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Resumo

Contruimos fluxos de curvatura média eternais do toro de Clifford em perturbagoes da
esfera unitéria stdndard S* in R*.

Palavras-chave: fluxos de curvatura média eternais, Toro de Clifford.






Abstract

We construct eternal mean curvature flows of tori in perturbations of the standard unit
sphere S? in R%.

Keywords: Eternal mean curvature curvature flow, Clifford Tori.
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1 Introducao

Seja ¥ := ¥ uma superficie compacta, orientada m-dimensional em M := M™+!
uma variedade Riemanniana orientada m + 1-dimensional. Definimos a variagao de X do
seguinte modo, parat € I C Rex € ¥, seja e : X x I — M uma func¢do suave que
toma valores em M™T! tal que e;() := e(-,t) é uma imersao e ; = {e(z,t) |z € X} é
uma familia suave de superficies em torno de 3, e o vetor % ¢ perpendicular a >, em
e(z,t). Uma familia a um pardmetro e;(.) = e(.,t) de hipersuperficies é solugdo para o

fluxo de curvatura média se satisfaz

%(l’, t) = _H(xa t)N(l‘, t)

e(z,0) = e(x) ’
onde N;(.) = N(.,t) é o campo vetorial normal unitario sobre 3, e H,(.) = H(.,t) é a
curvatura média com relacao a este normal. Em outras palavras, a funcao e é dita fluxo
de curvatura média sempre que for solugao da equacao de fluxo de curvatura média

aet
—, Ny )+ H;,=0. 1.1
< ot t> ! (1.1)

O fluxo de curvatura média evolui hipersuperficies na dire¢do normal com ve-
locidade igual a curvatura média em cada ponto e é um fluxo do tipo gradiente para o
funcional drea [3], que se comporta como a equagao do calor em um curto periodo de tempo.

Podemos classificar os fluxos de curvatura média a partir de seu intervalo de
defini¢ao. Diremos que um fluxo de curvatura média é de tipo eterno quando I = R, e se
I ndo é limitado inferiormente ou superiormente, isto é, I =| — 00, b[ e I =a, co| diremos
que os fluxos sao do tipo antigo e imortal, respectivamente.

Como os fluxos de curvatura média tendem a se tornar singulares, espera-se que
cada uma dessas propriedades tenha implicagoes significativas para a geometria do fluxo.
Destas propriedades, a de ser eterno é claramente a mais restritiva. Exemplos de fluxos
eternos sao muito poucos, assim resulta interessante descobrir novos exemplos para entender
melhor sua estrutura.

Nossa construcao de fluxos de curvatura média eternais envolve a construcao de
fluxos dados por subgrupos 1-parametro de grupos afins de R™*1,

Além disso, para ter uma ideia de quao restritiva é a condicao de ser eterno, vejamos

por exemplo que em [18], Hamilton demostrou

Theorem 1 (Hamilton-1995). Se F' é uma solugao eternal estritamente conveza ao fluzo
de curvatura media e se a curvatura media de F' atinge seu mazximo valor em um ponto no
space-time, entao F' é um soliton transladado.

Da mesma forma, em [2], White conjeturou

Conjeture 1 (White 2003). Qualquer solugao eternal convexa nonflat ao fluxo de curvatura
média é um soliton trasladado.
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E 1til pensar em curvatura média a partir das teorias de Morse.

De fato, assim como superficies minimas sao pontos criticos da area funcional, os
fluxos de curvatura media sao fluxos gradientes desse funcional. Ideias da teoria de Morse
e especialmente da teoria da homologia de Morse sao particularmente utéis na construcao
de fluxos eternos.

A ideia chave é considerar fluxos de curvatura média eternais nao como fluxos
evoluindo no tempo, mas como solugdes de operadores hipo-elipticos quase-lineares. Assim,
adaptamos as construcoes de perturbagoes de superfi cies minimas no cenario eliptico para
obter construgoes de perturbagoes de fluxos de curvatura média eterna.

Essa abordagem ja permitiu construir fluxos de curvatura média eterna forcada
por meio de técnicas de perturbagoes singulares (ver [7]). De fato, lembremos que a
existéncia de familias de hipersuperficies com curvatura média constante concentrada
em um ponto foi estudada por R. Ye [19]. Para qualquer ponto critico ndo degenerado p
da curvatura escalar S em (M™! g), R. Ye demonstra a existéncia de uma familia de
hipersuperficies submersas, com curvatura média constante, que estao concentradas em p
quando a curvatura média tende ao infinito.

Adaptando este resultado ao cendrio hipo-eliptico, G. Smith in [7] mostrou que se
v : R — M™! é um fluxo completo da funcao curvatura escalar S em M™*! e que se ~y é
nao degenerado com imagem compacta, entao existe um fluxo de curvatura média forcado
de esferas com o termo de forcado tendendo a infinito.

Este trabalho tem como objetivo principal a construcao de fluxos de curvatura
média eternos sem forcar. Para isto, usamos outra construcao de superficies minimas.
Nosso interesse sera utilizar uma perturbacao singular para construir fluxos de curvatura
média eternos. Mais precisamente, vamos construir fluxos de toros em perturbacoes da
esfera unitdria S3. Para isto adaptamos o trabalho de White in [1] ao cendrio hipo-eliptico.
Ao longo deste trabalho, identificaremos S* com a esfera unitaria em R*; isto ¢é,

S*={z eR" | 2]+ a5+ a3 + 2] =1}

Sejam Ty = S' x S! o toro padrio e (S3,g) a esfera unitdria com métrica de
curvatura constante em R?. Seja C°°(S?) o espago de fungdes suaves sobre S* munido com
a topologia da convergéncia suave e seja i um subconjunto de C°°(S?), U ¢é dito genérico
sempre que contiver uma intersecao contavel de subconjuntos abertos e densos. Provamos
que

Theorem 2. Eziste um subconjunto generico U de C*(S?) com a propriedade que, para
todo u € U, existe ¢ > 0 tal que, para todo t €] — €, €[, existe um fluro de curvatura
média eternal e : T x R — (S3,e*q), isto é, se (S, g1) uma 3-esfera com sua métrica de
curvatura constante, para uma métrica g = e**q, suficientemente perto de g, existe um
fluzo de curvatura média eternal do toro em (S3,g).

A fim de mostrar nosso teorema principal, dividimos o nosso trabalho da seguinte

maneira: No primeiro capitulo, vamos a construir uma métrica sobre T x }—%, ﬂ que

sera rotacionalmente simétrica, onde

1
To =4 (z,y) €S| |zlI* = lyl* = —

V2
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Fazemos isto para obter uma parametrizacao da esfera S que seja compativel com
o toro de Clifford. Na continuacao, estaremos interessados em estudar a geometria dos gra-
ficos sobre T, pois lembramos que na construgao de White [1] utilizamos graficos normais.
Estes graficos normais serao toros de Clifford que poderao ser escritos como graficos sobre
o toro inicial Ty. Assim, uma vez feita a perturbacao inicial faremos uma perturbacao
normal que vai nés permitir determinar a componente normal desta variacao de familias
j& que depois temos que compararlo com a curvatura média. Em seguida, realizaremos um
analise de certas funcoes no espaco de toros de Clifford em S* que serd denotado por CL.
Lembremos que o toro de Clifford padrdao Ty em S? é uma superficie minima. Geralmente,
os toros de Clifford em S? sdo as imagens de Ty sob a acdo do grupo ortogonal O(4). O
espaco CL de toros de Clifford é uma variedade suave 4-dimensional difeomorfo a RP? x RP?.

Definimos o funcional linear I: C*(S?) — C°°(CL) por

I[u](T) = /T u dArear,

onde para cada T, dArear denota a forma area. Estamos interessados nas propriedades
analiticas das fungoes da forma I[u]. Lembremos de que uma funcao suave é do tipo Morse
sempre que todos os seus pontos criticos nao sdo degenerados e é do tipo Morse-Smale
sempre que além de ser do tipo Morse, toda variedade estavel de seu fluxo gradiente é
transversal a cada variedade instavel desse fluxo.

Assim, no segundo capitulo daremos a prova do teorema principal. Este teorema é
provado analogamente ao argumento de perturbagao desenvolvido por White na secao 3
de [1]. Para isto, vamos a usar as parametrizac¢oes padrao do toro de Clifford introduzidas
na secao 2.2 pois isto nos dara uma familia candnica de parametrizacoes ao longo de uma
dada familia de superficies. Embora isto seja um caso particular para o toro de Clifford na
esfera S3, as técnicas que desenvolvemos sao mais gerais.
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2 Perturbations of the Clifford Torus

2.1 Notation for error terms

The formulae for the geometric quantities that we will study can become compli-
cated. For this reason we condense notation as much as possible. In this section, we discuss
the notational conventions we will use.

Let T be a Clifford torus. Given a function f : R* x T — R such that foo = 0,
we may write

f(S,t,e,(P) = fs,t<97 90) = st(87t797()0) + tft(87t797 ()0)

where
s Lof
fo(s,t,0,¢) = —(rs,t,0,p)dr
0 88

and

1
F(s,1,0,0) i / O . vt,0, p)dr.
. ot

We use the expression O}(s,t) to denote any term, vanishing at (0,0), which
involves s, t,0, ¢ and combinations of the functions f* and f' and their derivatives up to
including order k. More precisely, the function F' is of type Of(s,t) whenever

Fs,t(ea 90) =sF” (S7t797(707 fs(87t79790>7Df5<37ta97 90)7 te 7Dk.fs(8at79790>7ft(37t797¢)7
th(87t797 SO), e 7Dkft(87t707 80)) +tFt (87t797 P, f8<57t767¢)7Df8(87t707gp>7

R Dkfs(37 t, 67 90)7 ft(s’ t, 97 90)7 th(s’ t, 97 90)7 T Dkft(s’ t, 97 90))
(2.1)
where F* and F! are smooth functions in their arguments. In the sequel, we will make
particular use of O;(s, ).

