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Resumo
O presente trabalho é dedicado ao estudo e entendimento das desigualdades Log-Sobolev
no Cubo de Hamming e no Espaço de Gauss. Algumas ferramentas serão estudadas, como
semigrupos de operadores e desigualdades em Teoria da Informação, que nos permitirão
obter os corolários desejados. Com isso, iremos abordar algumas aplicações importantes,
tais como o fenômeno de concentração de medida em ambos os espaços, as complexidades de
Rademacher e Gauss e suas consequências e a conexão entre as desigualdades Log-Sobolev
com Teoria da Informação.

Palavras-chave: Desigualdades Log-Sobolev, Concentração de Medida, Entropia, Teoria
da Informação.





Abstract
The present work is dedicated to study and understanding the Log-Sobolev Inequalities
in the Hamming Cube and Gauss Space. Some tools are going to be studied, such as
semigroup of operators and inequalities in Information Theory, that will allow us to
obtain the desired corollaries. Thereby, we will address some important applications,
such as the concentration of measure phenomenon in both spaces, the Rademacher and
Gauss Complexities and their consequences and the connection between the Log-Sobolev
Inequalities and Information Theory.

Keywords: Log-Sobolev Inequalities, Concentration of Measure, Entropy, Information
Theory.
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1
Introduction

Our main goals in this Dissertation are to prove the Rademacher Log-Sobolev
Inequality and the Gaussian Log-Sobolev Inequality and to use them to obtain results
in Functional Analysis, Probability Theory and Information Theory. The statement of
the Rademacher Log-Sobolev Inequality is the following: let Hn = {−1, 1}n and µ be the
uniform measure in Hn, then for all f : Hn → R, we have

∫
Hn
f 2 log(f 2) dµ−

( ∫
Hn
f 2 dµ

)
log

( ∫
Hn
f 2 dµ

)
≤ 2

∫
Hn
‖∇f‖2 dµ,

where ∇f is the discrete gradient. The Gaussian Log-Sobolev Inequality states that for
all f ∈ C1(Rn), we have

∫
Rn
f 2 log(f 2) dµ−

( ∫
Rn
f 2 dµ

)
log

( ∫
Rn
f 2 dµ

)
≤ 2

∫
Rn
‖∇f‖2 dµ,

where µ is the standard Gaussian measure in Rn. There are important applications of
these results in many different fields, such as Compressed Sensitive, High Dimensional
Probability and Statistic Theory, Convex Geometry, Functional Analysis and Information
Theory. We will apply the Rademacher Log-Sobolev Inequality and the Gaussian Log-
Sobolev Inequality to study Concentration in the Hamming Cube, Graphs and Gaussian
Spaces, Rademacher and Gaussian Complexities, the Crámer-Rao Inequality and the
Uncertainty Principle, among other results.

In order to achieve this goal, in the first chapters we introduce the main definitions
and results we need. In Chapter 2, we provide the basic definitions and results from
Probability Theory. Amongst these results, we emphasize the importance of Chernoff’s
Inequality, which says that for an exponentially integrable random variable, we have

P(X − E[X] ≥ t) ≤ e−tE[e(X−E[X])].

This inequality is important in order to prove concentration for Lipschitz functions.
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In Chapter 3 we introduce the basic ideas of Information Theory, such as Shannon
Entropy

H(X) = −
∑
x∈X

p(x) log p(x),

and describe some applications such as in Coding and Compressing and the Theory of
Channels. Furthermore, we will also derive, in Section 3.6, some useful inequalities, such
as the Fisher Information Inequality, which says that for all X, Y with smooth densities
f, g, we have

1
J(X + Y ) ≥

1
J(X) + 1

J(Y ) .

This is the first inequality we need to prove the Gaussian Log-Sobolev Inequality by means
of Information Theory.

In Chapter 4 we will introduce the ideas from Functional Analysis, in particular,
Semigroup Theory. There, we define the Ornstein-Uhlenbeck Semigroup Pt, defined as

Ptf(x) =
∫
Rn
f(e−tx+

√
1− e−2ty) 1

(2π)n/2 exp
(
− ‖y‖

2

2

)
dy.

Moreover, we will define the Functional Entropy

Ent(X) = E[X logX]− E[X] logE[X],

and we will introduce the two main functional inequalities we will associate to Concen-
tration of Measure phenomena, namely the Poincaré’s Inequality and the Log-Sobolev
Inequality.

Our first main result lies in Chapter 5, where we study the Rademacher Log-Sobolev
Inequality in Hn. In Section 5.3 we prove this theorem, namely, for every f : Hn → R, we
have

Ent(f 2) ≤ 2E(f),

with µ uniform in Hn. We will then use this result in some applications in the following
sections. In Section 5.4, we will prove the Concentration of Measure in the Hamming
Cube, that is, for all 1−Lipschitz function f : Hn → R we have

P(|f(X)− E[f(X)]| ≥ t) ≤ 2 exp(−nt2).

After that, in Section 5.5, we will introduce the Rademacher Complexity of a set V ⊂ Rn,
namely,

r(V ) := E[sup
t∈V
〈t,X〉],
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where X is uniformly distributed in Hn. Furthermore, we will also prove some of its basic
properties, in particular, the following bound:

r(V ) ≤ 2
√
σ2 log(|V |),

where σ2 = supt∈T ‖t‖2 and |V | denotes the cardinality of V . In Section 5.6, we use
Rademacher Complexity to study the Supervised Classification Problem. Finally, in
Section 5.7, we will introduce the Log-Sobolev Inequality for graphs (V,E) equipped with
a probability measure µ, namely

Ent(f 2) ≤ cE(f),

where E is the energy is associated with the graph:

E(f) = 1
4
∑
x∈V

∑
y∈Ex

(f(x)− f(y))2µ(x),

and Ex is the set of all y such that (x, y) ∈ E.

Finally, Chapter 6 is dedicated to the Gaussian Log-Sobolev Inequality. We will
prove the main result in Section 6.3, namely, for X ∼ N (0, Id) and for all f ∈ C2(Rn) we
have

Ent(f 2(X)) ≤ 2E[‖∇f(X)‖2].

However, the first nontrivial result we will obtain is that it is equivalent with an inequality
in Information Theory, say, for all random vector X with finite second moment and density
f ∈ C2(Rn), we have

N(X)J(X) ≥ n,

where N(X) and J(X) are the exponential entropy of Shannon and the Fisher Information,
respectively. The first application appears in Section 6.4, where we will prove Gaussian
Concentration, namely, for all f : Rn → R 1−Lipschitz and X ∼ N (0, Id), we have

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2 exp

(
− t2/2

)
.

As a consequence of this result we will prove, for example, that

P
(∣∣∣∣‖X‖ − E[‖X‖]

∣∣∣∣ ≥ t
)
≤ 2 exp(−t2/2).

In Section 6.5, we will define the Gaussian Complexity of a set V ⊂ Rn as

w(V ) = E[sup
t∈V
〈g, t〉],

where g ∼ N (0, Id). We will prove some of its basic properties and we will state a very
powerful bound, known as the M* Bound. Using this, we will prove one of the simplest
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theorems in Compressed Sensing, namely, if we want to recover a signal x ∈ T ⊂ Rn

according to a random measurement Ax = y ∈ Rm, where Aij ∼ N (0, 1) independent,
then any solution of Az = y and z ∈ T satisfies

E[z − x] ≤ Cw(T )√
m

.

In Section 6.6, we will explore the Crámer-Rao Inequality, which says that, for any random
variable X we have

σ2(X) ≥ 1
J(X) ,

where σ2(X) is the variance of X. We will give some examples of applications of this
inequality, which is proved through the Gaussian Log-Sobolev Inequality. Finally, in
Section 6.7, we will prove that for associated random variables X and Y , which means
that their densities are the Fourier Transform of one another, we have

16π2σ2(X)σ2(Y ) ≥ 1.
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2
On Dice and Coins

2.1 Introduction

The idea behind this chapter is to make this dissertation as self-contained as
possible and to provide a quick reference for the readers that are not familiar with some
results in Measure Theory. This is done in Sections 2.2 to 2.5. Readers that have a working
knowledge of Measure Theory should skip this chapter and proceed to the following ones.
However, in Sections 2.6 to 2.10 we gather and briefly discuss some results on Probability
Theory that are essential for the rest of this text.

First, we will start with the definition of a Probability Space in Section 2.2.
Moreover, we will state the Caratheodory’s Extension Theorem. Lastly, we will introduce
the Lebesgue Measure and Kolmogorov’s Extension Theorem.

After this, in Section 2.3, we will give the standard definition of a Random Variable
and Random Element. We will introduce the idea of Distribution and the Push Forward
Measure. Finally, we will define independent random variables.

In Section 2.4, the concept of Integral and Expectation will be introduced. We will
define these quantities and state some properties and theorems, such as the Monotone
and Dominated Convergence Theorems. Also in this section we will define the Product
Measure and the Fubini’s Theorem.

Moving on, we will give some methods to compute integrals in the Section 2.5.
We will describe three methods: first, using the Riemann Integral, then the Change of
Variables Theorem and finally the Weak Derivative Property.

Section 2.6 is about the Characteristic Function and the Generating Function. We
will explore these definitions and why they are important. We also will state some of their
properties.

After this section, we study some inequalities in Probability Theory, in Section 2.7.



28 Chapter 2. On Dice and Coins

Here we will explore some of the most fundamental inequalities concerning measures and
probability, such as Markov’s Inequality and Chernoff’s Inequality. These inequalities play
a rule in future sections since their bounds induce the Subgaussian Property, which we
will mention later.

The Section 2.8 is about Conditional Expectation in a more general framework,
say, Conditional Expectation with respect to a σ-field. We will state some of its properties,
in particular, the Projection Property.

After that, we will see in Section 2.9 some notions of convergence of random
variables. Moreover, we will define and prove the main theorems about convergence, such
as Theorems 2.9.1, 2.9.2 and 2.9.5.

Finally, in Section 2.10 we will begin to introduce the idea of a Markov chain and
semigroups. However, we will explain these concepts in a more general framework only in
Chapter 4.

2.2 Probability Spaces
To introduce some notations and definitions from Measure Theory, let us define

semialgebra, algebra and σ-algebra.

Definition 2.2.1. Let V be a set. A semialgebra S is a nonempty collection of subsets
of V such that

1. If A,B ∈ S, then A ∩B ∈ S; and

2. If A ∈ S, then Ac, its complement, is a disjoint union of elements in S.

We can extend this concept to an algebra.

Definition 2.2.2. Let V be a set. A algebra A is a collection of subsets of V such that

1. The set V is in A;

2. If A,B ∈ A, then A ∩B ∈ A; and

3. If A ∈ A, then Ac ∈ A.

Properties 2 and 3 from Definition 2.2.2 can be used to prove the following lemma.

Lemma 2.2.1. Let A be an algebra. If A1, ..., An ∈ A, then

1. It is closed under finite intersections: ⋂ni=1Ai ∈ A; and
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2. It is closed under finite unions: ⋃ni=1Ai ∈ A.

However, we cannot extend it to countable unions or intersections. Thereby we
define a σ-algebra F as those algebras F which satisfies Lemma 2.2.1, but with countable
union and intersection instead.

Definition 2.2.3. Let V be a set. A σ-algebra F is a collection of subsets of V such
that

1. The set V is in F ;

2. If A ∈ F , then Ac ∈ F ; and

3. If (Ai)i∈N ⊂ F , then ⋃
i∈N

Ai ∈ F .

It will be convenient to define the smallest semialgebra (resp. algebra and σ-algebra)
generated by a collection B of subsets of V .

Definition 2.2.4. Let V be a set and B a collection of subsets of V . The semialgebra
generated by B (resp. algebra and σ-algebra) is the smallest semialgebra generated
by B (resp. algebra and σ-algebra) which contains B. We denote by σ(B) the smallest
σ-algebra generated by B. In this case, we say that B generates σ(B)

This is well-defined, since there is at least one semialgebra generated by B (resp.
algebra and σ-algebra) which contains B, namely P(V ), the collection of all subsets of V .

Definition 2.2.5. If F is a σ-algebra, then a set A ∈ F is called a measurable set.

Summarizing, we obtain the definition of a measurable space.

Definition 2.2.6. Let V be a nonempty set and F be a σ-algebra of V , then the pair
(V,F) is called a measurable space.

We can now define a measure in (V,F).

Definition 2.2.7. Let F be a σ-algebra. Then a measure µ : F → [0,∞] is a function
such that

1. The empty set has measure zero: µ(∅) = 0; and

2. If (An)∈N ∈ F is a countable disjoint collection, then

µ
( ⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai).



30 Chapter 2. On Dice and Coins

Definition 2.2.8. Let µ be a measure in (V,F). If µ(V ) = 1, then µ is called a proba-
bility measure, or just probability. Also, if there is a countable collection (Ai)i∈N such
that

1. The collection covers V : V = ⋃
i∈NAi; and

2. For all i ∈ N, we have that µ(Ai) <∞,

then the measure µ is called a σ-finite measure,

For this reason, we have the following definition.

Definition 2.2.9. Let V be a nonempty set, F be a σ-algebra and P be a probability in
V , then the triple (V,F ,P) is called a probability space.

Let us just state some properties of probabilities.

Lemma 2.2.2. Let (V,F ,P) be a Probability Space, then the following are true.

1. If A,B ∈ F and A ⊆ B, then we have P(A) ≤ P(B);

2. If Ai ∈ F for all i ∈ N, Ai ⊆ Ai+1 and A := ⋃
i∈NAi, then

P(A) = lim
i→∞

P(Ai);

3. If A ∈ F , then P(Ac) = 1− P(A); and

4. If (Ai)i∈N ⊂ F , then

P(
⋃
i∈N

Ai) ≤
∞∑
i=1

P(Ai).

We will not prove this lemma. The proof can be found in Durrett (2019), Shiryaev
(2016) or Folland (2013).

2.2.1 Carathéodory’s Theorem
Let A be a semialgebra and µ : A → R+ such that

µ
( ⋃
i≤n

Ai

)
=
∑
i≤n

µ(Ai),

whenever (Ai)ni=1 ⊂ A is a disjoint collection such that ⋃i≤nAi ∈ A and µ(∅) = 0. We
should expect that we can extend µ to an unique measure µ̂ in the algebra generated by
A and

µ̂(A) = µ(A),

for all A ∈ A. Carathéodory’s Theorem provides sufficient conditions for this to hold.
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Theorem 2.2.1 (Carathéodory’s Theorem). Let B be a semialgebra and µ : B → [0,∞]
such that

1. The empty set has measure zero: µ(∅) = 0;

2. If (Ai)ni=1 ⊂ B is a disjoint finite collection of sets and ⋃ni=1Ai ∈ B, then

µ
( n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai); and

3. If (Ai)i∈N ⊂ B is a disjoint countable collection and ⋃i∈NAi ∈ B, then
µ
( ⋃
i∈N

Ai

)
≤
∑
i∈N

µ(Ai).

Then µ has an unique extension µ̂ to the algebra A generated by B, in the sense that µ̂
restricted to B is equal to µ and

µ̂
( n⋃
i=1

Ai

)
=

n∑
i=1

µ̂(Ai),

whenever Ai is a finite disjoint family in the algebra A. Also, if µ̂ is σ-finite, then µ̂ has
an unique extension to σ(A).

Proof. The reader can find two different proofs: using π-λ Theorem (see Durrett (2019))
or using outer measures (see Folland (2013)).

2.2.2 Borel, Lebesgue and Kolmogorov
In this section, we define the most frequent examples of measurable sets and

measures. First, let us define the Borel σ-algebra.

Definition 2.2.10. A Topological Space is (V, τ) where τ is a collection of subsets of
V such that

1. The empty set and V itself are in τ : ∅ ∈ τ and V ∈ τ ;

2. If A,B ∈ τ , then A ∩B ∈ τ ; and

3. For all collection of index λ ∈ Λ and (Aλ)λ∈Λ ⊆ τ , we have⋃
λ∈Λ

Aλ ∈ τ.

A set A ∈ τ is called open.

Definition 2.2.11. Let (V, τ) be a topological space. The smallest σ-algebra generated
by τ , and denoted by B(V ), is called the Borel σ-algebra.
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Now we can define the Lebesgue Measure in Rn.

Definition 2.2.12. Let (Rn,B(Rn)), where the topology is generated by the Euclidean
norm, then Theorem 2.2.1 implies that there is an unique σ-finite measure λ, called the
Lebesgue Measure, such that for all ai ≤ bi we have

λ
( n∏
i=1

(ai, bi]
)

=
n∏
i=1

(bi − ai).

Remark 2.2.1. We will interchangeably denote the Lebesgue measure by λ, λn or dx when
the context is clear. This measure is invariant by translation and rotation. (for a proof,
see Folland (2013)).

The last theorem we need to state in this section is Kolmogorov’s Extension
Theorem. First, let us define the space (R∞,B(R∞)).

Definition 2.2.13. Let R∞ be the space of all sequences (xn)n∈N ⊂ R. A cylinder A in
R∞ is a subset such that there are an n and sets B1, ..., Bn ∈ B(R) and

A =
n∏
i=1

Bi ×
∞∏

i=n+1
R.

Hence B(R∞) is defined as the smallest σ-algebra that contains all the cylinders.

Now we can state Kolmogorov’s Extension Theorem.

Theorem 2.2.2 (Kolmogorov’s Extension Theorem). Let Pn be probabilities in (Rn,B(Rn)),
for n ∈ N, possessing the consistency property, which means that for all n ∈ N and all
B ∈ B(Rn), we have

Pn+1(B × R) = Pn(B).

Then there is an unique probability P in (R∞,B(R∞)) such that

P(B1 × ...×Bn × R× R× ...) = Pn(B1 × ...×Bn),

for all n ∈ N and all Bi ∈ B(R).

Proof. For a proof, we recommend Shiryaev (2016).

2.3 Random Variables and Random Vectors
Definition 2.3.1. Let (V1,F1) and (V2,F2) be two Measurable Spaces. We say that a
function f : V1 → V2 is measurable if f−1(A) ∈ F1 whenever A ∈ F2.
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This definition is similar to the definition of continuity in topological spaces, say, a
function f : (V1, τ1)→ (V2, τ2) is continuous if f−1(A) ∈ τ1 whenever A ∈ τ2. In fact, we
have the following theorem linking these two definitions.

Theorem 2.3.1. Let (V1, τ1) and (V2, τ2) be two Topological Spaces and let B(V1), B(V2)
be the respective Borel σ-algebra. If f : V1 → V2 is continuous, then it is measurable.

We define now null sets and almost surely properties.

Definition 2.3.2. A null set A is a set such that µ(A) = 0.

Definition 2.3.3. We say that a property P holds for almost all points x ∈ V , or
almost surely, if there is a null set A such that P holds for all x ∈ Ac. We denote this
by µ−a.s., or, when the measure µ is implicit, just by a.s.

For instance, we say that f = g µ−a.s. if there is a null set A such that f(x) = g(x)
for all x ∈ Ac.

2.3.1 Random Variables and Distribution
Now we are able to define a random variable and a random vector.

Definition 2.3.4. Let (Ω,F ,P) be a Probability Space and (Rn,B(Rn)) be measurable
spaces. A random variable X is a measurable function X : Ω → R and a random
vector Y is a measurable function Y : Ω→ Rn.

Remark 2.3.1. We can also define a random element by measurable functionsX : Ω→ S,
where (S,S) is a measurable space (see Durrett (2019)).

For every random vector X : Ω → Rn, there is a probability in (Rn,B(Rn))
associated with it, namely, the push forward measure.

Definition 2.3.5. Let (Ω,F ,P) be a Probability Space and X : Ω→ Rn be a Random
Vector, then the push forward measure, or the distribution of X, is the measure PX
defined in Rn, so that

PX(A) := P(X ∈ A) := P{ω ∈ Ω : X(ω) ∈ A}.

Remark 2.3.2. We will denote X ∼ PX to say that X has distribution PX .

Definition 2.3.6. Let (Ωi,Fi,Pi), for i = 1, 2, be two Probability Spaces and Xi :
(Ωi,Fi)→ (S,S) be two random elements. We say that X1 is equal in distribution to
X2, and denote by X1

d= X2, if

PX1 = PX2 .
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Remark 2.3.3. Note that this does not imply that X1−X2
d= 0, since this is not well-defined.

In some books, the distribution of a random variable or vector X in Rn is defined
in terms of rectangles:

FX(a) := P({X ≤ a}) = P
( n∏
i=1
{Xi ≤ ai}

)
,

for a ∈ Rn. These two definitions are equivalent because of the following lemma.

Lemma 2.3.1. Let (Rn,B(Rn)). Let R be the set of rectangles R of the form

R =
n∏
i=1
{x ∈ R : x ≤ ai},

for some a ∈ Rn. Then

B(Rn) = σ(R).

There are several properties that define a distribution FX , which we state below.

First, let (Rn,�) where � is the partial order generated by the canonical positive
cone Rn

+ in Rn. For I = (a, b] ⊂ R and g : Rn → R, let ∆Ig : Rn−1 → R such that

∆Ig(x1, ..., xn) := g(x1, ..., xn−1, b)− g(x1, ..., xn−1, a).

Then we have the following theorem.

Theorem 2.3.2. Let F : Rn → R be a function. Then F is a distribution of a probability
measure µ, in the sense that F(x) = µ((−∞, x]) if and only if the following properties
hold.

1. For all i and all (x1, ..., xi−1, xi+1, .., xn) ∈ Rn−1 we have that

lim
xi→−∞

F (x) = 0;

2. If xi →∞ for all i, then

lim
∀i xi→∞

F (x)→ 1;

3. F is an increasing function: if x � y, then F (x) ≥ F (y); and

4. For any a � b, we have that

∆In∆In−1 · · ·∆1F (x1, ..., xn) ≥ 0,

where Ik = (ak, bk].
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Given a distribution F, is there a random vector X such that F = FX?

Theorem 2.3.3. Let µ be a probability in Rn, then there is a probability space (Ω,F ,P)
and a random vector X : Ω→ Rn such that PX = µ.

Proof. Let (Ω,F ,P) = (Rn,B(Rn), µ). Then X(ω) = ω is the desired random variable.

This theorem states that we can always take our Probability Space as (Rn,F ,P).

2.3.2 Independence
We are able now to define one of the most important concepts in Probability:

independence.

Definition 2.3.7. Let X and Y be two random vectors in Rn and Rm, respectively. We
say that X and Y are independent if, for all A ∈ B(Rn) and B ∈ B(Rm) we have

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Remark 2.3.4. This is equivalent to say that the distribution PX,Y of (X, Y ) is a product
measure of PX and PY (see Section 2.4.3). Therefore, we can always assume the existence
of such random variables.

Because of Kolmogorov’s Theorem 2.2.2, we can always assume the existence of
countably many independent random variables. Therefore, from now on, we will assume the
existence of independent and identically distributed (i.i.d.) random variables (X1, X2, ...)
with distribution µ.

Definition 2.3.8. Let (S,S, µ) be a probability space. We say that a random element
X ∈ S is a sample according to µ if X ∼ µ.

Definition 2.3.9. Let X and Y be random vectors in Rn and Rm, respectively. If
P(Y ∈ B) > 0, then the conditional probability of X given Y ∈ B is defined as the
distribution

P(X ∈ A|Y ∈ B) := P(X ∈ A, Y ∈ B)
P(Y ∈ B) .

Remark 2.3.5. In fact, we can define the conditional probability without random variables,
namely,

P(A|B) := P(A ∩B)
P(B) ,

if P(B) > 0.
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Let us give some examples of all these concepts. For now on we will denote random
variables or vector by the initials “r.v.” and all the functions will be measurable.

Example 2.3.1. Let X be a random variable. If X takes values in some discrete set
X ⊂ Rn, then it is known as a discrete r.v. Hence we just need to look at the probability
of

X = x,

for x ∈ X , that is, the distribution of X is entirely determined by the values

p(x) := P(X = x), x ∈ X .

In the case X = {0, 1} and P(X = 1) = p, we say that X ∼ Ber(p), a Bernoulli r.v..

Example 2.3.2. By a Rademacher r.v. X we mean that X takes two values, +1 and
-1, with probability p and 1− p, respectively, that is

P(X = 1) = 1− P(X = −1) = p.

We will denote this random variable as X ∼ Rad(p).

Example 2.3.3. A r.v. X taking values uniformly in a compact set V ⊂ Rn is such
that its distribution is

PX(A) = P(X ∈ A) = λ(A ∩ V )
λ(V ) .

We will denote this r.v. as X ∼ Unif(V ).

Example 2.3.4. We say that a random variable X has an absolutely continuous
distribution if there is a measurable function f : Rn → R, namely the density of X,
such that

P(X ∈ A) :=
∫
A
f(x) dx.

Remark 2.3.6. Even though we have not yet defined the integral, this is an important
example to introduce here.

The main example of an absolutely continuous distribution is the Gaussian. Let A
be a n× n matrix and denote |A| the absolute value of its determinant.

Example 2.3.5. Let µ ∈ Rn and Σ be a n× n positive definite matrix, that is, for all
x ∈ Rn \ {0}, we have

xTΣx =
n∑

i,j=1
Σijxixj > 0.
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Then the function f : Rn → R+, defined as

f(x) := |Σ|
−1/2

(2π)n/2 exp
(
− 〈(x− µ),Σ−1(x− µ)

2

)
,

is a density, that is, ∫
Rn
f(x) dx = 1

The Gaussian Measure γ is the measure defined by f , that is,

γ(A) :=
∫
A
f dλ.

If X has distribution γ, then we denote it by X ∼ N (µ,Σ). In the case µ = 0 and Σ = Id,
we say that X is a standard Gaussian.

2.4 Integral and Expected Value
In this section, we will define the Integral and Expected Value of a general

measurable function and random variable, and prove some of their properties.

2.4.1 The Three Steps
The classical approach to introduce the Integral is to define it in three steps: first,

we consider the integral of simple function. Then, we define it to positive ones. Finally,
we extend it to general functions.

Consequently, let us define a simple function.

Definition 2.4.1. Let f be a measurable function in (V,F , µ). We say that f is a simple
measurable function if there is an n ∈ N, disjoint sets A1, ..., An ∈ F with µ(Ai) <∞
and c1, ..., cn ∈ R such that for all x ∈ V we have

f(x) =
n∑
k=1

ck1Ak(x) µ− a.s

where 1A(x) = 1 if x ∈ A and 0 otherwise, that is, 1A is the indicator function of A.

Remark 2.4.1. We say that (Ai, ci)ni=1 is a representation of f . There is no unique
representation of a function, since we can always split one set Ai into B ⊂ Ai and
Bc ∩ Ai ⊂ Ai.

Now we can define the integral of simple functions.

Definition 2.4.2. Let f be a simple function with representation (Ai, ci)i=1,...,n. Then
the integral of f , defined as

∫
f dµ, is∫

f dµ :=
n∑
k=1

ckµ(Ak).
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Remark 2.4.2. We will equivalently write
∫
fdF, with F the distribution generated by µ.

Also, when the parameter x of integration is not evident, we will write dµ(dx) or dF(x).

It can be shown this integral is well-defined in the sense that it does not depend
on the particular representation of f .

Let us now state some of its properties.

Lemma 2.4.1. Let f and g be simple functions, then

1. If f ≥ 0 µ−a.s., then ∫
f dµ ≥ 0;

2. If a ∈ R, then ∫
(f + ag) dµ =

∫
f dµ+ a

∫
g dµ;

3. For a simple function f , it is true that

|
∫
f dµ| ≤

∫
|f | dµ; and

4. If f ≥ 0 a.s. and ∫
f dµ = 0,

then f = 0 a.s.

We can now define the integral for a positive measurable functions.

Definition 2.4.3. Let f be a positive measurable function, which means that f ≥ 0 µ−a.s,
then its integral ∫ f is defined as∫

f dµ := sup
{ ∫

g dµ : g is simple and 0 ≤ g ≤ f
}
.

Using this, we can state the Monotone Convergence Theorem.

Theorem 2.4.1. Let (fn)n∈N, f be positive functions such that fn ≤ fn+1 for all n ∈ N
and

f(x) = lim
n→∞

fn(x),

then ∫
f dµ = lim

n→∞

∫
f dµ.
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Proof. For a proof of this theorem, we recommend Folland (2013).

Now, we define the integral for a general function as follows.

Definition 2.4.4. Let f be a measurable function and let f+(x) := f(x)∨0 = max{f(x), 0}
and f−(x) := (−f(x)) ∨ 0 = max{−f(x), 0}. Then f+ and f− are positive functions and
the integral of f is defined as∫

f dµ =
∫
f+ dµ−

∫
f− dµ,

when the difference is not ∞−∞.

Definition 2.4.5. We say that a function f is integrable if∫
|f | dµ <∞.

Now we can state the Dominated Convergence Theorem.

Theorem 2.4.2. Let (fn)n∈N be a sequence of functions with fn → f almost surely.
Suppose |fn| ≤ g for an integrable function g and all n, then∫

f dµ = lim
n→∞

∫
fn dµ.

Definition 2.4.6. Let E be a measurable set and f be an integrable function, then the
integral of f in E is defined as ∫

E
f dµ :=

∫
f1E dµ,

and it is clear that ∫
V
f dµ =

∫
f dµ.

Now, we have a simple lemma.

Lemma 2.4.2. Let L be the space of all measurable functions. Then

R := {(f, g) ∈ L2 : f = g a.s}

is an equivalence relation.

Now we are able to define the Lp Spaces for p ∈ [1,∞]. Let ∼ be the equivalence
relation in Lemma 2.4.2 and [f ] be the class of equivalence of f , then the Lp is defined as
the following.
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Definition 2.4.7. Let p ∈ [1,∞). The Lp(V,F , µ) Space in (V,F , µ) is the quotient
space of all measurable functions f such that∫

V
|f |p dµ <∞,

that is,

Lp(µ) := {[f ] :
∫
V
|f |p dµ <∞}.

In the case p =∞, we need to define the essential supremum of f .

Definition 2.4.8. Let f be a measurable function. Then its essential supremum is
defined as

ess supf := inf{t : µ(f > t) = 0},

and if there is no t ∈ R such that µ(f > t) = 0, then ess supf :=∞. A function f such
that ess sup|f | <∞ is called bounded.

Note that, for all t ∈ R such that µ(f > t) = 0 we have f ≤ t almost surely, hence
almost surely we have

f ≤ ess supf,

thereby the name.

The L∞ is the quotient space of all limited measurable functions.

Definition 2.4.9. Let (V,F , µ). The L∞(V,F , µ) Space is defined as

L∞ := {[f ] : ess sup|f | <∞}.

Remark 2.4.3. When the space (V,F , µ) is clear from the context, we will denote Lp(V,F , µ)
by just Lp or Lp(µ). Moreover, since Lemma 2.4.1, the integral

∫
|f |p dµ does not depend

on which element g ∈ [f ] we take to compute the integral.

Theorem 2.4.3. Let ‖f‖p :=
( ∫
|f |pdµ

)1/p
when p ∈ [1,∞) or ‖f‖∞ := ess sup|f | when

p =∞, then ‖ · ‖p is a norm and (Lp, ‖ · ‖p) is a Banach Space.

Remark 2.4.4. In the case of L2, it is a Hilbert Space with inner product 〈f, g〉 :=
∫
fg dµ.

We can generalize these ideas to define the integral of complex-valued as∫
f dµ :=

∫
Re(f) dµ+ i

∫
Im(f) dµ.

The L2 case will have the inner product 〈f, g〉 =
∫
fg dµ and all absolute values are now

|f | =
√
ff .

Finally, the expected value of a random variable is just its integral.
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Definition 2.4.10. Let X be a random variable in (Ω,F ,P), then the expected value
EX, or mean of X, is defined as

E(X) :=
∫
XdP =

∫
Ω
XdP.

Remark 2.4.5. We can extend this concept to vectors with some abuse of notation: if
X = (X1, ..., Xn) ∈ Rn is a random vector, then

E(X) := (E[X1], ...,E[Xn]) ∈ Rn.

We call this the expected value of the vector X. Also, we say that X ∈ Lp(Ω,F ,P) if

E[‖X‖pp] = E
[ n∑
i=1
|Xi|p

]
<∞.

Therefore, all the properties we stated for the integral are also true for the expected
value of X.

The last theorem in this section refers to sufficient conditions for taking limits
under the integral.

Theorem 2.4.4. Let (V,F , µ) be a measurable space. Let [a, b] be a finite interval in R
and f : V × [a, b]→ C be a measurable function with the property that, for all t ∈ [a, b],
f(·, t) is integrable. Let F (t) :=

∫
f(·, t) dµ. Then we have the following:

1. Suppose |f(·, t)| ≤ g(·) for all t and g is integrable. Take t0 ∈ [a, b]. If f(x, ·) is
continuous at t0, for all x, then

lim
t→t0

F (t) = F (t0); and

2. Suppose f(x, ·) ∈ C1([a, b]), for all x, that
∣∣∣df(·,t)

dt

∣∣∣ ≤ g(·) for all t and g is integrable.
If t0 ∈ [a, b], then

F ′(t0) =
∫
∂tf(·, t0) dµ.

Proof. For a proof, see Folland (2013).

2.4.2 Radon-Nikodym Theorem
As we saw in the Examples 2.3.4 and 2.3.5, we need to be able to compute

∫
A f dx

or prove that this defines a measure in Rn.

Lemma 2.4.3. Let f be an integrable function in Rn with respect to the Lebesgue Measure,
then

µ(A) :=
∫
A
|f |dx

defines a finite measure in Rn, and all null sets A with respect to the Lesbegue Measure
are also null with respect to µ.
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Proof. As ∫
∅
|f | dx =

∫
|f |1∅ dx = 0,

since 1∅ ≡ 0, we have that µ(∅) = 0. Also, if (Ai)i∈N is a countable family of disjoint sets
and A = ⋃∞

i=1Ai, then

1A(x) =
∞∑
i=1

1Ai(x),

for almost all x ∈ Rn. Then

|f |
n∑
k=1

1Ai ↗ |f |1A.

Moreover, we also have that
∞∑
i=1

µ(Ai) = lim
n→∞

n∑
k=1

µ(Ai) = lim
n→∞

∫
|f |

n∑
k=1

1Ak dx,

and

µ(A) =
∫
|f |1A dx.

Consequetly the Monotone Convergence Theorem implies that

lim
n→∞

∫
|f |

n∑
k=1

1Ak dx =
∫
|f |1A dx,

therefore, we have
∞∑
i=1

µ(Ai) = µ(A),

hence µ is a measure. It is finite since

µ(Rn) =
∫
|f |1Rn dx =

∫
|f | dx <∞.

We now prove the second part of the statement. Let A be a null Lebesgue set. Let
us prove that

∫
A |f | dx is 0 for simple functions f . Then we will prove it also is zero for

positive functions, and finally for general functions.

First, if |f | := ∑n
i=1 ci1Ai , then

|f |1A =
n∑
i=1

ci1Ai∩A,

which clearly implies that
∫
|f |1A dx = 0, since

µ(Ai ∩ A) ≤ µ(A) = 0.
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To prove it for positive functions, let gn be a sequence of simple functions with

0 ≤ gn ≤ |f |1A,

and gn → |f |1A, which can be done considering the family gn = |f |1A ∧ n. Notice that

0 ≤ gn1A ≤ gn ≤ |f |1A.

Let x ∈ A, then gn(x) = gn(x)1A(x), hence

gn(x)1A(x)→ |f |(x)1A(x).

If x /∈ A, then

gn(x)1A = 0 = |f |(x)1A(x),

hence gn1A → |f |1A. By the Dominated Convergence Theorem, we have that

0 =
∫
gn1A dx→

∫
|f |1A dx,

The general case follows by taking negative and positive parts. Hence, µ(A) = 0.

Definition 2.4.11. Let µ and ν be two σ-finite measures in the same Measurable Space
(V,F). We say that µ is absolutely continuous with respect ν, and denote by µ� ν,
if all ν-null sets are µ-null sets.

The name absolutely continuous can be justified because of the following lemma.

Lemma 2.4.4. Let µ and ν be two σ-finite measures in the same Measurable Space. Then
µ� ν if and only if for all ε > 0, there is a δ > 0 such that for all A with ν(A) < δ we
have that µ(A) < ε.

Lemma 2.4.3 states that all measures µ such that

µ(A) =
∫
A
|f |dν

are absolutely continuous with respect to ν. In the next theorem we state the converse.

Theorem 2.4.5 (Radon-Nikodym Theorem). Let µ � ν be two σ-finite measures in
(V,F) then there is an almost surely unique positive function f such that µ(A) =

∫
A f dν

for all measurable sets A.

Definition 2.4.12. Let µ� ν and f be the unique non-negative function such that for
all A we have

µ(A) =
∫
A
f dν.

Then f is called the Radon-Nikodym derivative dµ
dν .
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We state below some properties of Radon-Nikodym derivative.

Lemma 2.4.5. We have that

1. If µi � ν, for i = 1, 2, then µ1 + µ2 � ν and

d(µ1 + µ2)
dν = dµ1

dν + dµ2

dν ;

2. If µ� ν and f is integrable with respect µ, then∫
f dµ =

∫
f
dµ
dν dν; and

3. If µ� ν and ν � µ, then

dν
dµ =

(dµ
dν

)−1
.

2.4.3 Product Measure and Fubini’s Theorem
The first step to define the product measure in a product space is to define the

product σ-algebra.

Lemma 2.4.6. Let (V1,F1) and (V2,F2) be two measurables spaces. Let

B := {A×B : A ∈ F1, B ∈ F2},

then B is a semialgebra.

The σ-algebra generated by this semialgebra is the product σ-algebra.

Definition 2.4.13. Let (V1,F1) and (V2,F2) be two measurables spaces. Let

B := {A×B : A ∈ F1, B ∈ F2}

be the family of cylinders sets. Then σ(B) is called the product σ-algebra and denoted
by the symbol F1 ×F2.

As a consequence of the following theorem, we can define the product measure.

Theorem 2.4.6. Let µ1 and µ2 be σ-finite measures in (V1,F1) and (V2,F2), respectively.
Then there is an unique measure µ defined in (V1 × V2,F1 ×F2) such that

µ(A×B) = µ1(A)µ2(B),

for all (A × B) ∈ B. This measure is called the product measure of µ1 and µ2, and
denoted by µ1 × µ2.
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Proof. Let B the family of cylinders sets and µ : B → R+ be such that

µ(A×B) := µ1(A)µ2(B).

Then µ(∅) = 0.

Let (Ai ×Bi)i∈N be a countable disjoint collection of sets in B and suppose there
is A×B ∈ B such that

A×B =
∞⋃
i=1

(Ai ×Bi).

Then

1A(x)1B(y) = 1A×B(x, y) =
∞∑
i=1

1Ai×Bi(x, y) =
∞∑
i=1

1Ai(x)1Bi(y).

Applying the Monotone Convergence Theorem to the variable x and integrating we obtain

µ1(A)1B(y) =
∞∑
i=1

µ1(Ai)1Bi(y).

