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Resumo
Apresentamos um novo esquema WENO que generaliza o esquema WENO-Z com a
inclusão de um termo antidissipativo (sharpening). Este termo é uma simples função
dos indicadores de suavidade já existentes na fórmula do WENO-Z e permite alcançar
resultados substancialmente mais precisos em regiões da solução contendo ondas de alta
frequência, sem alterar significativamente o custo computacional. Obtemos também uma
condição assintótica suficiente para os parâmetros dos pesos, que fazem que o novo esquema
WENO alcance a ordem de convergência ótima para soluções suaves, independentemente
da existência de pontos críticos. Resultados numéricos usando o novo esquema indicam que
ter ordem de convergência total em pontos críticos não é tão relevante para a resolução de
esquemas WENO como se pensa atualmente.

Palavras-chave: esquemas WENO, esquemas essencialmente não-oscilatórios, leis de
conservação hiperbólicas, indicadores de suavidade, métodos de ordem alta, dissipação
numérica.





Abstract
We present a new WENO scheme, which generalizes the WENO-Z scheme by including a
sharpening (or steepening) term in its formula. This sharpening term is a simple function
of the smoothness indicators already present in WENO-Z formula, and it allows the
new scheme to achieve substantially sharper results in regions of the solution containing
high-frequency waves, with no significant additional computational cost. We also obtain a
sufficient asymptotic condition on the parameters of the weights, which makes the new
WENO scheme recover optimal accuracy for smooth solutions, regardless of critical points.
Numerical results with the new scheme indicate that having full accuracy at critical points
is not as relevant to the sharpness of WENO schemes as it is currently thought.

Keywords: WENO schemes, essentially non-oscillatory schemes, hyperbolic conservation
laws, smoothness indicators, high-order methods, numerical dissipation.
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Definitions

Definition 1. If f(xc) = f ′(xc) = . . . = f (ncp)(xc) = 0 but f (ncp+1)(xc) 6= 0, xc is said to
be a critical point of order ncp of f(x). If f ′(xc) 6= 0, xc is defined as a critical point of
order 0 of f(x).

Definition 2. The standard asymptotic symbols O(·), Ω(·) and Θ(·) will be used with
their proper meanings:

• g(∆x) = O(∆xn) denotes an upper bound to g(∆x), that is, |g(∆x)| ≤ C∆xn for
some C > 0 as ∆x→ 0.

• g(∆x) = Ω(∆xn) denotes a lower bound to g(∆x), that is, |g(∆x)| ≥ C∆xn for
some C > 0 as ∆x→ 0.

• g(∆x) = Θ(∆xn) denotes the exact order of g(∆x), that is, g(∆x) = O(∆xn) and
g(∆x) = Ω(∆xn) as ∆x→ 0.

Definition 3. The notation θ(g(∆x)) denotes the order of g (as a function of ∆x), that
is, the power of ∆x in the leading term of the asymptotic expansion of g(∆x),

θ(g) = n ⇐⇒ g(∆x) = Θ(∆xn).

For instance, if g(∆x) = 5∆x2 + ∆x3, then θ(g) = 2.

Note that θ(·) has the following properties:

θ(f · g) = θ(f) + θ(g), θ(f/g) = θ(f)− θ(g).

Also, if θ(f) 6= θ(g), or if θ(f) = θ(g) but the leading order terms of f and g have the
same sign, then

θ(f ± g) = min{θ(f), θ(g)}.

Definition 4. For a grid spacing ∆x, grid point xi, and a given function φ, we define the
following undivided finite difference operators:

O∆x
i φ , φ(xi)− φ(xi −∆x) (Backward difference)
δ∆x
i φ , φ(xi + ∆x/2)− φ(xi −∆x/2) (Central difference)

M∆x
i φ , φ(xi + ∆x)− φ(xi) (Forward difference)

For simplicity, the superscript ∆x will often be dropped.

Remark 1. Notice that if φ(xi) = O(∆xn) and φ(x) is sufficiently smooth around xi, then
δ∆x
i φ(x) = O(∆xn+1) (the same holds for O∆x

i and M∆x
i ).
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Introduction

Weak solutions of a system of hyperbolic conservation laws
∂u(x, t)

∂t
+ ∇ · f(u(x, t)) = 0

u(x, 0) = u0(x)
(1)

may develop discontinuities even when the initial condition u0(x) is smooth [1, 2, 3, 4].
Such discontinuities pose both analytical and numerical difficulties, namely:

Correct shock speed. The location and speed of jump discontinuities in genuine weak
solutions of (1) must satisfy the Rankine–Hugoniot conditions, which relates the shock
speed with the values of the solution at both sides of the jump [2, 3, 4]. Not every numerical
scheme produces solutions which converge to a genuine weak solution of the problem: the
shock speeds of resulting solutions may be wrong ([2, Chap. 12] has a good example).
In order to guarantee that all converging solutions converge to a genuine weak solution
(Lax–Wendroff theorem), the numerical scheme must satisfy a discrete version of the
conservation law. In other words, the scheme must be conservative.

Entropy solution. The problem (1) may have infinite weak solutions. Usually, only one of
them is physically relevant, viz. the limit solution of a modified Eq. (1) with an additional
viscosity term which vanishes in the limit. At least in the scalar case with convex and
smooth f , there exists an unique such solution, which is also the only weak solution which
satisfy some form of entropy condition [1, 4]. For this reason, it is called the entropy
solution. There are conservative numerical schemes whose solutions converge to a genuine
weak solution of (1) which nevertheless is not the physically relevant entropy solution ([2,
Eq. (12.50)] is a nice example). In order to assure convergence to the entropy solution, the
scheme should satisfy a discrete version of the entropy condition similar to the one which
occurs in the proof of Lax–Wendroff theorem [2].

Gibbs-like phenomenon. Even when the solutions of a numerical scheme converge to the
correct, entropy solution, they may present spurious oscillations near jump discontinuities,
which are similar to the Gibbs phenomenon of Fourier series [5, 6]. Godunov’s theorem
[2, 7] implies that linear schemes with accuracy order greater than 1 are bound to generate
oscillations, in general. These oscillations are not only qualitatively wrong, but they do
not decrease in size when the grid is refined, they may be amplified as time goes on in
the case of nonlinear conservation laws, and they often lead to numerical instabilities [5].
Figure 1 exemplifies this: the solution of the Riemann problem of Lax (Section 2.5) by the
fifth-order upstream central linear scheme (Central5) noticeably oscillates near the two
jump discontinuities.
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Figure 1 – Numerical solution of the Riemann problem of Lax by the fifth-order upstream
central linear scheme (Central5)
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The figures show the density of the solution at t = 0.13. N = 800 points were used. CFL
= 0.5.
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Figure 2 – Comparison between a first- and a fifth-order scheme
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The figures show the density of the solution of the shock-entropy problem of Shu–Osher
at t = 1.8. CFL = 0.5.
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A natural way to avoid all of these problems would be to use the linear, first-order
upwind scheme. However, first-order schemes are perhaps too dissipative — it takes a
considerable higher number of grid points in order to resolve fine smooth structures of the
solution in comparison to higher-order methods. Take, for instance, the archetypical Shu–
Osher shock-turbulence test (Section 2.5), a problem whose solution contains both shocks
and a high-frequency waves region. Figure 2 shows that WENO-Z, a fifth-order scheme,
already resolves most of the fine structures of the solution with N = 400 grid points, while
the upwind scheme does not resolve them even with N = 1600. This exemplifies a feature
of high-order methods: in problems involving both shocks and smooth structures, it is
more computationally efficient to use them than first-order methods [5, 8], even more so
in 2D and 3D [9].

Since Godunov’s theorem imposes a limitation on the order of linear schemes,
high-order schemes for hyperbolic conservation laws must employ some kind of nonlinear
approach. Examples of nonlinear approaches for reducing spurious oscillations are 1) adding
an artificial viscosity term which assumes larger values near the discontinuities, and 2)
applying a flux limiter in order to achieve the TVD property [5, 2, and references therein].
The TVD, MUSCL, and PPM schemes use these strategies. However, the parameter
controlling the size of the artificial viscosity term of the first approach is highly problem-
dependent; and, in the second approach, the flux limiters of TVD schemes necessarily makes
the scheme degenerate to first-order near critical points, and sometimes they drastically
alter the shape of the solutions.

A third approach was introduced by the ENO (essentially non-oscillatory) scheme
in [10, 11], and later improved and adapted to finite differences in [12, 13]. It consists in
dynamically choosing, out of a stencil S of 2r − 1 points, the substencil Sk of r points
in which the function is smoothest. In this way, if the solution is discontinuous in S but
not in a given substencil Sk, the scheme avoids interpolating across discontinuities of the
solution, which is the cause of the spurious oscillations. The resulting solution is essentially
non-oscillatory, that is, the size of the oscillations are O(∆xq), for some q ≥ 1 [5].

The WENO (weighted ENO) scheme improves on ENO’s approach by always using
the information contained in the whole stencil S instead of picking the “smoothest” r
points substencil Sk. The way WENO operates will be detailed in the introductory Part I
of this thesis (particularly Chapters 1 and 2); but, in general lines, it assigns a nonlinear
weight ωk to the polynomial interpolations in each substencil Sk, k = 0, . . . , r− 1, making
the final approximation a convex combination of the local approximations. This is done
in such a way that ωk ∼ 0 when Sk contains a discontinuity, effectively emulating ENO’s
strategy of avoiding interpolations across discontinuities. Moreover, when S is smooth (that
is, when the solution is smooth in S), the ωk are designed to recover the (2r − 1)th-order
of accuracy, which is the maximum allowed by a 2r − 1 points stencil (in contrast to
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Figure 3 – Numerical solution of the Riemann problem of Lax by the fifth-order WENO-Z
scheme

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

 

 

WENO-Z

Solution

(a) Zoom in the relevant region

0.19 0.2 0.21 0.22 0.23 0.24 0.25

1.28

1.3

1.32

1.34

1.36

 

 
WENO-Z

Solution

(b) Zoom in the contact discontinuity

0.32 0.325 0.33 0.335 0.34 0.345 0.35
0.35

0.4

0.45

0.5

0.55

 

 

WENO-Z

Solution

(c) Zoom in the right shock

The figures show the density of the solution at t = 0.13. N = 800 points were used. CFL
= 0.5.



32 Introduction

ENO’s rth-order in the same 2r − 1 points stencil). Figure 3 shows the numerical solution
of Riemann problem of Lax, this time by the fifth-order WENO-Z scheme. Notice how
this scheme resolves the jump discontinuities with no apparent oscillation near them.

The classical WENO weights, which were the first weight formula to be developed,
were introduced in [14] and later improved to its final form in [15], where the weights are
defined as:

αk ,
dk

(βk + ε)p , ωk ,
αk∑r−1
j=0 αj

, k = 0, . . . , r − 1. (2)

Here, dk are constants called ideal weights (they are discussed in Section 2.2), βk are
smoothness indicators (Chapter 3), whose value is a function of the smoothness of the
solution in Sk (the smoother the solution, the smaller the value), p is the power parameter
and ε is the sensitivity parameter, which was originally introduced in the formula for
avoiding a division by zero. As all these values are non-negative, Eq. (2) gives ωk ≥ 0,∑r−1
k=0 ωk = 1. Because of the properties of βk, it is immediate that ωk is larger in the

substencils where the solution is smoother. The WENO schemes which use the classical
weights are discussed in Chapter 4.

In [6, 16, 17, 18] we helped develop the Zico weights formula,

αk , dk

[
1 +

(
τ

βk + ε

)p]
, ωk ,

αk∑r−1
j=0 αj

, k = 0, . . . , r − 1. (3)

which is an improvement on the classical formula. The novelty in relation to (2) is the
introduction of the global smoothness indicator τ , which measures the smoothness of the
solution in the whole 2r− 1 points stencil S. This change in the formula made the WENO
have better accuracy properties and sharper solutions. The WENO schemes based on the
Zico weight formula are discussed in Chapter 5.

Yet another formula was introduced in [6]: the min weights. The formula is

αk , dk

[
1 +

(
max(βk, τ)

min(βk, τ) + ε

)p]
, ωk ,

αk∑r−1
j=0 αj

, k = 0, . . . , r − 1. (4)

These weights make the solutions even sharper than (3) (as seen in Fig. 4). However, the
resulting scheme is unstable (Fig. 5).

Part II deals with one of the motivations of this work, which was to find a WENO
scheme which was nearly as sharp as WENO-min without its unstable nature. This was
achieved through the new weights formula given by

αk , dk

[
1 +

(
τ + ε

βk + ε

)p
+ λ

(
βk + ε

τ + ε

)]
, ωk ,

αk∑r−1
j=0 αj

, k = 0, . . . , r − 1. (5)

which is called the Zico+ weights, because it generalizes the weights (3) by introducing
the sharpening term λ

(
βk+ε
τ+ε

)
. This term uses information which was already available
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Figure 4 – Comparison between classical WENO, WENO-Z, WENO-Z+ and WENO-min
in the Shu–Osher shock-entropy test
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The figures show the density of the solution at t = 1.8. A coarse grid with N = 200 points
was used. For all schemes, ε = 10−40 and p = 1. CFL = 0.5.
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Figure 5 – Comparison between classical WENO, WENO-Z, WENO-Z+ and WENO-min
in the Titarev–Toro shock-entropy test
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The figures show the density of the solution at t = 5. A coarse grid with N = 1000 points
was used. For all schemes, ε = 10−40 and p = 1. CFL = 0.5.
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in (3) for increasing the contribution of the less smooth substencils. This may appear
undesirable at first, but in fact the less smooth stencils carry useful information which
should not be completely disregarded. By using them in a controlled way, the solution
gets sharper without affecting the stability and its essentially non-oscillatory character
(Figs. 4 and 5). The new parameter λ has the task of controlling the size of the sharpening
term. Numerical results show that the new scheme is stable and sharper than the current
WENO schemes (Section 8.2.2), sometimes being even sharper than higher-order WENO-Z
schemes (Section 8.2.3).

The accuracy of the new WENO-Z+ scheme is analyzed in Chapter 9. It is a known
fact that WENO schemes may lose accuracy near critical points [19, 16]. But, by imposing
conditions on the parameters of the weights, it is possible to guarantee the optimal order
of accuracy 2r − 1 [20, 21, 22]. Here, we obtain sufficient asymptotic conditions on the
parameters ε, p and λ for optimal accuracy of WENO-Z+, similar to the ones deduced
in [22]. The issue of the relevance (or lack thereof) of the accuracy of WENO schemes at
critical points is briefly discussed in Section 9.5.

Finally, the Appendix A lists the values of all constants and terms which appear in
WENO schemes of orders 3 to 9, and the Appendix B contains the supporting theorems
used in Chapter 9, along with their proofs.

The first-time reader of this thesis should take a look at the definitions of the
classical and of the WENO-Z schemes at chapters 4 and 5 before going to chapters 6, 7
and 8, to get in touch with a more detailed account of the facts related in this introduction.
In order to better appreciate the numerical results, a look at the problems descriptions at
Section 2.5 is advised. For those interested in the accuracy analysis of the WENO schemes,
Chapter 3 describes some properties of the smoothness indicators βk an τ , which are
common to all the schemes under study. The analysis is all based on asymptotic properties
of the smoothness indicators, therefore, a prior look at the several asymptotic symbols Θ,
Ω and O, described in the Definitions section (p. 21), is necessary for a clear understanding
of the analytical results. The smoothness indicators, along with their ratios, determine
the order of convergence of the WENO weights to the ideal weights, which in its turn
determine the accuracy order of the WENO scheme. In Section 2.2, a set of sufficient
conditions on the WENO weights for achieving optimal accuracy is developed; these must
be understood before going to Chapter 9, where the main theorem relating the accuracy
of the new scheme and the asymptotic properties of its parameters is stated and proved.





Part I

WENO schemes
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1 Finite difference schemes for hyperbolic
conservation laws

Here we describe how a generic conservative finite difference scheme for hyperbolic conser-
vation laws works. More detailed accounts can be found in the references [5, 19, 6, 16, 22].

A hyperbolic conservation law is a system of first-order partial differential equations
in the form 

∂u(x, t)
∂t

+ ∇ · f(u(x, t)) ≡ ∂u(x, t)
∂t

+
d∑
j=1

∂f j(u(x, t))
∂xj

= 0,

u(x, 0) = u0(x),
(1.1)

where u : Rd × R→ Rm, u0 : Rd → Rm and f j ∈ C1(Rm, Rm). Moreover, Eq. (1.1) must
satisfy the following condition: define, for each f j, the m×m matrix

Aj ,


∂fj

1
∂u1

· · · ∂fj
1

∂um... . . . ...
∂fj

m

∂u1
· · · ∂fj

m

∂um

 .

We require that the matrix A , α1A
1 + · · · + αdA

d has only real eigenvalues and is
diagonalizable, for all α1, . . . , αd ∈ R. Here, f is called the flux .

In the finite difference approach we will be taking for solving Eq. (1.1), the spatial
partial derivatives ∂f j

∂xj
are discretized in a dimension-by-dimension basis. In addition, the

system
∂u(x, t)

∂t
+ ∂f j(u(x, t))

∂xj
≡ ∂u(x, t)

∂t
+ Aj(u(x, t))∂u(x, t)

∂xj
= 0

can be fully decoupled since Aj is diagonalizable. For these reasons, in our discussion it
will be sufficient to consider the scalar case in one space dimension,

ut + f(u)x ≡ ut + f ′(u)ux = 0. (1.2)

Furthermore, for simplicity, only the case where f ′(u) ≥ 0 will be considered. In
the general case, the flux must first be split in its increasing and decreasing parts, e.g.
using the Lax–Friedrichs flux splitting:

f±(u) , f(u)±Mu

2 , M , max
u
|f ′(u)|. (1.3)

Notice that
d

dx
f+(u) ≥ 0, d

dx
f−(u) ≤ 0, and f+(u) + f−(u) = f(u),
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so that f+(u)x and f−(u)x have positive and negative velocities, respectively. Thereafter,
the discretization of both parts of the flux are done separately. It is sufficient to describe
how the approximation of a flux with positive velocity is constructed, since f+(u)x and
f−(−u)x are both fluxes with positive velocities (the approximation of f−(u)x is done
by approximating f−(−u)x and flipping the result). In the end, the results of both
discretizations are added to obtain a stable approximation to f(u)x.

The details about the steps of characteristics decomposition (used for decoupling
the system), multidimensional discretization, and flux splitting, used by all numerical
schemes in the present work, can be found in [5] (here, we use Procedures 2.5 and
2.10 found there, with Lax–Friedrichs flux splitting, simple mean, full decoupling, and
dimension-by-dimension discretization).

1.1 Fixed stencil schemes
Consider an uniform grid defined by the points xi = i∆x, i = 0, . . . , N , with intermediate
grid points xi− 1

2
= (i− 1

2)∆x, i = 0, . . . , N + 1. For now, let us not worry with the time
discretization of Eq. (1.2). Instead, for a fixed time t, consider the semi-discretized form of
Eq. (1.2) by the method of lines, which yields a system of ordinary differential equations

dui(t)
dt = − ∂f

∂x

∣∣∣∣∣
x=xi

, i = 0, . . . , N − 1, (1.4)

where ui(t) is a numerical approximation to the point value u(xi, t). Our goal is to find
an Rth-order discrete approximation Dxf to ∂xf at xi, using a fixed stencil Si of R + 1
points around xi,

Si = {xi−k−1, . . . , xi+l}, k + l = R− 1.

Since we assumed f ′(x) > 0, for satisfying the CFL stability condition it is necessary that
Si should be an upwinding stencil. Therefore, we must have xi−1 ∈ Si (which is equivalent
to require that k ≥ 0).

