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Introduction

The purpose of this work is to introduce some quantitative methods that
can be used in the study of random dynamical systems, that is, systems
whose laws of evolution are stochastically determined. This is distinct from
the qualitative treatment of dynamical systems, which can be applied to
systems whose precise evolution is poorly understood. Instead, a quantita-
tive approach is useful to study specific systems for which, for example, a
numerical prediction is desired.

The concept of random dynamical systems arises from the problem of
generalizing the ergodic theorem, which states that, if F is a measure pre-
serving transformation, then the Birkho↵ averages of any � 2 L1, given by
the arithmetic mean of the first k iterates, converge almost everywhere and
in L1 to some invariant � 2 L1. Instead of applying the same transformation
in each step to obtain the Birkho↵ averages, a generalization is obtained by
considering random iterates, where the transformation is chosen in a family
according to some probability distribution.

In [30], it was verified that the generalization reduces to the former
theorem if the random system is considered as a skew-product that preserves
some measure whose marginal is stationary. Roughly speaking, a measure
is stationary if it is equal to the expected value of its pushforward, averaged
over the deterministic components of the system (definition 1.2).

The skew-product representation of the random transformation provides
a way to treat a random dynamical system as a deterministic dynamical
systems over a larger space. Many concepts, like ergodicity, admit a nat-
ural extension to random dynamical systems considering the skew-product
representation.

A classical condition on the existence of invariant measures of a determin-
istic transformation requires only compactness of the space and continuity
of the transformation. Since the skew-product is a deterministic transfor-
mation (over a larger space), this leads to a condition on the existence
of stationary measures. However, this criterion is based on a fixed point
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theorem that does not guarantee absolute continuity with respect to some
reference measure, because the set of absolutely continuous measures is not
necessarily closed in the weak-* topology; consider, for example, an approx-
imate identity, that converges to a Dirac measure, which is not absolutely
continuous with respect to Lebesgue.

Absolute continuity with respect to Lebesgue measure is important for
numerical investigation, thus another approach to the existence of stationary
measures with this property is necessary. Instead of taking pushforward
measures, the Perron-Frobenius operator can be used to study the e↵ect
of the random transformation on densities, in the sense of Radon-Nikodym
derivatives of absolutely continuous measures with respect to a reference
measure, provided the transformation satisfies a nonsingularity condition.

The Perron-Frobenius operator is a Markov operator, that is, positive,
contractive in L1 and preserves the set of L1 functions of norm 1. An
existence criterion of absolutely continuous stationary measures is then a
particular case of a known theorem on the existence of fixed points of Markov
operators. In corollary 3.2, we exhibit an explicit condition that guarantees
the existence of a stationary density for systems on the torus with additive
noise. That is, random dynamical systems whose deterministic components
are given by a translation of some fixed transformation on the state space.

Computation of the stationary densities is in general not simple. For
example, trying to directly use the ergodic theorem can lead to a very slow
convergence if additional assumptions aren’t made [29]. Some relatively
general criteria that guarantee fast convergence exist, for example, [35] in
the setting of Markov chains. However, verifying that a system satisfies
these conditions can be a di�cult task.

We will discuss a method used in [14] to study an one-dimensional model
related to Belousov-Zhabotinsky reaction, a system with a marked oscilla-
tory behavior (see also [16, 17, 15] for applications to deterministic dynamics
or iterated functions systems). This method relies on a mixing condition on
the system that is verified numerically, which guarantees that the iterates
of densities converge exponentially fast to a unique stationary density, and
provides a way to calculate stationary densities, with L1 bounds on the ap-
proximation. A ”coarse-fine” strategy, where a discretization using a coarser
partition is used in computationally more expensive tasks and is then related
to a finer partition to obtain tighter bounds, makes the algorithm su�ciently
fast to be run on a personal computer.

This method was used to study the e↵ect of varying levels of additive
noise on the Lyapunov exponent of the stochastically perturbed system.
That is, since a transformation with an additive noise induces a family of
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such transformations, considering the approximate identity generated by
the noise distribution, one may consider the Lyapunov exponent for each of
these random transformations. The L1 approximation error in the stationary
density permitted to calculate these observables within a narrow margin of
error and provided a numerical approach to determine “noise-induced order
for this system.

We note that in the original setting in [14], the one-dimensionality of
the system played an important role on the numerical estimates. Here, we
prove that the estimates can be generalized to higher dimensions (theorem
B) by using an appropriate higher-dimensional definition of functions of BV
type defined on the torus and a range of results available in the literature,
for example the Poincaré inequality for convex domains. This new result
indicates the possibility to extend the method to higher dimensional systems.

Beyond existence, a natural question that arises is the regularity of the
stationary densities. In [49], smoothness of the stationary densities was
obtained assuming smoothness of the density of the transition probability
of a random dynamical system. In the context of noises of BV type, in
particular in the numerically simulated noise, this result can’t be used.

We show in theorem 3.2 that, if the BV noise is Lipschitz in its sup-
port, assumed to be a ball, we can assure local Lipschitz continuity in every
point that satisfies a condition of local boundedness of the noiseless Perron-
Frobenius operator in a sphere centered in the point.

We illustrate the (one-dimensional) method with a model that arises in
the context of neural networks, proposed in [31] as an example of a system
exhibiting “chaotic itinerancy”, a property that it suggests to hold in the
mesoscopic dynamics of the hippocampus.

Although this map is related to mesoscopic brain dynamics, it shares
properties with microscopic brain dynamics. For example, a similar map is
obtained in [47], in the context of the BvP neuron driven by a sinusodial
external stimulus, which belongs to a family known as Arnold circle maps
(named after [3]), an useful family in physiology (see [18, equation (3)]).
Like the more complicated models from which it is derived, we have the
presence of quasi attractors (it can be seen as a stochastic perturbation of
a system with Milnor attractors).

This model is obtained in a similar way to the one related to the Belousov-
Zhabotinsky reaction that is, derived from the Lorentz plot of an oscillatory
process, which in this case is the collective firing activity of neurons. There-
fore it is natural to apply the method from [14] to study this system, which
is represented as a random dynamical system with additive noise, providing
a new application to the algorithm.
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We determine both the existence of regions where the iterates of the
system concentrates and the mixing property of the system, a contribution
towards the mathematical formalization of the chaotic itinerancy property.
A local Lipschitz continuity at every point outside a finite set is obtained
from theorem A. These results are summarized in theorem C.

The structure of this work is as follows. In the first chapter, we define
random dynamical systems, stationary measures and other basic notions,
and present a version of the ergodic theorem, along with some results that
are generalizations of classical theorems from ergodic theory, for example the
ergodic decomposition theorem. In our context, in which random dynam-
ical systems are essentially Markov processes, these results are essentially
rephrasing of results from the ergodic theory of Markov processes (see, for
example, [13]).

In the second chapter, we present the Perron-Frobenius operator which
allows the study of stationary measures that are absolutely continuous with
respect to a fixed reference measure, by viewing the action of the random
transformation on densities of measures. We also present the context of
systems perturbed by an additive noise, in which an explicit expression of
the operator is available in the literature. We also study an appropriate
notion of BV space which will play an important role in chapter 4.

In the third chapter, we discuss general results on the existence of the
stationary measures and densities with respect to a reference measure and
the e↵ect of the Perron-Frobenius operator on the regularity of densities.
We also establish theorem A on the regularity of stationary densities for
these systems.

Finally, in the fourth chapter, we present the framework used in [14]
to rigorously compute stationary densities (with respect to Lebesgue mea-
sure) of systems perturbed by an additive BV noise. Except where spec-
ified, we don’t assume that the system is one-dimensional, and provide a
generalization of estimates that were previously shown to hold only in the
one-dimensional case.

Up to the author’s knowledge, theorems A, B and C are new, except
parts of C that were obtained in the joint work [6].

This thesis is submitted in partial satisfaction of the requirements for
the doctoral degree in Mathematics from Universidade Federal do Rio de
Janeiro — UFRJ, with the supervision of Maria José Pacifico, from UFRJ,
and Stefano Galatolo, from UNIPI.
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Chapter 1

Random dynamical systems

Throughout the text, we denote by (S,S, p) a probability space and by
(⌦,A, µ) the corresponding space of (one-sided) sequences with the product
�-algebra A = S⌦N

0 and probability measure µ = pN0 . Also we denote by
� the shift map on ⌦, �({!i}i2N

0

) = {!i+1

}i2N
0

.

Definition 1.1 ([44, p. 60]). Let (M,B) be measurable space. Endow
⌦⇥M with the product �-algebra A⌦B. A random transformation over �
is a measurable transformation of the form

F : ⌦⇥M ! ⌦⇥M, F (!, x) = (�(!), F!(x)),

where ! 7! F! depends only on the zeroth coordinate of !. By abuse of
notation, we denote this common mapping as F!

0

.
A random orbit for F and a starting point x is a sequence given by

x
0

= x, xn = Fn
! (x) := F!

n�1

� · · · � F!
0

(x), n � 1.

If q is a measure on ⌦ ⇥M , and ⇡M : ⌦ ⇥M ! ⌦, ⇡M : ⌦ ⇥M ! M are
the canonical projections, we say that q projects to ⇡

⌦,⇤q and that ⇡M,⇤q is
the marginal of q.

Example 1.1. Let S = {1, . . . , d}, ⌦ = SN
0 , and suppose F

1

, . . . , Fd are
homeomorphisms over a locally compact metric space M . Define F (!, x) =
(�(!), F!

0

(x)). Then F is a random transformation over �.
A random orbit with starting point x

0

can be defined inductively by
independently choosing (according to the distribution given by p) a function
F!

i

2 {F
1

, . . . , Fd} and taking vi+1

= F!
i

(xi). Equivalently, this can be
viewed as the projection in M of the orbit {F i(!, x

0

)}i2N
0

, where ! =
{!i}i2N

0

.
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It is sometimes useful to consider the slices of a measurable E ⇢ ⌦⇥M ,
defined by Ex := {! 2 ⌦ : (!, x) 2 E}, for x 2 M , and E! := {x 2 M :
(!, x) 2 E}, for ! 2 ⌦. The following proposition shows that the process of
slicing is well-behaved.

Proposition 1.1 ([44, exercise 5.1]). The operators P! : M ! ⌦ ⇥ M ,
where ! 2 ⌦, and Px : ⌦ ! ⌦⇥M , where x 2 M , defined by P!(x) = (!, x)
and Px(!) = (!, x) are measurable. Moreover, for measurable E ⇢ ⌦⇥M ,

1. Ex = {! 2 ⌦ : (!, x) 2 E} 2 A and E! = {x 2 M : (!, x) 2 E} 2 B;

2. x 7! µ(Ex) and ! 7! ⌘(E!) are measurable for any probability mea-
sures µ on (⌦,A) and ⌘ on (M,B);

3.
R

M µ(Ex) d⌘(x) = (µ⇥ ⌘)(E) =
R

M ⌘(E!) dµ(!).

Proof. Px is measurable because ⇡M �Px and ⇡M �Px are both measurable,
for the first is the identity on ⌦ and the second a constant function. Sim-
ilarly, P! is measurable. Thus E! = (P!)�1(E) and Ex = (Px)�1(E) are
measurable.

To prove the second and third items, we will show that the family

E =
n

E ⇢ ⌦⇥M : x 7! µ(Ex) is measurable,

Z

M
µ(Ex) d⌘(x) = (µ⇥⌘)(E)

o

is a �-system, that is, it contains ⌦⇥M and is closed under complements and
finite unions of pairwise disjoint sets; and contains the sets A⇥B 2 A⌦ B,
which form a ⇡-system, that is, a family closed under finite intersections.

The ⇡-� theorem [5, theorem 3.2] states that, if a �-system L contains
a ⇡-system P, then L contains the �-algebra generated by P. Therefore all
measurable E ⇢ ⌦ ⇥M belong to E , because the sets A ⇥ B generate this
�-algebra. The proof of the statement concerning ! 7! ⌘(E!) is analogous.

We first prove that A⇥B 2 A⌦B constitute a ⇡-system and belong to E .
The ⇡-system condition follows from (A⇥B)\(A0⇥B0) = (A\A0)⇥(B\B0).
The inclusion in E follows from

µ((A⇥B)x) =

(

µ(A) if x 2 B

0 if x 2 M \B

and
Z

M
µ((A⇥B)x) d⌘(x) = µ(A)⌘(B) = (µ⇥ ⌘)(A⇥B).
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To verify that E is a �-system, we need to prove that ⌦ ⇥ M 2 E ; if
E 2 E , then Ec := (⌦⇥M)\E 2 E ; and if {Ei}i2N is a sequence of pairwise
disjoint sets in E , then [i2NEi 2 E . The first condition holds, because
x 7! µ((⌦⇥M)x) = µ(⌦) is constant, in particular measurable, and

Z

M
µ((⌦⇥M)x) d⌘(x) = µ(⌦)⌘(M) = (µ⇥ ⌘)(⌦⇥M).

The second condition holds, since x 7! µ((Ec)x) = µ(⌦\Ex) = µ(⌦)�µ(Ex)
is measurable if x 7! µ(Ex) is measurable, and

Z

M
µ((Ec)x) d⌘(x) = µ(⌦)⌘(M)�

Z

M
µ(Ex) d⌘(x) = (µ⇥ ⌘)(Ec).

Now, let {E(i)}i2N be a sequence of pairwise disjoint sets in E and note that
([i2NE(i))x = [i2NE(i)x. Then x 7! µ(([i2NE(i))x) =

P

i2N µ(E(i)x) is
given by a series of positive measurable functions, hence measurable. Further

Z

M
µ(([i2NE(i))x) d⌘(x) =

X

i2N

Z

M
µ(E(i)x) d⌘(x) =

X

i2N
(µ⇥ ⌘)(E(i))

= (µ⇥ ⌘)(([i2NE(i))x).

1.1 The transition operator

Suppose we have a random transformation F : ⌦ ⇥ M ! ⌦ ⇥ M and an
observable that quantifies some property of M , in general � : M ! R or
� 2 Lp(⌘), p 2 [1,1]. Given a random orbit {xi}i2N for which we know the
value of x

0

= x 2 M , a natural question is to predict the value of �(x
1

),
that is, the expected value E(�(x

1

) |x
0

= x). Since the iterate depends on
an outcome ! 2 ⌦, which is distributed according to µ, this is formally
calculated as

U�(x) =

Z

M
�(F!(x)) dµ(!) =

Z

M
�(F!

0

(x)) dp(!
0

). (1.1)

If � = �B for some B 2 B, the integral is well-defined and

U�(x) = µ(F�1(⌦⇥B)x), (1.2)

thus U�(·) defines a bounded, measurable function onM according to propo-
sition 1.1. This extends to every measurable � that is bounded or measurable
by a standard measure theory argument (see proof of lemma 1.1).
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Thus (1.1) defines the transition operator associated to F , which maps
bounded (or nonnegative) measurable functions to bounded (or nonnegative)
measurable functions.

Dually, we can consider its adjoint transition operator that acts in the
space of signed or probability measures ⌘ on M , defined by

U⇤⌘(B) =

Z

⌘(F�1

! (B)) dµ(!) =

Z

⌘(F�1(⌦⇥B)!) dµ(!)

for B 2 B.
Proposition 1.1 shows that the integral is well-defined and

U⇤⌘(B) = (µ⇥ ⌘)(F�1(⌦⇥B)) = F⇤(µ⇥ ⌘)(⌦⇥B), (1.3)

a special case of proposition 1.2. Therefore U⇤⌘ is a well-defined probability.
The operators U and U⇤ are related by the following property.

Lemma 1.1. For any bounded or nonnegative measurable � : M ! R,
Z

� d(U⇤⌘) =

Z

U� d⌘.

Proof. Set f, g the positive linear functionals defined by

f(�) =

Z

� d(U⇤⌘), g(�) =

Z

U� d⌘.

If {an}n2N is an increasing sequence that converges pointwise to a, denote
this by an " a. Lebesgue’s monotone convergence theorem tells that if
�n " �, then f(�n) " f(�) and g(�n) " g(�).

The following lemma shows that we need to check f(�) = g(�) only for
characteristic functions � = �B, where B 2 B.

Lemma 1.1.1. Let f, g : F ! G be positive linear operators, where G is
an ordered vector space and F is either the space of nonnegative or bounded
measurable functions on (M,B). Suppose that

f(1) = g(1) if (9� 2 F : � 6= �+)

8B 2 B : f(�B)  g(�B);

8{�n}n2N ⇢ F : (�n " � 2 F =) f(�n) " f(�)).

Then
8� 2 F : f(�)  g(�).
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Proof. By linearity and positivity, f(�)  g(�) for all positive simple func-
tions � =

Pn
i=1

ai�B
i

.
If � is bounded, then there is c > 0 such that � + c is nonnegative and

f(�)  g(�) if and only if f(�+ c)  g(�+ c). Hence we can assume that �
is nonnegative.

Define, for each n 2 N,

�n(x) =
1
X

i=0

1

2n
�
(i/2n,n] � �(x) =

1
X

i=0

1

2n
���1

((i/2n,n])(x),

which are simple functions because the sums have finite, n2n, nonzero terms.
If �(x) 2 [i/2n, (i+1)/2n) for some i 2 {0, . . . , n2n� 1}, then �n(x) = i/2n;
otherwise, �n(x) = 0. Hence �n " �.

Since f(�n)  g(�) for every n 2 N and f(�n) " f(�), we conclude that
f(�)  g(�).

Let � = �B, B 2 B. By (1.2), (1.3) and proposition 1.1,

f(�) =

Z

U�B(x) d⌘ =

Z

µ(F�1(⌦⇥B)x) d⌘(x) = (µ⇥ ⌘)(F�1(⌦⇥B))

=

Z

⌘(F�1(⌦⇥B)!) dµ(!) = U⇤⌘(B) = g(�).

Then lemma 1.1.1 allows to extend the equality to all bounded or measurable
� : M ! R.

Of particular importance are the fixed points of the operator U⇤.

Definition 1.2. A probability measure ⌘ for M is called stationary for the
random transformation F if U⇤⌘ = ⌘.

We recall the deterministic concept of invariant measures.

Definition 1.3. If h : C ! C is a measurable mapping in the measurable
space (C, C), we say µ is an invariant measure for h if µ(h�1(E)) = µ(E)
for any measurable E ⇢ C.

Notice that, if ⌘ is invariant for every F!, then ⌘ is stationary for F .
The converse does not hold, as shown by the following example.

Example 1.2. Let d = 2, M = PR2, F
1

([x]) = [A
1

x], F
2

([x]) = [A
2

x]
in the example 1.1, where A

1

and A
2

are invertible matrices that admit a
decomposition into invariant sets

R3 = Es
i � Eu

i , i = 1, 2
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satisfying, for all xs 2 Es
i and xu 2 Eu

i ,

kAix
s
ik < �ikxsk, kA�1

i xuk < µikxuk, �i, µi < 1,

and such that the Es
i , and Eu

i are all distinct.
Suppose a measure ⌘ is both F

1

and F
2

invariant and take V a neigh-
borhood of [Eu

1

\ {0}] such that [(�xs, xu)] 2 V for every � < 1 and
[(xs, xu)] 2 V . We have

V ⇢ F�1

1

(V ) ⇢ {[(xs, xu)] : [(µ
1

�
1

xs, xu)] 2 V }.

Inductively, V ⇢ [1
k=0

F�k
1

(V ). Clearly, [1
k=0

F�k
1

(V ) ⇢ M \ [Es
1

], and
conversely, M \ [Es

1

] ⇢ [1
k=0

F�k
1

(V ) because for any [(xs, xu)] 2 M \ [Es
1

],
we have [(�k

1

µk
1

xs, xu)] 2 V for some k 2 N. By the invariance of F
1

,

⌘(V ) = ⌘([1
k=0

F�k
1

(V )) = ⌘(M \ [Es
1

]).

This holds for arbitrarily small neighborhoods V of [Eu
1

], therefore ⌘(M \
([Eu

1

] [ [Es
1

])) = 0. The same reasoning implies ⌘(M \ ([Eu
2

] [ [Es
2

])) = 0
and since we assume the eigenspaces to be distinct, we have ⌘(M) = 0, a
contradiction.

Invariant measures and stationary measures for a one-sided random
transformation F are related by the following proposition.

Proposition 1.2 ([30, lemma 2.1]). F⇤(µ⇥ ⌘) = µ⇥ (U⇤⌘) for every prob-
ability measure ⌘ on M . In particular, ⌘ is stationary if and only if µ ⇥ ⌘
is invariant.

Proof. For any measurable A⇥B ⇢ ⌦⇥M ,

(µ⇥ ⌘)(F�1(A⇥B)) =

ZZ

�A � �(!)�B � F!(x) d⌘(x) dµ(!)

=

Z

�A � �(!)
ZZ

�B � F!
0

(x) d⌘(x) dp(!
0

) dµ(�(!))

