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t́ıtulo de Doutor em Matemática.
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”Toda a lei se resume num só mandamento: Ame o seu próximo como
a si mesmo”
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Felipe, pela amizade, pelos momentos juntos, conversas, divertimentos,
pelo amor que inspira, pelas lutas e alegrias juntos, que me fortaleceram
para fazer este trabalho, pelo companheirismo e abraços, e beijos, vocês
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Abstract

We define arithmetical and dynamical degrees for dynamical systems with several
rational maps on projective varieties, study their properties and relations, and prove
the existence of a canonical height function associated with divisorial relations in the
Néron-Severi Group over Global fields of characteristic zero, when the rational maps
are morphisms. We define canonical heights on projective varieties over Number
fields for systems of several rational maps, show cases where points of height zero
might lie in a non-dense set, and exhibit effective lower bounds for heights of points
with dense orbit in the torus, with the bounds depending on the arithmetic of the
points and on the maps. We study variation of Kawaguchi’s canonical height on
families of varieties and how to see its local components as intersection numbers.

Keywords: Canonical Heights, Rational Points, Preperiodic Points, Weil Local
Heights, Algebraic Varieties, Multiplicative groups, Rational Maps, Lower Bounds.
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Introduction

Weil heights play one of the key roles in Diophantine geometry, and particular Weil
heights that enjoy nice properties, called canonical heights, are sometimes of great use.
The theory of canonical heights has had profound applications throughout the field of
Arithmetic geometry.

Over abelian varieties A defined over a number field K, Néron and Tate constructed
canonical height functions ĥL : A(K̄)→ R with respect to symmetric ample line bundles
L which enjoy nice properties, and can be used to prove Mordell-Weil theorem for the
rational points of the variety. More generally, in [9], Call and Silverman constructed
canonical height functions on projective varieties X defined over a number field which
admit a morphism f : X → X with f ∗(L) ∼= L⊗d for some line bundle L and some d > 1.
In another direction, Silverman [31] constructed canonical height functions on certain K3
surfaces S with two involutions σ1, σ2 (called Wheler’s K3 surfaces) and developed an
arithmetic theory analogous to the arithmetic theory on abelian varieties.

It was an idea of Kawaguchi [16] to consider polarized dynamical systems of several
maps, namely, given X/K a projective variety, f1, ...fk : X → X morphisms on defined
over K, L an invertible sheaf on X and a real number d > k so that f ∗1L ⊗ ... ⊗ f ∗kL ∼=
L⊗d, he constructed a canonical height function associated to the polarized dynamical
system (X, f1, ..., fk,L) that generalizes the earlier constructions mentioned above. In the
Wheler’s K3 surfaces’ case above, for example, the canonical height defined by Silverman
arises from the system formed by (σ1, σ2) by Kawagushi’s method.

This context provides a short glimpse of a connection between two areas of
mathematics, Number Theory and Dynamical Systems. Many of the motivating theorems
in the new subject of Arithmetic Dynamics may be viewed as the transposition of classical
results in the theory of Diophantine equations to the setting of discrete dynamical systems.
We can start associating rational and integral points on varieties with rational and
integral points on orbits, in particular associating torsion points on abelian varieties
with periodic and preperiodic points of rational maps. The works listed in the last
paragraphs above deal mainly with dynamics in dimension greater than one, where there
is an abundant variety of varieties that can admit self-maps of infinite order even in
dimension 2, imperfectly understood. On the other side, the only self-maps of a curve
of genus greater than 1 are automorphisms of finite order. This thesis is concerned
with dynamics in dimension greater than one, and dynamics associated to algebraic
groups, which can provide important examples and testing grounds for general results
in arithmetic dynamics.

Given X/C smooth projective variety, f : X 99K X dominant rational map inducing
f ∗ :NS(X)R →NS(X)R on the Néron-Severi group, the dynamical degree is defined as

δf := limn→∞ ρ((fn)∗)
1
n , where ρ denotes the spectral radius of a given linear map, or the

biggest number among the absolute values of its eigenvalues. This limit converges and is
a birational invariant that has been much studied over the past couple of decades. In [18]
we find a list of references.
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In [18], Kawaguchi and Silverman studied an analogous arithmetic degree for X and
f defined over Q̄ on points with well defined foward orbit over Q̄. Namely, αf (P ) :=

limn→∞ h
+
X(fn(P ))

1
n , where hX is a Weil height relative to an ample divisor and h+

X =
max{1, hX}. Such degree measures the arithmetic complexity of the orbit of P by f , and
logαf (P ) has been interpreted as a measure of the arithmetic entropy of the orbit Of (P ).
It is showed in [18] that the arithmetic degree determines the height counting function
for points in orbits, and that the arithmetic complexity of the f -orbit of an algebraic
point never exceeds the geometrical-dynamical complexity of the map f , as well as more
arithmetic consequences. We could ask if this kind of research could be done in the setting
of general dynamical systems as treated by Kawagushi, with several maps, as in the case
of Wheler’s K3 surfaces. This is the first subject found in this thesis.

Given X/K be a projective variety, f1, ..., fk : X 99K X rational maps, Fn = {fi1 ◦
... ◦ fin ; ij = 1, ..., k}, we define a more general dynamical degree of a system of maps

as δF = lim supn→∞maxf∈Fn ρ(f ∗)
1
n , and extend the definition of arithmetic degree for

αF(P ) = 1
k

limn→∞{
∑

f∈Fn h
+
X(f(P ))} 1

n , obtaining also the convergence of δF , and that

αF(P ) ≤ δF when αF(P ) exists, all done in the first chapter. Still in it, motivated by
[18], we give an elementary proof that our new arithmetic degree is related with height
counting functions in orbits, when αF(P ) exists, by:

limB→∞
#{n ≥ 0;

∑
f∈Fn hX(f(P )) ≤ B}

logB
=

1

log(k.αF(P ))
,

lim infB→∞(#{Q ∈ OF(P );hX(Q) ≤ B})
1

logB ≥ k
1

log(k.αF (P )
)
.

We are able to extend theorem 1 of [18], showing explicitely how the dynamical degree
of a system with several maps can offer an uniform upper bound for heights on iterates
of points in orbits, when K is a number field or an one variable function field. Precisely,
for every ε > 0, there exists a positive constant C = C(X, hX , f, ε) such that for all
P ∈ XF(K̄) and all n ≥ 0,∑

f∈Fn h
+
X(f(P )) ≤ C.kn.(δF + ε)n.h+

X(P ).

In particular, h+
X(f(P )) ≤ C.kn.(δF + ε)n.h+

X(P ) for all f ∈ Fn.
This theorem becomes a tool to show the second very important theorem of the first

chapter. As we have seen, for a pair (X/K, f1, ..., fk, L) with k self-morphisms on X over
K, and L a divisor satisfying a linear equivalence ⊗ki=1f

∗
i (L) ∼ L⊗d for d > k, there is

a well known theory of canonical heights developed by Kawaguchi in [16]. Now we are
partially able to generalize this to cover the case that the relation ⊗ki=1f

∗
i (L) ≡ L⊗d is

only an algebraic relation. Hence the limit

ĥL,F(P ) = limn→∞
1

dn
∑

f∈Fn hL(f(P )).

converges for certain eigendivisor classes relative to algebraic relation. For L ample and
K a number field, we obtain that :

ĥL,F(P ) = 0 ⇐⇒ P has finite F -orbit.

These kind of generalization was firstly done for just one morphism by Silverman in [18],
extending his own theory of canonical heights in [9], and we work out for several maps in
the present work.

After this, one can ask when it is possible to define a general canonical height
function on a projective variety X for a dynamical system with several rational maps
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that eventually are not all morphisms, and when that can be done without an algebraic
equivalence identity previously exposed. Inspired by the work [29] of Silverman, we
propose two ways to define a canonical height using a factor of correction in chapter 2,
both generalizing Silverman’s ideas in slightly different forms from each other, on points
with well defined orbit. The first one is

ĥD,F(P ) = lim supn→∞
1

n(lF )knδnF

∑
f∈Fn hD(f(P )),

where lF := inf{l ≥ 0 : supn≥1
ρ(Fn)
nlδnF

< ∞} is the factor of correction, ρ(Fn) :=

maxf∈Fn ρ(f ∗), and D is the divisor defining the Weil height hD. We conjecture the
existence of lF , as was done in [29] with just one map.

Conjecture A: lF exists.

For the above height, we easily have that ĥD,F(P ) = 0 for P ∈ Preper(F). However

the reciprocal is already false for k = 1. From the other side, if ĥD,F(P ) > 0, we prove
δF = αF(P ). In various cases, δF appears as root of a characteristic polynomial, which
takes us to generalize a conjecture made for just one map in [29], which is

Conjecture B: {αF(P )|P ∈ XF(K̄)} is a finite subset of the ring of algebraic numbers
OK.

The second proposed height function is

ĥD,F(P ) = lim supn→∞
1

n(lF )δnF

∑
f∈Fn hD(f(P )).

We study this second height for rational maps on the projective space arising from
endomorphisms of the multiplicative group. We define and consider a class of dynamical
systems of this kind whose dynamical degree can be calculated as if we had just one map
in the system. Doing so, we can show, as it was done by Silverman in [29] for just one
monomial map, that the points with canonical height zero lie in a set that is not Zariski
dense. We show that the orbit of a point with canonical height zero is not Zariski dense
in this case, and that, under some conditions on the characteristic polynomials of the
matrices inducing the monomial maps, it is true now that

ĥD,F(P ) = 0 if and only if the orbit OF(P ) is finite.

According to all this, it follows that a point with Zariski dense orbit might have
positive canonical height. A subsequent natural question then, made by Silverman [29] (
remark 30) for the case with one map, is to ask if one can find explicitely a positive lower
bound for the canonical height of a point that has Zariski dense orbit, where the bound
would depend only on the naive height of the point and on the matrix which induces the
endomorphism. Silverman’s suggestion is to try to use some effective form of the famous
theorem of Alan Baker for such, because he already had used it to prove his previous
related results that had risen the question. In the end of the second chapter we find such
bounds answering this question for the case where the initial matrix has real eigenvalues.
For this, we use an algorithm to find Jordan normal forms in [25], and an effective form
of Baker’s theorem due to Philippon and Waldschmidt. As Silverman predicted, we see
that the bigger the naive height of the point is, the smaller the calculated constants will
be.

As a canonical height, it is known that Kawaguchi’s height is, up to a constant, equal
to a Weil height. In the third chapter we start studying how such bounds can vary
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more explicitely in families of varieties, when for each fiber we associate one canonical
height. This kind of research was made by Silverman and Tate in [30] for families of
abelian varieties, and afterwards by Silverman in [9] for a family of general varieties
and the canonical height developed there. We therefore generalize their results for the
Kawaguchi situation. Namely, for a family π : V → T of varieties with a system Q of
maps φi : V/T 99K V/T and a divisor η satisfying π(|(

⊗k
i=1 φ

∗
i η)−αη|) 6= T . Then on all

fibers Vt for t in a certain T 0, there is a canonical height ĥVt,ηt,Qt , and we ask to bound
the difference between this height and a given Weil height hV,η in terms of the parameter
t. We show that there exist constants c1 and c2 such that

|ĥVt,ηt,(Q)t(x)− hV,η(x)| ≤ c1hT (t) + c2 for all t ∈ T 0 and all x ∈ Vt.

We can find also a kind of local version for the above result. In fact, in theorem 4.2.1 of
[16] Kawaguchi showed that his canonical height can be seen as a sum of local canonical
heights as in the case of abelian varieties. Therefore, we show an estimate for the difference
between the canonical local height and a given Weil height.

When T is a curve, hT is a Weil height associated to a divisor of degree one, P : T → V
is a section, V the generic fiber of V is a variety over the global function field V (K̄(T )),
Pt := P (t), and the section P corresponds to a rational point PV ∈ V (K̄(T )), we show
that

limhT (t)→∞,t∈T 0(K̄)

ĥVt,ηt,(Q)t(Pt)

hT (t)
= ĥV,ηV ,(Q)V (PV ),

generalizing a result of Silverman in [9].
The third and last chapter is also place for an analysis of canonical local heights for

non-archimedean places in the context of intersection theory. Inspired in the final section
of [9], this theme was already discussed for abelian varieties. We work out with system
of several maps again. We prove more generally that if V has a model V over a complete
ring Ov such that every rational point extends to a section and such that k morphisms
φi : V → V extend to finite morphisms Φi : V → V , then the canonical local height of
Kawagushi is given by an intersection multiplicity on V . For such generalization, we use
Frobenius-Perron theory on eigenvalues of matrices.

In the appendix, we point out that the admissible metric, defined by Kawaguchi in
[16] for a dynamical system of maps associated to a bundle, does not change if we start
with another dynamical system that has maps commuting with the maps of the first
system, and that are associated with the same divisor by a similar divisorial relation.
The canonical measures risen by both systems would then be the same as well, and the
main results of [26] are now in a more general setting.
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Chapter 1

The dynamical and arithmetical
degrees for eigensystems of rational
self-maps

We study the existence of a canonical height function of points in projective varieties for
several morphisms, defined with motivation in the height constructed by S. Kawaguchi in
[16], but now with algebraic equivalence hypothesis, instead of linear equivalence. This
also generalizes Kawaguchi’s work with J. Silverman for systems with only one morphism,
which was done in [18]. With this purpose, we define the arithmetical and dynamical
degrees of eigensystems of self-rational maps, study some properties and connections of
these degrees with orbits of points, and find a bound for summed heights of iterates of a
point depending on such dynamical degree.

1.1 Notation, and first definitions

Throughout this chapter, K will be either a number field or a one-dimensional function
field of characteristic 0 . We let K̄ be an algebraic closure of K. The uple (X, f1, ..., fk) is
called a dynamical system, where either X is a smooth projective variety and fi : X 99K X
are dominant rational maps all defined over K, or X is a normal projective variety and
fi : X 99K X are dominant morphisms.

We denote by hX : X(K̄) → [0,∞) the absolute logarithmic Weil height function
relative to an ample divisor A of X, and for convenience we set h+

X(P ) to be
max{1, hX(P )}.

The sets of iterates of the maps in the system are denoted by F0 = {Id},F1 = F =
{f1, ..., fk}, and Fn = {fi1 ◦...◦fin ; ij = 1, ..., k}, inducing what we call OF(P ) the forward
F -orbit of P={f(P ); f ∈

⋃
n∈NFn}. A point P is said preperiodic when its F -orbit is a

finite set.
We write Ifi for the indeterminacy locus of fi, i.e., the set of points which fi is not

well-defined, and IF for
⋃k
i=1 Ifi . Also we define XF(K̄) as the set of points P ∈ X(K̄)

whose forward orbit is well-defined, in other words, OF(P ) ∩ IF = ∅.
The set of Cartier divisors on X is denoted by Div(X), while Pic(X) denotes The

Picard group of X, and NS(X) = Pic(X)/Pic0(X) is called the Neron-Severi Group of
X. The equality in this group is denoted by the symbol ≡, which is called algebraic
equivalence.

Given a rational map f : X 99K X, the linear map induced on the tensorized Néron-
Severi Group NS(X)R = NS(X)⊗R is denoted by f ∗. So, when looking for a dynamical
system (X,F), it is convenient for us to use the notation ρ(Fn) := maxf∈Fn ρ(f ∗,NS(X)R).
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For definitions and properties about Weil height functions, we refer to [14].
Next, we define the dynamical degree of a set of rational maps on a complex variety,

which is a measure of the geometric complexity of the iterates of the maps in the set,
when it exists. This is a generalization for several morphisms of the dynamical degree
appearing as the first definition of [18].

