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sempre ajudaram bastante, sempre deram muito apoio. Aos meus familiares Carol, We-
lington, Thomas, Bella, Yuri, Bruno, Anninha, Filipe, André, Kyoko, May, Matheus,
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Simetrias de fluxos: os centralizadores campo de vetor e
difeomorfismo

Davi Joel dos Anjos Obata

Orientador: Alexander Eduardo Arbieto Mendoza

Esta tese é dedicada ao estudo de simetrias de fluxos. Há dois tipos de simetrias
que estudaremos: o centralizador campo de vetores e o centralizador difeomorfismo. Nós
estamos interessados em saber quando o centralizador de um campo de vetor é “trivial”,
ou pequeno em algum sentido.

Para o centralizador campo de vetor, há dois tipos de resultados: um que se trata de
achar condições dinâmicas gerais sobre o fluxo que implicam centralizador “trivial” e o
outro úm resultado C1-genérico. Introduzimos três tipos de “trivialidade” do centraliza-
dor, chamados colinear, quase-trivial e trivial. Em palavras, o centralizador de um campo
é colinear quando qualquer outro campo que comuta com ele é colinear em todo ponto; é
quase-trivial se qualquer outro campo que comuta com ele é dado por uma função vezes o
campo original; é trivial se o centralizador coincide com constantes vezes o campo original.
A seguir, resumimos alguns dos nossos resultados:

1. Um campo de vetor C1-genérico tem centralizador quase-trivial. Além disso, se um
campo de vetor C1-genérico tem no máximo uma quantidade enumerável de classes
de recorrência por cadeias então o seu centralizador é trivial.

2. Um fluxo transitivo e separador tem centralizador trivial.

3. Um campo de vetor com centralizador colinear cujas singularidades são hiperbólicas
tem centralizador quase-trivial.

4. Um campo de vetor C2 que preserva uma medida não-uniformemente hiperbólica
com suporte total e com finitas singularidades tem centralizador trivial.
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5. Em dimensão 3, um campo de vetor C3 com um certo tipo de expansividade (cha-
mado cinemático expansivo) e tal que todas as suas singularidades sejam hiperbólicas
tem centralizador trivial.

Para o centralizador difeomorfismo, provamos que um campo de vetor C1-genérico que
possui no máximo finitos poços e fontes tem centralizador difeomorfismo quase-trivial.
Além disso, se existirem no máximo uma quantidade enumerável de classes de recorrência
por cadeias então o centralizador é trivial. Obtemos também um critério para que um
difeomorfismo no centralizador seja uma reparametrização do fluxo.
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Symmetries of flows: The vector field and diffeomorphism
centralizer

Davi Joel dos Anjos Obata

Advisor: Alexander Eduardo Arbieto Mendoza

This thesis is dedicated to the study of symmetries of flows. There are two types of
symmetries that will be considered: the vector field and the diffeomorphism centralizer.
We are interested in knowing when the centralizer of a vector field is “trivial”, or small
in some sense.

For the vector field centralizer, there are two types of results: one is to find general
dynamical conditions on the flow that imply “trivial” centralizer and the other is a C1-
generic result. We introduce three types of “triviality” of the centralizer, named collinear,
quasi-trivial and trivial. In words, the centralizer of a vector field is collinear if any other
vector field that commutes with it is collinear in every point; it is quasi-trivial if any other
vector field that commutes with it is given by a function times the original one; it is trivial
if the centralizer coincides with the set of constant times the vector field. In what follows,
we summarize some of our results:

1. A C1-generic vector field has quasi-trivial centralizer. Furthermore, if a C1-generic
vector field has at most countably many chain-recurrent classes then its centralizer
is trivial.

2. A transitive separating flow has trivial centralizer.

3. A C1 vector field with collinear centralizer such that all its singularities are hyper-
bolic has quasi-trivial centralizer.

4. A C2 vector field that preserves a non-uniformly hyperbolic measure with full sup-
port and with finitely many singularities has trivial centralizer.
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5. In dimension 3, a C3 vector field with some type of expansiveness (called Kine-
matic expansiveness) and such that all its singularities are hyperbolic has trivial
centralizer.

For the diffeomorphism centralizer, we prove that a C1-generic vector field with at most
finitely many sinks and sources has quasi-trivial diffeomorphism centralizer. Furthermore,
if there are at most countably many chain-recurrent classes then the centralizer is trivial.
We also obtain a criterion for a diffeomorphism in the centralizer to be a reparametrization
of the flow.
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Chapter 1

Introduction

This thesis is dedicated to study symmetries of dynamical systems. Given an ODE (ordi-
nary differential equation), one is interested in undestanding the asymptotic behavior of
its solutions. In this generality, this is a hard problem. However, if one knows that this
ODE has several symmetries, one might use them to obtain explicit solutions. Towards
the end of the 19th century, this was done by Lie where he used symmetries of some
differential equations to obtain its solutions. It was actually during this work that Lie
developed the notion of Lie groups. The types of symmetries that we will be interested
are the so called centralizers.

We focus on the study of different types of centralizers for flows. Since the problems
we will study in this thesis are motivated by the study of centralizers for discrete time dy-
namical systems, in this introduction we will first discuss centralizers of diffeomorphisms.

1.1 Centralizers of diffeomorphisms

Let M be a compact riemannian manifold and for each r ≥ 1 we consider Diffr(M) to be
the set of Cr-diffeomorphisms of M . For a given f ∈ Diffr(M) and s ∈ [1, r] we define its
Cs-centralizer as

Cs(f) := {g ∈ Diffs(M) : f ◦ g = g ◦ f}.
In other words, it is the set of diffeomorphisms that commutes with f . Observe that some
trivial solutions of the equation f ◦ g = g ◦ f are given by g = fn, for any n ∈ Z. A
natural question is to know when these are the only solutions of such equation. Whenever
the centralizer is generated by f , we say that f has trivial centralizer. We remark that,
whenever the centralizer of f is non-trivial, then f embeds into a non-trivial Z2-action.

Kopell in her Ph.D. thesis in 1970 proved that for r ≥ 2 and when M is the circle
S1, there is an open and dense subset of Cr-diffeomorphisms with trivial centralizer (see
[Kop70]). Motivated by Kopell’s result, Smale asked the following question:

Question ([Sma91], [Sma98]). Is the set of Cr-diffeomorphisms with trivial centralizer a
residual (or generic) subset? That is, does it contain a dense Gδ-subset of the space of
Cr-diffeomorphisms? Is it open and dense?
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This question remains open in this generality, but there are several partial answers.
Let us mention some of these results. For high regularity, some type of hyperbolicity has
played a key role in the proofs of triviality of the centralizer. For Axiom A systems in
the C∞-category, there are some very good answers given by Palis-Yoccoz in [PY89(1)],
[PY89(2)] and Fisher in [Fi08].

In [PY89(1)], the authors proved that for a C∞-open and dense subset of the Anosov
diffeomorphisms on tori, the centralizer is trivial. For other results on the centralizer of
Anosov diffeomorphisms on tori, we refer the reader to [Pl98], [Ro08], [BF14]. In [PY89(2)]
and [Fi08], the authors obtain the triviality of the centralizer in a (C∞) residual subset
of Axiom A either with the strong transversality property (Palis-Yoccoz), or the no cycle
condition (Fisher). For Axiom A systems that verifies either the strong transversality
property or the no cycle condition, and that have a periodic sink or source, Palis-Yoccoz
and Fisher can promote their result obtaining that triviality of the centralizer is open and
dense, instead of just generic. We also refer the reader to [Ro93], [Fi09] and [RV18] for
some related results in the hyperbolic setting.

In the partially hyperbolic setting, there are some results on centralizers by Burslem in
[Bu04]. She proves that among the partially hyperbolic diffeomorphisms, the centralizer
is discrete, i.e. it is a discrete group but not necessarily trivial, for a C1-open and C1-
dense subset. For skew-products over Anosov and whose fibers are the circle, such that
the center direction is tangent to these fibers, Burslem proved that the centralizer is
trivial in a C∞-residual subset. She also obtained a result for perturbations of the time t
diffeomorphism of an Anosov flow.

Bonatti-Crovisier-Wilkinson gave a positive answer to Smale’s question for the C1-
topology. They proved that a C1-generic diffeomorphism has trivial C1-centralizer (see
[BCW09]). They also prove the same result restricted to the space of diffeomorphisms
that preserves a volume form (see [BCW08]).

From the results of Bonatti-Crovisier-Wilkinson, a natural question is to know if for the
C1-topology the property of having trivial C1-centralizer is open and dense. It turns out
that the answer is no. This is given by Bonatti-Crovisier-Vago-Wilkinson ([BCVW08]),
where they proved that any manifold admits a C1-open set U ⊂ Diff1(M) such that there
exists a subset D ⊂ U , which is C1-dense in U , with the property that any diffeomorphism
f ∈ D has non-trivial centralizer.

A great portion of this thesis is dedicated to extend the result of Bonatti-Crovisier-
Wilkinson in [BCW09] for flows. As we will see, there are some difficulties that arises
when one studies the centralizer of flows, which do not appear for diffeomorphisms.

1.2 The vector field centralizer of flows

In this section we introduce one of the types of symmetries for flows that we will study.
Since we will be restricted to the C1-category, we can represent a flow by the vector
field that generates it. Let Xr(M) be the set of Cr-vector fields of M . Recall that a
smooth manifold carries a Lie bracket operator [., .] that acts on Xr(M) × Xr(M). For
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X, Y ∈ Xr(M), it is defined by [X, Y ] = XY − Y X. If [X, Y ] = 0, we say that X and Y
commute.

Let X ∈ Xr(M) and 1 ≤ s ≤ r, we define the Cs-vector field centralizer of X by

Cs(X) := {Y ∈ Xs(M) : [X, Y ] = 0}.

This is the set of vector fields that commutes with X. In this section, we will refer to the
vector field centralizer of X as the centralizer of X. In the next section we will introduce
a different type of centralizer.

Given X, the equation [X, Y ] = 0 has some trivial solutions. Indeed, for any c ∈ R,
the vector field Y = cX commutes with X. More generally, for any function f : M → R
such that Xf = 0, then the vector field Y = fX also commutes with X. In what follows
we will define different types of “triviality” for the centralizer of flows.

A Cr-vector field X has Cs-collinear centralizer if for any Y ∈ Cs(X), for any point
x ∈M the space generated by the vectors X(x) and Y (x) has dimension at most 1. This
definition says that if Y commutes with X, then Y has the “same direction” of X.

Recall that two vector fields commute if and only if their flows commute, that is, for
any tX , tY ∈ R we have that XtX ◦YtY (.) = YtY ◦XtX (.). Two commuting flows induce an
R2-action. If X has collinear centralizer, then the flow generated by X does not embed
into a non-trivial R2-action, that is, there are no orbits of the action with dimension 2.

A slightly stronger notion of triviality is the following: we say that X has Cs-quasi-
trivial centralizer if for any Y ∈ Cs(X) there is a continuous function f : M → R, which
is differentiable along X-orbits, such that Y = fX.

At last, we say that X has Cs-trivial centralizer if the centralizer is given by the set
{cX : c ∈ R}. Observe that this is the smallest possible centralizer that a vector field
may have. It is natural to ask in this context the following version of Smale’s questions
for the vector field centralizer.

Question. Is the set of Cr-vector fields with trivial (quasi-trivial or collinear) centralizer
a residual (or generic) subset? Is it open and dense?

There are several works that study the different types of triviality of the vector field
centralizer. In 1973, Kato-Morimoto proved that the centralizer of an Anosov flow is
quasi-trivial (see [KM73]). The main feature used in their proof is a topological property
called (Bowen-Walters) expansivity. We remark that there are several different notions of
expansivity for flows.

A few years later in [Oka76], Oka extended Kato-Morimoto’s result for (Bowen-
Walters) expansive flows. This type of expansivity is somehow restrictive, since it implies
that every singularity is an isolated point of the manifold.

In [Sad79], Sad in his Ph.D. thesis adapted the remarkable work of Palis-Yoccoz
([PY89(2)]) for flows. He proved that the triviality of the vector field centralizer holds
for an C∞-open and dense subset of C∞-Axiom A vector fields that verify the strong
transversality condition. The singularities of an axiom A flow are dynamically isolated,
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meaning that they are not contained in a non-trivial transitive set. For these type of flows
the singularities do not give any trouble in the proofs of triviality of the centralizer.

Much more recently, in 2018, Bonomo-Rocha-Varandas ([BRV18]) studied the central-
izer for Komuro expansive flows. We remark that Komuro expansivity allows the presence
of singularities, this includes for instance Lorenz attractors. They prove the triviality of
the centralizer of C∞-Komuro expansive transitive flows whose singularities are hyperbolic
and verify a non-ressonance condition.

Bonomo-Varandas proved in [BV19] that a C1-generic divergence free vector field has
trivial vector field centralizer (they also obtain a generic result for Hamiltonian flows in
the same paper). In a different paper, [BV18], Bonomo-Varandas obtain that C1-generic
sectional axiom A vector fields have trivial vector field centralizer (see the introduction
of [BV18] for the definition of sectional axiom A).

The goal of chapter 2 in this thesis, it is to study this type of centralizer. It contains
a joint work of the author with Martin Leguil and Bruno Santiago [LOS18], where we
obtain several restults for the centralizers of vector fields. In our work, there are two
types of results: C1-generic results and general results which study dynamical conditions
on X that implies “triviality” of its centralizer. Let us make a few remarks comparing
our results and previous results in the literature.

In the C1-category, we prove that a very weak type of expansiveness called separating
implies quasi-triviality of the centralizer. In particular, with the additional assumption of
transitivity, in Theorem D, we obtain that a transitive separating vector field has trivial
centralizer. We remark that the separating property is much weaker than Komuro expan-
siveness. This result generalizes to a much larger class of vector fields the results about
centralizers of flows from [KM73], [Oka76] and [BRV18]. After our work, Bakker-Fisher-
Hasselblatt in [BFH19] were able to prove a similar result in the C0-category. However,
their result uses a type of expansiveness stronger than separating, called kinematic ex-
pansiveness.

Our Theorem B states that for a C1-generic vector field its centralizer is quasi-trivial.
Moreover, if a C1-generic vector field has at most countably many chain-recurrent classes
then its centralizer is trivial. One of the corollaries of our result is the main result in
[BV18], since sectional axiom A vector fields have finitely many chain-recurrent classes.

In what follows we will state our results for the vector field centralizer.

1.2.1 Quasi-trivial centralizers

We obtain some easy criteria that imply collinearity of the centralizer. A natural problem
is to know when collinearity can be promoted to quasi-triviality. If Y commutes with X
and Y is collinear to X, it is easy to see that there is a continuous function f , defined
on regular (or non-singular) points such that Y = fX. The problem of going from
collinearity to quasi-triviality is a problem of extending continuously the function f to
the entire manifold. This is not always the case; indeed, in Section 2.3 we construct an
example of a vector field with collinear centralizer which is not quasi-trivial.
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Nevertheless, when all the singularities of a C1 vector field are hyperbolic, collinearity
can actually be promoted to quasi-triviality:

Theorem A. Let M be a compact manifold. If X ∈ X1(M) has collinear C1-centralizer
and all the singularities of X are hyperbolic, then X has quasi-trivial C1-centralizer.

A significant part of chapter 2 is dedicated to the proof of the C1-genericity of quasi-
trivial centralizer. This is given in the following theorem:

Theorem B. Let M be a compact manifold. There exists a residual subset R ⊂ X1(M)
such that any X ∈ R has quasi-trivial C1-centralizer. Furthermore, if X has at most
countably many chain-recurrent classes, then the C1-centralizer of X is trivial.

This result is a version for the vector field centralizer of Bonatti-Crovisier-Wilkinson’s
result [BCW09].

1.2.2 Trivial centralizers

Next we see in what conditions we can conclude the triviality of the centralizer. It is easy
to construct examples of vector fields whose centralizer is quasi-trivial but not trivial. In
Section 2.4 we explain how example 2.2.1 has quasi-trivial centralizer, but not trivial.

The problem of knowing if a vector field with quasi-trivial centralizer has trivial cen-
tralizer is reduced to the problem of knowing when an X-invariant function1 is constant.
This problem will be studied in Section 2.4.

Our first criterion to obtain triviality is based on the notion of spectral decomposition.
We say that X admits a countable spectral decomposition if the non-wandering set, Ω(X),
satisfies Ω(X) = ti∈NΛi, where the sets Λi are pairwise disjoint, each of which is compact,
X-invariant and transitive, i.e., contains a dense orbit.

Theorem C. Let M be a compact connected manifold and let X ∈ X1(M). Assume that
all the singularities of X are hyperbolic, that X admits a countable spectral decomposition
and that the C1-centralizer of X is collinear. Then C1(X) is trivial.

With the assumption of a very weak type of expansivity, called separating (see defini-
tion 2.1.3), we can obtain the following result:

Theorem D. If X is a transitive, separating C1-vector field, then X has trivial C1-
centralizer.

This generalizes to the C1-category previous results of Oka [Oka76], Kato-Morimoto
[KM73] and Bonomo-Rocha-Varandas [BRV18].

In higher regularity, Pesin’s theory in the non-uniformly hyperbolic case and Sard’s
theorem give us two useful tools to verify triviality of the centralizer. Using Pesin’s theory
as a tool, we obtain the following result:

1A function is f is X-invariant if Xf = 0, which is equivalent to f ◦Xt = f , ∀t ∈ R.
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Theorem E. Let M be a compact manifold of dimension d ≥ 2. Let X ∈ X2(M)
be a vector field with finitely many singularities and let µ be a X-invariant probability
measure such that suppµ = M . If µ is non-uniformly hyperbolic2 for X, then X has
trivial C1-centralizer.

Theorem E can be applied for non-uniformly hyperbolic geodesic flows, like the ones
constructed by Donnay [Don88] and Burns-Gerber [BG89]. In particular, we obtain that
non-uniformly hyperbolic geodesic flows have trivial centralizer.

In dimension three, under higher regularity assumptions, we are also able to obtain
triviality, for a slightly stronger notion of expansiveness called kinematic expansive, which
is stronger than separating (see definition 2.1.8).

Theorem F. Let M be a compact 3-manifold and consider X ∈ X3(M). If X is
Kinematic expansive and all its singularities are hyperbolic, then its C3-centralizer is
trivial.

The technique we use in the above theorem, which relies on Sard’s Theorem, also leads
to a criteria to obtain triviality from a collinear centralizer of high regularity.

Theorem G. Let M be a compact, connected Riemannian manifold of dimension d ≥ 1,
and let X ∈ Xd(M). Assume that every singularity and every periodic orbit of X is
hyperbolic, that Ω(X) = Per(X) and that the Cd-centralizer of X is collinear. Then X
has trivial Cd-centralizer.

The criterion in Theorem G is not sufficient if we want to obtain a generic result,
due to the lack of a general Cd-closing lemma. However, following the arguments of
[Hur86, Man73], we can show that Cd-generically the triviality of the Cd-centralizer is
equivalent to the collinearity of the Cd-centralizer.

Theorem H. Let M be a compact, connected Riemannian manifold of dimension d ≥ 1.
There exists a residual set RT ⊂ Xd(M) such that for any X ∈ RT , the Cd-centralizer of
X is collinear if and only if it is trivial.

1.3 The diffeomorphism centralizer

In this part we will introduce another type of symmetry that one can study for flows.
Given a Cr-vector field X, we denote by Xt the flow on time t generated by X. For any
1 ≤ s ≤ r, we define the Cs-diffeomorphism centralizer of X as

CsDiff(X) := {f ∈ Diffs(M) : f ◦Xt = Xt ◦ f, ∀t ∈ R}. (1.3.1)

This is the set of diffeomorphisms that commutes with the flow. The study of this type of
centralizer is presented in chapter 3. We remark that this type of centralizer is less rigid

2See section 2.1.4 for the precise definition of non-uniform hyperbolicity.
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than the vector field centralizer. In section 3.5 we present a simple example that justifies
this claim.

Similarly to the vector field centralizer, there are different types of “triviality” that
one may consider. We define two types. Given a Cr-vector field X, we say that it has
Cs-quasi-trivial centralizer if for any f ∈ CsDiff(X), f is a reparametrization of the flow Xt,
that is, there exists a continuous function τ : M → R such that f(.) = Xτ(.)(.). If X has
quasi-trivial Cs-centralizer and for every element of the centralizer f , the function τ(.)
is constant, then we say that the Cs-centralizer is trivial. In other words, X has trivial
centralizer if the centralizer is the smallest possible one. For this type of centralizer, we
are interested in the following version of Smale’s question for flows:

Question. For a C1-generic vector field X, is its diffeomorphism C1-centralizer quasi-
trivial? Is it trivial?

In [Mun17], the author proves that given a Morse function on a smooth manifold, for a
generic riemannian metric the gradient flow has trivial centralizer. Another work related
to this type of centralizer is the recent work of Bakker-Fisher-Hasselblatt [BFH19]. The
authors prove the C∞ genericity of trivial centralizer among Axiom A flows with no cycle.
This is the analogous for flows of the previous result for diffeomorphism by Fisher [Fi08].
With some more dynamical assumptions they can also obtain C1-open sets with trivial
centralizer.

It is natural to study generic systems that present some form of “hyperbolicity”. In
this part we will focus on C1-generic vector fields that have at most finitely many sinks
or sources. In [ABC06], the authors proved that such systems have a weak form of
hyperbolicity named dominated splitting (see Theorem 3.2.4). Our main result is the
following:

Theorem I. There exists a C1-residual subset R ⊂ X 1(M) such that if X ∈ R has
at most finitely many sinks or sources, then X has quasi-trivial diffeomorphism C1-
centralizer. Moreover, if in addition X has at most countably many chain-recurrent
classes, then the C1-centralizer of X is trivial.

We remark that the techniques used to prove C∞-generic results on the centralizer
of Axiom A vector fields (as used in [BFH19]), and the techniques that we use to prove
Theorem I are completely different.

In [Pei60], Peixoto proved that a C1-generic vector field on a compact surface is Morse-
Smale. Recall that a vector field is Morse-Smale if the non-wandering set is the union of
finitely many hyperbolic periodic orbits and hyperbolic singularities, and it verifies some
transversality condition. In particular, the non-wandering set is finite. As a consequence
of this result of Peixoto and Theorems B and C, we have the following corollary.

Corollary A. Let M be a compact connected surface. Then, there exists a residual
subset R† ⊂ X1(M) such that for any X ∈ R†, the diffeomorphism C1-centralizer of X is
trivial.

A C1-vector field X is Axiom A if the non-wandering set is hyperbolic and Ω(X) =
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Per(X). It is well known that Axiom A vector fields admits a spectral decomposition,
with finitely many basic pieces.

Corollary B. A C1-generic Axiom A vector field has trivial diffeomorphism C1-
centralizer.

We remark that Corollary B actually holds for more a general type of hyperbolic
system called sectional Axiom A. We refer the reader to [MM08] definition 2.14, for a
precise definition.