In order to be conservative — a necessary condition for the Lax–Wendroff theorem
[2], which assures that a converging sequence of refined numerical solutions always converge
to a weak solution of (1.2) — Dxf must have the form

Dxf(xi) =
f̂i+ 1

2
− f̂i− 1

2

∆x , i = 0, . . . , N − 1, (1.5)

where

f̂i+j ≡ f̂(u(xi−k− 1
2 +j, t), . . . , u(xi+l− 1

2 +j, t)) ≡ f̂(xi−k− 1
2 +j, . . . , xi+l− 1

2 +j)

satisfies the consistency condition f̂(x, . . . , x) = f(x) and f̂ is Lipschitz continuous on
each argument [2, 13] (for simplicity of notation, from now on we will drop u and t and
consider both f and f̂ as a function of x only, since t is fixed).
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One way of achieving such approximation f̂ is through the numerical flux function
h(x) [13, 5], which is defined by the implicit relation

f(x) = 1
∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ) dξ. (1.6)

This special function satisfies h(x) = f(x) + O(∆x2) [13] and also the exact equality

f ′(x) =
h

(
x+ ∆x

2

)
− h

(
x− ∆x

2

)
∆x ,

whose proof is a simple Calculus exercise. Now, for i = 0, . . . , N − 1, we define f̂i+ 1
2
and

f̂i− 1
2
as (R − 1)th degree polynomial interpolations of h(x) respectively at the stencils

Si+ 1
2

= {xi−k, . . . , xi+l} and Si− 1
2

= {xi−k−1, . . . , xi+l−1}, that is,

f̂i± 1
2

= hi± 1
2

+ aRf
(R)
i ∆xR + O(∆xR+1), (1.7)

where the first asymptotic terms (aRf (R)
i ∆xR) are identical for f̂i± 1

2
because the grid is

uniform and Si− 1
2
is just Si+ 1

2
shifted one point to the left [22] (notice that, for upwinding,

we must have xi−1 ∈ Si− 1
2
and xi ∈ Si+ 1

2
). Immediately, we have

f̂i+ 1
2
− f̂i− 1

2
= hi+ 1

2
− hi− 1

2
+ O(∆xR+1).

It follows that

Dxf(xi) ≡
f̂i+ 1

2
− f̂i− 1

2

∆x =
hi+ 1

2
− hi− 1

2
+ O(∆xR+1)

∆x = f ′(xi) + O(∆xR)

for i = 0, . . . , N −1, and, as a result, we have an Rth-order approximation Dxf as desired.

For each i = 0, . . . , N − 1, the polynomial approximation f̂i+ 1
2
can be written as

f̂i+ 1
2

=
R−1∑
j=0

cRkjf(xi−k+j) = f̂(xi−k, . . . , xi+l), (1.8)

where the coefficients cRkj, which are given by the closed-form formula [5]

cRkj =
R∑

m=j+1

R∑
l=0
l 6=m

R∏
q=0
q 6=m,l

(R− k − q)

R∏
l=0
l 6=m

(m− l)
,

depend on the order R, the left shift parameter k, and j, as the indexes imply, but not on
i, ∆x, or the original flux f . A table with values of cRkj up to order R = 6, and a more
detailed discussion about the formula of cRkj, can be found in [6].

Since it is true that ∑R−1
j=0 c

R
kj = 1 for all R and k, it follows that f̂(xi−k, . . . , xi+l)

is both consistent to the flux f and Lipschitz continuous on each argument. Therefore,
Dxf is conservative, as required by the Lax–Wendroff theorem.
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1.1.1 Time discretization

The approach following Eqs. (1.4) and (1.5) frees us to choose any desired time discretization
scheme. For instance, one could use the Forward Euler scheme

Un+1
i − Un

i

∆t =
f̂i+ 1

2
(Un)− f̂i− 1

2
(Un)

∆x ,

the third-order strong stability-preserving explicit Runge–Kutta method (SSP-RK(3,3))
[5, 23]

U (1) = Un + ∆t
∆x

[
f̂i+ 1

2
(Un)− f̂i− 1

2
(Un)

]
U (2) = 3

4U
n + 1

4U
(1) + ∆t

4∆x
[
f̂i+ 1

2
(U (1))− f̂i− 1

2
(U (1))

]
(1.9)

Un+1 = 1
3U

n + 2
3U

(2) + 2∆t
3∆x

[
f̂i+ 1

2
(U (2))− f̂i− 1

2
(U (2))

]
,

the Adams–Bashforth methods, the ADER methods [24], etc. In this work, we use the
SSP-RK(3,3) (1.9) as a time integrator in all numerical simulations.

1.1.2 The fifth-order upstream central scheme

For the purpose of illustration, consider the following fifth-order approximation to hi+ 1
2
:

f̂UC5+
i+ 1

2
,

2fi−2 − 13fi−1 + 47fi + 27fi+1 − 3fi+2

60 = hi+ 1
2

+ O(∆x5). (1.10)

This approximation uses the 5 points stencil centered around xi, and therefore has some
level of upwinding for fluxes with positive velocity (that is, when f ′(x) ≥ 0). It follows
that
f̂UC5+
i+ 1

2
− f̂UC5+

i− 1
2

∆x = −2fi−3 + 15fi−2 − 60fi−1 + 20fi + 30fi+1 − 3fi+2

60∆x = f ′(xi) + O(∆x5).
(1.11)

It is easy to construct a version of (1.11) for fluxes with negative velocity (f ′(x) ≤ 0);
we just need to use a mirrored stencil, centered around xi+1, for approximating hi+ 1

2
:

f̂UC5−
i+ 1

2
,
−3fi−1 + 27fi + 47fi+1 − 13fi+2 + 2fi+3

60 = hi+ 1
2

+ O(∆x5).

The resulting difference is also a fifth-order approximation to f ′(xi):

f̂UC5−
i+ 1

2
− f̂UC5−

i− 1
2

∆x = −3fi−2 + 30fi−1 + 20fi − 60fi+1 + 15fi+2 − 2fi+3

60∆x = f ′(xi) + O(∆x5).
(1.12)

When a method for selecting between (1.11) and (1.12) (e.g., a flux partition like
Eq. (1.3)) is used together with a time discretization method (e.g., Eq. (1.9)), the resulting
scheme is called the fifth-order upstream central scheme. This scheme is relevant as a basis
of comparison with fifth-order WENO schemes, as we shall see in the next sections.
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2 WENO schemes

In what follows, we will consider only fluxes with positive velocity (f ′(x) ≥ 0). For fluxes
with negative velocity, a simple mirroring and shifting of the stencils is sufficient [5].

The Rth-order WENO polynomial approximation f̂W
i+ 1

2
to the numerical flux h(xi+ 1

2
)

(1.6) is built through a convex combination of r polynomial approximations of order r,
f̂ 0
i+ 1

2
, f̂ 1

i+ 1
2
, . . . , f̂ r−1

i+ 1
2
, where

R = 2r − 1 (2.1)

(R is the scheme order and r is the substencil order , or simply, suborder). Each approxima-
tion f̂k, k = 0, . . . , r− 1, uses a corresponding r points fixed substencil Sk

i+ 1
2

= {xi−r+1+k,

xi−r+2+k, . . . , xi+k} out of a global stencil ofR points, Si+ 1
2

= {xi−r+1, xi−r+2, . . . , xi+r−1}.
By Eq. (1.8), these polynomial approximations can be written as

f̂ki+ 1
2

=
2∑
j=0

crr−1−k,j f(xi−r+1+k+j) = f̂(xi−r+1+k, xi−r+2+k, . . . , xi+k), k = 0, . . . , r − 1.

The formulas of f̂k
i+ 1

2
for orders up to R = 9 can be found in Appendix A; for higher orders,

these formulas can be found in [25, 26].

The WENO discretization DW
x f is defined as

DW
x f(xi) ,

f̂W
i+ 1

2
− f̂W

i− 1
2

∆x , f̂Wi± 1
2
,

r−1∑
k=0

ωki± 1
2
f̂ki± 1

2
, i = 0, . . . , N − 1, (2.2)

where the nonlinear weights ωk
i± 1

2
(often denoted ωk for simplicity) must satisfy the

following conditions:

Condition 1 (Convexity).

r−1∑
k=0

ωk = 1, ωk ≥ 0, k = 0, . . . , r − 1.

Condition 2 (ENO property). If SD contains a discontinuity of f , but exists a substencil
SC where the function is smooth, then ωD = O(∆xq) for some q > 0, and ωC = Θ(1).

Condition 3 (Optimality). If f is smooth, then

DW
x f(xi) = f ′(xi) + O(∆xR), i = 0, . . . , N − 1.

Condition 1 is necessary for consistency and stability. Condition 2 implies that
contribution of discontinuous stencils to DW

x f is small. Since the ultimate cause of
oscillations in discontinuous numerical solutions is the interpolation across discontinuities of
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Figure 6 – Stencil Si+ 1
2
and substencils S0

i+ 1
2
, S1

i+ 1
2
and S2

i+ 1
2
of a fifth-order WENO scheme

the solution, condition 2 is the reason why WENO is essentially non-oscillatory. Condition
3 is for guaranteeing that, when the solution is smooth, the order of accuracy of DW

x f is
the maximum allowed one by the R + 1 points stencil it uses (which is a union of Si+ 1

2

and Si− 1
2
≡ {xi−r, xi−r+1, . . . , xi+r−2}). This includes the case where f contains smooth

extrema, which, as we shall see, is sometimes troublesome for WENO schemes.

2.1 The fifth-order WENO scheme
For the purpose of illustration, consider the WENO scheme of order R = 5. In this case, by
Eq. (2.1), the substencil order is r = 3. Therefore, we have 3 polynomial approximations
to hi+ 1

2
of 2nd degree (see Appendix A),

f̂ 0
i+ 1

2
= 2fi−2 − 7fi−1 + 11fi

6 , f̂ 1
i+ 1

2
= −fi−1 + 5fi + 2fi+1

6 , f̂ 2
i+ 1

2
= 2fi + 5fi+1 − fi+2

6 ,

(2.3)
each using their correspondent substencil Sk

i+ 1
2

= {xi−2+k, xi−1+k, xi+k}, k = 0, . . . , r − 1.
By Eq. (2.2), the WENO discretization is given by

DW
x f(xi) =

f̂W
i+ 1

2
− f̂W

i− 1
2

∆x , f̂Wi± 1
2

= ω0
i± 1

2
f̂ 0
i± 1

2
+ ω1

i± 1
2
f̂ 1
i± 1

2
+ ω2

i± 1
2
f̂ 2
i± 1

2
, i = 0, . . . , N − 1.

Figure 6 shows the global stencil Si+ 1
2
around xi and the substencils S0

i+ 1
2
, S1

i+ 1
2

and S2
i+ 1

2
. Notice that f has a discontinuity on S0

i+ 1
2
, but is smooth on S1

i+ 1
2
and S2

i+ 1
2
. In

this case, Condition 2 imposes that ω0 = O(∆xq) (that is, ω0 is “small”) and, therefore,



2.2. Ideal weights and accuracy of WENO schemes 45

the contribution of the oscillatory approximation f̂ 0
i+ 1

2
to f̂W i+ 1

2 is small, making the
solution essentially non-oscillatory.

2.2 Ideal weights and accuracy of WENO schemes
When the solution is smooth, the R points stencil WENO approximation f̂W

i+ 1
2
must be of

order R by Condition 3. However, it is not immediate how f̂W
i+ 1

2
could achieve this, since,

by Eq. (2.2), it is a convex combination of f̂k
i+ 1

2
, k = 0, . . . , r − 1, which are all rth-order

approximations to h(x). Fortunately, there exist some constants dk, which are called the
ideal weights, which satisfy

r−1∑
k=0

dkf̂
k
i± 1

2
= hi± 1

2
+ ARf

(R)
i ∆xR + O(∆xR+1), (2.4)

where, similarly to Eq. (1.7), the coefficient AR is the same for xi− 1
2
and xi+ 1

2
and does

not depend on k, and
r−1∑
k=0

dk = 1, dk ≥ 0, k = 0, . . . , r − 1. (2.5)

Therefore, the ideal weights satisfy the Conditions 1 and 3. In [21], the existence of ideal
weights for any given order R is demonstrated, and a closed-form formula is provided,

dk =

(
r − 1
k

)(
r

k

)
(
R

r

) , k = 0, . . . , r − 1.

The values of dk for orders up to 9 are given in Appendix A; for higher orders, these
formulas can be found in [25, 26].

2.2.1 The fifth-order case

For fifth-order WENO,

d0 = 1
10 , d1 = 3

5 , d2 = 3
10 .

Therefore, by (2.3), we have

d0f̂
0
i+ 1

2
+ d1f̂

1
i+ 1

2
+ d2f̂

2
i+ 1

2
=

= 1
10 ·

2fi−2 − 7fi−1 + 11fi
6 + 3

5 ·
−fi−1 + 5fi + 2fi+1

6 + 3
10 ·

2fi + 5fi+1 − fi+2

6
= 2fi−2 − 13fi−1 + 47fi + 27fi+1 − 3fi+2

60 ,

which is exactly the term f̂UC5+
i+ 1

2
of the fifth-order upstream central scheme (1.10). Similar

relations hold for higher orders.
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2.2.2 Achieving the optimality condition

Virtually all existing WENO schemes adopt the same strategy (devised in [15]) for satisfying
the optimality condition, which consists on defining the nonlinear weights ωk in such a
way that it approximates the ideal weights up to a convenient order. This is done by first
noticing that

f̂Wi± 1
2

=
r−1∑
k=0

dkf̂
k
i± 1

2
+

r−1∑
k=0

(ωki± 1
2
− dk)f̂ki± 1

2

= hi± 1
2

+ ARfRi ∆xR + O(∆xR+1) +
r−1∑
k=0

(ωki± 1
2
− dk)

(
hi± 1

2
+ arkf

(r)
i ∆xr + O(∆xr+1)

)
= hi± 1

2
+ ARfRi ∆xR + O(∆xR+1)

+
r−1∑
k=0

(ωki± 1
2
− dk)arkf

(r)
i ∆xr +

r−1∑
k=0

[
(ωki± 1

2
− dk) O(∆xr+1)

]
, (2.6)

which follows by Condition 1 and Eqs. (1.7), (2.4) and (2.5). From Eq. (2.6), it is immediate
that if ωk

i± 1
2
− dk is small, then f̂W

i± 1
2

= hi± 1
2

+ ARfRi ∆xR + O(∆xR+1), and this implies
the Condition 3.

Remark 2. It should be stressed that the O(∆xr+1) term in Eq. (2.6) depends on k and is
different for xi− 1

2
and xi+ 1

2
; this is why it must appear inside the summation.

Now, we will formalize the aforementioned strategy in two propositions. They
impose sufficient conditions on the size of ωk

i± 1
2
− dk so that WENO achieves the optimal

order R for smooth solutions.

Proposition 1. If the nonlinear weights satisfy the condition

ωki± 1
2
− dk = O(∆xr), k = 0, . . . , r − 1, i = 0, . . . , N − 1, (2.7)

then the corresponding WENO scheme satisfies the optimality condition (Condition 3).

Proof. By Eq. (2.5),

f̂Wi± 1
2

= hi± 1
2

+ ARfRi ∆xR + O(∆xR+1) +
r−1∑
k=0

O(∆xr)arkf
(r)
i ∆xr +

r−1∑
k=0

[
O(∆xr) O(∆xr+1)

]
= hi± 1

2
+ ARfRi ∆xR + O(∆xR+1).

Therefore, by Eq. (2.2),

DW
x f =

hi+ 1
2
− hi− 1

2

∆x + ARfRi ∆xR − ARfRi ∆xR

∆x + O(∆xR+1)
∆x = f ′(xi) + O(∆xR),

and the scheme satisfies Condition 3.
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Proposition 2. If the nonlinear weights satisfy the conditions
ωk
i± 1

2
− dk = O(∆xr−1),

ωk
i+ 1

2
− ωk

i− 1
2

= O(∆xr),
k = 0, . . . , r − 1, i = 0, . . . , N − 1, (2.8)

then the corresponding WENO scheme satisfies the optimality condition (Condition 3).

Proof. By Eq. (2.5),

f̂Wi± 1
2

= hi± 1
2

+ ARfRi ∆xR +
r−1∑
k=0

(ωki± 1
2
− dk)arkf

(r)
i ∆xr + O(∆xR+1).

By Eq. (2.2), it follows that

DW
x f =

hi+ 1
2
− hi− 1

2

∆x +

r−1∑
k=0

(ωki+ 1
2
− ωki− 1

2
)arkf

(r)
i ∆xr

∆x + O(∆xR)

= f ′(xi) +

r−1∑
k=0

O(∆xr)arkf
(r)
i ∆xr

∆x + O(∆xR) = f ′(xi) + O(∆xR).

2.3 Time integration and linear stability
Fifth-order WENO schemes are linearly unstable when coupled with forward Euler time
integration or second-order explicit Runge–Kutta methods, but are linearly stable when
used together with any third-order Runge–Kutta method [27] — in particular, the third-
order SSP-RK(3,3) method (1.9), which, for many years, has been the time integrator
of choice for combining with WENO schemes (see e.g. [15, 5, 19, 16], and many others).
For this reason, in this work we use the SSP-RK(3,3) method as a time integrator in all
numerical simulations.

Notice that, in order to achieve the formal order R in smooth solutions, one needs
to use ∆t = C∆xR/3 when coupling SSP-RK(3,3) with an Rth-order WENO scheme.
However, in all of the numerical tests which involve discontinuities, the effective accuracy
order is close to 1, no matter the power of ∆x in the expression of ∆t [5]. Thus, we
use ∆t = C∆xR/3 in accuracy tests (whose solutions do not contain discontinuities) and
∆t = C∆x in all other tests.

2.4 Analysis of WENO schemes
When analyzing WENO schemes, in most cases the work can be done in the xi+ 1

2
-centered

stencil Si+ 1
2

= {xi−r+1, xi−r+2, . . . , xi+r−1} only. Since the grid index i is arbitrary, the
results are carried over to Si− 1

2
= {xi−r, xi−r+1, . . . , xi+r−2}, because Si− 1

2
is just Si+ 1

2
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shifted one point to the left. For instance, in Proposition 1, it is sufficient to show that
ωk
i+ 1

2
− dk = O(∆xr), k = 0, . . . , r − 1 and arbitrary i; if this is true, it is evident that

ωk
i− 1

2
− dk = O(∆xr), k = 0, . . . , r − 1 also holds.

There are exceptions where the analysis on Si+ 1
2
and Si− 1

2
must be done separately.

An example is Proposition 2, which has a condition on δiωk. In such cases, the subscripts
i± 1

2 will be used for avoiding confusion. In all other cases, whenever the i subscript is
dropped, consider that we are doing the analysis in Si+ 1

2
.

2.4.1 The discontinuous/continuous ratio: a relative measure of dissipativity

Let S be an R points stencil, and two r points substencils SC and SD. Suppose SC is
smooth (that is, f is smooth in SC), while SD is not. Let’s call the ratio ωD/ωC , between the
weights of a discontinuous substencil and a continuous one, the discontinuous/continuous
ratio. It is a measure of the dissipativity of a WENO scheme which we would like to
formally introduce in this work.

Consider ωI and ωII two different weight definitions, corresponding to two different
schemes, WENO I and WENO II, respectively. If it can be shown that

ωID
ωIC

>
ωIID
ωIIC

(2.9)

whenever SD is discontinuous and SC is continuous, this means that WENO I assigns
relatively more weight to discontinuous substencils than WENO II does. This may seem
undesirable at first, since the WENO schemes were designed for avoiding discontinuous
substencils via ENO property (Condition 2). However, the discontinuous stencils carry
useful information about the solution which should not be completely disregarded. Moreover,
the relative upwinding, which occurs when the weights of discontinuous substencils are
small, increases the dissipativity of the scheme. By increasing the weights of discontinuous
substencils, the upwinding process is softened and as a result WENO I is less dissipative
than WENO II. A less dissipative scheme gives sharper discontinuities. Likewise, in coarse
grids it resolves smooth, large gradient structures better, because at these numerical scales
the large gradients are detected as relative discontinuities. Of course, there’s a balance
here: the weights of discontinuous substencils cannot be too large, otherwise the resulting
scheme will be oscillatory and/or unstable.

So far, the numerical results corroborate that if two schemes I and II satisfy (2.9),
then WENO I has sharper results than WENO II, in general.

2.4.2 Operation count

Throughout this work, we will count the operations done when computing a weight ωk as
a labeled triple {·±, ·×, ·÷}, where flops(ωk) = {a±, b×, c÷} denotes that it is necessary
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to do a sums (or subtractions), b products and c divisions in order to compute ωk. We
opted for doing so because, in some computer architectures, a division costs more than a
product, which in turn costs more than sums and subtractions.

