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On the Growth Rate of Periodic Orbits

Walter Britto Peçanha Alves

Orientador: Alexander Eduardo Arbieto Mendoza

Resumo

O objetivo deste trabalho é estudar a relação entre a taxa de crescimento dos pontos
periódicos e a entropia topológica. Em 1970, Bowen [Bow70] provou que para sistemas Axioma
A, a taxa de crescimento dos pontos periódicos coincide com a entropia topológica. Dez anos
depois, Katok [Kat80] mostrou que se f é um difeomorfismo de classe C1+α (α > 0) numa var-
iedade compacta, então para qualquer medida hiperbólica f -invariante a taxa de crescimento
dos pontos periódicos é maior ou igual que a entropia métrica. Em particular, se f é um difeo-
morfismo de classe C1+α em uma superf́ıcie, então a taxa de crescimento dos pontos periódicos
é maior ou igual que a entropia topológica. O teorema que apresentaremos nessa dissertação é
uma extensão desse resultado de Katok para o caso de campos de vetores C1 genéricos.
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On the Growth Rate of Periodic Points

Walter Britto Peçanha Alves

Advisor: Alexander Eduardo Arbieto Mendoza

Abstract

Our goal in this thesis is to study the relationship between the growth rate of the periodic
orbits and the topological entropy. In the early 70’s, Bowen [Bow70] proved that for Axiom
A systems, the growth rate of the periodic orbits equals to the topological entropy. A decade
later, Katok [Kat80] showed that if f is a C1+α (α > 0) diffeomorphism on a compact manifold,
then for any f -invariant hyperbolic measure the growth rate of periodic points is larger than
or equal to its metric entropy. In particular, if f is a C1+α surface diffeomorphism, then the
growth rate of periodic points is larger than or equal to its topological entropy. The theorem
presented here extends Katok’s result for C1 generic vector fields of any dimension.
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Chapter 1

Introduction

1.1 History and basic concepts

1.1.1 History

What is a dynamical system?

A dynamical system is all about the evolution of ”something” over time. To create a
dynamical system we simply need to decide what is the ”something” that will evolve over
time and what is the rule that specifies how that ”something” evolve with time. In this way, a
dynamical system is simply a model describing the temporal evolution of a system. As examples
of dynamical systems, we have the mathematical models that describe the swinging of a clock
pendulum, the flow of water in a pipe, and population growth.

A little bit of history

The concept of a dynamical system has its origins in Newtonian Mechanics, but a lot of
what is considered dynamical systems today was developed by the French mathematician Henri
Poincaré. Poincaré published two classic monographs, one called ”New Methods of Celestial
Mechanics”(1892-1899) and the other called ”Lectures on Celestial Mechanics”(1905-1910). In
them, he successfully applied the results of his research to the problem of the motion of three
bodies and studied in detail the behaviour of the solutions(frequency, stability, asymptotic, and
so on). These papers included the so called Poincaré Recurrence Theorem, which states that
certain system will, after a sufficiently long but finite time, return to a state very close of the
initial state.

Another very important person to the development of dynamical systems is the Russian
mathematician Aleksandr Lyapunov, he developed many important approximations methods.
His methods, which he developed in 1899, make it possible to define the stability of sets of
ordinary differential equations. He created the modern theory of the stability of a dynamical
system.
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In 1913, the American mathematician George David Birkhoff prove the Poincaré’s ”Last
Geometric Problem”, the special case of the three-body problem, a result that made him world
famous. In 1927, he published his Dynamical Systems. Birkhoff’s most acclaimed result has
been his 1931 discovery of what is now called the ergodic theorem. Combining insights from
physics on the ergodic hypothesis with measure theory, this theorem solved, at least in principle,
a fundamental problem of statistical mechanics. The ergodic theorem is also of great importance
in dynamics.

The American mathematician Stephen Smale also made significant advances, one of his
most famous contributions is the Smale horseshoe that jumpstarted important researches in
dynamical systems. He also outlined a research program carried out by many others.

1.1.2 Basic concepts

Let X be a compact metric space and f : X → X a homeomorphsm. This generates a family
of homeomorphisms, called iterates of f , written as

fn = f ◦ f · · · ◦f
f 0 = id

f−n = (fn)−1

For any x ∈ X, the set {fn(x), x ∈ Z} is called the orbit of x under f , denoted by Of (x),
or simply by O(x). Any two orbits are either identical or else disjoint. A point x ∈ X is called
periodic if there is n ≥ 1 such that fn(x) = x. The minimal positive integer that satisfies
this equality is called the period of x. The orbit of a periodic point is called a periodic orbit.
Periodic points of period 1 are just fixed points.

A subset Λ ⊂ X is called invariant under f if f(Λ) = Λ.

Given x ∈ X, the positive orbit x, f(x), f 2(x), · · · generally do not converge. Nevertheless
many subsequences of it do. A point y is called an ω-limit of x if there exists a subsequence
ni → +∞ such that fni(x) → y. The set of ω-limit points of x is called the ω-limit set of x,
denoted by ω(x). Reversing time defines the α-limit set of x. A simply proof shows that the
ω- limit is a nonempty, compact, and invariant set.

A point x ∈ X is called positively recurrent if x ∈ ω(x). In other words, x is positively re-
current if its positive orbit accumulates on x itself. Analogously we define negatively recurrent.
Positively or negatively recurrent points are both called recurrent.
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1.2 Topological entropy

In this section, we define topological entropy as a non negative real number representing the
asymptotic average of the exponential growth of the number of distinguishable orbit segments.
This concept will be studied more carefully in chapter 4.

Consider a homeomorphism f : X → X of a compact metric space.

Let d be a metric on X. It induces a family of metrics {dn} on X given by

dn(x, y) := max
0≤i≤n−1

d(f i(x), f i(y))

where each metric dn measures the distance between the orbit arcs {x, · · ·, fn−1(x)} and
{y, · · ·, fn−1(y)}.

Definition 1.2.1 Let n ∈ N, and ε > 0. A subset E ⊂ X is said to be (n, ε)-separated with
respect to f if x, y ∈ E, x 6= y, implies dn(x, y) = max

0≤i≤n−1
d(f i(x), f i(y)) > ε.

We denote by Sn(ε) the cardinality of the (n, ε)-separated set with respect to f of maximum
cardinality. It is easy to see that if ε1 < ε2, then Sn(ε2) < Sn(ε1).

Later in chapter 4, we will see that

Sn(ε) <∞ (1.1)

Definition 1.2.2 Let X be a compact metric space. The topological entropy of f : X → X is
the number

htop(f) = lim
ε→0

lim sup
n→∞

1

n
logSn(ε)

1.3 Examples

In this section, we present some examples in order to understand the relation between the
topological entropy and the growth rate of the periodic points.

3



1.3.1 The shift map

Let Σ+
2 = {0, 1}N be the set of all sequences formed by the symbols 0 and 1, that is

Σ+
2 = {{xi}∞i=0, xi ∈ {0, 1}}

We define the shift map as

σ : Σ+
2 → Σ+

2

{xi}∞i=0 7→ σ({xi}∞i=0) = {xi+1}∞i=0

That is, the image of the sequence {xi}∞i=0 is obtained omitting the first digit and shifting
the other digits to the left.

Given x = x0x1 · ·· and y = y1y2 · ·· sequences in Σ+
2 , we define

d(x, y) =
∞∑
i=0

|xi − yi|
2i

Observe that, since |xi−yi| always equals to 0 or 1, the above series converges. The function
d : Σ+

2 → R defines a metric in Σ+
2 .

Note that the maximum distance is attained in the points {0} = {0, 0, · · ·} and {1} =
{1, 1 · ··}. The maximum distance is

d(1, 0) =
∞∑
i=0

1

2i
= 2

In the space Σ+
2 two sequences are close if, and only if, the first n entries of the sequences

coincide, more precisely, let x, y ∈ Σ+
2

xi = yi,∀i ≤ n⇔ d(x, y) ≤ 1

2n

Indeed, if xi = yi,∀i ≤ n, then

4



d(x, y) =
∞∑
i=0

|xi − yi|
2i

=
∞∑

i=n+1

|xi − yi|
2i

≤
∞∑

i=n+1

1

2i

=
1

2n

Conversely, if xi 6= yi for some i ≤ n, then

d(x, y) =
∞∑
i=0

|xi − yi|
2i

≥ 1

2i

≥ 1

2n

Since n ≥ i.

Denote by Fix(σn) the set of the points with period n. That is,

Fix(σn) = {x ∈ Σ+
2 : σn(x) = x}

Observe that, if a point x ∈ Σ+
2 , then it has the form

x = x0x1x2x3 · · · xn−1x0x1x2x3 · · · xn−1x0x1x2x3 · · · xn−1 · ··

Therefore, #Fix(σn) = 2n.

A natural question is: what is the growth rate of the periodic points? The growth rate is
given by

lim
n→∞

1

n
log #Fixn(σ) = lim

n→∞

1

n
log 2n = log 2

Is well known from the ergodic theory, that the topological entropy of the 2 symbols shift
map is given by htop(σ) = log 2.

5



Thus, in the shift case we have htop(σ) = limn→∞
1
n

log #Fix(σn). In other words, the
topological entropy and the growth rate of the periodic points coincide.

1.3.2 The tent map

Now, let us take a look at another example.

Consider the map f2 : [0, 1]→ [0, 1] given by

f2(x) =

{
2x, if 0 ≤ x ≤ 1

2

2(1− x), if 1
2
< x ≤ 1

This map is called the tent map, it is an example of an expansor map in a interval. The
graph of f2 appears in figure 1.1.

Figure 1.1: The Tent Map

The tent map stretch the interval [0, 1
2

]
over the intire interval [0, 1], and folds the interval(

1
2
, 1] back over the interval [0, 1]. The fixed points of f2 are the points x = 0 and x = 2

3
. Figure

1.2 indicates that f 2
2 and f 3

2 have, respectively, four and eight fixed points.

Figure 1.2: Iterates of the tend map

6



That is, f2 has four points with period two and eight points with period four. Proceeding by
induction, we obtain #Fix(fn2 ) = 2n. As in the shift case, we have htop(f2) = log 2. Therefore,

htop(f2) = lim
n→∞

1

n
log #Fix(fn2 )

1.3.3 Anosov diffeomorphism

Suppose A ∈ GLn(R), where GLn(R) is the set of all n x n invertible matrices with real entries.
We say that A is hyperbolic if each of its eigenvalues λi ∈ C satisfy |λi| 6= 1. We call a
eigenvalue λi contracting if |λi| < 1 or expanding if |λi| > 1. Similarly, a matrix A is called
contracting(expanding) if its eigenvalues are contracting(expanding). Given a hyperbolic matriz
A ∈ GLn(R), we can split the domain of A into the direct sum of two A-invariant subspaces Es

and Eu, i.e., Rn = Es ⊕ Eu, where Es and Eu are the generalized eigenspaces corresponding
to the contracting and expanding eigenvalues of A respectively. It follows that A restricted to
Es is contracting, and A restricted to Eu is expanding. This gives us a direction on which A is
contracting and another on which A is expanding.

Now consider a hyperbolic A ∈ GLn(Z). We have that A(Zn) = Zn. Quotienting Rn by Zn,
A induces a map

Ã : x+ Z 7→ A(x) + Z

on the torus Tn = Rn \ Zn to itself. Note that Ã is a diffeomorphism of Tn.

Given a diffeomorphism f : M → M , we say that a compact invariant subset Λ ⊂ M is
hyperbolic, if there is a continuous splitting, invariant under the action of the derivative, that
is, Df(x)|Esx = Es

f(x) and Df(x)|Eux = Eu
f(x), for every x ∈ Λ, and there are constants C > 0

and λ ∈ (0, 1) such that for every n ≥ 0

||Dfn(x)|Esx|| ≤ Cλn and ||Df−n(x)|Eux || ≤ Cλn

Now, let us return our attention to the diffeomorphism Ã : Tn → Tn defined above.

We Claim that this is hyperbolic. Indeed, the space Rn is hyperbolic with respect to the
matrix A ∈ GLn(Z). Thus, we can consider a splitting of Rn into subspaces Es

x and Eu
x . Since

the tangent space of Rn is naturally identified with Rn for all x ∈ Rn, we can pass this splitting
to the tangent space of the coset of x in Tn, giving a new splitting under Ã.

The diffeomorphism induced by a hyperbolic matrix A ∈ GLn(Z) is called hyperbolic toral
automorphism.

7



Let x ∈ Tn. If x is a fixed point for Ã, then it satisfies

Ã(x) = A(x) + Z = x

That is, if

(A− I)(x) ∈ Z

where I is the identity map.

For obtaining the cardinality of the set of fixed points of Ã, we need to check how many
points in (A−I)(Tn) lie on the lattice Zn. Since there is exactly one in the fundamental domain
[0, 1)n of the n-torus, one can see that this just corresponds to the volume of the parallelepiped

(A − I)([0, 1)n), i.e, #Fix(Ã) = |det(A − I)|. Since the fixed points of Ãn are the periodic

points of Ã with period n, one has #Fix(Ãn) = |det(An − I)|.

In truth, hyperbolic toral automorphism fall into a more general class of objects called
Anosov diffeomorphism. Now, we give the precise definition of Anosov diffeomorphism.

Definition 1.3.1 A diffeomorphism f : M →M on a compact manifold is called Anosov if M
is hyperbolic.

Example (Arnold’s Cat Map)

Consider the following matrix in GL2(Z)

A =

(
2 1
1 1

)

One can easily see that det(A) = 1.

A number λ ∈ C is an eigenvalue of A ⇔ det(A − λI) = 0. A simple calculation shows

that its eigenvalues are 3±
√

5
2

. Therefore, A is a hyperbolic matrix, and according to what we

saw previously, A induces an Anosov toral automorphism Ã, and in particular Ã is an Anosov
diffeomorphism.

In next chapter we will see that

htop(Ã) = lim
n→∞

1

n
log #Pern(Ã)

8



One may ask if the the topological entropy always is equal to the the growth rate of the
periodic points. The next example will answer this question.

1.3.4 The identity map

Consider the identity map I : [0, 1]→ [0, 1]

Since any point is periodic, we have

lim
n→∞

1

n
log #Pern(I) =∞

Observe that for any pair of points x, y ∈ [0, 1]

d1(x, y) = d(x, y)

d2(x, y) = max{d(x, y), d(I(x)), d(I(y)} = d(x, y)

·
·
·

dn(x, y) = max
0≤i≤n−1

{d(I i(x), I i(y))} = d(x, y)

Therefore, given ε > 0

S1(ε) = S2(ε) = · · · = Sn(ε)

for any n ∈ N. Thus

htop(I) = lim
ε→0

lim sup
n→∞

1

n
log #Sn(ε)

htop(I) = lim
ε→0

lim sup
n→∞

1

n
log #S1(ε)

= 0

Since log #S1(ε) is constant.

Then, for the identity map we have

htop(I) < lim
n→∞

1

n
log #Pern(I)

9



So, a reasonable question is: Under which condition does the equality holds? Is it still
holding for continuous time?

Our purpose in this work is to give a satisfactory answer to these questions.

In the discrete case, under certain conditions, one has that the growth rate of the periodic
orbits is indeed equal to its topological entropy. We have the following:

Theorem A: Let f : X → X be an expansive homeomorphism on a compact metric space.
If f has the shadowing property, then #Pern(f) ≤ ∞ and

htop(f) = lim sup
n→∞

1

n
log(#Pern(f))

However, the same result is not valid for continuous time dynamical systems. In this case
one can only guaranties that the growth rate of the periodic points is larger than or equal to
the topological entropy.

Let M be a compact manifold. Next theorem is the main result of this work.

Theorem B [WYZ19]: There exists a residual set R ⊂X 1(M) such that for any X ∈ R,
one has

htop(X) := htop(X1) ≤ lim sup
T→∞

1

T
log(#PT (X))

In the next chapters, we will define all the objects that are necessary for the proof of the
above theorems.

10



Chapter 2

Presentation of the main theorem and
proof of Theorem A

In the previous chapter, we see that the growth rate of the periodic points can differ of the
topological entropy. We are interested in finding conditions to have equality. The following
theorem give us such conditions.

Theorem A: Let f : X → X be an expansive homeomorphism on a compact metric space.
If f has the shadowing property, then #Pern(f) ≤ ∞ and

htop(f) = lim sup
n→∞

1

n
log(#Pern(f))

The idea behind the proof of Theorem A is the following: For the inequality htop(f) >
lim supn→∞

1
n

log(#Pern(f)), the expansivity will force the set Pern(f) to be (n, ε)-separated,
and then, the result will follow from the fact that Sn(ε) is the (n, ε)- separated set with max-
imum cardinality. For the inequality htop(f) < lim supn→∞

1
n

log(#Pern(f)), we cover X by
dynamical balls with radius smaller than the expansivity constant. By the pigeon principle
together with the shadowing property, we will obtain periodic shadows, and espansivity plus
separability will imply that the period is smaller than n, and then, the result will follow.

Before proving the above theorem, we give some important definitions.

Definition 2.0.1 A dynamical system f : X → X is expansive, if there is a constant γ > 0
such that, for every pair of different points x 6= y in X, there is an integer m such that
d(fm(x), fm(y)) ≥ δ. The number δ > 0 is called an expansive constant of f .

As an example of an expansive system, we have the hyperbolic diffeomorphisms. Indeed,
let Λ be a hyperbolic set for a diffeomorphism g. Let β > 0 be given by the theorem of the
stable manifold (see for instance [Wen16]), and suppose d(f j(x)), f j(y)) < γ, ∀ j ∈ Z. Thus,
x ∈ W s

β(y) and x ∈ W u
β (y). This implies x = y.

