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t́ıtulo de Doutor em Matemática.
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RESUMO

Resumo da Tese apresentada ao PGPIM/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Matemática (D.Sc.)

UMA FORMULAÇÃO ABSTRATA PARA A TEORIA DE SOLUÇÕES

ESTATÍSTICAS

Cećılia Freire Mondaini

Maio/2014

Orientador: Ricardo Rosa

Programa: Matemática

Soluções estat́ısticas têm sido usadas principalmente a fim de se entender mais pro-

fundamente algumas propriedades de fluxos turbulentos de modo rigoroso. Este tipo de

solução é usado como uma alternativa à falta de um resultado sobre boa colocação as-

sociada a soluções individuais das equações de Navier-Stokes, um modelo amplamente

aceito para fluxos turbulentos. O objetivo deste trabalho é estender a teoria presente

de soluções estat́ısticas a um patamar abstrato que possa então ser aplicado a inúmeros

outros problemas de evolução para os quais a boa colocação também não foi estabelecida.

Com este propósito, constrói-se uma estrutura abstrata tendo como base um espaço to-

pológico de Hausdorff que representa o espaço de fase de um sistema, e com o conjunto

de trajetórias correspondente pertencendo ao espaço de caminhos cont́ınuos neste espaço

de fase. Então, após estabelecer as definições de soluções estat́ısticas neste sentido geral,

dois pontos principais são considerados. Em primeiro lugar, prova-se a existência de tais

soluções estat́ısticas em relação a certos problemas de valor inicial. Em segundo lugar,

mostra-se a convergência de soluções estat́ısticas associadas a problemas aproximados

dependentes de um parâmetro. Algumas aplicações a modelos espećıficos são também

fornecidas em cada caso como ilustração desta teoria abstrata.

Palavras-chave: soluções estat́ısticas, soluções estat́ısticas de trajetórias, equações de

Navier-Stokes.
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ABSTRACT

Abstract of the Thesis presented to PGPIM/UFRJ as part of the requirements for the

degree of Doctor of Science (D.Sc.)

ABSTRACT FRAMEWORK FOR THE THEORY OF STATISTICAL SOLUTIONS

Cećılia Freire Mondaini

May/2014

Advisor: Ricardo Rosa

Department: Mathematics

Statistical solutions have been mainly used for understanding some properties of tur-

bulent flows in a deep and rigorous way. This type of solution is used as an alternative for

the lack of a well-posedness result concerned with individual solutions of the Navier-Stokes

equations, a widely accepted model for turbulent flows. The aim of this work is to extend

the current theory of statistical solutions to an abstract level that allows it to be applied

to a wide range of evolution problems which are also not known to be well-posed. For

that purpose, an abstract framework is constructed with a general Hausdorff topological

space as the phase space of the system, and with the corresponding set of trajectories

belonging to the space of continuous paths in that phase space. Then, after establishing

the definitions of statistical solutions in this general sense, two main points are addressed.

First, the existence of such statistical solutions in regard to some initial-value problems,

and secondly, the convergence of statistical solutions associated to approximated prob-

lems depending on a parameter. Some model examples are also provided in each case,

illustrating the applicability of this abstract theory.

Keywords: statistical solutions, trajectory statistical solutions, Navier-Stokes equations.
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Chapter 1

Introduction

Since its initial steps, the theory of statistical solutions has gone through a significant

development, becoming a subject that encompasses a number of concepts from several

different areas of Mathematics and with a growing number of applications [3, 6, 11, 15, 17,

20, 24, 40]. However, the current results are mainly given for the Navier-Stokes equations

and some modified versions of it. The idea in our work is to extend this theory to a more

abstract level, so that similar results could be obtained for other equations which, just like

the Navier-Stokes equations, do not have an established result of global well-posedness.

1.1 Historical Background

The concept of statistical solutions has emerged in the context of fluid dynamics in

order to provide a rigorous mathematical definition for the notion of ensemble average,

commonly used in the study of turbulent flows. In such flows, the relevant physical

quantities (e.g., velocity, kinetic energy, and pressure) present a wild variation in space

and time, characterizing a highly irregular and unpredictable behavior. Nevertheless,

those quantities display a regular behavior when considered with respect to some average.

In an attempt to investigate general properties of turbulent flows, one is then naturally

led to deal with averages of the desired quantities. Several types of averages are usually

considered, such as locally in space, locally in time, and with respect to an ensemble

of experiments. Statistical solutions are directly related to this latter notion of average,

known as ensemble average.

The mathematical treatment of the equations governing the motion of fluids, namely

the Navier-Stokes equations, was started by J. Leray in the 1930’s [31, 32, 33], when the

concept of weak solutions to these equations was first introduced and studied. These in-

dividual weak solutions allow us to obtain rigorous results concerned with time and space

averages. However, if one wants to consider ensemble averages, then it is necessary to
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consider collections of individual solutions and to obtain probability distributions asso-

ciated with these collections. This new concept requires a statistical approach that has

been first developed from Engineering and Physical points of view by R. Reynolds [41],

G. Taylor [45], T. von Karman and L. Howarth [44], among others, in the late 1800’s and

early 1900’s.

A few decades later, E. Hopf published a more theoretical work [25] over these sta-

tistical ideas, using modern methods of functional analysis. However, a more complete

and rigorous theory was only developed in the 1970’s, when C. Foias, based on a measure

theoretical point of view firstly proposed by G. Prodi, introduced the notion of statistical

solutions in phase space [16]. This type of solution consists of a family of measures para-

metrized by the time variable representing the evolution of probability distributions of a

viscous incompressible fluid. Later on, Vishik and Fursikov [52] defined a different notion

of statistical solutions, based on a single measure defined on the space of trajectories.

More recently, Foias, Rosa and Temam [21, 22] (see also [19]) introduced a slightly mo-

dified definition of this latter solution, inspired by the definition given in [52], and which

was denoted as Vishik-Fursikov measure, for a measure defined in the space of trajecto-

ries. Projecting this measure to the phase space at each time, they obtained a particular

type of statistical solution, which is termed a Vishik-Fursikov statistical solution. What

is interesting about this new definition is that every Vishik-Fursikov statistical solution

is a statistical solution in the sense of Foias-Prodi. Also, besides being more favorable to

analysis, the former seems to possess additional properties.

The notion of statistical solutions is mainly used for evolution problems which are not

known to be well-posed. In this case, one cannot guarantee that the associated evolution

equation generates a well-defined semigroup, i.e. a family of operators {S(t)·}t with t

varying in a time interval I ⊂ R such that, for each t ∈ I and each element u0 in

the phase space X , u = S(t)u0 is the unique solution of the given equation satisfying

u(t0) = u0. When such a family of operators is well-defined, one can define the evolution

of probability distributions starting from an initial measure µ0 on X as

µt(·) = S(t)µ0(·) = µ0(S(t)
−1·), t ∈ I.

However, if no well-posedness result is available and, consequently, the family {S(t)·}t∈I is

not necessarily well-defined, one defines the evolution of probability distributions through

statistical solutions. Usually, if the evolution problem is well-posed, then both definitions

coincide.
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1.2 Main Goals

Our purpose in this work is to construct an abstract framework for the theory of

statistical solutions focusing on the definitions of Vishik-Fursikov measure and Vishik-

Fursikov statistical solution given in [21, 22]. We aimed at extracting the key ideas given

in these works and adapt them to a framework as general as possible, so that it would be

suitable to a wide range of applications.

This framework is built over a general Hausdorff topological spaceX and the associated

space of continuous paths Cloc(I,X), over a given time interval I ⊂ R (i.e. the space of

continuous functions defined on a real interval I and assuming values in X), and endowed

with the compact-open topology. A key object in this theory is a subset U of Cloc(I,X),

which has no special meaning in this abstract level, but which, in the applications, is

taken to be the set of (individual) solutions of a given evolutionary system, for which X

is a phase space.

Our first general definition of statistical solution is given with respect to this set U and

called a U-trajectory statistical solution. This type of solution represents a generalization

of the notion of Vishik-Fursikov measure given in [21, 22] and is defined as a tight Borel

probability measure on the space of continuous paths in X which is carried by U . The

second general definition incorporates the idea of a Vishik-Fursikov statistical solution

from [21, 22] and is called a statistical solution in phase space. This is defined as a family

of Borel probability measures parametrized by a time variable and satisfying, among other

conditions, a Liouville-type equation. We also define the notion of a projected statistical

solution, which is a family of Borel probability measures given by the projections on phase

space at each time of a trajectory statistical solution.

The main results of this work may be divided into two parts. In the first one (Chapter

3), our main concern is to prove the existence of statistical solutions in these general senses

for certain initial-value problems (Problems 3.1.1 and 3.1.2). In this context, although

there is no equation at the abstract level, we consider an interval I closed and bounded

at the left and which is interpreted as a time interval. In order to obtain an existence

theorem for these abstract initial-value problems, a series of restrictions must be imposed

on the set U that mimic some essential properties of the space of solutions occurring in

the applications (Definition 3.2.1). Under those hypotheses, we first prove the existence

of a U-trajectory statistical solution such that its projection at the initial time is equal to

a given initial tight Borel probability measure on X (Theorem 3.2.1). Next, we prove the

existence of a statistical solution in phase space, say {ρt}t∈I , such that, if t0 represents

the initial time (i.e. the left end point of the interval I), then ρt0 is equal to a given initial

tight Borel probability measure on X (Theorem 3.3.2). For this second result, we must
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assume the existence of an evolution equation of the form

ut = F (t, u(t)), t ∈ I,

and some additional hypotheses must be considered in regard to the function F . In order

to illustrate these results, we apply them to the Navier-Stokes equations, a reaction-

diffusion equation, a nonlinear wave equation and the Bénard problem.

The second part (Chapter 4) is concerned with the convergence of statistical solutions

for models depending on a parameter. Usually, one has an evolution problem which

is not known to be well-posed and consider a family of approximated problems with

respect to a parameter, each one being well-posed. The idea consists in showing that the

statistical solutions associated to these regularized problems, which are defined via their

well-defined solution operators, converge to a statistical solution of the limit problem.

A general result of this type is obtained by considering a new set of hypotheses, which

must be satisfied by the set U and also by the family of solution operators associated to

the approximated problems. Assuming these hypotheses, we prove that, given an initial

tight Borel probability measure on X , the sequence of induced measures from this initial

measure by each solution operator (see Section 2.2) converges, modulo a subsequence, to

a U-trajectory statistical solution (Theorem 4.1.1). Moreover, considering the projections

of these measures on X at each time t, we obtain an analogous result for the convergence

of statistical solutions in phase space (Theorem 4.1.2). As an application of these results,

we consider the Navier-Stokes-α model and the MHD-α model.

We observe that this second part can also be seen as another approach to the first

one, i.e. to prove the existence of a statistical solution satisfying a given initial data. The

main difference lies in the fact that in the first part the statistical solution is obtained

as the limit of a net of measures in trajectory space that is derived from a certain net of

approximating measures of the initial measure in phase space, given by the Krein-Milman

Theorem. On the other hand, in the second part the statistical solution is obtained as

the limit of a sequence of statistical solutions associated to the approximated problems.

As we can see, however, in both cases the statistical solution for the initial value

problem is obtained through the limit of an approximating family of measures. Thus,

one of the tools we need in these proofs is a compactness result for measures. A result

of this kind which is suitable for our abstract context was developed by Topsoe [48,

49, 50] in his works on a generalization of Prohorov’s Theorem (see [38]). One of his

results states that the uniform tightness of a family of tight Borel probability measures

defined on a general Hausdorff space implies that the family is compact with respect to

a certain topology which is stronger than the classical weak-star topology for measures.

This stronger topology is based on semi-continuity, rather than continuity (see Section

2.3), and is not strictly necessary, but it is a more general and stronger result and it

4



simplifies our presentation.

Some basic definitions and results which are needed throughout this work, including

the ones concerned with this stronger topology, are present in Chapter 2. In Appendices

A and B we have included further details of some results which are mentioned in the

text. More specifically, in Appendix A we explore the relation between the classical weak-

star topology and the stronger topology defined by Topsoe in the space of measures.

In Appendix B we present the proof of a strengthened energy inequality satisfied by

the Navier-Stokes equations for a forcing term which is more general than what it was

previously considered in other works.
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Chapter 2

Basic Tools

In this chapter we introduce the basic concepts underlying our results. Most definitions

and statements are given with respect to a topological spaceX , which is assumed at first to

be only a Hausdorff space, although in some situations further properties may be required.

In Section 2.1, we give the notation for some function spaces and, in particular, our basic

function space, consisting of all the continuous paths in X defined on a given interval

I ⊂ R. In Section 2.2 we recall some well-known facts and definitions from measure

theory, setting the notation that is used later. In Section 2.3 we endow the space of finite

measures on X with a suitable topology, named the weak-star semi-continuity topology,

which allow us in particular to make sense of the convergence of measures. When restricted

to the subspace of tight finite measures on X , we guarantee that this topology is Hausdorff

(Theorem 2.3.1) and also has a useful compactness property (Theorem 2.3.2), which is

essential for proving the main results concerned with the existence and convergence of

trajectory statistical solutions in Chapters 3 and 4, respectively.

The remaining subsections are needed for the results concerned with statistical soluti-

ons in phase space. For that purpose, we must deal directly with evolution equations and,

consequently, with weak derivatives, which are recalled in Section 2.4. In Section 2.5, we

introduce a special class of functions which play the role of test functions in the context

of statistical solutions, the so-called cylindrical test functions. Finally, in Section 2.6 we

prove a measurability result for Nemytskii operators, a type of function which appears

naturally in the theory of partial differential equations.

2.1 Function spaces

When working with measures on topological spaces, it is natural that the topological

structure is of fundamental importance. In this regard, we recall a few topologies that

will play an important role in this work. Besides the fundamental notion of a Hausdorff
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topological space, in which two distinct points can be separated by disjoint open sets, we

say that a topological space is completely regular when every nonempty closed set and

every singleton disjoint from it can be separated by a continuous function. A completely

regular space in which every singleton is closed is sometimes called a Tychonoff space.

A topological space is called Polish when it is separable and completely metrizable.

When X is a Banach space, we denote its dual by X ′ and the duality product is

denoted by 〈·, ·〉X′,X . The norm in X is denoted by ‖ · ‖X , while ‖ · ‖X′ denotes the usual

duality norm. When X is endowed with its weak topology, we denote it by Xw. Similarly,

we consider X ′ endowed with the weak-star topology, in which case we denote it by X ′
w∗.

We also consider the bidual X ′′ of X , with duality product 〈·, ·〉X′′,X′. For the canonical

injection X →֒ X ′′, we simply write 〈x, f〉X′′,X′ = 〈f, x〉X′,X , for all x ∈ X , f ∈ X ′.

Let X and Y be Hausdorff spaces. Denote by C(Y,X) the space of continuous func-

tions on Y with values in X . The compact-open topology in C(Y,X) is the topology

generated by the subbase consisting of sets of the form

S(K,U) = {u ∈ C(Y,X) | u(K) ⊂ U},

where K is a compact subset of Y and U is an open subset of X . When endowed with

the compact-open topology, the space C(Y,X) is denoted by Cloc(Y,X) and is a Hausdorff

space.

The subscript “loc” in Cloc(Y,X) refers to the fact that this topology considers compact

sets in Y . When X is a uniform space, the compact-open topology in Cloc(Y,X) coincides

with the topology of uniform convergence on compact subsets [27, Theorem 7.11].

This holds, in particular, when X is a topological vector space, which is the case in the

applications that we present in Section 3.4.

Now suppose that Y is an interval I ⊂ R. In this case, we denote X = Cloc(I,X). The

space X is called the space of continuous paths in X .

For any t ∈ I, let Πt : X → X be the “projection” map at time t defined by

Πtu = u(t), ∀u ∈ X . (2.1)

It is readily verified that Πt is continuous with respect to the compact-open topology.

Indeed, given u ∈ X , consider a neighborhood U of u(t) in X . Then S({t}, U) is a

neighborhood of u in X such that ΠtS({t}, U) ⊂ U .

In addition, we consider the space of bounded and continuous real-valued functions

on Y , denoted by Cb(Y ). When Y is a subset of Rm, m ∈ N, we also consider the space

of compactly supported and infinitely differentiable real-valued functions on Y , which is

denoted by C∞
c (Y ).

7



2.2 Elements of measure theory

Let BX denote the σ-algebra of Borel sets in X . We denote by M(X) the set of finite

and non-negative Borel measures on X , i.e., the set of non-negative measures µ defined on

BX such that µ(X) <∞. The subset of M(X) consisting of Borel probability measures

is denoted by P(X). The space M(X) can be identified with a subset of the dual space

Cb(X)′ of the space Cb(X) of bounded and continuous real-valued functions on X .

A carrier of a measure is any measurable subset of full measure, i.e., such that its

complement has null measure. If C is a carrier for a measure µ, we say that µ is carried

by C. If the carrier is a single point x ∈ X , the probability measure is a Dirac measure

and is denoted δx. A probability measure that can be written as a convex combination of

Dirac measures is called a discrete measure.

Given a family of sets K ⊂ BX , we say that a Borel measure µ on X is inner regular

with respect to the family K if

µ(A) = sup{µ(K) |K ∈ K and K ⊂ A}, ∀A ∈ BX . (2.2)

We say that a Borel measure µ is outer regular with respect to the family K if

µ(A) = inf{µ(V ) | V ∈ K and A ⊂ V }, ∀A ∈ BX . (2.3)

A tight measure is a non-negative Borel measure which is inner regular with respect

to the family of compact subsets of X (such a measure is also called a Radon measure,

see [4]). If a Borel measure µ on X is both tight and outer regular with respect to the

family of open sets of X , then we say that µ is a regular measure. When X is a Polish

space, i.e. separable and completely metrizable, every finite Borel measure is regular [1,

Theorem 12.7]. In case X is just a metrizable space, every finite Borel measure is inner

regular with respect to the family of closed subsets of X and outer regular with respect

to the family of open sets of X [1, Theorem 12.5] (such a measure is called normal in

[1]).

For a compact and metrizable space X , it follows in particular from the result in [1,

Theorem 12.5] that every finite Borel measure is tight. The metrizability is indeed a

necessary condition, since it is possible to construct a finite Borel measure defined on

a certain non-metrizable compact Hausdorff space which is not tight (see [1, Example

12.9]).

Furthermore, a net {µα}α of measures in M(X) is said to be uniformly tight if for

every ε > 0 we can find a compact set K ⊂ X such that

µα(X\K) < ε, ∀α.

8



The set of measures µ ∈ M(X) which are tight will be denoted by M(X, tight). The

subset of M(X, tight) consisting of probability measures is denoted by P(X, tight).

Now consider a Hausdorff space Y and let F : X → Y be a Borel measurable function.

Then for every measure µ on BX we can define a measure Fµ on BY as

Fµ(E) = µ(F−1(E)), ∀E ∈ BY ,

which is called the induced measure from µ by F on BY , also known as push-

forward of µ by F . When µ is a tight measure and F is a continuous function, the

induced measure Fµ is also tight.

In regard to the concept of induced measures, we also mention the well-known result

that if ϕ : Y → R is a Fµ-integrable function then ϕ ◦ F is µ-integrable and

∫

X

ϕ ◦ Fdµ =

∫

Y

ϕdFµ (2.4)

(see [1, Theorem 13.46]).

For the sake of notation, if µ ∈ M(X) and f is a µ-integrable function, we write

µ(f) =

∫

X

fdµ.

In the case of real numbers, we are also interested in the Lebesgue measure, which we

denote by λ, and in the Lebesgue subsets of intervals I ⊂ R. We denote the σ-algebra of

those sets by LI .

When we have two topological spaces X and Y , with Y continuously imbedded into

X , meaning that there exists a continuous injective map j : Y → X , we are interested

in knowing whether the Borel subsets of Y are taken into Borel subsets of X by the

injection j. In the particular case that X and Y are Polish spaces, then Theorem 6.8.6

of [4] guarantees that in fact j(B) is Borel in X for any Borel B in Y (the statement of

this theorem actually requires X to be more generally a Souslin space, which is defined

as a continuous image of a Polish space).

In a related topic, when X is a Banach space, we are also interested in comparing the

Borel sets obtained from the strong and the weak topologies. In general, since the strong

topology is finer than the weak topology, every Borel set for the weak topology is also

a Borel set for the strong topology. Conversely, if X is a separable Banach space, then

every Borel set for the strong topology is also a Borel set for the weak topology, so that

in this case both Borel σ-algebras coincide. This latter fact is easily proved by observing

that, since X is separable, every open set A ⊂ X can be written as a countable union of

open balls in X , say

A =
⋃

n∈N

B(xn; rn),
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where xn ∈ X , rn > 0 and B(xn; rn) denotes the open ball centered at xn with radius rn

in X , i.e.

B(xn; rn) = {x ∈ X | ‖x− xn‖ < rn},

with ‖ · ‖ being the norm in X . But we may also write

B(xn; rn) =
⋃

k∈N

{

x ∈ X | ‖x− xn‖ ≤ rn −
1

k

}

=
⋃

k∈N

Cn,k.

And since each Cn,k is a convex and closed set in the strong topology, it is also closed

with respect to the weak topology [5, Theorem III.7]. Thus, A =
⋃

n

⋃

k Cn,k is a Borel

set for the weak topology.

2.3 Topologies for measure spaces and related results

Given a function f : X → R, consider the mapping Jf : M(X) → R defined as

Jf(µ) = µ(f) =

∫

X

fdµ, ∀µ ∈ M(X). (2.5)

In [49], Topsoe considered a topology in M(X) obtained as the smallest one for which

the mappings Jf are upper semi-continuous, for every bounded and upper semi-continuous

real-valued function f on X . Topsoe calls this topology the “weak topology”, but in order

to avoid any confusion we call it here the weak-star semi-continuity topology on

M(X). A sub-basis for this topology is given by the family of sets

{J−1
f ((−∞, b)) | b ∈ R, f : X → R is bounded and upper semi-continuous}.

If a net {µα}α converges to µ with respect to this topology, we denote µα
wsc
⇀ µ.

A more common topology used in M(X) is the weak-star topology, which is the

smallest topology for which the mapppings Jf are continuous, for every bounded and

continuous real-valued function f on X , i.e., f ∈ Cb(X). In this case, a sub-basis is given

by the following family:

{J−1
f ((a, b)) | a, b ∈ R, f : X → R is bounded and continuous}.

If a net {µα}α converges to µ with respect to this topology, we denote µα
w∗

⇀ µ.

Lemma 2.3.1 below provides some useful characterizations for the weak-star semi-

continuity topology (see [49, Theorem 8.1]). According to this result, the weak-star to-

pology is in general weaker than the weak-star semi-continuity topology. Moreover, if X

is a completely regular Hausdorff topological space, then these two topologies coincide
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when restricted to the space M(X, tight). Also, another characterization implies that the

weak-star semi-continuity topology can be equivalently defined as the smallest topology

for which the mappings Jf are lower semi-continuous, for every bounded and lower semi-

continuous real-valued function f on X . In Appendix A, this simple fact and also the

relation between the two topologies are proved in detail by using the sub-basis of each

topology.

Lemma 2.3.1. Let X be a Hausdorff space. For a net {µα}α in M(X) and µ ∈ M(X),

consider the following statements:

(1) µα
wsc
⇀ µ;

(2) lim supµα(f) ≤ µ(f), for all bounded and upper semicontinuous function f : X →

R;

(3) lim inf µα(f) ≥ µ(f), for all bounded and lower semicontinuous function f : X → R;

(4) limα µα(X) = µ(X) and lim supµα(F ) ≤ µ(F ), for all closed set F ⊂ X;

(5) limα µα(X) = µ(X) and lim inf µα(G) ≥ µ(G), for all open set G ⊂ X;

(6) limα µα(f) = µ(f), for all bounded and continuous function f : X → R.

Then the first five statements are equivalent and each of them implies the last one.

Furthermore, if X is a completely regular space and µ ∈ M(X, tight), then all six

statements are equivalent.

Although our framework is based on a general Hausdorff space, the proofs rely on

reducing some structures to compact subsets, hence completely regular spaces. Then,

since the measures in our proofs are also usually tight, both topologies coincide in this

reduced setting, so that we could have very well considered only the weak-star topology.

However, we prefer to use the weak-star semi-continuity topology since it is a more natural

topology for arbitrary Hausdorff spaces which simplifies our presentation and yields a

compactness result in a stronger topology.

When dealing with convergent nets in a given space, a natural question arises as to

whether the limits are unique. This requires the given space to be Hausdorff, a condition

that we would like to be satisfied by a suitable space of measures. The delicate issue is

to determine the minimal hypotheses for that.

If X is a metrizable topological space, then M(X) turns out to be a Hausdorff space

with respect to the weak-star topology (see [1, Section 15.1]), and hence also with respect

to the weak-star semi-continuity topology. However, requiring X to be metrizable is too

restrictive for our purposes. In an attempt to establish a more general setting for the

space X , we were led to work within the space of tight measures M(X, tight), which
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Topsoe proved to be Hausdorff with respect to the weak-star semi-continuity topology for

any Hausdorff space X . This key result was a motivation for Topsoe to advance his work

on the subject (see [49, Preface]). A proof is given in [49, Theorem 11.2] by showing that

the limits of convergent nets are unique. Here we chose to prove it by showing directly

that distinct measures in M(X) can be separated by open sets.

Theorem 2.3.1. Let X be a Hausdorff space. Then, M(X, tight) is a Hausdorff space

with respect to the weak-star semi-continuity topology.

The proof is an easy consequence of the following lemma:

Lemma 2.3.2. Let µ1, µ2 be two distinct measures in M(X, tight) such that µ1(X) =

µ2(X). Then there exists a Borel set A ⊂ X satisfying µ1(A) < µ2(Å), where A and Å

denote the closure and interior of A, respectively.

Proof. Let us suppose by contradiction that

µ1(A) ≥ µ2(Å), ∀A ∈ BX . (2.6)

Consider E ∈ BX and let K1, K2 be arbitrary compact sets in X satisfying K1 ⊂ X\E

and K2 ⊂ E. Then, since X is a Hausdorff space, there exist disjoint open sets B1, B2 in

X such that K1 ⊂ B1 and K2 ⊂ B2.

In particular, using that B2 is an open set, it follows from (2.6) that

µ2(B2) = µ2(B
◦
2) ≤ µ1(B2). (2.7)

But clearly B2 ⊂ X\K1. Then,

µ1(B2) ≤ µ1(X\K1) = µ1(X)− µ1(K1) (2.8)

From (2.7) and (2.8), we obtain that

µ2(K2) ≤ µ2(B2) ≤ µ1(X)− µ1(K1).