Most weight formulas also involve powers. We prefer to not calculate the costs of a
power operation directly, since the cost vary with the power in question and the specific
implementation of the power operation (for instance, a power of two can be implemented
as a single product, or as a more generic (and costly) function which deals with any
power). Instead, whenever a power of p needs to be computed, we will denote its cost as
flops(pow(p)).

Some formulas also involve conditional expressions. These have a cost which is
architecture-dependent, and will be denoted as conditional().

2.4.3 Unnormalized weights

Virtually all WENO schemes in existence can be written in the form

ωk = αk∑r−1
j=0 αj

, αk ≥ 0, k = 0, . . . , r − 1, (2.10)

where αk are the unnormalized weights. In this way, ωk immediately satisfies the convexity
condition (Contition 1).

It also follows that the discontinuous/continuous ratio can be expressed in terms of
unnormalized weights: suppose SD is discontinuous and SC is continuous, both substencils
of S. Then,

ωD
ωC

= αD∑r−1
j=0 αj

/
αC∑r−1
j=0 αj

= αD
αC

.

Moreover, the ENO property (Condition 2) can be verified in terms of the discontinu-
ous/continuous ratio αD/αC : suppose we have αD/αC = O(∆xq) for some q > 0. Then, as
∆x→ 0,

ωD ≤
αD

αC + αD
= αD
αC

1
1 + αD

αC

= Θ
(
αD
αC

)
.

It follows that ωD = O(∆xq). As a result, ωC = Θ(1) because of Condition 1 (which ω
satisfies by (2.10)), and the ENO property is achieved. This can be summarized in the
following proposition:

Proposition 3. Suppose the weights of a WENO scheme are defined in terms of unnor-
malized weights, as in Eq. (2.10). If, for every S which has a continuous substencil SC
and a discontinuous one SD the relation αD/αC = O(∆xq) holds, for some q > 0, then, as
∆x→ 0, the WENO scheme satisfies the ENO property.

Since all WENO schemes studied here are defined in terms of unnormalized weights,
in most of times when comparing the operation count of two different schemes it will be
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sufficient to compare the costs of computing the unnormalized weights, since the cost of
the normalization (2.10) is the same for two WENO schemes of same order.

2.5 Testing WENO schemes
For numerically validating the schemes presented here, some standard tests found in the
literature are used. These tests are setups of two hyperbolic conservation laws: the linear
advection equation

ut + ux = 0, u(x, 0) = u0(x), (2.11)

and the Euler equations of compressible flow for an ideal gas, in 1D
ρ

ρu

E


t

+


ρu

ρu2 + p

u(E + p)


x

= 0, E = p

γ − 1 + 1
2ρu

2,


ρ(x, 0)
u(x, 0)
p(x, 0)

 =


ρ0(x)
u0(x)
p0(x)

 .
Here, ρ is the mass density of the fluid; u is the velocity; E is the total energy per unit
length; p is the pressure; and γ is the adiabatic index. For monoatomic gases, γ = 5/3; for
diatomic, γ = 7/5.

The tests can be grouped into three categories:

2.5.1 Stability tests

2.5.1.1 Interacting blast waves

This Euler 1D test was developed in [28] and consists in two interacting blast waves. The
strong shocks in the solution are computationally hard to solve; schemes with unstable
tendencies often fail to converge in this test. The domain is x ∈ [0, 1] with reflexive
boundary conditions. The initial setup is

(ρ0, u0, p0) =


(1, 0, 1000), x < 0.1,

(1, 0, 100), x > 0.9,

(1, 0, 0.01), otherwise.

For this test, γ = 7/5. The test is run up to the final time T = 0.038. Since there is no
known expression for the exact solution of this problem, the numerical solution by the
WENO-Z scheme with N = 8000 points (shown in Fig. 7) is used as a reference solution.

2.5.1.2 ADR analysis

We will follow the approach of [8] for applying a nonlinear version of the Approximate
Dispersion Relation analysis to the WENO schemes. The analysis is done this way: consider
a grid with N points, set

φn = 2πn
N

.
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We then solve the advection problem (2.11) with the initial condition given by the discrete
wave eimφn , m = 0, . . . , N − 1, using the WENO scheme being analyzed, up to a very
small final time T = 10−10 (in order to make the error from the time integration negligible)
and periodic boundary conditions. The complex exponent of the amplification factor of
the numerical solution at φn is defined as iΦ(φn). By making n = 0, . . . , N/2, we cover
all wavenumbers in the grid (0 ≤ φn ≤ π). In this way, we get the amplification Φ for all
wavenumbers. See [8, 29] for details.

Here, we will be using a grid with N = 2000 points for the ADR analysis, and
only the imaginary part of Φ, which is related with the dissipation of the scheme, will
be considered. Ideally, Im(Φ) should be 0, but in practice Im(Φ) ∼ 0 in a range of low
wavenumbers and decreases with φ for higher wavenumbers. The larger the range of
wavenumbers for which Im(Φ) ∼ 0, and the larger the value Im(Φ) for higher wavenumbers,
the less dissipative is the scheme. Positive values of Im(Φ) means that the scheme is
actually amplifying the waves, which may be an evidence of instability. However, since the
WENO schemes are nonlinear, in practice some nonlinear mechanism may compensate for
this increase, though, and the scheme might as well remain stable.

2.5.2 Oscillation tests

These tests contain jump discontinuities in their solutions. Therefore, they are suited for
testing if a given WENO scheme is indeed essentially non-oscillatory in practice.

2.5.2.1 GSTE test

The acronym stands for Gaussian-square-triangle-ellipse, which is the shape of the function
which is advected to the right [15]. The domain is x ∈ [−1, 1] with periodic boundary, and
the initial condition of this linear advection test is

u0(x) =



1
6 [G(x, β, z − δ) + 4G(x, β, z) +G(x, β, z + δ)] , x ∈ [−0.8, −0.6]

1, x ∈ [−0.4, −0.2]

1− |10(x− 0.1)| , x ∈ [0, 0.2]
1
6 [F (x, α, a− δ) + 4F (x, α, a) + F (x, α, a+ δ)] , x ∈ [0.4, 0.6]

0, otherwise

G(x, β, z) = e−β(x−z)2
, F (x , α, a) =

√
max(1− α2(x− a)2, 0),

with z = −0.7, δ = 0.005, β = (log 2)/36δ2, a = 0.5 and α = 10. The exact solution at
final time T = 2 (which is exactly the initial condition) is shown in Fig. 8.
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Figure 7 – Reference solution of the interacting blast waves problem
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The figure shows the density of the solution at T = 0.038.

Figure 8 – Initial condition (and solution) of the GSTE problem
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The figure shows the solution at T = 2k, k ∈ N.

Figure 9 – Solution of Lax’s Riemann problem
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The figure shows the density of the solution at T = 0.13.
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2.5.2.2 Riemann problem of Lax

This Riemann problem was introduced in [30]. The domain is x ∈ [−0.5, 0.5] with free
boundary, the initial condition is

(ρ0, u0, p0) =

(0.445, 0.698, 3.528), x ≤ 0,

(0.5, 0, 0.571), x > 0,

the final time is T = 0.13, and γ = 7/5. The reference solution at the final time is computed
using an exact Riemann solver [3], and it is shown in Fig. 9. It consists in a left rarefaction
wave, a central contact discontinuity and a right shock.

2.5.2.3 Riemann problem of Sod1

This other Riemann problem was introduced in [31]. The domain is x ∈ [−5, 5] with free
boundary, the initial condition is

(ρ0, u0, p0) =

(1, 0, 1), x ≤ 0,

(1/8, 0, 1/10), x > 0,

final time is T = 2, and γ = 7/5. Again, the reference solution (Fig. 10) is computed by
an exact Riemann solver, and it also consists in a left rarefaction wave, a central contact
discontinuity and a right shock, albeit with a different shape.

2.5.3 Features tests

These tests involve both shocks and fine structures, and are used for testing the resolution
power of WENO schemes.

2.5.3.1 Shock-entropy wave2 test of Shu–Osher

This test was introduced in [13]. The domain of this Euler 1D test is x ∈ [−5, 5] with free
boundary, the initial condition is

(ρ0, u0, p0) =

(27/7, 4
√

35/9, 31/3), x < −4,

(1 + sin(5x)/5, 0, 1), x ≥ −4,

final time is T = 1.8 and γ = 7/5. Since there is no known expression for the exact solution
of this problem, the numerical solution by the WENO-Z scheme with N = 8000 (Fig. 11)
is used as a reference solution.
1 Also known in the literature as “shock tube problem of Sod”.
2 Also known in the literature as “shock-density” or “shock-turbulence”.



54 Chapter 2. WENO schemes

Figure 10 – Solution of Sod’s Riemann problem
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The figure shows the density of the solution at T = 2.

Figure 11 – Reference solution of shock-entropy wave problem of Shu–Osher
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The figure shows the density of the solution at T = 1.8.

Figure 12 – Reference solution of shock-entropy wave problem of Titarev–Toro
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The figure shows the density of the solution at T = 5.
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2.5.3.2 Shock-entropy wave test of Titarev–Toro

This test, introduced in [32], is a variation of the Shu–Osher test, with a different initial
condition

(ρ0, u0, p0) =

(1.515695, 0.523346, 1.805000), x < −4.5,

(1 + sin(20πx)/10, 0, 1), x ≥ −4.5,

and final time, T = 5. Again, the numerical solution by the WENO-Z scheme with
N = 8000 (Fig. 12) is used as a reference solution.

2.5.4 Accuracy test

WENO schemes may lose accuracy near critical points [19, 21, 22]. The goal of this test is
to evaluate the order of accuracy of the WENO scheme at critical points of different orders
(Definition 1), and see if the design order R is achieved or if the scheme loses accuracy.

The accuracy test consists on comparing the WENO discrete derivative DW
x f (cf.

Eq. (2.2)) with the actual derivative f ′ of a given function f(x) at the grid points xi,
i = 0, . . . , N − 1, with increasing grid sizes N . The L1 error of DW

x f , e1(N), is defined as

e1(N) =
N−1∑
i=0

∣∣∣DW
x f(xi)− f ′(xi)

∣∣∣∆x.
Given M < N , the L1 numerical order of accuracy (shortly, L1 order) from M to N ,
o1(M,N), is given by

o1(M,N) = log
(
e1(M)
e1(N)

)/
log

(
N

M

)
.

For this test, we use the family of functions

gn(x) = e
3
4 (x−1)xn+1, x ∈ [−1, 1].

The functions gn(x) are normalized, so that ‖gn‖L∞[−1,1] = 1. Moreover, gn(x) has a single
critical point of order n at x = 0 (except g0(x), which has no critical points) [22].
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3 Smoothness indicators

So far, we have dealt with generic properties of WENO schemes, without going into
details about the actual weights formulation. Before we move on, we need to introduce
the smoothness indicators — mathematical objects which detect discontinuities in the
solution, and are used in the formulation of WENO weights for achieving the ENO property
(Condition 2).

Definition 5. Let f be a smooth by parts function defined in a collection of stencils
S ≡ S[xi, ∆x] fixed around a given point xi,

S[xi, ∆x] = {xi + k1∆x, xi + k2∆x, . . . , xi + km∆x}, kj ∈ R, k1 < k2 < . . . < km.

A smoothness indicator1 µ(f,S) of order q, where q > 0, is a real positive function which
satisfies

µ(f,S) =

O(∆xq), if f is continuous at xi,

Θ(1), otherwise,

as ∆x→ 0.

This means that µ(f,S) gets smaller as ∆x → 0 if f is continuous at xi, but it
remains close to a fixed value (which depends on f) otherwise.

The smoothness indicators are defined in asymptotic terms, but in practice they are
used differently. Since, in numerical applications, we usually desire to run a problem only
once, we don’t get a sequence of grid spaces ∆x going to zero. Instead, the value of µ(f,S)
is inspected for a fixed ∆x, and if it is “small”, then we may assume f is continuous in the
whole stencil S[xi, ∆x]; otherwise, if it is “large”, then it is probably has a discontinuity
somewhere inside said stencil (not necessarily at xi!). Here, “small” and “large” are to be
taken in relative terms — there is no threshold value under which the function is definitely
continuous.2

In this work we follow the convention of leaving the function being availed by µ
implicit, since it will always clear by the context, and making µ inherit any super/subscripts
of S as needed. For instance, µ(f,Sk) will often be denoted µk.

1 Also commonly called “smoothness measurement” or “smoothness estimator”.
2 In fact, for each smoothness indicator µ, it is usually not hard to construct a function f and a stencil
S such that f is discontinuous in S but µ(f,S) = 0.
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3.1 A simple smoothness indicator

To elucidate how a typical smoothness indicator work, consider a smooth by parts function
f and the stencil S = {xi−1, xi, xi+1} around xi, where xi±1 = xi ± ∆x. Let us define
(recall Definition 4)

µ ,
(
δ

(2∆x)
i [f ]

)2
∆x2 =

(
f(xi+1)− f(xi−1)

2

)2

,

which is the square of the centered second-order finite difference approximation to f ′(xi)∆x.
We shall see that µ is a smoothness indicator of order 2.

First, suppose f is C1 on S. Taylor series around xi gives

µ =
(
f ′(xi)∆x+ O(∆x2)

)2
= (f ′(xi))2∆x2 + O(∆x3) = O(∆x2).

In this case, it’s clear that µ = O(∆x2). But even when f is only continuous the same
result holds. Suppose, without loss of generality, that f has a discontinuity in the first
derivative at xi but is smooth elsewhere (since f is smooth by parts, this is always the
case as ∆x→ 0). Then

f(xi) = f(xi±1)∓ f ′(xi±1)∆x+ O(∆x2),

and

µ =
(
f(xi) + f ′(xi+1)∆x+ O(∆x2)− f(xi) + f ′(xi−1)∆x+ O(∆x2)

2

)2

=
(
f ′(xi+1) + f ′(xi−1)

2 ∆x+ O(∆x2)
)2

=
(
f ′(xi+1) + f ′(xi−1)

2

)2

∆x2 + O(∆x3) = O(∆x2).

Now, on the other hand, suppose f is discontinuous at xi. Then,

lim
∆x→0

µ =
( limx→x+

i
f(x)− limx→x−i

f(x)
2

)2

=
(

[f ]xi

2

)2

= Θ(1),

as claimed.

Typically, smoothness indicators are powers of finite difference approximations
to derivatives (like this example), or more generally, combinations of such powers of
approximations. In the next sections we shall see some of the smoothness indicators used
in the literature.
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3.2 Forward differences
Let M(n) [fi] be the nth-order undivided forward difference defined by (cf. Definition 4)

M(0) [fi] , fi,

M(n) [fi] ,M(n−1) fi+1− M(n−1) fi.

Notice that M(n) [fi] = O(∆xn) if f is smooth (the order decreases to M(n) [fi] = O(∆xm)
if f is continuous but has only m − 1 < n derivatives), and M(n) [fi] = Θ(1) if f is
discontinuous in the domain (a complete proof of this can be found in [6]).

Let
Sr(xi) = {xi−r+1, xi−r+2, . . . , xi};

here, r is the substencil order as in Eq. (2.1). We define the Forward Differences smoothness
indicator as

FD(f,Sr(xi)) ,
r−1∑
j=1

 j∑
l=1

(M(r−j) [fi−r+l])2

j

 . (3.1)

For simplicity, we will denote FD(f,Sr(xi)) as FD.

For suborder r = 2, the formula for FD is

FD = (M(1) [fi−1])2 = (fi − fi−1)2 = (f ′i)2∆x2 + O(∆x3),

and, for r = 3,

FD = (M(1) [fi−2])2 + (M(1) [fi−1])2

2 + (M(2) [fi−2])2

= (fi−1 − fi−2)2 + (fi − fi−1)2

2 + (fi − 2fi−1 + fi−2)2

= (f ′i)2∆x2 + (f ′′i )2∆x4 + O(∆x3).

It is clear that FD is a smoothness measurement of order 2.

The forward differences are used by ENO schemes [11, 13], and was the first
smoothness measurement proposed for WENO [14]. But, as we shall see in the next section,
the smoothness indicator β of Jiang–Shu, which succeeded it, is more suitable for WENO
schemes in general.

3.3 The smoothness indicator β of Jiang–Shu
By far, the smoothness indicator most currently used by WENO schemes is the Jiang–Shu
β, which was developed in [15]. Its use is so widespread that it can be considered the de
facto standard smoothness indicator for WENO schemes.
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Convention 1. Thorough this work, the symbol β we will be used for denoting the Jiang–
Shu smoothness indicator specifically; when speaking of a generic smoothness indicator,
the symbol µ will be used instead.

Definition 6. The Jiang–Shu smoothness indicators of suborder r are given by

βk ,
r−1∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl f̂
k(x)

)2

dx, k = 0, . . . , r − 1. (3.2)

Observe that βk is a normalized sum of the L2 version of the total variation of
all derivatives of the (r − 1)th degree approximation polynomial f̂k(x) to the numerical
flux h(x) (see Section 1.1 for the definition of h(x)). As such, the less smooth h(x) is on
Sk (the stencil where f̂k(x) interpolates h(x)), the higher the total variation of f̂k(x) in
[xi− 1

2
, xi+ 1

2
] and, therefore, the higher the value of βk.

For the purpose of illustration, consider the case R = 5 (r = 3), which uses
the global stencil S = {xi−2, xi−1, xi, xi+1, xi+2} and substencils S0 = {xi−2, xi−1, xi},
S1 = {xi−1, xi, xi+1} and S2 = {xi, xi+1, xi+2}. These are the same stencils used by
fifth-order WENO schemes for the polynomial approximations f̂ and f̂k, k = 0, . . . , r − 1
(cf. Section 2.1). Direct evaluation of Eq. (3.2) gives

β0 = 1
4 (fi−2 − 4fi−1 + 3fi)2 + 13

12 (fi−2 − 2fi−1 + fi)2 ,

β1 = 1
4 (−fi−1 + fi+1)2 + 13

12 (fi−1 − 2fi + fi+1)2 ,

β2 = 1
4 (−3fi + 4fi+1 − fi+2)2 + 13

12 (fi − 2fi+1 + fi+2)2 .

When h(x) is smooth, Taylor series expansion shows that all of the above βk satisfy

βk = (f ′i∆x+ O(∆x3))2 + 13
12(f ′′i ∆x2 + O(∆x3))2, k = 0, 1, 2,

and therefore βk = O(∆x2). On the other hand, suppose SD (fixed at xi) contains a
discontinuity of h(x) at xi. Then, the total variation of f̂D(x) does not go to zero as
∆x→ 0, which implies βD = Θ(1). In sum, β is a smoothness indicator of order 2.

Part of the success of βk is due to the fact that it uses distinct formulas for
measuring the smoothness of each substencil, which makes it less sensitive to critical points
than the forward divided differences used in the original WENO [15].

Formulas of βk for orders up to R = 9 can be found in Appendix A; for higher orders,
these formulas can be found in [25, 26]. In Appendix B, some general and fundamental
properties of β that makes them so useful for WENO schemes are described.

3.4 The global smoothness indicator τ
The global smoothness indicator τ is used by the WENO-Z scheme for measuring the
smoothness in the whole R points stencil S [6, 16, 17, 18]. It consists in a combination of
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R r τ θ(τ)opt
3 2 |β0 − β1| 3
5 3 |β0 − β2| 5
7 4 |β0 + 3β1 − 3β2 − β3| 7
9 5 |β0 + 2β1 − 6β2 + 2β3 + β4| 8
11 6 |β0 + β1 − 8β2 + 8β3 − β4 − β5| 9
13 7 |β0 + 36β1 + 135β2 − 135β4 − 36β5 − β6| 11

Table 1 – The global optimal order smoothness indicator τ and its leading truncation
order θ(τ)opt of the (2r − 1) order WENO-Z scheme.

the local smoothness indicators βk, k = 0, . . . , r − 1, in such a way that it maximizes the
order of τ .

Table 1 shows the expressions of τ for orders up to R = 13. θ(τ)opt denotes the
optimal order of τ for a given r, for smooth regions and in the absence of critical points.
We can see that the optimal order of τ increases with r. In fact, for r ≥ 3, it can be shown
that θ(τ)opt satisfies

θ(τ)opt = r + 1 +
⌊√

8r − 7− 1
2

⌋
.

This will be done in a future work.