By the same reason we have

µ(A×B) = µ1(A)µ2(B) =
∞∑
i=1

µ1(Ai)µ2(B1).

Finally, because µ1 and µ2 are σ-finite, we can take (Ai)i∈N ⊂ F1 and (Bj)i∈N ⊂ F2

such that µ1(Ai) <∞ and µ2(Bj) <∞ and

V1 × V2 =
∞⋃

i,j=1
(Ai ×Bj),

hence we have that µ are σ-finite. Because of this, the Carathéodory’s Theorem 2.2.1
implies that µ has an unique extension µ1×µ2 to F1×F2 and this measure is σ-finite.

As we have defined the product measure µ1×µ2, we now want to compute integrals
with respect to µ1 × µ2. Fortunately, we can compute it easily using simpler integrals.
This is the content of Fubini’s Theorem.

Theorem 2.4.7 (Fubini’s Theorem). Let (V1 × V2,F1 ×F2, µ1 × µ2) be a product space.
Let also f : V1 × V2 → R be a measurable function. If either f ≥ 0 or f is integrable with
respect µ1 × µ2, then

g(x) :=
∫
V2
f(x, y) dµ2(dy)

exists almost surely, it is integrable and∫
V1
g(x) dµ1(dx) =

∫
V1×V2

f(x, y) dµ1 × µ2(dx, dy).
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Remark 2.4.6. Fubini’s Theorem states that
∫
V1×V2

f(x, y) dµ1 × µ2(dx, dy) =
∫
V1

∫
V2
f(x, y) dµ2(dy)

 dµ1(dx).

But the symmetry in V1 and V2 also implies that

∫
V1×V2

f(x, y) dµ1 × µ2(dx, dy) =
∫
V2

∫
V1
f(x, y) dµ1(dx)

 dµ2(dy).

Corollary 2.4.1. Let h(x) = ∏n
i=1 fi(xi) be an integrable or positive function in (Rn,B(Rn), µ),

where µ = ∏n
i=1 µi, then ∫

Rn
h dµ =

n∏
k=1

∫
R
fk dµk.

We need this corollary to compute expected value of independent random variables.

2.5 Computing Integrals
In this section we present some methods to compute integrals. The first one is the

relation between Riemann Integral, which we can compute, and the Lebesgue Integral. The
second is the Change of Variables Formula, which is related to the Change of Variables
in the Riemann Integral. Later, we present the relation between weak derivative and
Riemann integrantion by parts.

2.5.1 Riemann Integral
Let A be a compact set in Rn and f : A→ R be a bounded function. Let us denote

the Riemann integral of f over A by I(f, A), to not cause any confusion with the Lebesgue
Integral

∫
A f dλ. We know, by an important result in Analysis, that I(f, A) exists if and

only if the set of discontinuities of f is a Lebesgue null set. Also, we know that

I(f, A) = sup
{ n∑
i=1

f(x∗i )λ(Pi)
}

where the supremum is over n ∈ N and all finite families P = (Pi)ni=1 of disjoint rectangles
sets such that ⋃ni=1 Pi ⊂ A and x∗i ∈ Pi is any point of Pi.

Theorem 2.5.1. Let f : A → R be a bounded function and A ⊂ Rn a compact set. If
I(f, A) exists, then f is measurable, integrable and also

I(f, A) =
∫
A
f dλ.

Proof. For a proof see Folland (2013).
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We can extend this result as follows.

Corollary 2.5.1. Let Ak ⊂ Rn be compact sets so that Ak ⊆ Ak+1 for all k ∈ N and

∞⋃
k=1

Ak = Rn.

Let f : Rn → R be Riemann integrable in Ak for all k, and Lebesgue integral or positive.
Suppose also there is c ∈ R such that

lim
k→∞

I(f, Ak) = c,

then ∫
Rn
f dλ = c.

Proof. By Theorem 2.5.1, we have that

I(f, Ak) =
∫
Ak

fdλ.

If f is integrable, then |f1Ak | ≤ |f | and f1Ak → f , when k → ∞. Therefore, by the
Dominated Convergence Theorem we have that

I(f, Ak)→
∫
Rn
f dλ.

If f ≥ 0, then f1Ak ↗ f . Consequetly, the Monotone Convergence Theorem implies

I(f, Ak)↗
∫
Rn
f dλ,

and the corollary is proved.

A simple application of this result allows us to prove that the Gaussian density in
Example 2.3.5 is in fact a density.

Corollary 2.5.2. Let f be a Gaussian density with parameters µ ∈ Rn and positive
definite matrix Σ (see Example 2.3.5), then∫

Rn
f dλ = 1.

Proof. We know by elementary calculus that the Improper Riemann Integral of f exists
and it is equal to 1. Since f is positive, Corollary 2.5.1 leads to the result.

Therefore, we can use all the Riemann Integral tools to compute integrals.
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2.5.2 Change of Variables
We will next introduce the Change of Variables Formula. This is a well-known way

to generalize the substituion rule in the Riemann Integral, but for the Lebesgue Integral
instead. Let us state the theorem.

Theorem 2.5.2. Let (Ω,F ,P), be a Probability Space and (V,B) a Measurable Space.
Suppose X : Ω → V is a random element with distribution PX(A) := P(X ∈ A), with
A ∈ B and f : V → R is measurable. If f ≥ 0 or it is integrable with respect to PX , then

E[f(X)] =
∫
V
f(x) dPX(dx).

Remark 2.5.1. We can also change the condition that f is integrable with respect to PX
to f(X) is integrable with respect to P. Also, we can assume that the original space is
not a probability space, but a σ-finite space and the random variable X is a measurable
function g.

Remark 2.5.2. The interpretation of this theorem is as follow. In order to compute

E[f(X)] :=
∫

Ω
f(X) dP,

we do not need to compute the right-hand side, but instead we just have to compute it by
using the equality

E[f(X)] =
∫
V
f(x) dPX(dx).

Proof. See Durrett (2019).

We have the following corollary.

Corollary 2.5.3. Let X, Y be two random vectors in Rn and Rm, respectively, with joint
distribution FX,Y . Let also f : Rn → R and g : Rm → R. Suppose E|f(X)g(Y )| <∞ or
both functions are positive, then the following are true.

1. We have that

E[f(X)g(Y )] =
∫
Rn×Rm

f(x)g(y) dFX,Y (x, y); and

2. If X, Y are independent, then

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

If X has a density, it is in fact easier to use the following corollary.
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Corollary 2.5.4. Suppose X is a random vector with density f . Let H : Rn → R so that
Hf is Lebesgue integrable or H ≥ 0, then

E[H(X)] =
∫
Rn
H(x)f(x) dλ(dx).

In general, we will use this formula to compute integrals and expected values. For
instance, we have the following corollary.

Corollary 2.5.5. Let X be a random vector with density f and let H : Rn → Rn be an
invertible affine transformation, say, H(x) = b+ Tx, where T is an invertible matrix and
b ∈ Rn. Then the density of H(X) is equal to g(x) = 1

|T |f(H−1x).

The final example of this subsection is about the Gaussian r.v.

Example 2.5.1. Let X ∼ N (0, Id), µ ∈ Rn and Σ be a positive definite matrix. As Σ
ras a square root, we have that

µ+ Σ1/2X ∼ N (µ,Σ).

This result is a special case of Corollary 2.5.5. Moreover, Y ∼ N (µ,Σ) if and only if there
is a X ∼ N (0, Id) so that Y = µ + Σ1/2X, therefore, all Gaussian random variables or
vectors are generated by N (0, 1) and N (0, Id), respectively.

2.5.3 The Weak Derivative
In this subsection we extend the Integration by Parts idea for the Lebesgue Integral.

Let us first recall the method.

Theorem 2.5.3. Let f, g ∈ C1([a, b]). Then

I(f ′g, [a, b]) = fg
]b
a
− I(fg′, [a, b]),

and this formula is called integration by parts.

Before generalizing, suppose that g ∈ C1
c (R), that is, {x : g(x) 6= 0} is compact,

then

I(f ′g, (−∞,∞)) = −I(f, g′, (−∞,∞)).

Theorem 2.5.3 can easily be extend to Rn. Let α ∈ Nn, which means that α is a
multi-index,

|α| :=
n∑
i=1

αi,
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and

∂αg = ∂|α|g

∂α1
1 ...∂αnn

.

We thus have the following corollary.

Corollary 2.5.6. Let f ∈ Cα(Rn) and g ∈ Cα
c (Rn), then

I(∂αfg, (−∞,∞)n) = (−1)|α|I(f∂αg, (−∞,∞)n).

This last result will inspire us to define the weak derivative. Let C∞c (Rn) be the
space of all compact supported C∞ functions ψ endowed with the uniform topology, that
is, ψn → ψ if for all multi-index α and all compact K ⊂ Rn, we have ∂αψn → ∂α in the
uniform metric d(f, g) = supx∈Rn |f(x)− g(x)|. Let also Lloc(Rn) be the space of functions
f such that

∫
K |f | dλ < ∞ for all compact sets K. We define the weak derivative as

follows.

Definition 2.5.1. Let f ∈ L1 = L1(Rn,B(Rn), λ). The weak derivative of order α of
f is any g ∈ L1 such that ∫

Rn
gψ dλ = (−1)|α|

∫
Rn
f∂αψ dλ,

for all ψ ∈ C∞c (Rn). We denote the weak derivative by ∂αf .

Remark 2.5.3. The weak derivative is unique almost surely, hence the single notation ∂αf .
For more results and properties of the weak derivative, see Folland (2013).

The weak derivative has the following properties.

Lemma 2.5.1. Let f, g : Rn → R and suppose they have weak derivatives ∂αf and ∂αg
for a multi-index α. Then the following are true.

1. For a ∈ R, we have ∂α(f + ag) = ∂αf + a∂αg; and

2. If f ∈ Cα(Rn), then the weak derivative agrees with the true derivative of f .

Our final corollary is the following.

Corollary 2.5.7. Let f, ψ ∈ C1(R) such that ψ, ψ′ ∈ L1(λ) and fψ′, f ′ψ ∈ L1(λ), then∫
R
fψ′ dx = −

∫
R
f ′ψ dx.

This result is going to be important when proving the main theorem in the last
chapter (see Theorem 6.3.1).
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2.6 The Fourier Transform and Moments
In this section, we will explore four related topics. The first one is the convolution

rule for distributions. The second is the definition of moments of a random variable.
Finally we have the Generating Function and the Fourier Transform.

2.6.1 The Convolution Rule
Given two independent random variables X and Y , what is the distribution of

X + Y ? The convolution rule gives the desired formula.

Definition 2.6.1. Let Fi, for i = 1, 2, be two distributions, then we define the convolu-
tion function F1 ∗ F2 by

F1 ∗ F2(x) :=
∫
R
F1(x− y) dF2(dy).

Lemma 2.6.1. Let Fi, i = 1, 2, 3, be three distributions. Then the following are true.

1. The convolution F1 ∗ F2 is a distribution;

2. It is commutative: F1 ∗ F2 = F2 ∗ F1; and

3. It is distributive: (F1 ∗ F2) ∗ F3 = F1 ∗ (F2 ∗ F3).

The importance of the convolution in Probability Theory lies in the following
theorem.

Theorem 2.6.1. Let X and Y be two independent random variables with distribution FX
and FY , then the distribution of the sum X + Y is FX ∗ FY .

Proof. Let PX,Y = PX × PY be their joint distrubution. Then Theorem 2.5.2 implies that

FX+Y (z) := P(X + Y ≤ z) =
∫
R

1(−∞,z](x+ y) d(PX(dx)× PY (dy)).

Since 1(−∞,z] is a positive function, we can apply Fubini’s Theorem, hence∫
R

1(−∞,z](x+ y) d(PX(dx)× PY (dy)) =
∫
R

∫
R

1(−∞,z](x+ y) dPX(dx)
 dPY (dy).

The inner integral is equal to FX(z − y), therefore we have

F(z) =
∫
R
FX(z − y) dFY (y) = FX ∗ FY (z).

In particular, we have the following corollary.

Corollary 2.6.1. Let Xi ∼ N (0,Σi), i = 1, 2, be two independent Gaussian r.v. and
Σ1 = σΣ2, then the convolution of their densities is also a Gaussian density, with
parameters 0 and Σ1 + Σ2.
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2.6.2 Moments
To estimate some properties of X, we need to compute some quantities as E[X] or

E[X2]. These are called the moments of the random variable X. Precisely, we have the
following definition.

Definition 2.6.2. Let X be a random variable, then E[Xn] is called the n-th moment
of X, provided it exists.

By a change of variables, we can use the distribution of X to compute the moments.

Lemma 2.6.2. Let X be a random variable and F be its distribution, then

E[Xn] =
∫
R
xn dF.

In particular, if X has a density f : R→ R+, then

E[Xn] =
∫
R
xnf(x) dx.

We now define the covariance matrix and variance of a random variable or random
vector.

Definition 2.6.3. Let X = (X1, ..., Xn) be a random vector, then its covariance matrix
is defined as

Σ(X)ij := E[(Xi − EXi)(Xj − EXj)],

provided the quantity on the right hand side exists.

Remark 2.6.1. For the case n = 1, we define the variance as

Var(X) := E(X − EX)2 = E[X2]− E2[X].

The meaning of the variance will be clear from Corollary 2.7.2.

Example 2.6.1. ForX = (X1, ..., Xn) ∼ N (µ,Σ), we have that E[Xi] = µi and Σ(X) = Σ.
If µ = 0 and Σ = Id, then E[‖X‖2] = n.

Example 2.6.2. Let X ∼ Rad(p), then E[X] = 2p− 1 and E[X2] = 1, hence

Var(X) = 1− (2p− 1)2 = 4p(1− p).

Example 2.6.3. Let X ∼ Unif([−1, 1]), then E[X] = 0, and

Var(X) = E[X2] =
∫ 1

−1
x2 dx = 2/3.
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Definition 2.6.4. Let X, Y be two random variables. We say that X and Y are uncor-
related if the covariance of X, Y , defined as

cov(X, Y ) := E(X − EX)(Y − EY )

is equal to 0.

It is easy to see that independency is a sufficient condition for uncorrelatedness,
but it is not necessary. Let us state some properties of these quantities.

Lemma 2.6.3. Let (Xi)ni=1 ⊂ L2(Ω,F ,P). Then

1. The variance of the sum is

Var(X1 + ...+Xn) =
n∑
i=1

Var(Xi) +
∑
i<j

cov(Xi, Xj);

2. The variance of an affine transformation is

Var(aX1 + b) = a2Var(X1);

3. If X = (X1, ..., Xn), then Σ(X) is positive semidefinite matrix;

4. The covariance operator cov : L2(Ω,F ,P)× L2(Ω,F ,P)→ R is a bilinear operator;
and

5. If E[X1] = E[X2] = 0, then cov(X1, X2) is the classic inner product in L2(Ω,F ,P).

2.6.3 The Generating Function
In this section we present one important tool in Probability Theory.

Definition 2.6.5. Let X be a random variable. Then the generating function of X is

ϕX(t) := E[etX ],

provided the right hand side exists.

The next theorem provides the relation between the generating function and the
moments of a random variable.

Theorem 2.6.2. Let X be a positive random variable and suppose that, for some t0 > 0,
ϕX(t0) exists, then X has all its moments well-defined and

ϕ
(k)
X (0) = E[Xk].
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Now let us state some its properties.

Lemma 2.6.4. Let X, Y be random variables and suppose ϕX(t) and ϕY (t) exists for all
t ∈ R, then

1. The generating function of aX + b is

ϕaX+b(t) = etbϕX(at),

for all a, b ∈ R and t ∈ R;

2. If X has density f , then

ϕX(t) =
∫
R
f(x)etx dx;

3. If X is symmetric, in the sense that X d= −X, then ϕX(t) = ϕX(−t);

4. If X, Y are independent, then ϕX+Y (t) = ϕX(t)ϕY (t); and

5. ϕX uniquely defines X.

Let us now give two examples.

Example 2.6.4. It is easy to see that if X ∼ Rad(p), then ψX(t) = pet + (1− p)e−t. In
case p = 1/2, the real inequality

et + e−t

2 ≤ et
2/2,

implies that ψλX(t) ≤ eλ
2t2/2.

Example 2.6.5. Let X ∼ N (0, 1), then

ψX(t) =
∫
R
(2π)−1/2e−x

2/2etx dx = et
2/2
∫
R
(2π)−1/2e−(x−t)2/2 dx,

hence ψX(t) = et
2/2 and ψλX(t) = eλ

2t2/2.

Remark 2.6.2. Note that both Generating Function of the Rademacher and the Gaussian
are bounded by the same function eλ

2t2/2. This bound defines a Subgaussian Random
Variable (see Definition 2.7.2). We will explore these two cases of Subgaussian Random
Variables in Chapters 5 and 6.



2.6. The Fourier Transform and Moments 55

2.6.4 The Fourier Transform and The Characteristic Function
Let L2(R,B(R), λ) be the Hilbert Space of all complex-valued functions f : R→ C

with norm

‖f‖2
L2 :=

∫
R
|f |2 dx <∞,

and inner product

〈f, g〉 :=
∫
R
fg dx.

We can define the Fourier Transform in this space as follows.

Definition 2.6.6. Let F : L2(R,B(R), λ)→ L2(R,B(R), λ) be such that

[F(f)](t) = f̂(t) :=
∫
R
f(x)e−2πixt dx,

then F is called the Fourier transform.

Remark 2.6.3. We also define the Fourier Transform for signed measures µ. By a signed
measure we mean a function µ : B(R)→ R such that

1. The empty set has measure zero: µ(∅) = 0; and

2. Let (Ai)∞i=1 ⊂ B(R) be a countable family of disjoint sets, then

µ
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai),

where the series converges absolutely.

Let µ be a signed measure with

|µ| := |µ(R)| <∞,

then

[F(µ)](t) :=
∫
R
e−2iπtxdµ(dx).

Note that the Fourier Transform of f is the Fourier Transform of the signed measure
defined by the Radon-Nikodym derivative dµ

dλ = f .

And we can also define the Characteristic Function of a random variable X.

Definition 2.6.7. Let X be a r.v, then its characteristic function is the function
ψ : R→ C such that

ψX(t) := E[eitX ].

Notice that if X ∼ µ, then

[F(µ)]
(−t

2π

)
= ψX(t).
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The Characteristic Function of a Random Variable X is, rather than a function of
X, a function of FX .

Let us now state some properties of the Fourier Transform.

Lemma 2.6.5. Let f, g ∈ L2(R,B(R), λ) and a ∈ R. Then

1. It is well-defined:

|[Ff ](x)| ≤
∫
R
|f | <∞,

for almost all x ∈ R;

2. It is linear: F(f + ag) = Ff + aFf ;

3. It has the delay property: if g(x) := f(x− x0), then

[Fg](t) = e−2πitx0 [F ]f(t);

4. It has the rotation property: if g(x) = e2πixt0f(x), then

[Fg](t) = [Ff ](t− t0);

5. The convolution property holds: if h = g ∗ f , then h ∈ L2(R,B(R), λ) and ĥ = ĝf̂ ;

6. It is bijective;

7. It is an isometry:

〈f, g〉 = 〈f̂ , ĝ〉;

8. It obeys Parseval’s Identity: ‖f‖L2 = ‖f̂‖L2;

9. Its second and fourth power follows the rule: [F f̂ ](t) = f(−t), and F (4) = Id; and

10. If f ∈ Cn(R), then

[F(f (k))](t) = (2πit)kf̂(t),

for all k ≤ n.

Proof. The reader can find a proof of this lemma in Brémaud (2014).

We can prove some of these properties for the characteristic function.

Lemma 2.6.6. Let X, Y be two random variables and a, b ∈ R, then
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1. If Y = aX + b, then ψY (t) = ebitψX(at);

2. The characteristic function is always bounded: ψX(t) ≤ 1;

3. The characteristic function is uniformly continuous;

4. If X is integrable, then ψX ∈ C1(R) and

ψ
(n)
X (t) = E[iXeitX ]; and

5. If X ∈ Lp(Ω,F ,P), then ψX ∈ Cp(R) and

ψ
(k)
X (t) = E[(iX)keitX ],

for all k ≤ p.

The following lemma proves the uniqueness of the characteristic function and using
it we can prove a decomposition of ψX+Y when X and Y are independent.

Lemma 2.6.7. If X and Y have the same characteristic function, then FX = FY .

Proof. For a proof, see Shiryaev (2016).

Corollary 2.6.2. Let X, Y be two random variables. Then they are independent if and
only if ψX+Y = ψXψY .

Proof. It is easy to that that ψX+Y = ψXψY if X, Y are independent. The other direction
is a consequence of the Uniqueness of the Characteristic Function.

2.7 Inequalities in Probability
This is the most important section in this chapter, where we state some useful

inequalities such as Jensen, Markov and Chernoff’s Inequalities.

2.7.1 Convex Function and Jensen Inequality

Definition 2.7.1. Let f : Rn → R. We say that f is convex if, for every t ∈ [0, 1] and
x, y ∈ Rn we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

We also say that f is strictly convex if the strict inequality holds whenever t ∈ (0, 1)
and x 6= y.
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Remark 2.7.1. In some cases, we will consider a small domain A ⊂ Rn. In this case, we
need to assume that A is a convex set, that is, if x, y ∈ A and λ ∈ [0, 1], then

λx+ (1− λ)y ∈ A.

From a geometrical point of view, a function f is convex if the line segment from
(x, f(x)) to (y, f(y)) lies above the graph of f(t) in t ∈ [x, y] (see example below).

Example 2.7.1. Let f : [0,∞)→ R be such that

f(x) := x3,

then f is convex. The graph of f is shown in Figure 1, as well as the line between two
fixed points of the graph.

0.5 1 1.5 2
0

2

4

6

8

10

x

f
(x

)

Figure 1 – A convex function in the interval [0, 2], in blue, and a straight line connecting
the points (1, 1) and (2, 8), in red.

For f ∈ C1(Rn) we have the following.

Lemma 2.7.1. If f ∈ C1(Rn), then f is convex if and only if for every x, y ∈ Rn we have

f(y) ≥ f(x) + 〈∇f(x), x− y〉.

The strict inequality holds for y 6= x whenever f is strictly convex.

Proof. For a proof, we recommend Boyd and Vandenberghe (2004).

This lemma states that the graph of the function lies above the tangent plane in
(x, f(x)). See the example below.
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Figure 2 – The function ex and the tangent at x = 0, namely, y = x+ 1.

Example 2.7.2. Let exp : R→ R+ be the exponential ex, then it is convex and its graph
is shown in Figure 2, as well as its tangent at x = 0.

We can also generalize the gradient condition using the notion of subgradient.

Lemma 2.7.2. Let f : Rn → R be a convex function, then for every x ∈ Rn there is at
least one subgradient at the point x, that it, one vector g ∈ Rn such that

f(y) ≥ f(x) + 〈g, y − x〉.

For a strictly convex function, there is at least of subgradient such that the strict inequality
holds whenever y 6= x.

Proof. This lemma is a consequence of the Support Hyperplane Theorem which we will
not prove here. See Boyd and Vandenberghe (2004).

Remark 2.7.2. The set of all subgradients in x is denoted by ∂f(x).

If f is twice differentiable, then we have a second order condition for convexity.

Lemma 2.7.3. If f ∈ C2(Rn), then f is convex if and only if for all x ∈ Rn we have

Hess{f}(x) � 0,

where � is the partial order in the cone of positive semidefinite matrices. If f is strictly
convex, then Hess{f}(x) is positive definite.

We can now prove Jensen’s Inequality.
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Theorem 2.7.1 (Jensen’s Inequality). Let X be a random vector and f : Rn → R a
convex function. If f(X) is integrable and X is integrable, then

E[f(X)] ≥ f(E[X]).

Also, if f is strictly convex, then equality holds if and only if X is constant almost surely.

Proof. Let x, y ∈ Rn and ω ∈ Ω. Let g ∈ ∂f(x), then

f(y) ≥ f(x) + 〈g, y − x〉.

Now fix y = X(ω) and x = E[X], then we obtain

f(X(ω)) ≥ f(E[X]) + 〈g,X(ω)− E[X]〉.

Since E[X − E(X)] = 0, we obtain after taking expected value:

E[f(X)] ≥ f(E[X]).

For a strictly convex property, let g be a subgradient such that the equality in the
Lemma 2.7.2 holds if and only if y = x. Again we obtain

f(X(ω)) ≥ f(E[X]) + 〈g,X(ω)− E[X]〉.

From the properties of the expected value, if X ≥ Y and E[X] = E[Y ], then X = Y

almost surely, therefore we obtain that equality in Jensen’s Inequality holds if and only if

f(X) = f(E[X]) + 〈g,X − E[X]〉 a.s.

Finally, by the subgradient property of g, we have that X = E[X] a.s.

This theorem is an useful tool to prove a lot of results. We will point out a few of
them.

Corollary 2.7.1. Let t ∈ [1,∞] and X ∈ Lt := Lt(Ω,F ,P), then X ∈ Ls for all s ≤ t

and

‖X‖Ls ≤ ‖X‖Lt .

Remark 2.7.3. Corollary 2.7.1 holds even when Xp is not integrable, and in this case we
have the trivial inequality

‖X‖Lk ≤ ∞.
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Proof. First, let 0 < s < t, then

|x|s ≤ 1 + |x|t,

since if |x| > 1, then |x|s ≤ |x|t, otherwise |x|s ≤ 1. Therefore, if Xp is integrable, so is
Xk for all k ≤ p. Now, take ψ(x) = |x|t/s, then

ψ′′(x) = t

s

t− s
s
|x|t/s−2 ≥ 0,

hence ψ is convex. Because ψ(|X|s) = |X|t and |X|s is integrable, we can apply Jensen’s
Inequality for |X|s and obtain

E[ψ(|X|s)] ≥ ψ(E|X|s),

that is,

E|X|t ≥ |E|X|s|t/s,

hence ‖X‖Ls ≤ ‖X‖Lt .

Remark 2.7.4. This inequality is equivalent to Holder’s Inequality in the case of finite
Measure Space (M,B, µ), say, if f ∈ Lp(M,B, µ), g ∈ Lq(M,B, µ) and p and q are
conjugate exponents, that is

1
p

+ 1
q

= 1,

then fg ∈ L1(M,B, µ) and

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Let us state this in the case of a probability space.

Theorem 2.7.2. Let (Ω,B,P) be a probability space and Lp := Lp(Ω,B,P). Then Holder’s
Inequality and Corollary 2.7.1 are equivalent.

Proof. Let X ∈ Ls and r ≤ s. Notice that the constant function 1 ∈ Lq, for all q ∈ [1,∞].
Now let t ≥ 0 be the conjugate exponent of s/r, then Xr ∈ Ls/r and Holder’s Inequality
implies that

‖Xr · 1‖L1 ≤ ‖Xr‖Ls/r‖1‖Lt ,

that is, ∫
Ω
|X|r dP ≤

( ∫
Ω
|X|s dP

)r/s
.

Taking the r-root leads to Corollary 2.7.1.
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Suppose now q and p are conjugate exponents and X ∈ Lp and Y ∈ Lq. Since Y q

is integrable, we can define a probability measure Q such that

dQ
dP = |Y |q∫

Ω |Y |q dP
.

Now let Z = XY 1−q. Using Corollary 2.7.1 to Z and the measure Q we obtain

‖Z‖L1(Ω,B,Q) ≤ ‖Z‖Lp(Ω,B,Q). (2.1)

Moreover, we have that

∫
Ω
|XY | dP =

∫
Ω
|Y |q dP

∫
Ω

|X||Y |1−q |Y |q∫
Ω |Y |q dP

 dP,

that is, ∫
Ω
|XY | dP =

∫
Ω
|Y |q dP

∫
Ω
|Z| dQ.

Using Inequality 2.1, we obtain∫
Ω
|XY | dP ≤ ‖Z‖Lp(Ω,B,Q)

∫
Ω
|Y |q dP.

Now, the Lp(Ω,B,Q) norm of Z can be compute as

‖Z‖Lp =
∫

Ω

|X|p|Y |p(1−q)|Y |q∫
Ω |Y |q dP

dP
1/p

.

Since p(1− q) + q = 0, we have

‖Z‖Lp = ‖X‖Lp∫
Ω |Y |q dP

1/p .

Using

1
q

= 1− 1
p
,

we also obtain

‖XY ‖L1 ≤ ‖Y ‖Lq‖X‖Lp ,

which is Holder’s Inequality.

We also have the following example which we will use later.



2.7. Inequalities in Probability 63

Example 2.7.3. Let φ : A ⊆ R→ R be a strictly convex function, where A is a convex
set (typically A = R or A = R+). Then the φ-Entropy is defined as

Entφ(X) := E[φ(X)]− φ(E[X]).

Jensen’s Inequality states that Entφ(X) ≥ 0 and Entφ(X) = 0 if and only if X is constant
almost surely. This is an useful quantity to describe how concentrated a random variable
is around its mean (see Herbst’s Method 4.5.6).

Two particular cases are when φ : R→ R such that φ(x) = x2, then

Entφ(X) = Var(X),

and φ(x) : R+ → R such that φ(x) = x log x, which later we will prove of its properties,
see Section 4.3.

2.7.2 Markov’s Inequality

Theorem 2.7.3 (Markov’s Inequality). Let ψ : R → R such that ψ ≥ 0. Let A ∈ B(R)
and let

pA := min{ψ(x) : x ∈ A}.

Then, for a random variable X such that ψ(X) is integrable we have

pAP(X ∈ A) ≤ E[ψ(X)].

Remark 2.7.5. The classical statement of Markov’s Inequality is the following: let X be a
positive integrable r.v., then for all λ > 0 we have

P(X ≥ λ) ≤ E[X]
λ

.

Proof. By definition of pA, we have

pA1A(X) ≤ ψ(X)1A(X) ≤ ψ(X).

Taking expectation leads to the result.

This result is simple nevertheless powerful because of its consequences.

Corollary 2.7.2 (Chebyshev’s Inequality). Let X be a square integrable random variable,
then for all λ > 0 we have

P(|X − E[X]| ≥ λ) ≤ Var(X)
λ2 .
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Proof. Let ψ(x) = (x− E[X])2 and A = {x : |x− E[X]| ≥ λ}, then pA = λ2 and hence

λ2P(|X − E[X]| ≥ λ) ≤ E(X − E[X])2,

which is the result.

Corollary 2.7.3. Let X ∈ Lp(Ω,F ,P), then

P(|X| ≥ t) ≤ E|X|p

tp
.

Proof. Let ψ(x) = xp and A = {x : |x| ≥ t}, then pA = tp and the result follows from
Markov’s Inequality.

2.7.3 Chernoff’s Inequality
Chernoff’s Inequality, which we will derive below, is just a particular case of

Markov’s Inequalities, nevertheless it is important to state it separately because it is
closely related to our study.

Theorem 2.7.4 (Chernoff’s Inequality). Let X be a random variable and suppose the
generating function ϕX(λ) exists for some λ0 ∈ R+, then

P(X ≥ t) ≤ e−λ0tϕX(λ0),

for all t ∈ R.

Remark 2.7.6. A useful expression for Chernoff’s inequality can be obtained through the
Log-Generating Function

φX(t) := logϕX(t),

and Chernoff’s Inequality is rewritten as

P(X ≥ t) ≤ e−λt+φX(λ).

Proof. Let ψ(x) = eλx and A = {x : x ≥ t}, then pA = eλt, hence Markov’s Inequality
implies

eλtP(X ∈ A) ≤ E[eλX ],

which is the desired inequality.

Hence, in order to control how the tail of a random variable goes to zero we need
to control its Generating Function. For instance, we have the following corollary.
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Corollary 2.7.4. Let X be a random variable with φX(λ) ≤ σ2λ2

2 , for some σ > 0 and
every λ > 0, then for all t ≥ 0 we have

P(X ≥ t) ≤ e−t
2/(2σ2).

Proof. Using Chernoff’s Inequality, we have

P(X ≥ t) ≤ e−λt+
σ2λ2

2 .

The value λ∗ = t/σ2 gives the desired result.

Such variables are called Subgaussian Random Variables with parameter σ.

Definition 2.7.2. Let X be a r.v. It is called Subgaussian with parameter σ if

φX(λ) ≤ σ2λ2

2 ,

for all λ ∈ R.

Example 2.7.4. As we saw in Example 2.6.4, X ∼ Rad(1/2) is Subgaussian with
parameter σ = 1.

Example 2.7.5. X ∼ N (0, 1) is Subgaussian with parameter σ = 1, as we saw in
Example 2.6.5.

Remark 2.7.7. For X ∼ Rad(1/2) or X ∼ N (0, 1) we have X d= −X hence we can also
get a bound to P(X ≤ −t). These bounds combined yields

P(|X| ≥ t) ≤ 2e−t2/2.

We also have the following corollary for sum of independent Subgaussian r.v.

Corollary 2.7.5 (Hoeffding’s Inequality). Let X = (X1, ..., Xn) be a random vector with
independent subgaussian coordinates with parameters σ1, ..., σn, respectively and let v ∈ Rn.
Take

σ2 =
n∑
i=1

v2
i σ

2
i ,

then 〈X, v〉 is subgaussian with parameter σ, therefore

P
( n∑
i=1

viXi ≥ t
)
≤ e−t

2/(2σ2).

Proof. Since Xi are independent, we have

E[eλ〈X,v〉] =
n∏
i=1

E[eλviXi ].

By the subgaussian property, we obtain

E[eλ〈X,v〉] ≤ exp
( n∑
i=1

λ2v2
i σ

2
i /2

)
= exp(λ2σ2/2),

and the result follows from Chernoff’s Inequality.
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2.7.4 Inequalities in Hilbert Space
We saw in Remark 2.4.4 that L2(Ω,F ,P) is a Hilbert space with 〈X, Y 〉 = E[XY ],

hence we can get Cauchy-Schwarz’ inequality and Hölder’s inequality.

Theorem 2.7.5 (Cauchy-Schwarz’ Inequality). Let X and Y be two random variables
with finite second moments, then

[Cov(X, Y )]2 ≤ Var(X)Var(Y ).

Theorem 2.7.6 (Hölder’s Inequality). Let Lp := Lp(Ω,F ,P), X ∈ LP , Y ∈ Lq and
1
p

+ 1
q

= 1. Then XY is integrable and

E|XY | ≤ ‖X‖Lp‖Y ‖Lq .

We can also get some useful bounds in the Variance using the distance in the
Hilbert Space.

Lemma 2.7.4. Let X ∈ L2 := L2(Ω,F ,P), then E[X] is the closest constant element in
L2 to X, that is,

Var(X) = E(X − E[X])2 = min
c∈R

E(X − c)2.

Proof. Let us compute E(X − c)2. We have that

E(X − c)2 = E(X − E[X] + E[X]− c)2

= E(X − E[X])2 + (E[X]− c)2 + 2E(X − E[X])(E[X]− c),

that is,

E(X − c)2 = Var(X) + (E[X]− c)2.

Therefore, we have that E(X−c)2 ≥ Var(X) and equality holds if and only if c = E[X].

2.8 Conditional Expectation
Let L2 = L2(Ω,F ,P) throughout the section. To define the conditional expectation

in a more general framework, let us define a sub σ-algebra.

Definition 2.8.1. Let (Ω,F) be a measurable space. Then G ⊆ F is a sub σ-algebra
of F if it is a σ-algebra itself.

We now can define what is a G-measurable r.v.
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Definition 2.8.2. Let G ⊆ F be a sub σ-algebra of F . We say that a random variable is
G-measurable if

X−1(A) ∈ G,

for all A ∈ B(R). We denote it by X ∈ G.

Given a r.v X, we can always construct a sub σ-algebra, called the σ-algebra
generated by X.

Definition 2.8.3. Let X be a r.v. Then the set

σ(X) := {X−1(A) : A ∈ B(R)}

is called the σ-algebra generated by X.

Now we can define the Conditional Expectation.

Definition 2.8.4. Let X ∈ L2 and G ⊆ F be a sub σ-algebra. The conditional ex-
pected value of X given G is any random variable Y such that

1. Y is G-measurable; and

2. The integral of Y over a G measurable sets agrees with the the integral of X over
the same set: ∫

A
Y dP =

∫
A
X dP,

for all A ∈ G.

We will denote any such r.v. by E[X|G].

Lemma 2.8.1. Let X ∈ L2 and G ⊆ F . Then there is an unique (almost surely) Y such
that

1. Y is G-measurable; and

2. For all A ∈ G we have ∫
A
Y dP =

∫
A
X dP.

Proof. Let us prove first uniqueness. Let Y1 and Y2 such as in the definition. Take
An = {Y2 > Y1 + 1/n}, then An ∈ G and∫

An
Y1 dP =

∫
An
X dP =

∫
An
Y2 dP,
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hence

0 ≥ 1/nP(An),

that is, P(An) = 0 for all n. Since

P(Y2 > Y1) = P(
n⋃
i=1

An) = 0,

we have that Y2 ≤ Y1 almost surely. Likewise, we also obtain Y1 ≤ Y2 almost surely hence
Y1 = Y2 almost surely.

To prove the existence, suppose X ≥ 0 and let

ν(A) :=
∫
A
X dP,

for A ∈ G. Then ν is a measure in the space (Ω,G). We also have that

ν � P
∣∣∣
G
,

therefore, by Radon-Nikodym Theorem, there is a G-measurable function f ≥ 0 such that∫
A
X dP = ν(A) =

∫
A
f dP,

and hence E[X|G] = f . The general case follows from X = X+ −X−.

The conditional expectation has all the properties of the expectation, but now
they hold almost surely, since E[X|G] is a random variable.

Lemma 2.8.2. Let X, Y ∈ L2 and G ⊂ F be a sub σ-algebra. Then

1. E[(X + aY )|G] = E[X|G] + aE[Y |G] a.s.;

2. If X ≤ Y then E[X|G] ≤ E[Y |G] a.s.;

3. If X ≤ Y and E[X|G] = E[Y |G], then X = Y a.s.;

4. If X, Y are independent, then E[X|Y ] := E[X|σ(Y )] = E[X] a.s.;

5. If ψ is convex, then E[ψ(X)|G] ≥ ψ(E[X|G]) a.s.;

6. If 0 ≤ Xn ↗ X, then E[Xn|G]↗ E[X|G] a.s.;

7. If Xn → X and |Xn| ≤ Y ∈ L1, then E[Xn|G]→ E[X|G] a.s.;

8. If X ∈ G, then E[X|G] = X a.s.;

9. If G1 ⊆ G2, then E(E(X|G1)|G2) = E(E(X|G2)|G1) = E(X|G1) a.s (the Tower
Property);
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10. The operator E[·|G] : L2 → L2 is well-defined and it is a projection, that is,
E(E[X|G]) = E[X] and

E[E(X|G)|G] = E[X|G];

11. If Y ∈ G, then E[XY |G] = Y E[X|G]; and

12. E[X|G] minimizes the distance between X and the space of all G-r.v.

Proof. This lemma can be found in Durrett (2019).

