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Abstract

In this thesis we study the behavior of the rank of the fibers of elliptic

surfaces in positive characteristic, compared to the rank of the generic

fiber. In particular, we prove that the rank of the fibers is strictly greater

than the generic rank for infinitely many fibers under the hypothesis that

the surface is unirational, generalizing a result of Salgado in characteristic

0. We then proceed to analyze some examples where the distinctions

between the zero and positive characteristic plays a role.

Keywords: Elliptic fibrations, K3 surfaces, Rational surfaces, Rank varia-

tion.



Introduction

Arithmetic geometry deals with number theoretic problems by the means

of geometric tools. One of its main subareas is the study of rational points

on algebraic varieties1. Let us start with a curve C and a global field K.

If C is a curve of genus 0, then it is a classical result that if C contains

a K-rational point, i.e., a point with coordinates in K, then it contains

infinitely many points. These are the rational curves, i.e., lines and conics,

and their set of K-rational points is well understood. Now, if we consider

a curve E of genus 1, then E may have no K-rational points, a finite

number of them or infinitely many. If it contains at least one rational

point, the set of these points can be equipped with a group structure

defined by the tangent-chord law, such curves are called elliptic curves.

A classical theorem of Mordell says that such group, denoted by E(K),

is a finitely generated abelian group for K = Q. This theorem was later

generalized to the case where K is a number field by André Weil, and

when K is a function field by Lang and Néron. By the structure theorem

for abelian groups, i.e., finitely generated Z-modules, the free part of the

1Here, rational points means K-rational, for a given global or finite field K, i.e.,
points with all coordinates in the field K.

1
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finitely generated group E(K) is a free Z-module of finite rank, which

from now on we refer to as the rank of the elliptic curve.

The rank of elliptic curves over global fields is one of the most studied

subjects in number theory. In this thesis we consider the problem of

the variation of the ranks of elliptic curves over global fields of positive

characteristic in an algebraic family. In particular, we are interested in the

relation between these ranks and the rank of the generic fiber of such a

family. Let us start to fix some notations : our base field is a global field

K. Recall that K is either a number field or the function field of a smooth

projective geometrically connected curve C over a finite field Fq, where q

is a power of a prime p, and we will deal mostly with the latter.

The main objects of this work are families of elliptic curves: given

a ’parameter’ space, in our case another variety V/K, we can consider

families of elliptic curves parametrized by V , i.e. {Ev : v ∈ V }. We

focus our attention on the case where V is a curve X/K, so our one-

dimensional family of elliptic curves is parametrized by the points in the

curve X . We can associate two objects to such family, the most natural

one being an elliptic surface E → X , whose fibers are naturally identified

with the curves Ev on the family we started with. The other important

object is an elliptic curve E over the function field of X , say K = K(X),

which arises as the generic fiber of the fibration E → X . Note that in

the characteristic zero case, K is a function field of transcendence degree

one over a number field and in the positive characteristic case K is a

function field of transcendence degree two over a finite field. In both

cases, there exists a generalization of the Mordell-Weil theorem, the Lang-
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Néron theorem, which asserts that the group of K-rational points on E is

finitely generated, so we have a rank associated with the generic fiber of

the family {Ev}v∈X , which we denote by rη.

A theorem of Silverman (See [41]) implies that the inequality

rη ≤ rb (1)

holds for all, except finitely many, b ∈ X(K), where rb := rankEb(K).

Even though Silverman’s Theorem does not distinguish between the

cases of characteristics zero and p > 0, it cannot be applied to some set-

tings that may occur in characteristic p > 0. In particular, it cannot be

applied as it is proved when it is stated for a family of abelian varieties

over function fields such that no smooth model is known for such fam-

ily. The first contribution of this thesis is to state and prove Silverman’s

Theorem to this specific setting in prime characteristic.

Questions arise regarding the inequality (1). The first one is when is

it a strict inequality? Examples are known where the inequality is strict

for all but finitely many points b ∈ X(K), for K a number field, but

these examples are isotrivial, i.e. have constant j-invariant. In [6], the

authors describe (conditional to the parity conjecture) a family of non-

isotrivial elliptic curves satisfying this property in characteristic p and

provide an heuristic argument to indicate that this behavior cannot hap-

pen in characteristic zero. We can, though, ask a modified version of this

question, namely, are there elliptic surfaces satisfying the strict inequality

in (1) for an infinite number of fibers? In [35], Salgado proves that this
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always happens in the number field setting for elliptic surfaces that are

unirational over the base field. Salgado’s proof however does not hold

as it is in prime characteristic since an important part of the proof is to

find bounds for the extensions generated by the division points of ratio-

nal points, who behave differently in positive characteristic. The second

main contribution of this thesis is to adapt Salgado’s main results for the

positive characteristic setting.

This adaptation together with recent results by Liedtke allows us to

prove that supersingular elliptic K3 surfaces also have infinitely many

fibers for which the inequality in (1) is strict over its field of unirationality.

The reader should notice that this is special to the positive characteristic

setting since there are no unirational non-geometrically rational surface

in characteristic zero.

Chapter 4 is dedicated to presenting some examples where the rank

jump can be found and sometimes described. The most natural exam-

ple are rational surfaces. Indeed, in characteristic 0 these are the only

unirational surfaces (over an algebraically closed field). In positive char-

acteristic, the K3s mentioned above provide non-rational unirational sur-

faces. This allows us to find chains of elliptic surfaces E ← E ′ ← E ′′ such

that there exists a rank jump between them, implying that, in such cases,

there are infinitely many fibers of E such that rank Et(K) > rank E (C) + 3.

We also considered the case of a Frobenius base change from a ratio-

nal elliptic surface, since it always yields a unirational surface. When

the resulting surface is K3, we know it is supersingular and can com-

pute its rank. It turns out that no surface obtained in this way has rank



5

strictly bigger than the rank of the rational elliptic surface that originated

it. These computations were made using the Shioda-Tate formula and the

possible configurations of singular fibers on a rational elliptic surface, in

the Appendix we listed all of supersingular K3 surfaces that arises by this

process.
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Chapter 1

Preliminaries

In this chapter we introduce elliptic surfaces and discuss their basic prop-

erties. For a complete treatment of the subject we refer to [38] and [48].

1.1 Elliptic Surfaces

Let k be a field. An abelian variety over k is an algebraic variety that is

also a complete algebraic group over k. An abelian variety of dimension

one is called an elliptic curve. Equivalently, an elliptic curve is a smooth,

projective, geometrically connected curve of genus 1 with a k-rational

point. This thesis’ focus lies on elliptic surfaces, which can be seen as

1-dimensional algebraic families of elliptic curves.

Definition 1.1. Let C be a smooth, projective, geometrically connected

curve over an algebraically closed field k. An elliptic surface over C is a

smooth projective surface S together with a surjective morphism π : S →

C satisfying:

7
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1. All but finitely many fibers are smooth curves of genus 1,

2. S → C is minimal in the sense that no fiber of S contains a (−1)-

curve, and

3. S → C possess a section o : C → S.

Remark. In this text we save the terminology genus 1 fibration for

surfaces as above not necessarily having a section as in item 3.

These surfaces do not need to be minimal as algebraic surfaces, so

exceptional curves can appear, but not as components of the fibers. A

section for the elliptic surface S is a morphism σ : C → S, defined over

k, satisfying π ◦ σ = IdC . The property 3) allows us to associate to S

an elliptic curve E over the function field k(C) of C: its generic fiber

E := Sη is a genus 1 curve over k(C) and the restriction of the section

o to the generic point of C gives a k-rational point in E, hence we get a

Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ k(C).

In fact, there exists a correspondence between the sections of S →

C and the points on the elliptic curve E: given a section σ : C → S,

the restriction σ(C) ∩ Sη is a point in E and, given a point P ∈ E, the

restriction of π to the closure of P in S is a birational morphism onto a

non-singular curve. By Zariski Main Theorem, it is an isomorphism, and

thus has an inverse σP , which is a section of S → C.

Conversely, given an elliptic curve E over k(C) we can ask whether
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there exists an elliptic surface S → C with E as its generic fiber and

satisfying the property that its rational points extend to sections of S.

The answer is positive and we will discuss it in the next chapter.

Isotrivial and constant surfaces Since we are mostly interested in the

variation of the fibers, we rule out two special kinds of elliptic surfaces

that do not show much geometric variation. Let S → C be an elliptic

surface and let E be its generic fiber.

• S is said to be constant if E 'k E ′ × k(C), where E ′ is an elliptic

curve defined over k, equivalently E can be defined by a Weierstrass

equation with coefficients in k. This implies that S is isomorphic, as

a surface, to the product E ′ ×k C.

• S is said to be isotrivial if there exists a finite extension K ′ of k(C)

such that E becomes constant over K ′. This is equivalent to the

j-invariant of E being an element of k.

It is a consequence of the definition that in isotrivial elliptic surfaces

the smooth fibers are all isomorphic over k.

1.2 Singular Fibers and the Shioda-Tate Formula

The singular fibers of an elliptic surface over perfect fields have been

classified by Kodaira and Néron. Tate developed an algorithm to describe

the singular fibers if the base field is perfect. The case of non-perfect fields

was described by M. Szydlo in [43] and, for fields of characteristic 2 and
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3, Tate’s Algorithm can fail and new fiber types can appear. Since we are

working in characteristic 6= 2, 3, we will only consider singular fibers of

Kodaira’s list, described in the following table. If the fiber is reducible,

then every component is a smooth rational curve with self-intersection

−2.
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Type mv Description

I0 (non-singular) 1

I1 1

In, n ≥ 2 n

II 1

III 2

IV 3

IV* 7

III* 8

II* 9

I*
n n+5

Table 1.1 - List of possible singular fibers.

If a fiber is reducible, each irreducible component is a smooth rational
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(−2)-curve. The fibers of type In, n ≥ 1, are called multiplicative (or semi-

stable), whereas the others are called additive (or unstable). The names

semi-stable and unstable correspond to the behavior of the fibers after

pullback: semi-stable fibers remain semistable after pullback, while un-

stable fibers may become good (see Table 1.2).

Let f : S → C be an elliptic surface and v ∈ C. Denote by fv the fiber

over v. Consider the sets

Sing(f) = {v ∈ C | fv is singular} and Red(f) = {v ∈ C | fv is reducible}.

For each v ∈ C, let Θv,0 be the component of fv intersecting the zero

section. Thus we can write

fv = Θv,0 +
mv−1∑
i

µvΘv,i.

where, mv is the number of irreducible components of fv, Θv,i, i ≥ 1, are

the components of fv not meeting the zero section and µv their multiplic-

ity in fv.

