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Aprovada por:

Presidente, Prof. Gregorio Malajovich Muñoz
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Resumo

Neste trabalho é apresentada uma nova implementação da canonical polyadic decomposi-

tion (CPD). Ela possui uma menor complexidade computacional e menor uso de memória

do que as implementações estado da arte dispońıveis.

Começamos com alguns exemplos de aplicações da CPD para problemas do mundo

real. Um breve resumo das principais contribuições deste trabalho é o seguinte. No

caṕıtulo 1, revisamos a álgebra e geometria clássicas de tensores, com foco na CPD. O

caṕıtulo 2 é focado na compressão tensorial, que é considerada (neste trabalho) uma das

partes mais importantes do algoritmo CPD. No caṕıtulo 3, falamos sobre o método de

Gauss-Newton, que é um método de mı́nimos quadrados não-lineares usado para mini-

mizar funções não-lineares. O caṕıtulo 4 é o mais longo deste trabalho. Neste caṕıtulo,

apresentamos o personagem principal desta tese: Tensor Fox. Basicamente, é um pa-

cote tensorial que inclui um CPD solver. Após a introdução do Tensor Fox, realizaremos

muitas experiências computacionais comparando esse solver com vários outros. No fi-

nal deste caṕıtulo, apresentamos a decomposição Tensor Train e mostramos como usá-la

para calcular CPDs de ordem superior. Também discutimos alguns detalhes importantes,

como regularização, pré-condicionamento, condicionamento, paralelismo, etc. No caṕıtulo

5, consideramos a interseção entre decomposições tensoriais e machine learning. É intro-

duzido um novo modelo, que funciona como uma versão tensorial de redes neurais. Fi-

nalmente, no caṕıtulo 6, fazemos as conclusões finais e introduzimos nossas expectativas

de trabalho futuro.
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Abstract

A new algorithm of the canonical polyadic decomposition (CPD) presented here. It fea-

tures lower computational complexity and memory usage than the available state of the

art implementations.

We begin with some examples of CPD applications to real world problems. A short

summary of the main contributions in this work follows. In chapter 1 we review classical

tensor algebra and geometry, with focus on the CPD. Chapter 2 focuses on tensor com-

pression, which is considered (in this work) to be one of the most important parts of the

CPD algorithm. In chapter 3 we talk about the Gauss-Newton method, which is a nonlin-

ear least squares method used to minimize nonlinear functions. Chapter 4 is the longest

one of this thesis. In this chapter we introduce the main character of this thesis: Tensor

Fox. Basically it is a tensor package which includes a CPD solver. After introducing

Tensor Fox we will conduct lots of computational experiments comparing this solver with

several others. At the end of this chapter we introduce the Tensor Train decomposition

and show how to use it to compute higher order CPDs. We also discuss some important

details such as regularization, preconditioning, conditioning, parallelism, etc. In chapter

5 we consider the intersection between tensor decompositions and machine learning. A

novel model is introduced, which works as a tensor version of neural networks. Finally,

in chapter 6 we reach the final conclusions and introduce our expectations for future

developments.
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André de Almeida and Amit Bhaya for being part of my doctoral defense committee.

v



Contents

List of Figures ix

List of Tables xii

Introduction 1

0.1 First example: Gaussian mixtures . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Second example: Topic models . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.3 Third example: Approximation of functions . . . . . . . . . . . . . . . . . 7

0.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Basic notions 11

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Multilinear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Canonical polyadic decomposition . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Tensor geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Tensor compression 29

2.1 Multilinear multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Unfoldings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Multilinear rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Compressing with the multilinear singular value decomposition . . . . . . . 36

2.2.1 Tucker decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Multilinear singular value decomposition . . . . . . . . . . . . . . . 38

3 Gauss-Newton algorithm 46

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Alternating least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Nonlinear least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Gauss-Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Deriving the Gauss-Newton method from the Newton’s method . . 56

vi



3.5.2 Damped Gauss-Newton . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 Dealing with the Hessian . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Computational experiments 76

4.1 Tensor Fox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.3 dGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3.1 Main parameters . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3.2 Computing the residual . . . . . . . . . . . . . . . . . . . 83

4.1.3.3 Computing the gradient . . . . . . . . . . . . . . . . . . . 83

4.1.3.4 Conjugate gradient . . . . . . . . . . . . . . . . . . . . . . 84

4.1.3.5 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.3.6 Stopping conditions . . . . . . . . . . . . . . . . . . . . . 89

4.1.3.7 Overall cost of dGN . . . . . . . . . . . . . . . . . . . . . 91

4.1.3.8 Comparison to other algorithms . . . . . . . . . . . . . . . 92

4.1.4 Uncompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Warming up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Benchmark tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Swimmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Handwritten digits . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Border rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.4 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.5 Collinear factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.6 Double bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Fine tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Tensor Fox vs. other implementations . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2 State of art implementations . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2.1 TFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2.2 ALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2.3 NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2.4 MINF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2.5 OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2.6 Tly-ALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2.7 fLMa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.3 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Tensor train and the CPD . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1 Tensor train decomposition . . . . . . . . . . . . . . . . . . . . . . 117

vii



4.6.2 CPD tensor train . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Tensor Fox is not monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Regularization and preconditioning . . . . . . . . . . . . . . . . . . . . . . 128

4.8.1 Diagonal regularization . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8.2 Computational experiments . . . . . . . . . . . . . . . . . . . . . . 133

4.9 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.9.1 Definitions and results . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.9.2 A special family of tensors . . . . . . . . . . . . . . . . . . . . . . . 138

4.9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.11 What are the main features of Tensor Fox? . . . . . . . . . . . . . . . . . . 144

5 Tensor learning 153

5.1 Classification with the MLSVD . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Tensor learning vs. neural network . . . . . . . . . . . . . . . . . . . . . . 155

5.2.1 Tensor learning as a special neural network . . . . . . . . . . . . . . 157

5.2.2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.4 Stochastic gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.5 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Conclusions 164

Appendix A Numerical linear algebra 166

A.1 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.2 Conjugate gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendix B Tensor algebra 172

B.1 Tensor product properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.2 Rank properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.3 Special products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.4 Symmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.5 Antisymmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Bibliography 184

viii



List of Figures

1 Shapes of tensors for the first five orders. . . . . . . . . . . . . . . . . . . . . . . 2

2 Gaussian mixture in the plane with 2 clusters. The first cluster has mean u(1) =

[−0.34, 0.93]T and the second has mean u(2) = [0.93, 0.34]T . The variance is σ2 = 0.0059. 3

3 Example of a corpus structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Trilinear map in coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Fibers of a third order tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Slices of a third order tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Geometry of border rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Convergence issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Energy of the slices of a core third order tensor S obtained after a MLSVD. . . . . . . 40

2.2 Representation of the null slices slices of core third order tensor S obtained after a MLSVD. 41

3.1 Sparse structure of ∂f

∂w
(`′)
r

. The gray part correspond to the non zero entries and the

rest are full of zeros, and each gray column is a vector of size

L∏
`=`′+1

I`. . . . . . . . . 62

3.2 Consider the top block of the previous figure, relative to ∂f

∂w
(`′)
r′

. While run through the

rows of this block, at the same time there will be

`′∏
`=1

I` blocks relative to ∂f

∂w
(`′+1)

r′
. . . . 63

3.3 Sparse structure of Jf when T ∈ R4×3×2 and R = 2. . . . . . . . . . . . . . . . . . 64

4.1 Flow chart of the main parts of Tensor Fox. . . . . . . . . . . . . . . . . . . . . . 77

4.2 Truncated tensor S̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 The blue line represents the evolution of the relative error in a CPD computation. The

program can stop because the average 2 is bigger than average 1. . . . . . . . . . . . 90

4.4 Note that the program could have stopped much earlier. Even if the errors are strictly

decreasing, the additional accuracy is irrelevant compared to the final error. . . . . . . 91

4.5 Energy distribution of truncation S̃. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Plot of the evolution of several measures made during the computation of a CPD. . . . 98

4.7 Swimmer tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Handwritten digits tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 The location of the best models may help to decide which one is better. . . . . . . . . 106

ix



4.10 Benchmarks of all tensors and all implementations. . . . . . . . . . . . . . . . . . 111

4.11 The box plot is a standardized way of displaying the distribution of data based on the

five number summary: minimum, first quartile, median, third quartile, and maximum. . 112

4.12 Box plots of the swimmer tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.13 Box plots of the handwritten digits tensor. . . . . . . . . . . . . . . . . . . . . . 113

4.14 Box plots of the border rank tensor. . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.15 Box plots of the 5× 5 matrix multiplication tensor. . . . . . . . . . . . . . . . . . 114

4.16 Box plots of the swamp tensor with c = 0.1. . . . . . . . . . . . . . . . . . . . . . 114

4.17 Box plots of the swamp tensor with c = 0.5. . . . . . . . . . . . . . . . . . . . . . 115

4.18 Box plots of the swamp tensor with c = 0.9. . . . . . . . . . . . . . . . . . . . . . 115

4.19 Box plots of the double bottleneck tensor with c = 0.1. . . . . . . . . . . . . . . . . 115

4.20 Box plots of the double bottleneck tensor with c = 0.5. . . . . . . . . . . . . . . . . 116

4.21 Box plots of the double bottleneck tensor with c = 0.9. . . . . . . . . . . . . . . . . 116

4.22 Tensor-train network representation. . . . . . . . . . . . . . . . . . . . . . . . . 118

4.23 Rank-5 CPD errors and timings of tensors with shape n×n×n×n, for n = 10, 20, . . . , 70, 80.125

4.24 Rank-5 CPD errors and timings of tensors with shape 10× 10× . . .× 10 (L times), for

L = 3, 4, . . . , 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.25 After 2 iterations, the third one causes an increase in the error. However this allows

the program to search in different regions (the circled region), which can lead the next

iteration to be much better. In the worse case the next iteration is much likely to go

back to the already located minimum. . . . . . . . . . . . . . . . . . . . . . . . . 128

4.26 The black curve is the represents the error, the green curve represents the gain ratio

and the red dots are the points when the gain ratio became negative. Note that there

is always a peak in the error when this happens. This is to be expected, but more

remarkable is the fact that the error always decreases substantially after these points. . 129

4.27 Error curve F (wt). The error is minimal for t ≈ 0.4 but we can see that the actual

error (for t = 1) is bigger. At iteration 93 the gain ratio is g = 0.974 and the number it

the program performed 19 CG iterations. At iteration 94 the gain ratio is g = −0.518

and the program performed 61 CG iterations. In both iterations the predicted error is

O(10−8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.28 Condition number for each iteration of several approaches to compute a CPD for the

swimmer tensor. Note that it is showed the condition number of the approximated

Hessian (always regularized) with and without regularization. The condition number of

Tensor Fox is the orange one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.29 Condition number for each iteration of several approaches to compute a CPD for the

border rank tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.30 Condition number for each iteration of several approaches to compute a CPD for the

swamp tensor with c = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

x



4.31 Condition number for each iteration of several approaches to compute a CPD for the

double bottleneck tensor with c = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . 136

4.32 Condition number for each iteration of several approaches to compute a CPD for an

ill-conditioned tensor with r = 25, c = 0.75, s = 3. . . . . . . . . . . . . . . . . . . 137

4.33 After making a bad step, the program draws back in a way that the new point is close

to norm-balanced, then it applies the dogleg method. . . . . . . . . . . . . . . . . . 141

4.34 Percentage of fails as we increase the maximum number of CG iterations. . . . . . . . 142

4.35 Speed-up with the number of threads when computing a rank-15 CPD of a 2000×2000×

2000 random tensor with rank 15 without compression. . . . . . . . . . . . . . . . . 143

4.36 Speed-up with the number of threads when computing a rank-50 CPD of the swimmer

tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.37 Timings to compute parts of the CPDs of known tensors. Note that summing the bars

of the MLSVD and dGN timings is not the correct comparison in log scale. That is why

we also showed the linear scale, so the reader have a notion of the real difference in time

when there is no compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.38 Pie charts with the stopping condition frequencies. . . . . . . . . . . . . . . . . . . 145

4.39 Disabling stopping condition for the swamp tensor with c = 0.1. . . . . . . . . . . . 146

4.40 Box plots with errors and timings for the swimmer tensor. . . . . . . . . . . . . . . 147

4.41 Box plots with errors and timings for the handwritten digits tensor. . . . . . . . . . . 147

4.42 Box plots with errors and timings for the border rank tensor. . . . . . . . . . . . . . 148

4.43 Box plots with errors and timings for the matrix multiplication tensor. . . . . . . . . 148

4.44 Box plots with errors and timings for the swamp c = 0.1 tensor. . . . . . . . . . . . 149

4.45 Box plots with errors and timings for the swamp c = 0.5 tensor. . . . . . . . . . . . 149

4.46 Box plots with errors and timings for the swamp c = 0.9 tensor. . . . . . . . . . . . 150

4.47 Box plots with errors and timings for the bottleneck c = 0.1 tensor. . . . . . . . . . . 150

4.48 Box plots with errors and timings for the bottleneck c = 0.5 tensor. . . . . . . . . . . 151

4.49 Box plots with errors and timings for the bottleneck c = 0.9 tensor. . . . . . . . . . . 151

5.1 Transformation of a frontal slice into a vector and attaching dimension responsible to

the class of the vector (the image represents the class e2, which corresponds to the digit

2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Tensor learning as a special neural network. . . . . . . . . . . . . . . . . . . . . . 158

xi



List of Tables

1 Cost per iteration of several CPD solvers. . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Memory and computational costs - I. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Memory and computational costs - II. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Memory and computational costs - III. . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Memory costs - IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Computational costs - IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Error of all possible truncations. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Hyperparameter grid search - best models. . . . . . . . . . . . . . . . . . . . . . 105

4.7 Swimmer tensor - final best performances. . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Handwritten tensor - final best performances. . . . . . . . . . . . . . . . . . . . . 105

4.9 Border rank tensor - final best performances. . . . . . . . . . . . . . . . . . . . . 107

4.10 Matrix multiplication tensor - final best performances. . . . . . . . . . . . . . . . . 107

4.11 Swamp 0.1 tensor - final best performances. . . . . . . . . . . . . . . . . . . . . . 107

4.12 Swamp 0.5 tensor - final best performances. . . . . . . . . . . . . . . . . . . . . . 107

4.13 Swamp 0.9 tensor - final best performances. . . . . . . . . . . . . . . . . . . . . . 107

4.14 Bottleneck 0.1 tensor - final best performances. . . . . . . . . . . . . . . . . . . . 107

4.15 Bottleneck 0.5 tensor - final best performances. . . . . . . . . . . . . . . . . . . . 107

4.16 Bottleneck 0.9 tensor - final best performances. . . . . . . . . . . . . . . . . . . . 107

4.17 Shapes of the factor matrices of each implementation for rank-R CPD computation of

a tensor with shape m× n× p. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.18 Costs of TT-SVD vs. Compression . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.19 Fraction of ill-conditioned CPDs. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.20 Fraction of ill-conditioned CPDs, including Tensor Fox. . . . . . . . . . . . . . . . 141

xii



Introduction

A vector can be thought as data arranged in an unidimensional fashion, that is, an ordered

sequence of numbers, strings, or any other kind of information. In the same way a matrix

can be thought as bidimensional data, which also is a sequence of vectors with the same

length. Tensors are a natural generalization of this process. One can dispose several

matrices of same shape in an ordered sequence, forming a 3D-block of data, see figure 1.

This is what is called a third order tensor. Analogously, matrices are second order tensors

and vectors are first order tensors. It is useful to define scalars as zero order tensors.

Recursively, one can define a L-th order tensor as an ordered sequence of (L−1)-th order

tensors of same shape.

Tensors can be defined rigorously as mathematical objects but, for the moment, it will

be convenient to think of tensors just as multidimensional arrays of data. Given a field

K and positive integers I1, . . . , IL, the set of tensors with shape I1× . . .× IL is defined as

KI1×...×IL = {(ti1...iL)1≤i1≤I1,...,1≤iL≤IL| ti1...iL ∈ K}.

This is an informal definition of a tensor space since it depends on coordinates, although

it is a useful way to visualize and think of tensors. Later we will give a new definition

more aligned with multilinear algebra. In this work we always use an upper index to

indicate a sequence of vectors and a lower index to indicate their coordinates.

Given any vectors v(1) ∈ KI1 , . . . ,v(1) ∈ KIL , define the tensor v(1) ⊗ . . . ⊗ v(L) ∈
KI1 ⊗ . . .⊗KIL by

(v(1) ⊗ . . .⊗ v(L))i1...iL = v
(1)
i1
· . . . · v(L)

iL
.

Any tensor of this form is called a rank one tensor. One can also say the tensor has rank

one. Notice that in the case of second order tensors (matrices), this definition agrees with

the definition of rank one matrices. It is not hard to see that any tensor can be written

as a sum of rank one tensors. It is of interest to find the minimum number of rank one

terms necessary to construct such a sum, and this minimum number is called the rank of

the tensor. The decomposition of a tensor as a sum of rank one terms is called a canonical

polyadic decomposition (CPD). For decades, tensor decompositions have been applied to

general multidimensional data with success. Today they are excel in several applications,
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Figure 1: Shapes of tensors for the first five orders.

including blind source separation, dimensionality reduction, pattern/image recognition,

machine learning and data mining [2, 3, 5, 7–9]. One of the reasons for the successfulness

of tensor decompositions comes from its uniqueness, which occurs for all higher order

tensors. This is a desired property which is not found by matrices.

We start giving some motivational examples which highlight the applicability of tensor

decompositions, the main topic of this work. In particular, some attention will be given

to machine learning applications, a theme to be explored in more details only in the last

chapter, when we will have developed the necessary machinery for such.

0.1 First example: Gaussian mixtures

Consider a mixture of K Gaussian distributions with identical covariance matrices. We

have lots of data with unknown averages and unknown covariance matrices. The problem

at hand is to design an algorithm to learn these parameters from the data given. We use
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P to denote probability and E to denote expectation (which we may also call the mean

or average).

Let x(1), . . . ,x(N) ∈ Rd be a set of collected data sample. Let h be a discrete random

variable with values in {1, 2, . . . , K} such that P[h = i] is the probability that a sample

x is a member of the i-th cluster. We denote w(i) = P[h = i] and w = [w(1), . . . , w(K)]T ,

the vector of probabilities. Let u(i) ∈ Rd be the mean of the i-th distribution and assume

that all distributions have the same covariance matrix σ2Id for σ > 0. See figure 2 for an

illustration of a Gaussian mixture in the case where d = 2 and K = 2.

Figure 2: Gaussian mixture in the plane with 2 clusters. The first cluster has mean u(1) = [−0.34, 0.93]T

and the second has mean u(2) = [0.93, 0.34]T . The variance is σ2 = 0.0059.

Given a sample point x, note that we can write

x = uh + z,

where z is a random vector with mean 0 and covariance σ2Id. We summarise the main

results in the next theorem whose proof can be found in [9].

Theorem 0.1.1 (Hsu and Kakade, 2013). Assume d ≥ K. The variance σ2 is the smallest

eigenvalue of the covariance matrix E[x⊗ x]− E[x]⊗ E[x]. Furthermore, if

M1 = E[x],

M2 = E[x⊗ x]− σ2Id,

M3 = E[x⊗ x⊗ x]− σ2

d∑
i=1

(E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]) ,
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then

M1 =
K∑
i=1

w(i) u(i),

M2 =
K∑
i=1

w(i) u(i) ⊗ u(i),

M3 =
K∑
i=1

w(i) u(i) ⊗ u(i) ⊗ u(i).

Theorem 0.1.1 allows us to use the method of moments, which is a classical parameter

estimation technique from statistics. This method consists in computing certain statistics

of the data (often empirical moments) and use it to find model parameters that give rise

to (nearly) the same corresponding population quantities. Now suppose that N is large

enough so we have a reasonable number of sample points to make useful statistics. First

we compute the empirical mean

µ̂ :=
1

N

N∑
j=1

x(j) ≈ E[x]. (1)

Now use this result to compute the empirical covariance matrix

Ŝ :=
1

N

N∑
j=1

(x(j) ⊗ x(j) − µ̂⊗ µ̂) ≈ E[x⊗ x]− E[x]⊗ E[x]. (2)

The smallest eigenvalue of Ŝ is the empirical variance σ̂2 ≈ σ2. Now we compute the

empirical third moment (empirical skewness)

Ŝ :=
1

N

N∑
j=1

x(j) ⊗ x(j) ⊗ x(j) ≈ E[x⊗ x⊗ x] (3)

and use it to get the empirical value of M3,

M̂3 := Ŝ − σ̂2

d∑
i=1

(µ̂⊗ ei ⊗ ei + ei ⊗ µ̂⊗ ei + ei ⊗ ei ⊗ µ̂) ≈M3. (4)

By theorem 0.1.1, M3 =
K∑
i=1

w(i) u(i)⊗u(i)⊗u(i), which is a symmetric tensor containing

all parameter information we want to find. The idea is, after computing a symmetric CPD

for M̂3, normalize the factors so each vector has unit norm. By doing this we have a tensor

of the form
K∑
i=1

ŵ(i) û(i) ⊗ û(i) ⊗ û(i)
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as a candidate to solution. Note that it is easy to make all ŵ(i) positive. If some of them

is negative, just multiply it by −1 and multiply one of the associated vectors also by −1.

The final tensor is unchanged but all ŵ(i) now are positive. For more on this subject we

recommend reading [9].

0.2 Second example: Topic models

Consider a set of documents (texts) together with a set ofK possible topics, this structured

set of documents is called a corpus. Each topic can be represented by a number 1 ≤ j ≤ K.

Additionally, consider that this corpus has d distinct words in its vocabulary and that

each document has L ≥ 3 words. The words are labelled as numbers between 1 and d.

Figure 3: Example of a corpus structure.

The bag-of-words model [87, 88] is a system of representation used in natural language

processing (NLP). In this model, any text is represented as the multiset of its words,

disregarding grammar and word ordering but keeping multiplicity. This multiset is the

“bag” containing the words. We consider the bag-of-words model in the problem of

document classification, that is, given any text we want a method to classify it into some

topic in a prescribed list of topics.

Now suppose that the topics of the documents follows a (discrete) probability distri-

bution such that P[h = j] = w(j) is the probability that a random document belongs to

topic j (the random variable h is a latent variable, responsible for the topics assignment).

Let w = [w(1), . . . , w(K)]T be the vector of probabilities of the topics. Given the topic h

and a random document, the words are assumed to follow a probability distribution such

that P[x = i|h = j] = u
(i)
j . In other words, given the topic h = j, u

(i)
j is the probability

that a random word x drawn in a document is the word i. Denote uj = [u
(1)
j , . . . , u

(L)
j ]T

for the vector of probabilities of the words in a document, given the topic h = j. Addi-

5



tionally, suppose that randomly drawing sample points from this distribution generates

i.i.d. (independent and identically distributed) random variables.

As first observation, we have that
K∑
j=1

wj = 1 and
L∑
i=1

u
(i)
j = 1 for any topic j. We also

will convert the words into vectors, that is, each word i is represented by the canonical

basis vector ei ∈ Rd. One advantage of this encoding is that the moments of these

random vectors correspond to probabilities over words. Consider a document with words

x(1),x(2), . . . ,x(L), then we have that

E[x(i′) ⊗ x(j′)] =
d∑

i,j=1

P[x(i′) = e(i), x(j′) = e(j)] e(i) ⊗ e(j) =

=
d∑

i,j=1

P[i′-th word = i, j′-th word = j] e(i) ⊗ e(j) =

=


P[i′-th word = 1, j′-th word = 1] . . . P[i′-th word = 1, j′-th word = d]

...
...

P[i′-th word = d, j′-th word = 1] . . . P[i′-th word = d, j′-th word = d]

 .
More generally, the entry (i1, i2, . . . , iL) of the tensor E[x(1) ⊗ x(2) ⊗ . . .⊗ x(L)] is

P[first word = i1, second word = i2, . . . , L-th word = iL].

We also remark that the conditional expectation of x(i′) given h is simply u(j). More

precisely,

E[x(i′)|h = j] =
d∑
i=1

P[i′-th word = i|h = j]e(i) =
d∑
i=1

u
(j)
i e(i) = u(j).

Since the words are conditionally independent given the topic, we can use this property

with conditional moments. More precisely, we have that

E[x(i′) ⊗ x(j′)|h = j] = E[x(i′)|h = j]⊗ E[x(j′)|h = j] = u(j) ⊗ u(j).

With similar calculations we obtain the following theorem [9, 10].

Theorem 0.2.1 (Anandkumar et al., 2012). Let 1 ≤ i′, j′, k′ ≤ L. If

M1 = E[x(i′)]

M2 = E[x(i′) ⊗ x(j′)]

M3 = E[x(i′) ⊗ x(j′) ⊗ x(k′)],
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then

M1 =
K∑
i=1

w(i) u(i)

M2 =
K∑
i=1

w(i) u(i) ⊗ u(i)

M3 =
K∑
i=1

w(i) u(i) ⊗ u(i) ⊗ u(i).

We may estimate these moments using the actual data at hand. By using any method

to compute a CPD for M3 we get estimates for the latent variables w(i) and u(i). In

many aspects this model resembles the Gaussian mixture model, both use the method of

moments to construct a third order tensor which we try to approximate with the CPD.

0.3 Third example: Approximation of functions

Consider a multivariate function ϕ : RL → R which are difficult to handle analytically, but

evaluating ϕ is feasible. Hence, it is possible to take numerical data to study this function.

One may try to consider evaluating ϕ(x(1), . . . , x(L)) in a closed grid of points such that

each direction is partitioned in I` parts. This mean we have the points x
(`)
1 , . . . , x

(`)
I`

to

consider in the direction of the `-th coordinate. Overall we will compute ϕ(x
(1)
i1
, . . . , x

(L)
iL

)

for all i1 = 1 . . . I1, . . . , iL = 1 . . . IL.

The results of the computation can be stored in a tensor T ∈ RI1×...×IL such that

ti1...iL = ϕ(x
(1)
i1
, . . . , x

(L)
iL

). Although this is possible, note that as L increases, the curse

of dimensionality1 becomes apparent so storing the results this way requires too much

memory. For instance, if L = 50 and the dimensions are small, I1 = I2 = . . . = I50 = 2,

storing T would require 9 petabytes. To overcome this problem we must to store T in a

more economic form, and this is possible with a low rank CPD approximation. Assume

that ϕ is separable, in the sense that there are functions ϕ
(`)
r : RI` → R, for ` = 1 . . . L

and r = 1 . . . R, such that

ϕ(x
(1)
i1
, . . . , x

(L)
iL

) =
R∑
r=1

ϕ(1)
r (x

(1)
i1

) · ϕ(2)
r (x

(2)
i2

) · . . . · ϕ(1)
r (x

(L)
iL

).

Define W(`) =
[
w

(`)
1 , . . . ,w

(L)
R

]
∈ RI`×R, where w

(`)
r =

[
ϕ

(`)
r (x

(`)
1 ), . . . , ϕ

(`)
r (x

(`)
I`

)
]T
∈ RI`

is the r-th column of W(`). Then we have the equality T =
R∑
r=1

w(1)
r ⊗ . . .⊗w(L)

r , which

1https://en.wikipedia.org/wiki/Curse_of_dimensionality
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come from a CPD for T . Storing this CPD costs R
L∑
`=1

I` floats, which is much better

than
L∏
`=1

I` floats necessary to store the tensor in coordinate-wise format. The formulation

of this problem and the proposed approach to solve it is based on [80, 81]. Note that this

approach still works if ϕ is not exactly separable but can be well approximated by a

separable function. In fact this is what usually happens, one wants to approximate a

function of L variables by a finite sum of products of functions of one variable.

0.4 Results

In order to obtain a CPD for the tensor it is clear that one would want to know its rank

in the first place. Unfortunately this problem is known to be NP-hard [21]. Usually

one already have some prior knowledge of the problem or, in the worst case, one have

to compute several CPDs for different ranks to find the best fit. This second approach

seems reasonable, however it is of limited use due to the border rank phenomenon, which

will be further discussed.

In this work we always suppose the rank is known in advance, or at least a decent

estimate for the rank is known. In this case all we have to worry is with the computation

of the CPD. In the past years several algorithms were proposed and implemented [4, 13–

18, 41, 42] so, today, we have a better understanding about how each approach performs.

In particular, Gauss-Newton algorithms are proven to have better convergence properties,

also verified experimentally. Algorithms based on this approach usually were much slower

[70, 71], but this is not the reality today. Exploiting the structure of the approximated

Hessian matrix lead to algorithms competitive in terms of speed, and with better accuracy

[4, 15]. Following this path, in chapter 3 we exploit this structure towards the goal to

speeding up conjugate gradient iterations of subproblems faced at each iteration of the

Gauss-Newton algorithm.

While researching about previous implementations for the CPD, I tried to spot the

parts overlooked by others. Aspects as damping parameter (when there is regularization),

number of conjugate gradient iterations, compression - preprocessing, etc, does not always

receives the due attention. With this in mind I designed a new program taking all these

little details in account. The result is a tensor package called Tensor Fox.2 In chapter 4

we give a detailed description of this package with respect to the CPD computation.

Let T be an L-order tensor with shape n× n× . . .× n︸ ︷︷ ︸
L times

. Below we show the cost per

iteration (in flops - floating point operations) of state of art implementations and Tensor

Fox, to compute a rank-R CPD for T . The constants c1, c2 are positive integers with

2This package is free for download at https://github.com/felipebottega/Tensor-Fox.
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Package Algorithm Computational cost
Tensorlab Gauss-Newton O

(
2(L+ 1)RnL + c1( 5

2L
2R2 + 8LR2n+ 1

3LR
3)
)

Tensor Toolbox Gradient-based optimization O
(
LRnL

)
Tensorly Alternating Least Squares O

(
LRnL

)
Tensor Box Gauss-Newton O

(
L3R2 + LR3 + LRnL + L3n+ L3R6

)
Tensor Fox Gauss-Newton O

(
(LR+ L− 1)nL + LR2(1 + n) + 3LRn+ c2(9LR+ L2R2)n

)
Table 1: Cost per iteration of several CPD solvers.

little influence on the costs. At first sight it seems that Tensor Toolbox and Tensorly are

better, since their cost per iteration is cheaper. In fact it is the opposite, the other solvers

indeed make slower iterations, but their iterations have more quality, which leads to faster

convergence. Alternating Least squares, for instance, can take thousands of iterations to

converge, whereas a Gauss-Newton based algorithm may finish within less than a hundred

iterations. The quality of the steps counts. Furthermore, with the exception of Tensor

Fox, all the other Gauss-Newton based solvers are costly in the rank. Tensorlab has a

factor of R3 and Tensor Box has a factor of R6, whereas Tensor Fox is quadratic on R.

Computational experiments reinforces these observations.

The computational complexity to compute CPDs makes it hard to aim at really big

tensors, because of the factor nL present in all algorithms. It is the curse of dimensionality

in action. In the era of Big Data it is not enough to just have good tensor models, they

also need to be computable within a reasonable time. In chapter 4, section 4.6, we show

that it is enough to use the Gauss-Newton approach only for third order tensors. With

the ideas of [82] we are able to compute higher order CPDs while avoiding the curse of

dimensionality. The tensor train decomposition (TTD) was recently linked to the CPD,

providing a way to compute higher order CPDs much faster than any previous algorithm.

These new ideas are implemented in Tensor Fox, which leads to a cost of

O
(
(3R + 2)n3 + 3R2(1 + n) + 9Rn+ 9c2(3R +R2)n

)
flops per iteration for higher order tensors. Of course this is not all. This is the cost

per iteration of one third order CPD to be computed, between L of them. Additionally,

before the computation of these third order CPDs we have to compute L− SVDs, which

adds a cost of

O
(

2

(
nL+1 +R2n

L − n2

n− 1
+ (1 +R3)n3

))
flops.

Therefore we didn’t avoid completely the curse of dimensionality. On the other hand, we

remark that this cost has a low constant and it is added only once to the overall cost,

while the costs of the previous showed algorithms are added at each iteration. The tensor

train approach performed much better than any other algorithm in our tests.
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We remark that only Tensorlab performs tensor compression before the iterations. In

chapter 2 we take a closer look at tensor compression and show why this is crucial to

alleviate the curse of dimensionality too. At the moment, most solvers consider com-

pression as an optional action to take, but this should be default. For example, if we

have a tensor of shape n × n × n and want to compute an approximate CPD of rank

R � n, then it is possible to compress it to a tensor of shape R × R × R and use this

one to find the CPD. There is virtually no loss in precision and the cost of doing that is

of O

(
3∑
`=1

min{R, n}
3∏
`=1

n

)
= O (3Rn3) flops. Compare this to the previous costs, where

we have something of O (3Rn3) flops at each iteration. We try to stress this point here

with the known results of the area and computational experiments.

Tensor decompositions are amazing tools to model multidimensional data, and that is

why developing new algorithms to compute the CPD is necessary in this area. This work

is an attempt to improve the state of art overall performance. The main contributions of

this work are the following:

• The diagonal regularization introduced at 4.8 reduces substantially the condition

number compared with the other regularization approaches used in the literature.

• The approximated Hessian of the problem has a block structure which is exploited

in theorem 3.5.10 to accelerate any algorithm based on Krylov methods to solve the

normal equations of the Gauss-Newton step.

• Tensor Fox performs specially better for higher order tensors. This is possible with

the CPD Tensor Train technique developed at [82] and implemented in Tensor Fox.

• A development of a new algorithm combining the best parts of several state of art

algorithms was implemented in tensor Fox. Improvements includes a method to

exploit the approximated Hessian.

• A new tensor package software, Tensor Fox, which is competitive and freely available

to the interested practitioners and researches. I remark that all routines of Tensor

Fox were written from scratch, that is, not a single part of other tensor package was

copied. Routines are optimized for speed.

• Several benchmarks are introduced as an attempt to obtain a fair comparison be-

tween all the state of art CPD solvers for a range of distinct problems. Usually the

papers makes comparisons between the one they are introducing and just one or two

outside solvers. This seems to be the first time such a broad comparison is made.

• New tensor models for machine learning problems are introduced and their potential

is experimentally validated.
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Chapter 1

Basic notions

We introduce the necessary notations and preliminary results of multilinear algebra. After

that we will talk about tensor products, decompositions and the geometry of tensor spaces.

In this chapter we also formalize the main challenge of this work, which is to compute the

canonical polyadic decomposition.

1.1 Notations

Scalars will be denoted by lower case letters, including greek letters, e.g., a or λ. Some-

times we can use capital letters for natural numbers, e.g., L or C. Vectors are denoted

by bold lower case letters, e.g., x. Matrices are denoted by bold capital letters, e.g., X.

Tensors are denoted by calligraphic capital letters, e.g., T . Capital greek letters will be

more flexible, appearing sometimes as matrices, sometimes as tensors, and sometimes as

sets. The i-th entry of a vector x is denoted by xi, the entry (i, j) of a matrix X is denoted

by xij, and the entry (i1, i2, . . . , iL) of a tensor T with L indexes is denoted by ti1i2...iL .

Sometimes it will be necessary to denote the entry (i, j) of X by (X)ij, and the same may

happen to a tensor. Any kind of sequence will be indicated by superscripts. For example,

we write x(1),x(2), . . . for a sequence of vectors. The n×n identity matrix will be denoted

by In.

In the case we have a function f with n scalar arguments, we denote them by

x1, x2, . . . , xn and write f(x1, x2, . . . , xn). If there is just three arguments we prefer the

classical f(x, y, z), and similar considerations for two or just one argument, where we will

use f(x, y), and f(x), respectively.

Vector spaces, groups and subsets in general will be denoted by blackboard bold

capital letters or just capital letters, e.g., V or S. An important particular case is of a

field, which will be denoted by K. However, this work is limited to the cases K = R (real

numbers) and K = C (complex numbers). In this work it will convenient to define the set

of natural numbers as being the set N = {1, 2, 3, . . .}. The symbols P and E are reserved

for probability and expectation, respectively. Every time we introduce a basis, we will
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be using the set notation with the implicit understanding it is an ordered set. Given two

tuples (r1, . . . , rL), (R1, . . . , RL), we write (r1, . . . , rL) < (R1, . . . , RL) if ri < Ri for all

i = 1 . . . L.

We also adopt the Matlab notational style when it is desired to take slices1 or to fix

a subset of indexes while varying the others. For example, if X is a m × n matrix, then

Xi: is the i-th row of X, while X:j is its j-th column.

The symbol T denotes the transpose of a vector or matrix, ∗ denotes the conjugate

transpose of a vector or matrix, † denotes the pseudoinverse of a matrix. If we use ∗ for a

vector space, then it means the dual space. For example, if V is a vector space, then V∗

is the dual space of V. The symbol ∼= will be used to denote isomorphism between vector

spaces. Let {e1, . . . , en} be a basis of V and let x = x1e1 + . . .+ xnen,y = y1e1 + . . . ynen

be two vectors in this space. The Hermitian inner product between x and y is defined by

〈x,y〉 = x1y1 + . . . + xnyn. We also adopt the definition 〈x,y〉R = x1y1 + . . . + xnyn and

call it the Euclidean inner product.

Finally, consider the Euclidean vector space Kn with basis {e1, . . . , en} and dual basis

{f∗1, . . . , f∗n}, where fi ∈ Kn for each i = 1 . . . n. In this context, for any vector x ∈ Kn we

define f∗i (x) = f∗i · x = 〈x, fi〉. If the basis is orthonormal, then f∗i = e∗i .

1.2 Multilinear maps

Let V(1), . . . ,V(L),V,W be vector spaces over the same field K such that dim(V(`)) = I` for

each ` = 1 . . . L, and dim(W) = J . A map T : V(1)× . . .×V(L) →W is said to be L-linear

if T is linear in each coordinate. More precisely, for all (x(1), . . . ,x(L)) ∈ V(1)× . . .×V(L)

and all α, β ∈ K we have that

T (x(1), . . . , αx(i) + βx(i+1), . . . ,x(L)) =

= αT (x(1), . . . ,x(i), . . . ,x(L)) + βT (x(1), . . . ,x(i+1), . . . ,x(L)).

Sometimes it is not relevant to mention the value L and one can just say that T is a

multilinear map. Notice that for L = 1, T is just a classical linear map. We denote the

space of L-linear maps V(1) × . . . × V(L) → W by L(V(1), . . . ,V(L);W). Some common

abbreviations are LL(V;W) = L(V, . . . ,V︸ ︷︷ ︸
L times

;W) and L(V) = L(V;V).

Lemma 1.2.1. Let (i1, . . . , ip, i
′
1, . . . , i

′
L−p) be any permutation of (1, . . . , L). Then

L(V(1), . . . ,V(L);W) ∼= L
(
V(i1), . . . ,V(ip);L(V(j1), . . . ,V(jL−p);W)

)
.

1Since the author uses much more Python/Numpy than Matlab there is a chance to appear some
slight differences.
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Corollary 1.2.2. L(V(1), . . . ,V(L);W) ∼= L(V(1), . . . ,V(L),W∗;K).

This corollary is a direct consequence of lemma 1.2.1 because

L(V(1), . . . ,V(L),W∗;K) ∼= L
(
V(1), . . . ,V(L);L(W∗;K)

) ∼= L(V(1), . . . ,V(L);W).

With corollary 1.2.2 we are able to concentrate our attention to multilinear maps of

the form T : V(1) × . . . × V(L) → K. In the case of a linear map T : Kn → K (linear

functional), we know there is a vector a ∈ Kn such that

T (x) = aTx (1.1)

for all x ∈ Kn. In the case of a 2-linear (bilinear) map T : Km × Kn → K, there is a

matrix A ∈ Kn×m such that2

T (x,y) = yTAx (1.2)

for all x ∈ Km,y ∈ Kn. If one want a general formula for 3-linear (trilinear) maps

A : Km × Kn × Kp → K or more, the concept of tensors is a must. In order to have a

better understanding of what is happening it is convenient to work in coordinates after

fixing a basis for each V(`).

Theorem 1.2.3. Let {e(`)
1 , . . . , e

(`)
I`
} be a basis for each V(`) and let T ∈ L(V(1), . . . ,V(L);K)

be a L-linear map. Then there exists scalars ti1...iL ∈ K such that

T (e
(1)
i1
, . . . , e

(L)
iL

) = ti1...iL ,

for i1 = 1, . . . , I1, i2 = 1, . . . , I2, . . . , iL = 1, . . . , IL.

The values ti1...iL are called the coordinates of T with respect to the given bases. As it

happens for linear maps and matrices, once we have fixed bases it is possible to associated

the multilinear map T with the coordinates ti1...iL . This is the same thing we do with

matrices, considering them as a static table of numbers or as a linear transformation,

depending on the context. So one can identify T with its coordinate representation. In

the case T : Kn → K we have that

T =


t1
...

tn

 ,
2In the complex case there is the notion of a sequilinear form, which is a map (x,y) 7→ y∗Ax.

Sesquilinear forms and bilinear complex forms are not the same thing.
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in the case T : Km ×Kn → K we have

T =


t11 . . . t1n
...

...

tm1 . . . tmn

 ,
and in the case T : Km ×Kn ×Kp → K we have the “rectangular matrix” below.

Figure 1.1: Trilinear map in coordinates.

Remark 1.2.4. In the case T : Kn → K the vector T is related with a by the identity

T = aT , that is, T (x) = aT · x. In the case T : Km × Kn → K the matrix T is m × n
while A is n×m. Both matrices are related by the identity T = AT . Now we have that

T (x,y) = yTAx.

Remember that these coordinate representations are tensor of orders 1,2,3, respec-

tively. Now let’s see how one can obtain an explicit formula for T (x(1), . . . ,x(L)), where

(x(1), . . . ,x(L)) ∈ V(1) × . . .×V(L) is arbitrary and such that x(`) = x
(`)
1 e

(`)
1 + . . .+ x

(`)
I`

e
(`)
I`

for each ` = 1, . . . , L. As consequence of theorem 1.2.3 we have that

T (x(1), . . . ,x(L)) = T (x
(1)
1 e

(1)
1 + . . .+ x

(1)
I1

e
(1)
I1
, . . . , x

(L)
1 e

(L)
1 + . . .+ x

(L)
IL

e
(L)
IL

) =

=

I1∑
i1=1

. . .

IL∑
iL=1

x
(1)
i1
. . . x

(L)
iL
T (e

(1)
i1
, . . . , e

(L)
iL

) =

=

I1∑
i1=1

. . .

IL∑
iL=1

x
(1)
i1
. . . x

(L)
iL
ti1...iL . (1.3)

The vectors obtained by fixing all dimensions except one are important and have their

own name.
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Definition 1.2.5. Let 1 ≤ ` ≤ L. Then, for each choice of indexes i1, . . . , i`−1, i`+1, . . . , iL,

the vector Ti1...i`−1 : i`+1...iL is called a mode-` fiber of T .

In the case L = 1 the only fiber is T itself. In the case L = 2 the mode-1 fibers are

the columns and the mode-2 fibers are the rows of T . The case L = 3 is illustrated in

figure 1.2.

Figure 1.2: Fibers of a third order tensor.

Although we are not going to use this now, it will be important to us the subtensors we

obtain by fixing all dimensions except two. This will give rise to bidimensional subtensors,

that is, matrices.

Definition 1.2.6. Let 1 ≤ ` < `′ ≤ L. Then, for each choice of indexes

i1, . . . , i`−1, i`+1, . . . , i`′−1, i`′+1, . . . , iL,

the vector Ti1...i`−1 : i`+1... i`−1 : i`+1,...iL is called a slice of T .

In the special case of T being a third order tensor, we can call the matrices Ti:: the

horizontal slices, T:j: the lateral slices, and T::k the frontal slices. These types of slices are

illustrated in figure 1.3.

