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Resumo

Consideramos um sistema que preserva e contrai uma folheação vertical. Provamos

que o operador de transferência associado, agindo sobre um espaço vetorial adequado,

satisfaz uma propriedade chamada ”spectral gap”.

Como aplicação consideramos sistemas tipo Lorenz bi-dimensionais (hiperbólicos

por partição com contração e expansão possivelmente ilimitadas): provamos que estes

sistemas possuem ”spectral gap” e obtemos uma estimativa quantitativa para sua es-

tabilidade estat́ıstica. Sob certas perturbações determińısticas do sistema, a medida

f́ısica varia continuamente, com módulo de continuidade igual a O(δ log δ).
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Abstract

We consider transformations preserving a contracting foliation, such that the associated

quotient map satisfies a Lasota Yorke inequality.

We prove that the associated transfer operator, acting on suitable normed spaces,

has spectral gap.

As an application we consider Lorenz-Like two dimensional maps (piecewise hyper-

bolic with unbounded contraction and expansion rate): we prove that those systems

have spectral gap and we show a quantitative estimation for their statistical stability.

Under deterministic perturbations of the system, the physical measure varies continu-

ously, with a modulus of continuity O(δ log δ).
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Chapter 1

Introduction

The study of the behaviour of the transfer operator restricted to a suitable func-

tional space has proven to be a powerful tool for the understanding of the statistical

properties of a dynamical system. This approach gave first results in the study of the

dynamics of piecewise expanding maps where the involved spaces are made of regu-

lar, absolutely continuous measures (see [6], [18], [8] for some introductory text). In

recent years this approach was extended to piecewise hyperbolic systems by the use

of suitable anisotropic norms (the expanding and contracting direction are treated dif-

ferently), leading to suitable distribution spaces on which the transfer operator has

good spectral properties (see e.g. [7], [5], [10], [14]). From these properties, several

limit theorems or stability statements can be deduced. This approach has proven to

be successful in non-trivial classes of systems like geodesic flows (see [18],[9]) or billiard

maps (see e.g. [11] [12] where a relatively simple and unified approach to many limit

and perturbative results is given for the Lorentz gas).

In this thesis, we consider maps preserving an uniformly contracting foliation. We

show how it is possible, in a simple way, to define suitable spaces of signed measures

(with an anisotropic norm) such that, under very weak regularity assumptions, the

transfer operator associated to the dynamics has a spectral gap (in the sense given

in Theorem 3.3.1). This shows an exponential convergence in a certain norm, for the

iteration of a large class of measures by the transfer operator. Therefore, we present

the construction and give some properties of such spaces of signed measures in chapter

(2).

The main part of this work is presented in chapter (3). There we deal with a skew
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product of the type F : Σ −→ Σ, F (x, y) = (T (x), G(x, y)), where T : N1 −→ N1 and

G : Σ −→ N2 are mensurable maps satisfying some conditions and Σ is defined by

(Σ =)N1 × N2, where N1 and N2 are manifolds endowed with a Riemannian metric.

Assuming certain assumptions given in the beginning of section 3.1 (G1, T1,...,T3.4)

we prove a spectral gap for its transfer operator acting on a suitable space of sign

measure (denoted by S1). More precisely

Theorem 1.0.1 (Spectral gap on S1) If F satisfies G1, T1,...,T3.4, then the op-

erator F∗ : S1 −→ S1 can be written as

F∗ = P + N

where

a) P is a projection, i.e. P2 = P, and dim Im(P) = 1;

b) there are 0 < ξ < 1 and C > 0 such that ||Nn ||S1→S1 ≤ ξnC for all n ≥ 1;

c) P N = N P = 0.

Also in chapter (3), section 3.4, we present an application of this approach, show-

ing spectral gap for 2-dimensional Lorenz like maps (piecewise hyperbolic maps with

unbounded expansion and contraction rates) and a quantitative estimation for their

statistical stability. We remark that a qualitative estimation for a class of similar maps

was given in [1].

We also present two additional appendixes. In the first Chapter (4) we give a proof

of the Proposition (3.5.3), which is used to get stability for the invariant measure and

to prove that the invariant measure of such systems has a strong regularity property:

bounded variation. In appendix presented in chapter (5) we present an alternative

approach to obtain spectral gap for Lorenz Like systems with, like we did in chapter

(3), with a stronger norm and convergence to equilibrium properties.



Chapter 2

Fundamental Results

In this chapter we formalize the construction of all spaces we are going to work.

2.0.1 The BV1, 1p
(1 ≤ p ≤ ∞) space.

In this section we briefly introduce the space of functions BV1, 1
p
. For more details

and a more general approach see [4].

Set I = [0, 1] and let m be the Lebesgue measure on it.

Definition 2.0.1 For an arbitrary function h : I −→ C and ε > 0 define osc(h,Bε(x)) :

I −→ [0,∞] by (Bε(x) denotes the open ball of center x and radius ε)

osc(h,Bε(x)) = ess sup{|h(y1)− h(y2)|; y1, y2 ∈ Bε(x)}, (2.1)

where the essential supremum is taken with respect to the product measure m2 on I×I.

Also define the real function osc1(h, ε), on the variable ε, by ε 7−→ osc1(h, ε) :=∫
osc(h,Bε(x))dm(x).

Definition 2.0.2 Fix A1 > 0 and denote by Φ the class of all isotonic maps φ :

(0, A1] −→ [0,∞] (x ≤ y =⇒ φ(x) ≤ φ(y) such that φ(x) −→ 0 if x −→ 0). Set

(a) R1 = {h : I −→ C; osc1(h, .) ∈ Φ};

(b) For n ∈ N, define R1,n· 1
p

= {h ∈ R1; osc1(h, ε) ≤ n · ε
1
p ∀ε ∈ (0, A1]};

(c) And set S1, 1
p

=
⋃
n∈NR1,n· 1

p
.

3
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Definition 2.0.3

(a) BV1, 1
p

is the space of m-equivalence classes of functions in S1, 1
p
;

(b) For h : I −→ C set

var1, 1
p
(h) = sup

0≤ε≤A1

(
1

ε
1
p

osc1(h, ε)

)
; (2.2)

(c) For h ∈ BV1, 1
p

set

||h||1, 1
p

= var1, 1
p

+||h||1 (2.3)

The proof of the following result can be found in [4].

Theorem 2.0.1
(
BV1, 1

p
, || ||1, 1

p

)
is a Banach space.

Definition 2.0.4 For a function f : [0, 1] −→ C define the universal p-variation (1 ≤
p <∞) by

varp(f) = sup
0≤x0<···xn≤1

(
n∑
i=1

|f(xi)− f(xi−1)|p
) 1

p

.

Define space of universally bounded p-variation functions by

UBVp := {f : [0, 1] −→ C; varp(f) <∞}. (2.4)

Lemma 2.0.1 UBVp ⊂
⋂
n∈N

BVp,n· 1
p

for all 1 ≤ p < ∞, where the intersection ranges

over all spaces BVp, 1
p

which stem from any atom-free finite Borel measure m on [0, 1]

and its associated pseudo-distance d. In particular, if m is a probability measure, then

varp, 1
p
(f) ≤ 2

1
p · varp(f).
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2.0.2 The L1 Space

Let Σ be defined by N1 × N2, where N1 and N2 are compact manifolds endowed

with a Riemannian metric. Denote by m1,m2 and m = m1 × m2 the corresponding

Riemannian volume, normalized so that m(Σ) = m1(N1) = m2(N2) = 1.

Define the set b1 − Lip(Σ) := 1 − Lip(Σ) ∩ {g ∈ L∞(m); ||g||∞ ≤ 1}, where 1 −
Lip(Σ) = {g ∈ Lip(Σ);L(g) ≤ 1} and L(g) is the best Lipschitz constant of g i.e.,

L(g) = sup
x 6=y∈Σ

{
|g(x)− g(y)|
|x− y|

}
.

In the same way we define the sets b1− Lip(N2) and b1− Lip(γ), for some leaf γ.

Definition 2.0.5 Given two signed measures µ and ν on Σ we define the Wasser-

stein like distance between µ and ν as the real number

W 0
1 (µ, ν) = sup

g∈b1−Lip(Σ)

∣∣∣∣∫ gdµ−
∫
gdν

∣∣∣∣ . (2.5)

In the same way we define W 0
1 (µ, ν) when µ and ν are signed measures on any other

compact metric space.

Remark 2.0.1 From now, we are going to denote ||µ||W := W 0
1 (0, µ). As a matter of

fact, || ||W defines a norm on the vector space of signed measures, SM(M) defined

on a compact metric space (M,d).

Let SB(Σ) be the space of signed measures on Σ = N1 × N2. Moreover, given a

signed measure µ ∈ SB(Σ) denote by µ+ and µ− the positive and the negative parts

of it. It means µ = µ+ − µ−. Now define the set AB as

AB = {µ ∈ SB(Σ) : π∗xµ
+ � m1 and π∗xµ

− � m1}, (2.6)

where πx : Σ −→ N1 is the projection defined by π(x, y) = x.

In order to define the norms, we need to invoke the Rokhlin Disintegration Theorem.

Let (Σd,B) be a mensurable space, where Σd := (Σ, d) is a compact metric space and

B is its Borel’s σ-algebra.
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Definition 2.0.6 A disintegration of µ with respect the partition P is a family of

probabilities {µP}P∈P on Σ such that for every mensurable set A ⊂ Σ we have

a) µP (P ) = 1 for µ̂-ae. P ∈ P;

b) The function P −→ R defined by P 7−→ µP (A) is mensurable;

c) µ(A) =
∫
µP (A)dµ̂(P ).

Now let us state the Rokhlin Theorem which will be used as a basis for the construction

of the normed spaces we are going to work with.

Theorem 2.0.2 Let Σ be a compact and separable metric space and let P be a men-

surable partition. Then every probability µ admits a disintegration with respect to P.

Moreover

Proposition 2.0.1 Suppose that the σ-algebra B admits an enumerable generator. If

{µP : P ∈ P} and {µ′P : P ∈ P} are disintegrations for µ with respect to P then

µP = µ′P µ̂-ae.

In our case the compact metric space and the mensurable partition are Σ = N1×N2

and F s := {γx}x∈N1 respectively, where γx = {x} × N2 for all x ∈ N1. When there is

no risk of confusion we denote γx just by γ. However given a probability µ ∈ AB, the

theorem (2.0.2) gives its disintegration ({µγ}γ, µx = φxm1) along the stable leaves F s,
where φx : N1 −→ R is an extended real function (see equation (2.6) for the definition

of AB).

Now consider a finite measure µ on Σ, then µ :=
µ

µ(Σ)
is a probability measure on

Σ and we can find its disintegration with respect to F s, i.e. a pair
(
{µγ}γ, µx = φxm1

)
which satisfies the definition (2.0.6). The disintegration of µ induces a natural disinte-

gration for µ along the stable leaves F s as the pair ({µγ}γ, µx), where

µγ = µγ and µx = µ(Σ)µx = π∗xµ =
(
µ(Σ)φx

)
m1.

Indeed, for an arbitrary mensurable set A ∈ Σ, denoting µγ(A) := µγ(A ∩ γ), we have
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µ(A) = µ(Σ)
µ

µ(Σ)
(A)

= µ(Σ)µ(A)

= µ(Σ)

∫
µγ(A)dµx

=

∫
µγ(A)d (µ(Σ)µx) .

Moreover, we have

Corollary 2.0.1 If µ is a finite Borel measure on Σ, then it has a unique disintegration

along F s. In the sense that, if
(
{µ′γ}γ, µx

)
is another disintegration for the finite

measure µ, then µ′γ = µγ µx-a.e.

Proof. Suppose there is another disintegration,
(
{µ′γ}γ, µx

)
, for µ. Let us show that(

{µ′γ}γ, µx
)

is a disintegration for µ.

Indeed,

µ(A) =

∫
µ′γ(A)dµx

=

∫
µ′γ(A)dµ(Σ)µx

= µ(Σ)

∫
µ′γ(A)dµx..

And so

µ

µ(Σ)
(A) =

∫
µ′γ(A)dµx.

Thus

µ(A) =

∫
µ′γ(A)dµx.

It implies that, the pair
(
{µ′γ}γ, µx

)
is a disintegration for µ. Since, by proposition

(2.0.1), µ has only one disintegration, we get µ′γ = µγ µx-a.e. γ ∈ N1 and also µx-a.e.

γ ∈ N1 (since they are equivalent). �
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Proposition 2.0.2 Let µ, ν ∈ AB be to finite measures and denote their marginal

measures by µx = φxm1 and νx = ψxm1, where φx, ψx ∈ L1(m1). Then the disintegra-

tion of µ+ ν is given by the pair(
φx(γ)

φx(γ) + ψx(γ)
µγ +

ψx(γ)

φx(γ) + ψx(γ)
νγ, (φx + ψx)m1

)
.

In other words

(µ+ ν)γ =
φx(γ)

φx(γ) + ψx(γ)
µγ +

ψx(γ)

φx(γ) + ψx(γ)
νγ and (µ+ ν)x = (φx + ψx)m1.

Proof. First we observe that the expression is well defined, in the sense that if

φx(γ) + ψx(γ) = 0 on γ, then φx(γ) = 0 and ψx(γ) = 0. Therefore we can consider

(µ+ ν)γ ≡ 0 on each leaf γ where it happens.

Thus, for a given mensurable set A ⊂ Σ we have

(µ+ ν)(A) = µ(A) + ν(A)

=

∫
µγ(A)φx(γ)dm1(γ) +

∫
νγ(A)ψx(γ)xdm1(γ)

=

∫
µγ(A)φx(γ) + νγ(A)ψx(γ)x

φx(γ) + ψx(γ)

φx(γ) + ψx(γ)
dm1(γ)

=

∫
µγ(A)

φx(γ)

φx(γ) + ψx(γ)
+ νγ(A)

ψx(γ)

φx(γ) + ψx(γ)
(φx(γ) + ψx(γ)) dm1(γ).

And we are done. �

Definition 2.0.7 Let πγ,y : γ −→ N2 be the restriction πy|γ, where πy : Σ −→ N2 is the

projection defined by πy(x, y) = y (however πγ,y is a bijection), where (x, y) ∈ N1×N2.

For a given positive measure µ ∈ AB and its disintegration along the stable leaves F s,
({µγ}γ, µx = φxm1), we define the restriction of µ on γ as the positive measure µ|γ
on N2 (not on γ) defined, for a given mensurable set E ⊂ N2, as

µ|γ(E) = π∗γ,y(φx(γ)µγ)(E).

For a given signed measure µ ∈ AB and its decomposition µ = µ+ − µ−, define the

restriction of µ on γ by µ|γ = µ+|γ − µ−|γ.
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Definition 2.0.8 Let L1 be the space of signed measures defined as

L1 =

{
µ ∈ AB :

∫
W 0

1 (µ+|γ, µ−|γ)dm1(γ) <∞
}

(2.7)

and define the application || ||1 : L1 −→ R as

||µ||1 =

∫
W 0

1 (µ+|γ, µ−|γ)dm1(γ). (2.8)

Remark 2.0.2 ||µ||1 =

∫
W 0

1 (0, µ|γ)dm1(γ) =

∫
||µ|γ||Wdm1(γ).

Lemma 2.0.2 If µ1, µ2, ν1 and µ2 are measures on Σ (or on any other compact metric

space) then

W 0
1 (µ1 + µ2, ν1 + ν2) ≤ W 0

1 (µ1, ν1) +W 0
1 (µ2, ν2).

Proof.

W 0
1 (µ1 + µ2, ν1 + ν2) = sup

g∈b1−Lip(Σ)

∣∣∣∣∫ gd(µ1 + µ2)−
∫
gd(ν1 + ν2)

∣∣∣∣
≤ sup

g∈b1−Lip(Σ)

∣∣∣∣∫ gdµ1 −
∫
gdν1

∣∣∣∣+ sup
g∈b1−Lip(Σ)

∣∣∣∣∫ gdµ2 −
∫
gν2

∣∣∣∣
= W 0

1 (µ1, ν1) +W 0
1 (µ2, ν2).

