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Resumo

Este trabalho é baseado no artigo Milnor numbers of projective hypersurfaces

and the chromatic polynomial of graphs, de J. Huh, publicado no Journal of the

American Mathematical Society (2012), tem como objetivo estudar os métodos uti-

lizados por esse autor para provar um caso particular da conjectura de Rota-Heron-

Welsh sobre a log-concavidade dos coeficientes dos polinômios caracteŕısticos de

um matroide. J. Huh utilizou técnicas de topologia algébrica, combinatória, ge-

ometria algébrica e álgebra comutativa para provar que os coeficientes do polinômio

caracteŕıstico de um matroide representável sobre um corpo de caracteŕıstica zero

formam uma sequência log-côncava.

Palavras-chave: Matroides; log-concavidade; polinômio cromático; multiplici-

dade mista.
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Abstract

This work is based on the article Milnor numbers of projective hypersurfaces

and the chromatic polynomial of graphs, by J. Huh, published in Journal of the

American Mathematical Society (2012). The dissertation is devoted to the study

of the methods used by Huh to prove a particular case of the Rota-Heron-Welsh

conjecture. J. Huh used results from algebraic topology, combinatorics, algebraic

geometry and commutative algebra to prove the log-concavity of the coefficients

of the characteristic polynomial of a matroid representable over a field of charac-

teristic zero.

Keywords: Matroids; log-concavity; chromatic polynomial; mixed multiplicities.
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Introduction

The concept of chromatic polynomial for planar graphs was first introduced in

1912 by G. Birkhoff in an attempt to solve the famous four color problem. It was

later generalized to all graphs by H. Whitney in 1932. Since then, many properties

of the chromatic polynomial have been studied.

In 1968, R. Read conjectured that the coefficients of the chromatic polynomial

of a graph form a unimodal sequence. Let G be a graph and let its chromatic

polynomial be χG(x) = c0x
n + · · ·+ cix

n−i + · · ·+ cn.

Conjecture 1 (Read). [Unimodality for graphs] The coefficients (of the chromatic

polynomial of a graph) first increase in absolute magnitude, and then decrease; two

successive coefficients may be equal, but it seems that there is never one coefficient

flanked by larger coefficients.

Later, in 1974, S. Hoggar conjectured that the coefficients of chromatic poly-

nomials satisfy log-concavity, which is stronger than unimodality.

Conjecture 2 (Hoggar). [Log-concavity for graphs] Let G be a graph and χG(x) =

c0x
n+ · · ·+cixn−i+ · · ·+cn its chromatic polynomial. Then the sequence c0, . . . , cn

is a sign-alternating log-concave sequence with no internal zeros.

In his paper [12], the author also mentions that the conjecture has been verified

for graphs with less than 7 vertices.

In 1976, Welsh conjectured a more general version of the conjecture above:

8



Conjecture 3 (Rota-Welsh). [Log-concavity for matroids] Let M be a matroid.

Then the coefficients of the characteristic polynomial of M form a sign-alternating

log-concave sequence with no internal zeros.

Many years later, in 2006 [17], the authors mention that conjecture 2 had been

verified for graphs with up to 11 vertices, and that there had been close to no

development towards solving conjectures 1 and 2.

It is also well known that conjecture 1 is weaker than conjecture 2 which is

weaker than conjecture 3. In particular, if the matroid M in conjecture 3 is

assumed to be representable over C, then the conjecture still implies conjecture 2.

One important aspect of the conjectures above comes from the well-known

deletion-contraction lemma:

Lemma 1. The chromatic polynomial of a graph is the sum of two chromatic

polynomials of graphs.

From the lemma above, the conjectures imply that the sum of some log-concave

sequences is still log-concave (when the sequences correspond to the coefficients

of chromatic polynomials of the deletion and contraction of an edge of a graph),

which is not true in general.

In this text we outline some details of the recent proof of a particular case of

conjecture 3, where the matroid M is assumed to be representable over a field of

characteristic 0.

Chapter 1 includes the required preliminaries from commutative algebra for the

rest of the text. Chapter 2 includes the commutative algebra machinery required

for the proof.

Chapter 3 includes a brief introduction to algebraic topology and one of the

main theorems of [13]. A proof of theorem 3.3.1 is given in appendix A.

In chapter 4 and 5 the main combinatorial objects in the conjectures are defined.

Chapter 5 also includes examples of unimodal sequences in commutative algebra.
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Figure 1: A visualization of the connections between the areas involved in the

proof.
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In chapter 6 we define the chow group of Pn×Pm and define the last invariant

needed to state the most important theorem in the proof of conjecture 2.

Chapter 7 includes the last details needed to finish the proof of the conjectures

and a brief timeline of the proof of the conjectures. As of today, even conjecture 3

has been proven (see [13], [15] and [16]).

Finally, a simple application of (mixed) multiplicities to biomathematics can

be found in appendix B.
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Chapter 1

Preliminaries

In this chapter we define the basic objects and state the results we will use later

on. We first set some basic definitions and notation that will be used throughout

this text.

Definition 1.0.1. Let R = k[x1, . . . , xn] be the polynomial ring in n variables over

an arbitrary field k. Let α = (α1, . . . , αn) ∈ Nn. We denote by xα the monomial

xα1
1 . . . xαnn . Clearly xαxβ = xα+β for every α, β ∈ Nn.

Definition 1.0.2. Let R = k[x1, . . . , xn] be the polynomial ring in n variables over

an arbitrary field k. We say an ideal I ⊂ R is a monomial ideal if it is generated

by monomials.

Definition 1.0.3. Let α = (α1, . . . , αn) be a point in Nn for some n > 0. We

denote by α! the product α1! . . . αn!, and by |α| the sum α1 + · · ·+ αn.

If a proof is ommited in this chapter, a reference to where the reader may find

the complete proof will be mentioned.
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1.1 Length

Let R be a Noetherian ring and M a R-module. A chain of submodules of M of

size n is a sequence of strict inclusions

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M.

A composition series of M is a maximal chain, that is, a chain such that no

more submodules can be inserted.

Proposition 1.1.1. Following the above notation, suppose M has a composition

series of size n. Then every composition series of M has size n, and every chain

can be extended to a composition series.

Proof. See [1, p. 77 Proposition 6.7].

If the size of a composition series of a module M is finite, we say M is a module

of finite length. The number `(M) will denote the size of a composition series of

M and is called the length of M . The notion of length generalizes the concept of

dimension in linear algebra to R-modules.

In this section we will state basic results that will be used in the following

sections.

Proposition 1.1.2. Let R be a ring and M a R-module. The module M has

finite length if and only if it is both Noetherian and Artinian.

Proof. See [1, p. 77 Proposition 6.8].

Proposition 1.1.3. Let R be a Noetherian (resp. Artinian) ring and M a finitely

generated R-module. Then M is Noetherian (resp. Artinian).

Proof. See [1, p. 76 Proposition 6.5].
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Proposition 1.1.4. Let R be a ring. The following are equivalent:

• R is Artinian.

• R is Noetherian and dim R = 0.

Proof. See [1, p. 90 Theorem 8.5].

From these three propositions we can conclude the following fact that is very

useful:

Corollary 1.1.5. Let R be an Artinian ring and M a finitely generated R-module.

Then M has finite length.

Lastly we will need the fact that length of modules is additive on short exact

sequences:

Proposition 1.1.6. Let M ′,M and M ′′ be R-modules such that there is a short

exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

and M has finite length. Then `(M ′) < ∞, `(M ′′) < ∞ and `(M) = `(M ′) +

`(M ′′).

Proof. See [1, p. 75 Proposition 6.3] and [1, p. 77 Theorem 6.9].

1.2 Associated primes

Definition 1.2.1. Let R be a ring and M an R-module. A prime ideal p of R

is called an associated prime ideal of M if p = (0: x) for some x ∈ M , that is,

p = ann(x). The set of associated primes of M will be denoted by AssR(M).
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Definition 1.2.2. Let R be a ring and I a proper ideal. We say I is primary if

xy ∈ I =⇒ x ∈ I or yn ∈ I for some n ∈ N

Or equivalenty,

I is primary ⇐⇒ A/I 6= 0 and every zero-divisor in A/I is nilpotent

Moreover, if I is primary and
√
I = p we say I is p-primary.

Example 1.2.3. Let G = (V,E) be a simple graph where V = (1, . . . , n). Let k

be an arbitrary field and R = k[x1, . . . , xn]. Define I(G) to be the ideal generated

by {xixj | (i, j) ∈ E}. Then the associated primes of I(G) are exactly prime ideals

of the form (xi1 , . . . , xir) where {i1, . . . , ir} is a minimal vertex cover 1 of G. For

a proof see [25, p. 168 Proposition 6.1.16].

Example 1.2.4. Let k be an arbitrary field and R = k[X, Y, Z]/(XY − Z2). Let

x, y, z denote the images of X, Y, Z in R. Let p = (x, z), the ideal (X,Z) is a prime

ideal of k[X, Y, Z] that contains (XY −Z2) so we conclude p = (X,Z)/(XY −Z2)

is also a prime ideal. Note that z2 = xy ∈ p2 but x 6∈ p2 and yn 6∈ p2 for any n > 0.

These remarks prove that p2 is not primary, even though
√
p2 = p. This example

shows that in general primary ideals are not as simple as in Z, it is possible for

powers of primes to not be primary.

Later on we will need the following propositions:

Proposition 1.2.1. Let R be a Noetherian ring and M a nonzero module. Then

1. Ass(M) 6= ∅.
1A vertex cover T of a graph G = (V,E) is a subset of V such that for every edge (v1, v2) ∈ E,

if v1 6∈ T then v2 ∈ T and vice-versa. A minimal vertex cover is a vertex cover which is minimal

with respect to inclusion.
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2. The set of zero-divisors for M is the union of all associated primes of M .

Proof. See [18, p. 38 Theorem 6.1].

Proposition 1.2.2. Let R be a Noetherian ring and M a finite R-module. Then

1. M has finitely many associated primes

2. Ass(M) ⊆ Supp(M)

3. Minimal elements of Ass(M) are exactly the minimal primes of Supp(M)

4.
√

0 : M =
⋂

q∈min Ass(M)

q =
⋂

p∈min Supp(M)

p

Proof. See [18, p. 39 Theorem 6.5].

Corollary 1.2.3. Let R be a Noetherian ring and I an m-primary ideal where m

is a maximal ideal of R. Then the quotient R/I is an Artinian ring.

Proof. By definition we know m =
√
I =

√
0: R/I, it follows from proposi-

tion 1.2.2 4. that the only prime ideal of R containing I is the maximal ideal

m. Since prime ideals of R that contain I are in bijection with prime ideals of

R/I, we conclude R/I is a 0 dimensional Noetherian ring so the result follows by

proposition 1.1.4.

Theorem 1.2.4. Let R be a Noetherian ring and I an ideal of R. Then for every

p ∈ Ass(R/I) there exists a p-primary ideal qp such that

I =
⋂

p∈Ass(R/I)

qp.

Moreover, IRp = qpRp for every minimal associated prime p.

Proof. See [1, p. 83 Theorem 7.13], [1, p. 52 Theorem 4.5] and [1, p. 54 Proposition

4.9].
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1.3 Graded rings and modules

We will now define the main algebraic objects of this text.

Definition 1.3.1. Let G be a monoid. A G-graded ring R is a ring such that

R =
⊕
g∈G

Rg

where Rg are additive subgroups of R and Rg1Rg2 ⊂ Rg1g2 . Note that if 0 is the

neutral element of G, then R0 has a ring structure since R0R0 ⊂ R0. Moreover,

Rg is a R0-module for every g ∈ G.

Definition 1.3.2. Let R be a G-graded ring. An R-module M is said to be a

graded R-module if there are subgroups Mg of M such that

M =
⊕
g∈G

Mg

and for every g, h ∈ G, RgMh ⊂ Mgh. Note that Mg is a R0-module for every

g ∈ G.

A graded submodule N of M is a submodule N such that N =
⊕
g∈G

N ∩Mg.

Lastly, a R-algebra is said to be G-graded if in addition to being a graded

R-module it is also a G-graded ring.

Definition 1.3.3. Let R be a G-graded ring and M a graded R-module. An

element f ∈M is said to be homogeneous of degree g if f ∈Mg.

Our goal in this section is to define the objects and maps for a categoryMG
0 (R)

of graded R-modules, where R is a G-graded ring.

We already defined the objects of MG
0 (R). We will now define maps of this

category.
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Definition 1.3.4. Let R be a G-graded ring, M,N graded R-modules. A mor-

phism ϕ : M → N inMG
0 (R) is a R-module homomorphism such that ϕ(Mg) ⊂ Ng

for every g ∈ G.

Let R be a G-graded ring, M a graded R-module and N a graded submodule

of M . The quotient M/N is still an object in MG
0 (R), that is, it is still a graded

R-module. Given a morphism ϕ of MG
0 (R), then Ker ϕ and Im ϕ are graded

R-modules.

The rings we will need in this text are either Nr-graded rings or Zr-graded

rings for some r > 0.

Proposition 1.3.1. Let R be a Zr-graded ring. Then R is a graded R0-algebra

and R is Noetherian if and only if R0 is Noetherian and R is a finitely generated

R0-algebra.

Proof. The same proof as in [3, p.29 Proposition 1.5.5] works even if r > 1.

We are specially interested in the case where R is aNr-graded algebra generated

by finitely many elements of degree e1, . . . , er where ei represents the canonical

generators of Nr. Such algebras are called standard.

Another special case of interest comes from shifting degrees.

Definition 1.3.5. Let R be a Zr-graded ring and M a graded R-module. By

definition, there are additive subgroups Mu of M such that

M =
⊕
u∈Zr

Mu

Let v ∈ Zr, we denote by M(v) the graded R-module such that M(v)u = Mv+u

for every u ∈ Zr. We say M(v) is the shift of M by v.

Definition 1.3.6. Let R be a ring, I an ideal of R and t a variable over R. The

Rees algebra of I is the subring of R[t] defined as

18



R[It] =
{ n∑

i=0

ait
i | n ∈ N, ai ∈ I i

}
=
⊕
n≥0

Intn

where I0 = R. Note that R[It] is an N-graded ring.

Definition 1.3.7. Let R be a ring, I an ideal of R and M a finite R-module. The

module

grI(M) =
⊕
n≥0

InM

In+1M

is called the associated graded module of M with respect to I. Note that grI(R)

is an N-graded ring, we call it the associated graded ring of R with respect to I.

It is also clear that grI(M) is a graded grI(R)-module for any finite R-module M .

Clearly we have
R[It]

IR[It]
∼= grI(R).

Definition 1.3.8. Let (R,m) be a local Noetherian ring with maximal ideal m.

The fiber cone of I is the ring

FI(R) =
R[It]

mR[It]
∼=
R

m
⊕ I

mI
⊕ I2

mI2
⊕ . . . .

Clearly FI(R) ∼=
grI(R)

mgrI(R)
.

Moreover, the Krull dimension of FI(R) is called the analytic spread of I and

is denoted s(I).

The Rees algebra will play an important role on the next sections. Given a

ring R and an ideal I of R, one may ask how the dimension of R is related to the

dimension of the Rees algebra of I. The answer to this question is the theorem

below.

Theorem 1.3.2. Let R be a Noetherian ring and I an ideal of R. Then dim R is

finite if and only if the dimension of the Rees algebra of I is finite. Moreover, if

dim R is finite then:
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dim R[It] =

 dim R + 1, if I 6⊂ P a prime ideal such that dim (R/P ) = dim R,

dim R, otherwise.

