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Instituto de Matemática da Universidade

Federal do Rio de Janeiro - UFRJ, como

parte dos requisitos necessários à obtenção
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Resumo

Ao longo desta tese, assumimos uma versão da conjectura de Vojta sobre

os números algébricas com graus limitadas em uma linha projetiva.

Primeiramente, para inteiros 2 ≤ s ≤ r < n, estimamos o número

de polinômios de grau r ≥ 2, cujos fatores têm multiplicidade < s e

têm s-valores poderosos em um dado conjunto de n elementos distintos

em pares em um corpo de numérico. Em segundo lugar, estudamos os

pontos racionais sobre a torção de uma variedade Abeliana arbitrária

por Extensões ćıclicas do corpos de funções de variedades irredut́ıveis

quase-projetivas, estendendo um resultado de Hazama. Em terceiro

lugar, aplicando o nosso resultado para certas variedades, mostramos

a finitude do número de curvas super-eĺıptica tendo pontos racionais

com coordenadas x em um determinado conjunto finito de n elementos

distintos por pares em um corpo de números contendo a raiz s da

unidade. Finalmente, sujeito à conjectura de Vojta, provamos a

existência de variedades de interseção completas e lisas de qualquer

dimensão que satisfaça a conjectura de Bombieri-Lang sobre os pontos

racionais sobre variedades de tipo geral.

Palavras chaves: A conjectura de Vojta em números algébricos de grau

limitado, A conjectura de Bombieri-Lang sobre variedades de tipo geral,

Torções de variedades Abelianas, As variedades Jacobianas de curvas

supper-elliptic, As coberturas ćıclicas de corpos de funções de variedades

quase-projetivas.
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Abstract

Throughout this thesis, we assume a version of Vojta’s conjecture on

the bounded degree algebraic numbers on a projective line. First, for

integers 2 ≤ s ≤ r < n, we estimate the number polynomials of degree

r ≥ 2, whose factors have multiplicity < s and have s-powerful values at

a given set of n pairwise elements in a number field. Second, we study

the rational points on the twist of an arbitrary Abelian variety by cyclic

extensions of function field of irreducible quasi-projective varieties, by

extending a result of Hazama. Third, by applying our result for certain

varieties, we showed the finiteness of the number of supper-elliptic curve

having rational points with x-coordinates in a given finite set of n

pairwise distinct elements in a number field containing a s-root of unity.

Finally, subject to the Vojta’s conjecture, we prove the existence of

smooth complete intersection varieties of any dimension that satisfied

the Bombieri-Lang’s conjecture on the rational points on varieties of

general type.

Keywords: The Vojta’s conjecture on bounded degree algebraic

numbers, The Bombieri-Lang conjecture on varieties of general type,

Twists of Abelian varieties, Jacobian varieties of supper-elliptic curves,

Cyclic covers of function fields of quasi-projective varieties.
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Chapter 1

Introduction

A large part of Diophantine geometry is motivated by the study of rational

points on algebraic varieties. More precisely, study on the set X(k) for an

algebraic variety over a field k (which is usually a number field or a function

field of an algebraic variety) is the major objective of the Diophantine

geometry. In the case that X is a dimension one variety, i.e., when X = C
is a projective curve of g ≥ 0, the structure of the set C(k) for number

fields is well known. In fact, if g = 0, then C(k) = ∅ or C(k) ∼= P1
k.

When g ≥ 2, it is conjectured by Mordell and proved by Faltings that

the set C(k) is finite for all number fields. In the case that g = 1, when

X = E is an elliptic curves, the set E(k) is a finitely generated group by

the famous Mordell-Weil theorem. In other words, one has E(k) ∼= T ⊕Zr

for some positive integer r, and a finite group T , that are called the rank

of E and the torsion group of E, respectively. Determining the rank is

more complicated than the characterization of the torsion group. For more

details on these results, one can see the [?], [?] and [?].

In the case that X has dimension dim(X) = 2, i.e, when X = S is an

algebraic surface, there is a classification of the surfaces due to Kodaira

using the notion of Kodaira dimension κ(S) of an algebraic variety: if

κ(S) = −1, then S is either a Rational or a Ruled surface; if κ(S) = 0,

then S belongs to one of the following four classes: Abelian, Hyperelliptic

(or bi-elliptic), K3 or Enriques surfaces; if κ(S) = 1, then S is an Elliptic

Surface; if κ(S) = 2, then S is a surface of General type, in this case

dim(S) = κ(S).
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The first three cases have been studied extensively throughout the

literature in both geometric and arithmetic approaches. In the last case,

indeed more generally when κ(X) = dim(X) ≥ 2 that means X is a variety

of general type, one has the following conjecture [?]:

Conjecture 1.0.1. (Bombieri-Lang) Let X be a smooth projective

algebraic variety of general type, defined over a number field k0. Then

there exists a proper Zariski-closed subset Z of X such that for all number

fields k containing k0, the set (X\Z)(k) is finite.

As far as the knowledge of the author, there does not exist more

examples of surface or higher dimension varieties of general type in

the literature such that the Bombieri-Lang conjecture to be proved for

them. The main aim of this thesis is that assuming a version of the

Vojta’s conjecture on the bounded degree algebraic numbers, we provide a

certain complete intersection varieties of general type with dimension ≥ 2

satisfying the Bombieri-Lang conjecture.

The organization of this thesis is as follows. The Chapter ??, in other

words this chapter, is an introduction to the thesis. In Chapter ??, we have

studied the powerful values of polynomials over number fields by assuming

the following version of the Vojta’s conjecture on the algebraic number

of bounded degree on a projective line. In order to state this conjecture,

let k be a number field, k̄ its algebraic closure, and h the absolute Weil

height on P1
k̄
. Given α ∈ k̄, denote by dk(α) its logarithmic discriminant

with respect to k. Let S be a finite subset of Pk, the set of places of k,

containing infinite places P∞k of k, and let N
(1)
S be the counting function

respect to S. See the section ?? for more details.

Conjecture 1.0.2. Let b1, · · · , bq be fixed pairwise distinct elements of k

and d ≥ 2 be an integer. Then for any ε > 0 and c ∈ R, the inequality

(q − 2− ε)h(α) ≤ dk(α) +

q∑
i=1

N
(1)
S (bi, α) + c+ c′,

holds for almost all α ∈ k̄ with [k(α) : k] ≤ d and different from bi’s, where

c′ := q(B + d log 2), B := max{h(bi)}qi=1.
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Let B = {bi}∞i=1 be a fixed sequence of pairwise distinct elements in k.

For each n ≥ 1, we assume that Bn ⊂ B contains the first n terms b1, · · · , bn.
Given integers 2 ≤ s ≤ r < n, let FBnr,s be the set of all polynomials f ∈ k[x]

of degree r such that f(bi) is a s-powerful element in K for each bi ∈ Bn.
For the subset of this set in which all irreducible factors have multiplicity

strictly smaller than s, the notation should be GBnr,s. The following theorem,

which extend the theorem 2.1 in [?], is the main result of the Chapter ??,

in fact the essential result of the thesis.

Theorem 1.0.3. Assume the Vojta’s Conjecture on number fields. Given

any integers 2 ≤ s ≤ r, let M := 2r2 + 6r + 1 if r = s, and 2sr2 + sr + 1

otherwise. Then there exist positive constants C0 and C1 (depending on

b1, · · · , bM , the number field k and the integer r) such that C0 ≤ #GBMr,s ≤
C1. Moreover, for each n ≥M we have #GBnr,s ≤ C1.

In Chapter ??, after reviewing the basic facts on the twist theory in

section ?? and some results of F. Hazama [?, ?, ?], on the structure of

the set rational points on certain Abelian varieties over function fields in

section ??, we extend the main result of Hazama in [?] on the rational

points on certain Abelian varieties over function fields as follows. Let A/k

be an Abelian variety, s ≥ 2 be an integer and π : V ′ → V be a cyclic

s-cover of irreducible quasi-projective varieties, both as well as π defined

over a field k such that (char(k), s) = 1. Let K := k(V ), L := k(V ′) and G

be the cyclic Galois group of the extension L|K of order s. The following

theorem gives a structure theorem on the set of K-rational points on Ab,

the twist of A with a certain 1-cocycle b ∈ Z1(G,Aut(A)). See the section

?? for more details.

Theorem 1.0.4. Assume that there exist a k-rational point v′0 ∈ V ′(k).

Then we have an isomorphism of Abelian groups:

Ab(K) ∼= Homk(PrymV ′/V , A)⊕ A[s](k),

where A[s](k) denotes the Abelian group of k-rational s-division points, and

PrymV ′/V is the Prym variety associated to the cyclic cover π : V ′ → V .

In particular, we have the following corollary.
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Corollary 1.0.5. Assume that PrymV ′/V is k-isogenous with An × B for

some positive integer n, where A and B are Abelian varieties defined over

k such that dim(B) = 0 or dim(B) > dim(A) and none of irreducible

components of B is k-isogenous to A. Supposing, furthermore, that

A[s](k) = {O}, then rk(Ab(K)) ≥ n · rk(Endk(A)).

In section ??, we applied the above theorem and corollary to a certain

cyclic s-cover π : Cm → Vm with m ≥ 1, where Cm denotes the product of

m copies of a supper-elliptic curve Cs,f given by affine equations ysi = f(xi)

for i = 1 · · · ≤ m, with f(x) ∈ k∗[x] of degree r ≥ s, where k is a field

such that (char(k), s) = 1, and Vm is a quotient of Cm by a certain

cyclic group of order s ≥ 2. Letting zi := ys−1
1 yi+1, the variety Vm is

given by the equations zsi = f(x1)
s−1f(xi+1) for i = 1, · · · ,m− 1. Let Cξs,f

denotes the twist of Cs,f by the extension L|K, where K = k(Vm) and

L = k(Cm), which is defined by the affine equation f(x1)
s−1ys = f(x) and

contains K-rational points P1 := (x1, 1/y
s−2
1 ) and Pi := (xi+1, yi+1/y

s−1
1 ) for

i = 1, · · ·m−1. Denote by Q1, · · · , Qm, the image of the points P1, · · · , Pm
given by (??) under the canonical embedding of Cξs,f into J(Cξs,f). Using

the above results, we obtain the following theorem on the Mordell-Weil

group of K-rational points on the Jacobian variety of the supper-elliptic

curve Cs,f .

Theorem 1.0.6. Notation being as above, we assume that there exists

c ∈ Cs,f(k) and let J(Cs,f)[s](k) be the group of k-rational s-division points

in J(Cs,f). Then we have an isomorphism of Abelian groups:

J(Cξs,f)(K) ∼=
(
Endk(J(Cs,f))

)m ⊕ J(Cs,f)[s](k).

