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RESUMO

Nesta tese, estudamos sistemas de Bresse termoelasticos onde a conducao do calor
€ modelada para ambas as leis: de Fourier e de Cattaneo. Inicialmente, estudamos
0 caso em que a temperatura age apenas na forca axial. Para o caso de Fourier,
provamos estabilidade exponencial se e somente se a condicao de velocidades de
onda iguais é satisfeita. Para o caso de Cattaneo, caracterizamos a estabilidade ex-
ponencial por meio de uma nova condigao sobre os coeficientes do sistema. Também
provamos, no caso geral, estabilidade polinomial de solugdes. Depois, estudamos o
caso em que a temperatura age nao apenas na forga axial mas também no momento
fletor. Nesta situacao, damos mais uma nova condi¢cao que caracteriza completamente
a estabilidade exponencial do modelo e generaliza tanto a bem conhecida condicao
de velocidades de onda iguais quanto o numero de estabilidade do sistema de Timo-
shenko.

Palavras-chave: Sistema de Bresse. Estabilidade. Lei de Fourier. Lei de Cattaneo.
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ABSTRACT

In this thesis, we study thermoelastic Bresses systems where the heat conductions are
modeled for both: Fourier’s and Cattaneo’s laws. Initially, we study the case in which
the temperature acts only on the axial force. For the Fourier’'s case, we prove exponen-
tial stability of solutions if and only if the condition of equal wave speeds is satisfied.
For the Cattaneo’s case, we characterize the exponential stability by a new condition
on the coefficients of the system. We also prove, in the general case, polynomial sta-
bility of solutions. Later, we study the case in which the temperature acts not only on
the axial force but also on the bending moment. In this situation, we give another new
condition which completely characterizes the exponential stability of the model and
generalizes the well-known equal wave speed condition as well as the stability number
of the Timoshenko system.

Keywords: Bresse system. Stability. Fourier’s law. Cattaneo’s law.
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1 INTRODUCTION

In this thesis we study asymptotic properties of thermoelastic systems modeling
longitudinal, vertical and angular motions, the well known Bresse systems named in
honor of the French engineer Jacques Antoine Charles Bresse (1822—-1883).

Figure 1: Jacques Antoine Charles Bresse.

Source: Page 719 of [19].

These systems, following notations of [20], describe the behavior of a thin curved
beam with length £ and have the form

mehW; = [ER(W; — k3W3)l" — k3Gh(d; + W5 + ksWs) (longitudinal motion)
mohW; = [Gh(d; + W + ksWh)l” 4+ ksER[W] — k3 W3] (vertical motion) (1.1)
molggéz = E13319£/ — Gh(d, + W3, + k3Wi) (shear motion)

where W; is the horizontal displacement, W; is the vertical displacement, 9, is the
angle of rotation of the cross-section, h is the cross-sectional area, m, is the density,
G is the shear modulus, E is the Young’s modulus, «;3 is the initial curvature, Is; is
the moment of inertia of the cross-section with respect to the vertical axis, the prime
stands for the derivative with respect to the position x € [0, {] and the dot stands for the
derivative with respect to the time t > 0 (see also [21]).

Figure 2: Displacement of a particle in the centerline of the beam due to deformation.

{4
Source: Created by the author.
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Using the notations

@ =W, b=, wi=W;, L:= k3, p:=moh,
P2 = molgg, k= Gh, b= EIgg, ko = Eh,

system (1.1) takes the form

P1Ptt — k((Px + 1I) + lw)x - kOl(Wx - l(p) =0
pZII)tt - bll)xx + k((px + ll) + ]'W) =0 (1 2)
P1Wg — kO(Wx - l(p)x + kl((px + lb + IW) = O)

where k(@ + VP + lw) is the shear force, by, is the bending moment, ko(w, — lo) is
the axial force and all coefficients are positive constants. Note that, following the model
described in [20, [21], the parameter k, can be completely determined by p;, p; and b.
More precisely:
ko = m, (1.3)
P2

which means, from the physical point of view, that the shear and longitudinal motions
have the same wave speeds. Of course, from the mathematical point of view, we
can neglect condition and study without any restriction on ko, which is the
standard approach used by many authors. In our case, we will also work without any
restriction on ko, obtaining general results particularly valid in the case (1.3). However,
we will keep in mind and discuss its implications because, for the asymptotic
stability of solutions, the relationship between the coefficients of the system will play
a fundamental role. So, in order to distinguish both cases, we will refer to the general
system (without any restriction on ko) as the mathematical system and to the particular
case with the restriction as the physical system.

In this context, we will highlight briefly a few contributions concerning Bresse
systems, which are the main references of this thesis. In 1859, the Bresse system was
first derived in [4].

Figure 3: First publication of the Bresse system.

COURS

MECANIQUE APPLIQUE

(]
div Eg[, d(dv ©\ vfde N\
( =1+ (=)= E ) )
’-2

ah Eg[ ,d%0 (dv i
g W——)“f—T[" ds? — k (mﬂ—o——l’).]'

[ al'd (du v\ Kk (dv [
e ot - BRAGE Bated hl —— -—— R
s an =R+ [ds(ds+p)+P(ds+o p)]’<

Source: Page 126 of [4].
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In 1993-1994, in [20, [21], this model was derived again in a more general and
modern approach which includes the Timoshenko system - a system that, roughly
speaking, can be obtained from Bresse system by takingw = 0 and 1 = 0, i.e., ne-
glecting longitudinal displacements and supposing zero initial curvature. To our best
knowledge, the first work related to the well-posedness and stability of Bresse systems
is given by [23], where the authors studied the physical system

P10 — K(@x + 1 + W), —kol(wyx — @) + 1y0 =0
P2Wu — b + k(@ + P +1w) +y9, =0

P1wWy — ko(wy — L)y + kl(@x + b + Iw) +v0, =0 (1.4)
D — K19 + My = 0
0t — K10 + MWy — L) =0,

which contains two thermal dissipations 6 and & given by the Fourier’s law, acting in
axial force and bending moment, respectively. In the framework of semigroup theory,
the authors proved existence and uniqueness of solution for two different boundary
conditions: Dirichlet condition for all functions and the Dirichlet-Neumann condition

e=P,=w,=3=0=0 on {0, x [0,00).

About stability, they proved that the solution is polynomially stable with rates of decay
that depend on the boundary conditions. They also proved that for both boundary
conditions, the solutions are exponentially stable provided that

% - %. (1.5)

This condition means that the wave speeds of the vertical and longitudinal motions are
equal. Additionally, for the Dirichlet-Neumann conditions, they proved that is not
only sufficient but also necessary for the exponential stability. The results of [23] have
been extended to many other Bresse systems with thermal dampings as well as to
Bresse systems with different kinds of dissipations, like frictional or memory dampings.
One of them was given in [12], where the authors studied the mathematical system

P10 — k(@x + U + ) — kol (wy — L) =0
PPt — b + k(@ + +w) + 9, =0
P1Wi — ko(wy — 1@)x + kl(x + 1 +1w) =0
D — K10 + My = 0

(1.6)

which contains only one thermal dissipation, also given by the Fourier’s law, acting
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in the bending moment. In this work, the authors proved existence, uniqueness and
polynomial stability of solutions, also for two type of boundary conditions: Dirichlet
condition for all functions and the Dirichlet-Neumann condition

e=1Py=w,=9=0=0 on {0, x [0,00). (1.7)

In general, they obtained the same rate of polynomial decay for both boundary condi-
tions which can be improved provided that k = k,. Additionally they proved that, for
both boundary conditions, the solutions are exponentially stable provided that

Pk and k=% (1.8)

p2 b

This condition means that the wave speeds of the vertical, shear and longitudinal mo-
tions are equal. Finally, for the Dirichlet-Neumann conditions (1.7), they proved that
the sufficient condition (1.8) is also necessary for the exponential stability. Note that,

for the physical system, (1.8) reduces to (1.5).
The results in [12], concerning to boundary conditions (1.7), were extended in

[8] to the case where the Fourier’s law is replaced by the Gurtin-Pipkin thermal law. As
a particular case, it was shown that the mathematical system

P1@w — K(@x + 1 + ) — kol(wy — 1) =0

PP — b + k(@ + 1 +w) + 9, =0
p1w — Ko(wx — l@)x + kl(@y + 1 +1w) =0 (1.9)

K+ kipx + My =0

Tt +0p + 9 =0

which contains a thermal dissipative mechanisms given by the Cattaneo’s law acting
only in the bending moment, is exponentially stable if and only if the equalities

kip P P2 prym _

hold, which is the same result obtained in [17] for different boundary conditions. In
particular, for T > 0, system is not exponentially stable if S—; = ‘g

Note that, in none of the cases presented here, the dissipative mechanism is
acting only in the axial force. Therefore, a natural question (to the best of our knowl-

edge, still open) arises: can these results be extend to the Cattaneo-Fourier/Bresse
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system

P1@w — k(@ + 1 + ), — Uko(wy — L) —v0] =0
P2y — by + k(@ + P +lw) =0
p1wy — [ko(wy — 1) —¥0l + kl(@y + b +1w) =0
moc,0r = —qx — YTo(Wx — L@): (1.11)
Toqr = —(q + kBy), (1.12)

which contains a thermal dissipative mechanisms acting only in the axial force? The
aim of Chapter[3]is to give an answer to this question.

In (7.71)-(1.12), c. is the heat capacity, T, is the reference temperature, « is the
heat conductivity, v is a positive coupling constant, 0 is the temperature deviation, q
is the heat flux and T, is a non negative constant standing for the heat flux relaxation.
Note that if T, = 0, then (1.11)-(1.12) reduces to the classical Fourier’s law

mvaet - Kexx - 'YTO(WX - l(p)t

For simplicity, we will use the notations k; := —'—, m:= X 1:= % and 5 := L. So,

mocy ’ : mocy ’

the problem under consideration takes the form

P10 — K@y + 1 + Iw), — kol(wy — L) +1y0 =0
P2t — by + k(@x + 1 +1lw) =0

Piwi — ko(Wx — L@y + k(@ + 1 +Iw) +v0, =0 (1.13)
Ot + Ki1gx + m(wy — L) =0
Tqt +0q+ 0, =0

where T > 0 and the other coefficients are positive constants. For both cases, T > 0
and T = 0, we consider boundary conditions

e=Uvy=w,=0=0 on {O)K}X[O)OO) (114)
The initial conditions, for the case T > 0, are given by

©® = @, 11)211)0, W = Wy, 9:90

on (0,¢) x{0}.
O = @1, lbtzlbh Wy =Wy, =(o
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For the case T = 0, note that g = —«6,, then system (1.13) reduces to

P1@w — k(@x + b + ), — kol (wyx — @) +1y0 =0
P2bi — b + k(@ + P +1w) =0

P1Wy — Ko(wy —1@)x + kl(@x + b +1Iw) +v0, =0
0; — K10, + mM(wyy — ley) =0

where k; = ‘% with its corresponding initial conditions

(2 Po, ll) 1I)O) w Wo, 0 on (O,E) 5 {0}
Pt = @1, ll)t:q)l) Wi = W

Under the above notations, the main contribution of Chapter [3|is to show that
system (1.13)-(1.14)), with its corresponding initial conditions, is exponentially stable if
and only if the equalities

o &

Pr_ and (T—m) (ko—k)+Tym =0 (1.15)
P2 k

=X

hold. In particular, for T > 0, system (1.13)-(1.14) is not exponentially if k = k. Note
that coincides with if and only if T = 0, in which case they reduce to (1.8).
Additionally, we obtain polynomial stability for the case where is not satisfied.
These stability results are interesting because, contrary to what happens with systems

(1.4), (1.6) and (1.9), the Timoshenko version of (1.13) is conservative instead of dis-

sipative.

Remark 1.1. From the physical point of view, in the derivation of the three-dimensional
model for thin thermoelastic beams, the temperature difference AT at a point (x, y, z) of
the beam is assumed to satisfy AT = 0(x)+yd(x)+z0(x), see [20, 21]. In our case, the
model is obtained under the assumption that AT = 0(x). Physically, this means
that the temperature difference is assumed to be constant on each cross-section of the
beam (gray area in Figure [2), which is reasonable in the situation where y and z are
very small.

Table [1| summarizes the results concerning to exponential stability discussed
above, recovering the results for the physical system and comparing to Timoshenko
versions in terms of the constants

kp2

TYm
xomb— =k L= 14

()
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kipg

k

Note that, for the case T = 0, we have (, = ( 0 ) = 0.

Table 1: Comparison between systems: known and new results on exponential stability.

Damping Exponential decay
Mathematical Physical Timoshenko
system system version
Fourier's law on bend- If and only if If and only if If and only if
ing moment [12,28] | xo = ¢p and x1 = Go Xo = Co X0 = Co
Cattaneo's law on bend- If and only if Doe.s.not.decay If and only if
ing moment [8, 29] o = Ceand x1 = o (condition is never o= C
’ satisfied) *
Fourier's law on If and only if If and only if Does not depay
axial force Xo = Co and x1 = (o Xo = (o (conservative
system)
Cattaneo's law on If and only if Doe.s.not.decay Does not dgcay
axial force o = Co and x; = (s (condltlgnlls never | (conservative
satisfied) system)

Taking into account the constants x, and x5, we can reformulate condition (1.10)
as

k
Xo <T—]Tp]) +tym=0 and x; =0

and condition (1.15) as
k
X1 (T— —Lp]) +1rym=0 and xo=0,

which shows a similarity between the previous condition existing in the literature
and our new condition (1.15).

It is important to remark here that conditions (1.5), (1.10) and (1.15) are mathe-
matically interesting but cannot be satisfied from the physical point of view. In fact, for
conditions and (1.15), this happens because the equality o' = ¥ is incompatible
with the physical condition

P1 k
Pl +v)s, 116
o, ( )b ( )

which results from the relation E = 2G(1+v) between the Young’s modulus E, the shear
modulus G and the Poisson’s ratio v. For conditions (1.10), this happens because, for
the physical system, we have

P1

kk—k=0 & —=
P2

o'l &

and thus, in this case, we also obtain an incompatibility with (1.16).
Now, returning to the context of system (1.9), adding another thermal dissipation
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0 acting in the axial force, the resulting system is exponentially stable even in the case
where the second equality of (1.10) is dropped. In other words, and with a slightly

different notation, if
(g—@) (b—@)ﬂym:o, (1.17)
k P1

then system
P10t — k(@y + U + ), — Uko(wy — L) —v0] =0
PPy — [by — VO + k(ox + P +1w) =0
p1wy — [ko(wyx — L) —vOlx + kl{@x + 1 +1w) =0
Yt + Kipx + My =0 (1.18)
cpt +op+9 =0
Ot + kigx + m(wy — L) =0
Tqe +06q+ 0, =0

with boundary conditions
e=9P,=w,=3=0=0 on {0,¢} x [0,00) (1.19)

is exponentially stable. This result was proved in [13] and, to the best of our knowledge,
it is the unique known result on exponential stability of (1.18)-(1.19) providing only a
sufficient condition. In Chapter [4], we will prove a similar result but starting our analysis
studying system instead of (1.9). In fact, adding another thermal damping 9
in system (1.13), now acting in the bending moment, we will prove that the resulting
system is exponentially stable even in the case where the first equality of is
dropped. Note that in both cases, after adding the other damping, we obtain the same
system (1.18). Therefore, our result says that if

(T - %) (ko — k) 4+ Tym =0, (1.20)

then system (1.18)-(1.19) is exponentially stable. This implies that the equalities (1.17)
and (1.20) are two different sufficient conditions for the exponential stability of (1.18)-

(1.19). So, combining these two results, we will prove that the sufficient and necessary
condition for the exponential decay of system (1.18)-(1.19) is given by

K@—%) (b—%) +gvm] {(T—%) (ko—k)+'rvm] = 0. (1.21)

Summarizing the previous discussion, the main contribution of Chapter |4|is to

prove that the system (1.18)-(1.19) is exponentially stable if and only if equality (1.21)
holds. Therefore, our results provide a complete characterization of the exponential
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stability of system (1.18)-(1.19) which, as far as we know, is an open problem in the
literature. Observe that (1.21) generalizes the standard equal wave speed condition
(1.5). Additionally, observe that the number

_kipr _bpr)  gprym ki _kopr)  Terym
(=5 () =5 {50 (o5 ),

obtained when we multiply (1.21) by (—%‘)2, generalizes the stability number of the
Timoshenko system with Cattaneo’s law given in [29].

Remark 1.2. From the physical point of view, the relevance of our result is that, com-
pared with system (1.4), system considers thermal effects governed by the Cat-
taneo’s law which removes the paradox of infinite propagation speed inherent in the
Fourier's law. Additionally, compared with systems and (1.13), system is
more realistic because it does not neglect the effects of the temperature in any direc-
tion. Furthermore, for the physical system, condition reduces to

(652 (o) ] (-2 (50 ] -

which is not incompatible with (1.16)), contrary to what happens with conditions (1.9),
(1-10) and (1-15).

