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c© Jesús Aponte 2017



CIP - Catalogação na Publicação

Elaborado pelo Sistema de Geração Automática da UFRJ com os
dados fornecidos pelo(a) autor(a).

A643s
Aponte González, Jesús Alejandro
   Shadowable, topologically stable and distal
points for flows / Jesús Alejandro Aponte González.
-- Rio de Janeiro, 2017.
   67 f.

   Orientador: Carlos Arnoldo Morales Rojas.
   Tese (doutorado) - Universidade Federal do Rio
de Janeiro, Instituto de Matemática, Programa de Pós
Graduação em Matemática, 2017.   

   1. Topological Dynamical Systems. 2. Pointwise
dynamics. 3. Shadowing. 4. Topological Stability.
5. Distality. I. Morales Rojas, Carlos Arnoldo,
orient. II. Título.





For Iván Aponte, in memoriam.

iv



Abstract

A shadowable point for a flow is a point where the shadowing lemma holds for
pseudo-orbits passing through it. We prove that this concept satisfies the following
properties: the set of shadowable points is invariant and a Gδ set. A flow has the
pseudo-orbit tracing property if and only if every point is shadowable. The chain
recurrent and nonwandering sets coincide when every chain recurrent point is shad-
owable. The chain recurrent points which are shadowable are exactly those that can
be are approximated by periodic points when the flow is expansive. These results ex-
tends those presented in [42]. We study the relations between shadowable points of a
homeomorphism and the shadowable points of its suspension flow. We characterize
the set of forward shadowable points for transitive flows and chain transitive flows.
We prove that the geometric Lorenz attractor does not have shadowable points. We
show that in the presence of shadowable points chain transitive flows are transitive
and that transitivity is a necessary condition for chain recurrent flows with shadow-
able points whenever the phase space is connected. Finally, as an application these
results we give concise proofs of some well known theorems establishing that flows
with POTP admitting some kind of recurrence are minimal.

We introduce the concept of topological stable point for flows. We see that this
set is invariant under the flow and under topological conjugacy. We prove that if
the chain recurrent set is contained in the set of topologically stable points, then it
coincides with the closure of the periodic orbits. Finally we show that if an orbit
of the suspension flow of a map is topologically stable then its base point is also
topologically stable. These results extends to the flow context some of those given
in [34].

We also study the variation of distality for flows φ obtained by making the proximal
cell in [10] to depend on a given subset F of the full set of reparametrizations C. We
consider first the case when F reduces to a single continuous map s : R→ R fixing
the origin different from the identity. In such a case if the s-dependent proximal
cells are trivial, then the flow is uniformly closed (or trivial if s is bounded). Next
we show that the flow φ is closed if and only if the s-depending proximal cells
reduce to the corresponding orbit for every (or some) s bounded. Furthermore,
nonsingular flows admits points whose proximal cell (with s being the identity) does
not reduce to the orbit. Afterwards, we consider the case when F is either H (the
set of homeomorphisms s : R→ R fixing 0) or the whole C. From this we obtain a
characterization of the classical pointwise almost periodicity.

Finally, we begin the study of the two-limit shadowable property for flows LmSP .
We show that the geometric Lorenz attractor does not have LmSP . We show that
if a map has the two-side limit shadowing property then the suspension has LmSP
and show an example where the reciprocal is not true.
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Resumo

Um ponto sombreável para um fluxo é um ponto em que o lema de sombremento é
válido para pseudo-órbitas que passam por ele. Provamos que este conceito satisfaz
as seguintes propriedades: o conjunto de pontos sombreáveis é invariante e um con-
junto Gδ. Um fluxo tem a propriedade de propriedade de traçado de pseudo-órbitas
se e somente se cada ponto for sombreável. Os conjunto recurrente por cadeias e
n ao errantes coincidem quando cada ponto recorrente por cadeia é sombreável. Os
pontos recorrentes por cadeia que s ao sombréaveis s ao exatamente aqueles que
podem ser aproximados por pontos periódicos quando o fluxo é expansivo. Estes
resultados estendem os apresentados em [42]. Estudamos as relações entre pontos
sombréaveis de um homeomorfismo e os pontos sombréaveis do seu fluxo de sus-
pensão. Caracterizamos o conjunto de pontos sombréaveis para os fluxos transitivos
e os fluxos transitivos por cadeia. Provamos que o atractor geométrico de Lorenz
não tem pontos sombréaveis. Mostramos que, na presença de pontos sombréaveis,
os fluxos transitivos por cadeia são transitivos e que a transitividade é uma condição
necessária para fluxos recorrentes por cadeia com pontos sombreáveis sempre que o
espaço de fase é conexo. Finalmente, como uma aplicação desses resultados damos
provas concisas de alguns teoremas bem conhecidos que estabelecem que fluxos com
POTP admitindo algum tipo de recorrência são mı́nimais.

Apresentamos o conceito de ponto topologicamente estável para fluxos. Vemos que
este conjunto é invariante sob o fluxo e sob conjugação topológica. Provamos que,
se o conjunto recorrente da cadeia estiver contido no conjunto de pontos topologica-
mente estáveis, então ele coincide com o fecho das órbitas periódicas. Finalmente,
mostramos que se uma órbita do fluxo suspensão de um mapa é topologicamente
estável, então seu ponto base também é topologicamente estável. Esses resultados
estendem ao contexto de fluxo alguns dos dados em [34].

Também estudamos a variação de distalidade para fluxos φ obtidos fazendo células
proximais em [10] depender de um subconjunto dado F de funções cont́ınuas.
Primeiro consideramos o caso quando F se reduz a uma única função cont́ınua
s : R → R. Em tal caso se a células proximais dependentes de s são triviais, então
o fluxo é uniformemente fechado (ou trivial se s é limitada). Logo mostramos que
o fluxo φ é fechado se e somente se as células s proximais se reduzem a órbita cor-
respondente para cada (ou alguma) s limitada. Mais ainda, fluxos não singulares
admitem pontos cuja célula proximal (com s sendo a identidade) não se reduz à
órbita. Logo, consideramos o caso quando F é ou H (o conjunto de homeomorphis-
mos s : R→ R fixando 0) ou C tudo. Disto obtemos uma caracterização da clássica
quase periodicidade pontual.

Finalmente, começamos o estudo da propriedade de sombreamento bilateral no lim-
ite para fluxos LmSP . Mostramos que o atractor geométrico de Lorenz não tem
LmSP . Mostramos que, se um mapa tiver a propriedade de sombreamento bilat-
eral no limite, então a suspensão tem LmSP e mostramos um exemplo em que o
rećıproco não é verdadeiro.
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CHAPTER

ONE

INTRODUCTION AND BASIC DEFINTIONS

In this work we study the general problem of redefining global dynamical prop-
erties in terms of local ones. When can we recover global properties in terms of
local ones? What are the advantages or disadvantages of studying dynamical sys-
tems from this viewpoint and it how help us to understand it better. Recently
this problem has attracted many researchers. Indeed, there are now several con-
cepts in topological dynamics admitting pointwise counterparts. That is the case
of equicontinuous, expansive, distal and persistence homeomorphisms that admit
concepts of equicontinuous, expansive [22,46], distal [6] and persitence [38] points as
counterparts, respectively, and its study constitute what is called today pointwise
dynamical systems. A more recent example are the entropy points [56]. There are
also pointwise concepts admitting global counterparts as its the case of transitive
points admitting the general context of transitive homeomorphisms [54]. In [42],
the concept of shadowable points which are points such every pseudo-orbits pass-
ing through them can be shadowed by a real orbit. Later, this was generalized
in [31] and several interesting questions were answered. On the other hands, similar
ideas involving the pointwise counterparts of dynamical properties, were used in [41]
and [37] to define distal and expansive measures, respectively.

Our main object of study will be the so-called continuous dynamical systems,
which are actions of the additive group (R, +) over certain set X called the phase
space of the system. Our phase spaces will be compact topological metric spaces.
We make some contributions to the theory of pointwise dynamical systems in this
context.

1.1 Continuous flows and equivalence

We begin this section by reminding the definition of a continuous flow on a general
topological space.

Definition 1.1.1. Let X a compact topological space. A flow on X is a function
φ : X × R→ X satisfying the following properties:

i) φ(x, 0) = x for all x ∈ X.
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ii) φ(x, t+ s) = φ(φ(x, t), s).

Every flow considered in this work will be continuous with respect to the usual
product topology on X × R and we will always refer one simply as a flow. The
definition of a flow φ implies immediately that the family of maps {φt : X → X}t∈R
given by φt(x) = φ(x, t) is a family of homeomorphisms of X satisfying φ0 = idX ,
the identity map of X, and φt ◦ φs = φt+s. From these two properties follows that
(φt)

−1 = φ−t. A subset A ⊂ X is invariant under φ, or simply is an invariant set of
φ if φt(A) = A for all t ∈ R. Given I ⊂ R we set φI(A) = {φt(x) : (x, t) ∈ A× I}.
If A consists of a single point x, then we write φI(x) instead of φI({x}). If A is
an invariant subset of X then we defined the restriction flow of φ to A by the flow
φ|A : A× R→ A defined by φ|A(x, t) = φ(x, t).

There are mainly two ways in which two flows may be topologically similar. The
first of these is conjugacy.

Definition 1.1.2. We say that the flows φ : X × R → X and ψ : Y × R → Y are
topologically conjugate if there exists a homeomorphism h : X → Y such that for
each real number t the following diagram commutes:

X X

Y Y

φt

h h

ψt

That is, for all x ∈ X and all t ∈ R we have ψt(h(x)) = h(φt(x)).

A weaker form of topological similarity is that of topological equivalence.

Definition 1.1.3. Let φ : X × R → X and ψ : Y × R → Y be two flows. We say
that φ is equivalent to ψ, denoted by φ ∼X ψ, if there exists a homeomorphism
h : X → Y and a function σ : X × R→ R with the following properties:

i) σ is a reparametrizarion, i.e, σ(x, ·) : R→ R is strictly increasing and onto, for
all x ∈ X;

ii) h(φσ(x, t)(x)) = ψt(h(x)).

Properties i) and ii) imply that and h transform orbits of φ onto orbits of ψ
preserving their orientation. The pair (h, σ) is called an equivalence from φ to ψ.
Given an equivalence, the function Φ(x, t) : X × R → X defined by Φ(x, t) =
φσ(x, t)(x) is a flow whose phase portrait is exactly that of φ. So Φ is a so-called time
change of φ. In fact, a flow φ is equivalent to ψ if and only if there is a time change
of φ which is topologically conjugate to ψ . Note that given an equivalence (h, σ)
from φ to ψ we can find a new one such that its reparametrization fixes the origin of
R. Indeed, it is enough to define the new reparametrization as σ(x, ·)− σ(x, 0) for
all x ∈ X. From this observation we can always suppose that our reparametrizations
fix 0. Note also that we do not require the function σ : X×R→ R to be continuous
either. However, under certain condition, continuity can be guaranteed as is the
case of continuous flows without singularities [48]. In this case we say that the
flows are continuously equivalent and the corresponding equivalence (h, σ) will be
called continuous. Clearly a conjugacy defines a continuous equivalence if we define
σ(x, t) = t for all t ∈ R.
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We have that ∼X is indeed an equivalence relation on the set on continuous flows
on a topological space X. In fact, by taking f = idX and σ(x, t) = t we can show
that φ is equivalent to itself, and if φ is equivalent to ψ under the equivalence (h, σ),
the definition of a reparametrization implies that σ(·, x) : R → R is invertible for
each x ∈ X. Therefore, for each s ∈ R and y ∈ Y there exists a unique t ∈ R such
that s = ρ(t, h−1(y)). If we define σ̃ : R× Y → R by σ̃(s, y) = t, then it is easy to
prove that (h−1, σ̃) is an equivalence from ψ to φ. Finally, if (h, σ) is an equivalence
from φ to ψ and (g, θ) is equivalent to ψ to ρ then the the pair (g ◦ h, γ) where
γ : R ×X → R is defined by γ(x, t) = σ(x, θ(x, h(x))) is an equivalence from φ to
ρ and the transitivity of ∼X follows.

1.2 Recurrence

The simplest notion of recurrence of a flow is that of periodic behavior. We begin
by giving some standard notation. The orbit, forward orbit and backward orbit of a
point x under the flow φ are, respectively, the sets

Oφ(x) := {φt(x)}t∈R, O+
φ (x) := {φt(x)}t≥0, O−φ (x) := {φt(x)}t≤0.

When the flow is implicit or obvious from the context, we usually omit the subscript
φ. A singularity of φ is a point x ∈ X such that φt(x) = x for all t ∈ R. If x is not a
singularity, then x is a regular point of φ. The set of singular points will be denoted
by Sing(φ). An orbit of φ is any subset of X equal to Oφ(x) for some x ∈ X.

Definition 1.2.1. A point x is periodic, if there exists t > 0 with φt(x) = x.

If x is a periodic point, then number π(x) := inf{t > 0: φt(x) = x} exists and is
greater or equal than zero. We say that π(x) is the period of x. In compact metric
space the period zero periodic points are exactly the singularities of φ. A periodic
orbit is any subset of the space equal to an orbit of a periodic point. The set of
periodic points of φ will be denoted by Per(φ) and it is clearly the union of all its
periodic orbits.

Next we introduce the notion of recurrence points. Given a flow on the topo-
logical space X, the omega limit set and alpha limit set of a point x ∈ X are,
respectively, the sets

ωφ(x) = ω(x) := {y ∈ X : d(φti(x), y)→ 0, for some ti → +∞},
and

αφ(x) = α(x) := {y ∈ X : d(φti(x), y)→ 0, for some ti → −∞}.
If X is compact, then ωφ(x) and αφ(x) are nonempty compact invariant sets of φ.

Definition 1.2.2. A point x ∈ X is recurrent if x ∈ ω(x) and φ is a recurrent flow
if every point is recurrent.

The set of recurrent points of φ is denoted by R(φ), so φ is recurrent if and only
if R(φ) = X.

Definition 1.2.3. We say that a point x ∈ X is non-wandering if for every neigh-
borhood U of x and every T ∈ R there is t ≥ T such that φ t(U) ∩ U 6= ∅, and we
say that φ is a non-wandering flow if every point point is non-wandering.
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The set of non-wandering points of φ is denoted by Ω(φ). So a flow is non-
wandering if and only if Ω(φ) = X. It can be also seen that is closed non-empty
subset of X.

The next notion of recurrence is chain recurrence.

Given δ, T > 0, a ∈ Z∪{−∞}, b ∈ Z∪{+∞} with a ≤ b, we say that a sequence
of pairs (xi, ti)

b
i=a in X × R is a (δ, T )-pseudo-orbit of φ if for all integer indexes i

such that a ≤ i ≤ b − 1 we have that ti ≥ T and d(φti(xi), xi+1) ≤ δ. If a, b ∈ Z
and ab ≤ 0, we say that it is a finite (δ, T )-pseudo-orbit. If a = 0 and b =∞ we say
that it is a forward (δ, T )-pseudo-orbit and if a = 0 and b < ∞ we say that it is a
(δ, T )-chain. (see [32, 47]).

Two points x and y are (δ, T )-related if there are two (δ, T )-chains (xi, ti)
m
i=0

and (yi, si)
n
i=0 such that p = x0 = yn and y = y0 = xm. We say that p and q are

related (written p ∼ q) if they are (δ, T )-related for every δ, T > 0.

Definition 1.2.4. A point x ∈ X is chain recurrent if x ∼ x, and φ is a chain
recurrent flow if every point is chain recurrent.

The set chain recurrent points is denoted by CR(φ). So a flow a chain recurrent
if and only if CR(φ) = X. As in the case of nonwandering points it is a closed
non-empty subset of X. The relation ∼ defines an equivalence relation on CR(φ)
and so it can be divided in disjoint and invariant equivalence classes called chain
components. As a matter of fact, this classes are exacty the connected components
of CR(φ).

Clearly Ω(φ) ⊆ CR(φ) and the inclusion may be proper [1]. In fact, we have the
following chain of inclusions:

Sing(φ) ⊆ Per(φ) ⊆ R(φ) ⊆ Ω(φ) ⊆ CR(φ)

1.3 Suspension flows

An important source of flows comes from homeomorphisms on a compact metric
space through a construction known as the suspension of a map. Let (X, d) be a
compact metric space and f : X → X be a homeomorphism and τ : X → (0,+∞)
be a continuous function. Consider the set

Xτ,f := {(x, t) : 0 ≤ t ≤ τ(x), x ∈ X}/ ∼,

where (x, τ(x)) ∼ (f(x), 0) for all x ∈ X and give it the usual quotient topology.
The suspension flow over f with height function τ is the flow on Y τ,f defined by

φτ,ft (x, s) := (fn(x), s+ t− n),

whenever s+ t ∈ [n, τ(x)(n+ 1)) for some n ∈ Z.

4



0 1

X

(x, 0)

(f(x), 1)

(x, 1)

Every suspension of f is conjugate to the suspension of f under the constant function
1. A homeomorphism from Y 1,f to Y τ,f that conjugates the flows is given by the map
(x, t) 7→ (x, tτ(x)). Since all the properties studied in this work are invariant under
conjugacy, we will concentrate only in suspensions flows over f ≡ 1. In this case we
denote the flow φ1, f simply by φf . We can replace d by the equivalent metric d̂ : X×
X → [0, ∞) defined by d̂(x, y) = d(x, y)

diam(X)
, for all x, y ∈ X, if necessary, and assume

that diam(X) ≤ 1. We show that Xτ,f is metrizable by giving it a metric, known as
the Bowen-Walters metric [14], as follows: Consider the subset X×{t} of X and give
it the metric dt defined by dt((x, t), (y, t)) = (1−t)d(x, y)+td(f(x), f(y)) for all x,
y ∈ X. Note that d0((x, 0), (y, 0)) = d(x, y) and d1((x, 1), (y, 1)) = d(f(x), f(y)).
Let (x, t), (y, s) ∈ X1,f and consider all the finite sequences (zi, ti)

n
i=1 of elements

of X1,f such that (z1, t1) = (x, t) , (z2, t2) = (y, s) and for each 1 ≤ i ≤ n−1 either
(xi, ti) and (xi+1, ti+1) belongs to X×{t} (in which case we call [(xi, ti), (xi+1, ti+1)]
a horizontal segment) or (xi, ti) and (xi+1, ti+1) belongs to the same orbit of the
suspension flow (and then we call [(xi, ti), (xi+1, ti+1)] a vertical segment). The
length of a horizontal segment will be given by the distance dt and the length of a
vertical segment will be the shortest distance between (xi, ti) and (xi+1, ti+1) along
the orbit, using the usual distance of R. In case (xi, ti) 6= (xi+1, ti+1) and they are in
the same horizontal and vertical segment, we take the length of [(xi, ti), (xi+1, ti+1)]
as the length given by dt since this is always less than 1. The length of a chain will
be the sum of the length of its horizontal and vertical segments. We now define a
metric df as follows

df ((x, t), (y, s)) = inf {length of all chains between (x, t) and (y, s)} .

If d′ is the metric on X defined by d′(x, y) = min{d(x, y), d(f(x), f(y))}, then d′

is equivalent to d and clearly dt((x, t), (y, t)) ≥ d′(x, y). So df ((x, t), (y, s)) = 0 if
and only if (x, t) = (y, s). It can be seen easily that df is symmetric and satisfies the
triangle inequality. Therefore df defines a metric on X1,f under which the suspension
flow is continuous. Even more, this metric generates the quotient topology [14].
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CHAPTER

TWO

SHADOWABLE POINTS FOR FLOWS

The theory of shadowing in dynamical systems has been largely studied by many
researchers and is well documented (see for instance [44]). It refers to the general
problem of approximating orbits obtained in the presence of noise or round-off error
(for instance solutions obtained by numerical computations). There are several ways
of defining the shadowing property for flows, see for instance [45] and references
therein. In essence, the central idea among the majority of definitions of shadowing
for flows is the existence of time reparametrizations.

Recently, in [42] the definition of shadowing for homeomorphisms in a compact
metric space was generalized by introducing the notion of shadowable points, which
are points where the shadowing property holds for pseudo-orbits passing through
them.

Given these results, it is natural to consider a notion of shadowable points for
flows. We prove that this concept satisfies the following properties: the set of shad-
owable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property
if and only if every point is shadowable. The chain recurrent and nonwandering sets
coincide when every chain recurrent point is shadowable. The chain recurrent points
which are shadowable are exactly those that can be are approximated by periodic
points when the flow is expansive. These results extends those presented in [42]. We
study the relations between shadowable points of a homeomorphism and the shad-
owable points of its suspension flow. We characterize the set of forward shadowable
points for transitive flows and chain transitive flows. We prove that the geometric
Lorenz attractor does not have shadowable points. We show that in the presence
of shadowable points chain transitive flows are transitive and that transitivity is a
necessary condition for chain recurrent flows with shadowable points whenever the
phase space is connected. Finally, as an application these results we give concise
proofs of some well known theorems establishing that flows with POTP admitting
some kind of recurrence are minimal.

