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las labores, porque siento que en muchas ocasiones DIOS conspiro para que las cosas

resultaran de la mejor manera, y porque sé que me ha dado infinitos regalos de vida.
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Abstract

LÓPEZ BARRAGÁN, Andrés Mauricio. Sectional hyperbolic sets in higher

dimensions. Rio de janeiro, 2015. PhD thesis in Mathematics, Instituto de Matemática

- Universidade Federal do Rio de Janeiro, 2015.

Consider a compact Riemannian manifold M of dimension n ≥ 3 (a compact n-manifold

for short). We denote by ∂M the boundary of M (with ∂M 6= ∅). Let X 1(M) be the

space of C1 vector fields in M endowed with the C1 topology. Fix X ∈ X 1(M), inwardly

transverse to the boundary ∂M and denote by Xt the flow of X, t ∈ IR.

The α-limit set and ω-limit set of p ∈ M is the set αX(p) and ωX(p) formed by those

points where the orbit is born and dies respectively, i.e., formed by those q ∈ M such

that q = limn→∞Xtn(p) for some sequence tn → −∞ and tn →∞ respectively.

Given Λ ⊂ M compact, we say that Λ is invariant if Xt(Λ) = Λ for all t ∈ IR. We

also say that Λ is transitive if Λ = ωX(p) for some p ∈ Λ; singular if it contains a

singularity and attracting if it is a set to which all nearby positive orbits converge, i.e.,

if Λ = ∩t>0Xt(U) for some compact neighborhood U of it. This neighborhood is often

called isolating block. It is well known that the isolating block U can be chosen to be

positively invariant, i.e., Xt(U) ⊂ U for all t > 0. An attractor is a transitive attracting

set. A sink is a trivial attractor of X, namely it reduces to a single orbit. A source

is a trivial attactor of −X. A closed orbit is a compact orbit (singularity or periodic

orbit). Thus, an attractor is nontrivial if it is not a closed orbit. A repelling is an

ix
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attracting for the time reversed vector field −X and a repeller is a transitive repelling set.

The maximal invariant set of X is defined by M(X) =
⋂
t≥0Xt(M).

A sectional hyperbolic set is a partially hyperbolic set whose singularities are hyperbolic

and whose central subbundle is sectionally-expanding.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of its linear part

have non zero real part.

We say that X is a sectional Anosov flow if M(X) is a sectional hyperbolic set. [31]

In this work we prove the following results:

1. Every attractor of every vector field C1 close to a transitive sectional Anosov flow

with singularities on a compact manifold has a singularity. This extends the three-

dimensional result obtained in [28].

2. On small perturbations of a sectional hyperbolic set of a vector field on a compact

manifold, we obtain an upper bound for the number of attractors and repellers

that can arise from these perturbations. Moreover, no repeller can arise if the

unperturbed set has singularities, is connected and consists of nonwandering points.

3. Every sectional Anosov flow (or, equivalently, every sectional-hyperbolic attracting

set of a flow) on a compact manifold has a periodic orbit. This extends the previous

three-dimensional result obtained in [8].

4. The existence of venice masks (i.e. nontransitive sectional Anosov flows with dense

periodic orbits, [10], [36], [35],[7]) containing two equilibria on certain compact 3-

manifolds. Indeed, we present two type of examples in which the homoclinic classes

composing their maximal invariant set intersect in a very different way.



List of Figures

2.1 Hyperbolicity property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Domination property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Geometric Lorenz attractor GLA. . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Three dimensional Lorenz-Like singularity. . . . . . . . . . . . . . . . . . 22

3.2 Three dimensional case. Cross-section. . . . . . . . . . . . . . . . . . . . 24

3.3 Four dimensional case. Cross-sections. . . . . . . . . . . . . . . . . . . . 25

4.1 The fundamental domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Tubular Flow Box Theorem for XT (Vq). . . . . . . . . . . . . . . . . . . . 36

4.3 The projection Πt(Kn0) = Kn0
1 . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Hypothesis A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Hypothesis A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Leaf class of L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Cherry flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Cherry flow box and Plug 7.2. . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Plug 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 The quotient space and one-dimensional map. . . . . . . . . . . . . . . . 89

7.5 Modified one-dimensional map. . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 Region R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.7 Two-dimensional map and quotient space . . . . . . . . . . . . . . . . . . 93

xi



LIST OF FIGURES xii

7.8 The quotient space and modified two-dimensional map. . . . . . . . . . . 94

7.9 Venice mask with one singularity . . . . . . . . . . . . . . . . . . . . . . 95

7.10 Perturbed Cherry flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.11 Plug X and its associated manifold. . . . . . . . . . . . . . . . . . . . . . 98

7.12 Connected componet to remove. . . . . . . . . . . . . . . . . . . . . . . . 101

7.13 Steps by gluing the new plug. . . . . . . . . . . . . . . . . . . . . . . . . 102

7.14 Flow through of the face 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.15 Direction of flow through the faces. . . . . . . . . . . . . . . . . . . . . . 104

7.16 Plug Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents

Abstract ix

List of figures xi

1 Introduction 1

1.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9

2.1 Definitions and basic concepts . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sectional hyperbolic theory . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Topics of hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Hyperbolic properties . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Classical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 L-L singularity and singular cross-section 20

3.1 Lorenz-Like singularities on sectional hyperbolic sets . . . . . . . . . . . 20

3.2 Singular cross-section in higher dimension . . . . . . . . . . . . . . . . . 23

4 Sectional Anosov flows in higher dimensions 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Sectional hyperbolic sets in higher dimension . . . . . . . . . . . . . . . . 27

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xiii



CONTENTS xiv

4.2.1.1 Refinement of singular cross-sections and induced foliation 31

4.3 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Finiteness and existence on S.H.S. 41

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 About finiteness and Bonatti’s conjecture . . . . . . . . . . . . . . 42

5.1.2 About repeller’s existence . . . . . . . . . . . . . . . . . . . . . . 43

5.1.3 Main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Proof of the main theorems . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1.1 Proof of the corollaries . . . . . . . . . . . . . . . . . . . 55

5.4.2 Proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Existence of periodic orbits for S.A.F 58

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Triangular maps in higher dimensions . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Preliminaries and useful results . . . . . . . . . . . . . . . . . . . 60

6.2.2 n-Triangular maps . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.3 Hyperbolic n-triangular maps . . . . . . . . . . . . . . . . . . . . 64

6.3 Periodic points for hyperbolic n-triangular maps . . . . . . . . . . . . . . 65

6.3.1 Hypotheses (A1)-(A2) . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.2 Existence on hyperbolic n-triangular maps . . . . . . . . . . . . . 67

6.4 Existence of the periodic point . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.1 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.2 Leaf class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.3 Bands in higher dimensions . . . . . . . . . . . . . . . . . . . . . 75

6.5 Proof of Theorem 6.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



CONTENTS xv

6.6 Proof of Theorem D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Venice masks with two singularities 84

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.1 Original plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Modified maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.1 One-dimensional map . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2 Modified one-dimensional map . . . . . . . . . . . . . . . . . . . . 90

7.3.3 Two-dimensional map . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.4 Modified two-dimensional map . . . . . . . . . . . . . . . . . . . . 93

7.3.5 Venice mask with one singularity . . . . . . . . . . . . . . . . . . 95

7.4 Venice mask’s examples with two-singularities . . . . . . . . . . . . . . . 96

7.4.1 Vector field X and Example 1. . . . . . . . . . . . . . . . . . . . . 96

7.4.2 Vector field Y and Example 2. . . . . . . . . . . . . . . . . . . . . 100

7.4.3 Flow through of the faces . . . . . . . . . . . . . . . . . . . . . . 102

References 106

Index 112



Chapter 1

Introduction

Dynamical systems describe different properties about the evolution of initial states,

asymptotic behavior, stability, relationships between system’s elements and its properties.

These concepts are fundamentals to the theory of dynamical systems. In fact, the

starting motivation of this theory was the study of time behavior of classical mechanical

systems, which were modeled by initial value problems describing systems of ordinary

differential equations.

However, most of these system’s behavior might be very complex, therefore, finding the

link between them becomes a difficult task. But, if it is possible to identify enough

information of the system, by choosing only one point, also will be possible to determine

all its future positions, or a collection of points known such as a trajectory or orbit,

stability and special sets.

There are two standard types of dynamical systems: discrete dynamical system and

continuous dynamical system. The discrete dynamical system works on a manifold

locally diffeomorphic to a Banach space, with a map (in general an homeomorphism or

diffeomorphism function) and a time parameter that belongs to the set of integers. The

continuous dynamical system works on a manifold locally diffeomorphic to a Banach

space, with continuous function (called in general flow) and a time parameter that

1



CHAPTER 1. INTRODUCTION 2

belongs to an open interval in the real numbers.

There exists different sets or elements of the system that provide a good information

about the dynamic of this one, such as critical points (a fixed point for the discrete case

and singular point for the continuous case), and the set of periodic points. In these

particular points, the dynamics of the system can be represented by the eigenvalues

associated with the critical point. It is well known that when these eigenvalues are not

in the unit circle, the dynamics near the critical point is called hyperbolic and represents

a hyperbolic dynamical system.

Hyperbolic systems have been extensively studied and have many properties that provide

very important information about the dynamics. These systems are characterized by a

continuous tangent bundle invariant decomposition of its tangent space in the critical

point. This decomposition is associated to the set of points that converge towards

the orbit of the critical point and another to the set of points that diverge from the

orbit of the critical point (called the stable and unstable manifold respectively). Also,

hyperbolic systems are structurally stable, exhibit the property of shadowing, the

property of transitivity is robust and exhibit the properties ascribed to chaotic systems

between others. In general, in the theory it is considered that the systems and sets

with hyperbolic property must be connected, and therefore the hyperbolic systems are

considered without singularities (i.e., a non-trivial hyperbolic set can have singularities,

but these ones are isolated).

With the purpose of extending the notion of hyperbolicity, arise definitions and a new

theory, such as partial hyperbolicity, singular hyperbolicity for 3-dimensional case and

later definitions of singular hyperbolicity and sectional hyperbolicity for the higher

dimensional case.
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Many important results in hyperbolic dynamical systems are limited by dimension

hypothesis, i.e., the environment space is a manifold of dimension three. An important

question of interest is whether these results are valid in higher dimension. This is the

main motivation, and our goal has been to attack this type of limitation for certain

specific problems.

1.1 Thesis contributions

Our approach has different works talking about likeness between hyperbolic case and

sectional hyperbolic sets (in dimension three and higher dimensions). Firstly, for this

purpose is customary to introduce certain hypotheses on the system under consideration.

Consider a compact manifold M of dimension n ≥ 3 with a Riemannian structure ‖ · ‖

(a compact n-manifold for short). We denote by ∂M the boundary of M . Let X 1(M)

be the space of C1 vector fields in M endowed with the C1 topology. Fix X ∈ X 1(M),

inwardly transverse to the boundary ∂M , and denote by Xt the flow of X, t ∈ IR.

We begin by considering the relationship between robustly transitivity and partial

hyperbolicity in the singular case, worked in [37] (three dimensional case). Here,

some important properties are identified on a C1 robustly transitive singular set,

such as partial hyperbolicity, volume expanding in the central direction and with all

its hyperbolic singularities. In fact, there appeared a very important theory three

dimensional used in later works [38], [34], [50].

In [27] was introduced the concept of sectional hyperbolic set, that is a definition

characterized by the exponential expansion of area elements along the central subbundle

and that extends to the properties of dimension three in [38].
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The sectional Anosov flows were introduced in [31] as a generalization of the Anosov

flows. These also includes the saddle-type hyperbolic attracting sets, the geometric and

multidimensional Lorenz attractors [1], [12], [20]. Some properties of these flows have

been shown in the literature [2], [7].

Later, it was observed that a transitive sectional Anosov flow on a compact 3-manifold

is not robustly transitive in general, motivating the study of the perturbations of such

flows [40].

Particularly, [28] proved that every attractor of every vector field C1 close to a transitive

sectional Anosov flow with singularities on a compact 3-manifold has a singularity.

Moreover, [4] generalized this result from transitive to nonwandering ones. Thus, our

first contribution is to extend [28] but now to higher dimensions. More precisely, we

prove that every attractor of every vector field C1 close to a transitive sectional Anosov

flow with singularities of a compact manifold has a singularity. Here, part of this first

contribution includes a new definition of singular cross-section, which is outstanding for

different results. Also, its definition provides useful tools for the next contributions of

the thesis.

It is well known that many of the dynamical systems properties come from physics

phenomena. In the sixties some definitions appeared that tried to explain these behaviors

and properties, such as attractors and repellers. These concepts are well known and

play a fundamental role in the dynamical systems theory. They have received some

mathematical interpretations, such as turbulence that appears in the classical paper

[49] which, simultaneously, provides existence of attractors for particular vector fields.

Since a repeller is an attractor for the reverse flow, it is clear that this result provides

existence for repellers too. Thereby, stressing the importance of attractors, we highlight

the classical construction of the geometric Lorenz models [1], [20]. They provide a wide

range of results and research in the theory of dynamical systems, particularly hyperbolic
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and sectional hyperbolic theories on three-dimensional manifolds. The study of sectional

hyperbolic attractors for higher dimensional flows is, however, mostly open.

Thus, the second contribution aims to work on sectional hyperbolic sets of vector fields

on compact higher dimensional manifolds, and to research two very important related

problems, namely, how many attractors and repellers can arise from small perturbations

and, also, the possible appearance of repellers from small perturbations. Motivations

come from the previous result [4], [28], providing beside transitivity or nonwandering

points, an upper bound in terms of the number of singularities in dimension three, its

subsequently generalization to higher dimensions [25], and also the well known examples

of sectional hyperbolic sets containing repellers (e.g. Anomalous Anosov flow [18] or

[14]). We can also mention the recent paper [13] studying the similar problem but for

one-dimensional maps with discontinuities.

Indeed, we remove both the transitivity and nonwandering hypotheses in order to

obtain robust finiteness of attractors and repellers. Here, we obtain an upper bound

for the number of attractors and repellers that can appear from small perturbations of

vector field (this improves [25], [28]). Furthermore, we prove a robustly non-existence

of repellers on a connected sectional hyperbolic set which both has singularities and

consists of nonwandering points.

A well known problem in dynamics is to investigate the existence of periodic orbits for

flows on compact manifolds. This problem has a satisfactory solution under certain

circumstances. In fact, every Anosov flow of a compact manifold has not only one but

infinitely many periodic orbits instead. In this paper we shall investigate this problem not

for Anosov but for the sectional Anosov flows introduced in [31]. It is known for instance

that every sectional Anosov flow of a compact 3-manifold has a periodic orbit, this was

proved in [8]. In the transitive case (i.e. with a dense orbit in the maximal invariant set)

it is known that the maximal invariant set consists of a homoclinic class and, therefore,
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the flow has infinitely many periodic orbits [2]. Another relevant result by Reis [47]

proves the existence of infinitely many periodic orbits under certain conditions. As in the

first contribution, our goal here is to extend [8] to the higher-dimensional setting and this

provides a third contribution. More precisely, we shall prove that every sectional Anosov

flow (or, equivalently, every sectional hyperbolic attracting set of a flow) on a compact

manifold has a periodic orbit. It should be noted, that this contribution provides a

wealth of new definitions for the higher dimensional case, which are necessary for this one.

We talk about the relationship between the hyperbolic and sectional hyperbolic theory.

The natural motivation is to observe the properties that are preserved or which are

not in the new scenario. Particularly, we mention two important properties related

to hyperbolic sets which are not satisfied by all sectional hyperbolic sets. The first

is the spectral decomposition theorem [52]. It says that an attracting hyperbolic set

Λ = Cl(Per(X)) is a finite disjoint union of homoclinic classes, where Per(X) is the set

of periodic points of X. The second says that an Anosov flow on a closed manifold is

transitive if and only if it has dense periodic orbits.

This results are false for sectional Anosov flows, i.e., sets whose maximal invariant is a

sectional-hyperbolic set [35]. Specifically, it is proved that there exists a sectional Anosov

flow such that it is supported on a compact 3-manifold, it has dense periodic orbits, is

the union non disjoint of two homoclinic classes but is not transitive. So, a sectional

Anosov flow is said a Venice mask if it has dense periodic orbits which is not transitive.

The only known examples of venice masks have one or three singularities, and they are

characterized by having two properties: are the union non disjoint of two homoclinic

classes and the intersection of its homoclinic classes is the closure of the unstable

manifold of a singularity.

Then, our fourth contribution provides two examples of venice masks with two

singularities. Here, each one is the union of two different homoclinic classes. However,
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for the first, the intersection of homoclinic classes is the closure of the unstable manifold

of two singularities. Whereas for the second, the intersection of homoclinic classes is just

a hyperbolic periodic orbit.

1.2 Thesis outline

In Chapter 2 and Chapter 3 we introduce the preliminary theory, such as the basic

concepts and proper definitions of our interest.

In Chapter 4, we prove that every attractor of every vector field C1 close to a transitive

sectional Anosov flow with singularities on a compact manifold has a singularity. This

extends the three-dimensional result obtained in [28].

The only known examples of venice masks have one or three singularities, and they

are characterized by to be the union non disjoint of two homoclinic classes and the

intersection of its homoclinic classes is the closure of the unstable manifold of a singularity.

In Chapter 5, we study small perturbations of a sectional hyperbolic set of a vector field

on a compact manifold. Indeed, we obtain an upper bound for the number of attractors

and repellers that can arise from these perturbations. Moreover, no repeller can arise

if the unperturbed set has singularities, is connected and consists of nonwandering points.

In Chapter 6, we prove that every sectional Anosov flow (or, equivalently, every

sectional-hyperbolic attracting set of a flow) on a compact manifold has a periodic orbit.

This extends the previous three-dimensional result obtained in [8].

In Chapter 7, we show the existence of venice masks (i.e. nontransitive sectional

Anosov flows with dense periodic orbits, [10], [36], [35],[7]) containing two equilibria on

certain compact 3-manifolds. Indeed, we present two type of examples in which the
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homoclinic classes composing their maximal invariant set intersect in a very different way.



Chapter 2

Preliminaries

This chapter provides some preliminaries to study of the hyperbolic theory, specifically,

hyperbolic theory on sectional hyperbolic sets. Here, definitions are introduced, concepts

and basic facts needed for understanding later chapters.

Some topics which appear in a number of research and which we consider as basic

for several branches of dynamics, are presented in some detail. We shall define the

hyperbolic and sectional-hyperbolic sets. We shall study the relationship between their

basic properties and the dynamics of the system.

2.1 Definitions and basic concepts

Hereafter, we shall consider a compact Riemannian manifold M of dimension n ≥ 3 (a

compact n-manifold for short). We shall denote by ∂M the boundary ofM . Let X 1(M) be

the space of C1 vector fields in M endowed with the C1 topology. Let X be a fixed vector

field in X 1(M) and inwardly transverse to the boundary ∂M . We shall denote by Xt the

flow generated by X, t ∈ IR. Recall that the flow is set as the action X : R×M → M ,

i.e., X(t, ·) ≡ Xt(·) and it satisfies X0(·) = IdM and Xt(·)◦Xs(·) = Xt+s(·) for all s, t ∈ R.

9
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It is established that an orbit of X through p is O = OX(p) = {Xt(p) : t ∈ R}, for any

point p ∈ M . A point σ is said to be a singularity (or fixed point or singular point )

of X if X(σ) = 0 (or equivalently O(σ) = σ). The positive orbit of p is defined by

O+(p) = Xt(p) : t > 0 and its negative orbit by O−(p) = Xt(p) : t < 0.

Given a point p ∈ M , the orbit O = OX(p) = Op of X is said to be a periodic orbit of

X, if for some positive number T > 0 one has that XT (p) = p (equivalently one has that

Op is compact and Op 6= {p}). The minimun number T > 0 satisfiying this property is

called the period of p. An orbit is said to be a closed orbit if this one is a singularity or

a periodic orbit of X. Hereafter, we shall denote by Per(X) the set of periodic points

and by Sing(X) the set of singularities of X.

The ω-limit set of p ∈ M is the set ωX(p) formed by those q ∈ M such that q =

limn→∞Xtn(p) for some sequence tn → ∞ . The α-limit set of p ∈ M is the set αX(p)

formed by those q ∈M such that q = limn→∞Xtn(p) for some sequence tn → −∞ .

