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Resumo

Consideramos um sistema que preserva e contrai uma folheagao vertical. Provamos
que o operador de transferéncia associado, agindo sobre um espaco vetorial adequado,
satisfaz uma propriedade chamada ”spectral gap”.

Como aplica¢ao consideramos sistemas tipo Lorenz bi-dimensionais (hiperbdlicos
por partigado com contragao e expansao possivelmente ilimitadas): provamos que estes
sistemas possuem ”spectral gap” e obtemos uma estimativa quantitativa para sua es-
tabilidade estatistica. Sob certas perturbacoes deterministicas do sistema, a medida

fisica varia continuamente, com maédulo de continuidade igual a O(dlogd).

viil



Abstract

We consider transformations preserving a contracting foliation, such that the associated
quotient map satisfies a Lasota Yorke inequality.

We prove that the associated transfer operator, acting on suitable normed spaces,
has spectral gap.

As an application we consider Lorenz-Like two dimensional maps (piecewise hyper-
bolic with unbounded contraction and expansion rate): we prove that those systems
have spectral gap and we show a quantitative estimation for their statistical stability.
Under deterministic perturbations of the system, the physical measure varies continu-

ously, with a modulus of continuity O(d logd).



Contents

1 Introduction

2 Fundamental Results
201 The BVj1 (I <p<oo)space. . . . . ... ............
2.0.2 The £! S;ace ............................
2.0.3 The L Space . . . . . . .
2.04 The BY Space . . . . . . . . . ...
2.0.5 The BV, Space . . . . . . .. ...

3 Spectral Gap for Lorenz Systems
3.1 Contracting Fiber Maps . . . . . . . . . . ... ... ...
3.2 Basic properties of the norms and convergence to equilibrium . . . . . .
3.2.1 Basic properties of the L' norm . . . . . . ... ... ... ...
3.2.2  Properties of the LY norm . . . . . . . ... ... L.
3.3 Spectral gap. . . . ...
3.4 Application to Lorenz like maps . . . . . . . .. ... ... ...
3.5 Quantitative Stability . . . . .. ... oo
3.5.1 Quantitative stability of Lorenz like maps . . . . .. .. .. ..

4 Appendix 1: Semi Lasota-Yorke Inequality
4.0.1 Semi Lasota-Yorke Inequality . . . . .. .. ... .. ... ...

5 Appendix 2: An Alternative Approach with a Stronger Norm
5.1 Contracting Fibers Maps . . . . . . . . .. ... ... ... ... ...
5.2 Lasota-Yorke inequality and convergence to equilibrium . . . . . . . ..

5.3 Spectral Gap . . . . ...

11
13
15

17
17
20
22
28
29
31
34
37

45
45



Chapter 1
Introduction

The study of the behaviour of the transfer operator restricted to a suitable func-
tional space has proven to be a powerful tool for the understanding of the statistical
properties of a dynamical system. This approach gave first results in the study of the
dynamics of piecewise expanding maps where the involved spaces are made of regu-
lar, absolutely continuous measures (see [6], [18], [8] for some introductory text). In
recent years this approach was extended to piecewise hyperbolic systems by the use
of suitable anisotropic norms (the expanding and contracting direction are treated dif-
ferently), leading to suitable distribution spaces on which the transfer operator has
good spectral properties (see e.g. [7], [5], [10], [14]). From these properties, several
limit theorems or stability statements can be deduced. This approach has proven to
be successful in non-trivial classes of systems like geodesic flows (see [18],[9]) or billiard
maps (see e.g. [11] [12] where a relatively simple and unified approach to many limit
and perturbative results is given for the Lorentz gas).

In this thesis, we consider maps preserving an uniformly contracting foliation. We
show how it is possible, in a simple way, to define suitable spaces of signed measures
(with an anisotropic norm) such that, under very weak regularity assumptions, the
transfer operator associated to the dynamics has a spectral gap (in the sense given
in Theorem 3.3.1). This shows an exponential convergence in a certain norm, for the
iteration of a large class of measures by the transfer operator. Therefore, we present
the construction and give some properties of such spaces of signed measures in chapter
(2).

The main part of this work is presented in chapter (3). There we deal with a skew



product of the type F': ¥ — 3, F(x,y) = (T'(x), G(z,y)), where T : Ny — N; and
G : ¥ — N, are mensurable maps satisfying some conditions and X is defined by
(X =)N; X Ny, where N; and N, are manifolds endowed with a Riemannian metric.
Assuming certain assumptions given in the beginning of section 3.1 (G1, T1,...,T3.4)
we prove a spectral gap for its transfer operator acting on a suitable space of sign

measure (denoted by S*). More precisely

Theorem 1.0.1 (Spectral gap on S') If F satisfies G1, T1,...,T3.4, then the op-

erator F* : S* — St can be written as
F* =P +N
where
a) P is a projection, i.e. P> = P, and dim Im(P) = 1;
b) there are 0 < & <1 and C > 0 such that || N" ||s151 < E"C for alln > 1;

¢) PN=NP =0,

Also in chapter (3), section 3.4, we present an application of this approach, show-
ing spectral gap for 2-dimensional Lorenz like maps (piecewise hyperbolic maps with
unbounded expansion and contraction rates) and a quantitative estimation for their
statistical stability. We remark that a qualitative estimation for a class of similar maps
was given in [1].

We also present two additional appendixes. In the first Chapter (4) we give a proof
of the Proposition (3.5.3), which is used to get stability for the invariant measure and
to prove that the invariant measure of such systems has a strong regularity property:
bounded variation. In appendix presented in chapter (5) we present an alternative
approach to obtain spectral gap for Lorenz Like systems with, like we did in chapter

(3), with a stronger norm and convergence to equilibrium properties.



Chapter 2

Fundamental Results

In this chapter we formalize the construction of all spaces we are going to work.

2.0.1 The BVj:1 (1 <p < o0) space.

In this section we briefly introduce the space of functions BV 1. For more details
p
and a more general approach see [4].

Set I = [0, 1] and let m be the Lebesgue measure on it.

Definition 2.0.1 For an arbitrary function h : I — C and e > 0 define osc(h, B.(x)) :
I — [0,00] by (B.(x) denotes the open ball of center x and radius €)

osc(h, Be(x)) = ess sup{|h(y1) — h(y2)[; y1, 42 € Be(x)}, (2.1)

where the essential supremum is taken with respect to the product measure m? on I x I.
Also define the real function oscy(h,€), on the variable €, by € — oscy(h,€) =
[ osc(h, B(x))dm(z).

Definition 2.0.2 Fiz A; > 0 and denote by ® the class of all isotonic maps ¢ :
(0, A;] — [0,00] (x <y = ¢(x) < ¢(y) such that p(x) — 0 if v —> 0). Set

(a) Ry ={h:I — C;osci(h,.) € D};

L ={h€Ry;osci(he) <n-er Yee (0,A]};

p

(b) Forn € N, define R

1,n-.

(¢c) And set S} 1 = J, ey R

17n.l-
P



Definition 2.0.3

(a) BV] 1 is the space of m-equivalence classes of functions in Sy 1;
D ’p

(b) For h:I — C set

vy ) = s (Lroscu(h,) ) 2.2

P 0<e<A; \ep

(¢c) For h € BV, 1 set

1hlly = var, Al (23)
The proof of the following result can be found in [4].
Theorem 2.0.1 (BVL;, Il Hl,l) is a Banach space.

Definition 2.0.4 For a function f :[0,1] — C define the universal p-variation (1 <
p < 00) by

var,(f) = sup <Z |f(x;) — flxizg)P )P.

0<zog<--xn<l

Define space of universally bounded p-variation functions by

UBV, :={f:]0,1] — C;var,(f) < co}. (2.4)

Lemma 2.0.1 UBV, C m BV, .1 for all 1 < p < oo, where the intersection ranges
»Up
neN
over all spaces BV, 1 which stem from any atom-free finite Borel measure m on 0, 1]
’p

and its associated pseudo-distance d. In particular, if m is a probability measure, then

Varp’%(f) <2v -vary,(f).



2.0.2 The £' Space

Let ¥ be defined by N; x N,, where N; and Ny are compact manifolds endowed
with a Riemannian metric. Denote by my, mo and m = m; X my the corresponding
Riemannian volume, normalized so that m(3) = my(Ny) = ma(Ny) = 1.

Define the set bl — Lip(X) := 1 — Lip(X) N {g € L>®(m);||g|l~« < 1}, where 1 —
Lip(¥) = {g € Lip(¥); L(g) < 1} and L(g) is the best Lipschitz constant of ¢ i.e.,

Lig) = sup {\g(:v) —9(v)| }

TAYED ‘:L’ - y‘

In the same way we define the sets b1 — Lip(NN) and bl — Lip(~y), for some leaf ~.

Definition 2.0.5 Given two signed measures j1 and v on 3 we define the Wasser-

stein like distance between p and v as the real number

/gdu—/gdv

In the same way we define W (u,v) when u and v are signed measures on any other

W(u,v) =  sup : (2.5)

gebl—Lip(T)

compact metric space.

Remark 2.0.1 From now, we are going to denote ||u|lw = WP(0,n). As a matter of
fact, || ||lw defines a norm on the vector space of signed measures, SM(M) defined

on a compact metric space (M,d).

Let SB(X) be the space of signed measures on ¥ = N; x Ny. Moreover, given a
signed measure p € SB(X) denote by u and pu~ the positive and the negative parts
of it. It means p = pu* — p~. Now define the set AB as

AB={pueSB(X) :miut <my and 7miu~ < mi}, (2.6)

where 7, : ¥ — N is the projection defined by 7 (z,y) = .
In order to define the norms, we need to invoke the Rokhlin Disintegration Theorem.
Let (34, B) be a mensurable space, where ¥, := (X, d) is a compact metric space and

B is its Borel’s o-algebra.



Definition 2.0.6 A disintegration of p with respect the partition P is a family of

probabilities {pp}pep on X such that for every mensurable set A C X we have
a) pp(P) =1 for ji-ae. P € P;
b) The function P — R defined by P —— up(A) is mensurable;

¢) u(A) = [ pp(A)di(P).

Now let us state the Rokhlin Theorem which will be used as a basis for the construction

of the normed spaces we are going to work with.

Theorem 2.0.2 Let > be a compact and separable metric space and let P be a men-

surable partition. Then every probability p admits a disintegration with respect to P.

Moreover

Proposition 2.0.1 Suppose that the o-algebra B admits an enumerable generator. If

{pp : P € P} and {yp : P € P} are disintegrations for p with respect to P then
p = il fi-ac.

In our case the compact metric space and the mensurable partition are > = N; X Ny
and F* := {7, }.en, respectively, where v, = {z} x Nj for all x € N;. When there is
no risk of confusion we denote v, just by v. However given a probability u € AB, the
theorem (2.0.2) gives its disintegration ({j,}-, ttz = ¢zm1) along the stable leaves F*,
where ¢, : N; — R is an extended real function (see equation (2.6) for the definition
of AB).

Now consider a finite measure g on X, then 11 := is a probability measure on

R
n(3) B
Y and we can find its disintegration with respect to F*, i.e. a pair ({Ev}ﬂ,, T, = ¢mm1)
which satisfies the definition (2.0.6). The disintegration of @ induces a natural disinte-

gration for y along the stable leaves F* as the pair ({yt}, ptz:), where

py =iy, and pip = p(X), = mop = (u(X)d,) ma.

Indeed, for an arbitrary mensurable set A € X, denoting 7z, (A) := 1z, (AN 7), we have



Moreover, we have

Corollary 2.0.1 If u is a finite Borel measure on 33, then it has a unique disintegration

along F°. In the sense that, if ({ﬁ’v}v,,um) 15 another disintegration for the finite

measure [, then ﬁ,v = [by Hg-a.c.

PROOF. Suppose there is another disintegration, ({ﬁ’w}w, um), for p. Let us show that

({ﬁlw}w H,) is a disintegration for 7.

Indeed,
n(A) =
And so
n(X)
Thus

- [mdn,

It implies that, the pair ({ﬂ/y}wﬁx) is a disintegration for . Since, by proposition

(2.0.1), 7@ has only one disintegration, we get i, = i, fi,-a.e. v € Ny and also p,-a.e.

~v € N (since they are equivalent).