= µ(A)

ZZ

�B � F!
0

(x) d⌘(x) dp(!
0

)

= µ(A)

ZZ

�B � F!
0

(x) dµ(!) d⌘(x)

= µ(A)U⇤⌘(B).

Therefore F⇤(µ ⇥ ⌘) = µ ⇥ (U⇤⌘) and F⇤(µ ⇥ ⌘) = µ ⇥ ⌘ if and only if
U⇤⌘ = ⌘.
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It should be noted, however, that not every invariant measure for F that
projects to µ can be written as this kind of product measure. To show this,
we first give a general characterization of such measures, based on their
disintegration.

Definition 1.4. A disintegration of a probability measure q on ⌦⇥M with
respect to µ is a function q : ⌦⇥ B ! [0, 1] such that

1. for all B 2 B, ! 7! q!(B) is A-measurable;

2. for µ-a.e. ! 2 ⌦, B 7! q!(B) is a probability measure on (M,B);

3. for all S 2 A⌦ B,

q(S) =

Z

!

Z

M
�S(!, x) dq!(x) dµ(!)

When M is a complete separable metric space, with its Borel �-algebra,
then such a disintegration exists and is unique up to µ-null sets. For any
sub-�-algebra S of A, the restriction q|S⌦B also admits a disintegration
with respect to µ|S , the conditional expectation of q with respect to S. It is
denoted by ! 7! E(q. | S)! and satisfies

E(q. | S)!(B) = E(q.(B) | S)(!) µ-a.e.,

where for a measurable and integrable function � : ⌦ ! R, the conditional
expectation with respect to S is the unique S-measurable function E(� | S)
such that

8A 2 S :

Z

A
E(� | S) dµ =

Z

A
� dµ. (1.4)

Proposition 1.3. [2, p. 23, lemma 1.4.4] Let F : ⌦ ⇥ M ! ⌦ ⇥ M
be a random transformation, where ⌦ is a standard space, and let q be a
probability measure on ⌦ ⇥M that projects to µ. Then q is F -invariant if
and only if, for all n 2 N

0

:

E(Fn
.,⇤q.|��nA)! = q�n

(!) µ-a.e. (1.5)

Proof. For any A 2 A and B 2 B, the �-algebras associated to ⌦ and M
respectively,

Fn
⇤ q(A⇥B) = q(F�n(A⇥B)) =

Z

��n

(A)

q!(F
�n
! B) dµ(!)

=

Z

��n

(A)

Fn
!,⇤q!(B) dµ(!)

13



and

q(A⇥B) =

Z

A
q!(B) dµ(!) =

Z

A
q!(B) d(�n⇤µ)(!)

=

Z

��n

(A)

q�n

(!)(B) dµ(!)

Thus q is F -invariant if and only if, for all n 2 N
0

,

8A 2 A, B 2 B :

Z

��n

(A)

Fn
!,⇤q!(B) dµ(!) =

Z

��n

(A)

q�n

(!)(B) dµ(!),

which is equivalent to (1.5).

Definition 1.5. [2, p. 25] An F -invariant probability measure q is called
a random Dirac measure if q! = �x(!) µ-a.e. for some random variable
x : ⌦ ! M . The function x is called the base point of the random Dirac
measure.

Note that, by the invariance condition, the random variable x in the
definition must satisfy, for all n 2 N

0

:

Fn
! (x(!)) = x(�n(!)) µ-a.e.

If x is not a.e. constant, then q can not be written in the form µ ⇥ ⌘,
because a measure with this form has constant disintegration. The following
example, adapted from [2, p. 52, exercise 2.1.2], shows a situation in which
this happens.

Example 1.3. Take ⌦ = SN
0 , b 2 L1(S), where S is a probability space,

M = R2 and define the random dynamical system

F : ⌦⇥M ! ⌦⇥M, F (!, x) = (�(!), Ax+ b(!
0

)), A =

✓

0 0
0 2

◆

.

Now, consider the disintegration ! ! �x(!), where

x(!) =
⇣

0,�
1
X

i=0

2�i�1b(!i)
⌘

.

This defines a (F -invariant) random Dirac measure because

F!(x(!)) =
⇣

0, b(!
0

)�
1
X

i=�1

2�i�1b(!i+1

)
⌘

= x(�(!)).

If S = {0, 1} with uniform distribution and b(!) = !, the range of x is the
interval [0, 1] and this measure can not be written in the form µ⇥ ⌘.
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Another concept from deterministic dynamical systems that can be nat-
urally extended to random dynamical systems is that of ergodicity.

1.2 Ergodicity

Definition 1.6. We say that a (not necessarily stationary) probability ⌘ on
M is ergodic for a random transformation F : ⌦⇥M ! ⌦⇥M if every set
B that is ⌘-stationary, i.e. U�B = �B ⌘-a.e., has full or null ⌘-measure.

In case ⌘ is stationary, ergodicity is equivalent to the stronger condition
that every � 2 L1(⌘) that is ⌘-stationary, i.e. U� = �, is constant in
some full ⌘-measure set [25, lemma 2.4]. In fact, if � is ⌘-stationary, then
B(c) = {x 2 M : �(x) > c} = ��1(c,+1) is ⌘-stationary for every c 2 R
(theorem 1.1). Therefore {x 2 M : �(x) = c} has full measure, where c is
the supremum over the set of c 2 R such that ⌘(B(c)) = 1.

Theorem 1.1. Let ⌘ be a probability on M and T be a linear, positive,
contractive (that is, kTkLp  1) operator on Lp(⌘), p 2 [1,1], such that
T1  1. Let S be the family of sets B ⇢ M such that T�B = �B.

Then S is a �-ring on M . Moreover, S is the smallest �-ring on M for
which the nonnegative or bounded fixed points of T are measurable.

Proof. Suppose ⌘ is a probability on M . We verify that the family of sta-
tionary sets S is a �-ring on M as in [13, p. 8]. If A,B 2 S, then A[B 2 S
because

T�A[B  min{1, T�A + T�B)} = min{1,�A + �B} = �A[B,

T�A[B � max{T�A, T�B} = max{�A,�B} = �A[B.

Also, A \B 2 S because

T�A\B = T (�A[B � �B) = �A[B � �B = �A\B.

Finally, for any sequence {Bi}k2N of sets in S and B = [i2NBi,

T�B = lim
k!+1

T�[k

j=1

B
j

= lim
i!+1

�[k

j=1

B
j

= �B,

where the limits hold ⌘-a.e. according to the following result, where  n "  
indicates pointwise convergence of the increasing sequence { n}n2N.

Lemma 1.1.2. If �n " � 2 Lp(⌘), then T�n " T�.
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Proof. For each n 2 N, let

En = {x 2 M : |T�n(x)� T�(x)| > ✏}.

{T�n}n2N is a monotone sequence because {�n}n2N is monotone and T is
positive. Thus E

1

� E
2

� · · · and we have to prove that infn2N ⌘(En) = 0.
In case p = 1, ⌘(En) = 0 if kT�n � T�k < ✏, so ⌘(En) = 0 whenever

k�n � �k < ✏/kTk.
In case p 2 [1,1), we write En = {x 2 M : |T�n(x) � T�(x)|p > ✏p}

and use the Markov inequality

⌘(En)  ✏�p

Z

M
|T�n(x)�T�(x)|p d⌘(x)  1

✏

�p

kT�n�T�kp  kTkp

✏p
k�n��k,

so ⌘(En) whenever k�n � �k < ✏p/kTkp.
In either case, such an n exists because �n ! � in Lp(⌘).

We treat now the second part of the theorem. Any �-ring for which the
nonnegative or bounded fixed points of T are measurable contains S, for
A = {x 2 M : �A(x) > 0} belongs to S if and only if T�A = �A.

Furthermore, every nonnegative or bounded fixed point � is S-measurable,
because any set of the form B(c) := {x 2 M : �(x) > c} belongs to S. To
show this, the idea from [34, p. 92–93] is to construct a monotone sequence
{�n}n2N of nonnegative stationary functions such that �n converges point-
wise to �B(c). It follows that T�B(c) = �B(c), because

T�B(c) = lim
n!+1

T�n = lim
n!+1

�n = �B(c).

For the sequence {�n}n2N, we can take

�n(x) = min{1, nmax{0,�(x)� c}}.

Clearly, {�n}n2N is a monotone sequence that converges pointwise to
�B(c). Each �n is a fixed point because, for every fixed points  

1

and  
2

,

min{ 
1

, 
2

} =
 
1

+  
2

2
� | 

1

�  
2

|
2

, max{ 
1

, 
2

} =
 
1

+  
2

2
+

| 
1

�  
2

|
2

are fixed points.
In fact, the fixed points of T form a linear subspace and | (·)| is fixed if

 is fixed, by proposition 2.6.
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When F : ⌦ ⇥M ! ⌦ ⇥M is a random transformation and � is some
appropriate function, we have defined U� as the expected value of �(x

1

)
when we know the initial point x

0

of a random orbit {xi}i2N. In the same
spirit, consider averages

�(x) + U�(x) + · · ·+ Un�1�(x)

n
=

E(�(x
0

) + . . . ,�(vn�1

) |x
0

= x)

n
.

Intuitively, when n is large, and R is some small region, the contributions of
xi 2 R to the average are the product of the frequency in which they appear
and the expected value of � on R. In case ⌘ is ergodic, this frequency is
proportional to ⌘(R), thus the contribution is

R

R � d⌘. Summing over all
small regions, we find that

�(x) + U�(x) + · · ·+ Un�1�(x)

n
⇡
Z

� d⌘.

This idea is formalized by the ergodic theorems, which we present in the
context of positive contractions (cp. with [28]).

1.3 Ergodic theorems

The main result in this section is theorem 1.2, which deals with the point-
wise convergence of the Birkho↵ averages. The results in this section apply
to both the transition operator U and the Perron-Frobenius operator L (def-
inition 2.1) of a nonsingular random transformation F : ⌦ ⇥M ! ⌦ ⇥M ,
by remark 2.1.

Definition 1.7. If T is a linear, positive, contractive operator on L1(⌘),
then the n-th Birkho↵ sum and the n-th Birkho↵ average, with respect to
T , are the linear, positive, contractive operators Sn : L1(⌘) ! L1(⌘) and
An : L1(⌘) ! L1(⌘) given by

Sn� =
n�1

X

j=0

T j� = �+ T�+ · · ·+ Tn�1� and An� =
Sn�

n
(1.6)

We start our investigation on the convergence of the Birkho↵ averages
with the following lemma. For a proof, see [13, p. 9].

Lemma 1.2 (Hopf maximal ergodic lemma). Let T : L1(⌘) ! L1(⌘) be a
linear, positive, contractive operator. If  2 L1(⌘), then

Z

E
 d⌘ � 0, where E =

n

x 2 M : sup
n2N

Sn (x) > 0
o

. (1.7)
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In case  is of the form �� ✏, where ✏ > 0, we obtain
Z

E
� d⌘ � ✏⌘(E), where E =

n

x 2 M : sup
n2N

An�(x) > ✏
o

. (1.8)

This lemma is traditionally used to decompose M into conservative and
dissipative parts [20, p. 32], respectively

C =
n

x 2 M :
1
X

j=0

T j�
0

(x) = +1
o

, (1.9)

D =
n

x 2 M :
1
X

j=0

T j�
0

(x) < +1
o

. (1.10)

where �
0

2 L1(⌘), �
0

> 0.
To show the decomposition is well-defined, let � 2 L1

+

(⌘) and consider

C 0 =
n

x 2 C : 0 <
1
X

j=0

T j�(x) < +1
o

,

D0 =
n

x 2 D :
1
X

j=0

T j�(x) = +1
o

.

Take j 2 N
0

such that ⌘({x 2 C 0 : T j�(x) > 0}) � 2�j�1⌘(C 0), which exists
because

P1
j=0

T j�(x) > 0 implies

⌘(C 0) 
1
X

j=0

⌘({x 2 C 0 : T j�(x) > 0}).

Apply (1.7) to  C = �
0

� aT j� and  D = � � a�
0

, where a > 0. Then
I 0 ⇢ EI := {x 2 M : supn2N Sn I(x) > 0} for I 2 {C,D} and

0 
Z

E
C

(�
0

� aT j�) d⌘ 
Z

M
�
0

d⌘ � a

Z

C0
T j� d⌘,

0 
Z

E
D

(�� a�
0

) d⌘ 
Z

M
� d⌘ � a

Z

D0
�
0

d⌘.

Since a > 0 was arbitrary, the conclusion is that ⌘(C 0) = 0 = ⌘(D0). There-
fore,

C ⇢
n

x 2 M :
1
X

j=0

T j�(x) = 0 or
1
X

j=0

T j�(x) = +1
o

, (1.11)

D ⇢
n

x 2 M :
1
X

j=0

T j�(x) < +1
o

, (1.12)
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In particular, C and D do not depend on the choice of �
0

> 0.
If we decompose the averages as

An� = An�
+ �An�

�,

then we see that limn!+1An� = 0 ⌘-a.e. on D.
Consider now the Banach operator adjoint T ⇤ 2 L1(⌘) of T . Note that

T ⇤ is positive and kT ⇤kL1 = kTkL1  1. Moreover,

T ⇤1  1. (1.13)

In fact, for any ✏ > 0 and B 2 B, B = {x 2 M : T ⇤1 > 1 + ✏} satisfies

(1 + ✏)⌘(B) 
Z

M
(T ⇤1)�B d⌘ =

Z

M
T�B d⌘  kT�Bk  k�Bk = ⌘(B),

thus ⌘(B) = 0, which proves (1.13).

Definition 1.8. B 2 B is an invariant set if T ⇤�B = �B on the conservative
part C of T .

The next lemma, adapted from [20, lemma 9.4], provides a way to verify
if a set is invariant.

Lemma 1.3. If � 2 L1(⌘) satisfies T ⇤�  � on C, then T ⇤� = � on C. If
� 2 L1

+

(⌘) satisfies T�  � on C, then T� = � on C.

Proof. Suppose � 2 L1(⌘), T ⇤�  � on C and fix  = � � T ⇤�, �
0

= 1.
Since  + . . .+ T ⇤(n�1) = �� T ⇤n�, we have

Z

M
 (�

0

+ ·+ Tn�1�
0

) d⌘ =

Z

M
(�� T ⇤n�)�

0

d⌘  2k�kL1k�
0

kL1 .

It results from
P1

i=0

Tn�1�
0

= +1 on C that  = 0 on C. Thus the first
part of the lemma is proven.

Now suppose � 2 L1

+

(⌘), T�  � but T� 6= � on C. In particular, there
exists ✏ > 0 such that B = {x 2 C : �(x)�T�(x) > ✏} has positive measure.

We claim that
P1

j=0

T ⇤j�B = +1 on B. In fact, for any c > 0, B0 =

{x 2 B :
P1

j=0

T ⇤j�B < c} satisfies

Z

M

⇣

1
X

j=0

T j�B0

⌘

�B d⌘ =

Z

M
�B0

⇣

1
X

j=0

T ⇤j�B

⌘

d⌘ < +1,
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thus ⌘(B0) = 0, for B0 ⇢ B ⇢ C and (1.11) imply (
P1

j=0

T j�B0)�B = +1 on
B0. Note that the duality extends to infinite sums by monotone convergence.
Then (�� T�)

P1
j=0

T ⇤j�B = +1 on B, which contradicts

Z

M
(��T�)

⇣

1
X

j=0

T ⇤j�B

⌘

d⌘ =

Z

M

⇣

1
X

j=0

T j(��T�)
⌘

�B d⌘ 
Z

B
� d⌘ < +1.

Thus T� = � on C.

An immediate consequence of the lemma is thatM is invariant, by (1.13).
Moreover,

�C  T ⇤�C and T ⇤�D  �D. (1.14)

This follows from the fact that T ⇤�C  T ⇤1  1 on C, thus T ⇤�C = 1 on
C, that is, T ⇤�C � �C ; and T ⇤�D = T ⇤(1 � �C)  1 � �C = �D. We are
ready to prove the following.

Lemma 1.4. The invariant sets (definition 1.8) form a �-algebra C on M .
Moreover, every � 2 L1(⌘) such that T ⇤� = � on C is C-measurable.

Proof. In view of theorem 1.1, we search a probability ⌘C on (M,B) with
the property that T ⇤� = � on C if and only if T ⇤� = � ⌘C-a.e. If ⌘(C) = 0,
we can simply take ⌘ = ⌘C , then C = B; otherwise, we define ⌘C on C by
⌘C(B) = ⌘(B\C)

⌘(C)

for B 2 B.
Let B1, B2 2 B such that �B1 = �B2 ⌘-a.e. on C. Then

�C(T
⇤�B1) = �C(T

⇤�B1\C + T ⇤�B1\D) = �CT
⇤�B1\C = �CT

⇤�B
2

,

⌘-a.e. on M , where �CT ⇤�D = 0 by (1.14).
Taking monotone sequences, it follows that T ⇤� = T ⇤ on C whenever

� =  on C. Thus T ⇤ can be regarded as an operator on L1(⌘C), and
is also linear, positive and contractive. Since T ⇤1 = 1 ⌘C-a.e., the lemma
shows that C is a �-algebra and every � 2 L1(⌘C) such that T ⇤� = � is
C-measurable.

We recall that a sequence {xn}n2N in a Banach space X is weakly con-
vergent if there exists x 2 X such that limn!+1 f(xn) = f(x) for every
continuous linear functional f on X. We are ready to state the following.

Theorem 1.2 (Pointwise ergodic theorem). Let T be a linear, positive,
contractive operator on L1(⌘).
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If there exists �
0

2 L1(⌘) with �
0

> 0 such that {An�0}n2N admits a
weakly convergent subsequence, then for every � 2 L1(⌘), the limit

�(x) = lim
n!+1

An�(x) = lim
n!+1

1

n

n�1

X

j=0

T j�(x) (1.15)

exists for ⌘-a.e. x 2 M . Moreover, it defines a function � 2 L1(⌘) such that
T� = � and the convergence holds also in L1(⌘).

Furthermore, � satisfies

8B 2 C :

Z

B
� d⌘ =

Z

B
HC� d⌘, (1.16)

where C is the �-algebra of invariant sets (in the sense of definition 1.8) and

HE� = IE

1
X

k=0

(TIM\E)
k�, IE�(x) = �E(x)�(x), E ⇢ M. (1.17)

In particular, if F is a random transformation with stationary ergodic
probability ⌘, then

lim
n!+1

1

n

n�1

X

j=0

�(F j
!x) =

Z

M
� d⌘

for µ⇥ ⌘-a.e. (!, x) 2 ⌦⇥M .

Remark 1.1. If L1 limits of Birkho↵ averages exist for every � 2 L1(⌘),
then we recover the hypothesis: there exists �

0

2 L1(⌘) with �
0

> 0 such
that {An�0}n2N admits a weakly convergent subsequence. In fact, we can
take any �

0

2 L1(⌘) such that �
0

> 0, because L1 convergence implies
weak convergence. This hypothesis appears in [26] and is related to the
Krylov-Bogolyubov procedure (proposition 3.2).

An alternative hypothesis is given in [?]: limn!+1 T ⇤n�D = 0 a.e. and
there exists �

0

2 L1

+

(⌘) such that {x 2 M : �
0

(x) > 0} = C and {An�0}n2N
is weakly sequentially compact. Moreover, �

0

can be chosen in order that
T�

0

= �
0

[28, p. 175, theorem 3.3].
In the general case, we have convergence of Birkho↵ averages in the

stochastic sense [28, p. 143, theorem 4.9]. This follows from the existence
of a decomposition M = C̃ [ D̃ such that C̃ = {x 2 M : �

0

(x) > 0} 2
C, D̃ = {x 2 M : h

0

(x) > 0}, T ⇤�
˜D  �

˜D, for some �
0

2 L1

+

(⌘) and
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h
0

2 L1
+

(⌘) satisfying T�
0

= �
0

and limn!+1 kA⇤
nh0kL1 = 0 [28, p. 141–

142, theorem 4.6]. In fact, this implies T (L1(C̃)) ⇢ L1(C̃), thus, on C̃,
An� = An(I ˜C�) converges a.e. to H

˜C� on C̃ by theorem 1.2; on the other
hand, given any ↵ > 0 and � 2 L1

+

(⌘), there exist � > 0 and N 2 N such

that B = {x 2 M : h
0

(x) > �} satisfies ⌘(D̃ \ B) < ↵/2 and kA⇤
n�Bk 

��1kA⇤
nh0kL1 < ↵✏k�k�1

L1

/2 for n � N . Therefore, for all n � N ,

⌘({x 2 D̃ : An(I �H
˜C)�(x) > ✏})  ↵/2 + ✏�1

Z

B
An(I �H

˜C)�(x) d⌘(x)

 ↵/2 + ✏�1kA⇤
n�BkL1k�kL1 < ↵.