We say that p ∈ M is a nonwandering point of X if for all neighborhood U of p and all

T > 0 there is t > T such that Xt(U) ∩ U 6= ∅ . The set of nonwandering points of X is

denoted by Ω(X) (or Ω(Xt)).

We say that p is a recurrent point of X if p ∈ ωX(p). Singularities and periodic points

are examples of recurrent points but not conversely.

Given a compact subset Λ ⊂M , is said to be:

• Invariant if Xt(Λ) = Λ, ∀t ∈R;

• Positively Invariant if Xt(Λ) ⊂ Λ, ∀t ∈R;

• Transitive if Λ = ωX(p), for some p ∈ Λ;

• Non-trivial if Λ is not a closed orbit of X;

• Singular if Λ has a singularity;
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• Isolated if there is a compact neighborhood U of Λ such that

Λ =
⋂
t∈IR

Xt(U)

(U is called isolating block) ;

• Attracting if it is an isolated set and has a positively invariant isolating block U ,

i.e.,

Xt(U) ⊂ U, ∀t ≥ 0;

• Repelling if it is an attracting for the time reversed vector field −X;

• Attractor if it is a transitive attracting set;

• Repeller if it is a transitive repelling set.

A sink is a trivial attractor of X, namely it reduces to a single orbit. A source is a trivial

attractor of −X.

The maximal invariant set of X is defined by

M(X) =
⋂
t≥0

Xt(M).

We denote by m(L) the minimum norm of a linear operator L, i.e.,

m(L) = infv 6=0
‖Lv‖
‖v‖

.

Remark 2.1.1.

− Note that the α-limit set and ω-limit set of p ∈M is the set formed by those points

where the orbit is born and dies, respectively.

− Note that Per(X) ∪ Sing(X) ⊂ Ω(X).
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− Note that ωX(p) ∪ αX(p) ⊂ Ω(X).

− Note that the set formed by a unique singularity is a transitive set and in this case

such transitive set is trivial.

− An attracting is a set to which all nearby positive orbits converge.

− The attracting sets are isolated, but not conversely. In fact, a saddle type singularity

is isolated but is not attracting.

− Note that by definition the maximal invariant is an attracting set.

2.2 Sectional hyperbolic theory

Definition 2.2.1. A compact invariant set Λ of X is hyperbolic if there are a continuous

invariant splitting of the tangent bundle TΛM = Es ⊕ EX ⊕ Eu and positive constants

C, λ such that

1− EX is the subespace generated by X(x) in TxM , for every x ∈ Λ.

2− Es is contracting, i.e.,

|| DXt(x)vsx ||≤ Ce−λt || vsx ||,

for all x ∈ Λ, vsx ∈ Es
x and t ≥ 0.

3− Eu is expanding, i.e.,

|| DXt(x)vux ||≤ C−1eλt || vux ||,

for all x ∈ Λ, vux ∈ Eu
x and t ≥ 0.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of its linear part

have non zero real part.
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〈X(Xt(x)〉
〈X(x)〉

DXt(x)

TXt(x)
M

TxM

Eux

x

EuXt(x)

Esx

EsXt(x)
Xt(x)

M

Figure 2.1: Hyperbolicity property.

Definition 2.2.2. A compact invariant set Λ of X has a dominated splitting with respect

to the tangent flow if there is a continuous invariant splitting TΛM = E ⊕ F such that

the following property holds for some positive constants C, λ:

|| DXt(x)ex || · || fx ||≤ Ce−λt || DXt(x)fx || · || ex ||,

for all x ∈ Λ, (ex, fx) ∈ Ex × Fx and t ≥ 0.

θ

θ′

DXt(x)

TXt(x)M

x
Esx

TxM

M

Xt(x) EsXt(x)

EcXt(x)

Ecx

Figure 2.2: Domination property.

In this case, we say that E dominates F .
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Definition 2.2.3. A compact invariant set Λ of X is partially hyperbolic if there is a

continuous invariant splitting TΛM = Es⊕Ec such that the following properties hold for

some positive constants C, λ:

1− Es is contracting, i.e.,

|| DXt(x)vsx ||≤ Ce−λt || vsx ||,

for all x ∈ Λ, vsx ∈ Es
x and t ≥ 0.

2− Es dominates Ec.

Given the Riemannian metric 〈∗, ∗〉 on M , this one induces a 2−Riemannian metric [41],

〈u, v/w〉x = 〈u, v〉x · 〈w,w〉x − 〈u,w〉x · 〈v, w〉x,

for every point x ∈M and u, v, w ∈ TxM .

This in turns induces a 2-norm ‖∗, ∗‖ [19] (or areal metric [23]) such that for every point

x ∈M and u, v,∈ TxM it is defined by

‖∗, ∗‖x : TxM × TxM → R+ ∪ {0}

(u, v) 7→ ‖u, v‖x =
√
〈u, u/v〉x =

√
〈u, u〉x · 〈v, v〉x − 〈u, v〉2

which geometrically, represents the area of the parallelogram spanned by the vectors u

and v on TxM .

Definition 2.2.4. Let Λ be a compact invariant set of X with dominated splitting with

respect to the tangent flow TΛM = E⊕F . We say that its central subbundle F is sectional

expanding (resp. sectionally contracting) if the following property holds for some positive

constants C, λ:

‖DXt(x)u,DXt(x)v‖Xt(x) ≥ C−1eλt ‖u, v‖x , ∀x ∈ Λ,∀u, v ∈ Fx and t ≥ 0.

(resp. ‖DXt(x)u,DXt(x)v‖Xt(x) ≥ Keλ−t ‖u, v‖x , ∀x ∈ Λ,∀u, v ∈ Fx and t ≥ 0.)
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The standard definition of a sectional hyperbolic set requires partial hyperbolicity,

hyperbolic singularities and a central subbundle sectionally expanding [27].

The following definition modifies slightly the standard definition of a sectional hyperbolic

set by using the 2-norm above with essentially the same properties [9]. Nevertheless, it

provides a dominated splitting with respect to the tangent flow on trivial sets, i.e., it

adds the cases where the dominated splitting have a trivial subbundle. (Ex = 0 and

Fx = TxM or Ex = TxM and Fx = 0 for x ∈ Λ).

Definition 2.2.5. Let Λ be a compact invariant set of X whose singularities (if any)

are hyperbolic. We say that Λ is a sectional hyperbolic set if there are a continuous

tangent bundle invariant decomposition TΛM = Es
Λ ⊕ Ec

Λ, positive constants K,λ and

Riemannian metric 〈∗, ∗〉 such that for each x in Λ and every t ≥ 0:

1− || DXt(x)vsx ||≤ Ce−λt || vsx ||, for all x ∈ Λ, vsx ∈ Es
x and t ≥ 0;

2− || DXt(x)vsx || · || vux ||≤ Ce−λt || DXt(x)vux || · || vsx ||, for all x ∈ Λ, (vsx, v
u
x) ∈

Es
x × Eu

x and t ≥ 0;

3− ‖DXt(x)u,DXt(x)v‖Xt(x) ≥ K−1eλt ‖u, v‖x , for all u, v ∈ Ec
x.

Definition 2.2.6. We say that X is a sectional Anosov flow if M(X) is a sectional

hyperbolic set [31].

Definition 2.2.7. An isolated transitive set Λ of X ∈ X 1(M) is a C1 robust transitive

set, if there is an isolating block U of Λ so that

ΛY = Λ(Y ) =
⋂
t∈R

Yt(U)

is a transitive set for all Y C1 nearby X.
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If O is a closed orbit of X, then we denote by O(Y ) the continuation of O for Y Cr-close

to X [44].

In [37] was proved for Λ a C1 robust singular transitive set of X ∈ X 1(M) that, either,

for X or −X, Λ is a sectional hyperbolic set which is an attractor. Also, any of its

singularities is Lorenz-like (see Section 3).

2.3 Topics of hyperbolicity

2.3.1 Hyperbolic properties

By using the standard definition of hyperbolic set (Definition 2.2.1), it follows from the

stable manifold theory [21] that if p belongs to a hyperbolic set Λ, there are submanifolds

associated to each point p that provide a very important information about the dynamic

of points close to p. Firstly, the Stable Manifold Theorem [21] provides Cr-immersed

submanifolds of M for p ∈ Λ, specifically the following sets

W ss
X (p) = {x : d(Xt(x), Xt(p))→ 0, t→∞},

W uu
X (p) = {x : d(Xt(x), Xt(p))→ 0, t→ −∞}

are C1 immersed submanifolds of M which are tangent at p to the subspaces Es
p and Eu

p

of TpM respectively. In this case W ss
X (p) and W uu

X (p) are called respectively the strong

stable manifold and the strong unstable manifold of p. Note that dim(W ss
X (p)) = dim(Es)

and dim(W uu
X (p) = dim(Eu).

Similarly,

W s
X(p) =

⋃
t∈IR

W ss
X (Xt(p)),

W u
X(p) =

⋃
t∈IR

W uu
X (Xt(p))



CHAPTER 2. PRELIMINARIES 17

are also C1 immersed submanifolds tangent to Es
p⊕EX

p and EX
p ⊕Eu

p at p respectively. So,

W s
X(p) and W u

X(p) are called respectively the stable manifold and the unstable manifold

of p.

Moreover, for every ε > 0 we have that the sets

W ss
X (p, ε) = {x : d(Xt(x), Xt(p)) ≤ ε,∀t ≥ 0}

W uu
X (p, ε) = {x : d(Xt(x), Xt(p)) ≤ ε,∀t ≤ 0}

are closed neighborhoods of p in W ss
X (p) and W uu

X (p) respectively. Also, they are can

denote by W ss
loc(p) and W uu

loc (p) respectively.

It is well known from stability theory for hyperbolic sets, that we can fix a neighborhood

U ⊂M of Λ, a neighborhood U ⊂ X 1(M) of X and ε > 0 such that every hyperbolic set

H in U of every vector field Y in U satisfies that its local stable and instable manifold

W ss
Y (x, ε) and W uu

Y (x, ε) have uniform size ε for all x ∈ H. (2.1)

Let O = {Xt(x) : t ∈ R} be the orbit of X through x, then the stable and unstable

manifolds of O defined by

W s(O) =
⋃
x∈O

W ss(x), and W u(O) =
⋃
x∈O

W uu(x)

are C1 submanifolds tangent to the subbundles Es
Λ ⊕ EX

Λ and EX
Λ ⊕ Eu

Λ respectively.

A homoclinic orbit of a hyperbolic periodic orbit O is an orbit in γ ⊂ W s(O) ∩W u(O).

If additionally TqM = TqW
s(O) + TqW

u(O) for some (and hence all) point q ∈ γ, then

we say that γ is a transverse homoclinic orbit of O.
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Definition 2.3.1. The homoclinic class H(O) of a hyperbolic periodic orbit O is the

closure of the union of the transverse homoclinic orbits of O. We say that an invariant

set L is a homoclinic class if L = H(O) for some hyperbolic periodic orbit O.

2.3.2 Classical example

In the theory of dynamical systems there are two classical examples, namely the Smale’s

horseshoe and the GLA Geometric Lorenz attractor . In fact, we can take the geometric

Lorenz attractor [20] as the most representative example of a three dimensional sectional

hyperbolic set. These classical examples of a hyperbolic set and a sectional hyperbolic

set were a main motivation to build up the hyperbolic theory [45].

Edward Lorenz in the sixties studies the dynamics of atmospheric motion, and provides

a simplified model of ordinary differential equations (called the Lorenz equations) . This

system of equations for certain parameter values and initial conditions has an interesting

behavior with a special dynamic.

Naturally, the (GLA) geometric Lorenz attractor is motivated by the Lorenz study with

its simplified model of ordinary differential equations. In fact, Guckenheimer (1976) by

using this model, provides the following parameter values: σ = 10, r = 28 and b = 8
3
.

He observes that the numeric simulation of these equations exhibit a similar behavior to

the original equations and arises the called geometric Lorez attractor.

The following equations with parameter values σ = 10, r = 28 and b = 8
3

are the known

Lorenz equations, and the system represents the interesting dynamics.
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LORENZ’S SIMPLIFIED MODEL

ẋ = σ(y − x)

ẏ = rx− y − xz =⇒

ż = −bz + xy.

Parameter values σ = 10, r = 28 and b = 8
3
.

The geometric Lorenz attractor is a nontrivial example, is singular (with hyperbolic

singularity), is the closure of its periodic orbits, is a transitive set, has sensitivity with

respect to the initial conditions and is a homoclinic class [45],[6].

It arises a lot of examples resembling at (GLA), modifying its topology and geometry,

but with different properties. Particularly, the expanding geometric Lorenz attractor

and the singular horseshoe (either expanding or contracting) are not C1 robust singular

transitive sets. Nevertheless, the contracting geometric Lorenz attractor is a C1 robust

singular transitive set.

Figure 2.3: Geometric Lorenz attractor GLA.
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Lorenz-like singularity and singular

cross-section

3.1 Lorenz-Like singularities on sectional hyperbolic

sets

Given Λ a hyperbolic set, the stable manifold theorem provides the existence of

contracting and expanding foliations for each one of its points. These are immersed,

invariant and differentiable submanifolds (see Subsection 2.3.1).

There is also a stable manifold theorem in the case when Λ is a sectional hyperbolic set.

Indeed, if we denote by TΛM = Es
Λ⊕Ec

Λ the corresponding sectional hyperbolic splitting

over Λ, we assert that there exists such contracting foliation on a small neighborhood

U of Λ [21]. Note that this extended foliation is not necessarily invariant, and we can

only ensure the invariance if this one, at least, is an attracting set [3, Section 2.1]. This

extension is carried out as follows: first, we can choose cone fields on U and we consider

the space of tangent foliations to the cone fields. Given a point x ∈ U , whenever the

positive orbit remain within to U , for example t = 1, we can use the map DX−1(x). This

map sends the leaf at X−1(x) inside of cone CX−1(x) to the leaf at x inside of cone Cx,

20
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contracting the angle and stretching the tangent vectors to the initial foliation. Then,

we can apply fiber contraction [21, Page 30,31,80], [15, Theorem 1.243, Page 127]. Now,

by using the Fiber Contraction Theorem [21] the foliation arises. Thus, we have from

[21] that the contracting subbundle Es
Λ can be extended to a contracting subbundle Es

U

in M (not necessarily invariant).

Moreover, such an extension by construction is tangent to a continuous foliation denoted

by W ss (or W ss
X to indicate dependence on X). By adding the flow direction to W ss we

obtain a continuous foliation W s (or W s
X) now tangent to Es

U⊕EX
U . Unlike the hyperbolic

case W s may have singularities, all of which being the leaves W ss(σ) passing through the

singularities σ of X.

Note that W s is transverse to ∂M because it contains the flow direction (which is

transverse to ∂M by definition). Thus, note the following remark:

It turns out that every singularity σ of a sectional hyperbolic set Λ

satisfies W ss
X (σ) ⊂ W s

X(σ).

Furthermore, there are two possibilities for such a singularity, namely,

either dim(W ss
X (σ)) = dim(W s

X(σ)) (and so W ss
X (σ) = W s

X(σ))

or dim(W s
X(σ)) = dim(W ss

X (σ)) + 1.

(3.1)

In the later case we call it Lorenz-like according to the following definition.

Definition 3.1.1. Let Λ be a sectional hyperbolic set of a C1 vector field X of M . We

say that a singularity σ of Λ is Lorenz-like if

dim(W s(σ)) = dim(W ss(σ)) + 1.

By construction, the above definition is very useful and comfortable for a sectional

hyperbolic scenario. Moreover, this definition provides a direct relation between the

manifolds associates to the singularity. It is important to note that this definition is
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equivalent to the well known three dimensional Lorenz-like definition and definitions

associated for the higher dimensional case in others sceneries.

Recall that a singularity σ of a three dimensional sectional hyperbolic set is Lorenz-like

if it has three real eigenvalues λ3, λ2, λ1 with λ3 < λ2 < 0 < −λ2 < λ1 (See Figure

3.1 a)). Here, its eigenvalues provide the force of contraction or expansion close to the

singularity and they are directly associated to the strong stable, stable and unstable

manifolds (see Figure 3.1 b)).

For the higher dimensional case, a singularity σ of a sectional hyperbolic set is Lorenz-like

if it has three real eigenvalues λss, λs, λu with λss < λs < 0 < −λs < λu, such that the

real part of the remainder of eigenvalues are outside the compact interval [λs, λu]. W s(σ)

is a manifold associated to eigenvalues λ with Re(λ) < 0, and W ss(σ) is a manifold

associated to eigenvalues Re(λ) < λs.

The Figure 3.1 provides a geometric idea for the three dimensional case.

σσ

λ2

λ3

λ1

W s(σ)

W ss(σ)

W uu(σ)

b)a)

Figure 3.1: Three dimensional Lorenz-Like singularity.
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3.2 Singular cross-section in higher dimension

In this section, we shall define singular cross-section in the higher dimensional context.

First, we shall denote a cross-section by Σ and its boundary by ∂Σ.

Recall, in our context, the singular cross-sections are strongly associated with the

Lorenz-like singularities. For this purpose, we start by presenting the cross-section

for the three dimensional case. In this case, it will be a pair of simple submanifolds

diffeomorphic to [−1, 1]× [−1, 1] characterized by an intersection with the strong stable

manifold, as indicated in Figure 3.2.

Thus, the hypercube Ik = [−1, 1]k will be submanifold of dimension k with k ∈ N. Let σ

be a Lorenz-like singularity. Hereafter, we shall denote dim(W ss
X (σ)) = s, dim(W u

X(σ)) =

u and therefore dim(W s
X(σ)) = s + 1 by definition. Moreover W ss

X (σ) separates W s
loc(σ)

in two connected components denoted by W s,t
loc(σ) and W s,b

loc (σ) respectively.

Then, we begin by considering Bu[0, 1] ≈ Iu and Bss[0, 1] ≈ Is where Bss[0, 1] is the

ball centered at zero and radius 1 contained in Rdim(W ss(σ)) = Rs and Bu[0, 1] is the ball

centered at zero and radius 1 contained in Rdim(Wu(σ)) = Rn−s−1 = Ru.

Definition 3.2.1. A singular cross-section of a Lorenz-like singularity σ consists of a

pair of submanifolds Σt,Σb, where Σt,Σb are cross-sections such that

Σt is transversal to W s,t
loc(σ) and Σb is transversal to W s,b

loc (σ).

Note that every singular cross-section contains a pair of singular submanifolds lt, lb

defined as the intersection of the local stable manifold of σ with Σt,Σb respectively and,

additionally, dim(l∗) = dim(W ss(σ)) (∗ = t, b). The positive orbit starting at lt ∪ lb goes

directly to σ.
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Thus, a singular cross-section Σ∗ will be a hypercube of dimension (n − 1), i.e.,

diffeomorphic to Bu[0, 1] × Bss[0, 1]. Let f : Bu[0, 1] × Bss[0, 1] −→ Σ∗ be the

diffeomorphism, such that

f({0} ×Bss[0, 1]) = l∗

and where {0} denotes the zero vector on Ru. Define

∂Σ∗ = ∂hΣ∗ ∪ ∂vΣ∗

by:

∂hΣ∗ = {union of the boundary submanifolds which are transverse to l∗ } and

∂vΣ∗ = {union of the boundary submanifolds which are parallel to l∗ } .

In fact, we can observe as the above definitions are extending the concept of singular

cross-section for the higher dimensional case. These definitions are outstanding for the

next results. Firstly, the Figure 3.2 shows the well known three dimensional case, with a

2-dimensional singular cross section that allows only one 1-dimensional stable foliation.

Singular cross-section Σt

∂Σh ∂Σv

dim(Σ) = dim(W ss(σ)) + dim(Wu(σ)) = 2

Singular leaf l∗ where dim(l∗) = dim(W ss(σ)) = 1

Σ

σ

W ss(σ)

Singular cross-section Σb

Figure 3.2: Three dimensional case. Cross-section.

Secondly, the Figure 3.3 shows the 4-dimensional case, where it is exhibiting two different

cases for the stable foliation of a 3-dimensional singular cross section. Then, the new of

singular cross section definition allows different stable foliations and this in turns allows

to construct different singular cross-sections of Lorenz-like singularities.
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∂Σv

Σ

Singular leaf l∗ Singular leaf l∗

∂Σh

∂Σv

dim(l∗) = dim(W ss(σ)) = 1 dim(l∗) = dim(W ss(σ)) = 2

Σ

∂Σh

Figure 3.3: Four dimensional case. Cross-sections.

