and if y ∈ Nr
β

Lt

(x), the orbit segment between y and Px,t(y) belongs to

37
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the β-rescaled tubular neighborhood of O(x). This gives us a way to guarantee that the
holonomy maps are well defined. Let us fix x ∈M \ Sing(φ) , t > 0 and β > 0.

Definition 4.1.1. The β-r-stable and β-r-unstable local sets of x are respectivelly

Wr,s
β,t(x) =

{
y ∈ Nr

β

Lt
(x) ; d(Px,nt(x),Px,nt(y)) ≤

β

Lt ||X(Px,nt(x))||,∀n ∈N
}

and

Wr,u
β,t (x) =

{
y ∈ Nr

β

Lt
(x) ; d(P−nt,x(x),Px,−nt(y)) ≤

β

Lt ||X(Px,−nt(x))||,∀n ∈N
}

Notice that these sets are well defined if β is small enough. An interesting conse-
quence of the definition is that we can use these sets to characterize R-expansiveness.

Theorem 4.1.2. The flow φ is R-expansive if, and only if, there exists δ > 0 such that for any
regular point x ∈M and any t > 0, one has Wr,s

δ,t(x) ∩Wu,s
δ,t (x) = {x}.

Proof. Fix x a regular point, β > 0 small enough and let 0 < ε < β. Let 0 < δ < ε be
given by the r-expansiveness of φ related to ε. Now suppose that y ∈ Wr,s

δ,t(x) ∩Wr,u
δ,t (x).

Since y ∈Wr,s
δ (x) we have

d(Px,n(x),Px,n(y)) <
δ
Lt ||X(Px,n(x))||

for any non-negative integer n. By the Theorem 2.1.4 we obtain that d(φs(x), φs(y)) ≤
δ||(X(φt(x))|| for every s ≥ 0. On the other hand, since y ∈ Wr,u

δ,t (x), a similar argument
shows that d(φs(x), φs(y)) ≤ δ||(X(φt(x))|| for every s ≤ 0. Now R-expansiveness implies
that y ∈ φ[−ε,ε](x), but since x, y ∈ Nr

δ
Lt

(x), we have that y = x.

Conversely suppose that P = supx∈M{||X(x)||}, fix 0 < ε < β and let 0 < δ < ε such
that Wr,s

δ
P ,t

(x) ∩Wr,u
δ
P ,t

(x) = {x} for any regular point x and any t > 0. Fix t > 0 such that

Lt > 1 and suppose there exist a reparametrization h and two points x, y satisfying
d(φs(x), φh(s)(y)) ≤ δ

PLt ||X(φs)(x))|| for s ∈ R. This implies in particular that

d(x, y) <
δ

PLt ||X(x)||.

Since δ < ε < β, Theorem 2.1.4 implies that there exists some

|s0| <
δ

PLt ||X(x)|| ≤ δ ≤ ε

such that y0 = φs0(y) ∈ Nr
δ(x). More generally, since d(φnt(x), φh(nt)(y)) < δ

PLt ||X(φnt(x)||,
for any n ∈ Z, there exists |sn| < ε such that yn = φh(nt)+sn(y) ∈ Nr

δ(φnt(x)). But last fact
implies that the set {yn} is the orbit of y0 under the holonomy maps {Px,nt}. In additon,
one has that y0 ∈ Wr,s

δ,t(x) ∩Wr,u
δ,t (x) and therefore we must have y0 = x. Then φs0(y) = x

and the flow φ is R-expansive. �
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An interesting fact about the above characterization is that we do not need to concern
about reparametrizations, since we are only working with the holonomy maps of φ.

For the remaining of this section, we are assuming that the flows in consideration
are R-expansive and the constant δ given by previous result will be called a constant
of R-expansiveness of φ. Next we work in order to obtain versions of some well know
results about non-singular expansive flows for the R-expansive case. We begin with a
version of uniform expansiveness.

Theorem 4.1.3. Let K ⊂ M be a compact and invariant set without singular points and let
δ > 0 be a constant of R-expansiveness for φ. Denote A = infx∈K{||X(x)||}. Then for any
0 < η ≤ δA and t > 0, there exists Nη > 0 such that if x ∈ K and y ∈ Nr

δ(x) with d(x, y) > η ,
then there is some −Nη ≤ i ≤ Nη such that d(Px,it(x),Px,it(y)) ≥ δ||X(Px,it(x))||.

Proof. If the result is false, we can find some η > 0, sequences xn ∈ K, yn ∈ Nr
δ(xn),

mn → ∞ and t > 0, such that d(Pxn,it(xn),Pxn,it(yn)) ≤ δ||X(Pxn,it(xn)|| for −mn ≤ i ≤ mn.
Now by compactness of K we can suppose that xn → x ∈ K, yn → y ∈M. Furthermore,
since ||X(x)|| > A > 0 for every x ∈ K, we have that diam(Nr

δ(xn)) > C > 0 for any xn.
Since X is a Cr vector field, the normal direction of X also varies continuously with x,
so we have that y ∈ Nr

δ(x) . But now, the continuity of the holonomy maps implies that
d(Px,it(x),Px,it(y)) ≤ δ||X(Px,it(x)|| for every i ∈ Z and then x = y, a contradiction, since
d(x, y) > η.

�

Next we show that R-stable (R-unstable) sets need to contract in the future (in the
past).

Theorem 4.1.4. Let K ⊂ M be a compact and invariat set without singular points. Then For
any 0 < η < δ, there is Nη > 0 such that

Px,nt(Wr,s
δ,t(x)) ⊂Wr,s

γ,t(Px,nt(x)) and Px,−nt(Wr,u
δ,t (x)) ⊂Wr,u

γ,t(Px,−nt(x))

for every n ≥ Nη and every x ∈ K and every t > 0.

Proof. Let us fix 0 < η < δ infx∈K{||X(x)||}. Let N be given by the previous theorem. Now
suppose that there exists x ∈ K and t > 0 such that Px,nt(Wr,s

δ,t(x)) 1 Wr,s
γ,t(Px,nt(x)). Then

there is some y ∈Wr,s
δ,t(x)) and n > N satisfying d(Px,nt(x),Px,nt(y)) > η. Now by the choice

of N we must have d(Px,(n+i)t(x),Px,(n+i)t(y)) > δ||X(Px,(n+i)t(x))||) for some −N ≤ i ≤ N. But
this is impossible since n > N.

�

Corollary 4.1.5. Let x be a periodic point with period π(x) = t. For every γ > 0 there exists N
such that:

Px,nt(Wr,s
δ,t(x)) ⊂Wr,s

γ,t(Px,nt(x)) and Px,−nt(Wr,u
δ,t (x)) ⊂Wr,u

γ,t(Px,−nt(x))

for every n ≥ N.
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Hereafter we work in order to obtain non-trivial pieces of connected R-stable and R-
unstable sets for R-expansive flows. We denote Sr

δ(x) = exp(Sδ(x)||X(x)||(x) ∩N(x)), where
Sε(x) = {v ∈ TxM; ||v|| = ε}.

Theorem A. Let φ be a R-expansive flow, K ⊂ M be a compact invariant set without singu-
larities and suppose that dim(M) > 1. Then for every 0 < γ < δ infx∈K{||X(x)||} there is some
p ∈ K such that CWr,s

δ,t(p) ∩ Sr
γ(p) , ∅ or CWr,u

δ,t (p) ∩ Sr
γ(p) , ∅.

Proof. Since dim(M) > 1, Nr
η(x) is connected. Fix some x ∈ K and suppose that there

exists some γ > 0 such that Wr,u
γ,t(y) ∩ Sr

γ = ∅ for every y ∈ K. Denote K0 = (Nr
γ(x)).

Since K0 is connected, there exists some y ∈ (K0 ∩ Sr
γ(x)) which is not it Wr,u

γ,t(x). This
implies that we can take a minimal m0 > 0 such that diam(Px,−m0t(K0)) > δ||X(Px,m0t(x))||.
Since K0 is connected, we have that Px,−m0t(K0) is also connected and then Px,−m0t(x) ∩
Sr
γ(Px,−m0t(x)) , ∅. Thus we define K1 to be the closure of the connected component of x

in P−m0t,x(K0)∩Nr
γ(x) . Thus we can repeat the previous steps to find m1 and a continuum

K2 ⊂ Px,−m1t,(K1) ∩ (Nr
γ(Px,−(m0+m1)t(x)). Inductivelly, we can find a sequence of times {mk}

and a sequence of continuum sets {Kk} sucht that the following is valid:

• Px,−mkt(Kk) ⊃ Kk+1

• Kk ∩ Sr
γ(Px,−mkt(x)) , ∅

• Px,−nt(Kk) ⊂ Nr
δ(Px,−nt(x)), if 0 ≤ n ≤ mk

By the compactness of the continuum hyperspace, we can assume that the sequence
Kk converges to a continuum K. Now we have that

Px,(−
∑k

i=0 mi)t
(x)→ p ∈ K

and therefore we have K ⊂Wr,s
δ,t(p), by the continuity of the holonomy maps. Moreover,

since diam(Kk) ≥ γ we have that K ∩ Sr
γ(x) , ∅ and this concludes the proof.

�

An immediate consequence of the previous result is the following corollary:

Corollary 4.1.6. If x ∈M is a periodic point, then for any t, ε > 0 we have

CWr,s
δ,t(p) ∩ Sr

γ(p) , ∅ or CWr,u
δ,t (p) ∩ Sr

γ(p)

for every p ∈ O(x).

It would be great if all points of K actually have both non-trivial connected R-stable
and R-stable sets. Next we proceed in order to obtain this, but first we need to introduce
the concept of R-stable and R-unstable points. Let us set some notation. Recall from
previous chapter that we denoted Br(x, t, ε) for the t-ε-R-dynamical centered at x for φ.
Here we will denote Nr

t (x,n, ε) for the n-ε-R-dynamical ball for {Px,nt} centered at x.
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Definition 4.1.7. We say that x ∈ M \ Sing(φ) is an R-stable (R-unstable ) point of φ if for
every t > 0, the set {Wr,s

ε,t(x)}ε>0 ({Wr,u
ε,t (x)}ε>0) is a neighborhood basis for x on Nr

δ(x). In other
words, if for every ε > 0, there is some η > 0 such that if y ∈ Nr

η(x) and d(x, y) ≤ η
Lt ||X(x)||,

then
d(Px,nt(x),Px,nt(y)) ≤ ε||X(Px,nt(x))||

for every n ≥ 0 (n ≤ 0).

Next theorem is a trivial consequence of the definitions and then we shall omit its
proof.

Theorem 4.1.8. If O(x) ∩ Sing(φ) = ∅, then are equivalent:

1. x is an R-stable point.

2. Wr,s
δ,t(x) is a neighborhood of x on Nr

δ(x).

3. There is some 0 < ε0 < δ such that for any 0 < ε < ε0 and t > 0 we have

Wr,s
ε,t(x) = Nr

t (x,Nε, ε).

Hereafter we will always suppose x ∈ Λ, where Λ is a compact invariant set without
singularities. An easy corollary of Theorem 4.1.4 is the following proposition.

Proposition 4.1.9. If for some t > 0, we have y ∈Wr,s
ε,t(x), then ω(x) = ω(y).

Before to prove the proposition, let us make some remarks that will be used on next
results. By Theorem 4.1.4, if y ∈ Wr,s

ε,t(x), then d(Px,nt(x),Px,nt(y)) → 0 as n → ∞. In
addition, Theorem 2.1.4 implies that d(φt(x), φt(y))→ 0 as t→∞.

Proof. Now we prove the proposition. Let z ∈ ω(x) and suppose that y ∈ Wr,s
ε,t(x). If

tk → ∞ is such that φtk(x) → z, then previous remarks implies that φtk(y) → z and
therefore z ∈ ω(y). The contrary inclusion is analogous. �

As a consequence of previous proposition we obtain the following.

Theorem 4.1.10. Suppose that x is R-stable point which is recurrent. Then x is a periodic
point.

Proof. Suppose that x is an recurrent R-stable point and fix η > 0 such that Nr
η(x) ⊂

Wr,s
ε,t(x). Since x is a recurrent point, we can find a sequence tk →∞ such that φtk(x)→ x.

In particular, if we chose k big enough, we have that φtk(x) ∈ Br
δ(x). Since Theorem 2.1.4

implies that Br
δ(x) is contained on the R-flow box of Nr

δ(x), we find a sequence of times
nkt→∞ such that Px,nkt(x)→ x.

Let r ∈ Cφ(M) be a function given by item 2 of Theorem 2.1.5 such that 0 < r(x) ≤
η
4 ||X(x)||. Let us fix a sequence nk with nk > Nr(x) such that Px,nkt(x) ∈ Nr(x)(x). Then
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by Theorem 4.1.4 we have that (Px,nkt(Nr
η(x)) ∩ Nr(x)(x)) ⊂ Wr,s

η
4 ,t

(Px,nkt(x)). Theorem 2.1.5

implies that
Px,nkt(Nr

η(x)) ∩Nr(x)(x)) ⊂ Nr
η
2
(x).

Now, if we apply again Px,nkt to (Px,nkt(Nr
η(x)) ∩Nr(x)(x)), we obtain that

Px,2nkt(Px,nkt(Nr
η(x)) ∩Nr(x)(x))) ⊂ Nr

η
2
(x).

Finally, Theorem 4.1.4 implies that

∞⋂
j=1

Px, jnkt(Nr
η(x)) = {z}

and by construction we have that z is periodic for {Px,nt}. This implies that z is periodic
for φ and by the previous proposition, we have that x ∈ ω(x) = ω(z) = O(z). This
finishes the proof.

�

Theorem 4.1.11. If φ is R-expansive and x ∈ M such that O(x) ∩ Sing(φ) = ∅. If x is an
R-stable point, then there is a neighborhood of x on Nr

δ(x) formed by R-stable points.