Remark 3. In previous works [16, 18, 22], we chose to include a subscript τ2r−1 for letting
the dependency of τ on the design order 2r − 1 of the scheme explicit. But now we have
opted to drop the subscript for clarity and consistency, mainly because dk and µk have
formulas which also depend on 2r − 1 but most authors do not feel the need of adding a
subscript on them for making it explicit.
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4 Classical weight schemes

4.1 Classical weight formula
The classical weight formula was developed in the original WENO paper [14], and it was
later revised and improved to the present form in [15]. The unnormalized weights αC are
defined as

αC
k ,

dk
(µk + ε)p , k = 0, . . . , r − 1. (4.1)

Here, dk are the ideal weights (Section 2.2); µk is a smoothness measurement (Chapter
3); ε is the sensitivity parameter , originally a small positive constant introduced in the
formula to avoid a division by zero (since we could have µk = 0); and p is the power
parameter . The classical weights ωC are simply a normalization of αC,

ωC
k ,

αC
k∑r−1

j=0 α
C
j

, k = 0, . . . , r − 1, (4.2)

so that ∑r−1
j=0 ω

C
j = 1. The superscript “C” stand for “classical”1, and for simplicity it will

be dropped when there is not a risk of ambiguity.

4.1.1 ENO property

Let us see how the weights (4.2) satisfy the ENO property (Condition 2). Suppose that
SC is continuous and SD is not. Hence, by Definition 5, µC = O(∆xq) for some positive q
and µD = Θ(1). So, we have

αC
D

αC
C

= dD
dC

(µC + ε)p
(µD + ε)p = Θ(1)(O(∆xq) + ε)p

(Θ(1))p = O(∆xpq) + Θ(εp), (4.3)

and the ENO property follows from Proposition 3. Moreover,

ωC
D = O(∆xpq) + Θ(εp). (4.4)

Remark 4. The role of parameters ε and p are evident from Eq. 4.4: if, and only if, ε
is small enough, we have ωC

D ∼ O(∆xpq) and the ENO property holds. Likewise, a big
ε dominates the denominator of 4.1, interfering with µ’s sensitivity to discontinuities —
hence the name “sensitivity parameter”. Also, from 4.4 is clear that the power parameter
p has the effect of amplifying the ENO property; that is, the bigger the p, the smaller the
weight of a discontinuous substencil.
1 The superscript “JS” (for “Jiang–Shu”) is more common in the literature [19, 16]. Although the

contributions of Guang-Shan Jiang and Chi-Wang Shu [15] to the development of the classical WENO
scheme were crucial to its success, the pioneering work of Xu-Dong Liu, Stanley Osher and Tony Chan
[14] is equally important. The superscript “C” will be used to honor all 5 authors.
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4.1.2 Operation count

The cost of the unnormalized weights per substencil is

flops(αC
k ) = {1±, 0×, 1÷}+ flops(µk) + flops(pow(p)),

and the total cost per stencil is

flops(αC) = {r±, 0×, r÷}+ r flops(µk) + r flops(pow(p)).

Therefore, the total cost of the normalized weights is

flops(ωC) = flops(αC) + {(r − 1)±, 0×, r÷}.

4.2 The original WENO scheme
The original WENO scheme was developed by Liu, Osher and Chan in [14]. It uses the
classical weights (4.1) coupled with the divided differences smoothness indicators (3.1),
and a different Θ(1) term, Ck, instead of the ideal weights dk. The use of Ck doesn’t
change the result of Eq. (4.3) about the ENO property. But it does change the formal
order of accuracy: the original weights were designed for improving the ENO accuracy
order from r to r + 1 only. For this reason, the original WENO is deprecated in favor of
the classical WENO scheme of Jiang and Shu, but it was nevertheless an important work
for its brilliant and pioneering ideas.

4.3 The classical WENO scheme (WENO-C)
The improved WENO scheme proposed by Jiang and Shu [15] was so successful that, for
years, it has become a synonymous with WENO. It is by far the most popular WENO
scheme, in terms of citations2. For this reason, in this work it shall be called the classical
WENO scheme, or WENO-C.

The scheme uses the classical formula (4.1) coupled with the smoothness indicator
β (Section 3.3), which was another innovation proposed by the authors. The final formula
reads

αC
k ,

dk
(βk + ε)p , ωC

k ,
αC
k∑r−1

j=0 α
C
j

, k = 0, . . . , r − 1. (4.5)

The classical WENO was later extended to orders higher than 5 in [25] and to even higher
orders in [26].

WENO-C is a milestone in the history of the WENO schemes, but, as we shall see
in the next sections, it is too dissipative when compared with the newer, more improved
WENO schemes.
2 2533 as of April 2014, according to Google Scholar.
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4.4 The mapped WENO scheme (WENO-M)
The smoothness measurement β improved the accuracy of the WENO scheme near critical
points when compared to the original forward differences, but the classical WENO scheme
still lost accuracy near critical points. Andrew Henrick, Tariq Aslam and Joseph Powers
studied this issue in [19] and, as a solution, they proposed a mapping function gk,

gk(ω) , (dk + d2
k − 3dkω + ω2)ω

d2
k − 2dkω + ω

, ω ∈ [0, 1], (4.6)

which has the following properties:
gk(ωk) = dk + O(∆x3) if ωk = dk + O(∆x),

gk(0) = 0, gk(1) = 1,

gk is monotonically increasing in [0, 1].

Applying it to the classical weights (4.5), a new set of weights ωM is obtained,

αM
k , gk(ωC

k ), ωM
k ,

αM
k∑r−1

j=0 α
M
j

, k = 0, . . . , r − 1. (4.7)

The mapping (4.6) does not improve the accuracy of the classical WENO scheme
in the rare case where several derivatives of f vanish at the same point, meaning f is
very flat near the critical point. However, the mapped WENO is less dissipative than the
classical WENO (see Section 5.3). We wished to give an analytical prove of this fact via
discontinuous/continuous ratio, but due to time constraints we will have to leave this to a
future work. Nevertheless, numerical results show the discontinuous/continuous ratio of
the mapped weights (4.7) is larger than the classical weights’ (this was studied in detail in
[18, Section 5]).

4.4.1 Operation count

The operation count for the unnormalized mapped weights for the whole stencil can be
optimized to

flops(αM) = flops(ωC) + {7r±, 4r×, r÷}

which gives

flops(ωM) = flops(αM) + {(r − 1)±, 0×, r÷}
= flops(ωC) + {(8r − 1)±, 4r×, 2r÷},

a substantial cost increase.
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5 Zico weight schemes

5.1 Zico weight formula
In [6, 16], we helped develop a new weight formula. Its name, “Zico”1, is a homage to
Bruno’s then newborn son, which has the same name of the great Brazilian footballer.

The Zico unnormalized weights αZ are given by

αZ
k , dk

[
1 +

(
ν

µk + ε

)p]
, k = 0, . . . , r − 1, (5.1)

and the Zico weights ωZ, like the classical ones (Eq. (4.2)), are just a normalization of αZ,

ωZ
k ,

αZ
k∑r−1

j=0 α
Z
j

, k = 0, . . . , r − 1.

The superscripts “Z” stand for “Zico” and they will also be dropped when they can be
inferred from the context. The parameters ε and p, the ideal weights dk (Section 2.2)
and the smoothness indicator µk, are completely analogous to the ones from the classical
weight formula (4.1). The novelty in formula (5.1) is the inclusion of the global smoothness
indicator ν, a smoothness indicator (Definition 5) which measures the smoothness of the
whole stencil S. It has the same value on all substencils k = 0, . . . , r − 1.

Initially [16, Eq. 27], we have seen formula (5.1) as a simple modification to the
classical formula (4.1) through the artifact of a new “smoothness indicator” M , given by

Mk = (µk + ε)p
(µk + ε)p + νp

, (5.2)

so that
αZ
k = dk

Mk

= dk

[
(µk + ε)p + νp

(µk + ε)p

]
= dk

[
1 +

(
ν

µk + ε

)p]
. (5.3)

The formula αk = dk/Mk seem analogous to Eq. (4.1), at least for the p = 1 case. This
view has influenced some recent works on new WENO schemes [33, 34]. Nevertheless, now
we would like to argue against the practice of classifying Eqs. (4.1) and (5.1) as a single
formula based on relations (5.2) and (5.3) above, for two reasons:

• Mk is not a smoothness indicator in the sense of Definition 5, so the analogy between
Eqs. (4.1) and (5.3) is false. In fact, Mk = Θ(1) regardless of the smoothness of the
measured function, so one cannot say anything about the smoothness of a function
f by the value of Mk. As a matter of fact, calling Mk a smoothness indicator is a
misnomer.

1 IPA: ['ziku]
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• The WENO schemes which use the Zico weights have distinct accuracy and dissipative
properties than the ones which use the classical weights. They are so distinct that it
is more useful and precise to treat Eqs. (4.1) and (5.1) as different weight formulas.

5.1.1 ENO property

To verify that the Zico weights satisfy the ENO property, suppose that SC is continuous
and SD is not. Again, by Definition 5, µC = O(∆xq) for some positive q, µD = Θ(1) and
also ν = Θ(1) (since S contains the discontinuity in SD). Therefore,

αZ
D

αZ
C

= dD
dC

(
µC + ε

ν

)p
+
(
µC + ε

µD + ε

)p
1 +

(
µC + ε

ν

)p = Θ(1)

(
O(∆xq) + ε

Θ(1)

)p
+
(

O(∆xq) + ε

Θ(1)

)p

1 +
(

O(∆xq) + ε

Θ(1)

)p
= O(∆xpq) + Θ(εp), (5.4)

and we have the same asymptotic result as the classical formula (Eq. (4.4)). Remark 4
about ε and p also holds here.

5.1.2 Discontinuous/continuous ratio

We have seen from Eqs. (4.3) and (5.4) that the discontinuous/continuous ratio of both
the classical and Zico formulas have exactly the same asymptotic behavior. But this does
not mean the ratios are equal: recalling that µC = O(∆xq) < µD = Θ(1) as ∆x→ 0, we
have

αZ
D

αZ
C

= dD
dC

(µC + ε)p
(µD + ε)p

(µD + ε)p + νp

(µC + ε)p + νp
>
dD
dC

(µC + ε)p
(µD + ε)p = αC

D

αC
C

.

Therefore, the discontinuous/continuous ratio is larger for the Zico formula than for the
classical one when the same parameters ε, p and smoothness indicator µC are used. This
means the Zico formula assigns larger weights to discontinuous substencils than the classical
formula does. But the fact is the classical formula is too much dissipative to begin with,
and it leaves a lot of room for increasing the weights of discontinuous substencils while
remaining essentially non-oscillatory. Numerical results has shown that schemes based
on Zico weights are as robust and non-oscillatory as ones based on classical weights, but
remarkably less dissipative [18, 22].

5.1.3 Operation count

The cost of the unnormalized weights per substencil is

flopsαZ
k = {2±, 1×, 1÷}+ flops(µk) + flops(ν) + flops(pow(p)),
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and the total cost per stencil is

flops(αZ) = {2r±, r×, r÷}+ r flops(µk) + flops(ν) + r flops(pow(p))
= flops(αC) + {r±, r×, 0÷}+ flops(ν).

This gives

flops(ωZ) = flops(αZ) + {(r − 1)±, 0×, r÷}
= flops(αC) + {(2r − 1)±, r×, r÷}+ flops(ν)
= flops(ωC) + {r±, r×, 0÷}+ flops(ν),

which is just a slight increase to the total cost of the normalized classical weights.

5.2 The Zico WENO scheme (WENO-Z)
The Zico WENO scheme was first described in [6, 16] and later expanded in [17, 18].
It uses the Zico weights (5.1) coupled with the smoothness indicators βk of Jiang–Shu
(Section 3.3) and a combination of β as the global smoothness indicator τ (Section 3.4).
The WENO-Z weights read

αZ
k , dk

[
1 +

(
τ

βk + ε

)p]
, ωZ

k ,
αZ
k∑r−1

j=0 α
Z
j

, k = 0, . . . , r − 1. (5.5)

The WENO-Z scheme has better accuracy and dissipative properties than WENO-
C, thanks to the Zico formula (5.1). It is able to recover the optimal order of accuracy at
the same critical points that WENO-M does, but at a much smaller computational cost
(see [16, 18], and Sections 4.4.1 and 5.1.3). The numerical results show that WENO-Z and
WENO-M have comparable resolution power, while both are clearly less dissipative than
WENO-C, when the same parameters are employed (see the next section).

5.3 A comparison between classical and Zico weight schemes
In this section, we give a brief comparison between the aforementioned WENO-C, WENO-
M, and WENO-Z schemes.

Computational cost. WENO-C is the cheapest scheme (Section 4.1.2). The normalized
WENO-Z weights needs r sums and r multiplications more (Section 5.1.3), plus the cost of
the computation of the global smoothness indicator τ , which is not more than (r− 1) sums
and an absolute value operation (Section 3.4). The more computationally expensive scheme
is WENO-M, which has 8r − 1 sums, 4r products, and 2r divisions more than WENO-C
(Section 4.4.1). Recently, an independent study concluded, for fifth order, that WENO-Z
and WENO-M spend ∼ 8% and ∼ 20% more wall time than WENO-C, respectively [29].
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Accuracy. For fifth order, when ε = 10−40 and p = 2 are used, WENO-C loses accuracy
at simple critical points (i.e., of order 1), while WENO-C and WENO-Z do not. Still, at
critical points of order 2, all three schemes lose accuracy [19, 16].

However, choosing a suitable ε corrects the accuracy of WENO-C and WENO-Z,
making the mapping procedure redundant. For WENO-C of any order and p, it is necessary
that ε = Ω(∆x2) (i.e., ε = ∆xq, with q ≤ 2) [21]. The downside is that ε = Ω(∆x2) is too
large, which makes WENO-C prone to oscillations [22]. For WENO-Z, a similar condition,
ε = Ω(∆xq(R,p)), is required; the difference is that the maximum allowed power q(R, p)
grows with both the order R and power parameter p [22]. As an illustration, for fifth order,
with p = 2, the condition is ε = Ω(∆x4). This allows for much smaller ε than WENO-C
does, therefore avoiding oscillations.

Discontinuous/continuous ratio. The discontinuous/continuous ratio of WENO-Z is
strictly greater than that of WENO-C (Section 5.1.2). Numerically, it was indicated in
[18] that WENO-M has a greater discontinuous/continuous ratio than WENO-Z, which
indeed has a greater ratio than WENO-C. We don’t have an analytical proof of this yet.

Sharpness. For fifth-order, near shocks and general features of the solution, WENO-M is
the sharper scheme, followed by WENO-Z, with WENO-C being more dissipative than
the other two. However, for shock-entropy tests, WENO-Z gives sharper results in the
high-frequency waves region, followed by WENO-M and WENO-C. Figures 13 and 14
exemplify this general trend. More numerical results can be found in [18, 29].

Stability. For fifth-order, with p = 2, all three schemes are fairly stable in practice. With
p = 1, WENO-M is sometimes unstable (e.g., in the interacting blast waves test).

In sum, WENO-Z is the most cost-effective scheme among the three in terms of
sharpness [29], and it also has better accuracy properties than WENO-C. The high cost
of WENO-M, and the high dissipativity of WENO-C, makes them less attractive option
nowadays.

5.4 Other schemes
Other WENO schemes which are based in the Zico formula (5.1), albeit with different
global smoothness indicators than WENO-Z’s τ (Eq. (5.5)), can be found in the literature,
such as: the ESWENO (energy stable WENO) [20, 35], the WENO-NS [34], the mapped
WENO-Z [29], and many others. They generally achieve sharper results — and are costlier
— than WENO-Z. Our wish was to study them and compare their results with WENO-Z
and the new scheme we implemented, but, unfortunately, this was not possible due to
time constraints.
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Figure 13 – Numerical solution of the Gaussian-square-triangle-ellipse linear test by the
WENO-C, WENO-M, and WENO-Z schemes
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The figure shows a zoom in the square wave of the solution at t = 2. N = 200 points were
used. CFL = 0.5.

Figure 14 – Numerical solution of the shock-entropy problem of Shu–Osher by the WENO-
C, WENO-M, and WENO-Z schemes
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The figure show a zoom in the region of high-frequency waves of the density of the solutions
at t = 1.8. A grid with N = 200 points was used. CFL = 0.5.
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6 Towards a new WENO scheme

Besides the Zico weights, an experimental weight formula was also introduced in [6]: the
min weights. They were defined as

αmink , dk

[
1 +

(
max(µk, ν)

min(µk, ν) + ε

)p]
, ωmink ,

αmink∑r−1
j=0 α

min
j

, k = 0, . . . , r − 1.

This is similar to the Zico formula (5.1), but instead of having ν in the numerator and
µk in the denominator, it has max(µk, ν) and min(µk, ν), respectively (hence the name
“min”). This change made WENO-min scheme much less dissipative than the then-current
WENO schemes (WENO-C, WENO-M and WENO-Z). The results of the shock-entropy
test were particularly encouraging, as shown in Fig. 15. The grid with 200 points is not
enough for the other schemes to resolve the high-frequency waves of the solution, but
WENO-min already resolves them.

However, while the WENO-Z scheme was eventually published later [16], two issues
prevented WENO-min to enjoy the same fate. First, at the time we already knew it
was unstable and had an oscillatory tendency. The impressive results for the Shu–Osher
shock-entropy problem seemed too good to be true, and in fact they were: the Titarev–Toro
shock-entropy test, which has higher frequency waves in the solution and a longer final

Figure 15 – Numerical solution of the shock-entropy problem of Shu–Osher by the WENO-
min, WENO-C, WENO-M and WENO-Z schemes

−5 0 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 
WENO-min

Solution

(a) Solution by the WENO-min scheme
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(b) Comparison of the schemes in the high-
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The figures show the density of the solution at t = 1.8. A grid with N = 200 points was
used. CFL = 0.5.
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Figure 16 – Numerical solution of the shock-entropy problem of Titarev–Toro by the
WENO-min scheme with a small grid
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(a) Solution by the WENO-min scheme
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The figures show the density of the solution at t = 5. A grid with N = 1000 points was
used. CFL = 0.5.

Figure 17 – ADR analysis of WENO-min scheme: imaginary part of φ
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The higher the value of Im(φ), the less dissipative is the scheme. Positive values of Im(φ)
indicates instability. Here, 2000 wavenumbers were used.
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Figure 18 – Numerical solution of the shock-entropy problem of Titarev–Toro by the
WENO-Z+, WENO-C, WENO-M and WENO-Z schemes with a small grid
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(b) Comparison of the schemes in the high-
frequency waves region of the solution

The figures show the density of the solution at t = 5. A grid with N = 1000 points was
used. CFL = 0.5.

time, showed that the WENO-min solution greatly overshooted the expected solution
(Fig. 16). Similarly, the ADR analysis evidenced that WENO-min was unstable. Notice, in
Fig. 17c, that WENO-min has a large range of wavenumbers for which Im(φ) is positive,
that extends from 0 to approximately π/5. This means that WENO-min makes these
waves actually grow, which could lead to instability. The solution of WENO-min for the
Titarev–Toro problem grows very slowly with time, but only because it is a relatively
mild test. For the interacting blast waves problem, which involves strong shocks and
is computationally harder to solve, the numerical solution by the WENO-min scheme
actually blows up with N = 800.

The second issue is that, at the time WENO-min was developed, we wasn’t able to
explain why did it have such impressive results for the Shu–Osher test. We already knew
that replacing ν and µk by max(µk, ν) and min(µk, ν) made the discontinuous/continuous
rate increase, and therefore the WENO-min was less dissipative than WENO-Z — but
this alone wasn’t enough to explain the shock-entropy results.

The motivation behind this part of the thesis was to find a way of achieving the
impressive results of WENO-min in a stable and essentially non-oscillatory manner. At
first, two existing techniques were employed in the attempt to stabilize WENO-min: the
monotonicity-preserving limiters of Suresh and Huynh [36, 25], and the energy stable
artificial dissipation operator of Yamaleev and Carpenter [20, 35], but the results were not
satisfactory. Then, after these attempts, a deeper understanding of the min formula led to
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the development of a new weight formula

αZ+
k , dk

[
1 +

(
ν + ε

µk + ε

)p
+ λ

(
µk + ε

ν + ε

)p]
, ωZ+

k ,
αZ+
k∑r−1

j=0 α
Z+
j

, k = 0, . . . , r − 1,

which we call the Zico+ weights, because it is a generalization of the Zico weights (5.1)
by the means of an addition of the sharpening term λ

(
µk+ε
ν+ε

)p
to the Zico weight formula.

