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Resumo
A pergunta sobre a relação entre p e t, caracteristicas cardinais do contínuo, se manteve
aberta por décadas, mais precisamente se p = t. Num trabalho recente de Malliaris e
Shelah, foi desenvolvida uma nova ferramenta, designadamente problema de espectro de
cofinalidade, que nos permite responder de maneira afirmativa a questão de se p = t.
A utilidade dessa nova ferramenta não para por ai, ela também nos permite refinar as
fronteiras na área de teoria de classificação, mostrando que a properiedade SOP2 é uma
condição suficiente para uma teoria completa estar na classe máxima da order de Keisler.
O fato dessa ferramenta ter aplicações em teoria de modelos e teoria de conjuntos, e nos
permitir transportar uma questão de uma área para a outra, nos indica ela como um
objeto promissor no arsenal de ambas as áreas. Nesta dissertação apresentamos o contexto
que dá origem a essa ferramenta e suas principais aplicações até o momento.

Palavras-chave: Teoria de Modelos, Teoria de Conjuntos





Abstract
A decades-long question in set theory is if the cardinal characteristics p and t are equal.
In a recent work of Malliaris and Shelah, they developed a new tool, namely cofinality
spectrum problem, that can answer the problem of p = t. The usefulness of this new tool
does not stop there, as it can also refine the known boundaries in classification theory,
by showing that the property SOP2 is a sufficient condition for maximality in Keisler’s
order. The fact that the same tool has applications in model theory and set theory, and
its ability to transport a problem from one field to another, shows it as a promising tool
in the arsenal of both fields. We present the context in which this new tool arises and its
main known applications.

Keywords: Model Theory, Set Theory
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1 Introduction

The notions of set theory and model theory necessary to understand the construc-
tions present in this dissertation can be found in Chapter 2, so the reader unfamiliar with
certain concepts can use that chapter to get the basic knowledge needed to proceed.

1.1 Cardinal characteristics of the continuum

With Cantor’s proof that ℵ0 < 2ℵ0 = c, a natural following question was the
continuum hypothesis, that is, if c = ℵ1, see [2]. With the works of Cohen we know
that, relative to the consistency of ZFC, there are models of ZFC where the continuum
hypothesis is false, so we can ask ourselves how we can construct cardinalities in between.
That is one motivating question behind cardinal characteristics of the continuum and will
be the focus of this introduction. Let κ be a cardinality defined as the least size of a set
with a given property P . If we can show that ℵ0 < κ 6 c and, relative to the consistency
of ZFC and perhaps some large cardinal assumption, there exists a model of ZFC where
κ < c, then κ is called a cardinal characteristic of the continuum.

A common way of attacking this problem is to look at subsets of [N]ℵ0 (the set
of infinite subsets of N) or NN (the set of functions from N to N), with a given property
P that is a candidate to generate sizes less than c. With this idea we choose properties
that are false for any countable subset but are true for some uncountable subset. The
properties of interest are, in a lot of cases, inspired by other areas of mathematics, as seen
for exemple in [1, page 417], where null, the family of subsets of R with Lebesgue measure
zero, and meager, the family of subsets of R that are meager in the usual topology, are
used as basis to construct interesting subsets.

In the compilation work of [31] we see that the majority of the study in cardinal
characteristics of the continuum have been focused, historically, on six classic cardinals,
denoted by p, t, a, b, d and s. Mapping all the inequalities between these cardinals was
central to the area. At the time of [32], only two inequalities were still open, between a

and d, and between p and t. With Shelah’s 2004 result [29], where he constructed a model
satisfying d < a, relative to the consistency of ZFC, the only question left was if p = t is
demonstrable in ZFC or there is a model where p < t (it was already known that p 6 t).
It is worth mentioning that the opinion of the experts in the area was, in general, that
probably there was a model where p < t, see [9].

Let’s define p and t, to better illustrate what we are working with. Define A ⊆∗ B
as saying that the set A \ B is finite, that is, A is a subset of B except for a finite
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number of elements. Given sets A and F , we say that A is a pseudo-intersection of F if
(∀B ∈ F)(A ⊆∗ B). A set X is said to have the strong finite intersection property (sfip) if
the intersection of any finite number of elements of X is infinite. We say that F ⊆ [N]ℵ0 is
a tower if it is linearly ordered by ⊇∗ and has no infinite pseudo-intersection.

Definition A. The cardinal p is defined as the smallest size of a family F ⊆ [N]ℵ0 such
that F has the strong finite intersection property but has no infinite pseudo-intersection,
while the cardinal t is defined as the smallest size of a tower.

The cardinal p is also the cardinality of the least number of nowhere dense sets
needed to cover a compact topological space, see [23], again connecting these cardinals
with other areas.

Since both are defined by families of subsets of N we have that p 6 c and t 6 c. It is
clear that p 6 t because a tower has the sfip. If there exists a set with the sfip but no infinite
pseudo-intersection then ℵ1 6 p, because let F = {Fn : n ∈ ω} ⊆ [N]ℵ0 be a countable
family with the sfip, and define recursively an = min(∩k6nFn \{ak : k ∈ n}), a0 = min(F0).
The set {an : n ∈ ω} is an infinite pseudo-intersection for F , because for each Fn we have,
by construction, that {ak : k > n} ⊆ Fn. In classic works, see [31], it has been shown
that indeed there exists a set with the sfip with no infinite pseudo-intersection and a
tower, so they are not vacuous definitions. All the above properties together guarantee
that ℵ1 6 p 6 t 6 c.

In the recent work of Malliaris and Shelah [20] they were able to answer the
decades-long question of whether p = t, with the use of a new technology, that of cofinality
spectrum problems.

Theorem B ([20], Theorem 14.1). p = t.

In Section 4.2 we will show how this new technology is used to attack the problem
of p = t.

1.2 Classifying theories
A major problem of model theory today is the problem of classifying complete

theories in a useful way, where we want to group theories with a certain property in a way
that represents their level of complexity. A major advance in this direction was Shelah’s
classification theory, compiled in [27]. Shelah’s work introduced the notion of stable and
unstable theories, defined as follows.

A complete theory T is λ-stable if for everyM |= T and any A ⊆M with |A| = λ,
the set S(A), of complete types (see Section 2.3) over A, is of size no more than λ, otherwise
T is λ-unstable. The theory T is unstable if it is λ-unstable for all λ, otherwise T is stable.
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So stability is a combinatorial property of the models of the theory. Moreover,
stability has a lot of interesting characterizations, with the one most relevant to this
work being that T is stable if and only if it doesn’t contain a formula with the order
property, defined as follows. A formula ϕ(x; y) has the order property if there exist sequences
〈ai : i < ω〉, 〈bj : j < ω〉 in a structureM such that i 6 j if and only ifM |= ϕ(ai; bj) (A
formula with the order property is also called an unstable formula).

For example, the theory of a non-abelian free group is stable [26], while Peano
arithmetic is unstable.

The theories with the order property, that is, the unstable theories, can be further
characterized as the complete theories with at least one of two important properties, the
independence property (IP) and the strict order property (SOP).

Definition A. Let T be a complete theory, and ϕ(x; y) be a formula of T . The formula
ϕ(x; y) has the independence property (IP) if in some modelM |= T there exists a sequence
〈ai : i < ω〉 such that for all σ, τ ∈ [ω]<ℵ0 (the set of finite subsets of ω) with σ ∩ τ = ∅,
and all i

∃x((i ∈ σ →M |= ϕ(x; ai)) ∧ (j ∈ τ →M |= ¬ϕ(x; aj))).

We say that T has IP if there is a formula of T that has IP.

Definition B. Let T be a complete theory, and ϕ(x; y) be a formula of T . The formula
ϕ(x; y) has the strict order property (SOP) if in some modelM |= T there exists a sequence
〈ai : i < ω〉 such that for all i, j

i < j ↔M |= ∃x(¬ϕ(x; ai) ∧ ϕ(x; aj)).

We say that T has SOP if there is a formula of T that has SOP.

For example any theory of the random graph has the independence property but
does not have the strict order property, on the other hand a linear order like Th((Q, <))
has the strict order property.

So we have
unstable = OP = SOP ∪ IP.

The further classification of stable complete theories has seen a fruitful development
over the years, see [27], while the knowledge about unstable complete theories had not
seen nearly as much advances.

With an approach independent of Shelah’s work, Keisler developed another way
of classifying complete theories using saturation of regular ultrapowers, that of Keisler’s
order.
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Definition C (Keisler’s Order [11]). Let T1, T2 be complete, countable first-order theories.
We say that T1 P T2 if for all infinite λ, all M1 |= T1,M2 |= T2, and any regular ultrafilter
D over λ, if Mλ

2 /D is λ+-saturated then Mλ
1 /D must be λ+-saturated.

Keisler’s order is actually a preorder, but its equivalence classes are the interesting
objects. When we talk about Keisler’s order we will be always referring to the order
between its equivalence classes.

Keisler proved in the same paper the following result.

Theorem D. [11] Keisler’s order admits a minimum class and a maximum class.

The following informal diagram depicts the structure of Keisler’s order known at
the time.

Tmin P · · ·??? · · · P Tmax.

A few years after Keisler’s development, Shelah, while enriching the known clas-
sification of Keisler’s order classes, showed that this order also witnesses the change in
complexity between stable and unstable theories.

Theorem E ([27], Chapter VI). Keisler’s order admits classes Tmin,T2 and Tmax that
relate as follows

1. Tmin /T2;

2. T2 /Tmax;

3. Tmin /Tmax.

In more details:

• the class Tmin consists of the complete theories without the finite cover property;

• the class T2 consists of the stable complete theories with the finite cover property;

• for the class Tmax we don’t have a model theoretic characterization to this day, but
it was known that it contains all linear orders.

In addition, Tmin ∪T2 is precisely the set of the stable complete theories.

We can update our diagram with this new information.

Tmin /T2 / · · ·??? · · · P Tmax.

Later Shelah proved in [28] that a weaker property, SOP3, is also sufficient for a
theory to be in the maximum class of Keisler’s order.
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This result pointed to Keisler’s order as a promising way of attacking the problem
of classifying unstable theories.

In this context, the work of Malliaris and Shelah in [20] showed that an even weaker
property, SOP2, is sufficient for a complete theory to be in the maximum class. The details
are expanded in section 4.1.

Malliaris and Shelah continue to this day the project of classifying the structure of
Keisler’s order, with fruitful results such as the existence of a minimum unstable class T3

right after T2 [17, Section 5] and that there are an infinite number of classes [21].

1.3 Why trees and cuts?

In chapter 5 we will study, given a regular ultrafilter D over λ, what happens to
the cuts in (N, <)λ/D, and conclude that as long as D has λ+-treetops, a property about
the trees living in the ultrapowers using D, then (N, <)λ/D does not have any cut with
size less than or equal to λ.

A natural question is why are we searching for a relation between cuts and trees.
The motivation behind it is our objective of section 4.1, that is to show that any theory
with SOP2 is in the maximum class of Keisler’s order.

First let us look at the property SOP2.

Definition A. The theory T has SOP2 if there is a formula ψ(x; ȳ) such that in some
(equivalently any) modelM |= T there exists {āη : η ∈ <κµ}, called an SOP2-tree for ψ,
such that:

1. for η, ρ ∈ <κµ incompatible, that is ¬(η P ρ) ∧ ¬(ρ P η), we have that {ψ(x; āη),
ψ(x; āρ)} is inconsistent.

2. for η ∈ κµ, {ψ(x; āη�i) : i < κ} is consistent, making it a type.

So, inM, we have the tree <κµ and for each node η ∈ <κµ we associate a value āη.
Elements of different branches are mutually inconsistent parameters for ψ, and the set of
all elements of a branch of length κ is a set of mutually consistent parameters for ψ.

By the definition of SOP2 we can see why it is natural to look at the trees inside
our theory. And, not surprisingly, we will prove a theorem about the relation between the
tree property stated before and SOP2, namely that for a complete theory T with SOP2

and a regular ultrafilter D, the ultrafilter D has λ+-treetops if and only if every SOP2-type
is realized in any ultrapower of models of T by D, where SOP2-types are special types
constructed using a formula with SOP2.
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Given that the set of all SOP2-types is just a subset of the set of all types we
have that saturation implies realization of all SOP2-types, and by the theorem mentioned
above, it implies that D has λ+-treetops.

So

T is λ+-saturated by D ⇒ D realizes all SOP2-types⇒ D has λ+-treetops.

The definition of “T is λ+-saturated by D” will be given in Section 4.1, but think
of the intuitive idea that every ultrapower of a model of T by D is λ+-saturated. Now,
to understand where the cuts come from we need to look at Keisler’s set theoretic
characterization of the maximum class.

Theorem B (Keisler’s characterization of the maximum class). There is a maximum
class in Keisler’s order, which consists precisely of those complete theories T such that for
any regular ultrafilter D over λ, we have

T is λ+-saturated by D ⇔ D is λ+-good.

The definition of λ+-good ultrafilter will be given in Section 4.1. Nonetheless, the
important property proved in there is that D is λ+-good if and only if there are no cuts in
(N, <)I/D of size less than or equal to λ (this last property will be denoted by C(D) = ∅).

Since our objective is to show that any complete theory T with SOP2 is in the
maximum class, we need to show that for any regular ultrafilter D over λ we have that

T is λ+-saturated by D ⇔ D is λ+-good.

By the definition of λ+-good ultrafilters it will be easy to prove that λ+-goodness
implies λ+-saturation. So the difficult part will be to prove that λ+-saturation implies
λ+-goodness.

On the one hand we have that λ+-saturation implies λ+-treetops and on the other
we have that D is λ+-good if and only if C(D) = ∅. So the only bridge left is to show
that λ+-treetops implies that C(D) = ∅. This is why the objective of chapter 5 is to show
exactly that.
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Figure 1 – Chain of consequences from saturation to goodness

T is λ+-saturated by D

D realizes all SOP2-types

D has λ+-treetops

C(D) = ∅

D is λ+-good

Chap.5
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2 Preliminaries

2.1 Theories and Models
First, we need to define some essential objects of model theory, languages, which

enable us to construct formulas, and structures, which give semantic meaning to those
formulas.

Definition 2.1.1 ([22], Definition 1.1.1). A language L is given by specifying the following
data:

1. a set of function symbols F and positive integers nf for each f ∈ F ;

2. a set of relation symbols R and positive integers nR for each R ∈ R;

3. a set of constant symbols C.

The numbers nf and nR tell us that f is a function of nf variables and R is an
nR-ary relation.

Any or all the sets F ,R, and C may be empty. For example the language of ZFC has
only one binary relation symbol and no function or constant symbols, namely LZFC = {∈}.

With a language L, we can define the notion of a structure using that language.

Definition 2.1.2 ([22], Definition 1.1.2). An L-structure M is given by the following
data:

1. a nonempty set M called the universe, domain, or underlying set ofM;

2. a function fM : Mnf →M for each f ∈ F ;

3. a set RM ⊆MnR for each R ∈ R;

4. an element cM ∈M for each c ∈ C.

We refer to fM, RM, and cM as the interpretations of the symbols f,R, and c. We often
write the structure as M = (M, fM, RM, cM : f ∈ F , R ∈ R, c ∈ C). We will use the
notation A,B,M,N, . . . to refer to the underlying sets of the structures A,B,M,N , . . ..

With this in mind we use the language L to create formulas describing, in first-order,
properties of L-structures. Formulas will be strings of symbols built using the symbols of
L, variable symbols v1, v2, . . . , the equality symbol =, the Boolean connectives ∧,∨, and
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¬, which we read as “and”, “or”, and “not”, the quantifiers ∃ and ∀, which we read as
“there exists” and “for all”, and parentheses (, ).

Definition 2.1.3 ([22], Definition 1.1.4). The set of L-terms is the smallest set T such
that

1. c ∈ T for each constant symbol c ∈ C,

2. each variable symbol vi ∈ T for i = 1, 2, . . . , and

3. if t1, . . . , tnf ∈ T and f ∈ F , then f(t1, . . . , tnf ) ∈ T .

Suppose thatM is an L-structure and that t is a term built using variables from
v̄ = (vi1 , . . . , vim). We want to interpret t as a function tM : Mm →M . For s a subterm
of t and ā = (ai1 , . . . , aim) ∈M , we inductively define sM(ā) as follows:

1. if s is a constant symbol c, then sM(ā) = cM;

2. if s is the variable vij , then sM(ā) = aij ;

3. if s is the term f(t1, . . . , tnf ), where f is a function symbol of L and t1, . . . , tnf are
terms, then sM(ā) = fM(tM1 (ā), . . . , tMnf (ā)).

The function tM is defined by ā 7→ tM(ā).

We are now ready to define L-formulas.

Definition 2.1.4 ([22], Definition 1.1.5). We say that ϕ is an atomic L-formula if ϕ is
either

1. t1 = t2, where t1 and t2 are terms, or

2. R(t1, . . . , tnR), where R ∈ R and t1, . . . , tnR are terms.

The set of L-formulas is the smallest set W containing the atomic formulas such that

1. if ϕ is in W , then ¬ϕ is in W ,

2. if ϕ and ψ are in W , then (ϕ ∧ ψ) and (ϕ ∨ ψ) are in W , and

3. if ϕ is in W , then ∃viϕ and ∀viϕ are in W .

Throughout this dissertation it is assumed that we are always working in first-order
logic, that is, we can use quantifiers in the construction of formulas; however, any quantifier
is bounded to only one universe. For example, let L = {+, ·, 0, 1} be the language of
arithmetic, andM the L-structure (N,+, ·, 0, 1). We cannot have a formula of the form
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∃X(X = (0, 1, 1 + 1)) translate to “there exists a sequence of natural numbers X such that
X = (0, 1, 2)”, because the quantifier ∃ ranges only in N and not on the set of sequences
of N.

We say that a variable v occurs freely in a formula ϕ if it is not inside the scope of
a ∃v or ∀v quantifier; otherwise, we say that it is bound. For example, using the language
L = {0}, the variable v occurs freely in the formula v = 0 while it is bound in the formula
∃v(v = 0). We call a formula a sentence if it has no free variables.

LetM be an L-structure. We will define a complete notion of truth inside ofM.
By that I mean that each L-sentence will either true or false inside ofM. On the other
hand, if ϕ is a formula with free variables v1, . . . , vn, we will think of ϕ as expressing a
property of elements ofMn. We often write ϕ(v1, . . . , vn) to make explicit the free variables
in ϕ. We must define what it means for ϕ(v1, . . . , vn) to hold of (a1, . . . , an) ∈Mn.

Definition 2.1.5. Let ϕ be a formula with free variables from v̄ = (vi1 , . . . , vim), and let
ā = (ai1 , . . . , aim) ∈Mm. We inductively defineM |= ϕ(ā) as follows:

1. if ϕ is t1 = t2, thenM |= ϕ(ā) if tM1 (ā) = tM2 (ā);

2. if ϕ is R(t1, . . . , tnR), thenM |= ϕ(ā) if (tM1 (ā), . . . , tMnR(ā) ∈ RM;

3. if ϕ is ¬ψ, thenM |= ϕ(ā) ifM 6|= ψ(ā);

4. if ϕ is (ψ ∧ θ), thenM |= ϕ(ā) ifM |= ψ(ā) andM |= θ(ā);

5. if ϕ is (ψ ∨ θ), thenM |= ϕ(ā) ifM |= ψ(ā) orM |= θ(ā);

6. if ϕ is ∃vj(ψ(v̄, vj)), thenM |= ϕ(ā) if there is b ∈M such thatM |= ψ(ā, b);

7. if ϕ is ∀vj(ψ(v̄, vj)), thenM |= ϕ(ā) ifM |= ψ(ā, b) for all b ∈M .

IfM |= ϕ(ā) we say thatM satisfies ϕ(ā) or ϕ(ā) is true inM.

We will use throughout the dissertation some common useful abbreviations. For
example ϕ → ψ as an abbreviation for ¬ϕ ∨ ψ, and ∧n

i=1 ϕi as an abbreviation for
ϕ1 ∧ . . . ∧ ϕn.

Let L be a language. An L-theory T is simply a set of L-sentences. We say that an
L-structureM is a model of T and writeM |= T ifM |= ϕ for all sentences ϕ ∈ T .

LetM be an L-structure and A ⊆M . The language LA is defined as the language L
with the addition of a constant symbol for each element of A. The set ThA(M) is composed
of all LA-sentences ϕ such that M |= ϕ. We usually write Th(M) as the abbreviation
for Th∅(M). The set Th(M) is a straightforward example of a theory, becauseM is by
definition a model of Th(M).
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Definition 2.1.6. Let T be an L-theory. We say that T is satisfiable if T has a model.
We say that T is finitely satisfiable if every finite subset of T is satisfiable.

Let T be an L-theory and ϕ and L-sentence. We say that ϕ is true in T ifM |= ϕ

for all modelsM of T . If ϕ is true in T we write T |= ϕ. We now have a semantic lens
to view theories and sentences, given that to check if T |= ϕ we need to look at how the
models of T interpret the sentence ϕ.

Another important concept is that of a proof of a sentence ϕ from a theory T . A
proof of ϕ from T is a finite sequence of L-formulas ψ1, . . . , ψm such that ψm = ϕ and
ψi ∈ T or ψi follows from ψ1, . . . , ψi−1 by a simple logical rule for each i. An example of a
simple logical rule is modus ponens, where if we have ϕ ∈ T and (ϕ → ψ) ∈ T , then it
follows that ψ ∈ T . We write T ` ϕ if there is a proof of ϕ from T .

Definition 2.1.7. Let T be an L-theory. We say that T is inconsistent if T ` (ϕ ∧ ¬ϕ)
for some sentence ϕ, otherwise we say that T is consistent.

We now have a syntactic lens to view theories and sentences, given that to check if
T ` ϕ we need only to look at formulas through a mechanical process of simple logical
rules, devoid of any interpretation for the symbols of the language.

The following theorem states that, when working in first-order logic, the syntactic
notion and the semantic notion always agree with each other.

Theorem 2.1.8 (Gödel’s Completeness Theorem, [22], Theorem 2.1.2). Let T be an
L-theory and ϕ an L-sentence. Then T |= ϕ if and only if T ` ϕ.

A direct consequence of the completeness theorem is the equivalence between
consistency and satisfiability.

Corollary 2.1.9 ([22], Corollary 2.1.3). Let T be an L-theory. Then T is consistent if
and only if T is satisfiable.

Now we have a direct consequence of this corollary that is important enough to be
stated as a theorem.

Theorem 2.1.10 (Compactness Theorem, [22], Theorem 2.1.4). Let T be an L-theory.
Then T is satisfiable if and only if T is finitely satisfiable.

This theorem is a cornerstone of model theory as it enables us to assert the existence
of a model for a theory T even when we cannot construct such a model, as long as we
construct a model for each finite subset of T .

Definition 2.1.11 ([22], Definition 2.2.1). An L-theory T is called complete if for any
L-sentence ϕ either T |= ϕ or T |= ¬ϕ.
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Looking back at the theory T := Th(M) that we defined before, it is a complete
theory, because for every L-sentence ϕ, eitherM |= ϕ orM |= ¬ϕ, so either ϕ ∈ T or
¬ϕ ∈ T .

Now we define the usual morphisms of model theory and how they relate with each
other.