Definition 1.1: Let X/C be a (smooth) projective variety and let F be as above.
The dynamical degree of F , when it exists, is defined by

δF = lim supn→∞ ρ(Fn)
1
n

In this sense, we also generalize the second definition in the introduction of [18],
introducing now the arithmetic degree of a system of maps F at a point P . This degree
measures the growth rate of the heights of n-iterates of the point by maps of the system
as n grows, and so it is a measure of the arithmetic complexity of OF(P ).

Definition 1.2: Let P ∈ XF(K̄). The arithmetic degree of F at P is the quantity

αF(P ) = 1
k

limn→∞{
∑

f∈Fn h
+
X(f(P ))} 1

n

assuming that the limit exists.

Definition 1.3: In the lack of the convergence, we define the upper and the lower
arithmetic degrees as

ᾱF(P ) = 1
k

lim supn→∞{
∑

f∈Fn h
+
X(f(P ))} 1

n

αF(P ) = 1
k

lim infn→∞{
∑

f∈Fn h
+
X(f(P ))} 1

n

Remark 1.4: Let X be a projective variety and D a Cartier divisor. If
f : X → X is a surjective morphism, then f ∗D is a Cartier divisor. In the case where X
is smooth, and f : X 99K X a merely rational map, we take a smooth projective variety
X̃ and a birational morphism π : X̃ → X such that f̃ := f ◦ π : X̃ → X is a morphism.
And we define f ∗D := π∗(f̃

∗D). It is not hard to verify that this definition is independent
of the choice of X and π. This is done in section 1 of [18] for example.

1.2 Basic properties of the arithmetic degree

In this section we check that the upper and lower degrees defined in the end of the section
above are independent of the Weil height function chosen for X, and so they are well
defined. Some examples of these degrees are computed is this section as well. We also
present and prove our first counting result for points in orbits for several maps, and state
an elementary and useful linear algebra’s lemma.

Proposition 1.5: The upper and lower arithmetic degrees ᾱF(P ) and αF(P ) are
independent of the choice of the height function hX .

Proof. If the F -orbit of P is finite, then the limit αF(P ) exists and is equal to 1, by
definition of such limit, whatever the choice of hX is. So we consider the case when P is
not preperiodic, which allows us to replace h+

X with hX when taking limits.
Let h and h′ be the heights induced on X by ample divisors D and D′ respectively, and

let the respective arithmetic degrees denoted by ᾱF(P ), αF(P ), ᾱ′F(P ), α′F(P ). By the
definition of ampleness, there is an integer m such that mD −D′ is ample, and thus the
functorial properties of height functions imply the existence of a non-negative constant C
such that:

7



mh(Q) ≥ h′(Q)− C for all Q ∈ X(K̄).

We can choose a sequence of indices N ⊂ N such that:

ᾱ′F(P ) = 1
k

lim supn→∞{
∑

f∈Fn h
′(f(P ))} 1

n = 1
k

limn∈N{
∑

f∈Fn h
′(f(P ))} 1

n

Then

ᾱ′F(P ) = 1
k

limn∈N{
∑

f∈Fn h
′(f(P ))} 1

n

≤ 1
k

limn∈N{
∑

f∈Fnmh(f(P )) + C} 1
n

≤ 1
k

lim supn→∞{
∑

f∈Fnmh(f(P )) + C} 1
n

= 1
k

lim supn→∞{m(
∑

f∈Fn h(f(P ))) + Ckn} 1
n

= 1
k

lim supn→∞{
∑

f∈Fn h(f(P ))} 1
n

= ᾱF(P )

This proves the inequality for the upper arithmetic degrees. Reversing the roles of h and
h′ in the calculation above we also prove the opposite inequality, which demonstrates that
ᾱF(P ) = ᾱ′F(P ). In the same way we prove that αF(P ) = α′F(P ).

Our next lemma says that points belonging to a fixed orbit have their upper and lower
arithmetic degrees bounded from above by the respective arithmetic degrees of the given
orbit generator point.

Lemma 1.6: Let F = {f1, ..., fk} be a set of self-rational maps on X defined over
K̄. Then, for all P ∈ XF(K̄), all l ≥ 0, and all g ∈ Fl,

ᾱF(g(P )) ≤ ᾱF(P ) and αF(g(P )) ≤ αF(P )

Proof. We calculate

ᾱF(g(P )) = 1
k

lim supn→∞{
∑

f∈Fn h
+
X(f(g(P )))} 1

n =

1
k

lim supn→∞{
∑

f∈Fn,g′∈Fl h
+
X(f(g′(P )))−

∑
f∈Fn,g′∈Fl−{g} h

+
X(f(g′(P )))} 1

n

≤ 1
k

lim supn→∞{[
∑

f∈Fn+l
h+
X(f(P ))] +O(1).kn+l} 1

n

= 1
k

lim supn→∞{
∑

f∈Fn+l
h+
X(f(P ))} 1

n

= 1
k

lim supn→∞{
∑

f∈Fn+l
h+
X(f(P ))}

1
n+l

.(1+ l
n

)

= 1
k

lim supn→∞{
∑

f∈Fn+l
h+
X(f(P ))}

1
n+l

= ᾱF(P )

The proof for αF(P ) is similar.
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Here are some examples:

Example: Let S be a K3 surface in P2 × P2 given by the intersection of two
hypersurfaces of bidegrees (1,1) and (2,2) over Q, and assume that NS(S) ∼= Z2, generated
by Li := p∗iOP2(1), i = 1, 2, where pi : S → P2 is the projection to the i-factor for i = 1, 2.
These induce noncommuting involutions σ1, σ2 ∈ Aut(S). By [31, Lemma 2.1], we have

σ∗iLi
∼= Li, σ

∗
iLj
∼= 4Li − Lj, for i 6= j.

The line bundle L := L1 + L2 is ample on S and satisfies σ∗1L + σ∗2L
∼= 4L, and thus

h := ĥL,{σ1,σ2} exists on S(Q) by [16, theorem 1.2.1]. Noting that

σ∗1 ∼
[
1 4
0 −1

]
, σ∗2 ∼

[
−1 0
4 1

]
, (σ1 ◦ σ2)∗ ∼

[
−1 −4
4 15

]
, (σ2 ◦ σ1)∗ ∼

[
15 4
−4 −1

]
,

(σ1 ◦ σ2 ◦ σ1)∗ ∼
[

15 56
−4 −15

]
, (σ2 ◦ σ1 ◦ σ2)∗ ∼

[
−15 −4
56 15

]
,

we calculate that

ρ(σ∗1) = 2 +
√

3, ρ(σ∗2) = 2 +
√

3, ρ((σ1 ◦ σ2)∗) = 7 + 4
√

3,
ρ((σ2 ◦ σ1)∗) = 7 + 4

√
3, ρ((σ1 ◦ σ2 ◦ σ1)∗) = 1, ρ((σ2 ◦ σ1 ◦ σ2)∗) = 1.

This gives that δ{σ1,σ2} = 2 +
√

3. Furthermore, since h is a Weil Height with respect to
an ample divisor,

α{σ1,σ2}(P ) = (1/2). limn→∞[
∑

f∈{σ1,σ2}n h(f(P ))]
1
n = 1/2.[4n.h(P )]

1
n = 2

for all P ∈ S(Q̄) non-preperiodic, i.e, P such that h(P ) 6= 0.
Observe that in this case ᾱ{σ1,σ2}(P ) = 2 ≤ 2 +

√
3 = δ{σ1,σ2}, which we will prove in

Corollary 1.16 to be true in our general conditions.

Example: Let S be a K3 surface in P2× P2, as in the example 1.4.5 of [16], given by
the intersection of two hypersurfaces of bidegrees (1,2) and (2,1) over Q, and assume that
NS(S) ∼= Z2, generated by Li := p∗iOP2(1), i = 1, 2, where pi : S → P2 is the projection
to the i-factor for i = 1, 2. These induce noncommuting involutions σ1, σ2 ∈ Aut(S). By
similar computations we have σ∗iLi

∼= Li, σ
∗
iLj
∼= 5Li − Lj, for i 6= j. The ample line

bundle L := L1 + L2 exists on S and satisfies σ∗1L + σ∗2L
∼= 5L, and thus h := ĥL,{σ1,σ2}

exists on S(Q) by [16, theorem 1.2.1]. Proceeding in the same way as in the previous
example, we have that

ᾱ{σ1,σ2}(P ) = 5/2 ≤
√

23 + 5
√

21

2
= δ{σ1,σ2}.

Example: Let S be a hypersurface of tridegree (2,2,2) in P1 × P1 × P1 over Q, as
in the example 1.4.6 of [16]. For i = 1, 2, 3, let pi : S → P1 × P1 be the projection
to the (j, k)−th factor with {i, j, k} = {1, 2, 3}. Since pi is a double cover, it gives an
involution σi ∈ Aut(S). Let also, qi : S → P1 be the projection to the i−th factor, and set
Li := q∗iOP1 , L := L1 + L2 + L3 ample, and we assume that NS(S) =< L1, L2, L3 >∼= Z3.
By similar computations as above we have

σ∗i (Li)
∼= −Li + 2Lj + 2Lk for {i, j, k} = {1, 2, 3}

σ∗j (Li)
∼= Li for i 6= j.

9



Then σ∗1L + σ∗2L + σ∗3L
∼= 5L, which gives us the existence of h := ĥL,{σ1,σ2,σ3} by [16,

theorem 1.2.1]. We note that if h(P ) 6= 0, then a similar computation as in the previous
examples yields α{σ1,σ2,σ3}(P ) = 5/3. While we can also calculate that:

(σ3 ◦ σ2 ◦ σ1)∗ ∼

1 −2 −2
2 3 10
2 6 15


with its big eigenvalue being aproximatelly ρ((σ3◦σ2◦σ1)∗) ∼ 18, 3808. As (18, 3808)1/3 ∼
2, 639, we have that δ{σ1,σ2,σ3} ≥ 2, 63 > 5/3 = α{σ1,σ2,σ3}(P )

Example: Let A be an abelian variety over Q̄, L a symmetric ample line bundle on
A. Let f = (F0 : ... : FN) : PN → PN be a morphism defined by the homogeneous
polynomials F0, ..., FN of same degree d > 1 such that 0 is the only common zero of
F0, ..., FN . Set X = A×PN , g1 = [2]× idPN , and g2 = idA× f. Put M := p∗1L⊗ p∗2OPN (1),
where p1 and p2 are the obvious projections. Then

(d−1) times︷ ︸︸ ︷
g∗1(M)⊗ ...⊗ g∗1(M) ⊗g∗2(M)⊗ g∗2(M)⊗ g∗2(M) ∼= M⊗(4d−1).

This gives us that a canonical height h := ĥ{g1,...,g1,g2,g2,g2} exists by [16, theorem 1.2.1].

Again, if h(P ) 6= 0, then α{g1,...,g1,g2,g2,g2}(P ) =
4d− 1

d+ 2
, and we can also see that

δ{g1,...,g1,g2,g2,g2} = max{δF , δ[2]} = max{d, 4}, which leads also to the same as the previous

examples, since
4d− 1

d+ 2
< max{d, 4}.

The next proposition is a counting orbit points result in the case of a system possibly
with several maps. This result describes some information about the growth of the height
counting function of the orbit of P as given below.

Proposition 1.7: Let P ∈ XF(K̄) whose F-orbit is infinite, and such that the
arithmetic degree αF(P ) exists. Then

limB→∞
#{n ≥ 0;

∑
f∈Fn hX(f(P )) ≤ B}

logB
=

1

log(k.αF(P ))

and in particular,

lim infB→∞(#{Q ∈ OF(P );hX(Q) ≤ B})
1

logB ≥ k
1

log(k.αF (P ))

Proof. Since OF(P ) = ∞, it is only necessary to prove the same claim with h+
X in place

of hX . For each ε > 0, there exists an n0(ε) such that

(1− ε)αF(P ) ≤ 1

k
(
∑

f∈Fn h
+
X(f(P )))

1
n ≤ (1 + ε)αF(P ) for all n ≥ n0(ε).

It follows that

{n ≥ n0(ε) : (1 + ε)αF(P ) ≤ B
1
n

k
} ⊂ {n ≥ n0(ε) :

∑
f∈Fn h

+
X(f(P )) ≤ B}

and

{n ≥ n0(ε) :
∑

f∈Fn h
+
X(f(P )) ≤ B} ⊂ {n ≥ n0(ε) : (1− ε)αF(P ) ≤ B

1
n

k
}

Counting the number of elements in these sets yields
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logB

log(k(1 + ε)αF(P ))
− n0(ε)− 1 ≤ #{n ≥ 0 :

∑
f∈Fn h

+
X(f(P )) ≤ B}

and

#{n ≥ 0 :
∑

f∈Fn h
+
X(f(P )) ≤ B} ≤ logB

log(k(1− ε)αF(P ))
+ n0(ε) + 1

Dividing by logB and letting B →∞ gives

1

log(k(1 + ε)αF(P ))
≤ lim infB→∞

#{n ≥ 0 :
∑

f∈Fn h
+
X(f(P )) ≤ B}

logB

and

lim supB→∞
#{n ≥ 0 :

∑
f∈Fn h

+
X(f(P )) ≤ B}

logB
≤ 1

log(k(1− ε)αF(P ))

Since the choice for ε is arbitrary, and the lim inf is less or equal to the lim sup, this
finishes the proof that

limB→∞
#{n ≥ 0 :

∑
f∈Fn h

+
X(f(P )) ≤ B}

logB
=

1

log(k.αF(P ))

Moreover, we also have that

{n ≥ 0 :
∑

f∈Fn h
+
X(f(P )) ≤ B} ⊂ {n ≥ 0 : h+

X(f(P )) ≤ B for all f ∈ Fn}
and thus

logB

log(k(1 + ε)αF(P ))
− n0(ε)− 1 ≤ #{n ≥ 0 : h+

X(f(P )) ≤ B for all f ∈ Fn}

This implies that

k
logB

log(k(1+ε)αF (P ))
−n0(ε) − 1

k − 1
≤ #{Q ∈ OF(P );h+

X(Q) ≤ B}

Taking 1
logB

-roots and letting B →∞ gives

k
1

log(k.αF (P )) ≤ lim infB→∞(#{Q ∈ OF(P );h+
X(Q) ≤ B})

1
logB .

We finish this section by stating the following elementary lemma from linear algebra.
This lemma will be useful in the following sections.

Lemma 1.8: Let A = (aij) ∈ Mr(C) be an r-by-r matrix. Let ||A|| = max |aij|, and
let ρ(A) denote the spectral radius of A. Then there are constants c1 and c2, depending
on A, such that

c1ρ(A)n ≤ ||An|| ≤ c2n
rρ(A)n for all n ≥ 0.

In particular, we have ρ(A) = limn→∞ ||An||
1
n .

Proof. See [18, lemma 14]
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1.3 Some divisor and height inequalities for rational maps

We let h, g : X 99K X be rational maps, and f ∈ Fn for F = {f1, ..., fk} a dynamical
system of self-rational maps on X. The aim of this section is mainly to prove the next
result below. It states that the action of f ∈ Fn on the vector space NS(X)R is related
with the actions of the maps f1, ..., fk by the existence of certain inequalities. This result
guarantees, for instance, that the dynamical degree converges, and afterwards will also be
important in order to prove that h+

X(f(P )) ≤ O(1).kn.(δF + ε)nh+
X(P ) for all f ∈ Fn. In

order to achieve this goal, we state without proof, at the end of the section, an arithmetic
inequality relating the Weil height functions hX,D ◦ f and hY,f∗D, with X/K̄ and Y/K̄
smooth projective varieties, f : Y 99K X a dominant rational map defined over K̄, and
D ∈ Div(X) be an ample divisor.

Proposition 1.9: Let X be a smooth projective variety, and fix a basis D1, ..., Dr for
the vector space NS(X)R. A dominant rational map h : X 99K X induces a linear map
on NS(X)R, and we write

h∗Dj ≡
∑r

i=1 aij(h)Di and A(h) = (aij(h)) ∈Mr(R).