We can also define the conditional expectation given Y = y.

Definition 2.8.5. Let X, Y ∈ L2, then the conditional expectation E[X|Y = y], as a
function of y ∈ R, is any measurable function m : R→ R such that∫

Y −1(B)
XdP =

∫
B
m(y) dPY (dy).

It can be shown that this is well-defined and it is unique. It has almost all the
properties shown in Lemma 2.8.2, but instead of a.s., it is PY -a.s. Before prove some other
properties of this conditional expectation, we need the following lemma.

Lemma 2.8.3. Let X, Y be independent random variables and f ∈ L2(R2,B(R2),PX×PY ).
If m : R→ R is such that

m(y) := E[f(X, y)],

then m(Y ) = E[f(X, Y )|Y ] almost surely.

Proof. Since m(Y ) ∈ σ(Y ) already, we just have to prove that for all A ∈ B(R), we have
that ∫

Y −1(A)
f(X, Y ) dP =

∫
Y −1(A)

m(Y ) dP.

First, notice that Theorem 2.5.2 implies that

m(y) =
∫
R
f(x, y) dPX(dx).

Now let A ∈ B(R). Then we have that
∫
Y −1(A)

m(Y ) dP =
∫
A
m(y) dPY (dy) =

∫
A

∫
R
f(x, y) dPX(dx)

 dPY (dy).

Using Fubini’s Theorem 2.4.7 and the fact X and Y are independent, we obtain∫
Y −1(A)

m(Y ) dP =
∫
R×A

f(x, y) dPX,Y (dx, dy).
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Using the indicator function of R× A, we obtain∫
Y −1(A)

m(Y ) dP =
∫
R2

1R×A(x, y)f(x, y) dPX,Y (dx, dy)

Now we can use Theorem 2.5.2 to change back the variables, hence∫
Y −1(A)

m(Y ) dP =
∫

Ω
1R×A(X, Y )f(X, Y ) dP.

Since

1R×A(X, Y ) = 1Y −1(A),

we finally obtain ∫
Y −1(A)

m(Y ) dP =
∫
Y −1(A)

f(X, Y ), dP.

Now we can state the following properties.

Lemma 2.8.4. Let X, Y ∈ L2 and m(y) = E[X|Y = y], then

1. m(Y ) = E[X|Y ] PY−a.s.; and

2. If f ∈ L2(R2,B(R2),PX × PY ) and X and Y are independent, then

E[f(X, Y )|Y = y] = E[f(X, y)] PY − a.s.

Finally, we can define the conditional probability to a σ-algebra.

Definition 2.8.6. Let G ⊆ F be a sub σ algebra and A ∈ F . We define the conditional
probability as

P(A|G) := E[1A|G].

In undergraduate Probability courses, the conditional probability of A given
a set B is defined as

P(A|B) := P(A ∩B)
P(B) ,

for P(B) > 0.

We can recover this definition using the following lemma.
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Lemma 2.8.5. Let (Ω,F ,P) be a probability space and B ∈ F be such that P(B) ∈ (0, 1).
Let also G be the following sub σ-algebra:

G := {∅, B,Bc,Ω}.

Then, for ω ∈ B, we have

P(A|G)(ω) = P(A|B),

and for ω ∈ Bc we obtain

P(A|G)(ω) = P(A|Bc).

Proof. The property of the conditional expectation means that∫
B
E[1A|G] dP = P(A ∩B).

Since E[1A|G] ∈ G, it is constant in B, then

E[1A|G](ω) = P(A ∩B)/P(B) = P(A|B),

for all ω ∈ B. Likewise, we have

E[1A|G](ω) = P(A|Bc),

for all ω ∈ Bc.

2.9 Notions of Convergence and Laws of Large Numbers
In this section we define different kinds of convergence in our space and state the

Weak and Strong Law of Large Numbers, as well as the Central Limit Theorem.

2.9.1 Weak Law and Convergence in Probability

Definition 2.9.1. Let (Xn)∞n=1 and X be random elements in a metric space (S, d), then
we say that Xn converges in probability to X and denote Xn

P→ X if for all ε > 0 we
have

P(d(Xn, X) > ε)→ 0.

We also have convergence in Lp.

Definition 2.9.2. Let (Xn)n∈N ⊂ Lp(Ω,F ,P). We say that Xn converges in Lp to X if

E|Xn −X|p → 0.
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Remark 2.9.1. Because of Markov’s Inequality 2.7.3, if Xn
Lp→ X for some p, then

P(|Xn −X| > ε) ≤ E|Xn −X|p

εp
→ 0,

then Xn
P→ X.

We are now able to state and prove the Weak Law of Large Numbers.

Theorem 2.9.1. Let (Xn)∞n=1 be independent r.v. such that Var(Xi) ≤ C, for all i ∈ N,
then

1
n

n∑
i=1

(Xi − E[Xi]) P→ 0.

Proof. Notice that

P
( 1
n

n∑
i=1

(Xi − EXi) ≥ ε
)
≤

n∑
i=1

Var(Xi)
n2ε2 ,

by Markov’s Inequality. Since Var(Xi) ≤ C, the right-hand side converges to 0 and the
theorem is proved.

2.9.2 Almost Surely Convergence and Strong Law

Definition 2.9.3. Let X and (Xn)∞n=1 be random elements in a metric space (S, d). We
say that Xn converges to X almost surely and denote Xn → X a.s. if there is a null
set A such that there is pointwise convergence in its complement.

Example 2.9.1. Let (Ω,F ,P) = ([0, 1],B(R), λ), then Xn = n1[0,1/n] → 0 almost surely.
However, notice that

E|Xn|p = np−1,

hence Xn does not converges to 0 in Lp.

It can be shown the following lemma.

Lemma 2.9.1. Let X and (Xn)∞n=1 be random elements in a metric space (S, d). Then
Xn → X a.s. if and only if

∞∑
i=1

P(d(Xn, X) > ε) <∞,

for all ε > 0.

We can now state the Strong Law of Large Numbers.
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Theorem 2.9.2. Let (Xi)∞i=1 be integrable i.i.d random variables, then

1
n

n∑
i=1

Xi → E[X1] a.s.

Proof. See Durrett (2019).

2.9.3 Convergence in Distribution and Central Limit Theorem

Definition 2.9.4. Let (µn)n∈N and µ be probability measures in a Polish Space (M,d),
that is, a complete separable metric space (M,d). We that µn converges weakly to
µ and denote µ w→ µ if, for all f ∈ Cb(M), the space of all continuous and bounded
real-valued functions, we have that∫

M
f dµn →

∫
M
f dµ.

It can be shown this definition is equivalent to many others.

Theorem 2.9.3 (Portmanteau’s Theorem). Let (µn)n∈N and µ be probability measures in
a Polish Space (M,d), then all afirmations below are equivalent.

1. µn w→ µ;

2. For all closed sets F we have

lim sup
n→∞

µn(F ) ≤ µ(F );

3. For all open sets A we have

lim inf
n→∞

µn(A) ≥ µ(A); and

4. For all sets B such that µ(∂B) = 0 we have

lim
n→∞

µn(B) = µ(B).

Proof. For a proof see Billingsley (2013).

Example 2.9.2. If δx is the probability measure concentrated at x ∈M , then δxn
w→ δx

if and only xn → x.

Definition 2.9.5. We say that a family (Xn)n∈N converges in distribution to X and
denote Xn

d→ X if their distribution converges weakly to the distribution of X.

We have the following theorem concerning convergence in distribution.
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Theorem 2.9.4 (Paul-Lévy’s Theorem). Let (Xn)n∈N and X be random variables with
characteristic function (φn)n∈N and φ. Then Xn converges in distribution to X if and only
if

φn(t)→ φ(t),

for all t ∈ R. In fact, if there exists a function ψ(t) continuous at t = 0 and ψn(t)→ ψ(t)
for all t ∈ R, then ψ is a characteristc function of a random variable X and Xn

d→ X.

Proof. For a proof, see Shiryaev (2016).

A consequence of Paul-Lévy’s Theorem is the Central Limit Theorem.

Theorem 2.9.5. Let (Xn)n∈N be square integrable i.i.d r.v. such that σ2 = Var(X1). Then

1√
n

n∑
k=1

(Xi − E[Xi]) d→ N (0, σ2).

Proof. For a proof, see Shiryaev (2016).

2.10 Markov Chains
In this section, we define Markov Chain and give some simple examples.

2.10.1 Discrete Time and Countable State Space

Definition 2.10.1. A sequence of r.v. (Xn)n∈N taking values in a discrete set E is a
discrete Markov Chain if for all n ∈ N and all x1, ..., xn+1 ∈ E, we have

P(Xn+1 = xn+1|X1 = x1, ..., Xn = xn) = P(Xn+1 = xn+1|Xn = xn).

The family (Pn)n∈N of matrices, defined as

Pn(i, j) := P(Xn+1 = j|Xn = i),

is called the transition matrices. Equivalently, we denote the elements Pn(i, j) as pn(i, j)
or use

pn(Bn, Bn+1) := P(Xn+1 ∈ Bn+1|Xn ∈ Bn),

for Borel sets Bn and Bn+1.

Remark 2.10.1. Informally, we describe the Markov property as follows: given the present
Xn, the future Xn+1 does not depend on the past X1, ..., Xn−1.
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Also, we define a homogeneous Markov Chain.

Definition 2.10.2. Let (Xn)n∈N be a discrete Markov chain taking values in E. It is
homogeneous if Pn does not depend on n ∈ N. In this case, we describe the Markov
Chain through the initial distribuition µ and the transition matrix P := P1.

For short, we will denote a discrete homogeneous Markov Chain as (DHMC) or
(X1 → X2 → ...). Given any law µ of X1, we can construct a Markov Chain using the
previous definition: we just have to use Kolmogorov Extension Theorem to the distributions

µn(B1 ×B2 × ...×Bn) = µ(B1)p(B2, B1)p(B3, B2)...p(Bn, Bn−1),

that is,

P(X1 ∈ B1, ..., Xn ∈ Bn) = P(X1 ∈ B1)P(X2 ∈ B2|X1 ∈ B1)...P(Xn ∈ Bn|Xn−1 ∈ Bn−1).

It is easy to see that X1 → ...→ Xn if and only if Xn → ...→ X1, since

P(X1 = x1|Xn = xn, ..., X2 = x2) = P(Xn = xn, ..., X1 = x1)
P(Xn = xn, ..., X2 = x2) ,

and

P(Xn = xn, ..., X1 = x1) = P(Xn = xn|Xn−1 = xn−1)...P(X2 = x2|X1 = x1)P(X1 = x1),

therefore,

P(X1 = x1|Xn = xn, ..., X2 = x2) = P(X2 = x2|X1 = x1)P(X1 = x1)
P(X2 = x2)

= P(X1 = x1|X2 = x2),

that is, X1 only depends on X2, not on X3, ..., Xn, which consists the Markovian property.

Example 2.10.1. Let E = {1, ..., n}. Suppose X1 is uniform in E. Now, consider the
transition matrix P given by the elements

p(i, j) =
 0, if i = j

1
n−1 , if i 6= j.

Then the family (Xn)n∈N, given by

P(Xn+1 = j|Xn = i) := p(i, j),

is a Markov chain. Informally, given the present Xn, the future Xn+1 is uniform in E\{Xn}.

For any initial distribution, we can derive the distribution in time n ∈ N by a
matrix product.
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Lemma 2.10.1. Let µ be the initial distribution of a DHMC with transition matrix P,
then the distribution µn at time n is given by

µn(j) =
∑
i∈E

µ(i)Pn(i, j),

or

µn = µPn,

when we write µn = (µn(i))i∈E.

Definition 2.10.3. We say that a distribution µ is stationary if µ = µP.

This means that, at any given time n, we have the same initial distribution µ.
Notice that, if

µ(i)P(X2 = j|X1 = i) = µ(j)P(X1 = i|X2 = j),

for all (i, j) ∈ E2, then the process Xn → ...→ X1 is Markovian and also stationary for
the distribution µ. To see this, notice that if X2 has distribution µ, then

P(X1 = i) =
∑
j∈E

P(X2 = j)P(X1 = i|X2 = j) =
∑
j∈E

µ(i)P(X2 = j|X1 = i) = µ(i),

that is, if Xn ∼ µ, then Xi ∼ µ for all i ≤ n.

Definition 2.10.4. We say that a Markov Chain with stationary distribution µ is
reversible if for all all n, Xn → Xn−1 → ...→ X1 with initial distribution Xn ∼ µ has
the same joint law of X1 → ...→ Xn with initial distribution X1 ∼ µ.

2.10.2 Continuous Time and Countable State Space

Definition 2.10.5. Let (Xt)t≥0 be r.v. taking values in a discrete set E. We say that (Xt)
is a Markov chain if for all t1 < ... < tn < t, all s ≥ 0 and all i1, ..., in+2 ∈ E we have

P(Xt+s = in+2|Xt = in+1, Xtn = xn, ..., Xt1 = i1) = P(Xt+s = in+2|Xt = in+1).

It is homogeneous if the right-hand side is independent of t and we define the transition
probabilities as

ps(i, j) := P(Xt+s = j|Xt = i),

and Ps is the matrix (ps(i, j))i,j∈E.

It is easy to see that (Ps)s≥0 defines a semigroup of matrices.
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Definition 2.10.6. Let (Ps)s≥0 be quadratic matrices. Then they are a semigroup if

1. Pt+s = PtPs;

2. P0 = Id.

The distribution µt of Xt at any given time is related to the distribution µ of X0

through the following formula.

µt(j) =
∑
i∈E

µ(i)Pt(i, j),

or, the matrical form, µt = µPt. We define the stationary distribution and reversibility as
before.

It is usually to assume that the semigroup is right-continuous at t = 0, which we
state below.

Definition 2.10.7. Let (Xt)t≥0 be a continuous Markov process with discrete state space
E and transition semigroup (Pt)t≥0. We say that the semigroup is right-continuous at
t = 0 if

lim
t→0+

Pt = Id,

where the convergence is the convergence of each entry. This means that the process
(Xt)t≥0 is right-continuous in the sense that if X0 = i, then for small s ≥ 0, with high
probability Xs = i.

For notation, we need to define a stochastic process.

Definition 2.10.8. A stochastic process is a familly (Xt)t∈T of random variables,
indexed by some set T .

Now we can define a discrete Markov Chain.

Definition 2.10.9. A discrete homogeneous Markov Chain (Xt)t≥0 in E is a stochas-
tic process such that there is a right-continuous semigroup (Pt)t≥0 in E that it is stochastic,
that is ∑

j∈E
Pt(i, j) = 1,

for all i ∈ E, all t ≥ 0, and Pt(i, j) ≥ 0 for all (i, j) ∈ E and t ≥ 0. It also has to satisfy
the Markov property:

P(Xt+s = in+2|Xt = in+1, Xtn = xn, ..., Xt1 = i1) = Ps(in+1, in+2),

for all 0 ≤ s, t1 < ... < tn < t, and all (ik)n+2
k=1 ⊆ E.
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In fact, given a stochastic right-continuous semigroup (Pt)t≥0 in E, we can always
define a discrete homonegenous Markov Chain (Xt)t≥0 with these transitions probabilities.

Our last definition is the generator of the semigroup.

Lemma 2.10.2. For a stochastic right-continuous semigroup Pt in E, there exist a matrix
A such that

A = lim
h→0+

Ph − Id
h

,

where the convergence is for each entry. The matrix A is known as the infinitesimal
generator of the semigroup (Pt)t≥0.

Given (Pt)t≥0 and its infinitesimal generator A, they satisfy the following differential
equation:

d
dtPt = APt = PtA.

For a first example, we have the Poisson Process.

Example 2.10.2. Let (τn)n∈N be i.i.d exponential r.v with parameter λ > 0, that is,
P(τn ≥ x) = e−λx for all x ≥ 0 and let (Nt)t≥0 ⊆ N be the stochastic process such that

Nt = n⇔
n∑
i=1

τi ≤ t <
n+1∑
i=1

τi,

then (Nt)t≥0 is a discrete homogeneous Markov Chain, called the Poisson Process. In
fact, if N(a, b] := Nb − Na for b ≥ a, then Na and N(a, b] are independent, and the
transition probabilities are given by

P(Nt = n+ k|N0 = n) = (λt)ke−λt
k! .

For more information about discrete continuous Markov Chains, see Brémaud
(2013).

2.10.3 Uncountable State Space
For the uncountable state space case, we have to assume some technicalities. First,

let (S,S) be a measurable space where (S, τ) is a topological space and S is the Borel
σ-algebra.

Definition 2.10.10. Let T = [0,∞) and (Xt)t∈T be a stochastic process in (S,S). Suppose
that given Xt = x, the law of Xt+s for s ≥ 0 is given by the transition probabilites pt(x, ·),
that is,

P(Xt+s ∈ B|Xt = x) = ps(x,B),
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independently of the past for all x ∈ S and all B ∈ S fixed, or, equivalently

P(Xt+s ∈ B|σ(Xr : r < t), Xt = x) = ps(x,B).

Then (Xt)t∈T is called a homogeneous Markov process.

We will assume that the transition probabilities satisfies some regularities condi-
tions, namely,

1. pt(·, B) is measurable for fixed B and t;

2. pt(x, ·) is a probability measure for t and x fixed;

3. p0(x,B) = δx(B);

4. For fixed t, if xn → x, then pt(xn, ·) w→ pt(x, ·);

5. For every neighborhood U(x) of x, we have pt(x, U(x))→ 1 for t↘ 0; and

6. The Chapman-Kolmogorov equation are satisfied:

ps+t(x,B) =
∫
S
ps(y,B) dpt(x, dy).

(see Itô (2013) for more).

If Cb(S) is the space of all bounded continuous real-valued functions in S and it is
endowed with the supremum norm, that is,

d(f, g) := sup
x∈S
|f(x)− g(x)|,

then for all f ∈ Cb(S) we can set

[Ptf ](x) :=
∫
S
f(y)dpt(x, dy),

and conditions (1)− (6) can be rewritten as

1. Pt : Cb(S)→ Cb(S) is linear;

2. P0 = Id;

3. [Ptf ](x)→ f(x) for x ∈ S and t↘ 0;

4. Pt+s = Pt ◦ Ps (semigroup property); and

5. Pt1 = 1 and Pt ≥ 0, that is, Ptf ≥ 0 for f ≥ 0.

If (Pt)t≥0 satisfies (1)− (5), then we can find a Markov Process (Xt)t≥0 with this
semigroup (Pt)t≥0. (see Guionnet and Zegarlinksi (2003)).
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Example 2.10.3. Let T = [0,∞) and (Xt)t∈T ∈ Rn be the Markov Process defined by
the Radon-Nikodym derivative

dpt(y, dx)
dx = 1

(2πt)n/2 e
− ‖x−y‖

2
2t ,

then (Xt)t∈T is called the Brownion motion in Rn.

Definition 2.10.11. Let D(L) := {f ∈ Cb(S) : limt→0+
Ptf−f
t

exists}, then the infinites-
imal generator of Pt is the operator L such that

Lf = lim
t→0+

Ptf − f
t

,

for f ∈ D.

Example 2.10.4. It can be shown that if (Pt)t∈T is the semigroup of the Brownion
Motion (Xt)t∈T , then the infinitesimal generator L has domain

D(L) ⊆ C2(Rn),

and

Lf = 1
2∆f.

Finnaly, the following theorem provides conditions for a linear operator in Cb(S)
to generate a semigroup.

Theorem 2.10.1 (Hille-Yoshida’s Theorem). Let L : Cb(S)→ Cb(S) be a linear operator.
Then L is the infinitesimal generator of a Markov Semigroup (Pt)t≥0 if and only if

1. D(L) is dense in Cb(S);

2. The constant function 1 is in D(L) and L1 = 0;

3. L is closed, that is, for all fn ∈ D(L) such that fn → f and Lfn converges, then

Lfn → Lf ;

and

4. If λ > 0, then (λ− L) is invertible, (λ− L)−1f ≥ 0 whenever f ≥ 0 and

sup
‖f‖≤1

‖(λ− L)−1f‖ ≤ 1
λ
.

Proof. See Guionnet and Zegarlinksi (2003).
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3
Information and Its Mysteries

3.1 Introduction

In this chapter, we will introduce the basic ideas from Information Theory. Our
goal is to provide enough background to understand the theorems coming from this area,
as well as their applications.

In Section 3.2 we define the Shannon entropy. It measures the uncertainty of a
random variable according to the formula:

H(X) =
n∑
i=1

P(X = xi) logP(X = xi),

and we can see that X is constant if and only if H(X) = 0.

Moreover in this first section, we will define others entropies, say, joint entropy,
conditional entropy and two related quantities: Kullback-Leibler divergence and mutual
information. All these quantities are related to the Shannon Entropy and they can be
used to prove several results. For instance, we can prove that two random variables X, Y
are independent if and only if their conditional entropy is 0.

In Section 3.3 we will introduce the idea of codes. This goes back to Shannon and
the problem of compressing a message.

The problem can be described as follows: let X be a discrete random variable in
some discrete set X and an alphabet D of D symbols. Suppose we want to compress X,
that is, for all x ∈ X , we want to associate to it a string of letters in the alphabet D. For
instance, suppose X = {0, 1} and D = {a, b}, then one way to compress it is the following
Table 1.

Now suppose we want to compress X using the smallest numbers of letters in the
alphabet per element of X , according to the probability of each element. One of the ways
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of doing it is to minimize the expected value of the length:

E[l(X)] =
∑
x∈X

l(x)p(x).

Moreover, we want our code to be efficient in decoding, that is, given a sequence of letters
that we know it came from compressing a sample X1, ..., Xn of X, we want to recover
uniquely the sample.

This problem has a solution and it is directly associated with the Shannon Entropy,
as we will see in this section.

After codes and compression, we will extend the discrete entropy to the continuous
case in Section 3.4. The extension is almost obvious through the differential entropy:

H(X) = −
∫
R
f(x) log f(x) dx,

nevertheless some properties of the discrete entropy are lost in the continuous case. For
instance, there are random variables with a negative differential entropy. Although this
seemingly incompatibility, we will find a confluence of ideas between them. For instance,
we can see an analogy between Corollary 3.2.1 and Theorem 3.4.1.

We will also see other definitions using densities and random variables with
absolutely continuous distribuitions, namely, the Fisher information and exponential
entropy.

In Section 3.5, we will see the second real application of Shannon’s ideas, namely,
the study of channels. By a channel we mean a triple (X , p(x|y),Y), where X is the input,
Y is the output and p(y|x) is the transition family of probabilities, that is, the probability
of the output y ∈ Y, given input x ∈ X . The problem consists in sending a message x
through an imperfect channel, where errors can happen. For the receiver to decode the
message, it is necessary to send the message x with redundance, but can we quantify this
in an efficient way? The answer is yes, and it is express in Theorems 3.5.1 and 3.5.2.

Finally, in Section 3.6, we will prove a couple of useful inequalities in Information
Theory that will be necessary to prove our main theorem in Chapter 6, namely, the Fisher
Information Inequality and Exponential Entropy Inequality.

3.2 Shannon Entropy
Definition 3.2.1. Let X be a discrete r.v. taking values in X and p(x) = P(X = x),
then the Shannon entropy of X is defined as

H(X) := −
∑
x∈X

p(x) log p(x),

with the convention 0 log 0 = 0.
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Remark 3.2.1. If |X | < ∞ we have that H(X) < ∞, but in the countable case it is
necessary to assume that ∑x∈X p(x) log p(x) converges.

It is easy to see that H(X) = E[− log p(X)]. Also, since 0 ≤ p(x) ≤ 1, we have
p(x) log p(x) ≤ 0, then

H(X) ≥ 0,

and equality only holds if p(x) log p(x) = 0 for all x ∈ X , that is, there is only one x0 ∈ X
that X = x0 almost surely.

Now, let R∞+ be the space of all sequences (xn)n∈N such that xn ≥ 0 for all n ∈ N.
Also, by Rn

+, we mean the canonical positive cone in Rn, that is,

Rn
+ = {x ∈ Rn : xi ≥ 0, ∀i ≤ n}.

By the definition of the Shannon Entropy, H(X) only depends on the probabilities of
x ∈ X , therefore we can consider H defined in

A :=
( ⋃
n∈N
{p ∈ Rn

+ :
n∑
i=1

pi = 1}
)
∪ {p ∈ R∞+ :

∑
i∈N

pi = 1,
∑
i∈N

pi log 1/pi <∞}.

Because of this, if f : X → Y is an injective function, then H(X) = H(f(X)).

We can define the joint Shannon Entropy in a similar manner.

Definition 3.2.2. Let X, Y be two discrete random variables taking values in X and Y ,
respectively, and p(x, y) = P(X = x, Y = y), then their joint entropy is

H(X, Y ) := −
∑

(x,y)∈X×Y
p(x, y) log p(x, y).

We prove now an elementary lemma.

Lemma 3.2.1. If X, Y are independent discrete random variables, then

H(X, Y ) = H(X) +H(Y ).

Proof. Just notice that P(X = x, Y = y) = P(X = x)P(Y = y) and replace this in the
expression of the joint Shannon Entropy.

Later we will prove that in fact we have that

H(X, Y ) ≤ H(X) +H(Y ),

with equality if only if X, Y are independent.
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Notice that, if we compute H(X, Y )−H(Y ), we have

H(X, Y )−H(Y ) = −
∑

(x,y)∈X×Y
P(X = x, Y = y) logP(X = x, Y = y)

+
∑
y∈Y

P(Y = y) logP(Y = y).

Using that P(X = x|Y = y) = P(X = x, Y = y)/P(Y = y), we obtain that

H(X, Y )−H(Y ) = −
∑

(x,y)∈X×Y
P(X = x, Y = y) logP(X = x|Y = y).

Therefore, we have the following definiting of the conditional Shannon Entropy.

Definition 3.2.3. Let X, Y are two discrete random variables taking values in X and
Y, respectively, p(x, y) = P(X = x, Y = y) and p(x|y) = P(X = x|Y = y), then the
conditional entropy of X given Y is

H(X|Y ) := −
∑

(x,y)∈X×Y
p(x, y) log p(x|y).

By definition, we have that H(X, Y ) = H(Y ) + H(X|Y ). Likewise, H(X, Y ) =
H(X) +H(Y |X).

To prove some properties of these quantities, we need the following useful definition.

Definition 3.2.4. Let p and q two discrete probability measures in X . Suppose p� q,
then the Kullback-Leibler Divergence is defined as

D(p||q) =
∑
x∈X

p(x) log
(
p(x)
q(x)

)
,

with the convention 0 log 0
0 = 0.

Remark 3.2.2. If supp(q) = {x ∈ X : q(x) 6= 0}, then

D(p||q) =
∑

x∈supp(q)
p(x) log

(
p(x)
q(x)

)
.

Remark 3.2.3. In the literature, D(p||q) are also called Relative Entropy or Kullback-Leibler
Distance, even though is not a true distance, since it is not symmetric.

Let us prove the first reason why D(p||q) is called a distance.

Lemma 3.2.2. Let p� q, then D(p||q) ≥ 0 and equality holds if and only if p = q.

Proof. Notice that

D(p||q) = −
∑

x∈supp(p)
p(x) log

(
q(x)
p(x)

)
.
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Now, the elementary inequality log x ≤ x− 1, that holds for all x > 0 with equality if and
only if x = 1, implies

D(p||q) ≥ −
∑

x∈supp(p)
p(x)

(
q(x)
p(x) − 1

)
=

∑
x∈supp(p)

(
p(x)− q(x)

)
.

Finally, we have that

∑
x∈supp(p)

q(x) ≤ 1,

then

D(p||q) ≥ 0.

The equality holds if and only if q(x)
p(x) = 1, for all x ∈ X , that is, p = q.

There are some applications of this result. The first one shows that the uniform
distribution maximizes the entropy.

Corollary 3.2.1. If X takes values in a finite set X , then H(X) ≤ log |X | with equality
if and only if X is uniform in X .

Proof. Let p(x) = P(X = x) and q be the uniform distribution in X . It is easy to see that
p� q, then

0 ≤ D(p||q).

Using that

q(x) = 1
|X |

,

for all x ∈ X , we can open up the expression of D(p||q) and obtain

D(p||q) = log |X | −H(X).

Then H(X) ≤ log |X | with equality if and only if p = q, that is, p is uniform in X .

Corollary 3.2.2. Let X, Y be two discrete random variables, then

H(X, Y ) ≤ H(Y ) +H(X),

with equality if and only if X and Y are independent.
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Proof. Let

p(x, y) := P(X = x, Y = y);
p1(x) := P(X = x); and
p2(y) := P(Y = y).

It is easy to see that p� p1 × p2, then

D(p||p1 × p2) ≥ 0

Now, the left-hand side is equal to

∑
(x,y)∈X×Y

p(x, y) log
(

p(x, y)
p1(x)p2(y)

)
,

that is,

D(p||p1 × p2) = −H(X, Y )−
∑

(x,y)∈X×Y
p(x, y) log p1(x)−

∑
(x,y)∈X×Y

p(x, y) log p2(x).

Finally, we see that

−
∑

(x,y)∈X×Y
p(x, y) log p1(x) = H(X),

and likewise

−
∑

(x,y)∈X×Y
p(x, y) log p2(x) = H(Y ),

then

0 ≤ D(p||p1 × p2) = H(X) +H(Y )−H(X, Y ),

with equality if and only if p = p1 × p2, that is, X, Y are independent.

The expression D(p||p1 × p2) has a special name.

Definition 3.2.5. Let X, Y be two discrete random variables and p(x, y), p1(x) and p2(y)
representing their joint distribuition, the distribution of X and the distribution of Y ,
respectively. Then the mutual information of X and Y is defined as

I(X;Y ) := D(p||p1 × p2).

We have the final corollary concerning the conditional entropy.
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Corollary 3.2.3. Let X, Y be two discrete random variables, then 0 ≤ H(X|Y ) ≤ H(X).
The first equality holds if and only if X = f(Y ) for some measurable function f and the
second holds if and only if X and Y are independent. We also have H(g(X)) ≤ H(X)
with equality if and only if g is injective.

Proof. For the second inequality, we have that

H(X, Y ) = H(Y ) +H(X|Y ) ≤ H(X) +H(Y ),

then H(X|Y ) ≤ H(X), and equality holds if and only if X, Y are independent.

For the first, since p(x, y) ≥ 0 and 0 ≤ p(x|y) ≤ 1, we have that H(X|Y ) ≥ 0 and
equality holds if and only if

p(x, y) log p(x|y) = 0,

for all (x, y) ∈ X × Y. That is, fixed y, there is only one x0 that p(x0|y) = 1 and for all
other we have p(x|y) = 0. If we set f(y) := x0, then X = f(Y ).

For the second part, notice that

H(X, g(X)) = H(X) +H(g(X)|X) = H(g(X)) +H(X|g(X)).

Since H(g(X)|X) = 0 and H(X|g(X)) ≥ 0, we have the result with equality if and only
if H(X|g(X)) = 0, that is, if g is injective.

We summarize now all the results proved in this section.

Corollary 3.2.4. Let X, Y be two discrete random variables in X and Y, respectively.
Then

1. The entropy is bounded:

0 ≤ H(X) ≤ log |X |.

The first equality holds if and only if X is constant and the second holds if and only
if X is uniform;

2. The joint entropy follows the chain rule and it is bounded:

H(X, Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ),

and equality holds if and only if X and Y are independent;

3. The mutual information can be decomposed as

0 ≤ I(X, Y ) = H(X) +H(Y )−H(X, Y ) = H(X)−H(X|Y ),

and I(X, Y ) = 0 if and only if X, Y are independent;



88 Chapter 3. Information and Its Mysteries

4. The conditional entropy is bounded:

0 ≤ H(X|Y ) ≤ H(X).

The first equality holds if and only if X = f(Y ) for some f and the second holds if
and only if X and Y are independent; and

5. The relative entropy is always nonnegative: if p and q are two probabilities measures
in some common finite space (X ,F), then D(p||q) ≥ 0 and equality holds if and only
if p = q.

In the next section, we will explore an interpretation of these equalities and
inequalities through the notion of Information.

3.3 Compression and Codes
The goal of this section is to describe a code and the role of entropy in compression.

We will follow Cover and Thomas (2012). To begin with, we define a code.

Definition 3.3.1. Let X be a discrete random variable taking values in X and D a finite
nonempty set, known as the alphabet. A code C for X is an injective map C : X → D,
where

D =
∞⋃
n=1

Dn,

The value C(x) is known as the codeword of x ∈ X . Moreover, if |D| = D, we say that
the alphabet is D-ary.

Remark 3.3.1. Instead of denoting C(x) = (a1, ..., ak) ∈ Dk, for some k ∈ N, we will
simply concatenate the letters a1, ...., ak, that is, C(x) = a1....ak.

Associated with a code, we can quantify the length of each codeword.

Definition 3.3.2. Let X be a discrete r.v. taking values in X , D be a D-ary alphabet and
C : X → D a code. For each x ∈ X , let l(x) ∈ N be the number such that C(x) ∈ Dl(x).
Then l(x) is the length of the codeword C(x). The expected length is

L(C) := E[l(X)].

Take a look at the following simple example.

Example 3.3.1. Let X be a r.v. taking values in X = {0, 1} with probability

P(X = 1) = p = 1− P(X = 0),
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X Code C
0 aab
1 ba

Table 1 – Table of a code for the set X .

and the alphabet D = {a, b}, then a code C for X can be described by the values
C(0) = aab and C(1) = ba, as shown in Table 1. Furthermore, we notice that l(0) = 3
and l(1) = 2, then the expected length is

L(C) = 2p+ 3(1− p) = 3− p.

Notice that in Example 3.3.1, we code just one element of X at time, that is, the
domain of C is X . However, we can extend C to a code C∗ where its domain is bigger
than X .

Definition 3.3.3. Let C be a code for X and

X =
⋃
n∈N
X n.

The extension of the code C is a code C∗ : X→ D such that

C∗(x1x2...xn) = C(x1)C(x2)...C(xn),

where again x1...xn indicates (x1, ..., xn) and C(x1)C(x2)...C(xn) indicates the concatena-
tion of the corresponding codewords.

To illustrate the idea, we can extend our Example 3.3.1 to the concatenation of
two elements.

Example 3.3.2. Let X,D and C be as in Example 3.3.1. The extension to two elements
is shown in Table 2.

X 2 Code C
00 aabaab
01 aabba
10 baaab
11 baba

Table 2 – Table of a code for the set X 2.

A code is sometimes called a Compression of the random variable X. The main
idea of Shannon is to find a code C such that we can always recover the concatenation
x1...xn from the value C(x1....xn) (that is, it is injective) and it minimizes the expected
length. Among all the codes, the instantaneous ones are the most interesting.
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Definition 3.3.4. Let C be a code for X. The code C is instantaneous if no codeword
is a prefix of any other codewords, that is, if x, y ∈ X and l(x) < l(y), then there is no
element a1...an ∈ D such that C(y) = C(x)a1...an.

The idea behind an instantaneous code is that we can recover a concatenation
x1....xn “reading” the extension C(x1...xn), but rather than look at all the extension, we
can already identify any particular xi without the future codewords. For instance, we have
the following example.

Example 3.3.3. Let X taking values in {0, 1, 2}, D = {0, 1} and the code C such that
C(0) = 0, C(1) = 11 and C(2) = 10, then the code C is instantaneous and, for instance,
if we have that C(x1x2x3) = 10011, we can identify x1 = 2 without the reference of x2

and x3, as well as for x2 = 0 and x3 = 1.

On the other hand, the following example from Cover and Thomas (2012) is not
instantaneous.

Example 3.3.4. Let X be a r.v. taking values in {0, 1, 2, 3} and the code C such that
C(0) = 10, C(1) = 00, C(2) = 11 and C(3) = 110. Then C is not instantaneous because
C(2) is a prefix of C(3). Note that if C(x1...xn) = 110, we could not idenfity that n = 1
and x1 = 3 if we just read the string “11”, which is the codeword for 2.

For instantaneous codes, we have the following inequality.

Theorem 3.3.1 (Kraft’s Inequality). Let C an instantaneous D-ary code with codeword
lengths l1, ..., ln, then we have

n∑
k=1

D−lk ≤ 1. (3.1)

Conversely, if a code safisties this inequality, then there is an instantaneous code with the
same codeword lengths.

Proof. For a proof, we recommend Cover and Thomas (2012).

Notice that, as a consequence of the Kraft’s Inequality, we have that the family of
all instantaneous code is countable.

Lemma 3.3.1. If I is the set of all instantaneous codes C : X → D, then I is countable

Proof. Since I ⊆ DX , we have that I is at most countable. Now, if n = |X | and li ≥ logD n
for all i, then

n∑
k=1

D−lk ≤
n∑
k=1

1
n

= 1,
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then Kraft’s Inequality implies that there is an instantaneous code with these lengths.
Since the set of all (l1, ..., ln) such that li ≥ logD n for all i is countable, we also have that
I is countable.

Therefore, if we want to minimize the expected length ∑x∈X p(x)l(x) among all
instantaneous codes, we have to solve the following optimization problem.

L = min ∑
x∈X p(x)l(x)

s.t. ∑
x∈X D

−l(x) ≤ 1
l(x) ∈ N, ∀x ∈ X .

The relaxation problem is

L̂ = min ∑
x∈X p(x)l(x)

s.t. ∑
x∈X D

−l(x) ≤ 1
l(x) ∈ R+, ∀x ∈ X .

The relaxation problem is solved by Lagrande Multipliers and its mininum is
achieved for l(x) = − logD p(x), therefore,

L̂ = HD(X) := −
∑
x∈X

p(x) logD p(x),

that is, the Shannon Entropy with logarithm in base D.

Since N ⊂ R+, we have that L̂ ≤ L and equality is achieved if and only if
− logD p(x) ∈ N for all x. We can summarize this in the following theorem.

Theorem 3.3.2. For all instantaneous D-ary codes we have that HD(X) ≤ E[l(X)] and
equality is achieved when the codeword lengths l(x) safisty

l(x) = − logD p(x) ∈ N,

for all x ∈ X . Therefore, HD(X) is known as the limit of compression of a random
variable X.

Before we provide an interpretation for this result, let us just mention an example
of a code.

Example 3.3.5. Let l(x) = dlogD 1/p(x)e, where dxe represents the smallest integer
greater than x, then ∑

x∈X
D−l(x) ≤

∑
x∈X

D− logD p(x) = 1,

that is, l(x) satisfies the Kraft’s Inequality, hence there is an instantaneous code with
length l(x).
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For this code, we have

HD(X) ≤ E[l(X)] =
∑
x∈X

p(x)l(x) ≤
∑
x∈X

p(x)(logD 1/p(x) + 1),

hence,

HD(X) ≤ E[l(X)] ≤ HD(X) + 1.

This is known as the Shannon’s Code.