Lemma 1. If F,G € O}(s,t) then the product FG € O}(s,t)

Proof. Indeed, let
F(0,9) = sF*(s,t,0, 0, f,Df5 ft,DfY) +tF" (s,t,0,0, f5,Df5, ft, Df")
G(0, ) = sG* (s,t,0, 0, f*,Df5, ft,Df") +tG" (s,t,0,0, f5,Df, ft, Df")
Thus
FG(0,9) =s"F* (s,1,0,, f*, Df*, f', Df') G* (s,1,0,0, f*, Df*, f', Df') +
EF (s,t,0,0, 1, Df*, f1, DFY) G (s,£,0,0, f*, Df*, f1, DY) + -

therefore F'G € O}
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Lemma 2. If F € O}(s,t) and G is a smooth function with G(0) = 0, then the composition
GoF € 0;(s,t).

Proof. Indeed,

F(0,9) = sF* (s,t,0,0, f*, Df*, f', Df') + tF" (s,t,0,0, f*, Df*, f', Df')

However B
G(z) = 2G(x)
where )
G(z) = / G'(rx)dr
0
thus

G (F(s,t,0,0)) =F(s,t,0,0)G (F(s,t,0,¢))
=sF*(s,t,0, 0, f(s,t,0,0), Df(s,t,0, cp))é(st(s,t,H,go,f(s,t,@, ©),
Df(s,t,0,0)) +tF'(s,t,0,0, f(5,t,0,0), Df(s,t,0,0))+
tF (s, 1,0, 0, f(s,t,0,0), Df(s,t,0,0))G (sF*(s,t,0, ¢, f(s,1,0, ),
Df(s,t,0,0)) +tF'(s,t,0,0, f(s,t,0,0), Df(s,t,0,9)).
therefore Go F' € O] (s,t) O

We conclude by comparing this notation with the conventional notation. Recall
that it is customary to write

fS,t = O(‘Sv t)
to show that there exist a constant C' > 0 such that

|fs,t| < C|S| + C’|t|

for all s and for all ¢. Our terminology provides more informations. In particular, it allows
us to study the continuity and smoothness properties of functionals between Banach spaces.

In a similar manner, we write © € O(s,t) whenever

O:+(6, ) =520% (s,t,ﬁ,gp,fs(s,tﬂ?(p), Df5(s,t,0,0), fi(s,t,0,0), Df'(s,t,0, go))
+5t0" (5,4,0,0, f*(5,£,0,0), Df*(s,1,0, ), f'(s,1,0, ), Df'(s,1,0,¢))
+ 120" (5,1,0,¢, f*(s,1,0,0), Df*(s,£,0,0), f'(5,1,0,), Df'(s,,0,),)

and so on.
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2.2  Geometry of perturbed Clifford Tori

We derive expansions for the metric, the second fundamental form and the mean
curvature of normal perturbations of the Clifford Torus. Let S? be the 3-dimensional unit
sphere in R?, that is

S* = {z eR||z||* =1}.

Let Ty denote the standard Clifford Torus in S? given by

1
T, = {<x,y> €S CR @R [lz]” = Jyll” = ﬂ} (2:2)

2.2.1 Fermi Coordinates

Fermi coordinates are coordinates that are adapted to the study of tubular neigh-
borhoods of submanifolds and points. Indeed, let M be a Riemannian manifold. Let S be
a compact embedded submanifold. Let T'S and NS be its tangent and normal bundles
respectively. For € > 0, let N.S be the open subset of NS consisting of vectors of length
less than e. Let Exp : TM — M be the exponential map of M. For sufficiently small e
the restriction of Exp to N.S defines a smooth diffeomorphism onto an open subset of M.
This parametrization defines the Fermi coordinates of M about S. Observe that Exp (N.S)
is a tubular neighborhood of radius € about S.

Recall that normal coordinates parameterize a neighborhood of a manifold in terms
of geodesics emanating from a point. In a similar manner, Fermi coordinates parameterize
a neighborhood of the manifold locally in terms of normal geodesics emanating from a
submanifold.

The restriction of Exp to the zero section maps diffeomorphically onto S. Finally
for any normal vector &, € NS, the curve t — Exp(t,) is a geodesic normal to S.

2.2.2 Mean Curvature Operator

We briefly recall the definition of the mean curvature of a hypersurface since this
is one of the main objects of study of our work. Let S be a closed hypersurface that is
embedded in a riemannian manifold R"*1. We denote the mean curvature and second
fundamental form of S by Hg and I1g, respectively, and the outward-pointing unit normal
vector field by Ng. Then, the linearization of the mean curvature operator on the space of
normal graphs over S is usually referred to as the Jacobi operator or stability operator
about S and is given by ( c.f. [24])

J:==A+ (| Is|* + Ric (N5, Ns))

where A is the Laplace operator of S and Ric is the Ricci curvature tensor of M.
When S = S3, the linearized mean curvature reads

J==A+ (] +2).
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The extrinsic curvature of .S is described by a symmetric two-tensor I1g, the second
fundamental form of S that is defined by

LI(&,n) = (DeNs,n) -

The eigenvalues of I are referred to as the principal curvatures of S. Let Ay, Ag be
the principal curvatures of S. The sum of the principal curvatures is referred to as the
mean curvature of S :

H:)\1+)\2.

Geometrically, the mean curvature is the L? -gradient of the area functional; more
precisely, given an immersion ¢ : S — R""! of a smooth hypersurface in R*™, if we
consider a smooth one-parameter family of immersions ¢; : S X (—¢,¢) — R"™! with
t € (—¢g,e) and ¢y = ¢, such that, outside of a compact set K C S, we have ¢;(p) = ¢(p)
for every t € (—¢,¢), we have (c.f. [3])

Proposition 1. The first variation of the Area functional depends only on the normal

component of the infinitesimal generator X = %" o of the variation p; precisely
0
— Area(¢y)| = — [ Hs(X, Ng)dpu.
ot —0 S

2.2.3 Families of embedded minimal tori in S®

In this section we are going to construct the family of Clifford tori in S3. Recall
that T denote the standard Clifford torus in S* and is naturally parameterized by S! x S!
as

Dy(0, ) = (cos(0),sin(f), cos(p),sin(yp)) . (2.3)

Sl -

where St = {z € R? | ||z]|* = 1}.
The unit normal vector field over Ty is given by
1
Naft9) = 5 (cos(8). sin(6), — cos(), sin(). (2.4)

Note that the principal curvatures of the Clifford Torus T are 1 and —1, so the mean
curvature is zero.

Recall that the tangent bundle of S? is

TS*:={(z,y) €R'| [l|* =1, {y,2) = 0},
and the exponential map is given by

. Y
Exp(z, y) = cos ([ly[l) « + sin ([Jy]]) ol
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The Fermi coordinates about Tg in S3

Lal 1 T T 3
®:S' xS x 4,4[—>s
are thus given by
D0, p,7) := cos(r)Po(0, ¢) + sin(r)N (6, ). (2.5)

Observe that this means that, for all (6, ¢, ), r is the distance from ®(6, ¢, r) to Ty, and
®(0,,0) is the unique closest point in T to this point.

We want to determine a metric ®*¢g;, the pull-back through ® of the spherical
metric over S. This will yield a parametrisation of the sphere that is compatible with the
Clifford torus.

By (2.5) we have that the parametrisation is given, by

(0, ¢, 1) = cos(r)(z,y) + sin(r)(z, —y), (2.6)
where
_ ! 0),sin(0),0,0
T = ﬁ(cos( ),sin(#),0,0)
Y= \}5 (0,0, cos(yp),sin(p)) .

This expands to

O6,p,1) = [cos(r) cos(6) + sin(r) cos(), cos(r) sin(f) + sin(r) sin(6),

S

cos(r) cos(p) — sin(r) cos(¢), cos(r) sin(p) — sin(r) sin(gp)].

1
Recall that % = sin <Z> = COS <Z>, so that

\}5 (cos(r) + sin(r)) = cos(r) sin (Z) + sin(r) cos (Z) = sin <r + Z) :

It follows that
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Note that when r = 0, (0, ¢) = ®(0, ¢,0) we have a parametrization of Clifford
Torus.

|
PN
N

s?

\/ AT Lo e

Figure 1 — The image of functions in C'* (Sl X Sl,] .3 %D by @ are Clifford Tori in
sphere S3.

V&

Observe that

D0y = (— sin ( ) sin(f), sin ( ) cos(0) sin(#), 0, 0)
®.0, = <0 0, —sin ( — 7 | sin(y), sin ( — 7“> cos(¢y) sin(é’))
0.0, = (COS <4 + 7“) cos(#), cos <4 + 7“) sin(#),

— COS <Z - 7“) cos(p), — cos (Z - r) sin(gp)) :

We readily determine

(®,0p, .0,,) = ($,0p, .0,) = (®,0,,,$,0,) =0

and )
|0p]|” = sin? (% + r)
0,1 = sin? (5 —r) -
10> =1
so that
P* gy = sin? <Z + r) dh? + sin? (Z — r) do* + dr. (2.8)

In particular, this metric is orthogonal in the sense that Jy, 0,, 0, is an orthogonal
ough not orthonormal) frame. We also see that the maximal domain over whic
though not orth 1) £ We al that th imal d i hich ¢
T m

404

defines a diffeomorphism is S' x S x

[ The image of this domain is trivially a

dense open subset of S3.
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2.2.4 The Taylor Series of the Mean Curvature

In this section we determine the Taylor series of the mean curvature function. First,
we want to determine the Levi-Civita covariant derivative of ®*g; using only geometric
considerations.

By definition, vertical lines are unit speed geodesics. Hence
Vo0 = 0.

Lemma 3. Let M be a Riemannian manifold. Let ¢ : M — M be an isometry such that
¢? = Id. Suppose that ¥ = {x | ¢(x) = x} is a smooth hypersurface in M. Then ¥ is
totally geodesic.

