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Resumo

Ao longo desta tese, assumimos uma versao da conjectura de Vojta sobre
os numeros algébricas com graus limitadas em uma linha projetiva.
Primeiramente, para inteiros 2 < s < r < n, estimamos o nimero
de polinomios de grau r > 2, cujos fatores tém multiplicidade < s e
tém s-valores poderosos em um dado conjunto de n elementos distintos
em pares em um corpo de numérico. Em segundo lugar, estudamos os
pontos racionais sobre a tor¢cao de uma variedade Abeliana arbitraria
por Extensoes ciclicas do corpos de fungoes de variedades irredutiveis
quase-projetivas, estendendo um resultado de Hazama. Em terceiro
lugar, aplicando o nosso resultado para certas variedades, mostramos
a finitude do numero de curvas super-eliptica tendo pontos racionais
com coordenadas x em um determinado conjunto finito de n elementos
distintos por pares em um corpo de numeros contendo a raiz s da
unidade. Finalmente, sujeito a conjectura de Vojta, provamos a
existéncia de variedades de intersecao completas e lisas de qualquer
dimensao que satisfaga a conjectura de Bombieri-Lang sobre os pontos
racionais sobre variedades de tipo geral.

Palavras chaves: A conjectura de Vojta em nimeros algébricos de grau
limitado, A conjectura de Bombieri-Lang sobre variedades de tipo geral,
Torgoes de variedades Abelianas, As variedades Jacobianas de curvas
supper-elliptic, As coberturas ciclicas de corpos de fungoes de variedades
quase-projetivas.
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Abstract

Throughout this thesis, we assume a version of Vojta’s conjecture on
the bounded degree algebraic numbers on a projective line. First, for
integers 2 < s < r < n, we estimate the number polynomials of degree
r > 2, whose factors have multiplicity < s and have s-powerful values at
a given set of n pairwise elements in a number field. Second, we study
the rational points on the twist of an arbitrary Abelian variety by cyclic
extensions of function field of irreducible quasi-projective varieties, by
extending a result of Hazama. Third, by applying our result for certain
varieties, we showed the finiteness of the number of supper-elliptic curve
having rational points with z-coordinates in a given finite set of n
pairwise distinct elements in a number field containing a s-root of unity.
Finally, subject to the Vojta’s conjecture, we prove the existence of
smooth complete intersection varieties of any dimension that satisfied
the Bombieri-Lang’s conjecture on the rational points on varieties of
general type.

Keywords: The Vojta’s conjecture on bounded degree algebraic
numbers, The Bombieri-Lang conjecture on varieties of general type,
Twists of Abelian varieties, Jacobian varieties of supper-elliptic curves,
Cyclic covers of function fields of quasi-projective varieties.
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Chapter 1

Introduction

A large part of Diophantine geometry is motivated by the study of rational
points on algebraic varieties. More precisely, study on the set X (k) for an
algebraic variety over a field k& (which is usually a number field or a function
field of an algebraic variety) is the major objective of the Diophantine
geometry. In the case that X is a dimension one variety, i.e., when X = C
is a projective curve of g > 0, the structure of the set C(k) for number
fields is well known. In fact, if g = 0, then C(k) = 0 or C(k) = Py.
When g > 2, it is conjectured by Mordell and proved by Faltings that
the set C(k) is finite for all number fields. In the case that g = 1, when
X = FE is an elliptic curves, the set E(k) is a finitely generated group by
the famous Mordell-Weil theorem. In other words, one has E(k) =T G Z"
for some positive integer r, and a finite group 7', that are called the rank
of E' and the torsion group of E, respectively. Determining the rank is
more complicated than the characterization of the torsion group. For more
details on these results, one can see the [?], [?] and [?].

In the case that X has dimension dim(X) = 2, i.e, when X = S is an
algebraic surface, there is a classification of the surfaces due to Kodaira
using the notion of Kodaira dimension x(S) of an algebraic variety: if
k(S) = —1, then S is either a Rational or a Ruled surface; if x(S) = 0,
then S belongs to one of the following four classes: Abelian, Hyperelliptic
(or bi-elliptic), K3 or Enriques surfaces; if x(S5) = 1, then S is an Elliptic
Surface; if k(S) = 2, then S is a surface of General type, in this case
dim(S) = k(S).



The first three cases have been studied extensively throughout the
literature in both geometric and arithmetic approaches. In the last case,
indeed more generally when k(X)) = dim(X) > 2 that means X is a variety
of general type, one has the following conjecture [?]:

Conjecture 1.0.1. (Bombieri-Lang) Let X be a smooth projective
algebraic variety of general type, defined over a number field ky. Then
there exists a proper Zariski-closed subset Z of X such that for all number

fields k containing ko, the set (X\Z)(k) is finite.

As far as the knowledge of the author, there does not exist more
examples of surface or higher dimension varieties of general type in
the literature such that the Bombieri-Lang conjecture to be proved for
them. The main aim of this thesis is that assuming a version of the
Vojta’s conjecture on the bounded degree algebraic numbers, we provide a
certain complete intersection varieties of general type with dimension > 2
satisfying the Bombieri-Lang conjecture.

The organization of this thesis is as follows. The Chapter 77, in other
words this chapter, is an introduction to the thesis. In Chapter 7?7, we have
studied the powerful values of polynomials over number fields by assuming
the following version of the Vojta’s conjecture on the algebraic number
of bounded degree on a projective line. In order to state this conjecture,
let k& be a number field, k its algebraic closure, and h the absolute Weil
height on P;. Given o € k, denote by dj.(«) its logarithmic discriminant
with respect to k. Let S be a finite subset of P;, the set of places of k,
containing infinite places P;° of k, and let N él) be the counting function
respect to S. See the section 77 for more details.

Conjecture 1.0.2. Let by,--- ,b, be fized pairwise distinct elements of k
and d > 2 be an integer. Then for any ¢ > 0 and c € R, the inequality

q
(q =2 = )h(a) < dp(a) + Y NS (b, a) +c+ ¢,
=1

holds for almost all o € k with [k(a) : k] < d and different from b;’s, where

¢ :=q(B +dlog?2), B :=max{h(b;)}_,.



Let B = {b;}32, be a fixed sequence of pairwise distinct elements in k.
For each n > 1, we assume that B,, C B contains the first n terms by, - - - , b,,.
Given integers 2 < s < r < n, let ng be the set of all polynomials f € k[z]
of degree r such that f(b;) is a s-powerful element in K for each b; € B,,.
For the subset of this set in which all irreducible factors have multiplicity
strictly smaller than s, the notation should be Gfg. The following theorem,
which extend the theorem 2.1 in [?], is the main result of the Chapter 77,

in fact the essential result of the thesis.

Theorem 1.0.3. Assume the Vojta’s Conjecture on number fields. Given
any integers 2 < s <r, let M :=2r> +6r +1 ifr = s, and 2sr> + sr + 1
otherwise. Then there exist positive constants Cy and Cy (depending on
bi, -+, by, the number field k and the integer r) such that Cy < #Gfg <
Ch. Moreover, for each n > M we have #Gfg < (.

In Chapter 77, after reviewing the basic facts on the twist theory in
section 7?7 and some results of F. Hazama [?, 7, 7], on the structure of
the set rational points on certain Abelian varieties over function fields in
section 7?7, we extend the main result of Hazama in [?] on the rational
points on certain Abelian varieties over function fields as follows. Let A/k
be an Abelian variety, s > 2 be an integer and 7 : V' — V be a cyclic
s-cover of irreducible quasi-projective varieties, both as well as 7 defined
over a field k such that (char(k),s) = 1. Let K .= k(V), L := k(V') and G
be the cyclic Galois group of the extension L|K of order s. The following
theorem gives a structure theorem on the set of K-rational points on Ay,
the twist of A with a certain 1-cocycle b € Z1(G, Aut(A)). See the section
77?7 for more details.

Theorem 1.0.4. Assume that there exist a k-rational point v) € V'(k).
Then we have an isomorphism of Abelian groups:

Ap(K) = Homy(Prymy. y, A) & Als](k),

where Als|(k) denotes the Abelian group of k-rational s-division points, and
Prymy. y is the Prym variety associated to the cyclic cover  : Vi V.

In particular, we have the following corollary.



Corollary 1.0.5. Assume that Prymy., is k-isogenous with A" x B for
some positive integer n, where A and B are Abelian varieties defined over
k such that dim(B) = 0 or dim(B) > dim(A) and none of irreducible
components of B is k-isogenous to A. Supposing, furthermore, that

Als|(k) = {O}, then rk(Ay(K)) > n - rk(End,(A)).

In section 7?7, we applied the above theorem and corollary to a certain
cyclic s-cover m : C,, — V,,, with m > 1, where C,, denotes the product of
m copies of a supper-elliptic curve Cs s given by affine equations y; = f(x;)
for i = 1--- < m, with f(x) € k*[x] of degree r > s, where k is a field
such that (char(k),s) = 1, and V,, is a quotient of C,, by a certain
cyclic group of order s > 2. Letting 2z := y{ 'y;;1, the variety V,, is
given by the equations 2§ = f(x1)* 1 f(z;41) for i=1,--- ,m — 1. Let Cif
denotes the twist of Cs; by the extension L|K, where K = k(V,,) and
L = k(C,,), which is defined by the affine equation f(z1)*'y* = f(z) and
contains K-rational points P, := (x1,1/y; %) and P; := (2,11, Y1 /y5 ) for
t=1,---m—1. Denote by 1, - , @, the image of the points P, --- , P,
given by (?7) under the canonical embedding of Ci s into J (Cf 7). Using
the above results, we obtain the following theorem on the Mordell-Weil
group of K-rational points on the Jacobian variety of the supper-elliptic

curve Cg ;.

