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matemático. Além da orientação no doutorado, devo a ele a oportunidade de seguir em

frente nessa carreira que tanto amo. Sou eternamente grato por isso e tenho certeza de

que sua orientação e amizade me acompanharão pela vida inteira.
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Resumo

Neste trabalho estudamos folheações suaves de codimensão um com singularidades de

Morse sem conexões de sela em variedades fechadas. Nós estendemos os resultados de

[2], [3], que são extensões do resultado clássico de Reeb em [15], [17] e o resultado de E

Wagneur [44].

Em particular, estendemos o seguinte resultado de [2] que diz, um variedade fechado

conexo e orientada três dimensional admitindo folheação de Morse ter mais singularidades

centro de selas é difeomórfico de três esfera. Nós estendemos seu caso n-dimensional

também que é em [3]. Nós também estender tipo teorema de Haefliger para S3.

Em [2], [3] os resultados tem sido provado por meio da técnica de eliminar pares de centro-

sela triviais de singularidades. Neste trabalho, provar os mesmos resultados em [2], [3]

por acoplamento e eliminação de par de selas complementares.



Abstract

In this work we study codimension one smooth foliations with Morse singularities with-

out saddle connections on closed manifolds. We extend the results of [2], [3], which are

extension of classical result of Reeb in [15], [17] and the result of E Wagneur [44].

In particular we extend the following result of [2] which says, a closed connected and

oriented three dimensional manifold admitting Morse foliation having more center singu-

larities than saddles is diffeomorphic to three spahere. We extend its n-dimensional case

too which is in [3]. We also Extend Haefliger’s type theorem for S3.

In [2], [3] the results has been proved by using the technique of eliminating trivial center-

saddle pairs of singularities. In this work we prove the same results in [2], [3] by coupling

and eliminating of pair of complementary saddles.
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Organização do texto

O texto encontra-se dividido em cinco caṕıtulos. Em §1 definimos folheação e alguns temas

relacionados com a folheação. Para motivação das singularidades de Morse também dis-

cutimos teorema de Haefliger. Em §2 definimos folheação de Morse e dar alguns de seus

exemplos. Nós damos o conceito de dead branch, o que nós precisamos na prova de alguns

teoremas em capitulo 3. Em §3 nos discutimos alguns teoremas usando o procedimento

de eliminação de singularidades de centro-sela, a fim de substituir o uso de Poincaré-

Bendixson. Em §4 discutimos um novo conceito de acoplamento e eliminação de duas

singularidades de sela de ı́ndices complementares. Ao usar esse conceito damos estender

os resultados do último caṕıtulo. Em §5 estudamos folheações compactos com singulari-

dades. Nós essencialmente investigar uma posśıvel extensão do teorema reconhecimento

esfera da Reeb [17] em diferentes contextos, em que admitem diferentes conjuntos singu-

lares. Começamos com não-degenerados singularidades isoladas, mas também considerar

alguns casos de um degenerado, mas conjunto singular regular, ou seja, um conjunto

com a propriedade de que seus componentes conectados têm um sistema fundamental de

compactos bairros ”invariantes”.
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Introduction

The interplay between the topology of a closed manifold and the combinatorics of the

critical points of a real valued function of class C2 defined on the manifold is a a well

known fact of Morse theory ([11]). It is natural to expect a similar relationship for foliated

manifolds. This became evident for the first time with the following result of G. Reeb

([17]), a consequence of his Stability Theorem ([1], [7], [15]):

Theorem 1. Let M be a closed oriented and connected manifold of dimension m ≥ 2.

Assume that M admits a C1 transversely oriented codimension one foliation F with a

non empty set of singularities all of them centers. Then the singular set of F consists of

two points and M is homeomorphic to the m-sphere.

Later on Eells and Kuiper classified the closed manifolds admitting a C3 function with

exactly three non-degenerated singular points ([42], [43]):

Theorem 2. Let M be a connected closed manifold (not necessarily orientable) of dimen-

sion m. Suppose M admits a Morse function f : M → R of class C3 with exactly three

singular points. Then:

(i) m ∈ {2, 4, 8, 16}

(ii) M is topologically a compactification of Rm by an
m

2
-sphere

(iii) If m = 2 then M is diffeomorphic to RP (2). For m ≥ 4 M is simply-connected and

has the integral cohomology structure of the complex projective plane (m = 4), of the

quaternionic projective plane (m = 8) on of the Cayley projective plane (m = 16).

We will call these manifolds Eells −Kuiper manifolds. In both situations we have a

closed manifold endowed with a foliation with Morse singularities where the number of
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centers is greater than the number of saddles. In [2] it has been proved that, in the case

that the manifold is orientable of dimension three, this implies it is homeomorphic to the

3-sphere. In [3] it has been proved the n-dimensional case. We proceed to define the main

notions we use.

E. Wagneur [44] in 1978 generalized the Reeb sphere theorem to Morse foliations with

saddles. He showed that the number of centers cannot be too much as compared with the

number of saddles, notably, c ≥ s+ 2. So there are exactly two cases when c > s:

(1)c = s+ 2

(2)c = s+ 1

He obtained a description of the manifold admitting a foliation with singularities that

satisfy (1).

Finally, in 2008, C. Camacho and B. Scardua considered the case (2), c=s+1. Inter-

estingly, this is possible in a small number of low dimensions.

Theorem. Let Mn be a compact connected manifold and F a Morse foliation on M . If

s = c+ 1, then:

(1) n = 2, 4, 8 or 16

(2) Mn is an Eells-Kuiper manifold.

A codimension one foliation with isolated singularities on a compact manifold M is a

pair F = (F0, singF) where singF ⊂M is a discrete subset and F0 is a regular foliation

of codimension one on the open manifold M\ singF . We say that F is of class Ck if F0

is of class Ck, singF is called the singular set of F and the leaves of F are the leaves of

F0 on M\ singF . A point p ∈ singF is a Morse type singularity if there is a function

fp : Up ⊂ M → R of class C2 in a neighborhood of p such that singF ∩ Up = {p},
fp has a non-degenerate critical point at p and the levels of fp are contained in leaves

of F . By the classical Morse Lemma ([?]) there are local coordinates (y1, . . . , ym) in

a neighborhood Up of p such that yj(p) = 0, ∀ j ∈ {1, . . . ,m} and f(y1, . . . , ym) =

f(p)− (y2
1 + · · ·+ y2

r(p)) + y2
r(p)+1 + · · ·+ y2

m . The number r(p) is called the Morse index of

p. The singularity p is a center if r(p) ∈ {0,m} and it is a saddle otherwise. The leaves of

F in a neighborhood of a center are diffeomorphic to the (m− 1)-sphere. Given a saddle

singular point p ∈ singF we have leaves of F
∣∣
Up

that accumulate on p, they are contained

in the cone τp: y
2
1 + · · · + y2

r(p) = y2
r(p)+1 + · · · + y2

m 6= 0 and there are two possibilities:
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either r(p) = 1 or m− 1 and then τp is the union of two leaves of F
∣∣
Up

, or r(p) 6= 1 and

m− 1 and τp is a leaf of F
∣∣
Up

. Any leaf of F
∣∣
Up

contained in τp is called a local separatrix

of F at p, or a cone leaf at p . Any leaf of F such that its restriction to Up contains a local

separatrix of F at p is called a separatrix of F at p . A saddle connection for F is a leaf

which contains local separatrices of two different saddle points. A saddle self-connection

for F at p is a leaf which contains two different local separatrices of F at p. A foliation F
with Morse singularities is transversely orientable if there exists a vector field X on M ,

possibly with singularities at singF , such that X is transverse to F outside singF .

Definition 1. A Morse foliation F on a manifold M is a transversely oriented codimen-

sion one foliation of class C2 with singularities such that: (i) each singularity of F is of

Morse type and (ii) there are no saddle connections.

Basic examples of Morse foliations are given by the levels of Morse functions f : M → R of

class C2. Therefore any manifold of class C2 supports a Morse foliation, i.e., the existence

of a Morse foliation imposes no restriction on the topology of the manifold. Nevertheless,

there are restrictions which come from the nature of the singularities of a Morse foliation

F on M .

Our purpose is to study the effect of the presence of singularities of Morse type on the

global topology of a codimension one foliation defined on a compact manifold of dimension

n ≥ 2. we introduce in §1. the notion of foliation with some examples for its motivation.

We will also see an example illustrating the concept. In §2. we study codimension one

smooth foliations with Morse singularities on closed manifold and some examples of Morse

foliation. we present a method of elimination of singularities which form trivial pairing,

via an isotopy of the foliation. In §3. we will study some results which define topology

of manifolds admitting Morse foliations, which have been proved by using the technique

of elimination of trivial center-saddle pairings. We prove generalizations of the Reeb and

Milnor topological characterizations of the n-sphere. One of the fundamental theorems in

codimension one foliation theory on compact manifolds with finite fundamental group is

the existence of a leaf with nontrivial holonomy. The use of Reeb stability theorem in place

of Poincare-Bendixon theorem paves the way of three dimensional version , for foliations

with Morse singularities , of classical result of Haefliger. This is due to Haefliger and

consists of two main steps. The first one consists in finding a closed transverse path to the

foliation, thus inducing in a 2-disc a pull back foliation by lines with Morse singularities,
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transverse to the boundary, and the second, using Poincaré-Bendixson theorem, in finding

a leaf with one-sided nontrivial holonomy. In §4. we shall introduce the concept of

coupling and elimination of two saddles of complementary indices which are in stable

connection. Using this method of elimination of complementary saddles , we shall extend

the results of chapter 4. Along the same line of reasoning we present in §5. we study

compact foliations with singularities. We Invetigate a possible extension of Reeb extension

theorem [17] in a different context. We start with the case of non-generate singularity, we

also consider degenerate singularity.
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Chapter 1

The notion of foliation

1.1 Motivation

The notion of foliation has been originally conceived in a classical approach by C. Ehres-

mann and G. Reeb by the year of 1950 (see [24],[36]). This concept can be motivated by

several different situations in Mathematics. In this part of the text we shall give some

examples of such situations.

Example 1 (Vector fields). Let X be a C1-vector field on a manifold Mm of dimension

m. The Flow Box Theorem can be stated as follows:

Theorem 3 (Flow Box). Given any point p ∈ M such that X(p) 6= 0 (i.e., p is not a

singular point of X) there exists a local chart ϕ : U ⊂ M → Rm of M with p ∈ U such

that ϕ(p) = 0 and ϕ∗X is the vector field ϕ∗X = em on ϕ(U) ⊂ Rm.

Here we denote, as usual, by {e1, . . . , em} the canonical basis of the euclidian space

Rm. In simple words, X corresponds, in a neighborhood of p in M , to a vertical constant

vector field on Rm, after a suitable change of coordinates on M . As a consequence of the

Flow Box Theorem one obtains the following:

Theorem 4 (Local Flow Theorem). Given any point p ∈ M there exists a map ϕ : X ×
(−ε, ε) → M defined in a product U × (−ε, ε) where U is a neighborhood of p in M and

ε > 0 a positive number, such that:

i) ϕ(q, 0) = q ∀q ∈ U
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ii) For any q ∈ U we have ∂
∂t
ϕ(q, t) = X(ϕ(q, t)).

So, t 7→ ϕ(q, t) is the only solution (trajectory) of X starting from the point q ∈ U .

Also we have that p ∈ M is a singular point for X if, and only if, ϕ(p, t) = p,

∀t ∈ (−ε, ε).

Assume now that X is non-singular in M . In this case, any point p ∈ M has a

neighborhood Up ∈M where the trajectories of X are arranged like curved lines.

Clearly, by uniqueness of such trajectories, in each intersection Up ∩ Uq 6= ∅ we have

a gluing of such trajectories. This way the manifold M is decomposed like a union

of immersed curves γ ⊂ M each one corresponding locally to a parameterized curve

t 7→ ϕ(q, t) and, therefore, each γ is a trajectory of X. However, X may have no global

parameterization ϕ : M × R→M for its solutions.

This shows that the trajectories of X have sense as curves on M but not necessarily

as globally parameterized curves. In this case that is important is, actually, the geometry

of the trajectories and the way they are embedded in M .

Example 2 (Submersions). Let f : Mm → R be a C1 submersion, that is, df(p) 6= 0,

∀p ∈ M . In this case the local form of submersion shows that for each p ∈ M we

may find an open neighborhood Up 3 p of p in M and a chart ϕp : Up → Rm such that

f ◦ ϕ−1
p (x1, . . . , xm) = xm, where (x1, . . . , xm) are affine coordinates in Rm ⊃ ϕp(Up).

Thus each non-empty level survface f−1(c), c ∈ R is a (not necessarily connected) closed

submanifold of codimension one of M . Moreover, as a consequence of the local form of

submersions, these level surfaces are locally arranged as the fibers of the fibration

(x1, . . . , xm) ∈ Rm 7→ R 3 xm.

Again M can be decomposed as a union of submanifolds with a geometrical sense.

1.2 Definition of foliation

Let M be a differentiable manifold of class Cr, r ≥ 0.

7



Definition 2. A foliation of class Cs 0 ≤ s ≤ r and dimension k on M is given by an

atlas {ϕj : Uj → Vj}j∈J of class Cs on M such that for each intersection Ui ∩ Uj 6= ∅ we

have the change of coordinates satisfying the following compatibility condition:

ϕj ◦ ϕ−1
i : Vi ⊂ Rn → Vj ⊂ Rn

preserving the fibration by horizontal planes Rk×{ · } on Rn = Rk×Rn−k. Equivalently,

if we consider coordinates (x, y) ∈ Rn = Rk × Rn−k with x ∈ Rk and y ∈ Rn−k then we

have

ϕj ◦ ϕ−1
i (x, y) = (Aij(x, y), Bij(y)).

Such an atlas is called a foliated atlas for F on M , any chart ϕj : Uj → Vj s called a

foliated chart for F and each Uj is a flow box (or distinguished) neighborhood on M .

Given any foliated chart ϕ : U ⊂ M → V ⊂ Rk × Rn−k = Rn for a foliation F of

dimension k as above, we define the plaques of F on U as the level surfaces ϕ−1((Rk ×
{y}) ∩ V ) ⊂ U , that is, the inverse images of the horizontal planes Rk × {y} ⊂ Rn by ϕ.

The compatibility condition implies that if U and U ′ are two foliated neighborhood

for F on M with connected intersection, U ′ ∩U 6= ∅ then for each p ∈ U ′ ∩U the plaques

Pp 3 p in U and P ′p 3 p in U ′ satisfy

Pp ∩ U ∩ U ′ = P ′p ∩ U ∩ U ′

In other words, the plaques of U and U ′ coincide in each connected component of

U ∩ U ′.

Definition 3. Given any point p ∈ M the leaf of F through p is the union Lp of all

plaques of F that can joined to p by a path of plaques.

Alternatively we may consider the following equivalence relation on M : two points

p, q ∈ M are equivalent say p ∼ q if and only if there exists a path a : [0, 1]
C0

−→ M with

a(0) = p, a(1) = q such that for each t ∈ [0, 1] there exists a neighborhood (t − ε, t + ε)

such that a([t − ε, t + ε] ∩ [0, 1]) is contained in a (same) plaque of F . The leaves of F
are the equivalence classes of this relation of M . In particular a leaf L of a foliation F as

above is a connected k-dimensional immersed submanifold of M . Also, for two leaves L

and L′ of F we have either L ∩ L′ = ∅ or L = L′.
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Example 3 (Reeb foliation). Denote by D
2

= {(x1, x2) ∈ R2; x2
1+x2

2 ≤ 1} the closed disc

on R2. Let f : D
2 ×R→ R be given by f(x1, x2, x3) = ρ(x2

1 + x2
2) · ex3 where ρ : R C∞−→ R

is a function such that ρ(0) = 1, ρ(1) = 0, ρ′(t) < 0, ∀ t > 0.

The foliation F of R3 given by the level surfaces of f is of codimension one and has

the cylinder C ' S1 × R (given by C = {(x1, x2, x3);x2
1 + x2

2 = 1}) as as leaf. Also the

interior of C, given by {(x1, x2, x3);x2
1 + x2

2 < 1} is a union of leaves all diffeomorphic to

R2, since they may be parameterized as D2 7→ R3, (x1, x2) 7→ (x1, x2, log( c
ρ(r2)

)) where

c > 0 and r2 = x2
1 + x2

2. The leaves outside C are diffeomorphic to cylinders.

Figure 1.1:

For instance we tray take ρ(r) := exp
(
− exp

(
1

1−r2
))

. In this case the leaves of F
outside D

2 × R are the cylinders x2
1 + x2

2 = r2, r > 1 and leaves inside the solid cylinder

parameterized by graphs of x3 = exp
(

1
1−r2

)
+ cte ∈ R. Along D

2 × [0, 1] we identify the

points (x1, x2, 0) and (x1, x2, 1) obtaining this way a solid torus D
2×S1 still equipped with

a foliation tangent to the boundary ∂D
2×S1 ∼= S1×S1, having other leaves diffeomorphic

to R2.

Figure 1.2:

This foliation on D
2 × S1 is called (by the authors) Reeb-foliation of D

2 × S1.
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Example 4 (integrable systems of differential forms). Let ω1, ..., ωr be differential 1-forms

of class Cr on a manifold M and assume that they are linearly independent at each point

p ∈ Mn. We may consider the distribution ∆ of n − r dimensional planes defined by

∆(p) ⊂ TpM is

∆(p) = {v ∈ TpM,ωj(p) · v = 0, j = 1, ..., r}.

This distribution is called integrable if it is tangent to a n− r dimensional foliation F on

M . According to the Integrability Theorem [41] this occurs if and only if the system of

1-forms is integrable which means that we have dωj ∧ ω1 ∧ ... ∧ ωr = 0 for all j = 1, ..., r.

This occurs for instance if we have a closed 1-form ω with ω(p) 6= 0,∀p ∈M . In this case

we have a codimension one foliation F on M which is defined by the Pffafian equation

ω = 0. The leaves of F are locally given by f = cte, where f is a local primitive for ω.

