
On the entropy of the continuum
hyperspace map

Jennyffer Smith Bohorquez Barrera

Tese de Doutordo apresentada ao Pro-

grama de Pós-graduação do Instituto de
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On the entropy of continuum hyperspace map

Jennyffer Smith Bohorquez Barrera

Advisor: Alexander Eduardo Arbieto Mendoza

In the last decades several researchers have shown interest in studying relations

between the “individual” dynamics and the “collective” dynamics of a given system. In

this thesis, we study mainly the “collective” dynamics of Morse-Smale diffeomorphisms

and dendrite homeomorphisms.

In the case of Morse-Smale diffeomorphisms, we prove that the topological entropy of

the induced map C(f) is infinite or zero. Besides that, if the base space is S1 then the

induced map C(f) does not have the shadowing property.

In the case of dendrite homeomorphisms, we prove that the topological entropy of the

induced map C(f) is zero or infinite.

Finally, we give three sufficient conditions to obtain infinite topological entropy on the

hyperspace.

Key-words: Morse-Smale diffeomorphism, homeomorphism, dendrite, hyperspace,

topological entropy, shadowing.
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Entropia topológica do mapa induzido no hiperespaço dos

continuos

Jennyffer Smith Bohorquez Barrera

Orientador: Alexander Eduardo Arbieto Mendoza

Nas últimas décadas varios pesquiçadores tem mostrado interesse em estudar

relações entre a dinâmica individual e a dinâmica coletiva de um sistema dado. Neste

trabalho, nós estudamos principalmente a dinâmica coletiva dos difeomorpfismos Morse-

Smale e dos homeomorfismos definidos sob dendrites.

No caso dos difeomorpfismos Morse-Smale, provamos que a entropia topológica do

mapa induzido C(f) é infinita ou zero. Além disso, se o espaço base é S1 então o mapa

induzido C(f) não tem a propriedade de sombreamento.

No caso dos homeomorfismos definidos sob dendrites, provamos que a entropia topológica

do mapa induzido C(f) é zero ou infinita.

Finalmente, obtivemos três criterios para obter entropia topológica infinita no hiperespaço.

Palavras-chave: Difeomorfismo Morse-Smale, homeomorfismo, dendrite, hiperespaço,

entropia topológica, sombreamento.
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Chapter 1

Introduction

It is well known that every map f : X → X on a compact metric space X induces of

a natural way, the induced map 2f : 2X → 2X on the hyperspace of all nonempty and

closed subsets of X, defined as 2f (A) = f(A) for all A ∈ 2X . The first work that appears

in the literature about the study of relationships between f and its induced map 2f is the

Bauer-Sigmund article: Topological dynamics of transformations induced on the space of

probability measures, published in 1975 (see [7]). They studied, in particular, the property

of having positive topological entropy and proved if a map has positive topological entropy

then the induced map 2f has infinite topological entropy.

Topological entropy is a way of measuring the complexity of a dynamical system. In

this context, a dynamical system is said to be chaotic if the topological entropy is positive.

The original definition was introduced in [4] by Adler, Konheim, and McAndrew in 1965

to continuous maps on a compact topological space. In the 1970s, Bowen and Dinaburg

introduced in [11] and [17] an equivalent and useful definition of topological entropy. One

advantage of this definition is that the base space does not need to be a compact space

provided the map be uniformly continuous. However, in this work we will consider only

dynamical systems on compact metric spaces.

After a bit more than 25 years, this study is resumed and currently several articles

have been published in different journals (see for example [3] [8] [18] [22] [26] [27]).

When X is a continuum space, f induces the map C(f) = 2f |C(X) on the hyperspace
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of all connected elements of 2X . We call C(f) the induced continuum map. Many tech-

niques used to study the map 2f can not be applied to C(f) like approximate a compact

set by a finite number of points. Actually, as we will see, some results for the continuum

map C(f) are different that the ones for 2f . For instance, if f has positive topological

entropy does not imply that the continuum map C(f) has infinite topological entropy. In

[27] the authors presented a counterexample.

On the other hand, Koichi Yano [42] showed that generic homeomorphisms on man-

ifolds n-dimensional with n ≥ 2 has infinite topological entropy, therefore its induced

hyperspace map has infinite topological entropy and analogously this holds for the in-

duced continumm map. A natural question is: what happens if f has entropy zero?

Lampart-Raith characterized the topological entropy of the induced continumm map of

homeomorphisms defined on the unit circle S1 or on the interval I, see [27]. They showed

the topological entropy of the induced hyperspace map of homeomorphisms on the unit

circle (or interval) can be zero or infinite, while the topological entropy of the induced

continuum map is zero, that is, topological entropy zero can be generate infinite topo-

logical entropy in its induced hyperspace map but not in its induced continuum map.

In particular, the topological entropy of the induced hyperspace map of all Morse-Smale

diffeomorphism on S1 (or M a compact connected manifold without boundary) is infinity

while the topological entropy of C(f) is zero when M = S1.

Another class of dynamical systems with zero topological entropy are the dendrite

homeomoprhisms. A continuum D is said to be a dendrite if is a locally connected and

contains no simple closed curves. In 2015, P. Hernández and H. Méndez [22], generalized

the result of Lampart-Raith to the induced dendrite homeomorphisms. The authors

proved that if f : D → D is a dendrite homeomorphism then the topological entropy

is infinity if and only if the set of recurrent points of f is different from D. However,

unlike the homeomorphisms on the interval, there exist examples in [1] and [3] of dendrite

homeomorphism such that the continuum map has infinite topological entropy.

In this thesis we are interesting in to study the induced continuum map of two classes

of dynamical systems with entropy zero: the Morse-Smale diffeomorphisms and Dendrite

homeomorphisms. Mainly, we study shadowing and entropy in C(X).
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In Chapter 2 we give the definitions and preliminary results that will be needed for

the rest of the work.

In Chapter 3 we study the nonwandering set of the induced map and continuum map

of Morse-Smale diffeomorphisms on S1. We will see that the dynamics are very different,

while the dynamics of 2f present many interesting properties the dynamics of C(f) remain,

in some sense, equal to a Morse-Smale diffeomorphism. Although the dynamics of the

continuum map C(f) might be very simple, as seen in Theorem A, they are interesting

because they do not have the shadowing property. In fact, in [18] Good and Fernández

showed that f has the shadowing property if and only if the induced map 2f has the

shadowing property. Besides if the continuum map C(f) has the shadowing property

then f does too. The Morse-Smale diffeomorphisms are examples of dynamical systems

with the shadowing property, see [35]. Thus the main results in this chapter are

Theorem A. Let f : S1 → S1 be a Morse-Smale diffeomorphism then

i. If f preserves orientation, then Ω(C(f)) = PerN(C(f)) ∪ {S1} for some N ≥ 1,

ii. If f reverse orientation, then Ω(C(f)) = Per2(C(f)) ∪ Fix(C(f)).

Theorem B. Let f : S1 → S1 be a Morse-Smale diffeomorhism. Then the continuum

map C(f) does not have the shadowing property.

In Chapter 4 we give three sufficient conditions to obtain infinite topological entropy

on the hyperspace. In section 4.1 we give a criteria to obtain infinity topological entropy

on 2X proving the following:

Theorem C. Let f : X → X be a surjective map and let X be a continuum space.

If there exists an infinite countable set A = {a1, a2, ...} ⊂ X such that

i. L =
⋃
i≥1

α({xi−n}n∈Z+ , f) ∪ ω(ai, f) and M =
⋃
i≥1

{xi−n}n∈Z+ are disjoint,

ii. For every pair i 6= j, i ≥ 1, j ≥ 1,

Orb({xi−n}n∈Z+ , f) ∩Orb({xj−n}n∈Z+ , f) = ∅,
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then h(2f ) =∞.

There exist several dynamical systems with zero topological entropy which satisfy

the hypotheses of Theorem C. In particular, we have that the induced map 2f of every

surjective finite map has infinity topological entropy. So, not only the induced map of

Morse-Smale diffeomorphism has infinite entropy but also the induced map of surjective

Morse-Smale endomorphisms, as we can see in the following:

Theorem D. Let f : X → X be a surjective finite map and let X be a continuum

space. If the positively recurrent points are not dense in X then h(2f ) =∞.

In Section 4.2 we give two criteria to obtain infinity topological entropy on C(X). In

the first criteria, we introduce one special dynamics that guarantees infinite entropy on

the hyperspace as follows:

Theorem E. Let f : X → X be homeomorphism on a continuum metric space. If f

admits a special dendrite, then h(C(f)) =∞ and therefore h(2f ) =∞.

In the second criterion, we introduce the notion of curves self-accumulated such that

together with some extra-hypothesis guarantee infinite entropy on C(X) as follows:

Theorem F. Let Mn be a compact, connected n-dimensional space with n ≥ 2 and

let f : Mn →Mn be a homeomorphism with three fixed points p, q and σ. If there exists

an infinite countable set A = {a0, a1, a2, ...} ⊂Mn such that

i. for every i ≥ 0, α(ai, f) = {p} and ω(ai, f) = {q},

ii. for every i ≥ 0, ai 6= p and ai 6= q,

iii. for every pair i 6= j, i ≥ 0, j ≥ 0,

{fk(ai) : k ∈ Z} ∩ {fk(aj) : k ∈ Z} = ∅,

iv. for every r ≥ 1 and i ∈ {0, 1, ..., r − 1}, there exist arcs γi from ai to σ, such that

the sequence {fk(γi)}i∈{0,...,r−1}
k∈Z is not self-accumulated.

Then h(C(f)) =∞.
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In Section 4.3 we prove using the definition of topological entropy by separated sets

that the continuum map of every Morse-Smale diffeomorphisms has infinity topological

entropy as we can see in the following:

Theorem G. Let f : M →M be a Morse-Smale diffeomorphism then the topological

entropy of its induced map C(f) is infinite.

Finally, Chapter 5 is devoted to study the continuum map of dendrite homeomor-

phisms. Our conjecture is: The continuum map of all dendrite homeomorphism has zero

or infinite topological entropy. We prove the conjecture but for a subclass of dendrite

homeomorphisms. In fact, we show that the existence of no-recurrent branch points could

generate infinite topological entropy on the continuum hyperspace. A point x ∈ D is said

to be a branch point of D if the number of all components of D \ {x} is greater or equal

than 3. The main result in Chapter 5 is the following:

Theorem H. Let f : D → D be a dendrite homeomorphism. Then

i. If there is a no-recurrent branch point in D, then the topological entropy of its

induced map C(f) is ∞.

ii. If all point in D is a recurrent point, then the topological entropy of its induced

map C(f) is 0.
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Chapter 2

Preliminaries

Our purpose in this chapter is to present definitions and some of the well-known or

not so well-known facts about Morse-Smale diffeomorphisms, Dendrite homemorphisms,

hyperspaces and induced maps, recurrence and topological entropy that will be used

throughout the whole work.

For general background see for instance [4], [9], [23], [28], [35], [36], [40], [16].

2.1 Hyperspaces and induced maps

Hyperspaces

Let (X, d) be a compact metric space. A hyperspace of X is a specified collection of

subsets of X endowed with some metric. For convenience, we exclude the empty set ∅

from being a point of hyperspace. We restrict our attention to the following hyperspaces:

2X = {A ⊂ X : A is nonempty and closed in X}

if X is a compact metric space and

C(X) = {A ∈ 2X : A is connected}

if X is a continuum, that is, a compact connected metric space. Throughout this text

we called hyperspace and continuum hyperspace respectively. Notice that C(X) ⊂ 2X .
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We consider the Hausdorff Metric dH on 2X (or C(X)), which was first considered by F.

Hausdorff in [20]. Let (X, d) be a compact metric space. For any x ∈ X and A ∈ 2X (or

C(X)), let

d(x,A) = inf{d(x, a) : a ∈ A}.

For any r > 0 and any A ∈ 2X let

N(x,A) = {x ∈ X : d(x,A) < r}.

We say that N(x,A) is the generalized open d-ball in X about A of radius r. Thus, The

Hausdorff metric for 2X , induced by d, which is denoted by dH , is defined as follows: for

any A,B ∈ 2X (or C(X)),

dH(A,B) = inf{r > 0 : A ⊂ N(B, r) and B ⊂ N(A, r)}.

Theorem 2.1.1. [See[23], p.11] If (X, d) is a compact metric space, then dH is a metric

on 2X (or C(X)), that is, for all A,B and C in 2X (or C(X))

• dH(A,B) ≥ 0,

• dH(A,B) = 0 if and only if A = B,

• dH(A,B) = dH(B,A) and

• dH(A,B) ≤ dH(A,C) + dH(C,B).

Intuitively, A and B are close together with respect to dH provided that each point of

A is close to a point of B and A and B are approximately the same. The interested reader

can be find in the books [23] and [28] a detailed study about properties of Hausdorff metric

and the hyperspaces 2X and C(X). However, we give the main properties of them without

proof. The fundamental theorem about the topological invariance of 2X and C(X) is the

following:

Theorem 2.1.2. [See[23], p.7] If X and Y are homeomorphic, then 2X and 2Y ( C(X)

and C(Y )) are homeomorphic.

Theorem 2.1.3. [See[23], p.16] If (X, d) is a compact metric space, then (2X , dH) is a

compact metric space. And if (X, d) is a continuum then C(X) is a continuum space.
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There are other hyperspaces as Fn(X) the collection of subsets of X with at most n

elements, Cn(X) the collection of subsets of X (supposing that X is a continuum) with at

most n connected components of X, among others. Nevertheless we do not study them.