Assuming that J(Cs,f)[s](k) is trivial group, we have

rk(J(Cξs,f)(K)) = m · rk(Endk(J(Cs,f))),

and the points Q1, · · · , Qm, are contained in the set of independent

generators of J(Cξs,f)(K). Furthermore, if Endk(J(Cs,f)) ∼= Z, then the

rank of the Mordell-Weil group J(Cξs,f)(K) is exactly m with generators

Q1, · · · , Qm.

Since the varieties Cm and Vm are defined by a fixed polynomial

f ∈ k∗[x], so if we suppose that f(x) =
∑r

j=0 ajx
r−j ∈ k∗[x] is an arbitrary
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element, then Vm can be seen as a variety over the field k(x1, · · · , xm)

and letting x1 = α0 and xi+1 = αi gives a variety Wm defined by zsi =

f(α0)
s−1f(αi+1) for i = 1, · · · ,m−1, which can be regarded as a sub-variety

in the projective space Pm+r
k̄

with coordinates a0, · · · , ar, z1, · · · , zm−1. We

assume that k0 is a number field containing a primitive s-th root of unity

and we fix a sequence B = {αi}∞i=0 of pairwise distinct algebraic numbers

over k0. For integers 2 ≤ s ≤ r < n, we suppose that k is a finite

extension of k0 containing k0(α0, · · · , αn). Then, we showed that there is

a k-birational map between Wn+1 and the (s, · · · , s)-complete intersection

variety Xn ∈ Pn
k̄

defined by certain equations. In the section ??, we relate

the results on the powerful values of polynomials with those in sections ??

to conclude the following theorem.

Theorem 1.0.7. Assume the Vojta’s Conjecture on number fields. Suppose

that k0 is sufficiently large number field so that it contains a primitive s-th

root of unity. Given any integers 2 ≤ s ≤ r, let N := 2r2 + 6r if r = s,

and 2sr2 + sr otherwise. Assume that k is an arbitrary finite extension of

k0 containing k0(α0, · · · , αN). Then, there exist positive constants C0 and

C1 such that

C0 ≤ #(WN+1\WN+1)(k) = #(XN+1\XN+1)(k) ≤ C1,

and hence for each n > N , we have #(Wn+1\Wn+1) = #(Xn\Xn) ≤ C1.

The above theorem shows that the Vojta’s Conjecture implies the

Bombieri-Lang’s conjecture for the varieties Wn+1 and Xn for n ≥ N ,

where N is as in the above theorem.
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Chapter 2

Powerful values of polynomials over

number fields

2.1 Introduction and main results

Let k be a number field and let 2 ≤ s ≤ r an integers. A nonzero element

α of Ok is called s-powerful if for each prime ideal p ∈ Spec(Ok) we have

vp(α) ≥ s, where vp(·) denotes the discrete normalized valuation associated

to p. This definition immediately extends to elements of k. Clearly, any s-

power in k is a s-powerful element. Given f ∈ k[x] of degree r, we say that

f is s-powerful polynomial, if each irreducible factor of f has multiplicity

at least s. It is clear that any s-power in k[x] is a s-powerful element.

The powerful values of polynomials have been studied by several authors

in the literature, [?], [?], [?], [?] and the recent work [?], done by H. Pasten,

based on a conjecture of Vojta on algebraic numbers of bounded degree on

a projective line. Let us to recall the version of this conjecture, which is

used in [?]. See the section ?? or [?, ?], for more details on these notations

and following conjecture.

Let k̄ be an algebraic closure of k and h the absolute Weil height of P1
k̄
.

Given α ∈ k̄, denote by dk(α) its logarithmic discriminant with respect

to k. Let Pk be the set of all places of k and S is a finite subset of Pk
containing infinite places P∞k of k. Let N

(1)
S denote the counting function

respect to S on k.

Conjecture 2.1.1. Fix b1, · · · , bq ∈ k, pairwise distinct elements and let

d ≥ 2 be an integer. Then for each ε > 0 there exists cε > 0 such that the
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inequality

(q − 2− ε)h(α) ≤ dk(α) +

q∑
i=1

N
(1)
S (bi, α) + cε,

holds for all α ∈ k̄ of degree [k(α) : k] ≤ d different from bi’s.

Assuming the above conjecture, Pasten showed the following result on

s-powerful values of monic polynomials over number field, see the theorem

2.1 in [?].

Theorem 2.1.2. (Pasten). Assume the Vojta’s Conjecture (??). Let 2 ≤
s ≤ r be integers, and define M̄ = 2r2 + 9r + 1, if r = s; and M̄ =

2sr2 + (2s+ 1)r+ 1 otherwise. Given pairwise distinct b1, · · · , bM̄ ∈ k, the

set of monic polynomial f ∈ k[x] of degree r whose irreducible factors have

multiplicity strictly less than s and such that f(bi) are s-powerful for each

i = 1, · · · , M̄ , is a finite set.

In order to explain our result on the s-powerful values of polynomials,

we need to fix some notations. Let B = {bi}∞i=1 be a fixed sequence of

pairwise distinct elements in k. For each n ≥ 1, we assume that Bn ⊂ B
contains the first n terms b1, · · · , bn. Given integers 2 ≤ s ≤ r < n, let

FBnr,s be the set of all polynomials f ∈ k[x] of degree r such that f(bi) is a

s-powerful element in k for each bi ∈ Bn. Denote by GBnr,s the subset of this

set in which all irreducible factors have multiplicity strictly smaller than s.

Given integers n′ > n, one has the inclusions F
Bn′
r,s ⊆ FBnr,s and G

Bn′
r,s ⊆ GBnr,s.

The following conjecture is an equivalent version of the Vojta’s

Conjecture (??), which is important to get the results of the thesis.

Conjecture 2.1.3. Let k be a number field, S ⊂ Pk a finite set containing

P∞k , k̄ algebraic closure of k. Let b1, · · · , bq be fixed pairwise distinct

elements of k and d ≥ 2 be an integer. Then for any ε > 0 and c ∈ R, the

inequality

(q − 2− ε)h(α) ≤ dk(α) +

q∑
i=1

N
(1)
S (bi, α) + c+ c′,

holds for almost all α ∈ k̄ with [k(α) : k] ≤ d and different from bi’s, where

c′ := q(B + d log 2), B := max{h(bi)}qi=1.
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This conjecture is a special case the Vojta’s conjecture in a more general

context on the algebraic points on varieties defined over number fields. See

the conjecture 25.1 in [?].

Theorem 2.1.4. Assume the Vojta’s Conjecture (??). Given any integers

2 ≤ s ≤ r, let M := 2r2 + 6r + 1 if r = s, and 2sr2 + sr + 1 otherwise.

Then there exist positive constants C0 and C1 such that C0 ≤ #GBMr,s ≤ C1.

Moreover, for each n ≥M we have #GBnr,s ≤ C1.

Remark 2.1.5. The integer M in this theorem depends only on the number

field k and the integers r and s, but it is independent of the fixed set BM .

In contrast, the explicit lower and upper bounds for #GBMr,s depends on

bi ∈ BM .

Remark 2.1.6. The theorem (??) generalizes the Pasten’s result (??)

because it gives explicit lower and upper bounds for the cardinal of the

set GBMr,s .

2.2 Height functions over number fields

In this section, we give the basic definitions and facts on height functions

and bounded degree algebraic numbers, which are used in the next sections.

See [?], [?], or [?] for more details.

Given a number field k, let Pk be the set of places of k that splits

into two disjoint subsets. One, P0
k the set of the finite places, i.e., those

extending the places corresponding to the p-adic absolute values of Q, and

another one of the infinite places, denoted P∞k , i.e., those extending the

infinite place of Q. For any v ∈ Pk, denote by ‖ · ‖v its associated almost

absolute value. The multiplicative height of any α ∈ k is defined by the

equality

Hk(α) :=
∏
v∈Pk

max{‖α‖v, 1}.

This is easily extended to a point P = [α0 : · · · : αn] ∈ Pnk , as follows

Hk(P ) :=
∏
v∈Pk

max{‖α0‖v, · · · , ‖αn‖v}.

9



Given x ∈ R>0, define log+ x = max{log x, 0}. The logarithmic height of

α ∈ k is defined by the equality

hk(α) := log+Hk(α) =
∑
v∈Pk

log+ ‖α‖v.

The logarithmic height of P = [α0 : · · · : αn] ∈ Pnk is defined by equality

hk(P ) := logHk(P ) =
∑
v∈Pk

log max{‖α0‖v, · · · , ‖αn‖v},

For any finite extension K|k, α ∈ k, and P ∈ Pnk , one has

Hk(α) = HK(α)1/[K:k], hk(α) =
1

[K : k]
hK(α),

Hk(P ) = HK(P )1/[K:k], hk(P ) =
1

[K : k]
hK(P ).

Considering these facts, one may extend the definition of height function

to Pn
k̄
, where k̄ is an algebraic closure of k. In this case, they are called

the absolute multiplicative and additive heights of P ∈ Pn
k̄

and denoted by

H(P ) and h(P ), respectively.

Proposition 2.2.1. The absolute heights over k̄ satisfied in following

properties:

(i) For each α, β ∈ k̄∗ and n ∈ Z, we have

h(αn) = |n|h(α), h(αβ) ≤ h(α)+h(β), h(α+β) ≤ h(α)+h(β)+log 2;

(ii) The action of Galois group of Pn
k̄

leaves the absolute heights invariant.

Proof. One can see the lemma 3.3 in [?] for part (i), and the propositions

B.2.2 in [?] for part (ii).

Given any polynomial f(x) = a0x
d+a1x

d−1+· · ·+ad ∈ k[x], the absolute

multiplicative and additive heights are H(f) := H([a0 : a1 : · · · : ad]), and

h(f) := h([a0 : a1 : · · · : ad], respectively.

Proposition 2.2.2. Let f ∈ k[x] be a polynomial of degree d ≥ 2 with

roots α1, · · · , αd in k̄, and let fi ∈ k[x] be polynomials of degree di ≥ 2 for

1 ≤ i ≤ t. Then

10



(i) −d log 2 +
∑d

i=1 h(αi) ≤ h(f) ≤
∑d

i=1 h(αi) + (d− 1) log 2;

(ii) If f = f1 · · · ft, then h(f1f2 · · · ft) ≤
∑t

i=1(h(fi) + (di + 1) log 2);

Proof. One can prove (i) using theorem 1.6.13 and remark 1.6.14 in [?].

The parts (ii) come from the proposition (B.7.2) in [?].