Proof. See [14, p. 99 Theorem 5.1.4 (1)].

1.4 Hilbert polynomials

Let R be a standard N-graded algebra over an Artinian ring R0 and M a finite

graded R-module. We know from corollary 1.1.5 that for every n ∈ N, Mn is

a R0-module of finite length. We are interested in the behaviour of `(Mn) as n

changes.

Definition 1.4.1. Let R be a standard N-graded algebra over an Artinian ring R0

and M a finite graded R-module. We call the numerical function H(M, ) : N→ N

such that H(M,n) = `(Mn) for n ∈ N the Hilbert function of M .

In combinatorics, it is standard to work with the series whose coefficients are

the values of a numerical function. The series HM(t) =
∑∞

n=0 H(M,n)tn is called

the Hilbert series of M .

There are a few natural questions we may ask about the behaviour of Hilbert

functions:

• Given a finite graded R-module M , is it possible to determine the growth of

H(M,n) based on information about M?

• Is there an upper bound to how fast the hilbert function of an arbitrary finite

graded module M can grow?

The questions above are fully answered by the theorem below.
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Theorem 1.4.1. Let R be a standard N-graded algebra over an Artinian ring

R0 and M a finite graded R-module of Krull dimension d. Then there exists a

polynomial PM(t) ∈ Q[t] of degree d − 1 such that PM(n) = H(M,n) for n � 0.

The polynomial PM(t) is called the Hilbert polynomial of M .

Proof. See [3, p. 148 Theorem 4.1.3].

The proposition below gives more information on the coefficients of PM(t).

Proposition 1.4.2. Let R be a standard N-graded algebra over an Artinian ring

R0 and M a finite graded R-module of dimension d. Then there exists integers

a0, . . . , ad−1 such that

PM(X) =
d−1∑
i=0

ai

(
X + i

i

)
Proof. See [3, p. 149 Lemma 4.1.4].

Following the above notation, the multiplicity of M is defined to be

e(M) =

ad−1, if d > 0,

`(M), if d = 0.

Example 1.4.2. Let R = k[x0, . . . , xn] where k is an arbitrary field. Then PR(t) =(
t+ n

n

)
for every t > 0. This follows from a standard stars and bars argument.

It is clear from proposition 1.1.6 that Hilbert function and polynomials are

also additive on exact sequences of graded modules. Let R = k[x0, . . . , xn] and I

a homogeneous ideal. From the exact sequence

0 −→ I −→ R −→ R/I −→ 0,

it is clear that H(R/I, n) = H(R, n)−H(I, n) for every n. Assume now that I

is a monomial ideal. From a combinatorial perspective, the problem of computing
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H(R/I, n) is equivalent to a stars and bars problem with restrictions given by the

generators of I. A more concrete example is given below.

Example 1.4.3. Let R = k[x0, . . . , xn] and I = (x1x2). For every m, the number

H(R/I,m) can be interpreted as the number of ways m balls can be put into n+1

labeled boxes such that boxes 1 and 2 are not allowed to have balls inside them

simultaneously.

Remark 1.4.1. For every graded ideal I in a polynomial ring over a field, using

techniques from Gröebner bases it is possible to find a monomial ideal J such that

I and J have the same Hilbert function. For more details see [11, p. 92 Corollary

6.1.5].

1.5 Hilbert-Samuel polynomials

Last section our setting was: R a standard N-graded algebra over an Artinian

ring R0 and we studied the behaviour of Hilbert functions of finite graded R-

modules. Our goal in this section is to study more general numerical functions

called Hilbert-Samuel functions. Note that the setting will be different from the

last one.

Before defining the main numerical function of this section we need the lemma

below.

Lemma 1.5.1. Let (R,m) be a local Noetherian ring, I a m-primary ideal and M

a finite R-module. Then `(M/In+1M) =
n∑
i=0

`(I iM/I i+1M).

Proof. Consider the exact sequences of R-modules:
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0 −→ M

IM
−→ M

IM
−→ M

M
−→ 0

...

0 −→ In−1M

InM
−→ M

InM
−→ M

In−1M
−→ 0

0 −→ InM

In+1M
−→ M

In+1M
−→ M

InM
−→ 0

Since I is m-primary, we know mv ⊆ I for some v > 0. This implies that

every module above is annihilated by a power of m and thus are Artinian. The

modules are Artinian and finitely generated, so we know every module above has

finite length. By proposition 1.1.6, for every i (in particular for i = 0) we have

`(M/I i+1M) = `(M/I iM) + `(I iM/I i+1M).

If we assume the result is true for k = n− 1 then clearly

`(M/In+1M) = `(M/InM) + `(InM/In+1M)

=
n−1∑
j=0

`(IjM/Ij+1M) + `(InM/In+1M)

so the result is true for k = n and the result follows by induction.

Definition 1.5.1. Let (R,m) be a local Noetherian ring, I an m-primary ideal and

M a finite R-module. Let χIM denote the numerical function such that χIM(n) =

`(M/In+1M). We call χIM the Hilbert-Samuel function of M with respect to I.

Note that by lemma 1.5.1, χIM(n) =
∑n

i=0 `(I
iM/I i+1M) =

∑n
i=0H(grI(M), i)1.

One natural question is if there exists a polynomial Q(t) in Q[t] such that χIM(n) =

1Because of this equality, the Hilbert-Samuel function is also called the first iterated Hilbert

function.
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Q(n) for n� 0. As we will see in the theorem below, the answer to the question

is positive.

Theorem 1.5.2. Let (R,m) be a Noetherian local ring, M 6= 0 a finite R-module

of dimension d, and I an m-primary ideal. Then there exists a polynomial Q(t) ∈

Q[t] such that Q(n) = χIM(n) for n� 0.

Proof. See [3, p.188 Proposition 4.6.2].

Definition 1.5.2. The number d! lim
n→∞

`(M/In+1M)

nd
is called e(I,M), the Hilbert-

Samuel multiplicity of M with respect to I.

Following the above notation, it is clear from lemma 1.5.1 and theorem 1.5.2

that there also exists a polynomial P (n) = Q(n+ 1)−Q(n) = `(InM/In+1M) for

n � 0. The lemma below gives us a formula for the Hilbert-Samuel multiplicity

in terms of P .

Proposition 1.5.3. Let P (n) ∈ Q[n] of degree d ≥ 0 with coefficients in Z. Set

Q(n) =
n∑
i=0

P (i). Then Q(n) is a polynomial in n of degree equal to d+1 and with

coefficients in Z. Moreover, if the leading coefficient of P is c, then the leading

coefficient of Q is c/(degP + 1).

In particular, If (R,m) is a local Noetherian ring, I a m-primary ideal and M

a d dimensional finite R-module, then

e(I,M) = (d− 1)! lim
n→∞

`(InM/In+1M)

nd−1

Proof. See [14, p. 222 Lemma 11.1.2] for the first part. The last part follows

directly by definition and from the first part.
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1.6 Discrete geometry

In this section we introduce the combinatorial objects that will play an important

role in the connection between multiplicities and volumes which is the topic of the

next chapter.

Throughout this section, every vector space is a finite dimensional R-vector

space.

Definition 1.6.1. Let V be a vector space. An affine subspace (of dimension d)

of V is a subset u+W where W is a subspace (of dimension d) of V and u ∈ V \W .

The empty set is an affine subspace of dimension −1.

Moreover, if X is a subset of V , the affine hull of X, aff(X) is the smallest

affine subspace of V containing X.

Definition 1.6.2. Let X = {x1, . . . , xn} be a finite subset of a vector space V .

We define the convex hull of X, conv(X) as

conv(X) =

{
n∑
i=1

aixi : 0 ≤ ai ≤ 1, i = 1, . . . , n,
n∑
i=1

ai = 1

}
.

To define the objects that will be used later on, we need the following definition:

Definition 1.6.3. Let V and W be vector spaces. A map f : V → W is affine if

f(v) = g(v) + w0 for some linear map g : V → W , for every v ∈ V and w0 ∈ W .

Note that f is continuous with respect to the usual topology of Rn.

If W = R we say f is an affine form.

Given an affine form α we call the preimage of (0,∞) (resp. [0,∞)) the open

(resp. closed) halfspace defined by α:

H>
α : = {x ∈ V : α(x) > 0}, H<

α = H>
−α
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H+
α : = {x ∈ V : α(x) ≥ 0}, H−α = H+

−α

Definition 1.6.4. If a subset P of V is the intersection of finitely many closed

halfspaces, we say P is a polyhedron. If P is a bounded polyhedron, we say P is

a polytope. The dimension of P is the dimension of aff(P ).

Definition 1.6.5. Let P be a polyhedron. A hyperplane H is a support hyperplane

of P if P is contained in one of the closed halfspaces bounded by H and H∩P 6= ∅.

The intersection F = H ∩ P is called a face of P .

Faces of polyhedra are also polyhedra. A face of dimension dim P − 1 is called

a facet, a face of dimension 0 is called a vertex and a face of dimension 1 is called

an edge.

Polytopes in two dimensions are called polygons. The gray area in (a) is an

example of a polytope P . The vertices of P are (1, 1), (1, 6), (4, 1), and (3, 5). The

polytopes above are just the convex hull of their vertices, this is in fact always

true:

Theorem 1.6.1. Let P ⊂ V . The following are equivalent:

1. P is a polytope;

2. P is a polyhedron and P is the convex hull of its vertices;

3. P is the convex hull of a finite subset of V .

Proof. See [7, p. 18 Theorem 1.26].

There is also a theorem characterizing polyhedra that are not polytopes, but

to state it we need two more definitions.
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(a) A 2-dimensional polytope (b) A 3-dimensional polytope

Definition 1.6.6. Let C be a subset of a vector space V . We say C is a conical

set if it is closed under nonnegative linear combinations:

If x1, . . . , xn ∈ C and a1, . . . , an ∈ R such that ai ≥ 0, then a1x1 +. . . anxn ∈ C.

Suppose C is also finitely generated, that is, every element of C can be written

as a nonnegative linear combination of x1, . . . , xn. In this case1, we say C is a

cone.

Definition 1.6.7. Let V be a vector space and A,B ⊂ V . The Minkowski sum

of A and B denoted by A+B is:

A+B = {a+ b : a ∈ A, b ∈ B}.

Moreover, we denote by nA the Minkowski sum of A with itself n times.

The proposition below will be useful later on:

Proposition 1.6.2. Let A and B be subsets of a vector space V . Then

conv(A+B) = conv(A) + conv(B).

We can now characterize polyhedra based on polytopes and cones.

1It is also possible to give a definition of a cone based on linear halfspaces, for more details

see [7, p. 11, Definition 1.14 and Theorem 1.15]
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Theorem 1.6.3. Let P be a subset of a vector space V . The following are equiv-

alent:

1. P is a polyhedron;

2. There exists a polytope Q and a cone C such that P = Q+ C.

Proof. See [7, p. 19 Theorem 1.27].

Example 1.6.8. Below is an example of one way to decompose a specific polyhe-

dron as a Minkowski sum of a polytope and a cone:

As we will see later on, the theorem above plays an important role in relating

different concepts of commutative algebra and algebraic geometry.

Lastly, we define the Newton polytope of a polynomial:

Definition 1.6.9. Let f =
m∑
i=1

xαi ∈ C[x1, . . . , xn]. The Newton polytope of f

denoted by NP (f) is conv(α1, . . . , αm) ⊂ Rn.
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1.7 Monomial subrings

Now that we have defined polytopes, we are ready to define their algebraic coun-

terparts. Let k be an arbitrary field, R = k[x1, . . . , xn] the polynomial ring in n

variables and xα1 , . . . , xαn monomials in R. The subring k[xα1 , . . . , xαn ] of R is

called a monomial subring of R.

One natural question that comes up is the relation between the Rees algebra

of the ideal (xα1 , . . . , xαn) and the monomial subring k[xα1 , . . . , xαn ]. Although it

is clear that they are not the same ring, the monomial subring is, in a way, the

fiber cone of the ideal (xα1 , . . . , xαn).

Proposition 1.7.1. Let I = (xα1 , . . . , xαs) be a monomial ideal ofR = k[x1, . . . , xn].

Then

FI :=
⊕
n∈N

In

mIn
∼= k[xα1 , . . . , xαs ]

where m = (x1, . . . , xn).

Proof. The isomorphism follows from the natural map sending the residue class of

xα ∈ In in In/mIn to xα ∈ k[xα1 , . . . , xαs ].

Let M be a submonoid of Nn and k[M ] the k-algebra generated by xm where

m ranges over the generators of M . For a ∈ k, xm1 , xm2 ∈ k[M ], the product

in k[M ] is given by axm1xm2 = axm1+m2 . The k-algebra k[M ] is called an affine

semigroup ring.

Let M be a submonoid of Zn. Since for x, y, z ∈ M , x + y = x + z implies

y = z, it is possible to embed M in a group ZM . The group ZM satisfies the

following universal property:

There exists a homomorphism i : M → ZM such that every homomorphism

ϕ : M → H to a group H factors through ZM uniquely as ϕ = ψ ◦ i where
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ψ : ZM → H is a group homomorphism. Moreover, ZM is unique up to isomor-

phism.

The construction of ZM is, in many ways, very similar to localization in ring

theory:

The group ZM is the set of equivalence classes:
M ×M

∼
where (x, y) ∼ (u, v)

if and only if x + v + z = u + y + z for some z ∈ M . The class (x, y) will be

denoted by x−y. Addition in ZM is given by (x−y)+(u−v) = (x+u)− (y+v).

The map i : M → ZM such that i(x) = x− 0 is a homomorphism of monoids that

satisfies the universal property. Moreover, i is injective 1.

Note that by definition if N ⊂ M are monoids, then ZN ⊂ ZM . It is also

clear that if M is a group, ZM = M .

From the remarks above, it is clear that for every submonoid M of Zn, the

group ZM is a torsionfree finitely generated abelian group, and thus, ZM ∼= Zr

for some 0 ≤ r ≤ n. The number r such that ZM ∼= Zr is called the rank of M

and will be denoted by rank(M) or rank M .

To prove our first result on affine semigroup rings we need the following theo-

rem:

Theorem 1.7.2. Let k be a field, R = k[α1, . . . , αn], Q(R) the field of fractions

of R and r = trdegkR the transcendence degree of the extension k ⊂ Q(R).

Then r = dim R.

Proof. See [18, p. 34 Theorem 5.6].

Proposition 1.7.3. Let M be a submonoid of Zn and k[M ] its affine semigroup

ring. Then

dim k[M ] = rank(M).

1Injectivity follows from the property: x, y, z ∈M , x + y = x + z implies y = z.
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Proof. By theorem 1.7.2 we know dim k[M ] = trdegk(k[M ]), assume that rank(M) =

r. It is clear that Q(k[ZM ]) = Q(k[M ]). We already know that ZM = Zr for

some r, so we conclude Q(k[M ]) ∼= Q(k[Zr]) ∼= Q(k[t1, . . . , tr]). From these iso-

morphisms we conclude dim k[M ] = r.
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Chapter 2

Multiplicities, volumes and

positivity

In this chapter we are going to define a more general notion of multiplicity, which

comes from a multidimensional version of Hilbert functions. We then explore

the connection of these functions with their one dimensional counterparts, and

introduce the concepts of reduction and integral closures of ideals. As will become

clear, these notions are closely related to the theory of Hilbert functions.