Theorem 1.0.6. Notation being as above, we assume that there exists
c € Cs ¢(k) and let J(Cs f)[s|(k) be the group of k-rational s-division points
in J(Cs,r). Then we have an isomorphism of Abelian groups:

J(CEp)(K) 2= (Bndy((Cop))" & J(Cop)[s] ().
Assuming that J(Cs ¢)[s](k) is trivial group, we have
Th(J (CE ) (K)) = m - rh(Endi(J (Cs 1)),

and the points Q1, -+ ,Qm, are contained in the set of independent
generators of J(Cf’f)(K). Furthermore, if Endy(J(Csy)) = Z, then the
rank of the Mordell-Weil group J(Cif)(K) is exactly m with generators

Ql)"' 7Qm-

Since the varieties C,, and V,, are defined by a fixed polynomial
f € k*[z], so if we suppose that f(z) =Y '_ja;z""/ € k*[z] is an arbitrary



element, then V,, can be seen as a variety over the field k(xy,- -, z,)
and letting x; = ap and z;1; = «; gives a variety W,, defined by 2} =
flag)* L f(agy1) fori=1,---,m—1, which can be regarded as a sub-variety
in the projective space IP’%”“ with coordinates ag, -+ ,a,, 21, -+, Zmn_1. We
assume that kg is a number field containing a primitive s-th root of unity
and we fix a sequence B = {q;}2, of pairwise distinct algebraic numbers
over ky. For integers 2 < s < r < n, we suppose that k is a finite
extension of kg containing ko(a, -+ , ;). Then, we showed that there is
a k-birational map between W, and the (s, - - , s)-complete intersection
variety X, € P} defined by certain equations. In the section 7?7, we relate
the results on the powerful values of polynomials with those in sections 77?7
to conclude the following theorem.

Theorem 1.0.7. Assume the Vojta’s Conjecture on number fields. Suppose
that ko s sufficiently large number field so that it contains a primitive s-th
root of unity. Given any integers 2 < s < r, let N := 2r®> +6r if r = s,
and 2sr? + sr otherwise. Assume that k is an arbitrary finite extension of
ko containing ko(ap, -+ ,an). Then, there exist positive constants Cy and
C4 such that

Co < #(Wy i \Wiia)(k) = #(Xn11\Xn+1) (k) < Oy,
and hence for each n > N, we have #(W 1 \W,11) = #(X,\X,) < (.

The above theorem shows that the Vojta’s Conjecture implies the
Bombieri-Lang’s conjecture for the varieties W,, .1 and X,, for n > N,
where NNV is as in the above theorem.



Chapter 2

Powerful values of polynomials over
number fields

2.1 Introduction and main results

Let k be a number field and let 2 < s < r an integers. A nonzero element
a of Oy is called s-powerful if for each prime ideal p € Spec(Oy) we have
vp(ar) > s, where v, (-) denotes the discrete normalized valuation associated
to p. This definition immediately extends to elements of k. Clearly, any s-
power in k is a s-powerful element. Given f € k[z] of degree r, we say that
f is s-powerful polynomial, if each irreducible factor of f has multiplicity
at least s. It is clear that any s-power in k[x] is a s-powerful element.

The powertful values of polynomials have been studied by several authors
in the literature, [?], [?], [?], [?] and the recent work [?], done by H. Pasten,
based on a conjecture of Vojta on algebraic numbers of bounded degree on
a projective line. Let us to recall the version of this conjecture, which is
used in [?]. See the section ?7? or [?, 7], for more details on these notations
and following conjecture.

Let k be an algebraic closure of k and h the absolute Weil height of IP’]%.
Given a € k, denote by di(«) its logarithmic discriminant with respect
to k. Let P, be the set of all places of k£ and S is a finite subset of P
containing infinite places P ° of k. Let N él) denote the counting function
respect to S on k.

Conjecture 2.1.1. Fix by,--- ,b, € k, pairwise distinct elements and let
d > 2 be an integer. Then for each € > 0 there exists c. > 0 such that the



inequality

q

(¢— 2= e)h(a) < di(@) + > Ng'(bi, @) + ¢,

holds for all o € k of degree [k() : k] < d different from b;’s.

Assuming the above conjecture, Pasten showed the following result on

s-powerful values of monic polynomials over number field, see the theorem
2.1 1in [7].

Theorem 2.1.2. (Pasten). Assume the Vojta’s Conjecture (7). Let 2 <
s < r be integers, and define M = 2r> +9r + 1, ifr = s; and M =
2s1% + (25 + 1)r + 1 otherwise. Given pairwise distinct by, -+ ,by; € k, the
set of monic polynomial f € k[x] of degree r whose irreducible factors have
multiplicity strictly less than s and such that f(b;) are s-powerful for each
i=1,---,M, is a finite set.

In order to explain our result on the s-powerful values of polynomials,
we need to fix some notations. Let B = {b;}3°; be a fixed sequence of
pairwise distinct elements in k. For each n > 1, we assume that B, C B
contains the first n terms by,--- ,b,. Given integers 2 < s < r < n, let
Ffs be the set of all polynomials f € k[x] of degree r such that f(b;) is a
s-powerful element in k for each b; € B,,. Denote by Gfg the subset of this
set in which all irreducible factors have multiplicity strictly smaller than s.
Given integers n’ > n, one has the inclusions Foy C FZ: and GP C GPZr.

The following conjecture is an equivalent version of the Vojta’s

Conjecture (??), which is important to get the results of the thesis.

Conjecture 2.1.3. Let k be a number field, S C Py a finite set containing
P, k algebraic closure of k. Let by,--- b, be fived pairwise distinct
elements of k and d > 2 be an integer. Then for any e > 0 and c € R, the
mequality

q
(q =2 = )h(a) < dp(a) + > NS (b, a) +c+ ¢,
=1

holds for almost all o € k with [k(a) : k] < d and different from b;’s, where
¢ = q(B+dlog2), B:=max{h(b;)}_;.



This conjecture is a special case the Vojta’s conjecture in a more general
context on the algebraic points on varieties defined over number fields. See
the conjecture 25.1 in [?].

Theorem 2.1.4. Assume the Vojta’s Conjecture (7?7). Given any integers
2<s<r, let M:=2r>+6r+1ifr =s, and 251> + sr + 1 otherwise.
Then there exist positive constants Cy and Cy such that Cy < #Gfg < (.
Moreover, for each n > M we have #GF» < (.

,S

Remark 2.1.5. The integer M in this theorem depends only on the number
field k and the integers r and s, but it is independent of the fixed set Byy.
In contrast, the explicit lower and upper bounds for #ny depends on
b € By

Remark 2.1.6. The theorem (??7) generalizes the Pasten’s result (77)
because it qives explicit lower and upper bounds for the cardinal of the
set Gfgf .

2.2 Height functions over number fields

In this section, we give the basic definitions and facts on height functions
and bounded degree algebraic numbers, which are used in the next sections.
See [?], [?], or [?] for more details.

Given a number field £, let P, be the set of places of k that splits
into two disjoint subsets. One, 73,8 the set of the finite places, i.e., those
extending the places corresponding to the p-adic absolute values of Q, and
another one of the infinite places, denoted P;°, i.e., those extending the

infinite place of Q. For any v € Py, denote by || - ||, its associated almost
absolute value. The multiplicative height of any a € k is defined by the
equality
Hy(a) == ][ max{|lelo, 1}.
vEPy
This is easily extended to a point P = [ag : -+ - : o] € P}, as follows
Hy(P) = ][ max{llagllo, -, fanll.}.
VEPy



Given x € Ry, define log™ x = max{logx,0}. The logarithmic height of
a € k is defined by the equality

hy(e) = log" Hifa) = 3 log” [,

VEPy
The logarithmic height of P = [ag : - - : ay) € P} is defined by equality
hi(P) :=log Hy(P) = ) " logmax{||aollu, -, [l },

vEP,
For any finite extension K|k, o € k, and P € P}, one has
1

Hy(0) = Hic(0) ", hy(a) = (e
1
Hy(P) = Hg(P)YEH py(P) = hi(P).
Considering these facts, one may extend the definition of height function
to P, where k is an algebraic closure of k. In this case, they are called

the absolute multiplicative and additive heights of P € P and denoted by
H(P) and h(P), respectively.

Proposition 2.2.1. The absolute heights over k satisfied in following
properties:

(i) For each o, B € k* and n € Z, we have
h(a") = |n|h(a), h(af) < h(a)+h(B), h(a+p) < h(a)+h(B)+log2;

(ii) The action of Galois group of P leaves the absolute heights invariant.

Proof. One can see the lemma 3.3 in [?] for part (i), and the propositions

B.2.2 in [?] for part (ii). O

Given any polynomial f(z) = apz?+a1z" '+ - -+ay € k[z], the absolute
multiplicative and additive heights are H(f) := H([ag: a1 : -+ : aq]), and
h(f) = h(lag : a1 : - - : aq], respectively.

