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Abstract

SÁNCHEZ SANABRIA, Henry Mauricio. Three-dimensional Venice masks. Rio de
Janeiro, 2017. Thesis (Ph D in Mathematics), Instituto de Matemática - Universidade
Federal do Rio de Janeiro, Rio de Janeiro, 2017.

Let M be a compact 3-manifold and let X be a vector field Cr, r ≥ 1 on M . The flow
generated by X is denoted by Xt, t ∈ IR. An attracting set is a set to which all nearby
positive orbits converge. An subset Λ ⊂ M is transitive if Λ = ωX(x) for some x ∈ Λ. A
closed orbit is a compact orbit (singularity or periodic orbit).

A compact invariant set Λ is sectional-hyperbolic for Xt if Λ is partially-hyperbolic
with area expanding on each two-dimensional space in the central subbundle, and each
singularity in Λ is hyperbolic.

The flow Xt is sectional-Anosov, if the maximal invariant set of X defined by M(X) =⋂
t≥0Xt(M) is sectional-hyperbolic. A sectional-Anosov flow is called Venice mask if it is

not transitive but has dense periodic orbits.

In this work we prove the following results:

1. Three-dimensional Venice masks with two equilibria do exist. Indeed, we present
different types depending on the intersection of the homoclinic classes composing the
corresponding maximal invariant set.

2. For each n ∈ N there are three-dimensional Venice masks containing exactly n equi-
libria. These examples are characterized by the maximal invariant set which is finite
union of homoclinic classes. Here, the intersection of two different homoclinic classes
is contained in the closure of the union of unstable manifolds of the singularities.

3. For every three-dimensional Venice mask the omega-limit set of every non-recurrent
point in the unstable manifold of some singularity is a closed orbit.

4. The intersection of two different homoclinic classes of a sectional-Anosov flow de-
composes as the disjoint union of singular points, non-singular hyperbolic sets, and
regular points whose alpha and omega-limit sets are either singular points or non-
singular hyperbolic sets.
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Resumo

SÁNCHEZ SANABRIA, Henry Mauricio. Three-dimensional Venice masks. Rio de
Janeiro, 2017. Tese (Doutorado em Matemática), Instituto de Matemática - Universidade
Federal do Rio de Janeiro, Rio de Janeiro, 2017.

Seja M uma 3-variedade compacta e seja X um campo vetorial Cr, r ≥ 1 em M . O fluxo
gerado por X é denotado por Xt, t ∈ IR. Um sumidouro é um conjunto compacto tal que
a órbita positiva de cada ponto perto dele converge ao conjunto. Um subconjunto Λ ⊂M
é transitivo se Λ = ωX(x) para algum x ∈ Λ. Uma órbita fechada é uma singularidade ou
órbita periódica.

Um conjunto compacto invariante Λ é seccional-hiperbólico para Xt se Λ é parcialmente-
hiperbólico, expande volume em cada espaço 2-dimensional do subfibrado central, e cada
singularidade em Λ é hiperbólica.

O fluxo Xt é dito seccional-Anosov, se o conjunto maximal invariante de X definido por
M(X) =

⋂
t≥0Xt(M) é seccional-hiperbólico. Um fluxo seccional-Anosov não transitivo é

dito máscara de Veneza se este possui órbitas periódicas densas.

Neste trabalho vamos provar os seguintes resultados:

1. A existência de duas máscaras de Veneza diferentes, cada uma contendo duas sin-
gularidades sobre alguma 3-variedade compacta. Com efeito, são apresentados dois
tipos de exemplos nos quais as classes homocĺınicas compondo o seu conjunto maxi-
mal invariante têm interseção de um modo muito diferente.

2. Para cada n ∈ N, se mostra a existência de uma máscara de Veneza com n singular-
idades suportada em alguma 3-variedade compacta. Os exemplos são caracterizados
devido a que o conjunto maximal invariante é união de finitas classes homocĺınicas.
Aqui, a interseção entre duas classes homocĺınicas diferentes é contida no fecho da
união das variedades instáveis das singularidades de X.

3. Para toda máscara de Veneza definida em uma 3-variedade compacta M , o con-
junto omega-limite de todo ponto não recorrente na variedade instável de alguma
singularidade, é uma órbita fechada.

4. A interseção de duas classes homocĺınicas diferentes de um fluxo seccional-Anosov é
obtida como a união disjunta de pontos singulares, conjuntos hiperbólicos não singu-
lares, e pontos regulares cujo α-limite e ω-limite são pontos singulares ou conjuntos
hiperbólicos não singulares.
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In the beginning there was π:

eπi + 1 = 0 (1)
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CHAPTER

ONE

INTRODUCTION

The theory of dynamical systems deals with the asymptotic behavior of the orbits of a
given EDO or map. Because of the impossibility of finding explicit solutions in most of
these systems it was proposed proposed to study the qualitative behaviour of the solution
without actually finding them. An example of this study is the phenomenom of transverse
homoclinic points. Birkhoff proved that any tranverse homoclinic orbit is accumulated
by periodic points. The introduction of the uniformly hyperbolic dynamical systems by
Smale [39] allowed to develop a study of robust models containing infinitely many peri-
odic motions. However, the uniform hyperbolicity was soon proved to be less universal
as initially thought. In fact, many classes nonuniformly hyperbolic systems coming from
specific models in applications appeared. This motivated the formulation of weaker forms
of hyperbolicity as existence of dominated splitting including the partial and sectional hy-
perbolicities.

Of particular interest are the sectional-hyperbolic sets and sectional-Anosov flows intro-
duced in [28] and [22] to generalize the hyperbolic sets and Anosov flows. Their importance
rely on the robustly transitive property in dimension three of certain sectional-Anosov flows
[34], and on important examples such as the saddle type hyperbolic attracting sets, the
singular horseshoe, the geometric and multidimensional Lorenz attractors [1], [12], [15].

With respect to robustly transitive property, we can mention a clue fact in the scenario
of sectional-Anosov flows. As a consequence of the main result in [3] and Theorem 32 in [6]
it follows that every three-dimensional sectional-Anosov flow with a unique singularity is
Cr robustly periodic if and only if is Cr robustly transitive. Recall that a Cr vector field is
Cr robustly transitive or Cr robustly periodic depending on whether every Cr vector field
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Cr-close to it is transitive or has dense periodic orbits.

But unlike the Anosov flows there is no equivalence between transitivity and density of
periodic orbits for sectional-Anosov flows. Indeed, there are sectional-Anosov flows which
are not transitive but with dense periodic orbits. Another important property related to
hyperbolic sets which is not satisfied by general sectional-hyperbolic sets is the Smale’s
spectral decomposition [39]. It says that any attracting hyperbolic set with dense periodic
orbits splits into finitely many disjoint homoclinic classes. The examples in [10] and [32]
show that this spectral decomposition is false for general sectional-Anosov flows.

In this context the definition of Venice mask comes in a natural way: A Venice mask is
a sectional-Anosov flow which is not transitive but has dense periodic orbits. Such flows
are necessarily non-Anosov or, equivalently, with at least one singularity. An example with
just one singularity was exhibited in [10], and one with three singularities was provided
in [32]. Such examples are characterized by the fact that their maximal invariant sets are
the union of two (of course different) homoclinic classes intersecting along the unstable
manifold of a singularity [32], [31], [10]. Recall that the unstable manifold of a hyperbolic
singularity σ is formed by points whose negative orbit converges to σ.

It is natural to ask if there are Venice maks with more singularities and precisely if for
each positive integer n there is one with exactly n singularities. It is one of the objectives
of this thesis to exhibit examples of three-dimensional Venice masks with two singularities.
Namely following the ideas given in [10] we will construct in Chapter 3 two types of Venice
masks containing two singularities.

In Chapter 4 we show how generate new examples. First of all, we will briefly described
some properties of the examples in [10], [32], [21]. Afterwards, we derive Venice maks with
an even number of singulairites from the examples in Chapter 3. Also, from the example
in [32] will be constructed Venice masks containing an odd number of singularities. An
important conclusioin from these constructions will be that in general the maximal invari-
ant set need not be the union of just two homoclinic classes. Indeed, for every n ∈ N
we will construct a Venice mask whose maximal invariant set is precisely the union of n
homoclinic classes. Moreover, for these flows the intersection of two different homoclinic
classes is contained in the closure of the union of the unstable manifold of the singularities.

To finish, in Chapter 5 we will study some properties associated to the dynamics of
Venice masks and homoclinic classes of sectional-Anosov flows. Specifically we show for
Venice masks that every non-recurrent point in the unstable manifold of a singularity is
either a singular point or a hyperbolic periodic orbit. This result can be seen as an extension
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of the sectional-connecting lemma given in [8]. Moreover, we will describe the intersection
of two different homoclinic class of any three-dimensional sectional-Anosov flow.
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CHAPTER

TWO

PRELIMINARIES

2.1 Definitions and notation

Consider a Riemannian compact manifold M of dimension three (a compact 3-manifold
for short). M is endowed with a Riemannian metric 〈·, ·〉 and an induced norm ‖·‖. We
denote by ∂M the boundary of M . Let X 1(M) be the space of C1 vector fields in M
endowed with the C1 topology. Fix X ∈ X 1(M), inwardly transverse to the boundary ∂M
and denotes by Xt the flow of X, t ∈ IR.

The omega-limit set of p ∈ M is the set ωX(p) formed by those q ∈ M such that
q = limn→∞Xtn(p) for some sequence tn → ∞. The alpha-limit set of p ∈ M is the set
αX(p) formed by those q ∈ M such that q = limn→∞Xtn(p) for some sequence tn → −∞.
Given Λ ∈M compact, we say that Λ is invariant if Xt(Λ) = Λ for all t ∈ IR. We also say
that Λ is transitive if Λ = ωX(p) for some p ∈ Λ; singular if it contains a singularity and
attracting if Λ = ∩t>0Xt(U) for some compact neighborhood U of it. This neighborhood
is often called isolating block. It is well known that the isolating block U can be chosen to
be positively invariant, i.e., Xt(U) ⊂ U for all t > 0. An attractor is a transitive attracting
set. An attractor is nontrivial if it is not a closed orbit.

The maximal invariant set of X is defined by M(X) =
⋂
t≥0Xt(M).

Definition 2.1.1. A compact invariant set Λ of X is hyperbolic if there are a continuous
tangent bundle invariant decomposition TΛM = Es⊕EX ⊕Eu and positive constants C, λ
such that
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• EX is the vector field’s direction over Λ.

• Es is contracting, i.e., ‖DXt(x)
∣∣
Esx ‖ ≤ Ce−λt, for all x ∈ Λ and t > 0.

• Eu is expanding, i.e., ‖DX−t(x)
∣∣
Eux ‖ ≤ Ce−λt, for all x ∈ Λ and t > 0.

A compact invariant set Λ has a dominated splitting with respect to the tangent flow if
there are an invariant splitting TΛM = E ⊕ F and positive numbers K,λ such that

‖DXt(x)ex‖ · ‖fx‖ ≤ Ke−λt‖DXt(x)fx‖ · ‖ex‖, ∀x ∈ Λ, t ≥ 0, (ex, fx) ∈ Ex × Fx.

Notice that this definition allows every compact invariant set Λ to have a dominated
splitting with respect to the tangent flow (See [9]): Just take Ex = TxM and Fx = 0, for
every x ∈ Λ (or Ex = 0 and Fx = TxM for every x ∈ Λ).

A compact invariant set Λ is partially hyperbolic if it has a partially hyperbolic splitting,
i.e., a dominated splitting TΛM = E⊕F with respect to the tangent flow whose dominated
subbundle E is contracting in the sense of Definition 2.1.1.

The Riemannian metric 〈·, ·〉 of M induces a 2-Riemannian metric [35],

〈u, v/w〉p = 〈u, v〉p · 〈w,w〉p − 〈u,w〉p · 〈v, w〉p, ∀p ∈M,∀u, v, w ∈ TpM.

This in turns induces a 2-norm [14] (or areal metric [20]) defined by

‖u, v‖ =
√
〈u, u/v〉p ∀p ∈M,∀u, v ∈ TpM.

Geometrically, ‖u, v‖ represents the area of the paralellogram generated by u and v in
TpM .

If a compact invariant set Λ has a dominated splitting TΛM = F s⊕F c with respect to
the tangent flow, then we say that its central subbundle F c is sectionally expanding if

‖DXt(x)u,DXt(x)v‖ ≥ K−1eλt‖u, v‖, ∀x ∈ Λ, u, v ∈ F c
x , t ≥ 0.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of its linear
part have non zero real part.

By a sectional-hyperbolic splitting for X over Λ we mean a partially hyperbolic splitting
TΛM = F s ⊕ F c whose central subbundle F c is sectionally expanding.
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Definition 2.1.2. A compact invariant set Λ is sectional-hyperbolic for X if its singular-
ities are hyperbolic and if there is a sectional-hyperbolic splitting for X over Λ.

Definition 2.1.3. We say that X is a sectional-Anosov flow if M(X) is a sectional-
hyperbolic set.

The Invariant Manifold Theorem [18] asserts that if x belongs to a hyperbolic set H of
X, then the sets

W ss
X (p) = {x ∈M : d(Xt(x), Xt(p))→ 0, t→∞} and

W uu
X (p) = {x ∈M : d(Xt(x), Xt(p))→ 0, t→ −∞},

are C1 immersed submanifolds of M which are tangent at p to the subspaces Es
p and

Eu
p of TpM respectively.

W s
X(p) =

⋃
t∈R

W ss
X (Xt(p)) and W u

X(p) =
⋃
t∈R

W uu
X (Xt(p))

are also C1 immersed submanifolds tangent to Es
p⊕EX

p and EX
p ⊕Eu

p at p respectively.