We let ||.|| denote the sup norm on Mr(R). Then there is a constant C ≥ 1 depending on
D1, ..., Dr such that for any dominant rational maps h, g : X 99K X, any n ≥ 1, and any
f ∈ Fn we have

||A(g ◦ h)|| ≤ C||A(g)||.||A(h)||
||A(f)|| ≤ C.(r.maxi=1,...,k. ||A(fi)||)n.

The proof of this result will be made in the sequel. An immediate corollary of this is
the convergence of the limit defining the dynamical degree.

Corollary 1.10: The limit δF = lim supn→∞ ρ(Fn)
1
n exists.

Proof. With notation as in the statement of proposition 1.9, we have

ρ(Fn) = maxf∈Fn ρ(f ∗,NS(X)R) = maxf∈Fn ρ(A(f))

Denoting ||A(G)|| = maxg∈G ||A(g)||, where ρ(G) := ρ(g) for G dynamical system and
g ∈ G, proposition 1.9 give us that

log ||A(Fn+m)|| ≤ log ||A(Fm)||+ log ||A(Fn)||+O(1)

Using this convexity estimate, we can see that
1

n
log ||A(Fn)|| converges. Indeed, if a

sequence (dn)n∈N of nonnnegative real numbers satisfies di+j ≤ di + dj, then after fixing a
integer m and writing n = mq + r with 0 ≤ r ≤ m− 1, we have

dn
n

=
dmq+r
n
≤ (qdm + dr)

n
=
dm
m

1

(1 + r/mq)
+
dr
n
≤ dm

m
+
dr
n
.

Now take the limsup as n→∞, keeping in mind that m is fixed and
r ≤ m− 1, so dr is bounded. This gives

lim supn→∞
dn
n
≤ dm

m
.

taking the infimum over m shows that

lim supn→∞
dn
n
≤ infm≥1

dm
m
≤ lim infm→∞

dm
m
,
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and hence all three quantities must be equal.
As the sequence (||A(Fn)||1/n)n∈N is convergent and therefore bounded, lemma 1.8

guarantees that the sequence (ρ(Fn)1/n)n∈N is bounded as well.

We also conjecture that the limit limn→∞ ρ(Fn)
1
n exists and is a birational invariant.

The proof for dynamical degrees of systems with only one map given in [12, prop. 1.2]
should be extented naturally for our present definition of degree with several maps. In the
mentioned article, the dynamical degree is firstly defined using currents, and afterwards
such definition is proved to coincide with the one using the limit of roots of spectral radius.
Such result can be worked out in some future paper. Thus, from now on, we assume that

δF := limn→∞ ρ(Fn)
1
n ,

and that it exists.
We start the proof of proposition 1.9 stating the following proposition and lemmas

whose proofs can be found in [18]:

Proposition 1.11: Let X(0), X(1), ..., X(m) be smooth projective varieties of the same
dimension N , and let f (i) : X(i) 99K X(i−1) be dominant rational maps for 1 ≤ i ≤ m. Let
D be a nef divisor on X(0). Then for any nef divisor H on X(m), we have

(f (1) ◦ f (2) ◦ ... ◦ f (m))∗D.HN−1 ≤ (f (m))∗...(f (2))∗(f (1))∗D.HN−1.

Proof. See [18, Prop. 17]

For the lemmas, we need to set the following notation:

• N : The dimension of X, wich we assume is at least 2.

• Amp(X): The ample cone in NS(X)R of all ample R−divisors.

• Nef(X): The nef cone in NS(X)R of all nef R−divisors.

• Eff(X): The effective cone in NS(X)R of all effective R−divisors.

• Eff(X) : The R−closure of Eff(X).

As explained in [11, section 1.4], we have the facts

Nef(X) = Amp(X) and Amp(X) = int(Nef(X)).

In particular, since Amp(X) ⊂ Eff(X), it follows that Nef(X) ⊂ Eff(X).

Lemma 1.12: With notation as above, let D ∈ Eff(X)−{0} and H ∈ Amp(X). Then

D.HN−1 > 0.

Proof. See [18, lemma 18]
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Lemma 1.13: Let H ∈ Amp(X), and fix some norm |.| on the R−vector space
NS(X)R. Then there are constants C1, C2 > 0 such that

C1|v| ≤ v.HN−1 ≤ C2|v| for all v ∈ Eff(X).

Proof. See [18, lemma 19]

Now we start the proof of theorem 1.9. We fix a norm |.| on the R−vector space NS(X)R
as before. Additionally, for any A : NS(X)R → NS(X)R linear transformation, we set

||A||′ = sup
v∈Nef−{0}

|Av|
|v|

,

which exists because the set Eff(X) ∩ {w ∈ NS(X)R : |w| = 1} is compact.
We note that for linear maps A,B ∈ End(NS(X)R) and c ∈ R we have

||A+B||′ ≤ ||A||′ + ||B||′ and ||cA||′ = |c|||A||′.

Further, since Nef(X) generates NS(X)R as an R−vector space, we have ||A||′ = 0 if and
only if A = 0. Thus ||.||′ is an R−norm on End(NS(X)R).
Similarly, for any linear map A : NS(X)R →NS(X)R, we set

||A||′′ = sup
v∈Eff−{0}

|Aw|
|w|

,

then ||.||′′ is an R−norm on End(NS(X)R).
We note that Eff(X) is preserved by f ∗ for f self-rational map onX, and that Nef(X) ⊂

Eff(X). Thus if v ∈Nef(X), then g∗v and h∗v belong to Eff(X). This allows us to compute

||(g ◦ h)∗||′ = sup
v∈Nef(X)−{0}

|(g ◦ h)∗v|
|v|

≤ C−1
1 sup

v∈Nef(X)−{0}
(g ◦ h)∗v.HN−1

|v|
from lemma 1.13

≤ C−1
1 sup

v∈Nef(X)−{0}
(h∗g∗v).HN−1

|v|
from proposition 1.11

= C−1
1 sup

v∈Nef(X)−{0},g∗v 6=0

(h∗g∗v).HN−1

|v|

= C−1
1 (sup

v∈Nef(X)−{0},g∗v 6=0

(h∗g∗v).HN−1

|g∗v|
.
|g∗v|
|v|

)

≤ C−1
1 (sup

v∈Nef(X)−{0},g∗v 6=0

(h∗g∗v).HN−1

|g∗v|
).(sup

v∈Nef−{0}
|g∗v|
|v|

)

= C−1
1 (sup

v∈Nef(X)−{0},g∗v 6=0

(h∗g∗v).HN−1

|g∗v|
).||g∗||′

≤ C−1
1 (sup

w∈Eff(X)−{0}

(h∗w).HN−1

|w|
).||g∗||′ since g∗v ∈ Eff(X)

≤ C−1
1 C2(sup

w∈Eff(X)−{0}

|h∗w|
|w|

).||g∗||′ from lemma 1.13

= C−1
1 C2||h∗||′′.||g∗||′.

We remember that we defined ||.|| to be the sup norm on Mr(R) = End(NS(X)R, where
the identification is via the given basis D1, ..., Dr of NS(X)R. We thus have three norms
||.||, ||.||′ and ||.||′′ on End(NS(X)R, so there are positive constants C ′3, C

′
4, C

′′
3 and C ′′4 such

that
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C ′3||γ|| ≤ ||γ||′ ≤ C ′4||γ|| and C ′′3 ||γ|| ≤ ||γ||′′ ≤ C ′′4 ||γ|| l ∀γ ∈ End(NS(X)R.

Hence

||A(g ◦ h)|| = ||(g ◦ h)∗|| ≤ C ′−1
3 ||(g ◦ h)∗||′

≤ C ′−1
3 C−1

1 C2||h∗||′′.||g∗||′

≤ C ′−1
3 C−1

1 C2C
′
4C
′′
4 ||h∗||.||g∗||

= C ′−1
3 C−1

1 C2C
′
4C
′′
4 ||A(h)||.||A(g)||.

Similarly, if v ∈ Nef(X), f := fi1 ◦ ... ◦ fin ∈ Fn, then f ∗v ∈ Eff(X). A similar calculation
gives

||f ∗||′ = sup
v∈Nef(X)−{0}

|f ∗v|
|v|

≤ C−1
1 sup

v∈Nef(X)−{0}
(f ∗v).HN−1

|v|
from lemma 1.13

= C−1
1 sup

v∈Nef(X)−{0}
(fi1 ◦ ... ◦ fin)∗v.HN−1

|v|

≤ C−1
1 sup

v∈Nef(X)−{0}
((fin)∗...(fi1)∗v).HN−1

|v|
from proposition 1.11

≤ C−1
1 C2(sup

v∈Nef(X)−{0}
|(fin)∗...(fi1)∗v|

|v|
) from lemma 1.13

= C−1
1 C2.||(fin)∗...(fi1)∗||′.

Hence

||A(f)|| = ||f ∗|| ≤ C ′−1
3 ||f ∗||′

≤ C ′−1
3 C−1

1 C2||(fin)∗...(fi1)∗||′

≤ C ′−1
3 C−1

1 C2C
′
4C
′′
4 ||(fin)∗...(fi1)∗||

≤ C ′−1
3 C−1

1 C2C
′
4C
′′
4 r

n||(fin)∗||...||(fi1)∗||

≤ C ′−1
3 C−1

1 C2C
′
4C
′′
4 .[r.maxi=1,...,k. ||A(fi)||]n,

As we wanted to show.
As it was said in the beginning of this section, the next proposition is a height inequality

for rational maps, with eyes towards future applications.

Proposition 1.14: Let X/K̄ and Y/K̄ be smooth projective varieties,
let f : Y 99K X be a dominant rational map defined over K̄, let D ∈ Div(X) be an ample
divisor, and fix Weil height functions hX,D and hY,f∗D(P ) associated to D and f ∗D. Then

hX,D ◦ f(P ) ≤ hY,f∗D(P ) +O(1) for all P ∈ (Y − IF)(K̄),

where the O(1) bound depends on X, Y, f, and the choice of height functions, but is
independent of P .

Proof. See [18, Prop. 21].
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1.4 A bound for the sum of heights on iterates

This section is devoted for the proof of a quantitative upper bound for
∑

f∈Fn h
+
X(f(P ))

in terms of the dynamical degree δF of the system.This is one of the main results of this
chapter, and is stated below. As a corollary, we see that the arithmetic degree of any
point is upper bounded by the dynamical degree of the system.

Theorem 1.15: Let K be a number field or a one variable function field of
characteristic 0 , let F = {f1, ..., fk} be a set of dominant self rational maps on X defined
over K as stated before, let hX be a Weil height on X(K̄) relative to an ample divisor, let
h+
X = max{hX , 1}, and let ε > 0. Then there exists a positive constant C = C(X, hX , f, ε)

such that for all P ∈ XF(K̄) and all n ≥ 0,∑
f∈Fn h

+
X(f(P )) ≤ C.kn.(δF + ε)n.h+

X(P ).

In particular, h+
X(f(P )) ≤ C.kn.(δF + ε)n.h+

X(P ) for all f ∈ Fn.
Before proving the theorem, we note that it implies the fundamental inequality

ᾱF(P ) ≤ δF .

Corollary 1.16: Let P ∈ XF(K̄). Then

ᾱF(P ) ≤ δF .

Proof. Let ε > 0. Then

ᾱF(P ) = 1
k

lim supn→∞{
∑

f∈Fn h
+
X(f(P ))} 1

n by definition of ᾱF

≤ lim supn→∞(C.(δF + ε)n.h+
X(P ))

1
n from theorem 1.15

= δF + ε.

This holds for all ε > 0, which proves that ᾱF(P ) ≤ δF .

Now we prove theorem 1.15. If P has a finite orbit, then ᾱF(P ) = 1 and 1 ≤ δF , so
there is nothing to prove. We assume henceforth that #OF(P ) is not finite. We let m
and l be positive integers to be chosen later, and we set

G := Fml.

We note that XF(K̄) ⊂ XG(K̄). We choose ample divisors D1, ..., Dr in Div(X)
whose algebraic equivalence classes form a basis for NS(X)Q, and we fix functions
hD1 , ..., hDr associated to the divisors D1, ..., Dr. We note that any two ample heights
are commensurate with one another, in other words, hX >< h′X , so we may take hX to
be

hX(Q) = max1≤i≤r hDi(Q).

We further can assume that hDi ≥ 1, so hX = h+
X .

Applying g∗ to the divisors in our basis of NS(X)Q, where g is any self-rational map
on X/K, we have algebraic relations

(∗) g∗Dt ≡
∑r

i=1 ait(g)Di for some ait(g) ∈ Q.

We set the notation

A(g) = (ait(g)), ||A(g)|| = maxi,t |ait(g)|, ||A(G)|| = maxg∈G ||A(g)||.
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Algebraic equivalence of divisors implies a height relation as in the following result.

Lemma 1.17: Let E ∈ Div(X)R be a divisor that is algebraic equivalent to 0, and fix
a height function hE associated to E. Then there is a constant C = C(hX , hE) such that

|hE(P )| ≤ C
√
h+
X(P ) for all P ∈ X(K̄).

Proof. See for example the book of Diophantine Geometry of Hindry-Silverman[14,
Theorem B.5.9].

Applying lemma 1.17 to (*) and using additivity of height functions, we find a positive
constant Ct(ε, g) such that

|hg∗Dt(Q)−
∑r

i=1 ait(g)hDi(Q)| ≤ Ct(ε, g)
√
hX(Q) for all Q ∈ X(K̄).

Making A := maxg∈G,tCt(ε, g), we have, for all points Q ∈ X(K̄) and g ∈ G that

hX(g(Q)) = maxi≤t≤r hDt(g(Q))

≤ maxi≤t≤r(hg∗Dt(Q) +O(1)) from proposition 1.14

≤ maxi≤t≤r(
∑r

i=1 ait(g)hDi(Q)) +O(1) + A
√
hX(P ) from lemma 1.17

≤ (rmaxi,t,g∈G |ait(g)|)hX(Q) +O(
√
hX(P ))

= r||A(G)||hX(Q) +O(
√
hX(P )).

An elementary lemma will be used.

Lemma 1.18: Let S be a set, G = {g1, ..., gs} self maps on S, and a map
h : S → [1,∞). Let a, b ≥ 1 be constants. Suppose that for all x ∈ S we have

h(gi(x)) ≤ ah(x) + c
√
h(x).

Then for all x ∈ S, n ≥ 0, g(n) ∈ Gn,

h(g(n)(x)) ≤ an(h(x) + (2
√

2c)n
√
h(x)).

Proof. We set γ = 2
√

2 and proceed by induction on n. The inequality is true for n = 0, 1
by hypothesis, then we suppose that it is true for a given n ∈ N≥1. Let g(n+1) := gin+1 ◦
... ◦ gi2 ◦ gi1 := g(n) ◦ gi1 ∈ Gn+1, g

(n) ∈ Gn.
Then

h(g(n+1)(x)) = h(g(n)(gi1(x)))

≤ an(h(gi1(x)) + (γc)n
√
h(gi1(x))) from the induction hypothesis

≤ an(ah(x) + c
√
h(x) + (γc)n

√
ah(x) + c

√
h(x))

≤ an(ah(x) + c
√
h(x) + (γc)n

√
2ach(x))

= an+1h(x) + (anc+ (γac)n
√

2ac)
√
h(x).

Hence

an+1(h(x) + (γc)n+1
√
h(x))− h(g(n+1)(x))

≥ (an+1(h(x) + (γac)n+1
√
h(x)))− (an+1h(x) + (anc+ (γac)n

√
2ac)

√
h(x))

=
√
h(x)anc(γn+1acn − 1− γna1/2cn−1/2

√
2)

≥
√
h(x)anc(γn+1acn − 1− γnacn

√
2)
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=
√
h(x)anc(γnacn(γ −

√
2)− 1)

=
√
h(x)anc(γnacn

√
2− 1)

> 0.