Without loos of generality, we may suppose that k̄ = C and

f(x) = a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
j=1

(x− αj) ∈ C[x]. (2.2.1)

In this case, the Mahler measure of any f ∈ C[x] is defined by

M(f) := |a0| ·
r∏
j=1

max{1, |αj|},

where | · | is the usual absolute value on C. When α ∈ k̄ = C is an algebraic

number over k with minimal polynomial fα ∈ k[x], we define its Mahler

measure by M(α) = M(fα).

Let dk be the absolute discriminant of k. The logarithmic discriminant

of k is defined by dk := log dk/[k : Q]. For a tower of number fields Q ⊆
k ⊆ K ⊂ k̄ with absolute discriminants dk and dK , respectively, the relative

logarithmic discriminant of K|k is

dk(K) :=
1

[K : k]
log dK/k − log dk,

where dK/k is the relative discriminant of the extension K|k. The relative

logarithmic discriminant of each α ∈ k̄ is defined by dk(α) := dk(k(α)).

We will use the following theorem in the proof of the main theorem (??),

which gives an upper bound for the logarithmic discriminant dk(α) in the

Vojta’s conjectures.

Theorem 2.2.3. [?, ?]. Let f ∈ k[x] be of the form (??) with degree d ≥ 2

and A(d) = d log d if k = Q, and A(d) = (2d− 1) log d otherwise.

(i) D(f) = a2d−2
0

∏
i>j(αi − αj)2, and |D(f)| ≤ dd ·M(f)2d−2;

(ii) If D(f) 6= 0, then h(D(f)) ≤ 2(d− 1)h(f) + A(d);

11



(iii) If α ∈ k̄ is of degree d ≥ 2, then dk(α) ≤ 2(d− 1)h(α) + A(d).

Proof. See theorem 1 in [?] for part (i). The part (ii) is consequence of

part (i) in the case k = Q, and it is the lemma 3.7 in [?] when k 6= Q. The

part (iii) is the proposition 1.6.9 in [?] in the case k = Q; and generally it

comes from part (ii).

The following theorem plays a central role in Diophantine geometry,

since proving an upper bound on the heights of rational points over number

fields is equivalent to proving finiteness of certain set.

Theorem 2.2.4. (Northcott) [?]. Let k be a number field and k̄ its

algebraic closure. For any constant T and integer d ≥ 1, the set

{P = [α0 : α1 : · · · : αn] ∈ Pnk̄ |H(P ) ≤ T, [k(P ) : k] ≤ r},

are finite, where k(P ) = k(α0/αj, α1/αj, · · · , αn/αj) with αj 6= 0.

The problem of giving a quantitative version of Northcott’s theorem

started with Schanuel in [?]. Let k be of degree m ≥ 1 and fix a parameter

T . Let h : Pn
k̄
→ R be the absolute logarithmic height. Denote by N(Pnk ;T )

the number of points P ∈ Pnk with h(P ) ≤ T . The following theorem

approximate the N(Pnk ;T ) using the parameter T .

Theorem 2.2.5. (Schanuel) [?]. Under above assumption, one has

N(Pnk ;T ) ∼ cT n + 1 for some c > 0 as T →∞.

Extending the Schanuel’s result for bounded degree points over k is

started by [?] and continued by [?], [?], [?], and so on. In this text, we will

use the following quantitative version of the Northcott’s theorem from [?],

which extend the Schanuel’s theorem in the case P1
k̄

for bounded degree

algebraic points. This is closely connected with the Schmidt’s subspce

theorem, as well as its reformulation by Masser and Valer.

In order to explain the result of Su-Ion Ih, we need to fix some notations.

Denote by N(P1
k̄
; r;T ) the number of points α ∈ P1

k̄
of degree at most r and

h(α) ≤ T for every constant T > 0 and integer r ≥ 2. Let hk be the class

number of k, Regk the regulator of O∗k, wk the number of roots of unity in

k, ζk(s) the Dedekind zeta-function of k, dk the absolute discriminant of
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k, m1 the number of real embedding of k and m2 the number of pairs of

complex embedding of k. Define the Scanuel type constant related to k as

ak,r :=
hk · Regk
wkζk(r + 1)

·
(2m1(2π)m2

d
1/2
k

)r+1 · (r + 1)m1+m2−1, (2.2.2)

and denote bk,r = r · ak,r · Tmr(r+1) and T1 = Tmr(r+1)−r.

Theorem 2.2.6. [?]. For each ε > 0, we have the inequalities

bk,r · 2−mr(r+1)Tmr(r+1) −Oε(T1 · T ε) ≤ N(P1
k̄; r;T ) ≤ bk,r · 2mr(r+1) +O(T1).

In particular,

2−mr(r+1) + o(1) ≤
N(P1

k̄
; r;T )

bk,r
≤ 2mr(r+1) + o(1) as T →∞.

2.3 The Vojta’s conjecture on algebraic numbers of

bounded degree

In this section, we recall the basic definitions on the value distribution

theory over number fields. This theory is an analogue of the Nevanlinna

theory in the context of complex numbers. We have focused to provide

equivalent versions of the Vojta’s conjecture on the algebraic points of

bounded degree on a projective line. For more details, one can refer to [?],

[?].

Let k be a number field and S ⊂ Pk a finite set containing P∞k , and

b, α ∈ k are distinct elements. The proximity functions with respect to S

are defined by

mS(α) :=
∑
v∈S

log+ ‖α‖v, mS(b, α) := mS(
1

α− b
).

Similarly, the counting functions with respect to the set S are defined by

equality

NS(α) :=
∑
v 6∈S

log+ ‖α‖v,NS(b, α) := NS(
1

α− b
).

By the properties of the logarithm function, one has

mS(α) +NS(α) =
∑
v∈Pk

log+ ‖α‖v = h(α), (α ∈ k).
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The following theorem is an analogue to the first main theorem in classic

value distribution theory. See theorem 6.3 in [?] for its proof.

Theorem 2.3.1. Let k be a number field, S ⊂ Pk a finite set containing

P∞k . Then for any α ∈ k and fixed b ∈ k\{α}, one has

h(α) ≤ mS(b, α) +NS(b, α) + h(b) + [k : Q] · log 2.

There is a natural way of extending the definition of the proximity and

counting function to algebraic closure k̄ of number field k. Indeed, if we

assume that S ⊂ Pk is a finite set containing P∞k , α ∈ k̄, K and K ′ are

finite extensions of k such that k(α) ⊂ K ⊂ K ′ ⊂ k̄, T ⊂ PK and T ′ ⊂ PK ′
are finite sets containing P∞K and P∞K ′, respectively, such that any element

of T lies over some element of S and elements of T ′ lie over places of k,

then

mT ′(α) = [K ′ : K] ·mT (α), NT ′(α) = [K ′ : K] ·NT (α).

Thus, one can define the proximity and counting functions for α ∈ k̄ by

equalities

mS(α) :=
1

[K : k]
·mT (α), NS(α) :=

1

[K : k]
·NT (α).

These definitions are independent of the choice of the extension K

containing k(α). If b ∈ k(α) be an element distinct from α, one can also

define

mS(b, α) :=
1

[k(α) : k]
·mT (b, α), NS(b, α) :=

1

[k(α) : k]
·NT (b, α). (2.3.1)

Remark 2.3.2. It is easy to see that h(α) = mS(α) + NS(α) for all α ∈
k̄. By following the proof of the first main theorem, as in [?], and using

equalities (??), one can see the inequality

h(α) ≤ mS(b, α) +NS(b, α) + h(b) + [k(α) : Q] · log 2,

holds for any α ∈ k̄ and b ∈ k̄ distinct from α.

The following conjecture is a special case the Vojta’s conjecture on

the algebraic points of bounded degree on varieties. See the section 3

of Chapter 5 in [?] for more details.
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Conjecture 2.3.3. Let k be a number field, k̄ its algebraic closure and

S ⊂ Pk a finite set containing P∞k . Let b1, · · · , bq be pairwise distinct

elements of k and d ≥ 2 an integer. For each ε > 0 there exists cε > 0 such

that for every α ∈ k̄ of degree at most d ≥ 2 the following inequality holds,

q∑
i=1

mS(bi, α) ≤ (2 + ε)h(α) + dk(α) + cε. (2.3.2)

Using the Northcott’s theorem one can see that the above conjecture is

equivalent to the following one.

Conjecture 2.3.4. Let k be a number field, k̄ its algebraic closure and

S ⊂ Pk a finite set containing P∞k . Let b1, · · · , bq be pairwise distinct

elements of k and d ≥ 2 an integer. Then for any ε > 0 and c ∈ R, the

inequality
q∑
i=1

mS(bi, α) ≤ (2 + ε)h(α) + dk(α) + c, (2.3.3)

holds for almost all α ∈ k̄ with [k(α) : k] ≤ d and different from bi’s.

Using the inequality in remark (??), for i = 1, · · · , q, one has

h(α) ≤ mS(bi, α) +NS(bi, α) + h(bi) + d log 2,

so the inequalities of the above conjectures can be rewritten as follows:

(q − 2− ε)h(α) ≤ dk(α) +
n∑
i=1

NS(bi, α) + cε,

and

(q − 2− ε)h(α) ≤ dk(α) +
n∑
i=1

NS(bi, α) + c+ c′,

where c′ := q(B + d · log 2) and B := max{h(bi)}qi=1.

The truncated counting function on k̄ is defined by

N
(1)
S (b, α) :=

∑
v 6∈S

min{1, ordp
+(α− b)} · log(#

OK
pv

),

where b ∈ k, α ∈ k̄∗\k, and pv ∈ Spec(OK) corresponds to v ∈ P0
k(α).

There are truncated versions of the above conjectures as follows.
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Conjecture 2.3.5. Let k be a number field, k̄ its algebraic closure and

S ⊂ Pk a finite set containing P∞k . Let b1, · · · , bq be pairwise distinct

elements of k and d ≥ 2 an integer. For each ε > 0 there exists cε > 0 such

that for every α ∈ k̄ of degree at most d ≥ 2 the following inequality holds,

(q − 2− ε)h(α) ≤ dk(α) +

q∑
i=1

N
(1)
S (bi, α) + cε. (2.3.4)

Conjecture 2.3.6. Let k be a number field, k̄ its algebraic closure and

S ⊂ Pk a finite set containing P∞k . Let b1, · · · , bq be pairwise distinct

elements of k and d ≥ 2 an integer. Then for any ε > 0 and c ∈ R, the

inequality

(q − 2− ε)h(α) ≤ dk(α) +

q∑
i=1

N
(1)
S (bi, α) + c+ c′ (2.3.5)

holds for almost all α ∈ k̄ with [k(α) : k] ≤ d and different from bi’s, where

c′ := q(B + d · log 2), B := max{h(bi)}qi=1.

