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Resumo

Nesse trabalho, provamos uma série de resultados sobre as propriedades de
controle e estabilizagdo para uma classe de sistema Boussinesq que acopla
duas equagdes do tipo Benjamin-Bona-Mahony. Inicialmente, consideramos
o sistema num intervalo limitado e mostramos que este nao é espectralmente
controlavel se os controles atuarem num extremo do intervalo. No entanto,
pode-se mostrar que é aproximadamente controlavel. Em seguida, quando o
modelo é considerado em um domfinio periédico, propomos varios mecanismos
dissipativos que nos levam a sistemas para os quais todas as trajetérias sao
atraidas pela origem desde que a continuacdo Unica de solucoes fracas seja
valida. Finalmente, os problemas de controle e estabilizacdo sdo abordados
para um sistema Boussinesq de ordem superior, em um dominio periddico.
As propriedades de estabilidade sdo demonstradas quando operadores dissi-
pativos generalizados sao introduzidos em cada equacgao. Mais precisamente,
as solugoes do sistema linearizado decaem uniformemente ou nao para zero,
dependendo dos parimetros desses operadores. No caso de decaimento
uniforme, mostramos que a mesma propriedade ¢é valida para o sistema nao
linear. No que diz respeito as propriedades de controle, se apenas um nico
controle interno for usado, a controlabilidade exata é estabelecida através do
Hilbert Uniqueness Method. Se considerarmos dois controles, obtém-se um
resultado de controlabilidade exato mais forte usando o método de momentos.

Palavras chave: Controlabilidade, sistema de Boussinesq , equagio de
Benjamin-Bona-Mahony, propriedade de continuagao tnica.

iv



Abstract

This work is devoted to prove a series of results concerning the control and
stabilization properties for a class of Boussinesq system which couples two
Benjamin-Bona-Mahony type equations. Initially, we consider the system posed
on a bounded interval and show that it is not spectrally controllable if the
controls act at one endpoint of the interval. However, it can be shown that it is
approximately controllable. Next, when the model is posed on a periodic domain,
we propose several dissipation mechanisms leading to systems for which all the
trajectories are attracted by the origin provided that the unique continuation of
weak solutions holds. Finally, the control and stabilization problems are addressed
for a higher-order Boussinesq system, posed on a periodic domain. The stability
properties are proved when generalized damping operators are introduced in each
equation. More precisely, the solutions of the linearized system decay uniformly or
not to zero, depending on the parameters of the damping operators. In the uniform
decay case, we show that the same property holds for the nonlinear system. In
what concerns the controllability properties, if only a single internal control is used,
the exact controllability is established via the Hilbert Uniqueness Method. If we
consider two controls, a stronger exact controllability result is obtained by using
the moment method.

Key words: Controllability, Boussinesq system, Benjamin-Bona-Mahony equation,
unique continuation property.
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Chapter 1

(eneral Introduction

It is common knowledge that nonlinear dispersive wave equations arise as models of var-
ious physical phenomena. Because of the range of their applications, and because their
mathematical properties are interesting and subtle, since the latter half of the 1960s and
in the 1970s the mathematical theory for such equations came to the fore as a major
topic within nonlinear analysis. In what concerns the propagation of unidirectional, one-
dimensional, small-amplitude long waves in nonlinear dispersive media, for example, the
phenomenon is well approximated by the Benjamin-Bona-Mahony (BBM) equation

Up + Uy — Ugyr + U, = 0.

The equation itself was initially put forward in [3| and [30] as an approximate description
of long-crested, surface water waves and it is an alternative to the classical Korteweg-de
Vries (KdV) equation,
Up + Uy + Uggr + vuy, = 0.

Both models are special cases of a broad class of evolution equations for which the theory
associated to the pure initial-value problem is by now well developed, though there are
still interesting open issues. By contrast, the theory for coupled systems of such equations
is much less developed, though physicists and mathematicians were led to derive sets of
equations to describe the dynamics of the water waves in some specific physical regimes.
For instance, in [4, 5] the authors have derived and analyzed a four-parameter family of
Boussinesq systems

Wy + Ny + WWy + gz — dwaca:t = 0, ’
to approximate the motion of small amplitude long waves on the surface of an ideal fluid
under the force of gravity in situations where the motion is sensibly two-dimensional.
Here, the variable, z, is proportional to distance in the direction of propagation while ¢
is proportional to elapsed time. The quantity n(x,t) 4+ ho corresponds to the total depth
of the liquid at the point x and at time ¢, where hq is the undisturbed water depth. The
variable w(x,t) represents the horizontal velocity at the point (z,y) = (z,0hg), at time t,
where y is the vertical coordinate, with y = 0 corresponding to the channel bottom or sea
bed. Thus, w is the horizontal velocity field at the height 6k, where 6 is a fixed constant
in the interval [0, 1]. The constants a, b, ¢, d satisfy the consistency conditions

1,, 1 1 )
0 ==(1—6%>0. 1.2
a+b 2(9 3), c+d 2( 6) >0 (1.2)



Contrary to some classical wave models which assume that the waves travel only in one
direction, system (1.1) is free of the presumption of unidirectionality and may have a
wider range of applicability.

1.1 Problems and Main Results

1.1.1 Controllability of the Boussinesq system of BBM-BBM type on a bounded
domain

A major concern on the mathematical side of the study of dispersive wave models has been
to settle the issues of local and global well-posedness for the pure initial-value problem,
and thus pertains to wave motion far from the ends of a channel or for very long-crested
waves in field situations. In this context, a natural example arises when modeling the
effect in a channel of a wave maker mounted at one end, or in modeling near-shore zone
motions generated by waves propagating from deep water. The mathematical theory
pertaining to the study of such boundary value problem is considerably less advanced,
specially in what concerns the study of the controllability properties. Such properties can
be useful, for example, to see whether the solutions can be driven to a given state at a
given final time by means of a control acting on a endpoint of the channel.

In this chapter, we are mainly concerned with the study of the Boussinesq system from
the control point of view. Consideration is given to an initial-boundary-value problem as-
sociated to linearized Boussinesq system (1.1) when the parameters given in (1.2) are such
that a = ¢ = 0. The resulting system couples two Benjamin-Bona-Mahony type equations
and it is called purely BBM-type Boussinesq system. Our attention, in particular, is given
to the following distributed control system:

(Nt + Wy — Oy = 0, 136(0,27'(')7 t>0
Wy + 1y — dWyze = 0, x € (0,2m), t>0
n(t,0) = w(t,0) =0, t>0 (1.3)
n(t’ 27T) = f(t);w(tv 27?) = g(t)v t>0 .
1(0,2) = n°(x), z € (0,2n)

L w(0,2) = w'(z), z € (0,2m).

In (1.3), the external forcing terms f and g are considered as control inputs. The purpose
is to see whether one can force the solutions of the system to have certain desired properties
by choosing appropriate control inputs acting at one end of the channel. More precisely,
we are mainly concerned with the following problems which are fundamental in control
theory:

Given T > 0, initial states (n°, w°) and terminal states (n*,w') in a certain space, can
one find appropriate control inputs f and g so that the system (1.3) admits a solution
(. w) which satisfies (n(0,-), w(0,-)) = (1%, u®) and ((T,-),w(T, ")) = (n', w!)?

If one can always find a control input to guide the system described by (1.3) from
any given initial state to any given terminal state, then the system is said to be exactly
controllable. If any given initial state can be steered to (0,0), the system is said to be
null controllable.



Given T > 0, € > 0, initial states (n°,w°) and terminal states (n',w') in a certain
space H, can one find appropriate control inputs f and g so that the system (1.3) admits
a solution (n,w) which satisfies ||(n(T,-),w(T,-)) — (n°,w°)||lg < &, for a certain space
H?

This means that the set of reachable states is dense in H and, in this case, the system
is said to be approximately controllable.

Observe that exact controllability is essentially stronger notion than approximate con-
trollability. In other words, exact controllability always implies approximate controllabil-
ity. The converse statement is generally false.

Those questions were first investigated in [25] where periodic boundary conditions
were considered. The space of the controllable data is determined for each value of
the four parameters a,b,c and d. Then, some simple feedback controls are constructed
for a particular choice of the parameters such that the resulting closed-loop systems
are exponentially stable. Later on, in [9], it was discovered that whether the system
of Boussinesq system of KdV-KdV type (b = d = 0), posed on a interval, is exactly
controllable or not depends on the length of the spatial domain. When the system is
controllable, the authors also proved that the solutions issuing from small data are globally
defined and exponentially decreasing in the energy space. A similar result was obtained
in [28].

Concerning the Boussinesq system of BBM-BBM type, the work [26] addresses the
stabilization problem for the linearized system, posed on a bounded interval, when a
localized damping term acts in one equation only. By considering Dirichlet boundary
conditions it was proved that the energy associated to the model converges to zero as
time goes to infinity. More recently in [27], on periodic domain, the stability properties
was studied by introducing generalized damping operators in each equation. In this case,
whether the solutions of the linearized system decay uniformly or not to zero depend on
the parameters of the damping operators. In the uniform decay case, the same property
holds for the nonlinear system. Let us also mention that a similar problem for the model
posed on the whole real axis was studied in [13].

We begin our analysis by providing a negative result for the first problem introduced
above: system (1.3) is not spectrally controllable if (n° w°) € (H}(0,27))?. This means
that no finite linear nontrivial combination of eigenvectors of the operator associated with
the state equations (A : (H}(0,27))? — (H}(0,27))?) can be driven to zero in finite time
by using controls (f,g) € (H*(0,7))% As it will become clear during our proofs, the
bad control property comes from the existence of a limit point in the spectrum of the
operator associated with the state equations, a phenomenon already noticed in [24] for
the single BBM equation. To obtain the results we make use of the carefull spectral
analysis developed in [26], which provides important developments to justify the use
of eigenvector expansions for the solutions, as well as, the asymptotic behavior of the
eigenvalues. Therefore, for the sake of completeness, we have included the analysis of [26]
in an Appendix.

Nevertheless, we give a positive answer to the second problem mentioned above, i.e.,
it is possible to show that system (1.3) is approximately controllable for any 7' > 0. More
precisely, there exist control inputs (f,g) € (H'(0,7))% such that the set of reachable
states is dense in (L?(0,2m))?, for any (n°, w°) € (H'(0,27))? and T" > 0. As in the



first problem, to obtain the results we rely strongly on the carefully developed spectral
analysis in [26] for the operator associated with the state equations. The main idea is
to use the series expansion of the solution in terms of the eigenvectors of the operator in
order to reduce the problem to a unique continuation problem (of the eigenvectors). In
the present case, it can be solved by classical ODE methods.

We point out that a similar problem was studied in [24] for the scalar BBM equation
from which we borrow some ideas. The proofs in [24] make use of the explicit Fourier
series expansion of the solution in terms of the eigenvectors of the differential operator
associated to the space variable. This approach does not apply directly in our case, since
the eigenfunctions are not explicit and, therefore, our proofs require further developments.
On the other hand, the program of the present work establish as a fact that model (1.3)
inherits some interesting properties initially observed for the linear BBM equation.

In what concern the nonlinear model, the problem remains open, including for the
BBM equation. At this respect, we note that the controllability properties of nonlinear
systems are usually studied by linearizing the problem at an equilibrium state, by proving
exact controllability results for this linear problem and by applying next the implicit
function theorem. However, taking into account the negative results obtained in this
paper for the linearized model (like nonspectral controllability) it is not possible to study
the controllability properties of the full Boussinesq system of BBM type by using one of
the classical techniques. To our knowledge, the only result on the subject was obtained in
[32] for the BBM equation on the torus T = R/(27Z). The authors show that, when an
internal control acting on a moving interval is applied in the BBM equation, it is locally
exactly controllable in H*(T), for any s > 0, and globally exactly controllable in H*(T),
for any s > 1, in a sufficiently large time depending on the H*-norms of the initial and
terminal states.

1.1.2 Large time behavior for the Boussinesq system of BBM-BBM type

In all the situations mentioned in the previous sections, it is often important to investigate
the stability properties of the solutions when dissipative effects are generated by internal
and boundary damping. The problem might be easy to solve when the underlying models
have a strong enough intrinsic dissipative nature, but very often, as the cases we address
here, the models are of conservative nature and the decay requires appropriate damping
mechanisms. Obviously, for practical purposes, it is desirable to achieve this property
with a minimal amount of damping both in what concerns its support and its intensity.
Moreover, in the context of coupled systems, the damping mechanism has to be designed
in an appropriate way in order to capture all the components of the system. For all these
reasons the right choice of damping terms is far from being obvious and requires a careful
analysis in each particular case.

In this chapter, we investigate such questions when the parameters given in (1.2) are
such that a = ¢ = 0. The resulting system couples two Benjamin-Bona-Mahony type
equations and it is called purely BBM-type Boussinesq system. We consider either a
distributed (localized) feedback law or a boundary feedback law.

We first consider the case in which a localized damping mechanism acts in one equation



of the system:

Nt + Wy — by = By for z € (0,27), t >0

Wy + 1Ny — dwiz, =0 for z € (0,27), t >0 14
n(0,z) = n°(z) for z € (0, 27), (1.4)
w(0,x) = w(x) for z € (0,27),

where b,d > 0, and B is a linear bounded and positive operator which will be effective
only on an open subset w of the interval (0,27). A precise definition of the operator B
will be given in the next sections, but in this case (1.4) is closed with periodic boundary
conditions, i. e.,

n(t,0) =n(t,2m); n.(t,0) = n.(t,2m) fort >0 r
{ w(t,0) = w(t,2m); w,(t,0) = w,(t,2m) for ¢ > 0. (1.5)

The natural energy associated to (1.4)-(1.5) is given by

1 2

B =5 [ Bl + it o)+ dhwa(t. o)+ ufe, o)) da
0

and if we multiply the first equation in (1.4) by 7, the second one by w and integrate by

part over (0,27), we obtain (at least formally)

dE(t) 2
5 = Bn(t)n(t)dz. (1.6)
0
So, the energy decreases along the trajectories of the system.
When B = 0, i.e., in the absence of an internal damping term, we study (1.4) with the
following set of boundary conditions:

w(t,0 w(t, L
Net(t,0) = (2b ) +n(t,0); Nee(t, L) = <Qb ) —n(t,L) fort>0
1.7)
I (
we(t,0) = % +w(t,0); W (t, L) = UGE w(t,L) fort>0.

In this case, the energy associated to (1.4)-(1.7) satisfies the following energy dissipa-
tion law

dE(t
PO — bt D + . 0P) —d (ju(t. D + w(t.0P).  (18)
Hence, E(t) is decreasing and the boundary conditions play the role of a feedback damping
mechanism.

In each case, we can ask weather F(t) is asymptotically stable, as t — co. The prob-
lem was first addressed in [31] for the scalar BBM equation and the conclusion is that
all trajectories are indeed attracted by the origin provided that the unique continuation
property holds for the conservative equation. We remark that the unique continuation
property for the BBM equation is still an open problem. Moreover, since the underlying
Cauchy problem is a characteristic one, we can not expect to apply Carleman-type esti-
mates or the classical Holmgren uniqueness theorem. In order to overcome this difficulty,



in [32] the authors introduced a moving control and derived with such a control both the
exact controllability and the exponential stability of the full BBM equation. They also
proved a conditional unique continuation result by assuming that the initial data is small
in the L*>-norm and it has a nonnegative mean value.

The program of the present work is carried out for the particular choice of damping
effect entering in (1.6) and (1.8) and aims to establish as a fact that the correspond-
ing models inherit the interesting qualitative properties initially observed by Rosier for
the BBM equation. Following the approach developed in [31], we first prove the global
wellposedness of the systems (1.4)-(1.5) and the convergence towards a solution which is
null on a band. Then, from the unique continuation property obtained for finite energy
solutions of the conservative system, it follows that the origin is asymptotically stable for
the damped BBM-BBM model. Similar conclusions remains valid for system (1.4)-(1.7)
and, as it will become clear during our proofs, the boundary conditions play an important
role and allow us to apply the same unique continuation argument. Here, the proof of
the unique continuation property makes use of the explicit Fourier series expansion of the
solution in terms of the eigenvectors of the differential operator associated to the space
variable. Concerning the existence of a solution, it is established by converting (1.4)-(1.5)
and (1.4)-(1.7) into integral equations and applying the contraction-mapping principle.
The regularity then follows from the fact that solutions of the integral equations are ex-
actly as smooth as the data affords. At this respect, it is important to note that identities
(1.6) and (1.8) do not provide any global (in time) @ priori bounds for the solutions of
the nonlinear system. Consequently, it does not lead to the existence of a global (in time)
solution in the energy space. The same lack of a priori bounds occurs when higher order
Sobolev norms are considered (e. g. H*—norm). Since the main focus of this paper is on
the asymptotic behavior of the solutions when the time goes to infinity, a global (in time)
existence result is necessary.

The stabilization problem for the linearized Boussinesq system of BBM-BBM was also
studied in [26], when the model is posed on a bounded interval. By considering Dirichlet
boundary conditions and introducing a localized damping term in one equation it was
proved that the energy associated to the model converges to zero as time goes to infinity.
In periodic case, the stability properties was studied in [27] by introducing generalized
damping operators in each equation. In this case, weather the solutions of the linearized
system decay uniformly or not to zero depend on the parameters of the damping operators.
In the uniform decay case, the same property holds for the nonlinear system. We also
refer to [25] for a rather complete picture of the control properties of (1.1) on a periodic
domain with a locally supported forcing term. As an application of the established exact
controllability results, some feedback controls are constructed for some particular choice
of the parameters such that the resulting closed-loop systems are exponentially stable.
Later on, the boundary stabilization problem for the Boussinesq system of KdV-KdV
type (b = d = 0) was studied in [28] and [10]. The authors proved that the system is
locally exponentially stable in the energy space for solutions issuing from small data.



1.1.3 Stabilization for higher-order Boussinesq system with generalized damp-
ing on a periodic domain

Higher-order systems in the form

e — bnta:x + b277txa:xx = —Wg — (nw>l‘ — QWggz — (CL +b— %)(T]wx)x — 2Warrzax;
wy — dwt:c:r: + d2wtmcm = Nz — CNggg — WWy — c(wwx)zx - (7777501‘)3:
—|—(C +d— 1)wxwm + (C + d)nznzxx — CMyzzazs
(1.9)

were also derived in [4, 5|. These systems are formally second-order approximations of
the full, two-dimensional Euler equations. The constants a, b, ¢, d, as, b, co, do satisfy
(1.2) and

1 1 5 1 1 5 1
—by = — (0> — )b+ —(#*—=)? —dy=—-(1—62 —(1-6%)(6?-=), (1.10
where, as before, 0 € [0, 1].
In this chapter, attention is a given to a particular subclass of linear higher-order
regularized long-wave systems that have

b,d, by, dy >0;a,c<0 or b d by dy>0,a=c>0. (1.11)

Adding damping mechanisms is often important in obtaining good agreement between
experimental observations and the prediction of theoretical models describing the propa-
gation of waves in nonlinear dispersive media (see, for instance, [7]). To address the issue,
we will consider a general class of damping operator, with nonnegative symbol. Our pur-
pose is to investigate the dissipative effects generated by these operators in model (1.9),
posed on a periodic domain. More precisely, we consider the following system

( N+ Wy — bntzz + b2ntxzmx + QWqygy + BlMaln = _(nw)x
—(a+b—3)(nwy)a, for x € (0,2m), t >0
wy + Ne — dwtmﬁ + det:z::m:x + Cllzaa =+ 62Ma2w = —WWg — C<wwz)mx
—(Mz)e + (¢ + d — Dwywee + (¢ + d)NaNaas for x € (0,2m), t >0
n(0,z) = n°(z) for z € (0,27)
( w(0,2) = w’(x) for z € (0,27),
(1.12)

with the periodic boundary conditions

a"" I

a;j (t,0) = g;j (t,27) fort>0, 0<r<3, .
0%w 0%w '
%(t,O):%(t,Qﬂ') fOI‘t>07 OSQS?),

where 1, B> > 0, a1, as € [0,4], and the operators M, are Fourier multiplier operators
defined in terms of their Fourier coefficients as follows:



. s+4 s
M., - H™(0,27) — H; (0, 27),

‘ A (1.14)
Ma, ( a’“ém) S+ Faet (j=1,2),
keZ

keZ

This type of damping was used to describe several dissipative dispersive phenomena (see,
for instance, [8, 12, 19]). The operators M, are, in some sense, similar to fractional
derivative operators. Indeed, for a periodic function h(z) = _, ;- ape™, the Weyl
fractional derivative operator of order a > 0 applied to h is defined by (see [34])

Weh(z) = Z(zk) ape™®

Consequently, the Fourier coefficients of M,h and W*h behave in the same manner for
large k.
With the notation introduced above, we consider the operator H as follows

W1 ~
H E are’” —ape"™,
Wa
keZ keZ

and wq = %. Then, the energy associated to (1.12)-(1.13)

1—ak?

where w1 = 15T

is given by

2m
En,w|(t) = / (\(1 — 002 + by02) 2t 2)|* + (T — 002 + by0?) > Hu(t, 5‘7)\2) dz,
0
(1.15)

and, we obtain (see (4.63))

Lpmal) < Bl ey —ChalwlP e — / () (D) ()

dt H,2 (0,2r) H,% (0,27)

~(atb-3) / (wa)a(n(t)d — ¢ / " (wy)a (u(t) e — / " (ea)a ()
" / (e d = Dwgwn(w(t)ds + (¢ + d) / e (1) (1.16)

Inequality (1.16) shows that, if £y, 82 > 0, the terms M,,n and M,,w play the role of
feedback damping mechanisms. For the linearized system we obtain that the energy (1.6)
is non increasing. However, for the full system (1.12) the right hand side of (1.16) does not
have a definite sign. Therefore, the study of the asymptotic behavior of solutions becomes
a more difficult task. The following questions arise: Does E(t) — 0, as t — oo? If it is
the case, can we give its decay rate? The same questions can be addressed concerning the
behavior of the H*—norm (the Sobolev norm of order s € R) of n and w.