Definition 2.1.12 ([22], Definition 1.1.3). LetM and N be L-structures with universes
M and N , respectively. An L-embedding η : M → N is a one-to-one map η : M → N

that preserves the interpretation of all the symbols of L. More precisely:

1. η(fM(m1, . . . ,ml)) = fN (η(m1), . . . , η(ml)) for all f function symbols of L and
m1, . . . ,ml ∈M .

2. (m1, . . . ,ml) ∈ RM if and only if (η(m1), . . . , η(ml)) ∈ RN for all R relation symbols
of L and m1, . . . ,ml ∈M .

3. η(cM) = cN for all c constant symbols of L.

A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the inclusion map is
an L-embedding, we say either thatM is a substructure of N or that N is an extension
ofM.

Definition 2.1.13 ([22], Definition 2.3.1). If M and N are L-structures, then an L-
embedding η :M→N is called an elementary embedding if

M |= ϕ(m1, . . . ,ml)⇐⇒ N |= ϕ(η(m1), . . . , η(ml))

for all L-formulas ϕ(v1, . . . , vl) and all m1, . . . ,ml ∈ M . If M is a substructure of N ,
we say that it is an elementary substructure, and writeM ≺ N if the inclusion map is
elementary. We also say that N is an elementary extension ofM.

Definition 2.1.14 ([22], Definition 1.1.9). We say that two L-structuresM and N are
elementarily equivalent and writeM≡ N if

M |= ϕ⇐⇒ N |= ϕ

for all L-sentences ϕ.

Proposition 2.1.15 ([22], Theorem 1.1.10). Suppose that η :M→N is an isomorphism.
ThenM≡ N .

Remark. On the other hand being elementarily equivalent does not imply being isomorphic.
For example, let D be a non-principal ultrafilter over ω, then by Łoś’s Theorem (stated in
Section 2.2) we have that N ≡ Nω/D, but they are not isomorphic (Nω/D has cardinality
2ℵ0).
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Definition 2.1.16 ([22], Exercise 1.4.15). Let L and L′ be languages such that L ⊆ L′.
IfM′ is an L′-structure, then by ignoring the interpretation of the symbols in L′ \ L we
get an L-structureM. We callM a reduct ofM′ andM′ an expansion ofM.

2.2 Ultraproducts
In model theory we want to be able to construct new structures using known

structures as a base, and the ultraproduct construction is one such way. Ultraproducts will
be central for the definition of cofinality spectrum problems and Keisler’s Order, mainly
for their property of preserving truth of sentences, a consequence of the main theorem of
this section, Łoś’s Theorem.

To define ultraproducts we first need to define and explore the properties of filters.

Definition 2.2.1. Let I be a nonempty set. A set D ⊆ P(I) is said to be a filter over I
if:

1. I ∈ D;

2. if X, Y ∈ D, then X ∩ Y ∈ D;

3. if X ∈ D and X ⊆ Z ⊆ I, then Z ∈ D.

Definition 2.2.2. Let E be a subset of P(I). By the filter generated by E we mean the
intersection of all filters over I which include E, that is,

D =
⋂
{F ⊆ P(I) : E ⊆ F and F is a filter over I}.

If a filter D is not P(I) then D is called a proper filter. By the third property of
filters we can see that being a proper filter is the same as not having ∅ in the filter, and
by the second property of filters we have that ∅ /∈ D if and only if every finite intersection
of elements of D is nonempty, so this prompts a definition.

Definition 2.2.3. A set X is said to have the finite intersection property if the intersection
of any finite number of elements of X is nonempty.

So by the discussion above we have that D is a proper filter if and only if D is a
filter with the finite intersection property.

We can also strengthen this property asking that the intersection be not only
nonempty but also infinite. This strengthening will be necessary to define the cardinal
characteristic p.

Definition 2.2.4. A set X is said to have the strong finite intersection property if the
intersection of any finite number of elements of X is infinite.
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We can add a completeness property when talking about filters, asking that, for a
set X ∈ P(I), we have that X is in D or its complement, I/X, is in D. A filter that is
proper and complete is called an ultrafilter.

Definition 2.2.5. Let D be a filter over I. D is said to be an ultrafilter over I if for all
X ∈ P(I),

X ∈ D ←→ I \X /∈ D.

Proposition 2.2.6 ([3], Proposition 4.1.2). D is an ultrafilter over I if and only if D is
a maximal proper filter over I.

As long as the axiom of choice is true we can always extend sets with the finite
intersection property into an ultrafilter, using Zorn’s Lemma.

Theorem 2.2.7 ([3], Proposition 4.1.3). If E ⊂ P(I) and E has the finite intersection
property, then there exists an ultrafilter D over I such that E ⊆ D.

Corollary 2.2.8 ([3], Corollary 4.1.4). Any proper filter over I can be extended to an
ultrafilter over I.

Suppose I is a nonempty set, D is a proper filter over I and for each i ∈ I, Ai is a
nonempty set. Let

C =
∏
i∈I
Ai

be the Cartesian product of these sets. Given the ordered structure of the Cartesian
product, each ordered I-tuple in C can be seen as a function f with domain I such that
for each i ∈ I, f(i) ∈ Ai. For two functions f, g ∈ C, we say that f and g are D-equivalent,
denoted f ≡D g, if and only if

{i ∈ I : f(i) = g(i)} ∈ D.

Proposition 2.2.9 ([3], Proposition 4.1.5). The relation ≡D is an equivalence relation
over the set C.

When using the equivalence relation ≡D, the filter D is, in a sense, telling us which
subsets of I are “large”, given that they tell us how many indexes have to agree for two
elements to be considered equal to the equivalence relation. The subsets not in D are the
“null” sets in this context, that is, the sets where even if the elements disagree in them, it
does not matter for the equivalence relation.

Let f/D be the equivalence class of f , that is,

f/D = {g ∈ C : f ≡D g}.
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Definition 2.2.10. The reduced product of Ai modulo D, denoted ∏
i∈I Ai/D, is the set

of all equivalence classes of ≡D. That is,

∏
i∈I
Ai/D = {f/D : f ∈

∏
i∈I
Ai}.

In the special case where D is an ultrafilter over I, the reduced product ∏
i∈I Ai/D is

called an ultraproduct. In the case when all the sets Ai are the same, say Ai = A, the
reduced product may be written AI/D, and it is called the reduced power of A modulo
D. Again, in the special case where D is an ultrafilter over I, the reduced power AI/D is
called an ultrapower.

Now we can define the same concepts for structures.

Definition 2.2.11 ([3], Definition 4.1.6). Let L be a language, I be a nonempty set, D
be a proper filter over I, and for each i ∈ I we let Ai be an L-structure with universe Ai.
The reduced product ∏

i∈I Ai/D is the L-structure described as follows:

1. The universe of ∏
i∈I Ai/D is ∏

i∈I Ai/D.

2. Let R be a n-ary relation symbol of L. The interpretation of R in ∏
i∈I Ai/D is the

relation S such that

S(f 1/D, . . . , fn/D)←→ {i ∈ I : RAi(f 1(i), . . . , fn(i))} ∈ D.

3. Let F be a n-ary function symbol of L. The interpretation of F in ∏
i∈I Ai/D is the

function G such that

G(f 1/D, . . . , fn/D) = 〈FAi(f 1(i), . . . , fn(i)) : i ∈ I〉/D.

4. Let c be a constant symbol of L. The interpretation of c in ∏
i∈I Ai/D is the constant

b ∈ ∏
i∈I Ai/D such that

b = 〈cAi : i ∈ I〉/D.

This definition is well-defined because both S and G do not depend on the repre-
sentatives f 1, . . . , fn chosen for f 1/D, . . . , fn/D.

As before, in the special case where D is an ultrafilter over I, the reduced product∏
i∈I Ai/D is called an ultraproduct. In the case when all the models Ai are the same, say
Ai = A, the reduced product may be written AI/D, and it is called the reduced power
of A modulo D. Again, in the special case where D is an ultrafilter over I, the reduced
power AI/D is called an ultrapower.
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Theorem 2.2.12 (Expansion Theorem, [3], Theorem 4.1.8). Let L and L′ be languages
such that L ⊆ L′. Let I be an nonempty set and for each i ∈ I let Ai be a model for L and
Bi an expansion of Ai to L′. Let D be a filter over I. Then the reduced product ∏

i∈I Bi/D
is an expansion of the reduced product ∏

i∈I Ai/D to L′.

This theorem says that the following diagram commutes:

∏
i∈I Ai/D

∏
i∈I Bi/D

Ai Bi

The following lemma gives us a powerful way of checking the value of terms when
applied to elements of the ultraproduct.

Lemma 2.2.13. Let D be an ultrafilter over I, and for each i ∈ I let Ai be a model for
L. Then, for any term t(x1, . . . , xn) of L and elements f 1/D, . . . , fn/D ∈ ∏

i∈I Ai/D, we
have

t
∏
i∈I Ai/D(f 1/D, . . . , fn/D) = 〈tAi(f 1(i), . . . , fn(i)) : i ∈ I〉/D.

We can use this lemma to show that the truth value of any sentence in ∏
i∈I Ai/D

is given by how many of the index structures Ai agrees with the sentence, giving us a
fundamental result of ultraproducts.

Theorem 2.2.14 (Łoś’s Theorem). Let D be an ultrafilter over I, and for each i ∈ I let Ai
be a model for L. Then, for any formula ϕ(x1, . . . , xn) of L and elements f 1/D, . . . , fn/D ∈∏
i∈I Ai/D, we have

∏
i∈I
Ai/D |= ϕ(f 1/D, . . . , fn/D)⇐⇒ {i ∈ I : Ai |= ϕ(f 1(i), . . . , fn(i))} ∈ D.

Corollary 2.2.15 ([3], Corollary 4.1.10). Let AI/D be an ultrapower of A. Then A ≡
AI/D.

2.3 Types

Types are a tool that enable us to, among other properties, construct desired
models and classify theories. In this section we will define and state important properties
of types. At the end we will present an important example of the use of types in the
context of linear orders. It will be a useful example as we will always work with linear
orders throughout the dissertation.
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Definition 2.3.1 ([22], Definition 4.1.1). LetM be an L-structure, A be a subset of the
universe M and p be a set of LA-formulas ϕ with n free variables v1, . . . , vn. We call p an
n-type over A if p ∪ ThA(M) is satisfiable. We say that p is a complete n-type if for all
LA-formulas ϕ with n free variables we have ϕ ∈ p or ¬ϕ ∈ p. We let SMn (A) be the set of
all complete n-types over A, and SM(A) be the set of all complete types over A, that is,
SM(A) = ⋃

n>1 S
M
n (A).

By the compactness theorem, we could replace “p ∪ ThA(M) is satisfiable” by
“every finite subset of p ∪ ThA(M) is satisfiable”.

Definition 2.3.2 ([22], Definition 4.1.2). If p is an n-type over A, we say that ā ∈ Mn

realizes p ifM |= ϕ(ā) for all ϕ ∈ p. If p is not realized inM we say thatM omits p.

We can redefine p being a type as “all finite subsets of p are realized inM”.

We can also label some special types by how they are constructed.

Definition 2.3.3. LetM be an L-structure, A be a subset of the universe M , p be an
n-type over A, and ψ(v1, . . . , vn;u1, . . . , um) be a formula with n+m free variables. We
say that p is a ψ-type if there exists a set of parameters B ⊆ Am such that p = {ψ(v̄; āi) :
āi ∈ B}.

Next we state some results that enable us to view types as representatives for
elements that may not exist inM but that do exist in some elementary extension ofM.

Theorem 2.3.4 ([22], Proposition 4.1.3). Let M be an L-structure, A ⊆ M , and p an
n-type over A. There is an elementary extension N ofM such that p is realized in N .

Define tpM(m̄/A) := {ϕ(v1, . . . , vn) ∈ LA : M |= ϕ(m1, . . . ,mn)}. We say that
tpM(m̄/A) is the complete type over A generated by m̄.

Let N be an elementary extension ofM and A ⊆M . Then ThA(M) = ThA(N ).
Thus SMn (A) = SNn (A). With this, Theorem 2.3.4 yields a characterization of complete
types.

Corollary 2.3.5 ([22], Corollary 4.1.4). Let M be an L-structure, A ⊆ M and p an
n-type over A. p ∈ SMn (A) if and only if there is an elementary extension N ofM and
b̄ ∈ Nn such that p = tpN (b̄/A).

So every complete type of a structure is generated by a single tuple of elements in
a sufficiently large elementary extension of that structure.

Theorem 2.3.6 ([22], Proposition 4.1.5). Let M be an L-structure and A ⊆ M . Let
ā, b̄ ∈Mn such that tpM(ā/A) = tpM(b̄/A). Then, there exists an elementary extension N
ofM and an automorphism σ of N fixing all elements of A such that σ(ā) = b̄.
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Inspired by the topology on the space of complete types with basic open sets
[ϕ] = {p : ϕ ∈ p} we have the following definition.

Definition 2.3.7 ([22], Definition 4.2.1). Let T be an L-theory, ϕ(v1, · · · , vn) an L-formula
such that T ∪ {ϕ(v̄)} is satisfiable, and p an n-type. We say that ϕ isolates p if

T |= ∀v̄(ϕ(v̄)→ ψ(v̄))

for all ψ ∈ p.

Note that if p is a complete type and ϕ(v̄) isolates p, then

(T |= ϕ(v̄)→ ψ(v̄))⇐⇒ ψ(v̄) ∈ p

for all L-formulas ψ(v̄).

So p is non isolated if and only if for every L-formula ϕ(v̄) which is consistent with
T , there exists ψ(v̄) ∈ p such that ϕ(v̄) ∧ ¬ψ(v̄) is consistent with T .

Proposition 2.3.8 ([22], Proposition 4.2.2). If ϕ(v̄) isolates p, then p is realized in any
model of T ∪ {∃v̄ϕ(v̄)}. In particular, if T is complete, then every isolated type is realized.

Let T be a complete L-theory and p an n-type. This proposition says that if T has
a model that omits p then p is non isolated. The converse of this property is also true for
any consistent theory in a countable language. Even though it will not be useful for this
dissertation, it is stated for compilation purposes.

Theorem 2.3.9 (Omitting types theorem). Let L be a countable language, T an L-theory,
and p a non isolated n-type. Then there is a countableM |= T omitting p.

Now we define the property of saturation. It is an essential property that will enable
us to make strong characterizations in the future.

Definition 2.3.10 ([22], Definition 4.3.1). Let κ be an infinite cardinal and T a theory.
We say thatM |= T is κ-saturated if, for all A ⊆M , if |A| < κ and p ∈ SMn (A), then p is
realized inM.

We say thatM is saturated if it is |M |-saturated.

Proposition 2.3.11 ([22], Proposition 4.3.2). Let κ > ℵ0. The following are equivalent:

1. M is κ-saturated;

2. if A ⊆ M with |A| < κ and p is a (possibly incomplete) n-type over A, then p is
realized inM;

3. if A ⊆M with |A| < κ and p ∈ SM1 (A), then p is realized inM.
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So we need only look at complete 1-types to determine if a modelM is κ-saturated.

Proposition 2.3.12 ([22], Corollary 4.3.5). IfM,N |= T are countable saturated models,
thenM∼= N .

Another important property that relates closely to saturation is compactness.

Definition 2.3.13 ([27], Chapter I, Definition 1.2). A structureM is λ-compact if every
type inM of cardinality less than λ is realized inM.

Lemma 2.3.14 ([27], Chapter I, Theorem 1.9). Let L be a language and λ be a cardinal
such that λ > |L|. Then for any L-structureM, we have thatM is λ-compact if and only
if it is λ-saturated.

The usefulness of this lemma is that we will, in general, show that a structure
is λ-saturated by proving that it is λ-compact, as long as the hypothesis apply. Given
that we will only work with theories in countable languages, we have, for any infinite
cardinal λ, that λ+ > |L|. Then, this lemma enables us to work with λ+-compactness and
λ+-saturation interchangeably. This will be useful in chapter 4.1, as λ+-saturation will be
very important there.

Example 2.3.15 (Dense Linear Orders). Let L = {<}. Let M = (M,<) be a dense
linear order and let A ⊆ M . Let p ∈ SM1 (A). For every a in A, because p is complete,
exactly one of the formulas v = a, v < a or v > a is in p.

With this in mind we can, for every p ∈ SM1 (A), define a pre-cut 1 on (A,<) by
Lp = {a ∈ A : 〈a < v〉 ∈ p} and Up = {a ∈ A : 〈a > v〉 ∈ p}, where one of two cases is
true, or (Lp, Up) is a cut in A, that is, there is not an element of A in between both sets,
or there is exactly one a ∈ A where a is between both set and the formula v = a is in p.
On the other hand, every pre-cut (L,U) with the same properties (being a cut or missing
one element) determines a type p with Lp = L and Up = U , by the use of the density
property. Since the atomic formulas with one free variable on LA are only of the form
(v = a), (v < a) or (v > a), this determination is unique and well defined.

Remark 2.3.16. The representation of types by cuts is true for every linear order. Density
is only used to ensure characterization. The fact that even in a non dense linear order like
(N, <) we can represent types by cuts will be important in Section 4.1.

With this we can show that (Q, <) and any other dense linear order, are saturated.
By proposition 2.3.11 we need only to search for 1-types. Since |Q| = ℵ0, suppose A ⊆ Q is
finite, in particular A = {a1, · · · , am} with a1 < · · · < am. As seen above, we can find all
complete 1-types over A by describing all possible cuts of A. We have m complete types
1 The definition of pre-cut and cut used in this example can be found in Chapter 3, Definition 3.0.1
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realized in A by v = ak for each k with L = {a ∈ A : a < ak} and U = {a ∈ A : ak < a},
and m+ 1 complete types not realized in A with, for each k ∈ {0, · · · ,m}, L = {a ∈ A :
a < ak+ak+1

2 } and U = {a ∈ A : ak+ak+1
2 < a}, defining a0 := 0 and am+1 := am. (The use

of ak+ak+1
2 is arbitrary, any element of Q defining the same cut can be chosen.) The types

realized in A are obviously realized in Q, for the ones not realized in A we have three cases,
all using the fact that L always has a largest element l, and U has a least element u.

1. For L = ∅ and U = A, the formula v < u isolates the type;

2. For L = A and U = ∅, the formula l < v isolates the type;

3. For L 6= ∅ and U 6= ∅, the formula l < v < u isolates the type.

Then, by proposition 2.3.8, every complete 1-type over A is realized in Q, since A was
arbitrary we conclude that (Q, <) is saturated.

2.4 Forcing
The method of forcing is a tool, similar to ultraproducts, used to construct new

structures from known ones. Forcing will be one of the many tools used in the proof of
p = t, presented in section 4.2.

Definition 2.4.1 ([13], Definition III.3.1). (P,6, 1) is a forcing poset if (P,6) is a poset
with 1 as its maximum.

Let p, q ∈ P. In this context q < p reads q is stronger than (or extends) p. If an
r ∈ P with r 6 q and r 6 p does not exist we say that p and q are incompatible (p⊥q),
otherwise they are compatible.

A subset D ⊆ P is said to be dense if for any p ∈ P there is a q ∈ D such that
q 6 p.

Now we introduce a new, more general definition of filters in the context of forcing
posets.

Definition 2.4.2 ([13], Definition III.3.10). A subset D ⊆ P is a filter on P if:

1. 1 ∈ D;

2. Any two elements p, q ∈ D are compatible inside of D, that is, there is an r ∈ D
such that r 6 p and r 6 q;

3. If p ∈ D, q ∈ P and p 6 q then q ∈ D. (Upward closed)
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Remark. A filter with the definition introduced in the ultraproducts section is simply a
filter with the forcing poset definition using (P,6) = (P(I),⊆) and 1 = I.

Definition 2.4.3 ([13], Definition IV.2.2). LetM be a transitive model and (P,6, 1) ∈M
be a forcing poset. A filter G on P is said to be P-generic overM if G ∩D 6= ∅ for all
dense D ⊆ P such that D ∈M .

Lemma 2.4.4 ([13], Lemma IV.2.3). LetM be a countable transitive model for ZF − P
and (P,6, 1) ∈ M be a forcing poset. Then for every p ∈ P, there exists a filter G on P

such that p ∈ G and G is P-generic.

This lemma is essential for the construction of forcing as it guarantees the existence
of generic filters. A reader unfamiliar with model theory may find it strange that we assume
a seemingly strong hypothesis of countability; nevertheless it is conveniently resolved using
the strong result of the Löwenheim-Skolem Theorem, which enables us to go from any
infinite model to a countable model.

An element r ∈ P is an atom of (P,6, 1) if there are no p, q 6 r with p⊥q. (P,6, 1)
is atomless if it doesn’t contain an atom.

Lemma 2.4.5 ([13], Lemma IV.2.4). If (P,6, 1) is atomless and the filter G is P-generic
overM, then G /∈M .

What we want to do now is use a generic filter G to extend our ZFC modelM to
a ZFC modelM[G] where G, and all the elements that it implies, exist.

Assuming thatM is a model of ZFC, then we wantM[G] to be the smallest model
of ZFC containing M ∪ {G} as a subset of it. The intuition behind the construction of
M[G] will be, in a way, similar to that of field extensions. To illustrate let us look at
Q(
√

2).

We can think of Q(
√

2) as the field closure of Q ∪ {
√

2}, that is, the smallest field
that contains Q ∪ {

√
2}, namely Q(

√
2) = {a + b

√
2 : a, b ∈ Q}. However we can take

another approach for the construction of Q(
√

2), using the set of polynomials Q[x]. Even
though

√
2 is not in Q, we can look at its minimal polynomial in Q[x], namely x2 − 2, as

a sort of “name” for
√

2 (For this context we will have a name associated with multiple
values, namely all of its roots, but this is a problem that will not exist in the case of
forcing), and as we know, the quotient of Q[x] by the ideal generated by x2 − 2, that is
Q[x]/(x2 − 2), is isomorphic to Q(

√
2). So we could use this construction as the definition

of Q(
√

2).

For the construction ofM[G] we will do something similar. There will be a set of
special elements MP ⊂M , called the set of P-names in M , and a value function outside of
M dependent on G, val(x,G), which associates with each name its unique value inM[G].



2.4. Forcing 37

The universe ofM[G] will be, by definition, the set

M [G] = {val(x,G) : x ∈M (P)},

that is the set of values of all the P-names in M , using G as the parameter. It can be
shown that ifM is a model of ZFC, thenM[G] is the smallest model of ZFC containing
M ∪ {G} as a subset of it, as desired. For any element x ∈M [G] we will use the notation
x̃ to represent a name for it (The value of a name is unique, however there can be lots of
names with the same value; nonetheless, we can always select one of them).

Another desired property of this construction is that we want to be able to reason
about sentences inM[G], even inside ofM, but the fact that all the names live in M is
not sufficient for this; we have to, in a way, be able to reason about the value of a name
even inside ofM. What will enable us to do this is the forcing relation.

The set FLMP , called the P forcing language in M , is the set of all the formulas
using the binary relation ∈ and P-names in M as constant symbols.

Definition 2.4.6 ([13], Definition IV.2.22). LetM be a countable transitive model of
ZF −P , let (P,6, 1) ∈M be a forcing poset and ψ be a sentence of FLMP . Then p 
P,M ψ

holds ifM[G] |= ψ for all filters G on P such that p ∈ G and G is P-generic overM. We
omit the subscripts P,M on the 
 when they are clear from context. “p 
 ψ” is read “p
forces ψ”.