From this decomposition we obtain that

∂hΣ∗ = (Iu × [∪s−1
j=0(Ij × {−1} × Is−j−1)])

⋃
(Iu × [∪s−1

j=0(Ij × {1} × Is−j−1)])

∂vΣ∗ = ([∪u−1
j=0 (Ij × {−1} × Iu−j−1)]× Is)

⋃
([∪u−1

j=0 (Ij × {1} × Iu−j−1)]× Is),

where I0 × I = I.

Hereafter, we denote Σ∗ = Bu[0, 1]×Bss[0, 1].



Chapter 4

Sectional Anosov flows in higher

dimensions

4.1 Introduction

We have talked about the fundamental role in the theory of dynamical systems that

plays the hyperbolic theory. Recall that in this scenario the study of these systems

(diffeomorphisms and flows) is done without singularities. A lot of these systems are well

understood after the work of Smale [52] and others authors, such as the so called Axiom

A systems or Uniform Hyperbolic systems. Also, it is important to recall that these

systems are structurally stable, the set of periodic orbits is dense in the nonwandering

set, and they have a spectral decomposition on a finite union of homoclinic classes.

Naturally, these features motivate the study of the dynamical properties of new sets

containing singularities, taking the hyperbolic dynamical systems as a model, such as

the sectional hyperbolic sets.

Thus, the sectional Anosov flows were introduced in [31] as a generalization of the Anosov

flows. These also includes the saddle-type hyperbolic attracting sets, the geometric and

multidimensional Lorenz attractors [1], [12], [20]. Some properties of these flows have

26
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been shown in the literature [2], [7]. Particularly, [28] proved that every attractor

of every vector field C1 close to a transitive sectional Anosov flow with singularities

on a compact 3-manifold has a singularity. Moreover, [4] generalized this result from

transitive to nonwandering ones. In this chapter we further extend [28] but now to

higher dimensions. More precisely, we prove that every attractor of every vector field C1

close to a transitive sectional Anosov flow with singularities of a compact manifold has

a singularity.

Let us state our result in a precise way.

Theorem A. Let X be a transitive sectional Anosov flow with singularities of a compact

n-manifold. Then, every attractor of every vector field C1 close to X has a singularity.

The proof of this theorem follows closely that of [28]. More precisely, we assume by

contradiction that there exists a sequence Xn of vector fields C1 close to X each one

exhibiting a non-singular attractor An. We then prove that An accumulates on a

singularity of X and, consequently, for n large, we will prove that the corresponding

attractor An contains a singularity. This give us the desired contradiction. To prove such

assertions we will extend some tools in [28] including the definitions of both Lorenz-like

singularity and singular cross-section.

4.2 Sectional hyperbolic sets in higher dimension

4.2.1 Preliminaries

In this section we exhibit and prove preliminaries results for transitive sectional Anosov

flows that provide useful properties.

These following results examining the sectional hyperbolic splitting TΛM = Es
Λ⊕Ec

Λ of a

sectional hyperbolic set Λ of X ∈ X 1(M) appear in [38, Lemma 3,Page 5], [38, Theorem
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A, Page 3] for three dimensional case and [7, Corollary 2.7, Page 65], [7, Lemma 2.7,

Page 67] for the higher dimensional case.

The following lemma is well known and frequently called the Hyperbolic lemma. Also,

we show the proof of the next result by its useful properties.

Lemma 4.2.1 (Hyperbolic lemma). Let X be a sectional Anosov flow, X a C1 vector

field in M . If Y is C1 close to X, then every nonempty, compact, non singular, invariant

set H of Y is hyperbolic saddle-type (i.e. Es 6= 0 and Eu 6= 0).

Theorem 4.2.2. Let X be a transitive sectional Anosov flow C1 for M . Then, every

σ ∈ Sing(X) ∩M(X) is Lorenz-like and satisfies

M(X) ∩W ss
X (σ) = {σ}.

Proof. We begin by proving two claims.

Claim 1:

If x ∈ (M(X) \ Sing(X)), then X(x) /∈ Es
x.

Proof. Suppose by contradiction that there is x0 ∈ (M(X)\Sing(X)) such that X(x0) ∈

Es
x0

. Then, X(x) ∈ Es
x for every x in the orbit of x0 since Es

M(X) is invariant.

So X(x) ∈ Es
x for every x ∈ α(x0) by continuity. (4.1)

It follows that ω(x) is a singularity for all x ∈ α(x0). In particular, α(x0) contains a

singularity σ which is necessarily hyperbolic of saddle-type.

Now we have two cases: α(x0) = {σ} or not.

If α(x0) = {σ} then x0 ∈ W u(σ). For all t ∈ R define the unitary vector

vt =
DXt(x0)(X(x0))

||DXt(x0)(X(x0))||
.

It follows that

vt ∈ TXt(x0)W
u(σ) ∩ Es

Xt(x0), ∀t ∈ R.
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Take a sequence tn →∞ such that the sequence v−tn converges to v∞ (say). Clearly v∞

is an unitary vector and, since X−tn(x0)→ σ and Es is continuous we obtain

v∞ ∈ TσW u(σ) ∩ Es
σ.

Therefore v∞ is an unitary vector which is simultaneously expanded and contracted by

DXt(σ) a contradiction. This contradiction shows the result in the first case.

For the second, we assume α(x0) 6= {σ}. Then, (W u(σ) \ {σ}) ∩ α(x0) 6= ∅. Pick

x1 ∈ (W u(σ) \ {σ}) ∩ α(x0). It follows from (4.1) that X(x1) ∈ Es
x1

and then we get

a contradiction as in the first case replacing x0 by x1. This contradiction proves the

claim.

Claim 2:

If σ ∈ Sing(X), then M(X) ∩W ss(σ) = {σ}.

Proof. Take x ∈ W ss(σ) \ {σ}. Then, Es
x = TxW

ss(σ). Moreover, since W ss(σ) is an

invariant, we obtain X(x) ∈ TxW ss(σ). We conclude that X(x) ∈ Es
x for all x ∈ W ss(σ)

and now Claim (1) applies.

The Lemma 4.2.1 implies the following two useful properties.

Lemma 4.2.3. Let X be a transitive sectional Anosov flow C1 in M . If O ⊂ M(X) is

a periodic orbit of X, then O is a hyperbolic saddle-type periodic orbit. In addition, if

p ∈ O then the set

{q ∈ W uu
X (p) : M(X) = ωX(q)}

is dense in W uu
X (p).
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Proof. By Lemma 4.2.1, we have that O is hyperbolic and saddle-type. Let W be an

open set in W uu
X (p). This set W exists since the point p belongs to the periodic orbit O

which is hyperbolic. Define

B =
⋃

0≤t≤1

Xt(W ).

This set has dimension at least two, and so,

B′ =
⋃
x∈B

W ss
X (x)

contains an open set V with B ∩ V 6= ∅.

Since M(X) is the maximal invariant of X, B ⊂ W u
X(p) and p ∈ O, we obtain B ∩

V ⊂ M(X). Let q ∈ M(X) such that M(X) = ωX(q). Then, the forward orbit of q

intersects V and so it intersects B′ too. It follows from the definition of B′ that the

positive orbit of q is asymptotic to the forward orbit of some q′ ∈ B. In particular,

M(X) = ωX(q) = ωX(q′). This proves that {q ∈ W uu
X (p) : M(X) = ωX(q)} is dense in

M(X) as desired.

The Theorem 4.2.2 implies the following two useful properties.

Proposition 4.2.4. Let X be a transitive sectional Anosov flow C1 of M . Let σ be

a singularity of X in M(X) (so σ is Lorenz-like by Theorem 4.2.2). Then, there is a

singular-cross section Σt,Σb of σ in M such that

(M(Y )) ∩ (∂hΣt ∪ ∂hΣb) = ∅,

for every Cr vector field Y close to X.

Proof. The equality in Theorem 4.2.2 implies that the negative orbit of every point in

W ss
X (σ) \ {σ} leaves M(X). Hence, we can arrange a singular-cross section Σt,Σb nearby

σ, such that

M(X) ∩ (∂hΣt ∪ ∂hΣb) = ∅.
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Since M(X) is the maximal invariant of X and the boundary of Σt,Σb is compact, we

can find T > 0 such that

XT (M) ∩ (∂hΣt ∪ ∂hΣb) = ∅.

Hence

YT (M) ∩ (∂hΣt ∪ ∂hΣb) = ∅,

for all Cr vector field close to X. The result follows since ∩t>0Yt(M) ⊂ YT (U).

4.2.1.1 Refinement of singular cross-sections and induced foliation

Recall, X denotes a sectional Anosov flow of a compact n-manifold M , n ≥ 3,

X ∈ X∞(M). Let M(X) be the maximal invariant set of X.

In the same way of [8], we obtain an induced foliation F on Σ by projecting F ss onto

Σ, where F ss denotes the invariant continuous contracting foliation on a neighborhood

of M(X) [21].

Let σ be a Lorenz-like singularity of a C1 vector field X in X 1(M), and Σt,Σb be a

singular cross-section of σ. Thus, for σ we recall that,

dim(W ss
X (σ)) = s, then

dim(W s
X(σ)) = s+ 1 and dim(W u

X(σ)) = n− s− 1,

dim(Σ∗) = s+ (n− s− 1) = n− 1.

(4.2)

For the refinement, since Σ∗ = Bu[0, 1] × Bss[0, 1], we will set up a family of singular

cross-sections as follows: given 0 < ∆ ≤ 1 small, we define Σ∗,∆ = Bu[0,∆] × Bss[0, 1],

such that

l∗ ⊂ Σ∗,∆ ⊂ Σ∗,

(i.e., l∗ = {0}×Bss[0, 1]) ⊂ (Σ∗,∆ = Bu[0,∆]×Bss[0, 1]) ⊂ (Σ∗ = Bu[0, 1]×Bss[0, 1]),

where we fix a coordinate system (x∗, y∗) in Σ∗ (∗ = t, b). We will assume that Σ∗ = Σ∗,1.
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We will use this notation throughout this lemma and the Theorem A proof.

Lemma 4.2.5. Let X be a transitive sectional Anosov flow C1 of M . Let σ be a

singularity of X in M(X). Let Y n be a sequence of vector fields converging to X in

the C1 topology. Let On be a periodic orbit of Y n such that the sequence {On : n ∈ IN}

accumulates on σ. If 0 < ∆ ≤ 1 and Σt,Σb is a singular cross-section of σ, then there is

n such that either

On ∩ int(Σt,∆) 6= ∅ or On ∩ int(Σb,∆) 6= ∅.

Proof. Since On accumulates on σ ∈ M(X) and M(X) is maximal invariant, we have

that On ⊂ M(X) for all n large (recall Y n → X as n → ∞). Let us fix a fundamental

domain Dε of the vector field’s flow Xt restricted to the local stable manifold W s
loc(σ)

([44]) for ε > 0 as follows:

Dε = Sε ∪ S−ε ∪ Cε, where:

Sε = {x ∈ Rs+1| Σs
i=1x

2
i + (xs+1 − ε)2 = 1, ∧ xs+1 ≥ ε},

S−ε = {x ∈ Rs+1| Σs
i=1x

2
i + (xs+1 − ε)2 = 1, ∧ xs+1 ≤ −ε},

Cε = {x ∈ Rs+1| Σs
i=1x

2
i = 1, ∧ xs+1 ∈ [−ε, ε]}.

As W s
loc(σ) is (s+1)-dimensional and Dε is homeomorphic to the sphere (s)-dimensional,

by construction Dε intersects W ss
X (σ) in Cε|xs+1=0, that is a sphere (s − 1)-dimensional.

Note that the orbits of all point in Cε|xs+1=0 together with σ yield W ss
X (σ). In particular,

Cε|xs+1=0 /∈M(X) by Theorem 4.2.2. Also note that for all ε, Dε is a fundamental domain.

Let D̃ε be a cross section of X such that W s
loc(σ) ∩ D̃ε = Dε. It follows that D̃ε is a

(n − 1)-cylinder, and so we can consider a system coordinated (x, s) with x ∈ Dε and

s ∈ Iu. Thus, by using this system coordinate we can construct a family of singular

cross-sections Σt
δ,Σ

b
δ (for all δ ∈ [−ε, ε]) by setting

Σt
δ = {(x, s) ∈ D̃ε : x ∈ Sδ, s ∈ Iu},
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σ

W ss(σ)

Sε

S−ε

Cε

W s
loc(σ)

Cε|xa+1=0

Figure 4.1: The fundamental domain.

Σb
δ = {(x, s) ∈ D̃ε : x ∈ S−δ, s ∈ Iu}.

Due to the smooth variation of W ss
Y (σ(Y )) with respect to Y close to X we can assume

that σ(Y ) = σ and that W ss
loc,Y (σ(Y ) = W ss

loc(σ) for every Y close to X. By choosing Dε

so close to σ we can further assume that D̃ε is a cross-section of Y , for every Y close to

X. We claim that there is δ > 0 such that the conclusion of the lemma holds for Σt = Σt
δ

and Σb = Σb
δ. Indeed, we first note that under the cylindrical coordinate system (x, s),

one has Σ∗,∆ = Σ∗∆, for all 0 < ∆ ≤ δ (∗ = t, b). Otherwise, if the conclusion of the claim

fails, it implies that On intersects D̃ε \ (Σt
∆ ∪Σb

∆) for all ∆ > 0 small. Further, we would

find a sequence of periodic points such that pn ∈ On (for all n large) and pn = (xn, sn),

with xn ∈ C∆ and sn → 0 as n→∞. As ∆ is arbitrary and sn → 0 we conclude that pn

converges to a point in C∆|xs+1=0, by passing to a subsequence if necessary. As sn → 0,

it implies that the intersection tends to the (s)-dimensional sphere Dε.
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As On ⊂M(Y n), Y n → X and M(Y n) is ε-C1-close to M(X) for all n (n ∈ N), by using

the above arguments, there exists a point z ∈ (Cε|xs+1=0) such that z ∈ M(X). This

contradicts Theorem 4.2.2 and the proof follows.

4.3 Proof of Theorem A

We prove the theorem by contradiction. Let X be a transitive sectional Anosov flow

C1 of M . Then, we suppose that there exists a sequence Xn C1

→ X such that every Xn

exhibits a non-singular attractor An ∈ M(Xn) arbitrarily close to M(X) and since An

also is arbitrarily close to M(X), we can assume that An belongs to M(X) for all n. It

follows from the definition of attractor that each An is compact, invariant and nonempty.

As An is non-singular by hypothesis, then the Lemma 4.2.1 and the Lemma 4.2.3 imply

the following:

An is a hyperbolic attractor of type saddle of Xn for all n,

and since An is non-singular for all n, obviously An is not

a singularity of Xn for all n.

(4.3)

Recall, we denote by Sing(X) the set of singularities of X and Cl(A) the closure of A,

A ⊂ M . Moreover, given δ > 0 and A ⊂ M , we define Bδ(A) = {x ∈ M : d(x,A) < δ}

where d(·, ·) is the metric in M .

In the same way of [28], let us consider the following lemma that similarly provides

useful features for the higher dimension case. The lemma gives one description about

the behavior of the attractors.

Lemma 4.3.1. The sequence of attractors An accumulates on Sing(X), i.e.

Sing(X)
⋂

Cl

(⋃
n∈IN

An

)
6= ∅.
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Proof. We prove the lemma by contradiction. Then, we suppose that there is δ > 0, such

that

Bδ(Sing(X))
⋂(⋃

n∈IN

An

)
= ∅. (4.4)

In the same way as in [28], we define

H =
⋂
t∈IR

Xt

(
M \Bδ/2(Sing(X))

)
.

It should be noted that H is a invariant set and Sing(X) ∩ H = ∅. Additionally, H

is a nonempty compact set [28]. By using the Lemma 4.2.1 we conclude that H is a

hyperbolic set. So, we denote by Es ⊕ EX ⊕ Eu the corresponding hyperbolic splitting

(see Definition 2.2.1).

By the stability of hyperbolic sets we can fix a neighborhood W of H and ε > 0 such

that if Y is a vector field Cr close to X and HY is a compact invariant set of Y in W

then :

HY is hyperbolic and its hyperbolic splitting Es,Y ⊕ EY ⊕ Eu,Y .

dim(Eu) = dim(Eu,Y ), dim(Es) = dim(Es,Y ).

The manifolds W uu
Y (x, ε), x ∈ HY , have uniform size ε.

(4.5)

As Xn → X, we have that:

⋂
t∈IRX

n
t (M \Bδ/2(Sing(X)) ⊂ W , for all n large.

An ⊂M \Bδ/2(Sing(X)) for all n, and An ⊂ W for all n large.

If xn ∈ An so that xn converges to some x ∈M , then x ∈ H.

If w ∈ W uu
Xn(xn, ε), the tangent vectors of W uu

Xn(xn, ε)

in this point are in Eu,Xn

w .

As xn → x,W uu
Xn(xn, ε)→ W uu

X (x, ε) in the sense of C1 submanifolds [45].

And ∠(Eu,Xn
, Eu) −→ 0, if n→∞[28].

(4.6)
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Thus, we fix an open set U ⊂ W uu
X (x, ε) containing the point x.

By (4.3), it follows that the periodic orbits of Xn in An are dense in An [Anosov closing

lemma]. Particularly, we can assume that each xn is a periodic point of An. As M(X)∩

Sing(X) 6= ∅ and M(X) is a transitive set, it follows from the Lemma 4.2.3 that there

exists q ∈ U , 0 < δ1 < δ2 <
δ
2

and T > 0 such that XT (q) ∈ Bδ1(Sing(X)).

By using [44, Tubular Flow Box Theorem], there is an open set Vq containing q such that

XT (Vq) ⊂ Bδ1(Sing(X)) and, as Xn → X it follows that

Xn
T (Vq) ⊂ Bδ2(Sing(X)), (4.7)

for all n large (see Figure 4.2).
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q

x

Vq

Wuu
X (x, ε)

δ2

δ1

σ

XT (Vq) XnT (Vq)

XT (q)

U

Figure 4.2: Tubular Flow Box Theorem for XT (Vq).

In addition, W uu
Xn(xn, ε) ∩ Vq 6= ∅ for n large enough, since W uu

Xn(xn, ε) → W uu
X (x, ε) and

q ∈ U ⊂ W uu
X (x, ε). Applying (4.7) to Xn for n large we have

Xn
T (W uu

Xn(xn, ε)) ∩Bδ2(Sing(X)) 6= ∅.

In particular W uu
Xn(xn, ε) ⊂ W u

Xn(xn), then the invariance of W u
Xn(xn) implies

W u
Xn(xn) ∩Bδ/2(Sing(X)) 6= ∅.
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Observe that W u
Xn(xn) ⊂ An since xn ∈ An and An is an attractor. We conclude that

An ∩Bδ(Sing(X)) 6= ∅.

This contradicts (4.4) and the proof follows.

Proof of Theorem A: By using the Lemma 4.3.1 there exists σ ∈M(X) such that

σ ∈ Sing(X)
⋂

Cl

(⋃
n∈IN

An

)
.

By Theorem 4.2.2 we have that σ is Lorenz-like and satisfies

M(X) ∩W ss
X (σ) = {σ}.

By Proposition 4.2.4, we can choose Σt,Σb, singular-cross section for σ and M(X) such

that

M(X) ∩
(
∂hΣt ∪ ∂hΣb

)
= ∅.

As Xn → X we have that Σt,Σb is singular-cross section of Xn too, thus we can assume

that σ(Xn) = σ and lt ∪ lb ⊂ W s
Xn(σ) for all n. [Implicit function theorem].

We have that the splitting Es ⊕ Ec persists by small perturbations of X [21]. The

dominance condition [Definition 2.2.3-(2)] together with [17, Proposition 2.2] imply that

for ∗ = t, b one has

TxΣ
∗ ∩
(
Es
x ⊕ EX

x

)
= Txl

∗,

for all x ∈ l∗.

Denote by ∠(E,F ) the angle between two linear subspaces. The last equality implies

that there is ρ > 0 such that

∠(TxΣ
∗ ∩ Ec

x, Txl
∗) > ρ,
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for all x ∈ l∗ (∗ = t, b). In this way, since Ec,n → Ec as n → ∞ we have for n large

enough that

∠(TxΣ
∗ ∩ Ec,n

x , Txl
∗) >

ρ

2
, (4.8)

for all x ∈ l∗ (∗ = t, b).