Firstly, we analyze the linearized system. Through a detailed spectral analysis, we
obtain the following results:
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o If oy = ay = 4 and [y, B2 > 0, we prove the exponential decay of solutions in the
H*-setting, for any s € R, and (n°,w®) € H* x H® (see Theorem 4.1.5).

e Ifmax{ay, ay} € [0,4), 81,52 > 0and $7+52 > 0, we obtain a polynomial decay rate
of solutions in the H*-setting, by considering smoother initial data, more precisely,
(n°, w®) € H**9 x H*%9 for ¢ > 0 (see Theorem 4.1.6).

Secondly, the exponential decay estimate obtained in the first case is combined with
the contraction mapping theorem in a convenient weighted space to prove the global well-
posedness together with the exponential stability property of the nonlinear system (1.12)
by considering small data (see Theorem 4.2.1).

As pointed out in section 1.1.2, the problem was only addressed in [26] when by =
dy=a=c=0.

1.1.4 Controllability for higher-order linear Boussinesq system on a periodic
domain

The main task of this chapter is to study the controllability for system (1.9) by means of
some localized control actions. More precisely, we will consider the following nonhomoge-
neous systems

Tt + Wy — bnt;m: + bQT]t;L’xx:v + AQWygy + M Wegrza = f(ta ZE) for z € (07 271—)7 t> 07
Wy + Ne — dwtma} + dQ'wtzxxac + Cllzzx + CiMgzaza = g(t, :L‘) for x € (Oa 27T)7 t> Oa

(1.17)
with the periodic boundary conditions
a" o
a;j (t,0) = 8;2 (t,2r) fort>0, 0<r<rp,
(1.18)
0%w 0%w
%(7570) = %(tﬂﬂ) fort >0, 0<¢q<qo
and the initial conditions
n(0,2) = n°(x), w(0,7) = w’(x) for x € (0,2m). (1.19)

The number of a boundary conditions depends on the values of the parameters. The
forcing functions f(t,z) and g(¢,x), which will be considered as control inputs, are as-
sumed to be supported in w, a nonempty open subinterval of a (0,27). We will be mainly
interested in the following problem for system (1.17)-(1.19).

Problem (Ezact controllability): Given T > 0, the initial state (n°,w°®) and the terminal
state (n*,w') in a appropriate space, can one find controls f and g in a suitable space such
that (1.17) admits a unique solution (n(t,z),w(t,z)) satisfying the boundary conditions
(1.18) and

(T](O,JZ),IU(O,ZE)) = (noawo)v (W(T’ :E),ZU(T, :L‘)) = (nlvwl)?
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Depending on the values of its parameters, system (1.17) couples two equations that
may be of KdV or BBM types of orders 5. It is therefore interesting to see to which extent
the controllability properties of each equation are maintained. It is not unusual that in
the first case (KdV case) some good controllability properties are proved whereas in the
second case (BBM case) there are no such controllability properties. What happens in
the last case is a priori less clear. We will however prove that the system is controllable
in that case. Different approaches will be used to establish the exact controllability
depending on whether we employ a single control input or two control inputs. If only a
single control action is used, the exact controllability will be established via the Hilbert
Uniqueness Method (HUM) (cf. [20]). If both control actions are used, a stronger exact
controllability result will be obtained by using the classical moment method (cf. [33]).
Our analysis is inspired by the results obtained in 25|, where the same problem was
studied by considering by = d; = a; = ¢; = 0 in (1.17)-(1.19). Summarizing, our main
results read as follows:

o Assume that the parameter a; # 0 and T > 27”7 where v will be defined later. Let
s € R and define ny by

2, if by=0, b0,
ny = O, Zf bQZb:O,
4, if by 0.

Then, for any given initial state (n°, w°) and the terminal state (n', w') in [H3(0,27)]?,
there exist (f,g) € [L*(0,T5 Hy ™ (0,2))]?, such that the system (1.17)-(1.19) ad-
mits a unique solution (n,w) € [C([0,T]; H3(0,2))]* satisfying

n(T,)=n'() and w(T,")=w'(:) in H;((), 27).
(see Theorem 5.2.1).

o Assume that by = dy = b=d = 0. Then, there exist a time T > 0 and a subspace
V C L3(0,2m) x H3(0,27), defined in Theorem 5.8.3, such that, for given

(n°,w°) eV, (' wh) eV,

one can find a control input f € L*((0,T) x (0,27)), such that (1.17)-(1.19) with
g = 0 admits a unique solution

(n,w) € C([0, 7] V)

satisfying
(T, ), w(T, ) = (n",w") in V.

(see Theorem 5.3.3).



Chapter 2

Controllability of the Boussinesq
system of BBM-BBM type on a
bounded domain

In this chapter we are concerned with a Boussinesq system of Benjamin-Bona-Mahony
type equation, posed on a bounded interval, modelling the the two-way propagation of
surface waves in a uniform horizontal channel filled with an irrotational, incompressible
and inviscid liquid under the influence of gravitation. The main focus is on the boundary
controllability property, which corresponds to the question of whether the solutions can
be driven to a given state at a given final time by means of controls acting at one endpoint
of the interval. We first show that the equation is not spectrally controllable. This means
that, no finite linear combination of eigenfunctions associated to the state equations, other
than zero, can be steered to zero. Although the system is not spectrally controllable it can
be shown that it is approximately controllable, i.e., any state can be steered arbitrarily
close to another state. It gives the possibility of steering the system to the states which
form the dense subspace in the state space.

2.1 Global well-posedness

In this section we present the well-posedness results needed to study the control system
(1.3). We state results for both homogeneous and nonhomogeneous system.

2.1.1 The homogeneous system

Let us first consider the homogeneous system

(nt—i_wx_bntmrzo, .TE(O,27T), t>0
wt+nw_dwt$m:07 ZEE(O,27T), t>0
n(t,0) =n(t,2m) =0, t>0
w(t,0) =w(t,2r)=0, t>0
77(07$) = no(x>v S (O’ 277)
w(0,2) = w(z), xz € (0,2m).

(2.1)

12
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System (2.1) can be written as an abstract evolution equation in (Hj(0,27))? as follows

{ U+ AU =0 (2.2)

U(0) = U°,

0
where U = ( Z ), Uy = ( Z)O ) € (Hj(0,27))? and A is the operator associated to the
state equations and belongs to L£((H}(0,27))?):

0 (I —b0%)~" 0,
A= . (2.3)
(I —do?) "o, 0

Recall that, for o > 0, the operator (I — ad?)~! is defined in the following way:

V— QUgz = @

I—ad®)lp=ve
[ =ad) e { v(0) = v(27) = 0.
Then, if ¢ € L*(0,27), we have that there exists a unique v € H?(0,27) N Hy(0,27)
verifying the above equation and (I — «d?)~' : L*(0,27) — L*(0,27) is a well-defined,
compact operator.

From the classical semigroup theory we have the following well-posedness result:

THEOREM 2.1.1. Let b,d > 0. For any U° € (H}(0,27))?, system (2.1) has a unique
classical solution U € C(R; (H}(0,27))?). Moreover, U € C¥(R, (Hy(0,27))?), the class
of analytic functions in t € R with values in H}(0,2m).

Proof. According to Theorem 6.2.2 of the Appendix 6.2, the operator A is skew-adjoint
and, therefore, generates a group of isometries {S(¢)}cr in (H{(0,27))?, which allows us
to obtain the well-posedness result. The second part of the theorem follows from the fact
that A is a compact operator in (Hg(0,27))? (see, for instance, [Theorem 11.4.1, Chap.
XIin [17]]). ]

2.1.2 The nonhomogeneous system

In this subsection, attention will be given to the full system (1.3). We begin with the
following result:

0
w
system (1.3) has a unique solution U € C(]0, 0o; (Hy(0,27))?).

0
THEOREM 2.1.2. Let b,d > 0. For any ( T ) € (HE(0,27))? and ( g ) e (C2(0,0))?

Proof. Let ¢1, 0o € C([0,27]) be functions, such that ¢1(0) = ¢2(0) = 0 and ¢;(27) =
¢9(2m) = —1. If we consider the change of functions

(2)=(0)-(0) (i) o
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where ( Z ) € C([0,00); (HZ(0,27))?) is the solution of the system

Up + Vg — DUygy = 0, z € (0,2m), t>0
Uy + Uy — AUy = 0, r € (0,2m), t>0
u(t,0) =v(t,0) =0, t>0 (2.5)

u(t,2m) = v(t,2m) = 0, t>0
u(0,2) = n°(x),v(0,z) = w(x), =€ (0,2n),

given by Theorem 2.1.1, the pair ( ) solves the problem

z
¥
Zt—i_gp:}:_bzmx:F’ x6(0,271'>7 t>0
§0t+zx_d90t:m::G, 1‘6(0,277'), t>0

2(t,0) = ¢(t,0) = 0, t>0 (2.6)
2(t,2m) = (t,27) =0, t>0

2(0,z) = ¢(0,2) =0, =z € (0,2m),

Fitx) \  ( F(0) (d(x) — b () + g(t)bhla) o
( ) = ( 7 () (da() — dé(z)) + F()) () ) € 16110, oo] > [0, 271"

With the notation introduced in the previous section, system (2.6) can be written as an
abstract evolution equation as follows

W (0) = 0,

F

z
where W = ( (p)and?—[:Ao(G

(H}(0,27))? defined by

) € L' (0, 00; (HJ(0,27))?), being Ay : (H}(0,27))* —

(I—b52)" 0
Ay = . (2.7)
0 (I —do2)™"
Since A generates a group of isometries in (H](0,27))? we have that system (2.6) has a
unique solution W = ( ; ) € C([0,00); H3(0,27)). Then, returning to (2.4) we conclude
the proof. O

Using the previous well-posedness results we will study solutions of the system (1.3)
in the sense of transposition:

0
DEFINITION 2.1.1. Let <ZO ) e (HY(0,27))? and ( ch ) e (HY0,T))>. A solution

(by transposition) of the system (1.3) is a pair ( Z ) € L*(0,T;(L*(0,27))?), such that,
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any ( Z ) € LY0,T;(L?(0,27))?), satisfies

/OT /027r (nh + wk) dzdt + <( Z)(()) ) ) ( ZES; )>(H1(07%))2’(1{5(0’%))2 _ _b/OT f () ug(t, 2m)dt—

T
0
where ( Z ) 15 solution of the adjoint system

Up + Uy — DUyy = N, z € (0,2m), t>0

vy Uy — AUy = K, x € (0,2m), t>0

u(t,0) = v(t,0) =0, t>0 (2.9)
u(t,2m) =v(t,2n) =0, t>0

w(T,z) =v(T,z) =0, x€(0,2m).

The existence of solutions for system (2.9) can be proved following the arguments used
in the proof of Theorem 2.1.2. Moreover, due to the regularizing effect of the operator
(I —ad?)™!, a > 0, we obtain the following result:

h
k

( u ) € C((0,T); (H3(0,27))*). Moreover,

THEOREM 2.1.3. If < ) € LY(0,T; (L*(0,2m))?), system (2.9) has a unique solution

H(ut’Ut)||L1(O,T;(H3QH2(O,27r))2) < Cll(h, )l oy 0.2m2) (2.10)
for some constant C > 0.

Proof. System (2.9) can be written as an abstract evolution equation as follows

W(T) =0,

where W = ( Z ), A (H}(0,271))* — (H} N H%(0,2m))? is given by (2.3) and F =

Ag ( f ) € L' (0,005 (H N H?(0,27))?), with Ay : (L*(0,2m))* — (H§ N H2(0,27))?

defined by (2.7).
Since A generates a group of isometries in (H}(0,27))? we have that the system (2.9)
has a unique solution W = ( :}L € C([0,00); (HY(0,27))?). Moreover, by using the

equations in (2.9), we deduce that < e ) € LY(0,00; (H} N H?(0,27))?). Indeed, in

Ut
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order to obtain estimate (2.10), we multiply the first equation in (2.9) by w, the second
one by v and integrate by parts on (0, 27) to obtain

2
5 e, 08 ) g 2 = / (hu + kv) de. (2.11)

Integrating the above identity from ¢ up to 7', and using Young’s inequality, it follows
that

1
gl (lt ), 0 D 5y < Il 0120 2m) lulleqorizom) + IRl 0ra20.2m [Vlleqo iz o2m)
1

< ZH(U7U)||(22([O,T];(L2(0,27r))2) +C|(h, k)”%l(o,T;(w(o,Qn)y)-
(2.12)

Then, from (2.11) and (2.12) we get
[ (w, 0)lleqo,scm2 0,20))2) < ClI(R B) |21 0,73(22(0.20))2) (2.13)

for some C' > 0. On the other hand, due to the regularizing effect of the operator (I—02)~1,
it follows that (I —bd?)~'h(t,-), (I —dd?)~'k(t,-) € HE N H?(0,27) and the operator A
takes values in (H} N H?(0,27))?, which is compactly embedded in (Hj(0,27))?. Thus,
combining (2.13) and the equations in (2.9), it follows that

[[(we(t, ), ve(ts Dl minmz0.2m)2 < C(H(UaU)Hc([o,T];(Hg(o,gﬁ))Q) + [[(h(E, ), k(& )l z2(0,2m)2),

where C' is a positive constant. Then, integrating the inequality above we obtain (2.10).
O

The next theorem establishes the existence and uniqueness of solutions for system
(1.3) in the sense of transposition.

0
THEOREM 2.1.4. Let (2717)0 ) e (H40,27))* and ( g ) € (HY(0,T))*. Then, there
exists a unique solution ( Z ) € C([0,T7; (L?(0,27))?) of system (1.3) which verifies

(2.8).

Proof. The result is proved in two steps. We first use the Riesz representation theorem
to prove the existence of a solution in L*(0,T; (L?*(0,27))?). Then, the continuity in the
time variable is proved by using density arguments.

We start by introducing the linear operator T : L'(0,T’; (L*(0,27))?) — R as follows

Tk k) == <( 2‘7’% ) 7 ( Zgg)) )>(H1(0,27r))2,(H&(0,27r))2 - b/oT F(E)uaelt, 2m)dt~

T
—d/ g(t)vg(t, 2m)dt,
0
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where Z ) is a solution of (2.9).

Note that 7" is well defined and is continuous. Indeed, proceeding as in the proof of
Theorem 2.1.3 we obtain identity (2.11). Then, integrating over (0,7), from (2.13) it
follows that

1 (0), 0O g 00myy? < Nl ) zr 00200200 (214

for some constant C' > 0. On the other hand, from the Sobolev embedding and estimate
(2.10) the following estimate holds

T T
'b/ f(t)ua:t(t?ﬁ)d“rd/ 9(t)var(t, QW)dt' < O 9oz 1Ry B) | 2o, 7522 0.2m02)
0 0
(2.15)
where C' > 0. Finally, (2.14) and (2.15) allow to conclude that
T e L(LY0,T;(L*(0,2))%); R).

Then, by Riesz representation theorem, we obtain the existence and uniqueness of
(n,w) € L>=(0,T; (L?*(0,27))?) satisfying (2.8). Moreover,

[ (n, wH[LOO(O,T;L?(O,Qw)]Q :|’T||C(Ll(07T§(L2(0,27r))2)§R)
<C <||(n0’w0>||(H*1(0,27r))2 + I(f, g)||(H1(O,T))2> : (2.16)

By using density arguments, starting with more regular data, we can also get the re%ularity
in the time variable. Indeed, since (f, g) € (H'(0,7))* and (n°, ) € (H~1(0,2x))°, there
exist sequences (fn, gn) € (D(0,7))* and (1°,w?) € (D(0,27))?, such that, as n — oo,

(fasgn) — (f,9) in (H'(0,T))
(%, w?) — (n°w®) in (H(0,2m))".

Let us denote by (n",w™) the solution of the system (1.3), corresponding to the data
(fas 9n) and (0%, w?), given by Theorem 2.1.2. Then, (n™, w™) € C([0,T]; (L?(0,2x))) and,
for each n € N, the solution (", w") satisfies (2.8). Thus, if (n,w) is a solution by
transposition of (1.3), it follows that (7", w™) — (n,w) is a solution by transposition with
data (fn, gn) — (f,9) and (n2,w?) — (n°,w®). From estimate (2.16), we obtain

(0" —=n, w" —w)|| (0,122 (0,2m))2) < C(H(ﬁg—ﬁoawg—wo)H(H—l(o,zw))QJrH(fn—f7 9n—9) (1 0,1))2)-

When n — oo, from the above inequality we deduce that (5™, w™) — (n,w) in L>=(0, T; (L*(0, 27))?)
and, since (n",w") € C([0,T]; (L*(0,27))?), it follows that (n,w) € C([0, T|; (L*(0,27))?).
[

2.2 Controllability

In this section we study some boundary controllability properties of the system (1.3). We
start with the following characterization of a control driving system (1.3) to the rest. This
kind of result is already classic for dispersive systems (see, for instance, [24]).
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0

LEMMA 2.2.1. The initial data Z)O € (H7Y(0,2m))? is controllable to zero in time

T > 0 with controls ( g ) € (H'(0,7))% if and only if

<< ZJOO > ’ < 75583 >>(H_1(O’2ﬁ)) (m302m) = —b/ f()uae(t, 2m)dt — /OTg(t)vxt(t,Zw)dt,

(2.17)
for any solution of the adjoint system
(U + Uy — by = 0, €(0,2m), 0<t<T
Uy + Uy — dUygy = 0, ze(0,2m), 0<t<T
u(t,0) =v(t,0) =0, 0<t<T (2.18)
u(t,2m) = (t,27r):0 0<t<T '
u(T,z) =l (z), v € (0,27)
L o(T,2) =o' (@), x € (0,2m),

uT
with ( T ) € (Hy(0,2m))?.
Proof. Remark that the change of variables t — T'—¢ and 2 — L —x reduce system (2.18)

to (1.3) with f = g = 0. Then, we can apply to ( Z ) all the well-posedness results

obtained in Section 2.

We first prove the result for regular solutions. The less regular framework can be
proved using density arguments as in the proof of Theorem 2.1.4. Let (n,w) be a solution
of (1.3) and (u,v) solution of (2.18). Integration by parts leads to

T 27 T 27
0= / / (M + Wy — by )udzdt + / / (wy + My — dwggy)vdadt =
o Jo o Jo

- / " (00u(0) + s (0))d — / " (w(0) + wluy (0))dz
n / " ((T)a(T) + o (T)ua (T))da + / " (w(T)o(T) + wy (T, (7)) de

T T
+b/0 f(t)uzt(t,Qﬂ)dt—i—d/O g(t) vy (t, 2m)dL.

Consequently, by the density of H}(0,27) in H'(0,27), we can pass the limit in the
identity above to obtain

<< Z,Oo > : < Zggg >>(H omemon ! / (D ua(t, 2m)dt + d /O  g(t)oat, 2wt

- <( Z)((?) ) ’ ( ggg )>(H—1<o,2w>)2,<Hé<o,2w>>2'

Hence, ( ZO ) is controllable to zero in time 7' > 0 if and only if (2.17) holds. O
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The next result is devoted to show that system (1.3) is not spectrally controllable.
This means that no nontrivial finite linear combination of eigenvectors of the operator A
defined in (2.3) can be driven to zero in finite time by using controls f,g € H*(0,T).

THEOREM 2.2.1. No eigenfunction of the operator A can be driven to zero in finite time.

Proof. We first note that, according to Theorem 6.2.2 of the Appendix, the operator A has
a sequence of purely imaginary eigenvalues (u),ez+, jeq1,23. Moreover, the corresponding
eigenfunctions (®),ez+ jeq1,23 form an orthogonal basis of (H(0,27))>.