The group of divisors modulo algebraic equivalence of a smooth vari-

ety V is called the Néron-Severi group, denoted by NS(V ). It follows from

the Theorem of the Base that the NS(V ) is finitely generated and torsion-

free (see, for example, [9, V.1]). Its rank is called the Picard number of the

variety V and denoted by ρ = ρ(V ). The group NS(V ) becomes an indef-

inite integral lattice with respect to the intersection pairing of divisors.

Let us get back to the elliptic surface setting. In this situation, we
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have at least two curves that are independent in NS(S), namely the class

of a fiber, which we will denote by F , and the class of the zero section

〈O〉. Let V be the direct sum V =
⊕

v∈Red(f)〈Θv,i〉i=1,...,mv−1 . We define

the trivial sublattice as T := 〈F, (O)〉 ⊕ V . Now, let E(K) be the elliptic

curve associated. Given a point in P ∈ E(K), let P̄ denote the associated

section in MW(f).

Theorem 1.2 (Shioda-Tate Formula). The map P → P̄ (mod T ) induces an

isomorphism between E(K) and NS(S)/T . In particular, comparing ranks, we

have the following formula, known as the Shioda-Tate formula

rankE(K) = ρ(S)− 2−
∑
v

(mv − 1),

where mv denotes the number of irreducible components of the fiber fv and

the sum runs over all fibers of the fibration. (Note that it fv is smooth then the

summand is zero, thus the sum runs over the finitely many singular fibers.)

Remark.: We should point out that the above formula, as well as the

definitions used on it are considered over an algebraically closed field.

Nevertheless, by considering the Galois action on the involved lattices,

the same holds over the base field, so if k = l̄, then

rank E (C/l) = ρ(E /l)− rankTGal(k/l),

where E (C/l) is the groups of sections of E → C defined over l and ρ(S/l)

is the rank of NS(E )Gal(k/l).
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Base Change

A standard method for producing new elliptic surfaces from old ones is

that of base change. More precisely, let f : S → B be an elliptic surface

and let C be a projective curve mapping surjectively to C. Then the fiber

product S ×B C provides a surface with a map to C whose fibers are

elliptic curves.

S ×B C

{{ ##
S

f $$

C

zz
B

Hence the surface S×CB → C is also an elliptic surface. Furthermore,

if σ : B → C is a section of f , then σ×IdC is a section of S×BC → C, thus

S×BC inherits the sections of S (this will be developed with more details

in Chapter 3). Geometrically, the surface can be obtained by the pull-back

of the Weierstrass form of S using the map C → B. For example, given

an elliptic curve over a curve B over a finite field Fq, the resulting surface

induced by the q-Frobenius morphism B → B is given by raising the local

parameter of B in the Weierstrass equation of S to the q-th power.

The effect of base curve change on the fibers depends on the ramifica-

tion information of the base change. Let C → B be a base curve change,

the fibers over which the map is not ramified are replaced by d copies

of itself, where d is the degree of the map. Now let F be a fiber over

which the map is ramified. Then its pull-back via the base change map

is as follows: If a point in B of ramification index d has the fiber type
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In, it is replaced by a fiber type Idn. The behavior of the unstable fibers

depends on the congruency class of the ramification index modulo some

small integers, as described in the table bellow, from [28].

I∗n

 Idn d ≡ 0 (mod 2)

I∗dn d ≡ 1 (mod 2)

II



I0 d ≡ 0 (mod 6)

II d ≡ 1 (mod 6)

IV d ≡ 2 (mod 6)

I∗0 d ≡ 3 (mod 6)

IV ∗ d ≡ 4 (mod 6)

II∗ d ≡ 5 (mod 6)

II∗



I0 d ≡ 0 (mod 6)

II∗ d ≡ 1 (mod 6)

IV ∗ d ≡ 2 (mod 6)

I∗0 d ≡ 3 (mod 6)

IV d ≡ 4 (mod 6)

II d ≡ 5 (mod 6)

III



I0 d ≡ 0 (mod 4)

III d ≡ 1 (mod 4)

I∗0 d ≡ 2 (mod 4)

III∗ d ≡ 3 (mod 4)

III∗



I0 d ≡ 0 (mod 4)

III∗ d ≡ 1 (mod 4)

I∗0 d ≡ 2 (mod 4)

III d ≡ 3 (mod 4)

IV


I0 d ≡ 0 (mod 3)

IV d ≡ 1 (mod 3)

IV ∗ d ≡ 2 (mod 3)

IV ∗


I0 d ≡ 0 (mod 3)

IV ∗ d ≡ 1 (mod 3)

IV d ≡ 2 (mod 3)
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Table 1.2 - Effect of base curve change on singular fibers

Alterations As mentioned before, a step of Silverman’s proof does not

really need the birationality hypothesis, so we can use a weaker form of

resolution of singularities and work with a smooth variety. Given a mor-

phism f : W → V of algebraic varieties we say f is a modification if it is

birational and proper. A morphism f : V → W is called a resolution of

singularities of W if it is a modification and V is non-singular. A theorem

of Hironaka says that if V is an algebraic variety defined over an alge-

braically closed field of characteristic 0 has a resolution of singularities.

Unfortunately, this theorem is not available as of today in positive char-

acteristic, nevertheless a weaker version proved by de Jong [15] is enough

for our needs: We say a morphism f : W → V is an alteration if it is sur-

jective, generically finite and proper. Generically finite means that there

is some non-empty set U ⊂ V such that f−1(U)→ U is finite.

Theorem 1.3. [15] Let K be a field and V an algebraic variety over K. There

exists an alteration f : W → V , where W is a nonsingular variety.

1.3 Rational Elliptic Surfaces

Let f : S → C be an elliptic surface such that S is rational, i.e., S is a

smooth projective rational surface over k and f : S → C is a relatively

minimal elliptic fibration with a section o : C → S. Since the elliptic

fibration induces an inclusion of function fields k(C) → k(S) and k(S) is

a rational function field, we conclude that is k(C) purely transcendental
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function field of degree 1 over k and C ' P1
k.

Example 1.3.1. Let f, g denote cubic polynomials. Assume that f and g do not

have a common factor. Consider the cubic pencil

V = {αf + βg = 0} ⊂ P2 × P1

If char 6= 2, 3, a general member of the pencil os a curve of genus 1. Fixing a

rational point on the pencil yields a section, thus the pencil is itself an elliptic

surface. Another way this can be seen is to onsider the rational map π : P2 → P1

given by (f : g). Note that π is not defined in the base points of the pencil V .

By blowing-up the base points of the pencil on P2 we get a (rational) surface S,

isomorphic to V , equipped with a genus 1 fibration to P1

S

��   
P2 // P1

Example 1.3.2. Consider the elliptic modular surface of level 5, denoted by R5,5.

It is the surface obtained by blowing P2 at the base points of the pencil given

by the cubics y(x− z)(y − z) and zy(x− y). Over Q, R5,5 has a Weierstrass

equation

y2 = x3 + A(t)x+B(t),

where

A(t) = −1

3
t4+4t3−14

3
t2−4t−1

3
and B(t) =

2

27
t6−4

3
t5+

50

9
t4+

50

9
t2+

4

3
t+

2

27
.
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The elliptic surface R5,5 has discriminant

∆ = 212t5(t2 − 11t− 1)

Thus, R5,5 has two fibers of type I5, over 0 and ∞, and two fibers of type I1 in

the splitting field of t2− 11t− 1. The reduction modulo 5 yields the surface with

Weierstrass equation

y2 = x3 + (3t4 + 4t3 + 2t2 + t+ 3)x+ (t6 + 2t5 + 3t+ 1)

Which has two singular fibers of type I5 but the two fibers of type I1 become a

fiber of type II , since t2−11t−1 = (t+ 2)2 become inseparable in characteristic

p = 5 (and only in characteristic p = 5).

The method used to obtain the surface above, by considering a pencil

of cubics, is actually enough to describe all Rational elliptic surfaces (over

an algebraically closed field). The following theorem can be found on [7]

for arbitrary characteristic.

Theorem 1.4. [7, Theorem 5.6.1] Let f : X → P1 be a rational elliptic surface

over an algebraically closed field. Then there exists a birational morphism π :

X → P2 such that the composition of rational maps f ◦ π−1 : P2 → P1 is given

by a pencil of cubics. Conversely, if P2 → P1 is a rational map given by such

pencil, then its minimal resolution of indeterminacy points is a rational elliptic

surface.
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1.4 K3 surfaces

We focus here on K3 surfaces, the primary type of surface we apply our

main theorem. We refer to [13] for a comprehensive treatment of the sub-

ject. A K3 surface is a minimal surface that is regular (i.e. its irregularity

h1,0 = H1(OX) is zero) and has trivial canonical bundle. The main invari-

ants of a K3 surface S are: ωS ' OS, pg = 1, h0,1 = h1,0 = b1 = 0, χ(OS) =

2, c2 = 24 and b2 = 22. The Hodge diamond of a general K3 surface is

given by

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

1

0 0

1 20 1

0 0

1

In characteristic zero one knows that the Picard number ρ of S satisfies

ρ ≤ 20 and complex surfaces with Picard number attaining 20 are called

singular 1. On the other hand, Tate and Shioda found examples of K3

surfaces in positive characteristic satisfying ρ = 22 (Artin proved that

there exists no K3 surface with ρ = 21, see [1]), such surfaces are called

supersingular (or Shioda-Supersingular).

Remark. A general surface is said to be supersingular if the étale

cohomology group H1(S,Ql), for l not equal to the characteristic, is gen-

erated by divisors on S, so the Picard number equals the second Betti

1This concept os singularity has no relation with the singularities of the surface.
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number. This is the concept known as Shioda-Supersingularity. Artin [1]

proved that the formal Brauer group of Shioda-Supersingular K3 sur-

faces are of infinite height, these surfaces are called Artin-supersingular.

From the progress of Tate conjectures for K3 surfaces we know (Charles

[Ch13], Madapusi Pera [MP13], and Maulik [Mau12]) that a K3 surface

in odd characteristic is Artin-supersingular if and only if it is Shioda-

supersingular.

K3 Elliptic Surfaces Every K3 elliptic surface is fibered over P1. Indeed,

given an elliptic fibration with section S → C with C smooth, then Leray

Spectral sequence gives an injection H1(C,OC) ↪−→ H1(S,OS) = 0, so

C ' P1. Not every K3 admits an elliptic fibration and a given surface can

have non-isomorphic fibrations, as shown in the following proposition.

