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Introduction

Throughout this work, moving us in various scenarios different problems are
boarded, some of them are solved, but even the unsuccessful ones are pre-
sented. All of them related with the existence of first integrals (meromorphic
in one case, holomorphic in the remaining ones) for holomorphic foliations
under different conditions.

In the first chapter we start the path that will drive us to our first main re-
sult. With the purpose of contextualize this chapter remember an important
tool in the study of foliations (real and holomorphic), the holonomy group,
two clear examples (among many others) of its importance are the stability
theorems of Reeb (see Camacho and Lins Neto [L0] chap. IV) and the theo-
rem of existence and uniqueness of first integrals of Mattei and Moussu [30].
In the context of holomorphic foliations, the holonomy groups are finitely
generated groups of germs of diffeomorphisms in C” fixing the origin. Those
groups have been highly studied for many authors and important results have
been achieved both in dimension 1 and in general dimension (for a survey
of results in this area see Abate [3], Bracci [7, 8], Raissy [38]). In particu-
lar in Chapter [T} aiming to find conditions for their periodicity, we analyze
groups of germs of diffeomorphisms in dimension n > 2, finitely generated
and having infinitely many invariant curves. The following is the first result
we present, note that it is quite similar to Theorem 3.1 in Brochero Martinez
[9] (we properly explain in Chapter 1| why we use one instead the other ),

Theorem [A] Let G € Diff(C",0). Then G generates a finite group if and
only if, there ezists a neighborhood U of 0 such that |Oy(x,G)| < oo for all
x € U and G leaves invariant non-enumerable many analytic varieties at 0
of dimension n — 1.

To see the importance of Theorem [A] in this work, is necessary to jump
to Chapter 4, where is obtained the following result, where “Gen (X(C3,0))”
stands for generic vector field, see Definition and condition (%) means
that the eigenvalues of the vector field can be rotated in a such way that one
of them has positive real part and the others negative (see Definition .
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Theorem Bl Let F(X) be the germ of a holomorphic foliation with X €
Gen (X(C3,0)) and satisfying condition (x). Then F(X) has a holomorphic
first integral if, and only if, the leaves of F(X) are closed off the singular-
ity and there exist non-enumerable many X -invariant analytic hypersurfaces
passing through 0 and in general position.

In Chapter [2| properties of formal series and diffeomorphisms, which are
the machinery needed in Chapter 3] are presented. With the aim of motivate
the next result, remember that in Mattei and Moussu [30] besides showing
that the germ of a holomorphic foliation of codimension 1 in a neighborhood
of 0 € C™ with an isolated singularity at the origin, closed leaves off the sin-
gularity and finitely many separatrices possesses a holomorphic first integral.
The authors also manage to prove that having a formal first integral there
is way to obtain from it a holomorphic one. A similar step is given in Mal-
grange [27] where some other results about the existence of a holomorphic
first integral are found (see also Cerveau and Lins Neto [17]).

Our main motivation comes from Camara and Scardua [I4] where condi-
tions are given for the existence of a holomorphic first integral for a generic
germ of foliation of dimension one in (C?,0) but it is missing the “formal to
holomorphic step” letting open the question: Does in this scenario the exis-
tence of a formal first integral implies the existence of a holomorphic one?. Tt
turns out that there is a positive answer that we resume in the next theorem:

Theorem [C| Let F(X) be a germ of holomorphic foliation with
X € Gen (X(C3,0)). If F(X) has a formal first integral then it also has
a holomorphic one.

Up to here we were focused in dimension 3, though some results are valid
in greater dimension. Changing to dimension two, in Chapter | is presented
the following stability theorem:

Theorem [5.2.2. Let F be a holomorphic foliation of codimension 1 on a
compact, connected and complex surface M. Suppose that there is an invari-
ant divisor D C M such that:

(i) The virtual holonomy of the components of D is finite.
(ii) The elements in D Nsing(F) are isolated singularities of F.

(iii) If a singularity p € D Nsing(F) is non dicritical then D contains all
the separatrices of F through p.

(iv) If a singularity ¢ € D N sing(F) is dicritical then for its separatrices
L, in D the closure of L, = E~'(L, \ {q}), where E : M — M is
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the resolution map (finite composition of blow-ups), cuts a dicritical
component of D, (its exceptional divisor).

Then F has a meromorphic first integral.

Finally, in Chapter [6] we unsuccessfully sought a way of proof the main
result of Camara and Scardua [14] but with the technique of Moussu [31].
We explain there the technique and the limitations we found.

Maybe less important but possibly useful there are results obtained while
working in the previous ones. For instance, the same methods used to prove
Theorem [A] allowed us to show the following

Theorem Let G € Diff(C",0). The group generated by G is finite if
and only if, there exists a neighborhood U of 0 such that |Oy(x,G)| < oo for
all v € U, and G leaves invariant non-enumerable many analytic varieties
of complex dimension 1, in general position, arbitrarily close to 0, and each
one intersecting the set C = Ccn defined as in Lemma [1.1.5.

and

Theorem Let G € Diff(C",0). The group generated by G is finite
if and only if, it exists m € N such that for an arbitrary neighborhood of 0,
G leaves invariant infinitely many analytic varieties of complexr dimension
1, in general position and each one having a convergent sequence of periodic
points of order at most m.

Also, as a first step in the proof of Theorem [B| we proof

Theorem [4.2.3] Let X be a germ of homogeneous vector field in 0 € C3.
Suppose that X leaves invariant infinitely many hypersurfaces passing through
0 and in general position. Then, there exists a rational map f : CP(2) —
CP(1) that is F(X)-invariant (i. e., X(f) = 0) this map is also call it a
weak first integral of F(X).

Obviously, we got propositions and lemmas along the way.



Chapter 1

Groups of germs diffeomorphisms

In this chapter, after introducing some definitions and notations, we will
mention some results that although interesting on their own, the way how
they intervene throughout this work is what transform them in a fundamental
piece of this thesis.

Sections two and three are based on Theorem 3.1 in [9]. Theorem [A] is
its generalization to dimension n > 2 (as the author points out in [9]) and
Theorem is its version for finite generated groups. In Theorems [1.3.1
and we make a few changes in its hypothesis, maintaining valid the
original conclusion, obtaining in this way two new versions of it.

It is worth to say that only small changes in the original proof in [9] are
needed to demonstrate the previous theorems. Nevertheless, we will write
down each one of the proofs in order to make easy to note the difference
among them. After this, we present some recent results in this topic (see
[39, [43])

We end this chapter with some comments on Theorem 3.1 in [9].

1.1 Preliminaries

Let Diff(C",0) be the group of germs of diffeomorphisms at 0 € C". The
germ G € Diff(C™, 0) will be represented by the map G in a domain U where
G(U) and G1(U) are well defined, and U is an open neighborhood of the
origin with compact closure. We will use the following notation,

Ou(z,G) ={G"(x)|G(x),...,GP(x) e U}U
{GYx) |G (z),...,G™(z) e U} U {x}



for the G-orbit of x in U, |Oy(z, G)| for the number of elements in its G-orbit
and

py(z,G) = sup{p > 0| G*(x) € Oy(z,G)}+
sup{p > 0| G7P(z) € Oy(z,G)} + 1,

for the number of iterates of x in U. If uy(z,G) = oo and |Oy(z, G)| < o0
we say that the point x is periodic in U, if puy(x, G) is finite then it is equal to
|Ou(z, G)|. We say that G has finite orbits if |Oy(z, G)| < oo for all x € U.

Regarding the finiteness of groups generated by germs of diffeomorphisms
Mattei-Moussu gave in [30] p. 477 the following criteria for the one dimen-
sional case.

Theorem 1.1.1. An element G € Diff(C,0) is periodic if and only if it has
finite orbits.

Another proof of this theorem (using Pérez-Marco’s work) is given in
[31].
It is easy to see that Theorem is not true in dimension grater than
one (consider for example the map G(z,y) = (z + y?,y) whose orbits are
finite but is not periodic). However, with an additional hypothesis, Theorem
(which is Theorem 3.1 in [9]) attempts to generalize this criterion. The
reason we say “attempts” is because the proof presented in [9] is inaccurate.
We believe in the result but our attempt to prove it did not succeed. For

this reason we put an additional hypothesis that allows us to prove it, as we
do below in Theorem [Al

Theorem 1.1.2 (Brochero). Let G € Diff(C2,0). Then G generates a finite
group if and only if there exists a neighborhood V' of 0 such that |Oy(z, G)| <

oo for all x € V and G leaves invariant infinitely many analytic varieties at
0.

In fact, in the previous two theorems we can change the diffeomorphism
G by a finite generated group G C Diff(C,0) (or Diff(C?,0) respectively)
taking into account the second affirmation of Lemma 3.3 in [42] that says:

Lemma 1.1.3. Let G C Diff(CF,0) be a finitely generated subgroup. Assume
that there is an invariant connected neighborhood W of the origin in C* such
that each point x is periodic for each element G € G. Then G is a finite

group.

The following topological lemma is a modification of the Lewowicz’s
Lemma and plays an important role throughout this chapter.
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Lemma 1.1.4. Let M, be a complex analytic variety in C", with 0 € M,
and K be the connected component of 0 in B,(0) N M. Suppose that f is a
homeomorphism from K to f(K) C M such that f(0) = 0. Then there exists
x € OK such that the number of iterations f™(x) € K is infinite.

Proof. Denote by i = pi|x and p = p| ¢ the number of iteration in K and K.
It is easy to see that 7 is upper semicontinuous, u is lower semicontinuous
and 7i(x) > p(z) for all z € K. Suppose by contradiction that fi(x) < oo for
all z € 0K, therefore there exists n € N such that 7i(z) < n for all x € K.
LetA:{xEKm(x)<n}DaKandB:{fo(\u(x)Zn}BO. They
are open sets satisfying and AN B = () since f(z) > p(z).

Using the fact that K is a connected set, there exists o € K \ (AU B) i.e
(xo) > n > p(xg). Then the orbit of xy intersects the border of K, which
is a contradiction since 0K C A would give that xq € A. To see clearer this
last point, note that if G™ (2¢) € K for some m’ € Z, then G™ () € A, i.
e., i(G™ (20)) < n but by definition 7(G™ (x0)) = 7i(2o) thus 2o € A v

In our framework Lemma implies:

Lemma 1.1.5. Let G € Diff(C",0) and M be a G-invariant complex analytic
variety passing through 0 € C". There exist a compact, connected, and non-
enumerable set Cyy such that 0 € Cyy and, for all x € Cyy andn € N, we have
G"(z) € M NU for a domain U where G(U) and G~ (U) are well defined.

Proof. Without loss of generality we suppose that U = B,(0). Let M be
a G-invariant complex analytic variety and K = M N U be the connected
component of M NU in 0. Let Ay = K, A;;1 = KNG (A;) and C,, be
the connected component of A, in 0. It is clear, by construction, that A, is
the set of points of K with n or more G-iterates in K. Moreover, since A,
is compact and C,, is compact and connected, it follows that Cy, = (), C,
is compact and connected too, and therefore either Cy, = {0} or C)y is
non-enumerable.

We claim that Cyy NOK # () and then it is non-enumerate. In fact, if
Cy NOK = () then there would exist j such that C; N 90K = (. Let B
be a compact connected neighborhood of C; such that (A; \ C;) N B = 0.
Therefore for all x € OB we have ug(z,G) < j, that is a contradiction by
the Lemma [LT.4 v

The previous lemma is part of the proof of Theorem in [9], but due
to its importance and constant use throughout this chapter, we decided to
write it as an independent result.



1.2 Groups of diffeomorphisms in dimension n
fixing 0

We start by presenting a proof of Theorem[I.1.2]in dimension n. In this proof
we follow the original one, although adapting some arguments to our case
and changing one of the hypothesis in order to avoid an imprecision found
in the original proof (later on we will discuss this topic).

The following well known proposition is the analytic case of Proposition
3.1 in [9], it is also true in the formal case (the demonstration is the same)
and it will be use in the proof of the Theorem [A]

Proposition 1.2.1. Let G be a finite subgroup of Diff(C",0) then G is ana-
lytic linearizable, and it is isomorphic to a finite subgroup of Gl(n,C).

Proof. 16 G = {G1,...,G,}, let h™'(z) = 37, (dG;)y ' G;(x), Note that b~
is a diffeomorphism because dh=(0) = rI and

hH(Gi(x)) = Z(de>a G (Gi(x)) = (dGy)o Z(dGi)a HdG;)o' Gy (Gile))
= (dG:)o Z ((dG;)o(dG1)o), " G;(Gi(x))

j=1

0 Gj (Gl(l‘)) = (dGz)ohil(l’)
Thus h=! o G; o h(z) = (dG;)o(z). In fact, we obtain an injective group
homomorphism

A:G —s Gi(n,C)
G — (R o G o h)(0). v

Furthermore, in [9] it is proved (after the proposition above) that the group
A(G) C Gi(n,C) of linear parts of the diffecomorphisms in G is diagonalizable.

The following theorem is the generalization of Theorem[1.1.2]to dimension
n but, as we mention above, it is necessary to change one of the hypothesis.
To be precise, instead of “GG leaves invariant infinitely many analytic varieties
at 0”7 we put “G leaves invariant non-enumerable many analytic varieties at
0”. In order to clarify this point, after Theorem we write down the
proof of Theorem as spears in [9] and we explain why this change was
necessary.



Theorem A. Let G € Diff(C",0). Then G generates a finite group if and
only if there exists a neighborhood U of 0 such that |Oy(z,G)| < oo for all
x € U and G leaves invariant non-enumerable many analytic varieties at 0
of dimension n — 1.

Proof. (=) If the group generated by G is G = {G,G?,...,G"} obviously,
for all x in a neighborhood U where G* is defined for all i, we have that
Oy (z,G) is finite. In fact, Oy(z,G) = {G(x),...,G"(x)}.

Now, consider, as in Proposition h™!(z) = >2H(dG7)g G () which
is such that h™' o G* o h(x) = (dG")o(z) for all i, where (dG*)y* = I for
some n;. This implies that (dG%), is diagonalizable, we then suppose that
(dG")g is diagonal, in fact h can be defined as a diffeomorphism which also
diagonalizes the group, since in our case the group is cyclic then the linear
parts are simultaneously diagonalizable. In the definition of A~! is sufficient
to change (dG?)y to P~1(dG7)oP, where P is the matrix that diagonalizes
the group of linear parts, it is easy to see that the proof of Proposition [T.2.]]
works. With this, we define

M.={y=nh(z) €U |cial" + -+ coz)} =0}, (1.1)

where m =nqy---n, and ¢ = (¢q,...,¢,) € C". M, is a G-invariant complex
analytic variety of dimension n — 1 for each ¢ € C". In order to see this, take
y € M, which, by definition, is equal to h(zx) for some x € U satisfying
then we have to prove that G'(y) € M. fori=1,...,r,

G'(y) = G'(h(w)) = (" 0 G o h(x)),
= h((dG")oz),

and using that (dG"), is diagonal, we have (in multi index notation)
((dG%)pz)™ = (AG)y a™ = ™.
Therefore, if y = h(z) € M, then G'(y) = h((dG*)oz) € M.

