On Magnetic Flows

Freddy Pablo Castro Vicente

Tese de Doutorado apresentada ao Pro-
grama de Pds-graduacao do Instituto de
Matematica, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessarios a obtencao do titulo de Doutor

em Matemadtica.

Orientador: Alexander Eduardo Arbieto Mendoza

Rio de Janeiro

Abril de 2017



On Magnetic Flows

Freddy Pablo Castro Vicente
Orientador: Alexander Eduardo Arbieto Mendoza

Tese de Doutorado apresentada ao Programa de Pés-graduagao do Instituto de Matematica,
da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessarios a

obtencao do titulo de Doutor em Matematica.

Aprovada por:

Presidente, Prof. Alexander Eduardo Arbieto Mendoza - IM/UFR.J

Prof. Rafael Oswaldo Ruggiero Rodriguez - PUC-Rio

Prof. José Anténio Gongalves Miranda - UFMG

Profa. Maria José Pacifico - IM/UFRJ

Prof. Cesar Javier Niche Mazzeo - IM/UFRJ

Rio de Janeiro

Abril de 2017



Catalogacao na Publicagao

il



Agradecimentos

Este trabalho é a parte final de uma das etapas mais importantes de minha vida, onde
eu estou muito agradecido a muitas personas (familiares, amigos, etc.) e instituigoes que

me ajudaram em diferentes formas a chegar ate este momento tinico.

Em primeiro lugar gustaria de agradecer a cada um dos membros de minha familia
pelo seu apojo e forca, a nao desistir e seguir em frente. Muito especialmente a minha
mai Maria quem é um exemplo de esforco e sabedoria. Também a meus familiares Victor,
Marfa Angelica, Luz Maria, Victor Jesus e Milagros Isabel pelo suporte constante na

minha vida.

Nesta parte, quero agradecer muito especialmente a meu orientador, quem é mais que
um amigo, Alexander Arbieto. Ele me ensino este mundo das matematicas, me ajudou
a poder ver a filosofia das coisas, além dos simbolos, e pelas nossas longas conversagoes
além das matemadticas. Também estou muito grato pela sua amizade incondicional nesta

fase de minha vida.

Agradeco também a os professores do IM-UFRJ, especialmente aos da area de Sistemas
Dinamicos. Também ao meus colegas de estudo que compartilhamos muitas coisas em este
longo tempo de minha estancia na ” salinha” (académicas e nao académicas). De maneira
muito especial a Jennyffer, pela sua ajuda, paciéncia e compreensao. Na verdade teria
que mencionar muitos nomes neste parte, mas agradeco a todos pela sua amizade. De
maneira muito especial a Daniel, Davi, Bernardo, Dieguinho, Diego, Welington, Liliana,

Leonardo e Jorge.

Agradeco também a o Prof. Rafael Ruggiero, pela sua disposicao em conversagoes
de matematica, que me ajudaram muito na realizagao deste trabalho, estou muito grato

mes1imo.

Agradeco também ao IM-UFRJ, pessoal administrativo e professores todos, em espe-

cial a Maria José Pacifico pela gestao da Pés-graduagao durante minha estancia.

v



Agradeco ao CAPES, CNPq e FAPERJ pelo suporte financeiro concedido, o que tornou

possivel fazer esse trabalho, estou muito grato mesmo.



On Magnetic Flows

Freddy Pablo Castro Vicente

Orientador: Alexander Eduardo Arbieto Mendoza

Neste trabalho, estudamos algumas propriedades genéricas de fluxos magnéticos. Basi-
camente o fluxo magnético é definido como o fluxo geodésico perturbado por uma 2-forma.
Tal forma é obtida pelo levantamento de uma 2-forma na variedade, somada a 2-forma

canonica no fibrado tangente da variedade.

J. A. G. Miranda estudou certas propriedades genéricas de fluxos magnéticos. Ele es-
tudou em [26] duas propriedades genéricas dos fluxos magnéticos em superficies, a saber,
o teorema de Kupka-Smale e o teorema dos k-Jets do mapa de Poincaré. Em [27] ele
estudou a entropia topolégica dos fluxos magnéticos em superficies mostrando a positivi-
dade desta na presencga de uma orbita fechada nao-hiperbdlica ou na presenca de infinitas

Orbitas fechadas.

O objetivo desta tese é estender os resultados acima para variedades suaves em di-
mensao qualquer. Para isto sao usadas técnicas de teoria do controle geométrico intro-
duzidas por Rifford e Ruggiero em [38] e Lazrag, Rifford e Ruggiero em [21]. Em [3§]
é obtido a versao do teorema de Kupka-Smale no contexto de fluxos Hamilton-Tonelli
em variedades suaves de dimensao qualquer, que generaliza o trabalho de Oliveira [30]
em superficies. Em [21] é obtido uma versao do lema de Franks no contexto de fluxos
geodésicos, aqui eles no precisam da condi¢ao genérica na curvatura como no trabalho de

Contreras in [§], nesse sentido é melhor.
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Nosso principal resultado é, referente a propriedade dos fluxos magnéticos. Basica-

mente diz:

Teorema.- Fxiste um conjunto aberto e denso de fluxos magnéticos definidos numa
variedade suave de dimensao qualquer, tal que, tem entropia topologica positiva ou tem

um numero finito de orbitas fechadas.
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On Magnetic Flows

Freddy Pablo Castro Vicente

Advisor: Alexander Eduardo Arbieto Mendoza

In this work, we study some generic properties of magnetic flows. Basically the mag-
netic flow is defined as the geodesic flow perturbed by a 2-form. Such form is obtained
by the lifting of a 2-form in the manifold added to the canonical 2-form in the tangent
bundle of the manifold.

J. A. G. Miranda has studied certain generic properties of magnetic flow. He studied
in [26] two generic properties of magnetic flows on surfaces, namely the Kupka-Smale’s
theorem and the k-Jets theorem of the Poincaré map. In [27] he studied the topological
entropy of magnetic flows on surfaces showing its positivity in the presence of a closed

non-hyperbolic orbit or in the presence of infinite closed orbits.

The objective of this thesis is to extend the above results to smooth manifolds in
any dimension. For this are used techniques of geometric control theory introduced by
Rifford and Ruggiero in [38] and Lazrag, Rifford and Ruggiero in [2I]. In [38] is obtained
a version of Kupka-Smale’s theorem in the context of Hamilton-Tonelli flows in smooth
manifolds of any dimension, which generalizes the work of Oliveira in [30] in surfaces. In
[21] a version of the Franks’ lemma is obtained in the context of geodetic flows, here they
do not need the generic condition in the curvature as in the work of Contreras in [§], in

that sense it is better.
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Our main result is, concerning the property of the magnetic flows. Basically says:

Theorem.- There is an open and dense set of magnetic flows defined in a smooth
manifold of any dimension, such that it has positive topological entropy or has a finite

number of closed orbits.
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Chapter 1

Introduction

One of the main questions in the study of dynamical systems is, how chaotic is a system?
But another natural question is, does it mean that a system is chaotic? There are indeed
different definitions to say that a system is chaotic. One of the main examples of chaotic
systems is the Smale’s horseshoe which has an infinite number of periodic orbits, and
this is a hyperbolic set. A definition of chaos that we will use in this work is that of
topological entropy, in short, it measures the exponential growth rate of the number of
periodic orbits of the system in question. One of the main properties is that this is a

topological invariant and is somewhat stable.

On the other hand, in the study of hyperbolic dynamics, we have the famous work
of Ricardo Mané on C?' structural stability [25], where the pillars of the demonstration
since work are the Franks’ Lemma and the Pugh’s Closing Lemma, the latter using the
Kupka-Smale’s theorem. In fact, these two results: the Kupka-Smale’s theorem [34] and
the Franks’ lemma [11] are of paramount importance in the study of systems in different
contexts. We also have that Newhouse proof the C* structural stability in the context of

symplectic diffeomorphisms, see [2§].

There are many works regarding positive topological entropy of systems in different
contexts. One of the main ones is the work of Contreras [§] in geodesic flows that states
that almost all geodesic flow has positive topological entropy. But our main reference are

the works of J. A. G. Miranda [26] and [27], where he studies the topological entropy of



the magnetic flows in surfaces. Our work is

Theorem A: There is an open and dense set of magnetic flows defined in a smooth
manifold of any dimension, such that, it has positive topological entropy or has a finite

number of closed orbits.

This is a extension of Miranda’s results. Our main tool will be the geometric control
theory developed by Lazrag, Rifford and Ruggiero in [3§] and [2I]. But we must always
contrast with the proof in geodetic flows of Contreras, where the main difference is the

non-existence of Rademacher’s theorem [37] in the context of magnetic flows, this is,

Problem: Is it true that almost every magnetic flow has infinite closed orbits at every

level of energy?

On the other hand, we must highlight the great power of the method using geometric
control theory to solve perturbations of a linear system of ordinary differential equations
generated by the nature of magnetic curvature. The first time these methods were used
in [38] was to obtain the Kupka-Smale’s theorem in the context of Hamilton-Tonelli flows
defined in smooth manifolds of any dimension. Then in [21], it was also used to obtain the
Franks’ Lemma of geodetic flows without the need of generic condition in the curvature

as in [§].

In Chapter 2, we define the magnetic flows and make a contrast with the geodesic
flows, we define the magnetic fields of Jacobi and the magnetic injective radius. We will
also study the method of geometric control theory that we will use. Finally, we recall
some dynamic and ergodic properties of C! diffeomorphisms. Briefly, given a smooth
closed 2-form €2 in M, the magnetic flow is a Hamiltonian flow in the tangent bundle

TM, denote by ¢f satisfying the following equation

X = v,
Dv
= = Y9).

In Chapter 3, we will obtain the magnetic tubular neighborhood, that satisfies the

classical properties, as in the case of geodesic flows. The most difficult part is obtain



the matrix (2-magnetic curvature as symmetric matrix, since €2 is skew-symmetric. The
tubular neighborhood implies the perturbative Lemma that is the key to all the work.
Thus, for each perturbation of €2, define its linear part of Poincaré map. The perturbative

lemma states that this application is an open map on the symplectic matrix.

In Chapter 4 we will study the version of KupKa-Smale’s theorem in this context of
magnetic flows. The original theorem was made for smooth diffeomorphisms by I. Kupka
[17] and S. Smale [43] in 1963, separately. However best known version of the proof this
theorem is of M. Peixoto [34]. This theorem also exists in other contexts, for example
smooth vector fields, also in smooth flows such as the geodesic flows by D. Anosov [4] and
G. Contreras [9], Hamiltonian flows by R. C. Robinson [39] and [40], also the magnetic
flows on surfaces by J. A. Miranda [26]. In all the methods of Peixoto are used. In simple

language, this theorem says that

Theorem B: Almost every magnetic flow satisfy these two properties:

1. all closed orbits are hyperbolic or elliptic,

2. all heteroclinic points are transversal.

In Chapter 5 we will study one of the important generic results in relation to the spaces
of k-Jets of the map of Poincaré of a closed orbit of the magnetic flow. The motivation
is always the analogy to geodesic flows, in W. Klingenberg and F. Takens [15] extend the
bumpy metric theorem including conditions in the k-jets of Poincaré map of closed orbits
of the geodesic flow. On the other hand F. Takens [45] also obtains the analogous result
in the Hamiltonian context, that is, for Hamiltonian flows. In simple language, this result

says that

Theorem C: Let Q an open and dense invariant subset of space k-jets. Almost every

magnetic flow, it has the k-jet of the Poincaré map belong to Q.

In Chapter 6, last, is divided into two parts. The first part we will study the version of
Franks’s Lemma in this context of magnetic flows in smooth manifolds of any dimension.
The original version of this lemma was made for diffeomorphisms in smooth manifolds of

any dimension and proved by Franks [11]. Contreras and Paternain [9] proved the version
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of this lemma in the context of flows geodesic on surfaces, later Contreras [8] proved it
for any dimension. Then Miranda [27] proved this result in this context of magnetic flows

but in surfaces. The idea here is to generalize this result. In simple words says

In the second part of this chapter, we will study a property of dichotomy for the

magnetic flows. Basically this says that

there exists a open and dense set of magnetic flows such that either the topological

entropy is positive or the closed set of closed orbits is a hyperbolic set.

This result is another way of writing Miranda’s work on surfaces [27]. On the other
hand, if we contrast with geodesic flows, Contreras [8] has the version of this result. In
the case that the geodesic flows have an infinite number of periodic orbits, he use the
Rademacher’s theorem [37], in order to perturb and still obtain an infinite quantity of
closed orbits and passing through the Smale’s spectral decomposition theorem for flows
he obtains a basic non-trivial hyperbolic set, then positive topological entropy. A major
difference in our context is, that there is no version of Rademacher’s theorem in magnetic

flows.



Chapter 2

Preliminaries

In this chapter we will give the definitions and basic results that will be necessary in the

rest of this work.

Throughout all this work, we always denote M be a compact, connected, boundaryless
Riemaniann manifold of dimension m := n + 1 with the smooth Riemannian metric
g := (+,+). This metric induces a geodesic distance on the manifold, that we will denote

by d, in such a way that the pair (M, d) is a complete metric space.

We denote by V the Levi-Civita connection associated the metric, by R the Rieman-

nian curvature tensor and 7 : T'M — M denote the canonical projection.

A starting point for our studies is the concept of a geodetic curve in manifolds. Roughly

speaking, a geodesic is a curve that locally minimizes the distance between two points.

By analytically, in local coordinates, such curves are solutions of a nonlinear second-
order ordinate differential equation. Moreover, they can be seen as the projection of the

orbits of a flow, said geodesic, in the tangent bundle T'M.

From this point of view, other important dynamic systems, derived from the physics,
can be seen in this way. We will now outline some of these equations. After this, we will

define several objects that will be used in the thesis.



2.1 The equations of the magnetic flow

A curve v: (—¢g,e) = M, for small € > 0, is a geodesic if it satisfies

D,
T

From the point of view of T'M, we can see this second-order equation as the following

system of first-order equations

¥ = v,

D _
EU_O’

(2.1)

Let Y : TM — TM, a linear skew-symmetric bundle map. This application will be
said to be a magnetic field (or Lorentz force) and gives rise to what we call the magnetic
flow, which models the motion of a charge particle and unit mass under the effect of the

magnetic field. As above, the equation in T'M is

(2.2)
Dy = Y.

2.2 Riemannian Geometry

In this section we will collect several geometry results that will be used later.

Recall that a Jacobi field J is a field on a geodesic vy : [0,7] — M that satisfies the
following differential equation
2

D
—_J+R®,J) =0.
T *Y, )y

We also recall that a Jacobi field can be seen as a variational field on a geodesic, obtained
by a variation of the same by geodesics. Let p = v(0) € M, then we say that v(ty), with
to > 0, is a conjugate point of p if there is a Jacobi field J, not identically null, such that
J(0) = J(to) = 0. The conjugate points have a deep relation with the negativity of a

bilinear form which is the form of index

VW) = /OT {<%v, %W> RO,V W>} dt.



Proposition 2.2.1. (Morse index) If ir is the mazimum dimension of a subspace in
which the quadratic form associated with I is defined negative then ip is the number of

points conjugated to v(0), where we counted these points with multiplicity.

The proof of proposition can be found in [10], ch. 11.

On the other hand, the index form has relations with the second derivative of the
functional energy along a geodesic. Given a closed curve « : [0,T] :— M, the energy of ¢
is given by

&) = [ sy s

Proposition 2.2.2. (The formula of the second variation) Suppose « is a geodesic. If ag
18 a part-differentiable geodesic variation of «, for closed curves, and V is the variational
field associated with this variation then

1d%E
2 d82 s=0

=1V, V).

The proof of this proposition can be found in [I0], ch. 9.

2.3 Symplectic Geometry and Hamiltonian Flows

Later we will present the equations mentioned above from other points of view. For this

we need the language of symplectic geometry.

Definition 2.3.1. We say that a 2-form w on M is symplectic if it is closed, dw = 0, and

not degenerate, this is, if w,(u,v) = 0 for all v € T, M then u = 0.

Thus, if w is a symplectic form then we say that (M, w) is a symplectic manifold.

For our purposes it is interesting to obtain a description of TT'M. In particular, we
would like to obtain a reasonable Riemannian metric in 7'M . One of the most useful is the
Sasaki metric, which is obtained by the decomposition of TT'M in the so-called vertical

and horizontal bundles, which we present below.