Now since K1 and K2 were chosen arbitrarily, taking the supremum over all compact

sets K1, K2 with K1 ⊂ X\E and K2 ⊂ E, it follows that

sup{µ2(K2) |K2 compact, K2 ⊂ E} ≤ µ1(X)− sup{µ1(K1) |K1 compact, K1 ⊂ X\E}.

But since µ1 and µ2 are tight, then

µ2(E) ≤ µ1(X)− µ1(X\E) = µ1(E).
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Thus,

µ2(E) ≤ µ1(E), ∀E ∈ BX . (2.9)

This implies in particular that

µ2(X)− µ2(E) = µ2(X\E) ≤ µ1(X\E) = µ1(X)− µ1(E).

Using the hypothesis that µ1(X) = µ2(X), we then obtain

µ2(E) ≥ µ1(E), ∀E ∈ BX . (2.10)

Now (2.9) and (2.10) yield µ1 = µ2, which is a contradiction.

Now let us give the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Consider two distinct measures µ1, µ2 in M(X, tight).

Suppose at first that µ1(X) 6= µ2(X). Let us assume, without loss of generality, that

µ1(X) < µ2(X). Then there exists ε > 0 such that

µ1(X) < µ1(X) + ε < µ2(X)− ε < µ2(X). (2.11)

Denote a = µ1(X) + ε and b = µ2(X) − ε. Let f be the constant function f ≡ 1 on X

and let Jf be the corresponding mapping as defined in (2.5). Then it follows from (2.11)

that µ1 ∈ J−1
f ((−∞, a)) and µ2 ∈ J−1

f ((b,+∞)). Since f is in particular a bounded and

continuous real-valued function on X , it follows that J−1
f ((−∞, a)) and J−1

f ((b,+∞)) are

open sets in X (see Proposition A.1). These sets are also clearly disjoint. Then µ1 and

µ2 can be separated by disjoint open sets in X .

Now suppose that µ1(X) = µ2(X). Then, from Lemma 2.3.2, there exists A ∈ BX

such that µ1(A) < µ2(Å). The argument now follows analogously to the previous case.

Consider ε > 0 satisfying

µ1(A) < µ1(A) + ε < µ2(Å)− ε < µ2(Å)

and denote a′ = µ1(A)+ε and b
′ = µ2(Å)−ε. Since the characteristic function of A, χA, is

bounded and upper semi-continuous, and the characteristic function of Å, χÅ, is bounded

and lower semicontinuous, then J−1
χA

((−∞, a′)) and J−1
χ
Å
((b′,+∞)) are clearly disjoint open

sets in X containing µ1 and µ2, respectively. Thus, µ1 and µ2 can also be separated by

disjoint open sets of X in this case.

This proves that M(X, tight) is a Hausdorff space.

Moreover, if X is assumed to be a completely regular space, then by Lemma 2.3.1 the

weak-star semi-continuity and weak-star topologies are the same in M(X, tight). Thus,
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it follows from Theorem 2.3.1 that M(X, tight) is also Hausdorff with respect to the

weak-star topology. We have just proved the following corollary:

Corollary 2.3.1. Let X be a completely regular space. Then M(X, tight) is a Hausdorff

space with respect to the weak-star topology.

Remark 2.3.1. If we relaxed the hypothesis in Corollary 2.3.1 by assuming X to be

a regular space instead of a completely regular space, then this result would no longer

be valid. Indeed, it is possible to construct examples of regular spaces which are not

completely regular and containing two distinct points a, b for which every continuous

real-valued function satisfies f(a) = f(b) (see [37, 39]). The corresponding space M(X, t)

is then not Hausdorff with respect to the weak-star topology, for it suffices to consider

the Dirac measures δa and δb concentrated on a and b, respectively, and to note that

δa(f) = δb(f), for every f ∈ Cb(X).

Corollary 2.3.1 implies a useful characterization for the equality between two measures

in M(X, tight) when X is a completely regular space. This is presented in the following

result.

Corollary 2.3.2. Let X be a completely regular space and consider µ1, µ2 ∈ M(X, tight).

Then the following statements are equivalent:

(i) µ1 = µ2;

(ii) µ1(ϕ) = µ2(ϕ), for every f ∈ Cb(X).

Proof. The implication (i) ⇒ (ii) is trivial. Let us then prove that (ii) ⇒ (i). Suppose on

the contrary that µ1 6= µ2. Since X is completely regular, by Corollary 2.3.1, M(X, tight)

is a Hausdorff space. Then, in particular, there exists a function ϕ ∈ Cb(X) and an interval

(a, b) ⊂ R such that µ1 ∈ J−1
ϕ ((a, b)), but µ2 /∈ J−1

ϕ ((a, b)). However, by hypothesis,

µ1(ϕ) = µ2(ϕ). This implies that µ2 ∈ J−1
ϕ ((a, b)), which is a contradiction.

We next state a result of compactness on the space of tight measures M(X, tight) that

is going to be essential for our main result. For a proof of this fact, see [49, Theorem 9.1].

Theorem 2.3.2. Let X be a Hausdorff topological space and let {µα}α be a net in

M(X, tight) such that lim supµα(X) <∞. If {µα}α is uniformly tight, then it is compact

with respect to the weak-star semi-continuity topology in M(X, tight).

The previous theorem allows us to obtain a convergent subnet of a given net in

M(X, tight), provided it satisfies the required conditions. Also, by using Theorem 2.3.1,

we can guarantee that the limit of this convergent subnet is unique.

Evidently, all the results shown above are also valid in the space of tight probability

measures. In the next section, these results are applied in that space, since it is the
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natural one in the context of statistical solutions. We consider both the spaces of tight

probability measures defined over the Hausdorff space X and over the space of continuous

paths X .

2.4 Weak derivatives

Given a Banach space Z and an interval I ⊂ R, we consider the space L1
loc(I, Z)

of locally integrable functions defined on I and with values in Z. Given a function u ∈

L1
loc(I, Z), we say that u has a derivative in the weak sense when there exists v ∈ L1

loc(I, Z)

such that
∫

I

u(t)ϕt(t)dt = −

∫

I

v(t)ϕ(t)dt

in Z, for all ϕ ∈ C∞
c (I), where ϕt is the derivative of ϕ. When such v exists, it is unique

in L1
loc(I, Z). In this case v is called the weak derivative of u and is denoted ut. We

denote the space of functions with such weak derivatives by

W 1,1
loc (I, Z) = {u ∈ L1

loc(I, Z) : ut ∈ L1
loc(I, Z)}.

For w ∈ Z ′, it follows in particular that

∫

I

ϕt(t)〈w, u(t)〉Z′,Zdt = −

∫

I

ϕ(t)〈w, ut(t)〉Z′,Zdt,

for all test functions ϕ ∈ C∞
c (I). Choosing sequences of test functions converging to the

characteristic function of subintervals [t′, t] ⊂ I, we find, using the Lebesgue Differentia-

tion Theorem, that

〈w, u(t)〉Z′,Z − 〈w, u(t′)〉Z′,Z =

∫ t

t′
〈w, ut(s)〉Z′,Zds, for almost all t′, t ∈ I. (2.12)

In particular, u is almost everywhere equal to a continuous function from I into Z

(see [46, Lemma 3.1.1]).

2.5 Cylindrical test functions

Consider a Banach space Y and let v1, . . . , vk ∈ Y , where k ∈ N. Let φ be a continu-

ously differentiable real-valued function on R
k with compact support. For each u ∈ Y ′,

define Φ(u) ∈ R by

Φ(u) = φ(〈u, v1〉Y ′,Y , . . . , 〈u, vk〉Y ′,Y ).

15



The function Φ is clearly continuous from Y ′ to R and in fact it is Fréchet differentiable

in Y ′, with Fréchet derivative

Φ′(u) =

k
∑

j=1

∂jφ(〈u, v1〉Y ′,Y , . . . , 〈u, vk〉Y ′,Y )vj, (2.13)

where ∂jφ denotes the derivative of φ with respect to its j-th coordinate.

Functions of this form are called cylindrical test functions in Y ′ and play an im-

portant role as test functions in the definition of statistical solution in phase space. In

that context, we will also consider a Hausdorff topological space X which is assumed to

be continuously imbedded in Y ′
w∗, where Y

′
w∗ denotes the space Y

′ endowed with its weak-

star topology. Notice that since u 7→ 〈u, v〉Y ′,Y is continuous in the weak-star topology

for any v ∈ Y , the function Φ is also continuous from Y ′
w∗ into R. Then, since X is con-

tinuously imbedded in Y ′
w∗, we may consider Φ restricted to X , and which is continuous

as a function from X into R.

The set of cylindrical test functions is a relatively large set, as can be seen from the

Stone-Weierstrass Theorem (see e.g. [13, Theorem IV.6.16]). In fact, consider the closed

ball Br = {u ∈ Y ′; ‖u‖Y ′ ≤ r}, r > 0, which is a compact set in Y ′
w∗, and denote by

Sr the collection of the functions which are the restriction to Br of the cylindrical test

functions. Clearly, Sr ⊂ C(Br) and, if Ψ1,Ψ2 ∈ Sr, then their sum Ψ1 + Ψ2 and their

product Ψ1Ψ2 also belong to Sr. By choosing v ∈ Y with ‖v‖Y ≤ 1 and φ : R → R

as a continuously differentiable function which is equal to 1 on the interval [−r, r] and is

compactly supported, we see that Φ(u) = φ(〈u, v〉Y ′,Y ) is a cylindrical test function which

is equal to 1 on the ball Br, showing that Sr contains the unit element. Moreover, if u1, u2

are distinct points in Br, then there exists v ∈ Y such that 〈u1, v〉Y ′,Y 6= 〈u2, v〉Y ′,Y . By

choosing a continuously differentiable function φ : R → R which is compactly supported

and assumes different values at the points 〈u1, v〉Y ′,Y and 〈u2, v〉Y ′,Y , we see that Φ(u) =

φ(〈u, v〉Y ′,Y ) is a cylindrical test function which assumes different values at u1 and u2,

proving that Sr separates the points in Br. Therefore, the Stone-Weierstrass Theorem

yields that Sr is dense in C(Br), for the uniform topology. This result also holds with Br

replaced by any compact subset of Y ′
w∗. Similarly, since X is continuously imbedded into

Y ′
w∗, it can be showed that for any compact subset K of X , the collection of the functions

which are the restrictions to K of cylindrical test functions is dense in C(K).

2.6 The Nemytskii operator

The statistical solutions in a phase space X are directly related to an evolution equa-
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tion of the form

ut(t) = F (t, u(t)), (2.14)

where the unknown u belongs to the space X = Cloc(I,X) and F is a given function

defined on I × Y , for a time-interval I in R and a subset Y of X . In this case, it

is natural to extend F to an operator G defined on I × V, where V is a subset of X .

This extended operator G is known as a Nemytskii operator in the context of partial

differential equations. In the following lemma we prove that, in our general context, if F

is measurable then G is also measurable.

Lemma 2.6.1. Let Y be a Banach space and X be a Hausdorff space such that Y is a

subset of X and every Borel subset of Y is a Borel subset of X. Let I be an interval

in R and V be a subset of X = Cloc(I,X), endowed with the topology inherited from X .

Suppose that F : I×Y → Y ′ is a (LI⊗BY ,BY ′)-measurable function. Then, the function

G : I × V → Y ′, defined by

G(t, u) =

{

F (t, u(t)), if u(t) ∈ Y,

0, if u(t) ∈ X \ Y,
(2.15)

is (LI ⊗BV ,BY ′)-measurable.

Proof. Consider the functions

F̃ : I ×X → Y ′

(t, u) 7→ F̃ (t, u) =

{

F (t, u), if u ∈ Y,

0, if u ∈ X \ Y,

ΠI : I × V → I

(t, u) 7→ t

and

U : I × V → X

(t, u) 7→ u(t). (2.16)

Then ΠI is clearly a (LI⊗BV ,LI)-measurable function. Moreover, it is not difficult to see

that U is a continuous function and then, in particular, (BI×V ,BX)-measurable. But since

I is a second countable space it follows that BI×V = BI ⊗BV [4, Lemma 6.4.2]. Thus,

U is also a (LI ⊗ BV ,BX)-measurable function. From this we obtain that the function

(ΠI , U) : I × V → I × X , defined by (ΠI , U)(t, u) = (t, u(t)), is (LI ⊗ BV ,LI ⊗ BX)-

measurable.
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Furthermore, we have that F̃ is (LI ⊗BX ,BY ′)-measurable. Indeed, let E ∈ BY ′ and

note that

F̃−1(E) =

{

F−1(E) ∪ (I × (X \ Y )), if 0 ∈ E,

F−1(E), if 0 /∈ E.

Since F is (LI ⊗ BY ,BY ′)-measurable then F−1(E) ∈ LI ⊗ BY . Then, together with

the hypothesis that BY ⊂ BX , this implies that F−1(E) ∈ LI ⊗ BX . Moreover, since

X \ Y ∈ BX , it follows that F̃
−1(E) ∈ LI ⊗ BX .

Now, since G = F̃ ◦ (ΠI , U) we conclude that G is (LI ⊗BV ,BY ′)-measurable.

Remark 2.6.1. The condition in Lemma 2.6.1 that every Borel subset of Y is a Borel

subset of X is not a very restrictive one for the applications. For instance, in view of

the results mentioned at the end of Section 2.2, this condition holds when X and Y are

separable Banach spaces, with either the weak or the strong topology. This includes, for

instance, Y = W 1,p(Ω) and X as the space Lp(Ω) with either the weak or the strong

topology, where Ω ⊂ R
n, n ∈ N, 1 ≤ p <∞.

Remark 2.6.2. The subset V in the statement of Lemma 2.6.1 seems artificial, but it

is done in this way in view of the applications, in particular for proving Theorem 3.3.1,

where some properties will only be valid for a subset of the whole space X . Moreover, we

could actually have proved the result for G defined on I×X and then concluded that the

restriction of G to I × V would also be measurable, provided V is a Borel subset of X .

However, the approach that we follow, working already with a subset V, is more direct

and does not require V to be Borel, although this will be a necessary condition in other

places.
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Chapter 3

Existence of Statistical Solutions

In this chapter we aim at proving the existence of statistical solutions for some initial-

value problems in an abstract setting. First, in Section 3.1, we give our general definitions

of statistical solutions in trajectory space and in phase space. In Sections 3.2 and 3.3 we

prove the main results on the existence of these general types of statistical solutions

with respect to a given initial data. These results require a certain set of hypotheses to

be satisfied by a subset U of the trajectory space X , which we call hypothesis (H). In

Section 3.4 we give applications of this general framework for the Navier-Stokes equations,

a reaction-diffusion equation, a nonlinear wave equation and the Bénard problem.

3.1 Types of Statistical Solutions

We first define statistical solutions in the space of continuous paths X . They are named

trajectory statistical solutions, owing to the fact that they are measures carried by a

measurable subset of a certain set U in X which, in applications, would consist in the set of

trajectories, i.e. the set of solutions, in an appropriate sense, of a given evolution equation.

At this abstract point, however, there is no evolution equation, and the problem is simply

to find a measure carried by a given subset of X . As such, this is a trivial problem, as

showed in Remark 3.1.4. The interesting and difficult problem is the corresponding Initial

Value Problem 3.1.1. Nevertheless, we start with the following definition.

Definition 3.1.1. Let X be a Hausdorff topological space and let I ⊂ R be an arbitrary

interval. Consider X = Cloc(I,X) and let U be a subset of X . We say that a Borel

probability measure ρ on X is a U-trajectory statistical solution over I (or simply

a trajectory statistical solution) if

(i) ρ is tight;
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(ii) ρ is carried by a Borel subset of X included in U , i.e. there exists V ∈ BX such that

V ⊂ U and ρ(X \ V) = 0.

Remark 3.1.1. Our abstract definition of a trajectory statistical solution was inspired

by the concept of a Vishik-Fursikov measure given in [22], which in turn was inspired by

the definition of space-time statistical solution defined by Vishik and Fursikov [53] (see

also [55]). Such measures are defined within the context of the Navier-Stokes equations

and have the property of being carried by their set of weak solutions, called Leray-Hopf

weak solutions. In [22, Propositions 2.9 and 2.12] it is proved that the set of Leray-Hopf

weak solutions is a Borel set in the corresponding space of continuous paths. However,

since we do not know whether this is always the case in every application, we prefer not

to assume that U is Borel, and assume instead that there exists a Borel subset of U that

carries the measure.

Remark 3.1.2. From the Definition 3.1.1, however, we see that U \ V belongs to the

Borel null set X \ V, hence we can certainly say that U is measurable with respect to the

Lebesgue completion of ρ, which we denote by ρ̄, and so that ρ̄ is carried by U .

Now we define statistical solutions in phase space. Unlike the definition of a trajectory

statistical solution, which is given by a single measure defined on X , this second type of

statistical solution consists in a family of measures defined on the Hausdorff space X and

parametrized by an index t varying in an interval I ⊂ R. The terminology is again derived

from the applications, in which X would stand for the phase space of a certain evolution

equation and t the time variable. While t varies in I, the family of measures describes

the evolution of statistical information of the system. We write the evolution equation in

a general form

ut = F (t, u).

We require that F : I × Y → Y ′, where Y is a Banach space such that Y ⊂ X ⊂ Y ′,

and Y ′ is the dual space of Y . For the evolution equation to make sense, it is necessary

that u(t) belongs to Y for almost every t and that ut belongs to the dual space Y ′. With

this in mind, we recall the space W 1,1
loc (I, Y

′) defined in Section 2.4 (with Z = Y ′) and

introduce the space

Z = {u ∈ Cloc(I,X) ∩W 1,1
loc (I, Y

′) : u(t) ∈ Y for almost all t ∈ I}. (3.1)

It is thus required that U ⊂ Z for the evolution equation to make sense. We then have

the following definition of statistical solution in phase space:

Definition 3.1.2. Let X be a Hausdorff space and Y be a Banach space such that Y ⊂

X ⊂ Y ′, where Y ′ denotes the dual space of Y . Let I ⊂ R be an arbitrary interval.
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Assume U ⊂ Z and suppose F : I × Y → Y ′ is such that

ut(t) = F (t, u(t)), a.e. t ∈ I, ∀u ∈ U . (3.2)

We say that a family {ρt}t∈I of Borel probability measures in X is a statistical solution

in phase space (or simply a statistical solution) of the evolution equation (3.2) if

the following conditions are satisfied:

(i) The function

t 7→

∫

X

ϕ(u)dρt(u)

is continuous on I, for every ϕ ∈ Cb(X).

(ii) For almost every t ∈ I, the measure ρt is carried by Y and the function u 7→ F (t, u)

is ρt-integrable. Moreover, the map

t 7→

∫

X

‖F (t, u)‖Y ′dρt(u)

belongs to L1
loc
(I).

(iii) For any cylindrical test function Φ, it holds

∫

X

Φ(u)dρt(u) =

∫

X

Φ(u)dρt′(u) +

∫ t

t′

∫

X

〈F (u),Φ′(u)〉Y ′,Y dρs(u)ds, (3.3)

for all t, t′ ∈ I.

In Definition 3.1.2, equation (3.3) represents a Liouville-type equation similar to that

from statistical mechanics. In order to motivate the definition (3.3), let us suppose that

a particular statistical solution {ρt}t∈I is given in the form of a convex combination of

Dirac measures,

ρt =
1

N

N
∑

n=1

δun(t), t ∈ I,

with equal probability 1/N , where N ∈ N, and each un is a smooth solution of the system

ut(t) = F (t, u(t)), t ∈ I.
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We then formally have

d

ds

∫

X

Φ(u)dρs(u) =
d

ds

1

N

N
∑

n=1

Φ(un(s)) =
1

N

N
∑

n=1

d

ds
Φ(un(s))

=
1

N

N
∑

n=1

〈

d

ds
un(s),Φ

′(un(s))

〉

Y ′,Y

=
1

N

N
∑

n=1

〈F (s, un(s)),Φ
′(un(s))〉Y ′,Y

=

∫

X

〈F (s, u),Φ′(u)〉Y ′,Y dρs(u). (3.4)

Thus, integrating with respect to s on [t′, t] yields (3.3).

In Subsection 3.3 (Theorem 3.3.1), we prove that the family of measures obtained

as the projections of a trajectory statistical solution at each t ∈ I on the space X is a

statistical solution. This shows that every trajectory statistical solution on X yields a

statistical solution on X . However, the converse is not necessarily true. We then call

a statistical solution for which the converse is valid, i.e. which can be written as the

projections on X of a trajectory statistical solution, a projected statistical solution,

as defined below.

Definition 3.1.3. Let X be a Hausdorff space and Y be a Banach space such that Y ⊂

X ⊂ Y ′. Let I ⊂ R be an arbitrary interval. Assume U ⊂ Z and suppose F : I×Y → Y ′

is such that

ut(t) = F (t, u(t)), a.e. t ∈ I, ∀u ∈ U .

We say that a family {ρt}t∈I in P(X) is a statistical solution projected from a

U-trajectory statistical solution, or simply a projected statistical solution, when

{ρt}t∈I is a statistical solution in the sense of Definition 3.1.2 and there exists a U-

trajectory statistical solution ρ such that ρt = Πtρ, for every t ∈ I.

Remark 3.1.3. Assuming that Y is a Borel subset of X , we can prove that given a

projected statistical solution {ρt}t, the first statement in item (ii) of Definition 3.1.2

is also a consequence of the fact that every measure ρt is written as Πtρ, for some U-

trajectory statistical solution ρ, and the assumption that U ⊂ Z. In order to prove this,

consider the real-valued function g : X → [0,+∞] given by

g(u) =







1, if u ∈ Y,

+∞, if u ∈ X \ Y.

Since U ⊂ Z, it follows that u(s) ∈ Y , and hence g(u(s)) = 1, for almost every s ∈ I, for

all u ∈ U . Thus,

∫

U

∫ t

t′
g(u(s)) dsdρ(u) =

∫

U

∫ t

t′
1 dsdρ(u) = t− t′. (3.5)
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Notice that the map (s, u) 7→ g(u(s)) is the composition of the function g with the

evaluation operator U(t, u) = u(t) given in (2.16) (with V = X ). Since Y is a Borel set

in X , then g is a measurable function on X . Moreover, since the evaluation operator U

is continuous and hence measurable from I × X into X , it follows that the composition

map (s, u) 7→ g(u(s)) is also measurable on I × X . Now, we apply Tonelli’s Theorem [1,

Theorem 11.28] to the left-hand side of (3.5) and obtain that

∫ t

t′

∫

U

g(u(s))dρ(u)ds = t− t′ <∞.

for all t′, t ∈ I. This implies that, for almost every t ∈ I,

∫

X

g(v)ρt(v) =

∫

X

g(u(t))dρ(u) =

∫

U

g(u(t))dρ(u) <∞.

Therefore g(v) < ∞, for ρt-almost every v in X , and almost every t ∈ I. Hence, by the

definition of g, it follows that v ∈ Y , for ρt-almost every v in X , and almost every t ∈ I,

which means, in fact, that ρt(X \ Y ) = 0, and hence ρt is carried by Y , for almost every

t ∈ I.

Remark 3.1.4. Note that whenever U is a nonempty set, we can always obtain a trajec-

tory statistical solution by considering the Dirac measure δu, for any element u ∈ U (δu is

tight and {u} is a Borel set in U satisfying δu({u}) = 1). A statistical solution can then

also be easily obtained by considering the family of projections {δu(t)}t∈I . However, our

main concern is not simply the existence of a measure or a family of measures satisfying

the properties described in Definitions 3.1.1 or 3.1.2, respectively. Our aim is to prove

the existence of such solutions for an initial value problem.

In the case of trajectory statistical solutions, the initial value problem takes the fol-

lowing form:

Problem 3.1.1 (Initial Value Problem for Trajectory Statistical Solutions). Let I ⊂ R

be an interval closed and bounded on the left, with left end point t0, and let X be a

Hausdorff topological space. Let X = Cloc(I,X) be the space of continuous paths in

X endowed with the compact open topology. Let U be a given subset of X . Given an

“initial” tight Borel probability measure µ0 on X , we look for a U-trajectory statistical

solution ρ on X satisfying Πt0ρ = µ0, i.e. we look for a measure ρ ∈ P(X ) satisfying

conditions (i) and (ii) of Definition 3.1.1 and such that

ρ(Π−1
t0
(A)) = µ0(A) , ∀A ∈ BX .

The corresponding problem for statistical solutions is stated analogously:
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Problem 3.1.2 (Initial Value Problem for Statistical Solutions). Let I ⊂ R be an interval

closed and bounded on the left, with left end point t0, and let X be a Hausdorff topological

space. Given an “initial” tight Borel probability measure µ0 on X , we look for a statistical

solution {ρt}t∈I satisfying ρt0 = µ0.

Note that in the Initial-Value Problems 3.1.1 and 3.1.2 the interval I is considered as

being closed and bounded on the left, with left end point t0. This point t0 represents the

initial time in an application.

3.2 Existence of Trajectory Statistical Solutions

In order to obtain the existence of trajectory statistical solutions in the sense of De-

finition 3.1.1 and satisfying a given initial data (Problem 3.1.1), the subset U ⊂ X is

assumed to satisfy a set of conditions which we call the hypothesis (H). This is described

below:

Definition 3.2.1. Let X be a Hausdorff topological space. Consider an interval I ⊂ R

closed and bounded on the left with left end point t0, and let X = Cloc(I,X). We say that

a subset U ⊂ X satisfies the hypothesis (H) if the following conditions are satisfied

(H1) Πt0U = X;

(H2) There exists a family of sets K
′(X) ⊂ BX such that

(i) Every K ∈ K
′(X) is compact in X;

(ii) Every tight Borel probability measure µ0 on X is inner regular with respect to

the family K
′(X) in the sense of (2.2);

(iii) For every K ∈ K
′(X), Π−1

t0 K ∩ U is compact in X .

In many applications, K′(X) may be considered as the entire family of compact sets of

X . This is the case, for instance, in the application to the reaction-diffusion-type equation

in Section 3.4.2. In this situation, hypothesis (H2) of Definition 3.2.1 is replaced by the

following simpler condition:

(H2’) For every compact subset K ⊂ X, Π−1
t0 K ∩ U is compact in X .

In the applications to the study of statistical solutions of a certain evolution equation,

the Hausdorff space X plays the role of the phase space associated to the equation, and

the set U is the set of solutions in a given sense. These solutions are assumed to be

continuous functions defined on a real time-interval I and with values in the phase space

X , so that U is a subset of X = Cloc(I,X).
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Hypothesis (H1) is simply a global existence condition. It requires that for every initial

condition u0 ∈ X , there is a solution u ∈ U satisfying u(t0) = u0 and existing for the

whole time interval I, i.e., the initial value problem associated to the evolution equation

admits a global solution.