(<) Consider M = C" in Lemma [1.1.5] Then C' = C¢n is the compact,
connected and non-enumerable set of points in U such that uy(z,G) = 0o
and therefore every point in C is periodic. If we denote D,, = (J{z €
C'|G™(x) = x}, it is clear that D,, is a closed set and D,,, C D, 1, moreover
C = D,,. Fix m € N and consider F' = G™', which is well defined in some
neighborhood U’ of 0 € C", observe that C' is in the domain U’ of F' and
take L = {x € U'| F(x) = x}. Since L is a complex analytic variety of U’
then it can be written as a finite union of them, with dimensions ranging
from 1 to n. Even if all of them were of dimension n — 1, using Lemma
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for every invariant analytic variety W we conclude that there are non-
enumerable Cy, C C' not contained in the decomposition of L, since m is
arbitrary and C'is the enumerable union of the D,,, it can be deduced that
there exists an m such that L is of dimension n. It follows that G™ (z) = o
for all x € U’ by the identity theorem (see [22| pag 5), hence the group
generated by G is finite. v

The version of the previous theorem for finitely generated groups of diffeo-
morphisms is immediate,

Theorem 1.2.3. Let G = ({G,...,G,}) < Diff(C",0) be a finitely gener-
ated subgroup of diffeomorphisms. Then G s finite if and only if there exists
a neighborhood U of 0 such that |Oy(x,G)| < oo for all x € U and each G,
leaves invariant non-enumerable many analytic varieties at 0 of dimension
n— 1.

Proof. (=) This part is the same as the previous theorem. Note that in
the hypothesis each generator of the group leaves invariant infinitely many
analytic varieties, then we can apply the same construction for each one.

(<) Using Theorem |A| we have that every element in G has finite order and,

since G is finitely generated, we can apply Lemma [I.1.3]in order to conclude
that G is finite. v

The following is the proof of Theorem as can be seen in [9] page 7.

Proof of Theorem[I.1.3. (=) Let N = #(F) and h € Diff(C?0) such that
hoFoh™Y(x,y) = (Ax, Agy) where A = A\ = 1. Tt is clear than |O(z, F)| <
N for all z in the domain of F , and M. = {h(z,y) |z — cy¥ = 0} is a
complex analytic variety invariant by F for all ¢ € C.

(<) Consider Lemma with M = C?, then C' = Ce= is a set of point with
infinite orbits in a domain U = B,.(0) where F and F~! are well defined and
therefore every point in C'is periodic. If we denote D,, = {x € C'| F™(z) =
x}, it is clear that D, is a closed set and D,, C D,,+1. Moreover, since
C = Up—1D,,, there exists m € N such that C' = D,,. Let G = F™, which
is well defined in some neighborhood U of 0 € C", observe that C' is in the
domain U of G and C C {x € U|G(z) = 2} = L. Since L is a complex
analytic variety of U that contains C|, its dimension is 1 or 2. The case
dim L = 1 is impossible because Cy; C C' C L for all F-invariant analytic
variety M, contradicting that fact that O, is Noetherian ring. In the case
dim L = 2 follows that F™(x) = z for all x € U, therefore (F) is finite. v’

The problem with the proof above is in the statement:
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“..., there exists m € N such that C' = D,,,”.

which is not always true because the sets D, may have empty interior. In
fact if one of them happens to have interior the proof ends by the Identity
Theorem. Another way of see the problem with this statement is to note that
the increasing sequence of analytic sets D, C D, 1, generates a decreasing
sequence of ideals, and even in Noetherian rings (as O,,) decreasing sequences
of ideals do not always stabilize. They do when they are prime which is
equivalent to the D,, being irreducible (see [23] pag. 15). Now, if they are
irreducible and of dimension 1 all of them are the same one and the set C'
consists of a single analytic curve which contradicts the hypothesis that there
are infinitely many G-invariant analytic varieties at 0, and we are done. It
would remain the case where the sequence of ideals does not stabilize.

We could not get a different proof of Theorem We have advances in
this direction though (see Section , but its importance in our work forces
us to change the hypothesis to those of Theorem [A]

We close this section by noting that Theorem [Alis valid, as the author [9]
mentions, if we consider analytic varieties of complex dimension 1 in general
position instead of analytic varieties of complex dimension n — 1,

Definition 1.2.4. We say that infinitely many analytic varieties of complex
dimension 1 are in general position if they are not contained in finitely many
analytic varieties of complex dimension n — 1.

The only change in the proof is in the “if” part, where it is necessary
one more step. Note that choosing n — 1 linearly independent constants
¢, the intersection of the corresponding M, has a component of dimension
1 passing through 0. In this way we can obtain a non-enumerable set in
general position. We state the theorem in terms of analytic varieties of
complex dimension n — 1 because it is more natural and it does not require
to add more conditions. However, it can be useful to think in dimension one
as we see next.

The following lemma follows from an analysis similar to the one made in the
proof of the Theorem [A] but in order to make further reference, it is more
appropriate to state it on its own.

Lemma 1.2.5. Let G € Diff(C",0). The group generated by G is finite if
and only if there exist m € N such that for an arbitrary neighborhood of
0 € C*, G™ has infinitely many fized analytic varieties of complex dimension
1, in general position.

Proof. Consider F' = G™, which is well defined in some neighborhood U of
0 € C" and take L = {z € U| F(x) = x}. Since L is a complex analytic

12



variety of U then it can be written as a finite union of them, with dimen-
sions ranging from 1 to n. But, that finite union can not contain infinitely
many analytic varieties of complex dimension 1 in general position, unless
the dimension of L (i.e., the supreme of he dimensions of its connected com-
ponents) be equal to n. It follows that F(z) = z for all z € U by the identity
theorem (see [22] pag 5), hence the group generated by G is finite. v

Remark 1.2.6. Observe that in Lemmal|l.2.5|we are not asking for the analytic
varieties that they contain zero. What we need is that infinitely many of them
cut the neighborhood U where F' is defined.

In Theorems [1.2.7] and we basically find a way to obtain the in-
finitely many fixed analytic varieties of complex dimension 1 that Lemma
1.2.5| requires.

Theorem 1.2.7. Let G € Diff(C",0). The group generated by G is finite if
and only if there exists a neighborhood U of 0 such that |Oy(z, G)| < oo for
all x € U, and G leaves invariant non-enumerable many analytic varieties
of complex dimension 1, in general position, arbitrarily close to 0, with each
one intersecting the set C' = Cen defined in Lemma |1.1.5]

Proof. Consider M = C" in Lemma [1.1.5l Then C = C¢r is the compact,
connected and non-enumerable set of points in U such that uy(z, G) = oo and
therefore every point in C'is periodic. If we denote D,, = J{z € C'|G™(z) =
x}, it is clear that D,, is a closed set and D,,, C D,, .1, moreover C' = | D,,.
Now, if some invariant analytic variety W intersects C' in a periodic point
g € U’ of order k, then Lemma can be applied to the map G* in some
neighborhood of ¢ contained in W and we obtain a compact, connected and
non-enumerable set Cy C W which is fixed for some iterate of G* (see
Remark [1.2.8]), observe that Cy belongs to C. Therefore, there exist non-
enumerable many curves Cy in C, this implies that infinitely many belongs
to some D,,, because C' is the enumerable union of them. We conclude
that G™ has infinitely many fixed analytic varieties of complex dimension
1, in general position. Hence the group generated by G is finite by Lemma

1.2.5 v

Remark 1.2.8. Cy C W is fixed for some iterate of G¥ because, by Lemma
and the finiteness of the orbits of G, it is the set of G*-periodic points.
Since Cy is non-enumerable, there exist infinitely many periodic points of
some order k' = km, for an m € N. The compactness of Cy implies that
those periodic points have an accumulation point. The dimension of W is
one hence the Identity Theorem implies that Cy is G* -fixed.

13



1.3 Conditions over the set of periodic points

The second part of the proof of Theorem [A] make us think that what we
really need is a sufficient amount of periodic points, but even in dimension
one infinitely many of them accumulating at the origin is not enough. To
be precise, according to Perez-Marco in [33], it is possible to construct map
germs in Diff(C,0) exhibiting a sequence of periodic points converging to
0 € C and not linearizable. Obviously the orders of points in that sequence
goes to infinity because if some subsequence had bounded order by some
m then after m! iterates the function could have a sequence of fixed points
accumulating 0 € C. By the identity theorem that iteration could be identity
and the map periodic. However, in dimension greater than 1, the existence
of of a convergent sequence of fixed points is not enough to guarantee that a
map is the identity. That is why we asked for a dense set of periodic points
while keeping the bound over the order.

Proposition 1.3.1. Let G € Diff (C*,0). The group generated by G is finite
if and only if there exist m € N such that for an arbitrary neighborhood of 0
the set of periodic orbits of period at most m is dense.

Proof. (=) Suppose (G) = {id,...,G""'} for r € N and G well defined in a
neighborhood U of 0. Consider U the connected component of UNG~H(U)N
~-NG"YU) at 0 then every point in U, which is an open set, is periodic.

(<) Consider F' = G™" defined in some neighborhood U of 0 and L = {z €
U|F(z) = x}. Since L is a complex analytic variety of U then it can be
written as a finite union of analytic varieties with dimensions ranging from 1
to n. It can not be 0 because it contains infinitely many points accumulating
0 € C". However, the union of finitely many analytic varieties, can not
contain a dense set of points accumulating 0 € C". Therefore dim L = n and
we have that G™ (z) = x for all x € U and we are done. v

The following theorem shows that we do not need a dense set of periodic
points as long as we have infinitely many, let us say, “well located” points.

Theorem 1.3.2. Let G € Diff(C",0). The group generated by G is finite
if and only if there exist m € N such that for an arbitrary neighborhood
of 0 € C", G leaves invariant infinitely many analytic varieties of complex
dimension 1, in general position and each one having a convergent sequence
of periodic points of order at most m.

Proof. (=) The same as Theorem[A] And we obtain infinitely many analytic
varieties of complex dimension 1 passing through 0, and the periodicity of
the group implies that every point on them is periodic of same order.
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(<) First, take FF = G™ defined in some neighborhood U of 0, with m as
in the statement. Take a G-invariant analytic variety M in U which, by
hypothesis, has a convergence sequence of periodic points of order at most
m converging to some point ¢ € M. We can apply Lemma taking F
as the map, M as the F-invariant complex analytic variety, q as the F-fixed
point and K, as the connected component of M containing ¢g. Then there
exists a C)y (compact, connected and non-enumerable) containing ¢ and a
sequence of F-fixed points converging to it, by the identity theorem (the one
dimensional version because we are restricted to M) K, is formed by F-fixed
points. Therefore, there exist non-enumerable many F-fixed curves K, in U.
Hence the group generated by G is finite by Lemma [1.2.5 v

If in Theorem we take the analytic varieties passing through 0 € C”,
we get as a corollary a version of Theorem [A] changing the finite many orbits

hypothesis to the existence of periodic points of bounded order accumulating
0.

Corollary 1.3.3. Let G € Diff(C",0). The group generated by G is finite
if and only if there exist m € N such that G leaves invariant infinitely many
analytic varieties of complex dimension 1 in general position, each one having
a sequence of periodic points of order at most m accumulating 0 € C™.

1.4 Advances found in the literature

The final part of this chapter is devoted to present some recent generalizations
of Theorem Their proofs can be found in the referenced articles

The first one we mention is taken from [39] ,

Theorem 1.4.1. Let G C Diff(C",0) be a finitely generated pseudogroup on
a small neighborhood of the origin in C". Given G € G, let Dom(G) denote
the domain of definition of G as an element of the pseudogroup in question.
Suppose that for every G € G and p € Dom(G) satisfying G(p) = p, one of
the following holds: either p is an isolated fized point of G or G coincides
with the identity on a neighborhood of p. Then the pseudogroup G has finite
orbits on a neighborhood of the origin if and only if G itself is finite.

This theorem is consequence of the following proposition (Proposition 4.
in [39]) and an argument like Lemma[1.1.3]

Proposition 1.4.2. Suppose that G C Diff (C",0) is a group satisfying the
condition of isolated fized points of Theorem |1.4.1l Let G be an element of
G and assume that G has only finite orbits. Then G s periodic.
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As the authors observe, this proposition is obtained by repeating the
proof of Theorem in [30] p. 477, noting that the isolated fized points
condition replaces the argument that in dimension one is a consequence of
the Identity Theorem.

The next generalization of Theorem moves in another direction.
Instead of changing the dimension it deals with the hypothesis of “all orbits
be finite”, analyzing the case where a diffeomorphism has a set of closed orbits
of positive measure. This result can be found in [43] and in its proof is used
the work of Perez-Marco (33| 34 35]).

We first introduce some notations:

Expand a germ of a complex diffeomorphism f at the origin 0 € C as
f(2) = ™2 4 a2 4L

The multiplier f'(0) = e*™* does not depend on the coordinate system. We
shall say that the germ f € Diff(C,0) is non-resonant if A € C\ Q.

Definition 1.4.3. A map germ f € Diff(C,0) is called a Cremer map germ
if it is non-linearizable and non-resonant.

Cremer gave the first proof of the existence of such a map in [I§].

Definition 1.4.4. We call (PCO) Cremer map germ a Cremer map germ.
Whose representatives exhibit sets of closed orbits of positive measure, in
arbitrarily small neighborhoods of the origin. We shall say that a subgroup
G C Diff(C,0) has the (PCO) property if for any sufficiently small neighbor-
hood U of the origin 0 € C, the set of points having closed pseudo-orbit has
positive measure in U.

Lemma 1.4.5. Let G C Diff(C,0) be a finitely generated subgroup with the
(PCO) property. Then either G is a cyclic finite (resonant) group or it is an
abelian formally linearizable group, containing some (PCO) Cremer diffeo-
morphism.

1.5 About a possible proof of theorem [1.1.2

In this section we present some partial results in the direction of They
do not form a proof of this statement but they may shed some light in the
construction of a complete proof of it. In addition, in this section we start
working in the “formal world”, which plays and important role throughout
this thesis.
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Some of the definitions and notation we introduce next are taken from |[2]
(or [38]).

We are interested in the local dynamics of a germ of diffeomorphism G €
Diff(C™, 0) of the form

G(z)=z+P,(2)+ Py1(2)+ -+, (1.2)

where z = (z1,...,2,) € C" and P, is the first non-zero term in the homo-
geneous expansion of G. In this case (i.e., when dGy =id) we say that G is
tangent to the identity

Definition 1.5.1. If G € Diff(C",0) is of the form (1.2)), the number v > 2
is the order of G and is denoted ord(G).

Note that we are always assuming that G #id.

Definition 1.5.2. Let G € Diff(C",0) be tangent to the identity and of
order v. A characteristic direction for G is a non-zero vector v € C™ \ {0}
such that P,(v) = Av for some A € C. If P,(v) = 0 (that is, A\ = 0) we
shall say that v is a degenerate characteristic direction; otherwise, (that is,
if X\ # 0) we shall say that v is non-degenerate.

Definition 1.5.3. We shall say that an orbit {G*(2)} converges to the
origin tangentially to a direction [v] € CP(n — 1) if G¥(29) — 0 in C" and
[G*(20)] = [v] in CP(n — 1), where [-] : C*\ {0} — CP(n — 1) denotes the

canonical projection.

Definition 1.5.4. A parabolic curve for G € Diff(C", O) tangent to the
identity is an injective holomorphic map ¢ : A — C™\ {0} satisfying the
following properties:

(a) A is a simply connected domain in C with 0 € 9A;
(b) ¢ is continuous at the origin, and ¢(0) = 0;

(¢) ¢(A) is G-invariant, and (G|,a))* — 0 uniformly on compact subsets
as k — +4o0.

Furthermore, if [p(¢)] — [v] in CP(n — 1) as ( — 0 in A, we shall say that
the parabolic curve ¢ is tangent to the direction [v] € CP(n — 1).