It follows that An� converges stochastically to 0 on D̃, for all � 2 L1(⌘).
If one is interested only in a.e. convergence, a su�cient condition is given

in [28, p. 132, theorem 3.12]: there exists � 2 L1

+

(⌘) such that T�  � and
{x 2 M : �(x) > 0} = C. This also provides an equivalence. In fact, lemma
1.3 implies that T� = � on C, and evidently T� = 0 = � on D; hence
{An�}n2N is constant, thus weakly convergent. Moreover, Conversely, given
�
0

2 L1(⌘) with �
0

> 0 such that {An�0}n2N admits a weakly convergent
subsequence, let � 2 L1

+

(⌘) be the weak limit of this subsequence. We have
T�  � as the pointwise limit of

The following proof requires two general results, lemma 1.2 and theorem
1.3 [28, theorem 1.1]. Alternate proofs of similar statements are found in
[13], [28]. Here, ⌘ denotes any probability measure on (M,B).

Theorem 1.3 (Mean ergodic theorem). Let T be a bounded linear operator
on a Banach space X such that the Birkho↵ averages defined by (2.3) are
uniformly bounded operators. Then, for any x 2 X such that

lim
n!+1

n�1Tn�1x = 0

and for any y 2 X, the following assertions are equivalent.

1. Ty = y and y 2 ch{Tn�1x : n 2 N};

2. {Anx}n2N converges strongly to y;

3. {Anx}n2N converges weakly to y;

4. {Anx}n2N admits a subsequence that converges weakly to y.

Proof of theorem 1.2. We first verify the assumptions of the mean ergodic
theorem. Clearly, kTnk  1 for every n 2 N, by the contractive property.
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Also, given any � 2 L1(⌘), the sequence {S
n

�
n }n2N has a weakly convergent

subsequence if and only if [10, p. 294, corollary 11]

lim
⌘(E)!0

Z

E

Sn(�)

n
d⌘ = 0 (1.18)

uniformly on n. Given any ✏ > 0, take ✏
0

> 0 such that, for measurable
E ⇢ M ,

⌘(E) < ✏
0

=)
Z

E
|�(·)| d⌘ < ✏.

Now, take t > 0 such that

⌘(Bt) < min{✏, ✏
0

}, where Bt = {x 2 M : t�
0

(x) < |�(x)|}.

By hypothesis, there is �
0

> 0 such that {S
n

�
0

n }n2N has a weakly convergent
subsequence. Thus, there exists � > 0 such that

⌘(E) < � =)
Z

E

Sn(�0)

n
<
✏

t
.

We conclude that if ⌘(E) < �, then

�

�

�

Z

E

Sn�

n
d⌘
�

�

�

=
�

�

�

Z

E\B
t

Sn(�+ t�
0

)

n
d⌘ +

Z

B
t

Sn(�+ t�
0

)

n
d⌘ �

Z

E

Sn(t�0)

n
d⌘
�

�

�

=
�

�

�

Z

E\B
t

Sn(�+ t�
0

)+

n
d⌘ +

Z

B
t

Sn(�)

n
d⌘ �

Z

E\B
t

Sn(t�0)

n
d⌘
�

�

�


Z

E\B
t

Sn(�+ t�
0

)+

n
d⌘ +

Z

B
t

Sn|�(·)|
n

d⌘ + t

Z

E\B
t

Sn�0
n

d⌘


Z

E
|�(·)| d⌘ + 2t

Z

E\B
t

�
0

d⌘ < 4✏.

Thus, {S
n

�
n }n2N has a weakly convergent subsequence, and the assumptions

of theorem 1.3 are verified.
If � 2 L1(⌘), apply the mean ergodic theorem to obtain � 2 L1(⌘) such

that T� = � and

lim
n!+1

�

�

�

Sn�

n
� �

�

�

�

L1

(⌘)
= 0.

We claim that

lim
n!+1

Sn�(x)

n
= �(x) (1.19)
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for ⌘-a.e. x 2 M .
To prove (1.19), we show that for any given ✏ > 0,

lim sup
n!+1

Sn�(x)

n
 �(x) + ✏ (1.20)

for ⌘-a.e. x 2 M , because this bound applied to �� is equivalent to

lim inf
n!+1

Sn�(x)

n
� �(x)� ✏.

For any given � > 0, fix m 2 N such that

kAm�� �kL1

(⌘) < ✏�. (1.21)

We write  = Am�� �� ✏,

E =
n

x 2 M : sup
n2N

Sn (x) > 0
o

=
n

x 2 M : sup
n2N

Sn(Am�� �)(x)

n
> ✏

o

and apply the maximal inequality as in (1.8) to obtain
Z

E
(Am�� �) d⌘ > ✏⌘(E).

Combining with (1.21), we find that ⌘(E) < �. To finish the proof in
the case � 2 L1(⌘), we proceed as in [11, p. 46–47] and use the following
lemma.

Lemma 1.5. If � 2 L1(⌘) and n 2 N, then

lim
n!+1

1

n
|Sn(Am�)(x)� Sn�(x)| = 0. (1.22)

for ⌘-a.e. x 2 M .

Proof. By a telescopic sum argument,

T j�� � = Sj(T�� �).

We use this identity, the linearity and commutativity of the operators Sj ,
and the fact that the norm of T is 1, to obtain

Sn

⇣Sm�

m

⌘

(x)� Sn�(v) =
Sn

m
(Sm��m�)(x) =

Sn

m

⇣

m�1

X

j=1

Sj(T�� �)(x)
⌘

=
1

m

m�1

X

j=1

Sj(T
n�� �)(x)  1

m

m(m� 1)

2
2k�kL1 = (m� 1)k�kL1
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for ⌘-a.e. x 2 M . Dividing by n and letting n ! +1, we obtain the desired
inequality.

Using the fact that � is invariant by T , we have that, for ⌘-a.e. x 2 M\E,

lim sup
n!+1

Sn�(x)

n
= lim sup

n!+1

Sn(Am�(x))

n
= lim sup

n!+1

Sn(Am(�� �))(x)

n
+ �(x)

 �(x) + ✏.

Taking � ! 0, we obtain (1.20) in the case � 2 L1(⌘). To extend
to � 2 L1(⌘), take �

0

2 L1(⌘) such that k� � �
0

kL1 < �✏
2

. We have
k� � �

0

kL1 < �✏ because kAn� � An�0kL1  k� � �
0

kL1 for every n 2 N.
Moreover, An�(x)��(x) = An(���0)(x)+(An�0(x)��

0

(x))+(�
0

(x)��(x))
and lim supn!+1 |An�0(x)� �

0

(x)| = 0 imply

⌘({x 2 M : lim sup
n!+1

An�(x) > �(x) + ✏})  ⌘({x 2 M : �
0

(x)� �(x) > ✏
2

})

+⌘({x 2 M : sup
n2N

An(�� �
0

)(x) > ✏
2

}) < 2�,

where we applied Markov inequality to �
0

� � and (1.8) to An(� � �
0

).
Taking � ! 0 as before, this implies (1.20) and consequently (1.19), because
✏ > 0 was arbitrary.

We turn now to (1.16). First, � = 0 on D because Sn� is bounded on D
by (1.12). Since

�CT
k� = �CT

k(�C�) + �CT
k�1(TID)� = · · · = �C

k
X

j=0

T k�j(�C(TID)
j�),
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and T ⇤k(�B)�C = �B�C for all k 2 N and B 2 C, we conclude that

Z

B
� d⌘ =

Z

B
�C� d⌘ = lim

n!+1

1

n

Z

B
�C

n�1

X

k=0

T k� d⌘

= lim
n!+1

1

n

n�1

X

k=0

Z

B
�C

k
X

j=0

T k�j(�C(TID)
j�) d⌘

= lim
n!+1

1

n

n�1

X

k=0

Z

M

k
X

j=0

T ⇤(k�j)(�B�C)(�C(TID)
j�) d⌘

= lim
n!+1

1

n

n�1

X

k=0

Z

M

k
X

j=0

�B�C(TID)
j� d⌘

= lim
n!+1

Z

M

n
X

j=0

�B�C(TID)
j� d⌘ =

Z

B
HC� d⌘,

where we used the fact that HC is a well-defined operator on L1. This
follows from the identity [28, p. 125, (3.3)]

(IC + TID)
k =

k�1

X

j=0

IC(TID)
j + (TID)

k. (1.23)

In fact, there exist �j 2 L1(⌘) such that k�jkL1 = 1 and IC(TID)j�j �
kIC(TID)jkL1 � 2�j , hence  k = max{�

0

, . . . ,�k} satisfies

k�1

X

j=0

kIC(TID)jkL1  (IC + TID)
k k � (TID)

k k +
k�1

X

j=0

2�j

 kIC + TIDkkL1

+ kTIDkkL1

+ 2  4 < +1.

Therefore, the series that defines HC converges in the space of bounded
operators on L1.

Since ⌘ is an ergodic stationary probability if and only if it is ergodic
and invariant for F (theorems 1.2 and 1.6), we can apply the result to T
the transition operator �̃ 7! �̃ � T and � = �̃ � ⇡M , so that �(F j

!(x)) =
T j�̃(x).

The pointwise ergodic theorem has many consequences, for example
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Corollary 1.1. If ⌘
1

and ⌘
2

are distinct ergodic stationary probabilities,
then they’re mutually singular (notation: ⌘

1

? ⌘
2

), that is, there exist mea-
surable sets B

1

and B
2

such that

⌘i(Bj) = �ij :=

(

1 if i = j

0 if i 6= j

Proof. ⌘
1

and ⌘
2

being distinct probabilities, there exists � 2 L1(⌘
1

)\L1(⌘
2

)
such that

Z

M
� d⌘

1

6=
Z

M
� d⌘

2

.

The pointwise ergodic theorem assures, for i 2 {1, 2}, the existence of mea-
surable sets Bi such that

8x 2 Bi : lim
n!+1

Sn�(x)

n
=

Z

M
� d⌘i

and ⌘
1

(B
1

) = 1 = ⌘
2

(B
2

). The limits are distinct according to whether
x 2 B

1

or x 2 B
2

, therefore B
1

\B
2

= ; and ⌘
1

(B
2

) = 0 = ⌘
2

(B
1

).

Corollary 1.2. If ⌘ ⌧ ⌘
0

, where ⌘ is a stationary probability and ⌘
0

is an
ergodic stationary probability of F , then ⌘ = ⌘

0

.

Proof. Given an arbitrary � 2 L1(⌘)\L1(⌘
0

), we apply the pointwise ergodic
theorem to � and ⌘

0

, and obtain a measurable set B with ⌘
0

(B) = 1 such
that

8! 2 B : lim
n!+1

Sn�(!)

n
=

Z

M
� d⌘

0

.

If ⌘ ⌧ ⌘
0

, then ⌘(B) = 1. Thus the theorem applied to � and ⌘ gives

Z

M
� d⌘ =

Z

M

Z

M
� d⌘

0

d⌘ =

Z

M
� d⌘

0

.

We conclude that ⌘ = ⌘
0

.

These corollaries suggest that we may be able to decompose a stationary
measure in terms of ergodic stationary measures. We will describe such
a decomposition as a consequence of the following general theorem from
convex analysis [8, p. 316, theorem 4.2].

Theorem 1.4 (Choquet). Let K be a compact convex metrizable subset of a
locally convex topological linear space E. Let Ke be the set of extreme points
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of K. Then Ke is a G� in K and every x 2 K has a representation of the
form

x =

Z

y d⇠(y) (1.24)

for some non-negative Baire measure ⇠ satisfying

⇠(Ke) = ⇠(K) = 1.

Remark 1.2. The integral
R

y d⇠(y) denotes the unique element w 2 K that
satisfies

F (w) =

Z

F (y) d⇠(y)

for every F 2 E⇤.

Theorem 1.5 (Ergodic decomposition). Suppose F : ⌦⇥M ! ⌦⇥M is a
random transformation, where M is a compact Hausdor↵ space. Then there
is a probability measure ⇠ on Ms(M), the space of stationary probabilities
on M with the weak-* topology, such that ⇠(Ke) = 1 for Ke the set of ergodic
stationary measures and

⌘(B) =

Z

(B) d⇠(),

for every measurable B 2 B.

Proof. Ms(M) can be identified as a closed subset of the unit ball B(0) of
C0(M)⇤ with the weak-* topology. In fact, Riesz representation theorem
[10, p. 265, theorem 3] identifies the space of signed Borel regular measures
with C0(M)⇤ and

Ms(M) = (I�U⇤)�1{0}\{⌘ 2 C0(M)⇤ : ⌘(1) = 1, ⌘(�) � 0 if � � 0}\B(0),

where U⇤ is the weak-* continuous operator given by U⇤⌘(�) = ⌘(U�).
We verify that the assumptions of the Choquet’s theorem hold.

1. Ms(M) ⇢ C0(M)⇤, where C0(M)⇤ is a locally convex topological linear
space [10, p. 419, lemma 3];

2. Ms(M) is compact, because B(0) is compact by Alaoglu’s theorem [10,
p. 424, theorem 2];

3. Ms(M) is metrizable, because B(0) is metrizable [10, p. 426, theorem 1],
for C0(M)⇤ is a separable normed space by Stone-Weierstrass theorem [10,
p. 437, exercise 17];
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4. Ms(M) is convex, because for every ⌘
1

, ⌘
2

2 Ms(M), t 2 (0, 1) and
B 2 B, ((1� t)⌘

1

+ t⌘
2

)(B) = (1� t)⌘
1

(B) + t⌘
2

(B) 2 [0, 1];

5. The set of ergodic stationary measures Ke is the set of extreme points of
Ms(M).

Proof. If ⌘ 2 Ms(M) is ergodic, suppose ⌘ = (1�t)⌘
1

+t⌘
2

for some t 2 (0, 1)
and ⌘

1

, ⌘
2

stationary probabilities. We need to verify that ⌘
1

= ⌘
0

= ⌘
2

.
This is a direct consequence of corollary 1.2, because the non-negativity of
the measures and t 2 (0, 1) imply ⌘

1

⌧ ⌘
0

and ⌘
2

⌧ ⌘
0

.

If ⌘ 2 Ms(M) is not ergodic, let S be an ⌘-stationary set with t =
⌘(S) 2 (0, 1). Define a probability ⌘S by ⌘S(B) = t�1⌘(B \ S) for every
B 2 B. ⌘S is stationary because, for any bounded measurable �,

Z

U� d⌘S =

Z

�SU� d⌘ =

Z

(U�S)(U�) d⌘
⇤
=

Z

�S� d⌘ =

Z

� d⌘S ,

where the equality marked with ⇤ follows from the facts that kUk = 1 and
�S ,� 2 L2(⌘). Then ⌘ = t⌘S + (1� t)(⌘ � ⌘S).

Choquet’s theorem guarantees the existence of a Baire measure ⇠ with the
desired properties. Ms(M) is separable, for it is compact and metrizable
[10, p. 22, theorem 15]. Thus Baire and Borel sets are the same [19, p.
218-219] and the measure is Borel regular [19, p. 239].

Corollary 1.3. Theorem 1.5 applies also in the case where M is a complete
and separable metric space (or a Polish space).

Proof. Let h : M ! h(M) ⇢ Q be a homeomorphism, where Q = [0, 1]N is
the Hilbert cube and h(M) is a G� subset of Q [38, p. 55, remark 2.2.8]. In
particular, h : M ! Q is measurable and h(B) ⇢ Q is measurable for every
B 2 B. Given any probability ⌘ on M , we can define a probability h⇤⌘ on
Q by h⇤⌘(C) = ⌘(h�1(C)) for measurable C ⇢ Q.

We use the following lemma.

Lemma 1.6. Let FQ : ⌦ ⇥ Q ! ⌦ ⇥ Q be a random transformation such
that

8x 2 M : FQ(!, h(x)) = (�(!), h(F!(x))).

Then ⌘ is stationary (or ergodic stationary) for F if and only if h⇤⌘ is
stationary (or ergodic stationary) for FQ.
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Proof. If  : Q ! R is bounded and measurable, then  �h is bounded, with
the same bound as  , and measurable because h : M ! Q is measurable.
Thus, for every x 2 M ,

UQ( )(h(x)) =

Z

M
 (h(F!(x))) dµ(!) = U( � h)(x).

If C ⇢ Q is measurable and ⌘ is a probability on M , then

UQ
⇤(h⇤⌘)(C) =

Z

Q
UQ(�C) d(h⇤⌘) =

Z

M
UQ(�C) � h d⌘ =

Z

M
U(�C � h) d⌘

=

Z

M
U(�h�1

(C)

) d⌘ = U⇤⌘(h�1(C)) = h⇤(U
⇤⌘)(C).

It follows immediatly that ⌘ is stationary for F if and only if h⇤⌘ is
stationary for F .

For the statement concerning ergodicity, we note that if  : Q ! R is
bounded and measurable, then

h⇤⌘({w 2 Q : UQ (w) =  (w)}) = ⌘({x 2 M : UQ( )(h(x)) =  (h(x))})

Along with UQ( ) � h = U( � h), this implies that  is (h⇤⌘)-stationary if
and only if  � h is ⌘-stationary. In particular, a set C is (h⇤⌘)-stationary
if and only if h�1(C) is ⌘-stationary. Since (h⇤⌘)(C) = ⌘(h�1(C)), we have
that h⇤⌘ is ergodic if and only if ⌘ is ergodic.

From the random transformation F , we can obtain a random transfor-
mation as in the lemma. Let, for example,

FQ(!, w) =

(

(�(!), (h � F! � h�1)(w))) if w 2 h(M);

(�(!), w) otherwise.

If ⌘ is a stationary probability of F , then h⇤⌘ is a stationary probability
of FQ. Theorem 1.5 gives a probability measure ⇠ on Ms(Q) such that
⇠(Ke) = 1, where Ke is the set of ergodic stationary measures of FQ, and

h⇤⌘(C) =

Z

(C) d⇠() (1.25)

for every measurable C ⇢ Q.
Denote by M⇤

s(Q) the space of stationary probabilities  of FQ such that
(h(M)) = 1. Since h⇤⌘(h(M)) = 1, equation (1.25) implies ⇠(M⇤

s(Q)) = 1.
By lemma 1.6, we can view ⌘ 7! h⇤⌘ as a mapping h⇤ : Ms(M) ! M⇤

s(Q)
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such that (h⇤)�1(Ke) is the set of ergodic stationary probabilities of F .
h⇤ is bijective, with inverse given by ◆()(B) = (h(B)), because h is a
homeomorphism.

Let ◆⇤⇠ be the measure on Ms(M) defined by ◆⇤⇠(Z) = ⇠(◆�1(Z)). If we
put C = h(B) in (1.25), taking into account ⇠(M⇤

s(Q)) = 1,

⌘(B) =

Z

(h(B)) d⇠() =

Z

M⇤
s

(Q)

◆()(B) d⇠() =

Z

µ(B) d(◆⇤⇠)(µ).

A relationship analogous to proposition 1.2 between ergodicity in the
context of deterministic and random dynamical systems holds.

Theorem 1.6 ([30, theorem 3.1]). ⌘ is an ergodic probability of F if and
only if m := µ⇥ ⌘ is an ergodic probability.

Proof. Suppose a probability ⌘ is not ergodic for F , denote m = µ⇥⌘. Take
B an ⌘-stationary set with ⌘(B) 2 (0, 1) and let mB = µ ⇥ (⌘|B), where
⌘|B is defined by ⌘|B(B0) = ⌘(B0 \ B) for B0 2 B. mB is invariant for F
and mB ⌧ m, with mB 6= m. Then m is not ergodic for F , as corollary 1.2
applies to the deterministic case.

Now suppose instead that ⌘ is ergodic for F . Take E a µ⇥⌘-invariant set
with positive measure. For x 2 M , denote by Ex the slice {! 2 ⌦ : (!, x) 2
E}. We claim that G = {x 2 M : µ(Ex) = 1} has measure ⌘(G) = m(E).
In fact, ⌘(G) =

R

M �G(x) d⌘(x) 
R

M µ(Ex) d⌘(x) = m(E) by proposition
1.1. The opposite inequality is due to the following lemma.

Lemma 1.7. Let ⌘ be a probability measure on M and m = µ⇥ ⌘. For any
measurable E ⇢ ⌦⇥M with m(E) > 0 and ✏ > 0, there exists n

0

2 N such
that

⌘({x 2 M : µ((FnE)x) > 1� ✏}) � (1� ✏)m(E)

for all n � n
0

.

Proof. Let An = S⌦n ⌦ {?,⌦}⌦N, the �-algebra generated by the first n
coordinates !

0

, . . . ,!n�1

of ! 2 ⌦. Let �n
A(!) = µ(�n(A \ Cn(!))), where

Cn(!) := {!0 2 ⌦ : !0
0

= !
0

, . . . ,!0
n�1

= !n�1

} 2 An.
�n
A(!) = µ(A | An)(!) for µ-a.e. ! 2 ⌦, that is,

8C 2 An :

Z

C
�n
A(!) dµ(!) = µ(A \ C),

because µ(Cn(!))µ(�n(A\Cn(!))) = µ(A\Cn(!)), thus this equality holds
for a �-algebra that contains {Cn(!)}!2⌦ ⇢ An. Therefore limn!+1�n

A(!) =

31



�A(!) for µ-a.e. ! 2 ⌦, by the forward martingale convergence theorem [9,
p. 195].