1.3 Tensor products

Definition 1.3.1. Let f (`) ∈ (V(`))∗ for each ` = 1 . . . L. The tensor product between the

functionals f (`) is the map f (1) ⊗ . . .⊗ f (L) : V(1) × . . .× V(L) → K defined as

f (1) ⊗ . . .⊗ f (L)(x(1), . . . ,x(L)) = f (1)(x(1)) · . . . · f (L)(x(L)).

15



Figure 1.3: Slices of a third order tensor.

The linear space generated by all tensor products of the form f (1)⊗. . .⊗f (L) is denoted

by (V(1))∗ ⊗ . . . ⊗ (V(L))∗ and called the tensor product between the spaces (V(`))∗. An

element of (V(1))∗ ⊗ . . . ⊗ (V(L))∗ can be called a covariant L-tensor or a covariant L-th

order tensor.

Definition 1.3.2. Let v(`) ∈ V(`) for each ` = 1 . . . L. The tensor product between the

vectors v(`) is the map v(1) ⊗ . . .⊗ v(L) : (V(1))∗ × . . .× (V(L))∗ → K defined as

v(1) ⊗ . . .⊗ v(L)(f (1), . . . , f (L)) = f (1)(v(1)) · . . . · f (L)(v(L)).

The linear space generated by all tensor products of the form v(1)⊗. . .⊗v(L) is denoted

by V(1) ⊗ . . . ⊗ V(L) and called the tensor product between the spaces V(`). An element

of V(1) ⊗ . . .⊗ V(L) can be called a contravariant L-tensor or a contravariant L-th order

tensor.

One may also work with mixed tensors, that is, tensors which are the product of vector

spaces and dual spaces. Since the ordering is not so important (lemma 1.2.1) we can define

a mixed tensor to be an element of the space (V(1))∗ ⊗ . . .⊗ (V(L))∗ ⊗W(1) ⊗ . . .⊗W(M).

These tensors are called tensors of type (L,M). In particular, a contravariant L-th order

tensor is a tensor of type (L, 0) and a covariantM -th order tensor is a tensor of type (0,M).

Generally, one may refer to a tensor product of vector spaces just as a tensor space. To

finish this set of notations and terminology, when we have tensor products between the

same space V, it is common to denote V⊗L = V⊗ . . .⊗ V︸ ︷︷ ︸
L times

. The next theorem summarizes

the main properties of tensor spaces and their relation to multilinear maps. For more

details about the algebra of tensor products, consult appendix B.

Theorem 1.3.3. The following statements holds true.

1. (V(1))∗ ⊗ . . .⊗ (V(L))∗ ∼= L(V(1), . . . ,V(L);K)
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2. V(1) ⊗ . . .⊗ V(L) ∼= L
(
(V(1))∗, . . . , (V(L))∗;K

)
3. dim

(
(V(1))∗ ⊗ . . .⊗ (V(L))∗

)
= dim(V(1) ⊗ . . .⊗ V(L)) =

L∏
`=1

I`

4.
{
e

(1)
i1
⊗ . . .⊗ e

(L)
iL

: i1 = 1 . . . I1, . . . , iL = 1 . . . IL

}
is a basis for V(1) ⊗ . . .⊗ V(L)

5. Any tensor T ∈ V(1) ⊗ . . .⊗ V(L) may be written as

T =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL e
(1)
i1
⊗ . . .⊗ e

(L)
iL
,

where ti1...iL are the coordinates given in theorem 1.2.3.

Remark 1.3.4. Sometimes it is useful to consider the isomorphism V(1) ⊗ . . . ⊗ V(L) ∼=
L
(
(V(1))∗, . . . , (V(L−1))∗; V(L)

)
and consider v(1) ⊗ . . . ⊗ v(L) ∈ V(1) ⊗ . . . ⊗ V(L) as the

map given by

v(1) ⊗ . . .⊗ v(L)(f (1), . . . , f (L−1)) = f (1)(v(1)) · . . . · f (L)(v(L−1)) · v(L). (1.4)

Example 1.3.5. Consider the space C2 with basis B = {[1, 0]T , [0,−i]T} = {b1, b2},
where i =

√
−1 is the imaginary unit. The dual basis associated to B is B∗ = {b∗1, b∗2}.

Let T : C2 → C2 such that T (z, w) = [iz, z +w]T . As a tensor, note that T ∈ (C2)
∗⊗C2

is a mixed tensor of type (1, 1).

To compute T in coordinates, first note that T (b1) = [i, 1]T and T (b2) = [0,−i]T . On

the other hand, by interpreting T as a tensor product we know that

T =
2∑

j,k=1

tjk b∗j ⊗ bk.

Using this formula and the identification given in 1.4 we have that

T (b1) = t11b
∗
1(b1) · b1 + t12b

∗
1(b1) · b2 + t21b

∗
1(b2) · b1 + t22b

∗
1(b2) · b2 =

[
t11

−it12

]

and

T (b2) = t11b
∗
1(b2) · b1 + t12b

∗
2(b1) · b2 + t21b

∗
2(b2) · b1 + t22b

∗
2(b2) · b2 =

[
−t21

−it22

]
.
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With this we conclude that t11 = i, t12 = i, t21 = 0, t22 = 1. Therefore we have that

T = ib∗1 ⊗ b1 + ib∗1 ⊗ b2 + b∗2 ⊗ b2.

There is a little subtlety here. Remember that, by remark 1.2.4, it is necessary to

transpose the coordinate representation of T . After transposing we get the matrix of T in

basis B,

T =

[
i 0

i 1

]
.

The procedure described here is generalizable to any kind of linear map Km → Kn. It

permits one to compute the associated tensor and its associated matrix.

It is customary to use upper and lower index to distinguish between contravariant and

covariant terms, but this won’t be necessary here. In this work we will be only interested

in studying tensors in the Euclidean space KI1 ⊗ . . . ⊗ KIL , and for this reason we will

leave aside that index convention.

Let T = v(1)⊗ . . .⊗v(L) ∈ KI1 ⊗ . . .⊗KIL . Remember we can consider T as the map

v(1) ⊗ . . .⊗ v(L) : (KI1)∗ ⊗ . . .⊗ (KIL)∗ → K given by

v(1) ⊗ . . .⊗ v(L)
(
(x(1))∗, . . . , (x(L))∗

)
= 〈v(1),x(1)〉 · . . . · 〈v(L),x(L)〉 =

=

I1∑
i1=1

. . .

IL∑
iL=1

x
(1)
i1
. . . x

(L)
iL
· v(1)

i1
. . . v

(L)
iL
. (1.5)

from which we conclude that ti1...iL = v
(1)
i1
. . . v

(L)
iL

. The values ti1...iL are the coordinates

of the T as a multilinear map and as a tensor. It is also possible to use theorem 1.2.3

to compute these coordinates. Although we are mainly concerned with tensors in KI1 ⊗
. . .⊗KIL , there are some classic examples of different types of tensors we want to show.

We consider the canonical bases for all examples below.

Example 1.3.6 (Rank one matrix). Given two vectors v ∈ Cm,u ∈ Cn, consider the

linear map with matrix uv∗. In this example we will see that the tensor associated to this

map is T = v∗ ⊗ u ∈ (Cm)∗ ⊗ Cn. First note that

T (x,y∗) = v∗(x) · y∗(u) = 〈x, v〉 · 〈u,y〉 =
n∑
i=1

m∑
j=1

xiyjviuj

for all x ∈ Cm,y ∈ Cn. Considering T in coordinates, we can write T = vuT , where

tij = viuj. The matrix of the corresponding linear map is the transpose of this matrix

(see 1.2.4), that is, A = (vuT )T = uv∗, as desired. Note that now we can write T (x,y∗) =

y∗Ax. We may use the isomorphism (Cm)∗ ⊗ Cn ∼= L(Cm;Cn) from 1.4 and reinterpret
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T as the map T (x) = 〈x, v〉 · u = Ax.

Example 1.3.7 (SVD). Again, let T ∈ (Cm)∗ ⊗ Cn, but this time suppose there are

vectors v1, . . . , vR ∈ Cm, u1, . . . ,uR ∈ Cn, and scalars σ1, . . . , σR ∈ C such that T =
R∑
r=1

σrv
∗
r ⊗ur and let A ∈ Cn×m be the matrix of the corresponding linear map, as before.

Additionally, suppose this is the least R with the property that such decomposition exists.

As a consequence we have a SVD for A given by A = UΣV∗ =
R∑
r=1

σrurv
∗
r, where ur

is the r-th column of U (left singular vector), vr is the r-th column V (right singular

vector), and Σ = diag(σ1, . . . , σR).

Example 1.3.8 (Matrix multiplication). For this last example, consider the tensor space

isomorphism (Cmn)∗ ⊗ (Cnl)∗ ⊗ Cml ∼= L
(
Cmn,Cnl;Cml

)
. Each element of Cmn can be

thought as a m×n matrix or a vector of size mn. Given a m×n matrix X, let vec(X) be

the vector obtained by vertically stacking all columns of X. We will be identifying X and

vec(X) when it is convenient. The same considerations goes for the spaces Cnl and Cml.

Let eij ∈ Cm×n be the matrix with entry (i, j) equal to 1 and all other entries equal to 0.

Note that {e11, e12, . . . , emn} is a basis for Cm×n, while {vec(e11), vec(e12), . . . , vec(emn)}
is the canonical basis of Cmn. We will commit a little abuse of notation and use the same

notation for the basis vectors of Cnl and Cml.

Now, define the tensor T ∈ (Cmn)∗ ⊗ (Cnl)∗ ⊗ Cml by

T =
m∑
i=1

n∑
j=1

l∑
k=1

e∗ij ⊗ e∗jk ⊗ eik =
m∑
i=1

n∑
j=1

l∑
k=1

eTij ⊗ eTjk ⊗ eik.

Given any matrices X ∈ Cm×n,Y ∈ Cn×l, and using the isomorphism 1.4, we have

that

T (X,Y) =
m∑
i=1

n∑
j=1

l∑
k=1

〈X, eij〉 · 〈Y, ejk〉 · eik =
m∑
i=1

n∑
j=1

l∑
k=1

xij · yjk · eik =

=
m∑
i=1

l∑
k=1

(xi1y1k + . . .+ xinynk) · eik = X ·Y

In short, T is a third order tensor describing the matrix multiplication. Note that we

used mnl terms in the summation defining T . It is possible to use less terms, and the

problem of finding the minimum number of terms is an open problem in mathematics. For

instance, see chapter 1 of [39].

19



1.4 Canonical polyadic decomposition

When T is of the form T = v(1) ⊗ . . .⊗ v(L), we saw that ti1...iL = v
(1)
i1
. . . v

(L)
iL

. However,

note that this formula does not apply for all the tensor space since not all tensors are of

this form. An arbitrary tensor in V(1) ⊗ . . .⊗ V(L) may be written as

T =
R∑
r=1

v(1)
r ⊗ . . .⊗ v(L)

r , (1.6)

where each v
(`)
r ∈ V(`) is given by v

(`)
r =

[
v

(`)
1r , v

(`)
2r , . . . , v

(`)
I`r

]T
. It is of interest in applica-

tions to decompose T in this manner, such that R is smallest as possible [2, 3, 5, 7–9].

The generalization coordinate representation of T is now given by

ti1...iL =
R∑
r=1

v
(1)
i1r
. . . v

(L)
iLr
. (1.7)

Formula 1.6 realizes T as a sum of R tensor products. For each ` = 1 . . . L, the `-th

factor matrix associated to 1.6 is defined as V(`) = [v
(`)
1 , . . . ,v

(`)
R ] ∈ KI`×R, and each one

of its columns are called factors. The space V(`) sometimes is referred as the `-th mode.

When some definition depends on ` it is common to use some terminology which specify

the current mode.

Definition 1.4.1. We say a tensor T ∈ V(1) ⊗ . . . ⊗ V(L) has rank one if there exists

vectors v(1) ∈ V(1), . . . , v(L) ∈ V(L) such that T = v(1) ⊗ . . .⊗ v(L).

Definition 1.4.2. We say a tensor T ∈ V(1)⊗ . . .⊗V(L) has rank R if R is the smallest

number such that T can be written as a sum of R rank one tensors. In this case we denote

rank(T ) = R.

Suppose rank(T ) = R. Then the decomposition 1.6 is called a canonical polyadic

decomposition (CPD) for T . Other known names for the CPD are PARAFAC (parallel

factors), CANDECOMP (canonical decomposition) and CP decomposition. In the case

R is not the rank of T we call this decomposition a rank-R CPD for T . The first one to

propose the notion of rank and this decomposition was Hitchcock [50] in a work of 1927.

In example 1.3.7 we discussed a connection between the SVD for matrices and tensors.

If T =
R∑
r=1

σrurv
∗
r is a SVD for T , then we can write T =

R∑
r=1

σrvr ⊗ u∗r. In particular,

this implies that rank(T ) = R. Conversely, if rank(T ) = R and T =
R∑
r=1

σrvr ⊗u∗r, then

T =
R∑
r=1

σrurv
∗
r is a SVD for T and, as a matrix, T has rank R. In conclusion, if T is a

second order tensor, then its rank as a tensor equals its rank as a matrix. Furthermore,

its CPD and its SVD coincide.
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Given T ∈ V(1) ⊗ . . . ⊗ V(L), we know in advance that rank(T ) ≤
L∏
`=1

I`, since we

always can write

T =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL e
(1)
i1
⊗ . . .⊗ e

(L)
iL
.

In fact, it is possible to write T with less terms as the next results shows. From

theorem 1.2.1 we know it is possible to permute the spaces V(`) without problems. Hence

there is no loss of generality in considering I1 ≥ I2 ≥ . . . ≥ IL.

Theorem 1.4.3 (Landsberg, [39]). Let V(1) ⊗ . . .⊗V(L) be such that I1 ≥ I2 ≥ . . . ≥ IL.

Then rank(T ) ≤
L∏
`=2

I` for all T ∈ V(1) ⊗ . . .⊗ V(L).

Corollary 1.4.4. rank(T ) ≤ min{I1I2, I1I3, I2I3} for all T ∈ V(1) ⊗ V(2) ⊗ V(3).

Remember the slices of third order tensors we showed in 1.3. The next result gives

formulas for each one of these slices.

Theorem 1.4.5. Let T =
R∑
r=1

xr⊗yr⊗ zr ∈ KI1 ⊗KI2 ⊗KI3 be a third order tensor with

rank ≤ R, where each λr is a scalar. Then the i-th horizontal slice of T is given by

R∑
r=1

xir yr ⊗ zr = Y · diag(xi1, . . . , xiR) · ZT ,

the j-th lateral slice is given by

R∑
r=1

yjr xr ⊗ zr = X · diag(yj1, . . . , yjR) · ZT .

and the k-th frontal slice slice is given by

R∑
r=1

zkr xr ⊗ yr = X · diag(zk1, . . . , xkR) ·YT .

Now suppose we have a tensor T with rank R and we want to compute a CPD for T .

In practical applications obtaining equality as in formula 1.6 is not realistic. Usually one

is content with an approximation

T ≈
R∑
r=1

v(1)
r ⊗ . . .⊗ v(L)

r . (1.8)

There are several algorithms to accomplish this goal and we will discuss some of them

in chapter 3. For now we discuss rank properties. For instance, how should one proceed
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when rank(T ) is not known? In order to obtain a CPD for T one would want to know its

rank in the first place. Unfortunately this problem is known to be NP-hard [21]. Another

possibility would be to choose a large value R, an upper bound for rank(T ), and compute

a rank-R CPD for T . As we will see soon this is not a good idea because a high rank

CPD suffer from lack of uniqueness. In particular, this kind of CPD can overfit the data

we are trying to model. The best choice here is to choose a low rank CPD approximation

for T . Caution is necessary to not take R too small, because in that case our model will

suffer from underfitting (high bias) and accuracy is lost.

A relevant property of higher order tensors is that their CPD are often unique (in

a sense we will make clear soon). This property fail for matrices. For instance, con-

sider a matrix T ∈ Kn×m together with a SVD given by T = U · Σ · V∗, where

Σ = diag(σ1, . . . , σR). Making A = U · Σ and B = V we have

T = AB∗ =
R∑
r=1

A:rB
∗
:r.

Notice this is a CPD for T since it is a sum of R rank one terms. Now let W ∈ KR×R be

unitary. Then we have

T = AW(BW)∗ = ÃB̃
∗

=
R∑
r=1

Ã:rB̃
∗
:r.

Varying W we can obtain infinitely many different CPD’s for T .

Let T =
R∑
r=1

Tr be a CPD for T , where each Tr is a rank one term. Also, suppose T is

a higher order (bigger than 2) tensor. The uniqueness of the CPD is up to the following

trivial modifications:

1. Permutation of the ordering of the rank one terms. T =
R∑
r=1

Tσ(r) is the same CPD,

where σ ∈ SR is any permutation.

2. Scaling indeterminacy. T =
R∑
r=1

1

λr
(λrTr) is the same CPD, where λr 6= 0 is arbi-

trary for all r = 1 . . . R.

Sometimes one say the CPD is essentially unique. Is this uniqueness what makes the

CPD so attractive to applications. Most of the time the CPD is unique, but sometimes

this may not be the case. For this reason we want to stablish uniqueness conditions.

Additionally, we should clarify what means when we say the CPD is unique “most of the

time”.

The most well known result on uniqueness of tensors is due to J. B. Kruskal [45, 47]

although it is limited to third order tensors. Posteriorly this result was extended to
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arbitrary higher order tensors by N. D. Sidiropoulos and R. Bro [49]. Below we show this

extended result.

Definition 1.4.6. Let X ∈ Km×n be a matrix. The k-rank of X is the maximum value k

such that any k columns of X are linearly independent. We denote this value by kX.

Theorem 1.4.7 (N. D. Sidiropoulos and R. Bro). Let T ∈ V(1) ⊗ . . .⊗ V(L) be a tensor

of rank R with CPD given by formula 1.6 and let V(`) be the `-th factor matrix of this

CPD, for ` = 1 . . . L. If

L∑
`=1

kV(`) ≥ 2R + L− 1,

then this CPD is unique.

In the matrix case (L = 2), suppose that both factors, V(1) and V(2), have all columns

linearly independent. Then we have that kV(1) + kV(2) = R + R < 2R + 1. Therefore the

CPD is never unique in the matrix case, a fact we had already observed. With this we

have a condition for uniqueness.

1.5 Tensor geometry

Given a tensor space V(1) ⊗ . . . ⊗ V(L) with a basis {e(1)
i1
⊗ . . . ⊗ e

(L)
iL
}, we can consider

each tensor as a element of KI1×...×IL , that is, each tensor

T =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL e
(1)
i1
⊗ . . .⊗ e

(L)
iL

is identified with the multidimensional array with entries ti1...iL . In this case we can

consider V(1) ⊗ . . .⊗ V(L) a space with inner product defined by

〈T ,S〉 =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iLsi1...iL .

This induces the norm

‖T ‖ =

√√√√ I1∑
i1=1

. . .

IL∑
iL=1

|ti1...iL|2.

This allow us to talk about proximity of tensors. This is relevant because usually one

is interested is solving 1.8 in the best way possible, that is, to obtain the rank-R tensor

closest to T between all rank-R approximations. Unfortunately, computing the best rank-
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R approximation of a tensor is, in general, a ill-posed3 problem [20]. In particular we have

the following result, first observed in [51] and then deeply explored in [39].

Theorem 1.5.1. The limit of a sequence of rank tensors R is not necessarily a rank-R

tensor.

Denote σR
(
V(1) ⊗ . . .⊗ V(L)

)
=
{
T ∈ V(1) ⊗ . . .⊗ V(L) : rank(T ) ≤ R

}
for the set

of tensors with rank ≤ R. With respect relation to the theorem above, the rank of the

limit of tensors can give a “jump”. Because of this, the set σR is not necessarily closed in

the norm topology. This motivates the following definition.

Definition 1.5.2. We say a tensor T ∈ V(1) ⊗ . . .⊗ V(L) has border rank-R if R is the

smallest number such that T ∈ σR, where σR is the closure of σR. In this case we denote

rank(T ) = R.

The term “border rank” first appeared in the paper [51] in the context of matrix

multiplication. There is an interesting about the story of the border rank at the beginning

of chapter 2 of [40]. We have the following result as a direct consequence of the definition.

Theorem 1.5.3. If rank(T ) = R, then there exists a sequence of rank-R tensors con-

verging to T and there is not a sequence of tensors with rank < R converging to T .

Corollary 1.5.4. rank(T ) ≤ rank(T ).

As we observed, computing the best rank-R approximation of a tensor is, in general,

a ill-posed problem. However, this is not the case when L = 2, that is, the matrix case.

This result is known since 1936 with Eckart and Young [53].

Theorem 1.5.5 (Eckart-Young, 1936). Let M =
R∑
r=1

σrurv
∗
r be a SVD of a rank-R matrix

in Kn×m. For any 1 ≤ R̃ ≤ R, the best rank-R approximation of M is given by M̃ =
R̃∑
r=1

σrurv
∗
r.

The phenomenon of border rank is the one responsible for the ill-posedness of the

approximation problem. If a tensor T has rank R and border rank R̃ < R, then there is

a sequence of rank-R̃ tensors converging to T . This implies, in particular, that it does

not exists a tensor of rank R̃ closest to T , so finding the best rank-R̃ approximation of

T is a ill-posed problem. The first report of a such phenomenon was in [52], where they

gave an explicit example of a sequence of rank-5 tensors converging to a rank 6 tensor in

1979. In [20] there is a simple example of a tensor of rank 3 and border rank 2 which we

reproduce below for illustration purposes.

3We call a problem well-posed if a solution exists, is unique, and is stable in the sense it depends
continuously int the input data. A problem is ill-posed if it is not well-posed.
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Theorem 1.5.6 (V. de Silva and L. H. Lim, 2008). Let I1, I2, I3 ≥ 2. Let T ∈ RI1 ⊗
RI2 ⊗ RI3 be a tensor such that

T = x(1) ⊗ x(2) ⊗ y(3) + x(1) ⊗ y(2) ⊗ x(3) + y(1) ⊗ x(2) ⊗ x(3)

where each pair x(`),y(`) ∈ RI` is linearly independent. Then rank(T ) = 3 and

T (n) = n

(
x(1) +

1

n
y(1)

)
⊗
(
x(2) +

1

n
y(2)

)
⊗
(
x(3) +

1

n
y(3)

)
− nx(1) ⊗ x(2) ⊗ x(3)

is a sequence of rank-2 tensors converging to T . In particular, rank(T ) ≤ 2.

The tensor T of the theorem is an example of a tensor that has no best rank-2 ap-

proximation. It is interesting to note that the limit expression for T (n) may be regarded

as a derivative. In fact, define the function f : R→ RI1 ⊗ RI2 ⊗ RI3 by

f(t) = (x(1) + ty(1))⊗ (x(2) + ty(2))⊗ (x(3) + ty(3)) =

= x(1) ⊗ x(2) ⊗ x(3) + tx(1) ⊗ x(2) ⊗ y(3) + tx(1) ⊗ y(2) ⊗ x(3) + t2x(1) ⊗ y(2) ⊗ y(3)+

+ty(1) ⊗ x(2) ⊗ x(3) + t2y(1) ⊗ x(2) ⊗ y(3) + t2y(1) ⊗ y(2) ⊗ x(3) + t3y(1) ⊗ y(2) ⊗ y(3).

On one hand, using the derivative rules and making t = 0 we obtain

f ′(0) = x(1) ⊗ x(2) ⊗ x(3) + x(1) ⊗ x(2) ⊗ y(3) + x(1) ⊗ y(2) ⊗ x(3).

On the other hand, using the limit definition for the derivative we obtain

f ′(0) = lim
t→0

(x(1) + ty(1))⊗ (x(2) + ty(2))⊗ (x(3) + ty(3))− x(1) ⊗ x(2) ⊗ x(3)

t
.

Making t = 1/n and simplifying we obtain the expression of the theorem, that is, we

have that f ′(0) = limn→∞ T (n). Notice that f represents a curve in σ2. From the point

f(0) = x(1) ⊗ x(2) ⊗ x(3) we can draw secant lines in order to approximate the derivative

f ′(0). Each secant line gives us a tensor in σ2. At the limit we have the tangent tensor

which, because of the theorem, will be outside σ2. This is illustrated in figure 1.4.

With respect to the topology of σR in V(1) ⊗ . . .⊗V(L), we have already seen that σR

is not closed. It is also true that σR is not open under certain conditions, as the next

result shows.

Theorem 1.5.7. If R < dim
(
V(1) ⊗ . . .⊗ V(L)

)
, then σR is not open.

Proof: Let T =
R∑
r=1

v(1)
r ⊗ . . .⊗v(L)

r ∈ σR be a rank-R tensor and let u(1)⊗ . . .⊗u(L)

be a tensor which it is not a linear combination of the tensor products v
(1)
r ⊗ . . . ⊗ v

(L)
r .
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Figure 1.4: Geometry of border rank.

Then the sequence

T (n) =
1

n+ 1
u(1) ⊗ . . .⊗ u(L) + T

converges to T and it is constituted of tensors with rank greater than R. Thus, every ball

around T contains tensors outside σR. Therefore σR is not open. �

Note that this theorem also holds for the matrix space. More precisely, there are

sequences of rank-R matrices converging to matrices with rank smaller than R. What

does not occur with matrices is to have a sequence of rank-R matrices converging to a

matrix with rank greater than R. This last phenomenon is unique to tensors of order > 2,

and this is where we see the issue of border rank.

The argument used in the previous theorem also shows that every rank-R is an ad-

herent point of
(
V(1) ⊗ . . .⊗ V(L)

)
\σR, hence the set of rank-R tensor is contained in

(V(1) ⊗ . . .⊗ V(L)) \σR. Let ∂(σR) = σR ∩ V(1) ⊗ . . .⊗ V(L)\σR be the boundary of σR.

Then it follows that the set of rank-R tensors is contained in ∂(σR). Next we give some

results about norm invariance.

Theorem 1.5.8 (V. de Silva and L. H. Lim, 2008). Let T ∈ KI1 ⊗ . . . ⊗ KIL ,S ∈
KI′1 ⊗ . . .⊗KI′L and v(1) ∈ KI1, . . ., v(L) ∈ KIL. Then the following statements holds.

1. ‖v(1) ⊗ . . .⊗ v(L)‖ = ‖v(1)‖ · . . . · ‖v(L)‖

2. ‖T ⊗ S‖ = ‖T ‖ · ‖S‖
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3. If U(1) ∈ KI1×I1 , . . . ,U(L) ∈ KIL×IL are unitary (orthogonal) matrices, then

‖(U(1), . . . ,U(L)) · T ‖ = ‖T ‖.

As already noted, σR is not closed (except in the case of matrices). The next result

shows other equivalent statements.

Theorem 1.5.9 (V. de Silva and L. H. Lim, 2008). Consider the space KI1 ⊗ . . . ⊗ KIL

with L > 2 and let R ≥ 2. Then the following statements are equivalent.

1. σR is not closed.

2. There exists a sequence of tensors in σR converging to a tensor with rank greater

than R.

3. There exists a tensor S of rank greater than R such that inf
T ∈σR

‖T − S‖ = 0.

4. There exists a tensor S of rank greater than R which does note have a best rank-R

approximation, that is, inf
T ∈σR

‖T − S‖ is not attained in σR.

It is important to emphasize that there are tensors of rank greater than R which also

can’t be arbitrarily approximated by rank-R tensors. Figure 1.5 illustrates the possible

situations one can encounter. In the figure on the top left, the dark region represents a

certain subset of tensors with rank greater than R. In the top right figure, the light region

represents the set σR. The dotted line indicates that those border points are not in σR,

they are part of the dark region. In the figure on the bottom left we have a sequence of

points in σR converging to the red dot, which is at the border between the dark and the

light regions. This point is at the closure of σR, so that it is a tensor with rank greater

than R which can be approximated arbitrarily well by points in σR. This tensor has border

rank equal to R. In the figure on the bottom right the sequence of points converges to

the point of the border closest to the red point, but the limit of that convergence is not

the point desired. In this case we have a tensor with rank greater than R that does not

have a best rank-R approximation.

Although everything we saw up to this point may indicate that the best rank-R ap-

proximation problem is something to be avoided, there are two positive results showed

below.

Theorem 1.5.10 (V. de Silva and L. H. Lim, 2008). Every tensor has a best rank 1

approximation.

Theorem 1.5.11 (V. de Silva and L. H. Lim, 2008). Let T ∈ KI1 ⊗ . . . ⊗ KIL and

integers R1, . . . , RL > 0. Then T does have a best approximation of multilinear rank

≤ (R1, . . . , RL).
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Figure 1.5: Convergence issues.

The next theorem shows one reason that can make tensor low rank approximations to

fail.

Theorem 1.5.12 (V. de Silva and L. H. Lim, 2008). Let T ∈ KI1 ⊗ . . . ⊗ KIL a tensor

with rank greater than R and let (T (n)) be a sequence in σR converging to T . Furthermore,

write

T (n) =
R∑
r=1

λ(n)
r v(n,1)

r ⊗ . . .⊗ v(n,L)
r ,

where each v
(n,`)
r ∈ KI` is a unitary vector and λ

(n)
r ∈ K a scalar. Then there exists two

distinct numbers 1 ≤ r1, r2,≤ R such that lim
n→∞

|λ(n)
r1
| = lim

n→∞
|λ(n)
r2
| =∞.

Although we have factors diverging, the sequence still converges. What happens is

that these divergent factors cause cancellations as n increases. If T does not have a best

rank-R approximation, the process of computing more approximations T (n) can continue

indefinitely, with some coefficients λ
(n)
r diverging, which is a problem when making com-

putations with finite precision. Taking away the condition of the vectors being unitary,

we will have vectors diverging, which will change nothing. This phenomenon of diverging

terms has been observed in practical applications of multilinear models and is referred as

“degeneracy” [48, 54–57].
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Chapter 2

Tensor compression

Tensor compression is an important tool to compute a CPD. It reduces the problem size,

hence the computational and memory size. It relies on the computation of some SVDs of

matrices, which is a familiar decomposition. Nowadays there are very fast implementa-

tions for the SVD, such as the randomized truncated SVD [31]. First we will see how to

make unfoldings from tensors, then we go to multilinear rank and some related results,

and finally we finish with the compression of tensors. Algorithms and their costs are

shown along the way.

2.1 Multilinear multiplication

For each ` = 1 . . . L, let B(`) = {e(`)
1 , . . . , e

(`)
I`
} be a basis for each space KI` , and consider

a tensor T ∈ KI1 ⊗ . . .⊗KIL in coordinates ti1...iL . As already observed, we can use these

coordinates to interpret T as a multidimensional array in KI1×...×IL . Every time we refer

to T as a element of KI1×...×IL it will be implicit that there are fixed bases. Matrices

can act on T by L “distinct directions” through the usual matrix multiplication. Let

M(1) ∈ KI′1×I1 , . . . ,M(L) ∈ KI′L×IL be any matrices, then we denote by (M(1), . . . ,M(L))·T
the “multiplication” between the L-tuple (M(1), . . . ,M(L)) and T . The result of this

multiplication is the tensor S = (M(1), . . . ,M(L)) · T ∈ KI′1 ⊗ . . .⊗KI′L defined as

sj1...jL =

I1∑
i1=1

. . .

IL∑
iL=1

m
(1)
j1i1

. . .m
(L)
jLiL

ti1...iL .

This operation is called multilinear multiplication. In the particular case T is a matrix, we

have that (M,N) ·T = M ·T ·NT , and in the case T is a vector we have (M) ·T = M ·T .

As a direct consequence of the definition, the tensor S is given in coordinates, although

we do not have defined any basis for the spaces KI′1 , . . . ,KI′L . The choice of these bases

depends on each situation and in principle is arbitrary. The definition of the multilinear

multiplication is motivated by the idea of making change of basis.
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Consider the bases B(`) = {e(`)
1 , . . . , e

(`)
I`
}, B̃(`) = {ẽ(`)

1 , . . . , ẽ
(`)
I`
} for each space KI` and

let M(`) ∈ KI`×I` be the change of basis matrix from B̃(`) to B(`), that is, we have that

e
(`)
i =

I∑̀
j=1

m
(`)
ji ẽ

(`)
j .

It follows that

T =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL e
(1)
i1
⊗ . . .⊗ e

(L)
iL

=

=

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL

(
I1∑
j1=1

m
(1)
j1i1

ẽ
(1)
j1

)
⊗ . . .⊗

(
IL∑
jL=1

m
(L)
jLiL

ẽ
(L)
jL

)
=

=

I1∑
i1=1

. . .

IL∑
iL=1

I1∑
j1=1

. . .

IL∑
jL=1

m
(1)
j1i1

. . .m
(L)
jLiL

ti1...iL ẽ
(1)
j1
⊗ . . .⊗ ẽ

(L)
jL

=

=

I1∑
j1=1

. . .

IL∑
jL=1

sj1...jL ẽ
(1)
j1
⊗ . . .⊗ ẽ

(L)
jL
,

where

sj1...jL =

I1∑
i1=1

. . .

IL∑
iL=1

m
(1)
j1i1

. . .m
(L)
jLiL

ti1...iL .

Remark 2.1.1. The change of basis is given by the formula S = (M(1), . . . ,M(L)) · T .

The tensor S in coordinates represents T after this change of basis. The difference be-

tween S and T is only in its representation as a multidimensional array since it de-

pends on coordinates. But as tensors they are the same object, which we refer as the

abstract tensor. One could be more precise and use some notation like TB̃(1),...,B̃(L) =

(M(1), . . . ,M(L)) · TB(1),...,B(L). This notation is more cumbersome and for this reason we

will avoid it. Furthermore, it is not always the case that the matrices involved are change

of basis matrices.

Let S = (M(1), . . . ,M(L)) · T . Sometimes the following equality is useful:

S =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL M
(1)
:i1
⊗ . . .⊗M

(L)
:iL

Denote by GL(d,K) the linear group of matrices in Kd×d. If the field K is clear

from the context, we just denote GL(d). As we know, all change of basis matrices are

invertible and every invertible matrix can be interpreted as a change of basis. This gives

us a criterion of equivalence between tensors.
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Definition 2.1.2. Let two tensors T ,S ∈ KI1×...×IL. We say they are equivalent if there

are matrices M(1) ∈ GL(I1), . . . ,M(L) ∈ GL(IL) such that S = (M(1), . . . ,M(L)) · T .

Theorem 2.1.3. Let two tensors T ,S ∈ KI1×...×IL. They represent the same abstract

tensor if, and only if, they are equivalent.

In the case of the theorem being valid, it is possible to have S 6= T as multidimensional

arrays and S = T as abstract tensors. This is the same situation when we have distinct

matrices representing the same linear map, the difference is only due to the choice of

basis. Below there are some basic properties of the multilinear multiplication.

Theorem 2.1.4 (V. de Silva and L. H. Lim, 2008). Let two tensors T ,S ∈ KI1×...×IL and

the matrices M(1) ∈ KI′1×I1, . . ., M(L) ∈ KI′L×IL. Then

1. For all α, β ∈ K, we have

(M(1), . . . ,M(L)) · (αT + βS) = α((M(1), . . . ,M(L)) · T ) + β((M(1), . . . ,M(L)) · S).

2. For all N(1) ∈ KI′′1×I′1 , . . . ,N(L) ∈ KI′′L×I
′
L, we have

(N(1), . . . ,N(L)) · ((M(1), . . . ,M(L)) · T ) = (N(1)M(1), . . . ,N(L)M(L)) · T .

3. For all α, β ∈ C and all A,B ∈ KI′j×Ij , we have

(M(1), . . . ,M(j−1), αA + βB,M(j+1), . . . ,M(L)) · T =

= α((M(1), . . . ,M(j−1),A,M(j+1), . . . ,M(L))·T )+β((M(1), . . . ,M(j−1),B,M(j+1), . . . ,M(L))·T ).

Theorem 2.1.5 (V. de Silva and L. H. Lim, 2008). Let T ∈ KI1 ⊗ . . .⊗KIK and M(1) ∈
KI′1×I1, . . ., M(L) ∈ KI′L×IL. Then

1. rank((M(1), . . . ,M(L)) · T ) ≤ rank(T ).

2. If M(1) ∈ GL(I ′1), . . . ,M(L) ∈ GL(I ′L), then rank((M(1), . . . ,M(L)) · T ) = rank(T ).

Now let’s see how the multilinear multiplication and tensor product are related.

Theorem 2.1.6 (V. de Silva and L. H. Lim, 2008). Let v(1)⊗ . . .⊗v(L) ∈ KI1⊗ . . .⊗KIL

be a rank one tensor and let the matrices M(1) ∈ KI′1×I1 , . . . ,M(L) ∈ KI′L×IL. Then

(M(1), . . . ,M(L)) · v(1) ⊗ . . .⊗ v(L) = (M(1)v(1))⊗ . . .⊗ (M(L)v(L)).
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Corollary 2.1.7. Let T =
R∑
r=1

v(1)
r ⊗ . . . ⊗ v(L)

r ∈ KI1 ⊗ . . . ⊗ KIL be a tensor with rank

≤ R and let the matrices M(1) ∈ KI′1×I1 , . . . ,M(L) ∈ KI′L×IL. Then

(M(1), . . . ,M(L)) · T =
R∑
r=1

(M(1)v(1)
r )⊗ . . .⊗ (M(L)v(L)

r ).

Theorem 2.1.8. Let T =
R∑
r=1

λr v
(1)
r ⊗ . . .⊗ v(L)

r ∈ KI1 ⊗ . . .⊗KIL be a tensor with rank

≤ R, where each λr is a scalar. Then

T = (V(1), . . . ,V(L)) · Λ,

where V(`) = [v
(`)
1 , . . . , v

(`)
R ] ∈ KI`×R for each ` = 1 . . . R, and Λ = diag(λr) ∈ KR×...×R is

a diagonal tensor of order L.1

Corollary 2.1.9. Let T =
R∑
r=1

λr xr ⊗ yr ⊗ zr ∈ KI1 ⊗KI2 ⊗KI3 be a third order tensor

with rank ≤ R, where each λr is a scalar. Then

T = (X,Y,Z) · Λ,

where X = [x1, . . . ,xR] ∈ KI1×R, Y = [y1, . . . ,yR] ∈ KI2×R, Z = [z1, . . . , zR] ∈ KI3×R and

Λ = diag(λr) ∈ KR×R×R is a diagonal tensor.

2.1.1 Unfoldings

Suppose we have the mode-j fibers of a tensor T ∈ V(1) ⊗ . . . ⊗ V(L). These fibers are

several vectors, as we’ve already seen. We can put them side by side and concatenate

them to form a matrix. The ordering is not that important, we choose the ordering

according to the order of the indexes. With this we have a matrix of shape I` ×
∏
j 6=`

Ij

called a unfolding of T . We denote this unfolding by T(`). Other common names are

matricization and flattening. The construction of T(`) with the ordering we are using can

be described by the following pseudo-code. Denote by [ ] an “empty matrix” which will

be filled column by column, where M ← [M|v] means to add a column vector v at the

right of M and then substitute M by this new matrix.

Algorithm 2.1.10 (Unfolding).

Input: T , `
1These kind of tensor as sometimes called superdiagonal. Denote by λi1...iL the entries of Λ. Then we

have that λi1...iL = λr if i1 = . . . = iL = r, and λi1...iL = 0 otherwise.
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T(`) = [ ]

for iL = 1 . . . IL
. . .

for i`+1 = 1 . . . I`+1

for i`−1 = 1 . . . I`−1
. . .

for i1 = 1 . . . I1

T(`) ←
[
T(`) | Ti1...i`−1 : i`+1...iL

]
Output: T(`)

Example 2.1.11. Consider the tensor T ∈ R3×4×2 given by

T =


 1 4 7 10

2 5 8 11

3 6 9 12

 ,
 13 16 19 22

14 17 20 23

15 18 21 24


 ,

where this is the representation of T through its frontal slices. The mode-1 fibers of T are 1

2

3

 ,
 4

5

6

 ,
 7

8

9

 ,
 10

11

12

 ,
 13

14

15

 ,
 16

17

18

 ,
 19

20

21

 ,
 22

23

24

 .
Note that we already ordered the vectors in accord with our convention. It follows that

T(1) =

 1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 .
The mode-2 fibers are

1

4

7

10

 ,


2

5

8

11

 ,


3

6

9

12

 ,


13

16

19

22

 ,


14

17

20

23

 ,


15

18

21

24

 .
It follows that

T(2) =


1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

 .
Finally, the mode-3 fibers are
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[
1

13

]
,

[
2

14

]
,

[
3

15

]
,

[
4

16

]
,

[
5

17

]
,

[
6

18

]
,

[
7

19

]
,

[
8

20

]
,

[
9

21

]
,

[
10

22

]
,

[
11

23

]
,

[
12

24

]
.

It follows that

T(3) =

[
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

]
.

We can note that T(1) ∈ R3×4·2, T(2) ∈ R4×3·2, T(3) ∈ R2×3·4, as expected.

Unfoldings and multilinear multiplication are highly connected. The idea is that we

can multiply an unfolding by some matrix and consider the result as the unfolding of a

new tensor.

Definition 2.1.12. Let a tensor T ∈ KI1×...×IL and a matrix M ∈ KI′`×I`. The product

mode-` between T and M is the tensor S ∈ KI1×...×I`−1×I′`×I`+1×...×IL such that S(`) =

M · T(`). We denote S = T ×` M.

Although the symbol ×` is at the right of the tensor, in the actual multiplication it

comes at the left, that is, this is a left action on the tensor space. This is just a notational

convention and should not cause confusion. Furthermore, we will omit parenthesis when

making more than one of these products. More precisely, we will write T ×` M ×`′ N
instead of (T ×` M)×`′ N. It is possible to obtain S explicitly in coordinates, this gives

Si1...i`−1 i
′
` i`+1...iL =

I′∑̀
k=1

mi′` k
· ti1...i`−1 k i`+1...iL

for all i′` = 1 . . . I ′`. This formula remind us the formula of the multilinear multiplication.

Indeed there is a connection. Let a tensor T ∈ KI1×...×IL and matrices M(1) ∈ KI′1×I1 , . . .,

M(L) ∈ KI′L×IL . Then

(M(1), . . . ,M(L)) · T = T ×1 M(1) ×2 M(2) . . .×L M(L).

This relationship gives us a clearer picture of how the multilinear multiplication acts

on tensors. Each M(`) multiplies all the mode-j fibers of T (which in the end is equivalent

to multiply M(`) by T(`)), and thus we obtain a new tensor. The next example clarifies

how works this relationship more concretely.

Example 2.1.13. Let T be the tensor of the previous example and let M =

[
1 3 5

2 4 6

]
.

By definition, we have that T ×1 M ∈ R2×4×2, with

(T ×1 M)(1) = M · T(1) =
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=

[
1 3 5

2 4 6

] 1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 =

=

[
22 49 76 103 130 157 184 211

28 64 100 136 172 208 244 280

]
.

This is matrix of order 2 × (4 · 2) = 2 × 8, so that the first half of the matrix is the

first frontal slice of T ×1 M. From this we conclude that

T ×1 M =

{[
22 49 76 103

28 64 100 136

]
,

[
130 157 184 211

172 208 244 280

]}
.

To make this example simple, we will only consider the action of the matrix M. Note

that T ×1 M = T ×1 M×2 I4 ×3 I2 = (M, I4, I2) · T . Now let S = (M, I4, I2) · T . From

the multilinear multiplication definition we have that

Si′j′k′ =
3∑
i=1

4∑
j=1

2∑
k=1

mi′i · (I4)j′j · (I2)k′k · tijk =
3∑
i=1

mi′i · tij′k′ = Mi′: · T:j′k′ .