The wvertical bundle is simply the kernel of derivative canonical projection, that is,
V' := ker(dr). Geometrically, if 6§ = (z,v) € T'M then Vj is the space tangent to fiber
7~ 1(x) at point 0, this is, Vy = T,T, M.

The horizontal bundle is also defined as the kernel of a certain application, known as
the connection map. As the manifold M is Riemannian we can define the application

connection

K :TTM — TM,

as follows. Given & € TyTM, let Z : (—e,e) — TM adapted to &, this is, Z(t) =
(a(t), B(t)) where av: (—e,e) = M, a« = 7o Z and (3 is a vector field along . Such that
Z(0) =6 and Z'(0) = £. We defined

KO(S) = va’ﬁ

t=0"

Then the horizontal bundle on T'M, as the bundle on TM whose fiber in ¢ is given by
Hy = ker(Ky).

Proposition 2.3.2.

TTM=HoYV.

The proof of this proposition can be found in [31], p. 13. Through this decomposition
we can define the Sasaki metric as follows. If & € TyT'M then via the decomposition

above, we can write £ = (£1,&2), where & = &, = dpm(§) and & = &, = Ky(&).

Definition 2.3.3. The Sasaki metric in T'M is given by

(& m)g = (1m)y, + (E2sm2),

for all £,n € TyT'M. In addition, it makes Hy and Vj orthogonal.

A Hamiltonian is a smooth function H : TM — R. By contraction of the symplectic
form, we can define a field Xy, which we will call the Hamiltonian field. That is, Xy is
the only field that satisfies:

doH (") = we(Xp, ).



By compactness, this field generates a smooth complete flow ¢, in T'M that we will call
the Hamiltonian flow associated with H. It is simple to note that the symplectic form is

preserved by this flow, see [31], p. 10.

If ¢ is a regular value of H then T°M := H!(c) is said a energy level. Which is an

invariant submanifold by the Hamiltonian flows. Indeed:

(H(21(0))) (5) = dy.0)H (X (05(0))) = we,(0) (X (105(0)), X (105(6))) = 0,
then H(¢:(0)) = H() = c. So we can consider ¢; : T°M — T°M.

Let V be a vector space and w a symplectic form in it. Note that, necessarily, the

dimension of V' must be even. Thus, dim V' = 2n.
Definition 2.3.4. We will say that a subspace L C V' is Lagrangian if dim L. = n and

wlrxr = 0.

Let A(V') be the set formed by all the Lagrangian subspaces of (V,w). This set has the

manifold structure and is called the Grassmannian manifold of the Lagrangian subspaces.

2.4 Magnetic flows

In this section we present the equations from another point of view, using the Hamiltonian
language. Also presented some properties of the magnetic flows that is the object of study

in all this work.

The geodetic flow is a Hamiltonian flow with respect to the Hamiltonian H : TM — R,
as H(z,v) = %(v,v}x (kinetic energy), and the symplectic canonical form wy of T'M
("pullback” of the symplectic canonical form of cotangent bundle T*M by the metric),
such that for every &,m € TyT M = Hy & Vy we have

wo(&,m) = (&1, m2) — (§2.m) -
For more information see [31].

Given a smooth closed 2-form €2 in M, we defined the symplectic form wq = wq+ 72

in T'M that is called the twist symplectic structure. It is not difficult to show that wq is a

9



symplectic form on T'M. We call the Hamiltonian flow with respect to the Hamiltonian
energy and wq of magnetic flow with respect to  and denote by ¢; := ¢ : TM — TM.
The magnetic field associated with €2 is denote by X := X

A direct calculation shows that vertical bundle is Lagrangian with respect to the
symplectic form wgq. In addition, this bundle presents the twist property with respect to

the magnetic flow, as shown in [29].

Proposition 2.4.1. (Twist property of vertical bundle) Let E be a Lagrangian subspace
of TyT'M. The subset given by

{t e R:dgde(E) N Vg, 00 # {0}}

1s discrete.

Let Y :=Y(Q): TM — TM be the bundle linear map definite as

for all u,v € T,,M, it is called the Lorentz force. Note that Y, : T,M — T, M is a linear
skew-symmetric map, for all x € M. Also that the map (z,v) — Y, (v) is a (1, 1)-tensor.

We recall some important equations satisfied by the Lorentz force, see [12] and [23].

Lemma 2.4.2. For all u,v,w € T, M, we have that

1 V(Y () = (VY)(0) + ¥ (Vo)
2. (VY ) (), ) + (u, (VY ) (0)) =0,

3. {(VwY)(u),v) + (VoY) (w),u) + (V.Y)(v), w) = 0.
Now we will deduce the previous equation. Denote wq by simply w

dH(&) = wi(X(0),8)
= (wo)a(X(0),8) + (") (X(6),£)
= (w0)o(X(0),8) + Qu(dpm(X(0)), dom(€))
= (w0)o(X(0),€) + (Ya(dgm(X(0)), do(£)),,



holds for every & € TyT M and if we write £ = (£1,&) and X = (X1, X5), so

(§2,v), = (X1(0), &), — (X2(0), &), + (Ya(X1(0)), &),

therefore

X(0) = (v, Ya(v)) € H(0) @ V(6),
for every 6 = (z,v) € TM.

Note that if ¢ > 0 then the vector field X has no singularities in T°M. To simplify
the notation, we still denote by ¢, the restriction of the magnetic flow to the energy level

TCM.

It is easily seen from this equation that a curve is an integral curve of X if and only

if it is of the form ¢ — (y(t),~/(t)) € TM and satisfies the equation

D

= =Y, 23)

that is equivalence to[2.2 when we have no Lorentz force or 2 = 0, we obtain the geodesic

equation 2.1} A curve that satisfies [2.3]is called the Q-magnetic geodesic.

Now we are going to deduce the Jacobi equation magnetic. Let 8 € TM, € € TyT M

and the curve Z : (—e,¢) — TM adapted to & and consider the variation f(s,t) =
m(pi(Z(s))). Set Je(t) = g—f((),t), vs(t) == f(s,t) and 79 = , where v is a Q-magnetic

geodesic of 6 and denote 0; = ¢(60) = (7y(t),75(t)). From the well know identity:

DDaf_DD8f+R(8f af) of

dsdtds — dtdtds ot s ) ot
and
Vs = Y5 (70),
we obtain ,
D It RO = 2 00,

Note that the map (z,v) — Y,(v) is a (1,1)-tensor. Thus using the covariant derivative

V on (1,1)-tensor induced by the Riemannian connection we obtain
D / / !

11



and we deduce the Jacobi equation
D

D? ,
D R = (V)0 =Y (5 o

Lemma 2.4.3. If £ € TyTM, then do¢y(&) = (Je(t), 2 Je(t)) in Hp, @ Vg,

Proof. Consider as before f(s,t) = mo ¢, 0 Z(s), then

2 (s,1) = dn(60 0 2(5)) - don(2(5)) - Z/(5)

Now we take s = 0, thus Je¢(t) = dp, 7 - dp¢(§). Remember that ¢,(Z(s)) = (75(2), vi(1)),
then Ko, (do(€)) = Vg (8)] _, but

%(s,t) - o (gﬁ t)):%(ono@oZ(s))

(70 X (4 (1), 74(0) = —-((0)
0
s

~ ((t)

For s = 0, we have that %Jg(t) = = Ky, (dg:(£)) [

s=0

Note that if £ € TyT°M, then dyp(€) € TyT°M for all t € R. Thus, we have that
0 = do H (oo (€)) = do 1 (0, 5 0:0)) = (X)), (00, 500 )
= (V0. 0~ (YO0, K0 + 200, 5 = (70, 300

D
Jey' ) =0
)

Definition 2.4.4. We say that J is a Jacob: field under €2 along v if hold

So

2

%J + RO, ) = (VaY)(y) =Y (%J) =0. (2:4)

D
= 2.

<dtJ7> 0 (2.5)
Note that from equation we can see that
D ' D? D
<dt‘]7> - <dt2‘]7> <dt‘]Y( )>

D D
= Y Y(—J Y —{Y [ —J !
VY

(VaY)(3).7)

and

{
= 0.

12



Therefore, it is enough to check condition [2.5| at a point.

Let QQ(M ) be the set of all smooth closed 2-form on M endowed with the C"-topology.
Let H?(M,R) the cohomology class and denote by (M, g) injectivity radius of (M, g).
For 2 a smooth closed 2-form in M, since for x € M, Q, : T, M x T,M — R is a bilinear
map

19| == sup{|Q%(u,v)| : u,v € T,M with ||u]| = ||| = 1},
then [€,(u, v)] < [|€q|[[[ull[[v]] and [[Q|co == sup,en [[€2e]]
Lemma 2.4.5. Given ¢ > 0 and Q € QQ(M), let K = K(c,Q2) € R be defined as
K = min{1/(]|Qlco + 1)%,i(M, g)/2c}. Then 7o ¢*0) : [0, K) — M is injective, for
every 6 € T°M.

The proof of this Lemma is equal to the Lemma 2.1 of [26]. The K (¢, 2) will be called

the magnetic injectivity radius.

2.5 Examples

In this section, we want to illustrate some examples of magnetic flows.

Example 2.5.1. In fact, every geodesic flow is a magnetic flow, considering ) = 0, since
we have that the Lorentz force disappears, Y = 0. Thus any 0-magnetic geodetic curve is

a geodesic curve in M.

Example 2.5.2. Now we consider, ) be a smooth exact 2-form in M, this is, there exist
a n smooth 1-form in M such that Q) = dn. In this case the magnetic flows is called exact

magnetic flows. We can define a Lagrangian as L, : TM — R, where
Ln(x> U) = H(JL‘, ’U) - 77:6(0)
The corresponding Euler-Lagrangian equation is

7 00, = dn0'0) = (Y (1 ®),).

then



Example 2.5.3. Let n = 1, this is, M be a surface. This case 52(M) = Q*M) is a
C®(M)-linear space with dimension 1. Thus, if ) denote a area form of M, we have
that Q*(M) = {fQ : f € C°(M)}. For each ¢ > 0 and f € C(M) we can define

f : T°M — T°M the magnetic flow. For the area form, the Lorentz force is denote by
t:TM — TM be a linear bundle as, for each x € M and v € T, M, we have that iv is
the angle of rotation +m/2, hence {v,iv} is a positive oriented orthogonal basis for T, M.
For f € C*(M) the Lorentz force is Y = fi, this is, for each x € M and v € T, M, we
have that Y, (v) = f(x)iv.

Let v: R — M be a f-magnetic geodesic, this is, the curve v that satisfies

As {7,iv'} is a positive oriented orthogonal basis for T, M. Denote J = xv' + yiy' the
Jacobi field under f along vy and consider ¢ = 1/2, by cmd we have that

gj,—fy = 07
V' +(K+ =V fly = 0,

where K is the sectional curvature along v. Take f = —K =1, As equations above are
=y,
y// — 0

the solutions have the form x(t) = 1/2at* + bt + ¢ and y(t) = at + b. In this conditions

(7,7') has no conjugate points.

There are many more examples of magnetic flows that come from physics. The inter-

ested reader can see [44], for more examples.

2.6 Geometric control theory

In this section we state the result of [20] and [2I]. This is referent at Geometric Control
Theory that we will use for obtain our results. This method was created in [2I] but here

state a better version.
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The first version of this type of result appeared in [38], called first order controllability
theorem and was used to extend [30], that is, the Kupka-Smale’s theorem in the context of
Hamilton-Tonelli flows in manifolds of any dimension. Therefore, in [21] we find another
version this result, more elaborate, called second order controllability theorem”, it was
used to obtain the Franks’ lemma for geodetic flows, improving the Franks’ lemma in
[8]. Our case, these techniques of geometric control theory, in particular the second order
controllability theorem, are very important because it will be used to obtain the Kupka-

Smale’s theorem and the Franks’ lemma for magnetic flows in any dimension.

Let us a consider a bilinear control system on My, (R) (with n,k > 1), of the form
k
W/(t) = AW (t) + Y wi(t)BW (¢) for ace. t, (2.6)
i=1

where the state W (t) € Ma, (R), the control u(t) € R t € [0,T] — A(t) € My, (R) (with
T > 0) is a smooth maps, and By, ..., By € M, (R).

Given W € Ms,(R) and u € L? ([0,T]; R¥), the Cauchy problem

W/(t) = AW () + Y ui(t)BW(¢) for ae. t € [0,7],
W) =W, i

there exists a unique solution WWu() The End-Point mapping associated with W in

time T > 0 is defined as

EVT o L2([0,T;RF) — My, (R)

U — WW,u(T)‘
It is a smooth mapping whose differential can be expressed in terms of the linearized
control systems. Give W € M, (R) the differential of EWT at u = 0 is given by the

linear operator
DoEW'T . L([0,T);R*) — M,,(R)

v —  X(T),
where X (+) is the unique solution to the Cauchy problem
k
X'(t) = AQ)X(t) + > vi(t)BW(¢), for ae. t € [0,T],
i=1
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where W(-) := Wiy o(-). Note that if we denote by S(-) the solution to the Cauchy

problem, that is the solution of the homogeneous equations associated to

S'(t) = A(t)S(t) for every t € [0,T],
S(O) = ]2n7

and that the following is the constant variation formula.

k

DyEV'T .y = Z S(T) / ' v (t)S(t) " B;W (t)dt,

i=1
for every v € L?([0,T];R¥). Let Sp(n) be the symplectic group in My, (R), that is the

smooth submanifold of matrices W € M, (R) satisfying

0 I,
—I, 0

W*IJW = J where J =

Sp(n) has dimension p := n(2n + 1). Denote by S(2n) the set of 2n x 2n symmetric
matrices in Ms,(R). The tangent spaces to Sp(n) at the identity matrix is given by

sp(n) := T, Sp(n) = {X € My, (R) : JX € S(2n)}.
Therefore, if there holds
A(t), By, ..., B € sp(n) for all t € [0,7], (2.7)

then Sp(n) is invariant with respect to (2.6)), that is for every W € Sp(n) and u €
L*([0, T]; R"),

Wiz (t) € Sp(n) for all t € [0, T7.
In particular, this means that for every W € Sp(n), the End-Point mapping EW'T is

valued in Sp(n). Given W € Sp(n), we are interested in local controllability properties

of (2.6)) around 0. More precisely, we have the following result of [21].

Proposition 2.6.1. Let T' > 0, and for every 0 in some set of parameters © let t €
[0, T] — A%(t) be a smooth mapping and BY, ..., B € Ms,(R) satisfying such that

BfB? =0 for everyi,j=1,... k. (2.8)
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Define for every 0 € © the k sequences of smooth mapping {Bf’j}, . {Bg”} 20,7 —

sp(n) as
B/ — o
P o (2.9)
BI(t) = BN + | BYT 4] (1),
for every t € [0,T] and every i = 1,...,k and assume that the following properties are
satisfied for every 6 € O:
[Bf’j(O), B,L-o] € Span{B?*(0):r=1,...,k,s >0}, (2.10)

foreveryi=1,....,n, j=1,2 and
Spcm{Bf’j(O), [nyl(o),val(o)} il=1,....k and j =0, 1,2} —sp(n).  (2.11)
Assume moreover, that the sets
{BY:i=1,... k0 €O} C Myy(R)

and

{t €[0,T] — A%(t): 6 € ©} C C*([0,T]; M2y (R))
are compact. Then, there are ju, K > 0 such that for every 0 € ©, every W € Sp(n) and
every W e B(WH(T),M) N Sp(n) (WG(T) denotes the solution at time T of the control
system @ with parameter 0 starting from W), there is u € C*([0, T]; R¥) with support

in [0,T] satisfying
EVT(uw) =W and |Jullc: < K|X — W(T)|"/?

(EGW’T denotes the End-Point mapping associated with the control system with pa-

rameter 0 ).

Let us briefly explain this result from where it comes from and give some important
observations. The problem is to find conditions such that the End-Point mapping is
locally open at @ = 0. The first version from result appeared in [38], which is called first-
order controllability theorem and concludes that the End-Point mapping is a submersion
in @ = 0. Then in [21] is found the second version from result called the second-order
controllability theorem, where neighborhood sizes are estimated such that the End-Point
mapping is locally open at w = 0. Finally, in this same paper is the parametric version of

the second order controllability theorem, which is the theorem [2.6.1}
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Observation 2.6.2. We give some remarks on the conclusion of the theorem |2.6. 1

1. This parametric version follow of second-order controllability theorem and the fact
that smooth controls with support in (0,T) are dense in L*([0, T]; R¥) and compact-

Nness.