Proof. Let N : ¥ — T'M be the unit normal vector field over ¥. We claim that V x € &

Suppose the contrary. By hypotheses V £ € T3,

Do(z) - & = ¢.

Since ¢ is an isometry, it follows that

D¢(x) - N(x) = £N(z).
Since D¢(z) - N(x) # —N(x), it follows that

Let v : R — M be a geodesic such that v(0) = z, 9y(0) = N(z). Thus, oy is a
geodesic such that (¢ o) (0) =0 and 9 (¢ o) (0) = N(x). Thus

Y(t) = (poy)(t) Vit

so that (t) € ¥ Vt. This is absurd. Hence

Now let £ and 1 be vector fields tangent to X. For x € X

11 (£(z), n(2)) = g (Vgn(w), N())
9) ((6"V)(gog) (6™0) (), " N ()
:—g(Vsn(rC) ~N(z))
= g(Ven(z), N(z))
= 11 ((x),n(x))

It follows that II vanishes, as desired.
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For all ¢y,
d* gy = sin? <Z + 7") df? + sin® (Z — r> do?® + dr?.
is symmetric under the reflection
(0,0,1) — (0,200 — @, 7). (2.9)
The fixed surface of this reflection is
Yo = {(0,00,7)}

It follows that this surface is totally geodesic. Its unit normal vector field is

1

N = wia@ (2.10)
sin (4 — r)
thus ]
Va, 0, =10
sin (% — r)
1 1
G (T) 0=
sin (% — T) sin (% — r) 4
hence -
Vs,0, = — cot (4 — r) Op-
Similarly

Vs, 0p = cot (Z + r) Oy
Since [0,, 0] = [0y, 0,] = 0, we also have
T
Vo,0, = cot (4 + 7") 9,
Va,0, = —cot (Z — 7’) Oy

Since the # — r plane is a totally geodesic surface in S3, it is an equatorial sphere.
By symmetry in 6, the curve {r = r¢} in this plane has constant geodesic curvature and

is therefore a circle. Since it has length L = 27 sin (Z + 7’0) its geodesic curvature is
K = cot (Z —i—ro).
Its outward normal is 0, (as this is the direction of increasing length). Hence
2 7r
Vaeag = —||89|| cot Z + 719 ) O,
(G r0)sn (F+m)2
=— — in(— )
cos { 7+ 7o )sin{ 470
1 T
= ——sin (= + 2rg | 0,
7n (5 20)
1
=-3 cos(2r)0,,
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likewise
Vo0, =

from (2.10), we get that

Thus

In summary, we have

Vs,0, =0

Va,0r = Vg, 0p = cot (Z + ?") Oy = % 2
Va,0r = V5.0, = — cot (Z - r) O0p = _% p
V9,00 = — cos (Z + 7“) sin <Z + r) 0, = —; cos(2r)0,
Va,0, = — cos (Z — 7") sin (Z — r) 0, = ;cos(Qr)E)T

Vo,0, = Va,0p = 0.
Perturbations of T are given in the Fermi parametrization by functions

f:S'xs! —>} (2.11)

””[
44l

=]
=] A
4

_V | sl x 8!

Figure 2 — The function f is a perturbation of Ty
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Given such a function f, denote:

Op = g + 140,
Op =0y + f,0,

N = (— sin? (Z — f) fg, —sin? (Z + f) fgo,sin2 (Z — f) sin? (Z + f))

Observe that N is the outward pointing normal over the graph of f. However N
does not have unit length. The unit normal vector field is

o~

N
[N]g,

sin? (Z — r> = ; [1 — oS <72T — 27’)} = ;[1 — sin(2r)]
1 .
[1 4 sin(2r)]

2
1 1
sin? <Z - 7‘) sin? (4 + r> =1 {1 - sin2(2r)} =1 cos?(2r).

we have that

Hence

(L= () fo, — 1+ el g Lco21))
05 (2f)(1 — sin(2f) 3 +  cos?(2f)(1 + sin(2) 2+ 1 cos'(21)
o2 (501 - e+ + S (1 sin(2D)f2 +  co(2S))

Let T" be the Christoffel symbol of the Levi Civita covariant derivative of g;. That
is,
FZ (x)@k = Vaiaj - Daﬁj
where D denotes the canonical differentiation operator over R*. From the previous consid-
erations, we have

I (ar; ar) = varar - D&rar =0

I (9, 0y) = Va,0 — D, 0, = cot (5 +71)

T (9, 8,) = Vo,0, — Dy, = — cot (g — 7“) 8,

r (89, 89) = V3989 Dagag % COS(2T>8 (2'12)
I'(04,0,) = Vo,0, — Do, 0, = % cos(2r)0,

I' (09, 0,) = V@Qa D398 = 0

' (0p,09) = VO,0p — Dy,0p = 0
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We now calculate the second fundamental form of the graphs of f.

D5, = (cos(2) 13 + 5 (sin(2f) = fo, — cos(20)fof = (sin(26) + 1o, — cos(2f) sin(21)

D~ N = (cos(2f)f¢f9 + %(Sin(Qf) —1)fp0.— COS(Qf)fz - %(sin(Qf) + 1) fipp, — cos(2f) sin(2f)f¢> :

9

Then
I 1 1
(D3, N.05) <(Cos(2f)fe 5 (I(2f) = 1) foo, — cos(2f) fofp — 5(sin(2f) + 1) fo,,
—cos(2f) sm(2f)f0) (1,0, fo)),,
= sin? (Z + f) cos(2f) f7 + %Sin2 <Z + f) (sin(2f) — 1) foo — cos(2f) sin(2f) f3
= (;(1 +sin(2f)) cos(2f) — cos(2f) sin(2 f)) i+ (sm (2f) = 1) Joo
= Lcos(2f)fog + (1 - sin(2f) cos(21) 13

(D5,8.0,), = ((cos(2)1} + 5 (sia(21) = 1), — cos(21) S = 5(sin(2F) + D
- COS(2f) sin(2f)f9, (07 17 f@)>g1

; (81n((2 £) = 1) cos(2f) fof + ~ 1 (53(20) = 1) fo — cos(2f)sin(2f)fo,
— L sin(2f) cos(2f) oy — g cos(2f) fofp +  (sn%(2f) 1) fo, — cos(2f) sin(2) fof,

- %COS(Q £)(sin2f) + 1) fofp — ! 7 608 2(2f) fop-

Using (2.12) and the linearity of Cristhoffel symbols I', we obtain

T (8, &) =5 (sin(2f) — 1JoT (@9, 89) — 5 (sin(2) + 1), (3,0,)
+ 5 0PI (39,00) + 5(sin(2f) — 13T (01, 0)
— () + 1) fofoT (01,0,) + § (cos’(2) foT(01, 0)
= (i cos?(2f) + %(sin(Qf) — 1)f92) cot (Z + f) Dy

(sin(2f) + 1) fo f, cot (Z — f) Oy — %(sin(?f) — 1) fp cos(2t)0;

!
2
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thus

<I‘ (5@,N),5g>—81ﬂ ( +f)( cos?(2f) + ;(sin(Qf)—l)f02> cot (Z—I—f)

%(sm(Qf) -1) cos(2f)f
:% (111 cos?(2f) + %(sin(Qf) - 1)f92> cos(2f) — %(sin(Qf) — 1) cos(2f) f2
:é cos(2f) + %(sin(Qf) — 1) cos(2f)f3 — i(sin(Zf) — 1) cos(2f) f2
:% cos®(2f)

<I‘ ((%,N) ,(§<p> = sin? (Z — f) %(sin(?f) + 1) fofy cot (Z - f)
- %(sin@ 1) = 1) cos(2f) fof.
1 . . s
:5(51n(2f) +1) fofpsin (4 — f) cos ( — f> — f(sm(2f) — 1) cos(2f) fofys
:%(sin@f) + 1) cos(2f) fofp — %(sin@f) — 1) cos(2f) fofo,
:i cos(2f) fofo(sin(2f) +1 —sin(2f) — 1)
= cos(2/)fol

The second fundamental form is thus given by

II (59, 59) :é cos®(2f) — icosz(Qf)fee + %(1 —sin(2f)) cos(2f) fz.

L 1 1, (2.13)
I (89, &p) =-3 cos(2f)sin(2f) fofp — 1 cos”(2f) fo,-
and as there is a symmetry, such that
f=o=f 0—¢ ©—0 II— —II
we have that
- 1 1, 1 . 2
11 (9,,0,) = g @0s*(2f) = 7 cos*(2f) fop — 5 (1 + sin(2])) cos(2/) 2. (2.14)
On the other hand, the first fundamental form is given by
—~ =~ 1
1(35,95) =5(1+sin(2) + J3
I (égaé\(p) :f9f<,0
o (2.15)
19y, 30) =fofs
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S
po (2 Fsm@) S fefe
fofo 5(1—s1n(2f))—|—fg,
with det(I) = 2(2f N2, then
-1 _ o (2f) %(1—sin(2f))+ff, —fofo
4||N 2 —fofe 3(1+sin(2/)) + 3
From the Weingarten equations, the mean curvature H satisfies
1 -
H = trace (Iﬁlﬂ) = A7| trace (1'71]]) . (2.16)

N2

Using the notation given by (2.1) we have

~ 1
N = (—fe + 085 fo+ 08,5 + )

( 01+01,— o1 + 0%, +00>
_ 1
8

S 1
1817 = 5 (1+ 68) (5 +01) S+ 0.
So
[ (z(+20)+ OF 0?
% s(1—2f)+ Of
then
1o (124 OF 0?
03 1+2f + O}
and
7 (3 1%( + 05) foo + OF ; ig1+03)f9¢+0%
1(1 O)f9¢+01 §_Z(1+O§)f<p<p+0%-

On the other hand

(rlﬁ)% =2(1 - 2f) (1 - 1f69) + Of + Of Hess(f)

:ffif*f99+ff90+01+01Hess(f)

(I‘lﬁ)w =2(1 + 2f) (—; —~ fw> + O} + OF Hess(f)

1 1
et et T+ O 4 O Hess())

and as I = ;ﬁ we have

N]|
4 (1—111)96 =4 —8f —8fpp+ 16f fog + ...