11



Let δ > 0. We call a sequence {xn}∞−∞ in X a δ-pseudo-orbit of f if, for every n ∈ Z,

d(f(xn), xn+1) < δ

Figure 2.1: δ-Pseudo Orbit

We say a point y ∈ X ε-shadows a pseudo-orbit {xn}∞−∞ if, for every n ∈ Z,

d(fn(y), xn) < ε

Definition 2.0.2 A dynamical system f : X → X is said to have the shadowing property if,
given ε > 0 there is δ > 0 such that every δ-pseudo-orbit can be ε-shadowed.

Observe that if we also assume that f is expansive with expansive constant γ , then the
shadow is unique. Indeed, Let 0 < ε ≤ γ and consider the δ-pseudo-orbit {xn}∞−∞, where δ is
given by the shadowing property. Suppose that z1 and z2 are shadows, then by definition

d(fn(z1), xn) <
ε

2
, ∀n ∈ Z

and

d(fn(z2), xn) <
ε

2
, ∀n ∈ Z

By the triangle inequality

d(fn(z1), fn(z2)) ≤ d(fn(z1), xn) + d(fn(z2), xn) <
ε

2
+
ε

2
≤ ε ≤ δ, ∀n ∈ Z

and it follows from expansivity that z1=z2.

Now, let us return our attention to the example of the subsection 1.3.3 (Arnold’s Cat Map).

12



We have seen that the matrix

A =

(
2 1
1 1

)

induces a hyperbolic diffeomorphism Ã : T2 → T2

Is well known by the hyperbolic theory that hyperbolic sets have the shadowing property,
and since it also is expansive, it follows from Theorem A that

htop(Ã) = lim
n→∞

1

n
log #Pern(Ã)

More generally, for any Anosov diffeomorphism, the topological entropy equals to the growth
rate of the periodic orbis.

Let ε > 0 be given, and suppose that f is expansive with the shadowing property. Let
{xn}∞−∞ be a periodic δ-pseudo-orbit, where δ is given by the shadowing. There is m > 0 such
that xn = xn+m for all n ∈ Z. Then, {xn} is ε-shadowed by a point z, that is

d(fn(z), xn) < ε, ∀n ∈ Z

that is

d(fn+m(z), xn+m) < ε, ∀n ∈ Z

But since xn = xn+m

d(fn+m(z), xn) = d(fn(fm(z)), xn) < ε, ∀n ∈ Z

In other words, fm(z) also ε-shadows {xn}. By the uniqueness of the shadow, fm(z) = z,
meaning z is periodic.

We just proof that a periodic-pseudo-orbit can be shadowed by a periodic orbit. Moreover,
the shadow has the same period.

Now, we will give the proof of the Theorem A.

Proof of Theorem A: Let δ be an expansive constant for f . Let ε ≤ δ
2
, we will show that

the set Pern(f) is (n, ε)-separated. First, observe that the set Pern(f) is (n, ε)-separated, and
since Sn(ε) is the (n, ε)-separated set of maximum cardinality, we have

13



Sn(ε) ≥ Pern(f)

This implies

1

n
log(Sn(ε) ≥ 1

n
log(#Pern(f))

taking limits on both sides we obtain

htop(f) ≥ lim sup
n→∞

1

n
log(#Pern(f))

For the reverse inequality, let ε < δ, and denote by En(ε) the (n, ε)-separated set with
maximum cardinality. We have that

X =
⋃

xi∈En(ε)

B(xi, n, ε)

Pick a point x ∈ X. Then, x ∈ B(xi, n, ε) for some i. If x is not a fixed point, expansivity
implies that there is j1 ∈ N such that f j1(x) /∈ B(xi, n, ε). That is f j1(x) ∈ B(xij1 , n, ε),
for some xij1 6= xi. Analogously, there is j2 ∈ N such that f j2(f j1(x)) ∈ B(xij2 , n, ε), for
some xij2 6= xj1 . Thus, if x is not a periodic point, we can construct an infinite sequence
sf = {f jk(x), k ∈ N} ⊂ X. By the pigeonhole principle, there is some B(xi, n, ε) with infinite
points of sf . By compacity, sf has a accumulation point belonging to B(xi, n, ε). Then, for
every δ > 0 one can construct a periodic δ-pseudo-orbit {xj} through the limit point of sf . By
the shadowing property, since f is an expansive map, there is a unique periodic point px such
that d(xj, f

j(px)) ≤ ε, for all j ∈ Z. Moreover, the separability implies that π(px) ≤ n, where
π(px) is the period of the point px. Therefore, Pern(f) ≥ Sn(ε). This implies

htop(f) ≤ lim sup
n→∞

1

n
log(#Pern(f))

�

This result was originally proved by Bowen [Bow70] in the setting of Axiom A systems . For
a C1+α (α > 0) diffeomorphism f on a compact manifold, and any f -invariant Borel probability
measure with non-zero Lyapunov exponents, Katok [Kat80] showed that the upper limit of the
growth rate of the periodic points is larger than or equal to its metric entropy, i.e.,

hµ(f) ≤ lim sup
n→∞

1

n
log(#Pern(f))
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where µ is a hyperbolic measure.

In this work, we are concerned about the case of vector fields. Assume that M is a bound-
aryless compact smooth manifold and let X 1(M) be the space of all C1 vector fields on M
with the C1 norm. Note that X 1(M) is a banach space. A vector field X ∈X 1(M) generates
a flow Xt. Let

#PT (X) =
∑

x∈PerT (X)

π(x)

where π(x) is the minimum period of x and PerT (X) = {x ∈M : 0 ≤ π(x) ≤ T}

Now, we will state the main result of this text

Theorem B [WYZ19]: There exists a residual set R ⊂X 1(M) such that for any X ∈ R,
one has

htop(X) := htop(X1) ≤ lim sup
T→∞

1

T
log(#PT (X))

Strategy for the proof

First, we give the precise construction of the residual set R. So, the prove is divided in two
cases:

Case 1: The generic vector field is not star. In this case, since it can be approximated
by vector fields, each one them having a non-hyperbolic periodic orbit, we emulate Example
1.3.4 (identity map). To do so, we apply the Franks Lemma together with the definition of the
residual set R to prove that the growth rate of the periodic orbits is infinite, and then, larger
or equal to the topological entropy.

Case 2: The generic vector field is star. In this case, we emulate the proof of Theorem
A. If X is star, Shi-Gan-Wen [SGW14] proved that every Xt-invariant ergodic measure µ is
hyperbolic, then we prove that the Oseledec splitting with respect to µ is a dominated splitting.
After that, we apply Liao’s Shadowing Lemma [Lia81a] to prove that if the hyperbolic Oseledec
splitting is a dominated splitting, then the growth rate of the periodic orbits is larger than or
equal to the topological entropy, and then the result follows from the variational principle.

15



Chapter 3

Star Flows

A vector field X ∈ X 1(M) is called a star vector field or a star flow, if it satisfies the star
condition, i.e., there exists a C1 neighborhood U of X such that every critical element of every
Y ∈ U is hyperbolic. The set of C1 star vector fields in M is denoted by X ∗(M).

The notion of star systems came up from the study of the stability conjecture. A classical
theorem of Smale [Sma70] (for diffeomorphism) and Pugh-Shub [PS70b] (for flows) states that
Axiom A plus the no-cycle condition implies the Ω-stability. Palis and Smale [PS70a] conjec-
tured that the converse also holds, which has been known as the Ω-stability conjecture. In the
study of the conjecture , Pliss, Liao and Mañé noticed an important condition called by Liao
”the star condition”. As defined above, the star condition looks quite weak because, though it
is a robust property, it is only concerned with critical elements, and the hyperbolicity consid-
ered is not in a uniform way. Indeed, the Ω-stability implies the star condition [Fra71, Lia79].
Thus whether the star condition could give back Axiom A plus the no-cycle condition be-
came a striking problem, raised by Liao [Lia81b] and Mañé [Mañ82]. An affirmative answer
to the problem would contain the Ω-stability conjecture. For diffeomorphsm, Aoki [Aok92]
and Hayashi [Hay92] proved that the star condition indeed implies Axiom A plus the no-cycle
condition. For flows, there are counterexamples if the flow has singularities. For instance, the
geometric Lorenz attractor [Guc76], which has a singularity is a star flow, but it fails to satisfy
Axiom A. In fact, Liao [Lia81b] and Mañé [Mañ82] raised this problem for nonsingular star
flows, and hence it was solved by Gan-Wen [GW06] proving that nonsigular star flows do satisfy
Axiom A plus no-cycle condition.

An important feature of star vector fields, is that they are in a certain way source of
hyperbolicity, as we will see in subsection 3.5.2. Moreover, the hyperbolicity is in a uniform
way.

3.1 General Definitions

Let X be a C1 vector field on a compact boundaryless Riemannian manifold M , and denote by
Xt : M → M the flow generated by it, that is d

dt
|t=0 Xt(x) = X(x) for every x ∈ M . Since M

is compact this flow can be defined for every t ∈ R. The flow Xt has the following properties:
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• X0(x) = x for every x ∈M .

• Xt+s(x) = Xt ◦Xs(x) for every t, s ∈ R and every x ∈M .

• (Xt)
−1(x) = X−t(x) for every t ∈ R and every x ∈M .

• For every t ∈ R the application Xt : M →M is a C2-diffeomorphism.

These properties tell us that the application

R×M →M

(t, x) 7→ Xt(x)

defines an action of the group (R,+) on M . Just as in group actions, we define the orbit of a
point x ∈M as the set of points O(x) = {Xt(x) : t ∈ R}.

A point σ ∈ M is called a singularity of X, if X(σ) = 0. Note that a singularity is just a
fixed point for the flow Xt generated by the vector field X.

An orbit O(x) is periodic, if there exists p ∈ O(x) and T > 0 such that XT (p) = p. In this
case O(x) = {Xt(p) : 0 ≤ t ≤ T} and p is said to be a periodic point. The smaller T > 0 that
satisfies XT (p) = p is called the period of p, and denoted by π(p). The set of periodic points is
denoted by Per(X). The set of critical points of X is defined by

Crit(X) = Per(X) ∪ Sing(X)

3.2 Hyperbolicity

Recall that a periodic point p is hyperbolic for a diffeomorphism f : M → M , there is a
continuous splitting TpM = Es

p ⊕ Eu
p , of the tangent bundle over p, invariant under the action

of the derivative, that is, Df(p)|Esp = Es
f(p) and Df(p)|Eup = Eu

f(p), and there are constants

C > 0 and λ ∈ (0, 1) such that for every n ≥ 0

||Dfn(p)|Esp || ≤ Cλn and ||Df−n(p)|Eup || ≤ Cλn

Next, we define the concept of hyperbolicity for critical points of a vector field.

Definition 3.2.1 A singularity σ is hyperbolic if for every eigenvalue λ of DX(σ), we have
Re(λ) 6= 0.
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For periodic orbits, we need the concept of Poincaré map associated to such orbit.

Let O(p) be a periodic orbit for X ∈ X 1(M). Consider a cross section Σ through p. The
orbit of p crosses Σ again at the time π(p). By continuity of the flow Xt, the orbit through
x ∈ Σ sufficiently close to p also returns to Σ after a time close to π(p). Thus, in a sufficiently
small neighborhood V ⊂ Σ of p, one can define a map P : V → Σ that associates each point
x ∈ V to a point P (x), where P (x) is the first point of the orbit of x to return to Σ. This map
is called the Poincaré map associated to Σ and x.

Figure 3.1: Poincaré Map

Definition 3.2.2 A periodic point p ∈ M is hyperbolic with respect to X ∈ X 1(M) if every
eigenvalue λ of DP (p) satisfies |λ| 6= 1.

3.3 The linear Poincaré flow

Let X ∈X 1(Md) and denote the normal bundle of X by

N =
⋃

x∈M\Sing(X)

Nx

where Nx = {v ∈ TxM : v ⊥ X(x)}. That is, N is the (d− 1)- dimensional subbundle over
M \ Sing(X) orthogonal to the vector field direction.

For the flow Xt generated by X, its derivative DXt : TM → TM is called the tangent flow,
that can be described as
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DXt(x, v) = (Xt(x), DXt(x)(v))

In other words, we have a dynamics Xt that acts on the base space M and we have the
derivative that acts on the fibers TxM .

Obviously N is not invariant by the action of the derivative DXt, but we can force this
invariance taking the orthogonal projections πx = TxM → Nx, and defining the the linear
Poincaré flow

Pt(x) : Nx → NXt(x)

v 7→ πx(DXt(x)(v))

That is, it is the orthogonal projection of DXt(x)(v) on NXt(x) along the flow direction
X(Xt(x)).

Figure 3.2: Linear Poincaré Flow

The linear Poincaré flow can also be written as

Pt(x)(v) = DXt(x)(v)− 〈DXt(x)(v), X(Xt(x))〉
||X(Xt(x))||2

X(Xt(x))

One can also define the rescaled linear Poincaré flow

P ∗t (x)(v) =
||X(x)||
||X(Xt(x))||

Pt(x)(v)

Now, let us now investigate some properties of the linear Poincaré flow. First observe that

P0(x)(v) = DX0(x)(v)− 〈DX0(x)(v), X(X0(x))〉
||X(X0(x))||2

X(X0(x))

by the flow property, one has
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P0(x)(v) = v − 〈v,X(x)〉
||X(x)||2

X(x)

and since v and X(x) are orthogonal, we have

P0(x)(v) = v

that is, P0 = Id. Also observe that

Pt+s(x)v = π(DXt+s(x)v) = π(DXt(Xs(x))v)

by the chain rule,

DXt(Xs(x))v = DXt(Xs(x))DXs(x)v

but we can write DXs(x)v = π(DXs(x)v) + (DXs(x)v)X

where (DXs(x)v)X is the component of DXs(x)v along the flow direction. Thus

DXt(Xs(x))v = DXt(Xs(x))[π(DXs(x)v) + (DXs(x)v)X ]

= DXt(Xs(x))π(DXs(x)v) +DXt(Xs(x))(DXs(x)v)X

Then

Pt+s(x)v = π(DXt(Xs(x))π(DXs(x)v) +DXt(Xs(x))(DXs(x)v)X)

= π(DXt(Xs(x))π(DXs(x)v)) + π(DXt(Xs(x))(DXs(x)v)X)

and since the flow direction is invariant under the action of the derivative, we have

π(DXt(Xs(x))(DXs(x)v)X) = 0

thus,

Pt+s(x)v = π(DXt(Xs(x))π(DXs(x)v))

= Pt(Xs(x))Ps(x)v

= Pt ◦ Ps(x)v
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Now, since P−t ◦ Pt = P0 = Id = Pt ◦ P−t it follows that

P−t = (Pt)
−1

Since Pt satisfies this group property it can be regarded as a flow, which justifies its name.

Now, let us see what is the relation between the linear Poincaré flow, and the Poincaré map.
First, observe that for a non periodic point, we can also define the Poincaré map. Indeed, let
x ∈M \Sing(X), and fix a time t ∈ R, so that Xt(x) 6= x. Considering small cross sections Σx

through x and ΣXt(x) through Xt(x), it follows from the tubular flow theorem, that the map
P : Σx → ΣXt(x), which for each y ∈ Σx associates the first point that the orbit of y hits ΣXt(x)

is a C1 diffeomorphism. This map is called the Poincaré map from x to Xt.

An important observation is, if the cross sections are chosen conveniently, then the derivative
of the Poincaré map coincides with the linear Poincaré flow. More precisely:

For each regular value x ∈M , and any δ > 0, denote

Nx(δ) = Nx ∩B(0, δ) = {v ∈ Nx : ||v|| ≤ δ}

where B(0, δ) is the open ball centred at origin with radius δ in TxM .

Proposition 3.3.1 Let x ∈M \Sing(X) and Xt(x) as above. There is δ > 0 such that, taking
Σx = expx(Nx(δ)) and ΣXt(x) = expXt(x)(NXt(x)(δ)) as cross sections, one has that the derivative
of the Poincaré map P : Σx → ΣXt(x) at 0 equals to the liner Poincaré flow Pt : Nx → NXt(x).
That is

DP (0) = Pt(x) (3.1)

Proof. Take δ > 0 small enough so that the exponential map expx is a diffeomorphism under
its image, and consider the map h : NXt(x)(δ)×R→M , given by h(v, s) = Xs(expXt(x)(v)). In
exponential coordinates, reducing δ if necessary, one can represents the Poincaré map by

P = π ◦ h−1 ◦Xt ◦ expx|Nx(δ) : Nx(δ)→ NXt(x)(δ)

where π : NXt(x) × R→ NXt(x) is the canonical projection. Thus, by the chain rule

DP (0) = D(π ◦ h−1) ◦DXt(expx(0))Dexpx(0)

Since, expx(0) = x and Dexpx(0) = I, where I is the identity. Therefore, for any w ∈ Nx(δ)
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DP (0)w = D(π ◦ h−1) ◦DXt(x)w ∈ NXt(x)(δ)

That is, DP (0)w is the orthogonal projection of the vector DXt(x)w ∈ TXt(x)M . that is,
DP (0) = Pt(x).

�

3.4 Generic Dynamics

One of the main purpose in dynamics is to try to obtain properties that are valid for most
systems. But what do we mean by most systems? Let On ⊂X 1(M) be open and dense in the
C1-topology. By the Baire’s theorem, we have that R =

⋂
n∈N

On is dense in X 1(M). We call

such set a residual subset of X 1(M), in other words, a residual is an intersection of open and
dense subsets. We say that a property is generic if it is valid on residual subset of X 1(M).
The great advantage of obtaining generic properties is that the intersection of residual subsets
is a residual.

As an example of a C1-generic dynamical system, we have the family of Kupka-Smale
systems. Recall that a system is said to be Kupka-Smale, if every critical element is hyperbolic
and if W s(orb(x1)) is transversal to W u(orb(x2)) for every x1, x2 ∈ Crit(X).

Theorem 3.4.1 (Kupka-Smale) There exits a residual set KM ∈ X 1(M) such that every
X ∈ KM is a Kupka-Smale vector field.