Another corollary is for C1-vector fields far from homoclinic tangencies in dimension
three. Let us make it more precise. Recall that a vector field X ∈ X1(M) has a homoclinic
tangency if there exists a hyperbolic non-singular closed orbit γ and a non-transverse
intersection between W s(γ) and W u(γ). By the proof of Palis conjecture in dimension
three given in [CY17], a C1-generic X ∈ X1(M) which cannot be approximated by such
vector fields admits a finite spectral decomposition, hence:

Corollary C. Let M be a compact connected 3-manifold. Then there exists a residual
subset R‡ ⊂ X1(M) such that any vector field X ∈ R‡ which cannot be approximated by
vector fields exhibiting a homoclinic tangency has trivial diffeomorphism C1-centralizer.

To prove Theorem I, a very important ingredient is given by the proposition below. It
deals with the construction of the reparametrization of the flow, given a diffeomorphism
in the centralizer that fixes orbits. We remark that this type of construction does not
appear in the study of the centralizer for diffeomorphisms.

Proposition 3.0.2. Let X ∈ X1(M) be a C1-vector field whose periodic orbits and
singularities are all hyperbolic. Let f ∈ C1

Diff(X) be an element of the centralizer with
the following property: there exists a constant T > 0 such that for every p ∈M , we have
f(p) ∈ X[−T,T ](p), where X[−T,T ](p) is the piece of orbit of p from time −T to T . Then
there exists an X-invariant continuous function τ : M → R such that f(.) = Xτ(.)(.).

1.4 Thom’s conjecture

We finish this introduction with a discussion in what is missing in Theorems B and I to
obtain triviality of the centralizer.

Observe that in Theorem I, without the additional assumption of at most countably
many chain recurrent classes, we do not get the triviality of the C1-centralizer for a C1-
generic vector field that has at most finitely many sinks or sources. Similarly, for the
vector field centralizer of a C1-generic vector field, from Theorem B we cannot conclude
the triviality of the centralizer without the assumption of at most countably many chain-
recurrent classes. What is missing to obtain the triviality in Theorems B and I, is to
prove that for a C1-generic vector field every invariant continuous function is constant.
This was conjectured (without indication on the regularities) by René Thom ([Thom]).
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Conjecture ([Thom]). For a C1-generic vector field, any C1 (or C0) invariant function of
the manifold is constant.

Two results related to Thom’s conjecture are given by Mañé in [Man73] and Cresson-
Daniilidis-Shiota in [CDS08]. Mañé proves that Cr-generically, for any 1 ≤ r ≤ ∞, any
Cd-invariant function is constant, where d is the dimension of the manifold. His argument
uses Sard’s theorem, that explains why he needs Cd-functions. In [CDS08], the authors
prove that C1-generically any Lipschitz definable invariant function is constant. The
notion of definable has to do with the so called o-minimal structures, which we do not
define here. Their argument also passes through to obtain some generalization of Sard’s
theorem. We remark that neither of these works solve the conjecture as it is stated above,
for general C1 (or continuous) invariant functions.

1.5 Works contained in this thesis and other works

This thesis contains the following two works:

• On the centralizer of vector fields: Criteria of triviality and genericity results. Joint
work with Martin Leguil and Bruno Santiago. Submited, preprint arXiv:1810.05085
(2018).

• Symmetries of vector fields: The diffeomorphism centralizer. Submited, preprint
arXiv:1903.05883 (2019).

After starting my Ph.D. at UFRJ, the opportunity appeared to start a new Ph.D. at
Université Paris-Sud (Orsay), under the supervision of Sylvain Crovisier. Since January
2017, I have been working on these two thesis, which are independent of each other. My
thesis at Université Paris-Sud, which I will be defending in December 2019, is focused
on problems in smooth ergodic theory (stable ergodicity, Lyapunov exponents, and SRB
measures). I also mention the works finished (or almost finished) for my thesis in France:

• On the stable ergodicity of Berger-Carrasco’s example. Ergodic Theory and Dynam-
ical Systems, online version (2018).

• On the stable ergodicity of diffeomorphisms with dominated splitting. Nonlinearity,
Vol.32, n.2, p.445–463 (2019).

• On the genericity of positive exponents of conservative skew products with two-
dimensional fibers. Joint work with Mauricio Poletti. Submited, preprint
arxiv:1809.03874 (2018).

• A new example of robustly transitive diffeomorphism. Joint work with Pablo Car-
rasco. Submited, preprint arxiv:1904.11788 (2019).

• Open sets of partially hyperbolic skew products having an SRB measure. In prepa-
ration.
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1.6 Organization of this thesis

Chapter 2 contains the author’s work with Martin Leguil and Bruno Santiago [LOS18].
This chapter deals with the vector field centralizer and it contains the proofs of Theorems
A through H. Chapter 3 contains the author’s work [Oba19]. This chapter contains the
proof of Theorem I and it deals with the diffeomorphism centralizer. We remark that each
chapter can be read separately, each containing its own introduction and preliminaries
sections.
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Chapter 2

The vector field centralizer

This chapter is dedicated to the study of the vector field centralizer.

2.1 Definitions and statement of the main results

In this part, we introduce some definitions and notations, and we summarize some of the
results that we will show in the following.

2.1.1 General notions on vector fields

Let M be a smooth manifold of dimension d ≥ 1, which we assume to be compact and
boundaryless. For any r ≥ 1, we denote by Xr(M) the space of vector fields over M ,
endowed with the Cr topology. A property for vector fields in Xr(M) is called Cr-generic
if it is satisfied for any vector field in a residual set of Xr(M). Recall that R ⊂ Xr(M)
is residual if it contains a Gδ-dense subset of Xr(M). In particular, it is dense in Xr(M),
by Baire’s theorem.

In the following, given a vector field X ∈ X1(M), we denote by Xt the flow it generates.
Recall that for any Y ∈ C1(X), and for any s, t ∈ R, we have Ys ◦ Xt = Xt ◦ Ys.
Differentiating this relation with respect to s at 0, we get

Y (Xt(x)) = DXt(x) · Y (x), ∀x ∈M. (2.1.1)

We denote by Zero(X) := {x ∈ M : X(x) = 0} the set of zeros, or singularities, of the
vector field X, and we set

MX := M − Zero(X). (2.1.2)

For any x ∈ M and any interval I ⊂ R, we also let XI(x) := {Xt(x) : t ∈ I}. In
particular, we denote by orbX(x) := XR(x) the orbit of the point x under X. Note that
if x ∈MX , then orbX(x) ⊂MX , too.
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Let X ∈ X1(M) be some C1 vector field. The non-wandering set Ω(X) of X is defined
as the set of all points x ∈ M such that for any open neighbourhood U of x and for any
T > 0, there exists a time t > T such that U ∩Xt(U) 6= ∅.

Let us also recall another weaker notion of recurrence. Given two points x, y ∈M , we
write x ≺X y if for any ε > 0 and T > 0, there exists an (ε, T )-pseudo orbit connecting
them, i.e., there exist n ≥ 2, t1, t2, . . . , tn−1 ∈ [T,+∞), and x = x1, x2, . . . , xn = y ∈ M ,
such that d(Xtj(xj), xj+1) < ε, for j ∈ {1, . . . , n−1}. The chain recurrent set CR(X) ⊂M
of X is defined as the set of all points x ∈M such that x ≺X x. Restricted to CR(X), we
consider the equivalence relation given by x ∼X y if and only if x ≺X y and y ≺X x. An
equivalence class under the relation ∼X is called a chain recurrent class : x, y ∈ CR(X)
belong to the same chain recurrent class if x ∼X y. In particular, chain recurrent classes
define a partition of the chain recurrent set CR(X).

A point x ∈ M is periodic if there exists T > 0 such that XT (x) = x. The set of all
periodic points is denoted by Per(X), observe that we are also including the singularities
in this set.

An X-invariant compact set Λ is hyperbolic if there is a continuous decomposition of
the tangent bundle over Λ, TΛM = Es ⊕ 〈X〉 ⊕ Eu into DXt-invariant sub-bundles that
verifies the following property: there exists T > 0 such that for any x ∈ Λ, we have

‖DXT (x)|Es
x
‖ < 1

2
and ‖DX−T (x)|Eu

x
‖ < 1

2
.

A periodic point x ∈ Per(X) is hyperbolic if orbX(x) is a hyperbolic set. Let γ be a
hyperbolic periodic orbit. We denote by W s(γ) the stable manifold of the periodic orbit
γ, which is defined as the set of points y ∈M such that d(Xt(y), γ)→ 0 as t→ +∞. We
define in an analogous way the unstable manifold of γ. It is well known that the stable
and unstable manifolds are C1-immersed submanifolds. A hyperbolic periodic orbit is a
sink if the unstable direction is trivial. It is a source if the stable direction is trivial. A
hyperbolic periodic orbit is a saddle if it is neither a sink nor a source. For a hyperbolic
periodic point p we defined its index by ind(p) := dim(Es).

2.1.2 Collinear centralizers

In this part, we consider a compact Riemannian manifold M , and we let r, k ≥ 1 be
positive integers. Given x ∈M and u, v ∈ TxM we denote by 〈u, v〉 the subspace spanned
by u and v in TxM .

Definition 2.1.1 (Collinear centralizer). We say that X ∈ Xr(M) has a collinear Ck-
centralizer if

dim〈X(x), Y (x)〉 ≤ 1,

for every x ∈M and every Y ∈ Ck(X).

We have the following elementary result:

Lemma 2.1.2. Let X ∈ Xr(M) and assume that the vector field Y ∈ Ck(M) satisfies
dim〈X(x), Y (x)〉 ≤ 1, for every x ∈ M . Then, there exists a function f ∈ Cs(MX ,R),
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with s := min{r, k}, such that

Y (x) = f(x)X(x), ∀x ∈MX .

Moreover, the function f is X-invariant, i.e.,

f(Xt(x)) = f(x), ∀x ∈MX , ∀ t ∈ R.

Proof. Let us denote by (·, ·) the scalar product associated to the Riemannian structure on

M . For any x ∈ MX and for any v ∈ TxM , we set πX(x, v) := (X(x),v)
(X(x),X(x))

. In particular,

πX(x, v)X(x) is the orthogonal projection of the vector v on the direction spanned by
X(x). Let Y ∈ Ck(M) be a vector field that satisfies dim〈X(x), Y (x)〉 ≤ 1. The function
f : MX → R, x 7→ πX(x, Y (x)) is of class Cs, with s = min{r, k}. Moreover, by the
collinearity of the vector fields X and Y , we have Y = fX.

By (2.1.1), it holds Y (Xt(·)) = DXt · Y (·). Therefore, for any x ∈ MX and for any
t ∈ R, we have

f(Xt(x))X(Xt(x)) = DXt(x) · (f(x)X(x)) = f(x)DXt(x) ·X(x) = f(x)X(Xt(x)),

where the last equality follows from (2.1.1), with Y in place of X. Since X(Xt(x)) 6= 0,
we obtain f(Xt(x)) = f(x), which concludes the proof.

In this chapter, we obtain a few different criteria which ensure that the C1-centralizer of
a C1 vector field is collinear. The following definition is a very weak form of expansiveness
for flows.

Definition 2.1.3. A vector field X ∈ X1(M) is separating if there exists ε > 0 such that
the following holds: if d(Xt(x), Xt(y)) < ε for every t ∈ R, then y ∈ orbX(x).

In Section 2.2 we will elaborate on this property. In Section 2.2, we prove the following
criterion for collinearity:

Proposition 2.1.4. If X ∈ X1(M) is separating, then X has collinear C1-centralizer.

We remark that the separating property is not generic (see Appendix 2.6). So to
obtain that the C1-centralizer of a C1-generic vector field is collinear we will need another
criterion.

In Section 2.2, we define the notion of unbounded normal distortion (see Definition
2.2.3). This is an adaptation for flows of the definition of unbounded distortion used
in [BCW09] to prove the triviality of the C1-centralizer of a C1-generic diffeomorphism.
Using this property we obtain the following proposition.

Proposition 2.1.5. Let X ∈ X1(M). Suppose that X verifies the following properties:

• X has unbounded normal distortion;

• every singularity and periodic orbit of X is hyperbolic;

• CR(X) = Per(X).

Then X has collinear C1-centralizer.
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2.1.3 Quasi-trivial centralizers

Let M be a compact manifold.

Definition 2.1.6 (Quasi-trivial centralizer). Given two positive integers 1 ≤ k ≤ r, we say
that X ∈ Xr(M) has a quasi-trivial Ck-centralizer if for every Y ∈ Ck(X), there exists a
C1 function f : M → R such that X · f ≡ 0 and Y (x) = f(x)X(x), for every x ∈M .

In fact, by Lemma 2.1.2, if X ∈ Xr(M) has a quasi-trivial Ck-centralizer, then for any
Y ∈ Ck(X), the function f in Definition 2.1.6 restricted to MX is, in fact, of class Ck.

The difference between collinear and quasi-trivial centralizers is to know whether or
not a Ck invariant function defined on MX admits a C1 extension to M . This is not
always the case; indeed, in Section 2.3 we construct an example of a vector field with
collinear centralizer which is not quasi-trivial.

Nevertheless, when all the singularities of a C1 vector field are hyperbolic, collinearity
can actually be improved to quasi-triviality:

Theorem A. Let M be a compact manifold. If X ∈ X1(M) has collinear C1-centralizer
and all the singularities of X are hyperbolic, then X has quasi-trivial C1-centralizer.

A significant part of the present chapter is dedicated to the proof of the C1-genericity of
the unbounded normal distortion property (see Section 2.5). Since the other assumptions
of Proposition 2.1.5 and Theorem A are already known to be C1-generic, this allows us
to conclude:

Theorem B. Let M be a compact manifold. There exists a residual subset R ⊂ X1(M)
such that any X ∈ R has quasi-trivial C1-centralizer. Furthermore, if X has at most
countably many chain-recurrent classes, then the C1-centralizer of X is trivial.

2.1.4 Trivial centralizers

Let M be a compact manifold. Notice that for any r ≥ 1 and X ∈ Xr(M), we have that
cX ∈ Ck(X), for any c ∈ R and 1 ≤ k ≤ r.

Definition 2.1.7 (Trivial centralizer). For any 1 ≤ k ≤ r, we say that X ∈ Xr(M) has a
trivial Ck-centralizer if Ck(X) is as small as it can be, i.e.,

Ck(X) = {cX : c ∈ R} .

It is easy to construct examples of vector fields whose centralizer is quasi-trivial but
not trivial. In Section 2.4 we explain how example 2.2.1 has quasi-trivial centralizer, but
not trivial.

The problem of knowing if a quasi-trivial centralizer is trivial is reduced to the problem
of knowing when a X-invariant function is constant. This problem will be studied in
Section 2.4.

14



Our first criterion to obtain triviality is based on the notion of spectral decomposition.
We say that X admits a countable spectral decomposition if the non-wandering set, Ω(X),
satisfies Ω(X) = ti∈NΛi, where the sets Λi are pairwise disjoint, each of which is compact,
X-invariant and transitive, i.e., contains a dense orbit.

Theorem C. Let M be a compact connected manifold and let X ∈ X1(M). Assume that
all the singularities of X are hyperbolic, that X admits a countable spectral decomposition
and that the C1-centralizer of X is collinear. Then C1(X) is trivial.

We also obtain the following theorem:

Theorem D. If X is a transitive, separating C1-vector field, then C1(X) is trivial.

This generalizes to the C1-category previous results of Oka [Oka76], Kato-Morimoto
[KM73] and Bonomo-Rocha-Varandas [BRV18]. As a simple application of Theorem D,
we can obtain the triviality of the centralizer of the following flow: starting with an
irrational flow on T2, one may may multiply the vector field by a non negative function
with only one zero on the torus. This flow is separating (see example 2.8 in [Art15]) and
it verifies the conditions in Theorem D.

In higher regularity, Pesin theory in the non-uniformly hyperbolic case and Sard’s the-
orem give us two useful tools to verify triviality of the centralizer. Consider a probability
measure µ on M and X ∈ X1(M). We say that µ is X-invariant if for any measurable set
A ⊂ M and any t ∈ R we have µ(A) = µ(Xt(A)). By Oseledets theorem, for µ-almost
every point x, there exist a number 1 ≤ l(x) ≤ d and l(x)-numbers λ1(x) < . . . < λl(x)(x)
with the following properties: there exist l(x)-subspaces E1(x), . . . , El(x)(x) such that
TxM = E1(x) ⊕ · · · ⊕ El(x)(x) and for each i = 1, . . . , l(x) and for any non zero vector
v ∈ Ei(x) we have

lim
t→±∞

log ‖DXt(x) · v‖
t

= λi(x).

The numbers λi are called Lyapunov exponents. We say that µ is non-uniformly hyperbolic
if for µ-almost every point all the Lyapunov exponents are non-zero except for the one in
the direction generated by the vector field X. Using Pesin’s theory, in the non-uniformly
hyperbolic scenario, we obtain:

Theorem E. Let M be a compact manifold of dimension d ≥ 2. Let X ∈ X2(M) be a
vector field with finitely many singularities and let µ be a X-invariant probability measure
such that suppµ = M . If µ is non-uniformly hyperbolic for X, then X has trivial C1-
centralizer.

Theorem E can be applied for non-uniformly hyperbolic geodesic flows, like the ones
constructed by Donnay [Don88] and Burns-Gerber [BG89]. In particular, we obtain that
non-uniformly hyperbolic geodesic flows have trivial centralizer.

In dimension three, under higher regularity assumptions, we are also able to obtain
triviality, for a slightly stronger notion of expansiveness.

Definition 2.1.8. We say that X ∈ X1(M) is Kinematic expansive if for every ε > 0 there
exists δ > 0 such that if x, y ∈ M satisfy d(Xt(x), Xt(y)) < δ, for every t ∈ R then there
exists 0 < |s| < ε such that y = Xs(x).
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The difference between the separating property and Kinematic expansiveness is that
for the latter even points on the same orbit must eventually separate. In [Art16] it
is described a vector field on the Möbius band which is separating but not Kinematic
expansive.

Theorem F. Let M be a compact 3-manifold and consider X ∈ X3(M). If X is Kine-
matic expansive and all its singularities are hyperbolic, then its C3-centralizer is trivial.

Remark 2.1.9. The Kinematic expansive condition does not imply that the system ad-
mits a countable spectral decomposition. Hence, we cannot use Theorem C to conclude
Theorem F.

The technique we use in the above theorem, which relies on Sard’s Theorem, also leads
to a criteria to obtain triviality from a collinear centralizer of high regularity.

Theorem G. Let M be a compact, connected Riemannian manifold of dimension d ≥ 1,
and let X ∈ Xd(M). Assume that every singularity and periodic orbit of X is hyperbolic,
that Ω(X) = Per(X) and that the Cd-centralizer of X is collinear. Then X has trivial
Cd-centralizer.

This criterion is not sufficient if we want to obtain a generic result, due to the lack
of a general Cd-closing lemma. However, following the arguments of [Hur86, Man73],
we can show that Cd-generically the triviality of the Cd-centralizer is equivalent to the
collinearity of the Cd-centralizer.

Theorem H. Let M be a compact, connected Riemannian manifold of dimension d ≥ 1.
There exists a residual set RT ⊂ Xd(M) such that for any X ∈ RT , the Cd-centralizer
Cd(X) of X is collinear if and only if it is trivial.

Organization of this chapter: The structure of this paper has two parts. The
first part deals with general criteria for collinearity, quasi-triviality and triviality of the
centralizer (Sections 2.2,2.3 and 2.4). The second part deals with our generic results
(Section 2.5). Propositions 2.1.4 and 2.1.5 are proved in Section 2.2. In Section 2.3 we
prove Theorem A. Theorems C, D, E, F, G and H are proved in Section 2.4. Finally in
Section 2.5 we prove Theorem B.

2.2 Collinearity

In this section we obtain three criteria for collinear centralizer. The first criterion is given
by Proposition 2.1.4, which is based on the notion of being separating (see Definition
2.1.3). There are several different notions of “expansiveness for flows. The property of
being separating is a very weak form of expansiveness. Indeed, all the usual definitions for
flows (Bowen-Walters expansive or Komuro expansive) imply that the flow is separating,
see [Art16] for a discussion. Let us give an example of a separating flow.

Example 2.2.1. Fix two positive real numbers 0 < a < b and consider the annulus on R2

given by A := {(x, y) ∈ R2 : a ≤ ‖(x, y)‖ ≤ b}. Using polar coordinates (r, θ) on A, we
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consider the vector field X(r, θ) := ∂
∂θ

. Observe that every orbit of X is periodic with
different period. It is easy to see that this flow is separating.

Figure 2.1: Example 2.2.1.

Proof of Proposition 2.1.4. Let X ∈ X1(M) be a separating vector field with separating
constant ε > 0 and suppose that there exists Y ∈ C1(X) that is not collinear to X. Thus
there is a point x ∈M such that dim〈X(x), Y (x)〉 = 2.

Let (ϕ,U) be a small flow box for the flow Xt around x, that is, ϕ : M ⊃ U → W ⊂
Rd = R × Rd−1 is a local chart such that ϕ∗X = (1, 0). In particular we have that for
every point p ∈ U there is a positive number ρ(p) > 0 such that

ϕ(X(−ρ(p),ρ(p))(p)) ⊂ ϕ(p) + (−ρ(p), ρ(p))× {0}.

Fix δ > 0 small enough such that for each s ∈ (−δ, δ), we have Ys(x) ∈ U , dC0(Ys, id) <
ε, and dim〈Y (Ys(x)), X(Ys(x))〉 = 2. Thus in the flow box, we have that Dϕ(Ys(x)) ·
Y (Ys(x)) = (Y1(s), Y2(s)), with Y1(s) ∈ R and Y2(s) ∈ Rd − {0}. In particular, for each
t ∈ R such that Xt(x) ∈ Y(−δ,δ)(x), there exists an open interval It := (t − ρ(Xt(x)), t +
ρ(Xt(x))) ⊂ R such that #XIt(x) ∩ Y(−δ,δ)(x) = 1.

We conclude that the set orbX(x)∩Y(−δ,δ)(x) is at most countable. Then, since (−δ, δ)
is uncountable, there is s ∈ (−δ, δ) such that Ys(x) /∈ orbX(x). Now, by commutativity,
and by our choice of δ, we obtain

d(Xt(Ys(x)), Xt(x)) = d(Ys(Xt(x)), Xt(x)) < ε, for every t ∈ R,

which is a contradiction.

The following theorem will be used to prove Theorem E. It also gives another criterion
to obtain collinearity of the C1-centralizer.

Proposition 2.2.2. Let X ∈ X1(M). Suppose that X verifies the following condition:
there exists a dense set D ⊂ M such that for any x ∈ D and any non-zero vector v ∈
TxM − 〈X(x)〉, it holds

‖DXt(x) · v‖ → +∞, for t→ +∞ or t→ −∞.

Then X has collinear centralizer.
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Proof. Let Y ∈ C1(X). Then, by (2.1.1), for any x ∈M , and t ∈ R, it holds

Y (Xt(x)) = DXt(x) · Y (x).