Induced maps

Let (X, d) and (Y, ρ) be compact metric spaces and let f : X → Y be a continuous map.

The map f induces in a natural way a map on 2X ,

2f : 2X → 2Y

given by 2f (A) = f(A) = {y ∈ Y : y = f(x) for some x ∈ A} for all A ∈ 2X . Since f is

a continuous map, 2f is well defined.

Figure 2.1: Individual dynamics vs Collective dynamics.

Proposition 2.1.4. [See [30], p. 17 ] Let (X, d) and (Y, ρ) be a compact metric spaces.

If f : X → Y is a continuous map (homeomorphism) then 2f : 2X → 2Y is a continuous

map (homeomorphism).

Throughout this text, we called 2f the induced hyperspace map and C(f) = 2f |C(X)

the induced continuum map. Thus, if (X, d) is a continuum, then the dynamical system

(X, f) induces the dynamical systems (2X , 2f ) and (C(X), C(f)). Therefore, it is natural

and interesting to study the relationships between f and its induced maps 2f and C(f).

When a dynamical property of f remains valid for its induced maps, and conversely. A

number of well-studied subspaces (such as the collections Cn(X) of closed sets with at

most n components, F (X) of finite subsets, or Fn(X) of subsets sets with at most n

points) are invariant under 2f and therefore form dynamical systems in their own right,
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see [23] and [28]. Nevertheless, we do not study them here since they are not our main

object of study.

2.2 Recurrence and orbit perturbation

Recurrence

Let f : X → X be a homeomorphism of X a compact metric space. For a point x ∈ X

we define the following sets:

• The orbit of x is the O(x) = {fn(x) : n ∈ Z}. We can also define the future (resp.

past) orbit of x by O+(x) = {fn(x) : n ≥ 0} (resp. O−(x) = {fn(x) : n ≤ 0}).

• The omega-limit set (resp. alpha-limit set) is the set ω(x, f) = {y ∈ X : ∃nj →

+∞ such that fnj(x) → y} (resp. α(x, f) = ω(x, f−1)). In general, when f is

understood, we shall omit it from the notation.

We can classify the points according to the behavior of their orbit:

• Fix(f) = {x ∈ X : f(x) = x} is the set of fixed points.

• Per(f) = {x ∈ X : ∃n ∈ N such that fn(x) = x} is the set of periodic points.

• We say that a point x is recurrent if x ∈ ω(x).

• R(f) = {x ∈ X : x ∈ ω(x, f)} is the set of recurrent points.

• Ω(f) = {x ∈ X : ∀ε > 0,∃n > 0; fn(B(x, ε))∩B(x, ε) 6= ∅} is the nonwandering set

of f .

We refer the reader to [24], [36] and [39] for examples showing the strict inclusions in

the following chain of closed sets which is easy to verify:

Fix(f) ⊂ Per(f) ⊂ R(f) ⊂ Ω(f)

We say that f is transitive if there exists x ∈ X such that O(x) is dense in X. It is

an easy exercise to show the following equivalences (see for example [40], p.127):

9



Proposition 2.2.1. The homeomorphism f : X → X is transitive if and only if for every

U, V open sets there exists n ∈ Z such that fn(U)∩V 6= ∅ if and only if there is a residual

subset of points whose orbit is dense.

We say that f is minimal if every orbit is dense. Many of the dynamical properties

one obtains are invariant under what is called conjugacy. We say that two dynamical

systems (X, f) and (Y, g) are (topologically) conjugated if there exists a homeomorphism

h : X → Y such that h ◦ f = g ◦ h.

Shadowing

Let δ > 0. We say that a sequence (xn)n∈Z is a δ-pseudo orbit of f if

d(f(xn), xn+1) ≤ δ for all n ∈ Z.

The homeomorphism f is said to have the shadowing property if for every ε > 0 there

exists δ > 0 such that every δ-pseudo orbit (xn)n∈Z of f is ε-shadowed by a real orbit of

f , i.e, there exists x ∈ X such that

d(xn, f
n(x)) < ε for all n ∈ Z.

Figure 2.2: Shadowing Property.

2.3 Topological Entropy

The most important numerical invariant related to the orbit growth is topological entropy.

It represents the exponential growth rate for the number of orbit segments distinguishable

10



with arbitrarily fine but finite precision. In a sense, the topological entropy describes

in a crude but suggestive way the total exponential complexity of the orbit structure

with a single number. In this section, first, we give the definition of topological entropy

introduced by Bowen-Dinaburg in 1970. Then we present some important properties and

examples of how to calculate entropy.

Definition(Bowen-Dinaburg)

Let f : X → X be a continuous map on X a compact metric space with a metric d.

We define an increasing sequence of metrics dn, n ∈ N as follows:

dn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y)).

In other words, dn measures the distance between the orbit segments Inx = {x, ..., fn−1(x)}

and Iny . We denote the open ball {y ∈ X : dn(x, y) < ε} by B(x, ε, n). By definition, we

have that

B(x, ε, n) =
n−1⋂
i=0

f−i(B(f i(x), ε))

We say that F ⊂ X is (n, ε)-spanning if for each x ∈ X there exists y ∈ F such that

dn(x, y) < ε, that is,

X ⊂
⋃
x∈F

B(x, ε, n).

Let r(n, ε) be the minimal cardinality of an (n, ε)-spanning set, or equivalently the cardi-

nality of a minimal (n, ε)-spanning set. The topological entropy of f is given by

hsp(f) = lim
ε→0

lim sup
n→∞

1

n
log r(n, ε).

One more way to define topological entropy is via separated sets. We say that E ⊂ X

is (n, ε)-separated set if for every pair of different points x, y in E, dn(x, y) > ε, that is,

the set
⋂i=n−1
i=0 f−i(B(f i(x), ε)) does not contain another point of E. Let s(n, ε) be the

maximal cardinality of and (n, ε)-separated set, or equivalent the cardinality of a maximal

(n, ε)-separated set. The topological entropy of f is given by

hse(f) = lim
ε→0

lim sup
n→∞

1

n
log s(n, ε).

Proposition 2.3.1. [See [40], p. 169] Let f : X → X be a continuous map on a compact

metric space X, with metric d. Then hsp(f) = hse(f).

11



Thus, we denote the topological entropy of f by h(f) (definition given by Bowen-

Dinaburg). Therefore, it is possible to calculate the topological entropy using spanning

sets or separated sets.

Properties

The topological entropy is a topological invariant. This property is very important

because it provides a method for calculating topological entropy. Notice that topological

entropy is not easy to calculate, though it is possible to do it in some cases. Therefore,

if we want to calculate the topological entropy of a dynamical system using the following

theorem, we must first calculate the topological entropy of a simpler conjugated dynamical

system. The proof of the following properties can be found in [9] and [40].

Theorem 2.3.2. Let f : X → X and g : Y → Y be continuous map. If f and g are

conjugated then h(f) = h(g).

Proposition 2.3.3. Let f : X → X be a homeomorphism. Then h(f) = h(f−1).

Proposition 2.3.4. Let f : X → X be a continuous map on a compact metric space and

let Y ⊂ X be a closed subset such that f(Y ) = Y . Then h(f |Y ) ≤ h(f).

Proposition 2.3.5. Let f : X → X be a continuous map on a compact metric space and

let m ∈ N. Then h(fm) = mh(f).

Proposition 2.3.6. Let fi be a continuous map on a compact metric space (Xi, di) for

i = 1, 2. Let d be a metric defined on X1 ×X2 as follows:

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}.

Then (X1×X2, d) is a compact metric space, f1×f2 : X1×X2 → X1×X2 is a continuous

map and

h(f1 × f2) = h(f1) + h(f2).

The following result says that all entropy is contained in the nonwandering set, that

is, the orbits of wandering points do not contribute to topological entropy.

Proposition 2.3.7. Let f : X → X be a continuous map on a compact metric space.

Then h(f) = h(f |Ω(f)).
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2.4 Morse-Smale diffeomorphisms

Let M be a compact connected manifold without boundary, let 1 ≤ r < ∞ and let

f : M → M be a Cr-diffeomorphism. Given p ∈ Per(f) we have the following linear

map:

Dpf
n : TpM → TpM

where fn(p) = p. We say that p ∈ Per(f) is a hyperbolic periodic point if Dpf
n has no

eigenvalues of modulus 1. For a hyperbolic periodic point p we have that the tangent

bundle admits a splitting into two vector subbundles TpM = Es(p)
⊕

Eu(p) where Es(p)

(resp. Eu(p)) corresponds to the eigenspace of Dpf
n associated to the eigenvalues of

modulus smaller than 1 (resp. larger than 1) which satisfy Dpf
n(Eσ(p)) = Eσ(p) by

σ = s, u.

A hyperbolic periodic point p of period n is called a sink or attracting point provided

all the eigenvalues of Dpf
n are less than one in absolute value, that is, Eu(p) = {0}. In

the same way, a hyperbolic periodic point is called a source or repelling point provided

all the eigenvalues are greater than one in absolute value. Finally, a hyperbolic periodic

point with Eu(p) 6= {0} and Es(p) 6= {0} is a saddle.

A hyperbolic fixed point gives rise to the so-called stable manifold and the unstable

manifold. The stable manifold consists of all the points in the space that converge under

the iterates of the map to the fixed point, while the unstable manifold consists of all those

points that converge to the fixed point under the iterates of the inverse map.

Definition 2.4.1. [See [33], p.73] The stable, respectively unstable, invariant manifold of

a hyperbolic fixed point p of the diffeomorphism f are the sets

W s(p) = {x ∈M : f j(x)→ p, j →∞},

W u(p) = {x ∈M : f−j(x)→ p, j →∞},

These sets contain the fixed point p and are clearly invariant under the map f ,

f(W σ(p)) = W σ(p), σ = s, u.
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We say that the submanifolds W s(p) and W u(q) in M are transverse (in M) provided

for any point x ∈ W s(p)∩W u(q), we have that TxW
s(p) +TxW

u(q) = TxM . (This allows

for the possibility that W s(p) ∩W u(q) = ∅).

In this section we consider a class of diffeomorphisms with only finitely many periodic

orbits and no other (or no other wandering points):

Definition 2.4.2. A Cr-diffeomorphims f on a connected compact manifold M without

boundary is called Morse-Smale provided:

i. The nonwandering set is a finite set of periodic points, each of which is hyperbolic,

and

ii. each pair of stable and unstable manifolds of periodic points is transverse, that is,

if p, q ∈ Per(f) then W s(p) is transverse to W u(q).

The follow important facts about Morse-Smale diffeomorphisms can be found in [33],

[36], [39].

• Every Morse-Smale diffeomorphism f : M →M admits a filtration, i.e., there exists

a sequence ∅ = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mk = M of compact submanifolds with

boundary of M , such that f(Mi) ⊂ IntMi for each 0 < i < k, and in Mi+1 \Mi, the

maximal invariant set of f , is just one critical element (fixed point) pi+1, that is,⋂
n∈Z

f(Mi+1 \ IntMi) = pi+1.

• Every Morse-Smale has an attractor periodic point and a repeller periodic point.

• If p is an attractor periodic point then there exists a repeller periodic point q such

that the stable and unstable manifolds intersect transversaly.

• M =
⋃
W s(pi) =

⋃
W u(pi) where pi ∈ Ω(f).

• The set of Morse-Smale diffeomorphisms is open (and nonempty) in Diff r(Mn) for

any manifold Mn and any r ≥ 1.
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• A Morse-Smale diffeomorphism f : M → M is structurally stable, i.e., if there is a

neighborhood U of f in the set of C1-diffeomorphisms such that f is conjugate to

every g in U .

• The set of Morse-Smale diffeomorphisms is dense in Diff r(S1), r ≥ 1.

• The set of Morse-Smale diffeomorphisms is not dense in Diff r(Mn), n ≥ 2.

2.5 Dendrite homeomorphisms

In this section we present some basic properties of dendrites and of maps defined on

dendrites.

Dendrites

Throughout this section D denotes a nondegenerate dendrite, that is, D is a continuum

such that it is a locally connected and contains no simple closed curves. We say that D

is locally connected provided that for every point x ∈ D and each neighborhood of x

contains a connected neighborhood of x which is open in D.

Proposition 2.5.1. [See [25], p. 132] If C is connected and C ⊂ W ⊂ C̄, then W is

connected.

Proposition 2.5.2. [See [31], p. 83] A topological space is locally connected if and only

if each component of each open set is open.

Let x ∈ D. The point x is said to be an end point of D provided that D \ {x} is

connected; the set of all end points of D is denoted by E(D). The point x is said to be a

cut point of D if D \ {x} is not connected. The order of x, ord(x), is the cardinality of

the set of all components of D \ {x}. If ord(x) = 2, the point x is called ordinary point

of D. If ord(x) ≥ 3, the point x is called branch point of D.

The following structural characterizations of dendrites are known.

Theorem 2.5.3. For a continuum D the following conditions are equivalent:
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i. D is a dendrite;

ii. each point of D is either a cut point or an end point of D;

iii. each nondegenerate subcontinua of D contains uncountable many cut points of D;

iv. the intersection of every two connected subsets of D is connected.

Proof. See [41], (1.1), p. 88.

The reader is referred to [15] for a complete structural characterizations of dendrites.

Besides the characterization, we recall some important properties of these continua.

Theorem 2.5.4. The following conditions hold

i. Each subcontinuum of D is a dendrite.

ii. Every connected subset of D is arcwise connected.

Proof. See [41], (1.3) (i) and (ii.), p. 89.

Theorem 2.5.5. The set of all branch points of D is countable.

