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RESUMO

Sistema fracionário generalizado de tipo Benney

Dionicio Orlando Moreno Vega

Orientador: Wladimir Augusto das Neves

Benney introduziu em [4] uma estratégia geral para derivar sistemas de equação
diferenciais parciais não lineares associadas a soluções de ondas longas e curtas.
Motivados pela teoria geral de Benney, propomos novos modelos para interações
de ondas curtas e longas quando ondas curtas são descritas pela equação fracionária
de Schrödinger e ondas longas pela equação fracionária de meios porosos. Estab-
elecemos a existência global de soluções fracas para o Problema Cauchy acoplado, i∂tu − (−∆)su = α v u + |u|2u, x ∈ R, t > 0,

∂tv + (−∆)s/2g(v) = β (−∆)s/2|u|2, x ∈ R, t > 0,

onde 0 < s < 1, e α, β são constantes reais. A função de valor complexo
u(t, x) é a incógnita da equação fracionaria de Schrödinger, que descreve a onda
curta, e a função de valor real v(t, x) é a incógnita da equação fracionaria do meio
poroso fracionario, que descreve a onda longa. A função g ∈ C1(R) é assumida
não decrescente (zonas degeneradas serão consideradas). Aqui (−∆)s denota o
Laplaciano fracionario usual em Rn,que caracterizam efeitos de difusão não locais
e de longo alcance e pode ser definido por F{(−∆)s f }(ξ) = |ξ|2sF{ f }(ξ), onde F é a
transformada de Fourier.

Palavras-chaves: Sistemas fracionário do tipo Benney, equação de Schrödinger
fracionário, equação do meio poroso fracionário, problema de Cauchy.
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ABSTRACT

Generalized Fractional Benney type Systems

Dionicio Orlando Moreno Vega

Advisor: Wladimir Augusto das Neves

Benney introduced in [4] a general strategy for deriving systems of nonlinear
partial differential equations associated with long and short-wave solutions. Mo-
tivated by Benney’s general theory, we propose new models for short wave-long
wave interactions when the short waves are described by fractional Schrödinger
equation and the long waves by a fractional equation of porous media. We have
established the global existence of weak solutions to the Cauchy problem coupled, i∂tu − (−∆)su = α v u + |u|2u, x ∈ R, t > 0,

∂tv + (−∆)s/2g(v) = β (−∆)s/2|u|2, x ∈ R, t > 0,

where 0 < s < 1, and α, β are real constants. The complex value function
u(t, x) is the unknown of the fractional Schrödinger equation, which describes the
short wave, and the real valued function v(t, x) is the unknown of the fractional
porous medium equation, which describes the long wave. The function g ∈ C1(R)
is assumed to be increasing (degenerated zones will be considered). Here (−∆)s

denotes the usual fractional Laplacian in Rn, which characterize nonlocal, long-
range diffusion effects and can be defined by F{(−∆)s f }(ξ) = |ξ|2sF{ f }(ξ), where
F is the Fourier Transform.

Keywords: Fractional Benney type systems, fractional Schrödinger equation, frac-
tional porous medium equation, Cauchy problem.

Rio de Janeiro,
may, 2020

vi



Table of Contents

1 Introduction 1

2 Notation and background 7
2.1 Functional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The space W s,p(Ω) . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The space Hs(Rn) . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Fractional Laplacian operator . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Bilinear form . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Auxiliary kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Generalized grownwall lemma . . . . . . . . . . . . . . . . . . . 13
2.5 Aubin-Lions’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 14

3 Existence of Weak Solutions 16
3.1 Perturbed system . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Important inequalities . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Existence and uniqueness of the Perturbed system . . . . . . . . . 19
3.4 A priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Limit transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Statement of the degenerate case 41
4.1 Perturbed system . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Existence of weak solutions . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 48

vii



Chapter 1

Introduction

The main issue of this thesis is to introduce the generalized fractional Benney type
systems, and to study the existence of solutions for them. First, we consider the
following Cauchy problem

i ∂tu − (−∆)su = α v u + γ |u|2u, x ∈ R, t > 0,

∂tv + (−∆)s/2g(v) = β (−∆)s/2|u|2, x ∈ R, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,

(1.1)

where α, β and γ are real constants. The complex value function u(t, x) is the
unknown of the fractional Schrödinger equation, which describes the short wave,
and the real value function v(t, x) is the unknown of the fractional porous medium
equation, which describes the long wave. Here (−∆)s, (0 < s < 1), denotes the
usual fractional Laplacian in Rn, which characterize nonlocal, long-range diffusion
effects and can be defined by F{(−∆)s f }(ξ) = |ξ|2sF{ f }(ξ), where F is the Fourier
Transform. The function g ∈ C1(R) is assumed to be increasing, hence degenerated
zones for v(t, x) are not considered. Although, we also study the following system

i ∂tu − (−∆)su = α v u + γ |u|2u, x ∈ R, t > 0,

∂tv = β (−∆)s/2|u|2, x ∈ R, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,

(1.2)

which could be seen as a particular case of (1.1), (e.g. g ≡ constant), but it has its
own interest.

The theory of evolutionary equations modeling the interaction between short
waves and long waves goes back to Benney [4]. Indeed, in that paper Benney
propose a general system (see equations (3.27), (3.28) in that paper), and we recall
below the closer one studied by Bekiranov, Ogawa, Ponce [6], that is to say
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i ∂tS − (−∆)S + i CS ∇S = αS L + γ |S |2S , x ∈ R, t > 0,

∂tL + CL ∇L + νP(Dx)L + λ ∇L2 = β ∇|S |2, x ∈ R, t > 0,
(1.3)

where CS ,α, γ,CL, ν, λ and β are real constants. Moreover, P(Dx) is a linear differ-
ential operator with constant coefficients. Applying a proper gauge transformation
and a scaling of the variables, the system (1.3), when ν = 0, is equivalent toi ∂tu − (−∆)u = α v u + γ |u|2u,

∂tv + C ∇v = β ∇|u|2,
(1.4)

where C = ±1. In fact, the authors in [6] claim that, the system (1.4) is the most
typical case in the theory of wave interaction. In particular, for s = 1 and g(v) = v,
the system (1.1) recalls (1.4), since we have the following equivalence

‖(−∆)1/2 f ‖L2(Rn) = ‖∇ f ‖L2(Rn), for each f ∈ H1(Rn).

Inspired by the system (1.4), we formulate a general fractional framework for
short wave and long wave interactions described in the Cauchy Problem (1.1). We
stress that, the exponent of the fractional Laplacian in the long wave is proposed
as a half of the short wave. This is convenient when s = 1 (as observed above),
but also mathematically justified during the main estimates, see Lemma 3.2 and
Theorem 3.1. Somehow, this relation between the exponents in (1.1) indicates how
these waves interact and affect each other.

Benney in [4] also consider the following system (see equations (3.8), (3.9) in
that paper)iS t − (−∆)S + i Cg ∇S = α LS + γ |S |2S , x ∈ R, t > 0,

Lt + Cl ∇L = β ∇|S |2, x ∈ R, t > 0.
(1.5)

In particular, when Cg = Cl long waves and short waves are resonant, and in this
case Tsutsumi and Hatano in [33] proved that, the transformation: x 7→ y = x−Cg t
eliminates the first x-derivative terms in (1.5), hence we haveiut − (−∆)u = α vu + γ |u|2u,

vt = β ∇|u|2.
(1.6)

Again, inspired by the system (1.6) we formulated the fractional short wave and
long wave system as considered in the Cauchy Problem (1.2). We observe that, the
degeneration makes the second equation in the system (1.2) much different from
the non-degenerate one, i.e. (1.1), (in which g′ is strictly away from zero). More-
over, the main difficult in dealing with the systems (1.1) and (1.2) at the same time,
that is g is assumed non-decreasing, is that the regions of nondegeneration and

2



degeneration are glued together in such a way that depends on the solution itself.
Therefore, there is no hope of obtaining a correct formulation by simply taking into
account separately the degenerate and the non-degenerate zones concurrently.

It is very important to highlight the physical background or motivations to con-
sider the generalized fractional Benney type systems proposed in this thesis. In-
deed, the short (transversal) wave described by the Schrödinger equation may rep-
resent a signal (wave packets), that is u(t, x) is a function that conveys information
to control, for instance, some underwater equipment. This information propagates
in a generalized medium, where long (longitudinal) waves are described by the
porous medium equation. The fractional Laplacian introduces the long-range in-
teractions in both equations, which are coupled by the α, β constants, that is to
say, the signal is affected by medium where it propagates. Clearly, how lower are
these constants less coupled are the equations. In fact, the constant α makes the
difference concerning the global in time existence, see Theorem 1.1 (Main Theo-
rem) below. If the perturbation is too weak (|α| << 1), then there exist global in
time solutions. Another very important point is the energy input to the signal, i.e.
‖u0‖L2 . As far as the information has to be sent, more energy is needed. Again, the
statement of the Main Theorem show us that, the global in time solvability depends
on the amount of energy given to the signal. Similar discussion follows to applica-
tions in Synthetic Aperture Radar (see [3]), and atmospheric internal gravity waves
(see [29], [35]), which also represent complex anomalous systems (better modeled
by Fractional Laplacians).

Since Benney introduced the models of nonlinear equations to study the interac-
tion between short and long waves, there is a variety of articles on this subject. We
list some papers which are close to our context. We also mention the case when the
long wave is described by a scalar conservation law, which can also be seen related
to (1.1).

Bekiranov, Ogawa, Ponce [6] applying Bourgain arguments, (see Remark 5
in that paper), were able to show local well-posedness of (1.4), with initial data
(u0, v0) ∈ Hs(R) × Hs−1/2(R), (s ≥ 0).

Tsutsumi, Hatano (see [32], [33]) showed local well-posedness of (1.6) where
the initial data (u0, v0) ∈ H1/2(R) × L2(R) ∩ L∞(R) with γ = 0, and for γ , 0
(u0, v0) ∈ H j−1/2(R) × H j−1(R), ( j ≥ 2 be an integer). They also obtained global
well-posedness in similar spaces [33].

Dias, Figueira [13] considered for the first time, a scalar conservation law cou-
pled with a semilinear Schrödinger equation modeling the interaction phenomenon
between short wave and long wave. More precisely, they tackle the following sys-
tem i ∂tu − (−∆)u = v u + |u|2u, x ∈ R, t > 0,

∂tv + ∇g(v) = ∇|u|2, x ∈ R, t > 0,
(1.7)

3



where the flux function g(v) = av2 − bv3, with a ∈ R and b > 0. Using the
general approach known as the vanishing viscosity method and arguments from
the compensated compactness theory, they showed existence of entropy solutions
where the initial data (u0, v0) ∈ H1(R) × H1(R).

Dias, Figueira, Frid [14] studied the following systemi ∂tu − (−∆)u = α h(v) u + |u|2u, x ∈ R, t > 0,

∂tv + ∇g(v) = β ∇((h′(v)|u|2), x ∈ R, t > 0,
(1.8)

which is a generalization of (1.7). The novelty is the function h(v), called inter-
action function, and the flux g(v) is no more a polynomial. Under some nonlinear
conditions for g, h ∈ C3(R), and also a weak interaction (0 < α ≤ α0), they show
existence of entropy solutions, with initial data (u0, v0) ∈ H1(R)×H1(R), applying
the vanishing viscosity method and compensated compactness theory.

Statement of the Main Result. Hereafter, we fix γ = 1, and without loss of
generality g(0) = 0.

The following definition tells us in which sense a pair (u(t, x), v(t, x)) is a weak
solution to the Cauchy problem (1.1). The Cauchy problem (1.2) (degenerate case)
is considered in Chapter 4.

Definition 1.1. Given an initial data (u0, v0) ∈ Hs(R) × Hs/2(R), ( 1
2 < s < 1), and

any T > 0 fixed, a pair

(u, v) ∈ L∞(0,T ; Hs(R)) × L2(0,T ; Hs/2(R))

is called a weak solution of the Cauchy problem (1.1), when it satisfies:

i
∫ T

0

∫
R

(
u(t, x) ∂tϕ(t, x) + (−∆)s/2u(t, x) (−∆)s/2ϕ(t, x)

)
dxdt + i

∫
R

u0(x) ϕ(0, x)dx

+ α

∫ T

0

∫
R

v(t, x) u(t, x) ϕ(t, x)dxdt +

∫ T

0

∫
R
|u(t, x)|2 u(t, x) ϕ(t, x)dxdt = 0,

(1.9)∫ T

0

∫
R

v(t, x) ∂tψ(t, x) − g(v(t, x)) (−∆)s/2ψ(t, x)dxdt +

∫
R

v0(x) ψ(0, x)dx

+ β

∫ T

0

∫
R
|u|2(t, x) (−∆)s/2ψ(t, x)dxdt = 0,

(1.10)
for each test function ϕ, ψ ∈ C∞c

(
(−∞,T )×R

)
, with ϕ being complex-valued and ψ

real-valued.

Now, we state plainly the main result of this thesis.
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Theorem 1.1 (Main Theorem). Let (u0, v0) ∈ Hs(R) × Hs/2(R), ( 1
2 < s < 1), and

g ∈ C1(R) satisfying
0 < m ≤ g′(·) ≤ M < ∞.

Then, there exist α0 > 0 and E0 > 0, such that, if |α| ≤ α0 or ‖u0‖L2(R) ≤ E0, then
there exists a weak solution

(u, v) ∈ L∞(0,T ; Hs(R)) × L2(0,T ; Hs/2(R))

of the Cauchy problem (1.1).