As in the previous subsection 4.2.1.1 we fix a coordinate system (x, y) = (x∗, y∗) in Σ∗

such that

Σ∗ = Bu[0, 1]×Bss[0, 1], l∗ = {0} ×Bss[0, 1]

with respect to (x, y). Also, given ∆ > 0 we define Σ∗,∆ = Bu[0,∆]×Bss[0, 1].

Hereafter, Π∗ : Σ∗ → Bu[0, 1] will be the projection such that Π∗(x, y) = x. We will

denote the line field in Σ∗,∆0 by F n, where

F n
x = TxΣ

∗ ∩ Ec,n
x , x ∈ Σ∗,∆0 .

Remark 4.3.2. The continuity of Ec,n and (4.8) imply that there is ∆0 > 0 such that

for every n large the line F n is transverse to Π∗. By this we mean that F n(z) is not

tangent to the curves (Π∗)−1(c), for every c ∈ Bu[0,∆0].

Recall that An is a hyperbolic attractor of type saddle of Xn for all n (see (4.3)) and

the periodic orbits of Xn in An are dense in An ([45]). As σ ∈ Cl (∪n∈INAn), we can

find a sequence of periodic orbits (On)n∈N, such that On ∈ An and accumulating on σ.

It follows from the Lemma 4.2.5 applied to Y n = Xn that there exists n0 ∈ IN such that

either

On0 ∩ int(Σt,∆0) 6= ∅ or On0 ∩ int(Σb,∆0) 6= ∅.

As On0 ⊂ An0 we conclude that either

An0 ∩ int(Σt,∆0) 6= ∅ or An0 ∩ int(Σb,∆0) 6= ∅.

We shall assume that An0 ∩ int(Σt,∆0) 6= ∅ (analogous proof for the case ∗ = b). Note

that ∂hΣt,∆0 ⊂ ∂hΣt by definition. Then, by using Proposition 4.2.4 one has

A ∩ ∂hΣt,∆0 = ∅.
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As An0 and Σt,∆0 are compact non-empty sets, it follows that An0 ∩ Σt,∆0 is a compact

nonempty subset of Σt,∆0 , and thus there exists p ∈ Σt,∆0 ∩ An0 such that

dist(Πt(Σt,∆0 ∩ An0), 0) = dist(Πt(p), 0),

where dist denotes the distance in Bu[0,∆0]. Note that dist(Πt(p), 0) is the minimum

distance of Πt(Σt,∆0 ∩ An0) to 0 in Bu[0,∆0].

As p ∈ An0 , we have that W u
Xn0 (p) is a well defined submanifold, since that An0 is

hyperbolic set (4.3), and dim(Ec) = dim(Ec,n0)(4.5).

By domination [Definition 2.2.3-(2)], Tz(W
u
Xn0 (p)) = Ec,n0

z for every z ∈ W u
Xn0 (p) and

hence, dim(W u
Xn0 (p)) = (n− s− 1) (4.2). Next, we can ensure that

Tz(W
u
Xn0 (p)) ∩ TzΣt,∆0 = Ec,n0

z ∩ TzΣt,∆0 = F n0
z

for every z ∈ W u
Xn0 (p) ∩ Σt,∆0 .

First, note that the last equality shows that W u
Xn0 (p)∩Σt,∆0 is transversal, and therefore

there exists some compact submanifold inside of W u
Xn0 (p)∩Σt,∆0 . We denote this compact

submanifold by Kn0 . Thus, by construction p ∈ Kn0 [See (4.3)] and Kn0 is tangent to

F n0 , since Kn0 ⊂ W u
Xn0 (p) ∩ Σt,∆0 .

Remark 4.3.3. Since dim(Ec,n0) = dim(W u
Xn0 (p)) = (n − s − 1), by construction we

have that dim(Bu[0,∆0]) = (n− s− 1).

We have that W u
Xn0 (p)∩Σt,∆0 is a submanifold of M , since W u

Xn0 (p)∩Σt,∆0 is transversal

and nonempty and W u
Xn0 (p), Σt,∆0 are submanifolds of M . Note that dim(W u

Xn0 (p)) +

dim(Σt,∆0) ≥ n.

Since F n0 is transverse to Πt, one has that Kn0 is transverse to Πt (i.e. Kn0 is transverse

to the curves (Πt)−1(c), for every c ∈ Bu[0,∆0]). Let us denote the image of Kn1 by the

projection Πt in Bu[0,∆0] by Kn1
1 , i.e., Πt(Kn1) = Kn1

1 . Note that Kn1
1 ⊂ Bu[0,∆0] and

Πt(p) ∈ int(Kn1
1 ).
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Σt,∆0

Πt

Πt(p)

Πt(z0)

p

z0

−∆0

∆0

−∆0 ∆0

K
n0
1

Bu[0,∆0]

Kn0

Figure 4.3: The projection Πt(Kn0) = Kn0
1 .

As dim(Kn0
1 ) = dim(Bu[0,∆0]) (by Remark 4.3.3), there exists z0 ∈ Kn0 such that

dist(Πt(z0), 0) < dist(Πt(p), 0).

It follows from the property of attractor that W uu
Xn0 (p, ε) ⊂ W u

Xn0 (p) ⊂ An0 . Thus,

Kn0 ⊂ Σt,∆0 ∩ An0 and p ∈ An0 .

As An0∩∂hΣt,∆0 = ∅ (by Proposition 4.2.4) and dim(Kn0
1 ) = dim(Bu[0,∆0]) (by Remark

4.3.3), we conclude that

dist(Πt(Σt,∆0 ∩ An0), 0) = 0.

Given that An0 is closed, this last equality implies

An0 ∩ lt 6= ∅.

Since lt ⊂ W s
Xn0 (σ) and An0 is closed invariant set for Xn0 we conclude that σ ∈ An0 .

We have proved that An0 contains a singularity of Xn0 . But An0 is a hyperbolic attractor

of Xn0 by the Property (4.3), and this leads to that An0 = {σ}. Finally, by using the

Property (4.3) we obtain a contradiction and the proof follows.



Chapter 5

Finiteness and existence of

attractors and repellers on sectional

hyperbolic sets

5.1 Introduction

The dynamical systems describe different properties about the evolution of initial states,

asymptotic behavior and relationships between system’s elements. However, most of

these systems’ behavior might be very complex, therefore, finding the link between them

becomes a difficult task.

It is well known that many of these properties come from physics phenomena. In the

sixties some definitions appeared that tried to explain these behaviors and properties,

such as attractors and repellers. These concepts are well-known and play a fundamental

role in the dynamical systems theory. They have received some mathematical

interpretations, such as turbulence that appears in the classical paper [49] which,

simultaneously, provides existence of attractors for particular vector fields. Also, strange

attractor [42], wild strange attractor [51] or non trivial attractor, among others. Since a

41
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repeller is an attractor for the reverse flow, it is clear that this result provides existence for

repellers too. Thereby, stressing the importance of attractors, we highlight the classical

construction of the geometric Lorenz models [1], [20] or the multidimensional Lorenz

attractors [12]. They provide a wide range of results at research of dynamical systems

theory, particularly hyperbolic and sectional hyperbolic theories on three dimensional

manifolds. The study of sectional hyperbolic attractors for higher dimensional

flows is, however, mostly open.

Thus, the aim of this chapter, on sectional hyperbolic sets of vector fields on compact

higher dimensional manifolds, is to research two very important related problems, namely,

how many attractors and repellers can arise from small perturbations and, also, the

possible appearance of repellers from small perturbations. In this way we focus our

interest on the particular result given by [28] (finiteness) and some examples containing

repellers (existence). For this reason, the present chapter is divided into two important

sections.

5.1.1 About finiteness and Bonatti’s conjecture

Particularly, [28] asserts that, for every sectional hyperbolic transitive attracting set Λ

of a vector field X on a compact 3-manifold, there are neighborhoods U of X and U of

Λ such that the number of attractors in U of a vector field in U is less than one plus the

number of equilibria of X.

This result was extended later in [4] by allowing Λ to be an attracting set contained in

the nonwandering set (rather than transitive). An extension of [28] to higher dimensions

was recently obtained in [25] (previous chapter). This results provide information about

which conditions one has attractors’s finiteness. We can also mention the recent paper

[13] studying the similar problem but for one-dimensional maps with discontinuities.
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Indeed, we remove both the transitivity and nonwandering hypotheses in order to obtain

robust finiteness of attractors and repellers. Here, we obtain an upper bound for the

number of attractors and repellers that can appear from small perturbations of vector

field (this improves [25], [28]).

This in turn, provides an important corollary which is directly motivated and related to

one of the Bonatti’s conjectures [11]. Being more precise, one of the Palis’s conjectures

asserts that generic diffeomorphisms far from homoclinic tangencies have only finitely

many sinks and sources [43]. For the surfaces case, this conjecture was proved for C1

diffeomorphisms by Pujals and Sambarino [46]. Subsequently, Bonatti gives a slightly

stronger conjecture, namely, generic diffeomorphisms that are far from homoclinic

tangencies have only finitely many attractors and repellers [11].

Recently, Crovisier in [16] proves that a sectional hyperbolic three dimensional flows is

open and dense in the open set of flows which are far from homoclinic tangencies.

Then, by combining this result with our main theorem of finiteness, we obtain the

Bonatti’s conjecture mentioned above, but for three dimensional flows.

5.1.2 About repeller’s existence

The following section arises after observing some examples of 3-dimensional sectional

hyperbolic sets containing repellers. Among these examples, we name particularly those

containing repellers in different sceneries. Firstly, we find the well-known example of a non

transitive sectional hyperbolic set (without singularities), containing a non trivial repeller

(e.g. Anomalous Anosov flow [18]). Secondly, [29] exhibits an example of a transitive

sectional hyperbolic set containing singularities, but without non trivial repellers. Finally,

[14] shows that there exists non transitive sectional hyperbolic sets, containing both

singularities and non trivial hyperbolic repellers. This in turns leads our next step, that
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it would be to discuss about existence of repellers. Note that repeller’s occurrence in the

previous examples is given when the set is non transitive. Also, it is not difficult to prove

that every transitive sectional hyperbolic set has no proper repellers. Therefore, these

observations motivate the following question:

1. Under what conditions are there hyperbolic repellers close to transitive sectional

hyperbolic sets?

There are works related with our main question, since a repeller contains the stable

manifold of all their points [30], [5].

On the other hand, note that the transitivity of a set implies that it is contained in the

nonwandering set, then in order to improve our result it is natural to ask:

1. Are there sectional hyperbolic sets with singularities contained in the nonwandering

set containing hyperbolic repellers?

2. Are there hyperbolic repellers close to sectional hyperbolic sets with singularities

contained in the nonwandering set?

This questions have been our motivation and we give a negative answer to these ones. In

fact, we prove a robustly non-existence of repellers on a connected sectional hyperbolic

set which both has singularities and consists of nonwandering points.

5.1.3 Main theorems

Let us state our results in a more precise way.

Theorem B. For every sectional hyperbolic set Λ of a vector field X on a compact

manifold there are neighborhoods U of X, U of Λ and n0 ∈ N such that

#{L ⊂ U : L is an attractor or repeller of Y ∈ U} ≤ n0.
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Theorem C. Let X be a vector field with singularities of a compact n-manifold M ,

n ≥ 3, X ∈ X 1(M). Let Λ ⊂ M be a connected sectional hyperbolic set of X. If

Λ ⊂ Ω(X), then there are neighborhoods U ⊂ X 1(M) of X and U ⊂M of Λ such that if

Y ∈ U , Y has no repeller in U .

To finish we state the following corollaries of our results. Recall that a sectional Anosov

flow is a vector field whose maximal invariant set is sectional hyperbolic [27].

Corollary 5.1.1. For every sectional Anosov flow of a compact manifold there are a

neighborhood U and n0 ∈ N such that

#{L is an attractor or repeller of Y ∈ U} ≤ n0.

The following result provides the Bonatti’s conjecture proof for the three dimensional

flows.

Corollary 5.1.2. Generic three dimensional flows that are far from homoclinic

tangencies have only finitely many attractors and repellers.

5.2 Preliminaries

In this section, we recall some results on sectional hyperbolic sets, and we obtain some

useful results for the main theorems.

Let Λ be a sectional hyperbolic set of a C1 vector field X of M . Recall, we denote by

Sing(X) the set of singularities of the vector field X and by Cl(A) the closure of A,

A ⊂M .

As the previous chapter, let us use the Lemma 4.2.1 and the Theorem 4.2.2. Although

our scenario does not have the transitivity hypothesis, the Theorem 4.2.2 has the same
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conclusion on the intersection of the singularity’s strong stable manifold with the set.

But, it is losing the property of all its singularities be Lorenz-like, i.e., one has the

following theorem.

Theorem 5.2.1. Let Λ be a sectional hyperbolic set of a C1 vector field X of M . If

σ ∈ Sing(X) ∩ Λ, then Λ ∩W ss
X (σ) = {σ}.

Next we explain briefly how to obtain sectional hyperbolic sets nearby Λ from vector

fields close to X. Fix a neighborhood U with compact closure of Λ as in Lemma 4.2.1.

Define

ΛX = ∩t∈RXt(Cl(U)).

Note that ΛX is sectional hyperbolic and Λ ⊂ ΛX . Likewise, if Y is a C1 vector field

close to X, we define the continuation

ΛY = ∩t∈RYt(Cl(U)).

Definition 5.2.2. Let A and B be compact sets of M , and let d(·, ·) be a metric on M .

Define the Hausdorff distance between A and B by

dH(A,B) = max {supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} .

We define K(M) = {A ⊂M | A is compact}.

Remark 5.2.3. We have that dH is a metric on K(M) and the metric space (K(M), dH)

is compact by Blaschke’s selection theorem.

In the previous chapter a version of the following proposition appears (Proposition 4.2.4),

by using that the set is isolated and transitive. Here, we prove the same conclusion

without these hypotheses and with different tools.
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Proposition 5.2.4. Let Λ be a sectional hyperbolic set of a C1 vector field X of M . Let

σ be a Lorenz-like singularity of X in Λ. Let Y n be a sequence of vector fields converging

to X in the C1 topology. Then, there are a neighborhood U ⊂ M of Λ, a singular-cross

section Σt,Σb of σ in M and N ∈ N enough large such that for every n ≥ N one has

(ΛY n) ∩ (∂hΣt ∪ ∂hΣb) = ∅.

Proof. We fix the neighborhood U of Λ as in Lemma 4.2.1.

By using the Hausdorff’s metric and by Remark (5.2.3) we have that there exists

a subsequence of sectional hyperbolic sets in (ΛY n)n∈N that converges to a compact

invariant set in Cl(U). Without loss of generality, we say that the sequence itself

converges to a compact invariant set in Cl(U), i.e.,

ΛY n
h→ Λ̃,

where Λ̃ is a compact invariant set and “· h→ ·” denotes the convergence on the Hausdorff

distance.

Since ΛY n
h→ Λ̃, given ε > 0, there exists N1 ∈ N such that if n ≥ N1 one has

dH(ΛY n , Λ̃) <
ε

4
. (5.1)

Let us prove that Λ̃ = ΛX . Firstly, for m ∈ N, every vector field Y n and X we define the

following sets

Λm
Y n = ∩|t|≤mY n

t (CL(U))) and Λm
X = ∩|t|≤mXt(CL(U))). (5.2)

show

By construction we have that Λm
Y n

h→ ΛY n and Λm
X

h→ ΛX if m→∞.

Secondly, it follows from the (5.2) that there exists M1 = M1(n) ∈ N and M2 ∈ N such

that if m ≥M1 and k ≥M2 then

dH(ΛY n ,Λ
m
Y n) < ε

4
and

dH(ΛX ,Λ
k
X) < ε

4
.

(5.3)
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Since Y n C1

→ X, given m ∈ N, there exists N2(m) ∈ N such that if n ≥ N2(m) one has

=⇒ dH(∩|t|≤mY n
t (CL(U)),∩|t|≤mXt(CL(U))) < ε

4

=⇒ dH(Λm
Y n ,Λ

m
X) < ε

4
.

(5.4)

Let M = max {M1(N1),M2} ∈ N and N = max {N1, N2(M(N1))}. Thus, by using

(5.1),(5.3) and (5.4) we have

dH(Λ̃,ΛX) ≤ dH(Λ̃,ΛY N ) + dH(ΛY N ,ΛX)

≤ dH(Λ̃,ΛY N ) + dH(ΛY N ,Λ
M
Y N ) + dH(ΛM

Y N ,Λ
M
X )

+dH(ΛM
X ,ΛX)

< ε,

and it follows that Λ̃ = ΛX .

Since ΛX is sectional hyperbolic, by using the Theorem 5.2.1 for ΛX , the equality implies

that the negative orbit of every point in W ss
X (σ) \ {σ} does not intersect Cl(U). Hence,

we can arrange a singular-cross section Σt,Σb nearby σ such that

ΛX ∩ (∂hΣt ∪ ∂hΣb) = ∅.

Since ΛX is maximal invariant of Cl(U) and the boundary of Σt,Σb is compact we can

find T > 0 such that

XT (Cl(U)) ∩ (∂hΣt ∪ ∂hΣb) = ∅.

Thus, there exists N ∈ N such that for every n ≥ N one has

Y n
T (Cl(U)) ∩ (∂hΣt ∪ ∂hΣb) = ∅.

The result follows since ΛY n ⊂ Y n
T (Cl(U)).

Remark 5.2.5. We can observe that if there is x ∈ Λ\W ss(σ) such that σ ∈ ωX(x) ⊂ Λ,

then σ is Lorenz-like and satisfies the Theorem 5.2.1 [8, Theorem 4, Proposition 1], [26,

Theorem 2.5, Proposition 2.6]. It shows that the outstanding dynamic of the system is

found around of the Lorenz-like singularities. We shall see this in more detail in the next

chapter.
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Corollary 5.2.6. Let X be a C1 vector field of a compact n-manifold M , n ≥ 3, X ∈

X 1(M). Let Λ ⊂M be a sectional hyperbolic set of X. Let σ be a singularity of X in Λ.

Then, there is a neighborhood V of W ss(σ) \ {σ} such that

Λ ∩ V = ∅.

Proof. The equality in Theorem 5.2.1 implies that the negative orbit of every point in

W ss
X (σ)\{σ} does not intersect Λ. Given x ∈ (W ss(σ)\{σ}), we denote by lx the distance

of x to Λ, i.e., lx = d(x,Λ). Then, we define the neighborhood V as follows

V =
⋃

x∈W ss(σ)\{σ}

B(x,
lx
2

).

Thus, by construction V satisfies that Λ ∩ V = ∅ and the proof follows.

5.3 Finiteness

We start by recalling some useful definitions to prove lemmas and propositions that

provide very important properties on sectional hyperbolic sets, that in our case support

the main theorems’ proofs.

Henceforth, for δ > 0 we define Bδ(A) = {x ∈ M : d(x,A) < δ}, where d(·, ·) is the

metric in M .

Lemma 5.3.1. Let X be a C1 vector field of a compact n-manifold M , X ∈ X 1(M).

Let Λ ∈ M be a hyperbolic set of X. Then, there are a neighborhood U ⊂ X 1(M) of X,

a neighborhood U ⊂M of Λ and n0 ∈ N such that

#{L ⊂ U : L is homoclinic class of Y ∈ U} ≤ n0,

for every vector field Y ∈ U .
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Proof. We prove the Lemma by contradiction. So, we suppose that there exists a sequence

of vector fields (Xn)n∈N ⊂ U , Xn C1

→ X and such that

#{L ⊂ U : L is homoclinic class of Xn} ≥ n.

It is well known [22] that the periodic orbits are dense in L ⊂ Λn = ΛXn , for all n ∈ N.

Recall that the homoclinic classes are pairwise disjoint on hyperbolic sets.

Let us consider η > 0 such that 0 < η < ε
2
, where ε > 0 is given by (2.1). Let

∪x∈Cl(U)B(x, η
2
) be the collection of open balls of radius η

2
covering Cl(U).

Since Cl(U) is a compact neighborhood of Λ, this one admits a finite sub-coverage, i.e.,

there exists some sub-collection consisting only of finitely many open balls of radius η
2

which also covers Cl(U). We denote this finite number by n0.

It follows from definition of homoclinic class and (2.1) that given points p1 and p2 of L,

if d(p1, p2) < η then

W ss
X (p1, ε) ∩W uu

X (p2, ε) 6= ∅. (5.5)

In particular, if we choose N ∈ N such that N > n0, we have that the sequence’s

element XN exhibits more than N homoclinic classes in Cl(U). Since Cl(U) is

covered by n0 balls and N > n0, it states that XN exhibits at least two homoclinic

classes contained at same η
2
-ball. We denote by LN1 and LN2 these ones homoclinic classes.