G be a Lie group and denote by G the Lie algebra of G. The Maurer-Cartan form

over G is the unique 1-form w : TG→ G satisfying:

i) w(X) = X, ∀X ∈ G

ii) Lg∗w = w, ∀ g ∈ G; where Lg : G ↪→ G is the left-translation x ∈ G 7→ gx ∈ G, g ∈ G
fixed.

The 1-form w satisfies the Maurer-Cartan formula dw + 1
2
[w,w] = 0.

In fact, given X, Y ∈ G we have

dw(X, Y ) = X.w(Y )− Y.w(X)− w([X, Y ]) = −[X.Y ].

But

[w,w](X, Y ) = [w(X), w(Y )]− [w(Y ), w(X)] = 2[X, Y ]

because X and Y belong to G and w(X) = X, ∀X ∈ G.

Thus we have dw(X, Y )+ 1
2
[w,w](X, Y ) = 0, ∀X, Y ∈ G which proves the Maurer-Cartan

formula.

Let now {X1, . . . , Xn} be a basis of G. We have [Xi, Xj] =
∑
k

ckijXk for some constants

ckij ∈ C, skew-symmetric in (i, j). The ckij’s are the structure constants of G in the basis

{X1, . . . , Xn}.
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Let now {w1, . . . , wn} be the dual basis to {X1, . . . , Xn}, with wj left-invariant. We have

dwk = −1
2

∑
i,j

ckijwi ∧wj and then it is easy to see that w =
∑
k

wkXk is the Maurer-Cartan

form of G.

We recall the following theorem of Darboux and Lie:

Theorem 5 ( [25] pag. 230). Let α be a differentiable 1-form on a manifold M tak-

ing values on the Lie algebra G of G. Suppose α satisfies the Maurer-Cartan formula

dα + 1
2
[α, α] = 0. Then α is locally the pull-back of the Maurer-Cartan form of G by a

differentiable map. Moreover the pull-back is globally defined if M is simply-connected;

and two such local maps coincide up to a left translation of G.

Corollary 1. Let α1, . . . , αn be linearly independent differentiable 1-forms on a manifold

M . Suppose dαk = −1
2

∑
i,j

ckijαi ∧ αj where the ckij’s are the structure constants of a

Lie group G in the basis {X1, . . . , Xn}. Then, locally, there exist differentiable maps

π : U ⊂ M → G such that αj = π∗wj, ∀ j where {w1, . . . , wn} is the dual (left-invariant)

basis of {X1, . . . , Xn}. Moreover if M is simply-connected then we can take U = M and

if π : U → G, π : U → G are two such maps with U ∩ U 6= φ and connected then we have

π = Lg ◦ π for some left-translation Lg of G.

This way we may construct foliated actions of Lie groups on manifolds by defining

suitable integrable systems of 1-forms on the manifold. This gives rise to the notion of

transversely homogeneous foliations which is a very important notion in the theory.

Example 5 (Lie groups foliated actions). Let G be a Lie group and M a differentiable

manifold. A differentiable map ϕ : G×M →M defines an action of G in M if:

(i) ϕ(e, x) = x, ∀x ∈M

(ii) ϕ(g1 ◦ g2, x) = ϕ(g1, ϕ(g2, x)), ∀x ∈M , ∀ g1, g2 ∈ G.

Here we denote by e ∈ G the identity element (also called the origin of G). In other

words ϕ defines a group homomorphism

G→ Diff(M)

g 7→ ϕg

where the map ϕg : M →M , x 7→ ϕ(g, x)

11



For instance a (R,+)-action On M corresponds to a flow on M , i.e. to a complete

vector field X on M given by X(x) = ∂ϕ
∂t

(t, x)|t=0 as we have already seen.

An action ϕ : G×M →M isfoliated if all the orbits Ox = {ϕ(g, x) ∈M, g ∈ G} have

same dimension (∀x ∈M). Given any point x ∈M the isotropy subgroup of x is defined

by Gx = {g ∈ G; ϕ(g, x) = x} < G.

Since Gx < G is a closed subgroup it is itself a Lie group (Cartan’s Theorem) and

also the quotient G/Gx has the structure of a differentiable manifold. Actually we have

Gx = Gy ∀x, y belonging to a some orbit of p and we may introduce the isotropy subgroup

of an orbit as well.

Given any x ∈M we have a natural (diffeomorphism) identification G/Gx
∼= Ox what

given an immersed submanifold structure Ox ↪→M .

An action ϕ : G×M →M is locally free if the isotropy subgroups Gx < G are discrete.

In this case the action is foliated (assume G connected). Finally, it is well-known that

any foliated (and therefore any locally free) action of class C1 is tangent to a foliation:

There exists a foliation F on M whose leaves are the orbits of ϕ (use the Inverse Function

Theorem).

For instance G = Aff(R) = {(t 7→ xt+ y), x ∈ R∗, y ∈ R} ∼= R∗×R is the affine group

of R, consisting of all affine maps R → R, t 7→ xt + y of the line R, is a Lie group that

generates interesting actions.

Example 6 (Fibre bundles). A (differentiable) fibre bundle over a manifold M is given by

a differentiable map π : E →M from a manifold E, called total space, which is (the map)

a submersion having the following local triviality property : for any p ∈ M there exist a

neighborhood p ∈ U ⊂ M and a diffeomorphism ϕU : π−1(U) ⊂ E −→
∼

U × F , where

F is fixed manifold called typical fiber of the bundle, such that the following diagram

commutes

π−1(U)
ϕU−→ U × F ↓ π ↙ π1U

where π1 : U×F → U is the first coordinate projection π1(x, f) = x. In other words ϕU

is of the form ϕU(x̃) = (π(x̃), . . . ). Such a diffeomorphism ϕU is called a local trivialization

of the bundle and U is a distinguished neighborhood of p ∈M . Given p ∈M the fiber over

p is π−1(p) ⊂ E and by the local trivialization each fiber is an embedded submanifold

12



diffeomorphic to F .

It is easy to see that the fibers of the bundle are the leaves of a foliation on E. Such

a foliation is also called a fibration. This situation is quite usual as shows the following

result:

Theorem 6 (Ehresmann). Let f : M → N be a C2 submersion which is a proper map

(i.e., f−1(K) ⊂M is compact ∀K ⊂ N compact). Then f defines a fibre bundle over N .

This is the case if M is compact for instance. One very important result concerned

with this framework is due to Tischler.

Theorem 7 (Tischler). A compact (connected) manifold M fibers over the circle S1 if,

and only if, M supports a closed non-singular 1-form.

This is the case if M admits a codimension one foliation F which is invariant by the

flow of some non-singular transverse vector field X on M .

Example 7 (Holomorphic Foliations). A (real) manifold M2n is a complex manifold if

it admits a differentiable atlas {ϕj : Uj ⊂ M → R2n}j∈J whose corresponding changes of

coordinates are holomorphic maps ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) ⊂ R2n ' Cn → ϕj(Ui ∩ Uj) ⊃

R2n ' Cn.

Such an atlas is called holomorphic.

In this case all the basic concepts of differentiable manifolds (as tangent space, tangent

bundle, etc...) can be introduced in this complex setting. This is the case of the concept

of foliation:

Definition 4. A holomorphic foliation F of (complex) dimension k of a complex manifold

M is given by a holomorphic atlas {ϕj : Uj ⊂ M → Vj ⊂ Cn}j∈J with the compatibility

property.

Given any intersection Ui ∩ Uj 6= ∅ the change of coordinates ϕj ◦ ϕ−1
i preserves the

horizontal fibration on Cn ' Ck × Cn−k.

Examples of such foliations are, like in the “real” case, given by non-singular holo-

morphic vector-fields, holomorphic submersions, holomorphic fibrations and holomorphic

complex Lie group actions on complex manifolds.
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Remark 1. (i) As in the “real” case, the study of holomorphic foliations may be very

useful in the classification Theory of complex manifolds.

(ii) In a certain sense, the “holomorphic case” is more close to the “algebraic case”

than the case of real foliations.

Example 8 (Suspension of a foliation by a group of diffeomorphisms). A well known way

of constructing transversely homogeneous foliations on fibred spaces, having a prescribed

holonomy group is the suspension of a foliation by a group of diffeomorphisms. This

construction is briefly described below: Let G be a group of Cr diffeomorphisms of a

differentiable manifold N . We can regard G as the image of a representation h : π1(M)→
Diffr(N) of the fundamental group of a complex (connected) manifold M . Considering

the differentiable universal covering of M , π : M̃ → M we have a natural free action

π1 : π1(M)× M̃ → M̃ , i.e., π1(M) ⊂ Diffr(M̃) in a natural way. Using this we define an

action H : π1(M) × M̃ × N → M̃ × N in the natural way: H = (π1, h). The quotient

manifold M̃×N
H

= Mh is called the suspension manifold of the representation h. The group

G appears as the global holonomy of a natural foliation Fh on Mh (see [41]). We shall

explain this construction in more details. Let M and N be differentiable manifolds of class

Cr. Denote by Diffr(N) the group of Cr diffeomorphisms of N . Given a representation

of he fundamental group of M in Diffr(N), say h : π1(M) → Diffr(N), we will construct

a differentiable fiber bundle Mh, with base M , fiber N , and projection P : Mh → M ,

and a Cr foliation Fh on Mh, such that the leaves of F are transverse to the fibers of P

and if L is a leaf of F then P |L : L → M is a covering map. We will use the notation

G = h(π1(M)) ⊂ Aut(N).

Let π : M̃ →M be the Cr universal covering of M . A covering automorphism of M̃ is

a diffeomorphisms f of M̃ that satisfies π◦f = π. If we consider the natural representation

g : π1(M)→ Aut(M̃) (see [27]) then we know that:

(a)g is injective. In particular g(π1(M)) is isomorphic to π1(M).

(b)g is properly discontinuous (see [27]).

We can therefore define an action H : π1(M)× M̃ ×N → M̃ ×N in a natural way:

If α ∈ π1(M), m̃ ∈ M̃ e n ∈ N then H(α, m̃, n) = (g(α)(m̃), h(α)(n)).

Using (b) it is not difficult yo see that H is properly discontinuous. Thus, the orbits
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of H define an equivalence relation in M̃ × N , whose corresponding quotient space is a

differentiable manifold of class Cr.

Definition 5. The manifold M̃×N
H

= Mh is called the suspension manifold of the repre-

sentation h.

Notice that Mh is a Cr fiber bundle with base M and fiber N , whose projection

P : Mh →M is defined by

P (o(m̃, n)) = π(m̃)

where o(m̃, n) denoted the orbit of (m̃, n) by H.

Let us see how to construct the foliation Fh. Consider the product foliation F̃ of

M̃ ×N whose leaves are of the form M̃ × {n}, n ∈ N . It is not difficult to see that F̃ is

H-invariant and therefore it induces a foliation of class Cr and codimension q = dim(N),

Fh on Mh, whose leaves are of the form P (L̃), where L̃ is a leaf of F̃ .

Definition 6. Fh is called the suspension foliation of F by h.

The most remarkable properties of this construction are summarized in the proposition

below (see [25], [41]):

Proposition 1. Let Fh be the suspension foliation of a representation h : π1(M) →
Diffr(N). Then:

(i) Fh is transverse to fibers of P : Mh →M . Moreover, each fiber of P cuts all the leaves

of Fh.

(ii)The leaves of Fh correspond to the orbits of h in N in a 1-to-1 correspondence.

(iii) 1 If L is a leaf of Fh corresponding to the orbit of a point p ∈ N , then P |L : L→M

is a covering map (here L is equipped with its natural intrinsic structure).

This implies that one fixed a point p ∈ M and its fiber Np = P−1(p), we obtain by

lifting of paths in π1(M, p), to the leaves of Fh, a group Gp ⊂ Diffr(Np), which is conjugate

to G.

1Due to (iii) we call G the global holonomy of the suspension foliation Fh.

15



(iv) There exists a collection {yi : Ui → N}i∈I of submersions defined in open subsets Ui

of Mh such that

(a) Mh =
⋃
i∈I
Ui

(b) Fh
∣∣
Ui

is given by yi : Ui → N .

(c) if Ui ∩ Uj 6= φ then yi = fij ◦ yj for some fij ∈ G.

(d) if L is the leaf of Fh through the point q ∈ Np, then the holonomy group of L is

conjugate to the subgroup of germs at q of elements of the group G = h(π1(M, p)) that fix

the point q.

1.3 Holonomy group of a leaf

The aim of this section is to introduce the notion of holonomy group of a leaf and some

results related to this important notion. The concept of holonomy was first introduced by

Ehresmann in [24], it is, a generalization of the concept of first return map of Poincaré,

introduced by Poincaré, for the case of periodic orbits of real vector fields [37]. For

instance, if γ is a periodic orbit of a flow φ and Σ is a transverse section that cuts γ in

a sole point p ∈ Σ, the holonomy of γ relatively to Σ is a diffeomorphism fγ : Σ1 → Σ,

where Σ1 is a subsection of Σ, such that p ∈ Σ1 is for any point q ∈ Σ
′

the point

where the positive orbit of q by φ cuts Σ at least once. We can define therefore f by

f(q) = “first point where the positive orbit φ by q cuts Σ ”. If Σ1 is a section small

enough contained in Σ, then f will be a diffeomorphism over f(Σ1) with a fixed point at

p. Usually, it is necessary to consider additional return of the orbits of the point of Σ, and

this corresponds to consider the n-th. iterate of f , denoted by f (n), inductively defined

by: f (1) = f e f (n+1) = f ◦ f (n). In general, however, for n ≥ 2, f (n) may not be defined

in all the points of Σ1, so that we must take smaller domains Σ1 ⊃ Σ2 ⊃ ... ⊃ Σn. Due

to this we shall consider the notion of germ we introduce below.

Definition 7. Let X and Y be topological spaces and p ∈ X. In the set of maps

f : V → Y , where V is a neighborhood of p, we consider the following equivalence relation

':

f ' g ⇐⇒ there is a neighborhood W of p such that f |W≡ g |W .
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The equivalence class of f , denoted by [f ]p, is called the germ of f at p.

The composition of two germs is well defined in terms of the composition of two rep-

resentatives in a small common domain that contains the point p. The set of germs at

p ∈ X of local homeomorphisms at p that leave p fixed, will be denoted by Hom(X, p).

When X is a differentiable manifold of class Cr, we consider the set of Cr local diffeo-

morphisms at p leaving p fixed, that will be denoted by Diffr(X, p). The sets Hom(X, p)

and Diffr(X, p), as soon as they are defined, are groups for the operation of composition

of functions.

The holonomy of a leaf L of a foliation F , of class Cr, on a manifold M , is a represen-

tation of the fundamental group of L in the group of germs of diffeomorphisms Diffr(Σ, p),

of a transverse section Σ to F , that cuts L at the point p, and the holonomy maps leave

fixed the point p (for more details we refer to [25],[41]).

Let M be a differentiable manifold of dimension n, equipped with a foliation F of class

Cr and codimension k. Fixed a leaf L of F and a continuous curve γ : I → L (called a path

in L), where I is the compact interval [0, 1], we consider Σ0 and Σ1 transverse sections

to F of dimension k, such that p0 = γ(0) ∈ Σ0 and p1 = γ(1) ∈ Σ1. We may use the

distinguished charts for F in order to obtain such sections Σ0 and Σ1 with the property

that for certain neighborhood po ∈ U0 and p1 ∈ U1 the section Σj cuts the plaque of Uj

exactly once.

Then, we consider a finite covering of the image γ(I) by distinguished charts of F , say

V0, ..., Vm, such that: (i) V0 = U0 e Vm = U1. (ii) For each j = 1, ...,m, Vj−1∩Vj 6= φ. (iii)

For each j = 1, ...,m, there exists a trivializing chart U of F such that Vj−1∪Vj ⊂ U . (iv)

There exists a partition {0 = t0 < t1 < ... < tm < tm+1 = 1} of I such that γ[tj, tj+1] ⊂ Vj

para j = 0, ...,m.

For each j = 1, ...,m we consider Σ
′
j, a transverse section of F such that γ(tj) ∈ Σ

′
j ⊂

Uj−1 ∩ Uj e Σ
′
j cuts each plaque of Uj−1 and each plaque of Uj in at most one point. We

also set Σ
′
0 = Σ0 and Σ

′
m+1 = Σ1. Using then (ii) and (iii), we conclude that if q ∈ Σ

′
j,

then the plaque of Vj that contains q, cuts Σ
′
j+1 in at most one point, and moreover if q is

in a small neighborhood Aj of γ(tj) in Σ
′
j, then this plaque actually cuts Σ

′
j+1 in one point,

say fj(q). Thus, we may define a map fj : Aj → Σ
′
j such that fj(γ(tj)) = γ(tj+1). Since
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the transverse sections we consider are Cr submanifolds, the theorem of differentiable

dependence of the solutions of ordinary differential equations, with respect to the initial

conditions assures that the maps fj are Cr maps. It follows that each map fj defines a

Cr diffeomorphism onto its image, because its inverse is defined in a natural analogous

way. In general we cannot compose the germs fj+1 and fj, but we can compose their

corresponding germs, for fj(γ(tj)) = γ(tj+1). If we denote the germ of fj at γ(tj) by [fj],

then we can consider the composed germ:

[f ]γ = [fm] ◦ ... ◦ [f0]

this is a germ of Cr diffeomorphism at p0, where, “a priori´´, [f ]γ depends on the

covering V0, ..., Vm and the intermediate sections. However, [f ]γ does not depend on the

auxiliary constructions:

Lemma 1. The germ [f ]γ depends only on γ, Σ0 and Σ1.

Definition 8. The germ [f ]γ is called the holonomy of γ with respect to the section Σ0

and Σ1. In the case γ is a closed curve in L, i.e., p0 = p1, and Σ0 = Σ1, [f ]γ is an element

of the group Diffr(Σ0, p0) and it is called holonomy of γ with respect to Σ0, or simply

holonomy of γ.

Now we calculate the holonomy of a curve obtained by adjunction of two other curves.

Let γ, δ : I → L be two curves in L such that γ(0) = p0, γ(1) = δ(0) = p1 e δ(1) = p2.

The adjunction (adjunção) of γ and δ is the curve α : I → L defined by:

α(t) = γ(2t), for t ∈ [0, 1/2] and α(t) = δ(2t− 1), for t ∈ [1/2, 1].