We apply lemma 1.18 to the inequality above the previous lemma to obtain

hX(g(n)(Q)) ≤ (r||A(G)||)n(hX(Q) +O(1)n
√
hX(Q))

≤ (C5r||A(G)||)nhX(Q),

for all g(n) ∈ Gn, n ∈ N, Q ∈ XF(K̄). And then∑
g∈Gn hX(g(Q)) ≤ (C5.r.k.||A(G)||)nhX(Q)

for all Q ∈ XF(K̄).
We recall that G = Fml, which lets us estimate

||A(G)|| = ||A((Fl)m)||
= supf∈(Fl)m ||A(f)|| by definition
≤ (O(1).r.||A(Fl)||)m by Proposition 1.9
≤ (C6.r.ρ(Fl))m by lemma 1.8,

By definition, the dynamical degree is the limit of ρ(Fl)1/l as l → ∞. So we now fix an
l = l(ε,F) such that

ρ(Fl) ≤ (δF + ε)l and (C6.r)
1/l < (1 + ε)1/3.

For this choice of l, we have

||A(G)|| ≤ [C6.r.(δF + ε)l]m.

Using G = Fml gives∑
f∈Fmln hX(f(P )) =

∑
f∈Gn hX(f(P ))

≤ (C5.r.k.||A(G)||)nhX(P )

≤ (C5.r.k.[C6.r.(δF + ε)l]m)nhX(P )

≤ [C7.C
m
6 .r

m+1(δF + ε)ml]nhX(P ).

where C7 := C5.k. We now take P ∈ XF(K̄) as in the statement of the theorem, and
we apply the inequality right above to each of the sets F0, ...,Fml−1 to obtain, for i =
0, ...,ml − 1, that∑

f∈Fmln+i
hX(f(P )) =

=
∑

f∈Fmln,g∈Fi hX(f(g(P )))

≤ [C7.C
m
6 .r

m+1(δF + ε)ml]n(
∑

g∈Gi hX(g(P )))

≤ C8,i.k
i[C7.C

m
6 .r

m+1(δF + ε)ml]nhX(P ).

Where the last inequality follows from the fact that the ample height hX dominates any
other height hD. Then
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max0≤i<ml
∑

f∈Fmln+i
hX(f(P ))

≤ max1≤i<ml C8,i.k
ml[C7.C

m
6 .r

m+1(δF + ε)ml]nhX(P )

≤ C8k
ml[C7.C

m
6 .r

m+1(δF + ε)ml]nhX(P ).

Now let q ≥ 1 be any integer and write

q = mln+ i with 0 ≤ i < ml.

Then using mln ≤ q and n ≤ q

ml
and the inequality quite above, we have∑

f∈Fq hX(f(P )) ≤ C8.k
ml.C

q/ml
7 .C

q/l
6 .rq/l+q/ml(δF + ε)q.hX(P ).

The quantity (C7)1/ml is independent of q and goes to 1 as m → ∞. So we now fix a
value of m such that (C7)1/ml < (1 + ε)1/3. This value of m depend on ε,X,F , but not
on q nor P , and the same is true for the constants. We finally get that∑

f∈Fq hX(f(P )) ≤ C8.k
q.(1 + ε)q(δF + ε)qhX(P ).

After adjusting ε, this inequality above is the desired result, which completes the proof of
theorem 1.15.

1.5 Application to canonical heights

In this final section of chapter 1, we show that the canonical height limit, proposed and
constructed by S. Kawaguchi in [16, theorem 1.2.1], is convergent for certain eigendivisor
classes relative to algebraic equivalence, instead of linear equivalence case worked by
Kawaguchi in the source [3]. The theorem is also an extension of theorem 5 of [18], where
the eigensystem of the hypothesis has just one morphism.

Theorem 1.19: Assume that F = f1, ..., fk : X → X are morphisms, and let
D ∈Div(X)R that satisfies the algebraic relation∑k

i=1 f
∗
i D ≡ βD for some real number β >

√
δFk,

where ≡ denotes algebraic equivalence in NS(X)R. Then

(a) For all P ∈ X(K̄), the following limit converges:

ĥD,F(P ) = limn→∞
1

βn
∑

f∈Fn hD(f(P )).

(b) The canonical height in (a) satisfies∑k
i=1 ĥD,F(fi(P )) = βĥD,F(P ) and ĥD,F(P ) = hD(P ) +O(

√
h+
X(P )).

(c) If ĥD,F(P ) 6= 0, then αF(P ) ≥ β/k.

(d) If ĥD,F(P ) 6= 0 and β = δFk, then αF(P ) = δF .

(e) Assume that D is ample and that K is a number field. Then

ĥD,F(P ) = 0 ⇐⇒ P is preperiodic, i.e, has finite F-orbit.
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Proof. (a) Theorem 1.15 says that for every ε > 0 there is a constant
C1 = C1(X, hX ,F , ε) such that∑

f∈Fn h
+
X(f(P )) ≤ C1.k

n.(δF + ε)n.h+
X(P ) for all n ≥ 0.

We are given that
∑k

i=1 f
∗
i D ≡ βD. Applying lemma 1.17 with

E =
∑k

i=1 f
∗
i D − βD, we find a positive constant C2 = C2(D,F , hX) such that

|h∑k
i=1 f

∗
i D

(Q)− βhD(Q)| ≤ C2

√
h+
X(Q) for all Q ∈ X(K̄).

Since we assumed that the fi are morphisms, standard functoriality of Weil height states
that

h∑k
i=1 f

∗
i D

=
∑k

i=1 hD ◦ fi +O(1),

so the above inequality is reformulated as follows

(**) |
∑k

i=1 hD(fi(Q))− βhD(Q)| ≤ C3

√
h+
X(Q) for all Q ∈ X(K̄).

For N ≥M ≥ 0 we estimate a telescopic sum,

|β−N
∑

f∈FN hD(f(P ))− β−M
∑

f∈FM hD(f(P ))|

= |
∑N

n=M+1 β
−n[
∑

f∈Fn hD(f(P ))− β
∑

f∈Fn−1
hD(f(P ))]|

≤
∑N

n=M+1 β
−n|
∑

f∈Fn hD(f(P ))− β
∑

f∈Fn−1
hD(f(P ))|

≤
∑N

n=M+1 β
−n[
∑

f∈Fn−1
|
∑k

i=1 hD(fi(f(P )))− βhD(f(P ))|]

≤
∑N

n=M+1 β
−n(
∑

f∈Fn−1
C3

√
h+
X(f(P ))) by (**)

≤
∑N

n=M+1 β
−n.k(n−1)/2.C3.

√∑
f∈Fn−1

h+
X(f(P )) by Cauchy-Schwarz

≤
∑N

n=M+1 β
−n.kn−1.C3.C.(δF + ε)(n−1)/2.

√
h+
X(P ) by Thm. 1.15

≤ CC3

√
h+
X(P )

∑∞
n=M+1[

k2(δF + ε)

β2
]n/2.

And ∑∞
n=M+1[

k2(δF + ε)

β2
]n/2 <∞ ⇐⇒ k2(δF + ε)

β2
< 1.

Since β >
√
δFk2, we can choose 0 < ε < β2

k2 − δF , which implies k2(δF+ε)
β2 < 1 and the

desired convergence. Also we obtain the following estimate (***):

|β−N
∑

f∈FN hD(f(P ))− β−M
∑

f∈FM hD(f(P ))|

≤ CC3[
k2(δF + ε)

β2
]M/2

√
h+
X(P ).

(b) The formula ∑k
i=1 ĥD,F(fi(P )) = βĥD,F(P )

follows immediately from the limit defining ĥD,F in part (a). Next, letting N → ∞ and
setting M = 0 in (***) gives

|ĥD,F(P )− hD(P )| = O(
√
h+
X(P )),
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which completes the proof of (b).

(c) We are assuming that ĥD,F(P ) 6= 0. If ĥD,F(P ) < 0, we change D to −D, so we

may assume ĥD,F(P ) > 0. Let H ∈ Div(X) be an ample divisor such that H + D is
also ample (this can always be arranged by replacing H with mH for a sufficiently large
m). Since H is ample, we may assume that the height function hH is non-negative. We
compute∑

f∈Fn hD+H(f(P ))

=
∑

f∈Fn hD(f(P )) +
∑

f∈Fn hH(f(P )) +O(kn)

≥
∑

f∈Fn hD(f(P )) +O(kn) since hH ≥ 0

=
∑

f∈Fn ĥF ,D(f(P )) +O(
∑

f∈Fn

√
h+
X(f(P ))) from (b)

= βnĥF ,D(P ) +O(
∑

f∈Fn

√
h+
X(f(P ))) from (b)

≥ βnĥF ,D(P ) +O(
√∑

f∈Fn h
+
X(f(P ))) since (x→

√
x) is convex

= βnĥF ,D(P ) +O(
√
Ckn(δF + ε)nh+

X(P )) from Theorem 1.15.

This estimate is true for every ε > 0, where C depends on ε. Using the assumption that
β >
√
k.δF we can choose ε > 0 such that

k.(δF + ε) < β2. This gives∑
f∈Fn hD+H(f(P )) ≥ βnĥF ,D(P ) + o(βn),

so taking nth-roots, using the assumption that ĥF ,D(P ) > 0, and letting n→∞ yields

αF(P ) = lim infn→∞
1

k
{
∑

f∈Fn hD+H(f(P )}1/n ≥ β

k
.

(d) From (c) we get that αF(P ) ≥ β

k
=
δF .k

k
= δF , while corollary 1.16 gives ᾱF(P ) ≤ δF .

Hence the limit defining αF(P ) exists and is equal to δF .
(e) First suppose that #OF(P ) < +∞. Since D is ample and the orbit of P is finite,

we have that hD ≥ 0, ĥF ,D(P ) ≥ 0, and there is a constant C > 0 such that hD(f(P )) ≤ C
for all f ∈ ∪l≥0Fl. This gives

|ĥF ,D(P )| ≤ limn→∞
1

βn
∑

f∈Fn |hD(f(P ))| ≤ limn→∞C.
kn

βn
= 0

Since β > k.
For the other direction, suppose that ĥF ,D(P ) = 0. Then for any n ≥ 0 and g ∈ Fn,

we apply part (b) to obtain

0 = βnĥF ,D(P ) =
∑

f∈Fn ĥF ,D(f(P )) ≥ ĥF ,D(g(P ))

≥ hD(g(P ))− c
√
hD(g(P )).

This gives hD(g(P )) ≤ c2, where c does not depend on P or n. This shows that OF(P )
is a set of bounded height with respect to an ample height. Since OF(P ) is contained in
X(K(P )) and since we have assumed that K is a number field, we conclude that OF(P )
is finite.
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Remark 1.20: In the same way as pointed in remark 29 of [18], when f1, ..., fk are

morphisms, there is always one divisor class D ∈ NS(X)R such that
∑k

i=1 f
∗
i D ≡ βD,

where β is the spectral radius of the linear map
∑

i≤k A(fi) on NS(X)R. It would remain

to check whether it satisfies β > k.
√
δF , so that we can use theorem 1.19. In negative case,

one should be able to achieve such condition by replacing the morphisms fi by iterates
f ◦nii , obtaining a new system G whose maps are iterates from the initial system. This
would make it possible to study the arithmetic of OF with the new height associated
to G arising from our theorem, since the orbits OG are contained in the orbits OF by
construction.
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Chapter 2

Canonical Heights Induced by
Monomial Maps

Let Φ = {φ1, ..., φk} be a set of dominant self-rational maps over Q on the n-dimensional
projective space. According to the definitions of the last chapter, such dynamical
system has dynamical degree limn→∞ ρ(Φn)

1
n = lim supn→∞(maxij≤k(deg(φi1 ◦ ...◦φin)))

1
n .

Motivated by the work [29], we propose a definition of canonical height limit induced by
the system Φ on projective spaces, make new definitions, and show some properties of
such limit, when it exists, but now with several maps. We study the case when the maps
are induced by monomial maps on multiplicative groups, generalizing some results of [29]
about non-Zariski density of points with canonical height equal to zero. We prove the
existence of an effective lower bound for the canonical height of points with infinite orbit
as proposed by Silverman also in [29], remark 30.

2.1 Two proposals of dynamical canonical height for dominant
rational maps

With the last chapter hypothesis, we defined the dynamical degree of a dynamical system
(X,F = {f1, ..., fk}) as δF = limn→∞ ρ(Fn)

1
n , the upper arithmetic degree of a point P

as ᾱF(P ) =
1

k
lim supn→∞{

∑
f∈Fn h

+
D(f(P ))} 1

n , and we showed, in the case where the

maps of the system are morphisms, the existence of a canonical height function over the
hypothesis that ∑k

i=1 f
∗
i D ≡ βD for some real number β >

√
δFk.

Such height function, on P ∈ X(Q), is given by

ĥD,F(P ) = limn→∞
1

βn
∑

f∈Fn hD(f(P )).

When X = PN , and k = 1, f := f1, we have that δf = limn→∞(deg(f ◦n))
1
n . If f is a

morphism with degree at least 2, then (deg f)n = deg(f ◦n) and δf = deg f with f ∗O(1) ≡

(deg f)O(1), and so ĥO(1),f (P ) = limn→∞
hD(f ◦n(P ))

(deg f)n
. But this is not necessarily true

when f is not a morphism, since (deg f)n may be different from deg f ◦n in this case. In
such situation, since deg f ◦n grows in the same speed as δnf roughly speaking, Silverman

defined in [29], for P ∈ PNf , the height function

ĥO(1),f (P ) = lim supn→∞
h(f ◦n(P ))

nlf (δf )
n
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with some correction exponent lf [29, conjecture 2], defined, when it exists, as lF :=

inf{l ≥ 0 : supn≥1

deg(f ◦n)

nlδnf
<∞}. Its existence is conjectured by Silverman in the above

mentioned reference, as well as that is conjectured there that this exponent is less or
equal than N . For X more general smooth projective variety and k > 1, we define the
generalization of the above correction exponent as below, which existence we conjecture
also.

Definition 2.1: lF := inf{l ≥ 0 : supn≥1
ρ(Fn)
nlδnF

<∞}, if it exists.

So we are in conditions to generalize, now for smooth projective varieties and a system
with several rational maps, the above Silverman’s definition for canonical heights in
projective spaces for a system with just one self-rational map. For instance, we can
make this in two ways. The first one is the following, which says in particular that points
with nonzero canonical height have arithmetic degree equal to the dynamical degree of
the system. In the lack of convergence for the arithmetic degree, we assume from now on
that αF(P ) := ᾱF(P ).

Definition 2.2: Assuming the existence of lF , the canonical height of P ∈ XF(Q̄)
with respect to F and D ∈ Pic(X) ample is

ĥD,F(P ) = lim supn→∞
1

n(lF )knδnF

∑
f∈Fn hD(f(P )).

Proposition 2.3: The canonical height ĥD,F satisfies the following properties:

(a) If hD ≥ 0 then ĥD,F ≥ 0

(b)
∑

i ĥD,F(fi(P )) = kδF ĥD,F(P )

(c) If P ∈ Preper(F), then ĥD,F(P ) = 0

(d) If ĥD,F(P ) > 0, then δF = αF(P ).

Proof. (a) This is obvious, since hD is a non-negative function.
(b) We compute∑

i≤k ĥD,F(fi(P )) = lim supn→∞
1

n(lF )knδnF

∑
f∈Fn

∑
i≤k hD(f(fi(P )))

= lim supn→∞
1

n(lF )knδnF

∑
f∈Fn+1

hD(f(P ))

= lim supn→∞
1

(n− 1)(lF )kn−1δn−1
F

∑
f∈Fn hD(f(P ))

= kδF lim supn→∞(n/(n− 1))(lF ) 1

n(lF )knδnF

∑
f∈Fn hD(f(P ))

= kδF ĥD,F(P ).