Let En
x = {! 2 ⌦ : �n

E
x

(!) > 1 � ✏} and Gn = {(!, x) 2 E : ! 2 En
x}.

Note that En
x 2 An and Gn

x = Ex \ En
x . Then

m(Gn) =

Z

M
µ(Gn

x) d⌘(x) =

Z

M

Z

En

x

µ(Ex | An)(!) dµ(!) d⌘(x)

Letting n ! +1, we obtain

lim
n!+1

m(Gn) =

Z

M
µ(Ex) d⌘(x) = m(E).

For any w 2 M such that (Fn(Gn))w 6= ?, let (z, w) 2 Fn(Gn). Then
there exist x 2 M and ! 2 Gn

x such that z = �n(!) and w = Fn
M (x).

�n(Cn(!)) = {�(!)}, so (Fn(Gn))w � �n(Gn
x \Cn(!)) and we may assume

�n
Gn

x

(!) = µ(Gn
x | An)(!) = �En

x

(!)µ(Ex | An)(!) = �En

x

(!)�n
E

x

(!).

because µ(Cn(!)) > 0 and these relations hold for µ-a.e. ! 2 ⌦. Hence

µ((Fn(Gn))w) � µ(�n(Gn
x \ Cn(!))) = �n

Gn

x

(!) = �En

x

(!)�n
E

x

(!) > 1� ✏.

Let ⇡M (Gn) = {x 2 M : Gn
x 6= ?}, the projection of Gn onto M . Then

⇡M (Gn) ⇢ {x 2 M : µ((FnE)x) > 1� ✏}. Since

⌘(⇡M (Gn)) � m(Gn) � (1� ✏)m(E)

for su�ciently large n, we obtain the lemma.

The relation

m(E) =

Z

M
µ(Ex) d⌘(x) = µ(G) +

Z

M\G
µ(Ex) d⌘(x)

shows that µ(Ex) = 0 for every x in some subset G0 ⇢ M \G with measure
⌘(G0) = 1� ⌘(G). Since

µ(Ex) = µ((F�1E)x) =

Z

M
µ(EF

!

(x)) dµ(!),

x 2 G and w 2 G0 if and only if F!(x) 2 G and F!(w) 2 G0 for µ-a.e. ! 2 ⌦,
which means that, for every x in the full ⌘-measure set G [G0,

U(�G)(x) =

Z

M
�G(F!(x)) dµ(!) = �G(x).

We conclude that ⌘(G) = 1, by the ergodicity of ⌘.

32



Chapter 2

The Perron-Frobenius

operator

Fix some (Borel regular) probability of reference � on M . If a random
transformation F : ⌦⇥M ! ⌦⇥M is nonsingular with respect to �, that
is, if for every probability measure q absolutely continuous to µ⇥� (notation:
q ⌧ µ⇥ �), we have F⇤q ⌧ µ⇥ �, then we can consider the e↵ect of U⇤ on
densities instead of measures because ⌘ ⌧ � implies U⇤⌘ = ⇡M,⇤F⇤(µ ⇥ ⌘)
by proposition 1.2 and ⇡M,⇤F⇤(µ⇥ ⌘) ⌧ ⇡M,⇤(µ⇥ �) = �.

Remark 2.1. If F is nonsingular, then for any � and  bounded, measurable
functions such that B = {x 2 M : �(x) 6=  (x)} has null measure,

Z

|U�� U | d� 
Z

M

Z

M
|�(F!x)�  (F!x)| dµ(!)d�(x)

 (k�k1 + k k1)F⇤(µ⇥ �)(⌦⇥B) = 0.

This implies that {x 2 M : U�(x) 6= U (x)} has null measure and U can
be seen as an operator U : L1(M) ! L1(M).

If ⌘ is stationary for F , then U can be either seen as an operator U :
L1(⌘) ! L1(⌘) by the same arguments above, taking into consideration
proposition 1.2, or as an operator U : L1(⌘) ! L1(⌘) because kU�kL1

(⌘) 
k�kL1

(⌘) for any � 2 L1(⌘) and L1(⌘) = L1(⌘). Then interpolation of Lp

measures shows that we can consider U : Lp(⌘) ! Lp(⌘) for any p 2 [1,1].

Definition 2.1. The Perron-Frobenius operator associated to the nonsin-
gular random transformation F is the operator L : L1(M) ! L1(M) given
by

L� =
d(U⇤(��))

d�
,
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where �� denotes the Borel measure with density �, defined by

8 2 C0(M) :

Z

 d(��) =

Z

 � d�.

Remark 2.2. This definition extends the Perron-Frobenius operator associ-
ated to a deterministic T : M ! M , which can be viewed as a random
transformation F : ⌦⇥M ! ⌦⇥M where ⌦ is a trivial probability space.

An immediate consequence of the definition is that, for every � 2 L1(M)
and  2 L1(M),

Z

M
(L�) d� =

Z

M
�(U ) d�.

Identifying L1(M) as the dual space of L1(M), we can write L⇤ = U .

A su�cient condition for nonsingularity is given as follows.

Proposition 2.1. If (F!)⇤�⌧ � for µ-a.e. ! 2 S, then F is nonsingular.

Proof. If A⇥B ⇢ ⌦⇥M is a µ⇥ �-null set, then µ(��1(A)) = µ(A) = 0 or
�(F�1

! (B)) = �(B) = 0 for a.e. ! 2 ⌦. Thus

F⇤(µ⇥ �)(A⇥B) =

Z

��1

(A)

�(F�1

! (B)) dµ(!) = 0.

Remark 2.3. Since the null sets form a �-algebra and the sets of the form
A⇥B generate the �-algebra of ⌦⇥M , it su�ces to verify the condition of
absolute continuity for sets of this form.

An alternative approach for the Perron-Frobenius operator is given by
transition probabilities.

Definition 2.2. Let F : ⌦⇥M ! ⌦⇥M be a random transformation. If
x 2 M � B, the transition probability of x to B is given by

p(x,B) = U�B(x) = µ({! 2 ⌦ : F!(x) 2 B}).

Proposition 2.2. (x,B) 2 M ⇥ B ! p(x,B) defines a transition kernel,
that is, for every x 2 M , B 7! p(x,B) defines a probability on M and for
every B 2 B, x 7! p(x,B) is measurable. If F is nonsingular and B is
countably generated, then there exists a transition density p 2 L1(M ⇥M)
such that p(x,B) =

R

B p(x,w) d�(w) for �-a.e. x 2 M .
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Proof. We recall that, for every x 2 M , the mapping Px : ! 7! (!, x) is
measurable (proposition 1.1). Since µx : B 7! p(x,B) satisfies µx(M) =
µ(⌦) = 1 and µx = (⇡

2

� F � Px)⇤µ, it is a probability on M . Moreover, for
fixed B 2 B, x 7! µx(B) = U�B(x) is measurable. We can thus define a
measure µ over M ⇥M by

µ(A⇥B) =

Z

A
µx(B) d�(x).

We claim that µ ⌧ �⇥�. In fact, if A⇥B is a �⇥�-null set, then �(A) = 0
or �(B) = 0. In the former case, µ(A ⇥ B) = 0 because A is a null set, in
the latter because p(x,B) = 0 for a.e. x 2 M (remark 2.1). We conclude
that µ admits a density p 2 L1(M ⇥M).

The definition of µ implies that, for fixedB 2 B, µx(B) =
R

B p(x,w) d�(w)
for �-a.e. x 2 M . Since B admits a countable generator, we conclude that
there exists a full measure set S of x 2 M such that µx(B) =

R

B p(x,w) d�(w)
for every B 2 B.

The next proposition shows that transition densities define integral ker-
nels for the transition and the Perron-Frobenius operator.

Proposition 2.3. Suppose F is nonsingular and B is countably generated.
If � 2 L1(M), then for �-a.e. x 2 M ,

U�(x) =

Z

M
p(x, ·)� d� and L�(x) =

Z

M
p(·, x)� d�.

Proof. The first identity follows immediately for � = �B and thus for any
� 2 L1(M) because U is a bounded linear operator.

For the second identity, we note that for every measurable B ⇢ M ,
Z

B
L� d� =

Z

M
(U�B)� d� =

Z

M
p(·, B)� d� =

Z

B

Z

M
p(·, x)� d� d�(x),

where we’ve applied Fubini’s theorem in the last step. The claim follows.

Remark 2.4. Note that we require � 2 L1(M) also in the second identity.
In case p 2 L1(M ⇥M), we may extend it to � 2 L1(M) by continuity of
L.

The following proposition from [32, remark 3.2.2] summarizes basic prop-
erties of the Perron-Frobenius operator. For any (⌘-a.e. defined) functions
� : M ! R,  : M ! R, we say that � �  or   � if �(x) �  (x) for
(⌘-almost) every x 2 M and denote the identically c 2 R function by c.
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Proposition 2.4. The Perron-Frobenius L associated to a nonsingular trans-
formation F has the following properties.

1. L is a linear operator on L1(M);

2. L is a positive operator, that is, L� � 0 if � � 0;

3. 8� 2 L1(M) :
R

M L� d� =
R

M � d�;

Proof. For the first item, we note that L is the composition of the linear
operators � 7! ��, which has as image the subspace of absolutely continuous
measures; U⇤, which preserves this subspace by the nonsingularity condition;
and ⌘ 7! d⌘

dm , which is defined for absolutely continuous measures.
For the second item, it su�ces to show that U⇤(��) is a nonnegative

measure if � � 0, because the Radon-Nikodym derivative of an unsigned
measure is unsigned. This follows readily from the fact that U is a positive
operator, and thus U⇤ preserves the subspace of nonnegative measures.

For the third item, we note that U1 = 1 and calculate
Z

M
L� d� =

Z

M
(U1)� d� =

Z

M
� d�.

2.1 Markov operators

Definition 2.3. A Markov operator on the measure space (M,B, ⌘) is a
mapping P : L1(⌘) ! L1(⌘) that satisfies items 1–3 of proposition 2.4, that
is, P is a positive, linear operator and

R

M P� d⌘ =
R

M � d⌘ for all � 2 L1(⌘).

For any function � : M ! R, the positive and negative parts are defined
by �+(x) = max{�(x), 0} and ��(x) = max{��(x), 0}. This definition
extends naturally to ⌘-a.e. defined functions.

Proposition 2.5 ([32, proposition 3.1.1]). If (M,B, ⌘) is a measure space
and P is a Markov operator, then, for every � 2 L1(⌘),

1. (P�)+(x)  P�+(x) for ⌘-a.e. x 2 M ;

2. (P�)�(x)  P��(x) for ⌘-a.e. x 2 M ;

3. |(P�)(x)|  P |�(·)|(x) for ⌘-a.e. x 2 M ;

4. kP�k  k�k, that is, P is contractive.
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Proof. Since �+ � �+ � 0, positivity of P implies P (�+ � �) � 0, thus
P�+ � P�. Along with (P�)+ � 0, this proves that (P�)+  P�+(x). For
the same reason, (P�)�  P��. Linearity of P implies

|(P�)(·)| = (P�)+ + (P�)�  P�+ + P�� = P (�+ + ��) = P |�(·)|.

Finally, as a consequence of
R

M P� d⌘ =
R

M � d⌘ for all � 2 L1(⌘),

kP�k =

Z

M
|P�(·)| d⌘ 

Z

M
P |�(·)| d⌘ =

Z

M
|�(·)| d⌘ = k�k.

Remark 2.5. In the case of the Perron-Frobenius operator L associated to
F : ⌦⇥M ! ⌦⇥M , where M is compact, we also have kL�kL1  k�kL1

for � 2 L1(M). In fact, for any � 2 L1(M),

8B 2 B :

Z

M
�BL� d⌘ =

Z

M
U(�B)� d⌘ 

Z

M
|�| d⌘ = k�kL1 .

In the case ⌘ = �, we denote by D the set of positive densities h 2 L1(M)
with L1 norm khk

1

= 1. Clearly, P (D) ⇢ D for any Markov operator P .

Definition 2.4. A density h 2 D such that L(h�) = h� is called a stationary
density for F . More generally, if P is a Markov operator, a density h 2 D
such that Ph = h is called a stationary density of P .

The following proposition shows that every fixed point of L can be ob-
tained from stationary densities.

Proposition 2.6 ([32, proposition 3.1.3]). If P is a Markov operator and
P� = �, then P�+ = �+ and P�� = ��.

Proof. From P� = �, we have

�+ = (P�)+  P�+ and �� = (P�)�  P��.

Hence,
Z

(P�+ � �+) d⌘ +

Z

(P�� � ��) d⌘ =

Z

P (�+ + ��)� (�+ + ��) d⌘

=

Z

P |�(·)|� |�(·)| d⌘ =

Z

P |�(·)| d⌘ �
Z

|�(·)| d⌘ = 0.

As a consequence of (P�+ � �+) � 0 and (P�� � ��) � 0, we have that
P�+ � �+ = 0 and P�� � �� = 0.
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Given a stationary density h for F , we can naturally obtain a Markov
operator P : L1(h�) ! L1(h�) with fixed point 1 := �M in a similar fashion
to the definition of the Perron-Frobenius operator.

Proposition 2.7. Let F be a nonsingular random transformation with ad-
joint transition operator U⇤. Take h 2 D and ⌘ = h�. Then P⌘ : L1(⌘) !
L1(⌘) defined by

P⌘� =
d(U⇤(�⌘))

d⌘

is a Markov operator. If h is stationary, then P⌘1 = 1 and

8� 2 L1(⌘), n 2 N : Pn
⌘ (�)h = Ln(�h).

Proof. The same arguments from the proof of proposition 2.4 show that P⌘
is a Markov operator (recall that by proposition 1.2, they are well-defined).
If h is stationary, P⌘1 = 1 because U⇤⌘ = ⌘; and, for every � 2 L1(⌘), we
have �h 2 L1(M) and

8B 2 B :

Z

B
Pn
⌘ (�)h d� = (U⇤)n(�⌘)(B) =

Z

B
Ln(�h) d�.

Therefore Pn
⌘ (�)h = Ln(�h).

These operators can be used to define a mixing property.

Definition 2.5. We say that F is mixing for ⌘ = h d� if

lim
n!1

Z

M
Pn
⌘ (�) d⌘ =

Z

M
� d⌘

Z

M
 d⌘ (2.1)

for every � 2 L1(⌘) and  2 L1(⌘)

A more natural and often more convenient formulation is given by

lim
n!1

Z

M
Ln(�) d� =

Z

M
� d�

Z

M
 h d� (2.2)

for every � 2 L1(M) and  2 L1(M).1.
These notions are related as follows.

Proposition 2.8. (2.2) implies (2.1) and they’re equivalent if supp ⌘ = M .
1

This definition is adapted from [4] (Equation (1.5)).
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Proof. Suppose 2.2 holds. If � 2 L1(⌘) and  2 L1(⌘), then �h 2 L1(M)
and  �h>0

2 L1(M). Substituting these functions into 2.2, we obtain

lim
n!1

Z

M
Ln(�h) �h>0

d� =

Z

M
�h d�

Z

M
 �h>0

h d� =

Z

M
� d⌘

Z

M
 d⌘.

The first integral is equal to
R

M Pn(�) d⌘ and this implies 2.1.
Reciprocally, suppose 2.1 holds and supp ⌘ = M . If � 2 L1(M) and

 2 L1(M), then � = �̂h for some �̂ 2 L1(⌘), because supp ⌘ = M , and
 2 L1(⌘). Substituting these functions into 2.1, we obtain

lim
n!1

Z

M
Pn(�̂) d⌘ =

Z

M
�̂ d⌘

Z

M
 d⌘ =

Z

M
� d�

Z

M
 h d�.

The first integral is equal to
R

M Ln(�) d� and this concludes the proof.

In view of Radon-Nikodym theorem, the next theorem, presented in [32,
theorem 4.2.2] in the deterministic case, but valid also in the random case,
generalizes corollary 1.2. It shows that if ⌘

0

is an ergodic probability, then
there is at most one stationary probability such that ⌘ ⌧ ⌘

0

. Additionally,
if a probability ⌘

0

has the property that ⌘
0

⌧ ⌘ for every stationary ⌘ ⌧ ⌘
0

,
then ⌘

0

is ergodic.

Proposition 2.9. Let F be a nonsingular random transformation. If ⌘ is
ergodic for F (definition 1.6), then there is at most one stationary density
of P⌘. Further, if there is a unique stationary density h of ⌘ and h > 0
⌘-a.e., then ⌘ is ergodic.

Proof. Suppose ⌘ is ergodic and �
1

, �
2

are stationary densities of F . Then
 = �

1

� �
2

satisfies P⌘ =  and proposition 2.6 implies that P⌘ + =  +

and P⌘ � =  �. Set B± = {x 2 M :  ±(x) = 0} and note that U�B± =
�±
B. This follows from the fact that U⇤(�±⌘) ⌧ �⌘ for all � 2 L1(m)

by the nonsingularity condition. Ergodicity implies that ⌘(�B+) = 0 or 1
and similarly for �B� . Since their union is M , they can’t both have null
measure. Together with the fact that

R

M �
1

d⌘ =
R

M �
2

d⌘, we conclude
that both have full measure, as well as the intersection {x 2 M :  (x) = 0.
Thus �

1

= �
2

.
Now, suppose P⌘ admits a unique stationary density h > 0. Given any

⌘-stationary B 2 B, set B0 = M \B and write h = �Bh+ �B0h. Then

�Bh+ �B0h = L(�Bh) + L(�B0h).
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L(�Bh) = 0 on B0 because L(�Bh) � 0 and

Z

B0
L(�Bh) d⌘ =

Z

M
(U�B0)�Bh d⌘ =

Z

M
�B0�Bh d⌘ = 0.

Thus L(�Bh) = �Bh and the uniqueness of the stationary density implies
that �B = 0 or �B = 1.

The following characterization of ergodicity and mixing, analogous to
[32, theorem 4.4.1], shows that mixing is stronger than ergodicity.

Proposition 2.10. Suppose F is a random transformation and ⌘ is a sta-
tionary measure for F . Then F is ergodic (or mixing) for ⌘ if and only
if the sequence {P j

⌘�}j2N is Cesàro (or weakly) convergent to 1 for all
� 2 D⌘ := { 2 L1(⌘) :

R

M  d⌘ = 1}.

Proof. Cesàro convergence of {P j
⌘�}j2N means pointwise convergence of the

Birkho↵ averages

An� :=
1

n

n�1

X

j=0

P j
⌘�. (2.3)

Theorem 1.2 implies that the pointwise limit � of these averages is a sta-
tionary density of P⌘ and

R

� d⌘=
R

� d⌘. Thus it is 1 for all � 2 D⌘ if and
only if every ⌘-stationary � is equal to

R

� d⌘; equivalently, if and only if ⌘
is ergodic.

As for the mixing property, since the dual of L1(⌘) is identified with
L1(⌘), the claim is simply a rephrasing of (2.1).

In our application, we shall verify the following stronger condition.

kLk|V kL1

(M)!L1

(M)

! 0, V =
n

f 2 L1(M) :

Z

f dm = 0
o

. (2.4)

Remark 2.6. It su�ces to verify that kLk|V kL1

(M)!L1

(M)

< 1 for some
k 2 N, because kL⇠kL1 = 1.

2.2 Systems perturbed by an additive noise

Let M = Tn = (S1)n, the n-dimensional torus, identified, as a measure
space, with [0, 1]n with the Lebesgue measure �. Consider the family of
rotations ⌧t : L1(�) ! L1(�), ⌧tf(x1, . . . , xn) = f(⇡(x

1

� t
1

, . . . , xn � tn)),
for t = (t

1

, . . . , tn) 2 Rn and ⇡(x
1

, . . . , xn) := (x
1

� bx
1

c, . . . , xn � bxnc),
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where bac = min{k 2 Z : k  a}. Note in particular that ⌧t is the identity
for any t 2 Zn.

If f, g 2 L1(�), we define the convolution f ⇤ g of f and g by

8x 2 M : (f ⇤ g)(x) :=
Z

M
(⌧tf)(x)g(t) d�(t) =

Z

M
f(t)(⌧tg)(x) d�(t).

Note that the rightmost equality follows from the translational invariance
of Lebesgue measure. Moreover, f ⇤ g 2 L1(�) as a particular case of the
inequality [37, theorem 7.14]

8p, q 2 L1(Rn) :

Z

Rn

�

�

�

Z

Rn

p(x� y)q(y) dy
�

�

�

dx  kpkL1

(Rn

)

kqkL1

(Rn

)

. (2.5)

We will discuss the special case of a random dynamical system that
can be viewed as a perturbation by an additive noise of a deterministic
dynamical system [32, section 10.5]. That is, given r 2 L1(Rn) such that
supp r ⇢ B

1/2(0), the open ball of radius 1/2 centered at 0, with mean value
1 and r(x) = r(�x) for x 2 Rn, define a one-parameter family of functions
in L1(Rn) with mean value 1 and support contained in B⇠/2(0) by

r⇠(x) = ⇠�1r(x/⇠), ⇠ 2 (0, 1].