4 (rlﬂ)w — 4 —8f —8fpp + 16f frp +
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Finally
H = —2(Af +2f) +4f (fao — fop) + trace ((OF Hess(f)) + OF. (2.17)
Observe in particular that, when f = 0, N = (0,0, 1) ; |INJ|2 = L then

(1)

It =

S N =
O ool
o= O

1
4

N = O
|

and

1l =

S ool =

and therefore H = 0.

On the other hand, note also that, all the previous terms vary when we vary f. Since
f lives in a space of functions, we study the Frechet derivative. Let h be a function. Using the
preceding relations, we determine partial derivations in the direction of h.

We have that DfH]\A/H2 = 0, thus

-1 (-4 0
Dyl ’f:o’h_(o 4)

—heg  —hge
Dillly=oh (_h¢9 ~hg

Likewise

DyH|,_o-h=~2(A+2)h

is the operator of the infinitesimal variation of the mean curvature, here A denotes the Laplace
operator of the metric g;. Indeed, this is the Jacobi operator of T.
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2.3 The differential geometries of £ and CL

We consider the sets £ and CL, spaces of embeddings that will be of interest to us, these
sets will be defined as follows

£ ={e:S' xS!' — 83| e is a smoothly embedded torus in S*}.

This space is furnished with the C° topology. Let D denote the group of smooth diffeomorphisms
of 8! x S!. Observe that D acts on € on the right by composition. Let & := S/D denote the
quotient space of this action furnished with the quotient topology, this space is a weakly smooth
manifold which we call the space of unparametrised embeddings of S' x S! in S3. Given an
element e of & , we denote by [e] its equivalence class in €. Throughout the sequel, we will often
identify the equivalence class [e] with its representative element e.

Let & denote the space of embedded tori in S? furnished with the topology of smooth
convergence. The map

Im: €& — &
such that
e {e(0,9)| (0.¢) €8}

project to a homeomorphism from & to &'. In what follows, £ will be identified with £, that
is, every element e of € will be identified with its equivalence class [e] in £ and its image Im(e) in S3.

We define
CL = {T | T is Clifford torus in S*}

That is, CL is the orbit of Ty in £ under the action of the orthogonal group O(4). Furthermore,
in [10], White shows that this submanifold is diffeomorphic to RP? x RP2,

The Fermi parametrization of S? defines a chart of £ about Ty. Indeed, define

é: 0> (St xst]- 2,4[)—>5by

D>

[f](&(p) = ‘I’(ea%f(ea 90)) (2'18)

e:=[é] (2.19)

In other words, e[f] is the image under ® of the graph of f. Finally, recall that the Jacobi

operator of T is
J:=-2(A+2)

where A denotes the Laplace operator of S x S'.
Lemma 4. The tangent space at 0 of e *(CL) is
Toe 1 (CL) = Ker(A + 2) (2.20)

where A here denotes the standard Laplacian of S' x St.

Proof. Choose f € Toe !(CL). Let (ft>te] e[ DE @ family of functions such that fy = f and
ft € e }(CL) for all t. Let (Hy),e te]—c,e] e such that, for all ¢ and for all (6,¢), H¢(f, ) is the

mean curvature of the embedding é [f;] at the point (0, ¢). For all ¢, since é|[f;] is a Clifford torus,
it is minimal, thus H; vanishes for all f;.
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Thus, since J denotes the Jacobi operator of Ty, by definition,

OH,
Jf=— = 0.
/ ot |i—o
Since J = —2(A +2), it follows that f € Ker(A + 2). Since f € Toe *(CL) is arbitrary, it follows
that
Toe ' (CL) C Ker(A +2)

Finally, to obtain equality, notice that these two spaces are 4 dimensional. This completes the
proof. O

Furnishing £ with a smooth manifold structure is non-trivial. In fact, we would like to
£ to be a Banach manifold. However this is not the case, because the transition applications
between two different charts are not differentiable. For this reason, we introduce the following
terminology of weakly smooth manifolds, which allows us to endow & with all the structure
required to develop our theory. We refer the reader to [Ros-S] for more details.

Let X be a smooth, compact, finite dimensional manifold. Given another smooth, finite
dimensional manifold Y and a map, ¢ : Y — C*°(X), we define ¢ : X x Y — R such that

(z,y) = o(y)(x).

Definition 1. ¢ is said to be strongly smooth whenever ¢ is smooth.

Now consider another smooth, compact, finite dimensional manifold X’. Given an open
subset Q C C°°(X) and a continuous map @ : Q@ — C (X),

Definition 2. ® is said to be weakly smooth whenever the operation of composition by ® sends
strongly smooth maps continuously (in the C}%. sense) into strongly smooth maps.

Definition 3. A weakly smooth manifold M modelled on C*(X), is now defined to be a
Hausdorff topological space furnished with an atlas, all of whose charts are open subsets of
C*(X), and all of whose transition maps are weakly smooth.

Note that the function e defined by (2.19) is a weakly smooth diffeomorphism onto an
open subset of £. It thus defines a weakly smooth chart of £ about T. Finally, in this terminology,
CL is a strongly smooth, 4 -dimensional embedded submanifold of £ and observe that, the set

e }(CL) is a strongly smooth submanifold of C* (S' x S!,]—Z Z|).
It follows that £ naturally carries the structure of a weakly smooth manifold (see [4]).
It therefore makes sense to talk about tangent vectors, tangent spaces, differentiability and so on.
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2.3.1 The symmetric space structures of S* and CL

In order to understand how the geometry of CL relates to that of S3, we review the
symmetric space structures of these manifolds. Let O(4) denote the group of 4 -dimensional
orthogonal matrices. Let Wg : O(4) x 83 — S3 and ¥¢y, : O(4) x CL — CL denote the left
action of O(4) on S and CL, respectively. That is, for all M € O(4) and for all z € S? and
T e CL

Ug(M,z) := Mz = {Mz |z € $3} and

UL (M, T) = MT = {Mz |z € T}.

The subset of elements of the group that leaves a given element fixed plays an important
role. The stabiliser of T in O(4) is

Stab(To) — {( P ) | M,N e 0(2)}

This subgroup naturally identifies with O(2) x O(2) = O(2)?, and we write
Stab (Tg) = O(2)*
Thus, if C': O(4) — CL is defined by

C(M) := MT, (2.21)

Then C descends to a smooth diffeomorphism from the homogeneous space O(4)/0(2)?
into CL.In this manner, CL identifies with homogeneous space of O(4).

Let 0(4) denote the Lie algebra of O(4) which, we recall, identifies with the space of
4-dimensional antisymmetric matrices.

o(4) = {M | M+ M' =0}
We furnish this Lie algebra with the positive-definite bilinear form

G(M,N) := —n*trace(MN) (2.22)

Define
h:=0(2) ®o(2) and
t:=ht

where the orthogonal complement is here taken with respect to G. We verify that

[h, €] C ¢ and
[, €] C b

so that the decomposition
o(4)=tabh

constitutes a polarisation of 0(2). It follows that CL is in fact a symmetric space (c.f. [22]).
Since CL has a symmetric space structure we are going to study its Riemannian metric. For

A € End(R?), define &4 € € by
0 A
Sa=\ a0

The map A — &4 trivially defines a linear isomorphism from End(R?) into &.
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The metric over End (R?) is given by
(A, B) := 2% trace (ABt) . (2.23)

with these metrics, the above map becomes a linear isometry.

Let C be a funtion defined by (2.21), its derivative at Id defines a linear isomorphism
from £ into the tangent space to CL at Ty. By Lemma 4, this tangent space in turn identifies
with Ker(A 4+ 2) € C* (Ty,] — %, Z[). For all A € End (R?), let ¢4 denote the image of {4
under this map. Following through these identifications, we readily obtain,

Lemma 5. For all A € End(R?),

. cos
6400, 0) = (cos(e),sm(e))A( Singgf)) ) (2.24)
Proof. Indeed, for sufficiently small € > 0, let (at)te}_e’e[ : St x 8! — St x S! and (ht)te]—e,e[ :

S! x S — ]—Z Z[ be such that, for all (6, ¢)

454
Exp(t84)®o(0, ) = ® (e (0, ¢), he(0, ©))
where @ is the canonical parametrization of the Clifford Torus T.

For all ¢,
Exp(téa) Tm (@) = ¢ [y o a7 ']
it follows that

0
$a= =hyoa;
A P
since ag = Id and hg = 0, the chain rule yields
0 0
¢A = &ht = a EXp(th)(Do(e, 90) ) NO(Ha 90) 5
t=0 t=0

where Nj is the unit normal vector field over ®( given by (2.4). Thus

oA = <§A(I)0(97 (P)’ NO(Ha W))

and the result follows, upon substituting (2.3), (2.4) into this relation.

By (2.24), for all A, B € EndR?,
G(§a,€B) = (A, B) = / pappdidey,
Sixst

So that, DC(Id) defines a linear isometry from ¢ to T,CL, justifying the normalisations of (2.22)
and (2.23).

Since B is bi-invariant under the action by conjugation of O(4) on 0(4), it extends by
left and right translation to a unique Riemannian metric over O(4). Recall now that the tangent
bundle of O(4) decomposes orthogonally with respect to this metric as

TO(4) = 7th @ ¢,

where

mhh = {(M,MA)|A € b}
rhe = {(M,MA)|A € £}
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here denote the left translations of h and € respectively. Since the left action of O(4) on CL is
also isometric, it follows that by the preceding paragraph C defines a riemannian submersion
with kernel 77h such that C*T'CL is isometric to 77€. In particular, C' defines a smooth isometry
from O(4)/0(2)? into CL.

2.3.2 Killing fields over CL.

For all £ € 0(4), let X¢ denote the pull back through ® of the vector field that it generates
over S?