O



Proposition 2.0.2 Let u,v € AB be to finite measures and denote their marginal
measures by iy = ¢omy and v, = Yymy, where ¢y, 0, € L'(my). Then the disintegra-
tion of p+ v is given by the pair

¢ (7) Y2 (7)
(

o)+ T Gy >+wm>””’ (@ W”C)ml) ‘

In other words

bz () V()
520 + a7 T B (0) + e ())

(p+v), = vy and (4 1)y = (¢ +Ya)m

ProoOF. First we observe that the expression is well defined, in the sense that if
¢2(7) + Y(7) = 0 on v, then ¢.(y) = 0 and 9,(vy) = 0. Therefore we can consider
(4 v), =0 on each leaf v where it happens.

Thus, for a given mensurable set A C ¥ we have

(b+v)(A) = u(A)+r(A)
- / (A) by (v)dma (v )—i-/VV(A)Q/}x(/V)xdml(rY)
(

i ) 6a0) +2(0)
= /MV(A)@c('Y)‘i‘ w(A)% 'Y)a: ( )—i—wx(’Y)d (7)
¢:(7)

_0) - b=)
/ s A e T e

And we are done. O

(02 (7) + e (7)) dmy(y).

Definition 2.0.7 Letn,, : v —> Ny be the restriction m,|,, where w, : ¥ — Ny is the
projection defined by m,(x,y) =y (however m,, is a bijection), where (x,y) € Ny x Na.
For a given positive measure pu € AB and its disintegration along the stable leaves F?*,
({#ty }, e = Pumy), we define the restriction of ;1 on v as the positive measure fil,,

on Ny (not on v) defined, for a given mensurable set E C N, as

1y (E) = 73 (02 (7) 1y (E).

For a given signed measure p € AB and its decomposition y = pt — u~, define the
restriction of 1 on v by pl, = pt|, —p,.



Definition 2.0.8 Let L! be the space of signed measures defined as

e = {ueass [ Wil ) < oo (2.7)

and define the application || ||; : L' — R as
il = [ WO (), 23)

Remark 2.02 [lulls = [ W0, )dms(2) = [ 11l llwdm (2.

Lemma 2.0.2 If py, po, vy and ps are measures on % (or on any other compact metric
space) then
WY (i + oy v+ v2) < WP (i, 1) + WY (o, v2).

PROOF.
Won -+ +v) = s | [ g+ )~ [ gdn+m)
gebl—Lip(%)
< sup gdpy — [ gdvi| +  sup / gdpz — / gva
gebl—Lip(%) geb1—Lip(%)
= WP (p, 1) + WY (2, 1),
As desired.
0
Proposition 2.0.3 (£',|| |1) is a normed space.
PROOF.

We divide the proof into several lemmas.
Lemma 2.0.3 (Triangular Inequality) Consider p,v € L' two signed measures. Then

[+ vl < |l + [|v]]1-
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PROOF.
By proposition (2.0.2) it holds

/Wf((u+ + vy, (0 +v7)])dmy = /WP (13 (Da ey +0ivl)  ml (6 s + g vy ))dma.

Moreover, using the above relation and lemma (2.0.2) we have

e+ vl =l(pt =)+ @t =)l
=[(" +v") = (= +v7)lh

- / WO + )y (i + 07 )i

< WP (my, (008) w3, (0)) + WP (73, (6507) 4, (03 )
< W (o s (020) s (0
[ WD (e (0207 s+ (05 Y
:/W1< Tkl dm1+/W1 vy, vl dma
= [[ells + [[[lr-
As we wished. ]

Lemma 2.0.4 For a given signed measure u € AB, it holds ||u|l; = 0 if and only if
w=0.

PRroOF. If p = 0, then ||u||; = 0 immediately. Reciprocally, suppose we have ||u||; =0
then

/Wf (WFly iy )dmy = 0= WY (u*]y, 1) =0, my —ae. v €N

— 'ty =py, mp—ae. yeN
= Ty % (0T 1)) = Ty x (07 py), My —ae. vy €M

- gbﬂq =¢ pu,, mp—ae. €Ny, since 7, is a bijection.

Thus, for a given mensurable set A C 3, we have
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As we desired. ]
Lemma 2.0.5 For every signed measure p € L' and every real number « it holds

el = le ]l

PRroOF. In fact, by definition we have

logdls = llow* — gl
= [ Wiantl e )dm,

= / sup
gebl—Lip(I

dm1

gdopi™ ], — / gdop™ |,

= |a|/ sup gdu*ly—/ 5 |dmy
gebl—Lip(I
~ lal [ b
= lallplh
U
With the above lemmas we finish the proof of the proposition (2.0.3). O
2.0.3 The L Space
Definition 2.0.9 Let L C AB(X) be defined as
L> = {pe AB:ess sup,cn, (W (it ], 17 ],)) < o0} (2.9)
where the essential supremum is taken over Ny, with respect to my. Define || ||oo :

L — R as

[11tl]oo = ess supyen, WY (1" |y, 17 15) = ess sup,en, WT(0, pil,). (2.10)



12

Proposition 2.0.4 (L, || ||o) is a normed vector space.

PROOF. Is straightforward to prove that ||u||- = 0 if and only if 4 = 0. Thus let us
prove the remaining part. Consider py, po, up € L and a € R. Note that, for every
signed measure g and o > 0 it holds (au)™ = aut and (apu)”™ = ap™. And, for @ <0
we have (au)™ = |a|p™ and (ap)” = |a|p™. Then, for every Lipschitz function g s.t.
|9l <1 and L(g) <1 and for all & € R we have

’/gd(au)ﬂw - /gd(ozu)lw

Then we get [|ap]oo = [al]|11]-

= o

/gd/ﬁlw—/gdulw

In order to prove the triangular inequality note that (u; + )|y = p1ly + pi2]5. So
we have, by definition of W, that

|1 + pialloo = ess sup WP(0, (p1 + p12)]4)

IA

ess sup W (0, pu1],) + ess sup W(0, ual,)

[l lloo + 1122 ]oo-
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2.0.4 The BY Space

In this section, we set N; = Ny = I = [0,1] and so X = I*.
Definition 2.0.10 Consider a pair ({ty}er, ), where {p}y is a family of proba-
bilities on v defined m-a.e. v € I and ¢, : I — R is a non-negative extended real
function. Given such pair, ({{iy}, ¢z), denote by G, the path (of positive measures on
1) G, : I — B(I) defined m-a.e. by G,(v) =7 ,b.(7)uy. Call the set on which G,
is defined by Ig,. Let P = P(G,) be a finite sequence P = {x;}j, C Ig, such that

Gu(Vz,) is well defined for alli =0,--- ,n. Define the variation of G, with respect
to P as (denote v; :=,,)

Var(G,,P) = ZIIG 75) = Gu(vi=0)llw,

where ||G,(v;) — Gu(vj—)llw = WGL(v;), Gu(vj-1)). Finally we define the varia-
tion of G, as

Var(G,) = sup Var(G,, P).
P

Remark 2.0.3 For an interval n C I we define
Varg(G,) = Var(G,l,).

Remark 2.0.4 When there is no risk of confusion, to simplify the notation, we denote

Gu(v) just by pl,.

We say that a pair ({y,},, @) (or its path G,,) represents a positive measure p if,
for every mensurable set A C X2, holds

H(A) = / 1 (AN 7)62(7)dm().

Denote by [[]] the set of all pairs ({ft,}, ¢,) which represents p. The Rokhlin Disin-
tegration Theorem ensures that [[u]] # 0.

Definition 2.0.11 Define the variation of a positive measure p by

Var(p) = inf {Var(G,)}.

Gue([pl]
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Remark 2.0.5 Note that
lills = [ Wa(0, Gul)im(a)
for any Gy € [l

Definition 2.0.12 From the definition (3.5.2) we define the set of positive measures
BV as

BY ={ue€ AB: Var(u) < co}. (2.11)

Define the real function || ||gy on BY by ||u||sy = Var(u) + ||u]li. The proof of the

next proposition is equivalent of the Proposition 2.0.6 below, so we omit it.

Proposition 2.0.5 (BV,|| ||sv) is a normed space.
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2.0.5 The BY, Space

In this subsection, we deal with the particular case when ¥ = I?, where I = [0, 1].
Let us define the variation of a signed measure u. To do it, let us consider the set B2
defined by

Bee = {g € C*(1);||glloo < L[19llc < 2, 11g"[lo <1},

where 0 < Q < 1(the constant Q depends of the application, see (5.7) in section 5).
Using the above sets we define a new norm on the space SB(I) of signed measures on

I by

lnllex = swp {| [oul} vuer (212)
QEBCQ

Definition 2.0.13 Consider a pair ({{ty}yer, ¢z), where {1}, is a family of proba-
bilities on v defined m-a.e. v € I and ¢, : I — R is a non-negative extended real
function. Given such pair, ({{ty}, ¢z), denote by G, the path (of positive measures on
I)G, : I — B(I) defined m-a.e. by G,(v) =72, ,de(7)pty. Call the set on which G,
is defined by Ig,. Let P = P(G,) be a finite sequence P = {x;}j-, C Ig, such that
G(Vz,) s well defined for alli=0,--- ,n.

We say that a pair ({sy},, @) (or its path G,,) represents a positive measure . if,

for every mensurable set A C X2, holds

H(A) = / 1 (AN 7)6s(7)dm().

Denote by [p] the set of all pairs ({st,},, ¢,) which represents p. The Rokhlin Disinte-
gration Theorem ensures that [u] # (.

In case p is a signed measure, we say that a path of sing measures G, : I — SM(I)
represents the signed measure pon X (i.e. g = put—pu~ where u* are positive measures)
if G, = G+ — G- for G+ € [p*] and G- € [u~]. Denote by [[u]] the set of all paths,
G, I — SM(I), which represents p. The Rokhlin Disintegration Theorem ensures
that [[n]] # 0 for all p € AB.

Definition 2.0.14 Given a signed measure p € AB define the variation of G, with
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respect to P as (denote v; := s, )
Var(Gy, P) = ) _1IGu(1) = Gu(i-1)ll e,
j=1

where ||G,(7vj) — Gu(Vj=1)||c2 - Finally we define the variation of G, as

Var(G,) = supVar(G,,P).
P

Remark 2.0.6 For an interval n C I we define
Varg(G,) = Var(G,l,).
Definition 2.0.15 Define the variation of a signed measure u € L by

Var(n) = inf {Var(G,)}.

Remark 2.0.7 Note that

lalls = / Wo(0, Gu(7))dm(7), for any G, € [[u]].

Definition 2.0.16 From the definition (2.0.14) we define the set of signed measures
BYsy(m) (we’ll denote it just by BVs) as

BYy={pecL':Var(p) < oo} (2.13)

Define the real function || ||z, on BV, by ||u||sy = Var(u)+||p|1. Thus, BV, provided

with || ||y is a normed space.

Proposition 2.0.6 (BVs,|| ||sv) is a normed space.

PROOF.

Consider two paths G, and G, defined on the same full measure set I cI
which represents the signed measures 1, s € £!. Since we have proposition (2.0.3)
and Var(G,, +G,) < Var(G,,) + Var(G,,) it'll be a straightforward computation.

Indeed, holds
Var(Gu, + Gu,) + |+ pelly = Var(Gu,) + Var(Gp,) + [l + [[pe2l):-

Taking the infimum we get ||p1 + po||pv < |||V + ||p2||Bv. Besides that, is easy to
see that ||au||gy = |o|||u]|sy, for every scalar ae. And since ||u||; = 0 if and only if

=0 we get ||u||py = 0 if only if = 0. O



Chapter 3

Spectral Gap for Lorenz Systems

3.1 Contracting Fiber Maps

In this section we continue to consider the same setting as in subsection 2.0.2 i.e.
let > be defined by Ny x Ny, where N; and N, are compact manifolds endowed with
a Riemannian metric. Denote by m; and msy their corresponding Riemannian volume,
normalized so that mq(N7) = mq(Ny) = 1 and m = m; X m;. Consider a dynamical
system F' : ¥ — X, F(z,y) = (T'(x),G(x,y)), where T': Ny — Ny and G : ¥ — Ny
are mensurable maps satisfying some conditions stated below. Moreover, the spaces

L' and £ were defined in subsections (2.0.2) and (2.0.3).