Proposition 2.2.2. Let f € k[x] be a polynomial of degree d > 2 with
roots oy, - - - ,aq in k, and let f; € k[x] be polynomials of degree d; > 2 for
1 <i¢<t. Then

10



(i) —dlog2 + T, hlar) < h(f) < S hla) + (d— 1) log 2
(it) If f = fi--+ fi, then h(fifo- - fi) < i (R(f;) + (di + 1) log 2);

Proof. One can prove (i) using theorem 1.6.13 and remark 1.6.14 in [?].
The parts (ii) come from the proposition (B.7.2) in [?]. O

Without loos of generality, we may suppose that £k = C and

f(@) =apz’ +az® +- +ag=ao | [(x — ;) € Cla]. (2.2.1)

”EQ

In this case, the Mahler measure of any f € (C[:E] is defined by
= |ag| - | [ max{L, |y},
j=1

where || is the usual absolute value on C. When a € k = C is an algebraic
number over k with minimal polynomial f, € k[z], we define its Mahler
measure by M(a) = M(f,).

Let 0; be the absolute discriminant of k. The logarithmic discriminant
of k is defined by dj := log0;/[k : Q]. For a tower of number fields Q C
k C K C k with absolute discriminants 9, and 0, respectively, the relative
logarithmic discriminant of K|k is

dk(K) = logbK/k log 0,

[K : k]

where 0/, is the relative discriminant of the extension K|k. The relative
logarithmic discriminant of each o € k is defined by dj,(a) := dp(k(a)).

We will use the following theorem in the proof of the main theorem (?7?),
which gives an upper bound for the logarithmic discriminant di(«) in the
Vojta’s conjectures.

Theorem 2.2.3. [?, ?]. Let f € k[x] be of the form (?7) with degree d > 2
and A(d) = dlogd if k = Q, and A(d) = (2d — 1)logd otherwise.

(i) D(f) = ag"* [1is (s — ), and |D(f)] < d*- M(f)**;
(i) If D(f) # 0, then h(D(f)) < 2(d = 1)h(f) + A(d);

11



(i) If a € k is of degree d > 2, then dy(a) < 2(d — 1)h(a) + A(d).

Proof. See theorem 1 in [?] for part (i). The part (ii) is consequence of
part (i) in the case k = Q, and it is the lemma 3.7 in [?] when k # Q. The
part (iii) is the proposition 1.6.9 in [?] in the case k = Q; and generally it
comes from part (ii). O

The following theorem plays a central role in Diophantine geometry,
since proving an upper bound on the heights of rational points over number
fields is equivalent to proving finiteness of certain set.

Theorem 2.2.4. (Northcott) [?]. Let k be a number field and k its
algebraic closure. For any constant T' and integer d > 1, the set

{P=lag:oq:--:a €PLH(P) ST, [k(P): k] <},
are finite, where k(P) = k(ao/ay, a1/, -+ o /o) with a; # 0.

The problem of giving a quantitative version of Northcott’s theorem
started with Schanuel in [?]. Let k& be of degree m > 1 and fix a parameter
T. Let h : P? — R be the absolute logarithmic height. Denote by N (P}; T')
the number of points P € P} with h(P) < T. The following theorem
approximate the N(P}; T') using the parameter 7.

Theorem 2.2.5. (Schanuel) [?]. Under above assumption, one has
NPy T) ~cT"+1 for some ¢ >0 asT — oo.

Extending the Schanuel’s result for bounded degree points over k is
started by [?] and continued by [?], [?], [?], and so on. In this text, we will
use the following quantitative version of the Northcott’s theorem from [?],
which extend the Schanuel’s theorem in the case ]ID/,lf for bounded degree
algebraic points. This is closely connected with the Schmidt’s subspce
theorem, as well as its reformulation by Masser and Valer.

In order to explain the result of Su-Ion Ih, we need to fix some notations.
Denote by N (]P)llf; r;T') the number of points a € ]P)}C of degree at most r and
h(a) < T for every constant 7' > 0 and integer r > 2. Let h; be the class
number of &, Reg,, the regulator of Oy, w; the number of roots of unity in
k, (i(s) the Dedekind zeta-function of k, 0; the absolute discriminant of

12



k, mq the number of real embedding of k& and msy the number of pairs of

complex embedding of k. Define the Scanuel type constant related to k as
hi - Regy, 2™ (2m)™

wiCr(r + 1) i 011€/2

Uy = ) (4 1yt (2.2.2)

and denote by, =7 - ag, - T+ and Ty = Tmrtr+)-r
Theorem 2.2.6. [?]. For each ¢ > 0, we have the inequalities
bk,r . 2—m7“(7“+1)TmT(T+1) . Og(Tl . TE) < N(]P)]lf, r: T) < bk:,r . 2mr(r+1) + O(Tl)

In particular,

NPL:r;T
27l 4 o(1) < % <2t 4 o(1) as T — oo.
k,r

2.3 The Vojta’s conjecture on algebraic numbers of
bounded degree

In this section, we recall the basic definitions on the value distribution
theory over number fields. This theory is an analogue of the Nevanlinna
theory in the context of complex numbers. We have focused to provide
equivalent versions of the Vojta’s conjecture on the algebraic points of
bounded degree on a projective line. For more details, one can refer to [?],
[7].

Let k£ be a number field and S C P a finite set containing P.°, and
b,a € k are distinct elements. The prorimity functions with respect to S
are defined by

ms(e) = log" ||als, ms(b,a) = mg(

vES

1
a—b

).

Similarly, the counting functions with respect to the set S are defined by

equality
1
Ns(a) = %mg ladlo, Ns(b, @) := Ns(—).
By the properties of the logarithm function, one has
ms(a) + Ns(a) = Y log™ |lall, = h(a), (a € k).

vEPy
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The following theorem is an analogue to the first main theorem in classic
value distribution theory. See theorem 6.3 in [?] for its proof.

Theorem 2.3.1. Let k be a number field, S C Py a finite set containing
PxX. Then for any a € k and fized b € k\{«a}, one has

h(a) < mg(b, ) + Ng(b, ) + h(b) + [k : Q] - log 2.

There is a natural way of extending the definition of the proximity and
counting function to algebraic closure k of number field k. Indeed, if we
assume that S C Py is a finite set containing P;°, o € k, K and K’ are
finite extensions of k such that k(a) C K C K' C k, T C Px and T" C P
are finite sets containing Pp° and Pz, respectively, such that any element
of T lies over some element of S and elements of T” lie over places of k,
then

mT/(oz) = [K’ . K] . mT(oz), NT/(oz) = [K/ . K] . NT(Oé).
Thus, one can define the proximity and counting functions for o € k by
equalities

1 1
T @) Nsle) = mep

mg(a) := - Np(a).

These definitions are independent of the choice of the extension K
containing k(). If b € k(a) be an element distinct from «, one can also
define

mg(b, ) 1= -myp(b, ), Ng(b,a) := - Np(b, ). (2.3.1)

[F(a) : K] [F(a) : K]

Remark 2.3.2. It is easy to see that h(a) = mg(a) + Ng(a) for all a €
k. By following the proof of the first main theorem, as in [?], and using
equalities (77), one can see the inequality

h(a) < mg(b, @) + Ng(b, @) + h(b) + [k(a) - Q] - log 2,
holds for any o € k and b € k distinct from .

The following conjecture is a special case the Vojta’s conjecture on
the algebraic points of bounded degree on varieties. See the section 3
of Chapter 5 in [?] for more details.
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Conjecture 2.3.3. Let k be a number field, k its algebraic closure and
S C Py a finite set containing P.°. Let by,--- b, be pairwise distinct
elements of k and d > 2 an integer. For each € > 0 there exists c. > 0 such
that for every o € k of degree at most d > 2 the following inequality holds,

> mg(bi, o) < (24 )h() + di(a) + ce. (2.3.2)

i=1
Using the Northcott’s theorem one can see that the above conjecture is

equivalent to the following one.

Conjecture 2.3.4. Let k be a number field, k its algebraic closure and
S C Pr a finite set containing P°. Let by,---,b, be pairwise distinct
elements of k and d > 2 an integer. Then for any € > 0 and ¢ € R, the
inequality

st(bi, a) < (2+ e)h(a) + di(a) + ¢, (2.3.3)

holds for almost all o € k with [k(c) : k] < d and different from b;’s.
Using the inequality in remark (?7?), for i =1,--- , ¢, one has
h(a) < mg(b;, ) + Ng(bi, ) + h(b;) + dlog 2,

so the inequalities of the above conjectures can be rewritten as follows:

(=2 — )h(a) < dy(a) + Z Ng(bi, @) + ¢,

and ,
(q—2—e)h(a) < dp(e) + Y Ng(b,a) +c+ ¢,
i=1
where ¢ := ¢(B + d-log2) and B := max{h(b;)};.