We denote it by α = δ ? γ. Using straightforward computation and the definitions we

obtain:

Lemma 2. Let γ, δ, p0, p1 and p2 be as above. Fixed transverse sections to F , Σ0,Σ1 and

Σ2 through p0, p1 and p2 respectively we have:

[f ]γ?δ = [f ]γ ◦ [f ]δ.

where the germs are the holonomy maps with respect to the sections Σ0,Σ1 and Σ2.
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Thus we may introduce the following notion of “holonomy group” of a leaf of F .

Lemma 3. Let M ,F , L, p0, p1 ∈ L, Σ0 and Σ1 be as above. If the paths γ, δ : I → L are

such that γ(0) = δ(0) = p0, γ(1) = δ(1) = p1 and γ and δ are homotopic in L with fixed

extremes, then [f ]γ = [f ]δ.

We recall that two paths γ and δ as in the Lemma above are homotopic with fixed

extremes in L if there exists a continuous map H : I × I → L such that (i)H(t, 0) = γ(t)

and H(t, 1) = δ(t) ∀t ∈ I. (ii)H(0, s) = p0 and H(1, s) = p1 ∀s ∈ I.

We will use the notation γ ∼ δ. In the case p0 = p1 we know that ∼ is an equivalence

relation [27]. The equivalence class (homotopy class) of a path γ with extremes at p0 is

denoted by [γ]. The set of all these equivalence classes is the fundamental group or first

homotopy group of L with base point at p0. This group is usually denoted by π1(L, p0).

The composition law for this group is defined from the adjunction of paths in a natural

way and is denoted by ?. Therefore given two homotopy classes [γ] and [δ] in π1(L, p0),

we may fix representatives γ and δ for these classes and define [δ] ? [γ] = [δ ? γ]. Endowed

with this composition the set π1(L, p0) is a group whose identity element if the equivalence

class of the constant path e(t) ≡ p0, t ∈ I.

Thus we may define:

Definition 9. Let M be a differentiable manifold equipped with a Cr foliation F of

codimension k, and let L be a leaf of F , p ∈ L and Σ a transverse section to F such

that p ∈ Σ. The holonomy representation of L with respect to p and Σ is the map

H = HL,p,Σ : π1(L, p)→ Diffr(Σ, p), defined by:

H([γ]) = [f ]γ

where γ is a representative of [γ] and [f ]γ is the germ of holonomy of γ with respect to Σ.

The map H is well defined by the above lemmas. The holonomy group of L with respect

to p and Σ is the image H(π1(L, p)) that we will denote by Hol(L, p,Σ).

The following result is one of the main results in this chapter:

Proposition 2. (i) The holonomy representation is a group homomorphism: if a, b ∈
π1(L, p), then H(a ? b) = H(a) ◦H(b).
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(ii) Let L be a leaf of the foliation F of codimension k, p0, p1 ∈ L and Σ0,Σ1 transverse

sections to F that contain p0 and p1 respectively. Fix a curve α : I → L such that α(0) = p0

and α(1) = p1. Let [f ]α be the germ at p0 of the holonomy of α, between the transverse

sections Σ0 and Σ1. Then [f ]α conjugates Hol(L, p0,Σ0) and Hol(L, p1,Σ1), that is:

Hol(L, p0,Σ0) = ([f ]α)−1 ◦ Hol(L, p1,Σ1) ◦ [f ]α

In particular Hol(L, p0,Σ0) and Hol(L, p1,Σ1) are isomorphic.

Since the transverse sections are diffeomorphic to open subsets of de Rk, the following

definition is natural:

Definition 10. Let L be a leaf of a Cr foliation F of codimension k. The holonomy

group of L, denoted by Hol(L), is the collection of all the groups of germs at q ∈ Rk, of

diffeomorphisms of Rk that leave q fixed and that are conjugate to Hol(L, p,Σ), where

p ∈ L and Σ is a transverse section to F passing through p. We say that the holonomy

group of L is conjugate to a given group G, if G ∈ Hol(L).

Finally, we show how to calculate the holonomy in an analytical way. Let therefore L

be a leaf of a Cr codimension k foliation F on the manifold M . We recall the following

facts from differential topology:

(i) each path γ : I → L is homotopic in L with fixed extremes to a Cr smooth curve

(see [8], [29],[30]).

(ii) Given a Riemannian metric g in and given an open subset A ⊂ L, with compact

closure, there exists r > 0 such that for every ε > 0 with ε < r, we have a normal tubular

neighborhood of class Cr, π : V → A and radius ε of A (see [29],[30]).

Such a normal tubular neighborhood of class Crand radius ε of a submanifold A of M ,

is an open subset V of M , V ⊃ A, and a submersion of class Cr,π : V → A, with the

following properties:

(a) π(p) = p ∀p ∈ A.

(b) for every p ∈ A, the fiber Fp
.
= π−1(p), is diffeomorphic to a disk in Rk, that is

normal to A at p and has radius ε with respect to the metric g.
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These claims are consequence of the Tubular Neighborhood Theorem (see [8],[29],[30])

and the fact that of A ⊂ L has compact closure, then A is a Cr submanifold of M of

codimension k. By the Tubular Neighborhood Theorem π : V → A is a fibration with

fiber diffeomorphic to a disk in Rk.

Thus, in order to calculate the holonomy of a path α in L we may assume that α

is regular. Fix a Cr curve γ : I → L such that γ(0) = p0 e γ(1) = p1. Since c = γ(I)

is compact,we conclude that c has a neighborhood A in L with compact closure. Let

π : V → A be a normal tubular neighborhood of radius ε > 0 of A, where ε is small

enough so that the fibers Fp, p ∈ A, of π are transverse to F .

Assume that γ is injective. In this case the set Λ = π−1(γ(I)) is a k + 1 dimensional

submanifold of M , whose boundary is Σ0 ∪ Σ1, where Σ0 = Fp0 and Σ1 = Fp1 (for π is a

submersion).

We may therefore define a Cr vector field in Λ such that:

(I) γ is the trajectory of p0 by X.

(II) the trajectories of X are contained in the leaves of F .

(III) if q ∈ Σ0 is in a suitable neighborhood U of p0, then the trajectory cuts Σ1 in a

single point, say f(q).

(IV) the germ of f at p0 is the holonomy of Σ0 in Σ1.

Given q ∈ Λ, we consider the linear map

Tq = Dπ(q) |TqF : TqF → Tγ(t)L = Tγ(t)F

where γ(t) = π(q). Since the fibers of π são are transverse to F , it is not difficult to

see that Tq is an isomorphism. Thus we put:

X(q) = T−1
q (γ

′
(t)).

Notice that for any q ∈ Λ we have X(q) ∈ TqF . This implies (II). On the other hand,

clearly we have X(γ(t)) = γ
′
(t), and this implies (I). Observe now that claim (III) is true

for the orbit of X through por p0 (i.e., γ). Thus, the same holds for the orbits of the
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points close to p0, so that (III) is true. Claim (IV) follows from (II).

In the case γ is not injective we have mainly the same construction, except for the fact

that Λ is only an immersed submanifold, and the vector field X can be multiply defined

at a point q ∈ Λ such that π(q) = γ(t1) = γ(t2), where t1 6= t2. In order to overcame this

difficulty we may consider a partition {0 = t0 < t1 < ... < tm = 1} of I such that for all

j = 1, ...,m, the restriction γj = γ |[tj−1,tj ] is injective and then apply the same arguments

above in order to obtain the holonomy maps between intermediate sections Fγ(tj−1) and

Fγ(tj). The holonomy map is then obtained by composing these intermediate holonomy

maps.

The map π = π1

∣∣
Λ

: Λ → γ(I) is a fibration, whose fibers have dimension k and are

transverse to F . Given a point q ∈ Σ0, close to p, the orbit of X that passes through q,

is the lifting of γ by the fibers of π, to the leaf of F that passes through q. We will call γq

the lifting of γ through the point q.

1.4 The theorem of Haefliger

Let F be a foliation of codimension q ≥ 1 on a manifold Mn. A submanifold Σ ⊂ M is

transverse to F if for any point p ∈ Σ the leaf Lp of F that contains the point p ∈ Σ∩Lp
is transverse (as an immersed submanifold) to Σ at the point p. This means, according

to the usual definition of transversality, that we have Tp(Lp) + TpΣ = TpM .

Clearly we may have dim Σ ≤ n. If dim Σ = q, i.e., Tp(Lp)⊕ TpΣ = TpM ; then we say

that Σ is a transverse section of F onM .

The Flow Box Theorem state that any C1 vector field X on Mn defines a dimension

one foliation FX outside the singular sing(X) on M . Also, given any non singular point

p ∈M \ sing(X) we have a neighborhood p ∈ Up ⊂M \ sing(X) such that FX |Up admits

a (local) transverse section
∑n−1

p containing the point p. Using the definition of foliation

one may prove:

Proposition 3. Given F a codimension q ≥ 1 foliation on Mn and any point p ∈M there

exists a smooth embedding ϕ : Dq →M of the q-dimensional disc Dq = {(x1, . . . , xq) ∈ Rq,∑q
j=1 x

2
j < 1}, such that the image

∑q = ϕ(Dq) ⊂M is a transverse section of F .
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Thus, the existence of local transverse sections is a consequence of the definition of

foliation. Nevertheless, the existence of global transverse sections is not so usual. By a

global transverse section
∑

to a foliation F on M we shall mean a compact or closed

submanifold
∑
⊂M such that F is transverse to

∑
everywhere.

The following result of A. Haefliger shows an obstruction to the existence of global

transverse sections to codimension one analytic submanifolds:

Theorem 8. Let F be a codimension one C2 foliation F on M such that there exists an

embedding γ : S1 → M whose image Σ = γ(S1) is transverse to F and homotopic to a

point on M . Then F is not analytic. Actually, there exist a leaf L0 of F and a closed path

α ⊂ π1(L0) whose corresponding holonomy map is conjugate to a germ h ∈ Diff((−ε, ε), 0)

having the property that h|(−ε,0] = Id and h|[0,+ε) 6= Id.

Haefliger’s Theorem above implies that a real analytic codimension one foliation F on

a manifold M having finite fundamental group #π1(M) <∞, admits no closed transverse

sections. This is proved by passing to the universal covering for instance.

Rough Idea of the proof of Haefliger’s Theorem:

First one may assume that the embedding γ : S1 →M is C∞ and small deformations of

this embedding are still transverse to F . Since γ is homotopic to zero in M we may assume

thatγ bounds an immersed disc in M say, there exists an embedding Γ: D
n−1 →M of the

closed disc D
n−1

= {(x1, . . . , xn−1) ∈ Rn−1,
∑n−1

j=1 x
2
j ≤ 1} such that γ = Γ|

∂D
n−1 = S1.

The fact that F is transverse to γ and D2 is simply-connected implies that we may

assume that the pull-back Γ∗F is foliation defined in a neighborhood of D2 ⊂ R2, trans-

verse to S1, of dimension one, induced by a C1 vector field X pointing inwards the disc

D
2

along the boundary ∂D
2

= S1.

By performing small perturbations of Γ we may assume that the singularities of X,

all inside D2, are of Morse type so that they are either centers d(x2 + y2) = 0 or saddles

d(x2 − y2) = 0.

Using the Poincaré-Hopf Theorem for X (recall X t ∂D2) we conclude there exists
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some center singularity in D2. Now Zorn’s Lemma implies that we may find some maximal

region R ⊂⊂ D obtained as the work of periodic orbits begging around some center

singularity in D2.

Let α∗ := ∂R ⊂ D2 then α∗ is a periodic orbit of X whose Poincaré map is, in one

side of the transverse section, the identity and, in the other side of the transverse section,

is not identity.

Figure 1.3:

The path α = Γ(α∗) satisfies the statement. Q.E.D

An interesting, very important, consequence of the above results is the following:

Corollary 2. Let F be a codimension one real analytic foliation on a simply-connected

manifold M (or, more generally, |π1(M)| <∞). then the leaves of F are closed, the leaf

space M/F = X is a (may be non-Hausdorff) 1-manifold.

The above corollary is easily proved owing to the following remark:

Lemma 4. A codimension one foliation F on a manifold M , exhibiting some non-closed

leaf necessarily exhibits some closed transverse section.

Proof: Let L0 be a non-closed leaf of F . Given p ∈ L0 \ L0 we choose a local Flow Box

p ∈ Up and a small transverse section Σp 3 p Σp ⊂ Up.

We have Lp 6= L0. Given two points p1, p2 ∈ Σp ∩ L0 belonging two distinct plaques

of F|Up we choose a path a : [0, 1]→ L0 joining p1 to p2.

Now we choose a fibration transverse to F having basis along a(I).
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Now it is easy to cut Σp and glue (emend) it with a piece of transverse section σ to F
contained in the fibers of the fibration above.

Then we may modify this construction in order to obtain a “smooth” transverse section

to F .

Lo

Σ

σ

Figure 1.4:

Q.E.D.

Remark 2. One may ingredient in the proof of Haefliger’s Theorem is the Poincaré-

Bendixson theorem (that in the sketch above could be applied to X in order to show that

∂R is a limit cycle exhibiting therefore the specially behaved Poincaré map).

Haefliger’s result has been extended by Plante and Thurston as follows:

Theorem 9 (Plante-Thurston). Let M be a real compact manifold such that π1(M) has

polynomial growth. If M admits a real regular codimension one analytic transversely

oriented foliation then H1(M,R) 6= 0.

Problem 1. Is there any kind of relation between the topology of the ambient manifold

and the obstruction to the existence of non-singular codimension one foliations also in the

complex case though no result like Haefliger’s theorem is known yet?

For instance we have the following question:

Problem 2. Let M be a compact complex surface. Is there any holomorphic regular

foliation F by curves on M?
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Chapter 2

Morse foliations

2.1 Preliminaries

A codimension one C∞ foliation with isolated singularities on compact manifold M is a

pair F = (Fo, singF), where singF ⊂M is a discrete subset and Fo is a regular foliation

of codimension one on the open manifold M − singF . We say that F is of class Ck if Fo
is of class Ck, singF is called singular set of F and the leaves of F are the leaved of Fo
on M \ singF .

A smooth real valued function f : M → R is a Morse function if all critical points of

f are non-degenerate, i.e. Hessian matrix at all critical points are non-singular.

A point p ∈ sing(F ) is a Morse type singularity if there is a function fp : Up → R of

class C2 in a neighbourhood of p such that sing(F ) ∩ Up = {p}, fp has non-degenerate

critical point at p and the levels of fp are contained in leaves of F , i.e. F|U is given by

dfp = 0.

By classical Morse lemma [3] there is a system of coordinates x = (x1, x2, ......xn) on

a neighbourhood Up of p such that xi(p) = 0, ∀i ∈ {1, 2, .....n} and

f(x1, x2, ....., xn) = f(p)− (x2
1 + .....x2

r(p)) + (x2
r(p)+1 + .....x2

n).

The number r(p) = Ind(f, p) is called Morse index of p.

The singularity p is a center singularity if r(p) ∈ {0, n} and is called saddle singularity
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if r(p) ∈ {1, 2, .....n− 1}. The leaves of F in a neighbourhood of a center singularity are

diffeomorphic to (n − 1) sphere. Given a saddle singularity p ∈ singF we have leaves of

F|Up contained in the cone

τp : x2
1 + .......x2

r(p) = x2
r(p)+1 + .....+ x2

n 6= 0,

and there are two possibilities for cone leaves:

either τp is union of two leaves of F|Up if r(p) ∈ {1, n − 1} , or τp is a leaf of F|Up if

r(p) /∈ {1, n− 1} i.e. r(p) is other than 1 and n− 1 .

Any leaf of F|Up contained in τp is called a local separatrix of F at p , or a cone leaf

at p. Any leaf of F such that its restriction to Up contains a local separatrix of F at p is

called a separatrix of F at p. Before defining the Morse foliation we should know what

does saddle connection means. A saddle connection for F is a leaf which contains local

separatrices of two different saddle singularities. A saddle self-connection for F at p is a

leaf which contains two different local separatrices of F at p.

2.2 Motivation for Morse foliations

Definition 11. Let F be a codimension one C∞ foliation on a manifold M . A leaf L of

F has one-side holonomy if there is closed curve c ⊂ L and x0 ∈ c whose holonomy map

f : Dom(f) ⊂ Σ→ Σ

on a transverse segment Σ intersecting c at x0, Σ ∩ c = {x0}, satisfies the following

conditions:

(i) f = Identity in one of two connected componenets of Σ− x0

(ii) f 6= Identity in any neighbourhood of x0 in Σ.

Observe that a leaf with one-side holonomy can not be simply connected. But on the

contrary every leaf which is not simply connected not necessarily has one-side holonomy,

for example:
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The torus fiber of a torus bundle over S1 is not simply connected leaf without one-side

holonomy.

Haefliger theorem

Theorem 10. Let F be a codimension one C2 foliation on a manifold M . Suppose there

exists a closed curve γ : S1 →M with the following properties:

(i) γ is transverse to F , γ t F .

(ii) γ is homotopic to a point in M i.e. γ is null homotopic.

Then there exists one-side holonomy leaf.

Proof. Let F be a codimension one C2 foliation on a manifold M . Let γ : S1 → M

be a null homotopic closed curve which is transverse to F . So we can extend γ : S1 →M

to a map A : D2 → M . By Weierstrass approximation theorem, we can assume that

A is C∞. The map A then approximated by a C∞ map g : D2 → M transverse to F
with g∗(F) = F∗, except at finite number of points {p1, p2, ......pl} where the tangency

of g with the leaves of F is nondegenerate i.e. center or saddle. Moreover g satisfies the

following properties:

(i) g|∂D2 is transverse to F except at finite number of tangency points {p1, p2, ......, pl}.

(ii) For every tangency point pi ∈ D2 of g with F there exists a foliation box U of F with

g(pi) ∈ U and a distinguished map π : U → R such that each pi is nondegenrate

singularity of π ◦ g : g−1(U)→ R that is singularities of F∗ are centers and saddles.

(iii) If T = {p1, p2, ......pl} is the set of tangency points of g with F , then g(pi) and g(pj)

are contained in distinct leaves of F for every i 6= j. In particular the singular

foliation F∗ = g∗(F) has no distinct connected saddles; that is F∗ has no saddle

connections.