This last expression is the product of the i′-th row of M by the column vector of T
obtained by fixing j′, k′ and varying the rows, that is, a mode-1 fiber. By varying i′ to

form a mode-1 fiber of S we obtain

S:j′k′ =

[
t1j′k′

t2j′k′

]
=

[
M1: · T:j′k′

M2: · T:j′k′

]
=

[
M1:

M2:

]
· T:j′k′ = M · T:j′k′

From this we conclude that

S(1) = [S:11,S:21,S:31,S:41,S:12,S:22,S:32,S:42] =

= [MT:11,MT:21,MT:31,MT:41,MT:12,MT:22,MT:32,MT:42] =

= M · [T:11, T:21, T:31, T:41, T:12, T:22, T:32, T:42] =

= M · T(1).

2.1.2 Multilinear rank

A natural thing to do is to consider the rank of unfoldings.
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Definition 2.1.14. For each ` = 1 . . . L, the mode-` rank of T is the rank of T(`). We

denote this rank by rank(`)(T ).

Definition 2.1.15. The multilinear rank of T is the L-tuple
(
rank(1)(T ), . . . , rank(L)(T )

)
.

We denote this rank by rank�(T ).

The multilinear rank is also often called the Tucker rank of T . Now we will see some

important results regarding this rank.

Theorem 2.1.16 (V. de Silva and L. H. Lim, 2008). Let T ∈ KI1 ⊗ . . . ⊗ KIL and

M(1) ∈ KI′1×I1 , . . . ,M(L) ∈ KI′L×IL. Then the following statements holds.

1. The multilinear rank doesn’t depend on the field being real or complex.

2. rank�(T ) = (1, 1, . . . , 1) if, and only if, rank(T ) = 1.

3. rank(`)(T ) ≤ min{rank(T ), I1, . . . , IL} for all ` = 1 . . . L.

4. ‖rank�(T )‖∞ ≤ rank(T ).

5. rank�((M(1), . . . ,M(L)) · T ) ≤ rank�(T ).

6. If M(1) ∈ GL(I ′1), . . . ,M(L) ∈ GL(I ′L), then rank�((M(1), . . . ,M(L))·T ) = rank�(T ).

Remark 2.1.17. Consider a tensor in coordinates T ∈ KI1×...×IL such that rank�(T ) =

(R1, . . . , RL). Theorem 2.1.16-6 together with theorem 2.1.5-2 makes it possible to study

rank properties of T as a tensor in KR1×...×RL.

Theorem 2.1.18 (V. de Silva and L. H. Lim, 2008). Let T ∈ KI1×...×IL be a tensor such

that rank�(T ) ≤ (R1, . . . , RL). Then there there exists full rank matrices M(1) ∈ KI1×R1,

. . ., M(L) ∈ KIL×RL and a tensor S ∈ KR1×...×RL such that T = (M(1), . . . ,M(L)) · S and

rank(T ) = rank(S).

2.2 Compressing with the multilinear singular value

decomposition

2.2.1 Tucker decomposition

Definition 2.2.1. Let T ∈ KI1...IL be a tensor. Then a Tucker decomposition of T is a

decomposition of the form T = (M(1), . . . ,M(L)) · S, where M(`) ∈ KI′`×I` for ` = 1 . . . L,

and S ∈ KI′1×...×I′L.
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Each matrix M(`) is called a factor matrix and the tensor S is called the core tensor.

Usually one defines this decomposition assuming all factor matrices are unitary (orthog-

onal), but we will prefer the more general definition. This way the CPD may be seen as

a particular case of the Tucker decomposition.

The Tucker decomposition was first introduced in 1963 and refined subsequently

[58, 59]. This decomposition can be considered as a form of high-order PCA (Princi-

pal Component Analysis)[27] when the core tensor has lower dimensions than the original

one. In this case we consider S as a compressed form of T . Usually the CPD is indicated

for latent parameter estimation and the Tucker decomposition is indicated for compression

and dimensionality reduction.

From what we’ve seen on multilinear multiplication, we can write a Tucker decompo-

sition T = (M(1), . . . ,M(L)) · S as

T =

I1∑
i1=1

. . .

IL∑
iL=1

si1...iL M
(1)
:i1
⊗ . . .⊗M

(L)
:iL
.

If S = diag(sr) ∈ KR×...×R is diagonal and M(`) ∈ KI`×R, then we have a rank-R CPD of

T and we can write

T =
R∑
r=1

sr M(1)
:r ⊗ . . .⊗M(L)

:r .

We can see that the factor matrices of the Tucker decomposition agrees with the factor

matrices of the CPD. On the other extreme, let {e(`)
1 , . . . , e

(`)
I`
} be a basis of KI` for each

` = 1 . . . L. In this case we are able to write T as

T =

I1∑
i1=1

. . .

IL∑
iL=1

ti1...iL e
(1)
i1
⊗ . . .⊗ e

(L)
iL
.

Denoting E(`) = [e
(`)
1 , . . . , e

(`)
L ] ∈ KI`×I` , we can write T = (E(1), . . . ,E(L)) · T . This is

a trivial Tucker decomposition, whereas the CPD can be seen as the “ultimate” Tucker

decomposition. Between these two there are other useful decompositions to consider.

Theorem 2.2.2 (T. G. Kolda, 2006). Let T ∈ KI1...IL be a tensor with a Tucker decom-

position given by T = (M(1), . . . ,M(L)) · S. Then, for each ` = 1 . . . L, the unfolding T(`)

is given by

T(`) = M(`) · S(`) · (M(L)⊗̃ . . . ⊗̃M(`+1)⊗̃M(`−1)⊗̃ . . . ⊗̃M(1))T ,

where ⊗̃ is the Kronecker product, see appendix B.

Corollary 2.2.3. Let T ∈ KI1×I2×I3 be a third order tensor with a CPD given by T =
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R∑
r=1

λr xr ⊗ yr ⊗ zr = (X,Y,Z) · Λ, where Λ = diag(λr) ∈ KR×R×R. Then

Λ(1) = Λ(2) = Λ(3) =


λ1 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 0 λ2 . . . 0 . . . 0 0 . . . 0
...

... . . .
...

0 0 . . . 0︸ ︷︷ ︸
R columns

0 0 . . . 0︸ ︷︷ ︸
R columns

. . . 0 0 . . . λR︸ ︷︷ ︸
R columns


and, denoting this matrix by [Λ], we also have that

T(1) = X · [Λ] · (Z⊗̃Y)T ,

T(2) = Y · [Λ] · (Z⊗̃X)T ,

T(3) = Z · [Λ] · (Y⊗̃X)T .

Theorem 2.2.4 (T. G. Kolda, 2006). Let T ∈ KI1...IL be a tensor with a Tucker decompo-

sition given by T = (M(1), . . . ,M(L)) · IR×...×R. Then, for each ` = 1 . . . L, the unfolding

T(`) is given by

T(`) = M(`) · (M(L) � . . .�M(`+1) �M(`−1) � . . .�M(1))T .

2.2.2 Multilinear singular value decomposition

Now we will see how to generalize the SVD to tensors. This generalization is called

multilinear singular value decomposition (MLSVD), but sometimes it is also called High

order singular value decomposition (HOSVD). Some texts even call this as being the

Tucker decomposition. This generalization has been investigated in psychometrics [59]

as the Tucker model, which basically was a special Tucker decomposition of third order

tensors. The first work to formalize this as a high order singular value decomposition is

[30].

Let M be a matrix with SVD given by M = UΣV∗. We can rewrite this equation

using the multilinear multiplication notation, then we obtain M = (U,V) · Σ, where V

is the conjugate of V coordinatewise. Denoting U(1) = U and U(2) = V, we can write

M = (U(1),U(2)) · Σ. The MLSVD is a generalization of this observation.

Given a tensor S ∈ KI1×...×IL , let Si`=k ∈ KI1×...×I`−1×I`+1×...×IL be the subtensor of

S obtained by fixing the `-th index of S with value equal to k and varying all the other

indexes. More precisely, Si`=k = S:...:k:...:, where the value k is at the `-th index. We call

these subtensors by hyperslices. In the case of a third order tensors, these subtensors are

the slices described in 1.3. Si1=k are the horizontal slices, Si2=k the lateral slices and Si3=k

the frontal slices.
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Theorem 2.2.5 (L. De Lathauwer, B. De Moor, J. Vandewalle, 2000). Let T ∈ KI1×...×IL

be arbitrary. Then there exists unitary (orthogonal) matrices U(1) ∈ KI1×I1 , . . ., U(L) ∈
KIL×IL and a tensor S ∈ KI1×...×IL such that

1. T = (U(1), . . . ,U(L)) · S.

2. For all ` = 1 . . . L, the subtensors Si`=1, . . . ,Si`=I` are orthogonal with respect to

each other.

3. For all ` = 1 . . . L, ‖Si`=1‖ ≥ . . . ≥ ‖Si`=I`‖.

Proof: For each unfolding T(`), consider the corresponding reduced SVD

T(`) = U(`) · Σ(`) · (V(`))∗

where Σ(`) = diag
(
σ

(`)
1 , . . . , σ

(`)
I`

)
∈ RI`×I` and U ∈ KI`×I` ,V ∈ K(

∏
j 6=` Ij)×I` are unitary

(orthogonal) matrices. Let S ∈ KI1×...IL be the tensor defined as

S =
((

U(1)
)∗
, . . . ,

(
U(L)

)∗) · T .
By theorem 2.2.2 we know that

S(`) = (U(`))∗ · T(`) ·
((

U(L)
)∗⊗̃ . . . ⊗̃(U(`+1)

)∗⊗̃(U(`−1)
)∗⊗̃ . . . ⊗̃(U(1)

)∗)T
=

= (U(`))∗ · T(`) ·
(
U(L)⊗̃ . . . ⊗̃U(`+1)⊗̃U(`−1)⊗̃ . . . ⊗̃U(1)

)
=

= Σ(`) · (V(`))∗ ·
(
U(L)⊗̃ . . . ⊗̃U(`+1)⊗̃U(`−1)⊗̃ . . . ⊗̃U(1)

)
.

Denote by (S(`))k: the k-th row of S(`). From the definition we have that (S(`))k: =

Si`=k. Now let 1 ≤ k, k′ ≤ I` distinct, then we have 〈Si`=k,Si`=k′〉 = 0 because S(`) has or-

thonormal rows. This last assertion follows from the fact that S(`) is the product of a diag-

onal matrix by two of unitary (orthogonal) matrices. Finally, note that ‖Si`=k‖ = |σ(`)
k | =

σ
(`)
k . Hence it follows that ‖Si`=1‖ ≥ . . . ≥ ‖Si`=I`‖. �

Property 2 is called all-orthogonality. It means that 〈Si`=k,Si`=k′〉 = 0 for all k, k′ =

1 . . . I` and k 6= k′. The inner product considered is the one mentioned at the beginning

of the tensor geometry section. The ordering given in property 3 can be considered

as a convention, made to fix a particular ordering of the columns of the matrices U(`).

Additionally, this ordering gives us a more precise parallel to the SVD. We will denote

σ
(`)
k = ‖Si`=k‖ and call this a singular value mode-` of T , while each column vector U

(`)
:j

is called a singular vector mode-` of T . An algorithm for computing the MLSVD is

presented below.
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Algorithm 2.2.6 (MLSVD).

Input: T ∈ RI1×...×IL

for ` = 1 . . . L

T(`) ← Unfolding (T , `)
U(`),Σ(`),

(
V(`)

)∗ ← SVD (T(`))

S ←
((
U(1)

)∗
, . . . ,

(
U(L)

)∗) · T
Output: U(`),Σ(`) ∈ RI`×I` for ` = 1 . . . L and S ∈ RI1×...×IL

The core tensor S of the MLSVD distributes the “energy” (i.e., the magnitude of its

entries) in such a way so that it concentrates more energy around the first entry s11...1 and

disperses as we move along each dimension. Figure 2.1 illustrates the energy distribution

when S is a third order tensor. The red slices contains more energy and it changes to

white when the slice contains less energy. Note that the energy of the slices are given

precisely by the singular values.

Figure 2.1: Energy of the slices of a core third order tensor S obtained after a MLSVD.

Theorem 2.2.7 (L. De Lathauwer, B. De Moor, J. Vandewalle, 2000). Let S(`) be an

unfolding of S. If (S(`))k: is the k-th row of S(`), then ‖(S(`))k:‖ = σ
(`)
k .

Let T = (U(1), . . . ,U(L)) · S be the MLSVD of T . Define the matrix Σ(`) ∈ KI`×I`

given by Σ(`) = diag
(
σ

(`)
1 , . . . , σ

(`)
I`

)
, and let S̃(`) ∈ KI`×I` be defined by the relation

S(`) = Σ(`) · S̃(`). Notice that S̃(`) is the normalized version of S(`) (it has unit-length

rows). In the case none of the σ
(`)
k is null, we can write S̃(`) =

(
Σ(`)

)−1 · S(`). Finally,

define the matrix V(`) ∈ K(
∏
j 6=` Ij)×I` given by the relation

(V(`))∗ = S̃(`) ·
(
U(L)⊗̃ . . . ⊗̃U(`+1)⊗̃U(`−1)⊗̃ . . . ⊗̃U(1)

)
.
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With these notations and the formula for T(`) (theorem 2.2.2) we can write

T(`) = U(`) · Σ(`) · (V(`))∗.

Theorem 2.2.8 (L. De Lathauwer, B. De Moor, J. Vandewalle, 2000). With the notations

above, T(`) = U(`) · Σ(`) · (V(`))∗ is a SVD for T(`), for each ` = 1 . . . L.

With this theorem we can see that the MLSVD is a reasonable extension of the SVD,

because one property desired for such an extension is to be able to use the MLSVD to

obtain the SVD of each unfolding of T . Soon we will give more reasons to consider this

as a good extension of the SVD.

In the MLSVD, just as in the SVD, it is possible to have the last singular values

mode-` equal to zero, that is, it can exist a number 1 ≤ R` ≤ I` such that σ
(`)
k = 0 for

k = R` + 1 . . . I`. Therefore all hyperslices Si`=k are null (all of its entries are zero) for

k = R` + 1 . . . I`. Consequently, if we have i` > R` for a multi-index (i1, . . . , iL), then

si1...iL = 0. With this, we can write the tensor T as

T =

R1∑
i1=1

. . .

RL∑
iL=1

si1...iL U
(1)
:i1
⊗ . . .⊗U

(L)
:iL
,

which shows T as a sum of
L∏
`=1

R` rank one terms. We illustrate the form of S in the

figure below as a third order core tensor. The gray part corresponds to the part of nonzero

values, while the white part consists only of zeros.

Figure 2.2: Representation of the null slices slices of core third order tensor S obtained after a MLSVD.
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As a consequence of the above observation and theorem 2.1.16-4, we obtain

max
`
R` ≤ rank(T ) ≤

L∏
`=1

R`,

which gives us an upper and lower bound for the rank of T .

Instead of considering S as a tensor in KI1×...×IL with lots of zeros, we can focus only

on the dense part, hence we consider S as a tensor in KR1×...×RL . This possibility had

already been discussed shortly in 2.1.17. In doing so, we can also discard the last I`−R`

columns of each U(`), hence we have U(`) ∈ KI`×R` . The equality T = (U(1), . . . ,U(L)) · S
remains intact after these changes, we only removed the unnecessary terms. Note that we

passed from
L∏
`=1

I` terms to just
L∏
`=1

R`. The procedure of obtaining such decomposition

clearly shows that S, after deleting the unnecessary zeros, is a compressed version of T .

The MLSVD in compressed form can also be called a reduced MLSVD, in contrast to the

full MLSVD of theorem 2.2.5.

Remark 2.2.9. After computing the MLSVD of T , notice that computing a CPD for S

is equivalent to computing a CPD for T . Indeed, if S =
R∑
r=1

w(1)
r ⊗ . . . ⊗ w(L)

r , then we

can write S = (W(1), . . . ,W(L)) · IR×...×R, which implies that

T = (U(1), . . . ,U(L)) ·
(

(W(1), . . . ,W(L)) · IR×...×R
)

=

= (U(1)W(1), . . . ,U(L)W(L)) · IR×...×R.

Now we go back to our claim that the MLSVD is indeed a good generalization of the

SVD. The next results demonstrate such claim.

Theorem 2.2.10 (L. De Lathauwer, B. De Moor, J. Vandewalle, 2000). In the case

L = 2, the MLSVD is equal to the SVD of matrices.

Theorem 2.2.11 (L. De Lathauwer, B. De Moor, J. Vandewalle, 2000). Let T =

(U(1), . . . ,U(L)) · S be MLSVD of T and, for each ` = 1 . . . L, let R` be the largest index

such that σ
(`)
R`
> 0. Then the following holds.

1. rank�(T ) = (R1, . . . , RL).

2. Im(T(`)) = span(U
(`)
1 , . . . ,U

(`)
R`

) for each ` = 1 . . . L.

3. ker(T ∗(`)) = span(U
(`)
R`+1, . . . ,U

(`)
I`

) for each ` = 1 . . . L.

4. ‖T ‖2 = ‖S‖2 =

R1∑
r=1

(
σ(1)
r

)2
= . . . =

RL∑
r=1

(
σ(L)
r

)2
.
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Item 1 of this theorem tells us that the values R` coincide with the rank mode-`

of T . This is in agreement with the relation between the singular values of matrices

and rank. All other items also have their immediate version for the classic SVD. A

relevant SVD property that unfortunately does not extend to the MLSVD is that of the

tensor closest to T with a fixed lower multilinear rank. In the matrix case we have the

Eckart-Young theorem, which states that the rank-R̃ matrix closest to M =
R∑
r=1

σrurv
∗
r is

M̃ =
R̃∑
r=1

σrurv
∗
r, where R̃ ≤ R and the decomposition for M is a SVD. M̃ is a low rank

approximation for M (the best one with rank R̃) and in this case we have the following

theorem about the error of this approximation.

Theorem 2.2.12. With the notations above, we have that2

‖M− M̃‖2 =
R∑

r=R̃+1

σ2
r .

We can obtain a truncation T̃ for T in a totally analogous way. Let rank�(T ) =

(R1, . . . , RL). Given a lower multilinear rank (R̃1, . . . , R̃L) < (R1, . . . , RL), we obtain a

truncation by zeroing all coefficients t̃i1...iL when some of its indexes satisfies i` > R̃`.

Then we have the a tensor of multilinear rank (R̃1, . . . , R̃L) given by

T̃ =

R̃1∑
i1=1

. . .

R̃L∑
iL=1

ti1...iL U
(1)
:i1
⊗ . . .⊗U

(L)
:iL
.

The following result first appeared in [30] and the first correct proof appeared in [44].

Theorem 2.2.13. With the notation above, we have that

‖T − T̃ ‖2 ≤
R1∑

r=R̃1+1

(
σ(1)
r

)2
+ . . .+

RL∑
r=R̃L+1

(
σ(L)
r

)2
.

In general, T̃ is a very good low multilinear rank approximation for T , but unlike

the matrix case, it is not necessarily the best approximation with low multilinear rank

(R̃1, . . . , R̃L). At the time we know that [80]

‖T − T̃ ‖ ≤
√
L min
rank�(X )=(R̃1,...,R̃L)

‖T − X‖.

The current algorithms to obtain the best approximation usually use the MLSVD to

obtain T̃ and then use this tensor (which is already very close to T ) as the starting point

for some iterative algorithm [89].

2Remember that we are using the Frobenius norm.
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A few words about the cost of algorithm 2.2.6 are necessary. Start noting that the

construction of the unfoldings of T requires noncontiguous memory accesses. Although

the computational time to achieve this may be noticeable, we disregard this cost because

the time to compute the SVDs dominates the algorithm. In general, the unfolding T(`)

probably will have much more columns than rows. The procedure described in A.1.5

permits one to compute its singular values σ
(`)
k and its left singular vectors U

(`)
:k with low

cost since the left singular vectors are the eigenvectors obtained in lemma A.1.2. With

this approach we don’t compute the right singular vectors, but that is fine since they

are not used for the MLSVD. In fact, not computing them is a good thing, we avoid

unnecessary computations (note that this wouldn’t be possible if we computed the SVD

of T(`) directly). The cost of this approach is of O

(
I`

L∏
`′=1

I`′ + I3
`

)
flops. The case

where T(`) have less columns than rows is a bit more problematic, we have a unbalanced

tensor (definition B.2.10) to deal with. We could take a similar route and compute the

eigenvalues of T T(`)T(`) but now the eigenvectors obtained are the right singular vectors

of T(`), which we don’t need to use. This is a situation where we have to use the SVD

and lose some performance. Computing the reduced SVD in this case has a cost of, at

least, O

(
2I`
∏
`′ 6=`

I2
`′ + 2

∏
`′ 6=`

I3
`′

)
flops. Instead of computing the full SVD and deal with

these high costs, we can take another route and compute a truncated SVD. Since each

T(`) has rank not bigger than min{I`, R}, we define P` = min{I`, R} and compute the

truncated SVD with P` singular values. This approach has a cost of O

(
P`

L∏
`′=1

I`′

)
flops,

which is much better than the previous cost. If we are willing to lose some precision to

gain speed, it is possible to use randomized algorithms for the truncated SVD [31]. This

algorithm has a cost of O

(
log(P`)

L∏
`′=1

I`′

)
flops and the loss in precision is negligible.

Since we need to perform this computation for each ` = 1 . . . L, the overall cost is of

O

(
L∑
`=1

log(P`)
L∏

`′=1

I`′

)
.

The approach just described to compute the MLSVD can be referred as the classic

truncated, where the idea is to compute the truncated SVD of each unfolding of T . A much

faster and slightly less precise approach is the sequentially truncated MLSVD algorithm

introduced by N. Vannieuwenhove, R. Vandebril and K. Meerberge [44], which consists

of interlacing the computation of the core tensor and the factor matrices. The cost is

of this algorithm is of O

(
L∑
`=1

log(P`)
`−1∏
`′=1

R`′

L∏
`′=`

I`′ +R2
`

`−1∏
`′=1

R`′

L∏
`′=`+1

I`′

)
flops. The first

is cost is due to the truncated SVD and the second one is due to the matrix-matrix

multiplication, see algorithm below.
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Algorithm 2.2.14 (ST-MLSVD).

Input: T ∈ RI1×...×IL

S(0) = T
for ` = 1 . . . L

S(`−1)
(`) ← Unfolding (S(`−1), `)

U(`),Σ(`),V(`) ← SVD (S(`))

Set S(`), where S(`)
(`) = Σ(`)

(
V(`)

)T
Output: U(`) ∈ RI`×R` ,Σ(`) ∈ RR`×R` for ` = 1 . . . L and S ∈ RR1×...×RL

The first version of Tensor Fox only used the classic truncated algorithm to compute

the MLSVD, but now it has the possibility to switch between this one and the sequentially

truncated algorithm.
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Chapter 3

Gauss-Newton algorithm

In this chapter we really begin to touch the computational aspects of the CPD. Some

of the history and known algorithms are discussed, and then we go to nonlinear least

squares algorithms, which includes the Gauss-Newton method. This is the method used

by Tensor Fox. The main challenge is the approximated Hessian, which is singular by

construction. To overcome this issue we introduce a new kind of regularization. We also

give the constructive proofs of some already known results from tensor algebra. The

reason of this is to give the reader an understanding of the computational aspects related

of our problems, this makes a nice parallel with actual coding necessary to make Tensor

Fox. Therefore all proofs are given in coordinates. In the end of the chapter we show

one of the main contributions of this work: a set of formulas to make fast matrix-vector

computations with low memory cost.

3.1 Preliminaries

In 1927, Hitchcock [60, 61] proposed the idea of the CPD. This idea only became popular

in 1970 inside the psychometrics community, called CANDECOMP (canonical decompo-

sition) by Carrol and Chang [62], and PARAFAC (parallel factors) by Harshman [63].

Gradually the CPD began to be applied in more areas and today is a successful tool for

multi-dimensional data analysis and prediction, such as blind source separation, food in-

dustry, dimensionality reduction, pattern/image recognition, machine learning and data

mining [2, 3, 5, 7–9].

As we mentioned in section 1.4, computing the rank of a tensor is a NP-hard problem.

Given a tensor T one may try to find its rank together with its CPD by searching for a

best fit, that is, for each R = 1, 2, . . ., compute a rank-R CPD for T until some criteria

of good fit is reached. This is a possible but risky procedure because of the border

rank phenomenon. More precisely, if rank(T ) < rank(T ), then it is possible to obtain

arbitrarily good fits with low rank approximations for T . This may cause problems in

practice [57, 64, 65].
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Fix a tensor T ∈ KI1×...×IL and a value R. Our problem is to compute a rank-R

approximation T̃ = (W(1), . . . ,W(L)) · IR×...×R ∈ KI1×...×IL . More precisely, T̃ is given by

T̃ =
R∑
r=1

w(1)
r ⊗ . . .⊗w(L)

r , (3.1)

where W(`) = [w
(`)
1 , . . . ,w

(`)
R ]T are the factor matrices, for ` = 1, . . . L, and IR×...×R ∈

KR×...×R is the diagonal tensor with L dimensions.

Note that we don’t assume rank(T ) = R, we only assume that such R is given.

Frequently the data at hand is noisy, because of this the rank of T may be different from

the noiseless data, and this is the one we are interested in. Usually is a good idea to

compute low rank approximations since the noise can cause the rank to be typical or

generic, that is, the noisy tensors are not special (because they are “everywhere”) but the

objective tensor is. We want this approximation to be such that ‖T − T̃ ‖ is smallest as

possible. The most common approach is to formulate the problem as an unconstrained

minimization problem

min
T̃

1

2
‖T − T̃ ‖2. (3.2)

Define the function F : KR
∑L
`=1 I` → R given by

F (w) =
1

2
‖T − (W(1), . . . ,W(L)) · IR×...×R‖2,

where w is the just the vector obtained by vertically stacking1 all columns of all factor

matrices. More precisely,

w =


vec(W(1))

...

vec(W(L))

 .
Note that solving 3.2 is equivalent to minimizing F . In this work we will be considering

only real tensors, but the complex case is considered in [15] for instance. The first thing

we should note is that any solution of 3.2 is a critical point of F so it is of interest to

derive an expression for the derivative of F and its critical points.

Lemma 3.1.1. For any vectors x(1),y(1) ∈ RI1 , . . . ,x(L),y(L) ∈ RIL we have that

L∏
`=1

〈x(`),y(`)〉 =

I1∑
i1=1

. . .

IL∑
iL=1

x
(1)
i1
. . . x

(L)
L y

(1)
i1
. . . y

(L)
iL
.

1Remember, from example 1.3.8, that vec(W(`)) is the vector obtained by vertically stacking all

columns of W(`).
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Theorem 3.1.2. For all `′ = 1 . . . L, i′ = 1 . . . I` and r′ = 1 . . . R, we have

∂F

w
(`′)
i′r′

(w) = −T (w
(1)
r′ , . . . , e

(`′)
i′ , . . . ,w

(L)
r′ ) +

R∑
r=1

w
(`′)
i′r

∏
` 6=`′
〈w(`)

r ,w
(`)
r′ 〉.

Proof:

∂F

w
(`′)
i′r′

(w) =
1

2

∂

∂w
(`′)
i′r′

 I1∑
i1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)2
 =

=
1

2

I1∑
i1=1

. . .

IL∑
iL=1

∂

∂w
(`′)
i′r′

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)2

=

=
1

2

I1∑
i1=1

. . .

IL∑
iL=1

2

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)
· ∂

∂w
(`′)
i′r′

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)
=

=

I1∑
i1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)
·

(
− ∂

∂w
(`′)
i′r′

w
(1)
i1r′

. . . w
(L)
iLr′

)
=

=

I1∑
i1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)
·

(
−
∏
` 6=`′

w
(`)
i`r′
· ∂

∂w
(`′)
i′r′

w
(`′)
i`′r
′

)
=

=

I1∑
i1=1

. . .

I`′−1∑
i`′−1=1

I`′+1∑
i`′+1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(`′)
i′r

∏
`6=`′

w
(`)
i`r

)
·

(
−
∏
`6=`′

w
(`)
i`r′
· ∂

∂w
(`′)
i′r′

w
(`′)
i′r′

)
=

=

I1∑
i1=1

. . .

I`′−1∑
i`′−1=1

I`′+1∑
i`′+1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(`′)
i′r

∏
` 6=`′

w
(`)
i`r

)
·

(
−
∏
`6=`′

w
(`)
i`r′

)
=

= −
I1∑
i1=1

. . .

I`′−1∑
i`′−1=1

I`′+1∑
i`′+1=1

. . .

IL∑
iL=1

ti1...iL
∏
6̀=`′
w

(`)
i`r′

+
R∑
r=1

w
(`′)
i′r

I1∑
i1=1

. . .

I`′−1∑
i`′−1=1

I`′+1∑
i`′+1=1

. . .

IL∑
iL=1

∏
`6=`′

w
(`)
i`r

∏
6̀=`′
w

(`)
i`r′
.

= −T (w
(1)
r′ , . . . , e

(`′)
i′ , . . . ,w

(L)
r′ ) +

R∑
r=1

w
(`′)
i′r

∏
`6=`′
〈w(`)

r ,w
(`)
r′ 〉,

where the last term was calculated using the previous lemma. �
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Corollary 3.1.3. Let
∂F

w
(`′)
r′

(w) =

[
∂F

w
(`′)
1r

, . . . ,
∂F

w
(`′)
I`′r

]T
, then

∂F

w
(`′)
r′

(w) = −


T (w

(1)
r′ , . . . , e

(`′)
1 , . . . ,w

(L)
r′ )

...

T (w
(1)
r′ , . . . , e

(`′)
I`′
, . . . ,w

(L)
r′ )

+
R∑
r=1

∏
` 6=`′
〈w(`)

r ,w
(`)
r′ 〉w

(`′)
r .

Before we start talking about algorithms, it is relevant to mention what are the biggest

challenges we will be facing when designing an algorithm to solve 3.2. In the following,

let T =
R∑
r=1

v(1)
r ⊗ . . .⊗ v(L)

r .

1. As mentioned in section 1.5, finding the best rank-R approximation may be a ill-

posed problem.

2. Ill-posed problems are not “rare” in the sense that the set of ill-posed problems (i.e.,

the set of tensors such that 3.2 is ill-posed) usually have positive volume [20].

3. We say T has a bottleneck if there is a mode 1 ≤ ` ≤ L such that at least two vectors

v
(`)
r′ and v

(`)
r′′ are almost collinear. This means T has two “problematic” vectors in

RI` , and they are considered problematic because two different rank one terms will

have almost collinear vectors at the `-th position.

4. We say T has a swamp if there are bottlenecks in all modes.

5. We say T has a degeneracy if some factors diverge but cancel out when the process

of computing a best fit is performed. This is the same degeneracy mentioned at the

end of section 1.5.

The last three items in this list constitutes a classification of possible causes of bad

numerical performance in numerical algorithms to compute the CPD. This classification

was proposed already in 1989 [48] and still is used today. To get a better understand of

bottlenecks and swamps, we illustrate these occurrences in the next two examples.

Example 3.1.4 (Bottleneck). Consider the tensor T ∈ R2×2×2 given by

T =

[
1

2

]
⊗

[
0

1

]
⊗

[
3

4

]
+

[
1.01

1.9

]
⊗

[
1

1

]
⊗

[
2

1

]
+

[
0

2

]
⊗

[
2

2

]
⊗

[
4

4

]
.

The vectors of the first mode are[
1

2

]
,

[
1.01

1.9

]
,

[
0

2

]
.

49



The vectors of the second mode are[
0

1

]
,

[
1

1

]
,

[
2

2

]
.

The vectors of the third mode are[
3

4

]
,

[
2

1

]
,

[
4

4

]
.

We can note that the vectors of the first mode introduces a possible bottleneck in T .

More precisely, consider the two vectors

[
1

2

]
and

[
1.01

1.9

]
of the first mode are. Com-

pared to the vectors of the other modes, these two are indeed very close to be equal (hence

collinear) so we can consider that T has a bottleneck. This is a single bottleneck, but it is

possible to have multiple bottlenecks. The extreme case is when we have bottlenecks at all

modes, which represents a swamp.

Example 3.1.5 (Swamp). Consider the tensor T ∈ R2×2×2 given by

T =

[
1

2

]
⊗

[
0

1

]
⊗

[
3

4

]
+

[
1.01

1.9

]
⊗

[
0

1

]
⊗

[
1

1

]
+

[
0.09

2.01

]
⊗

[
10−6

1

]
⊗

[
2.99

3.99

]
.

The vectors of the first mode are[
1

2

]
,

[
1.01

1.9

]
,

[
0.09

2.01

]
.

The vectors of the second mode are[
0

1

]
,

[
0

1

]
,

[
10−6

1

]
.

The vectors of the third mode are[
3

4

]
,

[
1

1

]
,

[
2.99

3.99

]
.

In all modes there are at least two almost collinear vectors, therefore T has a swamp.

Now we briefly describe the most used approaches to compute a CPD.
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3.2 Alternating least squares

Several different approaches to solving 3.2 were proposed in the past years, but before

that, a single algorithm were used from decades: the alternating least squares (ALS). For

decades this was considered to be the “workhorse” algorithm to compute the CPD. We

present the algorithm for third order tensor and generalize after that. From this point,

we write m× n× p instead I1 × I2 × I3 for third order tensor.

Consider a tensor T ∈ Rm×n×p and suppose we want to compute a rank-R CPD for

T . Let T̃ =
R∑
r=1

xr ⊗yr × zr be the approximating tensor, and X = [x1, . . . ,xR] ∈ Rm×R,

Y = [y1, . . . ,yR] ∈ Rn×R, Z = [z1, . . . , zR] ∈ Rp×R the factor matrices.

The first step of the ALS algorithm consists in generating a initial tensor T̃ to start the

iterations. The method of initialization is not part of the algorithm so we won’t discuss

it here. Now fix Y,Z and solve the minimization problem

min
X
‖T − (X,Y,Z) · IR××R‖.

Note that we solve it just for X. After this is done, fix X,Z and solve the minimization

problem

min
Y
‖T − (X,Y,Z) · IR××R‖

for Y. After that, fix X,Y and solve the minimization problem

min
Z
‖T − (X,Y,Z) · IR××R‖

for Z. Once the three factor matrices are updated we repeat this procedure all over again,

updating as many times as necessary. The name comes from the fact we are alternating

the factor matrices to be solved at each linear least squares problem. To see that these

minimization problems indeed are linear least squares problems, note that we can rewrite

the first one as

min
X
‖T(1) − T̃(1)‖ = min

X
‖T(1) −X · (Z�Y)T‖,

where the equality T̃(1) = X · (Z �Y)T comes from theorem 2.2.4. The solution of this

problem is given explicitly by X = T(1) · ((Z�Y)T )†. Theorem B.3.5 gives a formula for

the pseudoinverse of a Khatri-Rao product, so we have

((Z�Y)T )† = ((Z�Y)†)T =
(
((ZTZ) ∗ (YTY))†(Z�Y)T

)T
=

= (Z�Y)
(

((ZTZ) ∗ (YTY))T︸ ︷︷ ︸
symmetric

)†
= (Z�Y)

(
(ZTZ) ∗ (YTY)

)†
.
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This formulation only requires computing the pseudoinverse of a R×R matrix rather

than a np×R, which is the size of (Z�Y)T . Below we give the algorithm for the general

case.

Algorithm 3.2.1 (ALS).

Input: T , R

Initialize W(1), . . . ,W(L)

repeat

for ` = 1 . . . L

W(`) ← argminW(`)‖T(`)−W(`) · (W(L)� . . .�W(`+1)�W(`−1)� . . .�W(1))T‖
until stopping criteria is met

Output: W(1), . . . ,W(L)

The ALS algorithm is simple to understand and to implement, but it has some serious

drawbacks. Usually it take many iterations to converge, it is not guaranteed to converge

to a global minimum or even to a stationary point, and the final solution can depend

heavily on the initialization. Furthermore, the ALS algorithm is known from its con-

vergence problems in the presence of bottlenecks and swamps. Several approaches were

implemented in order to improve the ALS performance [13, 15, 27, 29, 66] and still today

there are people trying improve ALS.

3.3 Optimization methods

Because of the ALS limitations, researches tried to investigate different approaches to 3.2.

A natural idea is to consider it just as an unconstrained minimization problem and apply

the known algorithms. Gradient-based algorithms are the main choice in this case. In

the literature one can find theoretical and experimental work with nonlinear conjugate

gradient method and limited-memory BFGS method [15, 17]. Improvements to these

methods were tried, such as adding line search2, regularization and dogleg trust region

[22].

3.4 Nonlinear least squares

The method of least squares is a standard approach to approximate the solution of overde-

termined systems, that is, sets of equations in which there are more equations than un-

knowns. The term “least squares” comes from the fact that we want to minimize the

overall sum of the squares of the residuals made in the results of every single equation.

2It seems that the Moré -Thuente line search is the most popular choice of line search for tensor CPD,
see [67] for more information.
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Let (x(i), y(i))i=1...n be a dataset of n points, where x(i) ∈ Rp is the independent variable

and y(i) ∈ R is the dependent variable. The model is a function hw : Rp → R (also called

the hypothesis) in the variable x with parameters w = [w1, . . . , wm]T to be adjusted. Our

objective is to find the parameters that best fits the data. The “best fit” is in the sense

that the choice of w should minimize the value

n∑
i=1

(
y(i) − hw(x(i))

)2
.

Denote fi(w) = y(i) − hw(x(i)). We have that each fi is a residual of the model. The

error function (or cost function) is the function F : Rm → R given by

F (w) =
1

2

n∑
i=1

(
y(i) − hw(x(i))

)2
=

1

2

n∑
i=1

fi(w)2 =
1

2
‖f(w)‖2,

where f : Rm → Rn is given by f = (f1, . . . , fn). Our objective is to minimize F .

Remark 3.4.1. The ideal situation occurs when w is such that F (w) = 0, so hw(x(i)) =

y(i) for all i = 1 . . . n. This means w is a solution of the system
hw(x(1)) = y(1)

...

hw(x(n)) = y(n)

.

Note that this is a system of n equations and m variables. Since we always expect

to have more data then parameters (i.e., m < n), this is a overdetermined system. In

practice w will not be an exact solution but an approximated solution for this system.

We call the model linear when hw is a linear combination of the parameters, that is,

hw is of the form hw(x) =
m∑
j=1

wj φj(x), where each φj is any function of x. In this case

one can write

min
w

F (w) =
1

2
min
w

∥∥∥∥∥∥∥∥

φ1(x(1)) . . . φm(x(1))

...
...

φ1(x(n)) . . . φm(x(n))



w1

...

wm

−

y(1)

...

y(n)


∥∥∥∥∥∥∥∥

2

=
1

2
‖Aw− y‖2,

where aij = φj(x
(i)) and y = [y(1), . . . , y(n)]T . The minimizer is the solution of the normal

equation ATAw = ATy, and is given explicitly by w = (ATA)−1ATy.

We call the model nonlinear when it is not linear. In this case there is no guarantee

of a closed-form solution as in the linear case.

Lemma 3.4.2. Let Jf (w) be the Jacobian matrix of f at w. Then
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∇F (w) = JTf (w) · f(w).

Proof : First note that
∂F

∂wj
(w) =

n∑
i=1

fi(w)
∂fi
∂wj

(w) for all j = 1 . . .m. In particular,

we have

∇F (w) =


∑n

i=1 fi(w) ∂fi
∂w1

(w)
...∑n

i=1 fi(w) ∂fi
∂wm

(w)

 =


∂f1
∂w1

(w) . . . ∂fn
∂w1

(w)
...

...
∂f1
∂wm

(w) . . . ∂fn
∂wm

(w)



f1(w)

...

fn(w)

 =

=


∂f1
∂w1

(w) . . . ∂f1
∂wm

(w)
...

...
∂fn
∂w1

(w) . . . ∂fn
∂wm

(w)


T 

f1(w)
...

fn(w)

 = JTf (w) · f(w). �

Now we bring all this to the context of tensors. Let a tensor T ∈ RI1×...×IL and a rank

R. The dataset points are indexed by multi-indexes (i1, . . . , iL) ∈ I1 × . . . × IL. Each

observation in this case are the coordinates of T , that is, we have y(i1,...,iL) = ti1...iL . The

independent variables are just the multi-indexes3, to indicate what coordinate of T we are

considering. The model hw : I1× . . .× IL → R tries to approximate each coordinate of T
with the parameters in w = [vec(W(1))T , . . . , vec(W(L))T ]T through the CPD formulation

given at the beginning of this chapter. More precisely, we have that

hw(i1, . . . , iL) = t̃i1...iL =
R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr
.

At this point it should be clear that

F (w) =
1

2

I1∑
i1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr

)2

=
1

2
‖T − T̃ ‖2 (3.3)

and

fi1...iL(w) = ti1...iL −
R∑
r=1

w
(1)
i1r
. . . w

(L)
iLr
. (3.4)

The following result is immediate.

Lemma 3.4.3. For all `′ = 1 . . . L, i′ = 1 . . . I` and r′ = 1 . . . R, we have

3Our “population” is composed by the indexes of the tensor, while the variables are the actual values
of the tensor at such coordinates.
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∂fi1...i`′ ...iL

∂w
(`′)
i′r′

(w) =

 −
∏
`6=`′

w
(`)
i`r′
, if i′ = i`′

0, otherwise

.

From this lemma it follows that

∂F

∂w
(`′)
i′r′

(w) =

I1∑
i1=1

. . .

IL∑
iL=1

fi1...iL(w) · ∂fi1...iL
∂w

(`′)
i′r′

(w) =

=

I1∑
i1=1

. . .

I`′−1∑
i`′−1=1

I`′+1∑
i`′+1=1

. . .

IL∑
iL=1

fi1...i′...iL(w) · ∂fi1...i
′...iL

∂w
(`′)
i′r′

(w) =

=

I1∑
i1=1

. . .

I`′−1∑
i`′−1=1

I`′+1∑
i`′+1=1

. . .

IL∑
iL=1

(
ti1...iL −

R∑
r=1

w
(`′)
i′r

∏
`6=`′

w
(`)
i`r

)(
−
∏
`6=`′

w
(`)
i`r′

)
.

Observe how these manipulations leads to a faster and clean proof of theorem 3.1.2.

3.5 Gauss-Newton

There are several ways to work a nonlinear least squares problem, and our chosen method

is based on the Gauss-Newton algorithm. This algorithm can only be used to minimize a

sum of squared function values, but it has the advantage that second derivatives, which

can be challenging to compute, are not required. Consider the same notations used in the

previous section.

The first step of the Gauss-Newton algorithm is to consider a first order approximation

of f at a point w(0), that is,

f(w(0) + (w−w(0))︸ ︷︷ ︸
step

) = f(w) ≈ f(w(0)) + Jf (w
(0)) · (w−w(0)). (3.5)

In order to minimize 3.5 at the neighborhood of w(0) we can compute the minimum

of ‖f(w(0)) + Jf (w
(0)) · (w − w(0))‖ for w. Note that minimizing 3.5 is a least squares

problem since we can rewrite this problem as min
x
‖Ax−b‖ for A = Jf (w

(0)), x = w−w(0),

b = −f(w(0)).

The solution of 3.5 gives the next iterate w(1). More generally, we obtain w(k+1) from

w(k) by defining w(k+1) = x∗ + w(k), where x∗ is the solution of the normal equations

ATAx = ATb (3.6)

for A = Jf (w
(k)), x = w−w(k), b = −f(w(k)). The explicit formula for w(k+1) is
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w(k+1) = w(k) −
(
Jf
(
w(k)

)T
Jf
(
w(k)

))−1

· Jf
(
w(k)

)T · f(w(k))

although we should clarify that the inverse above never will be explicitly computed. Usu-

ally one uses an iterative algorithm to solve 3.6. This process of obtaining successive w(k)

is the Gauss-Newton algorithm, and it is guaranteed to converge to a local minima of F .