2. The constant p > 0 exist due the Inverse Function Theorem applied to the orthogonal

projection Mo, (R) — TxSp(n) restricted to Sp(n), thus this constant is uniform.

3. The constant K > 0 exist due the theorem 4.2.6 in [20], where given conditions to
F:U — RY be a locally open map at U, here U is an open set in a Banach space

and F is of class C?.

4. In fact, p >0 and K > 0 are independents.

2.7 Dynamics and Entropy

In this section, we introduce some important fact above of Dynamics Systems and Ergodic

Theory, that we use in our results. For this sections we refer the reader to see [13].

Let ¢ > 0 and Q be a smooth closed 2-form on M. Consider the magnetic flow ¢S
in T°M and 6 = (z,v) € T°M such that 6, = ¢;(0) = (v(t),7/(t)) is a closed orbit in
T°M with period Ty > 0, where v is a closed 2-magnetic geodesic in M. We can define
the Poicaré map P := P(£1,0,%) as following: one can choose a local hypersurface ¥ in
T°M through ¢ and transversal to 6, such that there are open neighborhoods ¥y and X7,
of § in ¥ and a differentiable mapping ¢ : ¥y — R with ¢(f) = T such that the map
P ¥y — Xr, given by ¥ — gb?w) (1), is a diffeomorphism.

Definition 2.7.1. We say that 6, is

1. degenerate if its linearized Poincaré map dy/P has an eigenvalue which is a root unity:.
2. hyperbolic if its linearized Poincaré map dyP has not eigenvalue of modulus 1.

3. elliptic if it is non degenerate and non hyperbolic.
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4. c-elliptic, for ¢ > 0, if it is elliptic and the linearized Poincaré map dyP has precisely

2¢ eigenvalues of modulus 1.

Let 6; and 9; be two hyperbolic closed orbits of ¢ in T°M. We say that a orbit o is

a heteroclinic orbit from 0o 7,) to Vo7, if

lim d (6o,1,),0¢) =0 and lim d (Jo1,),0:) = 0.

t——o0 t—+o00

We say that the orbit o, is homoclinic if exists s € [0, Ty], such that 6, = 9.

Definition 2.7.2. Let 6; be a hyperbolic closed orbit of ¢ in T¢M. The weak stable and

weak unstable manifolds of 0|y 7, are

WS (9[077“9]) = {19 € T°M : tEElood ((9[077“9],7915) == 0} y
and

w (0[07'116]) = {’19 eT°M - tLlErlood (9[0,T9]7§t> = 0} s

respectively. These are (n + 1)-dimensional invariant immersed submanifolds of 7M.

Another important concept in dynamic systems is the hyperbolic set that generalizes

the concept of hyperbolic periodic orbit.

These sets are very important for the study of dynamical systems, in particular, it
helps us to study the chaotic behavior of the systems, which is concentrated in the set of
periodic orbits. There are many results for general systems, but in the case of magnetic
flows we have for example that the sets W* (6o.7,)) and W* (6o7,)) are n+ 1-dimensional
invariant immersed submanifolds of T°M. Then a heteroclinic orbit o, is an orbit in the
intersection W* (6jo,7,1)) N W* (9po,1,))- We say that the heteroclinic orbit oy is transverse
if W* (6jo,1,)) and W (9po.1,)) are transversal at opr,).

Definition 2.7.3. A hyperbolic set is a compact ¢f-invariant (i.e. ¢*(A) = A for all
t € R) subset A C T°M such that the restriction the tangent bundle of T°M to A has a
splitting

TA\T°M = E* & (X") @ E",
where <X Q> is the subspace generated by the vector field X® of ¢!, E* and E" are dg?’

invariant subbundles and there are constant C, A > 0 such that
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L. |do(€)| < Ce[¢| for all t > 0, & € E*,

2. |d¢?,(&)| < Ce|¢| for all t > 0, ¢ € B

A classic example of a hyperbolic set is the so-called Smale Horseshoe

Other definitions that we will use are the following. Let A C T°M be a compact

subset and ¢{’-invariant. We say that A is a locally mazimal invariant set if there exist a
neighborhood U of A in T°M such that
A= (e U).
teR
We say that A is a nontrivial hyperbolic basic set if is a locally maximal compact invariant

subset which is hyperbolic and it has a dense orbit and which is not a single closed orbit

The simplest invariant which measures the complexity of magnetic flow ¢ in T¢M is
its topological entropy which we denote by ht,(€2, ¢). The topological entropy measures
the difficulty in predicting the position of an orbit given an approximation of its initial

state. Given 6 € T°M and T,6 > 0, define the (§,T)-dynamic ball about 6 as
B(0,6,T):={0e€TM :d(6;,9,) <9, forall t € [0,T]},

Let Ns(T) be the minimal quantity of (6, 7")-dynamic balls needed to cover T°M. The
topological entropy is the limit on § of the exponential growth rate of Ns(T') as:
1
hiop(€2,¢) := lim ¢ — Olimsup — log Ns(7T'). (2.12)
t—+00 T—+00 T
Thus, if hp(§2,¢) > 0, some dynamic balls must contract exponentially at least in one

direction.

A way of obtaining positive topological entropy is by showing that the flow has a
nontrivial hyperbolic basic set. Using symbolic dynamics one shows that if a flow contains
a nontrivial hyperbolic basic set then it has positive topological entropy. It also has
infinitely many periodic orbits and their number grows exponentially with their period,
namely

) 1
hiop(§2, ¢) > htOp(gbﬂA) = TLHEOO T logn(T') > 0,
where n(T') is the number of periodic orbits in A with period T'.
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In this last part we will assume the discrete dynamics of a C"-diffeomorphism f :
M — M and let p be a hyperbolic point in M. The following result affirms the existence

of horseshoes Smale type.

Proposition 2.7.4. (Theorem 6.5.5 in [13]) If q is a transverse homoclinic point of p,
then in an arbitrarily small neighborhood of p there exists a horseshoe for some iterate of

f. Furthermore the hyperbolic invariant set in this horseshoe contains an iterate of q.

A consequence of perturbation theory is that the property of having a horseshoe is
open. Let A be a hyperbolic subset in M of f. The following states the continuous

variation of stable and unstable sets hyperbolic spaces.

Proposition 2.7.5. (Proposition 6.4.4 in [13]) The dimensions of subspaces E2 and E*

are locally constant and those subspaces change continuously with x in A.

21



Chapter 3

The Main Perturbative Lemma

In this chapter we are going to present one of the most important parts, for the rest of
work, which is the next one. Given a segment of 2-magnetic geodetic v, we are going to
construct a magnetic tubular neighborhood around it, that satisfies the classical properties,
as in the case of geodesic flows. The most difficult part to do this is to construct a suitable
base of the tangent bundle in the segment v that depends on 2, and once we can obtain
one of the most important properties for our objectives, is that the matrix {2-magnetic
curvature in v well a symmetric matrix. The difficulty is due to the Lorentz Force, since

that this is an skew-symmetric linear map in the fibers.

The tubular neighborhood is going to help us get the famous Perturbative Lemma that
is the key to all the work. To achieve this result we need to define the so-called set of
perturbations Q of Q, such that these are supported in the tubular neighborhood of v and
preserve . Thus, we can define an application as follows, for each perturbation, consider
its linear part of Poincaré map. The perturbative lemma states that this application is

an open map on the symplectic matrix.

A direct consequence of this perturbative lemma is the version of Franks’ Lemma for
this context of magnetic flows. But we show this result in a future chapter. We will use

the notations of first chapter and also the results presented.
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3.1 Special coordinates and Magnetic curvature

In this section we define the special coordinates type Fermi coordinates, we obtain a
coordinate system of a piece of magnetic geodesic where we present the magnetic curvature

matrix. We will use some methods of Gouda [12].

Let ¢ > 0 and € be a smooth closed 2-form on M. Consider the magnetic flow ¢’
in T°M and 0 = (x,v) € T°M such that 6, = ¢{*(0) = (y(t),7/(t)) is a orbit segment in
T°M with t € [0,7] and 0 < 7 < K(c,2), where v is a segment of a 2-magnetic geodesic

in M and remember that K(c,2) is the magnetic injectivity radius.

Let ¥ C T°M be a local transversal section to X in the energy level T°M at the
point 6. The linearized Poincaré map is a linear symplectic mapping. Let Q2 € ﬁz(M )
such that (02).4) = 0 for every ¢ € [0, 7], then ¢¢""" preserves the orbit segment 6§, and
its energy level. If 52 is small enough in a neighborhood of ([0, 7]), the Poincaré map
P(Q+6Q) = P(Q+60,0,%) : ¥y — X, associated to the magnetic flow of Q 4+ 52 in
T°M and its differential dgP (€2 + 0Q2) : Ty>y — Tp X, are well-defined. Our aim is to
show that the set of dyP(Q2 + 092) for 6Q2 as above small enough contains as open subset

of the set of linear symplectic matrices from Ty> onto Ty ;.

Let vy := v/v/2c and let us choose vy, ...,v,, € T,M such that vy, vs,..., v, is an
orthonormal basis in T, M. We define a vector field V; along v as a solution of the

differential equation

In particular V; = +'/ Vv2¢. Note that
(Vi, Vi)' = (V. Vi) +(Vi, V)
= (Y(Vi),Vj) + Vi, Y(V))
= (Y Vi), V;) = (Y (V), V)
= 0.
Thus Vi, - -+, V,, are orthonormal vector fields along 7 (type Fermi coordinates).

We know that Y, : T,.M — T,M is an m x m skew-symmetric linear mapping for
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each v € M. Let x € M and fix v € T,M, v # 0, we can define Pry : T,M — v+
the map natural projection, where vt = {u € T,M : (u,v), = 0}, is easy see that
(Pryg(u),w) = (Pre(u), Pro(w)), for all u,w € T, M, since if w € T, M, we can write
w = Pro(w) + (w — Pro(w)) € vt @ (v), then (Pry(u),w — Prg(w)) = 0. Thus we obtain
that (Prg)* = Pry.

We define also (Y, ), : T.M — T, M as (Y, ), = PrgY,Pry, is clear that

1. (Y)).(v) =0, because Pry(v) =0,
2. (Y1).(vh) C vt because if u € v*, (Y1 ).(u) = PreY (u) € vt,

3. (Y1): = —(Y1)s, because Y* = —Y.

Remember that 0 < 7 < K(c, ), now we define for each ¢ € [0, 7], the follow linear

map P Tv(t)M — Tv(t)M as
1 t
b =exp (5/ (YL)V(s)dS) :
0

it is clear that this map is a linear isomorphism and we have of 3. that P! = P/ i..
the map P, is an orthogonal linear map, so it takes an orthogonal base on an orthogonal

basis. Thus we have that
er(t) := PTVA(E), . .. em(t) == P71V (1) (3.1)

is an orthonormal basis of T, M.

Consider the differentiable map ® : [0, 7] x R™ — M given by

(21, T2, - -+ Tyn) = XDy (Z %6@'(%)) )

=2
where exp,, : T, M — M denotes the Riemannian exponential map. This map has maximal
rank at (z1,0,...,0), x; € [0,7]. Since v(t) has no self-intersections on ¢ € [0, 7], there
exists a neighborhood V of [0, 7] x{0}. Then ) := ®~!|y, is a diffeomorphism, if U := ®(V)
then (U, 1) is a local coordinate chart where v(t) = (¢,0), ¢;;(t,0) = J;; and the Christoffel

symbols are I'¥:(¢,0) = 0, since the first partial derivatives of g;; vanish at (¢, 0).

)
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Let

?ij<t) = <V;(t)7 Y’y(t)(vj(t)»,y(t) and Y;j (t) = <€¢(t), Y’Y(t)(ej (t))>,y((t)) )

denote Y (t) = (Yy;(t)) and Y(t) = (Y;;(t)) are the matrices representations of Y, at

coordinates V;(t) and e;(t) respectively. Thus we have that

Y(t) = PTYY (t)P. (3.2)

In these coordinates note that e, (t) = V;(t) = 7/(t)/v/2¢, since (YL)W) has zeros in

the first column and first row. Moreover note that

1
Pl = SRV i)y,

We are now going to consider an arbitrary Jacobi field written in these coordinates in
order to obtain the matrix of magnetic curvature, the idea is to do the same work done

for the geodetic flow. Remember the definition of Jacobi field in [2.4 and [2.5]

At these coordinates, the covariant derivative and the common derivative coincide. In

order not to overload the notation, we will avoid typing time ¢.

Let J be a Jacobi field under €2 along ~ arbitrary. Let J expressed as J = Z fie;

j=1
where each f; is a smooth function along . Then
Z f € +fJ J
thus we have that
=2 (fes 20565+ fief) (3.3)
j=1

but €f = V{ =Y (V1) = Y(e;) and for j = 2,...m we have of [3.1| and [3.2] that

6/- — (Pfl)/‘/;_i_Pfl‘/;l
— 1 —
= P—ly(vj)—ﬁp—lnvj



observe that, since Y (e;) = 0 then

¢ =Y(e;) ~ 5¥ile) (3.4

J

for all j =1,2,...,m. Also have that for all j =1,2,...,m

4 = Vy(X(e) — 5 (ie))

1 1
= (V3Y)(e) +Y () = 5Viles) — 5V,
thus we have that

& = (V3Y)(e)) + Y (€) — 3Y1(e)) — Y1V (e)) + 1¥2(ey). (35)

Since J is a Jacobi field, this satisfies a equation ([2.4]), moreover apply (3.5)) and (3.4))
in (3.3) we have that

T+ (RO ey = [(Ve,Y)() = [Y (e5) = [Y (€)= 0,

ST S+ Y —Yi)(e;) + £ [R(Y e+

(To¥)(e) = (Vo Y)0) = YLey) — gVav(e) + ¥2e)| | = o
denote by
Rij = (R(Y,e) e5) = (R(Y,e5)7 s ei) = (ei, R(Y, e5)7")
(Y = (e, Y'(ey)) = (e, (VY )(e5))
(0Y)ij = V2e(Ve,Y)i = V2c(esi, (Ve,Y) (1)) = (e, (Ve,Y)(Y))
(YDij = (e, Yi(es)),
(YY) = (e, YiY(e))),
(YD) = (e, Yi(e)).

Note que (Y Y);; = (YY,);; for all 4,5 = 2,...,m, moreover (Y,Y);; = 0 for all j =
1,2,...,mand (YY,)" =Y, Y. Thus we have that, if f = (f1, f2,..., fm), then

1 1 1
"+ =Y)f'+(R+Y -0y — éYi — ViV + ZYf)f = 0. (3.6)
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The first line of the equation (3.6)) is written as

{'+Z(Y1jf§+yfjfj) = 0,

j=1
m /
(f{ + Zyljfj) = 0.
=2
Since Yy; = 0 and the (2.5)) have that (J’,%) = 0 then

fl==Y Yl (3.7)
j=2

For i # 1 and of (3.7) in (3.6 we have that

m 1
f+Yafi+) (Rz-j + Y55 = (0Y)y — 5 (VD

Jj=2

1 1
—5(¥1Y)i; + Z(Yf)ij) fi =0,
- 1 1
I+ (R + 3Y5 = (V) = 7(V)y = YaYi))f; = 0,
=2

since Y;; = (Y);; for all 4,5 = 2,3,...,m, and if we denote 171-]- =YYy, then the new

equation is

f o+ (R + %Y’ — 0y — iw - 17) fo=o. (3.8)

Note here, that the matrices are of order n x n, also that R, Y2 and Y are nxn symmetric
matrices. We show that 0Y — %Y’ is also a n X n symmetric matrix, for i,5 = 2,3,...,m

we have that

<%Y/ B 6Y> i - % (i, Y'(ej)) — <€i’ (VSJY><7/)> ’

1 / 1 / _
(§Y —0Y>ij — <§Y —8Y>ji =

= (VoY) (&), e0) + ((Ve,Y) (e1).7) + (Ve Y)(7), e5) = 0,

then we have that

since €2 is closed (d©2 = 0).
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On the other hand, as Y;; = (e;, Y (e;)) = —Q(e;, ¢5) and Y = —(2 seen as matrix. So

we define the matrix magnetic curvature of €2 as
Q 1 / 1 2 O
K (t) = R/y(t) + (997(,5) - 597(0 — ZQ,Y(t) - Q’y(t)a (39)

it is a n X n symmetric matrix, where 02 and Q are similarly defined as the matrix €.
Then
"+ K =0.

