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de matemática, que me ajudaram muito na realização deste trabalho, estou muito grato

mesmo.

Agradeço também ao IM-UFRJ, pessoal administrativo e professores todos, em espe-
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On Magnetic Flows

Freddy Pablo Castro Vicente

Orientador: Alexander Eduardo Arbieto Mendoza

Neste trabalho, estudamos algumas propriedades genéricas de fluxos magnéticos. Basi-

camente o fluxo magnético é definido como o fluxo geodésico perturbado por uma 2-forma.

Tal forma é obtida pelo levantamento de uma 2-forma na variedade, somada à 2-forma

canônica no fibrado tangente da variedade.

J. A. G. Miranda estudou certas propriedades genéricas de fluxos magnéticos. Ele es-

tudou em [26] duas propriedades genéricas dos fluxos magnéticos em superf́ıcies, a saber,

o teorema de Kupka-Smale e o teorema dos k-Jets do mapa de Poincaré. Em [27] ele

estudou a entropia topológica dos fluxos magnéticos em superf́ıcies mostrando a positivi-

dade desta na presença de uma órbita fechada não-hiperbólica ou na presença de infinitas

órbitas fechadas.

O objetivo desta tese é estender os resultados acima para variedades suaves em di-

mensão qualquer. Para isto são usadas técnicas de teoria do controle geométrico intro-

duzidas por Rifford e Ruggiero em [38] e Lazrag, Rifford e Ruggiero em [21]. Em [38]

é obtido a versão do teorema de Kupka-Smale no contexto de fluxos Hamilton-Tonelli

em variedades suaves de dimensão qualquer, que generaliza o trabalho de Oliveira [30]

em superf́ıcies. Em [21] é obtido uma versão do lema de Franks no contexto de fluxos

geodésicos, aqui eles no precisam da condição genérica na curvatura como no trabalho de

Contreras in [8], nesse sentido é melhor.
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Nosso principal resultado é, referente a propriedade dos fluxos magnéticos. Basica-

mente diz:

Teorema.- Existe um conjunto aberto e denso de fluxos magnéticos definidos numa

variedade suave de dimensão qualquer, tal que, tem entropia topológica positiva ou tem

um número finito de órbitas fechadas.
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Freddy Pablo Castro Vicente

Advisor: Alexander Eduardo Arbieto Mendoza

In this work, we study some generic properties of magnetic flows. Basically the mag-

netic flow is defined as the geodesic flow perturbed by a 2-form. Such form is obtained

by the lifting of a 2-form in the manifold added to the canonical 2-form in the tangent

bundle of the manifold.

J. A. G. Miranda has studied certain generic properties of magnetic flow. He studied

in [26] two generic properties of magnetic flows on surfaces, namely the Kupka-Smale’s

theorem and the k-Jets theorem of the Poincaré map. In [27] he studied the topological

entropy of magnetic flows on surfaces showing its positivity in the presence of a closed

non-hyperbolic orbit or in the presence of infinite closed orbits.

The objective of this thesis is to extend the above results to smooth manifolds in

any dimension. For this are used techniques of geometric control theory introduced by

Rifford and Ruggiero in [38] and Lazrag, Rifford and Ruggiero in [21]. In [38] is obtained

a version of Kupka-Smale’s theorem in the context of Hamilton-Tonelli flows in smooth

manifolds of any dimension, which generalizes the work of Oliveira in [30] in surfaces. In

[21] a version of the Franks’ lemma is obtained in the context of geodetic flows, here they

do not need the generic condition in the curvature as in the work of Contreras in [8], in

that sense it is better.
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Our main result is, concerning the property of the magnetic flows. Basically says:

Theorem.- There is an open and dense set of magnetic flows defined in a smooth

manifold of any dimension, such that it has positive topological entropy or has a finite

number of closed orbits.
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Chapter 1

Introduction

One of the main questions in the study of dynamical systems is, how chaotic is a system?

But another natural question is, does it mean that a system is chaotic? There are indeed

different definitions to say that a system is chaotic. One of the main examples of chaotic

systems is the Smale’s horseshoe which has an infinite number of periodic orbits, and

this is a hyperbolic set. A definition of chaos that we will use in this work is that of

topological entropy, in short, it measures the exponential growth rate of the number of

periodic orbits of the system in question. One of the main properties is that this is a

topological invariant and is somewhat stable.

On the other hand, in the study of hyperbolic dynamics, we have the famous work

of Ricardo Mañé on C1 structural stability [25], where the pillars of the demonstration

since work are the Franks’ Lemma and the Pugh’s Closing Lemma, the latter using the

Kupka-Smale’s theorem. In fact, these two results: the Kupka-Smale’s theorem [34] and

the Franks’ lemma [11] are of paramount importance in the study of systems in different

contexts. We also have that Newhouse proof the C1 structural stability in the context of

symplectic diffeomorphisms, see [28].

There are many works regarding positive topological entropy of systems in different

contexts. One of the main ones is the work of Contreras [8] in geodesic flows that states

that almost all geodesic flow has positive topological entropy. But our main reference are

the works of J. A. G. Miranda [26] and [27], where he studies the topological entropy of
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the magnetic flows in surfaces. Our work is

Theorem A: There is an open and dense set of magnetic flows defined in a smooth

manifold of any dimension, such that, it has positive topological entropy or has a finite

number of closed orbits.

This is a extension of Miranda’s results. Our main tool will be the geometric control

theory developed by Lazrag, Rifford and Ruggiero in [38] and [21]. But we must always

contrast with the proof in geodetic flows of Contreras, where the main difference is the

non-existence of Rademacher’s theorem [37] in the context of magnetic flows, this is,

Problem: Is it true that almost every magnetic flow has infinite closed orbits at every

level of energy?

On the other hand, we must highlight the great power of the method using geometric

control theory to solve perturbations of a linear system of ordinary differential equations

generated by the nature of magnetic curvature. The first time these methods were used

in [38] was to obtain the Kupka-Smale’s theorem in the context of Hamilton-Tonelli flows

defined in smooth manifolds of any dimension. Then in [21], it was also used to obtain the

Franks’ Lemma of geodetic flows without the need of generic condition in the curvature

as in [8].

In Chapter 2, we define the magnetic flows and make a contrast with the geodesic

flows, we define the magnetic fields of Jacobi and the magnetic injective radius. We will

also study the method of geometric control theory that we will use. Finally, we recall

some dynamic and ergodic properties of C1 diffeomorphisms. Briefly, given a smooth

closed 2-form Ω in M , the magnetic flow is a Hamiltonian flow in the tangent bundle

TM , denote by φΩ
t satisfying the following equation


x′ = v,

Dv

dt
= Y Ω(v).

In Chapter 3, we will obtain the magnetic tubular neighborhood, that satisfies the

classical properties, as in the case of geodesic flows. The most difficult part is obtain
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the matrix Ω-magnetic curvature as symmetric matrix, since Ω is skew-symmetric. The

tubular neighborhood implies the perturbative Lemma that is the key to all the work.

Thus, for each perturbation of Ω, define its linear part of Poincaré map. The perturbative

lemma states that this application is an open map on the symplectic matrix.

In Chapter 4 we will study the version of KupKa-Smale’s theorem in this context of

magnetic flows. The original theorem was made for smooth diffeomorphisms by I. Kupka

[17] and S. Smale [43] in 1963, separately. However best known version of the proof this

theorem is of M. Peixoto [34]. This theorem also exists in other contexts, for example

smooth vector fields, also in smooth flows such as the geodesic flows by D. Anosov [4] and

G. Contreras [9], Hamiltonian flows by R. C. Robinson [39] and [40], also the magnetic

flows on surfaces by J. A. Miranda [26]. In all the methods of Peixoto are used. In simple

language, this theorem says that

Theorem B: Almost every magnetic flow satisfy these two properties:

1. all closed orbits are hyperbolic or elliptic,

2. all heteroclinic points are transversal.

In Chapter 5 we will study one of the important generic results in relation to the spaces

of k-Jets of the map of Poincaré of a closed orbit of the magnetic flow. The motivation

is always the analogy to geodesic flows, in W. Klingenberg and F. Takens [15] extend the

bumpy metric theorem including conditions in the k-jets of Poincaré map of closed orbits

of the geodesic flow. On the other hand F. Takens [45] also obtains the analogous result

in the Hamiltonian context, that is, for Hamiltonian flows. In simple language, this result

says that

Theorem C: Let Q an open and dense invariant subset of space k-jets. Almost every

magnetic flow, it has the k-jet of the Poincaré map belong to Q.

In Chapter 6, last, is divided into two parts. The first part we will study the version of

Franks’s Lemma in this context of magnetic flows in smooth manifolds of any dimension.

The original version of this lemma was made for diffeomorphisms in smooth manifolds of

any dimension and proved by Franks [11]. Contreras and Paternain [9] proved the version
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of this lemma in the context of flows geodesic on surfaces, later Contreras [8] proved it

for any dimension. Then Miranda [27] proved this result in this context of magnetic flows

but in surfaces. The idea here is to generalize this result. In simple words says

In the second part of this chapter, we will study a property of dichotomy for the

magnetic flows. Basically this says that

there exists a open and dense set of magnetic flows such that either the topological

entropy is positive or the closed set of closed orbits is a hyperbolic set.

This result is another way of writing Miranda’s work on surfaces [27]. On the other

hand, if we contrast with geodesic flows, Contreras [8] has the version of this result. In

the case that the geodesic flows have an infinite number of periodic orbits, he use the

Rademacher’s theorem [37], in order to perturb and still obtain an infinite quantity of

closed orbits and passing through the Smale’s spectral decomposition theorem for flows

he obtains a basic non-trivial hyperbolic set, then positive topological entropy. A major

difference in our context is, that there is no version of Rademacher’s theorem in magnetic

flows.
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Chapter 2

Preliminaries

In this chapter we will give the definitions and basic results that will be necessary in the

rest of this work.

Throughout all this work, we always denote M be a compact, connected, boundaryless

Riemaniann manifold of dimension m := n + 1 with the smooth Riemannian metric

g := 〈·, ·〉. This metric induces a geodesic distance on the manifold, that we will denote

by d, in such a way that the pair (M,d) is a complete metric space.

We denote by ∇ the Levi-Civita connection associated the metric, by R the Rieman-

nian curvature tensor and π : TM →M denote the canonical projection.

A starting point for our studies is the concept of a geodetic curve in manifolds. Roughly

speaking, a geodesic is a curve that locally minimizes the distance between two points.

By analytically, in local coordinates, such curves are solutions of a nonlinear second-

order ordinate differential equation. Moreover, they can be seen as the projection of the

orbits of a flow, said geodesic, in the tangent bundle TM .

From this point of view, other important dynamic systems, derived from the physics,

can be seen in this way. We will now outline some of these equations. After this, we will

define several objects that will be used in the thesis.
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2.1 The equations of the magnetic flow

A curve γ : (−ε, ε)→M , for small ε > 0, is a geodesic if it satisfies

D

dt
γ′ = 0.

From the point of view of TM , we can see this second-order equation as the following

system of first-order equations  x′ = v,

D
dt
v = 0.

(2.1)

Let Y : TM → TM , a linear skew-symmetric bundle map. This application will be

said to be a magnetic field (or Lorentz force) and gives rise to what we call the magnetic

flow, which models the motion of a charge particle and unit mass under the effect of the

magnetic field. As above, the equation in TM is x′ = v,

D
dt
v = Y (v).

(2.2)

2.2 Riemannian Geometry

In this section we will collect several geometry results that will be used later.

Recall that a Jacobi field J is a field on a geodesic γ : [0, T ] → M that satisfies the

following differential equation

D2

dt2
J +R(γ′, J)γ′ = 0.

We also recall that a Jacobi field can be seen as a variational field on a geodesic, obtained

by a variation of the same by geodesics. Let p = γ(0) ∈ M , then we say that γ(t0), with

t0 > 0, is a conjugate point of p if there is a Jacobi field J , not identically null, such that

J(0) = J(t0) = 0. The conjugate points have a deep relation with the negativity of a

bilinear form which is the form of index

I(V,W ) =

∫ T

0

{〈
D

dt
V,
D

dt
W

〉
− 〈R(γ′, V )γ′,W 〉

}
dt.

6



Proposition 2.2.1. (Morse index) If iT is the maximum dimension of a subspace in

which the quadratic form associated with I is defined negative then iT is the number of

points conjugated to γ(0), where we counted these points with multiplicity.

The proof of proposition can be found in [10], ch. 11.

On the other hand, the index form has relations with the second derivative of the

functional energy along a geodesic. Given a closed curve α : [0, T ] :→M , the energy of c

is given by

E(α) =

∫ T

0

‖α′(s)‖2ds.

Proposition 2.2.2. (The formula of the second variation) Suppose α is a geodesic. If αs

is a part-differentiable geodesic variation of α, for closed curves, and V is the variational

field associated with this variation then

1

2

d2E
ds2

∣∣∣
s=0

= I(V, V ).

The proof of this proposition can be found in [10], ch. 9.

2.3 Symplectic Geometry and Hamiltonian Flows

Later we will present the equations mentioned above from other points of view. For this

we need the language of symplectic geometry.

Definition 2.3.1. We say that a 2-form ω on M is symplectic if it is closed, dω = 0, and

not degenerate, this is, if ωx(u, v) = 0 for all v ∈ TxM then u = 0.

Thus, if ω is a symplectic form then we say that (M,ω) is a symplectic manifold.

For our purposes it is interesting to obtain a description of TTM . In particular, we

would like to obtain a reasonable Riemannian metric in TM . One of the most useful is the

Sasaki metric, which is obtained by the decomposition of TTM in the so-called vertical

and horizontal bundles, which we present below.
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The vertical bundle is simply the kernel of derivative canonical projection, that is,

V := ker(dπ). Geometrically, if θ = (x, v) ∈ TM then Vθ is the space tangent to fiber

π−1(x) at point θ, this is, Vθ = TθTxM .

The horizontal bundle is also defined as the kernel of a certain application, known as

the connection map. As the manifold M is Riemannian we can define the application

connection

K : TTM → TM,

as follows. Given ξ ∈ TθTM , let Z : (−ε, ε) → TM adapted to ξ, this is, Z(t) =

(α(t), β(t)) where α : (−ε, ε)→ M , α = π ◦ Z and β is a vector field along α. Such that

Z(0) = θ and Z ′(0) = ξ. We defined

Kθ(ξ) = ∇α′β
∣∣
t=0
.

Then the horizontal bundle on TM , as the bundle on TM whose fiber in θ is given by

Hθ := ker(Kθ).

Proposition 2.3.2.

TTM = H ⊕ V.

The proof of this proposition can be found in [31], p. 13. Through this decomposition

we can define the Sasaki metric as follows. If ξ ∈ TθTM then via the decomposition

above, we can write ξ = (ξ1, ξ2), where ξ1 = ξh = dθπ(ξ) and ξ2 = ξv = Kθ(ξ).

Definition 2.3.3. The Sasaki metric in TM is given by

〈〈ξ, η〉〉θ := 〈ξ1, η1〉x + 〈ξ2, η2〉x ,

for all ξ, η ∈ TθTM . In addition, it makes Hθ and Vθ orthogonal.

A Hamiltonian is a smooth function H : TM → R. By contraction of the symplectic

form, we can define a field XH , which we will call the Hamiltonian field. That is, XH is

the only field that satisfies:

dθH(·) = ωθ(XH , ·).

8



By compactness, this field generates a smooth complete flow ϕt in TM that we will call

the Hamiltonian flow associated with H. It is simple to note that the symplectic form is

preserved by this flow, see [31], p. 10.

If c is a regular value of H then T cM := H−1(c) is said a energy level. Which is an

invariant submanifold by the Hamiltonian flows. Indeed:

(H(ϕt(θ)))
′(s) = dϕs(θ)H(XH(ϕs(θ))) = ωϕs(θ)(XH(ϕs(θ)), XH(ϕs(θ))) = 0,

then H(ϕt(θ)) = H(θ) = c. So we can consider ϕt : T cM → T cM .

Let V be a vector space and ω a symplectic form in it. Note that, necessarily, the

dimension of V must be even. Thus, dimV = 2n.

Definition 2.3.4. We will say that a subspace L ⊂ V is Lagrangian if dimL = n and

ω|L×L = 0.

Let Λ(V ) be the set formed by all the Lagrangian subspaces of (V, ω). This set has the

manifold structure and is called the Grassmannian manifold of the Lagrangian subspaces.

2.4 Magnetic flows

In this section we present the equations from another point of view, using the Hamiltonian

language. Also presented some properties of the magnetic flows that is the object of study

in all this work.

The geodetic flow is a Hamiltonian flow with respect to the Hamiltonian H : TM → R,

as H(x, v) =
1

2
〈v, v〉x (kinetic energy), and the symplectic canonical form ω0 of TM

(”pullback” of the symplectic canonical form of cotangent bundle T ∗M by the metric),

such that for every ξ, η ∈ TθTM = Hθ ⊕ Vθ we have

ω0(ξ, η) = 〈ξ1, η2〉 − 〈ξ2, η1〉 .

For more information see [31].

Given a smooth closed 2-form Ω in M , we defined the symplectic form ωΩ := ω0 +π∗Ω

in TM that is called the twist symplectic structure. It is not difficult to show that ωΩ is a

9



symplectic form on TM . We call the Hamiltonian flow with respect to the Hamiltonian

energy and ωΩ of magnetic flow with respect to Ω and denote by φt := φΩ
t : TM → TM .

The magnetic field associated with Ω is denote by X := XΩ.

A direct calculation shows that vertical bundle is Lagrangian with respect to the

symplectic form ωΩ. In addition, this bundle presents the twist property with respect to

the magnetic flow, as shown in [29].

Proposition 2.4.1. (Twist property of vertical bundle) Let E be a Lagrangian subspace

of TθTM . The subset given by

{t ∈ R : dθφt(E) ∩ Vφt(θ) 6= {0}}

is discrete.

Let Y := Y (Ω) : TM → TM be the bundle linear map definite as

Ωx(u, v) = 〈Yx(u), v〉x ,

for all u, v ∈ TxM , it is called the Lorentz force. Note that Yx : TxM → TxM is a linear

skew-symmetric map, for all x ∈ M . Also that the map (x, v) 7→ Yx(v) is a (1, 1)-tensor.

We recall some important equations satisfied by the Lorentz force, see [12] and [23].

Lemma 2.4.2. For all u, v, w ∈ TxM , we have that

1. ∇u(Y (v)) = (∇uY )(v) + Y (∇uv)

2. 〈(∇wY )(u), v〉+ 〈u, (∇wY )(v)〉 = 0,

3. 〈(∇wY )(u), v〉+ 〈(∇vY )(w), u〉+ 〈(∇uY )(v), w〉 = 0.