0 , Pk
For each k # 0, let us consider ( Z)O ) =) = |, J = 1,2, eigenfunctions of
Uk
the operator A. Then, from the proof of Theorem 6.2.2 we have that, for each eigenvalue
| P o
p = 1, the functions and solve the problems
Uk vk
( 901 - bgpglm + MU; =0, & (07 27T)
vl —dvl +ppl =0, z€(0,2m)
T x ' ’ 2.19
P1(0) =0, @1(0) = (219
[ v1(0) =0, v;(0) =7
and
902 - bgoiw + /vw:% =0, r¢& (07 27T)
v —dvi, + up? =0, x€(0,2m)
I p ’ ’ 2.20
22(0) =0, ¢2(0) = (2:20)
02(0) =0, U%(O) =5

\

with v = 4! and v = 72, respectively. We also note that, according to Theorem 6.2.2,
7l < ] and |2] < Tl for a given positive ¢.
n n

In a similar way, if we also consider

u [P n#£k
vl ) T 1 0 n=Fk,

the corresponding solution of (2.18) can be written as

( u ) = TDP)  where N = —
v 1

and p/, are the eigenvalues of the operator A given by Theorem 6.2.2. Moreover,

lim M = 0.

n—oo

On the other hand, since the sequence (®7),cz+ jef12) forms an orthonormal basis of
(H3(0,2m))%, we get

<< ;’; > ! < 5583 )>(H3<0,2,T))2 =& M, j=1,2.
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0

Thus, if ( 171710 ) is controllable to zero in time 7' > 0, from (2.17) it follows that

| X b0k a2m) + ot (2m) e = T =12 (220

For j = 1, the identity above can be written as follows

T
5 (T )
/_2T h(t)e A”(2 t)dt =0 w7, (2.22)

2

where
h(t) = bf (t+ %) ¢n..(2m) +dg (t + F) v5,,(27).
Since h € L* (55, L), if we define F': C — C by

F(z) = /_ h(t)edt.

From Paley-Wiener theorem, we have that F' is an entire function. Moreover, since
lim,, oo A/, = 0, it follows that F is zero on a set with a finite accumulation points. Then,
F =0 and, consequently,

bf (t) ¢y . (2m) +dg (t) vy ,(27) =0, Vt € [0,T]. (2.23)
For j = 2, we can use (2.21) and proceed in a similar way to obtain
bf (t) ¢r (2m) +dg (t) v L(2m) =0, Vtel0,T]. (2.24)
Thus, from (2.23) and (2.24) we deduce that f and g should satisfy the system
bf (t) 0,0 (27) + dg () v, ,(27) = 0

bf (t) ¢7.4(2m) + dg () vy, (27) = 0.

The next steps are devoted to analyze carefully the coefficients of the system (2.25). In
order to do that, we first consider the solution of the following problems

(2.25)

([ —bpL, + vk =0, z € (0,27)
—dv}, + gl =0 z € (0,2m)
_ae L : 2.26
7(0) =0, 2L(0) = 1 (220
[ 07(0) =0, 1,(0) =,
and )
—b@2, + o2 =0, x € (0,2)
—dv?, + g2 =0 z € (0,27)
Tx T ) ) 2.27
F(0) =0, 2(0) = (2:27)
7%(0) =0, 32(0) = 1.
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For each i = 4i,,, where fi, = v/bdni (n € Z*), the solutions of (2.26) and (2.27) are given
by formula (6.11) of the Appendix and will be denoted by

~1 ~2

~, n ~, Pn

o, = 1 and &) = L]
U’VL Un

respectively. Then, we have that

Pna(2) 1 na(2m) 0
- and - . (2.28)
oL, (2m) 0 32 (2m) 1

From (2.28), Proposition 6.1.2 and Theorem 6.2.2, the coefficients of the system (2.25)
can be estimated as follows

N C .
one(2m) — 1] = |, . (27) — &y, . (27)| < ™ (L4 )+ C (Jpn — ] + 7)) <

C 5 c s
< —(l+—=)+—=+—,
| Inl/) Inl  In|

for some constant C' > 0. From the estimate above, we conclude that ¢, ,(27) ~ 1.
Performing similar computations, we get

v}w(27r) ~ 0, @iw(%r) ~ 0, vfb7$(27r) ~ 1.
Finally, we deduce that the determinant of the coefficients of the system (2.25) satisfies
QL 2m) vl @m)|
Pna(2m) vp,(2m)|

Hence f = g = 0 is the unique solution of the system (2.25), which contradicts (2.21) and
the proof ends. |

REMARK 2.2.1. Taking into account the properties of the operator A mentioned in the
proof of Theorem 2.2.1, the following holds:

e Fach eigenvalue of the operator A has geometric multiplicity at most two, i. e., there
s no eigenvalue that corresponds to three linear independent eigenfunction. Indeed,

@ o o
suppose that there exist ( U{” ), ( 5 >, ( U;} ) linear independent eigenfunctions

that correspond to the same eigenvalue p. Let

1 2 3
(%)= (i) eo () ().

and o, 3,7 € C, not simultaneously zero, such that

¥ (0) = agpy ,(0) + Be7, 1 (0) + 79, ,(0) = 0
Z7l(0> = Oﬂ];,:p(o) + /BU’?L,.%(O) + ’}/Ugw((b = O
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Under these conditions, it follows that ( f" ) solves the initial value problem

Y=y + 2z, =0, z € (

2 —dzge + o, =0, x € (0,2m)
¥(0) = ,(0) =0

2(0) = 2z,(0) = 0.

Then, ( f ) = ( 8 ), which allows us to conclude the claim.

e \ =0 is not an eigenvalue of the operator A. In fact, if this is the case we obtain
n .
( w ) satisfying
(I —00*)'w, =0, ze€
(I —dd?*)'n, =0

1(0) = w(0) =0,
n(2m) = w(2m) = 0.

(2.29)

Due to the properties of the operator (I — ad?)™!, for a > 0, we deduce that n, =
w, =0, t.e., n and w are constant functions. Then, from the boundary conditions,
it follows that n = w = 0.

We shall pass now to study the approximate controllability of systems (1.3). In order
to make that precise, we introduce the following definition.

DEFINITION 2.2.1. System (1.3) is approzimately controllable in time T if, for every initial
0
data < Z)O > € (H71(0,2m))?, the set of reachable states

a(()r)-{(25): (1) oy}
is dense in (L*(0,2m))2.

We have the following result:

THEOREM 2.2.2. System (1.3) is approzimately controllable in time T > 0 with controls
in HY(0,T).

Proof. Due to the linearity of the system under consideration, it is sufficient to prove the

0
result for any 7" > 0 and ( ZO ) = ( 8 > Thus, we are going to prove that the set

R (< 8 ) ,T) is dense in (L*(0,27))%
Let ( Z) ) e C([0,T7], (L*(0,2m))?) the corresponding solution of the system (1.3)

given by Theorem 2.1.4 and ( ZL ) solution of the adjoint system (2.18). Then, it follows
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that
T T T T
<< Z((T fc)) ) , ( or )> = b/ (£t 27r)dt+d/ (t)vs(t, 2)dt.
’ (H§(0,2m)) 0 0
(2.30)
Assume that R 8 ,T) is not dense in (H}(0,27))% In this case, there exists

( Z; > € (Hy(0,2m))?, < Zi ) # ( 8 ), satisfying

<( Z;((?’?) ) ’ ( Z; >>(H5(o,2,r))2 -0 ( g ) € (HO.1))"

Consequently, from (2.30) we obtain
() ()0 (1) comar
g Uxt('7 7T) (LQ(O,T))Q g

une(t,2m) \ [ 0O
( vm(t2m) )=o) Vte (0,T). (2.31)
On the other hand, since A is a skew adjoint operator in (H} (0, 27))?, it has a sequence
of eigenvalues (\,),>1 C iR* with geometric multiplicity at most two (see Remark 2.2.1).

The corresponding eigenfunctions form an orthonormal basis for (Hg(0,27))?, which we
denote by

Thus,

(®p)nz1 U{ Py, @2} s,

) J
where ¢, = ( ¥ ) and ¢/ = < ¥n ), j = 1,2, correspond to a simple and double

n (4

eigenvalue, respectively.

T
Then, if ( ZT ) € (H3(0,27))?, we have

(gi): Y bt Y el ta2e?

n>1 n>1
An simple Andouble

and the corresponding solution < z > can be written as

( Y ) = Z ane TV, 4 Z (al®) + a2 P2)e T, (2.32)

v
n>1 n>1
An simple An double
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Thus, from (2.31)-(2.32) it follows that

0 = uy(t,2m) = atol (2m) 4+ a2e? (2m)) \e T4
n(pn,x ngpn,x

n>1
An double

+ Z an<,0n,x(27r))\ne_A"(T_t).
n>1
Ansimple
Since u is an analytic function (see Theorem 2.1.1), we can integrate the identity above
over (=S, 5), for any S > 0. Then, for each m € Z* we deduce that

. 1 s —Ams
0= lim — Uyt (8, 2m)e" " ds =

s—+o0 2 _s

(abol o (2m) + aZ@? ,(2m)) Ape™™ T, if A, is double
_ (2.33)
UnPn.e(2m)Ape T if \, is simple .
From (2.31) we have that v, (¢,27) = 0. Therefore, we can use (2.32) and proceed in a
similar way to obtain

(alvp ,(2m) + a2v? ,(27)) Ape™ T, if A, is double

0 (2.34)
UV, (27) Ape T if )\, is simple .

Assume that )\, is double. In this case, if we consider

Un \ _ (@t anen \ _ 1 en 2 ( ¥
(zn T alel 4a2e2 ) T I gl + v )

from (2.33) and (2.34) we have that ¥n and Una(2m) ) _ (0 solve the initial-
Zn 2.z (27) 0

value problem
Y — by + pz, =0, x € (0,2m)
2 —dzge + b, =0, x € (0,2m)
$(2m) = 1(27) = 0
2(2m) = z,(2m) = 0.

1 2
Then, by uniqueness, ( zﬁn ) = ( 8 ) On the other hand, since ( f? ) and ( 953 )

are linearly independent, it follows that a! = a2 = 0.
If A\, is simple, from (2.33) and (2.34) we obtain

B gpn,m<2ﬂ'> _
anq)n,x(ZTr) = an ( Un,m(Qﬂ-) ) -

If &,.(27) = 0, we can proceed as in the previous case to conclude that ®,, = 0. Since
no eigenfunction can be identically zero, we have obtained a contradiction. Therefore,
a, = 0.
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Thus, from (2.32) it follows that

u) An(T—1) 1l 4 2q2y,—rn@—t) _ [ 0
(V)= S armon s T et aneo (9)

n>1 n>1
An simple An double

T
and, in particular, ( :}LT ) = ( 8 ) This is also a contradiction and the proof ends. [J



Chapter 3

Large time behavior for the Boussinesq
system of BBM-BBM type

In this chapter we are concerned with a Boussinesq system of Benjamin-Bona-Mahony
type modelling the two-way propagation of surface waves in a uniform horizontal channel
filled with an irrotational, incompressible and inviscid liquid under the influence of grav-
itation. We propose several dissipation mechanisms leading to systems for which one has
both the global existence of solutions and a nonincreasing energy. Following the analysis
developed in [31] we prove that all the trajectories are attracted by the origin provided
that the unique continuation of weak solutions holds.

3.1 Unique Continuation Property

In this section we study some unique continuation properties for the following system

(M + Wy — DNz = 0 for x € (0,2m), t >0
Wy + Ny — dWyge = 0 for x € (0,2m), t >0
n(t,0) = n(t,2m); n.(t,0) = n.(t, 2m) fort >0

w(t,0) = w(t, 21); w,(t,0) = wy (t,27) for t > 0 (3-1)
n(0,z) = n°(x) for = € (0, 27)
( w(0,2) = w’(x) for z € (0, 2m),

where b,d > 0, that will be used to obtain our main results. The proofs depend on some
global well-posedness obtained in [26] by using the Fourier approach. Therefore, for the
sake of completeness, we include such results in this section.
We first introduce a few notations. Given any v € L*(0,27) and k € Z, we denote by

U the k" —Fourier coefficient of v,

-~ 1 o —ikx

Vp = — v(x)e "™ de,

2m J,

and, for any m € N, we define the space

v = Zﬁkeikm, Z 0k * (1 + K*)™ < oo} :

keZ keZ

m 2
H'(0,27) = {v e L*(0,2m)

26
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which is a Hilbert space with respect to the inner product
(0,0) = Y Dpllp(1 + k%)™ (3.2)
keZ
The norm corresponding to (3.2) is denoted by || ||m. It can be seen that
J"v J"v
0) =
0:1:”( ) ox”

H;”(O,QW):{UGHW(O,QW) ‘ (27), 0§r§m—1},

where H™ (0, 27) stands for the classical Sobolev space of exponent m in (0,27). We can
extend the definition of H]"(0,27) to the case m = s > 0, a nonnegative real number, by
setting

H:(0,27) = {v = e™ € H*(0,27)

kEZ

D [P+ ) < oo} : (3.3)

kEZ

For any nonnegative real number s, H:(0,27) can also be seen as a Hilbert space with
respect to the inner product defined by (3.2) with m replaced by s. In particular, for any
v € H(0,2m),

[olls = (Z [[*(1 + k'Q)S) :

keZ
As pointed out in [26], for s < 0 we define the space H;(0,27) as the topological dual of
H#(0,27):
S —S !
H?(0,2m) = (H,*(0,2m)) .

Riesz representation theorem ensures that any v € H)(0,2m) = L*(0,2n) can be identified
with an element w, € (HJ(0, 21))" such that

wy(z) = /0 7rZ(JU)U(JE) dz (z € H)(0,2m)) .

Traditionally, the same notation is used for v and w, (the spaces (HJ (0, 2m))" and H)(0,2m)
are identified). Given s < 0, any element w € H;(0,27) can be uniquely expanded as

follows '
w = Z Wpe™, (3.4)

keZ

where @), = 5-w (e~***) for each k € Z. The slight abuse of notation in (3.4) (the element
w on the left hand side is not a function of x and the exponential function e*** on the
right hand side is actually the representant of this L?—function in the dual space) is
compensated by the fact that expansion (3.4) looks exactly like one corresponding to an
element in a space H® with positive exponent s. On the other hand, the following map is

a duality product between H;(0,27) and H,*(0,27), for any s > 0,

(v,w)s =Y Vpii_y (v e H3(0,2m), w e H,*(0,2T)) . (3.5)
keZ
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Consequently, if s < 0, the space H;(0,27) can also be defined by (3.3) and can be viewed
as a Hilbert space with respect to the inner product (3.2) with m replaced by s.

Under the considerations above, for & > 0 we can define the operator (I — a@i);l in
the following way:

V— Uz =@ in (0,27),
(I — a@i)glgo =v & (3.6)
v(0) =v(27), v,(0) = v, (27).

Since for any ¢ € L*(0,27), the elliptic equation from above has a unique solution v €

H?(0,2m), the operator (I — ad?), ! is a well-defined, compact operator in L*(0,27).

Given s € R, let us introduce the Hilbert space
V*® = H,(0,2r) x H,(0,2n), (3.7)
endowed with the inner product defined by
<(.f1a f2)7 (917 g2)> = b(fla gl)s + d(f27 g?)s- (38)

Let us remark that system (3.1) can be written in the following vectorial form

1 1 0 Ul U
(t)+A (t) = 7 (0) = , (3.9)
w /), w 0 w w
where A is the linear compact operator in V* defined by
0 (I —b02)," 0,
A= . (3.10)
(I —do?)," o, 0
Thus, if we assume that the initial data in (3.1) are given by
(n°,w’) = (7R, @p) e, (3.11)
kEeZ
then, at least formally, the solution of (3.1) can be written as

(777w)(t7x) = Z(ﬁk(t)vﬂ}k(t))eikxa (3'12)

keZ
where (7, (t), Wi (t)) fulfill
(1+ bk?)(G0), + ik@y =0, te(0,7T),

(1+ dk>) (@) + ik = 0, te (0,7), (3.13)

me(0) =7k, wk(0) = Wy

We have the following result:
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LEMMA 3.1.1. (see [26]) Let

L _ +kli

" /A +bk2)(1 + dk?)
The solution (Mg(t), Wx(t)) of (3.13) is given by

( 1| T+ diz .\ T+ dk? )\ )]
w(t) = §<%+VLMMW)€W+<%_ LMHW>€M’

(keZ). (3.14)

(3.15)
. 1 /1 + bk? N t 1+ bk2 N -
\ wk(t) = 5 ( m"ﬁ—f—wg) e Apt 1+dk2’?]\2 —wg) e Apt 7
if k #0 and
Golt) = @ '

Using Lemma 3.1.1 it was proved that the operator A generates an analytic semigroup
in V.

THEOREM 3.1.1. (see [26]) The family of linear operators (S(t))i>o defined by
S@)(n°,w®) =Y @t), ()™ (0 u®) € V), (3.17)
keZ
where the coefficients (M(t), Wk (t)) are given by (3.15)-(3.16), is an analytic semigroup in
Vs and verifies the following estimate, for each s € R,
1S 0" W) lvs < M0, w)]lvs (10", 0”) € V), (3.18)

where M is a positive constant. Moreover, its infinitesimal generator is the operator
(D(A), A), where D(A) =V?* and A is given by (3.10).

From Theorem 3.1.1 and the semigroup theory, we obtain the following global well-
posedness result:

THEOREM 3.1.2. (see [26]) Let T > 0 and s € R. For each (n°,w°®) € V* and (f,g) €
LY (0, T;V*®), there exists a unique solution (n,w) € W41 ([0,T); V*) of the system

n n / n n
(t)+ A (t) = , (0) = , (3.19)

w /. w g w w

which verifies the variation of constants formula

(Z)@:ﬂﬂ(ﬁ)+é%ﬁ—@(§>@w- (3.20)

Moreover, if (f,g9) = (0,0) it follows that (n,w) € C*(R,V?®), the class of analytic func-
tions in t € R with values in V?.
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The main results of this section reads as follows:

THEOREM 3.1.3. Let (n,w) solution of system (3.1) given by Theorem 3.1.2. Suppose
that there exist an open set Q@ C [0,2n] and T > 0 such that

n(t,x) =0, V(t,z) € (0,T) x Q. (3.21)

Then,
(n,w) = (0,0) in R x (0,2m). (3.22)

Proof. From Lemma 3.1.1, it follows that the solution (1, w) can be written as

n(ta) = Y Ab)e’ = Y (afe 4 age ) e

keZ kEZ (3 23)
~ . _ —+ _ oy . .
w(t,r) = g Wy (1) e = E (b,je At 4 bre Akt> ek
ke Kez

where aff = 3 (772 + 4/ T @2) and a;, = 3 <ﬁ2 — /B @2) Since the solution (1, w)
is an analytic function of ¢, from (3.21) we deduce that
n(t,xz) =0, V(t,z) e RxQ.

Consequently, for any S > 0 and x € , if we multiply 7(¢t,z) by Mt

between —S and S, from (3.23) we obtain

S B v S N v
O—S}Lngoﬁ/_s<%zz<aze i tage kt>e e tdt

= afe*™ +at e ™" in Q. (3.24)

and integrate

On the other hand, if we multiply n(t, z) by e*t, similar computations yield

1 [ + - , -
_ i = + =t — =t ikx At
0_511_{2025/_5<Z<ak6 Ftage k)e )ea dt
kEZ

=a, ™ +a” e ™ in Q. (3.25)
Since both functions on the left hand side are analytic in x, it follows that

afe™ 4+ a* e " =0 in [0, 27].

By using the orthogonality of {€**},c; and {e™**} 1z in [0, 27], we deduce that a; =
a®, = 0. This implies directly that 7 = @) = 0 for any k € Z. Hence, (n,w) = (0,0) in
R x (0, 27). O

As consequence of Theorem 3.1.3, we have the following result:



31

THEOREM 3.1.4. Let (n,w) be solution of system (3.1) given by Theorem 3.1.2. Suppose
that there exist an open set Q C [0,27] and T > 0 such that

ne(t,z) =0, V(t,z) € (0,T) x . (3.26)

Then,
(n,w) = (c1,¢2) in R x(0,2m), (3.27)

for some constants c¢; and cs.

Proof. From Lemma 3.1.1, we have that

pikz _ + =\t — =t ik
E e ( E <ake F4ae k)e

kEZ kEZ (3 28)
~ : yt - . .
.CB) — § wk(t)ezkx — E <b,je Apt + bke Ak t) ezkx’
keEZ kEL
+ _1(x0 1+dk? - _1(=0 1+dk2 ~0 ; ;
where a;] = 3 (nk +\/ TRz wk) and a;; = 3 <17k —\/ Tionz wk). Then, proceeding as in

the proof of Theorem 3.1.3, from (3.26) and (3.28) the following identities holds

kay ™ + kat, e =0 in [0, 27),
kay €™ + ka”,e ™ =0 in [0, 27],
for any k € Z*. From the orthogonality of {€**};cz and {e"**},c7 in [0,27], it follows

that ai = a®, =0, Yk € Z*. This implies directly 79 = @} = 0, for any k € Z*. Hence,
(n,w) = (c1,¢2) in R x (0, 27), for some ¢y, co € R. O

3.2 Internal Stabilization

This section is devoted to prove the asymptotic behavior of the solutions of following
system

(N + Wy — DNy + By =0 for x € (0,27), t >0
Wi + Ny — dwigy =0 for z € (0,2m), t >0
n(t,0) = n(t,2m); n(t,0) = n.(t,2m) fort >0

w(t,0) = w(t 27); w,(t,0) = w,(t,2m) fort >0 (3.29)
n(0,2) = n°(x) for z € (0, 2m)
\ (O x) = w’() for x € (0, 27),

where b, d > 0 and B : H}(0,27) — H3(0,27) is a bounded operator. More precisely,
let

{ a € C3¢(0,27) a nonnegative function on (0, 27) (3.30)

with a(z) > 0 on a given open set ; C (0, 27).