0
Xe= 0" a(Exp(tgA) - x)
t=0

and let F¢ denote its flow. Vector fields of this form are referred to as Killing fields. The space of
Killings fields as a 6-dimensional vector subspace of T' (S' x S' x |—-% Z).

Observe that, for all £ and for all suitable (0, ¢, r) and ¢
(Do Fey)(0,9,7) = (Expt&o @) (0,p,7) (2.25)

Observe that, when £ € b, X, is tangent to the surface S! x 8! x {0}. In particular, Fy preserves
this surface. It follows that elements of § yields Killing fields and flows which are trivial for
own purposes. For this reason, we will only be interested in Killing fields and flows arising from
elements of €. Thus for all A € End(R?), denote

X4 :=X¢, and

(2.26)
Fyp :=Fg,.
Lemma 6. For all A € End (R2)
i (T 994 o 994
Xa(0,¢,7) = cot (4 + r) 50 (0, )09 — tan <4 —i—r) 2 (0,0)0, + da(0, )0, (2.27)

Proof. Let g denote the pull-back through ® of the constant curvature metric of S3. For all
constant vectors £ and 7

(Lx49) (&n) =Dx,(9(&n) — g ([Xa,&],nm) — g (& [Xa,n])
=Dx,(9(§, 7)) + 9 (DeXa,n) +g(&,Dx,n)

However, since Fq; is a flow of isometries,
Lx,9=0
By ¢ (0r,0,) = 1. Substituting £ = n = 0, therefore yields,
9 (Do, X4,0,) = -Dx, (9(0r,0,)) =0

so that the 0, component of X4 is independent of r. However, when r = 0, this component is
equal to ¢4, so that

XA(Q’ 2 T) = u(ea ®, T)89 + v(@, ®, T)alp + ¢A(03 30)87’
Substituting & = 7 = Jy then yields

ou

0 . o, .o, T
¢AESIH (Z +7)+ 2sin (Z—l—r)
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024

Since 555 = —¢a, this becomes

~ 592 S0 (Z + 1) 4 2sin (Z+T)% =0
which is solved by

0
u(b.6.7) = cot(T +1) 204 (0, ) 1 p,r)
4 00

for some function #%. In the same manner, we obtain

o601 = —tan(§ + 1) 52 0,9) +9(6,7)

for some function vSubstituting & = 9, and n = 9y shows that @ is independent of r, whilst
substituting £ = 0, and 7 = 0,, shows that ¢ is also independent of r. Finally, substituting £ = 0y
and 1 = J, shows that

o n ou 0

0 Op
so that, by the principle of separation of variables,

o7 01

=,

90— 9

for some constant c. Since T is compact, ¢ vanishes so that both @ and ¥ are constant. Finally,
by evaluating X4 at r = 0, we show that this constant vanishes, and this completes the proof.

O]

2.3.3 Local Properties of the set of zeros of elements of Ker(A + 2)

In this section, we study the level sets (or sets of zeros) of elements of Ker(A + 2). The
study of level sets of smooth functions is very delicate. Recall that, in a neighborhood of a regular
point, the level set can be studied by the implicit function theorem. However, in a neighborhood
of a singular point, the study is very delicate.

We shall provide a charming geometric description of Fermi coordinates about a Clifford torus.

For A € End (R?)\{0}, Z4 will denote the set the points (0, p) € T such that ¢4(6,p) =0
that is,
Za = ¢ ({0}). (2.28)

Observe that Z4 is a projective property of the matrix A in the sense that it unaffected by
multiplication by non-zero scalar. Recall that the metric over End(R?), is given by

(A, B) := 2% trace(AB?). (2.29)
Consider the unit sphere in End(R?). This is the set given by
Yi={A]|A* =1} (2.30)
Since Z 4 is projective, it suffices to consider A € X. Let
7=(1 )
denote the standard convex structure over R?. Recall that, for all ¢,

exp(t]) — ( cos(t) —sin(t) > (2.31)

sin(t)  cos(t)
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Lemma 7. For all 0, ¢ € St and for all s,t

i) ¢A(0+ 8, + 1) = Prxp(—sJ)AExp(t])-
i) Ogpa = —Pja-
iii) Dppa = Pay.
w) Det(A) = pajdja — dadjas.
In particular (0 + 7, ¢) = dpa(0,p +7m) = —da(0, ).

Proof. i), ii), iii), iv) are obtained directly from the definition of ¢ 4. O

Finally, recall that, for all A € End(R?),

Det(A) = —% trace(JAJAY). (2.32)
Denote:
Yo :={A € X | Det(A) =0} and
1 (2.33)

Matrices in Yo and X, /4 will be said to be singular and special respectively, whilst all other
matrices in 3 will be said to be generic. Suppose that A € ¥ is singular. Upon composing with

rotations, we may suppose that
1
—— 0
A= V2r (2.34)
0 0

hA = \/1§7r cos(6) cos(¢p).

ZAz{ezg}u{ezSgr}u{gp:g}u{cngg}. (2.35)

In other words Z4 consists of the union of two horizontal and two vertical circles.

so that

It follows that

Suppose now that A is special. Again, upon composing with rotations, we may suppose
1
0 2

1 € . . 1
ha = o cos(0) cos(p) + by sin (@) sin(p) = o cos(0 — ep)

that

where € = Sign(Det(A)), so that

It follows that
ZA:{9+6¢€7TZ+72T}. (2.36)

In other words Z4 consists of the union of two diagonal circles with constant gradient equal to e.
Furthermore, the sign of € is equal to that of Det(A).
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Finally, suppose that A is neither singular nor special, that its A € ¥\ (3¢ U Zg). We
first show that if (0, p) € Z4, then dgda(0, p) # 0. Indeed, otherwise, by lemma 7, the vector
A(cos(p),sin(p))! is orthogonal to both (cos(f),sin(6))! and J(cos(f),sin(f))!, and therefore
vanishes. This is absurd, since A is non-singular. Likewise, 0,04 (6, ¢) # 0. It follows that Z4
is a union of smoothly embedded curves whose tangent lines are never horizontal nor vertical.
Upon composing with rotations, we may now suppose that

a b
A= a)

where both a and d are non-zero. It follows that
dA(0,p) = acos(f) cos(p) + bsin(f) cos(p) + dsin() sin(yp).

Thus
$a(0,9) =0« acosfcosp+bsinfcosp + bsinfsing =0

< acosfcosp = bsinf cosp + dsinfsin ¢

S acotd =b+dtanp (2.37)
< atan(f — g) = b+ dtan(p)
Thus,we will consider a reparametrization
(&;m) := (cot(8), tan(p)), (2.38)
in this reparametrization we obtain
T
Zan (07lx |-3.3]) = (&) [an-+ dg +b=0) (2:39)

It follows by lemma 7 that, with the exception of 4 points Z, coincides with the union of 4
translates of this set. In particular, Z 4 is the union of two smooth, closed curves which, up to
the transformation given by (2.38), are straight lines.

This representation can be improved slightly. Indeed, by lemma 7 together with standard
formulae of curve theory (c.f. [3]), at any point (8, ) of Z4, its geodesic curvature k satisfies

JVo JVo
=NV (== ==
" (Hwn ||v¢u>
thus
IVo|*k = ol 1IN (JVe, JV)
= Hess(¢)(JV ¢, JVo)

- () (o)
= —¢y (qb?u + qﬁ%A) — 20547047974

Thus, by lemma 7 and (2.32), because we are along the level set ¢4 = 0
IVo|I°k = —2Det(A)¢a,-

Note that, the curvature vanishes when ¢4y vanishes. It is then straightforward to show that,
since A is non-special, ¢ y4; vanishes at 4 evenly spaced points along each of the two components

of Z 4. Furthermore, any two such points along the same component of Z4 are separated by an
integer multiple of (%, S"), where e = %1 is equal to the sign of Det(A). These points are the

inflection points of Z4, these inflection points are precisely the points where the curvature is
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zero. Upon composing with rotations, we may suppose that one such point inflection point lies
at (5,0), so that

so that

zan (071x | -3, 5 ]) = (@) |y = cotr)a)

™

In particular, the gradient of Z4 at (5, 0) is equal to cot(r). Finally it is straightforward to show
that if (0, ¢) and (0',¢') are two consecutive inflexion points along the same component of 74,
then their gradients v and 7/ satisfy vy’ = 1.

2.3.3.1 Geometries of X, ¥z and X

Differentiating (2.32) we see that (JA, AJ) constitutes a basis of the tangent space to X
at a the point A. Likewise, the unit normal vector at this point is —JAJ. In particular,

—DjuJAJ = AJ and
—DyjJAT =JA

The second fundamental form of >y with respect to this basis is therefore

0 1
- (1))

so that 3¢ is minimal. Furthermore, by Lemma 7, the group SO(2) x SO(2) acts freely and
transitively over g, so that this surface is a torus. Indeed, ¥y is a Clifford torus (c.f. [3]).

Given A € ¥, the unit speed geodesic in ¥ leaving A in the normal direction to ¥y is
~v(r) = cos(r)A — sin(r)JAJ

When A takes the form (2.34 ), this becomes

v(r) = \/1% ( BOS(T) O_Sin(r) )

It follows that matrices B lying at a distance 6 from g along 3. are precisely those for which
Zp has gradients tan(6) and cot(@) at its inflection points. In particular, along the set of special
matrices is precisely the set of matrices lying at a distance 7/4 from %y. In other words, > /4
consists of the two circles lying at the two extremes of the Fermi parametrisation of ¥ about .
The evolution of Z,;,) as r varies over the interval [0, 7] is shown in Figure (3).
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Figure 3 — The evolution of Z.(r) as ¢ varies over the interval [0, 7]. The points of maximum

curvature move along diagonal lines at non-constant speed.
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2.4 The geometry of curves in CL

In this section, we derive an explicit formula for curves in CL which pass through Ty
and which have prescribed first and second derivatives. Indeed, for A, B € End (R?), define
v : R — CL such that

7(0) = Ty
4(0) = ¢4 and
(V49)(0) = ¢5
where V here denotes the Levi-Civita covariant derivative of CL. For sufficiently small ¢, let

fi]—e e[ — C>® (8! x 81, ]—%F, %) be such that, for all ¢

Theorem 3. For all A, B € End (Rz) and f defined as above, then
sy =toa+ 222 (05— (24) 1 (22)7) w0 ()
AT 7P oe d¢ '

In order to prove theorem 3, we first express f in terms of the flows of certain Killing
fields. Indeed , by the classical theory of symmetric spaces, the exponential map of CL at Ty is

E : End(R?) — CL

such that A — Exp(£4)To.
We may therefore suppose that

y(t) :=F <tA + th)

As in the previous section, let X4 and Xp denote the vector fields defined over S! x S* x ]—%, %[

by the pull-back through @ of the infinitesimal flows defined over S? by &4 and &g respectively
and let F)4 and Fg denote their respective flows.