This definition seems, at first sight, to be far away from our objective, given that it
looks outside ofM and intoM[G], not only for one generic G but for all of them. However
it is true that, fixed a formula ψ, not only can we reason if p 
 ψ inside ofM, using the
definability lemma below, but it is also the case that any sentence true inM[G] is forced
by some p ∈ G, by the truth lemma below.

Theorem 2.4.7 (Definability Lemma; [13], Lemma IV.2.25). Let M be a countable
transitive model for ZF − P , let ϕ(x1, . . . , xn) be a formula in L = {∈}, with all free
variables shown. Then

{(p,P,6, 1, ϑ1, . . . , ϑn) : (P,6, 1) is a forcing poset ∧ p ∈ P∧

(P,6, 1) ∈M ∧ ϑ1, . . . , ϑn ∈MP ∧ p 
P,M ϕ(ϑ1, . . . , ϑn)}

is definable inM without parameters.

Theorem 2.4.8 (Truth Lemma; [13], Lemma IV.2.24). LetM be a countable transitive
model of ZF − P , let (P,6, 1) ∈M be a forcing poset, let ψ be a sentence of FLP ∩M ,
and let G be a P-generic filter overM. ThenM[G] |= ψ if and only if there is a p ∈ G
such that p 
 ψ.
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It is important to note the necessity of a fixed formula ψ for the definability lemma.
If we could define the forcing notion uniformly for all ψ, then the truth lemma would
imply that the formula ∃p ∈ G(p 
 ψ(x1, . . . , xn)) is a definition of truth inside ofM[G].
This would contradict Tarski’s undefinability theorem.
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3 The motivation behind Cofinality Spec-
trum Problems

Our objective in this chapter is to begin attacking one of the problems presented
in the introduction, that is to show that for any regular ultrafilter D that has the treetops
property it is also true that C(D) = ∅, and seeing how the idea of cofinality spectrum
problems comes naturally from some early results.

We’ll first formalize the objects presented in the introduction.

Let J be a linear order and C1, C2 ⊆ J . We say that C1 < C2 if for all s1 ∈ C1 and
s2 ∈ C2 we have s1 <J s2.

Definition 3.0.1. Let J be a linear order, and C1, C2 ⊆ J .

1. We say that (C1, C2) is a pre-cut of J if C1 <J C2, the set C1 is downward closed,
and the set C2 is upward closed.

2. We say that (C1, C2) is a cut of J if it is a pre-cut of J and J = C1 ∪ C2.

3. For a pre-cut (C1, C2) of J , we say that the cofinality of (C1, C2), denoted by
cf(C1, C2), is equal to (κ1, κ2) when

• κ1 is the cofinality of C1.

• κ2 is the coinitiality (or downward cofinality) of C2.

4. Suppose (C1, C2) is a pre-cut of J and cf(C1, C2) = (κ1, κ2).

• We say that the κ1-indexed sequence ¯̀= 〈`α : α < κ1〉 witnesses cf(C1) = κ1 if
¯̀ is <J -increasing and cofinal in C1.

• We say that the κ2-indexed sequence ū = 〈uβ : β < κ2〉 witnesses dcf(C2) = κ2

if ū is <J -decreasing and coinitial in C2.

• We say that (l̄, ū) witnesses cf(C1, C1) = (κ1, κ2) if l̄ witnesses cf(C1) = κ1 and
ū witnesses dcf(C2) = κ2.

5. We say that J has a (κ1, κ2)-cut if there exists a cut in J with cofinality (κ1, κ2).

Definition 3.0.2. Let D be an ultrafilter over an index I. Then

C(D) = {(κ1, κ2) : κ1, κ2 regular, κ1 + κ2 6 |I|, (N, <)I/D has a (κ1, κ2)-cut}.
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Definition 3.0.3. Let (L,<L) be a linear order and X be a set. We say that a subset
A ⊆ L is an initial segment of L if there is an element m ∈ L where A = {` ∈ L : ` <L m}.
We indicate by <(L,<L)X the set of all functions from an initial segment of L to X.

Definition 3.0.4 (Trees). Let (L,<) be a discrete linear order with first element and X
be a set. For a subset T of <LX we say that (T,⊆) is a tree if it is closed under initial
segments, that is, if t ∈ T and s ⊆ t, then s ∈ T . For any b ∈ T , we define the length of
b, denoted by lg(b), as min(L \ dom(b)), and we define the value of b, denoted val(b), as
b(max(dom(b))), that is, b(lg(b)− 1) (where lg(b)− 1 just means the predecessor of lg(b)).
We denote an arbitrary tree by (T,P).

Definition 3.0.5. LetM be a structure in a language L. We say thatM interprets a
tree if there exist L-formulas ϕT , ϕP that define inM sets TM,PM such that (TM,PM)
represents a tree inside ofM, that is, there exist inM definable sets LM, <M, XM such
thatM |= “(LM, <M) is a discrete linear order with first element, the set TM is a subset
of <L

M
XM closed by initial segments, and PM is the order by initial segment in TM”.

Note that for a structure to interpret a tree it needs to be a model of a rich enough
theory to be able to express and define the concepts of tree, linear order, etc., as required
by the definition above. For example, the structureM = (H(κ),∈) for some uncountable
cardinal κ, will be often used (cf. Theorem 3.0.10).

Definition 3.0.6 (Treetops). Let D be an ultrafilter over I and κ a regular cardinal. We
say that D has κ-treetops when for any structure M that interprets a tree (TM,PM),
for any regular cardinal γ < κ and any PN -increasing sequence 〈ai : i < γ〉 in (TN ,PN ),
where N =MI/D, there is a∗ ∈ TN such that ai PN a∗ for all i < γ.

Definition 3.0.7. We say that a filter D over I is κ-regular when there is a collection
X̄ = {Xi : i < κ} ⊆ D such that for each t ∈ I,

|{i < κ : t ∈ Xi}| < ℵ0.

That is, any infinite subset of X̄ has empty intersection. Such a collection is called a
κ-regularizing family. We call D regular when it is |I|-regular.

To recap, now with the objects formally defined, we want to show that given a
regular ultrafilter D over λ with λ+-treetops we have C(D) = ∅, that is, there are no cuts
of size less than or equal to λ in (N, <)λ/D.

Simplifying the problem, we can ask first if there are no symmetric cuts of size less
than or equal to λ. The following lemma will prove that there are indeed no symmetric
cuts. The method of the proof is very important as it will be a motivating factor for the
construction of cofinality spectrum problems and the same ideas will be used again in
later proofs found in chapter 5.
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Lemma 3.0.8. Let D be a regular ultrafilter over λ with λ+-treetops. Then, for every
regular κ < λ+, the set C(D) has no (κ, κ)-cuts.

Before we prove this theorem we need to lay some groundwork about the structures
used in the proof, but first lets see what is the idea behind the proof. We want to suppose
that there is a regular κ < λ+ such that there is a symmetric cut (κ, κ) in C(D), witnessed
by a pair of sequences (〈aα : α < κ〉, 〈bβ : β < κ〉) in (N, <)λ/D, and show by contradiction
that there is a tree in some ultraproduct of D with an increasing sequence of size κ that
does not have an upper bound. The way to do it is to construct a tree where the value
of its nodes is a pair of elements of (N, <)λ/D and any time we “go up” in the tree, the
value of the nodes gets closer together, that is, for x and y in the tree, if x / y, then we
have val(x) = (a, b) and val(y) = (c, d) with a < c < d < b. Given this tree, we will show
that there is a sequence of size κ of elements of this tree such that the value of the α
element of the sequence is the pair (aα, bα), that is, any time we “go up” in this sequence
the elements of the sequences 〈aα : α < κ〉 and 〈bα : α < κ〉 gets closer to the “center” of
the cut. If such a sequence exists than by treetops there would be an upper bound c∗, with
value (c∗(0), c∗(1)), for this sequence inside this tree; however, by the definition of our tree
this would imply that aα < c∗(0) < c∗(1) < bα for any α < κ, contradicting the hypothesis
that (a, b) is a cut.

To formalize this idea we need to find a structure that enables us to define this
particular tree of pairs of elements of (N, <)λ/D and all the auxiliary tools, like the length
function and the value function. Luckily, we have a model of (ZFC - P) using the set of
hereditarily countable sets. It will suffice for our construction.

Definition 3.0.9 ([13], Definition I.13.27). Let κ be an infinite cardinal. Define H(κ) =
{x : |trcl(x)| < κ}, that is, H(κ) is the set of all sets x such that the cardinality of
its transitive closure (|trcl(x)|) is smaller than κ. The elements of H(κ) are said to be
hereditarily of cardinality < κ. In particular the elements ofH(ω1) are said to be hereditarily
countable.

Theorem 3.0.10 ([13], Theorem II.2.1). Let κ be an uncountable regular cardinal. Then
(H(κ),∈) is a model of ZFC without the power set axiom.

We will use the structure (H(ω1),∈) as the universe to build trees. So the structures
used for our proof will be as follows:

LetM = (N, <) andM+ = (H(ω1),∈), together with their ultrapowers byD, given
by N = (N, <)λ/D and N+ = (H(ω1),∈)λ/D. Now, we will prove the basic properties
about these structures necessary to execute the idea of the proof explained before.
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First let’s understand the relations between the four structures at hand. Given
η : M →M+ an embedding, define

η̄ : Mλ/D → (M+)λ/D
aD 7→ (η ◦ a)D

remembering that if a is a representative of an element aD of Mλ/D then it is a function
from λ to M , so η ◦ a is a function from λ to M+. Then η̄ is an embedding from Mλ/D

to (M+)λ/D (This proposition can be extended to ultraproducts, using appropriate ηt for
each t < λ when selecting a(t)). So in our case using the natural embedding η from (N, <)
to (H(ω1),∈) where each natural number goes to its ordinal definition, and dM, dM+ the
natural embeddings to each ultrapower, that is, dM(a) = (a, a, . . .)/D and the same for
dM+ , we have the following relations:

Mλ/D (M+)λ/D

M M+

η̄

dM

η

dM+

Now, an important property that will be necessary is that if η(N) = ω is definable
in M+ by ϕω, then ϕω defines η̄(Nλ/D) in N+, that is, the set defined by ϕω in N+

represents the nonstandard integers. We will prove this property in a more general setting.

Proposition 3.0.11. LetM andM+ be structures with η as an embedding fromM to
M+, let D be an ultrafilter. If η[M ] is definable in M+ (without parameters) by ψ(x),
then ψ(x) defines η̄[Mλ/D] in (M+)λ/D.

Proof. Given bD in (M+)λ/D, we know by Łoś’s theorem that (M+)λ/D |= ψ(bD) if and
only ifM+ |= ψ(b[i]) for D-many is, and ψ(b[i]) is true inM+ precisely when b[i] ∈ η[M ],
on the other hand bD ∈ η̄[Mλ/D] if and only if there is aD ∈Mλ/D such that bD = (η◦a)D,
so by Łoś’s theorem b[i] = (η ◦ a)[i] for D-many is (given that Mλ/D is the universe of
the modelMλ/D, we have that a[i] is in M for all i.), that is, b[i] ∈ η[M ] for D-many is,
which concludes that (M+)λ/D |= ψ(bD) if and only if bD ∈ η̄[Mλ/D].

Remark. In the last proposition, even if we were in an extension ofMλ/D, it would not
be a problem for the proof, given that the intersection of elements of an ultrafilter is also
in the ultrafilter, in this case would be the set of indexes for which b[i] = (η ◦ a)[i] and the
set of indexes for which a[i] ∈M .

Another property that will be essential for the proof is the pseudo-finite property
and how it behaves when going from M+ to N+. We say that the pair of structures
(M,M+) has the pseudo-finite property ifM has a linear order relation <, there is an
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embedding η fromM toM+ and each nonempty,M+-definable <-bounded subset of η[M ]
has a <-least and <-greatest element. For our special case we know that each nonempty
<-bounded subset of N has a <-least and <-greatest element, so in particular, using our
embedding η, each nonempty ∈-bounded subset of ω definable in (H(ω1),∈) has a ∈-least
and ∈-greatest element. For each A ⊆M+ defined by ϕ(x; c) and ω defined by ψω(x), this
property can be expressed with the following sentence

(Bϕ(c) ∧ ¬Eϕ(c) ∧ Sϕ(c))→ (∃y(mϕ(y; c)) ∧ ∃z(Mϕ(z; c))))

where

• Bϕ(w) = 〈∃x(∀y(ϕ(y;w)→ (y ∈ x ∨ y = x)))〉 (A is bounded.)

• Eϕ(w) = ∀x(¬ϕ(x,w)) (A is empty.)

• Sϕ(w) = ∀x(ϕ(x;w)→ ψω(x)) (A is a subset of ω.)

• Mϕ(z;w) = 〈ϕ(z;w) ∧ ∀y(ϕ(y;w)→ (y ∈ z ∨ y = z))〉 (A has a maximum element.)

• mϕ(z;w) = 〈ϕ(z;w) ∧ ∀y(ϕ(y;w)→ (z ∈ y ∨ z = y))〉 (A has a minimum element.)

So, if A ⊆M+ is a nonempty, bounded, definable subset of ω then it has a minimum
and maximum. What is important to emphasize is that this is not a property ofM or
M+ alone, it states that subsets of η[M ] with specific properties inM+ have a minimum
and maximum, so it is a property of the pair (M,M+), but when the bigger structure is
clear from the context we can say thatM is pseudo-finite.

Now we want to show that this property is also true for the pair (N ,N+).

Let A ⊆ N+ be a definable set in N+ by ϕ(x; bD). Let b be a representative for
bD. For each α < λ, let Aα ⊆M+ be the set defined by ϕ(x; b(α)) inM+. Since Aα is a
definable set inM+ the sentence

(Bϕ(b(α)) ∧ ¬Eϕ(b(α)) ∧ Sϕ(b(α)))→ (∃y(mϕ(y; b(α))) ∧ ∃z(Mϕ(z; b(α)))))

is true. Given that this is true for all α, we conclude trivially by Łoś’s Theorem that the
sentence

(Bϕ(bD) ∧ ¬Eϕ(bD) ∧ Sϕ(bD))→ (∃y(mϕ(y; bD)) ∧ ∃z(Mϕ(z; bD))))

is true in N+. So the pseudo-finite property is carried from (M,M+) to (N ,N+).

Now we want to show that the desired tree and it’s auxiliary elements, the functions
length and value, are definable in N+, we will do this by first defining then inM+ and
then carrying the definitions to N+. Let (T,P) be the tree whose elements are all the
finite sequences of pairs of natural numbers (we will work with elements of N and ω

interchangeably depending on the context), partially ordered by initial segment. InM+

we have the following properties:
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1. ω is aM+-definable set, T is aM+-definable set and P is aM+-definable relation;

• ϕω, ϕT , ϕP

2. The elements of T are exactly all the functions from an initial segment of ω into
ω × ω;

• ϕT (x)↔ (ϕf (x)∧∃z(∀y(ϕω(z)∧(y ∈ dom(a)↔ y ∈ z)))∧(∀y(y ∈ range(x)→
ϕω×ω(y))));

• where ϕω×ω(y) = ∃z(∃w(ϕω(z) ∧ ϕω(w) ∧ ϕ(z,w)(y)))

• and ϕ(z,w)(y) = ∀x(x ∈ y → (z ∈ x ∧ ∀k(k 6= z → k /∈ x)) ∨ (z ∈ x ∧ w ∈
x ∧ ∀k(k 6= z ∧ k 6= w → k /∈ x))).

3. The following areM+-definable, uniformly for a ∈ T :

a) the length function lg;

• ϕlg(a, b) = ϕT (a) ∧ ϕω(b) ∧ ∀y(y ∈ dom(a)↔ y ∈ b)

b) the function giving max(dom(a)), that is, lg(a)-1;

• ϕmax(dom)(a, b) = ϕT (a) ∧ b ∈ dom(a) ∧ ∀y(y ∈ dom(a)→ (y ∈ b ∨ y = b))

c) for each n 6 max(dom(a)), the evaluation function a(n);

• ϕeval(a, n,m) = ϕT (a) ∧ n ∈ lg(a) ∧ ϕω×ω(m) ∧ (n,m) ∈ a

d) for each n 6 max(dom(a)), the projection functions a(n)(0) and a(n)(1).

• ϕproj(a, n, p, q) = ϕT (a) ∧ n ∈ lg(a) ∧ (p = 0 ∨ p = 1) ∧ (p = 0 →
∃x(ϕ(q,x)(a(n)))) ∧ (p = 1→ ∃x(ϕ(x,q)(a(n))))

We then carry T fromM+ to N+ using its defining formula ϕT . The elements of
this new tree TN+ in N+ are functions from an initial segment of the nonstandard integers
into pairs of nonstandard integers. This is true by using Łoś’s Theorem in the sentence

∀x(ϕT (x)→ (ϕf (x) ∧ ∃z(∀y(ϕω(z) ∧ (y ∈ dom(a)↔ y ∈ z)))∧
(∀y(y ∈ range(x)→ ϕω×ω(y)))))

and the fact that, by proposition 3.0.11, ϕω will define inN+ the set representing (N, <)λ/D.
The same will occur with the other objects defined above, for example now the length
function lg can have nonstandard value.

Now that we have guaranteed all the needed properties of our structures we can
proceed with the idea behind the proof without problems.

Proof of theorem 3.0.8.

We are supposing by contradiction that there is a pair of sequences (〈aα : α <

κ〉, 〈bβ : β < κ〉) that witnesses a (κ, κ)-cut in (N, <)λ/D.
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Let ψ(x) be the formula

ψ(x) = ∀n∀m((ϕT (x) ∧ ϕω(n) ∧ ϕω(m) ∧ (n < m 6 max(dom(x))))
→ x(n)(0) < x(m)(0) < x(m)(1) < x(n)(1))

The formula ψ defines a subtree of T where n < m < max(dom(x)) implies
x(n)(0) < x(m)(0) < x(m)(1) < x(n)(1). Denote by T∗ the subtree of TN+ defined by ψ.

Now we construct by induction two κ-sequences, one of elements cα of T∗ and one
of elements nα of ωN+ where:

1. for all β < α < κ, we have that N+ |= cβ P cα;

2. for all α < κ, we have that nα = max(dom(cα));

3. for all α < κ, we have that cα(nα)(0) = aα and cα(nα)(1) = bα.

For the base case, let c0 = 〈(a0, b0)〉. When α = β + 1, let cα = cβ
_〈(aα, bα)〉 and

nα = nβ + 1. When α is a limit ordinal, by the treetops hypothesis there is c∗ ∈ T∗ such
that cβ P c∗ for all β < α. Let n∗ = max(dom(c∗)). By the definition of T∗ and the fact
that the order P is by initial segment we have that, for β < α, cβ(nβ, 0) = c∗(nβ, 0) <
c∗(n∗, 0) < c∗(n∗, 1) < c∗(nβ, 1) = cβ(nβ, 1), that is, aβ < c∗(n∗, 0) < c∗(n∗, 1) < bβ for all
β < α, but it may also be the case that aα < c∗(n∗, 0) < c∗(n∗, 1) < bα, so we need to
restrict our element c∗ to before a point where that happens. We can then concatenate
it with the element 〈(aα, bα)〉 without failing the definition of T∗. For this we use the
following set

A = {n 6 n∗ : c∗(n)(0) < aα ∧ bα < c∗(n)(1)}.

The set A is nonempty, because nβ is in it for any β < α, bounded, trivially by n∗, and
definable with c∗ as a parameter, so it has a maximum m∗. Necessarily cβ P c∗ �m∗ for
each β < α, because nβ ∈ A for each β < α, so nβ 6 m∗. Now we can concatenate without
problems, so cα := (c∗ �m∗)

_〈(aα, bα)〉 and nα := m∗.

Now we have the sequence c̄ = 〈cα : α < κ〉 that is a non-decreasing path in a
branch of T∗, where each cα is an element with (aα, bα) in its node. Again by treetops,
there exists an element c∗ ∈ T∗ with cα P c∗ for all α < κ. Let n∗ = max(dom(c∗)). Then,
for each α < κ, by definition of T∗ we have

aα = cα(nα)(0) = c∗(nα)(0) < c∗(n∗)(0) < c∗(n∗)(1) < c∗(nα)(1) = cα(nα)(1) = bα.

This implies that both c∗(n∗)(0) and c∗(n∗)(1) realize the cut (ā, b̄), contradiction
the hypothesis that (ā, b̄) represents a cut.
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A way to look at cofinality spectrum problems is that they have the necessary
conditions for us to use the methods of this last proof. Informally we will have four
structuresM,M+,N ,N+ and a set of formulas ∆, where ∆ will define what linear orders
insideM and N we care about (for example in this last lemma we have a trivial case
where the linear order we care about is all ofM and N , but it could be the case thatM
was a bigger structure with ω inside it and the formula defining ω would be in ∆), and
the structures have the following similar picture as before

N N+

M M+

θ

4

η

4

where η, θ are embeddings, andM+ and N+ are rich enough to talk about the
trees that we care about (the relevant trees will be the ones constructed using the elements
of the linear orders defined by ∆). We will now define these properties formally.

Definition 3.0.12 (Enough Set Theory for Trees (ESTT) [20], Definition 2.3). Let N+

be a structure and ∆ a nonempty set of formulas in the language of N+. We say that
(N+,∆) has enough set theory for trees when the following conditions are true.

1. ∆ consists of first-order formulas ϕ(x̄, ȳ; z̄), with `(x̄) = `(ȳ);

2. For each formula ϕ ∈ ∆ and each parameter c̄ ∈ `(z̄)
N+, ϕ(x̄, ȳ; c̄) defines a discrete

linear order with a first and last element on {ā : N+ |= ϕ(ā, ā; c̄) };

3. The family of all linear orders defined this way will be denoted Or(∆,N+). Specifically,
each a ∈ Or(∆,N+) is a tuple (Xa,6a, ϕa, c̄a, da), where:

a) Xa denotes the underlying set {ā : N |= ϕa(ā, ā, c̄a)};

b) x̄ 6a ȳ abbreviates the formula ϕa(x̄, ȳ, c̄a);

c) da is a bound for the length of elements in the associated tree; it is often, but
not always, max(Xa). If da is finite we call a trivial.