Finally but not less important, we observe that there exists a quite large num-
ber of references in the literature studying Bresse systems. Until now, we have cited
only a few of them which we believe are the most important to help the readers to
understand our contributions. However, in order to give a most comprehensive sur-
vey on Bresse systems in the context of our work, we will cite some other papers
about Bresse systems with thermal dampings on bounded domains. In [25] the au-
thors studied a version of with thermal effects of type Il for © and Fourier’s law for
9. They proved that condition is sufficient for the exponential stability and showed
existence of global attractors. In [16] the authors studied a version of with vari-
able coefficients, boundary damping and heat flux given by Cattaneo’s law. In [27] the
authors studied existence and uniqueness of solutions for nonhomogeneous and non-
linear versions of (1.4). In [26] the authors extended the results of [12] to a version of
with locally distributed thermal damping. In [11] the authors extended the results
of [12] to a version of with nonlinear motion equation. In [30] the author extended
the results of [12] to a version of with heat conduction given by thermoelasticity
of type Ill. In [15] the authors studied the system with boundary damping. In [1]
the authors studied a version of with history. In [3], the authors studied a variant
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of for different mixed boundary conditions. In such variant, looking to the pre-
cise Bresse model, the corresponding coupling terms are incomplete: the term 0 in the
first equation and the term ¢, in the coupling of the heat equation were omitted. In this
case, the authors proved that condition is no longer equivalent to the exponential
decay and an extra restriction on the curvature is needed. Under the same condition
on the curvature, polynomial stability was also obtained even in the case where
is not satisfied. Finally, in [14], the author obtained similar results for the same model
with Cattaneo’s law replaced by thermal effects of types | and Ill. In this case, condition
is replaced by the usual equal wave speeds condition, the same restriction on
the curvature is needed.

The remainder of this thesis is organized as follows. In Chapter [3 we study the
system (1.13)-(1.14): in Section[3.1]we formulate it, with its corresponding initial condi-
tions, as an abstract Cauchy problem and prove existence and uniqueness of solutions;
in Section 3.2 we prove exponential stability if and only if the condition holds; in
Section [3.3| we prove that, regardless of the relationship between the coefficients, the
solution is always polynomially stable. In Chapter 4] we study the system (1.18)-(1.19):
in Section |4.1| we formulate it, with its corresponding initial conditions, as an abstract
Cauchy problem and prove existence and unigueness of solution; in Section we
prove that the exponential decay of the system is characterized by the condition (1.27).
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2 PRELIMINARY RESULTS

The aim of this chapter is to present the main tools which will by needed for the
proofs presented in the next chapters. All results presented here are rather standard
and, when a reference is not given, the result is very simple and a proof is presented
only for convenience of the reader (not because it has any sort of originality).

2.1 Functional analysis

Let us recall that a space X equipped with a norm || - ||, represented by (X, || - ||),
is called a Banach space if it is complete with respect to || - ||. And two norms |- ||; and
| - ||2 defined on the same space X are said to be equivalent if there exist two positive
constants a and b such that

allx[i < fIx[l2 < blix[r, ¥xeX.

Theorem 2.1 ([18], p. 106). Let (X, ||-||1) and (X, | - ||2) be Banach spaces. If there
exists a constant c; > 0 such that

Ixllh <cil|x]l2, VxeX

then || - ||y and || - ||, are equivalent.

Let us recall also that a linear map A : X — Y is compact provided that A(U) is
a compact subset of Y for all compact subset U of X. For the particular case in which X
is identified with a subspace of Y, if the embedding X > x — x € Y is compact we say
that X is compactly embedded in Y and write X 3.

Theorem 2.2 ([18], p. 231). Let X and Y be two normed spaces and B: X — Y a
linear map. Then, the following assertions are equivalent.

* B is compact.

* If {xn}Jnen is @ bounded sequence in X, then the sequence {Bx,}.cn has a
subsequence which converges in Y.

Now, let us recall that a linear operator with compact resolvent is a linear op-
erator A : D(A) C X — X for which there exists A € p(A) such that (A\I — A)~" is
compact, where p(A) is the resolvent set of A formed by all A € C such that the
operator (AI — A)~! exists, is bounded and has dense domain.
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Theorem 2.3 ([9], p. 117). Let (X, | - ||x) be a Banach space, A : D(A) C X — X
a linear operator with nonempty resolvent and || - |pa) the graph norm defined on
D(A) by ||x]lba) = |Ix]Ix + [|Ax||x. Then, the following assertions are equivalent.

* A has compact resolvent.

« (D(A), |- o)) = (511 [1x)-

On the other hand, we recall that the spectrum of a linear operator A : D(A) C
X — Xisthe set o(A) = C\ p(A) and that the point spectrum of A is the subset o,,(A)
of o(A) formed by all A € C such that (AI — A) is not invertible. The elements of o;,(A)
are called eigenvalues of A.

Theorem 2.4 ([9], p. 248). Let X be a Banach space and A : D(A) C X — X a
linear operator. If A has compact resolvent, then o(A) = o, (A).

Finally, in order to finish this section with the the Lax-Milgram Theorem, we recall
that given a Hilbert space H and amap B: H x H — C we say that B is:

» a sesquilinear form if

B(u+x,v) = B(u,v) + B(x,v) and B(ou,v) = aB(u,Vv)
Vu,v,x € H, xeC.
B(u,v+x) = B(u,v) + B(u,x) and B(u, av) = aB(u,v)

« continuous if there exists a constant C > 0 such that

B(u,v)| < C|lu||[v], VuveH.

» coercive if there exists a constant M > 0 such that

Re(B(w, 1)) > M[ul?, YueH.

Theorem 2.5 ([7], p. 376). Let H be a Hilbert space on Cand B: H x H —» K
a continuous coercive sesquilinear form. Then, given a bounded linear functional
f:H — C, there exists a unique z € H such that

f(u) =B(u,z), VueH.
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2.2 Sobolev spaces

Let
LP(Q), W™P(Q) and W;P(Q) (2.1)

be the usual Lebesgue and Sobolev spaces, defined as in [2]. Initially, let us recall that
any element of L?(Q) can by approximated by elements of the space C{(Q), formed
by the infinitely differentiable functions of compact support:

Theorem 2.6 ([2], p. 38). Let Q be an open subset of RN and 1 < p < oo. Then,
the space C5°(Q) is dense in LP(Q).

Let us recall also that, for the space W;""(Q), the Poincaré inequality is given as
follows:

Theorem 2.7 ([2], p. 183). Let 1 < p < oo and Q C RN be an open set of finite
width (that is, an open set that lies between two parallel planes of dimension N—1).
Then, there exists a constant C > 0 such that

e < CIVUllry, YU e WP(Q).

And, for the space W'P(Q), the Poincaré inequality takes the following form:

Theorem 2.8 ([10], p. 275). Let 1 < p < oo and QO c RN be an connected bounded
open set of class C'. Then, there exists a constant C > 0 such that

1
med Q

< C[|Vullr, YueWwhr(Q).

Lp

,L u(x) dx

Let us recall finally that, under the notations p;, = y“os and W9 := L9, the
Rellich-Kondrachov Theorem says the following:

Theorem 2.9 ([2], p. 168-169). Let Q be a bounded open subset of RN with smooth
boundary, m a positive integer, j @ nonnegative integer and 1 < p < oc.

(@) If mp < N, then W™ (Q) < Wha(Q) for all g € [1,pz,).
(b) If mp =N, then W™H»(Q) <5 Whi(Q) for all q € [, 00).

(c) If mp > N, then W™Hr(Q) < CI(Q).
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« In particular, W™HP(Q) <5 WiP(Q) for all m, p and N.

« If we replace W™» by WP in the previous embeddings, then the results
are valid for a arbitrary open set Q (not necessarily bounded with boundary
not necessarily smooth).

In this thesis, we will use only the following particular cases of the spaces listed
in (2.1), which are all Hilbert spaces:

 L?(0,¢) equipped with the usual norm

{ 2
2 == (JO hu(x)I? dX)

12(0,0) == {u €12(0,0) | Jludx = o} equipped with the norm

Ju

12 = w2

induced from 1.2(0, {).

H'(0,¢) :== W"?(0, £) equipped with the usual norm

1
llhe = (et + i) -

HJ (0, ¢) := W}*(0,¢) equipped with the usual norm

[l = [l

H!(0,8) := H'(0,¢) N L2(0,¢) equipped with the norm

[l = flulee

« H2(0,0) := W?>%(0, £) equipped with the usual norm
1
Il = (i + iz + lwdif2)2.

We remark that in order to obtain estimates for expressions involving these norms, the

Young’s inequality
a? b’
ab < 7 + =y (l,b > 0

will be tacitly used many times along the thesis.
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Occasionally, we will omit the domain (0,¢) and simply represent the above
spaces by
sz Li) H]» H(1)> Hl) H2° (22)

For these spaces, the Poincaré inequalities given in Theorem[2.7jand Theorem are
summarized as follows: there exists C > 0 such that

[ulliz < Clluxlliz, Ve (Hy(0,0) UHL(0,0)) .

Furthermore, as consequence of Theorem 2.6, we have the following density results:

Theorem 2.10. The space H! (0, ¢) is dense in 1.2(0, {).

Proof. Take f € 12(0,¢). By Theorem 2.6} there exists a sequence (f™),cy in C(0, €)
such that

£ — f]| 2 =5 0.
Define g™ = f™ —¢,,, where
1 4
Cn = —J M dx.
tJo

Then, g™ € H!(0,¢). In addition, as f € 12(0, ¢), we have

Therefore,

-l 4
lenlliz = leal - VE = ‘EJ (fM — ) dx

{
J [ — -1 dx
0

0

17— fllz )1l =" 0.

Thus,

n—oo

lg™ —flliz = [ —cn = flliz < ™ = flliz + [lenlliz =70

This shows that there exists a sequence (g™ ),.cn in HI(0,€) that converges to f in
12(0,0). u

Theorem 2.11. The space ] :={u € H!(0,¢) | u, € H}(0,0)} is dense in H!(0, ¢).

Proof. Take f € H!(0,¢). By Theorem 2.6} there exists (z™) ey in C(0, €) such that

||Z(n) n—oo

- fXHI_Z — O.
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Define

Then, g™ € J. In addition,

n—oo

9™ = Flh = gt = fule = |2 = fyJua = .

This shows that there exists a sequence (g™ ),y in ] that converges to fin H!(0,¢). O

Now, in order to present compact embeddings for the spaces (2.2)), we look at
the one-dimensional version of Theorem 2.9}

Theorem 2.12 ([5], p. 217). Let I be a bounded open interval, m a positive integer
and 1 < p < co. Then,
W™ (1) <5 cm (D).

Corollary 2.13. For the spaces (2.2), we have

C

(@) H' — L2

(b) H! — 12

(c) (H2NH!) < HL

(d) (H2NH}) < HL.

Proof.

(a) Taking m = 1 and p = 2 in Theorem [2.12] we conclude that H'(0, &) = W"2(0, £) <5
Cl0, €] < L2(0,¢). Therefore, H'(0, £) < L2(0, £).

(b) Let (un)nen be bounded in H!(0,€). Then, (u,)nen iS bounded in H'(0,£), which
is compactly embedded in L?(0,¢) by item (a). Thus, there exist a subsequence
(un, Jxen @and a function uw € 12(0, €) such that

Un, SFu in L2(0,0).
Since u, € L2(0,¢) for alln € N and 1L%(0, () is complete, it follows that u € 12(0, ¢).

Therefore,

U, S uin L2(0,0),

which implies that H! (0, ¢) < 12(0, ¢) by Theorem 2.2]
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(c) Let (un)nen be bounded in H2(0,¢) N H! (0, £). Then, (u,)nen is bounded in H2(0, ¢),
which is compactly embedded in H'(0, ¢) by Theorem[2.12] (with m = p = 2). Thus,
there exist a subsequence (u,, )ren and a function w € H'(0, €) such that

Un, P in H'(0, ¢).

Since u, € H!(0,¢) foralln € Nand H! (0, {) is complete, it follows that u € H! (0, {).
Therefore,
U, EFu in H(0,0),

which implies that [H2(0, £) N H (0, €)] <% H! (0, ¢) by Theorem [2.2]
(d) The proof is exactly as the proof of item (c), with H! replaced by H}. ]

Finally, we finish this section with two simple existence lemmas.

Lemma 2.14. Let1 > 0, f € 1%(0,¢) and g € [2(0,{). Suppose that
W#nm VneN. (2.3)

Then, there exist ¢ € H}(0,¢) and w € H!(0,¢) such that

wy, — lp =1,
¢ (2.4)
ox +lw=g.

Proof. Define
@(x) = ¢7 cos(lx) — ¢ sin(lx) + cos(1x) Jx[g(s) cos(ls) + f(s) sin(ls)] ds
x ° (2.9)
+ sin(lx)J [g(s) sin(ls) — f(s) cos(ls)] ds
0

and
w(x) = ¢y sin(lx) + ¢, cos(Ix) + sin(lx)J [g(s) cos(ls) + f(s) sin(Ls)] ds
. ° (2.6)
+ COS(IX)J [f(s) cos(ls) — g(s) sin(ls)] ds.
0
It is clear that ¢,w € H'(0,€). In addition, differentiating (2.5)-(2.6) and substituting
into the equations, we see that ¢ and w satisfy the system (2.4). Taking ¢; = 0 and

(

Je[g(s) cos(ls) + f(s) sin(ls)] ds —|—J [g(s) sin(ls) — f(s) cos(Ls)] ds,
0 0

_ cos(l)
~ sin(l0)
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we conclude that ¢(0) = ¢(£) = 0. Therefore, ¢ € H}(0, ¢) (note that c, is well defined
because sin(1¢) # 0, which follows from assumption (2.3)). Finally, we conclude that
w € H!(0,¢) because, integrating the second equation of (2.4) over [0, €], we obtain

Jew(s) ds =0.
0 ]

Lemma 2.15. Let 1 > 0, H € L2(0,¢) and F,G < L?(0,¢). Suppose that condition
(2.3) holds. Then, there exist ¢ € H}(0,¢) and P, w € H!(0,¢) such that

Yy =F
(px +1-|) —'_IW — H.

Proof. Define

Then, y € H!(0,¢) and
By Lemma [2.14)}, there exist ¢ € H}(0,¢) and w € H!(0, ¢) such that

(2.9)

w, —lp =G,
©x+Iw=H-—1.

Therefore, ¢, P and w have the desired regularity and, by (2.8)-(2.9), satisfy (2.7). O

2.3 Semigroups of operators

Let us recall that a semigroup (of bounded linear operators) on a Banach space
X'is a family {S(t)}+>0 in £(X) which satisfies the following conditions:

* S(0) = I, where I is the identity operator from X to X.
* S(s)S(t) =S(s+1t), forall s,t > 0.
Let us recall also that a semigroup {S(t)}:>o is called:
« strongly continuous (or Cy) if Eﬁ 1S(t)x —x||x =0, for all x € X.

» bounded if there exists a constant M > 0 such that ||S(t)||; < M, forall t > 0.
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+ of contractions if ||S(t)||; <1, forall t > 0.

In addition, let us recal that the infinitesimal generator of a semigroup {S(t)}>o on X
is the operator A : D(A) € X — X defined by

with domain S(t
D(A) = {x e X ‘ the limit lim % exists} .

t—0+

Finally, let us recall the if {S(t)}i>o is the semigroup whose infinitesimal generator is the
operator A, then we write S(t) = e'A.

For our purposes, the importance of the concept of Cy-semigroup is due to the
following result.

Theorem 2.16 ([9], p. 145). Let X be a Banach space and A : D(A) € X — X the
infinitesimal generator of a Cy,-semigroup on X. If U, € D(A), then the problem

U =AU, t>0
(2.10)

U(0) = U,

has a unique solution U € C'([0, 00); X), which is given by U(t) = e"*U,.

Therefore, in order to show that a problem of the form (2.10) is well-posed, it is enough
to show that A is the infinitesimal generator of a Cy-semigroup on a suitable space. In
this thesis, this goal will be attained as an application of the following well-known result.

Theorem 2.17 ([24], p. 3). Let H be a Hilbert space and A : D(A) C H — Ha
linear operator. If D(A) is dense in H, A is dissipative and 0 € p(A), then A is the
infinitesimal generator of a C,-semigroup of contractions on H, where “dissipative”
means that

Re(Ax,x)yp <0, VxeD(A).

Given that the solution of our problem has the form U(t) = e**U,, as guaranteed
by Theorem the analysis of the asymptotic properties of the solution U reduces to
the analysis of the asymptotic properties of the semigroup {e**};~o. Therefore, in order
to obtain exponential stability, we will use the Gearhart-Priiss Theorem:
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Theorem 2.18 ([24], p. 4). Let {e"};>, be a Cy-semigroup of contractions on a
Hiloert space H. Then, {¢"*};>, is exponentially stable if and only if the following
conditions are satisfied:

(@) iR C p(A).

(b) limsup|| (iRl — A) || ) < oo.

IBl—00

On the other hand, in order to obtain polynomial stability, we will use the Borichev-
Tomilov Theorem:

Theorem 2.19 ([6], p. 459). Let {¢'*};>o be a bounded semigroup on a Hilbert
space H. Suppose that iR C p(A). Then, fixed « > 0, the following assertions are
equivalent:

(a) There exist positive constants C and 3, such that
1GRI—A) D lzany < CIBIY, VBl > Bo.

(b) There exist positive constants C and t, such that

1

tA g1
Je4A7|2 < Coy

Vt2> .
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3 HEAT CONDUCTION ON AXIAL FORCE

In this chapter we prove that system (1.13)-(1.14), with its corresponding initial
conditions, has a unique solution, which is exponentially stable if and only if condition
(1.19) holds. We also prove polynomial stability in the case where the said condition is
not satisfied.

3.1 Semigroup formulation and well-posedness

We will consider the problem in the framework of semigroup theory. Therefore,
the aim of this section is to formulate it as an abstract Cauchy problem.