As desired.

�

Proposition 2.0.3 (L1, || ||1) is a normed space.

Proof.

We divide the proof into several lemmas.

Lemma 2.0.3 (Triangular Inequality) Consider µ, ν ∈ L1 two signed measures. Then

||µ+ ν||1 ≤ ||µ||1 + ||ν||1.
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Proof.

By proposition (2.0.2) it holds

∫
W 0

1 ((µ+ + ν+)|γ, (µ− + ν−)|γ)dm1 =

∫
W 0

1

(
π∗γ,y

(
φ+
x µ

+
γ + ψ+

x ν
+
γ

)
, π∗γ,y

(
φ−x µ

−
γ + ψ−x ν

−
γ

))
dm1.

Moreover, using the above relation and lemma (2.0.2) we have

||µ+ ν||1 = ||(µ+ − µ−) + (ν+ − ν−)||1

= ||(µ+ + ν+)− (µ− + ν−)||1

=

∫
W 0

1 ((µ+ + ν+)|γ, (µ− + ν−)|γ)dm1

≤
∫
W 0

1

(
π∗γ,y

(
φ+
x µ

+
γ

)
, π∗γ,y

(
φ−x µ

−
γ

))
+W 0

1

(
π∗γ,y

(
ψ+
x ν

+
γ

)
,+π∗γ,y

(
ψ−x ν

−
γ

))
dm1

≤
∫
W 0

1

(
πγ,y ∗

(
φ+
x µ

+
γ

)
, πγ,y ∗

(
φ−x µ

−
γ

))
dm1

+

∫
W 0

1

(
πγ,y ∗

(
ψ+
x ν

+
γ

)
,+πγ,y ∗

(
ψ−x ν

−
γ

))
dm1

=

∫
W 0

1

(
µ+|γ, µ−|γ

)
dm1 +

∫
W 0

1

(
ν+|γ, ν−|γ

)
dm1

= ||µ||1 + ||ν||1.

As we wished. �

Lemma 2.0.4 For a given signed measure µ ∈ AB, it holds ||µ||1 = 0 if and only if

µ ≡ 0.

Proof. If µ ≡ 0, then ||µ||1 = 0 immediately. Reciprocally, suppose we have ||µ||1 = 0

then

∫
W 0

1

(
µ+|γ, µ−γ

)
dm1 = 0 =⇒ W 0

1

(
µ+|γ, µ−γ

)
= 0, m1 − ae. γ ∈ N1

=⇒ µ+|γ = µ−γ , m1 − ae. γ ∈ N1

=⇒ πγ,y ∗ (φ+µ+
γ ) = πγ,y ∗ (φ−µ−γ ), m1 − ae. γ ∈ N1

=⇒ φ+µ+
γ = φ−µ−γ , m1 − ae. γ ∈ N1, since π∗γ,y is a bijection.

Thus, for a given mensurable set A ⊂ Σ, we have
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µ(A) = µ+(A)− µ−(A)

=

∫
µ+
γ (A)φ+

x (γ)dm1(γ)−
∫
µ−γ (A)φ−x (γ)dm1(γ)

=

∫
µ+
γ (A)φ+

x (γ)− µ−γ (A)φ−x (γ)dm1(γ)

= 0.

As we desired. �

Lemma 2.0.5 For every signed measure µ ∈ L1 and every real number α it holds

||αµ||1 = |α|||µ||1.

Proof. In fact, by definition we have

||αµ||1 = ||αµ+ − αµ−||1

=

∫
W 0

1 (αµ+|γ, αµ−|γ)dm1

=

∫
sup

g∈b1−Lip(I)

∣∣∣∣∫ gdαµ+|γ −
∫
gdαµ−|γ

∣∣∣∣dm1

= |α|
∫

sup
g∈b1−Lip(I)

∣∣∣∣∫ gdµ+|γ −
∫
gdµ−|γ

∣∣∣∣dm1

= |α|
∫
W 0

1 (µ+|γ, µ−|γ)dm1

= |α|||µ||1.

�

With the above lemmas we finish the proof of the proposition (2.0.3). �

2.0.3 The L∞ Space

Definition 2.0.9 Let L∞ ⊆ AB(Σ) be defined as

L∞ =
{
µ ∈ AB : ess supγ∈N1

(W 0
1 (µ+|γ, µ−|γ)) <∞

}
(2.9)

where the essential supremum is taken over N1, with respect to m1. Define || ||∞ :

L∞ −→ R as

||µ||∞ = ess supγ∈N1
W 0

1 (µ+|γ, µ−|γ) = ess supγ∈N1
W 0

1 (0, µ|γ). (2.10)
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Proposition 2.0.4 (L∞, || ||∞) is a normed vector space.

Proof. Is straightforward to prove that ||µ||∞ = 0 if and only if µ = 0. Thus let us

prove the remaining part. Consider µ1, µ2, µ ∈ L∞ and α ∈ R. Note that, for every

signed measure µ and α ≥ 0 it holds (αµ)+ = αµ+ and (αµ)− = αµ−. And, for α < 0

we have (αµ)+ = |α|µ− and (αµ)− = |α|µ+. Then, for every Lipschitz function g s.t.

||g||∞ ≤ 1 and L(g) ≤ 1 and for all α ∈ R we have

∣∣∣∣∫ gd(αµ)+|γ −
∫
gd(αµ)−|γ

∣∣∣∣ = |α|
∣∣∣∣∫ gdµ+|γ −

∫
gdµ−|γ

∣∣∣∣ .
Then we get ||αµ||∞ = |α|||µ||∞.

In order to prove the triangular inequality note that (µ1 + µ2)|γ = µ1|γ + µ2|γ. So

we have, by definition of W 0
1 , that

||µ1 + µ2||∞ = ess supW 0
1 (0, (µ1 + µ2)|γ)

≤ ess supW 0
1 (0, µ1|γ) + ess supW 0

1 (0, µ2|γ)

= ||µ1||∞ + ||µ2||∞.

�
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2.0.4 The BV Space

In this section, we set N1 = N2 = I = [0, 1] and so Σ = I2.

Definition 2.0.10 Consider a pair ({µγ}γ∈I , φx), where {µγ}γ is a family of proba-

bilities on γ defined m-a.e. γ ∈ I and φx : I −→ R is a non-negative extended real

function. Given such pair, ({µγ}γ, φx), denote by Gµ the path (of positive measures on

I) Gµ : I −→ B(I) defined m-a.e. by Gµ(γ) = π∗γ,yφx(γ)µγ. Call the set on which Gµ

is defined by IGµ. Let P = P(Gµ) be a finite sequence P = {xi}ni=1 ⊂ IGµ such that

Gµ(γxi) is well defined for all i = 0, · · · , n. Define the variation of Gµ with respect

to P as (denote γi := γxi)

V ar(Gµ,P) =
n∑
j=1

||Gµ(γj)−Gµ(γj−1)||W ,

where ||Gµ(γj) − Gµ(γj−1)||W = W 0
1 (Gµ(γj), Gµ(γj−1)). Finally we define the varia-

tion of Gµ as

V ar(Gµ) := sup
P
V ar(Gµ,P).

Remark 2.0.3 For an interval η ⊂ I we define

V arη(Gµ) := V ar(Gµ|η).

Remark 2.0.4 When there is no risk of confusion, to simplify the notation, we denote

Gµ(γ) just by µ|γ.

We say that a pair ({µγ}γ, φx) (or its path Gµ) represents a positive measure µ if,

for every mensurable set A ⊂ Σ, holds

µ(A) =

∫
µγ(A ∩ γ)φx(γ)dm(γ).

Denote by [[µ]] the set of all pairs ({µγ}γ, φx) which represents µ. The Rokhlin Disin-

tegration Theorem ensures that [[µ]] 6= ∅.

Definition 2.0.11 Define the variation of a positive measure µ by

V ar(µ) = inf
Gµ∈[[µ]]

{V ar(Gµ)}.
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Remark 2.0.5 Note that

||µ||1 =

∫
W0(0, Gµ(γ))dm(γ)

for any Gµ ∈ [[µ]].

Definition 2.0.12 From the definition (3.5.2) we define the set of positive measures

BV as

BV = {µ ∈ AB : V ar(µ) <∞}. (2.11)

Define the real function || ||BV on BV by ||µ||BV = V ar(µ) + ||µ||1. The proof of the

next proposition is equivalent of the Proposition 2.0.6 below, so we omit it.

Proposition 2.0.5 (BV , || ||BV) is a normed space.
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2.0.5 The BV2 Space

In this subsection, we deal with the particular case when Σ = I2, where I = [0, 1].

Let us define the variation of a signed measure µ. To do it, let us consider the set BC2

defined by

BC2 = {g ∈ C2(I); ||g||∞ ≤ 1, ||g′||∞ ≤ Ω, ||g′′||∞ ≤ 1},

where 0 ≤ Ω ≤ 1(the constant Ω depends of the application, see (5.7) in section 5).

Using the above sets we define a new norm on the space SB(I) of signed measures on

I by

||µ||C2′ = sup
g∈BC2

{∣∣∣∣∫ gdµ

∣∣∣∣} ∀ µ ∈ I. (2.12)

Definition 2.0.13 Consider a pair ({µγ}γ∈I , φx), where {µγ}γ is a family of proba-

bilities on γ defined m-a.e. γ ∈ I and φx : I −→ R is a non-negative extended real

function. Given such pair, ({µγ}γ, φx), denote by Gµ the path (of positive measures on

I) Gµ : I −→ B(I) defined m-a.e. by Gµ(γ) = π∗γ,yφx(γ)µγ. Call the set on which Gµ

is defined by IGµ. Let P = P(Gµ) be a finite sequence P = {xi}ni=1 ⊂ IGµ such that

Gµ(γxi) is well defined for all i = 0, · · · , n.

We say that a pair ({µγ}γ, φx) (or its path Gµ) represents a positive measure µ if,

for every mensurable set A ⊂ Σ, holds

µ(A) =

∫
µγ(A ∩ γ)φx(γ)dm(γ).

Denote by [µ] the set of all pairs ({µγ}γ, φx) which represents µ. The Rokhlin Disinte-

gration Theorem ensures that [µ] 6= ∅.
In case µ is a signed measure, we say that a path of sing measures Gµ : I −→ SM(I)

represents the signed measure µ on Σ (i.e. µ = µ+−µ− where µ± are positive measures)

if Gµ = Gµ+−Gµ− for Gµ+ ∈ [µ+] and Gµ− ∈ [µ−]. Denote by [[µ]] the set of all paths,

Gµ : I −→ SM(I), which represents µ. The Rokhlin Disintegration Theorem ensures

that [[µ]] 6= ∅ for all µ ∈ AB.

Definition 2.0.14 Given a signed measure µ ∈ AB define the variation of Gµ with
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respect to P as (denote γi := γxi)

V ar(Gµ,P) =
n∑
j=1

||Gµ(γj)−Gµ(γj−1)||C2′ ,

where ||Gµ(γj)−Gµ(γj−1)||C2′ . Finally we define the variation of Gµ as

V ar(Gµ) := sup
P
V ar(Gµ,P).

Remark 2.0.6 For an interval η ⊂ I we define

V arη(Gµ) := V ar(Gµ|η).

Definition 2.0.15 Define the variation of a signed measure µ ∈ L1 by

V ar(µ) = inf
Gµ∈[[µ]]

{V ar(Gµ)}.

Remark 2.0.7 Note that

||µ||1 =

∫
W0(0, Gµ(γ))dm(γ), for any Gµ ∈ [[µ]].

Definition 2.0.16 From the definition (2.0.14) we define the set of signed measures

BV2(m) (we’ll denote it just by BV2) as

BV2 = {µ ∈ L1 : V ar(µ) <∞}. (2.13)

Define the real function || ||BV on BV2 by ||µ||BV = V ar(µ)+||µ||1. Thus, BV2 provided

with || ||BV is a normed space.

Proposition 2.0.6 (BV2, || ||BV ) is a normed space.

Proof.

Consider two paths Gµ1 and Gµ2 defined on the same full measure set Î ⊂ I

which represents the signed measures µ1, µ2 ∈ L1. Since we have proposition (2.0.3)

and V ar(Gµ1 + Gµ2) ≤ V ar(Gµ1) + V ar(Gµ2) it’ll be a straightforward computation.

Indeed, holds

V ar(Gµ1 +Gµ2) + ||µ1 + µ2||1 = V ar(Gµ1) + V ar(Gµ2) + ||µ1||1 + ||µ2||1.

Taking the infimum we get ||µ1 + µ2||BV ≤ ||µ1||BV + ||µ2||BV . Besides that, is easy to

see that ||αµ||BV = |α|||µ||BV , for every scalar α. And since ||µ||1 = 0 if and only if

µ = 0 we get ||µ||BV = 0 if only if µ = 0. �



Chapter 3

Spectral Gap for Lorenz Systems

3.1 Contracting Fiber Maps

In this section we continue to consider the same setting as in subsection 2.0.2 i.e.

let Σ be defined by N1 × N2, where N1 and N2 are compact manifolds endowed with

a Riemannian metric. Denote by m1 and m2 their corresponding Riemannian volume,

normalized so that m1(N1) = m2(N2) = 1 and m = m1 ×m1. Consider a dynamical

system F : Σ −→ Σ, F (x, y) = (T (x), G(x, y)), where T : N1 −→ N1 and G : Σ −→ N2

are mensurable maps satisfying some conditions stated below. Moreover, the spaces

L1 and L∞ were defined in subsections (2.0.2) and (2.0.3).

Properties of G

G1 Consider the F -invariant foliation F s := {{x} × N2}x∈N1 . Suppose there exists

0 < α < 1 such that for all x ∈ N1 holds

|G(x, y1)−G(x, y2)| ≤ α|y1 − y2| for all y1, y2 ∈ N2. (3.1)

Properties of T and of its associated transfer operator.

We suppose that:

T1 T is non-singular with respect to m1 (m1(A) = 0⇒ m1(T−1(A)) = 0).

T2 There exists a collection of open sets P = {P1, · · · , Pq} ofN1, such thatm1 (
⋃q
i=1 Pi) =

1 and Ti := T |Pi is a diffeomorphism, with detT ′i (x) 6= 0 ∀x ∈ Pi and for all i,

where T ′i is the Jacobian of Ti with respect to the Riemannian metric of N1.

17
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T3 Let us consider the Perron-Frobenius Operator associated to T , PT
1.

We will now make some assumption on the existence of a suitable functional

analytic setting adapted to PT . Let us hence denote the L1
m1

norm2 by | |1 and

suppose that there exists a normed space (S , | |s) such that

T3.1 S ⊂ L1
m1

is PT -invariant and | |1 ≤ | |s;

T3.2 The unit ball of (S , | |s) is relatively compact in (L1
m1
, | |1);

T3.3 (Lasota Yorke inequality) There exists k ∈ N, 0 < β0 < 1 and C > 0 such that,

for all f ∈ S , holds

|Pk
T f |s ≤ β0|f |s + C|f |1. (3.2)

T3.4 Suppose there is a unique ψx ∈ S with ψx ≥ 0 and |ψx|1 = 1 such that PT (ψx) =

ψx, and if ψ ∈ S is another density for a probability measure, then P k
T (ψx−ψ)→

0 in S .

By the Ionescu-Tulcea and Marinescu theorem (see [16]) the following result holds.

Theorem 3.1.1 If T satisfies T3.1, ..., T3.4 then there exist 0 < r < 1 and D > 0

such that for all

φ ∈ V := {φ ∈ S ;

∫
φ dm = 0}

and for all n ≥ 0, it holds

|Pn
T (φ)|s ≤ Drn|φ|s. (3.3)

The following property on | |s will be supposed, sometimes in the future, to obtain

spectral gap on L∞ like spaces.