We analyze the following cases for the operator B:

By =a(z)p and By = (a(z)@s)e-
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3.2.1 Internal stabilization with the feedback By = a(x)¢

We first prove that the system is well-posed. This is done by using a fixed point argument,
therefore we first write the solution of (3.29) in its integral form

n(t) =n"— /0 (1 — b@i)_l (Opw + an)(7)dr,

t (3.31)
w(t) =w® — /o (1- d@i)_l O,n(7)dT,

where (1 —ad2)”' f denotes, for f € L2(0,27) and a > 0, the unique solution v €
H2(0,2m) of the elliptic equation (1 — ad?)v = f. Moreover, for any s > 0,

| (1-ad?)," f]

H5(0,2m) and || (1 - oz32) 0 f|

Hg (0,27 Hg(0,2m) 5(0,2m)5

(3 32)

for all a > 0, where C' is a positive constant.
We have the following result:

THEOREM 3.2.1. Let s > 0. For any (n°,w°) € [H;(O,Qﬂ')]27 there exists T'> 0 and a

unique solution (n,w) of (3.29) with By = a(z)y in the class [C([O,T];H;(O,Zﬂ))]Q. If
s =1, the solution exists for every T' > 0. Moreover, the map F defined as follows

F o [H0,2m)]* — [C([0, T); H2(0,27))]?
(", w®) = (1, w)
18 Lipschitz continuous.

Proof. In order to apply a fixed point argument, for any (n°,w°) € [H;(O,Q?T)]2, we
introduce the operator

o)) = 1) = ([ (1002 o+ an i, [ (1= a02) ™ dun(rrar ).

Let 0 < 8 < T, to be chosen later. Then, for each (', w'), (n*, w?) € [C([0, 8]; H3(0, 27r)]2,
from (3.32) it follows that

TG 0) = PO ) o = 502, (D 10%) = PO 0%) (0
B

< [ (1=t o =)o)
p -1

T / 11— do?) ™ 00" — ) ()

S Cﬁ (H(nl - 7727 wl - w2)H[C([O7,B];H;(O,2Tr)]2 + H(a(nl - 772)7 )H[ ([0,8); Hg 027r)] )

< CBl(n',w') - (”2’w2)”[c<[0,B];H;(072rr>]2’

00 + 1 ((1=602) 7" (alr = 1) (Dl g0 ) 7

;(0,27r)d7'
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1
where C' is a positive constant. Choosing 8 > 0 satisfying C8 < 5 from the estimate

above we obtain
1 1 2 2 1 1
||F(77 , W )_F(T] , W )H[C([O,,B};HS(OQW)]Q S 5”(77 y W ) (77 w )”[ c([0,8] He(OQ )] : (333)
Let
(T],U)) S BR(O) = {(an) S [C([O,B],HS(O, 271—)}2 : H( )H[ ([0,8]; H; (0, 271.)] S R}7

where R = 2||(n°, w )||[ . From (3.33), we obtain the following estimate

H3(0,2m )]
1T (n, w )H[ C([0,8); s ( Ozﬂ] 2 < ||(7707w0)||[H5(072ﬂ)]2 + [|T'(n, w) — T(0, 0)||[0([o,5};Hs(0,27r)]2

1
< H(n w )H[He 0271.)] §||(T]7w>‘|[c([ovﬁ]§H5(0,2ﬂ)]2 S R7 (334)
which allows us to conclude that
T : Br(0) C [C([0, 8]; H(0,2m)]* — Bg(0).

Hence, I' : BR(0) — Bg(0) is a contraction and, by Banach fixed-point theorem, we obtain
a unique (n,w) € Bgr(0) which solves the integral equation (3.31) for all ¢t € (0, 5). Since
the choice of 3 is independent of (7%, w"), the standard continuation extension argument
yields that the solution (n,w) belongs to [C([0,T]; H;(O,Q?T)]Q (see (1.6)).

Finally, in order to prove that the map F is Lipschitz continuous, we can proceed as
in the proof of (3.33). Indeed, for any (n°*,w®"), (1% w™?) € [H3(0, 27?)]2 if we consider
the corresponding solutions (n*,w!) and (n?, w?), respectively, it follows that

01 , 01y 02 .02 _ 1Ay (2 02
||f(77 , W ) I(T] , W )H[C([O,T];H;(O,Zﬂ')]2 - ||(7I , W ) (77 , W )||[C([0,T];H;(0,2ﬂ)]2

1
S ||(770’1,w0’1) - (,'70,2’w0,2)‘|[H5(0727r)]2 + 5”(771:1(1 ) (7] w )”[ c([0,7) Hs(o 2ﬂ.)]

Since (n' —n?, w' — w?) also solves the problem with initial data (n®! — n%2? w® —w%?),
we deduce that
”‘F(n071>w071) - ]:(7702 wo,Q)”[C([O,T];H5(0,27r)]2 S 2”(770 ! wO,l) - (770’2a w072)H[H5(072ﬂ.)]2'
(3.35)
The proof is complete. O

In what concerns the stabilization result, the following holds:

THEOREM 3.2.2. For any (n°,w°) € [H;(O,L)f, the solution (n,w) of (3.29) given by
Theorem 3.2.1 satisfies

(n(t),w(t)) — (0,0)  weakly in [HL(0,L)]",
(n(t),w(t)) — (0,0)  strongly in [H;(QL)]Q, for all s <1,

ast — oo.
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Proof. When s = 1, we can use Theorem 3.2.1 and the equations of the system (3.29)
to deduce that n, = —(1 — b9%)~1(0,w + a(z)n) and w, = —(1 — dO?)~1d,n belong to
C([0,T7; H2(0,2m)). Consequently, each term of both equations belongs to C([0, T; L*(0, 2)).
Thus, we can multiply the first equation in (3.29) by 7, the second one by w and integrate
by parts to obtain

OO, / a(@)ln(s, ) Pz = 0. (3.36)

Integrating (3.36), we get

SO0 =30+ [ [ a@lnton)Pasas =0, aam

Identity (3.36) shows that the map ¢t — ||(n(), w(t))H[ 2 is nonincreasing and

HJ(0,27)]
||(/’7(t)7w(t))H[H;(0,27T ]2 < ||(77 w )H[Hl 0,27 ] Y fOI' all t Z O (338)
Hence, there exists [ € R*, such that
(6, )yt =
Moreover, from (3.38) we infer the existence of a sequence ¢, — 400, such that
(0(tn), w(ta)) = (7. Wo) weakly in  [H}(0,2m)]", (3.39)

for some (1, wo) € [H, (0, 27r)] and proceeding as in the proof of (3.37) we obtain

n+1
() 01y e 000 WD 2 / / 2)n(t, z) Pdedt = 0.
Consequently,
n+1 2m
nl_l)l_il_loo /0 a(x)|n(t, z)|*dxdt = 0. (3.40)
t

On the other hand, from (3.39) and the Sobolev embedding, for any s € [0,1) we obtain
the following convergence

((tn), w(tn)) — (o, Wo)  strongly in  [H3(0,27)]”. (3.41)

Since the couple (n(t, +t,z),w(t, + t,z)) is solution of the system (3.29) with initial data
(n(tn), w(t,)), from (3.35) and (3.41) we get

(t, + ), w(t, +-) = (@,w) in  [C([0,T]; H(0, 27r))}2, as n — +oo, (3.42)

where (7, w) € [C ([0, T]; H)(0, 27?))]2 denotes the solution with initial data (1;0, zﬁ) The
convergence above combined to (3.40) yields

/0 ' /0 " @)t ) Pt = 0. (3.43)



35

Thus, (7,w) € [C ([0,T];H;(0,27r))]2 solves

(1 + Wy — DNz = 0 for x € (0,27), t € (0,7)
Wy + Ty — AWy = 0 for x € (0,2m), t € (0,7)
ﬁ(tv O) = ﬁ(tu 271'); ﬁx(tv O) = ﬁx(t 27T) for t € (07 T) (3 44)
w(t,0) = w(t,2mw); w,(t,0) = w,(t,27) for t € (0,7T) '
7(0,z) = 1n°(x) for z € (0,27)

L w(0,2) =0’ (x) for x € (0, 2m),

and (3.43) allows us to conclude that
n(t,z) =0, in (t,z) € (0,T) x Q,

for 2, defined in (3.30). Finally, from Theorem 3.1.3 we have (7, wo) = (0,0) and, as
t — 00, the following holds

(n(t),w(t)) — (0,0) weakly in [H}(0,27)]",
(n(t),w(t)) — (0,0) strongly in [H3(0,2m)]", for all s e [0,1),

which completes the proof. O

3.2.2 Internal stabilization with the feedback By = (a(x)y,).

We first prove that the system (3.29) is well-posed. In order to do that, we argue as in
the proof of Theorem 3.2.1 to obtain the following result:

THEOREM 3.2.3. Let s > 0. For any (n°,w°) € [H;(O,QTF)]Z, there exists T > 0 and a

unique solution (n,w) of system (3.29) with By = (a(x)p,)s in the class [C([0, T]; H3(0, 27r))}2 .
If s =1, the solution exists for every T' > 0. Moreover, the map

(1%, w®) € [H3(0,2m)]" — (n,w) € [C([0, T]; H3(0,27))]’
18 Lipschitz continuous.

Proof. We proceed as in the proof of Theorem 3.2.1 applying a fixed point argument.
Therefore, for any (1, w°) € [H3(0, 2#)]2 we introduce the operator

P(n,w)(t) :=

)= ([ @=02)™ O+ el [ (1= d02) ™ duntrlar ).

In order to prove that I' contracts in a ball of the space [C([0,T]; Hy(0, 2%))]2, instead of
(3.32), we use the following estimate

| (1- 0485)71 Oy (auy)|

my0.2m) < Cllullmy02m), (3.45)

valid for s > 0 and for any a > 0, where C' is a positive constant. Taking (3.45) into
account, the proof can be done arguing as in the proof of Theorem 3.2.1. Therefore, we
omit the details. O]
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REMARK 3.2.1. From Theorem 3.2.3 we have the following conservation laws

d 21

d 2w
), n(t,x)de =0 and %/0 w(t,x)dxr =0,

which are obtained by integrating the equations of the system with respect to x. Conse-

quently,
2 2 2T 2
/ n(t,a:)dx:/ n°(x)dz  and / w(t,a:)dx:/ w’(x)dz.
0 0 0 0

With the global wellposedness in hands, we prove the stabilization result.

THEOREM 3.2.4. For any (n°,w°) € [H;(O,L)}z, the solution (n,w) of (3.29) given by
Theorem 3.2.3 satisfies
(1(0),w(t) = (1), [w*))  weakly in [H,(0, L))",
(n(t), w(t)) = ('], [w"])  strongly in [H3(0,L)]°,  for all s <1,
1 27
as t — oo, where [f] .= — f(z)dz.

:27T0

Proof. We first remark that, if ¢ € H}(0,2m), from (3.30)

<—(G<Pz)m, @x)H—le; = <a90xa ()O:B>L2><L2 :

P

Thus, we can proceed as in the proof of (3.36), to obtain
d ) 2 )
GO0 e+ [ a0z o (3.46)

Moreover, arguing as in the proof of Theorem 3.2.2, we obtain (7, wy) € [H;(O,Qﬂ')]2
and a sequence t, — +00, such that

(1(tn), w(tn)) = (7o, W0) in [HL(0,2m)]?, (3.47)
((tn), w(tn)) — (o, @Wo)  strongly in  [H(0,27)]°, (3.48)

and
((tn + )y w(ty +-)) = (G@) i [C([0,T]; H3(0,2m))]°, (3.49)

for any s < 1, where (77,w) € [C ([O,T]; H;(O,Qw))}2 denotes the solution of (3.29) with
initial data (7o, wp).
From (3.49) it follows that

(0(tn + -)sw(ty +-)) is bounded in [L? (0, T; H3(0,2m))]*.
Then, we can extract a subsequence (if necessary), satisfying

Dty + ) w(ty +-)) = (@) in  [L2(0,T; HL(0,2m))]”. (3.50)
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On the other hand, from (3.46) we get

100 0 Dy 0y N )
+2/ttn+1/0ﬂa(x)\nx(t,x)\zdxdtzo,

which leads to

tnt1 27
lim / a(2) e (t, ) Pt = 0, (3.51)
0

n—-+00 ¢

since || - || 2 is nonincreasing, and therefore has a limit, as ¢ — oo (see (3.46)). By

[H(0,2m)]
combining (3.50) and (3.51), we deduce that

T 27 tn41 2
/ / a(x)|7.(t, ) Pdrdt < lim inf/ / a(x)|n.(t, z)|*dxdt = 0. (3.52)
0 0 n—00 . 0

Therefore (77, w) solves

(N + Wy — ity = 0 for z € (0,27), t € (0,7)
Wy + 1y — dWizy =0 for x € (0,27), t € (0,7)
n(t,0) = n(t,2m); 0.(t,0) = n.(¢,2w)  fort € (0,7) (3.53)
w(t, )—w(t 27); w,(t,0) = w,(¢,2m) fort € (0,7) '
7(0,z) = 1°(x) for x € (0, 2m)
\ (O r) = w’(x) for = € (0,27),

and (3.52) allows us to conclude that
ﬁ&/U(Lx) = 07 v (t,ﬂf) S (07T) X Ql?

for ©; defined in (3.30). Thus, from Theorem 3.1.4 we have that (7,w) = (c1,¢2) on
(0,7) x (0,27) for some c¢1,cy € R. From the Remark 3.2.1 and (3.47)-(3.48) it follows

that
(c1, ca) = ([mo], [wo]),
and

(1)) = ([0}, [wo]) weakly in [H1(0,2m)]",
(n(t), w(t)) = ([mo], [wo]) strongly in [H?(0, 27?)}2, for all s€0,1).

—
3
—~
~+
~—
g

3.3 Boundary stabilization

This section is devoted to study the boundary stabilization of the Boussinesq system
posed on a bounded domain. More precisely, we consider the following initial boundary
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value problem

(M + Wy — DNz = 0 forx € (0,L), t>0
Wy + Ny — dWipe = 0 forx € (0,L), t>0
t,0
Net(t,0) = w(QZ; ) +n(t,0) fort>0
t, L
nat0) =" e n) porezo
3.54
_ n(t,0) (3:54)
Wyt (t,0) = “oq +w(t,0) fort>0
t, L
wy(t, L) = ?7(2,d ) _ w(t,L) fort>0
n(0,z) = n°(z) for z € (0, L)
( w(0,2) = w’ () for z € (0, L).

If we multiply the first equation in (3.54) by 7, the second one by w and integrate by
parts over (0, L), we obtain (at least formally)

(), w W) fr o,z = =0 (In(t, L)I* +n(t, 0)]%) —d (Jw(t, L)|* + |w(t, 0)[?) .
(3.55)

dt2

Hence, |[(n(t),w(t))|(z1(0,)2 is nonincreasing and the boundary conditions play the role
of a feedback damping mechanism.

Before going into the stabilization problem, we first establish the following well-
posedness result for (3.54):

THEOREM 3.3.1. Let s € (1/2,5/2) and (n°,w®) € [H*(0,L)]>. For any (n°,u’) €
[H*(0,2n)]?, there exists a unique solution (1, ) of system (3.54) in [C([0, T); H*(0,2m))]*.
Moreover, the map

(n°,w®) € [H*(0,2m)]* — (n,w) € [C([0, T]; H*(0,2m))]’
18 Lipschitz continuous.

Proof. The proof will be done by using a fixed point argument. Therefore, in order to
write the problem as an integral equation, we set (7, w) = (1, w;) and remark that (7, 0)
solves the elliptic problem

(1=002)7, (1 —do2) @) = (—ws, —n.), € (0,L), (3.56)
(7:(0), w2(0)) = (a1, az), (3.57)
(M2(L), Wo(L)) = (a3, as), (3.58)
with
o) = (M52 00,0, 257 4 w0
w(t, L) n(t, L)
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Note that the solution (7, w) of (3.56)-(3.58) may be written as
(1, ) = (h1 + g1, ha + g2),

where

and
(hh h2) = ((1 - bag);;l (_wx - (1 - b@i) gl)u (1 - daﬁ)]_vl (—Ur - (1 - daﬁ) gz))
is a solution of

(1= b02) ha, (1 — d02) hy) = (—wy — (1 — b32) g1, —na — (1 — d?) gy)
(hl,x<0)7 h2,z(0)) = (hl,x(L)7 hZ,x(L)) - (07 O),

where, for any « > 0, (1 — ad?),, denotes the elliptic operator with Neumann boundary
conditions. Thus,

=== (1= 002) " (wa) + (1= (1= 002) ' (1= 602) ) . (3.59)

and
wy =@ = — (1—do2) " (n) + (1 —(1—do?) ) (1 dag)) ga. (3.60)

We remark that ((1 —ad?) o al,) (H*(0,L)) C H%(0,L) for 1/2 < s < 5/2 and

(1 —bad?) ) fal

for any o > 0, where C' is a positive constant.
Taking the above considerations into account, for any (n°,w°) € [H*(0, L)]* we intro-
duce the operator

He(0,0) < Cl f| Hs(0,L); (3.61)

L, w)(t) := (Tin(t), Law(t))

where
Funft) o=’ + [ (- b)) dr

w [ (1= -y =) [HE2 s 0] dn

+ /Ot (1 - (1- b@i); (1- b@i)) [w(;)L) —n(r, L) — w(;'l;O) —n(r,0)| 2%dr
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and
Dow(t) :=w’ + /Ut (— (1- d@i); (7]93)(7')> dr
o[ (0 - a) {% +ulr 0)] vdr
[ o) ) 0D i) - 12D )| s

Then, we seek (1, w) as a fixed point of the integral equation

(n, w)(t) = T'(n, w)(t). (3.62)

Using (3.61), the Sobolev embedding H*(0, L) — C([0, L]) and proceeding as in the
proof of Theorem 3.2.1, we have that

1
| (F(nlawl) - T(n2>w2)) H[C([O,T};HS(O,L)]2 < 5”(771:101) - (772aw2)||[6([0,T];HS(0,L)}2» (3.63)

and

1
1T, w)llieqopss 0. < 0% W) e 0.0y + 5”(777w)“[c:([o,T};Hs(o,L)]2~ (3.64)

Then, for the choice R = 2[|/(n°, w®)||jgs (o 1y2, estimates (3.63) and (3.64) allow us to

conclude that T : Br(0) C [C([0,T); H*(0,27)]> — Bg(0) is a contraction, hence it
admits a unique fixed point (n,w) € Bgr(0) Wthh solves (3.62). If s = 1, from (3.55) we
deduces that the solution exists for every T' > 0. The continuity of the flow map follows
from (3.64). This completes the proof. O

The stabilization result reads as follows:

THEOREM 3.3.2. For any (n°,w®) € [H(0,L)]?, the solution (n,w) of (3.54) given by
Theorem 3.3.1 satisfies

(n(t), w(t)) = (0,0)  weakly in [H'(0,L)]”, (3.65)
(t)) = (0,0)  strongly in [H*(0,L)]>  for all s < 1,

—~
=
—~
<+
~
g

ast — oo.

Proof. From (3.59) and (3.60), we deduce that n;,w; € C(R; H*(0, L)), so that (3.55) is
valid. Thus, the map t — ||(n(t), w(t))|/z1 (o 1) i nonincreasing and admits a nonnegative
limit, as ¢t — oo. Proceedlng as in the proof of Theorem 3.2.2, we obtain the existence of
(Uo,wo) [H'(0, L)]* and a sequence t,, — +00, such that

(n(tn), w(ty)) = (7o, o) weakly in [H'(0,L)]?, (3.66)

(n(tn), w(t,)) — (Mo, wo)  strongly in [HS(O,L)]2, (3.67)
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and
(n(tn + ), w(tn +-)) = (@) in  [C([0,T]; H*(0, L))", (3.68)

for s < 1, where (i, @) € [C ([0,T]; H*(0, L))]* denotes the solution of (3.54) with initial
data (g, wy). From (3.55) we obtain

1 (tns1), W i) o,z — 1 0ER)s WD i1 0.y =

tn+ 1 tn+1
=2 [ D 0Pt~ 2 [ (it DE + (e, 0))ds
tn tn

which allows us to conclude that

lim (b/tn (In(t, L)|* + |n(t’0>|2)dt+d/tn (|w(t,L)|2+|w(t,0)|2)dt> =0. (3.69)

n——+oo

Thus,

b/o (|ﬁ<t,L>|2+|ﬁ(t,0)|2)dt+d/0 (G D + |30 d =0 (3.70)
and therefore
n(t, L) =n(t,0) =w(t,L) =w(t,0) =0, te(0,7T).