The Kupka-Smale systems have a great importance for the theory. By definition they
are source of local hyperbolicity, since every critical element is hyperbolic, it follows from the
Hartman-Grobman theorem that in a small neighborhod of every critical element, the dynamics
is linear. This also leads us to the local stability of the system near to these points. Moreover,
the above theorem tells us that the family of the Kupka-Smale systems is in a certain sense big.

3.5 Definition of star flow

The Kupka-Smale theorem states the the hyperbolicity of every critical element occurs in a
residual set. So, is natural to study such systems whose all critical elements are hyperbolic
robustly. This lead us to the following definition:

Definition 3.5.1 We say that a vector field X ∈X 1(M) is star if there exists a neighborhood
U of X such that if Y ∈ U and y ∈ Crit(Y ), then y is hyperbolic.
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The reason behind the definition of star flows is not just as an extension of the Kupka-Smale
systems, its definition is motivated by the structural stability theory.

An important class of examples of star systems is generated by Axiom A systems without
cycles. Before defining the axiom A systems, recall that a compact invariant set Λ is hyperbolic
for the vector field X ∈ X 1(M), if there exists a continuous splitting TΛM = Es ⊕ 〈X〉 ⊕ Eu

invariant by the action of DXt and constants C > 0 and λ > 0 such that for every x ∈ Λ, and
every t ≥ 0

||DXt(x)|Esx|| ≤ Ce−λt and ||DX−t(x)|Eux || ≤ Ce−λt

Remark : The definition of hyperbolicity for flows implies that every singularity contained
in Λ must be isolated in Λ. It is due to the continuity of the splitting, which implies in the
continuity of the dimension of the fibers. The dimension of each fiber has to be locally constant,
and this is clearly false if we have a singularity accumulated by periodic orbits (or regular orbits)
in the hyperbolic set.

We say that a vector field is Axiom A if the non-wandering set Ω(X) is hyperbolic, and
satisfies

Ω(X) = Crit(X)

We say that a vector field X ∈X 1(M) is structurally stable if there exists a C1 neighbor-
hood U of X such that for each Y ∈ U , there is a homeomorphism h : M → M that takes
orbits of X in orbits of Y preserving orientation, that is, if p ∈M and δ > 0, there exists ε > 0,
such that for 0 < t < δ, h(Xt(p)) = Yt′(h(p)) for some 0 < t′ < ε.

One can consider only the asymptotic part of the system.

Definition 3.5.2 We say that a vector field X ∈ X 1(M) is Ω-stable if there exists a C1

neighborhood U of X such that for each Y ∈ U , there is a homeomorphism h : Ω(X)→ Ω(Y )
that takes orbits of X in orbits of Y preserving orientation, that is, if p ∈ Ω(X) and δ > 0,
there exists ε > 0, such that for 0 < t < δ, h(Xt(p)) = Yt′(h(p)) for some 0 < t′ < ε.

On both cases, the map h is called a conjugation. In other words, a vector field is structurally
stable (Ω-stable) if there is a neighborhood on which every vector field is conjugated to it.

Next, we will state the Franks lemma, this lemma shows us that the star condition is in-
timately related to the Ω-stability. In [Fra71], Franks proved in the setting of diffeomorphism
that Ω-stability implies the star condition. For that, Franks created a lemma for obtaining a
perturbation of the original diffeomorphism by means of its derivative. Moreover, the pertur-
bation obtained is linear in exponential coordinates. Here, we state it for singularities and for
periodic orbits in the flow setting.
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Theorem 3.5.3 (Frank’s lemma for singularities) Let X ∈X 1(M) and σ ∈ Sing(X). Then,
for every C1-neighborhood U of X, there exist δ > 0 and ε > 0 such that if L : TpM → TpM
is a linear map satisfying ||DX(σ)− L|| < δ, then there exists Y ∈ U and r > ε such that

Y (x) = (Dexp−1
σ(x)

expσ) ◦ L ◦ exp−1
σ (x), x ∈ Bε(σ)

Y (x) = X(x), x ∈M \Br(σ)

Now, consider a regular point x ∈ M . Let Σ be a cross section at p. A tube of radius ε
centred at p is the image of Bε(p) ∩ Σ by the flow action.

Theorem 3.5.4 (Frank’s lemma for periodic orbits) Let X ∈ X 1(M), p ∈ Per(X), and
P : Σ→ Σ be the Poincaré map associated to p, where Σ is a suitable cross section. Consider
a C1-neighborhood U of X. Then, given ε > 0 there exist δ > 0 such that if L : Np → Np is a
linear isomorphism satisfying ||DP (p)− L|| < δ, then there exists Y ∈ U such that

• Y (x) = X(x), if x does not belong to the tube centred at p with radius ε.

• p ∈ Per(X).

• If PY : Σ→ Σ is the Poincaré map for Y , then

PY (x) = expp ◦ L ◦ exp−1
p (x), if x ∈ Bε(p) ∩ Σ.

PY (x) = P (x), if x /∈ Br(p) ∩ Σ, for r > ε sufficiently close to ε.

With this version of the Frank’s lemma, one can prove the following:

Proposition 3.5.5 If X ∈X 1(M) has a non-hyperbolic critical element, then X is not struc-
turally stable.

For the proof, we recommend the reader to see [ASS]. Similarly, one can prove Frank’s
Lemma for the case on which the critical point is a singularity.

The above proposition tells us that a structurally stable vector field can only have hyperbolic
critical elements. Since structural stability is an open property, this implies that all structurally
stable vector field has the star property. However, during the proof we only use the conjugation
with sufficiently small vector fields to prove that a vector field with infinitely periodic orbits of a
certain period can not be conjugated to a vector field that possesses only finitely many periodic
orbits with such a period. However, this prevents these vector fields to be Ω-conjugated. Thus,
we have the following result:
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Theorem 3.5.6 Every Ω-stable vector field has the star property.

Now, let us return our attention to the stability conjecture. Recall, that is is concerned
about to answer the following question:

Ω-stability ⇒ Axiom A plus no cycle condition?

By theorem 3.5.6, one can try to solve the conjecture by using star flows. Next theorem,
due to Gan-Wen [GW06] give a positive answer when the flow has no singularities.

Theorem 3.5.7 Every non-singular star flow is Axiom A without cycles.

However, if the flow has singularities, then not necessarily the conjecture holds. Next, we
give some examples to illustrate that. All examples mentioned below are pictorial, for more
details see [ASS]

3.5.1 Some Examples

Exemple 1: Loss of Hyperbolicity

Our first example, is the most famous example of star flow that fails to be Axiom A, the
Lorentz attractor. Since it has two singularities that can be approximated by periodic orbits,
and since for a hyperbolic set the singularities must be isolated, we have that the non-wandering
set is not hyperbolic.

Figure 3.3: Lorentz Attractor
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Example 2: Existence of cycles

This first example describes a star flow that is Axiom A with cycles. Figure 3.4 shows the
example. Here, we are considering a 3-manifold, and the vector field is Morse-Smale far from
the part represented in the picture. We have three singularities σ1, σ2, σ3, all of them with
index 2. We also have three sinks, p1, p2, p3. The cycle is formed so that the unstable manifold
of one of the singularities goes to the stable manifold of the other, according to the figure.
The torsion together with the sinks pi are used to prove that the whole cycle is wandering.
For instance, note what happens when we evolve the ball B in the figure. The ball is divided
in three parts, one of them goes to σ1, since is contained on its unstable manifold. The part
B1, goes to p1, and due to the λ-lemma, b2 follows the unstable manifold of σ1, and due o the
torsion, it goes to the sink p2. This shows that there is no recurrence in B. A similar argument
can be used in the other connections. Thus, this example is Axiom A with cycles. For this
example to be star, one just need that the singularities are Lorentz-like. Then, the maximal
invariant set that contains the cycle sectional hyperbolic, and since we are in dimension three,
this implies the star property inside the maximal invariant. Finally, since outside of the open
set that contains the cycle the vector field is Morse-Smale, we also have the star property. The
same argument can also be done in higher dimension. For dimension two, see the example of
Li and Wen [LW95].

Figure 3.4: Existence of Cycles

Example 3: Ω(X) 6= Per(X)

Here, we have an example of a star flow on which the closure of the periodic points differs of
the non-wandering set. As the previous one, far from the figure the dynamics is Morse-Smale
on a 3-manifold. Now, we have a singularity σ1 with index 2, a periodic orbit O(q) that s saddle
type, and two singularities σ1 and σ2 that are sinks. Again, we have a torsion in the unstable
manifold of σ1. Also note that the unstable manifold of σ1 goes to the stable manifold of the
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periodic and vice-versa. Similarly to the previous example, one can prove that the closure of
the recurrent points differs of the non-wandering set. In particular Ω(X) 6= Per(X). By the
same argument used in the previous example, we have that the system is star.

Figure 3.5: Ω(X) 6= Per(X)

3.5.2 Domination

A weaker form of hyperbolicity is the domination property. Now we will present some results
about domination which will be important for this work.

Definition 3.5.8 Let X be a C1-vector field on M and Λ be a compact invariant set. We say
that a DXt-invariant splitting

TΛM = E ⊕ F

on Λ is a dominated splitting, if there are constants C ≥ 1, λ > 0 such that

||DXt |Ex ||.||DX−t |FXt(x) || ≤ Ce−λt ∀x ∈ Λ, ∀t ≥ 0 (3.2)

Next, we present another way to write equation (3.2) . Recall, if A is a linear map, then
m(A) := ||A−1||−1 denotes the mini-norm of A.

Since X−t(x) = (Xt(x))−1, it follows that (3.2) is equivalent to

||DXt |Ex ||.||(DXt |Fx)−1|| ≤ Ce−λt ∀x ∈ Λ, ∀t ≥ 0
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and since

||(DXt |Fx)−1|| = 1

m(DXt|Fx)

we have that (3.2) is equivalent to

||DXt |Ex ||
m(DXt|Fx)

≤ Ce−λt ∀x ∈ Λ, ∀t ≥ 0

Definition 3.5.8 is equivalent to say that there exists T > 0 such that

||DXT |Ex ||.||DX−T |FXT (x)
|| ≤ 1

2
∀x ∈ Λ (3.3)

Indeed, if (3.2) holds, since Ce−λt → 0 as t → ∞, there exists t0 > 0 such that for every
T ≥ t0, we have ||DXT |Ex ||.||DX−T |FXT (x)

|| ≤ Ce−λT ≤ 1/2. To see that (3.3) implies (3.2)
we only have to consider

λ =
1

T
log(2) and C =

(
sup
t∈[0,T ]

||DXt |E ||
)
.

(
sup
t∈[0,T ]

||DX−t |F ||
)

Now, let us see what does domination means. Consider a vector v ∈ TxM with x ∈ Λ. Then
v can be written as v = vEx + vFx , where vEx ∈ Ex and vFx ∈ Fx. Suppose both coordinates of
v are nonzero. By the chain rule, one has

||DXkT (x)vEx||.||DX−kT (x)vFx|| =

∣∣∣∣∣
∣∣∣∣∣

k∏
j=1

DXT (X(k−j)T (x))vEx

∣∣∣∣∣
∣∣∣∣∣.
∣∣∣∣∣
∣∣∣∣∣
k+1∏
j=2

DX−T (X−(k−j)T (x))vFx

∣∣∣∣∣
∣∣∣∣∣

by domination

∣∣∣∣∣
∣∣∣∣∣

k∏
j=1

DXT (X(k−j)T (x))vEx

∣∣∣∣∣
∣∣∣∣∣.
∣∣∣∣∣
∣∣∣∣∣
k+1∏
j=2

DX−T (X−(k−j)T (x))vFx

∣∣∣∣∣
∣∣∣∣∣ 6 1

2k

Then, since ||DX−t |FXt(x) || =
1

m(DXt|Fx )
, we have
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||DXkT (x)vFx||
||DXkT (x)vEx||

> 2k

In other words, it means that the coordinate vF grows much faster than the coordinate vE,
which means that the vector DXkT (x)v is converging to the direction F in the future. If we
did the same for the past we obtain that that the vector is converging to E. Thus domination
has the property to take any vector to F in the future and to E in the past.

In the beginning of this subsection, we presented domination as a weaker form of hyperbol-
icity. To see that, let Λ be a compact invariant set for X ∈X 1(M). By definition of hyperbolic
set, there is a splitting TΛM = Es ⊕ 〈X〉 ⊕ Eu and two constants C > 0, λ > 0 such that

||DXt|Esx|| ≤ Ce−λt and ||DX−t|Eux || ≤ Ce−λt

Let Ec = 〈X〉 ⊕ Eu. If a vector v belongs to TΛM , then it can be written as v = vs + vc,
where vs ∈ Es, vc ∈ Ec, and vc = vX + vu. Since M is compact, there is K > 0 such that
||〈X(x)〉|| ≤ K ∀ x ∈M . Thus

||DXt(x)vs|| ≤ Ce−λt||vs||

and

||DX−t(Xt(x))vc|| = ||DX−t(Xt(x))(vX + vu)||
= ||DX−t(Xt(x))vX ||+ ||DX−t(Xt(x))vu||
= ||X(x)||+ ||DX−t(Xt(x))vu||
≤ K + Ce−λt||vu||

Hence

||DXt(x)|Esx||.||DX−t(Xt(x))|Ec
Xt(x)
|| ≤ Ce−λt(K + Ce−λt) ≤ C̃e−λt

For some constant C̃ > 0. Therefore, hyperbolicity implies domination.
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Definition 3.5.9 Let Λ ⊂ M \ Sing(X) be a compact Xt-invariant set. We say that the
linear Poincaré flow Pt is hyperbolic over Λ if there are a Pt-invariant continuous splitting
NΛ = Es ⊕ Eu of the normal bundle and constants C > 0, λ > 0 such that

||Pt(x)|Esx|| ≤ Ce−λt and ||P−t(x)|Eux || ≤ Ce−λt ∀x ∈ Λ, t ≥ 0

Now, we introduce the concept of domination for the linear Poincaré flow.

Definition 3.5.10 Let Λ ⊂ M \ Sing(X) be an Xt-invariant set. We say that the linear
Poincaré flow Pt has a dominated splitting over Λ, if there exist a Pt-invariant splitting N =
E ⊕F of the normal bundle, and constants C ≥ 1 and λ > 0 such that for all t ≥ 0 and for all
x ∈ Λ, one has

||Pt|Ex||.||P−t|FXt(x)|| ≤ Ce−λt

As in the case of the actual flow, the above relation is equivalent to say that there exists
T > 0 such that

||PT |Ex||.||P−T |FXT (x)
|| ≤ 1/2

Next, we give two criteriums of hyperbolicity for the linear Poincaré flow. First, assuming
that Λ is compact, we have the following

Lemma 3.5.11 Suppose that Λ ⊂ M \ Sing(X) is a compact set. Let NΛ = E ⊕ F be an
Pt-invariant splitting. If there is T0 > 0 such that for all x ∈ Λ there are 1 < t(x), s(x) ≤ T0

such that

||Pt(x)|E|| ≤
1

2
and ||P−s(x)|F || ≤

1

2

then, the linear Poincaré flow is hyperbolic over Λ.

Proof. For every T , it follows from the chain rule that

||PT (x)|E|| = ||P(T−t(x))+t(x)(x)|E||
= ||PT−t(x)(Xt(x)(x)).Pt(x)(x)|E||
≤ ||PT−t(x)(Xt(x)(x))|E||.||Pt(x)(x)|E||

≤ 1

2
||PT−t(x)(Xt(x)(x))|E||
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Proceeding by induction, we obtain

||PT (x)|E|| ≤
(

1

2

)[ T
T0

]
||PT−l(Xl(x))|E||

where l > 0, T − l < T0 and [.] denotes the entire part. By compacity, one has

C := max{||Ps(x)|E|| : x ∈ Λ, s ∈ [0, T0]} <∞

Therefore,

||Pt(x)|E|| ≤ C

(
1

2

)[ T
T0

]
= Ce−λt

For some λ > 0. Similarly we obtain an estimative for the subbundle F.
�

The following theorem asserts the equivalence between the hyperbolicity of Λ as a nonsin-
gular compact invarian set of X and the hyperbolicity of the linear Poincaré flow over Λ.

Theorem 3.5.12 (Hyperbolic Lemma) Let X ∈ X 1(X) and Λ be a nonsingular compact in-
variant set. Then Λ is hyperbolic if and only if Λ is hyperbolic with respect to the linear Poincaré
flow.

For a proof, see for instance [BM]

3.5.3 Liao’s Inequalities

Let us return our attention to the star flows again. Recall that, by definition there exists a
neighborhood U of X such that all periodic orbits of a vector field Y ∈ U are hyperbolic.
A priori it does not seem to imply any kind of uniform strength of contraction and expansion
on the periodic orbits. However, the star property is sufficient to guarantee this. Moreover, it
guaranties domination on the closure of the periodic orbits.

Denote by N j
x the normal projection of the subspace Ej

x for j = s, u where x is a point on
a hyperbolic periodic orbit. For a given subspace A ⊂ Nx, where Nx = 〈X(x)〉⊥. Define

η−(X,A, t) = sup
u∈A,||A||=1

log ||PX,t(u)|| and η+(X,A, t) = inf
u∈A,||A||=1

log ||PX,t(u)||
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Theorem 3.5.13 (Liao’s Inequalities) Let X ∈X ∗(M). Then there exists a C1-neighborhood
U of X, together with two uniform constants η > 0 and T0 > 1, such that for every Y ∈ U
one has:

1. Whenever x is a point on a periodic orbit of Y in U and T0 < t <∞, then

1

t
[η+(Y,Nu

x , t)− η−(Y,N s
x, t)] ≥ 2η (3.4)

2. Whenever O is a periodic orbit of Y with period π(O), x ∈ O, and whenever an integer
m ≥ 1 and a partition 0 = t0 < · · · < tl = mπ(O) of [0,mπ(O)] are given, with tk−tk−1 ≥ π(O)
for k = 1, 2, · · ·, l. Then

1

mπ(O)

l−1∑
k=0

η−(Y,N s
Xtk(x)

, tk+1−tk) ≤ −η and
1

mπ(O)

l−1∑
k=0

η+(Y,Nu
Xtk(x)

, tk+1−tk) ≥ η (3.5)

Let us explain the meaning of these inequalities.