Proposition 1.5. [13, Proposition 11.1.3] Over an algebraically closed field

of characteristic 6= 2, 3, a K3 surface Xadmits an elliptic fibration if and only

if there exists a non-trivial line bundle L such that L2 > 0. In particular, if

ρ(X) ≥ 5 then X admits an elliptic fibration. Furthermore, each surface admits

at most finitely many non-isomorphic elliptic fibrations.s

Example 1.4.1. ( [13, Example 1.1.3]) Consider the surface X4 ⊂ P3 given by

the equation

X : x4
0 + x4

1 + x4
2 + x4

3 = 0

In characteristic 6= 2, X is smooth. In fact, any smooth quartic in P3 is a K3
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surface: The long exact sequence induced from

0 −→ O(−4) −→ O −→ OX −→ 0

on P3 implies that X has regularity 0, since H1(P3,O) = H2(P3,O(−4)) = 0

and the adjunction formula implies that the canonical bundle is trivial. (see the

reference above for more details). A line l on the Fermat surface induces can be

used to define a line bundle L := O(1)⊗O(−l) satisfying L2 = 0, thus, by the

proposition above, X4 admits an elliptic fibration.



Chapter 2

Silverman’s Theorem in positive

characteristic

As discussed in Section 1.1, the set of sections of E → C is a finitely gener-

ated abelian group, isomorphic to the group of points of the elliptic curve

given by the generic fiber of E → C over the function field k(C). The goal

of this chapter is to compare the ranks of the fibers of the fibration with

the rank of E (C). Silverman [41] dealt with the more general case of fami-

lies of abelian varieties. His celebrated Specialization Theorem shows that

given a smooth variety that is a family of abelian varieties fibered over a

curve C, then the rank of all but finitely many fibers is greater or equal

to the rank of the generic fiber. Clearly, Silverman’s theorem applies in

the context of elliptic surfaces. On the other hand, if instead of starting

with a smooth family A → C we start with an abelian variety A/k(C),

the specialization can be defined and we wonder if Silverman’s relation

still holds. The natural answer is yes since we expect every variety over a

22
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function field of a curve C to have a model as a fibered variety over C. For

example, in Chapter 1 we briefly mentioned that given an elliptic curve

E over the function field K of some curve C, one can obtain an elliptic

surface E → C such that the generic fiber Eη is isomorphic to E, so Sil-

verman’s theorem can be applied as stated. However, Silverman’s proof

does not apply to higher dimensional abelian varieties in positive charac-

teristic. In this chapter we prove that Silveman’s theorem still holds even

if we do not assume the existence of a smooth model for variety whose

generic fiber is an abelian variety in positive characteristic.

2.1 Models

As already mentioned, given an elliptic surface E → C, its generic fiber

is an elliptic curve over k(C). In this section we deal with the converse

problem of finding a suitable fibered surface E → C for a given elliptic

curve over the function field of C. The idea is to start with the Weierstrass

equation of E/k(C) and consider the surface associated to it, the works of

Lipman [25] and Shafarevich [36] thus yield an elliptic surface as defined

in the last section. We refer to [26, Chapters 9 and 10] for a detailed

account of the subject.

The more general problem is to consider a curve S, normal, connected

and projective over K, the function field of a 1-dimensional Dedekind

scheme C 1. Then a model for S over C gives a way to see S ’as a surface’ over C.

1A Dedekind scheme S is a 0 or 1-dimensional Noetherian scheme, i.e., a scheme X
such that is a union of finite affine open Xi such that O(Xi) is a noetherian ring.
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Definition 2.1. A normal fibered surface S → C together with an isomor-

phism f : Sη ' S is called a model of S over C. If S is regular we say that

the model S → C is regular.

One can think of a model as a way to extend S surjectively over C.

Actually, given a variety V/K, we can work with models of V/K: it is

a scheme V , surjective and flat over C, together with an isomorphism

Vη ' V . One may ask what properties V can have or, more specifically, to

what properties of V translate in V .

There are two classical models: the minimal regular model for curves of

genus ≥ 1 and Néron Models for abelian varieties. Elliptic curves lie in

the intersection between these two classes. We briefly mention the first

theory. Given a curve C over K with pa(C) ≥ 1, there exists a regular

model which is minimal with respect to birational maps. Unlike smooth

curves, two generic fibered surfaces can be birational without being iso-

morphic, and we say S → C is minimal if any birational morphism C ′ → C

of fibered surfaces over S is in fact an isomorphism. This is equivalent to

say that C has no exceptional divisors on the fibers. The idea to obtain the

minimal regular model is to eliminate the denominators and normalize,

obtaining a normal model of S over C, after desingularization a regu-

lar model is obtained and contracting the exceptional divisors yields the

minimal regular model. A full proof of the existence of the minimal reg-

ular model and its uniqueness for curves of positive genus can be found

on [26, Section 10.1].

Let us go back to the elliptic curve context. Given an elliptic curve over

the function field K(C). E admits a Weierstrass equation, which defines
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an equation of a surface over K(C). Working with such an equation yields

a model W → C, known as Weierstrass Model of E. The following results

can be found on [48].

Proposition 2.2. Given an elliptic curve E/K(C), there exists a normal surface

W over K and a morphism π0 : W → C with the following properties: W is

normal, absolutely irreducible, and projective over K, π0 is surjective, each of

its fibers is isomorphic to an irreducible plane cubic, and its generic fiber is

isomorphic to E.

A process of desingularization of the surfaceW above, given by Tate’s

algorithm, yieds the desired elliptic surface associated to E.

Theorem 2.3. There exists a sequence of blow-ups yielding a birational mor-

phism E → W where the surface E and the induced map π : E → C satisfy

the properties of elliptic surface on Definition 1.1. i.e., E is a smooth, absolutely

irreducible, relatively minimal and projective surface over K and the generic fiber

of π is isomoprhic to E.

We should point out that the surface obtained above does not need

to be the minimal regular model of E/K(C), see [?] for a comprehensive

exposition of the subject.

Now, for a higher dimensional abelian variety A, there are no Weier-

strass equations that one can work with to obtain such models. In any

case, there exists a projective and flat C-scheme A → C satisfying

Seck(A → C) ' A(K),
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but A may not be regular. Over fields of characteristic 0, resolution of

singularities yields a regular projective scheme A′ and a birational mor-

phism A′ → A. So, if we start with an abelian variety A/K and K is a

function field of characteristic 0, we can find a smooth, irreducible, pro-

jective variety A equipped with a flat morphism A → C. Silverman’s

Specialization Theorem is proved in this setting. If we move to the posi-

tive characteristic case we can start with a varietyA as above and consider

the generic fiber. On the other hand, if we start with an abelian variety

A/K, resolution of singularities is not known, so we cannot guarantee

the existence of such A, unless we are in dimension one (in this case the

minimal regular model is enough).

Nevertheless, with minor modifications, the proof of Silverman’s the-

orem works if we work with A projective and normal. This is the subject

of the next section.

2.2 Specialization in positive characteristic

Let K be a global field and C be a curve defined over K. Consider

an abelian variety A defined over the function field K(C) of C and let

A → C be a model for A/K(C), by model we mean a proper and flat

scheme A over C given by a morphism π : A → C whose generic fiber

Aη = A ×C Spec(K(C)) is isomorphic to A/K(C) and the natural map

A(C)→ A(K(C)) is an isomorphism, in other words, every section Spec(K(C))→ A

extends to a section C → A. Except for a finite number of points in C(K),

the fiber At := π−1(t) is an abelian variety defined over K and we have a
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natural group homomorphism

σt : A(K(C))→ At(K),

given by intersecting the section σ ∈ A(K(C)) with the fiber At. The map

σt is called specialization at t.

Definition 2.4. Let K/K be an primitive extension2. Let A be an abelian

variety over K. The K/K−trace of A, denoted by (TrK/K(A)), τA,K/K), is

the final object of the category of pairs (B, f), where B is abelian variety

over K and f : BK → A is a K-morphism.

The K/K-trace satisfies the following universal property: every K-

morphism λ : BK → A, where B is an abelian variety over K, factors

through τA,K/K . In our setting K = K(C). The theorem of Lang-Néron

asserts that the quotient group A(K(C))/TrK(C)/K(A)(K) is finitely gen-

erated (for more details on this, check [5]). In our case, K is a global

field, so, by the Mordell-Weil theorem, TrK(C)/K(A)(K) is itself finitely

generated. Thus we conclude that also A(K(C)) is finitely generated, say,

with rank rη. On the other hand, again by the Mordell-Weil theorem, for

those t ∈ C(K) such that At is an abelian variety, At(K) is again a finitely

generated group, let rt denote its rank.

A theorem of Silverman (see [41]) states that, if we start with a flat fam-

ily of abelian varietiesA → C such thatA/K is smooth and TrK(C)/K(A) =

0 then the specialization map is injective except for finitely many rational

2I.e., the algebraic closure of K in K is purely inseparable
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points of C. In particular, except for finitely many t ∈ C(K), we have

rη ≤ rt. (2.1)

As discussed in the previous section, to adapt this result to our setting

it would be enough to take a model A → C for A/K(C) such that A

is smooth over K. Since we are interested in the behavior of almost all

fibers (meaning we can ignore finitely many fibers) we can make bira-

tional transformations on the model A without interfering in the result-

ing nature of the fibers. In the characteristic 0 case, that is, if the global

field we started with is a number field, or a function field over a number

field, then Hironaka’s resolution of singularities yields a smooth model

A → C for A/K(C) and Silverman’s theorem can be applied.

However, if K is itself a function field of a curve defined over a finite

field, resolution of singularities is not available and we can only assume

the model A → C to be at most projective and normal. We include here

the minor changes that must be made in order for Silverman’s proof to

work in our setting. The main difference is that we will need to work

with Cartier divisors instead of the usual Weil divisors. In another step

we can drop down the birationality hypothesis between models for A and

consider alterations, a weaker form of resolution of singularities.

The first detail to take into account is that of extending divisors from

the generic fiber to the whole model. In the smooth case we can work with

Weil divisors on A and they can be extended to A by taking the Zariski

closure. Since A may not be smooth, we will have to deal with Cartier
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divisors, or line bundles. C. Pépin [32] proved that, in the local case, we

can modify birationally a variety so that line bundles extend from the

generic fiber to the whole variety. Given a finite number of fibers we can

glue the modified varieties in order to obtain a global extension.