One recalls that most of the long wave and short wave Benney type systems
considered in the literature are posed in one space dimension (i.e. n = 1). Albeit,
the models proposed here by (1.1) and (1.2) are well defined for n ≥ 1. In fact,
this is also one of the motivations to introduce them. The results of existence of
solutions are established in one space dimension for generality with respect to the
initial data, since the space Hs(R) is an algebra for s > 1/2. For the multidimen-
sional case, (n ≥ 2), where the embedding Hs(Rn) in L∞(Rn) for 0 < s ≤ 1 does
not hold, we need more specific estimates and a decay assumption on the initial
data u0, see for instance Hayashi, Nakamitsu, Tsutsumi [21]. We should also men-
tion another multidimensional framework for long wave and short wave systems,
as considered by Frid, Marroquin, Pan [18].

Finally, we recall that the fractional Schrödinger equation appears in the water
wave models in [22]. In fact, the fractional Schrödinger equation was introduced
in the theory related to fractional quantum mechanics associated to s-stable Lévy
process (see for instance [23]). There are not many works in this field, but the
theory is developing fast, hence jointly with [22] we address the reader to the fol-
lowing papers [11], [10] and [19], which start to develop the theory of fractional
Schrödinger equations. On the other hand, the fractional porous medium equations
has been widely studied in the last years. For instance, we address Vázquez [34]
(and references there in), where is described the physical and mathematical back-
ground related to nonlinear diffusion equations involving nonlocal effects. Con-
cerning systems of wave interaction, where both the long wave and short wave are
fractional, to the best of our knowledge this is the first work is this direction.

We now briefly describe ours models of short wave-long wave interaction (1.1)
and (1.2). In the chapter 3, we show the existence of weak solution, as given
by definition 1.1 of the system (1.1). We assume that g′ ≥ m > 0. First, in
section 3.1, we perturb the system, adding Laplacian terms in both equations of
(1.1), with different velocities of perturbation. In section 3.2 we show inequal-
ities that will allow us to show existence of solutions of the perturbed problem.
To follow, in section 3.3, applying the Banach fixed point theorem we obtain
a unique local solution in time (uε, vε), of the Cauchy problem perturbed in the
space C

(
[0,T0]; H1(R) × C

(
[0,T0]; H1(R). After, in section 3.4, we get estimates
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for ‖u0‖L2(R) << 1, or |α| << 1. We establish the existence and uniqueness of
global solutions (uε, vε) for the system (1.6), where 0 < ε < 1, in the space
C
(
[0,T ]; H1(R)×C

(
[0,T ]; H1(R) for all T > 0. Finally, in section 3.5, we show the

existence of weak solutions to the Cauchy problem coupled (1.1). The perturbed
model has a parameter ε and an interaction parameters α, β. we prove that the se-
quence of solutions (uε, vε) converge as ε → 0 to a weak solution of system (1.1)
in the space C

(
[0,T ]; Hs(R)×C

(
[0,T ]; Hs/2(R) for all T > 0, while the interaction

parameters α, β is kept fixed.

In chapter 4, we show the existence of the weak solution as given by Definition
1.1 of system (1.2). This equation is completely degenerate, that can be obtained
from (1.1) by setting g′ = 0. But, Benney (see [4]) presented a general theory to
derive nonlinear partial differential equations in which both, long and short wave
solutions, coexist and interact each other non linearly. In [4], Benny proposed two
pairs of coupled equations, one of them was (1.5). Approaching by a succession of
Cauchy problems of type (1.1), that is

i ∂tuε − (−∆)suε = α vε uε + |uε|2uε,

∂tvε + ε (−∆)s/2vε = β (−∆)s/2
∣∣∣uε∣∣∣2,

uε(0, x) = uε0(x), vε(0, x) = vε0(x),

(1.11)

where uε0 ∈ Hs(R), vε0 ∈ Hs/2(R) is a approximation of the initial data (u0, v0).
The existence of weak solutions of equation (1.8) is guaranteed by the previous
case, with g(v) = v. Here we describe, formally, the main basic estimates, which
are required to show existence of weak solutions to the (1.2). Moreover, we prove
that the solution of (1.2) is obtained as the limit of solutions of the approximate
problem nondegenerate.

6



Chapter 2

Notation and background

In this section we fix the notations, and collect some preliminary results. Most of
the material is well-known or a direct extension of existing work, for instance we
refer to [12], [26], and [31]. We mainly provide the proofs of the new results.

First, we denote by dx, dξ, etc. the Lebesgue measure on Ω ⊂ Rn an open set
(possibly non-smooth), and by Lp(Ω) (p ∈ [1,+∞)) the set of (real or complex)
p-summable functions with respect to the Lebesgue measure.

As usual the Schwartz space is denoted by S(Rn), which consists of rapidly
decaying C∞ functions in Rn. Moreover, the topology of this space is generated by
the semi-norms

PN(ϕ) = sup
x∈Rn

(1 + |x|)N
∑
|α|≤N

|Dαϕ(x)|, (N = 0, 1, 2, . . .),

where ϕ ∈ S(Rn). Let S′(Rn) be the set of all tempered distributions, that is the
topological dual of S(Rn). For any ϕ ∈ S(Rn), we denote by

F ϕ(ξ) = ϕ̂(ξ) =
1

(2π)n/2

∫
Rn

e−iξ.x ϕ(x) dx

and

F−1 ϕ(x) = ϕ̌(x) = ϕ̂(−x) =
1

(2π)n/2

∫
Rn

eiξ.x ϕ(ξ) dξ,

the Fourier transform and inverse Fourier transform of ϕ and we recall that one
can extend F,F−1 from S to S′(Rn).

Lemma 2.1. Let ϕ ∈ S, then ϕ̂(ξ) = ϕ̂(−ξ) for all ξ ∈ Rn.

2.1 Functional spaces

2.1.1 The space W s,p(Ω)

The Sobolev spaces W s,p(Ω), where a real p > 1 is the integrability index and a
real s > 0 is the smoothness index, more precisely, for s ∈ (0, 1), p ∈ [1,+∞), is

7



the (fractional) Sobolev space of order s with Lebesgue exponent p, defined by

W s,p(Ω) :=
{
u ∈ Lp(Ω) :

∫
Ω

∫
Ω

|u(x) − u(y)|p

|x − y|n+sp dxdy < +∞
}
,

endowed with norm

‖u‖W s,p(Ω) =

(∫
Ω

|u|pdx +

∫
Ω

∫
Ω

|u(x) − u(y)|p

|x − y|n+sp dxdy
) 1

p

.

Moreover, for s > 1 we write s = m + σ, where m is an integer and σ ∈ (0, 1). In
this case, the space W s,p(Ω) consists of those equivalence classes of functions u ∈
Wm,p(Ω) whose distributional derivatives Dαu, with |α| = m, belong to Wσ,p(Ω),
that is

W s,p(Ω) =
{
u ∈ Wm,p(Ω) :

∑
|α|=m

‖Dαu‖Wσ,p(Ω) < ∞
}
,

and this is a Banach space with respect to the norm

‖u‖W s,p(Ω) =
(
‖u‖pWm,p(Ω) +

∑
|u|=m

‖Dαu‖pWσ,p(Ω)

) 1
p .

Clearly, if s = m is an integer, the space W s,p(Ω) coincides with the Sobolev space
Wm,p(Ω). Also, it is very interesting the case when p = 2, i.e. W s,2(Ω). In this
case, the (fractional) Sobolev space is also a Hilbert space, and we can consider
the inner product

〈u, v〉W s,2(Ω) = 〈u, v〉 +
∫

Ω

∫
Ω

(u(x) − u(y))

|x − y|
n
2 +s

(v(x) − v(y))

|x − y|
n
2 +s

dxdy,

where 〈·, ·〉 is the inner product in L2(Ω).

2.1.2 The space H s(Rn)

Now, following Tartar [31] we take into account an alternative definition of the
space Hs(Rn) = W s,2(Rn) via Fourier Transform. Precisely, we may define

Hs(Rn) :=
{
u ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2)s |Fu(ξ)|2 dξ < ∞
}

(2.1)

and we observe that the above definition, is valid also for any real s ≥ 1. We may
also use an analogous definition for the case s < 0 by setting

Hs(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

(
1 + |ξ|2

)s ∣∣∣Fu(ξ)
∣∣∣2dξ < ∞

}
.

Hs(Rn) is a Hilbert space with the scalar product

(u, v)Hs(Rn) =

∫
Rn

(
1 + |ξ|2

)s û(ξ) v̂(ξ) dξ.

The equivalence of the above definitions is stated in the following
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Proposition 2.1. Let 0 < s < 1. Then the above definitions are equivalent. In
particular, for any u ∈ Hs(Rn)∫

Rn

∫
Rn

∣∣∣u(x) − u(y)
∣∣∣2∣∣∣x − y

∣∣∣n+2s dx dy = 2 C−1
n,s

∫
Rn

∣∣∣ |ξ|s Fu(ξ)
∣∣∣2dξ (2.2)

where
C−1

n,s =

∫
Rn

1 − cos(ζ1)
|ζ |n+2s dζ

Proof. To Prove the Proposition see E. Di Nezza, G. Palatucci, E. Valdinoci [12]
Theorem 3.4, page 532-533. �

Next some density results that will allow to show the important inequalities, we
also enunciate results of continuous and compact immersion and that the spaces
Hs(Rn) are an algebra for s > n/2.

Lemma 2.2. For any s ∈ R, C∞c (Rn) is dense in Hs(Rn)

Proof. To Prove the Lemma see Hajer Bahouri, Jean-Yves Chemin, Raphel Danchin
[1] Theorem 1.61, page 41. �

Lemma 2.3. For any s ∈ R, S is dense in Hs(Rn)

Proof. To Prove the Lemma see Gerald B. Folland [1], page 302. �

Lemma 2.4. For any s1 < s2, Hs2(Rn) is a dense subspace of Hs1(Rn) in the
topology of Hs1(Rn), and ‖ . ‖s1 ≤ ‖ . ‖s2 .

Proof. To Prove the Lemma see Gerald B. Folland [1], page 302. �

Lemma 2.5. For any s1 < s2, the embedding of Hs2(Rn) into Hs1(Rn) is locally
compact.

Proof. To Prove the Lemma see Hajer Bahouri, Jean-Yves Chemin, Raphel Danchin
[1] Theorem 1.69, page 47. �

Lemma 2.6. For any s ∈ R,
(
Hs(Rn)

)∗
= H−s(Rn)

Proof. To Prove the Lemma see Gerald B. Folland [17] Proposition 9.16, page
302-303. �

Lemma 2.7. Let s > n
2 , then Hs(Rn) ↪→ C0(Rn) (functions vanishing at∞).

Proof. To Prove the Lemma see Michael E. Taylor [30] Proposition 1.3, page 272.
�

Lemma 2.8. Let s > n
2 , then Hs(Rn)) is an algebra with respect to the product

of functions. Moreover, there exists a constant C = C(s) > 0, such that for any
f , g ∈ Hs(Rn)

‖ f g‖Hs(Rn) ≤ C ‖ f ‖Hs(Rn)‖g‖Hs(Rn). (2.3)

Proof. To Prove the Lemma see F. Linares and G. Ponce [25] Theorem 3.5, page
51. �
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2.2 Fractional Laplacian operator

Let s > 0. The fractional Laplacian operator can be defined on smooth functions
in Rn using Fourier Transform by

̂(−∆)s f (ξ) = |ξ|2s f̂ (ξ) (2.4)

and extended in a natural way to functions in the Sobolev space H2s(Rn). Hence the
fractional Laplacian is a pseudo-differential operator with principal symbol |ξ|2s.
For 0 < s < 1, the fractional Laplacian can also be described using singular inte-
grals (see [12]) in the following way

(−∆)s f (x) = Cn,sP.V.
∫
Rn

f (x) − f (y)
|x − y|n+2s dy

= Cn,s lim
ε→0+

∫
CBε(x)

f (x) − f (y)
|x − y|n+2s dy.

(2.5)

Moreover, its inverse, that is to say, Ks := (−∆)−s, (0 < s < 1), is given by
convolution with the Riesz kernel Ks(x) = Cn,s |x|2s−n, that is

Ks f = Ks ∗ f .

It follows from (2.1), (2.2) and (2.4) that, there exist positive constants ms, Ms,
such that, for each f ∈ Hs(Rn)

ms
(
‖ f ‖L2(Rn) + ‖(−∆)s/2 f ‖L2(Rn)

)
≤ ‖ f ‖Hs(Rn) ≤ Ms

(
‖ f ‖L2(Rn) + ‖(−∆)s/2 f ‖L2(Rn)

)
.

(2.6)

Lemma 2.9. For any s > 0 and u ∈ S, then (−∆)su ∈ C∞(Rn).

Proof. To Prove the Proposition see Elias M. Stein and Rami Shakarchi [28], page
217. �

2.2.1 Bilinear form

In order to study the fractional diffusion term, it will be important to associate a
bilinear form to the operator Ks in the space Hs(Rn), 0 < s < 1, which is given for
any pair v,w ∈ Hs(Rn) by

Bs(v,w) := Cn,s

"
R2n

(v(x) − v(y))
1

|x − y|n+2s
(w(x) − w(y)) dxdy. (2.7)

The bilinear form Bs was introduced in [8] as an auxiliary tool in the study of
regularity properties of solutions to the fractional type porous medium equation.

Lemma 2.10. If v is given by v = G(w), with G′ ≥ 0, then, Bs(v,w) ≥ 0. Further-
more, for every v,w ∈ H1(Rn) we have the characterization

Bs(v,w) = C
"
R2n
∇v(x)

1
|x − y|n−2+2s∇w(y) dxdy, (2.8)

where C is a positive constant.
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Proof. To Prove the Proposition see L. Caffarelli, Fernando Soria and J. L. Vázquez
[8] Corollary 3.1 and Proposition 3.2, page 7. �

2.3 Auxiliary kernels

The usual strategy to show the solvability of Benney type systems is to regularize
with a Laplacian operator, see [13, 14]. Here, since we are dealing with fractional
operators (in both long and short wave equations), we consider new ideas of per-
turbation.