Assume that Y (x) is not collinear to X(x). Since this is an open condition, we can take
x belonging to the set D. By compactness of M , we also have supp∈M ‖Y (p)‖ < +∞.
However, by hypothesis,

‖DXt(x) · Y (x)‖ → +∞, for t→ +∞ or t→ −∞,

which is a contradiction.

Some examples of vector fields that verify the conditions of Proposition 2.2.2 are non-
uniformly hyperbolic divergence-free vector fields and quasi-Anosov flows.

We remark that the conditions of collinearity in Propositions 2.1.4 and 2.2.2 are not
generic (see Appendix 2.6). Therefore, to obtain that the C1-centralizer of a C1-generic
vector field is collinear we will need another criterion, which is given by Proposition 2.1.5.

Let X ∈ X1(M) and let MX := M − Zero(X) be as in (2.1.2). Over MX we
may consider the normal vector bundle NX defined as NX,p := 〈X(p)〉⊥, for p ∈ MX ,
where 〈X(p)〉⊥ is the orthogonal complement of the direction 〈X(p)〉 inside TpM . Let
ΠX : TMX → NX be the orthogonal projection on NX . On NX we have a well defined
flow, called the linear Poincaré flow, which is defined as follows: for any p ∈ MX , any
v ∈ NX,p, and t ∈ R, the image of v by the linear Poincaré flow is

PX
p,t(v) := (ΠX

Xt(p) ◦DXt(p)) · v. (2.2.1)

The key criterion to study the centralizer of C1-generic vector fields is based on the
following property.

Definition 2.2.3 (Unbounded normal distortion). Let X ∈ X1(M) be a C1 vector field.
We say that X verifies the unbounded normal distortion property if the following holds:
there exists a dense subset D ⊂ M − CR(X), such that for any x ∈ D, y ∈ M − CR(X)
such that y /∈ orbX(x) and K ≥ 1, there is n ∈ (0,+∞), such that

| log detPX
x,n − log detPX

y,n| > K.

Proof of Proposition 2.1.5. Let X ∈ X1(M) be a vector field with the unbounded normal
distortion property and let D ⊂ M − CR(X) be the set given in Definition 2.2.3. Take
Y ∈ C1(X). Assume by contradiction that Y is not collinear with X on M−CR(X). The
set of points x ∈M such that X(x) and Y (x) are non-collinear is open, hence by density
of the set D, there exists a point x ∈ D such that Y (x) and X(x) are not collinear.

By the same argument as in the proof of Proposition 2.1.4, we can always find s > 0
arbitrarily close to 0 such that Ys(x) /∈ orbX(x). Observe that for any t ∈ R, it holds

| detPX
Ys(x),t| = | det ΠX

Xt(Ys(x)). detDXt(Ys(x))|NX,Ys(x)
|.
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Since X commutes with Y , we have that

DXt(Ys(x)) = DYs(Xt(x)) ◦DXt(x) ◦ (DYs(x))−1. (2.2.2)

Using the coordinates NX ⊕ 〈X〉 on TMX , for each s ∈ R, we obtain a linear map
Ls,x : NX,x → 〈X(x)〉 such that

(DYs(x))−1(NX,Ys(x)) = graph(Ls,x).

Furthermore, ‖Ls,x‖ can be made arbitrarily small as s → 0, since Ys is C1-close to the
identity. Using the coordinates NX,x⊕〈X(x)〉, any vector v ∈ graph(Ls,x) can be written
as v = (vN , Ls,x(vN)), where vN := ΠX

x (v). For any such vector v, for each t ∈ R and
using the coordinates NX,Xt(x) ⊕ 〈X(Xt(x))〉, we have

DXt(x)v =

(
PX
x,t(vN), Ls,x(vN)

‖X(Xt(x))‖
‖X(x)‖

+

(
DXt(x)vN ,

X(Xt(x))

‖X(Xt(x))‖

))
, (2.2.3)

where (·, ·) inside the second coordinate of the right side of (2.2.3) denotes the scalar
product given by the Riemannian structure.

On the other hand, for any vector vN ∈ NX,x and any t ∈ R, we have

DXt(x)vN =

(
PX
x,t(vN),

(
DXt(x) · vN ,

X(Xt(x))

‖X(Xt(x))‖

))
. (2.2.4)

Set c := ‖X(x)‖ > 0, and let c̃ ≥ 1 be a constant such that supp∈M ‖X(p)‖ < c̃. For
any vector vN ∈ NX,x, we obtain

|Ls,x(vN)|‖X(Xt(x))‖
‖X(x)‖

< ‖Ls,x‖ · ‖vN‖
c̃

c
,

which can be made arbitrarily close to 0 by taking s small enough. This holds for any t ∈
R. Hence, comparing (2.2.3) and (2.2.4) we conclude that DXt(x)|graph(Ls,x) is arbitrarily
close to DXt(x)|NX,x

, for any t ∈ R.

By (2.2.2), we obtain∣∣∣detPX
Ys(x),t

∣∣∣ =∣∣ det ΠX
Ys(Xt(x))|DYs(Xt(x))DXt(x)·graph(Ls,x)

∣∣ · ∣∣detDYs(Xt(x))|DXt(x)·graph(Ls,x)

∣∣ ·
·
∣∣detDXt(x)|graph(Ls,x)

∣∣ · ∣∣∣(det(DYs(x))−1|NX,Ys(x)

∣∣∣ =: A ·B · C ·D.

Observe that ∣∣detPX
x,t

∣∣ =
∣∣det ΠX

Xt(p)|DXt(x)NX,x

∣∣ . ∣∣detDXt(x)|NX,x

∣∣ =: I · II.

Notice that B and D are arbitrarily close to 1 if s ∈ R is small enough. By our
previous discussion, for any t ∈ R the value of C is arbitrarily close to the value of II, for
s sufficiently small.
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Our previous discussion also implies that DYs(Xt(x))DXt(x) · graph(Ls,x) is close to
DXt(x) · NX,x, since Ys(Xt(x)) is close to Xt(x). Thus, the value of A can be made
arbitrarily close to the value of I, for s ∈ R small enough. Hence, we can take s small
such that Ys(x) /∈ orbX(x) and

1

2
<

∣∣∣detPX
Ys(x),t

∣∣∣∣∣detPX
x,t

∣∣ < 2, for any t ∈ R.

This is a contradiction with the unbounded normal distortion property. We conclude that
any vector field Y ∈ C1(X) verifies that Y |M−CR(X) is collinear to X|M−CR(X).

Suppose that for some x ∈ CR(X) we have that Y (x) is not collinear to X(x). Since
this is an open condition and the hyperbolic periodic points are dense in CR(X), we
can suppose that x is a periodic point. By a calculation similar to the one made in the
proof of Proposition 2.2.2 we would then have that ‖Y (Xt(x))‖ → +∞ for t → +∞ or
t→ −∞, which contradicts the fact that supp∈M ‖Y (p)‖ < +∞. Thus we have that Y is
also collinear to X on CR(X).

2.3 Quasi-triviality

This section has two parts. In the first part we construct an example of a vector field
whose centralizer is collinear but not quasi-trivial. In the second part we prove that
under the condition that every singularity is hyperbolic we can improve the collinearity
to quasi-triviality.

2.3.1 Collinear does not imply quasi-trivial

To obtain a quasi-trivial centralizer from a collinear centralizer is an issue of knowing
whether an invariant function f : MX → R admits a C1 extension to the set Sing(X).
The simple example below shows that this is not always possible. Indeed we construct an
example of a vector field whose C1-centralizer is collinear but not quasi-trivial.

Example 2.3.1. Let V ∈ X∞(T2) generate an irrational flow. Fix a point p ∈ T2 and
consider a function ψ : T2 → [0, 1] such that ψ(x) = 0 ⇐⇒ x = p. Let Z ∈ X∞(T2) be
defined by Z = ψV . As it is described in example 2.8 in [Art16], Z is separating. Now,
consider f, g : [0, 1)→ [1,+∞) be given, respectively, by

f(t) =
1

1− t
and g(t) =

1

1− t2
.

Observe that both functions diverge to +∞ when t→ 1, but the function f
g

= 1+t extends

smoothly to [0, 1]. Consider M = [0, 1]×T2 and extend Z to M by Z(t, x) = Z(x). Define
the vector field X(t, x) = 1

g(t)
Z(t, x). Notice that X is tangent to the fiber {t} × T2, and

the trajectories on each fiber are the same, but travelled with different speeds. Then, the
proof of Proposition 2.1.4 shows that X ∈ X∞(M) has collinear centralizer.
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Nevertheless the vector field Y = f
g
Z is smooth and commutes with X. Indeed, both

vector fields vanish at the fiber {1} × T2. Moreover, both f and g are constant on each
fiber and for t < 1 one has

Y (t, x) = f(t)X(t, x).

As X is tangent to each fiber {t} × T2, we conclude that [X, Y ] = 0. Since f(t) → ∞
when t→ 1, this proves that X has not a quasi-trivial centralizer.

The above example has uncountably many singularities, and thus it is not separating.
This raises the following question.

Question 1. Is there a separating vector field whose centralizer is not quasi-trivial?

We do not know what to expect as an answer to this question.

2.3.2 The case of hyperbolic zeros

The main result of this section is Theorem 2.3.3 below, in which we obtain the quasi-
triviality from collinearity of C1(X) assuming only that all the singularities of X are
hyperbolic.

Definition 2.3.2. A function f : M → R is called a first integral of X if it is of class C1

and satisfies X · f ≡ 0. We denote by I1(X) the set of all such maps.

In our definition, first integrals are C1 functions which are X-invariant. In particular,
for any first integral f , we have f◦Xt = f , for every t ∈ R. In particular, for any c ∈ R, the
constant map c(x) := c is in I1(X), and then, we always have R ' {c : c ∈ R} ⊂ I1(X).
The following theorem is a reformulation in terms of I1(X) of Theorem A.

Theorem 2.3.3. Let X ∈ X1(M). If X has collinear centralizer and all the singularities
of X are hyperbolic, then X has quasi-trivial C1-centralizer, in the sense of Definition
2.1.6. More precisely, we have

C1(X) = {fX : f ∈ I1(X)}.

This theorem is an immediate consequence of Propositions 2.3.4, 2.3.5, and 2.3.6
below. We divide the proof into two subsections to emphasize that the technique to deal
with singularities that are saddles is different from the technique to deal with sinks and
sources. We also remark that Theorem 2.3.3 gives a significant improvement compared
with previous works on centralizers of vector fields, since we only need C1 regularity. The
results that were known previously used Sternberg’s linearisation results, which require
higher regularity of the vector field and non-resonant conditions on the eigenvalues of the
singularity, see for instance [BRV18].

2.3.3 When the singularity is of saddle type

Given any vector field X ∈ X1(M), and Y ∈ C1(X), by Lemma 2.1.2, we know that
Y |MX

= fX|MX
, for some C1, X-invariant function f : MX → R. Assume that σ ∈
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Zero(X) is a saddle type singularity. In Propositions 2.3.4 and 2.3.5, we show that f can
be extended to a C1 function in a neighbourhood of σ.

Proposition 2.3.4. Let X ∈ X1(M) and let f : MX → R be an X-invariant continuous
function. If σ ∈ Zero(X) is a saddle type singularity, then f admits a continuous extension
to σ.

Proof. Recall that M has dimension d ≥ 0. Fix a point p ∈ W s
loc(σ). We claim that for

any point q ∈ W u(σ) we have that f(p) = f(q). By the X-invariance of f , it is enough
to consider q ∈ W u

loc(σ). Let (Ds
n)n∈N be a sequence of discs of dimension ind(σ), centred

on q, with radius 1
n

and transverse to W u
loc(σ). Similarly, consider a sequence (Du

n)n∈N of
discs of dimension d− ind(σ), centred on p, with radius 1

n
, and transverse to W s

loc(σ).

For each n ∈ N, by the lambda-lemma (see [PM82] chapter 2.7) there exists tn > 0
such that Xtn(Du

n) t Ds
n 6= ∅. In particular, there exists a point xn ∈ Du

n that verifies
Xtn(xn) ∈ Ds

n. It is immediate that xn → p, as n → +∞. Since the function f is
continuous on MX , we have that f(xn) → f(p). We also have that Xtn(xn) → q as
n→ +∞. Hence, f(Xtn(xn))→ f(q). By the X-invariance of f , we have

f(p) = lim
n→+∞

f(xn) = lim
n→+∞

f(Xtn(xn)) = f(q).

Analogously, we can prove that for a fixed q′ ∈ W u
loc(σ) and for any p′ ∈ W s(σ), it is

verified f(p′) = f(q′). We conclude that f |W s(σ)−{σ} = f |Wu(σ)−{σ} = c, for some constant
c ∈ R. Set f(σ) = c. For any sequence of points (xn)n∈N converging to σ, by an argument
similar to the above, using the invariance of f , we can conclude that this extension of f
is continuous.

Proposition 2.3.5. Let X ∈ X1(M) and let f : MX → R be an X-invariant function of
class C1. If σ ∈ Zero(X) is a saddle type singularity, then f can be extended to a C1

function in a neighbourhood of σ, by setting ∇f(σ) := 0.

Proof. By Proposition 2.3.4, we already know that the function f admits a continuous
extension to σ. We claim that limx→σ∇f(x) = 0. Let us fix r > 0 sufficiently small such
that B(σ, 2r) ∩ Zero(X) = {σ} and set K∗ := W ∗

loc(σ) ∩ ∂B(σ, r), for ∗ ∈ {s, u}. In the
following, given any two points ps ∈ Ks and qu ∈ Ku, we let (Du

n)n∈N be a sequence of
discs of dimension d − ind(σ), centred on ps, with radius 1

n
, transverse to W s

loc(σ), and
we let (Ds

n)n∈N be a sequence of discs of dimension ind(σ), centred on qu, with radius 1
n
,

transverse to W u
loc(σ).
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Figure 2.2: Proposition 2.3.5.

For any n ≥ 0, by the lambda-lemma, there exists a sequence (εn)n≥0 ∈ (R∗+)N, with
εn → 0 as n → +∞, such that for any z ∈ B(σ, εn), if ps ∈ Ks, qu ∈ Ku are suitably
chosen, and for Du

n, D
s
n as defined previously, then there exist xn ∈ Du

n, yn ∈ Ds
n, and

sn, tn > 0, such that z = Xsn(xn) = X−tn(yn). Note that necessarily, sn, tn → +∞ as
n → +∞. Fix ps ∈ Ks, qu ∈ Ku and let (zn)n≥0 be a sequence of points such that
zn = Xsn(xn) = X−tn(yn) ∈ B(σ, εn), with xn ∈ Du

n, yn ∈ Ds
n, sn, tn > 0, for all n ≥ 0. It

is immediate that xn → ps and yn → qu, as n→ +∞. Since the function f is C1 on MX ,
we deduce that

lim
n→+∞

∇f |Du
n

= ∇f(ps), lim
n→+∞

∇f |Ds
n

= ∇f(qu). (2.3.1)

We set Sun := {v ∈ TxnD
u
n : ‖v‖ = 1} and Ssn := {v ∈ TynD

s
n : ‖v‖ = 1}. Let v ∈ Sun.

By the X-invariance, we have f(zn) = f(Xsn(xn)) = f(xn). Differentiating the equation
f(.) = f ◦Xt(.) we obtain

(∇f(zn), DXsn(xn) · v) = (∇f(Xsn(xn)), DXsn(xn) · v) = (∇f(xn), v). (2.3.2)

By the lambda-lemma, we know that dC1(Xsn(Du
n), Du)→ 0, for some disc Du ⊂ W u

loc(σ).
In particular, ∠(DXsn(xn) · TxnDu

n, E
u(σ))→ 0, and ‖DXsn(xn) · v‖ → +∞. By (2.3.1),

by compactness of Ks, and since ‖v‖ = 1, the right hand side of (2.3.2) is uniformly
bounded, independently of the choices of ps, qu, (zn)n and n, thus,

lim
n→+∞

(
∇f(zn),

DXsn(xn) · v
‖DXsn(xn) · v‖

)
= lim

n→+∞

(∇f(xn), v)

‖DXsn(xn) · v‖
= 0.

We deduce that limn→+∞ ‖πun(∇f(zn))‖ = 0, where πun : TznM → Tzn(Xsn(Du
n)) denotes

the orthogonal projection onto Tzn(Xsn(Du
n)). Arguing in the same way for X−tn(Ds

n),
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we also have limn→+∞ ‖πsn(∇f(zn))‖ = 0, where πsn is the orthogonal projection onto
Tzn(X−tn(Ds

n)). Since TznM = Tzn(Xsn(Du
n)) ⊕ Tzn(X−tn(Ds

n)), then for some sequence
(δn)n≥0 going to 0, and for any z ∈ B(σ, εn), we have

‖∇f(z)‖ ≤ δn.

We conclude that ∇f can be extended by continuity to σ, by setting ∇f(σ) := 0. In
particular, the extension of f is C1 in a neighbourhood of σ.

2.3.4 When the singularity is of the type sink or source

We now deal with hyperbolic singularities of the type sink or source.

Proposition 2.3.6. Let X, Y ∈ X1(M) such that [X, Y ] = 0 and dim〈X(x), Y (x)〉 ≤ 1,
for every x ∈M . Assume that σ ∈ Sing(X) is a hyperbolic sink. Then, there exists c ∈ R
such that Y (x) = cX(x), for every x ∈ W s(σ).

In the proof of Proposition 2.3.6 we shall use the following elementary lemma.

Lemma 2.3.7. Let (E, ‖ · ‖) be a finite-dimensional vector space endowed with a norm.
Let Λ be an infinite set and assume that for each λ ∈ Λ, there exists a non-empty compact
subset Kλ ⊂ S := {v ∈ E : ‖v‖ = 1} of the sphere of unit vectors in (E, ‖ · ‖), such that

λ′ 6= λ in Λ =⇒ Kλ ∩Kλ′ = ∅.

Suppose that dimE ≥ 2. Then, there exist a finite subset {λ, λ1, . . . , λk} ⊂ Λ and vectors
{u, u1, . . . , uk} such that

1. u ∈ Kλ and u` ∈ Kλ`, for each ` = 1, . . . , k;

2. u belongs to the subspace spanned by {u1, . . . , uk};

3. {u1, . . . , uk} is a linearly independent set.

Proof. We begin with a simple observation that we will use repeatedly in this proof: for
each u ∈ S, −u is the only other vector in S which is collinear with u.

Now, since Λ is infinite, we can pick a sequence (λn)n≥0 ⊂ Λ, whose terms are distinct.
For each n, choose a vector un ∈ Kλn . Since dimE ≥ 2, and the sets Kλ are pairwise
disjoint, by the simple observation above, we can assume without loss of generality that
the set {u1, u2} is linearly independent. Assume by contradiction that the conclusion does
not hold. Then, we conclude by induction that for every n the set {u1, u2, u3, . . . , un}must
be linearly independent. But this is absurd as E is finite dimensional.

Proof of Proposition 2.3.6. By Lemma 2.1.2, for any x ∈ MX = M − Sing(X), we have
Y (x) = f(x)X(x), for some C1 function f : MX → R. Moreover, f(Xt(x)) = f(x) for
every x ∈MX and t ∈ R. Notice that, as σ is an isolated zero of X, we have σ ∈ Sing(Y ).
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Take ε > 0 small so that B(σ, ε) ⊂ W s(σ) and let S := ∂B(σ, ε). In particular, notice
that x ∈ S implies limt→+∞Xt(x) = σ. Also, for every x ∈ W s(σ), there exists T ∈ R
such that XT (x) ∈ S.

By the above remarks, the proof of the proposition is reduced to the proof of the
following claim.

Claim 1. Df(p) = 0 for every p ∈ S.

We shall postpone the proof of Claim 1. Take a point p ∈ S and consider the set

V (p) :=

{
u ∈ TσM : ∃ tn →∞, u = lim

n→∞

X(Xtn(p))

‖X(Xtn(p))‖

}
.

By compactness, V (p) is non-empty, and every u ∈ V (p) is a unit vector; in particular,
0 /∈ V (p). The following claims are the key arguments for this proof.

Claim 2. If u ∈ V (p) then DY (σ) · u = f(p)DX(σ) · u.

Proof. Fix some t ∈ R. Since Y (Xt+s(p)) = f(p)X(Xt+s(p)) for every s ∈ R, taking the
derivative with respect to s on both sides we obtain

DY (Xt(p)) ·
(

X(Xt(p))

‖X(Xt(p))‖

)
= f(p)DX(Xt(p)) ·

(
X(Xt(p))

‖X(Xt(p))‖

)
.

By using this formula with t = tn and letting n → ∞ we conclude that DY (σ) · u =
f(p)DX(σ) · u, proving the claim.

Claim 3. If p, q ∈ S and V (p) ∩ V (q) 6= ∅ then f(p) = f(q).

Proof. Assume that there exists u ∈ V (p) ∩ V (q). Then, by Claim 2, one has

DY (σ) · u = f(p)DX(σ) · u = f(q)DX(σ) · u.

As DX(σ) is an invertible linear map (because all eigenvalues are negative) this implies
that (f(p)− f(q))u = 0, and since u 6= 0, the claim is proved.

We are now in position to give the proof of Claim 1. Assume by contradiction that
the claim is not true. Then, there exists U ⊂ S and real numbers a < b such that
f : U → [a, b] is surjective.

Now, for every t ∈ [a, b], we choose some point pt ∈ U ∩ f−1(t), and we consider
the family of compact subsets {V (pt)}t∈[a,b] ⊂ TσM of unit vectors. As t 6= s implies
f(pt) 6= f(ps), one obtains from Claim 3 that the family {V (pt)}t∈[a,b] satisfies all the
assumptions of Lemma 2.3.7.

Thus, there exists a finite set {p, p1, . . . , pk} ⊂ U and vectors u ∈ V (p), u` ∈ V (p`),
` = 1, . . . , k, with u ∈ 〈u1, . . . , uk〉 and {u1, . . . , uk} linearly independent, and such that
f(pi) 6= f(pj) 6= f(p), for every i, j ∈ {1, . . . , k}.
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Take α1, . . . , αk ∈ R such that u =
∑k

`=1 α
`u`. Using Claim 2 we can write

DY (σ) · u = f(p)DX(σ) · u = DX(σ) ·

(
k∑
`=1

f(p)α`u`

)
.

Also
DY (σ) · u` = f(p`)DX(σ) · u`, ∀ ` = 1, . . . , k,

which implies that

DY (σ) · u = DX(σ) ·

(
k∑
`=1

f(p`)α
`u`

)
.

Since DX(σ) is invertible we must have
∑k

`=1 f(p)α`u` =
∑k

`=1 f(p`)α
`u`, and as

{u1, . . . , uk} is linearly independent, this gives

f(p)α` = f(p`)α
`, for every ` = 1, . . . , k.

Since u 6= 0 there exists some α` 6= 0. However, this implies that f(p) = f(p`), a
contradiction.

We now give the proof of Theorem 2.3.3.