Throughout this chapter, given a polytope P , the n-dimensional euclidean

volume of P (that is, the integral of 1 in the region P ⊂ Rn) will be denoted by

Vn(P ).

2.1 The one dimensional case: Multiplicity and

volume

The goal of this section is to introduce the combinatorial counterparts of Hilbert

polynomials and give a purely algebraic interpretation of the notion of volume for

polytopes. On section section 1.6 we defined polytopes, which turn out to be the
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convex hull of a finite set of points in Rn for some n > 0. Polytopes that are of

interest to us are called rational polytopes, that is, polytopes such that its vertices

have only rational coordinates. Since the coordinates of each vertex of a rational

polytope P are rational, there exists n such that the vertices of nP have integer

coordinates, and thus from now on every vertex of every polytope will be assumed

to have integer coordinates.

Let P be a polytope and E(P ) = #
(
P ∩Zm

)
the number of lattice points inside

P . Since E(P ) = E(Q) if Q is a translation of P , we always assume the vertices

of P have nonnegative coordinates. Our goal in this section is to understand how

does E(nP ) change when n changes. For this we need the following definition:

Definition 2.1.1. Let (x1, . . . , xd) ∈ Zm ⊂ Rm and P = conv(x1, . . . , xd). We call

the numerical function E(P, ) : N → N such that E(P, n) = E(nP ) the Ehrhart

function of P . Note that #
(
P ∩ 1

n
Zm
)

= #
(
nP ∩ Zm

)
, hence E(P, n) = #

(
P ∩

1

n
Zm
)
.

As mentioned before, we also define the series
∞∑
n=1

E(P, n)tn the Ehrhart series

of P .

Let P be an m-dimensional polytope in Rm and let E(P )k = P ∩ 1

k
Zm. Set

Sk =
∑

e∈E(P )k

k−m, that is, Sk is the sum of volumes of hypercubes centered on

points of E(P )k. As k grows larger, it is clear that Sk converges to Vm(P ), in

other words:

Vm(P ) = lim
n→∞

E(P, n)

nm
.
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Figure 2.1: A visualization of the bijection between P ∩ 1

n
Zm = nP ∩ Zm for the

polytope with vertices: (1, 1), (1, 6), (4, 1), (3, 5) and n = 2, 3.

Definition 2.1.2. Let P ⊂ Rd be a polytope such that the vertices of P are

x1, . . . , xn. Consider the cone C(P ) ⊂ Rn+1 generated by (x1, 1), . . . , (xn, 1). The

cone C(P ) is called the cone over P . It is clear that C(P ) is a monoid. We will

denote by k[P ] the monomial algebra k[C(P )∩Nn+1], k[P ] is called the monomial

algebra of the cone over P .

Given a polytope P ⊂ Rn, denote by α1, . . . , αr ∈ Zn the lattice points of P .

Since k[P ] is generated by x(α1,1), . . . , x(αr,1), we can give the following grading to

k[P ] to make it a standard N-graded k-algebra:

deg xα = deg xα1
1 . . . xαnn x

αn+1

n+1 = αn+1.

Let P ⊂ Rn be a polytope. By definition, k[P ] is a standard N-graded algebra

over an Artinian ring (more specifically, a field). The set {x(a,i) : a ∈ iP ∩ Zn} is

a k-basis for k[P ]i, so we conclude the dimension of k[P ]i as a k-vector space is

exactly E(P, i). This equality implies H(k[P ], n) = E(P, n). From these equalities
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Figure 2.2: The spheres illustrate a k-basis for k[P ]1 ⊕ k[P ]2 for a given polygon

P .

we can compute the euclidean volume of arbitrary polytopes using only algebraic

objects:

Theorem 2.1.1. Let P ⊂ Rm be an m-dimensional polytope. Then

Vm(P ) =
e(k[P ])

m!
.

Proof. From previous results in this section we have the following equalities:

1. Vm(P ) = lim
i→∞

E(P, i)

im
.

2. E(P, i) = H(k[P ], i).

From section section 1.4 we know 0 < lim
i→∞

H(k[P ], i)

im
< ∞ implies m =

dim k[P ]− 1 and in particular,

lim
i→∞

H(k[P ], i)

im
=
e(k[P ])

m!
.

Example 2.1.3. Consider the polytope P from fig. 1.1a. Using the computer al-

gebra system Macaulay2, we can compute the Hilbert polynomial of the monomial

algebra k[P ] and so we conclude the volume of P is 11.
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We can also use the package Polyhedra.jl from the Julia programming lan-

guage and compute the multiplicity of k[P ] from the volume of P .

Remark 2.1.1. In this section we defined the Ehrhart function of polytopes.

Given a polytope P we can also define a similar function denoted by E+(P, )

which counts only lattice points that lie in the interior of P . This function can

be fully determined by E(P, ) and it is possible to define a k[P ]-module ω to give

an algebraic interpretation of the connection between E(P, ) and E+(P, ). The

module ω is called the canonical module of k[P ]. For more details see [7, Chapter

6].

2.2 Hilbert functions and mixed multiplicities

In this section we generalize the concepts of sections 1.4 and 1.5 to N2-graded

rings. The results from this section hold for two kinds of rings: local rings and

standard N2-graded algebras over Artinian rings. Both settings are analogous to

the ones in sections 1.4 and 1.5. If a property holds for every (n,m) ∈ N2 such

that n ≥ a1,m ≥ a2, then we say the propert holds for (n,m)� 0.

Definition 2.2.1. Let R =
⊕
u∈N2

Ru a standardN2-graded algebra over an Artinian

local ring R0. The function HR(u) = `(Ru) is called the Hilbert function of R.

Following the definition above, the same result mentioned in section 1.4 holds:

Proposition 2.2.1. There exists a polynomial PR ∈ Q[t0, t1] such that HR(u) =

PR(u) for u� 0. Moreover, if PR(u) 6= 0, then we can write PR(u) as

PR(u) =
∑

α∈N2,|α|=r

1

α!
eα(R)uα + terms of degree lower than r.

36



The polynomial PR is called the Hilbert polynomial of R. The coefficients eα(R)

are called the mixed multiplicities of R. In the case where R is a standardN-graded

algebra, then R has only one mixed multiplicity, and it is the multiplicity of R

which we denote by e(R).

We know from previous results that the multiplicity e(R) is always positive,

but this is not the case for mixed multiplicities, it is possible that for some α,

eα(R) = 0.

Example 2.2.2. Let R = k[x1, x2, y] be a standard N2-graded algebra over a field

k, where deg xi = (1, 0) and deg y = (0, 1). Given a vector (u, v) ∈ N2, the set

{xu−i1 xi2y
v | i = 0, . . . , u} is a basis for R(u,v) and so we conclude `(R(u,v)) = u+1 =

PR(u, v). In particular, the only nonzero mixed multiplicity of R is e(1,0)(R) = 1.

Next we define a specific standard N-graded subalgebra that is useful in study-

ing certain mixed multiplicites:

Definition 2.2.3. Let R be a standard N2 graded algebra over an Artinian local

ring R0. Let λ = (λ0, λ1) ∈ N2. Set

Rλ =
⊕
n∈N

Rnλ.

Then Rλ is a standard N-graded algebra. We call Rλ the λ-diagonal subalgebra

of R.

Lemma 2.2.2. Following the above notation, let r = deg PR(u, v) ≥ 0 and assume

λ0, λ1 > 0. Then dim Rλ = r + 1 and

e(Rλ) = r!
∑

(n,m)∈N2,n+m=r

1

n!m!
e(n,m)(R)λn0λ

m
1 .

Proof. Since the coordinates of λ are positive, we have the following equalities:
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PRλ(n) = PR(nλ) = nr
∑

α∈Ns+1,|α|=r

1

α!
eα(R)λα + terms of degree lower than r.

In particular, by theorem 1.4.1, dim Rλ = r + 1 and the result follows from

the definition of e(Rλ).

We now generalize the notion of associated graded ring defined previously to

standard N2-graded algebras.

Definition 2.2.4. Let (A,m) be either a local ring or a standard N-graded algebra

over a field, where m is the maximal graded ideal. Let I be an m-primary ideal

and J an arbitrary ideal of A. Set

R(I|J) =
⊕

(u,v)∈N2

IuJv/Iu+1Jv.

Clearly R(I|J) is a standard N2-graded algebra over an Artinian ring (the base

ring R0 = A/I is Artinian by corollary 1.2.3). The mixed multiplicities of R(I|J)

will be denoted by ei(I|J) = e(n−i,i)(I|J), where n is the degree of the Hilbert

function of R(I|J).

Following the above notation, the ring R(I|J) can be thought of as the associ-

ated graded ring of the Rees algebra A[Jt] with respect to the ideal I.

Example 2.2.5. Let A = C[x, y, z, w, t] and let J be the jacobian ideal of the

polynomial xyzwt, that is, the ideal generated by the partial derivatives of xyzwt.

Then e(4,0)(m|J) = 1, e(3,1)(m|J) = 4, e(2,2)(m|J) = 6, e(1,3)(m|J) = 4, e(0,4)(m|J) =

1. Note that e(4−i,i)(m|J) =
(

4
i

)
.

Example 2.2.6. Let A = C[x, y, z, w] and let J be the jacobian ideal of the

polynomial xyzw(x+y+z+w). Then e(3,0)(m|J) = 1, e(2,1)(m|J) = 4, e(1,2)(m|J) =

6, e(0,3)(m|J) = 4.
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2.3 Positivity of mixed multiplicities

In this section we classify the positive multiplicities of the algebra R(I|J). We will

first give a condition to when a specific mixed multiplicity is positive, and then

use the condition as a base case for every mixed multiplicity.

Definition 2.3.1. Let R be a Noetherian ring and I an ideal of R. The ideal

(0 : I∞) = {a ∈ R | aIn = 0 for some n ∈ N} =
⋃
n∈N

(0 : In)

is called the saturation of I.

We will need the following lemma:

Lemma 2.3.1. Let I be an ideal of a Noetherian ring R. Then (0 : I∞) = 0 if

and only if I contains a nonzero divisor. In particular, if (0 : I∞) = 0, then I has

positive height.

Proof. See [2, p. 17 Lemma 2.1.1] for the first part. The second part follows from

proposition 1.2.1 and proposition 1.2.2 3.

Let (A,m) be either a local Noetherian ring or a standard N2-graded algebra

over a field, where m is the maximal graded ideal. Moreover, let I be a m-primary

ideal and J be an arbitrary ideal of A. Set R = R(I|J). We fix this notation for

the rest of this section.

The following theorem will play the role of base case later in this section:

Theorem 2.3.2. Assume that d = dim A/(0 : J∞) ≥ 1. Then

1. degPR(u, v) = d− 1,

2. e(d−1,0)(I|J) = e(I, A/(0 : J∞)).
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Proof. Let I ′, J ′ be the ideals generated by I, J in the quotient ring A/(0 : J∞)

and set R′ = R(I ′|J ′).

Given M,N,M ′, Q A-modules such that N ⊂M ′ ⊂M , consider the following

isomorphisms:

1.

M

N
M ′

N

∼=
M

M ′

2.
Q+M + IQ

M + IQ
∼=

Q

Q ∩M + IQ

From these isomorphisms we get:

R′u = (IuJv + (0: J∞))/(Iu+1Jv + (0: J∞))

= IuJv/(Iu+1Jv + IuJv ∩ (0 : J∞)).

But since A is Noetherian, the increasing chain (0 : J) ⊂ (0 : J2) ⊂ . . . must

satisfy (0 : J i) = (0: J j) for every i, j � 0.

Let x ∈ IuJv ∩ (0 : J∞), (u, v)� 0 and m ∈ N such that (0 : J i) = (0: J j) for

every ∀i, j ≥ m. Since xJ t = 0 for some t ≤ m, rearranging the product we have

IuJv−tJ t = IuJv and x ∈ IuJv ⊂ IuJv−t, therefore

IuJv ∩ (0 : J∞) = 0.

From the equality above it is clear that R′(u,v) = R(u,v) hence PR(u, v) =

PR′(u, v). This equality of Hilbert polynomials implies we can replace A by

A/(0 : J∞). In replacing A by A/(0 : J∞) we are also reducing (0 : J∞) to 0 and

d = dim A ≥ 1.

Since (0 : J∞) = 0, the lemma above implies J has positive height. Let λ =

(1, 1) and consider the λ-diagonal subalgebra
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Rλ =
⊕
n≥0

InJn

In+1Jn
∼=
A[IJt]

(I)
.

Note that ht IJ = min{ht I, ht J} ≥ 1 (the inequality holds since I is m-

primary and dim A ≥ 1). By theorem 1.3.2 we get dim A[IJt] = d + 1. Since

Rλ is a quotient of A[IJt] and I is not contained in any of the minimal primes of

A, we conclude dim Rλ ≤ d. By lemma 2.2.2 we get deg PR(u, v) ≤ d− 1.

It is clear that dim A/Jm + ht Jm ≤ dim A and ht Jm ≥ 1 for any m ≥ 1,

we conclude dim A/Jm < d and thus e(I, A) = e(I, Jm).

Finally, for m� 0 we have the following equalities:

e(I, A) = e(I, Jm) = lim
n→∞

`(InJm/In+1Jm)

nd−1/(d− 1)!
= lim

n→∞

PR(n,m)

nd−1/(d− 1)!

where the second equality follows from proposition 1.5.3 and (0 : J∞) = 0 (so

the dimension of Jm is d) and the last one by definition.

The Hilbert-Samuel multiplicity of A is nonzero and thus we get deg PR(u, v) =

d− 1. computing the limit it is clear that e(I, A) = e(d−1,0)(I|J).

To get a similar result for any multiplicity, we need two more definitions:

Definition 2.3.2. Let S be a standard N2-graded algebra. We say a sequence of

elements z1, . . . , zn ∈ S is filter-regular if for (u, v)� 0 and any i:

[(z1, . . . , zi−1) : zi](u,v) = (z1, . . . , zi−1)(u,v).

Filter-regular sequences are very similar to regular sequences in high degree.

The next proposition gives us another possible definition of filter-regular sequences:

Proposition 2.3.3. Let S be a standard N2-graded algebra over an Artinian

local ring S0 and z1, . . . , zs homogeneous elements of S. The sequence z1, . . . , zs

is filter-regular if and only if zi 6∈ p for all associated prime ideals p 6⊃ S+ of
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S/(z1, . . . , zi−1), where S+ is the ideal generated by elements of degree (u, v) such

that u, v ≥ 1.

Proof. See [23, Lemma 1.2].

Definition 2.3.3. Set S as the N2-graded algebra:

S =
⊕

(u,v)∈N2

IuJv/Iu+1Jv+1.

Let x1, . . . , xm be a sequence of elements of J . Denote by x∗i the residue class

of xi in J/IJ2. We say x1, . . . , xm is a superficial sequence for the ideal J (with

respect to I) if x∗1, . . . , x
∗
m is a filter-regular sequence in S.

At some point we will also call a sequence of elements y1, . . . , yn of I superficial

if the residue classes y∗1, . . . , y
∗
n of the yi in S is a filter-regular sequence in S.

Before proving the main theorem of this section we need the following lemma

that will be useful for the inductive step:

Lemma 2.3.4. Let Q = (x) be an ideal of A generated by a superficial sequence

of J . Let Ī , J̄ be the ideals generated by I, J in the quotient ring A/Q and set

R̄ = R(Ī|J̄). Then

PR̄(u, v) = PR(u, v)− PR(u, v − 1).