(c) If P is preperiodic, then OF(P ) is a finite set, lets say, bounded by C > 0. Then

|ĥD,F(P )| = | lim supn→∞
1

n(lF )knδnF

∑
f∈Fn hD(f(P ))|

≤ lim supn→∞C(
k

kδF
)n.(

1

n(lF )
)

= 0

(d) We are assuming that ĥD,F(P ) > 0, and by definition, ĥD,F(P ) is the limsup of
n−(lF )k−nδ−nF

∑
f∈Fn hD(f(P )), so we can find an infinite sequence N of positive integers

such that
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n−(lF )k−nδ−nF
∑

f∈Fn hD(f(P )) ≥ (1/2)ĥD,F(P ) for all n ∈ N .

It follows that

αF(P ) =
1

k
lim supn→∞{

∑
f∈Fn h

+
D(f(P ))} 1

n

≥ (1/k). lim supn∈N [n(lF )knδnF(1/2)ĥD,F(P )](1/n)

= δFk/k = δF ,

since ĥD,F(P ) > 0. The result follows by gathering the above inequality with the fact
that δF ≥ ᾱF(P ) ≥ αF(P ).

We know that αF(P ) = 1 if P is preperiodic, and that αF(P ) = δF if the above
height is positive on P , but we don’t know when the converses of (c) and (d) of last
proposition are true. So we also ask if eventual Zariski density of OF(P ) would imply

that ĥD,F(P ) > 0, and then that αF(P ) = δF . If k = 1 and f1 is morphism, or when
X = PN and all the maps in the given system are morphisms, then the dynamical degree is
root of some charateristic polynomial. We will mention afterwards in this chapter that this
also happens when X = PN , k = 1, and f1 is a rational map induced by a monomial map,
which is a kind of map that we will define next section. These informations, together with
conjecture 1 of [29], motivate the following generalization for letter (a) of this conjecture.

Question 2.4: Under the hypothesis of section 1.1, is {αF(P )|P ∈ XF(K̄)} a finite
subset of OK , the ring of algebraic integers?

A survey for the above discussion for k = 1 can be found in [28].
It seems also interesting to let the limit in the height definition grow more fastly,

omitting powers of k, obtaining another canonical height definition, as a generalization
with some more similarities with Silverman’s definition, to be seen later. After defining
it, we have an analogous version of proposition 2.3 for this new height.

Definition 2.5: Assuming the existence of lF , the canonical height of P ∈ XF(Q̄)
with respect to F and D ∈ Pic(X) ample is

ĥD,F(P ) = lim supn→∞
1

n(lF )δnF

∑
f∈Fn hD(f(P )).

Proposition 2.6: The canonical height ĥD,F satisfies the following properties:

(a) If hD ≥ 0 then ĥD,F ≥ 0

(b)
∑

i ĥD,F(fi(P )) = δF ĥD,F(P )

(c) If P ∈ Preper(F), then ĥD,F(P ) = 0

(d) If ĥD,F(P ) > 0, then δF ≥ αF(P ) ≥ δF/k.

Proof. (a) This is obvious, since hD is a non-negative function.
(b) We compute∑

i≤k ĥD,F(fi(P )) = lim supn→∞
1

n(lF )δnF

∑
f∈Fn

∑
i≤k hD(f(fi(P )))

= lim supn→∞
1

n(lF )δnF

∑
f∈Fn+1

hD(f(P ))

= lim supn→∞
1

(n− 1)(lF )δn−1
F

∑
f∈Fn hD(f(P ))

= δF lim supn→∞(n/(n− 1))(lF ) 1

n(lF )δnF

∑
f∈Fn hD(f(P ))

= δF ĥD,F(P ).

26



(c) If P is preperiodic, then OF(P ) is a finite set, let us say, whose cardinal is bounded
from above by C > 0. Then

|ĥD,F(P )| = | lim supn→∞
1

n(lF )δnF

∑
f∈Fn hD(f(P ))|

≤ lim supn→∞C(
k

δF
)n.(

1

n(lF )
)

= 0

(d) We are assuming that ĥD,F(P ) > 0, and by definition, ĥD,F(P ) is the limsup of
n−(lF )δ−nF

∑
f∈Fn hD(f(P )), so we can find an infinite sequence N of positive integers such

that

n−(lF )δ−nF
∑

f∈Fn hD(f(P )) ≥ (1/2)ĥD,F(P ) for all n ∈ N .

It follows that

αF(P ) =
1

k
lim supn→∞{

∑
f∈Fn h

+
D(f(P ))} 1

n

≥ (1/k). lim supn∈N [n(lF )δnF(1/2)ĥD,F(P )](1/n)

= δF/k,

since ĥD,F(P ) > 0. The result follows by gathering the above inequality with the fact
that δF ≥ αF(P ).

2.2 Points of canonical height zero for monomial maps

Monomial maps are endomorphisms of the torus GN
m. They naturally induce self-rational

maps of PN , by embedding GN
m in PN . In this section we will show, for a class with infinite

number of dynamical systems with several self-rational maps of PN , a generalization for
theorem 27 of [29], for the height function of definition 2.5. We will reduce our situation
to the case already treated of just one rational map, and this will be possible when the
sequence giving the limit defining the dynamical degree is not so unstable, in the sense
that it can be calculated using just one of the rational maps in the given system. Before
proving results, we state some definitions of sections 6 and 7 of [29], and define our required
kind of dynamical system.

Definition 2.7: We write Mat+
Z for the set of N-by-N matrices with integer

coefficients and nonzero determinant. To each matrix A ∈ Mat+
Z we associate the

monomial map φA : GN
m → GN

m given by the formula

φA(X1, ..., XN) = (Xa11
1 Xa12

2 ...Xa1N
N , Xa21

1 Xa22
2 ...Xa2N

N , ..., XaN1
1 XaN2

2 ...XaNN
N ).

We call φA the monomial map associated to A, that induces a rational map φA :
PN 99K PN . Again, we denote the spectral radius of A by

ρ(A) = max{|λ| : λ ∈ C is an eigenvalue forA}.
It is immediate from the definition that if A,B ∈ Mat+

Z are matrices with associated
monomial maps φA and φB, then

φAB(P ) = (φA ◦ φB)(P ) and φA+B(P ) = φA(P ).φB(P ).

Definition 2.8: Let A ∈ GLN(Q). A Jordan subspace for A is an A-invariant
subspace of Q̄N corresponding to a single Jordan block of A. A Jordan subspace V ⊂ Q̄N

with associated eigenvalue λ is called a maximal Jordan subspace if |λ| = ρ(A) and if the
dimension of V is maximal among the Jordan subspaces whose eigenvalue has magnitude
equal to ρ(A). We set
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r(A) = number of maximal Jordan subspaces,
r̄(A) = #{σ(V ) : V is a maximal Jordan subspace for A and σ ∈ Gal(Q̄/Q)},
l(A) = dim(any maximal Jordan subspace)− 1.

Thus, r̄(A) is the number of distinct Q̄-subspaces of Q̄N that are Galois conjugate to
a maximal Jordan subspace of A, and so r̄(A) ≥ r(A) ≥ 1, since A always has at least
one maximal Jordan subspace.

Definition 2.9: Let G be an algebraic subgroup of GN
m. We write G(Q̄)div for the

divisible hull of G(Q̄),

G(Q̄)div = {(α1, ..., αN) ∈ GN
m(Q̄) : (αn1 , ..., α

n
N) ∈ G(Q̄) for some n ≥ 1}.

Equivalently, G(Q̄)div is the set of translates of G(Q̄) by points in GN
m(Q̄)tors.

From now on we denote A := {A1, ..., Ak} ⊂ Mat+
Z , which induces Φ := {φ1, ..., φk} ⊂

End(GN
m), and also self-rational maps of PN as described above. We set the simple notation

ĥΦ := ĥO(1),Φ and ĥΦ := ĥO(1),Φ.
We know that δΦ exists easily because deg(φ ◦ ψ) ≤ deg(φ). deg(ψ) for all φ, ψ

rational maps on projective spaces, and this implies the convexity estimate resulting
the convergence of the limit in the definition. So, throghout this section, we will also say
that Φ has the property (*) if this limit can be found using just one map that satisfies
certain inequalities. Technically, when it satisfies the following:

∃ ψ := φi1 ◦ ... ◦ φit ∈ Φt such that δΦ = limn→∞ ρ(Φn)
1
n is equal to lims→∞ ρ(ψs)

1
ts and

supn≥1

ρ(Φn)

nlδnΦ
≤ sups≥1

ρ(ψs)

(ts)lδtsΦ
∀l ≥ 0. (∗)

This property is satisfied immediately when k = 1. For any k, sets of k monomial maps
induced by diagonal matrices are examples that satisfy this property above. Effectivelly,
proposition 21(c) of [29] says that δφA = ρ(A), which yields ρ(Φn) = maxφ∈Φn ρ(φ) =
(max1≤i≤n ρ(Ai))

n, from where the property follows. Another easy way to obtain an
infinite number of systems with such property, for matrices not necessarily diagonal, is
to consider A1 not diagonal, g2, .., gk any polynomials in Z[X], and Ai := gi(A1) for
i = 2, ..., k.

The sets with such property satisfy some useful relations expressed in the following
proposition.

Lemma 2.10: Let A,Φ, ψ ∈ Φt satisfying the property (*) as above. Then:

(a) δΦ = δ
1
t
ψ .

(b) lΦ = lψ.

(c) {P ∈ PN(Q̄)|ĥΦ(P ) = 0} ⊂ {P ∈ PN(Q̄)|ĥψ(P ) = 0}.

Proof. (a) By property (*) follows that:

δΦ = limn→∞ ρ(Φn)
1
n = lims→∞ ρ(ψs)

1
ts = lims→∞(ρ(ψs)

1
s )

1
t = δ

1
t
ψ .

(b) By theorem 24 of [29] we know that lψ exists, and by property (*) again we have

lΦ = inf{l ≥ 0 : supn≥1

ρ(Φn)

nlδnΦ
< +∞}

≤ inf{l ≥ 0 : sups≥1

ρ(ψs)

(ts)lδtsΦ
< +∞}
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= inf{l ≥ 0 : sups≥1

ρ(ψs)

(ts)lδ
ts
t
ψ

< +∞}

= inf{l ≥ 0 :
1

tl
sups≥1

ρ(ψs)

slδsψ
< +∞}

= inf{l ≥ 0 : sups≥1

ρ(ψs)

slδsψ
< +∞}

= lψ. .

The inclusion {l ≥ 0 : supn≥1
ρ(Φn)
nlδnΦ

< +∞} ⊂ {l ≥ 0 : sups≥1
ρ(ψs)

(ts)lδtsΦ
< +∞} guarantees

that lΦ ≥ lψ and hence lΦ = lψ.

(c) P ∈ PN(Q̄), D := O(1) and ĥΦ(P ) = 0, so by (a) and (b)

0 = ĥΦ(P ) = lim supn→∞
1

n(lΦ)δnΦ

∑
φ∈Φn

hD(φ(P ))

= lim supn→∞
1

n(lψ)δ
n
t
ψ

∑
φ∈Φn

hD(φ(P ))

≥ lim sups→∞
1

(ts)(lψ)δsψ

∑
φ∈Φts

hD(φ(P ))

=
1

t(lψ)
lim sups→∞

1

s(lψ)δsψ

∑
φ∈Φts

hD(φ(P ))

≥ 1

t(lψ)
lim sups→∞

1

s(lψ)δsψ
hD(ψs(P ))

=
1

t(lψ)
ĥψ(P )

≥ 0,

and thus ĥψ(P ) = 0

We are now able to generalize theorem 27, corollary 29 and corollary 31 of [29], now
for systems with several rational maps.

Theorem 2.11: Let A := {A1, ..., Ak} ⊂ Mat+
Z be a set matrices whose set of

respective associated monomial maps Φ := {φ1, ..., φk} and dynamical degree δΦ > 1
satisfies the property (*) with ψ ∈ Φt induced by B ∈ At. There is an algebraic subgroup
G ⊂ GN

m of dimension

dimG ≥ N − r̄(B)

such that

{P ∈ GN
m(Q̄); ĥΦ(P ) = 0} ⊂ G(Q̄)div.

Proof. By proposition 2.10, δΦ = δ
1
t
ψ > 1, δψ > 1, and

{P ∈ PN(Q̄)|ĥΦ(P ) = 0} ⊂ {P ∈ PN(Q̄)|ĥψ(P ) = 0}.
So the theorem is true by theorem 27 of [29] for ψ.

Corollary 2.12: Let Φ := {φ1, ..., φk} ⊂ End(GN
m) as above with δΦ > 1 satisfying

(*), and let P be a point with ĥΦ(P ) = 0. Then there is a proper algebraic subgroup G of
GN
m with OΦ(P ) ⊂ G. In particular, the orbit OΦ(P ) is not Zariski dense in GN

m.
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Proof. We are under the hypothesis of theorem 2.11, so such result is valid. As in the
proof of theorem 27 of [29], exists an integral lattice L ⊂ ZN such that the group G of
theorem 2.11 is given by

G = GL :=
⋂

(e1,...,eN )∈L{X
e1
1 ...X

eN
N = 1} ( GN

m.

Denote Qd = (yd1 , ..., y
d
N) for Q = (y1, ..., yd) ∈ GN

m(Q̄). The assumption that ĥΦ(P ) = 0

implies that
∑

i ĥΦ(φi(P )) = δΦĥΦ(P ) = 0, which shows that OΦ(P ) ⊂ G(Q̄)div from
theorem 2.11. In particular,

OΦ(P ) ⊂ G(Q̄)div ∩GN
m(Q(P )).

Let d be the number of roots of unity in Q(P ) and Q = (y1, .., yN) belonging to G(Q̄)div∩
GN
m(Q(P )). This means that there is an m ≥ 1 such that

yme11 ...ymeNN = 1 for all (e1, ..., eN) ∈ L
So ye11 ...y

eN
N is an m-th root of unity, thus m|d and Qd ∈ G = GL, and then Q ∈ GdL ( GN

m.
And we just proved that OΦ(P ) ⊂ GdL ( GN

m.

Corollary 2.13: Let Φ := {φ1, ..., φk} ⊂ End(GN
m) be monomial maps induced by

A := {A1, ..., Ak} ⊂ Mat+
Z with δΦ > k and satisfying the property (*) with ψ ∈ Φt induced

by B ∈ At whose characteristic polynomial is irreducible over Q. Let P ∈ GN
m(Q̄). Then

ĥΦ(P ) = 0 ⇐⇒ #OΦ(P ) < +∞.

Proof. If #OΦ(P ) < +∞ then its straightfoward that ĥΦ(P ) = 0 because δΦ > k. Now

we suppose ĥΦ(P ) = 0. So

OΦ(P ) ⊂ {Q ∈ GN
m(Q̄)|ĥΦ(Q) = 0} ⊂ G(Q̄)div ∩GN

m(Q(P ))

from theorem 2.11, where dimG = N − r̄(B) = 0, since the characteristic polynomial is
irreducible and all its roots are disjoints.

So G(Q̄)div ∩ GN
m(Q(P )) = GN

m(Q(P ))tors, the set of points whose coordinates are
roots of unity in the field Q(P ). Such set is finite, and so is OΦ(P ).

2.3 Effective bounds for the canonical height of non-periodic
points

For k = 1, A1 = A, Silverman observes in [29, remark 30] that it should be possible to use
an effective form of Baker’s theorem to prove effective versions of the results above, with
an effective computable constant
C = C(A, h(P )) > 0 such that

OφA(P ) Zariski dense =⇒ ĥφA(P ) > C.