For saddle point pi of F∗ we have four integral manifolds γ1, γ2, γ3, γ4 of F∗|V in a neigh-

bourhood V of pi. These leaves accumulate on pi and are called local separatrices of pi.

If γ is a leaf of F∗ such that γ ∩ V contains a local separatrix of pi then we say that γ is
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a separatrix of pi, and if γ ∩ V contains two local separatrices of pi then we say γ is a self

connection of a saddle. When γ is a separatrix of two distinct saddles, we say that γ is a

saddle connection and that the two saddles are connected.

If two distinct saddles pi and pj of F∗ are connected then g(pi) and g(pj) are contained

in the same leaf of F . When this occur we can modify g to obtain a map g̃ : D2 → M

near g, such that g̃(p̃i) and g̃(p̃j) for p̃i 6= p̃j saddles of g̃∗(F) are in distinct leaves of F .

Hence we can suppose that F∗ possibly having self connections but does not have distinct

connected saddles.

Since D2 is simply connected, there is a vector field Y on D2 with singularities

{p1, p2, .......pl} whose regular orbits are leaves of F . From this we obtain a foliation

with singularities on D2, F∗ = g∗(F) transverse to the boundary and whose singular set

{p1, p2, .......pl} is made up of centers and saddles. We say F∗ is Cr locally orientable since

for every point p ∈ D2 there exists a neighbourhood U of p and Cr vector field Y on U

such that;

Y (q) = 0, ifq ∈ T

Y (q) 6= 0, ifq ∈ U \ T

and Y (q) is tangent to the leaf of F∗ through q. It is clear that F∗ is C2 orientable close

to the singularities. Far from the singularities we have that F∗ is C2 locally orientable

by the tubular ”flow box theorem”. So we can say that F∗ is orientable by the following

proposition:

Proposition 4. If F∗ is a Cr locally orientable foliation with singularities on D2, then

F∗ is Cr orientable.

By applying Poincare-Bendixon theory to the vector field Y we obtain a closed curve

Γ, invariant under Y , and a transverse segment Σ to Y such that it is possible to define

a first-return map f , in a neighbourhood of x0 = Γ∩Σ in Σ, following the positive orbits

of Y , which is identity on one of the components of Σ − x0, but is not identity on any

neighborhood of x0 in Σ. The image of Γ under g defines a closed curve g(Γ) in a leaf of

F whose holonomy is conjugate to f .

Corollary 3. Let M be a compact manifold with finite fundamental group, and let F be

a codimension one C2 foliation on M . Then there exists one-side holonomy leaf.
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Remark: A codimension one foliation on a compact manifold with finite fundamental

group is not real analytic.

Example: The Reeb foliation on S3 is a codimension one foliation and finite funda-

mental group of S3 is finite, so Reeb foliation has one-side holonomy leaves on S3. By

above remark Reeb foliation on S3 is not real analytic.

2.3 Definition and Examples of Morse foliations

By knowing about the center and saddle singularities and also about saddle connections

in the proof of Haefliger theorem, now we are in position to define Morse Foliations and

give some examples.

Definition 12. A Morse foliation F on a manifold M is a C∞ singular codimension one

transversely oriented foliation with isolated singularities such that:

(i) Each singularity p of F is of Morse type; (center or saddle) i.e. p is non degenerate

critical point of f : U → R where p ∈ U such that sing(F) ∩ U = {p} and F|U is

given by df = 0.

(ii) Each singular leaf L contains a unique singularity, i.e. there are no saddle connec-

tions.

The foliations given by the levels of C∞ Morse functions f : M → R are basic examples

of Morse foliations. Therefore any C∞ smooth manifold supports a Morse foliation. There

is no restriction on the topology of manifold for the existence of Morse foliation on M ,

but there are restrictions which come from the nature of singularities of Morse foliation

F on M .

Examples of Morse foliations

Definition 13. Let Mn be a compact connected manifold of dimension n ≥ 3. The

foliation F on M is a (singular) Seifert fibration of M if its leaves are compact with finite

fundamental group.
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Example 9. Suppose we have Seifert fibration of S3 i.e. singular foliation F̃ of S3 by

centers and spheres S2.

The inverse modification of foliation F̃ by introducing the dead branches (we will

discuss this in next section) we obtain foliation F , which is a C∞ codimension one foliation

with c centers and s saddles satisfy c ≥ s and has no saddle connections. The foliation

F is C∞ Morse foliation on S3.

Singular Reeb foliation

Example 10. Singular Reeb foliation is an analogous of the Reeb foliation on the solid

torus but exhibiting two Morse singularities in a center-saddle combination. We begin

with a central sphere in R3 and introduce a center in the south pole and a saddle in the

north pole as indicated in the figure below:

Figure 2.1:

We obtain a foliation F in a singular solid torus as indicated below:

Figure 2.2:
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The leaves of this foliation F on solid torus:

• Inside leaves are diffeomorphic to S2.

• The boundary leaf which is boundary of singular solid torus contains a self connection

of pair of separatrices for saddle singularity.

By extension of the foliation F to the exterior of the singular solid torus, the leaves are

diffeomorphic to the S1 × S1 having trivial outside holonomy, as shown in figure:

Figure 2.3:

The singular solid torus, which contains the separatrices of the saddle, is diffeomorphic

to a sphere which is made by pair of pinchings on sphere and joined these two points.

Foliation on Eells-Kuiper manifold

Example 11. Let Mn be a connected closed manifold. Suppose Mn admits a Morse

function f : M → R of class C3 with exactly three singular points. Then Mn is a

topologically a compactification of Rn by n
2
- sphere for n ∈ {2, 4, 8, 16}, called Eells-Kuiper

manifolds.

Levels of the Morse function f : M → R on Eells-Kuiper manifolds define codimension

one foliation with exactly three Morse singularities (two centers and one saddle).
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Singular Seifert fibration

Example 12. For foliation with Morse singularities on Mn, n ≥ 3 we denote the set,

C(F)=Union of all centers and leaves diffeomorphic to Sn−1 in Mn.

Given center singularity p ∈ sing(F) we denote Cp(F) as, Connected component of

C(F) that contains p. Since Cp(F) is open in M so we have Cp(F) = M if and only if

∂Cp(F) = ∅. So singularities of F are centers and leaves diffeomorphic to Sn−1. This

Foliation which is codimension one foliation with just center sigularities, will be called

singular Seifert fibration.

Codimension one C∞ foliation in the Closed ball B4

Example 13. Here we give an example of codimension one C∞ foliation in the closed

ball B4, of radius one centered at 0 ∈ R4 with only one singularity of saddle 2− 2 type at

0 ∈ B4 and transverse to the boundary S3 = ∂B4. Consider a function

f(x) = −x2
1 − x2

2 + x2
3 + x2

4

in R4. The level zero of this function is:

C = f−1(0),

is a cone over two torus. This can easily be seen by taking intersection,

C ∩ S3 = T

which is clearly a 2-torus ,intersection of the cylinders,

x2
1 + x2

2 = 1
2

and x2
3 + x2

4 = 1
2

For given ε > 0,f−1([−ε, ε]) is a neighborhood of C and ,

R4 \ f−1([−ε, ε]) = R1 ∪R2 ,

where R1 and R2 are two connected components diffeomorphic to B4 × S1 ,and R1 ∩
{x3 = x4 = 0} 6= ∅, R1 ∩ {x1 = x2 = 0} 6= ∅. For ε > 0 small enough ,

S3 \ f−1([−ε, ε]) = T2
1 ∪ T2

2 ,

where T2
1 and T2

2 are two solid tori i.e. diffeomorphic to B2 × S1. We define a new

domain ,

D = f−1([−ε, ε]) ∪ S1 ∪ S2 ,
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where S1 ⊂ R1 and S2 ⊂ R2 are diffeomorphic to B3 × S1 such that ,

∂S1 ∩ B4 = ∂R1 ∩ B4 and ∂S2 ∩ B4 = ∂R2 ∩ B4.

we define foliation F on D which has leaves as levels of f on f−1((−ε, ε)). on S1 we

introduce Reeb component on B3 × S1 whose axis is circle (x3 = x4 = 0) ∩ S3, having as

sections on each B3 × {θ} a foliation by spheres S2. Similarly on S2 we introduce Reeb

component on B3×S1 whose axis is circle (x1 = x2 = 0)∩S3 , Leaves of F are transverse

to S3. We finally take restriction F|B4 .

2.4 Dead branches, coupling and elimination of triv-

ial center-saddle pairs of singularities

In this section we shall learn how to replace a non-trivial foliation having trivial center-

saddle pairs of singularities by a trivial foliation after performing modifications under

suitable conditions. By performing modifications under suitable conditions we can elimi-

nate certain pairs of center-saddle singularities.

It is also possible to construct such pairings of two saddle singularities of comple-

mentary Hopf indices which are in stable connection, which we shall discuss in chapter

four.

Modification in dimension two

Lets see first, the elimination of certain arrangements of singularities in dimension two.

This elimination procedure may be seen as follows:

Vector field denote by Zε = (x2
1 − ε) ∂

∂x1
+ x2

∂
∂x2

, ε > 0

This vector field has:

• A pair of saddle-source for ε > 0

• A saddle node singularity for ε = 0

• No singularity for ε < 0
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ε = 0 ε < 0
ε > 0

Figure 2.4:

By solving the equation ,

grad(Ωε) = Zε

we obtain dual foliation. This gives Ωε = dfε for the function ,

fε = (
x31
3
− εx1) +

x22
2

,

whose level curves can be drawn by using figure ??.

Thus the original non-trivial foliation having center-saddle pairing can be deformed

by a trivial vertical foliation via passing through a saddle-node. So in dimension two our

basic diagram is the following:

Figure 2.5:

We have a pair of center-saddle singularities which is replaced by a trivial foliation.

Remark The replacement of a center-saddle pairing as above does not change the

holonomy of the foliation.
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Modification in dimension three

Let F1 : d(−x2
1 +x2

2 +x2
3) = 0 be foliation in a neighborhood of 0 ∈ R3 having cone leaves

and F2 : d(x2
1 + X2

2 + x2
3) = 0 be a foliation having spherical leaves. The tangency set

between these two foliations is given by {x1 = 0} ∪ {x2 = x3 = 0}.

We have therefore the following figure:

x2x3

{x1 = o}
{x2 = x3 = 0}

Figure 2.6:

We modify F1 replacing it by a foliation by concentric spheres centered at some point

θ = (−b, 0, 0) in a region {x1 ≤ −a2} . The final result is center-saddle pair as depicted

below:

θ

Figure 2.7:

The resulting foliation after modification is called trivial center-saddle pairing as de-

picted below:
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θ

Figure 2.8:

Dead Branches

Definition 14. M be a Let F be a codimension one foliation with isolated singularities

on a manifold Mn. By a dead branch of F we mean a region R ⊂ M diffeomorphic to

the product Bn−1 × I of the closed unit ball Bn−1 by the interval I = [0, 1] as a manifold

with corners and boundary. We assume sing(F) ∩R 6= ∅ and boundary of the region,

∂R = Bn−1 × ∂I ∪ ∂Bn−1 × I

where Bn−1× ∂I is union of two connected invariant components (pieces of leaves of F )

say L1 and L2 and ∂Bn−1 × I totally transverse curves (segments transverse to F ) say

Σ1 and Σ2 (see figure 2.9), so

∂R = L1 ∪ L2 ∪ Σ1 ∪ Σ2

It is clear that we can replace the foliation inside a given dead branch with the trivial

foliation. A trivial center-saddle pairing is an example of dead branch.

Moreover we also assume that the holonomy from Σ1 to Σ2 is trivial in the sense

that F|Σ1 and F|Σ2 are conjugated by a diffeomorphism h : Σ1 → Σ2 such that Lh(p) =

Lp,∀p ∈ Σ1; except if p belongs to a leaf containing a separatrix of some singularity of F
in region R, in which case the image of p will be another point h(p) belonging to a leaf

containing a separatrix of the same singularity of F in region R.
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Σ2

Σ1 Σ2

Σ1

L1

L1

L2

L2

Figure 2.9:

Definition 15. Two singularities p, q of a foliation F on M are said to be in trivial

coupling or trivial pairing if they belong to a dead branch R of F and F has no other

singularities in R.

Proposition 5. Let F be a codimension one foliation with isolated singularities on M

having a dead branch R ⊂M . Then there is a foliation F̃ on M such that:

(i) F̃ and F agree on M \R.

(ii) F̃ is non singular in a neighborhood of R, indeed F̃ |R is conjugate to a trivial

fibration.

(iii) The holonomy of F̃ is conjugate to the holonomy of F in the following sense:

Given any leaf L of F such that L ∩ (M \ R) 6= ∅ then corresponding leaf L̃ of F̃
satisfies Hol(F̃ , L̃) is conjugate to Hol(F , L).

Definition 16. We shall call F̃ a direct modification of F by elimination of dead branch.

If a foliation F is obtained from a foliation F̃ by introduction of a dead branch then we

shall say F is an inverse modification of F̃ .

Example: This is an example of combination of a center-saddle pairing where the

saddle is accumulated by spherical leaves from a third center singularity. We begin with

a foliation given by a center singularity and by an inverse modification we introduce in a

regular part a pair center-saddle as depicted as:

38



L1

L3

L2

Figure 2.10:

The separatrix of the saddle gives a self connection and has the topology of two spheres

with a unique intersection point. All leaves are diffeomorphic to spheres and if we consider

only the annular region bounded by one internal leaf L1 and one external leaf L2 then we

have non-trivial center-saddle pairing as depicted below:

L2

L1

Figure 2.11:

By using of concept of dead branch we show how to transform a singular Reeb foliation

in to a regular foliation. Given a singular Reeb foliation F lets assume that the center and

saddle are close. In a small box B around these two singularities we have the following

diagram:

Figure 2.12:
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We may therefore replace the foliation F in the box B by a regular foliation as depicted

below:

Figure 2.13:

Thus we can replace the above pairing center-saddle by a regular foliation in the box

B having some plane leaves and some cylindrical leaves as well.

2.5 Topology of separatrices

Let F be a Morse foliation on a compact n-dimensional manifold Mn, n ≥ 3. We denote

the set, C(F) = Union of all center singularities and leaves diffeomorphic to Sn−1 in Mn.

For given center singularity p ∈ sing(F ) we denote the set, connected component of C(F)

that contains singularity p, Cp(F).

Remark: (i) C(F) is open in M as a consequence of Reeb local stability theorem.

(ii) Cp(F) is open in M and Cp(F) ∩ Cq(F) 6= ∅ if and only if Cp(F) = Cq(F).

(iii) If q ∈ sing(F) ∩ ∂C(F) then q must be a saddle singularity.

(iv) Since Cp(F) is open in M we have Cp(F) = M if and only if ∂Cp(F) = ∅. In this

case F is a foliation by center singularities and leaves diffeomorphic to Sn−1, therefore it

defines a singular fibration M → S1 with fibers Sn−1. The foliation in this case will be

called singular Seifert fibration.

We focus on 3-dimensional case. Let p ∈ sing(F) be a center singularity and q ∈
sing(F)∩∂Cp(F) be a saddle singularity. We denote a leaf of F that contains the separatrix

of F through q, by Γq, which is accumulated by spherical leaves in Cp(F).

Since Γq is accumulated by spheres, so for Γq ∪ {q} we have following possibilities:
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q

Γq

Figure 2.14:

(i) Γq ∪ {q} is homeomorphic to sphere S2.

Γq ' S2

q q

Cp(F)

Leaves in

Figure 2.15:

(ii) Γq ∪ {q} is homeomorphic to a singular torus, which can be obtained by pinching a

sphere at two different points and joining them.

By using this we obtain a lemma exclusively for dimension 3.

Lemma 5. Let F be a Morse foliation on compact 3-dimensional manifold M3. If p ∈
sing(F) is a center singularity and ∂Cp(F) 6= ∅, then {q} = sing(F) ∩ ∂Cp(F) is a saddle

and we have following possibilities for Cp(F) and ∂Cp(F) :

(i) ∂Cp(F) \ {q} is connected. Then

(a) ∂Cp(F) is homeomorphic to a sphere S2 with a pinch at q and the pair q − p
belongs to a dead branch i.e. it can be modified to a trivial foliation; or

(b) ∂Cp(F) is homeomorphic to a singular torus obtained by pinching a sphere at

two points and joining these points. So Cp(F) with ∂Cp(F) is singular Reeb

component.

(ii) ∂Cp(F) \ {q} has two connected components. Then ∂Cp(F) is union of two spheres

S2 with a common point q.
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Chapter 3

Applications of dead branches

having trivial center-saddle pairings

In this chapter we shall discuss some results from Camacho , Scardua’s papers [2],[3]

to understand the application of dead branch. We shall discuss foliations transverse to

spheres and a variant of Haefliger’s theorem for S3 and some results which have been

proved in [2], [3] by Camacho, Scardua.

In 1978, E. Wagneur [44] generalized the Reeb sphere theorem to Morse foliations with

saddles. He showed that the number of centers cannot be too much as compared with the

number of saddles, notably, c ≥ s+ 2. So there are exactly two cases when c > s:

(1)c = s+ 2

(2)c = s+ 1

He obtained a description of the manifold admitting a foliation with singularities that

satisfy (1).

Finally, in 2008, C. Camacho and B. Scardua considered the case (2), c=s+1. Inter-

estingly, this is possible in a small number of low dimensions.

Theorem. Let Mn be a compact connected manifold and F a Morse foliation on M .

If s = c+ 1, then:

(1)n = 2, 4, 8 or 16,

(2)Mn is an Eells-Kuiper manifold.
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3.1 Orientability of foliations and index lemma

A codimension one foliation F with isolated singularities on M is called orientable if there

exists C∞ integrable one-form Ω on M such that sing(F) = sing(Ω), the integrability of

one-form Ω is in the sense that Ω∧ (.Ω) = 0 everywhere, and foliation F coincide with the

foliation defined by Ω = 0 outside singular set.

Such integrable one form is called an orientation for F and two such integrable one-

forms Ω and Ω′ define the same orientation for F if

Ω = h.Ω′

for some positive function h on M .