We shall study the real (n x n)-matrix differential equation along -,

X"+ KX =0. (3.10)
It is equivalent to
/
X 0 Iixn X
X' —~K% 0 X’
X
Let W = , then
X/
O [’T'LX’H
W'(t) = W (t). (3.11)
—-K%t) 0

Thus, finally we have that

Lemma 3.1.1. Let 0, be a orbit segment of the magnetic flow of Q without self-
intersection. Exists a local coordinate chart (U,1), such that ¢ = (1 = t,z9,...,2p),
Y(x) = 0 and (t) = (1,0,...,0), satisfying (3.11), where the matriz W (t) represents
a basis of Jacobi fields and its derivatives defined in the orbit, and the matriz K% (t)

represents the magnetic curvature.

In the case of geodesic flow i.e. £ = 0, we have the same matrix with K being the
Riemannian curvature matrix which is always a n x n symmetric matrix. In our case
does not run Fermi coordinates so we had to make a rotation of the Fermi’s coordinates
in function of {2 and simultaneously obtain a n X n symmetric matrix. This lemma use

Gouda’s method [12] and generalizes the [20].
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Example 3.1.2. For m =3 and 2c = 1, we have that

0 a =0 0 0O
Q= —a 0 o and R := 0 a b
8 —o 0 0 b c

then, since Q2 is closed, we have that 010 + 023 + O3a = 0. Thus
0 0 0
0N = 81& 82& 83&
—08 =0 —03p

and
~ o —a
Q= b
—af  p?
Thus the equation (3.8) can be written as
a b —8206 626 + %(910’
[+ +
b c Do + 3010 033
5, 1, 5
ZCE + ZO‘ —Zaﬁ
+ f =20
5 501,
—4045 45 + 1°
2
where f = d
f3

3.2 Local perturbations of the magnetic flow

In this section we obtain the Perturbation Theorem, which is the part more important in
this work. We will use the method in [38] but we will have that find the form suitable
of the perturbations of {2. The most important tool in this section is Geometric Control
Theory, which has already been used in many different aspects and areas, more specifically

to see [19], [20], [21] and [38].
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Suppose that 6; be a closed orbit of ¢ in T°M of period Ty > 0. Applying Lemma
to a piece of 6y, thus there exists a local coordinate chart (U, v)). We may assume that
Y(z) = 0and d,vp-v = (1,0...,0), then 6, = ¢(z,v) = (V~1(¢,0,...0), (ds2)"1(1,0,...,0)) :
[0,7] = T°M, for some 0 < 7 < K = K(c,2). We need to study generic perturbations of
Q) in the neighborhood U of v = ¢~1(¢,0,...0).

1
Let 0 < e << 5 fix, such that U, := ¢ ([0, 7] X (—¢,€)") C U. Let a family of smooth

function u;; : [0, 7] — R such that
Supp(u;;) C (0,7) for every ¢ < jin 2,...,m.

We have that consider f : [0, +00) — [0,4+00) a smooth function bump such that

( ) r 1
1, in |0, =

~
Il

(3.12)

0, 1 E +
in |-, 400
| ) -57

Note that f'(r) = 0 if r € (0,1/2).Now we define a family of smooth perturbations
fi : M — R with support in U, by

1 )
fi(z)) = T > gl f(|lE]), (3.13)

(W) = —— g (s)dsx; f(||21]]), 3.14
fi(h(x)) Jae ). (s)dsz; f(]|21]]) (3.14)
for i =2,...,m, where © = (z1,29,...,2,) and 1 = (22, 3,...,%,). Note here that as

1
z € U,, we have that ||71]] < € << 57 50 flz1]]) = 1 and f'(]|#1]]) = 0, this will be used

in the following calculations. Now consider the 1-form in M define by 7 := Z frdxy with
k=1
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support in U.. Then taking 62 := dn with support in U,, which view as matrix is

o Oh oh  oh ok

oxry Oxy  Ox, Ox
o _on o g
Ox1  Oxy - Oz, Oxy

Now we writing (62);; in coordinates:

f2  Ofs
0 - 2z 72
(5 )21 8371 (99(:2

1 ) 1 [& .
= —ﬁum(wl)@fﬂlwlll) - E <§ uzi(z1) 2 f([[21]])

"(I|z
Y uenan 1H)>
3<k<i<m |21

m

1
= ——= Z U2z($1)$la
V2e iz

remember that f(||Z1]|) = 1 and f'(]|Z1||) = 0. Now for each i = 3,...,m have that

ofi  Oh
0). — _
(6 )Zl 81’1 8$Z

wii(v1) i f (| 21]]) —

(E uk‘l 1'1 Ty

+ wi(z1)x;z; + terms wihtout :m) flz1])

1

ﬂ% i -

wii(z) i f(|21]) — —= (Zum T1)Tk + Z wi (1) ) fllz1])

l=i+1

RUEAD

[

+

O

> uple)um

2<k<I<m

i—1 m
1
= — g Um'(xl)%kJrE wi(z1)x |,
2¢ 1o I=i
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and as for each 2 < i < 7 < m we have that

of _ a0
axj‘ \/_/ T

so we have that (6Q2);; = 0, all this in U, note that (§€2) is a n x n skew-symmetric matrix

=0,

of the follow form

_Zu%(xl)xj 0 0
j=2

o

=2

Notice that in x = () = (¢,0), we have that (d§2) is the matrix zero. Remember the
equation we need see (0€2) without the first column and the first row, i.e. (6€2;)5" €
M, (R) this is the matrix zero in U, so (6Q2)? = 0 in U, and particularly in 7. We also have
that 6Q = 0 = (092)" in 7. Finally, we only need to see the form of the matrix 9(6$2), for
this remember the definition (9(692));; := v/2¢ 3;(6):1, thus we have that, for example

( ( )) \/_8 (59)21 — ( 2@ ZUQl > = —Ugj(l’l), fOl" ] = 27 oo,
=2

Following this process we have to (9(012));; = —u,j(x1), for every 4,j = 2,...,m. Thus

the matrix 0(0€2) in 7(¢), have the form, taking z; =t

U292 (t) U923 (t) o U9 (t)
ugs(t)  wss(t) ... usm(t)
Uom (1) Uz (t) .. U (T)
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we denote U(t) = —0(692), ) which is a n x n symmetric n X n-matrix, remember that

m=mn-+ 1.
Example 3.2.1. For m =3 and 2c = 1, we have that

f1($1,$2>333) = U23(£U1)$2333f(H@1H)>

o an ) = — / " ua(s)dsaaf (|31 and
0
falor, ooyzs) = — / usa(s)dses £ (3]

Take n = fidxy + fodxs + f3dxs, then 62 = dn =
ofi  0f ofi  0fs f2  0fs
—— — == )dxd —— — == )dxrd —= — == ) dxadxs.
(8@ 8931) T10T + <(’9953 0, T1023 + Oxrs  Oxa 1200

In matriz s

Ofi 0fs 90fi Ofs

0 81’2 B 81’1 8]33 B 81’1

dfy  Ofi Ofy  0fs

N =1 == - 2= ZJ2z 23

( ) 0y 0o 0 a$3 Oy
o _0h O _oh

8ZE1 81’3 0232 81‘3

Note that
0 0
8_.:1{1 - 0_3{2 = Uga (1) @2 + ugs(x1)xs,
2 1
0 0
8_9{; — a—a{j = Ugsz(21) 22 + uss(x1)xs
and % — % = 0, thus we have that the matriz of 0 in U, is
3 2
0 U2 (1) T2 + Ugs(X1)Ts  Uaz(21)T2 + usz(x1)xs
—UQQ(.Tl)xQ — UQg(Q?l).fL'g 0 0
—Ugg(Il)l'z - U33(ZE1)$3 0 0
and
U/22(t) U923 (t)
U(t) =



Remember the equation [3.9] for Q 4 692, we have that

1 1 —
KQMQ@) = Ryp+ (2 + 5Q)w(t) - §(Q + 59);@) - Z(Q + 59)3@) —(Q+ 5Q)v(t)
1 1 1 1
= Ry + 90 + 90090 — 5% 0 — 30050 — 1% — 320 (0D10

1
—1(59)3@) = Q) = (21(09Q)15)4) — (0 (2 + 62)15), 4y

For the previously seen we have to 9(62),) = —U(t), (6€2)] ;) = 0, (62),() = 0 and also
that (082);1 = (6Q)1; = 0 in 7(¢), for every ¢t € [0, 7]. So we have that

1 1 -
Q+0Q 2
K2 = Ry + 000 — 5% — 7950 — Lo —U),

thus we have that

K1) = K1) — U (1), (3.15)

and the cohomology class [0Q] = 0 this is [Q] = [Q+ Q] in H*(M,R). Since (6Q),) =0,
for every ¢t € [0, 7], then the trajectory 6, is an orbit of the magnetic flow of Q + §{2 and
the level energy is preserved. Using lemma |3.1.1| proposition [2.4.3] and by the Jacobi

equation, we have that
dyP (2 + 6Q)(7)(J(0), J'(0)) = (J(7), J'(7)),

where J : [0, 7] — R" is solution to the Jacobi equation and by we have that
J'(t) + K1) J(t) = 0, for every t € [0,7].

In other terms, dpgP(£2 + 6Q2)(7) is equal to the n x n symplectic matrix W (r) given by
the solution W : [0, 7] — Sp(n) at time 7 of the following Cauchy problem:

W/(t) = AOWE) + Y uy(t)BW(t), forall t € [0, 7],

2<i<;j<m
W(O) == IQn;
where the 2n x 2n matrices A(t), B;; are defined by

At) == 0k (3.16)
—K%(t) 0
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for every t € [0, 7] and

0 0
Bz‘j = y
Bij 0
where all the B;; are n x n-symmetric matrices, such that for all 2 < ¢ < j < m are
defined by

Bij _ E(z‘—l)(z’—l)> if i = Js

Ei-nyi-1 + Eg-na-1, i<y,
where {Ey; : 1 < k,l <n =m — 1} is the canonic basic of the set of n x n-matrix, M, (R).
In fact {B;; : 2 <i < j < m} is the canonic basic of the set of n x n-symmetric matrix

S(n). Thus we have that

2<i<j<m 2<i<j<m

Ut) 0

Example 3.2.2. Suppose that n =2 and 2c = 1. Remember the equation in Ms(R):
X"(t) + K¥OH) X (t) = 0, this imply that

X'@t) = X'(t),
X"t) = —K"YHX(t).
X(t)
Taking W (t) = , the before equation is equivalent to
X'(t)
0 I
W’(t) _ 2x2 VV,
_KQ+5Q(t) 0

in My(R), but K% (t) = K®(t) — U(t), then

0 Loxo 0 0
Wi(t) = Wi(t) + Wi(t),
—K%t) 0 Ut) 0
0 0
Wi(t) = ABW({) + W(t),
U) 0
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From example|5.2.1, we have that

U(t) = U922 (t) + U923 (t) 0 + Us3 (t)

= Ugo(t)Bag + ua3(t)Bag + ugs(t)Bas.

This we have that

W't) = A@)W(t)+ ’ 0 W (t)
Ugo () Bag + ua3(t) Bag + ugs(t)Bsz 0
0 0 0 0
W/(t) = AW () + uan(?) W(t) + uas(t) W(t)
BQQ 0 623 0
0 O
+U33(t) W(t)
633 0

W/(t) = A(t)W(t) + U9 (t)B22W(t) + U23<t>BQ3W(t) + Uss (t)B33W(t)
W/(t) = AW+ > uyBiW(t)

2<i<;<3

This last equation is the called control system.

Since our control system has the form (2.6, the result in the Section is apply. By

compactness of © := M and regularity of the magnetic flow, the compactness assumption

in Proposition are satisfied. It remains to check that assumptions ([2.8)), (2.10)) and
(2.11)) are hold. This is the same procedure as in [20] and [21].

First we check immediately that
BijBiy =0, forevery2<i<j<mand 2 <k <[ <m.

So, assumption ([2.8)) is satisfied. Since the B;; do not depend on time, we check easily
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that the matrices BY, B}

2 : :
1> Bij» Bij associated to our system are given by

0 _

Bz-lj = [Bija A(t)],

| Bi(0) = [[Bij, A@D)], A(D)]

for every ¢t € [0, 7] and 2 < i < j < m. An easy computation yields for any 2 < i < j <m

and any t € [0, 7],

and

B(1) = [[Byy, A(1)], A(t)] = ,
“B,K(t) — KX(1)B; 0

note that B?

ii» Bi; are constant. Then we get for any 2 <i < j <m,

0 0
[B;5(0), Bij] =2 € Span {B(0) = By : 2 <k <1 <m},
(Bi;)* 0
and
(By)? 0
[B5(0), Bij] =2 € Span {By(0):2 <k <1 <m},
0 (By)®
because
Bii, ifi=j
(By;)?

Bi; —|—Bjj, ifi <y
So assumption ([2.10) is satisfied. It remains to show that (2.11]) holds. We first notice
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that for any 2 <i < j<mand 2 <k <[ <m, we have

[BL(0). BL(O)] = [[By, AO) [Bu, AO)]
[szu Bkl] 0
0 [Bijv Bkl]
with

where C;; is the n X n skew-symmetric matrix defined by

C E(ifl)(jfl) E(jfl)(ifl), if71 < 7,
0, if1 = 7.

We define
A = Span { BS,(0), BL(0), B3(0), [BL(0), BL(0)] : 2 < i,j < k.1 <m}.

It is sufficient to show that the space A C Ms,(R) satisfies that A C sp(n) and has
dimension p = n(2n + 1). First since the set matrices B;; with 2 < i < j < m forms a
basis of the vector space of n x n symmetric matrices S(n) we check easily by the formulas

that the vector space
A, := Span {Bij,B?j(O) = [[Bi;, A(0)],A(0)] : 2<i<j< m}

has dimension n(n + 1). We check easily that the vector spaces

Ag::Spcm{Bij:2§2§]§m}:Span 2<1<53<m
0 Bij
and
A; = Span {[B};(0), By(0)]:2 <i,j <k,l <m}
Bii, B 0
= Span 1Bij; Bul 2<4,7<k1l<m
0 [Bij, Biil
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are orthogonal to A; with respect to the scalar product P - Q = tr(P*Q). So, we need
to show that A, + Aj has dimension n?. By the above formulas, we have that A, and
Aj are orthogonal. The space A, has the same dimension as S(n), that is n(n + 1)/2.
Moreover, by for every 2 <i =k < j <l <m, we have

[Bij, B] = Cji.
The space spanned by the matrices of the form
Cqi O
0 Cj
with 2 < j <[ < m has dimension n(n —1)/2. This shows that A3 has dimension at least
n(n —1)/2 and so A, @ Az has dimension n?. Thus we have proved the following result.
Let F the set of 62 = dn where the n € Q'(M) defined as above i.e. supp(6?) C U and
0€) = 0 in 7. We can consider the follow map
ST,9 D F— Sp(”)?
I — dgP (2 + 02) (7).
Theorem 3.2.3. (Perturbative Theorem) Let ¢ > 0 and Q) € QQ(M) and 0 < 7 < K(c,Q).
There is R, K > 0 (depending on ¢, and 7) such that the following property holds: For
each 0 € T°M and r € (0, R), F as defined above, we have that
Bicr(S70(0)) 1 Sp(n) € Sy (B (0) N F) .

where BS'(0) C QQ(M) is the open ball of radius 6 centered at 0 € 52(M) in the C"

topology.

Basically this theorem say that S; is a open map. This is the technical result that

we need to demonstrate our results.