Remark 2.3.7. Since N
(1)
S (b, α) ≤ NS(b, α), for each b and α as above, so

the truncated versions of the Vojta (I’) and (II’) implies the non truncated

ones. The converse is the special case of theorem (3.1) in [?]. We note

that the conjecture (??) implies the ABC-conjecture of the Masser and

Oeserlé, see for details [?]. The truncated version Vojta II’ is known as

ABC-conjecture for bounded degree extension of number field.

2.4 Proof of the main theorem

In this section, we will give the proof of the theorem (??). Let us recall

some notation from the first section. Given integers 2 ≤ s ≤ r, let M =

2r2 + 6r + 1 if r = s and M = 2sr2 + sr + 1, otherwise. For a fixed

sequence B = {bi}∞i=1 of pairwise distinct elements of k, we assume that

BM := {b1, b2, · · · , bM} and we consider the set GBMr,s , which contains the

polynomials f ∈ k[x] of degree r ≥ 2 such that all of irreducible factors

of f has multiplicity strictly less than s and f(bi) is a s-powerful element

in k for each bi ∈ BM . Here, we are going to give an explicit lower and
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upper bound for the cardinal of GBMr,s . Without loose of generality, we may

consider f ∈ GBMr,s with factorization f = f s11 · · · f
st
t , where fj ∈ k[x] are

irreducible polynomial of degree dj := deg(fj). For each j = 1, · · · , t, let

αj ∈ k̄ is an arbitrary root of fj and define kj := k(αj) and g := f1 · · · ft
of degree d := d1 + · · ·+ dt.

Let S ⊂ Pk be a finite subset Pk, which consists of the union of the

sets P∞k , poles of the elements bi ∈ BM with the set of zeros of bi − bj for

bi 6= bj ∈ BM . Applying the Vojta’s Conjecture (??) to this set S, elements

bi ∈ BM and integer r ≥ 2, we conclude that for any ε > 0 and c ∈ R, the

following inequality

(M − 2− ε)h(α) ≤ dk(α) +
M∑
i=1

N
(1)
S (bi, αj) + c+ c′, (2.4.1)

holds for almost all α ∈ k̄ with [k(α) : k] ≤ r and αj 6= bi’s, where

c′ := M(B + r · log 2), and B := max{h(bi) : 1 ≤ i ≤M}.

There are a finite number of elements in k̄ of degree at most r for which the

inequality (??) does not hold. Let us to denote by Nr the number of such

elements in k̄, which depends on bi ∈ BM and other data. We note that it

is unknown that how the positive integer Nr is related to b1, · · · , bM , yet.

This is one of the hard problems in Diophantine approximation, which is

analogue to the ineffectiveness of the Roth’s theorem.

Since we are going to estimate #GBMr,s , so for a while we ignore the

polynomials f ∈ GBMr,s that have some roots, not satisfying in inequality

(??), and we recall them in the moment of estimating the #GBMr,s . Thus,

we assume that the inequality (??) holds for all of the αi’s. It is clear that

αj’s and bi’s are distinct elements for each 1 ≤ i ≤ M and 1 ≤ j ≤ t,

because f(bi) 6= 0. Therefore, for each j = 1, · · · , t we have

(M − 2− ε)h(αj) ≤ dk(αj) +
M∑
i=1

N
(1)
S (bi, αj) + c+ c′, (2.4.2)

Applying the part (iii) of the theorem (??) to each of αj’s and using dj ≤ d,

we obtain an upper bound for dk(αj) as follows,

dk(αj) ≤ 2(dj − 1)h(αj) + A(dj) ≤ 2(d− 1)h(αj) + A(d).
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Putting this into the inequality (??) and using the fact that A(d) ≤ A(r) ≤
2r log r, gives that

(M − 2d− ε)h(αj) ≤
M∑
i=1

N
(1)
S (bi, αj) + c+ c1, (2.4.3)

where c1 := M(B+ r · log 2) + 2r log r. By multiplying the both side of the

inequality (??) by dj, using the fact that t ≤ r and then summing-up, we

obtain that

t∑
j=1

(M − 2d− ε)hkj(αj) ≤
t∑

j=1

M∑
i=1

djN
(1)
S (bi, αj) + r(c+ c1). (2.4.4)

In order to give an upper bound for the term involving the truncated

function in the inequality (??), we need the following lemma.

Lemma 2.4.1. Let D(g) be the discriminant the polynomial g = f1 · · · ft of

degree d ≥ 2, which is defined in initial part of the proof. Let A(d) = d log d

if k = Q, and A(d) = (2d− 1) log d otherwise. Then

h(D(g)) ≤ 2(d− 1)
t∑

j=1

hkj(αj) + 4d(d− 1) + A(d). (2.4.5)

Proof. Assume that αji are the roots of fj for 1 ≤ i ≤ dj. Then using the

proposition (??), we have

t∑
j=1

h(fj) ≤
t∑

j=1

(

dj∑
i=1

h(αji) + (dj − 1) log(2))

≤
t∑

j=1

djh(αj) +
t∑

j=1

(dj − 1) log(2)

≤
t∑

j=1

hkj(αj) + d− t log(2).
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Using this inequality and applying the part (ii) of the proposition (??),

gives that

h(g) = h(f1 · · · ft) ≤
t∑

j=1

[h(fj) + (dj + 1) log(2)]

=
t∑
i=1

h(fj) + d+ t log(2) ≤
t∑

j=1

hkj(αj) + 2d

Applying the part (ii) of the theorem (??), we obtain the desired inequality

h(D(g)) ≤ 2(d− 1)h(g) + A(d) ≤ 2(d− 1)
t∑

j=1

hkj(αj) + 4d(d− 1) + A(d).

Let D be the reduced divisor on Spec(Ok) whose support consists of

the union of the sets S with the zeros of D(g) and the poles of the αj’s.

Denote A(S) :=
∑

p∈S deg(p), where deg(p) := log #(Ok/p) for any prime

p ∈ Spec(Ok). The following lemma gives an upper bound for the term

containing the truncated function in (??).

Lemma 2.4.2. With notation as above, we have:

t∑
j=1

M∑
i=1

djN
(1)
S (bi, αj) ≤

[Ms+

s
+ d(2d− 1)

] t∑
j=1

hkj(αj) + rc2,

where s+ := max{s1, · · · , st}, d = d1 + · · ·+ dt and

c2 :=
M(B + log 2)

s
+ A(s) + A(r) + 4r(r − 1).

Proof. By changing the order of sums in the left hand side of the inequality

(??) and following the last part of the proof of the lemma 4.9 in [?], we

have

M∑
i=1

t∑
j=1

djN
(1)
S (bi, αj) ≤

1

s

M∑
i=1

t∑
j=1

sjdjh(bi − αj) + d deg(D)

≤ 1

s

M∑
i=1

( t∑
j=1

sjdj[h(bi) + h(αj) + log 2]
)

+ d deg(D).
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Since t ≤ r =
∑t

j=1 sjdj, and sj ≤ s+, so we have

M∑
i=1

t∑
j=1

djN
(1)
S (bi, αj) ≤

1

s

M∑
i=1

[
t∑

j=1

sjdjh(αj)+

t∑
j=1

sjdjhk(bi) + t log 2] + d deg(D)

≤ 1

s

M∑
i=1

[
t∑

j=1

sjhkj(αj) + r(hk(bi) + log 2)] + d deg(D)

≤ M

s

t∑
j=1

sjhkj(αj) +
Mr(B + log 2)

s
+ d deg(D)

≤ Ms+

s

t∑
j=1

hkj(αj) +
Mr(B + log 2)

s
+ d deg(D).

In order to give an upper bound on the deg(D) in terms of h(αj)’s, let S ′

and Sj be subsets of P0
k such that D(g) vanished at p, αj has a pole above

p, respectively, and let S ′′ be the union of Sj’s. Then

deg(D) =
∑
p∈S′′

deg(p) +
∑
p∈S′

deg(p) +
∑
p∈S

deg(p)

=
t∑

j=1

∑
p∈Sj

deg(p) + #S ′ + A(S)

=
t∑

j=1

hkj(αj) + h(D(g)) + A(S).

Using the inequality (??) in the lemma, which gives an upper bound for

h(D), and the facts that d ≤ r and A(d) ≤ A(r), we get that

deg(D) ≤
t∑

j=1

hkj(αj) + 2(d− 1)
t∑

j=1

hkj(αj) + A(S) + A(r) + 4r(r − 1)

≤ (2d− 1)
t∑

j=1

hkj(αj) + A(S) + A(r) + 4r(r − 1).

Multiplying the last inequality by d, gives that

d deg(D) ≤ d(2d− 1)
t∑

j=1

hkj(αj) + r[A(S) + A(r) + 4r(r − 1)]
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Gathering all of the above inequalities together gives the desired one.

Using the above lemma, one can rewrite the inequality (??) as follows,

t∑
j=1

(M − 2d− ε)hkj(αj) ≤
t∑

j=1

M∑
i=1

djN
(1)
S (bi, αj) + r(c+ c1)

≤
[Ms+

s
+ d(2d− 1)

] t∑
j=1

hkj(αj) + r(c+ c1 + c2).

In other words, we have the following inequality
t∑

j=1

[M(1− s+

s
)− 2d2 − d− ε]hkj(αj) ≤ r · (c+ c1 + c2). (2.4.6)

Lemma 2.4.3. For integers 2 ≤ s ≤ r and 1 ≤ d ≤ r, we have

M(1− s+

s
)− 2d2 − d ≥ 1

r
. (2.4.7)

Proof. For each f ∈ GBMr,s with irreducible factorization f = f s11 · · · f
st
t , we

have

s+ := max{s1, · · · , st} ≤ s− 1,

which implies that r − s+ ≥ d − 1. Indeed, if j0 is an index such that

sj0 = s+, then

r =
t∑

j=1

sjdj ≥ s+dj0 +
t∑

j 6=j0

dj ≥ s+ + dj0 − 1 +
t∑

j 6=j0

dj = s+ + d− 1.

Thus r − s+ ≥ d− 1, which implies that

1− s+

s
=
s− s+

s
≥ r − s+

s
≥

{
d−1
r if s = r

1
s otherwise.

(2.4.8)

In the case s = r, we have d−1 ≥ 1, because if d = 1 then s > s+ = r > s,

which is a contradiction. Since M = 2r2 + 6r + 1, so using 1 − s+/s ≥
d− 1 ≥ 1, we have

M(1− s+

s
)− 2d2 − d ≥M(

d− 1

r
)− 2d2 − d

≥ d− 1

r
(M − 2rd2 + rd

d− 1
)

≥ d− 1

r
(M − 2rd− 3r − 3r

d− 1
).
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Since 3r/(d− 1) ≤ 3r and (d− 1)/r ≥ 1/r for d− 1 ≥ 1, and d ≤ r, so we

have

M(1− s+

s
)− 2d2 − d ≥ d− 1

r
(M − 2rd− 6r)

≥ 1

r
(M − 2r2 − 6r) ≥ 1

r
,

where M − 2r2 − 6r ≥ 1 implies the last inequality.