We denote by Sing(X) to the set of singularities of X.

Definition 2.1.4. We say that a singularity σ of a sectional-Anosov flow X is Lorenz-like
if it has three real eigenvalues λss, λs, λu with λss < λs < 0 < −λs < λu. The strong stable
foliation associated to σ and denoted by F ssX (σ), is the foliation contained in W s(σ) which
is tangent to space generated by the eigenvalue λss.

We denote as W s(Sing(X)) to
⋃

σ∈Sing(X)

W s(σ).

Respectively, W u(Sing(X)) =
⋃

σ∈Sing(X)

W u(σ).

Definition 2.1.5. A periodic orbit of X is the orbit of some p for which there is a minimal
t > 0 (called the period) such that Xt(p) = p.

γ is a transverse homoclinic orbit of a hyperbolic periodic orbitO if γ ⊂ W s(O)∩W u(O),
and TqM = TqW

s(O) + TqW
u(O) for some (and hence all) point q ∈ γ. The homoclinic

class H(O) of a hyperbolic periodic orbit O is the closure of the union of the transverse
homoclinic orbits of O. We say that a set Λ is a homoclinic class if Λ = H(O) for some
hyperbolic periodic orbit O.

Definition 2.1.6. A Venice mask is a sectional-Anosov flow with dense periodic orbits
which is not transitive.

Cl(A) denotes the closure of A.
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2.2 Manifolds supporting sectional-Anosov flows

We briefly describe some aspects related to handlebodies. These will be the starting point
for the manifolds supporting the examples exhibited in this work.

Dn denotes the unit ball in Rn and ∂Dn the boundary of Dn.

An n-cell is a manifold homemorphic to the open ball Dn \ ∂Dn.

The following definition appears in [17].

Definition 2.2.1. A handlebody of genus n ∈ N (or a cube with n-handles) is a compact
3-manifold with boundary HBn such that

• HBn contains a disjoint collection of n properly embedded 2-cells.

• A 3-cell is obtain of cutting HBn along the boundary of these 2-cells.

Observe that a 3-ball is a handlebody of genus 0, whereas a solid torus is a handlebody
of genus 1.

In [25] was proved that every orientable handlebody HBn of genus n ≥ 2 supports a
transitive sectional-Anosov flow. An example is the geometric Lorenz attractor which is
supported on a solid bitorus. In particular these flows have n− 1 singularities.

2.2.1 Punctured 3-handlebodies

To continue, we mention a series of results which were developed in [40]. For more details
see also [41].

A k-handle of dimension m is a manifold Hk,m := Dk × Dm−k with corners. The
boundary of the handle is ∂Hk,m = ∂−Hk,m ∪ ∂+Hk,m, where

∂−Hk,m := ∂Dk ×Dm−k, ∂+Hk,m := Dk × ∂Dm−k.

Given a compact m-manifold M0, we attach a k-handle Hk,m to ∂M0 through an em-
bedding φk : ∂−Hk,m → ∂M0. We identify each x ∈ ∂−Hk,m with φk(x) ∈ φk(∂−Hk,m).

The resulting manifold M1 will be denoted by M1 = M0 ∪φk Hk,m. Although M1

has corner points, it is possible to obtain a smooth manifold applying a procedure called
straightening the angle [23],[38].

8



In this way is given the following definition.

• A disc Dm is an m-dimensional generalized handlebody.

• The manifold Dm∪φ1
k1
Hk1,m is an m-dimensional generalized handlebody, denoted by

H(Dm;φ1
k1

).

• If M = H(Dm;φ1
k1
, · · · , φi−1

ki−1
) is an m-dimensional generalized handlebody, then the

manifold

M ∪φiki Hki,m

obtained from M by attaching a ki-handle along φiki , is an m-dimensional generalized

handlebody, denoted by H(Dm;φ1
k1
, · · · , φi−1

ki−1
, φiki).

Defined an adequate flow in the handle Hk,m, was proved in [40] that if a manifold M
supports a sectional-Anosov flow, and if we attach the handle in a specifically way, then
the resulting manifold supports a sectional-Anosov flow too.

Definition 2.2.2. A (g, k)-punctured handlebody is a handlebody M of genus g with k
2-handles attached to it, so that the attaching spheres of these 2-handles S → M are null
homotopics on ∂M .

From Remark 8.0.3 and Lemma 8.0.4 in [41] follows this remark.

Remark 2.2.3. A (g, k)-punctured handlebody can be seen as a classical handlebody of
genus g with k open balls removed from its interior.

Now, it is possible to announce the main theorem in [40].

Theorem 2.2.4. Every punctured 3-handlebody supports a sectional-Anosov flow.

The idea consists in taking a solid bitorus endowed with the geometric Lorenz attractor.
First of all, a (1, k)-punctured handlebody is built. For this, are taken k + 1 copies of
a 2-handle H2,3

l , l = 1, . . . , k + 1 endowed with the flow X l
t(xe

λ1t, yeλ2t, ze−λ3t). The
values λ1, λ2, λ3 being taken such as the geometric Lorenz attractor. Then each 2-handle is
conveniently attached, one after another at the solid bitorus. After that, it is proved that
the resulting flow is sectional-Anosov. Finally, the cases g = 0 and g ≥ 2 are considered
through modifications in H(D3; 1, k) and the geometric Lorenz attractor in H(D3; 2, 0)
respectively.

9



Observe that each X l
t has a hyperbolic singularity σl which is saddle-type. In addition,

the stable direction Es
σl

is one-dimensional. This means that just one associated eigenvalue
to each σl is negative. Unfortunately, the sectional-Anosov flow obtained through this
process is not a Venice mask. Indeed, as will be mentioned in Chapter 5, every singular
point σ in a Venice mask X shall be Lorenz-like.

This motivates the exploration of another techniques to construct the examples of
Venice masks.

2.2.2 Vector fields and the Euler characteristic

The Poincaré-Hopf theorem establishes a connection between the topology of M and the
isolated zeroes of a smooth vector field X defined on M (See [24]).

Consider first X : U ⊂ Rn → Rn, where U is an open set containing an isolated
singularity σ of X. Define the index i(Σ) of X at σ as the degree of the map X̃ given by

X̃ =
X(x)

‖X(x)‖
.

Let σ be an isolated singularity σ of X. If g : U →M is a parametrization of a neigh-
borhood of σ in M , then the index i(σ) of X at σ is defined to be equal to the index of
the corresponding vector field dg−1 ◦X ◦ g on U at the zero g−1(σ).

On the other hand, given a compact n-manifold M is defined the Euler characteristic
χ(M) as

χ(M) = Σn
k=0(−1)kHk(M),

where each Hk(M) denotes the k-th homology group of M .

Theorem 2.2.5. (Poincaré-Hopf)

Let X be a smooth vector field defined on a compact n-manifold M with isolated singu-
larities. If X inwardly transverse to the boundary ∂M then

χ(M) =
∑

σ∈Sing(X)

i(σ).

Lemma 2.2.6. The index i(σ) of a non-degenerate singularity σ is equal to signal of
det(DX(σ)).
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From [33] follows that if a sectional-Anosov flow is transitive or has dense periodic orbits,
then all singularities are Lorenz-like. So, the following proposition is a direct consequence
of the Poincaré Hopf theorem.

Proposition 2.2.7. The number of singularities of a sectional-Anosov flow with dense
periodice orbits supported on a compact 3-manifold M is equal to −χ(M). The same is
valid by interchanging density of perdiodic orbits by transitivity.

Observe that Proposition 2.2.7 claims that every three-dimensional Venice mask with
n singularities shall be defined on a compact 3-manifold M with −χ(M) = n.
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CHAPTER

THREE

EXISTENCE OF VENICE MASKS WITH TWO

SINGULARITIES

3.1 Motivation

The dynamical systems theory describes different properties about asymptotic behavior,
stability, relationships among system’s elements and its characteristics. It is well known
that the hyperbolic systems own some features and properties that provide very important
information about its behavior. With the purpose of extending the notion of hyperbolicity,
arise definitions and a new theory, such as partial hyperbolicity, singular hyperbolicity and
sectional hyperbolicity. Thus, we begin by considering the relationship between the hyper-
bolic and sectional hyperbolic theory. Recall, the sectional hyperbolic sets and sectional
Anosov flows were introduced in [28] and [22] respectively as a generalization of the hy-
perbolic sets and Anosov flows. They contain important examples such as the saddle-type
hyperbolic attracting sets, the geometric and multidimensional Lorenz attractors [1], [12],
[15].

A natural way is to observe the properties that are preserved or which are not in the
new scenario. Particularly, we mention two important properties related to hyperbolic sets
which are not satisfied by all sectional hyperbolic sets. The first is the spectral decompo-
sition theorem [39]. It says that an attracting hyperbolic set Λ = Cl(Per(X)) is a finite
disjoint union of homoclinic classes, where Per(X) is the set of periodic points of X. The
second says that an Anosov flow on a closed manifold is transitive if and only if it has dense
periodic orbits. This results are false for sectional Anosov flows, i.e., sets whose maximal
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invariant is a sectional-hyperbolic set [31]. Specifically, it is proved that there exists a sec-
tional Anosov flow such that it is supported on a compact 3-manifold, it has dense periodic
orbits, is the non-disjoint union of two homoclinic classes but is not transitive. So, a sec-
tional Anosov flow is said a Venice mask if it has dense periodic orbits but is not transitive.

The only known examples of Venice masks have one or three singularities, and they
are characterized by having two properties: are the union non disjoint of two homoclinic
classes and the intersection of its homoclinic classes is the closure of the unstable manifold
of a singularity [32], [31], [10]. Particularly, was proved in [32], [31] that every Venice mask
with a unique singularity has these properties. Naturally, we can ask whether these two
properties are satisfied for every Venice mask. Here, we give a negative answer to this one.
Indeed, we provide two examples of Venice masks with two singularities, but with different
features. In particular, each one is the union of two different homoclinic classes. However,
for the first, the intersection of homoclinic classes is the closure of the unstable manifold
of two singularities. Whereas for the second, the intersection of homoclinic classes is just
a hyperbolic periodic orbit.

We can state the main results in this chapter.

Theorem A. There exists a Venice mask X with two singularities supported on a 3-
manifold M , such that:

• M(X) is the union of two homoclinic classes H1
X ,H2

X .

• H1
X ∩H2

X = O, where O is a hyperbolic periodic orbit.

Theorem B. There exists a Venice mask Y with two singularities supported on a 3-
manifold N , such that:

• N(Y ) is the union of two homoclinic classes H1
Y ,H2

Y .

• H1
Y ∩H2

Y = Cl(W u(σ1) ∪W u(σ2)), where σ1, σ2 are the singularities of Y .

This is a joint work with Andrés M. López Barragán. See [21].

In section 3.3.2, we shall be described briefly this construction by using one-dimensional
and two-dimensional maps. In section 3.4.1, from modifications on the previous maps in
Section 3.3.2 and by considering a plug, we shall prove the Theorem A. In the same way,
in Section 3.4.2, by using the venice mask with a unique singularity, the Theorem B will
be obtained by gluing a particular plug preserving the original flow.

13



3.2 Preliminaries

3.2.1 Original plugs

In order to obtain the three-dimensional vector field of our example, we begin by consid-
ering the well known Plykin attractor and the Cherry flow ( See [37], [36]).

We give a sketch of the flow construction. It will be constructed through three steps,
firstly by modifying the Cherry flow. In fact, we consider a vector field in the square whose
flow is described in Figure 3.1 a). Note that this vector field has two equilibria: a saddle
σ and a sink p. For σ one has that its eigenvalues {λs, λu} of σ satisfy the relation

λs < 0 < −λs < λu.

We have depicted a small disk D centered at the attracting equilibrium p Figure 3.1 b).
Note that the flow is pointing inward the edge of the disk. This finishes the first step for
the construction.

For the second step we multiply the above vector field by a strong contraction λss in
order to obtain the vector field described in Figure 3.2 a). We can choose λss such that
−λss be large, so the resulting vector field will have a Lorenz-like singularity and this new
eigenvalue will be associated with the strong manifold of the singularity. This yields a
Cherry flow box and finishes the second step for the construction.

From Plykin attractor follows that the construction must have at least two holes inas-
much as we will use certain return map. Then, the final step is to glue two handles that
provides two holes and the three dimensional vector field above in order to obtain the
vector field whose flow is given in Figure 3.2 b). Hereafter the resulting vector field will be
called of Plug 3.2.

The hole indicated in this Figure 3.2 is nothing but the disk D times a compact interval
I1. Again, note that the flow is pointing inward the edge of the hole by construction. For
this reason, we take a solid 3-ball and we define a flow on this one. Indeed, it flow has no
singularities, it acts as in Figure 3.3 and will be used for to glue the hole’s bound with this
one. Hereafter the resulting vector field will be called of Plug 3.3.

14



b)a)

Figure 3.1: Cherry flow.

σ σ

a) b)

Figure 3.2: Cherry flow box and Plug 3.2.
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Figure 3.3: Plug 3.3.

3.3 Modified maps

We begin by considering the construction made in [10] like model in order to obtain the
vector fields X and Y of the main theorems. Recall that the original model provides tools
for a three dimensional example with a unique singularity. The main aim is to modify the
original maps, in order to make a suspension of the modified maps via the new plugs. For
this purpose, we will do such modifications followed by its original maps.

3.3.1 One-dimensional map

Thus, in the same way of [10], we consider the branched 1-manifold B consisting of a
compact interval and a circle with branch point b. We cut B open along b to obtain a
compact interval which we assume to be [0, 1] for simplicity. In [0, 1] we consider three
points 0 < d1 < d∗ < d2 < 1, where d∗ is depicted also in the Figure 3.4. These will be the
discontinuity points of f as a map of [0, 1]. The set B \ {d∗} will be the domain of f . We
define f : B \ {d∗} → B in a way that its graph in [0, 1] is the one in Figure 3.4.