Recall that,for all (s,t),
Exp(sA+tB) = Exp(sA) Exp(tB) + O(st)

so that, bearing in mind (2.25),

~(t) = Exp <t223> Exp(tA)To+ O (t3>

= {(q)OFB,tj oFAﬂf) (0,0,0)+ 0O (t3) | 6,0 € Sl}

Now let o+ and hg; be such that

FB,s (FA,t(97 P, 0)) = (as,t(ga 90)7 hs,t(97 90)) .

Observe that ago = Id , so that, for sufficiently small (s,t), s, is a smooth diffeomorphism.
For all such (s,t), let 55+ denote its inverse.
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Lemma 8. For all sufficiently small t

£0)(6.) = (b

2

LoBa,) (6.:0)+ 0 ()
Proof. Indeed, for all ¢
(1) = {@ (fm [0,0),h2 t(9,<p)> +0(8) 16,0 € Sl}
P P

= {q) (9,4,0, (ht;,t O/Bt;7t> (9,@)) + 0 (t3> | 6,0 € Sl}
However, by definition of f(¢) we have that

()= {@ 0. FO)0,0) + O () | 6,0 €S}

The result follows. O

Denote oy := ag ¢, hy := hoy and By := Bo .
Lemma 9. The first derivatives of h and 3 satisfy
on,

ot
9Bt

ot

= ¢4 and
=0 (2.40)

3¢A) (3¢A)
=—|—=-)0+|—5—)0
t=0 ( o0 Dy v
Proof. Indeed, by definition, for all ¢, and for all 8, ¢

(a(0,0),hi(0,0)) = Fay(0,9,0)

Hence,
0oy Oh
(%t 5 ) = Xa (Fagl0) = Xa (e, )
since ag = Id and hg = 0, this yields
Ohy
bl — d
at |, ¢4 an
Oag|  (0¢a 3¢A>
= (a) 0~ (52) %
By definition, for all ¢
agofy=1d
so that, by the chain rule,
Jda 0
8—ttoﬁt+(DatoBt)£:O

since ag = [y = Id , this yields

op:
ot

80615

o Ot

(o) (52)%

This completes the proof. O
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Lemma 10. The second derivative of h satisfies

Phe| (8¢A)2 - <8¢A>2
5 =
ot -0 00 Op
Proof. As before
80@ 8ht
bl AU R '
(G 5 ) = Xa (o o)
It follows by (2.40) that
% =¢a0Q
ot AT
Differentiating a second time yields
tht Oat
Bz~ (Doaca) 5
so that, by Lemma 9 ,
0*hy @) = (am)? B (8¢A>2
ot2 —o o0 dp )
This completes the proof. O
We now prove Theorem 3
Proof of Theorem 3. Indeed, by Lemma 9
ahs t
) — d
ds s,t=0 ¢B o
Ohs 1 B
ot s,t=0 - ¢A‘

of,  (0h oh
Bt ! <08)t22,to/6t22,t+ (&f)iioﬁtj,t

e(orgonn) (1(5) o+ (5)0,) £ 0

since hoo = 0, and Byo = 0 evaluating at ¢ = 0 yields

h
o (B |y,
ot |1—o ot )4 6,4=0
Differentiating a second time and evaluating at zero yields
Prl <8h> N (a%)
912 —\ 9s 912
L 05/ s 5,t=0 ot sitls =0
=0 () | (&)
at s,t =0 at s.t
St= “ls,t=0

+ DQhS’t

(%)
5,t=0 at st
0?3
s,t=0 atQ
s,t

().,

s,tO)

s,t=0

+ Dhs,t

s,t=0
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since hgo = 0, the last two terms vanish. Thus, by Lemmas 9 and 10

%8 —oam () ()

ot?

t=0

It follows by Taylor’s theorem that
_ 1, Opa\? Opa\> 3
ft—t¢A+2t <¢B_(ae> +<8<p> —|—O(t)

This completes the proof. O
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3 Proof of Main Theorem

Although conceptually straightforward, the application of perturbation theory to the
construction of eternal mean curvature flows leads to cumbersome notation. This is mainly
because it is rare to have a canonical parametrisation of any given embedded surface, and even
rarer to have a canonical family of parametrisations along a given family of surfaces. In this
chapter, we address this using the standard parametrisations of Clifford tori. Although this
makes our presentation specific to the case of Clifford tori in S, the techniques we develop are
more general.

3.1 White's function construction

Let gL (Ss) denote the Banach manifold of C1® Riemannian metrics over S3. Let
g1 € ghe (S3) denote the standard metric of constant unit curvature. Define

. 2,a [ ql 1| ™7 Lo (@3 0,a (ql 1
H:0(4) x C (s xS } 4,4D x gl (8%) — ¢ (8! x 8)
such that, for all M € O(4) for all f € C?*(S! x S1,]-Z Z]), for all g € G1* (S?) and for all
(6,¢) € 8! x S,

H[M, f,g](0,¢) : is the mean curvature of the embedding Me[f] with respect
to the metric g at the point (6, ¢).

Defining H in this manner, we have that H is a smooth function between Banach manifolds. As
we have shown in section 1.2, its partial derivative with respect the second component satisfies,
for all M € O(4)

D2H [M7 0791] f = _Q(A + 2)f

Let K denote the kernel of A + 2 in L2 (S1 X Sl). Recall that K consists of all functions
¢ of the form

¢ =¢a,
where, for all A € End (RQ), ¢4 is defined as in (2.24). Let K+ denote the orthogonal complement
of K in L?(S' x S!). Let 7 : L? (S! x S!) — K and 7t : L? (S! x S!) — K* denote the L*-
orthogonal projections of L? (S1 X Sl) onto K and K™, respectively. For all (k,a), let | 2

denote the intersection of K+ with C* (S! x S!). For all (k, ), since K is a finite-dimensional
space of smooth functions, 7+ maps C*© (S1 X Sl) continuously into K-,

Theorem 4. There exist a neighborhood Q of g1 in GF* and a unique smooth funtion f :
0(4) x Q — K22 such that

f [M7gl] = 07
and for all M € O(4)and g € 2

(vt o H) [M, f[M, gl,g] = 0

Proof. Consider the restriction of 7+ oH to O(4) x K+ x G, By definition of the Jacobi operator,
for all M € O(4)

(x* o DoH) [M,0,01] - f = (w07 - f
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Recall that, over T
J=-2(A+2)

In particular

o) =—2(A+2) (3.1)

that is, for all M € O(4), (ﬂ'L o D2H> [M,0, g1] defines a linear isomorphism from K2 into

K+0e Tt follows by the inverse function theorem that there exists a neighbourhood €2 of g; in
G* having the property that there exists unique smooth function f : O(4) x Q — K529 such
that, for all M € O(4)

f [M7gl] =0
and, for all M € O(4) and for all g € Q

(v o 1) [M, fM.gl,g] = 0.

O
Remark 1. The function f of the previous theorem will be called White’s function.
Define & : O(4) x 2 — R such that, for all M € O(4) and for all g € Q,
it = Arealel ) (32
that is, [ M, g] is the area of the embedding Me[f[M, g]] with respect to the metric g.
Define h : O(4) x Q© — K by
h[M, g] := (w0 H) [M, f[M, g].g] (3.3)

By uniqueness, the functions f, h and @ are invariant under certain transformations.
First, since O(4) is compact, we may suppose that (2 is invariant under the action of this group
by pull-back on G4 (S?). Now, for all M, N € O(4), for all f € C**(S! x S',]—Z, %) and for
all g € Q
h[M, f,N*g] = B[N M, f,g]

so that, by uniqueness, for all M, N € O(4) and for all g € Q,

f[M,N*g] =f[NM,g],
h[M,N*g] =h[NM,g] and (3.4)
a[M,N*g] =a[NM, g].

Likewise, for all M € O(4), for all N € O(2)?, for all f € C** (S! x S!,]—Z,Z) and for
all g € Q B 3
h[MN, foN,g] =h[M, f,g]o N

so that, by uniqueness again, for all M € O(4), for all N € O(2)? and for all g €

f[MNvg] = f[Mag] oN
[MN,g] =h[M,g]o N and (3.5)
a|[M N, g] = a[M, g].

="
=
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Recall that the functional I: C*° (S3) — C'* (CL) is defined by

T[u](T) := /T udAg (3.6)

where dA7 here denotes the area form of T

Lemma 11. If h = 2ug;, for some u € C* (Sg) is a first order variation of a metric, then, for
all M € O(4)
Doa [M, g1] h = (I[u] o C)(M). (3.7)

Proof. By the left invariance given in (3.4) we may suppose that M = Id. Let (g14s)ej_c [ be @
smooth family of metrics about g; such that

8gl—f—s
0s

=h =2ug.
s=0

For sufficiently small s, denote es(0,¢) := (0,90,f[1d,gl+s] (0,4,0)). Note that we can
represent every torus, close to the initial torus Ty as a graph over a torus. For sufficiently small
s and t, let as; denote the area of the embedding es; with respect to the metric ®*gy.

Note that, when t = 0, since T is minimal, the area form of e; with respect to ®*g;
satisfies )

N 2
dAw,Hﬂw¢+0@).