Theorem 1.5.5 (Abate [1]). Let G € Diff(C?,0) be a germ of diffeomorphism
tangent to the identity, with an isolated fized point at 0. Then there exist
ord(G) — 1 disjoint parabolic curves for G at the origin.
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Denote the ring of formal series on (cn, ) by O,, its maximal ideal,
denoted by ./\/ln, corresponds to the elements in O,, whose constant coefﬁ01ent
is zero. An element F' € O, is written as F(z,y) = > i Figa'y’, where
F,; € Cfor all i, j € Z>y.

A formal curve 4 through zero is defined as the zero set of some F' € .K/l\g
given in Puiseux parametrization, i.e.,

Z%’CT ZVsz and F(3(T)) =0,

k,‘>k1 k‘>k/‘2

where the constants and the variable in + are complex numbers. If a formal
curve 4 and a diffeomorphism G € Diff(C?,0) satisfy the relationship Go4 =
4, where this notation means that id(G o4) = id(§) := {F € O, | F(3) = 0};
we say that 7 is G-invariant. Note that this definition implies F(Gm 04) =0
for m € Z.

Our analysis is divided in two parts according to whether the linear part
of the diffeomorphism we are taking is a diagonal matrix or a Jordan block

(33)-

Diagonal linear part. Let G € Diff(C? 0) be a diffeomorphism whose
linear part is diagonal i.e., dGo(z,y) = (A1, A2y) where A, Ay € C*, our
objective is to show that A\; and A\, are roots of unity. If this is the case, we
have that, for some integer m, the map G™ is tangent to the identity and
Theorem implies the existence of a parabolic curve. This, together with
the hypothesis of finite orbits, would imply Theorem [1.1.2]

Suppose there exists a G-invariant formal curve 4. Then the condition
F(Go4(T)) = 0 in series form is

GO”y ZF’J )\1271ka )i<>\2272,ka+“'>j

k>k1 k>ko

= Z Fyy (Mg +TC-)) (Mayoy + T(---)) T+ = g,
i,J
Now, define the sets

v =min{ik, + jko | F;; # 0} and J ={(4,7)|iki + jko = v}.

Therefore, the first element of F(Gofy(T)) = 0, in other words, the coefficient
of T, is

0=, FiylinBiXi (1.3)
(i,5)ed
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Moreover, since F'(4(T)) = 0, we have 0 = D Gijyer F},j’yikﬂgm. We can
get a more general version of (1.3) using G™(z,y) = (A", \j'z) + h.o.t. and
observing that F'(G™ o 4(T)) = 0, which gives

0=> Fimimmp’. (1.4)
(i.g)e]
Supposing that #J = K, (1.4) is equal to
0= Fi17j17%k1’7%’1k2(/\’il/\%l)m 4ot EK7jK7§f§€1/ygf22 (AiK)\JzK)m. (1.5)

if we set A, = Er,jr’Yifkﬂ{,rkg and X, = A" \J, we can write (L.3) as
A X+ + A X =0.

Besides, this is true for m € Z>(, which allows us to construct the system

A + ... 4+ Ax = 0,
A1X1 + ... + AKXK - 0,
AXETY L+ AgRXETD =0,
whose matrix form is
1 1 Ay 0
xao | o AR
Xt XETH A 0

The matrix X is a Vandermonde matrix. It is clearly singular because A; # 0
for all 4. The determinant of X is the product [],; ;< (X; — X;). Thus at
least one of the factors has to be zero. Suppose X, = X forr,s € {1,..., K}
and 7 # 5. Hence A"\ = X*\J*. Because of the identities

irkl + jer =V

iskl +jsk52 =V — <ZT - 15)]{31 + (]7’ _]S)kQ =0

we know that (i, — i) and (j, — j,) have different sign, suppose i, — is > 0
and j, — j, < 0 with this A~ = M7/,

In order to conclude that \; and A, are roots of the unity, the only thing
we need is another pair or couples (in, ja), (ig, j5) such that \j*~% = X}’
and at least one of the following occurs i, — s # 74, — i3 OF js — Jr # 138 — Ja-
It looks like something reasonable. In fact the same curve can give you the
second pair of couples you need. But even if you say “there are infinitely many
G-invariant formal curves” the precise condition needed to guarantee the
existence of the second pair of couples required is not immediately satisfied.
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Jordan block. Let G € Diff(C?,0) be a diffeomorphism whose linear part
is a Jordan block () 1) ie., dGo(z,y) = (Az + y, \y) where X € C*, suppose
that there exists a G-invariant formal curve 4. Our aim in this part is to
show that this case does not happen. However, as before, we have to impose
some conditions on 7.

As in the previous paragraph, we start by writing ﬁ(Gm o4(T)) = 0 in series
for. Observe that G™(z,y) = (A™x +mA™ 1y, \"y) +h.o.t.. The expression
F(G™o4(T)) = 0 gives

Z F (A Z Y pTF +mAm Z YouTF A+ - )z(/\m Z Yo TH + -+ )j =
2%

k>k1 E>ko o
Z Ev] (Am,yl,k‘lTkl + mAm_l’YZkQT'IQ “+ .- )l()\m/YQ’IQTkQ + ... )] —0.

ZAhj

We consider three different cases:
Case 1: k1 < ks

We have
B(G™0A(T)) =3 Fiy (AN gy +T(+ ) (N gy + T(- - )) Tk
L

=0.
Defining, as before,
v =min{ik; + jko | F;; # 0} and J ={(4,7)|iks + jkos = v}.
the coefficient of 7" is
0= Z FigV i, ™ for m € Zso.

(i,5)ed
Take #.J = K, analogously to the previous paragraph, denote
Ar = ET,jrinTk1 ’y{,rkw Xr = >\ir+jT

and varying m from 0 to K — 1, we construct the system

o1 A 0
xa-| =)
X XETH | Ak 0

Again, X has to be singular. Therefore there exists 1 <r < s < K — 1 such
that X, = X,, which means \"*/r = \s*Js_ Ag a conclusion, ) is a root of
unity. We were expecting a contradiction in order to prove this case can not
occurs, so for our purpose this is a case we have to eliminate.
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Case 2: k1 =ky = k.
We have
P(G™o4(T)) = Z Fy (N T 4+ mA™ g T 4 - - )Z (A" o T + - - )j
.3

= Z F,; ()xmfyLk +mAN" g g+ T(- - ))i()\mfka +T(--- ))jT(iJrj)k

=0 '
In this case,

v=min{i+j|F,; #0} and J={(,j)|i+j=vr}

The coefficient of T"* is

Z Fy (N1 + mA™ ) (N y2,)
(i,5)ed

= Y FiMie +myzp)ag AT =0,
(i,9)€J

As i+ j = v then i(m — 1) + jm = vm — i, and the equation above can be
written as

Z FeiWya g + moya ) vy 1 A0 = 0.
Multiplying by A¥™*" this gives
Fo7u’YzV,k)\V + 1 (A + mny,k)%V,;l)\u_l + oo Foo(Oyig + mryas)” = 0.

By varying m from 1 to v + 1, we form the system

1 Mg+ Yok e Ay + v2r)” Fouvg A 0
1 MYk + 272k e (AMy1e + 2728)" Fry 1y A |0
L Mg+ @+ Dyap oo (Aye + @+ 1)y2p)" Foo 0

Since the left side matrix has to be singular, because not all the F;,_; can
be zero, then there exists 1 < r < s < (v + 1) such that Ay + ry2, =
A1k + 872, hence v, = 0, which contradicts our hypothesis ky = k. We
conclude that, for this case, there does not exist a G-invariant curve.
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Case 3: ki > ks.
We have

F(Gm o 4(T)) =
Z Fy (N g TF 4 mA™ g, TR ) (A, T - )?
]
- ZF” (mATYL—l,_)/ZkQ +T(-- ))i(Am%kQ +7T(--- ))jT(i—i-j)kQ
1,J

0.

Defining v and J, as in the previous case,
v=min{i+j|F; #0} and J={(j)|i+j=v}

We find,
Z E,jvibmi)\i(m_l)ﬂm =0 where 794, #0.
(i,9)ed

Taking j = v — 1, we have
Z Fﬂ@yiimi)\umfi -0
Multiplying by A*~*™ this gives

F()’V)\V + Fl,y_lm/\”_l + -+ Fl,’om” = 0.

By varying m from 1 to v + 1 once again we form the system

1 1 s 1 F(),V/\l’ 0
1 2 s 2Y Fl,y_l/\yil 0
1 v+1 -+ (v+1) F.o 0

Since the matrix of coefficients is not singular, we get £y, = Fi,_1 =+ =
F,o =0 and, as in Case 2, we conclude that for this case there does not exist
a G-Invariant curve.

Summarizing, we need at least two pairs of couples of exponents (maybe
given by the same curve) with the condition mentioned at the end of the
diagonal case in order to conclude that the diffeomorphism with diagonal
linear part is tangent to the identity, and a curve with k; > ko (in the
notation used above) to discard the linear part in the form (}1).
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The problem is, whether the existence of infinitely many (formal) invari-
ant curves guarantees the existence of one or two with the properties required.
Presumably the answer would be given in terms of a blow-up process, but
this is precisely what we are trying to avoid. This technique is currently
being explored by some mathematicians.
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Chapter 2

Groups of formal diffeomorphisms
and formal series

This chapter is devoted to the study of formal difeomorphisms and formal
series. Here we obtain some useful properties for our upcoming work.

2.1 Preliminaries

Let us introduce (or recapitulate) some standard notation. Denote the ring
of formal series on (C",0) by O,,, its maximal ideal denoted by M,, and the
group of formal diffeomorphisms of (C™,0) by ﬁ(@”,()). The convergent
versions of the previous sets are, the ring of germs of holomorphic functions

n (C™,0) denoted by O,, its maximal ideal denoted by M,, and the group
of diffeomorphisms of (C",0) by Diff(C", 0).

The first step is to study the propertles we can get from the relat1onsh1p f )
G f, where f € O, and G € lef((C” 0). In this case we say that G leaves
f invariant. As we state in propositions |2 2. 1| and |2 2. 3| this relationship
characterizes both maps. Our work will guarantee that we only need to
analyze the case where G is linearizable.

We start with the following definitions:

Definition 2.1.1. Let A € C". We say that a multi-index Q = (¢1,...,qn) €
N with |Q| = ¢ + -+ + ¢, > 1, gives a multiplicative resonant relation for
A if

A =P A =1
If there exists a () giving this property we say that A is multiplicative reso-
nant.
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Observe that this definition is a particular case of the usual definition
of multiplicative resonant that can be seen for example in [4] pp. 192-193.
There you can also see that the existence of these kinds of resonances is the
obstruction to formal linearization. Recent results on this topic can be found
in [37).

Definition 2.1.2. We shall say that a monomial 2% := x{" - - - 29 is resonant
with respect to A = (A\y,...,\,) € C" (or simply (Mg, .. .,)\n)-resonant) if
|Q] > 1 and A9 = 1.

2.1.1 Formal chain rule

The aim of this paragraph is to show that the Chain Rule holds in the formal
case.

Lemma 2.1.3. Let F € O, and G € ]ji?f(C”, 0) be given. Then
d(F o G) =dF-dG.

Proof. We start with n = 1. Let f € O, given by f(x) = > 2, a;x’, define
fn € O1 by fo(z) = Y0, a;x" and take g € 0. We want to show that
d(f o g) = df, dg.

We already have that d(f, o g) = (df,),dg, because they are holomor-
phic functions. Besides, by the definition of derivative of a formal series,
we have lim,,_, dan = df. Therefore, what we need to justify is that

~

lim,, o (dfy), = (df), and lim, o d(f, 0 g) = d(f o g). Both are con-
sequence of the equality lim, o fr 09 = fog and for this, think in the
coefficient ¢, of #* in fog(x) = Y27 ' = 32, ai(3072, bjad)’, where
g(x) = > 72, bja?. This coefficient is formed after algebraic computation by
some of the coefficients in 37 ai(2§:1 bjz?)". Indeed after 7,7 = k all the
elements in ) %, a;(3 72, bja’)" are of order greater than k. Thus the same

coefficients of z¥ belongs to both sides of lim,_ o0 fr 0 g = fo qg.
Hence

d(f o g) = dfg dg7
as we wanted. R
Consider now g € O, and the same f as before. In this case the chain
rule is consequence of the previous one, because if we fix one of the variables,

for example y = o, then g(-,yo) € O7 and %(f °g) = dfg(.u0) %g|(m7yo) by
the previous case.
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The two dimensional case works in a similar way, by taking F e O, and
G(z,y) = (91(2,y), 92(x,y)) given by F(z) = 32 asz'y’ and g1,9, € O,.
Denoting Fi(z) = 3 a;;27. Then we have

Fo G(z,y) = Z ar (91(% y))i(92(xa y))j

- wa,y)y(z as(gela.v))
—291 ,y)) Fi(ga(x,y)).

So, F'o G can be written as a sum of products of two formal series (g (z,y))’
and Fi(gz(x,y)), whose derivatives are known by the previous case. Now,
note that if F'o G is a formal series then is derivation is made term by term,
and in the previous paragraph we only rearrange those terms. Thus

0

ar(Fe) =3 (@) Fi ool )

> (i 22 Futgn) + i | 22 (2 )

g2 Ox

.0 - 9
=3 (10 G Saseh + ol (Ssmask ) 57 )

-X ity (01 )) ™ (02 )) 22 s () () ) 22
— ox ox
8F e
T ox Gaa:( Y)-

Now consider f,§ € Oy, by the previous step d(fogn) dfgndgn where In is
the truncated series, and the chain rule is consequence of lim,, f og, = f og,
as before just note that the coefficient of 2" of fog appearin fo g, for all
n > N for some N. The case f € (’)2, Ge lef(@2 0) is the same as above.

As a conclusion, for the case Fe®yand Ge D1ff((C2, 0) the chain rule,
d(F o G) = dF - dG, holds and the process above is easily generalized to
higher dimension. v
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2.2 Invariance relationship

Take G(z) = ax with a € C\g and let f be the formal series f(z) = D sy @i

Suppose that fo G = f and that f is not a power, meaning by this that if
f=fr- fPr where fi,...f. are r different irreducible factors of f, then
ged(py, ..., pr) = 1. We have

flz) = Zaixi — foG(z) = Zai(ax)i,

i>1 i>1

which implies a;a’ = a; for all ¢ = 1,2.... If f % 0 there is a coefficient
a, # 00, a” =1 (i.e. ais a root of unity). Besides, supposing that a is a
v-th root of unity, we find that a; = 0 if i # mv where m € Z*. Then

~

G(z) = ¢*™/"z and f(z) = (z¥) where | € O;.

Moreover, f is not a power, then [ is invertible i.e., I'(0) # 0 and we have
that (I"' o f)(z) = 2¥. To see this, suppose that l is not invertible, write
I(z) = apa? + ap+1zvp+1 + .-+ where p > 1 and a, # 0. Then

flz)=1(z") = apt? + apy P 4
= 2" (ap + ap1z” + -+ +)

— (9(a*)), where g(x) = o(ay + apz +- )7,

Since a, # 0, g is well defined and this contradicts the fact that f is not a

power. Therefore, if a formal series f is invariant by a rotation, there exists
an invertible formal series [ such that [~! o f is holomorphic.