In this section we work out the cases for that A has real Jordan form, i.e, all of its
eigenvalues are real. For this we will make use of an improvement of effective classical
Baker’s theorem that is due to P. Philippon and M. Waldschmidt, and can be seen for
example in [4, chapter 18, theorem 1.1]. This is stated as follows
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Theorem 2.14: Let α1, ..., αn be non-zero algebraic numbers that are different from
1, and let β1, ..., βn algebraic numbers not all zero, and logα1, ..., logαn logarithmic
representatives such that πi, logα1, ..., logαn are linearly independent over Q̄ and Λ :=
β1 logα1 + β2 logα2 + ...+ βn logαn does not vanish.

Let D be a positive integer, A,A1, A2, ..., An be positive real numbers, and B satisfying

D ≥ [Q(α1, ..., αn, β1, ..., βn) : Q]

Aj ≥ max{H(αj), exp | logαj|, en}, 1 ≤ j ≤ n

A := max{A1, ..., An, e
e}

B := max{H(βj); 1 ≤ j ≤ n}

Then

|Λ| ≥ e−U ,

where

U = −C11(n).Dn+2. logA1... logAn.(logB + log logA),

C11(n) ≥ 28n+53.n2n,

and H(α) denotes the maximun of absolute values of the coefficients of the minimum
polynomial of α over Q.

Proof. Can be found in [4, chapter 18, section 4].

Theorem 2.15: Let φ : GN
m → GN

m be a monomial map induced by A with real
eigenvalues, l(A) ≥ 1 and δφ > 1, and let P ∈ GN

m(Q̄) be a point with orbit Oφ(P ) Zariski
dense. Then there is an effective computable positive constant C depending on A and
h(P ) such that ĥφA(P ) > C.

Proof. We denote

max+((u1, ..., uN)) = max(0, u1, ...uN) for all (u1, ..., uN) ∈ RN ,

and call

log ||(y1, ..., yN)||v := (log ||y1||v, ..., log ||yN ||v) for all (y1, ..., yN) ∈ QN
,

and we call P = (x1, ..., xN).
Starting from A ∈ Mat+

N(Z), we can write Q̄N = V1 + ...+ Vr +Z, where V1, ..., Vr are
the distinct maximal Jordan subspaces and Z := Vr+1 + ...+Vt is the sum of all the other
Jordan subspaces for A, as in the equation right below (25) in the proof of theorem 27 of
[29].

In [25], we have an effective algorithm for finding a basis where A has Jordan normal
form defined over some algebraic extension of Q. In other words, for each 1 ≤ i ≤ t,

we can find the basis {v(i)
1 , ..., v

(i)
ti } used to put A|Vi in the Jordan normal form, with the

canonical coordinates denoted by v
(i)
j = (a

(i)
1j , ..., a

(i)
Nj) effectively computable defined over

some algebraic extension of Q, that we call K.
Denoting again l := lφA = l(A), r(A) = r, and ρ := ρ(A), the spectral radius of A, we

have by (17) of [29, proof of theorem 27] that there exists an infinite subset N ⊂ N and

B ∈ MatN(R) such that the limit B = limn∈N
An

nlρn
is satisfied.

31



To suppose OφA(P ) Zariski dense implies that ĥφA(P ) > 0 by theorem 2.11. Extending
K, we can suppose P defined over K. By (22) on the proof of theorem 27 of [29] we have
that

ĥφA(P ) =
∑

v∈MK
max+(B log ||P ||v) > 0

and

log ||P ||v /∈ kerC(B) ∀ v with nonzero v-component in the above sum.

By (26) of [29, theorem 27] we can see that log ||P ||v /∈ kerC(B) implies that

log ||P ||v ∈ (< v
(1)
t1 , ..., v

(r)
tr >

⋃
kerC(B))− kerC(B).

For any v ∈ MK , we can make an effective change of basis using Cramer rule to obtain
log ||P ||v in the basis where A is in Jordan form, in other words, to obtain citi,v(P ) ∈
C, i ≤ r, b ∈ kerC(B), such that log ||P ||v =

∑
i≤r citi,v(P )v

(i)
ti + b, and so

log ||P ||v = (
∑

i≤r citi,v(P )a
(i)
1ti
, ...,

∑
i≤r citi,v(P )a

(i)
Nti

) + b.

Effectively, let J(A) be the (N × N)-matrix (a
(j)
il ) with lines indexed by 1 ≤ i ≤ N

and columns indexed by (j, l); 1 ≤ j ≤ t, 1 ≤ l ≤ tj in lexicographic order. So citi,v(P )
are coodinates of the vector solution z for the linear system J(A).z = log ||P ||v. Using
Cramer Rule we see that these solutions have the form citi,v(P ) =

∑
j≤N dij,v(P ) log ||xj||v,

for dij,v(P ) ∈ K effectively computable depending only on A.

From the equation above (25) in the proof of theorem 27 of [29], we see that Bv
(i)
ti =

ξi
ρll!
v

(i)
1 for ξi ∈ C, |ξi| = 1 for 1 ≤ i ≤ r, and ξi = limn

λn

ρn
for some eigenvalue λ of A. The

eigenvalues of A are real by hypothesis, therefore ξi is equal to 1 or −1. Then for this
case we have that

B log ||P ||v =
∑

i≤r citi,v(P )Bv
(i)
ti =

∑
i≤r citi,v(P )

ξi
ρll!

v
(i)
1

=
1

ρll!
(
∑

i≤r citi,v(P )a
(i)
11ξi, ...,

∑
i≤r citi,v(P )a

(i)
N1ξi) =

1

ρll!
(
∑

j(
∑

i≤r a
(i)
11ξidij,v(P )) log ||xj||v, ...,

∑
j(
∑

i≤r a
(i)
N1ξidij,v(P )) log ||xj||v),

which yields

ĥφA(P ) =
∑

v∈MK
max+(B log ||P ||v)

=
1

ρll!

∑
v∈MK

max{0,
∑

j(
∑

i≤r a
(i)
l1 ξidij,v(P )) log ||xj||v; l ≤ N} > 0.

Now consider S ∈MK the finite set of places v such that

max{
∑

j(
∑

i≤r a
(i)
l1 ξidij,v(P )) log ||xj||v; l ≤ N} > 0,

(for example S ⊂ T := {v; ||xj||v 6= 1 for some j} finite, with S0, S∞, T0, T∞ the non-
archimedean and archimedean places of each set).

Suppose that in this case the maximum in each v-component of the sum is achieved

for l = lv, and denote Dij,v := a
(i)
lv1.dij,v(P ). We use the notation N(v) for the norm of the

ideal in K corresponding to the place v.
We aim to make use of the fact that {logN(v); v ∈ S0} is linearly independent over Q

to apply theorem 2.14. We start computing
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ĥφA(P ) =
1

ρll!

∑
v∈S
∑

j(
∑

i≤r a
(i)
lv1ξidij,v(P )) log ||xj||v

=
1

ρll!

∑
v∈S
∑

j(
∑

i≤rDij,vξi) log ||xj||v

=
1

ρll!

∑
v∈S0

[
∑

i,j Dij,vξi(−v(xj)) +
∑

i,j,u∈S∞ Dij,uξi.vu,j]. logN(v),

where vu,j ∈ Q and
∑

u∈S∞ vu,j = v(xj) for v ∈ S0 a non-archimedean place. For instance

we multiply the point by a integer constant, so we suppose P ∈ PN(OK), so that every
vu,j is nonnegative.

Using the facts that HQ̄(a1 + ...+ an) ≤ nHQ̄(a1)...HQ̄(an), and that

H(α) ≤ (2.HQ̄(α))[K:Q][34, first inequation of page 77 and lemma 3.11],
where HQ̄ := exph is the Weil multiplicative height, we have that

H(
∑

i,j Dij,vξi(−v(xj)) +
∑

i,j,u∈S∞ Dij,uξi.vu,j)

≤ [2.HQ̄(
∑

i,j Dij,vξi(−v(xj)) +
∑

i,j,u∈S∞ Dij,uξi.vu,j)]
[K:Q]

≤ [4Nr[K : Q]
∏

i,j,u∈S∞ HQ̄(Dij,vξi(−v(xj))HQ̄(Dij,uξi.vu,j)]
[K:Q]

≤ (4Nr.[K : Q].maxi,j |v(xj)|2Nr[K:Q].maxw∈T HQ̄(Dij,w)2Nr[K:Q])[K:Q]

{4Nr.[K : Q].maxj |v(xj)|.(N − 1)! maxi,j,lHQ̄(a
(j)
il )HQ̄( 1

det J(A)
)}2N2r[K:Q]2

and then we have by theorem 2.14 that

ĥφA(P ) ≥ 1

ρll!
exp(−E.

∏
v∈T0

logAv.[logD + maxv∈T0 log logAv]),

where
Av ::= max{exp | logN(v)|, e#T0 , ee} ≤ N(v)12.#T0 for every v ∈ T0,

E := C11(#T0).[K : Q]#T0+2,

D := maxv∈T0{4Nr.[K : Q].maxj |v(xj)|.(N−1)! maxi,j,lHQ̄(a
(j)
il )HQ̄( 1

det J(A)
)}2N2r[K:Q]2 ,

for T0 = {v ∈MK ; ||xj||v 6= 1 for some j}, C11(n) = 28n+53.n2n.

We can note that

#T0 =
∑

v∈T0
1 ≤ 2 +

∑
j

∑
v∈T0

log max{1, N(v)|v(xj)|} ≤ 4 +NhK(P ),

|v(xj)| ≤ log 3 +
∑

j

∑
v∈T0

log max{1, N(v)|v(xj)|} ≤ 3 +NhK(P ),

logN(v) ≤ logN(v)|v(xj)| ≤
∑

j

∑
v∈T0

log max{1, N(v)|v(xj)|} ≤ 2 +NhK(P ),

where hK(P ) = [K : Q].h(P ), and we used the product formula to conclude∑
v∈T0

log max{1, N(v)|v(xj)|} ≤ 2+
∑

v∈T0
logN(v)v(xj) =

∑
v∈T∞ log ||xj||v ≤

∑
v∈T∞ log max{1, ||xj||v}

≤ hK(xj) ≤ hK(P ).

Making C equal to

1

2ρll!
exp(−E ′.(logA′)(4+NhK(P )).[logD′ + log logA′]),
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where

A′ ::= e(2+NhK(P ))(12.(4+NhK(P ))),

E ′ := C11(4 +NhK(P )).[K : Q](6+NhK(P )),

D′ := {4Nr.[K : Q].(3 +NhK(P )).(N − 1)! maxi,j,lHQ̄(a
(j)
il )HQ̄( 1

det J(A)
)}2N2r[K:Q]2 ,

we have what we wanted, since the above constants are efectively computable depending
only A and h(P ), and the heights h(P ), ĥφA(P ) do not change when multiplyed by an
integer constant.

Corollary 2.16: Let φ : GN
m → GN

m be a monomial map induced by A with real
eigenvalues, irreducible characteristic polynomial over Q and δφ > 1, and let P ∈ GN

m(Q̄)
be a point with infinite orbit Oφ(P ). Then there is an effective computable positive constant

C depending on A and h(P ) such that ĥφA(P ) > C.

Proof. By corollary 2.13, we must have ĥφA(Q) > 0. Now we follow the proof of theorem
2.15, with some reductions and changes. Again we have Q̄N = V1 + ... + Vr + Z, where
V1, ..., Vr are the distinct maximal Jordan subspaces and Z := Vr+1 + ... + Vt is the sum

of all the other Jordan subspaces for A. We assume vi := (a
(i)
1 , ..., a

(i)
N ) puts A|Vi in

the Jordan normal form. Again B := limn∈N
An

nlρn
= limn∈N

An

ρn
, but now the binomial

equation between (24) and (25) in the proof of theorem 27 of [29] shows that

Bvi = limn
λn

ρn
vi = ξivi, ξi ∈ {−1, 1} ∀ 1 ≤ i ≤ r.

Similarly to theorem 2.15, we have that log ||P ||v =
∑

i≤r ci,v(P )vi + b for ci,v(P ) ∈ C, i ≤
r, b ∈ kerC(B), effectively computable and K a number field such that the Jordan normal
form of A and the point P are defined over it. So

log ||P ||v = (
∑

i≤r ci,v(P )a
(i)
1 , ...,

∑
i≤r ci,v(P )a

(i)
N ) + b.

Again ci,v(P ) =
∑

j≤N dij,v(P ) log ||xj||v, for dij,v(P ) ∈ K effectively computable by
Cramer rule, depending only on A implies that

B log ||P ||v =

(
∑

j(
∑

i≤r a
(i)
1 ξidij,v(P )) log ||xj||v, ...,

∑
j(
∑

i≤r a
(i)
N ξidij,v(P )) log ||xj||v).

For some S ⊂ T := {v; ||xj||v 6= 1 for some j} finite, lv ∈ {1, ..., r} , denoting

Dij,v := a
(i)
lv
.dij,v(P ), and

A ::= e(2+NhK(P ))(12.(4+NhK(P )))

E := C11(4 +NhK(P )).[K : Q](6+NhK(P )),

D := {4Nr.[K : Q].(3 +NhK(P )).(N − 1)! maxi,j,lHQ̄(a
(j)
il )HQ̄( 1

det J(A)
)}2N2r[K:Q]2 ,

it follows similarly as before that

ĥφA(P ) =
1

ρll!

∑
v∈S
∑

j(
∑

i≤r a
(i)
lv
ξidij,v(P )) log ||xj||v

=
1

ρll!

∑
v∈S
∑

j(
∑

i≤rDij,vξi) log ||xj||v
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=
1

ρll!

∑
v∈S0

[
∑

i,j Dij,vξi(−v(xj)) +
∑

i,j,u∈S∞ Dij,uξi.vu,j]. logN(v)

>
1

2
exp(−E.(logA)(4+NhK(P )).[logD + log logA])

Remark 2.17: As Silverman did presume in [29, remark 30], we see that the explicit
constants obtained for theorem 2.15 and corollary 2.16 show that if the height of a point
is very large, then the referred constants for this point will be smaller, and can be made
even smaller if the coordinates of the initial matrix are big. In fact, working out the proof
above, the constants C can have a form similar to

1

2.ρll!{(4 +NhK(P ))C(A)4Nr[K : Q](N − 1)!}{c1.[K:Q]2.16.N2r.(4+NhK(P ))}(10(6+NhK (P )))
,

where c1 does not depend on anything, and C(A) := maxi,j,lHQ̄(a
(j)
il )HQ̄( 1

det J(A)
) depends

on the absolute heights of the coordinates of the vectors which transform A in its Jordan
form. More sharp effective versions of Baker theorem should lead to more sharp versions
of the above constant.
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Chapter 3

Heights, Variation, and Intersection
numbers

In this chapter we study families of varieties endowed with polarized canonical
eigensystems of several maps, inducing canonical heights on the dominating variety as well
as on the ”good” fibers of the family. We show explicitely the dependence on the parameter
for global and local canonical heights when the fibers change, extending previous works
of J. Silverman and others. When the base variety is a curve with a Weil height that
corresponds to a divisor of degree one, then we can associate canonical heights on fibers
and the Weil height on the base variety with the canonical height on the generic fiber
by a limit. Finally, fixing an absolute value v ∈ K and a variety V/K, we descript the

Kawaguchi‘s canonical local height λ̂V,E,Q,(., v) as an intersection number, provided that
the polarized system (V,Q) has a certain weak Néron model over Spec(Ov) to be defined.
With this we extend Néron’s work stregthening Silverman’s results for systems having
only one map.

3.1 Two variation theorems

The following notation will be used for this section and the next section.

• K : A global field with characteristic 0 and a complete set of proper absolute values
satisfying a product formula. We will call such a field a global height field.

• M := MK̄ : The set of absolute values on K̄ extending those on K.

• T/K : a smooth projective variety.

• hT : A fixed Weil height function on T associated to an ample divisor, chosen to
satisfy hT ≥ 0.

• V/K : a smooth projective variety.

• π : a morphism π : V → T defined over K whose generic fiber is smooth and
geometrically irreducible.