By construction one has that f satisfies the following hypotheses:

(H1): Dom(f) = [0, 1] \ {d∗}.

(H2): f(0) = 0; f(d1) = f(d2) = 1; f(1) = f(b) ∈ (0, d1).

(H3): f(d1+) = f(d2+) = b; f(d1−) = f(d2−) = 1; f(d∗+) = f(d∗−) = 0.

(H4): f([0, d1]) = [0, 1]; f((d1, d∗)) = (0, b); f((d∗, d2]) = (0, 1]; f((d2, 1]) = [f(b), b).

(H5): f is expanding, i.e., f is C1 in Dom(f) and there is λ > 1 such that |f ′(x)| ≥ λ,
for each x ∈ Dom(f).
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d1 d20 b 1

b
0 d∗

b = 1

d∗

d∗

Figure 3.4: The quotient space and one-dimensional map.

3.3.2 Modified one-dimensional map

We realize a modification of the above map f . Denote d∗ = d+ and let f+ : B+\{d+} → B+

be in a way that its graph in [0, 1] is the one in Figure 3.5. More specifically, we consider a
map f+

1 and a map f+
2 such that, f+

1 |(0,d1) is contained in a small neighborhood of f |(0,d1)

in the topology C1(0, d1), and f+
2 |(d+,b) is contained in a small neighborhood of f |(d+,b) in

the topology C1(d+, b). In this way, we take δ1 > 0 and we define f+
1 (x) = αx2 + βx with

f+
1 (0) = 0, f+

1 (d1

2
) = 1

2
+ δ1 and f+

1 (d1) = 1. Therefore we have α = −4δ1
d2

1
and β = 1+4δ1

d2
1

.

Moreover (f+
1 )′(x) > 1 for all x ∈ (0, d1) if δ1 is small.

In the second case, we need a map f+
2 which satisfies (f+

2 )′(b−) = f ′(b−). For this
purpose, we use the fact that f̄(x) = exp

[
1

x2−1

]
is such that f̄ ′(1−) = f̄ ′(−1+) = 0. Now,

let δ2 > 0 be small and we define f+
2 (x) = −δ2exp

[
1

(x−d+)(x−b)

]
+ f(b)

b−d+ (x− d+). So,

f+(x) =


f+

1 (x), x ∈ [0, d1]

f(x), x ∈ (d1, d
+) ∪ [b, 1]

f+
2 (x), x ∈ (d+, b)

.

Here, there exist ε > 0 small such that
∫ d1

0

√
[(f)′(x)]2 + 1dx <

∫ d1

0

√
[(f+)′(x)]2 + 1dx <∫ d1

0

√
[(f)′(x)]2 + 1dx+ ε.

Also
∫ b
d∗

√
[(f)′(x)]2 + 1dx <

∫ b
d∗

√
[(f+)′(x)]2 + 1dx <

∫ b
d∗

√
[(f)′(x)]2 + 1dx+ε. More-

over f+ satisfies (H1)-(H5). We define f−(x) = f(−x) and denote −d+ = d−. f− :
B− \ {d−} → B−.
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d1 d2d+

f−

0

f+

−1 bd−−b −d1−d2 1

b

Figure 3.5: Modified one-dimensional map.

The following results proceed to examining the properties of f and appears in [10].
This in turns through a structure closely related to [10] and by construction we obtain the
same properties for the f+ map.

Definition 3.3.1. We say that f is locally eventually onto (leo for short) if given any
open interval I ⊂ [0, 1] there is m ≥ 0 such that fm(I) = [0, 1].

Theorem 3.3.2. f+ is leo.

Corollary 3.3.3. The periodic points of f+ are dense in B. If x ∈ B, then

B = Cl

(⋃
n≥0

(f+)−n(x)

)
.

3.3.3 Two-dimensional map

We consider the twice punctured planar region R depicted in Figure 3.6. It is formed
by: two half-annuli A, F , and four rectangles B,C,D,E. There is a middle vertical line
denoted by l. Note that l defines a plane reflexion throughout denoted by θ. We assume
θ(D) = C, θ(E) = B and θ(F ) = A. In particular, θ(R) = R and θ(d+) = d−, where the
vertical segments d−, d+ correspond to the right-hand and left-hand boundary curves of
B and D respectively. We define H− = A ∪ B ∪ C and H+ = D ∪ E ∪ F . We take the
same foliation F of R given in [10]. It is formed by vertical segments in the rectangular
components B,C,D,E and radial segments in the annuli components A,F .

18



d− l d+

A
B

F
C D E

Figure 3.6: Region R.

In [10] was defined the C∞ map G : R \ {d−, d+} → Int(R). It satisfies the following
hypotheses:

(G1): G and θ commute, i.e., G ◦ θ = θ ◦G.

(G2): G preserves and contracts the foliation F .

(G3): Let g : K \ {d−, d+} → K be the map induced by G in the leaf space K.

Then, the map f+ defined by f+ = g|B+ satisfies the hypotheses (H1)-(H5), with
f = f+, B = B+ and d∗ = d+.

Properties of G

• By (G1), H+ and H− are invariant under G.

• Since G contracts F ((G2)) we have that W s(x,G) is union of leaves of F . It follows
from (G2), (G3) and the expansiveness in (H5) that all periodic points of G are
hyperbolic saddles.

• By (G1) we have that G(l) ⊂ l and so G has a fixed point P in l. Clearly one has
π(P ) = 0.

Define

A−G = Cl

(⋂
n≥1

Gn(H−)

)
, A+

G = Cl

(⋂
n≥1

Gn(H+)

)
.

Theorem 3.3.4. A−G and A+
G are homoclinic classes and P ∈ A+

G ∩ A
−
G.
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d− l d+

P

d+

π

0d−

G̃(C) Map G̃ G̃(D)

G̃(A) G̃(B) G̃(E)
G̃(F )

Figure 3.7: The quotient space and modified two-dimensional map.

3.3.4 Modified two-dimensional map

For the region R in Figure 3.6, we define the C∞ map G̃ : R \ {d−, d+} → Int(R) in a way
that its image is as indicated in Figure 3.7. We require the following hypotheses:

(L1): H−, H+ are invariant under G̃. G̃(H− \ {d−}) ⊂ H− and G̃(H+ \ {d+}) ⊂ H+.

(L2): G̃ preserves and contracts the foliation F .

(L3): Let g̃ : K \ {d−, d+} → K be the map induced by G̃ in the leaf space K.

Then, the map f+(−) defined by f+(−) = g̃|B+(−) satisfies the hypotheses (H1)-(H5),
B = B+(−) and d∗ = d+(−).

We observe that (L1) implies G̃(l) ⊂ l and by contraction, G̃ has a fixed point P ∈ l.
Again, for

A−
G̃

= Cl

(⋂
n≥1

G̃n(H−)

)
, A+

G̃
= Cl

(⋂
n≥1

G̃n(H+)

)

we have that A+

G̃
and A−

G̃
are homoclinic classes and {P} = A+

G̃
∩ A−

G̃
.
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V2
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Figure 3.8: Venice mask with one singularity

3.3.5 Venice mask with one singularity

Recall, by considering the original maps (Subsection 3.3.1, 3.3.3), and by using the plugs
3.2, 3.3, in [10] was construct the venice mask example with one singularity. Here, we
provides a graphic idea in order to compare it with the new examples.

The Figure 3.8 a) shows the flow, whereas the Figure 3.8 b) shows the ambient man-
ifold that supports this one. The ambient manifold is a solid bi-torus excluding two tori
neighborhoods V1, V2 associated to two repelling periodic orbits O1, O2 respectively.

3.4 Venice mask’s examples with two-singularities

3.4.1 Vector field X and Example 1.

In this section, we construct a vector field X which will satisfy the properties in the The-
orem A by using the subsection 3.3.2 and 3.3.4.

We begin by considering a vector field as the Cherry flow described in Figure 3.1, with
the same conditions of subsection 3.3.2.

We called this flow of A and we proceed to perturbe it, following the ideas of the well
known DA-Attractor introduced by Smale (see [37]). Let U be a neighborhood (relatively
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a) b) c)

p

σ1

σ2

p

σ1

σ2

σσ

Disk D2Disk D1U

Figure 3.9: Perturbed Cherry flow

small) of σ. We can obtain a flow ϕt such that supp(ϕt − id) ⊂ U (Figure 3.9 a)). Also,
the derivative of the flow at σ with respect to canonical basis in TσQ is

Dϕtσ =

(
1 0
0 et

)
.

We deform such a flow in order to obtain a one-parameter family of flows Bt = ϕt ◦A.
Let τ > 0 be such that eτλs > 1, so σ is a source for Bτ . Moreover, the new map has three
fixed points on W s

X(σ), σ a source and σ1, σ2 saddles. Moreover, there exists a neighbor-
hood V of σ (not containing σ1 and σ2) contained in U such that Bτ

s (V ) ⊃ V for all s > 0
(Figure 3.9 b)). Thus, we obtain a vector field as the square Q whose flow A is described
in Figure 3.9.

Now, we remove two small disks D1, D2 = V centered at the attracting equilibrium p
and at the repelling equilibrium σ respectively (Figure 3.9 c)).

In the next step, we multiply the above vector field by a strong contraction λss in order
to obtain the similar vector field described in Figure 3.2 b). We choose λss such that σ1

and σ2 are Lorenz-like.

Now, we consider an interval I0 = I1×{p0}, where p0 is the point of intersection between
W u
X(σ) and the disk D1. We realize a modification in the flow such that a branched of

W u
X(σ1) intersects a connected component of I0 \{p0} and a branched of W u

X(σ2) intersects
the other connected component of I0 \ {p0} (See 3.10).
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Modified 2- map
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σ2

V1
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Figure 3.10: Plug X and its associated manifold.

The final step is to glue two handles on the 3-dimensional vector field above in order
to obtain the vector field whose flow is given in Figure 3.10 a). The resulting vector field
is what we shall call Plug X.

In the same way as in Figure 3.2, in this case, by multiplying the above vector field by
a strong contraction generate two holes and it is nothing but the disks D1 times a compact
interval I1, and D2 times a compact interval I2. Also, let us to use the Plug 3.3 and apply
on the hole associated to D1. Note that the interval I2 is chosen such that D2×I2 produces
the third hole on the ambient manifold. It generates a solid tritorus (see Figure 3.10 b)).

Then, we construct a vector field X on a solid tritorus ST1 in a way that Xt(ST1) ⊂
Int(ST1) for all t > 0 and X is transverse to the boundary of the solid tritorus. The flow
is obtained gluing plugs X and 3.3 as indicated in Figure 3.10 a).

We require the following hypotheses:

(X1): There are two repelling periodic orbits O1, O2 in Int(ST1) crossing the holes of
R.

(X2): There are two solid tori neighborhoods V1, V2 ⊂ Int(ST1) of O1, O2 with bound-
aries transverse to Xt such that if M = ST1 \ (V1∪V2), then M is a compact neighborhood
with smooth boundary transverse to Xt and Xt(M) ⊂M for t > 0. As M is a solid tritorus
with two solid tori removed, we have that M is connected as indicated in Figure 3.10 b).

(X3): R ⊂ M and the return map G̃ induced by X in R satisfies the properties
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(L1)-(L3) in Section 3.3.4. Moreover,

{q ∈M : Xt(q) /∈ R, ∀t ∈ R} = {σ1, σ2}.

Now, define

A+ = Cl

(⋃
t∈R

Xt(A
+

G̃
)

)
and A− = Cl

(⋃
t∈R

Xt(A
−
G̃

)

)
.

Proposition 3.4.1. W u
X(σ1) ⊂ A+ and W u

X(σ2) ⊂ A−.

Proof. If x ∈ H+ is a periodic point of G̃, then G̃n(x) ∈ R for all n ≤ 0 and so
x ∈ A+

G̃
= Cl(

⋂
n≥1 G̃

n(H+)). Therefore x ∈ A+ (for AG̃+ ⊂ A+) and by invariance
of A+, the full orbit of x is contained in A+.

Second, the periodic points of f+ in (L3) are dense in B by Corollary 3.3.3. Then, the
periodic points of G̃ accumulate on d+ in both connected components of H+ \ d+. Since
d+ is contained in W s

X(σ1), the full Xt-orbit of the periodic points of G̃ accumulating d+

also accumulate on W u
X(σ1). Then W u

X(σ1) ⊂ A+ because A+ is closed. Analogously, we
have W u

X(σ2) ⊂ A−.

Define AG̃ = A+

G̃
∪ A−

G̃
and

A = Cl

(⋃
t∈R

Xt(AG̃)

)
,

Lemma 3.4.2. A+ and A− are homoclinic classes of X and A = A+ ∪ A−.

Proof. See [10].

Proposition 3.4.3. X is a sectional Anosov flow.
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Proof. In the same way of [10], we will prove that A is a sectional-hyperbolic set and
M(X) = A. Indeed, how A = A1 ∪ A2 is union of homoclinic classes then A has dense
periodic orbits (Birkhoff-Smale Theorem). Moreover, of the hypotheses (L2) and (L3)
follows that every periodic orbit of X contained in A has a hyperbolic splitting TOM =
Es
O ⊕ EX

O ⊕ Eu
O. Here, Es

O is due to (L2), Eu
O by (L3) and EX

O is the one-dimensional
subbundle over O induced by X. Let Per(A) be the union of the periodic orbits of X
contained in A. Define the splitting

TPer(A)M = F s
Per(A) ⊕ F c

Per(A),

where F s
x = Es

x and F c
x = EX

x ⊕ Eu
x for x ∈ Per(A). As every periodic orbit in M of

every vector field C1 close to X is hyperbolic of saddle type, we can use the arguments
in [33] to prove that the splitting TPer(A)M = F s

Per(A) ⊕ F c
Per(A) over Per(A) extends to a

sectional-hyperbolic splitting TAM = F s
A ⊕ F c

A over the whole A = Cl(Per(A)).