The foliation F is said to be locally orientable if each point (even singular) p ∈ M

admits a neighborhood where F is orientable i.e. F is defined in that neighborhood by

an integrable one-form Ωp as above. Basic example of an orientable foliation is a foliation

with Morse type singularities on a simply connected manifold. Note that a C∞ oriented

foliation F with isolated singularities is given by a C∞ integrable one-form Ω on M with

isolated singularities.

Definition 17. Let
−→
X be vector field on M ⊂ Rn defined by

−→
X : M → TM

−→
X (x) = (x, v(x)), v(x) ∈ TxM

A singularity p ∈ Sing(X) is called simple singularity of vector field
−→
X if

Det (V ′(x))x=p 6= 0

Since M ⊂ Rn, TM ∼= M × Rn therefore X(x) ∼= V (x).

Definition 18. Let p ∈ Sing(X) be a simple singularity of a vector field
−→
X . We define

the index of a vector field
−→
X at singularity p as:

I(X, p) =

 +1, ifDet (DX(p)) > 0

−1, ifDet (DX(p)) < 0

Definition 19. Let f : M → R be a differentiable function and let p ∈M be a singularity

of f then the index of f at p is defined as follow:
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Ind (f, p) = max{dim(E), E ⊂ TpM,H(p).u < 0}

where E is a subspace of TpM , H(p) is Hessian of f at p and u ∈ E − {0}.

Now we correlate the index of a vector field with the index of integrable one-form

which gives codimension one oriented foliation.

Let p ∈M and choose a local chart of M ,

φ : U → φ(U) ⊂ Rn such that,

φ(p) = 0, p ∈ U

and sing(Ω)∩U = {p}. Let φ∗(Ω) = ω ∈ Λ(φ(U)). We write ω =
n∑
j=1

fjdxj with C∞ map,

fj : φ(U) → R and fj(0) = 0, j = 1, 2, ......n . Let grad(ω) =
n∑
j=1

fj
∂
∂xj

be the gradient

vector field of ω. We define the index of integrable one-form Ω at singular point p by ,

Index(Ω; p) = Index(grad(ω); 0)

where Index(grad(ω); 0) is the ordinary poincare-Hopf index of smooth vector field

grad(ω) at singular point 0 ∈ Rn . The definition of Index(Ω; p) does not depend on the

chart φ : U → φ(U) ⊂ Rn . The Index(Ω; p) = 0 if p /∈ sing(Ω) .

We have then the following natural adaptation of Poincare-Hopf index theorem to

foliations with isolated singularities :

Lemma 6. Let Mn be an oriented manifold and D ⊂M be a domain with connected reg-

ular boundary of class C2. Let F be a codimension one foliation with isolated singularities

on M given by C∞ integrable one form such that sing(F) = sing(Ω). Suppose F is either

transverse to the boundary ∂D or tangent to the boundary ∂D. Moreover in the tangent

case, if n is odd, suppose that grad(Ω) points outwards at the boundary . Then we have∑
p∈sing(Ω)∩D

Ind(Ω; p) = X (D),

where X (D) is Euler characteristic of D.

Foliations transverse to spheres

Now we study the existence and properties of Morse foliations transverse to spheres. we

begin with the simple situation:
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Let F be a C∞ Morse foliation defined in a neighborhood W of the closed ball B
n

=

Bn(0, 1) in Rn and transverse to the boundary spheres Sn−1(0, 1) = ∂Bn(0, 1). We can

obtain a one-form Ω which defines F in W because B
n

is simply connected. We have

local coordinates (y1, y2, .......yn) ∈ Up ⊂ Bn for given singularity p ∈ sing(F) ⊂ Bn such

that ,

Ω(y1, .........yn) = hpd(−y2
1......− y2

rp + y2
rp+1

+ ........+ y2
n)

for a C∞ function hp > 0 in Up . We have defined the index of F at p with re-

spect to the orientation defined by Ω as Index(F , p) = (−1)rp ∈ {+1,−1} . We have∑
p∈sing(F)

IndΩ(F ; p) = +1 by the index theorem, in particular , sing(F) 6= ∅ and F has

odd number of singularities in the ball . We have X (Sn−1) = 0 , because boundary sphere

admits a transverse foliation . Therefore n is an even number . In this case IndexΩ(F ; p)

does not depend on the orientation fixed for F .

Remark. (i): A center singularity always has index +1 .(ii): A saddle singularity

may have index +1 or −1 . (iii): By the index theorem
∑

p∈sing(F)

IndΩ(F ; p) = +1 and

by definition of index Index(F , p) = (−1)rp ∈ {+1,−1} , for n = 2 F has some center

singularity because in dimension two a saddle singularity has index −1. (iv): For n ≥ 3

the set sing(F) must contain a saddle singularity .

3.2 Haefliger’s type theorem for S3

Before discussing Haefliger’s type theorem for 3-sphere in [2] , first we would like to state

classical Haefliger’s theorem for the disc :

Theorem. Let
−→
X be a C1 vector field defined in a neighborhood U of disc D2 ⊂ R2 such

that
−→
X t ∂D2 points inward the disc satisfying the following conditions :

(i)
−→
X has only Morse singularities in disc D2 .

(ii)
−→
X will be without saddle connections .

Then there exists a unilateral compact invariant one dimensional subset Γ ⊂ D2.

Aim of discussing the Haefliger’s theorem for S3 is to understand the use of dead

branch and modification inside dead branch to prove variant of Haefliger’s theorem for
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foliations with Morse singularities.

Theorem 11 (Camacho-Scardua, 2006). Let F be a C∞ Morse foliation on 3-sphere S3

having c centers and s saddles satisfying the inequality c ≥ s. Then F is an inverse

modification of a Seifert fibration of S3, i.e. a singular foliation of S3 by Spheres S2 and

centers , or we have one of the following possibilities:

(i) There is a compact codimension one invariant subset whose holonomy is one-sided.

(ii) There is a singular Reeb component of F .

Proof. We fix an orientation for F . By hypothesis we have c centers and s saddles

satisfying c ≥ s. We will proceed by induction on saddle s.

(I) Consider the case s = 0, so c ≥ 0. For s = 0 we further have two cases :

(i) c = 0 (s = 0 already) , we have nonsingular codimension one foliation F on

S3, so by Novikov theorem F has some Reeb component and therefore F has

a toral leaf L ' S1 × S1 with one-side holonomy group.

(ii) c ≥ 1 (s = 0 already ), foliation F has only center singularities , therefore it is

Seifert fibration by Reeb .

(II) Assume now s ≥ 1, since by hypothesis we have c ≥ s, so c ≥ s ≥ 1. Assume that

result is true for s− 1 saddle singularities .

(III) Now suppose we have c centers and s saddles satisfying the inequality c ≥ s, suppose

a center p1 in S3. We denote Cp1(F) connected component of C(F) which contains

p1, where C(F) = Union of all centers and leaves diffeomorphic to S2 of the foliation

F . Since we have Cp1(F) so we have two cases for the boundary ∂Cp1(F):

(i) ∂Cp1(F) = ∅ then Cp1(F) = S3, so all leaves of F are compact diffeomorphic

to S2 with trivial holonomy . In other words F is singular Seifert fibration of

S3.

(ii) ∂Cp1(F) 6= ∅ then by lemma 5 in section 2.5, ∂Cp1(F) ∩ sing(F) 6= ∅, so any

leaf L ⊂ ∂Cp1(F) is separatrix of some saddle singularity q1. This singularity

is unique, because F has no saddle connections. On the other hand we can not

have ∂Cp1(F) ⊂ singF . Thus we can find a leaf L0 of F such that Γq1 = L0 ∪
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{q1} ⊂ ∂Cp1(F), where L0 is separatrix of saddle q1. Since Γq1 is accumulated

by spherical leaves, so we have two possibilities for holonomy of Γq1 :

(a) Γq1has non-trivial holonomy and since Γq1 is accumulated by spherical leaves,

so Γq1has one-side holonomy and the result follows.

(b) Γq1 has trivial holonomy then by lemma 5 in section 2.5, we have following

three possibilities:

(i) We have trivial center-saddle pairing p1 − q1. We can eliminate both

singularities p1 and q1 belonging to a dead branch by modification.

After modification we obtain F1 in S3 with same holonomy. This

modified foliation F1 has one less center singularity and one less sad-

dle singularity. But still we have #{centers of F1} ≥ #{saddles of

F1}. So by induction hypothesis, either F1 is an inverse modification

of a Seifert fibration of S3, or F1 satisfy one of the two possibilities

mentioned in the statement of the theorem, and therefore we have the

same possibilities for F .

(ii) Γq1 is homeomorphic to singular torus. Since we are in case (b) in which

Γq1 has trivial holonomy, and Γq1 is surrounded by leaves diffeomorphic

to the torus. So we can isolate the region R ⊂ S3 containing Cp1(F)

invariant by F and diffeomorphic to solid torus where we have defined

singular Reeb foliation.

(iii) The saddle q1 is not self-connected. We have non-trivial center-saddle

pairing p1 − q1 and Γq1 \ {q1} is diffeomorphic to sphere minus one

point. In this case other separatrix of q1 is also homeomorphic to a

sphere with a pinch at q1. As we are in case (b) in which Γq1 has trivial

holonomy, these two separatrices are surrounded by spherical leaves.

Thus we can fix an invariant region R′ which is bounded by L2 and L3,

diffeomorphic to S2 × [0, 1], containing the union of separatrices and

with invariant boundary.

Inside region R′ we perform modification to F . We obtain in this way

a trivial foliation by spheres say F1 on S3 with same holonomy as F .

F1 has one less center singularity and one less saddle singularity than

F . Again by induction hypothesis, either F1 is an inverse modification

of a Seifert fibration of S3, or F1 satisfy one of the two possibilities
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L2

L3
R′

Figure 3.1:

mentioned in the statement of the theorem. Again we have the same

possibilities for F .

Hence the result follows.

3.3 Topology of M3 admitting Morse foliations

In this section we shall discuss a theorem which answers the question that; under what

conditions a closed, connected and oriented 3-manifold M3 which admits Morse foliation,

will be diffeomorphic to 3-sphere S3. The answer has been given by Camacho, Scardua

in [2]. The aim of discussing this result is also to understand the concept of dead branch.

Later we give some counter examples for general case. Those examples show the impor-

tance of hypothesis for the theorem. In the proof of the theorem we will need the following

lemma:

Lemma 7. Suppose an oriented 3-manifold M3 which admits an oriented Morse foliation

F . Let q ∈ sing(F) be a saddle singularity such that q ∈ ∂Cp1(F) ∩ ∂Cp2(F) for two

distinct centers p1, p2 ∈ sing(F). Then union of separatrices of F through q with {q}
is compact with each branch homeomorphic to S2 and q belongs to a dead branch with a

pairing q − p1 or q − p2.

Theorem 12 (Camacho-Scaruda, 2006). Suppose a closed oriented 3-manifold M3 which

admits an oriented Morse foliation F having c center singularities and s saddle singular-

ities satisfying c ≥ s + 1. Then M3 is diffeomorphic to S3. Indeed F admits an isotopy

to a Morse foliation having only two centers as singularities.

Proof. By hypothesis M3 admits an Morse foliation with c center singularities and
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s saddle singularities, also satisfying c ≥ s + 1. We proceed by induction on saddle

singularities s.

(I) If s = 0, then F has only center singularities and result follows from Reeb’s thesis.

(II) Assume now that s ≥ 1 and that result is true for foliations with at most s − 1

singularities of saddle type.

(III) Now we will prove the result for s saddle singularities. By hypothesis F has some

center singularity, say p1 ∈ sing(F) and also some saddle singularity. Thus Cp1(F) 6=
M . Then by lemma 5 in section 2.5 we must have ∂Cp1(F) ∩ sing(F) 6= ∅, and any

leaf L ⊂ ∂Cp1(F) must be a separatrix of some saddle singularity q1 ∈ sing(F).

Since F has no saddle connections so the saddle singularity q1 is unique. According

to lemma 7, either q1 /∈ ∂Cp1′(F) for any singularity p1′ 6= p1, or q1 belongs to a

dead branch associated to a pairing q1−p1′ for some center singularity p1′ ∈ sing(F)

possibly p1′ = p1.

In the first case we call p1 single. In the last case we can eliminate two singularities,

one center and a saddle q1 by modification of F . Now we have modified foliation

say F1 with one less center singularity and one less saddle singularity. Modified

foliation F1 still satisfies, #{centers of F1} ≥ #{saddles of F1} + 1. By induction

hypothesis the result has been proved for l− 1 saddle singularities, so result is true

for F1. Therefore result is true for F . By induction hypothesis the manifold M3 is

homeomorphic to S3. This implies that indeed M3 is diffeomorphic to S3.

Counter examples for general case

Here we give counter examples for the general case of the above result.

Example 1: In general the topology of a manifold Mn is not determined by the

#{center singularities} = #{saddle singularities} for gievn foliation on M . Suppose Mn

be a compact manifold supporting a non-singular C∞ codimension one foliation F (e.g.

if M is an odd-dimensional). Then by inverse modification we can obtain a foliation F̃
on M having singular set of same number of center and saddle singularities. In spite of

that Mn is not necessarily homeomorphic to Sn.
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Example 2: In general the inequality #{centers } ≥ #{saddles} + 1 also does not

imply that Mn is homeomorphic to n-sphere. For example a manifold that admits a

C∞ function f : M → R having only three critical points of indices 0, 4 and 2 is the

complex projective plane CP (2). Therefore M4 = CP (2) admits a foliation with exactly

two centers singularities and one saddle singularity, though M4 is not homeomorphic to

S4.

3.4 Topology of Mn admitting Morse foliations

A certain combination of the non-degenerate critical points of a real valued function of

class C2 defined on the closed manifold has an affect on the topology of that manifold.

similar relation we can expect for foliated manifolds. For the first time this became evident

that a foliated manifold with Morse type singularities can classify the topology of that

manifold by te following result:

Reeb sphere theorem

Theorem. Let Mn be a closed, oriented and connected manifold of dimension n ≥ 2,

admits a C1 transversally oriented codimension one foliation F with only center singu-

larities. Then the singular set of F consists of two points and Mn is homeomorphic to

n-sphere.

Before discussing the general form of the theorem 12, we would like to mention here

Eells-Kuiper manifolds.

Eells-Kuiper manifold

Definition 20. Let Mn be a close connected manifold (not necessarily orientable) of

dimension n. Suppose M admits a Morse function f : M → R of class C3 with exactly

three singular points. Then:

(a) n ∈ {2, 4, 8, 16}
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(b) Manifold Mn is a topologically a compactification of Rn by a n
2
-sphere.

(c) The Eells-Kuiper manifold is diffeomorphic to real projective plane RP (2) for n = 2.

For n ≥ 4 it is simply connected and has an integral cohomology structure of the;

(i) Complex projective plane CP 2 if n = 4

(ii) Quaternionic projective plane HP 2 if n = 8

(iii) Cayley projective plane if n = 16

The affect of Morse function of class C3 with exactly three non-degenerate singular

points on closed connected manifolds has been explained by Eells and Kuiper is the

following:

Theorem: Let M be a connected closed manifold (not necessarily orientable) of

dimension n. Suppose M admits a Morse function f : M → R of class C3 with exactly

three singular points, then M is an Eells-Kuiper manifold.

We have general form of the theorem 3.3 with some restriction on the combination

between centers and saddles singularities, to prove that result we need following lemmas:

Lemma 8. Let F be a Morse foliation on a manifold Mn of dimension n ≥ 3. Given

centers p, q ∈ sing(F) the sets Cp(F) and Cq(F) are open in M and Cp(F) ∩ Cq(F) 6= ∅ if

and only if Cp(F) = Cq(F). Moreover we have Cp(F) = M if and only if ∂Cp(F) = ∅, in

this case Mn is homeomorphic to Sn provided that Mn is orientable. In particular; either

Mn is homeomorphic to Sn, or ∂Cp(F) contains some saddle singularity.

For given two centers when the intersection of their basin is non-empty, the possibilities

we have are given in the following lemma:

Lemma 9. Suppose p1, p2 ∈ sing(F) are distinct centers such that ∂Cp1(F)∩∂Cp2(F) 6= ∅.
Then we have the following mutually exclusive possibilities:

(i) ∂Cp1(F) = ∂Cp2(F), and so M = Cp1(F) ∪ Cp2(F).

(ii) ∂Cp1(F) 6= ∂Cp2(F), and there is a saddle point q ∈ ∂Cp1(F) ∩ ∂Cp2(F) with Morse

index 1 or m− 1, without self-connection.
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When a manifold is homeomorphic to an Eells-Kuiper manifold ?

Following proposition answers this question:

Proposition 6. Suppose a closed connected manifold Mn, n ≥ 3 which admits a Morse

foliation F . Assume that F has exactly two center singularities and one saddle singularity.

Then Mn is homeomorphic to an Eells-Kuiper manifold.

The following lemma shows necessary condition for a center singularity and a saddle

singularity form trivial pairing and belong to a dead branch:

Lemma 10. Suppose p1, p2 ∈ M are two different center singularities such that q ∈
∂Cp1(F) ∩ ∂Cp2(F) be the saddle singularity. Assume that the index of q is 1 and that

there is no saddle self-connection at q. Then, either p1, q form trivial pairing, or p2, q

form trivial pairing.

Now we shall discuss the general case to the theorem 12 which classifies the topology of

n-dimensional manifold for n ≥ 3 which has been proved by Cesar Camacho and Bruno

Scardua in [3] which is an extension of the E. Wagneur general form of Reeb sphere

theorem having also saddle singularities in [44].

Theorem 13 (Camacho-Scardua , 2008). Suppose we have a compact connected manifold

Mn admitting Morse foliation F with c center and s saddle singularities satisfying c ≥
s+ 1. Then we have two possibilities:

(i) c = s+ 2, and Mn is homeomorphic to n-sphere.

(ii) c = s+ 1, and Mn is an Eells-Kuiper manifold.

Proof. By hypothesis we have c center and s saddle singularities satisfying c ≥ s+ 1,

so we will proceed by induction on saddle singularities s.

(I) If s = 0 then Mn is homeomorphic Sn by Reeb’s theorem.

(II) Suppose now that s ≥ 1 and the result is true for foliations with at most s − 1

singularities of saddle type.