2.1 Shadowable points

In this section we overview the work entitled Shadowable Points [42].
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Let X be a metric space. If f : X → X is a homeomorphism and δ > 0, we say
that a bi-infinite sequence ξ = (ξn)n∈Z of X is a δ-pseudo-orbit if d(f(ξn), ξn+1) ≤ δ
for all n ∈ Z. Given ε > 0 we say that ξ can be ε-shadowed if there is x ∈ X such that
d(fn(x), ξn) ≤ ε for all n ∈ Z. We say that f has the pseudo-orbit tracing property
(abbrev. POTP) if for every ε > 0 there is δ > 0 such that every δ-pseudo-orbit can
be ε-shadowed. Homeomorphisms with the POTP have been widely studied [3], [45].

Now we introduce the following concept closely related to that of absolutely
nonshadowable points [57]. It splits the POTP into individual shadowings.

Definition 2.1.1. A point x ∈ X is shadowable if for every ε > 0 there is δ > 0 such
that every δ-pseudo-orbit ξ with ξ0 = x can be ε-shadowed. We denote by Sh(f)
the set of shadowable points of f .

Let us present some related examples.

Example 1. Clearly if f has the POTP, then Sh(f) = X (i.e. every point is
shadowable). The converse is true on compact metric spaces by Theorem 2.1.2
below. As we shall see, the identity of the circle has no shadowable points. Examples
where Sh(f) is a proper nonempty set will be given later on.

We present some properties of Sh(f) through the following standard definitions.
We say that a point x ∈ X is nonwandering if for every neighborhood U of x there is
k ∈ N+ such that fn(U)∩U 6= ∅. We say that x is chain recurrent if for every ρ > 0
there is a ρ-chain from x to itself, i.e., a finite sequence {xi : 0 ≤ i ≤ n} satisfying
x0 = x, xn = x and d(f(xi), xi+1) ≤ ρ for all i with 0 ≤ i ≤ n− 1. Denote by Ω(f)
and CR(f) the set of nonwandering and chain recurrent points of f respectively.
Clearly Ω(f) ⊂ CR(f) and the inclusion may be proper. We say that Λ ⊂ X is
invariant if f(Λ) = Λ.

With these definitions we can state our first result.

Theorem 2.1.2. If f : X → X is a homeomorphism of a compact metric space X,
then

(1) Sh(f) is an invariant set (empty or nonempty, possibly noncompact);

(2) f has the POTP if and only if Sh(f) = X;

(3) if CR(f) ⊂ Sh(f), then CR(f) = Ω(f).

Remark 1. A shorter elegant proof of item 2 of the previous theorem was presented
in [22].

The following example is related to Item (3) of the above theorem.

Example 2. It is easy to find examples where CR(f) is a proper subset of Sh(f):
just take a homeomorphism with the POTP (so Sh(f) = X) with CR(f) being a
proper subset of X.

Given a homeomorphism f : X → X and p ∈ X we define the omega-limit set,

ω(p) = {q ∈ X : q = lim
l→∞

fnl(p) for some sequence nl →∞}.
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We say that p is recurrent if p ∈ ω(p). Denote by R(f) the set of recurrent points
of f . A homeomorphism f : X → X is pointwise-recurrent if R(f) = X.

On the other hand, the space X is totally disconnected at p ∈ X if the connected
component of X containing p is {p}. As in [8] we define

Xdeg = {p ∈ X : X is totally disconnected at p}.

With these notations we obtain the following result.

Theorem 2.1.3. If f : X → X is a pointwise-recurrent homeomorphism of a
compact metric space X, then Sh(f) ⊂ Xdeg.

Let us state some consequences of Theorem 2.1.3. A continuum is a compact
connected metric space. We say that it is nondegenerated if it does not reduce to a
single point. Clearly a nondegenerated continuum X satisfies Xdeg = ∅ and so the
following result holds by Theorem 2.1.3.

Corollary 2.1.4. Pointwise-recurrent homeomorphisms on nondegenerated con-
tinua have no shadowable points.

In particular, a pointwise recurrent homeomorphism of a nondegenerated con-
tinuum does not have the POTP (see the remark after the Main Theorem in [35]).

Examples were the above results apply are as follows: A homeomorphism f :
X → X is minimal if the orbit {fn(x) : n ∈ Z} of every point x ∈ X is dense in
X. We say that f is semisimple if there is a collection {Eα : α ∈ I} of compact
invariant subsets of X such that X = ∪α∈IEα and f |Eα is minimal, for all α ∈ I.
We say that f is distal if infn∈Z d(fn(x), fn(y)) > 0 for distinct points x, y ∈ X.
Every minimal homeomorphism is semisimple and the same property holds for distal
homeomorphism (see Theorem 11.5.9 in [3] or Corollary 4 in p. 68 of [10]). Every
semisimple homeomorphism is clearly pointwise-recurrent. Consequently, distal or
minimal homeomorphisms of nondegenerated continua have no the POTP (this fact
was proved earlier [2], [43]).

The second corollary deals with compact metric spaces exhibiting pointwise-
recurrent homeomorphisms with the POTP. Recall that X is totally disconnected if
it is totally disconnected at any point (i.e. X = Xdeg).

Corollary 2.1.5. A compact metric space admits a pointwise-recurrent homeomor-
phism with the POTP if and only if it is totally disconnected.

Proof. Every totally disconnected compact metric space exhibits a pointwise-
recurrent homeomorphism with the POTP (e.g. the identity, see Theorem 2.3.2
p. 79 in [3]). On the other hand, if there is a pointwise-recurrent homeomorphism
with the POTP, then every point is shadowable and so the space is totally discon-
nected by Theorem 2.1.3.

Remark 2. Theorem 2.1.3 motivates the question whether every pointwise-recurrent
homeomorphism f : X → X of a compact metric space X satisfies Sh(f) = Xdeg.
However this was proved to be false [31].
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The answer for the above question is clearly positive on nondegenerated continua
(by Corollary 2.1.4). Another partial positive answer can be obtained as follows.
We say that a homeomorphism f : X → X is equicontinuous if for every α > 0
there is β > 0 such that x, y ∈ X and d(x, y) ≤ β imply d(fn(x), fn(y)) ≤ α for
all n ∈ Z. It is easy to see that every equicontinuous homeomorphism of a compact
metric space is distal (hence pointwise-recurrent). For such homeomorphisms we
have the following result.

Theorem 2.1.6. If f : X → X is an equicontinuous homeomorphism of a compact
metric space X, then Sh(f) = Xdeg.

Since Xdeg is always a Gδ subset of X (see p. 746 in [8]), we conclude from the
above theorem that the set of shadowable points of an equicontinuous homeomor-
phism is a Gδ too.

Theorem 2.1.6 also implies the following corollary extending the conclusion of
Theorem 4 in [36] to distal homeomorphisms.

Corollary 2.1.7. Let X be a compact metric space and f : X → X be a distal
homeomorphism. Then, f has the POTP if and only if X is totally disconnected.

Proof. As already said, every distal homeomorphism f is pointwise-recurrent. If f
has the POTP, then X is totally disconnected by Corollary 2.1.5. Conversely, if
X is totally disconnected, then f is equicontinuous (e.g. Corollary 1.9 in [7]) so
Sh(f) = X (by Theorem 2.1.6) thus f has the POTP (by Theorem 2.1.2).

Recall that a homeomorphism f : X → X is transitive if the orbit {fn(x) : n ∈
Z} of some point x ∈ X is dense in X.

Remark 3. One can ask if there is a transitive homeomorphism f for which Sh(f)
is a non-empty non-compact subset. This was answered to be negative in [31].

Example 3. There are a compact metric spaceX and a homeomorphism f : X → X
such that Sh(f) is a nonempty noncompact subset of X.

Proof. Define X = C ∪ [1, 2] with the topology induced from R, where C be the
ternary Cantor set of [0, 1]. Clearly Xdeg = C \ {1}. Now take f : X → X as the
identity of X. Since the identity is an equicontinuous homeomorphism, we obtain
Sh(f) = Xdeg by Theorem 2.1.6. Then Sh(f) = C \ {1}. Since C \ {1} is nonempty
and noncompact, we are done.

2.2 Shadowable points for flows

For any sequence of real numbers (tj) j∈Z we write

si =



i−1∑
j=0

tj i > 0,

0 i = 0,

−
−1∑
j=i

tj i < 0.
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and we will say that (si)i∈Z is the sequence of sums of (ti)i∈Z.

Let (xi, ti) i∈Z be a (δ, T )-pseudo-orbit of φ and let t ∈ R, we denote by x0 ? t a
point in the (δ, T )-pseudo-orbit t units from x0 [32]. More precisely,

x0 ? t = φ t− si(xi) whenever si ≤ t < si+1.

We denote by Rep the set of strictly increasing surjective functions h : R → R
such that h(0) = 0.

Given ε, δ > 0 and T > 0, a (δ, T )-pseudo-orbit (xi, ti)i∈Z is ε-shadowed by an
orbit (φt(y))t∈R if there exists h ∈ Rep such that

d(x0 ? t, φh(t)(y)) ≤ ε, for every t ∈ R.

We recall the definition of pseudo orbit tracing property for flows [47].

Definition 2.2.1. A flow φ on X is said to have the pseudo orbit tracing property
with respect to the parameter T > 0, if for all ε > 0 there exists δ > 0 such that
every (δ, T )-pseudo-orbit is ε-shadowed by an orbit of φ. A flow has the pseudo-orbit
tracing property, POTP, if has it with respect to the parameter T = 1.

By following [42] we introduce the main definition of this chapter [4].

Definitions 2.2.2. Given positive numbers δ, T and ε, we say that a (δ, T )-pseudo-
orbit (xi, ti)i∈Z of φ passes through p if x0 = p, and we say it is ε-shadowed if there
are a point y ∈ X and a function h ∈ Rep such that

d(x0 ? t, φh(t)(y)) ≤ ε, for each t ∈ R.

A point p ∈ X is shadowable with respect to the parameter T > 0 if for every ε > 0
there exists δ > 0 such that every (δ, T )-pseudo-orbit passing through p can be
ε-shadowed. Finally, we say that p is shadowable if it is shadowable with respect to
the parameter T = 1.

We denote by Sh(φ) the set of shadowable points of φ in X.

Example 4. If a flow φ on X has the POTP then Sh(φ) = X. The converse is also
true for compact metric spaces as we shall see shortly.

Next, we are going to prove the basic properties of Sh(φ)

Theorem 2.2.3. The set Sh(φ) is an invariant set of φ. So, if not empty, is union
of orbits of φ.

Proof. Let x be a shadowable point of X. Let ε > 0 and s ∈ R given. Since φs
is uniformly continuous, we can choose 0 < ε′ < ε such that whenever d(x, y) < ε′

we have d(φs(x), φs(y)) < ε. For ε′, let δ > 0 such that any (δ, 1)-pseudo-orbit
passing through x can be ε′-shadowed. Similarly, φ−s is uniformly continuous so we
can choose δ′ > 0 with the property that d(φ−s(x), φ−s(y)) ≤ δ whenever d(x, y) <
δ′. Now let (xi, ti)i∈Z be a (δ′, 1)-pseudo-orbit passing through φs(x). Because
d(φ ti(xi), xi+1) ≤ δ′ we have by the choice of δ′ that

d(φ−s(φti(xi)), φ−s(xi+1)) = d(φti(φ−s(xi)), φ−s(xi+1)) ≤ δ

10



and hence (φ−s(xi), ti)i∈Z is a (δ, 1)-pseudo-orbit passing through x. By definition,
there are h ∈ Rep and y ∈ X such that

d(x ? t, φh(t)(y)) ≤ ε′, for every t ∈ R.

Then, if si ≤ t < si+1, it follows that d(φt−si(φ−s(xi)), φh(t)(y)) ≤ ε′ for every t ∈ R
which implies d(φt−si(xi), φh(t)(φs(y))) ≤ ε. Therefore, d(x0 ? t, φh(t)(φs(y))) ≤ ε for
each t ∈ R. Thus, every (δ′, 1)-orbit passing through φs(x) can be ε-shadowed by a
point in X. This completes the proof.

Let X be a compact metric space. We say that a sequence (xn, tn)n∈Z of X ×R
is through some subset K ⊆ X if x0 ∈ K (see [42]). Now we introduce the following
auxiliary definition.

Definition 2.2.4. We say that a flow φ : X × R → X has the POTP through a
subset K with respect to the parameter T > 0, if given ε > 0, there exists δ > 0
such that every (δ, T )-pseudo-orbit passing through K is ε-shadowed by an orbit of
φ. We say that φ has the POTP through a subset K if it has it with respect to the
parameter T = 1.

When K = X this definition coincides with the classical POTP. Note that we
do not require the entire (δ, 1)-pseudo-orbit to be contained in K, therefore the
definition 2.2.4 is stronger than the POTP on K [45].

A sequence of pairs (xi, ti)i∈Z is a (δ, T1, T2)-pseudo-orbit of φ if it is a (δ, T1)-
pseudo-orbit of φ and satisfies ti ≤ T2, for all i ∈ Z.

In [47], Thomas proved that a flow satisfies the POTP with respect to the pa-
rameter T if and only if for every ε > 0 we can find δ > 0 such that every (δ, T, 2T )-
pseudo-orbit can be ε-shadowed. He also showed that if T > 0 then a flow has the
POTP if and only has the POTP with respect to the parameter T . We present
pointwise versions of these results:

Lemma 2.2.5. Let a > 0, K ⊆ X and φ be a flow on a compact metric space X.
Then, the following statements are equivalent:

(1) For all ε > 0 there exists δ > 0 such that every (δ, a, 2a)-pseudo-orbit passing
through K is ε-shadowed by an orbit of φ.

(2) φ has the POTP through K with respect to the parameter a.

(3) φ has the POTP through K.

Proof. Clearly (2) =⇒ (1). To see that (1) =⇒ (2), suppose that for all ε > 0 there
exists δ > 0 such that every (δ, a, 2a)-pseudo-orbit passing through K is ε-shadowed
by an orbit of φ. Let (xi, ti)i∈Z be any (δ, a)-pseudo-orbit of φ passing through K.
For each n ∈ Z, there exists mn ∈ N such that tn = mna + rn with a ≤ rn < 2a.
Let (smn )n∈Z the sequence of sums associated to m = (mn)n∈Z. Denote An = smn + n
for all n ∈ Z and define the sequence (yi)i∈Z on X such that yi = φa(i−An)(xn) if
An ≤ i < An+1. In addition, we define a sequence λ = (λi)i∈Z of real numbers in
the following way, for each i ∈ Z, we set

λi =

{
a if An ≤ i < An+1 − 1,
rn if i = An+1 − 1.
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Given i ∈ Z note that a ≤ λi < 2a and let n ∈ Z be such that An ≤ i < An+1. We
have two cases:

Case 1: if i < An+1 − 1, then

d(φλi(yi), yi+1) = d(φa(φa(i−An)(xn)), φa(i+1−An)(xn)) = 0.

Case 2: if i = An+1−1, bearing in mind that An+1−An = smn+1−smn +1 = mn+1
we obtain

d(φλi(yi), yi+1) = d(φrn(φa(An+1−1−An)(xn)), xn+1) = d(φrn(φamn(xn)), xn+1)

= d(φtn(xn), xn+1) ≤ δ.

That is, (yi, λi)i∈Z is a (δ, a, 2a)-pseudo-orbit of φ passing through K. Then,
there are z ∈ X and h ∈ Rep such that d(φr−sλn(yn), φh(r)(z)) ≤ ε where sλn ≤ r <
sλn+1 and (sλi ) is the sequence of sums associated to λ = (λi)i∈Z. Let w ∈ R and
n ∈ Z such that stn ≤ w < stn+1, where (stn) is associated to t = (ti)i∈Z. Since
stn = sλAn , then sλAn ≤ w < sλAn+1

= sλAn+mn+1. Hence, there is 0 ≤ j ≤ mn such that

sλAn+j ≤ w < sλAn+j+1 and then

ε ≥ d(φw−sλAn+j
(yAn+j), φh(w)(z)) = d(φw−stn(φstn−sλAn+j

(yAn+j)), φh(w)(z))

= d(φw−stn(φstn−sλAn+j
(φaj(xn))), φh(w)(z))

= d(φw−stn(xn), φh(w)(z)).

It follows that φ has the POTP through K with respect to the parameter a. Now
we prove that (2) =⇒ (3). We can assume that a > 1. Fix m ∈ N such that m ≥ a.
Given ε > 0 choose δ > 0 satisfying the following conditions:

(1) Every (δ, a)-pseudo-orbit passing through K is ε
2
-shadowable.

(2) For each 0 ≤ t ≤ 2m we have d(φt(x), φt(y)) < ε
2
, whenever d(x, y) < δ.

Let 0 < δ′ < δ/m and take 0 < β < δ′ so that d(x, y) < β implies that
d(φt(x), φt(y)) < δ′ for 0 ≤ t ≤ 2m. Let (xn, tn)n∈Z be a (β, 1)-pseudo-orbit for
φ passing through K with 1 ≤ tn ≤ 2 for all n ∈ Z. Consider the sequence of pairs
(xim, λi)i∈Z where λi =

∑m−1
j=0 tj+im for every i ∈ Z. We denote λi(k) =

∑m−1
j=k tj+im

with 0 ≤ k < m. Then

d(φλi(xim), x(i+1)m) ≤
m∑
r=1

d(φλi(r)(φtim+r−1
(xim+r−1)), φλi(r)(xim+r)) ≤ mδ′ < δ,

because a ≤ λi ≤ 2m. So, (xim, λi)i∈Z is a (δ, a)-pseudo-orbit for φ passing through
K. Hence, there are z ∈ X and h ∈ Rep such that d(φt−sλn(xnm), φh(t)(z)) ≤ ε

2
where

sλn ≤ t < sλn+1. Now, for 0 ≤ k < m denote stk(r) =
∑k−1

j=r tj we have

d(φstk(x0), xk) ≤
k∑
r=1

d(φstk(r)(φtr−1(xr−1)), φstk(r)(xr)) < kδ′ < δ.

Then for stk ≤ t < stk+1

d(φt−stk(xk), φh(t)(z)) ≤ d(φt−stk(xk), φt−stk(φstk(x0))) + d(φt(x0), φh(t)(z)) ≤ ε.
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For m ≤ k < 2m, we follow in the same manner. So we will have that the orbit
(φt(z))t∈R ε-shadows the (β, 1, 2)-pseudo-orbit of φ passing through K. Applying
(1) ⇐⇒ (2) we obtain that (φt(z))t∈R can be ε-shadows by a (β, 1)-pseudo-orbit of
φ passing through K. By using similar ideas we obtain (3) =⇒ (2). This completes
the proof.

Hence a flow φ in a compact metric space X has POTP trough K if and only if
for all ε > 0 there exists δ > 0 such that every (δ, 1, 2)-pseudo-orbit passing through
K is ε-shadowed by an orbit of φ.

Clearly, if a flow has the POTP through a set K then every point is K is shad-
owable respectively. The reciprocal is also true if K is compact as shown in the
following lemma.

Lemma 2.2.6. Let φ be a flow on a compact metric space X. If every point of a
compact subset K of X is shadowable, then φ has the POTP through the set K.

Proof. Assume by contradiction that there exists a nonempty compact subset K
such that every point in K is shadowable but does not have the POTP through
K. Then there is ε > 0 and a sequence (ξk)k∈N = (ξkn, t

k
n)n∈Z of ( 1

k
, 1, 2)-pseudo-

orbits passing through K which cannot be 2ε-shadowed. Since K and [1, 2] are
compact, we can assume that ξk0 → p for some p ∈ K and tk0 → t0 for some time
t0 ∈ [1, 2]. We have that p is shadowable, so for ε as above, we choose δ > 0
from the shadowableness of p with δ < ε

3
. Since X × [0, 2] is compact, φ|X×[1, 2] is

uniformly continuous and so our δ can also be chosen so that if d((x, t), (y, s)) ≤ δ
with 0 ≤ s, t ≤ 2 then d(φt(x), φs(y)) ≤ ε

3
. We set a sequence ξ̂k = (ξ̂kn, t̂

k
n)n∈Z as

follows,

ξ̂k =

{
(ξkn, t

k
n), if n 6= 0,

(p, t0), if n = 0.