For more details about this algorithm and its properties I recommend [22]. We show the

most relevant results here.

Theorem 3.5.1 (K. Madsen, H. B. Nielsen, and O. Tingleff, 2004). w(k+1) − w(k) is a

descent direction for F at w(k).

Proof: From the formula

w(k+1) = w(k) −
(
Jf (w

(k))TJf (w
(k))
)−1 · Jf (w(k))T · f(w(k))

we can conclude that

−Jf (w
(k))TJf (w

(k)) ·
(
w(k+1) −w(k)

)
= Jf (w

(k))T · f(w(k)).

With the above observation and lemma 3.4.2 we have that

〈∇F (w(k)),w(k+1) −w(k)〉 = 〈Jf (w(k))Tf(w(k)),w(k+1) −w(k)〉 =

= 〈−Jf (w
(k))TJf (w

(k))
(
w(k+1) −w(k)

)
,w(k+1) −w(k)〉 =

= −〈Jf (w(k))
(
w(k+1) −w(k)

)
,Jf (w

(k))
(
w(k+1) −w(k)

)
〉 =

= −‖Jf (w(k))
(
w(k+1) −w(k)

)
‖2 ≤ 0.

Since the derivative of F at w(k) in the direction w(k+1)−w(k) is negative, it follows that

this is a descent direction. �

3.5.1 Deriving the Gauss-Newton method from the Newton’s

method

Denote the Hessian matrix of F at w by HF (w). We can relate the derivatives of f and

F through the following result.
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Lemma 3.5.2. We have that

HF (w) = JTf (w)Jf (w) +

I1∑
i1=1

. . .

IL∑
iL=1

fi1...iL(w) ·Hfi1...iL
(w),

where Hfi1...iL
is the Hessian matrix of fi1...iL.

As the algorithm converges we expect to have fi1...iL ≈ 0 for all i1, . . . , iL. Therefore

this lemma implies that HF ≈ JTf Jf when close to an optimal point.

We can apply Newton’s method to solve the system ∇F = 0. Then the iteration

formula becomes

w(k+1) = w(k) −
(
HF (w(k))

)−1 · ∇F (w(k)) ≈

≈ w(k) −
(
JTf (w(k))Jf (w

(k))
)−1 · ∇F (w(k)) =

= w(k) −
(
JTf (w(k))Jf (w

(k))
)−1 · JTf (w(k))f(w(k)).

Here we recover the Gauss-Newton iteration formula for w. This approximation makes

sense if the Hessian is nonsingular, otherwise, the approximation will be poor, which will

cause the Gauss-Newton algorithm to make very small steps, slowing down convergence.

We can also have problems if the function f is highly nonlinear, in which case the ap-

proximation of the Hessian will again be poor.

3.5.2 Damped Gauss-Newton

Everything of this section until this point was very general, without specifying tensors.

For all this section we consider f and F in the tensor context. In this context, we don’t

consider f highly nonlinear but, unfortunately, the approximate Hessian converges to a

singular matrix as the Gauss-Newton iterations converges. We make this statement more

precise soon. For this part we will denote
∂fi1...iL

∂w
(`′)
i′r′

=
∂fi1...iL

∂w
(`′)
i′r′

(w), that is, we suppress the

point w where the derivative is being evaluated. This will make notation simpler and

won’t cause any confusion. Also let

∂fi1...iL

∂w
(`′)
r′

=

[
∂fi1...iL

∂w
(`′)
1r′

, . . . ,
∂fi1...iL

∂w
(`′)
I`′r
′

]
∈ RI`′

and
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∂f

∂w
(`′)
r′

=



∂f1...1

∂w
(`′)
r′

∂f1...2

∂w
(`′)
r′

...

∂fI1...IL−1

∂w
(`′)
r′

∂fI1...IL

∂w
(`′)
r′



∈ R
∏L
`=1 I`×I`′ .

Notice that the ordering of the rows follows the indexes i1 . . . iL as numbers in increas-

ing order. We can consider just one more level of compact notation and define

∂f

∂W(`′)
=

[
∂f

∂w
(`′)
1

, . . . ,
∂f

∂w
(`′)
R

]
∈ R

∏L
`=1 I`×I`′R,

so we have that

Jf =

[
∂f

∂W(1)
, . . . ,

∂f

∂W(L)

]
∈ R

∏L
`=1 I`×R

∑L
`=1 I` .

In order to understand the structure of Jf first we have to understand the struc-

ture of each block
∂f

∂w
(`′)
r′

. Remember that the entries of this matrix were computed

in lemma 3.4.3, now we just need to find some structure on it. Given a multi-index

i1 . . . i`′ . . . iL, the associated row has only one non zero entry, which is the column i`′ ,

because

∂fi1...i`′ ...iL

∂w
(`′)
r′

=

[
∂fi1...i`′ ...iL

∂w
(`′)
1r′

, . . . ,
∂fi1...i`′ ...iL

∂w
(`′)
i`′r
′

, . . . ,
∂fi1...i`′ ...iL

∂w
(`′)
I`′r
′

]
=
[
0, . . . ,−

∏
` 6=`′

w
(`)
i`r′︸ ︷︷ ︸

i`′ column

, . . . , 0
]
.

Now we can see that
∂f

∂w
(`′)
r′

will have a sparse structure, and this structure is dictated

by the multi-indexes: at row i1 . . . i`′ . . . iL, the only non zero entry is given by the value i`′ .

Since this structure does not depend on r′, the block matrix
∂f

∂W(`′)
consists in a repetition

of R blocks with the same sparse structure (but not necessarily the same values). Because

of the ordering of i1 . . . i`′ . . . iL, each change of non zero column is done periodically as
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the scheme in figure 3.1 illustrates.

Note that when we go to row 1 . . . 111 . . . 11 to row 1 . . . 121 . . . 11, the gray block moves

one column to the right. When this happens, the next index, i`′+1, already changed all

its values exactly one time. It means all this moves to the right occurred with respect to

i`′+1 when it happened just one with respect to i`′ . This is due to the ordering we used,

which functions just as natural numbers in increasing order. This explanation gets clear

with a picture, so figure 3.2 illustrates better what is going on.

We finish this discussion of the sparse structure displaying the structure of a concrete

tensor shape. If still there are any doubts at this point, we invite the reader to reproduce

the structure of Jf when T ∈ R4×3×2 and R = 2. This structure is given in figure 3.3. We

separate the modes by color to facilitate understanding. At the right to the matrix we

also added the respective multi-index associated to each row. The green color correspond

to the right index, the blue correspond to the middle index and the red correspond to the

left index.

Lemma 3.5.3 (T. G. Kolda, E. Acar, D. M. Dunlavy, 2011). For all `′ = 1 . . . L and

r′ = 1 . . . R, we have

∂f

∂w
(`′)
r′

= −w(1)
r′ ⊗̃ . . . ⊗̃w

(`′−1)
r′ ⊗̃II`′ ⊗̃w

(`′+1)
r′ ⊗̃ . . . ⊗̃w(L)

r′ .

Proof: First note that

II`′ ⊗̃w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′ =


w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

. . .

w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′


is a block diagonal matrix, with I`′ × I`′ block shape where each entry is a vector of size
L∏

`=`′+1

I`. With this we have

w
(1)
r′ ⊗̃ . . . ⊗̃w

(`′−1)
r′ ⊗̃


w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

. . .

w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

 =
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=



w
(1)
1r′ · . . . · w

(`′−1)
1r′


w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

. . .

w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′


...

w
(1)
I1r′
· . . . · w(`′−1)

I`′−1 r′


w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

. . .

w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′





.

By lemma B.3.2 we have that

w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′ =


w

(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′

 ,
hence we can write more explicitly the last expression as



w
(1)
1r′ · . . . · w

(`′−1)
1r′




w

(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′


. . . 

w
(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′




...

w
(1)
I1r′
· . . . · w(`′−1)

I`′−1 r′




w

(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′


. . . 

w
(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′







=
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=






w

(1)
1r′ · . . . · w

(`′−1)
1r′ · w(`′+1)

1r′ · . . . · w(L)
1r′

...

w
(1)
1r′ · . . . · w

(`′−1)
1r′ · w(`′+1)

I`′+1 r′ · . . . · w
(L)
ILr′


. . . 

w
(1)
1r′ · . . . · w

(`′−1)
1r′ · w(`′+1)

1r′ · . . . · w(L)
1r′

...

w
(1)
1r′ · . . . · w

(`′−1)
1r′ · w(`′+1)

I`′+1 r′ · . . . · w
(L)
ILr′




...




w

(1)
I1r′
· . . . · w(`′−1)

I`′−1 r′ · w
(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(1)
I1r′
· . . . · w(`′−1)

I`′−1 r′ · w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′


. . . 

w
(1)
I1r′
· . . . · w(`′−1)

I`′−1 r′ · w
(`′+1)
1r′ · . . . · w(L)

1r′

...

w
(1)
I1r′
· . . . · w(`′−1)

I`′−1 r′ · w
(`′+1)
I`′+1 r′ · . . . · w

(L)
ILr′







.

This reveals the block structure of Jf already observed and illustrated in figures 3.1,

3.2, 3.3. Now, given any multi-index i1 . . . i`′ . . . iL we just need to show that
∂fi1...i`′ ...iL

∂w
(`′)
r′

is

equal to the negative of row i1 . . . i`′ . . . iL of −w
(1)
r′ ⊗̃ . . . ⊗̃w

(`′−1)
r′ ⊗̃II`′ ⊗̃w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′ .

Note that this row is the i`′+1 . . . iL row of the `′-th diagonal term of

−w(1)
i1r′
· . . . · w(`′−1)

i`′−1 r′


w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

. . .

w
(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

 .
This row is given by

−w(1)
i1r′
· . . . · w(`′−1)

i`′−1 r′ ·
[
0, . . . , 0, w

(`′+1)
i`′+1r

′ · . . . · w(L)
iL r′︸ ︷︷ ︸

`′− column

, 0 . . . , 0
]

=

=
[
0, . . . , 0,−

∏
6̀=`′
w

(`)
i`r′︸ ︷︷ ︸

`′− column

, 0 . . . , 0
]

=
∂fi1...i`′ ...iL

∂w
(`′)
r′

. �
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Figure 3.1: Sparse structure of ∂f

∂w
(`′)
r

. The gray part correspond to the non zero entries and the rest

are full of zeros, and each gray column is a vector of size

L∏
`=`′+1

I`.

Theorem 3.5.4. JTf Jf is singular.

Proof: Notice that suffices to prove that Jf is not a full rank matrix. Remember that

f maps possible rank-R CPDs (W(1), . . . ,W(L)) to its individual residuals, a vector with

size
L∏
`=1

I`. Because of the scale indeterminacy, we know that the inputs (λW(1), . . . ,W(L))
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and (W(1), . . . , λW(`), . . . ,W(L)) correspond to the same tensor for any ` 6= 1. This is

because the former correspond to the tensor

(λw
(1)
1 )⊗ . . .⊗w

(L)
1 + . . .+ (λw

(1)
R )⊗ . . .⊗w

(L)
R ,

while the latter correspond to

w
(1)
1 ⊗ . . .⊗ (λw

(`)
1 )⊗ . . .⊗w

(L)
1 + . . .+ w

(1)
R ⊗ . . .⊗ (λw

(`)
R )⊗ . . .⊗w

(L)
R .

There are several ways of using the phenomenon of scale indeterminacy to generate

different inputs to f which correspond to the same tensor. In particular, if some tensor

is a local minima for F , it is also a critical point, and because of the scale indeterminacy

there will be infinitely many inputs associated to the same critical point. This means the

critical point is singular. Since ∇F = JTf · f , we conclude that Jf is not of full rank at

critical points. �

Figure 3.2: Consider the top block of the previous figure, relative to ∂f

∂w
(`′)
r′

. While run through the

rows of this block, at the same time there will be
`′∏

`=1

I` blocks relative to ∂f

∂w
(`′+1)

r′
.

Since JTf Jf is singular, the Gauss-Newton update rule given by 3.6 is an ill-posed

problem. We can address this issue by introducing a regularization term, so we can avoid

singularity and improve convergence. A common approach is to introduce a suitable

regularization matrix L ∈ RR
∑L
`=1 I`×R

∑L
`=1 I` called Tikhonov matrix. Instead of solving

equation 3.6 we are now solving

(
ATA + LTL

)
x = ATb, (3.7)

where A = Jf (w
(k)),x = w − w(k), b = −f(w(k)). The damped Gauss-Newton (dGN)4

4This algorithm is also called Levenberg-Marquardt in the literature. It is possible that this second
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Figure 3.3: Sparse structure of Jf when T ∈ R4×3×2 and R = 2.
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algorithm is the case when LTL = µIR∑L
`=1 I`

, where µ > 0 is the damping parameter.

Usually this parameter is updated at each iteration. These updates are very important

since µ influences both the direction and the size of the step at each iteration. Instead

of working with the regularization matrix µIR∑L
`=1 I`

as is usual, we consider the more

general matrix µD, where D is a positive diagonal

(
R

L∑
`=1

I`

)
×

(
R

L∑
`=1

I`

)
matrix.

Theorem 3.5.5. The following holds.

1. JTf Jf + µD is a positive definite matrix for all µ > 0.

2. w(k+1) −w(k) is a descent direction for F at w(k).

3. If µ is large enough, then w(k+1) −w(k) ≈ − 1

µ
D−1∇F (w(k)).

4. If µ is small enough, then w(k+1) − w(k) ≈ w
(k+1)
GN − w(k), where w

(k+1)
GN is the point

we would obtain using classic Gauss-Newton iteration (i.e., without regularization).

Proof: To prove 1, just take any w ∈ RR
∑L
`=1 I` and note that

〈(
JTf Jf + µD

)
w,w

〉
=

=
〈
JTf Jfw,w

〉
+ 〈µDw,w〉 =

= 〈Jfw,Jfw〉+
〈√

µ
√

Dw,
√
µ
√

Dw
〉

=

= ‖Jfw‖2 + ‖√µ
√

Dw‖2 > 0.

The proof of 2 is very similar to the previous proof in the classic Gauss-Newton. From

the iteration formula

w(k+1) = w(k) −
(
Jf (w

(k))TJf (w
(k)) + µD

)−1
Jf (w

(k))T · f(w(k))

we can conclude that

−
(
Jf (w

(k))TJf (w
(k)) + µD

)
·
(
w(k+1) −w(k)

)
= Jf (w

(k))T · f(w(k)).

Now, with this identity, note that

〈
∇F (w(k)),w(k+1) −w(k)

〉
=

=
〈
Jf (w

(k))Tf(w(k)),w(k+1) −w(k)
〉

=

name is used more often but still we prefer the other. The name comes from the fact that K. Levenberg
[68] and D. Marquardt [69] are the ones responsible for introducing the damping parameter in the Gauss-
Newton method.
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= −
〈(

Jf (w
(k))TJf (w

(k)) + µD
)
·
(
w(k+1) −w(k)

)
,w(k+1) −w(k)

〉
< 0.

The inequality above follows from the fact that Jf (w
(k))TJf (w

(k)) + µD is positive

definite.

To prove 3, take µ such that ‖D−1Jf (w
(k))TJf (w

(k))‖ � µ (this is “large enough” in

this context). We know Jf (w
(k))TJf (w

(k)) + µD since it is positive definite. Also, by the

definition of µ we have that

(
Jf (w

(k))TJf (w
(k)) + µD

)−1
=

(
µD

(
1

µ
D−1Jf (w

(k))TJf (w
(k)) + I

))−1

≈

≈ (µD (0 + I))−1 =
1

µ
D−1.

Using the iteration formula with this approximation gives

w(k+1) ≈ w(k) − 1

µ
D−1Jf (w

(k))Tf(w(k)) = w(k) − 1

µ
D−1∇F (w−1).

Finally, to prove 4 just consider µ ≈ 0 and substitute in the iteration formula. Then we

get the classical formula trivially. �

Remark 3.5.6. If D ≈ I, item 3 can be used when the current iteration is far from

the solution, since − 1

µ
∇F (w(k)) is a short step in the descent direction (we want to be

careful when distant to the solution). This shows that dGN behaves as the gradient descent

algorithm when distant to the solution. On the other hand, item 4 is to be used when the

current iteration is close to the solution, since the step is closer to the classic Gauss-

Newton, we may attain quadratic convergence at the final iterations.

The damping parameter rule update is a very important issue in this algorithm and

we should comment a few things about it (the interested reader may check [22] for more

about this subject). Let µ(0) be the initial damping parameter and µ(k) be the damping

parameter used at the k-th iteration. A rule of thumb for µ(0) is to set µ(0) = τ ·maxi aii,

where A = JTf (w(0))Jf (w
(0)) and τ ∈ (0, 1]. We should choose τ smaller when w(0) is

closer to the solution. The algorithm usually is not so sensitive to the choice of τ so there

is no problem in using other initial values. More important is the update rule for µ(k).

After computing w(k+1), the gain ratio is defined as

g =
F (w(k))− F (w(k+1))

F (w(k))− 1
2
‖f̃(w(k+1))‖2

=
‖T − T̃ (k)‖2 − ‖T − T̃ (k+1)‖2

‖T − T̃ (k)‖2 − ‖f̃(w(k+1))‖2
,

where T̃ (k) is the approximating tensor computed at the k-th iteration and f̃(w(k+1)) =

f(w(k)) + Jf (w
(k)) · (w(k+1) −w(k)) is the first order approximation of f at w(k+1). The
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denominator is the predicted improvement5 from the k-th to (k+ 1)-th iteration, whereas

the numerator measures the actual improvement.

A large value of g indicates that ‖f̃(w(k+1))‖2 is a good approximation to ‖T −T̃ (k+1)‖2,

in other words, the linear model f̃ is making good predictions about the actual errors. A

small or negative g indicates that this approximation is poor. In the former case we de-

crease the damping parameter so the next iteration is more like a Gauss-Newton iteration,

and in the latter case we increase the damping parameter to have more regularization and

make smaller steps, this way the steps are more guaranteed to be in the steepest direction.

This is the general idea, but in reality these updates depends a lot on the problem at hand

and there is not a single procedure which works for all problems. We will talk more about

it when introducing our own algorithm to compute the CPD.

One thing to notice is that the denominator is always positive by construction since

F (w(k))− ‖f̃(w(k+1))‖2 = F (w(k))− ‖f(w(k)) + Jf (w
(k)) · (w(k+1) −w(k))‖2 =

= F (w(k))−‖f(w(k))‖2−2〈f(w(k)),Jf (w
(k))(w(k+1)−w(k))〉−‖Jf (w(k))(w(k+1)−w(k))‖2 =

= −2〈f(w(k)),Jf (w
(k))(w(k+1) −w(k))〉 − ‖Jf (w(k))(w(k+1) −w(k))‖2 =

= −2〈∇F (w(k)),w(k+1) −w(k)〉+ 〈∇F (w(k)),w(k+1) −w(k)〉 =

= −〈∇F (w(k)),w(k+1) −w(k)〉 =

= ‖Jf (w(k))(w(k+1) −w(k))‖2 > 0.

Notice we used a few identities from theorem 3.5.1 to make some of the manipulations

above. The important thing here is to realize that g will be negative only when the

numerator is negative, and this means the error of the approximation increases at iteration

k + 1. In section 4.7 we will see that it is expected that g < 0 in a few iterations, and we

argue that this apparent drawback can actually be beneficial.

Different versions of the dGN algorithm were implemented and tested [4, 14, 15, 17,

70, 71]. It is already known that dGN have faster local convergence when close to the

optimal point since it uses information from the (approximated) Hessian. In the presence

of bottlenecks or swamps the ALS presents problems, and even with improvements such

as regularization, line search, rotation, etc, these problems doesn’t disappear completely.

A severe limitation of the ALS is the fact that it updates only one factor per iteration.

The dGN uses all information to make the updates, and this leads to a more robust

algorithm which is insensible to bottlenecks and swamps. It is also observed that dGN

5Remember that we obtain w(k+1) as a solution to the minimization problem min
w
‖f̃(w)‖2 so we

expect it to be close to min
w
‖f(w)‖2 = min

w
F (w). Therefore ‖f̃(w(k+1))‖2 gives the expected error while

F (w(k+1)) gives the actual error.
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is less sensitive to the initialization, whereas ALS is highly sensitive, and dGN is more

accurate than ALS in general [15, 71]. This means dGN is a more robust and reliable

algorithm in every sense. The drawback of the dGN algorithm is the computation of a

solution to 3.7 at each iteration. To solve these normal equations we have to deal with a

big and dense matrix, which is computationally costly. In the next section we will present

our approach to this problem.

3.5.3 Dealing with the Hessian

To work the normal equations 3.7 we need to exploit some structure of JTf Jf in order to

make fast computations with low memory cost. The next theorem is a first step in this

direction.

Theorem 3.5.7. Denote ω
(`)
r′r′′ = 〈w(`)

r′ ,w
(`)
r′′ 〉. Then we have that

JTf Jf =


H11 . . . H1L

...
...

HL1 . . . HLL

 ,
where

H`′`′′ =



∏
6̀=`′,`′′

ω
(`)
11 ·w

(`′)
1 w

(`′′)T

1 . . .
∏

`6=`′,`′′
ω

(`)
1R ·w

(`′)
R w

(`′′)T

1

...
...∏

` 6=`′,`′′
ω

(`)
R1 ·w

(`′)
1 w

(`′′)T

R . . .
∏

`6=`′,`′′
ω

(`)
RR ·w

(`′)
R w

(`′′)T

R


for `′ 6= `′′, and

H`′`′ =



∏
6̀=`′
ω

(`)
11 · II`′ . . .

∏
`6=`′

ω
(`)
1R · II`′

...
...∏

` 6=`′
ω

(`)
R1 · II`′ . . .

∏
` 6=`′

ω
(`)
RR · II`′

 .

Proof: First notice that

JTf Jf =


∂f

∂W(1)

T

...

∂f

∂W(L)

T


[

∂f

∂W(1)
, . . . ,

∂f

∂W(L)

]
=


∂f

∂W(1)

T ∂f

∂W(1)
. . .

∂f

∂W(1)

T ∂f

∂W(L)

...
...

∂f

∂W(L)

T ∂f

∂W(1)
. . .

∂f

∂W(L)

T ∂f

∂W(L)

 ,

where
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∂f

∂W(`′)

T ∂f

∂W(`′′)
=


∂f

∂w
(`′)
1

T

...

∂f

∂w
(`′)
R

T


[

∂f

∂w
(`′′)
1

, . . . ,
∂f

∂w
(`′′)
R

]
=


∂f

∂w
(`′)
1

T ∂f

∂w
(`′′)
1

. . .
∂f

∂w
(`′)
1

T ∂f

∂w
(`′′)
R

...
...

∂f

∂w
(`′)
R

T ∂f

∂w
(`′′)
1

. . .
∂f

∂w
(`′)
R

T ∂f

∂w
(`′′)
R

 .

Let ω
(`)
r′r′′ = 〈w(`)

r′ ,w
(`)
r′′ 〉 and assume, without loss of generality, that 1 ≤ `′ < `′′ ≤ L.

We can use lemma 3.5.3 and theorem B.3.5 to write the entries of this matrix as

∂f

∂w
(`′)
r′

T ∂f

∂w
(`′′)
r′′

=

=
(
w

(1)
r′ ⊗̃ . . . ⊗̃w

(`′−1)
r′ ⊗̃II`′ ⊗̃w

(`′+1)
r′ ⊗̃ . . . ⊗̃w

(L)
r′

)T (
w

(1)
r′′ ⊗̃ . . . ⊗̃w

(`′′−1)
r′′ ⊗̃II`′′ ⊗̃w

(`′′+1)
r′′ ⊗̃ . . . ⊗̃w

(L)
r′′

)
=

= ω
(1)
r′r′′⊗̃ . . . ⊗̃ω

(`′−1)
r′r′′ ⊗̃

(
I`′w

(`′)
r′′

)
⊗̃ω(`′+1)

r′r′′ ⊗̃ . . . ⊗̃ω
(`′′−1)
r′r′′ ⊗̃

(
w

(`′′)T

r′ I`′′
)
⊗̃ω(`′′+1)

r′r′′ ⊗̃ . . . ⊗̃ω
(L)
r′r′′ =

=
∏

`6=`′,`′′
ω

(`)
r′r′′ ·w

(`′)
r′′ w

(`′′)T

r′ .

In the case `′ = `′′ we have

∂f

∂w
(`′)
r′

T ∂f

∂w
(`′)
r′′

=

= ω
(1)
r′r′′⊗̃ . . . ⊗̃ω

(`′−1)
r′r′′ ⊗̃ I2

I`′
⊗̃ ω

(`′+1)
r′r′′ ⊗̃ . . . ⊗̃ω

(L)
r′r′′ =

=
∏
`6=`′

ω
(`)
r′r′′ · II`′ .

Therefore,

∂f

∂W(`′)

T ∂f

∂W(`′′)
=



∏
6̀=`′,`′′

ω
(`)
11 ·w

(`′)
1 w

(`′′)T

1 . . .
∏

`6=`′,`′′
ω

(`)
1R ·w

(`′)
R w

(`′′)T

1

...
...∏

` 6=`′,`′′
ω

(`)
R1 ·w

(`′)
1 w

(`′′)T

R . . .
∏

`6=`′,`′′
ω

(`)
RR ·w

(`′)
R w

(`′′)T

R
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when `′ 6= `′′. Finally, we have that

∂f

∂W(`′)

T ∂f

∂W(`′)
=



∏
`6=`′

ω
(`)
11 · II`′ . . .

∏
` 6=`′

ω
(`)
1R · II`′

...
...∏

` 6=`′
ω

(`)
R1 · II`′ . . .

∏
`6=`′

ω
(`)
RR · II`′

 . �

Remark 3.5.8. Each H`′`′′ is block R × R matrix, where each of its blocks is a I`′ × I`′′
matrix, so H`′`′′ has shape I`′R × I`′′R. Since JTf Jf is a block L × L matrix, with the

(`′, `′′) block being H`′`′′, we conclude that JTf Jf has shape R
L∑
`=1

I`×R
L∑
`=1

I`. This shape

is much smaller than the shape of Jf , which is of
L∏
`=1

I` × R
L∑
`=1

I`, hence we avoid the

curse of dimensionality with this approach. It should be noted that this is only true if

R <
∏L
`=1 I`∑L
`=1 I`

. This will be almost always the case since this is the same as saying R is

smaller than the generic rank, and in fact almost always we will choose R to satisfy this

property. Finally, we want to remark that the notation H`′`′′ comes from the fact that

JTf Jf ≈ HF as we converges to the solution.

It is convenient to store the products of the terms ω
(`)
r′r′′ in matrix form, so we define

Π(`′,`′′) =



∏
`6=`′,`′′

ω
(`)
11 . . .

∏
`6=`′,`′′

ω
(`)
1R

...
...∏

`6=`′,`′′
ω

(`)
R1 . . .

∏
`6=`′,`′′

ω
(`)
RR


for `′ 6= `′′, and

Π(`′) =



∏
`6=`′

ω
(`)
11 . . .

∏
` 6=`′

ω
(`)
1R

...
...∏

`6=`′
ω

(`)
R1 . . .

∏
`6=`′

ω
(`)
RR

 .
Notice that these (symmetric) matrices are the Hadamard product of some Gramian

matrices. Define π(`) = W(`)TW(`). Then we have that

Π(`′,`′′) = π(1) ∗ . . . ∗ π(`′−1) ∗ π(`′+1) ∗ . . . ∗ π(`′′−1) ∗ π(`′′+1) ∗ . . . ∗ π(L)

and

Π(`′) = π(1) ∗ . . . ∗ π(`′−1) ∗ π(`′+1) ∗ . . . ∗ π(L).
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Now we can see that is possible to retrieve JTf Jf from the factor matrices with few com-

putations and low memory cost. First we compute and store all the products W(`)TW(`)

and this has a total computational cost of O

(
R2

L∑
`=1

I`

)
. To compute each Π(`′,`′′) we

have to perform L− 2 Hadamard products between R × R matrices, and this has a cost

of O ((L− 2)R2) flops. The cost to store all the matrices Π(`′,`′) is of L2R2 floats. We

remark that it is possible to cut all these costs by half since Π(`′,`′′) = Π(`′′,`′) for all `′ 6= `′′.

Finally, note that Π(`′) = Π(`′,`′′) ∗
(
W(`′′)TW(`′′)

)
, so we can construct Π(`′) with only one

Hadamard product, which has a cost of O(R2) flops. Doing this for all ` amounts to

O(LR2) flops. The memory cost to store each Π(`′) is the same of Π(`′,`′), so we have

a total memory cost of O(LR2) floats. Overall, the computational cost to compute all

Π(`′,`′′) and all Π(`′) is of O

(
R2

(
L+

L∑
`=1

I`

))
flops, and the total memory cost is of

O (R2(L+ L2)) floats.

By writing the matrices Π(`′,`′′) and Π(`′) as the result of many Hadamard products we

have a way to simplify the expressions for the blocks H`′`′′ .

Corollary 3.5.9. Let 1m×n be the m× n matrix constituted only by ones and define

K(`′,`′′) =


w

(`′)
1 w

(`′′)T

1 . . . w
(`′)
R w

(`′′)T

1
...

...

w
(`′)
1 w

(`′′)T

R . . . w
(`′)
R w

(`′′)T

R


for `′ 6= `′′. Then

H`′,`′′ =
(

Π(`′,`′′)⊗̃1I`′×I`′′
)
∗K(`′,`′′)

for `′ 6= `′′, and

H`′,`′ = Π(`′)⊗̃I`′ .

As already mentioned, JTf Jf will be used to solve the normal equations 3.7. The

algorithm of choice to accomplish this is the conjugate gradient method (see appendix A).

This classical algorithm is particularly efficient to solve normal equations where the matrix

is positive definite, which is our case. Furthermore, our version of the conjugate gradient

is matrix-free, that is, we are able to compute matrix-vector products JTf Jf · v without

actually constructing JTf Jf . By exploiting the block structure of JTf Jf we can save memory

and the computational cost still is lower than the naive cost of R2

(
L∑
`=1

I`

)2

flops.

The next theorem is a new contribution of this work. With this result we are able to

perform fast matrix-vector products with low memory cost.
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Theorem 3.5.10. Given any vector v ∈ RR
∑L
`=1 I`, write

v =


vec(V(1))

...

vec(V(L))


where V(`) = [v

(`)
1 , . . . , v

(`)
R ] ∈ RI`×R and each v

(`)
r is a column of V(`). Then

JTf Jf · v =



L∑
`=1

∂f

∂W(1)

T ∂f

∂W(`)
· vec(V(`))

...
L∑
`=1

∂f

∂W(L)

T ∂f

∂W(`)
· vec(V(`))


where

∂f

∂W(`′)

T ∂f

∂W(`′′)
· vec(V(`′′)) = vec

(
W(`′) ·

(
Π(`′,`′′) ∗

(
V(`′′)T ·W(`′′)

)))
for `′ 6= `′′ and

∂f

∂W(`′)

T ∂f

∂W(`′)
· vec(V(`′)) = vec

(
V(`′) · Π(`′)

)
.

Proof: First notice that

JTf Jf · v =


∂f

∂W(1)

T ∂f

∂W(1)
. . .

∂f

∂W(1)

T ∂f

∂W(L)

...
...

∂f

∂W(L)

T ∂f

∂W(1)
. . .

∂f

∂W(L)

T ∂f

∂W(L)



vec(V(1))

...

vec(V(L))

 =

=



L∑
`=1

∂f

∂W(1)

T ∂f

∂W(`)
· vec(V(`))

...
L∑
`=1

∂f

∂W(L)

T ∂f

∂W(`)
· vec(V(`))


.

Now we simplify each term in the summation above. It is necessary to consider two

separate cases.

Case 1 (different modes): If `′ 6= `′′, then

∂f

∂W(`′)

T ∂f

∂W(`′′)
· vec(V(`′′)) =
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=



∏
6̀=`′,`′′

ω
(`)
11 ·w

(`′)
1 w

(`′′)T

1 . . .
∏

` 6=`′,`′′
ω

(`)
1R ·w

(`′)
R w

(`′′)T

1

...
...∏

6̀=`′,`′′
ω

(`)
R1 ·w

(`′)
1 w

(`′′)T

R . . .
∏

`6=`′,`′′
ω

(`)
RR ·w

(`′)
R w

(`′′)T

R




v
(`′′)
1
...

v
(`′′)
R

 =

=



R∑
r=1

∏
` 6=`′,`′′

ω
(`)
1r ·w(`′)

r w
(`′′)T

1 · v(`′′)
r

...
R∑
r=1

∏
6̀=`′,`′′

ω
(`)
Rr ·w

(`′)
r w

(`′′)T

R · v(`′′)
r


=



R∑
r=1

∏
` 6=`′,`′′

ω
(`)
1r ·w(`′)

r 〈w
(`′′)
1 ,v(`′′)

r 〉

...
R∑
r=1

∏
`6=`′,`′′

ω
(`)
Rr ·w

(`′)
r 〈w

(`′′)
R ,v(`′′)

r 〉


=

=



[
w

(`′)
1 , . . . ,w

(`′)
R

]


∏
` 6=`′,`′′

ω
(`)
11 〈w

(`′′)
1 ,v

(`′′)
1 〉

...∏
6̀=`′,`′′

ω
(`)
1R〈w

(`′′)
1 ,v

(`′′)
R 〉


...

[
w

(`′)
1 , . . . ,w

(`′)
R

]


∏
6̀=`′,`′′

ω
(`)
R1〈w

(`′′)
R ,v

(`′′)
1 〉

...∏
` 6=`′,`′′

ω
(`)
RR〈w

(`′′)
R ,v

(`′′)
R 〉





=


W(`′) ·

(
Π

(`′,`′′)
1 ∗

(
V(`′′)T ·w(`′′)

1

))
...

W(`′) ·
(

Π
(`′,`′′)
R ∗

(
V(`′′)T ·w(`′′)

R

))
 =

= vec
([

W(`′) ·
(

Π
(`′,`′′)
1 ∗

(
V(`′′)T ·w(`′′)

1

))
, . . . ,W(`′) ·

(
Π

(`′,`′′)
R ∗

(
V(`′′)T ·w(`′′)

R

))])
=

= vec
(
W(`′) ·

(
Π(`′,`′′) ∗

(
V(`′′)T ·W(`′′)

)))
where each Π

(`′,`′′)
r′ is the r′-th column of Π(`′,`′′). Despite the notation refers to the rows

of Π(`′,`′′), this is not a problem since this matrix is symmetric.

Case 2 (equal modes): For a mode `′ we have

∂f

∂W(`′)

T ∂f

∂W(`′)
· vec(V(`′)) =
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=



∏
` 6=`′

ω
(`)
11 · II′` . . .

∏
` 6=`′

ω
(`)
1R · II′`

...
...∏

6̀=`′
ω

(`)
R1 · II′` . . .

∏
6̀=`′
ω

(`)
RR · II′`




v
(`′)
1
...

v
(`′)
R

 =



R∑
r=1

∏
` 6=`′

ω
(`)
1r · v(`′)

r

...
R∑
r=1

∏
`6=`′

ω
(`)
Rr · v

(`′)
r


=

=


V(`′) · Π(`′)

1
...

V(`′) · Π(`′)
R

 = vec
(
V(`′) · Π(`′)

1 , . . . ,V(`′) · Π(`′)
R

)
= vec

(
V(`′) · Π(`′)

)
. �

For `′ 6= `′′, the computation of vec
(
W(`′) ·

(
Π(`′,`′) ∗

(
V(`′′)T ·W(`′′)

)))
requires two

matrix-matrix multiplications and one Hadamard product. This approach benefits from

the BLAS-3 efficiency while the Hadamard product can efficiently be done in parallel.

Now let’s we make some complexity analysis. First, since V(`′′)T is of shape R × I`′′ and

W(`′′) is I`′′ ×R, multiplying them requires I`′′R
2 flops. The resulting matrix is of shape

R × R, so the Hadamard product by Π(`′,`′) requires more R2 flops. Finally, since W(`′)

is of shape I`′ × R and
(

Π(`′,`′) ∗
(
V(`′′)T ·W(`′′)

))
is of shape R × R, multiplying them

requires I`′R
2 flops. Overall the cost is of (1 + I`′ + I`′′)R

2 flops.

The cost of computing V(`′)∗Π(`′) is more straightforward, being of I`′R
2 flops. For each

`′ = 1 . . . L, the compute the sum
L∑
`=1

∂f

∂W(`′)

T ∂f

∂W(`)
· vec(V(`)) requires to perform (1 +

I`′+ I`)R
2 flops for all ` 6= `′ and them more I`′R

2 flops for `′. The total cost of doing this

is of I`′R
2 +

∑
6̀=`′

(1 + I`′ + I`)R
2 =

(
(L− 1) + (L− 1)I`′ +

(
L∑
`=1

I`

))
R2 flops. Since we

have to do it for each `′, the total cost is of
L∑

`′=1

(
(L− 1) + (L− 1)I`′ +

(
L∑
`=1

I`

))
R2 =(

L(L− 1) + (2L− 1)

(
L∑
`=1

I`

))
R2 flops. We can summarize al this analysis by saying

that the cost of the matrix-vector multiplication JTf Jf ·v is ofO

(
LR2

L∑
`=1

I`

)
flops. Recall

that the naive multiplication costs R2

(
L∑
`=1

I`

)2

flops. Hence the gain in performance

comes from the exploitation of the BLAS-3 implementation and the low complexity cost

which was possible because of the block structure of JTf Jf .

Table 3.1 gather the information of all costs we obtained until now. From this point

we will always summarize all costs analysis in tables at the final of each section. This will
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Task Memory Computational time

Computing all Π(`′,`′′) and Π(`′) R2(L+ L2) O

(
R2

(
L+

L∑
`=1

I`

))

Computing JTf Jf · v R2

L∑
`=1

I` O

(
LR2

L∑
`=1

I`

)
Table 3.1: Memory and computational costs - I.

help the reader to make an overview of the costs when necessary.
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Chapter 4

Computational experiments

This chapter starts presenting Tensor Fox, with a detailed discussion of main subroutines

and their costs. Comprehensive experiments follows, first with the introduction of the

tensors used for the benchmarks. We tried to use a wide distinct choice of tensors:

positive tensors, tensors from machine learning, ill-conditioned tensors, and so on. The

parameters of Tensor Fox are fine tuned against this set of tensors, so they are general

enough. Then we conduct the benchmarks and discuss the results. The difference between

Tensor Fox and other packages are discussed too.

The last five sections discuss are a discussion of the main aspects of Tensor Fox. In

section 4.7 we connect the gain ratio and the fact that Tensor Fox is not monotonic,

and how this is a good thing. In sections 4.8, 4.9 and 4.10 we discuss the diagonal

regularization, conditioning and parallelism, respectively, with lots of more experiments

validating our claims. Finally, in section 4.11 we will see more details about the features

of Tensor Fox. Which of them are more relevant, and which are less relevant.

4.1 Tensor Fox

One of the main contributions of this work is the algorithm described in this section. An

implementation of this algorithm is available (open and free) for Python, by the name of

Tensor Fox, check the link https://github.com/felipebottega/Tensor-Fox. In this

section we present and explain it in details, together with computational and memory

costs. The algorithm will be presented in parts, following the computational flow as

showed below in figure 4.1. Each box represents a major part of the algorithm, and each

one is an algorithm by itself.

The Compress box is the computation of the MLSVD of the tensor. Most of the time

it is unnecessary to work in the original space since the compressed tensor is equivalent

to the original one in the sense of definition 2.1.2. In theory, if we find and exactly CPD

and uncompress it, then this uncompressed CPD is an exact CPD for the tensor at the

original space. After compressing, we must generate an initial tensor to start the dGN
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Input: R ∈ N, T ∈ RI1×...×IL

Compression

Initialization

dGN

Uncompression

Output: W(`) ∈ RI`×R for ` = 1 . . . L and
Λ ∈ RR×...×R diagonal, such that each W(`) has unit

columns and T ≈
∑R

r=1 λr w
(1)
r ⊗ . . .⊗w

(L)
r

Figure 4.1: Flow chart of the main parts of Tensor Fox.

iterations. This is done at the Initialization part. More ahead we will show an original way

to generating good initializations based on the MLSVD. The dGN algorithm is the most

costly part and is there which lies some new ideas obtained after a lot of experimentation.

These ideas are the result of much “mathematical alchemy”. Finally, after computing a

CPD we just need to Uncompress the solution.

4.1.1 Compression

Working with “raw” data is, usually, not advised because of the typical large data size.

A standard approach is to compress the data before starting the actual work, and this

is not different in the context of tensors. This is an efficient way of reducing the effects

of the curse of dimensionality. The main tool to compress a tensor is the MLSVD, and

it is interesting to use it because remark 2.2.9 guarantees one can use the core tensor of

the MLSVD to compute a CPD for the original tensor. The idea is very similar to the

procedure of compressing matrix data with the SVD: we compute the SVD of the matrix

and truncate it to a matrix with lower rank. The choice of this rank is such that the

truncated version is small enough to be tractable but close enough to the original matrix.

Now we use this same idea on the tensor context.
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First, compute the MLSVD of T , obtaining a decomposition T = (U(1), . . . ,U(L)) ·
S where U(`) ∈ RI`×I` are orthogonal for ` = 1 . . . L, and S ∈ RI1×...×IL is the core

tensor (see theorem 2.2.5). If rank�(T ) = (R1, . . . , RL), then we can discard the last

I` − R` columns of each U(`) and consider U(`) ∈ RI`×R` , also we discard all hyperslices

Si`=k for k = R` + 1 . . . I` and consider S ∈ RR1×...×RL . After these truncations, the

equality T = (U(1), . . . ,U(L)) · S remains intact. Actually, these truncations are not “real

truncations” because we only transformed the decomposition from the full format to the

reduced format, in the same way there is the full SVD and the reduced SVD for matrices.

To get a real truncation with low multilinear rank we need to keep deleting columns of

U(`) and hyperslices of S.

Let (R̃1, . . . , R̃L) ≤ (R1, . . . , RL) be a lower multilinear rank. We define Ũ
(`)

=[
U

(`)
:1 , . . . ,U

(`)

:R̃`

]
∈ RI`×R̃` to be the matrix composed by the first columns of U(`), and

S̃ ∈ RR̃1×...×R̃L is such that s̃i1...iL = si1...iL for 1 ≤ i1 ≤ R̃1, . . . , 1 ≤ iL ≤ R̃L. Figure 4.2

illustrates such a truncation in the case of a third order tensor. The white part correspond

to S after we computed the full MLSVD (the one of theorem 2.2.5), the gray tensor is

the reduced format of S, and the red tensor is the truncated tensor S̃. Our goal is to find

the smallest (R̃1, . . . , R̃L) such that ‖S − S̃‖ is not so large1. Since reducing (R̃1, . . . , R̃L)

too much causes ‖S − S̃‖ to increase, there is a trade off we have to manage in the best

way possible.

Ideally, we want that each estimate R̃` to be exactly equal to R`, but that is not always

possible. Furthermore, if T comes from data with noise, we are willing to truncate in order

to work only with the relevant information. This relevant information is concentrated after

the MLSVD is performed, and we can measure it in terms of the energy distribution, a

topic already discussed in chapter 2. Because of theorem 2.2.11-1, we have that R` is the

rank of the unfolding T(`). Since the computation of the MLSVD requires the computation

of the SVD of each unfolding, we can truncate these SVDs right after their computation.