The result described above is a portion of the Proposition 1.2. in [30] and
our intention is to generalize it to arbitrary dimensions. In order to do that
we start with the following,

Proposition 2.2.1. Let fed, and G e lef(C” 0) formally linearizable
such that G leaves f wvariant. If the linear part ofG s a diagonal matriz,

déo = diag()q, ce 7)\n)7

then (A1, ..., A\n) is multiplicative resonant and f, after a formal change of
coordinates, is the sum of (A1, ..., \,)-resonant monomials.

Proof. We consider first the linear case taking G(z) = Az and f(z) =
PO arz!, where A is a non-singular, diagonal (n X n)-matrix and x =

(T1..., %),

Gz, ..., xn) = (MT1, ., A\nTh).
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Thus

~

fOG(I’l’ o 7$n) — Z a[()\ll'l)il Ce (Anajn)zn — Z all.il .. -mi{zy

[7]>1 [T]>1
which means that
Ao X =1, for all I such that a; # 0,

This is, A = (\1,..., A,) is multiplicative resonant. If f 2 0 then it is formed
only by resonant monomials. Furthermore there exist at most n independent
(as vectors in C") n-tuples I = (i1,...,i,) € N"\q such that \}'--- \in = 1.
In case we have n independent n-tuples, all \;’s are roots of the unity as we
explain in the proposition below.

Finally, suppose that Ge ﬁ(@”, 0) is formally diagonalizable, i.e., there
is a formal change of coordinates such that g oGog(z) = dG(0)z. We make
the previous analysis on its linear part G(z) = dG(0)x, concluding that, it
has to be a diagonal matrix with multiplicative resonant entries. v

Proposition 2.2.2. Let A = (\,...,\,) € C" and I,...,I, € N"\q be n
independent n-tuples such that A'i = 1, for j = 1,...,n, then for each \;
there exist a nj € N\ such that X} = 1.

Proof. By hypothesis we have n equalities of the form A\ - .. A = 1. Tak-
ing logarithm in each one of them we can form the following linear system

ill e il,n IOg )\1 27T’ik1

Inl - dnn| [lOgA, 2mik,
its real part is a homogeneous linear system whose solution implies that

log |A\;| = 0 for all j and, from the imaginary part of the system we obtain
that the argument of each )\; is a rational factor of 2. v

Proposition 2.2.3. Let fe0, andG e lef(C” 0) be formally linearizable
such that G leaves f wnvariant. If the linear part ofG in its Jordan form has

a block
Al
0 N/’

i.e, déo(xl, cey @) = (o, AT 4+ T4, AT, ... ) after a linear change of
coordinates, then \™ = 1 for some m € Z*. Besides, after a formal change
of coordinates, in the variables related to that block, f s a formal series in
the m-th power of the second variable, that is

A~

fQ0,...,0,25,2511,0,...,0) = l(z7},) forl e O,.
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Observe that, if the block is bigger, its upper sub matrix 2 x 2 is like the
previous one, thus the proposition is true also in this case.

Proof. We only need to consider the two dimensional case. Let G(z1,2) =
(Azy + 9, Ax) and f(z1,20) = 211 @171 23. Then the condition foG=Ff
implies

foG T, T2) E ar(Axy + x3)* )\172 I = g alxle

[]>1 =1

Thus a;; = > 4_o Cik s N7 aipr i where Cpp = (). 1N # 1 for all
J € N then a;9 = a;p\" implies a;o = 0 and a;; = )\’“am + Cip11N ait10
implies a;; = 0. Repeating this we get that f = 0. Therefore, \* = 1 for
some 7 such that a; o # 0. First consider the case A = 1. We have

;0 = Qa4,0,
a1 = a;1 + Cip110i110 = a;0 =0 for 7> 0,
ai2 = ;2 + Cip110i111 = a;; =0 for 1> 0,

by induction, suppose that a; ; = 0 for ¢ > 0 and j < n then
Uinte = Qinr2 + Cix110i4 1041 = Qi1 =0 for i >0,

hence the only remaining terms are of the form ag ; and then f(x, xz2) = I(z2)
as we wanted. In a similar way, if ™ =1 but A" # 1 for 0 < n < m with
m,n € N. Since a;p = aivo)\i then a;o = 0 when m / i. The next term is
calculated in the expansion a;1 = a;1 A" + Ciy11ai41 0\

If m | i+ 1 we have that a;;1 9 = 0 and, using the previous step, a;o = 0 for
all 2. If m [ i+ 1 we have that a;; = 0, using the next expansion

_ i+2 i+1
;o = Ao\ "+ Cip110401,1A""

we can repeat the analysis. If m | i +2 we have that a;11 = 0 and using the
previous step a;; = 0 for all 2. We proceed by induction. Suppose that a; ;
for ) < n and i > 0 then

i 1 . .
Qi1 = Qi N T ifm ) (i +n+ 1) then a;,41 = 0.
As above consider the next term
_ i+n+2 i+n+1
@i g2 = Qi pyo\ + Cri110i41 n1 A ;

if m | (i +n+ 2) then a;11,+1 = 0 and using the previous step (where we
show that if m does not divide the sum of the sub-indices of a;,41 then
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a;nt1 = 0 ), we have a;,,4+1 = 0 for all . Finally, for the case i =0 riote that
l

apj = ap ;N and we can not argue like above, therefore f(xl, x9) = (24 for
le 0.
The higher dimensional case works in the same way, because some part

of G will be of the form (..., Az + 211, .., NZjpk1 4 Tjsk, \Tjk, . .. ), for a
eigenvalue )\, and making all x; = 0 except for x4 and x4 we can apply
the same analysis. Then, f(0,...,0, 241,241, 0,...,0) = [(2T,) for | €
O .

Finally, if G € ﬁ(@”, 0) is formally linearizable then, there is a formal
change of coordinates such that g=' o G o g(x) = dG(0)x and we make the
previous analysis over its linear part G(z) = dG(0)x. v

Definition 2.2.4. Let fl ceey fn €O,
e We say that fl cee fn are generically transverse it dfl AR dfn = 0.

e Wesay that f; ..., f, are transversal at the origin if (df1 A-- -/\dfn)o %+
0.

An immediate consequence of this definition is:

Proposition 2.2.5. Let fl,...,fn e O, ben generically transverse for-
mal series, written in series form as f;(x) = S a;5a", then there exist n
independent multi-indexes I, ..., 1, € N, i.e., there exist n multi-indezes
I = (g, ... ik2) such that the matriz [iy,], where 1 < k,I < n, is no
singular and such that for each Ij, at least one a;g,, for 1 < j < n, is not
zero.

Proof. By hypothesis we have that dfl A A dfn # (0. The associativity of
the wedge product allows us to work in couples. Note that

dfi Ao Adfy Z20=>dfi Adfs £0

and dfj = g—ﬁdxl 4+ -4 %dxn where

i . ik k=1 e N e
) _E :@k,ram% cxy ey = § g, T
Z, -

Iy
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using the notation Iy —e, = (ig1,. .. 0k, — 1,...,0kn). We have

Oz, 0rs  Oxs 0w,

= E [(E il,ra1,11$11_6T><§ i2,3a2,1251512_es>

df1 /\de _ Z <af1 Ofa B df afg)dxr/\dxs
r<s

r<s I Ip)
. I1— .
- ( g 1,501, es)( E 12,702 [,T E e’"ﬂdxr A dxg.
I I

This becomes

dfl A dfg = Z [Z al,Il a2,12 (il,riZ,s - il,siQ,T)xh—i_[Q (erte ] dxr‘ A d.fEs ( )

r<s I I

Therefore, there exist r, s such that 41,095 — 91502, # 0 with a1 5,a0, # 0

or ayasy, # 0, 1ie., (i1,,01,5) and (ig,, i) are independent multi-indexes.
Hence

[1 = (2171, ey Uy ey U gy e 721,n) and [2 = (1,271, BRI DN S N DI 77'2,71)

are linearly independent. We continue by doing the wedge product of (2.1)

1,r 11,s
12 2,r 22,3

dfl /\de/\dfi’» = (Z [Zalfch?Iz

r<s 111>

. Ja—
( E i31as, 1,2 ey + -+ E 13,003,1,° e”dxn)
I3
<E [E a1,1,G02 1,

r<s 111>

. Ta—es
/\( E E 237ja3,13x3 ]dJIj).
i I3

This can be written as

(L‘Il+[2 (ertes i|dxr A dx3>

1,r Z1,5
or 125

IIl+I2 er+89 i|d‘,L.T /\ dxs)

dfl /\de /\df:a =

11
5 E g a111a212a3132

j#Ers r<s Iy I I3

116l . _ .
L s ig jol tts (ertestei) dg, A dag A dz;.

2.r Z2,5

(2.2)
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Fixing r < s < j. The following terms appear in ({2.2))

1y 1| . 11s 114 .
ai,1,02,1,03.1, [ s ZngIT VAN d,IS N d[[’j + |5 Z3,rdxs A dJTj N d[[’r
Lr 125 25 125
Uiy 1]
ST g sday Ada A dxs} =
oy 25| 7
il,r Iil,s . Z-1,3 Z-1,j . il,r il,j .
A1,1,02,1,03, 15 [ . . 13,5 =+ 1. . 3r — |- . 13,s dl’r A dl’s VAN de
Lor 125 l2s 125 tar 125

Z-1,1" il,s il,j
= Q1,102 1,03 13 |12 125 125 dl’r/\dl's/\dl’j

13- 135 135

Hence (2.2)) can be written as

dfl /\ dfg /\ dfg —

il,r Z-1,55 Z-1,j
. . . T1+TotTa— des
E E a1,1,02,1,43 15 |12 12,5 12T 1+l2+s (€’+€5+e-7)dxr Adzs A dx;

r<s<jg Iy I2 I3 23’7- 7:375 7:37‘7'

Z'1,7” 7;1,5 7:1,]'
12,0 12,5 12,5
13,0 13,5 13,5
at least one a;,, for 1 < j < 3, is not zero, i.e., (i1,,015,%1), (i2s, 02, 02,5)

and (is,, 13, 13;) are independent multi-indexes. Hence

Therefore, there exist r, s, 7 such that

# 0 such that for each I

Il = (2171,...,2177‘,...711’5,...,ZLj,...,Zl’n)
[2 = <Z2,17--~7Z2,r7---722757--~7Z2,j7~--7l2,n)
[3 = (Z3,17'"aZ3,T7"'7Z3757--'a7'3,j7"'723,n)

are linearly independent. This process can be continued until we obtain n
independent multi-indexes I1,..., I, € N v
Remark 2.2.6. Observe that in dimension 2 there can not exist fl and A?
generically transverse such that fioé = ﬁ with G as in the Proposition Iié
In a similar way for dimension n, there can not exist fl, cee fn transversal
at the origin such that ﬁ e fz with G as in the proposition above. This
is because each one satisfies

fi(O, o 0,25,2514,0,...,0) = Li(2}y ) for some [; € Or,

and then df; A -+ A df, is 0 when restricted to the plane {zj,zj41}. In
particular (df; A--- Adf,)o = 0.
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We will apply the propositions above in order to study groups of formal
diffeomorphisms leaving invariant a set of generically transverse formal series.

Definition 2.2.7. The invariance group of f € O, is defined as
H(f) = {G e DIl(C",0)| fo G = f}.
The invariance group of {fy ..., fa}, where fi,..., fu € Oy, is
H(fr..., ) = {G e Difi(C",0)| fioG =, for i=1,...,n}.
The following proposition is one of the key parts of our work.

Proposition 2.2.8. Let fl e ,fn €0, be generically transverse. Then the
group H(f1..., [n) is periodic (in particular linearizable and finite).

The proof of Proposition requires algebraic properties of groups of
diffeomorphisms. In Appendix[A]we give part of the supporting material and
a sketch of the proof. Using the theory we have built so far, we can give a
proof of the following particular case:

Proposition 2.2.9. Let fl ceey fn € O, be transversal at the origin. Then
the group H(f1..., fn) is periodic (in particular linearizable and finite).

For the proof of Proposition we need the following result from [9],
whose demonstration we put here to emphasize that it is also valid in the
formal case:

—

Proposition 2.2.10. A group G C Diff(C",0) is linearizable if and only if
there ezists a vector field X = R+ -+, where R is a radial vector field, such
that X is invariant for every G € G, i.e. G*X = X.

Proof.

(=) Suppose that G is linearizable, i.e. there exists g : (C",0) — (C",0)
such that goGog™ = {dGy |G € G}. Since (A(+))*R = R for all A € GI(n,C)
(by a direct calculation, (A(-))*R. = dA(-)4-1.RA™" 2 = z), in particular for
every element G € G we have

R.=(g0Gog ') R.=d(goGog ") g 10g 1 R((go G og™")(2)),
— ~ -1 A—1 1
z = dgg_l(Z)dGG—log—l(z)dg(goé—log—l)(z) (g oG o g )(Z>
Taking z = ¢g(y) and multiplying by dgg_(;)7 we have

dg;(zlJ) (9(v) = déé—l(y)dg(;ié—l(y))<g © (A;il(y))
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Denoting X = dgg’(.l)(g()), we have G*X = X. It is easy to see that X =
R + ---. For this, suppose that

g(2) = Az + P(2) + Py (2) + -+,
g2 = A2+ Qu(2) + Quin(2) + -+

where A € M,,(C) and P, @), are polynomial vector fields of degrees [ and
v, then

dg;' = A7 +dQ,(2) +dQuia(2) + - -,
dgyity = A7+ dQu(2)g(e) + dQuar (2)g(a) + -+

which gives

X, = dgg_é)g( 2) = (A" 4+dQu(2)gs) + - ) (A2 + Pi(2) + )
=2+ AN (P(2) + Paa(2) + -+ )+
+dQu(2)g(e) (Az + Pi(2) + Praa(2) 4+ )+

The terms after z, if not 0, are of degree greater than one, thus X =R+ - --
as we wanted.

(«<=) Since every eigenvalue of the linear part of X is 1, then X is in the
Poincaré domain without resonances (additive resonances), therefore using
Poincaré linearization theorem ([24] Theorem 4.3) there exists a formal diffeo-
morphism g : (C*,0) — (C",0) such that ¢g*X =R, i.e. X = (dg(-))"'g(-).

We claim that g o G o g~ 1(y) = dGo(y) for every G € G. In fact, using
the same procedure as before we can observe that

R.= (goGog )R..

For this, note that G*X = X means that dG
dG, ,l(y)dggonl(y)g oG (y) = dgg IW)- Takmg z = g(y), we have

G-1(y) = Xz, which gives

dGG’ log—l(z)dggOG 1og 1( )g © G_l o g_l(z) = dgz_l<z)

Therefore,
(go Go g 'R, =d(go Go g_l)goé,log,
— dggfl(z)dééflog 1 dg

i R(go G og ! (2))
goGlog\(z)
= dg,-1(-)dg; '(2) (by the the previous computation)

goG~log=1(2)

=Z.
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Now, if we suppose that g o G o g~}(z) = Az + P(2) + Py1(2) + - - -, where
P;(z) is a polynomial vector field of degree j, then it is easy to prove that

(goGog™ ) R= Az +1P(2) + (I + 1)Pra(z) + -,

In order to prove it, observe that (g o Go g )*R. =R, implies

A

d(goGog™) e 10g1yRGo G og7 (y) = R(y)
taking y = g o G o ¢g~'(z) then
d(goGog).R(z) =R(goGog '(2)),

which implies d(goGog™1).z = goGog~'(2). By hypothesis d(goGog™?), =
A+d(P), +d(Py1), + . Then we have

A

d(goGog ).z = Az +1P(2) + (I + 1)Pya(2) + -+,
= Az + Pi(2) + P (2) + -

and therefore Pj(z) = 0 for every j > 2. v

Proof of Proposition[2.2.9. The idea is to find an invariant vector field X
and then use the above proposition. First, consider the formal map H =
(fi,---, fn). For each G € G we have by hypothesis f; o G = f; and then

HoG =H. Note that H Eﬁ(@", 0) because (dfl A« Adfy)o # 0. This
implies that Ho G~ = H, Go H ! = H~! and dGH—l(.)dH(__)l = dH(__)l.