Clearly all such sequences are passing through p. Moreover,

d(φt̂kn(ξ̂kn), ξ̂kn+1) =


d(φtkn(ξkn), ξkn+1), if n 6= 0, −1,

d(φt0(p), ξ
k
1 ), if n = 0,

d(φtk−1
(ξk1 ), p), if n = −1,

so

d(φt̂kn(ξ̂kn), ξ̂kn+1) ≤


1
k
, if n 6= 0, −1,

d(φt0(p), φtk0 (ξk0 )) + 1
k
, if n = 0,

d(ξk0 , p) + 1
k
, if n = −1.

As φ is continuous and (ξk0 , t
k
0) → (ξ0, p) we obtain that (ξ̂kn) is a (δ, 1, 2)-pseudo-

orbit for k large. Then for such k it follows that there are xk ∈ X and h ∈ Rep such
that d(p ? t, φh(t)(xk)) ≤ ε for all t ∈ R. For the sequences (t̂ki )k∈Z and (tki )k∈Z we
write

ŝki =



i−1∑
j=0

t̂kj i > 0,

0 i = 0,

−
−1∑
j=i

t̂kj i < 0,
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and

ski =



i−1∑
j=0

tkj i > 0,

0 i = 0,

−
−1∑
j=i

tkj i < 0.

We will consider the three possible cases: tk0 < t̂k0 , tk0 = t̂k0 and tk0 > t̂k0. Note that in
every case we have |ski − ŝki | = |tk0 − t̂k0| for all i ∈ Z. We consider only the tk0 < t̂k0
case being the other two cases analogous. Then ski < ŝki for all i ∈ Z. Let t ∈ R and
let i ∈ Z such that ski ≤ t < ski+1. We have two cases:

Case 1: if ski ≤ t < ski+1, then in particular ŝki ≤ t < ŝki+1, so

d(φt−ski (ξ
k
i ), φh(t)(xk)) ≤ d(φt−ski (ξ

k
i ), φt−ŝki (ξ̂

k
i )) + d(φt−ŝki (ξ̂

k
i ), φh(t)(xk))

≤ ε

3
+ ε < 2ε.

Case 2: if ski ≤ t < ŝki , again in particular, ŝki−1 ≤ t < ŝki , so

d(φt−ski (ξ
k
i ), φh(t)(xk)) ≤ d(φt−ski (ξ

k
i ), φt−ŝki−1

(ξ̂ki−1)) + d(φt−ŝki−1
(ξ̂ki−1), φh(t)(xk))

≤ d(φt−ski (ξ
k
i ), ξ̂ki ) + d(ξ̂ki , φt̂ki−1

(ξ̂ki−1)) + d(φt̂ki−1
(ξ̂ki−1), φt−ŝk−1

i
(ξ̂ki−1)) + ε

≤ ε

3
+
ε

3
+
ε

3
+ ε = 2ε,

thus d(φt−ski (ξ
k
i ), φh(t)(xk)) ≤ 2ε for all ski ≤ t < ski+1. It follows that ξk can be

2ε-shadowed, which is a contradiction. This proves the result.

Theorem 2.2.7. Let (X, d) be a compact metric space and φ be a flow on X. Then
φ has the POTP if and only if Sh(φ) = X

Proof. Simply take K = X in Lemma 2.2.6.

Now we proof that that set of shadowable points is a dynamical invariant under
continuous equivalences.

Theorem 2.2.8. Let φ and ψ be two flows on the compact metric spaces (X, dx)
and (Y, dy), respectively. If (h, σ) is a continuous equivalence from ψ to φ, then
h(Sh(φ)) = Sh(ψ)

Proof. Let (h−1, σ̃) the corresponding inverse equivalence from ψ to φ. Let
a = min{σ̃(h(x), 1) : x ∈ X}. By compactness of Y such a exists and indeed
is positive. Now, given ε > 0, choose ε′ > 0 such that dy(y1, y2) < ε′ implies
dx(h

−1(y1), h
−1(y2)) < ε for every y1, y2 ∈ Y . Suppose p ∈ h−1(Sh(φ)). By Lemma

2.2.5, there exists δ′ > 0 such that each (δ′, a)-pseudo-orbit passing through h(p)
can be ε′-shadowed by an orbit of ψ. Also choose δ > 0 so that dy(h(x1), h(x2)) < δ′

whenever dx(x1, x2) < δ for all x1, x2 ∈ X. Now let (xn, tn)n∈Z be a (δ, 1)-pseudo-
orbit for φ passing through p. Then dy(h(φtn(xn)), h(xn+1)) < δ′. By definition of
equivalence we have

dx(ψσ̃(h(xn), tn)(h(xn)), h(xn+1)) ≤ δ′.
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Consider the sequence (h(xn), σ̃(h(xn), tn))n∈Z. Since tn ≥ 1 it follows that
σ̃(xn, tn) ≥ a for all n ∈ Z. So (h(xn), σ̃(h(xn), tn))n∈Z is a (δ′, a)-pseudo-orbit
for ψ passing through h(p). Then there are y = h(z) in Y and α ∈ Rep such that

dy(h(p) ? t, ψα(t)(y)) < ε′, for all t ∈ R

It follows that

dx(h
−1(h(p) ? t), h−1(ψα(t)(h(z)))) < ε, for all t ∈ R. (2.1)

Fix t ∈ R and n ∈ Z such that sn ≤ t < sn+1 and let (ŝn)n∈Z the sequence
of sums associated to (σ̃(h(xn), tn))n∈Z. Since σ̃(h(xn), ·) ∈ Rep we have 0 ≤
σ̃(h(xn), t − sn) < σ̃(h(xn), tn). So, ŝn ≤ σ̃(h(xn), t − sn) + ŝn < ŝn+1. Set
t̂ = σ̃(h(xn), t− sn) + ŝn, so h(p) ? t̂ = ψσ̃(h(xn), t−sn)(h(xn)). By (2.1) it follows that

dx(φt−sn(xn), φσ(z, α( t̂))(z)) = dx(h
−1(ψ t̂−ŝn(h(xn))), h−1(ψα( t̂ )(h(z)))) ≤ ε.

Let α̂(t) = σ(z, α(t̂)) for all t ∈ R. Since t 7→ σ̃(h(xn), t − sn) + ŝn is increasing,
then α̂ ∈ Rep. It follows that

dx(φt−sn(xn), φα̂(t)(z)) ≤ ε, for every sn ≤ t < sn+1, and t ∈ R.

This proves that (xi, ti)i∈Z is ε-shadowed by O(z). Therefore, h−1(Sh(ψ)) ⊆ Sh(φ).
The inclusion h(Sh(φ)) ⊆ Sh(ψ) is obtained analogously considering the equivalence
(h, σ) from φ to ψ. This completes the proof.

Now we introduce another auxiliary definition.

Definition 2.2.9. Let ε > 0 and K be a subset of X. We say that a flow φ has the
ε-POTP through a subset K if there exists δ > 0 such that every (δ, 1)-pseudo-orbit
passing through K can be ε-shadowed.

We denote by B[ ·, δ] the close ball operation on X.

Lemma 2.2.10. Let φ be a flow on the compact metric space X and let ε > 0. If
the flow φ has the ε-POTP through a compact subset K, then there is δ > 0 so that
φ has the 2ε-POTP through B[K, δ].

Proof. Suppose by contradiction that a flow φ has the ε-POTP through a subset K
but for every δ > 0, we can find a (δ, 1)-pseudo-orbit passing through B[K, δ] that
cannot be 2ε-shadowed.

Take a δ > 0 from the ε-POTP through K with δ < ε, and let (ξk)k∈N be
a sequence of ( 1

k
, 1)-pseudo-orbits passing through B[K, 1

k
] which cannot be 2ε-

shadowed. For every k ∈ N we write ξk = (ξkn, t
k
n)n∈Z. It follows from the definition

that there is a sequence xk ∈ K such that d(ξk0 , xk) ≤ 1
k

for all k ∈ N. Since X is
compact, the flow φ is uniformly continuous in X × [−t10, t10], so we can choose k
with the property that

max{ max
−t10≤t≤t10

{d(φt(ξ
k
0 ), φt(xk))}, 1

k
} ≤ δ

2
.
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Fix k and define a sequence ξ = (ξn, tn)n∈Z by

(ξn, tn) =

{
(ξkn, t

k
n) if n 6= 0,

(xk, t
k
0) otherwise.

Clearly, d(φtn(ξn), ξn+1) ≤ 1
k
< δ for n 6= −1, 0. Since

d(φt−1(ξ−1), ξ0) = d(φtk−1
(ξk−1), xk) ≤ d(φtk−1

(ξk−1), ξ
k
0 ) + d(xk, ξ

k
0 ) ≤ 1

k
+ 1

k
=

2

k
≤ δ

and

d(φt0(ξ0), ξ1) = d(φt10(xk), ξ
k
1 ) ≤ d(φt10(xk), φt10(ξ

k
0 )) + d(φt10(ξ

k
0 ), ξk1 ) ≤ δ

2
+
δ

2
= δ,

we see that ξ is a (δ, 1)-pseudo-orbit. Since ξ0 = xk ∈ K by definition, we obtain
that ξ can be ε-shadowed by a point y ∈ X. Thus, there exists h ∈ Rep such that

d(ξ0 ? t, φh(t)(y)) < ε, for each t ∈ R.

Note that for i 6= 0 and t such that si ≤ t < si+1, we have

ξ0 ? t = φt−si(ξi) = φt−si(ξ
k
i ) = ξk0 ? t.

Hence ξ0 ? t = ξk0 ? t for t 6∈ [s0, s1). Furthermore, for t ∈ [s0, s1),

d(ξk0 ? t, φh(t)(y)) ≤ d(ξk0 ? t, ξ0 ? t) + d(ξ0 ? t), φh(t)(y))

≤ d(φt(ξ
k
0 ), φt(ξ0)) + d(ξ0 ? t, φh(t)(y))

≤ δ

2
+ ε

≤ 2ε.

Thus, d(ξk0 ? t, φh(t)(y)) ≤ 2ε for all t ∈ R. It follows that ξk is 2ε-shadowed, which
is a contradiction. This proves the result

A subset of X is a Gδ set if it is a countable intersection of open sets of X. In [42],
examples of homeomorphisms where the set of shadowable points is a Gδ sets are
given. On the other hand, in [31] the author proved that the set of shadowable points
of a homeomorphism is a Borel set. The following theorem extends this result in
the flow case.

Theorem 2.2.11. The set of shadowable points of φ is a Gδ set of X. In particular,
it is a Borel set.

Proof. Given ε > 0 we denote by Sh(φ, ε) the set of points p ∈ X such that the
flow has the ε-POTP through a subset {p} (see Definition 2.2.9). Note that

Sh(φ) =
⋂
ε>0

Sh(φ, ε). (2.2)

Let ε0 > 0. We can suppose Sh(φ) 6= ∅. Given x ∈ Sh(φ), since x ∈ Sh(φ, ε0
2

),
by Lemma 2.2.10 there is δx, ε0 > 0 such that every (δx, ε0 , 1)-pseudo-orbit passing
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through B[x, δx, ε0 ] can be ε0-shadowed. It follows that B(x, δx, ε0) ⊂ Sh(φ, ε0). So,
for every ε0 > 0

Sh(φ, ε0) = A(ε0) ∪B(ε0),

where A(ε0) =
⋃

x∈Sh(φ)

B(x, δx, ε0) and B(ε0) = Sh(φ, ε0) \ A(ε0). Moreover, note

that A(ε0) is open and B(ε0) ⊂ Sh(φ, ε0) \ Sh(φ). By (2.2) we have
⋂
ε0>0

B(ε0) = ∅

and

Sh(φ) =
⋂
n∈N

Sh(φ, 1
n
) =

⋂
n∈N

A( 1
n
) ∪B( 1

n
) =

⋂
n∈N

A( 1
n
).

That is, Sh(φ) is a Gδ set of X.

Remark 4. The same ideas behind the proof of Theorem 2.2.11 implies that the set
of shadowable points of a homeomorphism is a Gδ set too.

A flow φ on X said to be is minimal if all of its orbits are dense in X. It is said
to be an isometric flow if d(φt(x), φt(y)) = d(x, y) for every x, y ∈ X and t ∈ R.

Example 5. If φ and ψ are continuous flows on X and then is not always true that
Sh(φ)× Sh(ψ) ⊂ Sh(φ× ψ). Indeed, if we consider φ(z, t) = e2tπiz, defined in the
unit circle S1, this flow has the POTP. Then Sh(φ) = S1 by Theorem 2.2.7. If the
inclusion holded then Sh(φ× φ) = S1 × S1. Again, by Theorem 2.2.7, φ× φ would
have POTP. However this is not possible because this flow is isometric and is not
minimal [32].

2.3 Shadowable points of suspension flows

In this section we give the relation between the set of shadowable points of a home-
omorphism and the shadowable points of its suspension flows.

Theorem 2.3.1. If φf,τ is the suspension flow of a homeomorphism f on the com-
pact metric space (X, d) under a continuous map τ : X → R+, then

Sh(φf ) = (Sh(f)× [0, 1])/ ∼ .

Proof. We can assume without loss of generality that τ ≡ 1. Given (z, t) ∈ Sh(φf )
since Sh(φf ) is invariant by φf , then (z, 1

2
) ∈ Sh(φf ). Let ε > 0 be given. Choose

ε′ > 0 with ε′ < min{ε, 1
4
} so that d(f i(x), f i(y)) < ε for i = −1, 0, 1, whenever

d(x, y) < ε′. Choose δ > 0 from the definition of shadowable point for φf respect to
ε′. Also take 0 < δ′ < δ so that d(x, y) < δ′ implies d(f(x), f(y)) < δ. Let {xn}n∈Z
be any δ′-pseudo-orbit of f with x0 = z. Consider the pair of sequences (xn,

1
2
)n∈Z

and (tn)n∈Z such that tn = 1 for each n ∈ Z. Then

df (φftn(xn,
1
2
), (xn+1,

1
2
)) = df ((f(xn), 1

2
), (xn+1,

1
2
))

= 1
2
d(f(xn), xn+1) + 1

2
d(f 2(xn), f(xn+1)) ≤ δ.

That is ((xn,
1
2
), tn)n∈Z is a (δ, 1)-pseudo-orbit of φf with x0 = z. So, there are

(x, s) ∈ X1,f and α ∈ Rep such that

df (φfα(t)(x, s), φ
f
t−n(xn,

1
2
)) < ε′, for n ≤ t < n+ 1 (n ∈ Z).
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Now as t = 0, we have

df ((x, s), (z, 1
2
)) <

1

4
,

so |s− 1
2
| < 1

4
. Moreover, since df (φfα(t)(x, s), φ

f
t (z,

1
2
)) < ε′ < 1

4
for all 0 ≤ t < 1, it

follows that df ((x, s+ α(1)), (z, 3
2
)) < 1

4
. Thus we obtain

|3
2
− s− α(1)| < 1

4
.

Then 1 ≤ s + α(1) < 2 and so φfα(1)(x, s) should be represented as (f(x), s(1))

where 0 ≤ s(1) < 1. Also we have df (φfα(t)(x, s), φ
f
t−1(x1,

1
2
)) < ε′ < 1

4
for all

1 ≤ t < 2. Thus df ((f(x), s(1) + α(2) − α(1)), (x1,
3
2
)) < 1

4
, therefore φfα(2)(x, s)

should be represented as (f 2(x), s(2)) where 0 ≤ s(2) < 1. If we carry on in the same
manner we will have that φfα(n)(x, s) should be represented as (fn(x), s(n)) where

0 ≤ s(n) < 1 for each n ∈ Z. For t = n, we have

df (φfn(x, s), (xn,
1
2
)) = df ((fn(x), s(n)), (xn,

1
2
)) < ε′.

If fn(x) = xn, d(fn(x), xn) < ε is trivial. If fn(x) 6= xn, it follows that

1
2
d(fn(x), xn) + 1

2
d(fn+1(x), f(xn)) ≤ df ((fn(x), s(n)), (xn,

1
2
)) < ε′.

Hence d(fn(x), xn) < ε′ or d(fn+1(x), f(xn)) < ε′. From the way we chose ε′ this
implies that d(fn(x), xn) < ε for every n ∈ Z. Therefore z ∈ Sh(f).

Conversely, let z ∈ Sh(f) and r ∈ [0, 1]. Given ε > 0, take 0 < ε′ < ε so that
d(x, y) < ε′ implies d(f i(x), f i(y)) < 1

2
ε for i = 0, 1, 2. Take δ with 0 < δ < 1

2
ε′ from

the shadowableness of z with respect to ε′. Take 0 < δ′ < min{1
4
, δ} as in Lemma

2.5 in [47] and let ((xk, sk), tk)k∈Z be a (δ′, 2, 4)-pseudo orbit of the suspension flow
φf of f on X1,f passing through (z, r). Let wk = bsk + tkc denote the integer part
of sk + tk. We have

df ((fwk(xk), sk + tk − wk), (xk+1, sk+1)) < δ′ for all k ∈ Z.

Since δ′ < 1
4
, by Lemma 2.4 in [47], we have that |sk + tk − wk − sk+1| < δ′ or

|1 + sk + tk − wk − sk+1| < δ′ or |1 + sk+1 + wk − tk − sk| < δ′. Now, let nk be a
positive integer defined as follows

nk =


wk if |sk + tk − wk − sk+1| < δ′,

wk − 1 if |1 + sk + tk − wk − sk+1| < δ′,
wk + 1 if |1 + sk+1 + wk − tk − sk| < δ′.

Then by Lemma 2.5 in [47] we obtain that d(fnk(xk), xk+1) < δ for all k ∈ Z. Define
a sequence (yi)i∈Z in X as follows:

yi = f i−Nk(xk) for Nk ≤ i < Nk+1,

where (Nk)k∈Z is the sequence of sums associated to (nk)k∈Z. Obviously this sequence
is a δ-pseudo-orbit of f passing through z. Hence, there exists x ∈ X such that
d(f i(x), yi) < ε′ for every i ∈ Z. In particular one has

d(f j+Nk(x), f j(xk)) < ε′ for 0 ≤ j < nk (k ∈ Z). (2.3)
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Now, take the point (x, t) ∈ X1,f and define α : R→ R in the following way:

α(t) =
sk+1 + nk − sk

tk
(t− Tk) + sk +Nk − s0 for Tk ≤ t < Tk+1,

where (Tk)k∈Z is the sequence of sums associated to (tk)k∈Z. It is clear that α is
continuous with α(0) = 0. Moreover, since nk ≥ 1 then α ∈ Rep. We claim that
O(x, r) is an orbit of φf which ε-traces ((xk, sk), tk)k∈Z. Indeed, let t ∈ R and let
k ∈ Z such that Tk ≤ t < Tk+1. We get

|α(t)− sk −Nk + s0 − (t− Tk)| =

∣∣∣∣sk+1 + nk − sk − tk
tk

(t− Tk)
∣∣∣∣

= |sk+1 + nk − sk − tk|
∣∣∣∣t− Tktk

∣∣∣∣ .
Since |sk + tk − nk − sk+1| < δ′ and 0 ≤ t− Tk < tk, we have

|α(t)− sk −Nk + s0 − (t− Tk)| < δ′. (2.4)

Now if j is a positive integer which makes 0 ≤ sk + t − Tk − j < 1, then 0 ≤ j ≤
sk + tk ≤ nk + 2. So by (2.3) and the choice of ε′ we get d(f j+Nk(x), f j(xk)) <

1
2
ε

for 0 ≤ j ≤ nk + 2. Finally,

df (φfα(t)(x, s0), φ
f
t−Tk(xk, sk)) = df

(
(fNk(x), s0 + α(t)−Nk), (xk, sk + t− Tk)

)
= df

(
(f j+Nk(x), s0 + α(t)−Nk − j), (f j(xk), sk + t− Tk − j)

)
≤ df

(
(f j+Nk(x), s0 + α(t)−Nk − j), (f j+Nk(x), sk + t− Tk − j)

)
+df

(
(f j+Nk(x), sk + t− Tk − j), (f j(xk), sk + t− Tk − j)

)
≤ |s0 + α(t)−Nk − j − (sk + t− Tk − j)|+ (sk + t− Tk − j)d(f j+Nk+1(x), f j+1(xk))

+(1− sk − t+ Tk + j)d(f j+Nk(x), f j(xk))

< δ′ + 1
2
(1− (sk + t− Tk − j))ε+ 1

2
(sk + t− Tk − j)ε ≤ 1

2
ε+ 1

2
ε = ε.