Let ⇢⇠ be the unique function in L1(�) such that ⇢⇠ � ⇡ = r on B
1/2(0).

Define a one-parameter family of operators N⇠ : L1(�) ! L1(�) by the
convolution

N⇠h = ⇢⇠ ⇤ h.
For a fixed nonsingular T : M ! M , we obtain a family of random dynamical
systems by the skew-product

T⇠ : ⌦⇥M ! ⌦⇥M, T⇠(!, x) = (�(!),⇡(T (x) + !
0

)),

where we take S the ball with radius ⇠/2 and p the probability measure with
density given by ⇢⇠, with the same notations as in chapter 1. In this case,
we can obtain the following expression of the Perron-Frobenius operator.

Proposition 2.11. The Perron-Frobenius operator L⇠ of T⇠ is N⇠L0

, where
L
0

is the Perron-Frobenius operator of T (see remark 2.2).

Proof. For any � 2 L1(M) and measurable B ⇢ M , keeping the usual
notations for F = T⇠,
Z

B
L⇠� d� =

Z

⌦

Z

T�1

(B�!
0

)

� d�dµ(!) =

Z

S

Z

T�1

(B�t)
�(x)r⇠(t) d�(x) dt

=

Z

S

Z

B
L
0

�(x+ t)r⇠(�t) d�(x) dt =

Z

B
N⇠L0

� d�.
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In order to calculate L
0

� for � 2 L1(�), we consider the following smooth
manifold structure on M , identified as a set with ⇡(Rn) = [0, 1)n. We take
as open sets the images ⇡(O) of open O ⇢ Rn and, given any x 2 M , for
the neighborhood ⇡(B

1/2(x)), we have a chart ⇣x : ⇡(B
1/2(x)) ! B

1/2(x)
because ⇡|B

1/2

(x) is injective.

We can thus naturally consider the set C1(M,M) of C1 functions from
M to M , that is, of functions T : M ! M such that

⇣T (x) � T � ⇡|B
s

(x) : Bs(x) ! Rn

is of class C1, where s > 0 is taken so small that T (⇡(Bs(x))) ⇢ ⇡(B
1/2(T (x))).

Proposition 2.12. Suppose T 2 C1(M,M). If � 2 L1(�), then

L
0

�(x) =
X

T (y)=x

�(y)

| detT 0(y)| (2.6)

for a.e. x 2 M such that #T�1(x) < +1 and | detT 0(y)| > 0 for y 2
T�1(x).

Proof. Lift T to some S 2 C1(Rn,Rn) such that ⇡(S(x)) = ⇡(S(⇡(x))) for
all x 2 Rn and extend � to L1(Rn) setting �(x) = 0 if x /2 M .

Take B 2 B a ball centered at x su�ciently small that | detT 0(y)| > ✏
for all y 2 T�1(B). Changing variables as in [12, theorem 3.9], we get, for
any B 2 B,

Z

B
L
0

�(x) d�(x) =

Z

T�1

(B)

�(x) d�(x) =

Z

B

X

T (y)=x

�(y)

| detT 0(y)| d�(x),

because �(y) = 0 if y /2 M .

2.2.1 Noises of BV type

In chapter 4, the noise will be considered in the space BV (M) defined as
follows.

Definition 2.6. If f 2 L1(U), where U ⇢ Rn is an open set, the variation
of f on U is defined by [12, definition 5.1]

kDfk(U) = sup
�

Z

U
f(x) div �(x) dx,
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where the supremum is taken over all � 2 C1

c (U,Rn), that is, continuosly
di↵erentiable functions � : U ! Rn such that {� > 0} is compact, that
satisfy supx2U |�(x)|  1. Given f 2 L1(�), consider its extension f̂ = f � ⇡
to Rn, where ⇡ : Rn ! [0, 1)n is the retraction used in the definition of the
rotations ⌧·. We define

var(f) = lim
U#M

kDf̂k(U) = inf
U�M

kDf̂k(U), (2.7)

where the limit and infimum are taken over the open sets U � M . The
variation of f on I ⇢ M , varI(f), is defined as the variation of f�I . We
denote by BV (M) the set of f 2 L1(�) such that var(f) < +1.

Remark 2.7. Our definition is made in order that, when “gluing” oposite
sides of the n-dimensional cube, the variation of f in the passage is taken
into account. It is well defined because kDfk(U) ⇢ kDfk(V ) if U ⇢ V .

In the following, we list some properties of the variation.

Proposition 2.13. In the context of definition 2.6, the following holds.

1. var is a seminorm on BV (M); that is, for any f, g 2 BV (M) and
↵ 2 R, we have var(f +g)  var(f)+var(g) and var(↵f) = |↵| var(f);

2. if f 2 C1(M) (in the sense that f � ⇡ 2 C1(Rn)), then var(f) =
R

|rf | d� (cp. with [12, p. 197–198]);

3. if f 2 BV (M), then there exists a sequence of fi 2 C1(M) such that
fi ! f in L1(�) and var(fi) ! var(f) (cp. with [12, theorem 5.3]);

4. for all t 2 Rn and f 2 BV (M), ⌧tf 2 BV (M) with var(⌧tf) = var(f);

5. in the one-dimensional case, for every f : [0, 1] ! R, we have

var(f) = sup
{x

i

}k
j=0

k
X

j=0

|f(xj+1

)� f(xj)|, (2.8)

where the supremum is taken over all increasing sequences {xj}kj=0

in
[0, 1] such that each xj is a point of approximate continuity of f , that
is,

f(xj) =
f(x�j ) + f(x+j )

2
, f(x±j ) = lim

h!0

h>0

f(⇡(xj ± h)),

and xk := x
0

(cp. with [12, theorem 5.21]);
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6. if f 2 BV (S1), then there exist increasing functions f
1

, f
2

: [0, 1] !
R such that f(x) = f

1

(x) � f
2

(x) for every point x of approximate
continuity of f (cp. with [36, p. 103]).

Proof. 1. If f, g 2 BV (M) and U � M is open, then

kD(f̂ + ĝ)k(U) = sup
�

Z

U
(f̂ + ĝ)(x) div �(x) dx

 sup
�

Z

U
f̂(x) div �(x) dx+ sup

 

Z

U
ĝ(x) div (x) dx

= kDf̂k(U) + kDĝk(U),

where the suprema, here and in the following, are taken over all �, 2
C1

c (U,Rn) such that k�kL1  1, and h̃ := h � ⇡ for h 2 C1(M). Taking
U # M , we obtain var(f + g)  var(f) + var(g).

If f 2 BV (M), ↵ � 0 and U � M is open, then

kD(↵f̂)k(U) = sup
�

Z

U
(↵f̂)(x) div �(x) dx

= sup
�

⇣

↵

Z

U
f̂(x) div �(x) dx

⌘

= ↵kDf̂k(x).

Since � 2 C1

c (U) if and only if �� 2 C1

c (U), we have

kD(�f̂)k(U) = sup
�

Z

U
�f̂(x) div �(x) dx = sup

�

Z

U
f̂(x) div(��(x)) dx

= sup
 

Z

U
f̂(x) div (x) dx = kDf̂k(U).

Taking U # M and combining these two identities, we conclude that var(↵f) =
|↵| var(f) for any ↵ 2 R.

2. Let U � M and consider g 2 L1(Rn,Rn) (in the sense that each coordi-
nate function is in L1(Rn)) defined by

g(x) =

(�rf(x)
|rf(x)| if x 2 M, |rf(x)| > 0;

0 otherwise.

We have that supx2Rn

|g(x)|  1. Fix ⇢ 2 C1(Rn) such that {⇢ > 0} =
B

1/2(0), the open ball of radius 1/2 centered at 0, and
R

⇢ d� = 1. Define,
for every ⇠ > 0, ⇢⇠ 2 C1(Rn) by ⇢⇠(t) = ⇠n⇢(t/⇠).
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Consider the sequence given by

�i(x) =

Z

⇢
1/i(t)g(x� t) dt =

Z

⇢
1/i(x� t)g(t) dt.

Since M is compact, there exists i
0

2 N such that B
1/i

0

(x) ⇢ U for every
x 2 M . For i � i

0

, �i 2 C1

c (U,Rn) and �i ! g in L1(U,Rn), a conse-
quence of corollary 3.3 and Lebesgue’s density theorem, respectively, with
supx2U |�i(x)| 

R

⇢
1/i(t) supy2Rn

|g(y)| dt = 1. Thus, by Stoke’s theorem,

Z

U
f̂(x) div �i(x) dx = �

Z

U
rf̂(x) · �i(x) dx !

Z

M
|rf(x)| dx.

Hence kDf̂k(U) �
R

M |rf(x)| dx. On the other hand, if � 2 C1(U,Rn)
satisfies supx2U |�(x)|  1, then

Z

U
f̂(x) div �(x) dx = �

Z

U
rf̂(x) · �(x) dx 

Z

U
|rf̂(x)| dx,

thus taking the supremum over all such �, we get kDf̂k(U) 
R

U |rf̂(x)| dx.
Taking U # M , we conclude that var(f) =

R

M |rf(x)| dx.

3. Consider the open sets Ui = [x2MB
1/i(x), for k 2 N and the functions

⇢
1/i 2 C1(Rn) defined in the previous item. Define a sequence of functions

by

fi(x) =

Z

⇢
1/i(t)f̂(x� t) dt =

Z

⇢
1/i(x� t)f̂(t) dt.

For each fixed i
0

2 N, we have for i � i
0

, fi 2 C1(Ui
0

) and fi ! f̂ in
L1(Ui

0

), in particular fi|M ! f in L1(�). Moreover, if x, y 2 Rn, ⇡(x) =
⇡(y), then @↵fi(x) = @↵fi(y) for any ↵ 2 Nn

0

, because f(x � t) = f(y � t)
for any t 2 Rn. Hence fi|M 2 C1(M).

We have, for all � 2 C1

c (Ui
0

,R),
Z

U
i

0

fi div � dx =

Z

U
i

0

⇣

Z

⇢
1/i(t)⌧tf(·) dt

⌘

(x) div �(x) dx

=

Z

U
i

0

f̂(x) div
⇣

Z

⇢
1/i(t)⌧t�(·) dt

⌘

(x) dx

 kDf̂k(Ui
0

),

hence var(fi|M )  kDf̂k(Ui
0

) ! var(f).
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Conversely, var(f)  lim infi!+1 var(fi|M ) because, for any ✏ > 0, we
can find, for each i

0

2 N, some � 2 C1

c (Ui
0

,Rn) such that
Z

U
i

0

fi|M (⇡(x)) div �(x) dx !
Z

U
i

0

f̂(x) div �(x) dx � kDf̂k(Ui
0

)� ✏

) lim inf
i!+1

kD(fi|M )k(Ui
0

) � kDf̂k(Ui
0

)� ✏ � var(f)� ✏,

from which we conclude that lim infi!+1 var(fi|M ) � var(f)� ✏.

4. Given f 2 BV (M), take the sequence of approximations {fi}i2N obtained
in the proof of the previous item. Clearly, {⌧tfi}i2N is the corresponding
sequence to ⌧tf , so that var(⌧tfi) ! var(⌧tf). Moreover,

var(⌧tfi) =

Z

M
|r(⌧tfi)| d� =

Z

M
⌧t|rfi| d� =

Z

M
|rfi| d� = var(fi)

by item 2. Therefore var(⌧tf) = var(f).

5. Denote by V (f) the right-hand side of (2.8). Consider the sequence
{fi}i2N defined in item 3. We have that fi ! f in L1(�). Take any sequence
of points {xj}kj=0

where f is approximately continuous and set xk = x
0

.
Since �-a.e. x 2 [0, 1] is a point of approximate continuity of f , we have
that, for �-a.e. s 2 [0, 1], all ⇡(xj � s) are points of approximate continuity
of f . Also, up to a cyclical permutation, {⇡(xj � s)}k�1

j=0

is increasing for
j 2 {0, . . . , k � 1}. Thus

k�1

X

j=0

|fi(xj+1

)� fi(xj)| =
k�1

X

j=0

�

�

�

Z

1/2

�1/2
⇢
1/i(s)(f(⇡(xj+1

� s))� f(⇡(xj � s)) ds


Z

1/2

�1/2
⇢
1/i(s)

k�1

X

j=0

|f(⇡(xj+1

� s))� f(⇡(xj � s))| ds

 V (f)

Z

1/2

�1/2
⇢
1/i(s) = V (f).

Since this inequality holds for any increasing sequence {xj}k�1

j=0

, it follows
that V (fi|M )  V (f). Thus var(fi|M )  V (f) by the following lemma.

Lemma 2.1. If g 2 C1(S1), then V (g) = var(g), where

V (g) = sup
{x

i

}k�1

j=0

k�1

X

j=0

|g(xj+1

)� g(xj)|, xk := x
0

,
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the supremum being taken over all increasing sequences {xi}k�1

j=0

in [0, 1] of
points of approximate continuity of f .

Proof. Take any increasing sequence {xj}k�1

j=0

in [0, 1] of points of approxi-
mate continuity of f and set xk = x

0

. Note that g(x
0

) = ĝ(1 + x
0

) for the
periodic extension ĝ 2 C1(R) of g. Set yj = xj for j  k�1 and yk = 1+x

0

.
Then

k�1

X

j=0

|g(xj+1

)� g(xj)| =
k�1

X

j=0

�

�

�

Z y
j+1

y
j

rĝ(y) dy
�

�

�


k�1

X

j=0

Z y
j+1

y
j

|rĝ(y)| dy


Z

1+y
0

y
0

|rĝ(y)| dy =

Z

1

0

|rĝ(y)| dy =

Z

|rg| d� = var(g).

Therefore
V (g)  var(g).

Now fix ✏ > 0. The equivalence of Riemann and Lebesgue integrals implies
that there exists � > 0 such that, for any increasing sequence {yj}k+1

j=0

in
[0, 1] satisfying y

0

= 0, yk+1

= 1 and |yj+1

� yj | < � for j 2 {0, . . . , k}, we
have

k
X

j=0

|g(yj+1

)� g(yj)| >
Z

|rg| d�� ✏.

Additionally, by the compactness of [0, 1] and continuity of g, � can be chosen
in order that each term in the sum is less than ✏.

Since a.e. x 2 [0, 1] is a point of approximate continuity of f , there is
an increasing sequence {xj}k�1

j=0

of such points satisfying x
0

< �, xk > 1� �
and |xj+1

� xj | < � for j 2 {0, . . . , k � 2}. Therefore

k�1

X

j=0

|g(xj+1

)� g(xj)| >
k
X

j=0

|g(yj+1

)� g(yj)|� 2✏ >

Z

|rg| d�� 3✏,

where xk = x
0

, y
0

= 0, yk+1

= 1 and yj = xj�1

for j 2 {1, . . . , k}. We
conclude that V (g) � var(g), thus V (g) = var(g).

Since fi|M ! f in L1(�) and var(fi|M )  V (f), we have that

var(f) = lim
i!+1

var(fi|M )  V (f).
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If x is a point of approximate continuity of f , then fi(x) ! f(x). Hence, for
any increasing sequence {xj}k�1

j=0

in [0, 1] of points of approximate continuity
of f and xk = x

0

,

k�1

X

j=0

|f(xj+1

)� f(xj)| = lim
i!+1

k�1

X

j=0

|fi(xj+1

)� fi(xj)|

 lim
i!+1

var(fi|M ) = var(f),

from which we conclude that V (f)  var(f), thus V (f) = var(f).

6. Set c = lim infy!0

f(y), where y runs over the points of approximate
continuity of f . Define f

1

, f
2

: [0, 1] ! R by

f
1

(x) = c+ sup
{x

j

}

k�1

X

j=0

max{f(xj+1

)� f(xj), 0}

f
2

(x) = sup
{x

j

}

k�1

X

j=0

max{f(xj)� f(xj+1

), 0},

where the suprema are taken over all increasing sequences {xj}kj=0

in [0, 1] of
points of continuity of f such that xj  x. Clearly, f

1

and f
2

are increasing
functions. If x is any point of approximate continuity and ✏ > 0 is arbitrary,
take increasing sequences {x1j}

k�1

j=0

and {x2j}
l�1

j=0

in [0, 1], upper bounded by
x, such that

f
1

(x) � c+
k�1

X

j=0

max{f(x1j+1

)� f(x1j ), 0} > f
1

(x)� ✏

f
2

(x) �
l�1

X

j=0

max{f(x2j )� f(x2j+1

), 0} > f
2

(x)� ✏.

Take x
0

< min{x1
0

, x2
0

} such that |f(x
0

) � c| < ✏. Since max{a + b, 0} 
max{a, 0}+max{b, 0} and max{a, 0}�max{�a, 0} = a for a, b 2 R, we can
join these sequences and {x

0

, x} into one increasing sequence {xj}m�1

j=0

such
that, setting aj = f(xj+1

)� f(xj), we have

(f
1

(x)� ✏)� f
2

(x) < c+
m�1

X

j=0

aj < f
1

(x)� (f
2

(x)� ✏).
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Therefore

|f(x)� (f
1

(x)� f
2

(x))| 
�

�

�

c+
m�1

X

j=0

aj � (f
1

(x)� f
2

(x))
�

�

�

+ |f(x
0

)� c| < 2✏.

We conclude that f(x) = f
1

(x)� f
2

(x).

The following proposition, a particular case of [24, proposition 1.4.7],
shows that L⇠(BV (M)) ⇢ BV (M).

Proposition 2.14. If ⇢ 2 BV (M) and f 2 L1(M), then ⇢ ⇤ f 2 BV (M).

Proof. Since BV (M) ⇢ L1(M), we have that ⇢⇤f 2 L1(M), by (2.5). Given
any � 2 C1

c (M), |�|  1, we have

Z

(⇢ ⇤ f) div � d� =

Z Z

⌧t⇢(x)f(t) div �(x) d�(t) d�(x)

=

Z

⇣

Z

⌧t⇢(x) div �(x) d�(x)
⌘

f(t)d�(t)


Z

var(⌧t⇢)f(t) d�(t)  var(⌧t⇢)kfkL1

Since var(⌧t⇢) = var(⇢) < +1 by item 4 of proposition 2.13, we conclude
that ⇢ ⇤ f 2 BV (M).
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Chapter 3

Existence and regularity of

stationary densities

Assume initially that F : ⌦ ⇥M ! ⌦ ⇥M is a continuous random trans-
formation, in the sense that each F! = F (x, ·) is continuous, and M is a
metric space. We first investigate conditions that guarantee the existence of
stationary densities.

We remark that the space P(M) of regular probability measures on
M can be identified with a subspace of C(M)⇤, the dual of the bounded
continuous real functions on M [10, p. 262]; under this identification, we
have ⌘(�) =

R

� d⌘ for every ⌘ 2 P(M) and � 2 C(M).
In the following proposition, we denote by weak-* topology on P(M)

the subspace topology obtained when C(M)⇤ is endowed with the weak-*
topology. We recall that this topology is given by arbitrary unions of basic
neighborhoods

{⇠ 2 P(M) : (8� 2 � : |⇠(�)� U⇤⌘(�)| < ✏)},

where � ⇢ C(M) is a finite set.

Proposition 3.1. The operator U maps C(M) to itself and U⇤ is continuous
in the weak-* topology.

Proof. The first part of the proposition is a direct application of item 1 of
theorem 3.2 to the functions f(!, ·) = � � F!. Given any ⌘ 2 P(M) and a
basic neighborhood of U⇤⌘,

W = {⇠ 2 P(M) : (8� 2 � : |⇠(�)� U⇤⌘(�)| < ✏)},
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where � is a finite subset of C(M) and ✏ > 0. Consider the set

V = {⇠ 2 P(M) : (8 2 U(�) : |⇠( )� ⌘( )| < ✏)}.

Then V 3 ⌘ is a basic neighborhood, because U(�) is a finite subset of
C(M), and U⇤(V ) ⇢ W because U⇤⇠(�) = ⇠(U�) for � 2 �.

Remark 3.1. The first part of the proposition allows us to restate lemma 1.1
as U⇤⌘(�) = ⌘(U�) for ⌘ 2 P(M) and � 2 C(M).

3.1 Existence criteria

Corollary 3.1 (Existence of stationary measures [2, p. 31]). If M is com-
pact, then there exists a stationary measure on M .