We have that if the linear Poincaré flow is dominated, then there are constants C > 0 and
λ > 0 such that

||Pt|Ns
x
||.||P−t|Nu

Xt(x)
|| ≤ Ce−λt

but

||P−t|Nu|| = 1

m(Pt|Nu)

Then from the domination inequality, assuming C = 1, we obtain

||Pt|N s||. 1

m(Pt|Nu)
≤ e−λt

which implies
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m(Pt|Nu).||Pt|N s||−1 ≥ eλt

Dividing both sides by 1/t and taking logarithms,

1

t
log[m(Pt|Nu).||Pt|Ns||−1] ≥ 1

t
log(eλt)

By logarithm properties and the definition of η+ and η−,

1

t
[log(m(Pt|Nu))− log(||Pt|Ns||)] =

1

t
[η+(X,Nu

x , t)− η−(X,N s
x, t)] ≥ λ

By taking λ = 2η we obtain the first item of the theorem. Indeed, everything we did can be
done in the reverse direction, that is, from the first item of the theorem we can obtain uniform
domination for the linear Poincaré flow on periodic orbits of star flows. Moreover, we obtain
uniform domination in a neighborhood of the system.

Now, let us see what the second inequality of the theorem means. Suppose that x is a
periodic point satisfying the inequalities of the second item. Then we have

1

mπ(O)

l−1∑
k=0

η−(Y,N s
Xtk(x)

, tk+1−tk) ≤ −η

Which implies

l−1∑
k=0

η−(Y,N s
Xtk(x)

, tk+1−tk) ≤ −ηmπ(O)

By taking the exponential on both sides and using the definition of η− we obtain

||PY,(tk+1−tk)|Ns
Ytk

(x)
|| · · · ||Pt1|Ns

x
|| ≤ e−ηmπ(O)

By applying the chain rule we obtain
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||Pmπ(O)|Ns
x
|| ≤ ||PY,(tk+1−tk)|Ns

Ytk
(x)
|| · · · ||Pt1 |Ns

x
|| ≤ e−ηmπ(O)

Thus, we can see that the inequality of the second item of the theorem actually implies that
there is some uniform contraction for the linear Poincaré flow along periodic orbits. Similarly
one can see that there is some uniform expansion for the linear Poincaré flow.

By the above considerations, taking tk − tk−1 = π(O), one has that the inequalities (3.4)
and (3.5) can be rewritten as

||P Y
t |Ns

x
||

m(P Y
t |Nu

x
)
≤ e−2ηt, ∀t ≥ T0,∀x ∈ O (3.6)

[
π(O)
T0

]
−1∏

i=0

||P Y
T0
|Ns(XY

iT0
(x))|| ≤ e−ηπ(O),

[
π(O)
T0

]
−1∏

i=0

m(P Y
T0
|Nu(XY

iT0
(x))) ≥ eηπ(O), ∀x ∈ O (3.7)

3.6 The Extended Linear Poincaré Flow

One of the main difficulties of studying flows is the existence of singularities. In this section, we
introduce a tool that allows us to study hyperbolic like properties of sets with singularities. in
the previous section, was introduced a key tool to study hyperbolic like properties of nonsingular
flows, the linear Poincaré flow. But as we saw, it is only defined on regular orbits. Using ideas
from Liao [Lia96] and Li-Gan-Wen [LGW05] we define the extended linear Poincaré flow which
allow us the better understanding of the dynamical properties near singularities.

Denote by SM = {e ∈ TM : ||e|| = 1} the unit sphere bundle of M and let π : SM → M
be the bundle projection defined by π(e) = x if e ∈ SM ∩TxM = SxM . The tangent flow DXt

induces a flow Φt : SM → SM given by

Φt(x)(e) =
DXt(x)(e)

||DXt(x)(e)||

For every e ∈ SxM . Let

Ne = {v ∈ Tπ(e)M : v ⊥ e}
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be the normal space of e. Denote

N = NSM =
⋃
e∈SM

Ne

Then N is a dim(M)-1 vector bundle over the basis space SM .

Definition 3.6.1 We define the extended linear Poincaré flow Ψt : NSxM → NSXt(x)M
by

Ψt(ex, v) = (Φt(ex),ΠΦt(ex)(DXt(x)v))

Here, ΠΦt(ex)(DXt(x)v)) denotes the orthogonal projection of the vector DXt(x)v over the
unit vector Φt(ex).

Figure 3.6: Extended Linear Poincaré Flow

Since Ψt is an orthogonal projection, it is given by the following formula

Ψt(e)(v) = DXt(x)(v)− 〈DXt(x)(v),Φt(x)(e)〉
||Φt(x)(e)||2

Φt(x)(e) v ∈ Ne, e ∈ SxM

Now, let Λ be a compact invariant set. We define its transgression by

Λ̃ = {X(x)/||X(x)|| : x ∈ Λ \ Sing(X)}
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Remark 1: Λ̃ is a compact Φt-invariant set.

Indeed, Since Λ̃ is a closed subset of a compact set, it is a compact set. For invariance, we
shall prove Φt(Λ̃) = Λ̃. Let e ∈ Φt(Λ̃), there exists ẽ ∈ Λ̃ such that e = Φt(ẽ). By the definition

of Λ̃, there is {xn} ⊂ Λ \ Sing(X) such that limn→∞
X(xn)
||X(xn)|| = ẽ. Then,

e = Φt

(
lim
n→∞

X(xn)

||X(xn)||

)

= lim
n→∞

Φt

(
X(xn)

||X(xn)||

)

= lim
n→∞

DXt(xn)
(

X(xn)
||X(xn)||

)
∣∣∣∣∣∣DXt(xn)

(
X(xn)
||X(xn)||

)∣∣∣∣∣∣
= lim

n→∞

1
||X(xn)||

1
||X(xn)||

DXt(xn)(X(xn))

||DXt(xn)(X(xn))||

= lim
n→∞

X(Xt(xn))

||X(Xt(xn))||

Thus, e ∈ Λ̃. This proves Φt(Λ̃) ⊂ Λ̃ . For the other inclusion, let e ∈ Λ̃. We shall

prove that there is ẽ ∈ Λ̃ such that e = Φt(ẽ). Since e ∈ Λ̃, we have that there is a sequence

{xn} ⊂ Λ \ Sing(X) such that limn→∞
X(xn)
||X(xn)|| = e. Taking subsequences if necessary, we may

assume that limn→∞
X(X−t(xn))
||X(X−t(xn))|| converges to a unit vector ẽ ∈ Λ̃. Thus

Φt(ẽ) = Φt

(
lim
n→∞

X(X−t(xn))

||X(X−t(xn))||

)
= lim

n→∞
Φt

(
X(X−t(xn))

||X(X−t(xn))||

)

= lim
n→∞

DXt(X−t(xn)))
(

X(X−t(xn)))
||X(X−t(xn)))||

)
∣∣∣∣∣∣DXt(X−t(xn)))

(
X(X−t(xn)))
||X(X−t(xn)))||

)∣∣∣∣∣∣
= lim

n→∞

X(xn))

||X(xn))||
= e

Therefore, Φt(Λ̃) = Λ̃.

Remark 2: If x ∈ Λ \ Sing(X), then by the continuity of X, for any sequence {xn} ⊂
Λ \ Sing(X) converging to x we have X(xn)

||X(xn)|| →
X(x)
||X(x)|| as n → ∞. In other words, on Λ̃
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there is only one unit vector associated to a regular value, the unit vector along the vector field
direction.

If x ∈ Λ \ Sing(X), then it follows from remark 2 that

SxM ∩ Λ̃ = X(x)
||X(x)|| , NSxM = Nx and Φt(x)

(
X(x)
||X(x)||

)
= X(φt(x))
||X(φt(x))||

Thus, for any v ∈ NSxM one has

Ψt(x)(v) = DXt(x)(v)−

〈
DXt(x)(v), X(Xt(x))

||X(Xt(x))||

〉
∣∣∣∣∣∣ X(Xt(x))
||X(Xt(x))||

∣∣∣∣∣∣2
X(Xt(x))

||X(Xt(x))||
= Pt(x)(v)

In other words, the extended linear Poincaré flow Ψt over the subset {X(x)/||X(x)|| : x ∈
Λ \ Sing(X)} ⊂ SM coincides with the linear Poincaré flow Pt over Λ \ Sing(X).

Hereafter, we only consider the extended linear Poincaré flow restricted to the set Λ̃.

Lemma 3.6.2 The extended linear Poincaré flow Ψt varies continuously with respect to the
vector field X, the time t and the vector v.

Lemma 3.6.3 If NΛ\Sing(X) = E⊕F is a dominated splitting with respect to the linear Poincaré
flow Pt on an invariant set Λ, then the extended linear Poincaré flow admits a dominated
splitting NΛ̃\Sing(X)SM = Ẽ ⊕ F̃ , where Ẽ and F̃ are the lifts of E and F respectively.

Proof. By the definition of dominated splitting, there are constants C ≥ 1 and λ > 0 such
that for any x ∈ Λ \ Sing(X) and any fixed t > 0, one has

||Pt|Ex||.||P−t|FXt(x)|| ≤ Ce−λt

Thus, by the previous lemma, we have that on the set Γ = {X(x)/||X(x)|| : x ∈ Λ \
Sing(X)} ⊂ SM the above inequality is still holding for the lifts Ẽ and F̃ . Thus, the bundles

E and F can be extended on the closure of Γ, which is Λ̃.
�
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Chapter 4

Ergodic Theory

As we mentioned in the introduction, one of the main historic motivations for the dynamical
systems theory was the n-body problem. This is an example of ordinary differential equations
with the following remarkable property: If one considers the flow generated by the equations
solutions and consider, by instance, the evolution of a cube through this flow, then its volume
will not change through time, though its shape may change. using this property, Poincaré
proved his well-known recurrence theorem, which asserts that to most of the initial data, the
system returns to a condition arbitrarily close to the initial one.

In this chapter we review some crucial results on ergodic theory.

4.1 Ergodic Theory

Let B be the Borel σ-algebra of M and X ∈ X 1(M). A probability measure µ on (M,B)
is called a Xt-invariant measure if for any A ∈ B we have µ(A) = µ(X−t(A)), for all t ∈ R.
Denote by M the set of all Xt-invariant borelian probability measures. It is known from the
theory that M is a nonempty compact set for the weak∗-topology.

Let δx be the Dirac measure on (M,B) associated with x. that is

δx(A) =

{
1, se x ∈ A
0, se x 6∈ A

As consequence of the compactness of M we have the following theorem.

Theorem 4.1.1 Let x ∈ M . Then any accumulation point for the weak∗-topology of the set
of the probability measures

{
1

T

∫ T

0

δXs(x) ds

}
T>0
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is a Xt-invariant measure. In particular we have that M (X) is nonempty.

Similarly, a continuous map f : M → M is said to be f -invariant with respect to µ if
µ(A) = µ(f−1(A)) for any A ∈ B. such as in the continuous case, M is a nonempty compact
set for the weak∗-topology.

One property that is enjoyed by all measure-preserving transformations is recurrence:

Theorem 4.1.2 (Poincaré’s Recurrence Theorem) Let f : M → M be a measure preserving
transformation of a probability space (X,B, µ). Let E ∈ B with m(E) > 0. Then almost all
points E return infinitely many often to E under positive iteration by f (i.e there exists F ⊂ E
with m(E) = m(F ) such that for each x ∈ F there is a sequence n1 < n2 < · · · of natural
numbers with fni(x) ∈ F for each i).

Remark : The above theorem is false if a measure space of infinite measure is used. An
example is given by the map f(x) = x + 1 defined on R with the Lebesgue measure m. In
this case, there is no subset of positive measure such that its positive iterates return to itself
infinitely often times, since the set of recurrent points is just {0} and m({0}) = 0.

Ergodicity

Let (X,B, µ) be a probability space and f : X → X be a measure-preserving transforma-
tion. If f−1(B) = B for B ∈ B, then also f−1(X \ B) = X \ B and we could study f by
studying the two simpler transformations f |B and f |X\B. If 0 < µ(B) < 1 this has simplified
the study of f . If µ(B) = 0 (or µ(X \ B) = 0) we can ignore B or (X \ B) and we have not
significantly simplified f since neglecting a set of zero measure is allowed in measure theory.
This raises the idea of studying those sets that cannot be decomposed as above and of trying to
express every measure-preserving transformation in terms of these indecomposable ones. The
indecomposable transformations are called ergodic.

Definition 4.1.3 Let (X,B, µ) be a probability space. A measure-preserving transformation f
of (X,B, µ) is called ergodic if the only members B of B with f−1(B) = B satisfy µ(B) = 0
or µ(B) = 1.

Remark 4.1 : If (X,B, µ) is probability space and f : X → X is a measurable-preserving,
then

f is ergodic ⇔ whenever ϕ is measurable and (ϕ ◦ f)(x) = f(x) ∀ x ∈ X then f is constant
a.e.

For a proof, see for instance [Wal82].
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Analogously, if µ is an Xt-invariant probability measure, we say that µ is ergodic if for every
B ∈ B such that X−t(B) = B then µ(B) = 0 or 1.

As mentioned in the introduction, the first major result in ergodic theory was proved by
G.D. Birkhoff. Now we will state it.

Theorem 4.1.4 (Birkhoff’s Ergodic Theorem). Suppose µ is a f -invariant probability mea-
sure. Then, µ-a.e. x ∈M and for every ϕ ∈ L1(µ) we have that the limit

ϕ∗(x) = lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))

always exist. Moreover, ϕ∗ ∈ L1(µ) and

∫
M

ϕ∗ dµ =

∫
M

ϕdµ

As an application of the theorem we have the following:

If µ is ergodic, then

ϕ∗ =

∫
M

ϕdµ

Indeed, by the theorem we have

ϕ∗(x) = lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))

ϕ∗(f(x)) = lim
n→∞

1

n

n−1∑
j=0

ϕ(f j+1(x))

Subtracting one equation from the other, we obtain

ϕ∗(x)− ϕ∗(f(x)) = lim
n→∞

1

n
(ϕ(x)− ϕ(fn(x)) = 0

Since ϕ ∈ L1(µ). This implies ϕ∗(x) = ϕ∗(f(x)). Therefore, it follows from [Remark 4.1]
that ϕ∗ is constant. Thus,
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ϕ∗µ(M) = ϕ∗
∫
M

dµ =

∫
M

ϕ∗ dµ =

∫
M

ϕdµ

and since µ(M) = 1, one has

ϕ∗ =

∫
M

ϕdµ

Since in this work we are dealing with flows, we will use the ergodic theorem when f = XT

for some fixed T > 0.

4.2 Entropy of a Measure-Preserving Transformation

In 1958 Kolmogorov introduced the concept of entropy into ergodic theory, and this has been
the most successful invariant so far. The definition of entropy of a measure preserving transfor-
mation f of (X,B, µ) is in three stages: the entropy of a finite sub-σ-algebra of B, the entropy
of the trasnformation f relative to a finite sub-σ-algebra, and, finally, the entropy of f .

Thoughout this section (X,B, µ) will denote a probability space.

Definition 4.2.1 A partition of (X,B, µ) is a disjoint collection of elements of B whose union
is X.

Given a partition ξ = {A1, · · ·, Ak}, define the set

f−1ξ = {f−1A1, · · ·, f−1Ak}

Further, given two partitions ξ = {A1, · · ·, Ak} and η = {B1, · · ·, Bm}, we define their
refinement as

ξ ∨ η = {Ai ∩Bj : i = 1 · ··, k, j = 1, · · ·,m, µ(Ai ∩Bj) > 0}

With these two constructions, we may define the following refinement:

n−1∨
i=0

f−iξ = ξ ∨ f−1ξ ∨ · · · ∨ f−(n−1)ξ

The entropy of a partition ξ is defined as the number
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H(ξ) = −
k∑
i=1

µ(Ai) log µ(Ai)

The measure theoretic entropy with respect to a partition ξ is defined as

hµ(f, ξ) = lim
n→∞

1

n
H
( n−1∨
i=0

f−iξ
)

Finally, the measure-theoretic entropy is defined as

hµ(ξ) = sup
ξ
hµ(f, ξ)

4.3 Topological Entropy

Adler, Konheim, and McAndrew [AKM65] introduced topological entropy as an invariant of
topological conjugation. To each continuous transformation f : X → X of a compact topologi-
cal space a non-negative real number or∞, denoted by htop(f) is assigned. Later Dinaburg and
Bowen gave a new but equivalent definition. In this section we give the definition of topological
entropy using separated sets. This was done by Dinaburg and Bowen, but Bowen also gave
the definition when the space is not compact. we will give the definition when X is a compact
metric space.

Let d be a metric on X. It induces a family of metrics {dn} on X given by

dn(x, y) := max
0≤i≤n−1

d(f i(x), f i(y))

where each metric dn measures the distance between the orbit arcs {x, · · ·, fn−1(x)} and
{y, · · ·, fn−1(y)}. So, for each fixed n ≥ 1 we define the dynamical ball with center x and radius
r as

B(x, n, r) = {y ∈ X : dn(x, y) < r}

that is, it is the open ball in the metric dn

Definition 4.3.1 Let n ∈ N, and ε > 0. A subset E ⊂ X is said to be (n, ε)-separated with
respect to f if x, y ∈ E, x 6= y, implies dn(x, y) =: max

0≤i≤n−1
d(f i(x), f i(y)) > ε.
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We denote by Sn(ε) the cardinality of the (n, ε)-separated set with respect to f of maximum
cardinality.

Remarks

• Sn(ε) <∞.