Hence (x, s0) ∈ Sh(φf ).

With this theorem we have the following example of a flow on a compact metric
space whose shadowable set is a nonclosed subset of X.

Example 6. Let f : X → X be the map of Example 3. Then, by Theorem 2.3.1,
Sh(φf ) = (C \ {1})1,f which is a nonclosed proper subset of X1,f .

This example motivates the question of whether there exists a flow with a non-
closed dense subset of shadowable points.

Definition 2.3.2. A flow φ on a compact metric space X has the almost POPT if
Sh(φ) is dense in X.

Obviously, a flow having the POTP has the almost POTP. The following theorem
shows that the converse may not be true.

Theorem 2.3.3. There exists a flow with the almost POPT but without the POPT.
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Proof. Take an almost totally disconnected compact metric space X (that is a space
X where Xdeg is dense in X) which is not totally disconnected (e.g. [23] or a non-
totally disconnected cantoroid as in Definition 2 p. 740 of [8]). Then, take any
equicontinous map f : X → X, so that Sh(f) = Xdeg, but it does no have the
POTP (by Corollary 2.1.7). Suspend this map to obtain a flow with the desired
properties.

Example 7. The above Theorem also provides an example of a flow φ for which
Sh(φ) is a proper subset of CR(φ).

Another application of Theorem 2.3.1 is that the set of shadowable points of a
homeomorphism is a Gδ set of its phase space. In order to see it we first state two
elementary lemmas.

Lemma 2.3.4. Let X be topological space and consider the space X × [0, 1] with
the usual product topology. If A ⊆ X and A × [0, 1] is Gδ set of X × [0, 1] then A
is a Gδ set of X.

Proof. By considering X as a subset of X × [0, 1] under a canonical inclusion, we
note that if A × [0, 1] ⊆ U where U is open, then U ∩ X is a nonempty open set
of X containing A. Indeed, A × {0} ⊆ U and if (x, 0) ∈ U there exists open sets
V ⊆ X containing x and W ⊆ [0, 1] containing 0 such that (x, 0) ∈ V ×W ⊆ U .
In particular, we have V ⊆ U ∩ (X ×{0}) showing that U ∩X is open in X. Hence,
if A × [0, 1] =

⋂∞
n=1An for some sequence (An)∞n=1 of open sets of X × [0, 1], then

A × [0, 1] ⊆ An for each n ∈ N and so A ⊆ An ∩X with each An ∩X an open set
of X. On the other hand,

∞⋂
n=1

(An ∩X) = X ∩

(
∞⋂
n=1

An

)
= X ∩ (A ∩ [0, 1]) = A.

Therefore A is a Gδ set of X.

Remind that for a given map p : X → Y , where X and Y are any sets, a subset
U of X is saturated with respect to p if U = p−1(p(U)). It is easy to see that U is
saturated if and only if for every x ∈ U and y ∈ X the equality p(x) = p(y) implies
that y ∈ U .

Lemma 2.3.5. Let f be a homeomorphism on a compact metric space X and let φf

the suspension flow of f on the space X1,f . Let p : X× [0, 1]→ X1,f be the quotient
map of the topology of X1,f . If A ⊆ X is invariant with respect to f , then A× [0, 1]
is saturated with respect to p.

Proof. Let (x, t) ∈ A × [0, 1] and (y, s) ∈ X × [0, 1] such that p(x, t) = p(y, s).
Then (y, s) = (x, t) if 0 < t < 1, (y, s) = (f−1(x), 1) if t = 0 and (y, s) = (f(x), 0)
if t = 1. In any case y ∈ A because A is invariant. This proves the lemma.

Theorem 2.3.6. The set Sh(f) of shadowable points of a homeomorphism f : X →
X defined on compact metric space (X, d) is a Gδ set of X.

Proof. By theorem 2.2.11, if φf is the suspension of f under the constant function
1, then Sh(φf ) is a Gδ set of X1,f . So, there exists a sequence (An)∞n=1 of open
set of X1,f such that Sh(φf ) =

⋂∞
n=1An On the other hand, by Theorem 2.3.1 we
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have Sh(φf ) = Sh(f) × [0, 1]/ ∼. Let p : X × [0, 1] → X1,f be the quotient map
associated to the quotient topology. We have that p(Sh(f)× [0, 1]) = Sh(φf ). Since
Sh(f) is invariant with respect to f , then Sh(f) × [0, 1] is saturated with respect
to p by Lemma 2.3.5. So Sh(f)× [0, 1] = p−1(p(Sh(φ)× [0, 1])) = p−1(Sh(φf )). By
definition of quotient maps, p−1(An) is an open set of X × [0, 1], hence

Sh(f)× [0, 1] = p−1

(
∞⋂
n=1

An

)
=
∞⋂
n=1

p−1(An)

and so Sh(f)× [0, 1] is a Gδ set of. Finally, Sh(f) is a Gδ set of X by Lemma 2.3.4.
This concludes the proof.

Remark 5. In [31], the author proved that the set of shadowable points of a home-
omorphism is a Borel set. But what he proved indeed is that such a set is a Fσδ set
of phase space, i.e., a countable intersection of countable union of closed sets. So
Theorem 2.3.6 is improvement of Kawaguchi’s result.

2.4 Shadowable points and recurrence

In this section we study the recurrence behavior of a flow under the presence of
shadowable points.

Lemma 2.4.1. If φ is a flow on a compact metric space X, then Sh(φ)∩CR(φ) ⊆
Ω(φ).

Proof. Let p ∈ Sh(φ) ∩ CR(φ) and ε > 0 be given. Then there exists δ > 0 from
the shadowableness of p. Since p is a chain recurrent point, there exists a (δ, 1)-
chain (xi, ti)

k
i=0 with p = x0 = xk and t0 = tk. For every integer number n we

put xkn+i = xi, tkn+i = ti for 0 ≤ i < k. So, (xi, ti)i∈Z is a (δ, 1)-pseudo-orbit
passing through p for φ and therefore there are y ∈ X and g ∈ Rep such that
d(p ? t, φg(t)(y)) ≤ ε for every t ∈ R. It follows that y ∈ B[p, ε] because g(0) = 0 by

definition. For every j ≥ 0 make mj = j
∑k−1

i=0 ti. Then,

d(x, φg(mj)(y)) = d(x ? mj, φg(mj)(y))

≤ ε, ∀ j ≥ 0

and mj ≥ jk for all j ≥ 0. So mj → ∞ (j → ∞). Since g ∈ Rep, g(mj) → ∞.
Therefore x ∈ Ω(φ), and the lemma follows.

Theorem 2.4.2. If CR(φ) ⊆ Sh(φ) then CR(φ) = Ω(φ).

Proof. Since Ω(φ) ⊂ CR(φ), if CR(φ) ⊆ Sh(φ) then Ω(φ) = CR(φ) by Lemma
2.4.1.

In some especial case, we can improve Theorem 2.4.2. We first remind the
definition of expansive flow [14]:

Definition 2.4.3. A flow φ on the metric space X is expansive if given ε > 0 there
exists δ > 0 with the property that if d(φt(x), φh(t)(y)) ≤ δ for every pair of points x
and y, for all t ∈ R and some h : R→ R with h(0) = 0, then y = φt(x) with |t| < ε.
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This notion is invariant under flow equivalences and it can be seen that if a flow
is expansive, then every singularity is isolated. Even more, in the case where there
are not singularities, we can take the function h belonging to Rep. (see [14]).

The following Lemma can be found is Lemma 3.10 in [53].

Lemma 2.4.4. Let φ be a continuous flow without singularities on a compact metric
space X. For each λ > 0 small enough, there exists ε > 0 such that for every
x, y ∈ X, for every interval [T1, T2] containing the origin and for every α ∈ Rep,
the following holds: if d(φt(x), φα(t)(y)) ≤ ε for all t ∈ [T1, T2], then |α(t) − t| < λ
for |t| ≤ 2 in [T1, T2] and |α(t)− t| < |t|λ for |t| > 2 in [T1, T2].

Lemma 2.4.5. If φ is a expansive flow on a compact metric space X, then CR(φ)∩
Sh(φ) ⊂ Per(φ).

Proof. Without loss of generality, by expansiveness, we can suppose that the flow
has no singularities. Let x ∈ CR(φ)∩Sh(φ) and ε ∈ (0, 1). We can take ε satisfying
Lemma 2.4.4 with respect to λ = 1

2
. Take δ > 0 satisfying the definition of shadowing

with respect to ε. Since x ∈ CR(φ), there is a ( δ
2
, 3)-chain (xi, ti)

k
i=0 where x0 =

xk = x and ti ≥ 3. Assume also that δ satisfies the expansiveness of φ with respect
to ε. Extend the ( δ

2
, 3)-chain (xi, ti)

k
i=0 to a ( δ

2
, 3)-pseudo-orbit (xi, ti)i∈Z by putting

for every integer number n, xkn+i = xi, and tkn+i = ti provided 0 ≤ i < k. Thus,
there are z ∈ X and α ∈ Rep such that d(φα(t)(z), φt−si(xi)) ≤ δ

2
for si ≤ t < si+1.

If L = t0 + . . . + tk−1, for d(φα(t+L)(z), φt−si(xi)) ≤ δ
2

whenever si ≤ t < si+1.
Therefore

d(φα(t+L)(z), φα(t)(z)) ≤ δ for every t ∈ R.

Take u = α(t), then

d(φα(α−1(u)+L)(z), φu(z)) = d(φα(α−1(u)+L)−α(L)(φα(L)(z)), φu(z)) ≤ δ

for every u ∈ R, where u 7→ α(α−1(u) +L)−α(L) ∈ Rep. Hence, by expansiveness,
φα(L)(z) ∈ φ(−ε,ε)(z). Moreover since d(φα(t)(z), φt(x)) ≤ ε

2
for 0 ≤ t < t0, then

1
2
s ≤ α(s) for some 2 ≤ s ≤ t0, by Lemma 2.4.4. Then ε ≤ α(s) ≤ α(L) since
s ≤ L. Therefore z ∈ Per(φ).

So in the case that φ is an expansive flow, we obtain the following improvement
of Theorem 2.4.2:

Theorem 2.4.6. If φ is expansive and CR(φ) ⊆ Sh(φ), then CR(φ) = Per(φ).

Proof. It follows directly from the fact that Per(φ) ⊆ CR(φ). Then CR(φ) =
Per(φ) by Lemma 2.4.5.

We denote by Sh+(φ) the set of points such that given ε > 0 there exists δ > 0
such that every forward (δ, 1)-pseudo-orbit (xi, ti)

∞
i=0 passing through p can be ε-

shadowed. Each element of Sh+(φ) is said forward shadowable point. All theorems
proven until now about shadowable points are equally valid for forward shadowable
points. From now on, we will use this observation without explicit mention of it.

We recall that a chain transitive flow φ is one where X is a chain transitive set.
That is, for every p, q ∈ X we have p ∼ q [1].
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Theorem 2.4.7. If the flow φ is chain transitive, then Sh+(φ) = X or Sh+(φ) = ∅.

Proof. Suppose that Sh+(φ) 6= ∅. Let p ∈ Sh+(φ) and q ∈ X. Let ε > 0 and take
δ > 0 from the forward shadowableness of p. Let (xi, ti)

∞
i=0 a forward (δ, 1)-pseudo-

orbit passing through q and let (yi, si)
m
i=0 a (δ, 1)-chain such that y0 = p and ym = q.

We have that the sequence of pairs (zj, rj)
∞
j=0 given by

(zj, rj) =

{
(yj, sj) if 0 ≤ j < m,

(xj−m, tj−m) if j ≥ m.

is a forward (δ, 1)-pseudo-orbit passing through p. We set

r̂i =


i−1∑
j=0

rj i > 0,

0 i = 0,

and

t̂i =


i−1∑
j=0

tj i > 0,

0 i = 0.

Hence there are h ∈ Rep and a point y ∈ X such that d(p ? t, φh(t)(y)) ≤ ε, for
t ∈ [0, ∞). Let g(t) = h(t+ r̂m)− h(r̂m). Clearly g ∈ Rep.

Note that

r̂m+k − r̂m =
m+k−1∑
j=0

rj −
k−1∑
j=0

rj =
m+k−1∑
j=m

tj = t̂k.

So, if t̂k ≤ t < t̂k+1 with k ≥ 0, then r̂m+k ≤ t+ r̂m < r̂k+m+1 and therefore

d(q ? t, φg(t)(φh(r̂m)(y))) = d(φt−t̂k(xk), φh(t+r̂m)−h(r̂m)(φh(r̂m)(y)))

= d(φt+r̂m−r̂m+k
(zm+k), φh(t+r̂m)(y))

≤ ε.

We have shown that the given forward (δ, 1)-pseudo-orbit passing through q can be
ε-shadowed by the point φh(t̂m)(y) and as this ε was arbitrary we conclude that q
forward shadowable. That is q ∈ Sh+(φ). This completes the proof.

Recall that a transitive flow φ [9] is one for which there exists a point x ∈ X
such that ω(x) = X where

ω(x) = {y ∈ X : y = lim
tn→+∞

φtn(x) = y for some sequence tn → +∞}.

A well known result in topological dynamics states that every transitive flow is
chain transitive [1]. The following corollary, which is an immediate consequence of
Theorem 2.4.7, gives a partial negative answer to this question in the flow case.

Corollary 2.4.8. If φ is a transitive flow Sh+(φ) = X or Sh+(φ) = ∅.
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Remark 6. There is a weaker notion of transitivity, which is original Birkhoff’s
definition (see [13]), for which Corollary 2.4.8 is not valid. We say that a flow
is transitive in Birkhoff’s sense if it has a dense orbit. Clearly, transitivity as
described in this work, implies transitivity in Birkhoff’s sense. In [31], an example
of a transitive in Birkhoff’s sense homeomorphism f : X → X such that Sh(f) = ∅
but Sh+(f) is a proper nonempty subset of X is given. So, by suspending f we
obtain a flow φf on X1,f without shadowable points and such that Sh+(φf ) is a
nonempty proper subset of X1,f . This also says that in general Sh(φ) $ Sh+(φ).

In [33], it is proved that if φ is a geometric Lorenz flow, then it does not have the
forward POTP provided that its return map f satisfies that f(0) 6= 0 or f(1) 6= 1.
In this case we have Sh+(φ) 6= X. It follows that Sh+(φ) = ∅. We have proved the
following result.

Corollary 2.4.9. A geometric Lorenz flows whose return map is such that f(0) 6= 0
or f(1) 6= 1 does not have shadowable points.

We state a known theorem about transitive flows on compact metric spaces (and
more general on second countable Baire topological spaces) which will be useful.

Theorem 2.4.10. On a Baire, Second countable topological space X a flow is tran-
sitive if, and only if, for every pair of open nonempty sets U and V , there exists a
nonnegative time T such that φT (U) ∩ V 6= ∅.

We do not know if Theorem 2.4.7 remains valid if we substitute forward shad-
owable points for shadowable points. We have, however a related result:

Theorem 2.4.11. Let X compact metric space and φ be a chain transitive flow on
X. If φ admits shadowable points then φ is transitive.

Proof. As X is a Baire Space, it is enough to prove that for any pairs of open sets U
and V of X, there exists a non-negative T with φT (U)∩V 6= ∅. By hypothesis there
exists at least one shadowable point x. Choose two points p ∈ U and q ∈ V and let
ε > 0 such that B(p, ε) ⊆ U and B(q, ε) ⊆ V . Let δ > 0 from the shadowableness
of x with respect to ε. By chain transitivity there exists a (δ, 1)-chain (xi, si)

m
i=0

from p to x and a (δ, 1)-chain (yj, rj)
n
j=0 from x to q. Define a (δ, 1)-pseudo-orbit

(zi, ti)i∈Z passing through x as follows:

(zk, tk) =


(φk+m(x0), 1) if k < −m
(xm+k, sm+k) if −m ≤ k < 0

(yk, rk) if 0 ≤ k ≤ n− 1

(φk−n(yn), 1) if k ≥ n

Then there is y ∈ X and h ∈ Rep such that

d(x ? t, φh(t)(y)) ≤ ε, ∀ t ∈ R,

in particular, d(p, φs−m(y)) ≤ ε and d(p, φsn(y)) ≤ ε. Set T = −s−m + sn which is
nonnegative. Then φsn(y) ∈ φT (U) ∩ V . This concludes the proof.

Corollary 2.4.12. On a compact metric space, a flow admitting shadowable points
is chain transitive if, and only if, it is transitive.
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Proof. We have already observed that transitive flows are always chain transitive.
The converse follows from Theorem 2.4.11.

So, nontransitive chain transitive flows on compact metric spaces does not have
shadowable points. For a concrete example take X = S1 and φ the flow associated
to the differential equation

θ̇ = sin2 θ

in angular coordinates. In this case Sh(φ) = ∅. A more interesting family of
examples are the so-called Venice Masks which are sectional-Anosov flows with dense
periodic orbits which are not transitive [39]. This flows are chain transitive when
the manifold is connected for Per(φ) = CR(φ) = M . Hence they cannot have
shadowable points. In light of this, we believe that the following statement may be
true:

Conjecture 2.4.13. A sectional Anosov flow with shadowable points is an Anosov
flow.

The following example shows that the conclusion of Theorem 2.4.11 cannot be
guaranteed if we drop the connectedness hypothesis.

Example 8. In [36], it is proved that an equicontinuous homeomorphism on a
compact metric space X f : X → X has the POTP if and only if X is totally
disconnected So if C is the usual ternary Cantor set in the interval [0, 1], then
identity map id : C → C has the POTP. The suspension flow of this map is then
an equicontinuous flow that has POTP [47]. But this flow is not transitive for its
phase space is not connected.

In what follows, we show some applications of shadowable points for flows. Re-
mind that φ is minimal if for every x ∈ X the orbit O(x) is dense in X. Komuro
showed that isometric flows with the pseudo orbit tracing property are minimal
flows [32]. Meanwhile Kato proved that equicontinuous flows with the pseudo orbit
tracing property are also minimal flows [29]. Later, He and Wang proved that distal
flows with the pseudo-orbit tracing property are minimal too [27].

In light of these results, is natural to ask if we still can conclude minimality
if the pointwise recurrence hypothesis is weakened to suppose the flow to be chain
recurrent. The answer is negative as there are nonminimal chain recurrent flows with
the pseudo orbit tracing property, for instance the suspension of the usual linear
Anosov map on the torus. However, there are not known examples of nontransitive
chain recurrent flows with the pseudo-orbit tracing property on connected spaces.
The following corollary shows that transitivity is a necessary condition is the phase
space is assumed to be connected.

Corollary 2.4.14. If φ is a chain recurrent flow on a compact connected metric
space X then φ is transitive.

Proof. Since X is connected, the only chain component of CR(φ) is X itself. So φ
is chain transitive. The corollary then follows from theorem 2.4.11.

A flow φ is distal if whenever inft∈R d(φt(x), φt(y)) = 0 implies x = y. Ev-
ery distal flow is chain recurrent and every transitive distal flow is minimal. It is
equicontinuous if the family of t-time maps {φt}t∈R is an equicontinuous family of
homeomorphisms in X. Equicontinuous and isometric flows are distal flows. The
following corollaries are then immediate consequences of Theorem 2.4.11.
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Corollary 2.4.15 (He, L., Wang, M., [27]). Every distal flow with POTP on a
connected compact metric is minimal.

Corollary 2.4.16 (Kato, K., [29]). Let M a Riemannian manifold and φ a equicon-
tinuous flow with respect to the Riemannian metric of M . If φ has the finite POTP
then φ is minimal.

Corollary 2.4.17 (Komuro, M., [32]). Let M a Riemannian manifold and φ a
isometric flow with respect to the Riemannian metric of M . If φ has the finite
POTP then φ is minimal.
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CHAPTER

THREE

F-SHADOWABLE POINTS

3.1 F-POTP and F-shadowable points

There several ways to define the shadowing property for flows, see for instance [45]
and references therein. In essence, the central idea among the majority of definitions
of shadowing for flows is the following: even if small errors occur at each iteration,
one can track the resulting pseudo-orbit by a true orbit with a time reparametriza-
tion.

Below we will give a brief idea about how this dependence originates with the
time reparametrizations. Bowen and Walters [14] introduced the definition of ex-
pansive flow by using reparametrizations. Afterward, Keynes and Sears [25, 26]
restricted the reparametrizations in the definition of expansive flow to subsets F
giving rise to the concept of F-expansive transformation group. Thomas [47] relates
expansiveness with the shadowing property and stability for flows in metric spaces.
Later, in [49], he proves that by adding canonical coordinates the expansive flow
verifies the shadowing property. Thus the expansivity and in particular the use of
reparameterizations is strongly related to the property of shadowing [47,49,51,52].