In fact, if we encode (X1, ..., Xn), an i.i.d sample of X, by the Shannon’s Code, we
have that the expected length per one symbol is

Ln = 1
n
E[l(X1, ..., Xn)] ≤ 1

n

(
H(X1, ..., Xn) + 1

)
,

hence,

nHD(X) = HD(X1, ..., Xn) ≤ E[l(X1, ..., Xn)] ≤ HD(X1, ..., Xn) + 1 = nHD(X) + 1,

that is,

HD(X) ≤ Ln ≤ HD(X) + 1
n
.

Therefore, the expected length per symbol can get arbitrarily close to the Entropy.

Entropy is, therefore, Information. In fact, H(X) is known as self-information,
since

I(X,X) = H(X)−H(X|X) = H(X).

H(X|Y ) is the information X still has given the knowledge of Y .

Theorem 3.3.2 expresses that we can not compress more than the Information
contained in the random variable X if we want to recover it exactly, that is, if we want an
instantaneous code for X.

In the previous section, we derived some properties of Entropy of a random variable
X, and now we can provide an interpretation for it using the compression of X.

First, we have that H(X, Y ) ≤ H(X) + H(Y ). That means that, if we want to
compress X and Y simultaneously, we do not need to compress independently, but we
can use the Information of one to get Information of the other, that is, we can compress
efficiently their joint distribution of X, Y if they are correlated. In fact, we can first
compress X and then use the information of X to compress Y , and it is precisely H(Y |X),
that is, H(X, Y ) = H(X) +H(Y |X). However, in the independent case, knowing X gives
nothing about Y , therefore, we will have to compress independently X and Y , that is
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H(X) H(Y )

I(X, Y ) H(X|Y )

H(X, Y )H(Y |X)

Figure 3 – Representative Veen Diagram with two circles: the first one is concerning H(X)
and the second H(Y ). Notice that H(X, Y ) = H(X) +H(Y |X), H(X, Y ) ≤
H(X) +H(Y ) and equality holds if and only if I(X, Y ) = 0, that is, they are
independent.

why H(X, Y ) = H(X) + H(Y ) in this case. Symbolically, we can express the relations
between these quantities through a Veen Diagram, as in Figure 3.

Futhermore, if H(X) = 0 and therefore X is constant, we can get codes with
expected length arbitrarily close to zero. We just need to compress more symbols with
just one codeword, for instance, we can compress X1, ..., Xn with C(X1...Xn) = 1, and,
per symbol, we have

Ln = 1
n
→ 0.

Finally, the Kullback-Leibler divergence drives the error when we encode a random
variable X with the wrong distribution q.
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Theorem 3.3.3. Let X be a finite random variable with distribution p(x), for x ∈ X .
Suppose we guess a wrong distribution q(x) for x ∈ X and use Shannon’s Code according
to this distribution, that is, l(x) = dlog 1/q(x)e, then

HD(X) +D(q||p) ≤ El(X) ≤ HD(X) +D(q||p) + 1.

Proof. You can find the proof in Cover and Thomas (2012).

3.4 Differential Entropy and Information

3.4.1 Differential Entropy of Shannon

Definition 3.4.1. Let X be a continuous random vector in Rn with density f , then the
differential entropy of Shannon is defined as

H(X) := −
∫
Rn
f log f dx,

if the integral exists.

Remark 3.4.1. We will denote the differential entropy by the same letter H as the discrete
case and we hope no confusion will be made.

Example 3.4.1. Let X ∼ Unif([0, a]), then f(x) = 1
a
1[0,a], hence

H(X) = −
∫ a

0

1
a

log 1
a
dx = log a.

If we set 0 < a < 1, then H(X) < 0.

In this example we see that the differential entropy lacks the positivity property
of the discrete case. It turns out that H(X) ∈ (−∞,∞] and we will see later that
H(X)→ −∞ corresponds to the case where X is constant, that is, the differential entropy
renormalize the constants r.v. to −∞, instead of 0 in the discrete case.

We also have a definition for the Kullback-Leibler Divergence.

Definition 3.4.2. Let µ and ν two absolutely continuous measures with respect Lebesgue
in Rn and µ� ν. Then we define the Kullback-Leibler Divergence as

D(µ||ν) :=
∫
Rn
f log f

g
dx,

where f, g are the densities of µ and ν with respect to the Lebesgue measure, respectively.

The Kullback-Leibler Divergence preserves D(µ||ν) ≥ 0 and equality holds if and
only if µ = ν (this is a consequence of Lemma 4.3.1).



3.4. Differential Entropy and Information 95

We can define H(X|Y ), H(X, Y ) similarly as the discrete case, but they will
lack the positivity property as well. However, since I(X, Y ) is defined in terms of D,
I(X, Y ) ≥ 0 and equality holds if and only if X and Y are independent.

It turns out that the differential entropy has other properties. The first ones are
the dilation and translation property.

Lemma 3.4.1. Let a > 0 and b ∈ Rn. If X is a random vector in Rn with finite entropy,
then

H(aX + b) = H(X) + n log a.

Proof. It is easy to see that H(aX + b) = H(aX), since we just translate the density and
thus the integral does not change. Hence we can consider b = 0.

Let f(x) be the density of X, then 1
an
f(x/a) is the density of aX, therefore

H(aX) = −
∫
Rn

1
an
f(x/a) log

( 1
an
f(x/a)

)
dx.

Changing variable to y = x/a, we have that andy = dx, then

H(aX) = −
∫
Rn
f(y) log f(y)

an
dy = H(X) + n log a,

and the lemma is proved.

We can see in this case that if a↘ 0, then aX → 0 in probability and

H(aX)↘ −∞.

Moreover, we can generalize the dilation property to an affine invertible transfor-
mation T (X) = AX + b.

Corollary 3.4.1. Let A be an invertible matrix n× n and b ∈ Rn, then

H(AX + b) = H(X) + log |A|,

where |A| is the absolute value of the determinant of A.

3.4.2 Maximum Entropy
We will explore here the problem of maximizing entropy for families of random

variables, first for the case of random variables with the same mean and variance, and
then for the case where the random variables satisfy a general condition E[W (X)] = c,
there W will be defined later in this subsection and c is a constant.
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Corollary 3.4.2. Let X be a r.v. with finite variance σ2 = Var(X) and µ = E[X], then
H(X) ≤ H(Y ) for Y ∼ N (µ, σ2) and equality only holds if and only if X d= Y .

Proof. Because of Lemma 3.4.1, we can assume σ2 = 1 and µ = 0. Let f be the density of
X and γ(x) := 1√

2πe
−x2/2 the density of the Gaussian. Then

0 ≤ D(fdx||γdx) =
∫
R
f log f

γ
dx

= −H(X)−
∫
R
f log γ dx,

but

−
∫
R
f log γ dx =

∫
R
f log[

√
2π] dx+ 1

2

∫
R
x2f dx

= log
√

2π + 1/2,

because the variance of X is 1. Since ∫
R
γ dx = 1,

and ∫
R
x2γ dx = 1,

we also have that

−
∫
R
f log γ dx = −

∫
R
γ log γ dx,

hence

0 ≤ −H(X)−
∫
R
γ log γ dx = −H(X) +H(Y ),

and the theorem is proved.

As a corollary, we can generalize it to Rn.

Corollary 3.4.3. Let X be a random vector in Rn with mean µ ∈ Rn and positive definite
covariance matrix Σ, then H(X) ≤ H(Y ) where Y ∼ N (µ,Σ) with equality whenever
X

d= Y .

In the previous proof, we indirectly computed the entropy of the Gaussian.

Lemma 3.4.2. Let X ∼ N (0, 1), then H(X) = log
√

2π + 1/2 = 1
2 log 2πe. Also, if

Y ∼ N (0, σ2), then Y d= σX and H(Y ) = H(X)+log σ = 1
2 log 2πeσ2. Finally, if X ∈ Rn

and X ∼ N (µ,Σ), then H(H) = n
2 log(2πe|Σ|1/n).

Now we can compute the renormalized constant of the differential entropy.
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Corollary 3.4.4. Let X be a random variable with Var(X) = σ2 and µ = E[X]. If σ → 0
then X P→ µ and H(X)→ −∞.

Proof. The first one is a consequence of the Weak Law of Large Numbers. The second
part is a consequence of H(X) ≤ 1

2 log(2πeσ2) when σ → 0.

Using the same relative entropy argument, we can also maximize the entropy on
compact sets.

Theorem 3.4.1. Let X be a random vector distributed on a compact set K ⊂ Rn, with
density f , that is f(Kc) ≡ 0 and ∫

K
f dx = 1,

then H(X) ≤ log λ(K), where λ(K) is the Lebesgue measure of K and equality only holds
if X is uniform in K.

Finally, we can generalize Theorem 3.4.2 for a large class of densities in the form
f(x) = 1

Z
e−W (x) where W satisfies some conditions.

Definition 3.4.3. Let W : Rn → R be a strongly convex function, that is, the Hessian of
W is positive definite matrix and

Hess W (x) � c Id,

for some c > 0 and all x ∈ Rn, where � is the partial order induced by the cone of positive
semidefinite matrices in n× n. Let

Z :=
∫
Rn
e−W (x) dx,

which is finite, and

f(x) := 1
Z
e−W (x).

Set µ the probability measure in Rn such that

dµ
dx = f,

then µ is known as the Boltzmann Measure associated with the potential W .

Remark 3.4.2. The strong convexity condition is not necessary in this definition: we just
have to assume that Z is well-defined. However, we use this definition because we will
need it as a hypothesis in Theorem 4.4.6.

Now we can prove that the Boltzmann measures maximizes the entropy under
some conditions.
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Theorem 3.4.2. LetW : Rn → R be a strongly convex function, µ the Boltzmann measure
associated with W and Y ∼ µ. Hence, for all X such that E[W (X)] = E[W (Y )] we have
that H(X) ≤ H(Y ) with equality whenever X d= Y .

Remark 3.4.3. When W (x) := ‖x‖2, we recover Corollary 3.4.2, since

E[W (X)] = E[X2] = Var(X),

for E[X] = 0 and Y ∼ N (0,Var(X)).

Proof. We will use the same procedure as in the Gaussian case. Let g, f be the densities
of X and Y , respectively. Then

0 ≤ D(gdx||µ) =
∫
Rn
g log g/f dx

= −H(X)−
∫
Rn
g log f dx.

To compute the last term in the right-hand side, notice that

−
∫
Rn
g log f dx = −

∫
Rn
g log

( 1
Z
e−W

)
dx

=
∫
Rn
g logZ dx+

∫
Rn
gW dx.

Since ∫
Rn
g logZ dx = logZ =

∫
Rn
f logZ dx,

because g and f are densities, and∫
Rn
gW dx = E[W (X)],

by hypothesis we have that∫
Rn
gW dx = E[W (Y )] =

∫
Rn
fW dx,

then

−
∫
Rn
g log f dx = −

∫
Rn
f log f dx = H(Y ),

hence we obtain the result.

3.4.3 Exponential Entropy of Shannon

Definition 3.4.4. Let X be a random vector in Rn with finite differential entropy H(X),
then the exponential entropy of X is defined as

N(X) = 1
2πee

2
n
H(X).
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Therefore, the exponential entropy renormalizes back to 0 the constants vectors.
The constants 1

2πe and 2/n also normalize the standard Gaussian case.

Lemma 3.4.3. Let X ∼ N (0, Id), then N(X) = 1.

Proof. We have already seen that H(X) = n
2 log(2πe), hence the result.

The maximum entropy and the dilation property can be rewritten for the expo-
nential entropy.

Corollary 3.4.5. Let X be a centered random vector with positive definite covariance
matrix Σ and Y ∼ N (0,Σ), then N(X) ≤ |Σ|1/n = N(Y ) and equality holds whenever
X

d= Y .

Corollary 3.4.6. Let X be a random vector in Rn with finite differential entropy H(X).
Let A be a nonsingular matrix, then

N(AX) = |A|2/nN(X).

In particular, N(aX) = a2N(X) for a ∈ R.

Later in Section 3.6, we will explore an inequality relating the exponential entropy
of the sum N(X + Y ) and the single ones N(X) and N(Y ). In the Gaussian case, we
have the following example.

Example 3.4.2. Let X ∼ N (0,Σ1) and Y ∼ N (0,Σ2) and Σ1 = rΣ2 for some r ∈ R+.
Then X + Y ∼ N (0,Σ1 + Σ2) and

N(X + Y ) = |(1 + r)Σ2|1/n = (1 + r)|Σ2|1/n = N(Y ) +N(X),

and hence the exponential entropy of the sum is equal to the sum of the exponential
entropies. We will explore this equality in Subsection 3.6.2.

3.4.4 Fisher Information according to a parameter
Let f : A ⊂ Rn × Rd → R be a function and (x, y) ∈ Rn × Rd. We will denote the

gradient in the x variable as

∇xf(x, y) :=
(
∂

∂xi
f(x, y)

)n
i=1
,

and likewise for y ∈ Rd.

We also need to define the classes of parameters and densities.

Definition 3.4.5. A class of parameters, or family of parameters, is a subset
Θ ⊆ Rd, for some d ∈ N. An element θ ∈ Θ is called parameter.
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Definition 3.4.6. Let Θ ⊆ Rd be a class of parameters. By a class of densities according
to Θ, we mean a function f : Rn ×Θ→ R such that for each θ ∈ Θ, the function f(·, θ)
is a density. We denote f(x, θ) simply by f(x|θ).

Remark 3.4.4. We will also denote a class of densities according to Θ as {f(x|θ) : θ ∈ Θ}.

Now we can establish the first important definition of this subsection.

Definition 3.4.7. Let Θ ⊆ Rd be a class of parameters and F := {f(x|θ) : θ ∈ Θ} be a
family of densities in Rn according to Θ such that, for each x ∈ Rn, f(x|·) ∈ C1(Θ). Given
θ ∈ Θ, let X be a sample of the distribution with density f(·|θ). The score function is
defined as

V := ∇θ log f(X|θ),

or, in the discrete case,

V := ∇θ log p(X|θ),

where p(x|θ) = P(X = x|θ).

Remark 3.4.5. Notice that V depends on X, F and the particular θ ∈ Θ we took. However,
the dependence on X will disappear as soon as we start to take expected values.

The next lemma gives sufficient conditions to avoid computing the expected value
of V .

Lemma 3.4.4. Let ‖ · ‖ be any norm in Rd and suppose ‖∇θf(·|θ)‖ ≤ g(·) for all θ ∈ Θ
and g ∈ L1(dx), then E[V ] = 0.

Proof. Set n = 1. The general case n ∈ N is a corollary of the case n = 1 and the Fubini’s
Theorem. Notice first that

E[V ] =
∫
R
f(x|θ) ∂

∂θ
log f(x|θ)dx =

∫
R

∂

∂θ
f(x|θ) dx.

But |∂θf(x|θ)| ≤ g(x) is a sufficient condition to change the order in the derivative (see
Theorem 2.4.4). Hence

E[V ] = ∂θ

∫
R
f(x|θ) dx = ∂θ1 = 0,

and the lemma is proved.

Example 3.4.3. Let Θ = [0, 1] and X = {0, 1}. Let X be Bernoulli with parameter
θ ∈ Θ, that is, p(1|θ) = θ and p(0|θ) = 1− θ, hence we have that

V =
 θ−1 if X = 1;
−(1− θ)−1 if X = 0.
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Therefore we obtain

E[V ] = θ

θ
− 1− θ

1− θ = 0.

Example 3.4.4. Let σ2 > 0 and Θ = Rn. Given θ ∈ Rn, set X ∼ N (θ, σ2Id), then

f(x|θ) = 1
(2πσ2)n/2 e

− ‖x−θ‖
2

2σ2 .

Its log-derivative is

∇ log f(x|θ) = 1
σ2 (x− θ).

Therefore, we have

E[V ] = 1
σ2

∫
R
(x− θ)f(x|θ) dx = 0,

since ∫
R
xf(x|θ) dx = θ.

This is a case where the conditions in Lemma 3.4.4 fail, although we still have E[V ] = 0.
Indeed, the maximum of |∂f(x|θ)| is constant in x, therefore not Lebesgue integrable.

Throughout this dissertation, we will only consider cases where E[V ] = 0.

The variance of the Score Function is known as the Fisher Information.

Definition 3.4.8. Let F := {f(x|θ) : θ ∈ Θ} be a family of densities in Rn according to
Θ. Set V = ∇ log f(X|θ) and assume E[V ] = 0, for X with density f(x|θ). We define the
Fisher Information of the family F as the covariance matrix of V , that is,

J(θ) :=
(
E[ViVj]

)d
i,j=1

In the real case, we have explicitly

J(θ) = E
(
∂θ log f(X|θ)

)2
.

If we consider (Xi)ni=1 be i.i.d according to the densities f(x|θ), their joint score
function is

V = ∂θ log f(X1, ..., Xn|θ) =
n∑
i=1

Vi,

hence

J(θ) = nJ1(θ),

and we recover the property that, in the independent case, the joint Information is the
sum of the individual Informations.
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Example 3.4.5. Let Θ = R, σ2 > 0 and Xi ∼ N (θ, σ2) i.i.d for i ≤ n, hence

J(θ) = n

σ2 ,

Indeed, if f is the density of N (θ, σ2), then

log f(x) = −1
2 log(2πσ2)− (x− θ)2

2σ2 ,

and

∂θ log f(x) = (x− θ)
σ2 ,

hence

J1(θ) =
∫
R

(x− θ)2

σ4 f(x) dx,

and we recognize the second moment of the Gaussian r.v., that is,

J1(θ) = σ2

σ4 = 1
σ2 .

3.4.5 Fisher Information
If we fix a random vector X in Rn with density f with respect to the Lebesgue

measure and consider the family of densities {f(x− θ) : θ ∈ Θ}, for θ ∈ Rn, then we can
define the Fisher Information of X.

Definition 3.4.9. Let X be a random vector in Rn with density f . Let Θ = Rn, hence
the Fisher Information of X is defined as the Fisher Information of the family

F := {f(x− θ) : θ ∈ Θ},

that is,

J(X) := J(θ).

Lemma 3.4.5. We have that J(X) depends only on f .

Proof. Notice that

J(X) = J(θ) =
∫
Rn

∥∥∥∥∇θ log f(x− θ)
∥∥∥∥2
f(x− θ) dx,

but for all x, θ ∈ Rn we have that

‖∇θ log f(x− θ)‖2 =
(‖∇xf(x− θ)‖

f(x− θ)

)2
,

hence

J(X) =
∫
Rn

‖∇f(y)‖2

f(y) dy,

by change of variables y = x− θ.
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By the chain rule, we can equivalently define J(X).

Lemma 3.4.6. Let X be a random vector in Rn with finite Fisher Information J(X).
Then

J(X) =
∫
Rn

‖∇f(x)‖2

f(x) dx = 4
∫
Rn
‖∇

√
f‖2 dx =

∫
Rn
〈∇f,∇ log f〉 dx,

or, in terms of expected value,

J(X) = E
(‖∇f(X)‖

f(X)

)2
.

As we have seen in Example 3.4.5, if X ∼ N (0, σ2), then J(X) = 1/σ2 and we
have that J(X)N(X) = 1, a relation we will explore in the final Chapter 6. Therefore, if
X and Y are independent Gaussian random variables, we have

1
J(X + Y ) = N(X + Y ) = N(X) +N(Y ) = 1

J(X) + 1
J(Y ) .

We will also explore this equality in the final section of this chapter. (see Subsection 3.6.1).

Example 3.4.6. For the standard Guassian X ∼ N (0, Id), J(X) = n. Indeed, the
property that the joint Fisher Information of i.i.d random variables is n times the Fisher
Information of the first gives the result.

We also have the dilation property.

Lemma 3.4.7. Let X with finite Fisher Information, then J(aX + b) = a−2J(X), for
a > 0 and b ∈ Rn.

Proof. The translation does not affect the Fisher Information, then we can consider b = 0.
The density of aX is equal to 1

an
f(x/a), where f is the density of X, hence

J(aX) = 4
∫
Rn

∥∥∥∥∇x

√
1
an
f(x/a)

∥∥∥∥2
dx = 4

an

∫
Rn

1
a2

∥∥∥∇x/a

√
f(x/a)

∥∥∥2
dx.

By the change of variables to x = ay, we have

J(aX) = 4
∫
Rn

1
a2‖∇y

√
f(y)‖2 dy = 1

a2J(X).

The formula for the Fisher Information of AX is a little more complicated and we
will explore a more general concept in the next subsection.
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3.4.6 Fisher Matrix
We can give a matrix definition of the Fisher Information. Let ∇f be a vector

n× 1, then we have the following.

Definition 3.4.10. Let X be a random vector in Rn with density f with respect to the
Lebesgue measure. Then the Fisher Matrix is defined as

J(X) :=
∫
Rn
∇f · (∇f)T 1

f
dx.

Remark 3.4.6. This definition is consistent in the following sense:

tr(J(X)) = J(X),

and we have that J is the covariance matrix Σ of ∇ log f(X), since

Σ = E[∇ log f(X)∇ log f(X)T ] =
∫
Rn
∇ log f(x)∇ log f(x)Tf(x) dx,

where the last one is the Fisher Matrix, by the chain rule. Hence J(X) is a positive
semidefinite matrix and is singular if and only if X lies in a lower dimension subspace.

Example 3.4.7. J(X) = Id, for X ∼ N (0, Id). Indeed, let f(x) = (2π)n/2 exp(−‖x‖2/2)
be the density of the standard Gaussian, then

∂i log f(x)∂j log f(x) = xixj,

hence

J(X)ij =
∫
Rn
xixjf(x) dx = Idij.

For the Fisher Matrix, the dilation property is the following.

Lemma 3.4.8. Let X be a random vector in Rn with finite Fisher Matrix J(X) and A be
an n× n invertible matrix. If Y = AX, then J(Y ) = A−1J(X)(A−1)T .

Proof. The density of Y is

g(y) = |A|−1f(A−1y).

Therefore, the Fisher Matrix of Y is

J(Y ) = |A|−1
∫
Rn
∇f(A−1y)∇f(A−1y)T 1

f(A−1y) dy.

Let A−1 = B and u = By, then

∂yif(By) =
n∑
j=1

∂ujf(u)∂yiuj =
n∑
j=1

∂ujf(u)Bji,
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then ∇yf(By) = BT∇uf(u), therefore

J(Y ) = |A|−2
∫
Rn
BT∇uf(u)∇f (u)B 1

f(u) dy.

Finally, we have dy = |A| du, hence

J(Y ) =
∫
Rn
BT∇uf(u)∇f (u)B 1

f(u) du.

And the result follows taking BT and B out of the integral.

Corollary 3.4.7. Let A = J(X)1/2, the square root of the Fisher Matrix, then J(AX) = Id.

Therefore, we have the following dilation property for the Fisher Information.

Corollary 3.4.8. Let A be a nonsingular n× n matrix and X be a random vector in Rn

with finite Fisher Matrix, then

J(AX) = tr(A−1J(X)(A−1)T ).

For the Guassian case X ∼ N (0,Σ), we have

J(X) =
n∑
i=1

1
σ2(Xi)

,

where σ2(Xi) = Σii, for i = 1, ..., n.

Proof. The first is immediate, since tr(J(X)) = J(X). For the second, we have that
X

d= Σ1/2Y , where Y ∼ N (0, Id), hence

J(X) = Σ−1/2Σ−1/2 = Σ−1.

The eigenvalues of Σ−1 are the reciprocal of the eigenvalues of Σ, hence the result.

Again, if X ∼ N (0,Σ1), Y ∼ N (0,Σ2), Σ1 = σΣ2, for some σ > 0, and X, Y are
independent, then

J(X + Y )−1 = (Σ1 + Σ2) = J(X)−1 + J(Y )−1.

Likewise, we can define the parametric version of the Fisher Matrix.

Definition 3.4.11. Let F := {f(x|θ) : θ ∈ Θ} be a parametric family of densities in Rn.
Hence, the Fisher Matrix according to this family is

J(θ) :=
∫
Rn
∇θf(x|θ)∇θf(x|θ)T 1

f(x|θ) dx.

Hence we have the following lemma.

Lemma 3.4.9. Let X be a random vector in Rn with density f. Let {f(x− θ) : θ ∈ Rn}
be a parametric family, hence

J(X) = J(θ).
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3.4.7 Fisher and Kullback-Leibler Divergence

There is a wonderful relation between the Fisher Matrix and the Kullback-Leibler
Divergence. Let {f(x|θ) : θ ∈ Θ} be a parametric family of densities and Θ be an open
set in Rn and, for θ ∈ Θ, consider µθ the probability measure with density f(·|θ). For a
fixed θ ∈ Θ, consider g : Θ → R+ the function g(α) := D(µθ||µα). Let us compute the
Hessian of g.

The first partial derivative is

∂ig(α) = −
∫
Rn
f(x|θ)∂if(x|α)

f(x|α) dx, (3.2)

if we can differentiate under the integral (for suficient conditions, see Theorem 2.4.4).
Notice that, for α = θ, we’ve already known that θ is a global minimum of the relative
entropy, hence

∂ig(θ) = 0.

The second partial derivative is

∂j∂ig(α) = −
∫
Rn
f(x|θ)

[
f(x|α)∂j∂if(x|α)− ∂if(x|α)∂jf(x|α)

[f(x|α)]2
]
dx, (3.3)

where again we differentiate under the integral sign. For α = θ, we have

∂j∂ig(θ) = −
∫
Rn
∂j∂if(x|θ) dx+

∫
Rn

∂if(x|θ)∂jf(x|θ)
f(x|θ) dx.

The first integral is zero by exchanging integral with derivatives. The second is the
ij−entry of the Fisher Matrix J(θ). Hence we have the following theorem.

Theorem 3.4.3. Let Θ ⊆ Rn be an open set, {f(x|θ) : θ ∈ Θ} be a parametric family
of densities and {µθ : θ ∈ Θ} be the corresponding family of measures. If the Equations
3.2 and 3.3 hold, then for θ ∈ Θ fixed, the Hessian of D(µθ||µα) in α = θ is precisely J(θ)
and we have the second order Taylor Expansion:

D(µθ||µα) ∼ 1
2(α− θ)TJ(θ)(α− θ).

3.5 Channel

In this section, we define the notion of Channel and the principal theorem derived
by Shannon (1948) about the Channel Capacity and efficient codes.
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3.5.1 Discrete Channel

Definition 3.5.1. A discrete channel is a triple (X ,Y , p(y|x)) where X and Y are two
finites sets and p(y|x) is a family of conditional distributions in Y given x ∈ X .

Definition 3.5.2. The extension of discrete memoryless without feedback chan-
nel (X , p(y|x),Y) is the channel (X n, p(yn, xn),Yn) where

p(yn|xn) =
n∏
k=1

p(yi|xi).

We will only consider memoryless without feedback channels and denote them by
just DMC.

Associated to a channel, we can define its capacity.

Definition 3.5.3. Let (X ,Y , p(y|x)) be a channel, then its capacity is

C := max
p
I(X, Y ),

where the maximum is over all the probabilities distribution in X , X has distribution p
and Y is the induced distribution of X in Y by the family p(y|x), that is,

P(Y = y) =
∑
x∈X

p(x)p(y|x),

and I(X, Y ) is the mutual information.

Now that we have defined a channel, we need to know what is a code for it.

Definition 3.5.4. An (M,n) code for the channel (X , p(y|x),Y) is a triple (S, f, g),
where S is a set with |S| = M ; f : S → X n and g : Yn → S are two functions.

The set S is called the set of messages, the function f is the encode function
and g is the decode function.

We can see a code as the diagram in Figure 4.

X nW ∈ S Yn Receptor
f(W ) p(yn|xn) Ŵ = g(Y )

Figure 4 – Diagram representing the transmission. A messageW is encoded in f(W ) ∈ X n.
The channel transforms this input into a noisy sign Y ∈ Yn and the decode g
guesses the best canditate Ŵ = g(Y ) for the original message.

To a code (M,n), we can associated its rate of transmission
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Definition 3.5.5. Let (M,n) be a code of a DMC, then its rate is defined as

R := logM
n

The error of transmission is defined as below.

Definition 3.5.6. To a code (M,n), the error associated with the transmission of the
message i ∈ S is

λi := P(g(Y n) 6= i|xn(i)) =
∑

yn∈Yn
p(yn|xn(i))1{i}(yn).

The error of the code is defined as λ(n) := maxi∈S λi.

Using these two last definitions, we can define achievable rates.

Definition 3.5.7. We say that a rate R is achievable if there is a sequence (d2nRe, n) of
codes such that λ(n) → 0 and it achieves error ε ∈ (0, 1) if there is a sequence (d2nRe, n)
of codes such that

lim sup
n→∞

λ(n) ≤ ε.

We denote R all the achievable rates and R(ε) all rates which achieve error ε.

Note the following relation between achievable rates.

R =
⋂

ε∈Q∩(0,1)
R(ε).

For simplicity, we denote a code (d2nRe, n) just by (2nR, n).

Definition 3.5.8. Given R1, R2 ∈ R or in R(ε), we say that R1 is more efficient than
R2 if R1 > R2.

The central example of DMC in this section will be the Binary Channel, perhaps
the simplest channel.

Example 3.5.1. Let X = Y = {0, 1} and

p(1|1) = 1− p = p(0|0),

with p ∈ (0, 1/2). We can represent this channel as in Figure 5. Its capacity is C = 1−H(p),
where H(p) is the entropy of the distribution (p, 1− p). Indeed, the mutual information
can be decompose as

I(X, Y ) = H(Y )−H(Y |X) ≤ 1−H(p),
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0 0

1 1

1− p

1− p

p

p

Figure 5 – Given the input x ∈ {0, 1}, the output is x with probability 1− p and 1− x
with probability p.

with equality if and only if Y is uniform. It can be reached if X is uniform, since

P(Y = 1) = P(X = 1)(1− p) + P(X = 0)p = 1/2.

Suppose we want to transmit two messages, say S = {0, 1} and M = 2. Given an
n ∈ N, we can encode this message by just sending it n times, that is, f(x) = xx...x n

times. The decode function g guesses x if the numbers of x in the output is greater than
1− x. This is known as the repetition code. Because of the symmetry of this channel,
the error is λ(n) = maxi∈{0,1} λi = λ1. Let X1, ..., Xn ∼ Ber(p) i.i.d, then the error can be
measured by

λ(n) = P
( 1
n

n∑
i=1

Xi > 1/2
)
.

Since p < 1/2, the Weak Law of Large Numbers says that

λ(n) → 0.

However, this code is not efficient, since

R = logM
n

= log 2
n
→ 0.

In Chapter 5, we will derive a nonasymptotic version of this code (see Example 5.4.1).

We only consider p < 1/2 since we just have to exchange labels in the case p > 1/2
and the case p = 1/2 has capacity 0.

By this example, we would imagine that to get λ(n) → 0, the rate necessarily
converges to 0. This is not true and it was proved in Shannon (1948).

Theorem 3.5.1 (Shannon’s Theorem). Let C be the capacity of a DMC. Then all rates
R < C are achievable. Conversely, if a rate R is achievable, then R ≤ C.

Proof. For the proof, see Cover and Thomas (2012).
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3.5.2 Continuous Channel

Definition 3.5.9. The Gaussian channel is a time-discrete channel with output Yi at
instant i and input Xi such that

Yi = Xi + Zi,

where Zi ∼ N (0, N) is independent of Xi for all i and (Xi)ni=1 are assumed to be
independent.

If we assume no other conditions in this channel, we can recover the signal Xi with
arbitrarily small probability. For instance, if we set the input space X as a well-separated
set, that is, all points are distant to each other, say,

d(x, x̃)� N, ∀x, y ∈ X ,

then we can recover it with small probability. Therefore, we will impose a condition on
the input space.

Definition 3.5.10. Let (Yi, Xi)ni=1 be a Guassian Channel. The power constraint in
the input (X1, ..., Xn) is

1
n

n∑
i=1

E[Xi] ≤ P,

for a power P > 0.

It is worth to mention that, even if X is discrete, Y = X + Z is continuous, since,
for this case, we have

P(Y ≤ y) =
∑
x∈X

P(X = x)P(Z ≤ y − x).

But

P(Z ≤ y − x) =
∫ y−x

−∞
f(z) dz =

∫ y

−∞
f(z − x) dz,

where f is the density of Z. Hence the density of Y is

g(y) :=
∑
x∈X

P(X = x)f(y − x).

Let us compute the capacity of this channel C = max I(X, Y ), where the maximum
is over all continuous distribution X such that E[X2] ≤ P .

Lemma 3.5.1. We have that

C = 1
2 log

(
1 + P/N

)
.
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Proof. The mutual information is equal to

I(X, Y ) = H(Y )−H(Y |X) = H(Y )−H(X + Z|X).

Since X is constant given X and the entropy is invariant under translation, we have

I(X, Y ) = H(Y )−H(Z|X) = H(Y )−H(Z).

The power constraint means that

E[Y 2] = E(X + Z)2 = E[X2] + E[Z2] ≤ P +N,

hence we obtain that H(Y ) ≤ 1
2 log 2πe(P +N) by Corollary 3.4.2, and then

I(X, Y ) ≤ 1
2 log 2πe(P +N)− 1

2 log 2πeN = 1
2 log

(
1 + P/N

)
.

The equality holds if X ∼ N (0, P ).

Likewise, we define a code.

Definition 3.5.11. An (M,n) code for the Gaussian Channel with Power Constraint P
is a triple (S, f, g) such that |S| = M , f : S → Rn and g : Rn → S such that

1
n

n∑
i=1

(f(w))2
i ≤ P,

for all w ∈ S.

Similarly to the discrete case, the function f is the encode function and g is the
decode function. Moreover, we also define error, rate, efficiency and achievable rates
similarly in the discrete case. Finally, we also have the Shannon Theorem in this case.

Theorem 3.5.2 (Shannon’s Theorem). If R < C, then there is a sequence (2nR, n) of
codes such that λ(n) → 0. Conversely, if λ(n) → 0, then R ≤ C.

Proof. For the proof, see Cover and Thomas (2012).

3.6 Inequalities in Information Theory

In this section we will prove two inequalities that will be important in Chapter
6. They are Fisher Information Inequality, presented in Theorem 3.6.4, and Exponential
Entropy Inequality, presented in Theorem 3.6.5.
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3.6.1 Fisher Information Inequality
The main tool to prove Fisher Information Inequality is the following Fisher Matrix

Inequality.

Theorem 3.6.1. Let X, Y ∈ Rn be independent random vectors and Z = X + Y . Let
f, g and f ∗ g be their densities with respect Lebesgue and assume they have finite Fisher
matrices J(X), J(Y ) and J(Z). Assume the integrability condition holds for all y, z ∈ Rn

and all i:

|g(y)∂zif(z − y)| ≤ h(z),

where h ∈ L1(dx). Then, for all n× n matrices A, we have

AJ(X)AT + (Id− A)J(Y )(Id− A)T − J(Z) � 0.

Remark 3.6.1. The integrability condition is just a sufficient condition to exchange integral
and derivative (see Theorem 2.4.4).

In order to prove this theorem, we need a matrix-valued Jensen’s Inequality whose
proof we omit. We can find further informations on matrix-valued functions and convexity
in Boyd and Vandenberghe (2004).

Theorem 3.6.2. Let S ⊆ Rn be a convex set and (Mn,�) be the set of all n×n matrices
with the partial order defined by the positive semidefinite cone. Let f : S → Mn be a
convex function, that is, f(λx + (1 − λ)y) � λf(x) + (1 − λ)f(y), for all x, y ∈ S and
λ ∈ [0, 1]. Then, for all integrable random vectors X ∈ Rn, we have

E[f(X)] � f(E[X]).

We just need one example of convex matrix-valued function.

Corollary 3.6.1. The function f : Rn →Mn, given by f(u) = uuT , is convex.

Proof. See Boyd and Vandenberghe (2004).

Now we can prove Theorem 3.6.1

Proof. The proof we present was first shown by Dembo (1990). Set

1. SX = ∇ log f(X);

2. SY = ∇ log g(Y ):

3. SZ = ∇ log f ∗ g(Z); and
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4. Sz = ∇ log f ∗ g(z),

then J(X) is the covariance matrix of SX , J(Y ) is the covariance matrix of SY and J(Z)
is the covariance matrix of SZ . The density of X given Z = z is equal to

h(x|z) = f(x)g(z − x)
f ∗ g(z) ,

hence the convolution rule and the integrability condition imply that

E[SX |Z = z] = E

∇f(X)
f(X)

∣∣∣∣∣Z = z

 =
∫
Rn∇f(x)g(z − x) dx

f ∗ g(z)

=
∫
Rn∇zf(z − y)g(y) dy

f ∗ g(z)

= ∇(f ∗ g(z))
f ∗ g(z) = Sz.

Likewise, we have that

E[SY |Z = z] = Sz.

Let U = ASX + (Id− A)SY , then

E[U |Z] = E
(

[ASX + (Id− A)SY ]|Z
)

= ASZ + (Id− A)SZ = SZ .

Conditional Matrix-Valued Jensen’s Inequality applied to the function u→ uuT implies
that

E[UUT |Z]− E[U |Z](EU |Z)T � 0. (3.4)

The expression E[UUT |Z] can be rewritten as

E[UUT |Z] = E
(

[ASX + (Id− A)SY ][ASX + (Id− A)SY ]T |Z
)

= A[E(SXSTX)]AT + (Id− A)E(SY SY )(Id− A)T

+ AE[SXSTY ](Id− A)T + (Id− A)E[SY STX ]AT .

The last line is equal to 0, since X and Y are independent. Finally, using the fact that
the Fisher Matrix is the covariance matrix of S, we conclude

AJ(X)AT + (Id− A)J(Y )(Id− A)T − J(X + Y ) � 0.

We can use Theorem 3.6.1 to prove the following corollary concerning the convexity
of Fisher Matrix. Set A = λId and rescale X →

√
λX and Y →

√
1− λY , then the

following is true.
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Corollary 3.6.2. For all independent r.v. X, Y in Rn and λ ∈ [0, 1], we have that

J(
√
λX +

√
1− λY ) � λJ(X) + (1− λ)J(Y ).

Taking the trace in the above corollary, we have Blachman-Stam’s Inequality.

Theorem 3.6.3 (Blachman-Stam’s Inequality). For all X, Y independent random vectors
and λ ∈ [0, 1], we have

J(
√
λX +

√
1− λY ) ≤ λJ(X) + (1− λ)J(Y ).

Theorem 3.6.3 can be rewritten equivalently in several forms and all of them can
be called Fisher Information Inequality.

Theorem 3.6.4. Let X, Y be two independent r.v with Fisher Information J(X) and
J(Y ). Then the following inequalities are true and equivalent.

1. Let Z = X + Y , then

1
J(Z) ≥

1
J(X) + 1

J(Y ) ;

2. Let λ ∈ [0, 1], then we have that

1
J(
√
λX +

√
1− λY )

≥ λ

J(X) + 1− λ
J(Y ) ;

3. Let X0 and Y0 be two independent Gaussian r.v with proportional covariance matrices,
J(X0) = J(X) and J(Y0) = J(Y ), then

J(X + Y ) ≤ J(X0 + Y0); and

4. Let λ ∈ [0, 1], then J(
√
λX +

√
1− λY ) ≤ λJ(X) + (1− λ)J(Y ).