Remember that, en this section 6 be a closed orbit of period Ty. Suppose also that
K/2 < 1 < K. We have that the number of self-intersection the closed magnetic geodesic
v : [0, Ty] — M is finite. There exist [ € N such that Ty = I, we define ;(t) := (¢t + iT)
forallt € [0,7] and i =0,...,1 — 1. We can choose U; C M open, as in the lemma[3.1.1]
disjoint sets for © = 0,...,l — 1, such that

U N~v((0,7)) € ~((0,7)) and U; Ny; =0, for all i # j
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-1
Denote U := U U;, we consider the map
=0

-1
Sp + F— [ Sp(n),

1=0

-1
0Q — dgP(Q + 09Q)(Tp) = [ [ do,, Pi(Q + 6Q2)(7),
=0

where P;(Q + 6Q) is the Poincaré map from ¥;; to X;i1)-. Applying [ times the
theorem [3.2.3] we prove the follow corollary.

Corolary 3.2.4. Let Q be a smooth closed 2-form on M and U an open neighbourhood of
Q in the C' topology. Suppose that 6, C T°M is a closed orbit of ¢, with minimal period
Ty. Then choosing T, 1 and U as above, the image of set {U \ {2} } NF by the map Sy is

-1
an open neighbourhood of Sp(0) in HSp(n).
i=0

40



Chapter 4

The Kupka-Smale Property

In this chapter we are going to study the version of KupKa-Smale’s theorem in this
context of magnetic flows. The original theorem was made for smooth diffeomorphisms
by I. Kupka [I7] and S. Smale [43] in 1963, separately, each has a different version of the
demonstration. However best known version of the proof this theorem is of M. Peixoto
[34], he unified in a single improved show of both that is used until now. This theorem
is one of the pillars for demonstration of the C* structural stability of Mané [25]. This
theorem also exists in other contexts, for example smooth vector fields, also in smooth
flows such as the geodesic flows by D. Anosov [4] and G. Contreras [9], Hamiltonian flows
by R. C. Robinson [39] and [40], also the magnetic flows on surfaces by J. A. Miranda
[26]. In all the methods of Peixoto are used.

In simple language, this theorem says that almost every magnetic flow satisfies two
properties. The first one says that all closed orbit is non-degenerate and the second says
that every heteroclinic point is transverse. Recall that an non-degenerate closed orbit is
either hyperbolic or elliptical. The difference with original version of the theorem is that

not possible to destroy the ellipticity of closed orbit due to Robinson [41].

In the first section of this chapter we announce this theorem and then proceed to
demonstrate the first property. In the second section we prove the second property. We

are based on the methods of M. Peixoto [34], D. Anosov [4] and J. A. Miranda [26]. Notice

here that we generalize Miranda’s theorem.
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4.1 The Kupka-Smale theorem for magnetic flows

In this section we will write accurately the version of Kupka-Smale’s theorem in the
context of magnetic flows defined in manifolds of any dimension. Next we are going to
prove the first property of the theorem. Basically says that for almost all magnetic flow,

we have that, all closed orbit is non-degenerate, and for this we will use the perturbative

theorem [3.2.3]

Recall that a subset R C ﬁZ(M ) is called a C"-residual if it contains a countable

intersection of open and dense subsets in the C"-topology.

Now we come to define the concept of when a property is satisfied by almost all

magnetic flow, see [27] and [20].

Definition 4.1.1. We say that a property P is C"-generic for magnetic flows if, for each
¢ >0 . there exist a set R(c) C QQ(M ), such that following holds.

1. The subset Ry(c) := {Q € R(c) : [©] = h} is C"-residual in ﬁz(M) ={Q €

2

QO (M) : [Q] = h}, for all h € H?(M,R) and

2. The flow ¢ has the property P in TM, for all Q € R(c).

This definition is due to J. A. G. Miranda. Note that a generic property is also
generic for subclasses of magnetic flows given by 2-form with the same cohomology class
in H?(M,R). In particular,the same happens for the family of exact magnetic flows. Now

if we are in the conditions to announce the main result of this chapter.

Theorem 4.1.2. (Kupka-Smale) The following property:

1. all closed orbits are hyperbolic or elliptic,

2. all heteroclinic points are transversal

are C"-generic for magnetic flows, with 1 < r < oo.
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Let ¢ > 0 and ©Q be a smooth closed 2-form on M. Consider the magnetic flow ¢{* in
T¢M and 6 = (z,v) € T°M such that 6, = ¢$*(0) = (v(t),7'(t)) be a closed orbit in T¢M

with period Ty > 0, where 7 is a closed {2-magnetic geodesic in M.

We consider the following subset N (t) = N (6;) C Ty, T°M for every t € [0, Tp], be the

subspace
N(#) = {€ € T TM : (61,7 (1))) = 0}
If £ = X(0,), then & = +/(t), therefore the subspace N (t) is transversal to X along of
0, note that V(6,) C N (t). Hence the dimension of N (t) is 2n and
Ty, T°M = N (t) ® (X (6,)) .

Therefore, the restriction of the twisted form wy, := wqly, to N (t) is a non-degenerate
2-form. Note that N'(#) does not depend on the 2-form Q. For i = 2,...,m, we have that
(€i(t),0),(0,e:(t)) € H(6;) & V(6y), then (e;(t),0),(0,e;(t)) € N(t) and

wa, ((€i(1),0), (¢;(1)),0) = €,

we, ((0,e;(t)),(0,e;(t))) = 0and

wa, ((€i(1),0),(0,¢;(1))) = 0.

Thus, we have that

(e2(t),0),...(em(t),0),(0,ex(t)),...(0,en(t)),

is an basis of N (t), for every t € [0,Ty]. We say that a closed orbit is non-degenerate of
order k € N, if the derivate of the kth iterated on the linearized Poincaré map dyP*(Q) :

> — >, has no eigenvalues equal 1.

Given a,c > 0 and k € N, let G*(c,a), be the subset of every Q € QZ(M) such that
all closed orbits of ¢! in T¢M, with minimal period < a, are non-degenerate of order k.
Thus the first part of the Theorem |4.1.2| can be reduces to following proposition. Note
that

also that
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Proposition 4.1.3. Given c,a > 0 andr € N, the subset G'(c,a) C QZ(M) is a open and
dense subset in the C" topology. Moreover, for each h € H*(M, R), the subset Gi(c,a) is
C"-dense subset of ﬁi(M)

The prove this proposition is following the ideas of Miranda [26], so for this we need

some lemmas that we will statement.

Remember that §; = (7(t),7'(t)) = ¢$(0) is a closed orbit in T¢M with minimal period
Ty > 0in T°M. For each ¢ = 2,...,m consider a function f; € C°°(M) with support in
U, neighborhood of ([0, 7y]) and defined

1 1
) = 7= / wi(s)dsa,f (i)

in local coordinates as in the lemma and f as|3.12l Let n; := f;dx; be a smooth

1-form in M, hence dn; = u;(x1)x;dxdz; in U. Let is consider

il(s,t) = mogy (D), for s € (—e,2),
‘/;(t) = % 820%(37 t)a
hence v(t) = 7;(0,t) and V;(t) is a vector field along the magnetic geodesic v(¢). Then
0 s(dn;
Zit) = 5 o o)

= (Vi(®), Vi (1)) € H(6:) & V(6,).

Since that dn; = 0 in ~, then

DI (Do n) =2
o\t 1\ ~ds

ds
thus we have that V;(¢) satisfied the Jacobi equation ({2.4)) for 2, note that e;(0) = e;(Tp)

(Y%‘(S,t) (%{(87 t))) )

s=0

for every ¢+ = 1, ..., m, thus we have that
( /
Vi (t Vii(t 0
10 = A(t) +(0) + w;(t) , for every t € [0, Ty]
Vi () Vii(t) &
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where V; | (t) = (V;2(t),. .., Vim(t)) and A(t) as before in|3.16| If S(t) is the fundamental

matrix of the correspondent homogeneous equation, then

(T)) = S(T}) /OTGW(QS@)I ") a

€;

Vii
/
Vie

Fix ty € (0,7y) and 0 < A < & < Ty — to such that ([t — &, to + ¢]) does not have self-
intersection points. Let §) : R — R be a C"*°-approximation of the Dirac delta at the point

to. Chose u;(t) = 65(¢) and u;(t) = 0x(t), we have that, for (e;,0), (0,¢e;) € N(Ty) = N(0)

dgP(2)(Ty)(ei,0) = (Vi L(Tp), Vi 1 (Th))

and
dyP(Q)(T5)(0, ¢5) = (Vi1 (T), Vi (Ty)),
since
0 0 I 0 i
LY O — 5(1)! — si| €
dt €; KQerm(t) 0 €; 0

Thus we have the following result.

Lemma 4.1.4. Suppose that ¢{*(0) is a closed orbit of minimal period Ty > 0 on T°M.
Then there is na, . ..1n, 1-forms in M such that

<¢¥:Sdm(0)> for everyi=2,...,m,
s=0

are a basis of N'(6).

This is similar to Lemma 3.3 in [26]. Which implies the following result.

Lemma 4.1.5. Let g € QQ(M) and 0y € T°M such that ¢5°(6y) is a closed orbit of

manimal period to > 0 Then the map

ev : T°M xR x Qg (M) — T°M xTM> A,
(0,¢,9) — (0, 6(0)),

is transversal to the diagonal A C T°M x T°M in the point (6,1, Qo).
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Proof. By hypothesis ev(6y, to, Q20) = (6o, ¢t0 (60)) = (00, 6p) € A. Computing the derivate

of the map ev, we obtain
0y 10.00)€0 * (00,t,59Q) = digy 10) (00, 930 (00)) - (56, 5t) + da, (00, 912 (85)) - 59

- (687 d@oqbizo <00 + (5th0 (00)) + (O’% ¢Qo+s59( ))

s=0

since

T(g(),go) (TCM X TCM) = T@OTCM X TQOTCM = T(90790)A I, ({0} X T@OTCM)
= Ti,00A @ ({0} x ((X™(60)) © N (6))))
= Tl A @ ({0} x (X™(0))) ® ({0} x N (6h))

d
Using the previous lemma, we have that exists Z; the form Ts ¢QO+5(SQ( o) such that
s

s=0

{Zy,..., Zn} is a basis of N(6p). O

This is similar to Lemma 3.4 in [26]. The perturbative Theorem ({3.2.3)) and its Corol-
lary (3.2.4)), together with the previous lemmas implies the following result.

Lemma 4.1.6. Let Qy € G'(c,a) and k € N. Then there erists a 2 € Q[IBO](C, a), such
that Q is arbitrarily C"-close to ().

Proof. Since Q € G'(c,a), have all closed orbits of flow ¢§* en’ with minimal period
< a, are non-degenerate of order 1, this is, the derivate of the mth iterated on the
linearized Poincaré map has no eigenvalues equal to 1. Then for this closed orbits, we
have that ev(€)) is transversal to A in (6, ), where t, < a and ¢;*(6y) = 0 and other
orbit ev(§2)(6,t) ¢ A. Thus we have that ev(€d) Mrearxjo,q) A. Then the magnetic flow

2 has a finite number of closed orbits of period less that a. Let 64, ..., 6, be such closed
orbits and ¢y, ..., #; be its minimal periods. For each i = 1,...,l, as in the corollary [3.2.4]
we have that S; = Sy, : F; — Sp(n) be defined by S;(0§2) = dy, P(Qp + €2). Then, by this
corollary, for all C"-open neighbourhood U of 0, the subset S;(U N F;) C Sp(n) are open
neighbourhood of dp, P(€), for i+1,...,1. Hence, given k € N, for each i = 1,...,[ there
exists a linear map A; € S;(U) N F;, such that the mth iterated on A; does not admit an
eigenvalue equal to 1. Therefore, if §Q; € S;'(A;) NU, we have that Q = 6 +--- + 5

satisfies the lemma.
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]

This is similar to Lemma 3.5 in [26]. The part of opening in the proposition is
a consequence of dynamic properties and transversality due to [I], we only show the part

of density.

Proof. Proof of the Proposition 4.1.3 Density:

Let Q € Q' (M). Take k = k(a,Q) € N such that (k — 1)K < 2a < kK and U a C"
open neighborhood of €2 such that, if Qe U, then

[Qlco < [[Qflco +1,
thus U C Gl(c, K), for every | € N, in particular
QeUd CcG'(cK)

Consider the map

ev © T°M xR xUgq — T°MxTMDA,
0,6,  —  (0.6%0)).

The Lemma [L.1.5, implies that, if ev(6o,t0,€) € A, then ev Mg, u0) A. Hence
ev(Q) Mrerrxpossz A. So due to Abraham’s Theorem of Transversality, see [2], we
have that the set of every €y € Uqg such that ev(o) Mpearxposx/z A is dense in Ujg).
Then, there is (All € Ug) such that

3

€U(§1) MNrenrxjosryz A and || — QHC* < ok

Lemma {4.1.6{ implies that there is Q; € Q[’E}(c, 3k/2) with ||Q; — Qe < . Hence

2k
| — Q|ler < % We can take €2; € Ujg and consider U; = U N g[’a](c, 3K/2) and

ev @ T°MxRxU — TMxTMDA,
0,6,0)  — (6, 62(8)).

Suppose that ev(6y, to, Qo) € A. Let Ty be the minimal period of the closed orbit ¢ (6,).
If 2Ty < 3K then ev(£) Mgy umy) A, for every 1 <1 < k. Since Uy C Ulg), we have that
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K < Ty and ty < kTy. Therefore, ev(§d) Mg,eo) A. If 2Ty € (3K, 4K] then ty = Tj and,
by Lemma have that ev(€o) Mgy,10,00) A, hence ev(€dy) Mperrxoor] A. So due to

Abraham’s Theorem of Transversality, see [2], we have that there is O, € U, such that

~ ~ g
6?)(92) mTcMX[DQk} A and ||Ql — QQHC’V‘ < ﬁ

Lemma {4.1.6, implies that there is €y € Q{E](c, 2K) with ||Qy — (AZQHCT < % Hence

€
19 — Qal|er < T Repeating the same arguments for 2 < [ < k — 1, we obtain {2, €

Gly (¢, (] /2) + K), with || — Q_iler < =

k
Finally, since G (¢, (k — 1)K/2 + K) C Gg(c,a) and [|Q — Qi flc- < &, we have that

Qe g[lm (¢, a), this prove the proposition[4.1.3/and thus the first part of Theorem4.1.2, [

So we have proved the following result.

Theorem 4.1.7. The property: all closed orbits are non-degenerate, is C"-generic for

magnetic flows 1 < r < oo.

An immediate consequence is as follows.

Corolary 4.1.8. Given ¢ > 0, there exist a residual set O(c) in QQ(M), such that if
Q € O(c) then the number of periodic orbits of ¢5* in TM with period < T is finite, for
all T > 0.

4.2 'Transversal heteroclinic points

In this section we will prove the second part of Kupka-Smale’s theorem [£.1.2] which is
equivalent to saying that the stable and unstable manifolds of all closed orbits intersect

transversely.

For each c¢,a > 0, we define K(c,a) the set of all Q € G'(c,a) such that, for every
hyperbolic closed orbits 6;,9; C T°M, of period < a, W¥(6;) thpepr W2(94). Since the
stable and unstable manifolds of a hyperbolic closed orbit depend continuously on part

compact, we have that IC(c,a) is an open subset of QZ(M), for all a,¢ > 0. Thus to
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complete the proof of Theorem is sufficient to prove that, for every Q € QQ(M ),
the set Kig(c,a) is dense in Q'[lﬂ](c, a). It is enough to prove the existence of a local
perturbation for {2 that preserve the orbits 6; and ¥; and such that the perturbation local

manifolds W*(6;) and W?(d),) are transversal in a fundamental domain of W (6,).

Lemma 4.2.1. (Lemma 3.6 in [26]) Let 0 € W(0,) C T°M be such that the restriction
T|w(o,) s a diffeomorphism in a neighbohood U C W*(6;) of the point o. Let V. C V C U
be sufficiently small neighbohood of o in W*"(0;). Then there is an exact 2-form dn, with

norm arbitrarily small in the C” topology (1 < r < c0), such that

1. Supp(dn) C =(U),
2. 0, and 9y are hyperbolic closed orbits of the magnetic flow associated with Q= Q+dn,

3. o€ m), where W} denotes the local stable manifold of 6, for the flow gb?,

o — o —

4. the connected component of W*(0;) NV that contains the point o and W*(6;) are

transversal.

We will prove the Lemma later. From the general theory of the Hamiltonian
systems we know that, W#(0,), W*(0,) C T°M are Hamiltonians submanifolds of T'M,

with the symplectic twist form wgq.