Proof. To prove this, suppose that x is an R-stable set and fix 0 < 4ε < δ such that

⋃
t≥0

Nr
ε(φt(x)))

 ∩ Sing(φ) = ∅

Since x is R-stable, then there is some 0 < η < ε such that Nr
η(x) ⊂Wr,s

ε,t(x). This imples
that if y ∈ Nr

η(x) then inf
t≥0
{||X(φt(y))|| > A > 0. Now fix some ν > 0 and set 0 < γ ≤ νA.

Fix some y ∈ Nr
η(x). Theorem 4.1.4 combined with Theorem 2.1.4 implies that we can

find some Nη such that

d(Py,nt(y),Py,nt(z)) ≤
γ

Lt

for any z ∈ Bη(x) and any n ≥ Nη. Finally, the continuity of the holonomy maps allows
us to find some µ > 0 (Theorem 2.1.5) such that if z ∈ Nr

η(x) and d(z, y) < µ, then

d(Py,nt(y),Py,nt(z)) ≤
γ

Lt

for 0 ≤ n ≤ Nη. But this says that Nr
µ(y) ⊂Wr,s

ν,t(y) and therefore, y is R-stable.

�

Theorem 4.1.12. Let φ be a R-expansive flow and K ⊂ M be a compact invariant set without
singularities. If x ∈ K is a R-stable or R-unstable point, then x is periodic.
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Proof. Suppose that x ∈ K is a R-stable point and let δ > 0 be the R-expansiveness
constant of φ. Before to continue, let us set some notation. Let Fx(Nr

γ(x)) be an R-flow
box. Suppose that, A ⊂ Fx(Nr

γ(x)). Define A(x) to be the set {φty(y)} where y ∈ A and ty

is the unique t satisfying |t| ≤ γ||X(x)|| and φty(y) ∈ Nr
γ(x). For any γ denote Az

γ = Bγ(z).

Claim: Suppose that z ∈ α(x). Then there are a sequence nk → ∞ and γ > 0 such that
Px,−nkt(x)→ z and Az

γ(Px,−nkt(x)) ⊂Wr,s
δ,t(Px,−nkt(x)), for every k > 0.

If the claiming if false, we can find a subsequence nk such that

Px,−nkt(x) ⊂ Az
1
k
(Px,−nkt(x)) and Az

1
k
(Px,−nkt(x)) 1Wr,s

δ,t(Px,−nkt(x)).

For any k ≥ 1.

Fix some ε > 0 as in intem (3) of Theorem 4.1.8. Since Az
1
k
(Px,−nkt(x)) 1Wr,s

ε,t(Px,−nkt(x)),

we can find a point Px,−nkt(yk) ∈ Az
1
k
(Px,−nkt(x)) ∩ ∂Wr,s

ε,t(Px,−nkt(x)) But this implies:

sup
n≥nk

d(Px,nt(x),Px,nt(yk)) = d(Px,(mk−nk)t(x),Px,(mk−nk)t(yk)) = ε

for some mk > 0. The continutity of {Px,nt} implies that mk →∞.

Suppose that Px,(mk−nk)t(x)→ x∗ and Px,(mk−nk)t(yk)→ y∗. We have that d(x∗, y∗) = ε

But now, we have that for any i ∈ Z

d(Px∗,it(x∗),Px∗,it(y∗)) = lim
k→∞

d(Px,(i+mk−nk)t(x),Px,(i+mk−nk)t(yk)) ≤ sup
n>−nk

d(Px,nt(x),Px,nt(yk)) = ε,

since l+mk is positive if we suppose k big enough. This contradicts R-expansiveness
by Theorem 4.1.2 and then the claim is valid.

Now fix ε > 0, z ∈ α(x), nk and let γ as in the claiming. Since Az
γ(Px,−nkt(x)) ⊂

Wr,s
ε,t(Px,−nkt(x)), then Px,n1t(y) ∈ Br

ε(x), for every y ∈ Az
γ(Px,−nkt(x)). In particular, any

y ∈ Az
γ(Px,−nkt(x)) satisfies d(Px,(n1−nk)t(y), x) ≤ 2ε. Since φ−nkt(x) → z, this implies that

φ(−nk+n1)t(x)→ x and then x ∈ α(x). Finally, x is periodic due to Theorem 4.1.10

Theorem B. Let φ be a R-expansive flow with expansiveness constant δ > 0 and K ⊂ M be a
non-singular compact invariant set. If Γ does not contains R-stable or R-unstable points, then
for any 0 < ε < δ, t > 0 and any x ∈ K we have:

CWr,s
ε,t(x) , {x} and CWr,u

ε,t (x) , {x}.

Proof. The proof is based on the following claiming:

Claim: For every 0 < ε < δ, and η > 0, there is some K = Kε,η such that

Nr
η(x) 1 Nr

t (x,K, ε) and Nr
η(x) 1 Nr

−t(x,K, ε)

for every x ∈ K.
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If the claim is false, we can find ε > 0 and η > 0 and a sequence of points xk ∈ K
such that Nr

η(x) ⊂ Nr
t (xk, k, ε) for any k > 0. Now, if we suppose that xk → x, then x

must an R-stable point of K and this is a contradiction. The case of R-unstable points is
analogous and the claim is proved.

Now fix x ∈ K, 0 < ε < δ and let Nε be given by Theorem 4.1.3. Let η > 0 be such
that if d(x, y) ≤ η, then d(Px,nt(x),Px,nt(y)) ≤ ε if |n| ≤ Nε. Fix some n ≥ max{Nε,Kε,η}. By
the claiming, we have that

Px,−nt(Nr
η(Px,nt(x)) 1 C(Nr

t (x,n, ε), x).

Thus there is some

y0 ∈ Px,−nt(Nr
η(Px,nt(x)) ∩ ∂C(Nr

t (x,n, ε), x).

In particular, this implies that for some 0 ≤ k ≤ n, we have that

d(Px,kt(x),Px,kt(y0)) = ε.

But now, k < [n − Nε,n − 1], by the choice of η. Also k < [Nε,n − Nε], otherwise
there should exists some 0 ≤ j ≤ n such that d(Px, jt(x),Px, jt(y0)) > δ contradicting the
y0 ∈ Nr

t (x,n, ε). Thus k ∈ [0,Nε] and therefore d(x, y0) > η, by the choice of η.

Finally, we have that for any n ≥ max{Nε,Kε,η} we have that C(Nr
t (x,n, ε), x) is a

connected set with diameter greater than η. Thus by the compactness of the continuum
hyperspace of M we have that the set⋂

n>0

C(Nr
t (x,n, ε), x)

is connected set contained on Wr,s
ε,t(x) with diameter greater than η. Since the case for

the R-unstable sets is analogous, the theorem is proved.

�

The above results tell us that under assumptions of expansiveness, one can always
find non-trivial connected R-stable and R-unstable sets for points whose orbit does
not accumulate on Sing(φ). The same is not valid for points approaching arbitrarily
singularities. To see this, recall Example 3.2.3. In that case, if x ∈ T2 is any regular point
for φ, then for any ε > 0 the only point whose orbit remains ε||X(φt(x))||-close to x for
any positive time is x itself. Thus Wr,s

ε,t(x) = Wr,u
ε,t (x) = {x} for any x ∈ T2

\ Sing(φ). Since
we are dealing here with a surface flow, it could be that this is a simple pathology due
to the low dimension of T2. But this is not true, as next example shows.

Example 4.1.13. Let D = {x ∈ R2; ||x|| ≤ 1} and consider M = S1
×D the solid torus. Let φ′

be a periodic translation flow such that there is p ∈ S1 such that {p} ×D is a global cross-section
for φ′. If X′ is the vector field induced by φ′, we define a new vector field X = ρX′ where ρ is a
real C∞-function satisfying the following:

1. There is a neighborhood U of {p} ×D such that ρ|{p}×D = 0.
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2. ρ|M\U = 1 and 0 < ρ(x) < 1 for any x ∈ U \ ({p} ×D)

3. ρ decreases as x approaches to {p} ×D.

This flow φ induced by X has a behavior analogous to that on Example 3.2.3, but here the
flow is higher dimensional.

4.2 Topological Entropy of k∗-expansive flows

In this section we apply the techniques developed on previous section to the study of
the topological entropy of expansive flows. We are aiming to obtain positive entropy
for expansive flows. As well as in the non-singular case, stable and stable sets play an
important role here. Let us begin our exposition recalling the definition of Lyapunov
stable sets.

Definition 4.2.1. We say that a compact and invariant set Λ is Lyapunov Stable if for any
ε > 0, there is some δ > 0 such that if x ∈ Bδ(Λ), then φt(x) ∈ Bε(Λ), for every t ≥ 0.

Combining the results of the previous section we obtain the following result:

Theorem C. Let φ be a R-expansive flow. If there exists a non-singular Lyapunov stable set
Γ ⊂ M , containing a point with a non-trivial piece of connected local R-unstable set, then
h(φ) > 0.

Proof. Fix γ > 0 the constant of R-expansiveness of φ given by Theorem 4.1.2. Let Γ be
a non-singular Lyapunov stable set. Fix 0 < ε ≤ γ such that Bε(Γ) ∩ Sing(φ) = ∅

Let δ > 0 be given by the Lyapunov stability of Γ with respect to ε and fix x ∈ Γ
such that for some 0 < η < δ and t > 0, the set CWr,u

η,t(x) is a non-trivial connected
set. Now let y ∈ CWr,u

η,t(x) be such that y , x. Then Theorem 4.1.4 implies that
d(Px,−nt(y),Px,−nt(x))→ 0. But Theorem 2.1.4 will imply that in fact d(φ−t(x), φ−t(y))→ 0.
Now the Lyapunov stability of Γ guarantees that φt(y) ∈ Bε(Γ) for any t ≥ 0.

Last facts imply that

Λ =
⋃
t∈R

φt(CWr,u
η,t(x)) ⊂ Bε(Γ)

But since Bε(Γ) does not contain singularities, thenφ|Λ is a R-expansive non-singular
flow. In particular, it is BW-expansive and have dimension greater than one, since it
contains O(x) and Wr,u

η,t(x). So, we conclude by Theorem 2.5.3 that h(φ) > 0.

�

As a corollary we have the of previous theorem and Theorem B we have the follow-
ing:
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Figure 4.1: Idea of Theorem C

Corollary D. Let φ be a R-expansive flow. If there exists a non-singular Lyapunov stable set
Γ ⊂M without R-stable and R-unstable points, then h(φ) > 0.

Next we recall the definition of Attractor sets

Definition 4.2.2. Let Γ be a compact and invariant set. We say that Γ is an attractor if:

• φ|Γ is transitive.

• There is a neighborhood U of Γ satisfying φt(U) ⊂ U for any t > 0.

• Γ = ∩t≥0φt(U).

The neighborhood on above definition is called the isolating neighborhood of Γ. We
say that Γ is a non-periodic attractor if it is not a periodic orbit.

Theorem 4.2.3. If Γ ⊂ M \ Sing(φ) is a non-periodic atractor of φ, then it does not contain
R-stable and R-unstable points.

Proof. Since Γ is an attractor, then it has some point with dense orbit. In particular, we
have that x ∈ ω(x). Now, suppose that Γ contains a stable point p. Therefore, there is
some sequence tk → ∞ such that φtk(x) → p. But now Theorem 4.1.11 implies that x is
also an R-stable point and therefore Theorem 4.1.12 implies that x is a periodic orbit.
But it is a contradiction, since O(x) = Γ.

�
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It is easy to show that attractor are examples of Lyapunov stable sets. Therefore as an
easy consequence, we can obtain another criterion for positive entropy of R-expansive
flows. Precisely, we have:

Theorem E. Let φ be a R-expansive flow. If there exists a non-periodic attractor Γ ⊂ M \
Sing(φ), then h(φ) > 0.

Once we have established the previous theorem, we can use the results in [Art2] to
obtain the following results.

Theorem F. Let φ be a k∗-expansive flow such that the derivative DσX : TσM → TσM is
invertible for any σ ∈ Sing(φ). If there exists a non-periodic attractor Γ ⊂ M \ Sing(φ), then
h(φ) > 0.

Proof. Let φ be a Cr-flow as in the statement. Thus Theorem 3.1.4 implies that φ is
R-expansive. So the result is a consequence of Theorem E �

Theorem G. Let φ be a k∗-expansive flow such that Sing(φ) is a hyperbolic set. If there exists
a non-periodic attractor Γ ⊂M \ Sing(φ), then h(φ) > 0.

Proof. The result is a consequence of Theorem F combined with Theorem 3.1.5.

�
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Chapter 5

Pointwise Dynamics

In this chapter we start to study how pointwise dynamics can be used to help us to
investigate the implications of expansiveness for the entropy theory of flows. Here
we will use only a local version of expansiveness, so we will need to assume other
hypothesis on the flows, but this will allow to relax the dimensional hypothesis of
Lewowicz’s Theorem. Indeed, the techniques developed in this and in the next chapter
can be used to obtain positive entropy for flows in dimension one.

5.1 Preliminaries

Recall that in Chapter 1, it was mandatory the phase space to have a non-trivial con-
nected set to obtain Lewowicz’s Theorem. Indeed, it was fundamental to find the
unstable connected sets and then uniform expansiveness implied the existence of sep-
arated sets with many points. In the zero-dimensional case the space may be too
poor and then Lewowiz’s Theorem is not valid. But we can find examples of zero-
dimensional expansive systems with positive entropy. Maybe the most famous one is
the shift map introduced on Example 1.1.4. The shift illustrates that expansive systems
can have positive entropy, even on zero dimensional spaces. In this example, the phase
space is not too poor, since it is a cantor set.