In fact, we can already start computing a truncated SVD with P` = min(I`, R) singular

values since it is guaranteed that R` ≤ min(I`, R). Let mlsvd_tol be a small positive

tolerance value. For each truncated SVD of T(`) with R̃` singular values, we want to verify

its relative error with respect to T(`). We start this process with R̃` = 1 and keep increasing

R̃` until the relative error is smaller than 1
L
· mlsvd_tol. Because of theorem 2.2.12 we

don’t need to actually construct these truncations and compute their respective relative

errors. Denote by T̃(`) the truncation with R̃` singular values, then we have that

‖T(`) − T̃(`)‖2

‖T(`)‖2
=

∑P`
r=R̃`+1

(
σ

(`)
r

)2∑P`
r=1

(
σ

(`)
r

)2 .

1Actually, S and S̃ belongs to different spaces. We committed an abuse of notation and wrote ‖S−S̃‖
considering the projection of S̃ over the space of S, that is, enlarge S̃ so it has the same size of S and
consider these new entries as zeros. This is how we are projecting.

78



Figure 4.2: Truncated tensor S̃.

After obtaining each R̃` we are able construct the truncated core tensor S̃, which has

shape R̃1 × . . .× R̃L. It is not hard to see that the error between this truncation and the

original core tensor is bounded as

‖S − S̃‖2

‖S‖2
≤
∑P1

i1=R̃1+1

(
σ

(1)
i1

)2
+ . . .+

∑PL
iL=R̃L+1

(
σ

(1)
i1

)2

‖S‖2
< L · 1

L
mlsvd_tol = mlsvd_tol,

where we use the fact that ‖S‖ = ‖T ‖ = ‖T(`)‖. Note that these computations only

requires
L∑
`=1

(R`− R̃`) flops. The following algorithm summarizes all we have described so

far. We are using the notation Σ(`) = {σ(`)
1 , . . . , σ

(`)
P`
} for the set of the singular values of

T(`).
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Task Memory Computational cost

Computing the MLSVD R
L∑
`=1

P` +
L∏
`=1

P` O

(
L∑
`=1

log(P`)
L∏

`′=1

I`′

)

Truncating the MLSVD R

L∑
`=1

R̃` +
L∏
`=1

R̃` O

(
L∑
`=1

P 2
`

)
Table 4.1: Memory and computational costs - II.

Algorithm 4.1.1 (Compression).

Input: T ∈ RI1×...×IL , mlsvd_tol > 0{
U(1), . . . ,U(L),Σ(1), . . . ,Σ(L),S

}
← MLSVD(T )

for ` = 1 . . . L

for i = 1 . . . P`

rel_error =

∑P`
r=R̃`+1

(
σ
(`)
r

)2
∑P`
r=1

(
σ
(`)
r

)2
if rel_error < 1

L
mlsvd_tol

R̃` = i

break

for ` = 1 . . . L

Ũ
(`) ← truncation of U(`) to have R̃` columns

S̃ ← truncation of S to have shape R̃1 × . . .× R̃L

Output: Ũ(`) ∈ RI`×R̃` for ` = 1 . . . L and S̃ ∈ RR̃1×...×R̃L

The function MLSVD is described in 2.2.6, which has a cost of O

(
log(P`)

L∏
`′=1

I`′

)
flops

if we compute the truncated SVD with P` singular values for each unfolding. This is the

dominant cost in this algorithm. With respect to the memory storage, each Σ(`) is stored

as a vector of size P`, it is necessary to store I`P` floats for each U(`), and not more than
L∏
`=1

P` floats for S. After computing the MLSVD, the worse case of the truncation stage

has a cost of O

(
L∑
`=1

P 2
`

)
flops, which is cheap. Table 4.1 summarizes all main costs

necessary to compress a tensor. Note that we are considering only the classic truncated

MLSVD costs here. It is possible to obtain even lower costs with the sequentially trun-

cated algorithm.
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4.1.2 Initialization

As we mentioned before, the dGN method is not so sensitive to the initialization, but it

still can benefits of good initializations. Furthermore, some initializations actually can

lead to local minimum, and when this happens it is necessary to try again. In order to

prevent local minimum it is interesting to have a method which generates initialization

sufficiently close to the global minimum. Note that our objective is to compute a rank-R

CPD for S ∈ RR1×...×RL , which is already truncated at this moment.

The first approach we consider is very usual in other implementations. The program

may just generate random initial random matrices W(`) ∈ RR`×R with the entries draw

from the standard normal distribution (that is, mean 0 and variance 1). With this we

have an initial approximated CPD S = (W(1), . . . ,W(L)) · IR×...×R which we use to start

iterating. For general purposes this approach is good enough, but sometimes one can gain

performance when the initialization is close enough to the objective tensor. With this in

mind we propose another approach.

Our second approach is a simple method based on the truncated MLSVD T ≈
(U(1), . . . ,U(L)) · S. Remember the discussion about energy we had in chapter 2. The

energy gets higher as the coordinates of S are close to 11 . . . 1, the very first entry of S. In

this case the energy of a coordinate can be seen as its magnitude, regardless it is positive or

negative. Since we want a rank-R CPD, one idea is to take R entries of S with high energy

and construct an approximated CPD from them. Since the energy is highly concentrated

around s11...1, this approximated CPD may already be very close to the objective tensor.

Now, choose R multi-indexes (j
(1)
1 , . . . , j

(L)
1 ), . . . , (j

(1)
R , . . . , j

(L)
R ) ∈ R1 × . . . × RL close to

(11 . . . 1). These choices gives a rank-R approximation

S ≈
R∑
r=1

s
j
(1)
r ,...,j

(L)
r

e
(1)

j
(1)
r

⊗ . . .⊗ e
(L)

j
(L)
r

,

where each e
(`)
j is the j-th basis canonical vector of RR` . We denote this approximation

by S̃. We also denote J = {(j(1)
1 , . . . , j

(L)
1 ), . . . , (j

(1)
R , . . . , j

(L)
R )} the set of multi-indexes we

use to construct S̃. Then the corresponding error is given by

‖S − S̃‖2 =
∑

(i1,...,iL)∈R1×...×RL

s2
i1...iL

−
∑

(i1,...,iL)∈J

s2
i1...iL

=
∑

(i1,...,iL)∈R1×...×RL\J

s2
i1...iL

.

If our choice is adequate we can minimize this error. Furthermore, depending on the

distribution energy of S this error may actually be very small. In my experience with

tensors, that kind of initialization works well for several problems, and sometimes it works

much better than the random initialization. The computational cost of the initialization
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is of O

(
R

L∑
`=1

R`

)
flops, the size of the starting point.

4.1.3 dGN

Let T ≈ (U(1), . . . ,U(L)) · S be a truncated MLSVD for T which we assume to be close

enough. The tensor obtained by the initialization will be denoted by S(0). We denote

by S(k) the tensor obtained at the iteration k of the dGN algorithm. Our goal is to

iteratively produce successive approximations S(0),S(1), . . . ,S(k),S(k+1), . . . converging to

S. Associated with each S(k) there will be the factor matrices W(1,k), . . . ,W(L,k) where

W(`,k) ∈ RR`×R for each ` = 1 . . . R. As have been done before, we denote w(k) =[
vec(W(1,k))T , . . . , vec(W(L,k))T

]T
.

Let K be the last iteration of the dGN. Then we expect to have

S ≈ (W(1,K), . . . ,W(L,K)) · IR×R︸ ︷︷ ︸
S(K)

,

which leads to

T ≈
(
(U(1))∗W(1,K), (U(L))∗W(L,K)

)
· IR×...×R =

=
(
W̃

(1)
, . . . ,W̃

(L)) · IR×...×R.
=

R∑
r=1

W̃:r
(1) ⊗ . . .⊗ W̃:r

(L)
.

4.1.3.1 Main parameters

First we need to establish the values of three important parameters: the initial damp-

ing parameter µ(0), the maximum number of iterations maxiter and the tolerance tol.

As mentioned in the “damped Gauss-Newton” section, the initial damping parameter

is of the form µ(0) = τ · maxi aii (see [22] to know more about this choice), where

A = JTf (w(0))Jf (w
(0)), but instead of this we use the similar definition µ(0) = τ · E(|S|),

where E(|S|) is the average of the entries of S in absolute value. This initial value was

observed to perform well in practice. Also, since we want to reinforce regularization at

the first iterations, we use τ = 1. With regard to the maximum number of iterations, non-

linear least squares methods usually converges within a few hundreds iterations, whereas

ALS and general unconstrained optimization methods need thousands iterations to con-

verge. A reasonable choice in this case is maxiter= 200. Usually there are many different

tolerance parameters, one for each stopping condition. Although Tensor Fox does have

the possibility to choose different values for each tolerance parameter, but for simplicity
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we consider that all tolerances are equal to tol. At the moment we are using tol= 10−6.

All these choices are the default values in TensorFox. They were obtained after several

tests and experiments which will be showed soon.

4.1.3.2 Computing the residual

At each iteration, the first task is to compute the residual function f = (f11...1, . . . , fR1R2...RL),

where

fi1...iL(w(k)) = si1...iL −
R∑
r=1

w
(1,k)
i1r

. . . w
(L,k)
iLr

.

The cost of this computation is of L − 1 flops, but since this has to be done for all the

residuals, the total cost is of (L− 1)
L∏
`=1

R` flops.

4.1.3.3 Computing the gradient

Recall 3.4.2 from that ∇F (w) = JTf (w) · f(w), where F is the error function defined

in 3.3. In section 3.5.2 we observed that Jf (w) is sparse with a certain structure we can

exploit. Usually Jf has LR nonzero entries in each row, these are the values −
∏
`6=`′

w
(`)
i`r′

for `′ = 1 . . . L and r′ = 1 . . . R. Since Jf (w) has LR
L∏
`=1

R` nonzero entries, we can

expect to compute JTf (w) · f(w) with LR
L∏
`=1

R` operations, which is still much better

than R

L∑
`=1

R`

L∏
`=1

R` if we considered Jf (w) as a dense matrix. Consider the products ∗

and � defined in B and remember that

Π(`′) = π(1) ∗ . . . ∗ π(`′−1) ∗ π(`′+1) ∗ . . . ∗ π(L),

where π(`) = W(`)TW(`). Then we have the following result from [17].

Theorem 4.1.2 (T. G. Kolda, E. Acar, D. M. Dunlavy, 2011). The the partial derivatives

of F with respect to W(`) are given by

∂F

∂W(`)
(w) = W(`)Π(`) − T(`)

(
W(L) � . . .�W(`+1) �W(`−1) � . . .�W(1)

)
.

Since∇F (w) =

[
vec
(

∂F
∂W(1) (w)

)T
, . . . , vec

(
∂F

∂W(L) (w)
)T]T

, from lemma 3.4.2 we con-
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clude that

JTf (w)f(w) = −

[
vec

(
∂F

∂W(1)
(w)

)T
, . . . , vec

(
∂F

∂W(L)
(w)

)T]T
.

The dominant cost is the computation of T(`)

(
W(L) � . . .�W(`+1) �W(`−1) � . . .�W(1)

)
,

which is O

(
R

L∏
`=1

I`

)
flops. Since we have to perform this L times, the total cost is of

O

(
LR

L∏
`=1

I`

)
flops. Efficient ways to deal with these Khatri-Rao products can be found

in [93].

4.1.3.4 Conjugate gradient

The next stage is the computation of the step to take. Remember the description given at

the beginning of section 3.5. At the point w(k) we want to take a step in direction x such

that the new point w(k+1) = w(k) + x minimizes the residual at the neighborhood of w(k).

This leads to a normal equations which we regularize (see 3.6), obtaining the system

(ATA + µ(k)D)x = ATb,

where D is a diagonal

(
R

L∑
`=1

R`

)
×

(
R

L∑
`=1

R`

)
matrix, A = Jf (w

(k)), x = w −w(k),

b = −f(w(k)). The optimal solution x∗ gives the optimal point w(k+1) by setting w(k+1) =

w(k) + x∗.

The regularization matrix D depends on w(k) and is chosen to make ATA + D diag-

onally dominant (notice the absence of the damping parameter). As the iteration goes

we will have µ(k) → 0 and the effect of the regularization decreases. When close to the

optimal point the only effect of D is to guarantee that the system is well-posed. Still,

the system converges to an ill-posed system as µ(k) → 0 so we will be working with

ill-conditioned system when close to the objective point. One way to mitigate the ef-

fects of this ill-conditioning is preconditioning the system with a Jacobi preconditioner as

explained in appendix A. After the preconditioning we have the new system

M−1/2(ATA + µ(k)D)M−1/2x = M−1/2ATb, (4.1)

where M = diag(aii +µ(k)dii). Notice this equation is the same as the one preconditioned

in A.5, but here we have ATA + µ(k)D instead of just A, and ATb instead of just b. To

solve this system we rely on the conjugate gradient, see appendix A.2.1. The algorithm

should be adapted to our current situation.
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Algorithm 4.1.3 (Conjugate gradient - dGN).

Input: A,M,D, b, µ(k)

B←M−1/2(ATA + µ(k)D)M−1/2

x(0) ← 0 ∈ Rn

r(0) ←M−1/2ATb

p(0) ← r(0)

for i = 1 . . . cg_maxiter

z← B · p(i−1)

α(i) ← ‖r(i−1)‖2
‖p(i−1)‖2B

x(i) ← x(i−1) + α(i)p(i−1)

r(i) ← r(i−1) − α(i)z

ε← ‖r(i)‖2

β(i) ← ‖r(i)‖2
‖r(i−1)‖2

p(i) ← r(i) + β(i)p(i−1)

if ε < tol

break

Output: x(i′), where i′ is the last index of the iterations

Now we comment a few things about the algorithm, from top to bottom. The first thing

we should remark is that the matrix B is never computed explicitly. As already mentioned,

this is a matrix-free algorithm because of theorem 3.5.10. The vector r(0) demands some

computational effort as observed before. Multiplying ATb by M−1/2 amounts to just

R
L∑
`=1

R` operations since M−1/2 is diagonal. The result is a vector of size R
L∑
`=1

R`.

We call the conjugate gradient algorithm by CG for short. The parameter cg_maxiter

is the maximum number of iterations permitted. When in situations like this, where the

CG is used as a step for other iterative algorithm, it is usual to set cg_maxiter to a low

value. Sometimes cg_maxiter = 10 is already enough to produce a reasonable step for

the “bigger” algorithm (in this case, the dGN). It should be pointed that this is very case

dependent and just there isn’t a universal rule for how to set this parameter. We tested it

for several fixed values and none was satisfactory. Low values made the dGN converge to

local minimum most of the time, higher values improved the convergence but were very

costly. It was noted a better performance when we increased cg_maxiter a little for each

iteration of the dGN. However this approach forced the program to make too much CG

iterations at the end of the dGN, which was wasteful. Several attempts to solve this issue

were tried. The problem in all of them was the fact that they all were deterministic. As

soon as the value cg_maxiter was set to be a random integer everything worked much

better. At iteration k of the dGN, we define cg_maxiter as being a random integer

draw from the uniform distribution in the interval [1 + dk0.4e, 2 + dk0.9e]. This strategy
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to obtain cg_maxiter (instead of just fixing it) is the result of many experiments.

Remark 4.1.4. Allowing the number of iterations to change dynamically allows the al-

gorithm to make unusual steps sometimes, which proved to be a successful way to avoid

local minima. This is a very specific format of interval so you can imagine how much of

“mathematical alchemy” was necessary to create such solution.

The product B · p(i−1) is to be computed in three steps as showed below.

z←M−1/2 · p(i−1)

z← ATA · z + µ(k)z

z←M−1/2 · z

However before starting these computations we need to construct all the matrices

Π(`′,`′′) and Π(`′). We remark that the computation of the gradient AT ·b and these matrices

are performed before the CG loop, so their costs are accounted only once. We already

observed that, since M−1/2 is diagonal, the first product can be computed with R
L∑
`=1

R`

operations. The same goes for the multiplication by the scalar µ(k). Theorem 3.5.10

and the discussion after it showed that ATA · z can be computed with O

(
LR2

L∑
`=1

R`

)

operations. Finally we have to make more R
L∑
`=1

R` operations in the last step z ←

M−1/2 · z. The overall cost to obtain B · p(i−1) is of

O

(
(3R + LR2)

L∑
`=1

R`

)

flops. All the remaining lines of the algorithm together have a cost of O

(
6R

L∑
`=1

R`

)
flops. Putting everything together we can see that the cost of the CG algorithm is of

O

(
LR

L∏
`=1

R` +R2

(
L+

L∑
`=1

R`

)
+ iCG(9R + LR2)

L∑
`=1

R`

)
,

︸ ︷︷ ︸
gradient

︸ ︷︷ ︸
Π(`′,`′′) and Π(`′)

︸ ︷︷ ︸
CG loop

where iCG is the number of iterations of the CG. We know that iCG is a random integer

draw from the interval [1 + dk0.4e, 2 + dk0.9e], where k is the current iteration of the dGN.

Let’s consider the worst case k = maxiter = 200 just to have an idea. In this, case the

expected iCG is

E(iCG) =

⌊
2 + d2000.9e − 1− d2000.4e

2

⌋
= 55,
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which is a reasonable value.

4.1.3.5 Updates

After the CG is performed we have a point x∗, which is an approximated solution of 4.1.

In turn, this equation implies that w(k) + x∗ minimizes the residual at the neighborhood

of w(k) (see the discussion about 3.5). For this reason, we set w(k+1) = w(k) + x∗. This is

the first update of the dGN algorithm.

Depending on the size of the dimensions R1, . . . , RL, this second step is likely to be

the most costly part of all routines inside dGN. We are talking about the evaluation of

the error function F . Let S(k) =
R∑
r=1

w(1,k)
r ⊗ . . . ⊗ w(L,k)

r be the approximating tensor

computed at the k-th iteration. To compute the error at iteration k we must compute

F (w(k)) =
1

2

∥∥S − Sk∥∥2
=

1

2

∥∥∥∥∥S −
R∑
r=1

w(1,k)
r ⊗ . . .⊗w(L,k)

r

∥∥∥∥∥
2

=

=
1

2

R1∑
i1=1

. . .

RL∑
iL=1

(
si1...iL −

R∑
r=1

w
(1,k)
i1r
· . . . · w(L,k)

iLr

)2

.

we don’t take in account the cost to compute this error since it is just a matter of

summing the squares of the residual whose cost is already considered. Before making

this evaluation is it interesting to “normalize” the factors, that is, scale them so we have

‖w(1,k)
r ‖ = ‖w(2,k)

r ‖ = . . . = ‖w(L,k)
r ‖ for each r = 1 . . . R. This is always possible, has

a low cost of R
L∑
`=1

R` flops and can improve the conditioning of the problem, making it

easier for the next CG iterations to find a good solution. When the factors are scaled this

way they are called norm-balanced. In section 5 of [34] the conditioning of norm-balanced

representations of tensors is discussed at some detail. In particular, the lower bound of

the condition number is minimized when we use balanced-norm representations.

The last update is the damping parameter update. Let µ(k) be the damping parameter

at iteration k of dGN. Previously, in the “Damped Gauss-Newton” section, we saw that

this update depends on the gain ratio

g =
‖S − S̃(k−1)‖2 − ‖S − S̃(k)‖2

‖S − S̃(k−1)‖2 − ‖f̃(w(k))‖2
.

A large value of g indicates that ‖f̃(w(k))‖2 is a good approximation to ‖S − S̃(k)‖2,

in other words, the linear model f̃ is making good predictions about the actual errors.

A small or negative g indicates that this approximation is poor (the reason for that is

indicated in section 3.5.2). When the approximation is good we decrease the damping

parameter so the iterations becomes more like a Gauss-Newton iteration, which converges
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rapidly. Otherwise we increase the damping parameter, which adds regularization to the

model and make it more alike the gradient descent method.

An update strategy widely used is the following.

if g < 0.25

µ← 2µ

else if g > 0.75

µ← µ/3

This strategy was originally proposed by Marquardt in [69]. This update strategy is

not so sensitive to minor changes in the thresholds 0.25, 0.75 or the update factors 2, 1/3.

Another strategy frequently used (which was also used to compute CPDs in [4]) is the

following.

if g > 0

µ← µ ·max{1/3, 1− (2g − 1)3}

ν ← 2

else

µ← µ · ν

ν ← 2ν

In general this strategy outperforms the previous one, as demonstrated in [79]. The

value ν usually is initiated to ν = 2, but minor changes doesn’t affect the performance

significantly. We tested the second strategy in our problem for a vast of different updates

and none was very effective. The first one seemed to perform better for some specific

choices of thresholds and factors. In the end, we decided to use the following update

strategy.

if g < 0.25

µ← 3µ

else if g > 0.75

µ← µ/3

These values were obtained experimentally as a result of several tests over several

distinct tensors. Still, there is a reasoning to explain why these values works well. As we

already know, the maximum number of iterations of the CG will be very low at the first

iterations of the dGN (cg_maxiter can be even 2 or 3). This means the solution found by

the CG has a large residual, which means ‖f̃(w(k))‖ will be large when k is small. Even
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in this situation the dGN is likely to decrease the errors monotonically, so we will have

‖S − S(k)‖ ≤ ‖S − S(k−1)‖ ≤ ‖f̃(w(k))‖ regardless the number of iterations performed by

the CG. This implies that g < 0. If we apply the original Marquardt strategy, then the

damping parameter will increase while also increasing the regularization of the problem,

which is already very regularized at the first iterations. This excessive regularization

almost always leads to solutions which are some local minimum of the problem. Even

if we use some good initialization (which clearly means that decreasing the damping

parameter is the right move to do), the fact that cg_maxiter is low at the beginning

will lead to more regularization, which leads to local minima. As we keep doing dGN

iterations, it is expected to have ‖f̃(w(k))‖ � ‖S − S(k)‖ / ‖S − S(k−1)‖ so g is positive

and close to 0. To reinforce the fact that we want to decrease the damping parameter, it is

crucial to choose thresholds which favors this. Therefore, most of the time the algorithm

will decrease the damping parameter and only sometimes it will increase it.

4.1.3.6 Stopping conditions

As in any iterative algorithm, good stopping conditions are crucial to improve perfor-

mance. The conditions we used to stop iterating are based in other implementations, but

they were tested and refined to lead to the best performance possible. We present our

four stopping conditions below and in the same order they are implemented. The program

stops at iteration k if

1. Relative error:
‖S − S(k)‖
‖S‖

< tol

2. Step size: ‖w(k−1) −w(k)‖ < tol

3. Relative error improvement:

∣∣∣∣‖S − S(k−1)‖
‖S‖

− ‖S − S
(k)‖

‖S‖

∣∣∣∣ < tol

4. Gradient norm: ‖∇F (w(k))‖∞ < tol

5. Average error:

1

c

k0−c∑
k=k0−2c

‖S − S(k)‖
‖S‖

− 1

c

k0∑
k=k0−c

‖S − S(k)‖
‖S‖

< tol

where k0 > 2c and c = 1 +

⌈
maxiter

10

⌉
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6. Average improvement:

1

c

k0∑
k=k0−c

∣∣∣∣‖S − S(k−1)‖
‖S‖

− ‖S − S
(k)‖

‖S‖

∣∣∣∣ < 10−3 · 1

c

k0∑
k=k0−c

‖S − S(k)‖
‖S‖

where k0 > 2c and c = 1 +

⌈
maxiter

10

⌉

7. Divergence:
‖S − S(k)‖
‖S‖

>
max{1, ‖T ‖2}

10−16 + tol

The first three conditions are standard and will be present in almost any solver in

one form or another. The gradient condition can be found in Tensor Toolbox. Since the

algorithm converges to a critical point, this is a natural stopping condition to include.

The purpose of the last condition is clear, and the term 10−16 in the denominator is there

to prevent division by zero in the case of tol = 0. Conditions 5 and 6 deserves a little

more explanation. First of all, we remark that the constants c and 10−3 were obtained

empirically and there is nothing special about them. Secondly, these two conditions are

only verified at each c iterations so we are always comparing the average of a batch with

the next one. Condition 5 avoids errors oscillating too much time without any overall

decreasing, like illustrated in figure 4.3.

Figure 4.3: The blue line represents the evolution of the relative error in a CPD computation. The

program can stop because the average 2 is bigger than average 1.

Condition 6 avoids too long periods of negligible improvements. For instance, if the

error is of order O(10−2), it is not necessary the program to waste time making hundreds

iterations of improvements of order O(10−6). Figure 4.4 illustrates this kind of situation.
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Figure 4.4: Note that the program could have stopped much earlier. Even if the errors are strictly

decreasing, the additional accuracy is irrelevant compared to the final error.

The cost of the step size is of R
L∑
`=1

R` flops. Remember that ∇F (w(k)) = JTf · f(w(k))

(lemma 3.4.2). With the notations used in the CG algorithm we have that ∇F (w(k)) =

−AT · b. Since this vector had to be computed in the CG algorithm, we can just store

it be used for the stopping condition. The computation of its norm amounts to R
L∑
`=1

R`

flops. The other stopping conditions are cheaper to compute so we don’t count them.

4.1.3.7 Overall cost of dGN

We already have done all the complexity analysis of each algorithm and each small routine

inside the dGN algorithm. Here we just put all them together in order to facilitate the

presentation. We assign some memory costs with the symbol “−” when the respective

cost is irrelevant.

Overall, the memory cost of one dGN iteration is of

R
L∑
`=1

R` +R2(L+ L2) +R

L∑
`=1

R` = 2R
L∑
`=1

R` +R2(L+ L2) floats,︸ ︷︷ ︸
gradient

︸ ︷︷ ︸
Π(`′,`′′) and Π(`′)

︸ ︷︷ ︸
vector result

while the computational cost is of
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Task Memory Computational cost

Computing the residual
L∏
`=1

R` O

(
(L− 1)

L∏
`=1

R`

)

Computing the gradient R
L∑
`=1

R` O

(
LR

L∏
`=1

R`

)

Computing Π(`′,`′′) and Π(`′) R2(L+ L2) O

(
R2

(
L+

L∑
`=1

R`

))

CG method R

L∑
`=1

R` O

(
iCG(9R + LR2)

L∑
`=1

R`

)

Normalizing the factors − O

(
R

L∑
`=1

R`

)
Damping parameter update − O(1)

Stopping conditions − O

(
3R

L∑
`=1

R`

)
Table 4.2: Memory and computational costs - III.

O

(
(L− 1)

L∏
`=1

R` + LR
L∏
`=1

R` +R2

(
L+

L∑
`=1

R`

)
+ iCG(9R + LR2)

L∑
`=1

R` + 3R
L∑
`=1

R`

)
=

︸ ︷︷ ︸
residual

︸ ︷︷ ︸
gradient

︸ ︷︷ ︸
Π(`′,`′′) and Π(`′)

︸ ︷︷ ︸
CG loop

︸ ︷︷ ︸
stop conditions

= O

(
(LR + L− 1)

L∏
`=1

R` +R2

(
L+

L∑
`=1

R`

)
+ 3R

L∑
`=1

R` + iCG(9R + LR2)
L∑
`=1

R`

)
flops.

4.1.3.8 Comparison to other algorithms

As mentioned in chapter 0, the solvers Tensorlab and Tensor Box also implements the

Gauss-Newton method. It is of interest to compare the implementations and their com-

plexities since they are based on the same method. To simplify out analysis, assume that

the compression stage is already performed and limit the discussion here to cubic tensors

of shape R×R× . . .×R.

Tensorlab is a tensor package with several algorithms to compute a more general

decomposition, namely the Block Term Decomposition (BTD). They propose to work

with the more general approximate Hessian, which have structure to be exploited, just

as in this work, see theorem 4.5 [15]. Since their formulation is more general, they

end with more equations to perform matrix-vector multiplication, which then can be
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simplified in the particular case of the CPD. Preconditioning is employed too, but instead

of a diagonal preconditioner they use a block diagonal preconditioner (also called a block

Jacobi preconditioner). This approach may improve the conditioning substantially, but

it comes with the cost of having to solve a linear system at each CG iteration. The

cost to compute the error at each iteration is of O(2RL+1) flops and the cost to compute

the cogradient is of O(2LRL+1) flops, see appendix of [15] for more details. The faster

algorithm is the inexact Gauss-Newton, which costs O
(
c1

(
5
2
L2R2 + 8LR2 + 1

3
LR3

))
flops

to solve the inverse problem of each Gauss-Newton iteration. The value c1 is the number

of CG iterations performed, which is set to 15 by default. For more details we refer to

the appendix of the same article.

Tensor Box starts decomposing the approximated Hessian as H = G + ZKZT , where

all these matrices are sparse with some structure, see theorem 4.2 of [4]. This structure

is exploited so then can write the inverse of the damped approximated as (H + µI)−1 =

G̃µ − LµBµL
T
µ , where all these matrices have some precise structure which can be used

to accelerate the iterations. Their algorithm depends on the construction of several in-

termediate matrices, so we will only mention their associate costs, but the reader more

interested is encouraged to read section 4.3 of [4]. Building matrix K costs O(L3R2)

flops. Inverting all matrices Γ
(n)
µ costs O(LR3) flops. The main cost of their algorithm

is the computation of damped factors, which amounts to O(LRL+1) flops. These factor

are used to construct a inverse linear problem with size LR2 × LR2, which is solved with

O(LR3 + L3R6) flops.

For each solver, the costs to perform a single iteration is summarized below.

Tensor Fox: O
(
LRL+1 + (L− 1)RL + 5LR2 + LR3 + c2(9LR2 + L2R3)

)
flops

Tensorlab: O
(
2RL+1 + 2LRL+1 + c1

(
5
2
L2R2 + 8LR2 + 1

3
LR3

))
flops

Tensor Box: O
(
L3R2 + LR3 + LRL+1 + LR3 + L3R6

)
flops

At first, the analysis is not clear because c2 is stochastic (it is the maximum number

of CG iterations). Assuming that all 200 dGN iterations of Tensor Fox will be performed,

the average number of CG iterations is c2 = 28. The term RL+1 adds more cost to

Tensorlab as the order increases. We note that Tensor Box is slower for low L and faster

for bigger L (more precisely, for L ≥ 8), with Tensor Fox being the second faster. For

L = 3 and small R, we note that Tensorlab is faster than the others, but Tensor Fox

starts to be the faster as R increases (around R = 50). For L = 4, 5, 6, 7 Tensor Fox is

the faster algorithm for any R ≥ 10. We remark that these complexity analysis depends

on the constants associated to each cost.
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Task Memory

Compression (R + 1)
L∑
`=1

I` +
L∏
`=1

I` +
L∏
`=1

R`

Initialization R
L∑
`=1

R`

dGN
L∏
`=1

R` +R2L2 +R
L∑
`=1

R`

Uncompression R

L∑
`=1

I`

Table 4.3: Memory costs - IV.

4.1.4 Uncompression

After we have computed a CPD (W(1), . . . ,W(L)) for S, we expect that

S ≈ (W(1), . . . ,W(L)) · IR×...×R.

On the other hand we know that T ≈ (U(1), . . . ,U(L)) · S, hence

T ≈ (W̃
(1)
, . . . ,W̃

(L)
) · IR×...×R,

where W̃
(`)

= U(`)W(`) for each ` = 1 . . . R. With this we can write

T ≈
R∑
r=1

W̃
(1)

:r ⊗ . . .⊗ W̃
(L)

:r ,

an approximated CPD for T .

Note that W̃
(`) ∈ RR`×R, while W(`) ∈ RI`×R. The process of transforming smaller

dimensional factor matrices W̃
(`)

into the bigger factor matrices W(`) is what we call

uncompression. This is the last stage of all, after that we have a CPD for T . The cost

to produce each W̃
(`)

is the cost to multiply a I` ×R` matrix by a R` ×R matrix, which

has a cost of O(I`R`R) flops. Therefore, the cost to produce the uncompressed CPD is of

O

(
R

L∑
`=1

I`R`

)
flops.

We finish this section with a succinct summary of all costs to produce a CPD (tables

4.3 and 4.4) in Tensor Fox. Just as we denoted by iCG the number of iterations of the

CG algorithm, we denote by idGN the number of iterations of the dGN algorithm.
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Task Computational cost

Compression O

((
1 +

L∏
`=1

I`

)
L∑
`=1

I` +
L∑
`=1

I3
`

)

Initialization O

(
R

L∑
`=1

R`

)
dGN O

(
idGN

(
(LR+R+ L− 1)

L∏
`=1

R` + 3R

L∑
`=1

R` +R2
L∑

`=1

R` + iCG(8R+ LR2)

L∑
`=1

R`

))

Uncompression O

(
R

L∑
`=1

I`R`

)

Table 4.4: Computational costs - IV.

4.2 Warming up

Now we start to make computational experiments. Let’s start with a simple example

in order to show some computational aspects we are interested in. For this suppose a

multivariate function ϕ : RL → R as described in example 0.3. To make everything more

concrete let’s consider the highly nonlinear function

ϕ(x, y, z) = cos(1− x) sin(1 + y2)− sin(1 + x2)ex
2+y2+z2 − cos(x) ln(1 + z).

Now consider some uniform grids in the interval [0, 1], with six samples for x, five samples

for y and four samples for z. With these points we form the tensor T ∈ R6×5×4 defined

as tijk = ϕ(xi, yj, zk), where xi = 0, 0.2, 0.4, 0.6, 0.8, 1, yj = 0, 0.25, 0.5, 0.75, 1 and zk =

0, 0.33333333, 0.66666667, 1. We can write T =
3∑
`=1

ϕ
(`)
1 (x)ϕ

(`)
2 (y)ϕ

(`)
3 (z), where

ϕ
(1)
1 (x) = cos(1− x),

ϕ
(1)
2 (y) = sin(1 + y2),

ϕ
(1)
3 (z) = 1,

ϕ
(2)
1 (x) = − sin(1 + x2)ex

2

,

ϕ
(2)
2 (y) = ey

2

,

ϕ
(2)
3 (z) = ez

2

,

ϕ
(3)
1 (x) = − cos(x),

ϕ
(3)
2 (y) = 1,

ϕ
(3)
3 (z) = ln(1 + z).
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Figure 4.5: Energy distribution of truncation S̃.

Let T = (U(1),U(2),U(3)) · S be the MLSVD of T . After the truncation process

(described in 4.1.1) we obtain a tensor S̃ ∈ R3×3×3 whose respective relative error is
‖S−S̃‖
‖S‖ = 3.85 · 10−14. Since the multilinear rank is limited by the rank, we know in

advance that rank�(T ) ≤ (3, 3, 3). Since the error showed is practically is minimal,

the truncated MLSVD obtained is the actual MLSVD of T , and we have the equality

rank�(T ) = (3, 3, 3). We can visualize the energy distribution of S in figure 4.5, which

plots the energy of the slices respective to each mode. Each square is an entry of a slice

in absolute value. The bars on the side of each image indicates the magnitudes of the

entries.

The tensor S can be showed explicitly, it is given by

96



Shape of truncation Relative error
1× 1× 1 0.04345277
1× 1× 2 0.04345277
1× 1× 3 0.04345276
1× 2× 1 0.04345198
1× 3× 1 0.04345198
2× 1× 1 0.04345156
3× 1× 1 0.04345154
2× 2× 1 0.04330007
2× 3× 1 0.04321934
3× 2× 1 0.04255157
3× 3× 1 0.04246718
2× 1× 2 0.03591381
3× 1× 2 0.03588523
2× 1× 3 0.03572117
3× 1× 3 0.03549749
1× 2× 2 0.02888081
1× 3× 2 0.02887894
1× 2× 3 0.02871292
1× 3× 3 0.02869078
2× 2× 2 0.01093718
2× 3× 2 0.01060795
2× 2× 3 0.00964929
2× 3× 3 0.00919564
3× 2× 2 0.00720686
3× 3× 2 0.00668082
3× 2× 3 0.00296115
3× 3× 3 0

Table 4.5: Error of all possible truncations.

S =


 45.84 0.012 0.00006

0.014 0.16 0.12

0.002 −0.36 −0.019

 ,
 0.0005 1.48 −0.015

1.12 −0.46 −0.00031

0.065 −0.053 0.0069

 ,
 0.00096 −0.142 0.049

0.17 −0.08 −0.024

−0.17 0.076 0.0038


 .

This presentation of S is based on its frontal slices, that is, S = {S::1,S::2,S::3}.
Just as we did in 4.1.1, we could have obtained a smaller truncation S̃ and then we

would forget S by defining S = S̃. The matrices U(`) would have some of its last columns

deleted and we would redefine these matrices too. The original MLSVD is forgotten and

we use the truncated version in its place. Note that, by limiting ourselves to the trun-

cated MLSVD, the best possible CPD we can achieve will have relative error equal2 to

the relative error between S̃ and S. By varying 1 ≤ i, j, k ≤ 3 and checking all possible

truncations S:i,:j,:k we can get a better picture of the relation between truncation and

error. Table 4.5 below shows how the truncation and errors are related in this example.

2It is still possible to have smaller errors by pure luck, but we won’t take this in account.
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Figure 4.6: Plot of the evolution of several measures made during the computation of a CPD.

Our method of initialization based on the MLSVD chooses the three brightest yel-

low squares (where the energy is most concentrated) of figure 4.5 to generate an initial

approximation S(0). This initial tensor is

S(0) = s111 e1 ⊗ e1 ⊗ e1 + s212 e2 ⊗ e1 ⊗ e2 + s122 e1 ⊗ e2 ⊗ e2 =

= 45.84 e1 ⊗ e1 ⊗ e1 + 1.12 e2 ⊗ e1 ⊗ e2 + 1.48 e1 ⊗ e2 ⊗ e2.

The respective error of this approximated rank-3 CPD is

‖T − (U(1),U(2),U(3)) · S(0)‖
‖T ‖

= 0.0153,

which is already small enough for a first iteration. From this tensor we start the dGN

iterations in order to compute a better rank-3 CPD for T . The results of the computa-

tions are summarized in figure 4.6. All the plots are in log10 scale. We can see the error

decreasing but going up sometimes. The algorithm is not necessarily monotonic, but it

always auto-correct itself. Adding line-search methods at each iteration were attempted,

and this indeed made the algorithm monotonic (at least in practice). However this mono-

tonicity seems to make the iterations to be drawn by local minima. Every attempt to

decrease the error a little bit at each iteration led to some kind of local minima attraction.

Our current algorithm is more “erratic” sometimes but is this behavior is what makes the

steps “run away” from local minima. The error improvement showed is the absolute value

of the difference between two consecutive relative errors. Figure 4.6 shows the evolution

of the error, improvement and gradient as the iterative process progresses.
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After all computations are finished the program outputs the approximated CPD

(X,Y,Z) · I3×3×3, where

X =



−0.81709105 0.78059637 −0.53290962

−0.87159249 0.76495679 −0.6872218

−1.04470608 0.71882424 −0.81413498

−1.36099384 0.64403858 −0.90858919

−1.83712919 0.54358195 −0.96681853

−2.40011984 0.42145802 −0.98650216


,

Y =


−0.97352551 −0.72100749 0.83684308

−1.03631189 −0.72099582 0.86877435

−1.25003023 −0.72096898 0.94377806

−1.70859268 −0.72095345 0.99448294

−2.64633452 −0.72099573 0.90429673

 ,

Z =


−1.05782625 −0000.246843654 −1.01914978

−1.18213922 0.510766716 −1.01896187

−1.64980857 0.907135088 −1.01880278

−2.87546993 1.23098132 −1.01864246

 .
If everything worked correctly, the first column of X should be some multiple3 of the

outputs of ϕ
(1)
1 (x) = cos(1 − x) for x = 0, 0.2, 0.4, 0.6, 0.8, 1. We can try scaling the

columns of X to fit the data. If after several trials none of them seems to work, it may be

a good idea to compute another CPD, or change the initialization method, or introduce

more restrictions to the model, etc.

4.3 Benchmark tensors

As we already said sometimes, most parameters and subroutines of Tensor Fox were

obtained by experience. The first attempts were based on other implementations, and

from there we start to fine tuning to get the most of every single parameter. To make

sure the choices are optimal and generic enough, it is necessary to test the performance for

a diverse family of tensors, taking into account what are the known difficulties and what is

applicable. In this section, we present all the tensors used for testing and benchmarking.

3This issue comes from the scaling we are using. It is possible to re-scale the factors to fit the original
functions without changing the CPD.
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Figure 4.7: Swimmer tensor.

4.3.1 Swimmer

This tensor was constructed based on the paper [23] as an example of a nonnegative

tensor. It is a set of 256 images of dimensions 32 × 32 representing a swimmer. Each

image contains a torso (the invariant part) of 12 pixels in the center and four limbs of 6

pixels that can be in one of 4 positions. In this work they proposed to use a rank R = 50

tensor to approximate, and we do the same for our test. In figure 4.7 we can see some

frontal slices of this tensor.

4.3.2 Handwritten digits

This is a classic tensor in machine learning, it is the MNIST4 database of handwritten

digits. Each slice is a image of dimensions 20× 20 of a handwritten digit. Also, each 500

consecutive slices correspond to the same digit, so the first 500 slices correspond to the

digit 0, the slices 501 to 1000 correspond to the digit 1, and so on. We choose R = 150

as a good rank to construct the approximating CPD to this tensor. In figure 4.8 we can

see some frontal slices of this tensor.

4http://yann.lecun.com/exdb/mnist/
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Figure 4.8: Handwritten digits tensor.

4.3.3 Border rank

Remember the definition and discussion about border rank in 1.5. We observed that the

strict inequality rank(T ) < rank(T ) = R can happen, and this means that the set of

rank-R tensors is not closed. This phenomenon makes the CPD computation a challenging

problem. The paper [20] has a great discussion on this subject. In the same paper (and

theorem 1.5.6) they show that

T (n) = n

(
x(1) +

1

n
y(1)

)
⊗
(

x(2) +
1

n
y(2)

)
⊗
(

x(3) +
1

n
y(3)

)
− nx(1) ⊗ x(2) ⊗ x(3)

is a sequence of rank sequence of rank 2 tensors converging to a tensor of rank 3, where

each pair x(`),y(`) ∈ RI` is linearly independent. Remember that the limit tensor is

T = x(1) ⊗ x(2) ⊗ y(3) + x(1) ⊗ y(2) ⊗ x(3) + y(1) ⊗ x(2) ⊗ x(3). We choose to compute a

CPD of rank R = 2 to see how the algorithms behaves when we try to approximate a

problematic tensor by tensor with low rank. In theory it is possible to have arbitrarily

good approximations.
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4.3.4 Matrix multiplication

Let MN ∈ RN2×N2×N2
be the tensor associated with the multiplication between two

matrices in RN×N . The classic form of MN is given by

MN =
m∑
i=1

n∑
j=1

l∑
k=1

vec(eij)⊗ vec(ejk)⊗ vec(eik),

where eij is the matrix N ×N with entry (i, j) equal to 1 and the remaining entries equal

to zero. Since Strassen [25] it is known that matrix multiplication between matrices of

dimensions N × N can be made with O(N log2 7) operations. Many improvements were

made after Strassen but we won’t enter in the details here. For the purpose of testing

we choose the small value N = 5 and the rank R = d5log2 7e = 92 in honor of Strassen.

However note that this is probably not the exact rank ofM5, so this test is about a strict

low rank approximation of a difficult tensor.

4.3.5 Collinear factors

The phenomenon of swamps occurs when all factors in each mode are almost collinear.

Their presence is a challenge for many algorithms because they can slow down convergence.

Now we will create synthetic data to simulate various degrees of collinearity between the

factors. We begin generating three random matrices MX ∈ Rm×R,MY ∈ Rn×R,MZ ∈
Rp×r, where each entry is drawn from the normal distribution with mean 0 and variance

1. After that we perform QR decomposition of each matrix, obtaining the decompositions

MX = QXRX ,MY = QY RY ,MZ = QZRZ . The matrices QX ,QY ,QZ are orthogonal.