Properties of ¢

G1 Consider the F-invariant foliation F*° := {{z} X Na}.en,. Suppose there exists
0 < a < 1 such that for all z € N; holds

|G(z,y1) — G(x,92)| < alyr —yo| for all yi,y2 € No. (3.1)

Properties of T and of its associated transfer operator.
We suppose that:
T1 T is non-singular with respect to my (my(A) =0 = my(T'(A)) =0).

T2 There exists a collection of open sets P = { P, - - - , P,} of Ny, such that m; (UL, P;) =
1 and T; := T|p, is a diffeomorphism, with det T/(z) # 0 Vo € P; and for all i,

where 7T} is the Jacobian of T; with respect to the Riemannian metric of V.

17
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T3 Let us consider the Perron-Frobenius Operator associated to T', Py .

We will now make some assumption on the existence of a suitable functional
analytic setting adapted to Pr. Let us hence denote the L}, norm® by | | and

suppose that there exists a normed space (S, | |s) such that

T3.1 S cL!

L. 18 Pp-invariant and | |1 < [,

T3.2 The unit ball of (S| [,) is relatively compact in (L;, ,| |1);

T3.3 (Lasota Yorke inequality) There exists k € N, 0 < 5y < 1 and C' > 0 such that,
for all f € S, holds

| P% fls < Bol fls + CLf - (3.2)

T3.4 Suppose there is a unique 1, € S with ¢, > 0 and [¢,|; = 1 such that Pr(¢,) =
Yy, and if ¢ € S_is another density for a probability measure, then Py (1), —) —
0in S.

By the Ionescu-Tulcea and Marinescu theorem (see [16]) the following result holds.

Theorem 3.1.1 If T satisfies T3.1,...,T3.4 then there exist 0 < r < 1 and D > 0
such that for all

¢€V::{¢€S;/¢dm20}
and for all n > 0, it holds
| P(¢)]s < Dr"|gls. (3.3)

The following property on | |s will be supposed, sometimes in the future, to obtain

spectral gap on L* like spaces.

N1 | |s > | |o (Where | |« is the usual L norm on Ny )

'The unique operator Py : L}, — L}, such that

ma

Vo e Lt and Yy € LT, /Q/J'PT(¢) dm:/(on)-¢dm~

2Notation: In the following we use | | to indicate the usual absolute value or norms for signed

measures on the basis space Ny. We will use || || for norms defined for signed measures on X.
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Now define the following set of signed measures on X
St={perl'p,e5}. (3.4)
Consider || ||s1 : S — R, defined by

illst = |dals + [|ullx (3.5)

where we recall that ¢, is the marginal density of the disintegration of pu.

Analogous to the previous, define

S® ={pueL*p, €8}, (3.6)

Consider || [|s< : S® — R defined by
il [s0e = |Dals + |4l oo- (3.7)
Proposition 3.1.1 (S1,|| ||s1) and (S*=,|| ||s=) are normed vector spaces.

Proor. Consider pq,pus € S*® and a € R. Remember that the restriction of a
measure is a linear operation, in the sense that (y1 + apa)|y = ]y + cia|,. Moreover
pl4(N1) = ¢.(7). Denote by ¢ritarz ¢l 2 the densities of py + apa, p1 and o

respectively. So we have

G (y) = (1 + )]y (V)

= paly(N1) 4 g, (N1)

= &,(7) +adi(7).
Then g, + apy € S®. The same argument tells us that, if iy, s € S* and o € R then
H1 + aie € Sl.
To see that || ||s and || || are norms is a straightforward computation.

First of all, is immediate to see that ||u||ss = 0 iff © = 0 and ||p||sc = 0 iff = 0.

So we omit this part. So let’s prove the rest.

[l + pells = |n + @dZls + [l + prala
< 8als + 16515 + llally + [lp2lh

[lpallsr + [zl
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The same argument shows us that ||p + p2||see < ||t ]]see + || 112]|s for every p, po €
See.
Besides that

laplla = ladgls +llawlh

= lalllpml]s-

The same argument shows us that ||au||s~ = |a||p1]]see-

3.2 Basic properties of the norms and convergence
to equilibrium

In this section we will get some properties of the actions F* : £} — L£! and
F*: L — £, where £! and £ are from subsections (2.0.2) and (2.0.3) and F*, is

the transfer operator associated with F, i.e.,

for all signed measure i on ¥ and for all mensurable set £ C 3.

Lemma 3.2.1 For all probability p € AB disintegrated by ({it}~, @), the disintegra-
tion ((F* w)y, (F* p)z) of F* p is given by

(F* 1)z = Pr(dz)m (3.8)
and
q
* o 1 XT-(P-)(V) %
F = —FFF O T NI ATAN LA F — 39
when Pr(¢,)(y) # 0. Otherwise, if Pr(¢.)(y) = 0, then (F*un), = v, where v, is
the Lebesgue measure on vy (the expression |def—§?T\ o T H(v) - % : F*/LTi—l(,y)

is understood to be zero outside T;(P;) for alli=1,--- q).

PROOF.
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To prove the proposition is enough to prove the following equation

B u(B) = [ (P (B N)dE (o) (3.10)

where (F*p), and (F* ), are given by (3.8) and (3.9), for a measurable set £ € X.
And by the uniqueness of the disintegration (see [?], proposition 5.1.7) the result will
be established.

To do it, let us define the sets By = {v € Ni; T~ (y) = 0}, By = {y € B$; Pr(¢,)(7) =
and Bs = (B; U By)“. The following properties can be easily proven.

L. BNB; =0, T"YB;)NT*B;) =0 for all 1 < i,j < 3 such that ¢ # j and
U?:l B = U?:1 T=H(B;) = Ny;

2. ml(T’l(Bl)) = ml(Til(Bg)) = O,

Using the change of variables v = T;(5), we have

/N (F* 1) (B N 7)d(F* w).(r) = /B (F* 1) (B 0 7)d(E* 1))

; o o
- —OTi ) F pp E)dmq (v
izl/:r(p)mB | det DT| () T (v)( ydmy ()

7

T

N Z/PmTil(B3) 00 (B)ps(F~(E))dma (B)

i=1

N /3 pa(F~H(E))dgami (B)
Uiy T 1(Bs)

_ /N 1a(F1(E))dam (B)
= WFH(E))
= F*"u(FE).

O

Remark 3.2.1 For a gwen leaf v € F°, define the map F, : Ny — Ny by F, =

-1
VY-

all v € Ny holds

myoF|,om We remark that, by the previous lemma, for all p € L' and for almost

q F*fl ,LL| -1
* Ti Ti ()
(F* )|, = E \Tewl(y))| il X7y (y) for almost all v € V. (3.11)
i=1 i

0}
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3.2.1 Basic properties of the £! norm

Remark 3.2.2 For every u € AB, holds

VS slyllw < ekl lw (3.12)

where F, : Ny — Ny was defined in remark (3.2.1). Indeed, since F., is a contraction,

if |9lcoc <1 and Lip(g) < 1 we have that the same holds for g o F.,. Then
‘/g dFiu' = ‘/Q(Fw) du’
< Alpllw -

Taking the supremum over gl < 1 and Lip(g) < 1 we finish the proof of the inequality.

We also remark that, if p is a probability measure, then ||u||lw = 1. Hence

HE"pllw = [lullw =1 ¥V n>1. (3.13)

Proposition 3.2.1 (The weak norm is weakly contracted by F*) Forallu € £!

the following weak contraction holds

[E* plly < [lpl - (3.14)

PROOF. By Lemma 3.2.1 (remark (3.2.1)), for every signed measure p € £} and for
a.e. v € Nj holds

q F* 1 /J’ -1
* T, () T ™)
=1 ?

Then for all ¢, making the change of variable v = T;(«) and by remark (3.2.2), we
have that



3.2 Basic properties of the norms and convergence to equilibrium 23

I ul, = /N 1 2)1 | wdma ()

i / F;fl(v) plr=1()
T(ns)

T ()
q

S / E® alallyydma (@)
i=1 Y
q

= 3 [ el (@)

i=1 Y M

= Alplh

IN

dm(7)

O

Proposition 3.2.2 There are C > 0 and k € N (see T8.83) such that for all p € S, it
holds

IF*pllsr < Bollullsr + Cll - (3.16)

PROOF. Set C' =1 — By + C where C and f; are from equation (3.2). Thus it holds
(note that |¢u[1 < [[ul]1)

| P duls + [ F* £y

Pol¢e|s + Clozly + [lulh

Pollels + [lull) = Pollully + Cllplly + [lulh
Bollullsr + Cllgel -

[1F* Ful]s2

IN

IN

O

Corollary 3.2.1 (Lasota Yorke inequality for S') There exist A, By € R\ <
1s.t. for all y € S* holds

HE"pllsr < AX[[pl[s1 + Ballully ¥n = 1. (3.17)

PROOF. Iterating the relation of the proposition (3.2.2), one will find the following

inequality

1E* "™ ullsr < Bgllullss +C ) Billullr- (3.18)

1=0
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from which one easily gets (3.17). O

Now we prove that F' has exponential convergence to equilibrium. This is weaker
with respect to spectral gap. However the spectral gap follows from the above Lasota
Yorke inequality and the convergence to equilibrium. First we need some preliminary

lemma.
Lemma 3.2.2 For all signed measure pn on Ny and for all v € Ny holds

VS pllw < allullw + p(N2),

(where « is the one given in G1). In particular, if u(N2) =0 then

1 ES pllw < aflplw.

Proor. If Lip(g) < 1 and ||g|l«« < 1, then g o F, is a-Lipschitz. Moreover since
[|9]loc <1 then ||go F, —0||o < o for some 6 < 1. This implies

‘/ngi}u‘ = ‘/gondu‘

:‘/gon—Qd,u‘—i-‘/Qd,u‘

F,—0
= a’/goT"’du‘ + Op(Ns)
= a|lplly + p(N2).

And taking the supremum over [g|o. < 1 and Lip(g) < 1 we have || F ullw < a|p||w +
p(Ng). In particular, if u(Na) = 0 we get the second part. O

Proposition 3.2.3 For all signed measure ji € L holds

TE* plly < aflplh + (a + 1)|e]s. (3.19)

PROOF. Consider a signed measure u € L' and its restriction on the leaf v, ul, =
W;,y(qu(/Y)M’Y) Set

E”Y = ﬂ-’t/,y/’L'Y'

If 41 is a positive measure then |, is a probability on N;. Moreover |, = ¢, (7)fl,-
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By the above comments and the expression given by remark 3.2.1 we have

- F ol # |T'71(v)¢;r(Tz_1(7)) Fi, “_+|T* 1 ®a (L ')
| F*plly < Z / — : - - dm1 ()
= Jray o T () T T, () ;
- Xq: / Frmri) 1 1) (T () Frpma gy 1 |10 (T(7)) dm ()
= T T} o T (7) T/ o T, 1 (%) W
N i / By 1 1) 02 (L) Fro oy 1 1582 (T7(7) dm ()
- 1
i=1 I;) |Tz/| oT; 1(7) |T'I| o1~ (7) W
= L+Dh
where
q Fo i Bl 65 (T ) sy i85 (T74()
S I e R dm ()
i=1 JT) |TZ|OTZ (7) |Tz|oTz (7) W
and
1 F;—l(v) F|Tifl(7)¢; (T (7)) F;—l(n,) ILL__|T;1(7)¢; (T (7))
=) / Z o1 - o -1 dim (7).
= JTI) T o T (7) T o T; () W

Let us estimate I; and I,.

By remark 3.2.2 and a change of variable we have

I, =

= |¢x’1

and by lemma 3.2.2 we have

; /T(I,.) ‘
I
- / 0F — 5

By i || 0]
Ti_l(’}’) K 7 () |T/|

|67 — &2 [(B)dma (B)

|(B)dma(B)

oT;

)

(y)dma (7)
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L= /T(,) [F3s0 (#1200 =) |, o o 7 ) 2)
< 3 IR G =)y 5
< a [ 1[5 = bl 0z (G (5)
< [ 1156 (6) = 1362 5]y dma ()
= O‘/I HM_+|6¢;(/3)—M_+|B¢I(5)deml(ﬂ)+a/l [ 1565 (8) — 1715657 (B)] ], dmi (8)

= aldsli + of|plh-

Summing the above estimates we finish the proof.

O
Iterating (3.19) we get.
Corollary 3.2.2 For all signed measure p € L' holds
HE" "l < af[plly + @l daly,
where @ = 2.
Now let us consider the set of zero average measures
V={ues: ux) =0} (3.20)

Note that for all p € V we have 7iu(I) = 0. Moreover, since miu = ¢p.my (¢, =
o — ¢ ) we have [ ¢,dm; = 0.