Initially, note that multiplying (formally) the equations of by @, by, Wi, L6
and %a, respectively, integrating over [0, £] and taking the real part we obtain

N —

d ¢
T |10 g i+ B Kl -+ L+ s — LoF) i
0

14 [ vk [*
_ lez YkiT| 412 dx = — J 2d
+2—dtL(m| >+ X% q*) dx O|q| X,

which defines (formally) the energy of the system (1.13) by

£ ¢ { {
E(t) = py J @i dx+ sz pel? dx + plj o2 dx+bj (a2 dx
0 0 0 0

¢ ¢ v vkt (!
+kJ !(px+1|)+1w!2dx+koj!wx—l(plzdx+—JIelzdx+—J|q|2dx.
0 0 m Jo m Jo

Motivated by this calculation, using the notation presented in (2.2), we consider
the phase space

HT:

Hy x L2 x H! x L2 x H! x 2 x 2 for T=0
Hy x 2 x HI x 2 x H! x 12 x 12 x 12 for 1>0

with inner product defined by

¢ ¢ { L
(u,u)T:mJ q@dﬁpzj demj W\/_de+bJ Dby dx
0 0 0 0
{

{
+kJ (@x + b + W) (@x + U + w) dx+koj (W — 1§) (wy — L) dx  (3.1)
0 0

vkt (Y
d
m qu X,

L
+1J 00 dx +
m Jo
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where U and U, are given by

u (@, ©,p,¥,w, W, 0) for T=0
(e, @,%,%,w,W,6,q) for >0

and o o
U (@, O, ¥, w, W, 0) for =0
(¢, @,9,¥,w,W,08,q) for T>0.
Now, system (1.13)-(1.14) can be written as an evolution equation on #. given
by
Ut - ATU, t> O
(3.2)
U(O) = uO)
where

u {((pm(phlbmll)hwo»wheo} for T=0
O pu—

((P(), (Phll)O)ll)])WO»Wh 90) qO) for T> O)
and the operator A, : D(A.) C H. — H. is defined by

()
pﬁl((px +1|) + IW)X + %(Wx - l(p) - %9
v
b k —
Ell)xx_a(@x"’_lp_FlW) for =0
\%%
];_?(Wx —lo)x — %((px ++1w) — g/_]ex

K10y — M(W, — 1D)

AU =
)
pﬁl((px‘i‘d)—FlW)x‘*']%l(Wx_l(p)_%e
Yy
b k
5y WXxx T 5o X l
9211) pZ(qJ U+ w) for T>0
w
];_?(Wx_l(p)x_%((px+1b+1W)_;/_]ex
—ki1gx — m(W, — 1O)
\ _%q_”lrex
with domain

b4 {UeHol 9,0 €H:, Dy, wy,0€H), Y,WeH'} for =0
{UeH.|peH, O, w,0eH;, ¥,W,qeH'} for t>0.



34

In this context, in view of Theorem [2.16, we will prove the well-posedness of
system (1.13)-(1.14) by showing that A is the infinitesimal generator of a Cy-semigroup
of contractions on H.. First of all, we prove that #. is indeed a Hilbert space.

Remark 3.1. As pointed out in [23] (p. 58), to ensure that the bilinear form (-, -). given
by defines an inner product on H., we have to assume that W is not a multiple of
7, that is,

W#Anm VneN. (3.3)

Otherwise we can construct a vector U # 0 in #, satisfying (U, U). = 0, for exam-
ple, taking ¢(x) = sin(lx), w(x) = — cos(1x) and the other components equal to zero.
Therefore, here and thereafter, we take as a hypothesis, otherwise we cannot
speak of the “norm induced by (3.1)".

Theorem 3.2. The space H., equipped with the norm || - || induced by the inner
product (3.1), is complete and thus it is a Hilbert space.

Proof. Suppose that T > 0. Then,

Uz = prll®E2 + p2l[YIE: + prlIWIE: + bllbsllt: + kolwx — o]l

Vit (3.4)
—|q|l%-

v
K| @x + U + W% + —6]% +
m m

Therefore, taking a Cauchy sequence (U,) in H. and writing
Uy = (@™, @M ) wnl yym) i) gin) gy
we conclude that
* (@), (W), (Wi —1e™), (8™) are Cauchy sequences in (L*(0,0), | - [2)-
o (W), (WM, (@M 4™ 41w™), (q™) are Cauchy sequences in (L2(0, ), ||-li2).

Since (L2(0,8), | - [|i2) and (L2(0,¢), | - ||i2) are complete spaces, it follows that there
exist ®,F, G, 0 ¢ 12(0,¢) and ¥, W, H, q € 12(0,¢) such that

oM — @[ =F 0, WY —Fll. =T 0,
Wi —le™ — G|l =X 0, oM~ =T 0,

W™ =Wl =50, WM — W]l =0,

n—oo

ol + ™ + 1w —Hlj: =¥ 0, [|q™ — gl "= 0.
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By Lemma [2.15] there exist ¢ € H}(0,¢) e ¥, w € H!(0,¢) such that

q)x:Fv
wy —lp = G, (3.6)
oy + + 1w =H.

Taking U := (@, ®, Y, ¥Y,w, W, 0, q), we conclude that U € #.. In addition, substituting
(3.6) into (3.5), we obtain

Uy — U2 == 0.

Therefore, (U,,) converges in H.. This shows that 7. is complete.
The case T = 0 is similar (the only difference is that the vectors have seven
components instead of eight). O

Remark 3.3. Let | - | be the usual norm defined in H. by

ui;

__{H@Jﬁz*-H®H@-+Hﬂ&H§-+HWH@-+HM&H@-+HVVHé-+H9H@, T=0
lwllt + @I + bl + ¥lE2 + [Pwalliz + IWIE + 181 + llalli2, T > 0.

From (3.4), it is clear that there exists a constant C > 0 such that
[Ufl < Clul,, VU € H..

Therefore, in view of Theorem and Theorem 2.1, we conclude that || - || and | - |t
are equivalent. This equivalence will be tacitly used many times along the thesis.

Now, we are ready to state and prove the main result of this section.

Theorem 3.4 (Existence and uniqueness). The operator A : D(A.) C H. — H.
is the infinitesimal generator of a Cy-semigroup of contractions on H.. Therefore,
for each initial data U, € D(A,), the problem has a unique classical solution
U € C'([0, 00); H), Which is given by U(t) = et U,.

Proof. We will apply Theorem [2.17]

D(.A,) is dense in #... Suppose that T > 0. Then,

He=Y1 XYy x Y3 XYy xYs5xYsxXY7 X Y,

D(A;) =S; xSy x S3 x S4 x S5 x Sg x S7 x Sy
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and
(Y1, Y2y -0y Ys) s = lUnll5, + [[W2ll5, + -+ - + lysll¥,s
where
Y1:H(‘), Y, =Y, =17 Y; =Ys; = Hl, Y=Y =Yg =12,

S;=HXNH), S;=S;=H}, S3=S;={ueH |u eHl}), S;=Ss=Ss=H.

Therefore, it is enough to show that S; is a dense subspace of Y;, fori =1,2,3,4:
« Since C5°(0,¢) C [H2(0,2) NHY(0, €)1, Sy is dense in Y; by the definition of H(0, ¢).
» Since C°(0,¢) C H)(0,¢), S; is dense in Y, by Theorem 2.6
« S;3is dense in Y; by Theorem
* S, is dense in Y; by Theorem

The case T = 0 is similar (the unique differences are that S; equals to S; instead
of S, and there are only seven spaces instead of eight).

A. is dissipative. A straightforward computation shows that

Re( AU, U), = —%Hmnﬁz, v U € D(A) (3.7)
where
VK0, if T=0
MNe = . (3.8)
Vvokiq if T>0.
0 € p(A;). Suppose that T > 0. Let F = (fy, 2, 3, T4, 5, f6, f7, fs) € H.. Then,
taking

O = f], Y= f3, W = f5, (39)

we conclude that there exists a unique q € H! (0, {) such that
—kiqx = f7 + mW, — mlO,

which is given by

a) = = [ (Fy) + mWity) - mio i) )ay
(3.10)

L r J (fy(y) +mW,(y) — mlCD(y)) dy dx.
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Analogously, there exists a unique 0 € H}(0, ¢) satisfying
—0, = 6q + tfs,

which is given by
0(x) :—J <6q —l—ng)dy. (3.11)

0
Also, applying Theorem[2.5|with the sesquilinear form B : (H} x H! x H!)? — C defined
by

(

B((", 4", ), (@, b, w)) = kL(cpiZ b ) (e T T T dx

14 £
e | (v~ L")~ T9) dx-+ b | Wi dx
0 0

and the linear functional f: H} x H! x H! — C defined by

¢ ¢ [/

o2 dx — J (v 70w dx
0

oo = |

(pif2 +1y0)@” dX—J
0

0

we conclude that the system

k(@x + P + W)y + kol(wy — L) = p1f2 + 1y0
blbxx - k((px + 11) + ]'W) = p2f4
kO(Wx - l(p)x - kl((px +1~l) + ]'W) = p1f6 +‘Yex

has a unique solution
(@, b, w) € [H*(0,0) N H;(0,8)] x [H*(0,€) N xHL(0,0)1  with 1, wy € Hy(0, )

(see Remark[3.5). This shows that there exists a unique U € D(A,) satisfying A.U =F
and thus A, is bijective. Working with the components of A.U = F, we also conclude
that ||U||. < C||F||. which shows that A" is bounded. So, 0 € p(A.).

For the case T = 0, we start with F = (fy, f3, f3, f4, fs5, fs, f7) € Ho. Then, taking
®, ¥ and W as in (3.9), we conclude that there exists a unique 6 € H}(0, £) satisfying

K10y = f7 + MW, — mlO,

which is given by the expression (3.11) with T = 0 and q defined by (3.10). The rest of
the argument is exactly the same. O

Remark 3.5. Since B is continuous coercive and f is bounded, Theorem implies
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that there exist a unique (@, ¥, w) € (H} x H! x H!) such that

B((@"b", W), (@, h,w)) = f(@", b*,w*), V(@ h*,w") € (Hy x Hy x H}). (3.12)

In particular,
B(((p*,0,0),((p,lb,w)) :f((p*>0,0)) V(p* GH(]) (313)
B((O)ll)*)())) ((P,lb,W)) - f(o,ll)*,O), vd)* € Hl (314)
B((O) O)W*)a ((palbaw)) = f(O>O>W*)> Vw* e Hl (315)

Taking ¢ € H} and applying (3.14)-(3.15) with
1 {
V= =g | b ax
tJo

we conclude that

B((0, ,0), (@, b, w)) = (0,$,0), V¢ € Hy (3.16)
B((O> O»d))) (@)d)»W)) = f(o> O>¢)) Ve H(1) (317)

In view of the definition of weak derivative, equalities (3.13), (3.16) and (3.17) imply,
respectively, that

(ox+P+w)eH', P,eH and (w,—1le)eH (3.18)
with
(@t +wle = 3 (o1 + 1y0 — kollw, — L) (3.19)
Paw = 3 (Pafi Kl @s -+ 1+ Lw) (3.20)
(W = 1) = (P + 70, + KUy + b + ) 3.21)

From (3.18), we have ¢,\,w € H?2. In addition, integrating (3.14) by parts and using
(3.20), we obtain

bU* (0, (6) — b (0, (0) =0, V™ € H.

We can choose 1{* such that y*(¢) = 1 and Y*(0) = 0, which shows that {(£) = 0. On
the other hand, we can choose {* such that {*(¢) = 0 and y*(0) = 1, which shows
that ¢, (0) = 0. Therefore, ¥, € H}. Analogously, equations (3.15) and (3.21) imply
that w, € H{. This shows existence of a solution (¢, y,w) for the system (3.79)-(3.21)
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with the desired regularity. Since any solution with this regularity satisfies (3.12), the
solution is unique.

3.2 Characterization of exponential stability

In this section we will prove that the solution of the mathematical system (1.13))-
(1.14) is exponentially stable if and only if (1.15) holds. Initially, note that the dissipative
condition (3.7) implies the following result.

Lemma 3.6. Assume that U € D(.A,) satisfies the resolvent equation \U—A. U =F
for some nonzero A € iR and some F € #H.. Then, n, given by (3.8) satisfies

v
—[melliz = Re(F, W < [[Fll«[[U]l-.

Proof. Taking the inner product of AU — A, U = F with U, we get
}\HuHi - (ATU> u)'r = (F) U)T

Taking the real part, the desired result follows from (3.7). O

First, based in Theorem and using the Lemma 3.6 we will prove that iR C p(A.).
For this, we will need the following result.

Lemma 3.7. (D(Ad), || - [pian) <= (Hx, | - [l<), where || - |4, is the graph norm

||u||D(AT) = ||U-||T + ||~ATU-HT-

Proof. In view of Remark (3.3, it is enough to show that (D(A-), |- Ip(4.) <= (Hx, |- o),
where

|U|ZD(AT) - |U|% + |.ATU|i.

Suppose that T > 0 and let U,, = (@™, @M 1™ ) 4y wi g gy pe g
sequence in D(A.), bounded with respect to the norm |- |p4,). In view of Theorem ,
it is enough to show that (U, ),y has a subsequence which converges in (H.,| - |)-

From the boundedness of (U,,).en With respect to |- 4.), there exists a constant
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C > 0 such that

|un|2D(AT) - |un|i + |~’4/tun|i
= lloMII22 + @™ 12 + WM]122 + Y™ 1E + WMl + WM
+ 0™+ 1g™ Iz + |27

1

+—||k(<pi“)+1b(“)+lw Ne + kol — L™ — 1y0]|2, + W2,
||wax k(@™ + %™ 4 w2, + (WM,
Hko Y — 1™ — Kl + ™ + tw™) —yolV|2,

+H—k1qx“ —mW —10™){; + 2||—6q -0t
<C

for all n € N. In particular, the sequences (@ )nen, (@™ )neN, W) e, (WM™)nen,
(W nert, (W), (0 )ner, (4™ ner, (WA )new and (©™),cy are all bounded in
L2(0, ¢). From this and from triangular inequality, we conclude that (6" )nen, (@ Jnen,
(W) new, W) new and (™) ner are also bounded in L2(0,¢). Therefore, (Up)ner is
bounded in the space

(H2NHY) x H x (H2nHD) x H! x (H2nH!D) x HD x H' x H!
(equipped with the usual norm) which, by Corollary [2.13] is compactly embedded in
Hy x T2 x HI x L2 x H! x 12 x 12 x 12

(equipped with the usual norm). As the last space (with its usual norm) is (H, |- |.), we
conclude that there exists U € H.. such that

n—0o0
|un — U|T — 0. N

Theorem 3.8. iR C p(A.).

Proof. By contradiction, supposing that the inclusion iR C p(.A.) is not true, there
exists A € iR such that A € o(A;), with A # 0 because 0 € p(A.). Now, by Lemma
and Theorem , A has compact resolvent. Thus, o(A:;) = o,(.A;) by Theorem
2.4 Therefore, A is an eigenvalue of A, which implies the existence of U # 0 in D(A,)
satisfying

AU = AU. (3.22)
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Note that for both cases, T = 0 and T > 0, the equality (3.22) is equivalent to

Ap— D=0 (3.23)
PIAD — k(@x + U + Iw), — kol(wy — L) +1y0 =0 (3.24)
Ap— W =0 (3.25)
P2AY — by + k(@x +h +1w) =0
Aw —W =0 (3.26)
PIAW — ko (wy — L)y + kl(@x + ¥ + Iw) +v0, =0 (3.27)
AO + kiqx + mW, —mld =0 (3.28)
TAq +0q + 05 =0. (3.29)

It follows from Lemma [3.6] and (3.29) that q = 0, = 0 and thus g, = 6 = 0. Then,
substituting into (3.28) and using (3.23) and (3.26), we conclude that

wy, — lp = %(WX —1D) =0. (3.30)

These results, combined with equalities (3.23)-(3.24) and (3.26))-(3.27), yields

pIA*W + kl(@y + P + lw) = 0. (3.32)

Now, from (3.31)-(3.32) we get
lo +w, =0. (3.33)

Equalities (3.30) and (3.33) imply w, = 0 and thus w = 0. Also, from (3.32)-(3.33)
we obtain ¢ = 0 and { = 0. Finally, using (3.23), (3.25) and (3.26), we conclude that
U = 0 which is a contradiction. O]

Second, in order to verify the other condition of Theorem 2.18, we need some
suitable estimates obtained from the resolvent equation

AU— AU=F (3.34)
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which, again for both cases (t = 0 and T > 0), is equivalent to

Ap — D = f; (3.35)

PIAD — Kk(@x + 1 + )y, — kol (wy — l@) + 1y0 = pif; (3.36)
M — Y = f; (3.37)

PAY — b + k(@y + P + W) = pafy (3.38)

Aw — W = 5 (3.39)

PIAW — Ko(wy — L)y + k(@ + ¥ + Iw) + yOy = pifs (3.40)
AO + kigx + MW, — mlO = f; (3.41)

TAq + 0q + 05 = Tfs. (3.42)

Such estimates will be proved in the next lemmas, where C > 0 represents a generic
constant whose value can change from line to line (or even within the same line).

Lemma 3.9. Assume that U € D(A,) satisfies (3.35)-(3.42) for some nonzero A €
iR and some F € H.. Then, there exists a constant C > 0 (independent of U, A and
F) such that

IWIIE: < Clibwllez U]l + CIU<l[Fl-

Proof. From (3.37) and (3.38),

¢

¢
J A (O — K(9r F W - ) + pa3) dx—J £, dx
0

1

{
KRS J (M — f3)¥ dx =
0

bt t t
:p—Jq)mexder prnpx+q)+1w) dx—prf4dx—Jf3\ydx,
2 Jo 0

>‘|

which implies
I¥]I22 < Cllxllz[Ulle + Cllw Ul + ClW|l</[Fll + ClU]<[[Fll-.