Lemma 2.5. Let A/K(C) be an abelian variety, A → C a model for A and

Li ∈ Pic(A), i ∈ I, a finite number of line bundles on A. Then, there exists a

proper model A′ → C for A and Li ∈ Pic(A′) such that Li|A′η = Li.

Proof. We can assume that C is affine, say C = SpecR, so A = ProjB for

some finitely generated R-algebra B, in this situation Aη = Proj(B⊗RK),

where K is the field of fractions of R. Since A is projective, Cartier di-

visors can be given on a finite number of open sets, which are the com-

plements of zeroes of polynomials in B ⊗R K and after clearing denom-

inators can be seen as polynomials in B ⊗R Rf for some localization Rf

of R, thus defining open sets in A ×R SpecRf , the same idea holds for

rational functions on the generic fiber and we can extend them to open

sets A×RSpecRg. Intersecting these sets we conclude that Cartier divisors

can be extended over an open set of the base curve.

Now, if we take the intersection U of the open sets of the base curve

over which each Li can be extended, we are left with finitely many points

in C, so it is enough to find a model of A over these points such that

every Li is extended to these points and glue Li on them so that it will be

defined over all AU . Since the resulting local model does not depend on

the line bundle we started with, we can work with only one line bundle

L, extending to a line bundle LU over AU . So we must prove that L can
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be extended to the remaining finitely many points of C \U . Let t ∈ C \U

and consider A(t) = A×C Spec(OC,t), which has generic fiber defined over

the field of fractions of OC,t. By the main result of [32], there exists a

proper OC,t-scheme A′′(t) which is semi-factorial, i.e., the restriction map

Pic(A′′(t)) → Pic((A′′(t))η) = Pic((A(t))η) is surjective, so L extends to a line

bundle L′′(t) on A′(t). Now, using [3, Sec. 1.2, Lemma 5], there exists a non-

empty open subset C ′ of C, which we can assume to intersect C \ U only

at t. There also exists a C ′-scheme A′(t) such that A′′(t) = A(t)×C Spec(OC,t).

Again, after reducing C ′ if necessary, we can extend L′′(t) to a line bundle

L′(t) on A′(t), and each of these models over OC,t have the same generic

fiber, so we can glue them and obtain a C-scheme A′, which is a model

for A/K(C). This model comes equipped with a line bundle L′, obtained

by gluing the line bundles L′(t) with LU , restricting to L in the generic

fiber of A′. Since properness is a local property we conclude that A′ → C

is proper, as desired.

Remark: Chow’s Lemma (see [9, Ex. II.4.10]) and normalisation

imply that we can assume A′ → C normal and projective.

In order to obtain the injectivity of the specialization map we present

here the results of Silverman, the first two theorems deal with the varia-

tion of the canonical height between the fibers of the elliptic surface and

the third is the injectivity result (see [41, §3, 4 and 5]).

Let L be a line bundle on A and L its restriction to Aη = A. Consider

[−1]∗L. By Lemma 2.5 it can be extended to a line bundle L′ on A. Denote

L(s) = L⊗L′ and L(as) = L⊗L′−1. In analogy with abelian varieties, we say
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that L is symmetric if L(as) = 0 and anti-symmetric if L(s) = 0. One should

be attentive to the fact that [−1] is not defined on A. Nevertheless, when

restricted to the generic fiber, the equality L⊗2 = L(s) ⊗ L(as) gives the

usual decomposition of L as a sum of a symmetric and an anti-symmetric

line bundle on A.

From the Weil height machine (see [20, Chapter 3]) we have that

hA,L =
1

2
hA,L(s) +

1

2
hA,L(as) +O(1).

On the other hand, we can glue the canonical heights defined on the

smooth fibers At, t ∈ C0, defining a canonical height on π−1(C0) =: U ,

ĥA,L : U(K̄) → R and similarly ĥA,L(s) , ĥA,L(as) : U(K̄) → R. Again by the

Weil height machine we have the equality

ĥA,L = ĥA,L(s) + ĥA,L(as) .

Thus, for P ∈ U(K̄), we have

|ĥA,L(P )−hA,L(P )| ≤ 1

2
|ĥA,L(s)(P )+ĥA,L(as)(P )−hA,L(s)(P )−hA,L(as)(P )+O(1)|.

Now, if we have bounds like

|ĥA,S(P )− hA,S(P )| ≤ chC,ξ(π(P )) +O(1),

for S = L(s),L(as), where c is a constant not depending on P , the same

holds for L. This is the content of the following theorem.
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Theorem 2.6. Fix an ample divisor ξ ∈ DivK̄(C). There exist a non-empty open

subset U ′ ⊂ U and a constant c = c(L, π) such that for all P ∈ U ′(K̄),

|ĥA,L(P )− hA,L(P )| < chC,ξ(π(P )) +O(1).

Proof. By the above remark, it is enough to prove the theorem when L

is either symmetric or anti-symmetric. Let’s assume that L is symmetric

and make the necessary remarks in the anti-symmetric case. Denote by D

the Weil divisor on Aη corresponding to the restriction of L to the generic

fiber.

The doubling morphism [2] on the generic fiber extends to a rational

map that coincides with the doubling morphism [2]t when restricted to

smooth fibers At. Take φ : A′ → A to be an alteration of A, as defined in

1.2, such that [2] ◦ φ extends to a morphism ψ : A′ → A. Denote by π′ the

composition of π ◦ φ.

A′

φ

��

π′

��

ψ

  
A

π

��

[2] // A

U
/ O

^^

[2]
// U
. N

^^

C

Consider the line bundle L′ := ψ∗L − 4φ∗L ∈ Pic(A′). Since A′ is

regular, L′ corresponds to a Weil divisor D′. Let ≡ denote the linear
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equivalence of divisors. On the generic fiber A′η,

D′ = ψ∗D − 4φ∗D = φ∗([2]∗D − 4D) ≡ 0.

The equivalence ≡ follows from the fact that we have assumed L to be

symmetric - in the anti-symmetric case we should have defined L′ := ψ∗L − 2φ∗L

- so D′ is principal on A′η and we can choose another divisor D′′ equiv-

alent to D′ such that π′(Supp D′′) is a closed proper subset of C, so it is

a finite subset, say {P1, . . . , Pr}. This implies that we can pick a divisor

θ =
∑
niPi such that π′∗θ ±D′′ are both positive.

Given P ∈ U(K̄) such that P 6∈ φ(Supp D′′), any P ′ ∈ φ−1(P ) satisfies

P ′ 6∈ Supp D′′ ⊃ Supp (π∗θ±D′′), so, by the Weil height machine, we have

hA′,π′∗θ±D′′(P
′) > O(1), (2.2)

since π′∗θ ±D′′ are positive. Moreover

hA′,π′∗θ±D′′(P
′) = hA′,π′∗θ(P

′)± hA′,D′′(P ′) +O(1).

Hence, by (2.2)

|hA′,D′′(P ′)| < hA′,π′∗θ(P
′) +O(1)

< hC,θ(π
′(P ′)) +O(1)

= hC,θ(π(P )) +O(1).
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On the other hand,

|hA,L([2]P )− 4hA,L(P )| = |hA,L(ψ(P ′))− 4hA,L(φ(P ′))|

= |hA′,ψ∗L−4φ∗(P
′)|+O(1)

= |hA′,L′′(P ′)|+O(1).

Thus, we have the inequality

|hA,L([2]P )− 4hA,L(P )| < hC,θ(π(P )) +O(1).

This holds for every P such that for any P ′ ∈ φ−1(P ), we have P ′ 6∈

Supp D′′. But π′(Supp D′′) is a proper closed subset of S, thus Supp D′′ has

only finitely many fibers as components, defining U ′ as the complement

in U of these fibers, the inequality holds for any P ∈ U ′. To conclude,

given any ample divisor ξ ∈ C, there exists c such that

hC,θ < chC,ξ +O(1),

thus, for P ∈ U ′(K̄)

|hA,L([2]P )− 4hA,L(P )| < chC,ξ(π(P )) +O(1).

Now we state the other results

Theorem 2.7. Let K be a global field and C/K a nonsingular projective curve

with function field K(C). Let A/K(C) be an abelian variety with K(C)/K-trace
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zero and A → C a normal and projective model for A/K(C). Fix a section

P ∈ A(C), a line bundle L ∈ Pic(A) and an extension L of L to A, given by

Lemma 2.5. Then

lim
t∈C0(K̄),hC(t)→∞

ĥAt,Lt(Pt)

hC(t)
= ĥAη ,Lη(Pη)

Proof. See [41, Theorem B]. The only observation we make is that, in the

last paragraph, we should take n prime to p in order to have ĥ([n]P ) =

n2ĥ(P ).

We are now able to state Silverman’s Specialization theorem.

Theorem 2.8. [Silverman Specialization Theorem] Let σt : A(C) → At(K̄) be

the specialization map. If the K(C)/K-trace of A is zero, then

{t ∈ C0(K̄) | σt is not injective}

is a set of bounded height in C(K̄). In particular, for finite extensions L of K, σt

is injective for all but finitely many t ∈ C0(L).

Proof. See [41, Theorem B].

Note that the theorem assumes that A has K(C)/K-trace zero, just as

Theorem 2.7, but for our purposes we can drop off this hypothesis. As

we are dealing mostly with elliptic curves, the first option is to consider

only non-constant ones, because they have trace zero (See [5, Exemple

2.2]). On the other hand, since we are only interested in the behavior of

the rank, a weak version of the theorem suffices. Indeed, if we let A0 =
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TrK(C)/K(A), then (A0)K(C) is isogenous to an abelian subvariety A′ of A

and the rank inequality (2.1) holds for A′, since (A0)K(C)(K(C)) = A0(K)

and the rank is preserved by isogenies. Now, there exists an abelian

subvariety B, whose trace is zero, such that A′ × B is isogenous to A. By

having no constant part, Silverman’s Specialization Theorem 2.8 can be

applied directly to B. Therefore, inequality (2.1) for both A′ and B imply

the same inequality for A.



Chapter 3

Rank jump in characteristic p

In this section,

k = Fq is a finite field of characteristic p

kn = Fqn is the degree n extension of k

K = k(C) is a global field of characteristic p

X/K is a curve over K

ψ : X → C is a smooth projective model for X/K over C

K = function field of X/K

E/K is a non-constant elliptic curve

E → X elliptic surface over K with generic fiber E

Let π : E → B be an elliptic surface. By Theorem 2.8, except for

finitely many t ∈ B(K), we have rank Et(K) ≥ rank Eη(K). In [35], Sal-

gado proves that if K is a number field and E is a unirational ellip-

tic surface, then there exists infinitely many points on B(K) such that

rank Et(K) ≥ rank Eη(K) + 1. In this chapter we prove the analogous re-

37
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sult in the positive characteristic setting.