4. For each a ∈ Or(∆,N+), (Xa,6a) is pseudofinite, meaning that any bounded,
nonempty, N+-definable subset has a 6a-greatest and 6a-least element;

5. For each pair a and b in Or(∆,N+), there is c in Or(∆,N+) such that

a) there exists an N+-definable bijection Pr : Xa × Xb → Xc such that the
coordinate projections are N+-definable;

b) if da is not finite in Xa and db in not finite in Xb, then also dc is not finite in
Xc.
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6. For some nontrivial a ∈ Or(∆,N+), there is c ∈ Or(∆,N+) such that Xc =
Pr(Xa ×Xa) and the ordering 6c

N+ |= (∀x ∈ Xa)(∃y ∈ Xc)(∀x1, x2 ∈ Xa)(max(x1, x2) 6a x⇔ Pr(x1, x2) 6c y);

7. To the family of distinguished orders, we associate a family of trees, as follows. for
each formula ϕ(x̄, ȳ; z̄) in ∆ there are formulas ψ0, ψ1, ψ2, ψ3 of the language of N+

such that for any a ∈ Or(∆,N+) with ϕa = ϕ

a) ψ0(x̄; c̄a) defines a set, denoted Ta, of functions from Xa to Xa, where the
domain of each one is an initial segment of Xa;

b) ψ1(x̄, ȳ; c̄a) defines a function lga : Ta → Xa satisfying

i. for all b ∈ Ta, we have that (lga(b)− 1) 6a da;
ii. for all b ∈ Ta, we have that lga(b) = min(Xa\ dom(b)).

c) ψ2(x̄, ȳ, c̄) defines a function from {(b, a) : b ∈ Ta, a ∈ Xa, a <a lga(b)} into Xa

whose value is called vala(b, a), and abbreviated b(a).

i. if c ∈ Ta, lga(c) 6a da and a ∈ Xa, then c_〈a〉 exists, that is, there is
c′ ∈ Ta such that lga(c′) = lga(c) + 1, c′(lga(c)) = a and

(∀b <a lga(c))(c(b) = c′(b));

ii. ψ0(x̄, c̄) implies that if b1 6= b2 ∈ Ta and lga(b1) = lga(b2), then for some
n <a lga(b1) we have that b1(n) 6= b2(n).

d) ψ3(x̄, ȳ; c̄) defines the partial order Pa on Ta given by initial segment, that is,
such that b1 Pa b2 implies

i. lga(b1) 6a lga(b2);
ii. (∀a <a lga(b1))(b1(a) = b2(a)).

The family of all Ta defined this way will be denoted Tr(∆,N+). We refer to elements of
this family as trees.

Lets take another informal look at this definition to understand what we get from
each hypothesis.

1. The set ∆ will consist of the formulas that define the orders that we are
interested, and all the formulas needed for ∆ to have properties (5) and (6);

2. For each formula ϕ ∈ ∆ and each parameter c̄, ϕ(x̄, ȳ; c̄) defines a discrete linear
order with a first and last element on a subset of the universe, that is, every
element in the domain has a successor, except the last element, and
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every element has a predecessor, except the first element. An example of
such structure is N + (R× Z) + N∗, where N∗ represents the natural numbers with
the reverse order. Actually all possible structures are similar to this, with some linear
order L in place of R to set the number of copies of Z in between, N + (L× Z) + N∗;

3. Or(∆,N ) is the set of all such linear orders.

4. Each a is pseudo-finite. Given the definition we used for lemma 3.0.8, we are saying
that, looking at (Xa,6a) as a model of linear order, the pair ((Xa,6a),N+) is
pseudo-finite, meaning that any bounded, nonempty, N+-definable subset
has a 6a-greatest and 6a-least element. Since there is a last element, every
nonempty subset is bounded. This pseudo-finite property tells us that, for example
looking at N + Z + N∗, subsets N,Z,N∗, among others cannot be N+-definable;

5. This enables us to work with Cartesian products;

6. For each nontrivial a, thinking of Xc as Xa ×Xa, there exists c such that for every
x ∈ Xa we have that (x1, x2) 6c (x, x) if and only if x1 6a x and x2 6a x. Thinking
of Xc as just bijective to Xa ×Xa, this says that there exists c such that for each
x ∈ Xa there is y ∈ Xc such that the same properties apply with y in place of (x, x);

7. For each order a ∈ Or(∆,N ) we define an associate tree, Ta, with the
following properties:

a) The elements of Ta are sequences of Xa indexed by Xa, that is, partial functions
from Xa to Xa where the domain is an initial segment of Xa;

b) There is a length function lga : Ta → Xa such that for all b ∈ Ta, lga(b) 6a da

and lga(b) = max(dom(b));

c) There is a value function vala defined in a subset of Ta × Xa where a <a

lga(b), (a, b) ∈ Ta ×Xa;

i. if c ∈ Ta, lga(c) 6a da and a ∈ Xa, then c_〈a〉 exists, that is, for every
element c of the tree, if it is not too large, that is, if its length
is less than or equal to da, then we can add to the end of the
sequence c any element of Xa, and the new extended element
exists in the tree Ta;

ii. if b1 6= b2 ∈ Ta and lga(b1) = lga(b2) then for some n <a lga(b1), b1(n) 6=
b2(n).

d) There is a partial order Pa on Ta given by initial segment, that is, such
that b Pa c implies:

i. lga(b) 6a lga(c);
ii. (∀a <a lga(b))(b(a) = c(a)).
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e) Tr(∆,N+) is the set of all such trees.

Remark. The definition of tree used above is not necessarily closed by initial segment,
that is, the existence of an element of the tree doesn’t imply that a truncation of the
sequence is also an element of the tree. But the important property for our applications is
the ability to extend the elements, because we generally want a bigger element with the
desired properties, which is indeed present. It might be a little strange to call it a tree
without being closed by initial segment, but at any given element, if we look only at its
extensions, it is then almost closed by initial segment (if we stop at the given element).

This definition of ESTT gives the groundwork necessary to define cofinality spectrum
problems, in a similar way that for theorem 3.0.8 we needed to guarantee essentially the
properties of ESTT for the structuresM+ and N+. We define next the tool that is central
to this dissertation, the cofinality spectrum problems.

Definition 3.0.13 (Cofinalty Spectrum Problems (CSP) [20],Definition 2.5). We say that
(M,N ,M+,N+, T,∆) is a cofinality spectrum problem when

1. M 4 N ;

2. T ⊇ Th(M) is a theory in a possibly larger vocabulary;

3. ∆ is a set of formulas in the language ofM, that is, we are interested in studying
the orders of L(M) = L(N ) in the presence of the additional structure of L(M+) =
L(N+).

4. There are embeddings fromM,N toM+,N+, respectively, so thatM+ 4 N+ |= T

and (N+,∆) has enough set theory for trees.

Now that we have the definition of CSP at hand, we want to talk about cuts and
the treetops property inside of CSPs, given that they are a tool to attack the problems
presented in the introduction. For this we can define, given a CSP s, a set Cct(s), similar
to C(D) of lemma 3.0.8, that gives us the information about the cuts inside the CSP, and
a set Cttp(s) that gives us the information about the treetops property inside the CSP.
Given a CSP s, we denote by Or(s) the set Or(∆,N+).

Cct(s) = {(κ1, κ2) : There is in (Xa,6a) a (κ1, κ2)-cut for some a ∈ Or(s)}
Cttp(s) = {κ > ℵ0 : There is a strictly increasing sequence of cofinality

κ with no upper bound in Ta for some a ∈ Or(s)}

Let ts be defined as the minimum of the set Cttp(s) and ps be defined as the
minimum of the set {κ : (κ1, κ2) ∈ Cct(s) and κ = κ1 + κ2}.



50 Chapter 3. The motivation behind Cofinality Spectrum Problems

Definition 3.0.14 (treetops for CSP). Let s be a cofinality spectrum problem and λ a
regular cardinal. When λ 6 ts we say that s has λ-treetops.

This definition reflects the same property of treetops for ultrafilters, given that by
definition of ts, if κ < λ 6 ts and a ∈ Or(s) then any strictly increasing κ-sequence of
elements of Ta has an upper bound in Ta.

For λ an infinite cardinal, define

C(s, λ) = {(κ1, κ2) : κ1 + κ2 < λ and (κ1, κ2) ∈ Cct(s)}.

The central result about cofinality spectrum problems present in the work of
Mariallis and Shelah is the following:

Theorem 3.0.15 ([20], Theorem 9.1). Let s be a cofinality spectrum problem. Then

C(s, ts) = ∅,

that is, there are no cuts of size less than ts in any order a ∈ Or(s), in other words ts 6 ps.

In the following chapter we will show how this result can be applied to both
problems showed in the introduction, that of maximality of SOP2 and of p = t.

For the proof of this result, we will construct and prove, in chapter 5, a special
case in the context of pseudo-finite ultraproducts instead of in general cofinality spectrum
problems; notwithstanding, this special case is sufficient for both applications present in
the next chapter.
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4 Applications of Cofinality Spectrum Prob-
lems

4.1 Keisler’s Order

In this section we will introduce the Keisler’s order, a way of comparing complexity
between complete theories by how easy it is to saturate one theory in comparison with
another one using regular ultrafilters. We then will present the objective of weakening the
sufficient condition for a theory to be in the maximum class of this order, to theories with
the 2-strict order property (SOP2). We will construct a CSP that relates to the problem
at hand and show that we can use the main result of CSP, Theorem 3.0.15, to reach the
objective of weakening the sufficient condition.

4.1.1 Basic definitions and properties

Using regular ultrafilters (cf. Definition 3.0.7) we can build Keisler’s order P, which
is actually a preorder in the class of complete theories, but it becomes a partial order
between the P-equivalence classes of complete theories.

Definition 4.1.1 (Keisler’s Order). Let T1 and T2 be complete, countable first-order
theories. We say that T1 P T2 if for all infinite λ, all M1 |= T1,M2 |= T2, and all D regular
ultrafilter over λ, ifMλ

2/D is λ+-saturated thenMλ
1/D must be λ+-saturated.

The use of regular ultrafilters is essential to the definition of Keisler’s order, because
for this to be a preorder between complete theories we need it to be reflexive and transitive.
It is clearly transitive by definition, and the use of regular ultrafilters for the ultrapower
will guarantee that it is reflexive given the following theorem and the fact that we are
working only with complete theories.

Theorem 4.1.2. LetM, N be structures and D a regular ultrafilter over λ. IfM≡ N
then

Mλ/D is saturated⇔ N λ/D is saturated.

With this theorem at hand we can also talk about, for a regular ultrafilter D and
a complete theory T , the theory T being λ+-saturated by D, where it means that for any
modelM |= T we have thatMλ/D is λ+-saturated.

Remark. This enables us to rephrase Keisler’s order with this new definition as:
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We have that T1 P T2 if for all infinite λ, and all D regular ultrafilter over λ, if T2

is λ+-saturated by D then T1 must be λ+-saturated by D.

Next is a definition of a special type of ultrafilter introduced by Keisler that will
enable his characterization of the maximum class of Keisler’s order.

For a set X, let [X]<ℵ0 be the set of finite subsets of X.

Definition 4.1.3 (Good Ultrafilters). The filter D over I is said to be µ+-good if every
monotonic function f : [µ]<ℵ0 → D has a multiplicative refinement, that is, there exists a
f ′ : [µ]<ℵ0 → D where

1. ∀u ∈ [µ]<ℵ0 we have that f ′(u) ⊆ f(u) (f ′ is a refinement of f);

2. ∀u, v ∈ [µ]<ℵ0 we have that f ′(u) ∩ f ′(v) = f ′(u ∪ v) (f ′ is multiplicative).

Remark. The hypothesis of monotonicity can be dropped from the definition of good
ultrafilters, because for any function f we can construct a monotonic refinement f ′ given
by f ′(u) = f(u) ∩ ⋂

v⊆u f
′(v).

This definition may seem strange at first sight. What multiplicative refinements
of monotonic functions has to do with saturation of types? I will try to present a more
intuitive path towards this definition to show why it is not as arbitrary as it may seem.
The idea behind this approach is thanks to [14].

Firstly, our objective is to find some property of an ultrafilter D over I that
guarantees that ultraproducts constructed using D will be λ+-saturated. As stated in
2.3.14, it is equivalent to show that the ultraproduct is λ+-compact.

Let N = ∏
iMi/D be an ultraproduct by D. Let p ∈ SN1 be a complete 1-type

such that |p| < λ+. Let µ = |p|, and enumerate p using µ, so p = {ϕα(x) : α ∈ µ}. As we
know, p being a type is telling us that it is finitely satisfiable, that is, any finite subset
of p has a realization in N . This property can be state in a different way in terms of a
function from [µ]<ℵ0 to the filter D.

Let d0 be defined as the following function

d0 : [µ]<ℵ0 → P(I)
u 7→ {i ∈ I :Mi |= ∃x

∧
α∈u

ϕα(x)}.

We call d0 the Łoś’s map of p. We can see that the property “p is finitely satisfiable”
is equivalent to stating that the codomain of d0 is actually D.

Suppose that p is finitely satisfiable. We have that N |= ∃x∧
α∈θ ϕα(x), so by Łoś’s

Theorem the subset of I in the definition is indeed an element of D. The other direction is
also a consequence of Łoś’s Theorem.
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We can see that d0 is monotonic, that is, u ⊆ u′ implies that d0(u) ⊇ d0(u′). This
is not surprising as it is saying that if a set of formulas {ϕα(x) : α ∈ u′} is realized in N
then any subset of it is also realized in N .

What we want to do now is to find a way of stating that p is satisfiable, using only
its Łoś’s map d0. Let A = 〈Ai ∈ [µ]<ℵ0 : i ∈ I〉 be a sequence of finite subsets of µ indexed
by I with the following properties:

1. for all i ∈ I we have that i ∈ d0(Ai);

2. for all θ ∈ µ we have that {i ∈ I : θ ∈ Ai} ∈ D.

We will call a sequence A with such properties an actualization of d0.

We will show that if there exists an actualization of d0 then p is satisfiable. Property
(1) guarantees that we can pick, for each i ∈ I, an ai ∈Mi such thatMi |=

∧
θ∈Ai ϕθ(ai).

Let a = 〈ai : i ∈ I〉. Now, property (2) guarantees that this element a is a realization of
p, because for any formula ϕθ(x) in p we have that N |= ϕθ(a), by consequence of Łoś’s
Theorem.

Now, we have a sufficient condition for satisfiability that only involves the Łoś’s map.
We will move the sufficient condition further by showing that there exists an actualization
of d0 if and only if d0 has a multiplicative refinement that is locally finite.

Suppose that there exists an actualization A = 〈Ai ∈ [µ]<ℵ0 : i ∈ I〉 of d0. Define
the function d′ : [µ]<ℵ0 → D such that for each u ∈ [µ]<ℵ0 we have d′(u) := {i ∈ I : u ⊆ Ai}.
We have that d′ is multiplicative, that is, for any two elements u, v ∈ [µ]<ℵ0 it is true that
d′(u) ∩ d′(v) = d′(u ∪ v), by definition of d′. The function d′ is also locally finite, that is,
for all i ∈ I we have that sup{|u| : i ∈ d′(u)} < ℵ0, because we cannot have u ⊆ Ai with
|u| > |Ai|. Finally, it is also the case that d′ is a refinement of d0, because for i ∈ d′(u) we
have that u ⊆ Ai and i ∈ d0(Ai), concluding that i ∈ d0(u).

On the other hand, suppose that there exists a locally finite multiplicative refinement
d′ of d0. For every i ∈ I define the set d′−1i := {u ∈ [µ]<ℵ0 : i ∈ d′(u)}. Given that d′ is
multiplicative we have that d′−1i is closed under finite union. This together with the fact
that d′ is locally finite guarantees us that ⋃

d′−1i is finite, concluding that ⋃
d′−1i ∈ d′−1i.

For each i ∈ I let Bi := ⋃
d′−1i. The sequence 〈Bi : i ∈ I〉 is an actualization of d′. It is

easy to show that, given the fact that d′ is a refinement of d0, this sequence is also an
actualization of d0. For the first property of actualization, let i ∈ d′(Bi). By refinement
we have that i ∈ d0(Bi). The second property actually does not care for the underlying
function d′, so it works for d0 as well. Then the sequence 〈Bi : i ∈ I〉 is an actualization of
d0.

By this approach we can see that if every monotonic function from [µ]<ℵ0 to D has
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a locally finite multiplicative refinement then every ultraproduct by D is µ+-saturated. It
is clear that the multiplicative refinement comes directly from the definition of λ+-good
ultrafilters; however, how do we guarantee the locally finite part?

It is actually the case that all the ultrafilters that we will work with has a property
that implies the existence of locally finite refinements.

Definition 4.1.4 ([27], Chapter VI, Definition 1.3). Let D be an ultrafilter over I, and λ
be a cardinal. We say that D is λ-incomplete if there are Xi ∈ D for i < α < λ such that⋂
i<αXi = ∅

Lemma 4.1.5 ([14], Lemma 2.1). Let D be an ℵ1-incomplete ultrafilter over I. Then
every monotonic function f has a locally finite monotonic refinement f ′.

This property of ℵ1-incompleteness comes directly from the regularity property.

Lemma 4.1.6. Let D be a regular ultrafilter over I. Then D is ℵ1-incomplete.

Proof. Just pick any subset, of size ℵ0, of a regularizing family of D. By the definition of
regularizing family the intersection will be empty.

So with the discussion about good ultrafilters that we just had, we conclude the
following theorem that encapsulates the motivation behind good ultrafilters.

Theorem 4.1.7. Let T be a complete theory and D a regular ultrafilter. Then

D is λ+-good⇒ T is λ+-saturated by D.

We restate the definition of Łoś’s map in the context of ψ-types, together with the
definition of a distribution, that will be an important concept for our context of regular
ultrafilters.

Definition 4.1.8. Let N = MI/D be a regular ultrapower, J ⊆ I, |J | = µ, and
p = {ψ(x; ai) : i ∈ J} a ψ-type in N .

1. The Łoś’s map of p is the function d0 : [J ]<ℵ0 → D given by

u ∈ [J ]<ℵ0 7→

s ∈ I :M |= ∃x
∧
j∈u

ψ(x; aj(s))


2. A distribution for p is a function d : [J ]<ℵ0 → D such that:

a) the function d refines the Łoś’s map of p, that is, d(u) ⊆ d0(u) for all u ∈ J ;
b) the range of d is a µ-regularizing family for D;
c) the function d is monotonic, that is, u ⊆ v implies d(u) ⊇ d(v) (informally, d

still “perceives” the property “if an element c realizes a type q then it realizes
all of its subtypes”).
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4.1.2 Keisler’s characterization of the maximum class

With the definitions of last section at hand we have what is needed to state Keisler’s
characterization of the maximum class of his order.

Theorem 4.1.9 (Keisler’s characterization of the maximum class). There is a maximum
class in Keisler’s order, which consists precisely of those complete theories T such that for
any regular ultrafilter D over λ, we have

T is λ+-saturated by D ⇔ D is λ+-good. (?)

To prove this characterization we will need to do some groundwork beforehand.
But first lets talk about why this characterization must be true. This comes essentially
by how Keisler’s order is constructed. The property ? is special because it enables us to
“carry down” the saturation from T to any other complete theory, much the same way as
being in the maximum class does. Let me be more precise by what this means. Let D be a
regular ultrafilter over λ. Let T be a complete theory with property ? and T ′ any other
complete theory. if T is λ+-saturated by D then D is λ+-good, but we know that if D is
λ+-good and regular then it λ+-saturates any theory, so T ′ is λ+-saturated by D, here
we “carried down” the saturation from T to T ′, and since the choice of regular D was
arbitrary we have T ′ P T . Now lets look at the other side of the characterization. Let T
be a complete theory in the maximum class. Since D being λ+-good and regular always
implies λ+-saturation, the non-trivial part is, given T λ+-saturated by D, proving that D
is λ+-good. Thinking of the contrapositive, we want to show that if D is not λ+-good then
T is not λ+-saturated by D. Remember that by the construction of Keisler’s order, any
saturation is carried from the more complex to the less complex theory, as we just talked
about with the property ?, so inversely, the non saturation is carried from the less complex
to the more complex. If we can show that for a non λ+-good filter D there exists a theory
T ′ that is not λ+-saturated then this will be carried to T since T is in the maximum class.
The following lemmas will enable us to show that indeed there exists such a theory.

Definition 4.1.10. Let N =MI/D be a regular ultrapower, J ⊆ I, and p = {ψ(x; ai) :
i ∈ J} a ψ-type in N . A distribution d : [I]<ℵ0 → D is said to be accurate if for each
index t ∈ I and each finite subset {i1, . . . , in} ⊂ At := {j : t ∈ d({j})}, we have that
t ∈ d({i1, . . . , in}) if and only ifM |= ∃x∧

k6n ψ(x; aik(t)).

It is easy to see that the Łoś’s map d0 has the accurate property given how it is
defined, however it may not be a distribution. An accurate distribution is, in a sense, one
that acts similarly to the Łoś’s map.

Lemma 4.1.11. Let T be a complete theory,M |= T , λ an infinite cardinal, D a regular
ultrafilter over λ, N =Mλ/D, ϕ a formula in the language of T , A ⊂ N with |A| 6 λ, p
a ϕ-type over A. Then an accurate distribution of p always exists.
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Proof. We can construct an accurate distribution using the Łoś’s map as a starting point.
Write p as {ϕ(x; ai) : i ∈ λ}. Let d0 be the Łoś’s map of p. Let X = {Xi : i ∈ λ} be a
λ-regularizing family for D. Define for the singletons the function

d1({i}) := d0({i}) ∩Xi.

This guarantees that d1 refines the Łoś’s map and the range of d1 by the set of singletons
is a λ-regularizing family (Note that there can’t be the case that the regularizing family
shrinks in size, because they can’t be empty given that they are elements of the ultrafilter,
and if there is an infinite number of is such that all d0({i}) ∩Xi are equal we have that
X was not a regularizing family to begin with). Now we need to extend this property to
every element in the domain while making the function d1 monotonic. We gain this by
doing an intersection with the original Łoś’s map as follows

d1({i0, . . . , in}) := (
⋂
j6n

d1({ij})) ∩ d0({i0, . . . , in}).

The function d1 : [λ]<ℵ0 → D is an accurate distribution of p by construction.

Lemma 4.1.12. Let T be a complete theory,M |= T , λ an infinite cardinal, D a regular
ultrafilter over λ, N =Mλ/D, ϕ a formula in the language of T , A ⊂ N with |A| 6 λ,
p ∈ S(A) a ϕ-type. Then the following are equivalent:

1. Some distribution of p has a multiplicative refinement;

2. Every accurate distribution of p has a multiplicative refinement;

3. The type p is realized in N .

Proof. We shall divide the proof into three implications.

(2)⇒ (1) Given by Lemma 4.1.11.

(1)⇒ (3) Let d be the distribution and d′ its multiplicative refinement. By the definition of
distribution, the set {u ∈ [λ]<ℵ0 : t ∈ d(u)} is finite for all t ∈ I. Because otherwise
the set {d(u) : t ∈ d(u)} would be infinite, which contradicts the fact that the range
of d is a regularizing family, concluding that any distribution is locally finite. Given
that d is already a refinement of the Łoś’s map d0, we have that d′ is a locally finite
multiplicative refinement of d0. By the discussion about good ultrafilters introduced
in last section, we conclude that there exists an actualization of d0, which implies
that p is realized in N .

(3)⇒ (2) Let α be a realization of p = {ϕ(x; ai) : i ∈ λ}. Let d be any accurate distribution of
p. Define a function d′ where for each u ∈ [λ]<ℵ0 we have

d′(u) :=
t ∈ λ :M |=

∧
j∈u

ϕ(α(t); aj(t))
 ∩ d(u).
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The function d′ refines d by construction. Let u, v ∈ [λ]<ℵ0 . If t ∈ d′(u∪v) thenM |=∧
j∈u∪v ϕ(α(t); aj(t)) and t ∈ d(u∪ v). We have directly thatM |= ∧

j∈u ϕ(α(t); aj(t))
and M |= ∧

k∈v ϕ(α(t); ak(t)), and by monotonicity of d we also have that t ∈
d(u) ∩ d(v), so t ∈ d′(u) ∩ d′(v), concluding that d′ is monotonic. If t ∈ d′(u) ∩ d′(v)
thenM |= ∧

j∈u ϕ(α(t); aj(t)) andM |= ∧
k∈v ϕ(α(t); ak(t)), and also t ∈ d(u)∩ d(v).