Hypothesis (H2) is essentially an a priori compactness condition on the set of solutions

with initial conditions in certain compact sets in the phase space which are sufficient to

approximate every tight Borel probability measure. More precisely, item (i) of hypothesis

(H2) says that the family K
′(X) is contained in the family of compact sets inX . Then item

(ii) requires that every tight Borel probability measure on X be also inner regular with

respect to this subfamily K
′(X). For instance, in our applications to the Navier-Stokes

equations and the Nonlinear Wave equation (Subsections 3.4.1 and 3.4.3), the space X is

given by a separable Banach space endowed with its corresponding weak topology, and

the family of sets K
′(X) is defined as the family of strong compact sets in X . In this

case, items (i) and (ii) of (H2) are clearly satisfied. The last hypothesis, item (iii) of

(H2), is typically obtained through a priori estimates derived from the evolution equation

and some compact embedding theorem. Given a set K ∈ K
′(X), these estimates allow

us to obtain a convergent subsequence of a given sequence of functions in Π−1
t0 K ∩ U .

Furthermore, using the strong compactness of K we can assume that the corresponding

subsequence in X of the values of these functions at t0 converge strongly to the value of

the limit function at t0. This is a key step for proving that the limit function belongs to

U . It allow us to pass to the limit as t → t+0 in the corresponding energy inequality and

to prove that the limit function satisfies this energy inequality as well, which is one of

the conditions to be considered a solution. We postpone further details to Section 3.4, in

which the application of the hypothesis (H) will be clearer.

Now we prove the existence of a solution for Problem 3.1.1. But let us first outline

the main ideas of the proof itself.

Starting with an initial measure µ0 in P(X, tight), at a given time t0, our intention is

to show the existence of a measure ρ which is a trajectory statistical solution satisfying

the initial condition Πt0ρ = µ0. As usual, this measure ρ is obtained from the limit of a

convergent net of measures.

We first consider the case when the initial measure µ0 is carried by a set K in the

family K
′(X). Since by hypothesis (i) of (H2), K is a compact set in X , then by using the

Krein-Milman Theorem we obtain a net {µα
0}α of discrete measures converging to µ0 in X .

Using hypothesis (H1), we can easily extend each discrete initial measure µα
0 to a discrete

measure ρα in X , by applying (H1) to each point in the support of µα
0 . By construction,

each ρα is a tight measure carried by Π−1
t0 K ∩ U , which by hypothesis (iii) of (H2) is a

compact set. This implies that {ρα}α is a uniformly tight net and then Theorem 2.3.2 is

applied to obtain a subnet converging to some tight measure ρ, also carried by Π−1
t0 K ∩U ,

which is in particular a Borel set in X . Thus ρ is a trajectory statistical solution, in the
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sense of Definition 3.1.1. The fact that ρ satisfies the initial condition, i.e., Πt0ρ = µ0,

follows easily from the uniqueness of the limits in M(X, tight), guaranteed by Theorem

2.3.1.

The proof of the case when µ0 is not carried by any set K ∈ K
′(X), can be reduced

to the previous case by using the hypothesis that µ0 is a tight measure and thus, in

particular, inner regular with respect to the family K
′(X) by hypothesis (ii) of (H2).

The idea consists in decomposing µ0 as a sum of Borel probability measures, each being

carried by a set in K
′(X). The previous case can then be applied to each of these measures,

yielding a countable family of U-trajectory statistical solutions. Our desired measure is

then obtained as an appropriate weighted sum of these particular measures.

There are some technical details that we skipped in the previous discussion and which

are concerned with the restriction of the approximating measures to convenient compact

subsets. If we assumed that our underlying phase space was completely regular, the proof

could be made a bit simpler, as these restrictions would no longer be necessary since

in completely regular Hausdorff spaces the weak-star semi-continuity topology coincides

with the weak-star topology (see Lemma 2.3.1). But again, looking for a higher degree of

generality, we assume only that our phase space X is a Hausdorff space.

Theorem 3.2.1. Let X be a Hausdorff topological space and let I be a real interval closed

and bounded on the left with left end point t0. If U ⊂ X is a subset satisfying hypothesis

(H) then for any tight Borel probability measure µ0 on X there exists a U-trajectory

statistical solution ρ on I such that Πt0ρ = µ0.

Proof. Let us first suppose that µ0 is carried by a set K ∈ K
′(X), which is a compact set

by hypothesis (i) of (H2). Then, using the Krein-Milman Theorem [42, Theorem 3.23] we

obtain a net {µα
0}α of discrete measures in P(K) such that µα

0
wsc
⇀ µ0|K . Since each µα

0 is

a discrete measure, there exist Jα ∈ N, θαj ∈ R with 0 < θαj ≤ 1 and uα0,j ∈ K such that

µα
0 =

Jα
∑

j=1

θαj δuα
0,j
,

with
∑Jα

j=1 θ
α
j = 1, for every α.

From (H1) it follows that for each uα0,j there exists uαj ∈ U such that Πt0u
α
j = uα0,j.

Consider the measure ρα defined on X by

ρα =
Jα
∑

j=1

θαj δuα
j
.

Note that ρα belongs to P(X , tight) and is carried by Π−1
t0 K ∩ U , which is a compact

set by hypothesis (iii) of (H2). Thus, {ρα}α is clearly a uniformly tight net. By Theorem
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2.3.2, there is a measure ρ in P(X , tight) such that, by passing to a subnet if necessary,

ρα
wsc
⇀ ρ in X . (3.6)

Moreover, using Lemma 2.3.1, we find that ρ is carried by Π−1
t0 K ∩ U .

Consider a bounded and upper semicontinuous function ϕ : X → R and let Πt0 : X →

X be the projection operator defined in (2.1). Then ϕ ◦ Πt0 is a bounded function on

X . Moreover, since Πt0 is continuous, ϕ ◦ Πt0 is also an upper semicontinuous function

on X . Now applying a change of variables as in (2.4) and using the convergence ρα
wsc
⇀ ρ

together with Lemma 2.3.1, we obtain that

lim sup
α

∫

X

ϕdΠt0ρα = lim sup
α

∫

X

ϕ ◦ Πt0dρα ≤

∫

X

ϕ ◦ Πt0dρ =

∫

X

ϕdΠt0ρ.

Then, applying Lemma 2.3.1 once again, we obtain that Πt0ρα
wsc
⇀ Πt0ρ in X . Further,

taking the restrictions of these measures to the compact K, we also have that Πt0ρα|K
wsc
⇀

Πt0ρ|K . On the other hand, we have by construction that

Πt0ρα|K = µα
0

wsc
⇀ µ0|K .

Adding this to the fact that Πt0ρ|K , µ0|K ∈ P(K, tight), by Theorem 2.3.1 we obtain that

Πt0ρ|K = µ0|K . But since Πt0ρ and µ0 are carried by K we then get that Πt0ρ = µ0.

Thus, since ρ ∈ P(X , tight) and ρ is carried by the compact and hence Borel set

Π−1
t0 K ∩ U ⊂ U , we have just proved the existence of a trajectory statistical solution

satisfying the initial condition in the case when µ0 is carried by a set K ∈ K
′(X).

Now let us prove the case when µ0 is not carried by any set K ∈ K
′(X). In this case,

since µ0 is a tight Borel probability measure on X , by hypothesis (ii) of (H2) we have that

µ0 is also inner regular with respect to the family K
′(X). Thus, there exists a sequence

{Kn}n of sets in K
′(X) such that

µ0(Kn+1) > µ0(Kn) > 0 , ∀n ∈ N,

and

µ0(X\Kn) <
1

n
, ∀n ∈ N. (3.7)

Moreover, we may assume that Kn ⊂ Kn+1, for all n ∈ N.

Let D1 = K1 and Dn = Kn\Kn−1, for every n ≥ 2. Note that

µ0

(

X\
⋃

j

Dj

)

= µ0

(

X\
⋃

j

Kj

)

≤ µ0(X\Kn) <
1

n
,
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for all n ∈ N. Thus, taking the limit as n → ∞ above, we obtain that µ0 is carried by
⋃

j Dj. Then, for every A ∈ BX , since the sets Dj, j ∈ N, are pairwise disjoint, we have

µ0(A) = µ0

(

A ∩

(

⋃

j

Dj

))

=

∞
∑

j=1

µ0(A ∩Dj).

So we may decompose µ0 as

µ0 =
∑

j

µ0(Dj)µ
j
0,

where µj
0 is the Borel probability measure defined as

µj
0(A) =

µ0(A ∩Dj)

µ0(Dj)
, ∀A ∈ BX .

Note that each µj
0 is well-defined, since µ0(D1) = µ0(K1) > 0 and

µ0(Dj) = µ0(Kj)− µ0(Kj−1) > 0 , ∀j ≥ 2.

Also, since each µj
0 is carried by the set Kj ∈ K

′(X), using the first part of the proof,

for each j ∈ N we obtain a tight Borel probability measure ρj carried by Π−1
t0 Kj ∩ U and

such that Πt0ρj = µj
0.

Let ρ be the Borel probability measure defined by

ρ =
∑

j

µ0(Dj)ρj .

Observe that

ρ

(

⋃

l

Π−1
t0
Kl ∩ U

)

=
∑

j

µ0(Dj)ρj(Π
−1
t0
Kj ∩ U) =

∑

j

µ0(Dj) = 1,

where the first and second equalities follow from the fact that ρj is carried by Π−1
t0 Kj ∩U .

Thus, ρ is carried by
⋃

j Π
−1
t0 Kj ∩U , which is a Borel set in X and is contained in U . The

fact that Πt0ρ = µ0 is also easily verified.

It only remains to show that ρ is a tight measure. In order to prove so, consider a

Borel set A ∈ BX and ε > 0. Let n ∈ N be such that 1/n < ε/2. Then, since ρj is a

tight measure, for each 1 ≤ j ≤ n there exists a compact set Kn
j ⊂ A such that

ρj(A\Kn
j ) <

ε

2n
.
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Let Kn =
⋃

1≤j≤nK
n
j . Note that

ρ(A\Kn) =
∞
∑

j=1

µ0(Dj)ρj(A\Kn)

≤

n
∑

j=1

ρj(A\Kn) +

∞
∑

j=n+1

µ0(Dj)

<
ε

2
+ µ0(X\Kn).

Thus, according to (4.9) and the choice of n, it follows that ρ(A\Kn) < ε. Since Kn is a

compact set in X , this proves that ρ is tight.

Remark 3.2.1. Notice that given an initial tight Borel probability measure µ0 on X , if

µ0 is carried by a set K ∈ K
′(X), then the trajectory statistical solution ρ with Πt0ρ = µ0

obtained in the proof of Theorem 3.2.1 is carried by the Borel set Π−1
t0 K ∩ U . On the

other hand, if µ0 is not carried by any set K ∈ K
′(X), then given any sequence of sets Kn

in K
′(X), n ∈ N, such that µ0(X \Kn) → 0, as n→ ∞, a trajectory statistical solution ρ

with Πt0ρ = µ0 can be constructed such that it is carried by the Borel set U∩(
⋃

n Π
−1
t0 Kn).

3.3 Existence of Statistical Solutions in Phase Space

As in the previous sections, consider a Hausdorff space X and let I be an arbitrary

interval in R. In addition, let Y be a Banach space and denote by Y ′ its corresponding

dual space. We assume that Y is a subset of X and that X →֒ Y ′
w∗ with continuous

injection, where Y ′
w∗ represents the space Y ′ endowed with the weak-star topology.

Consider the space Z defined in (3.1). Given u ∈ Z and w ∈ Y ′′ the bidual of Y , we

see from (2.12) that

〈w, u(t)〉Y ′′,Y ′ − 〈w, u(t′)〉Y ′′,Y ′ =

∫ t

t′
〈w, us(s)〉Y ′′,Y ′ds, for almost all t′, t ∈ I.

In particular, for w ∈ Y →֒ Y ′′, we have that

〈u(t), w〉Y ′,Y = 〈u(t′), w〉Y ′,Y +

∫ t

t′
〈us(s), w〉Y ′,Y ds, for almost all t′, t ∈ I. (3.8)

Since X →֒ Y ′
w∗ with continuous injection, we also have u ∈ Cloc(I, Y

′
w∗), so that in fact

the equation above holds everywhere:

〈u(t), w〉Y ′,Y = 〈u(t′), w〉Y ′,Y +

∫ t

t′
〈us(s), w〉Y ′,Y ds, ∀t

′, t ∈ I, ∀w ∈ Y. (3.9)

Moreover, since u ∈ W 1,1
loc (I, Y

′), then in particular the mapping t 7→ 〈ut(t), w〉Y ′,Y belongs
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to L1(t′, t;R). Therefore, (3.9) implies that

d

dt
〈u(t), w〉Y ′,Y = 〈ut(t), w〉Y ′,Y , (3.10)

for almost every t ∈ I and that, for each w ∈ Y , the mapping t 7→ 〈u(t), w〉Y ′,Y is

absolutely continuous on I (see [23, Theorem 3.35]).

This latter fact, valid for every function u ∈ Z, is used in the following theorem, in

which we show that the family of measures obtained as the projections of a trajectory

statistical solution at each t ∈ I on X is a statistical solution, in the sense of Definition

3.1.2.

Theorem 3.3.1. Let X be a Hausdorff space and let Y be a Banach space satisfying

Y ⊂ X →֒ Y ′
w∗,

where the injection X →֒ Y ′
w∗ is continuous, and also BY ⊂ BX . Consider an interval

I ⊂ R and a subset U ⊂ X . Let ρ be a U-trajectory statistical solution and let V be a

Borel subset of X such that V ⊂ U and ρ(V) = 1. Suppose that U ⊂ Z and that for every

u ∈ U ,

ut(t) = F (t, u(t)), a.e. t ∈ I. (3.11)

Assume that F : I × Y → Y ′ is an (LI ⊗BY ,BY ′)-measurable function such that

t 7→

∫

V

‖F (t, u(t))‖Y ′dρ(u) ∈ L1
loc(I), (3.12)

Then,

∫

V

Φ(u(t))dρ(u) =

∫

V

Φ(u(t′))dρ(u) +

∫ t

t′

∫

V

〈F (s, u(s)),Φ′(u(s))〉Y ′,Y dρ(u)ds, (3.13)

for all t, t′ ∈ I and for all cylindrical test function Φ. Moreover, the function

t 7→

∫

V

ϕ(u(t))dρ(u) (3.14)

is continuous on I for every ϕ ∈ Cb(X). In particular, the family of projections {ρt}t∈I ,

where ρt = Πtρ, is a statistical solution in phase space.

Proof. First, note that since U ⊂ Z and Y ∈ BX , then it follows as in Remark 3.1.3 that

ρ is carried by Π−1
t Y , for almost every t ∈ I. Thus, the integrals in (3.12) and (3.13)

with respect to ρ in V, with integrands containing the mapping u ∈ V 7→ F (t, u(t)), are

well-defined almost everywhere in I.
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Now consider a cylindrical test function Φ : Y ′ → R given by

Φ(u) = φ(〈u, v1〉Y ′,Y , . . . , 〈u, vk〉Y ′,Y ), ∀u ∈ Y ′,

where φ is a continuously-differentiable real-valued function on R
k with compact support,

k ∈ N, and v1, . . . , vk ∈ Y .

Since V ⊂ Z, then for every u ∈ V the function t 7→ 〈u(t), vj〉Y ′,Y is absolutely

continuous on I and

d

dt
〈u(t), vj〉Y ′,Y = 〈F (t, u(t)), vj〉Y ′,Y , ∀j = 1, . . . , k.

Thus,

d

dt
Φ(u(t)) =

k
∑

j=1

∂jφ(〈u(t), v1〉Y ′,Y , . . . , 〈u(t), vk〉Y ′,Y )
d

dt
〈u(t), vj〉Y ′,Y

=
k
∑

j=1

∂jφ(〈u(t), v1〉Y ′,Y , . . . , 〈u(t), vk〉Y ′,Y )〈F (t, u(t)), vj〉Y ′,Y

= 〈F (t, u(t)),Φ′(u(t))〉Y ′,Y , (3.15)

where Φ′ is the Fréchet derivative of Φ in Y ′, given in (2.13).

Let us show that, for every u ∈ U , the mapping t 7→ Φ(u(t)) is absolutely continuous

on I. Since each ∂jφ is bounded in R
k, there exists M > 0 such that ‖∇φ(x)‖ ≤ M , for

every x ∈ R
k, where ‖ · ‖ denotes the norm in R

k. Then, given any finite sequence of

pairwise disjoint subintervals {(tj, sj)}
N
j=1 in I, from the Mean Value Theorem we obtain

N
∑

j=1

|φ(〈u(sj), v1〉Y ′,Y , . . . , 〈u(sj), vk〉Y ′,Y )− φ(〈u(tj), v1〉Y ′,Y , . . . , 〈u(tj), vk〉Y ′,Y )|

≤M

N
∑

j=1

‖(〈u(sj), v1〉Y ′,Y , . . . , 〈u(sj), vk〉Y ′,Y )− (〈u(tj), v1〉Y ′,Y , . . . , 〈u(tj), vk〉Y ′,Y )‖

(3.16)

Thus, the absolute continuity of the mapping t 7→ Φ(u(t)) follows by using that each

mapping t 7→ 〈u(t), vj〉Y ′,Y is absolutely continuous, for j = 1, . . . , k.

Therefore, from (3.15) we obtain that

Φ(u(t)) = Φ(u(t′)) +

∫ t

t′
〈F (s, u(s)),Φ′(u(s))〉Y ′,Y ds, (3.17)

for every t, t′ ∈ I and every u ∈ V.
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Consider the function

H : I × V → R

(t, u) 7→ Φ(u(t)).

Denote by ι the continuous injection of X into Y ′
w∗ and let U : I×V → X be the function

defined in (2.16). Then H can be written as the composition Φ ◦ ι ◦ U . And since Φ, ι

and U are continuous functions, then H is also continuous. Analogously, we obtain that

the mapping (t, u) 7→ Φ′(u(t)) is continuous on I × V.

Using the function G : I × V → Y ′ defined in (2.15) we may write

〈G(t, u),Φ′(u(t))〉Y ′,Y =







〈F (t, u(t)),Φ′(u(t))〉Y ′,Y , if u(t) ∈ Y,

0, if u(t) ∈ X \ Y

Since F is (LI ⊗ BY ,BY ′)-measurable by hypothesis, from Lemma 2.6.1 we have that

G is (LI ⊗ BV ,BY ′)-measurable. Therefore, using also the continuity of the function

p : Y ′ × Y → R given by

p(u, v) = 〈u, v〉Y ′,Y ,

it follows that the mapping (t, u) 7→ 〈G(t, u),Φ′(u(t))〉Y ′,Y is (LI⊗BV)-measurable. Thus,

from (3.17) we obtain

∫

V

Φ(u(t))dρ(u) =

∫

V

Φ(u(t′))dρ(u) +

∫

V

∫ t

t′
〈G(s, u),Φ′(u(s))〉Y ′,Y dsdρ(u), (3.18)

for every t, t′ ∈ I.

Now using that Φ′ is bounded in Y and hypothesis (3.12), we may apply Tonelli’s

Theorem to the second term on the right hand side of (3.18) and obtain that

∫

V

Φ(u(t))dρ(u) =

∫

V

Φ(u(t′))dρ(u) +

∫ t

t′

∫

V

〈G(s, u),Φ′(u(s))〉Y ′,Y dρ(u)ds

=

∫

V

Φ(u(t′))dρ(u) +

∫ t

t′

∫

V

〈F (s, u(s)),Φ′(u(s))〉Y ′,Y dρ(u)ds,

for all t, t′ ∈ I. This proves the mean equality (3.13).

Now consider a function ϕ ∈ Cb(X) and let us prove that the function defined in (3.49)

is continuous on I. Given t̃ ∈ I, consider a sequence {tn}n in I such that tn → t̃. Then,

since every u ∈ V is continuous from I into X , it follows that

ϕ(u(tn)) → ϕ(u(t̃)), ∀u ∈ V.

Since ϕ is in particular a bounded function on X , from the Lebesgue Dominated Conver-
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gence Theorem we obtain that

∫

V

ϕ(u(tn))dρ(u) →

∫

V

ϕ(u(t̃))dρ(u).

Thus, the function defined in (3.49) is continuous on I. This proves that the family of

measures {ρt}t∈I defined by

ρt(A) = Πtρ(A) = ρ(Π−1
t A), ∀A ∈ B(X),

satisfies condition (i) of Definition 3.1.2.

Also, by (2.4), we have

∫

X

‖F (t, u)‖Y ′dρt(u) =

∫

V

‖F (t, u(t))‖Y ′dρ(u),

for almost every t ∈ I. Then from hypothesis (3.12) it follows that {ρt}t∈I verifies condi-

tion (ii) of Definition 3.1.2.

Analogously, from (3.18) we obtain that {ρt}t∈I satisfies condition (iii) of Definition

3.1.2. Thus, {ρt}t∈I is a statistical solution.

The next result provides a solution for Problem 3.1.2. Given an initial measure µ0

on X , we use Theorem 3.2.1 to obtain a trajectory statistical solution, which is then

projected at each time t to yield a family of measures on X . Thanks to Theorem 3.3.1,

we then obtain that this family of projections is a statistical solution in phase space.

Theorem 3.3.2. Let X be a Hausdorff space and let Y be a Banach space satisfying

Y ⊂ X →֒ Y ′
w∗,

where the injection X →֒ Y ′
w∗ is continuous, and also BY ⊂ BX . Let I ⊂ R be an

interval closed and bounded on the left with left end point t0 and consider a subset U ⊂ X

satisfying hypothesis (H). Suppose that U ⊂ Z and that for every u ∈ U ,

ut(t) = F (t, u(t)), a.e. t ∈ I. (3.19)

Assume that F : I × Y → Y ′ is an (LI ⊗ BY ,BY ′)-measurable function and that there

exists an (LI ⊗BX)-measurable function γ : I ×X → R such that

∫ t

t0

‖F (s, u(s))‖Y ′ds ≤ γ(t, u(t0)), ∀t ∈ I, ∀u ∈ U . (3.20)
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Let µ0 be a tight Borel probability measure on X such that

∫

X

γ(t, u0) dµ0(u0) <∞, (3.21)

for almost every t ∈ I. Then, there exists a projected statistical solution {ρt}t∈I , associated

with a U-trajectory statistical solution, such that ρt0 = µ0.

Proof. Since U is a subset of X satisfying hypothesis (H) and µ0 is a tight Borel probability

measure on X , from Theorem 3.2.1 it follows that there exists a U-trajectory statistical

solution ρ on I such that Πt0ρ = µ0.

Since ρ is a U-trajectory statistical solution, there exists a subset V of U such that

V ∈ BX and ρ(V) = 1. Then, taking the integral in (4.11) with respect to ρ, applying

Tonelli’s Theorem and using a change of variables as in (2.4) on the right-hand side, we

find that

∫ t

t0

∫

V

‖F (s, u(s))‖Y ′dρ(u)ds ≤

∫

V

γ(t, u(t0))dρ(u) =

∫

X

γ(t, u0)dΠt0ρ(u0)

=

∫

X

γ(t, u0)dµ0(u0).

Thus from (4.12) we obtain that

t 7→

∫

V

‖F (t, u(t))‖Y ′dρ(u) ∈ L1
loc(I) (3.22)

We then have that F is a (LI⊗BY ,BY ′)-measurable function satisfying hypotheses (3.11)

and (3.12) of Theorem 3.3.1. Applying this result, we conclude that the family {ρt}t∈I ,

with ρt = Πtρ, is a statistical solution satisfying ρt0 = Πt0ρ = µ0.

In the following result, we obtain a mean energy inequality for trajectory statistical

solutions.

Proposition 3.3.1. Consider U ⊂ Z. Let ρ be a U-trajectory statistical solution and

let V be a Borel subset of X such that V ⊂ U and ρ(V) = 1. Suppose that there exist

functions α : I ×X → R and β : I × Y → R satisfying the following conditions

(i) (t, u) 7→ α(t, u(t)) belongs to L1(J × V, λ× ρ), for every compact subset J ⊂ I;

(ii) (t, u) 7→ β(t, u(t)) belongs to L1(J × V, λ× ρ), for every compact subset J ⊂ I;

(iii) For ρ-almost every u ∈ V it holds that

d

dt
α(t, u(t)) + β(t, u(t)) ≤ 0, (3.23)

34



in the sense of distributions on I, i.e.,

−

∫

I

ϕ′(s)α(s, u(s))ds+

∫

I

ϕ(s)β(s, u(s))ds ≤ 0, (3.24)

for all non-negative test functions ϕ ∈ C∞
c (I,R).

Then,

−

∫

I

∫

V

ϕ′(s)α(s, u(s))dρds+

∫

I

∫

V

ϕ(s)β(s, u(s))dρds ≤ 0, (3.25)

for all non-negative test functions ϕ ∈ C∞
c (I,R).

Proof. The proof follows by integrating (3.24) with respect to ρ on V and then applying

Fubini’s Theorem by using hypotheses (i) and (ii).

The motivation for considering the passage from the inequality (3.23), valid for indivi-

dual weak solutions, to the mean inequality (3.25) comes from the Navier-Stokes equations

(see Section 3.4.1) and other similar equations from fluid flows. It also appears in different

types of equations, such as the nonlinear wave equation considered in Section 3.4.3. In

some situations, however, such as in the case of the Reaction-Diffusion equation conside-

red in Section 3.4.2, the individual weak solutions satisfies in fact an energy-type equality,

and of course this equality is similarly passed on to the statistical solutions. In the case

of equality, the test functions are allowed to assume negative values. We state this result

as follows, omitting the proof since it follows along the same lines as that of Proposition

3.3.1.

Proposition 3.3.2. Under the hypothesis of Proposition 3.3.1, if the equality holds in

(3.23), then the equality holds in (3.25), for any test function ϕ ∈ C∞
c (I,R), as well.

3.4 Applications

3.4.1 Navier-Stokes Equations

The Navier-Stokes equations are a commonly used model in the study of Newtonian

turbulent fluids. In their three-dimensional and incompressible form, these equations are

written as
∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f, (3.26)

∇ · u = 0, (3.27)

where u = (u1, u2, u3) is the velocity field, p is the kinematic pressure, f represents a given

body force applied to the fluid and ν is the parameter of kinematic viscosity. We consider
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u, p and f as functions of a space variable x and a time variable t, with x varying in a

set Ω ⊂ R
3 and t varying in an interval I ⊂ R.

For a physical formulation of the equations we refer the reader to the books by Landau

and Lifshitz [30] and Batchelor [2]. For a more mathematical approach, see Ladyzhenskaya

[29], Temam [46, 47] and Constantin and Foias [10].