Hence )
_ 2 2\ _ o 2 2
as0 = 2/51X51d0d<,0+ O(s ) =271" + O(s ),
so that
8@5’,5 —0.
ds s,t=0

On the other hand, when s = 0, since h is a first order variation of a metric, the area
form of ey with respect to ®*gy¢ is

1
d%ﬂ:§@+mwww+0@y
Hence,
1
apt = = / (1 + 2ust) dfdp + O(t?)
2 Sl XSl
= 272 4 tI[u] + O(t?)
so that 5
ot ).
ot s,t=0
It follows by the chain rule that
~ Oas,s Oas ¢ Oas ¢
Doa[Id, g1 h = : = : : = I[u] (To) .
24 [ 791] 88 =0 88 6,6=0 at 5,6=0 [’U,] ( 0)

This completes the proof.



46 Chapter 3. Proof of Main Theorem

Lemma 12. For all M € O(4), for all g € Q and for all A € End (R?)

< 1 -
Dilid.gléa =5 [ oahlld gldodo+ 0 (4] lg ) (33)
X

Remark 2. By the right-invariance given in (3.5), D1a[M, g] vanishes over (TLh> (M) so that
(3.8) completely describes D1a[M, g].

Remark 3. By the left-invariance given in (3.4), for all M € O(4), for all g € Q and for all
A € End(R?),

1

Dua(M. ) (ra) W) = 5 [ oab(M.gldbdo+ O (Al g - gl

Proof. First observe that, since h[Id, g;] = 0,

h[1d, g = O(llg = g1llpr.a) (3.9)

Now, choose A € End (RQ) . For all sufficiently small s and t, let a,; denote the area
of the embedding Exp (s€4) e [f [Exp (t€4) ,g]} with respect to the metric g. Let X4 denote the

pull-back through ® of the Killing field generated over S3 by &4 and let F4 denote its flow. For
all sufficiently small s and ¢, denote

es,t(e) SO) = FA,S (07 @, f[EXp (th) 79])

then
(®oesy) (0,9) = (D0 Fas) (6., f [Bxp (t€4) . 9))

= Exp (séa) e | f [Exp (t64) . 9]] (6.0).

it follows that as; is equal to the area of e;; with respect to the metric ®*g. However, by
definition of F4

= XA(H, @, f[Id, g])
5,t=0

865715

s (0, )

The unit normal vector field over ep with respect to ®*g is

N = (0’07 1) + O(Hg - ngC’lva)'

Furthermore,

flid, g] = O(llg = g1llgra) -
It follows (2.27) that

(@) (053 (0,)

tO,N(97¢)> = 0a(0,9) + O ([|Allllg = g1llcra) -

since the area form of e with respect to ®*g is

1
dA = 5dbdp + O (Ilg — g1llcra)

It follows by (3.9) and the first variation formula for area [24], that

1 N
- 2/ 640, )B[1d, g] (1+ 0 (|| 4]l g = 11|20 ) ) dbdp
5,t=0 S1xS1

8(15775
0s
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On the other hand, for all ¢

fExp (t€4) 1] =0,

so that

5 [Exp (t£4), 9] = O (| Al llg — g1llgr.a) -

Thus, by (3.9) and the first variation formula for area again,

1
=3 / h1d, 6] (Al llg — g1ll ) dOdip
5,t=0 SlxSt

0 (1411 g - g1l12.)

6as,t

ot

It follows by the chain rule that

. Oas das
D1a[To,g]éa = 8s7t 0 8t7t =0
1 ~
— 5 [ b1, g0a(6.0) + O(lg ~ gll . A1) dbd
SixS!

Finally, since Ty is minimal, by (3.9) yields the desired result.
This completes the proof.

Lemma 13. For all T € CL, for all g € Q and for all A, B € End (R?)

1

Hess@M. ) (€0.65) = 5 [ 0aDIB[M. ) (€5) b+ O (JAIB] g~ 1)

Remark 4. By the left-invariance given in (3.4), for all M € O(4), for all T € CL, for all
g € Q, and for all A, B € End(R?)

Hess(a[M, g]) ((TLfA) (M), (TL§B> (M))

1

_ 2/5 . $ADIB[M, g] (r%¢p) (M)dbdg + O (Al B g — g1]2:.c)
1>< 1

We have chosen to state Lemma 13 in the above manner for ease of readability.

Proof. Choose A, B € End(R?). Recall that

Bxp (s6a + #€5) = Exp (1) Exp (s64) Exp ( 5t (€4, €] ) + 0 (52 4 £9)
so that, since [£4,&B] € b

Exp (s€a + 1) To = Bxp (t€5) Bxp (s€4) Tp + O (s? +12)
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Thus, bearing in mind Lemma 12 and by the right-invariance given by (3.5), we have that

2

Hes (814 ) (0.60) = 8 € (e +t€o) ]
- 82;5 [Exp (t{g) Exp (s€4) , g] o
_ a‘z;a 55 (564) Bxp ()"
- 23 /ss 6a(0, B 110 Bxp (t€2)" gl oy + O (14 s~ o)
1

= dodp + O (IAN1Bllllg = g111&1. )

- = / e go)gtfl [Exp (tB) , 9]
S1xSt t=0
1

— 5 | @al6.o)DiE0d, gléadsdp + O (JANIB] lg - il
S1xS!

The relation follows, and this completes the proof. O

3.2 The mean curvature flow operator

We now extend our framework to the time-dependent case which interests us. Thus, fix
u € C*°(S?) and suppose that I[u] is of Morse Smale type. Let v : R — CL be a gradient
complete flow of I[u], that is

Y(t) = =VI{u](v(¢))
for all ¢ € R. We have that for all ¢, (t) represents a Clifford torus. Let (g1+s)se)_ ¢ e @
smooth family of metrics in G1*(S3) metrics that perturb g; such that

691—0—3
Js 5=0

= 2ug

Let Q be as in the previous section. By invariance, a projects to a smooth function a : CL x 2 — R.
For all s, define a145 : CL = R by

ar4s[T] :== a[T, g14]

Now, we are going to change the speed with which we walk along ~, that is, for all s, we consider
v(st) as an approximate gradient flow of a14s. Indeed, by

a145[T) = 272 + sl[u)(T) + O (5?)

the velocity of «(st) is at every point equal to minus the gradient of aj;1s up to an error
of order 2 in s. In this section, we will show that, for sufficiently small s, v(st) perturbs in
£ to a complete gradient flow of the area functional of g14 s, that is, an eternal mean curvature flow.

Recall that, 7 can be represented as a curve within the Lie group O(4), that is, we
may suppose that v(0) = Ty, let M : R — O(4) be the unique lift of v such that M (0) = Id,
v(t) = M(t)Ty, and for all t, M (t)~'M(t) € ¢&. We verify that such a lift exist. Let X := VI[u]
be a vector field along of CL, recall that the map 7 : O(4) — CL such that C(M) = MT,.
Note that, for M € O(4) we know that

Ty O4) =l @ vl
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For the other hand, we also know that DC)| 1, is a isomorphism, then there is X (M) € 7-¢
such that B

DCy - X (M) = X(C(M)),
this defines a vector field X : O(4) — TO(4). we can suppose applying isometries, that
7(0) = Ty. Let M be a integral curve of X such that My = Id. Then

9 9
=(Co M) = DC(M(t))@M@
= DO(M(t)) X (M(t))
)

= X((CoM)(t))
Therefore C'o M is a integral curve of X, so by uniqueness C' o M = ~. Note that ~ leaves T
and is also an integral curve. Thus we have a curve M which is a curve within the group.

3.2.0.1 Parabolic Operators

We first aim to determine formal solutions of the equation MFC(n, f,s) = 0 for small
values of s. To this end, we introduce the following functional analytic framework. For a finite-
dimensional vector space E, and for a €]0, 1], define the Holder seminorm of order o over
C°(R, E) by

s)— f(t
flo= sup =IO (3.10)
o<ls—tj<1 |8 — 1
For all k and for all a €]0, 1], define the Hélder norm of order (k,a) over C*(R, E) by
1 £l =D |07+ [0Ff] . (3.11)

where || - ||o denotes the uniform norm. For all (k, «), define the Holder space of order (k,a) by
CE(R, E) = {f € C*R, E) | ||k < o0}

Recall that C*® furnished with the norm | - || constitutes a Banach space.

In the case where F is a vector space of infinite dimension, for all a €]0, 1] define the
Hélder seminorms of order a over C? (R x S! x S!) by

[f(t,x) = f(t,y)]

[f]x,a ::tsuf Iz — y°
7I y
(3.12)
f $,T _f t,IE
fai= sp DG
z,0<|t—s|<1 |s — ¢
For all k € N, let CE (R x S x S! ]—g, Z[) be the set of all functions f : R x S x St - R

which are continuously differentiable ¢ times in the x direction and j times in the t direction
for all i + 25 < 2k. For all k£ € N and for all « €]0,1/2], define the anisotropic Holder norm of

order (k) over Cf, (R x 8' x 81, ]-%. ) by

Wlleam = > ||DiDlf| + X [DiDlf] , + > [DiDif], (313)

i+25<2k i+2j=2k i+2j=2k

For all k, «r, define the anisotropic Holder space of order (k,

a) by
Ci];(RXSlXSl’}_Z’ZD {fe <]R><Sl><81] ZZD

} . (3.14)
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Now, for ) € CH*(R, ¥), for f € Cp® (S! x S! x R,]-7%, %) and for s €] — ¢, €[, define
e[n, f, s] such that, for all (6,¢,t) € S x St xR

e[, £, 5)(0, ¢, 1) = Exp(n(st)) M(st)® (0, ¢, f [Exp(n(st)) M (st), 1] (0, 0) + 5F(0,0,1)) -

For all such 7, f and s, define N[n, f, s] such that, for all (9, p,t) € S x St xR, N|[n, f, s](0, ¢, 1)
is the unit normal vector over the embedding e[n, f, s](-,-,t) at the point (6, ¢).