We have directly thatM |= ∧
j∈u∪v ϕ(α(t); aj(t)), since the same element α(t) realized

both u and v. Using this together with the fact that d is accurate and t ∈ d(u)∩ d(v)
we conclude that t ∈ d(u ∪ v). This gives us that t ∈ d′(u ∪ v), concluding that d′ is
multiplicative, and thus a multiplicative refinement of d.

Proof of 4.1.9. Let T be a complete theory.

(⇐) Suppose that T has property ?. Let T ′ be any complete theory, λ any infinite cardinal
and D any regular ultrafilter over λ. If D is λ+-saturated for T , then D is λ+-good,
which implies by theorem 4.1.7 that D is λ+-saturated for T ′, so T ′ P T . Given that
the choice of T ′ was arbitrary, we conclude that T is in the maximum class.

(⇒) Suppose now that T is in the maximum class. Let λ be any infinite cardinal and
D any regular ultrafilter over λ. We need to show that if D is λ+-saturated for T
the D is λ+-good, since the other direction is given already by 4.1.7. We prove by
contrapositive. Supposing that D is not λ+-good, we construct a theory T ′ where
T ′ is not λ+-saturated by D, and use the hypothesis that T is in the maximum
class to conclude that T is also not λ+-saturated by D. Details can be found in [15,
Observation 1.12].

Now we retain our attention to some other sufficient conditions for a complete
theory to be in the maximum class. One such property, as presented in the introduction,
is the strict order property.

Definition 4.1.13. Let T be a complete theory, and ϕ(x; y) be a formula of T . The
formula ϕ(x; y) has the strict order property (SOP) if in some modelM |= T there exists
a sequence 〈ai : i < ω〉 such that for all i, j

i < j ↔M |= ∃x(¬ϕ(x; ai) ∧ ϕ(x; aj)).

We say that T has SOP if there is a formula of T that has SOP.

Theorem 4.1.14 ([27, Chapter VI, Theorem 4.3]). Any complete theory T with SOP is
in the maximum class of Keisler’s order.

It is easy to see that the complete theory Th((N, <)) has the strict order property
given by the formula ϕ(x, y) = x < y. We simply choose any increasing sequence 〈ai : i < ω〉
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in N and for i < j choose x = ai and it will guarantee that ¬ϕ(x; ai) ∧ ϕ(x; aj). So the
maximum class indeed exists.

The next result relates a filter D being λ+-good with the set C(D) (cf. Definition
3.0.2).

Corollary 4.1.15. Let D be a regular ultrafilter over I, with |I| = λ. Then C(D) = ∅ if
and only if D is λ+-good.

Proof. First it is important to restate the representation of complete 1-types made in
Example 2.3.15 of Section 2.3. There, we demonstrated that given a linear orderM =
(M,<) and a subset A ⊆M , the set of complete 1-types over A (SM1 (A)) is represented
by cuts and “almost” cuts, that is, if p ∈ SM1 (A) then there are Lp and Up associated with
p where (Lp, Up) is a cut in A or it is a pre-cut missing only one element of A.

Suppose C(D) = ∅. We know that N = (N, <)I/D =: (N,<) is a linear order
by Łoś’s Theorem, so we can use the representation by cuts. For any A ⊆ N , if a type
p ∈ SN1 (A) has a formula of the form v = a then it is clearly realized in N by a, so we will
only look at complete types represented by cuts in A, that is, those without an equality.
Let A ⊂ N with |A| 6 λ. Let p ∈ SN1 (A) and (Lp, Up) be its associated cut in A. If Lp
is empty just pick an element in N that is below every element of Up. If Up is empty do
the opposite. If Lp is finite, let mL be the maximum of Lp and construct the sequence
〈Sn(mL) : n ∈ ω〉 and pick any sequence 〈uα : α ∈ θ〉 coinitial in Up (θ 6 |Up| 6 |A| 6 λ).
The pair (〈Sn(mL) : n ∈ ω〉, 〈uα : α ∈ θ〉) represents a pre-cut in N , and given that
C(D) = ∅ there is an element in N realizing it. If Up is finite do the opposite. If both Lp
and Up are infinite then, given that C(D) = ∅, we know that (Lp, Up) is not a cut so there
is an element in N realizing it. With the representation by cuts and the hypothesis that
C(D) = ∅ we proved that N = (N, <)I/D is λ+-saturated. We showed just before this
corollary that (N, <)I/D is in the maximum class of Keisler’s order, so (N, <)I/D being
λ+-saturated implies that D is λ+-good.

Now suppose that D is λ+-good. Again, given that (N, <)I/D is in the maximum
class, D being λ+-good implies that (N, <)I/D is λ+-saturated (this is also true directly
by the fact that D is regular, given by Theorem 4.1.7). Using the representation by cuts
we state that any cut in C(D) is associate with some complete 1-type, and λ+-saturation
implies that there is an element of N realizing the type, that is, in between the cut, a
contradiction, concluding that C(D) must be empty.

4.1.3 Constructing a CSP to attack our problem

Our next objective is to use the main theorem about CSP, C(s, ts) = ∅, to prove
that if D has λ+-treetops (cf. Definition 3.0.6) then C(D) = ∅, whenever D is a regular
ultrafilter. The set C(D) looks at all the cuts in (ω,∈)I/D with size less than or equal
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to λ, however by Łoś’s theorem (ω,∈)I/D doesn’t have a maximum, so it cannot be an
element of Or(s) for any CSP s. We will show next that, because D is a regular ultrafilter,
there exists a discrete linear order with first and last element that has the information of
all the elements of C(D), this linear order will be the one used in the CSP.

Lemma 4.1.16. Let D be a regular ultrafilter over I, |I| = λ. For any n < ω, write <n

for the order on ω restricted to n, that is to {0, 1, . . . , n− 1}. Then there exists a sequence
n̄ = n̄(D) = 〈nt : t ∈ I〉 ∈ Iω such that for all regular cardinals κ1, κ2 with κ1 + κ2 6 λ,
the following are equivalent:

1. (κ1, κ2) ∈ C(D), that is (ω,<)I/D has a (κ1, κ2)-cut;

2. ∏
t(nt, <nt)/D has a (κ1, κ2)-cut.

Proof. Let R = {Xi : i ∈ λ} be a regularizing family of D. For t ∈ I, let nt := |{i ∈ λ :
t ∈ Xi}|+ 1, and n̄(D) := 〈nt : t ∈ I〉.

(2)⇒ (1) This direction is simple, given that we can extend ∏
t(nt, <nt)/D to (ω,<)I/D

using the inclusion function from ∏
t(nt, <nt) to (ω,<)I , and using this function will

preserve cuts. Note that this direction is true for any tuple of natural numbers.

(1)⇒ (2) Let (κ1, κ2) ∈ C(D). By definition of C(D) we have that κ1 + κ2 < λ, so there exists
an injection d : κ1 t κ2 → R. For each t ∈ I, there are fewer that nt (α, 0) and
(β, 1) in κ1 t κ2, α ∈ κ1, β ∈ κ2, such that t ∈ d((α, 0)) or t ∈ d((β, 1)), because
we defined nt using the regularizing family in a way that forces this property. Let
(〈aα : α ∈ κ1〉, 〈bβ : β ∈ κ2〉) be a representative for a (κ1, κ2)-cut in (ω,<)I/D. We
construct, for each t ∈ I, the set Yt := {aα(t) : t ∈ d((α, 0))} ∪ {bβ(t) : t ∈ d((β, 1))}
(that is, for a fixed t ∈ I, we go through each α ∈ κ1 and pick aα(t) if t ∈ d((α, 0)),
then we do the same for each β ∈ κ2 checking if t ∈ d((β, 1))). The set Yt is a linearly
ordered subset of (ω,<) with fewer than nt elements (making it well ordered). For
each t ∈ I we can construct an order preserving injection ht : (Yt, <Yt)→ (nt, <nt)
where the range is an interval, by assigning the first element of Yt to 0, then the
second to 1 and so on. Let h := ∏

t ht/D. Then, by Łoś’s Theorem, (〈h(aα) : α ∈
κ1〉, 〈h(bβ) : β ∈ κ2〉) represents a (κ1, κ2)-cut in ∏

t(nt, <nt)/D. Concluding that
when there is a (κ1, κ2)-cut in (ω,<)λ/D we can, using the regularity of D, construct
a (κ1, κ2)-cut in ∏

t(nt, <nt)/D.

Another important remark for this lemma is the fact that ∏
t(nt, <nt)/D is an

infinite pseudo-finite discrete linear order with first and last element, which shows that
the results that we will prove in Chapter 5 can be used to state the same theorems that
we will prove in this section, even without the generality of CSPs.
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Definition 4.1.17. Let D be a regular ultrafilter over I and M = (ω,<). If n̄ =
〈nt : t ∈ I〉 ∈ Iω is a sequence satisfying the conclusion of theorem 4.1.16 for D and
(X,<X) ⊆MI/D is given by

(X,<X) :=
∏
t

(nt, <nt)/D.

then we say (X,<X) captures pseudo-finite cuts.

Theorem 4.1.18. Let D be a regular ultrafilter over I, |I| = λ. Let M = (ω,∈) and
M+ = (H(ω1),∈), together with their ultrapowers by D, given by N = (ω,∈)I/D and
N+ = (H(ω1),∈)I/D. There exists a set of formulas ∆ with ϕ(x, y; z) = 〈x 6 y ∈ z〉 ∈ ∆
(x 6 y abbreviates x ∈ y ∨ x = y), such that

1. s = (M,N ,M+,N+, Th(M+),∆) is a cofinality spectrum problem, and

2. some nontrivial a ∈ Or(s) captures pseudo-finite cuts.

We will say that a CSP s given by this theorem is a CSP associated with D.

Proof. We already proved in Chapter 3 thatM+ and N+ can define trees of elements ofM
and N respectively, and that both the pairs (M,M+) and (N ,N+) have the pseudo-finite
property.

By lemma 4.1.16 we know that looking for cuts, with size less than or equal to λ,
in (ω,∈)I/D is the same as looking in ∏

t(nt, <nt)/D, where the latter is a discrete linear
order with first and last elements. Given that in the definition of cuts we assume that the
sequences representing the cut are strictly increasing and decreasing, respectively, the cuts
in ∏

t(nt, <nt)/D are the same as the ones in ∏
t(nt,6nt)/D, so we can look at the latter

instead. Now it remains to show that ∏
t(nt,6nt)/D is N+-definable.

Let ϕ(x, y; z) = x 6 y ∈ z (x 6 y abbreviates x ∈ y ∨ x = y). It is clear that in
M+ we can define (nt,6nt) using ϕ for all t ∈ I, simply using nt as the parameter, that is,
ϕ(x, x;nt) defines the universe and ϕ(x, y;nt) defines the relation. Let n̄D = 〈nt : t ∈ I〉/D.
Let aD ∈ N+ be such that ϕ(aD, aD; n̄D), by Łoś’s Theorem ϕ(aD, aD; n̄D) is true in N+

if and only if ϕ(a(t), a(t), nt) is true inM+ for D-many ts. This implies that a(t) ∈ nt
for D-many ts, concluding that aD ∈

∏
t nt/D, and by reciprocity aD ∈

∏
t nt/D implies

ϕ(aD, aD; n̄D), so ϕ(x, x; n̄D) defines ∏
t nt/D in N+. Now we show that the formula

ϕ(x, y; n̄D) defines the relation ∏
t6nt/D in N+. Let aD, bD ∈

∏
t nt/D, let L = {t ∈

I : a(t) 6 b(t)} and G = {t ∈ I : b(t) ∈ a(t)}. Since the index models (nt,6nt) are
linear orders, L and G are complementary in I, so by the ultrafilter property L ∈ D or
G ∈ D, concluding, by Łoś’s Theorem, that aD 6 bD or bD ∈ aD, that is, ϕ(aD, bD; n̄D) or
¬ϕ(aD, bD; n̄D). So ϕ(x, y; n̄D) defines the relation ∏

t6nt/D in N+.
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So by using a set ∆ ⊇ {ϕ(x, y; z)} for the construction of our CSP we can select
the order ∏

t(nt, <nt)/D inside of the CSP, and use our theorem about cuts.

Corollary 4.1.19. Let D be a regular ultrafilter over I, |I| = λ, and s a CSP associated
with D. For κ1, κ2 regular with κ1 + κ2 6 λ the following are equivalent:

1. (κ1, κ2) ∈ C(s, λ+);

2. (κ1, κ2) ∈ C(D).

Proof.

(1)⇒ (2) Let (κ1, κ2) ∈ C(s, λ+). Let a ∈ Or(s) be given by theorem 4.1.18(2), where it
captures pseudo-finite cuts. By 5.2.2, if an element of Or(s) witness a (κ1, κ2)-cut,
then all elements witness a (κ1, κ2)-cut, so the order a ∈ Or(s) witness a (κ1, κ2)-cut,
concluding with theorem 4.1.16 that (κ1, κ2) ∈ C(D).

(2)⇒ (1) Let (κ1, κ2) ∈ C(D). Again by theorems 4.1.18(2) and 4.1.16, the existence of a ∈
Or(s) that captures pseudo-finite cuts concludes that (κ1, κ2) ∈ C(s, λ+).

Remark 4.1.20. We can actually add the following claim in the equivalences of the
theorem above

1. There is a (κ1, κ2)-cut in some N+-definable linearly ordered set.

Implying that, for the case of regular ultrafilters, the cuts in C(s, λ+) are the same for all
CSPs of the form of theorem 4.1.18 regardless of the choice of ∆, as long as 〈x 6 y < z〉 ∈ ∆
and ∆ has the properties necessary in the definition of CSP. The sketch of the proof is as
follows:

Suppose (κ1, κ2) ∈ C(s, λ+). Then clearly the new claim is true, given that any
element of Or(s) is a N+-definable linearly ordered set.

Now suppose the new claim. Let (Y,<Y ) be a N+-definable linear order and
(〈aα : α ∈ κ1〉, 〈bβ : β ∈ κ2〉) a representation of a (κ1, κ2)-cut in (Y,<Y ). Let A =
{aα : α ∈ κ1} ∪ {bβ : β ∈ κ2}. We want to show that there exists an order preserving
internal function that maps A to Xa, for some non-trivial a ∈ Or(s), and its range is an
interval. This function will move the cut from (Y,<Y ) to Xa. Similar to Lemma 4.1.16,
create d : κ1 t κ2 → R one-to-one function, use d to define, for each t ∈ I, the set
Xt := {aα(t) : t ∈ d((α, 0))} ∪ {bβ(t) : t ∈ d((β, 1))}. By the property of the regularizing
family each Xt is finite. Now just create, for each t ∈ I, an auxiliary order preserving
function ht from Xt to |Xt| ⊆ nt (nt is the number of elements of the regularizing family
that contain t, plus one.), then combine all of then into the (internal) function h := ∏

t ht/D

in (M+)λ/D, by Łoś’s theorem it satisfies the properties required.
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Corollary 4.1.21. Let D be a regular ultrafilter over I and s a CSP associated with D.
Let κ be regular with κ 6 λ. If D has κ+-treetops, then κ+ 6 ts.

Proof. Assume D has λ+-treetops. This implies that for any tree definable inM+, and
any increasing sequence of size less than κ+ in the tree in N+ induced by the tree inM+,
we have that this sequence has an upper bound. So for any order b ∈ Or(s), and any
increasing sequence of size less than κ+ in the tree Tb, that lives in N+ and is internal,
that sequence has an upper bound. Concluding that κ+ 6 ts.

Remark 4.1.22. The result of last theorem can be strengthened to an equivalence, using
the regularity of D in a similar way to what was done in theorem 4.1.16. The sketch of
the proof is as follows:

We prove the contrapositive. Suppose that D does not have κ+-treetops, that is,
there exists a definable tree (T,PT ) inM+ such that there is an increasing sequence 〈cα :
α ∈ κ〉 in (TN+

,PT
N+) with no upper bound. With the same technique as before we pick

a one-to-one function d : κ→ R into the regularizing family and use it to construct finite
trees (Tt,PTt) such that ∏

t(Tt,PTt)/D is a subtree of (TN+
,PT

N+). We also construct (for
almost every t ∈ I) one-to-one order preserving functions ft : (Tt,PT t)→ (TM+

a ,Pa
M+).

Let f = ∏
t ft/D. We need to show that 〈f(cα) : α < κ〉 has no upper bound. Suppose by

contradiction that there is an upper bound b∗. Let d′ be the map given by

α 7→ {t ∈ d(α) : f(cα)[t] P b∗[t] and ft is injective and respects the partial ordering.}

The set Bt = {f(cα)[t] : α < κ and t ∈ d′(α)} is finite and well-ordered by P (because of
the property in d′ where f(cα)[t] P b∗[t] (the set of predecessors is well-ordered)) so it has
a maximum bt. Let c∗ := ∏

t f
−1
t (bt)/D. We have that c∗ ∈ TN

+ and is an upper bound for
〈cα : α < κ〉, a contradiction. We conclude that 〈f(cα) : α < κ〉 has no upper bound, so
ts < κ+.

Theorem 4.1.23. Let D be a regular ultrafilter over I, with |I| = λ > ℵ0. If D has
λ+-treetops, then D is λ+-good.

Proof. Let s be a CSP associated with D, given by theorem 4.1.18. By theorem 3.0.15,
C(s, ts) = ∅. By corollary 4.1.21 we have that λ+ 6 ts, so C(s, λ+) = ∅. With corollary
4.1.19 we get that C(D) = ∅. Concluding with theorem 4.1.15 that D is λ+-good.

So with this we connected the notion of treetops with that of good ultrafilters.
This may seem irrelevant but remember that our objective is to study the maximum
class of Keisler’s order, where the non-trivial property of Keisler’s characterization is that
saturation implies goodness. So in the next section we will show that in the case of SOP2

theories, which we want to show are maximal, saturation implies treetops, then making
use of these last results to conclude goodness.
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4.1.4 SOP2 implies maximality in Keisler’s Order

Definition 4.1.24. Let T be a complete theory, and ψ(x; ȳ) be a formula of T. The
formula ψ(x; ȳ) has the 2-strict order property (SOP2) if in some modelM |= T there
exists {āη : η ∈ <κµ}, called an SOP2-tree for ψ, such that:

1. for η, ρ ∈ <κµ incompatible, that is ¬(η P ρ) & ¬(ρ P η), we have that
{ψ(x; āη), ψ(x; āρ)} is inconsistent.

2. for η ∈ κµ, {ψ(x; āη�i) : i < κ} is consistent, making it a type.

We say that T has SOP2 if there is a formula of T that has SOP2.

So, inM, we have the tree <κµ and for each node η ∈ <κµ we associate a value āη.
Elements of different branches are mutually inconsistent parameters for ψ, and the set of
all elements of a branch is a set of mutually consistent parameters for ψ.

Definition 4.1.25. Let T be a theory with SOP2, D a regular ultrafilter over I andM
a model of T . WithinMI/D, by SOP2-κ-type we mean a type p(x) = {ψ(x; a`) : ` < κ}
where ψ(x; y) has SOP2 and D-almost all of projections to the index model come from an
SOP2-tree for ψ. We say thatD realizes all SOP2-types if for allM |= T , all SOP2-|I|-types
are realized inMI/D.

Lemma 4.1.26. Let T be a theory with SOP2 and ψ(x; y) be a formula with SOP2. Let
D be a regular ultrafilter over I, with |I| = λ, andM |= T with N =MI/D. Then the
following are equivalent:

1. Every SOP2-type is realized in N ;

2. Every SOP2-type p = {ψ(x; a`) : ` < λ} in N has a distribution d such that for
D-almost all s ∈ I, for all i, j < λ,

s ∈ d({i}) ∩ d({j})⇒ ai[s] and aj[s] are comparable

3. D has λ+-treetops.

Proof. We shall divide the proof into four implications, using property (2) as a bridge
between properties (1) and (3).

(1)⇒ (2) Let p be an SOP2-type in N . By (1) there is α ∈ N a realization of p, and by
the regularity of D there is {Xi : i < λ} a λ-regularizing family for D. Define the
function d : [λ]<ℵ0 → D as:

a) {i} 7→ {s ∈ I :M |= ψ(α[s], ai[s])} ∩Xi;
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b) for |u| > 1, u 7→ ⋂{d({i}) : i ∈ u}.

In (a), the first part “{s ∈ I :M |= ψ(α[s], ai[s])}” guarantees that if s ∈ d({i}) ∩
d({j}) then ai and aj are comparable, and the second part “∩Xi” guarantees that
the image of d is a λ-regularizing family (Note that there can’t be the case that
the regularizing family shrinks in size, because if there are an infinite number of is
such that {s ∈ I : M |= ψ(α[s], ai[s])} ∩Xi are equal we have that {Xi} was not
a λ-regularizing family to begin with, and they can’t be empty because they are
elements of the ultrafilter). In (b), “u 7→ ⋂{d({i}) : i ∈ u}” completes the function
guaranteeing that d refines the Łoś’s map of p and that d is monotonic.

(2)⇒ (1) Let p = {ψ(x; a`) : ` < λ} be an SOP2-type in N , d a distribution given by (2),
and d0 the Łoś’s map of p. Let A ∈ D be the set of indexes s ∈ I such that for all
i < λ we have that ai[s] is in an SOP2-tree for ψ and property (2) holds. The set A
is in D because it is an intersection of two elements of D. Let d′(u) := ⋂

i∈u d({i}),
that is, for the unitary elements we have d′({i}) := d({i}) and we construct other
elements by intersection of the unitary case. We have that s ∈ d′(u) ∩ d′(v) if and
only if s ∈ ⋂

i∈u d({i}) ∩ ⋂
i∈v d({i}) = ⋂

i∈u∪v d({i}) = d′(u ∪ v), concluding that
d′ is multiplicative. The range of d′ is a λ-regularizing family, because the range
by the unitary elements is already a λ-regularizing family and the addition of all
the intersections do not change this fact. We will use these together with property
(2) and SOP2 to show that d′ is a refinement of the Łoś’s map d0. Let s ∈ d′(u).
By multiplicativity we have that s ∈ ⋂

i∈u d
′({i}). By property (2) we have that

all elements ai[s], aj[s] are comparable in an SOP2-tree for ψ inM, with i, j ∈ u.
By the SOP2 property this is the same as stating thatM |= ∃x∧

i∈u ψ(x, ai[s]), so
s ∈ d0(u). This concludes that d′ is a multiplicative refinement of d0 such that its
range is a regularizing family. In other words, d′ is a multiplicative distribution for p.
Now we use Lemma 4.1.12 to conclude that p has a realization in N .