• Unitary group for the Schrödinger equation.
For each ε > 0, we consider the following Cauchy problem for u(t, x) ∈ C,

driven by the linear fractional perturbed Schrödinger equationi ∂tu − (−∆)su − εa(−∆)u = 0, x ∈ Rn t ∈ R,

u(0, x) = u0(x), x ∈ Rn,
(2.9)

where a ∈ R is a fixed parameter chosen a posteriori. Applying the Fourier trans-
form in the spatial variable, we havei ∂t̂u(t, ξ) − |ξ|2s û(t, ξ) − εa |ξ|2 û(t, ξ) = 0, ξ ∈ Rn t ∈ R,

û(0, ξ) = û0(ξ), ξ ∈ Rn,

whose solution is given by û(t, ξ) = e−i
(
|ξ|2s+εa |ξ|2

)
tû0(ξ). Therefore, it follows that

u(t, x) = F−1
{
e−i

(
|ξ|2s+εa |ξ|2

)
tFu0(ξ)

}
(x)

solves the Cauchy problem (2.9). For u0 ∈ L2(Rn), (Fu0 ∈ L2(Rn)), then

e−i
(
|ξ|2s+εa |ξ|2

)
tFu0(ξ) ∈ L2(Rn).

Now, we define for each t ∈ R the operator

u 7→ Uε(t)u := F−1e−i
(
|ξ|2s+εa |ξ|2

)
tFu, (2.10)

which is bounded in L2(Rn) for each u ∈ L2(Rn). Indeed, we have

‖Uε(t)u‖2L2(Rn) =

∫
Rn
|Uε(t)u(x)|2 dx =

∫
Rn
|Ûε(t)u(ξ)|2 dξ

=

∫
Rn
|e−i

(
|ξ|2s+εa |ξ|2

)
t̂u(ξ)|2 dξ =

∫
Rn
|̂u(ξ)|2 dξ.

Therefore, the family (Uε(t))t∈R is a group of isometries in L2(Rn).
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One remarks that, Hs(Rn), (s > 0), is invariant by the isometry group (Uε(t))t∈R.
For each u ∈ Hs(Rn), we have

‖Uε(t)u‖2Hs(Rn) =

∫
Rn

(1 + |ξ|2)s |Ûε(t)u(ξ)|2 dξ

=

∫
Rn

(1 + |ξ|2)s |̂u(ξ)|2 dξ = ‖u‖2Hs(Rn).

Thus Uε(t)(Hs(Rn)) is a closed subspace in Hs(Rn) and, we have

Hs(Rn) = Uε(t)(Hs(Rn)) ⊕ (Uε(t)(Hs(Rn)))⊥.

Moreover,

(Uε(t)u,w)Hs(Rn) =

∫
Rn

(1 + |ξ|2)sÛε(t)u(ξ) ŵ(ξ) dξ

=

∫
Rn

(1 + |ξ|2)se−i
(
|ξ|2s+εa |ξ|2

)
t û(ξ) ŵ(ξ) dξ

=

∫
Rn

(1 + |ξ|2)s û(ξ) ̂Uε(−t)w(ξ) dξ = (u,Uε(−t)w)Hs(Rn)

and also an isometry, it follows that (Uε(t)(Hs(Rn)))⊥ = {0}.

• Semigroups of contractions for the heat equation.
For each ε > 0, we consider the following Cauchy problem for v(t, x) ∈ R,

driven by the linear Heat equation∂tv − εb∆v = 0, x ∈ Rn, t > 0,

v(0, x) = v0(x), x ∈ Rn,
(2.11)

where b ∈ R is a fixed parameter chosen a posteriori. Again, applying the Fourier
transform in the spatial variable, we obtain∂t̂v(t, ξ) + εb |ξ|2 v̂(t, ξ) = 0, ξ ∈ Rn, t > 0,

v̂(0, ξ) = v̂0(ξ), ξ ∈ Rn,

which solution is given by v̂(t, ξ) = e−ε
b |ξ|2t v̂0(ξ). Consequently,

v(t, x) = F−1
{
e− ε

b |ξ|2t Fv0(ξ)
}
(x)

solves the Cauchy problem (2.11), and it is well known that, for v0 ∈ L2(Rn),
(Fv0 ∈ L2(Rn)), it follows that e−ε

b |ξ|2t Fv0(ξ) ∈ L2(Rn).
Similarly, we define for each t > 0 the operator

v 7→ Wε(t)v = F−1e−ε
b |ξ|2t Fv. (2.12)
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The operator Wε(t) is bounded in L2(Rn), in fact the family {Wε(t)v}t>0 is a semi-
group of contractions. Indeed, for any t > 0, ‖Wε(t)v0‖L2(R) ≤ ‖v0‖L2(R), for any
v ∈ L2(Rn). Also in H1(Rn), that is

‖Wε(t)v0‖
2
H1(R) =

∫
R

(1 + |ξ|2)
∣∣∣Ŵε(t)v0(ξ)

∣∣∣2 dξ,

=

∫
R

(1 + |ξ|2)
∣∣∣e−εb |ξ|2t v̂0(ξ)

∣∣∣2 dξ ≤ ‖v0‖
2
H1(R).

One recalls that, the Heat kernel has a regularity effect. Indeed, a refined esti-
mate is given by the following

Lemma 2.11. For any v ∈ L2(R), there exists a constant C > 0 independent of t
and v, such that for any t > 0

‖∂xWε(t)v‖L2(R) ≤
C
√

t
‖v‖L2(R). (2.13)

Proof. From (2.12), we have

Wε(t)v = F−1e−ε
b |ξ|2t Fv =

1
√

4πεbt
e−

x2

4εbt ∗ v,

then
∂xWε(t)v =

1
√

4πεbt

−2x
4εbt

e−
x2

4εbt ∗ v.

Applying Young’s inequality, it follows that

‖∂xWε(t)v‖L2(R) ≤
2

4εbt
‖

x
√

4πεbt
e−

x2

4εbt ‖L1(R)‖v‖L2(R)

=
1
√
πεb

1
t1/2 ‖v‖L2(R).

�

Therefore, for any v ∈ L2(Rn) we have

‖Wε(t)v‖H1(Rn) ≤ (1 +
C
√

t
)‖v‖L2(R). (2.14)

2.4 Generalized grownwall lemma

In this section, we consider a nonlinear generalisations of Gronwall’s inequality,
that will be used in the proof of the second estimate.
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Theorem 2.1. Let η(t) be a nonnegative function that satisfies the integral inequal-
ity

η(t) ≤ C +

∫ t

t0

(
a(τ) η(τ) + b(τ) ησ(τ)

)
dτ, C ≥ 0, σ ≥ 0 (2.15)

where a(t) and b(t) are continuous nonnegative functions for t ≥ t0. Then
1. For 0 ≤ σ < 1,

η(t) ≤
{
C1−σ exp

[
(1 − σ)

∫ t

t0
a(τ) dτ

]
+(1 − σ)

∫ t

t0
b(τ) exp

[
(1 − σ)

∫ t

τ
a(r) dr

]
dτ

} 1
1−σ
.

(2.16)

2. For σ = 1,

η(t) ≤ C exp
{ ∫ t

t0

[
a(τ) + b(τ)

]
dτ

}
. (2.17)

3. For σ > 1, with the additional hypothesis

C <
{

exp
[
(1 − σ)

∫ t0+h

t0
a(τ) dτ

]} 1
σ−1

{
(σ − 1)

∫ t0+h

t0
b(τ) dτ

}− 1
σ−1
, (2.18)

we also get for t0 ≤ t ≤ t0 + h, for h > 0

η(t) ≤ C
{

exp
[
(1−σ)

∫ t

t0
a(τ) dτ

]
−C−1(σ−1)

∫ t

t0
b(τ) exp

[
(1−σ)

∫ t

τ
a(r) dr

]
dτ

} 1
σ−1 .

(2.19)

Proof. To Prove the Theorem see Sever Silvestru Dragomir [15] Theorem 21, page
11. �

2.5 Aubin-Lions’s Theorem

In this section, we recall the basic definitions to enunciate Aubin-Lions Theorem,
following Málek, Necas, Rokyta and Ruzicka [27] Chapter 1.

Let X, Y be two Banach spaces equipped with the norms ‖ · ‖X and ‖ · ‖Y .

Definition 2.1. Let X and Y be Banach spaces, X ⊂ Y. We say that X is (continuously)
imbedded into Y, written

X ↪→ Y,

if only if there exists c > 0 such that ‖x‖Y ≤ c‖x‖X , for all x ∈ X.

Definition 2.2. Let X and Y be Banach spaces, X ⊂ Y. We say that X is compactly
imbedded into Y, written

X ↪→↪→ Y,

provided

14



(1) X ↪→ Y.

(2) The identity map I : X → Y is compact, i.e. I(B) is compact in Y for every
bounded subset B of X.

Let X be a Banach space and T > 0. The space Lp((0,T ); X), 1 ≤ p ≤ ∞ we
denote the space of all measurable functions u : (0,T )→ X for which the norm

‖u‖Lp((0,T ),X) =

{∫ T

0
‖u(t)‖pXdt

}1/p

, p < ∞,

or
‖u‖L∞((0,T ),X) = ess sup

t∈(0,T )
‖u(t)‖X , p = ∞,

respectively, is finite. That space are called Bochner spaces. Now we enunciate the
Aubin-Lions’s Theorem.

Theorem 2.2 (Aubin-Lions). Let 1 < α, β < ∞. Let X be a Banach space, and let
X0, X1 be separable and reflexive Banach spaces. Provided that X0 ↪→↪→ X ↪→ X1
we have {

v ∈ Lα((0,T ); X0);
dv
dt
∈ Lβ((0,T ); X1)

}
↪→↪→ Lα((0,T ); X).

Proof. To Prove the Theorem See J. Málek, J. Necas, M. Rokita and M. Ruzicka
[27] page 36. �
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Chapter 3

Existence of Weak Solutions

The main issue of this section is to show the solvability of the Cauchy problem
(1.1), that is, we prove Theorem 1.1 (Main Theorem). To this end, we perturbe the
equations in the system (1.1), and the new insight is to add Laplacian terms in both
equations with different velocities of perturbation.

3.1 Perturbed system

Specifically, let a, b > 0 fixed parameters and for each ε ∈ (0, 1), we consider the
following system posed in (0,T ) × R,

i ∂tuε − (−∆)suε + εa∆uε = α vε uε + |uε|2uε,

∂tvε − εb ∆vε = β (−∆)s/2|uε|2 − (−∆)s/2g(vε),

uε(0, x) = uε0(x), vε(0, x) = vε0(x),

(3.1)

where T > 0 is a real number, and the pair (uε0, v
ε
0) ∈ H1(R)×H1(R) is an approach-

ing sequence converging strongly to (u0, v0) in Hs(R) × Hs/2(R). First, we show
(local in time) existence and uniqueness of mild solution to (3.1). Then, we derive
a priori important estimates, which allowed to extend the local in time solution.
Moreover, we stress that these a priori estimates will be also important to pass to
the limit as ε→ 0.

3.2 Important inequalities

The next two auxiliary results will be used broadly in this thesis.

Proposition 3.1. (Chain Rule) Let f ∈ Hs(Rn), 0 < s < 1, F ∈ C1(C) with
‖F′‖L∞(R) ≤ M for some M > 0. Then

‖(−∆)s/2F( f )‖L2(Rn) ≤ ‖F
′‖L∞(R) ‖(−∆)s/2 f ‖L2(Rn). (3.2)
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Proof. The proof follows directly from (2.2) �

Proposition 3.2. Let f ∈ Hs(R). Then,

‖ f ‖L∞(R) ≤
( 2
√
π

+
2

√
π(2s − 1)

)
‖ f ‖

1− 1
2s

L2(R)
‖(−∆)s/2 f ‖

1
2s
L2(R)

, for each s >
1
2
, (3.3)

‖(−∆)s/2| f |2‖L2(R) ≤ 2 ‖ f ‖L∞(R) ‖(−∆)s/2 f ‖L2(R), for
1
2
< s < 1. (3.4)

Proof. 1. First, since s > 1/2, it follows from the well-known Embedding Theo-
rem that, Hs is an algebra of functions. Moreover, a function f ∈ Hs(R) may be
represented by a continuous function which vanishes at infinity. Let us show (3.3),
hence applying the inverse Fourier transform, we have for each x ∈ R

| f (x)| =
∣∣∣∣ 1
(2π)1/2

∫
R

eixξ f̂ (ξ) dξ
∣∣∣∣ ≤ 1

(2π)1/2

∫
R
| f̂ (ξ)| dξ

=
1

(2π)1/2

( ∫
|ξ|≤R
| f̂ (ξ)| dξ +

∫
|ξ|≥R

|ξ|s

|ξ|s
| f̂ (ξ)| dξ

)
,

where R > 0 is any fixed real number. Then, applying the Cauchy-Schwartz in-
equality

| f (x)| ≤
1

(2π)1/2

( ∫
|ξ|≤R

1 dξ
)1/2( ∫

|ξ|≤R
| f̂ (ξ)|2 dξ

)1/2

+
1

(2π)1/2

( ∫
|ξ|≥R

1
|ξ|2s dξ

)1/2( ∫
|ξ|≥R
|ξ|2s | f̂ (ξ)|2 dξ

)1/2

≤
1

(2π)1/2

(√
2 R1/2 ‖ f ‖L2(R) +

√
2

2s − 1
R

1
2−s ‖(−∆)s/2 f ‖L2(R)

)
≤

1
√
π

(
1 +

1
√

2s − 1

)(
R1/2‖ f ‖L2(R) + R

1
2−s‖(−∆)s/2 f ‖L2(R)

)
.

(3.5)

Conveniently, we consider R = ‖ f ‖
− 1

s
L2(R)

‖(−∆)s/2 f ‖
1
s
L2(R)

in (3.5) to obtain

| f (x)| ≤
( 1
√
π

+
1

√
π(2s − 1)

)(
‖ f ‖

1− 1
2s

L2(R)
‖(−∆)s/2 f ‖

1
2s
L2(R)

+ ‖ f ‖
1− 1

2s
L2(R)
‖(−∆)s/2 f ‖

1
2s
L2(R)

)
.