Since LN1 and LN2 are homoclinic classes, there are periodic points p1 and p2 of LN1

and LN2 respectively satisfying (5.5), and it states that p1 and p2 belongs to the same

homoclinic class. Therefore, it shows that LN1 = LN2 .

Then, we obtain that XN exhibits finite homoclinic classes in U . This is a contradiction

and the proof follows.
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Lemma 5.3.2. Let X be a C1 vector field of a compact n-manifold M , n ≥ 3, X ∈

X 1(M). Let Λ ∈ M be a sectional hyperbolic set of X. Let Y n be a sequence of vector

fields converging to X in the C1 topology. Then, there is a neighborhood U ⊂ M of Λ,

such that if Rn is a repeller of Y n, Rn ⊂ ΛY n for each n ∈ N, then the sequence (Rn)n∈N

of repellers does not accumulate on the singularities of X, i.e.,

Sing(X)
⋂

(∩N>0Cl(∪m≥NRn)) = ∅.

Proof. Fix the neighborhood U of Λ as in Lemma 4.2.1.

Assume by contradiction that

Sing(X)
⋂

(∩N>0Cl(∪m≥NRn)) 6= ∅.

Then, there exists a subsequence (xnk)k∈N, with xnk ∈ Rnk ⊂ ΛY nk for all k ∈ N and

such that xnk −→ σ, σ ∈ Sing(X). Without loss of generality, we can suppose that the

sequence itself converges to σ.

Let ε > 0 be given by (2.1). As xn −→ σ,

W ss
Y n(xn, ε) −→ W ss

X (σ, ε) (5.6)

in the sense of C1 manifolds [45]. Then, for N ∈ N enough large, and by using the

Corollary 5.2.6 we have that

W ss
Y N (xN , ε) ∩ V 6= ∅. (5.7)

By using the Hausdorff’s metric and by Remark (5.2.3) we have that the repellers

sequence converges to a compact invariant set in ΛX , i.e.,

Rn h→ R, (5.8)

where R is a compact invariant set and “· h→ ·” denotes the convergence on the Hausdorff

distance. Thus R ⊂ ΛX .

Since that W ss(xn, ε) is included in Rn, we have that the limit W ss(σ, ε) is included in

R ((5.6) and (5.8)).
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By using (5.7) and (5.8), we obtain that W ss(σ, ε) ⊂ R ⊂ ΛX and therefore ΛX ∩ V 6= ∅.

This is a contradiction.

Proposition 5.3.3. Let X be a C1 vector field of a compact n-manifold M , n ≥ 3,

X ∈ X 1(M). Let Λ ⊂M be a sectional hyperbolic set of X. Then, there are neighborhoods

U of X, U of Λ and n0 ∈ N such that

#{A ⊂ U : A is an attractor of Y ∈ U} ≤ n0.

Proof. First, we fix the neighborhood U of Λ as in Lemma 4.2.1. We prove the proposition

by contradiction. So, we suppose that for n ∈ N, one has that for all neighborhood U of

X there exists Y ∈ U such that

#{A ⊂ U : A is an attractor of Y ∈ U} ≥ n.

Then, we consider a sequence of vector fields (Xn)n∈N, such that Xn C1

→ X, each one

vector field Xn exhibiting an attractor An in U . So, we have a sequence of attractors

(An)n∈N in U . By compactness we can suppose that the attractors are non-singular, since

the singularities are isolated.

We assert that the sequence (An)n∈N of attractors accumulates on the singularities of

X, otherwise if Sing(X)
⋂

(∩N>0Cl(∪m≥NAn)) = ∅, then it could exist δ > 0, such that

Bδ(Sing(X))
⋂

(∪n∈INAn) = ∅.

Thus, we define

H = ∩t∈IRXt

(
U \Bδ/2(Sing(X))

)
. (5.9)

By definition H is a invariant set and Sing(X) ∩H = ∅. Additionally, H is a compact

set as Λ is too, and therefore H is a nonempty compact set ([28, Lemma 3.2], [25,

Lemma 4.1]). It follows from the Lemma 4.2.1 that H is a hyperbolic set and by using

the Lemma 5.3.1 there is n0 ∈ N such that the sequence of attractors is bounded by n0,

that is a contradiction.
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Then, the sequence (An)n∈N of attractors accumulates on the singularities of X,

i.e., Sing(X)
⋂

(∩N>0Cl(∪m≥NAn)) 6= ∅. Thus, there exists σ ∈ U such that

σ ∈ Sing(X)
⋂

(∩N>0Cl(∪m≥NAn)).

Recall that we use in the previous chapter the transitivity hypothesis exactly for obtain

attractors accumulation on the singularities. Thus, in the same way of the Theorem A,

we obtain that the last equality implies that there is n1 ∈ N such that

An1 ∩ lt 6= ∅.

Since lt ⊂ W s
Xn1 (σ) and An1 is a closed invariant set for Xn1 , we obtain that σ ∈ An1 .

By hypothesis An is non-singular for all n ∈ N, so this leads to a contradiction and the

proof follows.

5.3.1 Existence

The following lemma will be useful for the existence’s proof related with repellers on

sectional hyperbolic sets.

Lemma 5.3.4. Let X be a C1 vector field of a compact n-manifold M , n ≥ 3, X ∈

X 1(M). Let Λ ∈ M be a connected sectional hyperbolic set of X with singularities. If

Λ ⊂ Ω(X), then Λ has no repellers.

Proof. We prove the lemma by contradiction. Since Λ has singularities, it cannot be a

repeller. Then, we assume that Λ at least contains a repeller that will be denote by R.

It follows from definition of repeller that there exists U isolant block negatively invariant

of R, such that R = ∩t≤0Xt(U), where U ⊂ Λ.

Since Λ is a connected set and R ⊂ Λ, we can pick p ∈ Λ such that p ∈ int(U) \ R. So,

we assert that there exists time τ < 0 such that p /∈ Xτ (U) and therefore X−τ (p) /∈ U .

As R is compact, there is an open neighborhood V ⊂ int(U) \R of p such that X−τ (V )
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is not contained in U . By construction p ∈ V ⊂ Ω(X), thus we can choose time T > 0

with T > −τ > 0, such that XT (V ) ∩ V 6= ∅. So, there exists q ∈ XT (V ) ∩ V and one

has

⇒ q ∈ V and q ∈ XT (V )

⇒ q ∈ V and X−T (q) ∈ V

⇒ X−τ (q) ∈ X−τ (V ) and X−τ (X−T (q)) ∈ X−τ (V )

⇒ X−τ−T (q) ∈ X−τ (V ) * U.

This shows that in particular X−T−τ (q) /∈ U with −T −τ < 0. However, q ∈ U and given

that Xt(q) ∈ U for all t ≤ 0, this is a contradiction.

5.4 Proof of the main theorems

5.4.1 Proof of Theorem B

Proof. We prove the theorem by contradiction. Let X be a C1 vector field of a compact

n-manifold M , n ≥ 3, X ∈ X 1(M). Let Λ ∈M be a sectional hyperbolic set of X. Then,

we suppose that there is a sequence of vector fields (Xn)n∈N ⊂ X 1(M), Xn C1

→ X such

that every vector field Xn exhibits n attractors or repellers, with n > n0. It follows from

the Proposition 5.3.3 that there are neighborhoods U ⊂ X 1(M) of X and U ⊂ M of Λ

such that the attractors in U are finite for all vector field Y in U . Thus, we are left to

prove only for the repeller case. We denote by Rn a repeller of Xn in ΛXn . Since ΛXn is

arbitrarily close to ΛX and Rn ∈ ΛXn , Rn is also arbitrarily close to ΛX . Therefore, we

can assume that Rn belongs to ΛX for all n.

Let (Rn)n∈N be the sequence of repellers contained in ΛX . By using the Lemma 5.3.2 we

have that

Sing(X)
⋂

(∩N>0Cl(∪m≥NRn)) = ∅.

Then, we can find δ > 0, such that Bδ(Sing(X))
⋂

(∪n∈NRn) = ∅.
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As in (5.9) we define H =
⋂
t∈IRXt

(
U \Bδ/2(Sing(X))

)
. It follows from the Lemma

4.2.1 that H is a hyperbolic set and beside the Lemma 5.3.1 we have that there are

neighborhoods U ⊂ X 1(M) of X, U ⊂M of H and n1 ∈ N such that

#{R ⊂ U : R is a repeller of Y ∈ U} ≤ n1 ≤ n0.

Note that the last inequality holds for every vector field Y ∈ U , but this leads to a

contradiction, since by hypothesis we have that

#{R ⊂ H : R is a repeller of Y ∈ U} ≥ n > n0.

5.4.1.1 Proof of the corollaries

Proof of Corollary 5.1.1

Proof. Since X is a sectional Anosov flow, then its maximal invariant M(X) is a sectional

hyperbolic set for X. By using the Theorem B for M(X) the proof follows.

Proof of Corollary 5.1.2

Proof. From [16], we have that a sectional hyperbolic three dimensional flows is open

and dense in the open set of flows which are far from homoclinic tangencies. By using

Theorem B we obtain finiteness of attrators and repellers and the proof follows.
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5.4.2 Proof of Theorem C

Proof. Before starting the proof of Theorem C, recall the Definition 5.2.2 and Remark

5.2.3. We prove the theorem by contradiction. It follows from the Lemma 5.3.4 that Λ

has no repellers.

Then we suppose that for all neighborhood U of Λ, there exists a vector field C1 close

to X exhibiting a repeller in U . Thus, we begin by considering a sequence of the vector

fields (Xn)n∈N ⊂ X 1(M), with Xn C1

→ X and each one is exhibiting a repeller Rn in U .

So, using the Lemma 5.3.2 we have that Sing(X)
⋂

(∩N>0Cl(∪m≥NRn)) = ∅. Then, we

can find δ > 0 such that Bδ(Sing(X))
⋂

(∪n∈NRn) = ∅.

We define H =
⋂
t∈IRXt

(
U \B δ

2
(Sing(X))

)
and hence we can assume that H is a

hyperbolic set [25]. Beside definition of H and from the Lemma 5.3.2, we can suppose

that the sequence (Rn)n∈N is contained in U .

By using the Hausdorff’s metric and by Remark (5.2.3) we have that the repellers

sequence converges to a compact invariant set in H, i.e.,

Rn h→ R, (5.10)

where R is a compact invariant set. Therefore R ⊂ H ⊂ Λ.

As Rn is a hyperbolic set, we can choose periodic point pn ∈ Rn for every n ∈ N and it

follows that the sequence (pn)n∈N converges to a point p ∈ R. From the hyperbolicity H

and as Xn −→ X, we have that W ss
Xn(pn, ε) −→ W ss

X (p, ε) in the sense of C1 submanifolds

[45], where ε > 0 is given by (2.1).
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It is well known that the repeller sets contain the stable manifold of all its points. So,

W ss
Xn(pn, ε) ⊂ Rn for all n ∈ N and by (5.10), we have that W ss

X (p, ε) ⊂ W s
X(Op) ⊂ R,

since R is a compact invariant set.

From the above we obtain Cl(W s
X(Op)) ⊂ R and in particular Cl(W s

X(Op)) is a hyperbolic

set contained in R ⊂ Λ ⊂ Ω(X), which can be used to construct a hyperbolic repeller

inside R. Specifically, the α-limit set α(W s
X(Op)) would be such a set and note that

α(W s
X(Op)) ⊂ Cl(W s

X(Op)) ⊂ R. Finally, there is a hyperbolic repeller contained in

Λ ⊂ Ω(X).

This is a contradiction by Lemma 5.3.4 and the result follows.



Chapter 6

Existence of periodic orbits for

sectional Anosov flows

6.1 Introduction

A well known problem in dynamics is to investigate the existence of periodic orbits for

flows on compact manifolds. This problem has a satisfactory solution under certain

circunstancies. In fact, every Anosov flow of a compact manifold has not only one but

infinitely many periodic orbits instead.

In this Chapter we shall investigate this problem not for Anosov but for the sectional

Anosov flows introduced in [31]. It is known for instance that every sectional Anosov

flow of a compact 3-manifold has a periodic orbit, this was proved in [8]. In the transitive

case (i.e. with a dense orbit in the maximal invariant set) it is known that the maximal

invariant set consists of a homoclinic class and, therefore, the flow has infinitely many

periodic orbits [2]. Another relevant result by Reis [47] proves the existence of infinitely

many periodic orbits under certain conditions. Our goal here is to extend [8] to the

higher dimensional setting. More precisely, we shall prove that every sectional Anosov

flow (or, equivalently, every sectional hyperbolic attracting set of a flow) on a compact

58
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manifold has a periodic orbit.

Let us state our result in a precise way.

Theorem D. Every sectional Anosov flow on a compact manifold has a periodic orbit.

An equivalent version of this result is as follows.

Given Λ ∈ M compact, recall that Λ is an attracting set if Λ = ∩t>0Xt(U) for some

compact neighborhood U of it, where this neighborhood is often called isolating block.

It is well known that the isolating block U can be chosen to be positively invariant, i.e.,

Xt(U) ⊂ U for all t > 0. We call a sectional hyperbolic set with the above property as a

sectional hyperbolic attracting.

Thus, the Theorem D is equivalent to the result below.

Theorem E. Every sectional hyperbolic attracting set of a C1 vector field on a compact

manifold has a periodic orbit.

Theorem D will be proved extending the arguments in [8] to the higher dimensional

setting. Indeed, in Section 6.2 we provide useful definitions for Lorenz-like singularity,

singular-cross sections and triangular maps for the higher dimensional case (n-triangular

maps for short) in the sectional hyperbolic context. Also, we extend some definitions,

lemmas and propositions necessaries for the next sections. In Section 6.3 we give sufficient

conditions for a hyperbolic n-triangular map to have a periodic point. In Section 6.4 we

prove that hyperbolic n-triangular maps satisfying these hypotheses have a periodic point

and we prove the Theorem D.
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6.2 Triangular maps in higher dimensions

In this section, we recall some definitions of Chapter 3 behind to Lorenz-like singularities

(Definition 3.1.1) and singular cross-sections (Definition 3.2.1) in the sectional hyperbolic

context. Also, we set certain maps defined on a finite disjoint union of these singular

cross-sections. As in [8], these ones are discontinuous maps still preserving the continuous

foliation (but not necessarily constant). Thus, on compact manifolds of dimension n ≥ 3,

particularly to group of these maps we shall call them n-triangular maps.

6.2.1 Preliminaries and useful results

Considering the definitions of Chapter 3, we show the following lemmas presenting an

elementary but very useful dichotomy for the singularities of a sectional hyperbolic sets.

Also, it will be necessary recall the Hyperbolic lemma 4.2.1 and the Theorem 4.2.2 in

Chapter 4.

The following results appear in [8], but these versions are a modification for the sectional

hyperbolic scenario in the higher dimensional case.

Theorem 6.2.1. Let X be a sectional Anosov flow of M . Let σ be a singularity of

M(X). If there is x ∈ M(X) \W ss(σ) such that σ ∈ ωX(x), then σ is Lorenz-like and

satisfies

M(X) ∩W ss
X (σ) = {σ}.

Proof. The equality follows from Theorem 4.2.2. We assume that M(X) is connected for,

otherwise, we consider the connected components. Suppose that σ ∈ M(X) ∩ Sing(X)

satisfies σ ∈ ωX(x) for some x ∈M(X)\W ss(σ). Let us prove that σ is Lorenz-like. Since

M(X) is maximal invariant of X we have ωX(x) ∈ M(X) and so σ ∈ M(X). Assume

by contradiction that σ is not Lorenz-like. Then, by (3.1) we have that dim(W ss(σ)) =
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dim(W s(σ)) and so W ss(σ) = W s(σ). Since x /∈ W ss(σ), one has ωX(x)∩(W s(σ)\{σ}) 6=

∅. But recall that ωX(x) ∈M(X) and beside with W ss(σ) = W s(σ), we obtain that

M(X) ∩ (W ss
X (σ) \ {σ}) 6= ∅,

contradicting the equality in Theorem 4.2.2. This proves the result.

Proposition 6.2.2. Let X be a sectional Anosov flow of M . If M(X) has no Lorenz-like

singularities, then M(X) has a periodic orbit.

Proof. Let x be a point in M(X) \ Sing(X). We claim that ωX(x) has no singularities.

Indeed, suppose by contradiction that ωX(x) has a singularity σ. By hypothesis M(X)

has no Lorenz-like singularities and so σ is not Lorenz-like too. Hence W ss(σ) = W s(σ)

by (3.1), and by using the Theorem 4.2.2 one has

M(X) ∩ (W s
X(σ) \ {σ}) = ∅.

It follows in particular that (W s
X(σ)\{σ}) does not belong to M(X). Since x ∈ (M(X)\

Sing(X)) we conclude that x /∈ W s
X(σ) = W ss

X (σ). It follows from Theorem 6.2.1 that σ

is Lorenz-like. This is a contradiction and the claim follows.

Now we conclude the proof of the proposition. Clearly ωX(x) ⊂ M(X) since M(X) is

compact. The claim and Lemma 4.2.1 imply that ωX(x) is a hyperbolic set. It follows

from the Shadowing Lemma for flows [22] that there is a periodic orbit of Xt close to

ωX(x). Since M(X) is the maximal invariant, we have that such a periodic orbit is

contained in M(X). Then we obtain the result.
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6.2.2 n-Triangular maps

We begin by reminding the three-dimensional case [8], where the authors choose the

cross-sections as copies of [0, 1] × [0, 1] and they define maps on a finite disjoint union

of these one copies called triangular maps. This concept is frequently used by maps on

[0, 1]× [0, 1] preserving the constant vertical foliation. Also, they assume two hypotheses

imposing certain amount of differentiability close to the points whose iterates fall

eventually in the interior of Σ.

For the higher dimensional case, we will define a certain maps on a finite disjoint union

of singular cross-sections Σ. Here, we will modify the triangular map’s definition and we

will impose some suitable properties in order to define a triangular hyperbolic map. These

maps could be discontinuous and they will preserve still the continuous foliation (but not

necessarily constant). Thus, on compact manifolds of dimension n ≥ 3, particularly to

group of these maps we shall call them n-triangular maps.

By using the definitions about singular cross-sections, we will provide the following

definitions.

Definition 6.2.3. Let Σ be a disjoint union of finite singular cross-sections Σi, i =

1, . . . , k. . We denote by l0i to the singular leaf of the singular cross-section Σi. Here L0

stands the union of singular leaves, i.e.,

L0 =
n⋃
i=1

l0i .

Recall that ∂vΣi is the union of the boundary submanifolds which are parallel to l0i. In

the same way we set by ∂vΣ as

∂vΣ =
n⋃
i=1

∂vΣi.

Hereafter, given a map F we will denote its domain by Dom(F ).
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Definition 6.2.4. Let F : Dom(F ) ⊂ Σ→ Σ be a map and x a point in Dom(F ). We

say that x is a periodic point of F if there is n ≥ 1 such that F j(x) ∈ Dom(F ), for all

0 ≤ j ≤ n− 1 and F n(x) = x.

Definition 6.2.5. We say that a submanifold c of Σ is a k-surface if it is the image of

a C1 injective map c : Dom(c) ⊂ Rk → Σ, with Dom(c) being Ik and k ≤ n − 1. For

simplicity, hereafter c stands the image of this one map. A k-surface c is vertical if it is

the graph of a C1 map g : In−k−1 → Ik, i.e., c =
{

(g(y), y) : y ∈ Ik
}
⊂ Σ.

Definition 6.2.6. A continuous foliation Fi on a component Σi of Σ is called vertical

if its leaves are vertical s-surfaces and ∂vΣ ⊂ Fi, where s = dim(Bss[0, 1]). A vertical

foliation F of Σ is a foliation which restricted to each component Σi of Σ is a vertical

foliation.

It follows from the definition above that the leaves L of a vertical foliation F are vertical

s-surfaces, hence differentiable ones. In particular, the tangent space TxL is well defined

for all x ∈ L.

Remark 6.2.7. Note that, given a singular cross-section Σ equipped with a vertical

foliation F , one has that dim(F) = dim(Bss[0, 1]) = s, and each leaf L of F has the

same dimension of W ss(σ), being σ the Lorenz-like singularity associated to Σ.