Proof of Theorem 2.3.3. Assume that C1(X) is collinear and that each singularity σ ∈
Zero(X) is hyperbolic. Let us consider Y ∈ C1(X). By Lemma 2.1.2, there exists a C1

function f : MX → R which satisfies X · f ≡ 0 on MX and such that Y (x) = f(x)X(x),
for every x ∈ MX . By assumption, the singularities of X are hyperbolic, hence they are
isolated, and Y (σ) = 0, for all σ ∈ Zero(X). By Propositions 2.3.4, 2.3.5 and 2.3.6, we
can extend f to a C1 invariant function on M . We conclude that f is a first integral of
X, and Y = fX.

Conversely, assume that f : M → R is a first integral of X. We define a vector field
Y ∈ X1(M) as Y (x) := f(x)X(x), for every x ∈ M . Indeed, both f and X are of class
C1, thus Y is C1 too. Moreover, we have Y ∈ C1(X), since

[X, Y ] = (X · f)X + f [X,X] = 0.

2.4 The study of invariant functions and trivial cen-

tralizers

The main focus of this section is the study of invariant functions. An invariant function is
also called a first integral of the system. There are several works that study the existence
of non trivial (non constant) first integrals, see for instance [ABC16, FP15, FS04, Hur86,
Man73, Pag11]. In this work we study dynamical conditions that imply the non-existence
of first integrals.
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First, it is easy to obtain examples of vector fields with quasi-trivial C1-centralizer
which is not trivial. Indeed consider the vector field in example 2.2.1. Since X is sepa-
rating, it has collinear C1-centralizer. This flow is non-singular, hence it has quasi-trivial
C1-centralizer. Now take any non-constant C1-function f which is constant on each orbit,
that is, a function which depends only on the coordinate r. The vector field Y = fX
belongs to the C1-centralizer of X, therefore the centralizer of X is only quasi-trivial.

Let X ∈ X1(M). Recall that a compact set Λ is a basic piece for X if Λ is X-invariant
and transitive, that is, it has a dense orbit. We say that X admits a countable spectral
decomposition if Ω(X) = ti∈NΛi, where the sets Λi are pairwise disjoint basic pieces.

Theorem 2.4.1. Let X ∈ X1(M). If X admits a countable spectral decomposition then
any continuous X-invariant function is constant.

Proof. Let f : M → R be a continuous X-invariant function. Suppose that f is not
constant. Since M is connected, there exist two real numbers a < b such that f(M) =
[a, b]. It is easy to see that in each basic piece the function f is constant: this follows
from the transitivity of each basic piece. For each i ∈ N define ci := f(Λi). Since X
admits a countable spectral decomposition, the set C := {c1, c2, . . . } is at most countable
and in particular [a, b] − C is non-empty. Take any value c ∈ [a, b] − C and consider
Λ := f−1({c}). Note that, since f is continuous, Λ is closed, and hence, compact.

The set Λ is compact and X-invariant. Hence, for any point p ∈ Λ we must have
ω(p) ⊂ Λ, where ω(p) is the set of all accumulations points of the future orbit of p. By the
countable spectral decomposition, ω(p) must be contained in some basic piece Λi, which
implies that Λ∩Λi 6= ∅. Since Λ is a level set of f , this implies that ci = f(Λi) = f(Λ) = c
and this is a contradiction with our choice of c.

Theorem C follows easily from Theorems A and 2.4.1.

Proof of Theorem D. Let X be a vector field which is transitive and separating. Since X
is separating, by proposition 2.1.4, we have that the C1-centralizer of X is collinear. Let
Y ∈ C1(X). By lemma 2.1.2, there exists a continuous function fY : MX → R such that
Y = fYX on MX . By transitivity, one obtains that fY is constant to cY , for some cY ∈ R,
on MX . Therefore, Y = cYX on M .

2.4.1 First integrals and trivial C1-centralizers

Let M be a compact connected manifold. Recall that for any X ∈ X1(M), we let I1(X) :=
{f ∈ C1(M,R) : X · f ≡ 0} be the set of all C1 functions which are invariant under X.
As an easy consequence of Theorem A, we obtain the following lemma.

Lemma 2.4.2. Let X ∈ X1(M). Assume that the singularities of X are hyperbolic and
that the C1-centralizer of X is collinear. Then X has trivial C1-centralizer if and only if
the set of first integrals of X is trivial, i.e., I1(X) ' R.

As an immediate consequence of Theorem 2.4.1 and Lemma 2.4.2, we obtain:
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Corollary 2.4.3. Let X ∈ X1(M) be such that X admits a countable spectral decompo-
sition and all its singularities are hyperbolic. If the C1-centralizer of X is collinear, then
it is trivial.

The following lemma will be used several times in this section.

Lemma 2.4.4. Let M be a compact manifold of dimension d ≥ 1 and let X ∈ X1(M).
Then, for any f ∈ I1(X) and for any hyperbolic singularity or hyperbolic periodic point
p ∈ Zero(X) ∪ Per(X), it holds that ∇f(p) = 0.

Proof. Let X ∈ X1(X) be as above and let f ∈ I1(X). If σ ∈ Zero(X) is a hyperbolic
singularity, then it follows from Propositions 2.3.5 and 2.3.6 that ∇f(σ) = 0. Assume
now that for some regular hyperbolic periodic point p ∈ Per(X), we have ∇f(p) 6= 0.
Then, we have the hyperbolic decomposition along its orbit given by

TorbX(p)M = Es ⊕ 〈X〉 ⊕ Eu.

Note that f |W s(p) = f |Wu(p) = f(p): this follows easily from the X-invariance of f . Since
∇f(p) 6= 0, by the local form of submersion, we have that Σ := f−1({f(p)}) is locally
contained in a submanifold D of dimension d − 1. In particular, TpD is a subspace
of dimension d − 1 contained in TpM . However, our previous observation implies that
W s

loc(p) ⊂ Σ and W u
loc(p) ⊂ Σ. This implies that Es(p)⊕ 〈X(p)〉 ⊕ Eu(p) ⊂ TpD. By the

hyperbolicity of p, we have that TpM = Es(p)⊕〈X(p)〉⊕Eu(p), but this is a contradiction
with the fact that TpD has dimension d− 1.

By the Poincaré-Bendixson Theorem, for the two-sphere, any level set of an invariant
function f has to contain a singularity or a periodic orbit, which forces f to be constant
in the generic case where the latter are hyperbolic.

Proposition 2.4.5. Let M := S2 be the two dimensional sphere, and let X ∈ X1(M) be
such that every singularity and periodic orbit of X is hyperbolic. Then any continuous
function that is invariant under the flow X is constant.

Proof. Let X ∈ X1(M) be as above, and let f : X → R be a continuous function which
satisfies f(Xt(x)) = f(x) for all x ∈M and t ∈ R. Assume that f is non-constant. Then
f(M) = [a, b], with a < b ∈ R. By assumption, each singularity of X is hyperbolic, hence
there are finitely many of them. Let c ∈ [a, b] − f(Zero(X)). For any x ∈ f−1({c}), it
follows from Poincaré-Bendixson Theorem that ω(x) is a closed orbit formed by regular
points, and by our assumption, ω(x) is hyperbolic. Moreover, ω(x) ⊂ f−1({c}), since f is
invariant under X. In particular, for each c ∈ [a, b] − f(Zero(X)), the level set f−1({c})
contains a hyperbolic periodic orbit. This is a contradiction, since [a, b] − f(Zero(X)) is
uncountable, while there can be at most countably many hyperbolic periodic orbits.

2.4.2 Some results in higher regularity

As we mentioned in Section 2.1, using Sard’s theorem and Pesin theory we can obtain
more information about the invariant functions.
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Theorem 2.4.6. Let M be a compact, connected Riemannian manifold of dimension
d ≥ 1 and let X ∈ X1(M). Suppose that X verifies the following conditions:

• every singularity and every periodic orbit of X is hyperbolic;

• Ω(X) = Per(X).

Then any function f : MX → R which is X-invariant and such that f |MX
is of class Cd

is constant.

Proof. Let f : MX → R be an X-invariant function such that f |MX
is of class Cd. By

assumption, each singularity σ ∈ Zero(X) is hyperbolic, thus by Propositions 2.3.4 and
2.3.6, f admits a continuous extension to the whole manifold M . Suppose that f is not
constant. Then, there exist two real numbers a < b such that f(M) = [a, b]. All the
singularities are hyperbolic, hence there are at most finitely many of them. In particular,
I ⊂ f(M)− f(Zero(X)) for some non-trivial open interval I ⊂ R. Since f |MX

is of class
Cd, then by Sard’s theorem, there exists a set R ⊂ I of full Lebesgue measure, such that
each c ∈ R is a regular value of f , that is, any x ∈ f−1({c}) verifies ∇f(x) 6= 0.

Fix a value c ∈ R − f(Zero(X)). By the same reason as in the proof of Theorem
2.4.1, we have that f−1({c}) ∩ Ω(X) 6= 0. The fact that c is a regular value implies that
there exists y ∈ Ω(X) ∩MX such that ∇f(y) 6= 0, thus by the continuity of X and ∇f ,
there exists a neighbourhood V ⊂MX of y such that the gradient of f is non-zero at any
q ∈ V . Using the density of periodic points in the non-wandering set, we conclude that
there exists a regular periodic point p ∈ Per(X) ∩ V such that ∇f(p) 6= 0. By Lemma
2.4.4, we get a contradiction, since by assumption, the point p is hyperbolic.

As a consequence of Theorem 2.4.6, we can prove Theorem G.

Proof of Theorem G. Let X ∈ Xd(M) be as above and let Y ∈ Cd(X). By the collinearity
of Cd(X), and since all the singularities of X are hyperbolic, Lemma 2.1.2 and Theorem
2.3.3 imply that Y = fX, where f is a X-invariant C1 function such that f |MX

is of class
Cd. We deduce from Theorem 2.4.6 that f is constant. Therefore, Cd(X) is trivial.

Using the ideas from [Man73], we are able to prove Theorem H.

Proof of Theorem H. By Kupka-Smale Theorem, there exists an open and dense subset
UKS ⊂ Xd(M) such that for any X ∈ UKS, any singularity of X is hyperbolic. Let
S(M) be the pseudometric space of subsets of M with the Hausdorff pseudometric. By
[Tak71], there exists a residual subsetRd ⊂ Xd(M) such that the function Ω: Rd → S(M)
which assigns to X ∈ Rd its non-wandering set is continuous. Let us define the residual
set RT := UKS ∩ Rd ⊂ Xd(M), and let X ∈ RT . Notice that X has finitely many
singularities, since they are hyperbolic.

Suppose that X has collinear Cd-centralizer and let Y ∈ Cd(X). By the collinearity, as
a consequence of Lemma 2.1.2 and Theorem 2.3.3, we have Y = fX, for some X-invariant
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C1 function f such that f |MX
is of class Cd. Assume that f is non-constant. Then, as

in the proof of Theorem 2.4.6, f(M) − f(Zero(X)) contains a non-trivial open interval
I ⊂ R. Consider a regular value c ∈ I (this set is non-empty by Sard’s theorem) and
let Mc = f−1({c}). We now describe Mañé’s argument from Theorem 1.2 in [Man73].
Let U be a small open neighbourhood of Mc. Since Ω(X) ∩ U 6= ∅, by the continuity of
Ω(·) at X, for any X ′ in a neighbourhood of X verifies Ω(X ′) ∩ U 6= ∅. Consider the
gradient ∇f |Mc , since it is nonzero on Mc we can extend it to a vector field V : U → TU
without singularities. We can take a C1-vector field Z C1-arbitrarily close to the zero
vector field, with the following property: for any x ∈ U , (Z(x), V (x)) > 0. For the vector
field X ′ = X + Z, it is easy to verify that Ω(X ′) ∩ U = ∅, a contradiction. We conclude
that f is constant, and thus, Cd(X) is trivial.

Using Pesin’s theory and ideas similar to the proof of Lemma 2.4.4, we can prove
Theorem E.

Proof of Theorem E. Since the support of µ is the entire manifold, and by non-uniform
hyperbolicity, we have that X verifies the conditions of Proposition 2.2.2, in particular,
C1(X) is collinear. Let Y be a vector field in the C1-centralizer of X. there exists a
C1-function f : MX → R such that Y = fX on MX .

Notice that MX is a connected open and dense subset of M . If f were not constant,
then there would exist a point p ∈MX such that ∇f(p) 6= 0. Since this condition is open
we may take the point p to be a regular point of the measure µ. By Pesin’s stable manifold
theorem, there exists a C1-stable manifold, W s

loc(p), which is tangent to E−(p)⊕〈X(p)〉 on
p. Similarly, there exists a C1-unstable manifold which on p is tangent to 〈X(p)〉⊕E+(p).
The non-uniform hyperbolicity implies that E−(p)⊕ 〈X(p)〉 ⊕ E+(p) = TpM .

Since p is a non-singular point, we have that f |W s
loc(p) = f |Wu

loc(p) = f(p). An argument
similar to the one in the proof of Theorem 2.4.6 gives a contradiction and we conclude
that f |MX

is constant. This implies that the centralizer of X is trivial.

The C3 centralizer of a C3 kinematic expansive vector field

In this part we prove Theorem F. The proof is a combination of two results: Sard’s
Theorem and the proposition below.

Proposition 2.4.7. Let T2 denote the two dimensional torus. If X ∈ X2(T2) and if
Sing(X) = ∅ then X is not kinematic expansive.

Proof. The argument follows closely some ideas in [Art16]. We present it here for the
sake of completeness.

Assume by contradiction that there exists X ∈ X2(T2) a Kinematic expansive vector
field. In particular it is separating. We fix ε > 0 to be a separation constant. Since X is
C2 we can apply Denjoy-Schwartz’s Theorem [Sch63] and we have three possibilities for
the dynamics:
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1. each orbit is periodic and X is a suspension of the identity map id: S1 → S1;

2. there exist two distinct periodic orbits γs, γu and a non-periodic point x such that
ω(x) = γs and α(x) = γu;

3. X is a suspension of a C3 diffeomorphism f : S1 → S1, which is topologically conju-
gate to an irrational rotation.

We shall prove that each case leads us to a contradiction. In the first case, let τ : S1 →
(0,+∞) be the first return time function. Then, τ(x) is the period of the orbit of x. As
τ is a continuous function on the circle, there exists a maximum point x0 and arbitrarily
close to x0 there are points x1, x2 such that τ(x1) = τ(x2). This implies that one can
choose those points so that

d(Xt(x1), Xt(x2)) ≤ ε, ∀ t ∈ R,

a contradiction.

Let us deal now with case (2). Fix an arbitrarily small number δ > 0.

Take a small segment I transverse to X at a point p ∈ γs and let f : I → I be the
first return map, with τ : I → (0,+∞) the first return time function. There exists a time
T s > 0 such that XT s(x) ∈ I. Consider the fundamental domain Is0 = [f(x), x] for the
dynamics of f and the sequence of image intervals Isn = [fn+1(x), fn(x)], n ≥ 0. Then,
there exists N s > 0 such that for n ≥ N s, it holds that Isn ⊂ B(p, δ). Pick a, b ∈ Is0
arbitrarily close.

Let C > 0 be the Lipschitz constant of τ . Then,∣∣∣∣∣
n∑
`=0

τ(f `(a))−
n∑
`=0

τ(f `(b))

∣∣∣∣∣ ≤ C
n∑
`=0

|f `(a)− f `(b)|.

The hight-hand side of above inequality is bounded by
∑

n |Isn| = |I| < ∞. Therefore,
the left-hand side converges. Moreover, by continuity of f , if d(a, b) is small enough then∑Ns

`=0 |f `(a) − f `(b)| < δ. Since Isn ⊂ B(p, δ) for every n ≥ N s, we have
∑∞

`=Ns |f `(a) −
f `(b)| < δ. We conclude that∣∣∣∣∣

∞∑
`=0

τ(f `(a))−
∞∑
`=0

τ(f `(b))

∣∣∣∣∣ ≤ 2Cδ.

Taking δ small enough, as the flow of X is the suspension of f with return time τ , we
conclude that d(Xt(a), Xt(b)) < ε, for every t ≥ 0.

Considering a small transverse segment to a point q ∈ γu and arguing similarly with
backwards iteration we obtain two arbitrarily close points a, b whose orbits are distinct
and such that d(Xt(a), Xt(b)) < ε for every t ∈ R, a contradiction.

Finally, let us see that case (3) leads to a contradiction. This is essentially contained
in the proof of Theorem 4.11 from [Art16] with a minor adaptation. We will sketch the
main points of the proof. Let f : S1 → S1 be a C3 diffeomorphism with irrational rotation
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number θ, and let τ : S1 → (0,+∞) be a C1 function. It is well known that the Lebesgue
measure is the only ergodic measure for an irrational rotation. Since f is C3 by the usual
Denjoy’s theorem on the circle, f is conjugated with an irrational rotation, in particular,
f has only one ergodic f -invariant probability measure µ.

Write T :=
∫
S1 τ(x)dµ(x) and let

(
pn
qn

)
n∈N

be the approximation of θ by rational

numbers given by the continued fractions algorithm. From the corollary in [NT13], which
is a version of Denjoy-Koksma inequality (Corollary C in [AK11]), we obtain the following

lim
n→+∞

sup
x∈S1

∣∣∣∣∣
qn−1∑
l=0

τ(f l(x))− Tqn

∣∣∣∣∣ = 0.

Following the same calculations in the proof of Theorem 4.11 from [Art16], for any ε > 0
and for n ∈ N large enough, the points x and f qn(x) are always ε-close for the future. One
can argue similarly for f−1 and find points that are not separated for the past. Therefore,
the flow cannot be Kinematic expansive.

Remark 2.4.8. We do not know if there exists a separating suspension of an irrational
rotation. The above proof shows that this is the only possibility for a separating non-
singular vector field on T2.

Proof of Theorem F. Since all the singularities are hyperbolic, by Proposition 2.2.2 and
Theorem 2.3.3, we have that C3(X) is quasi-trivial. Let f : M → R be a C1, X-invariant
function such that f |MX

is C3. We will prove that f is constant. Suppose not.

Since there are only finitely many singularities, then as in the proof of Theorem 2.4.6,
if f were not constant, we would have I ⊂ f(M)− f(Zero(X)), for some non-trivial open
interval I ⊂ R. By Sard’s theorem, almost every value in I is a regular value.

Take a regular value c ∈ I. Hence, Sc := f−1({c}) is a compact surface that does
not contain any singularity of X. Furthermore, since f is X-invariant, we have that X|Sc

is a C3 non-singular vector field on Sc. Up to considering a double orientation covering,
this implies that Sc is a torus, since it is the only orientable closed surface that admits a
non-singular vector field.

Notice that X|Sc induces a Kinematic expansive flow. However this contradicts Propo-
sition 2.4.7. We conclude that f is constant, and this implies that the C3-centralizer of
X is trivial.

In the higher dimensional case, and at a point of continuity of Ω(·), we also have:

Proposition 2.4.9. Let M be a compact manifold of dimension d ≥ 1. Assume that
X ∈ Xd(M) is separating, that all its singularities are hyperbolic, and that X is a point
of continuity of the map Ω(·). Then the Cd-centralizer of X is trivial.

Remark 2.4.10. As noted in the proof of Theorem H, the last two assumptions are satisfied
by a residual subset of vector fields in Xd(M).
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Proof of Proposition 2.4.9. Since X is separating and its singularitis are hyperbolic, it
follows from Proposition 2.1.4 and Theorem A that its C1-centralizer is quasi-trivial.
Take any vector field Y in the Cd-centralizer of X. By the quasi-triviality, and by Lemma
2.1.2, there exists a C1 function f : M → R such that f |MX

is of class Cd and Y = fX.
If f is not constant, then as in the proof of Theorem H, by continuity of Ω(·) at X, and
by considering a regular value c ∈ f(M)− f(Zero(X)) of f |MX

, we reach a contradiction.
We conclude that the Cd-centralizer is trivial.

2.5 The generic case

Our goal in this section is to prove the following theorem:

Theorem B. There exists a residual subset R ⊂ X1(M) such that if X ∈ R then X
has quasi-trivial C1-centralizer. Furthermore, if X has at most countably many chain
recurrent classes then its C1-centralizer is trivial.

To prove this theorem, we will use a few generic results. In the following statement
we summarize all the results we will need.

Theorem 2.5.1 ([BC04], [Cro06] and [PR83]). There exists a residual subset R∗ such
that if X ∈ R∗, then the following properties are verified:

1. Per(X) = Ω(X) = CR(X);

2. every periodic orbit, and every singularity, is hyperbolic;

3. if C is a chain recurrent class, then there exists a sequence of periodic orbits (γn)n∈N
such that γn → C in the Hausdorff topology.

We first prove that C1-generically the centralizer is collinear. This proof is an
adaptation for flows of Theorem A in [BCW09]. Once we have collinearity, using the
criterion for quasi-triviality given by Theorem 2.3.3, we conclude that quasi-triviality of
the C1-centralizer is a C1-generic property. At the end of this section we will show that
for a C1-generic vector field X that has at most countably many chain recurrent classes
has trivial C1-centralizer.

Idea of the proof of collinearity– In [BCW09] the authors prove that a version of
the unbounded normal distortion holds C1-generically for diffeomorphisms. To prove this,
the key perturbative result is a perturbation made on a linear cocycle over Z. To reduce
the proof to this linear cocycle scenario, after several reductions, they introduce some
change of coordinates that linearizes the dynamics around the orbit of a point for a finite
time. Using the compactness of the manifold, they get uniform estimates on the C1-norm
of these changes of coordinates.
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Our strategy is to reduce our problem to a perturbation of a linear cocycle over Z. In
order to do that, we study the Poincaré maps between a sequence of transverse sections.
Since we are dealing with wandering points, this can be defined for a sequence of times
arbitrarily large. Using these Poincaré maps we also introduce some change of coordinates
to linearize the dynamics given by these maps for a finite time. However, the space where
this can be defined is no longer compact, since the Poincaré map is only defined over
non-singular points. Nevertheless, we can obtain uniform estimates for the C1-norm of
these change of coordinates.

We also need to prove that any perturbation of a Poincaré map, that verifies some
conditions, can be realized as the Poincaré map of a perturbed vector field. All of these
perturbations have to be done with precise control on the estimates that appear. These
two ingredients are given in Lemma 2.5.8. Once we have that, we can adapt the proof of
Bonatti-Crovisier-Wilkinson in [BCW09] and obtain that the unbounded normal distor-
tion property is C1-generic.

2.5.1 Unbounded normal distortion is C1-generic

The goal of this section is to prove the following theorem:

Theorem 2.5.2. There exists a residual subset of R ⊂ X1(M) such that if X ∈ R then
X has unbounded normal distortion.

Linearizing coordinates

Let X ∈ X1(M), and as before, set MX := M − Sing(X). For p ∈ MX and t ∈ R, for
any two submanifolds Σ1 and Σ2 which are transverse to the orbit segment O := X[0,t](p),
each of which intersects O only at one point, we define the Poincaré map between these
two transverse sections as follows: let p1 := O ∩ Σ1 and p2 := O ∩ Σ2. If a point q ∈ Σ1

is sufficiently close to p1, then X[−t,2t](q) intersects Σ2 at a unique point PXΣ1,Σ2
(q). The

map q 7→ PXΣ1,Σ2
(q) is called the Poincaré map between Σ1 and Σ2.