Let (7, w) be the extension by zero of (7, w) for x € (—a,a)\ (0, L), where (—a,a) D (0, L)
is a interval Then, (77, w) solves

(M + Wy — DNgy = 0 for z € (—a,a), t€ (0,T)
Wy + Ny — dWypy = 0 for z € (—a,a), t€ (0,T)
ﬁ(t> —CL) = ﬁ(tv a’) = 0; ﬁm(ta _a) = ﬁx(t> CL) =0 for ¢ € (07 T)
w(t,—a) = w(t,a) = 0; W,(t,—a) =w,(t,a) =0 forte (0,T)
n(0,2) = n°(z) for x € (—a,a)
(L 0(0,2) = 0" () for z € (—a,a),
(3.71)

and satisfies

((t, x), w(t, x)) = (0,0) for (¢, ) € (0,T) x ((—a,a) \ (0, L)),

where
o @) e,
() {o z € (—a,a)\ (0,L)

and
A%w:{%@> v (0.L)
0 z € (—a,a)\ (0,L).

We remark that Theorems 3.1.3 and 3.1.2 can be proved for a domain of the form (—a, a).
Therefore, since (7°,@%) € [Hj(—a,a)]?, from Theorem 3.1.2 it follows that (7, @) €
[C*([0,T]; Hy(—a ))}2, and from Theorem 3.1.3 we deduce that (7°,@°) = (0,0). Hence,
(10, wo) = (0,0).



Finally, from (3.66) and (3.67) we have that, as t — oo,

(1)) = (0,0) weakly in [H'(0,L)]%,
(t)) = (0,0) strongly in [H*(0,L)]*,

S 3
N
~
S~—  —
g £

for all

s < 1.
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Chapter 4

Stabilization for higher-order
Boussinesq system with generalized
damping on a periodic domain

This chapter is devoted to analyze the following system

( Up + Wy — bntac;r + b2ntacac;rz + AWygg + BlMaln = _(T}w)x
—(a+0b— %)(nwm)m, for z € (0,2m), t >0
Wy + Ne — dwtxz + d2wt:cacxx + Cllzzx + /BQMOLQU) = —WWyx — C<wwx)x:c
— (M) + (¢ +d = Dwewae + (¢ + d)NuMeae for z € (0,27), t >0
a" a"
a—;(t,o)zaﬁ(t,%) fort >0, 0<r<3,
07 07
a_;;}(tao):a_;;)(tvzﬂ) fort >0, 0<¢<3
L 7(0,2) =1°(z), w(0,2) =w’(x) for 2 € (0,27),
(4.1)

where b, d, by, dy > 0, 31, B2 > 0, a1, ay € [0,4], a,c < 0or a = c > 0and M,, are Fourier
multiplier operators defined as follows

. s+4 s
M, « H34(0,27) — H2(0,27),

M, (Za’fem> =2 R Fa (j=1.2)

keZ keZ

(4.2)

By means of spectral analysis and Fourier expansion, we prove that the solutions of
the linearized system decay uniformly or not to zero, depending on the parameters of the
damping operators. In the uniform decay case, we show that the same property holds for
the nonlinear system.

We first study the linearized system.

43
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4.1 The linearized system

The aim of this section is to study the main properties of the linearized model correspond-
ing to (4.1). More precisely, we consider the following system

(

N + Wy — Wtaz + DoMtzaze + QWapy + 1Mo, =0 for x € (0,27), t >0

Wi + Ny — dwtmz + det:px:px + CNygr + ﬁZMon =0 forxc (0, 277'), t>0

o or
Tit,0) = 57

= = ——(t,2m) fort >0, 0<r<3,
0w 09w
%@,0):%(@27) fOI't>O, O§q§3
n(0,z) =n°(z), w(0,z)=w(z) for z € (0,27).
We prove the well-posedness and stabilization results.
4.1.1 Well-posedness
Given s € R, let us introduce the Hilbert space
V= H}(0,27) x H,(0,27), (4.4)

endowed with the inner product defined by

<<f17 f2)7 (glu g2)> = (fh gl)s + (Hf27 7_[92)87 (45)
and the operator H defined in the following way

~ W1~
H (E akelkm> = E —ake’kx,
\/ w
kEZ kEeZ 2

1—ak?

where wy = 5% and wy = %. Let us remark that system (4.3) can be
written in the following vectorial form
U 1 0 U U
(t) + A (t) = 7 (0) = , (4.6)
w w 0 w w?

t

where A is the linear compact operator in V* defined by

By (I =002 +0200), " May (I — b2+ b,02)" (0, + ad?)
A— . (4.7)
(I = do2 +d>08)," (D, + cd3) o (I — 02 + dpd)," Ma,

We pass now to study the existence of solutions to (4.3). If we assume that the initial

data in (4.3) are given by
(n°,w’) =) (i, @p) e, (4.8)
keZ
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then, at least formally, the solution of (4.3) can be written as

(n,w)(t.2) = D (@(t), e(1))e™, (4.9)

kEZ

where (7x(t), Wy (t)) fulfills

(14 bk + bok*) (M)y + ik(1 — ak?) @y + B1(1 + k2) 27, =0, te (0,7),
(1 + dk? + dok*) (@r); + k(1 — k)T + Bo(1 + k2) T W, =0, te(0,7),  (410)

m(0) =7, wk(0) = @y
The following results, whose proof can be found in [1], are needed for this study.
PROPOSITION 4.1.1. Let A a 2 x 2 matriz with eigenvalues Ay # Ao. If

AT A NI
Ql_)\l_)\zv Q2_>\2_>\17

then,

(i) A= X\Q1+ \Qo;

(i) Q7 = Q1 ; Q3 = Q2 ; @Q2Q1 = Q1Q2 = 0;
(iii) AF = NQq + NEQs, VE € N;

(iv) et = eMtQy + e Q,.
PROPOSITION 4.1.2. Let A a 2 x 2 matriz with eigenvalues A\g = A\y = Ao, and

Q=A—Xl.
Then, et = (I +tQ) et
We have the following result.

LEMMA 4.1.1. The eigenvalues of the operator A defined by (4.7) are given by

1 BA+E)T Byl +K2)
Ar =< +2k|wrwar/Je2 — 1| (keZ¥), (4.11
¢ 2<1+bk2+bzk4+1+dk2+dk4 kv, (kez’), (411)

where

1
2/ (1 — ak?) (L — ck?)

a1 |14 dk? + dokt ay [ 14 bk2 + byk?
1+ k%2 — By(1+ k)7 4.12
(51( ) \/1+bk2+bzk4 Ball +K) \/1+dk2+d2k4 (4.12)

€ =




46

and (, = e, —+/er — 1 (k € Z*). The solution (i(t), Wx(t)) of (4.10) is given by

~ ATt _ + _
m(t) = 1_1413 ( Mt — CRe At 77k+2\/ Ck et — At>w2,

(4.13)
~ A ate) o~ . W2 A\t A
Bult) = g | (0 - ) @y [ (e = ) A
if lex| # 1 and k > 0,
= 1 [ 2 -A\ft) 20 W1 A At) 0]
me(t) = e _(6 t_¢ t> m—i w_QCk (e t_ e kt>w | ,
(4.14)
Blt) = | (M= GeNt) @ — iy [ 26 (e - e ) 7Y
k
if lex| #1 and k <0
() = [(1— |k|y/wrwat) Y — ikwt@]] e M,
(4.15)
Wp(t) = [—ikwat) + (14 |k|\/wrwst) @] et
if lex| =1 and k # 0, and finally,
mo(t) = 77/\867&12
(4.16)
ﬁ)\o(t) - ﬁ)\g _’BQt
Proof. 1t is easy to see that (4.10) is equivalent to
Mk Tk 0 Tk h
() + A(k) () = : (0) = :
where .
Bi(1+k2) T ik(1—ak?)
1+bk2+bo k4 14+-bk2+by k4
A(k) =
ik(1—ck?)  Bo(14k2) 2
1+dk?2+dok? 14+dk?+dok?
Hence, the solution of (4.10) is given by
Tk n
(t) = e AW : (4.17)

A~ /\0
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The eigenvalues A\i of the matrix A(k) are

/\j:_l ( Bi(l+ k)7 n Bo(14 k27 )i

= 4.1
Fo W1 4+ bk2 4+ ok 1+ dk2 + dok? (4.18)

a « 2
L a0emT  pae)E T AR - ak?)(1 - k)
2 14 bk? + bkt 14 dk? + dok? (1 + bk? + bok*)(1 + dk? + dok*)’

k € Z*, that can be rewriten as (4.11).
Let us analyze the following cases:

(i) Case |ex| # 1 and k # 0.
We have that, A # A, . Let

A(k) = M\ T
4.19
Since
Bl+k)T
1+ bk2 + bok4 k 1 1+ sgn(k)ex (4.20)
A=A 2 2—1)"
Bo(14+K)F
Lt di? +dokt " 1 sgn(k)e (4.21)
A - A\ 2 e2—1)"
ik(1 — ak?) ”
1+ bk2 + ok :Z.Sg”(k)\/w_z (4.22)
A=A 2y/ef -1
and
ik(1 — ck?) ”
I+ di gkt SR o)

=1 s
M= 2¢/e2 — 1
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from (4.20)-(4.23) and (4.19) we obtain that

%(1 N sgn(k)ek> L9

Ver—1 2/e2-1
Q1 = (4.24)
AT 1 (1 _ sonb)e
2¢/e2 -1 2 €21
( o[ i/ G
5 if k>0,
1— Ck - Jwe 2
Ly/ w_1Ck —Ci
. —Gi 1/ s Ok
5 it k<O.
-G =
14/ . Ck 1
\
Similarly,
1 1— sgn(k)ex _isgn(k)\/%
2 Ver—1 2,/e2—1
Q2 = (4.25)
_lsgn(k)\/zj? 1 1 + sgn(k)eg
( . w
) —Gi —iy/ e Gk
5 it k>0,
1 - Qk . [ws
—1 w1 k 1
. 1 i/ e
—— if k<0,
1 - Ck wo 2
el =G

\

where (; = e, — v/€2 — 1. On the other hand, from Proposition 4.1.1 we have that
e~ AR e—Aﬁth + e Q. (4.26)

Thus, from (4.26) and (4.17) the solution of (4.10) is given by (4.13) and (4.14) in
the respective cases.

(ii) Case |ex| =1 and k # 0.
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In this case,

A =A==
k k 1+ bk2 + bok?t 1+ dk2 + dok?

1 ( B+k)T B +k)TF )
. + .

Observe that, from (4.18), we have

1 /(1+k)T Bo(1+ k2)F
- _ = |k .
(1 TR + bokt 1+ dkZ + dok? [kl wrw,

2
Let
1 (52(1+k2)a22 . ﬁ1(1+k2)azl> —ik(1—ak?)
2 \ 1+dk2+dak* 1+bk2+bok* 1+bk2+bok*
Q=A —Ak) =
—ik(1—ck?) 1 (61(1+k2)% _ 52(1+k2)3§)
1+dk2+dzk? 2 \ TH0R% 0okt~ 1+dR2+dzk?
(4.27)
—\k|‘/w1w2 —z/{wl
—zkw2 |k|\/w1w2
Hence, we infer from (4.27) and Proposition 4.1.2 that
1-— t|k:|‘/w1w2 —zk:wlt
e~ AW = oA (I +1tQ) = e . (4.28)
—Zk’wgt 1+ ’k’\/wﬂl@t
Furthermore, from (4.28) and (4.17) we have that the solution of (4.10) is given by
(4.15).
(iii) Case k = 0.
It is a direct consequence of (4.10).
[

REMARK 4.1.1. Firstly, we note that )\,:Ct = /\j_Ek and the following holds:
o [fer <1, then the eigenvalues /\f are complex numbers.
o [fer > 1, then the eigenvalues )\f are real numbers and /\$ > A

Let us analyze more closely the eigenvalues /\f given by (4.11). In the sequel [, M and
C' denote generic positive constant which may change from one row to another.
We have the following result.
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PROPOSITION 4.1.3. Let a; < 4 or ag < 4 and |ex| > 1. We suppose that, if o; =
max{oy, as}, then §; > 0. There exists a constant l; > 0, such that

r —|k|,,,axl{1al,a—2} if ap + an <6, max{al, aQ} > 3,
N 2\ e o+ e > 6, max{ar, as} >3, (4.29)
l .
L |]€|4—maxl{a1,a2} Zf maX{al’ O{Q} S 3

Proof. From (4.18), A\, can be written as

1 rs + k2
A, = —Jww (T+8— 7’—32—4k2>:2\/ww
k 5 1Wa ( ) 1 2<r+s+ (r—s)2—4k2)
(4.30)
2 [ac rs 4+ k?
K2\ bado \ 7+ 5+ /(r —s)2 —4k% )’
where
1 a1 |1+ dk? + dykt
e 1 —|— k2 2 ,
' \/(1—ak2)(1—ck2)ﬁl< ) \/1+bk2+b2k4
and
1 as |14 bk? 4 bokt
- 14 k%)= :
§ \/(1—ak2)(1—ck2)ﬁ2( ) \/1—I—dk:2—|—d2k:4
From the relations above we obtain that
rs ~ %\wl*af‘*. (4.31)
ac

Note that (r 4 s) has order |k["®{e122}=2 and (r — 5)? has order |k|2(max{a1,02}=2)  [et us
analyze the order of (r — s)? — 4k :

(i) If max{ay, as} > 3, then 2(max{ay, as}—2) > 2. Hence, ((r — s)? — 4k?) has order

|k|2(maxtar, a2}=2) Fyrthermore, (7" +s++/(r—s)?— 4k2> has order |k|max{ar, azk=2,

(i) If max{a;, as} < 3, then 2(max{ay, as} —2) < 2. Thus, ((r — s)? — 4k?) has order
|k|* and (7" +s5+/(r—s)?— 4k2> has order |k|.

Moreover, from (4.31), if a; + as < 6, we deduce that (rs + k?) has order |k|? and, if
a1+ ag > 6, (rs + k?) has order |k|**T227%, Therefore, from (4.30), we have the following
cases:
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o If max{ay, s} > 3 and a1 + ay < 6, then

2 ac rs+ k2 Iy k2
Ae ™~ 134 ~ = e 4.32
Pk bady (r +s++/(r—s)2— 4k2> k2 (\k\max{ah%}—? (4.32)

k? [y

- lllk‘max{al,az} — |k|max{a1,a2}'

o If max{ay, as} > 3 and oy + ap > 6, then

- 2 [ac rs + k2 I |Jo|eataz—1
k k2 deQ (7* + s+ (T _ 8)2 _ 4k2> k2 <|k|max{a1,a2}—2 ( 33)

B l B Iy
- |k|4+max{o¢1,o¢2}—(a1+o¢2) - |k|4—min{a1,o¢2}'

o If max{aj, as} < 3, we obtain that ay + ay < 6 and

_ 2 ac rs + k2 I (kz)
A~ 73y ~ (o 4.34
k2 byd, <T+S+\/(T—s)2—4k2> k2 \ k| ( )

’k|3—max{a1,o¢2} ll

=0 ’k|47max{a1,02} - ‘k-“l*max{al,az} '

]

REMARK 4.1.2. If oq = ay = 4, then limy_ A\, = min{%, %} and limy,_s i)%()\f) =
2 dy

1
— (é + @) . In this case,

A
L B =0
Y 1P2 = Y,
o~ S (BB g2) S ) R
k4 ac

ly if B1B2 > 0,

for some positive constant Is.

REMARK 4.1.3. If |ex| < 1, we have that

1 /81 — BQ _
+ i ) a)—4 Fa as—4
RO ~ 5 (ke + e,

Hence, we obtain the following cases:
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o If a; < 4 and ay < 4 (we suppose that, if o; = max{ay, as}, then 5; > 0), there
exists a constant lo > 0, such that

! B _ 6 _
+ 2 | Flypjer—max{al, a2} P21 1a2—max{a1, az}
?R(/\k) > |k|4—max{a1,a2} <b2 ’kl + d2’k| )
123,

— |k|4—max{o¢1, ag}’

o If a1 = ap =4, then there exists a constant ly > 0, such that
R > 1.
Let us analyze more closely the case of double eigenvalue.
LEMMA 4.1.2. With the notation from Lemma 4.1.1, we have that:
(i) There ezists only a finite number of values k € 7 with the property that |ey| = 1.

(i) There exists a subsequence (ex, )m>1 of (ex)k>1, such that limg, oo leg, | = 1 if and
only if one of the following cases holds

() 1 = r =3 and < (1[4 = /) = 2

(Cg) 3= a1 > Qo and 51 =2 ag?,

(03)3:Oé2>061 and,6’2:2 %.

< M.
Li{pve

Proof. For the first part of the Lemma, let us suppose that we have an infinite number
of different values (k,,)m>1 C N, such that e, = 1. Without loss of generality, we may
assume that lim,, . k,, = co. We have the following cases:

(1ii) If limg_,o |ex| = 1, there exists a positive constant M, such that

o If a; > ay, then

2%
1= lim ekm:é\/@ lim 1+ k) )
m—00 2V by mooo /(1 — ak?) (1 — ck2,)kn,

which implies that oy = 3 and 5, = 2 %22. Then,

y (1+k2)7 \/1+bkzn+b2k;ln B

2 Yo /(L — ak2)(1 — k2 \| 1+ dk2, + dok,

, I
(1+k3n)2\/acb2(1+dkgl+d2k§l) I\

1—

= w 4.
b\ ROFOL A 0RL) L [P 139
lk,,
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where,

lr, = dok? (1 — ak?)(1 — ck?)(1 4 bk2 + bok? ),
Dy, = achy (14 k2)% (14 dk2, + dok?).

3 0
— Dk, 1 20327

l
We have that kml =2 02 where 9]1-,932 are constants that depend

only on the parameters a, b, d, bs, ds and c.
3 0
ijo ﬁ 0}

> — o
065
7=0 kil

and  lim,, o  /2m = 1.

Moreover, 02 = acbydy # 0,  lim,, .o b
m

Hence, from (4.35) we obtain

30
Zj:o E
ag 5 67
P Ko (14 k2) 2 \/1 FOR2 4 bokd Do (.36
— M2 — 5 — 3 B 1 - » . .
2¢/(1 —ak2)(1 — ck2,) \| 1 +dks, +daky, 1 4 P
Furthermore,
ke (1 4+ K2)7 14 bk2, + bykd oL
T L U O ) 0% F %00 | _ o (4.37)
Mmoo 2¢/(1 —ak2)(1 — ck2,) \| 1+ dk3, + doky, 262

Thus , if ap > 1, (4.37) implies that 8, = 6} = 0. If ay < 1, from (4.37) we obtain
6} = 0. Then, from (4.36) we deduce that

3 2\F 2 4 1
. (_52 k3 (1+k2) \/1+bkm+b2km> G (4.38)
21/

Mmoo 1— ak2)(1—ckz) \| L+ dk2 + dok?, | — 263

which implies that 8, = 6] = 0. However, e, can be written as

(4.39)

€L

B (1+K2)2 achy(1 + dk2, + dak?)
" k(1 — ak2)(1 — ckZ,) da(1 + bk2, + bokd)

Therefore, e, = 1 is equivalent to a eighth order equation in k,, which has at most
eight solutions. We have obtain a contradiction and, thus, this case is not possible.

The case a1 < ap may be treated as before, and we obtain the same conclusion.

If ay = ay we obtain that lim,, ,.er, = 1 if and only if oy = as = 3 and

1
ac (51\/% — P \/g) = 2. However, in this case ey, is given by
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(1+Kk2)3 P 1+ dk2, + dok?, e + bk2, + bok,
€k = — :
o Sk /(L —ak2) (1 —ckz) "\ T+ 0k, + okl TP\ 1+ dk2, + dokkl,

Therefore, e;, = 1 is equivalent to a fourteenth order equation in k,, which has
at most fourteen solutions. We have again obtained a contradiction. Hence, there
exists only a finite number of values k& € Z with the property that |e,| = 1.

The second part of the Lemma follows as before, by analyzing the similar three cases.

For the third part of Lemma, we consider the following cases:

1
e If (C}) holds, a; = a3 = 3 and \/ﬁ <B1\/g — P \/g) = 2. Then, from Proposition

[ 1
4.1.3, we obtain a constant /; > 0, such that |\ | > ﬁ Thus, there exists M = n
1

< M.

satisfying W] S
k

e For the cases (Cy) and (C3) we proceed as in the case above.
O]

REMARK 4.1.4. When we have complez eigenvalues, if limy_, |ex] = 1, from Remark

4.1.3, there exist a positive constant M, such that

<M
[E[IR(A))]
Since R(\;) > A, > 0, for |eg| > 1, in the sequel we consider
(RO = Al
We have the following result.

THEOREM 4.1.1. There exists a constant M > 0, such that the solution (M(t), wk(t)) of
(4.10) werifies the following estimate,

~ W1, ~ W1, ~ _ -
() + w—:ywk(m? <M (|ﬁ2|2 + w—;|w2|2> e 2RI (>0, kez). (4.40)

Proof. We have to analyze two different cases.

e If there exists no subsequence (e, )m>1 Of (€x)r>1, such that limy, oo |ex,, | = 1,
then
LA |Gl + 1G> 11— [Gell* - 3IGl 11— 1Gkll |, 3[Gk|
11— ¢l 1=l =G [T+IGI 11 =¢l
3
<14+—" <M

2/ler2 =17
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for some constant M > 0. Thus,

1 2
lim sup * 16 +2Kk| < M. (4.41)
I

Hence, from (4.13)-(4.14) and (4.41) we have that

_ RO 1+|<k|22m Gl [P wr | o

|7 (£)]? < e 2R )™+ — |@ (4.42)
= |1—C£| wy' "

< 22RO (!nl NV )
Wa
and
R - B 1+ 212 R 2
()] < e Ztm“k)< i K’“" °|2+2‘|1K 22’ wlyn“,f (4.43)
k k

— Wa
< MZ2e 2t|R(A <| |2 + _’n/\g 2) )
w1

We multiply (4.43) by "1 and add the resulting estimate, hand to hand, to (4.42)
W2

and obtain (4.40).