The equality in all above happens only if X and Y are independent Gaussian with propor-
tional covariance matrices (which may depend on λ).

Proof. We will not prove the equality condition in those equations. The reader can find
the proof in Blachman (1965).

Let λ ∈ [0, 1], λ′ = 1/2 and X0, Y0 as in (3).

(1)⇒ (2). Applying (1) to X ′ =
√
λX and Y ′ =

√
1− λY leads the result in (2).
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(2)⇒
(

(3) and (1)
)
. Take λ′ in (2) we have

1
2(J(X + Y )) = 1

J
(

1√
2(X + Y )

)
≥ 1

2J(X) + 1
2J(Y )

= 1
2J(X0) + 1

2J(Y0)

= 1
2J(X0 + Y0) .

(3)⇒ (2). Take X ′ =
√
λX and Y ′ =

√
1− λY , then, by (3), we have

1
J(X ′ + Y ′) ≥

1
J(
√
λX0 +

√
1− λY0)

= λ

J(X0) + 1− λ
J(Y0)

= λ

J(X) + 1− λ
J(Y ) .

So we have already proved that (1)⇔ (2)⇔ (3).

(2) ⇒ (4). Let u : R+ → R+ so that u(x) = 1/x. Then u is decreasing function
and convex. Therefore, because of (2) we have

J(
√
λX +

√
1− λY ) = u

( 1
J(
√
λX +

√
1− λY )

)
≤ u

(
λ

J(X) + 1− λ
J(Y )

)
,

as u is decreasing. Now, by convexity,

u
(

λ

J(X) + 1− λ
J(Y )

)
≤ λu

(
1/J(X)

)
+ (1− λ)u

(
1/J(Y )

)
= λJ(X) + (1− λ)J(Y ).

(4)⇒ (1). As (4) is true to all X, Y and λ ∈ (0, 1), take X ′ = X√
λ
and Y ′ = Y√

1−λ ,
then

J(X + Y ) = J(
√
λX ′ +

√
1− λY ′)

≤ λJ(X ′) + (1− λ)J(Y ′)
= λ2J(X) + (1− λ)2J(Y ).

Minimazing this quadratic form in λ we have that λ∗ = J(Y )
J(X)+J(Y ) ∈ (0, 1), so by replacing

this value in λ2J(X) + (1− λ)2J(Y ) we finally have

J(X + Y ) ≤ J(X)J(Y )
J(X) + J(Y ) ⇒

1
J(X + Y ) ≥

1
J(X) + 1

J(Y ) ,

which is what we wanted to prove.
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3.6.2 Exponential Entropy Inequality of Shannon
The last inequality we prove is Exponential Entropy Inequality of Shannon.

Theorem 3.6.5. Let X and Y be independent random vectors with densities f, g ∈ C2(Rn).
If N(X + Y ), N(X) and N(Y ) exist, then

N(X + Y ) ≥ N(X) +N(Y ).

There are three key points in proving this inequality. First, we need some equivalent
inequalities; then, we need Fisher Information Inequality. Finally we need an identity
concerning the Shannon Entropy and the Fisher Information. Let first state several
equivalences of Theorem 3.6.5.

Theorem 3.6.6. Let X and Y be independent random vectors and suppose N(X), N(Y )
and N(X + Y ) exist. Then the following are equivalent.

1. We have that

N(X + Y ) ≥ N(X) +N(Y );

2. Let X0 and Y0 be are two independent Gaussian vectors with proportional covariance
matrices and H(X0) = H(X) and H(Y0) = H(Y ), then

H(X + Y ) ≥ H(X0 + Y0); and

3. For λ ∈ [0, 1], we have that

H(
√
λX +

√
1− λY ) ≥ λH(X) + (1− λ)H(Y ).

Remark 3.6.2. Item 3 in this theorem is called Shannon-Stam Inequality.

Proof. Let λ ∈ [0, 1] and X0 and Y0 as in (2).

(1) ⇒ (2). We have N(X0 + Y0) = N(X0) + N(Y0) = N(X) + N(Y ), by the
exponential entropy of the Gaussian. Hence

N(X + Y ) ≥ N(X) +N(Y ) = N(X0 + Y0),

therefore H(X + Y ) ≥ H(X0 + Y0).

(2)⇒ (1). Because of (2), we have

N(X + Y ) ≥ N(X0 + Y0) = N(X0) +N(Y0) = N(X) +N(Y ).



3.6. Inequalities in Information Theory 117

(1)⇒ (3). Set u(x) := n
2 (log x+log 2πe). Then u is an increasing function, concave

and u(N(X)) = H(X). Therefore, applying (1) for X ′ =
√
λX and Y ′ =

√
1− λY we

have

N(
√
λX +

√
1− λY ) ≥ λN(X) + (1− λ)N(Y ).

This implies

H(
√
λX +

√
1− λY ) = u

(
N(
√
λX +

√
1− λY )

)
≥ u

(
λN(X) + (1− λ)N(Y )

)
.

By the concavity of u, we finally obtain

u
(
λN(X) + (1− λ)N(Y )

)
≥ λu(N(X)) + (1− λ)u(N(Y ))

= λH(X) + (1− λ)H(Y ).

(3)⇒ (1). The dilation property of H gives that

H
(
X√
λ

)
= H(X)− n

2 log λ,

and likewise for Y , for λ ∈ (0, 1). Hence, applying (3) for X ′ = X
λ
and Y ′ = Y√

1−λ gives

H(X + Y ) ≥ λH(X) + (1− λ)H(Y )− nλ

2 log λ− n(1− λ)
2 log(1− λ),

that is,

H(X + Y ) ≥ λ(H(X)−H(Y )) +H(Y ) + n

2H(λ) =: φ(λ), (3.5)

where H(λ) = −λ log λ − (1 − λ) log(1 − λ) is the discrete entropy of Shannon. It is
well-known that H(λ) is a concave function of λ, therefore φ is concave, hence there is
only one maximum and it happens when φ′(λ∗) = 0, hence

φ′(λ∗) = H(X)−H(Y )− n

2

(
log λ∗ − log(1− λ∗)

)
= 0,

and hence we obtain

λ∗

1− λ∗ = exp
[ 2
n

(
H(X)−H(Y )

)]
.

We also know, by the definition the Exponential Entropy of Shannon, that

N(X)
N(Y ) = exp

[ 2
n

(
H(X)−H(Y )

)]
,
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which leads to

λ∗ = N(X)
N(X) +N(Y ) ;

1− λ∗ = N(Y )
N(X) +N(Y ) .

The value H(λ∗) is given by

H(λ∗) = −
 N(X)
N(X) +N(Y ) log

(
N(X)

N(X) +N(Y )

)
+ N(Y )
N(X) +N(Y ) log

(
N(Y )

N(X) +N(Y )

)
= −

 N(X)
N(X) +N(Y ) logN(X) + N(Y )

N(X) +N(Y ) logN(Y )− log(N(X) +N(Y ))
.

Therefore
n

2H(λ∗) = −n2

(
N(X)

N(X) +N(Y ) logN(X) + N(Y )
N(X) +N(Y ) logN(Y )

)
+ n

2 log(N(X) +N(Y )).

We also have

λ∗H(X) + (1− λ∗)H(Y ) = N(X)H(X) +N(Y )H(Y )
N(X) +N(Y )

= n

2
N(X)[2H(X)/n] +N(Y )[2H(Y )/n]

N(X) +N(Y ) .

Replacing 2
n
H(X) = logN(X) + log 2πe, we have

λ∗H(X) + (1− λ∗)H(Y ) = n

2
N(X) logN(X) + log(2πe)N(X)

N(X) +N(Y )

+ n

2
N(Y ) logN(Y ) + log(2πe)N(Y )

N(X) +N(Y ) .

Rearranging we obtain

λ∗H(X) + (1− λ∗)H(Y ) = n

2

(
N(X)

N(X) +N(Y ) logN(X) + N(Y )
N(X) +N(Y ) logN(Y )

)
+ n

2 log(2πe).

Hence

φ(λ∗) = n

2

[
log(2πe) + log

(
N(X) +N(Y )

)]
= n

2 log
(

exp[2H(X)/n] + exp[2H(Y )/n]
)
.

Replacing these values in Inequality 3.5 we have

H(X + Y ) ≥ n

2 log
(

exp[2H(X)/n] + exp[2H(Y )/n]
)
.
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Finally, applying the function g(x) := 1
2πe exp(x), we obtain

N(X + Y ) ≥ N(X) +N(Y ),

and the theorem is proved.

Let us now state an important identity, which we will only prove in Chapter 4 (see
Theorem 4.2.3).

Theorem 3.6.7 (DeBruijn’s Identity). Let X be a random variable with density f ∈ C2(R)
and Z ∼ N (0, Id) independent of X. Suppose J(X +

√
uZ) is finite for some u, then

d
dtH(X +

√
tZ)

∣∣∣
t=u

= 1
2J(X +

√
uZ).

Now we can prove Shannon-Stam’s Inequality based on Blachman-Stam’s Inequal-
ity.

Proof. Let λ ∈ [0, 1] fixed, t ∈ [0, 1], X and Y independent random variable with finite
Fisher Information J(X) and J(Y ). Let X0 and Y0 be two independent standard Gaussian
r.v with X0 is independent of X, and Y0 is independent of Y . Moreover, let

Xt =
√
tX +

√
1− tX0;

Yt =
√
tY +

√
1− tY0; and

Vt =
√
λXt +

√
1− λYt.

Finally, let

φ(t) := H(Vt)− λH(Xt)− (1− λ)H(Yt).

Because X1 = X and Y1 = Y , we want to prove that φ(1) ≥ 0. Notice that, for t = 0, we
have that V0 is a standard gaussian vector, therefore φ(0) = 0. Also, we have the following
decomposition:

Vt =
√
λ
√
tX +

√
λ
√

1− tX0 +
√

1− λ
√
tY +

√
1− λ

√
1− tY0.

Collecting the terms with
√
t and with

√
1− t, we have

√
tV1 +

√
1− tV0 =

√
t(
√
λX +

√
1− λY ) +

√
1− t(

√
λX0 +

√
1− λY0),

with V1 independent of V0. Let r(t) = 1−t
t
, then

Vt =
√
t(V1 +

√
r(t)V0);

Xt =
√
t(X +

√
r(t)X0); and

Yt =
√
t(Y +

√
r(t)Y0).
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Because of the dilation property, we have that

φ(t) = H(V1 +
√
r(t)V0)− λH(X +

√
r(t)X0)− (1− λ)H(Y +

√
r(t)Y0).

By differentation and DeBruijn’s Identity 3.6.7 we have

φ′(t) = r′(t)
2

(
J(V1 +

√
r(t)V0)− λJ(X +

√
r(t)X0)− (1− λ)J(Y +

√
r(t)Y0)

)
.

Finally, notice that

V1 +
√
r(t)V0 =

√
λ(X +

√
r(t)X0) +

√
1− λ(Y +

√
r(t)Y0),

therefore the Blanchman-Stam’s Inequality 3.6.3 implies that

J(V1 +
√
r(t)V0)− λJ(X +

√
r(t)X0)− (1− λ)J(Y +

√
r(t)Y0 ≤ 0.

Replacing this in the expression of φ′(t) and using the fact that r′(t) = −1/t2 ≤ 0 we get
φ′(t) ≥ 0, hence φ(1) ≥ φ(0) ≥ 0.
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4
We won’t go into PDEs!

4.1 Introduction
In this chapter, we will introduce the main ideas from Semigroup Theory and

inequalities in Functional Analysis. They will lead us to the study of two examples of
Concentration of Measure: the Binary Case, which we will prove in Chapter 5, and the
Gaussian case, in Chapter 6.

In Section 4.2, we will define a semigroup of operators, its generators and some
related quantities, such as the Energy and the Carré du Champ operator. We will also
study some examples, such as the Heat Semigroup and the Ornstein-Uhlenbeck Semigroup.
We will use the former to prove the DeBruijn’s Identity (see Theorem 4.2.3) and the latter
to prove the Poincaré’s Inequality for the Gaussian measure (see Theorem 4.4.3).

In Section 4.3, we will define the Functional Entropy Ent(X). This is a quantity
that measures how concentrated the random variable X is, in the sense that Ent(X) = 0
if and only if X is constant. Moreover, we will study some of its properties, such as the
tensorization rule and convexity.

In Section 4.4 we study the main object in this chapter. Poincaré’s Inequality is a
functional inequality, relating two quantities: the energy E(f), and the variance Var(f).
If a probability measure µ satisfies Poincaré’s Inequality with constant c, then for all f
smooth enough, we have

Varµ(f) ≤ cE(f).

At first sight, this does not seem impressive. However, if X has distribution µ, this
inequality says that

P(f(X)− E[f(X)] ≥ t) ≤ 2 exp(−t/c),

for all f 1-Lipschitz. That is, f(X) is exponentially close to its mean.
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We will also prove some properties of such inequalities, such as the tensorization
rule, the perturbation rule and the relation with the spectral gap of the generator of the
semigroup.

Finally, in Section 4.5, we will introduce another functional inequality known as
Log-Sobolev Inequality. This is stronger than the Poincaré’s Inequality, in the sense that
the former implies the latter. We say that a probability measure µ satisfies Log-Sobolev
Inequality with constant c, then for all suitable f , we have

Entµ(f 2) ≤ cE(f).

In some cases, this inequality will take the following form:

Entµ(f 2) ≤ cEµ[‖∇f‖2].

While Poincaré’s Inequality gives an exponential concentration, Log-Sobolev Inequality
provides a Gaussian concentration: let f be 1-Lipschitz and X with distribution µ, then

P(|f(X)− E[f(X)]| ≥ t) ≤ 2 exp(−t2/c).

We will also prove its basics properties, such as tensorization and pertubation
rules, and others equivalent definitions the reader may find in the literature.

4.2 Semigroups and Generators

4.2.1 Semigroups

Definition 4.2.1. A family of linear operators (Pt)t≥0 : B → B on a Banach Space
(B, ‖ · ‖) is a semigroup if

1. P0 = Id;

2. For all f ∈ B, the map t→ Ptf is continuous; and

3. for all t, s ≥ 0, we have Pt+s = Pt ◦ Ps.

In our work, the space B will be the space Cb(M) of real-valued bounded contin-
uous functions f of some Polish Space (M,d) endowed with the uniform norm ‖f‖ =
supx∈M |f(x)|. In this case there is a partial order: f ≥ 0 if and only if f(x) ≥ 0 for all
x ∈M . Then we can define a Markovian Semigroup.

Definition 4.2.2. A semigroup (Pt)t≥0 is Markovian if

4. For the constant function f ≡ 1 we have Ptf = f for all t ≥ 0; and
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5. Ptf ≥ 0, whenever f ≥ 0 (preserves positivity).

A nice property of Markovian Semigroups is the Cauchy-Schwarz’ Inequality.

Lemma 4.2.1. Let (Pt)t≥0 be a Markovian semigroup, then [Pt(fg)]2 ≤ Pt(f)2Pt(g)2. In
particular, [Ptf ]2 ≤ (Ptf 2) when g = 1.

Proof. For a proof, see Guionnet and Zegarlinksi (2003) or van Handel (2014).

We also have that the semigroup is contractive.

Lemma 4.2.2. Let (Pt)t≥0 be a Markovian semigroup, then the semigroup is contractive,
that is, ‖Ptf‖ ≤ ‖f‖.

Proof. Let r = ‖f‖ = supx∈M |f(x)|, then g := −f + r is positive. Hence Pfg ≥ 0.
Linearity and posivity imply

0 ≤ r − Ptf,

hence Pff ≤ r. Taking sup in x gives the result.

Similarly to Subsection 2.10.3, we can define the generator of a Markovian semi-
group.

Definition 4.2.3. Let (Pt)t≥0 be a Markovian semigroup and let

D(L) := {f ∈ B : ∃ lim
t→0+

Ptf − f
t
},

where the limit is taken with respect to the norm ‖ · ‖ on the Banach Space. Then we can
define the operator L : D(L)→ B as

Lf = lim
t→0+

Ptf − f
t

,

and it is called the generator of the Markovian semigroup.

It can be proved that the generator uniquely defines the semigroup (see the book
Pazy (2012)) and we also have the Hille-Yoshida’s Theorem.

Theorem 4.2.1 (Hille-Yoshida’s Theorem). A linear operator L is the generator of a
Markovian semigroup if and only if

1. 1 ∈ D(L) and L1 = 0;

2. D(L) is dense in B;
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3. L is closed and preserves positivity; and

4. For all λ > 0, (λId− L) is invertible and

sup
‖f‖≤1

‖(λId− L)−1f‖ ≤ 1
λ
.

Since we are considering B = Cb(M), for any probability measure µ in M we have

µ(f) :=
∫
M
f dµ <∞,

We can define invariant measures by the following property.

Definition 4.2.4. Let µ be a probability measure inM . Then µ is an invariant measure
of (Pt)t≥0 if µ(Ptf) = µ(f), for all t ≥ 0.

It can be proved that µ is invariant if and only if µ(Lf) = 0 for all f ∈ D(L). Also,
we can extend the semigroup to Lp(µ) := {f : M → R : µ(|f |p) <∞} for all p ∈ [1,∞)
(see Guionnet and Zegarlinksi (2003)).

Definition 4.2.5. We say that a Markovian semigroup is ergodic in B(M) if Ptf
converges to µ(f) in the uniform norm.

There are other definitions that could lead to ergodicity.

Definition 4.2.6. Let (Pt)t≥0 be a semigroup, µ an invariant probability measure and
L2 := L2(µ). We say that Pt : L2 → L2 is ergodic if

lim
t→∞

1
t

∫ t

0
〈Psf, g〉 ds = µ(f)µ(g).

We also say Pt is weak-mixing if

lim
t→∞

1
t

∫ t

0
|〈Psf, g〉 − µ(f)µ(g)| ds = 0.

Finally, it is strong-mixing if

lim
t→∞
〈Ptf, g〉 = µ(f)µ(g),

for all f, g ∈ L2.

Naturally, we have that ergodicity in B(M) implies strong-mixing, which implies
weak-mixing and this implies ergodicity.

When a semigroup is ergodic? Von Neumann Ergodic Theorem for semigroup (see
Krengel (2011), Newman (2015) and Bakry (1997)) states that

lim
t→∞

1
t

∫ t

0
Psf ds = f ∗
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in L2 where f ∗ is the projection of f onto the space of invariant functions Ptg = g for all
t ≥ 0. It is easy to see that

{f : Ptf = f, ∀t ≥ 0} ⊂ {f : Lf = 0},

therefore, if Lf = 0 only when f is constant, we recover the ergodicity of the semigroup.

For more about ergodicity, see Walters (2000) and Krengel (2011).

We can also define reversible measures.

Definition 4.2.7. Let µ be an invariant probability of (Pt)t≥0. We say that µ is reversible
if µ(fPtg) = µ(gPtf), for all f, g ∈ Cb(M) and all t ≥ 0.

This means that Pt is a self-adjoint operator in L2(µ), since µ(fg) is the standard
inner product in L2(µ). We can likewise define it equivalently using L and it will be a
self-adjoint operator as well.

Let J be the set of all reversible probabilities of (Pt)t≥0.

Definition 4.2.8. Let µ ∈ J . The Dirichlet form associated with L is

E(f, g) := µ(f(−L)g).

The Dirichlet form is thereby the quadratic form associated with the self-adjoint
operator L. In the case f = g, we define the energy.

Definition 4.2.9. The energy of f ∈ L2(dµ) is

E(f) := µ(f(−L)f).

Definition 4.2.10. The Carré du Champ operator is

Γ(f, g) := 1
2[Lfg − fLg − gLf ].

In the case g = f , we have Γ(f, f) = 1
2(Lf 2 − 2fLf).

Note that Γ(f, g) is always symmetric. Moreover, notice that

lim
t→0+

Ptf
2 − (Ptf)2

2t = lim
t→0+

(Ptf 2 − f 2)− (Ptf)2 + f 2

2t

= lim
t→0+

(Ptf 2 − f 2)
2t + lim

t→0+

(f − Ptf)(f + Ptf)
2t .

The first term is equal to L(f 2/2) and the second is equal to −fLf , hence the following
lemma.
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Lemma 4.2.3. We have that

Γ(f, f) = lim
t→0+

Ptf
2 − (Ptf)2

2t ,

therefore, Γ(f, f) ≥ 0.

Also, we have that

µ(Γ(f, f)) = 1
2µ(Lf 2) + µ(f(−L)f).

Since µ ∈ J , the first term is 0 and then we obtain the following lemma.

Lemma 4.2.4. We have that E(f, f) = µ(Γ(f, f)). Hence −L is a positive semidefinite
operator in D(L) ∩ L2(M,B(M), µ).

Because of this, the semigroup is also contractive in L2(µ).

Lemma 4.2.5. Let (Pt)t≥0 be a Markovian Semigroup in Cb(M) with reversible invariant
measure µ ∈ J and L, then ‖Ptf‖L2(µ) ≤ ‖f‖L2(µ).

Proof. Let f ∈ D(L) and u(t) = ‖Ptf‖2
L2(µ). Then

d
dtu(t) = 2

∫
M
PtfLPtf dµ = −2E(Ptf) ≤ 0,

hence u(t) ≤ u(0). For general f ∈ L2(µ), we can take fn ∈ D(L) with fn → f in L2(µ),
since D(L) is dense in L2(µ) and use the result for fn.

Lastly, given a Markovian semigroup (Pt)t≥0, there is an unique Markov Chain
with such transition semigroup.

Theorem 4.2.2. Let (Pt)t≥0 be a Markovian semigroup in Cb(M), then there is an unique
(Xt)t≥0 Markov Chain with transition semigroup (Pt)t≥0.

Proof. The proof can be found in Guionnet and Zegarlinksi (2003).

4.2.2 Heat Semigroup and DeBruijn’s Identity
Let us briefly describe some important semigroups.

Definition 4.2.11. Let M = Rn and µt be the centered Gaussian measure in Rn with
covariance matrix

Σ := t Id,

then we can define the heat semigroup (Pt)t≥0 : Cb(M)→ Cb(M) as

Ptf(x) :=
∫
Rn
f(x− y) dµt(dy) =

∫
Rn
f(y) 1

(2πt)n/2 exp
(
− ‖x− y‖

2

2t

)
dy.
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It is easy to see that Ptf = f ∗ γt, where γt is the density of µt. Therefore, Ptf is
the density of X +

√
tY , where X, Y are independent, X has density f and Y ∼ N (0, Id).

Furthermore, let M = S1 = {x ∈ R2 : ‖x‖2
2 = 1} and µ the uniform probability

measure in M . For f ∈ L2(µ), let f = ∑
n∈Z cne

inx its Fourier series. Then we can also
define the Heat Semigroup Ptf by

Ptf(x) =
∑
n∈Z

e−n
2tcne

inx.

The generator of this semigroup satisfies

Lf = 1
2f
′′,

and D(L) = C2
b (M). Therefore, the heat semigroup satisfies the Heat Equation:

∂tPtf = 1
2∆Ptf,

thereby it has neither invariant nor reversible measures. Indeed, suppose there is such
invariant probability measure µ. Let f ∈ C2

b (Rn) ∩ L1(dx), then

Ptf(x)→ 0,

for all x ∈ Rn, by the Dominated Convergence Theorem. Also,

|Ptf(x)| ≤ C,

for some constant C, which depends on f . Then, the Dominated Convergence Theorem
applied to µ implies that

µ(f) = µ(Ptf)→ 0,

hence, for all f ∈ L1(dx) ∩ C2
b (Rn), we have that µ(f) = 0, thereby the contradiction,

since there are functions f ∈ L1(dx) ∩ C2
b (Rn) such that µ(f) 6= 0.

However, the connection between the Heat Equation and the Convolution Formula
provides a powerful identity between the Shannon Entropy and the Fisher Information,
shown in the following theorem.

Theorem 4.2.3 (DeBruijn’s Identity). If X is a random vector with density f ∈ C2(Rn),
Z ∼ N (0, Id) is independent of X and J(X +

√
tZ) exists for t ∈ R+, then

∂uH(X +
√
uZ)

∣∣∣
u=t

= 1
2J(X +

√
tZ).

Proof. Let (Pt)t≥0 be the Heat semigroup, therefore X +
√
tZ has density Ptf . Hence

J(X +
√
tZ) = 4

∫
Rn
‖∇

√
Ptf‖2 dx

=
∫
Rn

‖∇Ptf‖2

Ptf
dx

=
n∑
i=1

∫
Rn

(∂iPtf)2

Ptf
dx.
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Using integration by parts and Corollary 2.5.7, we can see that∫
Rn

(∂iPtf)2

Ptf
dx =

∫
Rn

(∂iPtf)(∂i log(Ptf)) dx

= −
∫
Rn

[∂iiPtf ] logPtf dx,

which means

J(X +
√
tZ) = −

∫
Rn

log[Ptf ]∆Ptf dx.

Let u(t) := f(y)ht(x− y), where ht is the density of Z, then

log u(t) = log f(y) + log ht(x− y)

= log f(y) + n

2 log(2π) + n

2 log t− ‖x− y‖
2

2t ,

then

∂tu(t) = u(t)∂t log u(t) = u(t)
(
n

2t + ‖x− y‖
2

2t2
)
.

Because e−‖x−y‖2/(2t) converges faster than 1/tk diverges for all k when t → 0+, we
have that |∂tu| ≤ C|f(y)|, which is integrable, therefore we can apply the Dominated
Convergence Theorem and get

1
2

∫
Rn

∆Pf t dx =
∫
Rn
∂tPtf dx

= ∂t

∫
Rn
Ptf dx

= ∂t

∫
Rn
f(x) dx

= 0.

Therefore we have

1
2J(X +

√
tZ) = −1

2

∫
Rn

[∆Ptf ] logPtf dx−
1
2

∫
Rn

∆Ptf dx

= −
∫
Rn
∂t

(
Ptf logPtf

)
dx.

Using again the Dominated Convergence Theorem, we can exchange the order of integration
and differentiation and then

1
2J(X +

√
tZ) = ∂t

(
−
∫
Rn
Ptf logPtf dx

)
= ∂tH(X +

√
tZ).

This relation provides a connection between Fisher Information and the Shannon
Entropy. In fact, we have the following corollary.
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Corollary 4.2.1. Let X be a random vector in Rn with a density f ∈ C2(Rn). If J(X)
and N(X) are finite, then J(X)N(X) ≥ n.

Remark 4.2.1. This is inequality also can be called Stam’s Inequality (see the book Raginsky
et al. (2013)). Moreover, we will show this is equivalent to the Gaussian Log-Sobolev
Inequality (see Section 6.3).

Proof. Take Z ∼ N (0, Id) independent of X. Shannon Exponential Entropy Inequality
3.6.5 implies that

N(X +
√
tZ) ≥ N(X) +N(

√
tZ) = N(X) + t.

Both sides of this inequality are continuously differentiable and equal to N(X) when t = 0,
therefore, we must have that N ′(X +

√
tZ) ≥ (N(X) + t)′ = 1 when t = 0. Using the

chain rule, we have

1 ≤ N ′(X +
√
tZ)

∣∣∣∣
t=0

= N(X +
√
tZ)

∣∣∣∣
t=0

2
n
H ′(X +

√
tZ)

∣∣∣∣
t=0

= 1
n
N(X)J(X),

and this is the desired inequality.

We will derive some useful equivalences of this inequality in Chapter 6.

4.2.3 Ornstein-Uhlenbeck Semigroup
Definition 4.2.12. Let M = Rn, then we define the Ornstein-Uhlenbeck semigroup
as

Ptf(x) =
∫
Rn
f
(
e−tx+

√
1− e−2ty

) 1
(2π)n/2 exp

(
− ‖y‖

2

2

)
dy.

Notice that Ptf(x) = E[f(e−tx+
√

1− e−2tY )], where Y ∼ N (0, Id). It is not difficult to
prove that indeed (Pt)t≥0 is a Markovian semigroup.

First of all, let µ be the distribution of a standard Gaussian. Then

µ(Ptf) = E[f(e−tX +
√

1− e−2tY )],

where X, Y are independent standard Gaussians. Let Z = e−tX +
√

1− e−2tY , then Z is
a centered Gaussian vector. Also, since

E[ZiZj] = E[e−2tXiXj] + E[(1− e−2t)YiYj] = δij,

we also have that Z ∼ N (0, Id). Then

µ(Ptf) = E[f(Z)] = µ(f),
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hence µ is invariant. Also, it is not hard to see that, for f ∈ C2(Rn), the generator of Pt is

Lf := ∆f − 〈x,∇f〉.

If U(x) := ‖x‖2/2, it can be rewritten in terms of U :

Lf = ∆f − 〈∇U,∇f〉,

and the Gaussian measure µ can be rewritten as well:

dµ
dx = 1

Z
e−U ,

where Z is a normalization factor. Thereby, the semigroup (Pt)t≥0 satisfies the following
PDE:

∂tPtf = ∆Ptf − 〈∇U,∇Ptf〉.

Using the Dominated Convergence Theorem in the definition of Ptf , we obtain

Ptf → µ(f) a.s,

and in fact we have L2(µ)-convergence for f ∈ Cb(Rn). Hence the semigroup is strong-
mixing. Using Poincaré’s Inequality 4.4, we will later prove its rate of convergence.

The Dirichlet form and the Carré du Champ do not depend on U :

E(f, g) = E〈∇f(X),∇g(X)〉 = µ(〈∇f,∇g〉);
Γ(f, g) = 〈∇f,∇g〉,

and hence µ is reversible and Lf = 0 if and only if f is constant almost surely.

Remark 4.2.2. This semigroup is a particular case of semigroups defined by the generators

Lf := ∆f − 〈∇U,∇f〉,

for some strongly convex function U : Rn → R. The reversible probability measure is the
Boltzmann Measure associated with U and all of them are strong-mixing (see Guionnet
and Zegarlinksi (2003)).

4.2.4 Discrete and Binary Semigroups
Definition 4.2.13. Let (Xi)i∈N be an i.i.d. sequence in Rn with distribution µ. Let (Nt)t≥0

be a Poisson Process independent of (Xi)i∈N. Then the Process (Xt)t≥0, defined as

Xt = XNt ,

is a Markov Process, known as the discrete process.
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It is easy to see that µ is an invariant measure for (Xt)t≥0, that the transition
semigroup is defined as

Ptf(x) = e−tf(x) + (1− e−t)µ(f),

and the Dirichlet form is

E(f, g) = covµ(f, g) =
∫
Rn

(
f − µ(f)

)(
g − µ(g)

)
dµ.

By the formula of Pt, we can see that it is strong-mixing and Lf = 0 if and only if
f is constant µ−a.s.

Also, if X1 ∼ Rad(1/2) and Xn+1 := −Xn recursively, then (Xi)i∈N are dependent,
but identical distributed and Xt := XNt defines another Markov Process.

Definition 4.2.14. Let X1 ∼ Rad(1/2) and Xn+1 := −Xn recursively and (Nt)t≥0 an
independent Poisson Process, then (XNt)t≥0 is called the binary process.

Notice that the transition semigroup is thereby

Ptf(x) = E[f(Xt)],

given X0 = x. Since Xt only takes two values and Xt changes at each jump between them,
we have

Ptf(x) = P(Nt is even)f(x) + P(Nt is odd)f(−x).

These probabilities can be compute directly as

1. P(Nt is even) = 1
2(1 + e−t); and

2. P(Nt is odd) = 1
2(1− e−t).

Hence

Ptf(x) = 1 + e−t

2 f(x) + 1− e−t
2 f(−x).

Taking expected value with respect the Rademacher distribution µ, we obtain that
µ(Ptf) = µ(f), hence µ is invariant. We also have the generator

Ptf(x)− f(x) = 1− e−t
2 f(−x) + e−t − 1

2 f(x).

Dividing by t and letting t→ 0 we obtain

Lf = −1
2f(x) + 1

2f(−x).
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The Dirichlet Form is given by

E(f, g) = µ(f(−L)g) = µ
(
f(x)

[1
2g(x)− 1

2g(−x)
])
.

Hence

E(f, g) = 1
4

(
f(x)[g(x)− g(−x)] + f(−x)[g(−x)− g(x)]

)
= 1

4

(
f(x)− f(−x)

)(
g(x)− g(−x)

)
.

Thereby µ is also reversible. Finally, if

∇f(x) := f(x)− f(−x)
2 ,

then

E(f, g) = E[∇f∇g].

Letting t→∞ in Ptf , we see that Ptf(x)→ 1
2f(x) + 1

2f(−x) = µ(f), hence we
also have the strong mixing property here.

4.3 Functional Entropy
Definition 4.3.1. Let X be a positive integrable random variable and ψ(x) := x log x,
for x ≥ 0, then the functional entropy of X is defined as

Ent(X) = E[ψ(X)]− ψ(E[X]),

with the convention 0 log 0 = 0. In case E[X] = 1, we have Ent(X) = E[X logX].

Remark 4.3.1. We can also extend this concept to an arbitrary probabilty space (M,F , µ).
We will denote Entµ(f) as the functional entropy in this space, that is:

Entµ(f) = µ(f log f)− µ(f) log µ(f),

for a positive measurable function.

Jensen’s Inequality implies the following simple lemma.

Lemma 4.3.1. We have that

Ent(X) ≥ 0,

and equality holds if and only if X is constant almost surely.

Lemma 4.3.1 is the first reason for the name entropy. In this section we will see
that there are differences between the functional entropy and Shannon’s entropy.

A simple example is the following.
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Example 4.3.1. Let X = 1A, for some A and p := P(A), then Ent(X) = −p log p.
Moreover, we have

Ent(1A) + Ent(1Ac) = H(p).

We also have the dilation property.

Lemma 4.3.2. Let X be a random variable with finite entropy Ent(X) and a > 0. Then

Ent(aX) = aEnt(X).

Proof. It can be shown directly:

Ent(aX) = aE[X logX] + aE[X log a]− aE[X logEX]− aE[X log a],

and the result follows canceling the second and last terms.

This already shows a difference between the entropies, namely,

lim
a→∞

Ent(aX)
a

= Ent(X),

but

lim
a→∞

H(aX)
a

= 0,

since H(aX) = H(X) in the discrete case and H(aX) = H(X) + log a in the continuous
case.

A generalization of Lemma 4.3.2 can be computed for independent random vari-
ables.

Lemma 4.3.3. Let X, Y ≥ 0 be independent, then

Ent(XY ) = E[X]Ent(Y ) + E[Y ]Ent(X).

In particular, if E[X] = E[Y ] = 1, then

Ent(XY ) = Ent(Y ) + Ent(X).

We can bound from above the functional entropy by the covariance of certain
random variables.

Lemma 4.3.4. Let X be a random variable, then Ent(eX) ≤ cov(X, eX).

Proof. The concavity of log implies that logE[eX ] ≥ E[X], then

Ent(eX) ≤ E[XeX ]− E[X]E[eX ] = cov(X, eX),

hence the result.
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The final definition of this section is the relative entropy with respect the Functional
Entropy.

Definition 4.3.2. Let Q,P be two probabilities in the space measurable space (Ω,F).
Then we define the relative entropy as

D(Q||P) :=

EntP
(

dQ
dP

)
, if Q� P;

+∞, otherwise.

The relative entropy is a generalization of the Kullback-Leibler divergence, so we
use the same notation. To see that, if Q,P have density f, g with respect to the Lebesgue
measure in Rn, then dQ

dP = f
g
, hence

D(Q||P) =
∫
Rn

f

g
log f

g
gdx =

∫
Rn
f log f

g
dx,

Lemma 4.3.5. Let X be discrete in X and p(x) = P(X = x) and let µ be the counting
measure in X , then

Entµ(p) = −H(X).

In the continuous case, if f is the density of X, then Entdx(f) = −H(X). Moreover, if U
is uniform in X , then

Ent(p(U)) = 1
|X |

(
log |X | −H(X)

)
.

In the continuous case, if X has compact support K with density f and U is uniform in
K, then

Ent(f(U)) = 1
λ(K)

(
log λ(K)−H(X)

)
,

where λ(K) is the Lebesgue measure of K.

Proof. To show the first part of the lemma we just notice that

µ(p) =
∑
x∈X

p(x) = 1,

hence the second factor of Entµ(p) is zero. The continuous case also follows from

λ(f) =
∫
Rn
f dx = 1.

The second part follows since

E[p(U)] =
∑
x∈X

1
|X |

p(x) = 1
|X |

,
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then

Ent(p(U)) = 1
|X |

∑
x∈X

p(x) log p(X)− 1
|X |

log 1
|X |

,

hence

Ent(p(U)) = 1
|X |

(
log |X | −H(X)

)
.

The continuous case follows similarly.

The second part of the theorem provides another proof for H(X) ≤ log |X | in the
discrete case and equality if and only if X is uniform, since in this case p(U) is constant.
The continuous case also provides that H(X) ≤ log λ(K) if equality if and only if X is
uniform in K.

4.3.1 Convexity and duality formulas
In this section we explore more properties of the Functional Entropy. The first we

will prove is the Variational Formula.

Theorem 4.3.1. Let X ≥ 0, then

Ent(X) = sup{E[XZ] : E[eZ ] = 1}.

Proof. Take Z such that E[eZ ] = 1, then we can define a probability measure such that
dQ = eZdP. Therefore

0 ≤ EntQ(e−ZX) = E[X log(e−ZX)]− E[X] logE[X] = Ent(X)− E[XZ],

hence Ent(X) ≥ E[XZ]. Equality occurs when Z = log(X/E[X]).

Remark 4.3.2. In fact, we have that

Ent(X) = sup
f :E[ef(X)]=1

E[Xf(X)].

Indeed, if Z = f(X), we see that

sup{E[Xf(X)]| E[ef(X)] = 1} ≤ sup{E[XZ] : E[eZ ] = 1},

and equality holds for f = log x
log(E[X]) .

Let F be the space of all positive random variables. Then the first impressive
corollary is that Ent(Z) is the supremum of affine functions of Z, hence it is convex in F.
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Corollary 4.3.1. The function Ent : F→ R+ is convex. Since Ent(aX) = aEnt(X), for
a ≥ 0, it is also subadditive.

A consequence of this is an upper bound for the Functional entropy.

Corollary 4.3.2. Let X be supported on a compact set K ⊂ [0,∞), that is,

X(Ω) ⊆ K,

and c = ‖X‖∞. Then Ent(X) ≤ cH(X). In particular, if λ(K) is the Lebesgue measure
of K, then Ent(X) ≤ c log λ(K).

Proof. Let Xn := ∑n
k=1 ck,n1Ek,n be a sequence of simple functions which increase to X.