Proof. If M is compact, then the set of signed Borel measures can be identi-
fied with C0(M)⇤ by Riesz representation theorem, which is a locally convex
topological vector space under weak-* topology (see proof of theorem 1.5).
With this identification,

P(M) =
\

�2C0

(M)

+

{⌘ 2 C0(M)⇤ : ⌘(�) � 0} \ {⌘ 2 C0(M)⇤ : ⌘(1) = 1} ⇢ B(0)

is compact in the weak-* topology, because the unit ball B(0) is compact by
Alaoglu’s theorem. Clearly, it is a convex set. Therefore U⇤ admits a fixed
point by Schauder-Tychono↵ fixed point theorem [10, p. 456].

Stationary measures can be obtained in the following way, a version of
Krylov-Bogolyubov procedure [2, p. 29]. Note that the choice of the initial
probability is important in general, since convergence is only guaranteed in
some weakly closed set [7, theorem 14, p. 392], which may be empty.

Proposition 3.2. Define for an arbitrary probability ⌫ on M and n 2 N,

⌫n =
1

n

n�1

X

j=0

U⇤j⌫. (3.1)

Then every limit point of {⌫n}n2N in the weak-* topology is invariant, and
any invariant ⌫ arises in this way.
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Proof. Assume without loss of generality that {⌫n}n2N converges weakly-*
to ⌫. Since U⇤ is weak-* continuous, {U⇤⌫n}n2N converges weakly-* to U⇤⌫.
On the other hand,

8� 2 C(M) : |U⇤⌫n(�)� ⌫n(�)| =
1

n
|U⇤n⌫(�)� ⌫(�)|  2

n
k�k.

Thus U⇤⌫ = ⌫.
For the final assertion, note that for any invariant ⌫, the Birkho↵ aver-

ages in (3.1) are equal to ⌫.

We now consider stationary measures that are absolutely continuous with
respect to a reference measure �, or equivalently, stationary densities of the
Perron-Frobenius operator, since the latter are Radon-Nikodym derivatives
of the former.

A sequence of absolutely continuous probabilities converges weakly-* to
some (absolutely continuous) probability if and only if the associated den-
sities converge weakly to some density. Thus Krylov-Bogolyubov procedure
shows that a necessary and su�cient condition for the existence of station-
ary densities is the existence of some � 2 D such that { 1

n

Pn�1

j=0

Lj�}n2N
contains a weakly convergent subsequence, that is (see (1.18)),

lim
�(E)!0

1

n

n�1

X

j=0

Z

E
Lj� d� = 0

uniformly on n.
Alternatively, we may consider the Perron-Frobenius operator as a par-

ticular case of positive contractions. Recall that the Banach dual of the
Perron-Frobenius operator is the transition operator (remark 2.2). In this
case, we have the following criterion for the existence of nonzero positive
fixed points [33] (see also [28, p. 137, theorem 4.2]).

Theorem 3.1. Let P be a positive contraction on L1(⌘). There exists f 2
L1

+

(⌘) with Pf = f 6= 0 if and only if, for every strictly positive h 2 L1
+

(⌘),

inf
n�0

Z

P ⇤nh d⌘ > 0. (3.2)

Further, there exists a strictly positive f 2 L1

+

(⌘) such that Pf = f if and
only if (3.2) holds for all 0 6= h 2 L1

+

(⌘).
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Proof. Suppose there is f 2 L1

+

(⌘) such that Pf = f 6= 0 and let 0 6= h 2
L1
+

(⌘). If either f or h is strictly positive, then there exists ✏ > 0 such that

Z

fP ⇤n(h ^ 1) d⌘ =

Z

(Pnf)(h ^ 1) d⌘ =

Z

f(h ^ 1) d⌘ > 2✏kfkL1

(⌘)

for all n 2 N. Set An = {P ⇤n(h ^ 1) � ✏}. Then P ⇤n(h ^ 1)  P ⇤n1  1
implies

2✏kfkL1

(⌘) <

Z

fP ⇤n(h ^ 1) d⌘ < ✏

Z

M\A
n

f d⌘ +

Z

A
n

f d⌘,

hence
R

A
n

f d⌘ > ✏kfkL1

(⌘) for every n 2 N. Since f 2 L1

+

(⌘), we con-
clude that there exists some � > 0 such that ⌘(An) > � for every n 2 N.
Consequently,

inf
n�0

Z

P ⇤nh d⌘ � inf
n�0

Z

A
n

P ⇤n(h ^ 1) � �✏ > 0.

For the converse, we divide into two cases.

1. Suppose there exists a strictly positive h 2 L1
+

(⌘) such that

inf
n�0

Z

P ⇤nh d⌘ = 0.

Then infn�0

R

fP ⇤nh d⌘ = 0 for any f 2 L1

+

(⌘). Indeed, if we take a > 0
such that k(f � a)+kL1

(⌘) < ✏, then f  a+ (f � a)+ implies

Z

fP ⇤nh d⌘  a

Z

P ⇤nh d⌘ +

Z

Pn(f � a)+h d⌘

)
Z

fP ⇤nh d⌘ < a

Z

P ⇤nh d⌘ + ✏khkL1
(⌘).

for any n 2 N. We conclude that infn�0

R

fP ⇤nh d⌘  ✏khkL1
(⌘) for every

✏ > 0 and the claim follows.

Suppose f 2 L1

+

(⌘) verifies Pf = f . We have that

Z

fh d⌘ = inf
n�0

Z

(Pnf)h d⌘ = inf
n�0

Z

fP ⇤nh d⌘ = 0,

therefore f = 0, because h is strictly positive.
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2. Now suppose (3.2) holds for every 0 6= h 2 L1
+

(⌘). Note that M = C.
Otherwise, there would be some c > 0 such that B = {

P1
n=0

P j1 < c} has
positive measure. Therefore

1
X

n=0

Z

P ⇤j�B d⌘ =

Z

B

1
X

n=0

P j1 < c,

which contradicts (3.2).

Define a linear functional ⇢ on L1(⌘) by ⇢(h) := l({
R

P ⇤nh d⌘}n2N),
where l is an arbitrary Banach limit. Then ⇢(h) � 0 for h 2 L1

+

(⌘) and
⇢(P ⇤h) = ⇢(h). Define, for h 2 L1

+

,

⌫̃(h) := inf
n

1
X

n=1

⇢(hn) : h =
1
X

n=1

hn, hn 2 L1
+

(⌘)
o

.

Lemma 3.1. ⌫(B) := ⌫̃(�B) defines a �-additive finite measure on B.

Proof. Since �B 2 L1
+

(⌘) for every B 2 B, we have ⌫(B)  ⇢(�B) < +1.
Thus ⌫ is a finite set function on B.

⌫ is �-additive because, given a sequence {Bi}n2N of disjoint sets in B
and B := [1

i=1

Bi, we can find, for every ✏ > 0, sequences {hi,j}j2N such that

�B
i

=
1
X

j=1

hi,j and ⌫(Bi) >
1
X

j=1

⇢(hi,j)�
✏

2i

)
1
X

i=1

⌫(Bi) >
1
X

i,j=1

⇢(hi,j) � ⇢(�B) � ⌫(B).

The reverse inequality holds because, given any sequence {hj}1j=1

on L1
+

(⌘)
such that �B =

P1
j=1

hj , we have, for each n 2 N,

n
X

i=1

⌫(Bi) 
n
X

i=1

1
X

j=1

⇢(�B
i

hj) =
1
X

j=1

⇢(�B
1

[···[B
n

hj) 
1
X

j=1

⇢(hj)

)
1
X

i=1

⌫(Bi) 
1
X

j=1

⇢(hj),

by linearity and positivity of ⇢.
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Set f = d⌫
d⌘ . We claim that Pf = f . In fact, ⇢(P ⇤h) = ⇢(h) for any

h 2 L1
+

(⌘) implies that ⌫̃(P ⇤h)  ⌫̃(h) for any h 2 L1
+

(⌘), hence Pf  f .
Since M = C, we conclude that Pf = f by lemma 1.3. Set B = {f = 0}
and suppose it has positive measure.

⌫̃(�B) = 0 implies that, for each m 2 N, there is a sequence {hm,n}n2N
such that �B =

P1
n=1

hm,n and
P1

n=1

⇢(hm,n) < m�1. Take k(m) so large
that

1
X

n=k(m)+1

Z

hm,n d⌘ < 2�m⌘(B)

and set

h⇤ := inf
m2N

k(m)

X

n=1

hm,n.

h⇤ 2 L1
+

(⌘), because each hm,n 2 L1
+

(⌘). Further,

Z

h⇤ d⌘ +
1
X

m=1

1
X

n=k(m)+1

Z

hm,n d⌘ � ⌘(B),

from which follows that
R

h⇤ d⌘ > 0, hence h⇤ 6= 0. On the other hand, for
all m 2 N,

⇢(h⇤)  ⇢
⇣

k(m)

X

n=1

hm,n

⌘

=

k(m)

X

n=1

⇢(hm,n) < m�1,

thus ⇢(h⇤) = 0. This implies that lim infn!+1
R

P ⇤nh⇤ d⌘ = 0, which con-
tradicts (3.2). We conclude that B has null measure, that is, f is strictly
positive.

Example 3.1. T : [0, 1] ! [0, 1], T (x) = x2 does not admit an invariant
measure that is absolutely continuous with respect to Lebesgue. In fact,
consider U the transition operator of T and � : [0, 1] ! [0, 1], �(x) = x.
Then � 2 L1

+

is strictly positive and, for every n 2 N and ✏ > 0,

Z

Un�(x) dx =

Z

2n

p
✏

0

�(Tn(x)) dx+

Z

1

2n

p
✏
Un�(Tn(x)) dx

 ✏ 2n

p
✏+ (1� 2n

p
✏)

n!+1�! ✏.

) inf
n2N

Z

Un�(x) dx = 0.

In contrast with the example, a large class of random transformations
admits stationary densities.
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Proposition 3.3. Let F : ⌦ ⇥ M ! ⌦ ⇥ M be a nonsingular random
transformation with respect to �. Suppose there exists � > 0 such that

�(B) > 1� � =) inf
x2M

µ({! 2 ⌦ : F!(x) 2 B}) > 0.

Then F admits a stationary ⌘ ⌧ �.

Proof. It su�ces to show that there is f 2 L1

+

(�) such that Lf = f 6= 0,
where L is the Perron-Frobenius operator of F . The transition operator of
F is given by

Uh(x) =

Z

⌦

h(F!(x)) dµ(!).

If h 2 L1
+

(�) is strictly positive, fix ✏ > 0 such that B = {h > ✏} satisfies

�(B) > 1� �.

For every x 2 M , we have

Uh(x) =

Z

⌦

h(F!(x)) dµ(!) � ✏ inf
x2M

µ({! 2 ⌦ : F!(x) 2 B}) =: ↵ > 0.

Therefore

8n 2 N :

Z

Unh d� � ↵ > 0,

and the existence of f follows from theorem 3.1.

Corollary 3.2. Suppose F : ⌦ ⇥ M ! ⌦ ⇥ M , M = [0, 1]n, is obtained
from T : M ! M by an additive noise, as in section 2.2. Suppose the noise
is distributed according to ⇢�, where ⇢ 2 L1(�) and �({⇢ > 0}) > 0, for �
the Lebesgue measure. Then there is a stationary ⌘ ⌧ �.

Proof. Let � = 1

2

�({⇢ > 0}). If �(B) > 1� �, then, for every x 2 M ,

�({F!(x) 2 B : ⇢(!
0

) > 0}) � �(B) + �({F!(x) : ⇢(!0

) > 0})� 1 > �

) �({!
0

2 {⇢ > 0} : F!(x) 2 B}) > �.

Fix ✏ > 0 such that

�({! 2 {⇢ > ✏} : F!(x) 2 B}) > �({! 2 {⇢ > 0} : F!(x) 2 B})� �

2
.

We conclude that

µ({! 2 ⌦ : F!(x) 2 B}) � ✏�({! 2 {⇢ > ✏} : F!(x) 2 B}) > ✏�

2

for every x 2 M . Thus the hypothesis of the proposition are satisfied.
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Although theorem 3.1 is not constructive, the existence of some strictly
positive fixed point is enough to apply the ergodic theorem for any initial
point and thus obtain fixed points.

An important issue is the speed of such convergence. In general, this
can be arbitrarily slow [29]. In the following proposition, we show that
condition (2.4) is strong enough that the convergence to a stationary density
is exponentially fast in the L1 rather than in Cesàro sense.

Proposition 3.4. If the Perron-Frobenius operator L of a random dynam-
ical system F is mixing in the sense of (2.4), then L admits a unique sta-
tionary density h and any density f must converge exponentially fast to h.
Precisely, there are C > 0 and � < 1 such that kLn(f)� hkL1

(�)  C�n.

Proof. kLkL1

(�) = 1 by proposition 2.4 and kLk|V kL1

(�)  ↵ for some k 2 N
and ↵ < 1, by (2.4). Take a density f 2 L1(�). We claim that Ln(f) ! h for
some density h. On the contrary, there would be ✏ > 0 and a subsequence
{Ln

k(f)}k2N such that

8k 2 N : kLn
k+1(f)� Ln

k(f)kL1

(�) � ✏.

Ln
k+1

�n
k(f)�f 2 V because Ln

k+1

�n
k(f) is a density, and 2kL|V knk

L1

(�)
�

✏ for every k 2 N, a contradiction.
h is stationary because L is bounded, and unique because g�h 2 V im-

plies kLn(g)�hkL1

(�) ! 0 for any density g. Similarly, the mixing property
follows from f � (

R

f dm)h 2 V .
Given any density f , f � h 2 V implies that

kLn(f)� hkL1

(�)  kLk|V k
bn

k

c
L1

(�)
kLn�bn

k

ck(f � h)kL1

(�)  C�n,

for � = ↵1/k < 1 and C = max
0ik�1

kLi

(f�h)k
L

1

(�)

�i
.

In the following, we will use equation (2.4) as the definition of mixing
property.

3.2 Regularity of Perron-Frobenius iterates

We wish to show that the Perron-Frobenius operator regularizes functions
under some conditions on the transition density or on the noise, in the case
of transformations obtained by additive noise. We state the following variant
of [5, theorem 16.8].
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Theorem 3.2. Let f(·, x) : ⌦ ! R be a measurable function for each x 2 O,
where O is a metric space, and µ a probability measure on ⌦.

1. Suppose f(!, ·) is continuous at x
0

for a.e. ! 2 ⌦ and there exists
a neighborhood Ox

0

3 x
0

where |f(!, ·)|  g(!) for some g 2 L1(µ).
Then

R

f(·, x) dµ is continuous at x
0

.

2. Suppose O is a subspace of R and, for every x
0

2 O, there exists a
full measure set ⌦x

0

such that f(!, ·) and @f
@x (!, ·) are continuous at

x
0

. Suppose also that there exists some neighborhood Ox
0

3 x
0

where
|@f@x (!, ·)|  g(!, x

0

) for some g(·, x
0

) 2 L1(µ). Then

@

@x

Z

⌦

f(!, ·) dµ(!) =
Z

⌦

@f

@x
(!, ·) dµ(!) (3.3)

and
R

⌦

f(!, ·) dµ(!) 2 C1(O).

Proof. 1. We have limx!x
0

f(!, x) = f(!, x
0

) for a.e. ! 2 ⌦ and |f(!, x)| 
g(!) for all x 2 Ox

0

. Thus, by Lebesgue’s dominated convergence theorem,
limx!x

0

R

f(!, x) dµ(!) =
R

f(!, x
0

) dµ(!).

2. Take ⌦x
0

and Ox
0

as in the hypothesis. We have limx!x
0

f(!,x)�f(!,x
0

)

x�x
0

=
@f
@x (!, x0) and |f(!,x)�f(!,x

0

)

x�x
0

|  g(!, x
0

) for every ! 2 ⌦x
0

and x 2 Ox
0

. We
may apply Lebesgue’s dominated convergence theorem to obtain

lim
x!x

0

Z

⌦

x

0

�

�

�

f(!, x)� f(!, x
0

)

x� x
0

� @f

@x
(!, x

0

)
�

�

�

dµ(!) = 0,

) lim
x!x

0

R

⌦

f(!, x) dµ(!)�
R

⌦

f(!, x
0

) dµ(!)

x� x
0

=

Z

⌦

@f

@x
(!, x

0

) dµ(!),

where we tacitly extended @f
@x (·, x0) to all ⌦ as a measurable function, be-

cause ⌦x
0

is a full measure set, setting @f
@x (!, x0) = 0 where the partial

derivative doesn’t exist.

We note that, for every ! 2 ⌦x
0

, limx!x
0

@f
@x (!, x) = @f

@x (!, x0) and

|@f@x (!, x)|  g(!, x
0

) for all x 2 Ox
0

. Hence the previous item applies to
@f
@x (·, x) and

R

⌦

f(!, ·) dµ(!) 2 C1(O).

To extend the theorem to functions defined on Rn, we use the multi-
index notation: we define, for ↵ = (↵

1

, . . . ,↵n) 2 Nn
0

, |↵| =
Pn

i=1

↵i and

@↵f = @|↵|f
@x

↵

1

1

···@x↵

n

n

.
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Corollary 3.3. Let f(·, x) : ⌦ ! R be a measurable function for each
x 2 O, where O ⇢ Rn is open, and µ a probability measure on ⌦. Suppose
that, for every x

0

2 O, there exists a full measure set ⌦x
0

such that @↵f(!, ·)
is continuous at x

0

for every ! 2 ⌦x
0

and ↵ 2 Nn
0

, |↵|  k. Suppose also
that there exists some neighborhood Ox

0

3 x
0

where, for every ↵ 2 Nn
0

with |↵|  k, |@↵f(!, ·)|  g↵(!, x0) for some g↵(·, x0) 2 L1(µ). Then
R

⌦

f(!, ·) dµ(!) 2 Ck(O) and @↵
R

⌦

f(!, ·) dµ(!) =
R

⌦

@↵f(!, ·) dµ(!) for
↵ 2 Nn

0

, |↵|  k.

Proof. We proceed by induction on k. For k = 0, the claim follows directly
from Lebesgue’s dominated convergence, because limx!x

0

f(!, x) = f(!, x
0

)
and |f(!, ·)|  g(!, x

0

).
Suppose now that the claim is valid for some k 2 N

0

and denote the
canonical basis of Rn by {e1, . . . , en}. If the assumptions hold for k+1, then
the theorem can be applied to each function f↵i (!, ·) : t 7! @↵f(!, x

0

+ tei),

where |↵| = k. In fact, for every ! 2 ⌦x
0

+tei , f↵i (!, ·) and
@f↵

i

@t (!, ·) :

t 7! @(@↵f)
@x

i

(!, x
0

+ tei) are continuous at each t 2 (�✏, ✏), where B✏(x0) ⇢
O, and |f↵i (!, ·)|  g↵(!, x0) in Ox

0

. In particular, @
@t

R

⌦

f↵i (!, t) dµ(!) =
R

⌦

@f↵

i

@t (!, t) dµ(!) for t 2 (�✏, ✏). It follows from the inductive hypothesis
that, if ↵ 2 N

0

and |↵|  k,

@(@↵
R

⌦

f(!, x
0

) dµ(!))

@xi
=

@

@xi

Z

⌦

@↵f(!, x
0

) dµ(!) =
@

@t

Z

⌦

f↵i (!, 0) dµ(!)

=

Z

⌦

@f↵i
@t

(!, 0) dµ(!) =

Z

⌦

@(@↵f)

@xi
(!, x

0

) dµ(!).

Since @↵+eif(!, ·), where (↵
1

, . . . ,↵n) + ei := (↵
1

, . . . ,↵i + 1, . . . ,↵n), is
continuous at x

0

for every ! 2 ⌦x
0

and dominated by g(!, x
0

),

lim
x!x

0

Z

⌦

@↵+eif(!, x) dµ(!) =

Z

⌦

@↵+eif(!, x
0

) dµ(!).

This concludes the inductive step, because any ↵ 2 Nn
0

with |↵|  k+1 can
be written as ↵0 + ei for some ↵0 2 Nn

0

with |↵0|  k.

By proposition 2.3, the Perron-Frobenius operator L : L1(�) ! L1(�)
admits an expression of the form

L�(x) =

Z

p(t, x)�(t) d�(t)

if F is nonsingular, B is countably generated and � 2 L1(�). Therefore,
we consider the case ⌦ = M , µ = � in corollary 3.3 and expect L� to be at
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least as regular as p under mild conditions on �. The following proposition
develops this idea.

Proposition 3.5. If p 2 L1(M ⇥M) is of class Ck, then L� is of class Ck

for every � 2 L1(�).

Proof. For each t 2 M , x 7! f(t, x) = p(t, x)�(t) is of class Ck. Further, for
every x

0

2 M , we have

8↵ 2 Nn
0

, |↵|  k : |@↵f(t, x)|  k@↵pkL1
(B(v

0

))

|�(t)|

for all x 2 B(x
0

), a su�ciently small neighborhood of x
0

such that the @↵p
are bounded.

Thus corollary 3.3 applies to f and we conclude that L� is of class
Ck.