Proof. We know by definition that (0 : x∗)(u,v) = 0 for (u, v) � 0 where x∗ is the

residue class of x in J/IJ2.

From the product rule in S we conclude

(Iu+1Jv+2 : x) ∩ IuJv = Iu+1Jv+1 (2.1)

(Iu+1Jv+2 : x) ∩ IuJv+1 = Iu+1Jv+1 (2.2)
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Note that the last equality also means (0 : x̂)(u,v+1) = 0 for every (u, v) � 0,

where x̂ is the residue class of x in R(I|J). In particular, PR/(0:x̂)(u, v) = PR(u, v).

From the short exact sequence:

0 −→ R

(0 : x̂)
(0,−1)

x̂−→ R −→ R

x̂R
−→ 0

we conclude PR/x̂R(u, v) = PR(u, v) − PR(u, v − 1). Our goal now is to prove

that R/x̂R(u,v) = R̄(u,v) for (u, v)� 0.

By eq. (2.1) we have the following equality:

Iu+1Jv+1 = {y ∈ IuJv|xy ∈ Iu+1Jv+2}

that is, Iu+1Jv+1 is exactly the subset of elements of xIuJv that are in Iu+1Jv+2.

This means

Iu+1Jv+2 ∩ xIuJv = xIu+1Jv+1 for (u, v)� 0.

By the Artin-Rees lemma (see [18, p. 63 Exercise 8.8]) there exists u0, v0 ∈ N

such that

IuJv ∩ (x) ⊆ xIu−u0Jv−v0

for (u, v) ≥ (u0, v0). Therefore,

IuJv ∩ (x) = IuJv ∩ xIu−u0Jv−v0

= xIuJv−1

for (u, v)� 0.

From the isomorphisms mentioned in theorem 2.3.2 and the equality we just

proved, for (u, v)� 0 we have
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R̄(u,v) =
IuJv + (x)

Iu+1Jv + (x)

=
IuJv

Iu+1Jv + (x) ∩ IuJv

=
IuJv

Iu+1Jv + xIuJv−1

= (R/(x̂))(u,v).

In particular, PR̄(u, v) = PR/x̂R(u, v) = PR(u, v)− PR(u, v − 1).

Following the notation above, let Q′ = (x, y) be an ideal of A generated by a

superficial sequence of J . Let ȳ denote the class of y in A/Q.

Let S̄ = ⊕(u,v)∈N2(Ī)u(J̄)v/(Ī)u+1(J̄)v+1. Then for u, v � 0:

[S/x∗](u,v) = IuJv/(Iu+1Jv+1 + xIuJv−1)

= IuJv/(Iu+1Jv+1 + (x) ∩ IuJv)

= (IuJv + (x))/(Iu+1Jv+1 + (x))

= S̄(u,v).

Since [(x∗) : y]u = (x∗) (x, y is a superficial sequence), we also have [0S∗ : y]u =

0S∗ . Therefore the ideal Q̄′ = (ȳ) of A/Q is generated by a superficial sequence for

J̄ (with respect to Ī). In particular, we can apply the lemma above inductively

for Q = (x1, . . . , xm).

The theorem below is a sufficient and necessary condition for positivity of mixed

multiplicities.

Theorem 2.3.5. Let Q = (x1, . . . , xi) be any ideal generated by a superficial

sequence of J . Then ei(I|J) > 0 if and only if

dim A/(Q : J∞) = dim A/(0 : J∞)− i.
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In this case,

ei(I|J) = e(I, A/(Q : J∞)).

Proof. If i = 0, then Q = 0 and the result follows from theorem 2.3.2.

If i > 0, let R̄, Ī, J̄ be as in lemma 2.3.4. Then degPR̄ ≤ dim A/(0 : J∞) −

1− i = r. Writing

PR̄(u, v) =
∑

(α,β)∈N2,α+β=r

e(α,β)(Ī|J̄)

α!β!
uαvβ + {lower degree terms}.

Then

e(r,i)(I|J) = e(r,0)(Ī|J̄).

From the equality above, e(r,i)(I|J) > 0 if and only if e(r,0)(Ī|J̄) > 0.

Therefore, deg PR̄(u, v) = r and by theorem 2.3.2, dim A/(Q : J∞) = r + 1.

On the other hand, if dim A/(Q : J∞) = r + 1, then

e(r,0)(Ī|J̄) = e
(
Ī ,

A/Q

(0 : J̄∞)

)
= e(I, A/(Q : J∞)).

Since the Hilbert-Samuel multiplicity is always positive we conclude

e(r,i)(I|J) = e(r,0)(Ī|J̄) > 0.

Corollary 2.3.6. Let I be an m-primary ideal. Then ei(m|J) > 0 if and only if

ei(I|J) > 0.

Proof. The dimension of the ring A/(Q : J∞) does not depend on I.

The condition for positivity of mixed multiplicities requires an intricate defini-

tion of superficial sequences. The version of the result that will be useful later on

is based on the next results:
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Definition 2.3.4. Let k be the residue field of A. We say a property holds for a

general element x of an ideal Q = (x1, . . . , xm) if there exists a nonempty Zariski-

open subset U ⊂ km such that whenever x =
m∑
j=1

cjxj and the image of (c1, . . . , cm)

in km belongs to U , then the property holds for x.

Lemma 2.3.7. Assume that k is infinite. Any sequence which consists of general

elements in J is a superficial sequence for J .

Moreover, if (S,m) is a standard N2-graded algebra and f is a general linear

form in S, then the residue class of f in
⊕
u,v∈N

muJv/mu+1Jv+1 is filter-regular.

Proof. See [24, Lemma 1.5].

Corollary 2.3.8. Assume that the local ring A has infinite residue field. Let Q

be an ideal generated by i general elements in J . Then ei(I|J) > 0 if and only if

dim A/(Q : J∞) = dim A/(0 : J∞)− i. In this case,

ei(I|J) = e(I, A/(Q : J∞)).

Proof. This is a direct consequence of theorem 2.3.5 and lemma 2.3.7.

Remark 2.3.1. Although every result in this section is for the standardN2-graded

algebra R(I|J), in [23] the author proved similar results for standard N2-graded

algebras over Artinian rings.

In [24] the authors proved the results in this section for a sequence of ideals

J1, . . . , Js and the standard Ns+1-graded algebra R(I|J1, . . . , Js).

Remark 2.3.2. In [24] the authors also prove that given a system of polynomials

F : f1 = · · · = fn = 0 in C[x1, . . . , xn], the number of distinct solutions of F

in (C∗)n is bounded above by certain mixed multiplicities. They also prove the

famous Bernstein theorem, which gives an upper bound to the number of solutions

of F based on the Newton polytopes of the fi.
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2.4 Integral closure of (monomial) ideals

Let I be an m-primary ideal of a Noetherian local ring (R,m). One may ask what

elements r ∈ R satisfy the equality e(I, R) = e(I+rR,R). This question is directly

connected to the integral closure of ideals.

Definition 2.4.1. Let R be a ring and I an ideal of R. An element r ∈ R is called

integral over I if there exists ai ∈ I i, i = 1, . . . , n such that

rn +
n∑
i=1

rn−iai = 0.

The equality above is called an integral dependence equation of r over I.

Moreover, the integral closure Ī of I is the set of all elements of r that are

integral over I.

Proposition 2.4.1. Let I be an ideal of a ring R. Then the integral closure of I

is an ideal of R.

Proof. See [14, p. 6 Corollary 1.3.1].

Example 2.4.2. Let R = k[x, y] and I = (x2, y2). Then Ī = (x2, y2, xy).

The integral closure of monomial ideals is of particular interest.

Proposition 2.4.2. Let I be a monomial ideal in k[x1, . . . , xn]. Then the integral

closure of I is also a monomial ideal.

Proof. See [14, p. 9 Proposition 1.4.2].

Since the integral closure of a monomial ideal is monomial, it is natural to ask

what combinatorial properties of I are preserved by taking the integral closure.

We need the following definition:
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Definition 2.4.3. Let I = (xα1 , . . . , xαs) be a monomial ideal of k[x1, . . . , xn].

The exponent set of I is the set of all v ∈ Nn such that xv ∈ I.

The Newton polyhedron of I denoted by NP (I) is the convex hull of the expo-

nent set of I in Rn.

Note that the exponent set of I = (xα1 , . . . , xαs) is Ns ∩ (
⋃s
i=1(αi + C)) where

C is the cone defined by the equations 〈v, ei〉 ≥ 0 for i = 1, . . . , n and the ei form

the canonical basis of Rn. This follows since xαixv ∈ I for every v ∈ Nn.

Theorem 2.4.3. The exponent set of the integral closure of a monomial ideal

I ⊂ k[x1, . . . , xn] is NP (I) ∩Nn. In particular, NP (Ī) = NP (I).

Proof. See [14, p. 11 Proposition 1.4.6].

The following proposition justifies the similarity in notation between the New-

ton polytope of a polynomial and the Newton polyhedron of a monomial ideal.

Proposition 2.4.4. Let I = (xα1 , . . . , xαs) ⊂ k[x1, . . . , xn] and fI = xα1 + · · · +

xαs ∈ k[x1, . . . , xn]. Then NP (I) = NP (fI) + C, where C = {(u1, . . . , un) ∈

Rn|ui ≥ 0 for all i = 1, . . . n}.

Proof. We know NP (I) = conv(
⋃m
i=1(αi + C)) and NP (fI) = conv(α1, . . . , αm).

Then:

• NP (I) ⊆ NP (fI) + C: It is clear that αi + C ⊆ NP (fI) + C for every

i = 1, . . .m, and thus
⋃m
i=1(αi + C) ⊆ NP (fI) + C. The set NP (fI) + C is

convex and so it must contain the convex hull of any of its subsets.

• NP (I) ⊇ NP (fI) + C: Since αi ∈ NP (I) for every i = 1, . . . ,m, we have

NP (fI) ⊆ NP (I). By proposition 2.4.2 and theorem 2.4.3 it is clear that

d+ C ⊆ NP (I) for every d ∈ NP (I) (addition of lattice points corresponds

to multiplication of monomials). In particular d + C ⊆ NP (I) for every

d ∈ NP (fI) and thus NP (I) ⊇ NP (fI) + C as desired.
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Example 2.4.4. Let I = (xy5, x4y4, x6y2) ⊂ k[x, y]. Then the exponent set of I,

the Newton polytope of fI and the Newton polyhedron of I are:

Figure 2.3: The intersection of the dark region in the first graph with N2 is the

exponent set of I and the dots correspond to the generators of I. The second image

is the Newton polytope of fI = xy5 + x4y4 + x6y2 and the dots are the elements

of the intersection NP (fI) ∩N2. The third image is the Newton polyhedron of I

and the dots correspond to the generators of Ī.

Remark 2.4.1. The decomposition NP (I) = NP (fI) + C is an example of the-

orem 1.6.3. From remark 2.3.2 we know the Newton polytope of polynomials is

closely related to the number of solutions of a polynomial system. We have also

seen that this number of solutions is connected to mixed multiplicities. From the-

orem 2.4.3 one may see that the integral closure of ideals is relevant for the study

of multiplicities. This is the topic of the main theorem of the next section.

Remark 2.4.2. The problem of finding the generators of the integral closure of a

monomial ideal I is equivalent to solving certain problems in integer programming

and thus there are several softwares that can compute Ī.
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2.5 Reductions

Definition 2.5.1. Let R be a Noetherian ring and J ⊆ I ideals of R. We say J

is a reduction of I if there exists an integer n such that In+1 = JIn. Note that

if J is a reduction of I, then there exists an integer n such that for all m ≥ 1,

Im+n = JmIn and thus Im+n ⊆ Jm.

The main result that connects reductions to the integral closure of ideals is the

following:

Proposition 2.5.1. Let J ⊆ I be ideals of a Noetherian ring R. Then J is a

reduction of I if and only if I ⊆ J̄ . In particular r ∈ R is an element of Ī if and

only if I is a reduction of I + (r).

Proof. See [14, p. 6 Corollary 1.2.5].

The theorem below states why the integral closure of ideals is important in the

study of Hilbert-Samuel multiplicities:

Theorem 2.5.2. Let (R,m) be a Noetherian local ring, J, I m-primary ideals such

that J̄ = Ī and M a finite R-module. Then e(I,M) = e(J,M).

In particular, e(I,M) = e(I + (r),M) for every r ∈ Ī.

Proof. See [14, p. 226 Proposition 11.2.1].

In view of corollary 2.3.8, it is reasonable to expect that mixed multiplicities

are invariant under reductions. This is indeed true:

Proposition 2.5.3. Let (A,m) be either a local ring or a standard N-graded

algebra over a field, where m is the maximal graded ideal. Let I be an m-primary

ideal and J an arbitrary ideal of A. If I ′, J ′ are reductions of I, J , then

ei(I
′|J ′) = ei(I|J), for i = 0, . . . , degPR(I|J).
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Proof. See [23, Corollary 3.8].

51



Chapter 3

Topology and mixed multiplicities

In this chapter, our focus will be on giving a topological interpretation to some

mixed multiplicities.

Throughout this chapter, maps between topological spaces are always assumed

to be continuous.

3.1 CW complexes

Before we introduce the topological spaces that are of interest to us, we first set

some notation:

• The unit sphere: Sn = {x ∈ Rn+1 : |x| = 1}

• The unit disk: Dn = {x ∈ Rn : |x| ≤ 1}

• An n-cell en is a topological space homeomorphic to the open n-disk:

Dn − ∂Dn = {x ∈ Rn : |x| < 1}

Following the above notation, we can define cell complexes:
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Definition 3.1.1. We define CW (or cell) complexes inductively:

• Start with a discrete set X0. The points of X0 can be seen as 0-cells.

• To define the n-skeleton Xn from the n − 1-skeleton Xn−1 inductively, let

Dn
α be unit disks and ϕα : ∂Dn

α → Xn−1 be continuous maps where α ranges

over Λ. Define Xn as the quotient space of the disjoint union:

Xn = Xn−1
∐
α∈Λ

Dn
α

by identifying x ∼ ϕα(x) for x ∈ ∂Dn
α.

After a finite 1 number of steps the above procedure stops. A space X that can

be constructed this way is called a CW complex or a cell complex. The dimension

of X is the number m such that X = Xm.

Example 3.1.2. Let G = (V,E) be a graph. Let X0 = V . For every edge

e = (i, j) ∈ E, consider a disk D1
e and a map ϕe : ∂D1

e → X0 such that ϕe(0) = i

and ϕe(1) = j. The topological space X = X1 is a 1-dimensional CW complex,

that is, graphs are CW complexes.

The next example shows that a space may have more than one CW structure.

Example 3.1.3. The unit sphere Sn has the following CW structure: X0 = {x}

and a single n-cell attached via the constant map ϕ(y) = x for every y ∈ ∂Dn. This

is the homeomorphism Sn ∼= Dn/∂Dn. It is also possible to give a CW structure

for the unit sphere Sn by considering an ”equator” and attaching two n-cells to it,

which can be seen as ”north” and ”south” hemispheres.

1It is also possible to consider infinite dimensional CW complexes. In this case, X =
⋃

i X
i

and X is given the weak topology, that is, A ⊂ X is open if and only if A ⊂ Xi is open for every

i. For more details see [10].
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Figure 3.1: Two CW structures of S1.