The truncated counting function on k is defined by

Ok

N(b,0) = > min{1, ordy* (o — b)} - log(#
vgS v

),

where b € k, o € k*\k, and p, € Spec(Of) corresponds to v € P,S(a).
There are truncated versions of the above conjectures as follows.
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Conjecture 2.3.5. Let k be a number field, k its algebraic closure and
S C Py a finite set containing P.°. Let by,--- b, be pairwise distinct
elements of k and d > 2 an integer. For each € > 0 there exists c. > 0 such
that for every o € k of degree at most d > 2 the following inequality holds,
q
(q =2 = )h(a) < dp(a) + Y N (b, a) + ce. (2.3.4)
i=1
Conjecture 2.3.6. Let k be a number field, k its algebraic closure and
S C Py a finite set containing Pr°. Let by,--- ,b, be pairwise distinct
elements of k and d > 2 an wnteger. Then for any € > 0 and ¢ € R, the
inequality
q
(q—2—)h(a) < dp(a) + Y NS (b, a) +c+ ¢ (2.3.5)
i=1

holds for almost all o € k with [k(«) : k] < d and different from b;’s, where
¢ :=q(B+d-log2), B :=max{h(b;)}]_;.

Remark 2.3.7. Since Nél)(b, a) < Ng(b,«), for each b and v as above, so
the truncated versions of the Vojta (I’) and (II’) implies the non truncated
ones. The converse is the special case of theorem (3.1) in [?]. We note
that the conjecture (?7?) implies the ABC-conjecture of the Masser and
Oeserlé, see for details [7]. The truncated version Vojta II’ is known as
ABC-congecture for bounded degree extension of number field.

2.4 Proof of the main theorem

In this section, we will give the proof of the theorem (?7). Let us recall
some notation from the first section. Given integers 2 < s < r, let M =
22 +6r +1if r = s and M = 2sr?> + sr + 1, otherwise. For a fixed
sequence B = {b;}2, of pairwise distinct elements of k, we assume that
By = {b1,ba,--- by} and we consider the set fog”, which contains the
polynomials f € k[x] of degree r > 2 such that all of irreducible factors
of f has multiplicity strictly less than s and f(b;) is a s-powerful element

in k for each b; € By;. Here, we are going to give an explicit lower and
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upper bound for the cardinal of Gﬁf . Without loose of generality, we may
consider f € GE¥ with factorization f = fi*--- f{*, where f; € k[z] are
irreducible polynomial of degree d; := deg(f;). For each j =1,--- ,t, let
a; € k is an arbitrary root of f; and define k; := k(«a;) and g := fi--- f;
of degree d :=dy + - - - + d;.

Let S C P; be a finite subset P, which consists of the union of the
sets Pr°, poles of the elements b; € By, with the set of zeros of b; — b; for
b; # b; € By. Applying the Vojta’s Conjecture (7?) to this set S, elements
b; € By and integer r > 2, we conclude that for any € > 0 and ¢ € R, the
following inequality

M
(M =2 —e)h(a) < dyla) + 3 N (b, a5) +c+ ¢, (2.4.1)
i=1

holds for almost all « € k with [k() : k] <r and «; # b;’s, where
= M(B+r-log2), and B := max{h(b;): 1<i< M}.

There are a finite number of elements in k of degree at most r for which the
inequality (??) does not hold. Let us to denote by NN, the number of such
elements in &, which depends on b; € By, and other data. We note that it
is unknown that how the positive integer N, is related to by,--- , by, yet.
This is one of the hard problems in Diophantine approximation, which is

analogue to the ineffectiveness of the Roth’s theorem.
Bum

7S )

polynomials f € Gfgf that have some roots, not satisfying in inequality

Since we are going to estimate #G so for a while we ignore the

(??7), and we recall them in the moment of estimating the #fo{gf . Thus,
we assume that the inequality (?7) holds for all of the «;’s. It is clear that
a;’s and b;’s are distinct elements for each 1 < ¢ < M and 1 < 5 < ¢,
because f(b;) # 0. Therefore, for each j =1,--- |t we have

M
(M =2~ e)h(ay) < diay) + Y N (bi, o) + e+ ¢, (2.4.2)
i=1

Applying the part (iii) of the theorem (??) to each of o;’s and using d; < d,
we obtain an upper bound for dj(c;) as follows,

di() < 2(dj = Dh(ey) + A(d;) < 2(d = 1)h(e;) + A(d).
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Putting this into the inequality (?7) and using the fact that A(d) < A(r) <
2rlogr, gives that

M
(M —2d — €)h(a;) SZ bl,oz])+c+cl, (2.4.3)

where ¢; := M (B + 1 -log2) + 2r log r. By multiplying the both side of the
inequality (??) by d;, using the fact that ¢ < r and then summing-up, we
obtain that

t

M
Z —2d — €)hy, (o)) SZZd bl,ocj +r(c+c). (24.4)

In order to give an upper bound for the term involving the truncated
function in the inequality (?77?), we need the following lemma.

Lemma 2.4.1. Let D(g) be the discriminant the polynomial g = f1--- fi of
degree d > 2, which is defined in initial part of the proof. Let A(d) = dlogd
if k=Q, and A(d) = (2d — 1) logd otherwise. Then

t

h(D(g) Z (a) +4d(d — 1) + A(d). (2.4.5)

Proof. Assume that aj; are the roots of f; for 1 < i < d;. Then using the
proposition (??), we have

t J

t d;
> h(f;) <Y O hlegi) + (dj — 1) log(2))
7=1 =1 i=1

< Z dih(a;) + Z(dj — 1) log(2)

< Z hy, (aj) +d — tlog(2).

j=1
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Using this inequality and applying the part (ii) of the proposition (?7?),
gives that

h(g) = hlfi-+ £1) < 3B + (d; + Dlog(2)]

t

'
:Z (fj) +d+tlog(2) Z (o) +2d
i=1

Applying the part (ii) of the theorem (?7), we obtain the desired inequality

t

h(D(g)) < 2(d — 1)h(g) + A(d) Z (a) +4d(d — 1) + A(d).

]

Let D be the reduced divisor on Spec(QOy) whose support consists of
the union of the sets S with the zeros of D(g) and the poles of the o;’s.

Denote A(S) := > cgdeg(p), where deg(p) := log #(Oy/p) for any prime
p € Spec(Of). The following lemma gives an upper bound for the term
containing the truncated function in (77).

Lemma 2.4.2. With notation as above, we have:

t

M 1 MS+ !
ZZdjNé)(bi,aj)g[ . —|—d2d—1 Z (aj) + reg,

j=1 i=1
where st := max{sy, -+, s}, d=d+---+d; and
M(B + log 2
Co = ( _L_Og )+A(s)+A(7’)+47’(7‘—1).

Proof. By changing the order of sums in the left hand side of the inequality
(??) and following the last part of the proof of the lemma 4.9 in [?], we

have
M t 1 M t
1
X;ZIdgNé%bz,o@) < ;22;de ih(bi — o) + ddeg(D)
1=1 j= 1=1 j=

=1

i
—_
<
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Sincet<rzzz._ sjd;, and sj§s+ so we have
t
ZZCZ]N (bi, o) < = ZZs]dha]
1=1 j=1 =1 j=1
t

Z s;d;hy(b;) 4+ tlog 2] + d deg(D)

j 1
| M
< ; Z Zs]hk a;) + r(hi(b;) +log2)] + ddeg(D)
=1 j=1
M < Mr(B +log2)
< ?;sjhk](ozj) + . + ddeg(D)
Mst & Mr(B +log?2)
< Py, (v ddeg(D).
= ; k](a])‘i_ s + ddeg(D)

In order to give an upper bound on the deg(D) in terms of h(cq;)’s, let S’
and S; be subsets of P} such that D(g) vanished at p, ; has a pole above
p, respectively, and let S” be the union of S;’s. Then

deg(D) = ) _ deg(p) + Y deg(p) + > _ deg(p)

peS” pes’ pes
- Z > deg(p) + #5' + A(S)
Jj=1 peSs;

= > iy () + h(D(g)) + A(S).

Using the inequality (??7) in the lemma, which gives an upper bound for
h(D), and the facts that d < r and A(d) < A(r), we get that

deg(D) <Y ~hy (o) +2(d — 1) hy () + A(S) + A(r) + 4r(r — 1)

J=1 J=1
t
2d—1z (o) +A(S) + A(r) + 4r(r — 1).
Multiplying the last 1nequahty by d, gives that

ddeg(D) < d(2d — 1) hy (a;) + r[A(S) + A(r) + 4r(r — 1)]

j=1
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Gathering all of the above inequalities together gives the desired one. [

Using the above lemma, one can rewrite the inequality (?77) as follows,
t t

D (M —2d — e)hy, (o) <ZZdN (bi, ) +7(c+ 1)

7j=1 7j=1 =1

MsT
s

+d(2d —1)] Z hy,(aj) +7r(c+ ¢+ co).