Proof. See [31], (10.23), p. 174.

Corolary 2.5.6. Each nondegenrate subcontinuum of D contains cut points of order 2.

Propositions 2.5.7 and 2.5.8 are proved in [29].

Proposition 2.5.7. Let {An} be a sequence of nonempty connected subsets of D such

that for each pair n 6= m, An ∩ Am = ∅. Then

lim
n→∞

diam(An) = 0.

Given two distinct points a and b in D, there is only one arc from a to b contained in

D. We denote such an arc by [a, b]. Also we use the following notation: (a, b] = [a, b]\{a},

[a, b) = [a, b] \ {b}, and (a, b) = [a, b] \ {a, b}.
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Proposition 2.5.8. For every ε > 0, there exists δ > 0 such that for any pair of points

a, b ∈ D, d(a, b) < δ implies diam([a, b]) < ε.

Corolary 2.5.9. Let {an} be a sequence in D \ {a} such that limn→∞ an = a. Then

lim
n→∞

diam([an, a]) = 0

Dendrite Homeomorphisms

We present some basic properties of dendrite homeomorphisms. Recall D represents

a nondegenerate dendrite.

Proof of Proposition 2.5.10 can be found in [32].

Proposition 2.5.10. Let f : D → D be a homeomorphism. Then for each arc [a, b]

contained in D, f([a, b]) = [f(a), f(b)].

Theorem 2.5.11 is one of the main results in [2].

Theorem 2.5.11. Let f : D → D be a homeomorphism and x ∈ D. Then ω(x, f) is

either a periodic orbit or a Cantor set. Moreover, if ω(x, f) is a Cantor set, f restricted

to ω(x, f) is an adding machine.

The following proposition is well known and the proof can be found in [[41], p. 243].

Proposition 2.5.12. Any dendrite homeomorphism has the fixed point property.

In [32] the author proved the following two interesting and useful results.

Proposition 2.5.13. Let f : D → D be a homeomorphism. Then

R(f) = cl(Per(f))

where R(f) denote the set of recurrent points of f .

Proposition 2.5.14. Let f : D → D be a homeomorphism. If R(f) = D, then every cut

point of D is a periodic point of f .
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Remark 2.5.15. By Proposition 2.5.13 and Proposition 2.5.2, if there is x ∈ D \R(f)

then the connected component of D \ R(f) that contains x is an open set. Therefore,

U 6= {x}.

A proof of Lemma 2.5.16 can be found in [2] and a proof of lemmas 2.5.17 and 2.5.18

can be found in [22].

Lemma 2.5.16. Let f : D → D be a homeomorphism. If x0 is an end point of D such

that f(x0) = x0, then |Fix(f)| ≥ 2.

Lemma 2.5.17. Let f : D → D be a homeomorphism. Let a, b, c be three distinct end

points of D. If {a, b, c} ⊂ Fix(f), then there exists a cut point of D, say u, such that

u ∈ Fix(f).

Lemma 2.5.18. Let f : D → D be a homeomorphism. Let a, b ∈ Fix(f), a 6= b. If a and

b are end points of D and |Fix(f)| = 2, then one of the following two conditions holds:

i. For every x ∈ D \ {a, b}, α(x, f) = {a} and ω(x, f) = {b}.

ii. For every x ∈ D \ {a, b}, α(x, f) = {b} and ω(x, f) = {a}.

The dynamics of dendrite homeomorphisms can be more complicated than Morse-

Smale diffeomorphism, however they also have zero topological entropy. The proof can

be found in [2].

Theorem 2.5.19. Let f : D → D be a dendrite homeomorphim, then the topological

entropy is zero.
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Chapter 3

Recurrence and shadowing of

induced Morse-Smale

diffeomorphisms

As mentioned in section 1.4, the dynamics of Morse-Smale diffeomorphisms is very simple

since the nonwandering set consists only of finitely many hyperbolic periodic points. This

implies, in particular, that Morse-Smale diffeomorphisms are not topologically transitive

and have topological entropy zero. However, Morse-Smale diffeomorphisms could generate

interesting topological properties in its induced hyperspace 2f , as seen in Proposition

3.1.1 of this chapter. Some of this properties has been well studied in the last years for

continuous maps, see for example [7] [8] [26], but we will provide them here.

Our main interest is to study the dynamics of the continuum map C(f) of Morse-Smale

diffeormorphisms, mainly, recurrence and shadowing. We notice that some properties of

C(f) depend on the dimension of the base space. For instance, when the base space is S1

we prove in Section 3.1 that the non-recurrent set of C(f) is a finite number of periodic

points as the following theorem state:

Theorem A. Let f : S1 → S1 be a Morse-Smale diffeomorphism then

i. If f preserves orientation, then Ω(C(f)) = PerN(C(f)) ∪ {S1} for some N ≥ 1,
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ii. If f reverse orientation, then Ω(C(f)) = Per2(C(f)) ∪ Fix(C(f)).

Consequently, the continuum map C(f) is not transitive and has zero topological

entropy. The dynamics of C(f) seems not to be very interesting however the Morse-Smale

diffeomorphisms provide us counterexamples of dynamical systems with the following

property:

Theorem B. Let f : S1 → S1 be a Morse-Smale diffeomorphism. Then the continuum

map C(f) does not have the shadowing property.

The proof of Theorem B can be found in Section 3.2. It is well known that Morse-

Smale diffeomorphisms have the shadowing property, see Theorem 3.1.1 in [35]. On the

other hand, in [18] Good and Fernández showed that a continuous map f : X → X on

a compact metric space has the shadowing property if and only if its induced map 2f

has the shadowing property. Also, with the same arguments, they showed that if C(f)

has shadowing then f has shadowing. Thus, we obtained a C1-open and dense set in

Diff 1(S1) with the shadowing property such that the continuum map C(f) does not

have shadowing, for any f ∈ Diff r(S1).

3.1 Recurrence of induced Morse-Smale diffeomor-

phisms

This section is devoted to study only the induced maps 2f and C(f) of Morse-Smale

diffeomorphisms. For this, first we study the subclass of Morse-Smale diffeomorphisms

defined on the circle S1 since they are well known, as we have seen in Section 2.4. Indeed,

the expanding and contracting periodic points alternate and if it is orientation preserving,

then all periodic points have the same period, and if it is orientation reversing all periodic

points have period one or two. We follow the techniques used in [8] by N. Bernardes and

R. Vermersch about dumbbells.

Proposition 3.1.1. Let f : S1 → S1 be a Morse-Smale diffeomorphism then

i. 2f has uncountably many periodic points of each period n ≥ 1;
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ii. R(2f ) 6= Ω(2f ) = Per(2f ) = CR(2f );

iii. The topological entropy of 2f is infinity;

iv. The induced map 2f is not transitive;

v. 2f has the shadowing property;

where R(2f ) and CR(2f ) denote, respectively, the set of recurrent and chain recurrent

points of 2f .

Proof. Suppose that f preserves orientation. Without loss of generality, we can assume

that all periodic points of the diffeomorphism f are fixed (otherwise we pass to some

iteration of f).

i. Fix n ∈ N. For all x ∈ S1\Fix(f), we have the set Λn = ∪i∈Z{fni(x)} is a n-periodic

point of 2f .

ii. Let Fix(f) = {p1, p2, ..., p2k} and let x ∈ S1 \ Fix(f). Define

K = {p1, p2, ..., p2k} ∪ {x} ∈ 2S
1

.

Since

dH(K, 2f
n
(K)) ≥ min{d(x, f(x)), d(x, f−1(x))}

for all n ∈ N, we have that K is not a recurrent point of 2f . On the other hand, for

each n ∈ N, let

Kn = K ∪ {f−n(x)} ∈ 2S
1

.

Then, we obtain

Kn → K and fn(Kn)→ K,

that is, K is a nonwandering point of 2f . Thus, we obtain a compact subset K ∈ S1

such that K ∈ Ω(2f ) but K /∈ R(2f ).

Now, let K ∈ Ω(2f ) and ε > 0 small enough. Consider the set of fixed points

Fix(f) = {p1, p2, ..., p2k} such that pi+1 is an attractor point and p2i is a repeller

point. We claim if K∩(pi, pi+1) 6= ∅ then pi, pi+1 ∈ K. In fact, let K̂i = K∩ [pi, pi+1]
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and â = min{x ∈ S1 : x ∈ K̂i}. Since K̂i is compact then pi < â. Analogously, if

b̂ = max{x ∈ S1 : x ∈ K̂i} then b̂ < pi+1. So, if ε̂ < min{d(â, f(â)), d(b̂, f(b̂))}/2 we

have that

BH(K, ε̂) ∩ 2f
k

(BH(K, ε̂)) = ∅,

for all k ≥ 1. That is a contradiction and therefore pi, pi+1 ∈ K. In this case we

consider B(pi, ε) for each pi ∈ K. Besides that, for each K̂i there exist Ni points

such that K̂i ⊂ ∪r≤NiB(xir, ε) and K̂i ∩ B(xir, ε) 6= ∅. Using the same argument to

i = 1, ..., 2k − 1 we obtain a finite set

X = {x1
1, ..., x

1
N1
} ∪ ... ∪ {x2k−1

1 , ..., x2k−1
N2k−1

}

and N such that fN(x) ∈
⋃
i≤2k B(pi, ε) for all x ∈ X. Finally, we consider Z =

∪j∈Zf jN(X). Thus

fN(Z) = Z and dH(Z,K) < ε.

Thus, we have the first equality Ω(2f ) = Per(2f ). The second equality follow of v,

see Theorem 3.1.2 in [5].

iii. In [27], the authors obtain sufficient conditions to obtain infinite topological entropy

for the induced hyperspace map. It can quickly be checked that these conditions

hold for Morse-Smale diffeomorphisms on the circle.

iv Follows from Theorem 2.1 in [34].

v. Follows from Theorem 6 in [18] and Theorem 3.1.1 in [35].

Now we will prove Theorem A and notice that the dynamics of C(f) is very different

from the dynamics of the induced map 2f , but some properties remain valid, for example,

the non transitivity.

Theorem A. Let f : S1 → S1 be a Morse-Smale diffeomorphism then

i. If f preserves orientation, then Ω(C(f)) = PerN(C(f)) ∪ {S1} for some N ≥ 1;
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ii. If f reverses orientation, then Ω(C(f)) = Per2(C(f)) ∪ Fix(C(f));

where Perj(C(f)) denote the set of periodic points of C(f) of period j.

Proof. i. Let f : S1 → S1 be orientation preserving Morse-Smale diffeomorphism such

that every point in the non-wandering set is a fixed point, i.e, Ω(f) = Fix(f) =

{p1, . . . , pk}. We say that a subset J ⊂ S1 is a D-arc if it is homeomorphic to an

interval (possibly degenerated) and the boundary of J is contained in the set of fixed

points, which we denote by ∂J ⊂ Fix(f). Note that, if f preserves orientation and

J ∈ C(S1) then J = [a, b] for some a, b ∈ S1 and f([a, b]) = [f(a), f(b)]. Therefore,

we have that Fix(C(f)) = {J : J is a D- arc} ∪ {S1}.

We will show that Ω(C(f)) = Fix(C(f)), i.e, the non-wandering set consists of

finitely many fixed points. Indeed, suppose that there is an interval I = [x, y] in

Ω(C(f)) such that I is not a fixed point of C(f). Without loss of generality we can

suppose that x is not a fixed point of f and therefore there is pi ∈ Fix(f) such that

x ∈ W s(pi), see definition in Section 2.4. Since that I ∈ Ω(C(f)), we have that for

every n ∈ N, there are Nn ≥ 1 and an interval Jn = [an, bn] such that

dH(I, Jn) <
1

n
and dH(I, C(f)Nn(Jn)) <

1

n
.

This implies that lim
n→∞

an = x and lim
n→∞

fNn(an) = x. Since f is a continuous

map, for ε = min{d(x, f(x)), d(f(x), pi)}/2, there is δ > 0 small enough such that

f(B(x, δ)) ⊂ B(f(x), ε) and B(x, δ) ∩B(f(x), ε) = ∅. Besides that, there is n0 ≥ 1

such that an0 and fNn0 (an0) belong to B(x, δ). As f preserves orientation we have

that fn(an0) ∈ [pi, f(x)] ∪B(f(x), ε) for every n ≥ 1 which is a contradiction. This

contradiction yields the proof.

Now suppose that f is orientation preserving and the non-wandering set consists of

a finite number of periodic points with the same period N > 1. If f is orientation

preserving then fN is orientation preserving too. Thus, if J = [x, y], for some

x, y ∈ S1, then fN([x, y]) = [fN(x), fN(y)]. We say that, J is a D-arc of fN if and

only if J is homeomorphic to a interval (posibly degenerated) and ∂J ⊂ Fix(fN).

Therefore, we have that PerN(C(f)) = {J : J is a D-arc of fN}.
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We will show that Ω(C(f)) = {S1} ∪ {J : J is a D-arc of fN}, i.e., the set of non-

wandering points consists of finitely many periodic points and a fixed point. Indeed,

suppose that there is an interval I = [x, y] in Ω(C(f)) such that I is not a periodic

point of C(f). We can assume without loss of generality that x is not a periodic

point of f and therefore there is pi ∈ PerN(f) such that x ∈ W s(f j(pi)). Since

that I ∈ Ω(C(f)), we have that for every n ∈ N, there are Nn ≥ 1 and an interval

Jn = [an, bn] such that

dH(I, Jn) <
1

n
and dH(I, C(f)Nn(Jn)) <

1

n
.