Theorem 3.1. Let K be a global field of positive characteristic p > 0 and E → C

be an elliptic fibration over K such that E is unirational, then there are infinitely

many points t ∈ C(K) such that rank Et(K) ≥ rank MW(E → C/K) + 1.

In positive characteristic there exists non-rational unirational surfaces,

so we get new classes of (elliptic) surfaces satisfying the hypothesis of the

theorem. For instance,

Corollary 3.2. If S is a supersingular K3 surface with a non-trivial elliptic

fibration S → P1, then there exists a base change f : P1 → P1 such that

rank MW(S ×f P1 → P1) ≥ rank MW(S → P1) + 1.

Corollary 3.2 is a consequence of Theorem 3.1 and a recent result from

Liedtke (see [22]) proving that every supersingular K3 surface is a non-

rational unirational surface and if the Artin invariant is ≤ 9, it admits a

jacobian elliptic fibration. A key step in the proof of theorem 3.1 is to find

bounds for the extensions generated by division points of rational points

in the elliptic curve associated to E . This is also the point which differs

most from Salgado’s proof, since division by multiples of the character-

istic behaves in a different manner. We isolate these results in the next

section and summarize them in Proposition 3.6.
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3.1 Bounding the degree of 1
nP0 & Kummer The-

ory

Let E/K be a non-isotrivial elliptic curve, P0 ∈ E(K) and P ∈ E(K).

Assume that [n]P = P0 for some integer n ≥ 1. The goal of this section

is to give an upper bound for n depending on the degree of the field of

definition of P .

Torsion We first deal with the case where P is a torsion point. It is

known that, given a non-isotrivial elliptic curve over a function field K

of one variable, its L-rational torsion, where L is an extension of the base

field, is bounded by a constant depending on the degree hL, say

#E(L)tors ≤ f(hL),

for some monotone increasing function f (see [33, Theorem 1.5]). Thus, if

we let m denote the order of P and L the field of definition of P , we have

an inequality

m ≤ #Etors(L) ≤ f(hL) (3.1)

bounding m by a function on the degree of the field L.

However, since we are dealing with an elliptic curve E over K, a func-

tion field on two variables of a finite field, we will have to go through a

process of specialization in order to apply the argument above.
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Specialization argument Let v be a place of good reduction of E. De-

note by k(v) the residue field of v and Ev the reduction modulo v of E.

Then we have the reduction modulo v map E(K)→ Ev(k(v)) and a short

exact sequence

0 −→ E1(K) −→ E(K) −→ Ev(k(v))→ 0

Theorem 3.3 (see [11, Theorems C.2.5, C.2.6]). The kernel of the reduction

map, E1(K), is isomorphic to the formal group associated to the maximal ideal

mv and thus has no prime-to-p torsion, so the reduction map is injective in the

prime-to-p torsion.

Now, if L is a finite extension of K, and l(v) the residue field associated

to an extension of v to L, then, by (3.1) we can bound the prime-to-p

torsion of Ev(l(v)) by the degree of l(v)/k(v), which can be bounded by

the degree of L/K and, again, by the injectivity of the reduction map

away from p, we bound the prime-to-p torsion of E(L) by the degree of

L. And, as desired, the order of a torsion point can thus be bounded by

the degree of the field generated by its coordinates.

In order to extend these bounds to all torsion points we will have to

exclude some places of good reduction (this corresponds to ignore some

points in the base curve). Since E is non-isotrivial, thus ordinary, and the

specialization map is injective except for a finite number of fibers, then

these fibers are also ordinary, so the number of places of supersingular

reduction is finite and their pn-torsion is isomorphic to Z/pnZ. Since the

reduction map is already surjective we obtain an isomorphism E[pn](K) '
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Ev[p
n](k(v)), thus bounds for pn-torsion points depending on the degree

of extensions l(v)/k(v) induce bounds for pn-torsion points depending on

the degree of L/K.

Now suppose P has infinite order. Write n = pαn′, with (p, n′) = 1.

Then we have the field inclusions K = K(P0) ⊂ K([n′]P ) ⊂ K(P ), so

[K(P ) : K] = [K(P ) : K([n′]P )][K([n′]P ) : K],

thus we can deal with the prime-to-p and p-power cases separatedly.

Inseparable Case Let P0 ∈ E(K) \ [p]E(K) and P ∈ E(K̄) satisfy [pn]P =

P0, n ∈ N. The condition P0 6∈ [p]E(K) is automatic if we assume that n

is minimal with the property that [pn]P ∈ E(K), this will be enough for

our application. We prove the more generic fact that, except for a finite

number of points of points in E(K) (those with coordinates in the base

finite field), given Pi ∈ E(K) satisfying [p]Pi = Pi−1 for i ≥ 1, there exists

a constant c, independent of Pi, such that [K(Pi) : K]insep ≥ cpi.

We deal first with the case P0 6∈ E(Kp). In this situation the equality

holds. Write Ki := K(Pi). Since we can extend the base field, without

loss of generality, we assume that G := E[p](K) ⊂ E(K), then the usual

projection f : E → E/G =: E1 is separable, defined over K and has kernel

G, let f̂ : E1 → E be its dual, so f̂ ◦ f = [p]. Recall that [p] can also be

factored as V ◦ Frob, where Frob : E → E(p) denotes the usual Frobenius
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and V = F̂rob its dual, the Verschiebung map.

E
(p)
1

φ

��

E1

Frob1

77

f̂

##
E

[p] //

f
33

Frob **

E

E(p)
V

<<

Since we assumed that E is non-isotrivial, we have that G ' Z/pZ, thus

ker f = G = ker[p], so f̂ is a purely inseparable map and we can factor it as

f̂ = φ ◦ Frob1, where Frob1 : E1 → E
(p)
1 is the Frobenius of E1 and φ is the

separable part, which is an isomorphism since f̂ is purely inseparable.

Since f̂ ◦ f(P1) = P0 and P0 6∈ E(Kp), in particular, P0 6∈ f̂(E1(K)),

we conclude that the coordinates of f(P1) are pth-roots of elements in

K that are not pth powers, so K(f(P1)) is inseparable of degree 1 over K.

Moreover, being f separable, K1/K(f(P1)) is separable, thus [K1 : K]insep =

p. Now we proceed by induction. We will need the following result

Lemma 3.4. Let K be a function field of positive characteristic p and F/K a

purely inseparable extension of degree p. If L is a separable extension of F , then

Lp is contained in a separable extension of K.

Proof. Since F/K is purely inseparable of degree p we can assume that

F = K(α) and the minimal polynomial of α is given by f(x) = xp − a

for some a ∈ K. Now, by the primitive element theorem, since L/K is
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separable, L = F (β) for some β separable over F , thus L = K(α, β). Then

Lp = Kp(αp, βp) = Kp(a, βp) = Kp(βp) ⊂ K(βp).

Write the minimal polynomial of β over F as pβ,F (x) = xn +
∑n−1

i=0 aix
i,

with ai ∈ F = K(α), then g(x) = xn + apn−1x
n−1 + · · · + ap1x + ap0 has βp

as a root. Since ai ∈ K(α), api ∈ K, so βp is separable over K. Thus Lp is

contained in a separable extension of K.

Assume, by induction, that [K(Pi) : K]insep = pi for i ∈ {1, . . . , n− 1}.

Kn

sep.

Kn−1(f(Pn))

Kn−1

sep.

Kn−2(f(Pn−1))

insep.

Kn−2

If Pn−1 6∈ E(Kpn−1) then the same argument from the case i = 1 works

and we conclude that [Kn : K]insep = pn. We claim that the Pn−1 ∈ E(Kpn−1)

cannot occur. Indeed, if this is the case then f(Pn) ∈ E1(Kn−1), so

Kn−1 = Kn−1(f(Pn)).

In particular, Kn/Kn−1(f(Pn−1)) would be separable. By the Lemma 3.4
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and the induction hypothesis, this would imply that Frob(Pn) has coordi-

nates in a separable extension of Kn−2.

On the other hand, Pn−1 = V (Frob(Pn)), and since V is a separable

map, we conclude that the coordinates of Pn−1 are separable over Kn−2,

which is a contradiction with the induction hypothesis that [Kn−1 : Kn−2]insep = p.

We thus obtain the bound [Kn : K] ≥ [Kn : K]insep = pn

Now, assume that P0 ∈ E(Kp), so f̂(P1) ∈ E(K), thus K1/K is sep-

arable of degree ≤ p. We claim that P1 6∈ E(Kp1). Indeed, in this case

the pth-roots of the coordinates of P1 would be contained in K1. Since we

assumed the coodinates of P0 were not in the finite base field, the same

holds for P1, so the pth-roots of its coordinates belonging to K1 contradicts

the fact thatK1 = K(P1). Therefore we have P1 6∈ E(Kp1) and, repeating the

argument from (3.1), we again obtain [Kn : K] ≥ [Kn : K]insep ≥ (1/p)pn.

Separable Case Let m be the smallest positive integer such that there

exists P1 ∈ E(K) and T ∈ Etors satisfying

[m]P = P1 + T.

Note that, since [n]P = P0, such m exists and m ≤ n. In fact, given an

integer d ≥ 0

[n− dm]P = [n]P − [dm]P = (P0 − [d]P1)− [d]T ∈ E(K) + Etors,

and by the minimality of m we conclude that m|n, thus m is also prime

with p. The same argument from [35] tells us that P1 is indivisible by m.
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Let m′ = mm1, where m1 is the order of T , let T ′ be such that [m]T ′ = T

and write P ′ = P − T ′, so K(P ′, Em′) = K(P,Em′). We have the following

inequality

[K(P ) : K] ≥ [K(P,Em′) : K(Em′)] = [K(P ′, Em′) : K(Em′)].

We are now in the following situation: [m]P ′ = P1 ∈ E(K) indivisible

and T ′ ∈ Em′ and we want to estimate [K(P,Em′) : K(Em′)]. This was

done for number fields in [10] using ideas of [34]. Since we are in the

case where p does not divide m, the same argument using Galois Theory

works in our situation.