So, the desired result follows from Poincaré inequality applied to 1. O

Lemma 3.10. Assume that U € D(A,) satisfies (3.35)-(3.42) for some A € iR sat-
isfying |A| > 1 and some F € H.. Then, there exists a constant C > 0 (independent
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of U, A and F) such that

P1 —

NG (1 N |y — 2

2
) 112 + CIU[Fll + ClIUllox + b + ]2

+ Cllwy = lo||2[[U]lx + C|[6]] 2 [ U}

Proof. Multiplying (3-36) by 1V, and integrating over [0, {], we obtain

14 {
Kl = it | O, dx— k| ou, dx
0 0

~\~

L

rl (

— kluo wip, dx — kol Jo (wy — Lo, dx (3.43)

.

-~

Iz

rt o 14 o

+ l’Y elbx dx — P1 J 'lel)X dx.
0

Jo

I3
Now, in order to estimate I;, note that (using (3.38))

¢

¢
— k
I = P]AJ DO, dx + EJ Px(P2AY + k(@x + 1 + W) — pofs) dx
0 0

kp27\

2

b

‘ kp;
J (px((Px+1b+1W) d —?J (Pxf4 dx

~
Iy

.
:p17\J O, dx + J oV, dx + —
0

J/

where, by (3.35) and (3.37),

koA (4 — k
P2 J(p‘l’xdx— sz (@ + )V, dx
b Jo b Jo

kp27\ kpl

kp —
— @ — Ofy, dx — —— | f1,¥ dx.
b JO ll)x dx b JO 3, dx b J 1, dx

NV
Is

Consequently,

K
11:7\<p1—%>J OP,, dx + Iy + Is.

On the other hand, for I, by (3.35) we have

¢ { {
L :—ktJ (wy — 1), dx — k12 J 0¥, dx—kotj (wy — L), dx
0 0 0

klz 4 2

{
== J(Dt]) dx — (k+ko)1JO(wx—1<p)$x dx—TL 1, dx.

NV
Ie
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Therefore, substituting the last two equalities for I; and I, into (3.43), we obtain

K12 kps
2 _ | _ <
ol = (-5 +2 (0= 52))

Here, note that

{
J (DEX dx + I+ 1, +1Is + 1. (344)
0

I3] + [Ls| 4+ [Is] + [Tg| < C (|02 + [[ox + U + |2 + [[wy — Llo||12) [[U]|«

1
+C 14+ = ) |F[</lU].
(1+ 57 IR

Finally, applying this inequality in (3.44) and recalling that |A| > 1, we get the desired
result. O

Lemma 3.11. Assume that U € D(A,) satisfies (3.39)-(3.42) for some nonzero
A € iR and some F € H.. Then, there exists a constant C > 0 (independent of U, A
and F) such that

k k
‘k (T—]Tp]) ox + 0 + lw|2, + % (k (T— 1Tp‘> +x) Kl

¢

< CIXNJ @] dx + CI[F|l[[U]|x + CWI|ez U]l + Cl[U|<]|0]] 2
0

+Cllgllz Uz + Cllwy — Le|lif2 + Cl|0|IE:

where x is defined in (1.15).

Proof. Multiplying (3.40) by (¢, + V¥ + lw) and integrating over [0, {], we get

4 4
KU oy + U + {2 =p1J fo(px + P + Iw) dx—pﬂ\J W(px+ 1+ w) dx
0 0

I I
¢

¢
+koJ (wy — lo) (@ + 1 + Iw) dx—yJ 0, (@ + V¥ + w) dx.
0 0

-~

I3

From (3.35), (3.37) and (3.39) note that

{ {

W(fhx + f3 + lf5) dx = —pMJ Wxa dx + 14,
0

¢
IZZ p1J W((DX—FW—F],W) dx+p1J
0 0

where

{ ¢ 4

WW dx + p; J W(fy, + f3 + Uf5) dx.
0

¢
Iy = py J fsx @ dx + pq J

WV dx + pﬂJ
0 0

0
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Also, from (3.35) and (3.36) we have

k {
L= _OJ (W — 1) [P AD — KoL(wy — L) + y0 — prfa) dx

k Jo
kopiA 1 — kopil [
— Lo wacp dx — o1 J|c1>|2 dx + I,

k 0 0

where
[ - K21 (¢ koly [* _ K, ¢ _
Is — —XoP J f,@ dx+ij wy—lof? dx—=2 YJ (Wy—1)8 dt—ort J (Wi—le)fs dx.
kK Jo Kk Jo kK Jo k Jo
The above calculations show that
K, vt 1t
KUl @x -+ + Ww|% = T; + A ("Tp‘—m)J W dx + Iy — k"]‘z] J O dx
0

e 0 (3.45)

+E—YJ%NR+¢+W0M-
0

On the other hand, multiplying (3:47) by 2@, integrating over [0, ¢ and using
(3.39), we obtain

¢
0D dx +

L 4 14
_ _ 1
W}S‘}‘J W?k‘ J 4D dx + Wp‘mAJ W, dx — wj O dx
0 0 0 0
4 14
_ Tve J f,® dx — Y21 J 5@ dx.
k 0 0

Jh
Also, multiplying (3.36) by 30 and integrating over [0, ¢],

¢

¢
J [0 dX—l—T‘YJ 0. (@x + WU + Iw) dx
0 0

2 ol { {

Kl b _

:—ﬂ—yj 102 dx + Y0 J 0wy, — Lg) dx + & J or,,
k Jo k Jo ko

J2

_ TYPA
k

which implies, adding the last two equalities,

{ { £
L (o g T g TR [ 50

e koo (3.46)

+wme+w+MMwm—b

0

Therefore, introducing the notation o, := (t— ¥2) and doing o, x (3.45)+(3.46), we
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obtain

l t _
ookll@x + U + wlff: + %(Uok‘FX)Hq’Hiz = p]TXAJ wy,® dx + ooly + 0ols + 0pl5 —
0
¢
—J2+(t— UO)YJ Ox(@x + U +1lw) dx
0

¢
kJo
where, by (3.42) and (3.35),
¢ ¢ ¢ ¢ ¢
J O (@x + ¥ + w) dx:”cj fs®x dX—T?\J qox dx—SJ qox dx+J 0, (P + w) dx
0 0 0 0 0

¢ ¢ ¢ ! ¢ ¢
:—TJ qx @ dX—l—TJ qfix dX—i—TJ fg @y dx—éJ qox dx—J o, dx—lJ ow, dx,
0 0 0 0 0 0

Ts
which implies that
14
ookl @x + b + lwl|f% + %(Gok +x)|0)% = %7\ JO W@ dx + oot + ool + 0ols
—h—=J2+]3

k
+ (GO—T—F%)Y

T+ [Tl + [Is[ 4+ o[ + 12l + ]3] < Cl[Fl[<[[U][< + C[W][2[[U]l< + Cliql[i2[[W]|<
+ CllUll[18lle2 + ClI®]Z2 + Cllwy — Lo |2

where

Finally, using this estimate into (3.47) and noting that (oo — T+ %) = 0, the desired
result is obtained. O

Lemma 3.12. Assume that U € D(.A,) satisfies (3.35)-(3.42) for some A € iR sat-
isfying |A| > 1 and some F € .. Then, there exists a constant C > 0 (independent
of U, A and F) such that

IWI[E < Cllwx —Lo]ll[Ul< + ClIOll 2 [ Ulle + ClIBIIE: + Cliqlliz Wl + CIIF[<l[L]l-.

Proof. Let us define
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Note that p, = W, g« = 0, p € H}(0,¢) and g, € H!(0,¢). Multiplying (3-41) by p and
integrating over [0, {] we get
{

{ { {
m||W|%, :AJ 0p dx—mlJ Op dx —k1J qW dx—J f/p dx
0 0 0 0

L

where, from (3.40),

{ {
AJ 0p dx = —)\J g W dx
0 0

¢ Ko ¢ KL (¢ v ¢ ,
:J gxfe dx+—J 0(wy, — L) dx+—J gx(@x + ¥+ w) dx——J 0]~ dx
0 P1 Jo P1 Jo P1 Jo

= Iy,
and, from (3.36),

¢ ¢
1k —
—mlJ Op dx = m_J (ox + UV + W)W dx

0 PIA Jo
ml ¢ mlZk, r mlzy (¢
——— | fop dx — wy, — Lle)p dx + Je_dx.
7\ L 2P o O( $)p on . oP

~"

I3

Consequently, the substitution in the first identity implies that

m|WIl. =

k[ -
m J (ox+V+WWWdx+ 11 + L+ 15. (3.48)

PN Jo

On the other hand, multiplying (3.40) by mW and integrating over [0, {] we get

mkl [* — mko [* — my (4. —
m|W/? :——J' <+ +1dex+—J(wx—l )dox——J 0, W dx
Wiz P1A O((p 4 ) P1A Jo ® P1A Jo
¢
+me6WdX
Ao

Iy

where, from (3.39) and (3.42),

ko [ — ko [ —
@J (wy — L), W dx:—MJ (wy — L) Aw —F5). dx
oA Jo P1A
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and

0

14 14 14
- o o 5 o
?Hewmc —TmVJfSde+TmYJqux+l)\VJqux.
1

0

This shows that

Kl (¢ —
m| W2, = —%J (@x + %+ W)W dx + L + Is + L. (3.49)
1 0
Finally, note that

6 1

Y Ij<c (nquu + ol + 18l + o, — Lole + ||9x||L2) Il

i=1
(3.50)

1
L Cl|f +C (HpHLz + lple + ngup) Il

1
14 —) Il

C
— x— L 0 C
5 Uhwx = Vel + 10l plha + € (14

Consequently, doing (3.48)+(3.49), using (3.50) and applying Poincaré inequality to p
and gy, recalling that |A\| > 1, the desired result follows without difficulties. O

Lemma 3.13. Assume that U € D(.A,) satisfies (3.35)-(3.42) for some A € iR sat-
isfying |A| > 1 and some F € .. Then, there exists a constant C > 0 (independent

of U, A and F) such that

lwx = Lot < ClIO[liz (Ul + Cllgllz /Ul + Cllglz2 + CIFfl</[U]-

Proof. From (3.35) and (3.39),

{

—_— 1

I~ Lol = [ (v~ 191w~ o] ax = 5
0

Here, from (3.417) we have W, — 1@ = L(f; — A6 — k;q) and thus
{

{ - { - -
1 J(Wx—tcb)(wx—up) _ LJ ;e — 19) dx—lj 6w, —T) dx
Am m Jo

A

0
I

e _—
- ﬁJ' qx(wx - l(P) dX,

Am J




49
which implies, substituting in the first equation, that

ki (4 —
|| wy —1(pH%z - J gx(wy —l@) dx + I; + L,. (3.51)

am

Now, from (3.40), we have

Kk (¢ —
v Tgld
| e —Terax

k, L
_ K J QoA+ K@y + 9 + ) F 70, —prfe) dx
)\kom 0

k1p1 1 1r k1p1 Je K1y J
_ ki U ) dx— fodx+— | qo,a
mqu X Nkgm ), L@ W AW dx =20 ) afe X+mo 4% &%

"
I3

where, from (3.42), the last term is estimated by

Ky r — K1y J“ — K1y r > Skiy r 2
0, dx = f dx — d
g Jo 90 X = N |, s e lal de= S )l

Iy

So, substituting the above calculation in (3.51), we obtain
||WX — l(p||%2 = I] + Iz + 13 + 14.

Here, it is not difficult to verify that

4

S I < g b+ € (alha + g lalke + D@l ) 1l

Ul<[[Fll< + Cllqll* + ?
|NHHHH lqll” + |MMH

which implies the desired result because |A| > 1. O]

Lemma 3.14. Assume that U € D(.A,) satisfies (3.35)-(3.42) for some A € iR sat-
isfying |A| > 1 and some F € .. Then, there exists a constant C > 0 (independent
of U, A and F) such that

10112 < Cllalle2llUl< + ClIFll</ W]
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Proof. Multiplying (3.47) by 6 and integrating over [0, €],

1% = ki (¢ = 1 _
10]f. = AJ 70 dx+71j q0, dx + — > J Wo, dx+mTJ ®O dx. (3.52)
0 0 0

~~

I I

Now, in order to estimate the last term of (3.52), we define

h(x) = j:d)(y) a —%Jj ch(y) dy dz.

Then, h € H!(0,¢) and h, = ®. So, multiplying (3.42) by mlh and integrating over
(0,¢), we obtain

¢
mlj L0 dx—’cmlj
A Jo

sml (* 1
ahdx+£Jahd —ﬂjfghdx.
Ao Ao

I3

Substituting in (3.52), we get
10lf: =L + 1, + L.

Consequently, using (3.42), we deduce that

k] ¢ m ¢
12:7 q(tfs —TAq — 0q) dx+x W(tfs —TAq — 6q) dx
0 0
k ¢ Skp [ _ ¢
:T}\1Jqf3dx+1k1jqqu—TJqqu+%1Jngdx+TmJWﬁdx
0
{
—mJqux,
Ao

which is used to prove that
C 1
o] < Z 1 < o U+ ) [P+ C (0 ) all Ul

1
#¢ (v o ) il

Then, the desired result follows form Poincaré inequality applied to h, and from the fact
that [A| > 1. O

Now, we are ready to state and prove the main results of this section.
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Theorem 3.15 (Exponential decay). If

1% and (T k“")(ko K) + Tym =0, (3.53)
P2 k

olx

X

then the semigroup generated by A, is exponentially stable.

Proof. In view of Theorem it remains to show condition (b) of Theorem To
this purpose, taking F € H. and A € iR satisfying [A| > 1, we define U := (A — A,)™"
Then, U belongs to D(A,) and satisfies (3.35)-(3.42).

Therefore, from Lemma[3.9] for ¢ > 0 arbitrary, we have

P2l[W[I1T2 < Cellyllfa + 2e|[U|? + Cc[|F|I3
and thus

(1 =28)[[Ulz < prll @Iz + prIWIlEz + Cellbxllfz + Kl @x + b + WwllE,

Yk]T
lall> + CelIFz.

Y
+kol[wx — Lotz + 1052 + =
Similarly, using that & = ¥, Lemma implies

Cellllt2 < 5ellUz + CelIFIIF + Cellox + b + Wiz
+ Cefwe —lo@|li2 + Cef|@|lf2 + Ce[[Fllz + Ce[l0]]7

and thus

(1—7&)|[U[2 < C||®@[22 + p1[|W[72 + Cell@x + ¥ + lw|f
kit

+ Ce[[wy — lo||f2 + Ce||0][f2 + ||q||Lz + C¢||F|I3.

On the other hand, note that x = 0 implies (T — *2t) =£ 0. Then, multiplying the
estimate of Lemma|3.11|by |t — &t \71, we obtain

Cellox + U + ||z + Cel|@IF2 < C|[F|I2 +4e|JUll? + C[[WII7. 4+ Cc[|]I72 + Cellqllt.
+ Cellwy — l(p||%_z

and thus

(1= 1)U} < C[W([f2 + Cellwx — Lo|f2 + Ccll8]If2 + Cellqllf2 + Cc[[F|.
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Proceeding in a similar way with Lemmas [3.12} [3.13] [3.14] and [3.6] we get

(1 —ne) U]z < Ce[FII2

for some suitable n € N. Therefore, taking ¢ > 0 small enough, we conclude that there
exists a constant C > 0 (independent of A and F) such that
lA—A)Fll = [[U]|« < C||Flly, VFEHe A >1.

This shows condition (b) of Theorem [2.18] which concludes the proof. O

Theorem 3.16 (Lack of exponential decay). The converse of Theorem is true.
In other words: if

B se o (v- 52 o+ m£0, (354

-~

X

then the semigroup generated by A: is not exponentially stable.

Proof. Assume (3.54). It is enough to show that there exist a sequence (f3,,) of positive

n—oo

real numbers such that 3,, — oo and a bounded sequence (F, ) in H. such that
|’(iBnI_AT)71FnHTTH—O)O oo (355)

because, in this case, condition (b) of Theorem fails.
In order to construct such sequences, let us write c,, = 77, take vi,v, € R (to be
fixed later) and define

Fr = (0, v1p;7 ' sin(cnx), 0, v2p; " cos(cnx), 0, ..., 0).
Then (F,) is a bounded sequence in H., with

1iBnl — Ad) " "Fullz = pr [ @122 + o2l W™ |12 + prl W™ 1E2 + Bl 122

+kfl oM + ™ + w17, + koW — o™ |1 (3.56)
Y 2 vkt 2
+ Lo + L5 g,

where

u, =

{((P(n)’q)(n))ll)(n)’\y(n),w(n))w(n))e(n))) T=0
((p(“), CD(n),ll)(n),‘P(“),w(“),W(“), e(n)) q(n))’ >0
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is the unique solution in D(.A.) of the resolvent equation
(iBn - AT)uTL — Fn-

In order to find (U,) and (B.), let us start by rewriting the resolvent equation in its
components:

iBe™ — oM =0
P1ifn @™ — k((p,((“] + ™ 4wy, — kol(wi") —1e™) + 1y0™ = v, sin(cnx)
i3, ™ —ym — g
p2iB Y™ — BT + k(@Y + ™ + ™) = v, cos(enx)
i, w™ —wi =0
01iBa W™ — ko (W™ —1o™), + k(@™ + ™ + w™) + 8 =0
iBn0™ + kg™ + mWM — mlo™ =0
TiBnq™ +6q™ + 0™ = 0.