This implies that lim
n→∞

an = x and lim
n→∞

fNn(an) = x. Since f is a continuous

map, for ε = {d(x, fN(x)), d(fN(x), f j(pi)}/2 there is δ > 0 small enough such

that fN(B(x, δ)) ⊂ B(fN(x), ε). Besides that, there is n0 ≥ 1 such that an0 and

fNn0 (an0) belong to B(x, δ). Since f preserves orientation, we have that fN.n(an0) ∈

[f j(pi), f
N(x)]∪B(fN(x), ε) for every n ≥ 1. Note that Nn0 is a multiple of N which

contradicts that fNn0 (an0) ∈ B(x, δ). This contradiction yields the proof.

ii. Suppose that f is orientation reversing, then all periodic points have period one or

two. We say that a set J ⊂ S1 is a D-mix-arc if it is homeomorphic to an interval

(possibly degenerated) and at least one point in ∂J belongs to Per2(f). Note that,

if f is orientation reversing, then f 2 preserves orientation. Therefore, we have that

Fix(C(f)) = {J : J is a D-arc} ∪ {S1} and Per2(C(f)) = {J : J is a D-mix-arc}.

We will show that Ω(C(f)) = Fix(C(f))
⋃
Per2(C(f)). Indeed, suppose that there

is an interval I = [x, y] ∈ Ω(C(f)) such that I /∈ Fix(C(f)) ∪ Per2(C(f)). We

can assume without loss of generality that x is not a fixed point of f nor a periodic

point of f and, therefore, there is pi ∈ Fix(f) ∪ Per2(f) such that x ∈ W s(f j(pi))

and repeat the argument in item i.

Since, the non-wandering set consists only of a finite number of fixed points, we have

that the topological entropy is zero and there is not a point with dense orbit on C(S1) as

follows:
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Corolary 3.1.2. Let f : S1 → S1 be a Mose-Smale diffeomorphism then

i. R(C(f)) = Ω(C(f)) = Per(C(f));

ii. The topological entropy of C(f) is zero;

iii. The continuum map C(f) is not transitive.

Note that if f : X → X is a continuous map on a compact metric space, then for all

n ∈ N the induced map Cn(f) is a subsystem of 2f which we denoted by Cn(f) ≤ 2f . So

C(f) ≤ C2(f) ≤ C3(f) ≤ ... ≤ 2f .

Therefore, if f is a Morse-Smale diffeomorphisms on the circle we have that

h(C(f)) = 0 ≤ h(C2(f)) ≤ h(C3(f)) ≤ ... ≤ h(2f ) =∞.

Nevertheless, following the proof of Theorem A we can show h(Cn(f)) = 0 for all

n ∈ N. Note that if Ω(f) = Fix(f), with r fixed points, then Ω(Cn(f)) = Ω(Cr(f)) for

all n ≥ r. Thus, we have the following question.

Question. There exists a dynamical system (X, f) such that

h(C(f)) < h(Cn(f)) < h(2f )

for some n ≥ 2?

The following result claim that every point in C(S1) \Ω(C(f)) is a heteroclinic point.

Proposition 3.1.3. Let f : S1 → S1 be a Morse Smale diffeomorphism. If J is a

wandering point of C(f) then J is a heteroclinic point.

Proof. Suppose that f preserves orientation. Without loss of generality, we can assume

that all periodic points of the diffeomorphism f are fixed (otherwise we pass to some

iteration of f). By Theorem A, we have that J is not a fixed point of C(f), then J 6= S1

and J is not a D-arc. Therefore, there is x ∈ ∂J such that x is not a fixed point of

f . We can suppose that J = [x, y]. Since f is a Morse-Smale diffeomorphism, x ∈
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W s(pi) ∩W u(pj) and y ∈ W s(p̂i) ∩W u(p̂j) for some fixed points pi 6= pj, p̂i 6= p̂j of f .

For this reason, we have that

lim
n→∞

C(f)n([x, y]) = [pi, p̂i]

and

lim
n→∞

C(f)−n([x, y]) = [pj, p̂j].

3.2 Shadowing of induced Morse-Smale diffeomor-

phisms

Good and Fernández, in [18], showed that a map f : X → X on a compact metric

space has the shadowing property if and only if its induced map 2f has the shadowing

property. Besides that, with the same arguments they showed that if C(f) has the

shadowing property then f has shadowing. Nevertheless, it was not known if there is a

dynamical system with the shadowing property such that the continuum map does not

have shadowing. Despite the dynamics of Morse-Smale diffeomorphisms is very simple, in

the sense that the non-recurrent points are only a finite number of periodic points, they

have an important topological property which is the shadowing property. This section is

devoted to prove:

Theorem B. Let f : S1 → S1 be a Morse-Smale diffeomorhism. Then the continuum

map C(f) does not have the shadowing property.

Proof. Without loss of generality, we can assume that all periodic points of f are fixed

(otherwise we pass to some iteration of f). First, suppose that f has only two fixed

points, an attractor p and a repeller q. Furthermore, suppose that C(f) has the shadowing

property. Then for ε > 0 small enough, there is δ > 0 such that every δ-pseudo orbit

{xn} of C(f) is ε-shadowed by real orbit of C(f). For each δ > 0, we can consider the

following δ-pseudo orbit:

x0 = {S1}, x1 = {J∗p}, x−1 = {J∗q }
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xi = C(f)i(x1), and x−i = C(f)−i(x−1) if i ≥ 2

where J∗p is an arc which contains the point p but not the point q and dH(J∗p , S
1) < δ. In

the same way, J∗q is an arc that contains the point q but not the point p and such that

dH(J∗q , S
1) < δ. Observe that

lim
i→∞

C(f)i(x1) = {p} and lim
i→−∞

C(f)i(x−1) = {q}.

Fix ε > 0 small enough and δ > 0 of the shadowing property. We claim that the δ-pseudo

orbit {xi} defined above is not shadowed. Indeed, suppose that there is A ∈ C(S1) such

that dH(C(f)i(A), xi) < ε for all i ∈ Z. Then we have two possibilities, A contains q

or A does not contain q. If A contains q, then there is i0 > 1 big enough such that

dH(C(f)i0(A), xi0) > ε and it is a contradiction. If A does not contain q then there is

j0 > 1 big enough such that dH(C(f)−j0(A), x−j0) > ε and it is a contradiction. Therefore,

C(f) does not have the shadowing property.

If f has more than two fixed points, then we consider one attractor point and one

repeller point and define δ-pseudo orbit as above. The difference is that limi→∞C(f)i(x1)

and limi→−∞C(f)i(x−1) are D-arcs.
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Chapter 4

Sufficient conditions to obtain

infinite topological entropy on the

hyperspace

In this section we will present three sufficient conditions to obtain infinite topological

entropy on the hyperspace.

4.1 Infinite topological entropy in 2X

The first case, is a generalization of Theorem 20 in [26]. First we need some preliminary

lemmas and notations. Let r ≥ 2 and let Σr be the space of all infinite sequences of

elements of {1, 2, ..., r} with the product topology. Let S ⊂ Σr be the set of all sequence

for which the symbol i ∈ {1, ..., r} occurs at most once. For n ∈ Z we denote by bin

the point in S whose nth coordinate is the symbol i, and by a we denote the sequence

(..., 0, 0, 0, ...) ∈ S. It is easy to see that S is a subshift of the one-side shift Σr. We will

write shortly σS for σ|S.

The proof we present to Proposition 4.1.1 follows, with slight changes, the proof given

for Theorem 13 in [26].
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Proposition 4.1.1. For the subshift (S, σS) defined above: h(σS) = 0, but h(2σS) = log r

Proof. Since that Ω(σS) = {a}, σS has the topological entropy equal to zero. We will

show that the induced map 2σS is semiconjugated to the full shift {{0, 1}r}Z. For the

proof we define the map φ : 2S → {{0, 1}r}Z by

φ(A) = {(y1
n, y

2
n, ..., y

r
n)}n∈Z, where yin =

 1, if bin ∈ A;

0, otherwise;

for any A ∈ 2S. It is easy to check that φ is an uniformly finite-to-one semiconjugacy

from 2σS to σ. Hence h(2σS) = r log 2.

Taking r ≥ 2 large enough, we can produce an arbitrary gap between the topological

entropy of the base map and its induced map to the hyperspace.

Corolary 4.1.2. For all M > 0 there exists dynamical system (X, f) such that h(f) = 0

and h(2f ) > M .

Now, we will give an example of a compact metric space and homeomorphism such

that the topological entropy of the map is equal to zero, but the induced map has infinite

topological entropy. We also generalize Theorem 17 in [26].

Example 4.1.3. Let Q be the Hilbert Cube, see [3], and SQ be the set of all bi-infinite

sequences for which symbol 1/p occurs at most once, where p ∈ {1, 2, ...}. For n ∈ Z we

denote by bpn the point in SQ whose nth coordinate is the symbol 1/p, and by a, we denote

the sequence (..., 0, 0, 0, ...) ∈ SQ. It is easy to see that SQ is a subshift of the full two-sided

shift Q. We will write shortly σSQ for σ|SQ.

Lemma 4.1.4. The subshift (SQ, σSQ) defined above: h(σSQ) = 0 but h(2σSQ ) =∞.

Proof. Since that Ω(σSQ) = {a}, σSQ has the topological entropy equal zero. We will show

that for any r ≥ 1, the induced map 2σSQ is semiconjugated to the full shift {{0, 1}r}Z.

For the proof, we define the map φ : 2SQ → {{0, 1}r}Z by
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φ(A) = {(y1
n, y

2
n, ..., y

r
n)}n∈Z, where yin =

 1, if p ≤ r and bpn ∈ A;

0, otherwise;

for any A ∈ 2SQ . It is easy to check that, for any r ≥ 1, the map Φ is a semiconjugacy

from 2σSQ to σ. Hence, h(2σSQ ) =∞.

Note that the above lemma remains valid if one replaces two-sided subshift by its

one-sided analog. We generalize further the above lemma and prove

Theorem C. Let f : X → X be a surjective map and let X be a continuum space. If

there exists an infinite countable set A = {a1, a2, ...} ⊂ X such that

i. L =
⋃
i≥1

α({xi−n}n∈Z+ , f) ∪ ω(ai, f) and M =
⋃
i≥1

{xi−n}n∈Z+ are disjoint,

ii. For every pair i 6= j, i ≥ 1, j ≥ 1,

Orb({xi−n}n∈Z+ , f) ∩Orb({xj−n}n∈Z+ , f) = ∅,

then h(2f ) =∞.

Proof. We will construct a semiconjugacy from some subsystem of (X, f) to the one-side

version of subshift of Proposition 4.1.1. First, fix an r ∈ N. For each i ∈ {1, ..., r} extend

the given negative orbit through ai to the full Orb({xin}n∈Z+ , f). Then define the closed

f -invariant set as

Λ =
r−1⋃
i=0

Orb({xin}n∈Z+ , f).

With the notation introduced in Proposition 4.1.1, we define a map φ : Λ→ SQ by

φ(x) =

 bin, if x = xi−n for some n ≥ 0 and 1 ≤ i ≤ r;

a, otherwise.

Clearly φ is the desired semiconjugacy. This implies that 2Φ is a semiconjugacy from

2f to 2σSQ . Therefore, h(2f ) ≥ log r for all r ∈ N.

As corollary we obtain Theorem 5.7 in [22]. This result was given before by Lampart-

Raith in [27].
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Theorem D. Let f : X → X be a surjective finite map and let X be a continuum

space. If the positively recurrent points are not dense in X, then h(2f ) =∞.

Proof. In [26] Theorem 20, the authors showed that, for every point x0 ∈ X \ c(f) and

every negative orbit {x−n}n∈Z+ , we have that α({x−n}n∈Z+ , f) ∪ ω(x0, f) and {x−n}n∈Z+

are disjoint. Thus, we have that for all every negative orbit {x−n}n∈Z+ there exist λ > 0

such that d(x0, α({x−n}n∈Z+ , f) > λ. We will construct by induction a set A which verifies

the hypotheses of Lemma 4.1.4. Fix a1 ∈ X \ c(f), a negative orbit {x1
−n}n∈Z+ through

a1 and the set Λa1 =
⋃
n∈Z+

f−n({a1}) of all negative orbits through a1. We claim

c(f) ∪Orb({x1
−n}n∈Z+ , f) ∪ Λa1 6= X.

Indeed, suppose that

c(f) ∪Orb({x1
−n}n∈Z+ , f) ∪ Λa1 = X.

Since by hypothesis we have that a1 is not a recurrent point, c(f) is a closed set and

d(α({x1
−n}n∈Z+ , f), a1) > 0, then there exists ε1 > 0 small enough such that

B(a1, ε1) ⊂ X \ c(f) and B(a1, ε1) ∩Orb({x1
−n}n∈Z+ , f) = {a1}.

Therefore,

B(a1, ε) ∩ Λa1 = B(a1, ε1).

Since Λa0 is a countable set and X is a continuum space, we have that

a1 ∈ α({x1
−n}n∈Z+ , f)

which is a contradiction. Therefore,

c(f) ∪Orb({x1
−n}n∈Z+ , f) ∪ Λa1 6= X.

Thus, we can consider

a2 ∈ X \ c(f) ∪Orb({x1
−n}n∈Z+ , f) ∪ Λa1 ,

and repeat the argument. Thus we obtain a set A = {a1, a2, ...} ⊂ X that verifies the

hypotheses of Lemma 4.1.4 and therefore h(2f ) =∞.