T

Proposition 3.2.4 (Exponential convergence to equilibrium) There exist D €

R and 0 < B < 1 such that, for every signed measure pn € V, holds

" ully < Dot pl]s1
foralln > 1.

PROOF. Given p € V and denoting ¢, = ¢ — ¢, , holds that [ ¢,dm; = 0. Moreover,
from (3.3) we have |P.(¢,)|s < Dr"*|¢,|s for all n > 1, then |Ph(¢,)|s < Dr™||u||st
for allmn > 1.
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Let [ and 0 < d < 1 be the coefficients of the division of n by 2, i.e. n = 2[+d. Thus

n=d (remember ||F**ull; < ||u|; for all s and ||u||; < ||u|ls1) and by corollary

l =
2 —
(3.2.2) holds (below, set 7 = sup{r, a} )

I ully < ||F2 0],
< [F ]+ al|m o+ (B )
< dllplh +al Pr(e.))
< of|ulls +al Pr(¢)]s
< dl|plls + @r' D¢yl
< (o' +ar'D)[|ulls:
< (L+aD)r|pl|s
= (1+ @Dy lulls:
from which the statement follows directly. OJ

Now recall that we denoted by ¢/, the unique invariant density in S_for 7". Consider
the measure vy = ¥, m; X my, and the iterates F*"(1y). By what was just proved, this
define a Cauchy sequence for the weak norm. The existence of a limit in S! is not

trivial, because such a space is not complete.

Proposition 3.2.5 Define pig = lim,, o F*"(vy). Such limit exists and g is the unique

invariant measure of the system in S*.

PrROOF. We prove the existence of the limit: by Proposition 5.3.3 the sequence
v, = F*"(1p) is a Cauchy sequence in L', then v, is also a Cauchy sequence for the
Wasserstein distance on the square. Since this is a sequence of probability measures it
has a limit po which is a signed measure. We now prove that py € £

Since a sequence converging in L}nl has a subsequence which converges almost
everywhere, then there is ny such that for almost each v, v, |, — ol in W (on Ny).
Hence po € L.

Since m o = Yym, g € St. For the uniqueness, if pg, u1 € S* are invariant, then
to — p1 € V and then F*" (g — 1) — 0 in S'. Contradicting invariance.

OJ
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Remark 3.2.3 By N1 we have | | < | |s. Since, forall g : I — R such that |g|oo < 1
and L(g) <1, it holds | [ gd(po|y)| < |glocta(7) < |thals, we get that o € S*.

3.2.2 Properties of the £ norm

Lemma 3.2.3 Under the assumptions G1, T'1,...,T3.4, for all signed measure i € S
with marginal density ¢, it holds

|| F*/~L||oo < CY| PT1|00||N||00 + ’PTgbxloo-

PrROOF. Let T; be the branches of T" and

t Frery Ml

[ (F* /v‘)|7||W Z |T.’(T-_1(7))| XT (n;)

w
i | F;’i—l(y) ,U’Ti‘l(y)HWX
(T () T

o[l lw + 62(T7 (7))
= Z: |waﬂwm e

=1

XT("h 7—’1 1 f)/
S O-/||/j’||0<>z |T/ T 1 + Z | T 1 ,)/ XT(TH)'
hence taking the supremum on v we get the statement. 0

Applying the last lemma to F" instead of F one obtains.

Lemma 3.2.4 Under the assumptions G1, T'1,...,T3.4, for all signed measure j € S

and ¢, its marginal, it holds

[ F" pf]oo < an| P71 ool |l |oe + | P P2 |-

Proposition 3.2.6 (Lasota Yorke inequality for S°°) Suppose F' satisfies the as-
sumptions G1, T1,...,T3.4 and N1. Then there is 0 < a3 < 1 and Ay, By € R such
that

1 E* pallsoe < Ava|[pl[soe + Ballpl]s-

PrROOF. We remark that by the Lasota Yorke inequality (T3) and (N1) it follows
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| P71l < 1+ C, for each n. Then

E" pl|see = [P dals + [ PF pillo

[85|0zls + Cloz] + [0 PT ool oo + | PT ¢u]o0]
[85|0als + Clozh] + [@"(C + Dl|plloc + B ¢als + Clouli]-
oy (C+ 2)|[plls + 20| plf1-

IA A

IN

where we set a3 = max(«, 3y) and recall that |¢, |1 < ||p|]1- O

3.3 Spectral gap.

Theorem 3.3.1 (Spectral gap on S*) If F satisfies G1, T1,...,T3.4 given at be-

ginning of Section 3.1, then the operator F* : S' —= St can be written as
F*=P+N
where
a) P is a projection i.e. P> =P and dim Im(P) = 1;
b) there are 0 < £ <1 and C > 0 such that 3 || N"(u)||s1 550 < E"C;
¢c) PN=NP=0.

Proor. First let us show there exist 0 < £ < 1 and K > 0 such that, for all n > 1
holds
(EF* [p)"[[s1560 < EMK (3.21)

Indeed, consider p € V (see equation (3.20)) s.t. ||p||s1 < 1 and for a given n € N let
m and 0 < d < 1 be the coefficients of the division of n by 2, i.e. n = 2m + d. Thus
m = ”T_d. By the Lasota Yorke inequality (corollary 3.2.1) we have the uniform bound

|| F*"ul|s1 < By + 1 for all n > 1. Moreover, by propositions 5.3.3 and 3.2.1 there is

3We remark that by this, the spectral radius of N satisfies p(N) < 1, where N is the extension
of N to ST (the completion of S7). This gives us spectral gap, in the usual sense, for the operator

F:S; — S;. The same remark holds for theorem (3.3.2).
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some Dy such that it holds (below, let Ay be defined by A\g = max{f;, A})

I ullst < AN F* Dy |51+ Byl [ F* 0D py

IN

IN

N A(A+ Ba) + Bol [F*™ |y

IN

ANTA(A 4+ Bs) + By Do "

IN

A" [A(A + By) + ByDs|

n—d

N ? [A(A+ Bs) + BaDs|

<\/A_0)" <i)g [A(A + By) + ByDs)

Ao
'K

IN

IN

d
2

Where and ¢ = v/Ag. Hence, defining K = </\i0> [A(A + Bs) + ByDs], we arrive at
E[,) |1 5s1 < EMK. (3.22)

Now recall that F* : ST — S has a unique fixed point py. Consider the operator
P SY — [uo] ( [uo] is the space spanned by ug), defined by P(u) = u(1)pe. By

definition P is a projection. Now define the operator
S:St—V,

by
S(p)=p—P(p) YV pes.
Thus define N = F* o S and observe that, by definition PN = NP =0 and F* = P+ N.
Moreover, N" () = F*"(S(u)). Since S is bounded and S(u) € V we get, by (3.22)
IN"()llsr < € K|S |51 l]s1- O
In the same way, using the £*° Lasota Yorke inequality of proposition 3.2.6, it
is possible to obtain spectral gap on the L*> like space, we omit the proof which is

essentially the same as above:

Theorem 3.3.2 (Spectral gap on S*) If F satisfies the assumptions G1, T1,...,T3.4

and N1, then the operator F* : S — S can be written as
F*=P+N

where



3.4 Application to Lorenz like maps 31

a) P is a projection i.e. P* = P and dim Im(P) = 1;
b) there are 0 < & <1 and C > 0 such that || N"(1)||geomg00 < EMC

¢) PN=NP =0,

3.4 Application to Lorenz like maps

In this section we apply the theorem (3.3.2) to a large class of Lorenz-Like flows,
and more precisely to its Poincaré maps for suitable secions. In these systems (see e.g
[4]), it can be proved that there is a Poincaré section 3, whose return map has the form
Fr(z,y) = (Tr(z),GL(x,y)) after a suitable change of coordinates, with the properties
given at beginning of Section 3.1. The map T}, in this case, can be supposed to be
piecewise expanding with C'*® branches.

More precisely, we consider a class of maps satisfying (G1) and the following addi-

tional properties on 717, :

Properties of 77, in Lorenz like systems

1
(P’1) T is of universally bounded p-variation (1 < p < 00), i.e.
L

sup — Pl < oo
0<z0<- < <1 (; | 77 (zi)|  |T} (1) | )
(P’2) inf |[TP| > 1 for some n.

From these properties it follows ([15]) that we can define a suitable strong space for
the transfer operator associated to such a T, in a way that it satisfies the assumptions
T1,...,73.4 and N1. And then we can apply our results.

For this, let us introduce the set BV) 1 of real valued functions (for more details

and results see [15]).

Definition 3.4.1 For an arbitrary function h : I — C and € > 0 define osc(h, Be(x)) :
I — [0,00] by (Bc(z) denotes the open ball of center x and radius €)

osc(h, Be(x)) = ess sup{|h(y1) — h(y2)[; y1, 42 € Be(x)}, (3.23)
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where the essential supremum is taken with respect to the product measure m? on I x I.
Also define the the real function oscq(h,€), on the variable €, by osci(h,€) :=

[ osc(h, B(x))dm(x).

Definition 3.4.2 Fiz A; > 0 and denote by ® the class of all isotonic maps ¢ :
(0, A1] — [0,00] (z <y = o(z) < ¢(y)) such that p(x) — 0 if & — 0. Set

e Ry ={h:I— C;oscy(h,.) € D};
e Forn €N, define Ry,., ={h € Ry;0sc1(h,e) <n- v Ve (0, A1]};

o And set Sip = U en Rinp-

Definition 3.4.3

1. BV1% is the space of m-equivalence classes of functions in Sip;

2. Forh:I — C set

var 1(h) = sup (iloscl(h,e)). (3.24)

g 0<e<A; \ep
Considering the real function | |1% ; BVI% — R defined by
’f|1% = Varl,%(f) + [ £, (3.25)
it holds the following

Proposition 3.4.1 (BV1 1] |h ;) is a Banach space.
'p 'p

Under those above settings G. Keller has shown (see [15]) that there is an A; > 0
(we recall that definition (3.4.2) depends on A;) such that:

(a) BVj1 C L' is Pp-invariant and holds | |1 < | 1;
(b) The unit ball of (BV] 1,| [, 1) is relatively compact in (LY, |);

(c) There exists k € N, 0 < fy <1 and C > 0 such that

[PE flus < Bolflus + €I (3.26)
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Moreover, in [2] (Lemma 2) it is shown that
1
@ | oA 1o

By this it follows that the properties T'1,72,73.1,..,73.3, N1. of section 3.1 are
satisfied with S_= BV, 1 and we can apply our construction to such maps.
’p

We hence define the following strong set of signed measures on %
v

BV, = {,u € LY vary 1(¢,) < oo} . (3.27)

Consider || [[;1 : BV; 1 — R defined by

a2 = I62hys + Il (3.28)

Clearly, <BV17%, | ||1%> is a normed space. If we suppose that the system, 77, :
I — I, satisfies T'3.4, then the system then has a unique invariant probability measure
with density ¢, € BV 1

Now, directly from j;he above construction and from theorem (3.3.2) it follows the

spectral gap for these kind of maps.

Theorem 3.4.1 If ¥} satisfies the above assumptions it satisfies assumptions G1,

T3.4, P'1 and P'2, then the operator F7 : BVL% — BVL% can be written as
FY =P +N
where
a) P is a projection i.e. P> = P and dim Im(P) = 1;
b) the spectral radius of N satisfies p(N) < 1;
¢) PN=NP =0.

In other words ¥} : BV, 1 — BV, 1 has spectral gap.
'p 'p
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3.5 Quantitative Stability

In this section we consider small perturbations of the transfer operator of a given
system and try to study the dependence of the physical invariant measure with respect
to the perturbation. We give a general result relating the stability of the invariant
measure for a uniform family of operators and the convergence to equilibrium.