3.3 Regularity of stationary densities of systems

with additive noise

We are mostly interested in the case that F is given by some map on M =
[0, 1]n ⇠= Tn perturbed by a BV additive noise, as in subsection 2.2.1. If F
is not a local di↵eomorphism, p can admit discontinuities. Thus we take a
di↵erent approach and consider properties of the convolution.

In the following, for an open set O ⇢ M , we say that � 2 L1
loc

(O) if
k�kL1

(K)

< +1 for every compact K ⇢ O. And we say that � is locally
Lipschitz continuous at x 2 M if � � ⇡ is Lipschitz continuous in some
neighborhood of x.

Lemma 3.2. Let L⇠ = N⇠L0

, where N⇠ is the convolution operator given by
� 2 L1(�) 7! ⇢⇠ ⇤�, ⇢⇠ 2 L1(�) is symmetric and supported on B⇠/2(0) as in
section 2.2 and L

0

the Perron-Frobenius operator associated to a nonsingular
T . If ⇢⇠ is Lipschitz continuous in ⇡(B⇠/2(0)) and there is an open set
O ⇢ M such that L

0

�|O 2 L1
loc

(O), then L⇠� is locally Lipschitz continuous
at every x 2 M such that ⇡(@B⇠/2(x)) ⇢ O.

Proof. We use the following lemma.

Lemma 3.2.1. If f 2 BV (M), then k⌧hf � fkL1  |h| var(f) for every
h 2 Rn.
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Proof. Let � 2 C1(Rn,R), supx2Rn

|�(x)|  1 and e = h
|h| 2 Rn. Define

�̃ 2 C1(Rn,Rn) by �̃ = �e. Then, for t = |h|,
Z

(⌧hf(x)� f(x))�(x) d�(x) =

Z

f(x)(�(x+ h)� �(x)) d�(x)

=

Z

f(x)

Z t

0

r�(x+ se) · e ds d�(x)

=

Z t

0

Z

f(x) div �̃(x+ se) d�(x) ds  t var(f).

C1(Rn,R) is dense in L1(Rn), therefore k⌧hf � fkL1  |h| var(f).

If L
0

�|O 2 L1
loc

(O) and ⇡(@B⇠/2(x)) ⇢ O, fix s > 0 such that K =

⇡(B⇠/2+s(x) \B⇠/2�s(x)) ⇢ O. Then, for every y, y + h 2 Bs(x), we have

|N⇠L0

�(⇡(y + h))�N⇠L0

�(⇡(y))| =
�

�

�

Z

(⌧�h⌧y⇢⇠(t)� ⌧y⇢⇠(t))L0

�(t) d�(t)
�

�

�

 |h| var(⌧y⇢⇠)kkL0

�kL1
(K)

+ |h|Lip(⇢⇠|⇡(B
⇠/2

(0))

)kL
0

�kL1

 |h|(var(⇢⇠)kL0

�kL1
(K)

+ Lip(⇢⇠|⇡(B
⇠/2

(0))

),

because ⇡(B⇠/2(y))�⇡(B⇠/2(y+ h)) ⇢ K, thus both or none of ⇡(t� y) and
⇡(t� y + h) belong to ⇡(B⇠/2(0)) if t /2 K. We conclude that N⇠L�|B

r

(x) is
Lipschitz continuous.

The second part of the theorem is a direct application of 3.3, taking
f(!, x) = ⇢⇠(x� !)�(!).

Theorem A. In the context of section 2.2, suppose that T 2 C1(M,M),
with #T�1(x)  m for every x 2 M , and ⇢⇠ is Lipschitz continuous in
B⇠/2(0). Set

O = {x 2 M : #T�1 is locally constant at x, | detT 0(y)| > 0 for all y 2 T�1(x)}

Then every bounded stationary density �, in particular every stationary den-
sity in the one-dimensional case, is locally Lipschitz continuous at every
x 2 M such that ⇡(@B⇠/2(x)) ⇢ O.

Proof. For every compact K ⇢ O and � 2 L1(�), we have, by proposition
2.12,

kL
0

�kL1
(K)

 mk�kL1

infy2T�1

(K)

|T 0(y)| < +1.

61



We conclude that L
0

�|O 2 L1
loc

(O) and the hypothesis of lemma 3.2 is
satisfied for � = L⇠�.

In the one-dimensional case, since L⇠� = � implies that � 2 BV (M)
(proposition 2.14) and BV (M) ⇢ L1(�) (proposition 2.13), we have that
every stationary density is bounded and the statement follows.

The next theorem from [14] shows that the stationary densities are stable
under small changes of noise or the deterministic component, provided we
have contraction on the zero average subspace

V = {f 2 L1 :

Z

f d� = 0}.

Theorem 3.3. In the context of theorem 3.2, denote by L
1

, L
2

the Perron-
Frobenius operators associated to continuous T

1

, T
2

: M ! M , and N
1

, N
2

the convolution operators associated to ⇢
1

, ⇢
2

2 BV (M), respectively. Sup-
pose that N

1

L
1

satisfies the spectral gap condition

9k 2 N : k(N
1

L
1

)k|V kL1 < 1.

If Li�i = �i for i 2 {1, 2}, then there is a constant C > 0 such that

kf
1

� f
2

kL1  C(k⇢
1

� ⇢
2

kL1 +min{var(⇢
1

), var(⇢
2

)}k|T
1

(·)� T
2

(·)|kL1).

Proof. We use the following lemma, from which the constant is obtained.

Lemma 3.3. Let P
1

, P
2

be two Markov operators. Assume

8j 2 {0, . . . , k} : kP j
1

|V k  Cj

and Ck < 1. If Pifi = fi for i 2 {1, 2}, then

kf
2

� f
1

k 
Pk�1

i=0

Ci

1� Ck
kP

1

� P
2

k. (3.4)

Proof. By triangle inequality,

kf
1

� f
2

k = kP k
1

f
1

� P k
2

f
2

k  kP k
1

(f
1

� f
2

)k+ k(P k
1

� P k
2

)f
2

k.

The first term in the rightmost side is bounded by Ckkf1�f
2

k. To estimate
the second term, we write

P k
1

� P k
2

=
k�1

X

i=0

P k�1�j
1

(P
1

� P
2

)P j
2

,

) kP k
1

� P k
2

k 
k�1

X

i=0

CikP1

� P
2

k.
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Therefore,

(1� Ck)kf1 � f
2

k 
k�1

X

i=0

CikP1

� P
2

kkf
2

k =
k�1

X

i=0

CikP1

� P
2

k.

Thus it remains to bound kN
1

L
1

�N
2

L
2

kL1 in terms of T
1

, T
2

, ⇢
1

, ⇢
2

, as
follows. Take any � 2 L1(�) and estimate

kN
1

L
1

�N
2

L
2

kL1  kN
1

L
1

�N
2

L
1

kL1 + kN
2

L
1

�N
2

L
2

kL1

 k⇢
1

� ⇢
2

kL1kL
1

kL1 + kN
2

kW!L1kL
1

� L
2

kL1!W

 k⇢
1

� ⇢
2

kL1 + var(⇢
2

)kL
1

� L
2

kL1!W ,

where we used item 5 of theorem B. Together with the fact that, for all
f 2 L1(�),

k(L
1

� L
2

)fkW = sup
Lip(�)=1

Z

f(x)[�(T
1

(x))� �(T
2

(x))], d�(x)


Z

|f(x)||T
1

(x)� T
2

(x)| d�(x)  k|T
1

(·)� T
2

(·)|kL1kfkL1 ,

we obtain the desired estimate.
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Chapter 4

Ulam approximation

Here we show how we can study the behavior of the Perron-Frobenius op-
erator associated to a random dynamical system by approximating it by
a finite rank operator. The finite rank approximation we use is known in
literature as Ulam’s method, named after [43]. For more details, see [14].

We assume the context of section 2.2, with ⇢ 2 BV (M).
Suppose we’re given a �-partition of M into convex sets I� = {Ii}li=1

,
where diam Ii  �, and denote the characteristic function of Ii by �i. An
operator P : L1(M) ! L1(M) can be discretized as

P� : L
1(�) ! L1(�), P� = ⇡�P⇡�, (4.1)

where ⇡� : L1(�) ! L1(�) is the projection

⇡�h(x) =
l

X

i=1

E(h|Ii)�i. (4.2)

This operator is completely determined by its restriction to the subspace
generated by {�

1

, . . . ,�l}, and thus may be represented by a matrix in this
base, which we call the Ulam matrix. In the following, we assume that I�
is a �-partition of M .

For computational purposes, the Perron-frobenius operator L⇠ of T⇠ is
discretized as

L�,⇠ = ⇡�N⇠⇡�L0

⇡�. (4.3)

This is simple to work with because it is the product of the discretized
operators ⇡�N⇠⇡� and ⇡�L0

⇡�.
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4.1 Computation of the stationary density

Consider the zero average subspace

V = {f 2 L1(�) :

Z

f d� = 0} (4.4)

and suppose kLk
�,⇠|V k  ↵ < 1 for some k 2 N. We have

kLi
⇠|V kL1  kLi

�,⇠|V kL1 + kLi
�,⇠|V � Li

⇠|V kL1 . (4.5)

Denote by f⇠ and f�,⇠ the stationary probability densities for L⇠ and L�,⇠,
respectively. Since (see the proof of lemma 3.3)

kf⇠ � f�,⇠kL1  1

1� ↵
k(Lk

�,⇠ � Lk
⇠ )f⇠kL1 , (4.6)

we search a good estimate of k(Lk
�,⇠ � Lk

⇠ )f⇠kL1 to prove mixing of T⇠ and
give a rigorous estimate of kf⇠ � f�,⇠kL1 .

The calculus of kLi
�,⇠|V k is computationally complex, thus an alternative

approach is used in [14]. First, a coarser version of the operator is considered,
L�

contr

,⇠, where �contr is a multiple of �, for which k
contr

2 N and constants
Ci,contr, for i < k

contr

, and ↵
contr

< 1 are calculated in order that

kLi
�
contr

,⇠k  Ci,contr, kLk
contr

�
contr

,⇠|V k  ↵
contr

. (4.7)

Finally, the following lemma is used to relate the estimates of the coarser
and finer partition.

Lemma 4.1. Let kLi
�,⇠|V kL1  Ci(�); let � be a linear operator such that

�2 = �, k�kL1  1, and �⇡� = ⇡�� = ⇡�; let ⇤ = �N⇠�L0

�. Then we have

k(Lj
�,⇠ � ⇤j)N⇠kL1  3�

⇠
var(⇢)

j�1

X

i=0

Ci(�). (4.8)

The lemma is applied to two cases.

1. � = �
contr

, � = ⇡� and ⇤ = L�,⇠ implies

k(Lj
�
contr

,⇠ � Lj
�,⇠)N⇠kL1  3�

contr

⇠
var(⇢)

j�1

X

i=0

Ci,contr.
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This is used to obtain k 2 N, ↵ < 1 and Ci, i < k, such that

kLi
�,⇠|V k  Ci, kLk

�,⇠|V k  ↵. (4.9)

In fact, we have

kLi
�,⇠|V k  kLi�1

�,⇠ N⇠⇡�|V k

 k(Li�1

�,⇠ � Li�1

�
contr

,⇠)N⇠⇡�|V k+ kLi�1

�
contr

N⇠⇡�|V k

 k(Li�1

�,⇠ � Li�1

�
contr

,⇠)N⇠k+ kLi�1

�
contr

|V k.

2. � = �, � = Id and ⇤ = L⇠ implies

kLk+1

⇠ |V kL1  kLk
�,⇠L⇠|V kL1 + k(Lk

⇠ � Lk
�,⇠)L⇠kL1

 ↵+
3�

⇠
var(⇢)

k�1

X

i=0

Ci(�).

By remark 2.6, we conclude that the mixing condition is satisfied when-
ever

↵+
3�

⇠
var(⇢)

k�1

X

i=0

Ci(�) < 1. (4.10)

Proof of lemma 4.1. As in the proof of lemma 3.3, we have

(Lk
�,⇠ � ⇤k)N⇠ =

k�1

X

i=0

Li
�,⇠(L�,⇠ � ⇤)⇤k�1�iN⇠,

where the term (L�,⇠ � ⇤) can be decomposed as

L�,⇠ � ⇤ = ⇡�N⇠(⇡� � �)L+ (⇡� � �)N⇠�L.

Therefore

k(Lk
�,⇠ � ⇤k)N⇠kL1 

k�1

X

i=0

Ci(�)(k⇡�N⇠(⇡� � �)kL1kL⇤k�i�1kL1

+k(⇡� � �)N⇠kL1k�L⇤k�i�1kL1)


k�1

X

i=0

Ci(�)(kN⇠(⇡� � 1)kL1 + k(⇡� � 1)N⇠kL1)

 2
k�1

X

i=0

Ci(�)
⇣�

2
+ �

⌘

var(⇢⇠) =
3�

⇠
var(⇢)

k�1

X

i=0

Ci(�),

where we use items 6 and 7 of theorem B.
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Remark 4.1. In the case that the partition is given by cubes, a better bound
can be obtained by item 6 of theorem B. In particular, in the one-dimensional
case, we get the constant 2�/⇠ instead of 3�/⇠.

We remark that a simple estimate to (4.6) is given by ([14, equation 4]).
This follows from (4.8), because

k(Ln
�,⇠ � Ln

⇠ )f⇠kL1  k(Ln
�,⇠ � Ln

⇠ )N⇠kL1kLf⇠kL1 = k(Ln
�,⇠ � Ln

⇠ )N⇠kL1

) kf⇠ � f�,⇠kL1  3� var(⇢)

⇠(1� ↵)

k�1

X

i=0

Ci. (4.11)

The analysis of data obtained from the numerical approximation f̃ of
f�,⇠, in particular its variance, permits to improve greatly this bound. This
is done as follows: first, we verify that

k(Lk
�,⇠ � Lk

⇠ )f⇠kL1  k(1� ⇡�)f⇠kL1 +
k�1

X

i=0

Ci(�)(kN⇠(1� ⇡�)Lf⇠kL1+

kN⇠⇡�L(1� ⇡�)f⇠kL1),

where all the terms k(1 � ⇡�)f⇠kL1 , kN⇠(1 � ⇡�)Lf⇠kL1 and kN⇠⇡�L(1 �
⇡�)f⇠kL1 admit bounds (for i = 1, 2, 3 respectively)

Aikf⇠ � f̃kL1 +Bi, (4.12)

thus for A = A
1

+ (A
2

+A
3

)
Pk�1

i=0

Ci and B = B
1

+ (B
2

+B
3

)
Pk�1

i=0

Ci,

k(Lk
�,⇠ � Lk

⇠ )f⇠kL1  Akf⇠ � f�,⇠kL1 +B.

Using this estimate, (4.6) implies

kf⇠ � f�,⇠kL1  C +Dkf⇠ � f̃kL1 , C =
A

1� ↵
, D =

B

1� ↵

Finally, adding the numeric error,

kf⇠ � f̃kL1  kf�,⇠ � f̃kL1 + C +Dkf⇠ � f̃kL1 ,

which can be rewritten as

kf⇠ � f̃kL1  1

1�D
(kf�,⇠ � f̃kL1 + C). (4.13)

We proceed to prove the bounds on k(1 � ⇡�)f⇠kL1 , kN⇠(1 � ⇡�)Lf⇠kL1

and kN⇠⇡�L(1� ⇡�)f⇠kL1) in lemmas 4.19, 4.21 and 4.22. To do it, we will
need the bounds summarized below.
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4.1.1 Auxiliary bounds

Definition 4.1. The Wasserstein-like norm is defined on V by

kfkW = sup
Lip(�)=1

Z

f(x)�(x) dx, (4.14)

where Lip is defined on C0(M) by

Lip(�) = sup
x,y2M

|�(x)� �(y)|
|x� y| .

We generalize bounds obtained in [14] in the one-dimensional context.

Theorem B. Let ⇡� be the Ulam projection on a �-partition I� of M into
convex sets and I a finite union of sets from I�. Let N⇠ be the convolution
operator N⇠(f) = ⇢⇠ ⇤ f , where var(⇢⇠) < +1. Then

1. k1� ⇡�k
var!L1  �

2

;

2. k1 � ⇡�kL1!W  �; if I is a partition into cubes with side  d, then
k1� ⇡�kL1!W  d

R

[0,1]n |x| d�(x);

3. k1�⇡�k
var

I

!W (I)  n�1 infx
0

2I

⇣

�(B)�1

R

I |x�x
0

|n d�(x)
⌘

1/n
, where

�(B) is the volume of the n-dimensional unit ball;

4. kN⇠kL1!var

 var(⇢⇠);

5. kN⇠kW!L1  var(⇢⇠).

Consequently,

6. k(1� ⇡�)N⇠kL1  �
2

var(⇢⇠);

7. kN⇠(1�⇡�)kL1  � var(⇢⇠); if I is a partition into cubes with side  d,
then kN⇠(1� ⇡�)kL1!L1  d var(⇢⇠)

R

[0,1]n |x| d�(x).

Proof. 1. Given any f 2 BV (M), we may assume that f 2 C1(M) be-
cause there exists a sequence {fk}k in C1(M) such that fk ! f in L1(M)
and var(fk) ! var(f), by proposition 2.13. By the L1 optimal Poincaré
inequality for convex domains [1, theorem 3.2],

8I 2 I� : kf � ⇡�fkL1

(I) 
�

2
varI(f). (4.15)

Hence

kf � ⇡�fkL1

(M)


X

I2I
�

�

2
varI(f) =

�

2
var(f).
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2. Since f 7! f d� defines an isometric embedding of L1(M) into the space
M(M) of signed Borel measures equipped with the TV norm, and 1 � ⇡�
extends to M(M) taking

(1� ⇡�)⌘ = ⌘ � E(⌘ | I�),

it’s su�cient to prove that k1 � ⇡�kM(M)!W  �. To see this, we use
Krein-Milman theorem and the following lemma.

Lemma 4.2. The extreme set of (MM+

)
1

:= {⌘ 2 MM+

: k⌘kTV  1} is
the set of Dirac measures {�x}x2M .

Proof. Every Dirac measure �x is in the extreme set of (MM+

)
1

, because if
�x = (1� t)⌘

1

+ t⌘
2

with 0 < t < 1, then (1� t)⌘
1

({x})+ t⌘
2

({x}) = 1; since
⌘
1

(B), ⌘
2

(B)  1, we conclude that ⌘
1

= �x = ⌘
2

.

Conversely, every extreme point ⌘ 2 (MM+

)
1

is a Dirac measure, oth-
erwise there would be B 2 B such that 0 < ⌘(B) < 1; thus ⌘ = (1 �
⌘(B))⌘M\B + t⌘B, where ⌘B(C) := ⌘(B\C)

⌘(B)

and ⌘M\B(C) := ⌘((M\B)\C)

⌘(M\B)

are

distinct measures in (MM+

)
1

.

If ⌘
1

, . . . , ⌘k 2 (MN )
1

have disjoint supports and the inequality k(1 �
⇡�)⌘ikW  �k⌘ikTV is valid for i 2 {1, . . . , k}, then it is valid for any ⌘ =
t
1

⌘
1

+ · · · + tk⌘k, ti 2 R
+

. The set {�x}x2M constitutes of measures with
pairwise disjoint supports. By continuity of the norms, we conclude that, if

k(1� ⇡�)�xkW  �k�xkTV = � (4.16)

for every x 2 M , then k(1�⇡�)⌘kW  �k⌘kTV for every ⌘ 2 ch({�x}x2M ) =
(MM+

)
1

. Finally, any ⌘ 2 M(M) can be written as a di↵erence of nonneg-
ative measures with disjoint supports ⌘ = ⌘+ � ⌘�. We proceed to show
(4.16). Take any �x, x 2 M . We have

(1� ⇡�)�x = �x � E(� | I(x)),

where I(x) is the element of the partition I that contains x. Hence

k(1� ⇡�)�xkW = sup
�

Z

� d((1� ⇡�)�x) d�

= sup
�

⇣

�(x)� �(I(x))�1

Z

I(x)
� d�

⌘

,
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where the supremum is taken over all 1-Lipschitz � 2 C0(M). Therefore,

k(1� ⇡�)�xkW  �(I(x))�1

Z

I(x)
|x� y| d�  �.

If I(x) is a cube of side a, then

�(I(x))�1

Z

I(x)
|x� y| d�(y)  a

Z

[0,1]n
|x| d�(x).

which su�ces to prove the second claim.

3. We have to bound k(1 � ⇡�)fkW (I) for f such that varI(f) < +1. It
su�ces to consider the case

R

I f d� = 0, because both varI(·) and (1�⇡�) are
translation-invariant. As in the proof of item 1, we can assume f 2 C1(I).
We have, for any x

0

2 I,

kfkW (I) = sup
Lip(�)=1

Z

I
f(x)�(x) d�(x) 

Z

I
|f(x)||x� x

0

| d�,

We apply the isoperimetric inequality [45, equation (6.41)] and obtain

kfkLn/(n�1)

(I) 
varI(f)

n�(B)1/n
,

where B is the unit ball. Thus

kfkW (I)  kfkLn/(n�1)

(I) inf
x
0

2I

⇣

Z

I
|x� x

0

|n d�(x)
⌘

1/n

 varI(f)

n�(B)1/n
inf
x
0

2I

⇣

Z

I
|x� x

0

|n d�(x)
⌘

1/n
.