Corolary 4.1.5. The hyperspace map of every Morse-Smale diffeomorphism has infinite

topological entropy.
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4.2 Infinite topological entropy on C(X)

In this section we present two cases to obtain infinite topological entropy on C(X).

Case 1.

In [3] the authors present two examples of dynamical systems defined on dendrites

such that the continuum induced map has infinite topological entropy. We are interested

in one of these examples and we will present it here.

First consider, in R2, the points p = (−1, 0), q = (1, 0) and the sequence ((an, 0))n∈Z

such that a0 = 0 and, for each n ∈ N, an = 1− 1
n+1

and a−n = −an. Note that an < an+1

for each n ∈ Z. Moreover:

lim
n→∞

an = 1 and lim
n→−∞

an = −1.

Now, given n ∈ Z, let Ln be the straight line segment Ln = {an} × [0, 1
|n|+1

]. We

denote the segment [−1, 1]× {0} by pq. Let

X = pq ∪

(⋃
n∈Z

Ln

)
.

Figure 4.1: Dendrite X.

Note that X is a dendrite with free arcs. Let F : X → X be a homeomorphism with

the following properties:

i. F |pq is a homeomorphism from pq onto itself such that F (p) = p, F (q) = q and
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F ((an, 0)) = (an+1, 0) for each n ∈ Z (so the image under F of the arc from (an, 0)

to (an+1, 0) is the arc from (an+1, 0) to (an+2, 0);

ii. for each n ∈ Z, F |Ln : Ln → Ln+1 is a linear homeomorphism.

Figure 4.2: Dynamics of F : X → X.

Note that Fix(F ) = {p, q}. Moreover: ω(p, F ) = {p} and ω(x, F ) = {q}, for each

x ∈ X−{p}. Thus F is not transitive. Since X is a dendrite and F is a homeomorphism,

by [2] the topological entropy of F is zero. Now, since F is a homeomorphism, the induced

map C(F ) : C(X) → C(X) is also a homeomorphism, see [23] . By either Theorem 4.5

or Theorem 6.2 in [3], C(F ) is not transitive. Note that, ω(A,C(F )) = {{q}}, for each

A ∈ C(X) such that p /∈ A.

The authors in [3] constructed a closed subset Λ of C(X) such that C(F )|Λ is topo-

logically conjugate to the shift map defined on the Hilbert cube. For this reason, C(F )|Λ
has the following properties

i. The homeomorphism C(F )|Λ : Λ → Λ is Devaney chaotic, i.e., is transitive and

periodically dense.

ii. The topological entropy of C(F )|Λ is infinite, so C(F )|Λ and C(F ) are topologically

chaotic.

iii. C(F )|Λ has uncountable periodic points of each period.
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We observed that there are hyperbolic dynamical systems with this dendrite. There-

fore, we will introduce the definition of special dendrite for homeomorphisms.

Definition 4.2.1. Let f : X → X be a homeomorphism on a compact metric space X.

We say that a closed subset Λ ⊂ X is a Special Dendrite if there is k ∈ N such that Λ is

fk-invariant and fk|Λ is conjugated to F (homeomorphism defined above). In this case,

we say that f admit a Special Dendrite.

Let us present some examples of dynamical systems that admit a special dendrite, and

note that the base space is a n-dimensional manifold with n ≥ 2:

i. North Pole-South Pole diffeomorphism on S2: the north pole pN is a repeller fixed

point, the south pole pS is an attractor fixed point and for all x ∈ S2 − {pN , pS},

ω(x) = {pS} and α(x) = {pN}. This diffeomorphism admits a special dendrite, see

Proposition 4.2.2.

ii. Consider the torus T 2 ⊂ R3 and let X = grad(t) where t is the height function

of points of T 2 above the horizontal plane. This vector field has four singularities

p1, p2, p3, p4 where p1 is a sink, p2 and p3 are saddles and p4 is a source. The

stable manifold of p2 intersects the unstable manifold of p3 nontransversally. The

diffeomorphism time-one map of X (see definition in [33]) admits a special dendrite.

ii. In the example above we can destroy the intersection nontransversally with a small

perturbation of the field X. The resulting field Y is a Morse-Smale field and will

therefore not be equivalent to X. The diffeomorphism time-one map of Y admits a

special dendrite, see Proposition 4.2.6 or Theorem G.

Theorem E. Let f : X → X be homeomorphism on a continuum metric space X. If

f admits a special dendrite, then h(C(f)) =∞ and therefore h(2f ) =∞.

Proof. Since that f admits a special dendrite, there exist a closed subset Λ ⊂ X and

k ∈ N such that Λ is fk-invariant and fk|Λ is conjugate to F . So the induced continuum

systems C(fk|Λ) and C(F ) are conjugate too (see [38], Theorem 4). Therefore, we have

that h(f) ≥ h(C(F )) =∞.
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Morse-Smale diffeomorphisms with only two hyperbolic fixed points admit

a special dendrite.

The set MS2(Mn) of diffeomorphisms Morse-Smale on a compact manifold with-

out boundary and with only two fixed points is non-empty, when the manifold is an

n-dimensional sphere. In this case, the dynamics is very simple: all non-fixed points move

from the source to the sink. On a sphere of a given dimension, any two such diffeomor-

phisms are topologically conjugate. We will show that every Morse-Smale diffeomorphism

with only two hyperbolic fixed points admits a special dendrite and therefore the topo-

logical entropy of the continuum map is infinite.

Proposition 4.2.2. Let M be a compact, connected and orientable n-dimensional mani-

fold without boundary and let n ≥ 2. If f ∈MS2(Mn) then f admits a special dendrite.

Proof. Let f ∈ MS2(Mn). Since that, all non-fixed points move from the source to the

sink, we have W s(p)
⋂
W u(q) = M − {p, q} is an open and connected n-dimensional set.

Fix a point x ∈ W s(p)
⋂
W u(q) and let ε > 0 be sufficiently small such that

• B(p, ε)
⋂
B(q, ε)

⋂
B(x, ε) = ∅.

• f(B(p, ε)) ⊂ B(p, ε) and

• f−1(B(q, ε)) ⊂ B(q, ε).

Then, there exists k0 ∈ N such that fk(x) ∈ B(p, ε) and f−k(x) ∈ B(q, ε) for all k ≥ k0.

The following lemma will help us to construct the dendrite. We denote γyx an arc joining

the points x and y.

Lemma 4.2.3. There are y ∈M − {p, q} and arcs γ
f(x)
x and βyx with the following prop-

erties:

i. There is t0 ∈ N such that f−t0(γ
f(x)
x ∪ βyx) ⊂ B(q, ε) and f t0(γ

f(x)
x ∪ βyx) ⊂ B(p, ε).

ii. For all n 6= m ∈ Z, fn(βyx) ∩ fm(βyx) = ∅.
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Proof. First we will show the item i.. Since that M is connected manifold then there is

γ
f(x)
x , which we denote it by γ. It is sufficient to prove that there is t1 ∈ N such that

f−t1(γ) ⊂ B(q, ε). Suppose that, for all k ≥ k0 there is yk in γ such that f−k(yk) is not

contained in B(q, ε). Then we obtain two sequence {yk}k≥k0 in γ and {f−k(yk)}k≥k0 in

B(q, ε)c. Taking a subsequence, if it is necessary, we have lim
k→∞

yk = x0 ∈ γ. For x0, there

exists m0 ∈ N such that f−m0(x0) ∈ B(q, ε). Let ε1 > 0 be such that B(f−m0(x0), ε1) ⊂

B(q, ε), so since f is continuous, there exists, δ > 0 such that

f−m0(B(x0, δ)) ⊂ B(f−m0(x0), ε1).

Now, let n0 > m0 be such that yn0 ∈ B(x0, δ) and f−m0(yn0) ∈ B(f−m0(x0), ε1). Recall

that B(f−m0(x0), ε1) ⊂ B(q, ε). Thus, we have f−(m0+t)(yn0) ∈ B(q, ε) for all t ≥ 1, which

is a contradiction. With the same argument we prove that there exist t2 ∈ N such that

f t2(γ) ⊂ B(p, ε). Thus, it is sufficient to consider t0 = max{t1, t2}. Again by continuity

of f , there is a neighborhood V (γ) of γ such that

f t0(V (γ)) ⊂ B(p, ε) and f−t0(V (γ)) ⊂ B(q, ε)

Thus, we can consider a point ȳ ∈ V (γ) − γ and an arc β ȳx ⊂ V (γ) joining the points x

and ȳ such that β ȳx ∩ γ = {x}.

To show the item ii. we choose β (in item i.) such that fn(β)
⋂
fm(β) = ∅ for |m|, |n| ≤

k0. Indeed, let δ > 0 sufficiently small such that

δ < min
|i|,|j|≤k0−1

{d(f i(x), f j(x))}.

Since that f and f−1 are continuous, there is η1, with η1 < δ/2 and

f(B(f−1(x), η1)), f−1(B(f(x), η1)) ⊂ B

(
x,
δ

2

)
.

Also, there is η2 > 0, with η2 < η1 and

f(B(f−2(x), η2)) ⊂ B(f−1(x), η1) and f−1(B(f 2(x), η2)) ⊂ B(f−1(x), η1).

Continuing this process, there is ηk0−1 > 0, with ηk0−1 < ηk0−2 such that

f(B(f−(k0−1)(x), ηk0−1) ⊂ B(f−(−k0−2)(x), ηk0−2),
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f−1(B(fk0−1(x), ηk0−1) ⊂ B(fk0−2(x), ηk0−2).

Finally, we choose an arc β contained in the open set⋂
|j|≤k0−1

f j(B(f j(x), η|j|)) ⊂ B

(
x,
δ

2

)

where η0 = δ
2
. By construction, for all n,m ∈ {−k0 − 1, ..., k0 − 1} we have that

fn(β)
⋂
fm(β) = ∅. This implies that fn(β)

⋂
fm(β) = ∅ for all n ∈ Z.

Now, we consider the arc α = γ ∪ β and we will construct a special dendrite as

following:

Let Λ =
⋃
n∈Z

fn(α) =
⋃
n∈Z

fn(α)
⋃
{p, q} be a compact and f -invariant set. We claim

that f |Λ is conjugate to F ( see section 4.2, Case 1). Indeed, we know that there is a home-

omorphismG : α→ L0

⋃(
[0, 1

2
]× {0}

)
and we are going to construct the homeomorphism

H : Λ→ pq∪
(⋃

n∈Z Ln
)

by induction. Let y ∈ Λ then there is n ∈ Z such that fn(y) ∈ α,

by definition G(fn(y)) ∈ L0

⋃(
[0, 1

2
× {0}]

)
. We defined H(y) := F n ◦ G ◦ fn(x). By

construction H is a homeomorphism and H ◦ f = F ◦H. Therefore, f admits a special

dendrite.

Corolary 4.2.4. The induced continuum map of every Morse-Smale with only two hy-

perbolic fixed points has infinite topological entropy.

Morse-Smale diffeomorphisms with an attractor, a repeller and a saddle

fixed point admit a special dendrite.

LetMS∗3(Mn) be the subclass ofMS3(Mn) of diffeomorphisms with only three periodic

points. The first question about this subclass of diffeomorphisms is if this set is non-empty.

It is well known that there are no Morse-Smale diffeomorphisms on 2-manifolds with

exactly three periodic points. In [19], the authors showed that, there are no Morse-Smale

diffeomorphisms on 3-manifolds whose set of non-wandering points consists of exactly

three periodic points. In [43], the existence of closed n-manifolds with n ≥ 4 admitting

Morse functions with precisely three critical points was proved, and such manifolds were

studied. Thus, in the case n ≥ 4, there exists Morse-Smale diffeomorphisms with precisely

three periodic points. In [43], the authors showed that any such diffeomorphism has
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precisely one saddle, one sink and one source. Also, they showed that if n is an even

number and n ≥ 4, then the unstable and the stable separatrix are n/2-dimensional

spheres. Thus we obtain the following result.

Proposition 4.2.5. Let Mn be a compact and connected, orientable n-dimensional man-

ifold with n ≥ 4. Let f : Mn → Mn be a Morse-Smale diffeomorphism with only three

periodic points, an attractor p, a repeller q and a saddle σ. Then f admits a special

dendrite and, therefore, h(C(f)) =∞.

Proof. Without loss of generality, we can assume that all periodic points of the diffeo-

morphism f are fixed (otherwise we pass to some iteration of f). By the Main Theorem

in [43], we have that

W u(σ) ∪ {p} = Sp and W s(σ) ∪ {q} = Sq

are n/2-dimensional spheres. In this case the dynamic is very simple: all non-fixed points

move from the source to the saddle or from the saddle to the sink. Therefore, by Propo-

sition 4.2.2, we have that f admits a special dendrite.

Proposition 4.2.6. Let Mn be a compact and connected, orientable n-dimensional man-

ifold with n ≥ 4. Let f : Mn → Mn be a Morse-Smale diffeomorphism with an attractor

point p and a repeller point q such that W s(p) ∩W u(q) 6= ∅ has a fk-invariant connected

component with dimension at least 2. Then f admits a special dendrite and therefore

h(C(f)) =∞.

Proof. Since that the set W s(p) ∩ W u(q) 6= ∅ has dimension at least 2 and it is fk−

invariant, we can construct a special dendrite with the same arguments in Proposition

4.2.2.

Case 2.