In [53] the restriction of the reparametrizations C allows us to generalize known
results about expansive measures for homeomorphism to flows. Moreover when C is
endowed with the∞-metric [15], in the sense that it allows infinite distances between
certain points, important generalizations are obtained for the expansiviness [53].

Given these results, it is natural to consider a notion of shadowable points for
flows where we restrict the reparametrizations as in [25] or [53]. Hence, we obtain
the concepts of F-shadowable points and F-orbit shadowing property for flows in
which F is a given subset of the set of reparametrizations.

Denote by C the set of continuous maps h : R→ R such that h(0) = 0 which will
be called the set of reparameterizations. We endow C with the supremum metric

d̂(f, g) = sup{|f(x)− g(x)| : x ∈ R}.

Under this distance, we obtain that (C, d̂ ) is a so-called∞-metric space in the sense
that it allows infinite distances between certain points (see [15,53]).
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The following is a straightforward reformulation of the notion of shadowing for
flows [47]. Given ε, δ > 0 and T > 0, a (δ, T )-pseudo-orbit (xi, ti)i∈Z is ε-shadowed
by an orbit (φt(y))t∈R if there exists h ∈ Rep such that

d(x0 ? t, φh(t)(y)) ≤ ε, for every t ∈ R.

To motivate our main definition we recall the following generalization of expan-
sive flow introduced by Keynes and Sears in [25]. Given a subset F ⊂ C we say that
a flow φ is F -expansive if for every ε > 0 there exists δ > 0 with the property that if
d(φt(x), φh(t)(y)) ≤ δ for all t ∈ R for some pair of points x, y ∈ X and some h ∈ F ,
then y = φs(x) for some s ∈ (−ε, ε).

Hence, by combining the definitions of shadowable points and F -expansiveness
we obtain the following objects that generalize the notion of shadowing for flows.

Definitions 3.1.1. Given F a subset of C and positive numbers δ, T and ε, we say
that a (δ, T )-pseudo-orbit (xi, ti)i∈Z of φ passes through p if x0 = p, and we say
that is (F , ε)-shadowed if there are a point y ∈ X and a function h ∈ F such that

d(x0 ? t, φh(t)(y)) ≤ ε, for each t ∈ R.

A flow φ has the F -POTP with respect to the parameter T > 0 if for every ε > 0
there exists δ > 0 such that every (δ, T )-pseudo-orbit can be (F , ε)-shadowed.
Finally, we say that a flow has the F -POTP if it has the F -POTP with respect to
the parameter T = 1.

Now we introduce the main objects of study.

Definition 3.1.2. A point p ∈ X is F -shadowable with respect to the parameter
T > 0, if for every ε > 0, there exists δ > 0 such that every (δ, T )-pseudo-orbit of φ
passing through p can be (F , ε)-shadowed. When p is F -shadowable with respect
to the parameter T = 1 we say that p is F -shadowable.

We denote by Sh(φ, F) the set of F -shadowable points of φ in X. In what
follows we will give some examples of F -shadowable points.

Example 9. If a flow φ on X has the F -POTP then Sh(φ, F) = X. The converse
is also true as we shall see shortly.

We denote by B0 the subsets of C consisting of bounded functions, and by Sing(φ)
the set of singularities of the flow φ, that is the set of points p ∈ X where φt(p) = p
for all t ∈ R.

Example 10. If a flow φ has no singularities on X and F ⊂ B0 then Sh(φ, F) = ∅.

Proof. By Theorem 3 in [14] for λ > 0 small enough, there are ελ > 0 and τλ > 0
such that if (xi, ti)i∈Z is a (δ, 1)-pseudo-orbit for φ, where δ > 0 corresponds to ελ,
xi+1 = φti(xi), and there are h ∈ F and z ∈ X with d(φt(x), φh(t)(z)) ≤ ε for each
t ∈ R, then h(t+ λ)− h(t) ≥ τλ for every t ∈ R. Thus h /∈ B0.

Hereafter, the closure operation will be denoted by (·). The following example
shows that the set of F -shadowable points can be finite.
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Example 11. If φ is a F -expansive flow on X where F ⊂ C such that F ∩ B0 6= ∅,
then Sh(φ, F) = Sing(φ) whenever idR /∈ F .

Proof. Suppose idR /∈ F . By Lemma 2 in [14] for λ > 0 small enough such that

λ < d̂ (idR,F) there exists γ > 0 with the property that d(φ±λ(x), y) > γ provided
that x, y ∈ X \ Sing(φ) and d(x, y) < γ. Also, there exists ε > 0 such that

if y ∈ φ(−ε, ε)(x), then d(φt(x), φt(y)) <
γ

2
for all (x, t) ∈ (X \Sing(φ))×R. (3.1)

Fix x ∈ Sh(φ, F) \ Sing(φ) and take ε0 > 0 such that ε0 < min{γ
2
, δ0} where δ0

is the F -expansivity constant of φ for ε > 0. There exists δ > 0 such that every
(δ, 1)-pseudo-orbit passing through x can be (F , ε0)-shadowable. Let (xi, ti)i∈Z be
a (δ, 1)-pseudo-orbit for φ where xi+1 = φti(xi) and x0 = x. Then, there are h ∈ F
and z ∈ X \ Sing(φ) such that

d(x ? t, φh(t)(z)) = d(φt(x), φh(t)(z)) ≤ ε0, for every t ∈ R.

So, there is s ∈ (−ε, ε) such that z = φs(x). Then from (3.1) for each t ∈ R we
have

d(φt(z), φh(t)(z)) ≤ d(φt(z), φt(x)) + d(φt(x), φh(t)(z)) < γ.

It follows that d(φt(z), φh(t)−t(φt(z))) < γ for all t ∈ R. Then |h(t) − t| < λ for

every t ∈ R. That is, d̂(idR, h) < λ and we obtain a contradiction. Moreover, since
F ∩ B0 6= ∅, then Sing(φ) ⊂ Sh(φ, F). Therefore Sing(φ) = Sh(φ, F).

The following result can be proved as per the above example.

Example 12. Let φ be a flow without singularities on X. If Fi ⊂ C with i = 1, 2
are such that d̂ (F1, F2) > 0, then Sh(φ, F1) ∩ Sh(φ, F2) = ∅.

Given a subset F ⊂ C we write Rep ◦ F ◦ Rep ⊂ F if g ◦ f ◦ h ∈ F whenever
g, h ∈ Rep and f ∈ F [53].

3.2 General Properties of F-shadowable points

The main result of this chapter are the basic properties of F -shadowable points.

Theorem 3.2.1. Given a subset F ⊂ C and a flow φ in a compact metric space
(X, d), the set of F-shadowable points satisfies the following properties:

(a) Sh(φ, F) is invariant.

(b) Sh(φ, F ) = Sh(φ, F).

(c) The flow has the F-POTP if and only if Sh(φ, F) = X.

(d) If F = {idR} and the flow has the F-POTP, then φt has the POTP for every
t 6= 0.

(e) If F ⊂ Rep and CR(φ) ⊆ Sh(φ, F) then CR(φ) = Ω(φ).

(f) If Rep ◦ F ◦ Rep ⊂ F and f is a conjugacy between φ and ψ, then either both
have F-POTP or neither of them does.
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Proof. Item (a), is proved as Theorem 2.2.3. To prove Item (b), let x ∈ Sh(φ, F )
and ε > 0. There exists δ > 0 such that every (δ, 1)-pseudo-orbit of φ passing
through x can be (F , ε)-shadowable. Let (xi, ti)i∈Z be a (δ, 1)-pseudo-orbit of φ
passing through x. Then there are h ∈ F and z ∈ X such that d(x ? t, φh(t)(z)) ≤
ε
2
, for every t ∈ R. By a compactness argument we can show that there exists ε0 > 0

such that φ(−ε0, ε0)(x) ⊂ B(x, ε
2
) for every x ∈ X. Take g ∈ F such that d̂(h, g) < ε0

and fix t ∈ R. Then,

d(x ? t, φg(t)(z)) ≤ ε

2
+ d(φh(t)(z), φg(t)(z)).

Since φ(−ε0, ε0)(φh(t)(z)) ⊂ B(φh(t)(z), ε
2
) and d̂(h, g) < ε0, we have

d(φh(t)(z), φg(t)(z)) = d(φh(t)(z), φg(t)−h(t)(φh(t)(z))) <
ε

2
.

So, d(x ? t, φg(t)(z)) ≤ ε. It follows that x ∈ Sh(φ,F).

Item (c) is proved as Theorem 2.2.7

To prove Item (d), first we take t > 0. By Theorem 1.1 in [42] is sufficient prove
that X ⊂ Sh(φt). Let x ∈ X and let ε > 0 be given. Since X = Sh(φ, {idR}), by
Lemma 2.2.5 there exists δ > 0 such that each (δ, t)-pseudo-orbit can be ( {idR}, ε)-
shadowable. Given (xn)n∈Z a δ-pseudo-orbit of φt passing through the point x ∈ X,
that is x0 = x. Then, for every integer n we have that d(φt(xn), xn+1) ≤ δ. That
is (xn, tn)n∈Z, where tn = t, is a (δ, t)-pseudo orbit of φ. Therefore, there is z ∈ X
such that d(φr−sn(x), φr(z)) ≤ ε where sn ≤ r < sn+1. Since sn = nt for every
n ∈ Z, then for r = nt we have d((φt)

n(z), xn) = d(xn, φnt(z)) ≤ ε for each n ∈ Z.
It follows that x ∈ Sh(φt). The proof for t < 0 is analogous.

Item (e) and (f) are proved as Theorems 2.4.2 and 2.2.8 respectively.

Next, we give some examples related to Theorem 3.2.1.

We say that X is totally disconnected at p ∈ X if the connected component
of X containing p is {p}. Denote by Xdeg the set of totally disconnected points of
X [3, 11].

Example 13. The result of Item (d) of Theorem 3.2.1 can not be extended to all
t-maps in the arbitrary compact space case. Indeed, if the flow has the {idR}-POTP,
then φt has the POTP for every t ∈ R if and only if X = Xdeg [3].

As a consequence of the above theorem we obtain the following corollary.

Corollary 3.2.2. If g ∈ F is such that for every x ∈ X and for every δ > 0
there exists f ∈ F with d(φg(t)(x), φf(t)(x)) ≤ δ for all t ∈ R, then Sh(φ, F) =
Sh(φ, F \ {g}).

Theorem 3.2.3. Let F be a subset of C. Then the F-shadowable points is a Gδ set
of X.

Proof. Same proof as Theorem 2.2.11.

To state our next result we will need the following finite versions of the notions
of shadowing for flows.
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Definitions 3.2.4. Given F a subset of C, positive numbers δ, T and ε, and integers
a and b such that ab ≤ 0 we say that a finite (δ, T )-pseudo-orbit (xi, ti)

b
i=a, of φ

passes through p if x0 = p, and we say that is finitely (F , ε)-shadowed if there are
a point y ∈ X and a function h ∈ F such that

d(x0 ? t, φh(t)(y)) ≤ ε, for all t ∈ [sa, sb+1).

A flow φ has the finite F -POTP if for every ε > 0 there exists δ > 0 such that every
finite (δ, 1)-pseudo-orbit can be (F , ε)-shadowed.

Definition 3.2.5. A point p ∈ X is finitely F -shadowable, if for every ε > 0, there
exists δ > 0 such that every finite (δ, 1)-pseudo-orbit of φ passing through p can be
finitely (F , ε)-shadowed.

Given f ∈ C, we define Bf = {h ∈ C : d̂(f, h) < ∞} and df = d̂|Bf . It follows
that C can be written as a union of metric spaces (Bf , df ). Note that in a∞-metric
space a subset of C is compact if and only if is a union of a finite number of compact
subsets each one belonging to some (Bf , df ) (p. 15 in [15]).

We denote by Shf (φ, F) the set of finitely F -shadowable points of φ inX. In [47],
it is proved that if φ has no singularities we have Sh(φ, Rep) = Shf (φ, Rep). The
following theorem shows that for a compact family of funtions F we always have an
equality.

Theorem 3.2.6. If F is a compact subset of C, then the F-shadowable points of φ
coincide with the finitely F-shadowable points of φ.

Proof. It is enough to show that Shf (φ, F) ⊆ Sh(φ, F). Let p ∈ Shf (φ, F) and
ε > 0. Choose δ > 0 from the finitely F -shadowableness of p and let (xi, ti) be
a (δ, 1)-pseudo-orbit passing through p. For each n ∈ N, the sequence of pairs
(xi, ti)

n
i=−n is a (δ, 1)-chain passing through p. So there are qn ∈ X and hn ∈ F

such that d(p ? t, φhn(t)(qn)) ≤ ε for all t ∈ [s−n, sn). By compactness we can
suppose that there exists some q ∈ X such that qn → q when n → ∞. Since for
each natural number n we have hn ∈ F and F is compact, then there are h ∈ F
and a subsequence (hnj)j∈N of (hn)n∈N in Bh converging to h.

Fix any t0 ∈ R and choose N ∈ N large enough so that t ∈ [s−N , sN). Note
that for n ≥ N we always have that d(p ? t0, φhn(t0)(qn)) ≤ ε because [s−N , sN) ⊆
[s−n, sn). So, we have

d(p ? t0, φh(t0)(q)) = lim
j→∞

d(p ? t0, φhnj (t0)(qnj)) ≤ ε.

Because t0 was arbitrary we conclude that p ∈ Sh(φ, F). This completes the proof
of the theorem.

Now, we consider an important class of family of functions of C.

Definition 3.2.7. Let F ⊆ C be any family of functions. We say that F is invariant
by translations if for every c ∈ R and f ∈ F the function fc defined by fc(t) =
f(t+ c)− f(c) for all t ∈ R also belongs to F .

Example 14. The following families of functions in C are invariant by translations:
C, Rep, B0, {idR}, the homogeneous dilations {h : h(t) = at, a ∈ R} and the
polynomials fixing zero.
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Now we present some results related to this family of reparametrizations. To do
this, we need to introduce some definitions and notations.

We denote by Sh+(φ, F) the set of points such that given ε > 0 there exists
δ > 0 such that every forward (δ, 1)-pseudo-orbit (xi, ti)

∞
i=0 passing through p can be

(F , ε)-shadowed. Each element of Sh+(φ, F) is said forward F -shadowable point.

We recall that a chain transitive flow φ is one where X is a chain transitive set.
That is, for every p, q ∈ X we have p ∼ q [1].

The following result and its corollary characterize the set of forward F -
shadowable points for chain transitive flows and transitive flows and their proofs
are identical to those of Theorem 2.4.7 and Corollary 2.4.8

Theorem 3.2.8. If the flow φ is chain transitive and F is a family of functions
invariant by translations, then Sh+(φ, F) = X or Sh+(φ, F) = ∅.

Corollary 3.2.9. If φ is a transitive flow and F is a family of functions invariant
by translations, then Sh+(φ, F) = X or Sh+(φ, F) = ∅.

Corollary 3.2.9 can be used to obtain information about the geometric Lorenz
attractor [33, 55]. In [33], it is proved that if φ is the geometric Lorenz attractor,
then it does not have the finite forward Rep-POTP provided that its return map f
satisfies that f(0) 6= 0 or f(1) 6= 1. In this case we have Sh+(φ, F) 6= X whenever
F ⊂ Rep. Moreover, since Rep is invariant by translations, then by Corollary 2.4.8
it follows that Sh+(φ, Rep) = ∅. So we obtain the following result.

Corollary 3.2.10. If F ⊂ Rep, then the geometric Lorenz attractor does not have
F-shadowable points.

Finally, using invariant by translations families we extend to flows the results for
homeomorphisms given in [30].

The following is a generalization of the limit shadowing property for flows.

Definition 3.2.11. A point p ∈ X is limit F -shadowable for φ if for each asymptotic
1-pseudo-orbit (xi, ti)i∈N of φ passing through p there are h ∈ F and z ∈ X such
that

lim
t→+∞

d(φt−sj(xj), φh(t)(z)) = 0, where sj ≤ t < sj+1.

We says that φ has the limit F -shadowing property when every point of X is limit
F -shadowable.

Let M(X) be the space of Borel probability measures on X. We consider in

M(X) the Prohorov metric d̃. Thus M(X) it turns into a compact space. From the
Riesz representation theorem we may regard M(X) as a subset of the unit sphere
in C(X)∗ (the dual space of C(X)) and write µ(f) =

∫
fdµ for f ∈ C(X).

Each flow (X,φ), induces a map φ̃ : M(X)× R→M(X) defined by

φ̃(µ, t)(f) = µ(f ◦ φt) where (µ, t) ∈M(X)× R.

This map is a flow on M(X) (see [10]). Taking into account these notions we can
state the following result that extends to flows Theorem 2 of [30].
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Theorem 3.2.12. If F is invariant by translation, then the limit F-shadowable
points for φ̃ are finitely F-shadowable points for φ̃.

Proof of Theorem 3.2.12. Suppose the Theorem is false. Then there exists a point
µ ∈M(X) limit F -shadowable but is not finite F -shadowable. Thus, there is ε > 0

such that for every k ≥ 1 there is a ( 1
k
, 1)-pseudo-orbit (µki , t

k
i )
Nk
i=ak

of φ̃ passing
through µ such that is not (F , ε)-shadowed. Without loss of generality we can

assume that ak = 0 for each k ≥ 1. Since φ̃ is chain transitive by Lemma ??, there
is a ( 1

k
, 1)-pseudo-orbit (νki , λ

k
i )
Lk
i=0 with νk0 = µkNk and νkLk = µk+1

0 . Renewing the
indices of the sequences

{µ1
0, µ

1
1, · · · , µ1

N1
, ν11 , ν

1
2 , · · · , ν1L1−1, µ

2
0, µ

2
1, · · · , µ2

N2
, ν21 , ν

2
2 , · · · , ν2L2−1, · · · },

and

{t10, t11, · · · , t1N1
, λ11, λ

1
2, · · · , λ1L1−1, t

2
0, t

2
1, · · · , t2N2

, λ21, λ
2
2, · · · , λ2L2−1, · · · }

we obtain a sequence of pairs (µi, ti)i∈N of (M(X), φ̃) with the following property:
Given i ∈ N, if

∑r
j=1(Nj + Lj) ≤ i ≤ Nr+1 +

∑r
j=1(Nj + Lj) for some r ≥ 1, then

(µi, ti) =
(
µr+1
i−

∑r
j=1(Nj+Lj)

, tr+1
i−

∑r
j=1(Nj+Lj)

)
,

and if Nr+1 +
∑r

j=1(Nj + Lj) < i <
∑r+1

j=1(Nj + Lj) we consider

(µi, ti) =
(
νr+1
i−Nr+1−

∑r
j=1(Nj+Lj)

, λr+1
i−Nr+1−

∑r
j=1(Nj+Lj)

)
.

Moreover, the sequence (µi, ti)i∈N satisfies µr+1∑r
j=1(Nj+Lj)

= µ for every r ≥ 1 and

lim
i→+∞

d̃(φ̃ti(µi), µi+1) = 0.

Since (M(X), φ̃) has the limit F -shadowing property, there are η ∈ M(X) and
h ∈ F such that

lim
w→+∞

d̃(φ̃w−sj(µj), φh(w)(η)) = 0, where sj ≤ w < sj+1.

Therefore for some T0 > 0 we have

d̃(φ̃w−sj(µj), φh(w)(η)) < ε, for every sj ≤ w < sj+1 where j ≥ T0.

Let k0 ∈ N such that T0 ≤
∑k0

j=1(Nj + Lj). For each l ∈ {1, · · · , Nk0+1} we denote

s̃l =
∑l−1

j=0 t
k0+1
j and s̃0 = 0. Fix t ∈ R and 0 ≤ m < Nk0+1 such that s̃m ≤ t <

s̃m+1. We denote c(m) =
∑k0

j=1(Nj + Lj) + m. Since tc(m) = tk0+1
m , then for each

0 ≤ w − sc(m) < tk0+1
m we have

d̃
(
φ̃w−sc(m)

(
µc(m)

)
, φh(w)(η)

)
< ε.

Moreover from µc(m) = µk0+1
m , it follows that

d̃
(
φ̃t−s̃m(µk0+1

m ), φ̃ h̃(t)(γ)
)
< ε for every s̃m ≤ t < s̃m+1,

where h̃(t) = h(t + sc(m)) − h(sc(m)) ∈ F and γ = φ̃(η, h(sc(m))) ∈ M(X). There-

fore the ( 1
k0+1

, 1)-pseudo-orbit (µk0+1
i , tk0+1

i )
Nk0+1

i=0 of φ̃ passing through µ is (F , ε)-
shadowed. This is a contradiction.