Then,
oM — iBn(P(n)) yn — iﬁnll)(n)» w — iBnW(n)

which implies, substituting in the previous equations,
p1(iBn) @™ — k(@™ + ™ + 1w™), — kLWl — Lo™) + 1y8™ = v; sin(cyx)
P2(iBn) ™ — b + k(@ + ™ + ™) = v; cos(cax)
01 (iBn) 2w ™ — ko (WM — Lo™), + kL(@™ + ™ + w™) + oM =0
iBn0™ + kg™ + mif,wi — mlip, ™ =0
Tipng™ 4+ 6q™ + 0V = 0.

Here, the last system can be solved by

(p(n) (X) = An sin(cnx), 1‘[‘)(n) (X) = B COS(CnX)a W(n)(x) =Cy COS(CnX))

o (x) = Dy sin(cpx), q(“)(x) = En cos(cnx),

where A, B,,...,E, depend on ($3,,) and will be determined in the sequel. In fact,
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substituting in the system, we conclude that the coefficients satisfy the linear system

(p1(iBn)? + ki + kol?) Ay + kB + Lk + ko)cnCo + LyDy = vy
kenAn + (p2(iBn)? 4+ bep + k) By + k1Cy = v,
Lk + Ko)enAn + KBy + (p1(iBn)* + koch + k1?) Cr 4 yenDn = 0
—mlif, A, — mipfnc,Ch +ifnDn — kich B, =0
(TiBn + 8)En + cnDyp =0

which can be written as

py ken Uk +ko)en Ly

An Vi
N ko, 2 Kkl 0| |B,
En — _.C—Dny y P (3) = V2 (357)
Tifn + 0 Ik +ko)en ki Pn Yen| | Ca 0
—mlif, 0 —miBncn Py | |Dn 0
Mo
where
pr) = pi(iBn)? + ey kol P = pa(iBn)? + bep + k,
K2 (3.58)
B3) _ n(ip )2 2 2 @ _ _ Mt
pn p] (an) + kOCn + kl’ ) pn IBTI + TiBn + 5'

Note that, solving (3.57), the unique solution U,, € D(.A,) of the resolvent equation will
be determined by

U, = (Ansin(enx), ®™, B, cos(cnx), Y™ Cp cos(cnx), W™, D, sin(cnx))
if t=0,and
U, = (A, sin(cnx), (D(“), B, cos(cnx), Y™, C,, cos(cnx), W™, Dy, sin(cnx), Ey cos(cnx))
if T > 0, where
O™ =B, A, sin(cnx), Yy — iR, B, cos(cnx), WM = iB,C, cos(cnx).
So, for the moment, let us assume that

A, = det M,
=P PR e +ymliBn)enpy p — Kenpy py — Pk + ko) 2cipipy
— 2V (k + ko)ym(iBn)chpy + Pym(iBn)pi'pl) — Kym(iBn)cy
— 12U Wp 1 2212 (k + ko) e2pW 4 221 ym(iBn ) c2 — KU ym(iBn)

(3.59)

is nonzero. Then U,, takes the above specific form (in terms of sines and cosines) and
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thus, by (3.96),

1(iBn — A)Ful2 > 1| @™ |1 + bW 1L

24 2 [ 2 b’ o (f 2
— piB2IAL L|sm(cnx)| at B L|sm(cnx)| & (3.60)
LPY: LT
- 5 An 5, Bn
5 BAL + By
where A,, and B,, are given by the Cramer’s formulas
An ~T1
A,=— and B, = A (3.61)
where _
vi ken Uk+ko)en Ly
(2)
- 5 kl 0
0 kil Pn Ycn
(0 0 —mifuc, pr
(3.62)
pr’ v lUk+koen ly
5 ke Kkl 0
BTI - det ¢ Vz (3)
l(k+ko)en O Pn YCn
i —mlif3,, 0 —mif.cn pg).

Consequently, in order to use formulas (3.61) let us start by proving that A, =
det M, # 0 for all sufficiently large n, which will be consequence of a specific definition
of (). The following remark clarifies the situation.

Remark 3.17. Assuming that 3, has the form

Bn = V/ICE + MaCn + M3 (3.63)

with 1 > 0 and w, u3 > 0 and recalling that ¢, = **, we conclude that pﬂ), pﬁf) and
pf) are real-valued polynomials in the variable n of degree < 2. In addition, it follows

that

=" i (1=
Pa 62+TZ|3§+IB ( 82 + B2

Using these facts, we conclude that the real and imaginary parts of A,, have the form

>, VneN. (3.64)

ki8¢2 1
Re(Aq) = m Ps(n), Im(A,) = m Ps(n)
N _

20 0
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where Py (n) is a polynomial in the variable n of degree < k. Therefore,

A,=0 <= Re(A,)=0and Im(A,) =0
& Pg(n) =0and Pg(n) =0.

Thus, if A, = 0 for infinitely many values of n, then P; and Pg are identically zero
(because every nonzero polynomial has at most a finite number of roots). But, looking
to the particular forms of P¢s(n) and Pg(n) in each subcase below, we conclude that this
is not the case. This shows that A,, = 0 only for a finite number of values of n, i.e.,
A, # 0 for all n large enough.

Now, the specific choices of vy, v, and () will be done in separated cases.
We will use the notation x,, = O(n*) to indicate that there exists a positive constant C
such that |x,,| < Cn* for all n € N.

» Case 1: Fourier (T = 0). In this case, condition (3.54) reduces to

P,k
— # — or Kk k
b 0 F

and can be separated in three subcases.

Subcase 1.1: . 7 ¥ and k + k. In this case, we define (B.) by

Bn= \/l(kcﬁ + kol?).
P1
Then, remembering the definition of ¢, = 7, we have 3, = O(n) and, by (3.58),

Pg) =0,

k
p1(12) — (b — pi) CTZ1 — &kolz + k = O(nz))
P1 P1

Py = (ko — k)i + (k—ko)I* = O(n?),

1 k
P — i\/p—(kcfl T kol?) + e = O(n?).
1
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So, substituting into (3.59), we conclude that

An = — KPS 12k + ko) 22 pPp! — 21 (k + ko)ym (i) c2p'?
+ Pym(if)pPp — kym(ifn)ch + 221 (k + ko)c2pW + 212 ym(iBn)c?

— KU ym(iB)
= —KerpPpy — Pk + ko) cipidpl! +0(m).

Now, defining v; = 1 and v, = 0 we obtain from (3.62))

An =pPpPp +ym(iBa)eipl — KUpL) = ppIpl + 0(n).

Here, using that

Ci n—oo e p1(12) n—oo b P2k s PS) nooo K 2 P1(14) nooo K1 7U
R ow o) w e

and, analogously,

An nooo 2 2 k; 7t 2 k 2 kq 7t
O R (= e

Note that L; # 0, because (b — "p%) #£ 0 and (k — ko) # 0. Then, using Remark
and writing ~
A%
A B

for all sufficiently large n € N, we have

L £0 if L,#£0
n—oo |L2|

|An| — L=
o if LzZO.

Consequently, since B, — oo, we obtain from (3.60)

. : [JOT—
[iBn — A)"Full2 = SEB2IALL = oo,

which implies (3.59).
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Subcase 1.2: % 715 and k = ky. In this case we define (,.) b

B = 1|~ (be2 + k). (3.65)
P2

Then B,, = O(n) and, using the equality k = k, in (3.58), we conclude that

pl — (k—@) 2 _ Pl L2 — om?),

P2 P2
PEIZ) =0,
Py =pys
) 1 2 k2 2
P =it/ —(bcZ + k) + —c;, = O0O(n?).
P2 d

Then, it follows that the determinant (3.59) is simplified to

Ay = —KEpUpW —12ym(ifn)c! — KUPpUpW + 4312 p® + 212 ym(ify)c?
—kzl“vm( Bn)
—Kcipllpl + 0(n).

Now, defining v; = 0 and v, = 1 we obtain

By = 1P +ym(iBn)cipl) — 4k cipld + ym(iBn)pl) — 4Ukym(iBn)ch
= pUpW + omd).

Analogously to the previous case,

2

2 (112 b 2 (4) Ky 72
Conooe ™ Pn oo (4 PIDY T Pn e i
n? 2’ n4 P, ) 2 n? o (2
and thus
B

(M2 .4 5 272 2
B _ PR, O0) s [, o0} TP [lame] _
né n* n? neé

Also, we have

An nooo (5 [T p1b k,

Using that (k — ";—f) = 0, we conclude that L; # 0 and L, # 0. Therefore, from Remark
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Bn _TGI n—oo |L1|
Bn = |—| = n- _—
5= A, ‘% L7
which implies (3.59)), because
. _ bm? n—oo
“(lﬁn _A) ]Fn”"zr > 7n2|Bn|2 — 00.
Subcase 1.3: £ = ¥ and k + ko. Defining (B..) by
K Cn- (3.66)

B — ECZ—F
" pr " VvV P1P2

¥, (3:58) implies that

we have 3, = O(n) and, using £
m _ P1 2 __
= — —cn + kol —O(Tl),
2

Pn
pEIZ) =—k &Cn +k=0(n),
P1
P1 2 2
—cq + kI = 0(n?),

pl¥ = (ko —Kk)ci —k
P2
Ec2 =0(n?).

P =iy | S K o
" p1 Y V/PIP2 6 "

Then, the determinant (3.59) can be written as
An = p P+ ymiBa)enpy ' py — Keapi py) — Pk + ko) erpilpy

—kym(ifn)ct + 0(n?).

Here, note that
pap R Py — Kenpd ) = (p i — ke )p ey
k (kolz1 /22 4k, / ﬁ) cnp PP 4 ki 2plp@
P1 P2 T’
O(n
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and
Kym(iBn)ey, = (pUplY) — kel )ym(ifa)c

— _k ((k 12\/7 + k\/7) Cn — kolz) ym(iBn)cs

—0om’

m(iBn)erpr Py -

which simplify A, to

A =—k (kolﬂ / % +k,/ %) PPl — Pk + ko) eiplpl! + O(n).
1 2

Now, defining vi = 1 and v, = 0 we obtain

An =Py +ymliBa)enp — KUpY = pPplpy + 0(n').

In this context,
2 2 (2) (3) 2 4) 2
C noo 7T Prn nooo KT /P2 P nooo s Pn’ nooo K170
n _ Ll — ko — k) — n -
2@ q TVor mz kemM@m T7 T
and thus
Av  pipnpn | OMY) wow [ Kk [p2 ot L
5 n n? n? ns ¢\ o 0 2|5 ¢ ]
Analogously,
o] [
2|6 ¢

An nﬂoo (k 12 Y + k /P )
2 2
) s kt [p2| [ ki 7T
— —_—— —_— _—— = L .
(k4 ko)? Lz]{ €”p1 [682} 2
# 0, we conclude that L; # 0. Thus, from Remark[3.17],

n_
n

A
A

Finally, using (ko —
Lyl

0 if L,#0
ol # 2 F

T =
o0 if LzZO,

|An‘ -

'j<.:1|;.[*> | j&.nl,—_x !

which implies (3.55), because

n—oo

¢
TRl > EEplAL S o
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» Case 2: Cattaneo (t > 0). Here, we will consider two subcases.

Subcase 2.1: "—1 = k and x + 0. In this subcase we use (f3,,) defined by (3.66).
Then B, = O(n) and, usmg b= &, from (3.58) we have

pg) =—kK &Cn +k012 = 0(n),
V P2
pi2 =—k,/%cn+k= on),
1

P = (ko —K)c2 —k,/%cﬁktz:O(nz),
2

k k kic?
QNS . o+ In = 0(n).
Pn \/p1 " v/ P12 \/ c + Cn+ 0

pr \/910

It follows that the determinant (3.59) is written as

An =p'p PPl +ym(iBa)eapl'py — Kclipl) pn —(k + ko) 2c2pZptd
— 21 (k + ko)ym(iBn)c2p'? + Bym(iB)pPp'¥ — Kym(ipn)ch + O(nd).

Here, note that

prpp ey — Kerppy! = (k 12\/ Sty )cnpn Py + kko 12Pn py

=0 n3

and

m(ipn)e2ppl2 — Kym(ip,)ch = —k (kotﬂ /224 k, / "‘) cnym(iBn)c

+kkol*ym(iBa)c

=0(n3)

which simplify A,, to

=—k (k 121/ +k,/ ) cn (PIPY +ym(iBa)cl) — Pk + ko) capZpl!

— 21 k+ko ym(l(:}n) Zp 4+ Pym(if)pPpl + O(nd).
Now, defining vi = 1 and v, = 0 we obtain

An =PI +ym(ipn)cip — KUpLY = pl? (pIph) +ym(iBa)er) + O(n).
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Then, using the convergences

™ Vkp2
—ik— =1L
1 ¢ ot X 1
Analogously, we can deduce that
ATI n—oo
w2

for some constant L, € C. Finally, using x # 0, we conclude that L; # 0. Thus, from

Remark[3.17]

. . Ly ,
An — £0 if L 0
IAnlz%:‘Z—“ TN — |L2|7é 27
" nt 00 if L,=0,

which implies (3.55), because

¢ .
1(Bn — A) "Faf2 > 2EB2IAL 2 2 .

Subcase 2.2: £ /¥, Here we use (B.) defined by (3.:65). Then ., = O(n)
and, by (3.58),

P2 P2
PELZ) =Y
b
Py = (k -5 ) ¢z — Dk 4 k12 = 0(n?),
P2 P2
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It follows that the determinant (3.59) is simplified to

An =—K22pEIpl) — Kym(iBn)ch — K1plp) + 2K (k + ko)c2pl)
+ Zkzlzym(lﬁn)c — Kl *ym(ifn)
—X%c; (PPl +ym(in)cy) + O(n?

Now, defining v; = 0 and v, = 1 we obtain

B = pl'pp +ym(iBn)cipll) — (k + ko) 2chpy) + ym(iBn)pl)

— 213 (k + ko)ym(ifn)c2

=p) (PP +ym(iBn)cd) + O(n?).

So, using the convergences

we deduce that

where

Now, we consider two cases separately.

° L17£O
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In this case we have L, # 0. Then, from Remark|(3.17],

“—’_%OE__@#())

Bn — “n _ ETSI _ P2
A L K2
which implies (3.55), because
br® n—so0
(B — A Ful2 > S 5 oo

® L]ZO.

In this case, L, = 0 and thus the previous argument does not work because we
are led to the indetermination g So, let us apply a different argument.

From Remark (using that Re(pg)p](f) +ym(ipn)ct) = Re(pf{”)pf)) we have
&‘; X 0o(n?)

(4)

pg) (pg)pf) +ym(i[5n)cﬁ> + O(ng) n? <p£13)pn +ym(i[3n)c$1)

- (3),4) ‘ T b
—k2c2 (Pn Pn _{_ym(l[?)n)ci) + O(n?) ks + n2 (pR P ymiiBa)cd )

B, =

?
P35

for all sufficiently large n € N. Then, assuming that

3
(3) (4?(71 | =50 (3.67)
n2 (ppl!) +ymlipa)cd)

and using that £ # ¥, we conclude

-)E (o)

n—00 p P2

B e s e A0
[2

which implies (3.55), because

2

b n—oo
1B — A) a2 > 2—7;n218n|2 2% .

So, in order to obtain our result, it is sufficient to show (3.67). In fact, note that
L, can be rewritten as
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which implies (using £ # {) that

Additionally, from the last equality we can deduce that <k0 — %) # 0, because ym #
0. Therefore

Re ((n? (ppl +ymiip)c)) 0 ) skad

n? n?

n—so0 p1b\ 7] [8kipa
=5 (80 B ) o

and thus
2 om3) |2
O(T‘Lg) . na
- 2 2
n2 <p£§)p1(14) +Ym(i[3n)0ﬁ> {Re(nz(pg)pgf)wm(iﬁn)cg))} N {Im(nz(pg)pg)wm(iﬁn)c%))}
n4 n4
om3) |? 0
)
= (3) (: 2 == 2
Re(n?(pn pn +ym(ifn)cd _ p1b ) w2 8kip
) () £
=0,
which proves (3.67). N

Remark 3.18. Theorems [3.15 and [3.16] show that the semigroup generated by A is
exponentially stable if and only if condition (3.53) is satisfied. For the physical system,
when (1.3) holds, we have

k k b
53 < Pk ang <T_‘_"‘) (ﬂ—k>+wm:o
p2 b k P2
k
= h_x and t=0
p2 b

Therefore, for the Fourier's case (t = 0), the semigroup associated with the physical
system is exponentially stable provided that g—; = ‘g which is an unrealistic condition
due to (1.16). And, for the Cattaneo’s case (t > 0), the semigroup associated with the
physical system will be always non-exponentially stable.

Remark 3.19. Note that the parameter t affect the matrix M, only in the expression of
piV, which plays an essential role in the calculations.
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3.3 Polynomial Stability

In the previous section it was proved that, from the realistic point of view, the
physical system is never exponentially stable, see Remark Then, in order to
complete our results, it is interesting to establish some rates of decay for both cases,
Fourier and Cattaneo. In fact, the main result of this section is to show that the mathe-
matical system decays polynomially to zero with rates of decay which can be improved
provided that conditions of equal wave speeds are satisfied. The implications for the
physical system are discussed in Remark [3.23

Let us start by remembering the notations of the previous sections:

kp2

onb—?> X1 = ko —k, oo = (T—¥&), X = X100 + Tym.