Our main concern in this section is to apply the abstract theory developed in the

previous sections to prove the existence of statistical solutions to the Navier-Stokes equa-

tions (3.26)-(3.27). For more specific discussions on the notion of statistical solutions to

the Navier-Stokes equations, we refer the reader to [16, 19, 54, 55] and also to the more

recent paper [22]. The existence result that we obtain in this section has been already

proved in [22], a work that has been in fact our inspiration. Nevertheless, our abstract

framework, besides applying to a wide range of equations, led to a much simpler proof

than that presented in [22]. Moreover, we have also extended the existence result to the

Navier-Stokes equations with a more general class of external forces.

For the sake of simplicity, we assume periodic boundary conditions. In this case we

consider a periodic domain given by Ω = Π3
i=1(0, Li), where Li > 0, for i = 1, 2, 3. This

means we are assuming the flow is periodic with period Li in each spatial direction xi.

We also consider the averages of the flow and of the forcing term to be zero, i.e.,

∫

Ω

u(x, t)dx = 0 ,

∫

Ω

f(x, t)dx = 0.

Let C∞
per(Ω,R

3) denote the space of infinitely differentiable and Ω-periodic functions

u. We then define the set of periodic test functions with vanishing average and divergence

free as

V :=

{

u ∈ C∞
per(Ω,R

3) | ∇ · u = 0 and

∫

Ω

u(x)dx = 0

}

. (3.28)

Let H be the closure of V in L2(Ω,R3) and let V be the closure of V in H1(Ω,R3).

The inner product and norm in H are defined, respectively, by

(u,v)H =

∫

Ω

u · vdx and |u|H =
√

(u,u)H ,

where u · v =
∑3

i=1 uivi. In the space V , these are defined as

((u,v))V = (∇u,∇v)H =

∫

Ω

∇u · ∇vdx and ‖u‖V =
√

((u,u))V ,

where it is understood that ∇u = (∂ui/∂xj)
3
i,j=1 and that ∇u · ∇v is the componentwise

product between ∇u and ∇v. We also consider the space H endowed with its weak

topology and denote it by Hw.

Clearly, V is a subset of H . Thus, by identifying H with its dual space H ′, we obtain
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the following continuous inclusions

V ⊂ H ≡ H ′ ⊂ V ′.

Thus, since the injection H →֒ V ′ is a continuous linear mapping, we also have

Hw →֒ V ′
w∗

with continuous injection, where V ′
w∗ denotes the space V ′ endowed with the weak-star

topology.

Let A be the Stokes operator, defined as A = −P∆, where P : L2(Ω,R3) → H is the

Leray-Helmholtz projection, i.e., the orthogonal projector in L2(Ω,R3) onto the subspace

of divergence-free vector fields. We denote by D(A) the domain of A, which is defined as

the set of functions u ∈ V such that Au ∈ H . In the periodic case with zero average, we

have

Au = −∆u , ∀u ∈ D(A) = V ∩H2(Ω,R3)

and A is a positive self-adjoint linear operator with compact inverse, so that it has a

sequence {λi}i∈N of positive eigenvalues counted according to their multiplicity, in in-

creasing order, associated with an orthonormal basis {wi}i∈N in H . Furthermore, the

Poincaré inequality holds, i.e., for all u ∈ V ,

λ1|u|
2
H ≤ ‖u‖2V , (3.29)

where λ1 > 0 is the first eigenvalue of the Stokes operator.

Also, we denote by Pk : H → V the Galerkin projector onto the space spanned by the

eigenfunctions associated with the first k eigenvalues of the Stokes operator, i.e.

Pku =
k
∑

i=1

(u,wi)Hwi, ∀u ∈ H.

We observe that given two eigenfunctions wj,wk of A, we have

((wj ,wk))V = (Awj,wk)H = λj(wj ,wk)H =







λj, if j = k,

0, if j 6= k.

Then for every u ∈ H , we obtain

‖Pku‖
2
V = ((Pku, Pku))V =

k
∑

j=1

|(u,wj)H |
2((wj ,wj))V =

k
∑

j=1

|(u,wj)H |
2λj ,

from which it follows that Pk is continuous from H to V .
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The natural space for the solutions of the Navier-Stokes equations is the space

Cloc(I,Hw) of continuous functions from an interval I ⊂ R to Hw, endowed with the

compact-open topology. This function space can also be seen as the space of weakly

continuous functions from I to H .

We recall that the Navier-Stokes equations can be written in the following functional

form

ut + νAu+B(u,u) = f in V ′, (3.30)

where A is the Stokes operator and B : V × V → V ′ is the bilinear operator defined as

B(u,v) = P[(u · ∇)v], ∀u,v ∈ V.

In this setting, A is considered as an operator defined on V with values in V ′, and we

have

‖Au‖V ′ = sup
‖v‖=1

〈Au,v〉V ′,V = sup
‖v‖=1

((u,v))V = ‖u‖V ,

which implies in particular that A : V → V ′ is continuous. Moreover, B satisfies the

following inequality (see [10, 19])

‖B(u,v)‖V ′ ≤ c|u|
1/4
H ‖u‖

3/4
V |v|

1/4
H ‖v‖

3/4
V , ∀u,v ∈ V, (3.31)

where c is a universal constant. By using this inequality, it is not difficult to see that

B : V × V → V ′ is also a continuous operator.

The notion of solution that is considered here is the well-known Leray-Hopf weak

solution, which is defined below.

Definition 3.4.1. Let I be an interval in R and f ∈ L2
loc(I, V

′). We say that u is a

Leray-Hopf weak solution of the Navier-Stokes equations (3.26)-(3.27) on I if

(i) u ∈ L∞
loc(I,H) ∩ L2

loc(I, V ) ∩ Cloc(I,Hw);

(ii) ∂tu ∈ L
4/3
loc (I, V

′);

(iii) u satisfies the weak formulation of the Navier-Stokes equations, i.e.,

ut + νAu+B(u,u) = f , (3.32)

in V ′, in the sense of distributions on I;

(iv) u satisfies the energy inequality in the sense that for almost all t′ ∈ I and for all

t ∈ I with t > t′,

1

2
|u(t)|2H + ν

∫ t

t′
‖u(s)‖2V ds ≤

1

2
|u(t′)|2H +

∫ t

t′
〈f(s),u(s)〉V ′,V ds; (3.33)
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(v) If I is closed and bounded on the left, with left end point t0, then the solution is

strongly continuous in H at t0 from the right, i.e., u(t) → u(t0) in H as t→ t+0 .

The set of allowed times t′ in (3.33) can be characterized as the points of strong

continuity from the right of u in H . In particular, condition (v) implies that t′ = t0 is

allowed in that case.

The Leray-Hopf weak solutions of the Navier-Stokes equations also satisfy a strenghte-

ned form of the energy inequality (3.33) of Definition 3.4.1. The proof of this strenghtened

energy inequality has been given in [19] for external forces f in L2
loc(I,H). However, it

turns out that this inequality is also valid if f belongs to the larger space L2
loc(I, V

′), as

we state below:

Proposition 3.4.1. Let T > 0 and f ∈ L2(0, T ;V ′). Consider a nonnegative, nondecre-

asing and continuously-differentiable real-valued function ψ : [0,∞) → R with bounded

derivative. If u is a Leray-Hopf weak solution of the Navier-Stokes equations on [0, T ],

then
d

dt
(ψ(|u(t)|2H)) ≤ 2ψ′(|u(t)|2H)[〈f(t),u(t)〉V ′,V − ν‖u(t)‖2]

in the sense of distributions on [0, T ].

The idea of the proof is to first obtain such inequality for the mollified functions and

then to pass to the limit with respect to the mollifier parameter. For the complete proof,

see Appendix B.

Given R > 0, we denote by BH(R) the closed ball centered at the origin and with

radius R in H . The corresponding closed ball endowed with the weak topology is denoted

by BH(R)w. We then define the following sets of Leray-Hopf weak solutions:

UI = {u ∈ Cloc(I,Hw) : u is a Leray-Hopf weak solution on I}, (3.34)

UI(R) = {u ∈ Cloc(I, BH(R)w) : u is a Leray-Hopf weak solution on I}. (3.35)

U ♯
I = {u ∈ Cloc(I,Hw) : u is a Leray-Hopf weak solution on I̊}, (3.36)

U ♯
I (R) = {u ∈ Cloc(I, BH(R)w) : u is a Leray-Hopf weak solution on I̊}, (3.37)

where I̊ denotes the interior of the interval I.

The following proposition provides some estimates satisfied by every u ∈ UI , for a

given interval I ⊂ R.

Proposition 3.4.2. Let I be an interval in R and f ∈ L2
loc(I, V

′). If u ∈ UI then, for

t′ ∈ I allowed in (3.33) and for all t ∈ I with t > t′, the following inequalities hold

|u(t)|2H ≤ |u(t′)|2H +
1

ν
‖f‖2L2(t′,t;V ′), (3.38)
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∫ t

t′
‖u(s)‖2V ds ≤

1

ν
|u(t′)|2H +

1

ν2
‖f‖2L2(t′,t;V ′), (3.39)

(
∫ t

t′
‖∂tu(s)‖

4/3
V ′ ds

)3/4

≤
c

ν3/4
|u(t′)|2H +

ν5/4

λ
1/2
1

D, (3.40)

where c is a universal constant and D = D(νλ1t
′, νλ1t) is a nondimensional function

which depends on the variables t′, t and also on the parameters ν, λ1 and Ω through the

nondimensional quantities νλ1|t− t′| and
λ
1/4
1

ν3/2
‖f‖L2(t,t′;V ′).

Applying the Cauchy-Schwarz, Poincaré and Young inequalities to the second term on

the right-hand side of (3.33), we obtain that

|u(t)|2H + ν

∫ t

t′
‖u(s)‖2V ds ≤ |u(t′)|2H +

1

ν

∫ t

t′
‖f(s)‖2V ′ds (3.41)

Estimates (3.38) and (3.39) then follow by discarding in each case the appropriate

nonnegative term on the left-hand side of (3.41). The last estimate (3.40) is obtained

from the functional equation (3.32) by using the following inequality for the bilinear

term, which is derived from (3.31) with v = u:

‖B(u,u)‖V ′ ≤ c|u|
1/2
H ‖u‖

3/2
V ,

where c is the same universal constant from above.

The a priori estimates (3.38)-(3.40) allow us to prove that U ♯
I (R) is a compact and

metrizable space, in the same way as it was done in [22, Proposition 2.2]. Furthermore,

one can show that U ♯
I(R) is the closure of the space UI(R) with respect to the topology

of C(I,Hw).

The existence of a Leray-Hopf weak solution on a given interval I ⊂ R is obtained

by using the estimates from Proposition 3.4.2. This proof is a classical result and can be

found in many well-known texts [10, 29, 36, 47]. We state it below for completeness.

Theorem 3.4.1. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let f ∈ L2
loc(I;V

′). Then, given u0 ∈ H, there exists at least one weak

solution u ∈ UI of (3.26)-(3.27) in the sense of Definition 3.4.1 satisfying Πt0u = u0.

From now on, we assume that I ⊂ R is an interval closed and bounded on the left,

with left end point t0. Under this assumption, the energy inequality (3.33) is valid for

t′ = t0.

Consider a compact subinterval J ⊂ I. Then given u ∈ UI such that u(t0) ∈ BH(R)

for some R ≥ 0, from (3.38) with t′ = t0 it follows that there exists R̃ ≥ R such that

u(t) ∈ BH(R̃), for every t ∈ J . Thus, the restriction of u to J belongs to UJ(R̃).

In order to prove the existence of a trajectory statistical solution for the Navier-Stokes

equations satisfying a given initial data, we shall apply Theorem 3.2.1 by considering X
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as the space Hw and the general set U as the set of weak solutions UI . We now show that

UI satisfies hypothesis (H).

First, note that hypothesis (H1) is a direct consequence of Theorem 3.4.1. Also,

defining K
′(Hw) as the family of (strong) compact sets in H , it follows that hypotheses (i)

and (ii) of (H2) are also satisfied with respect to this family (see proof of Theorem 3.4.2).

The following proposition proves that the remaining hypothesis, (iii) of (H2), is also

satisfied.

Proposition 3.4.3. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let K be a set in K
′(Hw). Then Π−1

t0 K∩UI is a compact set in X = Cloc(I,Hw).

Proof. Let u ∈ Π−1
t0 K ∩ UI and let R ≥ 0 be large enough so that K ⊂ BH(R). Consider

a sequence {Jn}n of compact subintervals of I such that I =
⋃

n Jn. Since Πt0u ∈ K ⊂

BH(R) and u ∈ UI , from the estimate (3.38) with t′ = t0 it follows that there exists a

sequence {Rn}n of positive real numbers such that ΠJnu ∈ UJn(Rn), for every n. Thus,

Π−1
t0
K ∩ UI ⊂

⋂

n

Π−1
Jn
UJn(Rn). (3.42)

Now since each UJn(Rn) is a metrizable space, (3.42) implies that Π−1
t0 K ∩ UI is also

metrizable. Therefore, it suffices to show that Π−1
t0 K ∩ UI is sequentially compact.

Let {uk}k be a sequence in Π−1
t0 K ∩ UI . As in the classical proof of existence of weak

solutions (Theorem 3.4.1), using the a priori estimates (3.38)-(3.40) on each compact

interval Jn and applying a diagonalization method, we obtain a subsequence {uk′}k′ and

a function u such that

uk′ → u in Cloc(I,Hw) (3.43)

as k′ → ∞. Moreover, this limit function u is a weak solution on the interior of I,

i.e. u ∈ U ♯
I (the condition of strong continuity at t0, item (v) of Definition 3.4.1, is not

guaranteed at this point). From (3.43) we obtain in particular that

uk′(t0) → u(t0) in Hw. (3.44)

On the other hand, since K is a compact set in H , there exists a further subsequence,

which we still denote by {uk′}k′, and an element u0 ∈ K such that

uk′(t0) → u0 in H. (3.45)

From (3.44) and (3.45) it follows that u(t0) = u0, which implies that u ∈ Π−1
t0 K. Moreo-

ver, we obtain that {uk′(t0)}k′ also converges to u(t0) in the strong topology of H . This

allow us to prove that u verifies in addition the last condition of Definition 3.4.1.

Indeed, since each uk′ belongs to UI , they satisfy in particular the energy inequality

(3.33) at t′ = t0. Considering the lim inf as k′ → ∞ in this inequality we obtain by using
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the strong convergence of {uk′(t0)}k′ to u(t0) in H that

1

2
|u(t)|2H + ν

∫ t

t0

‖u(s)‖2V ds ≤
1

2
|u(t0)|

2
H +

∫ t

t0

〈f(s),u(s)〉V ′,V ds

Then, by taking the lim sup as t→ t+0 above, we obtain

lim sup
t→t+

0

|u(t)|2H ≤ |u(t0)|
2
H . (3.46)

And since u ∈ Cloc(I,Hw), then

|u(t0)|
2
H ≤ lim inf

t→t+
0

|u(t)|2H . (3.47)

Now (3.46) and (3.47) imply that u(t) converges in norm to u(t0) as t → t+0 . But since

u(t) also converges weakly to u(t0) as t→ t+0 , then

lim
t→t+0

u(t) = u(t0) in H.

Now we are able to prove the existence of a solution for the corresponding Initial-Value

Problem 3.1.1 associated to the Navier-Stokes equations.

Theorem 3.4.2. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of Leray-Hopf weak solutions of the Navier-Stokes equations

on I. Then, given a Borel probability measure µ0 on H, there exists a UI-trajectory

statistical solution ρ on Cloc(I,Hw) satisfying the initial condition Πt0ρ = µ0.

Proof. From Theorem 3.4.1 it follows that the set UI satisfies hypothesis (H1) of Definition

3.2.1. Also, if K′(Hw) denotes the family of (strong) compact sets in H , then it clearly

satisfies hypothesis (i) of (H2). Since H is a Polish space, it follows that any Borel

probability measure on H is tight in the sense of being inner regular with respect to the

family of compact subsets of H [1, Theorem 12.7]. In particular, since µ0 ∈ P(H), then

µ0 is inner regular with respect to the family K
′(Hw) . Thus K′(Hw) satisfies hypothesis

(ii) of (H2). From Proposition 3.4.3, we also obtain that UI satisfies hypothesis (iii) of

(H2). We then conclude that UI verifies hypothesis (H). Moreover, since H is a separable

Banach space, the Borel sets in H and Hw coincide. This implies that µ0 is also a Borel

probability measure on Hw. It is also clearly tight on Hw, since every strong compact

set is weak compact. Therefore, by Theorem 3.2.1 there exists a UI trajectory statistical

solution ρ with Πt0ρ = µ0.
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Finally, using Theorem 3.4.2 and the strengthened energy inequality from Proposition

3.4.1, we obtain a solution for the corresponding Initial-Value Problem 3.1.2 associated

to the Navier-Stokes equations, i.e. the existence of a statistical solution in the sense of

Definition 3.1.2 satisfying a given initial data.

Theorem 3.4.3. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of Leray-Hopf weak solutions of the Navier-Stokes equations

on I. Consider a Borel probability measure µ0 on H satisfying

∫

H

|u|2Hdµ0(u) <∞. (3.48)

Then there exists a projected statistical solution {ρt}t∈I of the Navier-Stokes equations

(3.26)-(3.27), associated with a UI-trajectory statistical solution, such that

(i) The initial condition ρt0 = µ0 holds;

(ii) The function

t 7→

∫

H

ϕ(u)dρt(u) (3.49)

is continuous on I, for every bounded and weakly-continuous real-valued function ϕ

on H, and is measurable on I, for every bounded and continuous real-valued function

ϕ on H.

(iii) For any cylindrical test function Φ, it follows that

∫

H

Φ(u)dρt(u) =

∫

H

Φ(u)dρt′(u)

+

∫ t

t′

∫

H

〈f(s)− νAu− B(u,u),Φ′(u)〉V ′,V dρs(u)ds, (3.50)

for all t, t′ ∈ I.

(iv) The mean strengthened energy inequality

d

dt

∫

H

(ψ(|u|2H))dρt(u) ≤ 2

∫

H

ψ′(|u|2H)[〈f(t),u〉V ′,V − ν‖u‖2V ]dρt(u) (3.51)

is satisfied in the distribution sense on I, for every nonnegative, nondecreasing and

continuously-differentiable real-valued function ψ with bounded derivative.

(v) At the initial time, the limit

lim
t→t+0

∫

H

ψ(|u|2H)dρt(u) =

∫

H

ψ(|u|2H)dµ0(u) (3.52)

holds for every function ψ as in (iv).
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Proof. We have seen in the proof of Theorem 3.4.2 that the set of Leray-Hopf weak

solutions UI satisfies the hypothesis (H).

Now let F : I × V → V ′ be the function defined by

F(t,u) = f(t)− νAu− B(u,u). (3.53)

As previously mentioned, the linear operator A : V → V ′ and the bilinear operator

B : V × V → V ′ are continuous. This implies that the mapping u 7→ −νAu − B(u,u)

is also continuous from V into V ′. In particular, the mapping (t,u) 7→ −νAu − B(u,u)

is (LI ⊗BV ,BV ′)-measurable. Further, since f ∈ L2
loc(I, V

′), we then obtain that F is a

(LI ⊗BV ,BV ′)-measurable function.

From the functional equation (3.30), it follows that

ut(t) = F(t,u(t)), ∀u ∈ UI , ∀t ∈ I.

The a priori estimates from Proposition 3.4.2 allow us to obtain a function γ : I×Hw → R

satisfying
∫ t

t0

‖F(s,u(s))‖V ′ds ≤ γ(t,u(t0)), ∀t ∈ I, ∀u ∈ UI .

And using (3.48) it is not difficult to show that the function

t 7→

∫

Hw

γ(t,u0)dµ0(u0)

belongs to L1
loc(I).

Also, as mentioned before, we know that V ⊂ Hw →֒ V ′
w∗ and that the injection of

Hw into V ′
w∗ is continuous. Moreover, if BV (u0, r) denotes the closed ball in V centered

at u0 ∈ V with radius r > 0, then

BV (u0, r) = {u ∈ V | ‖u− u0‖ ≤ r}

=
⋂

k∈N

{u ∈ V | ‖Pk(u− u0)‖ ≤ r}

=
⋂

k∈N

{u ∈ H | ‖Pk(u− u0)‖ ≤ r},

and since Pk : H → V is continuous then every set inside the intersection of the last

equality is closed in H . Thus, every closed ball in V is a Borel set in H . This implies that

BV ⊂ BH . Moreover, since H is a separable Banach space, then BH = BHw . Hence,

BV ⊂ BHw .

Then, applying Theorem 3.3.2 with X = Hw, Y = V , U = UI , F and γ as above,

we obtain the existence of a projected statistical solution {ρt}t∈I associated with a UI -

trajectory statistical solution ρ and such that ρt0 = µ0. This means that {ρt}t∈I satisfies
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(i), (iii), and the first part of (ii), concerning bounded and weakly-continuous functions

ϕ on H .

Let us prove the second part of property (ii), concerning strongly continuous functions.

Consider then a bounded and continuous real-valued function ϕ on H . Let Pm, m ∈ N,

be the Galerkin projectors. Then, for every m ∈ N, the function ϕ ◦ Pm is bounded and

continuous on Hw. Let V ⊂ U be a Borel subset such that ρ(V) = 1. From the first part

of (ii), it follows that the function

t 7→

∫

V

ϕ(Pmu(t))dρ(u)

is continuous on I, for every m ∈ N. Then, since the function (3.49) is the pointwise

(in t) limit of these functions as m → ∞, it follows that (3.49) is measurable on I. This

proves the second part of (ii).

For the proof of (iv), consider the functions α : I × Hw → R and β : I × V → R

defined respectively by

α(t,u(t)) = ψ(|u(t)|2H) (3.54)

and

β(t,u(t)) = −2ψ′(|u(t)|2H)[〈f(t),u(t)〉V ′,V − ν‖u(t)‖2V ], (3.55)

for every u ∈ UI and t ∈ I. Using the estimates (3.38) and (3.39) with t′ = t0, which is

allowed for functions in UI , and using (3.48), we obtain that α ∈ L∞(J × V, λ × ρ) and

β ∈ L1(J × V, λ × ρ), for every compact subset J ⊂ I, where λ denotes the Lebesgue

measure on I. From Proposition 3.4.1, the functions α and β satisfy

d

dt
α(t,u(t)) + β(t,u(t)) ≤ 0, ∀t ∈ I, ∀u ∈ UI ,

in the sense of distributions in I. Property (iv) then follows by applying Proposition 3.3.1

with X = Hw, Y = V , U = UI and with the functions α and β defined in (3.54)-(3.55).

It only remains to prove property (v). Note that for every function ψ as in (3.51), we

may write

ψ(|u(t)|2H) ≤ ψ(0) + ψ′(ξ)|u(t)|2H,

for some 0 ≤ ξ ≤ |u(t)|2. Then, using the boundedness of ψ′ and the a priori estimate

(3.38) with t′ = t0, we find that

ψ(|u(t)|2H) ≤ C0 + C1|u(t0)|
2
H ,

for suitable constants C0, C1 > 0. Hence, from (3.48), it follows that ψ(|u(t)|2) is bounded

by a ρ-integrable function in V which does not depend on t. Then, since every u ∈ UI is
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strongly continuous at t0 and ψ is continuous, we have that

ψ(|u(t)|2H) → ψ(|u(t0)|
2
H),

ρ-almost everywhere, as t → t+0 . Therefore, (3.52) follows from the Lebesgue Dominated

Convergence Theorem.

3.4.2 Reaction-Diffusion Equation

In this subsection, we shall analyze the following reaction-diffusion-type equation

∂u

∂t
(x, t) = a∆u(x, t)− f(u(x, t), t) + g(x, t), x ∈ Ω ⊂ R

n, t ∈ I, (3.56)

subject to the boundary condition

u(x, t)|
x∈∂Ω = 0, ∀t ∈ I, (3.57)

where u is the unknown variable, a is a positive constant, f is the interaction function

and g is the external force. Moreover, I ⊂ R is an arbitrary interval and Ω ⊂ R
n is a

bounded and open subset which is assumed to be smooth.

We follow the same framework and notations from [9, Section XV.3], but in order

to simplify the presentation we consider only a scalar equation instead of a system of

equations.

Consider the spaces H = L2(Ω) and V = H1
0 (Ω) with respective inner products (·, ·)H

and ((·, ·))V , given by

(u, v)H =

∫

Ω

u(x)v(x)dx , ∀u, v ∈ H,

and

((u, v))V =

∫

Ω

∇v(x) · ∇u(x)dx , ∀u, v ∈ V.

The corresponding norms in H and V are denoted by | · |H and ‖ · ‖V , respectively. Also,

consider V ′ = H−1(Ω). Then, identifying H with its dual space H ′, we have

V ⊂ H ≡ H ′ ⊂ V ′,

with continuous inclusions and, in particular, H →֒ V ′
w∗ with continuous injection.

We assume that g ∈ L2
loc(I, V

′) and that f is a function in C(R×R,R) satisfying the

following estimates, for every v ∈ R and s ∈ R:

η|v|p − C1 ≤ f(v, s)v, (3.58)
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|f(v, s)|
p

p−1 ≤ C2(|v|
p + 1), (3.59)

where η > 0, p ≥ 2 and C1, C2 ∈ R are constants. In [9], the function g is also assumed

to be translation bounded in the space L2
loc(I, V

′). However, we do not consider this

hypothesis since it is not needed for our purposes.

As in [9], it follows by using condition (3.59) that if r ≥ max{1, n(1/2 − 1/p)} and

u ∈ Lp
loc(I, L

p(Ω))∩L2
loc(I, V ), then ∂tu ∈ Lq

loc(I,H
−r(Ω)), for 1/p+1/q = 1. This implies

that the evolution equation (3.56) can be considered in the distribution sense on I, with

values in H−r(Ω).

We then have the following definition of a weak solution for problem (3.56)-(3.57).

Definition 3.4.2. A weak solution of (3.56)-(3.57) is a function u = u(x, t) on Ω × I

such that u ∈ Lp
loc(I, L

p(Ω))∩L2
loc(I, V ) and u satisfies (3.56) in the distribution sense on

I, with values in H−r(Ω).

Given R ≥ 0, let BH(R) be the closed ball centered at the origin and of radius R in

H . Consider the following sets of weak solutions:

UI = {u ∈ Cloc(I,H) | u is a weak solution of (3.56)-(3.57) on I}, (3.60)

UI(R) = {u ∈ Cloc(I, BH(R)) | u is a weak solution of (3.56)-(3.57) on I}, (3.61)

The proof of existence of individual weak solutions for the corresponding initial-value

problem of (3.56)-(3.57) can be found in [9]. We state it below for completeness.

Theorem 3.4.4. Consider an interval I ⊂ R bounded and closed on the left with left end

point t0. Let g ∈ L2
loc(I, V

′) and let f ∈ C(R×R) be a function satisfying conditions (3.58)

and (3.59). Then, given u0 ∈ H, there exists a weak solution u of problem (3.56)-(3.57)

such that u ∈ Lp
loc(I, L

p(Ω)) ∩ L2
loc(I, V ) ∩ L∞

loc(I,H) and u(t0) = u0.