• φi : rational maps φi : V/T 99K V/T defined over K for i = 1, ..., k, such that φi
is morphism on the generic fiber of V/T. Our assumption that φi is on V/T means
that π ◦ φi = π.

• η : A divisor class η ∈ Pic(V)⊗ R satisfying
⊗k

i=1 φ
∗
i η = αη for some real α > k.

• T 0 : the subset of T having good fibers in the sense that
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T 0 = {t ∈ T : Vt is smooth and (φi)t : Vt → Vt is a morphism ∀i}.

where Vt := π−1(t).

• Qn for n ∈ N : the sets of iterates of functions defined as Q0 = {Id},
Q1 = Q = {φ1, ..., φk}, and Qn = {φi1 ◦ ... ◦ φin ; ij = 1, ..., k}.

• (Qn)t for n ∈ N : the sets of iterates of functions defined as
(Q0)t = {Id}, (Q1)t = (Q)t = {(φ1)t, ..., (φk)t}, and
(Qn)t = {(φi1)t ◦ ... ◦ (φin)t; ij = 1, ..., k}, the restrictions
of the φ′is to the fiber Vt.

We also assume that the divisor class
⊗k

i=1 φ
∗
i η−αη is fibral, which means that it can

be represented by a divisor ∆ such that π(|∆|) 6= T, or equivalently, there exists a divisor
D in Div(T ) such that π∗D > ∆ > −π∗D.

For any t ∈ T 0 we let it : Vt → V be the natural inclusion, and then by definition
i∗tη = ηt. The fiber Vt is irreducible for each t ∈ T 0. If the support of a fibral divisor
includes an irreducible fiber, it is always possible to find a linearly equivalent divisor which
does not include that fiber. This implies that⊗k

i=1(φi)
∗
tηt = αηt ∈ Pic(Vt)⊗ R for all t ∈ T 0.

From this and from theorem 1.2.1 of [16], we have that for each t ∈ T 0 there is a canonical
height

ĥVt,ηt,(Q)t : Vt(K̄)→ R.

We now fix a Weil height

hV,η : V(K̄)→ R

associated to η. It follows from the properties of the height functions of Kawagushi [16],
and functoriality of the Weil height function, that

ĥVt,ηt,(Q)t = hVt,ηt +O(1) = hV,η ◦ it +O(1).

where the O(1) depend on t. For t ∈ T , any two canonical heights ĥVt,ηt,(Q)t differ from
the Weil Height hV,η by a bounded amount constant depending on t. For applications, it
is important to have an explicit bound for such constant. Let us check how we can see
this dependence explicitly in the following theorem, which is an extension of theorem 3.1
of [9], for one map’s systems. Such case was a more general form of the work of Silverman
and Tate for families of abelian varieties done in [30].

Theorem 3.1: With notation as above, there exist constants c1, c2 depending on the
family V → T , the system Q, the divisor class η, and the choice of Weil height functions
hV,η and hT , so that

|ĥVt,ηt,(Q)t(x)− hV,η(x)| ≤ c1hT (t) + c2 for all t ∈ T 0 and all x ∈ Vt.

Proof. From the definition of T 0, one can conclude that V0 := π−1(T 0) is smooth, so we
are able to apply some resolution of singularities to V without changing V0. Moreover,
although the maps φi : V 99K V are merely rational, they are morphisms on V0. This
means we can blow-up V to produce:

(i) smooth projective varieties Ṽi,
(ii) birational morphisms ψi : Ṽi → V which are isomorphisms on V0
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(iii) morphisms ξi : Ṽi → V which extend the rational maps
φi ◦ ψi : Ṽi → V .
The existence of Ṽi with these properties follows from [13] II.7.17.3 and II.7.16, except
that Ṽi might be singular. We then use Hironaka’s resolution of singularities to make Ṽi
smooth and we have the desired properties.

Next we choose a divisor E ∈ Div(V) ⊗ R in the divisor class of η, and we let H ∈
Div(T ) be the ample divisor used to define hT . Our assumption that

⊗k
i=1 φ

∗
i η − αη is

fibral guarantees the existence of a divisor D ∈ Div(T )⊗ R with

π∗D >
∑k

i=1 φ
∗
iE − αE > −π∗D.

We also choose an integer n > 0 so that the divisors

nH +D and nH −D are both ample on T .

The height function with respect to a positive divisor is bounded below out of the support
of the divisor, and for an ample divisor such height is everywhere bounded below. So the
last assertions imply that

|hV,⊗k
i=1 φ

∗
iE−αE

| ≤ nhV,π∗H +O(1) = nhT,H ◦ π +O(1)

for all points P in V0 − |D|.
Now let x ∈ V0 be any point, and let x̃i ∈ Ṽi satisfying ψi(x̃i) = x. In the following
computation, we write O(1) for a quantity that is boundable in terms of the family V → T ,
the maps φi, the divisor class η, and the choice of Weil height functions hV,η = hV,E and
hT = hT,H .The most important here is that O(1) is independent of x ∈ V0.

|
∑

i hV,E(φi(x))− αhV,E(x)|

= |
∑

i hV,E((φi ◦ ψi)(x̃i))− αhV,E(x)|

= |
∑

i hV,E(ξi(x̃i))− αhV,E(x)|

= |
∑

i hV,ξ∗i E(x̃i)− αhV,E(x)|+O(1)

= |
∑

i hV,ψ∗i φ∗iE(x̃i)− αhV,E(x)|+O(1)

= |
∑

i hV,φ∗iE(ψi(x̃i))− αhV,E(x)|+O(1)

= |
∑

i hV,φ∗iE(x)− αhV,E(x)|+O(1)

= |hV,⊗k
i=1 φ

∗
iE−αE

|+O(1)

≤ nhT,H(π(x)) +O(1).

This inequality is valid on V0 out of the suport of D. Choosing different divisors E in the
class of η to move D, we then obtain the inequality for all points in V0, in a similar way
of [30], pages 203-204. This proves

(*) |
∑

i hV,E(φi(x))− αhV,E(x)| ≤ nhT,H(π(x)) +O(1) for all x ∈ V0.
In order to complete the proof, we remember theorem 1.2.1 of [16], which says in

similar conditions that

(1): |
∑k

i=1 hL(fi(x))− dhL(x)| ≤ C implies (2): |ĥL,F(x)− hL(x)| ≤ C
d−k .

We use (*) in place (1) and obtain
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|ĥVt,ηt,(Q)t(x)− hV,η(x)| ≤ nhT,H(π(x)) +O(1)

α− k
.

By λV,E we denote a Weil local height function

λV,E : (V − |E|)×MK̄ → R

associated to the divisor E. We can now give a similar estimate for the difference between
the canonical local height λ̂Vt,Et,(Q)t defined by Kawaguchi in theorem 4.2.1 of [16] and a
given Weil local height λV,E, generalizing Lang‘s result [20] for abelian varieties. Here we
make extensive use of the notation in theorem 7.3 and corollary 7.4 of [27], and obtain a
local version of theorem 3.1. So 3.1 can be again deduced adding the following theorem
over all absolute values of K and applying theorem 4.3.1 of [16]. Moreover, we note
that one may skip to use resolution of singularities to prove the previous theorem just
proving the next and adding up local contributions, even obtaining a stronger result,
since avoiding to use resolution of singularities gives us that theorem 3.1 is true in any
characteristic, using the machinery of [27]. So theorem 3.1 is valid any global field K. For
basic facts about local height functions, MK−bounded functions and MK− constants, see
[20], chapter 10. We here use freely terminology from [27].

Theorem 3.2: With notation as above, fix a divisor E ∈ Div(V) ⊗ R in the class of
η and a Weil local height function λV,E. Let U be defined as the following set

{t ∈ T : Vt is smooth, (φi)t : Vt → Vt are morphisms , Et is a divisor on Vt,
and

∑
i(φi)

∗
tEt ∼ αEt}.

(The condition that Et be a divisor on Vt means that |E| contains no component of Vt,
see [13], III.9.8.5.)

Let ∂U := T − U be the complement of U , and let λ∂U be a local height function
associated to ∂U as described in [27].

It is possible to choose canonical local heights λ̂Vt,Et,(Q)t as described in Theorem 4.2.1
of [16], one for each t ∈ U , in such a way that

|λ̂Vt,Et,(Q)t(x, v)− λV,E(x, v)| ≤ cλ∂U(t, v)
for all (x, v) ∈ (V − |E|)×M with π(x) = t ∈ U.

Proof. We substitute V by the quasi projective variety π−1(U), and substitute E by its
restriction to this new V . This does not affect the statement of the theorem because
[27] section 5 says that our old λV,E and our new λV,E differ by O(λ∂U). From the
definition of U we have that φi : V → V are morphisms, and on every fiber it is true that∑

i(φi)
∗
tEt ∼ αEt. Hence there is a function f ∈ K̄(V)∗ ⊗ R and a fibral divisor F ∈

Div(V)⊗ R such that∑
i φ
∗
iE = αE+ div(f) + F , where F := π∗D for some D.

Now standard properties of local heights, for example [27] Theorem 5.4, transforms the
divisorial relation above into the height relation∑

i λV,E(φi(x), v) = αλV,E(x, v) + v(f(x)) + λU,D(π(x), v) +O(λ∂U(π(x), v)).
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Now we can repeat the same idea of the proof of Theorem 4.2.1 of [16], letting γ(x, v) :=∑
i λV,E(φi(x), v))−αλV,E(x, v)−v(f(x))−λU,D(π(x), v)−O(λ∂U(π(x), v)), and proceeding

in the same way. This yields

λ̂Vt,Et,(Q)t = λV,E +O(λU,D ◦ π) +O(λ∂U ◦ π),

which is almost what we want to prove. To conclude, we remember the fact that∑
i(φi)

∗
tEt ∼ αEt on every fiber, so we can repeat the above argument with functions

f1, ..., fn and divisors D1, ..., Dn having the property that ∩|Di| = ∅. Then

min{λU,Di} = λU,∩Di = λU,∅

is MK-bounded, so

λ̂Vt,Et,(Q)t = λV,E + miniO(λU,Di ◦ π) +O(λ∂U ◦ π) = λV,E +O(λ∂U ◦ π).

Corollary 3.3: Theorem 3.1 is true over global fields in any characteristic.

Proof. As we have said, we just must add the previous result over all places of K and use
theorem 4.3.1 of [16].

3.2 Variation of the canonical height along sections

In this section we have a more precise result for a one-parameter algebraic family of points.
We keep almost the same notation from the previous section with the following addition:

• T/K : we assume that the base variety T has dimension 1, so T is a smooth projective
curve.

• hT : we assume that the Weil height function on T corresponds to a divisor of degree
1.

• P : a section P : T → V . We can think of the generic fiber V of V as a variety over the
function field K̄(T ), and then the section P corresponds to a point PV ∈ V (K̄(T )).

• The function field K̄(T ) is itself an usual global height field , namely, for each point
t ∈ T , there is an absolute value ordt on K̄(T ) such that

ordt(f) := order of vanishing of f at t.

Further, the rational map φi : V 99K V induces a morphism on the generic fiber
(φi)V : V → V , and we have

∑
i(φi)

∗
V ηV = αηV , where ηV is the restriction of η to the

generic fiber. This, by [16], allows us to construct the canonical height

ĥV,ηV ,(Q)V : V (K(T ))→ R,

which can be evaluated at the point PV . We also make Pt = P (t). There are then three

heights ĥV,ηV ,(Q)V , ĥVt,ηt,(Q)t and hT which may be compared, as Silverman did for abelian
varieties in [29]. Moreover, the following theorem generalizes theorem 4.1 of [9] for the
Kawaguchi canonical heights.

Theorem 3.4: With notation as above,
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limhT (t)→∞,t∈T 0(K̄)

ĥVt,ηt,(Q)t(Pt)

hT (t)
= ĥV,ηV ,(Q)V (PV ).

Proof. We start by stating together some results. First of all, from theorem 3.1 we have

|ĥVt,ηt,(Q)t(x)− hV,η(x)| ≤ c1hT (t) + c2 for all t ∈ T 0 and all x ∈ Vt.
In particular, this is true for x = Pt, and the constants c1, c2 are independent of both t
and x. Second, we apply functoriality of Weil heights to the morphism P : T → V . We
note that P will be a morphism, because we have assumed that T is a smooth curve, so
any rational map from T to a variety is automatically a morphism. This gives

|hV,η(Pt)− hT,P ∗η(t)| ≤ c3(P ) for all t ∈ T.
where c3(P ) depends on the section P , but is independent of t. Third, we use [20],
Chapter 3, Proposition 3.2 to describe the Weil height hV,ηV on the generic fiber in terms
of intersection theory ,

|hV,ηV (SV )− degS∗η| ≤ c4 for all sections S : T → V .
Fourth, we know that a canonical height is a Weil height up to a constant, and then

|ĥV,ηV ,(Q)V (QV )− hV,ηV (QV )| ≤ c5 for all QV ∈ V ( ¯K(T )).

Using these four estimates and the triangle inequality, we compute

|ĥVt,ηt,(Q)t(Pt)− ĥV,ηV ,(Q)V (PV )hT (t)|

≤ |ĥVt,ηt,(Q)t(Pt)− hV,η(Pt)|+ |hV,η(Pt)− hT,P ∗η(t)|

+ |hT,P ∗η(t)− (degP ∗η)hT (t)|

+ |(degP ∗η)hT (t)− hV,ηV (PV )hT (t)|

+ |hV,ηV (PV )hT (t)− ĥV,ηV ,(Q)V (PV )hT (t)|

≤ (c1hT (t) + c2) + c3(P ) + |hT,P ∗η(t)− (degP ∗η)hT (t)|+ c4hT (t) + c5hT (t).

We now divide this inequality by hT (t) and let hT (t)→∞. This gives

lim suphT (t)→∞ |
ĥVt,ηt,(Q)t(Pt)

hT (t)
− ĥV,ηV ,(Q)V (PV )|

≤ c1 + c4 + c5 + lim suphT (t)→∞ |
hT,P ∗η(t)

hT (t)
− (degP ∗η)|.

Term c3(P ) has disappeared because it depends on P . Moreover, Corollary 3.5 of Chapter
4 from [20] implies that the heights hT,P ∗η and (degP ∗η)hT (t) are quasi-equivalent, and
so

limhT (t)→∞
hT,P ∗η(t)

hT (t)
= (degP ∗η).

This gives the fundamental estimate

lim suphT (t)→∞ |
ĥVt,ηt,(Q)t(Pt)

hT (t)
− ĥV,ηV ,(Q)V (PV )| ≤ c1 + c4 + c5,

where the constants c1, c4 and c5 are independent of both the section and the point t, so
the inequality above works with f ◦ P in place of P for all f ∈ Qn, n ∈ N. By (ii) of
Theorem 1.2.1 from [16], we know that
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∑
f∈(Qn)t

ĥVt,ηt,(Q)t(f(x)) = αnĥVt,ηt,(Q)t(x)
∑

f∈(Qn)V
ĥV,ηV ,(Q)V (f(x)) = αnĥV,ηV ,(Q)V (x).

So we finally obtain

αn lim suphT (t)→∞ |
ĥVt,ηt,(Q)t(Pt)

hT (t)
− ĥV,ηV ,(Q)V (PV )| =

lim suphT (t)→∞ |
∑

f∈(Qn)t
ĥVt,ηt,(Q)t(f(Pt))

hT (t)
−
∑

f∈(Qn)V
ĥV,ηV ,(Q)V (f(PV ))|

≤ kn(c1 + c4 + c5).

The right hand-side of the above inequality does not depend on n, while α > k, so letting
n→∞ gives us the inequality that we wanted to show.

lim suphT (t)→∞ |
ĥVt,ηt,(Q)t(Pt)

hT (t)
− ĥV,ηV ,(Q)V (PV )| = 0.