• If ε1 < ε2 then Sn(ε1) ≥ Sn(ε2).

The second item of the above remark is easy to see. For the first item, denote by En(ε) the
(n, ε)-separated set of maximum cardinality. We claim that

⋃
x∈En(ε)

B(x, n, ε)

covers X. Indeed, if not, one can find a point y ∈ X such that y /∈ B(x, n, ε) for every
x ∈ En(ε). Hence, by the definition of En(ε), for each x ∈ En(ε) there is 0 ≤ j ≤ n − 1 such
that d(f j(y), f j(x)) > ε, that is, y ∈ En(ε), which is a contradiction. The claim is then proved.
Now, suppose Sn(ε) = ∞. Since X is compact, there are points x1, · · · , xk ∈ En(ε) such that
X =

⋃k
i=1B(xi, n, ε). For the pigeonhole principle, this i such that B(xi, n, ε) contains more

than one point of En(ε). Contradicting the separability of En(ε). Therefore, Sn(ε) <∞.

Definition 4.3.2 We define the topological entropy of f as the quantity

htop(f) = lim
ε→0

lim sup
n→∞

1

n
logSn(ε)

As an example of the calculation of the topological entropy, consider an isometry f : X → X.
Then, dn = d1 for all n ∈ N so that Sn(ε) = S1(ε) and then htop(f) = 0.

Remark: Katok defined the metric entropy hµ(f) of an f-invariant ergodic measure µ as

hµ(f) = lim
ε→0

lim
n→∞

1

n
logSn(ε, δ)

where Sn(ε, δ) is the minimal number of ε-balls in the dn metric covering the set of measure
larger than or equal to 1− δ.

Theorem 4.3.3 (Variational Principle): Let f : X → X be a continuous map of a compact
metric space. Then htop(T ) = sup{hµ(T ) : µ ∈M (X)}.
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Remarks:

1. h(f) = sup{hµ(f) : µ ∈ E (X)}, where E denotes the set ergodic measures.

2. h(f) = h(f |Ω(f)).

For a proof of the remarks, see, for instance [Wal82].

For the flow Xt generated by X ∈X 1(M), we define its topological entropy as the entropy
of the time t = 1, that is, h(X) = h(X1).

4.4 Differentiable Ergodic Theory

In this section we will study the notion of hyperbolicity in a more general way, on which the
contraction and the expansion rates are not necessarily constants.

4.4.1 Lyapunov Exponents

Consider a diffeomorphism f : M →M . A point x ∈M is said to be regular if there exist real
numbers λ1(x) < λ2(x) < · · · < λk(x) and a splitting

TxM = E1(x)⊕ E2(x)⊕ · · · ⊕ Ek(x)

such that

lim
n→∞

1

n
log ||Dfn(x)v|| = λj(x)

for every 0 6= v ∈ Ej(x), with j = 1, 2, · · ·, k. The numbers λj(x) are called the Lyapunov
exponents of f on x and the above splitting is called the Oseledec splitting of f on x. It
is possible to prove that the Lyapunov exponents and the Oseledec splitting are uniquely
determined on a regular point x, for instance see [Mañ87].

Let Λ be the set of regular points of M . A natural question, is if Λ is always non-empty.
The following theorem gives us a satisfactory answer.

Theorem 4.4.1 (Oseledec) If M is compact, the set of regular points of a diffeomorphism
f : M →M has total measure.
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Moreover, if µ is an invariant ergodic measure, one can prove that µ-a.e. x, the Lyapunov
exponents are constants.

Theorem 4.4.2 (Margulis-Ruelle’s inequality) Let f : M → M be a C1 diffeomorphism on a
compact Riemannian manifold M, µ ∈M (M, f). Then

hµ(f) ≤
∫ k∑

i=0

λ+
i (x)dimEi(x) dµ

where λ+
i are the positive Lyapunov exponents and Ei(x) is the eigenspace associated to

λi(x).

Remark:

If µ is ergodic, then the Lyapunov exponents are constants, therefore

hµ(f) ≤
∫ k∑

i=0

λ+
i (x)dimEi(x) dµ =

k∑
i=0

λ+
i (x)dimEi(x)

∫
dµ

=
k∑
i=0

λ+
i (x)dimEi(x)µ(M)

=
k∑
i=0

λ+
i (x)dimEi(x)

When we are dealing with flows, , we define the Lyapunov exponents by means of the linear
Poincaré flow Pt. More precisely, let X ∈X 1(M). A point x ∈M is said to be regular if there
are numbers λ1(x) < λ2(x) < · · · < λk(x) and a splitting Nx = E1(x)⊕E2(x)⊕ · · · ⊕Ek(x) of
the normal bundle such that

lim
t→∞

1

t
log ||Pt(x)v|| = λj(x), ∀v ∈ Ej(x) \ {0}

Next, we give two important definitions about ergodic measures.

Definition 4.4.3 We say that an invariant ergodic measure µ is regular, if it is not supported
on a singularity.

Definition 4.4.4 We say that an invariant ergodic measure µ is hyperbolic, if for µ-a.e. x,
the Lyapunov exponents of the linear Poincaré flow Pt are non-zero.
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For a regular hyperbolic ergodic measure µ we can rewrite the splitting N =
⊕k

i=1Ei as
N = Es⊕Eu, where all Lyapunov exponents along Es are negative and all Lyapunov exponents
along Eu are positive. We call the splitting N = Es ⊕ Eu the hyperbolic Oseledec splitting
with respect to the hyperbolic ergodic measure µ.

We could also define the Lyapunov exponents of a flow by using the tangent flow DXt as
usual. However, for ergodic measures that are not supported on singularities, there will always
be one zero Lyapunov exponent for the tangent flow along the flow direction. Indeed, if the
Lyapunov exponents ae defined by using the tangent flow DXt, then we have to consider the
direction generated by the flow on its Oseledec splitting, that is

TxM = E1(x)⊕ · · ·Ek(x)⊕ 〈X(x)〉

The Lyapunov exponent along the flow direction is

λX = lim
t→∞

1

t
log ||DXt(x)(X(x))|| = lim

t→∞

1

t
log ||X(Xt(x))||

Since M is compact, there is C > 0 such that ||X(x)|| ≤ C, ∀ x ∈ M . This implies that
there exists constant C ′ > 0 such that −C ′ ≤ log ||X(x)|| ≤ C ′ ∀ x ∈M . Thus

− lim
t→∞

1

t
C ′ ≤ lim

t→∞

1

t
log ||X(Xt(x))|| ≤ lim

t→∞

1

t
C ′

Therefore, λX = 0.

Lemma 4.4.5 (Definition of the transgression of a measure) If µ is an ergodic Xt-invariant
measure on M with µ(Sing(X)) = 0, then there exists an ergodic Φt-invariant measure µ̃ on

Λ̃, the transgression of Λ = Supp(µ), such that the Lyapunov exponents of the extended linear
Poincaré flow Ψt with respect to the measure µ̃ are the same as the Lyapunov exponents of the
linear Poincaré flow with respect to the measure µ. The measure µ̃ is called the transgression
of µ.

Proof. Let π : SM → M be the projection, which is a continuous surjection with π(v) = x

for any x ∈ SxM . Take the measure µ̃ = µ ◦ π on Λ̃. Let Ã ⊂ Λ̃ be a Borel subset and
A = π(Ã). Since µ is Xt-invariant, for every t ∈ R, we have µ̃(Φ−t(Ã)) = µ(π(Φ−t(Ã))) =

µ(X−t(A)) = µ(A) = µ(π(Ã)) = µ̃(Ã), that is, µ̃ is Φt-invariant. Now, we will prove that µ̃ is

ergodic. For, suppose Φ−t(Ã) = Ã for every t ∈ R, we shall prove that µ̃(Ã) = 0 or 1 . The

equality Φ−t(Ã) = Ã implies that π(Φ−t(Ã)) = π(Ã), that is, X−t(A) = A for every t ∈ R.

Since µ is an ergodic Xt-invariant measure, µ̃(Ã) = µ(π(Ã)) = µ(A) = 0 or 1. It means that µ̃
is an ergodic Φt-invariant measure.

Applying the Oseledec theorem to the linear Poincaré flow Pt, for µ-a.e.x, there is a splitting
Nx = E1 ⊕ E2 ⊕ · · · ⊕ Em and numbers λ1 < λ2 < · · · < λm such that
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lim
t→∞

1

t
log ||Pt(x)(v)|| = λi, ∀v ∈ Ei \ {0}, i = 0, 1, · · ·,m

Since the extended linear Poincaré flow coincides with the usual linear Poincaré flow on
regular points, one has

lim
t→∞

1

t
log ||Ψt(x)(v)|| = lim

t→∞

1

t
log ||Pt(x)(v)|| = λi

Therefore, the Lyapunov exponents of Ψt with respect to the measure µ̃ are the same as
the Lyapunov exponents of the linear Poincaré flow with respect to the measure µ.

�

Definition 4.4.6 Let X ∈ X 1(M). A point x ∈ M \ Sing(X) is said to be strongly closable
if for any C1-neighborhood U of X and any δ > 0, there are Y ∈ U , z ∈ M , τ > 0 , and
T > 0 such that the following conditions are satisfied:

1. Yτ (z) = z

2. d(Xt(x), Yt(z)) < δ for any t ∈ [0, τ ]

3. X = Y on M \
⋃

t∈[−T,0]

B(Xt(x), δ)

The set of all strongly closable points for X will be denoted by Σ(X).

Theorem 4.4.7 (Ergodic Closing Lemma). Let X ∈ X 1(M). Then for any Xt-invariant
probability measure µ one has that

µ(Sing(X) ∪ Σ(X)) = 1

Theorem 4.4.8 (Shi-Gan-Wen) If µ is an ergodic measure of a star flow, then µ is a hyperbolic
measure.

Proof. If µ is supported on a critical element, then from the definition of star flow, it
should be hyperbolic. So for the rest of the proof, we may assume that µ does not support
on any critical element. We will use the ergodic closing lemma to show that µ is hyperbolic.
Applying Lemma 4.4.7, we may assume x ∈ B(µ) ∩ supp(µ) ∩Σ(X). By Definition 4.4.6 there
are Xn ∈X 1(M), xn ∈M , τn > 0 such that
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• XXn
τn (xn) = xn, where τn is the minimal period of xn.

• d(XX
t (x), XXn

t (xn)) < 1
n
, ∀ 0 < t < τn

• ||Xn −X||C1 < 1
n

Here, B(µ) denotes the set of generic points of µ. Recall that x is a generic point of µ if for
any continuous function f : M → R,

lim
T→∞

1

T

∫ T

0

f(Xt(x)) dt =

∫
f dµ

That is, is the set of points that satisfies the Birkhoff’s ergodic theorem.

Consider the ergodic measure µn which is supported on the orbit of xn. Since x is strongly
closable, for any continuous function f , one has

lim
n→∞

∫
f dµn = lim

n→∞

1

τn

∫ τn

0

f(XXn
t (xn)) dt = lim

n→∞

1

τn

∫ τn

0

f(Xt(x)) dt =

∫
f dµ

Since µ is not supported on any critical element, one has µn → µ and τn →∞ as n→∞.

From Lemma 3.5.13, we know that for any x ∈ O(xn), there are constants η > 0 and T0 > 0
such that for sufficiently large n ∈ N, and for the natural hyperbolic splitting NO(xn) = N s⊕Nu

with respect to the linear Poincaré flow, one has

||PXn
t |Ns

x
||

m(PXn
t |Nu

x
)
≤ e−2ηt, ∀t ≥ T0,∀x ∈ O(xn) (4.1)

[
τn
T0

]
−1∏

i=0

||PXn
T0
|Ns(XXn

iT0
(xn))|| ≤ e−ητn ,

[
τn
T0

]
−1∏

i=0

m(PXn
T0
|Nu(XXn

iT0
(xn))) ≥ eητn , ∀x ∈ O(xn) (4.2)

Taking logarithm in (4.2), we obtain

[
τn
T0

]
−1∑

i=0

log ||PXn
T0
|Ns(XXn

iT0
(xn))|| ≤ −ητn and

[
τn
T0

]
−1∑

i=0

logm(PXn
T0
|Nu(XXn

iT0
(xn))) ≥ ητn
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Dividing both sides by τn

1

τn

[
τn
T0

]
−1∑

i=0

log ||PXn
T0
|Ns(XXn

iT0
(xn))|| ≤ −η and

1

τn

[
τn
T0

]
−1∑

i=0

logm(PXn
T0
|Nu(XXn

iT0
(xn))) ≥ η

By the definition of the extended linear Poincaré flow, we have

1

τn

[
τn
T0

]
−1∑

i=0

log ||ΨXn
T0
|Ns(XXn

iT0
(xn))|| ≤ −η and

1

τn

[
τn
T0

]
−1∑

i=0

logm(ΨXn
T0
|Nu(XXn

iT0
(xn))) ≥ η

Since the extended linear Poincaré flow varies continuously with respect to t,X and v, we
have

1

τn

[
τn
T0

]
−1∑

i=0

log ||ΨX
T0
|Ns(XX

iT0
(x))|| ≤ −η and

1

τn

[
τn
T0

]
−1∑

i=0

logm(ΨX
T0
|Nu(XX

iT0
(x))) ≥ η

Then,

∫
log ||ΨX

T0
|Ns

x
|| dµ̃ ≤ −η and

∫
logm(ΨX

T0
|Nu

x
) dµ̃ ≥ η

Where µ̃ is the transgression of µ. This proves that µ is hyperbolic for X.

�

49



Chapter 5

The Main Theorem

Now, we recall the statement of the main result of this work. Let M be a boundaryless compact
smooth Riemannian manifold.

Theorem B [WYZ19]: There is a residual set R ⊂X 1(M) such that for any X ∈ R, one
has

lim sup
T→∞

1

T
log #PT (X) ≥ htop(X) := htop(X1)

One of the main difficulties for proving the above theorem is the presence of singularities.
Flows with singularities have rich and complicated dynamics such as the Lorenz attractor. At
singularities, one can not define the linear Poincaré flow. Hence we lose some compactness
properties. Even there is no singularities, we are not able to use the usual Pesin theory, since
the vector field is only C1. Adittionaly, one may have ”shear” for flows. This is sharp in this
work since we have to control the periods by the nature of this text. In the proof of the main
theorem, we consider two cases. When the vector field is star, and when it is not.

The next lemma give us the precise construction of such residual set R ⊂X 1(M).

Lemma 5.0.1 There is a residual R ⊂ X 1(X) such that for given T, k ∈ N, if for every C1

neighborhood U of X ∈ R, there is Y ∈ U having k periodic orbits whose periods belong to
(T

2
, 3T

2
), then X has k periodic orbits whose periods belong to (T

2
, 3T

2
).

Proof. Fix a countable basis B = {B1, B2, · · ·, Bi, · · ·} of M . Let {U1, U2, · · ·, Un, · · ·} be
the family of finite unions of the elements of B. We define

H k
n,T :=

{
X ∈ X 1(M) : X has k hyperbolic periodic orbits with period belonging to(

T
2
, 3T

2

)
in Un

}
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N k
n,T :=

{
X ∈ X 1(M) : ∃ C1 neighborhood U of X, such that for any Y ∈ U , either Y

has no k periodic orbits with periods belonging to
(
T
2
, 3T

2

)
or all k periodic orbits with period

belonging to
(
T
2
, 3T

2

)
of Y are not in Un

}
By definition, the set N k

n,T is open. By the stability of the hyperbolicity, H k
n,T is open.

We claim that H k
n,T ∪N k

n,T = X 1(M)

Indeed, one only needs to prove that H k
n,T ∪N k

n,T ⊃ X 1(M). Let X ∈ X 1(M). We

shall prove that there exists a sequence in H k
n,T ∪N k

n,T converging to X. If X ∈ N k
n,T , then

X ∈ N k
n,T ⊂ H k

n,T ∪ N k
n,T ⊂ H k

n,T ∪N k
n,T and therefore the Claim is proved. If X /∈ N k

n,T ,

then by definition of N k
n,T we have that for any C1 neighborhood U of X , there is Y ∈ U

which has k periodic orbits whose periods belong to
(
T
2
, 3T

2

)
belonging to Un. Thus, there is a

sequence of C1 vector fields {Xm}m∈N ⊂H k
n,T ⊂H k

n,T ∪N k
n,T such that Xm

m→∞−→ X. Therefore,

X ∈H k
n,T ∪N k

n,T . This proves the Claim.

Consequently, H k
n,T ∪N k

n,T is open and dense in X 1(M). Let

R =
∞⋂
k=1

∞⋂
n=1

∞⋂
T=1

(H k
n,T ∪N k

n,T )

It is clear that R is a residual subset of X 1(M). We will prove that R is the desired
residual set.

Given T > 0 and k ∈ N, let X ∈ R arbitrary. By definition of R, X ∈H k
n,T ∪N k

n,T for all
n ∈ N. That is, or X ∈ H k

n,T or X ∈ N k
n,T . If X ∈ H k

n,T , by definition, X has k hyperbolic

periodic orbits whose periods belong to
(
T
2
, 3T

2

)
. Now, it only remains to show that X ∈ N k

n,T

implies that X has k hyperbolic periodic orbits whose periods belong to
(
T
2
, 3T

2

)
. If not, there

exists n0 ∈ N such that X /∈ N k
n0,T

. Therefore, X ∈ H k
n0,T

, i.e, X has k periodic orbits whose

period belong to
(
T
2
, 3T

2

)
.

�

5.1 The non star case

If the generic vector field is not star, based on the fact that the vector field can be approximated
by periodic orbits whose periods turn arbitrarily large, it will follow from the Frank’s Lemma
and from the definition of the residual R that the upper limit of the growth rate of periodic
orbits is infinity. Since we are concerned about proving that the growth rate is larger than or
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equal to the entropy, we may assume that hµ(X) > 0, since otherwise the inequality would be
trivially satisfied.