Definition 6.2.8. Let F : Dom(F ) ⊂ Σ → Σ be a map and F be a vertical foliation

on Σ. We say that F preserves F if for every leaf L of F contained in Dom(F ) there

is a leaf f(L) of F such that F (L) ⊂ f(L) and the restricted map F/L : L → f(L) is

continuous.

If F is a vertical foliation on Σ a subset B ⊂ Σ is a saturated set for F if it is an union

of leaves of F . We shall write F -saturated for short.
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Definition 6.2.9 (n-Triangular map). A map F : Dom(F ) ⊂ Σ → Σ is called n-

triangular if it preserves a vertical foliation F on Σ such that Dom(F ) is F-saturated

and dim(Σ) = n− 1, with n ≥ 3. Note that a 3-triangular map is the classical triangular

map.

6.2.3 Hyperbolic n-triangular maps

In the same way of [8], in order to find periodic points for n-triangular maps, we also

introduce some kind of hyperbolicity for these maps. The hyperbolicity will be defined

through cone fields in Σ and we denote by TΣ the tangent bundle of Σ. Given x ∈ Σ,

α > 0 and a linear subspace Vx ⊂ TxΣ, we denote by Cα(x, Vx) ≡ Cα(x) the cone around

Vx in TxΣ with inclination α, namely

Cα(x) = {vx ∈ TxΣ : ∠(vx, Vx) ≤ α}.

Here, ∠(vx, Vx) denotes the angle between a vector vx and the subspace Vx. A

cone field in Σ is a continuous map Cα : x ∈ Σ → Cα(x) ⊂ TxΣ, where Cα(x)

is a cone with constant inclination α on TxΣ. A cone field Cα is called transversal

to a vertical foliation F on Σ if TxL is not contained in Cα(x) for all x ∈ L and all L ∈ F .

Now we can define hyperbolic n-triangular map.

Definition 6.2.10 (Hyperbolic n-triangular map). Let F : Dom(F ) ⊂ Σ → Σ be

a n-triangular map with associated vertical foliation F . Given λ > 0 we say that F is

λ-hyperbolic if there is a cone field Cα in Σ such that:

1. Cα is transversal to F .

2. If x ∈ Dom(F ) and F is differentiable at x, then

DF (x)(Cα(x)) ⊂ Int(Cα/2(F (x)))
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and

|| DF (x) · vx ||≥ λ· || vx ||,

for all vx ∈ Cα(x).

6.3 Periodic points for hyperbolic n-triangular maps

In the three dimensional case [8], the authors impose certain conditions or properties

so-called hypotheses (H1) and (H2) on triangular maps. With this conditions the

periodic point arose on the triangular map. Therefore, the general tools for searching our

definitions is trying and reproducing these hypotheses, in the higher dimensional setting.

Here, the topology turns out to play a significant role in this extension, imposing certain

restrictions on the manifolds, kind of foliations and singular cross-sections one may have.

In this section we give sufficient conditions for a hyperbolic n-triangular map to have a

periodic point.

6.3.1 Hypotheses (A1)-(A2)

They impose some regularity around those leaves whose iterates eventually fall into Σ \

(∂vΣ). To state them we will need the following definition. If F is foliation we use the

notation L ∈ F to mean that L is a leaf of F .

Definition 6.3.1. Let F : Dom(F ) ⊂ Σ → Σ be a triangular map such that ∂vΣ ⊂

Dom(F ). For all L ∈ F contained in Dom(F ) we define the (possibly ∞) number n(L)

as follows:

1. If F (L) ⊂ Σ \ (∂vΣ) we define n(L) = 0.

2. If F (L) ⊂ ∂vΣ we define

n(L) = sup{n ≥ 1 : F i(L) ⊂ Dom(F ) and

F i+1(L) ⊂ ∂vΣ,∀0 ≤ i ≤ n− 1}.
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Essentially n(L) + 1 gives the first non-negative iterate of L falling into Σ \ (∂vΣ).

Remark 6.3.2. On the other hand, note that if n(L∗) ≥ 1 for L∗ ∈ F contained in

Dom(F ), for every neighborhood S of L∗, F (S) ∩ ∂vΣ 6= ∅. We denote

VL∗(S) ≡ VL∗ = F (S) ∩ ∂vΣ.

Therefore VL∗ 6= ∅ and if L∗ /∈ ∂vΣ, VL∗ splits F (S) in two connected components S ′1, S
′
2.

It shows that there exists three connected components S0, S1, S2 of S such that ( See 6.2)

S = S0 ∪ S1 ∪ S2 and

F (S0) = VL∗, F (S1) = S ′1, and F (S2) = S ′2.

Given L ∈ F contained in Dom(F ), the number n(L) and the neighborhood VL∗ play

fundamental role in the following definition.

Definition 6.3.3 (Hypotheses (A1)-(A2)). Let F : Dom(F ) ⊂ Σ → Σ be a n-

triangular map such that ∂vΣ ⊂ Dom(F ). We say that F satisfies:

(A1) If L ∈ F satisfies L ⊂ Dom(F ) and n(L) = 0, then there is a F-saturated

neighborhood S of L in Σ such that the restricted map F/S is C1. (See Figure 6.1).

(A2) If L∗ ∈ F satisfies L∗ ⊂ Dom(F ), 1 ≤ n(L∗) <∞ and

F n(L∗)(L∗) ⊂ Dom(F ),

then there is a connected neighborhood S ⊂ Dom(F ) of L∗ such that S = S0∪S1∪S2

(see Remark (6.3.2)) and the connected components S1, S2 (possibly equal if L∗ ⊂

∂vΣ) beside VL∗ satisfying the properties below:

1. Both F (S1) and F (S2) are contained in Σ \ (∂vΣ).
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Figure 6.1: Hypothesis A1

2. F i(VL∗) ⊂ ∂vΣ for all 0 ≤ i ≤ n(L∗), i.e., as VL∗ is F-saturated, for any

L′ ∈ VL∗ one has that n(L′) = n(L∗) − 1 (or n(L′) = n(L∗) for the case

L∗ ∈ ∂vΣ)

3. For each j ∈ {0, 1, 2}, there is 0 ≤ nj(L∗) ≤ n(L∗) + 1 such that if yl ∈ Sj
is a sequence converging to y ∈ L∗, then F (yl) is a sequence converging to

F nj(L∗)(y). If nj(L∗) = 1, then F is C1 in Sj ∪VL∗. Note that n0(L∗) = n(L∗)

by 2.

4. If L∗ ⊂ Σ \ (∂vΣ) (and so S1 6= S2), then either n1(L∗) = 1 and n2(L∗) > 1

or n1(L∗) > 1 and n2(L∗) = 1. (See Figure 6.2).

6.3.2 Existence on hyperbolic n-triangular maps

The following theorem will deal with the existence of periodic points for hyperbolic

n-triangular maps satisfying (A1) and (A2). Since the conditions (A1) and (A2)

generalize the conditions in [8], also we have that the three dimensional Lorenz attractor

return map is an example for us. Recall the Lorenz attractor return map has a periodic

point and it is a λ-hyperbolic n-triangular map satisfying (A1) and (A2) with λ large

and Dom(F ) = Σ \ L0. Indeed, the main motivation is show the following theorem for
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Figure 6.2: Hypothesis A2

higher dimensional case. More precisely,

Theorem 6.3.4. Let F be a λ-hyperbolic n-triangular map satisfying (A1) and (A2)

with λ > 2 and Dom(F ) = Σ \ L0. Then, F has a periodic point.

Since the proof of Theorem 6.3.4 is technical, we include some preliminaries for its proof

and we will prove in the next section.
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6.4 Existence of the periodic point

In this section we shall prove the Theorem 6.3.4. The proof follow the same way of [8].

We will extend and modify some results for the higher dimensional case. In Subsection

6.4.1 we present preliminary lemmas for the proof of the Theorem 6.3.4. In Subsection

6.5 we prove the theorem.

6.4.1 Preliminary lemmas

Hereafter we fix Σ as in Subsection 3.2. Let k be the number of components of Σ. We

shall denote by SL the leaf space of a vertical foliation F on Σ. It turns out that SL

is a disjoint union of k-copies Bu
1 [0, 1] , · · · , Bu

k [0, 1] of Bu [0, 1]. We denote by FB the

union of all leaves of F intersecting B. If B = {x}, then Fx is the leaf of F containing

x. If S,B ⊂ Σ we say that S cover B whenever B ⊂ FS.

The lemma below quotes some elementary properties of n(L) in Definition 6.3.1.

Lemma 6.4.1. Let F : Dom(F ) ⊂ Σ→ Σ be a n-triangular map with associated vertical

foliation F . If L ∈ F and L ⊂ Dom(F ), then:

1. If F has no periodic points and ∂vΣ ⊂ Dom(F ), then

n(L) ≤ 2k.

2. n(L) = 0 if and only if F (L) ⊂ Σ \ (∂vΣ).

3. F i(L) ⊂ ∂vΣ for all 1 ≤ i ≤ n(L).

4. If F n(L)(L) ⊂ Dom(F ), then F n(L)+1(L) ⊂ Σ \ (∂vΣ).

If F : Dom(F ) ⊂ Σ→ Σ is a n-triangular map with associated foliation F , then we also

have an associated u-dimensional map

f : Dom(f) ⊂ SL→ SL.
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This map allows us to obtain certain geometric properties for the singular cross-section

whole. We use this map in the definition below.

Definition 6.4.2. Let F : Dom(F ) ⊂ Σ→ Σ a triangular map with associated foliation

F and f : Dom(f) ⊂ SL → SL its associated u-dimensional map. Then we define the

following limit sets:

V = {f(B) : B ∈ F , B ⊂ Dom(F ) and B ⊂ ∂vΣ}.

L =
⋃{

Ki : i ∈ {1, ..., k}, lim
L→L0i

f(L) exists and such that Ki = lim
L→L0i

f(L)

}
.

The lemma below is a direct consequence of (A2).

Lemma 6.4.3. Let F : Dom(F ) ⊂ Σ → Σ a n-triangular map satisfying (A2) and F

be its associated foliation. Let L∗ be a leaf of F , L∗ ⊂ Dom(F ), 1 ≤ n(L∗) < ∞ and

F n(L∗)(L∗) ⊂ Dom(F ). If there is a sequence (Lk)k∈N such that Lk → L∗, then:

(1) If #{L : L ∈ (VL∗ ∩ (F (Lk))k∈N)} = ∞, then there exists a subsequence (Lkl)l∈N

such that Liml→∞F (Lkl) = F (L∗).

(2) If #{L : L ∈ (S ′1∩(F (Lk))k∈N)} =∞, then there exists a subsequence (Lkl)l∈N such

that Liml→∞F (Lkl) = F n1(L∗)(L∗).

(3) If #{L : L ∈ (S ′2∩(F (Lk))k∈N)} =∞, then there exists a subsequence (Lkl)l∈N such

that Liml→∞F (Lkl) = F n2(L∗)(L∗).

In each case the corresponding limits belong to

∂vΣ ∪ V .

Proof. By hypotheses F satisfies the property (A2), so there is a connected

neighborhood S = S0 ∪ S1 ∪ S2 of L∗. If we have (1), as Lk → L∗, one has that
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#{L : L ∈ (S0 ∩ (Lk)k∈N)} = ∞. Then, there exists a subsequence (Lkl)l∈N ⊂ S0 such

that Lkl → L∗. Thus, Liml→∞F (Lkl) = F (L∗).

If we have (2) beside the (A2) property, in the same way one has that there exists

a subsequence (Lkl)l∈N ⊂ S1 such that Lkl → L∗ and Liml→∞F (Lkl) = F n1(L∗)(L∗).

Analogously for (3).

Given a map F : Dom(F ) ⊂ Σ→ Σ we define its discontinuity set D(F ) by

D(F ) = {x ∈ Dom(F ) : F is discontinuous in x}. (6.1)

In the sequel we derive useful properties of Dom(F ) and D(F ).

Lemma 6.4.4. Let F be a n-triangular map satisfying (A1), F : Dom(F ) ⊂ Σ → Σ

and F be its associated foliation. If L ∈ F and L ⊂ D(F ), then F (L) ⊂ ∂vΣ.

Proof. Suppose by contradiction that L ⊂ D(F ) and F (L) ⊂ Σ\(∂vΣ). These properties

are equivalent to n(L) = 0 by Lemma 6.4.1-(2). Then, by using (A1), there is a

neighborhood of L in Σ restricted to which F is C1. In particular, F would be continuous

in L which is absurd.

Lemma 6.4.5. Let F be a n-triangular map satisfying (A1)-(A2), F : Dom(F ) ⊂ Σ→

Σ and F be its associated foliation. If F has no periodic points and ∂vΣ ⊂ Dom(F ),

then Dom(F ) \D(F ) is F-saturated, open in Dom(F ) and F/(Dom(F )\D(F )) is C1.

Proof. In order to prove the lemma, it suffices to show that ∀x ∈ Dom(F ) \D(F ) there

is a neighborhood S of Fx in Σ such that F/S is C1. To find S we proceed as follows.

Fix x ∈ Dom(F ) \ D(F ). As Dom(F ) is F -saturated, one has Fx ⊂ Dom(F ) and so

n(Fx) is well defined. By using the Lemma 6.4.1-(1), one has

n(Fx) <∞.



CHAPTER 6. EXISTENCE OF PERIODIC ORBITS FOR S.A.F 72

If n(Fx) = 0, then the neighborhood S of L = Fx in (A1) works.

By simplicity, if n(Fx) ≥ 1 let us denote L∗ = Fx. Clearly 1 ≤ n(L∗) <∞ and Definition

6.3.1 of n(L∗) implies fn(L∗)(L∗) ⊂ ∂vΣ. By hypothesis ∂vΣ ⊂ Dom(F ) and then

F n(L∗)(L∗) ⊂ Dom(F ).

So, we can choose S as the neighborhood of L∗ in (A2). Let us prove that this

neighborhood works.

First we claim that L∗ ⊂ ∂vΣ. Indeed, if L∗ ⊂ Σ \ (∂vΣ), then S has three different

connected components S0, S1, S2. By (A2)-(4) we can assume n1(L∗) > 1 where n1(L)

comes from (A2)-(3). Choose sequence x1
i ∈ S1 → x then F (x1

i )→ F n1(L∗)(x) by (H2)-

(3). As F is continuous in x we also have F (x1
i ) → F (x) and then F n1(L∗)(x) = F (x)

because limits are unique. Thus, F n1(L∗)−1(x) = x because F is injective and so x is a

periodic point of F since n1(L∗)− 1 ≥ 1. This contradicts the non-existence of periodic

points for F . The claim is proved.

The claim implies that S has a two components, i.e, S0 and S1 = S2. By using (A2), for

the component S0 one has n0(L∗) = 0 and n1(L∗) = n2(L∗) = 1 since F is continuous in

x ∈ L∗. Then, F/S is C1 by the last part of (A2)-(3). This finishes the proof.

Lemma 6.4.6. Let F : Dom(F ) ⊂ Σ → Σ be a triangular map satisfying (A1)-(A2).

If F has no periodic points and Dom(F ) = Σ \ L0, then Dom(F ) \D(F ) is open in Σ.

Proof. Dom(F ) is open in Σ because Dom(F ) = Σ\L0 and L0 is closed in Σ. Dom(F )\

D(F ) is open in Dom(F ) by Lemma 6.4.5 because F has no periodic points and ∂vΣ ⊂

Σ \ L0 = Dom(F ). Thus Dom(F ) \D(F ) is open in Σ.
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6.4.2 Leaf class

Now, we need to introduce some definitions for the next result. We say that L is related

with L′ (L ∼ L′) if we have that n(L), n(L′) ≥ 1 and L,L′ ⊂ S0(L) ∩ S0(L′).

Definition 6.4.7. Let L be a leaf of F and L ∈ Dom(F ). If n(L) ≥ 1, we define the

leaf class associated to the leaf L as

〈L〉 = {L′ ∈ Dom(F ) |L′ ∼ L} .

If n(L) = 0, we say that 〈L〉 = {L}.

Remark 6.4.8. If X is a vector field of codimension 1, i.e., dim(Ec) = 2, one has that

〈L〉 = {L} and so dim(〈L〉) = dim({L}) = s

Lemma 6.4.9. Let L be a leaf in D(F ). Then 〈L〉 is a (s + 1)-submanifold (or s-

submanifold if 〈L〉 = {L}) of Σ, and whose boundary belong to ∂vΣ.

Proof. By using the Lemma 6.4.5, D(F ) is closed in Σ \ L0. So, given L ∈ Dom(F ) by

(A2) there is S(L) = S(L)0 ∪ S(L)1 ∪ S(L)2. Then, Cl(S(L)0) ⊂ D(F ), and as D(F )

is F -saturated, one has that Cl(S(L)0) \ S(L)0 = ∂S(L)0 are leaves. Thus, for each

L′ ∈ ∂S(L)0 ⊂ D(F ), by using the Lemma 6.4.4, we obtain that F (L′) ⊂ ∂vΣ. Then,

again by (A2) there exists S(L′) = S(L′)0∪S(L′)1∪S(L′)2. In the same way, we proceeds

analogously for S(L′). Since Σ has finite diameter, we conclude that 〈L〉 has boundary

in ∂vΣ (See Figure 6.3).

We have that if L ∈ D(F ), then F (L) ∈ ∂vΣ (Lemma 6.4.4), and this motivate the

following definition.

Definition 6.4.10. We define the discontinuous class of leaves by the set

〈D(F )〉 = {〈L〉 |L ∈ D(F )} .
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Figure 6.3: Leaf class of L

Definition 6.4.11. A subset B of Σ is F -discrete if it corresponds to a set of leaves

whose only points of accumulations are the leaves in L0.

Lemma 6.4.12. If F has no periodic points, then 〈D(F )〉 is discrete.

Proof. By contradiction, we suppose that 〈D(F )〉 is not F -discrete. Then, there is an

open neighborhood U of L0 in Σ such that 〈D(F )〉 \ A contains infinitely many classes

〈Ln〉, where

A = {〈L〉 ∈ 〈D(F )〉 |〈L〉 ∩ U 6= ∅} .

By using Lemma 6.4.5, D(F ) is closed in Dom(F ) = Σ \ L0, and so 〈D(F )〉 is closed in

Dom(F ) = Σ\L0 too. Since D(F )\U is closed in Dom(F )\U , one has that 〈D(F )〉 \A

is closed. As U is an open neighborhood of L0 and Dom(F ) = Σ \ L0 we obtain that

Dom(F ) \ U is compact in Σ. Henceforth 〈D(F )〉 \ A is compact. So, without loss

of generality, we can assume that 〈Ln〉 converges to a class 〈L∗〉 of 〈D(F )〉 \ A. By

construction 〈L∗〉 ⊂ Dom(F ). Since 〈Ln〉 ⊂ D(F ) we have F (〈L∗〉) ⊂ ∂vΣ by Lemma

6.4.4. It follows that n(W∗) ≥ 1, for all W∗ ∈ 〈L∗〉. We also have n(W∗) ≤ 2k < ∞ by

Lemma 6.4.1-(2) since F has no periodic points and ∂vΣ ⊂ Σ \ L0 = Dom(F ), for all
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W∗ ∈ 〈L∗〉. By Definition 6.3.1 we have fn(L∗)(L∗) ⊂ ∂vΣ ⊂ Dom(F ).

By definition 〈Ln〉 ∩ 〈L∗〉 = ∅ for all n ∈ N. Now, by using the property (A2), for each

Ln and for L∗ we can choose the following neighborhood associated to 〈Ln〉 and 〈L∗〉 as

follows:

CSn =
⋃

W∈〈Ln〉

S(W ) and CS∗ =
⋃

W∗∈〈L∗〉

S(W∗).

Since 〈Ln〉 is compact, one has that

CSn =
k⋃
i=1

S(Wi) and CS∗ =
k⋃
i=1

S(W∗,i).

As 〈Ln〉 → 〈L∗〉 and 〈Ln〉 ∩ 〈L∗〉 = ∅ we can assume 〈Ln〉 ⊂ CS∗ \ 〈L∗〉 for all n. As

〈Ln〉 ∩ 〈L∗〉 = ∅ for all n we can further assume that 〈Ln〉 ⊂ CS1,∗ where CS1,∗ is one of

the (possibly equal) connected components of CS∗ \ 〈L∗〉, i.e.,

CS1,∗ =
k⋃
i=1

S1(W∗,i).