We conclude that X is a sectional Anosov flow on M .

Proof of Theorem A.

By using the Lemma 3.4.2 and the Proposition 3.4.3 we have that X is a sectional
Anosov flow and M(X) is the union of two homoclinic classes H1

X , H
2
X , where H1

X = A+

and H2
X = A−. Since {P} = A+

G̃
∩ A−

G̃
, it implies that H1

X ∩ H2
X = O, with O the

orbit associated to P . In particular X is a Venice mask, and by construction it has two
singularities.

3.4.2 Vector field Y and Example 2.

In this section, we construct a vector field Y which will satisfy the properties in the The-
orem B by using the results from [10].

Firstly, in order to obtain the vector field Y , we begin by considering the venice mask
with one singularity. Unlike the previous section, in this case we will not perturb the flow.
Moreover, we will change the flow by preserving the plugs 3.2, 3.3 and we will remove a
connected component of the flow and its ambient manifold.

The main aim of removing a connected component will be to glue a new plug with
different features, properties and that provides other singularity. This process is done in
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a) b)

c) d)

Figure 3.11: Steps by gluing the new plug.

some simple steps (see Figure 3.11). Indeed, the important steps are Figure 3.11 c), d) and
since we want a plug by containing a singularity, we will see that the this one has a hole,
which is produced by the singularity.

3.4.3 Flow through of the faces

We begin by considering the plug 3.2 described in Figure 3.2 with the same conditions of
subsections 3.3.1, 3.3.3.

For this purpose we need to observe with detail the flow behavior through of the faces
removed. Indeed, we observe the vector field in the square whose flow is described in Figure
3.2.

Thus, it will be constructed the new plug through two steps. Firstly, we will be depicted
a circle that represents the face 1 on the Cherry flow and let us to study the flow behavior.
It should be noted that this vector field exhibits two leaves which belong to the region R
and converge to the singularity, i.e., the region R exhibits two singular leaves. Note that
these leaves are crossing outward to the face 1. In addition, note that there are trajectories
crossing inward to the face 1 too, such as the branch unstable manifold of the singularity.
This shows that extensive analysis is necessary for understand the flow behavior to the
face 1.
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σ
Tangent leaf.

Singular leaf.

Cross leaf.M

Figure 3.12: Flow through of the face 1.

We can observe that the top and bottom region of the singular leaves saturated by the
flow are crossing through the face 1, i.e., the flow is pointing outward of the face 1.

By studying the complement of these regions, we have that the behavior of the leaves
is depicted as Figure 3.12. Here, this region exhibits two tangent leaves, whereas the other
leaves intersect the region twice, i.e., the other leaves cross and return.

Also, we must research the flow behavior inside to the face 1, but in the complement
of Cherry box flow. However, we can to observe that the behavior flow is extended to the
whole circle. This finishes the first step.

We must observe the flow behavior on the face 2. In this case, is easy to verify that
all trajectories are crossing inward to the face 2. Thus, the flow through the two faces is
depicted in Figure 3.13.

Now, we construct a plug Y containing a singularity σ2. Consequently, the dynami-
cal system can be transferred by means of plug Y surgery from one bitorus onto another
manifold exporting some of its properties. This singularity generates a hole and this in
turns generates a solid tritorus ST2 in a way that Yt(ST2) ⊂ Int(ST2) for all t > 0 and Y
is transverse to the boundary tritorus. The flow is obtained gluing the plugs 3.2, 3.3 with
the plug Y as indicated in Figure 3.14. Indeed, the third hole is generated by the unstable
manifold of the singularity σ2.
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Pointing inward flow.

Tangent leaf.

a) Face 1 b) Face 2

Figure 3.13: Direction of flow through the faces.

In the same way of previous subsection, we require some hypotheses for the ambient
manifold (after of gluing).

(X̂1): There are two repelling periodic orbits O1, O2 in Int(ST2) crossing the holes of
R.

(X̂2): There are two solid tori neighborhoods V1, V2 ⊂ Int(ST2) of O1, O2 with bound-
aries transverse to Yt such that if N = ST2 \ (V1 ∪ V2), then N is a compact neighborhood
with smooth boundary transverse to Yt and Yt(N) ⊂ N for t > 0. As N is a solid tritorus
with two solid tori removed, we have that N is connected.

(X̂3): R ⊂ N and the return map G induced by Y in R satisfies the properties (G1)-
(G3) in Section 3.3.3. Moreover,

{q ∈ N : Yt(q) /∈ R, ∀t ∈ R} = Cl(W uu
Y (σ2)).

Now, we define

Â+ = Cl

(⋃
t∈R

Yt(A
+
G)

)
and Â− = Cl

(⋃
t∈R

Yt(A
−
G)

)
.

By using the Propositions 3.4.1, 3.4.3 and Lemma 3.4.2 we can obtain that the inter-
section of homoclinic classes is the closure of the unstable manifold of two singularities.
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Face 1

Figure 3.14: Plug Y

Proof of Theorem B.

By using the Lemma 3.4.2 and the Proposition 3.4.3 we have that Y is a sectional
Anosov flow and N(Y ) is the union of two homoclinic classes H1

Y ,H2
Y , where H1

Y = Â+

and H2
Y = Â−. It implies that H1

Y ∩ H2
Y = Cl(W u

Y (σ1) ∪W u
Y (σ2)). In particular Y is a

Venice mask, and by construction it has two singularities.
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CHAPTER

FOUR

GENERATING NEW EXAMPLES SUPPORTED

ON 3-MANIFOLDS

For each n ∈ N, we show the existence of Venice masks containing n equilibria on certain
compact 3-manifolds. These examples are characterized because of the maximal invari-
ant set is finite union of homoclinic classes. Here, the intersection between two different
homoclinic classes is contained in the closure of the union of unstable manifolds of the
singularities. This is a joint work with Andrés M. López Barragán.

4.1 Introduction

As we already mention, there are examples of sectional-Anosov flows non-transitive with
dense periodic orbits supported on compact three dimensional manifolds. An example of
Venice mask with a unique singularity was given in [10], and for three singularities was
provided in [32]. Recently, [21] showed the construction the examples with two equilibria,
which were the exhibited in Chapter 2.

All these flows have the common property that the maximal invariant set is union non
disjoint of two homoclinic classes, and the intersection between their classes is contained
in the closure of the union of unstable manifolds of the singularities.

The above observations motivate the following questions,

1. It is possible to obtain Venice masks with more singularities ?
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2. The maximal invariant set of every Venice mask is union of two homoclinic classes?

3. How is the intersection of these homoclinic classes?

The answer to the first question is positive. We use the ideas developed in [21] and [32]
for the construction of these examples, which provide more tools and clues for a general
theory of Venice masks. In particular, we construct an example with five singularities which
is non-disjoint union of three homoclinic classes. So, the answer to the second question is
false.

Theorem C. For each n ∈ N there exists a Venice mask X with n singularities supported
on a compact 3-manifold M , such that:

• M(X) can be decomposed as finite union of homoclinic classes .

• The intersection of two different homoclinic classes of M(X) is contained in

Cl(W u(Sing(X))).

In section 4.2, we describe briefly the construction and some important properties for
the known examples with two and three singularities. In section 4.3, using the techniques
of the Venice masks with two singularities, we provide an example with four singularities.
In the same way, in Section 4.4, by using the Venice mask with three singularities, the
example with five equlibria will be obtained. Theorems 4.3.2 and 4.4.2 will be consequence
of a inductive process. Finally, Theorem C will be a direct consequence of Theorem 4.3.2
and Theorem 4.4.2.

4.2 Preliminaries

We make a brief description about the known Venice masks.

An example with a unique singularity was given in [10], and in [32] was proved that
every Venice mask X(1) with one equilibrium satisfies the following properties:

• M(X(1)) is union of two homoclinic classes H1
X(1)

, H2
X(1)

.

• H1
X(1)
∩H2

X(1)
= Cl(W u

X(1)
(σ)) where σ is the singularity of X(1).

In [21] were exhibited two Venice masks containing two equilibria σ1, σ2.

For the first example we have a vector field X verifying:
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• M(X) is the union of two homoclinic clases H1
X , H2

X .

• H1
X ∩H2

X = O, where O is a hyperbolic periodic orbit.

• O = ωX(q), for all q ∈ W u
X(σ1) ∪W u

X(σ2) \ {σ1, σ2}.

The vector field Y that determines the second example with two singularities σ1, σ2

satisfies:

• M(Y ) is the union of two homoclinic clases H1
Y , H2

Y .

• H1
Y ∩H2

Y = Cl(W u
Y (σ1) ∪W u

Y (σ2)).

An essential element to obtain the examples with two singularities is the existence of
a return map defined in a cross section R. A foliation F is defined on R, which has verti-
cal segments in the rectangular components B,C,D,E and radial segments in the annuli
components A,F .

We are interested to take the C∞ two-dimensional map G̃ : R \ {d−, d+} → Int(R)
given in Section 3.3.4, satisfying the hypotheses (L1)-(L3) established there. In particular,
(L1) and (L2) imply the contraction and the invariance of the leaf l by G̃. So, the map
G̃ has a fixed point P ∈ l. We define H+ = A ∪B ∪ C and H− = D ∪ E ∪ F . For

A−
G̃

= Cl

(⋂
n≥1

G̃n(H−)

)
, A+

G̃
= Cl

(⋂
n≥1

G̃n(H+)

)

follow that A+

G̃
and A−

G̃
are homoclinic classes and {P} = A+

G̃
∩ A−

G̃
.
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Σ

F

F (L)

L

x

f(x)

0 f(x) x

Figure 4.1: Map F .

σ

Figure 4.2: Geometric Lorenz Attractor.

The mode to obtain the example with three singularities described in [32] is easier.
First of all, is important to know some properties about the dynamic of the Geometric
Lorenz Attractor (GLA for short) [15].

In [4] was proved that this attractor is a homoclinic class. The result is obtained due
to the existence of a return map F for the flow, defined on a cross section Σ. This map
preserves the stable foliation F s, where the leaves are vertical lines. The induced map f
in the leaf space is differentiable and expansive.

The GLA is modified in [32] by adding two singularities to the flow located at W u(σ).
We called this modification as GLAmod. We glue together in a C∞ fashion two copies of this
flow along the unstable manifold of the singularity σ, thus generating the flow depicted in
Figure 4.3. In this way is obtained a sectional-Anosov flow X(3) with dense periodic orbits
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σ1 σ σ2

Wu
X(3)

(σ)

Figure 4.3: Example with three singularities.

and three equilibria whose maximal invariant set is non-disjoint union of two homoclinic
classes. In this case, the intersection between the homoclinic classes is Cl(W u

X(3)
(σ)).

Observe that this flow is supported on a handlebody of genus 4.

4.3 Venice mask’s examples with an even number of

singularities

4.3.1 Vector field Z

We provide an example with four singularities. We start with the vector field X associated
to the Venice mask with two singularities. Then, we construct a plug Z containing two
addittional equilibria σ3, σ4. In this way, the flow is obtained through plug Z surgery from
one solid tritorus onto another manifold exporting some of its properties.

The vector field X is supported on a solid tritorus ST1. Now, we remove a connected
component B of ST1 as in Figure 4.4.

The behavior across the faces removed is similar with respect to observed in the exam-
ple given by the vector field Y in Section 3.4.2.
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a) b)

c) d)

Face 3Face 1

Face 2

Plug Z

Component CComponent A Component B

Figure 4.4: Steps by gluing the new plug.
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Pointing outward flow.

Pointing inward flow.

Tangent leaf.
b) Face 2a) Face 1 a) Face 3

Figure 4.5: Faces.

On face 1, we identify three regions determinated by the singular leaves saturated by
the flow. In the middle region on face 1, the trajectories crossing inward to ∂A, such as
the branch unstable manifold of the two initial singularities. On face 3 there are three
singular leaves which generate four regions such as is exhibited in Figure 4.5. There, the
flow crossing inward and outward to ∂C. All trajectories are crossing inward to face 2 as
∂A.

As we before mention, will be constructed an adequate plug Z to include the additional
equilibria. We ask the singularities to be Lorenz-like . On the other hand, two holes are
generated by the unstable manifold of the singularities σ1, σ2 respectively. Therefore, we
obtain a handlebody HB5 of genus five. So, the vector field Z produced by gluing plug Z
instead the removed connected component B, satisfies Zt(HB5) ⊂ Int(HB5) for all t > 0.
Moreover Z is transverse to the boundary handlebody.
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π(M(Z) ∩ Vσ1)

σ1

s22
s21

s12

W cu
Z (σ1) ∩W s

Z(σ1)

W cu
Z (σ1)

W u
Z(σ1)

s11

Figure 4.6:

We exhibit with details the behavior near to the singularities. For that, we mention
some facts that appear in [26]. As every singularity is Lorenz-like, there exists a center
unstable manifold W cu

Z (σi) associated to σi (i = 1, 2, 3, 4). It is divided by W u
Z(σi) and

W s
Z(σi) ∩W cu

Z (σi) in the four sectors s11, s12, s21, s22. There is also a projection π : Vσi →
W cu
Z (σi) defined in a neighborhood Vσi of σi via the strong stable foliation of the maximal

invariant set associated to flow.