Let L be the transfer operator for a map acting on two vector subspaces of signed
measures on X, L : (By, ||+ ) — (Bu, ||+ 1) and L : (Bu ||+ lhe) — (Bus | - )
endowed with two norms, the strong norm || - ||s on By, and the weak norm || - ||, on

By, such that || - ||s > || - ||w. Suppose that
B,CB,CSB(X),

where SB(X) denotes the space of signed measures on X.
We say that the a transfer operator L has convergence to equilibrium with at least

speed ® with respect to norms || - ||s, || - ||w, if
for any f eV, ={f € B,, f(X) =0} it holds
1L fllw < @) £]s- (3.29)

Definition 3.5.1 A one parameter family of operators {Ls}scioq1) is said to be a uni-

form family of operators if

UF1 ||fs||ls < M for all §, where fs € By is a fized probability measure of the operator
Ls for all ;

UF2 Ls approzimates Ly when & is small in the following sense: there is C € R such
that:
[1(Lo — Ls) fs||w < 0C; (3.30)

UF3 L has exponential convergence to equilibrium with respect to the norms ||-||s and

|| - |lw: there exists 0 < po < 1 and Cy > 0 such that for all f € Vs it holds

LG fllw < p5Col fl]s;

UF The iterates of the operators are uniformly bounded for the weak norm: there

exists My > 0 such that

Vo,mn, g € By it holds || L§ gllw < Mal|g]]w-
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We will see that under these assumptions we can ensure that the invariant measure
of the system varies continuously (in the weak norm) when Lg is perturbed to Ls for
small values of 9. Let us state a general result on the stability of fixed points satisfying
certain assumptions.

Let us consider two operators L and Lg preserving a normed space of signed mea-
sures B CSB(X) with norm ||-||5. Suppose that fy, fs € B are fixed points, respectively
of Ly and L.

Proposition 3.5.1 Suppose that:
a) || Ls fs — Lo fs|[s < o0;
b) LY is continuous on B; 3C; s.t. Yg € B, || L, glls < Cillgl|s.
Then for each N

1fs = folls < |15 (fs = fo)lls + | Ls fs — Lo fslls - > C. (3.31)

i€[0,N—1]

PRrROOF. The proof is a direct computation

1fs = folls < |IL5 fs = Lo folls
115 fo— Lo folls + 11 L9 fs — L3 flls
< Ly (fo— folls + 1119 fs — L3 folls

IN

(applying item b)). Hence

1fo = folls < 1Ly (fo — fo)lls + 115" fs — L3 fills

but

N
Ly —LY =3 L (Lo — Ly LYY
k=1

hence

L(N—k) (LO _ L6> L;(k—].) f(;

WE

(LY =Ly f =

b
Il
—

L™ (Lo — L) f5

Il
NE
=

>
I
—_
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by item c), hence

N

1Ly =L flls < Y Cnill(Lo—Ls) fills
k=1

< (Lo—Lo)fslls Y, Ci

i€[0,N—1]

by item a), and then

1/ = folls < 1L (fo = fo)lls + I(Lo = Ls) fslls - > Ci.

i€[0,N—1]
O
Now, let us apply the statement to our family of operators satisfying assumptions

UF 1,...4, supposing B, = B. By this we have the following

Proposition 3.5.2 Suppose {Ls}sco,1) s a uniform family of operators where fy is

the unique invariant measure of Ly and fs is an invariant measure of Ls. Then
[1fs = follw = O(dlog d).
PROOF.Let us apply proposition 3.5.1. By UF2,

| Ls f5 — Lo fs]]w < 0C

(see proposition 3.5.1, item a) ). Moreover by UF4, C; < M,.

Hence,
1fs = follw < SCMaN + || Ly (fo — fo)llw-

Now by the exponential convergence to equilibrium of Lo (UF3), there exists 0 < py < 1
and Cy > 0 such that (recalling that by UF1 ||(fs — fo)||s < 2M)

Lo (fs = folllw < Capd'[|(fs — fo)lls
< 20,08 M

hence

/5 = folls < 0CMyN + 2Cap) M

choosing N = Llog‘sJ

log p2

{ log &

log §
o8 J+202p21°”2JM (3.32)

I~ flls < 6002

0g P2

1
< 510g5CM21

0g P2

+ 2C50M.
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3.5.1 Quantitative stability of Lorenz like maps

Here we apply the general techniques of the previous section to Lorenz-like maps.
We will show a set of assumptions on the family of maps, such that the related transfer
operators satisfy UF1,...UF4. We remark that:

UF1 easily follows by a uniform Lasota-Yorke inequality;

UF3 depends only on the first element L of the family, and it is proved above for
transfer operators associated to Lorenz-like maps;

UF4 depends on the weak norm, and is also proved above.

Some work is necessary for the property UF2. To find a reasonable set of assump-
tions implying it we need to prove some further regularity of the invariant measure.

For this we introduce a space of measures having bounded variation in some sense,
and prove that the invariant measure of a Lorenz-like map is in it. We need some
preliminary notations.

We have seen that a positive measure on the square, [0,1]?, can be disintegrated
along the stable leaves F* in a way that we can see it as a family of positive measures
on the interval, {p|,},ers. Since F* is identified with [0, 1], this defines a path in the
space of positive measures, [0, 1] — SB(I). It will be convenient to use a functional
notation and denote such a path by G,,. It means that G, : I — SB(I) is the path
defined by G,(y) = p|,, where ({{ty}er, ¢2) is some disintegration for p. However,

since such a disintegration is defined p,-a.e. v € [0,1], the path G, is not unique.

Definition 3.5.2 Consider a disintegrated measure ({iy}yer, ¢x), where {py}er is a
family of probabilities on % defined pip-a.e. v € I (where p, = ¢om) and ¢ : [ — R is
a non-negative marginal density, as before. Denote by G, the path (of positive measures

onl)G,: 1 — SB(I) defined ji-a.e. v €1 by

Gu(v) = ply = W;,yﬂ%(’y)uy

Call the set on which G, is well defined by I¢;,*. Let P = P(G,) be a finite sequence
P = {x;}j., C Ig, and define the variation of G, with respect to P as (denote
Vi 1= Vai) .
Var(G,, P) = Y [1Gu(v) = Gulrs—1)llw,
j=1

4Remark that to a measure many different paths and sets I, G, may be associated, but they coincide

almost everywhere.
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where ||G,(v;) — Gu(vj-)llw = WGL(v), Gu(vj-1)). Finally we define the varia-

tion of G, taking the supremum over the sequences, as

Var(G,,) := sup Var(G,, P).
P

Remark 3.5.1 For an interval n C I we define
Vary(G),) = Var(G,|5).

Remark 3.5.2 When no confusion can be done, to simplify the notation, we denote
Gou(y) just by ply.
Definition 3.5.3 Denote by [[u]] the set of all paths G, : I — SB(I) which represents
p®

The Rokhlin Disintegration Theorem ensures that [[u]] # 0. Define the variation

of a positive measure | by

Var(,u) = inf H{VaI“(GM)}

Gue(lp

we recall that

s = / W0, Gu(y))dm(z), for any G, € [ul.

Definition 3.5.4 From the definition 3.5.2 we define the set of bounded variation pos-

itive measures BV as

BVt ={u€ AB:u>0,Var(u) < oo}. (3.33)

Now we are ready to state a lemma estimating the regularity of the iterates F*"(m).
We will explicit the assumptions we need on F'. The following definition characterizes
a class of piecewise expanding maps of the interval with bounded variation derivative

Ty : I — I which is a subclass of the ones considered in section 3.4.

®We say that a pair ({{},®z), or its path G, represents the positive measure p if, for every
mensurable set £ C X, v — p(E N)dz(7y) is mensurable and it holds

W(E) = / 11 (E 09 (7)dim().
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Definition 3.5.5 (Piecewise expanding functions with BV inverse of the derivative )
Suppose there exists a partition P = {n; := (a;_1,a;),i=1,--- ,q} of I s.t. T, : [ — I

satisfies the following conditions. For all 1

1
1) Ty, := Til,, is of class C* and g,, = T has bounded variation for all
Li Ins
1= 17 s 4;

1
2) inf\Tfi/] > PV 1 for some k € N and 0 < A\ < 1;
1

To ensure T3.4 is satisfied, we assume that the system 17|, is topological mizing.

3) (Topological Mixing) There is an interval I, C I such that Tpr,(I.) = L., every

L, is topologically mixing: for each interval

J C I, there exists n > 1 such that T7 (J) = I,.

orbit T7 eventually enters 1., and Tt

In particular T},|,, and g,, admit a continuous extension to 7; = [a;—1,a;] for all

i=1,--,q.

Remark 3.5.3 The definition 3.5.5 allows infinite derivative for Ty at the extreme

points of its reqularity intervals. For instance, see [1] section 2.4.

Henceforth we consider a particular class of the Lorenz-like systems.

Definition 3.5.6 A map Fy : [0,1]*> — [0,1)%, Fr(z,y) = (T(z), Gr(z,v)), is said
to be a BV Lorenz-like map if it satisfies

1. There are H > 0 and a partition P' = {J; :== (bi_1,b;),i = 1,--- ,d} of I such
that for all x1,x9 € J; and for all y € I : the following inequality holds

|Gr(z1,y) — Gr(xs,y)| < H - |21 — 22);

2. Fyp, satisfy property G1 (hence is uniformly contracting) on each leaf v with rate

of contraction «;

3. Ty - I — I satisfies the definition 3.5.5.

Remark 3.5.4 Without loss of generality we can suppose that the reqularity intervals
of Ty, and G, are equal, P' =P (see definition 3.5.5).
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When Fj, is a BV Lorenz-like map, it satisfies G1, T3.4, P'1 and P’2. Thus we
apply the results obtained in section 3.4 (for p=1) by setting BV;; with norm [¢|;; =
vary 1(¢) + [¢]1, BV, with norm [[u[]1; and finally BV?% with norm ||u|[?%. Under
these settings we have all results of section 3.4. This gives sense for the following

definition.

Definition 3.5.7 A family of maps {Fs}s is said to be a Lorenz-like family if Fys is
a BV Lorenz-like map for all § and there exist 0 < X < 1 and D > 0 s.t. for all u € S*
and for all § it holds

|| F5% wllia < DX*||pli1 + Dl|plly for all n > 1. (3.34)

The proof of the next result which is our main tool to estimate the regularity of

the invariant measure is too long. So it will be postponed to the appendix.

Proposition 3.5.3 Let Fr(z,y) = (Tp(x),Gr(x,y)) be a BV Lorenz-like map and
consider ;1 € BV". Then, there are Cy and 0 < \g < 1 such that for all n > 1 it holds

Var(F§® 1) < Cog Var(u) + Col . (3.35)

A precise estimate for Cy will be found in theorem 4.0.1 and corollary 5.2.1. Re-

member that, by proposition 5.3.1, we have puy € 5.

Proposition 3.5.4 Let Fr(z,y) = (T1(z), GL(x,y)) be BV Lorenz-like map and sup-
pose that Fy, has an unique invariant probability measure pg € S*. Then g € BVT

and

Var(uo) < Cp.

PROOF.

First of all, it is not hard to prove that if G, : I —s SB([0,1]) is a sequence of
paths which converges to G, : 7 — SB([0, 1]) pointwise on a full measure set IcI ,
then for every fixed partition P = {xg, - ,z,} C T it holds

lim Var(G,,P) = Var(G,,, P).

n—aoo

Consider the Lebesgue measure m and the iterates Fi"(m). By theorem 77, these it-

erates converge to po in £%°. It means that the sequence {GFEn(m)}n converges m-a.e. to
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G € [[po]], where G, is a path given by the Rokhlin Disintegration Theorem. More-
over, by proposition 3.5.3, Var(Ggm(m)) < Cp for all n. Thus there is a full measure
set T C I such that {@Fin(m)}n converges to @uo pointwise, where @Fin(m) = Grmm)l7
and ém = G)|7- Then it holds Var((A}FEn (m)) < Var(Grsngm)) < Cp for all n. Since
G 1o Still represents pu, {épin(m)}n converges to G uo everywhere and Var(Gpin(m)) < Gy
(because ||m||; = 1 and Var(m) = 0) for all n, it holds Var(G,,,P) < Cp for every
partition P of 1. Then, Var(@uo) < Cp which implies Var(uo) < Cp.

U

Remark 3.5.5 We remark that proposition 3.5.4 is an estimation of the reqularity of

the disintegration of po. Similar estimations are presented in [13] and [?].

In the following proposition we see a family of deterministic perturbations allowed

on our maps ( implying property UF2).

Proposition 3.5.5 (assumptions to obtain UF2) Let Fy = (Ty,Go) and Fs =
(T5,Gs) be two BV Lorenz-like maps and denote by ¥y and ¥} their transfer opera-
tors with fo, fs as their fized points. Let Pr,,Pr, be the Perron-Frobenius operators of
Ty and Ty respectively.