Theorem 5.1.1 For a residual set R ⊂ X 1(X) as in Lemma 5.0.2, if X ∈ R is not star,
then the growth rate of the periodic orbits is infinity, that is

lim sup
T→∞

1

T
log #PT (X) = +∞

Proof. Consider the residual R ⊂ X 1(M) as in Lemma 5.0.2. If any X ∈ R is not star,
then for any C1 neighborhood Un of X, there is Xn ∈ Un, such that Xn has a non-hyperbolic
periodic orbit xn. That is, there are sequences {Xn} → X, {xn} ⊂ M , and {τn : τn > 0}
with XXn

τn (xn) = xn. Proceeding as in Theorem 4.4.8, one has that τn →∞ as n→∞. Given
ε > 0, consider δ = δ(xn) > 0 given by the Frank’s Lemma. For each n ∈ N, since xn is
non-hyperbolic, one has that PXn

τn has an eigenvalue on the complex unit circle. Thus, there is
a linear map Ln : Nxn → Nxn , δ-close to PXn

τn having an eigenvalue λ such that it is an j-th
root of unit, for some j ∈ N. By Frank’s Lemma, there is a vector field Yn ∈ Un such that
xn ∈ Per(Yn) whose Poincaré map PYn : Σ → Σ is conjugated to the linear map Ln by the
exponential map on Bε(xn) ∩ Σ. Pick an eigenvector v of Ln : Nxn → Nxn associated to λ,
taking |s| small enough so that expxn(sv) ∈ Bε(xn) ∩ Σ, we have

P j
Yn

(expxn(sv)) = expxn ◦ Ljn ◦ exp−1
xn (expxn(sv))

= expxn ◦ Ljn(sv)

= expxn(sλjv)

= expxn(sv)

Therefore, the Poincaré map of Yn, and consequently Yn itself has infinite periodic points
with period j. Since the neighborhood Bε(xn) ∩ Σ can be taken arbitrarily small, by the
continuity of the flow we may assume that Yn has infinite periodic points with period τn. In
particular, Yn has at least en.2τn periodic orbits whose period belongs to

(
[τn]
2
, 3[τn]

2

)
. By Lemma

5.0.2, X has at least en.2τn periodic orbits whose period belongs to
( [τn]

2
, 3[τn]

2

)
. That is, for n

large #P2τn(X) ≥ en.2τn . Consequently, 1
2τn

log #P2τn(X) ≥ n. Taking limits we obtain

lim sup
n→∞

1

2τn
log #P2τn(X) = +∞

Therefore,

lim sup
T→∞

1

T
log #PT (X) = +∞

�
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5.2 The star case

For star vector fields, we have to steps. First based on that any regular ergodic measure of a
star vector field is hyperbolic (Theorem 4.4.8), we show that the hyperbolic Oseledec splitting
is a dominated splitting (Theorem 5.2.1). Secondly, we prove that if the hyperbolic Oseledec
splitting with respect to a regular hyperbolic measure is a dominated splitting, then the growth
rate of the periodic orbits is larger than or equal to the metric entropy (Theorem 5.2.2).

Theorem 5.2.1 If µ is a regular ergodic invariant measure of a C1 star vector field X with
hµ(X) > 0, then its Oseledec splitting N = Es ⊕ Eu is a dominated splitting.

First we will give the outline of the proof.

Outline of the proof. By Theorem 4.4.8, the measure µ is hyperbolic. Since the metric
entropy is positive, we may assume that the measure µ is not supported on a any critical
element. Then, it follows from the ergodic closing lemma that µ-a.e. x ∈M is strongly closable.
By definition of strongly closable x can be approximated by periodic orbits. We will then show
that these periodic orbits are hyperbolic of saddle type, since otherwise it would follow from
the Ruelle’s inequality that the metric entropy is zero, a contradiction. So, based on that these
periodic orbits orbits are hyperbolic saddles, we will apply Lemma 4.4.5 (transgression of a
measure) to obtain the dominated splitting.

Proof of theorem 5.2.1. According to theorem 4.4.8, µ is hyperbolic. Let x ∈ B(µ) ∩
Supp(µ) ∩ Σ(X) and let xn as in the previous theorem. We claim that there are only finite
sinks or sources among {orb(xn)}. Indeed, if not, we may assume that orb(xn) are sinks, then
we only have

[
τn
T0

]
−1∏

i=0

||PXn
T0
|Ns(XXn

iT0
(xn))|| ≤ e−ητn

Thus, as we saw before, it implies that the Lyapunov exponents of the linear Poincaré flow
Pt are negative. By the Ruelle inequality we get that hµ(XT0) = 0. Since µ is an ergodic
measure, hµ(XT0) = |T0|hµ(X1) = |T0|hµ(X) > 0. This is a contradiction. The claim is thus
proved.

It follows from the above claim and from Theorem 3.5.13, that for the non-trivial hyperbolic
splitting Norb(xn) = Es ⊕ Eu with respect to the linear Poincaré flow PXn

t ,

[
τn
T0

]
−1∏

i=0

||PXn
T0
|Ns(XXn

iT0
(y))|| ≤ e−ητn ,

[
τn
T0

]
−1∏

i=0

m(PXn
T0
|Nu(XXn

iT0
(y))) ≥ eητn , ∀y ∈ orb(xn)
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We may assume that the indices of orb(xn) are the same. Then, there is a dominated
splitting Nx = F s

x ⊕F u
x on x = limn→∞ xn, where F s

x = limn→∞E
s
xn and F u

x = limn→∞E
u
xn . We

shall prove that F s
x = Es

x and F u
x = Eu

x . As we saw before, the above inequalities means that

∫
log ||ΨX

T0
|Ns

x
|| dµ̃ ≤ −η and

∫
logm(ΨX

T0
|Nu

x
) dµ̃ ≥ η

According to the Birkhoff ergodic theorem and Lemma 4.4.5, one has

lim
m→∞

1

m

m−1∑
i=0

log ||PX
T0
|F s
XiT0

(x)
|| = lim

m→∞

1

m

m−1∑
i=0

log ||ΨX
T0
|F s
XiT0

(x)
|| =

∫
log ||ΨXn

T0
|F sx || dµ̃ ≤ −η < 0

Since Es is the finest subbundle where the Lyapunov exponents are negative, it follows
that F s

x ⊂ Es
x. Similarly one can prove that F u

x ⊂ Eu
x . To prove the reverse inclusion we

proceed by contradiction. So, if Es
x * F s

x , then there exists a non-zero vector v belonging to
Es
x but not belonging to F s

x . Since Nx = F s
x ⊕ F u

x , one has that the vector v can be written as
v = v1 + v2, where v2 6= 0. By domination, for t sufficiently large, one has that the coordinate
v1 is insignificant in comparison with the coordinate v2, therefore

lim
t→∞

1

t
log ||PX

t (v)|| = lim
t→∞

1

t
log ||PX

t (v2)|| = lim
t→∞

1

t
log ||ΨX

t (v2)|| ≥ lim
m→∞

1

m

m∑
i=1

logm(ΨX
T0
|Fu
XiT0

(x)
) > 0

This contradicts the fact that the Lyapunov exponents along Es are negative. Consequently
one has that Es

x ⊂ F s
x . Therefore, Es

x = F s
x . Similarly we can prove that Eu

x = F u
x .

�

Theorem 5.2.2 Let µ be a regular invariant ergodic measure of X ∈X 1(M). If the hyperbolic
Oseledec splitting N = Es ⊕ Eu is a dominated splitting, then

lim sup
T→∞

1

T
log #PT (X) ≥ hµ(X) := hµ(X1)

For this theorem, we have to deal with the re-parametrization problem. In Liao’s shadowing
lemma (Theorem 5.3.2), the period of the periodic point which shadows the recurrent point is
a re-parametrization of the recurrent time. For our goal, we have to estimate the difference
between the recurrent time and its re-parametrization (Proposition 5.3.3).
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5.3 A shadowing lemma with time control

For the linear Poincaré flow, one has the shadowing lemma of Liao for some quasi hyperbolic
orbit segments.

Definition 5.3.1 Assume that Λ ⊂M \Sing(X) is an invariant (not necessarily compact) set
having a dominated splitting NΛ = E⊕F with respect to the linear Poincaré flow. Given η > 0
and T0 > 0, an orbit arc X[0,T ](x) ⊂ Λ with T > T0 is (η, T0)-quasi hyperbolic (associated to Λ)
if there is a time partition 0 = t0, t1 < t2 < · · · < tl = T with ti+1 − ti 6 T0, i = 0, · · ·, l − 1
such that for k = 1, · · ·, l − 1, one has

k−1∏
i=0

||P ∗ti+1−ti |EXti (x)|| ≤ e−ηtk and

l−1∏
i=k

m(P ∗ti+1−ti |FXti (x)) ≥ eη(T−tk) (5.1)

Theorem 5.3.2 (Liao’s shadowing lemma) Suppose Λ ⊂M \Sing(X) is a compact invariant
set with a dominated splitting NΛ = E ⊕ F . Given ε0, η > 0, T0 ≥ 1 , for every ε > 0, there
exists δ > 0 such that for any orbit segment X[0,T ](x) ⊂ Λ with the following properties:

• d(x, Sing(X)) ≥ ε0 and d(XT (x), Sing(X)) ≥ ε0

• X[0,T ](x) is η-quasi hyperbolic

• d(x,XT (x)) < δ

Then there exists a C1 increasing homeomorphism θ : [0, T ] → R and a periodic point
p ∈M , Xθ(T )(p) = p such that:

1. 1− ε < θ′(t) < 1 + ε, ∀ t ∈ [0, T ]

2. d(Xt(x), Xθ(t)(p)) ≤ ε||X(Xt(x))||, ∀ t ∈ [0, T ]

As mentioned before, the following proposition is one of the most important steps on the
proof of Theorem 5.2.2.

Proposition 5.3.3 Under the setting of Liao’s shadowing lemma, if T = mT0 for some m ∈
R+, then there exists N = N(η, T0) such that

|θ(t)− t| ≤ Nd(x,XT (x)), ∀t ∈ N ∩ [0, T ]
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The proof of proposition 5.3.3 consists in defining a Poincaré map for the vector field X, and
then we will show that the time on which each point on the domain of the Poincaré map takes
to hit the contra-domain satisfies some Lipschitz estimative (Lemma 5.3.5), we also show that
for fixed η > 0 and T0 > 1, the distance between the (η, T0)-quasi hyperbolic orbit X[0,mT0](x)
and its shadowing periodic orbit can be controlled by the distance between the starting point
end the ending point of this quasi hyperbolic orbit (Lemma 5.3.6). The Proposition 5.3.3 will
then follow from these two lemmas.

The Exponential Map

It is well known from the Riemannian Geometry, that given any initial point p ∈ M and
any initial velocity vector v ∈ TpM , they determine a unique maximal geodesic γv, that is, the
unique geodesic through p in the direction of the vector v. This implicitly defines a map from
the tangent bundle to the set of geodesics in M . More importantly, it allows us to define a map
from (a subset of) the tangent bundle to M itself, by sending the vector to the point obtained
by fallowing γv for time 1. To be more precise, define a subset E ⊂ TM , by

E := {V = (p, v) ∈ TM : γV is defined on an interval containing [0, 1]}

Then, define the exponential map exp : E →M by

exp(V ) = γV (1)

For each p ∈ M , the restricted exponential map expp is the restriction of the exponential
map to the set Ep = E ∩ TpM

Remark: For each V ∈ TM , γV is given by γV (t) = exp(tV ), for t ∈ R such that tV ∈ E .
For the proof, see for instance [Lee97].

A important result about the exponential map is the following:

Normal Neighborhood Lemma: For any p ∈M , there is a neighborhood V of the origin
in TpM and a neighborhood U of p in M such that expp : V → U is a diffeomorphism.

Proof. This follows immediately from the inverse function theorem, once we show that
D expp is invertible at 0. Since TpM is a vector space, there is a natural identification T0(TpM) =
TpM . Under this identification, we will show that D expp(0) : TpM → TpM has a particularly
simple expression, it is the identity map.

To compute D expp(0)v for an arbitrary vector v ∈ TpM , we just need to choose a curve α
in TpM starting at 0 whose initial vector is v, that is, α(0) = 0 and α′(0) = v, and compute the
initial tangent vector of the composite curve expp ◦α(t). We can take α(t) = tv as such curve.
Thus

D expp(0)v =
d

dt

∣∣∣
t=0

(expp ◦α)(t) =
d

dt

∣∣∣
t=0

expp(tv) =
d

dt

∣∣∣
t=0
γv(t) = v
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The above lemma allows us to define a coordinate system on M . By the definition of
manifold, an orthonormal basis {Ei} for TpM gives an isomorphism E : Rn → TpM . If U is a
neighborhood of p ∈ M as in the previous result, we can combine this isomorphism with the
exponential map to get a coordinate chart ϕ = E−1 ◦ exp−1

p : U → Rn.

Now let us return our attention to the Poincaré map defined in section 3.2. Given β > 0
small enough and a regular point y ∈ M , one has that the image of the normal ball Ny(β) =
{v ∈ Ny : ||v|| ≤ β} under the exponential map is a diffeomorphism from Ny(β) to Σy(β),
where

Σy(β) = expy(Ny(β))

As we saw before, to study the dynamics of a periodic orbit of a vector field, Poincaré
defined the sectional return map of a cross section of a periodic point. By generalizing this idea
to every regular point, one can define the Poincaré map for any two points in the same regular
orbit.

The next lemma says that for any vector field X ∈X 1(M), there exists 0 < δ ≤ β such that
for any regular point x ∈M , the Poincaré map Px,Xt(x) : Σx(δ||X(x)||)→ ΣXt(x)(δ||X(Xt(x))||)
is well defined for certain values of t ∈ R.

Lemma 5.3.4 For any X ∈ X 1(M), there exists 0 < δ ≤ β such that for any regular point
y ∈ Σx(δ||X(x)||), and for any t ∈

[
δ
3
, 2δ

3

]
, there is a unique s = s(t, y) ∈ [0, δ] such that

Xs(y) ∈ ΣXt(x)(δ||X(Xt(x))||).

Proof. Let ε0 > 0 be the number such that the exponential map expx is a diffeomorphism
on the ball TxM(ε0), where TxM(ε0) is the ball on TxM centered at the origin with radius ε0.
For any x ∈M and any y close to x we can lift the local orbit of y to TxM and define the local
flow

X̃t(v) = exp−1
x ◦Xt ◦ expx(v)

Since the derivative of the flow equals to the vector field that generates the flow, using
the fact that d

dt
(Xt(expx(v)) = X(expx(v)) it follows from the chain rule that the flow X̃t is

generated by the C1 vector field on TxM

X̃x(v) = D(expx)
−1 ◦X(expx(v))

Since X̃x ∈X 1(TxM), M is compact, and TxM(ε0) is bounded, one has

K := sup
x∈M,v∈TxM(ε0)

{||X̃x(v)||, ||DX̃x(v)||} < +∞

57



Since the derivative of the exponential map at v = 0 is the identity map, given ε > 0, by
reducing ε0 if necessary we may assume that the map Dexpx(v) is ε-close to the identity map
for any x ∈M and for any v ∈ TxM(ε0).

Claim. There exists δ > 0 such that for every regular point x ∈M , one has

expxNx(δ||X(x)||) ∩ Sing(X) = ∅

Proof of the Claim. Consider δ < ε
K

. For any v ∈ Nx(δ||X(x)||) it follows from the Mean
Value Theorem and from the second triangle inequality that

||X̃x(0)|| − ||X̃x(v)|| ≤ ||X̃x(v)− X̃x(0)|| ≤ max
ξ∈TxM(ε0)

||DX̃x(ξ)||.||v − 0||

then

||X̃x(v)|| ≥ ||X̃x(0)|| − max
ξ∈TxM(ε0)

||DX̃x(ξ)||.||v||

≥ ||X(x)|| −Kδ||X(x)||
≥ ||X(x)|| − ε||X(x)||
= (1− ε)||X(x)||
> 0

Since the map Dexpx is ε-close to identity, we have that ||X(expx(v)|| > 0, for all v ∈
Nx(δ||X(x)||). This proves the claim.

By reducing δ if necessary, by continuity one has

sup
t∈(−δ,δ)

||X̃x(v)||
||X̃x(X̃t(v)||

< 1 +
ε

K
and sup

t∈(−δ,δ)
∠(||X̃x(v)||, ||X̃x(X̃t(v)||) < 1 +

ε

K
(5.2)

For any v ∈ Nx(δ||X(x)||/3), let δ ≥ t0 > 0 be the time satisfying

||X̃t0(v)|| = δ||X̃x(X̃t0(0))|| and ||X̃s(v)|| ≤ δ||X̃x(X̃s(0))||, ∀s ∈ [0, t0)

Observe that ||X̃x(X̃s(0))|| = ||X(Xs(x))||. Since M is compact and X ∈ X 1(M), there is
C > 0 such that ||X(x)|| ≤ C, ∀ x ∈M .

Consider the integral equation
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X̃t0(v) = v +

∫ t0

0

X̃x(X̃s(v)) ds

Then,

||X̃t0(v)|| = ||v +

∫ t0

0

X̃x(X̃s(v)) ds||

≤ ||v||+
∫ t0

0

||X̃x(X̃s(v))|| ds

≤ δ

3
||X̃x(0)||+

∫ t0

0

(||X̃x(0)||+K||X̃s(v)||) ds

≤ δ

3
||X̃x(0)||+ t0||X̃x(0)||+

∫ t0

0

K||X̃s(v)||) ds

≤ δ

3
||X̃x(0)||+ t0||X̃x(0)||+

∫ t0

0

Kδ||X̃x(X̃s(0))||) ds

≤ δ

3
||X̃x(0)||+ t0||X̃x(0)||+

∫ t0

0

ε||X(Xs(x))||) ds

≤ δ

3
||X̃x(0)||+ t0||X̃x(0)||+ εC

∫ t0

0

ds

≤ δ

3
||X̃x(0)||+ t0||X̃x(0)||+ ε′t0

≤ δ

3
||X̃x(0)||+ (1 + ε′)t0||X̃x(0)||

By the other hand, (5.2) implies

||X̃t0(v)|| = δ||X̃x(X̃t0(0))||

≥ δ
||X̃t0(v)||

1 + ε
K

Thus,

δ
||X̃x(0)||
1 + ε

K

≤ ||X̃t0(v)|| ≤ δ

3
||X̃x(0)||+ (1 + ε′)t0||X̃x(0)||

This implies δ
3
≤ t0 ≤ 2δ

3
.