In the case s < r, we have M = 2sr2 + sr + 1 and 1 − s+/s ≥ 1/s, so

using d ≤ r and M ;−2sr2 − sr ≥ 1, gives that

M(1− s+

s
)− 2d2 − d ≥M/s− 2d2 − d

≥ 1

s
(M − 2sd2 − sd)

≥ 1

r
(M − 2sr2 − sr) ≥ 1

r
.

Using the inequality (??), in either cases, we can rewrite the inequality

(??) as

(
1

r
− ε)

t∑
j=1

hkj(αj) ≤ r(c+ c1 + c2). (2.4.9)

Since the constants ε and c in the Vojta’s Conjecture (??) are arbitrary,

so we consider the following constants

ε := 1/(r + 1), c :=
1

mr3(r + 1)2
− c1 − c2, c3 :=

1

mr(r + 1)
, (2.4.10)

where m is the degree of the number field k. Then, using the equation

(??), we obtain that

h(αj) ≤ djh(αj) = hkj(αj) ≤
t∑

j=1

hkj(αj) ≤ r2(r + 1)[c+ c1 + c2] ≤ c3.

We note that the consonant c3 depends only on k and r, but not on an

special f ∈ GBMr,s . Denote by N(P1
k̄
; r; c3) the number of algebraic numbers

α ∈ k̄ of degree at most r and height at most c3. The Northcott’s theorem

(??) implies that N(P1
k̄
; r; c3) is a positive number. Letting c4 := c

mr(r+1)−r
3
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and applying the Ih’s theorem (??) with constants ε := 1, T := c3 and

T1 := c4, gives us two constants c5, c6 > 0 depending on the initial data

such that

bk,r · 2−mr(r+1) + c5 · c4 · c3 ≤ N(P1
k̄; r; c3) ≤ bk,r · 2mr(r+1) + c6 · c4.

Let Ar be the set of all α ∈ k̄ of degree at most r and height at most c3

together with those algebraic numbers not satisfying the inequality (??).

Then

bk,r · 2−mr(r+1) + c5 · c4 · c3 +Nr ≤ #Ar ≤ bk,r · 2mr(r+1) + c6 · c4 +Nr.

Since for each f ∈ GBMr,s has at most r roots in k̄, maybe some of them does

not satisfy in the inequality (??), so we conclude that

bk,r · 2−mr(r+1) + c5 · c4 · c3 +Nr ≤ #GBMr,s ≤ r · (bk,r · 2mr(r+1) + c6 · c4 +Nr).

Therefore, we obtain the desired lower and upper bounds C0 ≤ #GBMr,s ≤
C1, where

C0 := bk,r · 2−mr(r+1) + c5 · c4 · c3 +Nr,

C1 := r · (bk,r · 2mr(r+1) + c6 · c4 +Nr).
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Chapter 3

Rational points on certain Abelian

varieties over function fields

3.1 Introduction

In this chapter, by extending some results of Hazama in [?, ?], we are going

to prove a structure theorem on the Mordell-Weil group of the rational

points on Abelian varieties over function fields, which arise as twists of

Abelian varieties by cyclic covers of quasi projective variety. In particular,

we use the main result to find supper-elliptic curves having a given set of

algebraic numbers as x-coordinates of a set of rational points such that

their images under canonical maps forms a subset of the generators of the

Mordell-Weil group of their Jacobian varieties. Using the result of this

chapter and the first one, subject to the Vojta’s conjecture, we prove the

existence of certain complete intersection varieties of general type satisfying

in the Bombieri-Lang conjecture.

3.2 Twisting theory

Let us to recall two equivalent definition of twist and its basic properties.

Let K be a field and L|K a Galois extension with Galois group G = GL|K .

A G-set is a discrete topological space E such that the left action of G on

E is continuous. For every x ∈ E and u ∈ G, we denote by ux the left

action of u on x. A G-group is a G-set A equipped with a group structure

invariant under action of G, i.e., u(x · y) = ux · uy for each x, y ∈ A and

u ∈ G. Any continuous application a : u 7→ au of G to a G-set A is called
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a cochain of G with values in A. A cochain a = (au) is called a 1-cocycle

of G with values in A if auv = au · uav for each u, v ∈ G. For any 1-cocycle

a = (au), one has aid = 1 and au ·u au−1 = 1, where u ∈ G and 1 ∈ A

denotes the identity element. The set of 1-cocycles of G with values in a

G-set A, is denoted by Z1(G,A). We say that a G-group A acts on the

G-set E from left, in a compatible way with action of G, if there is an

application (a, x)→ a ·x of A×E to E satisfying the following conditions:

(i) u(a · x) =u a ·u x (a ∈ A, x ∈ E, u ∈ G)

(ii) a · (b · x) = (a · b) · x, and 1 · x = x, (a, b ∈ A, x ∈ E).

Let A be a G-group, E be a G-set which is compatible with the group

action of G, and a = (au) ∈ Z1(G,A) be a 1-cocycle of A. For any u ∈ G
and x ∈ E, define u′x := au · ux. The G-set with this action of G is denoted

by Ea and is called the twist of E obtained by the cocycle a.

Let X be a quasi-projective scheme defined over K, Aut(X) be the

automorphism scheme of X and a = (au) ∈ Z1(G,Aut(X)) be a 1-cocyle.

Then there exist an unique quasi-projective K-scheme Y and an unique

L-isomorphism

f : X ⊗K L→ Y ⊗K L

such that uf = f ◦ au holds for any u ∈ G. The scheme Y is denoted

by Xa and is called the twist of X by 1-cocycle a. One can see that

these two notion of twist are compatible in the following sense: The map

f : X(L) −→ Y (L) gives an isomorphism of the twisted G-set X(L)a onto

the G-set Y (L) = Xa(L). Therefore,

Xa(K) ∼= {P ∈ X(L)a : u′P = P} = {P ∈ X(L) : au · uP = P}. (3.2.1)

For more details on above facts, one can see the propositions 2.6 and 2.7

in [?].

Let C be a smooth projective curve defined over K and let Ca denote

the twist of C by 1-cocycle a = (au) ∈ Z1(G,Aut(C)). Furthermore, for

any morphism of curves α : C1 → C2, let us to denote by J(α) the induced

homomorphism of Jacobian variety J(C1) into J(C2). We note that J(a) :=

(J(au)) satisfies the 1-cocycle condition. For auv = au◦ uav implies J(auv) =

J(au)◦ uJ(av), since the construction of the Jacobian variety is compatible
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with base change. Under above conditions, the twist J(C)J(a) of J(C) by the

1-cocycle J(a) is K-isomorphic to J(Ca). Indeed, if f : C ⊗K L→ Ca ⊗K L
denotes the isomorphism such that uf = f ◦ au for each u ∈ G, then the

induced isomorphism of Jacobian varieties J(f) : J(C)⊗K L→ J(Ca)⊗K L
satisfies the equality uJ(f) = J(f)◦uJ(au) for each u ∈ G, by functoriality.

Hence, by the uniqueness of the twist, we see that J(C)J(a) is K-isomorphic

to J(Ca).

3.3 Some results of Hazama

Let C : u2 = f(t) be a hyper-elliptic curve defined over a field k of

characteristic different from 2, with f(t) ∈ k[t] of odd degree. There exists

a natural projection of C onto the projective line P1
k defined by (t, u) 7→ u,

through which we can consider the function field L := k(C) of C as a

quadratic extension of K := k(P1
k) = k(t), where t denotes the coordinate

of P1
k. Let ι ∈ Aut(C) be the involution by the extension L|K, and let

G = {id, ι} be the Galois group of the extension L|K. Now, consider an

Abelian variety A defined over k, and a 1-cocycle b = (bu) ∈ Z1(G,Aut(A))

defined by bid = 1 and bι = −1. Then the twist of A by b, which is denoted

by Ab, exists and is defined over K. The following theorem is the main

result in [?].

Theorem 3.3.1. Let J(C) be the Jacobian variety of C, and A[2](k) be the

k-rational 2-division points in A(k). Then, as abelian group we have

Ab(K) ∼= Homk(J(C), A)⊕ A[2](k).

In particular, if C : y2 = h(x) with h(x) ∈ k[x] of odd degree, and Ch be the

twist of C given by h(t)y2 = h(x) defined over K, then

J(Ch)(K) ∼= Endk(J(C))⊕ J(C)[2](k),

where J(C) denotes the Jacobian variety of C and J(C)[2](k) is 2-division

k-rational points in J(C).

Now, let π : C ′ → C be a morphism of degree two defined over k between

non-singular projective curves over k. Assume that there exist a k-rational

point on C ′ where π ramifies. Denote K := k(C), L := k(C ′) and G = GL|K ,
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the Galois group of the extension L|K. For any Abelian variety A over k,

we define a 1-cocycle b = (bu) ∈ Z1(G,Aut(A) by bid = 1, and bι = −1,

where ι is the involution associated to the double cover π. Let Ab be the

twist of A by the 1-cocycle b. The following theorem is proved by Hazama

in [?] which gives the theorem (??) by taking C = P1
k with trivial Jacobian.

Theorem 3.3.2. Let A[2](k) be the k-rational 2-division points in A(k).

As abelian group we have the following isomorphism:

Ab(K) ∼= Homk(J(C ′)/π∗(J(C)), A)⊕ A[2](k).

In the following, we recall the main result of Hazama in [?] that

generalizes the theorems (??) and (??). Let A be an Abelian variety, V and

V ′ are absolutely irreducible quasi-projective varieties, and π : V ′ → V be

a double cover, all defined over k. Let K := k(V ), L := k(V ′), and

G := GL|K be the Galois group of the extension L|K. Let Ab be the twist

of A by the 1-cocycle b. In [?], the Prym variety associated to the double

cover π : V ′ → V is defined as the quotient Abelian variety

PrymV ′/V :=
Alb(V ′)

Im(id+ Alb(ι))
,

where Alb(V ′) is the Albanese variety and Alb(ι) is the automorphism of

Alb(V ′) induced by ι ∈ Aut(V ′). The following results are the theorem 2.2

and the corollary 2.3 in [?].

Theorem 3.3.3. With the above notations, assume that there exist a k-

rational simple point v′0 ∈ V ′. Then we have an isomorphism of Abelian

groups:

Ab(K) ∼= Homk(Prym(V ′/V ), A)⊕ A[2](k),

where A[2](k) denote the abelian group of k-rational 2-division points.