Now fix three columns q
(i′)
X ,q

(j′)
Y ,q

(k′)
Z of each one of these matrices. The factors X =

[x(1), . . . ,x(R)] ∈ Rm×R, Y = [y(1), . . . ,y(R)] ∈ Rn×R, Z = [z(1), . . . , z(R)] ∈ Rp×R are

generated by the equations below.

x(i) = q
(i′)
X + c · q(i)

X , i = 1 . . . R

y(j) = q
(j′)
Y + c · q(j)

Y , j = 1 . . . R

z(k) = q
(k′)
Z + c · q(k)

Z , k = 1 . . . R

The parameter c ≥ 0 defines the degree of collinearity between the vectors of each

factor. A value of c close to 0 indicates high degree of collinearity, while a high value of

c indicates low degree of collinearity.

Another phenomenon that occurs in practice is the presence of noise in the data. So

we will treat these two phenomena at once in this benchmark. After generating the factors

X,Y,Z we have a tensor T = (X,Y,Z) · IR×R×R. That is, X,Y,Z are the exact CPD

of T . Now consider a noise N ∈ Rm×n×p such that each entry of N is obtained by the
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normal distribution with mean 0 and variance 1. Thus we form the tensor T̂ = T +ν ·N ,

where ν > 0 defines the magnitude of the noises. The idea is to compute a CPD of T̂
of rank R and then evaluate the relative error between this tensor and T . We expect

the computed CPD to clear the noises and to be close to T (even if it is not close to

T̂ ). We will fix ν = 0.01 and generate tensors for c = 0.1, 0.5, 0.9. In all cases we will

be using m = n = p = 300 and R = 15. This is a particularly difficult problem since we

are considering swamps and noises at once. The same procedure to generate tensors were

used for benchmarking in [4].

4.3.6 Double bottlenecks

We proceed almost in the same as before for swamps, we used the same procedure to

generate the first two columns of each factor matrix, then the remaining columns are

equal to the columns of the QR decomposition. After generating the factors X,Y,Z

we consider a noise N ∈ Rm×n×p such that each entry of N is obtained by the normal

distribution with mean 0 and variance 1. Thus we form the tensor T̂ = T + ν · N , where

ν > 0 defines the magnitude of the noises. The collinear parameter used for the tests are

c = 0.1, 0.5, and we fix ν = 0.01 as before. The procedure before the noise is presented

below.

x(i) = q
(i′)
X + c · q(i)

X , i = 1, 2

y(j) = q
(j′)
Y + c · q(j)

Y , j = 1, 2

z(k) = q
(k′)
Z + c · q(k)

Z , k = 1, 2

x(i) = q
(i′)
X , i = 3 . . . R

y(j) = q
(j′)
Y , j = 3 . . . R

z(k) = q
(k′)
Z , k = 3 . . . R

4.4 Fine tuning

We will conduct the tests using only third order tensors The dimensions will be written

as m,n, p so the tensors are elements of Rm×n×p. As already mentioned, the parameters

maxiter, tol, cg_maxiter were found after several experimentations and tests. Here

we consider varying each one of them around the default ones and test them with our

test tensors. The results we are going to show here are just a fraction of the total work

done in order to achieve these values. In particular, cg_maxiter was a result of several

different models and parameter fine tuning. We will conduct an hyperparameter search
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on the parameters. This consists in considering a high dimensional grid of values, where

each dimension corresponds to a certain parameter. Each point in the grid correspond to

a model (a particular choice of parameters) on which we evaluate its performance. The

grid we are considering here is given by P1 × P2 × P3 × P4, where

P1 = {100, 200, 400},

P2 = {10−4, 10−6, 10−8},

P3 = {0.2, 0.3, 0.4, 0.5},

P4 = {0.6, 0.7, 0.8, 0.9}.

The idea is that maxiter = p1, tol = p2 · mnp, a = p3, b = p4, where pi ∈ Pi for

all i. Consider that cg_maxiter ∼
[
1 + dkae, 2 + dkbe

]
. It is possible to use more values

and larger intervals, but experience showed that good performance is attained around

these values. We test each tensor 20 times and take the average time and average error

to measure its performance. In the plots of figure 4.9, each small point correspond to a

model (a particular choice of parameters). The better choices correspond to points closer

to the origin, which translates to small error in a small time. We selected some regions

of interest in order to discard the failed models. The sizes of these regions depend on

the considered tensor. Sometimes the precision is more important that the time (at a

certain degree) and sometimes we can afford to lose precision to gain in time. This is a

subtle matter, but in general we will avoid models falling too far away from the region

close to the origin. The goal is to obtain a well balanced set of parameters. The region

between the red dotted lines and the axes indicates the region of interest for each test

tensor. Every point inside these regions are registered. The idea is too see if there are

models appearing inside these regions for different tensors. This would indicate that the

model performs well in more than just one tensor. The ones appearing more frequently

are more likely to be well balanced and generic. Table 4.6 shows the results of all models

which appeared at least four times inside some of the defined regions. The models marked

in red are the ones with five or more occurrences. These are the best ones by our criteria.

We used the abbreviations Sw = Swimmer, Hw = Handwritten, Br = Border rank, Mm

= Matrix multiplication, Swp 0.1 = Swamp with c = 0.1, and similar for the other swamp

tensors, and Bn 0.1 = Bottleneck with c = 0.1, with the same considerations as the swamp

tensors. To decide which model to choose we also plot the position of these four models.

The first thing we note is that all models performs reasonably well and quite similar for

the first four test tensors. The differences begin to appear when we introduce collinearity.

In the case of the swamp tensors the models with tolerance 10−8 are able to attain the

same error of the other models but in a bigger time. On the other hand, in the case of

bottleneck tensors the models with tolerance 10−6 takes the same time of the other models

but they get a noticeable bigger error for c = 0.1.
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maxiter tol a b Sw Hw Br Mm Swp 0.1 Swp 0.5 Swp 0.9 Bn 0.1 Bn 0.5 Bn 0.9
100 10−8 0.4 0.7 x x x x
200 10−6 0.4 0.9 x x x x x
200 10−6 0.5 0.9 x x x x x
200 10−8 0.5 0.9 x x x x x
400 10−6 0.2 0.8 x x x x
400 10−6 0.2 0.9 x x x x
400 10−6 0.3 0.9 x x x x
400 10−6 0.4 0.7 x x x x
400 10−6 0.4 0.8 x x x x x
400 10−6 0.4 0.9 x x x x
400 10−6 0.5 0.9 x x x x

Table 4.6: Hyperparameter grid search - best models.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.0011059 0.0000071 1.27 sec 0.13 sec
200, 10−6, 0.5, 0.9 0.0018093 0.0000155 1.43 sec 0.19 sec
200, 10−8, 0.5, 0.9 0.0013749 0.0000139 1.78 sec 0.02 sec
400, 10−6, 0.4, 0.8 0.0029579 0.0000282 1.39 sec 0.25 sec

Table 4.7: Swimmer tensor - final best performances.

All these four models are good, but we have to decide between one of them. We

can repeat the previous tests but with more repetitions to get more accurate performance

statistics. Since there are few models to test this is a possible task. The tests are repeated

with 50 repetitions instead of 20, and now we also consider the variance of the error and

time.5 The results are showed in the next tables. We start discarding the model where

tol = 10−8 since this one clearly is more demanding. At the end of the day, “speed shall

prevail”. The other three models are more well balanced so any choice we make is good

enough. Our final choice is maxiter = 200, tol = 10−6, a = 0.4, b = 0.9 since it has

competitive errors measures with better timings in most of the tests.

We point out that the algorithm has a lot of room to improvements. The parame-

ters choice may be changed, all updating strategies are wildly open to modifications, the

preconditioner is surely not optimal (in fact, future work includes testing more precondi-

tioners), and the compression strategies also can be changed.

5Given random variables X1, . . . , XN i.i.d. (independent and identically distributed), the associated

empirical variance is σ2 = 1
N−1

∑N
i=1(Xi −X)2, where X = 1

N

∑N
i=1Xi is the empirical mean

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.0816178 0.0000001 15.32 sec 7.49 sec
200, 10−6, 0.5, 0.9 0.0815007 0.0000000 15.58 sec 4.09 sec
200, 10−8, 0.5, 0.9 0.0814086 0.00000001 17.50 sec 1.74 sec
400, 10−6, 0.4, 0.8 0.0817002 0.00000001 16.69 sec 7.57 sec

Table 4.8: Handwritten tensor - final best performances.
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Figure 4.9: The location of the best models may help to decide which one is better.
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Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.0016909 0.0000044 0.11 sec 0.0003 sec
200, 10−6, 0.5, 0.9 0.0027261 0.0000046 0.11 sec 0.0002 sec
200, 10−8, 0.5, 0.9 0.0000106 0.00000001 0.12 sec 0.0004 sec
400, 10−6, 0.4, 0.8 0.0005573 0.0000018 0.13 sec 0.002 sec

Table 4.9: Border rank tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.2384032 0.0007164 4.37 sec 0.20 sec
200, 10−6, 0.5, 0.9 0.2396802 0.0005141 4.34 sec 0.085 sec
200, 10−8, 0.5, 0.9 0.2423333 0.0004590 4.33 sec 0.067 sec
400, 10−6, 0.4, 0.8 0.2269175 0.0006688 9.35 sec 5.06 sec

Table 4.10: Matrix multiplication tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.0288477 0.0000026 1.86 sec 0.07 sec
200, 10−6, 0.5, 0.9 0.0288307 0.0000027 1.83 sec 0.007 sec
200, 10−8, 0.5, 0.9 0.0326175 0.0000003 2.63 sec 0.07 sec
400, 10−6, 0.4, 0.8 0.0278611 0.0000026 1.79 sec 0.003 sec

Table 4.11: Swamp 0.1 tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.1000538 0.0000001 1.78 sec 0.003 sec
200, 10−6, 0.5, 0.9 0.1002456 0.0000001 1.86 sec 0.013 sec
200, 10−8, 0.5, 0.9 0.1010695 0.00000001 2.69 sec 0.07 sec
400, 10−6, 0.4, 0.8 0.0999770 0.0000001 1.79 sec 0.007 sec

Table 4.12: Swamp 0.5 tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.1376466 0.0002145 1.96 sec 0.30 sec
200, 10−6, 0.5, 0.9 0.1374688 0.0000559 1.83 sec 0.010 sec
200, 10−8, 0.5, 0.9 0.1337583 0.0000065 1.83 sec 0.005 sec
400, 10−6, 0.4, 0.8 0.1366625 0.0000472 1.85 sec 0.011 sec

Table 4.13: Swamp 0.9 tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.2876770 0.0090001 1.86 sec 0.016 sec
200, 10−6, 0.5, 0.9 0.2738036 0.0110769 1.85 sec 0.009 sec
200, 10−8, 0.5, 0.9 0.2562058 0.0129000 1.92 sec 0.019 sec
400, 10−6, 0.4, 0.8 0.2624673 0.0085848 1.87 sec 0.006 sec

Table 4.14: Bottleneck 0.1 tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.2822554 0.0059065 1.87 sec 0.011 sec
200, 10−6, 0.5, 0.9 0.2669849 0.0052620 1.84 sec 0.007 sec
200, 10−8, 0.5, 0.9 0.2447143 0.0048144 1.87 sec 0.016 sec
400, 10−6, 0.4, 0.8 0.2853812 0.0038925 1.82 sec 0.004 sec

Table 4.15: Bottleneck 0.5 tensor - final best performances.

Model Average error Variance error Average time Variance time
200, 10−6, 0.4, 0.9 0.2578984 0.0018668 1.80 sec 0.003 sec
200, 10−6, 0.5, 0.9 0.2654803 0.0013860 1.94 sec 0.005 sec
200, 10−8, 0.5, 0.9 0.2446079 0.0022603 1.98 sec 0.004 sec
400, 10−6, 0.4, 0.8 0.2568034 0.0029858 1.95 sec 0.002 sec

Table 4.16: Bottleneck 0.9 tensor - final best performances.
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4.5 Tensor Fox vs. other implementations

4.5.1 Procedure

We have selected a set of very distinct tensors to test the known tensor implementations.

Given a tensor T and a rank R, we compute the CPD of TFX (short for Tensor Fox )

with the default maximum number of iterations6 100 times and retain the best result,

i.e., the CPD with the smallest relative error. Let ε be this error. Now let ALG be any

other algorithm implemented by some of the mentioned libraries. We set the maximum

number of iterations to maxiter, keep the other options with their defaults, run ALG

with these options 100 times. The only accepted solutions are the ones with relative error

smaller that ε+ε/100. Between all accepted solutions we return the one with the smallest

running time. If none solution is accepted, we increase it to maxiter by a certain amount

and repeat.

We try the values maxiter = 5, 10, 50, 100, 150, . . . , 900, 950, 1000, until there is an ac-

cepted solution. The running time associated with the accepted solution is the accepted

time. Otherwise we consider that ALG failed. We also consider a fail if the computa-

tional time is exceedingly high, in which case we can stop increasing maxiter earlier.

These procedures favour all implementations against TFX since we are trying a solution

close to the solution of TFX with the minimum number of iterations. This benchmark

measures the computational effort that each program makes to achieve the precision of

TFX’s precision. We consider it to be a fair measure of performance, although other

kind of benchmarks might be considered. We remark that the iteration process is always

initiated with a random point. The option to generate a random initial point is offered

by all libraries, and we use each one they offer (sometimes random initialization was

already the default option). There is no much difference in their initializations, which ba-

sically amounts to draw random factor matrices from the standard Gaussian distribution.

The time to perform the MLSVD, or any kind of preprocessing, is included in the time

measurements. If one want to reproduce the tests presented here, they can be found at

https://github.com/felipebottega/Tensor-Fox/tree/master/tests.

4.5.2 State of art implementations

Now we briefly describe what algorithms will be used in our tests together with their

corresponding implementations source. Some general algorithms are repeated but with

variations, which are particular of each implementation. The ALS algorithm, for instance,

is the one with more variations because people are trying to improve it for decades. For all

Tensorlab algorithm implementation we recommend reading [15], for the Tensor Toolbox

we recommend [17], for TensorLy we recommend [18], and for TensorBox we recommend

6Remember that the default for the maximum number of iterations of TFX is maxiter= 200.
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[4, 6]. In these benchmarks we used Tensorlab version 3.0 and Tensor Toolbox version

3.1.

4.5.2.1 TFX

The algorithm used in TFX’s implementation is the nonlinear least squares scheme de-

scribed in the previous section. There are more implementation details to be discussed,

but the interested reader can check [1] for more information.

4.5.2.2 ALS

This is the Tensorlab’s implementation of ALS algorithm. Although ALS is remarkably

fast and easy to implement, it is not very accurate specially in the presence of bottlenecks

or swamps. It seems (see [15]) that this implementation is very robust while still fast.

4.5.2.3 NLS

This is the Tensorlab’s implementation of NLS algorithm. This is the one we described in

the previous section. We should remark that this implementation is similar to TFX’s im-

plementation at some points, but there are big differences when we look in more details. In

particular the compression procedure, the preconditioner, the damping parameter update

rule and the number of iterations of the conjugate gradient are very different.

4.5.2.4 MINF

This is the Tensorlab’s implementation of the problem as an optimization problem. They

use a quasi-Newton method, the limited-memory BFGS, and consider equation 3.2 just

as a minimization of a function.

4.5.2.5 OPT

Just as the MINF approach, the OPT algorithm is a implementation of Tensor Toolbox,

which considers 3.2 as a minimization of a function. They claim that using the algorithm

option “lbfgs” is the preferred option7, so we used this way.

4.5.2.6 Tly-ALS

TensorLy has only one way to compute the CPD, which is a implementation of the ALS

algorithm. We denote it by Tly-ALS, do not confuse with ALS, the latter is the Tensorlab’s

implementation.

7 https://www.tensortoolbox.org/cp_opt_doc.html
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Solver Shape of factor matrices
Tensor Toolbox m×R, n×R, p×R

Tensorbox m×R, n×R, p×R
Tensorly m×R, n×R, p×R
Tensorlab min(m,R)×R, min(n,R)×R, min(p,R)×R

Tensor Fox R1 ×R, R2 ×R, R3 ×R

Table 4.17: Shapes of the factor matrices of each implementation for rank-R CPD computation of a
tensor with shape m× n× p.

4.5.2.7 fLMa

fLMA stands for fast Levenberg-Marquardt algorithm, and it is a different version of the

damped Gauss-Newton.

In Tensorlab it is possible to disable or not the option of refinement. The first action

in Tensorlab is to compress the tensor and work with the compressed version. If we want

to use refinement then the program uses the compressed solution to compute a refined

solution in the original space. This can be more demanding but can improve the result

considerably. In our experience working in the original space is not a good idea because

the computational cost increases drastically and the gain in accuracy is generally very

small. Still we tried all Tensorlab algorithms with and without refinement. Table 4.17

shows compares the shapes of the factor matrices for each implementation, and there we

can see that most of them them doesn’t compress the tensor. We will write ALSr, NLSr

and MINFr for the algorithms ALS, NLS and MINF with refinement, respectively.

4.5.3 Computational results

We used Linux Mint operational system in our tests. All tests were conducted using a

processor Intel Core i7-4510U - 2.00GHz (2 physical cores and 4 threads) and 8GB of

memory. The packages mentioned run in Python (Tensorly and TensorFox) or Matlab

(Tensorlab, Tensor Toolbox and TensorBox). We use Python - version 3.6.5 and Matlab

- version 2017a. In both platforms we used BLAS MKL-11.3.1. Finally, we want to

mention that TFX is implemented in Python with Numba, a specialized library to make

“just-in-time compilation” (JIT).8 We used the version 0.41 of Numba in these tests.

In figure 4.10 there are some charts, each one shows the best running time of the

algorithms with respect to each one of the tensors describe previously. If some algorithm

is not included in a chart, it means that the algorithm was unable to achieve an acceptable

error within the conditions described at the beginning if this section.

The first thing we should note is that there isn’t a single algorithm which was able

to match the speed of TFX in all tests. In the first four tests NLS algorithm could

8http://numba.pydata.org/
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Figure 4.10: Benchmarks of all tensors and all implementations.
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Figure 4.11: The box plot is a standardized way of displaying the distribution of data based on the
five number summary: minimum, first quartile, median, third quartile, and maximum.

deliver an accepted solution in a reasonable time, but when collinearity was introduced

this algorithm faced problems. When it produced a solution it was within a small time,

but the algorithm can’t be regarded as robust since it can fail to produce a solution in

these cases. For this MINF and ALS looks more reliable while also being very fast. Still,

these two algorithms couldn’t produce an acceptable solution in some cases (for instance

ALS only produced 4 solutions in the total of 12 tensors) and the existence of a solution

can depend on the refinement option being active. Because of that their robustness is

really only partial. About the timings, it is noticeable that TFX is the faster in most of

the tests, and when it is not the faster it is close enough to the faster (in fact, every time

an algorithm was faster than TFX it was by a difference of a fraction of a second). The

algorithms NLS, ALS and MINF also are very fast (their version without refinement).

NLS was faster than TFX two times, ALS was faster three times, and MINF was faster

four times. Apart from that, none of the other algorithms seemed to stand out for some

test.

These results may lead the reader to the conclusion that Tensor Fox is the fastest

implementation of all. This is partially true as we will see in the next experiment. This

time, instead of making all algorithms to match Tensor Fox’s accuracy, we run all with

default options and show their box plots for accuracy and running time. With this we

have a better understanding about the usual accuracy and usual running time of each

algorithm. A box plot is used to summarize the main statistics of a random variable in a

single image as 4.21.

In the next figures we have the box plots of all algorithms, 20 runs for each tensor.
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Figure 4.12: Box plots of the swimmer tensor.

Figure 4.13: Box plots of the handwritten digits tensor.

An algorithm is omitted only when its running time is too big compared to the other

or when the memory size to compute the CPD is too large (more than 7 GB in this

context). Remember that in the previous benchmarks we manipulated the iteration of the

algorithms in order to match Tensor Fox’s accuracy with minimal time. Besides the Tensor

Fox default, were we make the inverse procedure and manipulate Tensor Fox iterations9 to

match the best solution (minimal error) of all other algorithms. This modified algorithm

is labelled as TFXm.

Tensor Fox default is competitive for all tensor except the double bottlenecks, where

its accuracy is not optimal. In this case the modified versions are competitive, being

as accurate and faster as the best algorithms. With these box plots we can see that no

9More precisely, we change the number of CG iterations and activate refinement sometimes, so the
changes are similar to Tensorlab’s.
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Figure 4.14: Box plots of the border rank tensor.

Figure 4.15: Box plots of the 5× 5 matrix multiplication tensor.

Figure 4.16: Box plots of the swamp tensor with c = 0.1.
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Figure 4.17: Box plots of the swamp tensor with c = 0.5.

Figure 4.18: Box plots of the swamp tensor with c = 0.9.

Figure 4.19: Box plots of the double bottleneck tensor with c = 0.1.
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Figure 4.20: Box plots of the double bottleneck tensor with c = 0.5.

Figure 4.21: Box plots of the double bottleneck tensor with c = 0.9.
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algorithm is optimal for all tensors, but the combinations TFX + TFXm or NLS + NLSr

gives optimal solutions as fast as possible.

4.6 Tensor train and the CPD

In table 4.4 we gave a summary of all costs necessary to compute a rank-R CPD.

The dominant cost comes from the dGN algorithm, which is dominated by a factor of

O

(
LR

L∏
`=1

R`

)
floats. With this cost we can see that the CPD computation suffers from

the curse of dimensionality. More precisely, the cost increases exponentially with the ten-

sor order. This limitation can be seen in every CPD implementation, and this is the main

reason why this decomposition still is not widely used on large-scale problems. In the

article [82] they propose a way around this limitation, based on the tensor train decom-

position (TTD) [83]. As a result, we get an algorithm capable of handling higher order

tensors with low computational cost. First we will briefly introduce the TTD, following

[83]. After that we show how to connect the CPD with this new decomposition. This

connection makes it possible to retrieve the CPD from the TTD.

4.6.1 Tensor train decomposition

Let T ∈ RI1×...IL be any order-L tensor. The main idea of the TTD is that we can

approximate T by a tensor T̃ such that the entries of this tensor are given by

t̃i1i2...iL = G(1)(i1)G(2)(i2) . . .G(L)(iL) (4.2)

where each G(`)(i`) is a r`−1 × r` full rank matrix for ` = 2 . . . L, with r1 = rL = 1.

Note that this definition generalizes the definition of rank one tensor. Instead of the

coordinates of the tensor being given by a product of scalars, they are given by a product

of matrices, where the first has one row and the last has one column so the result of the

product still is a scalar. We can take one more step and consider each G(`)(i`) as the slice

of a third order tensor with shape r`−1 × I` × r`. Denoting by G(`) this tensor, we define

G(`)(i`) = G(`)
: i` : (the i`-th vertical slice of G(`)). In coordinates we have that

t̃i1i2...iL =
∑

j0,j1,...,jL

G(1)
j0i1j1

G(2)
j1i2j2

. . . G(L)
jL−1iLjL

.

Since G(1) and G(L) are tensors of order 1 × I1 × r1 and rL−1 × IL × 1, respectively,

they can be regarded as matrices (in particular, j0 = jL = 1). The ranks r` are called

TT-ranks and the three dimensional tensors G(`) are called the cores of the TTD. Note

that the last index of each factor is the first of the next factor. This relation is illustrated

in figure 4.22. The rectangles contain spatial indexes (the indexes j`−1, i`, j`), and the
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circles contain only the auxiliary nodes j`, the ones representing the link between the

cores. Quoting the original author of the TTD (Ivan Oseledets):

“This picture looks like a train with carriages and links between them, and that jus-

tifies the name tensor train decomposition, or simply TT-decomposition.”

Figure 4.22: Tensor-train network representation.

The computation of the cores are made through successive SVDs and reshaping. The

method used to reshape the matrices in the original article is the MATLAB reshape func-

tion, but it can be different as long as it is consistent with the other reshapes of the

algorithm. In particular, note that in the first iteration of the TT-SVD loop we have

M = T(1), the first unfolding of T . Thus the reshape function must be consistent with

the unfolding function. The algorithm is presented without truncation in this context

but the interested reader can refer to the mentioned article to see the proofs and the

more general algorithm. The functions Unfolding and SVD were already introduce, while

Reshape(M, dims) reshapes a certain array M in order that the resulting array has the

dimensions described by the tuple dims.

Algorithm 4.6.1 (TT-SVD).

Input: T ∈ RI1×...×IL

r0 ← 1

M← T
for ` = 1 . . . L− 1

n` ←
∏

`′>` I`′

M← Reshape (M, (r`−1I`, n`))

U,Σ,V← SVD(M)

r` ← rank(M)

G(`) ← Reshape(U, (r`−1, I`, r`))

M← ΣVT

G(L) ←M

Output: G(1), . . . ,G(L)
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4.6.2 CPD tensor train

Given two tensors T ∈ RI1×...×I`×...×IL and U ∈ RJ1×...×Jm×...×JM such that I` = Jm, where

the modes `,m may be different, the ×m` -contraction between T and U is the tensor

T ×`m U ∈ RI1×...×I`−1×I`+1×...×IL×J1×...×Jm−1×Jm+1×...×JM given by

(T ×m` U)i1...i`−1i`+1...iL j1...jm−1jm+1...jM
=

I∑̀
k=1

ti1...i`−1 k i`+1...iL · uj1...jM−1 k jM+1...jM .

Note that with the notion of contraction one can write the TTD in 4.2 more compactly

as

T = G(1) ×1
2 G(2) ×1

3 . . .×1
L−1 G(L−1) ×1

L G(L),

where the operations are made from left to right but we suppressed the parenthesis to

maintain a clean notation. Now we are able to prove our first theorem connecting the

CPD and the TTD. Since the TTD assumes that all cores are of full rank, from this

point we need to assume that all factor matrices of any CPD also are of full rank. This

assumption is implicit in each of the next results. As we did in chapter 3, the objective

of this part is to give the reader not only an understanding of the theoretical aspects,

but also the computational aspects related of our problems, hence all proofs are given in

coordinates.

Theorem 4.6.2 (I. Oseledets, 2010). Let T ∈ RI1×...×I`×...×IL be a rank-R tensor with

CPD given by

T =
(
W(1), . . . ,W(L)

)
· IR×...×R.

Then T admits a TTD of the form T = G(1)×1
2 G(2)×1

3 . . .×1
L−1 G(L−1)×1

L G(L), where

G(1) = W(1),

G(`) =
(
IR,W

(`), IR

)
· IR×R×R, ` = 2 . . . L− 1,

G(L) =
(
W(L)

)T
.

Proof: Define the tensor U = G(1) ×1
2 G(2) ×1

3 . . . ×1
L−1 G(L−1) ×1

L G(L) with cores as

showed above. We will prove that T = U . First note that G(1)
ij = w

(1)
ij and G(L)

ij = w
(L)
ji .

For the other cores we have that

G(`) =
(
W(1), . . . ,W(L)

)
· IR×...×R =

R∑
r=1

er ⊗w(`)
r ⊗ er =
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=
R∑
r=1

er ⊗

(
I∑̀
i`=1

w
(`)
i`r

ei`

)
⊗ er =

R∑
r=1

I∑̀
i`=1

w
(`)
i`r

er ⊗ ei` ⊗ er.

In particular, this expansion of G(`) shows that this tensor can be written as

G(`) =




w

(`)
11 . . . w

(`)
I`1

0 . . . 0
...

...

0 . . . 0

 ,


0 . . . 0

w
(`)
12 . . . w

(`)
I`2

...
...

0 . . . 0

 , . . . ,


0 . . . 0
...

...

0 . . . 0

w
(`)
1r . . . w

(`)
I`r


 ,

where each matrix is a frontal slice. Now we can just compute the coordinates of U and

realize that they are equal to the T coordinates.

ui1i2...iL =
∑

j0,j1,...,jL

G(1)
j0i1j1

G(2)
j1i2j2

. . . G(L−1)
jL−2iL−1jL−1

G(L)
jL−1iLjL

=

=
∑

j1,...,jL

(
W(1)

)
i1j1

(
R∑

r=1

(
er ⊗W(2) ⊗ er

)
j1i2j2

)
. . .

(
R∑

r=1

(
er ⊗W(L−1) ⊗ er

)
jL−2iL−1jL−1

) (
w(L)

r

)
iLjL−1

.

Note that only the terms with j1 = j2 = . . . = jL1 = r, for r = 1 . . . R, are not null.

Therefore the expression above reduces to

R∑
r=1

w
(1)
i1r

w
(2)
i2r

. . . w
(L−1)
iL−1r

w
(L)
iLr
,

from which we can conclude the equality, as desired. �

The TTD based on the CPD given in this theorem will be called CPD-train. In

particular, note that all TT -ranks of this decomposition are equal to R, the rank of the

tensor. Now suppose we don’t have the factors W(`) but the CPD-train holds. If we

apply the TT-SVD algorithm to obtain the cores of the TTD we can expect to retrieve

the factors of the CPD. It should be noted that the cores obtained are note necessarily

in the form G(`) =
(
IR,W

(`), IR

)
· IR×R×R since their representation are not unique (we

can post multiply one core by an invertible matrix and pre multiply the next core for its

inverse, therefore changing the cores but maintaining the TTD).

The next lemma says that if we have the CPDs of two tensors T ,U , and the last

factor matrix of T is the transpose of the inverse of the first factor matrix of U , then

these factors are cancelled when contracted. This lemma is a preparation to prove next

theorem, whose proof was only hinted in [82]. Here we give a detailed proof with a

computational flavor. To prove that lemma we rely on the fact that the ×1
L-contraction

of rank-1 terms (definition B.1.3) of the form a(1) ⊗ . . . ⊗ a(L),b(1) ⊗ . . . ⊗ b(M) (we are
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assuming that a(L) and b(1) have the same shape) is a tensor T given by

T = 〈a(L),b(1)〉 a(1) ⊗ . . .⊗ a(L−1) ⊗ b(2) ⊗ . . .⊗ b(M).

Lemma 4.6.3. Let two tensors T ∈ RI1×...×I`×...×IL and U ∈ RJ1×...×Jm×...×JM such that

T =
(
A(1), . . . ,A(L)

)
· IR×...×R

for matrices A(`) ∈ RI`×R, and

U =
(
B(1), . . . ,B(M)

)
· IR×...×R

for matrices B(m) ∈ RIm×R. If A(L) =
(
B(1)

)−T
(which means IL = J1 = R), then

T ×1
L U =

((
A(1), . . . ,A(L−1), IR

)
· IR×...×R

)
×1
L

((
IR,B

(2), . . . ,B(M)
)
· IR×...×R

)
.

Proof: First we expand the expression for the contraction, obtaining

T ×1
L U =

(
R∑
r=1

a(1)
r ⊗ . . .⊗ a(L)

r

)
×1
L

(
R∑

r′=1

b
(1)
r′ ⊗ . . .⊗ b

(M)
r′

)
=

=
R∑

r,r′=1

(
a(1)
r ⊗ . . .⊗ a(L)

r

)
×1
L

(
b

(1)
r′ ⊗ . . .⊗ b

(M)
r′

)
=

=
R∑

r,r′=1

〈a(L),b(1)〉 a(1)
r ⊗ . . .⊗ a(L−1)

r ⊗ b
(2)
r′ ⊗ . . .⊗ b

(M)
r′ .

For the moment, instead of writing a
(L)
r for the r-th column of A(L), it will be con-

venient to use the Matlab convention and write a
(L)
:r . Furthermore, since a

(L)
:r is the r-th

row of
(
B(L)

)−1

transposed, we have that

〈a(L)
:r ,b

(1)
:r′ 〉 =

(
a(L)

:r

)T
b

(1)
:r′ =

=
(
b(1)
r:

)−1

b
(1)
:r′ = δrr′ ,

where b(1)
r: denotes the r-th row of B(1) and δrr′ is the Kronecker delta of r and r′. Thus

the summation for T ×1
L U reduces to

R∑
r=1

〈a(L),b(1)〉 a(1)
r ⊗ . . .⊗ a(L−1)

r ⊗ b(2)
r ⊗ . . .⊗ b(M)

r .
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It is not hard to see that((
A(1), . . . ,A(L−1), IR

)
· IR×...×R

)
×1
L

((
IR,B

(2), . . . ,B(M)
)
· IR×...×R

)
leads to the same expression, therefore they are the same tensor. �

Theorem 4.6.4 (Y. Zniyed, R. Boyer, Andre L.F. de Almeida, G. Favier, 2018). Let

T ∈ RI1×...×IL be a rank-R tensor with TTD given by

T = G(1) ×1
2 G(2) ×1

3 . . .×1
L−1 G(L−1) ×1

L G(L)

such that

G(1) = W(1)
(
M(1)

)−T
G(2) =

(
M(1),W(2),M(2)

)
· IR×R×R

G(3) =
((

M(2)
)−T

,W(3),M(3)
)
· IR×R×R

...

G(L−1) =
((

M(L−2)
)−T

,W(L−1),M(L−1)
)
· IR×R×R

G(L) =
(
M(L−1)

)−T (
W(L)

)T
.

Then T =
(
W(1), . . . ,W(L)

)
· IR×...×R is a CPD for T . All matrices M(`) are square

R×R and invertible.

Proof: The prove is based on successive applications of the last lemma. First note

that

G(1) ×1
2 G(2) = W(1)

(
M(1)

)−T ×1
2

((
M(1),W(2),M(2)

)
· IR×R×R

)
=

= W(1) ×1
2

((
IR,W

(2),M(2)
)
· IR×R×R

)
.

Going to the next term gives

G(1) ×1
2 G(2) ×1

3 G(3) =

= W(1) ×1
2

((
IR,W

(2),M(2)
)
· IR×R×R

)
×1

3

(((
M(2)

)−T
,W(3),M(3)

)
· IR×R×R

)
=

= W(1) ×1
2

((
IR,W

(2), IR

)
· IR×R×R

)
×1

3

(((
IR,W

(3),M(3)
)
· IR×R×R

)
.

This pattern keeps going until we have

G(1) ×1
2 G(2) ×1

3 . . .×1
L−1 G(L−1) ×1

L G(L) =

= W(1)×1
2

((
IR,W

(2), IR

)
· IR×R×R

)
×1

3. . .×1
L−1

((
IR,W

(L−1),M(L−1)
)
· IR×R×R

)
×1

L

((
M(L−1)

)−T (
W(L)

)T)
=
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= W(1)×1
2

((
IR,W

(2), IR

)
· IR×R×R

)
×1

3. . .×1
L−1

((
IR,W

(L−1), IR

)
· IR×R×R

)
×1
L

(
W(L)

)T
.

This is the decomposition showed in 4.6.2, which proves the theorem. �

We stated the theorem in a way it already gives insights about the computations to

be made. More precisely, we should first compute a rank-R CPD for the third order

tensor G(2). Since G(1) is already know, we can obtain the first factor through the equality

W(1) = G(1)
(
M(1)

)T
. To compute W(3) we must compute a rank-R CPD for G(3) fixing

the first factor to
(
M(2)

)−T
. We can keep going sequentially with this procedure, using the

third factor of the previous CPD to construct the first factor of the next CPD. The last

factor W(L) is then computed through the equality W(L) =
(
G(L)

)T
M(L−1) since M(L−1)

will be already known at this point. This gives rise to the following algorithm.

Algorithm 4.6.5 (CPD-TTD).

Input: T ∈ RI1×...×IL , R

G(1), . . . ,G(L) ← TT-SVD(T )

M(1),W(2),M(2) ← CPD(G(2), R)

for ` = 3 . . . L− 1

W(`),M(`) ← Bi-CPD
((

M(`−1)
)−T

,G(`), R
)

W(1) ← G(1)
(
M(1)

)T
W(L) ←

(
G(L)

)T
M(L−1)

Output: W(1), . . . ,W(L)

CPD(T , R) is any algorithm to compute a rank-R CPD to T and Bi-CPD(M, T , R) does

the same job but with the first factor, M, fixed. Since we are talking about third order

tensors, the latter algorithm just computes two factors, hence the name “Bi-CPD”. Notice

we can’t use the conjugate descent gradient algorithm to compute each iteration of the

dGN for the Bi-CPD function. Suppose we are given the triple
((

M(`−1)
)−T

,W(`),M(`)
)

respective to the CPD of G(`) and now we have to fix
(
M(`)

)−T
for the next CPD. At each

iteration of the dGN we will be solving the system

(
AT

:,R2+1:A:,R2+1: + µD:,R2+1:

)
xR2+1: = ATb−

(
AT

:,:R2A:,:R2 + µD:,:R2

)
x:R2 ,

where x:R2 = vec
((

M(`)
)−T)

is the fixed part. Notice we have to solve a system of

R2 +RI`+1 +R2 equations and RI` +R2 variables, which can be solved by more than one

algorithm.

The most relevant aspect of this algorithm is its cost, which is a great improvement

compared to the costs showed in table 4.4. The higher costs comes from the TT-SVD

algorithm, which amounts to computing L− 1 SVDs of shapes I1 ×
L∏
`=2

, RI2 ×
L∏
`=3

I`, . . .,
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TT-SVD Compression

First SVD 2I1

L∏
`=2

I` + 2I3
1 I1

L∏
`=1

I` + I3
1

Second SVD 2I2
1I2

L∏
`=3

I` + 2I3
1I

3
2 I2

L∏
`=1

I` + I3
2

...
...

...

(L− 1) -th SVD 2I2
1IL−1IL + 2I3

1I
3
L−1 IL−1

L∏
`=1

I` + I3
L−1

L -th SVD 0 IL

L∏
`=1

I` + I3
L

Table 4.18: Costs of TT-SVD vs. Compression

RIL−1 × IL, respectively. This has a total cost of

O

(
2I2

1

L∏
`=2

I` + 2I3
1

)
+O

(
2R2I2

2

L∏
`=3

I` + 2R3I3
2

)
+ . . .+O

(
2R2I2

L−1IL + 2R3I3
L−1

)
=

= O

(
2

(
I2

1

L∏
`=2

I` + I3
1 +R2

(
L−1∑
`=2

I2
`

L∏
`′=`+1

I`′ +RI3
`

)))
=

= O

(
2

(
I1

L∏
`=1

I` + I3
1 +R2

(
L−1∑
`=2

I`

L∏
`′=`

I`′ +RI3
`

)))
flops.

Since R is used as the rank for all cores of the TT-SVD, we must have R ≤ rank(T(`)) ≤
I` for all `. We can put side by side the costs of computing these SVDs and the MLSVD

computations of the previous algorithm, showed in table 4.18. At this point it should

be clear the difference between both approaches. While the TT-SVD is always cutting a

dimensions for each computed SVD, the MLSVD doesn’t do this, it computes SVDs of

unfolding with the size of the whole tensor L times. The MLSVD suffers from the curse

of dimensionality, whereas the TT-SVD doesn’t (actually it still suffers, but very little

and nothing compared to the MLSVD cost).

The other costs consists of the computations of third order CPDs of shapes R×I`×R,

for ` = 2 . . . L − 1. With this we can see that the CPD-TTD approach is much faster

than our previous algorithm, by orders of magnitude. To reinforce this claim we show

some computational experiments with random tensors. We generate random tensors of

shape n× n× . . .× n and rank R = 5, where the entries of each factor matrix are drawn

from the normal distribution (mean 0 and variance 1). First we consider fourth order

tensors with shape n×n×n×n, for n = 10, 20, 30, 40, 50, 60, 70, 80. Since the Tensorlab’s

NLS performed very well in the previous tests, we use only this one for Tensorlab and
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Figure 4.23: Rank-5 CPD errors and timings of tensors with shape n×n×n×n, for n = 10, 20, . . . , 70, 80.

start with this algorithm, making 20 computations for each dimension n and averaging

the errors and time.10 After that we run the other algorithms adjusting their tolerance in

order to match the NLS results.

In all tests we tried to choose the parameters in order to speed up the algorithms

without losing accuracy. For example, we noticed that it was unnecessary to use com-

pression, detection of structure and refinement for the NLS algorithm. These routines are

very expensive and didn’t bring much extra precision, so they were disabled in order to

make the NLS computations faster. Similarly we used the initialization ’svd’ for Tensorly

because it proved to be faster than ’random’, and we used the algorithm ’lbfgs’ for Tensor

Toolbox OPT. Finally, for Tensor Fox we just decreased its tolerance in order to match

the precision given by the NLS algorithm. The results are showed in figure 4.23.

Next, we make the same procedure but this time we fixed n to n = 10 and increased

10In order to achieve the least possible difference between the errors, we accepted to discard 1 to 10
tests with bad approximations.
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Figure 4.24: Rank-5 CPD errors and timings of tensors with shape 10 × 10 × . . . × 10 (L times), for
L = 3, 4, . . . , 8.

the order, from order 3 to 8. These last tests shows an important aspect of the CPD-TTD:

it avoids the curse of dimensionality, whereas the other algorithms still suffers from that.

We consider random rank-5 tensors of shape 10 × 10 × 10, them 10 × 10 × 10 × 10, up

to tensors of order 8, i.e., with shape 10× 10× . . .× 10︸ ︷︷ ︸
8 times

, with the same distribution as

before.11

One limitation of the CPD-TTD is the rank itself. When constructing the cores of

the tensor train we noted that we must have R ≤ min` I`, so this approach doesn’t work

for higher rank tensors. Since the CPD-TTD already is very fast compared to the other

algorithms, we can afford to increase the cost a little when dealing with higher ranks. In

the case R > I` for some `, we just increase this dimension to be of size R. The new values

11For anyone interested in reproducing these tests, the routine to generate these tensors can be found
in https://github.com/felipebottega/Tensor-Fox/blob/master/tests/gen_rand_tensor.py.
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added to the tensor are random noise close to zero. For example, if we have a tensor T of

shape 4×5×6×7 and R = 6, we increase the dimensions of T so we have a new tensor T ′ of

shape 6×6×6×7 such that T ′ijkl = Tijkl for all i = 1 . . . 4, j = 1 . . . 5, k = 1 . . . 6, l = 1 . . . 7.

The extra entries of T ′ won’t affect too much the precision since they are very small, and

since the CPD-TTD algorithm is already very fast, the CPD computation of this bigger

tensor still is much faster than any other algorithm. We should point out that these new

entries should be added after the MLSVD is computed, otherwise we are just introducing

more complexity for nothing. After the CPD is computed we can truncate the CPD to

its original dimensions. This approach works very well as long as R is not too large or

bigger than all dimensions (in practice we observed that we should have R ≤ I` for at

least one `).

4.7 Tensor Fox is not monotonic

Usually one expects that any minimization program produces a sequence of steps such

that the corresponding sequence of errors decreases monotonically. In the “warming up”

example, figure 4.6 shows a sequence of errors which is not monotonic, sometimes the error

increases, then it decreases back. This behavior was hinted at 4.1.4 where we remarked

that the way Tensor Fox handles the maximum number of CG iterations can introduce

unusual steps sometimes.12 Now we make this statement clear.

By allowing the CG method to perform a random number of steps, we observed that

local minima are consistently avoided. Usually a poor step is followed by a very good

step. The idea is that these steps go a little away from the local minimum, just enough

so that the next iteration can search for better directions. If no new direction is found,

the program goes back to the previous local minimum and probably will stay there. We

say “probably” because there is always a little chance that an unusual step is taken, but

most of the time the program are making usual steps. At the end of the day we conclude

that this stochastic factor is successful when dealing with the high nonlinearity of the

problem. This phenomenon is illustrated in figure 4.25.

12These steps happen when cg maxiter is large, since the CG algorithm become unstable.
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Figure 4.25: After 2 iterations, the third one causes an increase in the error. However this allows the

program to search in different regions (the circled region), which can lead the next iteration to be much

better. In the worse case the next iteration is much likely to go back to the already located minimum.

In 4.1.3.5 we discussed the gain ratio g and what it represents. Basically, large values

of g means that the error is being reduced substantially, g = 0 means that the error didn’t

change, and g < 0 means that the error increased. After the observations made here it

is now clear that the unusual steps are responsible for making g to be negative, and that

the strategy to produce cg_maxiter (described in 4.1.3.4) is what causes this behavior.