(III) Now we will show the result for s saddle singularities. By hypothesis we have

c ≥ s + 1. Thus c ≥ 2. Suppose Mn is not homeomorphic to Sn, then by lemma
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8 and lemma 9, for each center singularity say p ∈ sing(F) there must be a saddle

singularity qp ∈ ∂Cp(F). Since c ≥ s+1 and c ≥ 2, there are two center singularities

p1, p2 such that qp1 = qp2 , i.e. there is a saddle q such that q ∈ ∂Cp1(F) ∩ ∂Cp2(F)

and by lemma 9 we have two cases, either M = Cp1(F) ∪ Cp2(F), or q has index 1

or n− 1 and is not self-connected.

(i) If M = Cp1(F) ∪ Cp2(F), clearly Cpi(F) ∩ sing(F) = {pi}, i = 1, 2. Thus

sing(F) = {p1, p2, q} and by proposition 6, M is an Eells-Kuiper manifold.

(ii) If q has index 1 or n − 1 and is not self-connected, then by lemma 10 we

can eliminate one center singularity and one saddle singularity which form are

in trivial pairing, replacing F by a Morse foliation F1 on M with one less

center singularity and one less saddle singularity. On F1 Number of center

singularities is c1 = c − 1 and number of saddle singularities is s1 = s − 1,

which still satisfy the condition c1 ≥ s1 + 1. Observe also that s > s1 ≥ 0.

By induction hypothesis Mn is homeomorphic to Sn or to an Eells-Kuiper

manifold.

This proves the result.
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Chapter 4

Coupling of two saddles and its

applications

In previous chapter we discussed some results from Camacho-Scardua papers [2], [3] which

has been proved by elimination of pair of center-saddle singularities in a dead branch. In

this chapter we shall show how to combine two saddle singularities of complementary

indices in a dead branch, and we shall extend some of those results by proving them

through elimination of saddle-saddle singularities of complementary indices which are

in stable connection ( stable manifold of one saddle singularity intersects transversally

in a smooth connection the unstable manifold of another saddle singularity, which is of

complementary index of the previous saddle ).

4.1 Coupling of two saddles

We show now how to combine in a dead branch two saddle singularities of complementary

indices. We consider the function,

fε : R3 → R, given by

fε = −x2

2
+ (y

3

3
− εy) + z2

2
, ε ∈ R

and consider deformation of the foliation given by dfε = 0 from ε > 0 to ε < 0 passing

through ε = 0. We focus only in the study of the function,
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f = f0 = −x2

2
+ y3

3
+ z2

2

which gives a saddle-node singularity at the origin and whose phase portrait is given

below:

x

y
y

z

x

z

Figure 4.1:

We consider leaves L1 and L2 as in figure:

Leaf L1

Leaf L2

Figure 4.2:

where L1 = L(0,−1,0) and L2 = L(0,1,0) are planes.

The deformation takes place in the region laterally bounded by planes L1 and L2 by

deforming the original foliation for ε > 0 by a regular trivial foliation for ε < 0 as the

final stage, this passing through the saddle-node for ε = 0 in figure 4.3. This procedure

can be better understand in the two dimensional case as we have already seen.

In the 3-dimensional case we add one transverse axis to this original figure and proceed

in a similar way.

55



1 saddle-node
ε = 0

regular foliation
ε < 0

Two complementary saddles
ε > 0

Figure 4.3:

Given two saddle singularities of complementary indices in dimension 3, to obtain an

elimination procedure our arrows-scheme is the following:

p q

γp,q

Figure 4.4:

Index(Ω, p) = (−1)2 = +1 , Index(Ω, q) = (−1)1 = −1

Index(Ω, p) + Index(Ω, q) = 0

For connection between two saddle singularities of complementary indices we shall make

a natural hypothesis:

Suppose we have two saddle singularities p and q of complementary indices, such that,

the stable manifold of p intersects transversally the unstable manifold of q in a smooth

connection curve γp,q. Such a connection γp,q will be called stable connection between p

and q.

By above construction in general we have the following proposition:

56



p q

Figure 4.5:

p

q

γp,q

Figure 4.6:

Proposition 7. Given a foliation F on n-dimensional manifold Mn. We can obtain a

modification F̃ of F on Mn that exhibits two saddle singularities of complementary indices

which are in strong stable connection.

A converse of the above construction is given below, We begin with the following

remark:

Remark Given a foliation F on M3 with two complementary saddle singularities

p1, p2 ∈ sing(F) having a stable connection γ, there exists a neighborhood U of γ, p1, p2

in M3 and a coordinate system

ϕ : U → R3, such that

ϕ(p1) = (0, 0, 0)

ϕ(p2) = (0, 1, 0)

taking γ onto the y-axis {x = z = 0}, and such that the stable manifold of p1 is tangent

to ϕ−1({z = 0}) at p1 and the unstable manifold of p2 is tangent to ϕ−1({x = 0}) at p2.
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(0, 0, 0) (0, 1, 0)

x

y

z

x

y

z

Figure 4.7:

The coupling of saddle and center in dimension two can be seen as follows:

CenterSaddle

Figure 4.8: Orbit of grad(Ω)

We have two leaves L1 and L2, and Σ1,Σ2 represent the space of leaves of F in the

region bounded by L1, L2,Σ1,Σ2. We can collapse the singularities into saddle-node and

then deform this into a non-singular fibration by discs that is compatible with the leaves

L1 and L2.

Σ2

Σ1

p1

γ

p2

L2

L1

L′1

L′2

Figure 4.9:

58



We shall use the same idea for coupling of two saddle singularities in dimension three.

We return to our 3-dimensional case in which we have two saddle singularity of comple-

mentary indices and exhibit a stable connection. Using the chart ϕ : U → R3 of the

remark, we may assume that we are on R3.

Figure 4.10:

Using the fact that the restriction of F to the stable manifold of p1 (diffeomorphic

to R2) we obtain a similar dynamical behaviour to the 2-dimensional case and the same

way than before, we obtain leaves L1, L
′
1, L2, L

′
2 and segments Σ1,Σ2 representing the leaf

space of F as in the following figure, by using figure 4.9.

This corresponds to a cylindrical picture as shown in the following figure:

L1 L′1 L2 L′2

Σ1

Σ2

Figure 4.11:

We can therefore modify the foliation in the cylinder in order to obtain a non-singular

fibration by discs transverse to the stable connection axis.

Now we make the inverse path. We shall see here how to obtain a singular foliation

when we have non-singular Reeb component in 3-dimensional manifold. Given a foliation

F without singularities assume that you have a transverse circle,
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γ : S1 →M3, γ t F

In a small tubular neighborhood of this curve we can construct a standard Reeb compo-

nent.

γ

Figure 4.12:

Then, by standard modification we can replace this Reeb component by a singular

Reeb foliation having γ as central axis as shown in the following figure.

γ

Figure 4.13:

This shows that once we have transverse circles to the foliation we can introduce

couplings of center-saddle singularities. By using above construction we can replace a

saddle singularity in M3 by a center singularity of the same index. So Let now F be

a foliation having a saddle singularity p1 ∈ M3 with two dimensional stable manifold

W ss(p1) ⊂M3. Suppose there is a circle

γ : S1 → W ss(p1)
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which is transverse to F .

Then by the above procedure, we can obtain a coupling of center-saddle by the con-

struction of a F -compatible singular Reeb foliation having γ(S1) as axis. By construction

we have saddle singularity p2 and a center singularity p3 in W ss(p1) with the property

that the stable manifold W ss(p1) of p1, meets transversely the unstable manifold W uu(p2)

of p2 along a stable connection.

p1

p3γ(S1)

p2

W ss(p1)

Figure 4.14:

The arrows indicate the vector field grad(Ω), where Ω is a fixed one form that defines

F . The curves indicate the leaves of the restriction F|W ss(p1). Since the saddle p1 and p2

are in stable connection so we can eliminate them and obtain a modification of F where

we have replaced the saddle p1 by a compatible center p3 of the same index.

As a particular case of the above construction we conclude that if the restriction

F|W ss(p1) has some limit cycle then we can, by a modification procedure, replace p1 by

a center singularity of same index. Indeed, if we have a limit cycle then, by radial

component of the corresponding vector fields we can construct a transverse circle in the

two dimensional manifold.

Observation. Let F be a foliation in 3-dimensional manifold M3 having a saddle

singularity p1 with stable manifold W ss(p1) ⊂M3. Suppose there is a circle

γ : S1 → W ss(p1) such that γ(S1) t F ,
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Since we have circle transverse to the foliation, so we can introduce coupling of center p3

and saddle p2 having γ(S1) as axis. By coupling of saddles, in which stable manifold of

p1, W ss(p1) meets transversely the unstable manifold of p2, W uu(p2), we can eliminate

saddles p1 and p2. So by modification procedure we can replace saddle singularity p1 by

a center singularity p3 of same index.

4.2 Extension of the theorem 12 by coupling and

elimination of pairs of saddles

Theorem 12 which says that, 3-dimensional manifold admitting Morse foliation having

c center and s saddle singularities satisfying c ≥ s + 1, will be diffeomorphic to S3 [2].

That result has been proved by elimination of trivial pair of center-saddle singularities

belonging to a dead branch. Now we shall proof that result by eliminating the trivial pair

of saddle-saddle singularities of complementary indices belonging to a dead branch.

Theorem 14. Suppose a closed connected and oriented 3-manifold M3 admitting an ori-

ented Morse foliation F having c be the number of centers and s be the even number of

saddle singularities in sing(F) satisfying c ≥ s + 1, and suppose that there are at least r

pairs of saddles which are in stable connection, where c > s− 2r. Then M3 is diffeomor-

phic to S3.

Indeed F admits an isotopy to a Morse foliation having only two centers as singularities.

Note If c > s, i.e., if we have more centers than saddles, then the condition above is

automatically satisfied.

Proof . Since by hypothesis we have c center and an even number of saddle singular-

ities s satisfying:

(a) c ≥ s+ 1

We will proceed by induction on the number s of saddle singularities.

(i) Let s = 0, then we have just center singularities and result follows by Reeb’s thesis.

(ii) Assume now that s ≥ 2 and that result is true for foliations having at most s − 2

saddle singularities.
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(iii) Now we have to prove the result for s saddles. Since by hypothesis we have foliation

F with s saddles and c centers satisfying c ≥ s + 1. Also by hypothesis there are

at least r pairs of saddles which are in stable connection, where c > s − 2r. By

proposition 7 we can obtain a modification F̃1 of F on Mn that exhibits two saddle

singularities say q1 and q2, of complementary indices which are in strong stable

connection,i.e. stable manifold of q1 intersects transversally the unstable manifold

of q2. We can eliminate saddle q1 and q2 which belong to a dead branch, by replacing

F̃1 by a modified Morse foliation F1 on Mn with a number s1 of saddles given by

s1 = s−2 . Now we have two less saddle singularities s−2. By induction hypothesis

the result is true for s − 2 singularities of saddle type. So it has been proved for s

saddles. It proves our result.

(b) Now s > c .

since we have saddle singularities, and by hypothesis there are at least r pairs of

saddles which are in stable connection, where c > s − 2r. So by proposition 7 we can

obtain a modification F̃2 of F on Mn that exhibits two saddle singularities say q1 and

q2, of complementary indices which are in strong stable connection ,i.e. stable manifold

of q1 intersects transversally the unstable manifold of q2. We can eliminate saddle q1 and

q2 which belong to a dead branch, by replacing F̃2 by a modified Morse foliation F2 on

Mn with a number s2 of saddles given by s2 = s − 2 . By successive modifications of

the foliation by elimination , a Morse foliation can be obtained as a final result satisfying

{#centers} ≥ {#saddles+ 1}. We are again in case (a) which has already been proved.

4.3 Extension of the theorem 13 by coupling and

elimination of pairs of saddles

Theorem 13 is general case of the theorem 12 , which says that, n-dimensional manifold

admitting Morse foliation with c centers and s saddle singularities satisfying c ≥ s+ 1 is

either homeomorphic to Sn if c = s + 2, or homeomorphic to an Eells-kuiper manifold if

c = s+1, which has been proved by Cesar Camacho and Bruno Scardua in [3] by using the

technique of elimination of trivial center-saddle singularities belonging to a dead branch.

Here we shall extend theorem 13 by proving it with the help of coupling and elimination
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of two saddle singularities of complementary indices.

Theorem 15. Let F be a Morse foliation on a compact connected manifold Mn having

c centers and s saddles in sing(F) satisfying c ≥ s + 1 or, more generally, there are at

least r pairs of saddles which are in stable connection, where c > s − 2r. Then we have

two possibilities:

(a) c = s+ 2 , and Mn is homeomorphic to Sn.

(b) c = s+ 1 , and Mn is an Eells-Kuiper manifold.

Proof. For the case c ≥ s+ 1 , we shall proceed by induction on number s of saddle

singularities .

(I) If s = 0 , then by Reeb’s theorem Mn is homeomorphic to Sn.

(II) Suppose now that s ≥ 1 and the result is true for at most s− 1 saddles.

(III) Now we shall show the result for s saddles . Since by hypothesis we have c ≥ s+ 1.

Thus c ≥ 2. Suppose that Mn is not homeomorphic to Sn. Then by lemma 8 and

lemma 9 for each center p ∈ sing(F) there must be a saddle q(p) ∈ ∂Cp(F). Since

c ≥ s+ 1 and c ≥ 2 , there are two centers p1, p2 such that qp1 = qp2 , i.e. there is a

saddle q such that q ∈ ∂Cp1(F)∩∂Cp2(F), and by lemma 9 we have two possibilities:

(i) ∂Cp1(F) = ∂Cp2(F)

(ii) ∂Cp1(F) 6= ∂Cp2(F)

(i) in the case ∂Cp1(F) = ∂Cp2(F) we have M = Cp1(F) ∪ Cp2(F), so clearly

Cpi ∩ sing(F) = {pi}, i = 1, 2. Thus sing(F) = {p1, p2, q} ,which satisfies the

condition c = s+ 1, and by proposition 6, M is an Eells-Kuiper manifold .

(ii) In the case ∂Cp1(F) 6= ∂Cp2(F) , saddle singularities satisfy s ≥ 2 and by

hypothesis we know that there are at least r pairs of saddles which are in stable

connection, where c > s−2r. Then by proposition 7, we obtain a modification

F̃ of F on Mn which exhibits two saddle singularities of complementary indices

say q3 and q4 which are in stable connection . We can eliminate these two

saddles , replacing F̃ by a Morse foliation F1 on Mn with the same number

of centers c and two less saddles s − 2 given by s1 = s − 2 . Therefore c > s1
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and s > s1 ≥ 0 . By induction hypothesis Mn is homeomorphic to Sn or to an

Eells-Kuiper manifold .

Now if s > c , by hypothesis we know that there are at least r pairs of saddles which are

in stable connection, where c > s − 2r. Then there are successive modifications of the

foliation F by elimination of complementary saddles by proposition 7, we obtain a Morse

foliation which satisfies (a) which is c = s + 2 or (b) which is c = s + 1 , and again the

result follows by above demonstration .

4.4 Extension of the theorem 11 by coupling and

elimination of pairs of saddles

Before discussing our desired result, which is Haefliger’s type theorem for 3-sphere , first

we would like to state classical Haefliger’s theorem for the disc :

Theorem : Let
−→
X be a C1 vector field defined in a neighborhood U of disc D2 ⊂ R2

such that
−→
X t ∂D2 points inward the disc satisfying the following conditions:

(i)
−→
X has only Morse singularities in disc D2.

(ii)
−→
X will be without saddle connections .

Then there exists a unilateral compact invariant one dimensional subset Γ ⊂ D2.

Here we shall learn the use of dead branch having two saddles of complementary indices

and modification inside the dead branch to prove the extension of variant of Haefliger’s

theorem for foliations with singularities [2].

Theorem 16. Let F be a C∞ Morse foliation on 3-sphere S3 having c center and s saddle

singularities, such that there are at least r pairs of saddles which are in stable connection,

where c > s − 2r. Then F is an inverse modification of a Seifert fibration of S3, i.e.

a singular foliation of S3 by Spheres S2 and centers , or we have one of the following

possibilities:

(a) There is a compact codimension one invariant subset whose holonomy is one-sided.
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(b) There is a singular Reeb component of F .

Proof. Lets first study the case c ≥ s.

We fix an orientation for F . By hypothesis we have c centers and s saddles satisfying

c ≥ s. We will proceed by induction on saddle s.

(I) Consider the case s = 0, so c ≥ 0. For s = 0 we further have two cases:

(i) c = 0 (s = 0 already) , we have nonsingular codimension one foliation F on

S3, so by Novikov theorem F has some Reeb component and therefore F has

a toral leaf L ' S1 × S1 with one-side holonomy group.

(ii) c ≥ 1 (s = 0 already ), foliation F has only center singularities , therefore it is

Seifert fibration by Reeb .

(II) Assume now s ≥ 1, since by hypothesis we have c ≥ s, so c ≥ s ≥ 1. Assume that

result is true for s− 1 saddle singularities

(III) Now suppose we have c centers and s saddles satisfying the inequality c ≥ s, suppose

a center p1 in S3. We denote Cp1(F) connected component of C(F) which contains

p1, where C(F) = Union of all centers and leaves diffeomorphic to S2 of the foliation

F . Since we have Cp1(F), so we have two cases for the boundary ∂Cp1(F):

(i) ∂Cp1(F) = ∅ then Cp1(F) = S3, so all leaves of F are compact diffeomorphic

to S2 with trivial holonomy . In other words F is singular Seifert fibration of

S3.

(ii) ∂Cp1(F) 6= ∅ then by lemma 5 , ∂Cp1(F)∩sing(F) 6= ∅, so any leaf L ⊂ ∂Cp1(F)

is separatrix of some saddle singularity q1. This singularity is unique, because

F has no saddle connections. On the other hand we can not have ∂Cp1(F) ⊂
singF . Thus we can find a leaf L0 of F such that Γq1 = L0 ∪ {q1} ⊂ ∂Cp1(F),

where L0 is separatrix of saddle q1. Since Γq1 is accumulated by spherical

leaves, so we have two possibilities for holonomy of Γq1 :

(A) Γq1has non-trivial holonomy and since Γq1 is accumulated by spherical leaves,

so Γq1has one-side holonomy and the result follows.