Now we will deduce the previous equation. Denote ωΩ by simply ω

dθH(ξ) = ωθ(X(θ), ξ)

= (ω0)θ(X(θ), ξ) + (π∗Ω)(X(θ), ξ)

= (ω0)θ(X(θ), ξ) + Ωx(dθπ(X(θ)), dθπ(ξ))

= (ω0)θ(X(θ), ξ) + 〈Yx(dθπ(X(θ)), dθπ(ξ)〉x

10



holds for every ξ ∈ TθTM and if we write ξ = (ξ1, ξ2) and X = (X1, X2), so

〈ξ2, v〉x = 〈X1(θ), ξ2〉x − 〈X2(θ), ξ1〉x + 〈Yx(X1(θ)), ξ1〉x ,

therefore

X(θ) = (v, Yx(v)) ∈ H(θ)⊕ V (θ),

for every θ = (x, v) ∈ TM .

Note that if c > 0 then the vector field X has no singularities in T cM . To simplify

the notation, we still denote by φt the restriction of the magnetic flow to the energy level

T cM.

It is easily seen from this equation that a curve is an integral curve of X if and only

if it is of the form t 7→ (γ(t), γ′(t)) ∈ TM and satisfies the equation

D

dt
γ′ = Yγ(γ

′), (2.3)

that is equivalence to 2.2. when we have no Lorentz force or Ω ≡ 0, we obtain the geodesic

equation 2.1. A curve that satisfies 2.3 is called the Ω-magnetic geodesic.

Now we are going to deduce the Jacobi equation magnetic. Let θ ∈ TM , ξ ∈ TθTM

and the curve Z : (−ε, ε) → TM adapted to ξ and consider the variation f(s, t) =

π(φt(Z(s))). Set Jξ(t) :=
∂f

∂s
(0, t), γs(t) := f(s, t) and γ0 = γ, where γ is a Ω-magnetic

geodesic of θ and denote θt = φt(θ) = (γ(t), γ̇(t)). From the well know identity:

D

ds

D

dt

∂f

∂s
=
D

dt

D

dt

∂f

∂s
+R

(
∂f

∂t
,
∂f

∂s

)
∂f

∂t
,

and

∇γ′sγ
′
s = Yγs(γ

′
s),

we obtain
D2

dt2
Jξ +R(γ′, Jξ)γ

′ =
D

ds

∣∣∣∣∣
s=0

(Yγs(γ
′
s)) .

Note that the map (x, v) 7→ Yx(v) is a (1,1)-tensor. Thus using the covariant derivative

∇ on (1,1)-tensor induced by the Riemannian connection we obtain

D

ds
Y (γ′s) = (∇JξY )(γ′s) + Y (J ′ξ),
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and we deduce the Jacobi equation

D2

dt2
Jξ +R(γ′, Jξ)γ

′ − (∇JξY )(γ′)− Y
(
D

dt
Jξ

)
= 0.

Lemma 2.4.3. If ξ ∈ TθTM , then dθφt(ξ) =
(
Jξ(t),

D
dt
Jξ(t)

)
in Hθt ⊕ Vθt

Proof. Consider as before f(s, t) = π ◦ φt ◦ Z(s), then

∂f

∂s
(s, t) = dπ(φt ◦ Z(s)) · dφt(Z(s)) · Z ′(s)

Now we take s = 0, thus Jξ(t) = dθtπ · dθφt(ξ). Remember that φt(Z(s)) = (γs(t), γ
′
s(t)),

then Kθt(dθφt(ξ)) = ∇γ′s(t)γ
′
s(t)
∣∣∣
s=0

, but

∂2f

∂t∂s
(s, t) =

∂

∂s

(
∂f

∂t
(s, t)

)
=

∂

∂s
(π ◦X ◦ φt ◦ Z(s))

=
∂

∂s
(π ◦X(γs(t), γ

′
s(t))) =

∂

∂s
(γ′s(t))

For s = 0, we have that D
dt
Jξ(t) =

∂

∂s
(γ′s(t))

∣∣∣
s=0

= Kθt(dθφt(ξ))

Note that if ξ ∈ TθT cM , then dθφt(ξ) ∈ TθT cM for all t ∈ R. Thus, we have that

0 = dθtH(dθφt(ξ)) = dθtH

(
Jξ(t),

D

dt
Jξ(t)

)
= ω

(
X(φt(θ)),

(
Jξ(t),

D

dt
Jξ(t)

))
=

〈
γ′(t),

D

dt
Jξ(t)

〉
− 〈Y (γ′(t)), Jξ(t)〉+ Ω(γ′(t), Jξ) =

〈
γ′(t),

D

dt
Jξ(t)

〉
So 〈

D

dt
Jξ, γ

′
〉

= 0

Definition 2.4.4. We say that J is a Jacobi field under Ω along γ if hold

D2

dt2
J +R(γ′, J)γ′ − (∇JY )(γ′)− Y

(
D

dt
J

)
= 0. (2.4)

and 〈
D

dt
J, γ′

〉
= 0 (2.5)

Note that from equation 2.4 we can see that〈
D

dt
J, γ′

〉′
=

〈
D2

dt2
J, γ′

〉
+

〈
D

dt
J, Y (γ′)

〉
=

〈
−R(γ′, J)γ′ + (∇JY )(γ′) + Y

(
D

dt
J

)
, γ′
〉
−
〈
Y

(
D

dt
J

)
, γ′)

〉
= 〈(∇JY )(γ′), γ′〉

= 0.

12



Therefore, it is enough to check condition 2.5 at a point.

Let Ω
2
(M) be the set of all smooth closed 2-form on M endowed with the Cr-topology.

Let H2(M,R) the cohomology class and denote by i(M, g) injectivity radius of (M, g).

For Ω a smooth closed 2-form in M , since for x ∈M , Ωx : TxM × TxM → R is a bilinear

map

‖Ωx‖ := sup{|Ωx(u, v)| : u, v ∈ TxM with ‖u‖ = ‖v‖ = 1},

then |Ωx(u, v)| ≤ ‖Ωx‖‖u‖‖v‖ and ‖Ω‖C0 := supx∈M ‖Ωx‖.

Lemma 2.4.5. Given c > 0 and Ω ∈ Ω
2
(M), let K = K(c,Ω) ∈ R be defined as

K = min{1/(‖Ω‖C0 + 1)2, i(M, g)/2c}. Then π ◦ φΩ
t (θ) : [0, K) → M is injective, for

every θ ∈ T cM .

The proof of this Lemma is equal to the Lemma 2.1 of [26]. The K(c,Ω) will be called

the magnetic injectivity radius.

2.5 Examples

In this section, we want to illustrate some examples of magnetic flows.

Example 2.5.1. In fact, every geodesic flow is a magnetic flow, considering Ω = 0, since

we have that the Lorentz force disappears, Y = 0. Thus any 0-magnetic geodetic curve is

a geodesic curve in M .

Example 2.5.2. Now we consider, Ω be a smooth exact 2-form in M , this is, there exist

a η smooth 1-form in M such that Ω = dη. In this case the magnetic flows is called exact

magnetic flows. We can define a Lagrangian as Lη : TM → R, where

Lη(x, v) = H(x, v)− ηx(v)

The corresponding Euler-Lagrangian equation is

D

dt
〈γ′(t), ·〉 = dηx(γ

′(t)) =
〈
Y η
γ(t)(γ

′(t)), ·
〉
,

then
D

dt
γ′(t) = Y η

γ(t)γ
′(t).

13



Example 2.5.3. Let n = 1, this is, M be a surface. This case Ω
2
(M) = Ω2(M) is a

C∞(M)-linear space with dimension 1. Thus, if Ω denote a area form of M , we have

that Ω2(M) = {fΩ : f ∈ C∞(M)}. For each c > 0 and f ∈ C∞(M) we can define

φft : T cM → T cM the magnetic flow. For the area form, the Lorentz force is denote by

i : TM → TM be a linear bundle as, for each x ∈ M and v ∈ TxM , we have that iv is

the angle of rotation +π/2, hence {v, iv} is a positive oriented orthogonal basis for TxM .

For f ∈ C∞(M) the Lorentz force is Y = fi, this is, for each x ∈ M and v ∈ TxM , we

have that Yx(v) = f(x)iv.

Let γ : R→M be a f -magnetic geodesic, this is, the curve γ that satisfies

∇γ′γ
′ = f(γ)iγ′.

As {γ′, iγ′} is a positive oriented orthogonal basis for TγM . Denote J = xγ′ + yiγ′ the

Jacobi field under f along γ and consider c = 1/2, by 2.4 and 2.5 we have that x′ − fy = 0,

y′′ + (K + f 2 −∇iγ′f) y = 0,

where K is the sectional curvature along γ. Take f = −K = 1, As equations above are x′ = y,

y′′ = 0,

the solutions have the form x(t) = 1/2at2 + bt + c and y(t) = at + b. In this conditions

(γ, γ′) has no conjugate points.

There are many more examples of magnetic flows that come from physics. The inter-

ested reader can see [44], for more examples.

2.6 Geometric control theory

In this section we state the result of [20] and [21]. This is referent at Geometric Control

Theory that we will use for obtain our results. This method was created in [21] but here

state a better version.
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The first version of this type of result appeared in [38], called first order controllability

theorem and was used to extend [30], that is, the Kupka-Smale’s theorem in the context of

Hamilton-Tonelli flows in manifolds of any dimension. Therefore, in [21] we find another

version this result, more elaborate, called second order controllability theorem”, it was

used to obtain the Franks’ lemma for geodetic flows, improving the Franks’ lemma in

[8]. Our case, these techniques of geometric control theory, in particular the second order

controllability theorem, are very important because it will be used to obtain the Kupka-

Smale’s theorem and the Franks’ lemma for magnetic flows in any dimension.

Let us a consider a bilinear control system on M2n(R) (with n, k ≥ 1), of the form

W ′(t) = A(t)W (t) +
k∑
i=1

ui(t)BiW (t) for a.e. t, (2.6)

where the state W (t) ∈M2n (R), the control u(t) ∈ Rk, t ∈ [0, T ] 7→ A(t) ∈M2n(R) (with

T > 0) is a smooth maps, and B1, . . . , Bk ∈M2n(R).

Given W ∈M2n(R) and u ∈ L2
(
[0, T ] ;Rk

)
, the Cauchy problem

W ′(t) = A(t)W (t) +
k∑
i=1

ui(t)BiW (t) for a.e. t ∈ [0, T ],

W (0) = W,

there exists a unique solution WW,u(·). The End-Point mapping associated with W in

time T > 0 is defined as

EW,T : L2([0, T ];Rk) −→ M2n(R)

u 7−→ WW,u(T ).

It is a smooth mapping whose differential can be expressed in terms of the linearized

control systems. Give W ∈ M2n(R) the differential of EW,T at u ≡ 0 is given by the

linear operator

D0E
W,T : L2([0, T ];Rk) −→ M2n(R)

v 7−→ X(T ),

where X(·) is the unique solution to the Cauchy problem
X ′(t) = A(t)X(t) +

k∑
i=1

vi(t)BiW (t), for a.e. t ∈ [0, T ],

X(0) = 0,
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where W (·) := WW,0(·). Note that if we denote by S(·) the solution to the Cauchy

problem, that is the solution of the homogeneous equations associated to 2.6 S ′(t) = A(t)S(t) for every t ∈ [0, T ],

S(0) = I2n,

and that the following is the constant variation formula.

D0E
W,T · v =

k∑
i=1

S(T )

∫ T

0

vi(t)S(t)−1BiW (t)dt,

for every v ∈ L2([0, T ];Rk). Let Sp(n) be the symplectic group in M2n(R), that is the

smooth submanifold of matrices W ∈M2n(R) satisfying

W ∗JW = J where J =

 0 In

−In 0

 .

Sp(n) has dimension p := n(2n + 1). Denote by S(2n) the set of 2n × 2n symmetric

matrices in M2n(R). The tangent spaces to Sp(n) at the identity matrix is given by

sp(n) := TI2nSp(n) = {X ∈M2n(R) : JX ∈ S(2n)}.

Therefore, if there holds

A(t), B1, . . . , Bk ∈ sp(n) for all t ∈ [0, T ], (2.7)

then Sp(n) is invariant with respect to (2.6), that is for every W ∈ Sp(n) and u ∈

L2([0, T ];Rk),

WW,u(t) ∈ Sp(n) for all t ∈ [0, T ].

In particular, this means that for every W ∈ Sp(n), the End-Point mapping EW,T is

valued in Sp(n). Given W ∈ Sp(n), we are interested in local controllability properties

of (2.6) around 0. More precisely, we have the following result of [21].

Proposition 2.6.1. Let T > 0, and for every θ in some set of parameters Θ let t ∈

[0, T ]→ Aθ(t) be a smooth mapping and Bθ
1 , . . . , B

θ
k ∈M2n(R) satisfying (2.7) such that

Bθ
iB

θ
j = 0 for every i, j = 1, . . . , k. (2.8)
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Define for every θ ∈ Θ the k sequences of smooth mapping {Bθ,j
1 }, . . . , {B

θ,j
k } : [0, T ] →

sp(n) as  Bθ,0
i = Bθ

i

Bθ,j
i (t) = Ḃθ,j−1

i (t) +
[
Bθ,j−1
i , A

]
(t),

(2.9)

for every t ∈ [0, T ] and every i = 1, . . . , k and assume that the following properties are

satisfied for every θ ∈ Θ:[
Bθ,j
i (0), Bθ

i

]
∈ Span

{
Bθ,s
r (0) : r = 1, . . . , k, s ≥ 0

}
, (2.10)

for every i = 1, . . . , n, j = 1, 2 and

Span
{
Bθ,j
i (0),

[
Bθ,1
i (0), Bθ,1

l (0)
]

: i, l = 1, . . . , k and j = 0, 1, 2
}

= sp(n). (2.11)

Assume moreover, that the sets

{Bθ
i : i = 1, . . . , k, θ ∈ Θ} ⊂M2n(R)

and

{t ∈ [0, T ] 7→ Aθ(t) : θ ∈ Θ} ⊂ C2([0, T ];M2n(R))

are compact. Then, there are µ,K > 0 such that for every θ ∈ Θ, every W ∈ Sp(n) and

every W ∈ B(W
θ
(T ), µ) ∩ Sp(n) (W

θ
(T ) denotes the solution at time T of the control

system (2.6) with parameter θ starting from W ), there is u ∈ C∞([0, T ];Rk) with support

in [0, T ] satisfying

EW,T
θ (u) = W and ‖u‖C2 ≤ K|X −W (T )|1/2

(EW,T
θ denotes the End-Point mapping associated with the control system (2.6) with pa-

rameter θ).

Let us briefly explain this result from where it comes from and give some important

observations. The problem is to find conditions such that the End-Point mapping is

locally open at u = 0. The first version from result appeared in [38], which is called first-

order controllability theorem and concludes that the End-Point mapping is a submersion

in u = 0. Then in [21] is found the second version from result called the second-order

controllability theorem, where neighborhood sizes are estimated such that the End-Point

mapping is locally open at u = 0. Finally, in this same paper is the parametric version of

the second order controllability theorem, which is the theorem 2.6.1.
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Observation 2.6.2. We give some remarks on the conclusion of the theorem 2.6.1

1. This parametric version follow of second-order controllability theorem and the fact

that smooth controls with support in (0, T ) are dense in L2([0, T ];Rk) and compact-

ness.

2. The constant µ > 0 exist due the Inverse Function Theorem applied to the orthogonal

projection M2n(R) ↪→ TXSp(n) restricted to Sp(n), thus this constant is uniform.

3. The constant K > 0 exist due the theorem 4.2.6 in [20], where given conditions to

F : U → RN be a locally open map at u, here U is an open set in a Banach space

and F is of class C2.

4. In fact, µ > 0 and K > 0 are independents.

2.7 Dynamics and Entropy

In this section, we introduce some important fact above of Dynamics Systems and Ergodic

Theory, that we use in our results. For this sections we refer the reader to see [13].

Let c > 0 and Ω be a smooth closed 2-form on M . Consider the magnetic flow φΩ
t

in T cM and θ = (x, v) ∈ T cM such that θt = φΩ
t (θ) = (γ(t), γ′(t)) is a closed orbit in

T cM with period Tθ > 0, where γ is a closed Ω-magnetic geodesic in M . We can define

the Poicaré map P := P (Ω, θ,Σ) as following: one can choose a local hypersurface Σ in

T cM through θ and transversal to θt such that there are open neighborhoods Σ0 and ΣTθ

of θ in Σ and a differentiable mapping ς : Σ0 → R with ς(θ) = Tθ such that the map

P : Σ0 → ΣTθ given by ϑ 7→ φΩ
ς(ϑ)(ϑ), is a diffeomorphism.

Definition 2.7.1. We say that θt is

1. degenerate if its linearized Poincaré map dθP has an eigenvalue which is a root unity.

2. hyperbolic if its linearized Poincaré map dθP has not eigenvalue of modulus 1.

3. elliptic if it is non degenerate and non hyperbolic.
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4. c-elliptic, for c > 0, if it is elliptic and the linearized Poincaré map dθP has precisely

2c eigenvalues of modulus 1.

Let θt and ϑt be two hyperbolic closed orbits of φΩ
t in T cM . We say that a orbit σt is

a heteroclinic orbit from θ[0,Tθ] to ϑ[0,Tϑ] if

lim
t→−∞

d
(
θ[0,Tθ], σt

)
= 0 and lim

t→+∞
d
(
ϑ[0,Tϑ], σt

)
= 0.

We say that the orbit σt is homoclinic if exists s ∈ [0, Tθ], such that θs = ϑ.

Definition 2.7.2. Let θt be a hyperbolic closed orbit of φΩ
t in T cM . The weak stable and

weak unstable manifolds of θ[0,Tθ] are

W s
(
θ[0,Tθ]

)
:=

{
ϑ ∈ T cM : lim

t→+∞
d
(
θ[0,Tθ], ϑt

)
= 0

}
,

and

W u
(
θ[0,Tθ]

)
:=

{
ϑ ∈ T cM : lim

t→−∞
d
(
θ[0,Tθ], ϑt

)
= 0

}
,

respectively. These are (n+ 1)-dimensional invariant immersed submanifolds of T cM .

Another important concept in dynamic systems is the hyperbolic set that generalizes

the concept of hyperbolic periodic orbit.

These sets are very important for the study of dynamical systems, in particular, it

helps us to study the chaotic behavior of the systems, which is concentrated in the set of

periodic orbits. There are many results for general systems, but in the case of magnetic

flows we have for example that the sets W s
(
θ[0,Tθ]

)
and W u

(
θ[0,Tθ]

)
are n+ 1-dimensional

invariant immersed submanifolds of T cM . Then a heteroclinic orbit σt is an orbit in the

intersection W s
(
θ[0,Tθ]

)
∩W u

(
ϑ[0,Tϑ]

)
. We say that the heteroclinic orbit σt is transverse

if W s
(
θ[0,Tθ]

)
and W u

(
ϑ[0,Tϑ]

)
are transversal at σ[0,Tσ ].