For σ ∈ Sing(Z), we define the matrix

A(σ) =

(
a11 a12

a21 a22

)
,

where

aij =

{
1 if σ ∈ Cl(π(M(Z) ∩ Vσ)) ∩ sij
0 if σ /∈ Cl(π(M(Z) ∩ Vσ)) ∩ sij.

A(σ) does not depend on the chosen center unstable manifold W cu
Z (σ).

Figure 4.6 shows the case for the singularity σ1 of the example.
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Plug Z
Wu
Z (σ1)
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Figure 4.7: Venice mask with four singularities.

These are the associated matrices to the singularities of our vector field Z.

Aσ1 =

(
1 1
0 0

)
, Aσ2 =

(
0 0
1 1

)
, Aσ3 =

(
1 0
0 1

)
, Aσ4 =

(
1 0
0 1

)
.

Now, we consider the following hypotheses.

(Z1): There are two repelling periodic orbits O1, O2 in Int(HB5) crossing the holes of
R.

(Z2): There are two solid tori neighborhoods V1, V2 ⊂ Int(HB5) of O1, O2 with bound-
aries transverse to Zt such that if N4 = HB5\(V1∪V2), then N4 is a compact neighborhood
with smooth boundary transverse to Zt and Zt(N4) ⊂ N4 for t > 0. N4 is a handlebody of
genus five with two solid tori removed.

(Z3): R ⊂ N4 and the return map G̃ induced by Z in R satisfies the properties
(L1)-(L3) given in Section 3.3.4. Moreover,

{q ∈ N : Zt(q) /∈ R, ∀t ∈ R} = Cl(W u
Z(σ1) ∪W u

Z(σ2)).

We define

A+
Z = Cl

(⋃
t∈R

Zt(A
+

G̃
)

)
and A−Z = Cl

(⋃
t∈R

Zt(A
−
G̃

)

)
.
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Proposition 4.3.1. Z is a Venice mask with four singularities supported on the compact
3-manifold N4. N4(Z) is the union of two homoclinic classes A+

Z , A−Z . The intersection
between A+

Z and A−Z is a hyperbolic periodic orbit O contained in Cl(W u
Z(σ3) ∪W u

Z(σ4)).

Proof. By construction Z has four singularities. The proof to be A+
Z , A−Z homoclinic classes

is the same given in [21]. Also the fact to be Z a Venice mask. The intersection between the
homoclinic classes is reduced to a hyperbolic periodic orbit O because of {P} = A+

G̃
∩ A−

G̃
and by hypotheses (Z3). Here, O = OZ(P ). We observe that the branches of the unstable
manifolds of σ3 and σ4 intersect the leaf l of the foliation F in R. Then the hypotheses
(L1), (L2) of the map G̃, and the invariance of the flow imply O ⊂ ωZ(q) for all regular
point q ∈ W u

Z(σ3)∪W u
Z(σ4). As W u

Z(σ3) ⊂ A+
Z and W u

Z(σ4) ⊂ A−Z (see Proposition 4.1 [21])
we conclude A+

Z ∩ A
−
Z ⊂ Cl(W u

Z(σ3) ∪W u
Z(σ4)).

4.3.2 General case

We expose a general result. More specifically the following theorem holds.

Theorem 4.3.2. For every n even, there exists a Venice mask X(n) with n singularities
supported on a handlebody Nn of genus n + 1 with two solid tori removed. Nn(X(n)) is
the non-disjoint union of two homoclinic classes, and the intersection between them is a
hyperbolic periodic orbit contained in Cl(W u(Sing(X(n)))).

Proof. Consider n = 2k with k ≥ 3. Again, we remove the same connected component B
to the manifold that supports the Venice mask X with two equilibria. We glue a plug Zn
containing n− 2 = 2k − 2 Lorenz-like singularities. For each singularity in Zn, we have a
connection of saddle-type between W u

X(n)
(σi) and W s

X(n)
(σi+2), i = 1, . . . , n− 2. Figure 4.8

exhibits the particular case for Plug Z6.

So, the new manifold is a handlebody HBn+1 of genus n+ 1 and supports a flow X(n)t

with n = 2k equilibria. The flow is obtained by gluing plug Zn instead the connected
component B. In this way, the vector field X(n) on HBn+1 satisfies X(n)t(HBn+1) ⊂
Int(HBn+1) for all t > 0. In addition, X(n) is transverse to the boundary handlebody.

Here,

Aσ3 =

(
1 0
0 1

)
, Aσ4 =

(
1 0
0 1

)
, Aσ2k−1

=

(
1 0
0 1

)
and Aσ2k

=

(
0 1
1 0

)
.

k = 3, . . . , n/2.
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Figure 4.8: Plug Z6.

We assume X(n) satisfying the hypotheses:

(Zn1): There are two repelling periodic orbits O1, O2 in Int(HBn+1) crossing the holes
of R.

(Zn2): There are two solid tori neighborhoods V1, V2 ⊂ Int(HBn+1) of O1, O2 with
boundaries transverse to X(n)t such that if Nn = HBn+1 \ (V1 ∪ V2), then Nn is a compact
neighborhood with smooth boundary transverse to X(n)t and X(n)t(Nn) ⊂ Nn for t > 0.
Nn is a handlebody of genus n+ 1 with two solid tori removed.

(Zn3): R ⊂ Nn and the return map G̃ induced by X(n) in R satisfies the properties
(L1)-(L3) given in Section 3.3.4. Moreover,

{q ∈ Nn : X(n)t(q) /∈ R, ∀t ∈ R} = Cl

(
n−2⋃
m=1

W u
X(n)

(σm)

)
.

We define

A+
X(n)

= Cl

(⋃
t∈R

X(n)t(A
+

G̃
)

)
and A−X(n)

= Cl

(⋃
t∈R

X(n)t(A
−
G̃

)

)
.

A+
X(n)

and A−X(n)
are homoclinic classes for X(n). Moreover A+

X(n)
∪ A−X(n)

= Nn(X(n))

and A+
X(n)
∩ A−X(n)

= O, where O = OX(n)
(P ) with P the fix point associated to map G̃

defined in R.

The proof follows the same ideas to construct the example with four singularities.
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4.4 Venice mask’s examples with an odd number of

singularities

As was observed in Section 4.2, Venice masks containing one or three equilibria have al-
ready been developed. To continue, we provide an example with five singularities. The
idea is very simple. We just proceed such as the process made to obtain the vector field X(3).

First of all, the GLA as sectional-Anosov flow, is supported on a solid bitorus (see [4]).
The holes on the manifold are produced because of the branches of the unstable manifold
of the saddle-type singularity. Therefore, X(3) is a Venice mask defined on a handlebody
of genus 4. The holes are generated by the branches of the unstable manifolds of σ1 and σ2.

Now, for the vector field X(3), we add two Lorenz-like singularities located at the
branches of W u

X(3)
(σ2). We glue together in a C∞ fashion one copy of GLAmod along

the unstable manifold of the singularity σ2. Thus is obtained the vector field X(5) whose
flow is depicted in Figure 4.9.

For each i = 1, 2, 3, there is a cross section Σi and return map Fi such that

Λi = Cl

(⋂
n≥0

F n
i (Σi)

)

is a homoclinic class for Fi. Therefore

Hi = Cl

(⋃
t∈R

X(5)(Λi)

)

is a homoclinic class for flow X(5). Moreover, H1 ∩ H2 ⊂ Cl(W u
X(5)

(σ)), H1 ∩ H3 ⊂
Cl(W u

X(5)
(σ2)) and H2 ∩H3 ⊂ Cl(W u

X(5)
(σ2)).

Proposition 4.4.1. X(5) is a Venice mask supported on a handlebody HB6 of genus 6. The
maximal invariant set HB6(X(5)) is non-disjoint union of three homoclinic classes. The
intersection between two different homoclinic classes is contained in Cl(W u(Sing(X(5)))).

It is possible to continue gluing copies of GLAmod to produce Venice masks with any odd
number of equilibria. Each copy is glued along the unstable manifold of some singularity
σi. The equilibrium σi is chosen such that were previously possible to add two Lorenz-like
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σ3

σ4

σ1

H2 ∩H3

H1 ∩H3

H1 ∩H2

Figure 4.9: Venice mask with five singularities.

singularities in its unstable manifold, one on each branch. More specifically, each σi is
selected to add two new singular points if previously we have

Aσi 6=
(

1 1
1 1

)
.

In this way, the following theorem holds.

Theorem 4.4.2. For every n odd, there exists a Venice mask X(n) with n singularities
supported on a handlebody HBn+1 of genus n+1. The maximal invariant set HBn+1(X(n))
is non-disjoint union of (n+1)/2 homoclinic classes. The intersection between two different
homoclinic classes is contained in Cl(W u(Sing(X(n)))).

Theorem C follows from Theorem 4.3.2 and Theorem 4.4.2.
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CHAPTER

FIVE

INTERSECTION OF HOMOCLINIC CLASSES IN

VENICE MASKS

5.1 Introduction

In search of properties which allow to characterized the dynamic of Venice masks , will
be studied the behavior of homoclinic classes and its relation with the unstable mani-
folds of the singularities. As was seen in previous chapters, all known examples of Venice
masks have the maximal invariant set as finite union of homoclinic classes. Moreover in a
Venice mask X, the intersection between two different homoclinic classes is contained in
Cl(W u(Sing(X))). Specifically, this intersection can be decomposed as the disjoint union
of, a singularity σ, a closed orbit C, and regular points such that its alpha-limit set is σ
and the omega-limit set is C.

As we mention, the dynamical systems theory is interested to describes the behavior
as time goes to infinity for the majority of orbits in a determinated system. An important
tool for hyperbolic sets is the known connecting lemma [16], [2], [11]. Specifically, the
lemma says that if X is an Anosov flow on a compact manifold M and p, q ∈ M satisfy
that for all ε > 0 there is a trajectory from a point ε−close to p to a point ε-close to q, then
there is a point x ∈ M such that αX(x) = αX(p) and ωX(x) = ωX(q). In [8] was proved
a similar result for sectional-Anosov flows, which is known as sectional-connecting lemma.
A fundamental hypothesis in the sectional-hyperbolic case consists in the alpha-limit set
of p ∈M(X) to be non-singular.
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On the other hand, the unstable manifold of every singularity σ of a sectional-Anosov
X is contained in the maximal invariant set M(X). Would be interesting to know what
is the omega-limit set of a point in W u

X(σ). In fact, it can be seen as a extension of the
sectional-connecting lemma. Here, we give an answer when the vector field is a Venice mask.

5.2 Main statements

We show that if X is a Venice mask supported on a compact 3-manifold, then the omega-
limit set of every non-recurrent point in the unstable manifold of some singularity is a
closed orbit. In addition, we prove that the intersection of two different homoclinic classes
in the maximal invariant set of a sectional-Anosov flow can be decomposed as the disjoint
union of, singular points, a non-singular hyperbolic set, and regular points whose alpha-
limit set and omega-limit set is formed by singular points or hyperbolic sets.

Specifically, we have the following statements.

Theorem D. If X is a Venice mask and σ is a singularity of X, then for all q ∈ W u
X(σ)

such that q is non-recurrent we have the following dichotomy:

• ωX(q) ∈ Sing(X).

• ωX(q) = O, where O is a hyperbolic periodic orbit.

Theorem E. The intersection of two different homoclinic classes H1, H2 in the maximal
invariant set of a sectional-Anosov flow X is the disjoint union of a set S (possibly empty)
of singularities, a non-singular hyperbolic set H (possibly empty), and a set R (possibly
empty) of regular points such that if q ∈ R then αX(q) ⊂ H ∪ S and ωX(q) ⊂ H ∪ S.

5.3 Preliminary results

We mention the following results which are essentials to proving the theorems.

Theorem 5.3.1 ([33]). Let Λ be a sectional-hyperbolic set with dense periodic orbits. Then,
every σ ∈ SingX(Λ) is Lorenz-like and satisfies Λ ∩ F ssX (σ) = {σ}.

We observe that W s
X(σ)\F ssX (σ) is decomposed by two connected components W s,+

X (σ)
and W s,−

X (σ) (see figure 5.3). Hence for a Venice mask, a regular point in M(X) contained
in the stable manifold of some singularity σ, necessarily is contained either W s,+

X (σ) or
W s,−
X (σ).
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W s,+
X (σ)

F ssX (σ)

W s,−
X (σ)σ

W s
X(σ)

Figure 5.1: Connected components.

Lemma 5.3.2 (Hyperbolic lemma [33]). A compact invariant set without singularities of
a sectional-hyperbolic set is hyperbolic saddle-type.

Remark 5.3.3. Theorem 5.3.1 and the Hyperbolic Lemma imply that every Venice mask
has singularities, and these are Lorenz-like.

Definition 5.3.4. We say that a C1 vector field X with hyperbolic closed orbits has the
Property (P ) if for every periodic orbit O there is a singularity σ such that

W u
X(O) ∩W s

X(σ) 6= ∅. (5.1)

The above definition is useful by the interesting fact below.

Lemma 5.3.5. Every point in the closure of the periodic orbits of a vector field with the
Property (P ) is accumulated by points for which the omega-limit set is a singularity.

Moreover, we have an important property.

Lemma 5.3.6 ([32]). Every sectional-Anosov flow with singularities and dense periodic
orbits on a compact 3-manifold has the Property (P ).

Remark 5.3.7. By Lemma 5.3.5 and Lemma 5.3.6 we can assert that every Venice mask
X has the Property (P ) and W s(Sing(X)) ∩M(X) is dense in M(X).

Definition 5.3.8. Given Σ ⊂M we say that q ∈M satisfies Property (P )Σ if Cl(O+(q))∩
Σ = ∅ and there is open arc I in M with q ∈ ∂I such that O+(x) ∩Σ 6= ∅ for every x ∈ I.