Then, by the Dominated Convergence Theorem, we have

1. Ent(Xn)→ Ent(X); and

2. H(Xn)→ H(X).

But the subadditive property implies that

Ent(Xn) ≤
n∑
k=1

cn,kEnt(1Ek,n) ≤ cH(Xn),

and the desired result follows by taking the limit in n.

The subadditive property also gives an upper bound on the entropy of X + a.

Corollary 4.3.3. Let f : R+ → R+ be defined as

f(x) := Ent(X + x),

then f is nonincreasing.

Proof. Let x ≤ y, then

f(y) = Ent(X + y) = Ent(X + x+ (y − x)) ≤ Ent(X + x) + Ent(y − x).

Since y − x is constant, Ent(y − x) = 0, hence the result.

We are now able to prove the Dualities Formula for the Relative Entropy.

Theorem 4.3.2. Let Q,P be two probability measures and EQ,E denotes the expected
value with respect these measures, then

D(Q||P) = sup
Z:E[eZ ]<∞

{EQ[Z]− logE[eZ ]}
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Remark 4.3.3. In Optimization Theory, the Fenchel conjugate function of f : V → R
is

f ∗(y) := sup
x
{〈x, y〉 − f(x)},

where y ∈ V ∗, the dual space of V , and 〈y, x〉 := y(x). Thereby, noticing that if

〈Q, Z〉 := EQZ,

then this theorem says that

D(·||P) = (Z → logE[eZ ])∗,

the Fenchel conjugate function of the log-Generating Function.

Proof. Suppose Q� P and set X = dQ
dP , then

D(Q||P) = Ent(X) = sup
Z:E[eZ ]=1

E[XZ].

Now, we can change variables to Y = Z + a, then a = log(E[eY ]) and

E[XZ] = E[X(Y − a)] = EQY − logE[eY ],

hence

D(Q||P) = sup
Y :E[eY ]<∞

{EQ[Y ]− logE[eY ]}.

If Q is not absolutely continuous with respect P, there is a set A such that P(A) = 0,
but Q(A) = a > 0. Let Y = n1A, then

logE[eY ] = 1,

since Y = 0 P−a.s, but EQ[Y ] = na, hence the supremum is also infinity and the theorem
is proved.

If a function f : Rn → R is convex and closed, that is, if {(x, t) : f(x) ≤ t} is
a closed set, then it is a well-known fact that (f ∗)∗ = f (see Boyd and Vandenberghe
(2004)). The next theorem is the second duality formula and states that this also holds
for D(Q||P).

Theorem 4.3.3. Let Z be a random variable, then

logE[eZ ] = sup
Q:Q�P

{EQ[Z]−D(Q||P)}.
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Proof. Suppose E[eZ ] <∞. Let X = dQ
dP and U = Z − logE[eZ ], thereby

E[eU ] = E[eZ ]/E[eZ ] = 1,

then

D(Q||P) = Ent(X) ≥ E[XU ] = E[XZ]− logE[eZ ],

hence

logE[eZ ] ≥ E[XZ]−D(Q||P) = EQ[Z]−D(Q||P),

thus logE[eZ ] ≥ supQ�P{EQ[Z]−D(Q||P)}. Setting

dQ
dP := eZ

E[eZ ] ,

we obtain

EQ[Z]−D(Q||P) = E[ZeZ ]
E[eZ ] − E

(
eZ

E[eZ ] log eZ

E[eZ ]

)
,

which leads to

EQ[Z]−D(Q||P) = logE[eZ ],

then

logE[eZ ] = sup
Q:Q�P

{EQ[Z]−D(Q||P)}.

If E[eZ ] =∞, let Zn = Z1|Z|≤n and

dQn

dP := eZn

E[eZn ] ,

then

EQn [Zn]−D(Qn||P) = logE[eZn ],

by the previous argument. Since |EQn [Zn]− EQn [Z]| → 0 and logE[eZn ]→∞, we obtain

EQn [Z]−D(Qn||P)→∞,

hence the desired result in both cases.

This result is impressive, since Relative Entropy and log-Generating function do
not seem to be related at first sight, but they are the Fenchel conjugate of each other.

Also, we can actually recover the log-Generating function as a corollary of this.
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Corollary 4.3.4. Let X be a r.v. and ψ(λ) := logE[eλX ], then

ψ(λ) = sup
Q:Q�P

{λEQ[X]−D(Q||P)}.

When proving the Duality Formula, we used

dQ
dP = eZ

E[eZ ] .

Since this is a common and well-explored technique, let us define this kind of measures.

Definition 4.3.3. Let µ be a probability in M , and f : M → R an exponentially
integrable function, that is,

µ(f) =
∫
M
efdµ <∞.

Then we can define the f−tilting as the measure µf such that

dµf
dµ = ef

µ(ef ) .

In the case f(x) = λx and X ∼ µ, we denote Qλ := µf and

dQλ

dP = eλX

E[eλX ]

This kind of technique helps to simplify expression, as well as to verify properties
of µ (see Theorem 4.5.6, for instance).

The final result in this section is another duality formula, due to Donsker and
Varadhan (1975).

Theorem 4.3.4. Let X be a centered r.v. and ψX(λ) = logE[eλX ]. Suppose

ψ|X|(λ) <∞,

for all λ ∈ R, then its Fenchel conjutage ψ∗(t) := supλ∈R{λt− ψ(λ)} is equal to:

g(t) := inf{D(Q||P) : Q� P, EQ[X] ≥ t}.

Proof. First of all, it is easy to show that ψ∗(t) ≤ g(t), for all t ≥ 0. It is a direct
consequence of the duality formula. Also, the fact that t > 0 imposes a condition on the
supremum in λ, say, by Jensen’s Inequality

λt− ψ(λ) ≤ λt < 0,

for λ ≤ 0, then we can take the supremum over λ ≥ 0.
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Suppose X is constant, that is, X = 0 almost surely (we supposed X centered).
Then ψ∗(0) = 0 and ψ∗(t) =∞ for all t > 0. On the other hand, if X is constant almost
surely with respect to P and Q� P, then X is also constant almost surely with respect
to Q, then

EQX = 0.

If t = 0, then we can set Q = P and get g(0) = 0, and for t > 0 the otimization problem
in g is infeasible, hence g(t) =∞. Therefore the constant X case is proved. Thus we can
consider X not constant almost surely, that is, var(X) > 0.

Let s = ess sup X := inf{c > 0 : P(X > c) = 0}. The first case we will analyze
will be t < s. The condition ψ|X|(λ) < ∞ implies that we can differentiate under the
integral sign and all derivatives of ψX(λ) are finite. Therefore we can easily deduce that

1. ψ′(λ) = E[XeλX ]
E[eλX ] ; and

2. ψ′′(λ) = varQλ(X) > 0,

for all λ ≥ 0, where Q is the λ−tilting. Hence ψ′ is strictly increasing function. It is
well-known fact that

ψ′(λ) = E[XeλX ]
E[eλX ]

is a smooth approximation of s, that is, ψ′(λ) ↗ s and it is a bijective increasing map
from (0,∞) to (0, s). By Intermediate Value Theorem, we can find a λ0 such that

ψ′(λ0) = t,

then ψ∗(t) = tλ0 − ψ(λ0). Setting Qλ0 , the filting measure, we ensure that

EQλ0
[X] = t,

and we can easily see that D(Qλ0 ||P) = ψ∗(λ0). Hence the equality. If s =∞, then the
theorem ends here.

Thus suppose s < ∞. If t > s, then we can note that both ψ∗(t) and g(t) are
infinity and it is also proved the equality.

Finally the case t = s. Let a = P(X = s), and then we have two situations.

(Situation I: a = 0). We know that X ≤ s Q−a.s for all Q� P and Q(X = s) = 0.
If EQ[X] ≥ s, we obtain that X = s Q-a.s., which contradicts Q(X = s) = 0, therefore
the otimization problem in g is infeasible, hence g(s) =∞.
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Also, we have that ψ∗(s) = limλ{λs− ψ(λ)}. It can also be written as

ψ∗(s) = lim
λ→∞

log
(
E[eλ(s−X)]

)
.

Since a = 0, we have that λ(s−X)↗∞ almost surely and the Monotone Convergence
Theorem implies that E[eλ(s−X)]→∞, hence ψ∗(s) is also infinity.

(Situation II: a > 0). Let Q be such that

dQ
dP = 1X=s

a
,

there is, Q(A) = P(A∩{X=s})
P(X=s) , the conditional probability. We clearly have

EQ[X] = s,

and we can compute the relative entropy and find D(Q||P) = − log a. Hence

g(s) ≤ − log a.

Then we just need to show that ψ∗(s) = − log a. Let F be the distribution of X. We can
decompose F in a part G and the other will be a Dirac measure in s, that is,

F = CG + aδs,

where C is a normalization constant and G is supported in (−∞, s). Therefore, we have

ψ∗(s) = log
[

lim
λ→∞

(
eλs∫

R e
λx dG + aeλs

)]
= log

[
lim
λ→∞

1
a+ C

∫
R e

λ(x−s) dG

]
.

Since G is supported in (−∞, s) and eλ(x−s) ≤ 1, for all λ ≥ 0 and x ∈ (−∞, s), we can
apply the Dominated Convergence Theorem and get

C
∫
R
eλ(x−s)dG→ 0,

hence ψ∗(s) = − log a. Thereby the theorem is proved.

To know more about the Duality Formulas, see the books van Handel (2014) and
Boucheron et al. (2013). Moreover, they are useful in Large Deviation Theory. More
information about Large Deviations can be found in Durrett (2019), Dupuis and Ellis
(2011), Den Hollander (2008) and Mörters (2008).

4.3.2 Evolution of Entropy
In this section, we study the evolution of Entropy under the action of a semigroup.
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Theorem 4.3.5. Let (Pt)t≥0 be a Markovian Semigroup in Cb(M) and µ an invariant
measure. Then

d
dtEntµ(Ptf) = −E(logPtf, Ptf).

Proof. Let f ∈ D(L) and assume, without loss of generality, that µ(f) = 1. Then the
entropy is

Entµ(Pt) =
∫
M
Ptf logPtf dµ.

The differential of Ptf logPtf is

d
dtPtf logPtf = [LPtf ] logPtf + LPtf.

Since

lim
t→0+

Ptf logPtf − f log f
t

= d
dtPtf logPtf,

we can differentiate under the integral, that is,

d
dtEntµ(Ptf) = µ

(
[PtLf ] logPtf

)
+ µ(PtLf).

The second term is zero and the first is −E(logPtf, Ptf).

This theorem implies that the evolution of Entµ(Ptf) is controlled by the Dirichlet
Form. Let us apply this to the special cases we mentioned in the last section.

Example 4.3.2. The Dirichlet Form of the Ornstein-Uhlenbeck Semigroup is

E(f, g) = µ(〈∇f,∇g〉),

where µ is the standard Gaussian measure. Hence

E(log f, f) = µ
(
‖∇f‖2/f

)
.

For f ≥ 0, we obtain E(log f, f) ≥ 0, hence Entµ(Ptf) is nonincreasing in time. We will
see in Theorems 4.5.1 and 6.3.1 that we actually have an exponential entropy rate of
convergence, that is,

Entµ(Ptf) ≤ e−2tEntµ(f).

Example 4.3.3. The Dirichlet Form of the Discrete Semigroup is

E(f, g) = covµ(f, g) = µ(fg)− µ(f)µ(g).
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Hence

E(log f, f) = µ(f log f)− µ(log f)µ(f).

Since Entµ(f) ≤ cov(f, log f), we obtain

E(log f, f) ≥ Entµ(f) ≥ 0,

hence Entµ(Ptf) is nonincreasing in time. In fact, notice that

d
dtEntµ(Ptf) = −E(logPtf, Ptf) = −cov(Ptf, logPtf) ≤ −Entµ(Ptf)

Let u(t) = Entµ(Ptf), then we have

u′(t) + u(t) ≤ 0.

Multiplying by et, we obtain

(u(t)et)′ ≤ 0,

therefore the function u(t)et is nonincreasing, that is,

Entµ(f) = u(0) ≥ etEntµ(Ptf),

hence Entµ(Ptf) ≤ e−tEntµ(f) and we obtain the exponential entropy ergodicity.

The binary case has Dirichlet form

E(log f, f) = 1
4

(
log f(x)− log f(−x)

)(
f(x)− f(−x)

)
.

Now, fix a ∈ R+ and the function f(y) := (log y − log a)(y − a), for y > 0, then

f ′(y) = y − a
y

+ (log y − log a),

hence f achieves its mininum value in y = a, that is, f(y) ≥ f(a) = 0. Therefore, we also
obtain here that Entµ(Ptf) is nonincreasing in time.

4.3.3 Tensorization
In this section we study the Tensorization Property of Entropy. In order to do so,

we first define Conditional Entropy.

Definition 4.3.4. Let X be a positive random variable and G ⊆ F be a sub-σ algebra of
F . Let ψ(x) = x log x, then we define the conditional entropy of X to G as

Ent(X|G) = E[ψ(X)|G]− ψ(E[X|G]).
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Again, Ent(X|G) = 0 if and only if E[X|G] is constant almost surely with respect
to G and we have the following variational formula.

Corollary 4.3.5. The conditional entropy satisfies the variational formula below:

Ent(X|G) = sup
Z:E[eZ ]=1

{E[XZ|G]}.

We can now state and prove the Tensorization Rule.

Theorem 4.3.6. Let X1, ..., Xn be independent r.v. and f : Rn → R+ be a positive
function. Let Z = f(X1, ..., Xn) and

Enti(Z) := Ent(Z|(X1, ..., Xi−1, Xi+1, ...Xn))

be the entropy conditioned to all Xk but Xi. Then

Ent(Z) ≤ E
( n∑
k=1

Entk(Z)
)
.

Proof. Let U1 = logE[Z|X1]− logE[Z] and

Uk := logE[Z|(Xk, ..., X1)]− logE[Z|(Xk−1, ..., X1)],

for 2 ≤ k ≤ n. Therefore, Uk is such that

Ent(Z) = E[Z(logZ − logEZ)] =
n∑
k=1

E[ZUk].

Now, let k ≥ 2 be fixed (the case k = 1 is similar) and define, for simplicity

Zk := E[Z|(Xk, ..., X1)].

Take Gk := σ(X1, ..., Xk−1, Xk+1, ..., Xn). Then we have that

eUk = Zk
Zk−1

∈ σ(X1, ..., Xk),

since it only depends on the first k coordinates. Now, we can take conditional and then

E[eUk |Gk] = E
(
Zk
Zk−1

∣∣∣∣(X1, ..., Xk−1)
)
.

Because Zk−1 is σ(X1, ..., Xk−1)-measurable, we can take it out of the conditional expec-
tation and hence

E[eUk |Gk] = 1
Zk−1

E[Zk|(X1, ..., Xk−1)].

The Tower Property of conditional expectation implies the Martingale Property, namely,

E[Zk|(X1, ..., Xk−1)] = Zk−1,
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then

E[eUk |Gk] = 1.

The projection property implies that E[eUk ] = 1 and the Variational Formula for the
Conditional Entropy ensures that

E[ZUk|Gk] ≤ Ent(Z|Gk) = Entk(Z).

Taking expectation leads to E[ZUk] ≤ E[Ent(Z|Gk)]. The sum of E[ZUk] gives the desired
result.

This theorem implies that in order of bound the Entropy of a random function
f(X1, ..., Xn), we can bound the individual Entropy of f(X1, ..., Xn) with all but one
coordinate fixed and then sum them up. Although it does not seem to lead to interesting
results, it is easier to control the fluctuations of single variable functions and in Section
4.5 we will derive some powerful tools and consequences using only tensorization and the
Herbst’s Method 4.5.6.

4.4 Poincaré’s Inequality
In this section, we will describe the first important functional inequality that will

help us to prove an exponential concentration of measure.

The Poincaré’s Inequality reads as follow.

Definition 4.4.1. Let (Pt)t≥0 be a Markovian Semigroup in Cb(M) and µ an invariant
probability measure. Let also Varµ(f) := µ[f − µ(f)]2 and E(f) be the energy. If

Varµ(f) ≤ cE(f),

for all f ∈ D(L) and for some c > 0, then we say that (L, µ) satisfies Poincaré’s
Inequality with constant c.

Although this does not seem too strong, in fact we have the following equivalence.

Theorem 4.4.1. Let (Pt)t≥0 be a Markovian Semigroup in Cb(M) and µ an invariant
probability measure. Then the following are equivalent.

1. We have that

Varµ(f) ≤ cE(f),

for all f ∈ D(L); and
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2. If f ∈ L2(µ), then

‖Ptf − µ(f)‖L2(µ) ≤ e−t/c‖f − µ(f)‖L2(µ).

Thus we can see that Poincaré’s Inequality is equivalent with an exponential
ergodic rate of L2-convergence.

Proof. (1)⇒ (2). Note first that

d
dtVarµ(Ptf) = −2E(Ptf)

by a direct computation. Then, applying (1) to Ptf we obtain

Varµ(Ptf) ≤ cE(Ptf) = − c2
d
dtVarµ(Ptf).

Let u(t) = Varµ(Ptf), then the inequality above means

u′(t) + 2
c
u(t) ≤ 0.

Multiplying by e2t/c, we have

[e2t/cu(t)]′ ≤ 0,

hence e2t/cu(t) ≤ u(0) = Varµ(f). Replacing Varµ(Pt) = ‖Ptf −µ(f)‖2
L2(µ) gives the result.

(2)⇒ (1). Since

2E(f) = 2E(Ptf)
∣∣∣∣
t=0

= − d
dtVarµ(Ptf)

∣∣∣∣
t=0
,

we obtain

2E(f) = lim
t→0

Varµ(f)− Varµ(Ptf)
t

.

By (2), we have that Varµ(Ptf) ≤ e−2t/cVarµ(f), then

2E(f) ≥ lim
t→0

1− e−2t/c

t
Varµ(f) = 2

c
Varµ(f),

and it is proved.

In fact, we can prove more if we assume reversibility. Since our goal is not Poincaré’s
Inequality, let us just state the result.

Theorem 4.4.2. If µ is an invariant and reversible measure, then (1) and (2) are also
equivalent to

3. E(Ptf) ≤ e−2t/cE(f), for all f ∈ D(L) and t ≥ 0.
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Proof. The proof can be found in van Handel (2014).

Item 3 is perhaps the easiest way to prove Poincaré’s Inequality in general cases.
The first example of its use is to prove Gaussian Poincaré’s Inequality.

Theorem 4.4.3. Let γ be the standard Gaussian measure in Rn. Then, for all f ∈ C1
b (Rn)

we have

Varγ(f) ≤ Eµ‖∇f‖2.

Proof. Let (Pt)t≥0 be the Ornstein-Uhlenbeck Semigroup with the reversible and invariant
measure γ, which is the standard Gaussian measure in Rn. We have seen that

E(f) = µ(‖∇f‖2),

and a direct computation in the definition of Ptf gives

∇Pt(x) = e−tPt∇f(x),

in the sense that Pt∇f(x) is the vector with coordinates Pt∂if(x). Hence

E(Ptf) = e−2tµ(‖Pt∇f‖2).

Since Pt is contractive in L2(µ), we have that

E(Ptf) ≤ e−2tµ(‖∇f‖2) = e−2tE(f).

Therefore we have Gaussian Poincaré’s Inequality with constant c = 1.

This shows the power of the Ornstein-Uhlenbeck Semigroup, since it is easy to
manipulate.

Example 4.4.1. Let us remember the definition of the binary semigroup Pt.

Ptf(x) = 1 + e−t

2 f(x) + 1− e−t
2 f(−x).

E(f) = 1
4

(
f(1)− f(−1)

)2

Therefore, we have

E(Ptf) = 1
4

(
e−tf(1)− e−tf(−1)

)2
= e−2tE(f),

and this leads to a Poincaré’s Inequality with constant c = 1. Even though we did not
define the Semigroup in {−1, 1}n, we could get the same result using

L(f) := E‖∇f(X)‖2,
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where

∇if(x1, ..., xn) = 1
2(f(x1, ..., xn)− f(x1, ..., xi−1,−xi, xi+1, ..., xn)),

and X is uniform in Hn = {−1, 1}n. The Var(f) is the variance of f(X) and we have
Poincaré’s Inequality below.

Theorem 4.4.4. If X ∈ Hn is uniform and f : Hn → R, then

Var(f(X)) ≤ E‖∇f(X)‖2.

Our final Poincaré’s Inequality is for Boltzmann measures. The proof will be based
on Caffarelli’s Contraction Theorem and Brenier Optimal Transport function. (see Chafai
and Lehec (2018), Fathi et al. (2019), Kim and Milman (2012) and Caffarelli (2000)).

Theorem 4.4.5 (Caffarelli’s Contraction Theorem). Let V : Rn → R be a strongly convex
function with Hess(V ) � p Id, for some p > 0 and let µ the Boltzmann measure associated
with V . Let also γp be the Gaussian measure in Rn with density proportional to e−p‖x‖2/2.
Then there is a convex funcion φ ∈ C1(Rn) such that T = ∇φ is 1-Lipschitz and µ is the
push forward of the Gaussian measure γp, that is, µ(A) = γn(T−1A), for all Borel sets A.

The map T is called the Brenier Optimal Transport function. It is a map
that minimizes

inf
T :T∗γp=µ

∫
Rn
‖T (x)− x‖2 dγn,

where T∗γp denotes the push forward measure (see the books Ané et al. (2000) and van
Handel (2014)).

Now we can prove Poincaré’s Inequality for Boltzmann Measures.

Theorem 4.4.6. Let V : Rn → R be a strongly convex function such that Hess(V ) � pId,
for some p > 0 and let µ be the Boltzmann measure associated with V . Then for all
f ∈ C1(Rn), we have

Varµ(f) ≤ 1
p
Eµ‖∇f‖2.

Proof. Let T be Brenier map between γp and µ. Since T∗γn = µ, we have

Varµ(f) = Varγp(f ◦ T ).

By Gaussian Poincaré’s Inequality (note that the variance is no longer equal to 1), we
have

Varµ(f) = Varγp(f ◦ T ) ≤ 1
p

∫
Rn
‖∇f ◦ T‖2 dγp.
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The chain rule and the fact T is 1-Lipschitz imply

Varµ(f) ≤ 1
p

∫
Rn
‖∇f‖2 ◦ T dγp.

Replacing back T∗γp = µ, we obtain Poincaré’s Inequality for µ.

4.4.1 Spectral Gap Inequality
Poincaré’s Inequality is also known as Spectral Gap Inequality. To explain this

name, let us recall some definitions in Functional Analysis. For simplicity, let

L2(µ) := L2(M,B(M), µ),

where (M,d) is a Polish Space.

Definition 4.4.2. Let L : L2(µ)→ L2(µ) be a linear operator. Then the set ρ(L) ⊂ C,
defined as

ρ(L) := {λ ∈ C : (λId− L)−1 is a continuous operator},

is known as the resolvent set of L.

Definition 4.4.3. The set σ(L) = C \ ρ(L) is called the spectrum of L

Definition 4.4.4. A pair (λ, f) ∈ C× L2(µ), where f 6= 0, which satisfies the equation

Lf = λf,

is known as the eigenvalue and associated eigenfunction.

In Linear Algebra, the spectrum is the set of eigenvalues. However, for infinite
dimensional operators, the spectrum can be strictly larger than the set of eigenvalues.
That is one of the biggest differences between finite and infinite dimensional operators.

Suppose now we have a generator of a Markovian Semigroup L with reversible
invariant measure µ. Then L is a self-adjoint operator, that is,

〈f,Lg〉 := µ(fLg) = 〈g,Lf〉

Moreover, our operator is nonpositive, that is, 〈f,Lf〉 ≤ 0. Therefore, we can
restrict σp to the set of real λ such that λf = Lf . Finally, 0 ∈ σp, since L1 = 0.

With this in mind, we can define the spectral gap.

Definition 4.4.5. The spectral gap of a Markovian Generator is |λ1|, where

λ1 := sup{λ : λf = Lf, for some nonconstant f}.

Therefore, the spectral gap is the difference between the trivial eigenvalue 0 and the first
nontrivial eigenvalue λ1.
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Now suppose L has spectral gap m > 0, and take f = f0 + f1, where f0 and f1 are
the ortogonal projection of f onto the constant space and its perpendicular. Then

E(f) = −〈(f0 + f1)L(f0 + f1)〉.

Since Lf0 = 0 and L is self-adjoint, we have

E(f) = −〈f0 + f1,Lf1〉 = −〈f1,Lf1〉.

Hence we can assume, for our purposes, that f ⊥ 1, that is, µ(f) = 0. In finite dimensional
analysis, we have the formula (see Lax (2007)):

m = inf
f⊥1, f 6=0

〈f, (−L)f〉
‖f‖2 .

However, in infinite dimensional spaces, we require compactness of the operator to argue
this (see the book Conway (2010)). Let

B := {f : ‖f‖ = 1},

the unit sphere in L2(µ). Then we have the following definition.

Definition 4.4.6. We say that an operator L : L2(µ)→ L2(µ) is compact if the closure
of L(B) is compact.

Using this definition, we have the following theorem.

Theorem 4.4.7. Let T be a compact positive self-adjoint operator in L2(µ) and

λ := inf{σ : σ is eigenvalue}.

Then

λ = inf
f∈B
〈f, Tf〉.

Suppose then (−L) is compact, hence

m = inf
f⊥1

〈f, (−L)f〉
‖f‖2 ,

and it follows that

E(f) = 〈f, (−L)f〉 ≥ m‖f‖2 = mVar(f),

that is, (L, µ) satisfies Poincaré’s Inequality with constant c = 1/m.

On the other hand, let C be the infimum of all c > 0 such that (L, µ) satisfies
Poincaré’s Inequality with constant c, that is,

C = inf
f⊥1

Var(f)
〈f, (−L)f〉 ,
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then the spectral gap of −L is m = 1/C.

Therefore, we can find the Poincaré’s Inequality constant just taking the inverse of
the Spectral Gap constant. That is why some references call it the spectral gap inequality.

Remark 4.4.1. Of course, we could redefine the spectral gap in terms of inff∈B〈f, (−L)f〉
and get the same result without the assumption that (−L) is compact.

Because of Theorem 4.4.1, we can see that the spectral gapm controls the ergodicity
of Pt. This is expressed in the following last lemma.

Lemma 4.4.1. Let (Pt)t≥0 be a Markovian Semigroup, with invariant probability measure
µ and generator L. Let m be the spectral gap constant of L, then

‖Ptf − µ(f)‖L2(µ) ≤ e−mt‖f − µ(f)‖L2(µ).

4.4.2 Tensorization
In this subsection, we will prove an useful formula which helps to prove Poincaré’s

Inequality in the case of product measure. We will restrict ourselves to the case where the
energy is

E(f) = Eµ‖∇f‖2.

For the general energy proof, we can see it in Guionnet and Zegarlinksi (2003). Let us
state the theorem.

Theorem 4.4.8. Let µ1 and µ2 be two measures in (Ω1,F2) and (Ω2,F2), respectively.
Suppose µ1 and µ2 satisfy a Poincaré’s Inequality with constant c1 and c2, respectively, then
the product measure µ1×µ2 satisfies a Poincaré’s Inequality with constant c = max{c1, c2},
that is, for all f ∈ C1(Ω1 × Ω2), we have

Varµ1×µ2(f) ≤ cEµ1×µ2‖∇f‖2.

Remark 4.4.2. As a particular case, we can see that if µ satisfies Poincaré’s Inequality
with constant c, then µ× ...×µ also satisfies Poincaré’s Inequality with the same constant,
for all finite dimensional product of µ.

Proof. Let f(x, y) ∈ L2(µ), where µ = µ1 × µ2. Then Fubini’s Theorem states that

Varµ(f) =
∫

Ω2

∫
Ω1

(f − µ(f))2 dµ1 dµ2.

The inside integral can be computed as∫
Ω1

(f − µ(f))2 dµ1 = µ1(f 2)− 2µ1(f)µ(f) + [µ(f)]2.
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Now, if we note that

µ1(f − µ1(f))2 = µ1(f 2)− 2[µ1(f)]2 + [µ1(f)]2 = µ1(f 2)− [µ1(f)]2,

then ∫
Ω1

(f − µ(f))2 dµ1 = µ1(f − µ1(f))2 + [µ1(f)]2 − 2µ1(f)µ(f) + [µ(f)]2.

The second term is (µ1(f)− µ(f))2, hence

Varµ(f) = µ2[µ1(f − µ1(f))2] + µ2[(µ1(f)− µ(f))2].

For a fixed y, Poincaré’s Inequality in µ1 states

µ1(f − µ1(f))2 ≤ c1Eµ1‖∇xf(x, y)‖2.

Also, since µ(f) = µ2(µ1(f)), Poincaré’s Inequality for µ2 says that

µ2[(µ1(f)− µ(f))2] ≤ c2Eµ2‖∇µ1(f)‖2.

Hence

µ1(f − µ1(f))2 ≤ cµ2

(
µ1[‖∇xf(x, ·)‖2] + ‖∇µ1(f)‖2

)
.

Finally, we must prove that

µ2[‖∇µ1(f)‖2] ≤ µ2(µ1[‖∇yf‖2]), (4.1)

but this is a direct consequence of Jensen’s Inequality. Therefore the theorem is proved.

Remark 4.4.3. It is worth to mention that the proof in the general case is the same, except
for Inequality 4.1, where we have to prove the convexity of the Carre Du Champ Operator.

The Tensorization Theorem is an important tool to prove Poincaré’s Inequality
for product measures, since it is sufficient to prove it for each of the marginal measures.
Because of this, a tensorization lemma is very useful in many situations. For instance, we
will also see the tensorization theorem in the Log-Sobolev Inequality (see Theorem 4.5.3).

4.4.3 Perturbation
Suppose (µ,Γ) satisfies Poincaré’s Inequality, in the sense that

Varµ(f) ≤ cµ(Γ(f)),

for all f ∈ D(L). Is it true that all small perturbations of µ satisfy Poincaré’s Inequality
with the same Carré Du Champ Operator?



4.4. Poincaré’s Inequality 153

Definition 4.4.7. Let µ and ν be two measures in the same measurable space. We say
that ν is a bounded perturbation of µ if ν � µ and there are two constants ε, δ > 0
such that

ε ≤ dν
dµ ≤ δ.

Remark 4.4.4. We could define it equivalently as all the ν in the form 1
Z
e−V dµ, where Z

is a normalization factor and V is a bounded function.

The Pertubation Theorem reads as follow.

Theorem 4.4.9. Suppose (µ,Γ) satisfies a Poincaré’s Inequality with constant c. Let ν be
a bounded perturbation of µ with constant (ε, δ), then (ν,Γ) satisfies Poincaré’s Inequality
with constant δc

ε
.

Proof. Since ν(f) minimizes Eν(f − c)2, we have

Varν(f) ≤ Eν(f − µ(f))2.

Because of the upper bound on the Radon-Nikodym derivative, we obtain

Eν(f − µ(f))2 ≤ δEµ(f − µ(f))2.

Poincaré’s Inequality for µ implies that

δEµ(f − µ(f))2 ≤ δcµ(Γ(f)).

Now applying the lower bound in the derivative, we finally have

Varν(f) ≤ cδ

ε
µ(Γ(f)).

This Theorem, combined with the Tensorization Property, will be an important
tool for proving Poincaré’s Inequality for general measures. For instance, we have the
following corollary.

Corollary 4.4.1. Suppose that a function V is sandwiched between two quadratic func-
tions:

x2 + a ≤ V (x) ≤ x2 + b,

for all x and a ≤ b. Then the measure dν = 1
Z
e−V dx satisfies Poincaré’s Inequality:

Varν(f) ≤ e2(b−a)Eν [‖∇f‖2].
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Proof. To prove it, we just notice that ν is a bounded perturbation of Gaussian measure
and use the Gaussian Poincaré’s Inequality.

We can also prove Poincaré’s Inequality for a perturbation of the binary case.

Corollary 4.4.2. Let µ{1} = µ{−1} = 1/2 be the Rademacher measure. Let p ∈ (0, 1),
then ν{1} = p = 1− ν{−1} is a bounded perturbation of µ:

dν
dµ(1) = 2p = 2− dν

dµ(−1),

that is,

2 min{p, 1− p} ≤ dν
dµ ≤ 2 max{p, 1− p}.

Hence, Poincaré’s Inequality for the assymetric Rademacher is

Varν(f) ≤ max{p, 1− p}
min{p, 1− p} Eν‖∇f‖

2,

where ∇f is the discrete gradient.

Remark 4.4.5. The constant max{p,1−p}
min{p,1−p} is not optimal. Indeed, we can use Theorems 5.3.2

and 4.5.5 to get a shaper constant.

4.4.4 Concentration
In this last subsection, we will present a method to derive concentration of measure

if Poincaré’s Inequality is satisfied. Again, we will restrict our study to the energy
E(f) = Eµ[‖∇f‖2]. In Chapter 5 we will see a stronger concentration result for the binary
case in which the energy does not have this form.

The general procedure is as follows. Let f ∈ C1(Rn) be a 1−Lipschitz function,
that is, ‖∇f‖ ≤ 1. Suppose, without loss of generality, that Eµ[f ] = 0. Let λ > 0 and

Varµ(eλf/2) = Eµ[eλf ]− E2[eλf/2].

If (µ,L) satisfies Poincaré’s Inequality with constant c2, then

Varµ(eλf/2) ≤ c2Eµ[‖∇eλf/2‖2] ≤ c2λ2

4 Eµ[eλf ].

If we set ψ(λ) = Eµ[eλf ], then we obtain inequality below:

(1− c2λ2/4)ψ(λ) ≤ [ψ2(λ/2)].

Just to simplify, let g(x) := ψ(2x/c). This inequality applied to λ = 2x/c yields to

(1− x2)g(x) ≤ g2(x/2).
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Since we are assuming Eµ[f ] = 0, L’Hôspital Rule leads to

lim
x→0

g(x)− 1
x

= lim
x→0

Eµe2xf/c = lim
x→0

2
c
Eµfe2xf/c = 0.

Therefore, we can apply it to the following lemma.

Lemma 4.4.2. Let g : (0, 1)→ (0,∞) be a function such that

lim
x→0

(g(x)− 1)/x = 0,

and

(1− x2)g(x) ≤ g2(x/2),

for all x ∈ (0, 1). Then we have

g(x) ≤
(

1− x2
)−2

.

Proof. The proof of this lemma can be found in Boucheron et al. (2013).

Thereby we have that

ψ(2x/c) = g(x) ≤
(

1− x2
)−2

.

Hence, for every λ ∈ (0, 2/c), we obtain

ψ(λ) ≤
(

1− λ2c2

4

)−2
.

The value λ0 = 1/c yields

ψ(λ0) ≤
(

1− 1
4

)−2
= 16

9 ≤ 2.

Thus, Markov’s Inequality implies that

P(f(X) ≥ t) = P(eλ0f(X) ≥ eλ0t) ≤ e−λ0tψ(λ0),

therefore

P(f(X) ≥ t) ≤ 2e−t/c.

This shows the subexponential behavior of measures satisfying Poincaré’s Inequality. We
summarize it in the following theorem.

Theorem 4.4.10. Let (M,d) be a Polish Space. Let µ be a probability in M satisfying
Poincaré’s Inequality

Varµ(f) ≤ c2Eµ[‖∇f‖2],

for all f ∈ C1(M). Then, for all 1-Lipschitz functions f , its tail behaves like the exponential
distribution:

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 4e−t/c,

for all t > 0.
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4.5 Log-Sobolev Inequality
The basic ingredient to prove a subgaussian concentration is the so called Log-

Sobolev Inequality. This is a functional inequality concerning the functional entropy and
the energy. It is expressed in the definition below.

Definition 4.5.1. Let L be a generator of a Markovian Semigroup and µ its invariant
probability measure. We say that the pair (µ,L) satisfies Log-Sobolev Inequality for
some constant c > 0 if

Entµ(f 2) ≤ cE(f),

where Entµ(f 2) = µ(f 2 log f 2)− µ(f 2) log µ(f 2) is the functional entropy and E(f) is the
energy.

Remark 4.5.1. We can also say that (µ,Γ) satisfies the Log-Sobolev Inequality where Γ is
the Carre du Champ operator.

In Subsection 4.5.3 we will prove several equivalent definitions of Log-Sobolev
Inequality under some hypothesis such as reversibility and chain rule of the Carre du
Champ.

We will postpone the proof of the main Log-Sobolev Inequality in the Binary Case
and the Gaussian Case to the Chapters 5 and 6, respectively. For now, we will prove some
useful properties. The first one is the entropy ergodicity.

Theorem 4.5.1. If (µ,L) satisfies Log-Sobolev Inequality with constant c and µ is a
reversible measure of Pt, then for all f ≥ 0 such that µ(f) = 1, we have

Entµ(Ptf) ≤ e−4t/cEntµ(f).

To prove this theorem, the following two lemmas are necessary.

Lemma 4.5.1. Let g ∈ D(L) be positive and pt(x, dy) be the family of transition proba-
bilities of Pt, then

lim
t→0

1
2t

∫
M

∫
M

[g(x)− g(y)][log g(x)− log g(y)] dpt(x, dy)dµ(dx) = µ[log g(−L)g].

Proof. Let

L :=
∫
M

[g(x)− g(y)][log g(x)− log g(y)] dpt(x, dy),

and

R := g(x) log g(x)− log g(x)Ptg(x)− g(x)Pt[log g](x) + Pt[g log g](x).
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Moreover, notice that for every function h we have∫
M
h(y) dpt(x, dy) = Pth(x),

by definition of Pt. Hence

L = R.

Therefore, the left-hand side in the statement of the theorem is equal to

I := lim
t→0

µ(g log g)− µ(log gPtg)
t

,

by the definition of the invariant and reversible measure µ. This is precisely the definition
of the derivative of µ(log g(−Pt)g), therefore we obtain

I = − d
dtµ(log gPtf) = µ[log g(−L)g],

and the lemma is proved.

Furthermore, we need an elementary inequality in R.

Lemma 4.5.2. For all x, y ≥ 0, we have [log x− log y](x− y) ≥ 4(x1/2 − y1/2)2.

Remark 4.5.2. Note that the case x < y leads to the equivalently inequality

[log a− log b](a+ b) ≤ 2(a− b).

As a corollary, we have the following inequality.

Corollary 4.5.1. For all positive g ∈ D(L), we have

E(log g, g) ≥ 4E(g1/2).

Proof. Lemmas 4.5.2 and 4.5.1 imply that

E(log g, g) ≥ 4 lim
t→0

1
2t

∫ ∫
[g1/2(x)− g1/2(y)]2dpt(x, dy)µ(dx).

Using the same argument as in Lemma 4.5.1, we can see that

lim
t→0

1
2t

∫ ∫
[g1/2(x)− g1/2(y)]2dpt(x, dy)µ(dx) = E(g1/2),

and the corollary is proved.

Now we can prove Theorem 4.5.1.
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Proof. We have already seen in previous sections that

d
dtEntµ(Ptf) = −E(log f, f),

then Corollary 4.5.1 implies

d
dtEntµ(Ptf) ≤ −4E(f 1/2).