Definition 2.7.3. A hyperbolic set is a compact φΩ
t -invariant (i.e. φΩ

t (Λ) = Λ for all

t ∈ R) subset Λ ⊂ T cM such that the restriction the tangent bundle of T cM to Λ has a

splitting

TΛT
cM = Es ⊕

〈
XΩ
〉
⊕ Eu,

where
〈
XΩ
〉

is the subspace generated by the vector field XΩ of φΩ
t , Es and Eu are dφΩ

t

invariant subbundles and there are constant C, λ > 0 such that
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1.
∣∣dφΩ

t (ξ)
∣∣ ≤ Ce−λt|ξ| for all t > 0, ξ ∈ Es,

2.
∣∣dφΩ

−t(ξ)
∣∣ ≤ Ce−λt|ξ| for all t > 0, ξ ∈ Eu

A classic example of a hyperbolic set is the so-called Smale Horseshoe

Other definitions that we will use are the following. Let Λ ⊂ T cM be a compact

subset and φΩ
t -invariant. We say that Λ is a locally maximal invariant set if there exist a

neighborhood U of Λ in T cM such that

Λ =
⋂
t∈R

φΩ
t (U).

We say that Λ is a nontrivial hyperbolic basic set if is a locally maximal compact invariant

subset which is hyperbolic and it has a dense orbit and which is not a single closed orbit

The simplest invariant which measures the complexity of magnetic flow φΩ
t in T cM is

its topological entropy which we denote by htop(Ω, c). The topological entropy measures

the difficulty in predicting the position of an orbit given an approximation of its initial

state. Given θ ∈ T cM and T, δ > 0, define the (δ, T )-dynamic ball about θ as

B (θ, δ, T ) := {ϑ ∈ T cM : d(θt, ϑt) < δ, for all t ∈ [0, T ]} ,

Let Nδ(T ) be the minimal quantity of (δ, T )-dynamic balls needed to cover T cM . The

topological entropy is the limit on δ of the exponential growth rate of Nδ(T ) as:

htop(Ω, c) := lim
t→+∞

δ → 0 lim sup
T→+∞

1

T
logNδ(T ). (2.12)

Thus, if htop(Ω, c) > 0, some dynamic balls must contract exponentially at least in one

direction.

A way of obtaining positive topological entropy is by showing that the flow has a

nontrivial hyperbolic basic set. Using symbolic dynamics one shows that if a flow contains

a nontrivial hyperbolic basic set then it has positive topological entropy. It also has

infinitely many periodic orbits and their number grows exponentially with their period,

namely

htop(Ω, c) ≥ htop(φ
Ω
t |Λ) = lim

T→+∞

1

T
log n(T ) > 0,

where n(T ) is the number of periodic orbits in Λ with period T .
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In this last part we will assume the discrete dynamics of a Cr-diffeomorphism f :

M →M and let p be a hyperbolic point in M . The following result affirms the existence

of horseshoes Smale type.

Proposition 2.7.4. (Theorem 6.5.5 in [13]) If q is a transverse homoclinic point of p,

then in an arbitrarily small neighborhood of p there exists a horseshoe for some iterate of

f . Furthermore the hyperbolic invariant set in this horseshoe contains an iterate of q.

A consequence of perturbation theory is that the property of having a horseshoe is

open. Let Λ be a hyperbolic subset in M of f . The following states the continuous

variation of stable and unstable sets hyperbolic spaces.

Proposition 2.7.5. (Proposition 6.4.4 in [13]) The dimensions of subspaces Es
x and Eu

x

are locally constant and those subspaces change continuously with x in Λ.
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Chapter 3

The Main Perturbative Lemma

In this chapter we are going to present one of the most important parts, for the rest of

work, which is the next one. Given a segment of Ω-magnetic geodetic γ, we are going to

construct a magnetic tubular neighborhood around it, that satisfies the classical properties,

as in the case of geodesic flows. The most difficult part to do this is to construct a suitable

base of the tangent bundle in the segment γ that depends on Ω, and once we can obtain

one of the most important properties for our objectives, is that the matrix Ω-magnetic

curvature in γ well a symmetric matrix. The difficulty is due to the Lorentz Force, since

that this is an skew-symmetric linear map in the fibers.

The tubular neighborhood is going to help us get the famous Perturbative Lemma that

is the key to all the work. To achieve this result we need to define the so-called set of

perturbations Ω̃ of Ω, such that these are supported in the tubular neighborhood of γ and

preserve γ. Thus, we can define an application as follows, for each perturbation, consider

its linear part of Poincaré map. The perturbative lemma states that this application is

an open map on the symplectic matrix.

A direct consequence of this perturbative lemma is the version of Franks’ Lemma for

this context of magnetic flows. But we show this result in a future chapter. We will use

the notations of first chapter and also the results presented.
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3.1 Special coordinates and Magnetic curvature

In this section we define the special coordinates type Fermi coordinates, we obtain a

coordinate system of a piece of magnetic geodesic where we present the magnetic curvature

matrix. We will use some methods of Gouda [12].

Let c > 0 and Ω be a smooth closed 2-form on M . Consider the magnetic flow φΩ
t

in T cM and θ = (x, v) ∈ T cM such that θt = φΩ
t (θ) = (γ(t), γ′(t)) is a orbit segment in

T cM with t ∈ [0, τ ] and 0 < τ < K(c,Ω), where γ is a segment of a Ω-magnetic geodesic

in M and remember that K(c,Ω) is the magnetic injectivity radius.

Let Σ ⊂ T cM be a local transversal section to XΩ in the energy level T cM at the

point θ. The linearized Poincaré map is a linear symplectic mapping. Let δΩ ∈ Ω
2
(M)

such that (δΩ)γ(t) = 0 for every t ∈ [0, τ ], then φΩ+δΩ
t preserves the orbit segment θt and

its energy level. If δΩ is small enough in a neighborhood of γ([0, τ ]), the Poincaré map

P(Ω + δΩ) := P (Ω + δΩ, θ,Σ) : Σ0 → Στ associated to the magnetic flow of Ω + δΩ in

T cM and its differential dθP(Ω + δΩ) : TθΣ0 → TθτΣτ are well-defined. Our aim is to

show that the set of dθP (Ω + δΩ) for δΩ as above small enough contains as open subset

of the set of linear symplectic matrices from TθΣ onto TθτΣτ .

Let v1 := v/
√

2c and let us choose v2, . . . , vm ∈ TxM such that v1, v2, . . . , vm is an

orthonormal basis in TxM . We define a vector field Vi along γ as a solution of the

differential equation  V ′i (t) = Yγ(t)(Vi(t)),

Vi(0) = vi.

In particular V1 = γ′/
√

2c. Note that

〈Vi, Vj〉′ = 〈V ′i , Vj〉+
〈
Vi, V

′
j

〉
= 〈Y (Vi), Vj〉+ 〈Vi, Y (Vj)〉

= 〈Y (Vi), Vj〉 − 〈Y (Vi), Vj〉

= 0.

Thus V1, · · · , Vm are orthonormal vector fields along γ (type Fermi coordinates).

We know that Yx : TxM → TxM is an m × m skew-symmetric linear mapping for
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each x ∈ M . Let x ∈ M and fix v ∈ TxM , v 6= 0, we can define Prθ : TxM → v⊥

the map natural projection, where v⊥ = {u ∈ TxM : 〈u, v〉x = 0}, is easy see that

〈Prθ(u), w〉 = 〈Prθ(u), P rθ(w)〉, for all u,w ∈ TxM , since if w ∈ TxM , we can write

w = Prθ(w) + (w− Prθ(w)) ∈ v⊥ ⊕ 〈v〉, then 〈Prθ(u), w − Prθ(w)〉 = 0. Thus we obtain

that (Prθ)
∗ = Prθ.

We define also (Y⊥)x : TxM → TxM as (Y⊥)x = PrθYxPrθ, is clear that

1. (Y⊥)x(v) = 0, because Prθ(v) = 0,

2. (Y⊥)x(v
⊥) ⊂ v⊥, because if u ∈ v⊥, (Y⊥)x(u) = PrθY (u) ∈ v⊥,

3. (Y⊥)∗x = −(Y⊥)x, because Y ∗ = −Y .

Remember that 0 < τ < K(c,Ω), now we define for each t ∈ [0, τ ], the follow linear

map Pt : Tγ(t)M → Tγ(t)M as

Pt = exp

(
1

2

∫ t

0

(Y⊥)γ(s)ds

)
,

it is clear that this map is a linear isomorphism and we have of 3. that P−1
t = P ∗t i.e.

the map Pt is an orthogonal linear map, so it takes an orthogonal base on an orthogonal

basis. Thus we have that

e1(t) := P−1
t V1(t), . . . , em(t) := P−1

t Vm(t) (3.1)

is an orthonormal basis of Tγ(t)M .

Consider the differentiable map Φ : [0, τ ]× Rn →M given by

Φ(x1, x2, . . . , xm) = expγ(x1)

(
m∑
i=2

xiei(x1)

)
,

where expx : TxM →M denotes the Riemannian exponential map. This map has maximal

rank at (x1, 0, . . . , 0), x1 ∈ [0, τ ]. Since γ(t) has no self-intersections on t ∈ [0, τ ], there

exists a neighborhood V of [0, τ ]×{0}. Then ψ := Φ−1|V is a diffeomorphism, if U := Φ(V )

then (U, ψ) is a local coordinate chart where γ(t) = (t, 0), gij(t, 0) = δij and the Christoffel

symbols are Γkij(t, 0) = 0, since the first partial derivatives of gij vanish at (t, 0).
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Let

Y ij(t) :=
〈
Vi(t), Yγ(t)(Vj(t))

〉
γ(t)

and Yij(t) :=
〈
ei(t), Yγ(t)(ej(t))

〉
γ((t))

,

denote Y (t) =
(
Y ij(t)

)
and Y (t) = (Yij(t)) are the matrices representations of Yγ(t) at

coordinates Vi(t) and ei(t) respectively. Thus we have that

Y (t) = P−1
t Y (t)Pt. (3.2)

In these coordinates note that e1(t) = V1(t) = γ′(t)/
√

2c, since
(
Y ⊥
)
γ(t)

has zeros in

the first column and first row. Moreover note that

P ′t =
1

2
Pt(Y⊥)γ(t).

We are now going to consider an arbitrary Jacobi field written in these coordinates in

order to obtain the matrix of magnetic curvature, the idea is to do the same work done

for the geodetic flow. Remember the definition of Jacobi field in 2.4 and 2.5

At these coordinates, the covariant derivative and the common derivative coincide. In

order not to overload the notation, we will avoid typing time t.

Let J be a Jacobi field under Ω along γ arbitrary. Let J expressed as J =
m∑
j=1

fjej

where each fj is a smooth function along γ. Then

J ′ =
m∑
j=1

(
f ′jej + fje

′
j

)
,

thus we have that

J ′′ =
m∑
j=1

(
f ′′j ej + 2f ′je

′
j + fje

′′
j

)
, (3.3)

but e′1 = V ′1 = Y (V1) = Y (e1) and for j = 2, . . .m we have of 3.1 and 3.2 that

e′j = (P−1)′Vj + P−1V ′j

= P−1Y (Vj)−
1

2
P−1Y ⊥Vj

= P−1Y P (ej)−
1

2
P−1Y ⊥P (ej)

= Y (ej)−
1

2
Y⊥(ej),
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observe that, since Y⊥(e1) = 0 then

e′j = Y (ej)−
1

2
Y⊥(ej) (3.4)

for all j = 1, 2, . . . ,m. Also have that for all j = 1, 2, . . . ,m

e′′j = ∇γ̇(Y (ej))−
1

2
(Y⊥(ej))

′

= (∇γ̇Y )(ej) + Y (e′j)−
1

2
Y ′⊥(ej)−

1

2
Y⊥(e′j),

thus we have that

e′′j = (∇γ̇Y )(ej) + Y (e′j)−
1

2
Y ′⊥(ej)−

1

2
Y⊥Y (ej) +

1

4
Y 2
⊥(ej). (3.5)

Since J is a Jacobi field, this satisfies a equation (2.4), moreover apply (3.5) and (3.4)

in (3.3) we have that

J ′′ +
m∑
j=1

(
fjR(γ′, ej)γ

′ − fj(∇ejY )(γ′)− f ′jY (ej)− fjY (e′j)
)

= 0,

m∑
j=1

{
f ′′j ej + f ′j(Y − Y⊥)(ej) + fj [R(γ′, ej)γ

′+

(∇γ′Y )(ej)− (∇ejY )(γ′)− 1

2
Y ′⊥(ej)−

1

2
Y⊥Y (ej) +

1

4
Y 2
⊥(ej)

]}
= 0,

denote by

Rij := 〈R(γ′, ei)γ
′, ej〉 = 〈R(γ′, ej)γ

′, ei〉 = 〈ei, R(γ′, ej)γ
′〉 ,

(Y ′)ij := 〈ei, Y ′(ej)〉 = 〈ei, (∇γ′Y )(ej)〉 ,

(∂Y )ij :=
√

2c(∇ejY )i1 =
√

2c
〈
ei, (∇ejY )(e1)

〉
=
〈
ei, (∇ejY )(γ′)

〉
,

(Y ′⊥)ij := 〈ei, Y ′⊥(ej)〉 ,

(Y⊥Y )ij := 〈ei, Y⊥Y (ej)〉 ,

(Y 2
⊥)ij :=

〈
ei, Y

2
⊥(ej)

〉
.

Note que (Y⊥Y )ij = (Y Y⊥)ij for all i, j = 2, . . . ,m, moreover (Y⊥Y )1j = 0 for all j =

1, 2, . . . ,m and (Y Y⊥)∗ = Y⊥Y . Thus we have that, if f = (f1, f2, . . . , fm), then

f ′′ + (Y − Y⊥)f ′ + (R + Y ′ − ∂Y − 1

2
Y ′⊥ −

1

2
Y⊥Y +

1

4
Y 2
⊥)f = 0. (3.6)
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The first line of the equation (3.6) is written as

f ′′1 +
m∑
j=1

(
Y1jf

′
j + Y ′1jfj

)
= 0,

(
f ′1 +

m∑
j=2

Y1jfj

)′
= 0.

Since Y11 = 0 and the (2.5) have that 〈J ′, γ̇〉 = 0 then

f ′1 = −
m∑
j=2

Y1jfj. (3.7)

For i 6= 1 and of (3.7) in (3.6) we have that

f ′′i + Yi1f
′
1 +

m∑
j=2

(
Rij + Y ′ij − (∂Y )ij −

1

2
(Y ′⊥)ij

−1

2
(Y⊥Y )ij +

1

4
(Y 2
⊥)ij

)
fj = 0,

f ′′i +
m∑
j=2

(Rij +
1

2
Y ′ij − (∂Y )ij −

1

4
(Y 2)ij − Yi1Y1j)fj = 0,

since Yij = (Y⊥)ij for all i, j = 2, 3, . . . ,m, and if we denote Ỹij := Yi1Y1j, then the new

equation is

f ′′ +

(
R +

1

2
Y ′ − ∂Y − 1

4
Y 2 − Ỹ

)
f = 0. (3.8)

Note here, that the matrices are of order n×n, also that R, Y 2 and Ỹ are n×n symmetric

matrices. We show that ∂Y − 1
2
Y ′ is also a n× n symmetric matrix, for i, j = 2, 3, . . . ,m

we have that (
1

2
Y ′ − ∂Y

)
ij

=
1

2
〈ei, Y ′(ej)〉 −

〈
ei, (∇ejY )(γ′)

〉
,

then we have that (
1

2
Y ′ − ∂Y

)
ij

−
(

1

2
Y ′ − ∂Y

)
ji

=

= 〈(∇γ′Y ) (ej), ei〉+
〈(
∇ejY

)
(ei), γ

′〉+ 〈(∇eiY )(γ′), ej〉 = 0,

since Ω is closed (dΩ = 0).
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On the other hand, as Yij = 〈ei, Y (ej)〉 = −Ω(ei, ej) and Y = −Ω seen as matrix. So

we define the matrix magnetic curvature of Ω as

KΩ(t) := Rγ(t) + ∂Ωγ(t) −
1

2
Ω′γ(t) −

1

4
Ω2
γ(t) − Ω̃γ(t), (3.9)

it is a n × n symmetric matrix, where ∂Ω and Ω̃ are similarly defined as the matrix Ω.

Then

f ′′ +KΩf = 0.

We shall study the real (n× n)-matrix differential equation along γ,

X ′′ +KΩX = 0. (3.10)

It is equivalent to  X

X ′

′ =
 0 In×n

−KΩ 0

 X

X ′


Let W =

 X

X ′

, then

W ′(t) =

 0 In×n

−KΩ(t) 0

W (t). (3.11)

Thus, finally we have that

Lemma 3.1.1. Let θ[0,τ ] be a orbit segment of the magnetic flow of Ω without self-

intersection. Exists a local coordinate chart (U, ψ), such that ψ = (x1 = t, x2, . . . , xm),

ψ(x) = 0 and γ(t) = (t, 0, . . . , 0), satisfying (3.11), where the matrix W (t) represents

a basis of Jacobi fields and its derivatives defined in the orbit, and the matrix KΩ(t)

represents the magnetic curvature.

In the case of geodesic flow i.e. Ω ≡ 0, we have the same matrix with KΩ being the

Riemannian curvature matrix which is always a n × n symmetric matrix. In our case

does not run Fermi coordinates so we had to make a rotation of the Fermi’s coordinates

in function of Ω and simultaneously obtain a n × n symmetric matrix. This lemma use

Gouda’s method [12] and generalizes the [26].
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Example 3.1.2. For m = 3 and 2c = 1, we have that

Ω :=


0 α −β

−α 0 σ

β −σ 0

 and R :=


0 0 0

0 a b

0 b c


then, since Ω is closed, we have that ∂1σ + ∂2β + ∂3α = 0. Thus

∂Ω =


0 0 0

∂1α ∂2α ∂3α

−∂1β −∂2β −∂3β


and

Ω̃ =

 α2 −αβ

−αβ β2

 .

Thus the equation (3.8) can be written as

f ′′ +




a b

b c

+


−∂2α ∂2β + 1

2
∂1σ

∂2β + 1
2
∂1σ ∂3β



+


5

4
α2 +

1

4
σ2 −5

4
αβ

−5

4
αβ

5

4
β2 +

1

4
σ2


 f = 0

where f =

 f 2

f 3

 .