Corollary 3.3.4. Notation being as above, assume that PrymV ′/V is k-

isogenous with En × B for some positive integer n, where E is an elliptic

curve defined over k, and B is an Abelian variety none of whose simple

component k-isogenous to E. Then,

rk(Eb(K)) = n · rk(Endk(E)).
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3.4 Extension of Hazama’s results to cyclic covers

Let s ≥ 2 be an integer and k a field of characteristic different from s.

We are going to generalize the notion of Prym variety to the case of cyclic

s-cover π : V ′ → V , for every integer s ≥ 2, where V and V ′ are quasi-

projective irreducible varieties both as well as π defined over a field k

(char(k), s) = 1. The Prym variety associated to the cyclic s-cover π :

V ′ → V is defined by the quotient Abelian variety

PrymV ′/V :=
Alb(V ′)

Im(id+ γ̃ + · · ·+ γ̃s−1)
,

where Alb(V ′) is the Albanese variety and γ̃ is the automorphism of Alb(V ′)

induced by γ ∈ Aut(V ′) of order s.

We note that if both of the varieties V and V ′ are curves, then this

notion of Prym variety is compatible with that one which appeared in [?]

by applying the following lemma.

Lemma 3.4.1. Let s ≥ 2 be an integer and π : V ′ → V be a cyclic s-cover

of irreducible quasi-projective varieties, both as well as π defined over k.

Let γ ∈ Aut(V ′) be an automorphism defined over k of order s and let γ̃

be the automorphism of the Albanese variety Alb(V ′) induced by γ. Then

there is a k-isogeny of Abelian varieties,

PrymV ′/V ∼k ker(id+ γ̃ + · · ·+ γ̃s−1 : Alb(V ′)→ Alb(V ′))◦,

where (∗)◦ means the connected component of its origin.

Proof. Let us to consider a more general situation. Let A be an Abelian

variety over k of dimension m, and λ ∈ Aut(A) an order s automorphism.

Define

a := dim ker(id− λ)◦, and b := dim ker(id+ λ+ · · ·+ λs−1)◦.

Considering the induced action on the tangent space of A at origin, we

have a+ b = m. Let As be the set of s-division points of A. Then

ker(id− λ)◦ ∩ ker(id+ λ+ · · ·+ λs−1)◦ ⊆ As.

Indeed, if P ∈ ker(id− λ)◦ ∩ ker(id+ λ+ · · ·+ λs−1)◦ then λ(P ) = P and

hence

0 = (id+ λ+ · · ·+ λs−1)(P ) = sP.
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Thus A is k-isogenous to their product, i.e.,

A ∼k ker(id− λ)◦ × ker(id+ λ+ · · ·+ λs−1)◦.

Moreover, we note that Im(id+ λ+ · · ·+ λs−1) ⊆ ker(id− λ)◦ and

m− b = dim Im(id+ λ+ · · ·+ λs−1) = dim ker(id− λ)◦ = a.

Therefore, we obtain the equality

Im(id+ λ+ · · ·+ λs−1) = ker(id− λ)◦.

Now, applying this general result to the case A = Alb(V ′), gives that

PrymX ′/X ∼k ker(id+ γ̃ + · · ·+ γ̃s−1 : Alb(V ′)→ Alb(V ′))◦.

Now, we are ready to generalize the theorem (??) and its corollary (??)

as follows. Let A/k be an Abelian variety, s ≥ 2 be an integer and assume

that σ : A→ A is an automorphism of order s. Let π : V ′ → V be a cyclic

s-cover of irreducible quasi-projective varieties, both as well as π defined

over k such that (char(k), s) = 1. Denote K := k(V ), L := k(V ′) and let

G := 〈γ〉 be the cyclic Galois group of the Galois extension L|K which has

order s. Let b = (bu) ∈ Z1(G,Aut(A)) defined by bid = id and bγj = σj,

for each γj ∈ G. Denote by Ab the twist of A with the 1-cocycle b. The

following theorem describes the Mordell-Weil group of K-rational points

on Ab.

Theorem 3.4.2. Assume that there exist a simple k-rational point v′0 ∈
V ′(k). Then we have an isomorphism of Abelian groups:

Ab(K) ∼= Homk(PrymV ′/V , A)⊕ A[s](k),

where A[s](k) denote the Abelian group of k-rational s-division points.

Proof. First, we recall that

A(L) = {k-rational maps V ′ → A } ∼= Homk(Alb(V ′), A)⊕ A(k),

where P ∈ A(L) corresponds to the pair (λ, c) ∈ Homk(Alb(V ′), A)⊕A(k)

such that P (v′) = λ(iV ′(v
′)) + c for each v′ ∈ V ′. See the theorem 4
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in chapter II in [?] for more details. Here we assume that iV ′ : V ′ →
Alb(V ′) maps v′0 to the origin of Alb(V ′) so that iV ′ is defined over k.

This implies that the action of γj ∈ G is given by γj(λ, c) = (λ ◦ γ̃j, c),
for j = 0, · · · , s− 1, where γ̃ is the automorphism of the Albanese variety

Alb(V ′) induced by γ ∈ Aut(V ′). Since γs = id and hence γ̃s = id, so using

the equalities (??), we have

Ab(K) ∼= {P ∈ A(L) : bu · u(P ) = P},

which implies that (λ, c) ∈ Ab(K) if and only if

γj(λ, c) = (λ ◦ γ̃j, c) = (λ ◦ γ̃s−j, c) = γs−j(λ, c).

Thus, (λ, c) ∈ Ab(K) if and only if α annihilates Im(id + γ̃ + · · · + γ̃s−1)

and c ∈ A[s](k). Therefore, we obtain the desired isomorphism

Ab(K) ∼= Homk(PrymV ′/V , A)⊕ A[s](k).

Corollary 3.4.3. Assume that PrymV ′/V is k-isogenous with An × B for

some positive integer n, where A and B are Abelian varieties defined over

k such that dim(B) = 0 or dim(B) > dim(A) and none of irreducible

components of B is k-isogenous to A. Supposing, furthermore, that

A[s](k) = {O}, then

rk(Ab(K)) ≥ n · rk(Endk(A)).

Proof. By the above theorem and using the assumptions, we have

Ab(K) ∼= Homk(PrymV ′/V , A)⊕ A[s](k)

∼= Homk(A
n ×B,A)⊕ A[s](k)

∼= Homk(A
n, A)⊕ Homk(B,A)⊕ A[s](k)

∼= (Endk(A))n ⊕ Homk(B,A)⊕ A[s](k).

Therefore, as Z-modules, we have rk(Ab(K)) ≥ n · rk(Endk(A)).

Given integer s ≥ 2, let πi : V ′i → Vi (i = 1, 2) be s-covers of

irreducible quasi-projective varieties, γi ∈ Aut(V ′i ) be an automorphism

of order s, all defined over k such that (char(k), s) = 1, and let Gi = 〈γi〉
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be the corresponding Galois group. Let γ̃i is the automorphism of the

Albanese variety Alb(V ′i ) induced by γi ∈ Aut(V ′i ), for i = 1, 2. We

consider the Galois cover π1 × π2 : V ′1 × V ′2 → V1 × V2 whose Galois

group is G1 × G2
∼= Z/sZ × Z/sZ, and we assume that W is its

intermediate cover V ′1 × V ′2/G, where G is the cyclic group generated by

γ = (γ1, γ2) ∈ Aut(V ′1 × V ′2). Let γ̃ = (γ̃1, γ̃2) be an order s automorphism

in Aut(Alb(V ′1) × Alb(V ′2)) corresponding to γ. With these notations, we

have the following proposition.

Proposition 3.4.4. Assume that there exist k-rational points v′i ∈ V ′i (k)

for i = 1, 2. Then there is a k-rational isogeny of Abelian varieties:

PrymV ′1×V ′2/W ∼k PrymV ′1/V1
× PrymV ′2/V2

.

Proof. For simplicity, let µ = id+ γ̃+ · · ·+ γ̃s−1 and µi = id+ γ̃i+ · · ·+ γ̃s−1
i

for i = 1, 2. Using the lemma (??), it is enough to show that

ker
(
µ)◦ ∼k ker(µ1)

◦ × ker(µ2)
◦.

In order to show this, we recall that there exists a k-rational isomorphism

φ := Alb(V ′1)× Alb(V ′2)→ Alb(V ′1 × V ′2),

given by φ = φ̃1 + φ̃2, where φ̃i : Alb(V ′i ) → Alb(V ′1) × Alb(V ′2) is the

induced by the inclusion map φi : V ′i → V ′1 × V ′2 given by φ1(v) = (v, v′2)

and φ2(v) = (v′1, v). By this isomorphism, we have

ker(µ) ∼k ker(µ1)× ker(µ2),

which implies that

ker(µ)◦ ∼k ker(µ1)
◦ × ker(µ2)

◦.

Therefore, applying the lemma (??) gives the desired result

PrymV ′1×V ′2/W ∼k ker(µ)◦ ∼k ker(µ1)
◦ × ker(µ2)

◦

∼k PrymV ′1/V1
× PrymV ′2/V2

.

In the next sections, using the corollary (??) and the proposition (??),

we are going to find s-cover π : V ′ → V whose Prym variety has a high

power of the Jacobian of a super-elliptic curve. This will give us certain

Abelian variety defined over K = k(V ) with large Mordell-Weil rank.
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3.5 An application of the main result

Let s ≥ 2 be an integer and assume that k is sufficiently large field with

(char(k), s) = 1 so that it contains a primitive s-th root of unity, which

is denoted by ζ. For a fixed polynomial f(x) =
∑r

j=0 ajx
r−j ∈ k∗[x] of

degree r ≥ s, let Cs,f be the super-elliptic curve defined by the affine

equation ys = f(x).∗ The curve Cs,f admits an order s automorphism

ι : (x, y) 7→ (x, ζ · y). Consider m copies of Cs,f and for each of these

copies write C(i)
s,f , the super-elliptic curve defined by the affine equation

ysi = f(xi), for 1 ≤ i ≤ m. Denote Cm :=
∏m

i=1 C
(i)
s,f , which can be

expressed by the equations ysi = f(xi), for i = 1, · · · ,m. For each of the

curves C(i)
s,f , denote by ιi the corresponding automorphism. Consider the

cyclic subgroup G = 〈γ〉, where γ := (ι1, · · · , ιm) ∈ Aut(Cm), and define

Vm := Cm/G. Let L be the function field of Cm, i.e.,

L = k(x1, x2, · · · , xm, y1, y2, · · · , ym),

where x1, x2, · · · , xm are independent transcendentals and each yi defines

a degree s extension by the equation ysi − f(xi) = 0. Then, K := k(Vm)

the function field of Vm is the invariant elements of L by the action of G,

i.e.,

K = LG = k(x1, · · · , xm, ys−1
1 y2, · · · , ys−1

1 ym−1).