The new scheme WENO-Z+ has remarkably better results on the shock-entropy problems
than WENO-C, WENO-M and WENO-Z (Fig. 18), and it passes the ADR analysis and
interacting blast waves tests for stability.

This Part is structured as follows: in Chapter 7, the WENO-min scheme is described.
In particular, in Section 7.2.1 it is explained why it is unstable. Finally, in Chapter 8, we
describe and study the WENO-Z+ scheme. Detailed numerical experiments with the new
scheme are shown in Section 8.2.
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7 The experimental WENO-min scheme

7.1 The min weight formula
The min weights [6] are defined as

αmink , dk

[
1 +

(
max(µk, ν)

min(µk, ν) + ε

)p]
= dk

[
(min(µk, ν) + ε)p + max(µk, ν)p

(min(µk, ν) + ε)p

]
, (7.1)

ωmink ,
αmink∑r−1
j=0 α

min
j

, k = 0, . . . , r − 1.

For p = 1 (which is typically the case), Eq. (7.1) simplifies to

αmink = dk

[
µk + ν + ε

min(µk, ν) + ε

]
, (7.2)

and the name of the scheme comes from the min operator in the denominator of Eq. (7.2).
Eq. (7.1) can also be written in a conditional form

αmink =


dk

[
1 +

(
ν

µk + ε

)p]
≡ αZ

k, if µk ≤ ν,

dk

[
1 +

(
µk
ν + ε

)p]
, if µk > ν.

(7.3)

This form is more convenient for operation counting, and also for understanding how the
WENO-min scheme works. This is discussed in Section 7.2. First, let us show some basic
properties of the min formula.

7.1.1 ENO property

To show that the min weights satisfy the ENO property (Condition 2), assume SC is a
continuous substencil and SD is a discontinuous one. Therefore, as ∆x→ 0, min(µC , ν) =
µC = O(∆xq) for some q > 0, and max(µC , ν) = ν = Θ(1). Also, because both µD = Θ(1)
and ν = Θ(1), we have min(µD, ν) = Θ(1) and max(µD, ν) = Θ(1). So,

αD
αC

= dD
dC

(
min(µC , ν) + ε

max(µC , ν)

)p
+
(

min(µC , ν) + ε

min(µD, ν) + ε

)p (max(µD, ν)
max(µC , ν)

)p

1 +
(

min(µC , ν) + ε

max(µC , ν)

)p

= Θ(1)

(
O(∆xq) + ε

Θ(1)

)p
+
(

O(∆xq) + ε

Θ(1)

)p (Θ(1)
Θ(1)

)p

1 +
(

O(∆xq) + ε

Θ(1)

)p
= O(∆xpq) + Θ(εp),
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Again, the min formula has the same asymptotic behavior as the classical (4.3) and Zico
(5.4) formulas and Remark 4 applies.

7.1.2 Discontinuous/continuous ratio

The weight ωminD of the discontinuous substencil SD is greater or equal to the Zico weight
ωZ
D with same parameters ε, p and smoothness indicators µ, ν:

αminD

αminC

= dD
dC

(min(µC , ν) + ε)p
(min(µC , ν) + ε)p + max(µC , ν)p

[
1 +

(
max(µD, ν)

min(µD, ν) + ε

)p]

≥ dD
dC

(µC + ε)p
(µC + ε)p + νp

[
1 +

(
ν

µD + ε

)p]
= αZ

D

αZ
C

;

the last inequality holds because µC < ν as ∆x→ 0, max(µD, ν) ≥ ν and min(µD, ν) ≤ µD.
This makes the min weights less dissipative than the Zico ones.

7.1.3 Operation count

Based on the conditional form (7.3), the operation count for each substencil is

flops(αmink ) = {2±, 1×, 1÷}+ flops(pow(p)) + flops(ν) + flops(µk) + conditional()
= flops(αZ

k) + conditional(),

and for the whole stencil is

flops(αmin) = {2r±, r×, r÷}+ r flops(pow(p)) + flops(ν) + r flops(µk) + r conditional()
= flops(αZ) + r conditional().

Here, conditional() stands for the cost of the conditional operation in Eq. (7.3). So,
basically, the computational cost per stencil of the min weights is equal to the cost of Zico
weights plus the cost of r conditional operations, which is architecture-dependent. Finally,
the total cost of the normalized weights per stencil is

flops(ωmin) = flops(αmin) + {(r − 1)±, 0×, r÷}
= flops(ωZ) + r conditional()
= flops(ωC) + {r±, r×, 0÷}+ flops(ν) + r conditional().

7.2 The WENO-min scheme
The WENO-min scheme is the min formula (7.1) coupled with the smoothness indicators
βk of Jiang–Shu (Section 3.3) and the τ global smoothness indicators (Section 3.4), the
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same smoothness indicators used by WENO-Z. Its formula is

αmink = dk

[
1 +

(
max(βk, τ)

min(βk, τ) + ε

)p]
, ωmink = αmink∑r−1

j=0 α
min
j

, k = 0, . . . , r − 1. (7.4)

The default values for the parameters are ε = 10−40 and p = 1.

7.2.1 Stability analysis

We have seen in Chapter 6 that the WENO-min has impressive results on the Shu–Osher
shock-entropy test when compared to WENO-C, WENO-M and WENO-Z (Fig. 15), but
it is ultimately unstable. The analysis in this section aims for explaining why.

Consider
ηZ
k ,

τ

βk + ε
, η−Z

k ,
βk
τ + ε

. (7.5)

ηZ
k is the term which appears in the WENO-Z weight formula (cf. Eq. (5.5))

αZ
k = dk[1 + (ηZ

k)p], (7.6)

and η−Z
k is its “inverse” (if we disregard ε, that is). Eq. (7.4) is more conveniently written

in the conditional form

αmink =

dk[1 + (ηZ
k)p] ≡ αZ

k, if βk ≤ τ ,

dk[1 + (η−Z
k )p], if βk > τ.

(7.7)

If we had βk ≤ τ all the time, then αmink ≡ αZ
k and the WENO-min would be identical to

WENO-Z. Therefore, what distinguishes the min formula from Zico, the reason for the
great shock-entropy results and also for the instability of WENO-min, is the term η−Z

k ,
which appears in the formula when βk > τ .

Let us see how the terms ηZ
k and η−Z

k work. From Eq. (7.5), the value of ηZ
k is larger

in the substencils Sk where the solution is smoother, while the value of η−Z
k is smaller in

such substencils. Thus, η−Z
k works as the opposite of a smoothness indicator. This is the

ultimate cause of instability in WENO-min. The following example will illustrate this.

Consider f(x) = sin(4πx), defined on the uniform, periodic grid

xn = n∆x, n = 0, . . . , 12, (7.8)

and ∆x = 1/12. Let us define the “anti-Zico” weights as

α−Z
k = dk[1 + (η−Z

k )p], ω−Z
k = α−Z

k∑r−1
j=0 α

−Z
j

, k = 0, . . . , r − 1. (7.9)

These are not useful as WENO weights, since they don’t satisfy the ENO property (assume
SC continuous and SD discontinuous):

α−Z
D

α−Z
C

= dD
dC

1 +
(
βD
τ + ε

)p

1 +
(

βC
τ + ε

)p = Θ(1)
1 +

(
Θ(1)

Θ(1) + ε

)p

1 +
(

O(∆xq)
Θ(1) + ε

)p = Θ(1).



82 Chapter 7. The experimental WENO-min scheme

Figure 19 – Discrete approximations DZf and D−Zf to the derivative of f(x) = sin(4πx)
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The exact derivative f ′(x) (dotted line) and the discrete approximations DZf(xn) (blue
plus symbols) and D−Zf(xn) (red triangles) are scaled by a factor of 1/4π for a better
view. The grid points are xn = n∆x, n = 0, . . . , 12, with ∆x = 1/12.

They nevertheless work for continuous solutions, since they approximate the ideal weights
when all substencils are continuous — a fact whose proof is given in Appendix C — and
defining them will be useful for illustration purposes.

Here, we will be working with schemes of order R = 5, but the same conclusions
are valid for any order. The fifth-order WENO-Z discrete derivative operator DZ

x is given
by

DZ
xf(xn) ,

2∑
k=0

ωZ,k
n+ 1

2
f̂kn+ 1

2
−

2∑
k=0

ωZ,k
n− 1

2
f̂kn− 1

2

∆x = f ′(xn) + O(∆x5). (7.10)

Similarly, the “anti-Zico” discrete derivative is defined as

D−Z
x f(xn) ,

2∑
k=0

ω−Z,k
n+ 1

2
f̂kn+ 1

2
−

2∑
k=0

ω−Z,k
n− 1

2
f̂kn− 1

2

∆x ≈ f ′(xn) (7.11)

(here, we are not concerned with the order of this approximation). Figure 19 shows
that D−Z

x f(xn) surpasses f ′(xn) ≡ 4π cos(4πxn) at critical points of f ′(x) (that is, xn =
0, 0.25, 0.5, etc.), while DZ

xf(xn) remains close, but under it. Since D−Z
x f(xn) has a greater
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Figure 20 – Values of smoothness indicators β and τ for f(x) = sin(4πx)
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The solid black line is f(x), with grid points xn = n∆xmarked by dots, where n = 0, . . . , 12
and ∆x = 1/12. The markers show the smoothness indicators computed at the interfaces
xn+ 1

2
= (n+ 1/2)∆x, n = 0, . . . , 11.

sup norm than f ′(x), this leads to instability when this process is iterated by a time
integrator. On the other hand, DZ

xf(xn) has a slightly smaller sup norm than f ′(x), so
this indicates that iterating DZ

xf(xn) is stable in this case (due to the nonlinear nature of
DZ
x and D−Z

x , these are only indications, not established facts).

To understand why the approximation D−Z
x f(xi) overshoots f ′(xi) at xi = 0.5

and why DZ
xf(xi) does not, let us examine the weights ωZ and ω−Z. Figure 20 shows the

smoothness indicators β and τ , and Figure 21 show the weights ωZ and ω−Z, all computed
at the interfaces xn+ 1

2
=
(
n+ 1

2

)
∆x, n = 0, . . . , 11. The first thing that stands out is how

the WENO-Z weights remain fairly close to the ideal ones in the whole domain, while the
“anti-Zico” weights oscillates away from them. In particular, at xi+ 1

2
(≈ 0.54), the weights

ω−Z
0 and ω−Z

2 are much greater, and ω−Z
1 is much smaller, than their ideal counterparts. In

other words, ω−Z
1 , the central weight, transfers “mass” to the lateral weights ω−Z

0 and ω−Z
2 .

f̂ 0
i+ 1

2
(x) and f̂ 2

i+ 1
2
(x) happen to be the two reconstruction polynomials with the highest
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Figure 21 – WENO-Z weights ωZ and “anti-Zico” weights ω−Z for f(x) = sin(4πx)
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(b) “Anti-Zico” weights

The blue dotted lines, the green dashed lines, and the red dash-dotted lines correspond to
the ideal weights d0 ≡ 0.1, d1 ≡ 0.6, and d2 ≡ 0.3, resp. The blue lines with circles, the
green lines with plus symbols, and the red lines with crosses correspond to the computed
weights — respectively, above, they are the WENO-Z weights ωZ

0 , ωZ
1 , and ωZ

2 , and, below,
the “anti-Zico” weights ω−Z

0 , ω−Z
1 , and ω−Z

2 . The markers show the weights computed at
the interfaces xn+ 1

2
= (n+ 1/2)∆x, n = 0, . . . , 11, with ∆x = 1/12.
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Figure 22 – Reconstruction polynomials f̂ 0
i+ 1

2
(x), f̂ 1

i+ 1
2
(x), and f̂ 2

i+ 1
2
(x) at the stencil Si+ 1
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line marks the location of xi+ 1

2
≈ 0.54.

Figure 23 – Reconstruction polynomials f̂ 0
i− 1
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line marks the location of xi− 1

2
≈ 0.46. Note that f̂ 0

i− 1
2
(x) and f̂ 1(x)i− 1

2
coincide.
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values at xi+ 1
2
, as Figure 22 shows, so

2∑
k=0

ω−Z,k
i+ 1

2
f̂ki+ 1

2
>

2∑
k=0

dkf̂
k
i+ 1

2
.

This is so because f̂ 0
i+ 1

2
(x) and f̂ 2

i+ 1
2
(x) are the polynomials with higher total variations

around xi = 0.5. Similarly, at xi− 1
2
(≈ 0.46), ω−Z

0 and ω−Z
1 are greater than d0 and d1,

resp., and they correspond to the polynomials with the lowest values at xi− 1
2
, f̂ 0

i− 1
2
(x) and

f̂ 1
i− 1

2
(x) (shown in Figure 23). Therefore,

2∑
k=0

ω−Z,k
i− 1

2
f̂ki− 1

2
<

2∑
k=0

dkf̂
k
i− 1

2
.

Using Eq. (7.11), this gives

D−Z
x f(xi) > f ′(xi) + O(∆x5) ∼ f ′(xi),

and this is why D−Z
x f overshoots f ′ at xi = 0.5. The same analysis applied to the WENO-Z

weights gives
DZ
xf(xi) < f ′(xi) + O(∆x5) ∼ f ′(xi).

In this example, the phenomenon is exacerbated because the grid (7.8) is coarse.
In particular, every 5 points stencil in this grid contains a critical point, which increases
the disparities of total variation between substencils. Nevertheless, this situation is typical,
although it happens at a smaller scale at finer grids.

Now, to understand why WENO-min is unstable, suppose f is smooth on a given
stencil S. Then, generally, βk is larger than τ on each substencil of S, because the order
of τ is higher than the order of β. An exception is when f has a very flat critical point
in S — in this case, we may have βk ≤ τ . But if f has only simple critical points like in
the example f(x) = sin(4πx) above, then βk > τ in the whole domain (as Fig. 20 shows).
In such cases, by Eq. (7.7) αmin ≡ α−Z in the whole domain; but, as we have seen, the
“anti-Zico” discrete derivative operator is unstable.

In conclusion, the term η−Z
k (Eq. (7.5)) is the ultimate responsible for the instability

of WENO-min. But there is a bright side to it: when the size of η−Z
k is controlled, it acts

as a sharpening term (or steepening term) near critical points, smooth structures and
discontinuities, while keeping the scheme stable. It seems the right dose differentiates
a poison and a remedy. In the next chapter, we present a new scheme which uses the
sharpening properties of η−Z

k to its advantage.



87

8 A new improved WENO scheme

8.1 Designing a new weight formula
In the previous chapter we have seen that the min weight formula conditionally chooses
between two terms (cf. Eq. (7.5))

ηZ
k ,

ν

µk + ε
, η−Z

k ,
µk
ν + ε

,

depending on the size of µk and ν (cf. Eq. (7.7)),

αmink = dk[1 + (ηk)p], ηk =

η
Z
k, if µk ≤ ν,

η−Z
k , if µk > ν.

(8.1)

Also, we have noted that while η−Z
k is the ultimate responsible for the instability of the

WENO-min scheme, it has potential as a sharpening term.

What if, instead of merely choosing between ηZ
k and η−Z

k , we combined both terms
in the weight formula, but controlling the size of η−Z

k so as to make the scheme stable?
This idea led to a new weight formula, which generalizes and improves upon the Zico
weights. First, we will modify the terms ηZ

k and η−Z
k a bit, by defining the new terms

ηk ,
ν + ε

µk + ε
, η−1

k ,
µk + ε

ν + ε
= (ηk)−1. (8.2)

In comparison to ηZ
k, η−Z

k , the terms ηk, η−1
k have additional epsilons in their numerators.

This change is introduced for computational reasons: since ηk is the reciprocal of η−1
k , some

computations are simplified and the operation count decreases as a result (this is detailed
in Section 8.1.3). Also, we will see in Chapter 9 that this makes the weights have better
and more easily proven accuracy properties.

Now, we define the new weights as

αZ+
k , dk

[
1 + (ηk)p + λη−1

k

]
= dk

[
1 +

(
ν + ε

µk + ε

)p
+ λ

(
µk + ε

ν + ε

)]
, (8.3)

ωZ+
k ,

αZ+
k∑r−1

j=0 α
Z+
j

, k = 0, . . . , r − 1.

This is essentially the Zico unnormalized weight (5.1) with the addition of the sharpening
term λη−1

k inside the parentheses and epsilons in the numerators. For this reason, we call
this new formula the Zico+ weights. The new parameter λ is used for controlling the size
of η−1

k . It must be small enough so the scheme is stable and essentially non-oscillatory, but
large enough for effectively improving the sharpness of the solutions.
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Remark 5. Eq. (8.3) could be more generally written as

αZ+
k = dk

[
1 + (ηk)p + λ(η−1

k )p2
]
.

However, preliminary numerical results displayed instability when p2 = 2. This happens
because the sharpening term η−1

k is too amplified in this case. For this reason, we are
fixing p2 = 1 in Eq. (8.3).

Now, let us show the properties of the new weights.

8.1.1 ENO property

As usual, consider SC continuous and SD discontinuous. Assuming λ = O(1) (that is, λ
does not asymptotically grow with ∆x), we have

αD
αC

= dD
dC

(
µC + ε

ν + ε

)p
+
(
µC + ε

µD + ε

)p
+ λ

(µC + ε)p(µD + ε)
(ν + ε)p+1

1 +
(
µC + ε

ν + ε

)p
+ λ

(
µC + ε

ν + ε

)p+1

= Θ(1)

(
O(∆xq) + ε

Θ(1)

)p
+
(

O(∆xq) + ε

Θ(1)

)p
+ O(1)(O(∆xq) + ε)p Θ(1)

Θ(1)

1 +
(

O(∆xq) + ε

Θ(1)

)p
+ O(1)

(
O(∆xq) + ε

Θ(1)

)p+1

= O(∆xpq) + Θ(εp),

which is the same asymptotic expression as the other weight formulas studied so far.
Note that the asymptotic behavior does not depend on the new parameter λ, given that
λ = O(1).

8.1.2 Discontinuous/continuous ratio

Their discontinuous/continuous ratio is

αZ+
D

αZ+
C

= dD
dC

(µC + ε)p
(µD + ε)p

(µD + ε)p + (ν + ε)p + λ(µD + ε)p+1/(ν + ε)
(µC + ε)p + (ν + ε)p + λ(µC + ε)p+1/(ν + ε) .

This is greater than the discontinuous/continuous ratio of the Zico weights, if ε is small:

αZ+
D

αZ+
C

>
dD
dC

(µC + ε)p
(µD + ε)p

(µD + ε)p + (ν + ε)p
(µC + ε)p + (ν + ε)p (8.4)

∼ dD
dC

(µC + ε)p
(µD + ε)p

(µD + ε)p + νp

(µC + ε)p + νp
= αZ

D

αZ
C

.

The inequality in (8.4) holds due to the following: for simplifying the notation, let
aj = (µj + ε)p + (ν + ε)p and bj = λ(µj + ε)p+1/(ν + ε). Since aD, aC > 0,

aD + bD
aC + bC

>
aD
aC

⇔ 1 + bD/aD
1 + bC/aC

> 1 ⇔ bD
aD

>
bC
aC

⇔ bDaC − bCaD > 0.
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Hence, if bDaC − bCaD > 0, Eq. 8.4 holds. Finally, since µD > µC as ∆x→ 0,

ν + ε

λ
(bDaC − bCaD) =

= (µD + ε)p+1
[
(µC + ε)p + (ν + ε)p

]
− (µC + ε)p+1

[
(µD + ε)p + (ν + ε)p

]
= (µD − µC)(µD + ε)p(µC + ε)p +

[
(µD + ε)p+1 − (µC + ε)p+1

]
(ν + ε)p

> 0.

Remark 6. The relation (8.4) is not a proof that αZ+
D /α

Z+
C > αZ

D/α
Z
C , it is merely an

indication. However, since ε is usually very small, this is very often the case.

8.1.3 Operation count

From Eqs. (8.2), (8.3),

ηk = ν + ε

µk + ε
, αZ+

k = dk

[
1 + (ηk)p + λ

ηk

]
.