3.2 Local perturbations of the magnetic flow

In this section we obtain the Perturbation Theorem, which is the part more important in

this work. We will use the method in [38] but we will have that find the form suitable

of the perturbations of Ω. The most important tool in this section is Geometric Control

Theory, which has already been used in many different aspects and areas, more specifically

to see [19], [20], [21] and [38].
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Suppose that θt be a closed orbit of φΩ
t in T cM of period Tθ > 0. Applying Lemma

3.1.1 to a piece of θt, thus there exists a local coordinate chart (U, ψ). We may assume that

ψ(x) = 0 and dxψ·v = (1, 0..., 0), then θt = φΩ
t (x, v) = (ψ−1(t, 0, . . . 0), (dxψ)−1(1, 0, . . . , 0)) :

[0, τ ]→ T cM , for some 0 < τ < K = K(c,Ω). We need to study generic perturbations of

Ω in the neighborhood U of γ = ψ−1(t, 0, . . . 0).

Let 0 < ε <<
1

2
fix, such that Uε := ψ ([0, τ ]× (−ε, ε)n) ⊂ U . Let a family of smooth

function uij : [0, τ ]→ R such that

Supp(uij) ⊂ (0, τ) for every i ≤ j in 2, . . . ,m.

We have that consider f : [0,+∞)→ [0,+∞) a smooth function bump such that

f ≡


1, in

[
0,

1

2

]

0, in

[
4

5
,+∞

] . (3.12)

Note that f ′(r) = 0 if r ∈ (0, 1/2).Now we define a family of smooth perturbations

fi : M → R with support in Uε by

f1(ψ(x)) =
1√
2c

∑
2≤i<j≤m

uij(x1)xixjf(‖x̂1‖), (3.13)

fi(ψ(x)) = − 1√
2c

∫ x1

0

uii(s)dsxif(‖x̂1‖), (3.14)

for i = 2, . . . ,m, where x = (x1, x2, . . . , xm) and x̂1 = (x2, x3, . . . , xm). Note here that as

x ∈ Uε, we have that ‖x̂1‖ < ε <<
1

2
, so f(‖x̂1‖) = 1 and f ′(‖x̂1‖) = 0, this will be used

in the following calculations. Now consider the 1-form in M define by η :=
m∑
k=1

fkdxk with
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support in Uε. Then taking δΩ := dη with support in Uε, which view as matrix is

(δΩ) =



0
∂f1

∂x2

− ∂f2

∂x1

. . .
∂f1

∂xm
− ∂fm
∂x1

∂f2

∂x1

− ∂f1

∂x2

0 . . .
∂f2

∂xm
− ∂fm
∂x2

...
...

. . .
...

∂fm
∂x1

− ∂f1

∂xm

∂fm
∂x2

− ∂f2

∂xm
. . . 0



.

Now we writing (δΩ)ij in coordinates:

(δΩ)21 =
∂f2

∂x1

− ∂f1

∂x2

= − 1√
2c
u22(x1)x2f(‖x̂1‖)−

1√
2c

(
m∑
l=3

u2l(x1)xlf(‖x̂1‖)

+
∑

3≤k<l≤m

uij(x1)xkxlx2
f ′(‖x̂1‖)
‖x̂1‖

)

= − 1√
2c

m∑
l=2

u2l(x1)xl,

remember that f(‖x̂1‖) = 1 and f ′(‖x̂1‖) = 0. Now for each i = 3, . . . ,m have that

(δΩ)i1 =
∂fi
∂x1

− ∂f1

∂xi

= − 1√
2c
uii(x1)xif(‖x̂1‖)−

∂

∂xi

1√
2c

(
i−1∑
k=2

uki(x1)xkxi

+
m∑

l=i+1

uil(x1)xixl + terms wihtout xi

)
f(‖x̂1‖)

= − 1√
2c
uii(x1)xif(‖x̂1‖)−

1√
2c

(
i−1∑
k=2

uki(x1)xk +
m∑

l=i+1

uil(x1)xl

)
f(‖x̂1‖)

+
1√
2c

∑
2≤k<l≤m

ukl(x1)xkxlxi
f ′(‖x̂1‖)
‖x̂1‖

= − 1√
2c

(
i−1∑
k=2

uki(x1)xk +
m∑
l=i

uil(x1)xl

)
,
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and as for each 2 ≤ i < j ≤ m we have that

∂fi
∂xj

= − 1√
2c

∫ x1

0

uii(s)dsxj
f ′(‖x̂1‖)
‖x̂1‖

= 0,

so we have that (δΩ)ij = 0, all this in Uε, note that (δΩ) is a n×n skew-symmetric matrix

of the follow form

1√
2c



0
m∑
j=2

u2j(x1)xj . . .

m∑
i=2

uim(x1)xi

−
m∑
j=2

u2j(x1)xj 0 . . . 0

...
...

. . .
...

−
m∑
i=2

uim(x1)xi 0 . . . 0



.

Notice that in x = γ(t) = (t, 0), we have that (δΩ) is the matrix zero. Remember the

equation 3.9, we need see (δΩ) without the first column and the first row, i.e. (δΩij)
m
2 ∈

Mn(R) this is the matrix zero in Uε, so (δΩ)2 = 0 in Uε and particularly in γ. We also have

that δ̃Ω = 0 = (δΩ)′ in γ. Finally, we only need to see the form of the matrix ∂(δΩ), for

this remember the definition (∂(δΩ))ij :=
√

2c ∂j(δΩ)i1, thus we have that, for example

(∂(δΩ))2j =
√

2c ∂j(δΩ)21 =
√

2c ∂j

(
− 1√

2c

m∑
l=2

u2l(x1)xl

)
= −u2j(x1), for j = 2, . . . ,m.

Following this process we have to (∂(δΩ))ij = −uij(x1), for every i, j = 2, . . . ,m. Thus

the matrix ∂(δΩ) in γ(t), have the form, taking x1 = t

−



u22(t) u23(t) . . . u2m(t)

u23(t) u33(t) . . . u3m(t)

...
...

. . .
...

u2m(t) u3m(t) . . . umm(t)


,
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we denote U(t) = −∂(δΩ)γ(t) which is a n × n symmetric n × n-matrix, remember that

m = n+ 1.

Example 3.2.1. For m = 3 and 2c = 1, we have that

f1(x1, x2, x3) = u23(x1)x2x3f(‖x̂1‖),

f2(x1, x2, x3) = −
∫ x1

0

u22(s)dsx2f(‖x̂1‖) and

f3(x1, x2, x3) = −
∫ x1

0

u33(s)dsx3f(‖x̂1‖).

Take η = f1dx1 + f2dx2 + f3dx3, then δΩ = dη =(
∂f1

∂x2

− ∂f2

∂x1

)
dx1dx2 +

(
∂f1

∂x3

− ∂f3

∂x1

)
dx1dx3 +

(
∂f2

∂x3

− ∂f3

∂x2

)
dx2dx3.

In matrix is

(δΩ) =



0
∂f1

∂x2

− ∂f2

∂x1

∂f1

∂x3

− ∂f3

∂x1

∂f2

∂x1

− ∂f1

∂x2

0
∂f2

∂x3

− ∂f3

∂x2

∂f3

∂x1

− ∂f1

∂x3

∂f3

∂x2

− ∂f2

∂x3

0


.

Note that
∂f1

∂x2

− ∂f2

∂x1

= u22(x1)x2 + u23(x1)x3,

∂f1

∂x3

− ∂f3

∂x1

= u23(x1)x2 + u33(x1)x3

and
∂f2

∂x3

− ∂f3

∂x2

= 0, thus we have that the matrix of δΩ in Uε is

0 u22(x1)x2 + u23(x1)x3 u23(x1)x2 + u33(x1)x3

−u22(x1)x2 − u23(x1)x3 0 0

−u23(x1)x2 − u33(x1)x3 0 0


and

U(t) =


u22(t) u23(t)

u23(t) u33(t)


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Remember the equation 3.9, for Ω + δΩ, we have that

KΩ+δΩ(t) = Rγ(t) + ∂(Ω + δΩ)γ(t) −
1

2
(Ω + δΩ)′γ(t) −

1

4
(Ω + δΩ)2

γ(t) − (Ω̃ + δΩ)γ(t)

= Rγ(t) + ∂Ωγ(t) + ∂(δΩ)γ(t) −
1

2
Ω′γ(t) −

1

2
(δΩ)′γ(t) −

1

4
Ω2
γ(t) −

1

2
Ωγ(t)(δΩ)γ(t)

−1

4
(δΩ)2

γ(t) − Ω̃γ(t) − (Ωi1(δΩ)1j)γ(t) − ((δΩ)i1(Ω + δΩ)1j)γ(t)

For the previously seen we have to ∂(δΩ)γ(t) = −U(t), (δΩ)′γ(t) = 0, (δΩ)γ(t) = 0 and also

that (δΩ)i1 = (δΩ)1j = 0 in γ(t), for every t ∈ [0, τ ]. So we have that

KΩ+δΩ = Rγ(t) + ∂Ωγ(t) −
1

2
Ω′γ(t) −

1

4
Ω2
γ(t) − Ω̃γ(t) − U(t),

thus we have that

KΩ+δΩ(t) = KΩ(t)− U(t), (3.15)

and the cohomology class [δΩ] = 0 this is [Ω] = [Ω + δΩ] in H2(M,R). Since (δΩ)γ(t) = 0,

for every t ∈ [0, τ ], then the trajectory θt is an orbit of the magnetic flow of Ω + δΩ and

the level energy is preserved. Using lemma 3.1.1, proposition 2.4.3 and by the Jacobi

equation, we have that

dθP(Ω + δΩ)(τ)(J(0), J ′(0)) = (J(τ), J ′(τ)),

where J : [0, τ ]→ Rn is solution to the Jacobi equation and by (3.11) we have that

J ′′(t) +KΩ+δΩ(t)J(t) = 0, for every t ∈ [0, τ ].

In other terms, dθP(Ω + δΩ)(τ) is equal to the n × n symplectic matrix W (τ) given by

the solution W : [0, τ ]→ Sp(n) at time τ of the following Cauchy problem:
W ′(t) = A(t)W (t) +

∑
2≤i≤j≤m

uij(t)BijW (t), for all t ∈ [0, τ ],

W (0) = I2n,

where the 2n× 2n matrices A(t), Bij are defined by

A(t) :=

 0 In

−KΩ(t) 0

 (3.16)
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for every t ∈ [0, τ ] and

Bij :=

 0 0

Bij 0

 ,

where all the Bij are n × n-symmetric matrices, such that for all 2 ≤ i ≤ j ≤ m are

defined by

Bij =

 E(i−1)(i−1), if i = j,

E(i−1)(j−1) + E(j−1)(i−1), if i < j,

where {Ekl : 1 ≤ k, l ≤ n = m− 1} is the canonic basic of the set of n×n-matrix, Mn(R).

In fact {Bij : 2 ≤ i ≤ j ≤ m} is the canonic basic of the set of n × n-symmetric matrix

S(n). Thus we have that

U(t) =
∑

2≤i≤j≤m

uij(t)Bij and


0 0

U(t) 0

 =
∑

2≤i≤j≤m

uij(t)Bij.

Example 3.2.2. Suppose that n = 2 and 2c = 1. Remember the equation 3.11 in M2(R):

X ′′(t) +KΩ+δΩ(t)X(t) = 0, this imply that X ′(t) = X ′(t),

X ′′(t) = −KΩ+δΩ(t)X(t).

Taking W (t) =

 X(t)

X ′(t)

, the before equation is equivalent to

W ′(t) =

 0 I2×2

−KΩ+δΩ(t) 0

W,

in M4(R), but KΩ+δΩ(t) = KΩ(t)− U(t), then

W ′(t) =

 0 I2×2

−KΩ(t) 0

W (t) +

 0 0

U(t) 0

W (t),

W ′(t) = A(t)W (t) +

 0 0

U(t) 0

W (t),
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From example 3.2.1, we have that

U(t) = u22(t)

 1 0

0 0

+ u23(t)

 0 1

1 0

+ u33(t)

 0 0

0 1


= u22(t)B22 + u23(t)B23 + u33(t)B33.

This we have that

W ′(t) = A(t)W (t) +

 0 0

u22(t)B22 + u23(t)B23 + u33(t)B33 0

W (t)

W ′(t) = A(t)W (t) + u22(t)

 0 0

B22 0

W (t) + u23(t)

 0 0

B23 0

W (t)

+u33(t)

 0 0

B33 0

W (t)

W ′(t) = A(t)W (t) + u22(t)B22W (t) + u23(t)B23W (t) + u33(t)B33W (t)

W ′(t) = A(t)W (t) +
∑

2≤i≤j≤3

uijBijW (t)

This last equation is the called control system.

Since our control system has the form (2.6), the result in the Section 2.6 is apply. By

compactness of Θ := M and regularity of the magnetic flow, the compactness assumption

in Proposition 2.6.1 are satisfied. It remains to check that assumptions (2.8), (2.10) and

(2.11) are hold. This is the same procedure as in [20] and [21].

First we check immediately that

BijBkl = 0, for every 2 ≤ i ≤ j ≤ m and 2 ≤ k ≤ l ≤ m.

So, assumption (2.8) is satisfied. Since the Bij do not depend on time, we check easily
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that the matrices B0
ij, B

1
ij, B

2
ij associated to our system are given by

B0
ij = Bij,

B1
ij = [Bij, A(t)] ,

B2
ij(t) = [[Bij, A(t)] , A(t)] ,

for every t ∈ [0, τ ] and 2 ≤ i ≤ j ≤ m. An easy computation yields for any 2 ≤ i ≤ j ≤ m

and any t ∈ [0, τ ],

B1
ij = [Bij, A(t)] =


−Bij 0

0 Bij


and

B2
ij(t) = [[Bij, A(t)], A(t)] =


0 −2Bij

−BijKΩ(t)−KΩ(t)Bij 0

 ,

note that B0
ij, B

1
ij are constant. Then we get for any 2 ≤ i ≤ j ≤ m,

[B1
ij(0), Bij] = 2


0 0

(Bij)2 0

 ∈ Span{B0
kl(0) = Bkl : 2 ≤ k ≤ l ≤ m

}
,

and

[B2
ij(0), Bij] = 2


−(Bij)2 0

0 (Bij)2

 ∈ Span{B1
kl(0) : 2 ≤ k ≤ l ≤ m

}
,

because

(Bij)2 =


Bii, if i = j

Bii + Bjj, if i < j

.

So assumption (2.10) is satisfied. It remains to show that (2.11) holds. We first notice
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that for any 2 ≤ i ≤ j ≤ m and 2 ≤ k ≤ l ≤ m, we have

[B1
ij(0), B1

kl(0)] = [[Bij, A(0)], [Bkl, A(0)]]

=


[Bij,Bkl] 0

0 [Bij,Bkl]

 ,

with

[Bij,Bkl] = δilCjk + δjkCil + δikCjl + δjlCik, (3.17)

where Cij is the n× n skew-symmetric matrix defined by

Cij =

 E(i−1)(j−1) − E(j−1)(i−1), if i < j,

0, if i = j.

We define

A := Span
{
B0
ij(0), B1

ij(0), B2
ij(0), [B1

ij(0), B1
kl(0)] : 2 ≤ i, j ≤ k, l ≤ m

}
.

It is sufficient to show that the space A ⊂ M2n(R) satisfies that A ⊂ sp(n) and has

dimension p = n(2n + 1). First since the set matrices Bij with 2 ≤ i ≤ j ≤ m forms a

basis of the vector space of n×n symmetric matrices S(n) we check easily by the formulas

that the vector space

A1 := Span
{
Bij, B

2
ij(0) = [[Bij, A(0)], A(0)] : 2 ≤ i ≤ j ≤ m

}
has dimension n(n+ 1). We check easily that the vector spaces

A2 := Span
{
B1
ij : 2 ≤ i ≤ j ≤ m

}
= Span


 −Bij 0

0 Bij

 : 2 ≤ i ≤ j ≤ m


and

A3 := Span
{

[B1
ij(0), B1

kl(0)] : 2 ≤ i, j ≤ k, l ≤ m
}

= Span


 [Bij,Bkl] 0

0 [Bij,Bkl]

 : 2 ≤ i, j ≤ k, l ≤ m


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are orthogonal to A1 with respect to the scalar product P · Q = tr(P ∗Q). So, we need

to show that A2 + A3 has dimension n2. By the above formulas, we have that A2 and

A3 are orthogonal. The space A2 has the same dimension as S(n), that is n(n + 1)/2.

Moreover, by (3.17) for every 2 ≤ i = k < j < l ≤ m, we have

[Bij,Bkl] = Cjl.

The space spanned by the matrices of the form Cjl 0

0 Cjl

 ,

with 2 ≤ j < l ≤ m has dimension n(n−1)/2. This shows that A3 has dimension at least

n(n− 1)/2 and so A2 ⊕A3 has dimension n2. Thus we have proved the following result.

Let F the set of δΩ = dη where the η ∈ Ω1(M) defined as above i.e. supp(δΩ) ⊂ U and

δΩ = 0 in γ. We can consider the follow map

Sτ,θ : F −→ Sp(n),

δΩ 7−→ dθP(Ω + δΩ)(τ).

Theorem 3.2.3. (Perturbative Theorem) Let c > 0 and Ω ∈ Ω
2
(M) and 0 < τ < K(c,Ω).

There is R,K > 0 (depending on c,Ω and τ) such that the following property holds: For

each θ ∈ T cM and r ∈ (0, R), F as defined above, we have that

BKr(Sτ,θ(0)) ∩ Sp(n) ⊂ Sτ,θ

(
BC1

r (0) ∩ F
)
.

where BC1

δ (0) ⊂ Ω
2
(M) is the open ball of radius δ centered at 0 ∈ Ω

2
(M) in the Cr

topology.

Basically this theorem say that Sτ,θ is a open map. This is the technical result that

we need to demonstrate our results.

Remember that, en this section θ be a closed orbit of period Tθ. Suppose also that

K/2 < τ < K. We have that the number of self-intersection the closed magnetic geodesic

γ : [0, Tθ]→M is finite. There exist l ∈ N such that Tθ = lτ , we define γi(t) := γ(t+ iτ)

for all t ∈ [0, τ ] and i = 0, . . . , l− 1. We can choose Ui ⊂M open, as in the lemma 3.1.1,

disjoint sets for i = 0, . . . , l − 1, such that

Ui ∩ γ((0, τ)) ⊂ γ((0, τ)) and Ui ∩ γj = ∅, for all i 6= j
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Denote U :=
l−1⋃
i=0

Ui, we consider the map

Sθ : F −→
l−1∏
i=0

Sp(n),

δΩ 7−→ dθP(Ω + δΩ)(Tθ) =
l−1∏
i=0

dθiτPi(Ω + δΩ)(τ),

where Pi(Ω + δΩ) is the Poincaré map from Σiτ to Σ(i+1)τ . Applying l times the

theorem 3.2.3, we prove the follow corollary.