<

In other words, we have the following inequality
t

+
> M- 2y —2d —d— hy () <7+ (c+ 1+ o). (2.4.6)
s
j=1
Lemma 2.4.3. For integers 2 < s <r and 1 < d <r, we have
st 1
M1 —"2)—2d* —d > ~. (2.4.7)
S r
Proof. For each f € Gf:’:g” with irreducible factorization f = fi*--- f,*, we
have
st :=max{sy, -+ ,s8} <s—1,

which implies that » — sT > d — 1. Indeed, if jy is an index such that

ot
sj, = s, then

t t t
r=> sjd;>std,+ Y di>st+d, -1+ dj=s"+d-1
J=1 J#Jo J#Jo
Thus r — sT > d — 1, which implies that

-1 .
st s—st  r—st =1l jf s =1y
>
S

11— — = > " (2.4.8)
S S otherwise.
In the case s = r, we have d—1 > 1, because if d = 1 then s > s =1 > s,
which is a contradiction. Since M = 2r* + 6r + 1, so using 1 — s*/s >
d—12>1, we have

+ _
M-Sy —o—ax v Zop g

S r
d—1 2rd* +rd
> Y
- ( d—1 )
d—1 3r
> M —2rd — 3r — .
I iy



Since 3r/(d—1) < 3rand (d—1)/r>1/rford—1>1,and d < r, so we
have

+ d —
M-y —2d—d>
S T

1
> (M —2r* — 6r) >
.

1

(M —2rd —6r)
1
”

where M — 2r? — 6r > 1 implies the last inequality.
In the case s < r, we have M = 2sr®> + sr+ 1 and 1 — s*/s > 1/s, so
using d < r and M; —2sr? — sr > 1, gives that

Jr
M-y —2d> —d>M/s—2d* — d
S

> (M — 2sd* — sd)

> (M — 2sr® — s7) >

S| —=®w |-
ﬁlr—

]

Using the inequality (?7), in either cases, we can rewrite the inequality

(7?7) as
——e Z i) <r(c+ca+c). (2.4.9)

Since the constants € and ¢ in the Vojta’s Conjecture (?7) are arbitrary,
so we consider the following constants

1 1

=1 1 = ————5 — (] — =
€ /(r+1), c cp — Ca, C3 71

v Y (2.4.10)

where m is the degree of the number field k. Then, using the equation
(??7), we obtain that

t
h(ay) < djh(ay) = hy, (o) §Z ) <73 (r+ Dc+c + e < e

We note that the consonant c3 depends only on £ and r, but not on an
special f € Gfg . Denote by N (IP’]%; r; c3) the number of algebraic numbers
a € k of degree at most r and height at most c3. The Northcott’s theorem

(??) implies that N (IP};r; c3) is a positive number. Letting ¢, := ng(rﬂ)
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and applying the Th’s theorem (??7) with constants ¢ := 1, T := ¢3 and
T1 = c4, gives us two constants cs,cs > 0 depending on the initial data
such that

b - 27t ooy g < N(IP’%:; ricy) < by - omr(r+l) 4 e ey

Let A, be the set of all o € k of degree at most r and height at most c3

together with those algebraic numbers not satisfying the inequality (?7).
Then

bk,r : 2—m7“(7“—|—1) +C5-C4C3+ Nr < #Ar < bk,r ’ 2mr(r+1) + C6 - Cq4 + Nr-

Since for each f € ny has at most r roots in k£, maybe some of them does
not satisfy in the inequality (??), so we conclude that

bk,r . 2—mr(r+1) +c5-cq- 3+ N, < #Gfg <r-. (bk,r . 2mr(r+1) +cg-cq+ NT)_

Therefore, we obtain the desired lower and upper bounds Cjy < #ny <
C1, where
Coi=by,y 27" o5 ep 3+ N,

Ci=r- (bk,r . 2mT(T+1) + Cg - Cq+ NT)
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Chapter 3

Rational points on certain Abelian
varieties over function fields

3.1 Introduction

In this chapter, by extending some results of Hazama in [?, 7], we are going
to prove a structure theorem on the Mordell-Weil group of the rational
points on Abelian varieties over function fields, which arise as twists of
Abelian varieties by cyclic covers of quasi projective variety. In particular,
we use the main result to find supper-elliptic curves having a given set of
algebraic numbers as z-coordinates of a set of rational points such that
their images under canonical maps forms a subset of the generators of the
Mordell-Weil group of their Jacobian varieties. Using the result of this
chapter and the first one, subject to the Vojta’s conjecture, we prove the
existence of certain complete intersection varieties of general type satisfying
in the Bombieri-Lang conjecture.

3.2 Twisting theory

Let us to recall two equivalent definition of twist and its basic properties.
Let K be a field and L|K a Galois extension with Galois group G = G|k
A G-set is a discrete topological space E such that the left action of G on
E is continuous. For every x € E and u € G, we denote by “x the left
action of u on x. A G-group is a G-set A equipped with a group structure

u

invariant under action of G, i.e., "(z -y) = “x - “y for each x,y € A and

u € G. Any continuous application a : u +— a, of G to a G-set A is called
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a cochain of G with values in A. A cochain a = (a,,) is called a 1-cocycle
of G with values in A if a,, = a, - “a, for each u,v € G. For any 1-cocycle
a = (ay), one has a;g = 1 and a, -*a,-+ = 1, where v € G and 1 € A
denotes the identity element. The set of 1-cocycles of G with values in a
G-set A, is denoted by Z'(G, A). We say that a G-group A acts on the
G-set E from left, in a compatible way with action of G, if there is an
application (a,z) — a-x of A x E to FE satisfying the following conditions:

i) “(a-z)="a"z (a€ A,z € E,u € Qq)
(ii)a-(b-x)=(a-b)-z,and 1 -z =2, (a,b€ A,z € F).

Let A be a G-group, E be a G-set which is compatible with the group
action of G, and a = (a,) € Z}(G, A) be a 1-cocycle of A. For any u € G
and = € E, define ¥z := a,- “z. The G-set with this action of G is denoted
by E, and is called the twist of E obtained by the cocycle a.

Let X be a quasi-projective scheme defined over K, Aut(X) be the
automorphism scheme of X and a = (a,) € Z'(G, Aut(X)) be a 1-cocyle.
Then there exist an unique quasi-projective K-scheme Y and an unique
L-isomorphism

f:X®rxL—=-Y®gL

such that “f = f o a, holds for any u € G. The scheme Y is denoted
by X, and is called the twist of X by l-cocycle a. One can see that
these two notion of twist are compatible in the following sense: The map
f:X(L) — Y(L) gives an isomorphism of the twisted G-set X (L), onto
the G-set Y(L) = X,(L). Therefore,

X (K)2{PeX(L),: “P=P}={PeX(L):a,  "P=P} (32.1)

For more details on above facts, one can see the propositions 2.6 and 2.7
in [?].

Let C be a smooth projective curve defined over K and let C, denote
the twist of C by l-cocycle a = (a,) € Z*(G, Aut(C)). Furthermore, for
any morphism of curves « : C; — Co, let us to denote by J(«) the induced
homomorphism of Jacobian variety J(C;) into J(Cz). We note that J(a) :=
(J(ay)) satisfies the 1-cocycle condition. For a,, = a,0 “a, implies J(a,,) =
J(ay,)o “J(a,), since the construction of the Jacobian variety is compatible
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with base change. Under above conditions, the twist J(C) y(4) of J(C) by the
1-cocycle J(a) is K-isomorphic to J(C,). Indeed, if f: C ®x L — C, @k L
denotes the isomorphism such that “f = f o a, for each u € G, then the
induced isomorphism of Jacobian varieties J(f) : J(C)®x L — J(C,) @k L
satisfies the equality “J(f) = J(f)o"J(a,) for each u € G, by functoriality.
Hence, by the uniqueness of the twist, we see that .J(C) () is K-isomorphic
to J(Cy).

3.3 Some results of Hazama

Let C : u> = f(t) be a hyper-elliptic curve defined over a field k of
characteristic different from 2, with f(¢) € k[t] of odd degree. There exists
a natural projection of C onto the projective line P}, defined by (¢, u) — u,
through which we can consider the function field L := k(C) of C as a
quadratic extension of K := k(P}) = k(t), where ¢ denotes the coordinate
of PI. Let ¢+ € Aut(C) be the involution by the extension L|K, and let
G = {id,t} be the Galois group of the extension L|K. Now, consider an
Abelian variety A defined over k, and a 1-cocycle b = (b,) € Z}(G, Aut(A))
defined by b;y = 1 and b, = —1. Then the twist of A by b, which is denoted
by A, exists and is defined over K. The following theorem is the main
result in [?].

Theorem 3.3.1. Let J(C) be the Jacobian variety of C, and A[2](k) be the
k-rational 2-division points in A(k). Then, as abelian group we have

Ap(K) = Homyi(J(C), A) ® A]2](k).

) =
In particular, if C : y* = h(z) with h(z) € k[x] of odd degree, and Cj, be the
twist of C given by h(t)y? = h(z) defined over K, then

J(Cr)(K) = Endi(J(C)) © J(C)[2](F),

where J(C) denotes the Jacobian variety of C and J(C)[2](k) is 2-division
k-rational points in J(C).

Now, let 7 : C’ — C be a morphism of degree two defined over k between

non-singular projective curves over k. Assume that there exist a k-rational
point on C' where 7 ramifies. Denote K := k(C), L := k(C') and G = G,
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the Galois group of the extension L|K. For any Abelian variety A over k,
we define a 1-cocycle b = (b,) € Z1(G, Aut(A) by by = 1, and b, = —1,
where ¢ is the involution associated to the double cover 7. Let Ay be the
twist of A by the 1-cocycle b. The following theorem is proved by Hazama
in [?] which gives the theorem (??) by taking C = P; with trivial Jacobian.

Theorem 3.3.2. Let A[2](k) be the k-rational 2-division points in A(k).
As abelian group we have the following isomorphism:

A(K) = Homy(J(C) /7 (J(C)), A) @ A[2](k).