We finish to exhibit the preliminar statements with the following characterization.

44



q

ω(q)
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Figure 5.2: Property (P )Σ.

Theorem 5.3.9 ([7]). Let X be a C1 vector field in a compact 3-manifold M . If q ∈ M
has sectional-hyperbolic omega-limit set ω(q), then the following properties are equivalent:

• ω(q) is a closed orbit.

• q satisfies (P )Σ for some closed subset Σ.

In Figure 5.2 is exhibited the case when the omega-limit set ω(q) of the point q is a
hyperbolic singularity of saddle-type.

5.4 Characterizing the omega-limit set

In this section we will prove the Theorem D. The idea is to consider a sequence of points
satisfying the Property (P )Σ, which approximates a point q in the unstable manifold of a
fixed singularity. We show that q satisfies the Property (P )Σ too. Hereafter in this section,
we assume that every regular point q ∈ W u(Sing(X)) is non-recurrent.

First, we mention some facts of topology. Given a compact metric space (Y, d), define
a distance function between any point x of Y and any non-empty set B of Y by:
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d(x,B) = inf{d(x, y)|y ∈ B}.

Now, consider the collection C(Y ) = {C ∈ Y : C is a non-empty compact subset of (Y, d)}.
For C(Y ), take the Hausdorff metric dH defined as the distance function between any two
non-empty sets A and B of Y by:

dH(A,B) = sup{d(x,B)|x ∈ A}.

Lemma 5.4.1. Let {An : n ∈ N} be a sequence of closed sets contained in a compact metric
space (Y, d), such that An → A in the Hausdorff metric induced by d. Then ∂An → ∂A.

For now and on this section, let M be a riemaniann compact 3-manifold, and let X be
a Venice mask on M . So, for a hyperbolic point p of X, W s

X(p) is just denoted by W s(p).
The same interchanging s by u.

5.4.1 Existence of singular partitions

We introduce the following definition which extends the notion given in [30]. This can also
be found in [5] and [6].

A cross section of X is a codimension one submanifold S transverse to X. We denote
the interior and the boundary (in topological sense) of S by Int(S) and ∂S respectively.
If R = {S1, · · · , Sk} is a collection of cross sections we still denote by R the union of its
elements. Moreover

∂R :=
k⋃
i=1

∂Si and Int(R) :=
k⋃
i=1

Int(Si)

The size of R will be the sum of the diameters of its elements.

Definition 5.4.2. A singular partition of an invariant set H of a vector field X is a finite
disjoint collection R of cross sections of X such that H ∩ ∂R = ∅ and

H ∩ Sing(X) = {y ∈ H : Xt(y) /∈ R,∀t ∈ R}.

We remember a fact mentioned in Section 4.3. For a Lorenz-like singularity σ, the
center unstable manifold W cu

X (σ) associated is divided by W u(σ) and W s(σ) ∩W cu(σ) in
the four sectors s11, s12, s21, s22 (see Figure 4.6). π : Vσ → W cu(σ) is the projection defined
in a neighborhood Vσ of σ.
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Lemma 5.4.3. Consider σ a Lorenz-like singularity of a Venice mask X, and O a hyper-
bolic periodic orbit satisfying Cl(W u(O)) ∩W s,+(σ) 6= ∅ and Cl(W u(O)) ∩W s,−(σ) 6= ∅.
Moreover, π(Cl(W u(O))) ∩ s1i 6= ∅ and π(Cl(W u(O))) ∩ s2i 6= ∅ for some i ∈ {1, 2}. If q
is a regular point in W u(σ) ∩ Cl(s1i) ∩ Cl(s2i), then O = ωX(q).

Proof. We take q ∈ W u(σ) a regular point close to σ. We assert that q ∈ W s(O). Indeed,
if we suppose that is not the case, we will get a contradiction.

So, we assume q ∈ W u(σ) \ W s(O). Then, there is a sequence p−n → q such that
p−n ∈ W u(O) ∩ W s(O) for all n. In addition, {OX(p−n ) : n ∈ N} accumulates some
regular point p− in W s,−(σ) or in W s,+(σ). We can suppose the accumulation in some
point of W s,−(σ). Also, we can take {p+

n : n ∈ N} ⊂ W u(O) be a sequence such that
p+
n → q. Moreover, {OX(p+

n ) : n ∈ N} accumulates σ and some point p+ in W s,+(σ).
We have p+

n , p
−
n /∈ W u(σ) for all n. On the other hand, q ∈ Cl(W u(O)) and the invari-

ance of W u(σ) imply OX(q) ⊂ Cl(W u(O)). But Cl(W u(O)) is a closed set, therefore
Cl(OX(q)) ⊂ Cl(W u(O)). Applying the compactness of Cl(W u(O)) and Tubular Flow
Box Theorem [36] in a neighborhood of O+(q) we obtain that {O+(p+

n ) : n ∈ N} and
{O+(p−n )n ∈ N} acummulate all point close ωX(q).

As O and ωX(q) are invariant closed sets, then they are disjoints and d(x, ωX(q)) > 0
for all x ∈ O. This implies that there exists ε > 0 such that every point y closen to ωX(q)
satisfies d(y,O) > ε. Moreover y /∈ OX(q) and, {O+(p+

n ) : n ∈ N}, {O+
X(p−n ) : n ∈ N}

acummulate y. The positive orbits of p+
n and p−n cannot intersect ωX(q). So, we have two

possibilities, either any orbit intersects OX(q), or no orbit does it. The first case means
that there is a point w ∈ W u(σ) ∩W u(O) which is absurd. So, neither orbit intersects
OX(q). Now, q is a non-recurrent point. Then, {O+

X(p+
n ) : n ∈ N} does not accumulate on

W s,+(σ). But this contradicts the choice of the sequences. Therefore q ∈ W s(O). So, we
conclude O = ωX(q).

From Lemma 5.4.3 we obtain the following corollary.

Corollary 5.4.4. Consider σ a Lorenz-like singularity of a Venice mask X, and O a
hyperbolic periodic orbit satisfying W u(O)∩W s,+(σ) 6= ∅ and W u(O)∩W s,−(σ) 6= ∅. Let q
be a regular point in W u(σ)∩Cl(W u(O)) such that for {pn : n ∈ N} ⊂ Cl(W u(O))∩W s(O)
and pn → q. Then pn ∈ OX(q).

Proof. For this is sufficient to observe that for pn ∈ W s(O)∩Cl(W u(O)) such that pn → q,
then pn ∈ OX(q) for all n large.

47



Remark 5.4.5. Corollary 5.4.4 says that for i ∈ {1, 2} and for every hyperbolic periodic
orbit O of X, is not possible H(O) ∩ s1i 6= ∅ and H(O) ∩ s2i 6= ∅ simultaneously.

Lemma 5.4.6. Let σ be a singularity of a Venice mask X, and let O be a hyperbolic
periodic orbit such that W u(O) ∩ W s(σ) 6= ∅. Then for q ∈ W u(σ) \ {σ}, ωX(q) has
singular partitions of arbitrarily small size.

Proof. We adapt the proof of Theorem 17 given in [6]. Observe that ωX(q) is sectional-
hyperbolic. Therefore, if ωX(q) is a closed orbit, then Theorem 5.3.9 implies that q satisfies
the property (P )Σ for some closed subset Σ. Moreover, we can apply Theorem 16 in [6] to
conclude that ωX(q) has singular partitions of arbitrarily small size.

Hereafter, we assume ωX(q) is not a closed orbit. By Proposition 3 in [6] is sufficient
to prove that for all z ∈ ωX(q) there is cross section Σz close to z such that z ∈ Int(Σz)
and ωX(q) ∩ ∂Σz = ∅.

We assert that ωX(q) cannot contain any local strong stable manifold. Indeed, we first
assume that ωX(q) has no singularities. By Hyperbolic lemma, it is hyperbolic saddle-type.
Suppose ωX(q) containing a local strong stable manifold. Then, by Lemma 11 in [6], q
would be a recurrent point. Therefore using Lemma 5.6 in [29], there is x∗ ∈ Per(X)∩ωX(q)
such that q ∈ W s

X(x∗). This means that ωX(q) is a periodic orbit which contradicts our
assumption. Now, if ωX(q) is a sectional-hyperbolic set with singularities, applying Main
Theorem in [27], ωX(q) cannot contain any local strong stable manifold.

We can fix a foliated rectangle of small diameter R0
z such that z ∈ Int(R0

z) and
ωX(q) ∩ ∂hRz

0 = ∅. By Theorem 5.3.1, the intersection of W u(O) with W s(σ) occurs
in some connected component W s,+(σ′) or W s,−(σ) (or both). We initially assume the
intersection in W s.+(σ).

Since z ∈ ωX(q) and the omega-limit set is not a closed orbit, we have that the posi-
tive orbit of q intersects either only one or the two connected components of R0

z \F s(z,R0
z).

Assume the intersection is occurring in just one component only, we shall consider the
following cases:

• W s,−(σ) ∩M(X) = ∅.
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Using this and linear coordinates around σ, we can construct an open interval I+ =
I+
q ⊂ W u(O), contained in a suitable cross section throught q ∈ W u(σ) \ {σ} and
q ∈ ∂I+. As W u(O) ∩W s,+(σ) is dense in W u(O) we have I+ ∩W s,+(σ) is dense in
I+.

It is possible to assume I+ is contained in that component of R0
z \ F s(z,R0

z). It is
because of the positive orbit of q carries the positive orbit of I+ into such a component.
Furthermore, the stable manifolds throught I+ form a subrectangle R+

I in there. So,
W s,+(σ) ∩R+

I is dense in R+
I .

Now, as in Theorem 17 of [6], we suppose ωX(q)∩Int(R+
I ) 6= ∅ to obtain a contradic-

tion. By hypothesis, the omega-limit set of q is not a periodic orbit. Then Lemma 5.6
in [29] implies that the positive orbit of q cannot intersects F s(q, R0

z) infinitely many
times. Now, if it intersects R+

I , then by the density of W s,+(σ) ∩ R+
I in R+

I , we can
assert that the positive orbit of a point p in W s,−(σ) would intersect R+

I . Therefore
p ∈ Cl(W u(O)) ⊂M(X) which we get a contradiction. So ωX(q) ∩ Int(R+

I ) = ∅.
To continue, we choose a point z′ ∈ Int(R+

I ) and a point z′′ in the connected compo-
nent R0

z \ F s(z, R0
z) not intersected by the positive orbit of q. The desired rectangle

Σz is a subrectangle of R0
z bounded by F s(z′, R0

z) and F s(z′′, R0
z).

• W s(σ) ∩W u(O) ⊂ W s,+(σ) and W s(σ) ∩W u(O′) ⊂ W s,−(σ) for some hyperbolic
periodic orbit O′ 6= O.

In this way, we have the hypotheses of Theorem 17 in [6]. Therefore there exists an in-
terval I− ⊂ W u(O′) contained in that component of R0

z\F s(z,R0
z), such that q ∈ ∂I−

and I− ∩W s,−(σ) is dense in I−. The stable manifolds throught I = I+ ∪ {q} ∪ I−
form a subrectangle RI in there, with Int(RI) ∩ ωX(q) = ∅. So, the existence of Σz

is guaranteed such as last item.

• W s,+(σ) ∩W u(O) 6= ∅ and W s,−(σ) ∩W u(O) 6= ∅.
We assert that there areO1, O2 hyperbolic periodic orbits such that, W s(σ)∩W u(O1) ⊂
W s,+(σ) and W s(σ) ∩W u(O2) ⊂ W s,−(σ). Indeed, we take q1 ∈ W s,+(σ) ∩W u(O)
and q2 ∈ W s,−(σ) ∩W u(O).

As M(X) is union of homoclinic classes and W u(O) ⊂ M(X), there are hyper-
bolic periodic orbits O1, O2 satisfying q, q1 ∈ H(O1) and q, q2 ∈ H(O2). Therefore
OX(q1) ⊂ H(O1) and OX(q2) ⊂ H(O2). Moreover, since the homoclinic classes are
closed set we have that σ and O are in H(O1) ∩ H(O2). From Remark 5.4.5 fol-
lows H(O1) ∩ W s(σ) ⊂ W s,+(σ) and H(O2) ∩ W s(σ) ⊂ W s,−(σ). On the other
hand, let W+(O) be the connected component of W u(O) \ O containing q1, then
W+(O) ⊂ H(O1). Analogously, for W−(O), the connected component of W u(O) \O
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containing q2, we have W−(O) ⊂ H(O2). Therefore W u(O1)∩W s(σ) ⊂ W s,+(σ) and
W u(O2) ∩W s(σ) ⊂ W s,−(σ). Again we have the hypotheses of Theorem 17 in [6].

• W s,+(σ) ∩W u(O) 6= ∅ and W s,−(σ) ∩H(O) 6= ∅.
It is not possible by Corollary 5.4.4.

• W s,+(σ)∩W u(O) 6= ∅, W s,−(σ)∩Cl(W u(O′)) 6= ∅ and q ∈ Cl(W u(O′)), where O′ is
a hyperbolic periodic orbit of X.

From last item O′ /∈ H(O). As X satisfies the Property (P ), there is σ′ ∈ Sing(X)
such that W u(O) ∩ W s(σ′) 6= ∅. If σ′ = σ then W u(O′) intersects W s,+(σ) or
W s,−(σ). Observe that those alternatives was already analyzed. If σ′ 6= σ, then we
can obtain a interval J− such that J− ⊂ W u(O′) and J− ∩W s(σ′) is dense in J−.
Moreover we can assume W s(σ)∩W u(O) ⊂ W s,+(σ) to obtain a interval I+ such that
I+ ⊂ W u(O) and I+ ∩W s,+(σ) is dense in I+. Because of O′ /∈ H(O), follows that
W u(O′) * H(O). Therefore W u(O′) cannot intersect W s,+(σ). In this way, there is
an open arc I− ⊂

⋃
t≥0Xt(J

−) such that q ∈ ∂I−. I− works such as in second item.
The stable manifolds throught I = I+ ∪ {q} ∪ I− generates a subrectangle RI . This
acts such as Theorem 17 in [6].