Suppose that exists a subsequence (ex,, )m>1 of (ex)r>1, such that limy, . |eg,. | = 1.

We claim that there exists a constant M > 0, such that

e ,\;mt e Mot

1-¢ |

Suppose that it was proved. Then, from (4.13)-(4.14) we obtain

< Me )l (4.44)

|k ()]
1 e e
5 <(€ Akmt — e )\km ) (]_ — Ckm) kmt> ﬁgm
1— Ckm

i w1 ATt “A t) 0
+ 1 2 _Cknb (6 hm * — € Fm wkm
- C}cm Wa

Hence, from (4.44) it follows that

~ _ - w
’Ukm(t)|2 < M2€ 2t R, ) (’ﬁgm‘Z ; ’2) (4.45)
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Similarly, from (4.13)-(4.14) we get
|, (£)]7 < MZe >R, (mgm\? + Z—j n“gm|2> : (4.46)

Combining (4.46) and (4.45) we obtain (4.40).

Now, we prove the claim (4.44). Since limy_, ., (AZ — /\,;) = 0, there exists a positive
constant M, such that

lem R 1) < M. = A It (4.47)

Thus, from (4.47) we have that

Me_tm(kl:m)||km|,/w1w2 ,/eim — 1‘73
< (4.48)

Ve ey )

Mie—lIROL)! Mie—IROG,)!

e ‘(ek — e — 1)) S

where M is a positive constant. From the L’Hopital rule we deduce that

AT A\
e >‘kmt —e )\kmt

1-¢ |

—tIR(AL, )]
et L E
[R(A,)]
Hence, from (4.48) we obtain
Nt At MetIROG,)!
¢ : <2t (4.49)
I [kl RO,
As limy,, o0 |€k,,| = 1, from the Lemma 4.1.2, there exists a positive constant M,
1
such that ————— < M. Thus, from (4.49) we have
k| [R(A,)]
A —A
€ Thm—e Thm < MetROL)!
-G
for some constant M > 0.
L]
The following result gives the semigroup associated to our linear problem.
THEOREM 4.1.2. The family of linear operators (S(t))i>o defined by
SO, w®) =Y @), @)™ (", u’) € V), (4.50)

keZ
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where the coefficients (Mi(t), Wk(t)) are given by (4.13)-(4.16), is a semigroup in V* and
verifies the following estimate, for each s € R,

IS 0" W) lvs < M0 w)]lvs (0", w”) € V), (4.51)
where M s a positive constant.

Proof. From Theorem 4.1.1, there exists a constant M > 0, such that

2

D (@(t), (t))e*”

keZ

=5 (0P + o) 0+ a2y

Vs keZ

<03 (I + kR ) (141 = 22 ()|
2

kEZ

2
Vs

Then, (S(t)):>o is a well-defined linear and continuous operator and satisfies (4.51). It is
easy to see that S(0) = I, S(t1) o S(ta) = S(t1 + t2) for any t1,t, € RT and, in addition,
from (4.13)-(4.16) and the analysis developed in Theorem 4.1.1, we obtain that

Wy | ~ s
1S(t) (0, w®) — (0 w3 < S Wi () (m“,g 24 w—;|w,2|2) (14 K2),

keZ
where
A\t 2 —Mt A\t 2 -\t Aft A\t
et —(re et — (e Nk ekt —e %
W, (+) = max ), 1) = el b
1— ¢} 1—-¢ 1—-¢

Consequently lim; o S(t)(n° w®) = (n°,w®) in V* and the proof is complete.
[

THEOREM 4.1.3. The infinitesimal generator of the semigroup (S(t))io0 is a bounded
operator (D(—A), —A), where D(—A) =V* and A is given by (4.7).

Proof. We show that

lim S(t)(nov wO) — (7707 wO) _ _A<7]07 wO)7
t—0 t
if and only if (n° w®) € V*.

This is equivalent to show that the derivative in zero of the series Y, _, (T (t), Wk (t))e™*®,
where (7 (), Wy (t)) is given by (4.13)-(4.16), is convergent to —A(n°, w’) in V* if and only
if (n°,w?) € V&,

If we denote by

(4.52)

Sn(t) =Y (W(t), Du(t))e*,

|k|<N

a partial sum of the series, a straightforward computation which takes into account (4.10)
shows that

[Sn]; (0) = —A(Sw) (0). (4.53)
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Let (D(B), B) the infinitesimal generator of the semigroup (S(¢))s>o0. If (n°, w°) € D(B),
from (4.53) we obtain that

R e [é%(t), mt»eikm] 0 @5
= lim [Sy], (0) = lim —A(Sx)(0) = —A(n’,w").

Hence, (n°,w°®) € D(=A) = V¢ and B(n°,w°) = —A(n°,w?), for any (n°,w°) € D(B).
On the other hand, let (n°,w’) € D(—A) = V°. We we have to show that the series
(> ker (), Wi (t))e* ], (0) is convergent. This is equivalent to show that

[Sw1, (0) = | > (@(t), @u(t))e™ | (0)

<N .

is a Cauchy sequence. Indeed,
~ W1 | ~ s
1Snl, (0) = [Sv), O = D (rnk,t(0>|2 + w—|wk,t<o>|2) (1+k2)*  (4.5)
N<[KI<N+p 2
From (4.10) we deduce that
_ Bl + k)
0)]* =
e O = 1 i
< M{i(0)[* + k*wi| @y (0) [

2
7k (0)|* + K|y, (0) (4.56)

and

Bo(1 4 k2)F
1+ dk? + dykt
< E2w3|7,(0)]* + M@, (0)]?,

where M is a positive constant depending only on o, i, 51, B2, b, be, d and ds. Then, from
(4.56) and (4.57) we have that

~ Wy | ~ ~ W1 | ~ ~ W1 |
a0 + 10O < ket (OF + 2L1aPR) + 21 (O + 21z o)
2 Wa Wa
(4.58)

2
|, (0)[* = K*w3 |7 (0)* + @ (0)[? (4.57)

~ Wy | ~
< a1 (IO + 2 jou0)2).
W2
Therefore, from (4.55) and (4.58) we obtain the following estimate,

ST (monuﬂm(onz) L+R) (459)
N<H<N+p w2
W1 | ~ s
—u Y (e ) a e,

N<|k|<N+p

|| [SN+P]t (O) - [SN]t (0)|
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and as (n°,w°) € D(—A) =V,
[SnT, (0) = | > (@(t), @e(t))e™ | (0)

|k|<N

is a Cauchy sequence. Thus,

N—oo

_A(n()’wo) :]\}I_I)r(l)o —A (SN) (0) = hm [SN] ( ): [Z(ﬁk(t),@k(t))emx] (0)

0

SO0 -
t—0 t
0

Hence, (n°,w") € D(B) and —A(n°, w

(7707 wO) — B<7707 wO)'

%) = B(n®, w’), for any (n°,w’) € D(—A) = V>.
O

REMARK 4.1.5. In fact much more can be said about the regularity of solutions of (4.3).
Since (4.3) is linear and —A is a bounded operator, we can easily deduce that (n,w) €
C" ([0, 00); V*), where C* ([0, 00); V'*) represents the class of the analytic functions defined
in [0, 00) with values in V*. Indeed, for ty € [0, 00)

(t —to)" = ‘t—to|n dr
(n, w)(to) ——— g ~(n,w)(to)
et n! I ! dtn e
[t —tol™ i
< [|(n, w)(to) [y« E [A[[Zqvsy < oo
n=0

Hence, the series Y oo 4= (n, w )(to)% is (absolutely) convergent and

(n,w)(t) = exp (—A(t = to)) (7, w)(to) = Y (t_—to)n(—A)”(m w)(to)

n!
S a1
—~ dtm n!

As a direct consequence of the Theorems 4.1.2 and 4.1.3 and the general theory of the
evolution equations (see, for instance, [11]), we have the following existence and uniqueness
result:

THEOREM 4.1.4. Let T > 0 and s € R. For any (n°,w°) € V* and (f,g) € L' (0, T;V?),
there exists a unique solution (n,w) € WL ([0,T]; V*®) of the system

n n f n n
(t)+A (t) = : (0) = , (4.60)
w J, w g w w

which verifies the constant variation formula

( Z ) (t) = S(t) ( ZUO ) +/0tS(t— 5) ( f; ) (s) ds. (4.61)
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4.1.2 Asymptotic behavior

In this section we study the behavior of the solutions of system (4.3), as the time goes to
infinity. In order to have a dissipative system, we assume that

B >0, [y>0, BF+p52>0. (4.62)

Multiplying both sides of the first equation in (4.10) by M and the second equation

1—ak?
1—k2

equation to the conjugate of the resulting second equation, we obtain

@y, if a < 0, ¢ < 0, and then adding the resulting first

byﬁ?_kifa:c>00rby<

d N wy (k) -
(1 4+ bk? £ bokt 2, 1 2
ok k) (1 + 2

ay ag 1-— CLkI2 ~
= =281 (1 + k) 2 | — 2B2(1 + &) 7 ( 12 ) ||, (4.63)

for k € Z. Thus, if we define

27
Eln, w|(t) = / <\(I — bO? + b, 03V 2n(t, ;):)|2 + (1 = 092 + b,02)*Huw(t, 1‘)‘2> dz,
0

(4.64)
then, from (4.63), we get
2 g, w)(t) < ¢ (InlP 2 4.65
[, w](t) < 19" o0 F[Jw]]” o a (4.65)
dt H,2 (0,27) H,? (0,2m)

for any ¢ > 0 and some positive constant C' > 0, depending only on [y, B2, a and c.

Firstly, we analyze the cases in which the solutions of (4.3) decay exponentially to
zero. We recall that the solutions to (4.3) decay exponentially in V* if there exist two
positive constants M and p, such that

IS()(n°, w®)]

We have the following result.

ve < Me [|(n", w’)]

Ve (t>0, (" uw’)eVve). (4.66)

THEOREM 4.1.5. The solutions of (4.3) decay exponentially in V* if and only if oy =
ag =4 and By, P > 0. Moreover, i from (4.66) is given by

p=inf {|RO\)|}, (4.67)

kEZ

where the eigenvalues A, are given by (4.11).

Proof. Firstly, let a; = as = 4 and [y, B3 > 0. In this case, Remarks 4.1.2 and 4.1.3
ensure that the eigenvalues )\, are uniformly bounded away from the real axis:

ROP)>D>0 (ke
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where D, is a positive number, depending on the parameters 5y, B2, aq, g, b, d, by and
dy. Thus, there exists p = infyey {‘?R()\,;)H, and from the Theorem 4.1.1, we obtain that

~ w1, ~ Wy, B 3
7 () ° + — @i () ? < M <|7A72|2 + —!w2’2> e~ 2RO
wao Wo
—2t ~012 , Wi|~02
< Me “(|77k| + —|wy ),
W2
for some constant M > 0, which implies (4.66).

On the other hand, we suppose that as < a; < 4. Then, from the Proposition 4.1.3, there
exist [ > 0 and § > 0, such that  |R(\,)]
that

> W. Thus, from Theorem 4.1.1 we have

O + Zjouel < dre 00 (g + Liapp)
Wa Wa
—2tl
< Mew® (W,;\? + 2 @212) .
Wa
Hence, the decay rate cannot be exponential. Similarly, if o < ay < 4. Therefore,

a1 = ap = 4. Now, we suppose that 5,35 = 0. From Remark 4.1.2, there exists a constant

l
[ > 0, such that |R()\,)| > —. We infer that the same conclusion holds. Therefore,

K[>
617 62 > 0.
O

Now, we analyze the decay rate of solutions in the remaining cases. Since we know
from Theorem 4.1.5 that we do not have an exponential decay, we can only expect a
polynomial decay if the initial data have additional smoothness properties. We have the
following result:

THEOREM 4.1.6. Suppose that (4.62) holds and ay,ay € [0,4). Let 6 > 0 be defined by
4 —max{ay, ao} if max{a, az} <3,
0 =< max{aj, as} if max{ai, as} >3, a;+ay <6 (4.68)
4 —min{ay, as} if max{ay, as} >3, a;+ay >6.

Then, there exists M > 0, such that the solutions of (4.3) satisfy

M
(", w")|

ISE) @’ w®) v+ < T

Veta (t>0, (n°,w’) eV,  (4.69)

where s € R and q > 0.
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Proof. We use an argument developed in [21]. Firstly, we remark that it is sufficient to
prove the result for ¢ sufficiently large. From Proposition 4.1.3, there exists a constant
[ > 0, such that

IR(ND)| > (keZ"). (4.70)

l
[K1°
From Theorem 4.1.1 and (4.70) we deduce that

15(t)(n", w")]

%/5 S MQZ(]_+k2)se—2tmin{|§ﬁ(>\;§)\,|§R()\,:)\} (|ﬁ2|2+%|wk’2)
keZ

Wa

1 iiit 2\s+q ~012 Wy, . 2
T Z (1+ k?)qe W (14 k%) |7el” + w_glwk’ : (4.71)

keZ*

=20 =20
Let us analyze el#°. As lim;_,. el®° = 1, there exists a constant M > 0, such that
21

=2 21
el®® > M, for all |k| > ko and some ky € N. Moreover, if 1 < |k| < kg, then e 2 < el*®,
Hence, we obtain that

S e (R (P + g
(1 + kQ)q k Wa k

kez*
1 —21(t+1) w
21 ) 2\s+q ~0(2 11,402
se E : 1+ k?)qe w1+ k%) (|77k| + _w2‘wk )

1 1 721(t6+1) 2\ 54q <012 Wi, .02
ST e (S e (U IR

1+ k2)q

<y 1 6—2‘113;1) (1+ k2)s+e (|92 + ﬂmo 2
1+ k’2)q Tk Wao k ’

(4.72)

—21(t+1)

k> for k € Z*. Firstly, we remark that

1
Let us study the term Ej(t) = me
x < e* 1 for all z > 0. Then, given ¢ > 0 the following inequality holds true

zre " <) =g (x >0). (4.73)

By using (4.73) with = = 21‘(;;?) and ¢ = 2 we deduce that, there exists a constant
C(q,9,1) > 0, such that

t 29 2
e G < cgsn RS

(21t +1))7 (t+1)3
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From the last estimate, we obtain for each k € Z*

C(q.6.1
y@ﬁng—@:% (t > 0). (4.74)
(t+1)%
Therefore, from (4.71), (4.72) and (4.74) we have that
. 1
WMWWW%SMQeM%M(%H#%%ﬁ+——7ﬂwwmaﬂ.
Wa (t+1)7

]

4.2 The nonlinear system

We are now in a position to prove the well-posedness and the stabilization for the solutions
of the nonlinear system (4.1) issued from small initial data, when the linearized system is
exponentially stable, i.e., under the hypothesis of Theorem 4.1.5. The proof will be done
by using a fixed point argument. Therefore, the applications of the following lemma,
proved in [5], will be needed:

LEMMA 4.2.1. Let s > —1. There exists a constant C' > 0, depending only on s, such that

1fgllms0.2m < ClIf]

for any f,g € H3*'(0,2m).

H5H(0,27) gl HET(0,27)

REMARK 4.2.1. We write (4.1) in its integral form
U U U 0 U U

() + A )+ N (t) = , (0) = , (4.75)

w /., w w 0 w w

where N 1s defined by
N (1, w)

(I —bd?+ an;l);l [ww, + c(Wwy)pe + (Maz)z — (¢ + d — Dwawey — (¢ + d)wWWepy)
(4.76)

and A is the compact operator defined by (4.7). Thus, we obtain that the solution of
(4.75) is given by

WmMQZS@WQW%iAS@—ﬂNWwNﬂmv (4.77)

where {S(t) }1>o is the semigroup defined in Theorem 4.1.2.
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The main result of this section reads as follows:

THEOREM 4.2.1. Let s > 0 and suppose that By, 52 > 0 and oy = o = 4. There exists
r>0,C >0 and u >0, such that, for any (n°,w°®) € V*, satisfying

107, w?)]

the system (4.1) admits a unique solution (n,w) € C([0,00); V*) which verifies

1(n(2), w(t))]

Moreover, u may be taken as in (4.67).

Vs S/’n)

vs < Ce ||(n", w’)]

ve  (t>0). (4.78)

Proof. We remark that the hypothesis of Theorem 4.1.5 are verified and there exist M, u >
0, such that (4.66) holds true. In order to use a fixed point argument, we define the space

Yo =A{(n,w) € C([0,00); V*) : e"(n, w) € C([0,00); V*)},

with the norm

1, w)lly.,,, = sup_|le"(n, w)(t)]

0<t<oo

Vs,

and the function I : Y} , — Y, , by
t
T, w)(t) = SE) (0, w?) — / S(t — T)N (g, w)(r) dr.
0

From Lemma 4.2.1, we deduce that

[N (11, 01)] Ve, (4.79)

ve < Cf[(n1, ws)]

and

HN(nlywl) - N(n27w2)’

ve < C([|(m, w1)]

|(1, w1) = (2, w2)||vs,
(4.80)

ve + || (72, w2)[|vs)

for any (11, w1), (2, ws) € V* and for some C' > 0. Then, combining the estimates above
and Theorem 4.1.5, we obtain

ve < Me |, w”)]

(0, w)(2)] o+ M /0 =[N (1, w) (1) [v» A

< Me ™|(n°, w)||vs + MCe ™ sup ||e (n, w)(7T)||}s, (4.81)
0<r<t

for any ¢ > 0 and some positive constants M and C. Thus, if we take (n,w) € Bgr(0)
where

Br(0) = {(n,w) € Youi ll(n,w)llv.,. < R},

from (4.81) we conclude that

10, w)lly.,. < M0, w")]

Vs —|—MCH(77,w)H§/W < Mr+ MCR®. (4.82)
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A similar calculations shows that, for any (n;,w;), (92, ws) € Br(0), we have that

1 (T, w) = L2, w2)) (8)lv= < Me™" sup "7 (N (1, w1) — N (a2, w2)) (7))

0<r<t v
< MCe™ Oiugt((||(771,w1)(7)| ve || (m2, w2) ()] [vs )| [T (1, wi) — (02, w2)) (7)|[vs)
< 2RMC sup |[[e" ((n1,wi) — (n2, w2)) (7)]]vs.
0<r<t
Therefore,
[T (11, w1) — (2, w2)|ly,,, < 2RMC||(n1,w1) — (02, w2)|]y, - (4.83)

1
By choosing R = 2Mr and r < SO from (4.82) and (4.83) we deduce that the map

I': BR(0) CY,,, — Br(0)

is a contraction, hence it admits a unique fixed point (n,w) € Bg(0) which solves the
integral equation (4.75). Moreover,

[le* (n, w)(#)]

The proof of the Theorem is complete.

vs < R=2Mr (t >0).



Chapter 5

Controllability for higher-order linear
Boussinesq system on a periodic
domain

Considered in this chapter is a Boussinesq systems of the form

Tt + Wy — bnt;m: + b277t;rxx:v + AWygy + M Wegrza = f(ta ZE) for z € (07 271—)7 t> 07
Wy + Ny — dwta:a: + dQ'wtzxxac + Cllzzx + CiNezaza = g(t, :L‘) for x € (Oa 27T)7 t>0

with periodic boundary conditions o1
g;? (t,0) = g;? (t,2r) fort>0, 0<r<rp,
(5.2)
%(t,()) :%(t,Qﬂ') fort >0, 0<qg<q
and initial condition
n(0,2) = n°(z), w(0,2) = w(x) for x € (0,2m). (5.3)

The number of boundary conditions depends on the values of the parameters.

Its well-posedness in a suitable classical Banach space will be investigated in the next
section. Then, in sections 5.2 and 5.3, considering f and g as control inputs, we will study
its control problems. In particular, exact controllability will be established in section 5.2
with two control inputs while section 5.3 will be devoted to study the system with a single
control acting only on a subdomain w C (0, 27).

5.1 Well-posedness

Assume that the initial data in (5.3) and the forcing terms in (5.1) are given by

(770721)0) — Z (ﬁgﬂ/ﬁg) eikﬂﬁ7 (f,q)(t) = Z (ﬁ(t),@&t)) ik

keZ kEZ

66
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At least formally, the solution of (5.1)-(5.3) may be written as

(n,w)(t,x) = Y ([@(t), De(1))e™,

k€EZ
where (Nx(t), Wy (t)) fulfill
(14 bk? + bok®) (i )e + k(1 — ak? + a1k @y = fo, t € (0,T),

(1 + dk? + dok®) (@), + ik (1 — ck® + kD = Ge, t € (0,T), (5.4)
m(0) =g, Wi(0) = wy.