Corolary 3.2.4. Let Ω be a smooth closed 2-form on M and U an open neighbourhood of

Ω in the C1 topology. Suppose that θt ⊂ T cM is a closed orbit of φΩ
t , with minimal period

Tθ. Then choosing τ , l and U as above, the image of set {U \ {Ω}} ∩F by the map Sθ is

an open neighbourhood of Sθ(0) in
l−1∏
i=0

Sp(n).
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Chapter 4

The Kupka-Smale Property

In this chapter we are going to study the version of KupKa-Smale’s theorem in this

context of magnetic flows. The original theorem was made for smooth diffeomorphisms

by I. Kupka [17] and S. Smale [43] in 1963, separately, each has a different version of the

demonstration. However best known version of the proof this theorem is of M. Peixoto

[34], he unified in a single improved show of both that is used until now. This theorem

is one of the pillars for demonstration of the C1 structural stability of Mañé [25]. This

theorem also exists in other contexts, for example smooth vector fields, also in smooth

flows such as the geodesic flows by D. Anosov [4] and G. Contreras [9], Hamiltonian flows

by R. C. Robinson [39] and [40], also the magnetic flows on surfaces by J. A. Miranda

[26]. In all the methods of Peixoto are used.

In simple language, this theorem says that almost every magnetic flow satisfies two

properties. The first one says that all closed orbit is non-degenerate and the second says

that every heteroclinic point is transverse. Recall that an non-degenerate closed orbit is

either hyperbolic or elliptical. The difference with original version of the theorem is that

not possible to destroy the ellipticity of closed orbit due to Robinson [41].

In the first section of this chapter we announce this theorem and then proceed to

demonstrate the first property. In the second section we prove the second property. We

are based on the methods of M. Peixoto [34], D. Anosov [4] and J. A. Miranda [26]. Notice

here that we generalize Miranda’s theorem.
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4.1 The Kupka-Smale theorem for magnetic flows

In this section we will write accurately the version of Kupka-Smale’s theorem in the

context of magnetic flows defined in manifolds of any dimension. Next we are going to

prove the first property of the theorem. Basically says that for almost all magnetic flow,

we have that, all closed orbit is non-degenerate, and for this we will use the perturbative

theorem 3.2.3.

Recall that a subset R ⊂ Ω
2
(M) is called a Cr-residual if it contains a countable

intersection of open and dense subsets in the Cr-topology.

Now we come to define the concept of when a property is satisfied by almost all

magnetic flow, see [27] and [26].

Definition 4.1.1. We say that a property P is Cr-generic for magnetic flows if, for each

c > 0 . there exist a set R(c) ⊂ Ω
2
(M), such that following holds.

1. The subset Rh(c) := {Ω ∈ R(c) : [Ω] = h} is Cr-residual in Ω
2

h(M) := {Ω ∈

Ω
2
(M) : [Ω] = h}, for all h ∈ H2(M,R) and

2. The flow φΩ
t has the property P in T cM , for all Ω ∈ R(c).

This definition is due to J. A. G. Miranda. Note that a generic property is also

generic for subclasses of magnetic flows given by 2-form with the same cohomology class

in H2(M,R). In particular,the same happens for the family of exact magnetic flows. Now

if we are in the conditions to announce the main result of this chapter.

Theorem 4.1.2. (Kupka-Smale) The following property:

1. all closed orbits are hyperbolic or elliptic,

2. all heteroclinic points are transversal

are Cr-generic for magnetic flows, with 1 ≤ r ≤ ∞.
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Let c > 0 and Ω be a smooth closed 2-form on M . Consider the magnetic flow φΩ
t in

T cM and θ = (x, v) ∈ T cM such that θt = φΩ
t (θ) = (γ(t), γ′(t)) be a closed orbit in T cM

with period Tθ > 0, where γ is a closed Ω-magnetic geodesic in M .

We consider the following subset N (t) = N (θt) ⊂ TθtT
cM ,for every t ∈ [0, Tθ], be the

subspace

N (t) :=
{
ξ ∈ TθtT cM : 〈ξ1, γ

′(t)〉γ(t) = 0
}
.

If ξ = XΩ(θt), then ξ1 = γ′(t), therefore the subspace N (t) is transversal to XΩ along of

θt, note that V (θt) ⊂ N (t). Hence the dimension of N (t) is 2n and

TθtT
cM = N (t)⊕

〈
XΩ(θt)

〉
.

Therefore, the restriction of the twisted form ωθt := ωΩ|θt to N (t) is a non-degenerate

2-form. Note that N (θ) does not depend on the 2-form Ω. For i = 2, . . . ,m, we have that

(ei(t), 0), (0, ei(t)) ∈ H(θt)⊕ V (θt), then (ei(t), 0), (0, ei(t)) ∈ N (t) and

ωθt((ei(t), 0), (ej(t)), 0) = Ωij,

ωθt((0, ei(t)), (0, ej(t))) = 0 and

ωθt((ei(t), 0), (0, ej(t))) = δij.

Thus, we have that

(e2(t), 0), . . . (em(t), 0), (0, e2(t)), . . . (0, em(t)),

is an basis of N (t), for every t ∈ [0, Tθ]. We say that a closed orbit is non-degenerate of

order k ∈ N, if the derivate of the kth iterated on the linearized Poincaré map dθPk(Ω) :

Σ→ Σ, has no eigenvalues equal 1.

Given a, c > 0 and k ∈ N, let Gk(c, a), be the subset of every Ω ∈ Ω
2
(M) such that

all closed orbits of φΩ
t in T cM , with minimal period < a, are non-degenerate of order k.

Thus the first part of the Theorem 4.1.2 can be reduces to following proposition. Note

that

Gk(c, a) =
k⋂
i=1

G1(c, ia),

also that

R1(c) :=
⋂
n∈N

G1(c, n).
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Proposition 4.1.3. Given c, a > 0 and r ∈ N, the subset G1(c, a) ⊂ Ω
2
(M) is a open and

dense subset in the Cr topology. Moreover, for each h ∈ H2(M,R), the subset G1
h(c, a) is

Cr-dense subset of Ω
2

h(M).

The prove this proposition is following the ideas of Miranda [26], so for this we need

some lemmas that we will statement.

Remember that θt = (γ(t), γ′(t)) = φΩ
t (θ) is a closed orbit in T cM with minimal period

Tθ > 0 in T cM . For each i = 2, . . . ,m consider a function fi ∈ C∞(M) with support in

U , neighborhood of γ([0, Tθ]) and defined

fi(x1, . . . , xm) =
1√
2c

∫ x1

0

ui(s)dsxif (‖x̂1‖)

in local coordinates as in the lemma 3.1.1 and f as 3.12. Let ηi := fidxi be a smooth

1-form in M , hence dηi = ui(x1)xidx1dxi in U . Let is consider

γi(s, t) := π ◦ φΩ+s(dηi)
t (θ), for s ∈ (−ε, ε),

Vi(t) :=
∂

∂s

∣∣∣
s=0

γi(s, t),

hence γ(t) = γi(0, t) and Vi(t) is a vector field along the magnetic geodesic γ(t). Then

Zi(t) :=
∂

∂s

∣∣∣
s=0

φ
Ω+s(dηi)
t (θ)

= (Vi(t), V
′
i (t)) ∈ H(θt)⊕ V (θt).

Since that dηi ≡ 0 in γ, then

D

ds

∣∣∣
s=0

(
D

dt
γ′i(s, t)

)
=
D

ds

∣∣∣
s=0

(
Yγi(s,t)(γ

′
i(s, t))

)
,

thus we have that Vi(t) satisfied the Jacobi equation (2.4) for Ω, note that ei(0) = ei(Tθ)

for every i = 1, . . . ,m, thus we have that

 Vi,⊥(t)

V ′i,⊥(t)

′ = A(t)

 Vi,⊥(t)

V ′i,⊥(t)

+ ui(t)

 0

ei

 , for every t ∈ [0, Tθ]

Vi,⊥(0) = V ′i,⊥(0) = 0,
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where Vi,⊥(t) = (Vi,2(t), . . . , Vi,m(t)) and A(t) as before in 3.16. If S(t) is the fundamental

matrix of the correspondent homogeneous equation, then Vi,⊥

V ′i,⊥

 (Tθ) = S(Tθ)

∫ Tθ

0

ui(t)S(t)−1

 0

ei

 dt.

Fix t0 ∈ (0, Tθ) and 0 < λ < ε < Tθ − t0 such that γ([t0 − ε, t0 + ε]) does not have self-

intersection points. Let δλ : R→ R be a C∞-approximation of the Dirac delta at the point

t0. Chose ui(t) = δ′λ(t) and ũi(t) = δλ(t), we have that, for (ei, 0), (0, ei) ∈ N (Tθ) = N (θ)

dθP(Ω)(Tθ)(ei, 0) = (Vi,⊥(Tθ), V
′
i,⊥(Tθ))

and

dθP(Ω)(Tθ)(0, ei) = (Ṽi,⊥(Tθ), Ṽ
′
i,⊥(Tθ)),

since

d

dt

S(t)−1

 0

ei

 = −S(t)−1

 0 I

KΩ+dηi(t) 0

 0

ei

 = −S(t)−1

 ei

0

 .

Thus we have the following result.

Lemma 4.1.4. Suppose that φΩ
t (θ) is a closed orbit of minimal period Tθ > 0 on T cM .

Then there is η2, . . . ηm 1-forms in M such that

Zi :=
d

ds

∣∣∣
s=0

(
φΩ+sdηi
Tθ

(θ)
)

for every i = 2, . . . ,m,

are a basis of N (θ).

This is similar to Lemma 3.3 in [26]. Which implies the following result.

Lemma 4.1.5. Let Ω0 ∈ Ω
2
(M) and θ0 ∈ T cM such that φΩ0

t (θ0) is a closed orbit of

minimal period t0 > 0 Then the map

ev : T cM × R× Ω
2

[Ω0](M) −→ T cM × T cM ⊃ ∆,

(θ, t,Ω) 7−→ (θ, φΩ
t (θ)),

is transversal to the diagonal ∆ ⊂ T cM × T cM in the point (θ0, t0,Ω0).

45



Proof. By hypothesis ev(θ0, t0,Ω0) = (θ0, φ
Ω0
t0 (θ0)) = (θ0, θ0) ∈ ∆. Computing the derivate

of the map ev, we obtain

d(θ0,t0,Ω0)ev · (δθ, δt, δΩ) = d(θ0,t0)(θ0, φ
Ω0
t0 (θ0)) · (δθ, δt) + dΩ0(θ0, φ

Ω0
t0 (θ0)) · δΩ

=
(
δθ, dθ0φ

Ω0
t0 · δθ + δtXΩ0(θ0)

)
+

(
0,
d

ds

∣∣∣∣∣
s=0

φΩ0+sδΩ
t0 (θ0)

)
since

T(θ0,θ0) (T cM × T cM) = Tθ0T
cM × Tθ0T cM = T(θ0,θ0)∆⊕ ({0} × Tθ0T cM)

= T(θ0,θ0)∆⊕
(
{0} ×

(〈
XΩ0(θ0)

〉
⊕N (θ0)

))
= T(θ0,θ0)∆⊕

(
{0} ×

〈
XΩ0(θ0)

〉)
⊕ ({0} × N (θ0))

Using the previous lemma, we have that exists Zi the form
d

ds

∣∣∣∣∣
s=0

φΩ0+sδΩ
t0 (θ0) such that

{Z2, . . . , Zm} is a basis of N (θ0).

This is similar to Lemma 3.4 in [26]. The perturbative Theorem (3.2.3) and its Corol-

lary (3.2.4), together with the previous lemmas implies the following result.

Lemma 4.1.6. Let Ω0 ∈ G1(c, a) and k ∈ N. Then there exists a Ω ∈ Gk[Ω0](c, a), such

that Ω is arbitrarily Cr-close to Ω0.

Proof. Since Ω0 ∈ G1(c, a), have all closed orbits of flow φΩ0
t

∣∣∣
T cM

, with minimal period

< a, are non-degenerate of order 1, this is, the derivate of the mth iterated on the

linearized Poincaré map has no eigenvalues equal to 1. Then for this closed orbits, we

have that ev(Ω0) is transversal to ∆ in (θ0, t0), where t0 < a and φΩ0
t0 (θ0) = θ0 and other

orbit ev(Ω0)(θ, t) /∈ ∆. Thus we have that ev(Ω0) tT cM×[0,a] ∆. Then the magnetic flow

φΩ0
t has a finite number of closed orbits of period less that a. Let θ1, . . . , θl be such closed

orbits and t1, . . . , tl be its minimal periods. For each i = 1, . . . , l, as in the corollary 3.2.4,

we have that Si = Sθi : Fi → Sp(n) be defined by Si(δΩ) = dθiP (Ω0 + δΩ). Then, by this

corollary, for all Cr-open neighbourhood U of 0, the subset Si(U ∩ Fi) ⊂ Sp(n) are open

neighbourhood of dθiP (Ω0), for i+1, . . . , l. Hence, given k ∈ N, for each i = 1, . . . , l there

exists a linear map Ai ∈ Si(U) ∩ Fi, such that the mth iterated on Ai does not admit an

eigenvalue equal to 1. Therefore, if δΩi ∈ S−1
i (Ai)∩ U , we have that Ω = δΩ1 + · · ·+ δΩl

satisfies the lemma.

46



This is similar to Lemma 3.5 in [26]. The part of opening in the proposition 4.1.3 is

a consequence of dynamic properties and transversality due to [1], we only show the part

of density.

Proof. Proof of the Proposition 4.1.3. Density:

Let Ω ∈ Ω
2
(M). Take k = k(a,Ω) ∈ N such that (k − 1)K < 2a ≤ kK and U a Cr

open neighborhood of Ω such that, if Ω̂ ∈ U , then

‖Ω̂‖C0 < ‖Ω‖C0 + 1,

thus U ⊂ Gl(c,K), for every l ∈ N, in particular

Ω ∈ U ⊂ G1(c,K)

Consider the map

ev : T cM × R× U[Ω] −→ T cM × T cM ⊃ ∆,

(θ, t, Ω̂) 7−→ (θ, φΩ̂
t (θ)).

The Lemma 4.1.5, implies that, if ev(θ0, t0,Ω0) ∈ ∆, then ev t(θ0,t0,Ω0) ∆. Hence

ev(Ω0) tT cM×[0,3K/2] ∆. So due to Abraham’s Theorem of Transversality, see [2], we

have that the set of every Ω0 ∈ U[Ω] such that ev(Ω0) tT cM×[0,3K/2] ∆ is dense in U[Ω].

Then, there is Ω̂1 ∈ U[Ω] such that

ev(Ω̂1) tT cM×[0,3K/2] ∆ and ‖Ω− Ω̂‖Cr <
ε

2k
.

Lemma 4.1.6, implies that there is Ω1 ∈ Gk[Ω](c, 3k/2) with ‖Ω1 − Ω̂1‖Cr <
ε

2k
. Hence

‖Ω− Ω1‖Cr <
ε

k
. We can take Ω1 ∈ U[Ω] and consider U1 = U ∩ Gk[Ω](c, 3K/2) and

ev : T cM × R× U1 −→ T cM × T cM ⊃ ∆,

(θ, t, Ω̂) 7−→ (θ, φΩ̂
t (θ)).

Suppose that ev(θ0, t0,Ω0) ∈ ∆. Let T0 be the minimal period of the closed orbit φΩ0
t (θ0).

If 2T0 ≤ 3K then ev(Ω0) t(θ0,lT0) ∆, for every 1 ≤ l ≤ k. Since U1 ⊂ U[Ω], we have that
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K < T0 and t0 < kT0. Therefore, ev(Ω0) t(θ0,t0) ∆. If 2T0 ∈ (3K, 4K] then t0 = T0 and,

by Lemma 4.1.5 have that ev(Ω0) t(θ0,t0,Ω0) ∆, hence ev(Ω0) tT cM×[0,2K] ∆. So due to

Abraham’s Theorem of Transversality, see [2], we have that there is Ω̂2 ∈ U1, such that

ev(Ω̂2) tT cM×[0,2k] ∆ and ‖Ω1 − Ω̂2‖Cr <
ε

2k
.

Lemma 4.1.6, implies that there is Ω2 ∈ Gk[Ω](c, 2K) with ‖Ω2 − Ω̂2‖Cr <
ε

2k
. Hence

‖Ω1 − Ω2‖Cr <
ε

k
. Repeating the same arguments for 2 < l ≤ k − 1, we obtain Ωl ∈

Gk[Ω](c, l(K/2) +K), with ‖Ωl − Ωl−1‖Cr <
ε

k
.

Finally, since Gk[Ω](c, (k − 1)K/2 + K) ⊂ G1
[Ω](c, a) and ‖Ω − Ωk‖Cr < ε, we have that

Ω ∈ G1
[Ω](c, a), this prove the proposition 4.1.3 and thus the first part of Theorem 4.1.2.

So we have proved the following result.

Theorem 4.1.7. The property: all closed orbits are non-degenerate, is Cr-generic for

magnetic flows 1 ≤ r ≤ ∞.

An immediate consequence is as follows.

Corolary 4.1.8. Given c > 0, there exist a residual set O(c) in Ω
2
(M), such that if

Ω ∈ O(c) then the number of periodic orbits of φΩ
t in T cM with period ≤ T is finite, for

all T > 0.

4.2 Transversal heteroclinic points

In this section we will prove the second part of Kupka-Smale’s theorem 4.1.2, which is

equivalent to saying that the stable and unstable manifolds of all closed orbits intersect

transversely.

For each c, a > 0, we define K(c, a) the set of all Ω ∈ G1(c, a) such that, for every

hyperbolic closed orbits θt, ϑt ⊂ T cM , of period < a, W u
a (θt) tT cM W s

a (ϑt). Since the

stable and unstable manifolds of a hyperbolic closed orbit depend continuously on part

compact, we have that K(c, a) is an open subset of Ω
2
(M), for all a, c > 0. Thus to
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complete the proof of Theorem 4.1.2 is sufficient to prove that, for every Ω ∈ Ω
2
(M),

the set K[Ω](c, a) is dense in G1
[Ω](c, a). It is enough to prove the existence of a local

perturbation for Ω that preserve the orbits θt and ϑt and such that the perturbation local

manifolds W u
a (θt) and W s

a (ϑt) are transversal in a fundamental domain of W u
a (θt).

Lemma 4.2.1. (Lemma 3.6 in [26]) Let σ ∈ W u
a (θt) ⊂ T cM be such that the restriction

π|Wu(θt) is a diffeomorphism in a neighbohood U ⊂ W u(θt) of the point σ. Let V ⊂ V ⊂ U

be sufficiently small neighbohood of σ in W u(θt). Then there is an exact 2-form dη, with

norm arbitrarily small in the Cr topology (1 ≤ r ≤ ∞), such that

1. Supp(dη) ⊂ π(U),

2. θt and ϑt are hyperbolic closed orbits of the magnetic flow associated with Ω̂ = Ω+dη,

3. σ ∈ Ŵ u
a (θt), where Ŵ u

a (θt) denotes the local stable manifold of θt for the flow φΩ̂
t ,

4. the connected component of Ŵ u
a (θt) ∩ V that contains the point σ and Ŵ s(θt) are

transversal.