From Theorem 3.2.6, the following corollary is immediate.

Corollary 3.2.13. If F is a compact invariant by translations family of functions
and φ̃ has the limit F-shadowing property, then φ̃ has the F-POTP.
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CHAPTER

FOUR

TOPOLOGICALLY STABLE POINTS

In this chapter we present a pointwise counterpart of topologically stability for
flows [28,47,49], by extending a recent work of Koo, Lee and Morales [34] to the flow
context. We show that set of topologically stable points is invariant and preserved
by continuous equivalences.

4.1 Topologically stable points

Let (X, d) be a metric space and A ⊆ X Given two functions f, g : A ⊆ X → X.
The C0 distance on A between f and g is defined by

dC0(f, g) = sup
x∈A

d(f(x), g(x)).

The following definition is a weaker version of the notion of equivalence.

Definition 4.1.1. Let φ : X × R → X and ψ : Y × R → Y be two flows. We say
that ψ is semiconjugate to φ if there are a continuous function h : X → Y and a
surjective continuous function σ : X × R→ R with the following properties:

i) σ is a reparametrizarion fixing 0, i.e, σ(x, ·) : R→ R is strictly increasing, onto
and σ(x, 0) = 0 for all x ∈ X

ii) h(ψσ(x, t)(x)) = φt(h(x)).

The pair (h, σ) is called a semiconjugacy from ψ to φ, and it is easy to see that
a semiconjugacy sends orbits or periodic orbits of ψ to orbits or periodics orbits of
φ, respectively.

Now we remind the definition of topological stability [28,47,49].

Definition 4.1.2. Let X be a metric space. A continuous flow φ is topologically
stable if given ε > 0 there is δ > 0 such that for every continuous flow ψ satisfying
dC0(φt, ψt) ≤ δ for every t ∈ [0, 1] there is a semiconjugacy (h, σ) from ψ to φ such
that dC0(h, idX) ≤ ε.
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Our definition of topologically stable point will be based on the following ele-
mentary remark:

Remark 7. A necessary condition for a given flow φ being topologically stable is that
for every ε > 0 and every x ∈ X there is δx > 0 such that for every continuous flow
ψ satisfying dC0(φt, ψt) ≤ ε, for every t ∈ [0, 1] there is a semiconjugacy (k, τ) from
ψ|Oψ(x) to φ such that dC0(k, iOψ(x)) ≤ ε. Indeed, for ε > 0 then we can take δx = δ,

h = k|Oψ and τ = σ|Oψ(x)×R where δ and k : X → X come from the topological

stability of φ.

This remark motivates the content of the main definition of this chapter.

Definition 4.1.3. Let φ be a flow on a metric space X and let x ∈ X. It is said
that x is topologically stable if given ε > 0 there is δx > 0 such that for every flow ψ
on X such that dC0(φt, ψt) ≤ δx for every t ∈ [0, 1], there is a semiconjugacy (k, τ)
from ψ|Oψ(x) to φ such that dC0(k, iOψ(x)) ≤ ε.

We denote by T (φ) the subset of X of topologically stable points of the flow φ.
In what follows we give some examples.

Example 15. If a flow φ is topologically stable then by the previous remark T (φ) =
X. It is unknown, however, if the converse is also true.

Example 16. An isolated point of a flow φ is topological stable. Indeed, if x is
isolated then φt(x) = x for all t ∈ R and we can choose δx > 0 small enough so that
B(x, δx) = {x}. If ψ is any flow satisfying dC0(ψt, φt) ≤ δx for all t ∈ [0, 1] then
ψt(x) = x. So if τ(x, t) = t, then (id{x}, τ) is a semiconjugacy from ψ|Oψ(x) to φ.

The following Lemma is from [48].

Lemma 4.1.4. Let φ and ψ be two flows on a compact metric space X and let a > 0.
Then given ε > 0, there exists δ > 0 such that dC0(φt, ψt) ≤ δ for all t ∈ [0, 1],
implies dC0(φt, ψt) ≤ ε for all t ∈ [0, a].

Proof. If a ≥ 1 there take δ = ε. Assume a < 1 and fix k ∈ N greater than 1
a
. Let

us define a sequence (δn)n∈N of real numbers as follows: δ1 = δ and for n > 1 set δn
inductively as having the following properties

1. 0 < δn <
δn−1

2

2. d(x, y) ≤ δn =⇒ d(φt(x), φt(y)) ≤ δn−1

2
, ∀x, y ∈ X and ∀ t ∈ [0, a].

Now take δ = δk and assume dC0(φt, ψt) ≤ δ for t ∈ [0, a]. Then

dC0(φt′ ◦ φt, φt′ ◦ ψt) ≤ δn−1

2
, ∀ t′ ∈ [0, a] and ∀ t ∈ [0, 1].

Therefore,

dC0(φt′+t, ψt′+t) ≤ dC0(φt′ ◦ φt, φt′ ◦ ψt) + dC0(φt′ ◦ φt, ψt′ ◦ ψt).

That is dC0(φt, ψt) ≤ δk−1 for all t ∈ [0, 2a]. Continuous in this manner, we will
have that dC0(φt, ψt) ≤ δ for all t ∈ [0, ka]. This completes the proof.
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The next lemma says that we do not need to restrict ourselves to perturbations
ψ which are C0-closed to ψ in the interval [0, 1]. We can choose any interval [0, a]
with a > 0.

Lemma 4.1.5. Let φ be a flow on the compact metric space X and a > 0. A point
x0 ∈ X is topologically stable if and only if given ε > 0 there exists δx0 such that
for every flow ψ on X such that dC0(φt, ψt) ≤ δx0 for every t ∈ [0, a] there exists a
semiconjugacy (k, τ) from ψ|Oψ(x) to φ

Proof. Suppose that x0 is topologically stable. Given ε > 0 take δ′x0 from the
topological stability of x. If a ≥ 1 simply take δx0 = δ′x0 . Assume that a < 1.
By Lemma 4.1.4 there is δ > 0 such that if dC0(φt, ψt) ≤ δ for all t ∈ [0, a] then
dC0(φt, ψt) ≤ δ′x0 for all t ∈ [0, 1]. Take δx0 = δ.

We are ready to show that under continuous equivalences, the set of topological
stable points is preserved. In fact we proof a stronger result.

Theorem 4.1.6. Let φ and ψ be two flows on the compact metric spaces X and Y ,
respectively. Suppose that φ and ψ are equivalent under a homeomorphism h : X →
Y with a continuous reparametrization σ : X ×R→ R fixing zero. Then h(T (φ)) =
T (ψ).

Proof. Let y0 ∈ T (ψ), ε > 0 and x0 the only point in X with h(x0) = y0. We’ll see
that x0 ∈ T (φ). By compacity, we can choose 0 < ε′ < ε so that d(y1, y2) < ε′ im-
plies that d(h−1(y1), h

−1(y2)) < ε′ for every y1, y2 in Y . Let δ′y0 from the topological
stability of y0 with respect to ε′. Choose 0 < δ < δ′y0 such that d(h(x1), h(x2)) ≤ δ′y0
whenever d(x1, x2) < δ for all x1, x2 ∈ X. Let a = supx∈X σ(x, 1) which exists
and is greater than zero in virtue of the compacity of X, the continuity of the
reparametrization σ and its zero fixing property. Let φ′ any other flow on Y with
dC0(φ′t, φt) < δ for all t ∈ [0, a]. Define a flow ψ′ on Y by

ψ′t(h(x)) = h(φ′σ(x, t)(x)).

Then, for every t ∈ [0, 1] and x ∈ X we have

d(ψ′t(h(x)), ψt(h(x))) = d(h(φσ(x, t)(x)), h(φ′σ(x, t)(x))) ≤ δ′y0 .

Using the topological stability of y0, there exists a semiconjugacy (k, τ) from
ψ′|O(y0) to ψ such that dC0(k, idOψ′ (y0)) ≤ ε′. Define a function l := h−1 ◦ k ◦
h : Oφ′(x0) → X. Note that l is well defined because h(Oφ′(x0)) = Oψ′(y0). Since
dC0(k ◦ h|Oφ′ (x0), h|Oφ′ (x0)) < ε′, then

dC0

(
h−1|Oψ′ (y0) ◦ k ◦ h|Oφ′ (x0), id|Oφ′ (x0)

)
< ε,

this is dC0(l, id|Oφ′ (x0)) < ε. Also define a reparametrization ρ : Oφ′(x0) × R → R
by ρ(x, t) = σ(x, τ(h(x), σ̃(h(x), t))) where σ̃ is the inverse reparametrization of σ.
We have
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l(φ′ρ(x, t)(x)) = h−1 ◦ k ◦ h
(
φ′σ(x, τ(h(x),σ̃(h(x), t)))(x)

)
= h−1 ◦ k

(
ψ′τ(h(x),σ̃(h(x), t))(h(x))

)
= h−1(ψσ̃(h(x), t))(k ◦ h(x))

= φt
(
h−1 ◦ k ◦ h(x)

)
= φt(l(x)).

Then, (l, ρ) is a semiconjugacy from φ′O(x0)
to φ and therefore x0 ∈ T (φ). We have

shown that h−1(T (ψ)) ⊆ T (φ). The contrary inclusion can be seen analogously.
This completes the proof.

Since every continuous change velocity of φ satisfy the previous theorem φ, the
following corollary is immediate.

Corollary 4.1.7. Let φ be a flow on a metric space X. Then the set of topologically
stable points remains invariant under continuous velocity changes.

From topological equivalence we can obtain invariance.

Corollary 4.1.8. The set T (φ) of topologically stable points of φ is invariant under
φ. In particular, T (φ) is union of orbit of φ.

Proof. Let s be any real number. The function φs is a conjugacy between φ and
itseld, because φt = φs ◦ φt ◦ φ−s. As pointed before, every conjugacy between two
flows is an equivalence. Therefore φs(T (φ)) = T (φ), this is, T (φ) is invariant under
φ.

So, given x ∈ T (f) we have O(x) ⊆ T (f). An orbit will be called a topologically
stable orbit if is the orbit of some topologically stable point.

Remind that a closed manifold is a compact one without boundary.

Theorem 4.1.9. Let φ be a C1 flow on a closed smooth manifold M of dimension
different from 2. Then T (φ) ∩ CR(φ) ⊆ Per(φ). In particular if CR(φ) ⊆ T (φ),
then CR(φ) = Per(φ).

Proof. Let x ∈ T (φ) ∩ CR(φ) and let ε > 0. First suppose that dimM ≥ 3. Then
there exists δ > 0 such that for every (δ, 1)-chain from x to x there is a C1 flow
ψ on M such that dC0(φt, ψt) ≤ ε for all t ∈ [0, 1] and such that if (xi, ti)

n
i=0 a

(δ, 1)-chain from x to itself then Oψ(x) is a periodic orbit for ψ. (see [28]). By
decreasing δ > 0 if necessary we can suppose it satisfies the topological stability
of x. By assumption, there is some (δ, 1)-chain (xi, ti)

n
i=0 from x to itself. Take

ψ as above and let (k, τ) be a semiconjugacy from ψ|Oψ(x) to φ. Since Oψ(x) is a

closed orbit of a C1 flow we have that Oψ(x) = Oψ(x) and k(Oψ(x)) is a closed
orbit of φ satisfying d(k(Oψ(x)), x) ≤ d(k(x), x) ≤ d(k, idOψ(x)) ≤ ε. Since ε is

arbitrary we conclude that x ∈ Per(φ). If dimM = 1 or dimM = 0 the conclusion
is immediate. In particular, if CR(φ) ⊆ T (φ) then CR(φ) ⊆ Per(φ) and therefore
CR(φ) = Per(φ) and the claim follows.
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Example 17. By Theorem 4.1.9 if φ is a minimal flow on a smooth manifold M
of dimension greater than 2, then T (f) = ∅. Indeed CR(φ) = M and Per(φ) = ∅.
In particular distal, equicontinuous or isometric flows admitting shadowable points
on a closed manifold of dimension greater than 3 do not have topologically stable
points.

Theorem 4.1.10. If a flow φ on a compact metric space X can be arbitrarily C0-
approximated by minimal flows then either int(Per(φ))∩T (f) = ∅ or X is a periodic
orbit.

Proof. Let x ∈ Int(Per(φ)) and ε > 0 be such that d(x, y) ≤ ε implies that y ∈
Per(φ). Suppose that x ∈ T (φ) and let δ > 0 satisfying the topological stability of
φ. Let ψ be a minimal flow which is δ-closed to φ and (k, τ) a semiconjugacy from
ψ|Oψ(x) to φ such that dC0(k, idOψ(x)) ≤ ε. Then Oφ(x) = X = k(Oψ(x)). However,

d(k(x), x) ≤ ε and so Oφ(k(x)) is a periodic orbit of φ. This is only possible if
Oφ(k(x)) = X and the theorem follows.

4.2 Topologically stable points and suspensions

In this section we study the relation between the topological stable points of a
homeomorphism and of its suspended flow.

We begin with a technical lemma whose proof can be found in [47].

Lemma 4.2.1. Let φ be a flow on a compact metric space X and suppose that
Sing(φ) = ∅. Then there exists T0 > 0 such that if 0 < t < T0, there is λ > 0 such
that d(x, y) < λ implies that d(φt(x), y) > λ for all x, y ∈ X.

Next we proof that topological points can be “lowered” from the suspension flow.

Theorem 4.2.2. Let f : X → X be a homeomorphism on a compact metric space
X, φτ, f be the suspension flow of f on the suspended space Xτ, f with height function
τ : X → (0, ∞) and (x, r) ∈ Xτ, f . If Oφτ, f (x, r) ⊆ T (φτ, f ), then x ∈ T (f).

Proof. Since the set of topological points of a flow is invariant under equivalences, we
only consider the case where τ ≡ 1. Moreover, since φf does not have singularities,
by making a velocity change we can suppose φf satisfies Lemma 4.2.1 with T0 ≥ 1.
Fix λ > 0 as in Lemma 4.2.1 for t = 1

4
. Now, let ε > 0 and (x, r) be a topologically

stable point of φf . We can assume without loss of generality that ε < min{λ, 1
4
}.

Take 0 < ε0 < ε with the following properties:

1. If d((x, r), (y, s)) ≤ ε0 then d(π(x, r), π(y, s)) ≤ ε, where π : X × [0, 1]→ X
is the projection map on X,

2. df ((x, r), (y, s)) ≤ ε0 implies df (φft (x, r), φ
f
t (y, s)) ≤ ε.

Next choose 0 < δ0 < ε0 with δ0 satisfying the topological stability of (x, 1
2
) with

respect to ε0 and let 0 < δ < δ0 such that d(f(x), f(y)) ≤ δ0 whenever d(x, y) ≤ δ
for every x, y ∈ X. We claim that x is a topological stable point of f . Indeed, let
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g : X → X be another homeomorphism of X such that dC0(f, g) ≤ δ and let φg its
corresponding suspended flow. The for t ∈ [0, 1] and s ∈ [0, 1) we have that

df (φft (x, s), φ
g
t (x, s)) = df ((x, s+ t), (x, s+ t)) = 0, if s+ t ∈ [0, 1),

and

df (φft (x, s), φ
g
t (x, s)) = (2− s− t)d(f(x), g(x)) + (s+ t− 1)d(f(f(x)), f(g(x)))

< (2− s− t)δ0 + (s+ t− 1)δ < δ0 if s+ t ∈ [1, 2).

So, dfC0(φ
f , φg) < δ0. Hence there is a semiconjugacy (k, σ) from φg|Oφg (x, 12 ) to φf

with dC0(k, idOφg (x, 12 )
) ≤ ε0. For (y, s) ∈ Oφg(x, 1

2
) we have

df (φft−σ(y, s, t)(φσ(y, s, t)(k(y, s))), φfσ(y, s, t)(y, s))

≤ df (k(φgσ(y, s, t)(y, s)), φ
g
σ(y, s, t)(y, s)) + df (φgσ(y, s, t)(y, s), φ

f
σ(y, s, t)(y, s))

< ε0 + δ0 < δ, for t ∈ R.

By Lemma 2.4 in [47] and the continuity of σ(y, s, ·) we obtain that |σ(y, s, t)−t| ≤
1
4

for all t ∈ R and every point (y, s) in Oφg(x, 1
2
). Let us define h : Og(x)→ X by

h(y) = π(k(x, 1
2
)) which is clearly continuous. Since dC0(k, idOφg (x, 12 )

) ≤ ε0 we have

d(h(y), y) = d(π(k(y, 1
2
)), π(y, 1

2
))) ≤ ε, ∀ y ∈ Og(x)

and therefore dC0(h, idOg(x)) ≤ ε. Finally to see the conjugacy h ◦ g = f ◦ h note

that if we write k(y, 1
2
) = (y′, u) and 1 = σ(y, 1

2
, r) then |w− 1

2
| ≤ 1

4
and |r−1| ≤ 1

4

by Lemma 2.4 in [47] and so 1 ≤ u+ r ≤ 2. Hence

h(g(y)) = π(k(g(y), 1
2
)) = π(k(φg1(y,

1
2
))) = π(φfr (k(y, 1

2
))) = π((y′, u+ r)) =

= π((f(y′), u+ r − 1) = f(y′) = f(π(k(y, 1
2
))) = f(h(y)),

as desired. This conclude the proof.
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CHAPTER

FIVE

F-DISTAL FLOWS

In this chapter we study a variation of distality for flows φ obtained by making the
proximal cell in [10] to depend on a given subset F of the full set of reparametriza-
tions C. We consider first the case when F reduces to a single continuous map
s : R → R fixing the origin different from the identity. In such a case if the s-
dependent proximal cells are trivial, then the flow is uniformly closed (or trivial if s
is bounded). Next we show that the flow φ is closed if and only if the s-depending
proximal cells reduce to the corresponding orbit for every (or some) s bounded.
Furthermore, nonsingular flows admits points whose proximal cell (with s being the
identity) does not reduce to the orbit. Afterwards, we consider the case when F is
either H (the set of homeomorphisms s : R→ R fixing 0) or the whole C. From this
we obtain a characterization of the classical pointwise almost periodicity.

5.1 s-distal flows

In this section we make a first attempt to generalize the concept of distal flows.

Recall that a flow φ is distal if x = y whenever x, y ∈ X satisfy

inf
t∈R

d(φt(x), φt(y)) = 0.

The distal flows have been widely study in topological dynamics [10], [21], [23]. By
imitating the approach made in [37], we can restate the definition of distal flow as
follows. A flow φ is distal if P(x) = {x} for every x ∈ X where P(x) is the proximal
cell defined by

P(x) =

{
y ∈ X : inf

t∈R
d(φt(x), φt(y)) = 0

}
.

This definition suggests a similar one depending on a continuous map s : R→ R
with s(0) = 0:

Definition 5.1.1. Given a flow φ of X and a continuous map s : R → R with
s(0) = 0, the s-dependent proximal cell of x with respect to φ is the set

Ps(x) =

{
y ∈ X : inf

t∈R
d(φt(x), φs(t)(y)) = 0

}
.
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Clearly, P(x) = Pid(x) where id : R→ R is the identity. Therefore, φ is distal if
and only if

Pid(x) = {x}, ∀x ∈ X.
Recall that C denote the space of continuous maps s : R→ R fixing 0. The definition
bellow is motivated by the previous observation:

Definition 5.1.2. Let φ be flow on the compact metric space X and s ∈ C. It is
said that φ is s-distal if

Ps(x) = {x}, ∀x ∈ X. (5.1)

So a id-distal flow is a distal flow. The natural question is: for an arbitrary
s : R→ R, which flows are s-distal flows? In this section we give an answer for this
question.

We will use the following notations. Given a flow φ of a metric space X, x ∈ X
and s : R→ R we define

ωs(x) =
{
y ∈ X : lim

n→∞
d(φtn(x), φs(tn)(y)) = 0 for some sequence tn →∞

}
,

αs(x) =
{
y ∈ X : lim

n→∞
d(φtn(x), φs(tn)(y)) = 0 for some sequence tn → −∞

}
and

Os(x) = {φt−s(t)(x) : t ∈ R}.
If s = 0 is the zero map, then ω0(x) = ω(x), O0(x) = O(x) and α0(x) = α(x).

Remind that both the alpha and the omega-limit sets sets are closed, invariant
and satisfy the formula

O(x) = α(x) ∪ O(x) ∪ ω(x), ∀x ∈ X. (5.2)

For general maps s ∈ C we obtain a similar identity:

Lemma 5.1.3. For every flow φ of a metric space X one has

Ps(x) = αs(x) ∪ Os(x) ∪ ωs(x), ∀x ∈ X, ∀ s ∈ C.