2. Now, we prove (3.4). Again, from (2.5) and the definition of the Fractional
Laplacian, we obtain

‖(−∆)s/2| f |2‖2L2(R) =
Cn,s

2

∫
R

∫
R

|| f |2(x) − | f |2(y)|2

|x − y|1+2s dxdy

17



≤ Cn,s
( ∫
R

∫
R

| f (x) ( f (x) − f (y))|2

|x − y|1+2s dxdy

+

∫
R

∫
R

| f (y) ( f (x) − f (y))|2

|x − y|1+2s dxdy
)
.

Therefore, it follows that

‖(−∆)s/2| f |2‖L2(R) ≤ 2 ‖ f ‖L∞(R) ‖(−∆)s/2 f ‖L2(R).

�

Proposition 3.3. Let v ∈ Hs(Rn), 0 < s < 1, G ∈ C1(R) with M ≥ G′(·) ≥ m > 0.
Then ∫

Rn
(−∆)s/2G(v) v dx ≥ m ‖(−∆)s/4v‖2L2(Rn).

Proof. It is sufficient to consider v ∈ C∞c (Rn). Therefore, we have∫
Rn

(−∆)(−∆)
s
2−1G(v)(x) v(x) dx

=

∫
Rn

(−∆)
s
2−1∇G(v)(x) ∇v(x) dx

=

∫
Rn
∇G(v)(x) (−∆)

s
2−1∇v(x) dx

= Cn,s

"
R2n
∇G(v)(x)

1
|x − y|n−2+2(s/2) ∇v dydx

=
C2

n,s

C

"
R2n

(G(v(x)) −G(v(y)))
1

|x − y|n+s (v(x) − v(y)) dxdy,

where we have integrated by parts, and used (2.7), (2.8). Hence applying the inter-
mediate value theorem, we obtain∫

Rn
(−∆)s/2G(v)(x) v(x) dx

≥
m C2

n,s

C

"
R2n

(v(x) − v(y))
1

|x − y|n+s (v(x) − v(y)) dxdy

= m Cn,s

"
R2n
∇v(x)

1
|x − y|n−2+s∇v(y) dxdy,

= m Cn,s

∫
Rn
∇v(x)

( ∫
Rn

∇v(y)
|x − y|n−2(1−s/2) dy

)
dx,

= m
∫
Rn

(−∆)
s
4−

1
2∇v(x)(−∆)

s
4−

1
2∇v(x) dx,
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∫
Rn

(−∆)s/2G(v)(x) v(x) dx ≥ m
∫
Rn
|(−∆)

s
4 v(x)|2 dx.

�

3.3 Existence and uniqueness of the Perturbed system

The following definition tells us in which sense the pair (uε, vε) is a solution of the
Cauchy problem (3.1).

Definition 3.1. The pair (uε, vε) ∈ C
(
[0,T ]; H1(R)

)
× C

(
[0,T ]; H1(R)

)
is called a

mild solution of (3.1) if satisfies the following integral equations


uε(t) = Uε(t) uε0 − i

∫ t

0
Uε(t − t′)

(
α vε(t′) uε(t′) + |uε(t′)|2 uε(t′)

)
dt′,

vε(t) = Wε(t) vε0 +

∫ t

0
Wε

(
t − t′

)(
β (−∆)s/2|uε(t′)|2 − (−∆)s/2g(vε)

)
dt′,

(3.6)

where Uε(t), Wε(t) are given respectively by (2.10) and (2.12).

We are going to apply the Banach Fixed Point Theorem to show the local-in-
time existence of solutions as defined above. To begin, we consider the following
lemma (we put ε = 1 for simplicity).

Lemma 3.1. Let 1
2 < s < 1, g ∈ C1(R), satisfying 0 < m ≤ g′(x) ≤ M < ∞,

g(0) = 0. For T > 0, let (ũ, ṽ) ∈ C
(
[0,T ]; H1(R)

)
×C

(
[0,T ]; H1(R)

)
, then for each

(u0, v0) ∈ H1(R) × H1(R) the Cauchy problem (decoupled system)


∂tu + i (−∆)su − i ∆u = −i α ṽ ũ − i |ũ|2 ũ, x ∈ R t > 0,

∂tv − ∆v = β (−∆)s/2|ũ|2 − (−∆)s/2g(ṽ), x ∈ R t > 0,

u(0, x) = u0(x), v(0, x) = v0(x),

(3.7)

admits a unique mild solution (u, v) ∈ C
(
[0,T ]; H1(R)

)
×C

(
[0,T ]; H1(R)

)
.

Proof. First, we define for each t ∈ (0,T )

F(t) := − i α ṽ(t) ũ(t) − i |ũ|2(t) ũ(t),

G(t) := β(−∆)s/2(|ũ|2)(t) − (−∆)s/2g(ṽ)(t).

Claim 1: The complex valued function F ∈ C([0,T ]; L2(R)).

Proof of Claim: Indeed, for each t ∈ [0,T ]

|ũ|2(t) ũ(t) ∈ H1(R), and ũ(t) ṽ(t) ∈ H1(R).
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Then, for h sufficiently small

F(t + h) − F(t) = i α
(
ṽ(t) ũ(t) − ṽ(t + h) ũ(t + h)

)
+ i

(
|ũ|2(t) ũ(t) − |ũ|2(t + h) ũ(t + h)

)
= i α I1 + i I2,

with obvious notation. A simple algebraic computation shows that

lim
h→0
‖I1‖L2(R) = 0, and lim

h→0
‖I2‖L2(R) = 0,

from which the claim is proved.

Claim 2: The real value function G ∈ C([0,T ]; L2(R)).

Proof of Claim: We observe that (−∆)s/2(|ũ|2)(t) ∈ L2(R), for each t ∈ (0,T ).
Also from the assumptions for the function g, that is g ∈ C1(R), g(0) = 0 and
|g′(v)| ≤ M, (∀v ∈ R), it follows that (−∆)s/2g(ṽ)(t) ∈ L2(R). Now, for h sufficiently
small, we have

G(t + h) −G(t) = β
(
(−∆)s/2(|ũ|2)(t + h) − (−∆)s/2(|ũ|2)(t)

)
−

(
(−∆)s/2g(ṽ)(t + h) − (−∆)s/2g(ṽ)(t)

)
= β J1 − J2,

with obvious notation. Then, from (2.6) and the embedding theorem, see Lemma
2.4

‖J1‖
2
L2(R) ≤ ‖ |ũ|

2(t + h) − |ũ|2(t)‖2Hs(R) ≤ ‖ |ũ|
2(t + h) − |ũ|2(t)‖2H1(R).

Analogously, we have

‖J2‖
2
L2(R) ≤ ‖g(ṽ)(t + h) − g(ṽ)(t)‖2Hs(R) ≤ ‖g(ṽ)(t + h) − g(ṽ)(t)‖2H1(R)

= ‖g(ṽ)(t + h) − g(ṽ)(t)‖2L2(R) + ‖∂xg(ṽ)(t + h) − ∂xg(ṽ)(t)‖2L2(R)

≤ M2
( ∫
R
|ṽ(t + h, x) − ṽ(t, x)|2 dx +

∫
R

∣∣∣∂xṽ(t + h, x) − ∂xṽ(t, x)
∣∣∣2 dx

)
≤ 2M2 ‖ṽ(t + h) − ṽ(t)‖2H1(R).

Then, passing to the limit as h→ 0, the claim is proved.

Finally, since F,G ∈ C([0,T ]; L2(R)) applying Lemma 4.15 and Corollary 4.12
in [9], there exists a unique solution (u, v) ∈ C

(
[0,T ]; H1(R)

)
× C

(
[0,T ]; H1(R)

)
given by

u(t) = U(t) u0 − i
∫ t

0
U(t − t′)

(
α ṽ(t′) ũ(t′) + |ũ(t′)|2 ũ(t′)

)
dt′,

v(t) = W(t) v0 + β

∫ t

0
W

(
t − t′

) (
β (−∆)s/2|ũ(t′)|2 − (−∆)s/2g(ṽ)(t′)

)
dt′,

(3.8)
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where U(t) ≡ Uε=1(t), W(t) ≡ Wε=1(t) are given respectively by (2.10), and (2.12).
�

Proposition 3.4. Let 1
2 < s < 1, g ∈ C1(R), 0 < m ≤ g′(·) ≤ M < ∞, g(0) = 0.

Then, for any (uε0, v
ε
0) ∈ H1(R) × H1(R), there exists T > 0 such that, the Cauchy

problem (3.1) has a unique mild solution.

Proof. 1. Hereupon, we denote by XT the Banach space C
(
[0,T ]; H1(R)

)
, where

T > 0 is chosen a posteriori. For R > 2 max{‖uε0‖H1(R), ‖vε0‖H1(R)}, we define

BT
R := { f ∈ XT : ‖ f ‖L∞(0,T ;H1(R)) ≤ R},

and the mapping Φ : BT
R × BT

R → XT × XT , (ũ, ṽ) 7→ (uε, vε) ≡ Φ(ũ, ṽ), where
(uε, vε) is the unique mild solution of the Cauchy problem (3.7) (for each ε > 0
fixed). Then, from (3.8) we have for any t ∈ [0,T ]

Φ1(ũ, ṽ) ≡ uε(t) = Uε(t)uε0 − i
∫ t

0
Uε(t − t′)

(
α ṽ(t′) ũ(t′) + |ũ(t′)|2 ũ(t′)

)
dt′,

Φ2(ũ, ṽ) ≡ vε(t) = Wε(t)vε0 +

∫ t

0
Wε

(
t − t′

) (
β (−∆)s/2|ũ(t′)|2 − (−∆)s/2g(ṽ)(t′)

)
dt′.

2. First, we show that (Φ1(ũ, ṽ),Φ2(ũ, ṽ)) ∈ BT
R × BT

R . Indeed, since for each
t ∈ [0,T ], ‖Uε(t)uε0‖H1(R) = ‖uε0‖H1(R), then

‖Uε(t)uε0‖L∞(0,T ;H1(R)) = ‖uε0‖H1(R).

Moreover, we have

‖

∫ t

0
Uε(t − t′)

(
α ṽ(t′) ũ(t′) + |ũ(t′)|2 ũ(t′)

)
dt′‖H1(R)

≤

∫ t

0
‖
(
α ṽ(t′) ũ(t′) + |ũ(t′)|2 ũ(t′)

)
‖H1(R) dt′

≤

∫ t

0
C

(
|α| ‖ṽ(t′)‖H1(R) ‖ũ(t′)‖H1(R) + ‖|ũ(t′)|2‖H1(R) ‖ũ(t′)‖H1(R)

)
dt′

= C |α|
∫ t

0
‖ṽ(t′)‖H1(R) ‖ũ(t′)‖H1(R) dt′ + C

∫ t

0
‖ũ(t′)‖3H1(R) dt′

≤ 2 max{|α|,R} C R2 T,

where we have used (2.3). Consequently, for T satisfying

T <
1

4 max{|α|,R} C R
, (3.9)
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‖Φ1(ũ, ṽ)‖L∞(0,T ;H1(R)) ≤ ‖u
ε
0‖H1(R) + 2 max{|α|,R} C R2 T

<
R
2

+
R
2

= R.

Similarly, we estimate ‖Φ2(ũ, ṽ)‖L∞(0,T ;H1(R)). Applying (2.14), it follows that

‖

∫ t

0
Wε

(
t − t′

) (
β (−∆)s/2(|ũ(t′)|2) − (−∆)s/2g(ṽ)(t′)

)
dt′‖H1(R)

≤

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖β (−∆)s/2(|ũ(t′)|2) − (−∆)s/2g(ṽ)(t′)‖L2(R) dt′

≤

∫ t

0
|β|

(
1 +

C
(t − t′)1/2

)
‖(−∆)s/2(|ũ(t′)|2)‖L2(R) dt′

+

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖(−∆)s/2g(ṽ)(t′)‖L2(R) dt′ = I1 + I2,

with obvious notation. To follow, we have

I1 ≤
1

ms

∫ t

0
|β|

(
1 +

C
(t − t′)1/2

)
‖ũ(t′)‖2Hs(R) dt′

≤
|β|

ms

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖ũ(t′)‖2H1(R) dt′ <

|β|

ms
R2 (T + 2C

√
T ),

and

I2 ≤
1

ms

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖g(ṽ)(t′)‖Hs(R) dt′

≤
1

ms

∫ t

0

(
1 +

C
(t − t′)1/2

) (
‖g(ṽ)(t′)‖2L2(R) + ‖∂xg(ṽ)(t′)‖2L2(R)

)1/2 dt′

≤
M
ms

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖ṽ(t′)‖H1(R) dt′ <

M
ms

R (T + 2C
√

T ).

Consequently, for T satisfying

T < min{
ms

8 max{|β|R,M}
,

(ms)2

256C2(max{|β|R,M})2 }, (3.10)

‖Φ2(ũ, ṽ)‖L∞(0,T ;H1(R)) ≤ ‖v
ε
0‖H1(R) +

R
ms

(|β|R + M)(T + 2C
√

T )

<
R
2

+
R
2

= R.

3. Now, we show that Φ is a contraction on BT
R × BT

R . Let (ũi, ṽi) ∈ BT
R × BT

R ,
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(i = 1, 2), then we have

‖Φ1(ũ1, ṽ1) − Φ1(ũ2, ṽ2)‖H1(R)

≤ |α|

∫ t

0
‖Uε(t − t′)

(
ṽ2(t′) ũ2(t′) − ṽ1(t′) ũ1(t′)

)
‖H1(R) dt′

+

∫ t

0
‖Uε(t − t′)

(
|ũ2(t′)|2 ũ2(t′) − |ũ1(t′)|2 ũ1(t′)

)
‖H1(R) dt′

≤ |α|

∫ t

0
‖ṽ2(t′) ũ2(t′) − ṽ1(t′) ũ1(t′)‖H1(R) dt′

+

∫ t

0
‖ |ũ2(t′)|2 ũ2(t′) − |ũ1(t′)|2 ũ1(t′)‖H1(R) dt′ = |α| J1 + J2.