Proof. Proof of the density of K(c,a):

Let D C W) be a fundamental domain of W¥(d) and ¢ € D. By the inverse
function theorem we know that m|yu(g) is a local diffeomorphism in o if, and only if,
T,W*(0)NV, = {0}. As W*(6) is a Lagrangian submanifold we have, from Lemma [2.4.1]
that {t € R : dy¢f’ (T,W*(0)) N Vo) # {0}}, is discrete. Then there exists t(o) > 0
arbitrarily close to 0, such that 7T|Wu(9) is a diffeomorphism in a neighborhood Uy, C
W*(0) of the point ¢y, (o). Since Q € G'(c,a), we can assume that m(¢%,,(Uys))) does
not intersect any closed orbit of period < a. Let W, C D be a neighborhood of ¢ such
that c € W, c W, C gbs_)t(a)(Ut(a)). Then, we can take a finite number of points o1, ..., 0;
such that the neighborhood W4, ..., W, cover the fundamental domain D and such that
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the points ¢2(ai) and the neighborhoods V; = ¢?(Wz) C U; satisfy the hypothesis in
Lemma 4.2.1], for each i =1,..., 1.

Applying Lemma to ¢f}(01) € V1 C Vi C Uy, we obtain an exact 2-form dn; €
QQ(M ), with C"-norm arbitrarily small, such that Supp(dn) C 7(U;) and the connected
component of m) NV, that contain ¢ (o) is transversal to W) Since G'(c, a) is
open in 52(M), we can assume that Q + dn € G'(c,a).

The transversality condition on compact subsets is an open condition. Hence, we can
successively apply Lemma in V;, to obtain an exact 2-form dn; € QZ(M ), with C”-
norm small, and such that the invariant manifolds are transversal in V; U ... U V;, for

1< <L

Since the number of closed orbits of period < a is finite, repeating the same arguments
for each possible pair of hyperbolic orbits of period < a, in such a way that the perturba-
tion supports are isolated, we obtain an exact 2-form dn in M, with C"-norm arbitrarily

small, such that 2 4 dn € K(c,a). This prove the density of K(c, a).

O

The proof of Lemma follow the same ideas that Miranda [26], in fact, the
prove depend only the following result where the dimension of manifold is important. We

finish this section with the prove this Lemma.

Recall that a submanifold N of a symplectic manifold (M?",w) is Lagrangian when
dim(N) = n and ijw = 0, where ipr : N — M denotes the inclusion map, see the
definition 2.3.4 Let H : M — R be a Hamiltonian of class C? and ¢ € R, the following
are easy consequence of the definitions and Darboux coordinates, see, for example, the

appendix of [9].

1. Suppose N' C H!(c) be a submanifold de dimension n. Then N is Lagrangian if
and only if the Hamiltonian vector field X is tangent to V.

2. If N C H '(c) is Lagrangian and 6 € N, such that X(0) # 0. Then there exist a
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neighborhood U C M of # and a coordinate system (z,y) : U — R™ x R™ such that
w=>ydr; Ndy;, NNU = [y =0] and Xy|y = 0/0z;.

Lemma 4.2.2. Let N and Ny be two Lagrangian submanifolds contained in an energy
level ¢ of a Hamiltonian H : M — R on a symplectic manifold (M?",w) , Let § € N
be a non-singular point for the Hamiltonian vector field Xg. Let (t,z,y) : U — [0,1] x
[—&,e]"™! X [—¢&,&]™ be the Darboux coordinates for N in a neighborhood U of 0 € N.
Then, given 0 < &3 < & < €, there exist a sequence of submanifolds Nj, C H*(c) with

dimension n, such that

1. N, — N in the C*-topology,
2. NNA=N,NA, where x = (xo,...2,), y = (Y1,...,Yn) and

A={(t,z,y) ER*™ :||z|| > e, or 0 <t < 1/4},

3. Ny are invariant in AU B, where

B={(t,z,y) €R* :|jz]| < e and 1/2 <t < 1},

4. Ny 0N C are invariant and transversal to Ny, where

C={(tz,y) cR™: |z <&y and 1/2 <t < 1},
5. / ixw =0, where iy : Ny — U 1is the inclusion.
Nk

Proof. Let «v: [—¢,¢e] — [0,1] and 3 : [0,1] — [0, 1] be smooth functions, such that

. - -
, 1
0, inR\[—ey,é] 0, in |1, 1
o= , [ a=0and =
. 1 7
1, m [—82,52] 1’ in —, 1
\ _2 _
For s = (s3,...,8,) € R"™" with [|s]| small, consider f, : [0,1] X [—&,e]"™" — R"

defined as
fo(t,x) = (f5(t, ), sa0(w2) B(E), - . ., snex(wn) (1))
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and f! is defined by:
H(t,z, fs(t,x)) =c. (4.1)

Since the curves t — (¢,x,0,0) C N are solutions of the Hamiltonian system (M, w, H),
OH

we have that H(t,z,0,0) = ¢ and a—(t,x, 0,0) # 0. By the implicit function theorem,
Y1

for any s with ||s|| sufficiently small, we can solve equation (4.1)) for (¢,x) — f1(¢,z) with

fYof class C™.

We define N, = {(t,z, fs(t,x)) € R*": (t,z) € [0,1] X [—¢,&]""'}. By construction the
supports of the maps f, are fixed and lli% fs = 0. Therefore, Ny — N in the C*°-topology
when s — 0. Since f,(t,z) = 0 for every (¢,x) € A, then Ny N A =N N A. Moreover, we
have that

itw = (dt Ndyp + dxg Ndyy + - - + dzy, A dyy,)

= —spa(xo) B (t)dt Ndxg — -+ - — spaxy,) B (8)dt A day,.

for every s with ||s|| small, where i5 : Ny < U denote the inclusion. Since §'(t) = 0 for
every t € [1/2,1], the submanifolds N N B are Lagrangian. Hence H(N;) = ¢. Note that

2-form ¢}w has compact support and

/S Pw=— ZZ; S; /01 B'(t) (/i a(xi)dxi) dt =0,

for every s with ||s|| small. Observe that N;NC = [g = s|NH!(c), where J = (ya, ..., Yn)-
It is a basic fact about transversality that NM; N C and Ny C H!(c) are transversal in
H=Y(c) if and only if ||s|| is small, is a regular value of the map pl|;, where p(y) = 7.
Then, by Sard’s theorem, we have that there is a sequence s, — 0 for which N, satisfy

the theorem.
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Chapter 5

k-Jets

In this chapter we are going to study one of the important generic results in relation to
the spaces of k-Jets of the map of Poincaré of a closed orbit of the magnetic flow. The
motivation is always the analogy to geodetic flows, remember that a Riemannian metric is
bumpy if all closed orbits of the geodetic flow generated by this metric, is non-degenerate.
The bumpy metric theorem states that generically every Riemannian metric is bumpy,
this theorem was proved by R. Abraham [3], but we can find a complete proof by D.
Anosov [4]. Then W. Klingenberg and F. Takens [15] extend the bumpy metric theorem
including conditions in the k-jets of Poincaré map of closed orbits of the geodetic flow.
On the other hand F. Takens [45] also obtains the analogous result in the Hamiltonian

context, that is, for Hamiltonian flows.

In the setting of magnetic flows there is a version of this result on surfaces by J. A.

Miranda [26]. Basically we are going to extend this result for manifolds of any dimension.

In the first section we will define the k-Jets later we announce the k-Jets’ theorem and
see some properties. In the second section we study the perturbation of k-jet with respect
to €2 be exact and in the last section we are going to proved the theorem of k-Jets. Note
that at first everything is made for exact €2, but at the end of prove we use the fact that
locally €2 is always exact. Note also here that the main reference here is J. A. Miranda

126).
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5.1 The k-jet space for magnetic flows

In this section we are going to define the space of k-Jets for symplectic maps. Subse-
quently, we are going to announce the k-Jets’ theorem, taking into account the definition
of when a property is C"-generic for magnetic flows, defined in the previous chapter, def-
inition [4.1.1, We are going to define the concept of when a family of symplectic linear
maps is k-general and we will study some of its properties in relation to the Poincaré map

of closed orbit of magnetic flows.

We consider (R?",wy) as the canonical symplectic linear space of dimension 2n. Let
Dif f.,,(R?",0) be the space of smooth symplectic diffeomorphisms f : (R*" wg) —
(R?",wp) such that f(0) = 0. Given k € N, we define the following equivalence rela-
tion in Dif f,,(R?*",0), denoted by ~:

f ~r g < the Taylor polynomials of degree k at zero are equal.

Let f € Dif f,,(R?*",0), we define the k-jet of f as the equivalence class of f with respect
to the relation ~j,, which we denote as j*(f) = j*(f)(0), i.e.

]k<f) = {g S Diffwo(R2n70) ) g}‘

The space of symplectic k-jets at zero is define as the set of all equivalence classes with

respect to the relation ~j, of elements of Dif f,, (R** 0), which we denoted by J¥(n), i.e.

JE(n) == {3"(f) : f € Dif fo,(R*",0)} .

Note that J¥(n) is a vector space that it is also a Lie group, with the product defined by

F"(f) - 5%(g) = §*(f o h), for every f,g € Diff., (R*",0).

Thus we have that the invertible elements form a Lie group. When k = 1, we can identify
JY(n) with the classic Lie group Sp(n). Let @ C J¥(n) be a subset of the space of
symplectic k-jets. We say that Q is invariant if - Q - o = Q, for all o € J*(n).

In the same way we can define J¥(n) be the space of the k-jets at 0 of symplectic
vector fields that are zero at 0. Let us see that this is the Lie algebra of J¥(n) via the map

ezponential. We define the bracket [-,-]* : JF(n) x JF(n) — JF¥(n) by [*(X), j*(Y)]F =
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—3*([X,Y]). Since X, Y are zero in the origin, [-,-]* depends only on the k-jets of X and
Y. Then [, -]* defines a Lie algebra structure in 7*(n). Moreover, J¥(n) is the Lie algebra
of J¥(n) and the exponential map exp : J¥(n) — J¥(n) is given by exp(tj*(X)) = j*(¢y),
where ¢; is the local flow associated with X at zero. For more information about the

k-jets spaces see, for example,[7] and [16].

Let ¢ > 0 and € be a smooth closed 2-form on M. Consider the magnetic flow ¢’
in T°M and 6 = (z,v) € T°M such that 6, = ¢2(0) = (v(t),7'(t)) is a closed orbit
in T°M with period Ty > 0, where ~ is a closed {2-magnetic geodesic in M. We know
that the map of Poincaré P := P(,0,%) is a symplectic map, where ¥ C T°M is a
local transverse section at the point 6, with the symplectic structure of wg. Therefore,
using Darboux coordinates, we can assume that j*(P) € J¥(n). Remember that M have

dimension m =n + 1.

In the same way as in [15] the fact that the k-jet of the Poincaré map P of a closed
orbit 6; belongs to an invariant subset Q C J¥(n) is independent of the chosen section ¥
and of the chosen coordinates on X; hence, the k-jet of the Poincaré map of 6 belong to

Q@ is well defined.

We now state the local perturbation result for magnetic flows on manifolds of any
dimension, similarly to the result of Klingenberg and Takens [15] for geodesic flows, Takens
[45] for Hamiltonian flows, Miranda [26] for magnetic flows on surfaces and of Carballo

and Miranda [6] Tonelli Hamiltonian.

Theorem 5.1.1. Let Q C J¥(n) be an open and invariant subset such that
JM(P(Q.0,%)) € Q.

Then there exists an exact 2-form dn € Q*(M), arbitrary C"-close to zero, with r > k,
such that 0, is a closed orbit of ¢yt and j*(P(Q,0,%)) € Q.

This is similar to Theorem 1.3 [26]. In this chapter we will prove the Theorem [5.1.1]
Let us first describe the general case. Let N be an arbitrary manifold and X be a smooth
vector field on N with ¢ : N — N the corresponding flow. Let a : [0,7] — N be

a segment of an orbit of ¢, and let X(¢) be a family of local transversal sections with
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a(t) € X(t) such that X(t) = f~1(¢) in neighborhood of a(t), where ¢ is a regular value

for some smooth function f: N — R.

Given k > 0, let Y be the vector field in N satisfying j*1(Y)(a(t)) = 0, for all
t €[0,7] and a(0),a(T") ¢ Supp(Y). Let P, : 3(0) — 3(t) and P : ¥(0) — X(t) be the
Poincaré maps on open neighborhood of (0) € ¥(0) On X(¢) with respect to X and X+Y,
respectively. For each ¢ € [0, 7], we consider a map S¢(Y) : (£(0),«(0)) — (3(0), «(0))
defined as S;(Y) = P ' o P/.

Since Y(t) is transversal to X, we can decompose Y locality as Y = Y] + Y5, such that
way that Y7 |x () is tangent to 3(t), for all ¢ € [0,77], and Y3 is a multiple de X. Let Y; be the
non-autonomous vector field on $(0) defined by Y; = (P)*(Yi|sw) = (P) ' o Yi|s(t) o P
The following proposition shows as a relation between the k-jets of the map S;(Y') and

the vector field Y;. The proof can be seen in [15], Section 2.

Proposition 5.1.2. The k-jet of the map S;(Y) at «(0) is equal to the k-jet of the flow

i the time t correspondent to the vector field Y.

For k € N we denote by R[z, y] the set of all real homogeneous polynomials of degree
k in the 2n variables = (x1,...,2,), ¥ = (Y1-..,Yn). This is a real vector space of

dimension d = d(2n, k) = (2”7;%). Remember that n is fix since dim(M) =n + 1.

We fix the polynomial F(x1...,2Zn,%1...,%,) = 2% and we define

Gr = {(01,...,0d) € Sp(n)?:{Fooy,...,Fooy}is a basis of ]Rk[x,y]}.

The following proposition is proof in [6], Section 2.
Proposition 5.1.3. (Proposition 6 in [6]) For each k € N, the subset Gy, is open and
dense in Sp(n)?.

We define when a family of symplectic matrix is called k-general.

Definition 5.1.4. We say that a one-parameter family o : [a,b] — Sp(n) of class C" is
k-general of class C", when o(a) = I and there exists times t,...,t; € [a,b] such that

(Otys -y 01,) € G
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Example 5.1.5. The following example is a k-general family for any k € N. Let o :
[0,1] — Sp(n) be given by

oz, y) = (:cl +oe Tty 4+ Ny, 2, ,xn,y) .
Then o = I and

Foat(x,y) — (xl_|_...+tn—1xn+tny1_|_,,._|_t2n—1yn)k

_ =1 2n—1 int+1—1n,,'n"tn—1 71
= E tJ (z)( )xl coexrttTryy N T
1

0<iy <--ion-1<k

Since

i k » o , ‘ .
{(2) ( )xlf et gt Tyt gl 0 <y < e <l < k‘}
31 toan—1

is a basis for Ry[x,y], the coordinates of F o oy(x,y) in this basis are

{thtotien 0 <y <o <ldgpg <k = (1t t7) €RY

It is easy to see that there exists valuesty, . .. tq € [0, 1] such that the vectors (1,;, ...t 1),
with 1 =1,...,d, are linearity independent vectors in R?. hence the o, is a k-general fam-
ily.

By combining theorem |3.2.3|and the above proposition, we obtain the following result.

For a prove see [26] in the section 4.

Proposition 5.1.6. Let v : R — M be a Q-magnetic geodesic. Given k,r € N and
K2 <17 < K(= K(c,Q)) , there ezists an exact 2-form d€, with norm arbitrarily small
in the C"-topology, such that the one parameter family t — dPy(Q + d€) defined in [0, 7]
is k-general, where Py(2 + dn) : Xo — X is the map Poincaré of orbit segment |y of
Q+dn in T°M, for every t € [0, 7].

This is similar to Proposition 4.3 in [26].
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5.2 Perturbation of the k-jet

In this section we are going to study how the k-jet of the map Poincaré is perturbed
in relation to the perturbation of €2. One important hypothesis is the concept of a one-

parameter family k-general. All this is for the case that 2 is exact. See [26].

Given an exact 2-form dn € Q*(M), we define the Magnetic Lagrangian L, : TM — R
induced by dn as

Lo(w,0) = 3 {0,0), = (o).