(3)⇒ (2) Let p = {ψ(x; a`) : ` < λ} be an SOP2-type. For each i ∈ λ, let (Pi,Pi) be
an SOP2-tree for ψ in M where a`[i] ∈ Pi for all ` < λ (if i is a projection
where the parameters do not come from an SOP2-tree just pick Pi = ∅). Let
(P,P) := (∏

i∈λ Pi/D,
∏
i∈λ Pi /D) be the induced tree in N . Since p is a SOP2-type,

all of ais are comparable. Suppose, without loss of generality, that the sequence
〈ai : i < λ〉 is P-increasing, so by (3) there is an upper bound c. Let {Xi : i < λ} be
a λ-regularizing family for D. Define the function d : [λ]<ℵ0 → D as:

a) {i} 7→ {s ∈ I : ai[s] Pi c[s]} ∩Xi;

b) for |u| > 1, u 7→ ⋂{d({i}) : i ∈ u}.

Similar to before, in (a), the first part “{s ∈ I : ai[s] Pi c[s]}” guarantees that if
s ∈ d({i}) ∩ d({j}) then ai and aj are comparable, and the second part “ ∩ Xi”
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guarantees that the image of d is a λ-regularizing family. In (b), “u 7→ ⋂{d({i}) : i ∈
u}” completes the function guaranteeing that d refines the Łoś’s map of p and that
d is monotonic.

(2)⇒ (3) Let M′ be a structure that interprets a tree (TM′ ,PM′T ), and N ′ = (M′)I/D.
Let 〈cα : α ∈ λ〉 be an increasing sequence in (TN ′ ,PN ′T ). We construct the type
{cα PN ′T x : α ∈ λ} in (TN ′ ,PN ′T ). Realizing this type is the same as finding an upper
bound for the sequence. Let dT be some distribution for this type, which exists by
4.1.11. By the definition of distribution, the set {u ∈ [λ]<ℵ0 : t ∈ dT (u)} is finite for
all t ∈ I. Because otherwise the set {dT (u) : t ∈ dT (u)} would be infinite, which
contradicts the fact that the range of dT is a regularizing family.

Let (P,PP ) be an SOP2-tree inM for the formula ψ(x; y) of the hypothesis. With
this we may construct an SOP2-type p′ = {ψ(x; aα) : α ∈ λ} associated with the
sequence 〈cα : α ∈ λ〉 such that:

• for each t ∈ I, let aβ(t) PP aα(t) if and only if cβ(t) PM′T cα(t) (For example, if
for a certain t ∈ I we have that the sequence 〈cα(t) : α ∈ λ〉 is increasing, then
simply choose a branch of the SOP2-tree and select the elements of this branch
as the parameters aα accordingly, otherwise choose aα randomly);

• let aα ∈M I/D such that aα = ∏
t∈I aα(t)/D.

By construction together with Łoś’s Theorem we have that p′ is indeed an SOP2-type
in N . By hypothesis there is a distribution d′ of p′ satisfying property (2). For each
t ∈ I define the set Ct := {cα(t) : α ∈ λ, t ∈ d′({α})} which is finite, as we know that
the set {α : t ∈ d′({α})} is finite, and PM′T -linearly ordered in (TM,PM′T ). Choose
c∗ ∈ (TM,PM′T )I such that c∗(t) is the PM′T -maximum element of Ct for each t ∈ I,
and conclude that c∗/D is an upper bound for the sequence 〈cα : α ∈ λ〉.

Corollary 4.1.27. Let T be a complete theory with SOP2 and D be a regular ultrafilter
over I, |I| = λ. Then we have the following implications:

D realizes all SOP2-types⇒ D has λ+-treetops⇒ C(D) = ∅ ⇒ D is λ+-good.

Proof. Just a compilation of theorems 4.1.26, 4.1.23 and 4.1.15.

Theorem 4.1.28. Let T be a complete theory with SOP2. If D is a regular ultrafilter over
I then

T is λ+-saturated by D ⇒ D is λ+-good

Proof. If T is λ+-saturated by D then D saturates all SOP2-types, so by corollary 4.1.27
we have that D is λ+-good.
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Theorem 4.1.29 (Maximality of SOP2). Every theory with SOP2 is maximal in Keisler’s
order.

Proof. Directly by theorems 4.1.7 and 4.1.28.

4.2 p = t

In this section we will use the technology of CSPs to solve the question about the
inequality between the cardinal characteristics p and t.

Firstly we define some important properties. Define A ⊆∗ B as saying that the
set A \B is finite, that is, A is a subset of B except for a finite number of elements. Let
F ⊆ [N]ℵ0 be a family. We say that a set A ⊆ N is a pseudo-intersection for F if for all
B ∈ F we have that A ⊆∗ B. The family F is a tower if it is linearly ordered by ⊆∗ and
has no infinite pseudo-intersection. Lastly we restate the strong finite intersection property,
defined in 2.2.4. A set X is said to have the strong finite intersection property (sfip) if the
intersection of any finite number of elements of X is infinite.

Definition 4.2.1. The cardinal p is defined as the smallest size of a family F ⊆ [N]ℵ0 such
that F has the strong finite intersection property but has no infinite pseudo-intersection.
The cardinal t is defined as the smallest size of a tower.

Another cardinal characteristic that will be useful for this section is the bounding
number, defined as b = min{|B| : B ⊆ ωω is unbounded in (ωω,6∗)}.

We have directly that p 6 t, because a tower has the sfip. As long as there
exists a family with the sfip and no infinite pseudo-intersection then ℵ1 6 p, because let
F = {Fn : n ∈ ω} ⊆ [N]ℵ0 be a countable family with the sfip, and define recursively an =
min(∩k6nFn \ {ak : k ∈ n}), a0 = min(F0). The set {an : n ∈ ω} is an infinite pseudo-
intersection for F , because for each Fn we have, by construction, that {ak : k > n} ⊆ Fn.

For the proof of p = t we will use

Q = ([N]ℵ0 ,⊆∗)

as a forcing poset. So Q only has infinite subsets as elements.

Lemma 4.2.2. Any generic filter G of Q is a non-principal ultrafilter on P(N)V .

Proof. Select any element a ∈ Q. Let A be the open set generated by a in Q, that is

A = {x ∈ Q : x 6 a} = {x ∈ Q : x ⊆∗ a}.
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If ac is finite, then A is a dense subset of Q. Because for every element x ∈ Q, the
intersection of x and a must be infinite, given that ac is finite, making x ∩ a an element of
A.

If ac is also infinite, let Ac be the open set generated by ac in Q, now A ∪ Ac is a
dense subset of Q. Because for every element x ∈ Q, if the intersection of x and a is finite,
then x∩ ac is infinite, as otherwise x would be finite, making x∩ a or x∩ ac an element of
A ∪ Ac. This shows that G is an ultrafilter on P(N)V .

And G cannot be principal as it does not contain any finite sets.

Definition 4.2.3. Now we define some objects that will be used throughout the section.

1. Let V be a transitive model of ZFC.

2. LetM = (H(ω1),∈).

3. Let Q = ([N]ℵ0 ,⊆∗) be our forcing poset.

4. Let G be a generic filter of Q over V . Let G̃ be a Q-name for G.

5. Given M,Q and G, define the generic ultrapower Mω/G in V[G] as the model
N ∈ V [G] with universe {f/G : f ∈ (Mω)V} such that

“N |= f1/G ∈ f2/G” if and only if {n ∈ ω : f1(n) ∈ f2(n)} ∈ G.

Given that we defined the truth in N using the result of Łoś’s Theorem, we conclude
that the model V [G] will see internally the object N as the ultrapower ofM by G,
as desired. As we know by the results of forcing, we can talk about these objects
inside of V .

6. In V , let Ñ be theQ-name of N , that is, the model with universe {f/G̃ : f ∈ (Mω)V}
such that


 (“Ñ |= f1/G̃ ∈ f2/G̃” if and only if {n ∈ ω : f1(n) ∈ f2(n)} ∈ G̃).

We will now build a cofinality spectrum problem to attack the question of p = t.
LetM =M+ = (H(ω1),∈) and N = N+ as above.

Definition 4.2.4. Working in V [G], letM be as defined before. Let ∆f be the set of all
first-order formulas ϕ(x, y; z̄) in the vocabulary ofM, that is, {∈}, such that if c̄ ∈M `(z̄),
then ϕ(x, t; c̄) defines a linear order on the finite set AMϕ,c̄ := {a ∈ M :M |= ϕ(a, a, c̄)},
denoted by 6Mϕ,c̄. Where `(z̄) is the arity of z̄. We require `(x) = `(y) but do not require
`(x) = 1.

IfM,N are as above and ϕ ∈ ∆f , then we can use Łoś’s Theorem to prove the
following:
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1. for each c̄ ∈ N `ȳ, we have that ϕ(x, y; c̄) is a discrete linear order on the set
ANϕ,c̄ = {a ∈ N : N |= ϕ(a, a, c̄)};

2. each nonempty N -definable subset of ANϕ,c̄ has a first and last elements;

3. we may in N identify (ANϕ,c̄,6Nϕ,c̄) with a definable subset of some

〈(Xn,6n) : n < ω〉/G,

where each Xn is finite and linearly ordered by 6n.

Lemma 4.2.5 ([20], Claim 14.6). Working in V [G], the tuple (M,M+,N ,N+,Th(M),∆f)
is a cofinality spectrum problem.

We can see by the choice ∆f that any order a in this CSP is built from the
ultraproduct of finite linear orders. This shows that we can use, for this section, the results
of Chapter 5 in the same way as the general results of CSP.

Lemma 4.2.6. Working in V [G], let s be the CSP from lemma 4.2.5. Then t 6 ts.

Proof. This proof has a technical construction that is essential to it, however I would like
to first present the general idea behind the proof and later show the technical part to fill
the gaps.

Let θ < t. Suppose there is, in V[G], a sequence 〈f̃α/G̃ : α < θ〉 PÑ -increasing in
(<ωω,P)Ñ that is unbounded. That is,

V [G] |= “〈f̃α/G̃ : α < θ〉 is PÑ -increasing and unbounded in (<ωω,P)Ñ .

By the Truth Lemma (2.4.8), there exists a B ∈ G such that

B 
 “〈f̃α/G̃ : α < θ〉 is PÑ -increasing and unbounded in (<ωω,P)Ñ ”.

Given that, we want to find a C ∈ Q stronger then B, that forces the existence of an upper
bound for 〈f̃α/G̃ : α < θ〉, because the property of the sequence being unbounded will be
carried from B to C, giving us a contradiction. Even if C /∈ G, Lemma 2.4.4 guarantees
us that there exists a generic filter H where C ∈ H. Given that C ⊆∗ B and H is a filter,
we have that B ∈ H. By the truth lemma we conclude that in V[H] it is true that the
above sequence is unbounded and has a bound, giving a contradiction. So it cannot be the
case that such a set C ∈ Q exists, even if it is not in G.

For each α < θ, we define

Yα :=
⋃
{{n} × (<ωω)[fα(n)] : n ∈ B},

where (<ωω)[ν] = {η ∈ <ωω : ν P η}, and let Y := {Yα : α < θ}. So each Yα contains, as a
disjoint union for each n, all the possible upper bounds for fα(n) in <ωω (We want the
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union to be disjoint because, for a given n, we want to know the elements that extend
fα(n), which in principle have nothing in common with the elements extending other ns).

Now we want to take advantage of the fact that θ < t, and to do that we need to
restrict our Yαs. For each n we construct a finite, nonempty sn ⊂ <ωω that will work as
the pool of available elements for each n, and with that a new Y ′α where, for each n, we
pick only the extensions of fα(n) that are in sn, and we guarantee that, for all but a finite
number of indexes, it is nonempty. Let

Y∗ :=
⋃
{{n} × sn : n ∈ B}, Y ′α :=

⋃
{{n} × (sn)[fα(n)] : n ∈ B}.

Suppose that such sns exists (We will make the formal construction at the end of the
proof), we can then continue our proof using Y ′ := {Y ′α : α < θ}.

Now we show that if α < β then Y ′α ⊇∗ Y ′β, making the set Y ′ well-ordered
by ⊇∗. Firstly, if α < β then B′ = {n ∈ B : fα(n) 6P fβ(n)} is finite (equivalent to
“B ⊆∗ {n : fα(n) P fβ(n)}” and to “B \ {n : fα(n) P fβ(n)} is finite”), as otherwise we
would have B′ ∈ Q stronger than B with B′ 
 “fα/G̃ 6P fβ/G̃”, contradicting B. Knowing
that in Y ′α there are only a finite number of elements associated with each n, namely every
element in sn, and there only a finite number of ns in which fα(n) 6P fβ(n), there can be
only a finite number of elements in Y ′β \ Y ′α.

We can use any bijection between Y∗ and N to look at the subsets of Y∗ as though
they are subsets of N, which will enable us to use the hypothesis of θ < t. Given that
(Y ′,⊇∗) is a well-ordered, in particular linearly ordered, set equivalent to a family F ⊆ [N]ℵ0

with size θ < t we conclude that there exists an infinite pseudo-intersection Z of Y ′, because
otherwise F would be a tower of size θ < t. That is, Z ⊆∗ Y ′α for all α < θ, which implies
that Z ⊆∗ Y∗. We can easily refine Z to Z ′ where it is still an infinite pseudo-intersection
and also Z ′ ⊆ Y∗.

Let C be the set of indexes for which Z ′ is nonempty, that is

C := {n ∈ B : Z ′ ∩ ({n} × sn) 6= ∅}.

The set C is infinite. Because Z ′ ⊆∗ Y ′α for all α < θ, the set Z ′ is infinite, and the set sn
is finite for each n ∈ B, so there are an infinite number of n ∈ B such that Z ′ and Y ′α
share an element of the form (n, σ). We conclude then that C ∈ Q.

We can use Z ′ to construct an upper bound as such. For each n ∈ C, choose νn ∈ sn
such that (n, νn) ∈ Z ′, and for each n ∈ N \C let νn = 〈0〉. The element 〈νn : n < ω〉/G̃ is
forced by C to be an upper bound for the sequence, as show below.

For each α < θ define Cα as the set of indexes for which fα(n) P νn, that is

Cα := {n ∈ C : fα(n) P νn}.
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For all α < θ we have that C \ Cα is finite, because otherwise we would have an
infinite number of elements of Z ′ (at least one for each n ∈ C \ Cα) that aren’t in Yα,
contradicting Z ′ ⊆∗ Y ′α. Concluding that C ⊆∗ Cα and, as a corollary, if C ∈ G then
Cα ∈ G for all α < θ.

This concludes that

C 
 “〈νn : n < ω〉/G̃ is an upper bound for 〈f̃α/G̃ : α < θ〉 in <ωωÑ”.

By the discussion at the start of the proof, the existence of such a C ∈ Q gives us
a contradiction even if C /∈ G.

Now for the technical part, the construction of sn. For this we will use the fact that
t 6 b, the bounding number defined as b = min{|B| : B ⊆ ωω is unbounded in (ωω,6∗)}.

For each α < θ define the function hα as

hα : ω → ω

n 7→ lg(fα(n)) +
∑

fα(n)(j)[j < lg(fα(n))]

So what it does is it takes the sum of all the elements of the sequence fα(n) and the size of
the domain of fα(n). This is simply the most trivial method to guarantee that, for fα(n),
we get an upper bound for each individual element and the size of the domain.

Let H be the set of all hα for α < θ. Since H has size θ < t 6 b, there exists an
element g of ωω such that hα 6∗ g for all α < θ.

Define

sn := g(n)g(n) = {η : η is a sequence of length 6 g(n) of numbers < g(n)}.

We have that:

1. Each sn is a finite, nonempty subtree of ωω;

2. if α < θ then (∀∞n)(fα(n) ∈ sn), making Y ′α ∩ ({n} × sn) nonempty for all but
finitely many indexes.

As desired.

Definition 4.2.7. Let κ1, κ2 be infinite cardinals. A (κ1, κ2)-peculiar cut in ωω is a pair
(〈gi : i < κ1〉, 〈fj : j < κ2〉) of sequences of functions in ωω such that

1. (∀i < j < κ1)(gi <∗ gj);

2. (∀i < j < κ2)(fj <∗ fi);
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3. (∀i < κ1)(∀j < κ2)(gi <∗ fj);

4. if f : ω → ω is such that (∀j < κ2)(f 6∗ fj), then f 6∗ gi for some i < κ1;

5. if f : ω → ω is such that (∀i < κ1)(gi 6∗ f), then fj 6∗ f for some j < κ2.

Theorem 4.2.8 ([30], Theorem 1.12). Assume p < t. Then for some regular cardinal κ
there exists a (κ, p)-peculiar cut in ωω with ℵ1 6 κ < p.

Lemma 4.2.9. Working in V [G], suppose p < t and let N , s be as before. Then for some
regular κ1 with ℵ1 6 κ1 < p, we have that (κ1, p) ∈ C(s, ts).

Proof. Let (〈gi : i < κ1〉, 〈fj : j < κ2〉) be a (κ1, κ2)-peculiar cut in ωω with κ2 = p, that
Theorem 4.2.8 gives us.

For each n let In := [0, f0(n)]. In this peculiar cut, f0 is the greatest element among
fs and gs, in the <∗ order. We can use these sets to construct a pseudo-finite linearly
ordered set, I, to work within the CSP. For each n < ω, (In, <) is finite and linearly
ordered, then

I := (
∏
n<ω

[0, f0(n)])/G

is pseudo-finite and linearly ordered, with the induced order, so it is an order a of the
CSP s.

Since G is a non-principal ultrafilter over P(N)V , it contains all cofinite sets and
by definition gi <∗ f0 means that the set {n ∈ ω : gi(n) < f0(n)} is cofinite, so for each
i < κ1 we have that gi/G ∈ I, with gi/G <a gj/G when i < j < κ1, since gi <∗ gj.

For the fs, we also have that fi/G ∈ I, and fj/G <a fi/G when i < j < κ1,
because fj <∗ fi when i < j < κ2.

Now, for i < κ1, j < κ2 we have gi/G <a fj/G, since gi <∗ fj. So (〈gi/G : i <
κ1〉, 〈fj/G : j < κ2〉) represents a pre-cut in I.

Now we need to show that it is a cut. Let h/G ∈ I be such that h/G < fj/G for
all i < κ1, j < κ2. Let h ∈ ωω be a representative for h/G. By the truth lemma (2.4.8),
there exists B ∈ G where

B 
Q “h/G̃ < fj/G̃” for all j < κ2.

The fact that B ∈ Q implies that B is infinite, and B ∈ G implies that, for all
j < κ2, the set Bfj := {n ∈ B : h(n) > fj(n)} is finite, as otherwise there would be an
j′ < κ2 and an infinite Bfj′

stronger then B (Bfj′
⊆∗ B) where Bfj′


Q “h/G̃ > fj/G̃”, a
contradiction, because Bfj′

being stronger then B implies that Bfj′

 “h/G̃ < fj/G̃” for

all j < κ2 as well.
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Now define h′ ∈ ωω as

h′(n) =

h(n) n ∈ B;

g0(n) n /∈ B.

We conclude that h′ <∗ fj for all j < κ2. This implies that there exists a i < κ1

where h′ 6∗ gi.

By our construction of h′, it is equal to h for all n ∈ B ∈ G, so h′/G = h/G. With
h′ 6∗ gi we conclude that h/G = h′/G 6 gi/G. So there isn’t an element of I that is below
the sequence 〈fj/G : j < κ2〉 and above the sequence 〈gi/G : i < κ1〉 at the same time, in
other words (〈gi/G : i < κ1〉, 〈fj/G : j < κ2〉) is a cut.

Theorem 4.2.10. p = t.

Proof. Suppose that p < t. Given that our forcing poset Q does not change the value of t
we have that pV < tV implies pV[G] < tV[G], as any new set added can only decrease the
value of p.

Let s be the cofinality spectrum problem given by 4.2.5. By Lemma 4.2.9, we
know that there exists in V [G] a (κ1, p

V[G])-cut, for some ℵ1 6 κ1 < pV[G], so (κ1, p
V[G]) ∈

C(s, tV[G]). By Lemma 4.2.6, we conclude that (κ1, p
V[G]) ∈ C(s, tV[G]

s ); however, by the
main result about CSPs, Theorem 3.0.15, we know that, in V[G], the set C(s, tV[G]

s ) is
empty, a contradiction.
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5 Cuts in Pseudo-finite Structures

5.1 Basic definitions and properties
Throughout this section, λ will be an infinite regular cardinal and D a non-principal

ultrafilter over λ.

Definition 5.1.1. Denote by L(D) the class of all ultraproducts on λ modulo D of finite
linear orders with cardinality not uniformly bounded, that is, ultraproducts ∏

i∈λ Li/D

such that
{i ∈ λ : |Li| > n} ∈ D

for all n ∈ N. Whenever we abuse the notation by writing L ∈ L(D) it is implied that
there is an order 6L and (L,6L) ∈ L(D).

Definition 5.1.2. Let T(D) be the class of ultraproducts ∏
i∈λ(Ti,⊆)/D, where for all

i ∈ λ the pair (Ti,⊆) is a finite tree (cf. Definition 3.0.4) and the cardinality of the sets
is not uniformly bounded. Whenever we abuse the notation by writing T ∈ T(D) it is
implied that there is an order P and (T,P) ∈ T(D).

The hypothesis of uniformly boundedness guarantees that elements of L(D) and
T(D) are not finite. Making a connection with cofinality spectrum problems, this is, in a
way, the same as removing all the trivial orders from Or(s).

By Łoś’s theorem every L in L(D) is a discrete linear order with a minimum and a
maximum. We will denote the minimum element of L by 0L and the maximum element by
dL. For any element x ∈ L different from dL and y ∈ L different from 0L we will denote
by S(x), or x+ 1, the successor of x and S−1(y), or y − 1, the predecessor of y.

We will use the same definition of cuts introduced in chapter 3, namely Definition
3.0.1.

We can now define similar objects as the ones used for CSPs.

C(D) := {(κ1, κ2) : there exists a (κ1, κ2)-cut in some linear order L ∈ L(D)}.

The cardinal pD is the minimum of the set

{κ : there exists (κ1, κ2) ∈ C(D) such that κ1 + κ2 = κ},

and the cardinal tD is the minimum of the set

{κ > ℵ0 :κ is regular and there is an increasing unbounded sequence
〈xα : α ∈ κ〉 in some T of T(D)}.
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For a regular cardinal λ, the set of cuts in C(D) with size less than λ is denoted by

C(D,λ) = {(κ1, κ2) ∈ C(D) : κ1 + κ2 < λ}.

Definition 5.1.3. Let N = ∏
i∈λMi/D be an ultraproduct. We say that a subset X of

N is internal if there exists a sequence 〈Xi : i ∈ λ〉 such that the following holds for all
n ∈ N and i ∈ λ:

1. Xi ⊆Mi;

2. n ∈ X if and only if {i ∈ λ : n(i) ∈ Xi} ∈ D.

We say that a function f : N t → N is internal if there exists a sequence 〈fi : i ∈ λ〉 such
that the following holds for all n̄ ∈ N t and i ∈ λ:

1. fi : N t
i → Ni;

2. f(n̄) = y if and only if {i ∈ λ : fi(n̄(i)) = yi} ∈ D.

We say that a tree (T,P) is internal if all of it’s elements are internal functions.

By Łoś’s Theorem every nonempty internal subset X of L ∈ L(D) has a minimum
and a maximum.

Lemma 5.1.4. Let N = ∏
i∈λMi/D be an ultraproduct. The set of all internal subsets

of N is closed under finite unions, finite intersections and complements. Moreover, every
definable subset of N is internal.