In the following, we recall the main result of Hazama in [?] that
generalizes the theorems (7?) and (?7). Let A be an Abelian variety, V' and
V' are absolutely irreducible quasi-projective varieties, and 7 : V/ — V be
a double cover, all defined over k. Let K := k(V), L := k(V’), and
G = Gk be the Galois group of the extension L|K. Let A, be the twist
of A by the 1-cocycle b. In [?], the Prym variety associated to the double
cover 7 : V! — V is defined as the quotient Abelian variety

Alb(V)
Im(id + Alb(:))’

Prymv//v =

where Alb(V’) is the Albanese variety and Alb(¢) is the automorphism of
Alb(V’) induced by ¢ € Aut(V’). The following results are the theorem 2.2
and the corollary 2.3 in [?].

Theorem 3.3.3. With the above notations, assume that there exist a k-
rational simple point vy, € V'. Then we have an isomorphism of Abelian
groups:

Ay(K) = Homy,(Prym(V'/V), A) & A[2](k),

where A[2](k) denote the abelian group of k-rational 2-division points.

Corollary 3.3.4. Notation being as above, assume that Prymy,, is k-
1sogenous with E™ x B for some positive integer n, where E 1s an elliptic
curve defined over k, and B is an Abelian variety none of whose simple
component k-isogenous to E. Then,

rh(Ey(K)) = n - rk(Endg(E)).
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3.4 Extension of Hazama’s results to cyclic covers

Let s > 2 be an integer and k a field of characteristic different from s.
We are going to generalize the notion of Prym variety to the case of cyclic
s-cover w : V' — V, for every integer s > 2, where V and V' are quasi-
projective irreducible varieties both as well as 7 defined over a field k
(char(k),s) = 1. The Prym wvariety associated to the cyclic s-cover 7 :
V" — V is defined by the quotient Abelian variety
Alb(V")

Im(id +5 +--- +3571)’
where Alb(V”) is the Albanese variety and 7 is the automorphism of Alb(V")
induced by v € Aut(V’) of order s.

We note that if both of the varieties V' and V' are curves, then this
notion of Prym variety is compatible with that one which appeared in [?]

Prymv//v =

by applying the following lemma.

Lemma 3.4.1. Let s > 2 be an integer and 7 : V' — V be a cyclic s-cover
of irreducible quasi-projective varieties, both as well as w defined over k.
Let v € Aut(V') be an automorphism defined over k of order s and let 4
be the automorphism of the Albanese variety Alb(V') induced by . Then
there is a k-isogeny of Abelian varieties,

Prymypy ~p ker(id + 5 + -+ 5771 AIb(V') — AB(V'))°,

(¢]

where (x)° means the connected component of its origin.

Proof. Let us to consider a more general situation. Let A be an Abelian

variety over k of dimension m, and A € Aut(A) an order s automorphism.
Define

a := dimker(id — \)°, and b:= dimker(id + X+ --- + X\*71)°.

Considering the induced action on the tangent space of A at origin, we
have a + b = m. Let A be the set of s-division points of A. Then

ker(id — \)° Nker(id + X+ --- + A 1)° C A,.

Indeed, if P € ker(id — X\)° Nker(id + A + - - - + A¥71)° then A(P) = P and
hence
0=(id+ A+ + N ") (P)=sP.
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Thus A is k-isogenous to their product, i.e.,
A~y ker(id — N)° x ker(id + X+ - - + A H°.

Moreover, we note that Im(id + X + - - - + X¥71) C ker(id — \)° and

m —b=dimIm(id + A+ --- + A*"') = dim ker(id — \)° = a.
Therefore, we obtain the equality

Im(id + A+ -+ + A1) = ker(id — \)°.

Now, applying this general result to the case A = Alb(V”), gives that

Prymy, y ~k ker(id +5 +--- + 5" - Alb(V') = Alb(V"))".

O

Now, we are ready to generalize the theorem (?7?) and its corollary (?7)
as follows. Let A/k be an Abelian variety, s > 2 be an integer and assume
that 0 : A — A is an automorphism of order s. Let 7w : V! — V be a cyclic
s-cover of irreducible quasi-projective varieties, both as well as 7 defined
over k such that (char(k),s) = 1. Denote K := k(V), L := k(V') and let
G := () be the cyclic Galois group of the Galois extension L|K which has
order s. Let b = (b,) € Z'(G, Aut(A)) defined by by = id and b; = o7,
for each 77 € G. Denote by A, the twist of A with the 1-cocycle b. The
following theorem describes the Mordell-Weil group of K-rational points
on Ay.

Theorem 3.4.2. Assume that there exist a simple k-rational point v €
V'(k). Then we have an isomorphism of Abelian groups:

Ay(K) = Homy,(Prymy. y, A) © Als|(k),
where A[s](k) denote the Abelian group of k-rational s-division points.
Proof. First, we recall that
A(L) = {k-rational maps V' — A } = Homy(Alb(V"), A) & A(k),

where P € A(L) corresponds to the pair (A, ¢) € Homg(Alb(V’), A) & A(k)
such that P(v') = A(iy:(v')) 4+ ¢ for each v € V’'. See the theorem 4
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in chapter II in [?] for more details. Here we assume that iy : V' —
Alb(V’) maps v} to the origin of Alb(V’) so that iy is defined over k.
This implies that the action of v/ € G is given by 7/(\,¢) = (Ao 7/, ¢),
for 7 =0,---,s— 1, where 7 is the automorphism of the Albanese variety
Alb(V’) induced by v € Aut(V’). Since v* = id and hence 7° = id, so using
the equalities (?7), we have

Ay(K)={Pe A(L):b,- “(P) = P},
which implies that (), ¢) € Ay(K) if and only if
YA )= (NoA,c) = (Ao c) =~ (\c).

Thus, (A, ¢) € Ay(K) if and only if o annihilates Im(id + 5 + - -+ + 371
and ¢ € A[s](k). Therefore, we obtain the desired isomorphism

Ap(K) = Homy (Prymy. -, A) & Als|(k).
O

Corollary 3.4.3. Assume that Prymy, y is k-isogenous with A" x B for
some positive integer n, where A and B are Abelian varieties defined over
k such that dim(B) = 0 or dim(B) > dim(A) and none of irreducible
components of B is k-isogenous to A. Supposing, furthermore, that

Als|(k) = {O}, then
rk(Ap(K)) > n - rk(Endg(A)).
Proof. By the above theorem and using the assumptions, we have

Ap(K) = Homy (Prymy, i, A) @ Als](k)
= Homy (A" x B, A) @ Als|(k)
= Homy (A", A) @ Homy(B, A) @ A[s](k)
= (Endi(A))" & Homy(B, A) & Als](k).

Therefore, as Z-modules, we have rk(Ay(K)) > n - rk(End(A)). O

Given integer s > 2, let m; : V) — V; (i = 1,2) be s-covers of
irreducible quasi-projective varieties, v; € Aut(V;) be an automorphism
of order s, all defined over k such that (char(k),s) =1, and let G; = ()
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be the corresponding Galois group. Let 4; is the automorphism of the
Albanese variety Alb(V/) induced by ~; € Aut(V/), for i = 1,2. We
consider the Galois cover m x mo @ V/ x VJ — Vi x V5 whose Galois
group is Gy X Gy = Z/sZ x Z/sZ, and we assume that W is its
intermediate cover V] x V4 /G, where G is the cyclic group generated by
v = (71,72) € Aut(V{ x VJ). Let 4 = (91,72) be an order s automorphism
in Aut(Alb(V{) x Alb(V3)) corresponding to v. With these notations, we
have the following proposition.

Proposition 3.4.4. Assume that there exist k-rational points v, € V/(k)
fori=1,2. Then there is a k-rational isogeny of Abelian varieties:

Prymys vy w ~k Prymy: y, X Prymyy y,.
Proof. For simplicity, let g = id+5+---+5* ! and p; = id+7; +- - -+’yf’1
for i = 1,2. Using the lemma (??), it is enough to show that

ker ()~ ker(u1)® x ker(us)°.

In order to show this, we recall that there exists a k-rational isomorphism

¢ := Alb(V]) x Alb(V3) — Alb(V] x VJ)),
given by ¢ = @1 + @2, where ¢; : Alb(V/) — Alb(V/) x Alb(Vy) is the
induced by the inclusion map ¢; : V/ — V{ x Vi given by ¢1(v) = (v, v})
and ¢y(v) = (v}, v). By this isomorphism, we have

ker(pe) ~k ker(p1) x ker(pz),

which implies that

ker(p)® ~p ker(ug)° x ker(pus)°.