There are many other important examples of CW complexes, such as the real

(or complex) projective space and compact orientable surfaces in R3. For more

details see [10, Chapter 0].

3.2 Some topological preliminaries

In this section we define the notion of homotopy and singular simplexes, which

will be needed in the next section.

Definition 3.2.1. Let X, Y be topological spaces. A homotopy from X to Y is a

continuous map given by:

F : X × [0, 1]→ Y, F (x, t) = ft(x).

Two maps f, g : X → Y are said to be homotopic if there exists a homotopy F

such that f0 = f and f1 = g.

Definition 3.2.2. Let X, Y be topological spaces and f : X → Y a map. We say

f is a homotopy equivalence if there exists a map g : Y → X such that f ◦ g is

homotopic to the identity in Y and g ◦f is homotopic to the identity in X. In this

case, X and Y are said to be homotopy equivalent.
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Saying two spaces are homotopy equivalent is clearly weaker than saying two

spaces are homeomorphic. Later on in this chapter it will become clear the impor-

tance of this notion.

Lastly we define singular simplexes:

Definition 3.2.3. Let v0 . . . vm ∈ Rn be such that v1− v0, . . . , vm− v0 are linearly

independent. We say the convex hull of v0, . . . , vm is a simplex and we denote it

by [v0, . . . , vm]. Note that we implicitly ordered the vertices of this simplex. A

face of a simplex is the convex hull of a subset of its vertices. We will denote

by [v0, . . . , v̂i, . . . , vm] the simplex that is the convex hull of every vertice of the

original simplex except for vi. We will always assume that the ordering of the

vertices of this subsimplex is the same as the ordering of the original simplex. If

v0 = 0 and v1, . . . , vn is the canonical basis of Rn, then we denote [v0, . . . , vn] by

∆n and call it the standard n-simplex.

Definition 3.2.4. Let X be a topological space. A singular simplex in X is a

map σ : ∆n → X.

Let Cn(X) be the free abelian group generated by the set of singular n-simplices

in X. Elements of Cn(X) are called n-chains. The map ∂n : Cn(X) → Cn−1(X)

defined by:

∂n(σ) =
∑
i

(−1)iσ|[v0,...,v̂i,...,vm]

is called the boundary map. Note that we are implicitly identifying ∆n−1 with

[v0, . . . , v̂i, . . . , vm].

The boundary maps give rise to a chain complex of abelian groups:

C•(X) : ... −→ Cn(X) −→ Cn−1(X) −→ · · · −→ C1(X) −→ C0(X) −→ 0
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The homology groups of this complex are called the singular homology groups

of X and are denoted by Hn(X).

Proposition 3.2.1. Let X = {p} then Hi(X) = 0 for every i > 0 and H0(X) = Z.

Proof. Since for every n there is only one map ∆n → X, by definition it is clear

that:

C•(X) : ... −→ Z −→ Z −→ · · · −→ Z −→ Z −→ 0.

The definition of the boundary map implies ∂n is an alternating sum of equal

terms, since ∆n has n + 1 vertices we conclude ∂n = 0 for odd n. Similarly, ∂n is

an isomorphism if n is even.

Computing Hn(X) =
ker ∂n
im∂n+1

= 0 for n > 0, and for n = 0 we have H0(X) =

ker ∂0

im∂1

= Z.

As follows from the proposition above, if X is a point, then H0(X) ∼= Z. Since

it would be helpful for a point to have trivial homology groups, we define the

following augmented chain complex:

C̃•(X) : ... −→ Cn(X) −→ Cn−1(X) −→ · · · −→ C1(X) −→ C0(X)
ε−→ Z −→ 0.

Where ε
(∑

i

niσi

)
=
∑
i

ni. The homology groups of C̃.(X) are called the

reduced homology groups of X, and we denote them by H̃n(X) =
ker ∂n
im∂n+1

for n > 0

and H̃0(X) =
ker ε

im∂1

. Note that Hi(X) ∼= H̃i(X) for i > 0.

Definition 3.2.5. Let X be a CW complex. The rank of the i-th homology group

of X is called the i-th betti number of X, and is denoted by bi(X). Similarly,

the rank of the i-th reduced homology group of X will be denoted by b̃i(X). The

56



alternating sum of the betti numbers of X is called the Euler characteristic of X

and is denoted by χ(X).

Example 3.2.6. Using the Macaulay2 package SimplicialComplexes we can

compute the reduced homology groups of the real projective plane: H̃i(X) = 0 for

every i 6= 1 and H̃1(X) = Z/2Z.

Remark 3.2.1. As can be seen by the definition, it may be hard to compute

homology groups for more complicated spaces, since the abelian groups Cn(X)

may not be finitely generated. There are other homology theories that can be

defined and are easier to compute, such as simplicial1 and cellular homology. CW

complexes play a very important role in the study of the latter.

The last result of this section is a formula relating the homology groups of

X × Y and the homology groups of X and Y .

Definition 3.2.7. Let X be a CW complex and k a field. The homology vector

spaces of the chain complex C.(X; k) := C.(X)⊗k. denoted by Hi(X; k) are called

the homology vector spaces of X with coefficients in k.

Note that if k has characteristic zero, then the dimension of Hn(X; k) is the

i-th betti number of X.

Theorem 3.2.2 (Künneth formula). Let X, Y be CW complexes and k a field.

Then

⊕
i

(Hi(X; k)⊗Hn−i(Y ; k)) ∼= Hn(X × Y ; k)

for all n.

Proof. See [10, Section 3.B].

1This is the one used by SimplicialComplexes.
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Proposition 3.2.3. H0(S1) ∼= H1(S1) ∼= Z and Hi(S
1) = 0 for i > 1.

Proof. See [10].

Corollary 3.2.4. Let Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

denote the n-dimensional torus. The

betti numbers of Tn are the binomial coefficients

(
n

i

)
.

Proof. Since H0(S1;Q) ∼= H1(S1;Q) ∼= Q and Hi(S
1;Q) = 0 for i > 1, the result

follows from an inductive argument and the theorem above.

Proposition 3.2.5. Let X, Y be homotopy equivalent spaces. Then their homol-

ogy groups are isomorphic. In particular, since C∗ is homotopy equivalent to S1,

the betti numbers of (C∗)n are the binomial coefficients

(
n

i

)
.

Proof. See [10, p. 111 Theorem 2.10] for the first statement. The second state-

ment follows from the corollary above and the fact that the circle S1 is homotopy

equivalent to R2\{0}.

3.3 The topology of projective hypersurfaces

In algebraic topology, it is possible to understand the topology of many spaces by

studying some of their invariants, such as their fundamental group and their ho-

mology groups. One particular example is Rn\{x1, . . . , xn}, that is, the euclidean

space without a finite set of points. Although it is a simple exercise to compute

such invariants for this example, if we notice that {x1, . . . , xn} is an algebraic set,

two more interesting questions come up:

• Is it possible to determine the singular homology groups of the zeros of an

ideal in R[x1, . . . , xn] (resp. C[x1, . . . , xn]) in Rn (resp. Cn) and describe

them only using tools from commutative algebra and algebraic geometry?
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• Is it possible to determine the singular homology groups of the complement

of the zeros of an ideal in R[x1, . . . , xn] (resp. C[x1, . . . , xn]) in Rn (resp. Cn)

and describe them only using tools from commutative algebra and algebraic

geometry?

The main result of this section is a positive answer to a specific case of the

projective version of the questions above, before we state it we need one more

definition:

Definition 3.3.1. Given two topological spaces X, Y the wedge sum X ∨Y is the

quotient of their disjoint union by identifying a point in X with a point in Y .

A bouquet of spheres is the wedge sum of spheres.

Next we set some notation. Let h be a nonconstant homogeneous polynomial

in C[z0, . . . , zn]. Let Jh denote the Jacobian ideal of h, that is, the ideal generated

by the partial derivatives of h. Set

V (h) = {p ∈ Pn | h(p) = 0}

D(h) = {p ∈ Pn | h(p) 6= 0}.

Definition 3.3.2. A sufficiently general flag of linear subspaces is an increasing

chain of subsets of Pn:

P0 ⊂ P1 ⊂ · · · ⊂ Pn−1 ⊂ Pn.

where each Pn−i is the intersection of the zeros of i general (in the sense of defini-

tion 2.3.4) linear forms in C[z0, . . . , zn].

Theorem 3.3.1. Fix a sufficiently general flag of linear subspaces:

P0 ⊂ P1 ⊂ · · · ⊂ Pn−1 ⊂ Pn.
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For i = 0, . . . , n, set V (h)i = V (h) ∩ Pi and D(h)i = D(h) ∩ Pi, also set

D(h)−1 = ∅ and V (h)−1 = ∅. Then

• D(h)i is homotopy equivalent to a CW complex obtained from D(h)i−1 by

attaching e(n−i,i)(m|Jh) cells of dimension i. In particular

e(n−i,i)(m|Jh) = (−1)iχ(D(h)i\D(h)i−1).

• V (h)i\V (h)i−1 is homotopy equivalent to a bouquet of e(n−i,i)(m|Jh) spheres

of dimension i− 1. In particular,

e(n−i,i)(m|Jh) = b̃i−1(V (h)i\V (h)i−1).

Example 3.3.3. Let h be a nonconstant homogeneous polynomial in S = C[z0, . . . , zn].

Set h =
∏k

i=1 g
mi
i , where the gi are distinct irreducible factors of h and mi ≥ 1.

Let
√
h be the radical

∏k
i=1 gi and d be the degree of

√
h. Set m as the ideal

(z0, . . . , zn). Applying corollary 2.3.8 we see that e(n,0)(m|Jh) = e(m, S) = 1 and

for sufficiently general constants c0, . . . , cn ∈ C,

e(n−1,1)(m|Jh) = e(m, S/
n∑
j=0

cj

k∑
i=1

mig
m1
1 . . . gmi−1

i . . . gmkk
∂gi
∂zj

: J∞h ).

Now let u =
∏

gmi−1
i , it is clear that J ih = uiI i for some ideal I of S and every

i ∈ N. Let ĝi mean the omission of the factor gi. Since

(
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

) ⊃ (u
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

),

we conclude

(
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h ) ⊇ (u
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h ).

60



On the other hand, let r ∈ (
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h ). By definition,

there exists n ∈ N such that rJnh ⊂ (
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

). In particular,

rJn+1
h = u(runIn)I ⊂ (u

n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

)

which implies

(
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h ) = (
n∑
j=0

cj

k∑
i=1

mig
m1
1 . . . gmi−1

i . . . gmkk
∂gi
∂zj

: J∞h )

and thus

e(n−1,1)(m|Jh) = e(m, S/
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h ).

Next, we want to prove that

e(m, S/
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h ) = e(m, S/
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

).

Let v =
∑n

j=0 cj
∑k

i=1mig1 . . . ĝi . . . gk
∂gi
∂zj

. From the short exact sequence

0 −→ (v : J∞h )

v
−→ S

v
−→ S

(v : J∞h )
−→ 0

it is clear that if dim (v : J∞h )/v < n, then dim S/v = dim S/(v : J∞h ) = n

and the multiplicities are equal. Moreover, since dim M = dim Supp(M) for

finite S-modules, we only need to prove ht p ≥ 2 for every p ∈ Supp((v : J∞h )/v).

Equivalently, we need to prove that (v : J∞h )p = (v)p for every p ∈ Spec S such

that ht p = 1.

For any ideal I ⊂ S, let V (I) denote {p ∈ Spec S | p ⊇ I}. By the equality
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V (Jh) = V (J√h) ∪ V (gm1−1
1 ) ∪ · · · ∪ V (gmk−1

k )

and since every prime ideal in V (J√h) has height at least 2, the only prime

ideals of ht p = 1 of S that contain Jh are the prime ideals that contain one of the

gmii . Note that:

1. If p = gi and gi 6 | v, then (v)gi = (1) and (v : J∞h )gi = (v)gi .

2. If p 6⊃ Jh, then (Jh)
i
p = (1)p for every i ∈ N and thus (v : J∞h )p = (v)p.

In particular, since J√h 6⊂ (gi) for any i, by prime avoidance there exists an

element v ∈ J√h such that (v) 6⊂
⋃
i(gi). In other words, there exists an element

v of J√h such that gi does not divide v for any i. Since C is infinite, we can

choose constants c0, . . . , cn so that v =
∑n

j=0 cj
∑k

i=1 mig1 . . . ĝi . . . gk
∂gi
∂zj

. From

the remarks above we conclude (v : J∞h )p = (v)p for every prime ideal of height 1

of S and thus:

e(n−1,1)(m|Jh) = e(m, S/
n∑
j=0

cj

k∑
i=1

mig
m1
1 . . . gmi−1

i . . . gmkk
∂gi
∂zj

: J∞h )

= e(m, S/
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

: J∞h )

= e(m, S/
n∑
j=0

cj

k∑
i=1

mig1 . . . ĝi . . . gk
∂gi
∂zj

)

= d− 1.
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Chapter 4

Graphs, matroids and hyperplane

arrangements

Our goal for this chapter is to connect the characteristic polynomials of matroids

with the characteristic polynomials of hyperplane arrangements and the chromatic

polynomials of graphs. These polynomials are the main objects of the main theo-

rem of this text.

4.1 Hyperplane arrangements

Definition 4.1.1. A hyperplane arrangement A is a finite set of hyperplanes in

some vector space V ∼= kn where k is a field. Throughout this text, the field k will

be either R or C, unless stated otherwise.

Moreover, if
⋂
A∈A

A 6= ∅ we say A is central. If every hyperplane in A is a vector

subspace we say A is linear.

Since hyperplanes are algebraic sets, for each hyperplane A ∈ A there exists

a linear form LA such that A = {a ∈ kn|LA(a) = 0} = V (LA). The polynomial

63



QA =
∏
A∈A

LA is called the defining polynomial of A.

Definition 4.1.2. Let A be a hyperplane arrangement in V ∼= kn. The dimension

of A is the dimension of V . The rank of A denoted by rank(A) is the dimension

of the space spanned by the normals of the hyperplanes in A.

Given an arrangement A in V ∼= kn, we can define two important arrangements

related to A. If A is linear, we can consider A as the union of hyperplanes in Pn−1
k

by taking a hyperplane H ∈ A as the hyperplane at infinity. The decone of A with

respect to H is the arrangement ĀH of the hyperplanes of A in kn−1 = Pn−1
k \H. If

A is a central arrangement, we define the arrangement cA which we call the cone

of A by its defining polynomial. Let L1(x)−a1, . . . , Lm(x)−am be the irreducible

factors of the defining polynomial QA of A. The defining polynomial of the cone

of A is the polynomial y
m∏
i=1

(Li − aiy).

Definition 4.1.3. Let A be an arrangement in V , and let L(A) denote the set of

all nonempty intersections of hyperplanes in A, including V (which can be seen as

the intersection of an empty set of hyperplanes). Define a partial order in L(A)

by the relation: x ≤ y in L(A) if x ⊇ y (that is, reverse inclusion in V ). The poset

L(A) with reverse inclusion is called the intersection poset of A. Note that the

element V ∈ L(A) satisfies V ≤ x for all x ∈ L(A).

Next we set some notation:

Given a poset P with a partial order relation ≤, if x ≤ y then the (closed)

interval [x, y] is the set {z ∈ P |x ≤ z ≤ y}. We denote by 0̂ an element in a poset

P such that 0̂ ≤ x for every x ∈ P . Such an element need not exist.