We will prove the Lemma 4.2.1 later. From the general theory of the Hamiltonian

systems we know that, W s(θt),W
s(θt) ⊂ T cM are Hamiltonians submanifolds of TM ,

with the symplectic twist form ωΩ.

Proof. Proof of the density of K(c, a):

Let D ⊂ W u
a (θ) be a fundamental domain of W u

a (θ) and σ ∈ D. By the inverse

function theorem we know that π|Wu(θ) is a local diffeomorphism in σ if, and only if,

TσW
u(θ)∩Vσ = {0}. As W u(θ) is a Lagrangian submanifold we have, from Lemma 2.4.1,

that {t ∈ R : dσφ
Ω
t (TσW

u(θ)) ∩ VφΩ
t (σ) 6= {0}}, is discrete. Then there exists t(σ) > 0

arbitrarily close to 0, such that π|Wu(θ) is a diffeomorphism in a neighborhood Ut(σ) ⊂

W u(θ) of the point φΩ
t(σ)(σ). Since Ω ∈ G1(c, a), we can assume that π(φΩ

−t(σ)(Ut(σ))) does

not intersect any closed orbit of period ≤ a. Let Wσ ⊂ D be a neighborhood of σ such

that σ ∈ Wσ ⊂ W σ ⊂ φΩ
−t(σ)(Ut(σ)). Then, we can take a finite number of points σ1, . . . , σl

such that the neighborhood W1, . . . ,Wl cover the fundamental domain D and such that
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the points φΩ
ti

(σi) and the neighborhoods Vi = φΩ
ti

(Wi) ⊂ Ui satisfy the hypothesis in

Lemma 4.2.1, for each i = 1, . . . , l.

Applying Lemma 4.2.1 to φΩ
t1

(σ1) ∈ V1 ⊂ V1 ⊂ U1, we obtain an exact 2-form dη1 ∈

Ω
2
(M), with Cr-norm arbitrarily small, such that Supp(dη) ⊂ π(U1) and the connected

component of Ŵ u(θt)∩ V1 that contain φΩ
t1

(σ1) is transversal to Ŵ s(ϑt). Since G1(c, a) is

open in Ω
2
(M), we can assume that Ω + dη ∈ G1(c, a).

The transversality condition on compact subsets is an open condition. Hence, we can

successively apply Lemma 4.2.1 in Vi, to obtain an exact 2-form dηi ∈ Ω
2
(M), with Cr-

norm small, and such that the invariant manifolds are transversal in V1 ∪ . . . ∪ V i, for

1 ≤ i ≤ l.

Since the number of closed orbits of period < a is finite, repeating the same arguments

for each possible pair of hyperbolic orbits of period < a, in such a way that the perturba-

tion supports are isolated, we obtain an exact 2-form dη in M , with Cr-norm arbitrarily

small, such that Ω + dη ∈ K(c, a). This prove the density of K(c, a).

The proof of Lemma 4.2.1 follow the same ideas that Miranda [26], in fact, the

prove depend only the following result where the dimension of manifold is important. We

finish this section with the prove this Lemma.

Recall that a submanifold N of a symplectic manifold (M2n, ω) is Lagrangian when

dim(N ) = n and i∗Nω ≡ 0, where iN : N → M denotes the inclusion map, see the

definition 2.3.4. Let H :M→ R be a Hamiltonian of class C2 and c ∈ R, the following

are easy consequence of the definitions and Darboux coordinates, see, for example, the

appendix of [9].

1. Suppose N ⊂ H−1(c) be a submanifold de dimension n. Then N is Lagrangian if

and only if the Hamiltonian vector field XH is tangent to N .

2. If N ⊂ H−1(c) is Lagrangian and θ ∈ N , such that XH(θ) 6= 0. Then there exist a

50



neighborhood U ⊂M of θ and a coordinate system (x, y) : U → Rn×Rn such that

ω =
∑

i dxi ∧ dyi, N ∩ U = [y ≡ 0] and XH |N = ∂/∂x1.

Lemma 4.2.2. Let N and N0 be two Lagrangian submanifolds contained in an energy

level c of a Hamiltonian H : M → R on a symplectic manifold (M2n, ω) , Let θ ∈ N

be a non-singular point for the Hamiltonian vector field XH . Let (t, x, y) : U → [0, 1] ×

[−ε, ε]n−1 × [−ε, ε]n be the Darboux coordinates for N in a neighborhood U of θ ∈ N .

Then, given 0 < ε2 < ε1 < ε, there exist a sequence of submanifolds Nk ⊂ H−1(c) with

dimension n, such that

1. Nk → N in the C∞-topology,

2. N ∩ A = Nk ∩ A, where x = (x2, . . . xn), y = (y1, . . . , yn) and

A = {(t, x, y) ∈ R2n : ‖x‖ ≥ ε1 or 0 ≤ t ≤ 1/4},

3. Nk are invariant in A ∪B, where

B = {(t, x, y) ∈ R2n : ‖x‖ ≤ ε and 1/2 ≤ t ≤ 1},

4. Nk ∩ C are invariant and transversal to N0, where

C = {(t, x, y) ∈ R2n : ‖x‖ ≤ ε2 and 1/2 ≤ t ≤ 1},

5.

∫
Nk
i∗kω = 0, where ik : Nk ↪→ U is the inclusion.

Proof. Let α : [−ε, ε]→ [0, 1] and β : [0, 1]→ [0, 1] be smooth functions, such that

α ≡


0, in R \ [−ε1, ε1]

1, in [−ε2, ε2]

,

∫
α = 0 and β ≡


0, in

[
1,

1

4

]

1, in

[
1

2
, 1

] .

For s = (s2, . . . , sn) ∈ Rn−1 with ‖s‖ small, consider fs : [0, 1] × [−ε, ε]n−1 → Rn

defined as

fs(t, x) =
(
f 1
s (t, x), s2α(x2)β(t), . . . , snα(xn)β(t)

)
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and f 1
s is defined by:

H(t, x, fs(t, x)) = c. (4.1)

Since the curves t 7→ (t, x, 0, 0) ⊂ N are solutions of the Hamiltonian system (M, ω,H),

we have that H(t, x, 0, 0) = c and
∂H

∂y1

(t, x, 0, 0) 6= 0. By the implicit function theorem,

for any s with ‖s‖ sufficiently small, we can solve equation (4.1) for (t, x) 7→ f 1
s (t, x) with

f 1
s of class C∞.

We define Ns = {(t, x, fs(t, x)) ∈ R2n : (t, x) ∈ [0, 1]× [−ε, ε]n−1}. By construction the

supports of the maps fs are fixed and lim
s→0

fs = 0. Therefore, Ns → N in the C∞-topology

when s→ 0. Since fs(t, x) = 0 for every (t, x) ∈ A, then Ns ∩A = N ∩A. Moreover, we

have that

i∗sω = i∗s(dt ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn)

= −s2α(x2)β′(t)dt ∧ dx2 − · · · − snα(xn)β′(t)dt ∧ dxn.

for every s with ‖s‖ small, where is : Ns ↪→ U denote the inclusion. Since β′(t) = 0 for

every t ∈ [1/2, 1], the submanifolds Ns ∩B are Lagrangian. Hence H(Ns) = c. Note that

2-form i∗sω has compact support and∫
Ns
i∗sω = −

n∑
i=2

si

∫ 1

0

β′(t)

(∫ ε

−ε
α(xi)dxi

)
dt = 0,

for every s with ‖s‖ small. Observe thatNs∩C = [ŷ = s]∩H−1(c), where ŷ = (y2, . . . , yn).

It is a basic fact about transversality that Ns ∩ C and N0 ⊂ H−1(c) are transversal in

H−1(c) if and only if ‖s‖ is small, is a regular value of the map ρ|N0 , where ρ(y) = ŷ.

Then, by Sard’s theorem, we have that there is a sequence sn → 0 for which Nsn satisfy

the theorem.
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Chapter 5

k-Jets

In this chapter we are going to study one of the important generic results in relation to

the spaces of k-Jets of the map of Poincaré of a closed orbit of the magnetic flow. The

motivation is always the analogy to geodetic flows, remember that a Riemannian metric is

bumpy if all closed orbits of the geodetic flow generated by this metric, is non-degenerate.

The bumpy metric theorem states that generically every Riemannian metric is bumpy,

this theorem was proved by R. Abraham [3], but we can find a complete proof by D.

Anosov [4]. Then W. Klingenberg and F. Takens [15] extend the bumpy metric theorem

including conditions in the k-jets of Poincaré map of closed orbits of the geodetic flow.

On the other hand F. Takens [45] also obtains the analogous result in the Hamiltonian

context, that is, for Hamiltonian flows.

In the setting of magnetic flows there is a version of this result on surfaces by J. A.

Miranda [26]. Basically we are going to extend this result for manifolds of any dimension.

In the first section we will define the k-Jets later we announce the k-Jets’ theorem and

see some properties. In the second section we study the perturbation of k-jet with respect

to Ω be exact and in the last section we are going to proved the theorem of k-Jets. Note

that at first everything is made for exact Ω, but at the end of prove we use the fact that

locally Ω is always exact. Note also here that the main reference here is J. A. Miranda

[26].
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5.1 The k-jet space for magnetic flows

In this section we are going to define the space of k-Jets for symplectic maps. Subse-

quently, we are going to announce the k-Jets’ theorem, taking into account the definition

of when a property is Cr-generic for magnetic flows, defined in the previous chapter, def-

inition 4.1.1. We are going to define the concept of when a family of symplectic linear

maps is k-general and we will study some of its properties in relation to the Poincaré map

of closed orbit of magnetic flows.

We consider (R2n, ω0) as the canonical symplectic linear space of dimension 2n. Let

Diffω0(R2n, 0) be the space of smooth symplectic diffeomorphisms f : (R2n, ω0) →

(R2n, ω0) such that f(0) = 0. Given k ∈ N, we define the following equivalence rela-

tion in Diffω0(R2n, 0), denoted by ∼k:

f ∼k g ⇔ the Taylor polynomials of degree k at zero are equal.

Let f ∈ Diffω0(R2n, 0), we define the k-jet of f as the equivalence class of f with respect

to the relation ∼k, which we denote as jk(f) = jk(f)(0), i.e.

jk(f) :=
{
g ∈ Diffω0(R2n, 0) : f ∼k g

}
.

The space of symplectic k-jets at zero is define as the set of all equivalence classes with

respect to the relation ∼k of elements of Diffω0(R2n, 0), which we denoted by Jks (n), i.e.

Jks (n) :=
{
jk(f) : f ∈ Diffω0(R2n, 0)

}
.

Note that Jks (n) is a vector space that it is also a Lie group, with the product defined by

jk(f) · jk(g) = jk(f ◦ h), for every f, g ∈ Diffω0(R2n, 0).

Thus we have that the invertible elements form a Lie group. When k = 1, we can identify

J1
s (n) with the classic Lie group Sp(n). Let Q ⊂ Jks (n) be a subset of the space of

symplectic k-jets. We say that Q is invariant if σ ·Q · σ = Q, for all σ ∈ Jks (n).

In the same way we can define J k
s (n) be the space of the k-jets at 0 of symplectic

vector fields that are zero at 0. Let us see that this is the Lie algebra of Jks (n) via the map

exponential. We define the bracket [·, ·]k : J k
s (n)× J k

s (n)→ J k
s (n) by [jk(X), jk(Y )]k =
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−jk([X, Y ]). Since X, Y are zero in the origin, [·, ·]k depends only on the k-jets of X and

Y . Then [·, ·]k defines a Lie algebra structure in J k
s (n). Moreover, J k

s (n) is the Lie algebra

of Jks (n) and the exponential map exp : J k
s (n)→ Jks (n) is given by exp(tjk(X)) = jk(φt),

where φt is the local flow associated with X at zero. For more information about the

k-jets spaces see, for example,[7] and [16].

Let c > 0 and Ω be a smooth closed 2-form on M . Consider the magnetic flow φΩ
t

in T cM and θ = (x, v) ∈ T cM such that θt = φΩ
t (θ) = (γ(t), γ′(t)) is a closed orbit

in T cM with period Tθ > 0, where γ is a closed Ω-magnetic geodesic in M . We know

that the map of Poincaré P := P (Ω, θ,Σ) is a symplectic map, where Σ ⊂ T cM is a

local transverse section at the point θ, with the symplectic structure of ωΩ. Therefore,

using Darboux coordinates, we can assume that jk(P) ∈ Jks (n). Remember that M have

dimension m = n+ 1.

In the same way as in [15] the fact that the k-jet of the Poincaré map P of a closed

orbit θt belongs to an invariant subset Q ⊂ Jks (n) is independent of the chosen section Σ

and of the chosen coordinates on Σ; hence, the k-jet of the Poincaré map of θ belong to

Q is well defined.

We now state the local perturbation result for magnetic flows on manifolds of any

dimension, similarly to the result of Klingenberg and Takens [15] for geodesic flows, Takens

[45] for Hamiltonian flows, Miranda [26] for magnetic flows on surfaces and of Carballo

and Miranda [6] Tonelli Hamiltonian.

Theorem 5.1.1. Let Q ⊂ Jks (n) be an open and invariant subset such that

jk(P (Ω, θ,Σ)) ∈ Q.

Then there exists an exact 2-form dη ∈ Ω2(M), arbitrary Cr-close to zero, with r > k,

such that θt is a closed orbit of φΩ+dη
t and jk(P (Ω, θ,Σ)) ∈ Q.

This is similar to Theorem 1.3 [26]. In this chapter we will prove the Theorem 5.1.1

Let us first describe the general case. Let N be an arbitrary manifold and X be a smooth

vector field on N with ψt : N → N the corresponding flow. Let α : [0, T ] → N be

a segment of an orbit of ψt and let Σ(t) be a family of local transversal sections with
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α(t) ∈ Σ(t) such that Σ(t) = f−1(t) in neighborhood of α(t), where t is a regular value

for some smooth function f : N → R.

Given k > 0, let Y be the vector field in N satisfying jk−1(Y )(α(t)) = 0, for all

t ∈ [0, T ] and α(0), α(T ) /∈ Supp(Y ). Let Pt : Σ(0) → Σ(t) and P ′t : Σ(0) → Σ(t) be the

Poincaré maps on open neighborhood of α(0) ∈ Σ(0) On Σ(t) with respect toX andX+Y ,

respectively. For each t ∈ [0, T ], we consider a map St(Y ) : (Σ(0), α(0)) → (Σ(0), α(0))

defined as St(Y ) = P−1
t ◦ P ′t .

Since Σ(t) is transversal to X, we can decompose Y locality as Y = Y1 +Y2, such that

way that Y1|Σ(t) is tangent to Σ(t), for all t ∈ [0, T ], and Y2 is a multiple de X. Let Yt be the

non-autonomous vector field on Σ(0) defined by Yt = (Pt)
∗(Y1|Σ(t)) = (Pt)

−1 ◦Y1|Σ(t) ◦Pt.

The following proposition shows as a relation between the k-jets of the map St(Y ) and

the vector field Yt. The proof can be seen in [15], Section 2.

Proposition 5.1.2. The k-jet of the map St(Y ) at α(0) is equal to the k-jet of the flow

in the time t correspondent to the vector field Yt.

For k ∈ N we denote by Rk[x, y] the set of all real homogeneous polynomials of degree

k in the 2n variables x = (x1, . . . , xn), y = (y1 . . . , yn). This is a real vector space of

dimension d = d(2n, k) =
(

2n−1+k
k

)
. Remember that n is fix since dim(M) = n+ 1.

We fix the polynomial F (x1 . . . , xn, y1 . . . , yn) = xk1 and we define

Gk =
{

(σ1, . . . , σd) ∈ Sp(n)d : {F ◦ σ1, . . . , F ◦ σd} is a basis of Rk[x, y]
}
.

The following proposition is proof in [6], Section 2.

Proposition 5.1.3. (Proposition 6 in [6]) For each k ∈ N, the subset Gk is open and

dense in Sp(n)d.

We define when a family of symplectic matrix is called k-general.

Definition 5.1.4. We say that a one-parameter family σ : [a, b] → Sp(n) of class Cr is

k-general of class Cr, when σ(a) = I and there exists times t1, . . . , td ∈ [a, b] such that

(σt1 , . . . , σtd) ∈ Gk.
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Example 5.1.5. The following example is a k-general family for any k ∈ N. Let σ :

[0, 1]→ Sp(n) be given by

σt(x, y) =
(
x1 + · · ·+ tn−1xn + tny1 + · · ·+ t2n−1yn, x2, . . . , xn, y

)
.

Then σ0 = I and

F ◦ σt(x, y) =
(
x1 + · · ·+ tn−1xn + tny1 + · · ·+ t2n−1yn

)k

=
∑

0≤i1≤···≤i2n−1≤k

t

2n−1∑
j=1

ij(
i2
i1

)
· · ·
(

k

i2n−1

)
x
k−i2n−1

1 . . . xin+1−in
n y

in−in−1

1 . . . yi1n .

Since

{(
i2
i1

)
· · ·
(

k

i2n−1

)
x
k−i2n−1

1 . . . xin+1−in
n y

in−in−1

1 . . . yi1n : 0 ≤ i1 ≤ · · · ≤ i2n−1 ≤ k

}
is a basis for Rk[x, y], the coordinates of F ◦ σt(x, y) in this basis are

{
ti1+···+i2n−1 : 0 ≤ i1 ≤ · · · ≤ i2n−1 ≤ k

}
= (1, t, . . . , td−1) ∈ Rd.

It is easy to see that there exists values t1, . . . , td ∈ [0, 1] such that the vectors (1, tl, . . . , t
d−1
l ),

with l = 1, . . . , d, are linearity independent vectors in Rd. hence the σt is a k-general fam-

ily.

By combining theorem 3.2.3 and the above proposition, we obtain the following result.

For a prove see [26] in the section 4.

Proposition 5.1.6. Let γ : R → M be a Ω-magnetic geodesic. Given k, r ∈ N and

K/2 < τ < K(= K(c,Ω)) , there exists an exact 2-form dξ, with norm arbitrarily small

in the Cr-topology, such that the one parameter family t 7→ dPt(Ω + dξ) defined in [0, τ ]

is k-general, where Pt(Ω + dη) : Σ0 → Σt is the map Poincaré of orbit segment γ|[0,t] of

Ω + dη in T cM , for every t ∈ [0, τ ].

This is similar to Proposition 4.3 in [26].
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5.2 Perturbation of the k-jet

In this section we are going to study how the k-jet of the map Poincaré is perturbed

in relation to the perturbation of Ω. One important hypothesis is the concept of a one-

parameter family k-general. All this is for the case that Ω is exact. See [26].