N1 | |s ≥ | |∞ (where | |∞ is the usual L∞ norm on N1 )

1The unique operator PT : L1
m1
−→ L1

m1
such that

∀φ ∈ L1
m1

and ∀ψ ∈ L∞
m1

∫
ψ · PT (φ) dm =

∫
(ψ ◦ T ) · φ dm.

2Notation: In the following we use | | to indicate the usual absolute value or norms for signed

measures on the basis space N1. We will use || || for norms defined for signed measures on Σ.
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Now define the following set of signed measures on Σ

S1 =
{
µ ∈ L1;φx ∈ S

}
. (3.4)

Consider || ||S1 : S1 −→ R, defined by

||µ||S1 = |φx|s + ||µ||1 (3.5)

where we recall that φx is the marginal density of the disintegration of µ.

Analogous to the previous, define

S∞ = {µ ∈ L∞;φx ∈ S } . (3.6)

Consider || ||s∞ : S∞ −→ R defined by

||µ||s∞ = |φx|s + ||µ||∞. (3.7)

Proposition 3.1.1 (S1, || ||S1) and (S∞, || ||s∞) are normed vector spaces.

Proof. Consider µ1, µ2 ∈ S∞ and α ∈ R. Remember that the restriction of a

measure is a linear operation, in the sense that (µ1 + αµ2)|γ = µ1|γ + αµ2|γ. Moreover

µ|γ(N1) = φx(γ). Denote by φµ1+αµ2
x , φ1

x, φ
2
x the densities of µ1 + αµ2, µ1 and µ2

respectively. So we have

φµ1+αµ2
x (γ) = (µ1 + αµ2)|γ(N1)

= µ1|γ(N1) + αµ2|γ(N1)

= φ1
x(γ) + αφ2

x(γ).

Then µ1 + αµ2 ∈ S∞. The same argument tells us that, if µ1, µ2 ∈ S1 and α ∈ R then

µ1 + αµ2 ∈ S1.

To see that || ||s1 and || ||s1 are norms is a straightforward computation.

First of all, is immediate to see that ||µ||s1 = 0 iff µ = 0 and ||µ||s∞ = 0 iff µ = 0.

So we omit this part. So let’s prove the rest.

||µ1 + µ2||s1 = |φ1
x + αφ2

x|s + ||µ1 + µ2||1

≤ |φ1
x|s + |φ2

x|s + ||µ1||1 + ||µ2||1

= ||µ1||s1 + ||µ2||s1 .



3.2 Basic properties of the norms and convergence to equilibrium 20

The same argument shows us that ||µ1 + µ2||s∞ ≤ ||µ1||s∞ + ||µ2||s∞ for every µ1, µ2 ∈
S∞.

Besides that

||αµ1||s1 = |αφ1
x|s + ||αµ1||1

= |α|||µ1||s1 .

The same argument shows us that ||αµ1||s∞ = |α|||µ1||s∞ .

�

3.2 Basic properties of the norms and convergence

to equilibrium

In this section we will get some properties of the actions F∗ : L1 −→ L1 and

F∗ : L∞ −→ L∞, where L1 and L∞ are from subsections (2.0.2) and (2.0.3) and F∗, is

the transfer operator associated with F , i.e.,

[F∗ µ](E) = µ(F−1(E))

for all signed measure µ on Σ and for all mensurable set E ⊂ Σ.

Lemma 3.2.1 For all probability µ ∈ AB disintegrated by ({µγ}γ, φx), the disintegra-

tion ((F∗ µ)γ, (F
∗ µ)x) of F∗ µ is given by

(F∗ µ)x = PT (φx)m1 (3.8)

and

(F∗ µ)γ =

q∑
i=1

φx
| detDT |

◦ T−1
i (γ) ·

χTi(Pi)(γ)

PT (φx)(γ)
· F∗ µT−1

i (γ) (3.9)

when PT (φx)(γ) 6= 0. Otherwise, if PT (φx)(γ) = 0, then (F ∗µ)γ = νγ, where νγ is

the Lebesgue measure on γ (the expression
φx

| detDT |
◦ T−1

i (γ) ·
χTi(Pi)(γ)

PT (φx)(γ)
· F ∗µT−1

i (γ)

is understood to be zero outside Ti(Pi) for all i = 1, · · · , q).

Proof.
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To prove the proposition is enough to prove the following equation

F∗ µ(E) =

∫
N1

(F∗ µ)γ(E ∩ γ)d(F∗ µ)x(γ) (3.10)

where (F∗ µ)γ and (F∗ µ)x are given by (3.8) and (3.9), for a measurable set E ∈ Σ.

And by the uniqueness of the disintegration (see [?], proposition 5.1.7) the result will

be established.

To do it, let us define the setsB1 = {γ ∈ N1;T−1(γ) = ∅}, B2 = {γ ∈ Bc
1; PT (φx)(γ) = 0}

and B3 = (B1 ∪B2)c. The following properties can be easily proven.

1. Bi ∩ Bj = ∅, T−1(Bi) ∩ T−1(Bj) = ∅ for all 1 ≤ i, j ≤ 3 such that i 6= j and⋃3
i=1Bi =

⋃3
i=1 T

−1(Bi) = N1;

2. m1(T−1(B1)) = m1(T−1(B2)) = 0;

Using the change of variables γ = Ti(β), we have

∫
N1

(F∗ µ)γ(E ∩ γ)d(F∗ µ)x(γ) =

∫
B3

(F∗ µ)γ(E ∩ γ)d(F∗ µ)x(γ)

=
r∑
i=1

∫
Ti(Pi)∩B3

φx
| detDT |

◦ T−1
i (γ) F∗ µT−1

i (γ)(E)dm1(γ)

=
r∑
i=1

∫
Pi∩T−1

i (B3)

φx(β)µβ(F−1(E))dm1(β)

=

∫
⋃3
i=1 T

−1(Bi)

µβ(F−1(E))dφxm1(β)

=

∫
N1

µβ(F−1(E))dφxm1(β)

= µ(F−1(E))

= F∗ µ(E).

�

Remark 3.2.1 For a given leaf γ ∈ F s, define the map Fγ : N2 −→ N2 by Fγ :=

πy ◦ F |γ ◦ π−1
γ,y. We remark that, by the previous lemma, for all µ ∈ L1 and for almost

all γ ∈ N1 holds

(F∗ µ)|γ =

q∑
i=1

F∗
T−1
i (γ)

µ|T−1
i (γ)

|T ′−1
i (γ))|

χT (ηi)(γ) for almost all γ ∈ N1. (3.11)
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3.2.1 Basic properties of the L1 norm

Remark 3.2.2 For every µ ∈ AB, holds

||F∗γ µ|γ||W ≤ ||µ|γ||W (3.12)

where Fγ : N2 −→ N2 was defined in remark (3.2.1). Indeed, since Fγ is a contraction,

if |g|∞ ≤ 1 and Lip(g) ≤ 1 we have that the same holds for g ◦ Fγ. Then∣∣∣∣∫ g dF∗γ µ

∣∣∣∣ =

∣∣∣∣∫ g(Fγ) dµ

∣∣∣∣
≤ ||µ||W .

Taking the supremum over |g|∞ ≤ 1 and Lip(g) ≤ 1 we finish the proof of the inequality.

We also remark that, if µ is a probability measure, then ||µ||W = 1. Hence

||F∗ nµ||W = ||µ||W = 1 ∀ n ≥ 1. (3.13)

Proposition 3.2.1 (The weak norm is weakly contracted by F∗) For all µ ∈ L1

the following weak contraction holds

||F∗ µ||1 ≤ ||µ||1. (3.14)

Proof. By Lemma 3.2.1 (remark (3.2.1)), for every signed measure µ ∈ L1
0 and for

a.e. γ ∈ N1 holds

(F∗ µ)|γ =

q∑
i=1

F∗
T−1
i (γ)

µ|T−1
i (γ)

|T ′−1
i (γ))|

χT (ηi)(γ). (3.15)

Then for all i, making the change of variable γ = Ti(α) and by remark (3.2.2), we

have that
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||F∗ µ||1 =

∫
N1

||(F∗ µ)|γ||Wdm1(γ)

≤
q∑
i=1

∫
T (ηi)

∣∣∣∣∣
∣∣∣∣∣F
∗
T−1
i (γ)

µ|T−1
i (γ)

|T ′i (T−1
i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

dm1(γ)

=

q∑
i=1

∫
ηi

||F∗α µ|α||Wdm1(α)

=

q∑
i=1

∫
ηi

||µ|α||Wdm1(α)

= ||µ||1.

�

Proposition 3.2.2 There are C > 0 and k ∈ N (see T3.3) such that for all µ ∈ S, it

holds

||F∗ kµ||S1 ≤ β0||µ||S1 + C||µ||1. (3.16)

Proof. Set C = 1 − β0 + C where C and β0 are from equation (3.2). Thus it holds

(note that |φx|1 ≤ ||µ||1)

||F∗ kµ||S1 = |Pk
T φx|s + ||F∗ kµ||1

≤ β0|φx|s + C|φx|1 + ||µ||1

= β0(|φx|s + ||µ||1)− β0||µ||1 + C||µ||1 + ||µ||1

≤ β0||µ||S1 + C||µ||1.

�

Corollary 3.2.1 (Lasota Yorke inequality for S1) There exist A, B2 ∈ R, λ <

1s.t. for all µ ∈ S1 holds

||F∗ nµ||S1 ≤ Aλn||µ||S1 +B2||µ||1 ∀n ≥ 1. (3.17)

Proof. Iterating the relation of the proposition (3.2.2), one will find the following

inequality

||F∗ nkµ||S1 ≤ βn0 ||µ||S1 + C
∞∑
i=0

βi0||µ||1. (3.18)
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from which one easily gets (3.17). �

Now we prove that F has exponential convergence to equilibrium. This is weaker

with respect to spectral gap. However the spectral gap follows from the above Lasota

Yorke inequality and the convergence to equilibrium. First we need some preliminary

lemma.

Lemma 3.2.2 For all signed measure µ on N2 and for all γ ∈ N1 holds

||F∗γ µ||W ≤ α||µ||W + µ(N2).

(where α is the one given in G1). In particular, if µ(N2) = 0 then

||F∗γ µ||W ≤ α||µ||W .

Proof. If Lip(g) ≤ 1 and ||g||∞ ≤ 1, then g ◦ Fγ is α-Lipschitz. Moreover since

||g||∞ ≤ 1 then ||g ◦ Fγ − θ||∞ ≤ α for some θ ≤ 1. This implies

∣∣∣∣∫ gdF∗γ µ

∣∣∣∣ =

∣∣∣∣∫ g ◦ Fγdµ
∣∣∣∣

=

∣∣∣∣∫ g ◦ Fγ − θdµ
∣∣∣∣+

∣∣∣∣∫ θdµ

∣∣∣∣
= α

∣∣∣∣∫ g ◦ Fγ − θ
α

dµ

∣∣∣∣+ θµ(N2)

= α ||µ||W + µ(N2).

And taking the supremum over |g|∞ ≤ 1 and Lip(g) ≤ 1 we have ||F∗γ µ||W ≤ α||µ||W +

µ(N2). In particular, if µ(N2) = 0 we get the second part. �

Proposition 3.2.3 For all signed measure µ ∈ L1 holds

||F∗ µ||1 ≤ α||µ||1 + (α + 1)|φx|1. (3.19)

Proof. Consider a signed measure µ ∈ L1 and its restriction on the leaf γ, µ|γ =

π∗γ,y(φx(γ)µγ). Set

µ|γ = π∗γ,yµγ.

If µ is a positive measure then µ|γ is a probability on N2. Moreover µ|γ = φx(γ)µ|γ.
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By the above comments and the expression given by remark 3.2.1 we have

||F∗ µ||1 ≤
q∑
i=1

∫
T (Ii)

∣∣∣∣∣
∣∣∣∣∣F
∗
T−1
i (γ)

µ+|T−1
i (γ)φ

+
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

−
F∗
T−1
i (γ)

µ+|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

∣∣∣∣∣
∣∣∣∣∣
W

dm1(γ)

≤
q∑
i=1

∫
T (Ii)

∣∣∣∣∣
∣∣∣∣∣F
∗
T−1
i (γ)

µ+|T−1
i (γ)φ

+
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

−
F∗
T−1
i (γ)

µ+|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

∣∣∣∣∣
∣∣∣∣∣
W

dm1(γ)

+

q∑
i=1

∫
T (Ii)

∣∣∣∣∣
∣∣∣∣∣F
∗
T−1
i (γ)

µ+|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

−
F∗
T−1
i (γ)

µ−|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

∣∣∣∣∣
∣∣∣∣∣
W

dm1(γ)

= I1 + I2

where

I1 =

q∑
i=1

∫
T (Ii)

∣∣∣∣∣
∣∣∣∣∣F
∗
T−1
i (γ)

µ+|T−1
i (γ)φ

+
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

−
F∗
T−1
i (γ)

µ+|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

∣∣∣∣∣
∣∣∣∣∣
W

dm1(γ)

and

I2 =

q∑
i=1

∫
T (Ii)

∣∣∣∣∣
∣∣∣∣∣F
∗
T−1
i (γ)

µ+|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

−
F∗
T−1
i (γ)

µ−|T−1
i (γ)φ

−
x (T−1

i (γ))

|T ′i | ◦ T−1
i (γ)

∣∣∣∣∣
∣∣∣∣∣
W

dm1(γ).

Let us estimate I1 and I2.

By remark 3.2.2 and a change of variable we have

I1 =

q∑
i=1

∫
T (Ii)

∣∣∣∣∣∣F∗T−1
i (γ)

µ+|T−1
i (γ)

∣∣∣∣∣∣
W

|φ+
x − φ−x |
|T ′i |

◦ T−1
i (γ)dm1(γ)

=

∫
I

∣∣∣∣F∗β µ+|β
∣∣∣∣
W
|φ+
x − φ−x |(β)dm1(β)

=

∫
I

|φ+
x − φ−x |(β)dm1(β)

= |φx|1

and by lemma 3.2.2 we have
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I2 =

q∑
i=1

∫
T (Ii)

∣∣∣∣∣∣F∗T−1
i (γ)

(
µ+|T−1

i (γ) − µ−|T−1
i (γ)

)∣∣∣∣∣∣
W

φ−x
|T ′i |
◦ T−1

i (γ)dm1(γ)

≤
q∑
i=1

∫
Ii

∣∣∣∣F∗β (µ+|β − µ−|β
)∣∣∣∣

W
φ−x (β)dm1(β)

≤ α

∫
I

∣∣∣∣µ+|β − µ−|β
∣∣∣∣
W
φ−x (β)dm1(β)

≤ α

∫
I

∣∣∣∣µ+|βφ−x (β)− µ+|βφ+
x (β)

∣∣∣∣
W
dm1(β)

≤ α

∫
I

∣∣∣∣µ+|βφ−x (β)− µ+|βφ+
x (β)

∣∣∣∣
W
dm1(β) + α

∫
I

∣∣∣∣µ+|βφ+
x (β)− µ−|βφ−x (β)

∣∣∣∣
W
dm1(β)

= α|φx|1 + α||µ||1.

Summing the above estimates we finish the proof.

�

Iterating (3.19) we get.

Corollary 3.2.2 For all signed measure µ ∈ L1 holds

||F∗ nµ||1 ≤ αn||µ||1 + α|φx|1,

where α = 1+α
1−α .

Now let us consider the set of zero average measures

V = {µ ∈ S1 : µ(Σ) = 0}. (3.20)

Note that for all µ ∈ V we have π∗xµ(I) = 0. Moreover, since π∗xµ = φxm1 (φx :=

φ+
x − φ−x ) we have

∫
φxdm1 = 0.

Proposition 3.2.4 (Exponential convergence to equilibrium) There exist D ∈
R and 0 < β1 < 1 such that, for every signed measure µ ∈ V, holds

||F∗ nµ||1 ≤ D2β
n
1 ||µ||S1

for all n ≥ 1.