As F (S1(Ln)) ⊂ Σ\(∂vΣ) for all n ∈ N by (A2)-(1) we conclude that F (〈Ln〉) ⊂ Σ\(∂vΣ)

for all n. However, F (〈Ln〉) ⊂ ∂vΣ by Lemma 6.4.4 since Ln ⊂ D(F ) a contradiction.

This proves the lemma.

6.4.3 Bands in higher dimensions

We need to extend some definitions for next lemmas and propositions. Let H̃(L,L′) be

a cylinder such that L,L′ ∈ ∂H, whose diameter is l and where l represent the distance

of L to L′, i.e., l = dist(L,L′). A vertical band in Σ between two vertical s-surfaces

L,L′ in the same component Σ is nothing but a cylinder H formed by the connected

component that contain both L and L′. Let us denote by H(L,L′) and H [L,L′] the

open and vertical band respectively.
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Given a u-surface c, we say that c is tangent to Cα if Dc(t) ∈ Cα(c(t)) for all t ∈ Dom(c) ⊂

Ru. A Cα-spine of a vertical band H(L,L′)(or H [L,L′]) is a u-surface c ⊂ H(L,L′)

tangent to Cα, such that ∂c ⊂ ∂H(L,L′) and int(c) ⊂ H(L,L′).

Lemma 6.4.13. Let c ⊂ Dom(F ) \ D(F ) be and open u-surface transversal to F . If

there is n ≥ 1 and open C1 u-surface c∗ whose clausure Cl(c∗) ⊂ c and such that

F i(c∗) ⊂ (Dom(F ) \ D(F ) for all 0 ≤ i ≤ n − 1 and F n(c∗) covers c, then F has a

periodic point.

Proof. We prove the lemma by contradiction. Then, we suppose that F has no periodic

point. So, by using the Lemma 6.4.5, Dom(F ) \ D(F ) is saturated and F
∣∣
Dom(F )\D(F )

is C1. Then, c and c∗, projects (via F) into two u-balls in SL still denoted by c and c∗

respectively. The assumptions imply that f i(c) is defined for all 0 ≤ i ≤ n− 1 and

Cl(c∗) ⊂ c ⊂ fn(c∗).

Then, fn has a periodic point L∗∗. As F n(L∗∗) ⊂ f(L∗∗) = L∗∗ and F n |L∗∗ is continuous,

then the Brower fixed point Theorem implies that F n has a fixed point. This fixed point

represents a periodic point of F .

Lemma 6.4.14. F carries a u-surface c ⊂ Dom(F ) \D(F ) tangent to Cα (with volume

V (c)) into a u-surface tangent to Cα (with volume ≥ λ · V (c)).

Proof. See [8].

Lemma 6.4.15. Suppose that F has no periodic points. Let L,L′ be different leaves in

D(F ) such that the open vertical band H(L,L′) ⊂ Dom(F ) \D(F ). If c is a Cα-spine of

H(L,L′), then F (Int(c)) covers a vertical band H(W,W ′) with

W,W ′ ⊂ ∂vΣ ∪ V .
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Proof. By using Lemma 6.4.5 we have that F/H(L,L′) is C1 because H(L,L′) ⊂ Dom(F )\

D(F ). And Lemma 6.4.4 implies

F (L), F (L′) ⊂ ∂vΣ (6.2)

because L,L′ ⊂ D(F ). Since L,L′ ⊂ Dom(F ), one has that n(L), n(L′) are defined.

By (6.2) we have n(L), n(L′) ≥ 1. Then, 1 ≤ n(L), n(L′) <∞ by Lemma 6.4.1-(1) since

F has no periodic points and ∂vΣ ⊂ Σ \ L0 = Dom(F ). By the same reason

F n(L)(L), F n(L′)(L′) ⊂ Dom(F ).

If there exists a sequence converging to L or L′, by using the Lemma 6.4.3 exist the limit

F (Ln)n∈N and this limit belong to ∂vΣ ∪ V . Let W and W ′ be these limits respectively.

Now, let c be a Cα-spine of H(L,L′). To fix ideas we assume ∂c ⊂ ∂H(L,L′),

and this implies that there are p, q ∈ ∂c such that p ∈ L and q ∈ L′. As

Int(c) ⊂ H(L,L′) ⊂ Dom(F ) \ D(F ) we have that F (Int(c)) is defined. As

F/H(L,L′) is C1 we have that F (Int(c)) is a u-surface whose boundary containing points

that belong in ∂vΣ ∪ V .

Clearly W 6= W ′ because F preserves F . Then, FF (Int(c)) = H(W,W ′) is an open vertical

band, where W,W ′ ⊂ ∂vΣ ∪ V .

Definition 6.4.16. Let p be a point of M . We define the radius of injectivity inj(p) at

a point p as the largest radius for which the exponential map at p is a injective map, i.e.,

inj(p) = Sup {r > 0 |expp : B(0, r) −→M is injective} .

Also, we say that the radius of injectivity of the manifold M is the infimum of the radius

at all points, i.e,.

inj(M) = Inf {inj(p) |p ∈M } .
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The proof is based on the following result of [8], that it will be modified for the higher

dimensional case.

Lemma 6.4.17. Suppose that F has no periodic points. For every open u-surface c ⊂

Dom(F ) \ D(F ) tangent to Cα there are an open u-surface c∗ ⊂ c and n′(c) > 0 such

that F j(c∗) ⊂ Dom(F ) \D(F ) for all 0 ≤ j ≤ n′(c) − 1 and F n′(c)(c∗) covers a vertical

band H(W,W ′) with

W,W ′ ⊂ ∂vΣ ∪ V ∪ L.

Proof. Let c ⊂ Dom(F ) \D(F ) be an u-surface tangent to Cα. The following claim will

be proved by modifying arguments used in [8],[20] and a similar argument used by [12]

beside the radius of injectivity definition.

Claim 6.4.3:

There are an open u-surface c∗∗ ⊂ c and n′′(c) > 0 such that F j(c∗∗) ⊂ Dom(F ) \D(F )

for all 0 ≤ j ≤ n′′(c)− 1 and F n′′(c)(c∗∗) covers an open vertical band

H(L,L′) ⊂ Dom(F ) \ 〈D(F )〉 ,

where L,L′ are different leaves in D(F ) ∪ L0.

Proof. For every open u-surface c′ ⊂ Dom(F ) \D(F ) tangent to Cα we define

N(c′) = sup
{
n ≥ 1 : F j(c′) ⊂ Dom(F ) \ 〈D(F )〉 ,∀0 ≤ j ≤ n− 1

}
.

Note that 1 ≤ N(c′) <∞ because λ > 1 and Σ has finite diameter. In addition, FN(c′)(c′)

is a u-surface tangent to Cα with

FN(c′)(c′) ∩ (D(F ) ∪ L0) 6= ∅

because Dom(F ) = Σ \ L0.

Define the number β by

β = (1/2) · λ.
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Then, β > 1 since λ > 2. Define c1 = c and N1 = N(c1).

Since FN1(c1) is a open u-surface, if FN1(c1) intersects 〈D(F )〉∪L0 in a unique leaf class

〈L1〉, then FN1(c1) \ 〈L1〉 has two connected components. In this case we define

• c∗2 = the connected component of FN1(c1) \ 〈L1〉 that contain a ball whose radius

of injectivity is greater or equal to any ball of the complement.

• c2 = F−N1(c∗2).

The following properties hold,

1) c2 ⊂ c1 and then c2 is an open u-surface tangent to Cα.

2) F j(c2) ⊂ Dom(F ) \ 〈D(F )〉, for all 0 ≤ j ≤ N1.

3) V (FN1(c2)) ≥ β · V (c1).

In fact, the first property follows because FN1/Fc2 is injective and C1. The second one

follows from the definition of N1 = N(c1) and from the fact that c∗2 = FN1(c2) does not

intersect any leaf in 〈D(F )〉 ∪ L0. The third one follows from Lemma 6.4.14 because

V (FN1(c2)) = V (c∗2) ≥ (1/2) · V (FN1(c1)) ≥

≥ (1/2) · λN1V (c1) ≥ (1/2) · λV (c1) = β · V (c1)

since λ > 2 and N1 ≥ 1.

Next we define N2 = N(c2). The second property implies N2 > N1. As before, if FN2(c2)

intersects 〈D(F )〉 ∪L0 in a unique leaf class 〈L2〉, then FN2(c2) \ 〈L2〉 has two connected

components. In such a case we define analogously c∗3 and also c3 = F−N2(c∗3).

As before

V (FN3(c3)) = V (c∗3) ≥ (1/2) · V (FN2(c2)) ≥ (1/2) · λN2−N1V (FN1(c2)) ≥ β2V (c1)

because of the third property. So,
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1) c3 ⊂ c2 and c3 is an open u-surface tangent to Cα.

2) F j(c3) ⊂ Dom(F ) \ 〈D(F )〉 for all 0 ≤ j ≤ N2.

3) V (FN2(c3)) ≥ β2 · V (c1).

In this way we get a sequence N1 < N2 < N3 < · · · < Nl < · · · of positive integers and

a sequence c1, c2, c3, · · · cl, · · · of open u-surfaces (in c) such that the following properties

hold ∀l ≥ 1

1) cl+1 ⊂ cl and cl+1 is an open u-surface tangent to Cα.

2) F j(cl+1) ⊂ Dom(F ) \ 〈D(F )〉 for all 0 ≤ j ≤ Nl.

3) V (FNl(cl+1)) ≥ βl · V (c1).

The sequence cl must stop by Property (3) since Σ has finite diameter. So, there is

a first integer l0 such that FN(cl0 )(cl0) intersects 〈D(F )〉 ∪ L0 in two different leaves

class 〈L〉 , 〈L′〉. Note that these classes must be contained in the same component of Σ

since FN(cl0 )(cl0) is connected. Hence, we can suposse that the vertical band H(L,L′)

bounded by L,L′ is well defined. We can assume that H(L,L′) ⊂ Dom(F ) \ 〈D(F )〉

because 〈D(F )〉 is F -discrete by Lemma 6.4.12. Choosing c∗∗ = cl0 and n′′(c) = Nl0 we

get the result.

Now we finish the proof of Lemma 6.4.17. Let c∗∗, n′′(c) and L,L′ ⊂ D(F ) ∪ L0 be as

in Claim 6.4.3. We have three possibilities: L,L′ ⊂ D(F ); L ⊂ L0 and L′ ⊂ D(F );

L ⊂ D(F ) and L′ ⊂ L0. We only consider the two first cases since the later is similar to

the second one.

First we assume that L,L′ ⊂ D(F ). As F n′′(c)(c∗∗) is tangent to Cα, and covers H(L,L′),

we can assume that F n′′(c)(c∗∗) itself is a Cα-spine of H(L,L′). Then, applying Lemma

6.4.15 to this spine, one gets that F n′′(c)+1(c∗∗) covers a vertical band H(W,W ′) with

W,W ′ ⊂ ∂vΣ ∪ V
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In this case the choices c∗ = c∗∗ and n′(c) = n′′(c) + 1 satisfy the conclusion of Lemma

6.4.17.

Finally, we assume that L ⊂ L0 and L′ ⊂ D(F ). As L ⊂ L0 we have L = L0i for some

i = 1, · · · , k.

On the one hand, H(L0i, L
′) = H(L,L′) ⊂ Dom(F ) \ 〈D(F )〉 and then 〈D(F )〉 ∩

H(L0i, L
′) = ∅. So, Lemma 6.4.12 implies that exists the limit Ki. Consequently,

Ki ∈ L.

Additionally, F (L′) ⊂ ∂vΣ by Lemma 6.4.4 since L′ ⊂ D(F ). It follows that 1 ≤ n(L′)

and also n(L′) ≤ 2k by Lemma 6.4.1-(1) since F has no periodic points and ∂vΣ ⊂

Σ \ L0 = Dom(F ). Since F n(L′)(L′) ⊂ ∂vΣ by the definition of n(L′) we obtain

F n(L′)(L′) ⊂ Dom(F ).

Then, Lemma 6.4.3 applied to L′ implies that limL→L′f(L) = f ∗(L′) exists and satisfies

f ∗ (L′) ⊂ (∂vΣ) ∪ L.

But F (H(L0i, L
′)) (and so F (F n′′(c)(c∗∗))) covers H(Ki, f ∗ (L′)) since H(L0i, L

′) ⊂

Dom(F ) \ 〈D(F )〉. Setting W = Ki and W ′ = f ∗ (L′) we get

W,W ′ ⊂ (∂vΣ) ∪ V ∪ L.

(Recall the definition of V in Definition 6.4.2) Then, F (F n′′(c)(c∗∗)) covers (W,W ′) as in

the statement. Choosing c∗ = c∗∗ and n′(c) = n′′(c) + 1 we obtain the result.

6.5 Proof of the Theorem 6.3.4

Finally, we prove Theorem 6.3.4. Let F be a λ-hyperbolic n-triangular map satisfying

(A1)-(A2) with λ > 2 and Dom(F ) = Σ \ L0. We assume by contradiction that the

following property holds:
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(P) F has no periodic points.

Since ∂vΣ ⊂ Σ \ L0 and Σ \ L0 = Dom(F ) we also have

∂vΣ ⊂ Dom(F ).

Then, the results in the previous subsections apply. In particular, we have that

Dom(F ) \ D(F ) is open in Σ (by Lemma 6.4.6) and that 〈D(F )〉 is F -discrete (by

Lemma 6.4.12-(1)). All together imply that Dom(F ) \D(F ) is open-dense in Σ.

Now, let B be a family of open vertical bands of the form H(W,W ′) with

W,W ′ ⊂ ∂vΣ ∪ V ∪ L.

Given 〈L〉 and 〈L′〉, note that by compactness, the leaf classes are covers by a finite

number of vertical bands. Thus, we have that B = {B1, · · · , Bm} is a finite set. In B we

define the relation B ≤ B′ if and only if there are an open u-surfaces c ⊂ B tangent to

Cα with closure CL(c) ⊂ Dom(F ) \ 〈D(F )〉, an open u-surface c∗ ⊂ c and n > 0 such

that

F j(c∗) ⊂ Dom(F ) \ 〈D(F )〉 , ∀0 ≤ j ≤ n− 1,

and F n(c∗) covers B′.

As Dom(F ) \D(F ) is open-dense in Σ, and the bands in B are open, we can use Lemma

6.4.17 to prove that for every B ∈ B there is B′ ∈ B such that B ≤ B′. Then, we can

construct a chain

Bj1 ≤ Bj1 ≤ Bj2 ≤ · · · ,

with ji ∈ {1, · · · ,m} (∀i) and j1 = 1. As B is finite it would exist a closed sub-chain

Bji ≤ Bji+1
≤ · · · ≤ Bji+s ≤ Bji .

Hence there a positive integer n such that F n(Bji) covers Bji . Applying Lemma 6.4.13

to suitable u-surfaces c∗ ⊂ Cl(c∗) ⊂ c ⊂ Bji we obtain that F has a periodic point. This

contradicts (P) and the proof follows.
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6.6 Proof of the Main Theorem

Proof of Theorem D

Proof. Let X be a sectional Anosov flow on a compact n-manifold M . We prove the

Theorem by contradiction, i.e, to prove that M(X) has a periodic orbit we assume that

this is not so. Fix λ > 2. As there is a singular cross-section Σ close to M(X) such

that if F is the return map of the refinement Σ(δ) of Σ (see Subsection 4.2.1.1), then

there is δ > 0 such that F is a λ-hyperbolic n-triangular map with Dom(F ) = Σ \ L0.

We also have that F satisfies (A1) and (A2) in Subsection 6.3.1 since Σ is close to Λ.

Then, F has a periodic point by Theorem 6.3.4 since λ > 2. This periodic point belongs

to a periodic orbit of Xt which in turns belongs to M(X) since it is maximal invariant.

Consequently Xt has a periodic orbit in M(X), a contradiction. This contradiction proves

the result.



Chapter 7

Existence of venice masks with two

singularities

7.1 Introduction

As stated in Chapter 4, we talk about the relationship between the hyperbolic and

sectional hyperbolic theory. Recall, the sectional hyperbolic sets and sectional Anosov

flows were introduced in [31] and [27] respectively as a generalization of the hyperbolic sets

and Anosov flows. They contain important examples such as the saddle-type hyperbolic

attracting sets, the geometric and multidimensional Lorenz attractors [1], [12], [20].

One motivation is to look properties that are preserved or which are not in the new

scenario. Particularly, we can mention two important properties related to hyperbolic

sets which are not satisfied by all sectional hyperbolic sets. The first is the spectral

decomposition theorem [52]. It says that an attracting hyperbolic set Λ = Cl(Per(X))

is a finite disjoint union of homoclinic classes, where Per(X) is the set of periodic points

of X. The second says that an Anosov flow on a closed manifold is transitive if and only

if it has dense periodic orbits.

84
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The results above are false for sectional Anosov flows, i.e., sets whose maximal invariant

is a sectional-hyperbolic set [35]. Specifically, it is proved that there exists a sectional

Anosov flow such that it is supported on a compact 3-manifold, it has dense periodic

orbits, is the union non disjoint of two homoclinic classes but is not transitive. So,

a sectional Anosov flow is a Venice mask if it has dense periodic orbits which is not

transitive.

Naturally, it arise examples of three dimensional venice masks. In the same direction,

[36] improves results in [35] about venice masks containing a unique singularity [35] and

it shows a three dimensional example containing three singularities. After, [10] exhibits

and constructs a three dimensional example with an unique singularity. The only known

examples of venice masks have one or three singularities, and they are characterized

by having two properties: are the union non disjoint of two homoclinic classes and

the intersection of its homoclinic classes is the closure of the unstable manifold of a

singularity.

Thus, in order to provide new examples and to extend works related with this theory,

the above observations motivate the following questions:

1. Are there venice masks with two singularities?

2. Are there venice masks whose intersection of its homoclinic classes is different to

the closure of the unstable manifold of a singularity?

Since the aim is find new examples with different features, these in turn induce questions

about which type of manifold supports such examples. We give a affirmative answer to

them on particular three compact manifolds. In fact, we show two examples of Venice

masks with two singularities. Each one is union of two different homoclinic classes.

However for the first, the intersection of homoclinic classes is just a hyperbolic periodic

orbit. Whereas for the second, the intersection of homoclinic classes is the closure of the
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unstable manifold of two singularities.

Let us state our results in a more precise way.

Theorem F. There exist a Venice mask X with two singularities supported on a 3-

manifold M , such that:

• M(X) is the union of two homoclinic classes H1
X ,H2

X .

• H1
X ∩H2

X = O, where O is a hyperbolic periodic orbit.

Theorem G. There exist a Venice mask Y with two singularities supported on a 3-

manifold N , such that:

• N(Y ) is the union of two homoclinic classes H1
Y ,H2

Y .

• H1
Y ∩H2

Y = Cl(W u(σ1) ∪W u(σ2)), where σ1, σ2 are the singularities of Y .

In section 7.3.2, we shall be described briefly this construction by using one-dimensional

and two-dimensional maps. In section 7.4.1, from modifications on the previous maps in

Section 7.3.2 and by considering a plug, we shall prove the Theorem F. In the same way,

in Section 7.4.2, by using the venice mask with a unique singularity, the Theorem G will

be obtained by gluing a particular plug preserving the original flow.

7.2 Preliminaries

7.2.1 Original plugs

In order to obtain the three-dimensional vector field of our example, we begin by

considering the well known Plykin attractor and the Cherry flow ( See [48], [44]).

We give a sketch of the flow construction. It will be constructed through three steps,

firstly by modifying the Cherry flow. In fact, we consider a vector field in the square
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whose flow is described in Figure 7.1 a). Note that this vector field has two equilibria: a

saddle σ and a sink p. For σ one has that its eigenvalues {λs, λu} of σ satisfy the relation

λs < 0 < −λs < λu.

We have depicted a small disk D centered at the attracting equilibrium p Figure 7.1 b).

Note that the flow is pointing inward the edge of the disk. This finishes the first step for

the construction.

b)a)

Figure 7.1: Cherry flow.

For the second step we multiply the above vector field by a strong contraction λss in

order to obtain the vector field described in Figure 7.2 a). We can choose λss such that

−λss be large, so the resulting vector field will have a Lorenz-like singularity and this

new eigenvalue will be associated with the strong manifold of the singularity. This yields

a Cherry flow box and finishes the second step for the construction.