Let’s take a concrete example to observe this phenomenon happening in more details.

In figure 4.26 we show the evolution of the error and gain ratio corresponding to a CPD

computation of the swimmer tensor. We note that g < 0 precisely when the error increases,

as expected. The interesting phenomenon here is the fact that the error always decreases

substantially after these points. As explained, the program found a better direction to

follow, which lead to better steps. Tensor Fox was tested with a fixed small number of

CG iterations but this always lead to less accurate solutions, because the program got

stuck at local minima.

Still with this same example, we can take iterations 93 and 94 to look in more detail.

Iteration 93 is normal, with the error decreasing, but in iteration 94 the error increases. Let

F (w(93)) and F (w(94)) be the errors at iterations 93 and 94, respectively. Remember that

this notation was introduced in 3.2. We can consider the line wt = w(93)+t
(
w(94) −w(93)

)
between the approximated CPDs and analyze how is the curve F (wt), see figure 4.27

4.8 Regularization and preconditioning

4.8.1 Diagonal regularization

As suggested in A, our implementation of the preconditioner for Tensor Fox is the diagonal

preconditioner. Remember we are using the following normal equations to compute the
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Figure 4.26: The black curve is the represents the error, the green curve represents the gain ratio and
the red dots are the points when the gain ratio became negative. Note that there is always a peak in the
error when this happens. This is to be expected, but more remarkable is the fact that the error always
decreases substantially after these points.

Figure 4.27: Error curve F (wt). The error is minimal for t ≈ 0.4 but we can see that the actual
error (for t = 1) is bigger. At iteration 93 the gain ratio is g = 0.974 and the number it the program
performed 19 CG iterations. At iteration 94 the gain ratio is g = −0.518 and the program performed 61
CG iterations. In both iterations the predicted error is O(10−8).
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Gauss-Newton steps.

(JTf Jf + µD)x = JTf b

where Jf = Jf (w
(k)), x = w − w(k), b = −f(w(k)). For simplicity we start with the

case of third order tensors, so w = [vec(X)T , vec(Y)T , vec(Z)T ]T , where X ∈ Rm×R,Y ∈
Rn×R,Zp×R are the corresponding factor matrices at the current step.

This preconditioner is ideal to use when the approximated Hessian ATA is diagonally
dominant. However this may not always be the case. We can overcome this problem
by choosing a suitable regularization matrix D. The idea is to force JTf Jf + µD to be

diagonally dominant, then the preconditioner matrix is applied. The first row of JTf Jf is
the first row of the matrix

[
〈Y1,Y1〉〈Z1,Z1〉Im . . . 〈Y1,YR〉〈Z1,ZR〉Im, 〈Z1,Z1〉X1Y

T
1 , . . . 〈Z1,ZR〉XRY

T
1 , 〈Y1,Y1〉X1Z

T
1 , . . . 〈Y1,YR〉XRZ

T
1

]
.

where Xr,Yr,Zr denotes the r-th column of X,Y,Z, respectively. We want to add a new

term γ to the first entry 〈Y1,Y1〉〈Z1,Z1〉 such that

〈Y1,Y1〉〈Z1,Z1〉+ γ ≥ |〈Y1,Yr〉〈Z1,Zr〉|, |〈Z1,Zr〉x1ryj1|, |〈Y1,Yr〉x1rzk1|

for all r, j, k. For this it is sufficient to define

γ = ‖Y1‖‖Z1‖max
{

max
r
{‖Yr‖‖Zr‖},max

r
{‖Xr‖‖Zr‖},max

r
{‖Xr‖‖Yr‖}

}
.

This choice is cheap to compute and it also works for all first m rows of JTf Jf . For the

next m rows we can apply a similar idea to obtain the term

γ = ‖Y2‖‖Z2‖max
{

max
r
{‖Yr‖‖Zr‖},max

r
{‖Xr‖‖Zr‖},max

r
{‖Xr‖‖Yr‖}

}
.

Now we generalize this idea and introduce the notations

γ
(r)
X = ‖Yr‖‖Zr‖max

{
max
r′
‖Yr′‖‖Zr′‖, max

r′
‖Xr′‖‖Zr′‖, max

r′
‖Xr′‖‖Yr′‖

}
,

γ
(r)
Y = ‖Xr‖‖Zr‖max

{
max
r′
‖Yr′‖‖Zr′‖, max

r′
‖Xr′‖‖Zr′‖, max

r′
‖Xr′‖‖Yr′‖

}
,

γ
(r)
Z = ‖Xr‖‖Yr‖max

{
max
r′
‖Yr′‖‖Zr′‖, max

r′
‖Xr′‖‖Zr′‖, max

r′
‖Xr′‖‖Yr′‖

}
.

130



From these values we finally define the regularization matrix

D =



γ
(1)
X Im

. . .

γ
(R)
X Im

γ
(1)
Y In

. . .

γ
(R)
Y In

γ
(1)
Z Ip

. . .

γ
(R)
Z Ip



.

Note that JTf Jf + D is diagonally dominant, as desired, but now we are solving the

regularized problem

min
w
‖JTf Jfw− JTf b‖2 + ‖Dw‖2.

This introduces a penalization over the solution, which can lead to local minimum, and

this will have influence on the Gauss-Newton iterations. That is the reason for introducing

the damping factor µ > 0. Usually in the first iterations µ > 0 has a moderate size, thus

JTf Jf + µD still is very regularized. On the other hand, the solution obtained with this

system will be closer to the objective point than the initial guess anyway. Besides that,

this will be done very fast since the preconditioner is being taken full advantage of. As

the iteration continues, we have µ → 0, thus the regularization has less effect, and the

solutions computed starts to get closer to the real objective solution. This also implies

that at this stage the preconditioner will have less effect, which means we need to perform

more CG iterations in order to obtain meaningful solutions. Note how this is in accordance

with the number of CG iterations describe in 4.1.3.4, since the strategy adopted foresee

the necessity to increase the number of CG iterations as we keep making Gauss-Newton

iterations.

To finish, we conclude that the preconditioner M is given by

M =

 DX

DY

DZ

 ,
where

DX =


(
‖Y1‖2‖Z1‖2 + µγ

(1)
X

)
Im

. . . (
‖YR‖2‖ZR‖2 + µγ

(R)
X

)
Im

 ,
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DY =


(
‖X1‖2‖Z1‖2 + µγ

(1)
Y

)
In

. . . (
‖XR‖2‖ZR‖2 + µγ

(R)
Y

)
In

 ,

DZ =


(
‖X1‖2‖Y1‖2 + µγ

(1)
Z

)
Ip

. . . (
‖XR‖2‖YR‖2 + µγ

(R)
Z

)
Ip

 .
For the reader interested in the general case, first we need to know what is the diagonal

of JTf Jf . From theorem 3.5.7 we know that

JTf Jf =


H11 . . . H1L

...
...

HL1 . . . HLL

 ,
where

H`′`′ =



∏
` 6=`′

ω
(`)
11 · II`′ . . .

∏
`6=`′

ω
(`)
1R · II`′

...
...∏

`6=`′
ω

(`)
R1 · II`′ . . .

∏
`6=`′

ω
(`)
RR · II`′


are the diagonal blocks of JTf Jf . The diagonal of H`′`′ is

D`′`′ =



∏
6̀=`′
ω

(`)
11 · II`′

. . . ∏
` 6=`′

ω
(`)
RR · II`′

 =



∏
`6=`′
‖w(`)

1 ‖2 · II`′

. . . ∏
`6=`′
‖w(`)

R ‖
2 · II`′

 ,

hence the diagonal of JTf Jf is the matrix

D =


D11

. . .

DLL

 .
In the case the factors are norm-balanced, we know that ‖w(1)

r ‖ = . . . = ‖w(L)
r ‖ for all

r = 1 . . . R. Denote this norm by αr. Then we have that
∏
`6=`′
‖w(`)

r ‖2 = α2(L−1)
r . Therefore

all matrices D`′`′ are equal and
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D =




α

2(L−1)
1 · II1

. . .

α
2(L−1)
R · II1


. . . 

α
2(L−1)
1 · IIL

. . .

α
2(L−1)
R · IIL




.

This may be useful if one want to use a diagonal preconditioner M such that the

matrix M− 1
2 (JTf Jf +µD)M− 1

2 is unit diagonal (but not necessarily diagonally dominant).

We remark that this kind of preconditioner may be enough, since the balancing of the

factor matrices (see section 4.1.3.5) already helps JTf Jf to be more diagonally dominant.

4.8.2 Computational experiments

To simplify notation let A = Jf ,H = ATA,b = −f , where we suppress the argument

w(k). Tensor Fox use equation 4.1 for the CG algorithm, however it is more usual to use

the Levenberg-Marquardt equation,

diag(H + µI)−1/2 · (H + µI) · diag(H + µI)−1/2x = diag(H + µI)−1/2ATb. (4.3)

The only difference is that Tensor Fox uses D instead of the identity matrix. We know

that the condition number of diag(H + µI)−1/2 · (H + µI) · diag(H + µI)−1/2 must be

small to solve equation 4.3 efficiently. Although the Levenberg-Marquardt formulation is

used in many implementations of the dGN, we will see that our diagonal matrix produces

better results.

Besides that formulation, we also have the Tensorlab’s formulation

Mbd · (H + µI)x = Mbd ·ATb, (4.4)

where Mbd is the block diagonal preconditioner as explained in 4.1.3.8. In figures 4.28,

4.29, 4.30, 4.31 we show the evolution of the condition number of the approximated

(with and without preconditioning) Hessian for some of the test tensors used before.

133



Figure 4.28: Condition number for each iteration of several approaches to compute a CPD for the

swimmer tensor. Note that it is showed the condition number of the approximated Hessian (always

regularized) with and without regularization. The condition number of Tensor Fox is the orange one.

134



Figure 4.29: Condition number for each iteration of several approaches to compute a CPD for the

border rank tensor.

Figure 4.30: Condition number for each iteration of several approaches to compute a CPD for the

swamp tensor with c = 0.1.
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Figure 4.31: Condition number for each iteration of several approaches to compute a CPD for the

double bottleneck tensor with c = 0.1.

Note that we tried the block diagonal preconditioner Mbd both on the Levenberg-

Marquardt and Tensor Fox formulations. It is clear that the diagonal preconditioner we

are using here brings the best results in terms of lowering the condition number. Maybe

the only exception are the swamp tensors, where after some iterations all approaches are

as large as possible.

In the next section we talk about the condition number of tensors and introduce

a family of difficult tensors to handle. These tensors are such that most close CPDs

are ill-conditioned even when the original CPD is well-conditioned. Figure 4.32 shows

the evolution of the condition number of the approximated Hessian for the parameters

r = 25, c = 0.75, s = 3 (they are explained in the next section). In this case, again, we

observe that the approach of Tensor Fox is better than the others.
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Figure 4.32: Condition number for each iteration of several approaches to compute a CPD for an

ill-conditioned tensor with r = 25, c = 0.75, s = 3.

4.9 Conditioning

In this section we briefly mention the main concepts and results of conditioning of tensors.

For more about the subject the reader is invited to check the references [34, 41–43].

4.9.1 Definitions and results

Definition 4.9.1. The Segre map is the map given by

Seg : RI1 × . . .× RIL → RI1×...×IL

(x(1), . . . ,x(L)) 7→ x(1) ⊗ . . .⊗ x(L)
.

The image of this map without its origin is called the Segre variety. It will be denoted

by S = {x(1) ⊗ . . . ⊗ x(L) : x(`) 6= 0 for all ` = 1 . . . L}. Now consider the additive map

given by

ΦR : S × . . .× S → RI1×...×IL

(T1, . . . , TR) 7→ T1 + . . .+ TR
.

Let σR be the set of tensors with rank≤ R. From the definition we have that Im(ΦR) =

σR and rank(T ) = min{r : T ∈ σr} for all T ∈ RI1×...×IL . The derivative of ΦR at
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(T1, . . . , TR) is the map

d(T1,...,TR)ΦR : TT1S × . . .× TTRS → TΦR(T1,...,TR)RI1×...×IL

given by

d(T1,...,TR)ΦR(Ṫ1, . . . , ṪR) = Ṫ1 + . . .+ ṪR,

where TTrS is the tangent space of S at Tr. Then the condition number [92] of the CPD

at (T1, . . . , TR) is

κ ((T1, . . . , TR), T ) = lim
ε→0

max
T ′∈Bε(T )∩σR

‖Φ̃−1(T )− Φ̃−1(T ′)‖
‖T − T ′‖

,

where Bε(T ′) is an ε-ball centered at T and Φ̃−1 is a local inverse of Φ at (T1, . . . , TR).

If this local inverse doesn’t exist then we define κ ((T1, . . . , TR), T ) =∞. Both norm are

the Frobenius norm as it is the case in all this work. Note that κ ((T1, . . . , TR), T ) is

completely determined by the choice of T1, . . . , TR since T = ΦR(T1, . . . , TR), therefore we

set κ (T1, . . . , TR) = κ ((T1, . . . , TR), T ). In [43] it is showed that the condition number is

the inverse of the smallest singular value of d(T1,...,TR)ΦR.

Remember that the condition number measures the sensitivity of (T1, . . . , TR) to per-

turbations of ΦR(T1, . . . , TR). A rule of thumb of numerical analysis is the inequality

forward error / condition number · backward error,

which in this context translates to

‖(T ′1 , . . . , T ′R)− (T1, . . . , TR)‖ / κ(T1, . . . , TR) · ‖T ′ − T ‖, (4.5)

where

‖(T ′1 , . . . , T ′R)− (T1, . . . , TR)‖ = min
σ∈SR

√√√√ R∑
r=1

‖T ′r − Tσ(r)‖2

and SR be the group of permutations of R elements. From this inequality we can see that

all algorithms showed so far are minimizing the backward error instead of the forward

error. Relying on the backward error alone can be a dangerous practice in the presence

of ill-conditioned CPDs.

4.9.2 A special family of tensors

In [42] this aspect of conditioning is explored and a family of 15 × 15 × 15 tensors is

proposed for testing. This family is such that the best algorithm of Tensorlab (NLS)

failed to produce well conditioned approximations even when the original tensor was well
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RGN-HR RGN-Reg Tensorlab
23.6% 42.3% 51.0%

Table 4.19: Fraction of ill-conditioned CPDs.

conditioned. The parameters (r, c, s) ∈ {15, 20, 25, 30} × {0, 0.25, 0.5, 0.75} × {1, 2, 3, 4}
are used to generate each tensor of the family. Let Rc be the upper triangular factor in

the Cholesky decomposition RT
c Rc = c11T + (1− c)Ir, where 1 ∈ Rr is the vector of ones

and Ir is the 15 × 15 identity matrix. Then each CPD of this family with parameters

r, c, s is given by A1,A2,A3 ∈ R15×r, where

Ai = Ni ·Rc · diag
(

10
s
3r , 10

2s
3r , . . . , 10

rs
3r

)
,

where Ni is a 15 × r random matrix with its entries draw from the normal distribution

N (0, 1) with mean 0 and variance 1.

Their experiment proceed as follow:

1. Randomly sample A1,A2,A3 as described above, and let T ′ = Φr(T ′1 , . . . , T ′r ), where

the rank one tensor are obtained from the factors A1,A2,A3;

2. create a perturbed tensor T = T ′
‖T ′‖ + 10−3 E

‖E‖ , where E is a 15 × 15 × 15 random

tensor with its entries draw from the normal distribution N (0, 1);

3. randomly samples factor matrices M1,M2,M3 ∈ R15×r to be used as initialization;

4. compute an approximated CPD for T from the initialization M1,M2,M3.

In the original experiment they used some specific parameter configuration for Tensor-

lab NLS, but we won’t go into such details here. The reader may read section 7 of [42] for

information. For each triple (r, c, s) one tensor is generated by the procedure above, then

25 random initializations are generated and 25 CPDs are computed, on for each different

initialization. For a very significant fraction of initializations, the state-of-the-art method

halt at extremely ill-conditioned CPDs. Below we show a piece of their results, where Ten-

sorlab had more trouble to produce well-conditioned solutions. The percentage showed

is the fraction of cases where the condition number of the approximated CPD is bigger

than 103 among those CPDs whose backward error is very small (less than 1.1 · 10−3).

From 4.5 we can conclude that these CPDs are completely uninterpretable, that is, no

correct significant digits are present in the individual rank one terms.

RGN-HR stands for Riemannian Gauss-Newton with hot restarts and RGN-Reg stands

for Riemannian Gauss-Newton with regularization. The former is their main method,

while the latter was included only to illustrate that the proposed hot restarts mechanism
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provides a superior way of handling ill-conditioning. RGN-HR is not just more well-

conditioned than Tensorlab’s NLS, but it is also faster in most cases as showed in the

paper.

4.9.3 Results

Here we tried to make the parameter setting as close as possible to the choices made for

Tensorlab. First it was observed that better results were obtained with fixed damping

parameter µ = 10−8. The most relevant parameter is the number of CG iterations. In-

creasing this value consistently lead to more well-conditioned solutions, which makes sense

because the ill-conditioning comes from the approximated Hessian formulation, which is

singular. In the paper they used a maximum of cg maxiter = 75 number of iterations

for the CG. Also, although Tensor Fox normally does not use the dogleg method13, for

this problem in particular this method showed to be handful.

The dogleg feature is used when the error of some iteration is too big compared to

the previous error. This is a case when the unusual step is not considered unusual but

some kind of divergence. This rarely is used in Tensor Fox because the program only

recognizes divergence when the error is 100 times bigger than the previous error, and

this almost never happens. In any case, when this does happen, the program draws

back to a “version” of the previous step and perform the dogleg method to produce the

new step. We explain what is this version of the previous step. Let w(k) be the k-th

dGN step. Remember that before computing the next iteration, first we make the factor

norm balanced, let N(w(k)) be this norm-balanced representation. Then the next dGN

iteration is computed with N(w(k)) instead of w(k). We already observed in 4.1.3.5 that

this procedure always improves the conditioning of the iteration. In the case the next

step, w(k+1) = w(k) + ∆w, has a large error, we take its norm-balanced representation

and shift it back with the dGN step ∆w. The new point obtained, N(w(k+1))−∆w should

be close to the norm-balanced representation of w(k), but not quite the same. Then the

dogleg method takes action and improves the step. Figure 4.33 illustrates the process of

drawing back a step. We remark that N(w(k+1))−∆w usually is different than N(w(k)).

13See [22] for more about this method.
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RGN-HR RGN-Reg Tensorlab Tensor Fox (75) Tensor Fox (1600)
23.6% 42.3% 51.0% 65.5% 21.4%

Table 4.20: Fraction of ill-conditioned CPDs, including Tensor Fox.

Figure 4.33: After making a bad step, the program draws back in a way that the new point is close to

norm-balanced, then it applies the dogleg method.

For this particular family of tensors we could verify that it is better perform draw

back and apply the dogleg method in every iteration. In the table below we repeat the

previous results plus the Tensor Fox results in two cases. As we can see, Tensor Fox

is no better than Tensorlab for cg maxiter = 75 and it is better than RGN-HR for

cg maxiter = 1600. The situation changes as we increase cg maxiter. We tested the

values cg maxiter = 75, 200, 400, 600, 800, 1000, 1200, 1400, 1600, see figure 4.34.

Of course the running time increases as we increase cg maxiter, however the expected

time to get a well-conditioned CPD decreases. The same does not occurs with Tensorlab.

We increased cg maxiter for Tensorlab and observed an improvement with regard the

conditioning but the running time in this case increase substantially. For instance, when

cg maxiter = 400, the slowest expected time for Tensor Fox obtained was 33.3 seconds,

with r = 30, c = 0.75, s = 1, and for Tensorlab it was 101.2 seconds, with r = 30, c =

0.25, s = 1. Even more, in all tests with Tensor Fox this expect time is always less

than 40 seconds. This happens because the CG iterations of Tensor Fox are lighter than

Tensorlab’s, which is something already observed in 4.1.3.8.

141



Figure 4.34: Percentage of fails as we increase the maximum number of CG iterations.

We finish this section observing that the algorithm RGN-HR is able to obtain many

well-conditioned solutions in less time than Tensor Fox and Tensorlab. Their approach is

very different in some aspects and it is worth reading about it. The speed of RGN-HR

tends to be slower for larger tensors, which is a major drawback. However if the rank or

the multilinear rank is small enough, using tolerance-based compression may reduced the

problem substantially, and then RGN-HR can be efficiently used.

4.10 Parallelism

Several parts of Tensor Fox are open to parallelism: unfoldings, SVDs, matrix multiplica-

tions, Khatri-Rao products, and so on. With regard to the dGN algorithm, the main costs

comes from the Khatri-Rao products to obtain the gradient, and the matrix-matrix mul-

tiplications. Both routines run in parallel in Tensor Fox. In particular, the matrix-matrix

multiplication uses the BLAS parallelism, which is as good as one can get.

Still, the dGN algorithm, by design is not highly parallel, that is, each iteration must be

computed sequentially. Besides that, within each iteration we must run the CG algorithm,

which run each iteration sequentially again. Figure 4.35 shows the speed-up obtained by

the addition of threads to compute a rank-15 CPD of a 2000 × 2000 × 2000 random

tensor with rank 15. We are not compressing in this example. The machine used in this

experiment was the AWS instance m5d.24xlarge, consisting of a Intel Xeon Platinum 8000

series (Skylake-SP) processor with a sustained all core Turbo CPU clock speed of up to 3.1

GHz, and 384 GB of memory. This computational and memory power was necessary due

to the size of the tensor. The reason for using such a big tensor is because the parallelism

increases as we increase the dimensions and the rank.
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Figure 4.35: Speed-up with the number of threads when computing a rank-15 CPD of a 2000× 2000×
2000 random tensor with rank 15 without compression.

Even with a big tensor as this one, the speed-up curve gets flat already for 16 threads.

This shows how the dGN algorithm, the way it is presented in this thesis, is not highly

parallel. For smaller tensors as the swimmer tensor (see figure 4.36) one can expect the

speed-up to drop as the number of threads increases due to the overhead communication.

There is just too much data being passed for a small number of operations.

Figure 4.36: Speed-up with the number of threads when computing a rank-50 CPD of the swimmer

tensor.
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Figure 4.37: Timings to compute parts of the CPDs of known tensors. Note that summing the bars

of the MLSVD and dGN timings is not the correct comparison in log scale. That is why we also showed

the linear scale, so the reader have a notion of the real difference in time when there is no compression.

The main source of parallelism comes from the MLSVD, which relies on several ran-

domized SVDs [31], and this method is highly parallel. 14 As we stressed before, com-

pressing before running the dGN is a procedure we should always do. Figure 4.37 reinforce

this claim by showing that the compression time plus the dGN time is less than the dGN

time without compression.

4.11 What are the main features of Tensor Fox?

In the previous sections we introduced Tensor Fox in details, and after that we conduct

a lot of experiments proving that Tensor Fox is competitive in a wide range of examples.

After that the reader is left with the impression that all new features are relevant and

indispensable. In this section we investigate the main features, turning them off and

running the test tensors. The features to be investigated are:

• Stopping conditions

• Regularization

• Preconditioning

14In fact, the randomized method for SVDs are also very efficient if running in a GPU.
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• Number of CG iterations

Before anything, we want to remark that one of the most relevant features of Tensor

Fox is the tolerance based compression, but this feature is already investigated enough.

One thing the reader may notice is the large number of stopping conditions introduced

in 4.38. Below we show their frequency when running 20 CPDs for each tensor. As we can

see, most of the time the stopping condition used is the error improvement, which usually

the most common in all solvers. Sometimes none condition is triggered and the program

just reach the maximum number of iterations. The novelty here are the conditions with

averages, which really helps to stop the iterations earlier.

Figure 4.38: Pie charts with the stopping condition frequencies.

For instance, we can note that the averages of the improvements are the unique stop-

ping condition triggered for the swamp tensor with c = 0.1. In figure 4.39 we show the

error evolution to compute a CPD for this tensor with this stopping condition disabled.

The red dot is the iteration where the program would stop if the condition were enabled.
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We can see that there is almost no reason to continue iterating, therefore the stopping

condition is appropriate.

Figure 4.39: Disabling stopping condition for the swamp tensor with c = 0.1.

The other features of Tensor Fox we analyze at the same time. Basically we will repeat

the experiments as we did to produce the box plots before, but the models compared are

variations of Tensor Fox, with the relevant features turned on or off. We denote by

RND the Tensor Fox default model, using random cg_maxiter as described in 4.1.3.4,

and CG100 the model where cg_maxiter= 100. Additionally, we write “no reg” when

regularization is removed from the model and “no prec” when preconditioning is removed

from the model. All results are summarized in figures 4.40 to 4.49.
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Figure 4.40: Box plots with errors and timings for the swimmer tensor.

Figure 4.41: Box plots with errors and timings for the handwritten digits tensor.
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Figure 4.42: Box plots with errors and timings for the border rank tensor.

Figure 4.43: Box plots with errors and timings for the matrix multiplication tensor.

148



Figure 4.44: Box plots with errors and timings for the swamp c = 0.1 tensor.

Figure 4.45: Box plots with errors and timings for the swamp c = 0.5 tensor.
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Figure 4.46: Box plots with errors and timings for the swamp c = 0.9 tensor.

Figure 4.47: Box plots with errors and timings for the bottleneck c = 0.1 tensor.
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Figure 4.48: Box plots with errors and timings for the bottleneck c = 0.5 tensor.

Figure 4.49: Box plots with errors and timings for the bottleneck c = 0.9 tensor.

The first thing to note is that CG100 is not always more accurate than RND, that is,

making more CG iterations does not necessarily improve the results. Also it is evident that

all CG100 based models are slower than their corresponding RND models. We observe
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that the use of regularization is not always necessary, in most cases the performance is

the same. The exception are the border rank tensor, where removing regularization made

the accuracy much worse, and in all bottleneck tensors, where removing regularization

increased the variance of the solutions. In fact, there are several other cases where the

removal of regularization increases the variance of the errors. This is true for the RND

and CG100 models. Removing the preconditioning has the expected result, that is, the

increase of the running time. Because the main role of the preconditioning is to decrease

the number of CG iterations. In some cases removing the preconditioning even increased

the error. We conclude that removing regularization is feasible sometimes depending on

the tensor, and removing the preconditioning is never good. For this reason Tensor Fox

has the option init_damp, which can be initialized to zero, thus removing the effect of

regularization, but the preconditioning is always performed.
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Chapter 5

Tensor learning

We call tensor learning any tensor technique applied to a machine learning problem. Here

we will some of these techniques and their performance will be evaluated. The main tools

are the MLSVD and the CPD. Usually the MLSVD is used to reduce dimensionality and

the CPD is used to find latent parameters. In order to solve machine learning prob-

lems with tensor techniques, the biggest problem challenge is the modelling part, that is,

transforming a machine learning problem into a tensor problem.

The main contribution is in 5.2, where a model of neural network based on the CPD

is introduced. Although this neural network architecture still acts like a black box, the

outputs consists of multilinear maps, which are more understandable than classical neural

networks. The work here only takes in account dense neural networks, so the comparison

is limited. There is still a lot of research to be done before discarding or not this new

model, but for the moment this model seems to be reasonable.

5.1 Classification with the MLSVD

The MLSVD can be considered as a high order PCA. In this section we present a method

to solve classification problems using the MLSVD, following [7] and [90]. The problem

of handwritten digit classification will be used to test the performance of the method.

We start with the same tensor described in 4.3.2 and apply some transformations to it in

order to take the classes (the digits) in account. Each frontal slice (a 20 × 20 matrix) is

vectorized to to form a column vector of size 400. Then we gather all these vectors side

by side to form a 400× 500 matrix corresponding to a certain class. In total we have 10

classes, each one corresponds to a frontal slices of the tensor T ∈ R400×500×10. The first

slice correspond to the digit 0, the second correspond to the digit 1, and so on. Figure 5.1

describes the procedure to form each frontal slice of T .

Let T = (U(1),U(2),U(3)) · S be a truncated MLSVD of T , where U(1) ∈ R400×R1 ,

U(2) ∈ R500×R2 , U(3) ∈ R10×R3 and S ∈ RR1×R2×R3 . Since we don’t want to truncate

the number of classes, it is necessary that R3 = 10. Remember that U(1) acts on the
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Figure 5.1: Transformation of a frontal slice into a vector and attaching dimension responsible to the
class of the vector (the image represents the class e2, which corresponds to the digit 2).

mode-1 fibers of T , which are the vectors T:jk. Each one of these vectors correspond to a

vectorized image, so we can regard U(1) as a compression matrix, which compress images

from 400 pixels to R1 pixels. The matrix U(2) acts of the fibers Ti:k, which correspond to

the pixel i of all images in class k. This matrix “decides” if all images are really necessary

to describe this pixel, so we can regard U(2) as a matrix of redundancy detection, which

reduces the number of images from 500 to R2, for all classes. The matrix U(3) is a square

nonsingular so it doesn’t change the dimension. It just makes some rotations of minor

importance. We want to work with S but without the rotated classes. For this we just

disconsider U(3) from the definition of S =
(
U(1)T ,U(2)T ,U(3)T

)
· T . Thus we define the

tensor F =
(
U(1)T ,U(2)T , I10

)
· T ∈ RR1×R2×10. The training stage basically consists in

computing the MLSVD and constructing the tensor F .

The computation of a truncated MLSVD in Tensor Fox needs some value R for the

rank as parameter, even if we are not interested in computing the CPD (as is the case

here). The reason for this was mentioned in 4.1.1, we can’t have R` > R for ` = 1, 2, 3,

and in order to assure this it is necessary to give a rank estimate. Furthermore, if the

tensor has enough noise, it will be hard to truncate and the program will choose the

truncation R×R× 10. After some tests we choose to use R = 40.

Now let’s talk about the test stage. For each new image z ∈ R400, convert it to the R1

dimensional space using the transformation znew = U(1)T · z. In this space we compare

znew to the space generated by the columns of each frontal slice of F (remember that each

frontal slice correspond to a class). The best match will be the class of znew. This stage
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of comparison is not made using the slice directly, but instead we compute the SVD of

the slice and truncate it to another with lower rank. The overall procedure (training +

test) is summarized in the steps below.

1. Compute truncated MLSVD T = (U(1),U(2),U(3)) · S

2. Define F =
(
U(1)T ,U(2)T , I10

)
· T

3. Input: z ∈ R400

4. Compress input: znew = U(1)T · z ∈ RR1

5. Compute SVD of slices: F::k = W(k)Σ(k)V(k)T for k = 1, . . . , 10

6. Truncate W(k) to have R′1 < R1 columns: W̃
(k)

=
[
W

(k)
1 , . . . ,W

(k)

R′1

]
7. Solve least squares problems: min

x
‖W̃(k) · x− znew‖ for k = 1, . . . , 10

8. The class k associated with the smallest error (of all least squares problems solved)

is chosen to be the class of z

Note that, since the columns of W̃
(k)

are orthonormal, the solution of the least squares

problem is given by

x∗ = W̃
(k)T · znew,

which is easy to compute at this point. It should be noted that the matrices W̃
(k)

doesn’t

have to be computed for each new input. Compute them just once and use them for all

new incoming inputs. Finally, the choice of the SVD truncations R′1, R
′
2 depends on each

case. There are some known procedures to guess good values but we won’t address this

issue here.

We used 2000 images for training and 3000 for testing. The dimensions of S are

not bigger than 40 × 40 × 10. Since the training data is 400 × 200 × 10, we see that

100
(
1− 40·40·10

400·200·10

)
= 98% of the data is compressed. Working with only 2% of the infor-

mation may sound too few, but only with this much of data we could obtain more than

95% of accuracy in just a few seconds. Furthermore, this technique clearly can be gener-

alized for practically any classification problem with minor changes. This example can be

reproduced with the code in the following link: https://github.com/felipebottega/

Tensor-Fox/blob/master/examples/handwritten_digit_mlsvd.ipynb.

5.2 Tensor learning vs. neural network

Given an input data x = [x1, . . . , xn]T ∈ Rn, the usual neural network uses a certain

number of layers with weights and activation functions in order to compute the respective
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output y ∈ Rm. Each layer of weights forms is a matrix, usually bigger than n×n (except

in the last layer). As an alternative to the neural network model, we propose to use m

tensors T1, . . . , Tm ∈ RI1×...×IL , given by

Tk =
R∑
r=1

w(k,1)
r ⊗ . . .⊗w(k,L)

r ,

for I1 = I2 = . . . = IL = n and k = 1 . . .m.

Each w
(k,`)
r ∈ Rn is a vector of weights. These weights are computed in the same way

we compute the weights of a neural network, that is, by minimizing a cost function. In this

model, the input-output function, also called the hypothesis, is the function h : Rn → Rm

defined as

h(x) = f


T1(x, . . . ,x︸ ︷︷ ︸

L times

)

...

Tm(x, . . . ,x︸ ︷︷ ︸
L times

)

 (5.1)

where f : Rm → R is defined as f = (f, . . . , f︸ ︷︷ ︸
m times

) for a nonlinear function f : R→ R. If one

wants to write 5.1 in explicit form, then we have that

h(x) = f


∑R

r=1

∏L
`=1〈w

(1,`)
r ,x〉

...∑R
r=1

∏L
`=1〈w

(m,`)
r ,x〉

 =

=


f
(∑R

r=1

∑n
i1,...,iL=1 w

(1,1)
i1r

. . . w
(1,L)
i`r

xi1 . . . xiL

)
...

f
(∑R

r=1

∑n
i1,...,iL=1w

(m,1)
i1r

. . . w
(m,L)
i`r

xi1 . . . xiL

)
 .

Notice that rank(Tk) ≤ R by construction. As is usual in machine learning algorithms,

we use the convention x = [1, x2, . . . , xn]T , that is, x1 = 1 is the bias of the model. Now

let S = {(i1, . . . , iL) : 1 ≤ i1, . . . , iL ≤ n, (i1, . . . , iL) 6= (1, . . . , 1)}, then we can write the

above expression as
f
(
b1 +

∑R
r=1

∑
(i1,...,iL)∈S w

(1,1)
i1r

. . . w
(1,L)
iLr

xi1 . . . xiL

)
...

f
(
bm +

∑R
r=1

∑
(i1,...,iL)∈S w

(m,1)
i1r

. . . w
(m,L)
iLr

xi1 . . . xiL

)


where each bk =
∑R

r=1(w
(k,1)
1r )L is the bias parameter of the model.
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In a neural network, each activation function receives a weighted sum of the form

n∑
j=1

wjxj,

whereas in the tensor learning we have multilinear weighted sums of the form

n∑
i1,...,iL=1

w
(k,1)
i1r

. . . w
(k,L)
iLr

xi1 . . . xiL

and just one activation per output. Contrary to the neural network model where we have

lots of activations and few direct interactions between the weights1, in the tensor learning

approach we have few activations and lots of direct interactions between the weights,

through the multilinearity. Our hope is that this multilinearity compensates the lack of

activation functions.

5.2.1 Tensor learning as a special neural network

For a fixed input, note that each multilinear weighted sum shown above is just a poly-

nomial of degree L with some weights as variables. This polynomial is such that all

monomials have degree L. From this point of view one can interpret this model as a

neural network (with no hidden layers) where we just changed from dot products to poly-

nomials, a specific class of polynomials. Although this is a totally valid interpretation, it

misses the importance of what these polynomials represent. They are tensors evaluated

at the input, and their structure is such that all weights are directly mixed during the

learning, whereas in the classic neural network2 the weights are not so much mixed. This

lack of interaction between the weights in the classic neural network is addressed by the

tensor learning.

It should be noted that this model probably wouldn’t be noticed by the usual machine

learning practitioner even if it is desired to use polynomial weights as input to the acti-

vation functions. The usual way to model weights with polynomials is by introducing a

weight per monomial. Therefore, one used to work with machine learning models would

probably come with a polynomial of the form

n∑
i1,...,iL=1

wi1...iLxi1 . . . xiL ,

for wi1...iL ∈ R. This would cause a lost of interactions between the weights. The tensor

approach is not one usually would think, unless one is working with tensors, as it is the

1By direct interactions we mean multiplications between the weights.
2By classic neural network I mean the neural network model in which only dot products are passed

to the activation functions.
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case of this thesis.

It is possible to interpret tensor learning as a neural network (with 2 hidden layers)

which relies almost entirely on the classic dot product plus activation function recipe. This

interpretation shades more light on what is really happening and why tensor learning may

be a valid alternative to the classic neural network. Figure 5.2 shows the architecture of

such interpretation for n = 3,m = 2, L = 2, R = 2. The red lines represents classic neural

network connections, that is, each line has a weight which is multiplied by the input and

summed with all other lines reaching the same neuron. Blue lines means to multiply the

inputs by the inputs of all other lines reaching the same neuron. The first layer of lines

contains all the weights in our model. The second layer of lines makes the multiplications,

and is in this part where we the model is no more the classic one. The third layer of lines

are classic neural network connections with all weights equal to 1. Except for the last

layer of neurons (the output layer), all other neurons have activation function equals the

identity function. In the last layer the activation function is the nonlinear function f . We

can note that the blue lines are the great novelty in this approach compared to the classic

neural network. They represent the part where the weights are mixed together. Also note

that this special neural network has mRL+mR+m neurons. This usually will be much

smaller than any neural network applied to the same problem, because a neural network

uses O(n) neurons at the first layers, and we almost always have that m,R,L� n.

Figure 5.2: Tensor learning as a special neural network.
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One could argue that these activations are too artificial and doesn’t match any notion

of a neuron. A new, and very different interpretation, is given in figure 5.2. The idea is

that the dendrites intercept sometimes before the layer of activations, which is the last

one. Each node of the dendrite layers correspond to a point of intersection between the

dendrites. The information travels through a dendrite while also touching other dendrites,

and this causes the interaction between the weights and the data. When it finally gets

to the activation, we will have a multilinear combination to process. This interpretation

correspond to a scenario where the dendrites path are not isolated, they touch each other

several times and the information between one neuron and the other is affected by these

interactions.

5.2.2 Cost function

Denote W =
(
W(1,1), . . . ,W(1,L), . . . ,W(m,1), . . . ,W(m,L)

)
, where we have that Tk =(

W(k,1), . . . ,W(k,L)
)
·IR×...×R, using the multilinear multiplication notation. Let (x(j),y(j)),

j = 1 . . . N , be the training dataset, where we expect to have n,m,L,R � N . We will

use the classic cost function J : RLmnR → R defined as

J(W) =
1

2N

N∑
j=1

∥∥∥h(x(j))− y(j)
∥∥∥2

=

=
1

2N

N∑
j=1

m∑
k=1

(
hk(x

(j))− y(j)
k

)2

=

=
1

2N

N∑
j=1

m∑
k=1

(
f

(
R∑
r=1

L∏
`=1

〈w(k,`)
r ,x(j)〉

)
− y(j)

k

)2

.

Theorem 5.2.1. For k′ = 1 . . .m, `′ = 1 . . . L, i′ = 1 . . . n and r′ = 1 . . . R, we have that

∂J

∂w
(k′,`′)
i′r′

=
1

N

N∑
j=1

∇J (j)
k′,`′,i′,r′ ,

where

∇J (j)
k′,`′,i′,r′ =

(
f

(
R∑
r=1

L∏
`=1

〈w(k′,`)
r ,x(j)〉

)
− y(j)

k′

)
·f ′
(

R∑
r=1

L∏
`=1

〈w(k′,`)
r ,x(j)〉

)
·

(
x

(j)
i′

L∏
`=1,`6=`′

〈w(k′,`)
r′ ,x(j)〉

)
.

Proof:

∂J

∂w
(k′,`′)
i′r′

=
1

2N

N∑
j=1

m∑
k=1

∂

∂w
(k′,`′)
i′r′

(
hk(x

(j))− y(j)
k

)2

=
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=
1

2N

N∑
j=1

m∑
k=1

[
2
(
hk(x

(j))− y(j)
k

)
· ∂

∂w
(k′,`′)
i′r′

hk(x
(j))

]
=

=
1

2N

N∑
j=1

m∑
k=1

[(
hk(x

(j))− y(j)
k

)
· f ′
(

R∑
r=1

∏̀
l=1

〈w(k,l)
r ,x(j)〉

)
· ∂

∂w
(k′,`′)
i′r′

(
R∑
r=1

∏̀
l=1

〈w(k,l)
r ,x(j)〉

)]
=

=
1

N

N∑
j=1

[(
hk′(x

(j))− y(j)
k′

)
· f ′
(

R∑
r=1

∏̀
l=1

〈w(k′,l)
r ,x(j)〉

)
·

(
∂

∂w
(k′,`′)
i′r′

∏̀
l=1

〈w(k′,l)
r′ ,x(j)〉

)]
=

=
1

N

N∑
j=1

[(
hk′(x

(j))− y(j)
k′

)
· f ′
(

R∑
r=1

∏̀
l=1

〈w(k′,l)
r ,x(j)〉

)
·

(
∂

∂w
(k′,`′)
i′r′

〈w(k′,`′)
r′ ,x(j)〉

∏̀
l=1,l 6=`′

〈w(k′,l)
r′ ,x(j)〉

)]
=

=
1

N

N∑
j=1

[(
hk′(x

(j))− y(j)
k′

)
· f ′
(

R∑
r=1

∏̀
l=1

〈w(k′,l)
r ,x(j)〉

)
·

(
x

(j)
i′

∏̀
l=1,l 6=`′

〈w(k′,l)
r′ ,x(j)〉

)]
=

=
1

N

N∑
j=1

(
f

(
R∑
r=1

∏̀
l=1

〈w(k′,l)
r ,x(j)〉

)
− y(j)

k′

)
·f ′
(

R∑
r=1

∏̀
l=1

〈w(k′,l)
r ,x(j)〉

)
·

(
x

(j)
i′

∏̀
l=1,l 6=`′

〈w(k′,l)
r′ ,x(j)〉

)
=

=
1

N

N∑
j=1

∇J (j)
k′,`′,i′,r′ . �

5.2.3 Regularization

If one want to use regularization, just introduce a regularization parameter λ > 0 and

work with the cost function

J(W) =
λ

2N

N∑
j=1

‖W‖2 +
1

2N

N∑
j=1

∥∥∥h(x(j))− y(j)
∥∥∥2

.

Now we have that

∇J (j)
k′,`′,i′,r′ =
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= λw
(k′,`′)
i′r′ +

(
f

(
R∑
r=1

L∏
`=1

〈w(k′,`)
r ,x(j)〉

)
− y(j)

k′

)
·f ′
(

R∑
r=1

L∏
`=1

〈w(k′,`)
r ,x(j)〉

)
·

(
x

(j)
i′

L∏
`=1,` 6=`′

〈w(k′,`)
r′ ,x(j)〉

)
.

5.2.4 Stochastic gradient

After some initial guess W =
(
W(1,1), . . . ,W(1,L), . . . ,W(m,1), . . . ,W(m,L)

)
, we could use

the gradient descent iteration

W←W− α∇J(W)

to obtain sequential improvements for the weights. This procedure is costly and we will

prefer to use the stochastic gradient iteration

W←W− α∇J (j)(W),

where ∇J (j) =
[
∇J (j)

k,`,i,r

]
k,`,i,r

. After making this iteration for each j = 1 . . . N , we

probably will have a good set of weights. Otherwise we may repeat the procedure above

sometimes. It should be that this model of learning, by construction, avoids the problem

of vanishing gradients, which is a common problem in neural networks.

5.2.5 Computational cost

Now we analyze the cost of the stochastic gradient descent algorithm. Fix a sample x(j).

First we compute and save each 〈w(k,`)
r ,x(j)〉. Since each one costs n flops and we have to

compute it LmR times, we have a total cost of LmnR flops. The computational cost of

∇J (j)
k,`,i,r is summarized below.