Hence, the flop count per substencil is

flops(αZ+
k ) = {4±, 1×, 2÷}+ flops(pow(p)) + flops(ν) + flops(µk)

= flops(αZ
k) + {2±, 0×, 1÷},

and the total cost per stencil is

flops(αZ+) = {4r±, r×, 2r÷}+ r flops(pow(p)) + flops(ν) + r flops(µk)
= flops(αZ) + {2r±, 0×, r÷}.

Therefore, the Zico+ weights are a little costlier than the Zico weights. If, however, we had
used ηZ

k and η−Z
k instead of ηk and η−1

k in the definition of Zico+ weights, we would have
needed an extra product per substencil:

flops
(
dk
[
1 + ηZ

k + λη−Z
k

])
= flops

(
dk

[
1 +

(
ν

µk + ε

)p
+ λ

(
µk
ν + ε

)])
= {4±, 2×, 2÷}+ 2 flops(pow(p)) + flops(ν) + flops(µk)
= flops(αZ+

k ) + {0±, 1×, 0÷}+ flops(exp(p)).

The total cost of the normalized weights per stencil is

flops(ωZ+) = flops(αZ+) + {(r − 1)±, 0×, r÷}
= flops(ωZ) + {2r±, 0×, r÷}
= flops(ωC) + {3r±, r×, r÷}+ flops(ν).



90 Chapter 8. A new improved WENO scheme

8.2 The new WENO-Z+ scheme

The WENO-Z+ scheme is composed by the Zico+ formula (8.3), using the local smoothness
indicators βk of Jiang–Shu (Section 3.3) and the τ global smoothness indicators (Section
3.4). The default values for the parameters are ε = 10−40 and p = 2. The value of parameter
λ was empirically determined — for order R = 5 and p = 1 or 2, the choice λ = ∆x2/3

gives good results in terms of stability, mitigation of oscillations, steepness and resolution
power, at least for the standard tests. Preliminary tests show that, for higher orders, λ
may assume constant values with no harm to stability. However, the research on the new
WENO with higher orders is still on its early steps, and it will be the subject of future
works. In this section, we focus on the 5th order WENO-Z+ scheme.

8.2.1 The parameter λ

Here, we will show how the parameter λ can be used to fine-tune the steepness of the
WENO-Z+ scheme. We have investigated the behavior of WENO-Z+ with three different
choices for the parameter λ: ∆x1/2, ∆x2/3 and ∆x. The higher the λ, the greater the
contribution of the sharpening term η−1

k ; therefore, WENO-Z+ is expected to be the less
dissipative with λ = ∆x1/2 and more dissipative with λ = ∆x, with λ = ∆x2/3 giving
intermediate results. The results in this section empirically justify the choice λ = ∆x2/3 as
a good compromise between stability and sharpness.

Remark 7. There is no guarantee, however, that λ = ∆x2/3 will work well in every situation.
In some specific problems, the scheme may need more numerical dissipation in order to
maintain stability. In these cases, one should use a smaller λ.

In all tests, ε = 10−40 and p = 2 for all schemes.

Shock-entropy test of Titarev–Toro. Figure 24 compares the results of the Titarev–
Toro shock-entropy test with N = 1000 points for the 5th order WENO-Z+ scheme with
the three different values for the parameter λ above, and the reference scheme WENO-Z.
The figure shows that λ = ∆x1/2 makes the wave greatly overshoot the solution, which is
an indication of instability. On the other hand, λ = ∆x makes the scheme too dissipative:
the results are comparable to the simpler and less costly WENO-Z (Fig. 24d). The choice
λ = ∆x2/3 gives the best results, resolving most of the waves with a good approximation
to their amplitudes already with this relatively small number of points.

Shock-entropy test of Shu–Osher. Figure 25 shows the results of the Shu–Osher
shock-entropy test with N = 200 points. Figure 25a displays WENO-Z+ with λ = ∆x2/3

alone, since, at this scale, the results with other choices for λ are too similar. Figure
25b shows that WENO-Z+ is sharper than WENO-Z. It shows how λ can be used as a
fine-tuner, in which a smaller λ makes the WENO-Z+ sharper.
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Figure 24 – Numerical solution of the shock-entropy problem of Titarev–Toro by the
WENO-Z+ scheme with different λ
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(d) Comparison of the three choices of λ and the WENO-Z scheme in the high-frequency waves
region of the solution

The figures show the density of the solution at t = 5. A grid with N = 1000 points was
used. For all schemes, ε = 10−40 and p = 2. CFL = 0.5.
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Figure 25 – Numerical solution of the shock-entropy problem of Shu–Osher by the WENO-
Z+ scheme with different λ
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(b) Comparison of the three choices of λ and the WENO-Z scheme in the high-frequency waves
region of the solution

The figures show the density of the solution at t = 1.8. A grid with N = 200 points was
used. CFL = 0.5.
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Figure 26 – ADR analysis of WENO-Z+ scheme with different λ: imaginary part of φ
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(b) Log scale plot of − Im(φ); positive values of Im(φ) were omitted
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(c) Log scale plot of Im(φ); negative values of Im(φ) were omitted. Zoom in the relevant region.

The higher the value of Im(φ), the less dissipative is the scheme. Positive values of Im(φ)
indicates instability. Here, 2000 wavenumbers were used.
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ADR analysis. Figure 26 shows the results of the imaginary part of φ, in linear (Fig.
26a) and log scale of negative (Fig. 26b) and positive values (Fig. 26c), for the three
variations of WENO-Z+ and the reference scheme, the fifth-order upstream central scheme
(see Section 1.1.2), labeled Central5. The results are very similar, except for the lower
left corner in Fig. 26b, where Im(φ) assume positive values for λ = ∆x1/2 and λ = ∆x2/3.
The value of φ being positive means that the schemes actually make the waves at these
wavenumbers grow, instead of being dissipated, which indicates instability. We can see
that the positive interval is larger for λ = ∆x1/2 and smaller for λ = ∆x2/3. However,
the positive interval for λ = ∆x2/3 is small, as are the corresponding values of Im(φ). In
practice, the nonlinear nature of the WENO-Z+ weights compensate for this small positive
range, and WENO-Z+ with λ = ∆x2/3 was stable and essentially non-oscillatory in all
standard tests.

Notice that both the range and amplitude of the positive part of Im(φ) are smaller
than in the WENO-min case (Fig. 17).

Interacting blast waves. For the interacting blast waves test with N = 800 points and
CFL = 0.5, WENO-Z+ is unstable with λ = ∆x1/2, but it is stable with λ = ∆x2/3 and
λ = ∆x. Since the results are too similar for these two choices of λ, the results are not
shown here.

Other tests. We have also run the Riemann problems of Lax and Sod and the Gaussian-
square-triangle-ellipse linear test. The results similarly show that λ = ∆x2/3 occupy an
intermediate position between the less dissipative, λ = ∆x1/2, and the more dissipative,
λ = ∆x, although the scale of the differences is very small in these problems. For brevity,
these results are not shown.

8.2.2 Comparison with other WENO schemes

Here, we compare the new WENO-Z+ scheme with the classical WENO, the WENO-M
and WENO-Z schemes. From now on, we will assume that the value of parameter λ of
WENO-Z+ is ∆x2/3 in all tests. All schemes use p = 2 and ε = 10−40, for a fair comparison.

Shock-entropy tests. Figure 27 shows the results of the shock-entropy problem of Shu–
Osher with N = 200 points, and Figure 28 shows the results of the shock-entropy problem
of Titarev–Toro with N = 1000 points. The results of WENO-Z+ are much sharper than
the others, especially in the Titarev–Toro test.

Interacting blast waves. Figure 29 shows a zoom in the results of the interacting blast
waves problem, with N = 200 points. In this problem, WENO-Z+ is not significantly less
dissipative than WENO-Z. In fact, WENO-M, WENO-Z, and WENO-Z+ give comparable
results, with WENO-C being more dissipative than the other three. It should be noted
that WENO-M with p = 1 is unstable for this test, while the other three schemes are not.
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Figure 27 – Numerical solution of the shock-entropy problem of Shu–Osher by the
WENO-Z+, WENO-C, WENO-M, and WENO-Z schemes
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The figure show a zoom in the region of high-frequency waves of the density of the solutions
at t = 1.8. A grid with N = 200 points was used. CFL = 0.5.

Figure 28 – Numerical solution of the shock-entropy problem of Titarev–Toro by the
WENO-Z+, WENO-C, WENO-M, and WENO-Z schemes
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The figure show a zoom in the region of high-frequency waves of the density of the solutions
at t = 5. A grid with N = 1000 points was used. CFL = 0.5.
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Figure 29 – Numerical solution of the blast waves problem by the WENO-Z+, WENO-C,
WENO-M, and WENO-Z schemes
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The figures show a zoom in the density of the solution at t = 0.038. N = 200 points were
used. CFL = 0.5.

Figure 30 – Numerical solution of the Gaussian-square-triangle-ellipse linear test by the
WENO-Z+, WENO-C, WENO-M, and WENO-Z schemes
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The figure shows a zoom in the square wave of the solution at t = 2. N = 200 points were
used. CFL = 0.5.
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Gaussian-square-triangle-ellipse linear test. Figure 30 shows a zoom in the square
wave of the results of the Gaussian-square-triangle-ellipse problem, with N = 200 points.
In this test, WENO-M is the least dissipative, with WENO-Z+ and WENO-Z very close to
each other, and WENO-C coming behind, in order from the least to the most dissipative.

Other tests. We have also run the Riemann problems of Lax and Sod. The results follow
the same trend of GSTE test, that is, from the least to the most dissipative: WENO-M,
WENO-Z+, WENO-Z and WENO-C.

In conclusion, WENO-Z+ really stands out in the shock-entropy tests. In the other
tests, WENO-M is less dissipative, however at a much greater cost than WENO-Z+, which
comes in second place. The results show that, in problems which do not contain fine
structures (such as the ones found in shock-entropy tests), the increased cost of WENO-Z+
may not compensate for its use, since WENO-Z performs fairly close to it in those problems.

8.2.3 Comparison with WENO-Z of different orders

In this section, we will show that the sharpness introduced by the sharpening term η−1
k

on the Zico formula makes the results of WENO-Z+ comparable to, or even better than,
those of higher-order WENO-Z schemes in shock-entropy problems. As before, all schemes
use p = 2 and ε = 10−40.

Figure 31 shows the results of the shock-entropy problem of Shu–Osher with
N = 200 points, and Figure 32 shows the results of the shock-entropy problem of Titarev–
Toro with N = 1000 points. They show that WENO-Z+ excels in this kind of problem,
having at least the resolution power of WENO-Z7 in the Shu–Osher test, and even
surpassing WENO-Z9 in the Titarev–Toro test.
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Figure 31 – Numerical solution of the shock-entropy problem of Shu–Osher by the
WENO-Z+, WENO-Z, WENO-Z7, and WENO-Z9 schemes
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The figure show a zoom in the region of high-frequency waves of the density of the solutions
at t = 1.8. A grid with N = 200 points was used. CFL = 0.5.

Figure 32 – Numerical solution of the shock-entropy problem of Titarev–Toro by the
WENO-Z+, WENO-Z, WENO-Z7, and WENO-Z9 schemes
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9 Accuracy of the WENO-Z+ scheme

We now turn to the task of analyzing the accuracy properties of the new WENO-Z+
scheme.

The goal is to find constraints on the parameters of the weights of WENO-Z+ that
will assure that the nominal order R is always recovered for smooth solutions, regardless
of critical points, that is,

ωk − dk = O(∆xr−1), (9.1a)
ωki+ 1

2
− ωki− 1

2
= O(∆xr), (9.1b)

as it is stated in Proposition 2. For simplicity of notation, in this section we use Definition
4 to write, for any term ψ,

δiψ , ψi+ 1
2
− ψi− 1

2
.

9.1 Properties of βk
In order to find the constraints on the parameters of the WENO-Z+ formula, we will
adopt the same general strategy we introduced in [22] for analyzing the accuracy of the
classical WENO and WENO-Z schemes. As such, we use the following properties of the
smoothness indicators βk, which were demonstrated in [22] and whose proofs are included
in Appendix B.

Corollary 7. At a critical point of order ncp (Definition 1), βk can be decomposed as
a sum of a k-invariant (B) and a k-dependent (Rk) components, for k = 0, . . . , r − 1,
namely:

βk = B +Rk,

where, if ncp < r − 1,

θ(B) = 2(ncp + 1), θ(Rk) ≥ ncp + r + 1,

and, if ncp ≥ r − 1,
B = 0, θ(Rk) = 2(ncp + 1).

In particular, θ(βk) = 2(ncp + 1), and the upper bounds βk = O(∆x2), B = O(∆x2) and
Rk = O(∆xr+1) hold.

Lemma 9. Let
γk ,

Rk

B + ε
,

where B and Rk are given by Corollary 7. If ε = Ω(∆x2), then γk = O(∆xr−1) and
δiγk = O(∆xr).
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9.2 The accuracy constraint
For the analysis of this section, it will be useful to redefine the WENO-Z+ weights so that
τ and βk have distinct accompanying epsilons:

αk , dk

[
1 +

(
τ + ετ
βk + εβ

)p
+ λ

(
βk + εβ
τ + ετ

)]
, ωk ,

αk∑r−1
j=0 αj

, k = 0, . . . , r − 1. (9.2)

Let us define
γk ,

Rk

B + εβ
, H ,

τ + ετ
B + εβ

.

It should be noted that H (for “capital eta”, cf. Eq. (8.2)) is always positive and does not
depend on k.

Assumptions. Assume that p ≥ 1, that γk → 0, H → 0 and H /λ → 0 as ∆x → 0,
and also that λ = O(1) (that is, λ does not grow with ∆x as ∆x→ 0), so the following
manipulations are asymptotically valid.

Using Corollary 7, the unnormalized weights (9.2) can be rewritten as

αk = dk

[
1 +

(
τ + ετ

B +Rk + εβ

)p
+ λ

(
B +Rk + εβ

τ + ετ

)]

= dk
λ

H

[
H
λ

+ (τ + ετ )p+1

λ(B + εβ)(B +Rk + εβ)p + (1 + γk)
]

= dk
λ

H

[
H
λ

+ (τ + ετ )p+1

λ(B + εβ)p+1(1 + γk)p
+ 1 + γk

]

= dk
λ

H

[
H
λ

+ Hp+1

λ

1
(1 + γk)p

+ 1 + γk

]

= dk
λ

H

[
1 + H

λ
+ γk + O

(
Hp+1

λ

)]
.

Hence, the normalized weights are given by

ωk =
dk
λ

H

[
1 + H

λ
+ γk + O

(
Hp+1

λ

)]
r−1∑
j=0

dj
λ

H

[
1 + H

λ
+ γj + O

(
Hp+1

λ

)] =
dk

[
1 + H

λ
+ γk + O

(
Hp+1

λ

)]

1 + H
λ

+
r−1∑
j=0

djγj + O
(

Hp+1

λ

)

= dk

1 + H
λ

+ γk + O
(

Hp+1

λ

)×
×

1−
(

H
λ

+
r−1∑
j=0

djγj

)
+
(

H
λ

+
r−1∑
j=0

djγj

)2

+ · · ·+ O
(

Hp+1

λ

)
= dk + dk

(
γk −

r−1∑
j=0

djγj

)
+ O(γ2

k) + O
(

H2

λ2

)
+ O

(
γk H
λ

)
+ O

(
Hp+1

λ

)

= dk + dk

(
γk −

r−1∑
j=0

djγj

)
+ O(γ2

k) + O
(

H2

λ2

)
. (9.3)
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The last equality holds because

O
(

Hp+1

λ

)
= O

(
H2

λ2

)
O(Hp−1 λ) = O

(
H2

λ2

)
O(1) (by assumption) = O

(
H2

λ2

)
.

Eq. (9.3) results in

ωk − dk = pdk

γk − r−1∑
j=0

djγj

+ O(γ2
k) + O

(
H2

λ2

)
= O(γk) + O

(
H2

λ2

)
,

δiωk = pdk

δiγk − r−1∑
j=0

djδiγj

+ O(δiγ2
k) + O

(
δiH2

λ2

)
= O(δiγk) + O

(
H2

λ2

)
.

The last equality holds because θ(δi H) ≥ θ(H). Therefore, if we have

γk = O(∆xr),
δiγk = O(∆xr−1),
H2

λ2 = O(∆xr),

conditions (9.1a)–(9.1b) are met.

By Lemma 9, if εβ = Ω(∆x2), then γk = O(∆xr−1) and δiγk = O(∆xr). For this
reason, let us assume εβ = Ω(∆x2). To conclude the analysis, it is sufficient to find a
constraint on ετ , p and λ so that

θ

(
H2

λ2

)
≥ r. (9.4)

The orders of H and H2 /λ2 are given by

θ(H) = p [θ(τ + ετ )− θ(B + εβ)] = p [θ(τ + ετ )− θ(εβ)] ,

θ

(
H2

λ2

)
= 2 θ(H)− 2 θ(λ) = 2p [θ(τ + ετ )− θ(εβ)]− 2 θ(λ).

In the first equality, θ(B + εβ) = θ(εβ) because B = O(∆x2) by Corollary 7, εβ = Ω(∆x2)
and both B and εβ are non-negative. Thus, the condition on the parameters translates to

θ(τ + ετ ) ≥
r + 2 θ(λ)

2p + θ(εβ). (9.5)

Now, there are two cases:

Case 1 (θ(τ)opt ≥
r+2 θ(λ)

2p + θ(εβ)). The order of τ + ετ is the smaller between θ(τ) and
θ(ετ ), that is,

θ(τ + ετ ) = min{θ(τ), θ(ετ )},

and the order of τ is the smallest when θ(τ) = θ(τ)opt (Section 3.4). Therefore, it is
sufficient to choose ετ so that

θ(ετ ) ≥
r + 2 θ(λ)

2p + θ(εβ).



102 Chapter 9. Accuracy of the WENO-Z+ scheme

Case 2 (θ(τ)opt <
r+2 θ(λ)

2p + θ(εβ)). In the absence of critical points, θ(τ) = θ(τ)opt. In this
case, the argument of Case 1 shows that no choice of ετ makes relation (9.5) hold.

In sum, we have the following result about the accuracy of the WENO-Z+ scheme:

Proposition 4. The Rth-order WENO-Z+ weights (Eq. (9.2)) with given parameters p
and λ satisfy the optimality condition (Condition 3) if

εβ = Ω(∆x2) and θ(τ)opt, θ(ετ ) ≥
r + 2 θ(λ)

2p + θ(εβ) .

9.3 The fifth-order WENO-Z+ scheme
For the purpose of illustration, consider the R = 5 case, with p = 1, λ = ∆x2/3 and
εβ = ∆x2. The choice of p = 1 will make it easier to see the accuracy properties of
WENO-Z+ in practice. Let us verify which values of ετ satisfy the conditions of Proposition
4. We have

r + 2 θ(λ)
2p + θ(εβ) = 3 + 4/3

2 + 2 = 25
6 .

Since, for order 5, θ(τ)opt = 5 > 25/6, the condition on ετ is

25
6 ≤ θ(ετ ) < +∞,

that is, ετ can be as small as one desires.

9.4 Accuracy tests
In the following, we will test the accuracy of WENO-Z+ with four different sets of
parameters, which are described in Table 2.

Profile λ p εβ ετ Optimal order?

I ∆x2/3 1 10−40 10−40 No, εβ is too small
II ∆x2/3 1 ∆x2 10−40 Yes
III ∆x2/3 1 ∆x2 ∆x No, ετ is too large
IV ∆x2 1 ∆x2 10−40 No, λ is too small

Table 2 – Different profiles of WENO-Z+ for accuracy tests

Profile I is the standard set of parameters for the WENO-Z+ (cf. Section 8.2). Since εβ is
negligible, we expect its order of accuracy to be smaller than 5 at some critical points.

Profile II is the same as Profile I, except for εβ, which is changed to ∆x2 so as to satisfy
Proposition 4.
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Profile III is an example for showing that ετ cannot be too large, otherwise the accuracy
degrades. Here, θ(ετ ) = 1 6≥ r + 2 θ(λ)

2p + θ(εβ) = 25
6 , and we cannot apply Proposition 4.

Profile IV is another example, this time for showing that λ cannot be too small. Here,

r + 2 θ(λ)
2p + θ(εβ) = 3 + 4

2 + 2 = 11
2 > θ(τ)opt = 5

and, again, Proposition 4 cannot be applied.