Proof. Let A,B be two internal subsets of N , where Ai and Bi are the projections on Mi

for all i ∈ λ. Then, for x ∈ N , we have that

x ∈ N \ A⇔ x /∈ A

⇔ {i ∈ λ : x[i] ∈ Ai} /∈ D
⇔ λ \ {i ∈ λ : x[i] ∈ Ai} ∈ D
⇔ {i ∈ λ : x[i] /∈ Ai} ∈ D,

where the third equivalence comes from the fact that D is an ultrafilter,

x ∈ A ∪B ⇔ x ∈ A ∨ x ∈ B

⇔ {i ∈ λ : x[i] ∈ Ai} ∈ D ∨ {i ∈ λ : x[i] ∈ Bi} ∈ D

⇔ {i ∈ λ : x[i] ∈ Ai} ∪ {i ∈ λ : x[i] ∈ Bi} ∈ D

⇔ {i ∈ λ : x[i] ∈ Ai ∪Bi} ∈ D,
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where in the third equivalence, the forward part is given by the fact the filters are upwards
closed, and the backwards part comes from the fact that D is an ultrafilter, because
suppose by contradiction that {i ∈ λ : x[i] ∈ Ai} /∈ D and {i ∈ λ : x[i] ∈ Bi} /∈ D, then
{i ∈ λ : x[i] /∈ Ai} ∈ D and {i ∈ λ : x[i] /∈ Bi} ∈ D, implying that

{i ∈ λ : x[i] /∈ Ai} ∩ {i ∈ λ : x[i] /∈ Bi} ∈ D,

so its complement, that is {i ∈ λ : x[i] ∈ Ai} ∪ {i ∈ λ : x[i] ∈ Bi}, is not in D, given that
D in non-principal. Continuing the proof in the case of intersections,

x ∈ A ∩B ⇔ x ∈ A ∧ x ∈ B

⇔ {i ∈ λ : x[i] ∈ Ai} ∈ D ∧ {i ∈ λ : x[i] ∈ Bi} ∈ D

⇔ {i ∈ λ : x[i] ∈ Ai} ∩ {i ∈ λ : x[i] ∈ Bi} ∈ D

⇔ {i ∈ λ : x[i] ∈ Ai ∩Bi} ∈ D,

where in the third equivalence, the forward part is given by the fact that filters are closed
under intersection, and the backwards part comes from the fact that the filters are upwards
closed.

Lastly for the definable sets, let ϕ(x; ȳ) be a formula in the language of N and c̄ a
tuple of parameters in N . Let A be the subset of N defined by ϕ(x; c̄), that is {a ∈ N : N |=
ϕ(a, c̄)}, and Ai the subset of Mi defined by ϕ(x; c̄[i]), that is {a ∈Mi :Mi |= ϕ(a, c̄[i])},
for all i ∈ λ. By Łoś’s Theorem we have that

N |= ϕ(x, c̄)⇔ {i ∈ λ :Mi |= ϕ(x[i], c̄[i])} ∈ D,

concluding that
x ∈ A⇔ {i ∈ λ : x[i] ∈ Ai} ∈ D.

Now we can say that every definable subset of L has a minimum and a maximum,
given that every internal subset has this property. This is exactly what the pseudo-finite
property inside of the definition of cofinality spectrum problem is trying to emulate.

Before continuing there is an important remark that needs to be made.

Remark 5.1.5. In Chapter 3 when working with functions f inM+, we were able to,
when going to the ultraproduct N+, talk about how the element fλ/D is internally seen
as a function by N+, given thatM+ was constructed to be powerful enough to talk about
functions and trees. What happened was that we had a sentence inM+ that stated that
f is a function, and by Łoś’s Theorem this property was carried to fλ/D in N+. Given
this, we were able to use fλ/D as a function, like fλ/D(x) = y and dom(fλ/D) = A (this
because N+ was also rich enough to define dom), without a problem. Now that we are
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looking at the ultraproduct of functions from an external perspective, we need to look at
it for what it really is, an equivalence class of λ-tuples of functions. Of course we do not
want to lose the intuition of looking at then as functions in the ultraproduct, but we need
to make sure we are formally correct first. Lets define the auxiliary functions necessary to
use the ultraproduct as a function.

Let (T,P) ∈ T(D) with (T,P) = ∏
i∈λ(Ti,⊆)/D, and Ti ⊆ <XiYi. Let fD ∈ T and

f be a representative of fD. For each i ∈ λ, the element f [i] is in Ti and is a function. We
define dom(f) as the set of all x = ∏

i∈λ xi such that {i ∈ λ : xi ∈ dom(f [i])} ∈ D. For
each i ∈ λ fix an element yj of Yj. For each x ∈ dom(f) we define val(f, x) as the λ-tuple
with f [i](x[i]) when x[i] is in the domain of f [i] and with yi when it is not, that is,

val(f, x) := {(i, f [i](x[i])) : i ∈ A} ∪ {(j, yj) : j ∈ λ \ A}

where A = {i ∈ λ : x[i] ∈ dom(f [i])}, and note that val(f, x) ∈ Y := ∏
i∈λ Yi. We will

denote val(f, x) as f(x). Define dom(fD) := dom(f)D = {xD : x ∈ dom(f)} and for any
xD ∈ dom(fD) define val(fD, xD) := f(x)D where x is any representative of xD. It is easy
to see that these definitions do not depend on the choice of representative f for fD or x
for xD. We will denote val(fD, xD) as fD(xD). Note that dom(fD) is an initial segment
of X = ∏

i∈λXi, because let mi := max(dom(f [i])) for each i ∈ λ, each Xi is finite by
definition, so mi is well defined, and let mD = ∏

i∈λmi/D. On one hand, for xD ∈ dom(fD)
the set {i ∈ λ : x[i] 6 mi} has to be in the filter D, because otherwise x /∈ dom(f), at
the other hand, for xD ∈ {aD : aD 6 mD} we have that the set {i ∈ λ : x[i] 6 mi} is in
the filter D, and it is the same as {i ∈ λ : x[i] ∈ dom(f [i])}, so x ∈ dom(f), concluding
that xD ∈ dom(fD). What we got from this little detour is that we can indeed work with
the elements of (T,P) ∈ T(D) as though they are function from initial segments of X/D
to Y/D. With this we can also see (T,P) as a tree composed of the internal functions in
<X/DY/D, we denote it by I(<X/DY/D).

Let (L,6L) ∈ L(D), with L = ∏
i∈λ(Li,6i)/D. Let (T,P) ∈ T(D) be such that

T ⊆ <LX for some set X. We say that (T,P) is a tree indexed by L. We also define the
function lg from T to L where lg(x) = min(L \ dom(x)) which is well defined because we
can use the lemma that we just proved together with the fact that an initial segment of L,
in this case dom(x), is a (L,6L)-definable subset.

Let (L,6L) ∈ L and (T,P) ∈ T(D) indexed by L. We say that c ∈ T is below the
ceiling if Sk(lg(c)) <L dL for all k < ω. An element having this property will allow
us to construct desired successor elements freely until we hit a limit element.

For (L,6L) ∈ L, define (TL,PL) ∈ T(D) as the set <LL.

Lemma 5.1.6. Let L ∈ L(D) and T ∈ T(D) a tree indexed by L. For κ <min{pD, tD},
let T ∗ ⊆ T be a definable subtree and c̄ = 〈cα : α < κ〉 a strictly P-increasing sequence of
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elements of T ∗. Then there exists c∗∗ ∈ T ∗ such that α < κ implies cα P c∗∗ and c∗∗ is
below the ceiling.

Proof. Since κ < tD there is an element c ∈ T such that for all α we have that cα P c. The
set {lg(c′) : c′ P c and c′ ∈ T ∗} is nonempty and definable, hence contains a last element
a∗ ∈ L, let c∗ = c � a∗, if c∗ is below the ceiling it’s done, otherwise the pair

({lg(cα) : α < κ}, {S−k(lg(c∗)) : k < ω})

is a pre-cut, given that κ < pD. Choose a∗∗ ∈ L realizing the pre-cut and c∗∗ = c∗ � a∗∗.

5.2 The function lcf is well defined below min{p+
D, tD}

In this section we will show that for any regular cardinal κ below min{p+
D, tD} there

exists a unique regular cardinal θ such that (κ, θ) ∈ C(D). We will say that this cardinal
is the lower cofinality of κ. With this we will be able to define the function lcf(κ,D) that
goes from λ �min{p+

D,tD}
to λ where lcf(κ,D) = θ.

Lemma 5.2.1. Let D be a regular ultrafilter. If L ∈ L(D), then for each infinite regular
κ 6 pD:

1. there is a strictly increasing κ-indexed sequence ā = 〈aα : α < κ〉 of elements of L
such that

({aα : α < κ}, {S−k(dL) : k < ω})

represents a pre-cut in L;

2. there is a strictly decreasing κ-indexed sequence ā = 〈aα : α < κ〉 of elements of L
such that

({Sk(0L) : k < ω}, {aα : α < κ})

represents a pre-cut in L.

Proof. By induction. The fact that α < κ 6 pD will guarantee the existence of the limit
α element, by picking any realization of the pre-cut ({aβ : β < α}, {S−k(dL) : k < ω}),
because otherwise we would have a (cf(α),ℵ0)-cut.

Theorem 5.2.2 (Existence). Let D be a regular ultrafilter and L ∈ L(D). For each infinite
regular κ 6 pD, there exists infinite regular cardinals θ and θ′ such that (κ, θ) ∈ C(D) and
(θ′, κ) ∈ C(D), witnessed by a (κ, θ)-cut in L and a (θ′, κ)-cut in L respectively.

Proof. Pick a sequence given by lemma 5.2.1 and let B = {b ∈ L : (∀α < κ)aα <L b}. Let
θ be the coinitiality of B. θ is not finite because if it were it would be equal to 1, and
there is no b ∈ B such that

({aα : α < κ}, {b})
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represents a cut, because aα <a S
−1(b) <L b. For θ′ its the same but reversed and with

cofinality.

Note that this theorem guarantees us that if a cut exists in C(D), where one of the
sides has cofinality less than or equal to pD, it is witnessed in all orders L ∈ L(D).

Theorem 5.2.3 (Uniqueness). Let D be a regular ultrafilter and L ∈ L(D). For each
regular κ < min{p+

D, tD}:

1. there is one and only one λ such that (κ, λ) ∈ C(D);

2. (κ, λ) ∈ C(D) if and only if (λ, κ) ∈ C(D).

Proof. Let (L1,61), (L2,62) ∈ L, with a (κ, θ)-cut in L1 and a (θ′, κ)-cut in L2, represented
by the following pairs

• (〈a1
α : α ∈ κ〉, 〈b1

ε : ε ∈ θ〉);

• (〈b2
ε : ε ∈ θ′〉, 〈a2

α : α ∈ κ〉).

So the a1
α and a2

α represent the κ part of the (κ, θ)-cut and the (θ′, κ)-cut respectively,
while the b1

ε and b2
ε represent the θ part of the (κ, θ)-cut and the θ′ part of the (θ′, κ)-cut

respectively.

We want to show that θ = θ′. For this we will define the following elements: Let
(L3,63) be any element of L(D) with cardinality greater than or equal to the cardinality
of L1 × L2. Let (T,P) ∈ T(D) be such that T = <L3L1 × L2. Let T∗ ⊆ T be the subtree
consisting of all elements strictly increasing in the first coordinate and strictly decreasing
in the second coordinate, that is, T ∗ is the subtree defined by the formula

(∀n ∈ L3)(∀n′ ∈ L3)n′ <3 n <3 lg(x)
→ ((x(n′)(0) <1 x(n)(0)) ∧ (x(n′)(1) >2 x(n)(1))).

Similar to lemma 3.0.8, we’ll construct sequences cα and nα by induction on α < κ

such that:

1. cα ∈ T∗ and nα ∈ L3;

2. β < α implies cβ P cα;

3. cα is below the ceiling;

4. nα = S−1(lg(cα)) = max(dom(cα));

5. cα(nα)(0) = a1
α and cα(nα)(1) = a2

α.
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For the base case let c0 := 〈(a1
0, a

2
0)〉 and n0 = 03.

When α = β + 1, let cα := cβ
_〈(a1

α, a
2
α)〉 and nα = S(nβ). Remember that since

cβ is below the ceiling we can concatenate without problems as long as the new element is
still in T ∗.

When α is a limit ordinal, given that α < κ < tD we can use lemma 5.1.6 to
conclude that there is a c∗ ∈ T ∗ such that c∗ is below the ceiling and cβ P c∗ for all β < α.
Let n∗ = max(dom(c∗)). By the definition of T ∗ we know that the element c∗ retains the
property of being increasing in the first coordinate and decreasing in the second, but it
can the case that c∗ increases “too much” in the first coordinate and surpasses a1

α, with
c∗(n∗)(0) >1 a

1
α, or it decreases “too much” in the second, with c∗(n∗)(1) <2 a

2
α. So we

need to restrict our c∗ to before a point where any of these cases happens. For this we use
the following set

A = {n 63 n∗ : c∗(n)(0) <1 a
1
α ∧ a2

α <2 c∗(n)(1)}.

The set A is nonempty, because nβ is in it for any β < α, bounded, trivially by n∗, and
definable with c∗ as a parameter, so it has a maximum m∗. As nβ 6 m∗ for any β < α, let
c∗∗ := c∗ �S(m∗). Now let cα := c∗∗

_〈(a1
α, a

2
α)〉 and nα := S(m∗).

Now we have the sequences 〈cα : α ∈ κ〉 and 〈nα : α ∈ κ〉 with the properties
stated before. Again given that κ < tD we can use lemma 5.1.6 to conclude that there is a
c∗ ∈ T ∗ such that cα P c∗ for all α < κ. Let n∗ = max(dom(c∗)). We will construct new
sequences 〈m1

ε : ε ∈ θ〉 and 〈m2
ε : ε ∈ θ′〉 in L3 such that each element m1

ε is the maximum
index n 63 n∗ where the element c∗(n)(0) is still less than b1

ε , and each m2
ε is the maximum

index n 63 n∗ where the element c∗(n)(1) is still greater than b2
ε , that is

m1
ε = max{n 6 n∗ : c∗(n)(0) <1 b

1
ε};

m2
ε = max{n 6 n∗ : b2

ε <2 c∗(n)(1)}.

Note that what we did is we essentially “transported” the sequence 〈b1
ε : ε ∈ θ〉 in L1 to the

sequence 〈m1
ε : ε ∈ θ〉 in L3 by doing a “pullback” by c∗(.)(0), the same can be said about

b2
ε to m2

ε by c∗(.)(1). At the same time, thinking in this way, the sequence 〈nα : α ∈ κ〉 is
the “pullback” of 〈a1

α : α < κ〉 by c∗(.)(0), and it is also the “pullback” of 〈a2
α : α < κ〉 by

c∗(.)(1).

Now we have the sequences 〈nα : α ∈ κ〉, 〈m1
ε : ε ∈ θ〉 and 〈m2

ε : ε ∈ θ′〉. Where
both pairs

(〈nα : α ∈ κ〉,〈m1
ε : ε ∈ θ〉),

(〈nα : α ∈ κ〉,〈m2
ε : ε ∈ θ′〉)

are cuts in L3, because if there were elements x and y in between, then the elements
c∗(x)(0) and c∗(y)(1) would realize our original (κ, θ)-cut and (θ′, κ)-cut, respectively. To
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conclude the proof note that, by the fact that the left side is the same in both cases,
then there is a subset M ⊆ L3 such that both sequences 〈m1

ε : ε ∈ θ〉 and 〈m2
ε : ε ∈ θ′〉

are coinitial in M , this together with the hypothesis that both θ and θ′ are regular, we
conclude that θ = θ′, as otherwise we would have a contradiction of the definition of being
coinitial.

Definition 5.2.4 (The lower cofinality of κ, lcf(κ,D)). Let D be a regular ultrafilter. For
any regular κ < min{p+

s , ts}, we define lcf(κ,D) to be the unique θ such that (κ, θ) ∈ C(D).

To finish this section I compile the idea behind the proofs in this section and lemma
3.0.8 that uses the connection between treetops and cuts to construct desired elements by
induction. I will try to flesh out the core elements of it. As we have seen it at least three
times by now the reader may be familiar with the pattern already, these ideas will continue
to be useful until the end of the chapter and may also be useful for future applications
involving cuts and trees.

Remark 5.2.5 (Principle of the proofs (kinda)). Let κ be regular with κ < min({p+
D, tD})

and L ∈ L(D). Let T ∈ T(D) be a subset of <L2L∗ where L∗ is the space with the desired
elements for the construction, for example L∗ = L× L as in 3.0.8, and L2 is an element of
L(D) with cardinality greater or equal to that of L∗. Construct two sequences, 〈cα : α < κ〉
of elements of a definable subtree T ∗ ⊆ T , and 〈nα : α < κ〉 of elements of L2 by induction
on α < κ where:

1. nα = S−1(lg(cα)), that is, nα is the index of the last element of the branch cα;

2. each node cα extends the nodes before it;

3. cα is below the ceiling (to guarantee that we can concatenate finitely new elements
without problems);

4. the element cα(nα) represents the properties that we want to prove for each α (kinda);

5. an extra inductive property depending on the problem that will generally be imposed
by the subtree T ∗.

For the successor case α = β+1, we simply concatenate cβ with bα where bα has the desired
property. For α limit, since α < tD, by lemma 5.1.6 choose a c∗ that is an upper bound
and is below the ceiling. Let n∗ = S−1(lg(c∗)), and restrict c∗ to make sure it respects the
induction. To select a restriction first we pick, for each property that we want, the greatest
index m 6a n∗ for which the property holds, then we want nα to be less than or equal to
all the ms and greater than all the nβ with β < α. If the number of properties is finite,
just pick the smallest m, as we have done until now. If the number of properties is infinite
we can look at the pre-cut (〈nβ : β < α〉, 〈Mj : j ∈ dcf(θ)〉), where 〈Mj : j ∈ dcf(θ)〉
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is a decreasing sequence coinitial in the set {mi : i ∈ θ}. If the coinitiality of the set of
properties is less than pD, together with the fact that also α < pD, we can show that the
pre-cut above defined is not a cut given that it has cofinality less than pD and then pick an
element realizing it to be the nα. This more general case will be used in the main theorem
of this chapter, namely Theorem 5.4.5.

5.3 On symmetric cuts
We now prove, in a similar way to Lemma 3.0.8, that as long as κ < min{p+

D, tD}
there are no (κ, κ)-cuts in C(D). Nonetheless, we will show that there is a (tD, tD)-cut, so
tD is a dividing line in the existence of symmetric cuts.

Theorem 5.3.1. Let D be an ultrafilter over λ. Let κ < min{p+
D, tD} be regular. Then

there are no (κ, κ)-cuts in C(D).

Proof. The proof of this theorem is the same as the one for Lemma 3.0.8 with just minor
adjustments in notation.

Let (L,6) ∈ L(D) be a linear order that witnesses a (κ, κ)-cut with the pair
(〈aα : α < κ〉, 〈bβ : β < κ〉). Let (L2,62) be any element of L(D) with cardinality greater
than or equal to the cardinality of L× L. Let (T,P) ∈ T(D) be such that T = <L2L× L.

Let T∗ ⊆ T be the subtree consisting of all elements strictly increasing in the
first coordinate, strictly decreasing in the second coordinate and such that the second
coordinate is always greater then the first, that is, T ∗ is the subtree defined by the formula

(∀n ∈ L2)(∀n′ ∈ L2)n′ <2 n <2 lg(x)
→ (x(n)(0) < x(n′)(0) < x(n′)(1) < x(n)(1))

Now we construct by induction two κ-sequences, one of elements cα of T∗ and one
of elements nα of L2 where:

1. for all α < κ, we have that nα = max(dom(cα));

2. for all β < α < κ, we have that cβ P cα;

3. for all α < κ, we have that cα is below the ceiling;

4. for all α < κ, we have that cα(nα)(0) = aα and cα(nα)(1) = bα.

For the base case, let c0 = 〈(a0, b0)〉. When α = β + 1, let cα = cβ
_〈(aα, bα)〉

and nα = nβ + 1. When α is a limit ordinal, by Lemma 5.1.6 there is c∗ ∈ T∗ such
that cβ P c∗ for all β < α and c∗ is below the ceiling. Let n∗ = max(dom(c∗)). By
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the definition of T∗ and the fact that the order P is by initial segment we have that,
for β < α, cβ(nβ, 0) = c∗(nβ, 0) < c∗(n∗, 0) < c∗(n∗, 1) < c∗(nβ, 1) = cβ(nβ, 1), that
is, aβ < c∗(n∗, 0) < c∗(n∗, 1) < bβ for all β < α, but it may also be the case that
aα < c∗(n∗, 0) < c∗(n∗, 1) < bα, so we need to restrict our element c∗ to before a point
where that happens. We can then concatenate it with the element 〈(aα, bα)〉 without failing
the definition of T∗. For this we use the following set

A = {n 6 n∗ : c∗(n)(0) < aα ∧ bα < c∗(n)(1)}.

The set A is nonempty, because nβ is in it for any β < α, bounded, trivially by n∗, and
definable with c∗ as a parameter, so it has a maximum m∗. Necessarily cβ P c∗ �m∗ for
each β < α, because nβ ∈ A for each β < α, so nβ 6 m∗. Now we can concatenate without
problems, so cα := (c∗ �m∗)

_〈(aα, bα)〉 and nα := m∗.

Now we have the sequence c̄ = 〈cα : α < κ〉 that is a non-decreasing path in a
branch of T∗, where each cα is an element with (aα, bα) in its node. Again by Lemma 5.1.6,
there exists an element c∗ ∈ T∗ with cα P c∗ for all α < κ. Let n∗ = max(dom(c∗)). Then,
for each α < κ, by definition of T∗ we have

aα = cα(nα)(0) = c∗(nα)(0) < c∗(n∗)(0) < c∗(n∗)(1) < c∗(nα)(1) = cα(nα)(1) = bα.

This implies that both c∗(n∗)(0) and c∗(n∗)(1) realize the cut (〈aα : α < κ〉, 〈bβ :
β < κ〉), contradiction the hypothesis that (〈aα : α < κ〉, 〈bβ : β < κ〉) represents a cut.

But it is important to remember that this theorem is only valid when κ <

min{p+
D, tD}. We can actually construct a symmetric cut of size tD.

Lemma 5.3.2. Let D be an ultrafilter over λ, then (tD, tD) ∈ C(D).

Proof. Let κ = tD. By the definition of tD there is some (T,P) = ∏
i∈λ(Ti,Pi)/D ∈ T(D),

with Ti ⊆ <LiYi which contains a P-increasing sequence 〈cα : α ∈ κ〉 with no upper bound.
Let Y = ∏

i∈λ Yi/D. For c, d ∈ Ti, for any i ∈ λ, define cis(c, d) as the maximal common
initial segment between c and d, that is, cis(c, d) = b ∈ Ti where b P c, b P d and there
are yc 6= yd ∈ Yi such that b_yc P c and b_yd P d.