On a previous work derived from my master’s thesis, we proved that for a given
homeomorphim f and under pointwise dynamical assumptions, one can guarantees
that f has a subsystem equivalent to a shift map. In particular, this implies positiveness
of topological entropy. Precisely, we proved the following:

Theorem 5.1.1. [AR] Let f be a homeomorphism. Suppose that there exists x ∈ Ω( f ) \ Per( f )
an uniformly-expansive and shadowable point, then there are n > 0 and a compact invariant
set Y ⊂M such that f n

|Y is conjugated to the full shift. In particular h( f ) > 0

On the previous result, we can obtain positiveness of entropy for spaces of any
dimension. Hereafter, our goal is to extend the previous result for flows.

49
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5.2 Expansive Points for Flows

In this section we start to study the pointwise dynamics of flows. In particular, we will
define a pointwise version of expansiveness. But before begin, let us save some time
to explain what is pointwise dynamics. By pointwise dynamics we mean the study
of dynamical systems through properties defined in terms of points. To illustrate this
concept, let us recall the definition of topological transitivity.

Definition 5.2.1. A homeomorphism f is said to be topologically transitive if for any pair of
non-empty open sets U,V ⊂M, there is some time t ∈ Z such that f −n(U) ∩ V , ∅ .

This is a global property in the sense that we need to know information about all
opens sets to verify topological transitivity. On the other hand, a classical result result
states that topological transitivity is equivalent to the existence of points with dense
orbit.

Theorem 5.2.2. If M has not isolated points, then f is topologically transitive if, and only if,
there is some point x ∈M such that O(x) = M.

Previous result relates transitivity with a pointwise property. This is the coeur
of pointwise dynamics: To study the behaviour of dynamical systems assuming the
existence of points in the phase space with nice dynamical properties.

Now we begin to investigate aspects of pointwise expansiveness for flows. The
first definition of pointwise expansivity is due to Reddy in [R] in the setting of homeo-
morphisms. He required for any point x in the phase space the existence of a positive
number c(x) such that the dynamic ball centered at x and with radius c(x) contains only
x. Then we can try to adapt this definition to the time continuous case.

Definition 5.2.3. A point x is called an expansive point of φ if for every ε > 0 there exists
c(x) > 0 such that if there exists y ∈M and a reparametrization h such that d(φt(x), φh(t)(y)) <
c(x) for every t ∈ R, then y = φs(z) with z ∈ O(x) and |s| ≤ ε. A flow φ is pointwise expansive
if every point of x is expansive.

Suppose φ is pointwise expansive. An easy consequence of the definition is that
given ε > 0, if we can find c > 0 such that c(x) ≥ c for every x, then φ is expansive. As
in the homeomorphism case, Sing(φ) is finite if φ is pointwise expansive. Indeed, if
there are infinitely many fixed points, then they must accumulate in some singularity
x. Then c(x) must be 0 and φ cannot be pointwise expansive.

Another difficult about this definition is to relate pointwise expansivity with ex-
pansivity. As in the homeomorphism case, pointwise expansiveness does not implies
expansiveness. The following example shows this fact.

Example 5.2.4. In [CC] B. Carvalho and W. Cordeiro give an example of 2-expansive homeo-
morphism with the shadowing property which is not expansive. In their example all the points
are expansive points. If one consider a suspension flow of f , one will obtain an example of
non-expansive flow whose points are expansive.
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In order to define a pointwise kind of expansivity which allows us to recover global
expansivity , we proceed in the same way as in [AR] and define uniformly-expansive
points.

Definition 5.2.5. We say that x is an uniformly-expansive point of φ if there is a neighborhood
U of x with the following property: For every ε > 0 there exists δ > 0 such that if y, z ∈ U
and there exists a reparametrization h satisfying d(φt(y), φh(t)(z)) < δ for every t ∈ R then
y = φs(w) with w ∈ O(z) and |s| < ε.

We denote Exp(φ) for the set of uniformly-expansive points of φ.

Proposition 5.2.6. Exp(φ) is an invariant set.

Proof. Consider x ∈ Exp(φ) and let U be its expansivity neighborhood. Fix ε > 0 and
let δ > 0 be given by the expansivity and such that Bδ(x) ⊂ U. If s ∈ R, let 0 < η < δ be
such that d(φ−s(u), φ−s(v)) ≤ δ if d(u, v) ≤ η.

Then φs(Bη(x)) is a neighborhood of φs(x). Suppose there are z, y ∈ φs(Bη(x)) and
h ∈ Rep(φ) such that d(φt(z), φh(t)(y)) < η for every t ∈ R. Then φ−s(z), φ−s(y) ∈ Bη(x) and
by the chose of η, we have for any t ∈ R

d(φ−s+t(y), φ−s+h(t)(z)) ≤ δ.

Thus φ−s = φt0(z′) with z′ ∈ O(z) and |t0| < ε. Thus φs(x) is an uniformly-expansive
point of φ with expansivity neighborhood φs(Bη(x)). �

Next we show that it is possible to recover expansiveness from uniformly-expansive
points.

Theorem 5.2.7. A flow φ expansive if, and only if , every point is uniformly-expansive.

Proof. Obviously, we just need to prove the converse. Suppose that every point of X is
uniformly-expansive and fix ε > 0. Since X is compact, we can cover X with a finite
number of open sets Ux1 , ...,Uxn given by the expansiveness of the points x1, ..., xn. Set
δ = min{δx1 , ..., δxn , η}, where δ(xi) is the expansivity constant of xi and η is the Lebesgue
number of the cover. If there are points x, y ∈ X and a reparametrization h such that
d(φt(x), φρ(t)(y)) < δ for every t. Then x, y ∈ Uxi for some i and therefore y = φt(z) with
z ∈ O(x) and |t| < ε. Then we conclude that φ is expansive. �

To show that uniformly-expansive points are actually a new concept, we need to
show some examples of flows φ such that Exp(φ) , ∅ and Exp(φ) , M. We postpone
these examples to chapter 6, because these examples will also be under hypothesis of
the theorems of that chapter.
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5.3 Shadowable Points For Flows

Shadowable points were introduced in [Mor] by C.A. Morales in the setting of home-
omorphisms. Later, they were used to define a measurable version of shadowing
property. Its flows’ version was first considered in [AV]. Next we proceed to defined
these points and then we state some basic results which will be used by us on Chapter
6.

Fix x ∈M. We say that an ε-T-pseudo orbit S = (xi, ti) is through x if x0 = x.

Definition 5.3.1. A point x is a shadowable point of φ if for every ε > 0, there is a δ > 0 such
that every (δ, 1)-pseudo-orbit through x is ε-shadowed.

We can also define a pointwise version of strong-shadowing.

Definition 5.3.2. A point x is a strongly-shadowable point of φ if for every ε > 0 there is a
δ > 0 such that every (δ, 1)-pseudo-orbit through x is ε-strongly-shadowed.

In [AV] the authors showed that shadowing property for flows is equivalent to all
points be shadowable. It is obvious that the same can be done for strongly-shadowable
points. On the other hand, there are examples of flows with shadowable points that do
not satisfy shadowing property (See [AV]).



Chapter 6

Entropy of Flows With Uniformly
Expansive Points

6.1 Expansiveness, Shadowing and Subshifts

In this section we will study the implications of global expansiveness and shadowing to
the entropy of flows. We will see that these two features combined can allow us to find
a symbolic subsystem for flows. In other terms, we will be able to obtain a topological
horseshoe on the phase space. Our first result deals with global dynamics and furnishes
a way to construct subflows that are equivalent to topological horseshoes.

Theorem 6.1.1. Let φ be a non-singular continuous flow. In addition, suppose that φ is
expansive and has the shadowing property. If Ω(φ) ∩ Crit(φ) , ∅, then there is some compact
and invariant set Y ⊂M such that φ|Y is conjugated to a suspension of a subshift.

We will break the proof of Theorem 6.1.1 into three lemmas to improve the read-
ability.

Lemma 6.1.2. It is possible to construct Y as in the statement of Theorem 6.1.1.

Proof. Let us begin choosing p ∈ Ω(φ) \ Per(φ) and fix ξ > 0 as in Theorem 2.1.3. For
this ξ let 8e > 0 be the expansivity constant of φ. Now let {T1, ...,Ti} and {S1, ...,Sk} be
two families of cross sections of time ξ satisfying the following conditions:

1. Si ⊂ T∗i for i = 1, 2, ..., k

2. diam(Ti) < e for i = 1, 2, .., k

3. X = φ[−e,0](T+) = φ[0,e](T+) = φ[−e,0](S+) = φ[0,e](S+)

Consider β = sup{t > 0; x ∈ T+
⇒ φt(x) < T+

} and 0 < 2ρ < β. Let us define the
natural projection Pi : φ[−ρ,ρ](Ti) → Ti by Pi(y) = φt(y) ∈ Ti with |t| < ρ. Since each Si is
compact, we can choose 0 < 2ε < e such that Bε(Si) ∈ φ[−ρ,ρ](T∗i ) for i = 1, 2, .., k.

53
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For ε > 0, let T1 > 0 and δ1 > 0 such that every δ1-T1-pseudo orbit is ε-strongly-
shadowed.

We will use the shadowing property twice in this proof, so let 0 < 2δ2 < δ1 and
T2 > 0 be such that every δ2-T2-pseudo orbit is δ1-strongly-shadowable. Let 0 < 2η < δ2

be such that if d(x, y) < η then d(φt(x), φ)t(y)) < δ2 for any x, y ∈ X and t ∈ [−T2,T2].

Since p is a non-wandering point, there are xa ∈ Bη(p) and ta > T2 such that φta(xa) ∈
Bη(p). Next, we define the following set:

A = {..., (p,T2), (φT2(xa), ta − T2), (p,T2), (φT2(xa), ta − T2), ...}.

We claim that A is a δ2-T2-pseudo-orbit. Indeed, by the choice of η we have
d(φT2(p), φT2(xa)) < δ2 and d(φta(xa), p) < η < δ2.

The shadowing property implies the existence of a point a ∈ Bδ1(b) which δ1-shadows
A. More precisely, there exists a reparametrization h ∈ Repδ1(φ) such that:

• If t ∈ [it0, it0 + 1], then d(φh(t)(a), φt′(p)) ≤ δ1 with t′ = t − it0.

• If t ∈ [it0 + 1, (i + 1)t0], then d(φh(t)(a), φt′(xa) ≤ δ1 with t′ = t − (i + 1)t0.

Notice that d(φh(t)(a), φh(t+ta)(a)) < 2δ1 < e for t ∈ R. Then expansivity implies
φh(ta)

∈ O(a). Thus a is a periodic point and it must be different from p.

Set ε′ = d(p,O(a)) and let 0 < 2δ3 < ε′ and T3 > T2 be given by the ε′-strong-
shadowing .

Now, let T > T3 be such that d(φT(a), φT(p)) > 8e by expansivity.

Let 0 < 2η′ < δ3 be such that d(φt(x), φt(y)) < δ3 if d(y, z) < η′ and t ∈ [−T,T].

Since x is a non-wandering point, we can choose xb ∈ Bη′(p) such that there exists
tb > T satisfying φtb ∈ Bη′(p).

If we repeat the steps to construct a, we can find a periodic point b ∈ Bε(x) different
from x and a which satisfies d(φT(a), φT(b)) > 7e. We notice that d(a, b) ≤ d(a, p)+d(p, b) ≤
ε.

Let π(a) and π(b) be the periods of a and b, respectively.

For each s ∈ Σ2 = {0, 1}Z we define the sequence {(xi, ti)}i∈Z putting (xi, ti) = (a, π(a))
if si = 0 and (xi, ti) = (b, π(b)) if si = 1.

It is easy to see that each As is an δ1-T1-pseudo orbit and therefore there exists a
point ys which ε-shadows As. Moreover, each shadow is unique by expansivity. Let us
define W = ∪ys with s ∈ Σ2 and

Y = ∪t∈Rφ
t(W)

�
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Figure 6.1: Construction of Y

Lemma 6.1.3. Y is a compact set.

Proof. To show that Y is closed suppose that yn → y with yn ∈ Y. For each yn there
exists a sequence sn ∈ Σ2 such that yn ε-shadows Asn . To prove our assertion, we have
to obtain s ∈ Σ2 and h ∈ Repε(φ) such that y ε-shadows As. Since Σ2 is compact, we can
assume that sn → s. Moreover, each reparametrization of yn belongs to Repε(φ), then
{hn} is an equicontinuous sequence. Thus we can assume that hn → h ∈ Repε(φ).

Fix T > 0 and let ρ > 0 such that d(x, y) < ρ implies d(φt(x), φt(y)) < ε. Let us take
yn ∈ Bρ(x). Thus the chioce of ρ implies d(φh(t)(y), φhn(t)(yn)) < ε, if n is large enough.
This inequality combined with the fact that the sequences sn have the first entries equal
to the first entries of s if n is large, gives us that y ε-shadows As until time T. Now, a
straigthforward limit calculation proves that y ε-strongly-shadows As and therefore Y
is closed. �

Lemma 6.1.4. φ|Y is topologically conjugated to a subshift.

Proof. Since Y is closed we can take new families of cross sections T = {T′1, ...,T
′

k′} and
S = {S′1, ...,S

′

k′} where T′i = Ti ∩ Y and S′i = Si ∩ Y. Notice that if we define T∗i
′ = T∗i ∩ Y

then these families satisfies the properties (1), (2) and (3) of the original families.

Consider the point a and let ta
0 be the smallest t ≥ 0 such that φt(a) ∈ S′+ and

consider the pair (Sa
0, t

a
0) such that φta

0(a) ∈ Sa
0 with Sa

0 = {S′1, ...,S
′

k′}. Then define in the
same manner the pair (Sa

i , t
a
i ) where is the i-th smallest positive time such thatφt(a) ∈ S′+.