This map is a C1-diffeomorphism between a neighbourhood of p1 and its image. It
also holds that for any vector field Y ∈ X1(M) sufficiently C1-close to X, the Poincaré
map PYΣ1,Σ2

for Y is well defined in some neighbourhood of p1 in Σ1.

Let R > 0 be smaller than the radius of injectivity of M . Using the exponential map,
for each p ∈ MX and r ∈ (0, R), we define the submanifold NX,p(r) = expp(NX,p(r)),
where NX,p(r) is the ball of center 0 and radius r contained in NX,p.

Remark 2.5.3. Considering R to be small enough, for each p ∈ MX and for each q ∈
NX,p(R) we have that the C1-norm of ΠX

q |TqNX,p(R) is close to 1.

It is known that for each t ∈ R, there exists a constant βt = β(X, t) > 0 such that
for any point p ∈ MX , the Poincaré map is a C1 diffeomorphism from NX,p(βt‖X(p)‖)
to its image inside NX,Xt(p)(R). We denote this map by PXp,t and we write β := β1. For
a fixed δ > 0, we can choose β sufficiently small such that for any p ∈ MX and any
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q ∈ NX,p(β‖X(p)‖), it holds

‖DPXp,1(q)−DPXp,1(p)‖ < δ, (2.5.1)

we refer the reader to Section 2.2 in [GY18] for more details. By our choices of transversals,
we remark that DPXp,1(p) = PX

p,1.

Definition 2.5.4. For any C > 1 we say that a vector field X ∈ X1(M) is bounded by C if
it holds

– sup
x∈M
|X(p)| < C;

– supp∈M ‖DX(p)‖ < C;

– C−1 < inf
x∈M

inf
t∈[−1,1]

‖(DXt(x))−1‖−1 ≤ sup
x∈M

sup
t∈[−1,1]

‖DXt(x)‖ < C;

– C−1 < inf
p∈MX

inf
t∈[−1,1]

‖(PX
p,t)
−1‖−1 ≤ sup

p∈MX

sup
t∈[−1,1]

‖PX
p,t‖ < C;

– there exists β > 0 small, such that

C−1 < ‖(DPXp,1(q))−1‖−1 ≤ ‖DPXp,1(q)‖ < C, for any q ∈ NX,p(β‖X(p)‖).

By (2.5.1), for any vector field X ∈ X1(M), there is a constant C > 1 such that X is
bounded by C.

Let X ∈ X1(M) be a vector field bounded by C > 1. Using the exponential map, for
p ∈MX , we consider the lifted Poincaré map

P̃Xp,1 = exp−1
X1(p) ◦P

X
p,1 ◦ expp,

which goes from NX,p(β‖X(p)‖) to NX,X1(p)(R). Observe that

‖X(X1(p))‖ > C−1‖X(p)‖. (2.5.2)

By (2.5.2) and the last item in Definition 2.5.4, for any n ∈ N, the map PXp,n is well defined

on NX,p
(
β
Cn‖X(p)‖

)
, while the lifted map P̃Xp,n is well defined on V X

p,n := Np

(
β
Cn‖X(p)‖

)
.

For each n ∈ N and p ∈ MX , we define the change of coordinates ψp,n = PX
X−n(p),n ◦

(P̃XX−n(p),n)−1, which is a C1 diffeomorphism from P̃Xp,n(V X
X−n(p),n) to PX

X−n(p),n(V X
X−n(p),n) ⊂

NX,p. Observe that ψp,0 = id. The sequence (ψXj(p),j)j∈N verifies the following equality:

ψXn(p),n ◦ P̃Xp,n = PX
p,n ◦ ψp,0,

which holds on V X
p,n. In other words, this change of coordinates linearizes the dynamics

of P̃Xp,n.
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For all y ∈ NX,p( β
Cn‖X(p)‖), we define the hitting time τXp,n(y) as the first positive

time where the trajectory starting at y hits the transverse section NX,Xn(p)(R), that is,

τXp,n(y) := min{t ≥ 0 : Xt(y) ∈ NX,Xn(p)(R)}.

Notation. Let p ∈ MX and n ∈ N. Suppose that for Y ∈ X1(M) the submanifolds
NX,p

(
β
Cn‖X(p)‖

)
and NX,Xn(p)(R) are transverse to Y , and that the Poincaré map for Y

between these transverse sections is well defined on NX,p
(
β
Cn‖X(p)‖

)
. Then we denote

this Poincaré map for Y by PYX,p,n. Accordingly, we denote its lift by P̃YX,p,n and its hitting
time by τYX,p,n. We also extend those notations for non-integer times: given an integer
n ≥ 1 and t ∈ [n − 1, n], we let PYX,p,t be the Poincaré map between the transversals

NX,p
(
β
Cn‖X(p)‖

)
and NX,Xt(p)(R).

In the next definition we introduce the type of perturbations of the Poincaré map that
we will consider in the sequel.

Definition 2.5.5. For each δ > 0 and given an open set U ⊂ NX,p(β‖X(p)‖), a C1 map
g : NX,p(β‖X(p)‖) → NX,X1(p)(R) is called a δ-perturbation of PXp,1 with support in U if
the following holds:

• dC1(PXp,1, g) < δ;

• the image of g coincides with the image of PXp,1;

• the map g is a C1 diffeomorphism into its image;

• the support of (PXp,1)−1 ◦ g is contained in U .

For any n ∈ N and any U ⊂ NX,p
(
β
Cn‖X(p)‖

)
, we define

IX(p, U, n) := {(y, t) : y ∈ U, t ∈ [0, τXp,n(y)]}, (2.5.3)

and we let UX(p, U, n) be the image of IX(p, U, n) under the map (y, t) 7→ Xt(y):

UX(p, U, n) :=
⋃
y∈U

⋃
t∈[0,τXp,n(y)]

Xt(y). (2.5.4)

Remark 2.5.6. For a vector field X ∈ X1(M) we can fix a constant α = α(X) small enough
such that for any t ∈ [−α, α] and p ∈MX , it holds that | detPX

p,t − 1| < log 2
2

.

Remark 2.5.7. Let α > 0 be as in Remark 2.5.6. Then for β > 0 sufficiently small, for
any p ∈ MX and q ∈ NX,p

(
β
Cn‖X(p)‖

)
, it holds that τXp,n(q) ∈ [n − α, n + α]. From now

on we will always assume that β verifies this condition for this choice of α.

A realization lemma

We state and prove below a lemma that allows us to realise a non-linear perturbation of
the linear Poincaré flow as the lifted Poincaré map of a vector field nearby.
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Lemma 2.5.8. For any C, ε > 0, there exists δ = δ(C, ε) > 0 that verifies the following.
For any vector field X ∈ X1(M) that is bounded by C, any 0 < δ1 < δ and any integer
n ∈ N, there is ρ = ρ(X, ε, δ1) > 0 with the following property.

For any p ∈MX and U ⊂ NX,p(ρ‖X(p)‖) such that the map (y, t) 7→ Xt(y) restricted
to the set IX(p, U, n) is injective, then the following holds:

1. Set Ũ := exp−1
p (U). Then for every i ∈ {0, . . . , n}, the map ΨXi(p),i := ψXi(p),i ◦

exp−1
Xi(p)

induces a C1 diffeomorphism from PXp,i(U) onto PX
p,i(Ũ) such that

max{‖DΨXi(p),i‖, ‖DΨ−1
Xi(p),i

‖, | detDΨXi(p),i|, | detDΨ−1
Xi(p),i

|} < 2. (2.5.5)

2. For i ∈ {1, . . . , n}, let g̃i : NX,Xi−1(p) → NX,Xi(p) be any C1 diffeomorphism such

that the support of (PX
Xi(p),1

)−1 ◦ g̃i is contained in PX
p,i−1(Ũ), and which satisfies

dC1(g̃i, P
X
Xi−1(p),1) < δ1. Let gi be the map defined as follows:

• gi(y) := PXXi−1(p),1(y), if y /∈ PXp,i−1(U);

• gi(y) := Ψ−1
Xi(p),i

◦ g̃i ◦ΨXi−1(p),i−1(y), if y ∈ PXp,i−1(U).

Then the map gi is a δ-perturbation of PXXi−1(p),1 with support in PXp,i−1(U).

3. There exists Y ∈ X1(M) such that dC1(X, Y ) < ε, and the Poincaré map PYX,Xi(p),1

for the vector field Y between NXi−1(p)(ρ‖X(p)‖) and NXi(p)(R) is well defined and
is given by gi, for each i ∈ {1, . . . , n}. Moreover, the support of X − Y is contained
in UX(p, U, n) and the image of τYX,p,n coincides with the image of τXp,n. In particular,
it is contained in [n− α, n+ α].

Before proving this lemma, let us say a few words on items 2 and 3 in the statement.
Item 2 states that we can obtain perturbations of the Poincaré map by perturbing its lift,
with precise estimates on the size of each of these perturbations we consider. Observe that
this only gives C1 diffeomorphisms between certain transverse sections. Item 3 states that
any such perturbation can be realized as the Poincaré map of a vector field C1-close to X,
with precise estimates on its distance to X. Furthermore, the hitting time is “the same”
as the hitting time of X, in the sense that they have the same image as a function of the
transverse section to R. These two properties will be crucial in our proof, because it will
allow us to reduce the proof of the theorem to the discrete case, after several adaptations.

Proof. We will obtain δ later, as consequence of a finite number of inequalities. In the
following, we always assume that 0 < ρ ≤ β

Cn . By the previous discussion, this ensures
that PXp,n is well defined on NX,p

(
ρ‖X(p)‖

)
, for all p ∈MX .

Point (1) follows from the following facts:

• It holds

C−n < inf
p∈MX , t∈[−n,n]

‖(PX
p,t)
−1‖−1 ≤ sup

p∈MX , t∈[−n,n]

‖PX
p,t‖ < Cn, (2.5.6)
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and by (2.5.1), we have similar estimates for the Poincaré maps PXp,t, uniformly in
p ∈MX and t ∈ [−n, n].

• By choosing ρ > 0 sufficiently small, the set⋃
y∈Np(ρ‖X(p)‖)

⋃
t∈[0,n]

PX
p,t(y)

can be made arbitrarily close to the 0 section, uniformly in p ∈ MX . Similarly, the
set UX(p,NX,p(ρ‖X(p)‖), n) defined in (2.5.4) can be made arbitrarily close to the
orbit segment {Xt(p) : 0 ≤ t ≤ n}, uniformly in p ∈MX .

• The map D exp−1
p is uniformly close to the identity in a neighbourhood of p.

• Since the vector field X is of class C1 and by choosing ρ > 0 sufficiently small, the
maps ψXi(p),i used to linearize the dynamics can be made uniformly C1-close to the
identity for i ∈ {0, . . . , n} and p ∈ MX . Therefore, the map ΨXi(p),i can be made
arbitrarily C1 close to exp−1

Xi(p)
.

In particular, we obtain a uniform control of ΨXi(p),i for p ∈ MX and i ∈ {0, . . . , n} even
though the space MX is not compact.

By Definition 2.5.5, the proof of (2) follows easily from the first point. Indeed, given
i ∈ {1, . . . , n} and p ∈MX , we use the maps ΨXi−1(p),i−1 and ΨXi(p),i to conjugate PXXi−1(p),1

to the linear Poincaré map PX
Xi−1(p),1. By the previous discussion, for ρ > 0 small enough,

the maps ΨXi−1(p),i−1 and ΨXi(p),i are arbitrarily C1-close to exp−1
Xi−1(p) and exp−1

Xi(p)
re-

spectively. The estimate on the C1 distance between gi and PXXi−1(p),1 follows, since we

assume dC1(g̃i, P
X
Xi−1(p),1) < δ1, and δ1 < δ.

The proof of point (3) follows from arguments similar to those presented in Pugh-
Robinson [PR83] (see in particular Lemma 6.5 in that paper).

More precisely, let i ∈ {1, . . . , n}, and let g̃i : NXi−1(p) → NXi(p) be a C1 diffeomor-
phism satisfying the assumptions of point (2). We pull back g̃i to a C1 diffeomorphism
ĝi : NXi−1(p) → NXi−1(p) by letting ĝi := PX

Xi(p),−1 ◦ g̃i. By assumption, the support of ĝi is

contained in PX
p,i−1(Ũ), with Ũ := exp−1

p (U) and U ⊂ NX,p(ρ‖X(p)‖), hence by (2.5.6),
we get

dC0(ĝi, id) ≤ 2Cρmax
p∈M
‖X(p)‖. (2.5.7)

Then for all t ∈ [i− 1, i], we define a map g̃t : NXi−1(p) → NXt(p) as g̃t := PX
Xi−1(p),t−i+1 ◦ ĝi.

By the above estimate, and by (2.5.6), we deduce that

dC0(g̃t, P
X
Xi−1(p),t−i+1) ≤ 2C2ρmax

p∈M
‖X(p)‖, ∀t ∈ [i− 1, i]. (2.5.8)

Moreover, for any t ∈ [i−1, i], we have Dg̃t = PX
Xi−1(p),t−i+1 ·Dĝi = PX

Xi−1(p),t−i+1◦PX
Xi(p),−1 ·

Dg̃i. Since dC1(g̃i, P
X
Xi−1(p),1) < δ1, we obtain

dC1(g̃t, P
X
Xi−1(p),t−i+1) ≤ C2δ1, ∀t ∈ [i− 1, i]. (2.5.9)
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Let us fix a C∞ bump function χ : R → [0, 1] which is 0 near 0 and 1 near 1. Fix
i ∈ {1, . . . , n} and set χi−1(·) := χ(· − i + 1). For k ∈ {0, . . . , n}, we also let Np,k :=

NX,Xk(p)

(
β

Cn−k ‖X(p)‖
)
. Then for any t ∈ [i− 1, i], we let h

(i)
t : Np,i−1 → Np,i be the map

defined as

• h(i)
t (y) := PXXi−1(p),t−i+1(y), if y /∈ P i−1

p (U);

• h(i)
t (y) := Ψ−1

Xt(p),t
◦
(
χi−1(t)g̃t + (1− χi−1(t))PX

Xi−1(p),t−i+1

)
◦ ΨXi−1(p),i−1(y), if y ∈

PXp,i−1(U),

where we have extended the previous notation by setting

ΨXt(p),t := PX
p,t ◦ P̃XXt(p),−t ◦ exp−1

Xt(p)
.

Figure 2.3: Interpolation between the initial Poincaré map and gi.

In particular, we note that for t = i − 1, we have h
(i)
t = h

(i)
i−1 = id, while for t = i,

h
(i)
t = h

(i)
i coincides with the map gi defined in item (2).

By (2.5.8), for all t ∈ [i− 1, i], we have

dC0

(
χi−1(t)g̃t + (1− χi−1(t))PX

Xi−1(p),t−i+1, P
X
Xi−1(p),t−i+1

)
≤ 2C2ρmax

p∈M
‖X(p)‖.

Since PXXi−1(p),t−i+1 = Ψ−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1 ◦ΨXi−1(p),i−1, by the definition of h

(i)
t and by

(2.5.5), we can thus make the C0 distance between h
(i)
t and PXXi−1(p),t−i+1 arbitrarily small,

provided that ρ > 0 is taken small enough.

For any t ∈ [i− 1, i], we have

D
(
χi−1(t)g̃t + (1− χi−1(t))PX

Xi−1(p),t−i+1

)
= DPX

Xi−1(p),t−i+1 + χi−1(t)
(
Dg̃t − PX

Xi−1(p),t−i+1

)
.
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By (2.5.6) and (2.5.9), we thus get

dC1(h
(i)
t ,PXXi−1(p),t−i+1) ≤ 4C2δ1. (2.5.10)

For any t ∈ [i− 1, i], we also have:

∂t

(
χi−1(t)g̃t + (1− χi−1(t))PX

Xi−1(p),t−i+1

)
− ∂tPX

Xi−1(p),t−i+1

= χ′i−1(t)
(
g̃t − PX

Xi−1(p),t−i+1

)
+ χi−1(t)∂t

(
g̃t − PX

Xi−1(p),t−i+1

)
= χ′i−1(t)PX

Xi−1(p),t−i+1 ◦
(
ĝi − id

)
+ χi−1(t)∂tP

X
Xi−1(p),t−i+1 ◦

(
ĝi − id

)
.

By (2.5.5), (2.5.6) and (2.5.7), we deduce that

max
t∈[i−1,i]

max
y∈U
|∂tPXXi−1(p),t−i+1(y)− ∂th(i)

t (y)|

≤ 8C max

(
C, sup

t∈[0,1]

‖∂tPX
Xi−1(p),t‖

)
‖χ‖C1ρmax

p∈M
‖X(p)‖. (2.5.11)

Recall that for k ∈ {0, . . . , n}, we denote Np,k := NX,Xk(p)

(
β

Cn−k ‖X(p)‖
)
. As in (2.5.3),

given a set V ⊂ Np,0, we set

IX(p, V, n) :=
{

(y, t) : y ∈ V, t ∈ [0, τXp,n(y)]
}
.

Let us assume that U ⊂ NX,p(ρ‖X(p)‖) is such that the map (y, t) 7→ Xt(y) is injective on
the set IX(p, U, n). For ρ > 0 small, the hitting time function τXp,n is uniformly close to n on
NX,p(ρ‖X(p)‖), and the C1 distance between the maps (y, t) 7→ PXp,t(y) and (y, t) 7→ Xt(y)
restricted to IX(p,NX,p(ρ‖X(p)‖), n) is small. Given i ∈ {1, . . . , n}, let us consider the

map h(i) : (y, t) 7→ h
(i)
t (y) defined on Np,i−1 × [i− 1, i] as above. By (2.5.10) and (2.5.11),

and since 0 < δ1 < δ, the maps Np,i−1× [i−1, i] 3 (y, t) 7→ PXXi−1(p),t−i+1(y) and h(i) can be

made arbitrarily C1-close by taking δ > 0 small enough. For δ > 0 sufficiently small, we
deduce that the map h(i) is locally injective on the interior of PXp,i−1(U)× [i−1, i]. Besides,

as we have seen, h
(i)
i−1|Np,i−1

= id|Np,i−1
, while h

(i)
i |Np,i−1

= gi|Np,i−1
is a C1 diffeomorphism.

Now, we define a map H on Np,0 × [0, n] by setting

H(y, t) := h
(i)
t ◦ gi−1 ◦ gi−2 ◦ · · · ◦ g1(y), (2.5.12)

∀y ∈ Np,0, t ∈ [i− 1, i], i ∈ {1, . . . , n}.

By what precedes, the map H is locally injective on the interior of the set U × [0, n].
Moreover, ∂ (U × [0, n]) = (U×{0})∪(U×{n})∪(∂U× [0, n]). On the one hand, we have
H(·, 0)|U = id|U , and by construction, the map H(·, n)|U coincides with gn◦gn−1◦· · ·◦g1|U ,
hence it is a C1 diffeomorphism from U to PXp,n(U) ⊂ Np,n. On the other hand, by point
(2), each diffeomorphism gi is a δ2-perturbation of PXXi−1(p),1 with support in PXp,i−1(U).

Therefore the restriction of H to the set ∂U × [0, n] coincides with the restriction of
the map (y, t) 7→ PXp,t(y). In particular, we deduce that the restriction H|∂(U×[0,n])

of H to the boundary of U × [0, n] is injective. From Lemma 6.5 in Pugh-Robinson
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[PR83], we conclude that H embeds U×[0, n] into the set UX(p, U, n) introduced in (2.5.4).

In the same way as before, for any y ∈ NX,p(ρ‖X(p)‖) and t ∈ [0, n], we set

τXp,t(y) := min{s ≥ 0 : Xs(y) ∈ NX,Xt(p)(R)}.

By definition, PXp,t(y) = XτXp,t(y)(y), for any (y, t) ∈ NX,p(ρ‖X(p)‖)× [0, n], thus

X(PXp,t(y)) = (∂tτ
X
p,t(y))−1∂tPXp,t(y). (2.5.13)

Moreover, τXp,·(p) = id, and the map (y, t) 7→ τXp,t(y) is C1 on NX,p(ρ‖X(p)‖)× [0, n], hence
for ρ > 0 sufficiently small, we have

1

2
< |∂tτXp,t(y)| < 2, ∀p ∈MX , y ∈ NX,p(ρ‖X(p)‖), t ∈ [0, n]. (2.5.14)

As we have noted above, on the complement of U × [0, n], the maps H and (y, t) 7→
PXp,t(y) coincide. We thus define a vector field Y ∈ X1(M) on M by setting

• Y (q) := X(q), if q ∈M − UX(p, U, n);

• Y (q) := (∂t|t=t0τXp,t(y))−1∂t|t=t0H(y0, t), if q ∈ UX(p, U, n), where (y0, t0) :=
H−1(q) ∈ U × [0, n].

For each i ∈ {1, . . . , n}, by the definition of H in (2.5.12) and since h
(i)
i = gi, it follows

that the Poincaré map PYX,Xi−1(p),1 for the vector field Y between Np,i−1 and Np,i is given

by gi. By definition, the support of X−Y is contained in UX(p, U, n). Moreover, given any
point q = PXp,t(y) = H(y′, t) ∈ UX(p, U, n), say (y, t) ∈ U × [i− 1, i], letting z := PXp,i−1(y)
and z′ := gi−1 ◦ gi−2 ◦ · · · ◦ g1(y′), we obtain

PXp,t(y) = PXXi−1(p),t−i+1(z)

= Ψ−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1 ◦ΨXi−1(p),i−1(z);

H(y′, t) = h
(i)
t (z′)

= Ψ−1
Xt(p),t

◦
(
χi−1(t)g̃t + (1− χi−1(t))PX

Xi−1(p),t−i+1

)
◦ΨXi−1(p),i−1(z′)

= Ψ−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1 ◦ (χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′).

Set
w := ΨXi−1(p),i−1(z) = (χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′).

We deduce that

∂tPXp,t(y) = ∂t

(
Ψ−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1

)
(w),

∂tH(y′, t) = ∂t

(
Ψ−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1

)
(w) +Dw

(
Ψ−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1

)
· ∂t
(
(χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′)

)
= ∂tPXp,t(y) + χ′i−1(t)DΨXt(p),t

(q)Ψ
−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1◦

◦ (ĝi − id)
(
ΨXi−1(p),i−1(z′)

)
,
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and

Y (q)−X(q) =

χ′i−1(t)

∂tτXp,t(y)
DΨXt(p),t

(q)Ψ
−1
Xt(p),t

◦ PX
Xi−1(p),t−i+1 ◦ (ĝi − id)

(
ΨXi−1(p),i−1(z′)

)
,

where the last equality follows from (2.5.13) and the definition of Y . In particular, the
difference between the vector fields X and Y is essentially controlled by the C0 distance
between ĝi and id. More precisely, by (2.5.5), (2.5.6), (2.5.7), and (2.5.14), we deduce
that

|X(q)− Y (q)| ≤ 8‖χ‖C1C2ρmax
p∈M
‖X(p)‖,

and we argue similarly for the derivatives. Therefore, by taking ρ sufficiently small, we can
ensure that dC1(X, Y ) < ε, which concludes the proof of point (3), and then, of Lemma
2.5.8.