(3.11)

Applying (2.3) we obtain

|α|J1 ≤ C |α|
∫ t

0
‖ṽ2(t′)‖H1(R) ‖ũ2(t′) − ũ1(t′)‖H1(R) dt′

+ C |α|
∫ t

0
‖ũ1(t′)‖H1(R) ‖ṽ2(t′) − ṽ1(t′)‖H1(R) dt′

≤ C |α| R T
(
‖ũ2 − ũ1‖L∞(0,T ;H1(R)) + ‖ṽ2 − ṽ1‖L∞(0,T ;H1(R))

)
.

(3.12)

Similarly, we also have

J2 ≤ C
∫ t

0

(
‖ũ2(t′)‖2H1(R) ‖ũ2(t′) − ũ1(t′)‖H1(R)

+ ‖ũ1(t′)‖H1(R) ‖ |ũ2(t′)|2 − |ũ1(t′)|2‖H1(R)
)

dt′

≤ 3C R2
∫ t

0
‖ũ2(t′) − ũ1(t′)‖H1(R) dt′ ≤ 3C R2 T ‖ũ2 − ũ1‖L∞(0,T ;H1(R)).

(3.13)

Therefore, from (3.11)–(3.13), it follows that

‖Φ1(ũ1,ṽ1) − Φ1(ũ2, ṽ2)‖H1(R)

≤ 2C R max{|α|, 3R} T
(
‖ũ1 − ũ2‖L∞(0,T ;H1(R)) + ‖ṽ1 − ṽ2‖L∞(0,T ;H1(R))

)
.

To this end, we have

‖Φ2(ũ1, ṽ1) − Φ2(ũ2, ṽ2)‖H1(R)

≤

∫ t

0
|β| ‖Wε

(
t − t′

)(
(−∆)s/2|ũ1(t′)|2 − (−∆)s/2|ũ2(t′)|2

)
‖H1(R) dt′

+

∫ t

0
‖Wε

(
t − t′

)(
(−∆)s/2g(ṽ2)(t′) − (−∆)s/2g(ṽ1)(t′)

)
‖H1(R) dt′
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‖Φ2(ũ1, ṽ1) − Φ2(ũ2, ṽ2)‖H1(R)

≤

∫ t

0
|β|

(
1 +

C
(t − t′)1/2

)
‖(−∆)s/2(|ũ1(t′)|2 − |ũ2(t′)|2

)
‖L2(R) dt′

+

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖(−∆)s/2(g(ṽ2)(t′) − g(ṽ1)(t′)

)
‖L2(R) dt′

= K1 + K2,

(3.14)

where we have used (2.14), and obvious notation. Applying (2.6), we obtain

K1 ≤
|β|

ms

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖ |ũ1(t′)|2 − ũ2(t′)|2‖Hs(R) dt′

≤
|β|

ms

∫ t

0

(
1 +

C
(t − t′)1/2

) (
‖ũ1(t′)‖H1(R) ‖ũ1(t′) − ũ2(t′)‖H1(R)

+ ‖ũ2(t′)‖H1(R) ‖ũ1(t′) − ũ2(t′)‖H1(R)

)
dt′

≤ 2R
|β|

ms
(T + 2C

√
T ) ‖ũ1 − ũ2‖L∞(0,T ;H1(R)),

(3.15)

and

K2 ≤
1

ms

∫ t

0

(
1 +

C
(t − t′)1/2

)
‖g(ṽ2)(t′) − g(ṽ1)(t′)‖Hs(R) dt′

≤
1

ms

∫ t

0

(
1 +

C
(t − t′)1/2

)(
‖g(ṽ2)(t′) − g(ṽ1)(t′)‖2L2(R)

+ ‖∂xg(ṽ2)(t′) − ∂xg(ṽ1)(t′)‖2L2(R)

)1/2
dt′

≤
M
ms

(T + 2C
√

T ) ‖ṽ1 − ṽ2‖L∞(0,T ;H1(R)).

(3.16)

Consequently, from (3.14)–(3.16) we obtain

‖Φ2(ũ1,ṽ1) − Φ2(ũ2, ṽ2)‖H1(R)

≤
2 max{R |β|,M}

ms
(T + 2C

√
T )

(
‖ũ1 − ũ2‖L∞(0,T ;H1(R)) + ‖ṽ1 − ṽ2‖L∞(0,T ;H1(R))

)
.

4. Finally, from items 2 and 3 there exists a T > 0, sufficiently small, such that
Φ : BT

R × BT
R → BT

R × BT
R is a (strict) contraction. Hence we can apply the Banach

Fixed Point Theorem and obtain a unique (local in time) solution (uε, vε) of the
Cauchy problem (3.1). �
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3.4 A priori Estimates

For each ε > 0, let (uε, vε) be the unique solution for the Cauchy problem (3.1),
and recall that, the sequences {uε0} and {vε0} are uniformly bounded in H1(R) with
respect to ε > 0. Fix T > 0 (arbitrary).

Lemma 3.2 (First estimate). Let 1
2 < s < 1. Then, for each t ∈ (0,T ):

d
dt

∫
R
|uε(t, x)|2 dx = 0, (3.17)

d
dt

( ∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx

+ α

∫
R

vε(t, x) |uε(t, x)|2 dx
)

= α β

∫
R

(−∆)s/2(|uε(t, x)|2) |uε(t, x)|2 dx

− α

∫
R
|uε(t, x)|2 (−∆)s/2g(vε(t, x)) dx − α εb

∫
R
∂x|uε(t, x)|2 ∂xvε(t, x) dx,

(3.18)
1
2

d
dt

∫
R
|vε(t, x)|2 dx +

∫
R

(−∆)s/2g(vε)(t, x) vε(t, x) dx + εb
∫
R
|∂xvε(t, x)|2 dx

= β

∫
R

(−∆)s/2(|uε(t, x)|2) vε(t, x) dx.

(3.19)

Proof. 1. First, by approximating the initial data in H1(R) by functions in C∞c (R),
and a standard limit argument, we can assume that (uε, vε) satisfies the Cauchy
problem (3.1), (at least almost everywhere), and we are allowed to make the com-
putations below. Indeed, since Hs(R) is an algebra for any s > 1/2, we may follow
the same strategy developed in the previous section, and for 0 < T ′ < T , we obtain
(uε, vε) ∈

(
C([0,T ′]; Hk(R)) ∩C1([0,T ′]; Hk−2(R))

)2, for each integer k > 2.

2. To follow, multiplying equation (3.1)1 by uε(t, x) and integrating in R, we
have

i
∫
R
∂tuε(t, x) uε(t, x) dx −

∫
R
|(−∆)s/2uε(t, x)|2 dx − εa

∫
R
|∂xuε(t, x)|2 dx

= α

∫
R

vε(t, x) |uε(t, x)|2 dx +

∫
R
|uε(t, x)|4 dx.

Therefore, taking the imaginary part of the above equation, we obtain

1
2

d
dt

∫
R
|uε(t, x)|2 dx = Re

∫
R
∂tuε(t, x) uε(t, x) dx = 0.
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3. Now, let us multiply equation (3.1)1 by ∂tuε(t, x), and integrate in R to obtain

i
∫
R
∂tuε(t, x) ∂tuε(t, x) dx −

∫
R

(−∆)suε(t, x) ∂tuε(t, x) dx

+ εa
∫
R

∆uε(t, x) ∂tuε(t, x) dx

= α

∫
R

vε(t, x) uε(t, x) ∂tuε(t, x) dx +

∫
R
|uε(t, x)|2 uε(t, x) ∂tuε(t, x) dx.

Then, writing uε = uε1 + iuε2 and integrating by parts, it follows that

i
∫
R
|∂tuε(t, x)|2 dx −

∫
R

(−∆)s/2uε(t, x) ∂t(−∆)s/2uε(t, x) dx

− εa
∫
R
∂xuε(t, x) ∂t∂xuε(t, x) dx

= α

∫
R

vε(t, x) (uε1(t, x)∂tuε1(t, x) + uε2(t, x)∂tuε2(t, x))dx

+ i α
∫
R

vε(t, x) (uε2(t, x)∂tuε1(t, x) − uε1(t, x)∂tuε2(t, x)) dx

+
1
2

∫
R

(uε(t, x))2 ∂t((uε)2(t, x)) dx.

Taking the real part we have

d
dt

[ ∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx

+ α

∫
R

vε(t, x) |uε(t, x)|2 dx
]

= α

∫
R
|uε(t, x)|2 ∂tvε(t, x) dx.

(3.20)

The right-hand side of the above equation is computed by multiplying (3.1)2 by
α|uε(t, x)|2 and integrating in R, that is to say

α

∫
R
|uε(t, x)|2 ∂tvε(t, x) dx = α β

∫
R

(−∆)s/2(|uε|2)(t, x) |uε(t, x)|2 dx

− α

∫
R
|uε(t, x)|2 (−∆)s/2g(vε)(t, x) dx − α εb

∫
R
∂x|uε(t, x)|2 ∂xvε(t, x) dx,

and replacing it in (3.20), we obtain

d
dt

[ ∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx

+ α

∫
R

vε(t, x) |uε(t, x)|2 dx
]

= α β

∫
R

(−∆)s/2(|uε|2)(t, x) |uε(t, x)|2 dx

− α

∫
R
|uε(t, x)|2 (−∆)s/2g(vε)(t, x) dx − α εb

∫
R
∂x|uε|2(t, x) ∂xvε(t, x) dx.
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4. Finally, equation (3.19) follows directly by multiplying (3.1)2 by vε(t, x) and
integrating in R. Indeed, we have

1
2

d
dt

∫
R
|vε(t, x)|2 dx +

∫
R

(−∆)s/2g(vε)(t, x) vε(t, x) dx + εb
∫
R
|∂xvε(t, x)|2 dx

= β

∫
R

(−∆)s/2(|uε|2)(t, x) vε(t, x) dx.

�

Now we pass to the second estimate.

Theorem 3.1 (Second estimate). Let a, b > 0 fixed parameters with 3a ≤ 2b,
1
2 < s < 1, and g ∈ C1(R) satisfying

0 < m ≤ g′(·) ≤ M.

Then, there exist α0 > 0 and E0 > 0, such that, for each t ∈ (0,T )∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx ≤ h(t) (3.21)

and ∫
R
|vε(t, x)|2 dx + m

∫ t

0
‖(−∆)s/4vε(τ)‖2L2(R) dτ + 2 εb

∫ t

0
‖∂xvε(τ)‖2L2(R) dτ

≤ ‖vε0‖
2
L2(R) +

β2

m

( 4
√
π

+
4

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ,

(3.22)
for |α| ≤ α0 or ‖u0‖L2(R) ≤ E0, where h is a continuous positive function (indepen-
dent of ε).

Proof. 1. First, from Proposition 3.3∫
R

(−∆)s/2g(vε)(t, x) vε(t, x) dx ≥ m ‖(−∆)s/4vε(t)‖2L2(R).

From the above inequality and equation (3.19), it follows that

1
2

d
dt

∫
R
|vε(t, x)|2 dx + m

∫
R
|(−∆)s/4vε(t, x)|2 dx + εb

∫
R
|∂xvε(t, x)|2 dx

≤ β

∫
R

(−∆)s/4|uε(t, x)|2 (−∆)s/4vε(t, x) dx

≤
β2

2m

∫
R
|(−∆)s/4|uε|2(t, x)|2 dx +

m
2

∫
R
|(−∆)s/4vε(t, x)|2 dx,

where we have used Young’s inequality. Then, integrating from 0 to t > 0,
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∫
R
|vε(t, x)|2 dx + m

∫ t

0
‖(−∆)s/4vε(τ)‖2L2(R) dτ + 2 εb

∫ t

0
‖∂xvε(τ)‖2L2(R) dτ

≤

∫
R
|vε0(x)|2 dx +

β2

m

∫ t

0
‖(−∆)s/4|uε|2(τ)‖2L2(R) dτ.

(3.23)

2. Now, applying Proposition 3.2 and equation (3.17), we have

‖(−∆)s/2|uε|2(t)‖L2(R) ≤ 2‖uε(t)‖L∞(R) ‖(−∆)s/2uε(t)‖L2(R)

≤
( 4
√
π

+
4

√
π(2s − 1)

)
‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/2uε(t)‖

1+ 1
2s

L2(R)
.

Then, replacing in (3.23) we have∫
R
|vε(t, x)|2 dx + m

∫ t

0
‖(−∆)s/4vε(τ)‖2L2(R) dτ + 2 εb

∫ t

0
‖∂xvε(τ)‖2L2(R) dτ

≤ ‖vε0‖
2
L2(R) +

β2

m

( 4
√
π

+
4

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ.