For negative time one can define these pairs in an analogous way, but using the greatest
negative times.

Notice that {(Sa
i , t

a
i )}i∈Z codify the order and the times in which the orbit of a intersect

the cross sections in the family S = {S′1, ...,S
′

k′}. Analogously, we can obtain a similar
sequence {(Sb

i , t
b
i )}i∈Z for b. Since the orbits of a and b are periodic, the previous sequences

are also periodic. To be more specific, for z = a, b there exists kz such that Sz
i+kz

= Sz
i and

tz
i+kz

= tz
i + tz

imod(kz).

Now, since the orbit of any point y ∈ Y ε-shadows the pseudo-orbits obtained
concatenating the orbits of a and b, then by the choice of ε, the analogous sequence
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{(Sy
i , t

y
i )} defined for y is obtained concatenating the sequences (Sa

0, ...,S
a
ka

) and (Sb
0, ...,S

b
kb

)
in the first entry, and with times close to the times of crossing for a and b.

In [BW], Bowen and Walters showed that we can construct a suspension of a subshift
of ΣT for which ψ = φ|Y is a factor. To conclude our proof we will brieflyl describe the
construction used in their proof and discuss the main difference with our case. (For
more precise details see [BW])

The family S codify the path described by orbits of ψ in the following way: Since
any point y ∈ Y needs to cross some Sy

0 ∈ S at most in time ξ, we construct for y
the sequence {(Sy

i , t
y
i )} as above. The desired subshift is defined as the set of Σψ of the

sequences s of ΣS for which there exists a point ys which crosses the cross sections of
S in the order defined by s and the roof function r of the suspension is given at each
point as the time spent to cross the cross sections. Then the factor map identify a point
s ∈ Σr

ψ with of a point y ∈ Y in a way that s represents the order and the times such that
y crosses the sections in T . In their case, there is not a reason for two different orbits
of Σr

ψ be related to different orbits of Y. The same does not occur in our case. Indeed,
by the choice of ε the sequences {(Sy

i , t
y
i )} are in a one-to-one correspondence with the

orbits of ψ. So the factor map defined in [BW] is a homeomorphism in our case.

�

6.2 Expansive Points and The Entropy of Non-Singular
Flows

In this section we prove Theorem H. After we have proved Theorem 6.1.1 in the last
section, the proof presented here is easier to understand. This is because much of
the construction performed here is similar to that on the previous section. The main
difference here is that now shadowing and expansiveness are of local matter. Precisely,
we prove the following:

Theorem H. Letφ be a non-singular flow. If there is some point x ∈ Ω(φ)\Crit(φ) uniformly-
expansive and shadowable, then h(φ) > 0.

Proof. The proof will be divided in two steps.

Step 1: Constructing an invariant set Y.

Let p be under the hypothesis of the theorem and let U be its expansivity neighbor-
hood. Fix 0 < κ < 1 and let 8e > 0 be an expansivity constant of p with respect to κ and
such that B8e(p) ⊂ U.

Let 0 < 2ε < e be given by the e-shadowing though p. In [AV] the authors proved
that any point in Bε(p) is 2e-shadowable. We will use the shadowing property twice in
this proof, so let 0 < 2δ < ε be such that every δ-pseudo orbit trough p is ε-shadowable.
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Let 0 < 2η < δ be such that if d(x, y) < η then d(φt(x), φt(y)) < δ for any x, y ∈ X and
t ∈ [−1, 1].

Since p is a non-wandering point, there are xa ∈ Bη(p) and ta > 1 such that φt0(xa) ∈
Bδ(p). Next, we define the following set:

A = {..., (p, 1), (φ1(xa), ta − 1), (p, 1), (φ1(xa), ta − 1), ...}.

We claim that A is a δ-1-pseudo-orbit through x. Indeed, by the choice of ηwe have
d(φ1(p), φ1(xa)) < δ and d(φta(xa), p) < η < δ

The shadowing property through p implies the existence of a point a ∈ Bε(b) which
ε-shadows A. More precisely, there exists a reparametrization h ∈ Rep(φ) such that:

• If t ∈ [it0, it0 + 1], then d(φh(t)(a), φt′(p)) ≤ δ with t′ = t − it0.

• If t ∈ [it0 + 1, (i + 1)t0], then d(φh(t)(a), φt′(xa) ≤ δ with t′ = t − (i + 1)t0.

Notice that d(φh(t)(a), φh(t+ta)(a)) < 2ε < e for t ∈ R. Thus expansitivty implies that a
is a periodic point and it must be different from p.

Now, let T be such that d(φT(a), φT(p)) > 8e. Set ε′ = d(p,O(a)) and let 0 < 2δ′ < ε
be given by the ε′-shadowing through p. Fix 0 < 2η′ < δ′ be such if d(x, y) < η′ then
d(φt(x), φt(y)) < δ′ for every x, y ∈ X and every t ∈ [−1, 1].

Let 0 < η′ < η be such that d(φt(x), φt(y)) < δ if d(y, z) < η′ and t ∈ [−T,T].

Since x is a non-wandering point, we can choose xb ∈ Bη′(p) such that there exists
tb > T satisfying φtb ∈ Bη′(p).

If we repeat the steps to construct a, we can find a periodic point b ∈ Bε(x) different
form x and a satisfying d(φT(a), φT(b)) > 7e. We notice that d(a, b) ≤ d(a, p) + d(p, b) ≤ ε.

Let π(a) and π(b) be the perı́ods of a and b, respectively.

For each s ∈ Σ2 = {0, 1}Z we define the sequence {(xi, ti)}i∈Z putting (xi, ti) = (a, π(a))
if si = 0 and (xi, ti) = (b, π(b)) if si = 1.

It is easy to see that each As is an ε-1-pseudo orbit trough a or b and therefore there
exists a point ys which 2e-shadows As. Moreover, each shadow is unique by expansivity.
Let us define W = ∪s∈Σ2 ys and Y = ∪t∈Rφt(W)

Notice that although global shadowing property is equivalent to global strongly
shadowing property in the non-singular case(see [K2]), we cannot obtain directly the
same for their pointwise versions. This implies that the set Y is not necessarily closed.
In addition, it is easy to see that Y is an invariant subset and φ|Y is expansive, but we
cannot guarantee that the same for φ|Y. This is because the set of uniformly expansive
points is not necessarily closed. Thus we cannot use Theorem 6.1.1 to conclude the
proof. Instead of this, we compute the entropy of φ directly.

Step 2: Estimating the Entropy of φ.
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We begin considering the set Y which is a compact φ-invariant set. Hence by
Theorem 2.1.3 we can obtain a finite family of cross sections T of diameter at most e
which ”generates” Y. Let us also choose β > 0 as in the remark of that theorem.

Let us make some considerations on the periodic pseudo-orbits As. By a periodic
pseudo-orbits of period i, we mean the pseudo-orbits As for which there exists i ≥ 0
such that sn+i = sn for every n ∈ Z. Notice that the same argument used to prove that
a and b are periodic points in the construction of Y can be used to prove that each ys,
e-shadow of As is periodic, if As is periodic. For each n denote Bn = {sn

1 , ..., s
n
2n} the set of

2n distinct periodic sequences of period n in Σ2. We claim that its respective ysn
1
, ..., yn

s2n

shadows are also distinct. Indeed, let s, s′ ∈ Bn be two distinct sequences. Consider i0

the minimal i ≥ 0 such that si , s′i . Let (xi) and (x′i) be the sequences in {O(a),O(b)}Z

corresponding to order in which ys and ys′ shadows the orbits of a and b. We have
that xi = x′i for 0 ≤ i ≤ i0 and xi0 = x′i0 . Since there exists a point a′ ∈ O(a) and a
point in b′ ∈ O(b) which are at least 7e apart, then ys , ys′ . Otherwise, ys 2e-shadow
simultaneously O(a) and O(b). Set tn = max{π(yn

1), ..., π(yn
2n)}.

Claim: tn →∞ as n→∞.

Indeed, to prove the claim we consider in Bn a sequence ys such its corresponding
sequence s ∈ Σ2 satisfies si , si+1 for every i ∈ Z. Then when ys is 2e-shadowing O(a) it
needs to cross some cross section near to a′. The same occurs when ys shadows O(b).
Thus ys spends at least time β to stop shadowing O(a) and begins to shadow O(b). Then
π(ys) ≥ nβ. Thus tn converges monotonically to infinity.

Let us define a reparametrization h setting h(tn) = n, h(−tn) = −n, h(0) = 0 and
mapping linearly the intervals [tn, tn+1] in [n,n + 1]. Consider the flow ψt = φh(t). For
each n the expansiveness of φ in Y gives us that the set Bn = {yn

1 , ..., y
n
2n} is tn-α-separated

for if α is small enough. Thus Bn is a n-α-separated set of ψ. Hence

h(ψ) ≥ lim
ε→0

lim
n→∞

1
n

log #Bn = log 2 > 0.

Finally, ψ is a time change of φ and its entropy does not vanishes, then we can
conclude the same for φ by Theorem 2.4.6.

�

Example 6.2.1. In order to obtain a non-trivial example of flows for which previous the theorem
applies, let us consider a linear Anosov diffeomorphism f of T 2. Then we can blow up the fixed
point of f into a closed disc D and extend f to D as the identity map, obtaining a homeomorphism
f . If we consider the suspension flow of f , then the suspension of all non-wandering points
away from the disc D are under the hypothesis of the previous Theorem. The same is not true
for the suspension of the points in D.
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6.3 Expansive Points and The Entropy of Singular Flows

This section is devoted to prove a version of Theorem H for singular flows. Since we
are now in the non-singular scenario, only shadowableness is not enough to obtain the
same result. Indeed, we need a stronger assumption on shadowing. Precisely, we want
to prove the following:

Theorem I. Let φ be a continuous flow. Suppose there is some point x ∈ Ω(φ) \ Crit(φ)
uniformly expansive and strongly shadowable, then there is some compact and φ-invaritant set
Y ⊂M such that φ|Y is semiconjugated to a suspension of subshift with positive entropy.

The main difference here is that strong shadowing allows us to construct Y as closed
non-singular set. Then the conclusion will be a consequence of Theorem 6.1.1.

Proof. In order to establish this result, we will proceed in a very similar way as in Theo-
rem H. We begin constructing an invariant set. Let p be a non-critical, non-wandering,
shadowable and uniformly-expansive point ofφ. Let U be the expansiveness neighbor-
hood of p. Since in the previous theorem we did not use the fact that φ is non-singular
in the construction of Y, we can do exactly the same construction. So let Y ⊂ X
obtained exactly as in Theorem H. The only difference here is that we use the strong-
shadowableness of p. Then every reparametrization related to the points ys are in
Rep2e(φ). We will see that this fact allows us to construct Y “away” from singularities.

Claim: Y is a closed set.

To show that Y is closed suppose that yn → y with yn ∈ Y. For each yn there exists
a sequence sn ∈ Σ2 such that yn 2e-shadows Asn . To prove our assertion, we have to
obtain s ∈ Σ2 and h ∈ Rep2e(φ) such that y e-shadows As. Since Σ2 is compact, we can
assume that sn → s. Moreover, each reparametrization of yn belongs to Rep2e(φ), then
{hn} is an equicontinuous sequence. Thus we can assume that hn → h ∈ Rep2e(φ).

Fix T > 0 and let ρ > 0 such that d(x, y) < ρ implies d(φt(x), φt(y)) < e. Let us take
yn ∈ Bρ(x). Thus the chioce of ρ implies d(φh(t)(y), φhn(t)(yn)) < e, if n is large enough.
This inequality combined with the fact that the sequences sn have the first entries equal
to the first entries of s if n is large, gives us that y 2e-shadows As up tol time T. Now, a
straigthfoward limit computation proves that y 2e-strongly-shadows As and therefore
Y is closed.

First, notice that the previous construction implies that Y ∩ Sing(φ|Y) = ∅. Hence
ψ = φ|Y is an expansive non-singular flow with the shadowing property. Thus theorem
6.1.1 gives us the conjugacy. Furthermore, forψwe are under the hypothesis of Theorem
H. Then we know that h(φ) > 0.

�

Example 6.3.1. To obtain a non-trivial example of flow whose previous theorem applies, we
consider the flow φt : Mr → Mr of Example 6.2.1 and let X be its generated vector field. The
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phase space of φ contains a invariant solid torus T such that φ|T is a translation. Now fix
p ∈ Int(T), and let ρ : Mr → R be a smooth function such that:

• ρ|Mr\Bε(p) = 1 for some neighborhood Bε(p) ⊂ T.

• 0 ≤ ρ|Bε(p) ≤ 1.

• ρ(x) = 0 if, and only if x = p.

Now let ψ be the flow induced by the vector field ρX. Thus the only fixed point of ψ is p and
ψ|Mr\T = φ. Thus any interior point of Mr \ T is under the hypothesis of the previous theorem.
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Chapter 7

Finitely Generated Expansive Group
Actions

This chapter begins the second part of this thesis, which is devoted to the study
of dynamical systems that are, in some sense, generalizations of discrete-time and
continuous-time systems. To be specific, we will be interested in understand the be-
haviour of groups actions.

7.1 Preliminaries

We start by discussing some ideas about what is exactly a dynamical system. Suppose
we are in the discrete-time setting and the systems in question is some homeomorphism
f . As we have seen on Chapter 1, the time here is represented by the iterates of f . Other
interesting fact is that if one wants to define anything that depends on time, then the
future states need depend directly on the past states. This is perfectly captured by the
fact that we are taking iterates of f . Indeed, if we start at some point x on the phase
space, then to know where the point is after two units of time, we need compute twice
the image of x. This says that we cannot achieve the state of x two units of time in the
future if we do not compute the state of x one unity of time first.