Proof. Given µ ∈ V and denoting φx = φ+
x −φ−x , holds that

∫
φxdm1 = 0. Moreover,

from (3.3) we have |Pn
T (φx)|s ≤ Drn|φx|s for all n ≥ 1, then |Pn

T (φx)|s ≤ Drn||µ||S1

for all n ≥ 1.
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Let l and 0 ≤ d ≤ 1 be the coefficients of the division of n by 2, i.e. n = 2l+d. Thus

l = n−d
2

(remember ||F∗ sµ||1 ≤ ||µ||1 for all s and ||µ||1 ≤ ||µ||S1) and by corollary

(3.2.2) holds (below, set r = sup{r, α} )

||F∗ nµ||1 ≤ ||F∗ 2l+dµ||1

≤ αl||F∗ l+dµ||1 + α||πx ∗ (F∗ l+dµ)||1

≤ αl||µ||1 + α|Pl
T (φx)|1

≤ αl||µ||s + α|Pl
T (φx)|s

≤ αl||µ||s + αrlD|φx|s

≤
(
αl + αrlD

)
||µ||S1

≤ (1 + αD)rl||µ||S1

= (1 + αD)r
n−d
2 ||µ||S1

from which the statement follows directly. �

Now recall that we denoted by ψx the unique invariant density in S for T . Consider

the measure ν0 = ψxm1 ×m2, and the iterates F∗n(ν0). By what was just proved, this

define a Cauchy sequence for the weak norm. The existence of a limit in S1 is not

trivial, because such a space is not complete.

Proposition 3.2.5 Define µ0 = limn→∞ F∗n(ν0). Such limit exists and µ0 is the unique

invariant measure of the system in S1.

Proof. We prove the existence of the limit: by Proposition 5.3.3 the sequence

νn = F∗n(ν0) is a Cauchy sequence in L1, then νn is also a Cauchy sequence for the

Wasserstein distance on the square. Since this is a sequence of probability measures it

has a limit µ0 which is a signed measure. We now prove that µ0 ∈ L1.

Since a sequence converging in L1
m1

has a subsequence which converges almost

everywhere, then there is nk such that for almost each γ, νnk |γ → µ0|γ in W 0
1 (on N1).

Hence µ0 ∈ L1.

Since πxµ0 = ψxm, µ0 ∈ S1. For the uniqueness, if µ0, µ1 ∈ S1 are invariant, then

µ0 − µ1 ∈ V and then F∗n(µ0 − µ1)→ 0 in S1. Contradicting invariance.

�
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Remark 3.2.3 By N1 we have | |∞ ≤ | |s. Since, for all g : I −→ R such that |g|∞ ≤ 1

and L(g) ≤ 1, it holds
∣∣∫ gd(µ0|γ)

∣∣ ≤ |g|∞ψx(γ) ≤ |ψx|s, we get that µ0 ∈ S∞.

3.2.2 Properties of the L∞ norm

Lemma 3.2.3 Under the assumptions G1, T1, ..., T3.4, for all signed measure µ ∈ S∞

with marginal density φx it holds

||F∗ µ||∞ ≤ α|PT 1|∞||µ||∞ + |PT φx|∞.

Proof. Let Ti be the branches of T and

||(F∗ µ)|γ||W =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

F∗
T−1
i (γ)

µ|T−1
i (γ)

|T ′i (T−1
i (γ))|

χT (ηi)

∣∣∣∣∣
∣∣∣∣∣
W

≤
n∑
i=1

||F∗
T−1
i (γ)

µ|T−1
i (γ)||W

|T ′i (T−1
i (γ))|

χT (ηi)

≤
n∑
i=1

α||µ|T−1
i (γ)||W + φx(T

−1
i (γ))

|T ′i (T−1
i (γ))|

χT (ηi)

≤ α||µ||∞
n∑
i=1

χT (ηi)(γ)

|T ′i (T−1(γ))|
+

n∑
i=1

φx(T
−1
i (γ))

|T ′i (T−1(γ))|
χT (ηi).

hence taking the supremum on γ we get the statement. �

Applying the last lemma to Fn instead of F one obtains.

Lemma 3.2.4 Under the assumptions G1, T1, ..., T3.4, for all signed measure µ ∈ S∞

and φx its marginal, it holds

||Fn µ||∞ ≤ αn|Pn
T 1|∞||µ||∞ + |Pn

T φx|∞.

Proposition 3.2.6 (Lasota Yorke inequality for S∞) Suppose F satisfies the as-

sumptions G1, T1, ..., T3.4 and N1. Then there is 0 < α1 < 1 and A1, B4 ∈ R such

that

||Fn µ||S∞ ≤ A1α
n
1 ||µ||S∞ +B4||µ||1.

Proof. We remark that by the Lasota Yorke inequality (T3) and (N1) it follows
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|Pn
T 1|∞ ≤ 1 + C, for each n. Then

||Fn µ||S∞ = |Pn
T φx|s + ||Pn

T µ||∞

≤ [βn0 |φx|s + C|φx|1] + [αn|Pn
T 1|∞||µ||∞ + |Pn

T φx|∞]

≤ [βn0 |φx|s + C|φx|1] + [αn(C + 1)||µ||∞ + βn0 |φx|s + C|φx|1].

≤ αn1 (C + 2)||µ||s + 2C||µ||1.

where we set α1 = max(α, β0) and recall that |φx|1 ≤ ||µ||1. �

3.3 Spectral gap.

Theorem 3.3.1 (Spectral gap on S1) If F satisfies G1, T1,...,T3.4 given at be-

ginning of Section 3.1, then the operator F∗ : S1 −→ S1 can be written as

F∗ = P + N

where

a) P is a projection i.e. P2 = P and dim Im(P) = 1;

b) there are 0 < ξ < 1 and C > 0 such that 3 ||Nn(µ)||S1→S1 ≤ ξnC;

c) P N = N P = 0.

Proof. First let us show there exist 0 < ξ < 1 and K > 0 such that, for all n ≥ 1

holds

||(F∗ |V)n||S1→S1 ≤ ξnK. (3.21)

Indeed, consider µ ∈ V (see equation (3.20)) s.t. ||µ||S1 ≤ 1 and for a given n ∈ N let

m and 0 ≤ d ≤ 1 be the coefficients of the division of n by 2, i.e. n = 2m + d. Thus

m = n−d
2

. By the Lasota Yorke inequality (corollary 3.2.1) we have the uniform bound

||F∗ nµ||S1 ≤ B2 + 1 for all n ≥ 1. Moreover, by propositions 5.3.3 and 3.2.1 there is

3We remark that by this, the spectral radius of N satisfies ρ(N) < 1, where N is the extension

of N to S1 (the completion of S1). This gives us spectral gap, in the usual sense, for the operator

F : S1 −→ S1. The same remark holds for theorem (3.3.2).
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some D2 such that it holds (below, let λ0 be defined by λ0 = max{β1, λ})

||F∗ nµ||S1 ≤ Aλm||F∗ (m+d)µ||S1 +B2||F∗ (m+d)µ||1

≤ λmA(A+B2) +B2||F ∗mµ||1

≤ λmA(A+B2) +B2D2β
m
1

≤ λm0 [A(A+B2) +B2D2]

≤ λ
n−d
2

0 [A(A+B2) +B2D2]

≤
(√

λ0

)n( 1

λ0

) d
2

[A(A+B2) +B2D2]

= ξnK

Where and ξ =
√
λ0. Hence, defining K =

(
1
λ0

) d
2

[A(A+B2) +B2D2], we arrive at

||(F∗ |V )n||S1→S1 ≤ ξnK. (3.22)

Now recall that F∗ : S1 −→ S1 has a unique fixed point µ0. Consider the operator

P : S1 −→ [µ0] ( [µ0] is the space spanned by µ0), defined by P(µ) = µ(1)µ0. By

definition P is a projection. Now define the operator

S : S1 −→ V ,

by

S(µ) = µ− P(µ) ∀ µ ∈ S.

Thus define N = F∗ ◦ S and observe that, by definition P N = N P = 0 and F∗ = P + N.

Moreover, Nn(µ) = F∗ n(S(µ)). Since S is bounded and S(µ) ∈ V we get, by (3.22)

||Nn(µ)||S1 ≤ ξnK|| S ||S1→S1||µ||S1 . �

In the same way, using the L∞ Lasota Yorke inequality of proposition 3.2.6, it

is possible to obtain spectral gap on the L∞ like space, we omit the proof which is

essentially the same as above:

Theorem 3.3.2 (Spectral gap on S∞) If F satisfies the assumptions G1, T1, ..., T3.4

and N1, then the operator F∗ : S∞ −→ S∞ can be written as

F∗ = P + N

where
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a) P is a projection i.e. P2 = P and dim Im(P) = 1;

b) there are 0 < ξ < 1 and C > 0 such that ||Nn(µ)||S∞→S∞ ≤ ξnC;

c) P N = N P = 0.

3.4 Application to Lorenz like maps

In this section we apply the theorem (3.3.2) to a large class of Lorenz-Like flows,

and more precisely to its Poincaré maps for suitable secions. In these systems (see e.g

[4]), it can be proved that there is a Poincaré section Σ, whose return map has the form

FL(x, y) = (TL(x), GL(x, y)) after a suitable change of coordinates, with the properties

given at beginning of Section 3.1. The map TL, in this case, can be supposed to be

piecewise expanding with C1+α branches.

More precisely, we consider a class of maps satisfying (G1) and the following addi-

tional properties on TL :

Properties of TL in Lorenz like systems

(P’1)
1

|T ′L|
is of universally bounded p-variation (1 ≤ p <∞), i.e.

sup
0≤x0<···<xn≤1

(
n∑
i=0

| 1

|T ′L(xi)|
− 1

|T ′L(xi−1)|
|p
) 1

p

<∞;

(P’2) inf |T nL ′| > 1 for some n.

From these properties it follows ([15]) that we can define a suitable strong space for

the transfer operator associated to such a TL, in a way that it satisfies the assumptions

T1, ..., T3.4 and N1. And then we can apply our results.

For this, let us introduce the set BV1, 1
p

of real valued functions (for more details

and results see [15]).

Definition 3.4.1 For an arbitrary function h : I −→ C and ε > 0 define osc(h,Bε(x)) :

I −→ [0,∞] by (Bε(x) denotes the open ball of center x and radius ε)

osc(h,Bε(x)) = ess sup{|h(y1)− h(y2)|; y1, y2 ∈ Bε(x)}, (3.23)



3.4 Application to Lorenz like maps 32

where the essential supremum is taken with respect to the product measure m2 on I×I.

Also define the the real function osc1(h, ε), on the variable ε, by osc1(h, ε) :=∫
osc(h,Bε(x))dm(x).

Definition 3.4.2 Fix A1 > 0 and denote by Φ the class of all isotonic maps φ :

(0, A1] −→ [0,∞] (x ≤ y =⇒ φ(x) ≤ φ(y)) such that φ(x) −→ 0 if x −→ 0. Set

• R1 = {h : I −→ C; osc1(h, .) ∈ Φ};

• For n ∈ N, define R1,n·p = {h ∈ R1; osc1(h, ε) ≤ n · ε
1
p ∀ε ∈ (0, A1]};

• And set S1,p =
⋃
n∈NR1,n·p.

Definition 3.4.3

1. BV1, 1
p

is the space of m-equivalence classes of functions in S1,p;

2. For h : I −→ C set

var1, 1
p
(h) = sup

0≤ε≤A1

(
1

ε
1
p

osc1(h, ε)

)
. (3.24)

Considering the real function | |1, 1
p

: BV1, 1
p
−→ R defined by

|f |1, 1
p

= var1, 1
p
(f) + |f |1, (3.25)

it holds the following

Proposition 3.4.1
(
BV1, 1

p
, | |1, 1

p

)
is a Banach space.

Under those above settings G. Keller has shown (see [15]) that there is an A1 > 0

(we recall that definition (3.4.2) depends on A1) such that:

(a) BV1, 1
p
⊂ L1 is PT -invariant and holds | |1 ≤ | |1, 1

p
;

(b) The unit ball of (BV1, 1
p
, | |1, 1

p
) is relatively compact in (L1, | |1);

(c) There exists k ∈ N, 0 < β0 < 1 and C > 0 such that

|Pk
T f |1, 1

p
≤ β0|f |1, 1

p
+ C|f |1. (3.26)
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Moreover, in [2] (Lemma 2) it is shown that

(d) | |∞ ≤ A
1
p
−1

1 | |1, 1
p
.

By this it follows that the properties T1, T2, T3.1, .., T3.3, N1. of section 3.1 are

satisfied with S = BV1, 1
p

and we can apply our construction to such maps.

We hence define the following strong set of signed measures on Σ

BV1, 1
p

:=
{
µ ∈ L1; var1, 1

p
(φx) <∞

}
. (3.27)

Consider || ||1, 1
p

: BV1, 1
p
−→ R defined by

||µ||1, 1
p

= |φx|1, 1
p

+ ||µ||1. (3.28)

Clearly,
(
BV1, 1

p
, || ||1, 1

p

)
is a normed space. If we suppose that the system, TL :

I −→ I, satisfies T3.4, then the system then has a unique invariant probability measure

with density ϕx ∈ BV1, 1
p

Now, directly from the above construction and from theorem (3.3.2) it follows the

spectral gap for these kind of maps.

Theorem 3.4.1 If F∗L satisfies the above assumptions it satisfies assumptions G1,

T3.4, P ′1 and P ′2, then the operator F∗L : BV1, 1
p
−→ BV1, 1

p
can be written as

F∗L = P + N

where

a) P is a projection i.e. P2 = P and dim Im(P) = 1;

b) the spectral radius of N satisfies ρ(N) < 1;

c) P N = N P = 0.

In other words F∗L : BV1, 1
p
−→ BV1, 1

p
has spectral gap.
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3.5 Quantitative Stability

In this section we consider small perturbations of the transfer operator of a given

system and try to study the dependence of the physical invariant measure with respect

to the perturbation. We give a general result relating the stability of the invariant

measure for a uniform family of operators and the convergence to equilibrium.

Let L be the transfer operator for a map acting on two vector subspaces of signed

measures on X, L : (Bs, || · ||s) −→ (Bs, || · ||s) and L : (Bw, || · ||w) −→ (Bw, || · ||w)

endowed with two norms, the strong norm || · ||s on Bs, and the weak norm || · ||w on

Bw, such that || · ||s ≥ || · ||w. Suppose that

Bs⊆Bw⊆SB(X),

where SB(X) denotes the space of signed measures on X.

We say that the a transfer operator L has convergence to equilibrium with at least

speed Φ with respect to norms || · ||s, || · ||w, if

for any f ∈ Vs = {f ∈ Bs, f(X) = 0} it holds

||L f ||w ≤ Φ(n)||f ||s. (3.29)

Definition 3.5.1 A one parameter family of operators {Lδ}δ∈[0,1) is said to be a uni-

form family of operators if

UF1 ||fδ||s ≤M for all δ, where fδ ∈ Bs is a fixed probability measure of the operator

Lδ for all δ;

UF2 Lδ approximates L0 when δ is small in the following sense: there is C ∈ R+ such

that:

||(L0−Lδ)fδ||w ≤ δC; (3.30)

UF3 L0 has exponential convergence to equilibrium with respect to the norms || · ||s and

|| · ||w: there exists 0 < ρ2 < 1 and C2 > 0 such that for all f ∈ Vs it holds

||Ln0 f ||w ≤ ρn2C2||f ||s;

UF4 The iterates of the operators are uniformly bounded for the weak norm: there

exists M2 > 0 such that

∀δ, n, g ∈ Bs it holds ||Lnδ g||w ≤M2||g||w.
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We will see that under these assumptions we can ensure that the invariant measure

of the system varies continuously (in the weak norm) when L0 is perturbed to Lδ for

small values of δ. Let us state a general result on the stability of fixed points satisfying

certain assumptions.

Let us consider two operators L0 and Lδ preserving a normed space of signed mea-

sures B ⊆SB(X) with norm ||·||B. Suppose that f0, fδ ∈ B are fixed points, respectively

of L0 and Lδ.