Given an exact 2-form dη ∈ Ω2(M), we define the Magnetic Lagrangian Lη : TM → R

induced by dη as

Lη(x, v) =
1

2
〈v, v〉x − ηx(v).

Note that Lη is convex and superlinear. Therefore, the Euler-Lagrangian flow of Lη is

conjugated to a Hamiltonian flows in (T ∗M,ω0) via the Legendre transformation L :

TM → T ∗M , defined by

L(x, v) =

(
x,
∂Lη
∂v

(x, v)

)
.

The correspondent Hamiltonian Hη : T ∗M → R, which we call the Magnetic Hamiltonian,

is given by

Hη(x, p) =
1

2
|p+ η|2x,

where | · |x denote the norm induced by the metric g in T ∗xM . Let Xη be the Hamiltonian

vector field of Hη and ψηt be the flow generated by the field Xη.

Let γ : [0, τ ] → M be a segment of a dη-magnetic geodesic without self-intersection

points, (τ < K = K(c,Ω)). Then

Γ(t) := L(γ(t), γ̇(t)) =

(
γ(t),

∂Lη
∂v

(γ(t), γ̇(t))

)
= (γ(t), p(t))

is a segment of an orbit of the flow ψηt .

We will now choose a local coordinate system in a neighborhood of Γ([0, τ ]) in T ∗M in

order to describe the Hamiltonian Hη and its vector field. Since γ([0, τ ]) ⊂M has no self-

intersection points, we can choose coordinates (x0, x) with x = (x1, . . . , xn), in a neighbor-

hood U ⊂M of γ([0, τ ]) such that γ(t) = (t, 0) and {∂/∂x0, ∂/∂x1, . . . , ∂/∂xn}|(t,0) is a or-

thogonal basis for T(t,0)M , for all t ∈ [0, τ ]. For each (x0, x) ∈ U , let {dx0, dx1, . . . , dxn} ⊂

T ∗(x0,x)M be the dual basis for {∂/∂x0, ∂/∂x1, . . . , ∂/∂xn} ⊂ T(x0,x)M . Then, if p ∈

T ∗(x0,x)M , we define yi by p =
∑

i yidxi and we have a natural chart

(x0, x, y0, y) = (x0, x1 . . . , xn, y0, y1 . . . , yn)
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of π−1(U) ⊂ T ∗M . In these coordinates we have ω0 = dx0 ∧ dy0 + dx ∧ dy,

Hη(x0, x, y0, y) =
1

2

n∑
i,j=0

gij(x0, x)(yi + ηi)(yj + ηj),

Xη =
n∑
i=0

(
∂Hη

∂yi

∂

∂xi
− ∂Hη

∂xi

∂

∂yi

)
where [gij]0≤i,j≤n denotes the inverse matrix of the coefficients of the metric g with respect

to the coordinate system (x0, x) in U and

Γ(t) = (t, 0, . . . , 0, 1− η0(t, 0),−η1(t, 0), . . . ,−ηn(t, 0))

with the 1-form η|U = η0dx0 + η1dx1 + . . . , ηndxn.

Let δ : R→ R and β : Rn → R are smooth functions satisfying

1. supp(δ) ⊂ (0, τ),

2. supp(β) ⊂ Bε(0), with ε > 0 sufficiently small, and

3. jk+1(β)(0) = xk+1
1 , is a homogeneous of degree k + 1.

Given k > 1, we define the subset Fk ⊂ Ω
2
(M) as the subset of the exact 2-form dξ,

with supp(ξ) ⊂ U ⊂ M such that, in the local coordinates (x0, x), the 1-form ξ is given

by

ξ(x0, x) = ξ0(x0, x)dx0 = δ(x0)β(x)dx0.

We will consider perturbations of the type (η + ξ) for the magnetic Hamiltonian Hη.

Since jks (β)(0) = 0, we have the dξ(γ(t)) = dξ(t, 0) = 0. Hence, γ(t) is a magnetic

geodesic for d(η + ξ). In Hη, substituting η by (η + ξ) in coordinates obtain

H(η+ξ) = Hη + ξ0
∂Hη

∂y0

+
ξ2

0

2
g00.

We denote

Fξ = F (ξ, k) = ξ0

(
∂Hη

∂y0

)
+

(
ξ2

0

2

)
g00 = ξ0

(
∂Hη

∂y0

)
+O(x

2(k+1)
1 ).
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Locally Hη+ξ = Hη + Fξ, for all dη ∈ Fk. Note that jk(Fξ)(Γ(t)) = 0 for all t ∈ [0, τ ] and

Γ(0),Γ(τ) /∈ Supp(Fξ).

We set [0, τ ]→ Λ(t) = {x0 = t} the family of local hypersurfaces in T ∗M along Γ(t).

Since Γ̇(t) = Xη(Γ(t)), then ∂Hη/∂y0 6= 0. Therefore, Λ(t) is a local transversal section at

the point Γ(t), for each t ∈ [0, τ ]. Let Yξ be the Hamiltonian vector field of the Hamiltonian

Fξ : T ∗M → R, satisfies the conditions of general case (Proposition 5.1.2). We consider

the map St : (Λ(0),Γ(0)) → (Λ(0),Γ(0)) defined by St = St(ξ) = St(Yξ) = P−1
t ◦ P ′t

where Pt and P ′t denote the Poincaré maps for the Hamiltonian field Xη and X(η+ξ), with

dξ ∈ Fk, respectively.

Since ξ0(x0, x) = δ(x0)β(x) and jk(β)(0) = 0 we have that, if

Y 1
ξ := −∂Fξ

∂x1

∂

∂y1

,

and Y 2
ξ := Yξ − Y 1

ξ , then jk(Y 2
ξ )(Γ(t)) = 0 and jk+1(Y 1

ξ )(Γ(t)) 6= 0 for all t ∈ [0, τ ].

Moreover, since Λ(t) = {x0 = t}, the vector field Y 1
ξ |Λ(t) is tangent to Λ(t), for all

t ∈ [0, τ ]. Therefore we have the following of the proposition 5.1.2.

Corolary 5.2.1. The jk(ST (ξ))(Γ(0)) is equal to the k-jet of the flow at time t associated

with the non-autonomous vector field P ∗t (Y 1
ξ |Λ(t)) at the point Γ(0).

This is similar to Remark 2 in [26]. Consider Σ(t) := Λ(t) ∩ H−1
η (Hη(Γ(0))) ⊂ T ∗M

submanifold for all t ∈ [0, τ ]. Then the canonical 2-form ω0 induces a symplectic structure

on Σ(t) and the restriction Pt|Σ(0) : Σ(0) → Σ(t) is a symplectic map for all t ∈ [0, τ ].

Since Λ(s) ∩H−1
η+ξ(Hη+ξ(Γ(0))) = Σ(s) for s = 0, τ , the restriction P ′T |Σ(0) : Σ(0)→ Σ(τ)

is also a symplectic map.

Note that ∂Hη/∂y0(Γ(t)) = 1 for all t ∈ [0, τ ]. For each t ∈ [0, τ ] there is open set

Ut ⊂ R2n and a function αt : Ut → R such that

Σ(t) = {(t, x, αt(x, y), y) ∈ Λ(t) : (x, y) ∈ Ut}.

Note that ω0|Σ(t) = dx ∧ dy. For each dξ ∈ Fk and t ∈ [0, τ ], we define

Fξ,t(x, y) = Fξ|Σ(t) = ξ0(t, x)
∂Hη

∂y0

(t, x, αt(x, y), y) +O(x
2(k+1)
1 ),
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and we denote by Zξ,t the Hamiltonian field correspondent to the Hamiltonian Fξ,t :

Σ(t)→ R. We have that

jk+1(Fξ,t)(Γ(t)) = jk+1(ξ0)(t, 0) = δ(t)xk+1
1 ,

take F (x, y) = xk+1
1 .

Proposition 5.2.2. The jk(St|Σ(0))(Γ(0)) is equal to the k-jet in Γ(0) of the Hamiltonian

flow at time t correspondent to the non-autonomous Hamiltonian δ(t)F ◦(Pt|Σ(0)) in Σ(0).

This is similar to Proposition 4.4 in [26]. We define the map

Skτ : Fk −→ Jks (n),

dξ 7−→ jk(Sτ (ξ)|Σ(0))(Γ(0)).

We have that Skτ (Fk) ⊂ ker(πk), where the map πk : Jk+1
s (n)→ Jks (n) is the canonical

projection.

Proposition 5.2.3. Suppose that the one parameter family t ∈ [0, τ ] 7→ dΓ(0)Pt|Σ(0) ∈

Sp(n) is (k + 1)-general for some k > 1. Then SkT (Fk) is an open subset of ker(πk).

The proof of these propositions are similar as in [26].

5.3 Proof of theorem 5.1.1

In this section we are going to give the proof of the theorem 5.1.1, which we do in two

parts. The first part is for the exact case and in the second part we use the fact that

locally a closed form is exact. See [26].

Let us first consider the exact case:

Let γ : R → M be a dη-magnetic geodesic of period Tθ (where θ = (γ(0), γ′(0))) and

let Hη : T ∗M → R be the correspondent magnetic Hamiltonian. Since the number of

self-intersection points is finite, we can choose τ ∈ (0, Tθ], such that the segment γ([0, τ ])

does not contain self-intersection of the curve γ. Let U be a tubular neighbourhood of
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γ ([0, τ ]) in M , sufficiently small, such that U ∩ γ = γ([0, T ]). It follows that we can

choose a local coordinates system (x0, x) in U and a family of local transversal sections

Σ(t) ⊂ H−1
η (Hη(Γ(0))) ⊂ T ∗M as in the last section. By proposition 5.1.6, there exists

an exact close 2-form dη arbitrarily Cr-close to dη, for r > k, such that the correspondent

one parameter family [0, τ ]→ dΓ(0)Pt|Σ(0) is l-general, for any l = 2, . . . , k + 1.

We set F l = F l(U, γ, η, τ) ⊂ Ω
2
(M), for l = 2, . . . , k + 1, as the last section, and

F = F(U, γ, τ) =
{
dξ ∈ Ω

2
(M) : dη|γ([0,τ ]) ≡ 0 and suppdη ⊂ U

}
.

It is easy to see that F l ⊂ F for all l = 1, . . . , d. We define the map

S : F −→ Jks (n),

dξ 7−→ jk(Sτ (ξ))(Γ(0)).

By theorem 3.2.3 and proposition 5.2.3, we have that S is an open map in a neighbour-

hood of 0 ∈ F . Since jk(P (dη, θ,Σ)) ∈ Q, the openness of S in a neighbourhood of zero

implies that there exists an exact 2-form dξ arbitrarily Cr-close to zero, with r > k, such

that the S(dξ) is an element of the set jk(P (θ,Σ, dη))−1 ·Q, then jk(P (θ,Σ, d(η+ξ))) ∈ Q,

this prove the theorem for the exact case.

We now consider the non-exact case:

Let Ω be a non-exact 2-form on M and let γ, τ , U and F = F(U, γ, τ) be as in the

exact case. We can suppose without loss of generality that there is ε > 0, such that the

segment γ : [−ε, τ +ε]→M does not has self-intersection points. Let N ⊂M be an open

tubular neighbourhood of γ(−ε, τ+ε) and by reducing U , if necessary, we can assume that

U ⊂ N . Since N is a tubular neighbourhood of γ(−ε, τ + ε), we have Ω|N = dη, for some

1-form η in N ⊂ M . Hence, the restriction of the magnetic flow to TN = TNM ⊂ TM

is an exact magnetic flow. Then it is conjugated to a Hamiltonian flow in (T ∗N,ω0) for

the Hamiltonian Hη : T ∗N → R, defined as before. Observe that, by definition of the

perturbation space F , if an exact 2-form dξ ∈ F then ξ has compact support in U ⊂ N .

Therefore, ξ can be extended to a global exact 1-form on M , still denoted by ξ, as zero

outside N . Since the k-jet at one point of a map is totally determined by its restriction in

any neighbourhood of that point, it is enough to prove the theorem for a segment γ([0, τ ])
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in the open neighbourhood N . Therefore, the proof of the theorem is reduced to the

already proven one, which is the exact case.

We conclude this chapter by saying that the following corollaries is obtained using the

corollary 4.1.8 and the definition 4.1.1

Corolary 5.3.1. Given an open and dense invariant subset Q ⊂ Jks (n), the property:

PQ : the k-jet of the Poincaré map belong to Q

is a Cr-generic property for magnetic flows, with k < r ≤ ∞.

This is the desired generic property, since it is the property that other flows satisfy

such as geodetic flows by [15], Hamiltonian flows by [45], Tonelli Hamiltonian flows by [6]

and magnetic flows on surfaces by [26].
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Chapter 6

Franks’ Lemma and Positive Entropy

This last chapter is divided into two parts. In the first part we are going to study the

version of Franks’s Lemma in this context of magnetic flows in manifolds of any dimension.

The original version of this lemma was made for diffeomorphisms in manifolds of any

dimension and proved by Franks. This lemma has many applications, but one of the most

important is made by Mañé [25] in the C1-structurally stable. A long time later, Contreras

and Paternain [9] proved the version of this lemma in the context of flows geodesic on

surfaces, a few years later Contreras [8] proved it for any dimension. Then Miranda [27]

proved this result in this context of magnetic flows but in surfaces. The idea here is to

generalize this result.

Oliveira proved in [30] the Kupka-Smale’s theorem in the context of Tonelli flows on

surfaces. Then using the methods of geometric control theory Rifford and Ruggiero in [38]

obtain a perturbative result which implies and generalizes the of Oliveira for manifolds

of any dimension. This is the first time we see that the methods of geometric control

theory make a big difference in the study of conservative systems. On the other hand,

using these same methods, Lazrag [19] and [20] improves the proved of Franks’ lemma

for geodetic flows made by Contreras. However these methods were improved by Lazrag,

Rifford and Ruggiero in [21] to obtain the version of Franks’ lemma for geodetic flows.

The difference with the work of Contreras [8] is that his Franks’ lemma works on an open

and dense set of Riemannian metrics. On the contrary, Lazrag, Rifford and Ruggiero [21]
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obtain the result on all the Riemannian metrics, besides for Contreras it is not difficulty,

since its main result is that generically every Riemannian metric has geodesic flow with

positive entropy.

The second part of this chapter, we are going to study a property of dichotomy for

the magnetic flows. Basically this says that there exists a set of open and dense magnetic

flows such that either the topological entropy is positive or the closed set of closed orbits

is a hyperbolic set. This result is another way of writing Miranda’s work on surfaces

[27]. On the other hand, if we contrast with geodetic flows, Contreras [8] has the version

of this result and his method is to split the prove into two parts. The first works with

the geodesic flows that do not have periodic hyperbolic orbit, where he gets to perturb

and find a basic non-trivial hyperbolic set, thus a type Smale’s horseshoe which implies

positive topological entropy. In the second part he studies geodetic flows with an infinite

number of periodic orbits, this is due to the Kupka-Smale theorem for geodetic flows.

Using Rademacher’s theorem [37], in order to perturb and still obtain an infinite quantity

of closed orbits and passing through the Smale’s spectral decomposition theorem for flows

he obtains a basic non-trivial hyperbolic set, then also positive topological entropy. A

major difference in our context is, that there is no version of Rademacher’s theorem in

magnetic flows, this is the main reason.

6.1 Franks’ lemma for magnetic flows

In this section we are going to prove the Franks’ lemma in this context of magnetic flows

on manifolds of any dimension. As we explained earlier, the importance of geometric

control theory, in particular the works of Lazrag, Rifford and Ruggiero [21]. The idea is

to first obtain the perturbative result, which we already get, which is the theorem 3.2.3,

where we use section 2.6.

Let c > 0, Ω be a smooth closed 2-form so M . We set θ = (x, v) ∈ T cM , with

γ : [0, τ ]→M magnetic geodesic such that γ(0) = x and γ̇(0) = v, where 0 < τ < K(c,Ω).

Considering the definitions of F and Sτ,θ of the section 3.2, under these conditions we
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can use the theorem 3.2.3. In this case, there is K,R > 0 such that if r ∈ (0, R)

BKr(Sτ,θ(0)) ∩ Sp(n) ⊂ Sτ,θ

(
BC1

r (0) ∩ F
)
.

This will prove the Franks’ lemma for magnetic flows in any dimension.

Suppose that θt = (γ(t), γ′(t)) ⊂ T cM is a closed orbit and let Tθ > 0 be its minimal

period. By Lemma 2.4.5, K := K(c,Ω) < Tθ and the number of self-intersection points of

γ is finite. We fix τ ∈ (K/2, K], such that Tθ = lτ , with l ∈ N, denote γi(t) = γ(t + iτ).

There exists Ui ⊂M open and disjoint sets for 0 ≤ i ≤ l − 1, such that

Ui ∩ γ((0, τ)) ⊂ γ((0, τ)), and Ui ∩ Uj = ∅, for every i 6= j.

For U =
l−1⋃
i=0

Ui, we consider the map

Sθ : F −→
l−1∏
i=0

Sp(n),

dη 7−→ dθP(Ω + dη)(Tθ) =
l−1∏
i=0

dθiτPi(Ω + dη),

where Pi is the Poincaré map from Σiτ to Σ(i+1)τ . Applying l times Theorem 3.2.3, we

prove the following corollary.

Corolary 6.1.1. (Franks’ Lemma) Let c > 0, Ω be a smooth closed 2-form on M and θ

in T cM such that φΩ
t (θ) be a closed orbit in T cM with minimal period Tθ. Let l and Sθ be

defined as above. If U an open neighborhood of Ω in the C1 topology, then there exist r > 0

that depend of c > 0, Ω and U such that the the image of the set U ∩F under the map Sθ

contains a product of balls of radius r center at (S0,θ(Ω), . . . , Sl−1,θ(Ω)) ∈
l−1∏
i=0

Sp(n).

On the other hand, if we consider F := {α1, . . . , αN} be a finite set of Ω-magnetic

geodesic that are transverse to γ. We have the following result.

Proposition 6.1.2. For any tubular neighborhood U of γ and any set F of transverse

Ω-magnetic geodesic, the support of the C1 perturbation can be contained in U \ V for

some neighborhood V of the transverse Ω-magnetic geodesic F.

The Franks’ lemma will be useful for the study of the magnetic flows with infinity

many closed orbits in sn energy level.
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6.2 Star Magnetic flows

In this section, first we are going to state the main result of this last chapter which is the

property of the magnetic flows defined in manifolds of any dimension. The proof of this

result will be made in two parts, the first in this section and the second in last.

Remember the section 2.7 for definitions. Thus our main result is the following.

Theorem 6.2.1. There exists an open and dense set in the C1-topology of smooth closed

2-form in M whose magnetic flow have positive topological entropy or have a finite number

of periodic orbits.