If we are considering a flow φ, this concept is slightly more complicated. Indeed,
when time can take any real value, the concept of iterate is lost. On the other hand, the
key property that translates the concept of dependence on times is the group property
of flows, i.e. φt+s(x) = φt ◦ φs(x). Actually, this property is satisfied in discrete-time
systems for the set of iterations { f n

}. Last points make us realize that what is behind of
the concept of time dependence is this group-like property.

Thus in order to generalize the concept of dynamical systems we need some group
G, a family of transformations indexed for the elements of G and satisfying a group
property similar to that of flows. This is an informal definition of group action.

Let us now define group actions precisely. Let G be a topological group, i.e. a group

63
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with the structure of topological space and such that the group operation is continuous.
Let M be some topological space.

Definition 7.1.1. A group action of G on M is a mapΦ : G×M→M satisfying the following
conditions:

• Φ(e, x) = x for any x ∈M, where e denotes the identity element of G.

• Φ(gh, x) = Φ(g, Φ(h, x)) for any g, h ∈ G and x ∈M

We will denoteΦg : M→M for the map induced by the action, if we fix the element
g. It is straightforward to check that the group property implies that the maps Φg are
homeomorphisms for any g ∈ G. If M is a smooth manifold, we say that Φ is Cr if its
induced homeomorphisms are in fact Cr diffeomorphisms. We denoteAr(G,M) for the
set of Cr-actions of G on M.

Another way to describe a Cr-group action is to consider the space Di f f r(M) of Cr

diffeormorphisms on M (or the set H(M) of homeomorphisms of M if Φ is C0). The set
Di f f r(M) is a group whose operation is the composition of maps. Thus the action Φ
can be seen as a group homomorphism ϕ : G → Di f f r(M), where Φ(g) = Φg. In this
text, we will often denote gx for Φ(g, x) when there is not risk of confusion.

The orbit of the point x ∈M under the action Φ is the set

OΦ(x) = {gx; g ∈ G}

We shall omit the subscript on above definition when there is not confusion. Let us
fix x ∈ M. The isotropy group of x is the set Gx ⊂ G defined by Gx = {g ∈ G; gx = x}. It
is easy to show that Gx is in fact a subgroup of G. Note that if G = Z or G = R, then
a point is periodic if, and only if, Gx , {e}. When considering general groups though
, there is not a precise definition for periodic orbits and periods. Maybe the closest
concept related to periodic orbits is the concept of compact orbit, but in this case there
is not a well defined concept of period.

In the aforementioned sense, group actions are generalizations of the classical dy-
namical systems. For group actions the role of time is played by the group. Previous
fact brings several difficulties, making, in particular, the study of actions strongly de-
pendent on the kind of group under consideration. To illustrate this, for actions of Z
and R the meaning of future and past is well defined. However, if G = R2 we can
go to infinity in infinite distinct ways, so we can not define α-limits or ω-limits in the
same way for these actions. Other difference is that the structure of the orbits is entirely
dependent on G. For instance, compact groups has only compact orbits, non-compact
groups can have both compact and non compact orbits and for finite groups there is
not asymptotic behaviour for the orbits. Because of this, we need to impose some
assumptions on the structure of G to obtain results.

One of the central subjects of this thesis is the expansiveness. Hereafter we will
discuss the definition of expansiveness for group actions. The first fact we need to be
careful about, is that the definition of expansiveness strongly depends of the kind of
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group acting on M. To illustrate this, recall that the definition of expansiveness for
actions of Z and R are totally distinct. The main reason for this distinction is that {e} is
an isolated set for G = Z, but the same is not true if G = R. Actually, this distinction
forbids one to just extend the same definition of expansiveness for actions ofZ to actions
of R. In the work [BDS], the authors proposed a definition of expansiveness that quite
surprisingly a priori could be used for actions of any topological group. However, this
definition is only suitable for actions of finitely generated groups and therefore their
results hold only in this context. Because of this distinction, we will divide our study
of expansiveness in two scenarios. Namely, actions of finitely generated groups and
actions of connected Lie groups. In the next sections we will treat the former and in the
subsequent chapter we will treat the case of actions of connected Lie groups.

7.2 Expansive Actions of Finitely Generated Groups

In this section we will study expansive actions of finitely generate groups. We will
see some examples, give some characterizations and study properties of topological
entropy and the centralizer of such actions. Through this section Φ will denote an
action of a finitely generated group G.

The concept of expansiveness for finitely generated actions is exactly the same as
that for actions of Z

Definition 7.2.1 ([Hur],[BDS]). A group action Φ is expansive if there is some e > 0 such
that if x , y there is some g ∈ G such that d(gx, gy) > e.

We begin our exposition of such systems with the following question:

”What do we need to guarantee that an action is expansive?”

Clearly, any expansive homeomorphism is an expansiveZ-action. Next result gives
us an easy criterion to construct more examples.

Proposition 7.2.2. Suppose that there exists an element g ∈ G such that its induced diffeo-
morphism fg is expansive, then Φ is expansive.

Proof. Let g ∈ G and suppose that fg is expansive. Let e > 0 be its expansiveness
constant. If we take x , y in M then there exists n such that

d(gnx, gny) = d( f n
g (x), f n

g (y)) > e

and therefore e is an expansive constant for Φ. �

By the previous proposition, if one finds an expansive element g ∈ G then φ is
expansive. A natural question is: ”Do a dynamical property of an action implies a
similar property for its generators?”. Next example shows that this answer is negative
for expansivity.
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Example 7.2.3. We begin defining two diffeomorphims of the torus T2. Let f be a translation
of the torus T2. Let T be a linear Anosov map on T2 and let p be its fixed point. Blow up p in
to a small disc D and define f on T2 as a C1 extension of f to D as the identity map on D. It is
clear that f and g are not expansive. Le Φ be the action on T2 of the group generated by f and
g.

We claim that φ is expansive. Notice that there exists e > 0 such that any two distinct
points in T2

\D are e apart at some time under the action of g. So we just need to consider the
case when x, y ∈ D. To do that just notice that there exists n > 0 such that at least one of f n(x)
and f n(y) is outside of D. Now we can apply g until f n(x) and f n(y) be e-apart. This proves
that e is an expansive constant for Φ.

In [Hur] S. Hurder studied expansive actions induced by circle homeomorphisms.
Next example is one of these actions and illustrates that expansiveness can be obtainned
in a way that none of its induced homeomorphisms is expansive.

Example 7.2.4 ([Hur]). Let us consider the homeomorphisms f1, f2 : S1
→ S1 such that f1 is

a irrational rotation and f2 is a morse-smale homeomorphism with exactely two fixed points, a
source p1 and a sink p2. Now let Φ be the action on S1 generated by f1 and f2. It is easy to
see that Φ is exapansive. Indeed, let 0 < e < diam(S1)

4 . Notice p1 and p2 divide the circle in two
distinct connected arcs and if two points x, y are in distinct arcs, then they will be e-apart at
some time by the iteration of f2 or f −1

2 . If x and y are in the same arc, then we can apply f1 on x
and y until they belong to distinct arcs. Thus we just need to apply f2 or f −1

2 some times to see
the separation. In this example, none of the homeomorphisms induced by Φ can be expansive
since they are define on the circle.

It would be good if one obtain an criterion for characterize the expansiveness of
actions. Since we cannot achieve this through the expansiveness of the generated
homeomorphisms, we need to find answers for this question with other approach.

Next result is a characterization due to A. Berzanouni, M. S. Divandar and E. Shah.
Before to state it let us first recall the concept of syndeticness. If G is a topological
group, we say that a subset of H ⊂ G is syndetic if there is some compact set K ⊂ G such
that KH = G.

Proposition 7.2.5 ([BDS]). An action Φ of a finitely generated group G on M is expansive if,
and only if, the restriction of Φ to any syndetic subgroup of G is expansive.

Proof. If the the restriction ofΦ to any non-trivial subgroup of G is expansive, then it is
obvious that Φ is expansive.

Now suppose that Φ is expansive and let H be a syndetic subgroup of G. Since G
is discrete, then any compact subset of G is finite. Then there is a finite set K ⊂ G such
that KH = G. Fix 0 < c ≤ e, where e is the expansiveness constant ofΦ. Since K is finite,
we can find δ > 0 such that if d(x, y) ≤ δ, then d(gx, gy) ≤ c for any g ∈ K. Now if ΦH is
not expansive we can find a pair of distinct points x, y ∈ M such that d(hx, hy) ≤ δ for
every h ∈ H. But this implies that d(ghx, ghy) ≤ c for any g ∈ K and any h ∈ H. This
contradicts the expansiveness of Φ, since c ≤ e.
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�

In what follows we will proceed on distinct way to characterize expansive actions in
terms of time varying homeomorphisms or non-autonomous discrete-time dynamical
systems. In the sequel we define this concept precisely.

Definition 7.2.6. Let F = { fi}n≥0 be a sequence of self-homeomorphisms of some compact
metric space X. The time varying homeomorphism (TVH for short) generated by F is the
sequence of homeomorphims F = {Fn}n∈Z satisfying:

• F0 = IdX.

• Fn = fn ◦ · · · ◦ f1.

• F−n = f −1
n ◦ · · · ◦ f −1

1

We say that F is expansive, if there exists e > 0 such that for any pair of distinct point
x, y ∈M one can find n ∈ Z such that d(Fn(x),Fn(y)) > e.

TVH’s are often called non-autonomous discrete-time systems on the literature. Let
G a be finitely generated group acting by homeomorphisms on a compact metric space
X. Let K = {g1, ..., gi} be a set of generators of G. Consider the sequence space KN

of sequences in K and fix s ∈ KN. Then each coordinate si of s is an element gsi of
K and it has an associated homemorphism fsi . Consider Fs = { fsi} the sequence of
homeomorphisms associated to s. It generates a TVH Fs. Our next result characterizes
an action Φ its generated time varying maps.

Theorem 7.2.7. A group action Φ is expansive if, and only if, some of its generated TVH is
expansive.

Proof. If some of the time varying maps generated by Φ is expansive then it is obvious
that Φ is expansive. Conversely, suppose that Φ is expansive and let K be a generator
of G. Consider any sequence s of KN containing the homeomorphisms induced by all
finite combinations of elements of K. Then it is clear that Fs is expansive, since for any
g ∈ G there is some n ∈ Z such that Fn is the homeomorphism induced by g. �

Next we will study the symmetries of expansive actions, which is one of the great
questions on dynamical systems theory. Indeed, the study of the the centralizers of
diffeormorphisms and vector fields is an important research topic on dynamical systems
theory. To motivate the problem we will treat here, we will describe it algebraically.
Recall that an action of G on M can be seen as group homomorphism ρ : G→ Di f f r(M).
Since the image of a group homomorphism is always a subgroup of its range, then
another way to see a group action is as a subgroup of the group Di f f r(M). In this sense
a group action has a algebraic flavor.

One of the fundamental questions of group theory is to study the symmetries of
elements and subgroups. Let us precise it. Let g ∈ G, we say that h commutes with g if
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gh = hg. More generally, the set of elements of G which commutes with all the elements
of some subset K ⊂ G is called the centralizer of K on G (or the set of symmetries of K
on G) and it is denote by C(K).

If we now return to the algebraic meaning of group actions, then one could ask what
are the subgroups of Di f f r(M) which commutes with the subgroup ρ(G).

Now let us come back and translate above discussion to our first concept of group
actions.

Definition 7.2.8. We say that two actionsΦ andΨ of G on M commute ifΦg ◦Ψh = Ψh ◦Φg,
for any g, h ∈ G.

Let Φ be an action of G on M, we define the Cr centralizer of Φ to be the set:

C
r(Φ) = {Ψ ∈ Ar(G,M);Ψ commutes with Φ}

We denote dr for the Cr-distance on the space Ar(G,M), precisely, if K is a finite
generator of G, then

dr(Φ,Ψ ) = max
gi∈K

sup
x∈M
{d(Φgi(x), Ψgi(x))}

The next definition is a generalization of the concept of discrete centralizer for
homeomorphisms in [W].

Definition 7.2.9. We say that an action Φ has discrete CR-centralizer if Cr(Φ) is a discrete
subset ofAr(G,M) on the Cr-topology.

Now we have:

Theorem J. The centralizerC0(Φ) of an expansive C0-actionΦ is a discrete subset ofA0(G,M).

Proof. Let Φ be an expansive action of G on M and let Φ ∈ C0(Φ). Let e > 0 be the
expansiveness constant of Φ. Suppose that Ψ ′ ∈ A0(G,M) and d0(Ψ ′, Ψ ) < e. Here d0 is
the C0-distance onA0(G,M). Fix g ∈ G and chose some h ∈ G. Then we have that

d(Φh(Ψg(x)), Φh(Ψ ′g(x))) = d(Ψg(Φh(x)), Ψ ′g(Φh(x))) ≤ e.

Notice that previous inequality is true for any h ∈ G and then the expansiveness of Φ
implies that Ψg(x) = Ψ ′g(x) for any x ∈M and any g ∈ G. Thus we have that Ψ = Ψ ′. �

In the next chapter we will prove a similar result for actions of connected Lie groups
and we will see that in that case the problem is highly delicate.
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7.3 Topological Entropy of Expansive Actions of Finitely
Generated Groups

In this section we will study the geometric entropy for expansive actions of finitely
generated groups. In particular we will prove a version of Lewowicz Theorem for
these systems.

We will begin defining geometric entropy for finitely generated group actions. Here
we will follow the definition of geometric entropy given by Bis in [B]. To start, let us
consider a finitely generated group G and let G1 be a set of generators of G.

For each n ≥ 0 we define Gn to be the set of elements of G which are combinations
of at most n elements of G1. We say that x and y are n-ε-G1-separated by the action
Φ if there is some g ∈ Gn such that d(gx, gy) ≥ ε. If K ⊂ M, we say that E ⊂ P is a
n-ε-separated subset of P if any pair of distinct points are n-ε-G1-separated by ϕ.