Lemma 3.20. Assume that U € D(.A,) satisfies (3.35)-(3.42) for some (nonzero)
A € iR and F € H.. Then, there exists a constant C > 0 (independent of U, A and
F) such that

lox + U + W72 + || @72 < Clko — k)2 AP [lwx — LIt + CTAP|qllf2 + C|[F[|<[/U]l<
+ Cl[W/[e2 L[ + ClIU[ ][0 2 + Cllq]le2 ][l
+ Cllwy — l(PH%P

Proof. As usual, we get our estimates from the resolvent system (3.35)-(3.42) and take
advantage from some estimates proved in the previous section. From (3.35) we have

{ {

¢ ¢
J Wy, @ dx:J (wx—lcp)ﬁdx—klj

_ Lt
(wy —lp)O dx+—J f1@ dx
0 0 0 A

(p@dx:J
0

0

| A
— d|° dx.
+AL" *

Then, substituting into (3.45) we obtain

B k. { - {
KU+ + w2 = T + ("T"‘ - m) AJ (s — Lg)® dx + 4 — pﬂJ O dx
. 0 0 (3.68)

+15—VJ 0.(px T b+ 1w) dx.
0

. k t
I1:I1+(0—m—p1)lJ £, dx
k 0

where



with Iy, 14, I5 defined in the proof of Lemma3.11] Additionally, from (3.42) we have

{ {

fs(@x + P + Iw) dx—TyAJ q(ex + ¥+ w) dx
0

{
’YJ Oc(@x + 1+ lw) dX:T‘YJ
0 0

{
[

Finally, substituting into (3.68),

{ ¢

(wy —l@)® dx + I, — pﬂJ D dx

0

0

4 4

fa(@x + 1 + w) dX+TY7\J qlex +1P +1w) dx
0

+I5—TYJ
0
¢

+6yJ q(@,+1 +w) dx
0

which implies the desired result.
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]

Remark 3.21. In the formulation of Lemma [3.20} the dependence of T in the second
term on the right-hand side was written (explicitly) because it will be useful in the anal-
ysis of the cases T = 0 and T > 0 (see the arguments after below). In the other
lemmas of the previous section the constant C also depends on T, but this dependence

was not specified because it has the form C = (1 + 1)K, where K does not depend
T, and thus there is no difference between the cases Tt > 0 and T = 0.

on

mially stable with the following rates of decay.
 For the Fourier’s law:

1. If % =+ ‘g, there exists a constant C > 0 (independent of U,) such that

C
le* ol < ayie [Uollpan, vVt =0.

that

C
e Uollx < 57 lUollbary ¥ > 0.

Theorem 3.22 (Polynomial decay). The Cy-semigroup generated by A is polyno-

2. If % = ‘g and k # ko, there exists a constant C > 0 (independent of U,) such
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» For the Cattaneo’s law:

3. If % # ¥, there exists a constant C > 0 (independent of U,) such that
M|l < —jju Vt>0
le™ Uollx < 75 Uollpran, > 0.

4. If g—; = £ and k # ko, there exists a constant C > 0 (independent of U,) such

that c
le U~ < mHUoHD(AT), Vt>0.

5. If % = 'g and k = ko, there exists a constant C > 0 (independent of U,) such

that c
leUollx < 575 1Uollbany ¥t >0.

Proof. Taking F € . and A € iR such that |A| > 1, the vector U := (AI — A,)~'F (which
is well-defined by Theorem satisfies the resolvent equation (3.34). Then, from
Lemma[3.9,

IWIIE2 < Cellwnllfz + 2ef ]|z + Cc|[Fll3
and thus, using the expression (3.4),

(1 =2e)[[Uflz < pr[| @[22 + Pl W2 + Cellwbillf> + Kl @+ + w2

vkt
lqllf2 + Cel[Flz.

y
+ kolwx —Lo|If2 + =[I8]If> + ——
m m

On the other hand, from Lemma|3.10|,

Cellnllt2 < Ce(1+XAPIPE2 + Sel[Uf7 + CellFlIZ + Cellox + b + WwllE,
+ Celwx —Lollf2 + Cc[|0]l

and thus

(1=7)[Ufl? < C.Ch ([|@IF2 + [[ox + b+ Ww|[{2) + pr[WIIE
YkitT
gtz + CellF|Z

+ Cefwi = Lo|ltz + CefjB]f2 + —

where C, := 1+ x3A~%.
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Additionally, from Lemma (3.20,

CCh ([ox + W+ WE +||®@]172) < CcCal1 +EAR) [wy — Lol[72 + C.CatlA| g1
+ C.C3[[F||2 + 4e||U||? 4+ C.C3[[W|If2 + C.C30]l
+ C.Cillqlf

and thus

(1=11e) U2 < C.CRIWI|f2 + C.Ca(1 + xi AP [wx — Lo |1f2 + C:C3]|0]|7:
+ Ce(C3 + CytlAP)[lq|f2 + CCX [ Flz-

Analogously, from Lemma|3.12,

C.CRIW(IE: < CeCillwx — Lop|If2 +4el U7 + C.CR[10][22 + C.CRIIBIIF> + C.Chllqll:
+C.GF|2

and thus, substituting in the previous estimate, we deduce that
(1= 15¢) U]l < CcCalwx — Lo|f2 + CcCR[18]I72 + Ce(ChtlA? + CR)l[qllf + CCAlIF2

where C, := C} + Cax3 AP
Similarly, from Lemma 3.13}

CcCalwy —lo|f2 < C.CR|18]172 + 3e[|U[I7 + CCRllql[f2 + CcCallqlf + C.CRIIF[12
and thus
(1—18¢)|U|2 < C.C2|10]172 + Ce(CatlAP + C3)|qll72 + CC3||F||2. (3.69)
At this point, we consider the Fourier and Cattaneo cases, separately.
» Fourier (T = 0). In this case, estimate reduces to
(1-18e) Ul < C.CRlBIIT: + CCllqllf> + CCRIIFIfS.
Now, from (3.42), we have q = —%ex. Then, by Poincaré inequality we obtain

(1—-18e)|[U)3 < C.C}||072 + C.C3[F|3-
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Moreover, from Lemma (3.6,
C.CRII6x[IF2 < CCAIIFIIG + ellUl3
and thus
(1= 19e)[Ufl§ < CCRIIFIIG
where

~ 4
Ch= (14 3AR + (1 4+ XEAPXENE) < C (1 X3AE + XSS + X322

- CIAP* if xo #0,
T |CIAR if xo=0andyx; #0.

Therefore, taking ¢ > 0 small enough, we conclude that there exists a constant C > 0
(independent of A and F) such that

1A = Ao)"Fllo = [[U]lo < CIAI*[[Flo,
where

16 if xo#0,
X =
4 if xo=0andyx; #0.

Consequently, for the case x, # 0, the condition (a) of Theorem holds with « = 16
(and 3 = 1). Hence there are constants C, t, > 0 such that

_ C
et ASTFlo < W”FHO’ Vt>ty, FeHo.
In particular,
_ C C
e Ug|lo = [le™.A7" AgUy]lo < WHAoUoHo < WHUO”D(.AOM Vt>to, Uy € D(Ao)

which implies item[1] Analogously, for the case x, = 0 and x; # 0, there are constants
C, to > 0 such that

_ C
et ASTFlo < t17HFHO, Vit>to, FeH

and thus C
[0 Up||o < qzltolloag), ¥t =to, Uo € D(A)

which implies item
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+ Cattaneo (t > 0). From Lemma[3.14]
C.Cil8l172 < C.Chllqllf> + 2e[[U)z + C.CIF|12
and thus, returning to (3.69),
(1—208) | U|? < C.(C} + CatAR)[Iql2. + C.CLIIF|2.
On the other hand, from Lemma (3.6
Ce(CR + CrtlAP) qllf2 < Ce(CR+ AP |IF|Z + el[Ul:
and thus
(1= 21e)|[U? < Ce(CY + ChTAP)[Fl2
where

(Ch+ CyeA)? = ([0 +5GAD* + (145N + ( +xé|A|2)r|A|2)2
< C(1T+ A+ xa? AP 4+ X1 A + 3 A + x5 )
CIAI® if xo #0,
<< CA™® if xo=0andx; #0,
CIAI* if xo=x1=0.

Therefore, taking ¢ > 0 small enough, we conclude that there exists a constant C > 0
(independent of A and F) such that

IO =AD" Flle = [ Ulle < CAF[Flley

where
32 if x0#0,
x=<¢8 if xo=0andyx; #0,
2 if xo=x1 =0.
Analogously to the previous case, we obtain items [3] 4 and 5] O

Remark 3.23. In Theorem [3.22 the improvement of the polynomial rates of decay
given by items [2]and[4]are interesting only from the mathematical point of view because
those conditions cannot be fulfilled by the physical system. In fact, for the physical
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system, condition (1.3) implies that

k k
ok =  k =k <= &:Bandkozk.

p2 b P2
Consequently, if S_; = ]g then the physical system with Fourier’s law decays exponen-
tially (by Theorem [3.15)), and the physical system with Cattaneo’s law decays polyno-
mially with rate of decay t~'/? (see item . However, since the condition L = § is not
realistic, the best we obtained for the realistic physical system is polynomial decay with
rate t='/1° in the Fourier case, and polynomial decay with rate t='/3? in the Cattaneo
case. The optimality of all cases remains as an open problem.
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4 HEAT CONDUCTION ON AXIAL FORCE AND BENDING MOMENT

In this chapter we prove that system (1.18)-(1.19), with its corresponding initial
conditions, has a unique solution, which is exponentially stable if and only if condition

(T.27) holds.

4.1 Semigroup formulation and well-posedness

We start by including our problem in the context of semigroups. For this, using
the notations (2.2), we define the phase space

H=H)x[*xH xI2xH x[2x[?x12x1?x12
equipped with norm

U = eI + 2l ¥z + o1 WIIE: + bllbxlE2 + Kl ox + b + ]l @)

+ Kalbwy — Lol + X (191 + 101%2) + 22 (clpli, + <llali),
where U := (@, O, VY, ¥, w, W, 9, p, 0, q). As usual, under the assumption that ¢ is not
a multiple of 7, the space H is a Hilbert space and || - ||i is equivalent to the usual norm
of H (the proofs follow as in Section [3.1).

Now, we define A : D(A) C H — H by

O
(@ + ) + 2wy — 1) — 220

W
b - —_ X
pzq)xx 02 ((px + 11) + lW) pzﬁx
\%%

%(Wx - 1(p)x - %((px +1b + IW) - ;/Tex

AU =

_k1 Px — m\yx

with domain
D(A)={U€eH]|¢eH, ®p,wy,9,0eH, ¥Y,Wp,qeH'}.

Remark 4.1. As in the proof of Theorem we can show that if (U,) is bounded in



74

D(A), with respect to the graph norm || - ||p(a), then (U, ) is bounded in the space
(H2NHY) x H' x (HENHD) x H! x (H2NHLD) x HY x [H! x H!J?,

with respect to its usual norm, which is compactly embedded in (H, | - |i) by Corollary
2.13\ Therefore, (D(A), || - [|ba)) is compactly embedded in (H, || - |a), which implies
that all elements of o(A) are eigenvalues of A (by Theorems[2.3/and [2.4).

Under this setting, problem (1.18)-(1.19) can be written as

U, =AU, t>0
(4.2)

U(0) = Uy

where Uy := (o, ©1, Vo, W1, Wo, W1, Do, Po, B0, qo) @and we can prove the main result of
this section, which was already stated in [13].

Theorem 4.2 (Existence and uniqueness). The operator A is the infinitesimal gen-
erator of a C,-semigroups of contractions on H and thus, for each initial data
U, € D(A), the problem has a unique classical solution U € C'([0, oo); H),
which is given by U(t) = e*U,.

Proof. We verify the hypotheses of Theorem [2.17. The final conclusion follows from
Theorem 2,16l

* D(A) is dense in H.

We have

HZY]XY2><Y3><Y4><Y5XYGXY7XY3><Y9><Y]0, (43)

D(A)ZS]XSz><83XS4XS5XSGXS7X58X59XS]0 (44)

and

Y1, Y2, - y10)E = IWall5, + 2l + - + sl (4.5)
where )

H? N Hy, if i=1
5 Hy, if i=2,7,9

{ueH! |u, e H}, if i=3,5
H!| if i=4,6,8,10
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and
Hy, if i=1
2, if i=2,7,9
Y, =
H!, if i=3,5
L2, if i=4,6,8,10.

Due to the inclusion of C5°(0,¢) in H?(0,€) N H}(0,¢) and the density of C5°(0,¢) in
12(0,£), we show (as in the proof of Theorem that S; is a dense subspace of
(Yi, || - lv,), which implies the density of D(A) in H by (4.3)-(4.5).

+ A is dissipative.
A straightforward computation shows that

Yok
m

RAU, W)y = (Ipllf2 + lqllf), ¥ UeD(A) (4.6)

and this proves the dissipativity of A.
0 € p(A).

Suppose that 0 ¢ p(A). Then, by Remark[4.1] 0 in an eigenvalue of A. Therefore, there
exist U # 0 in D(A) satisfying the equation AU = 0, which in terms of its components
can be written as

O =0 (4.7)

k(@x + U + )y + kol(wy — L) — 1y0 =0 (4.8)
Y =0 (4.9)

by —k(@x + P +1w) —yd, =0 (4.10)

W =0 (4.11)

Ko(wy — L)y — kl(@x + 1 +1Iw) —y0, =0 (4.12)
—kipx —m¥, =0 (4.13)

—op =9, =0 (4.14)

—Kk1qy — MWy — 1) =0 (4.15)

—5q— 0, = 0. (4.16)

From (4.7), (4.9) and (4.11), it follows that ® =¥ = W = 0. Substituting this into (4.13)
and (4.75), it follows that p, = q, = 0. Since p,q € H!, we conclude that p = q = 0.

Substituting this into (4.14) and (4.16), it follows that 9, = 0, = 0. Since 9,0 € H}, we
conclude that & = 6 = 0. Substituting this into (4.8), (4.10) and (4.12), it follows that
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(@, VP, w) satisfies
B((@*>¢*)W*)> ((p,ll),W)) = O) v ((P*,ll)*,w*) S H(]) X Hl X Hl (417)

where B is defined by

¢

B((@", b, w*), (@, h,w)) = kL((D?Z + P + ) oy + P + w) dx

{ - { _

+ kOJ (W —le™)(wy — le) dx + bJ Py dx.
0 0

Since B is a continuous coercive sesquilinear form on H) x H! x H!, it follows from

Theorem [2.5] that (4.17) has a unique solution and thus {» =y = w = 0. This shows

that U = 0, which is a contradiction. Therefore, 0 € p(A). O

4.2 Characterization of exponential stability

In this section, we prove that condition (1.21) is sufficient and necessary for ex-
ponential stability of the semigroup generated by A. We start by proving some lemmas
about a sequence (. ).cn Of real numbers and a sequence

Uy = (@, M)y W) 4y y/in) g o) gin) g ¢ D(A)

such that
Brn —F 00, (Up)nenisboundedin® and ||(ifn — AU, |lg = 0. (4.18)

Before to formulate the lemmas we observe that, using the equivalence between the
norm || - ||z given by (4.1) and the usual norm

Ul = el + IR + [WlFe + IWIE + [wlife + IWIE + 912 + [l

, , (4.19)
+ (101l + llqllt,
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it follows from (4.18) that

iBre™ — 0™ ™=F 0 (4.20)

o™ — oM =% 0 (4.21)

01 @™ — k(@™ + ™ 4+ 1w™), —ol(wY — Le™) + 1yo™ =% 0 (4.22)
ipp™ —ym ¥ o (4.23)

Bl — \ygn 0 (4.24)

p2iB Y™ — o™ 4 k(@™ +p™ 4 1w™) +y8; =0 (4.25)

ipaw™ —w 2¥ 0 (4.26)

ipawl™ —win 2% o (4.27)

p1iB WM — k(W™ — 1™, 4+ k(@™ 4+ ™ + w™) 4y =% 0 (4.28)
i ™ + kpW 4 my “L‘” 0 (4.29)

Gipp™ + dp™ + 9N =X 0 (4.30)

iB.0™ + kg + mw —10M ) %0 (4.31)

Tif.q™ + 5™ + o™ =F 0 (4.32)

with all convergences in the sense of L(0, £).