Proposition 3.5.1 Suppose that:

a) ||Lδ fδ − L0 fδ||B <∞;

b) Li0 is continuous on B; ∃Ci s.t. ∀g ∈ B, ||Li0 g||B ≤ Ci||g||B.

Then for each N

||fδ − f0||B ≤ ||LN0 (fδ − f0)||B + ||Lδ fδ − L0 fδ||B
∑

i∈[0,N−1]

Ci. (3.31)

Proof. The proof is a direct computation

||fδ − f0||B ≤ ||LNδ fδ − LN0 f0||B

≤ ||LN0 f0 − LN0 fδ||B + ||LN0 fδ − LNδ fδ||B

≤ ||LN0 (f0 − fδ)||B + ||LN0 fδ − LNδ fδ||B

(applying item b)). Hence

||f0 − fδ||B ≤ ||LN0 (f0 − fδ)||B + ||LN0 fδ − LNδ fδ||B

but

LN0 −LNδ =
N∑
k=1

L
(N−k)
0 (L0−Lδ) L

(k−1)
δ

hence

(LN0 −LNδ )f =
N∑
k=1

L
(N−k)
0 (L0−Lδ) L

∗(k−1)
δ fδ

=
N∑
k=1

L
(N−k)
0 (L0−Lδ)fδ
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by item c), hence

||(LN0 −LNδ )fδ||B ≤
N∑
k=1

CN−k||(L0−Lδ)fδ||B

≤ ||(L0−Lδ)fδ||B
∑

i∈[0,N−1]

Ci

by item a), and then

||fδ − f0||B ≤ ||LN0 (f0 − fδ)||B + ||(L0−Lδ)fδ||B
∑

i∈[0,N−1]

Ci.

�

Now, let us apply the statement to our family of operators satisfying assumptions

UF 1,...,4, supposing Bw = B. By this we have the following

Proposition 3.5.2 Suppose {Lδ}δ∈[0,1) is a uniform family of operators where f0 is

the unique invariant measure of L0 and fδ is an invariant measure of Lδ. Then

||fδ − f0||w = O(δ log δ).

Proof.Let us apply proposition 3.5.1. By UF2,

||Lδ fδ − L0 fδ||w ≤ δC

(see proposition 3.5.1, item a) ). Moreover by UF4, Ci ≤M2.

Hence,

||fδ − f0||w ≤ δCM2N + ||LN0 (f0 − fδ)||w.

Now by the exponential convergence to equilibrium of L0 (UF3), there exists 0 < ρ2 < 1

and C2 > 0 such that (recalling that by UF1 ||(fδ − f0)||s ≤ 2M)

||LN0 (fδ − f0)||w ≤ C2ρ
N
2 ||(fδ − f0)||s

≤ 2C2ρ
N
2 M

hence

||fδ − f0||B ≤ δCM2N + 2C2ρ
N
2 M

choosing N =
⌊

log δ
log ρ2

⌋
||fδ − f0||B ≤ δCM2

⌊
log δ

log ρ2

⌋
+ 2C2ρ

⌊
log δ
log ρ2

⌋
2 M (3.32)

≤ δ log δCM2
1

log ρ2

+ 2C2δM.

�
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3.5.1 Quantitative stability of Lorenz like maps

Here we apply the general techniques of the previous section to Lorenz-like maps.

We will show a set of assumptions on the family of maps, such that the related transfer

operators satisfy UF1,...UF4. We remark that:

UF1 easily follows by a uniform Lasota-Yorke inequality;

UF3 depends only on the first element L0 of the family, and it is proved above for

transfer operators associated to Lorenz-like maps;

UF4 depends on the weak norm, and is also proved above.

Some work is necessary for the property UF2. To find a reasonable set of assump-

tions implying it we need to prove some further regularity of the invariant measure.

For this we introduce a space of measures having bounded variation in some sense,

and prove that the invariant measure of a Lorenz-like map is in it. We need some

preliminary notations.

We have seen that a positive measure on the square, [0, 1]2, can be disintegrated

along the stable leaves F s in a way that we can see it as a family of positive measures

on the interval, {µ|γ}γ∈Fs . Since F s is identified with [0, 1], this defines a path in the

space of positive measures, [0, 1] 7−→ SB(I). It will be convenient to use a functional

notation and denote such a path by Gµ. It means that Gµ : I −→ SB(I) is the path

defined by Gµ(γ) = µ|γ, where ({µγ}γ∈I , φx) is some disintegration for µ. However,

since such a disintegration is defined µx-a.e. γ ∈ [0, 1], the path Gµ is not unique.

Definition 3.5.2 Consider a disintegrated measure ({µγ}γ∈I , φx), where {µγ}γ∈I is a

family of probabilities on Σ defined µx-a.e. γ ∈ I (where µx = φxm) and φx : I −→ R is

a non-negative marginal density, as before. Denote by Gµ the path (of positive measures

on I) Gµ : I −→ SB(I) defined µx-a.e. γ ∈ I by

Gµ(γ) = µ|γ = π∗γ,yφx(γ)µγ.

Call the set on which Gµ is well defined by IGµ
4. Let P = P(Gµ) be a finite sequence

P = {xi}ni=1 ⊂ IGµ and define the variation of Gµ with respect to P as (denote

γi := γxi)

Var(Gµ,P) =
n∑
j=1

||Gµ(γj)−Gµ(γj−1)||W ,

4Remark that to a measure many different paths and sets IGµ may be associated, but they coincide

almost everywhere.
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where ||Gµ(γj) − Gµ(γj−1)||W = W 0
1 (Gµ(γj), Gµ(γj−1)). Finally we define the varia-

tion of Gµ taking the supremum over the sequences, as

Var(Gµ) := sup
P

Var(Gµ,P).

Remark 3.5.1 For an interval η ⊂ I we define

Varη(Gµ) := Var(Gµ|η).

Remark 3.5.2 When no confusion can be done, to simplify the notation, we denote

Gµ(γ) just by µ|γ.

Definition 3.5.3 Denote by [[µ]] the set of all paths Gµ : I −→ SB(I) which represents

µ. 5

The Rokhlin Disintegration Theorem ensures that [[µ]] 6= ∅. Define the variation

of a positive measure µ by

Var(µ) = inf
Gµ∈[[µ]]

{Var(Gµ)}

we recall that

||µ||1 =

∫
W 1

0 (0, Gµ(γ))dm(γ), for any Gµ ∈ [µ].

Definition 3.5.4 From the definition 3.5.2 we define the set of bounded variation pos-

itive measures BV+ as

BV+ = {µ ∈ AB : µ ≥ 0,Var(µ) <∞}. (3.33)

Now we are ready to state a lemma estimating the regularity of the iterates F∗n(m).

We will explicit the assumptions we need on F . The following definition characterizes

a class of piecewise expanding maps of the interval with bounded variation derivative

TL : I −→ I which is a subclass of the ones considered in section 3.4.

5We say that a pair ({µγ}γ , φx), or its path Gµ, represents the positive measure µ if, for every

mensurable set E ⊂ Σ, γ 7−→ µγ(E ∩ γ)φx(γ) is mensurable and it holds

µ(E) =

∫
µγ(E ∩ γ)φx(γ)dm(γ).
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Definition 3.5.5 (Piecewise expanding functions with BV inverse of the derivative )

Suppose there exists a partition P = {ηi := (ai−1, ai), i = 1, · · · , q} of I s.t. TL : I −→ I

satisfies the following conditions. For all i

1) TLi := TL|ηi is of class C1 and gηi =
1

|TLi ′|ηi|
has bounded variation for all

i = 1, · · · , q;

2) inf |T kLi
′| ≥ 1

λ1

> 1 for some k ∈ N and 0 < λ1 < 1;

To ensure T3.4 is satisfied, we assume that the system TLi |I∗ is topological mixing.

3) (Topological Mixing) There is an interval I∗ ⊂ I such that TLi(I∗) = I∗, every

orbit T nLi eventually enters I∗, and TLi |I∗ is topologically mixing: for each interval

J ⊂ I∗ there exists n ≥ 1 such that T nLi(J) = I∗.

In particular TLi |ηi and gηi admit a continuous extension to ηi = [ai−1, ai] for all

i = 1, · · · , q.

Remark 3.5.3 The definition 3.5.5 allows infinite derivative for TL at the extreme

points of its regularity intervals. For instance, see [1] section 2.4.

Henceforth we consider a particular class of the Lorenz-like systems.

Definition 3.5.6 A map FL : [0, 1]2 −→ [0, 1]2, FL(x, y) = (TL(x), GL(x, y)), is said

to be a BV Lorenz-like map if it satisfies

1. There are H ≥ 0 and a partition P ′ = {Ji := (bi−1, bi), i = 1, · · · , d} of I such

that for all x1, x2 ∈ Ji and for all y ∈ I : the following inequality holds

|GL(x1, y)−GL(x2, y)| ≤ H · |x1 − x2|;

2. FL satisfy property G1 (hence is uniformly contracting) on each leaf γ with rate

of contraction α;

3. TL : I → I satisfies the definition 3.5.5.

Remark 3.5.4 Without loss of generality we can suppose that the regularity intervals

of TL and GL are equal, P ′ = P (see definition 3.5.5).
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When FL is a BV Lorenz-like map, it satisfies G1, T3.4, P’1 and P’2. Thus we

apply the results obtained in section 3.4 (for p=1) by setting BV1,1 with norm |ψ|1,1 =

var1,1(ψ) + |ψ|1, BV1,1 with norm ||µ||1,1 and finally BV∞1,1 with norm ||µ||∞1,1. Under

these settings we have all results of section 3.4. This gives sense for the following

definition.

Definition 3.5.7 A family of maps {Fδ}δ is said to be a Lorenz-like family if Fδ is

a BV Lorenz-like map for all δ and there exist 0 < λ < 1 and D > 0 s.t. for all µ ∈ S1

and for all δ it holds

||F∗nδ µ||1,1 ≤ Dλn||µ||1,1 +D||µ||1 for all n ≥ 1. (3.34)

The proof of the next result which is our main tool to estimate the regularity of

the invariant measure is too long. So it will be postponed to the appendix.

Proposition 3.5.3 Let FL(x, y) = (TL(x), GL(x, y)) be a BV Lorenz-like map and

consider µ ∈ BV+. Then, there are C0 and 0 < λ0 < 1 such that for all n ≥ 1 it holds

Var(F∗nL µ) ≤ C0λ
n
0 Var(µ) + C0||µ||1. (3.35)

A precise estimate for C0 will be found in theorem 4.0.1 and corollary 5.2.1. Re-

member that, by proposition 5.3.1, we have µ0 ∈ S∞.

Proposition 3.5.4 Let FL(x, y) = (TL(x), GL(x, y)) be BV Lorenz-like map and sup-

pose that FL has an unique invariant probability measure µ0 ∈ S∞. Then µ0 ∈ BV+

and

Var(µ0) ≤ C0.

Proof.

First of all, it is not hard to prove that if Gn : Î −→ SB([0, 1]) is a sequence of

paths which converges to Gµ0 : Î −→ SB([0, 1]) pointwise on a full measure set Î ⊂ I,

then for every fixed partition P = {x0, · · · , xn} ⊂ Î it holds

lim
n−→∞

Var(Gn,P) = Var(Gµ0 ,P).

Consider the Lebesgue measure m and the iterates F∗nL (m). By theorem ??, these it-

erates converge to µ0 in L∞. It means that the sequence {GF∗nL (m)}n converges m-a.e. to
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Gµ0 ∈ [[µ0]], where Gµ0 is a path given by the Rokhlin Disintegration Theorem. More-

over, by proposition 3.5.3, Var(GF∗nL
(m)) ≤ C0 for all n. Thus there is a full measure

set Î ⊂ I such that {ĜF∗nL (m)}n converges to Ĝµ0 pointwise, where ĜF∗nL (m) = GF∗nL (m)|Î
and Ĝµ0 = Gµ0|Î . Then it holds Var(ĜF∗nL

(m)) ≤ Var(GF∗nL (m)) ≤ C0 for all n. Since

Ĝµ0 still represents µ0, {ĜF∗nL (m)}n converges to Ĝµ0 everywhere and Var(GF∗nL (m)) ≤ C0

(because ||m||1 = 1 and Var(m) = 0) for all n, it holds Var(Ĝµ0 ,P) ≤ C0 for every

partition P of Î. Then, Var(Ĝµ0) ≤ C0 which implies Var(µ0) ≤ C0.

�

Remark 3.5.5 We remark that proposition 3.5.4 is an estimation of the regularity of

the disintegration of µ0. Similar estimations are presented in [13] and [?].

In the following proposition we see a family of deterministic perturbations allowed

on our maps ( implying property UF2).

Proposition 3.5.5 (assumptions to obtain UF2) Let F0 = (T0, G0) and Fδ =

(Tδ, Gδ) be two BV Lorenz-like maps and denote by F∗0 and F∗δ their transfer opera-

tors with f0, fδ as their fixed points. Let PT0 ,PTδ be the Perron-Frobenius operators of

T0 and Tδ respectively.

Suppose that when δ is small enough there is an ε = O(δ) such that

1. |PT0 −PTδ |BV→L1 ≤ ε (assumption on T )

2. The branches Ti,δ are such that when δ is small enough T−1
δ,i ◦ T0,i is well defined

on a set A1 with m(A1) ≥ 1− ε and |T−1
δ ◦ T0 − Id|∞ ≤ ε on A1.

3. there is a set A2 such that m(A2) ≥ 1 − ε such that for all x ∈ A2, y ∈ I :

|G0(x, y)−Gδ(x, y)| ≤ ε.

Then there is K such that

||(F∗0−F∗δ)fδ||1 ≤ Kε.

Proof. Set µ = fδ and let us estimate the integral∫
||(F∗0 µ− F∗δ µ)|γ||Wdm(γ) =

∫
A1

||(F∗0 µ− F∗δ µ)|γ||Wdm(γ)+

∫
Ac1

||(F∗0 µ− F∗δ µ)|γ||Wdm(γ).
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Since

(F∗0 µ−F∗δ µ)|γ =

q∑
i=1

F∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

δ,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

µx−a.e. γ ∈ I,

there exists K1 > 0 such that∫
Ac1

||(F∗0 µ− F∗δ µ)|γ||Wdm(γ) ≤ K1ε.

Let us estimate the remaining term∫
A1

||(F∗0 µ− F∗δ µ)|γ||Wdm(γ).

∫
A1

||(F∗0 µ− F∗δ µ)|γ||Wdm(γ)

=

∫
A1

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

δ,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

dm

≤
∫
A1

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

dm

+

∫
A1

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

δ,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

dm

=

∫
A1

I(γ) dm(γ) +

∫
A1

II(γ) dm(γ)

The two summands will be treated separately. Moreover let’s denote µ|γ = π∗γ,yµγ

(note that µ|γ = φx(γ)µ|γ and µ|γ is a probability measure).

I(γ) =

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

≤

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′0,i(T−1
0,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

+

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

= Ia(γ) + Ib(γ)

Note that, since fδ is a probability measure, for all γ ∈ A1 ∩ A2 (χT0(ηi) = χTδ(ηi)

on A1) it holds
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Ia(γ) =

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′0,i(T−1
0,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

≤
q∑
i=1

∣∣∣∣∣
∣∣∣∣∣F
∗
0,T-1

0,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′0,i(T−1
0,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

≤

∣∣∣∣∣φx,0(T−1
0,i (γ))

T ′0,i(T
−1
0,i (γ))

∣∣∣∣∣
q∑
i=1

∣∣∣∣∣∣(F∗0,T-1
0,i(γ)−F∗δ,T-1

δ,i(γ) µ|T−1
0,i (γ)

)∣∣∣∣∣∣
W

≤ qε sup

∣∣∣∣φx,0T ′0,i

∣∣∣∣
by Item (3).