(3.24)
From equations (3.18)

d
dt

[ ∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx

+
1
2

∫
R
|uε(t, x)|4 dx + α

∫
R

vε(t, x) |uε(t, x)|2 dx
]

≤ |α|

∫
R

∣∣∣∣∣(−∆)s/4|uε|2(t, x) (−∆)s/4g(vε)(t, x)
∣∣∣∣∣ dx

+ |α| |β|

∫
R

∣∣∣(−∆)s/2(|uε|2)(t, x)
∣∣∣ |uε(t, x)|2 dx + |α| εb

∫
R

∣∣∣∣∣∂x|uε(t, x)|2 ∂xvε(t, x)
∣∣∣∣∣ dx

=: |α|E + |α| |β|F + |α| εbG,
(3.25)

with obvious notation. Again, from Proposition 3.2 and equation (3.17), we may
write:

(i) E ≤ ‖(−∆)s/4g(vε)(t)‖L2(R) ‖(−∆)s/4|uε|2(t)‖L2(R)

≤ ‖(−∆)s/4g(vε)(t)‖L2(R) ‖(−∆)s/2|uε|2(t)‖L2(R)

≤ ‖g′‖L∞(R) ‖(−∆)s/4vε(t)‖L2(R) 2 ‖uε(t)‖L∞(R) ‖(−∆)s/2uε(t)‖L2(R)

≤
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/4vε(t)‖L2(R) ‖(−∆)s/2uε(t)‖

1+ 1
2s

L2(R)
.
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(ii) F ≤ ‖uε(t)‖L∞(R)

∫
R
|uε(t, x)| |(−∆)s/2(|uε|2)(t, x)| dx

≤ ‖uε(t)‖L∞(R) ‖uε(t)‖L2(R)) ‖(−∆)s/2|uε|2(t)‖L2(R))

≤
( 2
√
π

+
2

√
π(2s − 1)

)
‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/2uε(t)‖

1
2s
L2(R)

‖uε0‖L2(R) 2 ‖uε(t)‖L∞(R) ‖(−∆)s/2uε(t)‖L2(R)

≤ 8
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)
‖(−∆)s/2uε(t)‖

1+ 1
s

L2(R)
.

(iii) G ≤
∫
R

(
|∂xuε(t, x)| |uε(t, x)| + |uε(t, x)| |∂xuε(t, x)|

)
|∂xvε(t, x)| dx

≤ 2‖uε(t)‖L∞(R)

∫
R
|∂xuε(t, x)| |∂xvε(t, x)| dx

≤ 2‖uε(t)‖L∞(R) ‖∂xvε(t)‖L2(R) ‖∂xuε(t)‖L2(R)

≤
8
√
π
‖uε(t)‖1/2

L2(R)
‖∂xuε(t)‖1/2

L2(R)
‖∂xvε(t)‖L2(R) ‖∂xuε(t)‖L2(R)

≤
8
√
π
‖uε0‖

1/2
L2(R)

‖∂xvε(t)‖L2(R) ‖∂xuε(t)‖3/2
L2(R)

.

Replacing in equation (3.25)

d
dt

[ ∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx

+
1
2

∫
R
|uε(t, x)|4 dx + α

∫
R

vε(t, x) |uε(t, x)|2 dx
]

≤ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/4vε(t)‖L2(R)‖(−∆)s/2uε(t)‖

1+ 1
2s

L2(R)

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)
‖(−∆)s/2uε(t)‖

1+ 1
s

L2(R)

+
8
√
π
|α| εb ‖uε0‖

1/2
L2(R)

‖∂xvε(t)‖L2(R) ‖∂xuε(t)‖3/2
L2(R)

and integrating from 0 to t > 0∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx

≤ ‖(−∆)s/2uε0‖
2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R) +

∫
R
|vε0(x)| |uε0(x)|2 dx

+ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

∫ t

0
‖(−∆)s/4vε(τ)‖L2(R) ‖(−∆)s/2uε(τ)‖

1+ 1
2s

L2(R)
dτ
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+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

1+ 1
s

L2(R)
dτ

+
8
√
π
|α| εb ‖uε0‖

1/2
L2(R)

∫ t

0
‖∂xvε(τ)‖L2(R) ‖∂xuε(τ)‖3/2

L2(R)
dτ

+ |α|

∫
R
|vε(t, x)| |uε(t, x)|2 dx.

Then, we have∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx

≤ ‖(−∆)s/2uε0‖
2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R) + ‖uε0‖L∞(R)

∫
R
|vε0(x)| |uε0(x)| dx

+ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

∫ t

0
‖(−∆)s/4vε(τ)‖L2(R) ‖(−∆)s/2uε(τ)‖

1+ 1
2s

L2(R)
dτ

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

1+ 1
s

L2(R)
dτ

+
8
√
π
|α| εb ‖uε0‖

1/2
L2(R)

∫ t

0
‖∂xvε(τ)‖L2(R) ‖∂xuε(τ)‖3/2

L2(R)
dτ

+

∫
R

(√
2 |α| |vε(t, x)|

) ( |uε(t, x)|2
√

2

)
dx,

from which follows that∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx

≤ ‖(−∆)s/2uε0‖
2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R) + ‖uε0‖L∞(R)‖vε0‖L2(R)‖u

ε
0‖L2(R)

+ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

∫ t

0
‖(−∆)s/4vε(τ)‖L2(R) ‖(−∆)s/2uε(τ)‖

1+ 1
2s

L2(R)
dτ

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

1+ 1
s

L2(R)
dτ

+
8
√
π
|α| εb‖uε0‖

1/2
L2(R)

∫ t

0
‖∂xvε(τ)‖L2(R) ‖∂xuε(τ)‖3/2

L2(R)
dτ,

+ |α|2
∫
R
|vε(t, x)|2 dx.

(3.26)
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3. Now, replacing (3.24) in (3.26), we have∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx

≤ ‖(−∆)s/2uε0‖
2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R) + ‖uε0‖L∞(R)‖vε0‖L2(R)‖u

ε
0‖L2(R)

+ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

∫ t

0
‖(−∆)s/4vε(τ)‖L2(R) ‖(−∆)s/2uε(τ)‖

1+ 1
2s

L2(R)
dτ

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

1+ 1
s

L2(R)
dτ

+
8
√
π
|α| εb‖uε0‖

1/2
L2(R)

∫ t

0
‖∂xvε(τ)‖L2(R) ‖∂xuε(τ)‖3/2

L2(R)
dτ,

+ |α|2‖vε0‖
2
L2(R) +

16 |α|2β2

m

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ

or conveniently we write

1 +

∫
R
|(−∆)s/2uε(t, x)|2 dx + εa

∫
R
|∂xuε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx ≤ θ(t) := 1

+ ‖(−∆)s/2uε0‖
2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R)

+ ‖uε0‖L∞(R)‖vε0‖L2(R)‖u
ε
0‖L2(R) + |α|2‖vε0‖

2
L2(R)

+ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

∫ t

0
‖(−∆)s/4vε(τ)‖L2(R) ‖(−∆)s/2uε(τ)‖

1+ 1
2s

L2(R)
dτ

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

1+ 1
s

L2(R)
dτ

+
8
√
π
|α| εb‖uε0‖

1/2
L2(R)

∫ t

0
‖∂xvε(τ)‖L2(R) ‖∂xuε(τ)‖3/2

L2(R)
dτ,

+
16|α|2β2

m

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ.

(3.27)
From the above definition, we have

θ′(t) ≤ |α|
( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/4vε(t) ‖L2(R) θ(t)

1
2 + 1

4s

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)
θ(t)

1
2 + 1

2s

+
8|α| εb

√
πε3a/4

‖uε0‖
1/2
L2(R)

‖∂xvε(t)‖L2(R) θ(t)
3/4 +

16|α|2β2

m

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)
θ(t)1+ 1

2s ,
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where we have used (3.27). Since 1/2 < s < 1, then

3
4
<

1
2

+
1
4s

< 1, 1 <
1
2

+
1
2s

<
3
2
,

and consequently dividing the above inequality by θ(t)
1
2 + 1

4s , we obtain

1
1
2 −

1
4s

[θ(t)
1
2−

1
4s ]′et ≤ |α|

( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/4vε(t)‖L2(R) et

+ 8|α| |β|
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)
θ(t)

1
4s et

+
8
√
π
|α| εb ε−3a/4 ‖uε0‖

1/2
L2(R)

‖∂xvε(t)‖L2(R) et

+
16|α|2β2

m

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)
θ(t)

1
2 + 1

4s et,

where we have multiplied the inequality by et. Then, integrating from 0 to t > 0∫ t

0

[
θ(τ)

1
2−

1
4s
]′ eτ dτ

≤
|α|(4s − 2)

8s

( 4
√
π

+
4

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

∫ t

0
‖(−∆)s/4vε(τ)‖L2(R) eτd τ

+
8|α| |β|(4s − 2)

8s

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
θ(τ)

1
4s eτ dτ

+
8|α| εb ε−3a/4(4s − 2)

8
√
πs

‖uε0‖
1/2
L2(R)

∫ t

0
‖∂xvε(τ)‖L2(R) eτ dτ

+
16|α|2β2(4s − 2)

8ms

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
θ(τ)

1
2 + 1

4s eτ dτ
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and integrating by parts in the left hand side

θ(t)
1
2−

1
4s et ≤ θ(0)

1
2−

1
4s +

∫ t

0
θ(τ)

1
2−

1
4s eτ dτ

+
|α|(2s − 1)
√

2s

( 1
√
π

+
1

√
π(2s − 1)

)
‖g′‖L∞(R) ‖uε0‖

1− 1
2s

L2(R)

(
e2t − 1

)1/2

×

(‖vε0‖2L2(R)

m
+

16β2

m2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ

)1/2

+
|α| |β|(2s − 1)

s

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)

∫ t

0
θ(τ)

1
4s eτ dτ

+
2|α| εb ε−3a/4(2s − 1)

√
2πs

‖uε0‖
1/2
L2(R)

(
e2t − 1

)1/2

×

(‖vε0‖2L2(R)

2εb +
8β2

εb m

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ

)1/2

+
16|α|2β2(2s − 1)

ms

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
θ(τ)

1
2 + 1

4s eτ dτ,

(3.28)
where we have used Holder’s inequality and equation (3.24) two times.

4. The goal now is to apply the Generalized Grownwall Lemma (Section 2.4).
We observe that

θ(0) =

[
1 + ‖(−∆)s/2uε0‖

2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R)

+ ‖uε0‖L∞(R)‖vε0‖L2(R)‖u
ε
0‖L2(R) + |α|2‖vε0‖

2
L2(R)

]
,

hence from that and taking the square in equation (3.28), we have
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θ(t)1− 1
2s e2t ≤ 26

[
1 + ‖(−∆)s/2uε0‖

2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R)

+ ‖uε0‖L∞(R)‖vε0‖L2(R)‖u
ε
0‖L2(R) + |α|2‖vε0‖

2
L2(R)

]1− 1
2s

+ 26t2
(? t

0
θ(τ)

1
2−

1
4s eτ dτ

)2
+

25|α|2 (2s − 1)2

s2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖g′‖2L∞(R) ‖u

ε
0‖

2− 1
s

L2(R)
e2t

×

(‖vε0‖2L2(R)

m
+

16β2

m2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
θ(τ)1+ 1

2s dτ
)

+
26|α|2 |β|2(2s − 1)2t2

s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖uε0‖

6− 2
s

L2(R)

(? t

0
θ(τ)

1
4s eτ dτ

)2

+
27|α|2 ε2b ε−3a/2 (2s − 1)2

πs2 ‖uε0‖L2(R) e2t

×

(‖vε0‖2L2(R)

2εb +
8β2

mεb

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
θ(τ)1+ 1

2s dτ
)

+
214|α|4 β4(2s − 1)2

m2s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖uε0‖

4− 2
s

L2(R)
t2
(? t

0
θ(τ)

1
2 + 1

4s eτ dτ
)2
.
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Then, we apply Jesen’s inequality to obtain

θ(t)1− 1
2s e2t ≤ 26

[
1 + ‖(−∆)s/2uε0‖

2
L2(R) + εa ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R)

+ ‖uε0‖L∞(R)‖vε0‖L2(R)‖u
ε
0‖L2(R) + |α|2‖vε0‖

2
L2(R)

]1− 1
2s

+ 26T
∫ t

0
θ(τ)1− 1

2s e2τ dτ +
25|α|2 (2s − 1)2

s2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖g′‖2L∞(R) ‖u

ε
0‖

2− 1
s

L2(R)
e2T

×

(‖vε0‖2L2(R)

m
+

16β2

m2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
θ(τ)1+ 1

2s dτ
)

+
26|α|2 |β|2(2s − 1)2T

s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖uε0‖

6− 2
s

L2(R)

∫ t

0
θ(τ)

1
2s e2τ dτ

+
27|α|2 ε2b ε−3a/2 (2s − 1)2

πs2 ‖uε0‖L2(R) e2T

×

(‖vε0‖2L2(R)

2εb +
8β2

mεb

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
θ(τ)1+ 1

2s dτ
)

+
214|α|4 β4(2s − 1)2

m2s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖uε0‖

4− 2
s

L2(R)
T

∫ t

0
θ(τ)1+ 1

2s e2τ dτ.

Moreover, after an algebraic manipulation and using that et > 1 for any t > 0, we
may write

θ(t)1− 1
2s e2t ≤ C + C1

∫ t

0
θ(τ)1− 1

2s e2τ dτ

+ C2

∫ t

0
θ(τ)

1
2s e2τ dτ + C3

∫ t

0
θ(τ)1+ 1

2s e2τ dτ,

(3.29)
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where

C := 26
[
1 + ‖(−∆)s/2uε0‖

2
L2(R) + ‖∂xuε0‖

2
L2(R) +

1
2
‖uε0‖

4
L4(R)

+ ‖uε0‖L∞(R)‖vε0‖L2(R)‖u
ε
0‖L2(R) + |α|2‖vε0‖

2
L2(R)

]1− 1
2s

+
25|α|2 (2s − 1)2

ms2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖g′‖2L∞(R) ‖u

ε
0‖

2− 1
s

L2(R)
‖vε0‖

2
L2(R) e2T

+
26|α|2 εb ε−3a/2 (2s − 1)2

πs2 ‖uε0‖L2(R)‖v
ε
0‖

2
L2(R) e2T ,

C1 := 26T,

C2 :=
26|α|2 |β|2(2s − 1)2T

s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖uε0‖

6− 2
s

L2(R)
,

C3 :=
29|α|2 β2

m2s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖g′‖2L∞(R) ‖u

ε
0‖

4− 2
s

L2(R)
e2T

+
210|α|2 β2 εb ε−3a/2 (2s − 1)2

mπs2

( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

3− 1
s

L2(R)
e2T

+
214|α|4 β4(2s − 1)2

m2s2

( 1
√
π

+
1

√
π(2s − 1)

)4
‖uε0‖

4− 2
s

L2(R)
T.