�
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The above lemma allows us to define the Poinvaré map fromNx(δ||X(x)||) toNXt(x)(δ||X(Xt(x))||)
by the equation Px,XT (x) = exp−1

XT (x) ◦Px,XT (x) ◦ expx.

To eliminate the dependence of the vector field norm, we consider the rescaled Poincaré
map

P∗
t : Nx(δ)→ NXt(x)(δ)

v 7→ Pt(||X(x)||v)

||X(Xt(x))||

Let us represent P∗
t in normal coordinates. Define the map τ : Nx(δ/2) → R such that

X̃τ(v) ◦ X̃t(||X̃x(x)||v)

||X̃x(X̃t(x))||
∈ NXt(x)(δ) for any v ∈ Nx(δ/2). By the above lemma, one has that the

map τ is injective. In coordinates, we can represent P∗
t by

P∗
t (v) = X̃τ(v) ◦

X̃t(||X̃x(x)||v)

||X̃x(X̃t(x))||

Now, we will estimate the function τ . For t ∈
[
δ
3
, 2δ

3

]
, consider the function

H(x, t, y, τ) =

〈
X̃τ ◦

X̃t(||X̃x(x)||y)

||X̃x(X̃t(x))||
,
X̃x(X̃t(x))

||X̃x(X̃t(x))||

〉

where 〈., .〉 denotes the inner product in the local euclidean coordinate. Fix x = x0 and
t = t0. We can consider H(x0, t0, y, τ(y)) as a map in the variables y and τ . From the definition

of the flow X̃t and by the chain rule, one has

∂H

∂τ

∣∣∣∣
y=0,τ=0

=
∂

∂τ

(〈
X̃τ ◦

X̃t0(||X̃x0(x0)||y)

||X̃x0(X̃t0(x0))||
,
X̃x0(X̃t0(x0))

||X̃x0(X̃t0(x0))||

〉)

=

〈
∂

∂τ

(
X̃τ ◦

X̃t0(||X̃x0(x0)||y)

||X̃x0(X̃t0(x0))||

)
,
X̃x0(X̃t0(x0))

||X̃x0(X̃t0(x0))||

〉

+

〈(
X̃τ ◦

X̃t0(||X̃x0(x0)||y)

||X̃x0(X̃t0(x0))||

)
,
∂

∂τ

X̃x0(X̃t0(x0))

||X̃x0(X̃t0(x0))||

〉

=

〈
∂

∂τ

(
X̃τ ◦

X̃t0(||X̃x0(x0)||y)

||X̃x0(X̃t0(x0))||

)
,
X̃x0(X̃t0(x0))

||X̃x0(X̃t0(x0))||

〉

=

〈
X̃x0(X̃t0(x0))

||X̃x0(X̃t0(x0))||
,
X̃x0(X̃t0(x0))

||X̃x0(X̃t0(x0))||

〉
= 1
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Then, it follows from the implicit function theorem that the map τ is differentiable and

∂τ

∂y
= −

∂H
∂y

∂H
∂τ

(5.3)

Lemma 5.3.5 For the flow Xt generated by X ∈X 1(M), there are constants C > 0 and δ > 0
such that if y ∈ expxNx(δ), then there exists a unique s = s(y) such that Xs(y) ∈ expXt(x) N(δ)
and |s(y)− t(x)| ≤ Cd(y, x).

Proof. Since Xt is C1 and X̃t(y) ∈ Nx(β∗),
∂H
∂y

is uniformly bounded and for the above

computation ∂H
∂τ

is uniformly bounded away from zero. Thus, by equation (5.3) one has that
∂τ
∂y

is uniformly bounded with respect to y. This means that there is a constant C > 0 such

that |τ(y)| = |s(y)− t(x)| ≤ Cd(y, x).
�

Fixed η > 0 and T0 > 1, the following lemma will show that the distance between the
(η, T0)-quasi hyperbolic orbit X[0,mT0](x) and its shadowing periodic orbit can be controlled by
the distance between the starting point end the ending point of this quasi hyperbolic orbit.

Lemma 5.3.6 Under the assumption of Liao’s shadowing lemma, taking α = e−η/2, if T =
mT0 for some m ∈ N, then there exists a constant C > 0 such that for the (η, T0)-quasi
hyperbolic orbit X[0,mT0](x) and the shadowing orbit X[0,θ(mT0)](p), one has

d(XiT0(x), Xθ(iT0)(p)) ≤ Cαmin{i,m−i}d(x,XmT0(x)), ∀i ∈ N ∩ [0,m]

Proof. Consider T0 > 0 such that the sequence of Poincaré maps

{P∗
XiT0 (x),X(i+1)T0

(x) : NXiT0 (x) → NX(i+1)T0
(x)}m−1

i=0

are well defined. Since X[0,mT0](x) is a (η, T0)-quasi hyperbolic orbit, by Definition 5.3.1, for
the dominated splitting NΛ = E ⊕ F with respect to the linear Poincaré flow, one has

k−1∏
i=0

||P ∗T0|EXiT0 (x)
|| ≤ e−ηk and

m−1∏
i=k

m(P ∗T0 |FXiT0 (x)
) ≥ eη(m−k), fork = 0, 1, · · ·,m (5.4)

By Liao’s shadowing lemma, one has d(Xt(x), Xθ(t)(p)) ≤ ε||X(Xt(x))||, ∀ t ∈ [0, T ]. Since
ε is arbitrary, for suitable δ we may assume Xθ(t)(p) ∈ ΣXt(x)(δ||X(Xt(x))||) for any t ∈ [0, T ].
Then for the periodic point p, one can also define the sequence of rescale sectional Poincaré maps
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{P∗
XiT0 (p),X(i+1)T0

(p) : NXiT0 (p) → NX(i+1)T0
(p)}m−1

i=0 . We also denote by d the distance function in

the normal bundle N = E⊕F . Let dE and dF be the induced distances in the subbundles E and
F respectively. There is a constant C ≥ 1 such that dE(x, p) ≤ Cd(x, p), dF (x, p) ≤ Cd(x, p)
and d(x, p) ≤ dE(x, p) + dF (x, p). Since the derivative of the rescaled sectional Poincaré map
equals to the rescaled linear Poincaré flow, by the estimates (5.4) , for each i = 0, · · ·m,

dE(XiT0(x), Xθ(iT0)(p)) ≤ ||P ∗T0(XiT0(x))||dE(X(i−1)T0(x), Xθ((i−1)T0)(p))

≤ ||P ∗T0(XiT0(x))||.||P ∗T0(X(i−1)T0(x))||dE(X(i−2)T0(x), Xθ((i−2)T0)(p))

≤ · · · ≤
i∏

j=0

||P ∗T0(XjT0(x))||dE(x, p) ≤ e−ηkdE(x, p) ≤ αidE(x, p)

Analogously, dF (XiT0(x), Xθ(iT0)(p)) ≤ αm−idF (XmT0(x), XmT0(p)). Therefore,

d(XiT0(x), Xθ(iT0)(p)) ≤ dE(XiT0(x), Xθ(iT0)(p)) + dF (XiT0(x), Xθ(iT0)(p))

≤ αidE(x, p) + αm−idF (XmT0(x), XmT0(p))

≤ αiCd(x, p) + αm−iCd(XmT0(x), XmT0(p))

≤ Cαmin{i,m−i}(d(x, p) + d(XmT0(x), XmT0(p)))

By Theorem 1.1 of [Gan02], enlarging C if necessary, we have

d(x, p) ≤ Cd(x,XmT0(x)) and d(XmT0(x), Xθ(mT0)(p))) ≤ Cd(x,XmT0(x))

Therefore,

d(XiT0(x), Xθ(iT0)(p)) ≤ C2αmin{i,m−i}d(x,XmT0(x)), ∀i ∈ N ∩ [0,m]

�

Proposition 5.3.7 Under the setting of Liao’s shadowing lemma, if T = mT0 for some m ∈ N,
then there exists N = N(η, T0) such that

|θ(t)− t| ≤ Nd(x,XT (x)), ∀t ∈ N ∩ [0, T ]

Proof. By Liao’s shadowing lemma, given ε0 > 0, η > 0 and T0 ≤ 1, for every ε >
0, there is δ > 0 such that for any (η, T0)-quasi hyperbolic orbit segment X[0,mT0](x) ⊂ Λ
with d(x, Sing(X)) ≥ ε0 and d(XmT0(x), Sing(X)) ≥ ε0 and d(x,XmT0(x)) < δ, there is a
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periodic point p ∈ M and a C1 strictly increasing function θ such that Xθ(mT0)(p) = p and
d(Xt(x), Xθ(t)(p)) ≤ ε||X(Xt(x))|| for any t ∈ [0,mT0]. Consider a time partition 0 = t0 < t1 <
t2 < · · · < mT0 = T = tm with ti+1 − ti = T0. Taking α = e−η/2, by Lemma 5.3.6 , there exists
C1 > 0 such that

d(Xti(x), Xθ(ti)(p)) ≤ C1α
min{i,m−i}d(x,XT (x)), ∀i = 0, · · ·,m

Since d(Xt(x), Xθ(t)(p)) ≤ ε||X(Xt(x))||, one may assumeXθ(t)(p) ∈ NXt(x)(NXt(x)(δ||X(Xt(x)||)),
for some δ = δ(ε) > 0 and for every t ∈ [0, T ]. then, by Lemma 5.3.5, there is C2 = C2(T0) > 0
such that for i = 1, · · ·,m, one has

|θ(ti+1)− θ(ti)− (ti+1 − ti)| ≤ C2d(Xθ(ti)(p), Xti(x)), ∀i = 1 · ··,m

Let N = N(η, T0) = C2.C1

1−α , by applying the above inequalities, it follows from the triangle
inequality that

|θ(T )− T | ≤
m−1∑
i=0

|θ(ti+1)− θ(ti)− (ti+1 − ti)|

≤ C2

m−1∑
i=0

d(Xθ(ti)(p), Xti(x))

≤ C2.C1.d(XT (x), x)
m−1∑
i=0

αmin{i,m−i}

Since α = e−η/2 ∈ (0, 1),
∑m−1

i=0 αmin{i,m−i} ≤
∑∞

i=0 α
i = 1

1−α . Therefore,

|θ(T )− T | ≤ C2.C1

1− α
d(XT (x), x) = Nd(XT (x), x)

By the above discussion, for every t ∈ N ∩ [0, T ]

|θ(t)− t| ≤
m−1∑
i=0

|θ(ti+1)− θ(ti)− (ti+1 − ti)| ≤ Nd(XT (x), x)

�
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5.4 Pesin Block of vector fields

For a regular ergodic hyperbolic measure µ and its Oseledec splitting N = Es ⊕ Eu, by the
definition of the P ∗t , for µ-a.e., one has

λ−(µ) = lim
t→∞

1

t
log ||P ∗t |Esx|| < 0 and λ+(µ) = lim

t→∞

1

t
logm(P ∗t |Eux ) > 0 (5.5)

Lemma 5.4.1 If the hyperbolic Oseledec splitting of a regular hyperbolic ergodic measure µ is a
dominated spitting, then for any ε > 0, there exists T0 = T (ε) ∈ R such that for µ-a.e. x ∈M
and every T > T0, one has

lim
k→∞

1

kT

k−1∑
i=0

log ||P ∗T |EsXiT (x)
||

exists and is contained in [λ−(µ), λ−(µ) + ε), and

lim
k→∞

1

kT

k−1∑
i=0

log ||P ∗−T |EuX−iT (x)
||

exists and is contained in (−λ+(µ)− ε,−λ+(µ)].

Proof. Let R be the support of µ and R̃ its transgression. By Lemma 3.6.3, R̃ admits a
dominated splitting NR̃SM = Ẽs ⊕ Ẽu with respect to the extended linear Poincaré flow. By
4.4.6, one has

λ−(µ) = λ−(µ̃) = lim
t→∞

1

t

∫
log ||Ψt|Es|| dµ̃

where µ̃ is the transgression of µ. Therefore, for any ε > 0, there is T0 > 0 such that
for T ≥ T0, one has | 1

T

∫
log ||ΨT |Esx|| dµ̃ − λ−(µ)| < ε, This is equivalent to λ−(µ) − ε <

1
T

∫
log ||ΨT |Esx|| dµ̃ < λ−(µ) + ε. Thus, it follows from the Birkhoff ergodic theorem that

lim
k→∞

1

kT

k−1∑
i=0

log ||P ∗T |EsXiT (x)
|| = lim

k→∞

1

kT

k−1∑
i=0

log ||ΨT |Es
XiT (x)

|| = 1

T

∫
log ||ΨT |Esx|| dµ̃ < λ−(µ)+ε

By the other hand, let t ∈ R. By the Euclidean algorithm, there are k ∈ N and 0 < r < T−1
such that t = kT + r. Observe that t→∞ implies kT + r →∞. Thus
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1

t
log ||P ∗t |Esx|| =

1

kT + r
log ||P ∗kT+r|Esx||

Since the norm is sub-multiplicative, it follows from the chain rule that

||P ∗kT+r|Esx|| = ||P
∗
T |EXT (k−1)(Xr(x))

···P ∗T |EXr(x) ·P
∗
r |Ex|| ≤ ||P ∗T |EXT (k−1)(Xr(x))

||···||P ∗T |EXr(x)||·||P
∗
r |Ex||

This implies

1

kT + r
log ||P ∗kT+r|Esx|| ≤

1

kT + r
log(||P ∗T |EXT (k−1)(Xr(x))

|| · · · ||P ∗T |EXr(x)|| · ||P
∗
r |Ex||)

=
1

kT + r

(
k−1∑
i=0

log ||P ∗XiT (Xr(x))||+ log ||P ∗r |Ex||

)

Thus,

λ−(µ) = lim
t→∞

1

t
log ||P ∗t |Esx||

= lim
k→∞

1

kT + r
log ||P ∗kT+r|Esx||

≤ lim
k→∞

1

kT + r

(
k−1∑
i=0

log ||P ∗XiT (x)||+ log ||P ∗r |Ex||

)

= lim
k→∞

(
1

kT + r

k−1∑
i=0

log ||P ∗XiT (x)||+
1

kT + r
log ||P ∗r |Ex ||

)

Since log ||P ∗r |Ex|| is bounded, we have

lim
k→∞

1

kT + r
log ||P ∗r |Ex|| = 0

Then,

λ−(µ) = lim
t→∞

1

t
log ||P ∗t |Esx|| ≤ lim

k→∞

1

kT + r

k−1∑
i=0

log ||P ∗XiT (x)|| ≤ lim
k→∞

1

kT

k−1∑
i=0

log ||P ∗XiT (x)||

This proves that limk→∞
1
kT

∑k−1
i=0 log ||P ∗T |EsXiT (x)

|| ⊂ [λ−(µ), λ−(µ) + ε).
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The conclusion for the subbundle Eu is obtained similarly.
�

Definition 5.4.2 (Pesin Block) Let µ be a regular hyperbolic ergodic measure of X ∈X 1(M),
and NΛ = Es ⊕ Eu its Oseledec splitting, where Λ is a Borel set with µ-total measure. Given
λ ∈ (0, 1), L > 0 and k ≥ 0, the Pesin block ΛL

λ(k) is defined as:

ΛL
λ(k) :=

{
x ∈ Λ :

n−1∏
i=0

||P ∗L|EsXiL(x)
|| ≤ kλn,

n−1∏
i=0

||P ∗−L|EuX−iL(x)
|| ≤ kλn,∀n ≥ 1, d(x, Sing(X)) ≥ 1

k

}

Proposition 5.4.3 If the hyperbolic Oseledec splitting of a regular hyperbolic measure µ is a
dominated splitting, then the Pesin block ΛL

λ(k) is a compact set such that

µ(ΛL
λ(k))→ 1 as k →∞,

where λ = e−η , 0 < η < min{−λ−, λ+} , L ≥ T (min{−λ−, λ+})− η) as in Lemma 5.4.1.

Proof. By definition, the Pesin block ΛL
λ(k) is a compact set. By Lemma 5.4.1 given ε > 0,

for L and n sufficiently large , for µ-a.e. x ∈M , one has

1

nL

n−1∑
i=0

log ||P ∗L|EsXiL(x)
|| ≤ λ− + ε

This is equivalent to

n−1∑
i=0

log ||P ∗L|EsXiL(x)
|| ≤ nL(λ− + ε)

By the logarithm property, one has

log(
n−1∏
i=0

||P ∗L|EsXiL(x)
||) ≤ kL(λ− + ε)

Applying the exponential on both sides, we obtain

n−1∏
i=0

||P ∗L|EsXiL(x)
|| ≤ enL(λ−+ε)

= enL(λ−+min{−λ−,λ+}−η)

=

{
e−nLη if min{−λ−, λ+} = −λ−

enL(−λ−+λ+−η) if min{−λ−, λ+} = λ+
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If min{−λ−, λ+} = λ+, then λ− + λ+ < 0. Therefore enL(−λ−+λ+−η) < e−nLη.

So, on both cases we have

n−1∏
i=0

||P ∗L|EsXiL(x)
|| ≤ enL(λ−+min{−λ−,λ+}−η)

≤ e−nLη

= (e−η)nL = λnL ≤ Cλn

For some constant C = C(x) > 0.