If the version of Rademacher’s theorem exist in our context, we could improve our

main result and thus obtain a version of Contreras’s theorem in our context. Although

we know that at very high energy levels the exact magnetic flow can be seen as geodetic

flow and thus we can improve our result, only for high energy levels in exact magnetic

flows.

Let c > 0 and Ω be a smooth closed 2-form in M , we define P(Ω, c) be the set of

all closed orbit of φΩ
t in T cM and Per(Ω, c) be the union of α(R) for all α ∈ P(Ω, c).

We now denote by H1(M, c) the set of smooth closed 2-form Ω in M such that α is

hyperbolic closed orbit, for all α ∈ P(Ω, c), this set is endowed with the C1-topology. Let

h ∈ H2(M,R), consider

F1
h(M, c) := intC1H1(M, c) ∩ Ω

2

h(M),

and F1(M, c) :=
⋃
{F1

h(M, c) : h ∈ H2(M,R)}.

Definition 6.2.2. We say that the magnetic flow φΩ
t (or Ω) is star if Ω ∈ F1(M, c).

Note that Per(Ω, c) ⊂ T cM is a compact and invariant subset.

Theorem 6.2.3. If Ω is star, then Per(Ω, c) ⊂ T cM is a hyperbolic set.

In this section we are going to prove the theorem 6.2.3. In fact we are going to

prove the local version of this result, where we will use the Franks’ lemma and the stably

hyperbolic of the symplectic linear maps.
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6.2.1 Symplectic hyperbolic stability

In this section we will study the hyperbolic stability of a family of periodic sequences of

symplectic linear maps. Our main reference here is Contreras [9], section 8.

We say that a linear map T : R2n → R2n is hyperbolic if there exists a splitting

R2n = Es ⊕ Eu and an iterate L ∈ N such that T (Es) = Es, T (Eu) = Eu and∥∥TL|Es∥∥ < 1

2
and

∥∥∥(T |Eu)−L
∥∥∥ < 1

2
.

The subspaces Es and Eu are called the stable subspace and unstable subspace respect of

T .

We say that a sequence τ : Z → Sp(n) is periodic if there exists l ≥ 1 such that

τi+l = τi for all i ∈ Z. We say that a periodic sequence τ is hyperbolic if the linear map
l∏

i=1

τi is hyperbolic. In this case the stable and unstable subspaces of
l−1∏
i=0

τi+j are denoted

by Es
j (τ) and Eu

j (τ) respectively.

We say that a family τ = {τα}α∈A of sequences in Sp(n) is bounded if there exists

R > 0 such that ‖ταi ‖ < R for all α ∈ A and i ∈ Z. Given two families of periodic

sequences in Sp(n), τ = {τα}α∈A and η = {ηα}α∈A, we say that they are periodically

equivalent if they have the same indexing set A and for all α ∈ A the periods of τα and

ηα coincide. Given two periodically equivalent families of periodic sequences in Sp(n),

τ = {τα}α∈A and η = {ηα}α∈A, define

d(τ, η) := sup {‖ταi − ηαi ‖ : α ∈ A, i ∈ Z} .

We say that a family τ = {τα}α∈A is hyperbolic if for all α ∈ A, the periodic sequence

τα is hyperbolic. We say that a hyperbolic periodic family τ is stably hyperbolic if there

exists ε > 0 such that any periodically equivalent family η satisfying d(τ, η) < ε is also

hyperbolic.

Finally, we say that a family of periodic sequences τ is uniformly hyperbolic if there

exist K > 0, 0 < λ < 1 and invariant subspaces Es
i (τ

α), Eu
i (τα), α ∈ A, i ∈ Z, such that∥∥∥∥∥

l−1∏
i=0

ταi+j|Esj (τα)

∥∥∥∥∥ < Kλl and

∥∥∥∥∥∥
(
l−1∏
i=0

ταi+j|Euj (τα)

)−1
∥∥∥∥∥∥ < Kλl,
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for all α ∈ A, j ∈ Z and l ∈ N. Observe that in this case the sequence τ is hyperbolic and

the subspaces Es
i (τ

α), Eu
i (τα) necessarily coincide with the stable and unstable subspaces

of the map
l−1∏
j=0

ταi+j.

We are now ready to state the following result.

Theorem 6.2.4. If τα is a stably hyperbolic family of periodic sequences of bounded

symplectic linear maps then it is uniformly hyperbolic.

For a prove see theorem 8.1 in [8]

6.2.2 Proof of theorem 6.2.3

We will state and proved the local version of the theorem 6.2.3.

Given c > 0, U ⊂ T cM an open set and Ω be a smooth closed 2-form in M . Let

P(Ω, c, U) be the set of closed orbits of φΩ
t completely contained in U and Per(Ω, c, U) be

the union of α(R) for all α ∈ P(Ω, c, U). We denote by H1(U, c) the set of smooth closed

2-forms Ω on M such that α is a hyperbolic closed orbits, for all α ∈ P(Ω, c, U), this set

is endowed with the C1-topology. Let h ∈ H2(M,R), consider

F1
h(U, c) := intC1H1(U, c) ∩ Ω

2

h(M),

and F1(U, c) :=
⋃
{F1

h(U, c) : h ∈ H2(M,R)}.

Definition 6.2.5. We say that Ω is star in U if Ω ∈ F1(U, c).

The following proposition is a local version that implies theorem 6.2.3

Proposition 6.2.6. If Ω is star in U , then Per(Ω, c, U) ⊂ T cM is a hyperbolic set.

Proof. There exist h ∈ H2(M,R) such that Ω ∈ F1
h(U, c). Let K = K(c,Ω) the magnetic

injectivity radius. For each α ∈ A := P(Ω, c, U), exist θ = (x, v) ∈ T cM such that

α(t) = φΩ
t (θ) = (γ(t), γ′(t)) ∈ T cM , for every t ∈ R. Let Tα be the minimal periodic of α

and l = l(α,Ω) in N such that Tα = lτ for some τ ∈ (K/2, K]. Let for each i = 0, . . . , l−1

N (i, α) :=
{
ξ ∈ Tα(iτ)T

cM : 〈dπ(ξ), γ′(iτ)〉 = 0
}
.
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Note that Tα(iτ)T
cM = N (i, α)⊕

〈
XΩ(α(iτ))

〉
and the restriction of the twist symplectic

form ωΩ in N (i, α) is non-degenerate. Let Σi ⊂ TU be the local transversal section at

α(iτ) such that Tα(iτ)Σi = N (i, α). Let τα : Z→ Sp(n) be the periodic sequence of period

l such that ταi = dP (Ω, θ,Σi,Σi+1) : N (i, α)→ N (i+ 1, α) the linearized Poincaré maps.

Note that ταi = SΩ
τ,θiτ

(0) as in theorem 3.2.3.

Lemma 6.2.7. The family τ = {τα}α∈A is stably hyperbolic.

Proof. Since Ω ∈ F1
h(U, c), there exist U ⊂ Ω

2

h(M) a C1-neighbourhood of Ω such that,

if $ ∈ U , then β is a closed orbit hyperbolic, for every β ∈ P($, c). By the hyperbolic

analytic continuation, A and P($, c) are bijective, for every $ ∈ U . Let α ∈ A, then

β(α) ∈ P($, c) intersects the sections Σi, i = 1, . . . , l. Therefore, we can cut β(α) into

the same number if segments as α. So for each $ ∈ U and β(α) we can apply all before,

then we can say that τ = τ($) is hyperbolic.

We suppose that {τ($)}$∈U is not stably hyperbolic, then there is a periodically

equivalent family η with d(τ, η) arbitrarily small which is not hyperbolic. Then there

exists α in A and a sequence of linear symplectic maps ηαi : N (i, c) → N (i + 1, c) such

that ταi and ηαt are closed arbitrarily and
l∏

i=1

ηαi is not hyperbolic. We now will use

the corollary 6.1.1. Note that the perturbation space in theorem 3.2.3 preserves α. By

corollary 6.1.1 there exist a 2-form $ in U such that α ∈ P($, c) and ηαi = S$θ (0). Since

dθP ($, θα,Σ0,Σ0) =
l∏

i=1

Si,θ($) =
l∏

i=1

ηαi , then α is not hyperbolic for the magnetic flow

of $. This contradicts the choice of U .

Then, from Theorem 6.2.4 we obtain a hyperbolic splitting on P(Ω, c, U). The Hyper-

bolicity condition implies the continuity of the splitting in Per(Ω, c, U), see for example

the proposition 6.4.4 in [13] for diffeomorphisms. Then the splitting extends continuously

to the closure Per(Ω, c, U) and the extension is also a hyperbolic set.

Thus we can conclude that, Per(Ω, c) is a hyperbolic set, for every Ω star in M . Now

we will study the case when Ω is not star.
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6.3 Elliptic closed magnetic geodesic

In this section we will prove the result main theorem 6.2.1. We really need to study

non-star magnetic flows. For that, first we can obtain the following, using theorem 4.1.2

and the corollary 5.3.1.

Theorem 6.3.1. Let Q ∈ Jks (n) be open, dense and invariant. Then the following prop-

erty:

1. all closed orbits are hyperbolic or elliptic,

2. all k-jet of the Poincaré map belong to Q

3. all heteroclinic points are transversal

are Cr-generic for magnetic flows, with k ≤ r ≤ ∞.

Since countable intersections of residual subsets are residual, in Theorem 6.3.1 we can

replace Q by a residual invariant subset in Jks (n).

The idea for the demonstration is to find a suitable set Q such that given an Ω by the

theorem 6.3.1 there exists a perturbation of Ω such that it has an elliptic closed orbit.

Then by Le Calvez [22] and Contreras [8] we can find, near this elliptical orbit, another

hyperbolic orbit with a transversal homoclinic point.

6.3.1 Symplectic twist maps

In this section we are going to study the twist property of the Poincaré map.

Let c > 0 and Ω be a smooth closed 2-form in M , if θ ∈ T cM such that θt = φΩ
t (θ) is

a closed orbit in T cM . Let P := P (Ω, θ,Σ) the Poincaré map. Remember the following

defines. We say that θt is

1. degenerate if dP has an eigenvalue which is a root of unity.

2. hyperbolic if dP has not eigenvalue of modulus 1.
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3. elliptic if is non degenerate and non hyperbolic.

4. c-elliptic if is elliptic and dP has precisely 2c eigenvalues of modulus 1.

Suppose that θ is a c-elliptic periodic point, c ≤ n. Let TθΣ = Es ⊕ Ec ⊕ Eu be the

decomposition into the stable, center and unstable subspaces for dP . This is, Es, Ec and

Eu are invariant under dP and dP|Es has only eigenvalues ρ of modulus |ρ| < 1, dP|Ec

has only eigenvalues ρ of modulus |ρ| = 1 and dP|Eu has only eigenvalues ρ of modulus

|ρ| > 1. Then there are local embeddings W s : (Rn−c, 0)→ (Σ, θ), W c : (R2c, 0)→ (Σ, θ)

and W u : (Rn−c, 0) → (Σ, θ), such that TθW
σ = Eσ, σ ∈ {s, c, u}, which are locally

invariant under P . They are called stable, center and unstable manifolds for (Σ, θ). The

stable and unstable manifolds are unique, but the center manifold may not be unique. If

P is of class Ck (resp. C1) then W s, W u, are Ck (resp. C1). If P is of class Ck (resp.

C1) then W c can be chosen Ck (resp. Cr , with r arbitrarily large) on a sufficiently small

neighborhood of θ. The submanifolds W s, W u are isotropic with respect to the twisted

symplectic structure ωΩ (i.e. ωΩ|Es ≡ 0 and ωΩ|Eu ≡ 0) because P preserves ωΩ and dP

(resp. dP−1) asymptotically contracts tangent vectors in W s (resp. W u). The restriction

ωΩ|Ec is non degenerate (see [41]) and hence P|W c is a symplectic map on a sufficiently

small neighborhood of θ.

Let ρ1, . . . , ρc, ρ1, . . . , ρc be the eigenvalues of P with modulus 1.

Definition 6.3.2. We say that θ is 4-elementary if
c∏
i=1

ρνii 6= 1 whenerver 1 ≤
c∑
i=1

|νi| ≤ 4.

In this case there are symplectic coordinates (x1, . . . , xc, y1, . . . , yc) in W c such that

ωΩ|W c =
∑c

i=1 dyi∧dxi and P|W c is written in the Birkhoff normal form P(x, y) = (X, Y ),

where

Zk = e2πiϑkzk + fk(z), where ϑk = ak +
c∑
l=1

βkl|zl|2,

z = x + iy, Z = X + iY , ρk = e2πiak and f(z) = f(x, y) has vanishing derivatives up to

order 3 at the origin, note that ak ∈ [0, 1) is not rational.

Definition 6.3.3. We say that θ is weakly monotonous if the matrix β = (βkl) is non-

singular.
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The property det(β) 6= 0 is independent of the particular choice of normal form. In

these coordinates, the matrix β can be detected from the 3-jet of P at θ = (0, 0) and it

can be seen that the property of be 4-elementary and weakly monotonous is open and

dense in the jet space J3
s (c).

Consider the following maps

(x, y) A (ϑ, %) B (ϑ, %2/ε) = (ϑ, r)

D∗ −−−−−−→ Tc × Rc
+ −−−−−−→ Tc × Rc

+

yfc
yFε

D∗ −−−−−−→ Tc × Rc
+ −−−−−−→ Tc × Rc

+

A B

where D = {(x, y) ∈ Rc × Rc : |x|2 + |y|2 < 1}, D∗ = D \ {(0, 0)}, fc = P|W c in the above

coordinates, Tc = Rc/Zc and A−1 is given by xk = %k cos(2πϑk), yk = %k sin(2πϑk). Since

the coordinates in Birkhoff normal form are symplectic, the map fc preserves the form

ωΩ = dx ∧ dy. Let C = B ◦ A : D∗ → Tc × Rc
+ be given by C(x, y) = (ϑ, r), rk = %2

k/ε.

Then C∗(rdϑ) =
1

2πε
(xdy− ydx) =: λε. Since D is simply connected, f ∗c (λε)−λε is exact.

Therefore F ∗ε (rdϑ)− rdϑ is exact.

Let Fε(ϑ, r) := (ϑ + a + εβr, r) be the symplectic diffeomorphism given by the first

term in Birkhoff normal form in the coordinates (ϑ, r). Its N -th iterate is given by

FNε (ϑ, r) = (ϑ+Na+ εNβr, r). This is a totally integrable (see [5]) weakly monotonous

(i.e. det(εNβ) 6= 0) twist map of Tc × Rc
+. Let Bδ open ball in Rc

+ with center point
1

2c
(1, . . . , 1) and radius δ. In the Moser’s Appendix in [14], J. Moser proves that given

ς > 0 there exist δ > 0, N ∈ N and ε > 0 such that

1. ‖FN
ε −FNε ‖C1 < ς in Tc × Bδ and

2. there exists a torus T c radially transformed by FN
ε in Tc×Bδ, i.e. T c = {(ϑ, r(ϑ)) :

ϑ ∈ Tc} ⊂ Tc × Bδ such that FN
ε (ϑ, r(ϑ)) = (ϑ,R(ϑ)) for some R : Tc → Rc

+

Let fN be a generating function for FN
ε , i.e. a function fN : Rc × Bδ → R such that
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dfN =
(
FN
ε

)∗
(rdϑ)− rdϑ. On the radially transformed torus T c we have that

dfN(ϑ, r(ϑ)) = (R(ϑ)− r(ϑ))dϑ

Then critical points of dfN |T c correspond to fixed points of FN
ε in Tc.

Let Q ⊂ J3
s (n) be the set of 3-jets of C3 symplectic automorphisms T of Rn × Rn

which fix the origin and are such that

1. The eigenvalues of d0T are all different.

2. the eigenvalues of modulus 1 satisfy 4-elementary.

3. The coefficient of the Birkhoff normal form satisfy the weakly monotonous condition.

It is well known that Q is residual and invariant in all Jks (n), k ≥ 3, thus we can use

Q in theorem 6.3.1.

6.3.2 Proof of theorem 6.2.1

In this last section we are going to obtain positive topological entropy from non-star

magnetic flows.

Let c > 0 and Ω be a smooth closed 2-form in M non-star, by theorem 6.3.1, we have

that there exist Ω̃ arbitrarily Cr-near to Ω (r ≥ 4) such that the magnetic flow φ̃t of Ω̃ in

T cM have a elliptic closed orbit θt and satisfying (2) and (3) of theorem 6.3.1.

We can suppose that θ is a c-elliptic periodic point with c ≤ n, as stated in the before

section, Moser proves that there exist a subset Tc × Bδ neighborhood of θ and iterate

N ∈ N such that the N -th iterate FN
ε of the Poincaré map Fε = P|W c is a weakly

monotonous twist map with fixed points which is C1 near to a totally integrable twist

map FNε in these conditions, we can to use the theorem 4.1 in [8], thus we obtain that F

has a 1-elliptic periodic point θ̃ near θ. Since the central manifold is normally hyperbolic,

by lemme 8.6 in [5], the periodic point θ̃ will also be 1-elliptic for the whole Poincaré map

P .

As the central manifold W c have dimension 2, we can to use the following result
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Proposition 6.3.4. (Le Calvez [22]) Let f be a diffeomorphism of the annulus R × S1

such that it is a twist map, it is area preserving, the form f ∗(rdϑ)− rdϑ is exact and:

1. If x is a periodic point for f and q is its least period, the eigenvalues of dxf
q are

not roots of unity.

2. The stable and unstable manifolds of hyperbolic periodic orbits of f intersect transver-

sally.

Then f has periodic orbits with homoclinic points.

Thus we have that P|W c have hyperbolic orbits with homoclinic points. This hyper-

bolic periodic orbit will be hyperbolic in the Poincaré section (see [5]). A homoclinic point

in the central manifold is also a homoclinic point in the Poincaré section, and it must

be transversal by the Kupka-Smale condition. Since the fact of have homoclinic point

is stable, so there exists Ũ neighborhood of Ω̃ such that if κ ∈ Ũ then φκt has a closed

orbit in T cM where those Poincaré map Pκ has a homoclinic point, then φκt has positive

topology entropy htop(κ, c) > 0.

Using the following result

Proposition 6.3.5. Let A ⊂ X such that for every x ∈ X and ε > 0 there exists a ∈ A

and V neighbourhood of a with d(a, x) < ε, then A contain a subset open and dense.

We have that for c > 0 there exist a subset open and dense in Ω
2
(M) \ F1(M, c) such

that if Ω belong such subset, φΩ
t in T cM have positive entropy topological. Thus, for all

c > 0, there exist a subset C1-open and dense in Ω
2
(M) such that if Ω belong such subset,

φΩ
t in T cM either have positive topological entropy or the closed set of periodic orbits is

a hyperbolic set. Finally we can take the union respect to c > 0 and obtain our result.
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