Let us define X = (dH)'H = dHI}%.)H(-), which satisfies G*X = X, as
shown below:

G*XZ — dGAG*,l(Z)XGvfl(
N P -1 -1
= dG sy dHy () H(z)

= dHy(, H(2), because dG i gog1(nAH e ) = A i,
=X,

z)

Besides, by the proof of Proposition we have that XY =R +---.

Then, by Proposition we have that G is linearizable. Furthermore,
this implies that G is in fact diagonalizable by Propositions [2.2.1] and [2.2.3]
and Remark 2.2.6] In addition its diagonal form is made of roots of unity
by Proposition , since the transversality condition of {f;} implies the
existence of n independent multi-indexes by Proposition [2.2.5]
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_Indeed, the previous analysis is more subtle, because we have to consider
(foG)(g) = (fiog)(g~ 0 Gog) = (fi09)(G) = (i 0g) where g is a formal
diffeomorphism that diagonalizes G. The result is the same because the f;0g
are generically transverse.

Therefore, there exists N € N such that G¥ = I and then (G) (i.e. the
group generated by G’) is finite. It remains to note that G is commutative.
Consider Gy, G5 € G and denote by G4, G5 their linear parts, then

~

Gloég

(g7 oGrog)(gtoGaog)g™
(G1oGa)g™

(GyoGr)g™!

— Gy0G.

9
g
g

Where we know that G; and Gy commute because they are diagonal diffeo-
morphisms. v
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Chapter 3

On formal first integrals

In this chapter we will show that the existence of a formal first integral in our
framework, implies the existence of a holomorphic one. We use the notation
and results of [14] [15]

3.1 Preliminaries

Given a germ of a holomorphic vector field X € X(C",0) we shall denote by
F(X) the germ of a one-dimensional holomorphic foliation on (C",0) induced
by X.

Definition 3.1.1. We shall say that F(X) is non-degenerate generic if dX(0)
is non-singular, diagonalizable and, after some suitable change of coordinates,
X leaves invariant the coordinate planes. Denote the set of germs of non-
degenerate generic vector fields on (C",0) by Gen(%(C”,O)). Such vector
fields, after a change of coordinates, can be written in the form

0

5o (1)

X(x) =M a (1 + al(gv))aix1 + o Az (1 + an ()

where a; € M,, fori =1,...,n.

Definition 3.1.2. We say that a germ of one-dimensional holomorphic folia-
tion F(X') has a holomorphic first integral if there is a germ of a holomorphic
map F : (C*,0) — (C"1,0) such that:

(a) F is a submersion outside some proper analytic subset. Equivalently if
we write F' = (f1,..., fa_1) in coordinate functions, then the (n — 1)-
form df; A--- Adf,_1 is non-identically zero.

(b) The leaves of F(X) are contained in level curves of F .
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Further, a germ f of a meromorphic function at the origin 0 € C” is called
F(X)-invariant if the leaves of F(X) are contained in the level sets of f.
This can be precisely stated in terms of representatives for F(X) and f, but
can also be written as ix(df) = X(f) = 0.

We start with the following definition inspired in the concept of holomor-

phic fist integral (Definition [3.1.2));

Definition 3.1.3 (formal first integral). We say that a germ of a holomorphic
foliation F(X), were X € X(C",0), has a formal first integral if there is a
formal map F' = (f1,..., fu_1), with f1,..., fu_1 € O,, such that:

(a) The formal (n — 1)-form df; A --- A df,_; is non-identicaly zero.

(b) X(F) =0, (i.e. the f; are F(X)-invariant, X(f;) = 0 for all f;, i =

Definition 3.1.4 (condition (x)). Let X be a germ of a holomorphic vector
field at the origin such that 0 € C™, m > 3, is a non-degenerate singularity of
X (i.e. dX(0) is non-singular). We say that X satisfies condition (*) if there
is a real line L C C through the origin separating some eigenvalue A(X’) from
the others. If X satisfies (x) we denote by Sy the smooth invariant curve
associated to A(X).

Although the methods we use in this chapter are in general independent
of the dimension, our work will imply directly condition (%) only when n = 3.
In the remaining cases we have to include it as a hypothesis. This condition,
together with the generic conditions of the vector field X, is what allows to
use the following well known result (see [20]) whose demonstration can also
be found in [40].

Theorem 3.1.5. Let X and Y be two vector fields in Gen (X(C",0)) with
an isolated singularity at the origin satisfying condition (x). Let hy and hy
be the holonomies of X and Y relatively to Sy and Sy, respectively. Then
X and Y are analytically equivalent if and only if the holonomies hy and hy
are analytically conjugate.

This theorem is basically the heart of the proof of the equivalence (3) <
(4) in Theorem 1 of [14], whose statement is:

Theorem 3.1.6. Suppose that X € Gen(X(C?,0)) satisfies condition (x) and
let Sy be the axis associated to the separable eigenvalue of X .

Then, Hol(F(X), Sx, X) is periodic (in particular linearizable and finite)
if and only if F(X) has a holomorphic first integral.
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We can state now the main result in this chapter.

Theorem |[C| Let F(X) be a germ of holomorphic foliation with
X € Gen (X(C3,0)). If F(X) has a formal first integral then it also has

a holomorphic one.

In order to prove this result result we show that having a formal first
integral, gives enough properties to the vector field that Theorem [3.1.6] can
be used.

3.2 Algebraic criterion

In this section we show that we can restrict ourselves to a vector fields written
in a particular way.

The following lemma and proposition are, at first glance, essentially n
dimensional versions of Lemma 1 and Proposition 1 in [I4]. Nevertheless,
there is a difference which turns out to be an important property, as we
explain after the following lemma.

Lemma 3.2.1. Let A = (Ay,...,\,) € C"\ 0 and Ny,_1x, be a matriz with
entries in N and linearly independent lines satisfying

NA'=0eC" .
Then there are ky ..., k, € Z and \ € C* such that
Ay ooy An) = (k1o k) A
Proof. The proof consists in the solution of a linear system. Take

nip ... Nin-1 Ninp ny ... Nin—1
N = : . : : and A =

Np—11 -+ NMp-1n-1 MNn-1n Np—11 -+ Np_1n-1

The independence allows to take n — 1 independent columns, which we sup-
pose to be the first ones. Thus A is invertible and multiplying by A~! the
system NA! =0, we get

n—1x1
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We have n — 1 equations of the form \; + kA, = 0. Then
ALy ) = (=K1, k1, DA

We know exactly who are the &;’s, because they satisfy

nir .- Nin-1 k1 Nin
Np—11 .- Np—1n-—1 kn,1 Npn—1n;
~ A, . .
and, by the Cramer rule, k; = ||AZ‘, where | - | means determinant and A; is

the matrix obtained from A by replacing the column i to [ny, ... n,_1,]"
Finally, we get

Ay dn) = (JAx] - Anaal], —|ADA,

with A = =\, /|A|l, ki =|Aj| € Zfori=1,...,n—1and k, = —|A| € Z as
we wanted. v

We know that the signs of the k; cannot be all neither positive nor negative
thanks to the condition ny k1 + - -+ +ny,k, = 0. The three dimensional case
is special because this implies that k;-ko-k3 < 0. So we can make one of them
negative and the other two positive by changing A. However, in dimension
n > 3 this is not necessarily true. Here we have an example in dimension 4
where kq - ko - k3 - k3 > 0. Take

N =

O O =
O = O
=
— oo

if we have NA' = 0 for some A = (A1, A2, A3, \4) then,
(Ab A27 A37 A4) = (_1’ ]-7 11— 1))\

With this example we can also see that a vector field of Siegel type may not
necessarily satisfy condition (x), whereas the opposite is always true.

Proposition 3.2.2. Suppose that X € Gen(X(C",0)) has a formal first
integral. Then F(X) can be given in local coordinates by a vector field of the
form

0 0
X(2) = kir(1+ ax(@)) 5=+ -+ kawn(l + an(2)) 5
1 n

where ki,...k, € Z and aq, . ..,a, € M,. In particular, if n = 3, X satisfies
condition (x).

(3.2)
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~

Proof. We are considering & € Gen(X(C",0)). If F' = (fl...,fp,l) is
the formal first integral, then X(f;) = 0 for i = 1,...,n — 1. If fi(z) =
pITT—- a; ', then

of;

par (@)= D0 (g,
[I1>p;
and
X(fz) = Z A (1 + ar(x))( Z (ip)a; i -zl :E;")
r=1 [I1>p;
=3 > ihau(l+a (o)t al
r=1|I|=p;
= Z Z Z.TA,,‘CLZ‘](l + GT(ZE))I'I
[1|>p; =1
= Z a[(Zir)\rz)xI + Z aI<ZiT)\mar(x)>xl =0.
H|=pi r=1 [I|>pi r=1
Thus given

PX(f) =3 aI(ZmM):}H —0,
H|=p: r=1

which implies Y ", i, A,; = 0 for each I = (4y,...,14,) such that a; # 0. Now,

by the same argument at the end of the proof of Proposition [2.2.9] there are

n — 1 linearly independent n-tuples satisfying this condition. With them we

can form the matrix N of Lemma and we are done.

v

3.3 Holonomy and formal first integrals

We know that holonomy maps (by its construction) leave invariant the level
sets of a holomorphic first integral. What we want to obtain is a similar
invariance relation in the case of formal first integral. For simplicity, we
work in dimension 3, but small changes are needed for the general case.
Consider the foliation with formal first integral given by the vector field
X which, by Proposition can be taken in the form (3.2). Note that

the vector field obtained from (3.2) by multiplying by ( — ks(1 + CL3(ZL’)))_1
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defines the same foliation. Then we can write X as

X (21,29, 23) = prias(z )ai1 + qraas(z )ai2 + xgai?)
where a1,a9 € M3z and p,q € Q, let S := (1 =25 =0) and ¥ := (3 = 1).
Consider the closed loop 7 : [0,1] — S given by (t) = (0,0,€e?™) and let
L) (t) = (Ti(1, w2, t), To(21, 2, 1), €*™*) be its lifting along the leaves of
F(X) starting at (z1,79,1) € X. In particular, the map h € Diff(C?0)
given by T4, +,)(1) = (h(z1,22),1) is a generator of Hol(F(X), S, ). Since
[, 22)(t) belongs to a leaf of F(X), then

a T .
&F(m@)(t) = aX(Ty(z1, 2, 1), Da(a1, 22, 1), €¥™).

From this vector equation one has 2mie*™ = qe?™, thus a = 2mi. Further-
more,

or T
a_tl = 27ripf1(l’1, T2, t)al(r)7
or T
a_t2 = 27miqly (21, 22, t)as(I).

Proposition 3.3.1. Let F(X) be a foliation induced by a vector field X €
Gen (X(C?,0)), h be as before and let F = (f1, f2), with fi, f» € O3, be a
formal first integral of F(X). Then

fi(xhx%l) = ﬁ<h<xlﬂx2)71> (33)

Furthermore, there exist a coordinate change ®(x1,xq, x3) = (u1, ug, uz) such
that (3.3) can be written as

@*ﬁ»(ul, Ug) == @*fz(ﬁ(ul, Ug)), (34)
where h is given by ® o T o & (uy, uy, 0) = (h(uy, us, 0).
Proof. Let U be a small neighborhood of (0,0, 1) such that the vector field X
is not singular in U. Then X can be trivialized (using Rectification Theorem,
see [A]) i.e., there exist a biholomorphisms @ : (U, (0,0,1)) — (®(U) c C?,0)

such that ®(zy,29,1) = (uy,us,0) and ®*X(u) = 9/Jus. Observe that
X(f;) =0, for i = 1,2, implies X(f;)(® ! (u)) = 0 for u € ®(U) and

~

X(f)(@7H (w) = X (@7} (w)) - (Vf)o-
= (d@@—l(u))((q)_l(u))) . (V]Eiq)—l(u) dq);1>
= P X(D*f;).
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Hence @*X(@*ﬁ) = 0 in U, this means that q)*fi(ul, Ug, U3) = é[ifi(ul, ug) in
other words, ®* f; is a formal series in the variables (uj, us). If T is as before
we have X'(T') = 27l this implies X (@' o ® o ') = 2ril", then we have

dPeX (@ o @ oT) = 2middpl
P*X(Pol) =2mi(Pol),
0/0us = 2mwi(® o T)

thus ® o T'(zy, x5, ) is a vertical line for ¢ € [0,€) such that T'(zy, zs,t) € U
and ®* f; is constant on it, i.e.,

d, o
&(QD fi(®oT (s 2)(t)) =0, for t € [0,¢),

but @*ﬁ(q) Of(m,m)(t)) - fl(F(m,a:z)(t)) then

d . . _
&(fi(l“(wlm)(t))) =0, for t € [0,¢).

Fix a point (z1,29,1) € U and take a finite partition 0 = ¢, < t; <

- < tym—1 < tm = 1 and open neighborhoods {U;}, forming a covering
of f(xl,xg) such that ['(zy,29,;,) € U; and Uy = U; = U. Each U; can
be chosen sufficiently small that we can repeat the previous analysis. We
conclude that f; is constant along T(zy1,19,t) for t € [0,1]. Hence

fi(F(m,xz)(t)) - .]EZ(F(xl,xz)(O)) = .]E”L(F(m,xz)(l))

and

~

(9017962)(0)) = fi(xh T, 1)7

A~

(@1,22)(1)) = filh(w1,22),1)

=

Ji(

fil

then X R
fiw1, 22, 1) = fi(h(71,22),1)

Consider H(z1, 9, x3) = (h(x1,22),23) defined in a small neighborhood of

(21,29, 1). Note that H(z1,22,1) = T4, 4,)(1) and that o Ho® ! is a diffeo-
morphism in an open set of 0 € ®(U) C C3. Denote ® o H o ®~!(uy,us,0) =

(h(uq,uz),0) then we have
f\i(xlaléa ]-) - q)*fi(uhuQaO) - ¢*fi(u1au2)7
fi(h(xl, Ta),1) = ﬁ o H(xy,29,1) = ﬁ o Ho® ' (uy,u, 0)
= ﬁ o (I)_I(CI) oHo @_l(ul, Ug, 0))
= (I)*fi(;l(ul,UQ), 0) = (I)*fi(ﬁ(u17u2))-
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Using (3.3) we have
* fi(uy, u) = O* fi(h(uy, us)).

In conclusion, after a variable change ®, we obtain the relation we were
looking for. v

Remark 3.3.2. One would think that is possible to make the following com-
putation. Using the formal chain rule (Section [2.1.1) and that f; and f, are
F(X)-invariant. We have

of af
priai(zr, 3527133)8—2 + q2as(21, 1’27133)8—;2 + xza—i =0
Evaluating I and multiplying by 2mi,
o Of = Of i
0 = 2ipl r—) 9migl F—‘ et SI1
miplyaq ( )8351 F+ miqlaas( )ax2 F+ Tie D I
_ o'y 0fy ‘ o'y 0fy i 2t %‘
ot 81‘1 T ot 8!172 T dt 81‘3 T

0 -~ =
=5 fiel).