(B) Γq1 has trivial holonomy , then by lemma 5 , we have following possibilities

for ∂Cp1(F):

66



(1) ∂Cp1(F) \ {q1} is connected.Then

(i) ∂Cp1(F) is homeomorphic to a sphere S2 with a pinch at q1. By hy-

pothesis we know that there are at least r pairs of saddles which are in

stable connection, where c > s− 2r. Then by proposition 7 we obtain

a modification F̃1 of F on Mn which exhibits two saddle singularities

of complementary indices q3 and q4 which are in stable connection .

The foliation inside dead branch having pair of complementary saddles

q3 and q4 which are in stable connection , can be modified to a trivial

foliation by elimination of this pair . The modified foliation F1 has

two less saddles given by s1 = s− 2. By the induction hypothesis the

modified foliation F1 is an inverse modification of a Seifert fibration of

S3 or F1 satisfy one of the two conditions mentioned in the statement

, and therefore we have the same possibilities for F .

(ii) ∂Cp1(F) \ {q1} is homeomorphic to a singular torus . Since we are in

case (B) in which Γq1 has trivial holonomy , and Γq1 is surrounded

by the leaves diffeomorphic to the torus. So we can isolate the region

R ⊂ S3 containing Cp1(F) invariant by F and diffeomorhic to the solid

torus where we have defined singular Reeb foliation.

(2) ∂Cp1(F)\{q1} has two connected components . In this case the saddle

q1 is not self-connected and Γq1 is homeomorphic to S2 and Γq1 \{q1} is

diffeomorphic to a sphere minus one point . Again by hypothesis that

there are at least r pairs of saddles which are in stable connection,

where c > s − 2r and proposition 7 we modify foliation F . The

modified foliation F̃2 of F will have two complementary saddles q4 and

q5 in strong stable connection . By elimination of these two saddles

we obtain foliation F2 which will have two less saddles . By induction

hypothesis modified foliation F2 is an inverse modification of a Seifert

fibration of S3 or F2 satisfy one of the two conditions mentioned in

the statement . It proves the result .

Now consider the case s > c .

since we have saddle singularities , so by hypothesis we know that there are at least r

pairs of saddles which are in stable connection, where c > s− 2r, so by proposition 7 we
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can obtain a modification F̃3 of F on Mn that exhibits two saddle singularities say q5 and

q6, of complementary indices which are in strong stable connection,i.e. stable manifold of

q5 intersects transversally the unstable manifold of q6. We can eliminate saddle q5 and q6

which belong to a dead branch, by replacing F̃3 by a modified Morse foliation F3 on Mn

with a number s3 of saddles given by s3 = s− 2 .

By successive modifications of the foliation by elimination , a Morse foliation can be

obtained as a final result satisfying #centers ≥ #saddles . We are again in first case in

which centers are greater or equal to saddle singularities which has already proved.
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Chapter 5

On the topology of compact

foliations with singularities

One of the motivations to the study of foliations was the research of non homotopic

invariant for the classification of 3-manifolds also as an attempt to prove the Poincaré

conjecture for simply-connected closed three-manifolds. As general philosophy it was

guessed that the existence (or nonexistence) of a suitable codimension one foliation might

give information on the topology of the manifold itself. Because of some natural examples

it is useful to consider also foliations with singularities. At this point the interplay between

this new theory and Morse theory becomes more clear. The first natural examples of this

are given by Reeb’s sphere recognition theorem [17] and its celebrated extension due to J.

Milnor theorem ([13], Chapter 6 or [12]). Motivated by this it is then natural to consider

foliations with Morse singularities and, as a next step, to ask what information about the

topology of the manifold we may infer if we admit the singular set of the foliation contains

some saddle-type singularities.

In this chapter we essentially investigate a possible extension of the Reeb’s sphere

recognition theorem ([17]) in different contexts, where we admit different singular sets.

We start with non-degenerate isolated singularities, but we also consider some cases of

a degenerate but regular singular set, i.e., a set with the property that its connected

components have a fundamental system of compact “invariant” neighborhoods.

The main ingredients are classical Morse lemma [11] and Reeb stability theorems ([1],

[4], [7]). The idea is that Reeb stability theorems may replace the Poincaré-Bendixson’s
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theorem in higher dimensions. These theorems are a basic and recurrent tool in our

research. In the last section we obtain, as a consequence of our results, the announced

generalization of the Milnor-Reeb sphere recognition theorems.

5.1 Holonomy and (Reeb) stability

The notion of holonomy of a leaf of a foliation is originally found in the work of Ehresmann

and Shih [6] (who already proved an stability result extending preliminary work of Reeb),

and has been developed in the subsequent work of Reeb ([15]). Since it is classical and

treated by several authors we shall not introduce it here, and we refer to [1], [4] or [7].

The precise statements given below are for future reference in the text:

Theorem 17 (Reeb stability theorems [1, 4, 7]). Let F be a C1, codimension k foliation

of a manifold M :

(1) (Local stability) If F is a compact leaf with finite holonomy group then there exists

a fundamental system of neighborhoods U of F in M , such that each U is saturated by

F , and in which all the leaves are compact with finite holonomy group. Furthermore we

can define a retraction π : U → F such that, for every leaf F ′ ⊂ U , π|F ′ : F ′ → F is

a covering with a finite number of sheets and, for each y ∈ F , π−1(y) is homeomorphic

to a disk of dimension k and is transverse to F . The neighborhood U can be taken to be

arbitrarily small.

(2) (Global Stability Theorem) Suppose F be a codimension one foliation and M is a

closed manifold. If there is a compact leaf F with finite fundamental group then all the

leaves of F are compact with finite fundamental group. If F is transversely orientable

then every leaf of F is diffeomorphic to F ; M is the total space of a fibration f : M → S1

over S1 with fibre F ; and F is the fibre foliation {f−1(θ)| θ ∈ S1}.

(3) (Local product structure) Suppose F be a codimension one, class Cr (r ≥ 1) and is

transversely oriented foliation. If F is a compact leaf of F with finite holonomy group then

it has trivial holonomy and there exist an open neighborhood V (F ) of F in M , saturated

by F , and a Cr diffeomorphism h : (−1, 1) × F → V (F ) such that the leaves of F in

V (F ) are the sets h({t}×F ), t ∈ (−1, 1), where F = h({0}×F ). In particular V (F ) \F
has two connected components.
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In the course of the proof of Reeb stability theorems and in some of our arguments as

well, the following fact is very useful.

Proposition 8 (Stability lemma). Let F be a compact leaf of a codimension one foliation

F defined on a manifold M . Let Fn be a sequence of compact leaves of F accumulating

to a point in F . Then for all neighborhood F ⊂ W ⊂M one has Fn ⊂ W for all n large.

Since a proof for it is not clearly stated in the basic references, we shall provide one.

For this we shall need the following basic result of immediate proof:

Lemma 11. Let x ∈ ∪i∈IFi ⊂ M , where {Fi}i∈I is a sequence of leaves of a foliation F
on a manifold M . Then for all y ∈ Lx we have y ∈ ∪i∈IFi.

Proof of Proposition 8. Let U1, . . . , Uk ⊂ W be a covering of F with charts of F such

that Ui ∩ F is a single plaque, αi of Ui,∀i. Since F and Fn ∀n are compact they have

the same transverse type, which is discrete. In particular F ∩ Ui and Fn ∩ Ui ∀n contain

a finite number of plaques of Ui. Moreover, as a consequence of the lemma stated above,

F ⊂ ∪nFn and we can choose n in a way that Fn ∩ Ui 6= ∅ for all 1 ≤ i ≤ k. We have

to prove Fn ⊂ U1 ∪ · · · ∪ Uk. At this purpose suppose U1, . . . , Uk is not a covering of Fn

(n fixed). We may choose a finite set of foliated charts of F , Uk+1, . . . , Ul, in a way that

U1, . . . , Ul is a covering of Fn, Fn ∩ Ui contains a finite number of plaques of Ui for all

i = 1, . . . , l and F ∩Ui = ∅ ∀i = k + 1, . . . , l. For simplicity we suppose l = k + 1. For all

y ∈ Fn∩Uk+1 we can find 1 ≤ i0 ≤ k such that the projection along plaques of the plaque

through y intersect a plaque α(y) ⊂ Ui0 . By construction Ui0 ∩ F 6= ∅, then the space of

plaques Σi0 of Ui0 is such that Σi0 ∩F 6= ∅ and Σi0 ∩α(y) 6= ∅. We may identify Σi0 with

a suitable transverse section. Let Σy a transverse at y. By classical Transverse uniformity

lemma [1] there exists a Cr diffeomorphism f : Σi0 → Σy such that f(Σi0 ∩ L) = Σy ∩ L
for any leaf L of F . In particular F ∩ Σi0 6= ∅ ⇒ F ∩ Σy 6= ∅, a contradiction.

5.2 Compact foliations with singularities

Let M be a compact connected manifold of dimension n, possibly with non-empty bound-

ary, ∂M . Let F be a codimension one, C∞ foliation, with isolated singularities, on M

and, if ∂M 6= ∅, we suppose F is tangent or transverse to ∂M . We shall say [3] that the
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foliation is a compact foliation with singularities of M if its leaves are compact. Notice

that if the singularities of F are of Morse type, then there are only center type singularities

and as in the original work of Reeb this imposes, in case sing(F) 6= ∅, severe constraints

to the manifold. The classification of these manifolds is given below.

Theorem 18. Let F be a transversely orientable compact foliation with nonempty singular

set and having singularities all of center type on a compact connected oriented manifold

M , tangent to the boundary ∂M if non-empty. Then we have the following possibilities:

(1) M is closed (empty boundary) and F has singularities. In this case there are exactly

two singularities sing(F) = {p, q} and there is a smooth function f : Mn → [0, 1] ⊂
R, defining the foliation, such sing(f) = sing(F), and such that the non-singular

levels of f are diffeomorphic to Sn−1. In particular, M is homeomorphic to Sn.

M

f

1

0

Figure 5.1:

(2) The boundary of M is not empty and F has singularities. In this case there is

a single singularity sing(F) = {p} which is a a center and there exists a smooth

function f : Mn → [0, 1] ⊂ R, which defines F , with nonsingular levels diffeomorphic

to Sn−1. Moreover, ∂M has a single connected component and M is homeomorphic

to Bn.

M

f

1

0

Figure 5.2:
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(3) F is nonsingular and M has nonempty boundary. In this case ∂M has two connected

components, each diffeomorphic to F , the typical leaf of F . F is given by a function

f : Mn → [0, 1] ⊂ R, with no critical points and levels diffeomorphic to F , and M

is homeomorphic to the product F × [0, 1].

M

f

0

1

Figure 5.3:

(4) If F nonsingular and M is closed. Then F is given by a fibration Mn → S1, i.e.,

Mn is a fiber bundle over S1, with fiber a typical leaf F of F . In particular, if F
has some leaf diffeomorphic to Sn−1 then M is homeomorphic to Sn−1 × S1 and F
is the trivial foliation by spheres, Sn−1 × {y}, y ∈ S1.

M

S1

f

Figure 5.4:

Prior to the proof of Theorem 18 we need to recall a classical result and adapt it to

our framework:

Proposition 9 ([7] Corollary 2.19, page 103)). Let F be a codimension one smooth

(nonsingular) foliation on a connected oriented manifold Mn tangent to the boundary of

M if nonempty. If F is transversely oriented and has all leaves compact then the leaf

space M/F is a Hausdorff manifold of dimension one.
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Given now a compact foliation with singularities F on M we put M̃ = M \ sing(F)

and F̃ = F|M̃ . By definition, the space of leaves M/F is defined as the quotient of M

by the equivalence relation: x, y,∈ M, x ' y ⇔ x = y ∈ sing(F) or x, y /∈ sing(F) and

Lx = Ly, i.e, x and y belong to the same leaf of F . Clearly, M/F contains as an open

subset the leaf space M̃/F̃ of the underlying nonsingular foliation. We have:

Proposition 10. For a transversely oriented compact foliation with singularities F all of

center type on a connected oriented manifold M the space of leaves M/F is a Hausdorff

one-dimensional manifold. In particular M/F is diffeomorphic to S1 or [0, 1].

Proof. Let p ∈ sing(F) be a singularity. As all leaves are compact, p is a center. By the

Morse Lemma, the foliation near p is defined by the level sets of a real function. Right

away, it follows that, near p, the space of leaves is (locally) Hausdorff. It remains to prove

that M̃/F̃ is Hausdorff. We adopt the following criterion: every point in M̃/F̃ is closed

and has a fundamental system of closed neighborhoods. This is equivalent to require that

each leaf is closed and its neighborhoods, bounded by (neighbor) leaves, are closed. As F̃
is a compact foliation with singularities, by the local product structure, the neighborhoods

of each leaf F , bounded by neighbor leaves, are diffeomorphic to [−ε1, ε2] × F , for some

0 < ε1, ε2 < 1.

Proof of Theorem 18. By hypothesis, we have a singular compact foliation with singular-

ities F , with sing(F) 6= ∅, and/or ∂M 6= ∅ and F tangent to the boundary. Each leaf

F ⊂ M̃ = M \ sing(F) of the foliation F̃ = F|M̃ is compact with trivial holonomy, then

it has a neighborhood V (F ) diffeomorphic to the product (−1, 1) × F , say through the

diffeomorphism hF : (−1, 1) × F → V (F ). Moreover, each leaf in V (F ) is the image of

the set {t}×F for some t ∈ (−1, 1) and the original leaf is the image of {0}×F . This is

a straightforward consequence of the Reeb local stability theorem.

If M is a manifold with boundary and F ⊂ ∂M , for obvious reasons there exists a dif-

feomorphism of V (F ) with (−1, 0] × F or with [0, 1) × F . In any case we will say that

near F , M has a local product structure. In M̃ , as all leaves are compact and M is always

assumed to be Hausdorff, all leaves are closed.

Claim 1. If sing(F) 6= ∅ or ∂M 6= ∅ and F is tangent to the boundary then the space of

leaves is homeomorphic to [0, 1].
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proof of Claim 1. Let sing(F) 6= ∅; then, as already noticed, ∀p ∈ sing(F), p is a center.

Let (U, φ) be a local chart around p. By the Morse Lemma, it follows that p is a point of

local maximum or minimum for the function defining the foliation near p, f = ±
∑
x2
i :

φ(U) → R, a local first integral. This means that the image of U , by means of the

projection onto the space of leaves, belongs to a left, respectively right, neighborhood

of f(p) = 0 and this gives the space of leaves a boundary point, π(p), determining the

choice M/F ' [0, 1]. At the same choice we are led if ∂M 6= ∅ and F is tangent to the

boundary (or, in a more general situation, when #{connected components of ∂M} > 1

and F is tangent to at least one). In fact every leaf in ∂M is a boundary point of M/F ,

as a consequence of the well known properties of the differential. As π = cost on each

connected component of ∂M . Let c ∈ ∂M , then, for d(π|∂M)c : Tc∂M → Tπ(c)M/F , we

have

d(π|∂M)c : Tc∂M → {0}.

Then d(π|∂M)c : Tc∂M → ∂M/F .

As a consequence, when (sing(F) 6= ∅)
∨

(∂M 6= ∅), as ∂(M/F) 6= ∅, then

#∂(M/F) = 2 = # sing(F) + #{connected components in ∂M}

and this gives the first characterization in cases (1), (2), (3).

Vice-versa, if M/F ' [0, 1], the projection can be seen as the restriction to the image of

a map M → R,

ı ◦ π : M →M/F ↪→ R.

As M is compact, this function has a maximum and a minimum (∈ ∂(M/F)). Each of

these points can be a regular or a critical point; so cases (1), (2), (3) get through the case

M/F ' [0, 1] and in case 4, M/F ' S1.

In the following two claims we give an alternative proof of the fact that M̃ is a fiber

bundle over M̃/F̃ .

Claim 2. Let F be a leaf of F . Each leaf of F is diffeomorphic to F .

proof of Claim 2. We have two cases: sing(F) 6= ∅, sing(F) = ∅. Let p ∈ sing(F) be a

center. By the Morse Lemma there exist leaves diffeomorphic to Sn−1. In this case we

assume that F is one of them and we consider the open sets C(F) and Cp(F). Otherwise,
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if sing(F) = ∅, let F be a (any) leaf. We define the set M(F ) ⊂ M as the the union of

leaves with trivial holonomy and diffeomorphic to F , and we consider CF (F) ⊂M(F ) as

the connected component containing F . By the Reeb local stability theorem, also CF (F)

is open. Now we prove that Cp(F) or CF (F) is closed in M . At this purpose, let {xn}
be a sequence of points in Cp(F), resp. CF (F) converging to x0 ∈ M . We show that

x0 ∈ Cp(F), resp. x0 ∈ CF (F). In the first case it can happen x0 ∈ sing(F); in this case

x0 is a center and so x0 ∈ C(F). But x0 ∈ Cp(F), by hypothesis, and Cp(F) is closed in

C(F), so x0 ∈ Cp(F).

So let x0 be a regular point for the foliation. If the points xn, n > m0 ∈ N belong to

the same leaf L, by compactness of L, x0 ∈ L too. Otherwise, let Lx be the leaf through

the point x. By hypothesis, Lxn is diffeomorphic to F , for all n; by the local product

structure, all the leaves in V (Lx0) are diffeomorphic to Lx0 and V (Lx0) contains leaves

diffeomorphic to F . So x0 ∈ Lx0 ⊂ Cp(F), resp. CF (F).

As M is connected we have M = Cp(F), resp. M = CF (F).

Claim 3. M̃ = M \ sing(F) is a fiber bundle with base space given by the space of leaves

M̃/F̃ = (M/F) \ π(sing(F)) with fiber F , a typical leaf of F .

proof of Claim 3. This is a consequence of the local product structure and so of the Reeb

local stability theorem.