Producing unbounded normal distortion by perturbation

We are now in position to prove the main perturbation result (Proposition 2.5.11 below)
that will allow us to obtain unbounded normal distortion generically. The key tool behind
this is a perturbation result for linear cocycles taken from [BCW09].

Proposition 2.5.9. For any d ≥ 2, C > 1, K, ε > 0, let δ = δ(C, ε) be the constant
given by Lemma 2.5.8. There exists n0 = n0(d, C,K, ε) ∈ N with the following property.

For any d-dimensional manifold M , any vector field X ∈ X1(M) which is bounded by
C, there exists ρ0 = ρ0(d, C,K, ε) > 0 such that for any η > 0, any compact set ∆ ⊂MX

and x, p ∈MX satisfying:

(a) there exists an open set U inside NX,p(ρ0‖X(p)‖), such that ∆ ⊂ U ;

(b) the map (y, t) 7→ Xt(y) is injective on IX(p, U, n0) (see (2.5.3));

(c) orbX(x) ∩ U = ∅,

there exists a vector field Y ∈ X1(M) such that

1. the support of X − Y is contained in UX(p, U, n0) (see (2.5.4));

2. dC1(X, Y ) < ε;

3. for any i ∈ {0, . . . , n0−1}, it is verified dC1(PXXi(p),1
,PYX,Xi(p),1

) < δ, where PYX,Xi(p),1

is the Poincaré map between NX,Xi(p)(β‖X(Xi(p))‖) and NX,Xi+1(p)(R);

4. dC0(PXXi(p),t
,PYX,Xi(p),t

) < η, for all t ∈ [0, 1];

5. for all y ∈ ∆, there exists an integer n ∈ {1, . . . , n0} such that

| log detP Y
x,n − log detP Y

y,n| > K.
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Proposition 2.5.9 is the analogous for flows of Proposition 8 in [BCW09]. Using Lemma
2.5.8, we will reduce the proof of this proposition to a discrete scenario where we can apply
the following proposition from [BCW09].

Proposition 2.5.10 (Proposition 9 in [BCW09]). For any d ≥ 1, and any C,K, ε > 0,
there exists n1 = n1(d, C,K, ε) ≥ 1 with the following property.

Consider any sequence (Ai) ∈ GL(d,R) with ‖Ai‖, ‖A−1
i ‖ < C and the associated

cocycle f̃ on Z×Rd defined by f̃(i, v) := (i+ 1, Aiv). Then, for any open set U ⊂ Rd, for
any compact set ∆ ⊂ U and any η > 0, there exists a diffeomorphism g̃ of Z × Rd such
that:

• dC1(f̃ , g̃) < ε;

• dC0(f̃ , g̃) < η;

• f̃ = g̃ on the complement of
⋃2n1−1
i=0 f̃ i({0} × U);

• for all y ∈ {0} ×∆, there exists n ∈ {1, . . . , n1} such that

| log detDf̃n(y)− log detDg̃n(y)| > K.

Proof of Proposition 2.5.9 from Proposition 2.5.10. Fix any δ1 ∈ (0, δ) and K0 > 2K +
10 log 2. Let n1 = n1(d − 1, C,K0, δ1) be the constant given by Proposition 2.5.10 for
d− 1, C,K0, ε and let n0 = 2n1. Let X ∈ X1(M) be a vector field bounded by C and let
ρ > 0 be the constant given by Lemma 2.5.8 for C, ε, δ1, n0 and X. Fix ρ0 ∈ (0, ρ

Cn0
).

Let ∆ ⊂ MX , x, p ∈ MX and η > 0 be such that conditions (a), (b) and (c) in
Proposition (2.5.9) are verified. Let U ⊂ NX,p(ρ0‖X(x)‖) be the open set given by
condition (a). Consider OX1(p) = {. . . , X−1(p), p,X1(p), . . . } and observe that this set
is naturally identified with Z. We consider the normal bundle, with respect to X, over
OX1(p) and the linear cocycle defined as follows: for i ∈ Z and v ∈ NX,Xi(p) set f̃(i, v) :=
(i+ 1, PX

Xi(p),1
v).

Recall that Ũ = exp−1
p (U). By item (1) in Lemma 2.5.8, for any i ∈ {0, . . . , n0},

we obtain C1 diffeomorphisms Ψi := ΨXi(p),i : PXp,i(U) → PX
p,i(Ũ), such that for any q ∈

PXp,i(U) it holds that

PX
Xi(p),1

(Ψi(q)) = Ψi+1(PXXi(p),1
(q)). (2.5.15)

Write Ψ:
⋃n0

i=0PXp,i(U)→
⋃n0

i=0 P
X
p,i(Ũ) as the C1 diffeomorphism which is equal to Ψi on

PXp,i.

For the cocycle f̃ , we apply Proposition 2.5.10 and obtain a δ1-perturbation g̃ of f̃
supported on

⋃n0−1
i=0 f̃ i({0} × Ũ), such that for every q ∈ Ψ0(∆), it holds:

• dC0(f̃ , g̃) < η
2
;

• f̃ = g̃ on the complement of
⋃n0−1
i=0 f̃ i({0} × Ũ);
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• for every q ∈ Ψ0(∆), there exists n ∈ {1, . . . , n0} such that

| log detDf̃n(q)− log detDg̃n(q)| > K0.

For each i ∈ {0, . . . , n0− 1}, let g̃i := g|{i}×NX,Xi(p)
and observe that dC1(g̃i, P

X
Xi(p),1

) <

δ1. By item (2) of Lemma 2.5.8, we obtain a δ-pertubation gi of PXXi(p),1
. By (2.5.5) and

(2.5.15), we have
dC0(gi,PXXi(p),1

) < 2dC0(g̃i, P
X
Xi(p),1

) < η.

Moreover, by the estimates in (2.5.5), we conclude that for any q ∈ ∆, there exists
n ∈ {1, . . . , n0 − 1} such that

| log detDPXp,n(q)− log detD(gn)(q)| > K0 − 4 log 2, (2.5.16)

where gn(q) := gn ◦ · · · ◦ g1(q).

Recall that for n ∈ {0, . . . , n0− 1}, the maps PXp,n and PX
p,n are conjugated on ∆ by Ψ.

By (2.5.5), we obtain that for any q ∈ ∆, it holds

| log detDPXp,n(q)− log detPX
p,n| ≤ 2 log 2. (2.5.17)

Suppose there exists n ∈ {0, . . . , n0− 1} such that | log detP n
p − log detP n

x | > K + 3 log 2.
By (2.5.17) and Remark 2.5.3, for any q ∈ ∆ it holds that∣∣∣log detPX

q,τXp,n(q) − log detPX
x,n

∣∣∣ > K + log 2.

By Remark 2.5.6 and item 3 of Lemma 2.5.8, we conclude that

| log detPX
q,n − log detPX

x,n| > K.

In this case we do not make any perturbation. Suppose that for every n ∈ {0, . . . , n0− 1}
and every q ∈ ∆ we have

| log detPX
q,n − log detPX

x,n| ≤ K + 3 log 2.

Consider the maps g1, . . . , gn0 as it was explained above (obtained using Proposition
2.5.10). Applying Lemma 2.5.8, we obtain a C1 vector field Y that verifies the following
properties:

• dC1(X, Y ) < ε;

• the support of X − Y is contained in UX(p, U, n0);

• for each i ∈ {1, . . . , n0}, we have that PYX,Xi(p),1
= gi.
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By (2.5.16) and (2.5.17), we conclude that for each q ∈ ∆, there exists n ∈ {1, . . . , n0}
such that ∣∣∣∣∣log

(
detP Y

x,n

detP Y
q,n

)∣∣∣∣∣≥
∣∣∣∣∣log

(
detDPXp,n(q)

detP Y
q,n

)∣∣∣∣∣−
∣∣∣∣∣log

(
detPX

x,n

detDPXp,n(q)

)∣∣∣∣∣
≥

∣∣∣∣∣log

(
detDPXp,n(q)

detDgn(q)

)∣∣∣∣∣−
∣∣∣∣log

(
detDgn(q)

detP Y
q,n

)∣∣∣∣−
−

∣∣∣∣∣log

(
detPX

x,n

detPX
q,n

)∣∣∣∣∣−
∣∣∣∣∣log

(
detPX

q,n

detDPXp,n(q)

)∣∣∣∣∣
> K0 − log 2−K − 4 log 2− log 2 > K.

This concludes the proof of Proposition 2.5.9.

The following proposition is the version for flows of Proposition 7 in [BCW09].

Proposition 2.5.11. Consider a vector field X ∈ X1(M), a compact set D ⊂ MX , an
open set O ⊂MX and a point x ∈MX satisfying:

• for any y ∈ O, any t ≥ 0, we have Xt(y) ∈ O and X1(O) ⊂ O;

• D ⊂ O −X1(O);

• orbX(x) ∩D = ∅.

Then for any K, ε > 0, there exists a vector field Y ∈ X1(M) with dC1(X, Y ) < ε which
satisfies the following property: for all y ∈ D, there exists n ≥ 1 such that

| log detP Y
x,n − log detP Y

y,n| > K.

Moreover, the support of X−Y is contained in the complement of the chain recurrent set
of X.

Proof. Let X,D,O, x be as in the statement of Proposition 2.5.11. Let C > 1 be
chosen such that the vector field X is bounded by C, and let n0 = n0(d, C, 3K, ε),
ρ0 = ρ0(d, C,K, ε) be chosen according to Proposition 2.5.9. We set N := 2dn0. Without
loss of generality, we also assume that K satisfies K > 2d log(2C) > 0.

We fix a finite cover F = {D1, . . . , D`} of D by compact sets satisfying:

1. D ⊂
⋃`
j=1 int(Dj) ⊂ O −X1(O);

2. for each j ∈ {1, . . . , `}, there exists a real number τj ∈ (0, 1), a point pj ∈ O−X1(O),
an open set Uj ⊂ NX,pj(ρ0|X(pj)|), and a compact set ∆j ⊂ Uj, such that the
following properties hold:
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(a) we have
Dj = {Xt(y) : y ∈ ∆j, t ∈ [0, τj]}, (2.5.18)

and
int(Dj) ⊂ {Xt(y) : y ∈ Uj, t ∈ (0, τj)} ⊂ O −X1(O);

(b) for each t ∈ [0, N ], we have PXpj ,t(Uj) ⊂ NX,Xt(pj)(ρ0|Xt(pj)|);

(c) for each t ∈ [0, N − 1], for each t′ ∈ [0, 1], and for each y1, y2 ∈ PXpj ,t(∆j), it
holds

d(PXXt(pj),t′(y1),PXXt(pj),t′(y2)) ≤ 2Cd(y1, y2); (2.5.19)

3. orbX(x) ∩
⋃`
j=1 Uj = ∅;

4. for each j ∈ {1, . . . , `}, the map (y, t) 7→ Xt(y) is injective restricted to the set
Uj × [0, 1], and thus, it is also injective on the whole set IX(pj, Uj, N);1

5. there exists a partition {1, . . . , `} = J0t· · ·tJ2d−1 such that for each k ∈ {0, . . . , 2d−
1}, and for each j1 6= j2 ∈ Jk, we have

UX(pj1 , Uj1 , 1) ∩ UX(pj2 , Uj2 , 1) = ∅.

One can obtain F by tiling the compact set D by arbitrarily small cubes as in (2.5.18),
i.e., obtained by flowing small transversals ∆j under X, for j = 1, . . . , `. Besides, since
we assume that D ⊂ MX , properties (1)-(4) are satisfied provided that Dj, Uj and ∆j

are chosen sufficiently small, for all j ∈ {1, . . . , `}. In particular, (2.5.19) is true provided
that Dj and ∆j are chosen small enough, for all j ∈ {1, . . . , `}, since X is bounded by C.
Moreover, item (5) holds true provided that the diameter of the sets U1, . . . , U` is small
enough, since M has dimension d.

For each j ∈ {1, . . . , `}, and for each i,m ≥ 0, we set

VXj (i,m) := int(UX(Xi(pj),PXpj ,i(Uj),m)).

Each set VXj (i,m) is open: it is the interior of the “tube” obtained by flowing points in
the transversal PXpj ,i(Uj) under X until they hit the section PXpj ,i+m(Uj). We have the
following properties:

• for each j ∈ {1, . . . , `}, the sets VXj (0, 1),VXj (1, 1), . . . ,VXj (N − 1, 1) are pairwise
disjoint;

• for each j ∈ {1, . . . , `}, the orbit orbX(x) is disjoint from UX(pj, Uj, N);

• for each (k1, j1) 6= (k2, j2) with k1, k2 ∈ {0, . . . , 2d − 1} and j1 ∈ Jk1 , j2 ∈ Jk2 , we
have

VXj1 (n0k1, n0) ∩ VXj2 (n0k2, n0) = ∅. (2.5.20)

1Indeed, for t > 1, we have Xt(Uj) = X1(Xt−1(Uj)), and Xt−1(Uj) ⊂ O −X1(O).
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Indeed, the first item is a consequence of point (4) above, the second one follows from
point (3) above, and the third one is a consequence of points (4) and (5) above.

Figure 2.4: Selection of the perturbation times for the different tiles.

Claim 4. There exists λ > 0 such that for each y ∈
⋃`
j=1Dj, there exist j ∈ {1, . . . , `},

z ∈ ∆j and u ∈ [0, 1] such that y = Xu(z), and NX,z(2λ) ⊂ ∆j.

Proof. Let λ1 > 0 be a Lebesgue number of the cover F . We choose λ2 > 0 such that
NX,y(λ2) ⊂ B(y, λ1), for any y ∈

⋃`
j=1 Dj, and we take λ > 0 such that PXz,u(NX,z(2λ)) ⊂

NX,Xu(z)(λ2) for any z ∈
⋃`
j=1 ∆j and u ∈ [0, 1]. The existence of λ > 0 follows from the

compactness of
⋃`
j=1 ∆j and from the fact that X is bounded C > 0. By the definition of

λ1 and D1, . . . , D`, for each y ∈
⋃`
j=1Dj, there exist j ∈ {1, . . . , `}, z ∈ ∆j, and u ∈ [0, 1]

such that y = Xu(z), and B(y, λ1) ⊂ Dj. By the definition of λ2, we also have NX,y(λ2) ⊂
B(y, λ1). Then, by the definition of λ and Dj, and since y = Xu(z) ∈ NX,y(λ2) ⊂ Dj, we
deduce that NX,z(2λ) ⊂ (PXz,u)−1(NX,y(λ2)) ⊂ ∆j.

For any η > 0, we define a sequence (aη(m))m≥0 inductively as follows:

aη(0) := 0; aη(m+ 1) := 2Caη(m) + η.

Note that limη→0 aη(N) = 0. In the following, we fix η0 > 0 small enough that

aη0(N) < (2C)−Nλ, η0 <
λ

2
.

For each k ∈ {0, . . . , 2d − 1} and j ∈ Jk, the set PXpj ,n0k
(∆j) and the point Xn0k(x)

satisfy the hypotheses of Proposition 2.5.9. We obtain a vector field Ỹ ∈ X1(M) such
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that the support of X − Ỹ is contained in VXj (n0k, n0). Moreover, for distinct choices of
(k, j), (2.5.20) guarantees that the associated perturbations will be disjointly supported.
Hence, applying Proposition 2.5.9 over all pairs (k, j) with k ∈ {0, . . . , 2d−1} and j ∈ Jk,
we obtain a vector field Y ∈ X1(M) with the following properties:

• the support of X − Y is contained in

2d−1⋃
k=0

⋃
j∈Jk

VXj (n0k, n0) ⊂
⋃̀
j=1

UX(pj, Uj, N);

• dC1(X, Y ) < ε;

• dC1(PXXi(pj),1,PYX,Xi(pj),1) < δ(ε), for all i ∈ {0, . . . , N} and j ∈ {1, . . . , `};

• dC0(PXXi(pj),1,PYX,Xi(pj),1) < η0, for all i ∈ {0, . . . , N} and j ∈ {1, . . . , `};

• for each k ∈ {0, . . . , 2d − 1} and for each z ∈
⋃
j∈Jk ∆j, there exists an integer

n ∈ {1, . . . , n0} such that:∣∣∣∣log detP Y
Xn0k

(x),n − log detP Y
PX
pj,n0k

(z),n

∣∣∣∣ > 3K.

Claim 5. For each y ∈
⋃`
j=1Dj, there exist k ∈ {0, . . . , 2d − 1}, j ∈ Jk, and t ∈ [0, 2],

such that y = Yt(w), with w ∈ ∆j and PYX,pj ,n0k
(w) ∈ PXpj ,n0k

(∆j).

Proof. Let y ∈
⋃`
j=1Dj. By Claim 4, there exist j ∈ {1, . . . , `}, z ∈ ∆j and u ∈

[0, 3
2
] such that y = PXpj ,u(z), and NX,z(2λ) ⊂ ∆j. We have dC0((PXpj ,u)

−1, (PYX,pj ,u)
−1) <

η0 < λ
2
, hence y = PYX,pj ,u(w) = Yt(w), for some t ∈ [0, 2], and w ∈ ∆j satisfying

NX,w(λ) ⊂ ∆j. Moreover, X is bounded by C, hence NX,Pi
X,pj

(w)((2C)−iλ) ⊂ PXpj ,i(∆j),

for all i ∈ {0, . . . , N − 1}. For any i ∈ {0, . . . , N − 1}, by (2.5.19), and by the fact that
dC0(PXXi(pj),1,PYX,Xi(pj),1) < η0, we have the estimate

d(PXpj ,i+1(w),PYX,pj ,i+1(w)) ≤ d(PXXi(pj),1 ◦ PXpj ,i(w),PXXi(pj),1 ◦ PYX,pj ,i(w))

+ d(PXXi(pj),1 ◦ PYX,pj ,i(w),PYX,Xi(pj),1 ◦ PYX,pj ,i(w))

≤ 2Cd(PXpj ,i(w),PYX,pj ,i(w)) + η0.

Thus, for any i ∈ {0, . . . , N − 1}, we obtain

d(PXpj ,i(w),PYX,pj ,i(w)) ≤ aη0(i) < (2C)−Nλ.

Let k ∈ {0, . . . , 2d − 1} be such that j ∈ Jk. We conclude that PYX,pj ,n0k
(w) ∈

NX,PY
X,pj,n0k

(w)((2C)−n0kλ) ⊂ PXpj ,n0k
(∆j), where Yt(w) = y.
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We deduce that for each y ∈ D ⊂ ∪`j=1Dj, there exist k ∈ {0, . . . , 2d − 1}, j ∈ Jk,
w ∈ ∆j, t ∈ [0, 2], such that y = Yt(w), and there exists n ∈ {1, . . . , n0}, such that

| log detP Y
Xn0k

(x),n − log detP Y
PY
X,pj,n0k

(w),n| > 3K.

Since the vector field X−Y has support in
⋃`
j=1 UX(pj, Uj, N), which is disjoint from the

orbit orbX(x), we have Xn0k(x) = Yn0k(x). Moreover, there exists t′ ∈ [n0k − 2, n0k + 2]
such that PYX,pj ,n0k

(w) = Yt′(y). We thus have

| log detP Y
Yn0k

(x),n − log detP Y
Yt′ (y),n| > 3K.

We have P Y
Yt′ (y),n = P Y

Yn0k
(y),n ◦ P Y

Yt′ (y),n0k−t′ , with n0k − t′ ∈ [−2, 2]. Recall that K > 0

was chosen such that K > 2d log(2C). Since Y is close to X, we can assume that Y is
bounded by 2C. We thus get

| log detP Y
Yn0k

(x),n − log detP Y
Yn0k

(y),n|

≥ | log detP Y
Yn0k

(x),n − log detP Y
Yt′ (y),n| − max

u′∈[−2,2]
max
y′∈MX

| log detP Y
y′,u′|

> 3K − 2d log(2C) > 2K.

Besides, P Y
z,n+n0k

= P Y
Yn0k

(z),n ◦ P Y
z,n0k

, hence of the following two cases holds:

• | log detP Y
x,n0k

− log detP Y
y,n0k
| > K;

• | log detP Y
x,n+n0k

− log detP Y
y,n+n0k

| > K.

In either case, | log detP Y
x,n′ − log detP Y

y,n′| > K, for some n′ ∈ {1, . . . , N}, as required.

By construction, the support of X−Y is contained in at most N iterates of O−X1(O)
for some trapping region O, and thus, the iterates of O − X1(O) for X and Y coincide.
This implies that the vector fields X and Y have the same chain recurrent set, and they
coincide on this set, which concludes the proof.

Proof of Theorem 2.5.2

Let F be a countable and dense subset of M , and let K = {Dn}n∈N be a countable
collection of compact sets Dn, that verifies the following conditions:

– diamDn → 0, as n→ +∞;

– for any n0 ≥ 1, it holds
⋃
n≥n0

Dn = M .

For each D ∈ K we define the following set

OD = {X ∈ X1(M) : ∃ open set U , X1(U) ⊂ U and D ⊂ (U −X1(U))}.
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It is easy to see that OD is open. For any point x ∈ F we define

Ux,D = {X ∈ OD : x /∈ Zero(X) and orbX(x) ∩D = ∅}.

This set is not open. The next lemma gives a criterion for a vector field X to be in its
interior.

Lemma 2.5.12. Let X ∈ Ux,D and let U ⊂ M be an open subset such that X1(U) ⊂ U
and D ⊂ (U −X1(U)). Assume that orbX(x) ∩ (U −X1(U)) 6= ∅. Then X belongs to the
interior of Ux,D, in particular, for any Y ∈ X1(M) sufficiently close to X it holds that
orbY (x) ∩D = ∅.

Proof. Observe that the conditions X1(U) ⊂ U and D ⊂ (U − X1(U)) are open. If
orbX(x)∩U 6= ∅, we can fix t1, t2 ∈ R such that

(
orbX(x) ∩ U −X1(U)

)
⊂ X[t1,t2](x). We

can also assume that this property is open, that is, for any C1 vector field Y sufficiently
close to X, it holds

orbY (x) ∩ (U − Y1(U)) ⊂ Y[t1,t2](x).

Since D and X[t1,t2](x) are compact and disjoint, the distance between them is strictly
positive. This implies that for any Y sufficiently C1-close to X it holds that Y[t1,t2](x)
does not intersect D. Since for any Y close to X, U − Y1(U) is a fundamental domain for
the attracting region Y , we conclude that orbY (x) ∩D = ∅. In particular, X belongs to
the interior of Ux,D.

The proof of the following lemma is the same as Lemma 15 in [BCW09].

Lemma 2.5.13. The set Int(Ux,D) ∪ Int(OD − Ux,D) is open and dense inside OD.