λw
(k′,`′)
i′r′ : 1 flop

f

(
R∑
r=1

L∏
`=1

〈w(k′,`)
r ,x(j)〉

)
− y(j)

k′ : `R + 1 flops

f ′

(
R∑
r=1

L∏
`=1

〈w(k′,`)
r ,x(j)〉

)
: `R + 1 flops(

x
(j)
i′

L∏
`=1,` 6=`′

〈w(k′,`)
r′ ,x(j)〉

)
: L flops

−−−−−−−−−−−−−−−−−−−−−

Total: 1 + 2(LR + 1) + L flops
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To compute all ∇J (j)
k,`,i,r we have make these computations LmnR times, so we have a

total of LmnR + 2(LmnR)(LR + 1) + L2mnR flops. Taking in account also the compu-

tations of the dot products, we have a total of 3LmnR+ 2L2mnR2 +L2mnR flops. This

is for one iteration of the stochastic gradient. Running the program over all the samples

has a cost of (3LmnR + 2L2mnR2 + L2mnR)N flops. Assuming we have to repeat the

whole process E times (number of epochs), we have a final cost of

(3LmnR + 2L2mnR2 + L2mnR)NE flops.

Now assume a neural network with L̃ layers and Cn neurons in each layer (except

the last one), where C > 1. For each layer we have to compute Cn dot products (one

per neuron), except the last layer which we have to compute only m dot products. This

gives us a total of Cn(L̃ − 1) + m dot products. Since each dot product costs n flops,

this amounts to a total of Cn2(L̃ − 1) + mnL̃ flops. We also have to evaluate as many

function evaluations as neurons, which gives us a total of Cn(L̃− 1) +m flops. Therefore

we need to perform

Cn2(L̃− 1) +mnL̃+ Cn(L̃− 1) +m = (n2 + n)C(L̃− 1) +mnL̃+m flops

in order to make the forward propagation of one sample. Running this over all the samples

has a cost of ((n2 + n)C(L̃ − 1) + mnL̃ + m)N flops. Assuming we have to repeat the

whole process E times, we have a final cost of

((n2 + n)C(L̃− 1) +mnL̃+m)NE flops.

Below we put both costs together for comparison.

Tensor learning: (3LmnR + 2L2mnR2 + L2mnR)NE flops

Neural network: ((n2 + n)C(L̃− 1) +mnL̃+m)NE flops

We expect to have m,R� n and L < L̃ so the cost of the tensor learning is, in general,

much lower than the neural network. There is no rule of thumb about the number of layers

and the number of neurons at each layer, but some reasonable values, for example, would

be R = 3, C = 2 and L̃ = L = 3. In this case we have the following costs.

Tensor learning: 33mn+ 2 · 34mn+ 33mn = 216mn

Neural network: (n2 + n)22 + 3mn+m = 4n2 + 4n+ 3mn+m

After the weights are trained we have a CPD format (W(1), . . . ,W(L)) · IR×...×R to

makes predictions. As already observed, rank(Tk) ≤ R by construction. Therefore it

162



is interesting to compute low rank CPD approximations for all the tensors Tk, hence

simplifying the model. We tested this formulation over the MNIST handwritten digits,

the same tensor described in the previous section. Making L = 3 (third order tensors)

and R = 20 we could find a set of weights which predicts the entire dataset with 97.8%

of accuracy. After that we start computing low rank approximations and the new rank

R′ = 17 worked very well, producing a smaller set of weights which models the entire

dataset with the practically the same accuracy (it achieved 97.628%).
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Chapter 6

Conclusions

Chapters 1 and 2 were devoted to the study of tensor decompositions and some geometrical

aspects of the tensor rank. In chapter 3 we introduced the Gauss-Newton algorithm and

showed how it can be used to the problem of finding an approximated CPD. The block

structure of the approximated Hessian is of big importance. The study of this structure

allowed us to make fast matrix-vector products for the CG algorithm. Chapter 4 was

devoted to the development, in details, of the algorithms used within Tensor Fox. These

algorithms now are part of a tensor package which includes not only a CPD solver, but

also many routines of multilinear algebra and machine learning tools. The CPD algorithm

developed in this work was compared to the state of art and it proved to be competitive,

both in terms of speed and accuracy. Finally, in chapter 5 we introduced the concept

of tensor learning and showed how tensor techniques can be used to machine learning

problems.

This thesis now is part of an undergoing project. The solver we develop is fast,

accurate and scalable, but it still has room to improvements. Below we list the points to

be addressed in the future.

• The diagonal preconditioner is certainly not the best preconditioner one could use to

solve the subproblems of the dGN algorithm. For instance Tensorlab uses a block

diagonal preconditioner, thus reducing the number of CG iterations much more

times than Tensor Fox. The drawback of this approach is the necessity of solving

more linear systems in order to obtain these preconditioners. It would be ideal to

exploit the block structure of the approximated Hessian somehow to obtain a better

preconditioner with few computations.

• The rule of the current damping parameter update doesn’t seem to be optimal.

Designing and testing new rule updates could bring more improvements.

• In recent work [42] it was verified that Tensorlab can produce very accurate solu-

tions that are extremely ill-conditioned, even when the objective solution is well-
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conditioned. In 4.9 we could verify that Tensor Fox suffers from the same problem.

It is not a secret that problems in high-dimensional spaces usually are full of degen-

erate saddle points [11]. There is the possibility that both solvers are converging

to these points, which happen to be close to the objective but are ill-conditioned.

Since they are “looking” only for the forward error of the approximation, nothing

are being made to avoid ill-conditioned solutions. Increasing the number of CG

iterations could address this problem but this is costly.

• Currently Tensor Fox is able to handle large sparse tensors with low memory cost.

It is of interest to make use of GPUs to perform some computations for these kind

of tensors.

• Expanding the technique of tensor learning present in 5.2 can be fruitful for machine

learning problems. Although the neural network architecture still acts like a black

box, the outputs consists of multilinear maps, which are understandable. Addition-

ally, comparing the tensor model with other kind of neural networks is something

to be addressed. It is also of interest to test the tensor model with different orders,

different datasets, a wider range of ranks and so on. In short, there are a lot to be

done in this subject, and it is the hope of the author that this first step is a step in

a rich direction
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Appendix A

Numerical linear algebra

A.1 Singular value decomposition

In this section K can be R or C. We start with the singular value decomposition (SVD).

The condition m ≥ n won’t be assumed.

Theorem A.1.1 (Reduced SVD). Let M ∈ Km×n. Then there exists unitary (orthogonal)

matrices1 U ∈ Km×n,V ∈ Kn×n and a diagonal matrix Σ = diag(σ1, . . . , σn) ∈ Rn×n, with

σ1 ≥ . . . ≥ σn, such that M = UΣV∗.

The columns of U are called left singular vector, the columns of V are called right sin-

gular vectors, and the values σi are called singular values. The decomposition given in the

theorem is the reduced SVD of M. In the full SVD of M we can write M = UΣV∗, where

U ∈ Km×m and V ∈ Kn×n are unitary (orthogonal), and Σ = diag(σ1, . . . , σp) ∈ Rm×n,

where p = min{m,n}. Note that Σ has the same dimensions of M so we are calling it

“diagonal” in accord with the structures below. There are three possible cases.

m = n

M = U


σ1

. . .

σn

V∗

m > n

M = U



σ1

. . .

σn


V∗

1Here we are talking about rectangular unitary (orthogonal) matrices. There are two definitions for
a rectangular matrix U ∈ Km×n. In the case m ≥ n we say U is unitary (orthogonal) if its columns are
orthonormal (which is equivalent to U∗U = In). In the case m ≤ n we say U is unitary (orthogonal) if
its rows are orthonormal (which is equivalent to UU∗ = Im).
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m < n

M = U


σ1

. . .

σm

V∗

The following results will be useful.

Lemma A.1.2. Let M ∈ Km×m be symmetric with eigendecomposition M = UΛU∗ where

U ∈ Km×m is unitary (orthogonal) and Λ = diag(λ1, . . . , λm) ∈ Km×m. Furthermore,

assume the eigenvalues λi are such that |λ1| ≥ . . . ≥ |λm|. Then an SVD of M is

M = UΣVT , where σi = |λi| and V:i = sign(λi)U:i.

Lemma A.1.3. Let M ∈ Km×n such that m ≤ n and let σ1 ≥ . . . ≥ σm be the singular

values of M. Then the singular values of MMT are σ2
1, . . . , σ

2
m.

Theorem A.1.4. Let M ∈ Km×n such that m ≤ n and let λ1, . . . , λm be the eigenvalues of

MMT , where |λ1| ≥ . . . ≥ |λm|. Then the singular values of M are
√
|λ1| ≥ . . . ≥

√
|λm|.

Remark A.1.5. This theorem is particularly useful when m < n. Suppose we want to

compute a SVD of M in this situation. Then the usual cost is at least of 2m2n + 2m3

flops (see lecture 31 of [73]). Instead of this we can compute MMT first, at the cost of

m2n flops. Then the cost of computing the eigenvalues of a m ×m symmetric matrix is

of O(m3) flops with a low constant, giving a total of O (m2n+m3) flops.

A.2 Conjugate gradient

Let A ∈ Rn×n be symmetric positive definite and b ∈ Rn. Suppose we want to solve a

linear system

Ax = b (A.1)

for x. The solution of this system is x∗ = A−1b. The i-th Krylov space generated by A

and b is defined as

Ki = span(b,Ab, . . . ,Ai−1b).

Note that Ki is a subspace of Rn×n. Moreover. the vectors generating the space are

orthonormal so they form a orthonormal basis for Ki. Any algorithm that constructs

these vectors sequentially is called a Krylov method. One of the advantages of Krylov

methods is that sometimes they can be carried on without actually storing the matrix A.

Depending on the structure of A it is possible to accomplish this. When this is possible

we way the method is matrix-free. For example, one can see that theorem 3.5.10 allow us

to compute the product JTf Jf · x without needing to construct JTf Jf explicitly.
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The conjugate gradient method is a Krylov method made specifically to deal with

linear systems with symmetric positive definite matrices. Given the system A.1, this

method iteratively constructs a sequence of approximations x(i) which minimizes ε(i) =

‖x∗−x(i)‖A, the A-residual of x(i), where ‖x‖A =
√
〈Ax,x〉. We won’t go into the details

of this method. This is just a brief introduction of the algorithm and some of its properties.

Algorithm A.2.1 (Conjugate gradient).

Input: A ∈ Rn×n symmetric positive definite, b ∈ Rn

x(0) ← 0 ∈ Rn

r(0) ← b

p(0) ← r(0)

i = 1

repeat

α(i) ← ‖r(i−1)‖2
‖p(i−1)‖2A

x(i) ← x(i−1) + α(i)p(i−1)

r(i) ← r(i−1) − α(i)Ap(i−1)

β(i) ← ‖r(i)‖2
‖r(i−1)‖2

p(i) ← r(i) + β(i)p(i−1)

i← i+ 1 until stopping criteria is met

Output: x(i′), where i′ is the last index of the iterations

Each iteration involves several vector manipulations and one matrix-vector multiplica-

tion, which appears twice in the algorithm but need to be computed only once. In general

the matrix-vector multiplication dominates the computational cost so we can consider

that each iteration costs O(n2) flops. If A has some structure to be exploited this cost

may be lower. The term “conjugate” in the name of the algorithm comes from the fact

that the “search direction” vectors p(i) are A-conjugate with respect to each other, that

is, 〈p(i),p(j)〉A = 0 whenever i 6= j.

Usually one can use as stopping condition the distance between the current approxi-

mation, x(i), and the objective solution, b. The error is measured by ε = ‖b −Ax(i)‖2,

but a faster way to compute this error is through the identity ε = ‖r(i)‖2. To see this

identity holds just note that

ε = ‖r(i)‖2 = ‖r(i−1) − α(i)Ap(i−1)‖2 =

= ‖r(i−2) − α(i−1)Ap(i−2) − α(i)Ap(i−1)‖2 = . . .
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. . . = ‖r(0) − α(1)Ap(0) − α(2)Ap(1) − . . .− α(i)Ap(i−1)‖2 =

=

∥∥∥∥∥b−A
i∑

j=1

α(j)p(j−1)

∥∥∥∥∥
2

=
∥∥b−Ax(i)

∥∥2
.

Theorem A.2.2. Consider conjugate gradient algorihtm applied to the system A.1. If

the iteration i has not already converged (r(i−1) 6= 0), then x(i) is the unique point in Ki
that minimizes ‖ε(i)‖A. The convergence is monotonic (that is, ‖ε(i)‖A ≤ ‖ε(i−1)‖A) and

ε(i) = 0 is achieved for some i ≤ n.

This theorem highlights some of the most known properties of the conjugate gradient.

The last property, in particular, assures the algorithm will find the exact solution so it can

be regarded as a direct algorithm, not an iterative one. We say it is iterative because in

practice (working with finite precision) this exact solution is not necessarily found in less

than n iterations. Usually one just compute some iterations of the algorithm, stopping

before if the residual increases, because the monotonic property also can be lost when

working in finite precision.

As we will see now, the rate of convergence depends a lot on the distribution of the

eigenvalues of A. For the next theorem denote Pi as the set of univariate polynomials p

with degree ≤ i and p(0) = 1. More precisely Pi is the set of polynomials of the form

aix
i + ai−1x

i−1 + . . .+ a1x+ 1. We also use the notation Λ(A) to be the spectrum of A.

Theorem A.2.3. At iteration i of the conjugate gradient algorithm, we have

‖ε(i)‖A
‖ε(0)‖A

≤ inf
p∈Pi

max
λ∈Λ(A)

|p(λ)|.

Corollary A.2.4. If A has at most i distinct eigenvalues, then the conjugate gradient

converges in at most i iterations.

This corollary basically says that matrices with repeated eigenvalues may perform

better. the general idea is that if the eigenvalues of A are group in i small clusters, then

we can expect to have convergence in at most i iterations. The corollary is the extreme

case where these clusters collapse in just points.

Let κ(A) = ‖A‖2‖A−1‖2 be the condition number of A, where ‖ · ‖2 is the spectral

norm. The next result shows that the error is also bounded by a function of the condition

number.

Corollary A.2.5. At iteration i of the conjugate gradient algorithm, we have

‖ε(i)‖A
‖ε(0)‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)i

.
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Since κ(A) = λmax

λmin
, this theorem implies that the largest eigenvalue shouldn’t be too

far from the smallest. Again, this reinforce the idea that the eigenvalues should be grouped

together. Finally, since

√
κ(A)−1√
κ(A)+1

≈ 1− 2√
κ(A)

, we have that the convergence to a specified

tolerance is expected to be done in O(
√
κ(A)) iterations. This is just an upper bound,

convergence may be faster if the spectrum is clustered. For more information about this

subject check lecture 38 of [73] and 6.6.3 of [74].

A.3 Preconditioning

We assume the reader is familiar with the subject of condition numbers in linear algebra.

Let A ∈ Rn×n and b ∈ Rn. Given a linear system

Ax = b (A.2)

to be solved for x, it is possible to have numerical problems depending on the conditioning

of A. If A is ill-conditioned there will be problems to compute an accurate solution

regardless of the algorithm used. When facing this situation we can use the technique of

preconditioning to transform the ill-conditioned problem A.2 into a well-conditioned one.

First, suppose we have at our disposal an invertible matrix M ∈ Rn×n such that M is

well-conditioned and M−1A is easily computable and well-conditioned. M is called the

preconditioner. Note that the system

M−1Ax = M−1b (A.3)

has the same solution of A.2. Therefore, we can solve this well-conditioned system instead

of an ill-conditioned and obtain the desired solution.

We don’t actually need to construct the inverse M−1. First we solve the system

My = b which should be easy since M is well-conditioned. The solution is y∗ = M−1b.

With this solution now we solve the system

(M−1A)x = y∗. (A.4)

We assume that M−1A is already computed and that it is a well behaved matrix

so we can use it to solve the system without any problems. The respective solution is

x∗ = M−1A)−1y∗ = A−1MM−1b = A−1b, which is the desired solution. This is the

procedure of transforming and solving an ill-conditioned problem into a well-conditioned

one. In the case M is diagonal we don’t need to worry since M−1 is very easy to obtain.

This approach has to be changed when A is symmetric positive definite and we want to

use the conjugate gradient algorithm. The reason for this is because M−1A is generally not

symmetric even if M is symmetric. To derive the correct preconditioning assume M−1 is
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symmetric positive definite. We can rewrite the preconditioned system M−1Ax = M−1b

as

(M−1/2AM−1/2)︸ ︷︷ ︸
Â

(M1/2x)︸ ︷︷ ︸
x̂

= M−1/2b︸ ︷︷ ︸
b̂

. (A.5)

Note that Â is symmetric positive definite so we can apply the conjugate gradient

algorithm. Moreover Â and M−1A have the same eigenvalues since they are similar,

therefore the performance of the gradient conjugate algorithm is not altered.

One of the simplest preconditioners is the Jacobi preconditioner, also called diagonal

preconditioner. Its defined as M = diag(aii), where we suppose A has positive diagonal.

The result of this preconditioning is the matrix

M−1A =


1 a12

a11
. . . a1n

a11
a21
a22

1 . . . a2n
a22

...
...

. . .
...

an1
ann

an2
ann

. . . 1

 .
This is particularly useful if A is diagonally dominant. Now suppose A is symmetric

positive definite. Then we have

M−1/2AM−1/2 =


1 a12√

a11
√
a22

. . . a1n√
a11
√
ann

a21√
a22
√
a11

1 . . . a2n√
a22
√
ann

...
...

. . .
...

an1√
ann
√
a11

an2√
ann
√
a22

. . . 1

 .
Even if A is not diagonally dominant this preconditioner may improve the conditioning

by lowering the condition number. It can be shown [76, 77] that

κ(A) ≤ n · κ(M−1/2AM−1/2)

and

κ(M−1/2AM−1/2) ≤ n · min
D∈Dn

κ(DAD),

where κ(A) = ‖A‖2‖A−1‖2 and Dn is the set of nonsingular diagonal matrices. With

this result we have a lower and an upper bound for κ(M−1/2AM−1/2), namely,

1

n
κ(A) ≤ κ(M−1/2AM−1/2) ≤ κ(M−1/2)2 · κ(A) =

maxi aii
mini aii

· κ(A).

A good survey on preconditioning I would recommend is [78], also part 6.6.5 of [74] is

worth reading.
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Appendix B

Tensor algebra

This appendix section can be viewed as a complement of chapter 1.

B.1 Tensor product properties

The main algebraic properties about tensor product are summarized below.

Theorem B.1.1. Consider the vector spaces V(1),V(2),V(1), the vectors v(1),u(1) ∈ V(1),

v(2),u(2) ∈ V(2), v(3) ∈ V(3) and a scalar α ∈ K. Then

1. v(1) ⊗ v(2) = 0 =⇒ v(1) = 0 or v(2) = 0.

2. (αv(1))⊗ v(2) = v(1) ⊗ (αv(2)) = α(v(1) ⊗ v(2))

3. v(1) ⊗ (v(2) + u(2)) = v(1) ⊗ v(2) + v(1) ⊗ u(2)

4. (v(1) + u(1))⊗ v(2) = v(1) ⊗ v(2) + u(1) ⊗ v(2)

5. V(1) ⊗K ∼= V(1)

6. (V(1) ⊗ V(2))∗ ∼= (V(1))∗ ⊗ (V(1))∗

7. V(1) ⊗ V(2) ∼= V(2) ⊗ V(1)

8. (V(1) ⊗ V(2))⊗ V(3) ∼= V(1) ⊗ (V(2) ⊗ V(3))

9. v(1) ⊗ (v(2) ⊗ v(3)) = (v(1) ⊗ v(2))⊗ v(3)

Remark B.1.2. The generalization of these results to more products instead 3 is im-

mediate. With respect to property 7, it is important to note that it does not imply com-

mutativity. In general tensor spaces are associative but not commutative. Finally, these
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properties implies that tensor spaces are also an algebra1, and for this reason it is common

to call them a tensor algebra.

For L = 1 one can derive formula 1.3 directly from the computation of 〈x, T 〉R (identi-

fying T with a vector), and in the case L = 2 the formula is derived from the computation

of 〈T x,y〉R (identifying T with a matrix). For L = 3 we want to use the coordinate

representation of T (that is, identify T with a 3-D matrix) to obtain some kind of gen-

eralization. To accomplish this, let’s take a step back and look at the case L = 2 again.

Observe that it is possible to reduce the expression to a particular case of L = 1. More

precisely, we can write

〈T x,y〉R = yT

(
m∑
j=1

xjT:j

)
=

m∑
j=1

xj(y
TT:j) = 〈x,w〉R,

where w =
[
yTT:1, . . . ,y

TT:m

]T
. The idea is to compute the Euclidean inner product

between y and the columns of T and use the results to construct a vector, which have the

same size of x. Then we compute the Euclidean inner product between x and this vector.

We can obtain the same result when starting with x instead of y, but in this case we

compute the inner product between the rows of T . In the case L = 3 we proceed similarly,

first we fix all dimensions of T , except the one associated to x (the first dimension), which

will vary to create a vector T:jk. Then we compute the inner product between x and this

vector. After doing this for all possible vectors, we use the results of these computations

to produce a matrix such that the entry (j, k) is 〈x, T:jk〉R, in which we repeat the process

using the previous procedure (L = 2) to obtain a scalar. The ordering in which we use

the vectors doesn’t affect the final result, so we will work first with x, then y and then z.

After computing all inner products 〈x, T:jk〉R, we construct the matrix

W =


〈x, T:11〉R . . . 〈x, T:1p〉R

...
...

〈x, T:n1〉R . . . 〈x, T:np〉R


respecting the ordering of the indexes. Now we repeat the process for y, that is, compute

1An algebra is a vector spaces V with a multiplication · satisfying the following properties:

(x + y) · z = xz + yz (right distributivity)

x · (y + z) = xy + xz (left distributivity)

(αx) · (βy) = (αβ)(x · y) (compatibility with scalars)

173



all inner products 〈y,W:k〉R and form the vector

w =


〈y,W:1〉R

...

〈y,W:p〉R

 .
Finally, compute the inner product 〈z,w〉R. It is not difficult to verify that this value

is equal to T (x,y, z). This procedure can be generalized for any L, the idea is always

to compute the inner products with respect to one dimension, thus cutting the order by

one. This is repeated until order one, when we compute a single inner product. We can

formalize this procedure with the following definition.

Definition B.1.3. Let two tensors T ∈ KI1 ⊗ . . . ⊗ KIL and W ∈ KJ1 ⊗ . . . ⊗ KJM

such that T = v(1) ⊗ . . . ⊗ v(L), W = w(1) ⊗ . . . ⊗ w(M) and dim(KI`) = dim(KIm)

for some `,m. Then the ×m` -contraction between T and W is the tensor T ×`m W ∈
KI1 ⊗ . . .⊗KI`−1 ⊗KI`+1 ⊗ . . .⊗KIL ⊗KJ1 ⊗ . . .⊗KJm−1 ⊗KJm+1 ⊗ . . .⊗KJM defined as

T ×m` W = 〈v(`),w(m)〉R v(1)⊗. . .⊗v(`−1)⊗v(`+1)⊗. . .⊗v(L)⊗w(1)⊗. . .⊗w(m−1)⊗w(m+1)⊗. . .⊗w(L).

Consider the tensor T of the definition above. Given L vectors x(1), . . . ,x(L) we can

use equation 1.5 and the definition above to write

T (x(1), . . . ,x(L)) = v(1) ⊗ . . .⊗ v(L)(x(1), . . . ,x(L)) =

= 〈x(1),v(1)〉R · . . . · 〈x(L),v(L)〉R =

= T ×1
1 x(1) ×1

2 x(2) ×1
3 . . .×1

L x(L). (B.1)

For a generic tensor this gives an immediate expression for T (x(1), . . . ,x(L)) since it is

a linear combination of tensors of the form e
(1)
i1
⊗ . . .⊗e

(L)
iL

, whose contraction is described

by the formula B.1.

Another useful definition is the mode ` tensor-vector product, which is a contraction

along one dimension. Given a vector x ∈ RI` , we define T ×` x ∈ RI1×...×I`−1×I`+1×...×IL

by the relation

T ×` x =
(
I1, . . . , I`−1,x

T , I`+1, . . . , IL
)
· T .

B.2 Rank properties

We begin with some basic result regard to the tensor rank.

Theorem B.2.1. Let T ∈ V(1)⊗. . .⊗V(L) and S ∈W(1)⊗. . .⊗W(M). Then the following

holds.
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1. If rank(S) = 1, then rank(T ⊗ S) = rank(T ).

2. If rank(T ), rank(S) > 1, then rank(T ⊗ S) ≤ rank(T ) · rank(S).

3. Let T =
R∑
r=1

v(1)
r ⊗ . . .⊗v(L)

r be such that v
(`)
1 , . . . , v

(`)
R ∈ V(`) are linearly independent

vectors for each ` = 1 . . . L. Then rank(T ) = R.

Note that in the last item of the theorem the hypothesis about the vectors is equivalent

to saying that each factor matrix V(`) = [v
(`)
1 , . . . ,v

(`)
R ] is of full rank.

It is of interest to understand how often the CPD is unique, and for this we will need

to introduce other types of rank.

Definition B.2.2. We say R is a typical rank of V(1) ⊗ . . . ⊗ V(L) if the set of rank-R

tensors in this space has positive probability (positive Lebesgue measure).

Definition B.2.3. We say R is a generic rank of V(1) ⊗ . . . ⊗ V(L) if the set of rank-R

tensors in this space has probability 1.

These definitions assume that the tensors are being drawn according to a continuous

probability distribution. Note that R is the generic rank if, and only if there is only one

typical rank in V(1) ⊗ . . .⊗ V(L). In this case all other ranks occur with zero probability.

It is important to call attention to the fact that either type of rank depends on the field

K. In [46] there is a example of a real third order tensor which has rank 3 over R and

rank 2 over C. Another big difference between the real case and the complex case is given

by the following theorem.

Theorem B.2.4. If V(1)⊗ . . .⊗V(L) is a C-vector space, then it has a single typical rank.

As this result shows, complex tensor spaces only have one typical rank, which is the

generic rank, whereas real tensor spaces usually have more than one typical rank, so they

does not have a generic rank. In the real case, some authors calls the least typical rank

as the generic rank, but we won’t use this terminology here. There is only one more type

of rank we need to introduce.

Example B.2.5. Consider the space Km ⊗Kn ⊗Kp. Let x⊗ y⊗ z be a rank one tensor

such that x1, y1, z1 are not zero. Then we can rewrite this tensor as

x⊗ y⊗ z = [x1, x2, . . . , xm]T ⊗ [y1, y2, . . . , yn]T ⊗ [z1, z2, . . . , zp]
T =

=

(
x1

[
1,
x2

x1

, . . . ,
xm
x1

]T)
⊗

(
y1

[
1,
y2

y1

, . . . ,
yn
y1

]T)
⊗

(
z1

[
1,
z2

z1

, . . . ,
zp
z1

]T)
=
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= (x1y1z1) · [1, x̃1, . . . , x̃m−1]T ⊗ [1, ỹ1, . . . , ỹn−1]T ⊗ [1, z̃1, . . . , z̃p−1]T =

= λ · [1, x̃1, . . . , x̃m−1]T ⊗ [1, ỹ1, . . . , ỹn−1]T ⊗ [1, z̃1, . . . , z̃p−1]T .

With this we can conclude that any tensor of this form can be described using only

1 + (m − 1) + (n − 1) + (p − 1) parameters instead of m + n + p if we used the original

form. Now let Mijk be the set of tensors x ⊗ y ⊗ z such that xi 6= 0, yj 6= 0, zk 6= 0. We

have that Mijk has dimension 1 + (m− 1) + (n− 1) + (p− 1) since we can parametrize it

with 1 + (m− 1) + (n− 1) + (p− 1) parameters and no less than that. Note that the set

of all rank one tensors also has dimension 1 + (m− 1) + (n− 1) + (p− 1) since this set

is the (finite) union

⋃
1≤i≤m
1≤j≤n
1≤k≤p

Mijk

of sets with dimension 1 + (m− 1) + (n− 1) + (p− 1).

It is not hard to generalize this example to the space V(1)⊗. . .⊗V(L) and then conclude

that the set of rank one tensors has dimension 1+(I1−1)+ . . .+(IL−1) = 1+
L∑
`=1

(I`−1).

Given a value 1 ≤ R ≤
L∏
`=1

I` for the rank, the set of rank-R tensors can be written as

the sum of R copies of the set of rank one tensors. Therefore we could conclude that the

dimension of this set is R

(
1 +

L∑
`=1

(I` − 1)

)
. The parametrization given is not necessarily

optimal, it may be possible to obtain other with less parameters. The best we can say is

that this parametrization may be close to optimal, so we concluded that the dimension

is close to the actual one. Furthermore, note that this set actually contains not only the

rank-R tensors, it also contains all tensors of rank ≤ R.

Denote σR
(
V(1) ⊗ . . .⊗ V(L)

)
=
{
T ∈ V(1) ⊗ . . .⊗ V(L) : rank(T ) ≤ R

}
for the set

of tensors with rank ≤ R. If the space is understood from the context we may just denote

σR. With this notation and the previous observation about the parametrization one can

write

dim(σR) / R

(
1 +

L∑
`=1

(I` − 1)

)
.

We are talking about dimension of sets in a informal manner to refer to the number

of parameters necessary to parameterize the set but in general it is not true that σR is

a manifold. Now suppose R is such that our parametrization is optimal and it generates
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the entire space. Then we have

dim(σR) = dim
(
V(1) ⊗ . . .⊗ V(L)

)
=⇒

=⇒ R

(
1 +

L∑
`=1

(I` − 1)

)
=

L∏
`=1

I` =⇒ R =

⌈ ∏L
`=1 I`

1 +
∑L

`=1(I` − 1)

⌉
.

By definition, this R is a good candidate to be the generic rank of V(1) ⊗ . . . ⊗ V(L).

This motivates the following definition.

Definition B.2.6. The expected generic rank of V(1) ⊗ . . .⊗V(L) is defined as being the

value

RE =

⌈ ∏L
`=1 I`

1 +
∑L

`=1(I` − 1)

⌉
.

Now we are ready to use these definitions to state some useful theorems about tensor

rank.

Theorem B.2.7. Let V(1) ⊗ . . . ⊗ V(L) be such that I1 ≥ I2 ≥ . . . ≥ IL and let R be its

least typical rank. Then rank(T ) ≤ min
{∏L

`=2 I`, 2R
}

for all T ∈ V(1) ⊗ . . .⊗ V(L).

Theorem B.2.8. Let Cn⊗Cn⊗Cn be such that n 6= 3, let R be its generic rank and RE

its expected generic rank. Then R = RE =
⌈
n3−1
3n−2

⌉
.

Theorem B.2.9. Let Cn⊗Cn⊗Cn be such that n 6= 3 and let RE be its expected generic

rank. If T ∈ Cn ⊗ Cn ⊗ Cn is such that rank(T ) < RE, then, with probability 1, T has

finite CPD’s.

Definition B.2.10. Let V(1)⊗ . . .⊗V(L) such that I1 ≥ I2 ≥ . . . ≥ IL. We say this space

is unbalanced if
L∑
`=1

(I` − 1) >
L∏
`=2

I`.

Otherwise we say it is balanced.

Intuitively, a tensor space is unbalanced when the largest dimension is much larger

than the other dimensions of the tensor product. In this case the tensor space essentially

behaves as a matrix space. As the next result shows, the notion of expected generic rank

is not necessary for unbalanced spaces because now we have an explicit formula for the

generic rank.

Theorem B.2.11. Let V(1) ⊗ . . .⊗V(L) be unbalanced and such that I1 ≥ I2 ≥ . . . ≥ IL.

If R is its generic rank, then R = min
{
I1,
∏L

`=2 I`

}
.
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B.3 Special products

In addition to the tensor product and multilinear multiplication, there are a few other

products that will be relevant to us.

Definition B.3.1. Let two matrices A ∈ Kk×`,B ∈ Km×n. The Kronecker product

between A and B is defined by

A⊗̃B =


a11B a12B . . . a1`B

a21B a22B . . . a2`B
...

...
. . .

...

ak1B ak2B . . . ak`B

 .

The matrix given in the definition is a block matrix such that each block is a m × n
matrix, so A⊗̃B is a km× `n matrix. We would like to point out that some texts uses ⊗
for the Kronecker product and ◦ for the tensor product.

Lemma B.3.2. For any vectors x(1) ∈ RI1 , . . . ,x(L) ∈ RIL we have that

x(1)⊗̃ . . . ⊗̃x(L) =



x
(1)
1 · . . . · x

(L−1)
1 x

(L)
1

x
(1)
1 · . . . · x

(L−1)
1 x

(L)
2

...

x
(1)
1 · . . . · x

(L−1)
1 x

(L)
IL

x
(1)
1 · . . . · x

(L−1)
2 x

(L)
1

...

x
(1)
I1
· . . . · x(L−1)

IL−1 x
(L)
1

...

x
(1)
I1
· . . . · x(L−1)

IL−1 x
(L)
IL



.

The important thing to notice in this lemma is the ordering of the multi-index from

top to bottom. It goes to 1 . . . 11 to IL . . . IL−1IL following the numbering increasing order.

In particular this lemma implies that x(1)⊗̃ . . . ⊗̃x(L) = vec(x(1) ⊗ . . . ⊗ x(L)), assuming

we are using the same ordering of the multi-indexes. This explains why the notation ⊗ is

commonly used for the Kronecker product.

Definition B.3.3. Let two matrices A ∈ Kk×n,B ∈ Km×n. The Khatri-Rao product

between A and B is defined by

A�B =
[
A:1⊗̃B:1, A:2⊗̃B:2, . . . , A:n⊗̃B:n

]
.
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In the above definition, each product A:i⊗̃B:i is a Kronecker product of two column

vectors. Thus, each A:i⊗̃B:i is a km × 1 vector, so that A � B is km × n matrix. In

particular, if W(1), . . . ,W(L) are the factor matrices of a CPD, then W(1) � . . . �W(L)

is a matrix of shape
L∏
`=1

I` ×R, where its r-th column is the coordinate representation of

the r-th rank one term of the CPD.

Definition B.3.4. Let two matrices A,B ∈ Km×n. The Hadamard product between A

and B is defined by

A ∗B =


a11b11 a12b12 . . . a1nb1n

a21b21 a22b22 . . . a2nb2n

...
...

. . .
...

am1bm1 am2bm2 . . . amnbmn

 .

Note that the Hadamard product is nothing more than the coordinate-wise product

between matrices. The next theorem summarizes some of the key properties of these three

products.

Theorem B.3.5. Let A,B,C,D be matrices with the sizes necessary to have well defined

operations below. The the following holds.

1. A⊗̃(B + C) = A⊗̃B + A⊗̃C.

2. (A + B)⊗̃C = A⊗̃C + B⊗̃C.

3. For all α ∈ K, (αA)⊗̃B = A⊗̃(αB) = α(A⊗̃B).

4. (A⊗̃B)⊗̃C = A⊗̃(B⊗̃C).

5. (A⊗̃B)(C⊗̃D) = (AC)⊗̃(BD).

6. A−1⊗̃B−1 = (A⊗̃B)−1.

7. A†⊗̃B† = (A⊗̃B)†.

8. AT ⊗̃BT = (A⊗̃B)T .

9. (A⊗̃B)† = A†⊗̃B†.

10. (A�B)�C = A� (B�C).

11. (A�B)T (A�B) = (ATA) ∗ (BTB).

12. (A�B)† = ((ATA) ∗ (BTB))†(A�B)T .

13. If a, b are vectors, then a⊗̃b = a� b.

14. (A⊗̃B) ∗ (C⊗̃D) = (A ∗C)⊗̃(B ∗D).
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B.4 Symmetric tensors

Let SL be the group of permutations of L elements. Each element of SL will be denoted

by σ. We can see σ simply as a L-tuple of integers between 1 and L, without repetitions.

Thus, we denote each entry of σ by σ(`). For example, suppose L = 3. A possible

permutation σ ∈ S3 is σ = (3, 2, 1). In this case, σ permutes the 3-tuple (1, 2, 3) to

(3, 2, 1). Thus we have that σ(1) = 3, σ(2) = 2, σ(3) = 1. Now, define the map

πS : V⊗L → V⊗L by

πS(v(1) ⊗ . . .⊗ v(L)) =
1

L!

∑
σ∈SL

v(σ(1)) ⊗ . . .⊗ v(σ(L)).

We may interpret πS(v(1) ⊗ . . .⊗ v(L)) as the average of the tensor products between

the vectors v(`) considering all possible permutations of the indexes. Usually one denote

v(1) · . . . · v(L) = πS(v(1) ⊗ . . .⊗ v(L)) and call this the symmetric tensor product between

the vectors v(`). In the case all vectors are equal, say equal to v, we denote vL =

πS(v⊗ . . .⊗ v︸ ︷︷ ︸
L times

). The image of πS is called the space of symmetric tensors2 of V and

it is denoted by SL(V). Another way to characterize symmetric tensors is given by the

following theorem.

Theorem B.4.1. A tensor T ∈ V⊗L is symmetric if, and only if,

T (v(1), . . . , v(L)) = T (v(σ(1)), . . . , v(σ(L)))

for all σ ∈ SL.

We finish our discussion about symmetric tensors giving a few more relevant results.

Theorem B.4.2. Let dim(V) = n and {e(1), . . . , e(n)} be a basis for V. Then

1. {ei1 · . . . · eiL : 1 ≤ i1 ≤ . . . ≤ iL ≤ n} is a basis of SL(V).

2. dimSL(V) =

(
L− 1 + n

L

)
.

Theorem B.4.3. Let T ∈ V⊗L and consider a choice of basis for V. If T is symmetric,

then Ti1...iL = Tiσ(1)...iσ(L)
for all σ ∈ SL.

Example B.4.4 (Derivatives). Let f : Cm → Cn be a function L times differentiable at

a ∈ Cm. The L-th derivative of f at a is a L-linear map Df (L)(a) : Cm × . . .× Cm︸ ︷︷ ︸
L times

→ Cn.

Because of the isomorphism

2If one want to specify the tensor order it is possible to refer to this space as the space of symmetric
L-tensors or symmetric L-order tensors
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LL(Cm;Cn) ∼= (Cm)∗ ⊗ . . .⊗ (Cm)∗ ⊗ Cn,

we can write Df (L)(a) ∈ (Cm)∗ ⊗ . . . ⊗ (Cm)∗ ⊗ Cn and consider this map as a mixed

tensor of type (L, 1).

Let {e1, . . . , em} be the canonical basis of Cm. Given any vectors ẋ(1), . . . , ẋ(L) ∈ Cm,

we have that

Df (L)(a)(ẋ(1), . . . , ẋ(L)) =
m∑

i1,...,iL=1

ẋ
(1)
i1
. . . ẋ

(L)
iL
·Df (L)(a)(ei1 , . . . , eik) =

=
m∑

i1,...,iL=1

ẋ
(1)
i1
. . . ẋ

(L)
iL
·


∂Lf1

∂xi1 . . . ∂xiL
(a)

...

∂Lfn
∂xi1 . . . ∂xiL

(a)

 .
Using the notation

∂Lf

∂xi1 . . . ∂xiL
(a) =


∂Lf1

∂xi1 . . . ∂xiL
(a)

...

∂Lfn
∂xi1 . . . ∂xiL

(a)


and considering the dual basis dxi : Cm → C such that dxi(x) = dxi(x1, . . . , xm) = xi, we

have that

Df (L)(a)(ẋ(1), . . . , ẋ(L)) =
m∑

i1,...,iL=1

dxi1 ⊗ . . .⊗ dxiL(ẋ(1), . . . , ẋ(L)) · ∂Lf

∂xi1 . . . ∂xiL
(a).

Notice that Df (L)(a) a tensor is such that each coordinate (i1, . . . , iL, j) is given by
∂Lfj

∂xi1 . . . ∂xiL
(a), for 1 ≤ i1, . . . , iL ≤ m and 1 ≤ j ≤ n. In a more simplified way, we can

write

Df (L)(a) =
m∑

i1,...,iL=1

dxi1 ⊗ . . .⊗ dxiL ⊗
∂Lf

∂xi1 . . . ∂xiL
(a),

with the understanding that we are using the interpretation Df (L)(a) ∈ LL(Cm;Cn) and

not Df (L)(a) ∈ L(Cm, . . . ,Cm,Cn∗;C). This is a nice characterization of the derivative.

Another elegant one is to expand
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∂Lf

∂xi1 . . . ∂xiL
(a) =


∂Lf1

∂xi1 . . . ∂xiL
(a)

...

∂Lfn
∂xi1 . . . ∂xiL

(a)

 =
n∑
j=1

∂Lfj
∂xi1 . . . ∂xiL

(a) · ej

so that the previous formula becomes

Df (L)(a) =
m∑

i1,...,iL=1

dxi1 ⊗ . . .⊗ dxiL ⊗

(
n∑
j=1

∂Lfj
∂xi1 . . . ∂xiL

(a) · ej

)
=

=
m∑

i1,...,iL=1

n∑
j=1

∂Lfj
∂xi1 . . . ∂xiL

(a) · dxi1 ⊗ . . .⊗ dxiL ⊗ ej.

In particular, with this expression we can see that the coordinates of Df (L)(a), as a (L+1)-

th order tensor, are given by

Df (L)(a)i1...iLj =
∂Lfj

∂xi1 . . . ∂xiL
(a).

It is also possible to consider the identification we are using so far and consider

Df (L)(a) as a tensor in Cm ⊗ . . .⊗ Cm ⊗ Cn. Then, instead of dxi we use the canonical

basis vector ei.

B.5 Antisymmetric tensors

Given σ ∈ SL, the sign of σ is denoted by sgn(σ). We define sgn(σ) = 1 if σ makes an even

quantity of permutation and sgn(σ) = −1 if σ makes an odd quantity of permutations.

For example, let L = 3 and σ = (3, 2, 1). Note that σ(2) = 2, then this number is not

permuted, but the numbers 1 and 3 are permuted. From this it follows that σ makes 2

permutations. Since 2 is even, we conclude that sgn(σ) = 1. Now let σ̃ = (3, 1, 2). In this

case all three numbers are permuted. Since 3 is odd, we conclude that sgn(σ̃) = −1.

Now define the map πΛ : V⊗L → V⊗L by

πΛ(v(1) ⊗ . . .⊗ v(L)) =
1

L!

∑
σ∈SL

sgn(σ)v(σ(1)) ⊗ . . .⊗ v(σ(L)).

We may interpret πΛ(v(1) ⊗ . . . ⊗ v(L)) as the signed average of the tensor products

between the vectors v(`) considering all possible permutations of the indexes. Usually

one denote v(1) ∧ . . . ∧ v(L) = πΛ(v(1) ⊗ . . . ⊗ v(L)) and can this the exterior product or

antisymmetric product between the vectors v(`). The image of πΛ is called the space of

antisymmetric tensors or alternating tensors of V and it is denoted by ΛL(V).

Theorem B.5.1. v(1)∧. . .∧v(L) = 0 ⇐⇒ the vectors v(1), . . . , v(L) are linearly dependent.
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Theorem B.5.2. v(1)∧. . .∧v(`)∧. . .∧v(j)∧. . .∧v(L) = −v(1)∧. . .∧v(j)∧. . .∧v(`)∧. . .∧v(L)

for all i 6= j.

Theorem B.5.3. Let dim(V) = n and {e1, . . . , en} be a basis for V. Then

1. {ei1 ∧ . . . ∧ eiL : 1 ≤ i1 < . . . < iL ≤ n} is a basis of ΛL(V ).

2. dim ΛL(V) =

(
n

L

)
.

Theorem B.5.4. Let T ∈ V⊗L and consider a choice of basis for V. If T is antisym-

metric, then Ti1...ip...iq ...iL = −Ti1...iq ...ip...iL for all p 6= q.
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