Let S(n, ε,G1,P) denote the maximal cardinality of an n-ε-separated subset of P.

Definition 7.3.1. The geometric entropy h(ϕ,G1,P) ofϕ on P with respect to G1 is the number:

h(Φ,G1,P) = lim
ε→0

lim sup
n→∞

1
n

log S(n, ε,G1,P)

And the topological entropy of Φ with respect to G1 is the number h(φ,G1) = h(Φ,G1,M).

We would like to point out some distinctions between geometric entropy and the
classical topological entropy for homeomorphisms. The main difference between both
definition is that for topological entropy of homeomorphsims its mandatory that time
goes to infinity in future direction. As we have seen on Section 7.1, the concept of future
is not well defined on more general groups. This distinction makes us realize that the
classical topological entropy is not suitable to treat the case of entropy of actions of
more general groups. An interesting fact about geometric entropy is the following
result:

Theorem 7.3.2 ([B]). Let Φ be a finitely generated group action. If h(Φ,G1) > 0, then
h(Φ,G′1) > 0 for any other finite generator G′1.

Since it does not matter what direction on time we are taking to compute geometric
entropy, we do not need to look for the existence of connected unstable sets to obtain a
version of Lewowicz Theorem for geometric entropy. Indeed, the only main ingredient
we need is uniform expansiveness.

Theorem 7.3.3. [BDS] Φ is an expansive action if, and only if, for every δ > 0 there is some
n ≥ 0 such that if d(x, y) ≥ δ, then there is some g ∈ Gn such that d(gx, gy) > e.

Proof. Suppose Φ is expansive. If we can find δ > 0 and sequences xn, yn ∈ M and
sequence mn → ∞ such that d(xn, yn) ≥ δ and d(gxn, gyn) ≤ e for any g ∈ Gmn . By



70 CHAPTER 7. FINITELY GENERATED EXPANSIVE GROUP ACTIONS

compactness of M we can assume that xn → x, yn → y. Now for each g ∈ G we have
that

d(gx, gy) ≤ d(gx, gxn) + d(gxn.gyn) + d(gyn, gy)

But if n→∞we conclude that d(gx, gy) ≤ e. Thus Φ cannot be expansive.

The converse is obvious

�

Now we can state and prove the main result of this section.

Theorem K. Let M be a compact metric space with positive topological dimension. If Φ is an
expansive action of a finitely generated group G on M, then h(Φ,G1) > 0 for any generator G1.

Proof. Suppose that Φ is an e-expansive action and G1 is some generator of G. Let us
fix 0 < δ ≤ e

2 and let N be given by the uniform expansiveness with respect to δ. Since
dim(M) > 0 we can find some point x ∈ M such that C(X, x) , {x}. Then we can find
some arc [x, y] ⊂M.

Since x′ , y′, by expansiveness ofΦ there is some g ∈ G such that [gx′, gy′] = [x0
0, x

0
1]

has length e
2 . Since d(x0

0, x
0
1) ≥ δ there is some g ∈ Gn. We can find some g ∈ GN such

that d(gx0
0, gx0

1) > e. The map induced by g0 is a homeomorphism, then we have that
[g0x0

0, g0x0
1] = [x1

0, x
1
3] is a connected arc with length ate least e contained in the g0-image

of [x0, x1]. Thus the set E1 = {x0
0, x

0
1} is n-ε-G1-separated set.

Now we can subdivide [x1
0, x

1
3] in two disjoint arcs [x1

0, x
1
1] and [x1

2, x
1
3] satisfying

d(x1
0, x

1
1) ≥ δ and d(x1

2, x
1
3) ≥ δ. Again, uniform expansiveness of Φ implies that the set

E2 = {x0
0, x

0
1, g
−1
0 x1

1, g
−1
0 x1

2, } is a 2N-ε-G1-separated set.

If we repeat these steps we can inductively find for each natural n and nN-ε-G1-
separeted set E − n with 2n elements. Therefore we have:

h(Φ,G1) = lim
ε→0

lim sup
n→∞

1
n

log S(n, ε,G1) ≥ lim
n→∞

1
nN

log #En =
1
N

log 2

And this concludes the proof.

�



Chapter 8

Expansive Actions of Connected Lie
Groups

In this chapter we start to investigate expansive actions of connected non-trivial Lie
Groups. As we have discussed before this study must be made separated from the case
of actions of finitely generated groups. Indeed, this is know for the case of R-actions
since the 70’s when R. Bowen and W. Walters gave the first definition of expansive flows
in [BW]. Later an extension to the setting of Rk-actions was given by W. Bonomo, J.
Rocha and P. Varandas in [BRV]. Our goal in here is to extend these notions for actions
of more general connecte Lie groups. As we will see on next sections, the study of these
actions is closely related to the study of foliations on manifolds.

8.1 Definition and First Results

Let M be a closed Riemannian manifold. Recall that a Lie Group is a smooth manifold
with group structure, for which the product and inversion operations are smooth. Some
simple examples of Lie groups are S1, Rd, Zd, Cd and GLn(R). It is easy to see that Zd is
a finitely generated Lie group. Since Lie Groups are manifolds, then finitely generated
Lie groups are discrete groups. Then the expansiveness theory for these groups is the
same as that studied in previous chapter.

On the other hand, Rd and S1 are examples of connected Lie groups and for this
reason, the expansiveness theory for actions of these groups is more complicated than
the theory for finitely generated actions. To see this, consider G = R. In this case, the
action is a flow and as we have seen on Part I of this text, expansiveness for flows is a
tough topic. Next we define the main concept of this chapter.

Definition 8.1.1. We say that a Cr-action Φ : G ×M → M is expansive if the following is
satisfied: For every ε > 0, there is some δ > 0 such that if we can find x, y ∈M and a continuous
map ρ : G→ G with ρ(e) = e satisfying d(gx, h(g)y) ≤ δ for any g ∈ G, then y = gx for some
g ∈ G with |g| ≤ ε.

71
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The first elementary result we will see about these kind of systems is something
which is well know for the case of flows.

Theorem 8.1.2. If M is a connected manifold and Φ is expansive, then Φ has no fixed points.

Proof. The proof is completely analogous to that for BW-expansive flows. For reader’s
convenience, we will furnishes the proof. Supose that p is fixed for Φ. Take ε > 0 and
let δ > 0 be given by the expansiveness. If we consider h to be the constant map equal
to e. Then d(gx, h(g)y) < δ for any g ∈ G and y ∈ Bδ(x). Expansiveness implies that
Bδ(x) = {x}which is impossible since M is conneceted. �

For the case of R-actions, non-singularity is automatically satisfied by expansive-
ness. On the other hand, in higher dimension the analogous concept is that of locally-
free actions.

Definition 8.1.3. Let G be a Lie group, we say that an action Φ of G on M is locally-free if Gx

is a discrete subgroup of G, for any x ∈M.

Although expansive R-actions are locally-free, next example shows that it is not
valid in higher dimensions.

Example 8.1.4. Let M be a Cr manifold and X be a Cr vector field generating an BW-expansive
flow with non-trivial centralizer. Let Y be a non-trivial vector filed commuting with X. In
[BRV] it is proved that the centralizer of X is quasi-trivial, then Y generates a flow with the
same orbits of X. Then the R2-action generated by X and Y is an expansive action with orbits
of dimension one and the action cannot be locally free.

In the case of flows, expansive systems are essentially divided in two scenarios: The
singular and the non-singular one. The non-singular case is deeply related to foliations
theory. Indeed, if some Cr-flow φ has not singularities, then its orbits form a foliation
of the manifold in one dimensional submanifolds. In particular, any BW-expansive
Cr-flow determines a Cr-foliation of M.

In the higher dimensional case when Φ is not locally-free, the set of orbits may
decomposed M into submanifolds of distinct dimension and this may make things
much more harder. To avoid these difficulties, in this text we will always deal with
locally-free actions. Next result is classical and states that locally-free action generates
a foliation for M. For the remainder of this chapter, G will always denote a connected
Lie Group.

Theorem 8.1.5 ([Walczak]). Φ is a Cr-locally-free action of G on M if, and only if, the set
{O(x)}x∈M is a foliation of M such that dim(F ) = dim(G).

Next we prove a proposition which will be useful on next sections

Proposition 8.1.6. If Φ is a locally-free action of G on M, then there exists δ > 0 such that
Gx ∩ BG

δ (e) = {e} for any x ∈M.
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Proof. This is a trivial consequence of the fact that Φ is a foliated action. Indeed, if the
result is false, we can obtain a sequence of points xn ∈M such that

Gxn ∩ BG
1
n
(e) , {e}

Assume that xn → x. Since Φ is foliated, then there is some η > 0 such that Ux =
Φ(Bη(e), (Tx)) is a foliated neighborhood of Φ(Bη(e), (x)). Using the continuity of the
action, we can find n big enough such that 1

n ≤ η, xn ∈ Ux, xn = gnxn for some gn , e
with |gn| ≤

1
n andΦ(γn, xn) ⊂ Ux, where γn is the geodesic on G connecting e and gn. But

this is impossible, since Ux is a foliated neighborhood and the orbit of xn intersects the
transversal Tx twice in time smaller than ε. �

Next we will prove that expansiveness is indeed a dynamical property. Recall that
two actions Φ and Ψ of G on M and N, respectively, are conjugated if there exists a
homeomorphism h : M→ N satisfying for any g ∈ G the following conjugacy equation:

h ◦Φg = Ψg ◦ h

Theorem 8.1.7. Any action conjugated to an expansive action is expansive.

Proof. Suposse that Φ is an expansive action conjugated to Ψ and fix ε > 0. Let δ1 > 0
be given by the expansivity of Φ. Let f : N → M be the conjugacy homeomorphism.
Then one can chose δ > 0 such that d( f (x), f (y)) < δ1 if d(x, y) < δ for every x, y ∈ N.
We claim that δ is an expansivity constant of Ψ . Indeed, if there are x, y ∈ N and a
continuous map ρ : G → G fixing e such that d(Ψg(x), Ψρ(g)(y)) < δ for every g ∈ G,
then d(Φg( f (x)), Φρ(g)( f (y))) < δ1 for every g. Then f (y) ∈ Ψ (Bε(e), f (x)) and therefore
y ∈ Ψ (Bε(e), x). This completes the proof. �

8.2 The Codimension One Scenario

In this section we study codimension one expansive actions of connected Lie groups.
A classical result due to H. Lianfa, S. Guozhuo in [LG] states that there are not BW-
expansive flows on closed surfaces. This section is devoted to extend this result for
actions of higher dimensional groups. A translation of the concept of surface flow for
actions of higher dimensional groups is the concept of codimension one actions

Definition 8.2.1. An action Φ of G on M is said have condimension one if

dim(M) = dim(G) + 1.

As we have seen on last section, the orbits of any locally-free action generates a
foliation of M. An interesting fact about expansiveness for actions is that the generated
foliation has an expansive behavior. To precise what we mean on last sentence, we
need to define the concept of expansive foliation due to Inaba and Tsuchiya ([IT]).

Let F be a folitation of M and fix T a complete transversal to F . For any ε > 0
denote Dε(x) for the transversal disc at x with radius ε. AnF -curve is a curve contained
in some leaf of F . Fix some F -curve α and let N be some disc of T containing α(0).
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Definition 8.2.2. A fence F along α is a continuous map F : [0, 1] ×N→M such that:

1. F|{t}×N is an embedding of a disc Dε(α(t)) for any t ∈ [0, 1]

2. F|[0,1]×{x} is a F -curve for any x ∈ N

3. There exists x0 ∈ N such that F|[0, 1] × {x0} = α.

We define expansiveness for foliations as follows.

Definition 8.2.3 ([IT]). F is said to be expansive if there exists δ > 0 such that for any x ∈M
and y ∈ Dδ(x) \ {x} there exist a F -curve α : [0, 1]→ M with x = α(0), and a fence F along α
such that that F(1, y) < Dδ(α(1)).

We note that that previous definition is equivalent to the action of the pseudo group
of holonomy of F to have a expansive behavior. Now we can prove the following:

Theorem 8.2.4. The orbit foliation of a locally-free expansive action is expansive.

Proof. Suppose Φ is an expansive locally-free action and fix some complete tranversal
T to the orbit foliation ofΦ. Propostion 8.1.6 allows us to chose ε > 0 such that for any
x ∈ M one has Φ(Bε(e), x) ∩ T(x) = {x}. Let δ > 0 be the expansive constant related to ε.
Now fix x ∈M and let take y ∈ Dδ(x). By the choose of ε, y < ϕ(Bε(e), x).

Then expansivity of Φ gives us a g0 ∈ G such that d(g0x, g0y) > δ. Now let γ :
[0, 1]→ G be a geodesic connecting e and g0. Define the map F([0, 1] ×Dδ(x))→M by

F(t, p) = Φ(γ(t), p)

.

Previous map is clearly a fence satisfying F(1, y) < Dδ(x) and therefore the orbit
foliation of Φ is expansive. �

Next we define some concepts and state some known results that will be used in
the proof of the main theorem of this section. Let F be a codimension one folitation of
M and T be a complete transversal to F .

Definition 8.2.5. A leaf L ∈ F is said to be resilient if there exist x ∈ L and a L-loopα containing
x such that for the holonomy map h : U → U induced by α, we can find y ∈ T(x) \ {x} such
that hn(y)→ x.

Essentially, a resilient leaf contains some point whose holonomy contracts tranver-
sally and which self-spirals. This behavior is quite complex and forbids L to have trivial
holonomy group. Indeed, any resilient leaf has exponential growth for its holonomy
pseudo-group.