Lemma 3.5. Let A be an abelian variety over K. Then there exists a constant

c0 = c0(E,K) such that, if P is an indivisible point of infinite order in A(K)

and if m|n are positive integers with (p,m) = 1, then

[
K
(
An,

1

m
P

)
: K(An)

]
≥ c0m

Proof. See [10, Appendix 2]. The only remark we make is that Falting’s

results regarding the endomorphism ring and the semisimplicity of the

torsion subgroups must be replaced by analogues in positive characteris-

tic, these were proved by Zahrin and Moret-Bailly and can be found, for

example, in [49].

We conclude this section by grouping together the results above in the

following proposition.
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Proposition 3.6. Let E be a non-isotrivial elliptic curve over a function field K

of positive characteristic p. Let P0 ∈ E(K) such that the coordinates of P0 are

not contained in the base field, then there exists a constant c = c(E) such that

for every P ∈ E(K) satisfying [n]P = P0 we have [K(P ) : K] ≥ cn, assuming

n is minimal with the property that [n]P ∈ E(K). In other words, if h denotes

the degree of K(P ) over K, there exists fh such that n ≤ fh.

3.2 Rank jump in characteristic p

The goal in this section is to extend Salgado’s results (see [35]) for elliptic

surfaces over global fields of positive characteristic.

Let X be a curve over K = Fq(C) and E be an elliptic curve over the

function field K of X . Let π : E → X be an elliptic surface associated to

E/K. By Silverman’s specialization (Theorem 2.8) we have

rank(E (K)) ≤ rank(Et(K)),

for all but finitely many t ∈ X(K). We prove that, if E /K is a unirational

surface, then for infinitely many t ∈ X(K),

rank(Et(K)) ≥ rank(E (K)) + 1. (3.2)

The idea is to pick a finite cover φ : Y → X and consider the base
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change

E ×X Y = EY

πY
��

p1 // E

π
��

Y
φ

// X

If we can find such Y satisfying

rank(EY (K(Y ))) ≥ rank(E (K(X))) + 1, (3.3)

again, by Silverman’s specialization, for all but finitely many t ∈ Y (K)

rank(EY (K(Y ))) ≤ rank((EY )t(K)).

Since (EY )t(K) ' Eφ(t)(K), for these t, we have

rank Eφ(t)(K) = rank((EY )t(K)) ≥ rank(EY (K(Y ))) ≥ rank(E (K)) + 1

thus, for the points φ(t) ∈ X(K) we have the desired inequality. Since we

are interested in the case where (3.2) is satisfied for infinitely many points,

we consider only curves Y such that Y (K) is infinite. In the conclusion we

will only deal with rational curves but the main results are valid for any

curve Y with infinitely many rational points, thus Y is either a rational

curve of an elliptic curve with positive rank.

Base Change Consider a curve iY : Y ′ ⊂ E that is not contained in a

fiber, so π(Y ′) is not a single point, thus π|Y ′ : Y ′ → X is a surjective

morphism of algebraic curves. Consider ν : Y → Y ′ the normalization of
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Y , so we have a finite cover φ = π ◦ iY ◦ ν : Y → X .

Each section σ ∈ Sec(E ) induces a section in EY given by

σ × IdY : X ×X Y = Y → EY = E ×X Y,

on the other hand, we have a new section

τY = (ν ◦ iY , IdY ) : Y → EY = E ×X Y.

It can happen, though, that the new section τY is linearly dependent with

the old ones, in this case, there are sections σi and ni, n ∈ Z such that

∑
[ni](σi)Y + [n]τ = 0.

This can be translated in the following criteria.

Lemma 3.7. An irreducible curve Y ⊂ E that is not a component of a fibre

induces a new section on EY independent of the old ones if and only if for every

section Y0 ∈ Sec(E ) and every n ∈ N∗, Y is not a component of [n]−1(Y0).

Instead of searching for a curve that verifies the above condition, we

prove that for curves in a numerical family, its enough to consider only

a finite number of sections Y0 and finitely many positive integers n. This

is the content of the following Proposition, proved in [35]. Since we dealt

with the problem of inseparability in the preceding section, the proof

goes verbatim to the cited reference. We include it in here for the sake of

completeness.
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Proposition 3.8 (cf. [35, Proposition 4.2]). Let E → X be an elliptic surface

defined over K, let Y be a numerical family of curves inside of E . Then there

exists n0 = n0(Y ) and a finite subset Σ0(Y ) ⊂ Sec(E ) such that for Y in the

family Y , the new section induced by Y in EY is linearly dependent of the old

ones if and only if [n]Y = Y0, for some Y0 ∈ Σ0(Y ) and n ≤ n0(Y ).

Proof. Take Y in Y , if it induces a section that is linearly dependent with

the old ones, then [n]τ = σY for some σ ∈ Sec E , so [n]Y = Y0 for Y0 =

σ(X), we can assume n minimal with this property. Kummer theory gives

an upper bound for n depending on the degree of curves in Y and Néron-

Tate height theory shows that there are only finitely many possibilities for

such Y0. Therefore linear dependence can only happen in this setting.

Let P0 be the point in E(K) corresponding to a section Y0 of E , if P ∈

E(K̄) satisfy [n]P = P0 and h denotes the degree of the field generated by

P , i.e. h = [K(P ) : K], then, by Proposition 3.6 we get n ≤ f(h) =: n0.

Now, fix a set of generators {Y1, . . . , Yr} for the Mordell-Weil group

of E . For a fixed n write ni = (([n]Y ).Yi), these numbers depend only

on the numerical class of Y . Write m0 = ([n]Y.O), where O denotes the

zero-section and lv,jv = ([n]Y.Θv,jv). Consider the set

Σ0 = {Y0 ∈ Sec(E ) | (Y0.Yi) = ni, (Y0.Θv,jv) = lv,jv and(Y0.O) = m0}

The heights of the sections of E depend only on the intersection numbers

with the zero section, the generators of the Mordell-Weil group and the

components of the fibers, thus the constraints on the intersection numbers

of the sections in Σ0 imply that this is a section of bounded height, so
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Σ0 is finite, thus there are finitely many possible sections Y0 such that

Y ⊂ [n]−1Y0.

The problem now is reduced to find an infinite number of rational

curves in the same numerical class and use the theorem to conclude that

only a finite number of them will yield a section that is linearly depen-

dent with the old ones. For this we assume that E is a unirational sur-

face, so there exists a dominant rational map ψ : P2 → E . Let L be the

family of lines passing through the origin of P2 and Lψ its image on E

by ψ. Then Lψ is a family of rational lines on E , in particular they are

all numerically equivalent. Thus the theorem implies that there exists a

positive integer n0(Lψ) and a finite subset of sections σ0(Lψ) such that if

C ∈ Lψ \ [1, n0(Lψ)] · Σ0(Lψ), where

[1, n0(Lψ)] · Σ0(Lψ) =
{
n · σ(B) | n ∈ {1, . . . , n0(Lψ)} and σ ∈ Σ0(Lψ)

}
,

then the change of basis E → EC yields an elliptic surface satisfying

(3.3), so, by specialization, we have infinitely many t ∈ B(K) such that

rank Et(B(K)) ≥ rank E (k(B)) + 1 and this proves Theorem 3.1.
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Applications

A direct application of Theorem 3.1 consists of considering unirational el-

liptic surfaces. Recall that a surface S is called unirational if there exists a

dominant rational map f : P2 99K S. In algebraically closed fields of char-

acteristic zero, Castelnuovo’s theorem implies that unirational surfaces

are rational, see, for example, [2]. On the other hand, in positive charac-

teristic, a non-zero pluricanonical form may vanish under pull-back, so

being dominated by a rational surface does not imply that S is rational. 1

Indeed, the result still holds if the function field extension induced by f

is separable, in this case we say S is separably rational. However, if S is

inseparably rational, there exists unirational surfaces that are not rational.

Many non-rational unirational surfaces have been found since then.

Zariski [50] gave examples of such surfaces in every positive characteris-

tic. In this chapter we study surfaces with an elliptic fibration for which

1For higher dimensional varieties, even in characteristic 0 there are examples of uni-
rational varieties that are not rational. Some examples are given in [30], for every di-
mension n ≥ 3.

51
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Theorem 3.1 can be applied. In particular, we find all possible fiber config-

urations for supersingular K3 arising as the pull-back of rational elliptic

surfaces by Frobenius morphism.

K3 surfaces as base changes of rational elliptic surfaces A nice way to

obtain K3 surfaces is to consider base curve changes from rational elliptic

surfaces: Let R → P1 be a rational elliptic surface and let f : P1 → P1

be a finite degree morphism. The singular fibers of the resulting surface

S = R ×P1 P1 can be described from the ones of R, through the process

described in Section 1.2 so, computing the Euler numbers we can restrict

ourselves to base changes yielding K3 surfaces

Example 4.0.1. Let S be the rational elliptic surface with fiber type I9 + 3I1. It

can be described as the pencil generated by the cubics Q and Q′, where Q′ has a

node at q and Q intersects Q at q with multiplicity 9, for example

Q′ : x3 + y3 − xyz = 0

Q : xz2 + x2y + y2z = 0.

Thus, the pencil of cubics has equation

µ(x3 + y3 − xyz) + λ(xz2 + x2y + y2z) = 0, (µ : λ) ∈ P1.

Which has the Weierstrass equation

E : y2 = x3 +

(
1

2
t3 − 1

48

)
x+

(
1

4
t6 − 1

24
t3 +

1

864

)
.
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The discriminant of E is given by −27t12 + t9, and the singular fibers are over 0

(of type I9) and over ζn3
1
3
, with n = 0, 1, 2 and ζ3 a primitive cubic root of unity

(all of type I1).

Let f : P1 → P1 be a degree-two morphism branched over 0 and 1
3

and let

X be the surface induced by the pullback of S by f , denote its generic fiber by

E ′. Then X is a K3 surface with an elliptic fibration to P1 and has the following

singular fibers: an I18 over 0, an I2 fiber over 1
3

and four I1 fibers, over the pre-

images of ζ3
1
3

and ζ2
3

1
3
. Let T be the sublattice of NS(X) generated by the zero

section, a fiber F and the irreducible components of fibers,

T = 〈(O), F 〉 ⊕
⊕
v∈R

Tv = 〈(O), F 〉 ⊕ T0 ⊕ T1
3

thus rankT = 2 +m0 +m1
3

= 2 + 17 + 1 = 20. The Shioda-Tate Formula gives

a bound on the rank of E ′:

rankE ′ = ρ(X)− rankT = ρ(X)− 20

Since the Picard number of a K3 surface cannot be 21 we have two options: either

ρ(X) = 20 or ρ(X) = 22. Notice that if ρ(X) = 20, then E has rank zero and

the Mordell-Weil group of X → P1 is finite, otherwise ρ(X) = 22, i.e. X is

supersingular, implying that MW (X → P1) has either rank 0 to 2.