Therefore, as 3a ≤ 2b the above positive constants C, C1, C2 and C3 are indepen-
dent of ε > 0. Now, since

(1 −
1
2s

)(
2s + 1
2s − 1

) = 1 +
1
2s
, and (1 −

1
2s

)(
1

2s − 1
) =

1
2s
,

then we have from (3.29)

θ(t)1− 1
2s e2t ≤ C + C1

∫ t

0
θ(τ)1− 1

2s e2τ dτ

+ C2

∫ t

0

(
θ(τ)1− 1

2s
) 1

2s−1 e2τ dτ + C3

∫ t

0

(
θ(τ)1− 1

2s
) 2s+1

2s−1 e2τ dτ.

For each 1/2 < s < 1 we have

1 <
1

2s − 1
<

2s + 1
2s − 1

therefore from the above inequality we may write

θ(t)1− 1
2s e2t ≤ C + C1

∫ t

0
θ(τ)1− 1

2s e2τ dτ

+ C2

∫ t

0

(
θ(τ)1− 1

2s e2τ) 2s+1
2s−1 dτ + C3

∫ t

0

(
θ(τ)1− 1

2s e2τ) 2s+1
2s−1 dτ
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or defining η(t) := θ(t)1− 1
2s e2t

η(t) ≤ C +

∫ t

0

[
C1η(τ) +

(
C2 + C3

)(
η(τ)

) 2s+1
2s−1

]
dτ. (3.30)

Therefore, applying the Generalized Grownwall Lemma, more precisely (2.19)
with α = 2s+1

2s−1 > 1, we must have for each s ∈ (1/2, 1)

C <
{

exp
[(

1 −
2s + 1
2s − 1

) ∫ T

0
C1 dτ

]} 1
2s+1
2s−1 −1

{(2s + 1
2s − 1

− 1
) ∫ T

0

(
C2 + C3

)
dτ

}− 1
2s+1
2s−1 −1

= exp
[
−C1T

] { 2
2s − 1

(
C2 + C3

)
T
} 1−2s

2

=
(2s − 1)

2s−1
2 exp

[
−C1T

]{
2
(
C2 + C3

)
T
} 2s−1

2

or equivalently

C
(
C2 + C3

) 2s−1
2 exp[64T 2] T

2s−1
2 ≤

(2s − 1
2

) 2s−1
2 . (3.31)

One remarks that
lim
s→ 1

2

(2s − 1
2

) 2s−1
2

= 1.

Hence for any s ∈ (1/2, 1) fixed, there exists α0 > 0 and E0 > 0, such that con-
dition (3.31) is satisfied when ‖u0‖L2(R) ≤ E0, or |α| ≤ α0. In fact, if there is no
coupling, that is α = 0 (C2 = C3 = 0), then condition (3.31) is trivially satisfied.
Consequently, we have

η(t) ≤ C
{

exp
[(

1 −
2s + 1
2s − 1

) ∫ t

0
C1 dτ

]
−C−1

(2s + 1
2s − 1

− 1
) ∫ t

0

(
C2 + C3

)
exp

[(
1 −

2s + 1
2s − 1

) ∫ t

τ
C1 dr

]
dτ

} 1
2s+1
2s−1 −1

= C
{

exp
[ 2C1

1 − 2s
t
]
−C−1 2

2s − 1

(
C2 + C3

) ∫ t

0
exp

[ 2C1

1 − 2s
(t − τ)

]
dτ

} 2s−1
2

= C
{

exp
[ 2C1

1 − 2s
t
]
−

C−1
(
C2 + C3

)
C1

(
1 − exp

[ 2C1

1 − 2s
t
])} 2s−1

2
,

from which follows the proof of the theorem. �

3.5 Limit transition

The aim of this section is to pass to the limit in (3.1), which is to say, as the param-
eter ε > 0 goes to zero. More precisely, from the equivalence of mild solutions and
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weak solutions, we obtain a weak formulation from (3.6), then we pass ε→ 0, and
obtain a solution of the Cauchy problem (1.1) in the sense of Definition 1.1.

First, we have the following

Lemma 3.3. Let α0 > 0, E0 > 0 be given by Theorem 3.1, such that, |α| ≤ α0 or
‖u0‖L2(R) ≤ E0. Then, the unique mild solution (uε, vε) of (3.1) satisfies, for any
T > 0

i
∫ T

0

∫
R

(
uε(t, x) ∂tϕ(t, x) + (−∆)s/2uε(t, x) (−∆)s/2ϕ(t, x)

)
dxdt + i

∫
R

uε0(x) ϕ(0, x)dx

− εa
∫ T

0

∫
R

uε(t, x) ∆ϕ dxdt + α

∫ T

0

∫
R

vε(t, x) uε(t, x) ϕ(t, x) dxdt

+

∫ T

0

∫
R
|uε(t, x)|2 uε(t, x) ϕ(t, x) dxdt = 0,

(3.32)∫ T

0

∫
R

vε(t, x) ∂tψ(t, x) − g(vε(t, x)) (−∆)s/2ψ(t, x) dxdt +

∫
R

vε0(x) ψ(0, x) dx

+ εb
∫ T

0

∫
R

vε(t, x) ∆ψ(t, x) dxdt + β

∫ T

0

∫
R
|uε|2(t, x) (−∆)s/2ψ(t, x) dtdx = 0

(3.33)
for each test functions ϕ, ψ ∈ C∞c

(
(−∞,T ) × R

)
, with ϕ being complex-valued and

ψ real-valued.
Moreover, there exists a positive constant C independent of ε > 0, such that∫ T

0
‖∂tuε(t)‖H−1(R)dt ≤ C,

∫ T

0
‖∂tvε(t)‖H−1(R)dt ≤ C. (3.34)

Proof. Equations (3.32), (3.33) are obtained from (3.6), that is, applying the equiv-
alence between mild solutions and weak solutions, (see Ball [2], p. 371), which are
obtained via functional analysis arguments. Similarly, the inequalities in equation
(3.34) are obtained from the weak formulation, i.e. equations (3.32) and (3.33),
applying standard functional analysis results, the uniform boundedness of uε0, vε0,
and also the uniform estimates from Lemma 3.2 and Theorem 3.1. this is

As uε(t) ∈ H1(R) then ∆uε(t), (−∆)suε(t) ∈ H−1(R) and

〈(−∆)suε(t),w〉H−1(R)×H1(R) =

∫
R

(−∆)s/2uε(t, x) (−∆)s/2w(x) dx∫
R
|(−∆)s/2uε(t, x) (−∆)s/2w(x)|dx
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≤ ‖(−∆)s/2uε(t)‖L2(R) ‖(−∆)s/2w‖L2(R)

≤ ‖uε(t)‖Hs(R) ‖w‖Hs(R)

≤ ‖uε(t)‖Hs(R) ‖w‖H1(R)

≤ ‖uε(t)‖Hs(R)

for all w ∈ H1(R) such that ‖w‖H1(R) ≤ 1. From the estimates obtained in Theorem
3.1, we have {

(−∆)suε
}
ε

bounded in L∞(0,T ; H−1(R)).

〈εa ∆uε(t),w〉H−1(R)×H1(R) = εa
∫
R
∂xuε(t, x) ∂xw(x) dx

≤ |εa|

∫
R
|∂xuε(t, x) ∂xw(x)| dx

≤ εa‖∂xuε(t)‖L2(R) ‖∂xw‖L2(R)

≤ εa ‖∂xuε(t)‖L2(R) ‖w‖H1(R)

≤ εa ‖∂xuε(t)‖L2(R)

for all w ∈ H1(R) such that ‖w‖H1(R) ≤ 1. From the estimates obtained in Theorem
3.1, we have {

εa∆uε
}
ε

bounded in L∞(0,T ; H−1(R)).

Then from the fractional schrodinger equation (in a distributional sense) we
have {

∂tuε
}
ε

bounded in L∞(0,T ; H−1(R)).

also, as vε(t) ∈ H1(R) then ∆vε(t) ∈ H−1(R)

〈εb∆vε(t),w〉H−1(R)×H1(R) = εb
∫
R
∂xvε(t, x) ∂xw(x) dx

≤ εb
∫
R
|∂xvε(t, x) ∂xw(x)| dx

≤ εb‖∂xvε(t)‖L2(R) ‖∂xw‖L2(R)

≤ εb ‖∂xvε(t)‖L2(R) ‖w‖H1(R)

≤ εb ‖∂xvε(t)‖L2(R)
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for all w ∈ H1(R) such that ‖w‖H1(R) ≤ 1. From the estimates obtained in Theorem
3.1, we have {

εb∆vε
}
ε

bounded in L2(0,T ; H−1(R)).

Then from the fractional porous medium equation (in a distributional sense) we
have {

∂tvε
}
ε

bounded in L2(0,T ; H−1(R)).

inequalities (3.34) is demonstrated.
�

Now, we are ready to show the main result of this thesis:

Proof Main Theorem. 1. Under the conditions of Lemma 3.3, for each ε > 0,
let (uε, vε) ∈ C([0,T ); H1(R)) × C([0,T ); H1(R)) be the unique mild solution of
(3.1), satisfying (3.6) for any T > 0. Then, the pair(uε(t, x), vε(t, x)) satisfies the
equations (3.32) and (3.33).

2. Now, to obtain (1.9), (1.10) we pass to the limit respectively in (3.32) and
(3.33) as ε → 0+. Therefore, we need to show compactness of the sequences
{uε}ε>0, and {vε}ε>0. From (3.17), (3.21), it follows that {uε}ε>0 is (uniformly)
bounded in L∞(0,T ; Hs(R)), hence it is possible to select a subsequence, still de-
noted by {uε}ε>0, which converges weakly-? to u in L∞(0,T ; Hs(R)). Similarly,
from (3.22) it follows that {vε}ε>0 is (uniformly) bounded in L2(0,T ; Hs/2(R)),
hence it is also possible to select a subsequence, still denoted by {vε}ε>0, which
converges weakly to v in L2(0,T ; Hs/2(R)). Due to a standard diagonalization pro-
cedure, these two weak convergences are enough to pass to the limit as ε → 0 in
the linear terms of the equations (3.32) and (3.33).

Applying the Lemma 2.5, for any compact set K ⊂ R, the embedding of Hs(K)
in L2(K) is compact. Therefore, since the sequence {∂tuε}ε>0 is uniformly bounded
in L2(0,T ; H−1(R)), we apply the Aubin-Lions’s Theorem 2.2 and obtain (along a
suitable subsequence) that uε converges strongly to u in L2(0,T ; L2(K)), and thus,
uε(t, x) → u(t, x) as ε → 0 almost everywhere in (0,T ) × R. Analogously, we
obtain that vε(t, x)→ v(t, x) as ε→ 0 almost everywhere in (0,T )×R. Hence from
these two a.e. convergences, we apply the Dominated Convergence Theorem to
pass to the limit as ε→ 0 in the nonlinear terms of the equations (3.32) and (3.33).

3. Finally, we obtain the solvability of the Cauchy problem (1.1) applying the
Definition 1.1, which finish the proof. �
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Chapter 4

Statement of the degenerate case

In this section we consider the initial value problem (1.2), that is to say, given
an initial data (u0, v0) ∈ Hs(R) × L2(R), we seek for a pair (u(t, x), v(t, x)) which
satisfies the following system

i ∂tu − (−∆)su = α v u + |u|2u,

∂tv = β (−∆)s/2|u|2,

posed in (0,T ) × R, for any T > 0, with parameter 1
2 < s < 1.

The definition bellow give us in which sense a pair (u(t, x), v(t, x)) is a weak
solution to the Cauchy problem (1.2); one remarks the spatial regularity of v(t, x).

Definition 4.1. Given a initial data (u0, v0) ∈ Hs(R) × L2(R), ( 1
2 < s < 1), a pair

(u, v) ∈ L∞(0,T ; Hs(R) × L2(0,T ; L2(R))

is called a weak solution of the Cauchy problem (1.2), when it satisfies:

i
∫ T

0

∫
R

(
u(t, x) ∂tϕ(t, x) + (−∆)s/2u(t, x) (−∆)s/2ϕ(t, x)

)
dxdt + i

∫
R

u0(x) ϕ(0, x)dx

+ α

∫ T

0

∫
R

v(t, x) u(t, x) ϕ(t, x)dxdt +

∫ T

0

∫
R
|u(t, x)|2 u(t, x) ϕ(t, x)dxdt = 0,

(4.1)∫ T

0

∫
R

v(t, x) ∂tψ(t, x)dxdt +

∫
R

v0(x) ψ(0, x)dx

+ β

∫ T

0

∫
R
|u|2(t, x) (−∆)s/2ψ(t, x)dxdt = 0,

(4.2)

for each test function ϕ, ψ ∈ C∞c
(
(−∞,T )×R

)
, with ϕ being complex-valued and ψ

real-valued.
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One attempts to show the solvability of the Cauchy problem (1.2) is to follow
Tsutsumi, Hatano [32]. More precisely, integrate with respect to t the second equa-
tion in (1.2) to get v(t, x), and hence replace it into the first equation in (1.2), that is,
obtaining an integro-differential equation for u(t, x). We do not apply this strategy,
and instead of that we perturb the equation for v(t, x), conveniently, and make use
of the results established before in Chapter 3.