Since (ys−1
1 yi+1)

s = f(x1)
s−1f(xi+1) holds for i = 1, · · · ,m − 1, so by

assuming zi := ys−1
1 yi+1 the variety Vm is given by the equations

zsi = f(x1)
s−1f(xi+1) (i = 1, · · · ,m− 1). (3.5.1)

Note that L|K is a cyclic extension of degree s determined by the ys1 =

f(x1),

L = K(y1) = k(x1, · · · , xm, z1, · · · , zm−1)(y1).

Let Cξs,f denotes the twist of Cs,f by the extension L|K. In a similar way as

in the corollary 3.1 in [?], one can check that Cξs,f is defined by the affine

equation

f(x1)
s−1ys = f(x). (3.5.2)

∗The reason for taking f with all coefficients in k∗ will be described in the remark (??).
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Moreover, the twisted curve Cξs,f contains the K-rational points:

P1 := (x1, 1/y
s−2
1 ) and Pi := (xi+1, yi+1/y

s−1
1 ) for (1 ≤ i ≤ m−1). (3.5.3)

Remark 3.5.1. The construction of the varieties Cm and Vm generalizes

the unified method of [?], which is used to find elliptic curves of high rank

having a given set of algebraic numbers as x-coordinates of generators of

their Mordell-Weil group.

Let b = (bu) ∈ Z1(G,Aut(J(Cs,f)) defined by bid = id and bγj = ι̃j, for

each γj ∈ G, where J(Cs,f) is the Jacobian variety of Cs,f and ι̃ : J(Cs,f)→
J(Cs,f) is the automorphism induced by ι : Cs,f → Cs,f . Denote by J(Cs,f)b
the twist of J(Cs,f) with the 1-cocycle b. By the last argument in the

first section, one has J(Cs,f)b = J(Cξs,f). The relation between J(Cs,f) and

the Prym variety of the covering Cm → Vm is given by the following

proposition, which is used in the proof of the next theorem.

Proposition 3.5.2. Assume that there exists c ∈ Cs,f(k). Then there exists

an k-isogeny of Abelian variety:

PrymCm/Vm
∼k

m∏
i=1

PrymC(i)s,f/P1 =
m∏
i=1

J(C(i)
s,f), (3.5.4)

where J(C(i)
s,f) = J(Cs,f) for each i = 1, · · · ,m.

Proof. It is a well known fact that the Albanese and Jacobian varieties of

curves are coincided. Applying the lemma (??) for V ′ = C(i)
s,f = Cs,f and

V = P1 gives that

PrymC(i)s,f/P1 =
J(C(i)

s,f)

Im(id+ ι̃+ · · ·+ ι̃s−1)
∼k ker

(
id+ ι̃+ · · ·+ ι̃s−1)◦.

Since 0 = id− ι̃s = (id− ι̃)(id+ ι̃+ · · ·+ ι̃s−1) and id 6= ι̃, so we have

0 = id+ ι̃+ · · ·+ ι̃s−1 ∈ End(J(C(i)
s,f)) = End(J(Cs,f)),

which implies that PrymC(i)s,f/P1 = J(C(i)
s,f) and hence

Alb(Cm) =
m∏
i=1

Alb(C(i)
s,f) =

m∏
i=1

J(C(i)
s,f).
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Let ιi ∈ Aut(C(i)
s,f) be an order s automorphism and ι̃i ∈ Aut(J(C(i)

s,f)) be

the induced automorphism by ιi, for each i = 1, · · · ,m. We recall that

there exists a k-rational isomorphism

φ :=
m∏
i=1

J(C(i)
s,f)→

m∏
i=1

J(C(i)
s,f),

given by φ = φ̃1 + · · · + φ̃m, where φ̃i : J(C(i)
s,f) → Alb(Cm)

∏m
i=1 J(C(i)

s,f) is

the induced by the inclusion map

φi : C(i)
s,f → Cm =

m∏
i=1

C(i)
s,f , Pi 7→ φi(Pi) = (c, · · · , Pi, · · · , c),

where c ∈ C(i)
s,f(k). By this isomorphism, the automorphism γ :=

(ι1, · · · , ιm) of Cm corresponds to γ̃ = (ι̃1, · · · , ι̃m) in
∏m

i=1 Aut(J(C(i)
s,f)).

Then, we have

ker(id+ γ̃ + · · ·+ γ̃s−1) ∼k
m∏
i=1

ker(id+ ι̃i + · · ·+ ι̃s−1
i

)
,

which implies that

ker(id+ γ̃ + · · ·+ γ̃s−1)◦ ∼k
m∏
i=1

ker(id+ ι̃i + · · ·+ ι̃s−1
i )◦.

Therefore, applying the lemma (??) gives that

PrymCm/Vm
∼k ker(id+ γ̃ + · · ·+ γ̃s−1)◦

∼k
m∏
i=1

ker(id+ γ̃i + · · ·+ γ̃s−1
i )◦

∼k
m∏
i=1

PrymC(i)s,f/P1 =
m∏
j=1

J(C(i)
s,f).

Denote by Q1, · · · , Qm, the image of the points P1, · · · , Pm given by (??)

under the canonical embedding of Cξs,f into J(Cξs,f). The following theorem

describes the group of K-rational points on the Jacobian variety J(Cξs,f),
and gives a lower bound for its Mordell-Weil rank. We note that the case

s = 2 and m = 1 gives the theorem (??).
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Theorem 3.5.3. Assume that there exists c ∈ Cs,f(k) and let J(Cs,f)[s](k)

be the group of k-rational s-division points in J(Cs,f). Then we have an

isomorphism of Abelian groups:

J(Cξs,f)(K) ∼=
(
Endk(J(Cs,f))

)m ⊕ J(Cs,f)[s](k).

Assuming that J(Cs,f)[s](k) is trivial group, we have

rk(J(Cξs,f)(K)) = m · rk(Endk(J(Cs,f))),

and the points Q1, · · · , Qm belong to the set of independent generators of

J(Cξs,f)(K).

Proof. This is consequence of the theorem (??) and its corollary (??)

together with the proposition (??). Indeed, it is enough to consider the

varieties V ′ = Cm, V = Vm, and A = J(Cs,f) where Cs,f is a supper-elliptic

curve given by affine equation ys = f(x). Tracing back the isomorphisms

in the proof of the corollary (??), shows that the points Q1, · · · , Qm belong

to the set of independent generators of J(Cξs,f)(K).

The following corollary is an immediate consequence of the above

theorem.

Corollary 3.5.4. Assume that Endk(J(Cs,f))) ∼= Z and there exists a

rational point c ∈ Cs,f(k). Then the Mordell-Weil rank of J(Cξs,f)(K) is m,

where K is the function field of Vm, and its generators are the canonical

image of the points Pi’s given by (??) in the Jacobian variety J(Cξs,f).

Since the varieties Cm and Vm are defined by a fixed polynomial f ∈
k∗[x], so if we suppose that f(x) =

∑r
j=0 ajx

r−j ∈ k∗[x] is an arbitrary

element, then the function field of Cm and Vm are respectively

L′ = k(x1, · · · , xm)(a0, · · · , ar, y1, · · · , ym), and

K ′ = k(x1, · · · , xm)(a0, · · · , ar, z1, · · · , zm),

where L′|K ′ is a cyclic extension of degree s given by ys1 = f(x1).

Thus, intersecting Vm with the hyperplanes x1 = α0 and xi+1 = αi
gives a new variety Wm defined by the following m − 1 equations, zsi =

f(α0)
s−1f(αi+1) (i = 1, · · · ,m − 1), regarded as a sub-variety in the
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projective space Pm+r
k̄

with coordinates a0, · · · , ar, z1, · · · , zm−1. In what

follows, we will show that the variety Wm is k-birational to a r-dimensional

complete intersection variety. Assume that k0 is a field containing a

primitive s-th root of unity, denoted by ζ, where s ≥ 2 is an integer.

Given integers 2 ≤ s ≤ r < n and a fixed sequence B = {αi}∞i=0 of pairwise

distinct elements of k0, let Bn := {α0, α1, · · · , αn} and define a projective

sub-variety Xn of Pn
k̄

by the equations∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α0 α1 · · · αr αi

· · · · · · ... · · · · · ·
αr0 αr1 · · · αrr αri
Y s

0 Y s
1 · · · Y s

r Y s
i

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (r < i ≤ n). (3.5.5)

Following theorem shows a basic properties of the varieties Xn, such as

its smoothness and being varieties of general type for large enough n.

Theorem 3.5.5. Given integers 2 ≤ s ≤ r < n, we have:

(i) The variety Xn is a smooth (s, · · · , s)-complete intersection of

dimension r;

(ii) The canonical sheaf of Xn is O((s − 1)n − (sr + 1)). Hence Xn is a

smooth variety of general type in Pn
k̄

if n ≥ N s
r , where

N s
r := [(sr + 1)/(s− 1)] + 1.

Proof. Using the definition equations Xn and the Jacobian criterion one

can see that Xn is a smooth (s, · · · , s)-complete intersection varieties of

dimension r. By the exercise (II.8.4.e ) or applying theorem (II.8.20) in [?]

repeatedly gives that the canonical sheaf of Xn is

O(s(n− r)− n− 1) = O((s− 1)n− (sr + 1)).

Therefore, Xn is a smooth variety of general type for any n ≥ N s
r , with N s

r

defined as above.

We will use the following lemma in the proof of the next result.
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Lemma 3.5.6. Let m and n (m ≤ n) be integers and b0, · · · ,bn be column

vectors of size m, with entries in a field of characteristic zero. Suppose that

any m vector of these are linearly independent. Then the following three

conditions are equivalent:

(i) rank
( [b0 b1 · · · bn−1 bn
u0 u1 · · · un−1 un

] )
= m,

(ii) For i = m,m+ 1, · · · , n,

∣∣∣∣∣b0 b1 · · · bm−1 bi
u0 u1 · · · um−1 ui

∣∣∣∣∣ = 0.

(iii) For i = 1, 2, · · · , n−m+ 1,

∣∣∣∣∣b0 bi bi+1 · · · bi+m−1 bi
u0 ui ui+1 · · · uim−1 ui

∣∣∣∣∣ = 0.

Proof. This is the lemma (3.1) in [?].

Proposition 3.5.7. For any [Y0 : Y1 : · · · : Yn] ∈ Xn, we have

#{i : Yi = 0} ≤ r.