Other consequence of the definition is that L is a non-proper leaf. Recall that L is a
proper leaf if for any x ∈ L and any foliated chart ξ : U → Rk, with x ∈ U the plaque
P(x) of x in U satisfies P(x) = L ∩ U. The existence of y in the definition of resilience
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forbids L to be proper and this implies that L cannot be compact (See [Walczak]). Next
result guarantees the existence of resilient leaves:

Theorem 8.2.6 ([IT]). Any codimension one expansive foliation contains a resilient leaf.

The last main ingredient we need is a result due to G. Hector, E. Ghys and Y.
Moriyama. Before to state it, we need to introduce the following concept:

Definition 8.2.7. We say that a foliation F is almost without holonomy if the holonomy of any
non-compact leaf is trivial.

Theorem 8.2.8. [HGM] If Φ is a codimension one locally-free action of a nilpotent group G,
then the orbit foliation of Φ is almost without holonomy.

Next we will proceed in order to show that previous theorem together with the
results of [IT] and [HGM] will imply the non-existence of expansive actions of codi-
mension one for some groups. Precisely, we have the following:

Theorem L. There are not expansive codimension-one actions of nilpotent groups G on M.

Proof. Let Φ be a locally free expansive action of a nilpotent Lie group of G on M. By
Theorem 8.2.4 the orbit foliation FΦ of Φ is expansive. But Theorem 8.2.6 implies that
FΦ contains a resilient leaf F. On the other hand, Theorem 8.2.8 implies that all non-
compact leaf must have trivial-holonomy group. But F is a non-compact leaf whose
holonomy group grows exponentially. This is a contradiction, therefore Φ cannot be
expansive and theorem is proved.

�

8.3 Centralizer of Expansive Actions

In this section we investigate the symmetries of actions of connected Lie Groups. In
last chapter, we studied this problem for the finitely generated case, but now things are
harder. For the case when G = Rd, we quote the work [BRV] of W. Bonomo, J. Rocha
and P. Varandas, where it is proved the following:

Theorem 8.3.1. The centralizer of any expansive Rk-action is quasi-trivial.

Our main goal here is to extended that result to more general Lie groups. We begin
introducing the concept of quasi-triviality on this scenario.

Definition 8.3.2. An action Φ of G on M has quasi-trivial Cr-centralizer if any Ψ ∈ Cr(Φ)
satisfies the following condition: There is some map ξ : M→ End(G) constant along the orbits
of Φ and such that Φ(ξ(g), ·) = Ψ (g, ·) for any g ∈ G

Essentially, an action Φ has quasi-trivial centralizer if any action commuting with
Ψ has the same orbits as Φ, but the time is reparametrized by endomorphisms which
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only vary transversally to the orbits. We remark that previous definition naturally
generalizes the respective definition of quasi-triviality for flows and Rd-actions.

Hereafter, we will proceed to obtain Theorem M. Let us discuss the ideas behind this
proof. In [BRV], the author started with an expansive Rk-action Φ and given any other
actionΨ commuting withφ it was possible to find a local group homomorphism which
locally reparametrizes Rk. The hard task there is to extend this local homomorphism
to a global endomorphism of Rk. This extension was strongly supported on the vector
space structure of Rk.

Now if we are working with general Lie groups we do not have an available vector
space structure for G. But we have a natural vector space associated to G, namely the
Lie algebra G of G. Recall that G is isomorphic to TeM. Thus we introduce the class of
Lie groups which will be suitable to our generalization.

Definition 8.3.3. We say that a Lie group is exponential if its exponential map exp : G→ G
is a surjective group homomorphism.

Here we are denoting exp for the exponential map at the identity element of G.
Clearly R is an exponential group, but there are other examples of exponential groups
such as cylinders and more general products of an abelian compact lie groups with
some Rk.

The idea behind our generalization is that starting with an expansive action of G
one can obtain a related expansive action of Rk, if the group G is exponential.

Suppose that G is an exponential Lie group. Recall that by the group isomorphism
theorem we have that G�Ker(expe)

is isomorphic to G. Let us denote ρ for this isomo-
morphism and recall that ρ is the factor map of exp.

Figure 8.1: Isomorphism Theorem

Now, given an action Φ : G × M → M, we can use ρ to induce an action Φ′ :
G�Ker(exp) ×M→M as follows:

Φ′(v, x) = Φ(ρ(v), x)

Next proposition is an elementary consequence of the definitions.

Proposition 8.3.4. If Φ is expansive, then Φ′ is expansive.
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Proof. Suppose that Φ is expansive. Fix ε > 0 small enough to the exponential map be
a local isometry on Bε(0) and let δ > 0 be given by the expansiveness of Φ. Suppose
that there are x, y ∈ G and a continuous η : G�Ker(exp) →

G�Ker(exp) satisfying η(0)
such that

d(Φ′v(x), Φ′η(v)(y)) ≤ δ

for any v ∈ G�Ker(exp).

Since ρ is a group isomorphism, then

ρ′ = ρ ◦ η ◦ ρ−1 : G→ G

is a continuous map fixing e. Moreover, we have that

d(Φg(x), Φρ(η(ρ−1(g)))(y)) = d(Φ′
ρ−1(g)(x), Φ′

η(ρ−1(g)(y)) ≤ δ

for any g ∈ G.

Thus, there is some g0 ∈ Bε(e) such thatΦg0(y) = x. But this implies thatΦ′
ρ−1(g0)

(x) = y
and then Φ′ is expansive. �

Next suppose that Φ and Ψ are two actions of G on M which commute. Then for
any v,u ∈ G, we have the following:

Φ′v ◦Ψ
′

u = Φρ(v) ◦Ψρ(u) = Ψρ(u) ◦Φρ(v) = Ψ ′u ◦Φ
′

v

But previous observations easily imply the following result:

Proposition 8.3.5. For any r ≥ 0 one has Ψ ∈ Cr(Φ) if, and only if Ψ ′ ∈ Cr(Φ′)

�

Now already have all the necessary elements to prove the main theorem of this
section.

Theorem M. If Φ is a Cr locally-free expansive action of an exponential Lie group G on M,
then Φ has quasi-trivial centralizer.

Proof. Let Φ be an expansive action and suppose that G is an exponential group. Fix
Φ′ ∈ CrΦ. Let

ρ : G�Ker(exp)→ G

be the factor isomorphism of exp. Let Ψ ′ be the action induced in G�Ker(exp) by ρ.

Recall thatG�Ker(exp) is a finite dimensional real vector space, then it is isomorphic
to some Rn. Therefore, Φ′ and Ψ ′ can be seen as actions of Rn on M. By Propositions
8.3.4 and 8.3.5 Φ′ is expansive and Ψ ′ ∈ Φ′. Now Theorem 8.3.1 implies that for any
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x ∈ M there is a group-endomorphism ηx of G such that Ψ ′η(v)(x) = Φ′v(x) for any x ∈ M
and v ∈ G, satisfying ηx = ηy for any y ∈ OΦ′(x).

Define a family of endomorphism of G by

η′x = ρ ◦ ηx ◦ ρ
−1.

Now, this implies that

Ψg(x) = Ψ ′
ρ−1(g)(x) = Φ′

η(ρ−1(g))(x) = Φρ(ηx(ρ−1(g)))

For every x ∈ M and g ∈ G. It is clear that η′x = η′y for any y ∈ OΦ(x) and this
concludes the proof.

�

8.4 Entropy of Expansive Actions of Connected Lie Groups

Now we begin to investigate the relationship between expansiveness and topological
entropy for connected Lie Group Actions. Remember that if F is a foliation of M there
is a pseudo-group G naturally associated to G. Namely, the holonomy pseudo-group
of F . When M is compact, we have that G is finitely generated. Next we will describe
a natural way to obtain a finite generator for holonomy pseudo-group of the orbit
foliation of an locally-free action. LetΦ be a locally-free action on M and fix some point
x ∈M. LetT be complete tranversal to the orbit foliation ofΦ. Since the action is locally
free for every ε > 0 we can find δx > 0 such that Tx = Bδx(x)∩T(x) is a local cross-section
of time ε for the actionΦ through x. Precisely, we have the following property: If y ∈ Tx

then Φ(Bε(e), y) ∩ Tx = {y}. By compactness of M we can find {x1, ..., xn} ∈M such that

n⋃
i=1

Φ(Bε,Txi) = M

Last condition, implies that the holonomy maps between the cross-section Txi gener-
ates the holonomy pseudo-group of the orbit foliation ofΦ. Note that these conditions
are totally analogous to the techniques of cross-sections developed by R. Bowen and P.
Walters to study BW-expansive flows.

In [IT], the authors proved that any expansive codimension one foliation has pos-
itive entropy. This is a consequence of the existence of resilient leaves. For higher
codimensional expansive foliations, they proved the same result under stronger as-
sumptions on the expansiveness of F . Our main goal on this section is to weaken this
stronger hypothesis and obtain positive entropy only assuming the expansiveness of
the foliation. In particular, it will imply that expansive actions of connected Lie groups
do have positive geometric entropy. First let us recall, the definition of geometrical
entropy for pseudo-groups introduced by Bis in [B].
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Let G be a finitely generated pseudo-group with generator G. Let g ∈ G. We say
that g has size k and denote #g = k if g = gi1 ◦ ... ◦ gik , with gi1 , ..., gik ∈ G or g = IdM. Fix
some ε > 0 and some natural n. We say that a pair of points x, y ∈M is n-ε-G-separated
by G if there exists g ∈ G such that x, y ∈ Dg, #g ≤ n and d(g(x), g(y)) > ε. A subset
E ⊂ M is n-ε-G-separated if any pair of its distinct points is n-ε-G-separated by G. Let
S(n, ε,G) denote the maximal cardinality of a n-ε-G-separated subset of M.

Definition 8.4.1. The topological entropy of G with respect to G is defined to be

h(G,G) lim
ε→0

lim sup
n→∞

1
n

log S(n, ε,G)

As in the case of finitely generated groups, if some pseudo-group has positive
entropy with respect to some finite generator G, then it also has positive entropy with
respect to any other finite generator. If G is pseudo-group with finite generator K, we
denote

η = min
g∈K
{diam(Dg)}.

Next concept is a notion of expansiveness for actions of pseudo-groups.

Definition 8.4.2. A finitely generated pseudo-group G is expansive if there is some 0 < e < η
such that for any pair of distinct points x, y, there is some g ∈ G such that x, y ∈ Dg and
d(g(x), g(y)) > e.

It is immediate that expansiveness for a foliation is equivalent to the expansiveness
for its holonomy pseudo-group (See [Walczak]). Then by Theorem O the holonomy
group of the orbit folitaion of an expansive action is expansive.

Next theorem states that expansive pseudo-groups are uniformly expansive.

Theorem 8.4.3. LetF be a folitation of a compact M and letT be a finite and compact complete
transversal to F . Then F is expansive if, and only if, for any δ > 0 there is some N ∈ N such
that if x and y are in the same element of T and satisfy d(x, y) ≥ δ, then there is g ∈ G with
#g ≤ N, such that d(g(x), g(y)) > e.

Proof. Let T be a finite complete transversal to T . Suppose that G is expansive and we
can find δ > 0 with the following property. For every n ∈ N, there are xn, yn ∈ Tn ∈ T

such that d(xn, yn) ≥ δ and {xn, yn} is not n-e-G-separated. SinceT is finite we can assume
that Tn = T for every n ∈ N. Now compactness allows us to assume that xn → x ∈ T
and yn → y ∈ T. Thus we have that d(x, y) ≥ δ and d(g(x), g(y)) ≤ e for any g ∈ G. But
this is impossible, since G is expansive.

The converse is obvious.

�

In next theorem we improve the result on [IT] about the entropy of expansive
foliations.
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Theorem N. Let F an expansive foliation of some compact manifold M. Then its holonomy
pseudo-group has positive topological entropy.

Proof. Even the one codimensional case was proven by Inaba and Tshuya in [IT],
we remark that our techniques cover any codimensional case. Let T be a complete
transversal to F . Since M is compact, we can assume that T is finite and therefore F
is uniformly expansive. Now fix 0 < η ≤ e

4 and let N ∈ N be given by the uniform
expansiveness with respect to η.

Fix T0 ∈ T . Since the codimension of F is positive we can find on T0 a connected
arc [a, b] with d(a, b) = η. But now, uniformly expansiveness implies that we can find
g ∈ G such that a, b ∈ Dg, #g ≤ N and d(g(x), g(y)) > e

2 . This implies that C1 = [g(a), g(b)]
is connected arc containing g(a), g(b) and contained in some transversal T1. Also, the
set E1 = {a, b} is N- e

2 -G-separated by G. Now subdivide the arc C1 in two disjoint arcs
C′1 = [g(a), a1] and C′′1 = [b1, g(b)] with diameters at least η and such that g(a) and g(b)
are are end point of C′1 and C′′1 respectively.

Now uniformly expansiveness implies that there are maps g′, g′′ such that #g′, #g′′ ≤
N, g(a), a1 ∈ Dg′ , b1, g(b) ∈ Dg′′ , d(g′(g(a), g′(a1)) ≥ e

2 and d(g′′(b1), g′′(g(b)) ≥ e
2 . But this

implies that the set E2 = {a, g′−1(a1), g′′−1(b1), b} is a 2N- e
2 -G-separated set.

Proceeding exactly as in Theorems 1.2.2 and K, we prove inductively that for every
n ∈N, there is some nN- e

2 -G-separated set En with 2n elements.

Finally, the toplogical entropy of Gwith respect to G satisfies the following:

h(G,G) = lim
ε→0

lim sup
n→∞

1
n

log S(n, ε,G) ≤ lim
n→∞

1
nN

log #En =
log 2

N

And the proof is complete �

Since the topological entropy of the holonomy pseudo-group of a foliation F co-
incides with the geometric entropy of F , Theorem O is an obvious consequence of
Theorem N. Recall that the geometric entropy of an locally-free action is the geometric
entropy of its orbit foliation.