Using Log-Sobolev Inequality for f 1/2, we obtain that

d
dtEntµ(Ptf) ≤ −4cEntµ(f).

Solving this differential inequality gives the result.

In fact, Lemma 4.5.1 implies the following theorem.

Theorem 4.5.2. Let µ be an invariant reversible measure of the Markov Semigroup
generated by L. If it satisfies Log-Sobolev Inequality with constant c, then

Entµ(f) ≤ c

4E(log f, f),

for all positive f ∈ D(L).

Remark 4.5.3. This is known asModified Log-Sobolev Inequality. As we will see in Subsection
4.5.3, Modified Log-Sobolev Inequality and Log-Sobolev Inequality are equivalent under
some conditions. Furthermore, Modified Log-Sobolev Inequality is equivalent to the
exponential entropy ergodicity.

4.5.1 Tensorization and Perturbation
As we saw in Poincaré’s Inequality, a tensorization formula can provide a way

of verifying if a product measure satisfies a certain inequality. Likewise, Log-Sobolev
Inequality also satisfies a tensorization formula.

Theorem 4.5.3. Suppose (µi,Li) satisfy Log-Sobolev Inequality with constant ci, for
i = 1, 2. Let

D(L) := {f : Ω1 × Ω2 → R : f(x, ·) ∈ D(L2), f(·, y) ∈ D(L1), ∀(x, y) ∈ Ω1 × Ω2}.

For f ∈ D(L), define the generator L as the following. Let f1 and f2 be the marginals of
f , that is, for fixed y, fy(x) = f(x, y) and for fixed x, fx(y) = f(x, y), then

Lf(x, y) := L1fy(x) + L2fx(y).

Then (µ1 × µ2,L) satisfies Log-Sobolev Inequality with constant c = max{c1, c2}.
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Proof. Let Xi ∼ µi be independent and, for f ∈ D(L), let Z = f(X1, X2). Then µ1 × µ2

is the distribution of (X1, X2) and

Entµ1×µ2(f 2) = Ent(Z2).

The tensorization rule for the entropy gives

Ent(Z2) ≤ E
(
Ent(1)(Z2) + Ent(2)(Z2)

)
.

Now let

m1(x) := Ent[f 2(x, Y )] = Ent[f 2
x(Y )];

m2(y) := Ent[f 2(X, y)] = Ent[f 2
y (X)],

then m1(X) = Ent[Z2|X] and m2(Y ) = Ent[Z2|Y ], therefore

Ent(Z2) ≤ E(m1(X) +m2(Y )) = µ1(m1) + µ2(m2).

Since fx ∈ D(L2) and likewise for fy, Log-Sobolev Inequality for each measure gives

m1(x) ≤ c2µ2[fx(−L2)fx];
m2(y) ≤ c1µ1[fy(−L1)fy],

then

µ1(m1) ≤ c2µ1

(
µ2[fx(−L2)fx]

)
;

µ2(m2) ≤ c1µ2

(
µ1[fy(−L1)fy]

)
.

Because the Carre Du Champ Operator is a positive operator, we can apply Fubini’s
Theorem, hence

µ1(m1) + µ2(m2) ≤ cµ1 × µ2

(
fx(−L2)fx + fy(−L1)fy

)
.

Finally, just notice that the integrand is

fx(−L2)fx + fy(−L1)fy = f(−L)f.

Furthermore, Log-Sobolev Inequality is also stable under perturbations.

Theorem 4.5.4. Suppose that (µ,L) satisfies Log-Sobolev Inequality with constant c. If
ν � µ is a bounded perturbation of µ with constants (ε, δ) then (ν,L) satisfies Log-Sobolev
Inequality with constant cδ/ε.
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Proof. Let f ∈ D(L) and h = dν
dµ . Suppose we proved the following second variational

formula of the entropy:

Ent(Z) = inf
t>0
{E(Z logZ − Z log t− Z + t)}. (4.2)

Then

Entν(f) = inf
t>0
{ν(f log f − f log t− f + t)} ≤ δ inf

t>0
{µ(f log f − f log t− f + t)} = δEntµ(f).

Using Log-Sobolev Inequality for µ, we obtain

Entν(f) ≤ cδcµ(Γ(f)) ≤ cδ

ε
ν(Γ(f)),

and the theorem is proved.

To prove Identity 4.2, note that if E[Z] 6= 0, then

E(Z logZ − Z log t− Z + t) = E[Z logZ − Z logE[Z] + Z logE[Z]− Z log t− Z + t].

The first two terms are just the entropy, then

E(Z logZ − Z log t− Z + t) = Ent(Z)− E[Z log(t/E[Z])]− E[Z] + t.

Using log x ≤ x− 1 for all x ∈ R+, we obtain for x = t/E[Z]

E(Z logZ − Z log t− Z + t) ≥ Ent(Z)− E[Z]
(

t

E[Z] − 1
)
− E[Z] + t.

Therefore, we have

E(Z logZ − Z log t− Z + t) ≥ Ent(Z).

Hence

inf
t>0

E(Z logZ − Z log t− Z + t) ≥ Ent(Z).

If t = E[Z] we obtain the equality.

The case E[Z] = 0 is trivial, since Z = 0 almost surely, and

inf
t>0

E(Z logZ − Z log t− Z + t) = inf
t>0

t = 0.

Again, combined with a Tensorization Formula, this theorem can help us to verify
if certain Log-Sobolev Inequality is satisfied.

The last result, which we will not prove, is that Log-Sobolev Inequality implies
Poincaré’s Inequality.
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Theorem 4.5.5. Suppose (µ,Γ) satisfies Log-Sobolev Inequality

Entµ(f 2) ≤ 2cµ(Γ(f, f)),

for all f ∈ D(L). Then (µ,Γ) satisfies Poincaré’s Inequality

Varµ(f) ≤ cµ(Γ(f, f)).

The proof can be found in several books in the subject (see van Handel (2014),
Guionnet and Zegarlinksi (2003), and Royer (2007)).

For more about Log-Sobolev Inequality, see Ané et al. (2000) and Royer (2007).

4.5.2 Concentration and the Herbst Method
Log-Sobolev Inequalty is a powerful tool to prove several properties for measures

and semigroups. For instance, we can prove that it is equivalent to hypercontractive of the
Markov Semigroup (Pt)t≥0 (see Guionnet and Zegarlinksi (2003)). In this subsection, we
will show another very important fact about it: the subgaussian concentration of measure.

To begin with, we will show a general argument that is frequently used to prove
subgaussian concentration. It is known as Herbst’s Method. Then we will verify that we
can apply this method to measures satisfying Log-Sobolev Inequality.

The method is described in the following theorem.

Theorem 4.5.6 (Herbst’s Method). Let X be an integrable random variable satisfying
ψ(λ) := logE[eλ(X−E[X])] <∞ and

Ent(eλX) ≤ σ2λ2

2 E[eλX ],

for all λ ≥ 0, then, for all positive λ, we have

ψ(λ) ≤ σ2λ2

2 ,

and therefore

P(X − E[X] ≥ t) ≤ exp(−t2/(2σ2)),

by Corollary 2.7.4.

Remark 4.5.4. We could write equivalently the property

Ent(eλX) ≤ σ2λ2

2 E[eλX ]

with the λ−tilting measures. Let X ∼ µ and dµλ
dµ := eλX

E[eλX ] , then the above inequality is
equivalent to

D(µλ||µ) ≤ σ2λ2

2 .
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Proof. Since X is integrable, we have that

lim
λ→0

ψ(λ)
λ

= lim
λ→0

logE[eλ(X−E[X])]
λ

.

Using L’Hôspital Rule, we obtain

lim
λ→0

ψ(λ)
λ

= lim
λ→0

E[(X − E[X])eλ(X−E[X])]
E[eλ(X−E[X])] = 0.

Then, by the Fundamental Theorem of Calculus, we obtain

ψ(λ)
λ

=
∫ λ

0

d
du

ψ(u)
u

du.

Now let us bound d
du

(
ψ(u)
u

)
. First note that

ψ(u)
u

= logE[euX ]
u

− E[X],

hence

d
du

(
ψ(u)
u

)
= 1
u2

(E[uXeuX ]
E[euX ] − logE[euX ]

)
= 1
u2E[euX ]

(
Ent(euX)

)
≤ σ2/2.

Then

ψ(λ)
λ

=
∫ λ

0

d
du

(
ψ(u)
u

)
du ≤ λσ2

2 ,

and the theorem is proved.

This method shows that, in order to prove the subgaussian property, we just have
to control D(µλ||µ). In the next theorem we show that up to up to a constant factor, both
properties are equivalent.

Theorem 4.5.7. If ψ(λ) ≤ σ2λ2

8 for all λ ≥ 0, then

Ent(eλX) ≤ σ2λ2

2 E[eλX ],

for all λ ≥ 0.

Proof. Let Z = eλX

E[eλX ] and Y = eλ(X−E[X]). Then we have to prove that

Ent(Z) ≤ σ2λ2

2 .
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By Jensen’s Inequality, we have that E[Y ] ≥ eE[λ(X−EX)] = 1, then

Ent(Y ) = E[Y log Y ]− E[Y ] logE[Y ] ≤ E[Y log Y ].

Since log y ≤ y for all y ≥ 0, we obtain

Ent(Y ) ≤ E[Y 2] = E[e2λ(X−E[X])].

Since ψ(λ) ≤ σ2λ2

8 , we have

Ent(Y ) ≤ σ2λ2

2 .

To complete the proof, note that

Ent(Y ) = Ent(e−λE[X]eλX) = 1
eλE[X]Ent(e

λX).

Multiplying by 1 = E[eλX ]
E[eλX ] and using E[eλX ] ≥ eE[λX], we get that

Ent(Y ) = E[eλX ]
eλE[X] Ent(Z) ≥ Ent(Z).

Hence

Ent(Z) ≤ Ent(Y ) ≤ σ2λ2

2 .

The first application we will give of Herbst’s Method is that Log-Sobolev Inequality
leads to concentration.

Corollary 4.5.2. Let (M,d) a Polish Space and µ a probability in the measurable space
(M,B(M)) satisfying Log-Sobolev Inequality below.

Entµ(f 2) ≤ cµ(‖∇f‖2),

for all f ∈ C1(M). Then for all 1-Lipschitz function f : M → R we have

P(|f(X)− E[f(X)]| ≥ t) ≤ 2 exp
(
− t2/c

)
,

for all t ≥ 0 and X ∼ µ.

Remark 4.5.5. When the energy is not the integral of ‖∇f‖2, we can still prove concentra-
tion using Herbst’s Method if the Carre du Champ satisfies the chain rule, which we will
define in the next Subsection 4.5.3. Furthermore, if it does not, a direct computation can
still help us to prove concentration, such as the Binary Case (see Chapter 5).
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Proof. Let f ∈ C1(M) be a 1-Lipschitz function, that is, ‖∇f‖ ≤ 1 and take g = eλf/2,
for λ > 0. Then Log-Sobolev Inequality for g implies

Entµ(eλf ) = Entµ(g2) ≤ cµ(‖∇eλf/2‖2).

The chain rule of ∇ leads to

Entµ(eλf ) ≤ cλ2

4 µ(‖∇f‖2eλf ) ≤ cλ2

4 µ(eλf ).

Applying Herbst’s Method leads to the desired result for P(f(X) − E[f(X)] ≥ t). To
bound

P(f(X)− E[f(X)] ≤ −t) ≤ exp
(
− t2/c

)
,

we just have to use the same argument to −f . If f is not continuously differentiable, we
can use a standard approximation and get the same result.

Morevover, the tensorization yields the same result for the product space.

Corollary 4.5.3. Let (Ωi, di)ni=1 be Polish Spaces and (µi)ni=1 be probability measures in
(Ωi,B(Ωi))ni=1 such that

Entµi(f 2
i ) ≤ ciµi(‖∇fi‖2),

for all fi ∈ C1(Ωi) and i ≤ n . Let g ∈ C1(Ω1 × ...× Ωn) in the product space such that

‖∇xig‖ ≤ ai,

for all i ≤ n. If Xi ∼ µi are independent, then g(X1, ..., Xn) is subgaussian and

P
(
g(X1, ..., Xn)− E[g(X1, ..., Xn)] ≥ t

)
≤ exp

(
− t2∑n

i=1 a
2
i ci

)
,

for all t ≥ 0.

Remark 4.5.6. Note that this result is stronger than the tensorization of Log-Sobolev
Inequality, since

n∑
i=1

a2
i ci ≤ max

i≤n
{ci}

n∑
i=1

a2
i .

Proof. Using the tensorization of the entropy and the chain rule, we obtain for µ = ∏
µi

Entµ(eλf ) ≤ λ2

4

n∑
i=1

cia
2
iE[eλf ],

hence the result.
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4.5.3 Equivalent Definitions
Most of the classical literature of Log-Sobolev Inequality uses the version we showed

with E(f) in the right-side of the inequality (see for instance Ané et al. (2000), Guionnet
and Zegarlinksi (2003) or Ledoux (1999) and even a nonclassical approach in Boucheron
et al. (2013)). However, some modern sources in Log-Sobolev Inequality use different
definitions (see van Handel (2014) or Raginsky et al. (2013)). In this subsection we will
prove the equivalence of such definitions under some some conditions in the generator L
or directly in the Carre du Champ operator Γ.

Let us first define the four forms of Log-Sobolev Inequality. The first we have
already defined and we will call it the classical LSI. The second is the following.

Definition 4.5.2. We say that (µ,Γ) satisfies a exponential LSI if

Entµ(ef ) ≤ c

4µ[Γ(f, f)ef ],

for all f ∈ D(L).

The next one we have also already presented.

Definition 4.5.3. We say that (µ,Γ) satisfies a modified LSI if

Entµ(f) ≤ c

4E(log f, f),

for all positive f ∈ D(L).

And the last is a symmetric version of the modified LSI.

Definition 4.5.4. We say that (µ,Γ) satisfies a symmetric modified LSI if

Entµ(f) ≤ c

4E(f, log f),

for all positive f ∈ D(L)

There are two conditions for equivalence of these definitions. The first one is
reversibility of the measure. The second is known as the chain rule of the Carre du Champ
operator.

Definition 4.5.5. We say that Γ satisfies the chain rule if

Γ(f, gh) = Γ(f, g)h+ Γ(f, h)g,

for all f, g, h ∈ D(L).

The chain rule is important when we have Γ(f, u ◦ g) and we want to express it in
term of Γ(f, g).
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Lemma 4.5.3. Suppose Γ satisfies the chain rule in Cb(M). Then for all u ∈ C∞(M) we
have

Γ(f, u ◦ g) = Γ(f, g)u′ ◦ g.

Now we can prove the equivalences.

Theorem 4.5.8. For a pair (µ,Γ) we have the following.

1. If the measure µ is reversible, then the symmetric modified LSI is equivalent to the
modified LSI;

2. If Γ satisfies the chain rule, then the classical LSI is equivalent to the Exponential
LSI; and

3. If Γ satisfies the chain rule and µ is reversible, then they all are equivalent.

Proof. The first item is trivial since

E(log f, f) = µ[log f(−L)f ] = µ[f(−L) log f ]
= E(f, log f).

To prove the second item, note that the classical LSI implies

Entµ(ef ) ≤ cµ(Γ(ef/2, ef/2)).

Now, if u(x) = ex/2, then

Γ(ef/2, u(f)) = Γ(ef/2, f)1
2e

f/2.

By symmetry of Γ, we have

Γ(ef/2, f)1
2e

f/2 = Γ(f, f)1
4e

f ,

hence

Entµ(ef ) ≤ c

4µ(Γ(f, f)ef ),

which is the Exponential LSI. Likewise, if we apply the Exponential LSI to

g = 2 log f,

we obtain

Entµ(f 2) ≤ c

4µ(Γ(2 log f, 2 log f)f 2) = cµ(Γ(f, f)),
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which is the classical LSI.

Now, to prove (3), we just have to prove the equivalence between Exponential LSI
and the Modified LSI. Take g = log f in the Exponential LSI, then

Entµ(f) ≤ c

4µ(Γ(log f, log f)f) = c

4µ(Γ(log f, f)).

But

µ(Γ(log f, f)) = 1
2µ(Lf log f − log fLf − fL log f).

By reversibility and µ(Lf log f) = 0, we obtain

µ(Γ(log f, f)) = µ(log f(−L)f) = E(log f, f).

Replacing it in the Exponential LSI gives the first implication. To prove that the Modified
LSI also implies the Exponential LSI, we just have to set g = ef in the Modified LSI and
use the same arguments above.

It is important to note that each version of the LSI is useful for different applications.
For instance, in order to prove concentration, the Exponential LSI is the most indicated
since it already gives the concentration in terms of ‖Γ(f)‖∞ (see Raginsky et al. (2013)).
However, the Modified Log-Sobolev provides some easier ways to prove the LSI because
it is equivalent to the exponential entropy ergodicity (see van Handel (2014)). Finally,
the most classical literature in hypercontractive of semigroups and properties of some
semigroups are best understood in terms of the classical LSI (see Guionnet and Zegarlinksi
(2003), Gross and WStroock (1993) and Ané et al. (2000)) and it can be easy to prove in
examples where the chain rule fails (see Boucheron et al. (2013)).
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5
Better start with 2 than many!

5.1 Introduction

In this section, we will prove the simplest version of Log-Sobolev Inequality, where
our space will be the Haming Cube Hn = {−1, 1}n with the uniform measure Pn. Although
the proof is just a matter of manipulation and calculus, we will derive some impressive
consequences from this result. We will also extend it to the assymetric case where

µn =
n∏
i=1

µ,

and µ({1}) = p ∈ (0, 1).

The first application of this Log-Sobolev Inequality is the standard result on
concentration of Rademacher random variables and Lipschitz functions in Hn. It says that

µn

(
{x ∈ Hn : |f(x)− µ(f)| ≥ t}

)
≤ 2 exp

(
− nt2

)
,

whenever f : Hn → R is 1−Lipschitz according to the discrete distance in Hn (see Section
5.2 for the definitions).

In Section 5.5 we will define Rademacher Complexity and stress its importance.
Basically, this is a quantity that measures the size of a set T ⊂ Rn. We will apply
this concept in a concrete example in Section 5.6, where we will study the supervised
classification problem.

Finally, we will study the concentration phenomenon in graphs in Section 5.7. The
main idea is, given a graph (V,E) and a probability measure in V , we want to prove
concentration of 1−Lipschitz function f : V → R, where the distance in V is the graph
distance.
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5.2 Definitions and Properties
Let Hn = {−1, 1}n be the Hamming Cube, endowed with the normalized Hamming

distance d, that is,

d(x, y) := 1
2n

n∑
i=1
|xi − yi| =

#{i : xi 6= yi}
n

.

Let Pn be the uniform measure in Hn, which is equivalent to say that Pn is the law of n
independent Rademacher random variables X1, ..., Xn with parameter 1/2. We will denote
X := (X1, ..., Xn).

Let Ent be the Functional Entropy for f : Hn → R defined as

Ent(f 2) = E[f 2(X) log f 2(X)]− E[f 2(X)] log[Ef 2(X)].

Notice that, using Theorem 4.5.3, the entropy functional satisfies

Ent(f 2) = Ent(f 2(X)) ≤ E
( n∑
i=1

Ent(i)[f 2(X)]
)
.

Moreover, let the energy function E be defined as above. Let

∇if(x) = 1
2(f(x)− f(xi)),

where xi = (x1, ..., xi−1,−xi, xi+1, ..., xn) is the vector x with flipped i-th coordenate. Take
∇f(x) =

(
∇if(x)

)n
i=1

and finally the energy is

E(f) : =
∫
‖∇f(x)‖2dPn

= E[‖∇f(X)‖2].

5.3 Main Theorem
Now we can state and prove the main theorem of this chapter, the Rademacher

Log-Sobolev Inequality.

Theorem 5.3.1. Let f : Hn → R, then

Ent(f 2) ≤ 2E(f).

Proof. Because of the tensorization rule, it suffices to prove that

Ent(i)(f 2(X)) ≤ 1
2E

(i)
(
f(X)− f(X i)

)2
,
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since

E

1
2

n∑
i=1

E(i)
(
f(X)− f(X i)

)2
 = 2E(f).

Now, fixed all Xj but Xi, we have that f(X) only takes two values with the same
probability, say a and b. In fact, these two values are precisely f(X) and f(X i), then

Ent(i)(f 2(X)) = a2

2 log a2 + b2

2 log b2 − a2 + b2

2 log a
2 + b2

2 ,

and
1
2E

(i)
(
f(X)− f(X i)

)2
= 1

2(a− b)2.

Therefore, we just have to prove that, for all a, b ∈ R, the following inequality is true

a2

2 log a2 + b2

2 log b2 − a2 + b2

2 log a
2 + b2

2 ≤ (a− b)2

2 .

Because symmetry, we can assume a ≥ b and, for fixed b, define the function h : [b,∞)→ R
such that

h(a) := a2

2 log a2 + b2

2 log b2 − a2 + b2

2 log a
2 + b2

2 − (a− b)2

2 .

It is easy to see that h(b) = 0. Differentiating, we have

h′(a) = a log a2 + a− a log a
2 + b2

2 − a− (a− b),

hence

h′(a) = a log 2a2

a2 + b2 − (a− b).

Then we also have h′(b) = 0. Differentiating again, we obtain

h′′(a) = log 2a2

a2 + b2 + a
(2
a
− 2a
a2 + b2

)
− 1

= log 2a2

a2 + b2 +
( 2b2

a2 + b2

)
− 1

= log 2a2

a2 + b2 −
2a2

a2 + b2 + 1

≤ 0,

because log x ≤ x− 1, for all x ∈ R+, then h′ is a decreasing function, hence h′(a) ≤ 0 for
all a ≥ b and then

h(a) ≤ h(b) = 0,

so the theorem is proved.
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We can extend this theorem to product measures

µn :=
n∏
i=1

µ,

such that

µ({1}) = p = 1− µ({−1}).

This is done in the following theorem.

Theorem 5.3.2. Let the metric space (Hn, d) be equipped with the probability measure

µn =
n∏
i=1

µ,

where µ({1}) = p ∈ (0, 1). Hence, for all f : Hn → R, we have

Entµn(f 2) ≤ c(p)E(f),

where

E(f) = µn[‖∇f‖2],

and

c(p) = 4p(1− p)
1− 2p log

(1− p
p

)
.

Remark 5.3.1. Note that Theorem 5.3.2 generalizes Theorem 5.3.1, since

lim
p→1/2

c(p) = 2.

Proof. A proof of this theorem using other techniques can be found in Ané et al. (2000)
and Bobkov et al. (2006).

The graph of c(p) is shown in Figure 6.

5.4 Application I: Concentration in the Hamming Cube
The first application of Theorem 5.3.1 is the so called Concentration in the Hamming

Cube. The standard method (see Corollary 4.5.2) fails since the Carré du Champ Operator
does not satisfy the chain rule. However, we can still modify its argument to prove
concentration.

Corollary 5.4.1. Let f : Hn → R be a 1−Lipschitz function, then

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2 exp

(
− nt2

)
.
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Figure 6 – The graph of the function c(p).

Proof. Let λ > 0 and g(x) = eλf(x)/2. First, notice that

P
(
f(X)− f(X i) ≥ 0

)
= 1/2,

by symmetry. Therefore, we have

1
2E
(

[g(X)− g(X i)]2
)

= E
([(

g(X)− g(X i)
)

+

]2)
,

where (x)+ := x if x ≥ 0 and 0 otherwise. Indeed, we always have

[g(X)− g(X i)]2 =
[(
g(X)− g(X i)

)
+

]2
+
[(
g(X i)− g(X)

)
+

]2
.

Now, the convexity of the function ex implies that

0 ≤
(
g(x)− g(xi)

)
+
≤
λ
(
f(x)− f(xi)

)
+

2 eλf(x)/2,

hence Theorem 5.3.1 applied to g yields

Ent(eλf ) ≤ 2E(eλf/2)

= E

1
2

n∑
i=1

E(i)
(
eλf(X)/2 − eλf(Xi)/2

)2


≤ λ2

4 E
(
eλf(X)

n∑
i=1

[(
f(X)− f(X i)

)
+

]2)
.

Now, the assumption that f is 1−Lipschitz gives that
(
f(X)− f(X i)

)
+
≤ d(x, xi) = 1

n
,
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hence

Ent(eλf ) ≤ λ2

4nE[eλf ].

Finally, Herbst’s Method 4.5.6 yields

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ exp

(
− nt2

)
,

and the theorem is proved.

Remark 5.4.1. Notice that this result depends on the metric d we chose at the beginning.
If we set d0 := nd, that is,

d0(x, y) = #{i : xi 6= yi},

then Corollary 5.4.1 reads as follows.

Corollary 5.4.2. Let f : Hn → R be a 1−Lipschitz function according to the metric d0,
then

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ exp

(
− t2/n

)
.

In fact, we can get a stronger bound using the marginal Lipschitz constants.

Corollary 5.4.3. Let f : Hn → R be a function such that, for all x ∈ Hn and all i ≤ n,
we have

|f(x)− f(xi)| ≤ Lid(x, xi) = Li
n
,

then

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2 exp

(
− n2t2∑n

i=1 L
2
i

)
.

For a first example, we can state a quantitative Law of Large Numbers.

Example 5.4.1. Let X1, ..., Xn ∼ Rad(p), then

P
(∣∣∣ 1
n

n∑
i=1

Xi − (2p− 1)
∣∣∣ ≥ t

)
≤ 2 exp

(
− nt2

2c(p)

)
,

where c(p) is defined as in Theorem 5.3.2. Indeed, we have that the function f : Hn → R,
defined as

f(x) = 1
n

n∑
i=1

xi,

satisfies

|f(x)− f(xi)| = 2d(x, xi), ∀x ∈ Hn,

then the result follows by the Herbst’s Method and Theorem 5.3.2.
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Using this, we can show some other properties of the Repetition Code (see 3.5.1).

Example 5.4.2. Letm ∈ Hk be a message we want to transmit through a Binary Channel
as Example 3.5.1. Let f : Hk → Hnk be the encode function, such that

f(x) = x...x,

n times. The decode function g : Hnk → Hk guesses individually each entry as follows:
given y ∈ Hnk, let xi ∈ H1 such that xi is the most common number in the vector
(yi+lk)n−1

l=0 , then

g(y) = x.

Moreover, let Y ∈ Hnk be the random variable corresponding to the channel output of
f(m) and

λ(n) = P(g(Y ) 6= m),

then we have the following corollary.

Corollary 5.4.4. We have that

λ(n) ≤ exp
(

log k − n(1− 2p)2

2c(p)

)
.

Proof. By a simple union bound argument, we can bound the error λi in each entry mi

and then

λ(n) ≤
k∑
i=1

λi.

Also, using the fact that all random variables are i.i.d, we have that λi is constant, then

λ(n) ≤ kλ1.

Now, it is easy to see that

(g(Y ))i = mi sign
( n∑
l=1

Xl

)
,

where Xl ∼ Rad(1− p) are independent random variables. Hence, we have

λ1 = P
( n∑
l=1

Xl > 0
)
.

Now we can use Example 5.4.1 with t = 1− 2p > 0 and get

λ1 = P
( 1
n

n∑
l=1

Xl > 0
)

≤ P
( 1
n

n∑
l=1

Xl > t+ (2p− 1)
)

≤ exp
(
− nt2

2c(1− p)

)
.
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Since c(1− p) = c(p), we get

λ1 ≤ exp
(
− n(1− 2p)2

2c(p)

)
,

and it is proved.

Therefore, to guarantee an error λ(n) ≤ ε, we can bound

log k − n(1− 2p)2

2c(p) ≤ log ε,

that is,

n ≥ c(p)
(1− 2p)2 log(k/ε) =: r(p) log(k/ε).

The graph of r(p) is shown in Figure 7. Notice that

lim
p→1/2

r(p) =∞.

Thereby in order to recover the message m, we need to transmit it n ∼ O(log k)
times. However, this code is not efficient, since

R = log2 2k
nk

= 1
n
→ 0.
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Figure 7 – The graph of the function r(p).

We now explore concentration in matrices that have only +1 or -1 as entries. For
notation, let Mn(H1) := Hn×n be the set of all n× n matrices with only −1 and +1 in
each entrance.
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Corollary 5.4.5. Let n ∈ N and M ∈Mn(H1) be a random matrix such that each entry
is Rademacher with parameter 1/2. Let ‖ · ‖ : Mn(H1)→ R+ be the operator norm, then

P
(∣∣∣‖M‖ − E[‖M‖]

∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

4n

)
.

Proof. It is well-known that

‖A‖ = sup
x,y∈Sn−1

〈x,Ay〉,

where Sn−1 is the unit sphere and A ∈Mn(R). Let Aij be the matrix where the ij entry
of A is flipped. Then ∣∣∣‖A‖ − ‖Aij‖∣∣∣ ≤ ‖A− Aij‖.
Since

‖A− Aij‖ = sup
x,y∈Sn−1

〈x, (A− Aij)y〉

= sup
x,y∈Sn−1

n∑
m,n=1

(Amn − A
ij
mn)xmyn

≤ 2 sup
x,y∈Sn−1

xiyj

= 2.

Hence the operator ‖ · ‖ satisfies∣∣∣‖A‖ − ‖Aij‖∣∣∣ ≤ Lijd(A,Aij),

where Lij = 2n2. Therefore Corollary 5.4.3 implies that

P
(∣∣∣‖M‖ − E[‖M‖]

∣∣∣ ≥ t
)
≤ 2 exp

(
− n4t2∑n

i,j=1(2n2)2

)

= 2 exp
(
− t2

4n

)
,

and the corollary is proved.

5.5 Application II: Rademacher Complexity
Corollary 5.4.5 tell us that in order to control ‖M‖, we need to control

E[‖M‖] = E
(

sup
x,y∈Sn−1

〈x,My〉
)
.

This works as a motivation to the following definition.
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Definition 5.5.1. Let T ⊆ Rn andX ∈ Hn be a Rademacher r.v., that is, a random vector
distributed according the uniform measure in Hn. Then the Rademacher complexity
of T is defined as

r(T ) := E[sup
t∈T
〈t,X〉].

Remark 5.5.1. In some books, the Rademacher Complexity is defined as

r̃(T ) = E[sup
t∈T
|〈t,X〉|].

These definitions are equivalent, in the sense that

r(T ) ≤ r̃(T ) ≤ 2r(T ).

Let us first state some of its properties. Recall that the Minkowski Sum of two
sets is

A+B := {a+ b : a ∈ A, b ∈ B}.

Lemma 5.5.1. Let T, S ⊆ Rn and a ∈ R. Then

1. We have that r(T + S) = r(T ) + r(S);

2. We also have that r(aT ) = |a|r(T );

3. In particular, we obtain r(T − T ) = 2r(T );

4. The relation between the Rademacher Complexity and the Diameter (in the Euclidean
norm) is the following:

1√
8π log ndiam(T ) ≤ r(T ) ≤

√
n

2 diam(T ); and

5. If conv(T ) denotes the convex hull of T , then

r(conv(T )) = r(T ).

Proof. (1) Notice that

r(T + S) = E[ sup
(x,y)∈T×S

〈X, x+ y〉]

= E[sup
x∈T
〈X, x〉] + E[sup

y∈S
〈X, y〉].

(2) For a ≥ 0, we have trivially r(aT ) = ar(T ). Now, note that

r(−T ) = E[sup
x∈T
〈X,−x〉]

= E[sup
x∈T
〈−X, x〉]

= r(T ),
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since X is symmetric. Hence we get, for a < 0,

r(aT ) = |a|r(−T ) = |a|r(T ).

(4) We will just prove the upper bound. Using (3), we get

r(T ) = 1
2E[ sup

x,y∈T
〈X, x− y〉]

≤ 1
2E[‖X‖ sup

x,y∈T
‖x− y‖]

=
√
n

2 diam(T ),

hence the upper bound.

(5) It is clear that

r(conv(T )) ≥ r(T ).

Now, for any point t ∈ conv(T ), there is an n = n(t) ∈ N, t1, ..., tn ∈ T and p(t) ∈ Rn
+

such that ∑n
i=1 pi(t) = 1 and

t =
n∑
i=1

pi(t)ti,

hence

sup
t∈conv(T )

〈X, t〉 = sup
t∈conv(T )

n∑
i=1

pi(t)〈X, ti〉

≤ sup
t∈conv(T )

n∑
i=1

pi(t) sup
s∈T
〈X, s〉

= sup
s∈T
〈X, s〉,

hence we have the other direction.

Lemma 5.5.2. Let T ⊂ Rn be a finite set and σ2 = supt∈T ‖t‖2, then

r(T ) ≤ 2
√
σ2 log |T |.

Proof. Using the concavity of log x, for all λ > 0 we have

r(T ) = E
[1
λ

log eλ supt∈T 〈X,t〉
]

≤ 1
λ

logE[eλ supt∈T 〈X,t〉]

≤ 1
λ

log
(∑
t∈T

E[eλ〈t,X〉]
)
.
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Now we need to control the generating function of 〈t,X〉. Notice that

〈t, x〉 − 〈t, xi〉 ≤ 2|ti|,

hence the proof of Corollary 5.4.1 shows that

Ent(eλ〈t,X〉) ≤ λ2

4 E
(
eλ〈t,X〉

n∑
i=1

(〈t,X〉 − 〈t,X i〉)2
+

)
≤ λ2σ2E[eλ〈t,X〉].

Therefore, Herbst’s Method 4.5.6 implies that

E[eλ〈t,X〉] ≤ eλ
2σ2
,

for all t ∈ T . Hence

r(T ) ≤ log |T |+ λ2σ2

λ
.

Using λ =
√

log |T |/σ, we finally obtain

r(T ) ≤ 2
√
σ2 log |T |,

and the lemma is proved.

Now we can state the final theorem of this section, gathering these results.

Theorem 5.5.1. Let T ⊂ Rn be a finite set, X be a Rademacher random vector in Rn

and

Z := sup
t∈T
〈t,X〉.

Let σ2 = supt∈T ‖t‖2. Then E[Z] ≤ 2
√
σ2 log |T | and

P(Z ≥ 2
√
σ2 log |T |+ u) ≤ exp

(
− u2

4σ2

)
.

Proof. We have already proved the first part of the theorem. For the second, notice that

P(Z ≥ s) ≤
∑
t∈T

P(〈t,X〉 ≥ s).

Herbst’s Method 4.5.6 implies that

P(〈t,X〉 ≥ s) ≤ exp
(
− s2

4σ2

)
.

Hence

P(Z ≥ s) ≤ exp
(

log |T | − s2

4σ2

)
Using s = u+ 2

√
σ2 log |T | yields the result.
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Let us give an example of r(T ). For p ∈ [1,∞], let

‖x‖p =
( n∑
i=1
|xi|p

)1/p
,

and ‖x‖∞ = supi≤n |xi| be the lp norm. Then we have the following example.

Example 5.5.1. Let T = Bn
p := {x ∈ Rn : ‖x‖p ≤ 1}, then

r(T ) = n1/q,

since

sup
t∈T
〈t, x〉 = ‖x‖q,

where q is the conjugate exponent of p and ‖x‖q = n1/q for x ∈ Hn.

We remark that we can extend Theorem 5.5.1 to Totally Bounded sets. For a proof,
see Vershynin (2017), van Handel (2014) and Boucheron et al. (2013).

5.6 Application IV: Supervised Classification Problem
In this section, we explore what we consider one of the most important applications

of Rademacher Complexity. Our goal here is to predict the classification of a random
object X ∈ X in two different classes. The problem can be modeled as follows. Suppose
(X, Y ) ∈ X × {−1, 1} is drawn according to a probability measure P. Then we want to
find a function h : X → {−1, 1} such that it minimizes the error

L(h) := P(h(X) 6= Y ).

If P is known, then we can find the best minimizer exactly.

Lemma 5.6.1. We have that

min
h

P(h(X) 6= Y ) = P(h∗(H) 6= Y ),

where

h∗(x) = sign(E[Y |X = x]).

However, in most cases P is unknown and we only have a sample (Xi, Yi)ni=1 ∼ P,
Moreover, we want to find the best h in a finite class F of functions f : X → {−1, 1}. In
this case, we will minimize the empirical error

Ln(h) := 1
n

n∑
k=1

1h(Xi) 6=Yi .
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Let h∗, hn : X → {−1, 1} be such that

L(h∗) = min
h∈F

L(h), (5.1)

and

Ln(hn) = min
h∈F

Ln(h). (5.2)

Hence h∗ is also unknown. But we can still quantify the error. Let us proceed to do this.

First, let us define the shattering coefficient.

Definition 5.6.1. Let F be a class of functions f : X → {−1, 1}, then the shattering
coefficient is defined as

Sn(F) = max
x1,...,xn∈X

|{(h(x1), ..., h(xn)) : h ∈ F}|.

Then we have the following theorem.

Theorem 5.6.1. Let (Xi, Yi)ni=1 ⊂ X ×{−1, 1} be an independent sample according to the
probability P, F be a class of functions f : X × {−1, 1} and h∗ and hn be as in Equalities
5.1 and 5.2, then

E[|Ln(hn)− L(hn)|] ≤ 8
√

log(Sn(F))
n

,

and

E[L(hn)− L(h∗)] ≤ 16
√

log(Sn(F))
n

.

Remark 5.6.1. We could also state a high dimensional version of this result, but it will
not provide much improvement than the bound on the expected value. Moreover, our
constants are not optimal, but they capture the right order of fluctuation. See Giraud
(2014) for more information.

Proof. Let

∆n = sup
h∈F
|Ln(h)− L(h)|,

then

|Ln(hn)− L(hn)| ≤ ∆n.

By the definition of hn, we have Ln(hn) ≤ Ln(h∗), hence we also have that

L(hn)− L(h∗) = L(hn)− Ln(hn) + Ln(hn)− L(h∗)
≤ L(hn)− Ln(hn) + Ln(h∗)− L(h∗)
≤ 2∆n.
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Therefore, we just need to estimate E[∆n] from above. Notice first that

E[Ln(h)− L(h)] = 0.

Now we need a simple symmetrization lemma

Lemma 5.6.2. We have that

E[∆n] ≤ 2E
Eε[ sup

h∈F

∣∣∣∣ 1n
n∑
k=1

εk1Yi 6=h(Xi)

∣∣∣∣]
,

where ε is uniform in Hn and independent of (Xi, Yi)ni=1.

This lemma can be found in Vershynin (2017) and Giraud (2014).

Therefore, we can simply bound E[∆n] by

E[∆n] ≤ 2
n

sup
y∈Hn

sup
x∈Xn

E[sup
h∈H

n∑
k=1

εk1yi 6=h(xi)].

Now, for (x, y) ∈ X n × {−1, 1}n, we can consider the set

Tn(x, y) := {(1yi 6=h(xi), ...,1yn 6=h(xn)) : h ∈ F},

hence

E[∆n] ≤ 2
n

sup
y∈Hn

sup
x∈Xn

E[ sup
t∈Tn(x,y)

|〈ε, t〉|].