The following proposition presents some additional properties satisfied by every weak

solution of (3.56)-(3.57) in the sense of Definition 3.4.2. The proof is given in [9, Propo-

sition XV.3.1].

Proposition 3.4.4. Let u ∈ Lp
loc(I, L

p(Ω))∩L2
loc(I, V ) be a weak solution of (3.56)-(3.57).

Then

(i) u ∈ Cloc(I,H);

(ii) the function |u(s)|2H is absolutely continuous on every compact subinterval J ⊂ I

and satisfies the following energy equality

1

2

d

dt
|u(t)|2H + a‖u(t)‖V + (f(u(t), t), u(t))H = 〈g(t), u(t)〉V ′,V , (3.62)

for almost every t ∈ I, where 〈·, ·〉V ′,V denotes the duality product in V .
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Now we prove that the set of weak solutions UI satisfies the hypothesis (H). We

first observe that Theorem 3.4.4 implies that Πt0UI = H . This means that UI satisfies

hypothesis (H1) of Definition 3.2.1, with X = H .

For the remaining hypothesis, we can show in this case that the stronger condition

(H2’) holds. This is proved in the following proposition.

Proposition 3.4.5. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let K be a compact subset of H. Then Π−1
t0 K ∩ UI is compact in Cloc(I,H).

Proof. Since X = Cloc(I,H) is a metrizable space, it suffices to show that Π−1
t0 K ∩ UI is

sequentially compact. Consider then a sequence {uj}j in Π−1
t0 K ∩UI . Since K is compact

there exists u0 ∈ H such that, by taking a subsequence if necessary, uj(t0) → u0 in H .

This implies in particular that the sequence {uj(t0)} is bounded in H .

Using condition (3.58) on the energy equality (3.62) for each uj and integrating from

t0 to t, we obtain that

|uj(t)|
2
H − |uj(t0)|

2
H + a

∫ t

t0

‖uj(s)‖
2
V ds+2η

∫ t

t0

‖uj(s)‖
p
pds ≤

1

a

∫ t

t0

‖g(s)‖2V ′ds+2|t− t0|C,

(3.63)

where ‖ · ‖p denotes the norm in Lp(Ω) and C = C1

∫

Ω
dx. Consider a sequence {Jn}n of

compact subintervals of I such that I =
⋃

n Jn. Then, from the estimate (3.63) and the

boundedness of the sequence {uj(t0)} in H , it follows that, for each n, {uj}j is a bounded

sequence in L2(Jn, V ) ∩ Lp(Jn, L
p(Ω)) ∩ L∞(Jn, H). Now, using the same arguments as

in [9, Theorem XV.3.1] and a diagonalization process, we can obtain a weak solution u

of problem (3.56)-(3.57) on I such that, modulo a subsequence, uj → u in Cloc(I,H). In

particular, it follows that uj(t) → u(t) in H , for every t ∈ I. Thus, u(t0) = u0 ∈ K and

we conclude that u ∈ Π−1
t0 K ∩ UI , as required.

The existence of a trajectory statistical solution with respect to a given initial data

now follows by a simple application of Theorem 3.2.1 for X = H and UI as the set of

weak solutions of (3.56)-(3.57) over a given interval I ⊂ R closed and bounded on the

left. Recall that since H is a Polish space then every Borel probability measure on H is

tight.

Theorem 3.4.5. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of weak solutions of problem (3.56)-(3.57) on I. If µ0 is a

Borel probability measure on H then there exists a UI-trajectory statistical solution ρ on

Cloc(I,H) such that Πt0ρ = µ0.

Now we obtain the existence of statistical solutions with respect to a given initial

measure.
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Theorem 3.4.6. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let µ0 be a Borel probability measure on H satisfying

∫

H

|u|2Hdµ0(u) <∞. (3.64)

Then there exists a projected statistical solution {ρt}t∈I of (3.56)-(3.57), associated with

a UI-trajectory statistical solution, such that

(i) The initial condition ρt0 = µ0 holds;

(ii) The function

t 7→

∫

H

ϕ(u)dρt(u) (3.65)

is continuous on I for every bounded and continuous real-valued function ϕ on H.

(iii) For any cylindrical test function Φ, it follows that

∫

H

Φ(u)dρt(u) =

∫

H

Φ(u)dρt′(u)

+

∫ t

t′

∫

H

〈a∆u− f(u, s) + g(s),Φ′(u)〉V ′,V dρs(u)ds, (3.66)

for all t, t′ ∈ I.

(iv) For every non-negative, nondecreasing and continuously-differentiable real-valued

function ψ with bounded derivative, the function

t 7→

∫

H

ψ(|u|2H)dρt(u)

is absolutely continuous on I. Moreover, the following mean strengthened energy

equality holds in the distribution sense on I:

d

dt

∫

H

ψ(|u|2H)dρt(u) = 2

∫

H

ψ′(|u|2H)[〈g(t), u〉V ′,V − a‖u‖2V − (f(u, t), u)H]dρt(u).

Proof. Apply Theorem 3.3.2 and Proposition 3.3.2 for X = H , Y = V , U = UI and the

functions F : I × V → V ′, α : I ×H → R and β : I × V → R defined as

F (t, u) = a∆u(t)− f(u(t), t) + g(t),

α(t, u) = ψ(|u|2H)

and

β(t, u) = −2ψ′(|u|2H)[〈g(t), u〉V ′,V − a‖u‖2V − (f(u, t), u)H].
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3.4.3 Nonlinear Wave Equation

In this subsection, we apply the abstract framework to prove the existence of statistical

solutions of a nonlinear hyperbolic-type equation which appears within the theory of

Relativistic Quantum Mechanics. We follow the ideas contained in [36, Chap. 1, Sec.1].

Let Ω ⊂ R
n be a bounded open set with smooth boundary, denoted ∂Ω, and let I ⊂ R

be an arbitrary interval. Consider the following equation

∂2u

∂t2
−∆u+ |u|ru = f, (3.67)

where u = u(x, t) is the unknown variable, r is a positive constant and f = f(x, t) is a

given function, with x ∈ Ω and t ∈ I.

We endow equation (3.67) with the following boundary condition:

u(x, t)|
x∈∂Ω = 0, ∀t ∈ I. (3.68)

In order to obtain a functional setting for problem (3.67)-(3.68), we introduce the

space

Ṽ = H1
0 (Ω) ∩ L

p(Ω),

where p = r + 2. The space Ṽ turns into a Banach space when endowed with the norm

‖ · ‖Ṽ , defined by

‖v‖Ṽ = ‖v‖H1
0
+ ‖v‖Lp, ∀v ∈ Ṽ ,

where ‖·‖H1
0
and ‖·‖Lp denote the usual norms in the spacesH1

0 (Ω) and L
p(Ω), respectively.

The dual space of Ṽ is the space Ṽ ′ = H−1(Ω) + Lp′(Ω), where 1/p + 1/p′ = 1. The

duality product between Ṽ and Ṽ ′ is denoted by 〈·, ·〉Ṽ ′,Ṽ .

Also, we consider the space L2(Ω) endowed with its usual norm and inner product,

which are denoted respectively by ‖ · ‖L2 and ((·, ·))L2. And we assume that f is a function

in L2
loc(I, L

2(Ω)).

We may also rewrite equation (3.67) under the following equivalent form:



















∂u

∂t
− v = 0

∂v

∂t
−∆u+ |u|ru = f

(3.69)

Let us denote the nonlinear term of the second equation in (3.69) through the function

b : Ṽ → Ṽ ′ given by

b(u) = |u|ru, ∀u ∈ Ṽ .
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Furthermore, considering U = (u, v) and the linear operator A defined by

AU =

(

0 −I

−∆ 0

)

U =

(

0 −I

−∆ 0

)(

u

v

)

=

(

−v

−∆u

)

,

then system (3.69) turns into

dU

dt
+ AU +N(U) = G, (3.70)

where N(U) and G are the vectors

N(U) =

(

0

b(u)

)

, G =

(

0

f

)

.

Furthermore, from (3.68) we immediately obtain the following boundary condition for

(3.70):

U(x, t)|
x∈∂Ω = 0, ∀t ∈ I. (3.71)

Now we define V = Ṽ × L2(Ω), in which the following norm is defined

‖U‖V = ‖u‖Ṽ + ‖v‖L2, ∀U = (u, v) ∈ V.

When endowed with its corresponding weak topology, the space V is denoted by Vw.

We characterize the dual of V as the space V ′ = L2 × Ṽ ′, with the duality product

between h = (f, g) ∈ V ′ and U = (u, v) ∈ V as

〈h, U〉V ′,V = ((f, v))L2 + 〈g, u〉Ṽ ′,Ṽ .

With this representation, the usual norm for an element h = (f, g) in the dual space V ′

can also be written in the form

‖h‖V ′ =
√

‖f‖2L2 + ‖g‖2
Ṽ ′
.

We now give the definition of a weak solution of problem (3.70)-(3.71).

Definition 3.4.3. Let I ⊂ R be an interval and let f ∈ L2
loc(I;L

2(Ω)). We say that

U = U(t) = (u(t), v(t)) is a weak solution of problem (3.70)-(3.71) on I if the

following conditions are satisfied:

(i) U ∈ L∞
loc(I;V );

(ii) U ∈ Cloc(I, Vw);
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(iii) U satisfies
dU

dt
+ AU +N(U) = G in V ′, (3.72)

in the sense of distributions on I.

(iv) For almost every t̃ ∈ I, U satisfies the following energy inequality

E(U(t)) ≤ E(U(t̃)) +

∫ t

t̃

〈Ǧ(s), U(s)〉V ′,V ds, (3.73)

for every t ∈ I with t > t̃, where Ǧ = (f, 0) and

E(U) = E(u, v) =
1

2
‖u‖2H1

0
+

1

p
‖u‖pLp +

1

2
‖v‖2L2. (3.74)

The set of times t̃ for which (3.73) is valid can be characterized as the points of

strong continuity from the right of U , and they form a set of total measure in I.

(v) If I is closed and bounded on the left, with left end point t0, then U is strongly

continuous at t0 from the right, i.e. U(t) → U(t0) in V as t→ t+0 .

For any R > 0, let BV (R) denote the closed ball of radius R in V . We then define the

following sets of weak solutions of problem (3.70)-(3.71):

UI = {U ∈ Cloc(I, Vw) : U is a weak solution of (3.70)-(3.71) on I}, (3.75)

UI(R) = {U ∈ C(I, BV (R)w) : U is a weak solution of (3.70)-(3.71) on I}, (3.76)

Next we state an existence theorem of individual weak solutions for the initial value

problem associated to the system (3.70)-(3.71). The proof is given in [36, Theorem 1.1,

Chap. 1, Sec. 1]. Although the regularity conditions (ii), (iv) and (v) of Definition

3.4.3 are not explicitly written in the statement of the theorem in this reference, they are

obtained along the lines of the proof.

Theorem 3.4.7. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let f ∈ L2
loc(I;L

2(Ω)). Then, given U0 ∈ V , there exists at least one weak

solution U ∈ UI of (3.70)-(3.71) in the sense of Definition 3.4.3 satisfying Πt0U = U0.

Consider now I ⊂ R an interval closed and bounded on the left with left end point t0.

In this case, item (v) of Definition 3.4.3 implies that the energy inequality (3.73) is valid

for t̃ = t0.

Let U = (u, v) ∈ UI such that U(t0) ∈ BV (R) , for some R > 0. From the energy

inequality (3.73) with t̃ = t0, it follows that

E(U(t)) ≤ R +
1

2

∫ t

t0

‖f(s)‖2L2ds+
1

2

∫ t

t0

‖v(s)‖2L2ds, (3.77)

52



for every t ∈ I, which also yields

1

2
‖v(t)‖2L2 ≤ R +

1

2

∫ t

t0

‖f(s)‖2L2ds+
1

2

∫ t

t0

‖v(s)‖2L2ds. (3.78)

Then, given a compact subinterval J ⊂ I, by applying Grönwall’s inequality in (3.78) we

obtain that ‖v(·)‖L2 is uniformly bounded on J . From the estimate (3.77), it then follows

that there exists R̃ ≥ R such that U(t) ∈ BV (R̃), for every t ∈ J . Thus, the restriction

of U to J belongs to UJ(R̃).

We shall now prove that the set of weak solutions UI satisfies the hypothesis (H).

Theorem 3.4.7 shows, in an equivalent form, that Πt0UI = Vw. Thus, the set UI

satisfies hypothesis (H1) with X = Vw.

Now define

K
′(Vw) = {K ⊂ Vw |K is a (strongly) compact set in V }.

By analogous arguments used in Subsection 3.4.1, we obtain that every Borel pro-

bability measure µ0 on V is tight with respect to the family K
′(Vw). Then, considering

X = Vw, it follows that the family K
′(Vw) satisfies hypotheses (i) and (ii) of (H2).

The next proposition shows that UI also satisfies hypothesis (iii) of (H2).

Proposition 3.4.6. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let K be a set in K
′(Vw). Then Π−1

t0 K∩UI is a compact set in X = Cloc(I, Vw).

Proof. Let R > 0 be such that K ⊂ BV (R) and let {Jn}n be a sequence of compact

subsets of I such that

I =
⋃

n

Jn.

Then, from the energy inequality (3.73) with t̃ = t0, one obtains that for each n there

exists a positive real number Rn ≥ R such that

ΠJnU ∈ UJn(Rn), ∀U ∈ Π−1
t0
K ∩ UI ,

for every n, which implies that

Π−1
t0
K ∩ UI ⊂

⋂

n

Π−1
Jn
UJn(Rn).

Since UJn(Rn) is a subset of Cloc(I, BV (Rn)w), which is a metrizable space, it follows that

Π−1
t0 K∩UI is also metrizable. Thus, it is enough to prove that Π−1

t0 K∩UI is a sequentially

compact space.

Consider then a sequence {Uk}k in Π−1
t0 K ∩UI . Since Uk(t0) ∈ K and K is a compact
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set in V , there exists U0 ∈ V and a subsequence {kj}j such that

Ukj(t0) → U0 in V. (3.79)

Following classical arguments used for the existence of weak solutions (see [36, Chap.

1, Sec.1]), we obtain a priori estimates that allow us to pass to the limit on each compact

set Jn. Then, using a diagonalization process, we obtain a further subsequence (which

we still denote by {Ukj}j) and a function U defined on the interval I such that {Ukj}j

converges to U in Cloc(I, Vw) and U is a weak solution on the interior of I. Thanks to

(3.79) we have at the initial time that U(t0) = U0 ∈ K, so that U ∈ Π−1
t0 K. Then, as

in the case of the Navier-Stokes equations (see the proof of Proposition 3.4.3), using the

energy inequality and the fact that the convergence (3.79) at the initial time is in the

strong topology, we obtain that U is strongly continuous at the initial time t0, so that

U ∈ UI . Therefore, U ∈ Π−1
t0 K ∩ UI , proving that Π−1

t0 K ∩ UI is compact.

Thus, applying Theorem 3.2.1 for X = Vw and U as the set of weak solutions UI ,

we obtain the following result on the existence of a trajectory statistical solution for the

nonlinear wave equation with respect to a given initial data.

Theorem 3.4.8. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of weak solutions of problem (3.70)-(3.71) on I. If µ0 is a

Borel probability measure on V then there exists a UI-trajectory statistical solution ρ on

Cloc(I, Vw) such that Πt0ρ = µ0.

In the next result we prove the existence of a statistical solution of problem (3.70)-

(3.71) in the sense of Definition 3.1.2 with respect to a given initial data.

Theorem 3.4.9. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of weak solutions of problem (3.70)-(3.71) on I. Consider a

Borel probability measure µ0 on V satisfying

∫

V

E(U)dµ0(U) <∞, (3.80)

with E as defined in (3.74). Then there exists a projected statistical solution {ρt}t∈I of

(3.67), associated with a UI-trajectory statistical solution, such that

(i) The initial condition ρt0 = µ0 holds;

(ii) The function

t 7→

∫

V

ϕ(U)dρt(U) (3.81)

is continuous on I, for every bounded and weakly-continuous real-valued function ϕ

on V , and is measurable on I, for every bounded and continuous real-valued function

ϕ on V .
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(iii) For any cylindrical test function Φ, it follows that

∫

V

Φ(U)dρt(U) =

∫

V

Φ(U)dρt′(U) +

∫ t

t′

∫

V

〈G− AU −N(U),Φ′(U)〉V ′,V dρs(U)ds, (3.82)

for all t, t′ ∈ I.

(iv) The mean strengthened energy inequality

d

dt

∫

V

ψ(E(U))dρt(U) ≤

∫

V

ψ′(E(U))〈Ǧ(t), U(t)〉V ′,V dρt(U) (3.83)

is satisfied in the distribution sense on I, for every nonnegative, nondecreasing

and continuously-differentiable real-valued function ψ with bounded derivative, where

Ǧ = (f, 0).

(v) At the initial time, the limit

lim
t→t+0

∫

V

ψ(E(U))dρt(U) =

∫

V

ψ(E(U))dµ0(U) (3.84)

holds for every function ψ as in (iv).

Proof. The proof follows by arguments similar to the ones used in Theorem 3.4.3, con-

sidering X = Vw, Y = V and the functions F : I × V → V ′, α : I × Vw → R and

β : I × V → R defined respectively as

F (t, U) = G(t)− AU(t)−N(U(t)),

α(t, U) = ψ(E(U(t))),

and

β(t, U) = −ψ′(E(U(t)))〈Ǧ(t), U(t)〉V ′,V ,

for every (t, U) in the corresponding domains.

3.4.4 Bénard Problem

In this section we consider a model for a phenomenon of convection in fluids, na-

mely the Bénard problem, which consists of the Navier-Stokes equations coupled with an

equation for the temperature via the Boussinesq approximation [2, 34].

We shall analyze the three-dimensional case for a homogeneous and incompressible

fluid in the region {(x1, x2, x3) ∈ R
3 | 0 < x3 < h}. At the lower surface x3 = 0, the fluid
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is heated at a constant temperature T0, while at the upper surface x3 = h, the fluid is at

a temperature T1 < T0, also constant. Let {e1, e2, e3} be the canonical orthonormal basis

in R
3. Then, through the Boussinesq approximation one obtains the following equations

describing the evolution of the velocity field u, the pressure p and the temperature T :

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = gα(T − T1)e3, (3.85)

∂T

∂t
+ (u · ∇)T − κ∆T = 0, (3.86)

∇ · u = 0, (3.87)

where g is the acceleration of gravity, α is the volume-expansion coefficient of the fluid, ν

is the kinematic viscosity and κ is the coefficient of thermometric conductivity.

We also consider zero velocity field at the boundaries x3 = 0 and x3 = h and periodic

boundary conditions in the directions x1 and x2, so that the boundary conditions for

problem (3.85)-(3.87) are given as

u = 0 at x3 = 0 and x3 = h, (3.88)

T = T0 at x3 = 0, T = T1 at x3 = h, (3.89)

p,u, T are periodic in the x1 and x2 directions, (3.90)

where the last condition means that

ψ(x1 + L1, x2, x3) = ψ(x1, x2, x3), ∀(x1, x2, x3) ∈ R
2 × (0, h)

ψ(x1, x2 + L2, x3) = ψ(x1, x2, x3), ∀(x1, x2, x3) ∈ R
2 × (0, h)

for some positive real numbers L1 and L2, and ψ being any of the functions in condition

(3.90).

In order to simplify the analysis of the problem, we define a background temperature

Tb,ε, given by

Tb,ε(x1, x2, x3) =











0, for 0 ≤ x3 < h− ε,

(T1 − T0)

ε
(x3 − h + ε), for h− ε ≤ x3 ≤ h,

where ε is a positive real number which is chosen appropriately later. Then, we introduce

a change of variables for the temperature by considering θ = T − T0 − Tb,ε, in terms of

which, problem (3.85)-(3.87) is rewritten as

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = gαθe3 + gα(Tb,ε + T0 − T1)e3, (3.91)
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∂θ

∂t
+ (u · ∇)θ − κ∆θ = −(u · ∇)Tb,ε + κ∆Tb,ε, (3.92)

∇ · u = 0, (3.93)

with the following boundary conditions

u = 0 at x3 = 0 and x3 = h, (3.94)

θ = 0 at x3 = 0 and x3 = h, (3.95)

p,u, θ are periodic in the x1 and x2 directions. (3.96)

Note that the boundary conditions for the temperature in the x3 direction are now zero,

justifying the introduction of this new variable. In fact, there are many possible choices

for this background temperature. The one we use here has been chosen so as to yield

uniform in time a priori estimates.

Let us now introduce the function spaces which are necessary in the following analysis.

Consider the domain Ω = (0, L1)× (0, L2)× (0, h) and define

V1 = {v = w|Ω : w ∈ (C∞
c (R2 × (0, h)))3, ∇ ·w = 0,

w is L1-periodic in the x1 direction and L2-periodic in the x2 direction},

and

V2 = {θ = φ|Ω : φ ∈ C∞
c (R2 × (0, h)), φ is L1-periodic in the x1 direction and

L2-periodic in the x2 direction},

where C∞
c (R2× (0, h)) denotes the set of infinitely differentiable and compactly supported

functions in R
2 × (0, h).

Then, let V1 be the closure of V1 with respect to the (H1
0 (Ω))

3 norm and H1 be the

closure of V with respect to the (L2(Ω))3 norm. Also, let V2 be the closure of V2 with

respect to the H1
0 (Ω) norm and H2 be the closure of V2 with respect to the L2(Ω) norm.

We then define the Hilbert spaces V = V1 × V2 and H = H1 ×H2.

The inner product and norm in V1 are defined as

((v, ṽ))1 =

3
∑

i,j=1

∫

Ω

∇vi · ∇ṽjdx, ∀v, ṽ ∈ V1,

‖v‖1 = ((v,v))
1/2
1 , ∀v ∈ V1.
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Similarly for V2,

((θ, θ̃))2 =

∫

Ω

∇θ · ∇θ̃dx, ∀θ, θ̃ ∈ V2,

‖θ‖2 = ((θ, θ))
1/2
2 , ∀θ ∈ V2.

Then, we define the following inner product and norm in the product space V = V1 × V2:

((z, z̃))V = ((v, ṽ))1 + γ((θ, θ̃))2, ∀z = (v, θ), z̃ = (ṽ, θ̃) ∈ V,

‖z‖V = ((z, z))
1/2
V , ∀z ∈ V,

where γ is a positive parameter making the above definition dimensionally correct. Like

ε, the parameter γ is chosen appropriately later.

Similarly, the inner products and norms of the spaces H1 and H2 are the usual ones

from (L2(Ω))3 and L2(Ω), and are denoted respectively by (·, ·)1 and (·, ·)2, with norms

| · |1 and | · |2. The inner product and norm in the space H are then defined accordingly:

(z, z̃)H = (v, ṽ)1 + γ(θ, θ̃)2, ∀z = (v, θ), z̃ = (ṽ, θ̃) ∈ H,

|z|H = (z, z)
1/2
H , ∀z ∈ H.

We identify H1 and H2 with their respective duals and consider the dual spaces V ′
1

and V ′
2 of V1 and V2, respectively, so that V1 ⊂ H1 = H ′

1 ⊂ V ′
1 and V2 ⊂ H2 = H ′

2 ⊂ V ′
2 ,

with continuous and dense injections.

In the product space, we characterize the dual of V as the space V ′ = V ′
1 × V ′

2 , with

the duality product between h = (f , g) ∈ V ′ and z = (u, θ) ∈ V given by

〈h, z〉 = 〈f ,u〉1 + γ〈g, θ〉2,

where 〈·, ·〉i denotes the duality product in Vi, i = 1, 2. With this representation, the

usual norm for an element h = (f , g) in the dual space V ′ = V ′
1 × V ′

2 can also be written

in the form

‖h‖V ′ =
√

‖f‖2V ′

1
+ γ‖g‖2V ′

2
, (3.97)

where ‖ · ‖V ′

i
denotes the usual norm of the dual space V ′

i , i = 1, 2.

Similarly, H is identified with its dual H ′ = H ′
1×H

′
2 = H1×H2 with a norm analogous

to (3.97), and we have the continuous and dense injections V ⊂ H = H ′ ⊂ V .

We rewrite the system (3.91)-(3.93) in the following functional form

du

dt
+ νA1u+B1(u,u) = gαθe3 + gα(Tb,ε + T0 − T1)e3, in V ′

1 , (3.98)

dθ

dt
+ κA2θ +B2(u, θ) = −(u · ∇)Tb,ε + κ∆Tb,ε, in V ′

2 , (3.99)
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where B1(·, ·) : V1×V1 → V ′
1 and B2(·, ·) : V1×V2 → V ′

2 are the bilinear operators defined

by duality as

〈B1(u,v),w〉1 = ((u · ∇)v,w)1 ∀u, v, w ∈ V1,

〈B2(v, θ), θ̃〉2 = ((v · ∇)θ, θ̃)2 ∀v ∈ V1, ∀θ, θ̃ ∈ V2.

Furthermore, A1 : V1 → V ′
1 and A2 : V2 → V ′

2 are the linear operators defined by duality

according to

〈A1v, ṽ〉1 = ((v, ṽ))1, ∀v, ṽ ∈ V1,

〈A2θ, θ̃〉2 = ((θ, θ̃))2, ∀θ, θ̃ ∈ V2.

Both these operators can be seen as positive and self-adjoint closed operators with compact

inverse when restricted to their domain D(Aj) in Hj, j = 1, 2, given by

D(A1) = {v ∈ V1; A1v ∈ H1},

D(A2) = {θ ∈ V2; A2θ ∈ H2}.

We let λ1 and λ2 denote the smallest eigenvalues of each of these operators and set

λ0 = min{λ1, λ2}.

We can also write equations (3.98)-(3.99) in the compact form

dz

dt
+ Az +B(z, z) +Rz = 0 in V ′,

where

z = (u, θ),

Az = (νA1u, κA2θ),

Rz = (−gαθe3 − gα(Tb,ε + T0 − T1)e3, (u · ∇)Tb,ε − κ∆Tb,ε)

and

B(z, z̃) = (B1(u, ũ), B2(u, θ̃)), ∀z = (u, θ), z̃ = (ũ, θ̃).

The following definition provides a notion of weak solution to the problem (3.91)-

(3.93). We denote by Hw the space H endowed with the weak topology.

Definition 3.4.4. Let I ⊂ R be an interval. We say that z = (u, θ) is a Leray-Hopf

weak solution of the Bénard problem (3.91)-(3.96) on I if

(i) z ∈ L2
loc
(I;V ) ∩ L∞

loc
(I;H) ∩ Cloc(I,Hw);

(ii) ∂tz ∈ L
4/3
loc

(I;V ′);

(iii) z satisfies
dz

dt
+ Az +B(z, z) +Rz = 0 in V ′
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in the sense of distributions on I.