Theorem O. The geometric entropy of any expansive locally-free action is positive.

Proof. Suppose that Φ is a locally-free expansive action of a connected Lie Group G on
M. SinceΦ is locally free, we have that the orbits ofΦ generates a foliation F of M. By
Theorem 8.2.4, F is expansive. Now Theorem N implies that F has positive geometric
entropy and the Theorem is proved. �



Chapter 9

Some Problems and Questions

9.1 Singular Flows

In this section we expose some questions and problems about the theory of singular
expansive flows that are related with the topics that we have exposed. We have
constructed a theory of R-stable sets and R-unstable sets for some points on the phase
space of singular flows. These sets are important to develop a theory of entropy for
such systems. We only proved the existence of such sets for points whose orbits do not
accumulate on Sing(φ). Moreover, we exposed some examples of R-expansive flows
such that no point has non-trivial connected R-stable sets. For these examples, every
points accumulate on Sing(φ). We state below some problems related to the above
discussion:

Question. • What assumptions do we need to obtain the existence of non-trivial connected
R-stable sets for regular points whose orbits accumulate on Sing(φ)?

• Additional structure on Sing(φ)?

• Dominated Decomposition?

• Sectional Hyperbolicity or Asymptotic Sectional Hyperbolicity?

• Volume preserving?

Question. How do the assumptions of the previous question help us to obtain positive topo-
logical entropy?

Question. How can we use R-stable and R-unstable sets to study the ergodic theory of expansive
flows?

Recall that Examples 3.2.3 and 4.1.13 are examples of flows for which all non-singular
points have trivial R-stable and R-unstable sets. Moreover, with no much more effort
one can see that these flows satisfy a kind o uniform R-expansiveness. Some questions
derived from this observation are:
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Question. Does any regular point of a singular uniformly R-expansive flow have trivial
connected stable or unstable sets? Does every regular point of an uniformly R-expansive must
accumulates on singularities?

Question. What structure on Sing(φ) forbids the existence of uniformly R-expansive flows?

In contrast with the non-singular case where there are no stable points, we have seen
that singular R-stable can only be periodic. But it would be desirable that following
question can be answer negatively.

Question. Do exist some R-expansive flow on a connected manifold with R-stable or R-unstable
points?

In [JNY] the author introduced a rescaled form of shadowing property. So we can
state the following questions:

Question. Is it possible to define R-shadowable points? What are the implications of these
points to the dynamics of φ?

Finally we propose to investigate in more details the applications of R-topological
entropy to understand the behavior of surface flows.

Question. How can we use the R-topological entropy to improve our knowledge about surface
flows?

These problems are fundamental to study the entropy theory of singular expansive
flows and seems to be quite challenging. We believe that they can motivate some future
works on the entropy theory of such systems.

9.2 Actions of Connected Lie Groups

The theory of expansive group actions is a very recent subject of the study of dynamical
systems as we have seen on this text. This there are many unexplored possible directions
on this subject. In this section we propose some questions and invite the reader to think
about them. May this questions guide us in the study of expansive systems for future
explorations.

To begin, let us recall that through out this work we always dealt with locally-free
Lie group action. Because of this assumption we could work with regular foliation.
It could be possible to obtain a foliation for any expansive Lie group action? In other
words

Question. Do the orbits of an expansive Lie groups action always form a foliation of M?

It would be great to see the intersection of the theory of expansive actions with the
theory of smooth action. Since BW-expansiveness is the model of expansiveness for
Anosov flows, the following question is quite natural.
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Question. Is every Anosov action an expansive action?

In [BRV] the authors affirmed that the only manifolds that supports an Expansive
Rk action are the torus Tn. Unfortunately , it is false. Indeed, in [PT] it was proved
that if a 3-dimensional manifold M supports an Anosov flow, then its fundamental
group has exponential growth. In particular, M cannot be T3. Later this result was
generalized to expansive flows by M. Paternain in [Pa]. In particular, if we take any
toral expansive homeomorphism, its suspension flow is not defined on T3. This makes
us wonder carefully about what manifolds support expansive actions.

Question. What are the manifolds support expansive actions of connected Lie Groups? Do
they must have exponential growth of fundamental groups?

A related question is the following:

Question. Which groups can act locally-free on closed manifolds?

In the Chapter 7 we proved the non-existence of codimension one locally-free ex-
pansive actions of nilpotent Lie groups. An immediate question is the following:

Question. Can we relax the nilpotent assumption on Theorem L?
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Appendix A

Foliations

In this appendix we define and state some classical results of foliations theory that
are used through this text. We refer the reader to [Walczak] to find a more complete
exposition on this subject.

Definition A.0.1. Let M be a smooth manifold. A p-dimensional Cr foliation F is a decom-
position of M in to connected Cr-manifolds (called leaves) such that for any x ∈ M, there is a
Cr-differentiable chart ξ = (ξ′, ξ′′) : U → Rn = Rp

× Rq defined on a neighborhood of U and
satisfying:

(i) - For any leaf L, each connected component of L∩U (called plaque) satisfies ξ′′ = const.

Charts satisfying (i) are called distinguished charts. An atlas such that all charts are
distinguished is called a foliated atlas. The number q on previous definition is said to
be the codimension ofF . The topology of the leaves as manifolds is in general stronger
than that induced by the topology of M. We say that a leaf L is proper if these two
topologies coincide.

Remark: Compact leafs are always proper, but the convers does not hold.

‘

Definition A.0.2. A foliated atlasA is nice if it satisfies:

• The covering {Dξ}ξ∈A is locally finite.

• For any ξ ∈ A, we have that ξ(Dξ) is an open cube of Rn

• If ξ1, ξ2 ∈ A and Dξ1 ∩ Dξ2 , ∅, then there exist a chart ξ3 ∈ A distinguished F such
that Dξ3 contains the closure of Dξ1 ∪Dξ2 and ξ3|Dξ1

= ξ1.

Theorem A.0.3. There always exists nice atlases for a foliation F .

Let M be a foliated manifold and letU be a nice covering for M. For any U ∈ U, let
TU denotes the plaques of U. Define on U the equivalence relation x ∼ y if, and only if
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x and y are in the same plaque of U. Then TU = U�∼ can be equipped with the quotient
topology. TU is CR-diffeomorphic to an open cube of Rq, where q is the codimention of
F .

Definition A.0.4. The disjoint union

T =
⋃
U∈U

TU

is a complete transversal for F .

Definition A.0.5. Let X be a topological space. A peseudo-group G on X is a family

{h : Dh → Rh}

of local homeomorphism of X satisfying the followinng conditions:

1. If h, g ∈ G and Dg ⊂ Rh, then g ◦ h ∈ G

2. If g ∈ G, then g−1
∈ G

3. If g ∈ G and U ⊂ Dg, then g|U ∈ G

4. If g is a local homeomorphism of X andU is an open cover of Dg such that g|U ∈ G, then
g ∈ G.

5. IdX ∈ G.

Definition A.0.6. We say that a pseudo-group G is finitely generated if there are g1, ..., gk ∈ G

such that
n⋃

i=1

Dgi =

n⋃
i=1

Rgi = X

Any foliation brings with itself a natural pseudo-group.

Definition A.0.7. Let U be a nice covering for a foliated manifold M. If U,V ∈ U and
U ∩ V , ∅, then define a map hUV : D|hUV → TV, where DUV is the open set of TU such that
any P ∈ DUV intersects V by

hUV(P) = P′ if P ∩ P′ , ∅

Theorem A.0.8. If U is a nice covering for M, then the family H = {hUV; U,V ∈ U} is a
pseudo-group called the holonomy pseudo group of F .

We note thatH is well defined, since the holonomy pseudo groups of any two nice
coverings of a foliated manifold are isomorphic.

Theorem A.0.9. If M is a compact foliated manifold, thenH is finitely generated.
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Let γ : [0, 1]→M be a curve contained on a leaf L. Then we can find a 0 = t0 < t1 <
... < tk = 1 and a chain o plaques P0, ...,Pk, such that γ|[ti,ti+1] ⊂ Pi, and Pi ∩ Pi+1. Thus we
can define a map hγ = hU0U1 ◦ · · · ◦ hUk−1Uk from an open set of TU0 to containing γ(t0). hγ
is called the holonomy map of γ. holonomy maps of homotopic curves are equal.

Fix x ∈ L. We define the holonomy the homomorphism Φl : π1(L, x) → H by
Φ([γ]) = hγ. The holonomy group of L is the setHL = Img(ΦL)

Then we have:

Theorem A.0.10. Holonomy groups of L corresponding to different points, different charts and
different nice coverings are isomorphic.
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Appendix B

Elements of Group Theory

In this section we give some elementary results of group theory that are be used trough
this text. For the proof of the facts presentes here and more details about group theory
we refer the reader to [H] and [Ro].

Definition B.0.1. A non-empty set G is called a group is equipped with a binary operation

(·) : G × G→ G

such that:

1. There is some element e ∈ G such that e · g = g · e = g, for any g ∈ G. Such e is called the
identity of G.

2. (g1 · g2) · g3 = g1 · (g2 · g3), for any g1, g2, g3 ∈ G.

3. For any g ∈ G, there is some element g−1
∈ G such that g · g−1 = g−1

· g = e, for any
g ∈ G. Such g−1 is called the inverse of g.

We stand the notation gh for g ·h. The operation of G will often be called the product
of G.

G is said to be Abelian if gh = hg for every g, h ∈ G.

Definition B.0.2. A subgroup H of G is a subset H ⊂ G such that H is itself a group if its
equipped whit the operation of G.

Definition B.0.3. Let G and G′ be groups. A map ρ : G → H is a group homomorphism if
for any g, h ∈ G we have ρ(gh) = ρ(g)ρ(h). ρ is said to be an endomorphism if G = G′ and an
isomorphism if is bejective.

Group isomorphisms are the notion of equivalence between groups. The Kernel of
a homomorphism ρ is the set

Ker(ρ) = {g ∈ G;ρ(g) = e ∈ G′}
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.

Ker(ρ) is always a subgroup of G. A subgroup H ⊂ G is said to be normal if gH = Hg
for every g ∈ G. Here, the coset gH is defined as gH = {gh; h ∈ H}. We note that Ker(ρ)
is always a normal subgroup of G. If H is a normal subgroup, then the realation g ∼ h
is and only if gh−1

∈ H is an equivalence relation, where gH are the equivalence classes.
The quotient space G�∼ = G�H can be made a group with a product induced by the
product of G and the natural projection π : G→ G�H.

Theorem B.0.4 (Isomorphism Theorem). Let ρ : G → G′ be group homomorphism. Then
G�Ker(ρ) is isomorphic to Im(ρ).

Given K ⊂ G, we define < K > to be the subset generated by K, i.e., < K > is the
subgroup formed by all finite products of elements in K and their inverses. We say that
G is finitely generated if there is a finite set K ⊂ G such that < K >= G.

Let H be a subgroup of G. Denote KG,H = g−1h−1gh ∈ G; g ∈ G, h ∈ H. The commuta-
tor subgroup [G; H] is defined to be the subgroup < KG,H >.

Definition B.0.5. A group is said to be nilpotent if there exists a finite sequence of subgroups

{e} = H0 ⊂ · · ·Hn = G

such that:

For any 0 ≤ i < n − 1, Hi is a normal subgroup of Hi+1.

For any 0 ≤ i ≤ n − 1, [Hi+1 : Hi] is a subgroup of Hi.

Abelian groups are always nilpotent. Although above definition is very abstract,
we can think about a non-abelian nilpotent as group which is as close as possible to be
abelian. Next we define and state some facts of Lie Groups Theory.

Definition B.0.6. A Lie group is a group G with the an additional structure of smooth manifold
such that the group multiplication and the group inversion operations are smooth maps

Fix some element g ∈ G and consider the Left transformation map Lg : G → G
defined by Lg(h) = gh, for any h ∈ G. For any Lie group there exists Riemmanian metric
<,>which is left invariant, i.e, for any u, v ∈ TgM we have < u, v >=< DLg(u),DLg(v) >.
Let d be the metric induced by previous Riemannian metric. We denote |g| for d(g, e)
and |g − h| for d(g, h). Next we define Lie algebras

Definition B.0.7. A Lie algebra A is a pair (A, [·, ·]), where A is a vector space and [·, ·] :
A × A → A is a smooth map called the Lie bracket of A. In addition, the Lie bracket must
satisfies the following axioms:

• [u + v,w] = [u,w] + [v,w] and [u, v + w] = [u,w] + [v,w] for any u, v,w ∈ A.

• [u,u] = 0, for any u ∈ A.
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• [u, [v,w]] + [w, [u, v]] + [v, [w,u]] = 0, for any u, v,w ∈ A.

• [u, v] = −[v,u] for any u, v ∈ A.

We say that a vector field X of G is left invariant if DLg(X(h)) = X(gh) for any g, h ∈ G.
The set L of left invariant vector fields of G is a vector space isomorphic to TeG.

Definition B.0.8. The Lie algebraG of G is defined to be the setG = (L, [·, ·]) where the bracket
operation is define as the comutator operation on L, i.e., [X,Y] = XY − YX.

Due to the isomorphism between G and TeG, we can see the Lie algebra of a group
G as an infinitesimal generator of G, in the sense that any element g ∈ G sufficiently
close to the identity is generated by the action of the map expe to a linear combination
of infinitesimal elements of G. Precisely, fix a basis {v1, ..., vn} of TeG. If g ∈ G is
such that |g| is small enough, then there are a1, ...an ∈ R, such that |ai| is small and
g = expe(a1v1 + ... + anvn) .
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