Now assume the positive orbit intersect both components of R0
z \ F s(z,R0

z). Therefore
we take I (or I+ to first case) with the positive orbit as before to obtain two subrectangles
Rt
I and Rb

I , like RI (or R+
I to first case), in each component. Then we select two points

z′ ∈ Int(Rt
I) and z′′ ∈ Int(Rb

I) and define Σz as the rectangle in R0
z bounded by F s(z′, R0

z)
and F s(z′′, R0

z).

From Proposition 3 in [6] we conclude the result.

We remember the concept of singular cross section that appears in [31]. For a disjoint
collection of rectangles S = {S1, · · · , Sl} we denote So = S \ ∂S. and ∂∗S =

⋃
S∈S ∂

∗S for
∗ = h, v, o.

Definition 5.4.7. A singular cross section of X is a finite disjoint collection S of foliated
rectangles with M(X) ∩ ∂hS = ∅ such that for every S ∈ S there is a leaf lS of F s in
So such that the return time tS(x) for x ∈ S ∩ Dom(ΠS) goes uniformly to infinity as x
approaches lS.

We define the singular curve of S as the union,

lS =
⋃
S∈S

lS.
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Proposition 5.4.8. Let q be a regular point in W u(σ), with σ a singularity of a Venice
mask X, and let O be a hyperbolic periodic orbit such that W u(O) ∩W s(σ) 6= ∅. Then
ωX(q) is a closed orbit.

Proof. If ωX(q) is a singularity, then it is done. Hereafter, we assume that ωX(q) is not
a singularity. From Lemma 5.4.6 follows that ωX(q) has singular partitions or arbitrar-
ily small size. On the other hand, let TUM = F̂ s

U ⊕ F̂ c
U be a continous extension of the

sectional-hyperbolic splitting TωX(q)M = F s
ωX(q) ⊕ F c

ωX(q) of ωX(q) to a neighborhood U of

ωX(q). Let I be an arc tangent to F̂ c
U , transverse to X, with q as boundary point. Theorem

18 in [6] guarantees for every singular partition R = {S1, · · ·Sk} of ωX(q), the existence
of S ∈ R, δ > 0, a sequence q′1, q

′
2, · · · ∈ S in the positive orbit of q, and a sequence of

intervals J ′1, J
′
2 · · · ⊂ S in the positive orbit of I with q′j as a boundary point of J ′j for all

such that length(J ′j) ≥ δ, for all j = 1, 2, 3, · · · .

We can assume I = J ′1. As q, q′j ∈ M(X) and X is a Venice mask, we can use the
Lemma 5.3.5 to obtain a sequence {qn : n ∈ N} ⊂ M such that qn → q and ω(qn) is a
singularity for any n. As X has just a finite singular points, we can take ω(qn) = {σ′} for
all n, and some σ′ ∈ Sing(X). If qn ∈ W u(σ) for all n, then ω(q) = {σ′} which contradicts
our assumption. Therefore qn /∈ W u(σ) for any n. We can take qn such that qn ∈ S for all n

On the other hand, for σ′ are possible the following two alternatives, either σ′ ∈ ωX(q),
or σ′ /∈ ωX(q). We begin to consider σ′ ∈ ωX(q). Lemma 14 in [6] asserts O+(q) ∩ R =
{q̂1, q̂2, · · · } an infinite sequence ordered in a way that Π(q̂n) = q̂n+1, and the existence of
a curve cn ⊂ W s(Sing(X) ∩ ωX(q)) ∩Bδ(q̂n) such that

B+
δ (q̂n) ⊂ Dom(Π) and Π|B+

δ (q̂n) is C1,

where B+
δ (q̂n) denotes the connected component of Bδ(q̂n) \ cn containing q̂n.

In particular, we can reduce δ to obtain ΠS = Π|S such that

(ΠS)|B+
δ (q) is C1.

However W s(σ′) accumulates q on S, so we obtain a contradiction.

Therefore the first alternative cannot occur. We conclude σ′ /∈ ωX(q).

Hartman-Grobman’s Theorem implies the existence of a neighborhood Vσ′ of σ′, where
the flow is C0-conjugated to its linear part. Let η > 0 be such that Vσ′ ⊂ Bη(σ

′) and
O+(q)∩Vσ′ = ∅. From Lemma 2.2 in [31] there are singular cross sections Σ+,Σ− ⊂ Vσ′ such

51



Vσ′
Σ+

Λ+

Λ−

Σ−

σ′

xl

ql

W u(σ)

x

q

W u(σ′)

I

Il

S

XT (x)

Xtl(xl)

Figure 5.3: Proof Proposition 5.4.8.

that every orbit of M(X) passing close to some point in W s,+(σ′) (respectively W s,−(σ′))
intersects Σ+(respectively Σ−). Moreover Lemma 2.3 in [3] guarantees the existence of two
disks Λ+,Λ− ⊂ Vσ′ transverse to X such that for Bε(σ) ⊂ Vσ′ , and for any point x ∈ Bε(σ

′),
there are two numbers t− < 0 < t+ with Xt−(x) ∈ Σ+ ∪ Σ− and Xt+(x) ∈ Λ+ ∪ Λ−. In
addition, Xt(x) ∈ Vσ′ for all t ∈ (t−, t+). See Figure 5.3.

As qn → q, we can take a sequence of open arcs I1, I2, · · · with qn as a boundary point of
In such that Cl(In) converges to Cl(I). In particular, we can assume δ ≤ length(In) < ε for
all n = 1, 2, 3, · · · and diam(S) = ε. In addition, we can take In ⊂ S for all n. On the other
hand, qn ∈ W s(σ′) implies that O+(qn) intersects Σ+ ∪ Σ−. Assume that the intersection
occurs in Σ+ for all n. As we can choose the singular partition of arbitrarily small size and q
is non-recurrent, there is ε′ > 0 such that diam(R) = ε′ and O+(sn)∩Σ+ 6= ∅ for all sn ∈ In.

We assert that q satisfies the property (P )Σ, where Σ = Σ+. Indeed, from O+(q)∩Vσ′ =
∅ follows O+(q) ∩ Σ+ = ∅. Now, for x ∈ I there are β1, β2 > 0 such that Bβ1(x) ∩ ∂I = ∅,
Bβ2(x)∩{ql} = ∅ and Bβ2(x)∩Il 6= ∅ l for all l large. We define β = min{β1, β2}. Let {xl}l
be a sequence with xl ∈ Il ∩ Bβ(x) such that xl → x. As in [6], we define the holonomy
map ΠS,Σ+ from S to Σ+ by

Dom(ΠS,Σ+) = {y ∈ S : Xt(y) ∈ Σ+ for some t > 0}
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and

ΠS,Σ+(y) = XtS,Σ+ (y)(y),

where tS,Σ+(y) = inf{t > 0 : Xt(y) ∈ Σ+}.

Therefore xl ∈ Dom(ΠS,Σ+) for all n. From Lemma 19 and Theorem 22 in [6] follows
that x ∈ Dom(ΠS,Σ+).

Finally, Theorem 5.3.9 implies that ωX(q) is a closed orbit. As we assume ωX(q) not
being a singularity, then we conclude that the omega-limit set of q is a periodic orbit.

5.4.2 Property (Pσ′)+
q

Definition 5.4.9. Let σ, σ′ ∈ Sing(X) and q be a regular point in W u(σ). We say that an
open arc I ⊂M satisfies the property (Pσ′)

+
q if q ∈ ∂I and I ∩W s,+(σ′) is dense in I. In a

similar way, an open arc J ⊂ M satisfies the Property (Pσ′)
−
q if q ∈ ∂J and J ∩W s,−(σ′)

is dense in J .

Proposition 5.4.10. Let O be a hyperbolic periodic orbit of a Venice mask X. Assume
σ′ ∈ Sing(X) satisfying ∅ 6= W u(O) ∩ W s(σ′) ⊂ W s,+(σ′). Then, for all singularity σ
and all regular point q ∈ W u(σ) ∩Cl(W u(O)), there is an open arc satisfying the property
(Pσ′)

+
q . The same interchanging + by −.

Proof. Let p ∈ W u(σ′) be a regular point. We assert that there is an open interval J
satisfying the property (Pσ′)

+
p . Indeed, σ′ and p are contained in Cl(W u(O)). As W u(O)

intersects W s,+(σ′), then W u(O) ∩ W s(σ) is dense in W s,+(σ′). Consider an open arc
J ⊂ W u(O) with p ∈ ∂J . So, the density of W u(O) ∩W s,+(σ) in W u(O) implies that
J ∩W s,+(σ′) is dense in J .

If σ = σ′, then we obtain the desired result. Now, we consider σ 6= σ′. From Lemma
5.4.8 follows that the omega-limit set of every point in W u(σ′) is a closed orbit. Now, take
two point p1, p2, one on each branch of W u(σ′)\{σ′}. We analize the following cases which
are ilustrated in Figure 5.4.

• ωX(p1) is a singularity. Let σ1 be a singularity with ωX(p1) = {σ1}. If ωX(p1) = {σ′},
then ωX(p2) 6= {σ′}. Indeed, ωX(p1) = {σ′} = ωX(p2) implies either W u(O) ∩
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Figure 5.4: Proof Proposition 5.4.10

W s(σ) 6= ∅ or Cl(W u(O)) ∩W s(σ) 6= ∅. But W u(O) ∩W s(σ) = ∅ by hypothesis.
Moreover σ ∈ Cl(W u(O)). So, σ1 6= σ′.

Let w ∈ W u(σ′) ∩ W s(σ1) be a point in O+
X(p1) close to σ1. Using it and linear

coordinates around σ1, we can construct an open interval J1 ⊂
⋃
t≥0Xt(J) ⊂ W u(O)

contained in a suitable cross section throught w, such that w ∈ ∂J1. From Inclina-
tion lemma [36], follows that W u(O) accumulates points in some branch of W u(σ1).
Therefore, for q1 ∈ (W u(σ1) ∩ Cl(W u(O))) \ {σ1} there is an open arc I1 such that
I1 ⊂

⋃
t≥0Xt(J1) and q1 ∈ ∂I1. The density of W s,+(σ′) ∩W u(O) in W u(O) implies

the density of W s,+(σ′) ∩ I1 in I1. Then I1 satisfies (Pσ′)
+
q1

.

• When the omega-limit set of p1 and p2 are respectively hyperbolic periodic orbits
O1, O2, we have that W u(Oi) intersects the stable manifold of some singularity σi
of X, i = 1, 2. We first assume σ1 = σ2 = σ′. That intersection cannot just
only occurs in W s(σ′) because of this would imply σ /∈ Cl(W u(O1) ∪W u(O2)) and
Cl(W u(O)) ⊂ Cl(W u(O1) ∪W u(O2)). But σ ∈ Cl(W u(O)) which produces a con-
tradiction. Therefore we can assume that W u(O1) ∩W s(σ1) 6= ∅ with σ1 6= σ′.

Applying Inclination lemma, Cl(W u(O)) and
⋃
t≥0Xt(J) intersect W s(σ1) transver-

sally. Again, let w ∈ W u(O) ∩W s(σ) be a point in
⋃
t≥0Xt(J) close to σ1. Using

it and linear coordinates around σ1, we can construct an open interval J1 ⊂ W u(O)
contained in a suitable cross section throught w. J1 \ {w} is formed by two open
arcs J+

1 , J
−
1 ⊂ W u(O). Therefore, for q1 ∈ W u(σ1) \ {σ1} there is an open arc I1
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such that and q1 ∈ ∂I1 and, I1 ⊂
⋃
t≥0Xt(J

+), or I1 ⊂
⋃
t≥0Xt(J

−). The density
of W s,+(σ′) ∩W u(O) in W s,+(σ′) implies the density of W s,+(σ) ∩ I1 in I1. Then I1

satisfies (Pσ′)
+
q1

.

If σ1 = σ, then the result is obtained. Otherwise, we apply a similar process to σ1

to get σ3 ∈ Sing(X) with σ3 /∈ {σ′, σ1}, and an open arc I3 ⊂ Cl(W u(O)) such that I3

satisfies the property (Pσ′)
+
q3

.

As σ ∈ Cl(W u(O)) and X just has finitely many singularities, we conclude the existence
of some open arc satisfying the property (Pσ′)

+
q for q ∈ W u(σ) ∩ Cl(W u(O)).

5.4.3 Proof of Theorem D

It is sufficient to prove the existence of singular partitions of arbitrarily small size.

Let q be a regular point in W u(σ), where σ ∈ Sing(X).

As M(X) is union of homoclinic classes, there is a hyperbolic periodic orbit O such
that σ and q are contained in the homoclinic class associated to O, denoted by H(O). In
addition H(O) intersects only one or the two connected components W s,+(σ),W s,−(σ) of
W s(σ) \ F ssX (σ). We begin to analize the intersection in W s,+(σ). On the other hand,
X satisfies the property (P ). This implies that there is a singularity σ′ ∈ Sing(X) with
W u(O) ∩W s(σ′) 6= ∅. By Theorem 5.3.1, the intersection of W u(O) with W s(σ′) is either
only one or the two connected components W s,+(σ′),W s,−(σ′) of W s(σ′)\F ssX (σ′). If σ = σ′

then from Lemma 5.4.6 follows the existence of singular partitions of arbitrarily small size.
Hereafter, we assume σ 6= σ′ and W s.+(σ′) ∩W u(O) 6= ∅.