The last line (note that the same holds for fg) implies that f, oL is constant
whit respect to t. Then,

fl Of(.ﬁEl,lﬁg, 1) = fl Of<x17x270)7

fl(h(l'l, ZEQ), 1) = fl(fEl, T, ].)

The previous is true but it is useless in somehow, unless fl and fg be formal
series in two variables when x3 = 1. This happens for example if they are
formal along x3; series of this kind but defined along submanifolds are used
in [17] pag. 456. They also appear naturally in dimension 2 as a result of
blow-ups of formal series at the origin, as can be seen in [30] pag. 487. In
that setting the series can be defined in a neighborhood U of the divisor
(projective line) and is said to be a germ along U of a transversally formal
holomorphic function.

3.3.1 From formal to holomorphic first integral

Now we are in conditions to prove our first main result:

44



Theorem C. Let F(X) be a germ of holomorphic foliation with
X € Gen(X(C3,0)). If F(X) has a formal first integral then it also has

a holomorphic one.

Proof of Theorem [0 Let F = (f1, f2) be a formal first integral of F X . By
definition of formal first integral d f1 Ad f2 # 0. By Proposition , the
vector field X' can be written the form (3.2):

X(x) =mx (1 + al(x))% + nxa(1 + a2(x>)@ig;2 — kxs(1+ ag(x))a—%,
were m,n,k € ZT and ay,as, a3 € Ms. In particular X satisfies condition
(x). We just need the periodicity of the holonomy respect to the x3 axis to
satisfy the conditions of Theorem [3.1.6]and conclude the demonstration. For
this we use the notation and result (Proposition [3.3.1)) of the previous section.
We want to show that the map h, which is a diffeomorphism leaving invariant
@*fl and ¢* fg, is periodic and then h the holonomy map is periodic.

But first, we have to guarantee that ®* f1 and ®* fg are still generically

transverse because in general df; A dfs # 0 does not imply d(f1 (21,72, 1)) A

d(fa(z1,22,1)) # 0. In order to proof this, suppose that (df; A dfs)s,—1 =0
and observe that

d(@" 1) Ad(@*fy) = (dfrao-1)dP ) A (dfap1()dP ()
= (dfi Adfa)e-1()|de |

thus in (ul,UQ,O) (A(®*f1) A A(®* f2))(usua0) = O which implies (d(®*f) A
d(P* fg)) = 0 and then (df, Adfs)y = 0, contradiction. We can now use
the prev10us sections and Chapter 2]
With this in mind, by Proposition , we have that & is periodic be-
cause it preserves ®* fl, o~ f2 and it is generated by one germ of diffeomor-

phism, therefore after a change of coordinates Hol(F(X),S,Y) is periodic
and Theorem implies that F(X) has a holomorphic first integral. v/

As for arbitrary dimension we have:

Theorem 3.3.4. Let F(X) be a germ of holomorphic foliation with X €
Gen (X(C",0)) satisfying condition (x). If F(X) has a formal first integral,

then it also has a holomorphic one.

Proof of Theorem [3.3.4]. The proof goes on as the previous one but instead
of Theorem in the last part, we use the following theorem:
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Theorem 3.3.5 (Theorem 5 in [39]). Let F be a singular foliation on (C™,0)
possessing n invariant pairwise transverse hyperplanes and denote by Ay, ...,
An its eigenvalues. Suppose also that N\, € R, while \i,..., \,_1 are all
negative reals. Denote by h,, the local holonomy map associated to the axis
xy, (corresponding to the eigenvalue N, ) and suppose that h, has isolated
fized points (in the sense of Theorem and that it has finite orbits.
Then F admits a holomorphic first integral.

By Proposition [3.2.2] the vector field X' can be written in the form (3.2)):

X(x) = kzi(1+ al(x»@ixl + o+ k(1 + a"(x))ﬁixn’
where k1,...k, € Z and a4, ...,a, € M,. This vector field, by hypothesis,
satisfies condition (). Therefore, X is on the conditions of Theorem [3.3.5]
The same method in the proof of Theorem [C|shows that the holonomy group,
in this case associated to x,, is periodic. Thus h,, has isolated fixed points
(in the sense of Theorem and has finite orbits. We can now apply
Theorem B.3.5 v

The unsuccessful part of this chapter is that unlike Mattei and Moussu
[30] we did not manage to establish a relationship between the formal first
integral and the holomorphic one. In dimension one the latter is the compo-
sition of a formal series with the former one. It is possible just a matter of
computation but perhaps there is something deeper.
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Chapter 4

Vector fields and Darboux’s
Theorem

In this chapter we suppose the existence of analytic hypersurfaces invariant
by a vector field and we try to show the existence of an holomorphic first
integral. Tts existence would imply that all the leaves are closed off the
singularity. This is a Darboux’s like proceeding and this made us try to use
Darboux’s Theorem (Theorem in our framework, however only in a
particular case we mange to use it. In our main result we use Chapter [I}

4.1 Preliminaries

Let be F a foliation by curves in CP(n) and L a leaf of F.

Definition 4.1.1. We say that L is algebraic if the closure L of L in CP(n),
is an algebraic subset of dimension 1, i.e., an algebraic curve. In this case,
we also say that L is an algebraic solution of F.

Let be F a foliation in CP(n), whose singularities are isolated. Then, a
leaf L of F is an algebraic solution, if and only if, L is obtained from L by
the adjunction of the singularities of F to which L is adherent (see [32] pag.
103).

Theorem 4.1.2 (Darboux’s Theorem [19,26]). Let F be a foliation in CP(2)
having wnfinitely many algebraic solutions. Then F admits a rational first
integral.
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4.2 Vector fields with infinitely many invariant
hypersurfaces

4.2.1 Homogeneous case

Definition 4.2.1. Let X € X(C3,0). We say that X is homogeneous of
degree v if X (z) = a,,(:zc)(.)%1 + b,,(yc)a%2 + cl,(al:)a%3 where a,,b, and ¢, are
homogeneous polynomials of same degree v and without common factors.

Note that, if X is homogeneous of degree v, then X (A\x) = A\"X(x) for
every A € C*. Intuitively this means that along the line Ax the vector field
X points in the same direction allowing us to define a vector field X in the
projective plane CP(2) as follows.

Remember that the usual differential structure of CP(2) is given by the
atlas {(U;, p;) 2, where U; = {[z1; 2; 23] € CP(2)|x; # 0} and

(E ﬁ) =: (z,y),

o1([z1; 225 23])

T1
o)) = (2 ﬁ) _.
pa([1; w25 75)) <x2’ o) = (u,v),
o _ (1 ﬁ) _.
@3([w1; w25 ws]) <:v3’ ) = (s,7).

Consider the projection

I1:C* = CP(2) : (z1, 22, 73) — [(z1;72; 23)] = {21, 79, 73) | X € C*}
that in the first chart is written as I1; (21, v2, ¥3) = @1 oIl(71, 12, 73) = (7, y).
Putting all of this together, X' in the first chart is

Xi(o,y) = X (,y)], -, = { i) X (0 @) |
-z 1 0
— [—y 0 1] X(1,x,y),
. 0 0
Xi(x,y) = (b,,(l,x,y) - xa,,(l,a:,y))% + (cy(l,x,y) - yay(l,x,y))a—y.

We proceed in a similar way for the other two charts.

Definition 4.2.2. We say that two hypersurfaces S; and Sy are first jet

different if S; and S5 are given by the zero set of irreducibles g1, 9o € M3
whose first jets are different.
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Theorem 4.2.3. Let X be a germ of homogeneous vector field in 0 € C3.
Suppose that X leaves invariant infinitely many first jet different hypersur-
faces passing through 0. Then, there erists a rational map f : CP(2) —
CP(1) that is F(X)-invariant (i. e., X(f) = 0). This map is also called a
weak first integral for F(X).

Proof. The idea of the proof is to use the homogeneity of X to define a vector
field X in the complex projective space CP(2) and show that the foliation
F(X ) has infinitely many algebraic leaves. Then we use Darboux’s Theorem
to obtain a first integral for F(X). This first integral is a weak first
integral for F(X).

Suppose that S := {g = 0}, for an irreducible g € M3, is an X-invariant
hypersurface. This is equivalent to saying that g divides X(g), denoted as
g | X(g). To see this if 2o € S and ¢(T') is the integral curve of the vector
field X with ¢(0) = z defined in a neighborhood of 0 € C then,

{g(cb) =0
X(o(T)) = ¢'(T),

together they imply that X(g)(¢) = 0. Therefore X'(g)(-) is a holomorphic
function which is zero when restricted to S. Therefore, It can be written as

X(g)(-) = g()h(), (4.1)

where h € Os.

Remember that if x is the order of g then g = gx + g1 + - - - where g,,
is a homogeneous polynomial of degree m. Thus, by the linearity of X as a
derivation operator, we have that

X(g9) = X(9x) + X (gut1) + -,

is also a sum of homogeneous polynomials. If X'(g,) = 0, we have that g,
is a weak first integral for F(X) and we are done. Suppose that X (g.) #Z 0,
then X(g,) is homogeneous of order v + k — 1, X(g,41) is homogeneous of
order v + k, etc., where v is the order of X' as before. Obviously, h in (4.1))
can also be written as a sum of homogeneous polynomials and the degree of
the first non zero of them (the order of h) necessarily is v — 1 by (4.1)). Using
this, can be rewritten in the following way;

X(9s) + X(gst1) + = (g + g1+ ) (Ao + ho + )
:g,{hV,1+....

49



This implies, by comparing terms with same degree in both sides, that

X(g:‘i) = gnhllfla

in other words g,. | X'(gx). Thereby S, := {g. = 0} is an X-invariant algebraic
hypersurface.

Next, as we mention previously, the homogeneity of X can be used to
define a vector field X in CP(2). The same can be done for g,, defining a
function g, in CP(2) as follows:

gn(x>y) = Tgn|x1 1
= gx(Ily (:E Y)|z1=1
- glﬁ(17 x, y)
We proceed analogously in the other two charts. Let us see that g, | X(g.),

first we use the equality g.(21, T2, 13) = 27gx(1, ¥2/21, 23/21) = 259:(1, 7,y)
in order to calculate Vg, (1, z,y) in terms of x1, x5 and x5 as follows:

09,
8%1

9. dx  0gx dy>

_ r—1
- g'{+x1<8 dxy oy Oy dx,

99x _y&%)
ox oy
Ogx _ $H<095 dx | Ogx ﬁ)

= ki g, + x’f_1< -

019 ox d_xg 0y dxs
k=1 ag"i
=T oz
99x . (09x dx  Og. dy
ors * (8x dxs + Jy dx;;)
k=1 ag"i
= 8_3/’

if we set 1 = 1, they become

09,
81’1

kGt (_xagn B y89m> 99« _ 99x 99« _ 99x
" Ox oy Ory Ox’ 0Ors3 Oy

Second, keep in mind that X' (g.) = a,,ag“ + b, 2 4 c,,dg” = g.h,—1. In

Y Oxa

particular, for z; = 1. Thus, we have that g, | X(g,.g) is consequence of the
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previous considerations, as shown in the following calculations.

~ —x 1 0

X(gx) = {_5 0 1] X(1,2,y) - Vge(l,z,9)
_ 89/{ 3gn
=(—za, +b) B + (—ya, +¢) 99
B 99« 0gx agn 09x
_“”< T or yay>+ba “ay
B . 09, 09 09,
——fﬁa,,gH—F( 31+ba +CV8I3)

= —KQyGx + Gxhuv—1
j(ﬁn) = gn( — Ka, + hl,,l),

where all functions are evaluated in (1, z,y).

Thus {g. = 0} is an X-invariant algebraic curve. The same argument
is valid with each of the infinitely many AX-invariant hypersurfaces. The
fact that they are first jet different implies that there exists infinitely many
X-invariant algebraic curves. Then by Darboux’s Theorem, X posseses a
rational first integral f : CP(2) — CP(1). It only remains to see that f is
F(X)-invariant. This is equivalent to verify that X'(f) = 0, which is the next
and final step in the proof.

We can think f as a rational function in C3, constant along the directions
f(Az) = f(z) in other words, homogeneous of order 0. So, as we did before
with g., f can be written as f(z1, 22, x3) = f(1,29/x1,23/21) = f(1,2,9).
Taking derivatives

af  wof yof of 19f of 109f

ory x0x 10y’ 8_x2_x18x (’9_x3_x18y

and using that X,(f) = (—za, + by)% + (—ya, + cy)gg = 0, where all the

functions are evaluated in (1, x,y), we can calculate

0 9
X(f) = al,(xl,xQ,mg)afl by ($1,$27I3)a =~ +cy(x1,x2,x3)—89{3
0 o 9
=t (w0t s 00,02 e ,n o)
0 0 o
:IT_I(au(l,x,y)(—xa—i —y f) +b, (1,x,y)a_£

—l—cl,(l,:c,y)g)

dy
8f>

By 0 v

= oyt ((—a:al, +b,)== + (—ya, + ¢,)
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In order to conclude the homogeneous case is important to note that the
previous method does not produce two weak first integrals transversally in-
dependent, because both of them are first integrals of X then in C? they have
the same level sets.

4.2.2 Generalities on blow-ups.

Suppose that X(I') = a($1,$2,$3) + b($17x27x3) + C(I17$27x3)8237
where a,b,c € O3 are given by

a(x) = Z arx’, Z by’ and c(x) = Z cxx’.

[T|>p1 [J|>p2 |K|>p3

If ¢, is the first chart of the punctual blow-up at 0 € C3. We denote E o
01 (21, 22, 23) = (21,2122, 2123) simply by FEi(z), a(Ei(z)) by a(z) (in the
same way b(z) and c(z)) and the pi-jet of a(z) by a,,(2) (in the same way
bp,(2) and ¢, (2)). Observe that in this chart the divisor, D := E~(0) =
CP(2), is given by {z; = 0}.

Using this notation we calculate X (z) = (AET ) B (- X (E1(2)),

1 0 O 1 22 0 0
dE1 = |22 Z1 0 y dE;l = 3 —Z1%29 X1 0
z3 0 2 Tlozzg 0z
Thus
) 1 2 0 0 a(z)
X(z)=— |—=n22 21 O] [b(2)],
T —ziz3 0 2z c(z)
- 0 1 0 1 0
R(E) = ol g + (—220(2) + D) g + (—200(2) + () o
0
= (zl”a,,(l, 22,2’3) + ZV+1(. )) 621+
( — 22211/71011/(17 29, 23) + Zlyi bl,(l, 29, 2’3) + Zly( .. ))8_Z+
2
0
(= 232y lau (1, 20, 23) + 27T (1, 20, 23) + 20 (... ) =—,
823
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which gives

0
X(z) = 2Va,(1, 29, 23) =—+

aZl
v—1 8
2z ( — 290, (1, 29, 23) + b, (1, 22, 23))8_22—'—
211/71( o 23211/71011/(17 22, 23) + CV<1, 29, Zg)) 8Z3 + Zly( .. ),

where v = min{py,ps,ps}. Then, supposing that zsa,(r) # z1b,(x) or

zza,(x) # x10,(x) (ie., 0 is a not dicritical singularity, see [16]). In that
case we can define in the first chart of D

Xp(z2, 23) == ((ZT_I)_I‘;‘?(Z)),ZI 0

and, we have that

0
Xp(29,23) = ( — 2z9a,(1, 29, 23) + b, (1, 22, 23))6——1—

Zé (4.2)
( - 23a1/(17 22, 23) + CU(17 22, zS))a_-
z3

In order to write Xp in the other two charts, that we will denote Xp(s,t)
and Xp(u,v) for simplicity, consider the following diagram:

S
”
N
\
\
\l
: ¥31
'!
|
! P21
z3 T T T T~ u
22 v
where,
()021(2’/27 Z3) = (U, U) and §031(227 Z3) = (’f’, S)
u=1/z r=zy/23
v = 23/ 2, s =1/z,
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hence,

Xp(u,v) = U%ld@zv'f)D((Pz}l(Ua v)) and
Xp(r,s) = s des1 Xp (w3 (. 9)),
using that

—u? 0 s —rs
dpar = {—uv u} and des; = [O _ 2} )

we have,

5 1
XD(U,’U) = ul/< - Ubu<17 ) E) + al/<17
u u

Plo|w
+

and
Xp(r,s) = s”( —rc,,(l,?,é) —|—b,/<1, g’ §)>8g+

r 1)

s’ s

1
s”( — scl,<1, Z, —) + a,,(l,
s’ s

Xp(r,s) = ( —re,(s,r, 1)+ b,(s,, 1))

Observe that /‘ep(zg, z3) is a polynomial vector field of degree < v+ 1 leaving

D invariant.