4.1 Perturbed system

For each ε ∈ (0, 1), we consider from (1.2) the following perturbed system
i ∂tuε − (−∆)suε = α vε uε + |uε|2uε,

∂tvε + ε (−∆)s/2vε = β (−∆)s/2
∣∣∣uε∣∣∣2,

uε(0, x) = uε0(x), vε(0, x) = vε0(x),

(4.3)

where (uε0, v
ε
0) ∈ Hs(R) × Hs/2(R) is an approaching sequence converging strongly

to (u0, v0) ∈ Hs(R) × L2(R).
The existence of weak solutions for (4.3) is given by Theorem 1.1 (Main The-

orem). Therefore, it remains to obtain compactness for the family {(uε, vε)}ε>0,
and thus pass to the limit as ε → 0 in (4.3) to get a weak solution to the Cauchy
problem (1.2). To this end, we need as before a priori estimates (uniformly w.r.t.
ε > 0). The proof of this result is similar to the one exposed to establish Lemma
3.2 and Theorem 3.1, hence we here describe (formally) the required estimates.

• A priori estimates
Let (uε, vε) be a weak solution for the Cauchy problem (4.3).

Lemma 4.1 (First estimate). Let 1
2 < s < 1. Then, for each t ∈ (0,T )

d
dt

∫
R
|uε(t, x)|2 dx = 0, (4.4)

d
dt

( ∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4dx + α

∫
R

vε(t, x)|uε(t, x)|2 dx
)

= αβ

∫
R

(−∆)s/2 |uε(t, x)|2|uε(t, x)|2dx − α ε
∫
R
|uε(t, x)|2 (−∆)s/2vε(t, x)dx,

(4.5)
1
2

d
dt

∫
R
|vε(t, x)|2dx + ε

∫
R
|(−∆)s/4vε(t, x)|2 dx = β

∫
R

(−∆)s/2|uε(t, x)|2 vε(t, x)dx.

(4.6)

Proof. 1. First, we multiply equation (4.3)1 by uε(t, x) and integrate in R to obtain

i
∫
R
∂tuε(t, x) uε(t, x)dx −

∫
R
|(−∆)s/2uε(t, x)|2dx

= α

∫
R

vε(t, x)|uε(t, x)|2dx +

∫
R
|uε(t, x)|4 dx.
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Then, taking the imaginary part of the above equation

1
2

d
dt

∫
R
|uε(t, x)|2 dx = Re

∫
R
∂tuε(t, x) uε(t, x) dx = 0.

2. Now, let us multiply equation (4.3)1 by ∂tuε(t, x) and integrate in R, it follows
that

i
∫
R
∂tuε(t, x) ∂tuε(t, x) dx −

∫
R

(−∆)suε(t, x) ∂tuε(t, x) dx

= α

∫
R

vε(t, x) uε(t, x) ∂tuε(t, x) dx +

∫
R

∣∣∣uε(t, x)
∣∣∣2 uε(t, x) ∂tuε(t, x) dx.

(4.7)

Then, writing uε(t, x) = uε1(t, x) + iuε2(t, x), integrating by parts, and taking the
real part we have

d
dt

[ ∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx + α

∫
R

vε(t, x)|uε(t, x)|2 dx
]

= α

∫
R
|uε(t, x)|2 ∂tvε(t, x)dx.

(4.8)
Again, the right hand side of the above equation is computed by multiplying (4.3)2
by α|uε(t, x)|2 and integrating in R

α

∫
R
|uε(t, x)|2 ∂tvε(t, x) dx = α β

∫
R

(−∆)s/2(|uε|2)(t, x) |uε(t, x)|2dx

− α ε

∫
R

∣∣∣uε(t, x)
∣∣∣2 (−∆)s/2vε(t, x)dx

and inserting it in (4.8), we have

d
dt

[ ∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx

+ α

∫
R

vε(t, x) |uε(t, x)|2 dx
]

= α β

∫
R

(−∆)s/2(|uε|2)(t, x) |uε(t, x)|2 dx

− α ε

∫
R
|uε(t, x)|2 (−∆)s/2vε(t, x) dx.

3. Finally, multiplying (4.3)2 by vε(t, x), and integrating in R, we obtain

1
2

d
dt

∫
R
|vε(t, x)|2dx + ε

∫
R
|(−∆)s/4vε(t, x)|2dx = β

∫
R

(−∆)s/2(|uε|2)(t, x) vε(t, x)dx.

�
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Proposition 4.1 (Second estimate). Let 1
2 < s < 1. Then, there exists s0 > 1/2,

such that, for any s ∈ (s0, 1) fixed, there exists α0 > 0 and E0 > 0, such that, for
each t ∈ (0,T ) ∫

R
|(−∆)s/2uε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx ≤ h(t) (4.9)

and∫
R
|vε(t, x)|2dx ≤ eT ‖vε0‖L2(R)

+ 16 |α| (1 + |β| + β2 + |α| β2eT )
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
h(τ)1+ 1

2s dτ,

(4.10)
for |α| ≤ α0 or ‖u0‖L2(R) ≤ E0, where h is a continuous positive function (indepen-
dent of ε).

Proof. 1. First, from equation (4.6) and applying Young’s inequality, we obtain

1
2

d
dt

∫
R
|vε(t, x)|2 dx + ε

∫
R
|(−∆)s/4vε(t, x)|2dx

= β

∫
R

(−∆)s/4(|uε(t, x)|2
)

(−∆)s/4vε(t, x) dx

≤
β2

2ε

∫
R

∣∣∣(−∆)s/4|uε(t, x)|2
∣∣∣2 dx +

ε

2

∫
R
|(−∆)s/4vε(t, x)|2dx.

Then, integrating from 0 to t > 0,∫
R
|vε(t, x)|2 dx + ε

∫ t

0

∫
R
|(−∆)s/4vε(τ, x)|2 dxdτ

≤ ‖vε0‖
2
L2(R) +

β2

ε

∫ t

0
‖(−∆)s/2|uε(τ)|2‖2L2(R) dτ.

(4.11)

Similarly, we have

1
2

d
dt

∫
R
|vε(t, x)|2 dx ≤

∫
R
|β| |(−∆)s/2|uε(t, x)|2| |vε(t, x)| dx

≤
β2

2

∫
R
|(−∆)s/2|uε(t, x)|2|2dx +

1
2

∫
R
|vε(t, x)|2dx,

and applying Gronwall’s Lemma∫
R
|vε(t, x)|2 dx ≤ eT ‖vε0‖

2
L2(R) + β2eT

∫ t

0
‖(−∆)s/2|uε(τ)|2‖2L2(R)dτ. (4.12)
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2. Now, from equation (4.5) and applying Young’s inequality, we have

d
dt

( ∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx + α

∫
R

vε(t, x) |uε(t, x)|2 dx
)

≤ |α||β| ‖(−∆)s/2|uε(t)|2‖2L2(R) +
|α|

2
‖(−∆)s/2|uε(t)|2‖2L2(R)

+
|α|ε2

2
‖(−∆)s/4vε(t)‖2L2(R),

where we have used the Embedding Theorem. Then, integrating from 0 to t > 0∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx + α

∫
R

vε(t, x) |uε(t, x)|2 dx

≤ C0 + |α||β|

∫ t

0
‖(−∆)s/2|uε(τ)|2‖2L2(R)dτ +

|α|

2

∫ t

0
‖(−∆)s/2|uε(τ)|2‖2L2(R)dτ

+
|α|ε2

2

∫ t

0
‖(−∆)s/4vε(τ)‖2L2(R)dτ,

where

C0 = ‖(−∆)s/2uε0‖
2
L2(R) + ‖uε0‖

4
L4(R) +

α2

2
‖vε0‖

2
L2(R).

Hence from estimate (4.11), we obtain∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
2

∫
R
|uε(t, x)|4 dx + α

∫
R

vε(t, x) |uε(t, x)|2 dx

≤ C0 + |α| ‖vε0‖
2
L2(R) + |α|(1 + |β| + β2)

∫ t

0
‖(−∆)s/2|uε(τ)|2‖2L2(R)dτ.

Therefore, it follows that∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx ≤ C0 + |α| ‖vε0‖

2
L2(R)

+ |α|(1 + |β| + β2)
∫ t

0
‖(−∆)s/2|uε(τ)|2‖2L2(R)dτ + α2

∫
R
|vε(t, x)|2 dx.

(4.13)

3. To follow, we apply Proposition 3.2 and equation (4.4) to obtain

‖(−∆)s/2|uε|2(t)‖L2(R) ≤ 2‖uε(t)‖L∞(R) ‖(−∆)s/2uε(t)‖L2(R)

≤
( 4
√
π

+
4

√
π(2s − 1)

)
‖uε0‖

1− 1
2s

L2(R)
‖(−∆)s/2uε(t)‖

1+ 1
2s

L2(R)
.

(4.14)

Replacing (4.12) and (4.14) in (4.13), we have∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx ≤ C0 + |α|(1 + |α|eT )‖vε0‖

2
L2(R)

+ 16 |α| (1 + |β| + β2 + |α| β2eT )
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ,
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or conveniently we write

1+

∫
R
|(−∆)s/2uε(t, x)|2 dx +

1
4

∫
R
|uε(t, x)|4 dx

≤ θ(t) := 1 + C0 + |α|(1 + |α|eT )‖vε0‖
2
L2(R)

+ 16 |α| (1 + |β| + β2 + |α| β2eT )
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ

= C1 + C2

∫ t

0
‖(−∆)s/2uε(τ)‖

2+ 1
s

L2(R)
dτ,

with obvious notation. So, we may write

θ(t) ≤ C1 + C2

∫ t

0
θ(τ)1+ 1

2s dτ.

Finally, we apply the Generalized Grownwall Lemma, more precisely (2.19)
with σ = 1 + 1

2s > 1, hence we must have for each s ∈ (1/2, 1)

C1 <
{16 |α| (1 + |β| + β2 + |α| β2eT )

2s
( 1
√
π

+
1

√
π(2s − 1)

)2
‖uε0‖

2− 1
s

L2(R)
T
}−2s

or equivalently

C1 |α|
2s
(
1+ |β|+β2 + |α| β2eT

)2s
‖uε0‖

4s−2
L2(R) T 2s <

{ sπ2(2s − 1)

8
(√
π +
√
π(2s − 1)

)2

}2s
. (4.15)

Therefore, there exists s0 > 1/2, such that, for any s ∈ (s0, 1) fixed, there exists
α0 > 0 and E0 > 0, such that condition (4.15) is satisfied when ‖u0‖L2(R) ≤ E0,
or |α| ≤ α0. Again, if there is no coupling, that is α = 0, then condition (4.15) is
trivially satisfied. Then, we have

θ(t) ≤ C1
(
1 −

C2

C1

t
2s

)2s
,

from which follows the proof of the proposition. �

4.2 Existence of weak solutions

The aim of this section is to prove the following

Theorem 4.1. Let (u0, v0) ∈ Hs(R) × L2(R), ( 1
2 < s < 1). Then, there exists

s0 > 1/2, such that, for any s ∈ (s0, 1) fixed, there exists α0 > 0 and E0 > 0, such
that, if |α| ≤ α0 or ‖u0‖L2(R) ≤ E0, then there exists a weak solution

(u, v) ∈ L∞(0,T ; Hs(R)) × L2(0,T ; L2(R))

of the Cauchy problem (1.2).
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Proof. 1. First, under the conditions of Theorem 1.1, for each ε > 0 fixed, let
(uε, vε) ∈ L∞(0,T ; Hs(R)) × L2(0,T ; Hs/2(R)) be the weak solution of the Cauchy
problem (4.3), that is, the pair (uε, vε) satisfies for any T > 0,

i
∫ T

0

∫
R

(
uε(t, x) ∂tϕ(t, x) + (−∆)s/2uε(t, x) (−∆)s/2ϕ(t, x)

)
dxdt + i

∫
R

uε0(x) ϕ(0, x)dx

+ α

∫ T

0

∫
R

vε(t, x) uε(t, x) ϕ(t, x)dxdt +

∫ T

0

∫
R
|uε(t, x)|2 uε(t, x) ϕ(t, x)dxdt = 0,

(4.16)∫ T

0

∫
R

vε(t, x) ∂tψ(t, x) − ε vε(t, x) (−∆)s/2ψ(t, x)dxdt +

∫
R

vε0(x) ψ(0, x)dx

+ β

∫ T

0

∫
R
|uε|2(t, x) (−∆)s/2ψ(t, x)dxdt = 0,

(4.17)
for each test function ϕ, ψ ∈ C∞c

(
(−∞,T ) × R

)
, with ϕ being complex-valued and

ψ real-valued.

2. Now, to obtain (4.1), (4.2) we pass to the limit respectively in (4.16) and
(4.17) as ε → 0+. Again, it is needed to show compactness of the sequences
{uε}ε>0, and {vε}ε>0. From (4.4), (4.9), it follows that {uε}ε>0 is (uniformly) bounded
in L∞(0,T ; Hs(R)), hence we select a subsequence, still denoted by {uε}ε>0, which
converges weakly-? to u in L∞(0,T ; Hs(R)). Analogously, from (4.10) we have
that {vε}ε>0 is (uniformly) bounded in L2(0,T ; L2(R)), hence it is also possible
to select a subsequence, still denoted by {vε}ε>0, which converges weakly to v in
L2(0,T ; L2(R)). To pass to the limit as ε→ 0 in all terms of (4.16) and (4.17), it is
enough to show strong convergence just to {uε}ε>0 sequence.

From (4.16) and the a priori estimates, we obtain that, the sequence {uε}ε>0 is
uniformly bounded in L2(0,T ; H−1(R)). Therefore, we apply the Aubin-Lions’s
Theorem and obtain (along a suitable subsequence) that uε converges strongly to
u in L2(0,T ; L2(K)), for any compact set K ⊂ R. Moreover, uε(t, x) → u(t, x) as
ε → 0 almost everywhere in (0,T ) × R. Then, we are ready to obtain equations
(4.1) and (4.2).

3. Finally, we get the solvability of the Cauchy problem (1.2) applying the
Definition 4.1, where the conditions on the statement of Theorem 4.1 comes from
the conditions under Theorem 1.1, and also Proposition 4.1. �
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