If Cl(W u(O)) ∩W s,−(σ′) 6= ∅, then Lemma 5.4.3 and Proposition 5.4.8 imply that for
some p ∈ W u(σ′) ∩ Cl(W u(O)), O = ωX(p) and H(O) ⊂ Cl(W u(σ′)). But q /∈ W u(σ′).
This contradicts q ∈ H(O). So, Cl(W u(O))∩W s,−(σ′) = ∅. Proposition 5.4.10 guarantees
the existence of an open arc I+ ⊂M satisfying the property (Pσ′)

+
q .

We suppose ωX(q) is not a periodic orbit. Let z be a point in ωX(q). In a similar way
as Lemma 5.4.6, we fix a foliated rectangle of small diameter R0

z such that z ∈ Int(R0
z) and

ωX(q) ∩ ∂hRz
0 = ∅. The positive orbit of q intersects either only one or the two connected

components of R0
z \ F s(z, R0

z).

Assume the intersection is occurring in just one component only.

Now, analize the following cases:
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• q /∈ H(O′) for all hyperbolic periodic orbit O′ of X such that H(O′) ∩W s,−(σ) 6= ∅.
The existence of the singular partitions of arbitrarily small size is obtained such as
the first case in Lemma 5.4.6.

• There is a sequence {pn}n ⊂ W u(O) such that pn → p ∈ W s,−(σ), and there is a
sequence {qn} such that qn ∈ OX(pn) and qn → q.

From Lemma 5.4.3 follows that ωX(q) = O. But this contradicts our assumption
that the omega-limit set is not a periodic orbit.

• For some periodic orbit O′ 6= O, there is a sequence {pn : n ∈ N} ⊂ W u(O′) such
that pn → p ∈ W s,−(σ), and there is a sequence {qn : n ∈ N} satisfying qn ∈ OX(pn)
and qn → q.

Again, Lemma 5.4.3 implies that W u(O′) does not intersect the open arc I+. From
Property (P ), there is σ′′ ∈ Sing(X) such that W u(O′)∩W s(σ′′) 6= ∅. Then for some
r ∈ W u(σ′′) there is an interval J− ⊂ W u(O′), such that r ∈ ∂J and J− ∩W s(σ′′)
is dense in J−. Also there is an open arc I− ⊂

⋃
t≥0Xt(J

−) satisfying q ∈ ∂I−.
Therefore I− ⊂ W u(O′) and I−∩W s(σ′′) is dense in I−. In addition, W s,+(σ)∩I− =
∅. The stable manifolds throught I = I+ ∪ {q} ∪ I− generates a subrectangle RI .
This rectangle acts such as Lemma 17 in [6].

The existence of the singular partition of arbitrarily small size is obtain such as Lemma
5.4.6.

If the intersection of O+
X(q) with R0

z occurs in both connected components of R0
z \

F s(z,R0
z), then we proceed such as Lemma 5.4.6 to get a cross section Σz with z

∫
Σz and

∂Σz ∩ ωX(q) = ∅.
In this way, Proposition 3 in [6] implies the existence of the singular partition of arbi-

trarily small size for ωX(q).

Finally, we follow the proof of Proposition 5.4.8 to conclude that ωX(q) is a closed orbit.

5.5 Intersection of homoclinic classes

In this section we are interested in the study of the intersection of homoclinic classes in
a sectional-Anosov flow. We follow some ideas developed in [9] to obtain the theorem E.
More specifically we prove that in this context that the intersection can be decomposed
in three specific sets. a non-singular hyperbolic set, finitely many singularities and regular
orbits joining them. Recall that an invariant set is nontrivial if it does not reduces to a
single orbit. The conclusion of Theorem E is obvious when H1 or H2 is a trivial invariant
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set. Hereafter, H1 and H2 are two non trivial different transitive sets in M(X). Let Λ be
the intersection between H1 and H2. We start with the following lemma.

Lemma 5.5.1. Assume that there is a singularity σ ∈ Λ, then for δ > 0 small, every
sequence {xn : n ∈ N} ⊂ Λ ∩Bδ(σ) such that xn → σ is contained in W s(σ) ∪W u(σ).

Proof. We suppose by contradiction that there is a sequence {xn : n ∈ N} ⊂ Λ ∩ Bδ(σ)
such that xn → σ and xn /∈ W s(σ) ∪W u(σ) for all n.

So, we obtain two sequences xsn and xun, in the orbit of xn such that xsn → ys and
xun → yu for some ys ∈ W s(σ) \ {σ} and yu ∈ W u(σ) \ {σ} close to σ. Let O1, O2

be two orbits such that H(O1) = H1 and H(O2) = H2. Then there exist sequences
{pn : n ∈ N} ⊂ (W u(O1) ∩W s(O1)) and {qn : n ∈ N} ⊂ (W u(O2) ∩W s(O2)) satisfying
pn → xsn and qn → xsn. We can assume pn /∈ H2 for all n. This means that pn → xs and
qn → xs too. The behavior of the orbits of xn, pn and qn nearby σ, are as described in
Figure 5.5.

Since homoclinic classes have density of periodic points [19], for each n we have that
pn and qn are approximated respectively by a sequence of periodic orbits {Omn

1 : m ∈ N}
and {Omn

2 : m ∈ N}. Define the map π : Bδ(σ)→ W cu(σ) such as in Section 4.3. Observe
that {π(W u(Omn

1 )) : m ∈ N} and {π(W u(Omn
2 )) : m ∈ N} accumulate ys in the same

sector sij of W cu(σ). Follows from Lemma 3.1 in [13] that these sequences can be chosen
in a way that, for i = 1, 2 and for all n,m, W s(Onm

i ) is uniformly bounded away from
zero. This implies that for m1,m2, n1, n2 large, W u(Om1n1

1 ) ∩W s(Om2n2
2 ) 6= ∅. Consider

x ∈ W u(On1m1
1 ) ∩ W s(Om2n2

2 ). As Om1n1
1 ⊂ (H1 \ H2) and Om2n2

2 ⊂ H2, then there is
x∗ ∈ OX(x) such that x∗ ∈ Λ. But Λ is an invariant closed set, then Om1n1

1 ⊂ Cl(OX(x∗)) =
Cl(OX(x∗)) ⊂ Λ. However Om1n1

1 * H2 and Λ ⊂ H2, which is a contradiction.

We conclude xn ∈ W s(σ) ∪W u(σ) for all n ∈ N.

5.5.1 Proof theorem E

Theorem E gives a description about the set Λ.

Proof. The idea of the proof is the same given in Lemma 3.3 by [9]. Follows to Lemma
5.5.1 that there is δ > 0 such that Λ ∩ Bδ(σ) ⊂ W s(σ) ∪W u(σ), and the balls Bδ(σ) are
pairwise disjoint for every σ ∈ Λ ∩ Sing(X) = S. Define

H =
⋂

(t,σ)∈R×S

Xt(Λ \Bδ(σ)).
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Figure 5.5: Lemma 5.5.1

By construction, H is a non-singular, compact invariant sectional-hyperbolic set. So,
applying Lemma 5.3.2 we have that H is hyperbolic. Now define R = Λ\(S∪H). For x ∈ R
there is (t, σ) ∈ R× S with Xt(x) ∈ Bδ(σ), and by Lemma 5.5.1 Xt(x) ∈ W s(σ)∪W u(σ).

If x ∈ W u(σ) we obtain α(x) ⊂ H ∪ S. Assume Xs(x) /∈
⋃
ρ∈S Bδ(ρ) for all s ≥ 0, then

ω(x) ⊂ H. Now, if there is (s, ρ) ∈ R × S such that Xs(x) ∈ Bδ(ρ) then x ∈ W s(ρ), So
ω(x) ∈ H ∪ S.

With a similar argument we have α(x) ⊂ H ∪ S and ω(x) ⊂ H ∪ S for x ∈ W s(σ). So,
we conclude the result.
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CHAPTER

SIX

CONCLUSIONS AND PERSPECTIVES

From this work we have the following conclusions for sectional-Anosov flows of Venice mask
type on compact 3-manifolds:

1. The existence of Venice masks containing any finite number of singularities. These
examples are characterized because the associated maximal invariant set is finite
union of homoclinic classes. In addition, the intersection between two different ho-
moclinic classes is contained in the closure of the union of unstable manifold of the
singular points of the Venice mask.

2. There exist Venice masks such that the maximal invariant set cannot be decomposed
as the union of two homoclinic classes.

3. The omega-limit set of every non-recurrent point in the unstable manifold of a equi-
librium of a Venice mask is a closed orbit.

4. The intersection between two different homoclinic classes in a sectional-Anosov flow
can be decomposed as the disjoint union of singular points, a non-singular hyperbolic
set H, and regular points whose alpha-limit set and omega-limit set are contained in
the union of singular points and the non-singular hiperbolic set H.
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Because of the study developed in this work, different questions have appeared. Such as
we mention in Chapter 4, all known examples of Venice mask are characterized because the
maximal invariant set is the finite union of homoclinic classes and the intersection between
two different homoclinic classes H1 and H2 is contained in Cl(W u(Sing(X))). Moreover,
every regular point q ∈ W u(Sing(X)) ∩H1 ∩H2 is non-recurrent.

Consider a Venice mask X supported on a compact 3-manifold M . Let H1 and H2 be
two different homoclinic classes in M(X) and let Λ be the intersection between H1 and
H2. Assume the decomposition of Λ given in Theorem E, it is Λ = S ∪H ∪R.

We announce the following conjecture.

Conjecture 6.0.1. Every regular point q ∈ R is non-recurrent.

By Lemma 5.5.1 we have x ∈ W s(σ) ∪W u(σ) for some σ ∈ S. If x ∈ W u(σ) then
α(x) = {σ}. Now we take x ∈ W s(σ)\W u(σ), therefore we shall consider two cases, either
α(x) = {ρ} for some ρ ∈ S or α(x) ⊂ H. In the first case, we obtain the desired result. If
we prove that the second case cannot occur, then the following conjecture would be true.

Conjecture 6.0.2. Λ ⊂ Cl(W u(Sing(X))).

Let us state direct consequence of the hyperbolic Lemma 5.3.2 that appears in [6].

Corollary 6.0.3. Every periodic orbit of a sectional-Anosov flow on a compact manifold
is hyperbolic. In particular, all such flows have countably many closed orbits.

This implies that the maximal invariant set of every Venice mask is union of countably
many homoclinic classes. So, if Conjecture 6.0.1 and Conjecture 6.0.2 are true, then would
be possible to realize the following statement.

Conjecture 6.0.4. The maximal invariant set of every Venice mask is finite union of
homoclinic classes.

Proof. Let X be a Venice mask supported on a compact 3-manifold M . Then X has finite
many singularities, we say n. Let H1, H2 be two different homoclinic classes associated
to M(X). From Conjecture 6.0.1 and 6.0.2 is possible to apply Theorem D to conclude
that for each singularity σ of X, Cl(W u(σ)) = {σ} ∪W u(σ) ∪ C, it is a disjoint union
and C is a closed orbit. On the other hand, the branches of W u(σ) are uni-dimensional.
Therefore Theorem 6.0.2 implies H1 ∩H2 has just only a finite number of possibilities to
occur. Moreover, at most three homoclinic classes can contain the branch of the unstable
manifold of some singularity.

This finishes the proof.
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Definition 6.0.5. We say that a sectional-Anosov flow X supported on a compact manifold
M has codimension k if the dimension of the central subbundle is k + 1

Observe that all examples developed in this work has codimension 1 and these are
defined by three-dimensional vector fields. It is not difficult to construct Venice masks
of codimension 1 supported on some compact n-manifold M , where n ≥ 4. For this, is
sufficient to take a Venice mask of dimension 3 and multiply it by a strong stable foliation
of dimension n − 3. Verify the existence or not, of a Venice mask of codimension k ≥ 2
can be more difficult. So, we have the following question.

Is there a Venice mask of codimension k ≥ 2?

In case that the answer to be positive, we would like to study the dynamic of this type
of flows.

Finally, as was mentioned in Chapter 1, follows from [3], and Theorem 32 in [6] that ev-
ery sectional-Anosov flow with a unique singularity on a compact 3-manifold is Cr robustly
periodic if and only if is Cr robustly transitive. The hypothesis of a unique singularity is
essencial to prove this statement. Therefore we ask:

Every Cr robustly periodic sectional-Anosov flow on a compact 3-manifold is Cr ro-
bustly transitive?
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[21] López Barragan, A. M., and Sánchez, H. M. S. Sectional anosov flows: Exis-
tence of venice masks with two singularities. Bulletin of the Brazilian Mathematical
Society, New Series 48, 1 (2017), 1–18.

[22] Metzger, R., and Morales, C. A. Sectional-hyperbolic systems. Ergodic Theory
and Dynamical Systems 28, 05 (2008), 1587–1597.

[23] Milnor, J. Differentiable manifolds which are homotopy spheres. Princeton Univer-
sity, 1954.

[24] Milnor, J. Topology from the differentiable viewpoint, Based on notes by David W.
Weaver. The University Press of Virginia Charlottesville, 1965.

[25] Morales, C. Singular-hyperbolic attractors with handlebody basins. Dyn. Control
Syst. 13, 1, 15–24.

63



[26] Morales, C. A. Examples of singular-hyperbolic attracting sets. Dynamical Systems
22, 3 (2007), 339–349.

[27] Morales, C. A. Strong stable manifolds for sectional-hyperbolic sets. Discrete and
Continuous Dynamical Systems 17, 3 (2007), 553–560.

[28] Morales, C. A. Sectional-anosov flows. Monatshefte für Mathematik 159, 3 (2010),
253–260.
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