Proof. Let i0 be an index such that Yi0 6= 0. By definition of Xn,∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α0 α1 · · · αr αi

· · · · · · ... · · · · · ·
αr0 αr1 · · · αrr αri
Y s

0 Y s
1 · · · Y s

r Y s
i

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

for i = r+ 1, · · · , n. Hence, using the lemma (??) with m = r+ 1, we have

rank(


1 1 1 · · · 1

α0 α1 α2 · · · αn

· · · · · · · · · ... · · ·
αr0 αr1 αr2 · · · αrn
Y s

0 Y s
1 Y s

2 · · · Y s
n

) = r + 1. (∗)

Now, if we suppose that #{i : Yi = 0} > r, then there exist r + 1 indexes

i1, · · · , ir+1 such that Yi1 = · · · = Yir+1
= 0. Thus, the (r + 2) × (r + 2)

37



sub-matrix of the above matrix consisting of the i1−, · · · , ir+1-th columns

has the following form 
1 1 · · · 1

αi0 αi1 · · · αir+1

· · · · · · ... · · ·
αri0 αri1 · · · αrir+1

Y s
i0

0 · · · 0

 ,

whose determinant does not vanish, because Yi0 6= 0. But, this is a

contradiction to (*) by the lemma (??).

The following theorem gives a relation between the varieties Wn+1 and

Xn.

Theorem 3.5.8. For every n > r, the variety Wn+1 is k-birational to Xn.

Proof. For integers n > r, we have a rational map ϕ : Wn+1 → Xn defined

by

[a0 : · · · : ar : z1 : · · · : zn] 7→ [f(α0) : z1 : · · · : zn],

where f(x) :=
∑r

j=0 ajx
r−j. It admits an inverse ϕ−1 : Xn →Wn+1 given

by

[Y0 : · · · : Yn] 7→ [a0; · · · : ar : Y s−1
0 Y1 ·D : · · · : Y s−1

0 Yn ·D],

where a1, · · · , ar and Dr are as follows

a0 :=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α0 α1 · · · αr αi

· · · · · · ... · · · · · ·
αr−1

0 αr−1
1 · · · αr−1

r αr−1
i

Y s
0 Y s

1 · · · Y s
r Y s

i

∣∣∣∣∣∣∣∣∣∣∣∣
, a2 := −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α0 α1 · · · αr αi

· · · · · · ... · · · · · ·
αr−1

0 αr−1
1 · · · αr−1

r αr−1
i

αr0 αr1 · · · αrr αri
Y s

0 Y s
1 · · · Y s

r Y s
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

· · · , ar := (−1)r−1

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α2
0 α2

1 · · · α2
r α2

i

· · · · · · ... · · · · · ·
αr0 αr1 · · · αrr αri
Y s

0 Y s
1 · · · Y s

r Y s
i

∣∣∣∣∣∣∣∣∣∣∣∣
, Dr :=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

α0 α1 · · · αr

· · · · · · ... · · ·
αr0 αr1 · · · αrr

∣∣∣∣∣∣∣∣∣ .
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Remark 3.5.9. Let a0, a1, · · · , ar and Dr be as in the proof of the theorem

(??). Then Dr 6= 0, because it is the determinant of a Vondermonde

matrix. Using the proposition (??), one can conclude that aj 6= 0, for

j = 0, · · · , r. This is the reason for considering the polynomials f ∈ k∗[x]

in defining the varieties Vn and Wn.

3.6 Relation with the results on the powerful values

of polynomials

Given integers 2 ≤ s ≤ r < n and a fixed sequence B = {αi}∞i=0 of pairwise

distinct algebraic numbers over number field k0 containing a primitive s-th

root of unity, denoted by ζ, define Bn := {α0, α1, · · · , αn} and suppose

that k is an arbitrary finite extension of k0 containing k0(α0, · · · , αn). Let

FBnr,s denote the set of those f ∈ k∗[x] such that f(αi) ∈ (k∗)s for each

0 ≤ i ≤ n, i.e. there exist some βi ∈ k∗ such that f(αi) = βsi . Let GBnr,s
be the subset of FBnr,s, whose irreducible factors has multiplicity strictly less

than s. Let DBnr,s be the subset of FBnr,s with zero discriminant. It is clear that

FBnr,s\DBnr,s ⊆ GBnr,s, with equality in the case s = 2. We note that FBnr,s and

GBnr,s are respectively subset of FBnr,s and GBnr,s, which are defined in Chapter

??. Fix the integers r and s and for each n > r, denote by Sn and Dn
the set of all supper-elliptic curves Cs,f with affine model ys = f(x), with

f ∈ FBnr,s and f ∈ DBnr,s, respectively. Therefore, each supper-elliptic curve

Cs,f ∈ Sn contains at least n+ 1 points with x-coordinates α0, · · · , αn. By

the main result of the Chapter ??, one can conclude that:

Theorem 3.6.1. Assume the Vojta’s Conjecture (??). Given integers 2 ≤
s ≤ r, let N := 2r2 +6r if r = s, and 2sr2 +sr otherwise. Then there exist

positive constants C0 and C1 such that C0 ≤ #(SN\DN) ≤ C1; and hence

for each n ≥ N , we have #(Sn\Dn) ≤ C1.

We note that the constants C0 and C1 depend on α0, · · · , αN , k, r and

s, but the integer M only depend on r and s

Theorem 3.6.2. Given integers n ≥ r, there is a one-to-one correspon-

dence between the set Sn and the k-rational points on the variety Wn+1.
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Proof. For Cs,f ∈ Sn with an affine model ys = f(x) =
∑r

j=0 ajx
r−j, we

assume that f(αi) = βsi for some βi ∈ k∗. Define the map ψ : Sn →
Wn+1(k) by

Cs,f 7→ Ps,f := [a0; · · · ; ar; β
s−1
0 β1; ...; β

s−1
0 βn].

Since (βs−1
0 βi)

s = f(α0)
s−1f(βi), so the point Ps,f belongs to Wn+1(k)

and hence the map ψ is well-defined injective map. Since Dn contains the

supper-elliptic curves Cs,f with disc(f) = 0, which can be described as an

equation in aj’s, so its image determines a closed set in Wn+1, which we

denote it by Wn+1.

In order to show that the map ψ is surjective map, we are going to use

the k-birational map ϕ : Wn+1 → Xn given in the proof of the theorem

(??). Let Xn ⊆ Xn be the image of Wn+1 under the map ϕ. The supper-

elliptic curve Cs,f ∈ Sn corresponding to P = [Y0 : · · · : Yn] ∈ Xn(k) with

Y0 6= 0, is k-isomorphic to the supper-elliptic curve

C̃ξs,f : Ds−1
r ys = a0x

r + a1x
r−1 + · · ·+ ar−1x+ ar,

which is obtained by expanding the following determinant along the last

column, ∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α0 α1 · · · αr x
...

... · · · ... x2

αr0 αr1 · · · αrr xr

Y s
0 Y s

1 · · · Y s
r 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Indeed, the map ϕ−1 : Xn(k)→Wn+1(k) in the proof of the theorem (??),

sends a k-rational point P = [Y0 : · · · : Yn] on Xn to the point

[a0 : a1 : · · · : ar : Y s−1
0 Y1 ·Dr : Y s−1

0 Y2 ·Dr : · · · : Y s−1
0 Yn ·Dr] ∈ Pn+r,

where a0, a1, · · · , ar and Dr are determined by expanding the above

determinant, as in the proof of theorem (??). Thus, the twist of the
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supper-elliptic curve corresponding to P is Cξs,f : f(α0)y
s = f(x), where

f(x) = a0x
r + a1x

r−1 + · · ·+ ar−1x+ ar. Since

f(α0) = −

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

α0 α1 · · · αr α0
...

... · · · ...
...

αr0 αr1 · · · αrr αr0
Y s

0 Y s
1 · · · Y s

r 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0

α0 α1 · · · αr 0
...

... · · · ...
...

αr0 αr1 · · · αrr 0

Y s
0 Y s

1 · · · Y s
r −Y s

0

∣∣∣∣∣∣∣∣∣∣∣∣
= Dr · Y s

0 ,

so Cξs,f is given by (Dr ·Y s
0 )s−1ys = f(x). Hence, the map (x′, y′) 7→ (x′, y′Y0)

provides a k-isomorphism of Cξs,f to C̃ξs,f . Note that the points P ∈ Xn

are exceptional for creating a smooth supper-elliptic curves, because such

points correspond to a polynomial with zero discriminate in Dn. Therefore,

the map ψ is a bijection map.

Remark 3.6.3. The point P ∈ Xn are exceptional for creating a smooth

supper-elliptic curves, because such points correspond to a polynomial with

zero discriminate by the map ϕ defined in the proof of the theorem (??).

Theorem 3.6.4. Assume the Vojta’s Conjecture (??). Suppose that k0 is

a number field containing a primitive s-th root of unity. Given any integers

2 ≤ s ≤ r, let N := 2r2 +6r if r = s, and 2sr2 +sr otherwise. Assume that

k is an arbitrary finite extension of k0 containing k0(α0, · · · , αN). Then,

there exist positive constants C0 and C1 such that

C0 ≤ #(WN+1\WN+1)(k) = #(XN+1\XN+1)(k) ≤ C1,

and hence for each n > N , we have #(Wn+1\Wn+1) = #(Xn\Xn) ≤ C1.

Proof. By theorem (??), given integers 2 ≤ s ≤ r < n, we know that Xn

is a variety of general type for all n ≥ [(sr + 1)/(s − 1)] + 1. Since the

integer N defined as above is large than [(sr + 1)/(s− 1)] + 1 , so Xn is a

variety of general type for all n ≥ N . By theorem (??)), the variety Xn is

k-birational to Wn+1, which is in one-to-one correspondence to the set Sn
by theorem (??). Thus, by theorem (??), there exist positive constants C0

and C1 such that

C0 ≤ #(WN+1\WN+1)(k) = #(XN+1\XN+1)(k) ≤ C1,
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and hence for each n > N , we have #(Wn+1\Wn+1) = #(Xn\Xn) ≤ C1,

where Wn and Xn are defined as in the proof of the theorem (??) for each

n ≥ r.

The above theorem shows that the Vojta’s Conjecture implies the

following conjecture due to Bombieri-Lang for the varieties Wn+1 and Xn

for n ≥ N , where N is as in the above theorem.

Conjecture 3.6.5. (Bombieri-Lang) Let X be a smooth projective

algebraic variety of general type, defined over a number field k0. Then

there exists a proper Zariski-closed subset Z of X such that for all number

fields k containing k0, the set (X\Z)(k) is finite.
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