Set B = M̃/F̃ . ∀x ∈ B, π−1(x) = Fx a leaf of F . We can find a neighborhood V (Fx)

defined by the local product structure. If it happens x ∈ ∂B then π−1(x) = Fx ⊂ ∂M̃ , as

we have excluded singularities. In this case, we know V (Fx) is diffeomorphic to [0, 1)×Fx
or (−1, 0]× Fx. The set

{π(V (Fx))}x∈B

is an open cover of B = M̃/F̃ . Let

{Ui = π(V (Fi))}i∈I

a locally finite open subcover. π−1(Ui) is diffeomorphic to (−1, 1) × Fi, or to [0, 1) × Fi
or (−1, 0]× Fi through the diffeomorphism hi = hFi

, i.e. to (−1, 1)× F , or [0, 1)× F or

(−1, 0]× F , as all leaves are diffeomorphic. Then, set φi = π1(hi(V (Fi)), where π1 is the

projection on the first component, ∀i ∈ I we have a diffeomorphism

φi : Ui → (−1, 1) or φi : Ui → (−1, 0] or φi : Ui → [0, 1)
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In this way {(Ui, φi)}i∈I is a (locally finite) atlas on M̃/F̃ , where the change of coordinates,

the composition of diffeomorphisms φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj), is clearly a

diffeomorphisms. At last π−1(Ui) = V (Fi) are diffeomorphic to Ui × F and M̃ is given a

fiber bundle structure on M̃/F̃ .

In cases (1), (2) and (3) the manifold M̃ is a fiber bundle over an interval, so by

classical reasons (cf. for example the book [8]) M̃ is the trivial bundle. In particular,

in case (1), M̃ = M \ {p, q} ' (0, 1) × Sn−1 (and M is defined by a singular fibration

π : M → [0, 1]); in case (2), M̃ = M \ {p} ' [0, 1)×Sn−1 or ' (−1, 0]×Sn−1; in case (3),

M ' [0, 1]× F . This completes case (3).

As for case (1), the conclusion M ' Sn could be obtained with an application of classical

Reeb’s sphere recognition theorem (that we recall in the next pages), as we have proved

that F has a first integral, the map ı ◦ π : M → R, or with Cantrell’s theorems [22].

Alternatively, we can extend the homeomorphism h̃

M \ {p, q} h̃ // (0, 1)× Sn−1 ' π(M \ {p, q})× Sn−1

to a homeomorphism h on M

M
h // [0, 1]t × Sn−1

s /∼ = S(Sn−1) ' Sn,

where S denote the suspension and ∼ is the equivalence relation

(t, s) ∼ (t′, s′)⇔


t′ = t, s = s′

t = t′ = 0, s, s′ ∈ Sn−1

t = t′ = 1, s, s′ ∈ Sn−1

Then if [·] denote an equivalence class of the relation ∼, we may set h(p) = h(π−1(0)) =

[(0, s)] and h(q) = h(π−1(1)) = [(1, s)]. So h is a bijection and it is continuous, for the

continuity of π. It is also a homeomorphism, by the local description of the manifold

around centers, given by the Morse Lemma.

Similarly we can complete case (2), extending the homeomorphism

h̃ : M \ {p} → (0, 1]× Sn−1

to a homeomorphism

h : M → [0, 1]t × Sn−1
s /∼ ' Bn,
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where ∼ is the equivalence relation

(t, s) ∼ (t′, s′)⇔

 t = t′, s = s′

t = t′ = 0, ∀s, s′ ∈ Sn−1,

setting h(p) = [(0, s)].

In case (4), M is a fiber bundle over S1 and the foliation is the trivial foliation π−1(x)

(with leaves diffeomorphic to {x} × F , for x ∈ S1). In the case F is diffeomorphic to

the (n − 1)-sphere, Sn−1, by classical theory, we know there exists only one non-trivial

bundle, a sort of generalization of the Klein bottle. We can think at this bundle as the

product Sn−1 × [0, 1] modulo an equivalence relation that identify the boundaries, by an

orientation reversing diffeomorphism. The resulting bundle is always non-orientable (cf.

[20]). In the orientable case, M is the trivial bundle Sn−1 × S1. This completes case (4).

5.3 On the sphere recognition theorem

In the classical version, Reeb’s sphere recognition theorem gives the characterization of

a compact n-dimensional manifold admitting a Morse foliation, whose singularities are

centers and sing(F) 6= ∅. In fact it states:

Theorem 19 (Reeb’s sphere recognition theorem, [17]). Let F be a codimension one

transversely orientable C∞ foliation with Morse singularities on a closed connected ori-

ented manifold Mn, n ≥ 3. Suppose sing(F) 6= ∅ consists only of centers. Then Mn is

homeomorphic to the n-sphere Sn.

In particular, if a closed connected oriented manifold M admits a Morse function with

exactly two critical points then this manifold is homeomorphic to Sn ([11]). A highly

nontrivial version is the celebrated result below due to Milnor:

Theorem 20 (Milnor, [13] Chapter 6). Let Mn be an n-dimensional compact connected

oriented manifold admitting a C∞ function f : M → R with exactly two (possibly degen-

erate) critical points. Then Mn is homeomorphic to the sphere Sn.

We shall give a generalization of Reeb sphere recognition theorem, after introducing

78



a new concept.

Definition 21. We say that an isolated singularity p of a C∞, codimension one foliation F
on M is a stable singularity, if there exists a neighborhood U of p in M and a C∞ function

f : U → R, defining the foliation in U , such that f(p) = 0 and f−1(a) is compact, for |a|
small.

By definition, the space of leaves near a stable singularity is a subset of the real line,

and then (locally) it is Hausdorff. Right away, we may extend the result of Proposition 10.

Proposition 11. In a compact foliation with singularities, with stable singularities, the

space of leaves is Hausdorff.

Example 14. The first example of stable singularities are centers, i.e. the origin for the

foliation (locally) defined by the function f : Rn → R given by f =
∑

i x
2
i . Centers are

the only examples of stable singularities which are also non-degenerate.

Example 15. The foliation defined by the function f =
∑

j x
mj

j , with 2 ≤ mj even ∀j
and mj > 2 for at least one j, has a stable singularity at the origin. In this case the stable

singularity is degenerate, but the function f is not flat.

Example 16. The foliation defined by the function f = exp(− 1∑
x2j

) has a stable singu-

larity at the origin; it is degenerate and the Taylor polynomial of f is identically zero at

x = 0 (f flat).

We can give a characterization of stable singularities [3].

Lemma 12. An isolated singularity p of a function f : U ⊂ Rn → R defines a stable

singularity for df if and only if there exists a neighborhood p ∈ V ⊂ U such that ∀x ∈ V
either we have ω(x) = {p} or α(x) = {p}, where ω(x), resp. α(x), is the ω-limit, resp.

α-limit, of the orbit of the vector field grad(f) through the point x.

In particular it follows the well-known:

Lemma 13. If a function f : U ⊂ Rn → R has an isolated local maximum or minimum

at p ∈ U then p is a stable singularity for df .
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It is also true the converse:

Lemma 14. If p is a stable singularity defined by the function f , then p is a point of

local maximum or minimum for f .

Proof. By the characterization above there exists a neighborhood p ∈ V ⊂ U such that

∀x ∈ V either ω(x) = {p} or α(x) = {p}. Let us suppose ω(x) = {p} (the other case is

similar). Then p is a point of maximum for f . In fact it is well known that f is monotonous,

strictly increasing, along the orbits of grad(f). So if x ∈ V and {φ(t, x), t > 0} is the

positive semi-orbit through x, we have

lim
t→+∞

φ(t, x) = p

So f(φ(t, x)) < f(p), t ≥ 0. In particular f(x) < f(p).

As a consequence, in the set A = {f−1(a)|a ∈ Ima(f |V )} we can define a total order.

We say that f−1(a) < f−1(b) if and only if R(f−1(a)) ⊆ R(f−1(b)), where for each a ∈
Ima(f |V ), R(f−1(a)) is the neighborhood of p bounded by f−1(a). As f−1(a)∩f−1(b) = ∅,
if a 6= b ∈ Ima(f |V ), then the order is total.

The following example and the next lemma precise in what sense these singularities are

stable.

Example 17. Let us consider the function f0 = x3 − 3xy2 presenting one singularity at

the origin, the Monkey saddle singularity. Now we perturb f0, so we consider functions

f = f0 + ε(x2 + y2), ε ∈ R. Even for small |ε|, f presents four singularities: a center at

(0, 0) and three saddles at resp. (−2/3ε, 0) and (ε/3,±ε/
√

3). We have sing(f0) ( sing(f).

This does not happen when we deal with stable singularities. In fact we have [3]:

Lemma 15. Let f : U ⊂ Rn → R be a C∞ function with a stable singularity at the point

p ∈ U . Then we can perturb f to obtain a function f̃ with a Morse center-type singularity

at p and no other singularity in a neighborhood of p.

The likeness between stable singularities and and center-type singularities reflects

heavily on the level hypersurfaces of the respective defining functions. In fact we have:

Lemma 16. In a neighborhood of a stable singularity p for a foliation F , the leaves are

diffeomorphic to spheres.
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Proof. Let f : U ⊂ Rn → R be a function defining the foliation in a neighborhood of

p. Unless replacing f with −f , by lemma 14 we can suppose p is a local maximum

for f . As a manifold is locally compact, the point p ∈ M has a fundamental system

of compact neighborhoods bounded by spheres Sn−1(p, ε). Choose an ε > 0 such that

Bn(p, ε) ⊂ R(f−1(a)), where a is such that f−1(a) is a leaf near p. We can also suppose

that R(f−1(a)) ⊂ W , the domain of a local chart around p. Consider the local flow of

the vector field grad(f), φ : D(φ) ⊂ R(f−1(a))× R→ R(f−1(a))

φ : (t, x) C∞ // φ(t, x) = φt(x).

R(f−1(a)) is compact and so φ is globally defined, in particular we have D(φ) ⊃ D =

(c,+∞)× f−1(a) for some c < 0 and we restrict to such a domain. We define the map

F : (t, x) −→ (−t, φt(x))

on the domain D and image Ima(F ) ( (−∞,−c)×
(
R(f−1(a)) \ {p}

)
. This is a C∞ map,

as its components are, and it has an inverse whose expression coincides with F . Moreover

F is injective. In fact if (t′, x′) 6= (t, x), we have:

if t′ 6= t⇒ F (t′, x′) 6= F (t, x);

if t′ = t⇒ x′ 6= x, then F (t, x′) 6= F (t, x) as x→ φt(x) is a diffeomorphism. Then F is a

diffeomorphism on its image.

We observe that π2(Ima(F )) = R(f−1(a)) \ {p}, where π2 is the projection on the second

set of the product. In particular

Sn−1(p, ε) ⊂ π2(Ima(F )). (5.1)

Then we can define the open set

V = F−1((−∞,−c)× Sn−1(p, ε)),

where for each x ∈ Sn−1(p, ε), Vx := F−1((−∞,−c) × {x}) = {y} is a single point. In

fact for 5.1 Vx 6= ∅. Now suppose (−t, φ(t, x)), (−t′, φ(t′, x)) ∈ Vx with t 6= t′, say t > t′.

We observe that both φ(t, x) and φ(t′, x) belong to the same orbit through x of the vector

field grad(f). As we know, f is increasing along those orbits, so we have

f(φ(t, x)) > f(φ(t′, x))
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and the two points of the orbit cannot belong to the same leaf {f = a}. This means that

∀x ∈ Sn−1(p, ε) there exists a single tx such that φ(tx, x) ∈ f−1(a); in other words it is

defined a map x→ tx. As V is open, the restriction F |V is a diffeomorphism

(tx, x) (−tx, φtx(x)),
F |V
oo

where x ∈ Sn−1(p, ε). Moreover as {p} = ω(x)

{φ(t, x)|t ∈ [0,+∞)} ∩ Sn−1(p, ε) 6= ∅ ∀x ∈ f−1(a)

So π2(V ) = f−1(a) and F |V , restricted to its components, gives, in particular, a C∞

bijection

ψ : f−1(a)→ Sn−1(p, ε).

For the same reasons its inverse is C∞, so ψ is a diffeomorphism of f−1(a) with Sn−1(p, ε).

If a stable singularity is defined by a function which is not flat at the singularity, we

can give an alternative proof.

Let f : U ⊂ Rn → R be a non-flat function defining a stable singularity p; this means the

Taylor polynomial of f at 0 is non-trivial, but exhibits a first non-trivial jet of the form

±
n∑
j=1

ajxj
2mj , (5.2)

where aj > 0 ∀j ∈ {1, . . . , n} and mj ∈ N. If mj = 1 ∀j ∈ {1, . . . , n}, we are already

dealing with a center-type singularity and so the diffeomorphism exists by the Morse

Lemma. So let mj > 1 for some index j ∈ {1, . . . , n}. Moreover let us suppose that p is

a minimum so that in the expression 5.2 we may select the positive sign (we can proceed

in a similar way if p is a maximum). First of all we observe that W = R(f−1(a)) =

{f−1(α)}0≤α≤a is homeomorphic to Bn. This is a consequence of the fact that W is star-

shaped with respect to the origin, i.e. x ∈ ∂W ⇒ tx ∈ W, 0 ≤ t ≤ 1. This happens

⇔ f(x)− f(tx) ≥ 0. In fact we have
n∑
j=1

ajxj
2mj −

n∑
j=1

ajtj
2mjxj

2mj =
n∑
j=1

aj(1− tj2mj)xj
2mj ≥ 0

since it is a sum of products of non negative terms. Then W ' Bn. Observe that a

homeomorphism between the two sets is given by the C1 function

φ(x) =

 f(x) x
‖x‖ x 6= 0

0 x = 0
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that moves x along the positive ray through it. Observe that φ(x) sends level sets of

the function f , i.e. leaves of F in a neighborhood of p, into leaves of the singular trivial

foliation of Bn.

We can see that φ is surjective. In fact let y ∈ Bn. Then there exists x ∈ φ−1(y), given

by the intersection of the level set f−1(‖y‖) with the ray λy, λ > 0 (λ < 0 if p is a local

maximum).

We see also that φ is injective. Let x1 6= x2 be two points of W . We have φ(x1) = f(x1) x1
‖x1‖

and φ(x2) = f(x2) x2
‖x2‖ . If f(x1) 6= f(x2)⇒ ‖φ(x1)‖ 6= ‖φ(x2)‖ and so φ(x1) 6= φ(x2). So

let f(x1) = f(x2). If φ(x1) = φ(x2) then x1
‖x1‖ = x2

‖x2‖ and so two points of the same leaf

lie on the same ray, but this is a contradiction with the fact that W is star-shaped with

respect to the origin. So we have φ(x1) 6= φ(x2).

At last we see that φ is an open map. Let A ⊂ W be an open set, x ∈ A and y = φ(x).

We can find an open neighborhood of y contained in φ(A). Recalling that φ is a bijection,

it is enough to choose a neighborhood of y given by the intersection of the annulus

D = {||y|| − ε < ||z|| < ||y|| + ε} with a little open cone C with vertex at the origin,

centered at y and choose ε and the wideness of C in a way that φ−1(D ∩ C) ⊂ A.

For classical reasons φ is a homeomorphism between (W,∂W ) and (Bn, Sn−1). We consider

the restriction

ψ = φ|W\{0} : (W \ {0}, ∂W )→ (Bn \ {0}, Sn−1).

ψ is a diffeomorphism and ψ|∂W is the diffeomorphism of f−1(a) with Sn−1.

�

With the result of Lemma 13 we have

Theorem 21. Let F be a transversely orientable compact foliation with stable singularities

on a closed connected oriented manifold M . Then M admits a transversely orientable

compact foliation with singularities all of center type. In particular M must be as in cases

(1) or (4) in Theorem 18.

Proof. Indeed, given a singularity p ∈ sing(F), according to Lemma 13 there is an

invariant compact neighborhood Bp ⊂ M of p diffeomorphic to the closed unit ball

in Rm, by a diffeomorphism that takes F
∣∣
Bp

into the foliation by concentric spheres

Sm−1(0; r), 0 < r ≥ 1 and the singularity p into the origin 0 ∈ Rm.
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Corollary 4. Let Mn be a closed n-dimensional manifold, n ≥ 3. Suppose M supports

a C∞ codimension one transversely orientable foliation F , with non-empty singular set,

whose elements are all stable singularities. Then M is homeomorphic to the sphere Sn

Proof. Let p1, . . . , pk, k ≥ 1 be the stable singularities of the foliation and fi : Ui 3 pi → R,

fi(pi) = 0 for all i, their defining functions. For |a| small and i = 1, . . . , k, by lemma

16, the compact leaf f−1
i (a) is diffeomorphic to a little sphere around pi, S

n−1(pi, ε), and

bounds a region R(f−1(a)) diffeomorphic to Bn(pi, ε). From this point we can go on as

in the proof of Theorem 19. In particular, as by Proposition 11 the space of leaves is

Hausdorff, we may apply the classification Theorem 18 for singular Seifert fibrations.

As a consequence of the last theorem we re-obtain the Milnor’s version of Reeb’s sphere

recognition theorem. In fact we have:

Proof of Theorem 20. The function f defines a singular foliation with compact leaves and

having as singular set the two critical points of f , which according to Lemma 13 are stable

singularities. We apply Corollary 4 above and conclude the proof.
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Portuguese by Sue E. Goodman. Birkhäuser Boston, Inc., Boston, MA, 1985.

[2] Camacho, César; Scárdua, Bruno: On codimension one foliations with Morse singu-

larities on three-manifolds. Topology and its Applications, Volume 154, Issue 6, 15

March 2007, pages 1032-1040.

[3] Camacho, César; Scárdua, Bruno: Foliations with Morse singularities; Proc. Amer.

Math. Soc. 136 (2008), no. 11, 4065-4073.

[4] A. Candel, L. Conlon: Foliations, I. American Mathematical Society. Providence,

Rhode Island, 1999.

[5] C. Ehresmann, Sur les espaces fibrés différentiables, C. R. Acad. Sci. Paris 224 (1947),
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de Matemática, IMPA, 1977.

[28] Elon Lages Lima: Commuting vector fields on S3, Ann. of Math., vol 81, 1965, pg.

70–81.

[29] Elon Lages Lima: Variedades Diferenciáveis, Monografias e matemática No. 15,
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intégrables; C.R. Acad. Sci. Paris, 220, 1945 pg. 236-237.

[37] J. Sotomayor: Lições de Equações Diferenciais Ordinárias; Projeto Euclides, Rio de
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