(iv) For almost every t′ ∈ I, z = (u, θ) satisfies the following energy inequalities

1

2
|u(t)|21 + ν

∫ t

t′
‖u(s)‖21ds ≤

1

2
|u(t′)|21 +

∫ t

t′
(gαθ(s)e3,u(s))1ds (3.100)

1

2
|θ(t)|22 + κ

∫ t

t′
‖θ(s)‖22ds ≤

1

2
|θ(t′)|22 +

∫ t

t′
〈(u · ∇)Tb,ε, θ〉2ds

+κ

∫ t

t′
〈∆Tb,ε, θ〉2ds, (3.101)

for every t ∈ I with t > t′. The set of times t′ for which (3.100) and (3.101) are

valid can be characterized as the points of strong continuity from the right of u and

θ, and they form a set of total measure in I.

(v) If I is closed and bounded on the left, with left end point t0, then z is strongly

continuous at t0 from the right, i.e. z(t) → z(t0) in H as t→ t+0 .

For any R ≥ 0, let BH(R) be the closed ball with radius R in H and denote by BH(R)w

the closed ball endowed with the weak topology. Based on Definition 3.4.4, we consider

the following trajectory spaces associated to the Bénard problem:

UI = {z ∈ Cloc(I,Hw) | z is a weak solution of problem (3.91)-(3.96) on I}, (3.102)

UI(R) = {z ∈ Cloc(I, BH(R)w) | z is a weak solution of problem (3.91)-(3.96) on I},

(3.103)

where I̊ denotes the interior of the interval I.

By choosing γ sufficiently large and ε sufficiently small, one obtains suitable estimates

for the weak solutions in UI .

Proposition 3.4.7. Let I ⊂ R be an interval and let z ∈ UI . Suppose γ satisfies

γ >
4(gα)2

νκλ20
(3.104)

and ε satisfies

0 < ε2 <
ν

γ(T0 − T1)2

(

κ

4
−

(gα)2

γνλ20

)

. (3.105)

Then, for every t′ ∈ I for which (3.100) and (3.101) are valid, and for every t ∈ I with

t > t′, the following estimates hold

|z(t)|2H ≤ |z(t′)|2H e−ηλ0(t−t′) +2
κγ

ηλ0

L1L2

ε
(T1 − T0)

2(1− e−ηλ0(t−t′)), (3.106)
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∫ t

t′
‖z(s)‖2V ds ≤

1

η
|z(t′)|2H + 2

κγ

η

L1L2

ε
(T1 − T0)

2(t− t′), (3.107)

(
∫ t

t′
‖∂tz(s)‖

4/3
V ′ ds

)3/4

≤
C

(νκ)3/8
|z(t′)|2H + C

(νκ)1/8

λ
3/2
0

(t− t′) + C
(νκ)5/8

λ
1/2
0

, (3.108)

where η = min{ν, κ} and C is a nondimensional constant which depends on the parameters

ν, κ, λ0, g, α, T0, T1, γ, ε, L1 and L2 through nondimensional combinations of them.

The a priori estimates (3.106)-(3.108) allow us to prove the existence of weak solutions

of the initial-value problem associated to system (3.91)-(3.93) in the sense of Definition

3.4.4. The proof follows in a way similar to the classical result of existence of Leray-Hopf

weak solutions of the Navier-Stokes equations [10, 29, 46]. The choice of the background

flow and of the parameters γ and ε were based on the formulation given in [7] for the

Bénard problem in two dimensions (see also [26] for the three-dimensional case in which

the boundary conditions are, however, fully homogeneous, with the flow driven instead

by a forcing distributed within the domain). We then obtain the following result.

Theorem 3.4.10. Let z0 ∈ H. Then there exists at least one weak solution of problem

(3.91)-(3.96) in the sense of Definition 3.4.4 satisfying z(t0) = z0.

Let us now consider I ⊂ R as an interval closed and bounded on the left with left end

point t0. Define

R0 =

(

2
κγ

ηλ0

L1L2

ε

)1/2

(T1 − T0).

If R ≥ R0 and z ∈ UI is such that z(t0) ∈ BH(R), it follows from (3.106) with t′ = t0 that

z(t) ∈ BH(R), for every t ≥ t0. Thus, z ∈ UI(R).

In order to show that the abstract framework we constructed is valid for the Bénard

problem, consider X as Hw and the abstract set of trajectories U as the set of weak

solutions UI defined in (3.102).

First, observe that hypothesis (H1) of Definition 3.2.1 is readily verified by the set UI

thanks to Theorem 3.4.10.

Also, let K
′(Hw) be the family of (strongly) compact sets in H . Then, hypotheses

(i) and (ii) of (H2) are clearly satisfied by this family. The following proposition asserts

that K′(Hw) satisfies in addition hypothesis (iii) of (H2). The proof follows by arguments

analogous to the ones in Theorem 3.4.3, using the energy inequalities (3.100)-(3.101) and

the a priori estimates (3.106)-(3.108), provided the parameters γ and ε satisfy conditions

(3.104) and (3.105), respectively.

Proposition 3.4.8. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let K be a set in K
′(Hw). Then Π−1

t0 K∩UI is a compact set in X = Cloc(I,Hw).

Thus, the set of weak solutions UI satisfies hypothesis (H). Applying Theorem 3.2.1
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for X = Hw and U as UI , we then obtain the existence of a trajectory statistical solution

for problem (3.91)-(3.96) with respect to a given initial measure.

Theorem 3.4.11. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of weak solutions of problem (3.91)-(3.96) on I. Then, given

a Borel probability measure µ0 on H, there exists a UI-trajectory statistical solution ρ on

Cloc(I,Hw) satisfying the initial condition Πt0ρ = µ0.

The following theorem shows the existence of a statistical solution for problem (3.91)-

(3.96) with respect to a given initial data. This corresponds to a solution of Problem 3.1.2

in this case.

Theorem 3.4.12. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of weak solutions of problem (3.91)-(3.96) on I. Consider a

Borel probability measure µ0 on H satisfying

∫

H

|z|2Hdµ0(z) <∞. (3.109)

Then there exists a projected statistical solution {ρt}t∈I of problem (3.91)-(3.96), associ-

ated with a UI-trajectory statistical solution, such that

(i) The initial condition ρt0 = µ0 holds;

(ii) The function

t 7→

∫

H

ϕ(z)dρt(z) (3.110)

is continuous on I, for every bounded and weakly-continuous real-valued function ϕ

on H, and is measurable on I, for every bounded and continuous real-valued function

ϕ on H.

(iii) For any cylindrical test function Φ, it follows that

∫

H

Φ(z)dρt(z) =

∫

H

Φ(z)dρt′(z)

+

∫ t

t′

∫

H

〈−Az − B(z, z)− Rz,Φ′(z)〉V ′,V dρs(z)ds, (3.111)

for all t, t′ ∈ I.

(iv) The mean strengthened energy inequality

d

dt

∫

H

(ψ(|z|2H))dρt(z) ≤

∫

H

ψ′(|z|2H)

[

2
κγ

ηλ0

L1L2

ε
(T1 − T0)

2 − η‖z‖2V

]

dρt(z)

(3.112)

is satisfied in the distribution sense on I, for every nonnegative, nondecreasing and

continuously-differentiable real-valued function ψ with bounded derivative.
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(v) At the initial time, the limit

lim
t→t+0

∫

H

ψ(|z|2H)dρt(z) =

∫

H

ψ(|z|2H)dµ0(z) (3.113)

holds for every function ψ as in (iv).

Proof. The proof follows by applying Theorem 3.3.2 and Proposition 3.3.1 for X = Hw,

Y = V , U = UI and the functions

F (t, z) = −Az − B(z, z)− Rz, ∀(t, z) ∈ I × V,

α(t, z) = ψ(|z(t)|2H), ∀(t, z) ∈ I ×Hw,

and

β(t, z) = ψ′(|z|2H)

[

2
κγ

ηλ0

L1L2

ε
(T1 − T0)

2 − η‖z‖2V

]

, ∀(t, z) ∈ I × V.
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Chapter 4

Convergence of Statistical Solutions

A useful tool for dealing with evolution equations which do not have an established re-

sult of well-posedness is to consider regularized well-posed approximations of the equation

with respect to a parameter. One then analyzes whether the solutions of the approxima-

ted problems converge to a solution of the limit problem. In this chapter, we want to

address this question with respect to statistical solutions, in an abstract sense.

In order to obtain the convergence of the statistical solutions of the approximated

problems, we must use some well-known results on the continuity properties of measures

and integrals. More specifically, we use a result of this type for measures which states

that the measure of the elements of a monotone decreasing convergent sequence of sets

converge to the measure of the limit set. In regard to Lebesgue integrals, we use the

classical Dominated Convergence Theorem. We point out that both results are stated

with respect to sequences: a sequence of sets in the first result and a sequence of functions

in the second one.

Although the first result also holds, more generally, for a net of sets (this follows by

using [28, Proposition 10, Chapter 1]), the Dominated Convergence Theorem is not valid

for nets in general. To see this, consider for instance the family of all finite subsets of

[0, 1], denoted by D and ordered by inclusion. For each α ∈ D, let χα be the characteristic

function of the set α. It is clear that {χα}α∈D converges pointwise to χ[0,1]. On the other

hand,
∫ 1

0
χα(t)dt = 0, for all α ∈ D, and

∫ 1

0
χ[0,1](t)dt = 1. Therefore,

∫ 1

0
χα(t)dt 9

∫ 1

0
χ[0,1](t)dt.

For that reason, in the results of this chapter we assume that the parameters associated

to the approximated problems vary in a countable set.

In Section 4.1, we prove the main result on the convergence of approximated statistical

solutions to a statistical solution of the limit equation. We first prove this result for

trajectory statistical solutions and then obtain as an easy consequence the convergence

of statistical solutions in phase space. For these results to hold, we need a new set of

hypotheses, which is called hypothesis (H̃), following a similar terminology from Chapter
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3. This new hypothesis (H̃) must be satisfied by a pair formed by a subset of the trajectory

space, which represents the set of individual solutions of the limit equation, and by the

sequence of solution operators associated to the regularized equations.

Next, in Section 4.2 we give an application of these abstract results of con-

vergence for two specific models: the Navier-Stokes-α (NS-α) equations and the

Magnetohydrodynamics-α (MHD-α) equations. These equations consist in regularized ap-

proximations of the Navier-Stokes equations and the Magnetohydrodynamics equations,

respectively. For the NS-α model, the convergence of the corresponding approximated

statistical solutions to a statistical solution of the Navier-Stokes equations was already

proved in [6]. Our idea here is to show this result as an application of the abstract

framework we constructed.

Once this abstract framework is available, it can also be used to obtain the convergence

of other regularized approximations, such as the Galerkin approximations, the Leray-α

model, and so on.

4.1 Convergence in trajectory and phase spaces

In this section we consider X as a Hausdorff space and I ⊂ R an interval closed and

bounded on the left with left end point t0. Also, let X = Cloc(I,X) be the space of

continuous paths on I with values in X , endowed with the compact-open topology (see

Section 2.1).

Given a family of sets {An}n∈N in X , its topological lim sup is defined as

lim sup
n

An =
⋂

n

⋃

j≥n

Aj ,

where the overline stands for the closure in X .

We define below the set of hypotheses which are needed in the proof of the convergence

results.

Definition 4.1.1. Let X be a Hausdorff space. Consider an interval I ⊂ R closed

and bounded on the left with left end point t0, and let X = Cloc(I,X). Given a family

of functions {Sn}n∈N, with Sn : X → X , and a subset U ⊂ X , we say that the pair

({Sn}n∈N,U) satisfies the hypothesis (H̃) if the following conditions hold

(H̃1) For each n ∈ N, Sn : X → X is a continuous function;

(H̃2) Πt0Sn(u0) → u0 as n→ ∞, for every u0 ∈ X;

(H̃3) There exists a family of sets K
′(X) ⊂ BX such that
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(i) Every K ∈ K
′(X) is compact in X;

(ii) Every tight Borel probability measure µ0 on X is inner regular with respect to

the family K
′(X) in the sense of (2.2);

(iii) For every K ∈ K
′(X) there exists a compact set K ⊂ X such that

Sn(K) ⊂ K, ∀n ∈ N;

(iv) For every K ∈ K
′(X),

lim sup
n

Sn(K) ⊂ U .

In order to gain a better insight on how the hypothesis (H̃) would fit into a specific

problem, let us think in terms of some applications. Given a family of regularized appro-

ximations of a certain evolution equation, the space X is to be considered as the phase

space associated to the equation and U as the set of solutions of the limit problem, in a

given sense. These solutions are assumed to be continuous functions on the interval I ⊂ R

with values in X , i.e. U ⊂ X , where X = Cloc(I,X). If the approximated equations are

well-posed, for each n ∈ N we usually define the operator Sn : X → X as the mapping

which takes an initial condition u0 in X to the unique solution un of the corresponding

approximated equation with parameter n such that un(t0) = u0. Note that we are also

assuming that the solutions of the approximated problems lie in the space X . Usually,

these approximated solutions belong to a more regular space, which is contained in X .

From the well-posedness, it follows that each Sn is well-defined and continuous, so

that hypothesis (H̃1) is verified. Hypothesis (H̃2) follows immediately by the definition of

Sn, since for every u0 ∈ X and n ∈ N, Πt0Sn(u0) = u0. In some cases, such as in Galerkin

approximations, we may need to consider a sequence of approximated initial conditions

as well, but nevertheless, we still have the convergence Πt0Sn(u0) → u0 as n→ ∞.

In case X is given by a separable Banach space endowed with its corresponding weak

topology, we may define K
′(X) as the family of strong compact sets in X . Then item (i)

of hypothesis (H̃3) is clearly satisfied, and item (ii) is a consequence of the fact that every

Borel probability measure on a separable Banach space (or, more generally, on a Polish

space) is tight [1, Theorem 12.7], i.e., inner regular with respect to the family K
′(X).

Items (iii) and (iv) of (H̃3) are typically a consequence of the a priori estimates satisfied

by the solutions of the regularized equations. For item (iv), a result on the convergence

of the individual approximated solutions to an individual solution of the limit problem is

needed. This means that for a given initial condition u0, the sequence of solutions of the

approximated equations with initial condition u0, i.e. {Snu0}n, converge in the trajectory

space to a solution u of the limit equation with initial condition u0.

The verification of this set of hypotheses within a specific problem will be more clear

with the applications to the Navier-Stokes-α model and the MHD-αmodel that we present
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in Section 4.2.

Now that we have established the necessary set of hypotheses in the context of con-

vergence of statistical solutions, let us prove the main results of this section. We start

with the convergence of trajectory statistical solutions. But before presenting the proof,

we shall make a brief outline with its general ideas.

Consider an initial tight Borel probability measure µ0 on X . Given a family of con-

tinuous operators Sn : X → X and a subset U ⊂ X such that ({Sn}n∈N,U) satisfies

hypothesis (H̃), we want to prove that the sequence of induced measures from µ0 by each

operator Sn, i.e. {Snµ0}n∈N, converges, possibly modulo a subsequence, to a U-trajectory

statistical solution ρ satisfying the initial condition Πt0ρ = µ0. As in Theorem 3.2.1,

we divide the proof into two complementary cases: first, when µ0 is carried by a set

K ∈ K
′(X); and secondly, when µ0 is not carried by any set in this family.

In the first case, we use hypothesis (iii) of (H̃3) in order to show that the sequence

{Snµ0}n∈N is uniformly tight. Also, from hypothesis (H̃1) it follows that each measure

Snµ0 is tight. Thus, applying Theorem 2.3.2, we obtain a subsequence of {Snµ0}n con-

verging weak star to a tight Borel probability measure ρ on X . This limit measure ρ is

the candidate for a U-trajectory statistical solution satisfying the initial condition. In

order to show that Πt0ρ = µ0, we first prove that Πt0ρ(ϕ) = µ0(ϕ), for every function

ϕ ∈ Cb(X). This is obtained via the Dominated Convergence Theorem, by using the

convergence from hypothesis (H̃2). Then, using that Πt0ρ and µ0 are both carried by

compact subsets of X (therefore completely regular spaces with respect to the induced

topology), from Corollary 2.3.2 we obtain that Πt0ρ = µ0. Finally, we use hypotheses (iii)

and (iv) of (H̃3) in order to show that ρ is carried by a Borel subset of U , so that ρ is a

U-trajectory statistical solution satisfying the given initial condition.

The second case is proved analogously to the corresponding case in the proof of The-

orem 3.2.1, by using items (i) and (ii) of hypothesis (H̃3).

Theorem 4.1.1. Let X be a Hausdorff space and let I ⊂ R be an interval closed and

bounded on the left with left end point t0. Consider a pair ({Sn}n∈N,U) satisfying hy-

pothesis (H̃) and let µ0 be a tight Borel probability measure on X. Then, the sequence

{ρn}n∈N, with ρn = Snµ0, for all n ∈ N, has a subsequence converging in the weak star

semicontinuity topology to a Borel probability measure ρ on X which is a U-trajectory

statistical solution satisfying the initial condition Πt0ρ = µ0.

Proof. Let us suppose at first that µ0 is carried by a set K ∈ K
′(X). From hypothesis

(iii) of (H̃3), there exists a compact set K ⊂ X such that Sn(K) ⊂ K, for every n ∈ N.

We then have

ρn(X \ K) ≤ ρn(X \ Sn(K)) = µ0(S
−1
n (X \ Sn(K)) ≤ µ0(X \K) = 0, ∀n ∈ N.

Thus, {ρn}n∈N is uniformly tight. Also, since µ0 is tight and, by hypothesis (H̃1), Sn
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is continuous, then ρn = Snµ0 is tight, for every n ∈ N. Therefore, from Theorem

2.3.2, there is a subsequence of {ρn}n, which we still denote by {ρn}n, and a tight Borel

probability measure ρ on X such that ρn
wsc
⇀ ρ. This implies in particular that ρn

w∗

⇀ ρ.

We shall now prove that this limit measure ρ is a U-trajectory statistical solution and

that Πt0ρ = µ0.

For the second assertion, let us first prove that

∫

X

ϕ(u0)dΠt0ρ(u0) =

∫

X

ϕ(u0)dµ0(u0), ∀ϕ ∈ Cb(X).

Applying a change of variables in the integral of the left-hand side, we obtain

∫

X

ϕ(u0)dΠt0ρ(u0) =

∫

X

ϕ(Πt0u)dρ(u). (4.1)

Since ρn
w∗

⇀ ρ and ϕ ◦ Πt0 ∈ Cb(X ), then

∫

X

ϕ(Πt0u)dρ(u) = lim
n

∫

X

ϕ(Πt0u)dρn(u). (4.2)

Now using that ρn = Snµ0 and changing the variables, we have

∫

X

ϕ(Πt0u)dρn(u) =

∫

X

ϕ(Πt0Sn(u0))dµ0(u0). (4.3)

Therefore, (4.1), (4.2) and (4.3) yield

∫

X

ϕ(u0)dΠt0ρ(u0) = lim
n

∫

X

ϕ(Πt0Sn(u0))dµ0(u0). (4.4)

For each n ∈ N, consider Fn : X → R given by

Fn(u0) = ϕ(Πt0Sn(u0)), ∀u0 ∈ X.

Since ϕ ∈ Cb(X), Πt0 ∈ Cloc(X , X) and Sn ∈ Cloc(X,X ), then Fn ∈ Cb(X). Also, from

hypothesis (H̃2) it follows that Fn converges pointwise to ϕ. Furthermore,

|Fn(u)| ≤ ‖ϕ‖L∞(X), ∀u ∈ X.

Therefore, by the Dominated Convergence Theorem, it follows that

lim
n

∫

X

ϕ(Πt0Sn(u0))dµ0(u0) =

∫

X

ϕ(u0)dµ0(u0).
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Thus, the last identity combined with (4.4) yields

∫

X

ϕ(u0)dΠt0ρ(u0) =

∫

X

ϕ(u0)dµ0(u0), ∀ϕ ∈ Cb(X). (4.5)

Now since each ρn is carried by K and ρn
wsc
⇀ ρ, then it follows from Lemma 2.3.1 that ρ

is also carried by K. Thus, Πt0ρ is carried by Πt0K. Moreover, since µ0 is carried by K,

from (4.5) it follows in particular that

∫

Πt0K∪K

ϕ(u0)dΠt0ρ(u0) =

∫

Πt0K∪K

ϕ(u0)dµ0(u0), ∀ϕ ∈ C(Πt0K ∪K). (4.6)

Using that Πt0K ∪ K is a compact space and hence completely regular, and that µ0

and Πt0ρ are tight measures, from (4.6) and Corollary 2.3.2 it follows that Πt0ρ and µ0

coincide on Πt0K ∪K. However, since these measures are actually carried by Πt0K ∪K,

then Πt0ρ = µ0 on X .

In order to prove that ρ is in addition a U-trajectory statistical solution, we must find

a Borel set V ∈ BX such that V ⊂ U and ρ(V) = 1.

First, we claim that

ρ

(

lim sup
n∈N

Sn(K)

)

= 1. (4.7)

Indeed, recall that

lim sup
n

Sn(K) =
⋂

k

⋃

j≥k

Sj(K).

Since ρn
wsc
⇀ ρ in P(X ) and

⋃

j≥k Sj(K) is closed, we obtain from Lemma 2.3.1 that

ρ

(

⋃

j≥k

Sj(K)

)

≥ lim sup
n∈N

ρn

(

⋃

j≥k

Sj(K)

)

, (4.8)

for every k ∈ N.

Now, we observe that for all n ∈ N such that k ≤ n,

ρn

(

⋃

j≥k

Sj(K)

)

≥ ρn (Sn(K)) ,

and since ρn(Sn(K)) = 1, then

ρn

(

⋃

j≥k

Sj(Ki)

)

= 1, ∀n ∈ N with k ≤ n.
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Thus, from (4.8) we obtain that

ρ

(

⋃

j≥k

Sj(K)

)

= 1.

As before, from hypothesis (iii) of (H̃3), we know that there exists a compact set

K ⊂ X such that Sn(K) ⊂ K, for every n ∈ N. Now for each k ∈ N, consider the set

Ek =
⋃

j≥k Sj(K). Then Ek ⊂ K, for every k, and in particular each Ek is a compact set.

Since {Ek}k∈N is also a non-decreasing sequence, it follows that (see [1, Theorem 10.8])

ρ

(

⋂

k

⋃

j≥k

Sj(K)

)

= lim
k
ρ

(

⋃

j≥k

Sj(K)

)

= 1,

which proves (4.7). Thus, ρ is carried by the set A = lim supn Sn(K) ⊂ X , which is

clearly a Borel subset of X since K is compact in X and Sn : X → X is continuous, for

every n ∈ N. Moreover, from hypothesis (iv) of (H̃3), we have that A ⊂ U . Therefore,

ρ is a U-trajectory statistical solution. This proves the particular case when µ0 is carried

by a set K ∈ K
′(X).

Now let us assume that µ0 is not carried by any set K ∈ K
′(X). In this case, the

proof follows by arguments similar to the ones used in the proof of Theorem 3.2.1. The

idea consists in using the fact that µ0 is a tight measure with respect to the family K
′(X)

in order to obtain an increasing sequence of sets {Kn}n in K
′(X) such that µ0(Kn+1) >

µ0(Kn) > 0, for all n ∈ N, and

µ0(X \Kn) <
1

n
, ∀n ∈ N. (4.9)

We then define D1 = K1 and Dn = Kn \Kn−1, for every n ≥ 2, and decompose µ0 as

µ0 =
∑

j

µ0(Dj)µ
j
0.

Since each µj
0 is carried by the set Kj ∈ K

′(X), using the first part of the proof, we obtain

the existence of a tight Borel probability measure ρj carried by a Borel set Aj ⊂ U and

such that Πt0ρj = µj
0. Then, we prove that the Borel probability measure ρ defined by

ρ =
∑

j

µ0(Dj)ρj

is tight and is carried by the Borel set
⋃

l Al ⊂ U . Moreover, ρ satisfies the initial condition

Πt0ρ = µ0. This proves the second case.

Remark 4.1.1. In the proof of Theorem 4.1.1, we have seen that given an initial tight
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Borel probability measure µ0 on X , in case µ0 is carried by a set K ∈ K
′(X), the U-

trajectory statistical solution ρ satisfying Πt0ρ = µ0 which was obtained is carried by the

Borel set lim supn Sn(K), a subset of U . On the other hand, when µ0 is not carried by

any set K ∈ K
′(X), then we obtain a U-trajectory statistical solution ρ with Πt0ρ = µ0

being carried by
⋃

j lim supn Sn(Kj), where {Kj}j is a sequence of sets in K
′(X) such that

µ0(X \Kj) → 0, as j → ∞.

We now show the result on the convergence of statistical solutions in phase space.

First, let us define in which sense these solutions converge. We say that a family of

statistical solutions in phase space {{ρnt }t∈I}n∈N converge to a statistical solution {ρt}t∈I

if, for each t ∈ I, {ρnt }n∈N converges in the weak star topology to ρt as n→ ∞, i.e.

lim
n→∞

∫

X

ϕ(u0)dρ
n
t (u0) =

∫

X

ϕ(u0)dρt(u0), ∀t ∈ I and ∀ϕ ∈ Cb(X).

The proof follows easily by using the previous result, Theorem 4.1.1. The idea consists

in considering the projections of the measures Snµ0 on X at each t ∈ I, i.e. ΠtSnµ0. We

observe that, in the context of an application, for every n ∈ N, each operator ΠtSn :

X → X is the same as Un(t, t0) : X → X , where {Un(t, s)}t,s∈I,t≥s is the evolution process

associated to the regularized equation with parameter n [8, Chapter 1].

In the statement below, the space Z is the one defined in (3.1), Section 3.1.

Theorem 4.1.2. Let X be a Hausdorff space and let Y be a Banach space satisfying

Y ⊂ X →֒ Y ′
w∗,

where the injection X →֒ Y ′
w∗ is continuous, and also BY ⊂ BX . Let I ⊂ R be an

interval closed and bounded on the left with left end point t0. Consider a pair ({Sn}n∈N,U)

satisfying hypothesis (H̃). Suppose that U ⊂ Z and that for every u ∈ U ,

ut(t) = F (t, u(t)), a.e. t ∈ I. (4.10)

Assume that F : I × Y → Y ′ is an (LI ⊗ BY ,BY ′)-measurable function and that there

exists an (LI ⊗BX)-measurable function γ : I ×X → R such that

∫ t

t0

‖F (s, u(s))‖Y ′ds ≤ γ(t, u(t0)), ∀t ∈ I, ∀u ∈ U . (4.11)

Let µ0 be a tight Borel probability measure on X such that

∫

X

γ(t, u0) dµ0(u0) <∞, (4.12)

for almost every t ∈ I. Then, there exists a subsequence of {{ΠtSnµ0}t∈I}n∈N converging
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to a family of tight Borel probability measures {ρt}t∈I on X, which is a projected statistical

solution, associated with a U-trajectory statistical solution ρ, and satisfying ρt0 = µ0.