Suppose that when 6 is small enough there is an € = O(6) such that

1. | Py, — Py |pvor < € (assumption on T )

2. The branches T; s are such that when 0 is small enough Téjil o Tpy; is well defined
on a set Ay with m(A;) > 1 — € and |T5_1 0Ty — Id|o <€ on A.

3. there is a set Ay such that m(As) > 1 — € such that for all v € Ayy € 1 :
|Go(x,y) — Gs(z,y)| < e.

Then there is K such that

|(Fo —F5)f5l[1 < Ke.

PROOF. Set p = fs and let us estimate the integral

J1Fs 0=l lwdm() = [ 1 1= B )l lwdm()+ | 11 1= F ) hwdm)



3.5 Quantitative Stability 42
Since
(F* * )l i FsvTEJli('Y) M|To_i1(7)XT0(ni) i F;,Téli(y) #|T57i1('y)XT5(77i) I
p=rs5 )y = : — — : — Uz—a.e.vy € [,
’ ! i—1 |Té,i(T0,il('7))| i—1 |Tg,i(T5,z’1(7))|
there exists K; > 0 such that
(Fo = F5 )5 lwdm(y) < Kye.
Af
Let us estimate the remaining term
A (Fo 1 = F5 1) 5[ [wdm ().
1
J I = Fi ) hwdma)
1
< FS w0 Mg o) X o) FS i o izt () X
SR = -3 - im
a|m Tou(T, (’Y))| =TT ()] W
< / Xq:FOTl(y)lAT 7 XTo(n:) Z 6T1 N|T 7 XTs (i) p
< — — — m
|| IT(Te () =TT, (7))| W
K F;,Tl N‘T L) XTs(n:) Fa,T;; () :“|T L XTs(ni)
b [ [ty T in
Ao |T67i( 8,i (7))| i—1 |T6,i( 8 (7))| -
= [ 1y ame+ [ 116 dm(y)
A1 Al
The two summands will be treated separately. Moreover let’s denote fi], = o
(note that p|, = ¢,(v)fl, and 7|, is a probability measure).
o) zq: Fora 7)ulT 7>><To ) Z Fira MIT ) XTs(m:)
’y s — - _
. Zq: Fomao M!T 1 (0) XTo () Z FS . MlT 1) XTs ()
Tl 16T o_,z- (M)l ~  T(Te ()] w
., i F;Tgi(v) M|T0iil(,y)XTo(77i) B i F;Tg ) ,u|T L) XT5 ()
i=1 |T(,),Z(TO_,11(7))| i=1 |T(§,Z( (;i (7))| W
= L(y)+ L)
Note that, since f5 is a probability measure, for all v € A; N As (X7p(m) = XTs(m0)

on Ap) it holds
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; ( ) i Fan)l, ) M‘T (ry XTo(m) i F;’Tg ) ,u|T (,y XT,;(m)
a\Y) = = - -
i=1 |T6 ( ) (7))| i=1 |T6,Z( 0,2 (’7))| w
< zq: FS,T;){ ™) /“T L () XTo (n:) F;,Tgi(y) #|T0j}(y)XT5(m)
O ITé i(To: ()] |T5,:(Toi ()] w
¢Z‘ 0 % _
= T(/)z —Z Z H OT L) T 6 TEE() M|T0_,i1('7)> ‘ ’W
0,i

by Item (3).

Doing the same computation as above we get, for all v € A5 N A; (remember that

m(A3) <€)

¢x,0
75

I,(7) < gsup

Then (remember that m(AS) < ¢)

[ nane = [ wane+ [ noant) < e |52 @30

0,i

To estimate [,(7y) we have:

i B Mgl o Xmom) i F5 o Az o Xastno
— |T0/'(T_'1(7))| — T5.(T5; ()]

. XTo(m:) XTa(m
Z |T6 Z 77/ Z ‘T(gz .

= \(PTO —Pr)(1 )\Supl%,o|

L(y) =

w

10y My 1)

w

by Item (1). Thus

/ 1(7) dim(y) < sup ¢aoll(Pry — Pry)11 < esup |l
Ay

Let us estimate the integral of the second summand

q

Z Fz,T;{i(v) H|T0ji1 () XTs(n:) i F;,Tgi(w /~L|:r5ji1 () XTs(n:)
i=1 |T(§,Z (T({il (7)) | i=1 |T(§,1(T5Tzl (7)) |

w
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on the set A;.
In what follows, let’s make the change of variable v = Ty, ().

/ 1) dmi) = / |

q q

FE,T%(V) N|T(;i1 ('y)XTa (n:) B Z F:;,T;s}i(y) /L|T[{i1 (,Y)XTs(m)
i=1 |T(§,1<T5Tzl (,7)) | i=1 |T(§,Z (T({il (7))'

dm(7)

w

q
1
- o T3 ) |[Fim (Hlayaco = i )|, dm)
; /AlmTé,i(m) |Té,i‘ > 0 T5:(0) Toi ) Tsi ) ||lw
- 1
- gy T 0Pl = ], am
; /AlmTé,i(m) Tc;,z‘ % TOvi ™) T&,i () w
q
= | I I
Z;Lﬁmmm ToioTsa(8) — HIB||,
< 2ge Var(p).
Summing all, the statement is proved. B

Once this is done we have all the ingredients to apply proposition 3.5.2 and obtain

the quantitative estimation.

Corollary 3.5.1 (Quantitative stability for deterministic perturbations) Let {Fj};
be a Lorenz-Like family satisfying the assumptions of proposition 3.5.5 and denote by
fs the fized point of Fs, for all 6. Then

|fs — follw = O(dlog ).



Chapter 4

Appendix 1: Semi Lasota-Yorke
Inequality

In this section we give a proof for the proposition 3.5.3. Thus, let’s consider a BV
Lorenz-Like map (see definition 3.5.6) Fy, : [0,1]> — [0,1)%, F;, = (1%, Gr), and its
transfer operator Fr,* restricted to the space BV™.

For all n > 1, let P™ be the partition of I s.t. P™(x) = P™(y) if and only if
PO(TI (2)) = PO(Ti(y)) for all j = 1,--- ,n. Given n € P™ denote g\ = —L—

T2 Inl"

Then there exists C; > 0 s.t. sup{ggn)} < C A} for all p € P™ and all n > 1.
Moreover, there exists A2 € (A1,1) and Cy > 0 such that (see [21], section 3, equation

(3.1))

Var(g,g”)) < Oy forallnpe P and n > 1. (4.1)

Recall that we denote by F, : I — I the function defined by

F,=m,0F|, on} (4.2)

V.Y

where 7, , is the restriction on + of the projection 7(z,y) = .

4.0.1 Semi Lasota-Yorke Inequality

Henceforth, we fix a positive measure y € AB and a path G, : I — SB(I) which
represents p (i.e. a pair ({fy}y, ¢x) s.t. Gu(7v) = pl5).

45
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For all n > 1 set
Gn(v) = (7ry o Fl'|y o ﬂ;;)* Gu(7). (4.3)
With the above notation and following the strategy of the proof of lemma 3.2.1 we
have that the path Ggs ), defined, on a full measure set, by

Grou(y) = Y (9™ Gug) o Tily ™ (0) - Xty (), (4.4)

nepP®

represents the measure F7™ p.

Note that, by remark 3.2.2 and equation (4.2) it holds
ES"GL()llw < (1Gu()lw,
for all n > 1 and for m-a.e. v € I.

Lemma 4.0.1 Let vy and v be two leaves such that v1,7vs € J; for some i (see defini-
tion 3.5.6). Then for every path G, € [[p]], where p € AB, holds

ES il = F2, plno llw < el — ptlaollw + Hlve — 2l lw, (4.5)

where H is from definition 3.5.6.

PRrROOF. Consider g such that |g|o < 1 and Lip(g) <1, and observe that by equation
(3.12) it holds

‘/ng;ul»n - /ng;uHQ

< ‘ [ o, u, - / 4dF*, i,

+ ‘/ F’Y1 - Vz)dﬂ"m
< (N|'y1 N‘w HW
+ /|g 71 72)|dﬂ|72

< iy — sballyy + Hln — 2l / Ldul,,

< ||/~L|”/1 - le“w + Hly — 72|||N|72||W~

Taking the supremum over g such that ||g||.c < 1 and L(g) < 1, we finish the proof. O

The proofs of the next two lemmas are given on the next section. So we omit them.
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Lemma 4.0.2 Given paths G, G, and G, (where G, () = pi|,) representing the
positive measures g, i1, e € BV respectively, a function ¢ : I — R, an homeomor-
phism h :n C I — h(n) C I and a subinterval n C I, then the following properties
hold

P1) If P is a partition of I by intervals n, then

Var(G,) = Zvarﬁ(Guo)Q
)

PQ) Varﬁ(Gul + GMQ) < Varﬁ(Gm) + Varﬁ(Guz)

P3) Var( - Gyp) < (supy []) - (Vatg(Grp)) + (b, 1Giao ()] ) - vary ()

P4) Varg(G, o h) = Vargs(G ).
Remark 4.0.1 For every path G, € [[11]], where p € AB, it holds

sup G (1) < Varn<GM>+ﬁ L1600 hwdmio),

Lemma 4.0.3 For all path G, € [[u]], where p € BV™, it holds

Var(Gpm ) < Z [varﬁ(g,g”)) + 2sup gq(?”)] - sup |G (Y)||lw + sup gfyn) - Varg(Gun ).
neP® Ten

(4.6)

ProOF. Using the properties P1, P2, P3, sup,; ||Gun(7)[lw < sup,eq ||ul,|lw and
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(n)

sup [0 | = sup ¢\, we have

Var(GFin“) <

<

IN

IN

IN

IN

> Varmro (08 Gug) o (T71) 7" xrnio)]
neP®)

> Vargro (087 - Gup) © (T7],) 7] - sup x|
neP(n)

sup | (¢ - Gun) o (T7],) 7| - var(xra ()
nePm) 7 |n(n)

> varg (g4) - sup ||l |lw + Varg(Gyy) - sup [
nePm ven "

2- ) sup|| (¢ Gp) llw

nepm)

> varg (¢47) - sup ||l lw + Varg(Gyyp) - sup |g\")]
nePm) ven 7

2. > sup||Gupllw - sup gl
nep(n) K

> vary (g57) - sup ||l lw + Varg(G) - sup g5
nep) V€T U

2. ) sup||ulyllw - sup gl
pepm 17 7

nep(n)

Lemma 4.0.4 For all G, € [[u]], where u € BV*, it holds

Var(Gyg) < Var(Gy) + nff [ 11G,() wdm(o),

ProOOF. By lemma 4.0.1 we have

Var(Gy) < Var(Gy) + H [ 11G,(1)lwdm().

S [+ 2oupai?] s el + supefy V(G

O

Iterating this relation and using equation (3.12) we arrive at the desired inequality. [J

Lemma 4.0.5 For all path G, € [[u]], where p € BV*, it holds

Var(Grany) < Cy\2 Var(Gy) + Ka(n) / G, ()] lwdm(7)

where A3 1= Ao, C3 = 4Cy (A2 and Cy comes from equation (4.1)) and Ks(n) =
3Co Ny sup{ﬁ; n € P} + nHC),.

(4.7)
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PROOF. Replacing equation (4.1), lemma 4.0.1 and the definition 3.5.5 on the inequal-

ity given by the lemma 5.2.8 we get

Var ( GF]’:“ M)

IA

IN

IN

IA

IN

S [varg(g8) + 2sup g sup ||ty lw + sup g Vary(Grp)
neP) ven

> (Cx -+ 2600) (Varg(6) + /WMWMz>
neP @)
> G (Varn (Gu) +nH/||N|7||de( ))
neP(n)
5 @0 (VrsG) + s [l i)
7]
neP @)
Y CoXp Varg(G) +nHCAS > | |l lwdm(y)
nep(n) nep 1
ACoN5 Y Varg(G,,)
nepP(m)
30,0 3 /Wmunwdm/ )+ nHCN Ej./Wmhuwdm
e'p(n) 77673(")
40Ny Z Varz(G,,)
nePn)
<302>\ max { e ),77673")}+nHC’2)\”) > lluhllwdm(y)

nep® 71

€ Vary(G,) + Ka(r) [ ()

O

In order to be a Lasota-Yorke inequality K3(n) = 3Cy\} Sup{ S P} +

nHCy\] can’t depend on n. Let us remove this dependence on the next theorem.