We have the following result.
LEMMA 5.1.1. The solution (n(t), wx(t)) of (5.4) is given by

m(t) = coslka(k)t]n) — i\/%sm[lﬁa(k:)t]ﬁ?g +/O Colsfzi?fb;ki)] Fu(s)ds

o [ sinlko(k)(t —s)].
o / 1+ dk? + dpn Jrls)ds:
R o " b sinlko(k)(t — s)] =
Wi(t) = —iy/w2sin[ko(k)tn) + cos[ka(k iy /w2 bk + N fr(s)ds

" coslka(k)(t — )] .
+/0 1+ dk? + dyk? Ge(5)ds,

(

\
(5.5)
1 —ak® + a k* 1 —ck?+ck*
where, w; = R Wy = LT i+ dh and  o(k) = /wiw,.
Proof. The system (5.4) is equivalent to
Tk Tk TrE Tk )
(t) + ik A(k) (t) = : (0) = ,
Wk ) Wk TR Tk W @
where
0 w1
A(k) =
W2 0
Hence, the solution of (5.4) is given by
~ =0 Ji(5)
Nk n t T i
(t) = o tktA(K) g +/ o ik(t—s)A(k) DR ds. (5.6)
W, w0 0 Gk (s)

W W _ Gr(s)
k k T dk2+dok?
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The eigenvalues of the matrix A(k) are +o(k).
Under the above considerations, let

. 4 L s
Q) = —ikA(k) + iko (k) 1 \/7 (5.7)

— w2 1

1 wy
0y = —ikA(k) — iko (k) 1 \/> ' (5.8)

—2Zl€0’<k’) 2 \/uTg 1

Then, according to Proposition 4.1.1 given in the Chapter 3, we have that

coslko(k)t] —i\/%sm[ka(k‘)t]

e—ikA(k)t _ eika(k)tQ1+e—ika(k)tQ2 _ ' (59)

—i\/%‘sin[lm(l@)t] cos|ka (k)]

Consequently, from (5.6) and (5.9), we deduce that the solution of (5.4) is given by (5.5).

and

O]
Let us introduce the number [ € Z with the property that
— ~ Clk|', when [|k| — oo, (5.10)
w2

where C' is a positive constant not depending on k. For each s € R, we define the space
s s s+l
V*® = H,(0,2m) x H;"(0,2m),
endowed with the inner product defined by

((f1, f2), (91, 92)) = (f1, 91)s + (Hf2, Haa)s,

and the operator H is defined in the following way

~ W1~
H ( E ake”m> = E || —are™®.
w
keZ keZ 2

The following result gives the Cy group associated to our problem.

THEOREM 5.1.1. The family of linear operators (S(t))ier defined by

S, w) =Y @(t) ()™ (' w’) € V?), (5.11)

keZ
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where the Fourier coefficients (n(t), W(t)) are given by
Mi(t) = coslka (k)] — iy [ wtsin[ko(k)t]@y,

(5.12)
Delt) = —i\/g:jsm[ka(k)t]ﬁg + cos[ka (k)@Y

15 a group of isometries in V?*, for any s € R.

Proof. First, let us prove that S(t) is a well-defined linear and continuous operator
for any t € R. If (n°w®) = >, ., (M), @) e* € V*, then we claim that the series
> ez (Mi(t), Wi (t)) e converges in C([0,00),V*). This is equivalent to say that the
sequence

P = Z (7 (1), Wk (£)) €™
k|<N N1

is a Cauchy sequence in C([0,00),V?®). From (5.12), we obtain
2

s || Y @G@Om@)E]| = sw (I%(t)lHZ—;I@k(t)IQ) 1+ )"

t€[0:09) || N<e|<N+p 1E10:%0) N <lk[<N+p

W1, ~ s

> (e Mane) oy

Wa
N<|k|<N+p
Thus, P is a Cauchy sequence in C([0,00),V*). Hence, the operator S(t) is well-defined
in V*and S(-)(n°, w") € C([0,00), V*). Moreover, since

2

> @ aoe| = 3 (1R + Lol ) o+ e,

|k|I<N |k|<N

Vs
we have that (S(t))ier is a family of linear and continuous operators which are also
isometries. It easy to see that S(0) = I, S(t) o S(s) = S(t + s) for any ¢t,s € R and
lim; 0 S(¢)(n°, w°) = (n°, w®) in V*. Therefore, (S(t))cr is a group.

[

Let the number € € Z such that

Vwrws ~ Clk|¢,  when |k| — oo, (5.13)
where C' is a positive constant not depending on k. Then, we have the following result:
THEOREM 5.1.2. The infinitesimal generator of the group (S(t))ier is the bounded operator
(D(—A),—A) in V*, where D(—A) = Vsrmax{=1&) gnqd A is given by

0 (I =602 + by0%) " (0 + a0 + a,07)

A=
(I = do? +dy?), " (0s + 02 + ¢10D) 0
(5.14)
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Proof. We show that

0,0\ __ (.0 ,,0
lim S(t)(n°,w”) — (n°, w’)
t—0 t

= —A(n()?wo), (515)

if and only if (°,w®) € Ve+(+max{=1eh) This is equivalent to show that the derivative in
zero of the series Y, ., (Mk(t), Wi (t))e™™®, where (7i(t), Wi (t)) is given by (5.12), is conver-
gent to —A(n°,w’) in V* if and only if (n°, w?) € Vet(i+max{=1e})
If we denote by
Sn(t) = ((t), @i(t))e™,

|k|<N

a partial sum of the series, a straightforward computation which takes into account (5.12),
shows that

[Snl, (0) = —A(Sn) (0). (5.16)

Let (D(B),B) the infinitesimal generator of the group (S(t))ier. If (n°,w®) € D(B), we
have that

By, ) = tim SO 200D [Z(ﬁku),m(t))eikw] © (617

t—0 e
= lim [Sy], (0) = lim —A(Sy) (0) = —A(n°, ).
N—o0 N—o00
Hence, (n°,w°) € D(—A) = Vetdmad=1eh) and B(n°,w) = —A(1° w®) for any

(n",w®) € D(B).
On the other hand, let (n°,w°) € D(—A) = Vst+ma{=1eh) We show that the series

[Z(ﬁka),wk(w)em] (0)

keZ t

is convergent. This is equivalent to show that

[Sn1, (0) = | > ((t), @r(t)e™ | (0)

IKI<N .

is a Cauchy sequence. Indeed, from (5.12) we obtain that

1[8N+, (0) =[S, (0)]

e Y (P + 2 a0R) a4 69

N<[k|<N+p

= R (O + LaR) 1+ 1

N<|k|<N+p

e o Wi ~ s
<e 3 # (ROF+ a0 0+

N<|k|<N+p
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where C' is a positive constant. As (n°,w®) € D(—.A) = Vsttmad{=1}) then

[Sn], (0) = | > (@(t), @e(t))e™ | (0)

[k|<N

is a Cauchy sequence. Thus,

— A", w’) = lim —A(Sy) (0) =

lim
N—o0

[Sw], (0) = [Z(ﬁk(t)’ @k(t))e“““] (0)

0 ,,0\ _ (.0 .0
i SO w?) = (0 w?)
t—0 t

Hence, (n°,w°) € D(B) and —A(n°,w") = B(n° w°®) for any (n°,w®) € D(-A) =
Vs—&-(l—&—max{—l,é}).

[
System (5.1)-(5.3) may be written in the following form
y U f U U
(1) + A (t) = , (0) = : (5.19)
w w g* w w®

t

. fr(t G (t ;
where (f*,g%)(t) = ZkeZ <1+b£§(+322k4’ 1+d?cl§(—i-212k4> e,
As a direct consequence of the Theorems 5.1.1 and 5.1.2 and the general theory of the
evolution equations (see, for instance, [11]), we have the following existence and uniqueness
result:

THEOREM 5.1.3. Let T > 0 and s € R. If (n°,w®) € V* and (f*,g*) € L* (0,T;V?), then
(5.19) admits a unique solution

(777 w) € Cl([O, T], VS+(1+max{—17E})) NnNC ([O, T]7 Vs) .
Moreover, there exists a positive constant C' > 0, depending only on s, such that

Vo). (5.20)

1(n, w)lcqorive < C (1 g) e orve) + |(n°, w)]

5.2 Linear systems with two control inputs

In this section we study the controllability properties of the following linear system with
two control inputs:
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Tt + Wy — bntmx + b2ntmmxm + AQWgzy + A\ Wrrrxr = f(t7 I) fOI' WS (07 27T); t S (07 T),
Wy + Ny — dwmx + d2wtma}x:c + Cllzzx + CiMzzaxza = 9(757 ZL’) for x € (07 27T)a te (07 T)u

0 gy = 9

pr = 5o (t,2m) fort € (0,7), 0<r<r,
d%w d%w
e —(t,0) = e —(t, 2m) fort € (0,7), 0<q<qo,
[ n(0,2) = (@), w(0,2) = uw(x) for = € (0, 27).
(5.21)
We assume throughout this section that
b= d, b2 = dg, a =c, a; = Cq. (522)

Consider the change of variables
n=v+u and w=0v-—u.

In terms of these new variables, the equations in (5.21) become

(v + U — bUp + DoVtpzwe + AUy + 1 Vszzee = f*(t,x)  for z € (0,27), t € (0,7T),
Uy + Uy — butzx + b2utma:$a: + AUy zy + AN Uzgrzr = g*<t’ ZE) fOI‘ T e (O, 277)7 te (O» T)7
o or
8:;: (t,0) = a—;(t, 2m) fort € (0,7), 0<r <,
0% 0%

Oxd (t 0) oxd (t’ 27T) for t € (Oa T)a 0 <q < qo,
v(0,z) = v%(z), u(0,2) = u®(x) for = € (0,27),
(5.23)
with
f+g -9
/r= 2 =

Let a € C3°(0,27) with a # 0. We take f*(¢,x) in (5.23) to have the following form
[t x) = a(x)h(t, )

where

T) > fig(t)e’, (5.24)

j=—00

with f; and ¢;(¢) to be determined later. Then, we have the following result that will be
needed in our proofs:
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LEMMA 5.2.1. Let m;;, = %/% Cﬂ(x)ei(jfk)mdx, gk = 41,42, - -. For any given
finite sequence of nonzero integers kj, j =1,2,3,...n, let
Mk "0 Mk ky
A, = | T T (5.25)
Mipkr 0 My ky

Then, A,, is an invertible n X n hermitian matriz.

Proof. (See also [25].) Let a; € C, j =1,2,3,...n, such that
> agmy, =0, for 1=1,23 . .n (5.26)

Since

My, 1y = _<a etk () Zkz()>

I

where (,) denote the inner product in the space L2(0, 27), from (5.26) we obtain that

<Z ozja(-)eikj('),a(-)eikl(')> =0, for [=1,2,3,...n
j=1

Thus,

<Z aja(.)eikj(')7 Z Oéla()elkl()> — 07
j=1 =1

which implies that

n
Z aja(z)e™* = 0.
j=1

Since {e' x}] form an orthonormal basis of Span {e*} in L?(0,27) and a # 0, we
getaj:O,forj—123 n

Now we return to the study of the controllability of system (5.23). Consider the
following equation:

Ut + Vg — DUtpe + D2Vtzzzz + QUpzz + A1Vspeee = a(x)h  for x € (0,27), t € (0,7),
v(0,2) = (), for = € (0, 27).

(5.27)
Then, the solution v of the equation in (5.27) can be written as

2 U zkx

k=—o00
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where vy (t) solves

d_. , N 1 -
T k(1) + ik (k)i (1) = 5 T ;_:oo £ (E)m, (5.28)
. 1-— ak‘2 + CL1k’4

with o(k) and m;, given by Lemma 5.2.1.

1+ bk 4 bok?
Let A\, = tko (k) the eigenvalues of the operator ((I — b0 + bﬁ;‘);l (0 + ad? + aﬁ)ﬁ))
and v > 0 satisfying

liminf [Agy1 — M| > 7. (5.29)
k—o0

We have the following controllability result for (5.27).

PROPOSITION 5.2.1. Assume that the parameter a; # 0 and T > 27”, for~y given in (5.29).
Let s € R and ny given by

2, if by=0, b0,
m={ 0, if bp=b=0, (5.30)
4, if by #0.

Then, for any given initial state v° € H3(0,2m) and the terminal state v" € H3(0,2r),
there exists a control h € L*(0,T; Hy~™(0,2m)), such that (5.27) admits a unique solution
v e C([0,T]; Hy(0,2m)) satisfying

o(T, ) = vl ().

Moreover, there exists a constant C > 0, depending only on T and s, such that

1l 20z 02myy < € (10°mg0m) + 107 lirgom)) - (5.31)
Proof. From (5.28) we have that
Oe(T)e™ BT _5,(0) = ! i fimik /T e*o W0 (T)dr. (5.32)
L e S [ ’

It may occur that the eigenvalues
A\ = iko(k), ke€Z,

are not all different. If we count only the distinct values, we obtain the sequence (A)ger,
where [ C Z has the property that Ay, # A, for any ki, ko € I with ky # k. For each
ki € Z set

L(k1) = {k € Z; ko(k) = kio(k1)}

and m(ky) = |Z(k1)| (the number of elements in Z(k1)). We have the following properties
of m(ky):
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e m(ky) < 5. This is a consequence of the fact that m(k;) is less that the number of
entire roots of the equation xo(x) = a, where « is an arbitrary real number.

o If a; # 0, then ko(k) — oo as k — +oo. Hence, there exists k* € N, such that
k € I for |k| > k*. This is a consequence of the fact that the function zo(x) is
strictly increasing for |x| large enough.

Thus, there are only finite many integers in I, saying k;, j = 1,...n, such that one can
find another integer k # k; with Ay = Az;. Let

Then,
Z=TulhUu...Ul,.

Note that I; contains at most four integers, for m(k; ) < 5. We write

{kj17k]27k]37k]m } .n
and rewrite k; as k:jjo. Let
pr(t) = e kBt =0 41,42, ...
Then, the set
P = {pk(t);k €1}

forms a Riesz basis for Py = SpanP, in L*(0,T) if

2

T > nlly

Y
Let £ := {q;(t); 7 € I} be the unique dual Riesz basis for P in Pr; that is, the functions
in £ are the unique elements of Pr such that

T
(¢, ) = / q;(O)pe(t)dt = 0x;, k,j el
0

In adition, we choose
qr = ij,o if ke I[j.
For any k € Z, we obtain that:
o If k €I\ {ki,...,k,}, then

Zfrmrk/ o Wr g, (1)dr (5.33)

rez

n
= Z frmy (G, pr) + Z f’fz,oTn’fz,oJC <ka,o=pk>

re]I\{kl ..... kn} =1

+Z Z fkjlmkjlk<%ppk>
j=1 =1

= femug +0+0 = fimyy.
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Thus, from (5.32) and (5.33) it follows that

1

(T etk (DT _ 5 _
Os(T)e Ok(0) 1+ b2 + bok

fkm,ak for kel \ {kl, ceey kn} (534)

o If k= 5,0 j = 17 ., n, then

> g, / ekiorkio)mg (r)dr (5.35)

rE€Z
n

= E frmr,kjp <QT7pkj,o> + E sz,omkz,o,kj,o <qkl,07pkj,0>

rel\{ki,...k } =1

n m(ks
+ E z : fksl elvk'j,O <qks,l7pkj,0>

s=1 =

m(k;)—1 m(k;)—1
= 0+kaokao, Ej0 + E : fkjlmk:”, kjo = 2 : fkfl kjikjo
=1

Hence, from (5.32)and (5.35) we have that

k)1
. 1
-~ ikjoo(k;o)T - _
Vg o (1) (ks.0) — Uk, (0) = 1 +bkj2.70 +b2k;{0 IE:O: Sy 1 k05 (5.36)

since k = kjo, j=1,...,n
e Now, suppose that k =k, for j=1,....,n,and ¢ =1,..,m(k;) — L.
Since kj, € I;, then Ay, = Ay, ,. Thus,

ei’\’fj,q”(kkj,q) = ei/\’fj,oa(’\km), j=1,..n, q=1, ..,m(kj) — 1.

Therefore,

S i, [ b ()i = (587

rez

n
- Z me’r,k]',q <Q’r‘7p]€j,0> + Z fkl,omkl,oykj,q <qkl,0’pkj,0>

rel\{kr...ikn} =1

n m(kS)_l
—+ Z Z fksylmks,l:kj,q <qk5’[7pkj,q>
s=1 =1
m(k;)—1 mik;)

—O+fk]0mk]0,]q+ z: fkjlmkalrjq: z: fkalmkﬂ’]q

=1



From (5.32) and (5.37), we deduce that

) 1
-~ ik; oo (ks o0)T -~ _ §
Uty (1€ a0l Ukjq (0) = 1+ bk]z,q + bgk‘;{q =0 ST

since k =kj,, j=1,...,n,and ¢=1,..,m(k;) — L.
Hence, from (5.34), (5.36) and (5.38) we have the following system

( 1
o.(T tko (k)T __ = 0) =
Ox(T)e o(0) = e T bkt

Jemug i kel {ki, ... kn},

m(k;j)—1
) 1 :
-~ ik;oo(k;o)T -~ _
Uk, (T)e 5,00 (kj,0)T _ Uk, (0) BEEYE R e Z fkj,lmkj,l,k:j,q,
2,9 2,9 =0
L if k=kjy Jj=1,..,n, and ¢=0,.,m(k;) -1

1 2
mis =5 [ @addo =20,
2 Jo

from the first identity of (5.39), we get

1+ Dk + bok?
7!

Jr

Moreover, from the second identity of (5.39), for any j = 1, ..., n, it follows that

Fi = [B] i,

where

fkjyo

fkj,1
F ,

fkjm(kj)—l

(Ok(T)e*®T —3,(0)) if k€ T\ {ki, ... kn}-
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(5.38)

(5.39)

Finally, for given initial state v* = >, , 90¢’** and terminal state v* = >, , 0f e,
with 90 and vf replaced by ©;(0) and vx(T), respectively, from Lemma 5.2.1, system

(5.39) admits a unique solution f (..., f o, f-1, fo, f1, f2,-..). Since



78

(140K + bokio) (B (T)e 07800 — 3y, (0)

(1 + bk;{l + bgk;%’l) (@,m (T)eiksoo ks 0)T B, (0))
i 7

(1 + Ok )1 ka;'l,m(kj)fl> (@:j,m(kj)fl(T)eikj’oo(kj’O)T - @kj,m@j)fl(o))

Mk;0,k5,0 Mj 1 k0 " Tk j)—1:K5.0
Bj o M 0.kj.1 Mk kiq " mk"j,m(kj)—lvkj,l
mkj,kaj,m(k]-)fl mkj,lvkj,m(kj)—l T mkj,m(kj)fl7k‘j,m(kj)7l

Observe that the existence of [B/] " is guaranteed by Lemma 5.2.1.
Therefore, from (5.24) and (5.30), the following estimate holds

T
||h||i2(0,T;H;_n1 (0,27‘()) = /0\ ||a‘<x) Z fqu(t)e’th”i[;_”l (O’QF)dt (540)
keZ
T
= C/ S aeO P+ R de = O | fulllgnl 7o 0. (14 #2)™
0 ez kEZ

<O S RPO+R T+ ST AP+ R

|| <k* || >k*

<C Z I[87] |2 (14 bk? + bok*) (0 (T) ™7 "™ — 75,(0)) |2 (1+ k2™

|k|<k*

1+ bk + ok ‘ 2

+C Z + + 02 (;U\k(T)ezko(k)T _ak(o)) (1 + k,2)s—n1

|k|>k* H
<O 1+ bR + bok|? (|56(T) + [0(0) ) (1 + k2)*~™

kEZ
< C (1 Wig02m + 10 i 02m ) -

]

REMARK 5.2.1. Similarly, for given initial state u° and terminal state u” in H;(O, 27),
we obtain the same result for the second equation of (5.23). Indeed, choose

g'(t,w) = a*(x) D gja;(t)e’™.

j=—o00
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Hence, system (5.23) admits a unique solution (v(t,x),u(t,x)) satisfying
(T, 2),u(T,2)) = (v (2), u" (2)),
for x € (0,2m).

Proposition 5.2.1 and Remark 5.2.1 lead to the following controllability result for the
system (5.21).