Doing the same computation as above we get, for all γ ∈ Ac2 ∩ A1 (remember that

m(Ac2) ≤ ε)

Ia(γ) ≤ q sup

∣∣∣∣φx,0T ′0,i

∣∣∣∣
Then (remember that m(Ac2) ≤ ε)∫
A1

Ia(γ)dm(γ) =

∫
A1∩A2

Ia(γ)dm(γ) +

∫
A1∩Ac2

Ia(γ)dm(γ) ≤ 2qε sup

∣∣∣∣φx,0T ′0,i

∣∣∣∣ . (3.36)

To estimate Ib(γ) we have:

Ib(γ) =

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χT0(ηi)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

=

∣∣∣∣∣
q∑
i=1

χT0(ηi)(γ)

|T ′0,i(T−1
0,i (γ))|

−
q∑
i=1

χTδ(ηi)(γ)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣ ∣∣∣∣∣∣F∗δ,T−1
δ,i (γ)

µ|T−1
0,i (γ)

∣∣∣∣∣∣
W

= |( PT0 −PTδ )(1)| sup |φx,0|

by Item (1). Thus

∫
A1

Ib(γ) dm(γ) ≤ sup |φx,0||(PT0 −PTδ)1|1 ≤ ε sup |φx,0|.

Let us estimate the integral of the second summand

II(γ) =

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

δ,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W
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on the set A1.

In what follows, let’s make the change of variable γ = Tδ,i(β).∫
A1

II(γ) dm(γ) =

∫
A1

∣∣∣∣∣
∣∣∣∣∣
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

0,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

−
q∑
i=1

F∗
δ,T-1

δ,i(γ)
µ|T−1

δ,i (γ)χTδ(ηi)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∣∣
∣∣∣∣∣
W

dm(γ)

≤
q∑
i=1

∫
A1∩Tδ,i(ηi)

1

|T ′δ,i|
◦ T−1

δ,i (γ)
∣∣∣∣∣∣F∗δ,T-1

δ,i(γ)

(
µ|T−1

0,i (γ) − µ|T−1
δ,i (γ)

)∣∣∣∣∣∣
W
dm(γ)

≤
q∑
i=1

∫
A1∩Tδ,i(ηi)

1

|T ′δ,i|
◦ T−1

δ,i (γ)
∣∣∣∣∣∣µ|T−1

0,i (γ) − µ|T−1
δ,i (γ)

∣∣∣∣∣∣
W
dm(γ)

≤
q∑
i=1

∫
T−1
δ,i (A1)∩A1

∣∣∣∣∣∣µ|T−1
0,i ◦Tδ,i(β) − µ|β

∣∣∣∣∣∣
W
dm(β)

≤ 2qεVar(µ).

Summing all, the statement is proved. �

Once this is done we have all the ingredients to apply proposition 3.5.2 and obtain

the quantitative estimation.

Corollary 3.5.1 (Quantitative stability for deterministic perturbations) Let {Fδ}δ
be a Lorenz-Like family satisfying the assumptions of proposition 3.5.5 and denote by

fδ the fixed point of Fδ, for all δ. Then

||fδ − f0||w = O(δ log δ).



Chapter 4

Appendix 1: Semi Lasota-Yorke

Inequality

In this section we give a proof for the proposition 3.5.3. Thus, let’s consider a BV

Lorenz-Like map (see definition 3.5.6) FL : [0, 1]2 −→ [0, 1]2, FL = (TL, GL), and its

transfer operator FL
∗ restricted to the space BV+.

For all n ≥ 1, let P(n) be the partition of I s.t. P(n)(x) = P(n)(y) if and only if

P(1)(T jL(x)) = P(1)(T jL(y)) for all j = 1, · · · , n. Given η ∈ P(n) denote g
(n)
η = 1

|TnL ′|η |
.

Then there exists C1 > 0 s.t. sup{g(n)
η } ≤ C1λ

n
1 for all η ∈ P(n) and all n ≥ 1.

Moreover, there exists λ2 ∈ (λ1, 1) and C2 > 0 such that (see [21], section 3, equation

(3.1))

var(g(n)
η ) ≤ C2λ

n
2 for all η ∈ P(n) and n ≥ 1. (4.1)

Recall that we denote by Fγ : I −→ I the function defined by

Fγ = πγ,y ◦ FL|γ ◦ π−1
γ,y, (4.2)

where πγ,y is the restriction on γ of the projection π(x, y) = y.

4.0.1 Semi Lasota-Yorke Inequality

Henceforth, we fix a positive measure µ ∈ AB and a path Gµ : I −→ SB(I) which

represents µ (i.e. a pair ({µγ}γ, φx) s.t. Gµ(γ) = µ|γ).

45
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For all n ≥ 1 set

GµnF
(γ) :=

(
πy ◦ F n

L |γ ◦ π−1
γ,y

)∗
Gµ(γ). (4.3)

With the above notation and following the strategy of the proof of lemma 3.2.1 we

have that the path GF∗nL µ defined, on a full measure set, by

GF∗nL µ(γ) =
∑
η∈P(1)

(
gη

(n) ·GµnF

)
◦ TL|η−1(γ) · χTL(η)(γ), (4.4)

represents the measure F∗nL µ.

Note that, by remark 3.2.2 and equation (4.2) it holds

||F∗γ nGµ(γ)||W ≤ ||Gµ(γ)||W ,

for all n ≥ 1 and for m-a.e. γ ∈ I.

Lemma 4.0.1 Let γ1 and γ2 be two leaves such that γ1, γ2 ∈ Ji for some i (see defini-

tion 3.5.6). Then for every path Gµ ∈ [[µ]], where µ ∈ AB, holds

||F∗γ1 µ|γ1 − F∗γ2 µ|γ2 ||W ≤ ||µ|γ1 − µ|γ2||W +H|γ1 − γ2|||µ|γ2||W , (4.5)

where H is from definition 3.5.6.

Proof. Consider g such that |g|∞ ≤ 1 and Lip(g) ≤ 1 , and observe that by equation

(3.12) it holds

∣∣∣∣∫ gdF∗γ1 µ|γ1 −
∫
gdF∗γ2 µ|γ2

∣∣∣∣ ≤ ∣∣∣∣∫ gdF∗γ1 µ|γ1 −
∫
gdF∗γ1 µ|γ2

∣∣∣∣
+

∣∣∣∣∫ g(Fγ1)− g(Fγ2)dµ|γ2
∣∣∣∣

≤
∣∣∣∣F∗γ1(µ|γ1 − µ|γ2)∣∣∣∣W

+

∫
|g(Fγ1)− g(Fγ2)|dµ|γ2

≤ ||µ|γ1 − µ|γ2||W +H|γ1 − γ2|
∫

1dµ|γ2
≤ ||µ|γ1 − µ|γ2||W +H|γ1 − γ2|||µ|γ2||W .

Taking the supremum over g such that ||g||∞ ≤ 1 and L(g) ≤ 1, we finish the proof. �

The proofs of the next two lemmas are given on the next section. So we omit them.
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Lemma 4.0.2 Given paths Gµ0 , Gµ1 and Gµ2 (where Gµi(γ) = µi|γ) representing the

positive measures µ0, µ1, µ2 ∈ BV+ respectively, a function ϕ : I −→ R, an homeomor-

phism h : η ⊂ I −→ h(η) ⊂ I and a subinterval η ⊂ I, then the following properties

hold

P1) If P is a partition of I by intervals η, then

Var(Gµ0) =
∑
η

Varη(Gµ0);

P2) Varη(Gµ1 +Gµ2) ≤ Varη(Gµ1) + Varη(Gµ2)

P3) Var(ϕ ·Gµ0) ≤
(
supη |ϕ|

)
· (Varη(Gµ0)) +

(
supγ∈η ||Gµ0(γ)||W

)
· varη(ϕ)

P4) Varη(Gµ0 ◦ h) = Varh(η)(Gµ0).

Remark 4.0.1 For every path Gµ ∈ [[µ]], where µ ∈ AB, it holds

sup
γ∈η
||Gµ(γ)||W ≤ Varη(Gµ) +

1

m(η)

∫
η

||Gµ(γ)||Wdm(γ).

Lemma 4.0.3 For all path Gµ ∈ [[µ]], where µ ∈ BV+, it holds

Var(GF∗nL µ) ≤
∑
η∈P(n)

[
varη(g

(n)
η ) + 2 sup g(n)

η

]
· sup
γ∈η
||Gµ(γ)||W + sup g(n)

η · Varη(GµnF
).

(4.6)

Proof. Using the properties P1, P2, P3, supγ∈η ||GµnF
(γ)||W ≤ supγ∈η ||µ|γ||W and
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sup |g(n)
η | = sup g

(n)
η , we have

Var(GF∗nL µ) ≤
∑
η∈P(n)

VarTn|η(η)

[(
g(n)
η ·GµnF

)
◦ (T n|η)−1 · χTn(η)

]
≤

∑
η∈P(n)

VarTn|η(η)

[(
g(n)
η ·GµnF

)
◦ (T n|η)−1

]
· sup |χTn(η)|

+
∑
η∈P(n)

sup
Tn|η(η)

|
(
g(n)
η ·GµnF

)
◦ (T n|η)−1| · var(χTn(η))

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup
γ∈η
||µ|γ||W + Varη(GµnF

) · sup
η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup
η
||
(
g(n)
η ·GµnF

)
||W

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup
γ∈η
||µ|γ||W + Varη(GµnF

) · sup
η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup ||GµnF
||W · sup

η
|g(n)
η |

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup
γ∈η
||µ|γ||W + Varη(GµnF

) · sup
η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup
γ∈η
||µ|γ||W · sup

η
|g(n)
η |

≤
∑
η∈P(n)

[
varη(g

(n)
η ) + 2 sup

η
g(n)
η

]
· sup
γ∈η
||µ|γ||W + sup

η
g(n)
η · Varη(GµnF

)

�

Lemma 4.0.4 For all Gµ ∈ [[µ]], where µ ∈ BV+, it holds

Var(GµnF
) ≤ Var(Gµ) + nH

∫
||Gµ(γ)||Wdm(γ).

Proof. By lemma 4.0.1 we have

Var(Gµ1F
) ≤ Var(Gµ) +H

∫
||Gµ(γ)||Wdm(γ).

Iterating this relation and using equation (3.12) we arrive at the desired inequality. �

Lemma 4.0.5 For all path Gµ ∈ [[µ]], where µ ∈ BV+, it holds

Var(GF∗nL µ) ≤ C3λ
n
3 Var(Gµ) +K3(n)

∫
||Gµ(γ)||Wdm(γ) (4.7)

where λ3 := λ2, C3 = 4C2 (λ2 and C2 comes from equation (4.1)) and K3(n) =

3C2λ
n
2 sup{ 1

m(η)
; η ∈ P(n)}+ nHC2λ

n
2 .
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Proof. Replacing equation (4.1), lemma 4.0.1 and the definition 3.5.5 on the inequal-

ity given by the lemma 5.2.8 we get

Var(GF∗nL µ) ≤
∑
η∈P(n)

[
varη(g

(n)
η ) + 2 sup g(n)

η

]
sup
γ∈η
||µ|γ||W + sup g(n)

η Varη(GµnF
)

≤
∑
η∈P(n)

(C1λ
n
1 + 2C2λ

n
2 )

(
Varη(Gµ) +

1

m(η)

∫
η

||µ|γ||Wdm(γ)

)

+
∑
η∈P(n)

C1λ
n
1

(
Varη(Gµ) + nH

∫
η

||µ|γ||Wdm(γ)

)

≤
∑
η∈P(n)

(3C2λ
n
2 )

(
Varη(Gµ) +

1

m(η)

∫
η

||µ|γ||Wdm(γ)

)
+

∑
η∈P(n)

C2λ
n
2 Varη(Gµ) + nHC2λ

n
2

∑
η∈P(n)

∫
η

||µ|γ||Wdm(γ)

≤ 4C2λ
n
2

∑
η∈P(n)

Varη(Gµ)

+ 3C2λ
n
2

∑
η∈P(n)

1

m(η)

∫
η

||µ|γ||Wdm(γ) + nHC2λ
n
2

∑
η∈P(n)

∫
η

||µ|γ||Wdm(γ)

≤ 4C2λ
n
2

∑
η∈P(n)

Varη(Gµ)

+

(
3C2λ

n
2 max { 1

m(η)
; η ∈ P(n)}+ nHC2λ

n
2

) ∑
η∈P(n)

∫
η

||µ|γ||Wdm(γ)

≤ C3λ
n
3 Varη(Gµ) +K3(n)

∫
||µ|γ||Wdm(γ)

�

In order to be a Lasota-Yorke inequality K3(n) = 3C2λ
n
2 sup{ 1

m(η)
; η ∈ P(n)} +

nHC2λ
n
2 can’t depend on n. Let us remove this dependence on the next theorem.

Theorem 4.0.1 There are C0 and 0 ≤ λ0 ≤ 1 such that for all n ≥ 1 and for all

µ ∈ BV+ it holds

Var(GF∗nL µ) ≤ C0λ
n
0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ) (4.8)

Proof. First let us fix N ≥ 1 such that C3λ
N
3 < 1

2
and denote

K := max {K3(n); 1 ≤ n ≤ N}.
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Given n ≥ 1, write it as n = qN + r, with q ≥ 0 and 0 ≤ r ≤ N . Then using lemma

5.2.9

Var(GF∗nL µ) = Var(GF∗NL (F∗n-NL µ))

≤ C3λ
N
3 Var(GF∗n-NL µ) +K3(N)

∫
||GF∗n-NL µ(γ)||Wdm(γ)

≤ 1

2
Var(GF∗n-NL µ) +K

∫
||Gµ(γ)||Wdm(γ).

Then we got the inequality

Var(GF∗nL µ) ≤ 1

2
Var(GF∗n-NL µ) +K

∫
||Gµ(γ)||Wdm(γ). (4.9)

Doing the same computation as above, but now with Var(GF∗n-NL µ) instead of Var(GF∗nL µ)

we have

Var(GF∗n-NL µ) = Var(GF∗NL (F∗n-2NL µ))

≤ 1

2
Var(GF∗n-2NL µ) +K

∫
||Gµ(γ)||Wdm(γ).

Using what is written above and joining with the inequality (4.9) we have

Var(GF∗nL µ) ≤ 1

2
Var(GF∗n-NL µ) +K

∫
||Gµ(γ)||Wdm(γ)

≤ 1

2

(
1

2
Var(GF∗n-2NL µ) +K

∫
||Gµ(γ)||Wdm(γ)

)
+K

∫
||Gµ(γ)||Wdm(γ)

≤ 1

22
Var(GF∗n-2NL µ) +

(
1 +

1

2

)
K

∫
||Gµ(γ)||Wdm(γ).

Thus

Var(GF∗nL µ) ≤ 1

22
Var(GF∗n-2NL µ) +

(
1 +

1

2

)
K

∫
||Gµ(γ)||Wdm(γ). (4.10)

Repeating the same process q times we arrive at

Var(GF∗nL µ) ≤ 1

2q
Var(GF∗n-qNL µ) +

(
1 +

1

2
+ · · ·+ 1

2q−1

)
K

∫
||Gµ(γ)||Wdm(γ). (4.11)
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Since r = n− qN the above inequality become

Var(GF∗nL µ) ≤ 1

2q
Var(GF∗rL µ

) +

(
1 +

1

2
+ · · ·+ 1

2q−1

)
K

∫
||µ|γ||Wdm(γ). (4.12)

Now apply the lemma 5.2.9, with n = r to get

Var(GF∗rL µ
) ≤ C3λ

r
3 Var(Gµ) +K3(r)

∫
||Gµ(γ)||Wdm(γ)

≤ C3λ
r
3 Var(Gµ) +K

∫
||Gµ(γ)||Wdm(γ).