Likewise, for all such 7, f and s, define H[n, f, s] such that, for all (6,¢,t) € S! x S! x R,
Hin, £, s](0, ¢, t) is the mean curvature of the embedding e[n, f, s|(-, -, t) with respect to the metric
91+s at the point (0, ). The mean curvature flow operator

™

MCF : C12 (R, €) x O} (sl « 8! x R,}_Z, T

D x| — €, e[— CO° (S1 x St x ]R)

is defined by

MOFly. f,5] = gues (pyel £.51 Nl £.51) +T0p. £, (3.15)

This operator defines a smooth function between Banach spaces. The function MCF(n, f, s]
vanishes if and only of e[n, f, s] is an eternal mean curvature flow with respect to the metric gy s.

Define W : ¢ — K such that, for all A € End(R?),

(§a) = da.
Lemma 14. For n € CY*(R,¥), for f € C’;;a (S x S! xR,]—Z,%]) and for s €] — €, €[, and
for all (0, ¢,t)
0
gi+s (Eeh% f7 S](67 P, t): N[777 f7 8](07 ®, t))
of

= s (0(t) + M (OM (1)) (0.9) + 5750, 0,8) + O (8° + sllnl[2ac

Proof. By time invariance of the mean curvature flow operator, we may suppose that t = 0. Let
A, B € End (R?) be such that

7(0) = &4 and
M(0) =¢p

Let X 4 be the pull-backs through ® of the Killing fields generated over S3 by £4. Likewise, let
Xp be the pull-backs through @ of the Killing fields generated over S by ¢p. Let F4 and Fp
denote their respective flows. Define € by

&(0,0,t) = (Fast © Fisr) (0,0, F [Exp(n(st)) M(st), g115] (0,0) + 5£ (0 0,t))
First we show that
Exp (st€4) = Exp (n(0)) ™" Exp (n(st)) + O (522 + |2 st) (3.16)
Indeed, by Taylor’s theorem and since 7 takes values in £, we have that

n(st) = n(0) + stéq + O(s*t?)
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then,
Exp (n(st) = 3 l' (1(0) + sti(0) + O(s*2))
k=0
© 1 k k - . L
=> 5> <l>77(0) (stn(O) + O(s°t ))
k=0 =0

Now, note that

Exp(n(0)) Exp(stij(0)) = Exp(5(0)) (1d +sti(0) + O (s*#2))
= Exp(n(0)) + (1d+0 ([ln]2:)) sti(0) + O (s*2)
= Bxp(1(0) + sti)(0) + O (s + [[n]|1t)
thus
Exp(n(st)) = Bxp(n(0)) Exp(sti)(0)) + O (s + |ln]|:st)

so, we obtain the desired equality.
Then, by (3.16)

(®0&)(0,0,t) = Bxp (st€.a) Exp (st&p) @ (6, 0, f [Exp(n(st) M(st), g14] (6, 9) + sf(6.0,1))
= Exp(n(0)) e[, £, 5](0, ¢, 1) + O (s + stl|n][31.0)

However,
oé

E(ea ®, t)

= X4 (6,50, [Exp(1(0)), g1+] (6, ¢) + s/ (0
+5X5 (0., F [Exp(n(0)), g15] (6, ) + (6
52 FIEp(n(®)M (1) 911:) (0.

)
)
at )
)

+ (00552 0.6.0)) + 0 (sl

t=0

(o0

Recall that, for all M
f[M7 gl] =0

it follows that

FExp(n(t)) M (t), g1+s] = O(s).

It follows by Lemma 6 that

oe

of
5 0@ 1)

= (00). 0. 504(0. ) + s05(6.5) + 5550 6.0) + O (% + sl )

t=0
Observe that é(-,-,0) is the graph of a function of size O(s), thus the unit normal vector field
over é(-,-,0) with respect to gi4s is

N(0,¢) =(0,0,1) + O(s)
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It follows that
o ~
91+s ((%e[nafa 5](‘979071:)’ N[% f7 S](Q,(,D,t))

= Exp(r(0) 0 #)" g1 (e 0.0 N 0.5))

0
= S¢A(9a 90) + Sd)B(g? 30) + Sl(ea ®, 0) + 0 <S2 + SHTIH%’LO‘)

ot
= s (3(0) + M~ (0)M(0)) (0, ) + 5%(9, )+ 0 (52 + s|nlfzea)

t=0

The result follows.

O
Lemma 15. For all n, for all f and for all s
Hln, f,s](8, ¢, t) =sUM(t)"* (V (I[u] o C©) (M (t)) + Hess((I[u] o C))(M(t))TLn(t))(M(t)))
—25(A +2)f(0,0,1) + O (5% + sllnlB.e)
(3.17)

Proof. By the invariance given in (3.4) we may suppose that v(0) = T, M (0) = Id and ¢ = 0.
Denote B
eoln, f,)(0, ) == Exp(n(0))2 (6, o, T [Exp(n(0)), 9144 (0, 9)) .

By construction, the mean curvature of ey with respect to the metric g1 is equal to h [Exp(1(0)), g14)-
The Jacobi operator of eg[n, f,0] with respect to the metric g; is

Jo:=—-2(A+2)
so that the Jacobi operator of eg[n, f,0] with respect to the metric g;s is
Js = —2(A+2)+ O(s)
The mean curvature of e[n, f, s is thus
Hn, £,5)(0, ¢,0) =h [Exp(n(0)), g1+4] (0, ¢) — 25(A +2)£(8,,0) + O (*)
The result now follows by Lemmas 12 and 13. O

Combining these relations yields

Lemma 16. For all n and for all f

MFC[y, f, 5] —s¥ @Z(st) + M(st)  Hess(I[u] o C)(M(st))TLn(st)(M(st)))
+s (2{ —2(A8+ 2)f) +0(s* +sllnlZn.) - o

Proof. Tt suffices to prove this relation at ¢ = 0. However, by hypothesis,
W(M(0)) = 4(0) = =V1[u] (To) = =¥(V (I[u] o C) (Id))

The result now follows by Lemmas 14 and 15.
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Theorem 5. IfI[u] is of Morse-Smale type then, upon reducing € if necessary, there exist smooth
functions 7 ;] — €,e[— CL(R,€) and f ;] — €, €[— C’il;l (St x 8! xR, ]=%, Z[) such that, for all
S

MFC[7i(s), f(s),s] = 0

In particular, for all s €] — €, €], e[ii(s), f(s),s] is a complete mean curvature flow of tori with
respect to the metric g1+

Proof. Define P : C1(R, £) — C%*(R, £) by

(Pr)(1) = F(1) + M (1)~ Hess(Ifu] o )M (1)7 (1) (M (1)

Observe that this operator corresponds to the first summand in (3.18). Since I[u] is of Morse-
Smale type, P is Fredholm and surjective , and thus has a left inverse L (see [12]).
Define the operator Q : C® (S! x S! x R) — C2:* (S! x S x R) by

Qf = (af—Q(A+2)f).

Observe that this operator corresponds to the second summand in (3.18) of MFC. Follows
from the classical theory of parabolic operators that () restricts to functions f : T x R —
R such that, for all ¢, f(-,-,t) € K+, defines a linear isomorphism from C’iln’a(S1 x S! x R) into
Co(S! x S! x R).
For all s, define Ay : C%*(R,€) — Ci* (S' x S' x R, |-, T[) by
(Asn) (8) == W(n(st))

Observe that mo Ag is a linear isomorphism and that

H?TOA | = (Max(l,sa)) and

oo 40| = 0w 1.5

It follows from the above that the operator

Ds(ﬂ,f) = AsPn+Qf

defines a surjective, Fredholm map from C*(R,¢) & CL*(T x R) into C2%(T x R), where
f:T xR — R such that, for all ¢, f(-,-,t) € K+, and thus has left inverse E; that satisfies

1Es]] = O (Max (1,57%))

Finally, by Lemma 16

% MCFln, f,s] = Ds(n, f) + O (s + |31 )

and the result now follows by the inverse function theorem. [J
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APPENDIX A - Clifford Torus as graph

Initially, we obtained the perturbations of Clifford Torus as graphs (but these are not all
perturbations) that are obtained locally. The other perturbations of the torus can be obtained
by rotations of the sphere, but these rotations are also graphs.

We consider To = S! x S!, and ¢ : S' x S' — S3 the canonical embedding.
Suppose we have a sequence
bm St xSt — 83

of immersions in S3.
We say that ¢,, — ¢ if there is a sequence o, of diffeomorphisms of S! x S! such that
bm © oy, — ¢ in C'° topology.

Let qgm = ¢ © Qyy, such that %m o oy — ¢ in C° topology. Recall that the C° topology
is the compact-open topology, that is V open subset U of S3~and V compact subset K of S x S!
such that ¢(K) C U, there is M such that for all m > M, ¢, (K) CU.
In particular, we can choose K = S! x 8! and U = Im(¢), we know that for m large enough

Im(¢p,) C Im(¢), so
o ogy — oo
(97 ¢) — (97 (b: 0)
where @ is the Fermi parametrization of S%. We can decompose this composition into two
components, that is, ® 1o ¢, = (Bm, pm) Where 3y, : S' x S! — S xS and p,, : S' xS — R
are applications such that p,, — 0 and 5,, — Id in the C*° topology. Note that Identity
is a diffeomorphism and as diffeomorphisms are open apliccations within the space of smooth

applications on S! x St itself, so for m sufficiently large 3, is invertible, then 3,! — Id and
i © Bt — 0 in the C*° topology. We define f,,, = i o 8,1, so for m sufficiently large

(@) = { (B (0, ), 1m0, ) | 0,0 € S'
={(8 (821(0.9)) .1 (B21(0,9)) ) 16,0 € S}
= {00, fm(0,9)) | 0.0 € S}
= Gr(fm).

therefore, in the canonical topology of immersions we see that all small perturbation of ¢ is a
graph.
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