THEOREM 5.2.1. Assume that the parameter ay # 0 and T > 27”, for v given in (5.29).
Let s € R and we define ny by

2, if by=0, b#0,
ny = O, Zf bQIbIO,
4, if by 40,

Then, for any giwen initial state (n°,w°) and the terminal state (n',w") in [H3(0,2m)]?,
there exist (f,g) € [L*(0,T; H;‘"1(0727r))]2, such that the system (5.21) admits a unique
solution (n,w) € [C([0,T]; H3(0,2m))]* satisfying

n(T,)=n'() and w(T,-)=w'(-) in H(0,2m).

f+9,f—g 0
2 2

Proof. 1t is immediate, since (n,w) = (v+wu,v —u) and (f,g) = (

5.3 Linear systems with a single control input

In this section we study the control of the following system with a single control input:

(N + Wy + QWapy + A Wanzee = QI for x € (0,27), t € (0,7),
W + Ny + Clggz + C1Nazzar = 0 for z € (0, 27T), t e (O, T),
n '
o (t, 0) = I (t, 27‘(’) fort € (O,T), 0<r<rg, (541)
09w 0w
%(t,O):%(t,Qﬂ') fOI'tG(O,T), OSQSQO,
[ 7(0,2) =n°(x), w(0,z) = w(z) for z € (0, 27),

where the operator () is defined by

[Qh] (t’ {L’) = Q($)h(tv 1‘)7

and q € L*(0,27) is a given non-negative function supported in w, and such that ¢(z) > C
on a (nonempty) open set w’ C w, C' > 0 being some constant.
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The control problem will be solved by using the Hilbert Uniqueness Method (HUM)
introduced by J.-L. Lions [20]. Therefore, we consider the following backward initial
boundary value problem of the homogeneous adjoint system of (5.41):

(& + Uy + CUgyy + ClUzgzze = 0 for z € (0,27), t € (0,7),
g + & + alpur + 01 pppar = 0 for x € (0,27), t € (0,7),
o oré
Gy (t, O) = Oz (t, 27T) fort € (O, T), 0 S r < To, (542)
0%u 0%
e q(t 0)= ot —(t,2m) fort € (0,7), 0<gq<qo,
| €T 0) =€),  wT)=ul(@)  fors e (0,2n).

Let
@1 :12)/1(]6) =1 —Ck2+01]€4, ’&72 :wg(lﬂ> = 1—ak2+a1k4.

We note that the eigenvalues of the state operator are given by Ay = iko(k), where
o(k) = \Jwiwy. Then, if ¢; # 0 and a; # 0, it follows that there exists v > 0, such that

liminf [A\gp1 — M| > 7. (5.43)
k—o0

Introduce the number | € Z with the property that

Unglk\i as  |k| — oo,
Ws

where C' is a positive constant not depending on k. For each s € R, we define the space
17s _ S s—&—lN
V*® = H,(0,2m) x H;7(0,2m),

endowed with the inner product defined by

(f1. f2), (91,92)) = (f1, 01)s + (FLfo, Haa)s,

and the operator H is defined in the following way

keZ keZ

Letting ¢/ =T —t, 2’ = 27 — x, one can easily see that (5.42) is (5.1)-(5.3) with f and
g being zero and a and a; changed by ¢ and c;, respectively. Consequently, we have the
following result.
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THEOREM 5.3.1. Let T > 0 and s € R. If (¢7,uT) € V*, then (5.42) admits a unique
solution (&,u) in C'([0,T]; Vstimax{=12)) n ¢ ([O,T};V‘*). Moreover, there exists a
positive constant C' > 0, depending only on s, such that

1€ )y < CIETuT)

e (5.44)

If
(fT, uT) _ Z(éz" ag)eikx’
keZ

then the solution of (5.42) may be written as

(& u)(ta) = S (Elt), @u(t))e,

keZ

&(t) =1 (53@ _ @azk) ciko(k)(T—t) | 1 (ffk . %aTk) ik (k)(T—t)

w2 — I
—_\ — , (5.45)
up(t) =3 (ufk — %5&) ko (BT 4 1 (UZ@ + %52) o—iko(k)(T—t)
If we define
V = {(n,w) € L*(0,27) x H.(0,27) : Wy = 0},
(5.46)

70, = {(§,u) € L2(0,27) x HY(0,27) : Ty = o} ,

we obtain that V and ‘7*% are closed subspaces of V0 and V°, respectively. Then, from
Theorem 5.1.1, the group (S(¢)):cr is well-defined in those spaces.
We also define the duality product

((n,w), (fau»v,fzgo = Z (ﬁk§+ @ka_k) = /0 7r77(:15)5(_35)(133 + (w,u),, (5.47)

that will play on important role in our approach. Taking (5.47) into account, the following
proposition presents an equivalent condition for the controllability of (5.41).

PROPOSITION 5.3.1. The initial data (n°,w°) € V is controllable to zero in time T > 0
with control h € L*((0,T) x (0,27)) if and only if

(07 0. (600D, + [ [ QR G0 =0, (59

for any (€7, uT) € ‘N/*?O, where (&,u) is the solution of (5.42).



82

Proof. We first prove (5.48) for regular data. Multiplying the first and the second equation
in (5.41) by ¢ and u respectively, integrating by parts over the domain (0,7) x (0, 27)

and adding the resulting relations we have that
2m

T pon T
/ / Qh] (t,2)&(t, x)dxdt = / / [N + Wy + QWapy + A1 Wazpey] Edadt
o Jo

’ T 27
/ / [wt + Nz + Cllzzx + Clnazxxxa:] dedt
vV 0 - <<7]07 U)O), (€<0)7 U(O) >V’V*O,0

2
- T
= [ I wrdy o = (D), wlD) €
Hence, by a density argument we conclude that (n°,w°) € V is controllable to zero in
O

time 7" > 0 if and only if (5.48) holds
The variational equality (5.48) has a solution if and only if there exists a constant
U

C > 0, such that the following observation inequality holds for any (¢7,u”) € V2,
(5.49)

€O a0, <€ [ [ 108 (et

Then, we have the following result
THEOREM 5.3.2. There exist a time T > 0 and a constant C > 0, such that, for any

(€T uT) € VO, the corresponding solution (£,u) of (5.42) satisfies the inequality
(5.50)

T
), < C /0 / [&(t ) dwdt.

)e**. The corresponding solution of (5.42) is given by

it

zkm] iko (k)(T—t)

Proof. Let (T, u") = Zkez(gg,ﬂT
(& u)(t,x) =D (D), Tr(t))e™,
keZ
with (Ek(t), uy(t)) satisfying (5.45). On the other hand,
ng . AT ) iko (k)(T—t) etk 4 ( T+ %aTk otk (k)(T—t) jikx
\/ 2

f(t, SL’) = % (
keZ
( wy aTk zkm gk \/7

T
gfk @2 -
lﬂlf\Tl€ etk éz“_i_ /wl/\T) —tkx | ikio(k)(T— t)
2
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where I C Z has the property that Ay, # Ax, for any £y, ko € [ with k; # ko, and for each
ki € Z

Z(k1) = {k € Z; ko(k) = kio(k1)}

and m(ky) = |Z(k1)|. By using a generalization of Inghams’s inequality (see [2] and [18]),
from (5.43), we deduce that, for any T' > 27 there exists a constant C' > 0, such that

2

/ / (t,x)|*dtdr > C (are™™* + bre™)| dz, (5.51)

le]l keZk)

where aj, = £ + Quy, by =0 — 1/ 2a",. As, liminfjye [Ae] = oo, there exists

k* € N, large enough, such that m(k;) = 1 for all |ki| > k*. Hence, we obtain that

Z (ake_“” + bke““”) = ag,e” "7 4 b ™7 for all |ky| > K.
k€T (k1)

Thus, if we set Q' = («, 8), the following holds:

/ Z (ake—ikx+ L€ zkx dr _/ Z zk1x+bkleik1m|2dx (552)

kpel  |keZ(k kq €l
|k1|>k* \k1|>k*
. , p ,
= Z [/ (|a;€16_1k1$|2+|bkle’klz|2) dlL‘+2/ %(a_;ﬁbklemk”) dx}
ki€l 0 o
|k1|>k*
) , o2ik1B _ 2ikia
= 3 1 o ) 2 [, (o
22]{71
k€l
|k1|>k*
1
> 30 [0 o P+ ) = QP 4 )| 20 X (aul+ o)
k€l kq €l
|k1|>k* |k1|>k*

=C Z Z (|ak|2+!bk|2)7

ki€l kEZ(kl)
[k1|>k*

for some positive constant C' > 0. For |k;| < k*, let us consider the seminorm on the

sequences of numbers (ay, bx)rez(r,) given by

2 1/2

| (ak, b weznn |, = / Z (are™ + bpe™™)| dx| . (5.53)
Q

" keT(ky)
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Observe that (5.53) is a norm. Indeed, suppose that |(ax, by)rez(r)|, = 0. Then,

Z (akefikz +bk 'ka) —0 in QI’

k€T(ky)

and by analytic continuation, we have that

Z (are™* 4+ be™) =0 in  [0,2n).
keZ (k1)

By using the orthogonality of {e**} and {e=**} in [0, 27], we deduce that a), = b, =0,
for any k € Z(ky). Therefore, we obtain that |(, )|, is a norm on the sequences of numbers
(@, b )kez(k,). Moreover, as m(ki) = |Z(k1)| < 10 and |ki| < k*, we obtain that there
exists a constant C' > 0, such that

¢ Z Z ’ak|2+|bk =C Z || ag, by, keI(kl)H (5.54)

kq€l kel’(kl kq€l
|k1|<k* |k1|<k*

2

< Z | (ak, bi)kezr) Z / ake_imﬂLbk@im) dr.
o

kq €l kq €l keZ(k
\k1|§k* ‘k1|<k*

From (5.51)-(5.54), we have that there exists a constant C' > 0, such that

// §(t,7)Pdtdr 2 C) Z (laxl® + [b4[*) (5.55)

ki€l keZ(k

|k+\/ T2+|§k \/ ul,|?
w/\ w/\

Z |k+\/ 1T2+’§k ~1T2
= Wo

O (IR + SR ) = ClEm I,

S

| \/

v

b
N

]

Since system (5.41) is conservative and time reversible, the null controllability is equiv-
alent to the exact controllability. Moreover, since (S(t))er is a group of isometries in V2,

from Theorem 5.3.2 and the definition of the operator () we obtain (5.49). Hence, the
following result holds:

THEOREM 5.3.3. There exists a time T' > 0, such that, for given

% uw®) eV, (" w") e,
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one can find a control input h € L*((0,T) x (0,27)), such that (5.41) admits a unique
solution

(n,w) € C([0,T]; V)
satisfying
(U(Oa ')7 'LU(Oa )) = (7707 wO) (U(Tv ')7 w(Ta )) = (nTv wT) in V.
Moreover, there exists a constant C > 0, such that

12l 20,1y % (0,27)) < C (I1(0°, W)}y + | (", w™)|lv) -



Chapter 6
Appendix

The results presented in this section were obtained in [26]. For the sake of completeness,
they are included in this work.

6.1 Study of some initial value problems

This section is devoted to present some explicit formulae and properties of a family of
initial value problems depending on several parameters. These results allow us to obtain
the asymptotic behavior of the eigenvalues and eigenfunctions of the differential operator
associated to (1.3) in Chapter 1. Firstly, we study the properties of the following simple
initial value problem, where ¢ € C* is a complex nonzero parameter:

—bpr + 010, = f,  x € (0,2m)

_dUCESC + 019z =¢, TE (Oa 277) (6 1)
©(0) = ¢°, ¢ (0) = ¢ '
v(0) =, v,(0) =o'

In (6.1) and in the remaining part of the thesis b and d denote two positive real numbers.
We have the following result.

SDO

1
LEMMA 6.1.1. Given S00 € C* and (g) € (L*(0,2m))?* there exists a unique
1

[
(%

86
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solution < f ) of problem (6.1) given by the following formula
Vbd ( ox ) d ( ( ox ) )
+ —— sinh 'y Zcosh | —= ) -1
() ot Vi) o Vod

)| o () 1) o B (2

é/o _\/gsinh (%) F(s)+ (cosh (ﬂ) ) ds

[l (52 o B ]

(6.2)

In the remaining part of the thesis C' denotes a positive constant that may change
from one line to another, but it is independent of the parameter o and the initial data.
We define the set

1
Z:{ZG(C : |z|2§, |9‘E(z)|§1}, (6.3)
and we show that the following estimates for the solution < f ) of (6.1) hold if o € Z.

LEMMA 6.1.2. Let (’5 be the solution of (6.1). There exists a positive constant C' > 0

such that the following estimates hold for any x € (0,27) and o € Z:

el < I+ [+ [l [l
o) < 1o+ i [w ol [l [ |g<s>|ds} , (6.4)

max {|p,(2)], oa(@)]} < C [w ol [l [ \g(s)\ds} .

Now, we consider system (6.1) with f=¢ =0

—bpyy +0v, =0, x € (0,2m)
Uy + 09, =0, x € (0,27)
0(0) = ¢ v(0) ="

02(0) = @', v, (0) = v,

(6.5)
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and the following system

=0 +0( =0, z€(0,2m)
(—dlpe+0& =0, x€(0,27)
£(0) =¢&°, &(0) = ¢,
€(0) =¢° ¢(0) =,

for which we have he following result:

PROPOSITION 6.1.1. There exists a positive constant C' > 0 such that, for any o € Z and
any ( ¢ > and ( f ) solutions of (6.6) and (6.5), respectively, with the same initial

¢
€o
condition ? , the following estimate holds
0
G
C 1
1€ = @l + (| = v][r= < o] S0l + |Co] + H(|§1| +1Gh|- (6.7)

Finally, the difference between the solutions of (6.6) and (6.1) are given by the following
result.

PROPOSITION 6.1.2. Let (f) and (é) solutions of (6.1) and (6.6), respectively,

with f = g = 0. Then, there exists a positive constant C > 0, such that

[€2(%) = @a(@)] + |Ca(@) — va(2)] < %(!fll +1¢H) + Cloy — o] (I¢'] + [v']) +

(6.8)
+O[IE" ="+ ¢t =t + €0+ [¢°] -

6.2 Spectral analysis of the operator A introduced in the Chapter
2

Given b,d > 0, we define the operators A, B : (H}(0,27))? — (H}(0,27))? given by

0 (I —b9%)~" 0, 0 (—bd2) " 0,
A=— , B=—
(I —do2) "o, 0 (—do2)~" o, 0
(6.9)
Recall that, for o > 0, the operator (I — @d?)~! is defined in the following way:

V— Qg = @

(I-ad)"p=ve { 0(0) = v(27) = 0.
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Then, if ¢ € L?(0,27), we have that there exists a unique v € H?(0,27) N Hy(0,27)
verifying the above equation and (I — «d?)~' : L*(0,27) — L*(0,27) is a well-defined,
compact operator. Similarly, for a > 0, the operator (—ad?)~! : L*(0,2r) — L?*(0,2n)
defined by

—QUgy = @

(e e =v e { 0(0) = v(27) = 0,

is a well-defined, compact operator in L?(0, 27).
In this section and the rest of the paper, u € C is called eigenvalue of the operator

A (B) if there exists a nontrivial vector ¢ = ( (’5 ) € (H(0,2m))?, called eigenfunction

corresponding to p, such that pA® = & (uBP = P, respectively). The following two
theorems are devoted to the spectral analysis of theses operators.

THEOREM 6.2.1. The eigenvalues of the operator B are ji, = vbdni with n € Z*. Each
etgenvalue i, is double and has two independent eigenfunctions given by

d . fin® [in T
~ b \/jsmh (—> - d [ cosh ( ) —1
oL — = b - bd ;D2 = = bd~ (neZ"). (6.10)
(@) ) TR (e

Moreover, the sequence (®),ezs jeq12y forms an orthonormal basis of (Hg(0,2m))>.

Proof. By using Lemma 6.1.1, with ¢ = v° = 0 and f = g = 0, we deduce that ( f )

is an eigenfunction of B corresponding to the eigenvalue p if and only if

o(z) @ sinh (5%) oy (h (5%) - 1) v

_ : (6.11)
v(@) % (cosh (%) — 1) o'+ @ sinh (%) v!
and
Sa(z) G|

9 (cosh (—QWM) — 1) —\/@ sinh (—ZWM)
p Vbd p Vbd
From (6.12) it follows that the eigenvalues (i, ),ez+ are the roots of the equation
)
exp| —= | =
"\

and @ and ®2 given by (6.10) are two independent eigenfunctions corresponding to
L, O
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We pass to analyze the spectral properties of the operator A. The main difference
with respect to B is that we do not have an explicit representation formula as (6.10) for
the eigenfunctions of A. In order to complete the task, we use a strategy which combines
two dimensional versions of the shooting method and Rouché’s Theorem.

THEOREM 6.2.2. The eigenvalues of the operator A are purely imaginary numbers ({1 )nezs jef1,2)
with the property that

1 =i, + O (l ‘> (neZ je{l,2}). (6.13)

Moreover, to each eigenvalue ), corresponds an eigenfunction @7 given by

B =& 40 (sz) (nezr, jefl,2)), (6.14)

with the property that the sequence (P),ez+ jeq1.2y forms an orthogonal basis of (Hg(0,2m))?.

Proof. Let us first remark that A is a compact skew-adjoint operator in (H2(0,27))>.
Indeed, this follow immediately by taking into account the definition of A in (6.9) and
that the following relations hold for any ¢;,v; € D(0,27) and j = 1, 2,

2 27
<A( #1 ) : ( 2 )> — _/ Op(I —00*) " 01 4024 dx—/ 0,(1 —dd?) ™ g1 4.0 da
U1 v2 H} 0 0

27 27
— / (I — b(i)i)_lvl7x9027m dx + / (I — d@i)_lgpmvgwx dz
0 0

27 27
= / 1,00, (1—=002) Vo, dx—i—/ ©0120:(1—d0?) vy, do = — << Y1 ) JA < vz >> .
0 0 U1 U2 Hl

It follows that A has a sequence of purely imaginary eigenvalues tending to infinity. In
order to localize these eigenvalues, let us define, for given § > 0 and N € N, the sets

D& ={n) e =P +hE< L] NG =006 (al >N
Dy = {(;w) e C?

Also, let us define the maps F?,G7 : C* — C?, j € {1,2}, given by

F(p, ) = ( 2 7, 27) ) G (p, ) = ( 2, 2m) ) (6.15)

v’ (p, 7, 27) v (p, 7y, 2)

o (5005 ) (7)) (R0 ) o () ) e s

tions of the following initial values problems

1
ul <1, 19 < VB (N +3) bl <1}, Dy =Dy

p! = by, + v, =0, € (0,2m)
vt —dvl +ppl =0, z e
p'(0) =0, ¢3(0) =1

v!(0) =0, v,(0) =,

(6.16)
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902 - b@ix + M’Ui = 07 S (07 27T)
(

v? —dv?, + up? =0, x€(0,2m)
zo T HPz = Y ’ 6.17
22(0) = 0, ¢2(0) = 7 (6.17)
v%(0) = 0, v3(0) =1,
( —bpL, 4+ vt =0, x€(0,27)
—dvl, + pgl =0, =z € (0,2n)
~Waa T 1Pg = T, ! 6.18
F0) =0, 5L(0) = 1 (6:18)
L 71(0) =0, 7;(0) =,
—bgom—l—uv =0, ze€(0,2m)
—dv? +u§52 0, x€(02)
we T P 6.19
2(0) = 0, 2(0) - (6:19)
2%(0) = 0, 22(0) =

respectively.

According to Theorem 6.2.1, 11 is an eigenvalue of B if and only if G§(,0) = 0 or
G2(1,0) = 0. Moreover, from definition (6.15) and (6.16)-(6.17), we deduce that u is an
eigenvalue of A if and only if there exists v € C such that F(u,v) = 0 or FZ(u,v) = 0.
Hence, we have reduced the problem of finding the eigenvalues of A to the problem of
determining the zeros of the maps (F7);—1 2. We'll analyze only the zeros of the map F*,
for those of F'? the study being similar. Firstly note that the maps F'' and G* are analytic
and the following estimates hold

|F(1,7) = GH(u)| < |S—‘12 (mm <L <1, ul > %) : (6.20)
G ()| > % ((1.7) € Tu()) (6.21)

for some positive constants C, Cy and |n| > N. Indeed, since p € Z and || < 1, (6.20)
is a consequence of Proposition 6.1.1. On the other hand, (6.21) follows from the fact
that there exists C' > 0 such that the following estimate holds

min{sinh (QW—M) cosh (%—M)—l'}zc—é (,LLE(C, ]u—\/@nﬂ:i>,
Vbd Vbd iz ]
(6.22)
which is a direct consequence of Lemma 6.1.1. It follows from the multidimensional version
of Rouché’s Theorem [22, Theorem 1] (see, also, [23, Theorem 3|) that there exists § > 0
and N € N such that the maps F' and G' have the same number of zeros in D,,(8) for
each |n| > N. Since G' vanishes once in (ji,,,0) in D,,(9), it follows that F'' has a unique
zero (py,, ) in Dy, (). Thus, we have proved the existence of the eigenvalues (fi,,)n>n
of A and the corresponding asymptotic estimates (6.13). From the analysis of the map
F?, we get the existence of a family of zeros (u3,72)n>n from which we obtain the other
sequence of eigenvalues (p2),>n of A and the corresponding asymptotic estimate. The
existence of the eigenvalues (),) <y and (p2)n<n is obtained in a similar way, therefore
we omit the details.
Let us pass to the analysis of the eigenfunctions. To each eigenvalues p? corresponds
a unique normalized eigenfunction ®/ which verifies (2.29) with v =~} or (6.17) with

Y
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v = ~2, respectively. Since [v}| < £, |72 < 2 and |, — f,| < 2, for any |n| > N, from
Proposition 6.1.1 and Lemma 6.1.2, we deduce that (6.14) is verified. Finally, since A is
a skew-adjoint operator, these eigenfunctions are orthogonal in (H}(0,2))?. The proof
of the theorem is complete. O
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