We run the accuracy test (Section 2.5.4) with grid sizes N = {20, 40, 60, . . . , 200}.
The computations were done with double precision.

Figure 33 shows the L1 order (left column) and error (right column) as functions of
N , for the functions g0(x), g1(x) and g2(x) (top, middle, and bottom rows, respectively),
where g0(x) does not contain a critical point, and g1(x) and g2(x) contain a single critical
point of order 1 and 2, respectively. All profiles achieve the formal order of accuracy in
the test with g0(x), evidencing that WENO-Z+ is indeed a fifth-order scheme regardless of
its parameters. However, only Profile II has optimal accuracy for the tests with g1(x) and
g2(x), which contain critical points. An interesting result is that Profile IV has the smallest
errors in this range of grid points, in spite of its order being smaller than 5. The smaller
errors of Profile IV can be due the fact that λ is smaller, implying that the sharpening
term η−1

k (Eq. (8.2)) has a smaller contribution.

9.5 “Accuracy at critical points” versus “sharpness”

Still considering the profiles in Table 2, we run the Titarev–Toro shock-entropy test (Fig.
34). Interestingly, in the Titarev–Toro test, Profile I, which has the largest errors and
smallest orders in Fig. 33, has the second best results overall at the critical points of the
high-frequency waves, close to the first place, Profile II. On the other hand, Profile IV,
which has the smallest errors in Fig. 33, has the worst results here. It is clear that Profile
I performed better than Profiles III and IV in Fig. 34 not because of better accuracy
properties at the critical points (which it hasn’t), but because of the sharpening term (cf.
Eq. (8.2))

λη−1
k = λ

(
βk + εβ
τ + ετ

)
. (9.6)

From Eq. 9.6, we can see that the sharpening term gets smaller if λ decreases or ετ
increases. This is exactly what happens for Profile III (which has a larger ετ than Profile I)
and Profile IV (smaller λ). Also, although Profile II does have better accuracy at critical
points than Profile I, the better results in Fig. 34 may well be entirely due to the fact that
Profile II has a larger εβ than Profile I and therefore, by Eq. (9.6), this results in a larger
sharpening term.
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Figure 33 – Accuracy tests for the WENO-Z+ scheme with different parameter profiles
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(b) g0(x) (ncp = 0), L1 error
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(c) g1(x) (ncp = 1), L1 order
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The profiles are described in Table 2. The x axis corresponds to different grid sizes
N = [20, 200]. The error plots are in log–log scale.
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Figure 34 – Numerical solution of the shock-entropy problem of Titarev–Toro by the
WENO-Z+ scheme with different profiles of parameters
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The figure show a zoom in the region of high-frequency waves of the density of the solutions
at t = 5. A grid with N = 1000 points was used. CFL = 0.5. The profiles are listed in
Table 2.

9.6 Accuracy and spurious oscillations
Still using the same profiles, we run the Gaussian-square-triangle-ellipse linear test (Fig.
35). It is evident that Profile I is less oscillatory than the others. This is due to the
sensitivity parameter εβ, which assumes the value 10−40 for the Profile I and ∆x2 for the
other Profiles. As discussed in [22], the larger the value of the sensitivity parameter, the
more oscillatory the corresponding WENO schemes are.

So, which profile is most recommended? If the solution of a given problem is known
beforehand to be smooth, it may be more advisable to use Profile II (with εβ = ∆x2) so
as to recover the optimal order (and sharper results) at critical points, since in this case
the solution won’t suffer with spurious oscillations due to large εβ. But then again, if the
solution is known to be smooth, one should be using a more computationally efficient
numerical scheme instead, e.g. spectral methods. The raison d’être of WENO schemes
is dealing with discontinuous solutions while avoiding spurious oscillations. This is why
Profile I is the one we recommend for most cases.
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Figure 35 – Numerical solution of the Gaussian-square-triangle-ellipse linear test by the
WENO-Z+ scheme with different profiles of parameters
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The figure show a zoom on the top of the square wave at t = 2. A grid with N = 800
points was used. CFL = 0.5. The profiles are listed in Table 2.
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Conclusions

We introduced the WENO-Z+ scheme, consisting of the fifth-order WENO-Z with the
addition of a novel and simple sharpening term that is based on the ratio of its smoothness
indicators. This sharpening term increases the resolution of the scheme near critical points
of the solution in a controlled way. The new scheme was able to achieve significantly better
results than the classical WENO and WENO-Z schemes at tests combining shocks and
fine smooth structures like the shock-entropy tests of Shu–Osher and Titarev–Toro. In
some tests, it was even able to overcome the results of higher-order WENO-Z schemes,
showing much sharper profiles at high-frequency waves.

The accuracy of WENO-Z+ at critical points of the solution was also analyzed and
resulted in a condition that the parameter ε has to satisfy in order to achieve the optimal
order of convergence. Nevertheless, the use of ε violating this condition still maintain the
extra sharpness of WENO-Z+, evidencing that optimal accuracy at critical points is not
as relevant to the sharpness of WENO schemes as it is currently thought. The numerical
results indicate that the new scheme deserves further investigation with respect to its
higher-order versions and the analytical tuning of its set of parameters.





109

Bibliography

[1] LAX, P. D. Hyperbolic systems of conservation laws and the mathematical theory of
shock waves. [S.l.]: SIAM, 1973. ISBN 0898711770, 9780898711776. Cited on page 27.

[2] LEVEQUE, R. J. Numerical Methods for Conservation Laws. [S.l.]: Birkhäuser Verlag,
1992. (Lectures in Mathematics ETH Zürich). ISBN 9783764327231. Cited 3 times on
pages 27, 30, and 40.

[3] TORO, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction. [S.l.]: Springer, 2009. ISBN 9783540498346. Cited 2 times on pages 27
and 53.

[4] EVANS, L. C. Partial Differential Equations. [S.l.]: American Mathematical Society,
2010. (Graduate studies in mathematics). ISBN 9780821849743. Cited on page 27.

[5] SHU, C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes
for hyperbolic conservation laws. NASA/CR-97-206253 ICASE Report, n. 97-65, 1997.
Cited 8 times on pages 27, 30, 39, 40, 41, 42, 43, and 47.

[6] BORGES, R. B. de R. Esquemas Essencialmente Não-Oscilatórios para Leis de Conser-
vação Hiperbólicas. Dissertação (Mestrado) — Universidade Federal do Rio de Janeiro,
Rio de Janeiro, mar. 2006. Cited 10 times on pages 27, 32, 39, 41, 59, 60, 67, 69, 75,
and 79.

[7] WESSELING, P. Principles of computational fluid dynamics. [S.l.]: Springer Science &
Business, 2009. ISBN 9783642051463. Cited on page 27.

[8] PIROZZOLI, S. On the spectral properties of shock-capturing schemes. J. Comput.
Phys., Elsevier, v. 219, n. 2, p. 489–497, 2006. Cited 3 times on pages 30, 50, and 51.

[9] SHI, J.; ZHANG, Y.-T.; SHU, C.-W. Resolution of high order WENO schemes for
complicated flow structures. J. Comput. Phys., v. 186, n. 2, p. 690–696, 2003. ISSN
0021-9991. Cited on page 30.

[10] HARTEN, A.; OSHER, S. Uniformly high-order accurate non-oscillatory schemes, I.
SIAM J. Numer. Anal., v. 24, n. 2, p. 279–309, 1987. Cited on page 30.

[11] HARTEN, A.; ENGQUIST, B.; OSHER, S.; CHAKRAVARTHY, S. R. Uniformly
high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys., v. 71,
n. 2, p. 231–303, 1987. ISSN 0021-9991. Cited 2 times on pages 30 and 59.



110 Bibliography

[12] SHU, C.-W.; OSHER, S. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., Elsevier, v. 77, n. 2, p. 439–471, 1988. Cited on
page 30.

[13] SHU, C.-W.; OSHER, S. Efficient implementation of essentially non-oscillatory shock-
capturing schemes, II. J. Comput. Phys., v. 83, n. 1, p. 32–78, 1989. ISSN 0021-9991.
Cited 5 times on pages 30, 40, 41, 53, and 59.

[14] LIU, X.-D.; OSHER, S.; CHAN, T. Weighted essentially non-oscillatory schemes. J.
Comput. Phys., v. 115, n. 1, p. 200–212, 1994. ISSN 0021-9991. Cited 4 times on pages
32, 59, 63, and 64.

[15] JIANG, G.-S.; SHU, C.-W. Efficient implementation of weighted ENO schemes. J.
Comput. Phys., v. 126, n. 1, p. 202–228, 1996. ISSN 0021-9991. Cited 9 times on pages
32, 46, 47, 51, 59, 60, 63, 64, and 117.

[16] BORGES, R.; CARMONA, M.; COSTA, B.; DON, W. S. An improved weighted
essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys.,
v. 227, n. 6, p. 3191–3211, 2008. ISSN 0021-9991. Cited 11 times on pages 32, 35, 39,
47, 60, 61, 63, 67, 69, 70, and 75.

[17] CASTRO, M. Esquemas Essencialmente Não-Oscilatórios de Alta Precisão para Leis
de Conservação Hiperbólicas. Dissertação (Mestrado) — Universidade Federal do Rio de
Janeiro, Rio de Janeiro, nov. 2009. Cited 3 times on pages 32, 60, and 69.

[18] CASTRO, M.; COSTA, B.; DON, W. S. High order weighted essentially non-oscillatory
WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys., v. 230, n. 5, p.
1766–1792, 2011. ISSN 0021-9991. Cited 7 times on pages 32, 60, 61, 65, 68, 69, and 70.

[19] HENRICK, A. K.; ASLAM, T. D.; POWERS, J. M. Mapped weighted essentially
non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys.,
v. 207, n. 2, p. 542–567, 2005. ISSN 0021-9991. Cited 7 times on pages 35, 39, 47, 55,
63, 65, and 70.

[20] YAMALEEV, N. K.; CARPENTER, M. H. Third-order energy stable WENO scheme.
J. Comput. Phys., v. 228, n. 8, p. 3025–3047, 2009. ISSN 0021-9991. Cited 3 times on
pages 35, 70, and 77.

[21] ARÀNDIGA, F.; BAEZA, A.; BELDA, A. M.; MULET, P. Analysis of WENO
schemes for full and global accuracy. SIAM J. Numer. Anal., Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, v. 49, n. 2, p. 893–915, apr 2011. ISSN
0036-1429. Cited 4 times on pages 35, 45, 55, and 70.



Bibliography 111

[22] DON, W.-S.; BORGES, R. Accuracy of the weighted essentially non-oscillatory
conservative finite difference schemes. J. Comput. Phys., v. 250, p. 347–372, 2013. ISSN
0021-9991. Cited 11 times on pages 35, 39, 41, 55, 61, 68, 70, 99, 105, 117, and 121.

[23] GOTTLIEB, S.; SHU, C.-W.; TADMOR, E. Strong stability-preserving high-order
time discretization methods. SIAM review, SIAM, v. 43, n. 1, p. 89–112, 2001. Cited
on page 42.

[24] TITAREV, V. A.; TORO, E. F. ADER: Arbitrary high order godunov approach. J.
Sci. Comput., Springer, v. 17, n. 1-4, p. 609–618, 2002. Cited on page 42.

[25] BALSARA, D. S.; SHU, C.-W. Monotonicity preserving weighted essentially non-
oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys., v. 160,
n. 2, p. 405–452, 2000. ISSN 0021-9991. Cited 6 times on pages 43, 45, 60, 64, 77,
and 117.

[26] GEROLYMOS, G. A.; SÉNÉCHAL, D.; VALLET, I. Very-high-order WENO schemes.
J. Comput. Phys., v. 228, n. 23, p. 8481–8524, 2009. ISSN 0021-9991. Cited 5 times on
pages 43, 45, 60, 64, and 117.

[27] WANG, R.; SPITERI, R. J. Linear instability of the fifth-order WENO method.
SIAM J. Numer. Anal., SIAM, v. 45, n. 5, p. 1871–1901, 2007. Cited on page 47.

[28] WOODWARD, P.; COLELLA, P. The numerical simulation of two-dimensional fluid
flow with strong shocks. J. Comput. Phys., Elsevier, v. 54, n. 1, p. 115–173, 1984. Cited
on page 50.

[29] ZHAO, S.; LARDJANE, N.; FEDIOUN, I. Comparison of improved finite-difference
WENO schemes for the implicit large eddy simulation of turbulent non-reacting and
reacting high-speed shear flows. Comput. Fluids, Elsevier, v. 95, p. 74–87, 2014. Cited
3 times on pages 51, 69, and 70.

[30] LAX, P. D. Weak solutions of nonlinear hyperbolic equations and their numerical
computation. Comm. Pure Appl. Math., Wiley Online Library, v. 7, n. 1, p. 159–193,
1954. Cited on page 53.

[31] SOD, G. A. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. J. Comput. Phys., Elsevier, v. 27, n. 1, p. 1–31, 1978.
Cited on page 53.

[32] TITAREV, V. A.; TORO, E. F. Finite-volume WENO schemes for three-dimensional
conservation laws. J. Comput. Phys., v. 201, n. 1, p. 238–260, 2004. ISSN 0021-9991.
Cited on page 55.



112 Bibliography

[33] SHEN, Y.; ZHA, G. Improvement of the WENO scheme smoothness estimator. Int.
J. Numer. Meth. Fl., John Wiley & Sons, Ltd., v. 64, n. 6, p. 653–675, 2009. ISSN
1097-0363. Cited on page 67.

[34] HA, Y.; KIM, C. H.; LEE, Y. J.; YOON, J. An improved weighted essentially non-
oscillatory scheme with a new smoothness indicator. J. Comput. Phys., v. 232, n. 1, p.
68–86, 2013. ISSN 0021-9991. Cited 2 times on pages 67 and 70.

[35] YAMALEEV, N. K.; CARPENTER, M. H. A systematic methodology for constructing
high-order energy stable WENO schemes. J. Comput. Phys., v. 228, n. 11, p. 4248–4272,
2009. ISSN 0021-9991. Cited 2 times on pages 70 and 77.

[36] SURESH, A.; HUYNH, H. T. Accurate monotonicity-preserving schemes with Runge–
Kutta time stepping. J. Comput. Phys., v. 136, n. 1, p. 83–99, 1997. ISSN 0021-9991.
Cited on page 77.



113

APPENDIX A – Constants and expressions
used by WENO schemes from order 3 to 9

This appendix contains the expressions of the terms which appears in the formulation of
WENO schemes — the substencil approximation f̂k

i+ 1
2
(Chapter 2), ideal weights dk (Section

2.2), smoothness indicators βk of Jiang–Shu (Section 3.3), and the global smoothness
indicator τ (Section 3.4) — for all relevant k (k = 0, . . . , r − 1) and orders R = 3, 5, 7,
and 9.

A.1 Order 3
Table 3 shows the values of dk and the expressions of the substencil approximation f̂k

i+ 1
2

and the second-order approximation to f ′(xi)∆x in the substencil Sk, denoted Dk
1 .

k dk f̂k
i+ 1

2
Dk

1

0 1
3
−fi−1 + 3fi

2 fi − fi−1

1 2
3

fi + fi+1

2 fi+1 − fi

Table 3 – Expressions of dk, f̂ki+ 1
2
, and Dk

1 , for order R = 3 and varying k.

βk can be written in terms of Dk
1 , and τ in terms of βk, as

βk = (Dk
1)2, k = 0, 1,

τ = |β0 − β1|.

A.2 Order 5
Table 4 shows the values of dk, and the expressions of the substencil approximation
f̂k
i+ 1

2
and the third-order approximations to f ′(xi)∆x and f ′′(xi)∆x2 in the substencil Sk,

denoted Dk
1 and Dk

2 , respectively.

βk can be written in terms of Dk
1 and Dk

2 , and τ in terms of βk, as

βk = (Dk
1)2 + 13

12(Dk
2)2, k = 0, 1, 2,

τ = |β0 − β2|.
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k dk f̂k
i+ 1

2
Dk

1 Dk
2

0 1
10

2fi−2 − 7fi−1 + 11fi
6

fi−2 − 4fi−1 + 3fi
2 fi−2 − 2fi−1 + fi

1 3
5

−fi−1 + 5fi + 2fi+1

6
−fi−1 + fi+1

2 fi−1 − 2fi + fi+1

2 3
10

2fi + 5fi+1 − fi+2

6
−3fi + 4fi+1 − fi+2

2 fi − 2fi+1 + fi+2

Table 4 – Expressions of dk, f̂ki+ 1
2
, Dk

1 , and Dk
2 , for order R = 5 and varying k.

A.3 Order 7
Table 5 shows the values of dk, and the expressions of the substencil approximation
f̂k
i+ 1

2
and the fourth-order approximations to f ′(xi)∆x, f ′′(xi)∆x2, and f ′′′(xi)∆x3 in the

substencil Sk, denoted Dk
1 , Dk

2 , and Dk
3 , respectively.

βk can be written in terms of Dk
1 , Dk

2 and Dk
3 , and τ in terms of βk, as

βk = (Dk
1)2 + 13

12(Dk
2)2 + 781

720(Dk
3)2, k = 0, 1, 2, 3,

τ = |β0 + 3β1 − 3β2 − β3|.

A.4 Order 9
Finally, Table 6 shows the values of dk, and the expressions of the substencil approxi-
mation f̂k

i+ 1
2
and the fifth-order approximations to f ′(xi)∆x, f ′′(xi)∆x2, f ′′′(xi)∆x3, and

f ′′′′(xi)∆x4 in the substencil Sk, denoted Dk
1 , Dk

2 , Dk
3 , and Dk

4 , respectively.