Lemma 4.3. Assume (4.78). Then, the following sequences are bounded in L%(0, £):

@) (@™)nen, (Y™ e, (WM nen, (W8 nen, (@8 + 0™ 4w, oy,

(W)(cn) - ]'(p(n))TLENs (8(n))n€Ny (e(n))HENs (q(n))neNs (p(n))HEN'

Proof. Since (U,).cn is bounded in H, it follows from (4.1) that the following sequences
are bounded in L?(0, £):

((D(n))neN) (w(n))neNy (W(n))nENy ('q))(cn))neN> ((p)((n) + lb(n) + lw(n))nel\h
W =10 ey O™ nery (0™ newy  (P™nen, (™ )nen.
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Then, the sequences of (@) are bounded in 1?(0,¢). The boundedness of the se-
quences in (b) are a direct consequence of the equivalence of the norms (4.1) and

(4.19). For (c), note that all sequences in (4.20)—(4.32) are bounded in L*(0, ¢). In par-
ticular, multiplying by the bounded sequence (L> . the following sequences are
ne

iBn
also bounded:

(DXTL) o (Tl) . (D[Tl)>

( iPn )neN - ((PX Inex <(PX Bn ) en’
y @y gy e

(550 ) oo = 0 = (900 = 50)

wi — ™ ) W
( iBn )neN - (WX ) Wx iBn neN)

which proves (c). Additionally, we have the boundedness of the following sequences:

(n) (n) (n)
b‘l’x_x _ ‘9x_) — ( 111( +k (™ ™ 41w ))
( Bn Vi ) ey P2 iBn neN

wimn (n)
neN

IB iBn

Wil el _< (@™ p(m) 1wl ))
(ko in Yig, neN p1W Tkl iBn neN

(n) (Wi —1p ™) (@M pM4wn) ol
- (p1W — kol e Tl b Y5

)~ (49 ) (755
(iﬁn neN gp + +1f3n nenN gp + iBn nEN)

) = (0 8 ), (07 )
<iﬁ“ neN Tq + + iBn neN g + iBn neN ’
Then, the following sequences are also bounded in L%(0, ¢):

dﬂ) 1 <b¢i2’ _ s[;”) ( )

(iﬁn nen b \Plpe T YiBa i ) pen

(Win]ilq)(n))x _ 1 K (W)[{n),[(p(n])x 'Ye’(‘n) 4+ X >(<
iBn nen Ko \° iBn iBn/nen ko \iBn /ey’

which completes the proof of (d). O

Lemma 4.4. Assume (4.18). Then, q™ =% 0 and p™ =% 0.

Proof. Let us write G, :=if3,U, — AU,,. Then, multiplying by U,
iBnHunH]Iz{ - (Aum U—n)H = (Gm un)H-

Now, taking the real part and recalling (4.18) together with equation (4.6), we conclude
that

n n m m . n—o0
la™ I + 1lp™1f> < WHGnHHHUnHH = m“lﬁnun—AunHHHU“H — 0

)
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which proves the result. O

Lemma 4.5. Assume (4.18). Then,

1

.—(W(n) e(n))LZ TH_O)O O, v
iBn

x )

(a)

1
iBn

n—oo ] n—oo
(¥, 02 ™5 0, £ (™, 0 T 0,

(b)

n—oo

Proof. From (#.32) and Lemma 4.4/ we deduce that -6 "= 0. Then, multiplying by
w™ and q™ in L2(0, £), we obtain (a). Analogously, using equation (4.30) and Lemma

n—oo

4.4 we have -9 "% 0. Then, multiplying by ¥™ and p™ in L2(0,¢), we deduce
iPn

(2 0

Lemma 4.6. Assume (@.18). Then, 6™ =% 0 and 9™ =% 0.

Proof. From (4.31) we have

() ¢ S ) T4 m) nooo
e i, O
Then, multiplying by 8™ in L2(0, £),
k m n—o0
0™, — ﬁ(q(“), 02 + E(Wj;l), 6. =¥ 0,

which implies, using Lemma 4.5| that 6™ "= 0. Analogously, from (@.29) we have

1\1}(“) 7.

i,

k

19(71)
+ i,

Then, multiplying by 9™ in L2(0, £) we obtain

k n n m n n n—oo
Hﬁ(n)Hﬁz - ﬁ(P( )>8x ))LZ + E(Wi )319( ])LZ — 0,
which implies, using Lemma , that 9 =% 0. O

Lemma 4.7. Assume (#.18). Then, wi™ — o™ 2% 0 and P =% 0.
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Proof. From (4.31), we deduce that

kq (n) m n—oo
L4+ (Wi — 1o :
ip, & g, W T

On the other hand, from (4.20) and (4.27)) we can obtain

o +

i (W —1le™) — (WM —10M) =% 0, (4.33)
Then, multiplying (4.33) by - and adding to the first convergence, we obtain

n—oo

k
o™ + al +mwlY —le™): T 0.
n

Finally, multiplying by the bounded sequence (w,"” — lo™) in L%(0, ¢) we deduce that

’2 n—oo

(n]_l (n) X
(0, Wi — o™ )z + ki (9, G ) mwl) — o™

Note that the first term goes to zero by Lemma[4.6] and the second also goes to zero

by Lemmas [4.3 and[4.4] This implies that w(™ — 1™ "% 0. Analogously, from @.29),

-1 + —‘{’ n—oo el
TR
From (4.24), multiplying by -, we have

mp™ — %W o, (4.34)

Then, adding the last convergences, we obtain

n—>oo
— 0,

ki
m)
+ B, —p™ 4 mp

which implies, multiplying by b in L2(0, £), that

(n) o0
(0%, W+ (P45 |+ mlpiE = 0

Again, the first term goes to zero by Lemma [4.6] and the second by Lemmas 4.3 and
[4.4] This implies that p{™ "= 0. 0

Lemma 4.8. Assume (@.18). Then, W™ 2% 0 and y™ =% 0,

Proof. Multiplying (4.28) by lrs% which goes to zero, and using the boundedness of
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(@ + ¥ + w), which comes from Lemma 4.3, we deduce

Ko Y n—oo
W — K0 o o) Y g oo
P11f5n( * e P1ifn
Then, multiplying by W™ in 1.2(0, ¢),
Y

(e, wivy,, =% 0,

X )

k. (n)
M2, — 50 (um _1om W
HW HLZ 01 <Wx l(p ) iPn )Lz + p1iBn
Note that the second term goes to zero by Lemmas 4.3 and [4.7] Also, the last term
goes to zero by Lemmas and These convergences imply the convergence
wm % 0. Analogously, multiplying (4.25) by . and using the boundedness of
(@x + U + lw) again, we obtain

b Y n—oo
i) _ (n) 9m) oo
TN SRR T

)

which implies, multiplying by Y™ in 1%(0, ¢),

b Y n—o0
g~ (Wi, )+ i U We T o
n

Again, the second term goes to zero by Lemmas [4.3]and 4.7 Also, the last term goes
to zero by Lemmas|4.3 and[4.5] This implies the convergence W "= . O

Lemma 4.9. Assume (4.18). Then,

(@) (@™, M) — (8%, M) =X 0.

(b) ¢(p™, ®M)2 — A, M) =X 0.

Proof. From Lemmas [4.3/and 4.6),
(ein]"q)(n) + lW(n))LZ = _(e(n)’ll)in))p - l(e(n)»win))Lz = 0, (435)

which implies, multiplying @.32) by the sequence (@™ + p™ + w(™), bounded in
L2(0,¢), and using Lemma 4.4} that

TiBn (g™, @™ + ™ + w2 + (8, M) =X 0. (4.36)

On the other hand, from (4.21), (4.23) and (4.26) we obtain

iBn(@™ +v™ 4+ 1wy — (@ 4w 4wy 2% o (4.37)
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which implies, multiplying by q™ in L2(0, ¢) and using Lemmas 4.3/ and [4.4}

—iBa(a™, @l + ™ + )2 — (g, O = 0.

Finally, multiplying by T and adding to (4.36) we get the convergence (a). Analogously,
from Lemmas[4.3]and [4.6]

O, p™ + w2 = (™ PM) — 1™, W), =50, (4.38)
which implies, multiplying by (i +P™ +w™) in L2(0, ¢), that

i (p™, o™ + ™ + ™), + (Y M), X 0. (4.39)
Moreover, multiplying by p™ in 12(0, ¢) and using Lemmas|[4.3|and [4.4]

—iBa(p™, oM+ P 4 M) 2 — (p, DY) o

Then, multiplying by ¢ and adding to (4.39) we obtain the convergence (b). O

Lemma 4.10. Assume (4.18) and condition (1.21). Then,

oM+ ™ M =¥ 0 and oM™ X 0,

Proof. Note that condition (1.21) is equivalent to

(g—%) (b—%)—i—gvmzo or (T—%)(ko—k)—i-’wmzo- (4.40)
1

=E

=X

First, let us assume that x = 0. Then, multiplying @.28) by (@™ + v™ + lw™) in
L%(0,¢) and using (4.35),

p1iBn (WM ™ 4™ 4+ ™) 5 4 koWl — 1™, (@™ 4™ + 1w™) )»

n—oo

KU o + 9™+ 1w 12 +y(8Y, o) = 0.
(4.41)

Moreover, multiplying #-37) by W™ in 12(0, ¢) and using Lemmal4.8] we deduce

—iBn (WM, @V + ™+ 1w™) 2 — (W, o), =5 0.
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Then, multiplying by p; and adding to (4.41)),

—pr (W M) + k(W™ — 1™ (@™ + 9™ + w™) )2

o (4.42)
k| + 9™+ w12 +y (6, V)2 = 0.
On the other hand, from (4.22), Lemmas [4.6|and we deduce that
P1ifn®™ — k(@M + ™ + ™) =50, (4.43)

which implies, multiplying by w{™ — 1™ in L2(0, £), that

n—oo

_p1iBn(W>(<n) - ]'(p(n)) q)(n))]_z - k(win] - l(p(n)» ((Pin) + ll)(n) + lW(n))x)Lz — 0.

Also, multiplying (4.33) by p; @™ in L2(0, ¢),
P1iBr (W — 1™, d™) 2 — oy (WY —10™, &), =53 0,
which implies, adding the last two convergences, that

o1 (W, @) 2 + oL@ 2 — k(i — o™, (@l + %™ + W), )2 5 0.

X

Multiplying the last expression by ‘% adding to y x (a), where (@) is the first convergence
of Lemmaf4.9} and finally adding to (4.42), we obtain

M H oM H%z
k (4.44)

n—oo

+yt(q™, 0M) =5 0.

k.
i (?O - ]> (W, @)z + K@ + 9™ 4 w12 +

On the other hand, multiplying (4-37) by ®™ in L2(0, ),

iBn(e(n)) @(n))LZ — ki (q(n)’ CD(“))Lz _ m(W(“), CD(n))]_z _ mlH(D(n)H%Z 7). (4.45)

X X

Also, multiplying (4.43) by 6™ in L2(0, ¢) and using (4.35), we obtain

n—oo

—p1ifn (0™, ™), + k(6™ M), =5 0.

X

Then, doing kx (@), with () of Lemma 4.9} and adding to the last expression, we de-
duce that
— p1iBn (0™, @™ + 1k (g™, @) X 0. (4.46)

X
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Now, in order to apply the same strategy of [8], let us define

k
oy = (1 1p1> +£0, because x=0.

In addition, x = 0 implies kp1 =0, that is,
k,
o (?" - 1) p]g’]“ —0. (4.47)
Multiplying (4.45) by —¢*, we have
p p k n n p Ym n n p le n—oo
e 1B (8, @)t E (g, @)k TR (W, @) EEE O,

Multiplying (4.46) by — I~ and adding to the last expression,

Y Yk 19% n n Prym n n pn/ml ey
< ]]<'0-1I N 0-_1> (q( ))(D( ))LZ + (W( ]»(D)(c ))LZ + ||(D ||2

which, added to (4.44) and using (4.47), yields

ml  kopil
L e Ll
kG] k

k T n—0o0
+ (_pn/ LY —I—‘YT) (q™, M) =30

which implies the desired result because, again by (4.47),

1 kopil
<pn/m I 0P1

=1lp; >0
Ko, k) D1

and

k T
pﬂ/ ! _ _Y _|_‘y"[' = —y (p]k] —kT—i-kO—]T) - O-
kO'] 01 kO']

Second, let us assume that £ = 0. Then, multiplying @.25) by (@™ -+ ™ +1w(™)
in L2(0,¢) and using (4.38),

P2iBn (Y™, @™ + ™ + W™, + b (@M + ™ + M), )y,
+k[[ + ™ + M IE +y (O, oM, =S5

Multiplying (4.37) by W™ in 12(0, ¢) and using Lemma 4.8}

n—oo

B (W, @ ) 4 ™)z — (W, @) = 0,
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which, multiplied by p, and added to (4.48), implies

—p2 (Y™, @) + b, (@ + ™ + w2

M 4 ™ 4 ™ () om (4.49)
i@V + O™ + W |2 +y(0)Y, 02

nsog
Also, multiplying by Wi in L2(0, ), we have
—p1iBr (WY, @) — k(W (@M + ™ + V), ) = 0.
Multiplying by p1®™ in 12(0, £)
p1ifn (B[, D)2 — py (WY, @) 2 "= o,
Then, adding the last two convergences, we obtain
—p1 (WY, ™) — k(PIY, (@ +p™ 4+ ™)) =50,

which, multiplied by % added to y x (b), where (b) is the second convergence of Lemma
4.9, and finally added to (4.49), implies that

(82— p2) (W™, @)1 + K[l + 0™ + ™2 +yg(p™, @), =F 0. (4.50)
On the other hand, multiplying by @™ in 12(0, £),
iBn (3™, @™ =X (p™, @) 2 — m(¥™, OV) . =5 0. (4.51)
Multiplying by 9™ in L%(0,¢) and using (4.38),
—1in (O™, @™z + kB, @M T 0,
which, added to k x (b), with (b) of Lemma[4.9] implies
— @B (O™, @™)12 + gk(p™, @M) . =5 0. (4.52)
As before, let us define

k
0y = (1 — ;—E]) +0, because & =0.

In addition, & = 0 implies ﬁé =0, that is,
kO'z

p1b prym
—_— = 0. 4,
( k pz) + ko, 0 (4.53)
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Multiplying (@.57) by —%, we have
2

prym
sz

P1Yk
sz

Py,
sz

(™, @™ + (p™, ®M)i2 +

Multiplying (4.52) by —% and adding to the last expression,
2

pryk: Gy M) g PIYM v gy, , nooe
— 2 () + N AN ) — 0
( Ko, 2) (p ) X )Lz Ko, ( ) Ex )LZ )

which, added to (4.50) and using (4.53), implies

P1YKi o% .
KoM + ™ + w2 + (k_GZ _ i_z +yg) (P, ), =¥ o,

which yields the first desired convergence because

prvks ¢y Y
== =2 =" (p1k1 —kc+k =0.
( ko, 07 —I—YQ) ko, (i 5 026) =0

Then, multiplying (4.22) by iBLndﬂ“) in 12(0, £), applying integration by parts and using
the previous lemmas, we obtain the second desired convergence. O

Now, we are ready to prove the main results of this section.

Theorem 4.11 (Exponential decay). Suppose that condition (1.21) is true, that is,

K1p kp; ki _
[(g T) (b ?)qtgym [(T . )(ko k) +tym

£ X

=0. (4.54)

Then, the semigroup generated by A is exponentially stable.

Proof. As mentioned earlier, condition is equivalent to (4.40). As seen in the
Introduction, in [13] it was proved that & = 0 implies exponential stability. So, it re-
mains to show that the semigroup generated by A is exponentially stable provided that
x = 0. Nevertheless, as our argument is different, we give a complete proof. To this
purpose, let us verify the conditions of Theorem 2.8 We emphasize, however, that
the imaginary axis is always contained in p(A), no matter if is satisfied or not.

* iR C p(A)

Let us assume, by contradiction, that the inclusion is not valid. Then, there
exists A € iR such that A € o(A), with A ## 0 because 0 € p(A) (as seen in the proof of
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Theorem[4.2). By Remark [4.1] A is an eigenvalue of A. Therefore, there exists U # 0
in D(A) satisfying the resolvent equation AU = AU, which in terms of its components
can be written as

Ap—D =0 (4.55)
PIAD — k(@y + UV + ), — kol(wy — L) +1y0 =0 (4.56)
Mp—W =0 (4.57)

PAY — b + k(@x + P +Iw) + v, =0 (4.58)

Aw—W =0 (4.59)

PIAW — Ko (wy — L)y + Kl(@x + 1 + Iw) +v0, =0 (4.60)
A + Kipx + mY, =0 (4.61)

Ap +0p +9, =0 (4.62)

A + Kigy + m(Wy —10) =0 (4.63)

TAq + 569+ 0, = 0. (4.64)

Then, multiplying by U € D(A), it follows from the dissipative property (4.6) that p =
q = 0. Now, substituting into (4.62), (4.64) we obtain

9, =0,=0inT%0,L) = 9®=06=0inL?0,L).