First, observe that if X ∈ Ux,D then D ∪ {x} do not have any singularity of X. In
particular, the linear Poincaré flow is well defined for any point y ∈ D ∪ {x}. For x ∈ F ,
D ∈ K and any K ∈ N, we define:

Vx,D,K :=
{
X ∈ Int(Ux,D) : ∀y ∈ D, ∃n ≥ 1, | log detPX

y,n − log detPX
x,n| > K

}
.

Using the fact that D is compact, it is easy to see that Vx,D,K is open inside Int(Ux,D).
Proposition 2.5.11 implies that Vx,D,K is dense in Int(Ux,D). Therefore, the set

Wx,D,K = Vx,D,K ∪ Int(OD − Ux,D) ∪ Int(X1(M)−OD)

is open and dense in X1(M). Define the set

R0 =
⋂

x∈F ,D∈K,K∈N

Wx,D,K .

By Baire’s theorem, this set is residual in X1(M). Let R = R0 ∩ R∗, where R∗ is the
residual subset given by Theorem 2.5.1.

Let X ∈ R. Consider x ∈ F − Zero(X) and y ∈ M − CR(X) such that y /∈ orbX(x).
Since y /∈ CR(X), by Conley’s theory there exists an open set U ⊂M such that X1(U) ⊂
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U and y ∈ (U − X1(U)) (see for instance chapter 4 in [AN07]). Observe also that
orbX(x)∩(U−X1(U)) is either empty or a compact orbit segment. Take D ∈ K a compact
set that contains y. If its diameter is sufficiently small, we have that D ⊂ (U − X1(U)
and orbX(x) ∩D = ∅.

Hence X ∈ Ux,D. Since X ∈ R0 and by the definition of R0, for every K ∈ N, it
holds that X ∈ Wx,D,K . By the definition of Wx,D,K and since X ∈ Ux,D, we have that
X ∈ Vx,D,K . Therefore, for any K ∈ N, there exists n ≥ 1 such that

| log detPX
x,n − log detPX

y,n| > K.

We conclude that X verifies the unbounded normal distortion property.

2.5.2 Collinearity

Once we have established Theorem 2.5.2, by combining Proposition 2.1.5 and some known
generic results one obtains the collinearity of the centralizer of a C1-generic vector field.

Theorem 2.5.14. There exists a residual subset of R ⊂ X1(M) such that if X ∈ R then
the C1-centralizer of X is collinear.

Proof. The result follows directly from Proposition 2.1.5, and Theorems 2.5.1 and 2.5.2.

2.5.3 Quasi-triviality

By Theorem 2.5.1, we have that C1-generically all the singularities are hyperbolic. As
a consequence of Theorem 2.3.3, since C1-generically the C1-centralizer is collinear and
all the singularities are hyperbolic, we conclude that C1-generically the C1-centralizer is
quasi-trivial. More precisely, we have

Theorem 2.5.15. Let M be a compact manifold. there exists a residual subset R1 ⊂
X1(M) such that if X ∈ R1, then any singularity and periodic orbit of X is hyperbolic,
Per(X) = Ω(X) = CR(X), and

C1(X) = {fX : f ∈ I1(X)}, where I1(X) = {f ∈ C1(M,R), X · f ≡ 0}.

Proof. By Theorem 2.5.14, there exists a residual subset R ⊂ X1(M) whose elements
have collinear C1-centralizer. Moreover, by Theorem 2.5.1, there exists a residual subset
R∗ ⊂ X1(M) such that for any X ∈ R∗, any singularity and periodic orbit of X is
hyperbolic, and Per(X) = Ω(X) = CR(X). Then, R1 := R ∩ R∗ is residual, and any
X ∈ R1 satisfies the hypotheses of Theorem 2.3.3, which concludes.
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2.5.4 Triviality

C1-generic triviality for systems with a countable number of chain recurrent
classes

We can now conclude the proof of Theorem B. To prove that we need the following lemma.

Lemma 2.5.16. there exists a residual subset RCR ⊂ X1(M) such that if X ∈ RCR and
f ∈ C0(M) is an X-invariant function, then f is constant on chain-recurrent classes.

Proof. By Theorem 1 in [Cro06], there exists a residual subset RCR ⊂ X1(M) that verifies
the following: if X ∈ RCR and C ⊂ CR(X) is a chain-recurrent class, then there exists a
sequence of periodic orbits (O(pn))n∈N that converges to C in the Hausdorff topology.

By this property, for any two points x, y ∈ C, there exist two sequences of points
(qn)n∈N and (q′n)n∈N, with qn, q

′
n ∈ O(pn), such that qn → x and q′n → y as n→ +∞. Let

f be a continuous function which is X-invariant. By continuity,

lim
n→+∞

f(qn) = f(x) and lim
n→+∞

f(q′n) = f(y).

However, since f is X-invariant and by our choice of qn and q′n, we have that f(pn) =
f(qn) = f(q′n), which implies that f(x) = f(y).

Proof of Theorem B. Take R := R1 ∩ RCR, where R1 is the residual subset given by
Theorem 2.5.15. Using the conclusion of Lemma 2.5.16 and arguments analogous to the
proof of Theorem 2.4.1 we can easily obtain the conclusion of Theorem B.

2.6 Appendix: The separating property is not

generic

In this section we prove that the separating property is not generic. Let M be a compact,
connected Riemannian manifold. Take any Morse function f ∈ C2(M,R) and letX := ∇f
be the gradient vector field which is C1. It holds that X has two hyperbolic singularities,
σs and σu with the following properties:

• σs is a hyperbolic sink and σu is a hyperbolic source;

• W s(σs) ∩W u(σu) 6= ∅;

• for any C1 vector field Y which is sufficiently C1-close to X, then W s(σs(Y )) ∩
W u(σu(Y )) 6= ∅, where σ∗(Y ) is the continuation of σ∗ for the vector field Y , for
∗ = s, u.

We claim that X is C1-robustly not separating. Let U be a compact ball inside
(W s(σs) ∩W u(σu)) − {σs, σu}. Since compact parts of stable and unstable manifolds
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vary continuously with the vector field, it holds for any Y sufficiently C1-close to X it
holds that U ⊂ (W s(σs(Y )) ∩W u(σu(Y )))− {σs, Bu}.

Take any ε > 0 and consider the the balls B(σs,
ε
2
) and B(σu,

ε
2
). Since U is compact,

there exists TX = T (ε) > 0 such that any point x ∈ U verifies

X−t(x) ∈ B
(
σu,

ε

2

)
and Xt(x) ∈ B

(
σs,

ε

2

)
, for all t ≥ T . (2.6.1)

Notice that for any two points x, y ∈ B(σs,
ε
2
) it holds that d(Xt(x), Xt(y)) < ε, for

all t ≥ 0. Similar statement is true for points in B(σu,
ε
2
) and the backward orbit.

Since T that verifies (2.6.1) is fixed, there exists δ > 0 such that for any x ∈ U and
any y ∈ B(x, δ) ⊂ U , it holds that

d(Xt(x), Xt(y)) < ε, for any t ∈ R.

In particular X is not separating. Also, observe that this holds for any Y sufficiently
C1-close to X. Thus we conclude that X is C1-robustly not separating.

Remark 2.6.1. It is easy to see that the same type of example proves that the hypothesis
of Proposition 2.2.2 is not generic. We conclude that the hypotheses of Propositions 2.1.4
and 2.2.2 are not generic.
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Chapter 3

The diffeomorphism centralizer

3.1 Introduction

In this chapter we study a different type of symmetry for flows called the diffeormosphism
centralizer. For any 1 ≤ s ≤ r, we define the Cs-diffeomorphism centralizer of X as

CsDiff(X) := {f ∈ Diffs(M) : f ◦Xt = Xt ◦ f, ∀t ∈ R}. (3.1.1)

This is the set of diffeomorphisms that commute with the flow. Throughout this chapter
we will refer to the C1-diffeomorphism centralizer of a vector field X as the C1-centralizer
of X. We remark that this type of centralizer is less rigid than the vector field centralizer,
see section 3.5 for a discussion on that.

We define two types of “triviality” for this centralizer. Given a Cr-vector field X, we
say that it has quasi-trivial Cs-centralizer if for any f ∈ ZsDiff(X), f is a reparametrization
of the flow Xt, that is, there exists a continuous function τ : M → R such that f(.) =
Xτ(.)(.). If X has quasi-trivial Cs-centralizer and for every element of the centralizer f ,
the function τ(.) is constant, then we say that the Cs-centralizer is trivial.

Observe that the set {Xt(.) : t ∈ R} is always contained in the centralizer of X. So a
vector field has trivial centralizer if the centralizer is the smallest one possible.

It is natural to study generic systems that present some form of “hyperbolicity”. In
this chapter we will focus on C1-generic vector fields that have at most finitely many
sinks or sources. In [ABC06], the authors proved that such systems have a weak form
of hyperbolicity named dominated splitting (see theorem 3.2.4). Our main result is the
following:

Theorem I. There exists a C1-residual subset R ⊂ X 1(M) such that if X ∈ R has at
most finitely many sinks or sources, then X has quasi-trivial C1-centralizer. Moreover,
if in addition X has at most countably many chain-recurrent classes, then X has trivial
C1-centralizer.

We state some consequences of this theorem. In [Pei60], Peixoto proved that a C1-
generic vector field on a compact surface is Morse-Smale. Recall that a vector field is
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Morse-Smale if the non-wandering set is the union of finitely many hyperbolic periodic
orbits and hyperbolic singularities, and it verifies some transversality condition. In par-
ticular, the non-wandering set is finite. As a consequence of Theorem I and the result of
Peixoto, we have the following corollary.

Corollary A. Let M be a compact connected surface. Then, there exists a residual subset
R† ⊂ X1(M) such that for any X ∈ R†, the C1-centralizer of X is trivial.

A C1-vector field X is Axiom A if the non-wandering set is hyperbolic and the periodic
points are dense in the non-wandering set. It is well known that Axiom A vector fields
have finitely many chain-recurrent classes.

Corollary B. A C1-generic Axiom A vector field has trivial C1-centralizer.

Remark 3.1.1. Corollary B actually holds for more a general type of hyperbolic system
called sectional Axiom A.

Another corollary is for C1-vector fields far from homoclinic tangencies in dimension
three (see [CY17] for precise definitions). By the proof of the Palis conjecture in dimension
three given in [CY17], a C1-generic X ∈ X1(M) which cannot be approximated by such
vector fields is singular axiom A (or sectional axiom A), in particular, it has a finite
number of chain-recurrent classes. Hence:

Corollary C. Let M be a compact connected 3-manifold. Then there exists a residual
subset R‡ ⊂ X1(M) such that any vector field X ∈ R‡ which cannot be approximated by
vector fields exhibiting a homoclinic tangency has trivial C1-centralizer.

To prove Theorem I, we will need the proposition below. This proposition deals
with the construction of the reparametrization of the flow, given a diffeomorphism in the
centralizer that fixes orbits.

Proposition 3.1.2. Let X ∈ X1(M) be a C1-vector field whose periodic orbits and sin-
gularities are all hyperbolic. Let f ∈ C1

Diff(X) be an element of the centralizer with the
following property: there exists a constant T > 0 such that for every p ∈ M , we have
f(p) ∈ X[−T,T ](p), where X[−T,T ](p) is the piece of orbit of p from time −T to T . Then
there exists an X-invariant continuous function τ : M → R such that f(.) = Xτ(.)(.).

Observe that in Theorem I, without the additional assumption of at most countably
many chain recurrent classes, we do not get the triviality of the C1-centralizer for a C1-
generic vector field that has at most finitely many sinks or sources. What is missing to
obtain the triviality of the C1-centralizer in this case it is to prove that for a C1-generic
vector field every invariant continuous function is constant. This was conjectured (without
specific requirement on the regularities) by René Thom ([Thom]).

Conjecture 1 ([Thom]). For a C1-generic vector field, any C1 (or C0) invariant function
of the manifold is constant.

Also, after the previous chapter, to conclude that a C1-generic vector field has trivial
C1-vector field centralizer it is equivalent to proving Thom’s conjecture.
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Our approach to prove Theorem I is an adaptation for flows of the approach used by
Bonatti-Crovisier-Wilkinson in [BCW09]. We organize this paper as follows. In section
3.2 we will introduce some basic notions and notations of vector fields that we will use,
we will also recall the main tools from C1-generic dynamics that will be used. The proof
of proposition 3.1.2 is given in section 3.3. The proof of Theorem I is given in section 3.4.
We conclude this paper with one example that justifies our claim that the diffeomorphism
centralizer is less rigid than the vector field centralizer, in section 3.5.

3.2 Preliminaries

In this section we introduce the notations we will use throughout this article and state
some preliminary results on C1-generic dynamics that will be used in our proofs.

3.2.1 General notions on vector fields

Let M be a smooth manifold of dimension d ≥ 1, which we assume to be compact
and boundaryless. For any r ≥ 1, we denote by Xr(M) the space of vector fields over
M , endowed with the Cr topology. A property P for vector fields in Xr(M) is called
Cr-generic if it is satisfied for any vector field in a residual set of Xr(M). Recall that
R ⊂ Xr(M) is residual if it contains a dense Gδ-subset of Xr(M).

In the following, given a vector field X ∈ X1(M), we denote by Sing(X) := {x ∈ M :
X(x) = 0} the set of singularities (or zeros) of X. The set of (non-singular) periodic
points will be denoted by Per(X), and we set Crit(X) = Per(X) ∪ Sing(X).

For any x ∈ M and any interval I ⊂ R, we also let XI(x) := {Xt(x) : t ∈ I}. In
particular, we denote by orb(x) := XR(x) the orbit of the point x under X.

Let X ∈ X1(M) be some C1 vector field. The non-wandering set Ω(X) of X is defined
as the set of all points x ∈ M such that for any open neighbourhood U of x and for any
T > 0, there exists a time t > T such that U ∩Xt(U) 6= ∅.

Let us also recall another weaker notion of recurrence. Given two points x, y ∈M , we
write x ≺X y if for any ε > 0 and T > 0, there exists an (ε, T )-pseudo orbit connecting
them, i.e., there exist n ≥ 2, t1, t2, . . . , tn−1 ∈ [T,+∞), and x = x1, x2, . . . , xn = y ∈ M ,
such that d(Xtj(xj), xj+1) < ε, for j ∈ {1, . . . , n−1}. The chain recurrent set CR(X) ⊂M
of X is defined as the set of all points x ∈M such that x ≺X x. Restricted to CR(X), we
consider the equivalence relation given by x ∼X y if and only if x ≺X y and y ≺X x. An
equivalence class under the relation ∼X is called a chain recurrent class : x, y ∈ CR(X)
belong to the same chain recurrent class if x ∼X y. In particular, chain recurrent classes
define a partition of the chain recurrent set CR(X).

An X-invariant compact set Λ is hyperbolic if there is a continuous decomposition of
the tangent bundle over Λ, TΛM = Es ⊕ 〈X〉 ⊕ Eu into DXt-invariant subbundles that
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verifies the following property: there exists T > 0 such that for any x ∈ Λ, we have

‖DXT (x)|Es
x
‖ < 1

2
and ‖DX−T (x)|Eu

x
‖ < 1

2
.

A periodic point x ∈ Per(X) is hyperbolic if orb(x) is a hyperbolic set. Let p ∈ Per(X)
be a hyperbolic periodic point and γp be its orbit. We define its strong stable manifold
as

W ss(p) := {x ∈M : d(Xt(x), Xt(p))
t→+∞−−−−→ 0}. (3.2.1)

The stable manifold theorem states that W ss(p) is an immersed submanifold of dimension
dim(Es(p)) tangent to Es(p) at p. We define the stable manifold of the orbit of p as

W s(p) =
⋃
q∈γp

W ss(q).

A hyperbolic periodic orbit is a sink if the unstable direction is trivial. It is a source if
the stable direction is trivial. A hyperbolic periodic orbit is a saddle if it is neither a sink
nor a source.

3.2.2 C1-generic dynamics, the unbounded normal distortion
and large normal derivative properties

In this part we will present the main tools from C1-generic dynamics that we will need
to prove Theorem I. Let us first fix some notation.

For a given vector field X ∈ X1(M), we define the non-singular set as MX := M −
Sing(X). Observe that for a fixed riemannian metric, for any point p ∈ MX , it is well
defined the subspace orthogonal to the vector field direction, NX(p) = 〈X(p)〉⊥. This
define the normal bundle

NX =
⊔

p∈MX

NX(p)

over MX . Let ΠX : TMX → NX be the orthogonal projection on NX . Whenever it is
clear that we have fixed a vector field X, we will denote the normal bundle and othogonal
projection by N and Π.

On NX we have a well defined flow, called the linear Poincaré flow defined as follows:
for any point p ∈ MX , vector v ∈ NX(p) and time t ∈ R, the image of v by the linear
Poincaré flow is

Pt(p).v = ΠX(Xt(p)) ◦DXt(p)v.

Next, we define two notions that will be crucial in our proof.

Definition 3.2.1 (Unbounded normal distortion (UND)). Let X ∈ X1(M) be a C1-vector
field. We say that X verifies the unbounded normal distortion property if the following
holds: there exists a dense subset D ⊂M −CR(X), such that for any K ≥ 1, x ∈ D and
y ∈M − Ω(X) verifying y /∈ orb(x), there is n ∈ (0,+∞), such that

| log detPn(x)− log detPn(y)| > K.
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Definition 3.2.2 (Unbounded normal distortion on stable manifolds (UNDs)). Let X ∈
X1(M) be a C1-vector field. We say that X verifies the unbounded normal distortion on
stable manifolds property if the following holds: for any p ∈ Crit(X), there exists a dense
subset Dsp ⊂ W s(p), such that for any K ≥ 1, x ∈ Dsp and y ∈ W s(p) verifying y /∈ orb(x),
there is n ∈ (0,+∞), such that

| log det
(
Pn(x)|TxW s(p)

)
− log det

(
Pn(y)|TyW s(p)

)
| > K.

Given a vector field X that has the UNDs property, we define

Ds =
⋃

p∈Per(X)

Ds
p.

In [BCW09], the authors introduce these notions for diffeomorphisms and they use
it as the main ingredient to obtain triviality of the centralizer in an open and dense
subset of the manifold. They prove that these properties actually hold C1-generically.
For vector fields, the C1-genericity of the UND property was proved in [LOS18] (theorem
6.3), and the C1-genericity of the UNDs property was proved in [BV18](theorem 3.2). We
summarize it in the following theorem:

Theorem 3.2.3 ([LOS18] and [BV18]). There exists a residual subset R1 ⊂ X1(M) such
that any vector field X ∈ R1 verifies the UND and UNDs properties.

Given a non-singular invariant set Λ ⊂MX , we say that it admits a dominated splitting
for the linear Poincaré flow if there exists a Pt-invariant, non-trivial decomposition of the
normal bundle NX

Λ = E ⊕ F and a constant T > 0 such that for any x ∈ Λ

‖PT (x)|E‖.‖(PT (x)|F )−1‖ < 1

2
.

In [ABC06], the authors proved that C1-generically for a diffeomorphism far from the
existence of infinitely many periodic sinks or sources (Newhouse phenomenon), one can
obtain that the non-wandering set is decomposed into the disjoint union of finitely many
periodic sinks or sources and invariant sets each of which admits a dominated decom-
position. The key ingredient in their proof is a result of Bonatti-Gourmelon-Vivier (see
corollary 2.19 in [BGV06]), which is a generalization of a previous theorem in [BDP03].
In [BGV06], the authors also prove a version of corollary 2.19 for flows, given by corollary
2.22. Using this, it is easy to adapt the proof of Abdenur-Bonatti-Crovisier to obtain the
following statement:

Theorem 3.2.4 ([ABC06]). There exists a residual subset R2 ⊂ X1(M) such that for
any X ∈ R2, either (1) or (2) holds:

1. the non-wandering set admits a decomposition

Ω(X) = Sink(X) t Source(X) t Λ1 t · · · t ΛkX , (3.2.2)

such that Sink(X) is the set of periodic sinks of X, the set Source(X) is the set of
periodic sources of X, and each Λi − Sing(X) admits a dominated splitting for the
linear Poincaré flow;

58



2. there are infinitely many periodic sinks or sources.

In [BCW09], the authors also introduce the notion of large derivative for diffeomor-
phisms (see section 2.3 in [BCW09]). This is the key property to pass from triviality of
the centralizer in an open and dense subset of M to triviality in the entire manifold. For
vector fields we introduce the following similar definition:

Definition 3.2.5 (Large normal derivative (LND)). A vector field X ∈ X1(M) satisfies the
LND property if for any K > 0, there exists T = T (K) > 0 such that for any p ∈ MX

and t > T , there exists s ∈ R that verifies:

max{‖Pt(Xs(p))‖, ‖P−t(Xs+T (p))‖} > K.

If the chain-recurrent set admits a decomposition as in (3.2.2), then the LND property
holds. This was remarked for diffeomorphisms by Bonatti-Crovisier-Wilkinson (see remark
8 of Appendix A in [BCW09]). The same holds in our context for flows, we make it precise
in the following corollary:

Corollary 3.2.6. Let R2 ⊂ X1(M) be the residual subset from theorem 3.2.4. If X ∈ R2

and X does not have infinitely many sinks or sources, then X has the LND property.

In the next statement, we summarize some other C1-generic properties that we will
use.

Theorem 3.2.7. There exists R3 ⊂ X1(M) a residual subset such that any X ∈ R3

verifies:

• every periodic orbit, and singularity, is hyperbolic (Kupka-Smale);

• two distinct periodic orbits have different periods;

• any connected component O of the interior of Ω(X) is contained in the closure of
the stable manifold of a periodic point (Bonatti-Crovisier, [BC04]).

3.3 Proof of Proposition 3.1.2

Throughout this section we fix a vector field X ∈ X1(M) whose periodic orbits and
singularities are all hyperbolic. We also fix f ∈ C1

Diff(X) a C1-diffeomorphism in the
centralizer of X that verifies the conditions of proposition 3.1.2. The goal of this section
is to construct an X-invariant continuous function τ : M → R such that f(.) = Xτ(.)(.).

3.3.1 Non-critical points

In this subsection we construct the function τ for non-critical points. This is given in the
following lemma:
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Lemma 3.3.1. There exists an X-invariant continuous function τ1 : M − Crit(X)→ R
such that f |M−Crit(X)(.) = Xτ1(.)(.).

Proof. Let p ∈ M − Crit(X). Since p is a non-critical point and f fixes its orbit, there
is an unique Tp ∈ R such that f(p) = XTp(p). We claim that for any q ∈ orb(p) we have
f(q) = XTp(q).

Indeed, let q ∈ orb(p) and let s ∈ R be such that q = Xs(p). Hence

f(q) = f(Xs(p)) = Xs(f(p)) = Xs(XTp(p)) = XTp(Xs(p)) = XTp(q).

Define τ1(p) = Tp for any p ∈M − Crit(X).

Claim 6. The function τ1 is continuous on M − Crit(X).

Proof. Let T > 0 be the constant that appears in the hypothesis of proposition 3.1.2,
that is, for any q ∈ M , f(q) ∈ X[−T,T ](q). Fix p ∈ M − Crit(X), we will prove that τ1 is
continuous on p.