4. As in the proof of item 1, we may assume that ⇢⇠ 2 C1(M) because
there exists a sequence {rk}k in C1(M) such that rk ! ⇢⇠ in L1(M) and
var(rk) ! var(⇢⇠). Then

r(N⇠f) = (r⇢⇠) ⇤ f 2 C1(M). (4.17)

Therefore, by (2.5),

var(N⇠f) = k(r⇢⇠) ⇤ fkL1  kr⇢⇠kL1kfkL1 = var(⇢⇠)kfkL1 . (4.18)
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5. Let f 2 V and consider the sets M± = {v 2 M : f±(v) > 0}. For each
probability q on M+ ⇥M� with marginals qM± = f± d�, we have

(f+ � f�)� =

Z

M+⇥M�
�x � �y dq(x, y)

Therefore, extending N⇠ to MN by N⇠⌫ = (⇢⇠�) ⇤ ⌫, we have

N⇠(f
+ � f�)� =

Z

M+⇥M�
(N⇠�x �N⇠�y) dq(x, y)

=

Z

M+⇥M�
[(⌧x⇢⇠)�� (⌧y⇢⇠)�] dq(x, y)

) kN⇠fkL1 
Z

M+⇥M�
var(⇢⇠)|x� y| dq(x, y)  var(⇢⇠)kfkW ,

where the estimate k⌧x⇢⇠ � ⌧y⇢⇠kL1  var(⇢⇠) follows from lemma 3.2.1.
Finally, items 6 and 7 are a consequence of items 1, 4 and 2, 5, respec-

tively.

4.1.2 Main estimates for stationary density

Based on the estimates presented in proposition B, we calculate the terms
that appear in (4.13), thus establishing a bound for the approximation of
the stationary density.

Lemma 4.3. Let ⇡� be the Ulam projection on a �-partition. Then

k(1� ⇡�)f⇠kL1  A
1

kf⇠ � f�,⇠kL1 +B
1

, (4.19)

A
1

=
�

2
⇠�1 var(⇢), B

1

=
�

2
var(N⇠Lf̃).

Proof. We have, using item 6 of proposition B,

k(1� ⇡�)f⇠kL1 = k(1� ⇡�)N⇠Lf⇠kL1

 k(1� ⇡�)N⇠L(f⇠ � f̃)kL1 + k(1� ⇡�)N⇠Lf̃kL1

 k(1� ⇡�)N⇠kL1kf⇠ � f̃kL1 + k1� ⇡�k
var!L1 var(N⇠Lf̃)

 �

2
⇠�1 var(⇢)kf⇠ � f̃kL1 +

�

2
var(N⇠Lf̃).

We give now the estimates (4.12) for i = 2, 3.
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Assumption 1. We assume T to be piecewise C1+� and monotonic on a
partition {Ci} of [0, 1], and let Ti = T |C

i

. For each L1 density g, we let Lig
be the component of Lg coming from the i-th monotone branch, that is,

Lig = L(g�i). (4.20)

In this way, we have Lg =
P

i Lig.

Lemma 4.4. Let ⇧ be the partition whose elements are given by unions
of k adjacent elements of the partition I� = {Ii}li=1

into squares of side
 �/

p
n =: d, where k divides l. Then

kN⇠(1� ⇡�)Lf⇠kL1  A
2

kf⇠ � f̃kL1 +B
2

, (4.21)

A
2

=
d

2
var(⇢⇠)

Z

[0,1]n
|x| d�(x),

B
2

=
d

2
var(⇢⇠)

X

I2⇧

X

i

min
n varI(Lif̃)

2n�(B)1/n

⇣

Z

I
|x|n d�(x)

⌘

1/n
, kLif̃kL1

(I)

o

,

where �(B) is the volume of the n-dimensional ball.

Proof. We can estimate as

kN⇠(1� ⇡�)Lf⇠kL1  kN⇠(1� ⇡�)L(f⇠ � f̃)kL1 + kN⇠(1� ⇡�)Lf̃kL1

 kN⇠(1� ⇡�)kL1 · kf⇠ � f̃kL1 + kN⇠(1� ⇡�)Lf̃kL1

 d

2
var(⇢⇠)kf⇠ � f̃kL1 + kN⇠(1� ⇡�)Lf̃kL1 .

The first term corresponds to A
2

kf⇠ � f̃kL1 . The second term is estimated
splitting the elements of ⇧ as follows.

kN⇠(1� ⇡�)Lf̃kL1  kN⇠kW!L1k(1� ⇡�)Lf̃kW
 kN⇠kW!L1

X

I2⇧
k(1� ⇡�)Lf̃�IkW (I)

 kN⇠kW!L1

X

I2⇧

X

i

min{k1� ⇡�k
var

I

!W (I) varI(Lif̃),

k1� ⇡�kL1

(I)!W (I)kLif̃kL1

(I)}

 var(⇢⇠)
X

I2⇧

X

i

min
n varI(Lif̃)

2n�(B)1/n

⇣

Z

I
|x|n d�(x)

⌘

1/n
, kLif̃kL1

(I)

o

,

where in the last step we used items 2, 3 and 5 of proposition B.
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Lemma 4.5. Let ⇧ be a partition as in lemma 4.4. It holds

kN⇠⇡�L(1� ⇡�)f⇠kL1  A
3

kf⇠ � f̃kL1 +B
3

, (4.22)

A
3

=
d

2
p
n
var(⇢⇠),

B
3

=
d2

4
p
n
var(⇢⇠) var(N⇠Lf̃)

Z

[0,1]n
|x| d�(x) +

X

I2⇧
min

n d

2
p
n
,

var(⇢⇠)/2

n�(B)1/n
kT 0kL1

(I)

⇣

Z

I
|x|n d�(x)

⌘

1/no

varI(N⇠Lf̃),

where �(B) is the volume of the n-dimensional unit ball.

Proof. We have

kN⇠⇡�L(1� ⇡�)f⇠kL1 = kN⇠⇡�L(1� ⇡�)N⇠Lf⇠kL1

 kN⇠⇡�L(1� ⇡�)N⇠L(f⇠ � f̃)kL1 + kN⇠⇡�L(1� ⇡�)N⇠Lf̃kL1 .

Since kLkL1  1, the first term is bounded by

kN⇠⇡�kL1k(1� ⇡�)N⇠kL1kf⇠ � f̃kL1  d

2
p
n
var(⇢⇠)kf⇠ � f̃kL1 ;

the second term, by

kN⇠L(1� ⇡�)N⇠Lf̃kL1 + kN⇠(1� ⇡�)kL1kLkL1k1� ⇡�k
var!L1 var(N⇠Lf̃)

 kN⇠L(1� ⇡�)N⇠Lf̃kL1 +
d2

4
p
n
var(⇢⇠) var(N⇠Lf̃)

Z

[0,1]n
|x| d�(x).

To estimate kN⇠L(1� ⇡�)N⇠Lf̃kL1 , we use the following lemma.

Lemma 4.6. For each I 2 ⇧,

kLkW (I)!W = kT 0kL1
(I) (4.23)

Proof. If f = �If 2 V , then taking any v
0

2 I,

sup
Lip(�)=1

Z

N
L(f)� d� = sup

Lip(�)=1

Z

N
(�If)(� � T ) d�


Z

I
f(v)(�(T (v

0

)) + kT 0kL1
(I)|v � v

0

|) d�(v)

 kT 0kL1
(I)

Z

I
f(v)|v � v

0

| d�(v)  kT 0kL1
(I)kfkW (I),

thus kLfkW  kT 0kL1
(I)kfkW (I).
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Now we split over the elements I 2 ⇧.

X

I2⇧
kN⇠L(1� ⇡�)(N⇠Lf̃ · �I)kL1


X

I2⇧
min

�

kN⇠kW!L1kLkW (I)!W k1� ⇡�k
var

I

!W (I),

k1� ⇡�k
var

I

!L1

(I)

 

varI(N⇠Lf̃)


X

I2⇧
min

nvar(⇢⇠)/2

n�(B)1/n
kT 0kL1

(I)

⇣

Z

I
|x|n d�(x)

⌘

1/n
,
�

2

o

varI(N⇠Lf̃).

proving the statement thanks to the lemma.

4.2 Estimating the average of observables

Here we discuss how to average an observable h that has a finite number
of singularities in the sense that, outside any neighborhood E of this finite
set, the observable is in L1. This is done by approximating

R

N hf⇠ d� with
R

M\E hf⇠ d� and bounding the error in terms of kf⇠ � f̃kL1 , kf⇠kL1
(E)

,

khkL1

(E)

and khkL1
(M\E)

.

Lemma 4.7. If h 2 L1(S) and v 2 L1(S) has zero average, then

�

�

�

Z

S
hv d�

�

�

�

 suph� inf h

2
kvkL1 . (4.24)

Proof. For every c 2 R,
�

�

�

Z

S
hv d�

�

�

�


�

�

�

Z

S
(h� c)v d�

�

�

�

+
�

�

�

Z

S
cv d�

�

�

�

 kh� ckL1kvkL1 ,

because v has zero average. Then kh� ckL1 � max{| suph� c|, | inf h� c|}
implies that the optimal bound is obtained with c = (suph + inf h)/2, for
which kh� ckL1 = (suph� inf h)/2 and we get the desired estimate.

Corollary 4.1. Let f and f̃ be bounded probability densities on M and
E ⇢ M a Borel subset for which the

R

E f d� =
R

E f̃ d�. If h is an observable
that is bounded on M \ E, then, for a = (supM\E h� infM\E h)/2,

�

�

�

Z

N
hf d��

Z

M\E
hf̃ d�

�

�

�

 khkL1

(E)

kfkL1
(E)

+ akf � f̃kL1 . (4.25)
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Proof. We write

�

�

�

Z

N
hf d��

Z

M\E
hf̃ d�

�

�

�

=
�

�

�

Z

E
hf d��

Z

M\E
h(f̃ � f) d�

�

�

�

 khkL1

(E)

kfkL1
(E)

+
�

�

�

Z

M\E
h(f̃ � f) d�

�

�

�

and apply (4.24) to v = f̃ � f and S = M \ E.

We proceed to obtain bounds for the term kfkL1
(E)

that appears in
(4.25) applied to f⇠.

Lemma 4.8. Let I be a partition as in proposition B. For every I 2 I,

kf⇠kL1
(I)  kN⇠Lf̃kL1

(I) + k⇢⇠kL1kf̃ � f⇠kL1 . (4.26)

Proof. Since f⇠ = N⇠Lf⇠, triangle inequality gives

kf⇠kL1
(I)  kN⇠Lf̃kL1

(I) + kN⇠L(f̃ � f⇠)kL1
(I)

 kN⇠Lf̃kL1
(I) + kN⇠kL1!L1kL(f̃ � f⇠)kL1 ,

then (4.26) follows because kN⇠kL1!L1  k⇢⇠kL1 .

4.3 Application

We consider a random transformation on the circle, suggested by the be-
havior of a certain macrovariable in the neural networks studied in [31],
modeling the neocortex with a variant of Hopfield’s asynchronous recurrent
neural network presented in [21].

In Hopfield’s network, memories are represented by stable attractors and
an unlearning mechanism is suggested in [22] to account for unpinning of
these states (see also, e.g., [23]). In the network presented in [31], however,
these are replaced by Milnor attractors, which appear due to a combination
of symmetrical and asymmetrical couplings and some resetting mechanism.

The model we consider is made by a deterministic map T on the circle
perturbed by a small additive noise. For a large enough noise, its associated
random dynamical system exhibits an everywhere positive stationary density
concentrated on a small region (see theorem C), which can be attributed to
the “chaotic itinerancy” of the neural network. This concept still doesn’t
have a complete mathematical formalization, and deeper understanding of
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the systems where it was found is important to extract its characterizing
mathematical aspects.

In the paper, with the help of a computer aided proof, we establish
several results about the statistical and geometrical properties of the above
system, with the goal to show that “the behavior of this system exhibits
a kind of chaotic itineracy”. We show that the system is (exponentially)
mixing, hence globally chaotic. We also show a rigorous estimate of the
density of probability (and then the frequency) of visits of typical trajectories
near the attractors, showing that this is relatively high with respect to the
density of probability of visits in other parts of the space. This is done by
a computer aided rigorous estimate of the stationary probability density of
the system. The computer aided proof is based on the approximation of
the transfer operator of the real system by a finite rank operator which is
rigorously computed and whose properties are estimated by the computer.
The approximation error from the real system to the finite rank one is then
managed using an appropriated functional analytic approach developed in
[14] for random systems.

The transformation is given by

xi+1

= T (xi) + ⇠n (mod 1), where T (x) = x+A sin(4⇡x) + C, (4.27)

for A = 0.08, C = 0.1 and ⇠n an i.i.d. sequence of random variables with a
distribution assumed uniform over [�⇠/2, ⇠/2].

The Perron-Frobenius operator (definition 2.1) associated to this system
is given by L⇠ = N⇠L0

(proposition 2.11),where N⇠ is a convolution operator
(4.28) and L

0

is the Perron-Frobenius operator of T .

N⇠�(x) = ⇠�1

Z ⇠/2

�⇠/2
�̂(x� t) dt, (4.28)

where �̂(x) = �(⇡(x)) with ⇡ : R ! [0, 1) as in subsection 2.2.1.
Since

T 0(x) = 1 + 4⇡A cos(4⇡x), 4⇡A = 1.005,

T satisfies assumption 1, with � = 1 and 6 branches. Viewed as an operator
on S1, it satisfies the hypothesis of theorem A.

In [6], we verified mixing and calculated the stationary density of the one
dimensional system (4.27) using the numerical tools from the compinv-meas
project [14], which implements the ideas presented in section 4.1. The data
obtained is summarized in table 4.1.
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Figure 4.1: Data plot from Tsuda (2016, apud [6]) suggesting the model we
studied and the deterministic component of (4.27).

We have shown how the numerical approach developed in [14] can be
used to study dynamical properties for a one dimensional random dynamical
system of interest in the areas of physiology and neural networks.

We have the following characterization of the stationary densities of the
system.

Theorem C. For every ⇠ > 0 such that the constants obtained by the algo-
rithm, for some � > 0, satisfy

↵+
2�

⇠

n�1

X

i=0

Ci(�) < 1,

the system (4.27) is mixing, with a unique everywhere positive, locally Lip-
schitz continuous outside a finite set, stationary density f such that f(x) =
f(x + 1/2) for x 2 [0, 1/2]. In particular, this holds for the ⇠ in the ta-
ble 4.1. The stationary densities obtained by the algorithm are presented in
figure 4.2.

Proof. The condition on the constants implies that (4.10) is satisfied, be-
cause in our case, var(⇢) = 2; thus the system is mixing. In particular,
it posssess a unique stationary density, by proposition 3.4. This density is
a.e. locally Lipschitz continuous by theorem A, because T 0(x) = 0 only for
finitely many points x 2 [0, 1], and satisfies f(x) = f(x+1/2) for x 2 [0, 1/2]
because T (x) = T (x+ 1/2) for x 2 [0, 1/2], so that, for any � 2 L1([0, 1]),
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⇠ k
contr

↵
contr

↵
P

Ci l1apriori l1err

0.732⇥ 10�1 126 0.027 0.05 56.64 0.313⇥ 10�2 0.715⇥ 10�4

0.610⇥ 10�1 167 0.034 0.067 78.66 0.530⇥ 10�2 0.105⇥ 10�3

0.488⇥ 10�1 231 0.051 0.1 120.56 0.106⇥ 10�1 0.184⇥ 10�3

0.427⇥ 10�1 278 0.068 0.14 156.45 0.163⇥ 10�1 0.268⇥ 10�3

0.366⇥ 10�1 350 0.087 0.19 213.17 0.273⇥ 10�1 0.432⇥ 10�3

0.305⇥ 10�1 453 0.12 0.26 307.03 0.523⇥ 10�1 0.813⇥ 10�3

0.275⇥ 10�1 532 0.14 0.32 380.64 0.776⇥ 10�1 0.122⇥ 10�2

0.244⇥ 10�1 596 0.19 0.41 467.70 0.124 0.202⇥ 10�2

� = 2

�19

: used to calculate the invariant density. �
contr

= 2

�14

: used to find the

estimates in (4.7). �
est

= 2

�12

: used to estimate the L1

error of the invariant density.

Table 4.1: Summary of the L1 bounds on the approximation error obtained
for the range of noises ⇠, where k

contr

and ↵
contr

are chosen in order to satisfy
(4.7) so that the values ↵ and

P

Ci obtained through lemma 4.1 attempt
to minimize the error l1err obtained through the algorithm in [14].

denoting by �̂ the periodic extension of � to R,
Z

L⇠f(x)�(x) d� =

Z

f(x)

Z

�̂(T (x) + !) d⇢(!) d�(x)

=

Z

f(x)

Z

�̂(T (x+ 1/2) + !) d⇢(!) d�(x)

=

Z

L⇠f(x)�(x+ 1/2) d� =

Z

L⇠f(x+ 1/2)�(x) d�.

For the value ↵ + 2�
⇠

P

Ci, we obtain, in the same order that the values
appear in the table, 0.05, 0.07, 0.11, 0.15, 0.21, 0.30, 0.37, 0.48. Therefore
the condition is satisfied in all these cases.

We also studied the system Equation (4.27) in the case that A = 0.07
for the same range of noises (Table 4.2). In Figure 4.3, stationary densities
obtained in this case are shown. We note that the same kind of “chaotic
itinerancy” obtained in the main case is observed.
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a b

c d

Figure 4.2: Approximated stationary densities f⇠,� for T⇠, with � = 2�19 and
A = 0.08. (a) ⇠ = 0.732⇥ 10�1; (b) ⇠ = 0.488⇥ 10�1; (c) ⇠ = 0.305⇥ 10�1;
(d) ⇠ = 0.214⇥ 10�1.

⇠ k
contr

↵
contr

↵
P

Ci l1apriori l1err

0.732⇥ 10�1 183 0.03 0.059 83.57 0.466⇥ 10�2 0.255⇥ 10�4

0.610⇥ 10�1 237 0.046 0.089 119.31 0.822⇥ 10�2 0.282⇥ 10�4

0.488⇥ 10�1 332 0.069 0.14 186.80 0.170⇥ 10�1 0.323⇥ 10�4

0.427⇥ 10�1 406 0.087 0.18 244.95 0.267⇥ 10�1 0.358⇥ 10�4

0.366⇥ 10�1 494 0.12 0.25 330.89 0.459⇥ 10�1 0.419⇥ 10�4

0.305⇥ 10�1 500 0.3 0.46 419.92 0.974⇥ 10�1 0.646⇥ 10�4

0.275⇥ 10�1 596 0.32 0.52 517.97 0.151 0.807⇥ 10�4

0.244⇥ 10�1 600 0.49 0.73 573.04 0.326 0.189⇥ 10�3

Table 4.2: Summary of the L1 bounds on the approximation error obtained
for the range of noises ⇠, for the system Equation (4.27) with the alternative
value A = 0.07.
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a b

c d

Figure 4.3: Approximated stationary densities f⇠,� for T⇠, with � = 2�19 and
A = 0.07. (a) ⇠ = 0.732⇥ 10�1; (b) ⇠ = 0.488⇥ 10�1; (c) ⇠ = 0.305⇥ 10�1;
(d) ⇠ = 0.214⇥ 10�1.
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Conclusion

We have obtained theorem A on the regularity of the stationary density of a
random dynamical system on the torus with additive noise, using elementary
properties of an appropriate notion of BV space. We also proved theorem
B, which provides higher-dimensional generalizations of estimates used to
calculate the approximation error of the stationary density using the method
developed in [14]. Finally, we summarized in theorem C results obtained in
[6] and through application of theorem A.

These results are preliminary and can be further explored in future
works. In the case of theorem A, it is likely that this can be used to de-
termine an L1 bound in approximations of the stationary density, which
should make more precise the “chaotic itinerancy” property, since the error
in the calculated stationary density in theorem C holds only in L1.

In theorem B, we have not investigated optimality of the bounds, which
is important to the speed of the algorithm. Also an actual implementa-
tion would possibly require more sophisticated arguments, because higher
dimensions would require much larger matrices in order to calculate the
contraction rate of the discretized operator on the zero-average space.

In the application, to investigate further “chaotic itinerancy”, it would
be important to rigorously compute Lyapunov exponents and other chaos
indicators and to investigate the robustness of the behavior of the system
under various kinds of perturbations, including the zero noise limit. An-
other important direction is to refine the model to adapt it better to the
experimental data shown in figure 4.1, with a noise intensity which depends
on the point.
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