Let Xi be the set Ti × {0Li , 1Li}. Let <Xi be the linear order on Xi defined as
follows:

1. For any c ∈ Ti, we have (c, 0) <Xi (c, 1);

2. If c Pi d and c 6= d, then (c, 0) <Xi (d, 0) <Xi (d, 1) <Xi (c, 1);

3. if c, d are Pi-incompatible, then let b ∈ Ti and yc, yd ∈ Yi be such that b = cis(c, d),
b_yc Pi c, and b_yd Pi d. Given that by definition of cis(c, d) we have that yc 6= yd,
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we define, for s, t ∈ {0, 1},

(c, s) <Xi (d, t)⇐⇒ yc <Yi yd.

Let (X,<X) = ∏
i∈λ(Xi, <Xi). Given that (T,P) ∈ T(D) we have that the set of

sizes of Ti is not uniformly bounded, so the set of sizes of Xi is also not uniformly bounded,
concluding that X ∈ L(D).

Now we can use the sequence 〈cα : α ∈ κ〉 without an upper bound in T to construct
the following cut in (X,<X):

(〈(cα, 0) : α ∈ κ〉, 〈(cα, 1) : α ∈ κ〉).

This pair represents a (κ, κ)-cut, because suppose that there is a d ∈ T such that (d, s)
realizes it. If there were a β ∈ κ where cβ is P-incompatible with d, then (d, s) <X (cβ, 0)
or (cβ, 1) <X (d, s) for some s ∈ {0, 1}, by definition of the order <X , so cα P d for all
α ∈ κ, contradicting the hypothesis about the sequence 〈cα : α ∈ κ〉.

This lemma shows us that pD 6 tD.

5.4 On asymmetric cuts
In this section we will prove the main result relating trees and cuts, namely that

tD 6 pD, equivalently C(tD, D) = ∅. For the proof we suppose that pD < tD, then pick
a (κ, θ)-cut, represented by (〈`ξ : ξ ∈ κ〉, 〈eη : η ∈ θ〉) in some (X,6) ∈ L(D) with
θ < κ and κ = pD. With this, the idea behind the proof is as follows. We use an internal
tree, (T,P) ∈ T(D), where its elements are pairs (f 1, f 2) such that f 2(n) is an auxiliary
“distance estimate” internal function that takes pairs of objects in X and returns a value
in X, and has a lower bound of f 1(n). We will construct a sequence 〈cα : α ∈ κ〉 in this
tree, as in 5.2.5, in a way that f 2

α(nα) will be an extension of all the ones beforehand with
lower bound f 1

α(nα) = `α + 1. The step of imposing the lower bound will guarantee us that
any element c of the tree extending the elements cα for all α < κ will have an associated
“distance estimate” functions f 2(m), where for any m < lg(c) with m > nα for all α < κ,
it measure distances greater than `ξ for all ξ ∈ κ, so we will be able to pick an element eγ
of the right side of the cut where eγ < f 1(m), so it is a lower bound for f 2(m). However,
we will construct these function in a special way that will guarantees us that, if there is
an element of the tree c that extends all of the elements in our sequence, then we can
find a m < lg(c) and subset a A of X such that for any η < θ we can find two elements
y1, y2 ∈ A where f 2(m)(y1, y2) < eη, but this will be a contradiction given that the lower
bound is some eγ, concluding that the sequence we constructed does not have an upper
bound, contradicting the fact that θ < κ = pD < tD.
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Firstly we need two lemmas that will guarantee the existence of some needed
internal sets.

Lemma 5.4.1. Let {(Xi,6i)}i∈λ be a family of linear orders and D a non-principal
ultrafilter over λ. Define

(X,6) :=
∏
i∈λ

(Xi,6i)/D.

If there exists an infinite set U ⊆ X and a family Z of internal sets of X such that
|U |, |Z| < min({pD, tD}) and U ⊆ Z for all Z ∈ Z. Then there is an internal set Y such
that U ⊆ Y ⊆ ⋂Z.
Proof. With κ = |Z|, let Z = (Zξ)ξ∈κ be an enumeration of the family Z. Let (Ti,⊆) be
the tree composed of the functions f with the following properties:

1. dom(f) is an initial segment of Xi;

2. range(f) ⊆ P(Xi);

3. f(y) ⊆ f(x), whenever x 6i y.

Let (T,P) := ∏
i∈λ(Ti,⊆)/D. Given that κ < min({pD, tD}), we can, as in 5.2.5, construct

two sequences, (cα)α∈κ in T and (nα)α∈κ in X, by induction on α < κ such that the
following hold:

1. nα = max(dom(cα));

2. if β < α then cβ P cα;

3. cα is below the ceiling;

4. cα(nα) ⊆ Zα;

5. U ⊆ cα(n) for all n 6 nα.

For the base case let n0 = 0X and c0 = (n0, Z0).

For the successor case α = β + 1, let cα = cβ
_(nβ + 1, Zβ ∩ cβ(nβ)), which is an

element of T since the set Zα is internal, and an element of T∗ because U ⊆ Zα.

For the limit case, given that α < tD we have that, by 5.1.6, there exists a c∗ ∈ T∗
such that cβ P c∗ for all β < α and c∗ is below the ceiling. Let n∗ = max(dom(c∗)). Now
we prune the element c∗ to ensure that it respects the induction. For each u ∈ U let

mu = max({n 6 n∗ : ∀z 6 n(u ∈ c∗(z))}).

For each u ∈ U we have that nβ 6 mu for all β < α, given that they are in the above
set. Let 〈Mi : i ∈ ξ〉 be a coinitial sequence in {mu : u ∈ U}. Given that the number
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of properties |U | is less than pD, and α is also less than pD, we conclude that the pair
(〈nβ : β ∈ α〉, 〈Mi : i ∈ ξ〉) is not a cut. Pick an element n∗∗ that realizes this pre-cut. Let
nα = n∗∗ + 1 and cα = c∗ �nα

_(nα, Zα ∩ c∗(n∗∗)). Note that the set c∗(n∗∗) is internal
because c∗ ∈ T and T is an internal tree.

Now with the sequences (cα)α∈κ, (nα)α∈κ we can use the fact that κ < tD to apply
the same method that we used in the limit case to construct cκ and nκ where U ⊆ cκ(z)
for all z 6 nκ. By property (3) of our tree T we have that cκ(nκ) ⊆ cκ(nα) = cα(nα) ⊆ Zα

for all α ∈ κ, concluding that the set Y := cκ(nκ) has the desired property.

Lemma 5.4.2. Let {(Xi,6i)}i∈λ be a family of finite linear orders, D be an ultrafilter
over λ, κ < min({pD, tD}) and N = {nα}α∈κ be a decreasing chain in

(X,6) :=
∏
i∈λ

(Xi,6i)/D.

For any F : N2 → X there exists an internal function H : X2 → X such that F ⊆ H.

Proof. Firstly we prove the one-dimensional case, and later use it to prove the two-
dimensional one. Let F : D → X. For each i ∈ λ, let (Ti,⊆) be the tree composed of
all the functions f ∈ <(Xi,>i)Xi, that is, the functions from a final segment of Xi (the
initial segment in the reverse order) into Xi. Let (T,P) := ∏

i∈λ(Ti,⊆)/D. We construct
inductively an increasing sequence 〈cα : α < κ〉 such that:

1. lg(cα) = nα − 1 (remember that the domain is in the reverse order, so dom(cα) =
{x ∈ X : nα 6 x});

2. for all β 6 α we have that cα(nβ) = F (nβ).

Let c∗0 be any element of T with lg(c∗0) = n0, define c0 := c∗0
_〈F (n0)〉. For the successor

case α = β + 1, let cα be defined as follows:

cα(x) =

 cβ(x), if x ∈ dom(cβ);

F (nα), if nα 6 x < nβ.

For the limit case α, by Lemma 5.1.6 there is a c∗ ∈ T below the ceiling such that cβ P c∗

for all β < α. If nα ∈ dom(c∗) then let c∗∗ := c∗ �nα and cα := c∗∗
_〈F (nα)〉; otherwise,

define cα as follows:

cα(x) =

 c∗(x), if x ∈ dom(c∗);

F (nα), if nα 6 x 6 lg(c∗).
This completes the induction.

Now that we constructed our sequence 〈cα : α < κ〉 with κ < min({pD, tD}) we can
use again Lemma 5.1.6 to pick a c ∈ T such that cα P c for all α < κ. By the definition of
T , the function c is internal. Extend c on X if necessary.
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Now, we use the one-dimensional case to construct the two-dimensional case. For
each i ∈ λ, let Pi be the set of all function f such that dom(f) = {x ∈ Xi : b 6i x}2 for
some b ∈ X and range(f) ⊆ Xi. Let P := ∏

i∈λ Pi/D. Let (Ti,⊆) be the tree composed of
all the functions f ∈ <(Xi,>)Pi, that is, the functions from a final segment of Xi into Pi.
Let (T,P) := ∏

i∈λ(Ti,⊆)/D. Let T ∗ ⊆ T be the subtree composed of elements c ∈ T such
that for all y > lg(c) we have dom(c(y)) = {x ∈ X : y 6 x}2. We construct inductively an
P-increasing sequence 〈cα : α < κ〉 in T ∗ such that:

1. lg(cα) = nα − 1;

2. for all y > nα and β, γ 6 α with nβ, nγ > y, we have that cα(y)(nβ, nγ) = F (nβ, nγ).

Let c∗0 be any element of T ∗ with lg(c∗0) = n0. The successor case and the base case
c0 will be built in similar ways, so lets look at the general successor case first. For the
successor case α = β + 1, let F1(x) := F (nα, x) and F2(x) := F (x, nα). We can use the
one-dimensional case to construct internal functions g1 and g2 such that g1(nβ) = F1(nβ)
and g2(nβ) = F2(nβ) for all nβ < nα. Let fα : {x ∈ X : nα 6 x} → X be an element of P
defined as follows:

fα(x, y) =


cβ(nβ)(x, y), if (x, y) ∈ dom(cβ(nβ));

g1(y), if x = nα;

g2(x), otherwise.

Let cα(y) := cβ(y) if nβ 6 y, and cα(y) := fα �{x∈X:y6x}2 if nα 6 y < nβ. For the base case
we do almost the same with a minor correction. Using α = 0, let f0 be defined as follows:

f0(x, y) =


c∗0(n0 + 1)(x, y), if (x, y) ∈ dom(c∗0(n0 + 1));

g1(y), if x = n0;

g2(x), otherwise.

Let c0(y) := c∗0(y) if n0 < y, and cα(n0) := f0.

For the limit case α, by Lemma 5.1.6 there is a c∗ ∈ T ∗ below the ceiling such
that cβ P c∗ for all β < α. Let A be the set of m > lg(c∗) such that property (2) of the
induction still holds, that it,

A := {m > lg(c∗) : ∀y > m[∀β, γ 6 α[nβ, nγ > y → c∗(y)(nβ, nγ) = F (nβ, nγ)]]}.

We know that nβ ∈ A for all β < α, so A is nonempty, and A is bounded (given the order
used) by lg(c∗). Given that A is definable, nonempty, and bounded, it has a maximum
element m∗ (in the inverse order, so a minimum element in the usual order) such that
m∗ 6 nβ for all β < α. If m∗ 6 nα, let c∗∗ := c∗ �nα , otherwise let c∗∗ := c∗ �m∗ . Let
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fα : {x ∈ X : nα 6 x} → X be an element of P defined as follows:

fα(x, y) =


c∗∗(lg(c∗∗) + 1)(x, y), if (x, y) ∈ dom(c∗∗(lg(c∗∗) + 1));

g1(y), if x = nα;

g2(x), otherwise.

Let cα(y) := c∗∗(y) if lg(c∗∗) < y, and cα(y) := fα �{x∈X:y6x}2 if nα 6 y 6 lg(c∗∗). This
completes the induction.

Now that we constructed our sequence 〈cα : α < κ〉 with κ < min({pD, tD}) we
can use again Lemma 5.1.6 to pick a c∗ ∈ T such that cα P c∗ for all α < κ. Construct
the set A again for c∗ and pick the m∗ maximum (minimum in the usual order) of it. The
function H := c∗(m∗) is an internal extension of F . Extend H on X if necessary.

Both of these lemmas together gives us the necessary tools to prove the following
lemma that will enables us to, during the induction on α < κ, present in the proof of
Theorem 5.4.5, extend our “distance estimate” function to a new internal function that is
able to compare the new yα. Remember that κ < tD only guarantees us that there are no
unbounded increasing sequences, of size κ, in any element of T(D), that is, on internal
trees, that is why we need to make sure we are working with internal objects if we want to
use the hypothesis κ < tD to our advantage.

Lemma 5.4.3. Let D be an ultrafilter over λ, and X = ∏
i∈λXi/D ∈ L(D). Let Pi be the

set of all partial functions with domain W 2, for some W ⊆ Xi, and codomain Xi. Let
P = ∏

i∈λ Pi/D. Now let

• U ⊆ X be an infinite subset that is well-ordered by the inverse order of X, that is
every subset of U has a maximum element in the order 6;

• F : U2 → {x ∈ X : x > w} be a function;

• ρ̄ ∈ P be such that ρ̄(u1, u2) = F (u1, u2) for all u1, u2 such that (u1, u2) ∈ dom(ρ̄)
holds.

Then there exists ρ ∈ P such that:

1. ρ(u1, u2) = F (u1, u2) for all u1, u2 ∈ U ;

2. ρ(x, y) > w for all (x, y) ∈ dom(ρ);

3. if (x, y) ∈ dom(ρ) ∩ dom(ρ̄), then ρ̄(x, y) = ρ(x, y).

Proof. By lemma 5.4.2 there exists an internal function ρ1 : X2 → X that extends F . For
u ∈ U , let Zu := {x ∈ X : ρ1(x, u) > w}. We have that U ⊆ Zu, by definition of ρ̄ and F ,
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and Zu is an internal set, because it is definable by an internal function. More precisely,
since the function ρ1 is internal, we have that ρ1 = ∏

i∈λ ρ
i
1/D, where ρi1 ∈ Pi for each

i ∈ λ. Let
Zi
u = {xi ∈ Xi : ρi1(xi, u[i]) > w[i]},

for each i ∈ λ, we obtain that Zu is internal, since

x ∈ Zu ⇐⇒ x[i] ∈ Zi
u.

By lemma 5.4.1, there exists an internal set Y such that U ⊆ Y ⊆ Zu for all u ∈ U . Let

Y ∗ = Y \ {y ∈ Y : ∃y′ ∈ Y (ρ1(y, y′) < w)}

and observe that U ⊆ Y ∗, because Y ⊆ Zu for all u ∈ U , and ρ1(x, y) > w for any
x, y ∈ Y ∗. Then ρ = ρ1 �(Y ∗)2 has all the desired properties.

This next fact is essential for the proof, as it enables us to construct the “distance
estimate” function in such a way to guarantee that for any upper bound in the tree of our
sequence 〈cα : α ∈ κ〉 we can find a subset A of X where the distance between them can
be as small as the size of any element in the right side of the cut.

Fact 5.4.4 ([20], Fact 8.4). If κ is a regular infinite cardinal, then there exists a symmetric
function

g : κ+ × κ+ → κ

such that g(W ×W ) is a cofinal subset of κ for all W cofinal subset of κ+.

Theorem 5.4.5. If D is an ultrafilter over λ, then tD 6 pD holds.

Proof. Suppose that (X,6) := ∏
i∈λ(Xi,6i)/D is a linear order in L(D) such that there

exists a (κ, θ)-cut, where θ 6 κ = pD. We know by 5.3.1 that it cannot be the case that
θ = κ, so θ < κ.

Suppose that pD < tD, and the pair (〈`ξ : ξ ∈ κ〉, 〈eη : η ∈ θ〉) witnesses a (κ, θ)-cut
in X. Let Pi be the set of all partial functions with domain W 2, for some W ⊆ Xi, and
range included in Xi. Let (Ti,⊆) be the tree composed of the functions f with the following
properties:

1. The domain of f is an initial segment of Xi;

2. the range of f is a subset of Xi × Pi and f(z) = (f 1(z), f 2(z)) (f 1(z) is an element
of Xi while f 2(z) is a “distance estimate” function);

3. for any z ∈ dom(f) and (a, b) ∈ dom(f 2(z)) we have that f 2(z)(a, b) >i f 1(z) (f 1(z)
is a lower bound for the distance measured by f 2(z));
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4. if z 6i z′ 6i x then f 1(z) 6i f 1(z′) (this lower bound increases as we “go up” in the
tree);

5. if z 6i z′ 6i x and {a, b} is a subset of dom(f 2(w)) for any z 6i w 6i z′, then
f 2(z)(a, b) = f 2(w)(a, b) = f 2(z′)(a, b) for all such z 6i w 6i z′ (the “distance
estimate” between a and b does not change as long as both stay continuously in the
domain).

Let (T,P) := ∏
i∈λ(Ti,⊆)/D. By Fact 5.4.4, there exists a function g0 : θ+2 → θ such that,

if A ⊆ θ+ is cofinal in θ+, then g0(A2) is cofinal in θ. We can extend g0 to a function
g : κ2 → θ such that g �θ+2= g0 and outside of θ+2 it assumes any value. For all f ∈ T let
Wf(z) be the set such that (Wf(z))2 = dom(f 2(z)). Our objective is to show that given
our assumption that pD < tD we can construct an increasing sequence in T of size κ = pD

that is unbounded, a contradiction.

For this, given that κ = pD < min{p+
D, tD}, we can, again as in 5.2.5, construct two

sequences (cα)α∈κ in T and (nα)α∈κ in X, by induction on α such that the following hold:

1. nα = max(dom(cα));

2. if β < α then cβ P cα;

3. cα is below the ceiling;

4. there exists yβ ∈ Wcβ(nβ), such that if β ∈ α ∈ κ, then:

a) yα < yβ;

b) c2
α(nα)(yβ, yα) = eg(α,β);

c) if nβ 6 z 6 nα then yβ ∈ Wcα(z).

5. c1
α(nα) = `α + 1.

First lets show that if such a sequence (cα)α∈κ exists then it is indeed unbounded.
Suppose there exists a c where cα P c for all α ∈ κ. For each η ∈ θ+, let mη be the
maximum of the set

Aη = {m ∈ dom(c) : ∀m′(nη 6 m′ 6 m→ yη ∈ Wc(m′))},

that is, the greatest index m of c where the element yη is in the domain continuously from
nη to m. By property (4) of the induction we know that for each α ∈ κ with η 6 α, the
element yη is in Wcα(z) for all nη 6 z 6 nα. By the definition of (T,P), having cα P c

implies that Wc(nα) = Wcα(nα). Both of the facts stated before gives us that, for each
η ∈ θ+ and each α ∈ κ, we have that nα 6 mη.
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By property (4) of the tree T together with property (5) of the induction we know
that, for each η ∈ θ+, we have c1(mη) > c1(nα) = c1

α(nα) > `α for all α ∈ κ. So we can
uniformly select, using the axiom of choice, for each η ∈ θ+ an element F (η) ∈ θ such that
eF (η) < c1(mη), because (〈`ξ : ξ ∈ κ〉, 〈eη : η ∈ θ〉) witnesses a cut. Using this new function
F we can represent θ+ as

θ+ =
⋃
{F−1(α) : α ∈ θ},

and since θ+ is a regular cardinal, this implies that there exists γ ∈ θ such that A := F−1(γ)
is cofinal in θ+. By the property of g, we have that g(A2) is cofinal in θ, so for any η ∈ θ
there are ζ, ξ ∈ A such that g(ζ, ξ) > η. In particular there are ζ, ξ ∈ A such that
g(ζ, ξ) > γ. Note that this is a problem given how we defined the “distance estimate” of
the elements yα, because γ < g(ζ, ξ) implies that eg(ζ,ξ) < eγ, breaking the lower bound
stipulated by c1. More clearly, let m∗ = min{mζ ,mξ}, we have that {yζ , yξ} ⊆ Dc(m∗).
Let µ = max{ζ, ξ}, then we have that {yζ , yξ} ⊆ Dc(z) for all nµ 6 z 6 m∗. Hence we
have

c2(m∗)(yζ , yξ) = c2(nµ)(yζ , yξ) = eg(ζ,ξ) < eγ,

and at the same time

c2(m∗)(yζ , yξ) > c1(m∗) > eF (µ) = eγ,

a contradiction.

So, now that we know that the existence of such a sequence is indeed a problem,
lets construct it using pD < tD. To construct the sequences (cα)α∈κ, (nα)α∈κ by induction
we do as follows:

For the successor case α = β + 1: First choose yα = yβ − 1. Now we will use lemma
5.4.3 to extend our “distance estimate” function to be able to compare this new yα with
the old ones. To do this we define the objects to be used in the lemma as follows: Let
U := {yγ}γ∈α+1, let F (yγ, yδ) := eg(γ,δ), let w = `α and let ρ̄(x, y) := c2

β(nβ)(x, y). The
lemma gives us a function ρ such that:

1. ρ(yγ, yδ) = eg(γ,δ), if γ 6 δ 6 α;

2. ρ(x, y) > `α + 1 for all x, y ∈ dom(ρ);

3. if x, y ∈ dom(ρ) ∩ dom(c2
β), then ρ(x, y) = c2

β(x, y).

Then let nα = nβ + 1 and cα = cβ
_(nα, (`α + 1, ρ)).

For the limit case α: given that α < κ = pD < tD we can use lemma 5.1.6 to find a
c∗ ∈ T such that cβ P c∗ for all β ∈ α and c∗ is below the ceiling. For each β ∈ α, let mβ

be the maximum of the set

Aβ = {m ∈ dom(c) : ∀m′(nβ 6 m′ 6 m→ yβ ∈ Wc(m′))},
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that is, the greatest index m of c where the element yβ is in the domain continuously
from nη to m. By the same arguments that we used when supposing that the sequence
already exists, we conclude that for each β ∈ α, we have that nγ < mβ for all γ ∈ α.
Let 〈Mβ : β ∈ ξ〉 be a decreasing coinitial sequence in {mβ : β ∈ α}. Now the difference
here is that α < pD, as opposed to being equal to pD, so we can guarantee that the pair
(〈nβ : β ∈ α〉, 〈Mβ : β ∈ ξ〉) is not a cut, so there exists an element n∗∗ in between both
sequences. Let nα = n∗∗ + 1 and c∗∗ = c∗ �nα . Choose a yα that is below yβ for all β ∈ α
and is not finite. Such a yα exists because (〈Sκ(0X) : κ ∈ ω〉, 〈yβ : β ∈ α〉) represents
a pre-cut but cannot be a cut, given that α < κ < pD. Now we use lemma 5.4.3 again
to extend our “distance estimate” function. Let U := {yβ}β∈α+1, let F (yγ, yδ) := eg(γ,δ)

and let ρ̄(x, y) := c∗∗
2(n∗∗)(x, y). The lemma gives us a suited ρ the same way as for the

successor case. We can then let cα = c∗∗
_(`α + 1, ρ). This concludes the induction, that

together with the fact that the constructed sequence does not have an upper bound while
having size less than tD gives us a contradiction, concluding that tD 6 pD.

The conclusion that tD 6 pD is equivalent to C(D, tD) = ∅. Connecting with
cofinality spectrum problems, this is the special case of the main result of [20] as stated in
3.0.15, namely that C(s, ts) = ∅.

5.5 pD = tD

Theorem 5.5.1. Let D be a non-principal ultrafilter over λ, then pD = tD.

Proof. Theorem 5.4.5 together with lemma 5.3.2 gives us that pD = tD.
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