Theorem 4.0.1 There are Cy and 0 < A\g < 1 such that for all n > 1 and for all
p € BV it holds

Var(Grpy) < CoXy Var(G) + Co [ 1160 lwdm(2) (45)

PROOF. First let us fix N > 1 such that C3A\) < % and denote

K :=max{K3(n);1 <n <N}
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Given n > 1, write it as n = ¢N + r, with ¢ > 0 and 0 < r < N. Then using lemma
5.2.9

Var(GFEﬂM) = var(GFEN(FEn—NM))
< O Var(Grpes )+ Ka(N) [ 1[Gz, (llwdm()

1 —
< 5 Var(Grn,) + K [ 11Gu()llwim(2),

Then we got the inequality

1 _
Var(Gpm,) < §Var(GF£n.NM) + K/ |G (V) ||lwdm(y). (4.9)

Doing the same computation as above, but now with Var(Gp.mx,,) instead of Var(Grg,)

we have

Var(GFin—N,u) = Var(GFEN(FEn-QNM))

1 —
3 Var(Grean,) + T [ 116,00 lwdm(y)

IN

Using what is written above and joining with the inequality (4.9) we have

1 _
Var(Gepy) < 5 Var(Gron) + K [ 116,00 lwdm()
1/1 — _
< 5 (5 VoG + K [I6,0lIwan()) + K [ 16, )lhwan()
1 1\ —
< VG + (1+5) F [IGlwvan()
Thus
1 1\ —
Var(GpinH) S ﬁVar(Gan-aNu)—i— 1+§ K/HGM('y)Hde(W) (410)

Repeating the same process ¢ times we arrive at

1 1 1
Var(GFin#) S 5 Var(GFEn—quu> -+ (1 —+ 5 + e+ 2q_1

)& [ 160w, (4.1



ol

Since r = n — gN the above inequality become

)R [l lhwan). @)

1 1 1
Var(Gr:ny,) < % Var(Grs,) + (1 + 3 N o=

Now apply the lemma 5.2.9, with n = r to get

Var(Gry) £ G Var(Gy) + Ka(r) [ 11G) hwdm(o)
< V(G + K [ G, lwdm().

Replace the above inequality in inequality (4.12) to obtain

[y

q—

Var(Gr) < g (G Var(G) + K [ G, (llwam() ) + (

A

21) K [116,)lhwdm(e)

1=0

IN

L Cud; Var(G,) + (Z 21> K / 1G, ()] lwdm(3)

1 1\ -
< 5CaMVar(G,) + (Z ;) R [16,0llwdm(:)
=0
1 —
< 5CaNVar(G,) + 2K [ 1160 lwdm(z)

and we arrive at

1 _
Var(Grpy) < 5 MO Var(G) + 2K [ 11Gu(a)lwdm(1).

In order to finish the proof, choose Cy := max {2K,C5} e Ao := max {27%, A3} to
get
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A

1 _
Var(Grp) < 5 MO Var(Gy) + 2K [ 116, lwdm(2)

IN

1
3 N5CoVar(G,) + Co [ IGu(llwdm(2)

IN

(27 % A;Co Var(G,) + Co / G llwdm ()

IN

(24) " xcavar(,) + G / G () wdm(7)

IN

AV Co Var(G,) + Co / 1G,u() lwdm(7)

IN

AN 0y Var(G,) + Co / 1G,u() lwdm()
< NGy Var(G,) + Co / G () llwdmi()
which is what we were looking for.

Corollary 4.0.1 For every p € BV" it holds

Var(E{?1) < CoNy Var() + Co [ 1161 lwdm()

And the proof of proposition 3.5.3 is complete.

(4.13)



Chapter 5

Appendix 2: An Alternative
Approach with a Stronger Norm

In this chapter we are going to prove spectral gap for the transfer operator associated
to a certain class of skew products F' = (T, G), on the square ¥ (described below), with
a stronger notion of variation of signed measures. To do it, we add some restrictions

on the derivative of G.

5.1 Contracting Fibers Maps

Let ¥ be the set defined by I x I, where I = [0,1] and m is the Lebesgue measure
on /. Consider the dynamical system F : ¥ — 3, where F(z,y) = (T'(z),G(z,y)),
T : I — I is a piecewise expanding C' function (definition (3.5.5)) and G : ¥ —

I having the following properties:

1) a—(x,) : I — R is of class C! for all x € TI;
T

2) there is a partition P = {0 = wo,--- ,x,} of I, I, = [x;_1,2;) i = 1,--- ,q and
0 < a < 1 such that

oG
3)
H ax s aG( )| + max s G (z,y)| <
= max su x max  su z 0.
2 0<i<q (5.4 EII)XI o Y 0124 (3,y) eII)xI Oydx Y

23
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5.2 Lasota-Yorke inequality and convergence to equi-
librium

Let’s work on the space BV, defined in the subsection (2.0.5). Henceforth, we fix a
positive measure y € BV, and a path G, : I — B(I) which represents x4 (i.e. a pair

<{Nv}w b))

For all n > 1 set

pe(y) =F" )y = (my o Fhom 1)" ul,. (5.1)

With the above notation define

F )= > (g™ p') o Tl (0) - X1 (7), (5.2)
neP®)

and by induction

FE™wly = > (g% up) o (T™) () - Xy (V) (5.3)
neP®)

where ¢ was defined in definition (3.5.5).

Remark 5.2.1 The equations (4.3), (4.4) and (??) lead us to define the expression

Greon(y) ==Y g (T, () F o1 Gu(T [ () - Xaey (7). (5.4)
neP(®)

Then, gwen a path G, we denote by Gyn -, the path given by the above expression
(5.4), defined on a full measure set which contains T"(Ig, ). The path G «n, represents
the positive measure F*"u. This gives us an association [p] — [F*™u] which allows
to estimate the variation of the measure F*"u by estimating the variation of the path

Gy« In the sense that, once we prove an estimation like (see theorem (4.0.1))

Var(Gr-ry) < CoXg Vax(Go) + Co [ Il wdm(), (5.5)

we can take the infimum on both sides to obtain

Var(E ") < CoXg Var(u) + Co [ 1l v () (5.6)
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Moreover, we set (see the definition of BVs)

Oz—oz2

(5.7)

Q =min < 1,

mMaX1<i<q SUP(g,y)el; xT

0?°G
a—yQ(ﬂﬁ ; y)’

The following three results; lemma (5.2.1), proposition (5.2.1) and proposition
(5.2.2), have the same proofs as lemma (3.12), proposition (3.13) and proposition (3.2.1)

respectively. Hence we’ll omit them.

Lemma 5.2.1 For every leaf vy, the operator F : SB(I) — SB(I) is a weak con-

traction under the || ||w norm, where F, := m, 0 F|, o7

; . I — I. In particular

VS plyllw < lplyllw for every € AB.

Proposition 5.2.1 If u is a probability measure, then ||u|lw = 1. Hence

1 E* " pllw = lpllw = 1

foralln > 1.
Proposition 5.2.2 If € L! then

T E ulls < Il (5:8)

Lemma 5.2.2 For every leaf vy, the operator F : SB(I) — SB(I) is a weak con-

traction with the || ||z norm, where F, := m, o F'|, o7

1}1 I — I. In particular

IF% iyl < il llcar for every ji € AB.

PROOF. For a given g € Beez, by 1), 2), 3) given in the beginning of section (5.1) and
by definition of Q (equation (5.7)) is straightforward to see that g(F,) € B¢2. Hence

‘/ng?;u' = ‘/Q(Fv)dﬂ'

il -

IA

Taking the supremum over g € B2 the proof is complete. [l
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Lemma 5.2.3 Let p and v be two signed measures, where v =" " | a;0,, with a; € R
for all i = 1,--- ,n. Let 1 and 7, be two leaves such that vi,7v2 € I; for some
j=1,---,q. Then there exists Hy > 0 such that

| E5, = F5, Vllow < i = vllor + Halm = ll[v|lw-

Proor.

For a given g € Br2 we have

'/ng;u—/ngfml/

+ /ng;y— gdF>, v
< HFT}QM_FTHVHCQ'

+ /ng;”_/ngfsz
< H1||M—V||C2’

+ /ngfﬂy—/ng%l/

So we've found

'/ng:I,u—/ngfﬁl/

Let us estimate the second term of the right hand side of equation (5.9).

(5.9)

< H/L—VHCQ/+‘/ng:ll/—/ng:QV :
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‘/ngil v — /ngi‘;Qv = /goG(%,Z)dV(Z) - /goG(’yz,Z)dV(Z)
= > agoGly,y) — Y aigo G, u)
i=1 i=1
= D ai(go Gy, y) — g0 Gy, i)
i=1
u 0
= Y[ oo ()
i=1 2] OF
= 0
= Zaia—(goG)(x,yi)dm(x)
[v2,71] =1 X
< / iaig(goG)(a: y;)|dm(x)
B [venl | O ’
’ =1
0
= —(g 0 G)(z, 2)dv(z)|dm(x).
pan] 1/ OF
So we get
* * a
gdF v — [ gdF v| < —(g 0 G)(z, 2)dv(z)|dm(x). (5.10)
bl 1S OF
Set
oG 0°G ‘
H; = max su —(x, + max su T, Y)| - 5.11
27 osigy (I,y)eﬁ.x[ Ox ( y)‘ 0<i<q (x,y)elf)ixl 8y8:17( v) (5.11)
1
Defining in this way we have that the real function,h,, defined by h, := o %(g o
2

G)(z,.): I — R satisfies ||hy||ooc < 1 and L(h,) <1 for all z € I.

Indeed, given a = € I and for all y € I we have

Hence

1 0
oG

b e

IN

o0
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Moreover

/ 2
‘(;26(1(90@)(% y)) = HLQ g”(G(fv,y))-g—j(:r,y%g—i(:r,y)Jrg’(G(xyy))-gy(gx(%y)
o |0G 9*G
< %(m,y)‘+'ayaz(x,y)‘
< 1.

Hence the inequality (5.10) gives us

0
‘/ng ng < / / (g0 G)(x, z)dv(z)|dm(z)
[v2,m1] Ox
|| [ s 6w 2)iv(s) )
= — —(go
[v2.m] i 3 0x ! h e
< [ Hlblwdv)n)
[v2,71]
= (m — ) Ha||V[w.
And we get
[oaw, v - [ adr,] < 0=l (5.12)
Joining the above inequality (5.12) with (5.9) we arrive
[oaBs = [gaB,v| <lln=sller + (n = el (.13

We finish the proof taking the supremum over g € Bee.
O

Lemma 5.2.4 Let 1 be a signed measure on I. Given s € N, consider a partition of 1
gwen by P ={L,---, I}, where m(I;) = % for all i. Denote e, = % and consider the
signed measure vs, on I, defined by vs = > ;| u(l;)d,, where x; € I; for alli. Then
i = visllw < eful(1).

PROOF. Given a g € bl — Lip(I) we have L(g) = 1. Then, for any y € I;, holds
lg(y) — g(x;)| < m(1;) for all i. Hence
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_ Z /I_gdu—fjgm)mn
— /Zg y)xr. (y)du(y /Zg%XI )dp(y)

111

= / Z X1, ()dp(y)

111

< /Z\g ) — g X W)l v)

Z11

< /ZGSXI )d|pl (y)

111

pI(D).

‘/gdu—/gdvs

IA

€s

We finish the proof taking the supremum over g € b1 — Lip(I).
[

Proposition 5.2.3 Let p and v be two signed measures and let v, and 2 be two leaves

such that vi,vs € I; for somei=1,--- ,q. Then

1FS, 1= B2, vl < [l = vlew + Haly — el [

PROOF. By lemma (5.2.4), consider a sequence of signed measures {v,}, of the type
Up = ngi) a;(n)dy,(ny, where {y;(n)}, C I for all i and {o;(n)}, C R for all i, such

that lim v, = v with the || |lw norm. Since || ||o= < || |lw we also have that
n—oo

lim v, = v with the || ||o> norm. By lemma (5.2.3) and since, for all -y, the operator

n—oo

F? is continuous with respect to both norms || ||y and || [|5e, we finish the proof. [J

The proofs of the next two lemmas equals to the proofs of the lemmas (??) and

(4.0.1). So, we omit them.