Replace the above inequality in inequality (4.12) to obtain

Var(GF∗nL µ) ≤ 1

2q

(
λr3C3 Var(Gµ) +K

∫
||Gµ(γ)||Wdm(γ)

)
+

(
q−1∑
i=0

1

2i

)
K

∫
||Gµ(γ)||Wdm(γ)

≤ 1

2q
C3λ

r
3 Var(Gµ) +

(
q∑
i=0

1

2i

)
K

∫
||Gµ(γ)||Wdm(γ)

≤ 1

2q
C3λ

r
3 Var(Gµ) +

(
∞∑
i=0

1

2i

)
K

∫
||Gµ(γ)||Wdm(γ)

≤ 1

2q
C3λ

r
3 Var(Gµ) + 2K

∫
||Gµ(γ)||Wdm(γ)

and we arrive at

Var(GF∗nL µ) ≤ 1

2q
λr3C3 Var(Gµ) + 2K

∫
||Gµ(γ)||Wdm(γ).

In order to finish the proof, choose C0 := max {2K,C3} e λ0 := max {2− 1
N , λ3} to

get
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Var(GF∗nL µ) ≤ 1

2q
λr3C3 Var(Gµ) + 2K

∫
||Gµ(γ)||Wdm(γ)

≤ 1

2q
λr3C0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ)

≤
(
2−q
)N
N λr3C0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ)

≤
(

2−
1
N

)Nq
λr3C0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ)

≤ λNq0 λr0C0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ)

≤ λNq+r0 C0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ)

≤ λn0C0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ)

which is what we were looking for. �

Corollary 4.0.1 For every µ ∈ BV+ it holds

Var(F∗nL µ) ≤ C0λ
n
0 Var(µ) + C0

∫
||Gµ(γ)||Wdm(γ). (4.13)

And the proof of proposition 3.5.3 is complete.



Chapter 5

Appendix 2: An Alternative

Approach with a Stronger Norm

In this chapter we are going to prove spectral gap for the transfer operator associated

to a certain class of skew products F = (T,G), on the square Σ (described below), with

a stronger notion of variation of signed measures. To do it, we add some restrictions

on the derivative of G.

5.1 Contracting Fibers Maps

Let Σ be the set defined by I × I, where I = [0, 1] and m is the Lebesgue measure

on I. Consider the dynamical system F : Σ −→ Σ, where F (x, y) = (T (x), G(x, y)),

T : I −→ I is a piecewise expanding C1 function (definition (3.5.5)) and G : Σ −→
I having the following properties:

1)
∂G

∂x
(x, .) : I −→ R is of class C1 for all x ∈ I;

2) there is a partition P = {0 = x0, · · · , xq} of I, Ii = [xi−1, xi] i = 1, · · · , q and

0 < α < 1 such that

max
0≤i≤q

sup
(x,y)∈Ii×I

∣∣∣∣∂G∂y (x, y)

∣∣∣∣ ≤ α < 1;

3)

H2 = max
0≤i≤q

sup
(x,y)∈Ii×I

∣∣∣∣∂G∂x (x, y)

∣∣∣∣+ max
0≤i≤q

sup
(x,y)∈Ii×I

∣∣∣∣ ∂2G

∂y∂x
(x, y)

∣∣∣∣ <∞.
53
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5.2 Lasota-Yorke inequality and convergence to equi-

librium

Let’s work on the space BV2 defined in the subsection (2.0.5). Henceforth, we fix a

positive measure µ ∈ BV2 and a path Gµ : I −→ B(I) which represents µ (i.e. a pair

({µγ}γ, φx)).
For all n ≥ 1 set

µnF(γ) := F n
γ
∗µ|γ =

(
πy ◦ Fn ◦π−1

γ,y

)∗
µ|γ. (5.1)

With the above notation define

(F ∗µ)|γ =
∑
η∈P(1)

(
gη

(1) · µ1
F

)
◦ T |η−1(γ) · χT (η)(γ), (5.2)

and by induction

(F n∗µ)|γ =
∑
η∈P(n)

(
g(n)
η · µnF

)
◦ (T n|η)−1(γ) · χTn(η)(γ), (5.3)

where g(n) was defined in definition (3.5.5).

Remark 5.2.1 The equations (4.3), (4.4) and (??) lead us to define the expression

GF n∗µ(γ) :=
∑
η∈P(n)

g(n)
η (T n|η−1(γ)) · F n

Tn|η−1(γ)
∗Gµ(T n|η−1(γ)) · χTn(η)(γ). (5.4)

Then, given a path Gµ we denote by GFn ∗µ the path given by the above expression

(5.4), defined on a full measure set which contains T n(IGµ). The path GF ∗nµ represents

the positive measure F ∗nµ. This gives us an association [µ] 7−→ [F ∗nµ] which allows

to estimate the variation of the measure F ∗nµ by estimating the variation of the path

GFn ∗µ. In the sense that, once we prove an estimation like (see theorem (4.0.1))

Var(GF ∗nµ) ≤ C0λ
n
0 Var(Gµ) + C0

∫
||µ|γ||Wdm(γ), (5.5)

we can take the infimum on both sides to obtain

Var(F ∗nµ) ≤ C0λ
n
0 Var(µ) + C0

∫
||µ|γ||Wdm(γ). (5.6)
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Moreover, we set (see the definition of BV2)

Ω = min

1,
α− α2

max1≤i≤q sup(x,y)∈Ii×I

∣∣∣∣∂2G

∂y2
(x, y)

∣∣∣∣
 . (5.7)

The following three results; lemma (5.2.1), proposition (5.2.1) and proposition

(5.2.2), have the same proofs as lemma (3.12), proposition (3.13) and proposition (3.2.1)

respectively. Hence we’ll omit them.

Lemma 5.2.1 For every leaf γ, the operator F∗γ : SB(I) −→ SB(I) is a weak con-

traction under the || ||W norm, where Fγ := πy ◦ F |γ ◦ π−1
γ,y : I −→ I. In particular

||F∗γ µ|γ||W ≤ ||µ|γ||W for every µ ∈ AB.

Proposition 5.2.1 If µ is a probability measure, then ||µ||W = 1. Hence

||F∗ nµ||W = ||µ||W = 1

for all n ≥ 1.

Proposition 5.2.2 If µ ∈ L1 then

||F∗ µ||1 ≤ ||µ||1. (5.8)

Lemma 5.2.2 For every leaf γ, the operator F∗γ : SB(I) −→ SB(I) is a weak con-

traction with the || ||C2′ norm, where Fγ := πy ◦ F |γ ◦ π−1
γ,y : I −→ I. In particular

||F∗γ µ|γ||C2′ ≤ ||µ|γ||C2′ for every µ ∈ AB.

Proof. For a given g ∈ BC2 , by 1), 2), 3) given in the beginning of section (5.1) and

by definition of Ω (equation (5.7)) is straightforward to see that g(Fγ) ∈ BC2 . Hence

∣∣∣∣∫ gdF∗γ µ

∣∣∣∣ =

∣∣∣∣∫ g(Fγ)dµ

∣∣∣∣
≤ ||µ||C2′ .

Taking the supremum over g ∈ BC2 the proof is complete. �
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Lemma 5.2.3 Let µ and ν be two signed measures, where ν =
∑n

i=1 αiδyi with αi ∈ R

for all i = 1, · · · , n. Let γ1 and γ2 be two leaves such that γ1, γ2 ∈ Ij for some

j = 1, · · · , q. Then there exists H2 > 0 such that

||F∗γ1 µ− F∗γ2 ν||C2′ ≤ ||µ− ν||C2′ +H2|γ1 − γ2|||ν||W .

Proof.

For a given g ∈ BC2 we have

∣∣∣∣∫ gdF∗γ1 µ−
∫
gdF∗γ2 ν

∣∣∣∣ ≤ ∣∣∣∣∫ gdF∗γ1 µ−
∫
gdF∗γ1 ν

∣∣∣∣
+

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣
≤

∣∣∣∣F∗γ1 µ− F∗γ1 ν
∣∣∣∣
C2′

+

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣
≤ H1 ||µ− ν||C2′

+

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣ .
So we’ve found

∣∣∣∣∫ gdF∗γ1 µ−
∫
gdF∗γ2 ν

∣∣∣∣ ≤ ||µ− ν||C2′ +

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣ . (5.9)

Let us estimate the second term of the right hand side of equation (5.9).



5.2 Lasota-Yorke inequality and convergence to equilibrium 57

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣ =

∣∣∣∣∫ g ◦G(γ1, z)dν(z)−
∫
g ◦G(γ2, z)dν(z)

∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

αig ◦G(γ1, yi)−
n∑
i=1

αig ◦G(γ2, yi)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

αi (g ◦G(γ1, yi)− g ◦G(γ2, yi))

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

αi

(∫
[γ2,γ1]

∂

∂x
(g ◦G)(x, yi)dm(x)

)∣∣∣∣∣
=

∣∣∣∣∣
(∫

[γ2,γ1]

n∑
i=1

αi
∂

∂x
(g ◦G)(x, yi)dm(x)

)∣∣∣∣∣
≤

(∫
[γ2,γ1]

∣∣∣∣∣
n∑
i=1

αi
∂

∂x
(g ◦G)(x, yi)

∣∣∣∣∣dm(x)

)

=

∫
[γ2,γ1]

∣∣∣∣∫ ∂

∂x
(g ◦G)(x, z)dν(z)

∣∣∣∣dm(x).

So we get

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣ ≤ ∫
[γ2,γ1]

∣∣∣∣∫ ∂

∂x
(g ◦G)(x, z)dν(z)

∣∣∣∣dm(x). (5.10)

Set

H2 = max
0≤i≤q

sup
(x,y)∈Ii×I

∣∣∣∣∂G∂x (x, y)

∣∣∣∣+ max
0≤i≤q

sup
(x,y)∈Ii×I

∣∣∣∣ ∂2G

∂y∂x
(x, y)

∣∣∣∣ . (5.11)

Defining in this way we have that the real function,hx, defined by hx :=
1

H2

· ∂
∂x

(g ◦
G)(x, .) : I −→ R satisfies ||hx||∞ ≤ 1 and L(hx) ≤ 1 for all x ∈ I.

Indeed, given a x ∈ I and for all y ∈ I we have

∣∣∣∣ 1

H2

· ∂
∂x

(g ◦G)(x, y)

∣∣∣∣ =

∣∣∣∣ 1

H2

g′(G(x, y)) · ∂G
∂x

(x, y)

∣∣∣∣
≤ 1

H2

∣∣∣∣∂G∂x (x, y)

∣∣∣∣
≤ 1.

Hence ∣∣∣∣∣∣∣∣ 1

H2

· ∂
∂x

(g ◦G)(x, .)

∣∣∣∣∣∣∣∣
∞
≤ 1.
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Moreover

∣∣∣∣( 1

H2

∂

∂x
(g ◦G)(x, y)

)′∣∣∣∣ =
1

H2

∣∣∣∣g′′(G(x, y)) · ∂G
∂y

(x, y) · ∂G
∂x

(x, y) + g′(G(x, y)) · ∂
2G

∂y∂x
(x, y)

∣∣∣∣
≤ α

H2

∣∣∣∣∂G∂x (x, y)

∣∣∣∣+

∣∣∣∣ ∂2G

∂y∂x
(x, y)

∣∣∣∣
≤ 1.

Hence the inequality (5.10) gives us

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣ ≤ ∫
[γ2,γ1]

∣∣∣∣∫ ∂

∂x
(g ◦G)(x, z)dν(z)

∣∣∣∣dm(x)

=

∫
[γ2,γ1]

H2

∣∣∣∣∫ 1

H2

∂

∂x
(g ◦G)(x, z)dν(z)

∣∣∣∣dm(x)

≤
∫

[γ2,γ1]

H2||ν||Wdν(z)dm(x)

= (γ1 − γ2)H2||ν||W .

And we get

∣∣∣∣∫ gdF∗γ1 ν −
∫
gdF∗γ2 ν

∣∣∣∣ ≤ (γ1 − γ2)H2||ν||W . (5.12)

Joining the above inequality (5.12) with (5.9) we arrive

∣∣∣∣∫ gdF∗γ1 µ−
∫
gdF∗γ2 ν

∣∣∣∣ ≤ ||µ− ν||C2′ + (γ1 − γ2)H2||ν||W . (5.13)

We finish the proof taking the supremum over g ∈ BC2 .

�

Lemma 5.2.4 Let µ be a signed measure on I. Given s ∈ N, consider a partition of I

given by P = {I1, · · · , Is}, where m(Ii) =
1

s
for all i. Denote εs =

1

s
and consider the

signed measure νs, on I, defined by νs =
∑s

i=1 µ(Ii)δxi where xi ∈ Ii for all i. Then

||µ− νs||W ≤ εs|µ|(I).

Proof. Given a g ∈ b1 − Lip(I) we have L(g) = 1. Then, for any y ∈ Ii, holds

|g(y)− g(xi)| ≤ m(Ii) for all i. Hence
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∣∣∣∣∫ gdµ−
∫
gdνs

∣∣∣∣ =

∣∣∣∣∣
s∑
i=1

∫
Ii

gdµ−
s∑
i=1

g(xi)µ(Ii)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ii

s∑
i=1

g(y)χIi(y)dµ(y)−
∫ s∑

i=1

g(xi)χIi(y)dµ(y)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ii

s∑
i=1

(g(y)− g(xi))χIi(y)dµ(y)

∣∣∣∣∣
≤

∫
Ii

s∑
i=1

|g(y)− g(xi)|χIi(y)d|µ|(y)

≤
∫
Ii

s∑
i=1

εsχIi(y)d|µ|(y)

≤ εs|µ|(I).

We finish the proof taking the supremum over g ∈ b1− Lip(I).

�

Proposition 5.2.3 Let µ and ν be two signed measures and let γ1 and γ2 be two leaves

such that γ1, γ2 ∈ Ii for some i = 1, · · · , q. Then

||F∗γ1 µ− F∗γ2 ν||C2′ ≤ ||µ− ν||C2′ +H2|γ1 − γ2|||ν||W .

Proof. By lemma (5.2.4), consider a sequence of signed measures {νn}n of the type

νn =
∑k(n)

i=1 αi(n)δyi(n), where {yi(n)}n ⊂ I for all i and {αi(n)}n ⊂ R for all i, such

that lim
n→∞

νn = ν with the || ||W norm. Since || ||C2′ ≤ || ||W we also have that

lim
n→∞

νn = ν with the || ||C2′ norm. By lemma (5.2.3) and since, for all γ, the operator

F∗γ is continuous with respect to both norms || ||W and || ||C2′ , we finish the proof. �

The proofs of the next two lemmas equals to the proofs of the lemmas (??) and

(4.0.1). So, we omit them.

Lemma 5.2.5 Given paths Gµ, Gµ1 and Gµ2 (where Gµ(γ) = µ|γ, Gµ1(γ) = µ1|γ and Gµ2(γ) =

µ2|γ) representing the positive measures measures µ, µ1, µ2 ∈ BV2 respectively, a func-

tion ϕ : I −→ R, an homomorphism h : η ⊂ I −→ h(η) ⊂ I and a subinterval η ⊂ I,

then the following properties hold
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P1) If P is a partition of I by intervals η, then

Var(Gµ) =
∑
η

Varη(Gµ);

P2) Varη(Gµ1 +Gµ2) ≤ Varη(Gµ1) + Varη(Gµ2)

P3) Var(ϕ ·Gµ) ≤
(
supη |ϕ|

)
· (Varη(Gµ)) +

(
supγ∈η ||µ|γ||C2′

)
· (Varη(ϕ))

P4) Varη(Gµ ◦ h) = Varh(η)(Gµ).

Remark 5.2.2 As remarked in (4.1) There exists λ2 ∈ (λ1, 1) e C2 > 0 such that

var(g
(n)
η ) ≤ C2λ

n
2 for all η ∈ P(n) and n ≥ 1.

Lemma 5.2.6 For a given measure µ on Σ we have

sup
γ∈η
||µ|γ||C2′ ≤ varη(||µ||C2′ ) +

1

m(η)

∫
η

||µ|γ||C2′dm(γ)

≤ Varη(µ) +
1

m(η)

∫
η

||µ|γ||C2′dm(γ)

≤ Varη(µ) +
1

m(η)

∫
η

||µ|γ||Wdm(γ)

Lemma 5.2.7 For all Gµ ∈ [µ], where µ ∈ BV2, it holds

Var(µnF) ≤ Var(Gµ) + nH2

∫
||Gµ(γ)||Wdm(γ).