Note that L, is convex and superlinear. Therefore, the Euler-Lagrangian flow of L, is
conjugated to a Hamiltonian flows in (T*M,wy) via the Legendre transformation £ :

TM — T*M, defined by

The correspondent Hamiltonian H, : T*M — R, which we call the Magnetic Hamiltonian,
is given by

Hy(,p) = 3o+l
where | - |, denote the norm induced by the metric g in ;M. Let X, be the Hamiltonian
vector field of H, and ¢ be the flow generated by the field X,,.

Let v : [0,7] — M be a segment of a dn-magnetic geodesic without self-intersection
points, (1 < K = K(c,?)). Then

£(6) 1= L6030 = (100, 520(0.5(0) ) = (0.010)

is a segment of an orbit of the flow ;.

We will now choose a local coordinate system in a neighborhood of I'([0, 7]) in 7% M in
order to describe the Hamiltonian H,, and its vector field. Since ([0, 7]) C M has no self-
intersection points, we can choose coordinates (g, x) with z = (xy,...,x,), in a neighbor-
hood U C M of ([0, 7]) such that v(t) = (¢,0) and {0/0x¢,0/0x1, . ..,0/0%,}|0) is a or-
thogonal basis for T(, )M, for all t € [0, 7]. For each (x¢,2) € U, let {dxo, dz1,...,dzx,} C

T(0yM be the dual basis for {0/0zg,0/0x1,...,0/0xn} C TizymyM. Then, if p €
Tt M, we define y; by p = ). y;dx; and we have a natural chart

(1’07%%79) - (xOJxl"‘7xn7y07y1"'7yn)
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of #71(U) C T*M. In these coordinates we have wy = dzy A dyo + dx A dy,

1 e ..
Hy (w0, %, 90,9) = 5 > 9" (0, 2) (s + 1) (w5 + 1y),
i,j=0

X_” OH, 0  OH, 9
e i—o ayz c%, 81‘, 8yz

where [¢¥]o<; j<» denotes the inverse matrix of the coefficients of the metric g with respect

to the coordinate system (z¢,x) in U and
I'(t) = (¢,0,...,0,1 —no(t,0), =m1(¢,0),...,—n.(¢,0))

with the 1-form n|y = nodxe + mdxy + ..., Nudz,.

Let 6 : R — R and 8 : R" — R are smooth functions satisfying

1. supp(d) C (0,7),

2. supp(B) C B-(0), with € > 0 sufficiently small, and

3. j1(B)(0) = 2% is a homogeneous of degree k + 1.

Given k > 1, we define the subset F* C QQ(M ) as the subset of the exact 2-form d¢,
with supp(§) C U C M such that, in the local coordinates (zg,z), the 1-form & is given
by

(@0, x) = oo, ¥)dwo = 6(20)B(2)d0.
We will consider perturbations of the type (n+ &) for the magnetic Hamiltonian H,,.

Since j%(3)(0) = 0, we have the d¢(y(t)) = d&(t,0) = 0. Hence, (¢) is a magnetic
geodesic for d(n + &). In H,, substituting n by (n+ &) in coordinates obtain

OH, £2
Hive=H —1 + 29%.
(n+€) n +€0 ay() + 2
We denote
0H, &2 0H 2(k+1
F= F(E k) = n S0 00 _ n (k+1) )
3 (&, k) §O<8y0)+(2)g §o(ayo)+o($1 )
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Locally H, ¢ = H, + I, for all dn € F*. Note that j*(F¢)(I'(t)) =0 for all ¢ € [0, 7] and
[(0), () ¢ Supp(F).

We set [0, 7] = A(t) = {x¢ = t} the family of local hypersurfaces in 7% M along I'(?).
Since I'(t) = X, (T(t)), then OH, /y, # 0. Therefore, A(t) is a local transversal section at
the point I'(¢), for each t € [0, 7]. Let Y be the Hamiltonian vector field of the Hamiltonian
Fe: T*M — R, satisfies the conditions of general case (Proposition . We consider
the map S; : (A(0),T'(0)) — (A(0),T(0)) defined by S; = Si(€) = Sy(Ye) = P/ o P/
where P, and P/ denote the Poincaré maps for the Hamiltonian field X, and X, ¢, with
d¢ € F*, respectively.

Since & (o, 7) = d(x) () and j%(8)(0) = 0 we have that, if

OF: 0
[ e
Yg o 31:13y1’

and YZ = Y; — Y/, then j*(Y2)(T'(t)) = 0 and j*'(Y)(T(t)) # 0 for all t € [0,7].
Moreover, since A(t) = {zo = t}, the vector field Y{'[z¢) is tangent to A(t), for all
t € [0, 7]. Therefore we have the following of the proposition [5.1.2]

Corolary 5.2.1. The j*(S7(£))(I'(0)) is equal to the k-jet of the flow at time t associated

with the non-autonomous vector field P (Y |vw) at the point T'(0).

This is similar to Remark 2 in [26]. Consider X(t) := A(t) N H, ' (H,(T'(0))) € T*M
submanifold for all ¢ € [0, 7]. Then the canonical 2-form wy induces a symplectic structure
on 3(t) and the restriction Pyl : 3(0) — ¥(t) is a symplectic map for all ¢ € [0, 7].
Since A(s) N H;jg(Hn%(F(O))) = Y(s) for s = 0,7, the restriction Pp|5) : 3(0) = X(7)

is also a symplectic map.

Note that 0H,/0yo(I'(t)) = 1 for all t € [0,7]. For each ¢t € [0, 7] there is open set

U, C R?*" and a function oy : U, — R such that

E<t) = {(t7'r7at<'r7y)7y) S A(t> : (I’7y) S Ut}

Note that wyl|s = dz A dy. For each d§ € F* and ¢ € [0, 7], we define

0H,
Fea(r,y) = Fels@ = &t x)W:(t’ z, op(z,y),y) + O ),
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and we denote by Z;; the Hamiltonian field correspondent to the Hamiltonian F¢, :

¥(t) — R. We have that

FHFea)(D(1) = 51 (&) (X,0) = o)™,
take F(z,y) = 2.
Proposition 5.2.2. The j*(S|s0))(I'(0)) is equal to the k-jet in T'(0) of the Hamiltonian

flow at time t correspondent to the non-autonomous Hamiltonian §(t)F o (Py|x (o)) in 3(0).

This is similar to Proposition 4.4 in [26]. We define the map

Sk FF— JF(n),

dg — 5 (S:(€)|s0)(T(0)).

We have that S*(F*) C ker(m,), where the map m, : J¥*1(n) — J¥(n) is the canonical

projection.
Proposition 5.2.3. Suppose that the one parameter family t € [0,7] — dro)P|s©) €

Sp(n) is (k + 1)-general for some k > 1. Then Sk(F*) is an open subset of ker(ry,).

The proof of these propositions are similar as in [26].

5.3 Proof of theorem [5.1.1

In this section we are going to give the proof of the theorem [5.1.1, which we do in two
parts. The first part is for the exact case and in the second part we use the fact that

locally a closed form is exact. See [26].
Let us first consider the exact case:

Let v : R — M be a dn-magnetic geodesic of period Ty (where 8 = (7(0),~'(0))) and
let H, : T*M — R be the correspondent magnetic Hamiltonian. Since the number of
self-intersection points is finite, we can choose 7 € (0, Tp|, such that the segment ([0, 7])

does not contain self-intersection of the curve 4. Let U be a tubular neighbourhood of
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v ([0,7]) in M, sufficiently small, such that U N~y = ~([0,7]). It follows that we can
choose a local coordinates system (xg,z) in U and a family of local transversal sections
¥(t) € H, '(H,(I'(0))) C T*M as in the last section. By proposition m, there exists
an exact close 2-form dn arbitrarily C"-close to dn, for r > k, such that the correspondent

one parameter family [0, 7] — dr)P|s () is l-general, for any [ =2,... k+ 1.
We set F! = FY(U,~,7,7) C §2(M), for i =2,...,k+ 1, as the last section, and
F=FU,~,T1)= {d§ € QZ(M) 2 dnly(o,7)) = 0 and suppdn C U} :
It is easy to see that F' C F for all { = 1,...,d. We define the map

S J:—>Jf(n),

dé — 5*(S-(€))(T(0)).

By theorem [3.2.3|and proposition [5.2.3] we have that S is an open map in a neighbour-
hood of 0 € F. Since j*(P(dn,0,%)) € @, the openness of S in a neighbourhood of zero
implies that there exists an exact 2-form d¢ arbitrarily C"-close to zero, with r > k, such
that the S(d¢) is an element of the set j*(P(#, %, dn))~'-Q, then j*(P(0, %, d(n+£))) € Q,

this prove the theorem for the exact case.
We now consider the non-exact case:

Let © be a non-exact 2-form on M and let v, 7, U and F = F(U,~,7) be as in the
exact case. We can suppose without loss of generality that there is € > 0, such that the
segment 7y : [—&, 7+ ¢| — M does not has self-intersection points. Let N C M be an open
tubular neighbourhood of y(—¢, 7+4¢) and by reducing U, if necessary, we can assume that
U C N. Since N is a tubular neighbourhood of y(—¢, 7+ ¢), we have |y = dn, for some
1-form n in N C M. Hence, the restriction of the magnetic flow to TN =TyM C T'M
is an exact magnetic flow. Then it is conjugated to a Hamiltonian flow in (7N, wy) for
the Hamiltonian H, : T*N — R, defined as before. Observe that, by definition of the
perturbation space JF, if an exact 2-form d¢ € F then £ has compact support in U C N.
Therefore, £ can be extended to a global exact 1-form on M, still denoted by &, as zero
outside N. Since the k-jet at one point of a map is totally determined by its restriction in

any neighbourhood of that point, it is enough to prove the theorem for a segment ([0, 7])
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in the open neighbourhood N. Therefore, the proof of the theorem is reduced to the

already proven one, which is the exact case.

We conclude this chapter by saying that the following corollaries is obtained using the
corollary and the definition

Corolary 5.3.1. Given an open and dense invariant subset QQ C J*(n), the property:
Py : the k-jet of the Poincaré map belong to )

18 a C"-generic property for magnetic flows, with k < r < oo.

This is the desired generic property, since it is the property that other flows satisfy
such as geodetic flows by [15], Hamiltonian flows by [45], Tonelli Hamiltonian flows by [0]

and magnetic flows on surfaces by [26].
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Chapter 6

Franks’ Lemma and Positive Entropy

This last chapter is divided into two parts. In the first part we are going to study the
version of Franks’s Lemma in this context of magnetic flows in manifolds of any dimension.
The original version of this lemma was made for diffeomorphisms in manifolds of any
dimension and proved by Franks. This lemma has many applications, but one of the most
important is made by Mafié [25] in the C'-structurally stable. A long time later, Contreras
and Paternain [9] proved the version of this lemma in the context of flows geodesic on
surfaces, a few years later Contreras [§] proved it for any dimension. Then Miranda [27]
proved this result in this context of magnetic flows but in surfaces. The idea here is to

generalize this result.

Oliveira proved in [30] the Kupka-Smale’s theorem in the context of Tonelli flows on
surfaces. Then using the methods of geometric control theory Rifford and Ruggiero in [3§]
obtain a perturbative result which implies and generalizes the of Oliveira for manifolds
of any dimension. This is the first time we see that the methods of geometric control
theory make a big difference in the study of conservative systems. On the other hand,
using these same methods, Lazrag [19] and [20] improves the proved of Franks’ lemma
for geodetic flows made by Contreras. However these methods were improved by Lazrag,
Rifford and Ruggiero in [2I] to obtain the version of Franks’ lemma for geodetic flows.
The difference with the work of Contreras [§] is that his Franks’ lemma works on an open

and dense set of Riemannian metrics. On the contrary, Lazrag, Rifford and Ruggiero [21]
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obtain the result on all the Riemannian metrics, besides for Contreras it is not difficulty,
since its main result is that generically every Riemannian metric has geodesic flow with

positive entropy.

The second part of this chapter, we are going to study a property of dichotomy for
the magnetic flows. Basically this says that there exists a set of open and dense magnetic
flows such that either the topological entropy is positive or the closed set of closed orbits
is a hyperbolic set. This result is another way of writing Miranda’s work on surfaces
[27]. On the other hand, if we contrast with geodetic flows, Contreras [§] has the version
of this result and his method is to split the prove into two parts. The first works with
the geodesic flows that do not have periodic hyperbolic orbit, where he gets to perturb
and find a basic non-trivial hyperbolic set, thus a type Smale’s horseshoe which implies
positive topological entropy. In the second part he studies geodetic flows with an infinite
number of periodic orbits, this is due to the Kupka-Smale theorem for geodetic flows.
Using Rademacher’s theorem [37], in order to perturb and still obtain an infinite quantity
of closed orbits and passing through the Smale’s spectral decomposition theorem for flows
he obtains a basic non-trivial hyperbolic set, then also positive topological entropy. A
major difference in our context is, that there is no version of Rademacher’s theorem in

magnetic flows, this is the main reason.

6.1 Franks’ lemma for magnetic flows

In this section we are going to prove the Franks’ lemma in this context of magnetic flows
on manifolds of any dimension. As we explained earlier, the importance of geometric
control theory, in particular the works of Lazrag, Rifford and Ruggiero [21]. The idea is
to first obtain the perturbative result, which we already get, which is the theorem [3.2.3],

where we use section 2.6

Let ¢ > 0, ©Q be a smooth closed 2-form so M. We set § = (x,v) € T°M, with
v : [0, 7] — M magnetic geodesic such that v(0) = 2 and 4(0) = v, where 0 < 7 < K(c, Q).

Considering the definitions of F and S: 4 of the section [3.2], under these conditions we
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can use the theorem In this case, there is K, R > 0 such that if r € (0, R)

Bir(S6(0)) N Sp(n) C Syg (351(0) N ]—“) .

This will prove the Franks’ lemma for magnetic flows in any dimension.

Suppose that 0; = (y(t),~/'(t)) C T°M is a closed orbit and let T > 0 be its minimal
period. By Lemma[2.4.5] K := K(c,Q) < Ty and the number of self-intersection points of
7 is finite. We fix 7 € (K/2, K], such that Ty = I7, with [ € N, denote ~;(t) = y(t + i7).
There exists U; C M open and disjoint sets for 0 <7 <[ — 1, such that

U:;N~v((0,7)) € ~((0,7)), and U; N U; =0, for every i # j.
-1
For U = U U;, we consider the map
i=0

-1

Sp + F— [ Sp(n),

=0
-1
dn +— dgP(Q+ dn)(Ty) = | [ do,, Pi(Q + dn),
=0

where P; is the Poincaré map from ¥;; to X(41),. Applying [ times Theorem [3.2.3] we

prove the following corollary.

Corolary 6.1.1. (Franks’ Lemma) Let ¢ > 0, Q be a smooth closed 2-form on M and 6
in T°M such that $54(0) be a closed orbit in T°M with minimal period Ty. Let 1 and Sy be
defined as above. IfU an open neighborhood of 2 in the C*t topology, then there existr > 0
that depend of ¢ > 0, Q and U such that the the image of the set U N F under the map Sy

-1
contains a product of balls of radius r center at (Spp(S2),...,S-10(2)) € H Sp(n).
i=0

On the other hand, if we consider F := {a1,...,ay} be a finite set of Q-magnetic

geodesic that are transverse to 7. We have the following result.

Proposition 6.1.2. For any tubular neighborhood U of v and any set F of transverse
Q-magnetic geodesic, the support of the C' perturbation can be contained in U\ 'V for

some neighborhood V' of the transverse Q2-magnetic geodesic F'.

The Franks’ lemma will be useful for the study of the magnetic flows with infinity

many closed orbits in sn energy level.
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6.2 Star Magnetic flows

In this section, first we are going to state the main result of this last chapter which is the
property of the magnetic flows defined in manifolds of any dimension. The proof of this

result will be made in two parts, the first in this section and the second in last.
Remember the section [2.7] for definitions. Thus our main result is the following.

Theorem 6.2.1. There exists an open and dense set in the C'-topology of smooth closed
2-form in M whose magnetic flow have positive topological entropy or have a finite number

of periodic orbits.

If the version of Rademacher’s theorem exist in our context, we could improve our
main result and thus obtain a version of Contreras’s theorem in our context. Although
we know that at very high energy levels the exact magnetic flow can be seen as geodetic
flow and thus we can improve our result, only for high energy levels in exact magnetic

flows.