Proof. It follows easily from the definitions that αs(x) ∪ ωs(x) ⊆ Ps(x). If t ∈ R,
the constant sequence tn = t satisfies

lim
n→∞

d(φtn(x), φs(tn)(φt−s(t)(x))) = lim
n→∞

d(φt(x), φt(x)) = 0.

Hence φt−s(t)(x) ∈ Ps(x) and so

αs(x) ∪ Os(x) ∪ ωs(x) ⊆ Ps(x).

Now take y ∈ Ps(x). Then, there is a sequence tn ∈ R such that

lim
n→∞

d(φtn(x), φs(tn)(y)) = 0. (5.3)

If tn is unbounded, we can assume by passing to a subsequence if necessary that
tn → ∞ or tn → −∞. Hence y ∈ αs(x) ∪ ωs(x). Otherwise, tn is bounded and so
we can assume that tn → t for some t ∈ R by passing to a subsequence if necessary.
Then, (5.3) implies d(φt(x), φs(t)(y)) = 0 i.e. y = φt−s(t)(x) ∈ Os(x). All together
imply

Ps(x) ⊆ αs(x) ∪ Os(x) ∪ ωs(x)

proving the result.
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For bounded functions s ∈ B0 we have a stronger lemma:

Lemma 5.1.4. For every flow φ of a compact metric space X and every s ∈ B0 one
has

O(x) ⊆ Ps(x) ⊆ O(x), ∀x ∈ X.

Proof. Fix x ∈ X. Obviously Os(x) ⊆ O(x). Now take y ∈ ωs(x). Then, there is a
sequence tn →∞ such that d(φtn(x), φs(tn)(y))→ 0 as n→∞. Since s is bounded,
we can assume by passing to a subsequence if necessary that s(tn) → a for some
a ∈ R. Since X is compact, we can also assume that φtn(x) → z for some z ∈ X.
Clearly z ∈ ω(x). Since

d(z, φa(y)) ≤ d(z, φtn(x)) + d(φtn(x), φs(tn)(y)) + d(φs(tn)(y), φa(y)),

d(z, φtn(x))→ 0, d(φtn(x), φs(tn)(y))→ 0 and

d(φs(tn)(y), φa(y))→ d(φa(y)), φa(y)) = 0

as n → ∞, we obtain d(z, φa(y)) = 0, i.e., φa(y) = z ∈ ω(x). Therefore, y ∈ ω(x)
proving ωs(x) ⊆ ω(x). Similarly we prove αs(x) ⊆ α(x). By Lemma 5.1.3 and (5.2)
we conclude that

Ps(x) ⊆ O(x).

On the other hand, since s is bounded continuous, the map t ∈ R → t− s(t) is
onto. Take y ∈ O(x). Then, y = φr(x) for some r ∈ R. Taking t ∈ R such that
r = t− s(t) we get y = φr(x) = φt−s(t)(x) ∈ Os(x). Then, Lemma 5.1.3 implies

O(x) ⊆ Ps(x)

and the proof follows.

Remark 8. Lemma 5.1.4 is false if s : R → R were unbounded. Take for instance
a minimal distal flow φ of a compact metric space with more than one point and
s = id.

Definition 5.1.5. We say that a flow φ is trivial (resp. closed) if φt(x) = x for
every x ∈ X (resp. every orbit O(x) is closed). We say that φ is uniformly closed if
there is T 6= 0 such that φT (x) = x for every x ∈ X.

The following theorem answer our last question:

Theorem 5.1.6. Let φ be a flow of a metric space X. If φ is s-distal for some
s ∈ C \ {id}, then φ is uniformly closed. If additionally s ∈ B0, then φ is trivial.

Proof. Let φ be a flow of a metric space X. Suppose that there is s ∈ C \ {id}
satisfying (5.1). Then, Lemma 5.1.3 implies Os(x) ⊆ {x} and so φt−s(t)(x) = x for
every x ∈ X and every t ∈ R. Since s 6= id, T = t − s(t) 6= 0 for some t ∈ R. For
this T we obtain φT (x) = x for every x ∈ X and then φ is uniformly closed.

Finally, if s is bounded, then O(x) = {x} for every x ∈ X by Lemma 5.1.4 and
so φ is trivial.
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5.2 F-distal flows

Theorem 5.1.6 says that, for general s ∈ C, s-distal flows are quite trivial . We
can improve the definition by considering the equation (5.1) but replacing {x} by
another set depending on x. Of course, natural candidates for such a replacement
are the orbit O(x) or the orbit closure O(x). The first of these candidates yields to
flows satisfying:

Ps(x) = O(x), ∀x ∈ X. (5.4)

Related examples are as follows.

Example 18. Clearly P0(x) = O(x) for every x ∈ X and every flow φ of a metric
space X, where 0 here is the zero map (t ∈ R 7→ 0). Then, the sole flows φ satisfying
(5.4) with s = 0 are the closed ones.

Example 19. For every uniformly closed flow φ there is s ∈ B0 satisfying (5.4)
(take for instance s = 0).

Lemma 5.2.1. If φ is a flow of a metric space X and s : R→ R is bounded, then

ω(x) ⊆
⋃
a∈R

φa(ωs(x)) and α(x) ⊆
⋃
a∈R

φa(αs(x)) for every x ∈ X.

Proof. Fix x ∈ X. If y ∈ ω(x), there is a sequence tn →∞ such that d(φtn(x), y)→
0 as n → ∞. Since s is bounded, we can assume up to passing to a subsequence if
necessary that s(tn)→ a for some a ∈ R. Since

d(φtn(x), φs(tn)(φ−a(y))) ≤ d(φtn(x), y) + d(y, φs(tn)(φ−a(y))),

d(φtn(x), y)→ 0, and

d(y, φs(tn)(φ−a(y)))→ d(y, φa(φ−a(y))) = d(y, y) = 0

as n→∞, we obtain

lim
n→∞

d(φtn(x), φs(tn)(φ−a(y))) = 0

and so
φ−a(y) ∈ ωs(x).

Hence y ∈ φa(ωs(x)) proving the first inclusion. The proof of the second inclusion
is analogous.

We have the following corollary.

Corollary 5.2.2. Let φ be a flow of a compact metric space X. If x ∈ X satisfies
Ps(x) = O(x) for some s ∈ B0, then O(x) is closed.

Proof. By Lemma 5.1.3 one has ωs(x) ∪ αs(x) ⊆ O(x). Then, Lemma 5.2.1 implies

ω(x) ∪ α(x) ⊆
⋃
a∈R

φa(O(x)) = O(x)

and so O(x) is closed by (5.2).

43



The theorem below is motivated by Examples 18 and 19.

Theorem 5.2.3. The following properties are equivalent for every flow φ of a com-
pact metric space X:

(1) φ is closed.

(2) φ satisfies (5.4) for every s ∈ B0.

(3) φ satisfies (5.4) for some s ∈ B0.

Proof. Let φ be a flow of a compact metric space X. If φ is closed, O(x) = O(x)
and then Ps(x) = O(x) for every x ∈ X and every s ∈ C bounded by Lemma 5.1.4.
Therefore, Item (1) implies Item (2). Obviously Item (2) implies Item (3) and Item
(3) implies Item (1) by Corollary 5.2.2.

On the other hand, if the function is not bounded, then the flow is forced to have
singularities:

Theorem 5.2.4. If a flow φ of a compact metric space X satisfies (5.4) with s = id,
then Sing(φ) 6= ∅.

Proof. Suppose by contradiction that there is a flow without singularities φ on a
compact metric space X satisfying (5.4) with s = id. Since φ has no singularities,
and X is compact, there is r > 0 such that Xr(x) 6= x for every x ∈ X. Now,
take any x ∈ X. It follows from (5.4) with s = id that there is a sequence tn ∈ R
such that d(φtn(x), φtn+r(x)) → 0 as n → ∞. By compactness we can assume that
φtn(x)→ z for some z ∈ X. Then, φr(z) = z which is impossible.

The next step would be to consider flows φ satisfying (5.1) but with the orbit
closure O(x) instead of {x}, namely, satisfying the equation

Ps(x) = O(x), ∀x ∈ X. (5.5)

However, we have the following example.

Example 20. Since P0(x) = O(x) for x ∈ X and every flow φ of X (e.g. Example
18), every flow φ satisfies (5.5) with s = 0.

This example suggests a different approach to obtain concrete results from the
equation (5.5).

We are going to consider proximal cells depending not on a single map s : R→ R
but rather on a subset F ⊆ C as we did with F -shadowable points:

Definition 5.2.5. Given a flow φ, x ∈ X and F ⊆ C we define the F-proximal cell
of x as the set

PF(x) =

{
y ∈ X : inf

t∈R
d(φt(x), φs(t)(y)) = 0, for some s ∈ F

}
.
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Precisely Ps(x) = P{s}(x) when F consists of a single map s. Moreover,

PF(x) =
⋃
s∈F

Ps(x), ∀x ∈ X.

Natural candidates for F are C itself or else H, the set of homeomorphisms of R
fixing 0. We have a first technical lemma.

Lemma 5.2.6. The following properties hold for every flow φ of a compact metric
space X and every x ∈ X:

(1) If y ∈ PH(x), then x ∈ PH(y).

(2) O(x) ⊆ PH(x).

Proof. To prove Item (1), take x ∈ X and y ∈ PH(x). Then, there are a
homeomorphism s : R → R with s(0) = 0 and a sequence tn ∈ R such that
d(φtn(x), φs(tn)(y)) → 0 as n → ∞. The homeomorphism s−1 : R → R and the
sequence t′n = s(tn) satisfy s−1(0) = 0 and d(φt′n(y), φs−1(t′n)(x)) → 0 as n → ∞ so
x ∈ PH(y). This proves Item (1).

To prove Item (2), we first observe that x ∈ PH(x) (just take s(t) = t in the
definition of PH(x)). Now, take y ∈ O(x) thus y = φr(x) for some r ∈ R. By the
previous observation we can assume that r 6= 0. First suppose r > 0 and define

s(t) =


t if t ≤ r;

1
2
(t+ r) if r ≤ t ≤ 3r;
t− r if 3r ≤ t.

Clearly s : R→ R is a homeomorphism and s(0) = 0. Since

d(φt(x), φs(t)(y)) = d(φt(x), φt−r(φr(x))) = d(φt(x), φt(x)) = 0, ∀t ≥ 3r,

we get inft∈R d(φt(x), φs(t)(y)) = 0 proving y ∈ PH(x). Similarly, y ∈ PH(x) when
r < 0 hence O(x) ⊆ PH(x). Now take y ∈ ω(x). Since X is compact, we can
choose q ∈ ω(y). Hence q ∈ ω(x) and so there is a sequence tn → ∞ such that
d(φtn(x), q) → 0 as n → ∞. But q ∈ ω(y) so there is another sequence sn → ∞
such that d(φsn(y), q) → 0 as n → ∞. Then, d(φtn(x), φsn(y)) → 0 as n → ∞
by the triangle inequality. Clearly, we can assume that both sn and tn converge
monotonically to infinity as n → ∞. Hence, by defining s(tn) = sn and extending
linearly to all R we obtain a homeomorphism s : R → R with s(0) = 0. This
homeomorphism satisfies d(φtn(x), φs(tn)(y)) → ∞ as n → ∞ and so y ∈ PH(x).
Therefore, ω(x) ⊆ PH(x). Similarly, α(x) ⊆ PH(x) and then Item (2) holds by
(5.2).

Theorem 5.2.7. A flow φ of a compact metric space X is trivial if and only if
PH(x) = {x} for every x ∈ X.

Proof. Clearly PH(x) = {x} for every x ∈ X whenever φ is trivial. Conversely, if
PH(x) = {x} for every x ∈ X, then O(x) = {x} for every x ∈ X by Lemma 5.2.6
and so φ is trivial.

Finally we will consider Equation (5.5) but for general subsets of reparametriza-
tions F (instead of s):
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Definition 5.2.8. Let φ be a flow on a compact metric space X and F ⊆ C. It is
said that φ is a F-distal if

PF(x) = O(x), ∀x ∈ X. (5.6)

To state a concrete result we introduce the following basic concepts:

Definitions 5.2.9. A subset A ⊆ R is syndetic if there is K ⊆ R compact such
that R = {a + k : (a, k) ∈ A ×K}. We say that x ∈ X is an almost periodic point
of φ if {t ∈ R : φt(x) ∈ U} is syndetic for every neighborhood U of x. A flow φ
is pointwise almost periodic (also called semisimple flow [50]) if every x ∈ X is an
almost periodic point of φ.

Every distal flow is pointwise almost periodic but not conversely (c.f. Remark
2.24 in [54]). A subset A ⊆ X is a minimal subset of X with respect to φ if it
is nonempty closed and invariant, with property that if B ⊆ A is also nonempty,
closed and invariant, then A = B.

Lemma 5.2.10 (Theorem 3.2(c) in [54]). A flow φ is almost pointwise periodic if
and only if O(x) is compact minimal subset of X for all x ∈ X.

With this result, we can state the main theorem of this chapter:

Theorem 5.2.11. The following properties are equivalent for every flow φ of a
compact metric space X:

(1) φ is pointwise almost periodic.

(2) φ is C-distal.

(3) φ is H-distal.

Proof. First we prove that Item (1) implies Item (2). Take x ∈ X and y ∈ PC(x).
Then, there are s : R→ R continuous with s(0) = 0 and a sequence tn ∈ R such that
d(φtn(x), φs(tn)(y)) → 0 as n → ∞. Since X is compact, we can assume by taking
a subsequence if necessary that φtn(x) → z as n → ∞ for some z ∈ X. It follows
that φs(tn)(y)→ z as n→∞ thus z ∈ O(x) ∩O(y). Then, O(x) ∩O(y) 6= ∅ and so

O(x) = O(y) since both O(x) and O(y) are minimal sets. In particular, y ∈ O(x)
and so PC(x) ⊆ O(x). Since O(x) ⊆ PH(x) (by Lemma 5.2.6) and PH(x) ⊆ PC(x)
(by definition because H ⊆ C), we obtain O(x) ⊆ PC(x). Then, O(x) = PC(x) for
every x ∈ X proving Item (2).

By Lemma 5.2.6 we have that Item (2) implies Item (3).

Finally we prove that Item (3) implies Item (1). Take y ∈ O(x) for some x ∈ X.
Then, y ∈ PH(x) and so x ∈ PH(y) = O(x) by Lemma 5.2.6. It follows that
O(x) ⊆ O(y) hence O(x) is minimal thus x is almost periodic. Since x is arbitrary,
Item (1) holds.

Finally, we can see what happens with F -distal flows under the presence of
shadowable points. The following result resembles Corollary 2.4.15:

Corollary 5.2.12. Let φ be a flow satisfying one (and hence any) of the properties
stated in items 1, 2 or 3 in Theorem 5.2.11, and X be a connected compact metric
space. If φ has shadowable points, then φ is minimal.
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Proof. By Lemma 5.2.10, O(x) is a minimal compact subset of X for every x ∈ X.
Since Sh(φ) 6= ∅ and X is connected, by Corollary 2.4.14 φ is transitive. So, there
exists at least one x ∈ X such that O(x) = X. Therefore X is itself a minimal
subset of X and we can see easily that this is equivalent to say the φ is minimal.
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CHAPTER

SIX

THE LIMIT SHADOWING PROPERTY FOR FLOWS

In this final chapter we study flows with limit shadowing properties and explain
why pointwise counterparts of them are helpless. The theory of limit shadowing for
flows is largely unexplored and here we only scratch the surface. A deep study of
this property for flows is expected for future work.

We begin reminding the notion of limit shadowing for homeomorphism [20]. Let
f : R→ R, a homeomorphism on a compact metric space (X, d). A sequence (xn)n≥0
of points of X is said to be a limit pseudo-orbit of f if

lim
n→+∞

d(f(xn), xn+1) = 0,

and we say it is limit-shadowed if there exists a point y ∈ X such that

lim
n→+∞

d(fn(y), xn) = 0.

As explained in [20], from the numerical viewpoint this property means the following:
if we apply a numerical method that approximates f with ‘improving accuracy’ so
that one step errors tend to zero as time goes to infinity, then the numerically
obtained orbits tend to real ones.

Similarly, a negative sequence (xn)n≤0 (resp. two-sided(xn)n∈Z) of points of X is
said to be a negative limit pseudo-orbit (resp. two-sided limit pseudo-orbit) of f if

lim
n→−∞

d(f(xn), xn+1) = 0 (resp. lim
|n|→∞

d(f(xn), xn+1) = 0),

and we say it is negatively limit-shadowed (resp. two-sided limit-shadowed) if there
exists a point y ∈ X such that

lim
n→−∞

d(fn(y), xn) = 0, (resp. lim
|n|→∞

d(fn(y), xn) = 0).

The two-side limit shadowing property for homeomorphisms has been studied
recently in [16–19]. This is among the strongest notions of shadowing in existence,
and an important class of maps, including transitive Anosov diffeomorphisms and
shift maps, has it.
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A definition of limit shadowable point was also given [22]. A limit-shadowable
point is one such that every limit pseudo-orbit passing through it is limit shadowed
by a true orbit. As noted in [22], this definition is somewhat trivial because the
important behavior of a limit pseudo-orbit only happens in the limit. Even more,
if a point is limit-shadowable, then any other point would be because redefining
the initial point of a limit pseudo-orbit does not affect its asymptotic behavior. So
pointwise counterparts of limit shadowing properties does not help us to understand
them better.

6.1 The limit shadowing property

We begin by giving flow counterparts of limit shadowing properties for flows [58]
which are stronger to those given in [24].

Definition 6.1.1. Let φ be a flow on a metric space X. Given T > 0, a sequence
of pairs (xi, ti)i∈Z is a limit T -pseudo-orbit of φ if ti ≥ T for all i ∈ Z and

lim
|i|→∞

d(φti(xi), xi+1) = 0.

Definition 6.1.2. Let φ be a flow on compact metric space X. It is said that φ
has the limit shadowing property with respect the parameter T > 0 if for every limit
T -pseudo-orbit (xi, ti)i∈Z of φ there are h ∈ Rep and y ∈ X such that

lim
|t|→∞

d(x0 ? t, φh(t)(y)) = 0.

In this case we say that y limit-shadows the limit pseudo-orbit or that it is limit-
shadowed by the orbit O(y). We say that φ has the limit shadowing property LmSP
if has the limit shadowing property with respect to T = 1.

Definitions of positive and negative limit pseudo-orbits, and of positive and neg-
ative limit shadowing property, LmSP+ and LmSP−, are analogous.

Our first lemma deals with the fact that we can control the time length of limits
pseudo-orbits. A sequence of pairs (xi, ti)i∈Z is an limit (T1, T2)-pseudo-orbit of φ
if it is a limit T1-pseudo-orbit of φ and ti ≤ T2, for all i ∈ Z. Again analogous
definitions for positive and negative limit (T1, T2)-pseudo-orbit are possible.

Lemma 6.1.3. Let φ be a flow on X and T > 0. Then φ has the limit shadowing
property with respect to the parameter T if and only if every limit (T, 2T )-pseudo-
orbit (xi, ti)i∈Z of φ is limit shadowed by an orbit of φ.

Proof. If φ has the limit shadowing property with respect the parameter T , then
obviously every limit (T, 2T )-pseudo-orbit passing can be limit shadowable by an
orbit of φ. To prove the converse, suppose T > 1 and that every limit (T, 2T )-
pseudo-orbit is limit shadowed by an orbit of φ. Let (xi, ti)i∈Z be any limit a-
pseudo-orbit ofφ. For each n ∈ Z, there exists mn ∈ N such that tn = mnT + rn
with T ≤ rn < 2T . Let (smn )n∈Z the sequence of sums associated to m = (mn)n∈Z.
Denote An = smn + n for all n ∈ Z and define the sequence (yi)i∈Z on X such that
yi = φT (i−An)(xn) if An ≤ i < An+1. In addition, we define a sequence λ = (λi)i∈Z
of real numbers in the following way, for each i ∈ Z, we set

λi =

{
T if An ≤ i < An+1 − 1,
rn if i = An+1 − 1.
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Given i ∈ Z note that T ≤ λi < 2T and let n ∈ Z be such that An ≤ i < An+1. We
have two cases.

Case 1: if i < An+1 − 1, then

d(φλi(yi), yi+1) = d(φT (φT (i−An)(xn)), φT (i+1−An)(xn)) = 0.