Proof. By lemma (5.2.3) we have

Var(µ1
F ) ≤ Var(Gµ) +H2

∫
||Gµ(γ)||Wdm(γ).

Iterating this relation and using lemma (3.12) we arrive at the desired inequality. �

Lemma 5.2.8 For all path Gµ ∈ [µ], where µ ∈ BV2, it holds

Var(GF ∗nµ) ≤
∑
η∈P(n)

[
varη(g

(n)
η ) + 2 sup g(n)

η

]
· sup
γ∈η
||Gµ(γ)||C2′ + sup g(n)

η · Varη(µ
n
F ).

(5.14)
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Proof. Using the properties P1, P2, P3, supγ∈η ||µnF(γ)||C2′ ≤ supγ∈η ||µ|γ||C2′ and

sup |g(n)
η | = sup g

(n)
η , we have

Var(GF n∗µ) ≤
∑
η∈P(n)

VarTn|η(η)

[(
g(n)
η · µnF

)
◦ (T n|η)−1 · χTn(η)

]
≤

∑
η∈P(n)

VarTn|η(η)

[(
g(n)
η · µnF

)
◦ (T n|η)−1

]
· sup |χTn(η)|

+
∑
η∈P(n)

sup
Tn|η(η)

|
(
g(n)
η · µnF

)
◦ (T n|η)−1| · var(χTn(η))

≤
∑
η∈P(n)

Varη
(
g(n)
η · µnF

)
+ 2 · sup

Tn|η(η)

||
(
gη

(n) · µnF
)
◦ (T n|η)−1||C2′

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup

η
||µnF ||C2′ + Varη(µ

n
F) · sup

η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup
η
||
(
g(n)
η · µnF

)
◦ (T n|η)−1||C2′

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup
γ∈η
||µ|γ||C2′ + Varη(µ

n
F) · sup

η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup
η
||
(
g(n)
η · µnF

)
||C2′

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup
γ∈η
||µ|γ||C2′ + Varη(µ

n
F) · sup

η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup || (µnF) ||C2′ · sup
η
|g(n)
η |

≤
∑
η∈P(n)

varη
(
g(n)
η

)
· sup
γ∈η
||µ|γ||C2′ + Varη(µ

n
F) · sup

η
|g(n)
η |

+ 2 ·
∑
η∈P(n)

sup
γ∈η
||µ|γ||C2′ · sup

η
|g(n)
η |

≤
∑
η∈P(n)

[
varη(g

(n)
η ) + 2 sup

η
g(n)
η

]
· sup
γ∈η
||µ|γ||C2′ + sup

η
g(n)
η · Varη(µ

n
F)

�

Lemma 5.2.9 For all path Gµ ∈ [µ], where µ ∈ BV2, it holds

Var(GF ∗nµ) ≤ C3λ
n
3 Var(Gµ) +K3(n)

∫
||Gµ(γ)||Wdm(γ) (5.15)

where λ3 := λ2, C3 = 4C2 (λ2 and C2 comes from equation (4.1)) and K3(n) =

3C2λ
n
2 sup{ 1

m(η)
; η ∈ P(n)}+ nH2C2λ

n
2 .
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Proof. Replacing equation (4.1), lemma (4.0.1) and the definition (3.5.5) on the

inequality given by the lemma (5.2.8) we get

Var(GF∗ nµ) ≤
∑
η∈P(n)

[
varη(g

(n)
η ) + 2 sup g(n)

η

]
sup
γ∈η
||µ|γ||W + sup g(n)

η Varη(µ
n
F)

≤
∑
η∈P(n)

(C1λ
n
1 + 2C2λ

n
2 )

(
Varη(Gµ) +

1

m(η)

∫
η

||µ|γ||Wdm(γ)

)

+
∑
η∈P(n)

C1λ
n
1

(
Varη(Gµ) + nH2

∫
η

||µ|γ||Wdm(γ)

)

≤
∑
η∈P(n)

(3C2λ
n
2 )

(
Varη(Gµ) +

1

m(η)

∫
η

||µ|γ||Wdm(γ)

)
+

∑
η∈P(n)

C2λ
n
2 Varη(Gµ) + nH2C2λ

n
2

∑
η∈P(n)

∫
η

||µ|γ||Wdm(γ)

≤ 4C2λ
n
2

∑
η∈P(n)

Varη(Gµ)

+ 3C2λ
n
2

∑
η∈P(n)

1

m(η)

∫
η

||µ|γ||Wdm(γ) + nH2C2λ
n
2

∑
η∈P(n)

∫
η

||µ|γ||Wdm(γ)

≤ 4C2λ
n
2

∑
η∈P(n)

Varη(Gµ)

+

(
3C2λ

n
2 max { 1

m(η)
; η ∈ P(n)}+ nH2C2λ

n
2

) ∑
η∈P(n)

∫
η

||µ|γ||Wdm(γ)

≤ C3λ
n
3 Varη(Gµ) +K3(n)

∫
||µ|γ||Wdm(γ)

�

In order to be a Lasota-Yorke inequality K3(n) = 3C2λ
n
2 sup{ 1

m(η)
; η ∈ P(n)} +

nH2C2λ
n
2 can’t depend on n. The next theorem removes this dependence. The argu-

ment of its proof is analogous of the proof of theorem (4.0.1), so we skip it.

Theorem 5.2.1 There are C0 and 0 ≤ λ0 ≤ 1 such that for all n ≥ 1 and for all

µ ∈ BV2 it holds

Var(GF ∗nµ) ≤ C0λ
n
0 Var(Gµ) + C0

∫
||Gµ(γ)||Wdm(γ) (5.16)

By the same argument of remark (5.2.1) we get



5.2 Lasota-Yorke inequality and convergence to equilibrium 63

Corollary 5.2.1 For every µ ∈ BV2 it holds

Var(F ∗nµ) ≤ C0λ
n
0 Var(µ) + C0

∫
||Gµ(γ)||Wdm(γ). (5.17)

Corollary 5.2.2 For all µ ∈ BV2 and n ≥ 1

||F ∗nµ||BV ≤ C0λ
n
0 ||µ||BV + (C0 + 1)||µ||1.

Proof. Since F∗ is a weak || ||1-contraction (proposition (??)), to get the result, we

add ||F∗ nµ||1 on both sides of the inequality (4.8). �
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5.3 Spectral Gap

For a given µ ∈ BV2 and its restriction on the leaf γ, µ|γ := π∗γ,y(φx(γ)µγ), define

µ|γ := π∗γ,yµγ.

Hence µ|γ is a probability on I. Moreover µ|γ = φx(γ)µ|γ.

Proposition 5.3.1 There exists a real number θ, such that for all signed measure µ

on I and for all γ ∈ I, holds ||F∗γ µ||W ≤ α||µ||W + θµ(I). In particular, if µ(I) = 0

then ||F∗γ µ||W ≤ α||µ||W .

Proof. If g ∈ b1− Lip(I) then g ◦ Fγ is α-Lipschitz. Moreover since ||g||∞ ≤ 1 then

||g ◦ Fγ − θ||∞ ≤ α for some θ. This implies that

∣∣∣∣∫ gdF∗γ µ

∣∣∣∣ =

∣∣∣∣∫ g ◦ Fγdµ
∣∣∣∣

=

∣∣∣∣∫ g ◦ Fγ − θdµ
∣∣∣∣+

∣∣∣∣∫ θdµ

∣∣∣∣
= α

∣∣∣∣∫ g ◦ Fγ − θ
α

dµ

∣∣∣∣+ θµ(I)

= α ||µ||W + θµ(I).

And taking the supremum over g ∈ b1− Lip(I) we have ||F∗γ µ||W ≤ α||µ||W + θµ(I).

In particular, if µ(I) = 0 we get the second part. �

The proof of the following proposition equals to the proof of the proposition (3.19).

Hence we omit it.

Proposition 5.3.2 For all signed measure µ on Σ, holds ||F∗ µ||1 ≤ α||µ||1 + (α +

1)||φx||1.

Iterating the relation of the above proposition we get.

Corollary 5.3.1 For all signed measure µ on Σ, we have ||F∗ nµ||1 ≤ αn||µ||1 +

α||φx||1, where α = 1+α
1−α .

From [2] and [3] we get the following.
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Lemma 5.3.1 Let PT : BV (I) −→ BV (I) be the Peron-Frobenius operator associated

with a piecewise expanding C1 map, T : I −→ I. Then PT : BV (I) −→ BV (I)

has spectral gap. Moreover there exists 0 < r < 1 and D > 0 such that for all

φ ∈ V = {φ ∈ BV (I),
∫
φdm = 0} and for all n ≥ 0 we have |Pn

T (φ)|BV ≤ Drn|φ|BV .

Denote by V , the following set of zero average measures

V = {µ ∈ BV2 : µ(Σ) = 0}.

Note that for all µ ∈ V holds π∗xµ(I) = 0. Moreover, since π∗xµ = φm (denoting

φ = φ+ − φ−) we have
∫
φdm = 0. Indeed

µ(Σ) = 0 =⇒ µ+(Σ)− µ−(Σ) = 0

=⇒
∫
µ+
γ (Σ ∩ γ)dφ+

xm−
∫
µ−γ (Σ ∩ γ)dφ−xm = 0

=⇒
∫
φ+
x − φ−x dm = 0

=⇒
∫
φdm = 0.

Proposition 5.3.3 There exist 0 < r < 1 and 0 < β < 1 such that, for every signed

measure µ ∈ L1 with µ(Σ) = 0, ||µ||1 ≤ 1, π∗xµ = φxm, φx ∈ BV (I) and |φx|BV ≤ 1,

holds ||F∗ nµ||1 ≤ (1 + αD)
(

1
r

) 1
2 βn, for all n ≥ 1. In particular, for every signed

measure µ ∈ V such that ||µ||BV ≤ 1 holds the same estimation, ||F∗ nµ||1 ≤ (1 +

αD)
(

1
r

) 1
2 βn, for all n ≥ 1.

Proof. Let µ ∈ L1 be a signed measure such that µ(Σ) = 0, ||µ||1 ≤ 1, π∗xµ = φxm

with φx ∈ BV (I) and |φx|BV ≤ 1. Denoting φ = φ+
x − φ−x , we have

∫
φdm = 0 and

|φ|BV , |φ|1 ≤ 1. Moreover, from lemma (5.3.1) we have |PT (φ)|BV ≤ Drn|φ|BV .

Let m and 0 ≤ d ≤ 1 be the coefficients of the division of n by 2, i.e. n = 2m+ d.

Thus m = n−d
2

(remember ||F∗ sµ||1 ≤ ||µ||1 for all s). And so, we have (below, let r

be defined by r = max{r, α} and β =
√
r, 0 < β < 1)
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||F∗ nµ||1 ≤ ||F∗ 2m+1µ||1

≤ αm||F∗ m+1µ||1 + α||π∗x(F∗ m+1µ)||1

≤ αm||µ||1 + α|Pm+1
T (φ)|1

≤ αm||µ||1 + α|Pm+1
T (φ)|BV

≤ αm + αrm+1D|φ|BV

≤ αm + αrmD

≤ (1 + αD) max{r, α}m

≤ (1 + αD)rm

= (1 + αD)r
n−d
2

= (1 + αD)

(
1

r

) d
2 √

r
n

= (1 + αD)

(
1

r

) d
2

βn

≤ (1 + αD)

(
1

r

) 1
2

βn.

�

Proposition 5.3.4 There exist 0 < ξ < 1 and K > 0 such that, for all n ≥ 1 holds

||(F∗ |V)n||BV ≤ ξnK.

Proof.

Let µ ∈ V be a signed measure such that µ(Σ) = 0 and ||µ||BV ≤ 1 (and so

||µ||1 ≤ 1).

Let m and 0 ≤ d ≤ 1 be the coefficients of the division of n by 2, i.e. n = 2m+ d.

Thus m = n−d
2

. And so, we have (below, let λ0 be defined by λ0 = max{λ0, β} and

ξ =
√
λ0).

It holds that ||F∗ nµ||BV ≤ Cλn0 ||µ||BV +C||µ||1 (where C = C0 +1) for all µ ∈ BV2.

Moreover || ||1 ≤ || ||BV and ||F∗ n||BV ≤ 2C for all n ≥ 1. Besides that, using

proposition (5.3.3) and (5.2.2), we have
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||(F∗ |V)nµ||BV ≤ λm0 C||(F∗ |V)m+1µ||BV + C||(F∗ |V)m+1µ||1

≤ λm0 2C2 + C(1 + λD)

(
1

r

) 1
2

βm+1

≤ λm0 2C2 + C(1 + λD)

(
1

r

) 1
2

βm

≤ λ0
m

[
2C2 + C(1 + λD)

(
1

r

) 1
2

]

≤ λ0

n−d
2

[
2C2 + C(1 + λD)

(
1

r

) 1
2

]

≤ (

√
λ0)n

(
1

r

) d
2

[
2C2 + C(1 + λD)

(
1

r

) 1
2

]

= ξn
(

1

r

) d
2

[
2C2 + C(1 + λD)

(
1

r

) 1
2

]
However

||(F∗ |V)n||BV ≤ ξnK.

�

Theorem 5.3.1 Let µ0 be the invariant measure for 2-dimensional Lorenz transfor-

mation F : Σ −→ Σ. Then µ0 ∈ BV2.

Proof. Let µx = φxm be the marginal measure of the disintegration of µ0. Since

||µ||1 = ||φx||1 = 1 we have that µ ∈ L1. Since (m − µ0)(Σ) = 0 and π∗x(m − µ0) =

(1− φx)m, by the first part of proposition (5.3.3) and the F -invariance of µ0 we get

F∗ nm −→ µ0 as n −→∞, in the L1 − norm.

Besides that, by the theorem (5.2.1) it holds (F∗ nm)n ⊂ BV2. Moreover by proposition

(5.3.4) for every p ∈ N, ||F∗ n(m − F∗ pm)||BV −→ 0 as n −→ ∞. Then (F∗ n(m))n is

a || ||BV -Cauchy sequence.

Since BV2 is a Banach space there exist a measure µ̃ ∈ BV2 such that

F∗ nm −→ µ0 as n −→∞, in the BV2 − norm.

But it means

F∗ nm −→ µ̃ as n −→∞, in the L1 − norm.

By the uniqueness of the limit µ̃ = µ0 and the proof is complete. �
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Theorem 5.3.2 (Spectral gap on BV2) If F : Σ −→ Σ, F = (T,G), where T is

a piecewise expanding C1 map and G satisfies 1), 2) and 3) given at beginning of

Section 5.1, then the operator F∗ : BV2 −→ BV2 can be written as

F∗ = P + N

where

a) P is a projection i.e. P2 = P and dim Im(P) = 1;

b) there are 0 < ξ < 1 and K > 0 such that 1 ||Nn(µ)||BV2 ≤ ξnK;

c) P N = N P = 0.

Proof.

By theorem (5.3.1) we have that F∗ : BV2 −→ BV2 has a fixed point µ0.

Define the projection P : BV2 −→ [µ0] ( [µ0] is the space spanned by µ0), by

P(µ) = µ(Σ)µ0. Now define the operator

S : BV2 −→ V ,

by

S(µ) = µ− P(µ) for every µ ∈ BV2.

Thus define N = F∗ ◦ S and observe that Nn(µ) = F∗ n(S(µ)). Since S is bounded and

S(µ) has zero average we get, by proposition (5.3.4), ||Nn(µ)||BV ≤ ξnK||S||BV ||µ||BV .

Note that F∗ = P + N. We finish the proof observing that, since µ0 is mixing (see [13])

it holds dim Im(P) = dim([µ0]) = 1. �

1We remark that by this, the spectral radius of N satisfies ρ(N) < 1, where N is the extension of

N to BV2 (the completion of BV2). This gives us spectral gap, in the usual sense, for the operator

F : BV2 −→ BV2.
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