Let ΓLλ(k) := {x ∈ Λ :
∏n−1

i=0 ||P ∗L|EsXiL(x)
|| ≤ kλn,

∏n−1
i=0 ||P ∗−L|EuX−iL(x)

|| ≤ kλn,∀n ≥ 1}

By the above discussion, for k large, we have that the set ΓLλ(k) is non-empty. Also, Since
the rescaled linear Poincaré flow is uniformly bounded, one has

µ(
⋃
k>0

ΓLλ(k)) = 1

For any two real numbers 0 < k1 < k2, one has ΓLλ(k1) ⊂ ΓLλ(k2). Consequently,

µ(ΓLλ(k))
k→∞−→ 1

According to the facts that ΛL
λ(k) ⊂ ΓLλ(k) and µ(Sing(X)) = 0, for any ε > 0, there is

K = K(ε) ∈ N such that |µ(ΓLλ(k))− µ(ΛL
λ(k))| < ε, ∀ k ≥ K. Then

µ(ΛL
λ(k))

k→∞−→ 1

�

5.5 Constructing many periodic orbits: proof of theorem

5.2.2

Now we will state the version of Poincaré Recurrence Theorem for flows. Since it can be
obtained by the case for diffeomorphism, the proof is omitted.
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Proposition 5.5.1 Let µ be an Xt-invariant measure. For any fixed time t0 and any set B with
positive µ-measure, for µ-a.e. x ∈ B there is a sequence of integers 0 < n1 < n2 < ··· < ni < ···
such that

1. Xnit0(x) ∈ B , ∀ i ∈ N

2. d(x,Xnit0(x))
i→∞−→ 0

Proposition 5.5.2 Assume that f : M →M is a homeomorphism on a compact metric space.
Let µ be an ergodic f-invariant measure. If Λ is a set with positive µ-measure, the given δ > 0
and ε > 0, we have that

lim
n→∞

µ(Λn) = µ(Λ)

where

Λn = {x ∈ Λ : ∃m ∈ [n, (1 + ε)n], fm(x) ∈ Λ, d(fm(x), x) < δ}

Proof. Given δ > 0 and ε > 0, take a finite measurable partition P = {Pi}li=i such that

diam(Pi) ≤ δ, Pi ⊂ Λ or Pi ∩ Λ = ∅, i = 1, 2, · · ·, l

Consider the set

Λn(P) := {x ∈ Λ : ∃ i ∈ [0, l] and m ∈ [n, (1 + ε)n] with fm(x) ∈ Λ and x, fm(x) ∈ Pi}

Fix Pi ⊂ Λ and define

P i
n,ε :=

{
x ∈ Pi :

n−1∑
j=0

χPi(f
j(x)) ≤ nµ(Pi)

(
1 +

ε

3

)
,

[n(1+ε)]∑
j=0

χPi(f
j(x)) ≥ nµ(Pi)

(
1 +

2ε

3

)}

where χPi is the characteristic function of the set Pi.

It follows from the definition of the set P i
n,ε that P i

n,ε ⊂ Pi ∩ Λn(P). We shall prove that

µ(Pi\P i
n,ε)

n→∞−→ 0, that is limn→∞ µ(P i
n,ε) = µ(Pi). Since P i

n,ε ⊂ Pi, one has µ(P i
n,ε) ≤ µ(Pi),

for all n ∈ N. Then, limn→∞ µ(P i
n,ε) ≤ µ(Pi). To the reverse inequality, we apply the Birkhoff

ergodic theorem. For µ a.e. x ∈ Pi, we have

lim
n→∞

1

n

n−1∑
j=0

χPi(f
j(x)) =

∫
χPi(x) dµ = µ(Pi) ≤ µ(Pi)

(
1 +

ε

3

)
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and

[n(1+ε)]∑
j=0

χPi(f
j(x)) =

[n(1 + ε)] + 1

[n(1 + ε)] + 1

[n(1+ε)]∑
j=0

χPi(f
j(x))

= ([n(1 + ε)] + 1).
1

[n(1 + ε)] + 1

[n(1+ε)]∑
j=0

χPi(f
j(x))

≥ nµ(Pi)

(
1 +

2ε

3

)

this implies

[n(1 + ε)] + 1

n
.

1

[n(1 + ε)] + 1

[n(1+ε)]∑
j=0

χPi(f
j(x)) ≥ µ(Pi)

(
1 +

2ε

3

)

taking limits, we obtain

lim
n→∞

[n(1 + ε)] + 1

n
. lim
n→∞

1

[n(1 + ε)] + 1

[n(1+ε)]∑
j=0

χPi(f
j(x)) ≥ µ(Pi)

(
1 +

2ε

3

)

Then

(1 + ε)

∫
χPi(x) dµ = (1 + ε)µ(Pi) ≥ µ(Pi)

(
1 +

2ε

3

)

Therefore, limn→∞ µ(P i
n,ε) = µ(Pi), and the proposition is then proved.

�

Choosing a Pesin block

We choose λ ∈ (0, 1) and L > 0 as in Lemma 5.4.1 to define the Pesin block ΛL
λ(k):

ΛL
λ(k) :=

{
x ∈ Λ :

n−1∏
i=1

||P ∗L|EsXiL(x)
|| ≤ kλn,

n−1∏
i=1

||P ∗−L|EuX−iL(x)
|| ≤ kλn,∀n ≥ 1, d(x, Sing(X) ≥ 1

k

}

By Proposition 5.4.3, since µ(ΛL
λ(k))

k→∞−→ 1, for k > 0 large enough we have that µ(ΛL
λ(k)) >

0. Fix λ0 ∈ (λ, 1). Then

69



n−1∏
i=1

||P ∗L|EsXiL(x)
|| ≤ kλn0

Since, for each i ∈ {0, · · ·, n − 1} the subbundle Es
XiL(x) is contracted, we have that there

exists j1 = j1(k) ∈ N such that

n−1∏
i=1

||P ∗j1L|EsXij1L(x)
|| ≤ λn0

For each x ∈ ΛL
λ(k) and any n ≥ 1.

Similarly, since Eu
X−iL(x) is expanded, one has that there is j2 ∈ N such that

n−1∏
i=1

||P ∗−j2L|EuX−ij2L(x)
|| ≤ λn0

For each x ∈ ΛL
λ(k) and any n ≥ 1.

Taking j = j(k) = max{j1, j2}, for each x ∈ ΛL
λ(k), one has

n−1∏
i=1

||P ∗jL|EsXijL(x)
|| ≤ λn0 and

n−1∏
i=1

||P ∗−jL|EuX−ijL(x)
|| ≤ λn0 , ∀n ≥ 1

Consider the set ΛL0
λ0

(k) defined by

ΛL0
λ0

(k) :=

{
x ∈ Λ =

n−1∏
i=1

||P ∗jL|EsXijL(x)
|| ≤ λn0 ,

n−1∏
i=1

||P ∗−jL|EuX−ijL(x)
|| ≤ λn0 ,∀n ≥ 1, d(x, Sing(X)∩Λ) ≥ 1

k

}

where L0 = jL. Since µ is a regular measure and ΛL
λ(k) ⊂ ΛL0

λ0
(k), one has µ(ΛL0

λ0
(k)) ≥

µ(ΛL
λ(k)). Hereafter we fix this k.

By the Poincaré recurrence theorem for flows, since µ(ΛL0
λ0

(k)) > 0, we have that for µ-

a.e. x ∈ ΛL0
λ0

(k), the forward orbit of x will return infinitely many times to ΛL0
λ0

(k) and will

be arbitrarily close to x. Let η0 = − 1
L0

log(λ0). If XnL0(x) ∈ ΛL0
λ0

(k) for some n ∈ N, then

X[0,nL0](x) is a (η0, L0)-quasi hyperbolic orbit arc. Indeed, by the definition of ΛL0
λ0

(k), one has

that X[0,nL0](x) ⊂ ΛL0
λ0

(k). Taking the partition 0 = t0 < t1 = L0 < t2 = 2L0 < t3 = 3L0 <
· · · < nL0 = tl = T , we have ti+1 − ti = L0 for any 0 ≤ i ≤ l − 1. Moreover,
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n−1∏
i=1

||P ∗L0
|EsXiL0(x)

|| ≤ λn0 = e−η0nL0 , n = 0, 1, · · ·, l − 1

Similarly,

l−1∏
i=n

m(P ∗L0
|EuXiL0(x)

) ≥ eη0(T−nL0), n = 0, 1, · · ·, l − 1

That is, X[0,nL0](x) is a (η0, L0)-quasi hyperbolic orbit arc.

The shadowing constants

Let C = max
{

1,max
x∈M
||X(x)||

}
. Given ε0 = 1

k
, η = η0, T0 = L0 and ε > 0, for ε1 =

ε
3C

, by Liao’s shadowing lemma, there exists δ = δ(ε) much smaller than ε such that for

any x,XnL0(x) ∈ ΛL0
λ0

(k), if d(x,XnL0(x)) < δ, then there is a point p ∈ M and a C1-
increasing homeomorphism θ : [0, nL0] → R such that Xθ(nL0)(p) = p and d(Xt(x), Xθ(t)(p)) <
ε1||X(Xt(x))|| = ε

3C
||X(Xt(x))|| ≤ ε

3C
C = ε

3
for all t ∈ [0, nL0]. Moreover, by Proposition 5.3.3,

one has |θ(t) − t| ≤ Nd(x,XnL0(x)) ≤ Nδ for any integer t ∈ [0, nL0], where N is constant
independent of x and n. One can also assume that Nδ is much smaller than ε.

A separation set Kn

For ε > 0 and n ∈ N, we claim that there exists a finite set Kn = Kn(k, ε) ⊂ ΛL0
λ0

(k) with
the following properties:

1. For any two points x, y ∈ Kn, there is t ∈ N ∩ [0, nL0] such that d(Xt(x), Xt(y)) > ε.

2. For any x ∈ Kn, there exists an integer m = m(n) with n < m ≤ (1 + ε)n such that
XmL0(x) ∈ ΛL0

λ0
(k) and d(x,XmL0(x)) < δ(ε).

3. lim infε→0 lim infn→∞
1
nL0

log #Kn ≥ hµ(X1).

The construction of Kn

Now, we give the precise construction of Kn. Consider the following set:

ΛL0
λ0

(k, n) = {x ∈ ΛL0
λ0

(k) : ∃m ∈ [n, (1 + ε)n], XmL0(x) ∈ ΛL0
λ0

(k), d(x,XmL0(x)) < δ}
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Since µ(ΛL0
λ0

(k)) > 0, taking f = XL0 , by Proposition 5.5.2 we have

lim
n→∞

µ(ΛL0
λ0

(k, n)) = µ(ΛL0
λ0

(k))

We take a maximal choice of Kn = Kn(k, ε) ⊂ ΛL0
λ0

(k, n) such that item 1 is satisfied. By

definition of ΛL0
λ0

(k, n), item 2 is satisfied.

For item 3, we use Katok’s metric entropy. By maximality of Kn, one has

#Kn ≥ SX1(nL0, ε, 1− µ(ΛL0
λ0

(k, n)))

Thus,

lim inf
ε→0

lim inf
n→∞

1

nL0

log #Kn ≥ lim inf
ε→0

lim inf
n→∞

1

nL0

logSX1(nL0, ε, 1− µ(ΛL0
λ0

(k, n))) ≥ hµ(X1)

The construction of Kn is hence complete.

Estimating the growth rate of the periodic orbits

Now, we can complete the proof of Theorem 5.2.2. For every point x ∈ Kn, by item 2 of
the construction of Kn, there is mx with n < mx ≤ (1 + ε)n such that XmxL0(x) ∈ ΛL0

λ0
(k)

and d(x,XmxL0(x)) < δ(ε). By Liao’s shadowing lemma, there exists a C1-strictly increasing
homeomorphism θx : [0,mxL0]→ R and a periodic point p = px of period θx(mxL0) such that

d(Xt(x), Xθx(t)(p)) = ε1||X(Xt(x))|| < ε

3
, ∀t ∈ [0,mxL0]

By Proposition 5.3.3, one has that

|θx(t)− t| ≤ Nd(x,XmxL0(x)) ≤ Nδ, ∀t ∈ N ∩ [0,mxL0]

For any two different points x, y ∈ Kn, by item 1 of the construction of Kn, there exists
j ∈ N ∩ [0, nL0] such that d(Xj(x), Xj(y)) > ε. Thus, by the triangle inequality, we have

d(Xθx(j)(px), Xθy(j)(py)) ≥ d(Xθx(j)(Px), Xj(y))− d(Xθy(j)(Py), Xj(y))

and
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d(Xθx(j)(Px), Xj(y)) ≥ d(Xj(x), Xj(y))− d(Xθx(j)(Px), Xj(x))

Therefore,

d(Xθx(j)(Px), Xθy(j)(Py)) ≥ d(Xj(x), Xj(y))− d(Xθx(j)(Px), Xj(x))− d(Xθy(j)(Py), Xj(y))

> ε− ε

3
− ε

3

=
ε

3

We claim that

X(θx(j)− ε
32C

,θx(j)+ ε
32C

)(px) ∩X(θy(j)− ε
32C

,θy(j)+ ε
32C

)(py) = ∅

where C = sup
z∈M
||X(z)|| <∞.

Indeed, by Proposition 5.3.3, taking δ ∈
(
0, ε

64CN

)
, one has |θx(j)−j| ≤ Nδ and |θy(j)−j| ≤

Nδ. Therefore, by the triangle inequality, one has

|θx(j)− θy(j)| ≤ |θx(j)− j|+ |θy(j)− j| ≤ Nδ +Nδ = 2Nδ < 2N
ε

64CN
=

ε

32C

If t ∈
(
− ε

32C
, ε

32C

)
, using the fact the derivative of the flow equals to the vector field, it

follows from the mean value theorem that

d(Xθx(j)+t(px), Xθx(j)(px)) ≤ sup
τ∈R
{||DXτ (px)||}|θx(j) + t− θx(j)| ≤ C|t| ≤ 2C

ε

32C
=

ε

16

Analogously,

d(Xθy(j)+t(py), Xθy(j)(py)) ≤
ε

16

Consequently, for any t, s ∈ (− ε
32C

, ε
32C

), by the triangle inequality,

d(Xθx(j)+t(px), Xθy(j)+s(py)) ≥ d(Xθx(j)(px), Xθy(j)+s(py))− d(Xθx(j)(px), Xθx(j)+t(px))
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and

d(Xθx(j)(px), Xθy(j)+s(py)) ≥ d(Xθx(j)(px), Xθy(j)(py))− d(Xθy(j)(py), Xθy(j)+s(py))

Therefore,

d(Xθx(j)+t(px), Xθy(j)+s(py)) ≥ d(Xθx(j)(px), Xθy(j)(py))− d(Xθx(j)(px), Xθx(j)+t(px))

− d(Xθy(j)(py), Xθy(j)+s(py))

>
ε

3
− ε

16
− ε

16

=
ε

3
− ε

4

=
ε

12
> 0

This prove the claim.

From the claim, for z ∈ orb(px), any orbit segment X[0,1](z) contains at most 32C
ε

points in
the set {px}x∈Kn . Consequently, we have that

∑
x∈PT (X),nL0(1−ε)−Nδ≤π(x)≤nL0(1+ε)+Nδ

π(x) ≥ ε

32C
#Kn

Thus,

#PnL0(1+ε)+Nδ(X) ≥ ε

32C
#Kn

Therefore,

lim sup
T→∞

1

T
log #PT (X) ≥ lim sup

n→∞

1

nL0(1 + ε) +Nδ
log #PnL0(1+ε)+Nδ(X)

= lim sup
n→∞

1

nL0

nL0

nL0(1 + ε) +Nδ
log #PnL0(1+ε)+Nδ(X)

= lim
n→∞

nL0

nL0(1 + ε) +Nδ
lim sup
n→∞

1

nL0

log #PnL0(1+ε)+Nδ(X)

Since limn→∞
nL0

nL0(1+ε)+Nδ
= 1

1+ε
, we have
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lim sup
T→∞

1

T
log #PT (X) ≥ 1

1 + ε
lim sup
n→∞

1

nL0

log #PnL0(1+ε)+Nδ(X)

≥ 1

1 + ε
lim inf
n→∞

1

nL0

log
( ε

32C
#Kn

)
≥ 1

1 + ε
lim inf
n→∞

1

nL0

log(#Kn)

Thus,

lim inf
ε→0

lim sup
T→∞

1

T
log #PT (X) ≥ lim inf

ε→0

1

1 + ε
lim inf
n→∞

1

nL0

log(#Kn)

= lim
ε→0

1

1 + ε
lim inf
n→∞

1

nL0

log(#Kn)

= lim inf
ε→0

lim inf
n→∞

1

nL0

log(#Kn)

≥ hµ(X)

Since µ is arbitrary and lim infε→0 lim supT→∞
1
T

log #PT (X) does not depends on ε, one
has

lim sup
T→∞

1

T
log #PT (X) ≥ htop(X)

�

5.6 Proof of Theorem B

Proof of the main theorem (Theorem B). Take a residual set R ⊂X 1(M) as in Theorem 5.0.2.
For any X ∈ R, if X is not star, by Theorem 5.1.1, one has

lim sup
T→∞

1

T
logPerT (X) =∞ > htop(X)

If X is star, then any ergodic invariant measure µ is hyperbolic by Lemma 4.4.8. We can
assume that htop(X) > 0, since if htop(X) = 0, the inequality is true. According to Theorem
5.2.1, the hyperbolic Oseledec splitting N = Es⊕Eu with respect to µ is a dominated splitting.
By Theorem 5.2.2, one has

lim sup
T→∞

1

T
logPerT (X) > hµ(X)

75



By the variational principle,

htop(X) = htop(X1) = sup{hµ(X1) : µ is an ergodic measure of X}.

Thus, we have

lim sup
T→∞

1

T
logPerT (X) > htop(X)

The proof of the main theorem is hence complete.
�
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