The authors, in [26], also provided an example of a zero entropy map f on a connected

space X such that the topological entropy of C(f) is positive. We include it here and we

will show the topological entropy of C(f) is infinite.
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Example 4.2.7. Let (S, σS) be the shift system from Proposition 4.1.1. By Cone(S) we

denote the cone over the space S that is the space obtained from S × [0, 1] by collapsing

a subset S × {1} to a single point. We can extend σS to the map σc defined on the

whole Cone(S). Then the set of cones over compact subsets of S is a closed invariant for

C(σc). With the same arguments given by the authors in [26], we have that h(σc) = 0 and

h(C(σc)) ≥ log r.

Proposition 4.2.8. Let (Cone(S), σc) be the system in example above. Then the topo-

logical entropy of C(σc) is infinite.

Proof. Let S1 = {a, b1
n}n∈Z. Given n ∈ Z, let Ln = {b1

n} × [0, 1]. Note that, Cone(S1) is

a compact and connected σc-invariant set. We denote [1] = S × {1}, the fixed point in

Cone(S1). Now, consider the following set:

Λ = {A ∈ C(Cone(S1)) : [1] ∈ A}

Note that Λ is a closed subset of C(Cone(S)). Since σc([1]) = [1], Λ is strongly invariant

under C(σc). Consider σ : Q→ Q the shift map defined on a Hilbert Cube, Q = Πn∈Z[0, 1],

see [3] section 7. We will show the induced map C(σc)|Λ is semi-conjugated to the shift

map σ defined on the Hilbert cube. For A ∈ Λ, let φ(A) = (̂t) = (tn)n∈Z, where tn =

1 −min(π2(Ln ∩ A)), for every n ∈ Z. In this way we have a function φ : Λ → Q. Note

that, φ is continuous and onto. Moreover φ ◦C(σc)|Λ = σ−1 ◦ φ since σc(b
i
n, a) = (bin+1, a)

for any (bin, a) in Cone(S). Thus, the topological entropy of C(σc) is greater than or equal

to the topological entropy of σ. Since the topological entropy of σ is infinite, by Theorem

7.6 in [3], we conclude that the topological entropy of C(σc) is infinite.

Now, Let f : M → M be a homeomorphism on a continuum metric space M , with

three fixed points p, q and σ. Fix r ∈ N and suppose that there exist a0, a1, ..., ar−1 ∈M

with the following property: limn→∞ f
n(ai) = p and limn→−∞ f

n(ai) = q for every i ∈

{0, ..., r − 1}. Also, suppose there exist arcs γi joining the points ai and σ such that

fn1(γi1) ∩ fn2(γi2) = {σ} for all (i1, n1) 6= (i2, n2).

In this section, we will denote that fn(γi) = γi,n and γ̂i,n := γi,n\{σ}.
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Definition 4.2.9. We say that the sequence {fn(γi)}i∈{0,...,r−1}
n∈Z is Self-Accumulated if

there exist x ∈
⋃
n∈Z f

n(γ0∪γ1∪ . . .∪γr−1), a sequence of points {xj}j∈N ⊂ γ0∪ . . .∪γr−1

and {kj}j∈N ⊂ Z, |kj| → ∞ when j →∞, such that fkj(xj)→ x when j →∞.

Remark 4.2.10. If the sequence {fn(γi)}i∈{0,...,r−1}
n∈Z is not self-accumulated then, for any

(i0, n0) ∈ {0, ..., r − 1} × Z and each x ∈ γ̂i0,n0, there exists ε0 > 0 such that

B(x, ε0) ∩ γi,n = ∅ for all (i, n) 6= (i0, n0).

From now, in this section, we will assume that M is a continuum metric space and

f : M → M is a homeomorphism with three fixed points p, q and σ. Besides that, we

suppose that there exist an infinite countable set A = {a0, a1, ...} ⊂ M with α(ai) = {q}

and ω(ai) = {p} for all i ≥ 0, and a sequence of arcs {γi}i≥0, where γi joins the points ai

and σ such that for every r ∈ N the sequence {fn(γi)}i∈{0,...,r−1}
n∈Z is not self-accumulated.

For all i ∈ {0, ..., r − 1} we set

Λi = {x ∈M : ∃ nj →∞ and xi,j ∈ γi,nj such that xi,j → x when j →∞}

and

Γi = {x ∈M : ∃ nj → −∞ and xi,j ∈ γi,nj such that xi,j → x when j →∞}

Note that, these sets are compact subsets of M by definition.

Lemma 4.2.11. For all i ∈ {0, ..., r − 1}, we have that

Λi =
⋃

Aλ∈ω(γi,0)

Aλ and Γi =
⋃

Bλ∈α(γi,0)

Bλ

where ω(γi,0) = ω(γi,0, C(f)) and α(γi,0) = α(γi,0, C(f)). Therefore, Λi and Γi are com-

pact and connected subsets of M such that q, σ ∈ Λi and p, σ ∈ Γi.

Proof. First, suppose that x ∈ Aλ with Aλ ∈ ω(γi,0, C(f)). Then there is a subsequence

γi,nj such that dH(γi,nj , Aλ) → 0. From the definition of Hausdorff metric, we have that

there is a subsequence yi,nj ∈ γi,nj such that d(x, yi,nj) → 0. Therefore, x ∈ Λi. Now,

suppose that x ∈ Λi, then there are nj → ∞ and xi,j ∈ γi,nj such that xi,j → x when

j → ∞. Since C(M) is a compact metric space (see [23]), there are Aλ0 ∈ ω(γi,0, C(f))
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and a subsequence of {γi,nj}j≥1 such that dH(γi,nj , Aλ0) → 0. We claim that x ∈ Aλ0 .

Indeed, by definition of Hausdorff metric, we have that d(xj, Aλ0) → 0 so by triangle

inequality we have d(x,Aλ0) = 0. Therefore x ∈ Aλ0 . We use the same argument to show

the second equality.

Note that, for all i ∈ {0, ..., r − 1} the set Λi ∪ Γi is a fixed point of C(f) since that

ω(γi,0, C(f)) is strongly invariant set of C(f). We set

∆r =
r−1⋃
i=0

Λi ∪ Γi

and

Lr =
⋃
n∈Z

(
r−1⋃
i=o

γi,n ∪∆r

)
.

Note that, both ∆r and Lr are a compact, connected and f -invariant subsets of M .

Therefore, C(Lr) is a subset of C(M). We denote γ̂i,n = γi,n\{σ} and we say that a set

K ∈ C(Lr) is a Full Cone if it satisfies the following properties:

i. If K ∩ γ̂i,n 6= ∅ then γi,n ⊂ K,

ii. ∆r ⊂ K.

We denote by Hr the set of all Full Cones in C(Lr). Note that, there are only

two types of full cones in Hr. We say that K ∈ Hr is a Finite Full Cone if the set

Σ = {(i, n) ∈ {0, ..., r−1}×Z : K ∩ γ̂i,n 6= ∅} is finite or Infinite Full Cone if Σ is infinite.

Therefore, if K is a full cone we can write this as

K =
⋃

(i,n)∈Σ

γi,n ∪∆r.

Lemma 4.2.12. The subset Hr is a closed subset of C(Lr) and C(f)-invariant.

Proof. First, we will prove that Hr is a closed subset of C(Lr). Indeed, let {Km}m∈N be

a sequence in Hr such that dH(Km, K0) → 0 if m → ∞. First, note that for all m ∈ N,

∆r ⊂ Km, therefore ∆r ⊂ K0. Now, suppose that for some i0 ∈ {0, ..., r − 1} and some

n0 ∈ Z, γ̂i,n0∩K0 6= ∅. We claim that γ̂i0,n0 ⊂ K0. Indeed, let x ∈ γ̂i0,n0∩K0. So there exist
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ε0 > 0 such that B(x, ε0)∩γi,n = ∅ for any i 6= i0 and n 6= n0. Note that, B(x, ε0)∩∆r = ∅.

Then for all ε < ε0, there exists m0 ∈ N such that dH(Km, K0) < ε for each m ≥ m0.

Thus, for x there exists ym ∈ Km with d(x, ym) < ε, but this implies ym ∈ γi0,n0 and,

therefore, γi0,n0 ⊂ Km. This implies that for every ε > 0, γi0,n0 ⊂ V (K0, ε). So we

conclude that γi0,n0 ⊂ K, i.e, K0 is a full cone.

Now, we will prove that Hr is a C(f) invariant set. Let K be a full cone, then

K =
⋃

(i,n)∈Σ

γi,n ∪∆r.

Thus, we have that

C(f)(K) = f(
⋃

(i,n)∈Σ

γi,n ∪∆r) =
⋃

(i,n)∈Σ

f(γi,n) ∪∆r =
⋃

(i,n)∈Σ

γi,n+1 ∪∆r.

Therefore, C(f)(K) is a full cone. Using the same argument above for C(f−1), we obtain

that Hr is C(f) invariant.

By Lemma 4.2.12, we have that (C(f), Hr) is a subsystem of (C(f), C(M)). Now, we

will show that C(f−1) contain a full shift of 2r symbols.

Lemma 4.2.13. The induced map C(f−1) : Hr → Hr is conjugate to the full shift

σ : ({0, 1}r)Z → ({0, 1}r)Z.

Proof. Let φ : Hr → ({0, 1}r)Z be a map defined by

φ(K) = ((w1,n, w2,n, ..., wr,n))n∈Z where wi,n =

 1, if γ̂i,n ∩K 6= ∅;

0, otherwise;

for every K ∈ Hr.

It is clear that φ is onto and injective. We claim that φ is continuous. In fact, let

{Kj}j∈N be a sequence of full cones such that dH(Kj, K) → 0 when j → ∞. Since the

sequence {γi,n}i∈{0,...,r−1}
n∈Z is not self-accumulated, for any ε > 0, small enough, there exist

j0, n0 ∈ N such that if |n| ≤ n0, i ∈ {0, ..., r − 1} and γ̂i,n ⊂ K then γ̂i,n ⊂ Kj for every

j ≥ j0. Therefore, d(φ(Kj), φ(K))→ 0 when j →∞ and thus φ is continuous. The fact

that σ ◦ Φ = Φ ◦ C(f−1)|Hr follows from:

γ̂i,n ∩K 6= ∅ ⇔ f−1(γ̂i,n) ∩ f−1(K) 6= ∅ ⇔ γ̂i,n−1 ∩ f−1(K) 6= ∅.
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We are ready to show the main result.

Theorem F. Let Mn be a compact, connected n-dimensional space with n ≥ 2 and

let f : Mn → Mn be a homeomorphism with three fixed points p, q and σ. If there exists

an infinite countable set A = {a0, a1, a2...} ⊂Mn such that

i. for every i ≥ 0, α(ai, f) = {p} and ω(ai, f) = {q},

ii. for every i ≥ 0, ai 6= p and ai 6= q,

iii. for every pair i 6= j, i ≥ 0, j ≥ 0,

{fk(ai) : k ∈ Z} ∩ {fk(aj) : k ∈ Z} = ∅,

iv. for every r ≥ 1 and i ∈ {0, 1, ..., r − 1}, there exist arcs γi from ai to σ, such that

the sequence {fk(γi)}i∈{0,...,r−1}
k∈Z is not self-accumulated.

Then h(C(f)) =∞.

Proof. Fix r ∈ N. We consider Hr ⊂ C(Mn) the set of full arcs and its induced map

C(f−1) : Hr → Hr. By Lemma 4.2.13 we have C(f−1) is semiconjugate to σ defined on

({0, 1}r)Z. Therefore,

h(C(f)) ≥ h(C(f−1)|Hr) = r log 2.

Since that r is fix but arbitrary, we obtain h(C(f)) =∞.

4.3 The induced continuum Morse-Smale diffeomor-

phism has infinite topological entropy

In section 4.2, we proved that some Morse-Smale diffeomorphisms admit a special den-

drite. However, it is not known if every Morse-Smale admits special dendrite. The next

theorem proves that the continuum map of every Morse-Smale diffeomorphism has infinite
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topological entropy. The technical issue that we still do not know how to deal with it

is the non self-accumulation of curves transversal to stable manifolds of saddles. Indeed,

this could happen due to the lambda-lemma. However, it is still possible, but we do

not know, that the special dendrite exists in a place where there are no such transversal

curves. We use the definition of topological entropy with separated sets, see section 2.3

in Preliminaries.

Theorem G. If f : M → M is a Morse-Smale diffeomorphism, then the topological

entropy of its induced map C(f) is infinite.

Proof. Without loss of generality, we can assume that f has only fixed points (otherwise

we pass to some iteration of f). It is known there are an attractor p and a repeller q such

that W s(p)∩W u(q) 6= ∅. Let Bs be an open ball with center at p such that f(∂Bs) ⊂ Bs

where ∂Bs = B
s \ Bs is the boundary of Bs. Let Qs = Bs \ f(B

s
) be the interior of

a fundamental domain for the stable manifold of p. Similarly, we consider Bu an open

ball with center at q such that f−1(∂Bu) ⊂ Bu where ∂Bu = B
u \ Bu is the boundary

of Bu and Qu = Bu \ f(B
u
) is the interior of a fundamental domain for the unstable

manifold of q. Since that W u(q) is a connected set we have ∂Bs ∩ W u(q) 6= ∅. Let

x ∈ ∂Bs ∩W u(q) 6= ∅ and consider the connected component of Qs ∩W u(q) with x in its

boundary and we denote this component by N . Notice that N is an open set of M .

Figure 4.3: Construction of the set N .