Lemma 4.2.4. If a vector field X € X(C3,0) leaves invariant a hypersur-
face passing through 0, then its first jet &, leaves invariant a homogeneous

algebraic hypersurface passing through 0.

Proof. The argument is similar to the one in the first part of the proof of
Theorem Let be S = {g = 0}, for g € M3 irreducible, a X-invariant
hypersurface. Then there exists h € Mj such that X(g) = gh. The three of

them, X', g and h can be written as a sum of homogeneous terms:

X:XV+XV+1+”'7

9= 0xt g1+,
h=rhy_y+h, 4.
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The equality X(g) = gh implies that the order of h is v — 1. By comparing
both sides of

Xy(gn—l-gﬁﬂ+---)+Xy+1(g,<+-~-)+---:(g,.g+-~-)(hz,_1+~--),

we get that X,(g.) = gxhy—1. Therefore, g, = 0 is a X, -invariant a homoge-
neous algebraic hypersurface passing through 0 v

In what follows, we denote by X the pull-back of the vector field X' by the
blow-up E : C* — C? at the origin and by X its restriction to the divisor.
We have,

Proposition 4.2.5. Let F(X) be a germ of holomorphic foliation, where
X € X(C3,0), having an isolated non dicritical singularity at 0 € C3. If
there exist infinitely many X -invariant analytic hypersurfaces passing through
0 € C? and in general position then Xp possesses a rational first integral.

Proof. The previous lemma, together with Theorem implies that X,
possesses a weak first integral. Now, X in the first chart of the blow-up can
be written in the form (4.2)).

Now, as we mention before, there exists f : CP(2) — CP(1) such that
X, (f) =0, ie., a,(z )ggfl +b,(2) 2L + ¢ (x )8f = 0. We then proceed as in
the end of the proof of Theorem

Xo(f) = (= zan(z) + bV(Z))g_i + (— z30,(2) + CV(Z>)88_£’>
— —ZQCLV(Z)a—ZQ — ZgCL,,(Z)a—ZB + b,,( )a te ( )823
of of of
:x1< ()3_I1+b()8x2+ (>8(173>

In the part above we use the following notation a,(x) = a,(z1,z9,23) =
2Va, (1, 29, 23) = 2{a,(z), and that f(zy,xe,x3) = f(1, 22, 23) which implies
by derivation,

Of  wdf mof Of 19f af 10f

0x; 21029 11023 03:2 102 8353 7,023
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4.2.3 General case

The condition (%) introduced in Definition can be understood in the
following way: Let {\;}} C C* be the eigenvalues of (dX)y, if X' satisfies
condition (%), then it is possible to choose a complex vector v € C* such

that, for one of the eigenvalues \;, Re(%) has different sign. Then this

eigenvalue can be separated (see Fig. {4.1)).

l C

Figure 4.1: Condition (x) with [ the line separating As.

Theorem B. Let F(X) be the germ of a holomorphic foliation with X €
Gen (X(C?,0)) satisfying condition (x). Then F(X) has a holomorphic first
integral if, and only if, the leaves of F(X) are closed off the singularity and
there exist non-enumerable many X -invariant analytic hypersurfaces passing
through 0 in general position.

Proof. (=) This implication is obvious.
(«<=) To see this, consider X € Gen(X(C",0)), and according to Definition
(3.1.1) after a change of coordinates, it can be written in the form

X(z) = My (14ai(z)) %4—)\2%2 (1+as(z)) %—l—)\gmg (1+as(z)) 81363 (4.3)
This vector field is in the conditions of Theorem [3.1.6] just remaining to
prove that the holonomy respect to the distinguished axis of X (denoted Sy
as before) is periodic. Remember that Sy is the invariant manifold associated
to the eigenvalue that can be separated, assumed to be A\3. We can calculate
Hol(F(X), Sy, ) taking a small transversal section ¥ to Sy, diffeomorphic
to a ball in C?, at some point z, close to the origin.
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T To

Figure 4.2: Holonomy of Sy

Observe first that if 2y is close enough to the origin, the saturate of X
together with the hyperplane {z3 = 0} contains a neighborhood of the origin
(see Proposition 1 [40]). This means that every X-invariant hypersurfaces
different from {z3 = 0} necessarily cuts X, since it contains 0 and then cuts
the saturate of 2, containing the leaves coming through > by its X-invariance.
Furthermore, we can guarantee that not only cut X

Assertion 4.2.1. Non-enumerable many X-invariant analytic hypersurfaces
contain the zs-axis.

In order to see this, take S = {g = 0} an X-invariant hypersurface given
by the zero set of g(z) = Xjs,brz’. Then X(g)(x) = g(x)h(z), where
h(z) = Zcra!. Using (4.3), we write this equation in terms of series, getting

Sinise [Mi (L4 ar(2)) + Aaj (1 + aa(z)) + Ask(1 + az(z))]bra’ =
(Sinzubra ) (Srera”).

Making x9 = 23 = 0, we get
SizigMi(1 + a1(21,0,0))bi g0z} = (EiZiobLO,Omi) <Eici,0,0$§>-

We proceed in a similar way for x1 = x5 = 0 and xy = x3 = 0. Comparing
the first terms in both sides,

/\12051‘0,0,0 = bio,O,OCO,QOa
A270b0,jo.0 = bo,jo,0¢0,0,05

A3 kfobo,o,ko = b0,0,ko €0,0,0-
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Remember that our intention is to show that ¢(0,0,z3) = Xgsr.boorrs = 0
(because this implies that the z3 axis belongs to S). For this it is enough
to show that by, —0 because in principle it is the first not zero term. If
co00 = 0, then by ok, = 0 given that ky > 0 because ¢g(0) = 0 (by hypothesis
0 € S), then we are done. If ¢y # 0, suppose first that the three coefficients
bis,0,05 bo,jo,0 and bg o, are non zero. Then

A1ig = Aajo = Azko,

dividing by the vector v as in fig. and comparing the real parts we have

Re(ﬁ)zo - Re(ﬁ)jo - Re<§)k0.
v v v

This is a contradiction because v can be chosen so that Re(%) > 0, implying
that the other two are negative. Hence, at least one of the coeflicients b; .,
bo.jo.0 OF bo ok, has to be zero. The same analysis shows that b;, 0.0 b0k, 7 0
or by j,.0 - book 7 0 cannot happen. Thus any hypersurface not containing
the axis 1 and x5 necessarily contains the axis x3. This proves the assertion

The previous assertion implies that infinitely many X-invariant hypersurfaces
cut X forming G-invariant analytic curves (calling G the holonomy map) as
in fig. in a such way that if we think ¥ as a ball in C?, each of these
G-invariants curves contains 0 € C2?. Therefore G generates a finite group
according to Theorem [A] and this implies the existence of a holomorphic first
integral for F(X) in some neighborhood of 0. v

It remains open to see is only finite many X-invariant analytic hypersur-
faces are necessary, also if it is possible to conclude something taking “formal”
instead of “analytic” in Theorem [B]
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Chapter 5

Complete stability theorem for
foliations with singularities

In this chapter we present a stability theorem (Theorem for a holo-
morphic foliation F of codimension 1 on a compact, connected and complex
surface M. For this, we use the following result of Jouanolou about closed
leaves of holomorphic foliations:

Theorem 5.0.1 (|21} 25]). Let F be a holomorphic foliation (possibly singu-
lar) of codimension 1 in a compact and connected complex manifold. Then
F has a finite number of closed leaves unless it possesses a meromorphic first
integral, in which case all the leaves are closed.

In our result, which will be stated properly in Section we suppose the ex-
istence of F-invariant irreducible hypersurfaces and find conditions on them
that guarantees the existence of infinitely many closed leaves. Then we use
the theorem above.

In the prove of our result we also need the following well known theorem
of Mattei and Moussu.

Theorem 5.0.2 (Mattei-Moussu [30]). Let F be a germ at 0 € C* of holo-
morphic foliation. Suppose that:

1. Sing (F) = {0}.
2. There are only finite many separatices S.
3. The leaves are closed off the origin.

Then, there exist a neighborhood V' of 0, such that F|y has a holomorphic
first integral.
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5.1 Holonomy and virtual holonomy groups

Let F be a holomorphic foliation with isolated singularities on a complex
surface M. Denote by Sing(F) the singular set of F. Given a leaf Ly of
F, choose any base point p € Ly C M \ Sing(F) and a transverse disc
¥, C M to F centered at p. The holonomy group of the leaf L, with
respect to the disc ¥, and to the base point p is the image of the repre-
sentation Hol: (L, p) — Diff(3,, p) obtained by lifting closed paths in L
with base point p to paths in the leaves of F, starting at points z € X, by
means of a transverse fibration to F containing the disc 3, ([10]). Given
a point z € X, we denote the leaf through z by L,. Given a closed path
v € m(Lo,p) we denote by 7, its lift to the leaf L, starting (the lifted
path) at the point z. Then the image of the corresponding holonomy map is
hiy(2) = 42(1), i.e., the final point of the lifted path 7.. This defines a germ
of diffeomorphism hy: (3,,p) = (X,,p) and also a group homomorphism
Hol: m(Lgy,p) — Diff(3,,p). The image Hol(F, Ly, ¥,,p) C Diff(X,,p) of
such homomorphism is called the holonomy group of the leaf Ly with respect
to ¥, and p. By considering any parametrization z: (3,,p) — (D, 0) we may
identify (in a non-canonical way) the holonomy group with a subgroup of
Diff(C, 0). It is clear from the construction that the maps in the holonomy
group preserve the leaves of the foliation. Nevertheless, this property can be
shared by a larger group that may therefore contain more information about
the foliation in a neighborhood of the leaf. The wvirtual holonomy group of
the leaf with respect to the transverse section ¥, and base point p is defined
as ([13], [12])

HOlVirt<./T", Emp) — {f c Djff(zp’p)}[,z = Lf(z),Vz € (Ep7p)}.

The virtual holonomy group contains the holonomy group and consists of
all map germs that preserve the leaves of the foliation. Fix now a germ
of holomorphic foliation with a singularity at the origin 0 € C2?, with a
representative F(U). Let I' be a separatrix of F. By Newton-Puiseaux
parametrization theorem, the topology of I' is the one of a disc. Further,
I'\ {0} is biholomorphic to a punctured disc D* = D \ {0}. In particular,
we may choose a loop v € I'\ {0} generating the (local) fundamental group
m(I'\ {0}). The corresponding holonomy map h., is defined in terms of a
germ of complex diffeomorphism at the origin of a local disc X transverse
to F centered at a non-singular point ¢ € I\ {0}. This map is well-defined
up to conjugacy by germs of holomorphic diffeomorphisms and is generically
referred to as local holonomy of the separatrix I'.
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5.2 Main result

Definition 5.2.1 ([6, 23]). A divisor D on a compact complex manifold M,
is a formal sum 0, = >, k;V; where k; € Z and {V,}; is a locally finite
sequence of irreducible hypersurfaces on M, where locally finite means that
every point has a neighborhood which meets only finitely many V;’s.

Consider F a holomorphic foliation of codimension 1 on a compact, con-
nected and complex surface M having an invariant divisor D C M. We
denote by M the surface obtained from M after the resolution of the di-
critical singularities in D. Let E : M — M be the resolution map (finite
composition of blow-ups) and F the foliation induced by E; there is a di-
visor D, for each dicritical ¢ € D N sing(F) consisting of a finite union of
projective lines, moreover we can suppose that there are no singularities in
the dicritical components of D,; note that the foliation F is tranverse to the
dicritical components of Dj,.

Remember that F off the dicritical singularities in D and F \ D are bi-
holomorphic, where D is the union of the divisors D, one for each dicritical
q € D Nsing(F).

Finally, denote D* = E~'(D\sing(F)). We are now in conditions to state
the main result of this chapter.

Theorem 5.2.2. Let F be a holomorphic foliation of codimension 1 on a
compact, connected and complex surface M. Suppose that there is an invari-
ant divisor D C M such that:

(i) The virtual holonomy of the components of D is finite.
(ii) The elements in D Nsing(F) are isolated singularities of F.

(iii) If a singularity p € D Nsing(F) is non dicritical then D contains all
the separatrices of F through p.

(iv) If a singularity q € DNsing(F) is dicritical then for its separatrices L,
in D the closure of L, = E~Y(L,\ {q}) cuts a dicritical component of
D,.
Then F has a meromorphic first integral.

Proof. If p € D N sing(F) is non dicritical, note that it has finitely many
separatrices due to the locally finiteness of D and condition further-
more, they have finite holonomy by , then by Mattei-Moussu’s Theorem
there exist a neighborhood U, of p such that the foliation Fy, has a
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holomorphic first integral, then the leaves of Fy; are closed off p. Avoiding
the introduction of unnecessary notation, in what follows we are going to
consider the elements in this paragraph as their pre-images by F; they are
biholomorphic because we are blowing-up only the dicritical singularities in
D.

If ¢ € D Nsing(F) is dicritical, by we have that for its separatrices

L, € D, IN/q cuts some dicritical component of D,, suppose in a point g.
Consider now a foliation chart U; for the foliation F centered in ¢; the
foliation induced by F in U, denoted by Fy_, is not singular and its leaves

(L, N Uj is one of them) are plaques transverse to the dicritical component
of D,.

Suppose that D N sing(F) = {p1,...,pr,q1,--.,qs} where {p;}] are non
dicritical and {g;}§ are dicritical singularities, observe that r, s < co by
Consider neighborhoods {U,,}} and {Uj;}; as in the previous paragraphs,
and take small ones {U/ }1 and {U} }; such that p; € U, C U, C U,
analogously for ;. Note that D*\ (U} Uy, JUi_, UL ) is a compact set, then
for each leaf in FND*\ ( iU, JU;Z U} ) we can apply a stability argument,
as Reeb’s Local Stability Theorem (see for example [I1] pag. 71) or Theorem
4.15 in [44] pag. 71, and find a fundamental system of neighborhoods W of
D*\ (Ui, U, Ui, UL ) where all the leaves are compact.