3.3 Canonical local heights as intersection multiplicities

In this section we show that Kawaguchi‘s canonical local height λ̂V,E,Q, can be computed
as an intersection number. We fix an absolute value v on K and let Ov denote the ring of
v-integers in K. We continue with the notation used in the previous sections but we add
the assumption that V is a smooth projective variety, and that the morphisms φi : V → V
are finite, correspondent to a dynamical system (V, φ1, ..., φk) = (V,Q). We assume that

E is defined over K, where E ∈ Div(V )⊗R is a divisor satisfying
∑k

i=1 φ
∗
iE ∼ αE, α > k.

Let S := Spec(Ov). We will say that a smooth scheme V/S is a weak Néron Model for
(V/K,Q) over S if it satisfies the following axioms:

(1) The generic fiber of V/S, denoted by VK , is V .
(2) Every point P ∈ V (K) extends to a section P : S→ V .
(3) There exist finite morphisms Φi : V/S → V/S whose restriction to the generic

fiber are the φi.
We note that the Néron Model of an Abelian Variety is a weak Néron Model for

(A/K, [n]) for all n ≥ 2. Indeed, for an abelian variety A, Néron first showed that any

canonical local height λ̂A,D(., v) can be interpreted as an intersection multiplicity on the
special fiber of the Néron model of A over Spec(Ov)(see [20], chapter 11, section 5).

Henceforth we will assume that (V/K,Q) has a weak Néron Model V/S. Let Vs denote
the special fiber of V and write

Vs =
∑n

j=1 Vjs ,

where V1
s , ...,Vns ∈ Div(V) are the irreducible components of Vs. If W is a prime divisor

of V rational over K, then W , its closure in V , is a prime divisor on V . Extending this
process by linearity, we obtain a natural injection

Div(V )K → Div(V), D → D̄

Similarly, given a point P ∈ V (K), we write P̄ = P(S) to denote the image of the section
P ∈ V . Note that the divisor group on S is a cyclic group generated by the special point
(s). Hence, for any D ∈ Div(V )K and any P ∈ V (K) which does not lie in the support
of D, we may define the intersection multiplicity i(D,P ) (also denoted by P̄ .D̄) by

P∗D̄ = i(D,P )(s).
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With these notations in hand, we can now state the main result of this section, which is
a stronger version of theorem 6.1 of [9] due to Call and Silverman. For the proof, we will
make use of a more refined theorem in algebra linear, that was not required for the proof
of their mentioned earlier result.

Theorem 3.5: Suppose V/S is a weak Neron model for (V/K,Q) over Ov. Let λ̂V,E,Q,f
be a canonical local height as constructed in theorem 4.2.1 of [16].Moreover, suppose that
α > nk for n the number of irreducible components of the special fiber. Then there exist
real numbers γ1, ..., γn so that for all P ∈ V (K)− |E|,

λ̂V,E,Q,f (P ) = P̄ .(Ē +
∑n

j=1 γjVjs ).

An important point in the proof of this theorem is to describe the action of Φi on the
set of irreducible components {V1

s , ...,Vns } of Vs. Since Φi is a finite morphism, it maps
each irreducible component of Vs onto another irreducible component (possibly the same
component) of Vs. Let N = {1, ..., n}. Then

Ai = AΦi : N → N defined by Φi : Vjs → V
Ai(j)
s for j ∈ N .

We can identify Ai with a matrix of the following type.

Definition 3.6: A square matrix M is a permutation-type matrix if every column of
M has exactly one 1 and all other entries are 0.

It is a fact (lemma 6.2(b) of [9]) that every eigenvalue of a permutation matrix is 0 or
is a root of unity. Such information is used in the proof of theorem 6.1 of [9]. For our
more general situation, we will need the following theorem.

Theorem 3.7: Let A be an n−square nonnegative matrix. Then

min1≤i≤n
∑n

j=1 aij ≤ ρ(A) ≤ max1≤i≤n
∑n

j=1 aij.

In other words, the spectral radius of a nonnegative square matrix is between the smallest
row sum and the largest row sum.

Proof. See theorem 5.24 of [36].

Proof. (of Theorem 3.5). Since E is assumed to be rational over K, we may fix a rational
function f ∈ K(V )∗ ⊗ R so that∑k

i=1 φ
∗
iE = αE + divV (f). (1)

Since K(V ) ∼= K(V), we may also regard f as an element of K(V)∗⊗R. Then the divisors
of f on V and V differ by a divisor supported on the special fiber, say

divV (f) = divV(f) + Zf , where Zf =
∑n

j=1m(j, f)Vjs , (2)

for some constants m(j, f) ∈ R.
By Theorem 4.2.1 of [16], there is a unique canonical local height

λ̂E := λ̂V,E,Q,f which satisfies∑k
i=1 λ̂E(φi(p), v) = αλ̂E(p, v) + v(f(p)). (3)
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Consider the map V (K) − |E| → R defined by P → i(E,P ) = P̄ .Ē. Given any
P ∈ V (K) − |E|, there is a pair (U, g) representing Ē such that U ⊂ V is an open
neighborhood of P and g(P ) 6= 0,∞. Then, by definition, i(E,P ) = v(g(P )), independent
of the choice of the pair (U, g). Thus, the map P 7→ i(E,P ) is a Weil Local Height function
for E on V (K).

Note that Φ∗i Ē and φ∗iE differ by a divisor supported on the special fiber, since Φi and
φi are the same on the generic fiber. Combining this fact with (1), we have∑

i Φ
∗
i Ē = αĒ + divV (f) +

∑n
j=1 njVjs , (4)

for some constants nj ∈ R. Further,

(Φi)∗P̄ = (Φi)∗P(S) =Φi◦P(S) = φi(P)(S) = φi(P ),

where φi(P) is the section corresponding to φi(P ). Hence,∑
i P̄ .Φ

∗
i Ē =

∑
i(Φi)∗P̄ .Ē =

∑
i φi(P ).Ē =

∑
i i(E, φi(P )). (5)

Intersecting both sides of (2) with P̄ yields:

P̄ .divV (f) = P̄ .divV(f) + P̄ .Zf = v(f(P )) + P̄ .
∑n

j=1 m(j, f)Vjs . (6)

Now, intersecting both sides of (4) with P̄ and applying (5) and (6), we conclude∑
i i(E, φi(P )) = αi(E,P ) + v(f(P )) + P̄ .

∑n
j=1 cjVjs , (7)

where cj = m(j, f) + nj are constants which depend on E,Q and f , but are independent
of P. In particular, we see that (7) holds for all P ∈ V (K) for which the intersection
multiplicities i(E, φi(P )) and i(E,P ) are defined, i.e, for all P /∈ |E| ∪ |φ∗1E| ∪ ...∪ |φ∗kE|.

Next, we will show that one can choose real numbers x1, ..., xn so that the function

ΛE(P ) = i(E,P ) + P̄ .
∑n

j=1 xjVjs (8)

satisfies ∑
i ΛE(φ(P )) = αΛE(P ) + v(f(P )) (9)

For all P ∈ V (K)− (|E| ∪ |φ∗1E| ∪ ... ∪ |φ∗kE|). Using (8) and (7), we compute∑
i ΛE(φi(P ))− αΛE(P )− v(f(P ))

=
∑k

i=1(φi(P ).
∑n

j=1 xjVjs )− αP̄ .
∑n

j=1 xjVjs + P̄ .
∑n

j=1 cjVjs .

Recall that Φi determines a permutation type matrix Ai := AΦi defined by Φi : Vjs →
VAi(j)s . Since P̄ and φi(P ) = Φi(P̄ ) intersect the components of Vs transversally, it follows
from the definition of Ai that if P(s) ∈ Vt

s , then

P̄ .
∑n

j=1 xjVjs = xt and φi(P ).
∑n

j=1 xjVjs = xAi(t). (10)

Therefore it suffices to find constants x1, ..., xn such that∑k
i=1 xAi(t) − αxt + ct = 0 for t = 1, ..., n.

Writing x1, ..., xn and c1, ..., cn as column forms, we can combine these n equations into a
matrix equation

(αI−
∑k

i=1 Ai)x = c.
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The Ai are permutation-type matrices, so Theorem 3.7 says that the absolute value of an
eigenvalue of

∑
iAi is at most nk, but α > nk by hypotheses. So det(αI−

∑k
i=1 Ai) 6= 0

and (αI−
∑k

i=1 Ai) is invertible and we may take x = (αI−
∑k

i=1 Ai)
−1c. This finishes

the proof that we can choose x1, ..., xn so that the function Λ defined by (8) satisfies (9).

To complete the proof, we will show that λ̂E(P, v) = ΛE(P ) for all P in V (K)− |E|.
Since λ̂E(., v) and i(E, .) are both Weil local heights for E, their difference has a unique
v-continuous extension to a bounded v-continuous function defined on all of V (K) (see
[20], chapter 10, proposition 1.5, and 2.3). Hence, by (8), we see that the map LE(P ) :=

λ̂E(P, v)−ΛE(P ) extends to a bounded function on V (K), namely, by a constant C ≥ 0.

Further, since λ̂E and ΛE satisfy (3) and (9), it follows that∑
i LE(φi(P )) = αLE(P ) for all P ∈ V (K).

Therefore, for any P ∈ V (K),

|LE(P )| ≤ |α−N
∑

φ∈QN LE(φ(P ))| ≤ kN

αN
.C →N→∞ 0.

We conclude that LE ≡ 0, so λ̂E(P, v) = ΛE(P ) ∀P ∈ V (K)− |E|.
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Appendix A

Canonical Metrics of Commuting
Systems

With two polarized dynamical systems (X,F = {f1, ..., fk},L, α), α > k and (X,G =
{g1, ..., gt},L, β), β > t, we can build two canonical metrics, two canonical heights, and
two canonical measures for L ∈ Pic(X)⊗R. We will see that if all the maps of one of the
systems commute with all the maps of the other, then the canonical metrics, canonical
heights, and canonical measures associated to each system are identical.

A.1 The admissible metric

We consider a projective variety X over a number field K, and (X; f1, ..., fk) a dynamical
eigensystem of k morphisms F := {f1, ..., fk} over K associated with an ample line bundle
L ∈ Pic(X) ⊗ R of degree α > k as in section 3 of [16], so we have an isomorphim
φ : L⊗α →∼= f ∗1L⊗...⊗f ∗kL. This situation will be called a polarized dynamical eigensystem
(X, f1, ..., fk,L, α) on X defined over K. Assume that for every place v of K we have
chosen a continuous and bounded metric ||.||v on each fibre of Lv := L ⊗K Kv. The
following theorem is stated in theorem 3.3.1 of [16] for ||.||∞.

Theorem A.1.1: The sequence defined recurrently by ||.||v,1 := ||.||v and

||.||v,n = (φ∗(f ∗1 ||.||v,n−1...f
∗
k ||.||v,n−1))

1
α for n > 1

converge uniformly on X(K̄v) to a metric ||.||v,F (independent of the choice of ||.||v,1) on
Lv which satisfies the equation

||.||v,F = (φ∗(f ∗1 ||.||v,F ...f ∗k ||.||v,F))
1
α .

Proof. The proof is the same as is theorem 3.3.1 of [16] with v in place of ∞.

Definition A.1.2: The metric ||.||v,F is called the canonical metric on Lv relative to
the system of maps F .

The following proposition relates the canonical metrics associating to commuting maps.
It represents the main result of this section, and it is a natural and simple generalization
of proposition 2.5 of [25] for the metric defined in [16, theorem 3.1.1].

Proposition A.1.3: Let (X,F = {f1, ..., fk},L, α) and (X,G = {g1, ..., gt},L, β) be
two polarized systems with α > k, β > t on X defined over K. Suppose that fi◦gj = gj ◦fi
for all i, j. Then ||.||v,F = ||.||v,G.
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Proof. The key idea is that the canonical metric does not depend on the metric from
which we have started the iteration with. Let s ∈ Γ(X,L) be a non-zero section of L.
We are going to consider two metrics ||.||v,1 = ||.||v,F and ||.||‘v,1 = ||.||v,G on the line

bundle L. By our definition of canonical metric for F , we can start with ||.||‘v,1 and obtain

||s(x)||v,F = limr(||
∏

f∈Fr s(f(x))||‘v,1)
1
αr , but also by our definition of canonical metric

for G starting with

||.||v,1 = ||.||v,F we get ||s(x)||v,G = liml ||
∏

g∈Gl s(g(x))||
1

βl

v,F .

So using the uniform convergence and the commutativity of the maps,

||s(x)||v,F = limr ||
∏

f∈Fr s(f(x))||
1
αr

v,G

= limr,l

∏
f∈Fr

∏
g∈Gl ||s(f(g(x)))||

1

αrβl

v,1

= limr,l

∏
f∈Fr

∏
g∈Gl ||s(g(f(x)))||

1

αrβl

v,1

= liml ||
∏

g∈Gl s(g(x))||
1

βl

v,F

= ||s(x)||v,G,
which was the result we wanted to prove.

Let X n-dimensional projective variety defined over a number field K and (X,F =
{f1, ..., fk},L, α) a polarized system with α > k defined over K. Let v be a place of K
over infinity. We can consider morphisms

fi ⊗ v : Xv → Xv over the complex variety Xv.

Associated to F and v we also have the canonical metric ||.||v,F and therefore the
distribution ĉ1(L, ||.||v,F) = 1

πi
∂∂̄ log ||s||v,F , with s ∈ Γ(X,L) − {0}, analogous to the

first Chern form of (L, ||.||v,F). It can be proved that this is a positive current in the sense
of Lelong, as in section 3.2 of [16], we can define the product

ĉ1(L, ||.||v,F)n = ĉ1(L, ||.||v,F)...ĉ1(L, ||.||v,F),

which represents a measure µ on Xv.
Definition A.1.4: The measure dµF = ĉ1(L, ||.||v,F)n/µ(X), is called the canonical

measure associated to F and v. Once we fix L, it depends only on the metric ||.||v,F .
Now we assume that X is an arithmetic variety of absolute dimension n + 1, that is,

given a number field K, X is flat and of finite type over Spec(OK) of relative dimension n.
We can define (see section 2 of [16]) the arithmetic intersection number ĉ1(L1)...ĉ1(Ln+1)
of the classes of the hermitian line bundles (Li, ||.||) on X, which means that each line
bundle Li on X is equipped with a hermitian metric ||.||v,i over Xv = X⊗K Spec(OK),
for each place v at infinity. Such line bundles are called adelic line metrized bundles when
they can be equipped with semipositive metric for all places v. So we can define adelic
intersection numbers ĉ1(L1|Y )...ĉ1(Ln+1|Y ) over a p-cycle Y ⊂ X. Suppose that we are in

the presence of a polarized dynamical eigensystem (X,F ,L, α). In this case the canonical
metric ||.||F represents a semipositive metric on L, and we can define the canonical height
associated to (L, ||.||F).

Definition A.1.5: The canonical height ĥF(Y ) of a p-cycle Y in X is defined as

ĥF(Y ) =
ĉ1(L|Y )p+1

(dimY + 1)c1(L|Y )p
.

49



It depends only on (L, ||.||F), where ||.||F is actually representing a colection of canonical
metrics over all places of K. An inportant particular case of canonical height will be the
canonical height ĥF(P ) of a point P of X. Since the canonical measure and the canonical
height were defined depending only on the canonical metric of the system, the equality
of canonical metrics and measure is a direct consequence of proposition A.1.3, as we just
state below.

Proposition A.1.6: Let (X,F = {f1, ..., fk},L, α) and (X,G = {g1, ..., gt},L, β) be
two polarized systems with α > k, β > l on X defined over K. Suppose that fi◦gj = gj ◦fi
for all i, j. Then ĥF = ĥG and dµF = dµG.

Proof. It is a consequence of the last two definitions that the statements depend only on
the canonical metric presented in proposition A.1.3.
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