Let ¢ > 0 and © be a smooth closed 2-form in M, we define P(€2,¢) be the set of
all closed orbit of ¢{* in T°M and Per(),c) be the union of a(R) for all « € P(Q,c).
We now denote by H!'(M,c) the set of smooth closed 2-form  in M such that « is
hyperbolic closed orbit, for all a € P(£2, ¢), this set is endowed with the C'-topology. Let
h € H*(M,R), consider

FH(M, c) = inter H (M, ¢) N Q4 (M),
and F'(M,c) := | U{FL(M,c): h € H*(M,R)}.

Definition 6.2.2. We say that the magnetic flow ¢! (or Q) is star if Q € FY(M,c).

Note that Per(€,¢) C T°M is a compact and invariant subset.
Theorem 6.2.3. If Q is star, then Per(Q,c) C T°M is a hyperbolic set.
In this section we are going to prove the theorem In fact we are going to

prove the local version of this result, where we will use the Franks’ lemma and the stably

hyperbolic of the symplectic linear maps.
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6.2.1 Symplectic hyperbolic stability
In this section we will study the hyperbolic stability of a family of periodic sequences of
symplectic linear maps. Our main reference here is Contreras [9], section 8.

We say that a linear map T : R?*® — R?" is hyperbolic if there exists a splitting
R* = F* & E* and an iterate L € N such that T(E*) = E*, T(E*) = E* and

|17

1 1
<5 and H(T|Eu)_LH <3

The subspaces E* and E* are called the stable subspace and unstable subspace respect of

T.

We say that a sequence 7 : Z — Sp(n) is periodic if there exists [ > 1 such that

Tiw = 7; for all © € Z. We say that a periodic sequence 7 is hyperbolic if the linear map
l -1

H 7; is hyperbolic. In this case the stable and unstable subspaces of H Tit+j are denoted
llazy1 E$(7) and EY(7) respectively. =

We say that a family 7 = {7%},c4 of sequences in Sp(n) is bounded if there exists
R > 0 such that ||77|| < R for all « € A and i € Z. Given two families of periodic
sequences in Sp(n), 7 = {7%}aea and n = {N*}aca, we say that they are periodically
equivalent if they have the same indexing set A and for all & € A the periods of 7* and

n® coincide. Given two periodically equivalent families of periodic sequences in Sp(n),

T ={7%}aeca and n = {N®}aca, define

d(r,n) =sup{||7{" = ni'[| :a € A,i € Z} .

We say that a family 7 = {7%},ec4 is hyperbolic if for all &« € A, the periodic sequence
@ is hyperbolic. We say that a hyperbolic periodic family 7 is stably hyperbolic if there
exists € > 0 such that any periodically equivalent family 7 satisfying d(7,7) < € is also

hyperbolic.

Finally, we say that a family of periodic sequences 7 is uniformly hyperbolic if there

exist K > 0,0 < A < 1 and invariant subspaces E?(7%), E¥(7%),a € A, i € Z, such that

-1
< K)\l and <H Z+]‘Eu T ) < K)\l’

z+] B8 (1)
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foralla € A, j € Z and | € N. Observe that in this case the sequence 7 is hyperbolic and

the subspaces Ef (7%), E¥(7%) necessarily coincide with the stable and unstable subspaces
-1

of the map H T
=0

We are now ready to state the following result.
Theorem 6.2.4. If 7 s a stably hyperbolic family of periodic sequences of bounded

symplectic linear maps then it is uniformly hyperbolic.

For a prove see theorem 8.1 in [§]

6.2.2 Proof of theorem [6.2.3

We will state and proved the local version of the theorem [6.2.3]

Given ¢ > 0, U C T°M an open set and {2 be a smooth closed 2-form in M. Let
P(2,¢,U) be the set of closed orbits of ¢! completely contained in U and Per(, ¢, U) be
the union of «(R) for all a € P(£2,¢,U). We denote by H'(U, ¢) the set of smooth closed
2-forms  on M such that « is a hyperbolic closed orbits, for all « € P(£,¢,U), this set
is endowed with the C'-topology. Let h € H?(M,R), consider

Fi(U,c) = intcH' (U, c) ﬂﬁi(M),
and F*(U,c) := J{FL(U,c) : h € H*(M,R)}.

Definition 6.2.5. We say that Q is star in U if Q € FY(U,c).

The following proposition is a local version that implies theorem |6.2.3
Proposition 6.2.6. If Q) is star in U, then Per(Q,c,U) C T°M is a hyperbolic set.
Proof. There exist h € H*(M,R) such that Q € FL(U,¢). Let K = K(c,Q) the magnetic
injectivity radius. For each @ € A := P(Q,¢,U), exist § = (x,v) € T°M such that

a(t) = ¢H0) = (v(t),~(t)) € T°M, for every t € R. Let T, be the minimal periodic of
and [ = l(«, §2) in N such that T, = I7 for some 7 € (K/2, K|. Let for eachi =0,...,1—1

N(i,a) == {f € ToinTM : (dn(&),~ (iT)) = 0}.
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Note that ThnTM = N (i,a) ® (X?(a(it))) and the restriction of the twist symplectic
form wgq in N (i, @) is non-degenerate. Let ¥; C TU be the local transversal section at
a(i7) such that ToirX; = N (4, ). Let 7@ : Z — Sp(n) be the periodic sequence of period
[ such that 7 = dP(9,0,%;,%;11) : N(i,) = N (i + 1, a) the linearized Poincaré maps.
Note that 7/ = S, (0) as in theorem m

Lemma 6.2.7. The family 7 = {7%}aeca is stably hyperbolic.

Proof. Since Q € FL(U,c), there exist U C Q2 (M) a C'-neighbourhood of Q such that,
if w € U, then S is a closed orbit hyperbolic, for every § € P(w,c). By the hyperbolic
analytic continuation, A and P(w,c) are bijective, for every w € U. Let @ € A, then
B(a) € P(w,c) intersects the sections ¥;, i = 1,...,[. Therefore, we can cut f(«) into
the same number if segments as . So for each w € U and B(«) we can apply all before,

then we can say that 7 = 7(w) is hyperbolic.

We suppose that {7(w)}mey is not stably hyperbolic, then there is a periodically
equivalent family 7 with d(7,n) arbitrarily small which is not hyperbolic. Then there

exists a in A and a sequence of linear symplectic maps 7 : N'(i,¢) = N (i + 1,¢) such
!
that 77 and 7 are closed arbitrarily and Hm“ is not hyperbolic. We now will use

=1
the corollary [6.1.1} Note that the perturbation space in theorem preserves «. By

corollary there exist a 2-form w in U such that a € P(w,c) and n® = SF(0). Since
I

!
dgP(w,0,,%0,%0) = H Sio(w) = H ng, then « is not hyperbolic for the magnetic flow
1 j—

1= =1
of w. This contradicts the choice of U. O

Then, from Theorem we obtain a hyperbolic splitting on P(€2, ¢, U). The Hyper-
bolicity condition implies the continuity of the splitting in Per (2, ¢, U), see for example
the proposition 6.4.4 in [I3] for diffeomorphisms. Then the splitting extends continuously
to the closure Per(Q, ¢, U) and the extension is also a hyperbolic set. O

Thus we can conclude that, Per(€2,c) is a hyperbolic set, for every Q) star in M. Now

we will study the case when €2 is not star.
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6.3 Elliptic closed magnetic geodesic

In this section we will prove the result main theorem [6.2.1] We really need to study

non-star magnetic flows. For that, first we can obtain the following, using theorem

and the corollary [5.3.1]

Theorem 6.3.1. Let Q € J*(n) be open, dense and invariant. Then the following prop-
erty:

1. all closed orbits are hyperbolic or elliptic,

2. all k-jet of the Poincaré map belong to Q)

3. all heteroclinic points are transversal
are C"-generic for magnetic flows, with k < r < oo.

Since countable intersections of residual subsets are residual, in Theorem we can

replace ) by a residual invariant subset in J¥(n).

The idea for the demonstration is to find a suitable set () such that given an 2 by the
theorem there exists a perturbation of {2 such that it has an elliptic closed orbit.
Then by Le Calvez [22] and Contreras [§] we can find, near this elliptical orbit, another

hyperbolic orbit with a transversal homoclinic point.

6.3.1 Symplectic twist maps

In this section we are going to study the twist property of the Poincaré map.

Let ¢ > 0 and € be a smooth closed 2-form in M, if §# € T°M such that §; = ¢{*(9) is
a closed orbit in T°M. Let P := P(£,6,%) the Poincaré map. Remember the following
defines. We say that 6, is

1. degenerate if dP has an eigenvalue which is a root of unity.

2. hyperbolic if dP has not eigenvalue of modulus 1.
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3. elliptic if is non degenerate and non hyperbolic.

4. c-elliptic if is elliptic and dP has precisely 2¢ eigenvalues of modulus 1.

Suppose that 6 is a c-elliptic periodic point, ¢ < n. Let TyYX = E° ® E°® E" be the
decomposition into the stable, center and unstable subspaces for dP. This is, E*, £ and

E* are invariant under dP and dP

gs has only eigenvalues p of modulus |p| < 1, dP|ge
has only eigenvalues p of modulus |p| = 1 and dP|g« has only eigenvalues p of modulus
|p| > 1. Then there are local embeddings W# : (R"™,0) — (X,0), W¢: (R*,0) — (X2,0)
and W* : (R" ¢, 0) — (X%,0), such that T,W? = E?, 0 € {s,c,u}, which are locally
invariant under P. They are called stable, center and unstable manifolds for (X, 6). The
stable and unstable manifolds are unique, but the center manifold may not be unique. If
P is of class CF (resp. C1) then W*, W are C* (resp. C1). If P is of class C* (resp.
C1) then W¢ can be chosen C* (resp. C" , with r arbitrarily large) on a sufficiently small
neighborhood of 6. The submanifolds W?*, W™ are isotropic with respect to the twisted

symplectic structure wq (i.e. wqlps = 0 and wg|g« = 0) because P preserves wq and dP

(resp. dP~ ') asymptotically contracts tangent vectors in W# (resp. W*). The restriction

wq|ge is non degenerate (see [41]) and hence P|we. is a symplectic map on a sufficiently

small neighborhood of 6.

Let p1,..., pes Py, - -, P, be the eigenvalues of P with modulus 1.

Definition 6.3.2. We say that 6 is 4-elementary if

C C
Hpi”i # 1 whenerver 1 < Z v < 4.
i=1 i=1

In this case there are symplectic coordinates (x1,..., 2 y1,...,y) in W€ such that
walwe =Y i, dy; Adz; and Py is written in the Birkhoff normal form P(z,y) = (X,Y),
where

C
T = ¥k 4 fr(2), where ¥y = a;, + Zﬂkﬂzl\z,
=1

z=x+iy, Z =X +1iY, p = e¥™% and f(z) = f(z,y) has vanishing derivatives up to

order 3 at the origin, note that a; € [0, 1) is not rational.

Definition 6.3.3. We say that 6 is weakly monotonous if the matrix 8 = () is non-

singular.
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The property det(5) # 0 is independent of the particular choice of normal form. In
these coordinates, the matrix 5 can be detected from the 3-jet of P at § = (0,0) and it
can be seen that the property of be 4-elementary and weakly monotonous is open and

dense in the jet space J2(c).

Consider the following maps

(z,y) A (7, 0) B (0, 0%*/e) = (V,7)
D* — T*xR, — T¢ x RS,
E E
D* — T*x ]REF —_— T % Ri
A B

where D = {(z,y) € R* x R*: [z]* + |y|* < 1}, D* =D\ {(0,0)}, f. = P|we in the above
coordinates, T° = R¢/Z* and A~! is given by z = g cos(2m}.), yx = or sin(2w9},). Since
the coordinates in Birkhoff normal form are symplectic, the map f,. preserves the form
wo = dr Ady. Let C = BoA:D* — T x R be given by C(z,y) = (9,7), ri, = 0}/c.
Then C*(rdv) = 21

2me
Therefore F(rdd) — rdd is exact.

(xdy — ydx) =: A\.. Since D is simply connected, f*(\;) — A is exact.

Let F.(0,7) := (9 4+ a + €fr,r) be the symplectic diffeomorphism given by the first
term in Birkhoff normal form in the coordinates (¥,7). Its N-th iterate is given by
FN@,r) = (9 + Na+eNpr,r). This is a totally integrable (see [5]) weakly monotonous
(i.e. det(eNB) # 0) twist map of T® x R. Let Bs open ball in R with center point
i(l, ..., 1) and radius 6. In the Moser’s Appendix in [14], J. Moser proves that given

2¢
¢ > 0 there exist 6 > 0, N € N and € > 0 such that

L. |[EN — FN||er < ¢ in T° x Bs and

2. there exists a torus T radially transformed by F¥ in T¢ x B, i.e. T¢ = {(J,r(¥)) :
¥ € T} C T x Bs such that FN(9,7(0)) = (9, R(9)) for some R : T® — R,

Let fy be a generating function for FEN, i.e. a function fy : R® x By — R such that
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dix = (FN)" (rd9) — rdd. On the radially transformed torus 7 we have that
dfn (0, r(V)) = (R(9) — r(V))dd
Then critical points of dfy|7: correspond to fixed points of F¥ in T°.

Let @ C J3(n) be the set of 3-jets of C*® symplectic automorphisms 7' of R™ x R"

which fix the origin and are such that

1. The eigenvalues of dyT" are all different.
2. the eigenvalues of modulus 1 satisfy 4-elementary.

3. The coefficient of the Birkhoff normal form satisfy the weakly monotonous condition.

It is well known that Q is residual and invariant in all J*(n), k > 3, thus we can use

Q in theorem [6.3.1

6.3.2 Proof of theorem [6.2.1]

In this last section we are going to obtain positive topological entropy from non-star

magnetic flows.

Let ¢ > 0 and €2 be a smooth closed 2-form in M non-star, by theorem [6.3.1], we have
that there exist Q arbitrarily C"-near to 2 (r > 4) such that the magnetic flow ét of Q in
T°M have a elliptic closed orbit 6; and satisfying (2) and (3) of theorem [6.3.1]

We can suppose that 6 is a c-elliptic periodic point with ¢ < n, as stated in the before
section, Moser proves that there exist a subset T¢ x By neighborhood of 6 and iterate
N € N such that the N-th iterate FEN of the Poincaré map F. = P|wy. is a weakly
monotonous twist map with fixed points which is C! near to a totally integrable twist
map F2V in these conditions, we can to use the theorem 4.1 in [8], thus we obtain that F
has a 1-elliptic periodic point 0 near 6. Since the central manifold is normally hyperbolic,
by lemme 8.6 in [5], the periodic point 6 will also be 1-elliptic for the whole Poincaré map
P.

As the central manifold W€ have dimension 2, we can to use the following result
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Proposition 6.3.4. (Le Calvez [22]) Let f be a diffeomorphism of the annulus R x S!

such that it is a twist map, it is area preserving, the form f*(rdd) — rdi is exact and:

1. If x is a periodic point for f and q is its least period, the eigenvalues of d,f? are

not roots of unity.

2. The stable and unstable manifolds of hyperbolic periodic orbits of f intersect transver-

sally.
Then f has periodic orbits with homoclinic points.

Thus we have that P|y. have hyperbolic orbits with homoclinic points. This hyper-
bolic periodic orbit will be hyperbolic in the Poincaré section (see [5]). A homoclinic point
in the central manifold is also a homoclinic point in the Poincaré section, and it must
be transversal by the Kupka-Smale condition. Since the fact of have homoclinic point
is stable, so there exists U neighborhood of Q such that if x € U then ¢y has a closed
orbit in T°M where those Poincaré map P, has a homoclinic point, then ¢} has positive

topology entropy hiop(k, ) > 0.

Using the following result

Proposition 6.3.5. Let A C X such that for every x € X and e > 0 there exists a € A

and V' neighbourhood of a with d(a,z) < €, then A contain a subset open and dense.

We have that for ¢ > 0 there exist a subset open and dense in 52(]\/[ )\ FY(M, ¢) such
that if Q belong such subset, ¢{* in T°M have positive entropy topological. Thus, for all
¢ > 0, there exist a subset C'-open and dense in ﬁz(M ) such that if © belong such subset,
¢St in T°M either have positive topological entropy or the closed set of periodic orbits is

a hyperbolic set. Finally we can take the union respect to ¢ > 0 and obtain our result.
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