Therefore, adjusting the sizes of the sets {U}, }1, {U}. }{ and choosing W € W,
we can create (with the union of all of them) a neighborhood V of D =
DU {pi, G;} invariant by F. The leaves of Fy are closed because each leaf
L € Fy can be written as a finite union of closed sets L = (Ui LNU,, ) U(Ui LN
Uz )U(LNW), note that if some element in that union (for instance LNU,,)
consists of infinitely many plaques cumulating D then the same is true for all
the nonempty sets in {LN U, , LNU;, LOW}; hence L acumulates D, this

implies that one element of the group of holonomy of some leaf L' in D is
not periodic and this contradicts|(i) . )| because that element can be seen as the
composition of elements in the groups of holonomy of L, € Fw, L U/ € .FU/

and LU/ € fU' for some 7, 7, and all of them are periodic, thereby there exist

mﬁmtely many compact leaves and according to Theorem [.0.1] this implies
that F has a meromorphic first integral f , hence f o E~! is a meromorphic
first integral of F.

v
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Chapter 6

First integrals around the
separatrix set

6.1 Introduction

One of the key stones in the theory of holomorphic foliations is the article of
Mattei and Moussu [30] where the important result about the existence
of holomorphic first integrals is presented.

Years later the second author (in [31]) revisited this result in order to cre-
ate a new proof, simpler and more geometric. In this chapter we present two
minor results products of unsuccessful attempts to give a proof of Theorem

repeating Moussu’s technique [31].

6.2 Generic vector fields in dimension n

This section is dedicated to show our attempt to prove Theorem fol-
lowing the proof in [31].

Theorem Suppose that X € Gen(X(C3,0)) satisfies condition (%)
and let Sy be the axis associated to the separable eigenvalue of X.

Then, Hol(F(X), Sx, X) is periodic (in particular linearizable and finite)
if and only if F(X) has a holomorphic first integral.

The following definitions is inspired by [36] where it is shown that the
existence of a holomorphic first integral for foliations by curves on (C?,0)
is not a topological invariant. More precisely, it is provide an example of
two topologically equivalent foliations such that only one of them admits a
holomorphic first integral.
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Definition 6.2.1. Let F be a dimension one foliation on (C3,0), a (possibly
singular) F-invariant surface will be called dicritical (or dicritical invariant
surface) if the restriction of F to it possesses infinitely many separatrices.
The particular case of a hyperplane will be called dicritical hyperplane.

6.2.1 Attempt to a geometric proof of Theorem [3.1.6

We divided the proof in two parts:
a. The construction of a neighborhood V' of the origin.
b. The study of the quotient space V/Fy .

We succeeded to prove the first part, i.e., we built an invariant neighborhood
V of the separatrices (in this case the distinguished axis and the dicritical hy-
perplane Proposition that can be seen as the saturated of a transverse
section to the distinguished axis. It is important to mention that this was
already done in [40] (Proposition 1.) but, in our case, we use the hypothesis
about the periodicity of the holonomy of Sy. Our proof is more geometric
though, except by the used of the Proposition [6.2.2]

Fix a sufficiently small ball B = B?" centered at 0 € C"(= R?") contained
in an open set U where the germ of generic vector field X € Gen(X(C",0))
is defined.

Proposition 6.2.2. Suppose that X € Gen(X(C?,0)) satisfies condition (x)
and let Sy be the axis associated to the separable eigenvalue of X.

Then, the separatrices of F(X) are Sy and the leaves contained in the
dicritical hyperplane.

Proof. Remember that a generic vector field can be written in the form (3.1)

0 0 0

X(x) = )\11’1(1 + CZ1($))8—$1 + )\21’2(1 + ag(l’))ﬁ—@ + )\31‘3(1 + ag(l’))a—xs,
where a; € M3 for i = 1,2,3. We can also choose v such that Re(\;/v),
Re(Ay/v) < 0 e Re(A3/v) > 0. Also, as az(0) = 0 we know that for |z|
small |as(x)| < € thus |1 + as(z)| > |1 — |as(z)|| > 1 — |ag(z)| > 1 — € and

the function Haa((?) is holomorphic, take 1 + a;(z) = ii;((i)), suppose that
a;(x)] < W’ and write X as
)\1 0 )\2 0 )\3 0
X(z) =2z (1 2 2200 S P
(z) Ufl( + an(z ))8:131 + Iz( + aa(z ))a$2+ 3 By
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Now, let y(T') = (z1(T'), x2(T), z3(T")) be a separatrix of F(X) not contained
in the hyperplane z3 = 0 or in the x5 axis. We know that ~y is F(X')-invariant
then X (v) =+ which is equivalent to zi(T) = (\;/v)x;(T)(1 + a;(v(T))) for
i = 1,2 and 25(T) = (A3/v)z3(T). Consider the case where T' =t € R.
Hence 7(t) is a curve with real dimension one. Reparametrize v such that
7(0) # 0 and limy_,o, ¥(t) = 0. Therefore

i(t) = 2;(0)e T o o)
. r .
for i = 1,2 and 23(t) = 23(0)e~"". Now, taking modulus
lzs(t)| = |xi(0)|eRe(%)t+Re(% S ai(v(e)adt)

Considering the upper quotes
N [1 N [*
i 5 < |2 0
Re(v /0 ai((t)dt) < | . \/0 @ (y(t))]dt,

< 5 Re(Ai/v)lt,

N

we have that |z;(t)] < |2;(0)]e2R/*) and this goes to 0 when ¢ — oo. On
the other hand |z3(t)| = |x3(0)|eRe(%3)lt and goes to oo because Re(\3/v) > 0.
As a conclusion, v cannot be as we supposed and it has to be contained in
the hyperplane x3 = 0 or in the x3 axis. v

We will denote by S the union of Sy with the dicritical hyperplane, i.e.,
the set of separatrices of F(X).

Lemma a. Suppose that X € Gen(X(C?0)) satisfies condition (x) and let
Sx be the axis associated to the separable eigenvalue of X.

If Hol(F(X), Sx, X)) is periodic, then there exists a F-invariant neighbor-
hood V of S in B such that the leaves in V cut OB transversally. Furthere-
more, V is the union of the saturate of a small transversal section of Sy and
the dicritical hyperplane.

Proof of Lemma[d, In this paragraph we use some of the arguments of [[10],
Lemma 2 pag. 66]. First observe that if L € F is a closed leaf transverse
to 0B, then OL = L N OB is a closed set of real dimension one, and each
connected component in AL is diffeomorphic to the circle S'. Suppose that
K C 0L is one of this connected components. Consider neighborhoods Uy D
Wy of K, Uk open in C" and W open in L, where Wy can be taken as a
finite union of plates because K C L is a compact subset of a leaf. As 0B
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intersects Wy transversally, we can choose Ug small enough such that for
every x € Uk the leaf of F|y,, through x meets OB transversally.

Continuing with this argument, if there exist K; and K, as above, we
can use global trivialization to show the existence of a homeomorphism be-
tween transversal sections to Wy, and Wi, contained respectively in Uy, and
Uk, (in fact is just to repeat the technique used in the construction of the
holonomy map). This homeomorphism shows that we can find an invariant
neighborhood of L of leaves transversal to 0B in 0B N Uk, and 0B N Uk,.

In what follows we will use the notation K; = Sy N 0B where Sy is the
distinguished axis of the generic vector field X’; K, is compact with peri-
odic holonomy, then it possesses a neighborhood where 0.F is a transversally
holomorphic foliation without singularities. Applying Reeb’s in (9.Sk, 0F),
we have

Assertion 6.2.1. The leaf K of OF possesses a tubular neighborhood 77 (¢)
in OB
Jr: (D x D) x ST — Ty(e),

such that J; ' (0F) is the suspension of a periodic rotation in D, x D,.

The neighborhood Tj (€) is 9 F-invariant and T3(¢') = J; (D x D) x S*)
with 0 < ¢’ < € forms a fundamental system of neighborhoods of K; in 0B.
In addition T} (e) is transverse to F.

Consider also the following set
T2(€2) = {.%' S (C3 | |£L'1‘2 + |.T2‘2 = 1, |.CE3| S 62}

Assertion 6.2.2. There exist 0 < € < e such that the intersection of 0B with
the F-saturated V (€') of Ty(€') is contained in T(e) = Ti(e) N Ty(e).

Proof of Assertion [6.2.2] By contradiction, take a sequence {ay}y of
points in 7T} (€) such that a — a € K and satistying L, N0B ¢ T(e) where
L, is the leaf in F through aj. Take by, a point in (L,, NOB)\ T(e), then
{br}r is a sequence in a compact set thus by — b € OB (using the same
notation for a subsequence). If L, is transverse to 0B, then we can use the
previous paragraph supposing that b belongs to some K, then there exist
an invariant neighborhood of L; of leaves transversal to 0B in 0B N Uk, and
0B N Uk,, this implies that L; is far from Sy.

If Ly is not transverse to 0B we can take a sphere of radius 149, § > 0,
and proceed as above.

Assertion 6.2.3. There exist 0 < €; < € such that V(e;) =V, the .T—saturite
of T1 (&) together with the dicritic hyperplane is a neighborhood of 0 in B.
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Proof of Assertion [6.2.3]  The periodicity of the holonomy group
Hol(F(X), Sy,3) implies that it can be conjugated to a cyclic group gen-
erated by a diagonal diffeomorphism. Therefore, there are not fixed points
other than the origin in a neighborhood of it, so we can choose €; such that
0 < €; < ¢ and the leaves cutting J; (0B? x {1}) = C., have trivial holonomy
and the compactness of the leaves allows to apply Reeb stability theorem.
For all a € C, the leaf L, in F through a possesses a F-saturated tubular
neighborhood:

Jo i Ta X Ly = T(Ly,),

such that J~!(F) is foliated by fibers z x L,, where 7, (whose complex dimen-
sion is two) is a small transverse section to F through a contained in 7T} (€').
In particular the F-saturate of v, = 7,NC,, is C*-diffeomorphic to the prod-
uct v, x L, and the saturated of C¢, is a C*™-hypersurface (whose boundary
is contained in OB) fibered over S'. By construction, is the boundary of
V = V(1) the F-saturated of Tj(e;). v

We would like to have the analogous of Lemma 2 in [31], something like:

“There exists a homeomorphism
h:V*/Fy — B*(= B\ {0})
such that h o gy~ = py~ 18 holomorphic.”

In order to proof such lemma, it would be necessary to understand the
topology of the space of leaves ¢(V*) = V*/F. We know that ¢(V*) =
q(J1(Be x {1})) is a Hausdorff space (because the leaves we are consider-
ing are closed) but the major difference is that in dimension two it can be
shown, using machinery like the Riemann map and fundamental group, that
the ¢(V*) is biholomorphic to D*. In our case, what we need is to find a
biholomorphism between ¢(V*) and B*" (where ¢(V*) has a differentiable
structure possibly defined as in dimension two) but the machinery used in
dimension two do not exist (or are not as useful) in higher dimensions. Our
intention of repeat Moussu’s proof in dimension three was unsuccessful but
it helped us to achieve a better understanding of our problem.

67



Appendices

68



Appendix A

Algebraic properties of groups of
diffeomorphisms

Here we give a sketch of the proof of Proposition We start by intro-
ducing some notations, definitions and results needed for this purpose, they
mainly come from [41], we also recommend |28, 29].

A.1 Preliminaries

Let ¢ € Diff(C",0). We consider its action in the space of k-jets. More
precisely we consider the element ¢, € GL(m/m**1) defined by

m/mbt 25 g Skt

g+m" s gop 4+ mhtt
where m/m**1 can be interpreted as a finite dimensional complex vector
space. In this point of view, diffeomorphisms are interpreted as operators
acting on function spaces.

Definition A.1.1. We define Dy = {¢y : ¢ € Diff(C",0)}.

The natural projections 7; : Dy — D; for kK > [ define a projective
system and hence we can consider the projective limit l'LnDk. It is the so

called group of formal diffeomorphisms ﬁf(@”, 0).

Definition A.1.2. Let G be a subgroup of ﬁf(@”, 0). We define Gy, as the
smallest algebraic subgroup of Dy containing {¢y : ¢ € G}.
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Definition A.1.3. Let G be a subgroup of ISEF(C",O). We define G~ as

—

Hm, o G, more precisely G is the subgroup of Diff(C*,0) defined by

5'2:{@6[71?{’(@”,0): or € Gy Vk € N}

We say that @Z_is the pro-algebraic closure of G. We say that G is pro-
algebraic if G = G

Proposition A.1.4. Let ¢ € [ﬁ(@", 0). Then ¢ is unipotent if and only if
jlo is unipotent.

Lemma A.1.5. Let Hy, be an algebraic subgroup of Dy, for k € N. Suppose
that m(H;) C Hy for alll > k > 1. Then T&lkeN H,. is a pro-algebraic

subgroup of ]ji?f((C”, 0). Moreover the natural map @Hj — Hj. is surjective
for any k € N if m . (H;) = Hy, for all 1 >k > 1.

The group G is a projective limit of algebraic groups and closed in the
Krull topology by definition. Since GG, is an algebraic group of matrices and
in particular a Lie group, we can define the connected component Gy of the
identity in G. We also consider the set Gy, of unipotent elements of Gj.

Proposition A.1.6. Let G be a subgroup of [ﬁ(@",O). Then we have
G(Z] ={p € G o€ Gho}. Moreover GS s pro-algebraic.

Remark A.1.7. Let G be a solvable subgroup of Diff(C",0). Since member-
ship in Gg and Cﬁ can be checked out in the first jet, these groups have finite
codimension in G . Indeed the kernels of the natural maps

@Z — Gl/Gl,u and @Z — GI/GLO

are equal to @_2 and G, respectively by Propositions [A.1.4] and [A.1.6, In
particular G~ /Gy is a finite group.

Proposition A.1.8 (Proposition 2. [28]). Let G C [/)Ef(C",O) be a group.
Then g is equal to {X € X(C",0) : exp(tX) € G Vit € C} and Gy is
generated by the set {exp(X) : X € g}. Moreover if G is unipotent then the
map

exp:g— G

s a bijection and g is a Lie algebra of nilpotent formal vector fields.

Remark A.1.9. Invariance properties typically def}ne pro-algebraic groups.
Let us present an example. Consider fi,..., f, € O, and

G ={peDiff(C"0)| fiop=f V1<j<n}
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We define
Hy={A€Dy: A(f; +m"*) = f; + m"*Tt v1 < j < p}

for k € N. Tt is clear that Hj is an algebraic subgroup of Dy for k € N.
Moreover we have m ,(H;) C Hy for I > k > 1. Since fo¢p — f = 0 is
equivalent to f o ¢ — f € m* for any k € N, the group TgnHk is equal to G.
Moreover G is pro-algebraic by Lemma

A.2 Finiteness of a invariance group

Now, using the previous theory we have the necessary tools to give a sketch
of the proof of Proposition [2.2.8]

Proposition A.2.1. Let us consider n elements fi,..., f, of the field of
fractions of O,. Suppose dfi A--- Ndf, Z0. Then the group

G={peDiff(C",0)| fop=f Y1<j<n}
s finite.

Proof. We have that G is pro-algebraic by Remark [A.1.9 Consider an el-
ement X = > | a;0/0x; in the Lie algebra L(G) of G. By definition we
have

=0

fioexp(tX) = f; Vit € C = X(f;) = lim Jie eXp(ttX) — /i

for any 1 < j <n. The property X'(f;) =0 for any 1 < j < n is equivalent
to

of  Of ofr 0
o1 Ozo Ozn al

op of ofs | | 0
o1 0o Ozn 2 _

O Ofa ot | \ g

o1 Oxo Ozn n 0

Since df; A--- Adf, # 0, the n X n matrix in the previous equation has a
non-vanishing determinant and then X = 0. Hence L(G) is trivial and G

is the trivial group by Proposition Since G/Gy is finite by Remark
G is finite. v
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