Base change from a rational elliptic surface is not the only way to

produce supersingular K3 surfaces. Let n be coprime with p = char(K).
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The Fermat surface of degree n is given by

Xn : xn1 + xn2 + xn3 + xn4 = 0.

The surface Xn is non-singular and irreducible if n > 2. It is rational if

n = 3, K3 if n = 4 and of general type if n ≥ 5. The Fermat surface X4

is unirational if p 6≡ 3 (mod 4) and Tate (see [45]) showed that ρ(X4) =

22. In [39] Shioda gave a condition for Xn to be unirational and proved

that any unirational surface is supersingular. The Jacobian fibration of

the Fermat Surface X4 has six singular fibers of type I4 and thus cannot

be considered as the a base change from some rational surface through

Frobenius pullback, since p 6= 2. (see [24] for more details). The Fermat

quartic is actually a particular example of a Kummer surface:

Example 4.0.2. Let A be an abelian surface over K a let ι : A→ A be the auto-

morphism x 7→ −x, thus the group G = {IdA, ι} acts on A and, if char(K) 6= 2,

has 16 fixed points, which gives 16 rational double point singularities on A/G.

The blow-up of A/G of these points yields a K3 surface (see [2, Theorem 10.6

and Remark 10.7(b)]). The surfaces given by this process are called Kummer

surfaces and often denoted by Km(A). The Picard number of Km(A) is given by

16 + ρ(A). If A = E × E ′ is a product of elliptic curves we have

ρ(Km(A)) = 16 + 2 + rank Hom(E,E ′).

In particular, if E = E ′ is a supersingular elliptic curve, then Hom(E,E ′) =

End(E) is an order in a quaterion algebra [42, V.3], thus rank(Km(A)) = 22.
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In [40], Shioda proved that a Kummer surface in characteristic p > 2

is unirational if and only if it is supersingular. In this same paper Sh-

ioda (and several others) conjectured that such result holds for any K3

surface. Some special cases where proved by Rudakov and Shafarevich,

Pho, Shimada and others. The full conjecture was proved by Liedtke for

characteristic p ≥ 5 in [22]. Which we briefly describe here.

Fields of definition Let us make a remark about the fields of definition.

Since supersingular elliptic curves are defined over finite fields, Kummer

surfaces associated to product of supersingular elliptic curves are indeed

supersingular K3 surfaces, but they can be defined over Fp2 . A supersin-

gular abelian surface is isogenous to a product of supersingular elliptic

curves but such isogeny is defined over the algebraic closure of the field

of definition, thus there exist supersingular abelian surfaces that cannot

be defined over finite fields. The Kummer surfaces associated to these

surfaces yield supersingular K3 surfaces that are not defined over finite

fields, so the elliptic fibrations are ’honest’ fibrations over P1 over function

fields.

Liedtke’s work Given a supersingular K3 surface X , the discriminant

of its Néron-Severi lattice is equal to −p2σ0 for some σ0 ∈ {1, . . . , 10}. The

integer σ0 is called the Artin invariant of X . Given two varieties X and

Y of the same dimension, an isogeny of degree n is a dominant, rational

and generically finite map X 99K Y of degree n. A purely inseparable

isogeny of height h is an isogeny that is purely inseparable of degree ph.
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Liedtke’s main result is the theorem below

Theorem 4.1. [See [22], Main theorem] Given any two supersingular K3 sur-

faces X and X ′ with Artin invariant σ0 and σ′0, then there exist dominant and

rational maps

X 99K X ′ 99K X

both of which are purely inseparable and generically finite of degree p2σ0+2σ′0−4.

Since it is already known that supersingular Kummer surfaces are uni-

rational, given a K3 surface X , the existence of such a dominant rational

map from a Kummer surface to X implies that X is unirational. In the

course of the proof, Liedtke determines which supersingular K3 have a

jacobian elliptic fibration:

Theorem 4.2. Let X be a supersingular K3 surface with Artin invariant σ0 in

characteristic p ≥ 5.

1. If σ0 ≤ 9 then X admits a jacobian elliptic fibration.

2. If σ0 = 10, then X does not admit a jacobian elliptic fibration.

The following elliptic surface is another example supersingular K3

surface with an elliptic fibration which cannot be given as a pull back of

a rational elliptic fibration:

Example 4.0.3. In [37], the authors proved that the there exists a unique elliptic

surface with an I19 fiber. This is a K3 surface whose equation can be given as

X : y2 = x3 + (t4 + t3 + 3t2 + 1)x2 + 2(t3 + t2 + 2t)x+ t2 + t+ 1.
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If the characteristic p 6= 2 is not a quadratic residue (mod 19) or p = 19,

then X defines a supersingular surface. If p 6= 19, then X cannot arise as

a Frobenius pull-back of a rational surface, since the fiber I19 would then arise

from a fiber of type In with 19 = pn. If p = 19 then X is indeed the 19-Frobenius

pull back of a surface with singular fiber configuration [I1, II, III
∗].

Example 4.0.4. Recall that a surface X is an Enriques surface if q(X) = 0,

pg(X) = 0 and 2KX = 0. Enriques surfaces can be obtained by taking the

quotient of a K3 surface by a fixed-point-free involution, this involution is usu-

ally called an Enriques involution. On the other hand, every Enriques surface

has a double cover which is ‘K3-like’. In the complex scenario, the study of the

effect of the double cover (and the fixed-point-free involution) in the associated

Néron-Severi lattices gives a criterion for the existence of an Enriques quotient

for a generic K3. The proof uses the Torelli theorem for K3 surfaces, proved by A.

Ogus, a survey on this subject can be found on [23]. Since the theorem holds for

supersingular K3 surfaces, the result can be extended for such K3 surfaces in

positive characteristic. Using this idea, Jang verified (see [17]) that a supersin-

gular K3 surface in characteristic p = 19 or p > 23 has an Enriques involution

if and only if its Artin invariant is less than 6.

Now, given an Enriques surface E, recall that E has a genus 1 fibration that

is not elliptic, since it has non-reduced fibers. Nevertheless, the jacobian of such

Enriques surface is a rational elliptic surface.

Proposition 4.3. Let E (p) → P1 be a K3 elliptic surface in characteristic p aris-

ing as a Frobenius pull-back from a rational elliptic surface E . Then E (p) → P1

is supersingular and there is no rank growth from E to E (p).
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Proof. Since E is a rational elliptic surface, it’s generic fiber has a Weier-

strass equation of the form

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t),

with deg ai(t) ≤ i.

The Frobenius base change amounts to raising the parameter t of the

base curve to the p-power. Thus, E (p) is given by the equation

y2 + a1(tp)xy + a3(tp)y = x3 + a2(tp)x2 + a4(tp)x+ a6(tp).

Since t→ t1/p is purely inseparable, we have an embedding

k(x, y, t1/p) ↪→ k(x, y, t) ↪→ k(P2),

so E (p) is unirational, therefore supersingular by Liedtke’s theorem 4.1.

Since E (p) is supersingular, its Néron-Severi group has rank 22. Together

with the contribution of the fibers we can compute the respective ranks

and check that there is no rank growth. Tables A.1-6 in Appendix A de-

scribe the change in the configuration of bad fibers in the base change

for elliptic surfaces over fields of characteristic p ≤ 19. For p > 19, the

possible singular fibers configurations are given in Table A.7, according

to the congruence class of p: If p ≡ 3 (mod 4) then C3 is a possible con-

figuration, if p ≡ 2 (mod 3) then C4 is also a possible configuration, if,

furthermore, p ≡ 5 (mod 6) then C2 and C3 also appear as possible fiber

configurations.
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Example 4.0.5. Consider the elliptic surface E → P1 over the algebraic closure

of Fp(a) given by

y2 + xy = x3 − at,

E is a rational surface with two fibers of type I1 and one fiber of type II∗. By

Shioda-Tate formula E has rank 0. From Table A.3 we see that, for p = 11, the

elliptic surface E (p) → P1 given as the pull-back by the Frobenius map t 7→ t11

yields a unirational K3 surface with singular fibers I11, I11 and II . A Weierstrass

equation for E (p) is given by:

y2 + xy = x3 − atp

The K3 surface E (p) has singular fibers I11, I11 and II and rank 0. The discrimi-

nant and j-invariant of E (p) are given as follows:

∆ = 8a2t22 + at11 and j =
1

8a2t22 + at11
.

Now, consider the specializations t 7→ ap
n−1 , for n ∈ N. The fibers are given by

the elliptic curves

E (p)
an /Fp(a) : y2 + xy = x3 − apn+1.

D. Ulmer proved in [47] that the elliptic curves E (p)
an have rank at least (pn−1)

2n
for

n ∈ N, so there exist infinitely many fibers such that

0 = MW(E (p) → P1) <
pn − 1

2n
= rank E (p)

an ,



CHAPTER 4. APPLICATIONS 60

as expected by Theorem 3.1.

A jump in the rank from the rational to a supersingular K3 Let us

consider an example of a rational elliptic surface E → P1 such that the

rank jump is 3. The idea is to consider a base change from E to a K3

surface E ′ such that the rank jump between E and E ′ is 2, i.e.

rank E ′(P1) = rank E (P1) + 2.

Now, if we could find an example where the resulting K3 is supersingular

and unirational over k, then Theorem 3.1 can be applied yielding another

elliptic surface E ′′ → C such that

rank E ′′(C) ≥ rank E ′(P1) + 1 = rank E (P1) + 3.

So, we have infinitely many points t ∈ P1 such that

rank Et(k) ≥ rank E (P1) + 3.