Proof. From the proof of Theorem 4.1.1, there exists a U-trajectory statistical solution ρ

on X such that Πt0ρ = µ0 and, modulo a subsequence, Snµ0
w∗

⇀ ρ. Then, since for every

t ∈ I, Πt : X → X is a continuous function, it follows that Πtρ is a tight measure and

ΠtSnµ0
w∗

⇀ Πtρ, ∀t ∈ I.

Now, by using the same arguments from the proof of Theorem 3.3.2, it follows by applying

Theorem 3.3.1 that the family of Borel probability measures {ρt}t∈I = {Πtρ}t∈I is a

projected statistical solution satisfying ρt0 = Πt0ρ = µ0.

4.2 Applications

4.2.1 Navier-Stokes-α Equations

In this section we apply the results of Section 4.1 in order to prove the convergence

of statistical solutions of the Navier-Stokes-α equations given with respect to their well-

defined solution operator, to a statistical solution of the Navier-Stokes equations in the

sense of Definition 3.1.2.

Consider a periodic domain Ω =
∏3

i=1(0, Li) in R
3, where Li > 0, for i = 1, 2, 3, and

let I ⊂ R be an interval. The three-dimensional Navier-Stokes-α equations in Ω × I are

given by

vt − ν∆v + u× (∇× v) +∇p = f , (4.13)

v = u− α2∆u, (4.14)

∇ · u = 0, (4.15)

where u = u(x, t) is the unknown (filtered) velocity field, v = v(x, t) is an auxiliary

variable, p = p(x, t) is the pressure, f = f(x, t) is the external force, and α > 0 is a

constant.

We consider the same functional setting for the Navier-Stokes-α model introduced by

Vishik, Titi and Chepyzhov in [51].

Let H and V be the same spaces defined for the Navier-Stokes equations in Section

3.4.1, i.e. H is the closure of the set of test functions V given in (3.28) with respect to

the L2(Ω,R3) norm and V is the closure of V with respect to the H1(Ω,R3) norm. We

also consider the same notation for the inner products and norms in V and H introduced

in Section 3.4.1.
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For each interval I ⊂ R, consider the following functional space

FI = {z : z(·) ∈ L2
loc(I;V ) ∩ L

∞
loc(I;H), ∂tz(·) ∈ L2

loc(I;D(A)′)}. (4.16)

The space FI is the natural space for the solutions of the Navier-Stokes-α model. We

endow this space with a weak-type topology, which we call τF topology. This can be

defined in terms of nets as follows: a net of functions {zγ}γ ⊂ FI converges to a function

z ∈ FI with respect to the topology τF if for each compact interval J ⊂ I,

zγ
∗
⇀ z in L∞(J ;H), zγ ⇀ z in L2(J ;V ), and ∂tzγ ⇀ ∂tz in L2(J ;D(A)′).

Consider also the following Banach space

F b
I = {z : z(·) ∈ L2

b(I;V ) ∩ L
∞(I;H), ∂tz(·) ∈ L2

b(I;D(A)′)}, (4.17)

with norm given by

‖z‖Fb
= ‖z‖L2

b(I,V ) + ‖z‖L∞(I,H) + ‖∂tz‖L2
b(I,D(A)′),

where

‖z‖L2
b(I,V ) = sup

{t∈I:t+1∈I}

∫ t+1

t

‖z(s)‖2ds,

and

‖∂tz‖L2
b(I,D(A)′) = sup

{t∈I:t+1∈I}

∫ t+1

t

‖∂tz(s)‖
2
D(A)′ds.

Defining w = (1+α2A)1/2u, we may rewrite equation (4.13) in the following functional

form

wt+νAw+(1+α2A)−1/2B̃((1+α2A)−1/2w, (1+α2A)1/2w) = (1+α2A)−1/2f , in D(A)′,

(4.18)

where v is recovered by the relation v = (1 + α2A)1/2w. We recall that A represents

the Stokes operator, and B̃ : V × V → V ′ is given by B̃(u,v) = P[u × (∇ × v)], where

P : L(Ω)3 → H is the Leray-Helmholtz projection.

We now provide a notion of solution for the equation (4.18).

Definition 4.2.1. Let I ⊂ R be an interval and consider f ∈ L2
loc(I;H). We say that a

function w is a Leray-Hopf weak solution of (4.18) on I if:

(i) w ∈ L∞
loc(I;H) ∩ L2

loc(I;V );

(ii) ∂tw ∈ L2
loc(I;D(A)′);

(iii) w ∈ Cloc(I;H);
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(iv) w satisfies (4.18) in D(A)′, in the sense of distributions on I;

(v) For all t′, t ∈ I with t > t′, w satisfies the following energy equality

1

2
|w(t)|2 + ν

∫ t

t′
‖w(s)‖2ds =

1

2
|w(t′)|2 +

∫ t

t′
((1 + α2A)−1/2f(s),w(s))ds. (4.19)

Given an interval I ⊂ R and R > 0, we define the following sets of solutions of (4.18)

in the sense of Definition 4.2.1:

Uα
I = {u ∈ Cloc(I;H) : u is a weak solution of (4.18) on I}, (4.20)

Uα
I (R) = {u ∈ Cloc(I;BH(R)) : u is a weak solution of (4.18) on I}, (4.21)

where BH(R) denotes the closed ball in H centered at the origin with radius R.

Suppose now that f ∈ L∞(I,H). The next proposition yields some a priori estimates

satisfied by every solution w ∈ Uα
I in this case. These estimates were adapted from [51,

Corollary 3.2].

Proposition 4.2.1. Let I ⊂ R be an interval and f ∈ L2
loc(I;H). If w ∈ Uα

I then, for all

t′, t ∈ I with t > t′, the following inequalities hold

|w(t)|2 ≤ |w(t′)|2 e−νλ1(t−t′)+
1

λ21ν
2
‖f‖2L∞([t′,t],H)(1− e−νλ1(t−t′)), (4.22)

(
∫ t

t′
‖w(s)‖2ds

)1/2

≤
1

ν1/2
|w(t′)|+ λ

1/4
1 νM(t − t′)1/2, (4.23)

(
∫ t

t′
‖∂tw(s)‖2D(A)′ds

)1/2

≤
c

λ
1/4
1 ν1/2

|w(t′)|2 +
ν3/2

λ
3/4
1

M + ν5/2λ
1/4
1 M(t− t′), (4.24)

where c is a universal constant and M is a non-dimensional constant which depends only

on non-dimensional combinations of the parameters ν, λ1 and ‖f‖L∞([t′,t],H).

Based on the a priori estimates for the Navier-Stokes-α model, we now define an

auxiliary functional space which plays an essential role in the subsequent results, due to

its compactness property. Given an interval I ⊂ R, let {Jn}n∈N be a sequence of compact

subintervals of I such that Jn ⊂ Jn+1, for all n ∈ N, and I =
⋃∞

n=1 Jn. Then, given R ≥ 0,

we define

YI(R) =

∞
⋂

n=1

Π−1
Jn
YJn(R), (4.25)
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where, for any compact subinterval J ⊂ I,

YJ(R) =

{

w ∈ Cloc(J ;Hw) : |w(t)| ≤ R, ‖w‖L2([s,t],V ) ≤
1

ν1/2
R + λ

1/4
1 νM |t− s|1/2, and

‖∂tw‖L2([s,t],D(A)′) ≤
c

λ
1/4
1 ν1/2

R2 +
ν3/2

λ
3/4
1

M + ν5/2λ
1/4
1 M |t− s|, ∀s, t ∈ J

}

, (4.26)

where c and M are the same constants from Proposition 4.2.1. We consider YI(R) as a

topological space endowed with the induced topology from Cloc(I,Hw).

Denote

R0 =
1

νλ1
‖f‖L∞(I,H),

and let I ⊂ R be an interval closed and bounded on the left with left end point t0. Note

that, for any R ≥ R0, if |w(t0)| ≤ R, then every w ∈ Uα
I satisfy the estimates in (4.26),

thanks to the a priori estimates (4.22)-(4.24). We then have Uα
I (R) ⊂ YI(R), for every

R ≥ R0.

The space YI(R) has also some useful properties, which we state below. The proof

can be found in [6].

Lemma 4.2.1. Let I ⊂ R be an arbitrary interval in R and let R ≥ 0. Then, YI(R) is a

compact and metrizable space with respect to the induced topology from Cloc(I,Hw).

From now on, unless otherwise stated, we assume that I ⊂ R is an interval closed and

bounded on the left with left end point t0.

It was proved in [18] that the Navier-Stokes-α equations are well-posed. Then, for

each α > 0, we may define a solution operator Sα given by

Sα : Hw → Cloc(I,Hw)

w0 7→ Sα(w0) = w, (4.27)

where w is the unique weak solution of (4.18) in the sense of Definition 4.2.1 satisfying

w(t0) = w0.

Let UI be the set of Leray-Hopf weak solutions of the Navier-Stokes equations on I,

as defined in (3.34). From now on, we assume that the parameter α varies in a countable

set, say {αn}n∈N with αn → 0 as n → ∞. We shall prove that the pair ({Sαn}n∈N,UI)

satisfies the hypothesis (H) given in Definition 4.1.1. For that purpose, consider X = Hw,

X = Cloc(I,Hw) and

K
′(Hw) = {K ⊂ Hw |K is a compact set in H}.

Hypothesis (H̃1) follows from the well-posedness of the Navier-Stokes-αn equations

and hypothesis (H̃2) follows directly from the definition of Sαn. In hypothesis (H̃3), items
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(i) and (ii) follow from the definition of the set K
′(Hw) and from the fact that H is a

Polish space. In the following propositions, we show that the remaining items, (iii) and

(iv) of (H̃3), also hold.

Proposition 4.2.2. Let K ∈ K
′(Hw). Then, there exists a compact set K ⊂ Cloc(I,Hw)

such that Sαn(K) ⊂ K, for all n ∈ N.

Proof. Let R ≥ R0 be such that K ⊂ BH(R)w. Thus, Sαn(K) ⊂ Sαn(BH(R)w), for all

n ∈ N. Moreover, we have Sαn(BH(R)w) ⊂ Uαn
I (R). Indeed, given w ∈ Sαn(BH(R)w),

it follows that w ∈ Uαn
I and w(t0) ∈ BH(R)w. Then, from the estimate (4.22) with

t′ = t0, we obtain that |w(t)| ≤ R, for all t ∈ I, so that w ∈ Uαn
I (R). Finally, using that

Uαn
I (R) ⊂ YI(R) and that YI(R) ⊂ Cloc(I,Hw) is compact (Lemma 4.2.1), we conclude

the proof.

In [51, Theorem 3.1], Vishik, Titi and Chepyzhov proved the convergence of solutions

of the Navier-Stokes-αn model to solutions of the Navier-Stokes equations. This result

was proved in the case where f ∈ H and I = [0,∞), which was of interest to them.

However, it is not difficult to see that the proof can be adapted to the case when I is an

arbitrary interval and f ∈ L∞(I,H). We state this result below:

Theorem 4.2.1. Let I ⊂ R be an arbitrary interval and f ∈ L∞(I,H). Let {wn} be a

bounded sequence in F b
I such that each wn is a solution of the Navier-Stokes-αn model on

I, with αn → 0 as n→ ∞, and wn → w in τF as n→ ∞, for some w ∈ F b
I . Then w is

a Leray-Hopf weak solution of the three-dimensional Navier-Stokes equations on I̊.

Using the previous result, we are able to show that hypothesis (iv) of (H̃3) is also

satisfied.

Proposition 4.2.3. Consider a set K ∈ K
′(Hw). Then, there exists a compact set K̃ in

Hw such that

lim sup
n

Sαn(K) ⊂ Π−1
t0 K̃ ∩ UI .

Proof. As in the proof of Proposition 4.2.2, we may consider R ≥ R0 such that Sαn(K) ⊂

YI(R), for all n ∈ N. Therefore, since YI(R) is a metrizable space (Lemma 4.2.1), given

w ∈ lim supn Sαn(K) there exists a sequence {wk}k such that wk ∈ Sαk
(K) and wk → w

in YI(R). This implies in particular that wk(t0) → w(t0) in the topology of Hw. Thus,

since K is compact in H and, consequently, in Hw, and since {wk(t0)}k ⊂ K, we obtain

that w(t0) ∈ K, so that w ∈ Π−1
t0 K. Furthermore, from the a priori estimates (4.22)-

(4.24) it follows that {wk}k is bounded in F b
I . Then, there exists a subsequence, which we

still denote by {wk}k, such that wk → v in the τF -topology, for some v ∈ F b
I . Now from

Theorem 4.2.1, v is a weak solution of the Navier-Stokes equations on I̊. Further, since

wk → v in the τF -topology then we also have thatwk → v in the topology of YI(R). Thus,
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w = v, so that w ∈ U ♯
I (R), where U ♯

I (R) denotes the set of Leray-Hopf weak solutions of

the Navier-Stokes equations on I̊ with values in BH(R)w, as defined in (3.37). Note that,

if K̃ = BH(R)w, a compact set in Hw, then it is clear that UI(R) ⊂ Π−1
t0 K̃ ∩ UI . Thus,

taking the closure in the topology of Cloc(I,Hw), we obtain that U ♯
I (R) ⊂ Π−1

t0 K̃ ∩ UI . But

since Π−1
t0 K̃∩UI is closed in Cloc(I,Hw) (Proposition 3.4.3), then Π−1

t0 K̃ ∩ UI = Π−1
t0 K̃∩UI .

We then conclude that w ∈ Π−1
t0 K̃ ∩ UI , which proves the result.

Using the previous results, we now prove that given an initial measure µ0, the sequence

formed by the family of induced measures from µ0 by each solution operator Sαn has

a subsequence which converges to a trajectory statistical solution of the Navier-Stokes

equations.

Theorem 4.2.2. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0. Let UI be the set of Leray-Hopf weak solutions of the Navier-Stokes equations

on I and, for each n ∈ N, let Sαn be the solution operator associated to the Navier-

Stokes-αn equations defined in (4.27). If µ0 is a Borel probability measure on H, then

{Sαnµ0}n∈N has a subsequence converging in the weak star topology to a UI-trajectory

statistical solution ρ on Cloc(I,Hw) such that Πt0ρ = µ0.

Proof. Let us verify that the pair ({Sαn}n∈N,UI) satisfies the hypothesis (H̃) of Definition

4.1.1. Since the Navier-Stokes-αn equations are well-posed, then each Sαn : X → X

is a continuous function, so that hypothesis (H̃1) is satisfied. By the definition of Sαn ,

hypothesis (H̃2) also clearly holds. Hypothesis (i) of (H̃3) is immediate from the definition

of the set K
′(Hw). Furthermore, since H is a Polish space, then any Borel probability

measure on H is tight, i.e. inner regular with respect to the family of compact subsets of

H [1, Theorem 12.7]. This implies that every Borel probability measure µ0 on H is inner

regular with respect to the family K
′(Hw). Thus, K

′(Hw) satisfies hypothesis (ii) of (H̃3).

From Propositions 4.2.2 and 4.2.3, we also have that hypothesis (iii) and (iv) of (H̃3) are

satisfied. Therefore, the pair ({Sαn}n∈N,UI) satisfies hypothesis (H). Thus, by Theorem

4.1.1, there exists a subsequence of {Sαnµ0}n∈N converging weak star to a UI-trajectory

statistical solution ρ on Cloc(I,Hw) with Πt0ρ = µ0.

Finally, in the next result we show that the statistical solutions of the Navier-Stokes-

αn equations, defined via the solution operator Sαn , converge, modulo a subsequence, to

a statistical solution of the Navier-Stokes equations in the sense of Definition 3.1.2.

Theorem 4.2.3. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of Leray-Hopf weak solutions of the Navier-Stokes equations

on I. For each n ∈ N, let Sαn be the solution operator associated to the Navier-Stokes-αn

equations, defined in (4.27). Consider a Borel probability measure µ0 on H satisfying

∫

H

|u|2Hdµ0(u) <∞. (4.28)
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Then, there exists a subsequence of {{ΠtSαnµ0}t∈I}n∈N converging to a statistical solution

{ρt}t∈I of the Navier-Stokes equations such that ρt0 = µ0.

Proof. From the proof of Theorem 4.2.2, we know that the pair ({Sαn}n∈N,UI) satisfies

the hypothesis (H̃). Furthermore, using (4.28) and the same arguments from the proof of

Proposition 3.4.3, it follows that the function F given in (3.53) satisfies the hypotheses of

Theorem 4.1.2. The statement then follows by applying this theorem.
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4.2.2 Magnetohydrodynamics-α Equations

In this section we analyze a regularized approximation of the magnetohydrodynamic

equations (MHD equations), namely, the MHD-α model. By applying the abstract results

of Section 4.1 in this case, we are able to show the convergence of statistical solutions of

the MHD-α model to a statistical solution of the MHD equations.

As in the previous section, consider a periodic domain Ω = Π3
i=1(0, Li), where Li > 0,

for i = 1, 2, 3, and let I ⊂ R be an interval. The three-dimensional magnetohydrodynamic

equations for a homogeneous incompressible resistive viscous fluid in the region Ω are given

by
∂v

∂t
− ν∆v + (v · ∇)v − (B · ∇)B+∇p+

1

2
∇|B|2 = 0, (4.29)

∂B

∂t
− η∆B+ (v · ∇)B− (B · ∇)v = 0, (4.30)

∇ · v = 0, (4.31)

∇ ·B = 0, (4.32)

where v = v(x, t) is the velocity field, B = B(x, t) is the magnetic field and p = p(x, t)

is the pressure, with (x, t) ∈ Ω × I. Moreover, the constants ν > 0 and η > 0 are the

kinematic viscosity and the magnetic diffusivity, respectively.

The MHD equations result from a coupling of the Maxwell’s equations for the magnetic

field B with the Navier-Stokes equations for the velocity field v and pressure p. For further

details concerned with the MHD equations, we refer to [14] and [43].

Let H and V be the same spaces defined in Section 3.4.1. Consider H = H ×H and

V = V × V . Also, denote by Hw the space H endowed with the weak topology.

The inner product and norm in the product space H are defined by

(Φ, Φ̃)H = (v, ṽ) + (B, B̃), ∀Φ = (v,B), Φ̃ = (ṽ, B̃) ∈ H,

and

|Φ|H = (Φ,Φ)
1/2
H
, ∀Φ ∈ H.

In the space V, these are defined as

((Φ, Φ̃))V = ((v, ṽ)) + ((B, B̃)), ∀Φ = (v,B), Φ̃ = (ṽ, B̃) ∈ V,

and

‖Φ‖V = ((Φ,Φ))
1/2
V
, ∀Φ ∈ V.

Let H′ and V′ be the dual spaces of H and V, respectively. We identify H with its

dual space H′, so that V ⊂ H ≡ H′ ⊂ V′, with continuous and dense injections. We then
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rewrite equations (4.29)-(4.32) in the following functional form

vt + νAv +B(v,v)− B(B,B) = 0 in V ′, (4.33)

Bt + ηAB+B(v,B)−B(B,v) = 0 in V ′, (4.34)

where A is the Stokes operator and B(u,w) = P[(u · ∇)w], for every u,w ∈ V , with P

being the Leray-Helmholtz projection.

We can also write equations (4.33)-(4.34) in the compact form

Φt + AΦ + B(Φ,Φ) = 0, (4.35)

where

Φ = (v,B),

AΦ = (νAv, ηAB),

and

B(Φ, Φ̃) = (B(v, ṽ)− B(B, B̃), B(v, B̃)− B(B, ṽ)), ∀Φ = (v,B), Φ̃ = (ṽ, B̃).

The following definition provides a notion of solution for the MHD equations (4.29)-

(4.32).

Definition 4.2.2. Given an interval I ⊂ R, we say that Φ = (v,B) is a Leray-Hopf weak

solution of the MHD equations (4.29)-(4.32) on I if

(i) Φ ∈ L∞
loc(I,H) ∩ L2

loc(I,V) ∩ Cloc(I,Hw);

(ii) ∂tΦ ∈ L
4/3
loc (I,V

′);

(iii) Φ = (v,B) satisfies

vt + νAv +B(v,v)−B(B,B) = 0 in V ′ (4.36)

and

Bt + ηAB+B(v,B)−B(B,v) = 0 in V ′, (4.37)

in the sense of distributions on I;

(iv) For almost every t′ ∈ I and for every t > t′, Φ = (v,B) satisfies the following

energy inequality

|v(t)|2 + |B(t)|2 + 2

∫ t

t′
(ν‖v(s)‖2 + η‖B(s)‖2)ds ≤ |v(t′)|2 + |B(t′)|2; (4.38)
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(v) If I is closed and bounded on the left, with left end point t0, then Φ is strongly

continuous in H at t0 from the right, i.e. Φ(t) → Φ(t0) in H as t→ t+0 .

A proof of the existence of a Leray-Hopf weak solution of the MHD equations satisfying

a given initial condition Φ0 = (v0,B0) ∈ H is classical and can be found in [14].

We also consider the following sets of weak solutions of the MHD equations, in the

sense of Definition 4.2.2, for an interval I ⊂ R and a real number R > 0:

UI = {Φ ∈ Cloc(I,Hw) : Φ is a Leray-Hopf weak solution of (4.29)-(4.32) on I}, (4.39)

UI(R) = {Φ ∈ Cloc(I, BH(R)w) : Φ is a Leray-Hopf weak solution of (4.29)-(4.32) on I}.

(4.40)

U ♯
I = {Φ ∈ Cloc(I,Hw) : Φ is a Leray-Hopf weak solution of (4.29)-(4.32) on I̊}, (4.41)

U ♯
I (R) = {Φ ∈ Cloc(I, BH(R)w) : Φ is a Leray-Hopf weak solution of (4.29)-(4.32) on I̊},

(4.42)

where I̊ denotes the interior of the interval I and BH(R)w is the closed ball in H centered

at the origin with radius R and endowed with the weak topology.

Given a parameter α > 0, the MHD-α model in the periodic domain Ω is defined as

∂v

∂t
− ν∆v + (u · ∇)v +

3
∑

j=1

vj∇uj − (B · ∇)B+
1

2
∇|B|2 +∇p = 0, (4.43)

∂B

∂t
+ (u · ∇)B− (B · ∇)u− η∆B = 0, (4.44)

v = (1− α2∆)u, (4.45)

∇ · u = ∇ ·B = ∇ · v = 0, (4.46)

where u = u(x, t) is the “filtered” velocity field, B = B(x, t) is the magnetic field and

p = p(x, t) is the “filtered” pressure.

We now define a notion of solution for the MHD-α model:

Definition 4.2.3. Given an interval I ⊂ R, we say that (u,B) is a Leray-Hopf weak

solution of the MHD-α equations (4.43)-(4.46) on I if

(i) u ∈ Cloc(I, V ) ∩ L
2
loc
(I,D(A)) and B ∈ Cloc(I,H) ∩ L2

loc
(I, V );

(ii) ∂tu ∈ L2
loc
(I,H) and ∂tB ∈ L2

loc
(I, V ′);

(iii) (u,B) satisfies

∂t((1 + α2A)u) + νA((1 + α2A)u) + B̃(u, (1 + α2A)u)−B(B,B) = 0 in D(A)′,

(4.47)
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and

∂tB+ ηAB+B(u,B)− B(B,u) = 0 in V ′, (4.48)

in the sense of distributions on I;

(iv) For every t, t′ ∈ I, (u,B) satisfies the following energy equality

|u(t)|2 + α2‖u(t)‖2 + |B(t)|2 + 2

∫ t

t′
(ν(‖u(s)‖2 + α2|Au(s)|2) + ν‖B(s)‖2)ds =

|u(t′)|2 + α2‖u(t′)‖2 + |B(t′)|2, (4.49)

In [35], it was proved that the MHD-α equations are globally well-posed in V × H .

More precisely, given u0 ∈ V and B0 ∈ H , there exists a unique solution (u,B) of the

MHD-α equations in the sense of Definition 4.2.3 satisfying (u(t0),B(t0)) = (u0,B0) and

which depends continuously on the initial data.

Given an interval I ⊂ R and R > 0, we consider the following sets of weak solutions

of the MHD-α equations in the sense of Definition 4.2.3:

Uα
I = {(u,B) ∈ Cloc(I,Hw) : (u,B) is a weak solution of (4.43)-(4.46) on I}, (4.50)

Uα
I (R) = {(u,B) ∈ Cloc(I, BH(R)w) : (u,B) is a weak solution of (4.43)-(4.46) on I}.

(4.51)

One may also consider the corresponding sets of weak solutions of the MHD-α equa-

tions on the interior of the interval I, I̊. However, these are not needed in the subsequent

results.

In the next proposition we present some a priori estimates which are satisfied by every

weak solution (u,B) ∈ Uα
I . For more details on how to obtain these estimates, see [35].

Proposition 4.2.4. Let I ⊂ R be an interval. Then, given (u,B) ∈ Uα
I , for all t′, t ∈ I

with t > t′, the following inequalities hold

|u(t)|2 + α2‖u(t)‖2 + |B(t)|2 ≤ |u(t′)|2 + α2‖u(t′)‖2 + |B(t′)|2 (4.52)

(
∫ t

t′
(‖u(s)‖2 + α2|Au(s)|2 + ‖B(s)‖2)ds

)1/2

≤
1

(2κ)1/2
(|u(t′)|2 + α2‖u(t′)‖2 + |B(t′)|2),

(4.53)

(
∫ t

t′
(‖u(s)‖2D(A)′ + ‖B(s)‖2D(A)′)ds

)1/2

≤
C

(λ1νη)1/4
(|u(t′)|2 + α2‖u(t′)‖2 + |B(t′)|2)

+ (νη)5/4λ
1/4
1 C|t− t′|, (4.54)

where κ = min{1, ν, η}, λ1 is the first eigenvalue of the Stokes operator and C is a nondi-
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mensional constant which depends on the parameters ν, η and λ1 through nondimensional

combinations of them.

Now, given an interval I ⊂ R, consider a sequence {Jn}n of compact subintervals of I

such that Jn ⊂ Jn+1, for all n ∈ N, and I =
⋃∞

n=1 Jn. Then, for R ≥ 0, we define

YI(R) =

∞
⋂

n=1

Π−1
Jn
YJn(R),

where, for any compact subinterval J ⊂ I,

YJ(R) =
{

Φ = (w,B) ∈ C(J,Hw) : |Φ(t)|H ≤ R, ∀t ∈ J ; ‖Φ‖L2(J,V) ≤ (2κ)−1/2R;

and there exists α ≥ 0 such that ‖(∂t(1 + α2A)−1/2w, ∂tB)‖L2(J,D(A)′×D(A)′) ≤

C

(λ1νη)1/4
R2 + (νη)5/4λ

1/4
1 C|t− s|, ∀s, t ∈ J

}

, (4.55)

where κ and C are the same constants from Proposition 4.2.4.