Therefore, applying the lemma (?7) gives the desired result

Prymy, vy ~k ker(u)® ~y ker(ug)° x ker(pg)°
~ Prymy, ;. X Prymy, y,.
[]
In the next sections, using the corollary (??) and the proposition (77),

we are going to find s-cover w : V' — V whose Prym variety has a high

power of the Jacobian of a super-elliptic curve. This will give us certain
Abelian variety defined over K = k(V') with large Mordell-Weil rank.
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3.5 An application of the main result

Let s > 2 be an integer and assume that k is sufficiently large field with
(char(k),s) = 1 so that it contains a primitive s-th root of unity, which
is denoted by ¢. For a fixed polynomial f(z) = 377 _jaja"7 € k*[z] of
degree r > s, let C, s be the super-elliptic curve defined by the affine
equation y* = f(x).* The curve C, s admits an order s automorphism
t: (z,y) = (x,( - y). Consider m copies of Cs s and for each of these
copies write CS}, the super-elliptic curve defined by the affine equation
yi = f(z;), for 1 < i < m. Denote C,, := [[i}; Cs}, which can be
expressed by the equations y? = f(z;), for i = 1,--- ;m. For each of the
curves CS}, denote by ¢; the corresponding automorphism. Consider the
cyclic subgroup G = (), where v := (¢1,- -+ , ;) € Aut(C,,), and define

V., :=C,,/G. Let L be the function field of C,,, i.e.,

L= k(x17x27“' y Tmsy Y1, Y2, - - - 7ym)7

where x1, 9, -+, x,, are independent transcendentals and each y; defines
a degree s extension by the equation y; — f(x;) = 0. Then, K := k(V,,)
the function field of V,, is the invariant elements of L by the action of G,
ie.,

K =L%= k(@i @m0 505 Y1),
Since (v 'yis1)® = f(z1)* ' f(zs11) holds for i = 1,---,m — 1, so by
assuming z; := y; ‘w41 the variety V,, is given by the equations

2f = flz) f(zi) i=1,--- ,m—1). (3.5.1)

Note that L|K is a cyclic extension of degree s determined by the yj =

f(fUl);
L=K(y) =k, Tm 21, 5 2m1) (1)

Let Cf ! denotes the twist of Cs y by the extension L|K. In a similar way as

in the corollary 3.1 in [?], one can check that Ci s is defined by the affine
equation

fla) ™y = f(a). (3.5.2)

*The reason for taking f with all coefficients in k* will be described in the remark (?7?).
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Moreover, the twisted curve Ci  contains the K-rational points:
Py = (z1,1/y{7%) and P, := (2441, ¥is1/y; ") for (1 <i<m—1). (3.5.3)

Remark 3.5.1. The construction of the varieties C,, and V,, generalizes
the unified method of [?], which is used to find elliptic curves of high rank
having a given set of algebraic numbers as x-coordinates of generators of
their Mordell-Weil group.

Let b = (b,) € Z'(G, Aut(J(Csf)) defined by bjq = id and b, =
each 7/ € G, where J(C; f) is the Jacobian variety of Cs ¢ and 7 : J(Cs ) —
J(Cs.r) is the automorphism induced by ¢ : Cs f — Cs . Denote by J(Cs f)p
the twist of J(Cs ) with the 1-cocycle b. By the last argument in the
first section, one has J(Cs )y = J (Cf 1)- The relation between J(Cs f) and
the Prym variety of the covering C,, — V,, is given by the following

’, for

proposition, which is used in the proof of the next theorem.

Proposition 3.5.2. Assume that there exists c € Cs (k). Then there exists
an k-isogeny of Abelian variety:

Prymc, v, ~k H Prymcg;/]?l = H J(Cg}), (3.5.4)
i=1 ’ i=1
where J(Cél}) = J(Cst) for eachi=1,--- m.

Proof. It is a well known fact that the Albanese and Jacobian varieties of
curves are coincided. Applying the lemma (?7) for V' = C’S} = Cs,r and
V = P! gives that

L J(Cy)
Cor/®' Im(id + 7+ -+ + 571

Prym ~pker (id+ T4+ 771)°
Since 0 = id — i* = (id — 1) (id + T+ --- + * 1) and id # I, so we have
0=id+i+ -+ € End(J(C})) = End(J(Csy)),

which implies that Prym =J (C(i)) and hence

¢l /et s.f
Alb(C,,) = [T AbCY)) = T 7(cl.
i=1 =1
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Let ¢; € Aut(CS}) be an order s automorphism and 7; € Aut(J (C’S})) be

the induced automorphism by ¢;, for each ¢ = 1,--- ,m. We recall that
there exists a k-rational isomorphism

o= ]I -],
=1 =1

given by ¢ = 1 + -+ + &y, where &; : J(CL'}) — AIb(C,) T, J(CY)) s
the induced by the inclusion map

¢ZC§?}_>Cm:HCS}’ PZ'_>¢2(P2) — (07'” 7Pi7”' 76)7
=1

where ¢ € Cél}(k) By this isomorphism, the automorphism ~ :=
(1, ,tm) of Cy, corresponds to ¥ = (i1, , i) in [[11 Aut(J(Cg})).

Then, we have

ker(id + 7 + -+ 771~ | [ Rer(id + i+ - +371),
i=1

which implies that

m
ker(id + 5/ 4+ 4 ,~y8—1)o ~ err(zd + i+ Zf_l)o,
1=1

Therefore, applying the lemma (?77?) gives that

Prymg, v, ~k ker(id +5 + - +5°71)°

m
~p err(id /B RIS
i=1

~k H Prymgo p = H J (Céf})'
i=1 j=1
]

Denote by Q1, - - - , @, the image of the points Py, - - - , P, given by (77)
under the canonical embedding of Ci y into J (Cﬁ 1)- The following theorem
describes the group of K-rational points on the Jacobian variety J (Cf f),
and gives a lower bound for its Mordell-Weil rank. We note that the case
s =2 and m = 1 gives the theorem (?77).
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Theorem 3.5.3. Assume that there exists ¢ € C, s(k) and let J(Cs ¢)[s](k)
be the group of k-rational s-division points in J(Csf). Then we have an
isomorphism of Abelian groups:

J(C5 )(K) = (Endy(J(Cop))" @ J(Cap)s] (k).
Assuming that J(Cs ¢)[s|(k) is trivial group, we have
Th(J(C ) (K)) = m - th(End(J(Cy 1)),

and the points Qq,--- , Q. belong to the set of independent generators of
J(CE ) (K).

Proof. This is consequence of the theorem (??7) and its corollary (?7?)
together with the proposition (?7). Indeed, it is enough to consider the
varieties V' = C,,, V = V,,,, and A = J(C; ) where C;  is a supper-elliptic
curve given by affine equation y* = f(x). Tracing back the isomorphisms
in the proof of the corollary (??7), shows that the points Q1,- - - , @, belong
to the set of independent generators of .J (C§ ). O

The following corollary is an immediate consequence of the above
theorem.

Corollary 3.5.4. Assume that Endi(J(Csyr))) = Z and there exists a
rational point ¢ € Cs s(k). Then the Mordell-Weil rank of J(Cf;f)(K) ism,
where K 1is the function field of V,,, and its generators are the canonical
image of the points P;’s given by (??7) in the Jacobian variety J(C§7f),

Since the varieties C,, and V,, are defined by a fixed polynomial f &€
k*[z], so if we suppose that f(v) = Y77 a2’/ € k*[2] is an arbitrary
element, then the function field of C,, and V,,, are respectively

L = k(g;lj... ;$m>(a0,"‘ Sy Y1, ,ym),and

K’:k(wl’... ’xm)(ao’... )a/szla"' ’Zm)7
where L'|K' is a cyclic extension of degree s given by y; = f(x1).
Thus, intersecting V,, with the hyperplanes 1 = oy and z;.1 = «;

gives a new variety W,, defined by the following m — 1 equations, 2] =
flag)f(ass1) (1 = 1,---,m — 1), regarded as a sub-variety in the
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projective space ]P’g“”" with coordinates ag,--- ,a,, 21, , Zm—1. In what
follows, we will show that the variety W, is k-birational to a r-dimensional
complete intersection variety. Assume that kg is a field containing a
primitive s-th root of unity, denoted by (, where s > 2 is an integer.
Given integers 2 < s < r < n and a fixed sequence B = {«;}:2, of pairwise
distinct elements of ko, let B, := {ag, a1, -+ ,a,} and define a projective
sub-variety X,, of P} by the equations

1 1 --- 1 1
oy a1 o oy oy
=0, (r<i<n). (3.5.5)
oy of o
Yo ¥p oo Y7 ¥

Following theorem shows a basic properties of the varieties X,,, such as
its smoothness and being varieties of general type for large enough n.

Theorem 3.5.5. Given integers 2 < s < r < n, we have:

(1) The wvariety X,, is a smooth (s,---,s)-complete intersection of

dimenston r;

(11) The canonical sheaf of X, is O((s — 1)n — (sr +1)). Hence X,, is a
smooth variety of general type in P} if n > N, where

N :=[(sr+1)/(s—1)]+ 1.

Proof. Using the definition equations X,, and the Jacobian criterion one
can see that X, is a smooth (s,--- ,s)-complete intersection varieties of
dimension r. By the exercise (I1.8.4.e ) or applying theorem (I11.8.20) in [?]
repeatedly gives that the canonical sheaf of X, is

O(sin—r)—n—1)=0((s — 1)n— (sr+1)).

Therefore, X,, is a smooth variety of general type for any n > N7, with N/
defined as above. ]

We will use the following lemma in the proof of the next result.
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Lemma 3.5.6. Let m and n (m < n) be integers and by, - - - , b, be column
vectors of size m, with entries in a field of characteristic zero. Suppose that
any m vector of these are linearly independent. Then the following three
conditions are equivalent:

bO bl bnfl bn
)=m

Up Ur -+ Up—1 Up

(i) rank( [

by b1 -+ by b

Up U -+ Um—-1 U

(ii) Fori=m,m+1,--- n, =0.

by b; bii -+ bim_1 b;

Uy Ui Ui41 - Uj,—1 Yy

(i4i) Fori=1,2,--- . n—m+1, =0.