Consider y ∈ N , an arc γ with end points x and f(x) such that γ \ {x, f(x)} ⊂ Qs,

y ∈ γ and the subarc γ̂ ⊂ γ with end points y and x is contained in N ∪ {x}. Let m0 =

min{n : f−n(y) ∈ Qu} and ε > 0 small enough such that B(f i(y), ε) ∩ B(f j(y), ε) = ∅
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for i 6= j and i, j ∈ {0,−1,−2, ...,−m0}. By the continuity of f , we can consider an

arc β ⊂ N such that y is an end point of β, γ ∩ β = {y} and f j(β) ⊂ B(f j(y), ε) for

j ∈ {0,−1, ...,−m0}. Therefore, fn(β) ∩ fm(β) = ∅ for all n 6= m ∈ Z.

Lemma 4.3.1. There is η > 0 such that V (β, η) ∩ fn(γ) = ∅ for all n ∈ Z \ {0}.

Proof. Suppose that for every k ∈ N there is nk ∈ Z\{0} such that fnk(α)∩V (β, 1
k
) 6= ∅.

Then we have that there exists a subsequence of {fnk(xk)}, where xk ∈ α, such that

lim
k→∞

fnk(xk) ∈ β or lim
k→−∞

fnk(xk) ∈ β.

In the first case, we have there is nk big enough such that fnk(xk) ∈ B(y, ε) ⊂ N .

Then xk = f−nk(fnk(xk)) ∈ W u(q) \ Bs
that is a contradiction. In the second case, we

have there is nk big enough such that f−nk(xk) ∈ B(y, ε) ⊂ N . Therefore, the point

xk = fnk(f−nk(xk)) ∈ f(Bs) and that is a contradiction. Thus we obtain the desired

result.

Figure 4.4: Construction of γ, β and η arcs.

Lemma 4.3.2. If k ∈ N, there is δ > 0 such that s(n+ 1, C(f)−1, δ) ≥ kn for all n ∈ N.

Proof. Let y and z be the end points of the arc β. Fix ȳ ∈ β close to the point y and

consider δ0 small enough such that V ([ȳ, z], δ0) does not contain points of γ. Since [ȳ, z] is
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an arc, it is homeomorphic to interval [0, 1]. Let H : [ȳ, z]→ [0, 1] be a homeomorphism

such that H(ȳ) = 0 and H(z) = 1. Let η > 0 be given by Lemma 4.3.1 and let k ∈ N.

There exists δ < min{ 1
k
, η, δ0} such that

d(x, y) < δ implies |H(x)−H(y)| < 1

k
.

Let ai = H−1(i/k) for i = 1, ..., k − 1. Let n ∈ N, let σ = (σ0, σ1..., σn−1) ∈ {1, 2, ..., k}n

and let Cσ be the subtree of Λ =
⋃
j∈Z f

j(γ ∪ β) defined as follow:

Cσ =
n−1⋃
j=0

f j([aσj , y]) ∪
n−2⋃
j=0

f j(γ).

If σ 6= σ
′ ∈ {1, 2, ..., k}n, there is j0 ∈ {0, 1, ..., n − 1} such that σj0 6= σ

′
j0

. Without loss

of generality, we can assume σj0 < σ
′
j0

. Then

∣∣σ′j0
k
− t
∣∣ > 1

k
for all t ∈

[
0,
σj0
k

]
.

By the continuity of H we have that

d(aσ′j0
, H−1(t)) > δ for all t ∈

[
0,
σj0
k

]
.

If it is necessary, we consider a smaller δ > 0 such that

aσ′j0
∈ f−j0(Cσ′ ) and aσ′j0

/∈ V (f−j0(Cσ), δ).

Therefore dH(f−j0(Cσ), f−j0(Cσ′ )) ≥ δ. Thus, the set {Cσ : σ ∈ {1, ..., k}n} ⊂ C(Λ
′
) is

(n,C(f)−1, δ)-separated set and s(n,C(f)−1, δ) ≥ kn.

As a consequence, h(C(f−1)) ≥ ln(k) for all k ∈ N. By definition of topological

entropy, we have h(C(f)) = h(C(f)−1) =∞.
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Chapter 5

Entropy of induced continuum

dendrite homeomorphisms

Chapters 2 and 3 were devoted to study the topological entropy of the induced maps 2f

and C(f) of Morse-Smale diffeomorphisms. Our motivation was the fact that the set of

topological entropy of Morse-Smale diffeomorphisms is zero. Another class of dynami-

cal systems with this property are the dendrite homeomorphisms, see [2]. In particular,

homeomorphisms on the interval belong to this class. The dynamics of dendrite homeo-

morphisms can be more complicated than Morse-Smale diffeomorphisms. In Section 2.5,

we presented a folklore example of a dendrite homeomorphism such that the periodic

points is dense in the dendrite.

In 2010, M. Lampart and P. Raith [27], proved that if f : I → I is a homeomorphism

on the interval, then the topological entropy of the induced map 2f is zero or infinite.

Moreover, the topological entropy of the induced continuum map C(f) is zero.

In 2015, P. Hernández and H. Méndez [22], generalized the above result to the in-

duced dendrites homeomorphisms. The authors proved that if f : D → D is a dendrite

homeomorphism, then the topological entropy of 2f is infinity if and only if the set of

recurrent points of f is different from D. We can ask if the topological entropy of the

induced continuum map is still zero. Nevertheless, there are examples in [3] and [1] of

dendrite homeomorphisms f : D → D such that its induced continuum map C(f) has
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infinite topological entropy. Thus, it is possible to formulate the following dichotomy:

Conjecture. Let f : D → D be a dendrite homeomorphism. Then the topological

entropy of C(f) : C(D)→ C(D) has only two values: 0 or ∞.

In this chapter we prove the Conjecture but for a subclass of dendrite homeomor-

phisms. We will see that the existence of no-recurrent branch points could generate

infinite topological entropy in the continuum hyperspace. The main result of this chapter

is the following

Theorem H. Let f : D → D be a dendrite homeomorphism. Then

i. If there is a no-recurrent branch point in D, then the topological entropy of its

induced map C(f) is ∞.

ii. If each point in D is a recurrent point, then the topological entropy of its induced

map C(f) is 0.

In order to show the item i. of Main Theorem, we divided the proof in two cases.

The first case, Theorem I stated below, is when the connected component of D \ R(f)

which contains the non-recurrent points is fn-invariant for some n ∈ N. Some dynamical

properties of f restricted to the closure of the connected component allow us to construct a

special chaotic dendrite (see Definition 4.2.1) and, therefore, to obtain infinite topological

entropy of its induced continuum dendrite homeomorphism as follows:

Theorem I. Let f : D → D be a homeomorphism such that R(f) 6= D. Let x0 ∈

D \ R(f) be a branch point and let U be the component of D \ R(f) that contains x0.

If there is an n ∈ N such that U is fn-invariant, then f admits a special dendrite. In

particular h(C(f)) =∞.

The second case, Theorem J stated below, is the opposite case of Theorem I, i.e., it is

when the connected component of D \ R(f), which contains the non-recurrent points, is

not fn-invariant for any n ∈ N. We will see that despite we do not have sufficient tools to

construct a special dendrite, it is possible to prove that the topological entropy of C(f) is

infinite. We will use the definition of topological entropy with the notion of separated sets

given by Bowen-Dinaburg. For interested readers see the definition of topolgical entropy
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in Chapter 1.

Theorem J Let f : D → D be a homeomorphism such that R(f) 6= D. Let x0 ∈

D \R(f) be a branch point and let U be the component of D \R(f) that contains x0 and

suppose it is not fn-invariant for any n ∈ N. Then h(C(f)) =∞.

The item ii. is a direct consequence of Theorem 6.6 of P. Hernández and H. Méndez

in [22]

The reader is advised to read Section 1.5 of Chapter 1 before to begin the reading of

the following sections, since basic properties of dendrite homeomorphisms will be used.

This chapter is organized as follows: In Section 5.1, we present a proof of Theorem I.

In Section 5.2, we give a proof of Theorem J. Finally, in Section 4.3, we present a proof

of the Main Theorem.

5.1 Proof of Theorem I

As we mentioned before, this section is devoted to show:

Theorem I. Let f : D → D be a homeomorphism such that R(f) 6= D. Let x0 ∈

D \ R(f) a branch point and U be the component of D \ R(f) that contains x0. If there

is n ∈ N such that U is fn-invariant then f admit a special dendrite. In particular

h(C(f)) =∞.

To prove Theorem I, we will construct a special chaotic dendrite in the closure of the

connected component of the non-recurrent branch points as can be seen in 5.1.4. But to

show this result we need an auxiliary lemmas: Lemmas 5.1.1, 5.1.2 and 5.1.3.

In Lemma 5.1.1, we show that the dynamics of some iterate of f restricted to the

closure of the connected component of the non-recurrent branch points is simple in the

following sense: there exist only two fixed points, one attractor and one repeller. Also, this

fixed points are end points and the closure of the orbit of any other point in the connected

component is the orbit together with the fixed points. The proof of this Lemma was given

by P. Hernández and H. Méndez in [22], Proposition 6.1, however we include it here.
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Lemma 5.1.2 and 5.1.3 are dedicated to give sufficient conditions to construct the

special chaotic dendrite. We follow the ideas of P. Hernández and H. Méndez in [22]. And

finally, we prove in 5.1.4 that f admits a special chaotic dendrite.

Proof of Theorem I. Let x0 ∈ D \ R(f) be a branch point and let U be the connected

component of D\R(f) that contains the point x0. We assume for simplicity that ord(x0) =

3. Notice that the sets R(f) and D \ R(f) are strongly invariant under f . Let N =

min{n ∈ N : fn(U) = U} and let g : W → W be the dendrite homeomorphism given by

g = fN and W = cl(U). Since g(U) = U , g(W ) = W .

Lemma 5.1.1. Let g : W → W be a dendrite homeomorphism defined above. Then g has

exactly two fixed points in dendrite W and both of them are end points of W . Furthermore,

Per(g) = Fix(g).

Proof. By Proposition 2.5.12, there exists a fixed point w0 ∈ W of g. Since w0 is not in

U , w0 ∈ W \ U . By Proposition 2.5.1, W \ {w0} is a connected set and, by Theorem

2.5.3 item ii., w0 is an end point of W . Lemma 2.5.16 implies that there exists another

fixed point of g in W . Let w1 ∈ Fix(g) ∩W , w0 6= w1. Note that w1 is an end point of

W . Observe that, g can not have a third fixed point in W . In fact, if g had a third fixed

point, by Lemma 2.5.17, there would exist a cut point w of W such that g(w) = w, a

contradiction. Therefore g has exactly two fixed points in W and both of them are end

points of W .

Now, suppose that there exists u ∈ Per(g) \ Fix(g), where Fix(g) = {w0, w1}. So,

gk(u) = u for some k ∈ N. Note that u is an end point of W . If we consider the dendrite

homeomorphism G = gk : W → W , then {w0, w1, u} ⊂ Fix(G) and Lemma 2.5.17

implies there exists a cut point ū of W such that ū ∈ Fix(G), a contradiction.

Let w0 and w1 be the two fixed points in W . By Lemma 2.5.18, we can assume,

without loss of generality, w0 is an attractor point, w1 is a repeller point and for all

x ∈ W \ {w0, w1}

ω(x, g) = {w0} and α(x, g) = {w1}.

On the other hand notice that the arc [w0, w1] is strongly invariant under g.
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Lemma 5.1.2. There exist a point u ∈ W \ [w0, w1] and a point x ∈ (w0, w1) such that

[u, x] ∩ [w0, w1] = {x}.

Proof. By hypothesis of Theorem I., x0 ∈ D\R(f) and ord(x0) = 3, then x0 ∈ W \E(W ),

where E(W ) denote the set of end points of W . Then we have two possibilities: either

x0 ∈ (w0, w1) or x0 /∈ (w0, w1).

First suppose that x0 ∈ (w0, w1). Since ord(x0) = 3, we can consider a point u ∈

W \ [w0, w1] such that [u, x0] ∩ [w0, w1] = {x0}.

If x0 /∈ (w0, w1) then there exists x ∈ (w0, w1) such that [x0, x]∩ [w0, w1] = {x}. Thus,

we consider u = x0.

Figure 5.1: Construction of special dendrite.

Lemma 5.1.3. Let x ∈ (w0, w1). Then [x, g(x)] ∩ [g(x), g2(x)] = {g(x)} and, therefore,

it is an arc.

Proof. Since the arc [w0, w1] is strongly invariant under g, we have that gj(x) ∈ (w0, w1)

for all x ∈ (w0, w1) and each j ∈ Z. Thus, [x, g(x)] is a subarc of (w0, w1). We shall show

that [x, g(x)] ∩ [g(x), g2(x)] = {g(x)}. Suppose, on the contrary, that either [x, g(x)] ∩

[g(x), g2(x)] = [g(x), g2(x)] or [x, g(x)] ∩ [g(x), g2(x)] = [x, g(x)]

If [x, g(x)] ∩ [g(x), g2(x)] = [g(x), g2(x)] then g2(x) ∈ (x, g(x)). This implies that

g3(x) ∈ (g(x), g2(x)) but (g(x), g2(x)) ⊂ [x, g(x)] therefore g3(x) ∈ [x, g(x)]. By induc-

tion, we have that gj(x) ∈ [x, g(x)] for all j ≥ 0. As a consequence ω(x) ⊂ [x, g(x)] which

is a contradiction.
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If [x, g(x)] ∩ [g2(x), g(x)] = [x, g(x)] then [x, g(x)] ⊂ [g2(x), g(x)]. Thus, we have that

g([x, g(x)]) = [g2(x), g(x)] and x ∈ [g2(x), g(x)]. So iterating we obtain

[g2(x), g(x)] ∩ [g2(x), g3(x)]) = [g2(x), g(x)].