From Plykin attractor follows that the construction must have at least two holes

inasmuch as we will use certain return map. Then, the final step is to glue two handles

that provides two holes and the three dimensional vector field above in order to obtain

the vector field whose flow is given in Figure 7.2 b). Hereafter the resulting vector field

will be called of Plug 7.2.



CHAPTER 7. VENICE MASKS WITH TWO SINGULARITIES 88

σ σ

a) b)

Figure 7.2: Cherry flow box and Plug 7.2.

The hole indicated in this Figure 7.2 is nothing but the disk D times a compact interval.

Again, note that the flow is pointing inward the edge of the hole by construction. For

this reason, we take a solid 3-ball and we define a flow on this one. Indeed, the flow has

no singularities, it acts as in Figure 7.3 and will be used for to glue the hole’s bound with

this one. Hereafter the resulting vector field will be called of Plug 7.3.

Figure 7.3: Plug 7.3.
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7.3 Modified maps

We begin by considering the construction made in [10] like model in order of obtain the

vector fields X and Y of the main theorems. Recall that the original model provides

tools for a three dimensional example with a unique singularity. The main aim is modify

the original maps, in order to make a suspension of the modify maps via the new plugs.

For this purpose, we will do such modifications followed by its original maps.

7.3.1 One-dimensional map

Thus, in the same way of [10], we consider the branched 1-manifold B consisting of a

compact interval and a circle with branch point b. We cut B along b to obtain a compact

interval which we assume to be [0, 1] for simplicity. In [0, 1] we consider three points

0 < d1 < d∗ < d2 < 1, where d∗ is depicted also in the Figure 7.4. These will be the

discontinuity points of f as a map of [0, 1]. The set B \ {d∗} will be the domain of f .

We define f : B \ {d∗} → B in a way that its graph in [0, 1] is the one in Figure 7.4.

d1 d20 d∗ b 1

b

d∗
0 d∗

b = 1

Figure 7.4: The quotient space and one-dimensional map.

By construction one has that f satisfies the following hypotheses:
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(H1): Dom(f) = [0, 1] \ {d∗}.

(H2): f(0) = 0; f(d1) = f(d2) = 1; f(1) = f(b) ∈ (0, d1).

(H3): f(d1+) = f(d2+) = b; f(d1−) = f(d2−) = 1; f(d∗+) = f(d∗.) = 0.

(H4): f([0, d1]) = [0, 1]; f((d1, d∗)) = (0, b); f((d∗, d2]) = (0, 1]; f((d2, 1]) = [f(b), b).

(H5): f is expanding, i.e., f is C1 in Dom(f) and there is λ > 1 such that |f ′(x)| ≥ λ,

for each x ∈ Dom(f).

7.3.2 Modified one-dimensional map

We realize a modification of the above map f . Denote d∗ = d+ and let f+ : B+ \{d+} →

B+ be in a way that its graph in [0, 1] is the one in Figure 7.5.

Here, there exist ε > 0 small such that
∫ d1

0

√
[(f)′(x)]2 + 1dx <

∫ d1

0

√
[(f+)′(x)]2 + 1dx <∫ d1

0

√
[(f)′(x)]2 + 1dx + ε and

∫ b
d∗

√
[(f)′(x)]2 + 1dx <

∫ b
d∗

√
[(f+)′(x)]2 + 1dx <∫ b

d∗

√
[(f)′(x)]2 + 1dx + ε. Moreover f+ satisfies (H1)-(H5). We define f−(x) = f(−x)

and denote −d+ = d−. f− : B− \ {d−} → B−.

d1 d+ d2

f−

b

d− 0

f+

−d1−b−d2−1 b 1

Figure 7.5: Modified one-dimensional map.
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These following results examining the properties of f and appears in [10]. This in

turns through a structure closely related to [10] and by construction we obtain the same

properties for the f+ map.

Definition 7.3.1. We say that f is locally eventually onto (leo for short) if given any

open interval I ⊂ [0, 1] there is m ≥ 0 such that fm(I) = [0, 1].

Theorem 7.3.2. f+ is leo.

Corollary 7.3.3. The periodic points of f+ are dense in B. If x ∈ B, then

B = Cl

(⋃
n≥0

(f+)−n(x)

)
.

7.3.3 Two-dimensional map

Consider the twice punctured planar region R depicted in Figure 7.6. It is formed by:

two half-annuli A, F , and four rectangles B,C,D,E. There is a middle vertical line

denoted by l. Note that l defines a plane reflexion throughout denoted by θ. We assume

θ(D) = C, θ(E) = B and θ(F ) = A. In particular, θ(R) = R and θ(d+) = d−, where the

vertical segments d−, d+ correspond to the right-hand and left-hand boundary curves of

B and D respectively. We define H− = A ∪B ∪ C and H+ = D ∪ E ∪ F .

Let F denote the foliation of R formed by line segments depicted in Figure 7.6. Note

that the middle leaf l is a leaf of F . In addition, the segments forming F are vertical in

the rectangular components B,C,D,E and radial in the annuli components A,F .

We use the standard notation Fx to denote the leaf of F containing x ∈ R. Identifying

points in the same leaf of F we get the quotient space K. Note that 0 ∈ K represents

the leaf l in the quotient space. The manifold K is obtained by gluing two copies B+,
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d− l d+

A
B

F
C D E

Figure 7.6: Region R.

B− of the branched manifold B along the boundary point 0.

By using the set R \ {d−, d+} as a domain in order to obtain a suitable map, we can

define the C∞ map G : R \ {d−, d+} → Int(R) in a way that its image is as indicated in

Figure 7.7. We require the following hypotheses:

(G1): G and θ commute, i.e., G ◦ θ = θ ◦G.

(G2): G preserves and contracts the foliation F .

(G3): Let g : K \ {d−, d+} → K be the map induced by G in the leaf space K.

Then, the map f+ defined by f+ = g|B+ satisfies the hypotheses (H1)-(H5), with

f = f+, B = B+ and d∗ = d+.

Properties of G

• By (G1), H+ and H− are invariant under G.

• Since G contracts F ((G2)) we have that W s(x,G) is union of leaves of F . It

follows from (G2), (G3) and the expansiveness in (H5) that all periodic points of

G are hyperbolic saddles.

• By (G1) we have that G(l) ⊂ l and so G has a fixed point P in l. Clearly one has

π(P ) = 0.
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d− l d+

P

d+

π

0d−

G(C) Map G G(D)

G(A) G(B) G(E)
G(F )

Figure 7.7: Two-dimensional map and quotient space

Define

A−G = Cl

(⋂
n≥1

Gn(H−)

)
, A+

G = Cl

(⋂
n≥1

Gn(H+)

)
.

Theorem 7.3.4. A−G and A+
G are homoclinic classes and P ∈ A+

G ∩ A
−
G.

7.3.4 Modified two-dimensional map

Consider the twice punctured planar region R in 7.6, and define the C∞ map H : R \

{d−, d+} → Int(R) in a way that its image is as indicated in Figure 7.8. We require the

following hypotheses:

(L1): H−, H+ are invariant under H. H(H− \ {d−}) ⊂ H− and H(H− \ {d+}) ⊂ H+.

(L2): H preserves and contracts the foliation F .

(L3): Let h : K \ {d−, d+} → K be the map induced by H in the leaf space K.



CHAPTER 7. VENICE MASKS WITH TWO SINGULARITIES 94

Then, the map f+(−) defined by f+(−) = h|B+(−) satisfies the hypotheses (H1)-(H5),

B = B+(−) and d∗ = d+(−).
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d− l d+

P

d+

π

0d−

H(C) Map H H(D)

H(A) H(B) H(E)
H(F )

Figure 7.8: The quotient space and modified two-dimensional map.

We observe that (L1) implies H(l) ⊂ l and by contraction, H has a fixed point P ∈ l.

Again, for

A−H = Cl

(⋂
n≥1

Hn(H−)

)
, A+

H = Cl

(⋂
n≥1

Hn(H+)

)
we have that A+

H and A−H are homoclinic classes and {P} = A+
H ∩ A

−
H .
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7.3.5 Venice mask with one singularity

Recall, by considering the original maps (Subsection 7.3.1, 7.3.3), and by using the plugs

7.2, 7.3, in [10] was construct the venice mask example with one singularity. Here, we

provides a graphic idea in order to compare it with the new examples.

The Figure 7.9 a) shows the flow, whereas the Figure 7.9 b) shows the ambient manifold

that supports this one. The ambient manifold is a solid bi-torus excluding two tori

neighborhoods V1, V2 associated to two repelling periodic orbits O1, O2 respectively.
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b)

V2

V1

σ

O1

O2

W uu(σ)

W ss(σ)

a)

Figure 7.9: Venice mask with one singularity
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7.4 Venice mask’s examples with two-singularities

7.4.1 Vector field X and Example 1.

In this section, we construct a vector field X which will satisfy the properties in the

Theorem F by using the subsection 7.3.2 and 7.3.4.

We begin by considering a vector field as the Cherry flow described in Figure 7.1, with

the same conditions of subsection 7.3.2.

We called this flow of A and we proceed to perturb the flow A following the ideas of

the well known DA-Attractor introduced by Smale (see [48]). Let U be a neighborhood

(relatively small) of σ. We can obtain a flow ϕt such that supp(ϕt− id) ⊂ U (Figure 7.10

a)). Also, the derivate of the flow at σ with respect to canonical basis in TσQ is

Dϕtσ =

 1 0

0 et

 .

We deform such a flow in order to obtain a one-parameter family of flows Bt = ϕt ◦ A.

Let τ > 0 such that eτλs > 1, so σ is a source for Bτ . Moreover, the new map has

three fixed points on W s
X(σ), σ a source and σ1, σ2 saddles. Moreover, there exists a

neighborhood V of σ (not containing σ1 and σ2) contained in U such that Bτ
s (V ) ⊃ V

for all s > 0. (Figure 7.10 b))

Thus, we obtain a vector field as the square Q whose flow A is described in Figure 7.10.

Now, we remove two small disks D1, D2 = V centered at the attracting equilibrium p

and at the repelling equilibrium σ respectively. (Figure 7.10 c))

In the next step, we multiply the above vector field by a strong contraction λss in order

to obtain the similar vector field described in Figure 7.2 b). We choose λss such that σ1

and σ2 are Lorenz-like. Let I1, I2 be compact intervals, with the same direction of the
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a) b) c)

p σ1

σ1

σ2

p

σ1

σ2

σ

Disk D2Disk D1U

Figure 7.10: Perturbed Cherry flow

strong contraction.

Now, we consider an interval I0 = I1×{p0}, where p0 is the point of intersection between

W u
X(σ) and the disk D1. We realize a modification in the flow such that a branch of

W u
X(σ1) intersects a connected component of I0 \ {p0} and a branch of W u

X(σ2) intersects

the other connected component of I0 \ {p0} (See 7.11).

The final step is to glue two handles on the 3-dimensional vector field above in order to

obtain the vector field whose flow is given in Figure 7.11 a). The resulting vector field is

what we shall call Plug X.

In the same way as in Figure 7.2, in this case, by multiplying the above vector field

by a strong contraction generate two holes and it is nothing but the disks D1 times a

compact interval I1, and D2 times a compact interval I2. Also, let us to use the Plug 7.3

and apply on the hole associated to D1 and note that the interval I2 is chosen such that

D2 × I2 produces the third hole on the ambient manifold. It generates a solid tritorus

(see Figure 7.11 b)).
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σ1

Modified 2- map

a)

W ss(σ1)
Wuu(σ1)

W ss(σ2)
Wuu(σ2)

b)

Figure 7.11: Plug X and its associated manifold.

Then, we construct a vector field X on a solid tritorus ST1 in a way that

Xt(ST1) ⊂ Int(ST1) for all t > 0 and X is transverse to the boundary of the

solid tritorus. The flow is obtained gluing plugs X and 7.3 as indicated in Figure 7.11

a).

We require the following hypotheses:

(X1): There are two repelling periodic orbits O1, O2 in Int(ST1) crossing the holes of

R.

(X2): There are two solid tori neighborhoods V1, V2 ⊂ Int(ST1) of O1, O2 with

boundaries transverse to Xt such that if M = ST1 \ (V1 ∪ V2), then M is a compact

neighborhood with smooth boundary transverse to Xt and Xt(M) ⊂M for t > 0. As M

is a solid tritorus with two solid tori removed, we have that M is connected as indicated

in Figure 7.11 b).

(X3): R ⊂ M and the return map H induced by X in R satisfies the properties (L1)-

(L3) in Section 7.3.4. Moreover,
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{q ∈M : Xt(q) /∈ R, ∀t ∈ R} = {σ1, σ2}.

Now, define

A+ = Cl

(⋃
t∈R

Xt(A
+
H)

)
and A− = Cl

(⋃
t∈R

Xt(A
−
H)

)
.

Proposition 7.4.1. W u
X(σ1) ⊂ A+ and W u

X(σ2) ⊂ A−.

Proof. If x ∈ H+ is a periodic point of H, then Gn(x) ∈ R for all n ≤ 0 and so

x ∈ A+
H = Cl(

⋂
n≥1H

n(H+)). Therefore x ∈ A+ (for AH+ ⊂ A+) and by invariance of

A+, the full orbit of x is contained in A+.

Second, the periodic points of f+ in (L3) are dense in B by Corollary 2.2. Then, the

periodic points of H accumulate on d+ in both connected components of H+ \ d+. Since

d+ is contained in W s
X(σ1), the full Xt-orbit of the periodic points of H accumulating d+

also accumulate on W u
X(σ1). Then W u

X(σ1) ⊂ A+ because A+ is closed. Analogously, we

have W u
X(σ2) ⊂ A−.

Define AH = A+
H ∪ A

−
H and

A = Cl

(⋃
t∈R

Xt(AH)

)
,

Lemma 7.4.2. A+ and A− are homoclinic classes of X and A = A+ ∪ A−.

Proof. See [10].

Proposition 7.4.3. X is a sectional Anosov flow.



CHAPTER 7. VENICE MASKS WITH TWO SINGULARITIES 100

Proof. In the same way of [10], we define M(X) = A and by definition A is a sectional-

hyperbolic set. Indeed, how A = A1 ∪ A2 is union of homoclinic classes then A has

dense periodic orbits (Birkhoff-Smale Theorem). Moreover, of the hypotheses (L2) and

(L3) follows that every periodic orbit of X contained in A has a hyperbolic splitting

TOM = Es
O ⊕ EX

O ⊕ Eu
O. Here, Es

O is due to (L2), Eu
O by (L3) and EX

O is the one-

dimensional subbundle over O induced by X. Let Per(A) be the union of the periodic

orbits of X contained in A. Define the splitting

TPer(A)M = F s
Per(A) ⊕ F c

Per(A),

where F s
x = Es

x and F c
x = EX

x ⊕ Eu
x for x ∈ Per(A). As every periodic orbit in M of

every vector field C1 close to X is hyperbolic of saddle type, we can use the arguments

in [38] to prove that the splitting TPer(A)M = F s
Per(A) ⊕ F c

Per(A) over Per(A) extends to

a sectional-hyperbolic splitting TAM = F s
A ⊕ F c

A over the whole A = Cl(Per(A)).

We conclude that X is a sectional Anosov flow on M .

Proof of Theorem F.

By using the Lemma 7.4.2 and the Proposition 7.4.3 we have that X is a sectional

Anosov flow and M(X) is the union of two homoclinic classes H1
X , H

2
X , where H1

X = A+

and H2
X = A−. Since {P} = A+

H ∩ A
−
H , it implies that H1

X ∩ H2
X = O, with O the

orbit associated to P . In particular X is a Venice mask, and by construction it has two

singularities.

7.4.2 Vector field Y and Example 2.

In this section, we construct a vector field Y which will satisfy the properties in the

Theorem G by using the results from [10].
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Firstly, in order to obtain the vector field Y , we begin by considering the venice mask

with one singularity. Unlike the previous section, in this case we will not perturb the

flow. Moreover, we will change the flow by preserving the plugs 7.2, 7.3 and we will

remove a connected component of the flow and its ambient manifold, as depicted in

Figure 7.12.
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Figure 7.12: Connected componet to remove.

The main aim of remove a connected component will be glue a new plug with different

features, properties and that provides other singularity. This process is done in simple

steps. (see Figure 7.13). Indeed, the important steps are Figure 7.13 c), d) and since we

want a plug by containing a singularity, we will see that the this one has a hole, which is

produced by the singularity.
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a) b)

c) d)

Figure 7.13: Steps by gluing the new plug.

7.4.3 Flow through of the faces

We begin by considering the plug 7.2 described in Figure 7.2 with the same conditions

of subsections 7.3.1, 7.3.3.

For this purpose we need to observe with detail the flow behavior through of the faces

removed. Indeed, we consider the vector field in the square whose flow is described in

Figure 7.2.

Thus, it will be constructed the new plug through two steps. Firstly, we will be depicted

a circle that represents the face 1 on the Cherry flow and let us to observe the flow

behavior. It should be noted that this vector field exhibits two leaves which belong to the

region R and converge to the singularity, i.e., the region R exhibits two singular leaves.

Note that these leaves are crossing outward to the face 1. In addition, note that there

are trajectories crossing inward to the face 1 too, such as the branch unstable manifold

of the singularity. This shows that extensive analysis is necessary for understand the

flow behavior to the face 1.
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We can observe that the top and bottom region of the singular leaves saturated by the

flow are crossing through the face 1, i.e., the flow is pointing outward of the face 1.

By studying the complement of these regions, we have that the behavior of the leaves is

depicted as Figure 7.14. Here, this region exhibits two tangent leaves, whereas the other

leaves intersect the region twice, i.e., the other leaves cross and return.

σ
Tangent leaf.

Singular leaf.

Cross leaf.M

Figure 7.14: Flow through of the face 1.

Also, we must research the flow behavior inside to the face 1, but in the complement of

Cherry box flow. However, we can to observe that the behavior flow is extended to the

whole circle. This finishes the first step.

Now, we must to observe the flow behavior on the face 2. But in this case, is easy to

verify that all trajectories are crossing inward to the face 2. Thus, the flow through of

the two faces is depicted in the following figure

Then, we construct a plug Y containing a singularity σ2. Consequently, the dynamical

system can be transferred by means of plug Y surgery from one bitorus onto another
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Figure 7.15: Direction of flow through the faces.

manifold exporting some of its properties. This singularity generates a hole and this

in turns generates a solid tritorus ST2 in a way that Yt(ST2) ⊂ Int(ST2) for all t > 0

and Y is transverse to the boundary tritorus. The flow is obtained gluing the plugs 7.2,

7.3 with the plug Y as indicated in Figure 7.16. Indeed, the hole is generated by the

unstable manifold of the singularity σ2.

In the same way from the previous subsection, we require some hypotheses for the

ambient manifold (after of gluing).

(X̂1): There are two repelling periodic orbits O1, O2 in Int(ST2) crossing the holes of

R.

(X̂2): There are two solid tori neighborhoods V1, V2 ⊂ Int(ST2) of O1, O2 with

boundaries transverse to Yt such that if N = ST2 \ (V1 ∪ V2), then N is a compact

neighborhood with smooth boundary transverse to Yt and Yt(N) ⊂ N for t > 0. As N is

a solid tritorus with two solid tori removed, we have that N is connected.

(X̂3): R ⊂ N and the return map H induced by Y in R satisfies the properties (H1)-

(H3) in Section 7.3.4. Moreover,
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Figure 7.16: Plug Y

{q ∈ N : Yt(q) /∈ R, ∀t ∈ R} = Cl(W uu
Y (σ2)).

Now, define

Â+
=Cl

(⋃
t∈R

Yt(Â
+
H)

)
and Â− = Cl

(⋃
t∈R

Yt(Â
−
H)

)
.

By using the Propositions 7.4.1, 7.4.3 and Lemma 7.4.2 we can obtain that the

intersection of homoclinic classes is the closure of the unstable manifold of two

singularities. In particular one has:

Proof of Theorem G.

By using the Lemma 7.4.2 and the Proposition 7.4.3 we have that Y is a sectional

Anosov flow and N(Y ) is the union of two homoclinic classes H1
Y , H

2
Y , where H1

Y = Â+

and H2
Y = Â−. It implies that H1

Y ∩H2
Y = Cl(W u

Y (σ1) ∪W u
Y (σ2)). In particular Y is a

Venice mask, and by construction it has two singularities.
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[34] Morales, C., and Paćıfico, M. Singular-hyperbolic sets and topological

dimension. Dynamical Systems: An International Journal 18, 2 (2003), 181–189.
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