Lemma 5.2.5 Given paths G, G, and G, (where G, () = ply, G,y (7) = p1|y and G, (7)

Lol ) representing the positive measures measures i, i1, fo € BVo respectively, a func-
tion ¢ : I — R, an homomorphism h :n C I — h(n) C I and a subinterval n C I,
then the following properties hold
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P1) If P is a partition of I by intervals n, then
Var(G,) = ZVarﬁ(G )
n

P2) Vary(G, + Gy,) < Varg(Gy,) + Varg(G,,)
P3) Var(p - G,) < (supy ) - (Varg(G,) + (supac Lo ) - (Varg(i)
P4) Varg(Gy o h) = Varg5(Gy).

Remark 5.2.2 As remarked in (4.1) There exists Ay € (A1,1) e Cy > 0 such that
Var(gT7 ) < Co)y for alln € P™ andn > 1.

Lemma 5.2.6 For a given measure p on % we have

1
Sup [|pelylle= - < Varn(||ﬂ|’c2/)+—)/||ﬂ| [l dm ()
V€N

1
< Nar) + s [ llerdm(o)

1
< V() + s / sl dm ()

Lemma 5.2.7 For all G, € [p], where 1 € BV, it holds

Var() < Var(G,) + nHy / G () lwdm().

PROOF. By lemma (5.2.3) we have
Var(uf) < Var(Gy) + Ha [ 1Gu()llwdm(y)
[terating this relation and using lemma (3.12) we arrive at the desired inequality. O

Lemma 5.2.8 For all path G, € [p], where pn € BV,, it holds

Var(Gpsny) < Z [Varn(gf?”)) + QSupg,g")] -sup ||GL ()|l + supg ) Varg (i)
neP®) ven

(5.14)
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PROOF. Using the properties P1, P2, P3, sup, || ¢ (7)||c2 < sup.eq ||ly/c> and

sup [g\"] = sup g\, we have

Var(Geney) <Y Vargegy [958 - #8) © (") ™" - X))
nep(n)
< Z Vargaros [(95 - ) o (T"]) '] - sup [x7n )|
nepP®n

+ 253 sup | (9§ - 1) © (T7],) "] - var(xzn ()
nepm) T n(n)

< Z Vary (g (”) pi) +2- sup | (g,™ - pi) o (T"]) | e
Ty (n)
nep®
< Z vary (gi) - sup ||h| | + Varg(ug) - Suplg( )
neP ) !
+ 22 ) supl| (g5 ) © (T"]y) Ml
nep(n) K
<> varg (90) - sup |l oo + Varg(ug) - sup o)
nep(n) ven !
+ 2> supll (08 ) llow
nepm
< 3 varg (97) - sup il low + Varg(ug) - sup g
nep(n) !
+ 2> sup|| () [ e - Sup|g17 |
nep(n)
< 3 varg (97) - sup il le + Varg(ug) - sup g
neP ) !
+ 2> sup| |l - Suplgn |
nepP®) rEn
< X [t + 2supgf? | sup ks + supgf? - Vary )
nep(n)
0
Lemma 5.2.9 For all path G, € [p], where pn € BV,, it holds
Var(Grov,) < G} Var(G) + Ka(n) [ 11G,(0) wdmio) (5.15)

where A3 = Ay, C3 = 4Cy (Ay and Cy comes from equation (4.1)) and Ksz(n) =
308 sup{—=;1 € PM™} + nHyCy\y.

m(7)’
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PROOF. Replacing equation (4.1), lemma (4.0.1) and the definition (3.5.5) on the
inequality given by the lemma (5.2.8) we get

Var(Gpeny) <Y [varg(gl”) + 2sup gi] sup ||l |lw + sup gi™ Vary (up)
nePm) ven

> et +200) (Vora(6) + i [l i)

neP ™)

Y o (Ve G £ / |Iulw|lwdm(7)>

neP ™)

> (302 (Va(G) + / Ik lvan))

neP @)
£ Y CVan(G) +nHaCoN S [ llnhllwdm(a)
nep(n) nep 1N
ACH\5 Y Vary(G,,)
nepP(n)
+ose S / lalyllwdm(3) + nHCoA2 S / sl dm ()
7>(n) nepPn)
ACHN; > Varg(G,,)

neP ™)

+ <3C’2)\ max { ——

IN

IN

IA

IA

in€eP n)} + nHQCQ)\n) Z 7||M|’Y||de(7)

nepm 71

( )

Cu\E Vary(G,) + Ks(n) / 1t [ dm (7)

IN

O
In order to be a Lasota-Yorke inequality K3(n) = 3Cy\y sup{ S Py 4
nHyCo\y can’t depend on n. The next theorem removes this dependence. The argu-

ment of its proof is analogous of the proof of theorem (4.0.1), so we skip it.

Theorem 5.2.1 There are Cy and 0 < A\g < 1 such that for all n > 1 and for all
€ BYy it holds

Var(Grony) < CoN Var(G) + Co [ 1160 lwdm(3) (5.16)

By the same argument of remark (5.2.1) we get
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Corollary 5.2.1 For every p € BYy it holds

Var(F ™) < CoAg Var(p) + Co / NG (N[wdm (7). (5.17)

Corollary 5.2.2 For all up € BYy and n > 1

| E"ullgy < CoXgllpllsy + (Co + 1)|| ]|

PROOF. Since F* is a weak || ||;-contraction (proposition (77?)), to get the result, we

add || F*"ul|; on both sides of the inequality (4.8). O
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5.3 Spectral Gap

For a given 1 € BV, and its restriction on the leaf v, ul, == 77 (¢.(7)p,), define

ﬁ|’¥ = *,y:u’)"

Hence fi|, is a probability on /. Moreover |, = ¢, (7)fl,-

Proposition 5.3.1 There exists a real number 0, such that for all signed measure p
on I and for all v € I, holds || ¥ ullw < of|p|lw + 0u(I). In particular, if u(I) = 0
then || Tl < allllw-

PRrROOF. If g € b1 — Lip(I) then g o F, is a-Lipschitz. Moreover since ||g||oc < 1 then
l|g o Fy — 0] < a for some 6. This implies that

‘/ngW‘ = ‘/gondu’
:‘/goF,y—edu’—i—‘/@dﬂ‘

= a‘/wdu‘ + Ou(I)
(0%
= allplly +0ul).

And taking the supremum over g € b1 — Lip(I) we have || F u|lw < of|u||w + 0u(I).
In particular, if u(I) = 0 we get the second part. O
The proof of the following proposition equals to the proof of the proposition (3.19).

Hence we omit it.

Proposition 5.3.2 For all signed measure u on X, holds || F* ul|; < of|plli + (o +
D[ @a]l1-

[terating the relation of the above proposition we get.

Corollary 5.3.1 For all signed measure p on ¥, we have ||F*™ully < o™||u|l1 +

14+«

aHQSIHl; where o = 1—a®

From [2] and [3] we get the following.
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Lemma 5.3.1 Let Py : BV (1) — BV/(I) be the Peron-Frobenius operator associated
with a piecewise expanding C* map, T : I — I. Then Py : BV(I) — BV(I)
has spectral gap. Moreover there exists 0 < r < 1 and D > 0 such that for all
p eV ={¢e BV(), [ pdm =0} and for alln > 0 we have | P1(¢)|py < Dr"|¢|py.

Denote by V), the following set of zero average measures
V={peBY,y:uX) =0}

Note that for all 4 € V holds niu(I) = 0. Moreover, since miyu = ¢m (denoting
¢ =¢" —¢7) we have [ ¢dm = 0. Indeed

W) — () = 0
[usenmdsim = [ ndom=o

[ oi = ozm=0

/¢dm:o.

Proposition 5.3.3 There exist 0 <7 < 1 and 0 < B < 1 such that, for every signed

measure p € LY with u(X) = 0, ||p|h < 1, mip = ¢om, ¢, € BV(I) and |d.|pvy < 1,
1

holds ||F*"ully < (1 +@D) (2)2 B, for all n > 1. In particular, for every signed

n(E) =0

bl

measure p € V such that ||p||py < 1 holds the same estimation, ||F*"ull; < (1 +
1
aD) (%) 26", for alln > 1.

PROOF. Let u € L! be a signed measure such that u(X) = 0, ||ulli < 1, 7ip = ¢.m
with ¢, € BV(I) and |¢,|py < 1. Denoting ¢ = ¢F — ¢, , we have [¢dm = 0 and
|6|Bv, |¢l1 < 1. Moreover, from lemma (5.3.1) we have | Pr(¢)|sv < Dr"|¢|sy.

Let m and 0 < d < 1 be the coefficients of the division of n by 2, i.e. n = 2m + d.
Thus m = 5% (remember || F**ull; < ||uf|; for all s). And so, we have (below, let 7

be defined by 7 = max{r,a} and f = V7, 0 < 3 < 1)
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IF"plly < [JF=2mH

IA

ol

OémH F* m+1 F* m+1

IN

plh +alfm( mlh

IA

a™||ul[s + @l PE ()

™| |ull +al PR (9) sy

Oém 4 a,r,erlDl(mBV

IN A

IN

a™ +ar™D

IN

1+ aD)max{r,a}™

IN

n—d

(
(1+aD)r™
(1+aD)r =
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Proposition 5.3.4 There exist 0 < & <1 and K > 0 such that, for alln > 1 holds

[(F* |v)"|[sv < §"K.

PROOF.

Let 1 € V be a signed measure such that pu(¥) = 0 and ||u|lsgy < 1 (and so
lully < 1).

Let m and 0 < d < 1 be the coefficients of the division of n by 2, i.e. n = 2m + d.
Thus m = 2. And so, we have (below, let Ay be defined by Ag = max{\o, 3} and
£=VX)

It holds that || F* "ul||gv < CAg||u||sv+C||p|]1 (where C' = Cy+1) for all p € BVs.
Moreover || ||1 < || |lsy and ||[F*"||py < 2C for all n > 1. Besides that, using

proposition (5.3.3) and (5.2.2), we have
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However

U

Theorem 5.3.1 Let py be the invariant measure for 2-dimensional Lorenz transfor-

mation F : 3 — Y. Then ug € BVs.

Proor. Let pu, = ¢,m be the marginal measure of the disintegration of py. Since
l|llli = ||de|l1 = 1 we have that u € L. Since (m — pp)(X) = 0 and 75(m — pg) =
(1 — ¢,)m, by the first part of proposition (5.3.3) and the F-invariance of py we get

F*"m — uy as n —> 0o, in the £'— norm.

Besides that, by the theorem (5.2.1) it holds (F* "m),, C BV,. Moreover by proposition
(5.3.4) for every p € N, ||F*"(m — F*Pm)||py — 0 as n — oco. Then (F*"(m)), is
a || ||py-Cauchy sequence.

Since BV, is a Banach space there exist a measure i € BV, such that
F*"m — g as n — oo, in the BV, — norm.

But it means

F*"m — i as n —> oo, in the £'— norm.

By the uniqueness of the limit ;1 = po and the proof is complete. O
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Theorem 5.3.2 (Spectral gap on BY,) If FF : ¥ — ¥, F = (T,G), where T is
a piecewise expanding C' map and G satisfies 1), 2) and 3) given at beginning of

Section 5.1, then the operator F* : BVy — BYy can be written as
F*=P+N
where
a) P is a projection i.e. P* = P and dim Im(P) = 1;
b) there are 0 < & <1 and K > 0 such that ' || N"(u)||gy, < £"K;
¢) PN=NP = 0.

PROOF.

By theorem (5.3.1) we have that F* : BV — BV, has a fixed point .

Define the projection P : BVy — [ug] ( [wo] is the space spanned by pyg), by
P(u) = u(3)po. Now define the operator

S: BV, — V,

by
S(p) =p—P(u) for every u e BVs.

Thus define N = F* oS and observe that N"(u) = F*"(S(u)). Since S is bounded and
S(u) has zero average we get, by proposition (5.3.4), || N"(u)||sv < E"K||S||sv||pl|Bv-
Note that F* = P 4+ N. We finish the proof observing that, since pq is mixing (see [13])
it holds dim I'm(P) = dim([uo]) = 1. O

We remark that by this, the spectral radius of N satisfies p(N) < 1, where N is the extension of
N to BV, (the completion of BYs). This gives us spectral gap, in the usual sense, for the operator
F: BVQ — BVQ
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