Then [g2(x), g(x)] ⊂ [g2(x), g3(x)] and g(x) ∈ [g2(x), g3(x)]. Continuing with the same

argument, we obtain a subsequence {gnk(x)} such that limnk→∞ g
nk(x) 6= w0, a contra-

diction.

Lemma 5.1.4. Let g : W → W be the homeomorphism defined above. Then g admits a

special dendrite.

Proof. Let u, x be points in W given by Lemma 5.1.2. Since the dendrite W does not have

simple closed curves, for each n ∈ N the arc gn([u, x]) = [gn(u), gn(x)] is disjoint from the

arc [u, x]. This implies that for every pair n,m ∈ Z, with n 6= m, gn([u, x])∩gm([u, x]) = ∅.

Therefore, by Proposition 2.5.7, we have

lim
n→∞

diam(gn([u, x])) = 0 and lim
n−→∞

diam(gn([u, x])) = 0.

Now, consider the set Λ =
⋃
j∈Z g

j([u, x]) ∪ [w0, w1] and note that, by construction, it

is a connected compact and g-invariant set. We claim g|Λ is conjugated to F defined in

Section 4.2, Case 1. Indeed, it is known (see [31], p. 3) that there is a homeomorphism

G : [u, x]∪ [x, g(x)]→ L0∪ ([0, 1
2
]×{0}) which preserves the end points, i.e., G(u) = (0, 1)

and G(g(x)) = (1
2
, 0). Besides, we can consider G such that G(x) = (0, 0). Define the

conjugation H : Λ→ pq
⋃

(∪n∈ZLn) by induction as follows:

• H(w0) := p and H(w1) := q,

• If y ∈ [u, x] ∪ [x, g(x)], then H(y) := G(y),

• If y ∈
⋃
j∈Z\{0} g

j([u, x]∪ [x, g(x)]), then there exists j0 ∈ Z\{0} such that g−j0(y) ∈

[u, x] ∪ [x, g(x)]. Thus, we let H(y) := F j0 ◦G ◦ g−j0(y).

By definition, H is a homeomorphism. Now, we claim that H ◦ g|Λ = F ◦ H. In

fact, this is clear if y ∈ Fix(g|Λ). If y is not a fixed point, there exists j0 ∈ Z such that
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g−j0(y) ∈ [u, x] ∪ [x, g(x)]. So

H(g(y)) = F (j0+1) ◦G ◦ g−j0−1(g(y)) = F ◦ F j0 ◦G ◦ g−j0(y) = F ◦H(y).

Finally, by Lemma 5.1.4, Proposition 2.3.4 and Theorem E., we have that

h(C(f)) ≥ h(C(fN |Λ)) = h(C(g|Λ)) =∞.

5.2 Proof of Theorem J

This section is devoted to show

Theorem J. Let f : D → D be a homeomorphism such that R(f) 6= D. Let x0 ∈

D \R(f) be a branch point and let U be the component of D \R(f) that contains x0 and

it is not fn-invariant for any n ∈ N. Then h(C(f)) =∞.

This theorem is the opposite case of Theorem I. Although we do not have sufficient

tools to construct a special chaotic dendrite, it is possible to prove that the topological

entropy of the induced continuum map C(f) is infinite. By definition of topological

entropy using separated sets, we prove that the topological entropy of the continuum

map C(f) is as big as we want.

Proof of Theorem J. To say that U is not fn-invariant for any n ∈ N is equivalent to

say that fn(U) ∩ U = ∅ for all n ∈ N. So, for each pair n,m ∈ Z, with n 6= m,

fn(U) ∩ fm(U) = ∅. Therefore, according to Proposition 2.5.7

lim
n→∞

diam(fn(U)) = 0 and lim
n→−∞

diam(fn(U)) = 0.

As in the proof of Theorem I., we assume for simplicity that ord(x0) = 3. Therefore,

we can consider three points a, b, c ∈ U such that each one of them belongs to one

component of (D \ {x0}) ∩ U and the arcs [a, x0], [b, x0] and [c, x0] are contained in U .
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We set Wn = fn([a, x0]∪ [b, x0]∪ [c, x0]) for all n ∈ N. Moreover, there exist y0 ∈ W0 and

y1 ∈ W1 such that [y0, y1] ∩W0 = {y0} and [y0, y1] ∩W1 = {y1}. For instance, y0 and y1

are such that [a, f(c)] ∩W0 = [a, y0] and [a, f(c)] ∩W1 = [y1, f(c)].

Notice that the arc [y0, y1] can intersect at most a finite number of Wi. Therefore,

consider N = max{|n| : [y0, y1]∩Wn 6= ∅} and the points ȳ0 ∈ W0 and ȳ1 ∈ WN such that

the arc [ȳ0, ȳ1] ∩W0 = {ȳ0} and [ȳ0, ȳ1] ∩WN = {ȳ1}.

In addition, let Λ =
⋃
j∈Z f

Nj(W0 ∪ [ȳ0, ȳ1]) be a connected compact fN -invariant

subset of D and let β be the branch of W0 such that β ∩ {ȳ0, f
−N(ȳ1)} = ∅.

Figure 5.2: Construction of Λ if [ȳ0, ȳ1] ∩ Fix(fN) = ∅.

Figure 5.3: Construction of Λ if [ȳ0, ȳ1] ∩ Fix(fN) = {p}.

Now, we need the following lemma to have more information about the dynamics of

fN |Λ in a neighborhood of β and, thus, we can find a sufficient number of separate sets.

Let g : Λ→ Λ be the dendrite homeomorphism given by g = fN .
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Lemma 5.2.1. There exists η > 0 such that

i. For every n 6= 0, V (β, η)
⋂
gn(W0) = ∅,

ii. For every n 6= 0,−1, V (β, η)
⋂
gn([ȳ0, ȳ1]) = ∅,

where V (β, η) =
⋃
x∈β B(x, η) is a neighborhood of β.

Proof. First, we show that there exists η1 > 0 that satisfies i. Then we show that there

exists η2 > 0 that satisfies ii. and finally we consider η = min{η1, η2}.

i. Suppose (arguing by contradiction) that for all k ∈ N, there exists nk 6= 0 such that

V (β, 1/k)
⋂

gnk(W0) 6= ∅.

We have two cases. Assume first that the set

A = {nk : nk ∈ Z \ {0} and V (β, 1/k) ∩ gnk(W0) 6= ∅}

is finite: i.e., A = {n1, ..., nk0}. Since both β and gnj(W0) are disjoint compact sets, there

exists k ∈ N big enough such that

V (β, 1/k) ∩ V (gnj(W0), 1/k) = ∅

for j = 1, ..., k0 which is a contradiction.

If the set A is infinite, then we can assume, without loss of generality, that nk > 0

for every k. So, there exist x ∈ W0 and y ∈ β such that gnk(xk) → y when k → ∞ and

xk → x when k →∞. We claim y ∈ ω(y, g). In fact, let ε > 0. Then there is k0 ∈ N such

that d(gnk(xk), y) < ε for all k ≥ k0. We can assume that

d(gnk(xk), y) > d(gnk+1(xk+1), y) for all k ≥ k0

Let δ = min{d(gnk0 (xnk0
), y), ε− d(gnk0 (xnk0

), y)}. So we have that

B(gnk(xnk), δ) ⊂ B(y, ε) for all k ≥ k0.

On the other hand, since lim
n→∞

diam(gn(U)) = 0, there existsN ∈ N such that diam(gn(U)) <

2δ and, therefore:

gnk(xk) ∈ gnk(U) ⊂ B(gnk(xk), δ) for all nk ≥ N.
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Thus, if nk ≥ max{N, nk0}, then gnk(y) ∈ B(y, ε) which concludes.

ii. Suppose (arguing by contradiction) that for all k ∈ N, there exists nk 6= 0,−1 such

that

V (β, 1/k) ∩ gnk([ȳ0, ȳ1]) 6= ∅.

As above, we consider the set

A = {nk : nk ∈ Z \ {0,−1} and V (β, 1/k) ∩ gnk(([ȳ0, ȳ1]) 6= ∅}.

Therefore, if A is a finite set with the same argument as above, we have a contradiction.

If A is an infinite set, we can assume, without loss of generality, that nk > 0 for every k.

So, there are a sequence {xk}k∈N in [ȳ0, ȳ1] and {nk}k∈N in A such that gnk(xk)→ y ∈ β

and xk → x ∈ [ȳ0, ȳ1] when k → ∞. Let ε < η1, there exists δ < ε such that satisfies

Proposition 2.5.8, that is, for any pair of points a, b ∈ D with d(a, b) < δ implies

diam([a, b]) < ε. Also, there exists k0 ∈ N such that d(y, gnk0 (xk0)) < δ and d(x, xk0) < δ.

Thus, according Proposition 2.5.8,

diam([y, gnk0 (xk0)]) < ε

and, therefore, [y, gnk0 (xk0)] ⊂ B(y, ε). Meanwhile, by the construction of set Λ we have

[y, gnk0 (xk0)] ∩ gj(W0) 6= ∅

for j = 1, ..., nk0 which contradicts item i.

Lemma 5.2.2. If k ∈ N, there is δ > 0 such that s(n+ 1, C(g)−1, δ) ≥ kn for all n ∈ N.

Proof. Without loss of generality, we can assume that β = [x0, b]. Fix ā ∈ (x0, a) close to

the point x0 and consider δ0 small enough such that V ([ā, a], δ0) does not contain points

of ([ȳ0, ȳ1] ∪W0)
⋃
f−N([ȳ0, ȳ1] ∪W0) \ (x0, a]. Since [ā, a] is an arc, it is homeomorphic

to interval [0, 1]. Let H : [ā, a] → [0, 1] be a homeomorphism such that H(ā) = 0

and H(a) = 1. Let η > 0 be given by Lemma 5.2.1 and let k ∈ N. There exists

δ < min{ 1
k
, η, δ0} such that

d(x, y) < δ implies |H(x)−H(y)| < 1

k
.
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Set ai = H−1(i/k) for i = 1, ..., k − 1. Let n ∈ N, let σ = (σ0, σ1..., σn−1) ∈ {1, 2, ..., k}n

and let Cσ the subtree of Λ =
⋃
j∈Z g

j(W0 ∪ [ȳ0, ȳ1]) defined as follows:

Cσ =
n−1⋃
j=0

gj([aσj , x0]) ∪
n−2⋃
j=0

gj([ȳ0, ȳ1] ∪ [a, x0] ∪ [b, x0]).

If σ 6= σ
′ ∈ {1, 2, ..., k}n, there is j0 ∈ {0, 1, ..., n − 1} such that σj0 6= σ

′
j0

. Without loss

of generality, we can assume that σj0 < σ
′
j0

. Then

∣∣σ′j0
k
− t
∣∣ > 1

k
for all t ∈

[
0,
σj0
k

]
.

By the continuity of H, we have that

d(aσ′j0
, H−1(t)) > δ for all t ∈

[
0,
σj0
k

]
.

If it is necessary, we consider a smaller δ > 0 such that

aσ′j0
∈ g−j0(Cσ′ ) and aσ′j0

/∈ V (g−j0(Cσ), δ).

Therefore, dH(g−j0(Cσ), g−j0(Cσ′ ) ≥ δ. Thus, the set {Cσ : σ ∈ {1, ..., k}n} ⊂ C(Λ) is

(n,C(g)−1, δ)-separated set and s(n,C(f)−1, δ) ≥ kn.

According to Lemma 5.2.2, if k ∈ N, then there is δ > 0 such that for all n ∈ N

s(n,C(g)−1, δ) ≥ kn. So, for all n ∈ N

1

n
log s(n,C(g)−1, δ) ≥ log k

and the definition of topological entropy gives us

h(C(g)−1) = lim
δ→0

lim sup
1

n
log s(n,C(g)−1, δ) ≥ log k.

Thus, we conclude that h(C(f)) = h(C(g)) = h(C(g)−1) =∞.

5.3 Proof of Theorem H

Now we are ready to prove:

Theorem H Let f : D → D be a dendrite homeomorphism. Then
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i. if there exists a branch point x0 in D \R(f), then h(C(f)) =∞, and

ii. if R(f) = D, then h(C(f)) = 0.

Proof. i. Let x0 ∈ D \R(f) and let U be a component of D \R(f) that contains the point

x0. We assume that ord(x0) = 3 for simplicity. Note that the sets R(f) and D \ R(f)

are strongly invariant under f . Since f is a homeomorphism, for all n ∈ Z, fn(U) is

a component of D \ R(f). We consider two cases. First, there exists n ∈ N such that

fn(U) = U . Then by Theorem I, we have that h(C(f)) =∞. The other case is if for all

n ∈ N, fn(U) ∩ U = ∅. Then by Theorem J we have that h(C(f)) =∞.

ii. The proof follows directly from Theorem 6.6 in [22].
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Chapter 6

Appendix

6.1 Questions

• Does there exist a dynamical system (X, f) such that

h(C(f)) < h(Cn(f)) < h(2f )

for some n ≥ 2?

• If X is a continuum and f : X → X is an expansive homeomorphism with positive

entropy then is h(C(f)) =∞?

• If X is a continuum with dim(X) ≥ 2 and f : X → X is a homeomorphism with

positive entropy, then is h(C(f)) =∞?

• Let f : D → D be a dendrite homeomorphism such that for every x ∈ D \ R(f),

ord(x) ≤ 2. Then is h(C(f)) ∈ {0,∞}?

• If f is a partial hyperbolic diffeomorphism, then is C(f) transitive?
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