If P is a poset and x, y ∈ P are such that x < y and there are no z ∈ P

satisfying x < z < y then we say y covers x and denote it by xl y.

Definition 4.1.4. A chain of length k in a poset P is a set x0 < x1 < · · · < xk

of elements of P . The chain is said to be saturated if x0 l x1 l · · ·l xk. If every
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maximal chain of P has length n, we say P is graded of rank n. The rank of

an arrangement will be denoted by rank(P ). We can then define a rank function

rk: P → N as follows:

• rk(x) = 0 if x is a minimal element of P .

• rk(y) = rk(x) + 1 if xl y in P .

Moreover, if x < y, we write rk(x, y) = rk(y) − rk(x) for the length of the

inverval [x, y].

Proposition 4.1.1. Let A be an arrangement in a vector space V ∼= kn. Then

the intersection poset L(A) is graded of rank equal to rank(A).

Proof. See [22, p. 8 Proposition 1.1].

4.2 The characteristic polynomial of an arrange-

ment

In this section we introduce the characteristic polynomial of hyperplane arrange-

ments. As we will see on later chapters, these polynomials are closely related to

mixed multiplicities.

Definition 4.2.1. A poset P is locally finite if every interval [x, y] is finite. The

set of all closed intervals of P will be denoted by Int(P ). If f : Int(P ) → Z is a

function, we write f(x, y) for f([x, y]).

Definition 4.2.2. Let P be a locally finite poset. The Möbius function of P

denoted by µ = µP is a function µ : Int(P )→ Z satisfying:

• µ(x, x) = 1 for every x ∈ P .
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• µ(x, y) = −
∑
x≤z<y

µ(x, z) for all x < y ∈ P .

Moreover, if P has an element 0̂, then we write µ(x) for µ(0̂, x).

Next we define the characteristic polynomial of an arrangement A:

Definition 4.2.3. The characteristic polynomial of an arrangement A is the sum:

χA(t) =
∑

x∈L(A)

µ(x)tdim(x).

Note that it follows directly from the definition that χA(t) = tn−#Atn−1 + . . . ,

where A is an arrangement in V ∼= kn.

Example 4.2.4. Let h = xyzw(x + y + z + w) ∈ C[x, y, z, w] be the defining

polynomial of a hyperplane arrangement A. The decone of A with respect to x is

defined by the polynomial yzw(1 + z + w + y). Then χĀH (t) = t3 − 4t2 + 6t− 4.

Example 4.2.5. Let h = xyzw ∈ C[x, y, z, w] be the defining polynomial of an

arrangement A. The decone of A with respect to x is defined by the polynomial

yzw. Then χĀH (t) =
(

3
0

)
t3 −

(
3
1

)
t2 +

(
3
2

)
t −

(
3
3

)
= (t − 1)4−1. More generally, if

h = x1 . . . xn ∈ C[x1, . . . , xn] defines the hyperplane arrangement B, it is possible

to prove that χB(t) = (t− 1)n. For more details see [22, Proposition 1.2, p. 10].

Example 4.2.6. Let h =
∏

1≤i<j≤n

(xi − xj) ∈ C[x1, . . . , xn]. The arrangement Bn

in Cn defined by h is called the braid arrangement. The characteristic polynomial

of this arrangement is: χBn(t) = t(t−1) . . . (t−n+ 1). This arrangement will play

an important role on the next section.

Theorem 4.2.1 (Whitney). Let A be an arrangement in an n-dimensional vector

space. Then

χA(t) =
∑
B⊆A,
B central

(−1)#Btn−rank(B).
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Proof. See [22, p. 17, Theorem 2.4].

4.3 The chromatic polynomial

Let G = ([n], E) be a simple graph. We associate to the graph G the following

subarrangement of the braid arrangement:

xi − xj = 0, (i, j) ∈ E.

We will denote the arrangement above by AG and call it the graphical arrange-

ment of G. Note that the braid arrangement is simply the graphical arrangement

of the complete graph Kn.

As we will see on the next theorem, the arrangement AG is closely related to

some invariants of the graph G.

Definition 4.3.1. A coloring of a graph G = (V,E) is a map κ : V → N such

that κ(v1) 6= κ(v2) for every (v1, v2) ∈ E. Let m be a positive integer. Denote by

χG(m) the number of colorings κ such that the image of κ is a subset of [m]. It

is possible to prove that the function χG is a polynomial and thus we call it the

chromatic polynomial of G.

Theorem 4.3.1. For any graph G, the following equality holds:

χG(t) = χAG(t).

Proof. See [22, p. 25, Theorem 2.7].

Next we state a lemma that is used in a proof of the theorem above. This

lemma can be used as a way of computing chromatic polynomials of graphs.
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Definition 4.3.2. Let G = (V,E) be a graph and e ∈ E. We denote by G − e

the graph (V,E − {e}), that is, G with the edge e deleted. We denote by G/e the

graph obtained from G by contracting the edge e = (i, j), that is, by considering

the vertices i, j as a new vertex ij such that every edge that is incident to either

i or j is incident to ij.

(a) G (b) G− e (c) G/e

Lemma 4.3.2 (Deletion-contraction). Let G = (V,E) be a graph and e an edge

of G. Then

χG(t) = χG−e(t)− χG/e(t).

Proof. Let e = (i, j). The lemma follows directly from the following remarks:

Colorings of G are in bijection with colorings of G− e such that the value of i

and j are not equal. Colorings of G/e are in bijection with colorings of G− e such

that i and j have the same value.

From the lemma above it is possible to implement a recursive algorithm that

given a graph G, returns its chromatic polynomial. It is also possible to prove that

the chromatic polynomial is indeed a polynomial using the lemma above.
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Example 4.3.3. Let

h = (z1 − z2)(z1 − z4)(z2 − z3)(z2 − z4)(z3 − z4)(z4 − z5) ∈ C[z1, z2, z3, z4, z5].

Let AG be the graphic arrangement defined by h and G the graph associated to

the graphical arrangement. Using the SageMath programming language we can

compute the characteristic polynomial of AG, χAG(t) = t5− 6t4 + 13t3− 12t2 + 4t.

Implementing the algorithm mentioned above we conclude χG(t) = χAG(t).

4.4 Matroids

Let V be a finite dimensional vector space with n = dim V . It is clear that a set

of linearly independent vectors of V satisfy the properties below:

1. If J ⊂ V is a set of linearly independent vectors, then every subset J ′ of J

is also a set of linearly independent vectors.

2. Let J1, J2 be maximal sets of linearly independent vectors of V . Then |J1| =

|J2|.

In this section, we introduce objects that generalize the ideas above. Such

objects are called Matroids. One great achievement of Matroid theory is the fact

that matroids can be defined in a variety of ways. For this reason two (equivalent)

definitions of matroids are given.

Definition 4.4.1. Let E be a finite set and I a collection of subsets of E satisfying

the three properties below:

1. ∅ ∈ I.

2. If I1 ∈ I and I2 ⊆ I1 then I2 ∈ I.
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3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e ∈ I2\I1 such

that I1 ∪ {e} ∈ I.

The ordered pair M = (E, I) is called a matroid. The sets in I are called

independent sets.

Definition 4.4.2. Let M = (E,C) be an ordered pair where C is a collection of

subsets of the finite set E satisfying the following properties:

1. ∅ 6∈ C.

2. If C1 ∈ C and C2 ⊂ C1 then C2 6∈ C.

3. If C1, C2 ∈ C and x ∈ C1∩C2, then there exists C ′ ⊆ C1∪C2\{x} such that

C ′ ∈ C.

Elements of C are called circuits, and M is said to be a matroid.

A circuit C ′ can be thought of as a minimal dependent set, that is, a dependent

(not independent) set such that every subset of C ′ is independent. For a proof of

the equivalence of the definitions above (and other definitions) see [19, Chapter 1].

By x ∈M = (E, I) we mean x ∈ E.

Given two matroids M1 = (E1, I1) and M2 = (E2, I2) we say M1 and M2 are

isomorphic if there exists a bijection f : E1 → E2 such that f(i1) ∈ I2 for every

i1 ∈ I1. The isomorphism will be denoted by M1
∼= M2.

Example 4.4.3. Let k be a field and A an r× s matrix with coefficients in k. Let

E = [s] and define I as follows:

I ′ ⊂ E ∈ I ⇐⇒ the columns indexed by the elements of I ′ are linearly

independent.

Then M [A] = (E, I) is a matroid.
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A matroid M isomorphic to M [A] for some matrix A over a field k is said to

be representable over k. The matrix A is said to be a representation of M over k.

Two natural questions arise from this definition:

• Does there exist a matroid that is not representable over any field?

• Is it possible for a matroid to be representable over a field k1 but not over a

field k2?

The following examples are answers to the questions above.

Example 4.4.4. Let E be the set of all nonzero vectors in
Z

2Z

3

= F3
2 and I be

defined by usual linear independence. The matroid F7 = (E, I) is called the Fano

matroid. It is representable over F2 but not over R.

Example 4.4.5. Let E = [8] and I be the set of all subsets of E of cardinality

≤ 4 except for:

{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {3, 4, 7, 8}, {5, 6, 7, 8}.

The matroid V8 = (E, I) is called the Vámos matroid. This matroid is not

representable over any field.

Next we define a rank function on the subsets of a matroid M = (E, I). Let

T ⊆ E, we define the rank of T as

rk(T ) = max{|J | : J ∈ I and J ⊆ T}.

A maximal subset of rank k is called a k-flat of M . Let L(M) denote the poset

of flats of M ordered by inclusion. Note that rk(∅) = 0 and rk(M) := rk(E) = n

for some positive n. The poset L(M) is graded of rank n and has an element 0̂.

We are now ready to define the characteristic polynomial of a matroid M .
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Definition 4.4.6. Let M = (E, I) be a matroid of rank n (that is, rk(M) = n).

Following notation from section 4.2, we define the polynomial

χM(t) =
∑

x∈L(M)

µ(x)tn−rk(x)

which we call the characteristic polynomial of M .

The next theorem shows a connection between central arrangements and rep-

resentable matroids.

Theorem 4.4.1. Let A be a central arrangement in a k-vector space V ∼= kn. Let

E denote the set {nH |H ∈ A} where nH is the normal vector of the hyperplane

H ∈ A. Let A be the matrix such that its columns are the vectors in E. Then

M [A] = MA is a matroid and L(MA) ∼= L(A), that is, there exists an order-

preserving bijection between L(MA) and L(A).

Proof. See [22, p. 35 Proposition 3.6].

One important consequence of the isomorphism of posets above is that their

möbius and rank functions are ”equal”, that is, if f is an order-preserving bijection

between L(MA) and L(A), then µ(f(x)) = µ(x) and rk(x) =rk(f(x)) for every

x ∈ L(A).

Proposition 4.4.2. Let A be an arrangement in a vector space V ∼= kn. The

rank function of L(A) is given by rk(x) = n− dimx for every x ∈ L(A).

Proof. See [22, p. 8 Proposition 1.1].

In particular, we can rewrite the characteristic polynomial of an n-dimensional

arrangement A as

χA(t) =
∑

x∈L(A)

µ(x)tn−rk(x).

72



We can thus conclude that if MA has rank r, then

tn−rχMA(t) = tn−r
∑

x∈L(MA)

µ(x)tr−rk(x)

=
∑

x∈L(MA)

µ(x)tn−rk(x)

= χA(t).

The last connection we need to establish in this chapter is between graphs

and matroids. We have already defined representable matroids, a class of ma-

troids closely related to hyperplane arrangements. Next we define another class of

matroids that is directly connected to graphs called graphic matroids.

Definition 4.4.7. Let G = (V,E) be a graph (G can have parallel edges). Let C

be the subsets of E that are cycles of G. Then MG = (E,C) is a matroid where

C are the circuits of MG. If a matroid M is isomorphic to MG for some graph G

we say that M is a graphic matroid.

Theorem 4.4.3. Graphic matroids are representable over every field.

Proof. See [19, p. 135 Lemma 5.1.3].

Given a graph G = (V,E), define D(G) = (V ′, E ′) as a directed graph such

that V ′ = V and the edges of D(G) are the edges of G with a direction arbitrarily

assigned. Then let A = [aij] denote the incidence matrix of D(G), that is, a |V ′|

by |E ′| matrix such that

aij =


1, i is the head of the edge j

−1, i is the tail of the edge j

0, otherwise.
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The matroid MA is a representation of MG.

From previous results in this section and the remarks above we conclude

χG(t) = χAG(t) = tqχMG
(t) for some integer q ≥ 0. The next theorem gives

an interpretation of the number q in terms of the graph G.

Theorem 4.4.4. Let G be a graph with q connected components. Then

χG(t) = tqχMG
(t).

Proof. The result follows since the constant coefficient of χM is nonzero for a

matroid M and the multiplicity of 0 as a root of χG is the number of connected

components of G. For more details see [19].

Example 4.4.8. Let G be the graph defined in example 4.3.3. The incidence

matrix of G (with respect to the orientation below) is

Figure 4.2: An orientation of the graph G in example 4.3.3.

74



12 24 23 14 45 34



1 0 0 1 0 0 1

−1 1 1 0 0 0 2

0 0 −1 0 0 1 3

0 −1 0 −1 1 −1 4

0 0 0 0 −1 0 5

Using the Macaulay2 package Matroids to compute the characteristic polyno-

mial of MG we verify

χG(t) = t5 − 6t4 + 13t3 − 12t2 + 4t = t(t4 − 6t3 + 13t2 − 12t+ 4) = tχMG
(t).

Example 4.4.9. Let A be the 5 by 5 identity matrix. Then the characteristic

polynomial of MA is χMA
(t) = (t− 1)(

(
4
0

)
t4−

(
4
1

)
t3 +

(
4
2

)
t2−

(
4
3

)
t+
(

4
4

)
). Compare

this example with example 2.2.5.

Example 4.4.10. Let A be the following matrix:
1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

 .

Then χMA
(t) = t4 − 5t3 + 10t2 − 10t+ 4 = (t− 1)(t3 − 4t2 + 6t− 4). Compare

this example with example 2.2.6.
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Chapter 5

Log-concave sequences and

examples

In this brief chapter we introduce log-concave sequences and give some examples

of interesting sequences.

5.1 Log-concavity and unimodality

Let A = (a0, . . . , an) be a sequence of real numbers. The sequence is called log-

concave if

ai−1ai+1 ≤ a2
i

for all i = 1, . . . , n − 1. If the subsequence of nonzero elements of A has only

consecutive elements of A, we say A has no internal zeros. We say a sequence

(a0, . . . , an) is sign-alternating if (−1)iai > 0 for every i = 0, . . . , n.

If a sequence of real numbers (a0, . . . , an) satisfies: a0 ≤ · · · ≤ ak ≥ · · · ≥ an

we say the sequence is unimodal.
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Definition 5.1.1. Let A = (a0, . . . , an) and B = (b0, . . . , bm) be sequences of real

numbers. Let f(x) =
n∑
i=0

aix
i and g(x) =

m∑
i=0

bix
i. The convolution of A and B

denoted by A ∗B is the sequence of coefficients of fg(x) =
n+m∑
i=0

cix
i.

Next we state two results that are very useful.

Proposition 5.1.1. If A and B are nonnegative log-concave sequences with no

internal zeros, then so is A ∗B.

Proof. See [21, Proposition 2].

Proposition 5.1.2. If A = (a0, . . . , an) is a nonnegative log-concave sequence

with no internal zeros, then A is unimodal.