As in the case of the NS-α model (Lemma 4.2.1), one obtains analogously that YI(R)

is a compact and metrizable space with respect to the induced topology from Cloc(I,Hw).

Notice that the space YI(R) is directly connected with the a priori estimates for the

MHD-α model. Indeed, if I ⊂ R is an interval closed and bounded on the left with left

end point t0, then given R ≥ 0 and (u,B) ∈ Uα
I with |((1 + α2A)1/2u(t0),B(t0))|H ≤ R,

from the estimates (4.52)-(4.54) it follows that Φ = ((1 + α2A)1/2u,B) ∈ YI(R).

From now on, consider I ⊂ R as an interval closed and bounded on the left with

left end point t0. We shall apply the abstract framework of Section 4.1 by considering

X = Hw, X = Cloc(I,Hw) and

K
′(Hw) = {K ⊂ Hw |K is a compact set in H}.

Since, for each α > 0, the MHD-α equations are well-posed, we may consider a solution

operator Sα given by

Sα : Hw → Cloc(I,Hw)

Φ0 7→ Sα(Φ0) = Φ, (4.56)

with Φ0 = (w0,B0) and Φ = (w,B), where w = (1 + α2A)1/2u and (u,B) is the unique

weak solution of (4.29)-(4.32) with initial data ((1 + α2A)−1/2w0,B0) in the sense of

Definition 4.2.3.

We assume from now on that the parameter α varies in a countable set, say {αn}n∈N,

with αn → 0 as n → ∞. Then, we show that the family of operators {Sαn}n satisfies

hypothesis (H̃).
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Hypothesis (H̃1), (H̃2) and items (i) and (ii) of (H̃3) follow immediately from the

definitions. In the following proposition we show that {Sαn}n also satisfies item (iii) of

(H̃3).

Proposition 4.2.5. Let K ∈ K
′(Hw). Then, there exists a compact set K ⊂ Cloc(I,Hw)

such that Sαn(K) ⊂ K, for all n ∈ N.

Proof. Since K is a compact set in H, there exists R > 0 such that K ⊂ BH(R), where

BH(R) denotes the closed ball in H of radius R and centered at the origin. Thus,

Sαn(K) ⊂ Sαn(BH(R)). On the other hand, from the a priori estimates (4.52)-(4.54)

and the definition of Sαn , it follows that Sαn(BH(R)) ⊂ YI(R), for every n ∈ N. There-

fore, Sαn(K) ⊂ YI(R), for every n ∈ N, and since YI(R) is a compact set in Cloc(I,Hw),

we conclude the proof.

In order to show the remaining hypothesis, item (iv) of (H̃3), we need the following

result on the convergence of individual solutions of the MHD-α equations to an indivi-

dual solution of the MHD equations. The statement below has been adapted from [35,

Theorem 4.1], in which a sequence of solutions of the MHD-α equations was considered

with all having the same initial data. Here we consider a sequence of solutions of these

equations with the corresponding initial data also varying in a sequence, which is assumed

to be uniformly bounded in a given sense. With this condition, the uniform boundedness

obtained from the a priori estimates still hold, and the proof follows along the same lines

as in [35, Theorem 4.1].

Theorem 4.2.4. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0. Consider {un
0}n ⊂ V and {Bn

0}n ⊂ H. Suppose that there exists R > 0 such

that

|un
0 |

2 + αn
2‖un

0‖
2 + |Bn

0 |
2 ≤ R, ∀n ∈ N.

For each n ∈ N, let (uαn ,Bαn) be a weak solution of the MHD-αn equations on I satisfying

(uαn(t0),Bαn(t0)) = (un
0 ,B

n
0) and let vαn = (1 + α2

nA)uαn. Then, there are subsequences

{uαj
}j, {vαj

}j and {Bαj
}j and a weak solution (v,B) of the MHD equations (4.29)-(4.32)

on I̊ such that

(i) For every compact subinterval J ⊂ I, uαj
→ v and Bαj

→ B weakly in L2(J, V )

and strongly in L2(J,H);

(ii) For every compact subinterval J ⊂ I, vαj
→ v weakly in L2(J,H) and strongly in

L2(J, V ′);

(iii) uαj
(t) → v(t) and Bαj

(t) → B(t) in Cloc(I,Hw).
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Lemma 4.2.2. Let f ∈ Cloc(I,Hw) and consider a sequence {fn}n ⊂ Cloc(I, V ) such that

fn → f in Cloc(I,Hw) as n→ ∞ and suppose that there exists M > 0 such that

(|fn(t)|
2 + α2

n‖fn(t)‖
2)1/2 ≤M, ∀t ∈ I, ∀n ∈ N. (4.57)

Then,

(1 + α2
nA)

1/2fn → f in Cloc(I,Hw) as n→ ∞. (4.58)

Proof. Consider w ∈ H and J ⊂ I a compact subinterval. It suffices to prove that

sup
t∈J

|((1 + α2
nA)

1/2fn − f ,w)| → 0 as n→ ∞. (4.59)

Consider ε > 0. Since f ∈ Cloc(I,Hw) and {fn}n satisfies (4.57), there exists K > 0 such

that

(|fn(t)|
2 + α2

n‖fn(t)‖
2)1/2 + |f(t)| ≤ K, ∀t ∈ J, ∀n ∈ N. (4.60)

Further, since V is dense in H , there exists v ∈ V such that

|w− v| <
ε

2K
. (4.61)

Using that (1 + α2
nA)

1/2 is a self-adjoint operator, we may write

((1 + α2
nA)

1/2fn − f ,v) = (fn, (1 + α2
nA)

1/2v − v) + (fn − f ,v). (4.62)

Now since αn → 0, it follows that (1 + α2
nA)

1/2v → v in H . Also, by hypothesis, fn → f

in Cloc(I,Hw). Therefore, there exists N ∈ N such that

sup
t∈J

|(fn(t)− f(t),v)| <
ε

4
, ∀n ≥ N, (4.63)

and

|(1 + α2
nA)

1/2v − v| <
ε

4K
, ∀n ≥ N. (4.64)

Then, from (4.60) and (4.62)-(4.64), we obtain that

sup
t∈J

|((1 + α2
nA)

1/2fn(t)− f(t),v)| ≤

≤ sup
t∈J

|(fn(t), (1 + α2
nA)

1/2v − v)|+ sup
t∈J

|(fn(t)− f(t),v)|

≤ |(1 + αnA)
1/2v − v)| sup

t∈J
|fn(t)|+ sup

t∈J
|(fn(t)− f(t),v)| <

ε

2
, (4.65)
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for every n ≥ N . Finally, from (4.60), (4.61) and (4.65), it follows that

sup
t∈J

|((1 + α2
nA)

1/2fn(t)− f(t),w)| ≤

≤ sup
t∈J

|((1 + α2
nA)

1/2fn(t)− f(t),w − v)|+ sup
t∈J

|((1 + α2
nA)

1/2fn(t)− f(t),v)|

< |w − v| sup
t∈J

|(1 + α2
nA)

1/2fn(t)− f(t)|+
ε

2

<
ε

2K
sup
t∈J

[(|fn(t)|
2 + α2

n‖fn(t)‖
2)1/2 + |f(t)|] +

ε

2
< ε, (4.66)

for every n ≥ N , proving (4.59).

From Theorem 4.2.4 and Lemma 4.2.2, we obtain immediately the following result.

Theorem 4.2.5. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0. Consider {wn
0}n ⊂ H and {Bn

0}n ⊂ H. Suppose that there exists R > 0 such

that

|wn
0 |

2 + |Bn
0 |

2 ≤ R, ∀n ∈ N. (4.67)

For each n ∈ N, consider un
0 = (1 + α2

nA)
−1/2wn

0 and let (uαn ,Bαn) be a weak solution

of the MHD-αn equations (4.43)-(4.46) on I with initial data (un
0 ,B

n
0 ). Define wαn =

(1 + α2
nA)

1/2uαn. Then, there exist a subsequence (wαj
,Bαj

)j and a weak solution (v,B)

of the MHD equations (4.29)-(4.32) on I such that wαj
→ v and Bαj

→ B in Cloc(I,Hw).

Proof. Since each wn
0 belongs to H , then, for every n ∈ N, un

0 = (1 + α2
nA)

−1/2wn
0 is in

V. Moreover, from (4.67) it follows that

|un
0 |

2 + α2
n‖u

n
0‖

2 + |Bn
0 |

2 = |wn
0 |

2 + |Bn
0 |

2 ≤ R, ∀n ∈ N.

Then, by Theorem 4.2.4 there exists a subsequence {(uαj
,Bαj

)}j and a Leray-Hopf weak

solution (v,B) os the MHD equations such that uαj
→ v and Bαj

→ B in Cloc(I,Hw).

Furthermore, from the estimate (4.52), it follows that

|uαj
(t)|2 + α2

j‖uαj
(t)‖2 + |Bαj

(t)|2 ≤ |u0|
2 + α2

j‖u0‖
2 + |B0|

2, ∀j.

Thus, from Lemma 4.2.2, we also obtain that wαj
→ v in Cloc(I,Hw).

We now show that item (iv) of hypothesis (H̃3) is also satisfied by the family {Sαn}n.

Recall that, in the present case, UI denotes the set of Leray-Hopf weak solutions of the

MHD equations on I.

Proposition 4.2.6. Consider a set K ∈ K
′(Hw). Then, there exists a compact set K̃ in

Hw such that

lim sup
n

Sαn(K) ⊂ Π−1
t0
K̃ ∩ UI .
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Proof. Consider R > 0 such that K ⊂ BH(R). Thus, it follows that Sαn(K) ⊂ YI(R),

for every n ∈ N. Therefore, since YI(R) is metrizable, given Φ ∈ lim supn Sαn(K), there

exists a sequence {Φk}k in YI(R) such that each Φk belongs to Sαk
(K), for some αk > 0,

and Φk → Φ in YI(R). This implies, in particular, that Πt0Φk = Φk(t0) → Φ(t0) = Πt0Φ

in Hw. Thus, since {Φk(t0)}k ⊂ K and K is compact in H, hence compact in Hw, we

obtain that Φ ∈ Π−1
t0 (K).

Furthermore, since {Φk(t0)}k is uniformly bounded in Hw, by Theorem 4.2.5 there

exists a subsequence of {Φk}k, which we still denote by {Φk}k and a weak solution Φ̃ of

the MHD equations on I̊ such that Φk → Φ̃ in Cloc(I,Hw). Thus, it follows that Φ̃ = Φ

and, in particular, Φ ∈ U ♯
I (R). On the other hand, considering K̃ = BH(R)w, we have that

U ♯
I(R) ⊂ Π−1

t0 K̃ ∩ UI , where the overline denotes the closure in Cloc(I,Hw). Moreover, as

in Proposition 3.4.3, we can prove analogously that Π−1
t0 K̃ ∩UI is closed in Cloc(I,Hw), so

that Π−1
t0 K̃ ∩ UI = Π−1

t0 K̃ ∩ UI . We then conclude that Φ ∈ Π−1
t0 K̃ ∩ UI , which concludes

the proof.

Now, from the previous results and using similar arguments as in Theorem 4.2.2, we

obtain that, given an initial Borel probability measure µ0 on H, the family of measures

{Sαnµ0}n converges, modulo a subsequence to a trajectory statistical solution of the MHD

equations.

Theorem 4.2.6. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0. Let UI be the set of Leray-Hopf weak solutions of the MHD equations on I and,

for each n ∈ N, let Sαn be the solution operator associated to the MHD-αn equations

defined in (4.56). If µ0 is a Borel probability measure on H, then {Sαnµ0}n∈N has a

subsequence converging in the weak star topology to a UI-trajectory statistical solution ρ

on Cloc(I,Hw) such that Πt0ρ = µ0.

Finally, we obtain the convergence of statistical solutions of the MHD-αn equations

to a statistical solution of the MHD equations, satisfying a given initial data. The proof

follows by using the energy inequality (4.38) and similar arguments to the ones used in

Theorem 4.2.3, applied to the pair ({Sαn}n∈N,UI) associated to the MHD-αn and MHD

equations, and the function F : I × V → V′ given by

F(t,Φ) = −AΦ− B(Φ,Φ).

Theorem 4.2.7. Let I ⊂ R be an interval closed and bounded on the left with left end

point t0 and let UI be the set of Leray-Hopf weak solutions of the MHD equations on I.

For each n ∈ N, let Sαn be the solution operator associated to the MHD-αn equations,

defined in (4.56). Consider a Borel probability measure µ0 on H satisfying

∫

H

|Φ|2
H
dµ0(Φ) <∞. (4.68)
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Then, there exists a subsequence of {{ΠtSαnµ0}t∈I}n∈N converging to a statistical solution

{ρt}t∈I of the MHD equations such that ρt0 = µ0.
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Appendix A

Comparing topologies in the space of

measures

Let X be a Hausdorff space and let M(X) be the space of finite Borel measures on

X . We shall analyze the relation between the two topologies on M(X) defined in Section

2.3, namely the weak-star topology and the weak-star semi-continuity topology.

Let us fix a notation and denote the weak-star topology by τc and the weak-star

semi-continuity topology by τsc.

As we can see, in the definition of the weak-star semi-continuity topology, the con-

dition of continuity is relaxed to upper semi-continuity, for both the function f and the

corresponding mapping Jf , defined as

Jf(µ) = µ(f) =

∫

X

fdµ, ∀µ ∈ M(X).

This subtle difference makes the weak-star semi-continuity topology stronger than the

weak-star topology, i.e. τc ⊂ τsc. In order to prove this, we first note that an equivalent

way of defining the weak-star semi-continuity topology is to replace the condition of upper

semi-continuity by lower semi-continuity. In other words, if we denote by τ ′sc the smallest

topology for which the mappings Jf are lower semi-continuous, for every bounded and

lower semi-continuous real-valued function f on X , then τ ′sc = τsc. We prove this in the

following proposition.

Proposition A.1. In the space M(X), the topologies τsc and τ ′
sc

are equivalent.

Proof. Note that τ ′sc is the topology generated by the sub-basis

{J−1
f ((a,+∞)) | a ∈ R, f : X → R is bounded and lower semi-continuous}.

Thus, in order to first obtain that τ ′sc ⊂ τsc, it suffices to prove that every element from

this sub-basis belongs to τsc.
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Given a bounded and lower semi-continuous function f : X → R, consider the function

g = −f . Then g is clearly a bounded and upper semi-continuous real-valued function on

X . Moreover, for every a ∈ R, we have

J−1
f ((a,+∞)) = J−1

g ((−∞,−a)).

And since the set on the right-hand side belongs to τsc, it follows that τ
′
sc ⊂ τsc.

The inverse inclusion is proved analogously.

Now the inclusion τc ⊂ τsc is easily obtained:

Proposition A.2. In the space M(X), the topology τsc is stronger than the topology τc.

Proof. Consider a, b ∈ R and let f : X → R be a bounded and continuous function. Note

that

J−1
f ((a, b)) = J−1

f ((a,+∞)) ∩ J−1
f ((−∞, b)).

Now the first set on the right-hand side belongs to τsc since f is in particular bounded

and lower semi-continuous on X , and the second set on the right-hand side belongs to

τsc since f is also in particular bounded and upper semi-continuous on X. Therefore,

J−1
f ((a, b)) ∈ τsc, proving that every set from the sub-basis of τc belongs to τsc. Thus,

τc ⊂ τsc.
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Appendix B

Strengthened energy inequality for

the Navier-Stokes equations

In the same setting introduced in Section 3.4.1, we consider the Navier-Stokes equa-

tions with periodic boundary conditions and prove that the Leray-Hopf weak solutions

satisfy a strengthened form of the usual energy inequality. This result has been proved

in [12] for a forcing term f ∈ L2
loc(I,H) and for a function ψ : [0,∞) → R which is

nonnegative, nondecreasing, absolutely continuous and with bounded derivative. Here we

assume that ψ is continuously differentiable, but consider, more generally, a term f in

L2
loc(I, V

′). In order to simplify we consider I = [0, T ], for some T > 0.

Theorem B.1. Let T > 0 and f ∈ L2(0, T ;V ′). Consider a nonnegative, nondecre-

asing and continuously-differentiable real-valued function ψ : [0,∞) → R with bounded

derivative. If u is a weak solution of the Navier-Stokes equations on [0, T ], then

d

dt
(ψ(|u(t)|2)) ≤ 2ψ′(|u(t)|2)[〈f(t),u(t)〉V ′,V − ν‖u(t)‖2]

in the sense of distributions on [0, T ].

Proof. Define

ξ(·) = |u(·)|2 and g(·) = 2(〈f(·),u(·)〉V ′,V − ν‖u(·)‖2).

Since u is a Leray-Hopf weak solution of the NSE, it follows that ξ ∈ L∞(0, T ) and

g ∈ L1(0, T ). We then want to prove that the inequality

d

dt
(ψ ◦ ξ(t)) ≤ (ψ ◦ ξ(t))g(t)

holds in the sense of distributions on [0, T ].
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Consider a non-negative mollifier ρ ∈ C∞
c (R) and, for any ε > 0, define ρε(·) =

ε−1ρ(·/ε). Let ξ̃ and g̃ be the extensions of ξ and g by zero on R outside [0, T ], respectively.

Also, let ψ : R → R be the function defined by

ψ(t) =

{

ψ(t) , if t ≥ 0

ψ(0) , if t < 0
.

Note that ψ is continuous on R.

For any ε > 0, define ξε := ρε ∗ ξ̃ and gε := ρε ∗ g̃. And for any δ > 0, let ψδ := ρδ ∗ ψ.

Observe that

ξ′ε(t) =
d

dt

∫

R

1

ε
ρ

(

t− s

ε

)

ξ̃(s)ds =

∫

R

1

ε2
ρ′
(

t− s

ε

)

ξ̃(s)ds = −

∫

R

ϕ′
t,ε(s)ξ̃(s)ds,

where

ϕt,ε(s) =
1

ε
ρ

(

t− s

ε

)

, ∀s ∈ R.

Given t ∈ (0, T ), we can obtain a sufficiently small ε > 0 such that suppϕt,ε ⊂ (0, T ).

Indeed, if supp ρ ⊂ [−R,R], R > 0, taking ε such that

0 < ε < min

{

T − t

R
,
t

R

}

, (B.1)

it is easy to see that suppϕt,ε ⊂ [t− εR, t+ εR] ⊂ (0, T ).

Fix t ∈ (0, T ) and ε satisfying (B.1). Since u is a weak solution, it satisfies the energy

inequality ξ′ ≤ g in the sense of distributions on [0, T ]. Using this and the fact that

suppϕt,ε ⊂ (0, T ), we have

ξ′ε(t) = −

∫

R

ϕ′
t,ε(s)ξ̃(s)ds = −

∫ T

0

ϕ′
t,ε(s)ξ(s)ds

≤

∫ T

0

ϕt,ε(s)g(s)ds =

∫

R

ϕt,ε(s)g̃(s)ds = gε(t).

Now since ξε and ψδ are smooth functions, we have

d

dt
(ψδ ◦ ξε(t)) = (ψ′

δ ◦ ξε(t))ξ
′
ε(t),

in the classical sense on R.

Then, given a non-negative test function ϕ ∈ C∞
c (0, T ), let η > 0 be such that suppϕ ⊂

[η, T − η]. Hence, for every δ > 0 and ε satisfying

0 < ε < min

{

T − η

R
,
η

R

}

,
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we obtain that

∫ T

0

(ψδ ◦ ξε)
′(t)ϕ(t)dt =

∫ T

0

(ψ′
δ ◦ ξε)(t)ξ

′
ε(t)ϕ(t)dt ≤

∫ T

0

(ψ′
δ ◦ ξε)(t)gε(t)ϕ(t)dt.

Thus,

−

∫ T

0

(ψδ ◦ ξε)(t)ϕ
′(t)dt ≤

∫ T

0

(ψ′
δ ◦ ξε)(t)gε(t)ϕ(t)dt. (B.2)

We now must take the vanishing limits of ε and δ in order to obtain our desired

inequality. Let us consider the term on the left-hand side of (B.2) first. Note that, for

every t ≥ 0,

ψ′
δ(t) = ρδ ∗ ψ

′
(t) =

∫

R

ψ
′
(t− s)

1

δ
ρ
(s

δ

)

ds

≤ sup
τ∈(0,t+δR)

ψ′(τ)

∫

R

1

δ
ρ
(s

δ

)

ds = sup
τ∈(0,t+δR)

ψ′(τ), (B.3)

where the last equality follows from the fact that ρ is a mollifier. Using a similar argument,

we can show that

0 ≤ sup
t∈R

ξε(t) ≤ ess sup(0,T )ξ =:M. (B.4)

Then, from (B.3), (B.4) and applying the Mean Value Theorem to the function ψδ, we

obtain that

∣

∣

∣

∣

∫ T

0

(ψδ ◦ ξε)(t)ϕ
′(t)dt −

∫ T

0

(ψδ ◦ ξ)(t)ϕ
′(t)dt

∣

∣

∣

∣

≤

≤ ( sup
τ∈(0,T )

|ϕ′(τ)|)( sup
τ∈(0,M)

ψ′
δ(τ))

∫ T

0

|ξε(t)− ξ(t)|dt

≤ ( sup
τ∈(0,T )

|ϕ′(τ)|)( sup
τ∈(0,M+δR)

ψ′(τ))

∫ T

0

|ξε(t)− ξ(t)|dt.

But since ξε converges to ξ̃ in L
1(R) as ε goes to 0, then ξε|[0,T ] converges to ξ in L

1(0, T ).

From the inequality above, it then follows that

∫ T

0

(ψδ ◦ ξε)(t)ϕ
′(t)dt→

∫ T

0

(ψδ ◦ ξ)(t)ϕ
′(t)dt, as ε→ 0. (B.5)
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Now let us analyze the term on the right-hand side of (B.2). Observe that

∣

∣

∣

∣

∫ T

0

(ψ′
δ ◦ ξε)(t)gε(t)ϕ(t)dt−

∫ T

0

(ψ′
δ ◦ ξ)(t)g(t)ϕ(t)dt

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∫ T

0

(ψ′
δ ◦ ξε)(t)(gε(t)− g(t))ϕ(t)dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

[(ψ′
δ ◦ ξε)(t)− (ψ′

δ ◦ ξ)(t)]g(t)ϕ(t)dt

∣

∣

∣

∣

≤ ( sup
τ∈(0,M+δR)

ψ′(τ))( sup
τ∈(0,T )

|ϕ(τ)|)

∫ T

0

|gε(t)− g(t)|dt

+

∣

∣

∣

∣

∫ T

0

[(ψ′
δ ◦ ξε)(t)− (ψ′

δ ◦ ξ)(t)]g(t)ϕ(t)dt

∣

∣

∣

∣

.

Then since gε|[0,T ] → g in L1(0, T ), the first term on the right-hand side of the last

inequality above vanishes as ε → 0. For the second term, note that since ξε|[0,T ] → ξ in

L1(0, T ), there is a subsequence {ξε′}ε′ such that

ξε′(t) → ξ(t) q.t.p. in [0, T ], as ε′ → 0.

And since ψ′
δ is continuous in R,

(ψ′
δ ◦ ξε′(t) → (ψ′

δ ◦ ξ)(t) q.t.p. in [0,T].

Also,

|[(ψ′
δ ◦ ξε)(t)− (ψ′

δ ◦ ξ)(t)]g(t)ϕ(t)| ≤ 2( sup
τ∈(0,M+δR)

ψ′(τ))( sup
τ∈[0,T ]

|ϕ(τ)|)|g(t)| ∈ L1(0, T ).

Then, by the Dominated Convergence Theorem, taking a subsequence if necessary we

have that
∣

∣

∣

∣

∫ T

0

[(ψ′
δ ◦ ξε)(t)− (ψ′

δ ◦ ξ)(t)]g(t)ϕ(t)dt

∣

∣

∣

∣

→ 0, as ε→ 0.

Thus,
∫ T

0

(ψ′
δ ◦ ξε)(t)gε(t)ϕ(t)dt→

∫ T

0

(ψ′
δ ◦ ξ)(t)g(t)ϕ(t)dt, as ε → 0. (B.6)

From (B.2), (B.5) and (B.6), we have

−

∫ T

0

(ψδ ◦ ξ)(t)ϕ
′(t)dt ≤

∫ T

0

(ψ′
δ ◦ ξ)(t)g(t)ϕ(t)dt. (B.7)

Again, we must analyze the vanishing limit of δ in each individual term of (B.7).

Let us assume that 0 < δ < 1. For the term on the left-hand side, note that for every

L > 0 and r ∈ [0, L], we have

|ψδ(r)| =

∣

∣

∣

∣

∫

R

1

δ
ρ
(s

δ

)

ψ̃(r − s)ds

∣

∣

∣

∣

≤ sup
τ∈[L−R,L+R]

|ψ̃(τ)|

∫

R

1

δ
ρ
(s

δ

)

ds = sup
τ∈[0,L+R]

|ψ(τ)|.
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Then,

sup
t∈[0,T ]

|(ψδ ◦ ξ)(t)| ≤ sup
τ∈[0,M+R]

|ψ(τ)|, (B.8)

where M := ess sup(0,T )ξ, as before.

Furthermore, since ψ is continuous on [0,∞), from the properties of mollifiers we know

that

ψδ(r) → ψ(r), ∀r ∈ [0,∞).

And since ξ is nonnegative, we have

ψδ ◦ ξ → ψ ◦ ξ q.t.p. in [0, T ]. (B.9)

From (B.8), (B.9) and the Dominated Convergence Theorem, we then obtain that

∫ T

0

(ψδ ◦ ξ)(t)ϕ
′(t)dt→

∫ T

0

(ψ ◦ ξ)(t)ϕ′(t)dt.

An analogous argument applies to the term on the right-hand side of (B.7). Indeed,

it suffices to note that ψ′ is continuous on [0,∞) and that from (B.3) and from the fact

that 0 < δ < 1,

sup
t∈(0,T )

ψ′
δ ◦ ξ(t) ≤ sup

τ∈(0,M+R)

ψ′(τ).

Taking the limit as δ → 0 in (B.7), we finally obtain that

−

∫ T

0

(ψ ◦ ξ)(t)ϕ′(t)dt ≤

∫ T

0

(ψ′ ◦ ξ)(t)g(t)ϕ(t)dt,

for every nonnegative function ϕ ∈ C∞
c (0, T ).
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