βk can be written in terms of Dk
1 , Dk

2 and Dk
3 , and τ in terms of βk, as

βk = (Dk
1)2 + 13

12(Dk
2)2 + 781

720(Dk
3)2 − 1

360D
k
2D

k
4 + 32803

30240(Dk
4)2, k = 0, 1, 2, 3, 4,

τ = |β0 + 2β1 − 6β2 + 2β3 + β4|.
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k
d
k

f̂
k i+

1 2
D
k 1

D
k 2

D
k 3

0
1 35
−

3f
i−

3
+

13
f i
−

2
−

23
f i
−

1
+

25
f i

12
−

2f
i−

3
+

9f
i−

2
−

18
f i
−

1
+

11
f i

6
−
f i
−

3
+

4f
i−

2
−

5f
i−

1
+

2f
i
−
f i
−

3
+

3f
i−

2
−

3f
i−

1
+
f i

1
12 35

f i
−

2
−

5f
i−

1
+

13
f i

+
3f

i+
1

12
f i
−

2
−

6f
i−

1
+

3f
i
+

2f
i+

1

6
f i
−

1
−

2f
i
+
f i

+
1

−
f i
−

2
+

3f
i−

1
−

3f
i
+
f i

+
1

2
18 35

−
f i
−

1
+

7f
i
+

7f
i+

1
−
f i

+
2

12
−

2f
i−

1
−

3f
i
+

6f
i+

1
−
f i

+
2

6
f i
−

1
−

2f
i
+
f i

+
1

−
f i
−

1
+

3f
i
−

3f
i+

1
+
f i

+
2

3
4 35

3f
i
+

13
f i

+
1
−

5f
i+

2
+
f i

+
3

12
−

11
f i

+
18
f i

+
1
−

9f
i+

2
+

2f
i+

3

6
2f

i
−

5f
i+

1
+

4f
i+

2
−
f i

+
3

−
f i

+
3f

i+
1
−

3f
i+

2
+
f i

+
3

Ta
bl
e
5
–
Ex

pr
es
sio

ns
of
d
k
,f̂

k i+
1 2
,D

k 1,
D
k 2,

an
d
D
k 3,

fo
r
or
de
r
R

=
7
an

d
va
ry
in
g
k
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k
d
k

f̂
ki+

12
D
k1

D
k2

0
1126

12f
i−

4 −
63f

i−
3 +

137
f
i−

2 −
163

f
i−

1 +
137

f
i

60
3
f
i−

4 −
16f

i−
3 +

36
f
i−

2 −
48f

i−
1 +

25
f
i

12
11f

i−
4 −

56f
i−

3 +
114

f
i−

2 −
104

f
i−

1 +
35
f
i

12

1
1063

−
3f
i−

3 +
17
f
i−

2 −
43f

i−
1 +

77
f
i +

12
f
i+

1
60

−
f
i−

3 +
6
f
i−

2 −
18f

i−
1 +

10
f
i +

3
f
i+

1
12

−
f
i−

3 +
4
f
i−

2 +
6
f
i−

1 −
20f

i +
11
f
i+

1
12

2
1021

2f
i−

2 −
13f

i−
1 +

47
f
i +

27
f
i+

1 −
3f
i+

2
60

f
i−

2 −
8
f
i−

1 +
8
f
i+

1 −
f
i+

2
12

−
f
i−

2 +
16
f
i−

1 −
30f

i +
16
f
i+

1 −
f
i+

2
12

3
2063

−
3f
i−

1 +
27
f
i +

47
f
i+

1 −
13f

i+
2 +

2
f
i+

3
60

−
3
f
i−

1 −
10f

i +
18
f
i+

1 −
6
f
i+

2 +
f
i+

3
12

11f
i−

1 −
20f

i +
6
f
i+

1 +
4
f
i+

2 −
f
i+

3
12

4
5126

12f
i +

77
f
i+

1 −
43f

i+
2 +

17
f
i+

3 −
3f
i+

4
60

−
25f

i +
48
f
i+

1 −
36f

i+
2 +

16
f
i+

3 −
3f
i+

4
12

35f
i −

104f
i+

1 +
114

f
i+

2 −
56f

i+
3 +

11
f
i+

4
12

k
D
k3

D
k4

0
3f
i−

4 −
14f

i−
3 +

24
f
i−

2 −
18f

i−
1 +

5
f
i

2
f
i−

4 −
4f
i−

3 +
6
f
i−

2 −
4
f
i−

1 +
f
i

1
f
i−

3 −
6
f
i−

2 +
12
f
i−

1 −
10f

i +
3
f
i+

1
2

f
i−

3 −
4f
i−

2 +
6
f
i−

1 −
4
f
i +

f
i+

1

2
−
f
i−

2 +
2
f
i−

1 −
2f
i+

1 +
f
i+

2
2

f
i−

2 −
4f
i−

1 +
6
f
i −

4f
i+

1 +
f
i+

2

3
−

3f
i−

1 +
10
f
i −

12f
i+

1 +
6
f
i+

2 −
f
i+

3
2

f
i−

1 −
4f
i +

6
f
i+

1 −
4
f
i+

2 +
f
i+

3

4
−

5f
i +

18
f
i+

1 −
24f

i+
2 +

14
f
i+

3 −
3
f
i+

4
2

f
i −

4
f
i+

1 +
6
f
i+

2 −
4
f
i+

3 +
f
i+

4

Table
6
–
Expressions

of
d
k ,
f̂
ki+

12 ,
D
k1 ,
D
k2 ,
D
k3 ,and

D
k4 ,for

order
R

=
9
and

varying
k.
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APPENDIX B – Properties of the
smoothness indicator β

Let’s recall the definition of the smoothness indicator β (cf. Definition 6):

βk =
r−1∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl f̂
k(x)

)2

dx, k = 0, . . . , r − 1. (B.1)

For substencil order r = 3, we have seen that βk can be written in a simpler form, as a
sum of powers of finite difference approximations to derivatives of f at xi,

β0 = 1
4 (fi−2 − 4fi−1 + 3fi)2 + 13

12 (fi−2 − 2fi−1 + fi)2 ,

β1 = 1
4 (−fi−1 + fi+1)2 + 13

12 (fi−1 − 2fi + fi+1)2 ,

β2 = 1
4 (−3fi + 4fi+1 − fi+2)2 + 13

12 (fi − 2fi+1 + fi+2)2 . (B.2)

Notice that these expressions collectively satisfy

βk = (f ′i∆x+ O(∆x3))2 + 13
12(f ′′i ∆x2 + O(∆x3))2, k = 0, 1, 2, (B.3)

the O(∆x3) terms being different at each substencil Sk. This allows us to write βk in the
convenient–for–proofs form

βk =
(
(f ′i)2∆x2 + O(∆x4)

)
+
(13

12(f ′′i )2∆x4 + O(∆x5)
)

=
(

(f ′i)2∆x2 + 13
12(f ′′i )2∆x4

)
+ O(∆x4) = B +Rk.

It is not immediate how, from the definition of βk, one obtains the more convenient
finite differences form (B.2), since Eq. (B.1) involves integrals of squares of derivatives
of f̂k(x) — a polynomial related to f(x), indeed, but distinct from it. Until recently, we
had these convenient expressions for r = 2 and r = 3 only [15], the existing higher-order
expressions being rather long and not as useful for accuracy proofs [25, 26]. But in [22],
we achieved a result proving the existence of convenient expressions like (B.3) for any
suborder r, and we gave such expressions to suborders up to r = 6. The result is stated as
follows:

Proposition 5. The smoothness indicators βk, defined by (B.1), can be written in a
bilinear form as

βk =
〈
φk, Cφk

〉
=

r−1∑
m=1

r−1∑
n=1

Cmnφ
k
mφ

k
n, (B.4)

where
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i) φk is a (r − 1) vector, whose elements

φkm = ∆xm−1
∫ x

i+ 1
2

x
i− 1

2

dm
dxm f̂

k(x) dx = f
(m)
i ∆xm+O(∆xr), m = 1, . . . , r−1, (B.5)

are the rth-degree polynomial approximation to f
(m)
i ∆xm in substencil Sk. The

dependence of φk on k relies on the O(∆xr) terms only.

ii) C, the smoothness measurement matrix, is a (r − 1)× (r − 1) constant symmetric
positive semidefinite matrix.

For instance, for r = 4, Proposition 5 implies that βk can be written as

βk = C11(f ′i∆x+ O(∆x4))2 + 2C12(f ′i∆x+ O(∆x4))(f ′′i ∆x2 + O(∆x4))
+ C22(f ′′i ∆x2 + O(∆x4))2 + 2C23(f ′′i ∆x2 + O(∆x4))(f ′′′i ∆x3 + O(∆x4))
+ C33(f ′′′i ∆x3 + O(∆x4))2 + 2C13(f ′i∆x+ O(∆x4))(f ′′′i ∆x3 + O(∆x4)),

and this allows us to write

βk =
(
C11(f ′i)2∆x2 + 2C12f

′
if
′′
i ∆x3 + C22(f ′′i )2∆x4 + 2C23f

′′
i f
′′′
i ∆x5

+ C33(f ′′′i )2∆x6 + 2C13f
′
if
′′′
i ∆x4

)
+ O(∆x5) = B +Rk.

The proof of Proposition 5 uses the following lemma about polynomials:

Lemma 6. Let p(x) be a polynomial of degree M and xi ∈ R a given point. There exists
a (M + 1)× (M + 1) constant symmetric matrix A such that

∆x
∫ xi+∆x/2

xi−∆x/2
(p(x))2 dx = 〈v, Av〉 , (B.6)

where v is a vector whose elements are

vm = ∆xm
∫ xi+∆x/2

xi−∆x/2

dm
dxmp(x) dx, m = 0, . . . , M. (B.7)

Proof. Without loss of generality, we may assume xi = 0. Consider p(x) a generic polyno-
mial of degree M , namely,

p(x) =
M∑
m=0

amx
m. (B.8)

Let a denote the vector of polynomial coefficients {am, m = 0, . . . , M} of p(x), and let v
be as stated by Eq. (B.7). By substituting Eq. (B.8) into Eq. (B.7), we notice that vm is
in fact a linear form of a,

vm =
M∑
n=0

Umn∆xn+1an, (B.9)
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or v = UDa in a matrix-vector form, where the elements of the diagonal matrix D and of
upper triangular matrix U are

Dmm = ∆xm+1, Umn =


n!

(n−m+ 1)!2n−m , if m ≤ n, and m+ n is even,

0, otherwise,
(B.10)

respectively. Since the constant matrix U is an upper triangular matrix with positive
diagonal elements, U is invertible and, hence, Da = U−1v .

Moreover, by substituting Eq. (B.8) into the left-hand side of Eq. (B.6), one has a
bilinear form,

∆x
∫ ∆x/2

−∆x/2
(p(x))2 dx =

M∑
m=0

M∑
n=0

Bmn∆xm+n+2aman = 〈Da, BDa〉 , 〈v, Av〉 , (B.11)

where the elements of the constant symmetric matrix B are

Bmn =


1

2m+n(m+ n+ 1) , if m+ n is even,

0, otherwise,
(B.12)

and A = (U−1)TBU−1 is a constant symmetric matrix.

Now, we are ready to prove the proposition.

Proof of Proposition 5. In the definition of the smoothness indicators βk (Eq. (B.1)),

βk =
r−1∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl f̂
k(x)

)2

dx,

f̂k(x) is a polynomial of degree (r − 1), and it satisfies

f̂k(x) = h(x) + O(∆xr). (B.13)

Therefore, by Lemma 6, there exist (r − l − 1)× (r − l − 1) constant symmetric matrices
Al such that

βk =
r−1∑
l=1

∆x2l−2
〈
vk,l, Alvk,l

〉
=

r−1∑
l=1

〈
uk,l, Aluk,l

〉
, (B.14)

with the elements of vectors uk,l given by

uk,lm = ∆xl−1vk,lm = ∆xm+l−1
∫ x

i+ 1
2

x
i− 1

2

dm+l

dxm+l f̂
k(x) dx, m = 0, . . . , r − l − 1. (B.15)

Let’s define a new vector φk as

φkm = ∆xm−1
∫ x

i+ 1
2

x
i− 1

2

dm
dxm f̂

k(x) dx, m = 1, . . . , r − 1. (B.16)
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Notice that uk,lm = φkm+l, m = 0, . . . , r − l − 1; or, in a matrix-vector form,

uk,l = Qlφk, with Ql
(r−l)×(r−1) =

[
0(r−l)×(l−1) I(r−l)×(r−l)

]
. (B.17)

Substituting Eq. (B.17) into Eq. (B.14) gives

βk =
r−1∑
l=1

〈
Qlφk, AlQlφk

〉
,
〈
φk, Cφk

〉
, where C =

r−1∑
l=1

(Ql)TAlQl. (B.18)

Supposing 1 ≤ m ≤ r − 1 and using Eq. (B.13) and Eq. (B.16), one has

φkm = ∆xm−1 dm−1

dxm−1 f̂
k(x)

∣∣∣∣∣
x

i+ 1
2

x
i− 1

2

= ∆xm−1

 dm−1

dxm−1h(x)
∣∣∣∣∣
x

i+ 1
2

x
i− 1

2

+ O(∆xr−m+1)


= f

(m)
i ∆xm + O(∆xr), (B.19)

where the O(∆xr) term depends on f̂k(x) and therefore is different for each k, in general.
Finally, by Lemma 6 and Eq. (B.18), C is a constant symmetric positive semi-definite
matrix.

Corollary 7. At a critical point of order ncp (Definition 1), βk can be decomposed as
a sum of a k-invariant (B) and a k-dependent (Rk) components, for k = 0, . . . , r − 1,
namely:

βk = B +Rk,

where, if ncp < r − 1,

θ(B) = 2(ncp + 1), θ(Rk) ≥ ncp + r + 1,

and, if ncp ≥ r − 1,
B = 0, θ(Rk) = 2(ncp + 1).

In particular, θ(βk) = 2(ncp + 1), and the upper bounds βk = O(∆x2), B = O(∆x2) and
Rk = O(∆xr+1) hold.

Proof. By Proposition 5, one has

βk =
〈
φk, Cφk

〉
, φkm = f

(m)
i ∆xm + O(∆xr), m = 1, . . . , r − 1,

where C is the smoothness measurement matrix. We shall decompose the vector φk into a
sum of its k-invariant and k-dependent components, φB and φRk , respectively:

φBm = f
(m)
i ∆xm, φRk

m = φkm − φBm, m = 1, . . . , r − 1. (B.20)

Since C is symmetric, one has

βk =
〈
φB + φRk , C(φB + φRk)

〉
=
〈
φB, CφB

〉
+ 2

〈
φB, CφRk

〉
+
〈
φRk , CφRk

〉
.
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Define
B ,

〈
φB, CφB

〉
, Rk , 2

〈
φB, CφRk

〉
+
〈
φRk , CφRk

〉
. (B.21)

By construction, B does not depend on k.

Now, suppose xi is a critical point of order ncp of f(x). One has

φBm =

f
(m)
i ∆xm, if ncp < m

0, if ncp ≥ m
, φRk

m =

O(∆xr), if ncp < r − 1

Θ(∆xncp+1), if ncp ≥ r − 1
,

which implies (by Eq. (B.21))

B =

Θ(∆x2(ncp+1)), if ncp < r − 1

0, if ncp ≥ r − 1
, Rk =

O(∆xr+ncp+1), if ncp < r − 1

Θ(∆x2(ncp+1)), if ncp ≥ r − 1
.

So far, the results in this appendix have only concerned about the xi+ 1
2
-centered

version of the smoothness indicator βk ≡ βk
i+ 1

2
. However, in the analysis of the order of

accuracy of the WENO-C and WENO-Z+ schemes, the properties of its xi− 1
2
-centered

counterpart βk
i− 1

2
must also be taken into consideration. Especially, the orders of the

centered differences δiB and δiRk, θ(δiB) and θ(δiRk), respectively, play essential roles for
proving they satisfy the optimality condition via Proposition 2.

Corollary 8. The orders of δiB and δiRk satisfy the inequalities

θ(δiB) ≥ 3, θ(δiRk) ≥ r + 2.

Moreover, at a critical point xi of f(x) satisfying, f ′(xi) = 0, f ′′(xi) 6= 0 and f (r)(xi) 6= 0,
one has exactly

θ(δiB) = 4, θ(δiRk) = r + 2.

Proof. Now, assume that the only nonzero term in the first row and column of the
smoothness measuring matrix is C11, which is equal to 1. This fact, unproven in [22], will
be properly demonstrated in a future work. It follows, by Eq. (B.20), that the leading
order terms in B and Rk depend only on φk1:

B = (φB1 )2 + O(∆x4), Rk = 2φB1 φ
Rk
1 + O(∆xr+2). (B.22)

Recalling from the definitions (B.5) and (B.20),

φB1 = f ′i∆x, φRk
1 = Akrf

(r)
i ∆xr + O(∆xr+1).

Hence, one has

δiφ
B
1 = (f ′i − f ′i−1)∆x = f ′′i ∆x2 + O(∆x3),

δiφ
Rk
1 = (f (r)

i − f
(r)
i−1)Akr∆xr + O(∆xr+2) = Akrf

(r+1)
i ∆xr+1 + O(∆xr+2).
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Finally, by Eq. (B.22),

δiB = (φB1 )2 − (φB1 − δiφB1 )2 + O(∆x5) = f ′if
′′
i ∆x3 − (f ′′i )2∆x4 + O(∆x5),

δiRk = 2φB1 φ
Rk
1 − 2(φB1 − δiφB1 )(φRk

1 − δiφRk
1 ) + O(∆xr+3) (B.23)

= (f ′if
(r+1)
i + f ′′i f

(r)
i )2Akr∆xr+2 + O(∆xr+3),

Which gives the desired results.

Lemma 9. Let
γk ,

Rk

B + ε
,

where B and Rk are given by Corollary 7. If ε = Ω(∆x2), then γk = O(∆xr−1) and
δiγk = O(∆xr).

Proof. Assume θ(ε) ≤ 2. By Corollary 7, we have

γk = Rk

B + ε
= O(∆xr+1)

O(∆x2) + Ω(∆x2)
= O(∆xr+1)

Ω(∆x2)
= O(∆xr−1),

and
δiγk = Rk

B + ε
− Rk − δiRk

B − δiB + ε
= (B + ε)δiRk −RkδiB

(B + ε)(B + ε− δiB) .

Using Corollary 8, for any critical point of order ncp one has

θ(δiγk) = min{θ(δiRk) + θ(ε), θ(Rk) + θ(δiB)} − 2θ(ε)
≥ min{θ(δiRk)− 2, θ(Rk) + θ(δiB)− 4} ≥ r.
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APPENDIX C – Properties of the anti-Zico
weights

The purpose of this section is to show that the “anti-Zico” weights of Section 7.2, which
violate the ENO property (Condition 3), nevertheless work for smooth solutions. This is
done by demonstrating that ω−Z

k = dk + O(∆x) and, therefore, ω−Z
k → dk as ∆x→ 0.

Proposition 10. Consider the “anti-Zico” weights ω−Z
k , defined as (cf. Eq. (7.9))

α−Z
k , dk

[
1 +

(
βk
τ + ε

)p]
, ω−Z

k ,
α−Z
k∑r−1

j=0 α
−Z
j

, k = 0, . . . , r − 1. (C.1)

If the solution is smooth and does not contain a critical point of order ncp ≥ r − 1, and ε
is sufficiently small, the weights ω−Z

k approach the ideal weights dk as ∆x→ 0.

Proof. Let

β̄ , p

√√√√r−1∑
j=0

dj(βj)p.

If β̄ = 0 then, by definition (C.1), ω−Z
k = dk for k = 0, . . . , r − 1; otherwise, we have

ω−Z
k − dk =

dk

1 +
(

βk
τ + ε

)p
−

r−1∑
j=0

dj

(
1 +

(
βj

τ + ε

)p)
r−1∑
j=0

dj

(
1 +

(
βj

τ + ε

)p)

=
dk


(

βk
τ + ε

)p
−

r−1∑
j=0

dj

(
βj

τ + ε

)p
1 +

r−1∑
j=0

dj

(
βj

τ + ε

)p

=
dk

[(
βk
τ + ε

)p
−
(

β̄

τ + ε

)p]

1 +
(

β̄

τ + ε

)p =
dk

[(
βk

β̄

)p
− 1

]

1 +
(
τ + ε

β̄

)p .

Now, by Corollary 7, for k = 0, . . . , r−1 we have βk = O(∆x2) (which implies β̄ = O(∆x2)),
and, importantly, βk can be written as βk = B + Rk, where B does not depend on k.
Moreover, since the solution is smooth and does not contain a critical point of order
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ncp ≥ r − 1, and ε is small, we have τ + ε

β̄
= O(∆x) and Rk

B
= O(∆x) at least. Thus,

ω−Z
k − dk =

dk

[(
βk

β̄

)p
− 1

]

1 +
(
τ + ε

β̄

)p =
dk

[
(βk)p∑r−1

j=0 dj(βj)p
− 1

]
1 + O(∆xp)

= dk

[
(B +Rk)p∑r−1

j=0 dj(B +Rj)p
− 1

]
(1 + O(∆xp))

= dk


1 + p

Rk

B
+ O

(
R2
k

B2

)
r−1∑
j=0

dj

(
1 + p

Rj

B
+ O

(
R2
j

B2

)) − 1

 (1 + O(∆xp))

= dk

(
1 + O(∆x)
1 + O(∆x) − 1

)
(1 + O(∆xp))

= dk(1 + O(∆x)− 1)(1 + O(∆xp)) = O(∆x).
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Index

discontinuous/continuous ratio, 48

equations
Euler equations of compressible flow,

50
linear advection, 50

fifth-order upstream central scheme, 42
flux (f), 39

hyperbolic conservation laws, 27, 39

numerical flux function (h), 41
polynomial approximation (f̂), 41, 113

numerical tests
accuracy test, 55
ADR analysis, 50
blast waves, 50
GSTE, 51
Riemann problem
of Lax, 53
of Sod, 53

shock-entropy test
of Shu–Osher, 53
of Titarev–Toro, 55

order
of a critical point (ncp), 21
of substencils (r), 43
of the scheme (R), 43

power parameter (p), 63

sensitivity parameter (ε), 63
sharpening term, 78, 86
smoothness indicator, 57

global, 67
of WENO-Z (τ), 61, 113

of Jiang–Shu (β), 59, 113, 117

steepening term, see sharpening term
suborder, see order of substencils

weights
anti-Zico, 82, 123
classical, 63
ideal (dk), 45, 113
min, 75, 79
nonlinear, 43
unnormalized, 49
Zico, 67
Zico+, 87

WENO schemes, 43
Classical WENO, see WENO-C
ESWENO, 70
Original WENO, 64
WENO-C, 64
WENO-JS, see WENO-C
WENO-min, 75, 81
WENO-MZ, 70
WENO-NS, 70
WENO-Z, 69
WENO-Z+, 90
Zico WENO, see WENO-Z
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