Proof. By log-concavity we know
ai+1

ai
≤ ai
ai−1

for every i = 1, . . . , n−1. From the

ratio
ai
ai−1

we can say if the next element of the sequence is smaller or bigger than

the last one, and since the ratios form a decreasing sequence, the sequence must

be unimodal.

5.2 Betti tables: an interesting example

In this section we introduce the graded betti numbers of an ideal. From these num-

bers we get interesting examples of unimodal sequences that are not log-concave.

Let I = (f1, . . . , fs) be a homogeneous ideal of the N-graded polynomial ring

R = k[x1, . . . , xn]. The map ϕ : R(− deg f1)⊕ · · · ⊕ R(− deg fs)→ R sending the

canonical basis to the generators of I is a homogeneous map and so it has a homo-

geneous kernel and we can thus proceed with this process. The resulting complex

of the construction just described is called the minimal graded free resolution of I.
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Example 5.2.1. Let R = k[x1, . . . , x7] and I = (x3x4, x3x7, x1x7, x2x4, x1x3). The

minimal graded free resolution of I is

0 −→ R(−4)⊕R(−5) −→ R(−3)5 ⊕R(−4) −→ R(−2)5 −→ R −→ 0.

Proposition 5.2.1. Let R be an N-graded polynomial ring over a field k. The

minimal graded free resolution of a homogeneous ideal I of R has finitely many

nonzero modules.

Proof. See [3, Section 1.5].

Definition 5.2.2. Let R be an N-graded polynomial ring over a field and I a

homogeneous ideal. Let

C• : ... −→ 0 −→ Fm −→ Fm−1 −→ · · · −→ F1 −→ R −→ 0

be the minimal graded free resolution of I. Then by definition we know

Fi =
⊕
j

R(−j)βij(I).

The numbers βij(I) are called the graded betti numbers of I. The table β(I)

such that the (i, j)-th entry corresponds to βii+j is called the betti table of I.

Example 5.2.3. Let R = k[x1, . . . , x7] and I = (x3x4, x3x7, x1x7, x2x4, x1x3). The

table below is β(I), the dotted entries are zero.

j\i 0 1 2 3

0 1 . . .

1 . 5 5 1

2 . . 1 1
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It is clear that if I and J are homogeneous ideals such that
R

I
∼=

R

J
, then

β(I) = β(J). It is also possible that two ideals have the same betti tables and

nonisomorphic quotient rings.

Let G be a graph and I(G) the edge ideal defined in example 1.2.3. One may

ask how many tables are the betti table of an edge ideal I(G) in k[x1, . . . , xn]

where k is a field of characteristic zero. More specifically, one may ask how many

tables are the betti tables of the edge ideal of a graph with a specific property P .

The questions above lead us to examples of unimodal sequences that are not

log-concave:

Example 5.2.4. Let an2 (i) denote the number of different betti tables of edge

ideals of graphs with n vertices and i edges over a field k of characteristic zero.

Figure 5.1: Graphs of the sequences {aj2(i)}i for j = 2, . . . , 9.

As it is clear from the graphs, the sequences {aj2(i)}i are unimodal but not

log-concave for j = 4, . . . , 9.

Example 5.2.5. Given a betti table β we say it has size (p, r) if every (i, j)-th

entry with i > p and j > r is zero and if (p′, r′) is another tuple satisfying the
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same property, then p′ ≥ p and r′ ≥ r. The size of the betti table in example 5.2.3

is (3, 2).

Similarly to example 5.2.4, let bj2(i) denote the number of different betti ta-

ble sizes of edge ideals of graphs with n vertices and i edges over a field k of

characteristic zero.

Figure 5.2: Graphs of the sequences {bj2(i)}i for j = 2, . . . , 9.

These sequences are also unimodal but not log-concave for j = 4, . . . , 9.

From the examples above it is natural to ask if the sequences {aj2(i)}i and

{bj2(i)}i are unimodal for every j. It is possible to define the sequences {ajn(i)}i
and {bjn(i)}i where instead of edge ideals we consider square-free monomial ideals

generated by monomials of the same degree n1. One can then ask if the sequences

{ajn(i)}i and {bjn(i)}i are unimodal for every n and j.

Remark 5.2.1. The computations in this chapter were made using the graph

isomorphism testing program Nauty and Macaulay2.

1These ideals are sometimes called the facet ideals of pure simplicial complexes.
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Chapter 6

Representable homology classes

of projective spaces

In this chapter we introduce the object from algebraic geometry that connects the

combinatorial objects introduced in chapter 4 with certain mixed multiplicities.

Throughout this chapter, Pn will denote the projective space over the alge-

braically closed field K.

6.1 Algebraic cycles

Throughout this section the ring R will always be the standard N2-graded ring

K[x0, . . . , xn, y0, . . . , ym] such that deg xi = (1, 0) and deg yj = (0, 1) for every

i = 0, . . . , n and j = 0, . . . ,m unless stated otherwise.

Let A be a standard Nr-graded K-algebra and let A+ be its maximal homoge-

neous ideal. The Proj of A denoted by ProjA is the set of all homogeneous prime

ideals of A that do not contain A+.

Given a prime ideal p ∈ ProjR, we set:
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Z(p) := {p ∈ Pn × Pm|f(p) = 0 ∀f ∈ p}.

Definition 6.1.1. Let X = Pn ×Pm and let Z(X) denote the free abelian group

generated by Z(p) for every p ∈ ProjR. We call Z(X) the group of algebraic

cycles of X. The group Z(X) is graded by codimension, that is, let Z(X)r be the

subgroup of Z(X) generated by Z(p) for every p ∈ ProjR such that height p = r

then Z(X) =
⊕
r∈N

Z(X)r. An element Y of Z(X) is called a cycle, if Y ∈ Z(X)r

then Y is called an r-cycle.

Let I be a homogeneous ideal of R that does not contain R+. By theorem 1.2.4

we know there are prime ideals p1, . . . , ps and primary ideals q1, . . . , qs such that

qi is pi-primary for every i = 1, . . . , s and

I =
s⋂
i=0

qi.

Since I is homogeneous we can assume the pi and qi are homogeneous as well.

By the second part of theorem 1.2.4 and corollary 1.2.3 the ring Sp =
Rp

IRp

is

Artinian for every minimal associated prime p, thus the length lp = `(Sp) is finite.

We can then define the cycle

〈I〉 =
∑

p∈min Ass(R/I)

lpZ(p) ∈ Z(X).

6.2 Rational equivalence and the Chow group

In this section we define the subgroup of rationally equivalent cycles Rat(X). We

are interested in the quotient group Z(X)/Rat(X).

Definition 6.2.1. Let Φ ⊆ Pn×Pm, then the ideal of Φ is I(Φ) = {f ∈ R|f(p) =

0 ∀p ∈ Φ}.
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Definition 6.2.2. Let q ∈ ProjR[z0, z1] where R[z0, z1] is a standard N3-graded

ring. Set Z(q) = {p ∈ Pn × Pm × P1|f(p) = 0 ∀f ∈ q}. Given t0 ∈ P1, we

can consider the cycle 〈Z(q) ∩ Pn × Pm × {t0}〉 := 〈I({p ∈ Pn × Pm|[p, t0] ∈

Z(q) ∩ Pn × Pm × {t0}})〉.

Let Rat(Pn ×Pm) be the subgroup of Z(Pn ×Pm) generated by differences of

the form

〈Z(q) ∩ Pn × Pm × {t0}〉 − 〈Z(q) ∩ Pn × Pm × {t1}〉

where t0, t1 ∈ P1 and q is any ideal in ProjR[z0, z1] such that Z(q) is not

contained in Pn × Pm × {t0} for any t0 ∈ P1.

The group A(Pn×Pm) = Z(Pn×Pm)/Rat(Pn×Pm) is called the Chow group

of Pn × Pm. Since Rat(Pn × Pm) is graded by codimension, the Chow group of

Pn × Pm is also graded by codimension. If Y ∈ Z(Pn × Pm) is a cycle, we write

[Y ] for its equivalence class. Similarly if I is a homogeneous ideal of R, we write

[I] for the equivalence class of 〈I〉.

Remark 6.2.1. The definition of the Chow group of Pn × Pm is in some ways

similar to the homology groups defined in section 3.2. In both definitions a specific

equivalence relation is defined and the groups of interest are the quotients of the

groups of cycles by this equivalence relation.

Remark 6.2.2. It is clear that we can also define the Chow group of Pn by

replacing the ring R by the standard N-graded ring K[x0, . . . , xn]. The definition

of Chow group is in fact even more general, but these are the only two cases we

will need. For more details see [6, Chapter 1].

Theorem 6.2.1. The following isomorphisms of abelian groups hold:

• A(Pn) ∼= Z[α]/(αn+1), where α ∈ A(Pn)1 is the rational equivalence class of

a hyperplane.
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• A(Pn × Pm) ∼= Z[α, β]/(αn+1, βm+1), where αrβs is the rational equivalence

class of [Pn−r × Pm−s].

In particular, every cycle in A(Pn × Pm) can be written as

∑
i∈[n],j∈[m]

eij[P
n−i × Pm−j].

where the eij are integers.

Proof. See [6, p. 51 Theorem 2.10] and [6, p. 44 Theorem 2.1].

Given an element ξ ∈ A(Pn × Pm)k, by the theorem above we know

ξ =
∑
i

ei[P
k−i × Pi]

where ei = 0 if n < k − i or m < i.

Definition 6.2.3. We say an element ξ ∈ A(Pn × Pm)k is representable if there

exists a homogeneous ideal I of K[x0, . . . , xn, y0, . . . , ym] such that [I] = ξ.

From the last theorem and the definition above one can ask the following

question:

• For what sequences ei is the element ξ =
∑
i

ei[P
k−i × Pi] ∈ A(Pn × Pm)k

representable?

The answer to the question above is the following theorem:

Theorem 6.2.2. Write ξ ∈ A(Pn × Pm)k as an integral linear combination

ξ =
∑
i

ei[P
k−i × Pi]

where the term containing ei is zero if n < k − i or m < i.
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• If ξ is an integer multiple of either

[Pn × Pm], [Pn × P0], [P0 × Pm], [P0 × P0],

then ξ is representable if and only if the integer is 1.

• Otherwise, some positive integer multiple of ξ is representable if and only if

the ei form a nonzero log-concave sequence of nonnegative integers with no

internal zeros.

Proof. See [13, Section 5].

6.3 Multidegrees

In this section we introduce the notions of degree and multidegree, as will soon

become clear, together with theorem 6.2.2 the concept of multidegree plays a very

important role in the proof of the main theorems of this text. Throughout this

section the field K will be algebraically closed.

Definition 6.3.1. Let R be the N-graded ring K[x0, . . . , xn] and let I be a ho-

mogeneous ideal of R. The set Z(I) := {p ∈ Pn|f(p) = 0 ∀f ∈ I} is called a

variety. If the radical of I is prime, then Z(I) is said to be irreducible. The ring

R/
√
I is called the coordinate ring of Z(I), where

√
I denotes the radical of I.

The dimension of Z(I) is the Krull dimension of its coordinate ring.

Definition 6.3.2. Let X ⊂ Pn be an irreducible k-dimensional variety. Let A be

a general (n− k)-plane, that is, the zero locus of k general linear forms. Then the

degree of X denoted by degX is the number of points in the intersection A ∩X.

Theorem 6.3.1. Let X be an irreducible variety and S its coordinate ring. Then

the degree of X is the multiplicity of S.
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Proof. See [8, Lecture 18].

Note that we can extend the definitions in definition 6.3.1 to the product of two

projective spaces by replacing R with the N2-graded ring K[x0, . . . , xn, y0, . . . , ym].

We have already seen how mixed multiplicities generalize the notion of mul-

tiplicity. Our next goal is to introduce the geometric invariant that generalizes

definition 6.3.2 and theorem 6.3.1.

Definition 6.3.3. Let X ⊂ Pn × Pm be a k-dimensional variety. Let Y ⊂ Pn

be a general (n − i)-plane (that is, the zero locus of i general linear forms in

K[x0, . . . , xn]) and Z ⊂ Pm a general (m− k + i)-plane. The number

di = |(Y × Z) ∩X|

is called the i-th multidegree of X.

We are interested in a particular case of the definition above:

Let X ⊂ Pn be an irreducible variety, S its coordinate ring, h0, . . . , hm ∈ S be

homogeneous elements of the same degree and consider J = (h0, . . . , hm). Since

the hi are not all zero, we can consider the map:

ϕJ :
U → Pm

[x0 : · · · : xn] 7→ [h0(x0, . . . , xn) : · · · : hm(x0, . . . , xn)]

where U is a dense open subset of X such that the hi do not simultaneously

vanish at any point of U .

Let ΓϕJ denote the closure of the graph of ϕJ , that is, the closure of

{[u, ϕJ(u)] |u ∈ U} ⊂ Pn × Pm.

Following this notation we have the following results:
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Proposition 6.3.2. The coordinate ring of ΓϕJ is R(m|J) =
⊕

(u,v)∈N2

muJv

mu+1Jv
where

m is the maximal homogeneous ideal of S.

Proof. See [5, Section 5.2].

Theorem 6.3.3. Let k be the dimension of ΓϕJ . Then the following equalities

hold in A(Pn × Pm)k:

[ΓϕJ ] =
∑
j

dj[P
j × Pk−j] =

∑
i

e(n−i,i)(m|J)[Pk−i × Pi].

In particular, dn−i = e(n−i,i)(m|J) for every i.

Proof. See [6, Section 2.1.7].

From theorem 6.3.3 and theorem 6.2.2 we get the following result:

Corollary 6.3.4. If J is an ideal of a standard graded domain over an algebraically

closed field generated by elements of the same degree, then the mixed multiplicities

of m and J form a log-concave sequence of nonnegative integers with no internal

zeros.

Using the Macaulay2 package Cremona we can compute the multidegrees of

ΓϕJ for a given J .

Example 6.3.4. Let h = xyzw(x + y + z + w) and let Jh denote the ideal of

C[x, y, z, w] generated by the partial derivatives of h. Since every partial derivative

of h has the same degree, we can define the map ϕ = ϕJh and compute the

multidegrees of Γϕ: d3 = 1, d2 = 4, d1 = 6, d0 = 4.

Example 6.3.5. Let h = xyzw and let Jh denote the ideal of C[x, y, z, w] gener-

ated by the partial derivatives of h. Then the multidegrees of the closure of the

graph of ϕJh are d3 = 1, d2 = 3, d1 = 3, d0 = 1.
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Example 6.3.6. Let h = (z1 − z2)(z1 − z4)(z2 − z3)(z2 − z4)(z3 − z4)(z4 − z5)

be an element of C[z1, . . . , z5]. Then the multidegrees of the closure of the graph

of ϕJh are d4 = 1, d3 = 5, d2 = 8, d1 = 4, d0 = 0. Compare this example with

example 4.3.3 and note that

t5 − 6t4 + 13t3 − 12t2 + 4t = (t− 1)(t4 − 5t3 + 8t2 − 4t).

If we consider h′ = z6h ∈ C[z1, . . . , z6], then the multidegrees of the closure of

ϕJh′are d5 = 1, d4 = 6, d3 = 13, d2 = 12, d1 = 4, d0 = 0.
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Chapter 7

Log-concavity of characteristic

polynomials

Throughout this text we introduced mixed multiplicities, betti numbers and the

characterisitc polynomials of hyperplane arrangements and matroids. In this chap-

ter we state the final results needed for the proof of the conjectures.