For each δ > 0, define N (p, δ) := expp(N(p, δ)), where expp is the exponential map on
p and N(p, δ) is the ball of radius δ inside N(p) ⊂ TpM . For δ small enough, the following
map is a C1-diffeomorphism

Ψ : (−T − 1, T + 1)×N (p, δ) −→ M
(t, x) 7→ Xt(x).

Let V = Im(Ψ). The pair (Ψ−1, V ) is a flow box around the piece of orbit X(−T−1,T+1)(p).
Let (pn)n∈N be a sequence of points contained in N (p, δ)∩M −Crit(X), which converges
to p. Since f(pn) ∈ X[−T,T ](pn), we have that Ψ−1(f(pn)) = (τ1(pn), pn). By the continuity
of f , we obtain that lim

n→+∞
τ1(pn) = τ1(p) and τ1 is continuous on M − Crit(X).

This claim concludes the proof of lemma 3.3.1.

3.3.2 Periodic points

In this subsection we prove that there exists a continuous extension of the function τ1

constructed in the previous section to the periodic points. We prove the following lemma:

Lemma 3.3.2. There exists an X-invariant continuous function τ2 : M − Sing(X)→ R
that verifies the following:

• f |M−Sing(X)(.) = Xτ2(.)(.);

• τ2|M−Crit(X) = τ1.
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Proof. Let p ∈ Per(X) be a hyperbolic periodic point and let π(p) be the period of p.
Notice that the equation Xs(p) = f(p) has infinitely many solutions for s ∈ R, thus the
same strategy that we used for non-periodic points does not apply in this case. However,
we will prove that the function τ1 is constant on W s(p) and W u(p). This will allow us to
extend it to the periodic orbit.

Claim 7. The function τ1 is constant on W s(p)− orb(p) and W u(p)− orb(p).

Proof. Recall that

W s(p) =
⋃

t∈[0,π(p)]

W ss(Xt(p))

and that the strong stable manifolds forms a foliation of the stable manifold, in particular,
if t, s ∈ [0, π(p)) are such that t 6= s then W ss(Xt(p)) ∩W ss(Xs(p)) = ∅.

Observe that W s(p) − orb(p) ⊂ M − Crit(X), hence, the function τ1 is well defined
on W s(p) − orb(p). Since the function τ1 is also X-invariant, it is enough to prove that
τ1 is constant along W ss(p)− {p}.

Since f is a C1-diffeomorphism that commutes with the flow, it is well known that
f(W ss(p)) = W ss(f(p)). If τ1 was not constant along W ss(p) there would be two points
x, y ∈ W ss(p) such that 0 < |τ1(x)− τ1(y)| < π(p). Hence,

f(x) = Xτ1(x)(x) ∈ W ss(Xτ1(x)(p)) and f(y) = Xτ1(y)(y) ∈ W ss(Xτ1(y)(p)).

However, W ss(Xτ1(x)(x)) ∩ W ss(Xτ1(y)(y)) = ∅. This implies that f(W ss(p)) is not
contained in any strong stable manifold, which is a contradiction with the fact that
f(W ss(p)) = W ss(f(p)). This proves that f is constant on each connected component of
W s(p)− orb(p). Observe that W s(p)− orb(p) has at most two connected components.

Since f fixes the orbit of p, it induces a C1-diffeomorphism f s on W s(p). If τ1 was
not constant on W s(p), it would take two different values T1 on the connected component
O1 and T2 on the connected component O2. From the above calculation, there exists
k ∈ Z− {0} such that T2 = T1 + kπ(p).

On TW s(p) we consider the normal bundle Ns = 〈X〉⊥, for the riemannian metric
induced by the metric of the manifold on W s(p). Let Πs : TW s(p)→ Ns be the orthogonal
projection on Ns and let P s

t (.) be the linear Poincaré flow restricted to W s(p).

For any q1 ∈ O1 and q2 ∈ O2, we have the following formulas:

Πs(f s(q1))Df s(q1)Πs(q1) = P s
T1

(q1) and Πs(f s(q2))Df s(q2)Πs(q2) = P s
T2

(q2).

Take qn1 a sequence in O1 converging to p and qn2 a sequence in O2 converging to p.
Since f s is C1, we would have that

lim
n→+∞

Πs(f s(qn1 ))Df s(qn1 )Πs(qn1 ) =

lim
n→+∞

Πs(f s(qn2 ))Df s(qn2 )Πs(qn2 ) = Πs(f s(p))Df s(p)Πs(p).

However, since p is a hyperbolic periodic point and T2 6= T1, we have

‖P s
T1

(p)‖ 6= ‖P s
T2

(p)‖.
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This is a contradiction and τ1 is constant on W s(p).

Claim 7 implies that if p is a periodic sink or source, then the function τ2 has a
continuous extension to the orbit of p.

Let us assume that p is a hyperbolic saddle. We remark that the following claim is
independent of claim 7.

Claim 8. There is a constant cp ∈ R such that τ1|(W s(p)−orb(p)) = τ1|(Wu(p)−orb(p)) = cp.

Proof. The proof of this fact is the same as the proof of Proposition 4.4 in [LOS18]. For
the sake of completeness we will repeat it here.

Fix a point ps ∈ W s(p)−orb(p). We will prove that for any point pu ∈ W u(p)−orb(p),
we have τ1(pu) = τ1(ps). By the X-invariance of τ1, it is enough to consider pu ∈ W u

loc(σ).
Let (Ds

n)n∈N be a sequence of discs transverse to W u
loc(p) and with radius 1

n
. By the

lambda-lemma (see [PM82] chapter 2.7), for each n ∈ N and for any disc Du transverse
to W s

loc(p), there exists tn > 0 such that Xtn(Du) t Ds
n 6= ∅. Since this holds for any disc

Du and there are only countably many periodic orbits, for each n ∈ N we can find a disc
Du
n centered in ps with radius smaller than 1

n
and a point qn ∈ (Xtn(Du) t Ds

n) which is
non-periodic.

It is immediate that qn → ps, as n → +∞. Since the function τ1 is continuous on
MX−Crit(X), we have that τ1(qn)→ τ1(ps). We also have that Xtn(qn)→ pu as n→ +∞.
Hence, τ1(Xtn(qn))→ τ1(pu). By the X-invariance of τ1, we obtain

τ1(ps) = lim
n→+∞

τ1(qn) = lim
n→+∞

τ1(Xtn(qn)) = τ1(pu).

This implies that for any pu ∈ W u(p)− orb(p), we have τ1(ps) = τ1(pu). Analogously, we
can prove that for a fixed p′u ∈ W u

loc(p) − orb(p) and for any p′s ∈ W s
loc(p) − orb(p), it is

verified τ1(p′s) = τ1(p′u). We conclude that τ1|W s(p)−orb(p) = τ1|Wu(p)−orb(p) = cp, for some
constant cp ∈ R.

From this claim, we can define an extension of τ1 to the set of periodic points by setting
τ2|orb(p) := cp, for p ∈ Per(X). Let us prove that τ2 is continuous on M − Sing(X).

Fix p ∈ Per(X). Since τ2 is constant on W s(p), in the case that p is a sink, it is
immediate that τ2 is continuous on p. Similarly, we conclude continuity of τ2 on p in the
case that p is a source. Suppose that p is a saddle and let (pn)n∈N ⊂ M − Sing(X) be a
sequence converging to p.

Suppose first that the sequence (pn)n∈N is formed by non-periodic points, hence, by the
continuity of τ1 and using the same argument as in the proof of claim 8, we can conclude
that lim

n→+∞
τ2(pn) = τ2(p).

In the case that (pn)n∈N is formed by periodic points, we may choose a sequence of
points (qn)n∈N ⊂ M − Crit(X) such that each n ∈ N, the point qn is contained in the
stable manifold of pn and d(qn, pn) < 1

n
. Observe that limn→+∞ qn = p. By claim 8, we

have that τ2(qn) = τ2(pn), hence lim
n→+∞

τ2(pn) = lim
n→+∞

τ2(qn) = τ2(p). We conclude that

τ2 is continuous.
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3.3.3 Singularities

We conclude the proof of proposition 3.1.2, by extending continuously the function τ2

from lemma 3.3.2 to the singularities. This extension will give us the function τ that we
wanted. We separate the proof into the case when the singularity is a saddle and when
the singularity is a sink or source. This is given by the two lemmas below.

Lemma 3.3.3. Let σ ∈ Sing(X) be a hyperbolic singularity which is a saddle. Then the
function τ2 can be extended continuously to σ.

Proof. The proof of this lemma is the same as the proof of claim 8 (see also Proposition
4.4 in [LOS18]).

Lemma 3.3.4. Let σ ∈ Sing(X) be a singularity which is a sink. Then the function
τ2 is constant on W s(σ), in particular, it can be extended continuously to σ. A similar
statement holds if σ is a source.

Proof. Suppose that τ2 is not constant on W s(σ), then there exists an open set U ⊂ W s(σ)
such that τ2(U) = (a, b), where a 6= b. Suppose also that (a, b) ⊂ (0,+∞). For each
t ∈ (a, b) we fix a point xt ∈ U such that τ2(xt) = t. Thus, f(xt) = Xt(xt). By the
X-invariance of the function τ2, we obtain that fn(xt) = Xnt(xt).

Let λ1, · · · , λl ∈ C be the eigenvalues of DX(σ). For each j ∈ {1, · · · , l}, consider the
number cj = R(λj), where R(.) is the real part of a number. Since σ is a hyperbolic sink
for X, we have that cj < 0, for each j = 1, · · · , l. For each t ∈ (a, b) the value

ht := lim sup
n→+∞

1

n
log d(σ, fn(xt)) = lim sup

n→+∞

1

n
log d(σ,Xnt(xt)) (3.3.1)

belongs to the set Ct := {tc1, · · · , tcl}.

Since σ is a fixed point of the C1-diffeomorphisms f , we have that Df(σ) has at most
d different eigenvalues λ̃1, · · · , λ̃k ∈ C, where 1 ≤ k ≤ d. For each i ∈ {1, · · · , k}, let
ai = log |λ̃i| and let A = {a1, · · · , ak}. We remark that if q ∈ M is a point such that
lim

n→+∞
fn(q) = p, then

lim sup
n→+∞

1

n
log d(fn(q), p) ∈ A. (3.3.2)

Notice that the sets Ct varies continuously with t ∈ (a, b). Observe also that the set
(a, b) is uncountable and the set A is finite. Therefore, there exists t0 ∈ (a, b) such that
Ct0 ∩ A = ∅. By (3.3.1) and (3.3.2) this is a contradiction, since

ht0 ∈ A and ht0 ∈ Ct0 .

We conclude that τ2 is constant on W s(σ). If (a, b) ⊂ (−∞, 0) we can repeat this argument
for f−1 and we would obtain the same conclusion. This implies that the function τ2 can
be continuously extended to a function τ defined on σ.
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3.4 Proof of Theorem I

In this section we prove Theorem I. Let R1, R2 and R3 be the residual subsets given by
theorems 3.2.3, 3.2.4 and 3.2.7, respectively. Consider the residual set R = R1∩R2∩R3.
We claim that R is the residual subset that verifies the conditions of Theorem I.

From now on we fix X ∈ R such that X does not have infinitely many sinks or sources,
and we fix f ∈ C1

Diff(X). Since X is fixed, we will denote ΠX , and NX , by Π, and N .

We want to prove that f verifies the conditions of 3.1.2. Let D and Ds be the subsets
given by the UND and UNDs properties.

Lemma 3.4.1. For each x ∈ D ∪ Ds, we have that f(orb(x)) = orb(x).

Proof. Fix x ∈ D. Since f commutes with the flow Xt, it is easy to see that M − Ω(X)
is an f -invariant set.

Notice that DXt(f(x)) = Df(Xt(x))DXt(x)Df−1(f(x)). Since the vector field direc-
tion, 〈X〉, is invariant by Df , Df−1 and DXt, we have that

| detPt(f(x))| = | det Π(Xt(f(x)))DXt(f(x))|N(f(x))| =

| det Π(Xt(f(x)))Df(Xt(x))DXt(x)Df−1(f(x))|N(f(x))| =

| det (Π(Xt(f(x)))Df(Xt(x))) ◦ (Π(Xt(x))DXt(x)) ◦ (Π(x)Df−1(f(x))) |N(f(x))| =

| det Π(Xt(f(x)))Df(Xt(x))|N(Xt(x))|.| det Π(Xt(x))DXt(x)|N(x)|.

.| det Π(x)Df−1(f(x))|N(f(x))| = At.| detPt(x)|.Ct.

Since f is a C1-diffeomorphism and its derivative preserves the vector field direction, there
exists a constant K̃ > 1 such that

K̃−1 ≤ min{At, Ct} ≤ max{At, Ct} ≤ K̃,∀t ∈ R.

Therefore, for every t ∈ R we have that

| log | detPt(x)| − log | detPt(f(x))|| ≤ 2 log K̃. (3.4.1)

Take K > 2 log K̃. If f(x) did not belong to the orbit of x, by the UND property
there would be T ∈ R such that

| log detPT (x)− log detPT (f(x))| > K.

This is a contradiction with (3.4.1). Hence, f fixes the orbit of x.

Let x ∈ Ds. Since f commutes with the flow, it takes periodic orbits into periodic
orbits of the same period. For a generic vector field, any two distinct periodic orbits
have different periods. We conclude that f fixes each periodic orbit. Since f also takes
stable manifolds into stable manifolds, we obtain that f fixes stable manifolds. Therefore,
we can apply the same calculations made before, restricting the jacobian to the stable
manifolds and this will imply that f fixes the orbit of x. The result then follows.
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This lemma states that the UND and UNDs properties provide some type of “local”
triviality of the centralizer, meaning that f fixes a dense set of orbits. Now we want to
be able to extend this to the entire manifold. For that, we will use the LND property.
We will need the following lemma to work with points in M − CR(X):

Lemma 3.4.2. There exists an open set V ⊂M−CR(X), which is dense in M−CR(X),
and a C1-function τ : V → R such that f(.) = Xτ(.)(.) on V .

Proof. For each x ∈ D, there is an unique number Tx ∈ R such that f(x) = XTx(x).
Let p ∈ D. By Conley’s theory, there is an open set U such that X1(U) ⊂ U and
p ∈ U −X1(U) (see chapter 4 in [AN07]). Since f fixes the orbit of p, there is an unique
n ∈ Z such that f(p) ∈ Xn−1(U)−Xn(U).

Recall that for each δ > 0, we defined N (p, δ) := expp(N(p, δ)). Consider the map
Ψ(t, x) = Xt(x) defined on (−2|Tp|, 2|Tp|) × N (p, δ). For δ small enough Ψ is a C1-
diffeomorphism and f(N (p, δ)) ⊂ Xn−1(U) − Xn(U). This implies that for each q ∈
N (p, δ) ∩ D, we have that f(q) ⊂ Ψ((−2|Tp|, 2|Tp|), q). Let Vp = Im(Ψ).

Since D is dense, for each point z ∈ N (p, δ), we can take a sequence (zn)n∈N contained
in N (p, δ)∩D and converging to z. Let Ip = [−2|Tp|, 2|Tp|], By the continuity of the flow,
we have

XIp(zn)
n→+∞−−−−→ XIp(z).

Since f(zn) ∈ XIp(zn) and lim
n→+∞

f(zn) = f(z), we conclude that f(z) ∈ XIp(z). In

particular f fixes the orbit of z. Therefore, for each z ∈ N (p, δ), there is a number
Tz ∈ R such that f(z) = XTz(z). For each x ∈ Vp, consider the function τ̂(x) = Tx.
Since f and Ψ−1 are C1, we have that Ψ−1 ◦ f is also C1. For any z ∈ N (p, δ), we have
Ψ−1(f(z)) = (τ̂(z), z). From this formula, since τ̂ is constant along orbits and Ψ−1 ◦ f is
C1, we conclude that τ̂ is C1 on Vp.

Take V =
⋃
p∈D

Vp. Observe that τ̂ is uniquely defined on V (since f fixes orbits of V

and its points are non critical) and it is a C1-function such that f(.) = Xτ̂(.)(.) on V .

To deal with points in int(Ω(X)) we need the following lemma:

Lemma 3.4.3. For each hyperbolic periodic point p ∈ Per(X), there exists a number
Tp ∈ R such that for any q ∈ W s(p) it is verified that f(q) = XTp(q).

Proof. Let p ∈ Per(X) be a hyperbolic periodic point of X. Since any two different
periodic orbits have different periods (theorem 3.2.7), f fixes the orbit of p. Since the
stable manifold W s(p) is a C1-immersed submanifold, and f fixes W s(p), we have that f
induces a C1-diffeomorphim f s on W s(p), for the intrinsic topology. By lemma 3.4.1, f
fixes the orbits of the points in Dsp.

The points in a stable manifold are non-recurrent for the intrinsic topology, hence, by
an argument similar to the one in the proof of lemma 3.4.2, we obtain an open set V s

p

which is dense in W s(p), and a C1-function τ s : V s
p → R such that f s(.) = Xτs(.)(.).
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We claim that τ s(.) is constant on V s
p . The proof of this fact is essentially contained

in the proof of claim 7 in lemma 3.3.2. We sketch the proof of this fact here, for more
details on the arguments see the proof of claim 7 in lemma 3.3.1.

First we prove that τ s is constant on each connected component of V s
p . If it was not the

case, we could find two points x, y ∈ W ss(p)− {p} such that 0 < |τ s(x)− τ s(y)| < π(p),
where π(p) is the period of p. This implies that f(x) ∈ Xτs(x)(W

ss(p)) and f(y) ∈
Xτs(y)(W

ss(p)). From this, one can deduce that W ss(f(x)) ∩W ss(f(y)) = ∅, which is a
contradiction with the fact that f(W ss(p)) = W ss(f(p)). This implies that τ s is constant
in each connected component of V s

p .

Recall that on TW s(p) we defined the normal bundle Ns = 〈X〉⊥. Let Πs : TW s(p)→
Ns be the orthogonal projection on Ns and let P s

t (.) be the linear Poincaré flow restricted
to W s(p).

Suppose that τ s does not take the same value in every connected component of V s
p .

Let V1 and V2 be two connected components of V s
p such that the numbers T1 := τ s|V1 and

T2 := τ s|V2 are not equal. We may choose qn1 a sequence in V1 converging to p and qn2 a
sequence in V2 converging to p. Since f s is C1, we would have that

lim
n→+∞

Πs(f s(qn1 ))Df s(qn1 )Πs(qn1 ) =

lim
n→+∞

Πs(f s(qn2 ))Df s(qn2 )Πs(qn2 ) = Πs(f s(p))Df s(p)Πs(p).

However, by the hyperbolicity of p and since T2 6= T1, we have ‖P s
T1

(p)‖ 6= ‖P s
T2

(p)‖. This
is a contradiction and τ s is constant on V s

p . Hence, there exists Tp ∈ R such that τ s(q) = Tp
for every q ∈ V s

p . This easily implies that f(q) = XTp(q), for any q ∈ W s(p).

By theorem 3.2.7, in each connected component O of int(Ω(X)), there exists a periodic
point p whose stable manifold is dense in O. From lemma 3.4.3, there exists a number
Tp such that f(q) = XTp(q), for any q ∈ W s(p). This implies that f(q) = XTp(q) for any
q ∈ O.

Consider the open and dense set W = V ∪ int(Ω(X)). From the discussion above,
there is a C1-function τ̂ : W → R such that f(.) = Xτ̂(.)(.) on W .

Lemma 3.4.4. There exists a constant T > 0 such that |τ̂(x)| ≤ T for any x ∈ W .

Proof. For x ∈ W and any vector v ∈ TxM , the following formula holds:

Df(x)v = DXτ̂(x)(x)v +X(Xτ̂(x)(x))Dτ̂(x)v (3.4.2)

From this formula, one can see that Π(f(x)) ◦ Df(x)|N(x) = Pτ̂(x)(x). Take K > ‖f‖C1

and let T = T (K) > 0 be the uniform time given by the LND property.

If τ̂ was not uniformly bounded, there would be a point x ∈ W such that |τ̂(x)| > T .
By the LND property, there exists a point y ∈ orb(x) such that

max{‖Pτ̂(x)(y)‖, ‖P−τ̂(x)(Xτ̂(x)(y))‖} > K.
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Then,

max{‖Df(y)‖, ‖Df−1(f(y))‖} ≥ max{‖Pτ̂(x)(y)‖, ‖P−τ̂(x)(Xτ̂(x)(y))‖} > K.

This is a contradiction since K > ‖f‖C1 . Therefore, τ̂ is uniformly bounded on W .

Let I = [−T, T ]. From lemma 3.4.4, we obtain that for any point x ∈ W , it is
verified that f(x) ∈ XI(x). Since W is dense, for any point z ∈ M , there is a sequence

(yn)n∈N contained in W such that lim
n→+∞

yn = y. Since XI(yn)
n→+∞−−−−→ XI(y), and by the

continuity of f , we conclude that f(y) ∈ XI(y). In particular, f fixes every orbit of X
and f(p) ∈ X[−T,T ](p), for any p ∈M .

By proposition 3.1.2, there is a continuous function τ : M → R such that f(.) =
Xτ(.)(.). This proves that the centralizer is quasi-trivial.

In the case that X has at most countably many chain-recurrent classes, since the
function τ is an X-invariant continuous function, using the same arguments as in section
6.4 of [LOS18], we conclude that τ is a constant function. In particular, the centralizer is
trivial.

3.5 A remark on the centralizers

As we mentioned before, the diffeomorphism centralizer is less rigid than the vector field
centralizer, mentioned in the introduction. In this section we give one example that
justifies it.

By the work of [KM73] the vector field centralizer of an Anosov flow is trivial. However,
it is easy to construct an Anosov flow and a diffeomorphism that commutes with the
flow and which does not fixes the orbits of the flow. For example, one can take two
hyperbolic matrices A,B ∈ SL(n,Z) that commute and such that the group they generate
is isomorphic to Z2; that is, AlBk = Id if and only if l = k = 0. For example, in dimension
3 one may consider the matrices

A =

3 2 1
2 2 1
1 1 1

 and B =

2 1 1
1 2 0
1 0 1

 .

These matrices induce Anosov diffeomorphisms on the torus T3. Consider the sus-
pension flow of A, this gives an Anosov flow XA

t . Using B one can easily construct a
diffeomorphism fB that commutes with the the flow XA

t and that does not fixes orbit. In
particular, the centralizer of XA

t is not trivial.
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compacte. Unpublished manuscript.

71


	Contents
	Introduction
	Centralizers of diffeomorphisms
	The vector field centralizer of flows
	The diffeomorphism centralizer
	Thom's conjecture
	Works contained in this thesis and other works
	Organization of this thesis

	The vector field centralizer
	Definitions and statement of the main results
	Collinearity
	Quasi-triviality
	The study of invariant functions and trivial centralizers
	The generic case
	Appendix: The separating property is not generic

	The diffeomorphism centralizer
	Introduction
	Preliminaries
	Proof of Proposition 3.1.2
	Proof of Theorem I
	A remark on the centralizers

	Bibliography