Case 2: if i = An+1−1, bearing in mind that An+1−An = smn+1−smn +1 = mn+1
we obtain

d(φλi(yi), yi+1) = d(φrn(φT (An+1−1−An)(xn)), xn+1) = d(φrn(φTmn(xn)), xn+1)

= d(φtn(xn), xn+1)

Let ε > 0, and N ∈ N such that |n| ≥ N implies d(φtn(xn), xn+1) ≤ ε. If i ≥ AN
or i ≤ A−N , then An ≤ i < An+1 for some n ≥ N or for some for some n with n ≤
−N respectively. In either case, if i < An+1− 1, then by Case 1 d(φλi(yi), yi+1) = 0.
If i = An+1 − 1, then by Case 2 d(φλi(yi), yi+1) ≤ ε. So if |i| ≥ max{AN ,−A−N}
then d(φλi(yi), yi+1) ≤ ε. That is (yi, λi)i∈Z is a limit (T, 2T )-pseudo-orbit of φ.
Then, there are z ∈ X and h ∈ Rep such that lim|r|→∞ d(φr−sλi (yi), φh(r)(z)) = 0,

where (sλi ) is the sequence of sums associated to λ = (λi)i∈Z, and sλi ≤ r < sλi+1,
for i ∈ Z. Let r ∈ R and n ∈ Z such that stn ≤ r < stn+1, where (stn) is associated
to t = (ti)i∈Z. Since stn = sλAn , then sλAn ≤ r < sλAn+1

= sλAn+mn+1. Hence, there is

0 ≤ j ≤ mn such that sλAn+j ≤ r < sλAn+j+1, and then

d(φr−sλAn+j
(yAn+j), φh(r)(z)) = d(φr−stn(φstn−sλAn+j

(yAn+j)), φh(r)(z))

= d(φw−stn(φstn−sλAn+j
(φaj(xn))), φh(r)(z))

= d(φr−stn(xn), φh(r)(z)).

Let ε > 0 and K ∈ R such that |r| ≥ K implies that d(φr−sλi (yi), φh(r)(z)) ≤ ε

with sλi ≤ r < sλi+1. Then, by the previous identity if |r| ≥ K and stn ≤ r < stn+1

then d(φr−stn(xn), φh(r)(z)) ≤ ε. It follows that (xi, ti) is limit-shadowed by O(z).
This proves the lemma.

As an application of this lemma we see that limit shadowing property with
respect to the parameter T > 0 does not depend on the choice of T .

Theorem 6.1.4. Let φ be a flow on X, p ∈ X and T > 0. Then φ has LmSP if
and only if, it the limit shadowing property with respect to the parameter T .

Proof. Suppose that φ has the limit shadowing property with respect to the param-
eter T > 0, with T > 1. By Lemma 6.1.3, to conclude that φ has LmSP , it is
enough to show that every limit (1, 2)-pseudo-orbit is limit shadowed by an orbit
of φ. Let (xi, ti) be a limit (1, 2)-pseudo-orbit of φ. Fix m ∈ N such that m ≥ T .
Given ε > 0, choose N ∈ N and δ < ε

m
satisfying the following conditions:

1. If |i| ≥ N then d(φti(xi), xi+1) ≤ ε
2

2. For each 0 ≤ t ≤ 2m we have d(φt(x), φt(y)) ≤ δ, whenever d(x, y) ≤ ε.
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Consider the sequence of pairs (xim, λi)i∈Z where λi =
∑m−1

j=0 tj+im for every i ∈ Z.

We denote λi(k) =
∑m−1

j=k tj+im with 0 ≤ k < m. If |i| ≥ N , then

d(φλi(xim), x(i+1)m) ≤
m∑
r=1

d(φλi(r)(φtim+r−1
(xim+r−1)), φλi(r)(xim+r)) ≤ mδ < ε,

because T ≤ λi(k) ≤ 2m. So, (xim, λi)i∈Z is a limit T -pseudo-orbit of
φ passing through p. Hence, there are z ∈ X and h ∈ Rep such that
lim|t|→∞ d(φt−sλn(xnm), φh(t)(z)) = 0 where sλn ≤ t < sλn+1. Take K > 0 such that
d(φt−sλn(xnm), φh(t)(z)) ≤ ε whenever |t| ≥ K. For 0 ≤ k < m and |t| ≥ K denote

stk(r) =
∑k−1

j=r tj we have

d(φstk(x0), xk) ≤
k∑
r=1

d(φstk(r)(φtr−1(xr−1)), φstk(r)(xr)) < kδ < ε.

Then for stk ≤ t < stk+1

d(φt−stk(xk), φh(t)(z)) ≤ d(φt−stk(xk), φt−stk(φstk(x0))) + d(φt(x0), φh(t)(z)) ≤ ε.

For m ≤ k < 2m, we follow in the same manner. So we have that the orbit
O(z) limit-shadows the (1, 2)-pseudo-orbit of φ. This conclude the proof of the
theorem.

Now we prove that the limit shadowing property is invariance under continuous
equivalences.

Theorem 6.1.5. Let φ and ψ be two flows on the compact metric spaces (X, dx)
and (Y, dy), respectively. If φ is continuously equivalent to ψ then either both have
LmSP or neither of them has.

Proof. Let (h, σ) a continuous equivalence from φ to ψ and let (h−1, σ̃) be the
corresponding inverse equivalence from ψ to φ. Suppose first that ψ has LmSP .
For each x ∈ X, we have a function σ(x, ·) ∈ Rep such that

h−1(ψσ̃(h(x), t)(h(x))) = φt(x), for each t ∈ R.

Let a = min{σ̃(h(x), 1) : x ∈ X}. By compactness of Y , such a exists and is
positive. Now, given ε > 0, choose 0 < ε′ < ε such that dy(y1, y2) ≤ ε′ implies
dx(h

−1(y1), h
−1(y2)) ≤ ε for every y1, y2 ∈ Y . By Theorem 6.1.4, every limit a-

pseudo-orbit of ψ can be limit-shadowed by an orbit of ψ. Suppose ε′ is small
enough so that dy(h(x1), h(x2)) ≤ ε whenever dx(x1, x2) ≤ ε′ for all x1, x2 ∈ X.
Now let (xn, tn)n∈Z be a limit pseudo-orbit of φ and let N ∈ N be such that
|n| ≥ N implies dx(φtn(xn), xn+1) ≤ ε′. By definition of equivalence, we have
dx(h

−1(ψσ̃(h(xn), tn)(h(xn))), xn+1) ≤ ε′. Then d(ψσ̃(h(xn), tn)(h(xn)), h(xn+1)) ≤ ε
whenever |n| ≥ N . Since tn ≥ 1 and σ̃ is strictly increasing, then σ̃(h(xn), tn) ≥ a
for all n ∈ Z, so (h(xn), σ̃(h(xn), tn))n∈Z is a limit a-pseudo-orbit of ψ. Then there
are y = h(z) in Y and α ∈ Rep such that lim|t|→∞ dy(ψt−ŝi(h(xn)), ψα(t)(y)) = 0,

with ŝi ≤ t < ŝi+1, where ŝn =
∑n−1

j=0 σ̃(h(xj), tj) if n > 0, ŝ0 = 0 and

ŝn = −
∑−1

j=n σ̃(h(xj), tj) if n < 0.
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Let K > 0 such that, |t| ≥ K and ŝi ≤ t < ŝi+1, imply dy(ψt−ŝi(h(xn)), ψα(t)(y)) ≤
ε′. It follows that

dx(h
−1(ψt−ŝi(h(xn))), h−1(ψα(t)(h(z)))) ≤ ε, (6.1)

for all |t| ≥ K with ŝi ≤ t < ŝi+1. Fix t ∈ R and n ∈ Z such that sn ≤ t <
sn+1. Since σ̃(h(xn), ·) ∈ Rep we have 0 ≤ σ̃(h(xn), t − sn) < σ̃(h(xn), tn). So,
ŝn ≤ σ̃(h(xn), t − sn) + ŝn < ŝn+1. Set t̂ = σ̃(h(xn), t − sn) + ŝn, so h(p) ? t̂ =
ψσ̃(h(xn), t−sn)(h(xn)). It follows that

dx(φt−sn(xn), φσ(z, α( t̂))(z)) = dx(h
−1(ψ t̂−ŝn(h(xn))), h−1(ψα( t̂ )(h(z)))) for t ∈ R.

Let α̂(t) = σ(z, α(t̂)) for all t ∈ R. Since t 7→ σ̃(h(xn), t − sn) + ŝn is increasing,
then α̂ ∈ Rep. Choose K ′ > 0 such that |t| ≥ K ′ implies that |t̂| ≥ K. It follows
from (6.1) that

dx(φt−sn(xn), φα̂(t)(z)) ≤ ε, for every sn ≤ t < sn+1, and |t| ≥ K ′.

This proves that (xi, ti)i∈Z is limit-shadowed by O(z). Hence φ has LmSP if ψ
has. Conversely, if φ has LmSP we can conclude that ψ also has analogously by
considering the corresponding equivalence (h, σ) from φ to ψ. This completes the
proof.

We introduce a finite version of the POPT and of shadowable points.

Definitions 6.1.6 ( [32]). Given positive numbers δ, T and ε, and the nonnegative
integer a, we say that a finite (δ, T )-chain (xi, ti)

a
i=0 of φ passes through p if x0 = p,

and we say that is finitely ε-shadowed if there are a point y ∈ X and a function
h ∈ Rep such that

d(x0 ? t, φh(t)(y)) ≤ ε, for all t ∈ [0, sb).

A flow φ has the finite POTP if for every ε > 0 there exists δ > 0 such that every
finite (δ, 1)-chain can be ε-shadowed.

Definition 6.1.7. A point p ∈ X is finitely shadowable, if for every ε > 0, there
exists δ > 0 such that every finite (δ, 1)-pseudo-orbit of φ passing through p can be
finitely ε-shadowed.

We denote by Shf (φ) the set of finitely shadowable points. It is clear that
Sh(φ) ⊆ Sh+(φ) ⊆ Shf (φ).

The proofs of the following theorems are analogous to the proofs of the corre-
sponding theorem for shadowable and forward shadowable points and we omit their
proofs.

Theorem 6.1.8. A flow φ has the finite POPT if and only every point is finitely
shadowable.

Theorem 6.1.9. If the flow φ is chain transitive, then Shf (φ) = X or Shf (φ) = ∅.

For chain transitive flows, the forward limit shadowing property implies that the
flow has the finite POTP.
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Theorem 6.1.10. Let φ a chain transitive flow on the metric space X. If φ has
LmSP+, then every point is finitely shadowable. In particular, φ has the finite
POTP.

Proof. Suppose by the contrary that this is not the case. Then for some p ∈ X there
is ε > 0 such that for each n ∈ N there is a finite forward ( 1

n
, 1)-pseudo-orbit αn

passing through p that is not ε-shadowed by any orbit of φ. By chain transitivity,
for each n there is a ( 1

n
, 1)-chain βn such that the concatenated sequence αnβnαn+1

forms a finite forward ( 1
n
, 1)-pseudo-orbit of φ. Then the sequence

α1β1α2β2α3β3 · · ·

is a forward asymptotic pseudo-orbit passing through p. Denote this pseudo-orbit
by (xi, ti)i∈N. There are h ∈ Rep and q ∈ X such that

lim
t→+∞

d(p ? t, φh(t)(q)) = 0.

Let N ∈ N big enough so that sn ≤ t < sn+1 implies that d(φt−sn(xn), φh(t)(q)) ≤ ε
whenever n ≥ N . For n ∈ N let g ∈ Rep be the function gn(t) = h(t+ sn)− h(sn).
Then the ( 1

n
, 1)-pseudo-orbit (xi, ti)

∞
i=n can be ε-shadowed by φh(sn)(q). Indeed,

d(xn ? t, φgn(t)(φh(sn)(q))) = d(x0 ? (t+ sn), φh(t+sn)(q)) ≤ ε.

But this would imply that some αn can be finitely ε-shadowed by some orbit of φ.
This is a contradiction and therefore the proof is completed.

As a Corollary we obtain a result already established in [5] (although with a
weaker notion of limit shadowing).

Corollary 6.1.11. The Geometric Lorenz flows whose return map satisfies f(0) 6= 0
or f(1) 6= 1 do not have LmSP .

Proof. If it had LmSP , it would have finite POTP which is a contradiction.

6.2 The limit shadowing property and suspension

The following theorem establish the connection between the two-sided limit shad-
owing property for homeomorphisms and the limit shadowing property for flows.

Theorem 6.2.1. Let φf be the suspension flow of a homeomorphism f on (X, d)
under the continuous map τ : X → R+. If f has the two-sided limit shadowing
property, then φf,τ has LmSP .

Proof. By Theorem 6.1.5, it is enough to prove the result for the suspension of f
under the map τ ≡ 1. Suppose that f has the two-sided limit shadowing property
and let ((xk, sk), tk)k∈Z a limit 2-pseudo orbit of φf . Take 0 < δ′ < 1

4
. Let wk =

bsk + tkc denote the integer part of sk + tk. Hence tk ≥ 2 and

lim
|k|→∞

df ((fwk(xk), sk + tk − wk), (xk+1, sk+1)) = 0.
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Set δk = df ((fwk(xk), sk + tk − wk), (xk+1, sk+1)) for k ∈ Z, so that δk → 0 as
|k| → ∞. Let ε > 0. Take 0 < ε′ < ε and let δ > 0 satisfying Lemma 2.5 in [47]
with respect to ε′. Also make ε′ satisfies

d(x, y) < ε′ then d(f i(x), f i(y)) ≤ 1
2
ε for i = 1, 2, 3.

Let δ′ ≤ min{ε′, 1
4
, δ}. Take M ∈ N such that |k| ≥M implies δk ≤ δ′. Since δ′ < 1

4
,

then by Lemma 2.4 in [47] we have that, for |k| ≥ M , |sk + tk − wk − sk+1| < δ′ or
|1 + sk + tk − wk − sk+1| < δ′ or |1 + sk+1 + wk − tk − sk| < δ′. Now, let nk be a
positive integer defined, for |k| ≥M , as follows

nk =


wk if |sk + tk − wk − sk+1| < δ′,

wk − 1 if |1 + sk + tk − wk − sk+1| < δ′,
wk + 1 if |1 + sk+1 + wk − tk − sk| < δ′.

and for |k| < M we can define nk as any arbitrary integer. Then, by Lemma 2.5
in [47], if |k| ≥ M then d(fnk(xk), xk+1) ≤ ε′. Take an arbitrary point p ∈ X and
define a sequence (yi)i∈Z in X as follows:

yi =

{
f i−Nk(xk) for Nk ≤ i < Nk+1 and |k| ≥M

p if |k| < M,

where (Nk)k∈Z is the sequence of sums associated to (nk)k∈Z. If |i| >
max{NM , N−M}, then d(f(yi), yi+1) ≤ ε′, so (yi)i∈Z is a two-sided limit pseudo-
orbit of f . Then there exists x ∈ X such that lim|i|→∞ d(f i(x), yi) = 0. Therefore
there is N ∈ N such that if |i| ≥ N then d(f i(x), yi) ≤ ε′. In particular if |k| ≥ M
is such that |Nk| ≥ N , then

d(f j+Nk(x), f j(xk)) ≤ ε′, for 0 ≤ j < nk. (6.2)

Take (x, s0) ∈ X1, f . We claim that (x, s0) limit shadows ((xk, sk), tk)k∈Z. Indeed,
define α : R→ R as follows:

α(t) =

{
t−sM−NM−s0

s−M+N−M−sM−TM
if T−M ≤ t ≤ TM ,

sk+1+nk−sk
tk

(t− Tk) + sk +Nk − s0 if Tk ≤ t < Tk+1 and k 6∈ [−M, M + 1],

where (Tk)k∈Z is the sequence of sums associated to (tk)k∈Z. It is clear that α is
continuous with α(0) = 0. Moreover, since nk ≥ 1 then α ∈ Rep. Let t ∈ R and let
k ∈ Z be such that Tk ≤ t < Tk+1 and |k| ≥M we get

|α(t)− sk −Nk + s0 − (t− Tk)| =

∣∣∣∣sk+1 + nk − sk − tk
tk

(t− Tk)
∣∣∣∣

= |sk+1 + nk − sk − tk|
∣∣∣∣t− Tktk

∣∣∣∣ .
Since |sk + tk − nk − sk+1| < δ′ and 0 ≤ t− Tk < tk, we have

|α(t)− sk −Nk + s0 − (t− Tk)| < δ′. (6.3)

Now if j is a positive integer which makes 0 ≤ sk + t − Tk − j < 1, then 0 ≤ j ≤
sk + tk ≤ nk + 2 for |k| ≥ M . So, by (6.2) and the choice of ε′, if |Nk| ≥ N we
have d(f j+Nk(x), f j(xk)) <

1
2
ε for 0 ≤ j ≤ nk + 2. Finally, for |k| > M such that

Nk > N , if Tk ≤ t < Tk+1 one has
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df (φfα(t)(x, s0), φ
f
t−Tk(xk, sk)) = df

(
(fNk(x), s0 + α(t)−Nk), (xk, sk + t− Tk)

)
= df

(
(f j+Nk(x), s0 + α(t)−Nk − j), (f j(xk), sk + t− Tk − j)

)
≤ df

(
(f j+Nk(x), s0 + α(t)−Nk − j), (f j+Nk(xk), sk + t− Tk − j)

)
+df

(
(f j+Nk(x), sk + t− Tk − j), (f j(xk), sk + t− Tk − j)

)
≤ |s0 + α(t)−Nk − j − (sk + t− Tk − j)|+ (sk + t− Tk − j)d(f j+Nk+1(x), f j+1(xk))

+(1− sk − t+ Tk + j)d(f j+Nk(x), f j(xk))

< δ′ + 1
2
(1− (sk + t− Tk − j))ε+ 1

2
(sk + t− Tk − j)ε ≤ 1

2
ε+ 1

2
ε = ε,

that is to say
lim
|t|→∞

df (φfα(t)(x, s0), φ
f
t−Tk(xk, sk)) = 0.

Hence Oφf (x, s0) limit shadows ((xk, sk), tk)k∈Z

Theorem 6.2.1 can be used to give examples of flows with LmSP .

Example 21. It is clear that the identity map defined on an space consisting of
sole point has the two-sided limit shadowing property. So, by Theorem 6.2.1, the
suspension of this map, which is conjugate to the so-called rotation flow φt(z) =
e2πitz defined in S1, has LmSP .

It would be tempting to believe that the the converse of Theorem 6.2.1 is also
true. Sadly this is not the case as the following example shows.

Example 22. Let X = {a, b} be a set with two different points and give it the
discrete metric d, this is

d(x, y) =

{
1 if x 6= y,

0 otherwise.

Let f : X → X define by f(a) = b and f(b) = a. In [16] it is shown that this
map does not have the two-sided limit shadowing property. The suspension space
of X is the space X1,f = ({a} × [0, 1] ∪ {b} × [0, 1])/ ∼ with (b, 1) ∼ (a, 0) and
(a, 1) ∼ (b, 0). It can be seen easily that X1,f is homeomorphic to S1 and that φf

is the rotation flow with a velocity change of factor 2. So this flow is conjugate to
ψt(z) = eπitz and equivalent to φt(z) = e2πitz under the equivalence (idS1 , σ) where
σ(z, t) = 2t and therefore has LmSP by Example 21 and Theorem 6.1.5.

a

b

b

a

0 1
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Remark 9. If consider positive shadowing only then it can be establish that a home-
omorphism has the limit shadowing property if and on if its suspension flows have
LmSP+ [58].

There is also a notion a expansiveness for homeomorphisms: a homeomorphism
f : X → X is expansive if there is δ > 0, called expansiveness constant, such that if
d(fn(x), fn(y)) ≤ δ then x = y. In [14], it was proved that a homeomorphism f is
expansive if and only if its suspension flow φf on X1, f is expansive.

Corollary 6.2.2. There exists a non-expansive flow having LmSP .

Proof. Let X = [0, 1]Z and σ : X → X the usual shift map. Then φ has the two-
sided limit shadowing property and is not expansive [18]. Then the suspension flow
φσ has the two-sided limit shadowing property and is not expansive.

In [18], it was shown that transitive Anosov diffeomosphisms are exactly those
which satisfy the two-side limit shadowing property. The following corollary is a
consequence of the fact that transitive suspension flows are exactly those whose
base homeomorphisms are also transitive.

Corollary 6.2.3. A Anosov flow which is the suspension of a Anosov diffeomor-
phism is transitive if, and only if, has LmSP .

Remark 10. An interesiting question is if the above Corollary is true for every tran-
sitive Anosov flow.
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