7.1 Characteristic polynomials and mixed mul-

tiplicities

Our goal in this section is to state the theorem that connects certain mixed mul-

tiplicities to the coefficients of the characterisitc poylnomial of a matroid repre-

sentable over C. In order to do so, we need the following theorem relating the

characteristic polynomial of an arrangement A to the characteristic polynomial of

the decone of A with respect to some H ∈ A.

Theorem 7.1.1. Let A be a linear arrangement in Cn+1 and H a hyperplane in

A. Let ĀH ⊂ Cn denote the decone of A with respect to H.
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Then the following equality holds:

χA(t) = (t− 1)χĀH (t).

Proof. See [22, p. 52 Corollary 4.8].

Remark 7.1.1. Theorem 7.1.1 is a particular case of the Modular element factor-

ization theorem. For more details see [22, p. 49 Theorem 4.13]

We are finally ready to state the last result we need for the conjecture over C.

Theorem 7.1.2. Let h ∈ C[z0, . . . , zn] be the defining polynomial of a linear

arrangementA ⊂ Cn+1 and let H ∈ A. Let m = (z0, . . . , zn) and Jh ⊂ C[z0, . . . , zn]

be the ideal generated by the partial derivatives of h. Then the following equalities

hold:

χĀH (t) =
n∑
i=0

(−1)ibi(D(h))tn−i =
n∑
i=0

e(n−i,i)(m|Jh)tn−i.

Proof. For the first equality see [20]. For the second equality see [13, Corollary

25].

Example 7.1.1. Here are some examples throughout the text that are explained

by theorem 7.1.2.

• See example 2.2.5, example 4.2.5 and example 6.3.5 for different ways of

computing the invariants for h = xyzw ∈ C[x, y, z, w] and more generally

h = z0 . . . zn ∈ C[z0, . . . , zn].

• See example 2.2.6, example 4.2.4 and example 6.3.4 for h = xyzw(x + y +

z + w) ∈ C[x, y, z, w].

• See example 4.3.3 and example 6.3.6 for h = (z1 − z2)(z1 − z4)(z2 − z3)(z2 −

z4)(z3 − z4)(z4 − z5) ∈ C[z1, . . . , z5].
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Theorems 7.1.1, 7.1.2, 6.2.2 and proposition 5.1.1 imply:

Theorem 7.1.3. Let M be a matroid representable over C. Then the coefficients

of χM(t) form a sign-alternating log-concave sequence of integers with no internal

zeros.

Proof. Let A ⊂ Cn+1 be a linear arrangement that represents M and let H ∈ A.

By theorem 7.1.2 and theorem 6.2.2 the coefficients of χĀH form a sign-alternating

log-concave sequence with no internal zeros. The result follows by theorem 7.1.1

and proposition 5.1.1.

In particular, by theorem 4.4.3 and theorem 4.3.1 we also have the following

result:

Corollary 7.1.4. Let G be a graph. Then the coefficients of the chromatic polyno-

mial of G form a sign-alternating log-concave sequence of integers with no internal

zeros.

In his paper [13], Huh also proved the following generalization of theorem 7.1.3:

Theorem 7.1.5. Let M be a matroid representable over any field of characteristic

zero. Then the coefficients of χM(t) form a sign-alternating log-concave sequence

of integers with no internal zeros.

Proof. See [13, Corollary 27].

Later on Huh and Katz proved a generalization of theorem 7.1.5:

Theorem 7.1.6. [15] Let M be a representable matroid. Then the coefficients

of χM(t) form a sign-alternating log-concave sequence of integers with no internal

zeros.

And finally in 2018 Adiprasito, Huh and Katz proved log-concavity for every

matroid:
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Theorem 7.1.7. [16] Let M be a matroid. Then the coefficients of χM(t) form a

sign-alternating log-concave sequence of integers with no internal zeros.
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Appendix A

A proof of theorem 3.3.1

A.1 Integral closure of rings

In previous chapters we introduced the integral closure of ideals. In this section we

give a brief review of the integral closure of rings. The main result in this section

will be used in the proof of theorem 3.3.1.

The concept of integral closure for rings generalizes the notion of algebraic

closure for fields.

Definition A.1.1. Let R be a ring and S an R-algebra such that R ⊂ S. An

element s ∈ S is said to be integral over R if there exists n ∈ N and r1, . . . , rn ∈ R

such that

sn + sn−1r1 + · · ·+ rn = 0.

The set of all elements of S that are integral over R is called the integral closure

of R in S and will be denoted by R̄S or just R̄.

If R̄ = R we say R is integral over S.

Proposition A.1.1. Let R be a ring and S an R-algebra that contains R. Then
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R̄ is a ring.

Proof. See [14, p. 26, Corollary 2.1.11].

The following criterion is very useful:

Proposition A.1.2. Let R ⊆ S be an inclusion of rings and let x1, . . . , xn ∈ S.

Then x1, . . . , xn are integral overR if and only ifR[x1, . . . , xn] is a finitely generated

R-submodule of S.

Proof. See [14, p. 26, Lemma 2.1.9].

Note that the criterion above is similar to proposition 2.5.1. The following

results will be used in the proof of theorem 3.3.1.

Proposition A.1.3. Let k be a field and (R,m) a standard N-graded k-algebra

where m is the maximal homogeneous ideal, J, I ideals in R, J ⊆ I, and B the

subalgebra of FI(R) generated over R/m by (J + mI)/mI. Then J ⊆ I is a

reduction if and only if B ⊆ FI(R) is module-finite.

Proof. See [14, p. 161, Proposition 8.2.4].

The subalgebra B defined above is the image of FJ(R) through the natural

map ϕ : FJ(R)→ FI(R).

Proposition A.1.4. Following the notation from above, for any ideal I,

dim FI(R) ≤ dim R.

Proof. See [14, p. 100, Proposition 5.1.6].
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A.2 The degree of the jacobian map (base case)

Let h be a nonconstant homogeneous polynomial in C[x0, . . . , xn] and let ϕJh be

the map defined in section 6.3. In this section we introduce the notion of degree

for the map ϕJh . This is the last definition we need before proving theorem 3.3.1.

Proposition A.2.1. Assume the image of ϕJh is dense in Pn. The number of

points in the preimage of a generic point in the image of ϕJh is an invariant of ϕJh .

This number is called the degree of ϕJh and will be denoted by deg(ϕJh). If the

image of ϕJh is not dense in Pn, then we define deg(ϕJh) = 0.

Proof. See [8, p. 80, Proposition 7.16].

Following the definition above, we can state the theorem of [4] that will be used

as the base case in the proof of theorem 3.3.1.

Theorem A.2.2. [4, Theorem 1] Let H ⊂ Pn be a general hyperplane, D(h) =

{p ∈ Pn|h(p) 6= 0} and V (h) = {p ∈ Pn|h(p) = 0}.

• D(h) is homotopy equivalent to a CW complex obtained from D(h) ∩H by

attaching deg(ϕJh) cells of dimension n.

• V (h)\H is homotopic to a bouquet of deg(ϕJh) spheres of dimension n− 1.

Corollary A.2.3. Let h =
s∏
i=0

gmii and
√
h =

s∏
i=0

gi be polynomials in C[x0, . . . , xn].

Then deg(ϕJh) = deg(ϕJ√h).

Proof. This follows since deg(ϕJh) is a topological invariant of D(h) and D(h) =

D(
√
h).

Proposition A.2.4. Let h be a polynomial in C[x0, . . . , xn]. Then deg(ϕJh) =

e(0,n)(m|Jh).
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Proof. By theorem 6.3.3, e(0,n)(m|Jh) is the number of points in the preimage of a

general point in the image of the jacobian map ϕJh . This is exactly the definition

of deg(ϕJh).

A.3 The inductive step

In this last section we use previous results on integral closure and reductions to

prove theorem 3.3.1.

Lemma A.3.1. Let x be a nonzero linear form in S = C[z0, . . . , zn], S̄ = S/xS

and Jh̄ be the Jacobian ideal of the class of h in S̄. Then, for a sufficiently general

x, Jh̄ is a reduction of JhS̄.

Proof. Assume the partial derivatives of h are linearly independent. Let V be the

vector space of linear forms in S, that is, V = S1 and let W be the vector space

spanned by the partial derivatives of h. Given a linear form x = c0z0 + . . . cnzn we

can assume without loss of generality that cn 6= 0. Then S̄ is the polynomial ring

generated by the classes of z0, . . . , zn−1. By the chain rule, Jh̄ is generated by the

restrictions of the polynomials

cn
∂h

∂zi
− ci

∂h

∂zn
, 0 ≤ i < n.

Multiplying the linear form by a constant does not change the quotient ring,

this means choosing a linear form x is equivalent to choosing a point in Pn. Since

we are assuming cn 6= 0, we are choosing a point in Cn = Pn\H where H is the

hyperplane cn = 0.

On the other hand, since we are assuming the partial derivatives of h are

linearly independent, the space generated by the polynomials above has dimension

dim W − 1. In particular, we identified an affine piece of the projective space of

lines in V with an affine piece of the projective space of hyperplanes in W .
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From the remarks above, we only need to prove that the ideal generated by a

sufficiently general subspace of dimension n of (JhS̄)deg h−1 generates a reduction

of JhS̄. This follows from the graded Noether normalization theorem applied to

FJ(S), proposition A.1.3 (the extension ϕ(FI(S)) ⊆ FJ(S) is module-finite) and

proposition A.1.4 (the dimension of FJ(S) is at most n).

Lemma A.3.2. Let S = C[z0, . . . , zn], x a general linear form and S̄ = S/xS. Let

x̄ be the residue class of x, then for any ideal J :

PR(mS̄|JS̄)(u, v) = PR(m|J)(u, v)− PR(m|J)(u− 1, v).

Proof. The same proof of lemma 2.3.4 works.

Finally we have everything we need to prove theorem 3.3.1:

Proof of theorem 3.3.1. We will prove the result using induction on the number of

variables of S = C[z0, . . . , zn].

If n = 1, by example 3.3.3 we know e(1,0)(m|Jh) = 1 and e(0,1)(m|Jh) = d − 1

where d is the degree of
√
h, both multiplicities agree with the fact that D(h)0

is a point and D(h)1 is homotopy equivalent to a CW complex obtained from

D(h)0 by attaching d − 1 cells of dimension 1. Where the latter follows since by

theorem 6.3.3 the statements of theorem 3.3.1 (for i = 1, n = 1) and theorem A.2.2

are the same.

If n > 1, let S̄ = S/xS where x is a sufficiently general linear form in S and h̄

the residue class of h in S̄. Since S̄ is a polynomial ring in n− 1 variables, we are

able to apply induction as follows:

By proposition 2.5.3 and lemma A.3.1 Jh̄ is a reduction of JhS̄ and thus

e(n−1−i,i)(mS̄|Jh̄) = e(n−1−i,i)(mS̄|JhS̄),

from lemma A.3.2, for i < n the following equalities hold
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e(n−1−i,i)(mS̄|JhS̄) = e(n−i,i)(m|Jh).

Lastly, for i = n we use proposition A.2.4 to conclude e(0,n)(m|Jh) = deg(ϕJh).

The result then follows by induction and theorem A.2.2.
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Appendix B

Polynomial systems and mixed

multiplicities

In this chapter we state the main results of [24] in order to study applications of

mixed multiplicities in other areas of mathematics. In particular, we prove that a

particular system of differential equations that can be used to model two species

with a mutual predation dynamic has at most one steady state where both species

coexist.

B.1 A sparse version of Bezout’s theorem

Let f1, . . . , fn be nonconstant polynomials in C[x1, . . . , xn]. We are interested

in finding upper bounds to the number of solutions of the polynomial system

f1 = ... = fn = 0 in Cn.

Theorem B.1.1 (Bézout). Following the above notation, assume f1, . . . , fn have

a finite number of common zeros in Cn and let di be the degree of fi. Then the

polynomial system f1 = · · · = fn = 0 has at most d1 . . . dn zeros in Cn.

Proof. See [9, p. 52, Theorem 7.7].
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Remark B.1.1. If we consider homogeneous polynomials in C[x0, . . . , xn] and

count the multiplicity of each zero, then we can say the polynomial system has

exactly d1 . . . dn zeros in Pn.

Remark B.1.2. Let F1, . . . , Fn be homogeneous polynomials in S = C[x0, . . . , xn]

such that Fi(1, x1, . . . , xn) = fi(x1, . . . , xn) and degFi = di. Then

e((x0, . . . , xn), S/Fi) = di.

The upper bound in theorem B.1.1 can then be rewritten as a product of multi-

plicities.

Next we give the refined version of Bezout’s theorem for systems of two poly-

nomials in C[x, y].

Theorem B.1.2 (Bernstein). Let f1 and f2 be nonconstant polynomials in C[x, y].

Assume f1, f2 have finitely many common zeros in (C∗)2. Then the number of

solutions of the polynomial system f1 = f2 = 0 in (C∗)2 is bounded above by:

1

2
(e(k[NP (f1f2)])− e(k[NP (f1)])− e(k[NP (f2)])).

Proof. See [24, Theorem 3.1].

Although the theorem above is a very particular case of a more general theorem,

we can already derive interesting applications from it. This is the theme of the

next section.

Remark B.1.3. To state a more general version of Bernstein’s theorem, we would

need to define either the notion of mixed volumes for a sequence of polytopes, or

the notion of mixed multiplicities for a sequence of ideals J1, . . . , Jn. In [24] the

authors prove that the mixed volume of polytopes are the mixed multiplicities of

certain monomial ideals.
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B.2 An application: coexistence of a pair of species

Suppose P1(t), P2(t) are two functions that represent the quantities of each species

at the time t. Assume that the dynamic between both species is of competition,

that is, an encounter between an individual of species 1 and an individual of species

2 is bad for both species. A simple model that can be used to study the possible

behaviours of this dynamic is:


dP1

dt
(t) = P1(t)(1− P1(t))− b1P1(t)P2(t)

dP2

dt
(t) = P2(t)(1− P2(t))− b2P1(t)P2(t)

where b1, b2 ∈ (0,∞) are parameters of the model.

One important information of a model are its steady points, that is, points

(x, y) ∈ R2 such that if P1(t0) = x, P2(t0) = y for some t0 ∈ (0,∞), then

dP1

dt
(t0) =

dP2

dt
(t0) = 0.

It is clear that the points we are looking for are exactly the zeros of the poly-

nomials f1(x, y) = x(1− x)− b1xy and f2(x, y) = y(1− y)− b2xy in C[x, y].

A particular property of a steady state p that we are looking for is that p has

no zero coordinates. We say the species can coexist in a model if there exists a

steady state p ∈ (0,∞)n.

Example B.2.1. Following the notation above, let b1 = 0.5, b2 = 0.4. Then since

dim C[x, y]/(f1, f2) = 0, we conclude f1 and f2 have finitely many common zeros

in C2 and thus we can use theorem B.1.1 and theorem B.1.2.

It is clear that (0, 0), (1, 0) and (0, 1) are steady states, so by theorem B.1.1

there can only be one more steady state. Note that each one of the steady states

has at least one zero coordinate, so there can be at most one steady state where

coexistence occurs.
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Using theorem B.1.2, we get the same upper bound by computing the multi-

plicities:

1

2
(e(k[NP (f1f2)])− e(k[NP (f1)])− e(k[NP (f2)])) =

1

2
(4− 1− 1).

Figure B.1: A numerical solution of the system of differential equations.
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