If we take E ′ → P1 to be the Frobenius pullback of E , Proposition 4.3

assures that the resulting K3 surface will be supersingular, on the other

hand it shows that these base changes do not yield any rank jump. We

must then restrict ourselves to non-Frobenius base change. Let us con-

sider the base changes yielding a configuration of singular fibers whose

trivial lattice big rank, we consider the following cases:

rankT (E ′) = 22 In this case Shioda-Tate formula implies that rank E ′(P1) = 0,
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since ρ(E ′) ≤ 22. So E ′ is supersingular but there is no rank jump.

rankT (E ′) = 21 Since ρ(E ′) 6= 21, we should have ρ(E ′) = 22, so

rank(E ′) = 1. Using the possible singlar fiber configurations for the ra-

tional elliptic surfaces E and the effect of base change, we found that the

ones yielding a K3 E ′ with rankT (E ′) = 21 already satisfy rank E (P1) = 1,

so the section of E ′ → P1 is inherited from E , thus there is no rank jump.

rankT (E ′) = 20 From ρ(E ′) 6= 21 we conclude that E ′ has rank either

0 or 2. If the rank of the rational elliptic surface E under E ′ is already

2, then E ′ is supersingular but its rank is also 2. For example, the p-

Frobenius pullback of a rational elliptic surface with three singular fibers

of type IV yield a K3 elliptic surface with three IV ∗ fibers whenever p ≡

2 (mod 3). In this case rankT (E ′) = 20, but the initial rational elliptic

surface have rank 2, so E ′ is a supersingular K3 with rank 2.

On the other hand, if rank E (C) = 0, then there is room for a jump in

the rank. We find such a surface. We present it in the following example.

Example 4.0.6. Take E → P1 to be the rational elliptic surface over K = Fp(a)

with fiber configuration [I6, I3, I2, I1]. One such surface is given by the Weier-

strass equation 2

E : y2 + txy + ty = x3 + (t+ 1)x2 + tx

From Shioda-Tate formula E (P1) has rank 0. Now take the base field with char-

acteristic 5 and consider the base change t 7→ (t − 3)2 yields a K3 surface E ′, a

2We remark that, even though E can be defined as a surface over Fp, it is considered
here as surface over the function field Fp(a), since the rank of specialization only make
sense in this context.
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Weierstrass equation for E ′ is given by

y2 + (t2 + 4t+ 4)xy + (t2 + 4t+ 4)y = x3 + (t2 + 4t)x2 + (t2 + 4t+ 4)x

MAGMA [51] confirms that the rank of E ′ is 2 (over the algebraically closed

field) and, indeed, we could find sections like P = (t, t+1) andQ = (4t+ 1, 4t+ 2).

2P is given by

2P =

(
4t4 + 2t3 + t2 + 3t

t4 + 3t3 + 3t2 + 3t+ 1
,

3t6 + 4t5 + t4 + 2t3 + 3t2 + 3t

t6 + 2t5 + t4 + 3t3 + t2 + 2t+ 1

)

So, by the Nagell-Lutz Theorem (this is classical in characteristic 0, see, for

example, [42], a generalization for positive characteristic was proved in [6]), we

conclude that P is non-torsion 3. Therefore, E ′ is a supersingular K3 surface

and there is a rank jump from E to E ′. So, by Corollary 3.2, there exists a base

change C → P1 such that the associated pullback yields a surface E ′′ satisfying

rank E ′′(C) ≥ rank E (P1) + 3 ≥ 3, so there are infinitely many fibers Et of the

initial rational elliptic surface such that rank Et(K) ≥ 3.

Remark. The base change above in other characteristics may have

different behavior. For example, in characteristic p = 19. The base change

t 7→ (t− 8)2 on the rational elliptic surface with no free part

E : y2 + txy + t = x3 + (t+ 1)x2 + tx

3The section Q is also non-torsion but it is not independent with P since
3P = −3Q+ T , where T = (4, 0) is a 2-torsion point.
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yields the K3 surface given by

E ′ : y2 + (t2 + 3t+ 7)xy+ (t2 + 3t+ 7)y = x3 + (t2 + 3t+ 8)x2 + (t2 + 3t+ 7)x,

which MAGMA predicts to also have rank 0.



Appendix A

Supersingular K3 arising from
rational

In this Appendix we describe the effect on the configuration of singu-
lar fibers of the pullback p-Frobenius morphism on the base curve of the
rational elliptic surfaces E → P1 yielding K3 surfaces E (p) → P1. The
algorithm bellow describes how the list was obtained. We list the ingre-
dients:

• L is the list of possible singular fiber configurations for rational el-
liptic surfaces. Such list can be obtained, for example, from [29]
or [31]. For chark 6= 2, 3, the list of singular fibers coincide with
the ones in characteristic zero, Jarvis et. al [18] has a description for
these cases.

• Each FiberConfig is the list of singular fibers in a particular rational
elliptic surface (RES) in L, described in Table 1.1.

• The function Euler computes the Euler number of a RES with a
given singular fiber configuration, defined as the alternating sum of
the Betti numbers. From the formula e(E ) =

∑
v∈C e(Fv), where Fv
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is the fiber on E over v, and from the Euler numbers of the fibers,

e(Fv) =


0 if Fv is smooth,
mv if Fv is multiplicative,
mv + 1 if Fv is additive,

where mv isthe number of irreducible fibers of Fv, we can compute
e(S). (See [7] or [38] for more details).

• The BaseChange function returns singular fibers on E (p) originating
from the ones on E , this is described in Table 1.2.

• The function Trivial gives the rank of the trivial lattice, given by the
formula 2−

∑
v∈C(mv − 1), as seen on Section 1.2.

The algorithm is given by:

Input: List L of config. for RES, prime p
Output: List of config. of K3 arising as Frobenius pull back from

RES and their rank
Lo← [ ]
for FiberConf in L do

if Euler(FiberConf) = 24 then
NewFiberConf← [BaseChange(Fiber, p) for Fiber in
FiberConf ]

rk←22 - Trivial(NewFiberConf)
Lo.append([NewFiberConf, rk])

end
end
return Lo
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p = 5

Config. of singular fibers of E Config. of singular fibers of E (p) Rank

[III∗, I2, I1] [III∗, I10, I5] 0

[III∗, II, I1] [III∗, II∗, I5] 1

[III∗, 3I1] [III∗, 3I5] 1

[IV ∗, I3, I1] [IV, I15, I5] 0

[IV ∗, I2, II] [IV, I10, II
∗] 1

[IV ∗, I2, 2I1] [IV, I10, 2I5] 1

[IV ∗, 2II] [IV, 2II∗] 2

[IV ∗, II, 2I1] [IV, II∗, 2I5] 2

[IV ∗, 4I1] [IV, 4I5] 2

[I∗2 , III, I1] [I∗10, III, I5] 1

[I∗1 , IV, I1] [I∗5 , IV
∗, I5] 1

[I∗1 , III, I2] [I∗5 , III, I10] 1

[I∗1 , III, II] [I∗5 , III, II
∗] 2

[I∗1 , III, 2I1] [I∗5 , III, 2I5] 2

[I∗0 , IV, II] [I∗0 , IV
∗, II∗] 2

[I∗0 , IV, 2I1] [I∗0 , IV
∗, 2I5] 2

[I∗0 , III, I2, I1] [I∗0 , III, I10, I5] 2

[I∗0 , III, II, I1] [I∗0 , III, II
∗, I5] 3

[I∗0 , III, 3I1] [I∗0 , III, 3I5] 3

[3IV ] [3IV ∗] 2

[IV, 2III, I2] [IV ∗, 2III, I10] 3

[IV, 2III, 2I1] [IV ∗, 2III, 2I5] 4

[I3, 3III] [I15, 3III] 3

[3III, I2, I1] [3III, I10, I5] 4

[3III, 3I1] [3III, 3I5] 5

Table A.1: Configurations for 5-Frobenius base change
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p = 7

Config. of singular fibers of E Config. of singular fibers of E (p) Rank

[II∗, 2I1] [II∗, 2I7] 0

[III∗, I2, I1] [III, I14, I7] 0

[III∗, 3I1] [III, 3I7] 1

[IV ∗, III, I1] [IV ∗, III∗, I7] 1

[IV ∗, I2, II] [IV ∗, I14, II] 1

[IV ∗, II, 2I1] [IV ∗, II, 2I7] 2

[I∗2 , 2II] [I∗14, 2II] 2

[I∗1 , IV, I1] [I∗7 , IV, I7] 1

[I∗1 , III, II] [I∗7 , III
∗, II] 2

[I∗1 , 2II, I1] [I∗7 , 2II, I7] 3

[I∗0 , IV, 2I1] [I∗0 , IV, 2I7] 2

[I∗0 , 2III] [I∗0 , 2III
∗] 2

[I∗0 , III, II, I1] [I∗0 , III
∗, II, I7] 3

[I∗0 , I2, 2II] [I∗0 , I14, 2II] 3

[I∗0 , 2II, 2I1] [I∗0 , 2II, 2I7] 4

Table A.2: Configurations for 7-Frobenius base change

p = 11

Config. of singular fibers of E Config. of singular fibers of E (p) Rank

[II∗, 2I1] [II, 2I11] 0

[III∗, II, I1] [III, II∗, I11] 1

[IV ∗, III, I1] [IV, III∗, I11] 1

[IV ∗, 2II] [IV, 2II∗] 2

[I∗0 , IV, II] [I∗0 , IV
∗, II∗] 2

[I∗0 , 2III] [I∗0 , 2III
∗] 2

[3IV ] [3IV ∗] 2
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Table A.3: Configurations for 11-Frobenius base change

p = 13

Config. of singular fibers of E Config. of singular fibers of E (p) Rank

[III∗, II, I1] [III∗, II, I13] 1

[IV ∗, III, I1] [IV ∗, III, I13] 1

[I∗1 , III, II] [I∗13, III, II] 2

[I∗0 , III, II, I1] [I∗0 , III, II, I13] 3

Table A.4: Configurations for 13-Frobenius base change

p = 17

Config. of singular fibers of E Config. of singular fibers of E (p) Rank

[IV ∗, III, I1] [IV, III, I17] 1

[IV ∗, 2II] [IV, 2II∗] 2

[I∗0 , IV, II] [I∗0 , IV
∗, II∗] 2

[3IV ] [3IV ∗] 2

Table A.5: Configurations for 17-Frobenius base change

p = 19

Config. of singular fibers of E Config. of singular fibers of E (p) Rank

[III∗, II, I1] [III, II, I19] 1

[I∗0 , 2III] [I∗0 , 2III
∗] 2

Table A.6: Configurations for 19-Frobenius base change
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For p > 19, the possible fiber configurations are given below

Config. of singular fibers of E Config. of singular fibers of E (p)Rank

C1 [IV ∗, 2II] [IV, 2II∗] 2

C2 [I∗0 , IV, II] [I∗0 , IV
∗, II∗] 2

C3 [I∗0 , 2III] [I∗0 , 2III
∗] 2

C4 [3IV ] [3IV ∗] 2

Table A.7: Configurations for p-Frobenius base change, with p > 19.
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