Proof. This is the lemma (3.1) in [?]. O

Proposition 3.5.7. For any [Yy: Yy :---:Y,] € X,,, we have
#{i:Yi=0} <

Proof. Let 19 be an index such that Y; # 0. By definition of X,,,

1 1 -+ 1 1

oy 1 -+ Op Q4

T T
&O al DR &

fori =r+1,--- ,n. Hence, using the lemma (?7) with m = r+ 1, we have

1 1 | |
Gy Q1 Qg - Oy
rank(|--- ... .. 1 o) =r+1. (%)
046 a’l" ag e o
Y VP YS - Y

Now, if we suppose that #{i : Y; = 0} > r, then there exist r + 1 indexes

i1, ,ip41 such that Y; = -+ = = 0. Thus, the (r +2) x (r + 2)

ir-{-l
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sub-matrix of the above matrix consisting of the 41—, -+ ,7,1-th columns
has the following form

1 1 1
Qg Qg A,y
)
r r r
CE’L.O aZl Z'rJrl
YP 0 -+ 0
e O —

whose determinant does not vanish, because Y;, # 0. DBut, this is a
contradiction to (*) by the lemma (77). O

The following theorem gives a relation between the varieties W,, 1 and
X

Theorem 3.5.8. For every n > r, the variety W1 s k-birational to X,,.

Proof. For integers n > r, we have a rational map ¢ : W, 1 — X,, defined
by

lag: - rap:zr -z [flag) s 2100 2,
where f(z) := Y77y a;z"7. It admits an inverse ¢~ : X, — W4 given
by

. . . . . ys—1 . . vs—1
Yo: Y] [ao;-a: YYDt YUY, - DY,
where ay,--- ,a, and D, are as follows
1 1 1 1
1 r ... 1 1
(7)) (051 (7% O
(7)) a1 Ay (07
a/o:: .« o [N s RN I ,a/2::— )
r—1 r—1 r—1 r—1(’
r—1  _r—1 r—1 -1 Gy X I A
« « « (o% X
0 1 T 7 CKT 067 . ar ar
5/05 }/15 Ys Ys 0 1 r 2
r ? S S S S
Vi Ye o VP Y,
1 1 1 1
) ) 11 1
oy 071 o, Q;
r—1 oy (7 Q)
70’7“:(_1) 7D7”:
T T r T
Gy Qg Q, o o o a’
s s s s 0 1 T
Vi Y e YR Y,
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Remark 3.5.9. Let ag, a1, ,a, and D, be as in the proof of the theorem
(7?). Then D, # 0, because it is the determinant of a Vondermonde
matriz. Using the proposition (?77), one can conclude that a; # 0, for
j=0,---,r. This is the reason for considering the polynomials f € k*|x]
in defining the varieties V,, and W,,.

3.6 Relation with the results on the powerful values
of polynomials

Given integers 2 < s < r < n and a fixed sequence B = {q;}32, of pairwise
distinct algebraic numbers over number field ky containing a primitive s-th
root of unity, denoted by (, define B, := {ap,a1,---,a,} and suppose
that k is an arbitrary finite extension of ky containing ko(ayg, - - , o). Let
FZ: denote the set of those f € k*[z] such that f(c;) € (k*)* for each
0 <7 < n, ie. there exist some f; € k* such that f(a;) = (7. Let G,lfg
be the subset of ng, whose irreducible factors has multiplicity strictly less
than s. Let ]Dﬁg be the subset of Fffg with zero discriminant. It is clear that
ng\fog C fog, with equality in the case s = 2. We note that ng and

fog are respectively subset of Ff:’:g and fog, which are defined in Chapter
?7?. Fix the integers r and s and for each n > r, denote by S, and D,
the set of all supper-elliptic curves C,  with affine model y* = f(z), with
fe ng and f € ]D)f:g, respectively. Therefore, each supper-elliptic curve
Cs.r € Sy, contains at least n + 1 points with z-coordinates ap, - - , a,. By

the main result of the Chapter 7?7, one can conclude that:

Theorem 3.6.1. Assume the Vojta’s Conjecture (7). Given integers 2 <
s<r, let N:=2r>4+6r ifr = s, and 251>+ sr otherwise. Then there exist
positive constants Cy and Cy such that Cy < #(Sy\Dn) < C1; and hence
for each n > N, we have #(S,\D,,) < C4.

We note that the constants Cy and C4 depend on ay,--- ,ay, k, r and
s, but the integer M only depend on r and s

Theorem 3.6.2. Given integers n > r, there is a one-to-one correspon-
dence between the set S, and the k-rational points on the variety W, 1.
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Proof. For Cyy € S, with an affine model y* = f(z) = >7%_ a;jx’" 7, we
assume that f(«;) = 57 for some f; € k*. Define the map ¢ : §, —
Wn—&-l(k) by

Co.f— Psgi= lag; - -+ 5 ay; 8*151; . 8*1/3”].

Since (857'8:)° = f(w)* 1f(Bi), so the point Ps; belongs to W, (k)
and hence the map 1 is well-defined injective map. Since D,, contains the
supper-elliptic curves C, y with disc(f) = 0, which can be described as an
equation in a;’s, so its image determines a closed set in W, which we
denote it by W, 1.

In order to show that the map 1 is surjective map, we are going to use
the k-birational map ¢ : W, .1 — X,, given in the proof of the theorem
(?7?7). Let X,, C X,, be the image of W, ;1 under the map . The supper-
elliptic curve C, 5 € S, corresponding to P = [Yj : --- : ¥} ] € X,,(k) with
Yy #£ 0, is k-isomorphic to the supper-elliptic curve

CoriDi Yy =apr” + a4 a7+ ap,

which is obtained by expanding the following determinant along the last

column,

1 1 - 1 1

ayp 1 -+ Op X

: 2% =0.

oy af - o "

}/E)S }/'18 . Y;S O
Indeed, the map ¢! : X, (k) — W, 1(k) in the proof of the theorem (?7?),
sends a k-rational point P = [Y;:---:Y,] on X,, to the point

lag:ay: - a, YYD YYDy YEYY, - D) € PV

where ag,aq,---,a, and D, are determined by expanding the above

determinant, as in the proof of theorem (?7?7). Thus, the twist of the
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supper-elliptic curve corresponding to P is Cﬁ gt (v)y® = f(x), where
f(z) =apz" +ax" '+ -+ a,_1x + a,. Since

1 1 -+ 1 1 1 1 - 1 0
ap Q1 - Qp Q ap a1 -+ o 0
flag)=— | &+ oo 8 il=— i : | =D, Y7,
ap Ay - o ay o -+ a. 0
17D GURRRES S R I 7 I GRS G 7

SO Cif is given by (D,-Y5)* 1y* = f(x). Hence, the map (2/,y') — (2, y'Y))
provides a k-isomorphism of Ci s to Cif It Note that the points P € X,
are exceptional for creating a smooth supper-elliptic curves, because such
points correspond to a polynomial with zero discriminate in D,,. Therefore,
the map v is a bijection map. H

Remark 3.6.3. The point P € X,, are exceptional for creating a smooth
supper-elliptic curves, because such points correspond to a polynomial with
zero discriminate by the map ¢ defined in the proof of the theorem (77).

Theorem 3.6.4. Assume the Vojta’s Conjecture (7). Suppose that kqy is
a number field containing a primitive s-th root of unity. Given any integers
2<s<r,let N :=2r’4+6r ifr = s, and 257+ sr otherwise. Assume that
k is an arbitrary finite extension of ko containing ko(ag, -+ ,an). Then,
there exist positive constants Cy and C7 such that

Co < # Wy \Wni1)(k) = #(Xn1\Xnp1) (k) < Ch,
and hence for each n > N, we have #(W,11\Wp11) = #(X,,\X,,) < Ch.

Proof. By theorem (?7?), given integers 2 < s < r < n, we know that X,
is a variety of general type for all n > [(sr +1)/(s — 1)] + 1. Since the
integer N defined as above is large than [(sr+1)/(s —1)]+1,s0 X, is a
variety of general type for all n > N. By theorem (?7?)), the variety X,, is
k-birational to W, 1, which is in one-to-one correspondence to the set S,
by theorem (?7?). Thus, by theorem (?7?), there exist positive constants C
and C] such that

Co < # (Wit \Whi1)(k) = #(Xn 1\ Xns1) (k) < C,
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and hence for each n > N, we have (W, 1\W,11) = #(X,\X,,) < (4,
where W, and X, are defined as in the proof of the theorem (?7) for each
n>r. []

The above theorem shows that the Vojta’s Conjecture implies the
following conjecture due to Bombieri-Lang for the varieties W,,.; and X,,
for n > N, where N is as in the above theorem.

Conjecture 3.6.5. (Bombieri-Lang) Let X be a smooth projective
algebraic variety of general type, defined over a number field ky. Then
there exists a proper Zariski-closed subset Z of X such that for all number
fields k containing ko, the set (X\Z)(k) is finite.
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