Therefore, by (4.61), (4.63), we have ¥, = W, — L& = 0. Then, from (4.55), (4.57) and
(4.59) it follows that ¥, = w, — Lo = 0, which implies Y =¥ = 0. Finally, from (4.56),
(4.58), (4.60) and applying all identities obtained, we conclude that

01}\®—k((PX+lW)X:0, k((Px+lW) =0, p17\W+k1((Px+1W) =0

which implies, substituting the second equality in the others, that ® = W = 0 and thus
@ = w = 0. This shows that U = 0, which is a contradiction. Therefore, the inclusion
iR C p(A) is valid.

e limsup||(iBI — A) || < oo.
IBl—00
For this limit, it is sufficient to prove that there exist constants C, 3, > 0 such
that
IGRI—A) N[ <C, VB> Bo. (4.65)

In fact, by contradiction, let us assume that (4.65) is not true. Then, given any n € N, it
is not true that
IGB—A) |z <n, VYB>n.
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Consequently, there exists a sequence ., > n such that
1B —A) 2 > .
The last inequality implies that there exists a sequence (F,,).eny C H such that

1EBn — A Fallan > n[Fo .

o __(iBn—A)"Fn
Then, defining U,, = Thpe ATl We have
. Fr 1
(TSN VR — L E—

1(iBn —A)"Faflw

The last inequality shows that, if (4.65) does not hold, then there exist a sequence
(Bn)nen Of positive real numbers and a sequence (U, ).eny € D(A) such that

Brn — 00, Up|lz =T, 1(iBn — AUy ||lg == 0. (4.66)

Therefore, recalling assumption (4.54), we see that the hypothesis of Lemmas|[4.3}{4.10]
are satisfied. Thus, from the convergences in Lemmas [4.4] [4.6], [4.7] [4.8| and [4.10, we
conclude that U, "% 0 in H which contradicts (4.66). Then, the second condition of
Theorem holds. O

Theorem 4.12 (Lack of exponential decay). The converse of Theorem is true.
In other words: if

k k k
[ (g— ‘—p‘) (b _ ﬁ) +oym [ (T— ‘—‘“) (ko—k)+Tym| £0, (4.67)
k P1 k
13 X
then the semigroup generated by A is not exponentially stable.
Proof. Assume (4.67)), which is equivalent to
E#0 and x #0. (4.68)

In view of Theorem [2.18] it is enough to show that there exist a sequence (. )nen Of
positive real numbers such that p,, ™ co and a bounded sequence (F,,)ncy in H such
that

(Bl — A) "Fullg == oo. (4.69)
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Let us write ¢, = 7 and define

Pn = \/pl(kcﬁ + kol?), Fo = (0, p?1 sin(cnx), 0,0,0,0,0).
1

Then, (F,,) is a bounded sequence in H. In addition,
1(iBnI — A)"Fullfy = o1 [[ @[22 + pal[W™[[22 + pa[W™1F2 + bl |7
+ koM + ™ + ™[I + koW — 1o™||E (4.70)
Y (g n Yki n n
2 (I + 110712 + T (ellp™ 2 + wlla™ i)

where (@™, @M ) W 1y W) 5 pm) g g™y .= 1, is the unique solution
in D(A) of the resolvent equation

(ifn — AU, = F,. (4.71)
As before, by ansatz, we suppose that

e™(x) = Apsin(cnx), W™(x) =By cos(cax), WM (x) = Cy cos(cax),
9™ (x) = Dy sin(enx), p™(x) = Encos(cnx), (4.72)
(n)
q

0™ (x) = Dy sin(cnx), (x) = En cos(cnx).

Then, substituting into the resolvent equation (4.71), we conclude that
Uy = (@™, @M ™) W) 1y i) g Hm g gm)
given by with
oM — iﬁn(p(n)) yn — iﬁnﬂ)(n], wm — iBnW(n)

is the solution of (4.71) if and only if the coefficients A,, By, Cn, Dy, En, Dy, and E,
satisfy the linear system

(p1(iBn)* + ke + kol*) Ay + keuBy + Uk + ko) cnCn 4 LyDy = 1

kenAn + (p2(iBn)? + bek + k) By + k1Cy, +yen Dy =0

Lk + ko)cnAn + k1B + (p1(iBn)? + kock + k1*) Cyy + yen Dy = 0
—MiPnCnBn 4 iBnDn — KicnEn = 0 (4.73)

(CiPn + 8)En 4+ cyDy =0

—mlip A, —mifncnCr +ipnDn — kichEy, =0

(TiBn + 8)En + cnDy =0



90

which can be written as

T A T 3\

pg) ke k+ko)ecn 0 1y | |An 1
kcn pg) kl yen, O Bn 0
1k + ko)cn Kkl p¥ 0 veol [Cul = |0
0 —MiBncn 0 p 0 | | D 0
| —mlip, 0 —mifyc, 0 pY | [Dn] |0
Mo (4.74)
S Cn ~
n — giBn + 6 ny
Cn
F—n - . n
Tif, + 0 J
where
. ~ ) kic2
Py = pi1(iBn)? + kej, + kol pr) =iBn+ m
P = pa(iBn)’ + bef +k Pl = iy + 1o
n " nm n " B 4 8
P = p1(iBn)? + koc? + k%,
Now, using the the definition of (3,,, we have
pg) =0,
pl? = (b — @) i — &kolz +k = 0(n?),
P1 P1
py) = (ko — k)i + (k— ko) 1> = O(n?),
1 kic2
pW = i\/—(kcﬁ + kol?) + 1%n =0(n),
P gi\/‘j—l(kci + kol2) + 6
1 kic2
i) = i\/—(kcﬁ—i-kolz) n 1Ch = 0(n),
P Ti\/p]—](kcfl T kol?) + 6

which implies that

A, = det(M,)
=i~ IepplY) — Pk + ko) ekplpl — 21k + KoJym(iBa)cipl?

+ 5 [Bym(i)pPpl) — Kym(iB,)ch] +O(m?).
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Since A, # 0 (for all n € N sufficiently large) we conclude that system (@.74)
has a unique solution [A,, B,,, C,,, Dy, D" given by the Cramer’s Rule. Consequently,
system (@.73) has a unique solution [A., B,,, C, Dy, En, Dn, E4]T which implies that the

solution of the resolvent equation (4.7/1) is given by (4.72), for all n € N sufficiently
large. Therefore, we can estimate (4.70) by

{
1B — A Fals > o1 |02 = pnsimnﬁj

(
[sin(eax)? dx = p15BAIALS,  (4.75)
0

where A,, is given by

An = %)
with A,, defined as
1 Kcn lk+koen 0 1y
0 pg) kl yen O
Ay = det |0 Kkl pi 0 yen
0 —miPncn 0 0
0 0 —mifacn O pY ]

= — KL + v mA(iB,) ek + ymiBapPpled +ymi,p Pl el
+ppd By
= (ymipnc2 +pPpl) (ymipack + plZpl) + 0(n?).

Here, using the convergences

= (] (6] fe-0z] [ 0-22)])
(R (- 7l [ 0] o

Analogously we can deduce that
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for some constant L, € C. Then, using (4.68), we conclude that

™k 1
1 _Q_GET_C_,XE’%
which implies
- - Ly :
e e e
" ne 00, if L,=0.

Since B, — oo, it follows from (@.75) that
. — e n—oo
[(iBn — A) ]FT\H]IZ-]I > p]zBﬁ|An|2 — 00

which implies (4.69). H

4.3 Final Remarks

We have considered ¢ > 0,7 > 0. However, an analogous argument can be
applied in general and the same results are valid for the other cases (¢ > 0,7 =0 or
¢=0,T>00r¢=1=0), using also the same sequences (F,)neny and (fn)nen Used
to prove the lack of exponential stability in Theorem [4.12] More precisely, under the
boundary conditions (1.7):

 For the case ¢ > 0,t = 0, the mathematical system

P1@w — k(@x + ¥ + w) — Uko(wy — lp) —y6] =0
PPy — [by — VO + k(ox +P +1w) =0

P1wi — [Ko(wyx — l@) —v0], + kl(@x + P +1w) =0
V¢ + Kipx + My =0

Cpt +Oop+9=0

0 — K10 + MWy — L) =0

is exponentially stable if and only if

k1P kp, B
|:(g— T) <b — ?) +gYm:| (ko —k) =0.



 For the case ¢ = 0,t > 0, the mathematical system

P1@w — k(@x + 1 + w), — lko(wy — l@) —v0] =0
P2W — [y — ¥ + k(@ox+1p +1w) =0

p1wi — [Ko(wyx — l@) —vO], + kl(@x + P +1w) =0
Y — KD + M =0

B: + kigx + m(wy — L) =0

Tt +0q+ 0, =0

is exponentially stable if and only if

(b—@) [(T—m) (ko—k)+’rym] =0.
P1 k

* For the case ¢ = 0,t = 0, the mathematical system

P1@w — k(@x + 1 + w), — lko(wy — l@) —v0] =0
P2y — by — ¥Olk F k(o + P +1w) =0

p1wi — [ko(wx — l@) — ¥Ol + kl(@x + b +1Iw) =0
D — K19 + My = 0

0 — K10 + MWy — L) =0

is exponentially stable if and only if

(b—@) (ko —k) =0.

P1

93

(4.76)

(4.77)

In particular, if condition (1.3) holds, then equality (4.77) reduces to (1.5). As
discussed in the Introduction, this result was obtained in [23], where the authors

studied the physical system (4.76)).
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5 POSSIBLE FUTURE WORKS

Based on the existing literature until September 2019 and on the results proved
in this thesis, we present in this section some possible future works. We use the same
notations of the previous chapters.

5.1 Purely Dirichlet boundary conditions

From [12], it is known that system

P1Pw — K(@x + P + W) — lko(wyx — L) =0
P2 — by + k(@ + P 4+ Iw) +vd, =0
P1wi — Ko(Wy — L@)x + k(@ + 1 +1Iw) =0
D — k10 + M =0

with boundary conditions
e==w=9=0 on {0,£ x[0,00)

is exponentially stable if

k
E:B and k= k.

P2
Conjecture 5.1. System

P10 — K(@x + ¥ + W) — kol (wyx — L) +1y0 =0
P2 — by + k(@x + 1 +1Iw) =0

P1wir — Ko(wy — L@)x + kl(@x + P + w) +v6, =0
Ot + Ki1gx + m(wy — L) =0

Tt +86q+6, =0

with boundary conditions
e==w=0=0 on {0,£ x[0,00)

is exponentially stable if

k k
P1_° and L (ko — k) +Tym =0.
P2 b k



From [23], it is known that system

P1@w — K(@x + 1 + Iw) — 122 (w, — 1) + 1y8 =0
P2 — b + k(x + 1 + W) + vy =0

Prwi — 2wy — L)y + KLy + U + Iw) +v6, =0
U — Kidw + My =0

0: — K10x + MWy — L) =0

with boundary conditions
e=9p=w=39=0 on {0, x[0,00)
is exponentially stable if

P1
P2

SNy

Conjecture 5.2. System

P10 — k(@ + P + ), — lko(wy — L) +1y0 =0
P2 — b + k(@ + P + w) +vd, =0

P1Wit — Ko(Wy — L)y + KL(@y + U + Iw) + 70, =0
Ve + kipx + My =0

cpt +Op+9, =0

0: + kigx + m(wy — L) =0

Tt +0q+0x =0

with boundary conditions
e=b=w=94=0=0 on {0,¢} x [0,00)

is exponentially stable if

(-2 (-2) o] [(-22) s
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5.2 Heat flux given by Gurtin-Pipkin law

From [8], it is known that system

P1Pt _k((Px +1p + lw)x _IkO(Wx - l(P) =0
pﬂbtt - blbxx + k((px + 1\b + 1W) + Y%x =0
P1 Wit _kO(Wx - l(p)x +k1(<Px ‘l’lb + lW) =0

{

Y —ky J g1(s)0(t —s) ds + mp,y =0
0

with boundary conditions

@=Uvy=w,=9=0 on {O)Q}X [O)OO)

is exponentially stable if and only if

1 k1p1) ( kpz) ym
— b— + =0 and k =k,.
(91(0)k1 k P1 g1(0)k; 0

Conjecture 5.3. System

P1P — k((px + lb + lw)x - lkO(VVx - I(P) + 11/6 =0
pZd’tt - blpxx + k((px + Il) + IW) =0
P1Wy — kO(WX - l(p)x + kl((px + l-l) + lW) +Yex =0

0, —k1J 92(5)0(t — 5) ds + m(wyi — L) = 0
0

with boundary conditions
e=UP,=w,=0=0 on {0,£ x [0,00)
is exponentially stable if and only if

Pk ( 1 k1p1>
— =— and — ko — k) +
pp b 92(0)ky k ko =) 92(0)k4

96
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Conjecture 5.4. System

P1@w — k(@x + P + )y — lko(wy — L) +1y0 =0
pZLI)tt - bll)xx + k((px + I-I) + ]'W) + ‘Yﬁx =0
P1Wi — Ko(wy — L)y + kl(@x + O + Iw) +v6, =0

14
%t—lqj G1(5)Ds(t — ) ds + My = 0

0
0, — ki j 92(5)8sc(t — 5) ds + MWy — L) =0

0
with boundary conditions

e=UP,=w,=93=0=0 on {0,¢} x[0,00)

is exponentially stable if and only if
1 k1p1) ( kpz) ym } [( 1 km) ym
- b—— ) + — ko — k) + = 0.
{(91(0)% k P1 g1(0)k; 92(0)k; k (ko =) 92(0)k4

5.3 Heat flux given by Coleman-Gurtin law

Also from [8], it is known that system

P1@Ptt — k((px +1¥ + lw)x - 1kO(VVx - l(P) =0
pZII)tt - blbxx + k((px + 1Jr’ + 1W) +Y‘9x =0

P1Wit — kO(Wx - l(P)x + kl((Px + 11) + lW) =0
{

Yt — (1 — )k Oy — Xk J g1(s)Vu(t—s) ds + miy =0
0

with boundary conditions
@=Uvy=w,=9=0 on {O)Q}X [O)OO)

is exponentially stable if and only if

P

k
= — and k=ko.
p2 b



Conjecture 5.5. System

P1@w — K(@x + P + W), — lko(wy — L) +1y0 =0
pZd’tt - bl-l)xx + k((px +ll) + ]'W) — O
P1Wi — Ko(Wy — L@)x + kl(@x + 1 + Iw) +v0, =0

o0

By — (1 — x)ki Oy — otky J 92(8)0xx(t —s) ds + m(wyy — L) =0
0

with boundary conditions
e=9P,=w,=0=0 on {0,¢} x [0,00)

is exponentially stable if and only if

[l

k
pZZB and k = k.

Conjecture 5.6. System

P1Pt _k((Px +¢ + lw)x - 1k0(wx - l(p) + l'Ye =0
pzlbtt - blbxx + k((px + ll) + 1W) +Y‘9x =0

P1Wg — kO(Wx - hp)x + kl((px + 11) + 1W) + Yex =0
{

Yt — (1 — a)k1 Oy — Xk J g1(8)V(t—s) ds +mipy =0
0

et - (1 - O()k] exx - O(k] J' gl(s)exx(t - S) ds + m(th - 1(pt) — O
0

with boundary conditions
e=UPy=w,=9=0=0 on {0,{} x[0,00)

is exponentially stable if and only if

Pk B
(E—E) (k —ko) =0.

98
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6 CONCLUSION

In Chapter 3| of this thesis, which was recently published in [22], we dealt with
the stability properties of a thermoelastic Bresse system where the dissipation is en-
tirely contributed by the temperature and acts only on the axial force. The temperature
evolution was given either by the Fourier's law or the Cattaneo’s law of heat conduc-
tion. After proving the well-posedness of the model, we gave a necessary and sufficient
condition for the exponential stability of the associated Cy-semigroup. In addition, we
proved some polynomial decay estimates for the solutions, with a decay rate depending
on some relations between the structural parameters of the problem. The only ques-
tion left open is whether the obtained polynomial decay rates are optimal. The novelty
with respect to the existing literature is that the coupling between the mechanical and
the thermal part of the system takes place only through the axial force.

In Chapter [4] which is currently submitted for publication, the results of Chapter
[3|concerning to the exponential stability were extended to the more realistic case where
the dissipation acts not only in the axial force, but also in the bending moment. In this
case, since the system have already been studied in the literature, the novelty of our
contribution is the condition which completely characterizes the exponential stability.

All results in this thesis were obtained making use of the well-known Gearhart-
Priss and Borichev-Tomilov theorems. Although this mathematical methodology is
rather standard, the complexity of the systems required very delicate and nontrivial
computations. In addition, we emphasize that, in each chapter, the necessary and suf-
ficient condition for the exponential stability obtained is different from the ones already
present in the literature, reflecting the fact that each coupling mechanism considered
has a nontrivial influence on the dynamics of the model.

In view of this, we believe that we have provided a quite complete picture for
the stability of the said models, as illustrated in Appendix A, allowing us to enlarge
the understanding on how the structural parameters affect the asymptotic behaviour of
Bresse systems.
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APPENDIX A

Figure 4: How our results extends the known panorama on exponential stability of Bresse
Systems. Continuous lines are known results and dashed lines are our contributions.

Two Fourier dampings in the physical system ([23]).
Necessary and sufficient condition for exponential stability:

kpy _
b—2 -9 (6.1)

|

The result remains valid if one damping is removed,
and generalizes to the mathematical system:

l l

One Fourier damping in bending moment " One i:bhirlieiridérﬁblir{gj in axial force.
([12]). Necessary and sufficient condition: Necessary and sufficient condition:
b—X¥2—0 and ky—k=0

kpy _ —
o b—p—ffo and ko—k=0

- [

The result generalizes to Catta- | | The result generalizes to Cattaneo’s
neo’s law, in which case the first
equality of the condition is modified:

l e b

[ One Cattaneo damping in bending moment One Cattaneo damping in axial force.
([8]). Necessary and sufficient condition: Necessary and sufficient condition:

| _kep _ 1
(s=22) (o= ) +om=o | e ?
and ‘ Ko, and ;
ko—k=0 | (T—T)(ko—k)Jer:O |
The second equality of the condition l'f'lzﬁé first é&bé]ily of :[ﬁéicioinidiitiicgﬁicie{nﬂ;
can be dropped provided that a ' be dropped provided that a damping |

damping is introduced in axial force: is introduced in bending moment:

Two Cattaneo thermal damp- C Two Cattaneo thermal 7d7aini1;5—7 777777
ings ([13]). Sufficient condition: ings. Sufficient condition:

6-) (o= ) worm=

N

The system with two Cattaneo thermal dampings is exponentially stable provided that

[(Q_ 'ﬂ%) (b _ %) T gym} [(T— k%) (ko — k) + Tym] — 0. The converse is true:

' Two Cattaneo thermal dampings. Necessary and sufficient condition:
(=) (o) rorm] (v ) (oK) +Tym] =0 (6.2)
| Forky = %2 and ¢ = © = 0, condition (6.2) reduces to (6.1)
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