Now, using the Rademacher Complexity and Remark 5.5.1, we have that

E[∆n] ≤ 4
n

sup
y∈Hn

sup
x∈Xn

r(Tn(x, y)).

Corollary 5.5.1 implies that

r(Tn(x, y)) ≤ 2
√
n log(|Tn(x, y)|),

since

sup
t∈Tn(x,y)

‖t‖2 ≤ n.

Finally, there is a bijection between Hn and {0, 1}n, hence

|Tn(x, y)| ≤ Sn(F),

for all (x, y) ∈ X n × {−1, 1}n, therefore

r(Tn(x, y)) ≤ 2
√
n log(Sn(F)),

and the result is proved.

Therefore, in order to control the error, we need to control the Rademacher
Complexity of the sets Tn(x, y), or simply the shattering coefficient. The latter motivates
the definition of the VC dimension of F , which we are not going to introduce here. For
more details, see Giraud (2014) and Vershynin (2017).
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5.7 Application III: Concentration in Graphs
In this section, we will explore the connection bewteen the Rademacher Log-Sobolev

Inequality and Log-Sobolev Inequality in graphs. First, let us define a graph and the
graph distance.

Definition 5.7.1. By a connected and undirected graph (V,E), we mean a finite
set V , called the vertices and a collection E ⊂ V × V , called the edges, such that

1. For all x ∈ V , (x, x) /∈ E;

2. If (x, y) ∈ E, then (y, x) ∈ E;

3. For all x, y ∈ V such that x 6= y, there are an n ∈ N and a sequence (xi)ni=1 ⊂ V

such that x1 := x, (xn, y) ∈ E and

(xi, xi+1) ∈ E,

for all i ≤ n− 1 if n > 1.

Remark 5.7.1. We will simply call a connected and undirected graph by a graph.

Moreover, we have the following definition.

Definition 5.7.2. For x ∈ V , we denote Ex the set of its neighbors, that is

Ex := {y ∈ V : (x, y) ∈ E},

and d(x) := |Ex|, the degree of x.

The graph distance is associated with the Item 3 in Definition 5.7.1.

Definition 5.7.3. Let (V,E) be a graph. Then the distance d(x, y) between two distinct
points x, y ∈ V is defined as the smallest n satisfying Item 3. If x = y, we define
d(x, x) := 0.

Using this distance, we can define an 1−Lipschitz function f : V → R.

Definition 5.7.4. A function f : V → R is 1−Lipschitz in the graph (V,E) if for all
x, y ∈ V , we have

|f(x)− f(y)| ≤ d(x, y).

Now we can formulate the problem. Let µ be a probability measure in V . We want
to find the best constant σ2, such that

Eµ[eλ(f−E[f ])] ≤ eσ
2λ2/2, (5.3)
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for all λ ≥ 0 and 1−Lipschitz function f in (V,E). Equivalently, we want to find the best
constant σ2 such that

D(µλ||µ) ≤ σ2λ2

2 ,

where

dµλ
dµ = eλf

Eµ[eλf ] .

To begin with, we proved this result to the Hamming Cube in Corollary 5.4.2.

Example 5.7.1. Let V = Hn, (x, y) ∈ E if and only if d(x, y) = 1/n in the Hamming
distance and let d0 = nd be the graph distance. Let also µ({1}) = p and

µn =
n∏
i=1

µ,

Then for all 1−Lipschitz functions f : V → R in the graph distance we have that

Entµ(eλf ) ≤ nc(p)λ2

8 Eµ[eλf ],

hence Herbst’s Method implies that the best constant σ2 is bounded:

σ2 ≤ nc(p)
4 .

Let us define now the energy on a graph (V,E).

Definition 5.7.5. Let µ be a probability measure on a graph (V,E), then the energy
associated with µ is

E(f) := 1
4
∑
x∈V

∑
y∈Ex

[f(x)− f(y)]2µ(x),

where µ(x) = µ({x}).

Remark 5.7.2. Note that this generalizes the energy on the Hamming Cube.

We could also define the generator L of this energy.

Definition 5.7.6. Let µ be a probability measure on a graph (V,E) and

F := {f : V → R}.

Then the generator L : F → F is defined as

Lf(x) := 1
2
∑
y∈Ex

µ(y)(f(y)− f(x)).
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Indeed, we have the following lemma.

Lemma 5.7.1. We have that

〈f,−Lf〉 = E(f).

Proof.

〈f,−Lf〉 = 1
2
∑
x∈V

∑
y∈Ex

f(x)[f(x)− f(y)]µ(x)µ(y)

= 1
2
∑
x,y∈V

[f(x)− f(y)]2q(x, y),

where q(x, y) := µ(x)µ(y) if (x, y) ∈ E and 0 otherwise. By symmetry, we have that

〈f,−Lf〉 = 1
4
∑
x∈V

∑
y∈Ex

[f(x)− f(y)]2q(x, y)

= E(f),

and the result is proved.

We can now define the Log-Sobolev Inequality on the graph.

Definition 5.7.7. We say that a probability µ on a graph (V,E) satisfies a Log-Sobolev
Inequality with constant c if

Entµ(f 2) ≤ cE(f),

for all f : V → R.

Using this, we can simply bound the σ2 constant in Inequality 5.3 using the
following lemma.

Lemma 5.7.2. Suppose (V,E, µ) satisfies a Log-Sobolev Inequality with constant c. Then,
the best constant σ2 in Inequality 5.3 is bounded:

σ2 ≤ cmaxx∈E d(x)
4 .

Proof. The Log-Sobolev Inequality implies that

Ent(eλf ) ≤ cλ2

8 E
(
eλf(X) ∑

u∈EX
(f(X)− f(u))2

+

)
.

Using that f is 1−Lipschitz and that d(X) ≤ maxx∈E d(x) a.s., we obtain the result by
Herbst’s Method.
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Moreover, there is also a tensorization lemma for graphs. First, let us define the
product of graphs.

Definition 5.7.8. Let (Vi, Ei, di), for i = 1, 2, be two graphs. Then the graph product
(V1 × V2, E1 × E2) is a graph such that

((x1, y1), (x2, y2)) ∈ E1 × E2,

if (x1, x2) ∈ E1 or (y1, y2) ∈ E2, but not simultaneously. The graph distance d1 × d2 on
the product is trivially

d1 × d2((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2).

Then we have the Tensorization Formula.

Lemma 5.7.3. Suppose (Vi, Ei, di, µi) satisfy a Log-Sobolev Inequality with constant ci,
for i = 1, 2. Then (V1×V2, E1×E2, d1×d2, µ1×µ2) also satisfies a Log-Sobolev Inequality
with constant c = max{c1, c2}.

Our next and final example will be the complete graph.

Definition 5.7.9. We say that (V,E) is complete if (x, y) ∈ E whenever x 6= y.

Thus we have the following theorem.

Theorem 5.7.1. Let µ be a probability measure in a complete graph (V,E) and suppose
that

p := min
x∈V

µ({x}) > 0,

then (V,E, µ) satisfies a Log-Sobolev Inequality with constant

c = c(p).

Proof. The proof is based on Diaconis et al. (1996). Note first that

1
c

= inf
{ E(g)
Ent(g2) : Ent(g2) 6= 0

}
.

Since

(|x| − |y|)2 ≤ (x− y)2,

we have that E(|g|) ≤ E(g), and then we can consider the infimum to be restricted to
nonnegative functions g. Let f : V → R be any minimizer, therefore

Ent(f 2) = cE(f).
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Let g be any function and r : R+ → R+ such that

r(λ) := Ent[(f + λg)2]− cE(f + λg).

By definition of f , we have that

r′(0) = 0.

Computing the derivative, we obtain that

r′(0) = 2µ
(
gf log

[
f 2

µ(f 2)

]
− cg(−Lf)

)

= 2〈g, f log
[
f 2

µ(f 2)

]
+ cLf〉.

Since this must be 0 for all g, we obtain that

f log f 2 − f log µ(f 2) + cLf = 0. (5.4)

In our case, the generator satisfies

Lf(x) = −1
2
∑
y∈Ex

µ(y)[f(x)− f(y)]

= −1
2
∑
y∈V

µ(y)[f(x)− f(y)]

− f(x)
2 + 1

2Eµ[f ],

then Equation 5.4 can be rewritten as

2f log f = f log µ(f 2) + cf

2 −
c

2Eµ(f). (5.5)

The right side is a linear function of f and the left is the function t 7→ t log t applied
to f . Now, since the latter is convex, it can only intersect a line in at most two points.
Therefore Equation 5.5 means that f takes at most two values and we recover the binary
case. Let a, b ∈ R be these two values and

s := µ({x ∈ V : f(x) = a}).

Then, by Theorem 5.3.2, we have

c = sup
s
c(s).

Notice that, by symmetry, we can assume that s ∈ [p, 1/2]. Finally, we can easily check
that the supremum is achieved at s = p.

For further information on Log-Sobolev Inequalities in graphs, see Bobkov et al.
(2006), Diaconis et al. (1996), and Bobkov and Tetali (2006).
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6.1 Introduction
In the previous chapter we discussed the discrete Log-Sobolev Inequality scenario

and some applications, such as concentration in the Hamming Cube. The proof of this
result was based on nothing but calculus and some inequalities in R. However, the Gaussian
Log-Sobolev Inequality (GLS) will require some previous results from Information Theory.

Before we introduce the definitions to guide us to the main theorem, let us take a
moment to analyze what we want. The Log-Sobolev Inequality states that the entropy
of the square of a smooth enough function is controlled by the square of the L2 norm of
its gradient. In another words, if a function does not vary too much, then the entropy
functional is close to zero. As we did for the Rademacher case in the previous chapter,
here we can derive concetration in Gaussian Spaces and applications.

There are many proofs of this result, which we briefly describe now. The first
one uses the Central Limit Theorem and the Discrete Log-SobolevInequality. For the
proof, see Boucheron et al. (2013) and Ané et al. (2000). In a second proof, we check that
the Ornstein-Uhlenbeck semigroup satisfies the Modified Log-Sobolev Inequality, see van
Handel (2014). Log-Sobolev Inequality can also be proved for the large class of Boltzmann
measures

dµW (x) := 1
Z
e−W (x)dx,

where dx is the Lebesgue measure, W : Rn → R is a strongly convex function with
Hess(W ) ≥ cId and

Z :=
∫
e−W (x) dx,

which is finite. This proof is based on the Bakry-Émery Criterion, see Ledoux (1999).
Note that the Gaussian is a special case when W (x) = ‖x‖2/2. There is also a proof based
on the Herbst’s Method. As we have seen, we use LSI and Herbst’s Method to prove
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concentration. Herbst’s Inverse Method uses this idea to obtain LSI from a reverse version
of Herbst’s argument. There are some conditions , known as Wang’s Conditions, that
allow us to do that, see Ané et al. (2000).

Finally, there is a proof based on Information Theory Inequalities, such as Expo-
nential Entropy Inequality and Blanchman-Stam Inequality. This is the proof we show in
Section 6.3. Even though it is not the most direct one, its connections with Information
Theory are clearer and help us find formulas and expressions that are more suitable for
some applications.

In Section 6.4, we will use the standard Gaussian Log-Sobolev Inequality to prove
concentration in Gaussian Spaces, or concentration of functions of Gaussian vectors. The
standard method is Herbst’s Method 4.5.6, as we have already shown in Chapter 4.

In Section 6.5 we will extend the Gaussian Concentration to the Gaussian Com-
plexity. The main idea is to bound the quantity

r(T ) = E[sup
t∈T
〈t, g〉],

where g ∼ N (0, Id) and T ⊂ Rn. This is an important quantity in many other applications
(see Vershynin (2017)).

In Section 6.6, we will use the equivalent form of Gaussian Log-Sobolev Inequality,
namely, for any X random vector with density f ∈ C1(Rn) and finite second moment, we
have

N(X)J(X) ≥ n,

where N and J are the exponential entropy and Fisher Information, respectively. We will
prove, in particular, the Crámer-Rao Bound, namely,

|Σ(X)| ≤ |J(X)|−1,

where Σ(X) is the covariance matrix of X and J(X) is the Fisher matrix.

Finally, in Section 6.7, we will use again the Version N(X)J(X) ≥ n to prove an
Uncertainty Principle. This an important result relating the variance of two associated
densities f and g, that is,

F(g) = f ; and
F(f) = g,

where F is the Fourier Transform.
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6.2 Definitions
Let us recall some definitions from Chapters 2, 3 and 4. The Gaussian measure γ

in Rn is the probability measure such that

dγ
dx = 1

(2π)n/2 e
− ‖x‖

2
2 .

Given a function f ≥ 0, we defined its entropy as

Entγ(f) =
∫
Rn
f log(f) dγ −

( ∫
Rn
f dγ

)
log

( ∫
Rn
f dγ

)
= Ent(f(X)),

where X ∼ N (0, Id). Moreover, we defined its energy as

E(f) =
∫
Rn
‖∇f‖2 dx

= E[‖∇f(X)‖2].

Now, for a random vector X with density f ∈ C1(Rn), we defined the Fisher
Information as

J(X) = 4
∫
Rn
‖∇

√
f‖2 dx,

and the exponential entropy as

N(X) = 1
2πee

2
n
H(X)

= 1
2πee

− 2
n

∫
Rn f log(f) dx.

Finally, we need to introduce the space of all finite second moment functions, when
we see a function as a density of some random vector X.

Definition 6.2.1. Let (Rn,B(Rn), µ) be a probability space. Then M2(µ) is the space of
all functions f such that ‖x‖2f is integrable, that is,

M2(µ) := {f : Rn → R :
∫
Rn
‖x‖2|f | dµ <∞}.

6.3 Main Theorem
We are now able to state and prove the main theorem, the Gaussian Log-Sobolev

Inequality.

Theorem 6.3.1. Let f ∈ C2(Rn) ∩ L2(γ) and f 2 ∈M2(γ). Then

Entγ(f 2) ≤ 2Eγ[‖∇f‖2].
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Remark 6.3.1. Even though the assumption f 2 ∈ M2(γ) is not required, we need it for
our proof. For a proof in which this condition is not needed, see van Handel (2014),
where he uses properties of the Ornstein-Uhlenbeck Semigroup. Moreover, by a standard
aproximation, the condition f ∈ C2(Rn) can weakened to f ∈ C1(Rn).

Before prove it, we need some equivalent statements. The first one is the following.

Lemma 6.3.1. The following are equivalent.

1. For all f ∈ C2(Rn) ∩ L2(γ) and f 2 ∈M2(γ) we have that

Entγ(f 2) ≤ 2Eγ[‖∇f‖2]; and

2. For all f ∈ C2(Rn) ∩ L2(dx), f 2 ∈M2(dx) and ‖f‖L2(dx) = 1 we have that

Entdx(f 2) ≤ n

2 log
( 2
eπn

∫
Rn
‖∇f‖2 dx

)
.

Remark 6.3.2. Item 2 is known as Lebesgue Log-Sobolev Inequality.

Proof. (⇒) Let us prove Item 2 for a function p satisfying the hypothesis. We can always
assume ∫

Rn
‖∇p‖2dx <∞,

otherwise the theorem is trivial. Let us set two auxiliar functions:

g(x) := λn/2p(λx);
f(x) = g(x)(2π)n/4e‖x‖2/4.

It is easy to see that

‖p‖
L2(dx) = ‖g‖

L2(dx) = ‖f‖L2(γ) = 1,

and ∫
Rn
‖∇g‖2dx,

∫
Rn
‖∇f‖2dγ <∞.

The following equality holds f 2(x)h(x) = g2(x), where h is the Gaussian density, that is,

h(x) = 1
(2π)n/2 e

−‖x‖2/2.

Item 1 applied to f leads to∫
Rn
f 2 log[f 2]h(x) dx ≤ 2

∫
Rn
‖∇f‖2h(x) dx. (6.1)
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Also, we can relate the gradients of f and g as follows. First, note that

f(x) = g(x)(2π)n/4e‖x‖2/4,

then

∇f(x) = ∇g(x)(2π)n/4e‖x‖2/4 + 1
2xg(2π)n/4e‖x‖2/4,

therefore

‖∇f(x)‖2h(x) =
(
‖∇g(x)‖2 + 1

4‖x‖
2g2(x) + g〈∇g(x), x〉

)
.

Using this in Inequality 6.1 we have that∫
Rn
g2 log

(
g2(2π)n/2e‖x‖2/2

)
dx ≤ 2

∫
Rn

(
‖∇g(x)‖2 + 1

4‖x‖
2g2(x) + g〈∇g(x), x〉

)
dx.

To simplity, let us call L the left side and R the right hand side, then

L = Entλ(g2) + n

2 log(2π) + 1
2

∫
Rn
g2‖x‖2 dx,

and

R = 2
∫
Rn
‖∇g(x)‖2 dx+ 1

2

∫
Rn
g2(x)‖x‖2 dx+ 2

∫
Rn
g(x)〈∇g(x), x〉 dx.

Cancelling terms (and finite by assumption), we obtain

Entλ(g2) + n

2 log(2π) ≤ 2
∫
Rn
‖∇g(x)‖2 dx+ 2

∫
Rn
g(x)〈∇g(x), x〉 dx.

Using Corollary 2.5.7, we obtain

2
∫
Rn
g(x)〈∇g(x), x〉 dx = −

n∑
i=1

∫
Rn
g2(x) dx = −n,

hence Item 1 is equivalent to

Entdx(g2) ≤ 2
∫
Rn
‖∇g‖2 dx− n− n

2 log(2π), (6.2)

with ‖g‖L2(dx) = 1. As g(x) = λn/2p(λx), the left side of Inequality 6.2 becomes∫
Rn
g2(x) log[g2(x)] dx =

∫
Rn
λnp2(λx)n log λ dx+

∫
Rn
λnp2(λx) log p(λx) dx.

Set u = λx, we have du = λndx, therefore∫
Rn
g2(x) log[g2(x)] dx = n log(λ)

∫
Rn
p2(u) du+

∫
Rn
p2(u) log[p2(u)] du.

On the other hand, the first term on the right side in Inequality 6.2 is

2
∫
‖∇g(x)‖2dx = 2

∫
λn‖∇xp(λx)‖2dx,
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where ∇x represents the gradient with respect to x. Setting again u = λx, we have

2
∫
Rn
‖∇g‖2 dx = 2

∫
Rn
‖∇g(x)‖2dx

= 2λ2
∫
Rn
λn‖∇up(u)‖2du.

Summarizing, Item 1 is equivalent to the following with λ > 0:

Entdx(p
2) ≤ 2λ2

∫
Rn
‖∇p2(x)‖2 dx− n log(

√
2πλe) =: 2λ2a− n log(λb), (6.3)

where

a =
∫
‖∇p2(x)‖2dx,

and b = e
√

2π. Minimizing with respect to λ, we have the optimal value λ∗ =
√

n
4a .

Therefore we finally have

Entdx(p
2) ≤ n

2 − n log[b(n(4a)−1)1/2]

= n

2 log
( 2
eπn

∫
Rn
‖∇p(x)‖2dx

)
dx,

which is Item 2.

(⇐) As seen in the proof above, the right side of the conclusion in Item 2 is the
minimum with respect λ > 0 of 2λ2a−n log(λb), where a and b are the same in Inequality
6.3. Hence

Entdx(f
2) ≤ n

2 log
( 2
eπn

∫
‖∇f(x)‖2dx

)
dx ≤ 2λ2a− n log(λb).

Therefore we can invert the substitions in the previous proof.

Now we can prove Lebesgue Log-Sobolev Inequality.

Lemma 6.3.2. For all f ∈ C2(Rn) ∩ L2(dx), f 2 ∈ M2(dx) and ‖f‖L2(dx) = 1 we have
that

Entdx(f 2) ≤ n

2 log
( 2
eπn

∫
Rn
‖∇f‖2 dx

)
.

Proof. Let f be such as in lemma above and∫
Rn
‖∇f‖2 dx <∞.

Let X be a random vector with density f 2, which is by assumption a density. Then the
fact that f 2 ∈M2(dx) and Corollary 3.4.2 imply that

H(X) <∞.
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On the other hand, we also have

J(X) = 4
∫
Rn
‖∇f‖2 dx <∞,

hence Corollary 4.2.1 implies that

N(X)J(X) ≥ n,

that is,

2
πe

exp
(−2Entdx(f 2)

n

) ∫
Rn
‖∇f‖2 dx ≥ n,

or, equivalently,

Entdx(f 2) ≤ n

2 log
( 2
nπe

∫
Rn
‖∇f‖2 dx

)
,

and the theorem is proved.

Remark 6.3.3. Notice that we used Corollary 4.2.1 to prove Lebesgue Log-Sobolev In-
equality and by Lemma 6.3.1 we also have Gaussian Log-Sobolev Inequality. However, it
is easy to see that Corollary 4.2.1 and Lebesgue Log-Sobolev Inequality are equivalent.
Indeed, we just have to invert the above proof. Therefore Corollary 4.2.1, Theorem 6.3.1
and Lemma 6.3.2 are equivalent.

Using Fisher Information Matrix, we can state another equivalence.

Lemma 6.3.3. The following are equivalent.

1. Let X ∈ L2(Ω,F ,P) be a random vector with J(X) <∞ and density f ∈ C2(Rn),
then N(X)J(X) ≥ n; and

2. Let X ∈ L2(Ω,F ,P) be a random vector and J(X) <∞ and density f ∈ C2(Rn),
then N(X)|J(X)|1/n ≥ 1.

Remark 6.3.4. Item 2 is known as Strong Log-Sobolev Inequality.

Proof. (⇒) Let Y = J(X)1/2X. Then Corollary 3.4.6 and Lemma 3.4.8 take the form

N(Y ) = |J(X)|1/nN(X),

and

J(Y ) = Id.

Therefore J(Y ) = n. Hence Inequality J(Y )N(Y ) ≥ n is rewritten as

|J(X)|1/nN(X) ≥ 1.
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(⇐) Since |J(X)|1/n and J(X)/n are the geometric and arithmetic means of the
eigenvalues of J(X), the mean inequality states that

J(X)/n ≥ |J(X)|1/n,

hence

1
n
N(X)J(X) ≥ N(X)|J(X)|1/n ≥ 1,

and then we have the result.

Summarizing, we have the following theorem.

Theorem 6.3.2. All sentences below are equivalent.

1. Let f ∈ C2(Rn) ∩ L2(dγ) and f 2 ∈M2(dγ), then

Entγ(f 2) ≤ 2Eγ[‖∇f‖2];

2. Let f ∈ C2(Rn) ∩ L2(dx), f 2 ∈M2(dx) and ‖f‖L2(dx) = 1, then

Entdx(f 2) ≤ n

2 log
( 2
eπn

∫
Rn
‖∇f‖2 dx

)
;

3. Let X ∈ L2(Ω,F ,P) be a random vector with J(X) <∞ and density f ∈ C2(Rn),
then N(X)J(X) ≥ n; and

4. Let X ∈ L2(Ω,F ,P) be a random vector and J(X) <∞ and density f ∈ C2(Rn),
then N(X)|J(X)|1/n ≥ 1.

In the next sections, we will explore the applications of Theorem 6.3.1. Without
trying to run out all the applications, we will only mention four results which we consider
relevant: Concentration in Gaussian Spaces; Gaussian Process and Gaussian Complexity;
The Crámer-Rao Bound and the Uncertainty Principle.

6.4 Application I: Concentration in Gaussian Spaces
Let X be a standard Gaussian random vector, then Theorem 6.3.1 is equivalent to

saying that, for every f ∈ C1(Rn) we have

Ent(f 2(X)) ≤ 2E[‖∇f(X)‖2],

according to Remark 6.3.1.
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Now, let g ∈ C1(Rn) be a Lipschitz function with ‖∇g‖2 ≤ L2 and let

f = exp(λg/2),

then by the chain rule we have

Ent(eλg(X)) ≤ λ2

2 E[‖∇g(X)‖2eλg(X)]

≤ λ2L2

2 E[eλg(X)].

By Herbst’s Method 4.5.6, we have that

P
(
|g(X)− E[g(X)]| ≥ t

)
≤ 2 exp

(
− t2/(2L2)

)
.

Notice that this bound does not depend on n. Therefore, we have the following theorem.

Theorem 6.4.1. Let X ∈ Rn be a random Gaussian vector. Let f ∈ C1(Rn) be a Lipschitz
function with constant L, then

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2 exp

(
− t2

2L2

)
.

In fact, we can weaken the hypothesis required to functions which are Lipschitz on
each coordinate.

Corollary 6.4.1. Let X ∈ Rn be a random Gaussian vector. Let f ∈ C1(Rn) be a
Lipschitz function such that

|f(x1, ..., xi−1, u, ...., xn−1)− f(x1, ..., xi−1, v, ...., xn−1)| ≤ Li|u− v|,

for all u, v ∈ R, all x ∈ Rn−1 and all i, then

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2 exp

(
− t2

2∑n
k=1 L

2
i

)
.

We will give two examples to illustraste this impressive result.

Example 6.4.1. Let X be a Gaussian vector and f(x) = ‖x‖, then f satisfies Theorem
6.4.1 with constant L = 1, and

P
(∣∣∣‖X‖ − E[‖X‖]

∣∣∣ ≥ t
)
≤ 2 exp

(
− t2/2

)
.

Notice that E[‖X‖] ≤
(
E[‖X‖2]

)1/2
=
√
n, therefore E[‖X‖] is at most of order

√
n, so

by replacing t =
√
nu, we have

P
(∣∣∣∣‖X‖√n − E[‖X‖]√

n

∣∣∣∣ ≥ u
)
≤ 2 exp

(
− nu2

2

)
.

This last result captures the right order of fluctuation of ‖X‖.
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Example 6.4.2. Let x ∈ Rn be an unknown vector. Let A be a deterministic m × n
matrix and let

y = Ax+ ε,

where ε is a standard Gaussian vector in Rm. Suppose we want to estimate x from the
output y. The quadratic regression gives the best solution as x∗ = argminz∈Rn‖y − Az‖.
How good is this solution? We now give a simple bound on the probability of error
‖x− x∗‖.

Notice first that the real solution is x = (ATA)−1AT (y− ε) and x∗ = (ATA)−1ATy,
then

‖x− x∗‖ = ‖ − (ATA)−1AT ε‖ ≤ kA‖ε‖,

where kA is the condition number of A, which satisfies

‖(ATA)−1AT‖ ≤ ‖AT‖‖(ATA)−1‖ ≤ σmax(A)
σmin(A) := kA.

Therefore, we can apply the previous example to bound ‖x− x∗‖, which gives

P
(∣∣∣∣‖x− x∗‖kA

√
m
− E[‖x− x∗‖]

kA
√
m

∣∣∣∣ ≥ u
)
≤ 2 exp

(
−mt2/2

)
.

Although this result gives a bad fluctuation ‖x−x∗‖ ∼ kA
√
m, this order does not depend

on n, which is impressive. However, we can strengthen this result using a random matrix
instead of a deterministic. We will do this in the next section, particularly in Corollary
6.5.1.

6.5 Application II: Gaussian Complexity
Let V ⊂ Rn. We have already defined a way to measure the complexity of V in

Section 5.5. In this section we will give another way to define precisely this quantity, but
we will use Gaussian random vectors, instead of Rademachers.

Definition 6.5.1. Let V ⊂ Rn and g ∼ N (0, Id), then the Gaussian Complexity of V
is defined as

w(V ) = E[sup
v∈V
〈v, g〉]

This is precisely the same definition as the Rademacher Complexity, but with a
Gaussian vector. Likewise, we get the same properties, but with a different constant in
the relation with the diameter.
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Lemma 6.5.1. Let T, S ⊆ Rn, a ∈ R. Then the following are true.

1. We have: w(T + S) = w(T ) + w(S);

2. We also have w(aT ) = |a|w(T );

3. In particular, we have w(T − T ) = 2w(T );

4. The relation between the Rademacher Complexity and the Diameter (in the Euclidean
norm) is the following:

1√
2π

diam(T ) ≤ w(T ) ≤
√
n

2 diam(T ); and

5. If conv(T ) denotes the convex hull of T , then

w(conv(T )) = w(T ).

Proof. Let us just prove that
1√
2π

diam(T ) ≤ w(T ).

First, note that

w(T ) = 1
2E[ sup

x,y∈T
〈g, x− y〉]

≥ 1
2 sup
x,y∈T

E[|〈g, x− y〉|].

Now, we can easily check that

E[|X|] =
√

2
π
,

for X ∼ N (0, 1), hence

w(T ) ≥ 1
2

√
2
π

sup
x,y∈T

‖x− y‖

= 1√
2π

diam(T ),

and it is proved.

Also, we can bound the quantity w(V ) in a similar manner.

Theorem 6.5.1. Let V be a finite set in Rn and let g be a standard Gaussian random
vector in Rn. Let L = supv∈V ‖v‖, then

w(V ) ≤
√

2L2 log |V |,

and

P
(

sup
v∈V

gv ≥
√

2L2 log |V |+ u
)
≤ e−u

2/(2L2).
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Remark 6.5.1. Even though we bound just

P
(

sup
v∈V

gv ≥
√

2L2 log |V |+ u
)
≤ e−u

2/(2L2),

we can get a lower bound as well. Indeed, note that

| sup
v∈V
〈v, x〉 − sup

v∈V
〈v, y〉| ≤ L‖x− y‖,

hence Corollary 6.4.1 implies that

P(| sup
v∈V
〈v,X〉 − w(V )| ≥ t) ≤ 2 exp

(
− t2

2L2

)
.

Proof. Let gv := 〈v, g〉. Then (gv)v∈V becomes a Stochastic Proccess. Notice that the
function f(x) = 〈v, x〉 is a Lipschitz function with constant Lv = ‖v‖ ≤ L. Then Cororally
6.4.1 implies that

ψv(λ) ≤ λ2L2

2 ,

by Herbst’s Method 4.5.6 and ψv(λ) := logE[eλgv ].

Let λ > 0, then, by Jensen’s Inequality to the function 1
λ

log x the Gaussian
Complexity satisfies

w(V ) = E
(1
λ

log exp
(
λ sup
v∈V

gv

))
≤ 1
λ

logE
(

exp
(
λ sup
v∈V

gv

))
≤ 1
λ

log
∑
v∈V

E
(

exp(λgv)
)

≤ log |V |+ λ2L2/2
λ

.

Minimizing it over λ > 0 we get the bound

w(V ) ≤
√

2L2 log |V |.

The bound in the probability of supv∈V gv follows by Chernoff’s Inequality 2.7.4, since

P
(

sup
v∈V

gv ≥ t
)

= P
( ⋃
v∈V

gv ≥ t
)

≤
∑
v∈V

P(gv ≥ t)

≤
∑
v∈V

e−t
2/(2L2)

= elog |V |−t2/(2L2).

Taking t =
√

2L2 log |V |+ u, we have

P
(

sup
v∈V

gv ≥
√

2L2 log |V |+ u
)
≤ e−u

2/(2L2),

which gives a Gaussian bound to this random variable.
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A simple reason why we want to bound the Gaussian Complexity can be ilustrated
in the following lemma.

Lemma 6.5.2. Let p ∈ [1,∞] and X ∼ N (0, Id) in Rn. Let also q ∈ [1,∞] be the
conjugate exponent of p and Bn

q = {x ∈ Rn : ‖x‖q ≤ 1}, then

E[‖X‖p] = w(Bn
q ).

Proof. It is a direct consequence of the duality formula between the norms:

‖x‖p = sup
y∈Bnq
〈x, y〉.

Finally, we can relate both complexity in the following lemma.

Lemma 6.5.3. Let T ⊂ Rn be a bounded set. Then√
2
π
r(T ) ≤ w(T ) ≤

[
2
√

log n
]
r(T ).

We will give a simple application of the Gaussian Complexity based on the M*
Bound. Let us first introduce the Grassmanian (Gn,m,B(Gn,m), µ).

Definition 6.5.2. Let Gn,m be the space of all m−dimensional subspaces of Rn endowed
with the projection distance, that is,

d(E,F ) := ‖PE − PF‖,

where PE is the projection onto E and ‖ · ‖ is the operator norm. Then (Gn,m,B(Gn,m))
is the Grassmanian.

We can endow the Grasmannian with an uniform measure. This is done in the
following theorem.

Theorem 6.5.2. Let O(n) be the space of all ortogonal operators in Rn endowed with the
Haar measure γ and E ∈ Gn,m. Then there is an unique measure µ in the Grassmanian
Gn,m such that

µ(A) = γ({U ∈ O(n) : O(E) ∈ A}),

for all A ∈ B(Gn,m).

Now we can state the M* Bound.
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Theorem 6.5.3. Let K ⊂ Rn be a bounded subset. Fix m < n and let E be a random
element (Gn,n−m,B(Gn,n−m)), distributed according the uniform measure in Gn,n−m. Then

E[diam(K ∩ E)] ≤ Cw(K)√
m

,

for some universal constant C.

Proof. We recommend the elegant proof by Vershynnin in Pfander (2015).

Remark 6.5.2. We can also prove a concentration inequality, as shown in Pfander (2015):

P
(
diam(K ∩ E) ≥ C

w(K)√
m

+ Ct
)
≤ 2 exp

(
− mt2

2diam2(K)

)
.

Remark 6.5.3. Let m = 1 and K be a convex body with barycenter at the origin, then
Gn,n−1 is the space of all hyperplanes in Rn. The theorem says that, in mean, the size of
K ∩ E is of order w(K). In other words, almost all the volume of K lies in the set

K̃ = K ∩ (Cw(K)Bn
2 ),

which is known as the bulk of K. The set K \ K̃ is the outliers of K, carrying exponential
less volume (see Ball et al. (1997)).

Now we can state and prove one of the main and simple theorems in Compressive
Sensing Theory. Suppose we want to recover a signal x ∈ Rn from a random measurement
Ax, which means that A is a random m× n matrix. We will also suppose that x lies in
some set K. The most naive idea is to take any y ∈ K which satisfies Ay = Ax. Can we
quantify the error doing this? The following corollary expresses it.

Corollary 6.5.1. Let x ∈ K and A be a random m× n matrix such that Aij ∼ N (0, 1)
are independent, for all i, j. Set y = Ax and z any solution of the systemAz = y;

z ∈ K.

Then we have

E[‖z − x‖] ≤ Cw(K)√
m

.

Proof. Note that

E[‖z − x‖] ≤ E[diam(K ∩ E)],

where E = ker(A). Since the columns of A are standard Gaussian vectors, we can see
that E is distributed according to the uniform measure in Gn,n−m, hence we can apply
Theorem 6.5.3 and get

E[diam(K ∩ E)] ≤ Cw(K)√
m

,

and the corollary is proved.
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We can transform this idea into an optimization problem. SupposeK is a symmetric
convex body, which means that K is closed, convex, origin symmetric and has nonempty
interior. We can define a norm using K.

Definition 6.5.3. Let K be a symmetric convex body. Then the function ‖·‖K : Rn → R,
defined as

‖x‖K := inf{λ > 0 : λ−1x ∈ K},

is known as the Minkowski functional of K.

Lemma 6.5.4. The Minkowski functional is a norm and the unit ball is K:

{x : ‖x‖K ≤ 1} = K.

Now we can transform Corollary 6.5.1 into an optimization problem.

Corollary 6.5.2. Let K be a symmetric convex body, x ∈ K and A be a random m× n
matrix such that Aij ∼ N (0, 1) are independent, for all i, j. Consider Ax = y and x∗ the
solution of the following optimization problem:

p∗ = min ‖z‖K
s.t. Az = y.

Then p∗ ≤ 1 and

E[‖x∗ − x‖] ≤ Cw(K)√
m

.

Proof. Since x ∈ K and x is a feasible point, we have that p∗ ≤ 1. Now, Since x∗ achieves
the mininum, we have

‖x∗‖K ≤ ‖x‖K ≤ 1,

hence x∗ ∈ K. Therefore the result follows by Corollary 6.5.1.

For more applications of Gaussian complexity, see Vershynin (2017) and Pfander
(2015).

The next application is about a Statistic Inequality.

6.6 Application III: The Crámer-Rao Inequality
Let X be a centered random variable with variance equals to σ2. Suppose we want

to estimate a parameter θ from the observation of Y = X + θ. What is the best estimator
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T (Y ) of θ? How can we quantify the error? In this section we will try to explore this idea
and prove the Crámer-Rao lower bound on the error through Theorem 6.3.1, using the
version

N(X)J(X) ≥ n.

In our case, we will consider only linear estimation, which means that, given a
sample Y1, ..., YN , the estimator T (Y1, ..., YN) is a linear function of Y1, ..., YN .

Definition 6.6.1. An unbiased estimator T satisfies

E[T (Y1, ..., Yn)] = θ.

Therefore, for an unbiased estimator T , we have

T (y1, ..., yN) = 〈v, y〉,

where v1 + ...+ vN = 1. For the error, we will consider the variance error

eT := Var[T (Y1, ..., YN)].

The main theorem of this section is the following.

Theorem 6.6.1. Let X be a random variable with Fisher Information J(X). Let θ be in
R and take a linear unbiased estimator of θ with sample Y1, ..., YN according to the law of
X + θ. Then, the error of estimation is bounded from below:

eT ≥
1

NJ(X) .

Proof. Because Var[Y ] = Var[X] = σ2, we have

eT = σ2
n∑
i=1

v2
i = σ2‖v‖2.

Now, because Corollary 3.4.2, we have σ2 ≥ N(X), therefore

eT ≥ N(X)‖v‖2 ≥ ‖v‖
2

J(X) ,

where the last inequality is due to Corollary 4.2.1 with n = 1. Therefore, the error is
bounded away from 0. To minimize over v, notice that

min
v1+...+vN=1

‖v‖2 = 1/N,

therefore

eT ≥
1

NJ(X) ,

and the theorem is proved.
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Remark 6.6.1. In fact, this bound works not only for linear, but for all unbiased estimator.
For see this (take N = 1 for simplicity), notice that

J(X)Var[T (X + θ)] = E
(
f ′(X)
f(X)

)2
E
(
T (X + θ)− θ

)2
,

where f is the density of X. Applying Cauchy-Schwartz Inequality, we have

J(X)Var[T (Y )] ≥
E(f ′(X)

f(X)

)(
T (X + θ)− θ

)2

.

We’ve already seen in the proof of Theorem 3.6.4 that E
(
f ′(X)
f(X)

)
= 0. Finally, notice that

1 = d

dθθ = d

dθE[T (X + θ)] = d

dθ

∫
f(x)T (x+ θ) dx.

Changing the order and since d
dθT (x+ θ) = d

dxT (x+ θ), we have

1 =
∫
R
f(x)T ′(x+ θ) dx.

Therefore, by the weak derivative property we have

1 =
( ∫

R
f ′(x)T (x+ θ) dx

)2
,

hence

J(X)Var[T (Y )] ≥
( ∫

R
f ′(x)T (x+ θ)dx

)2
= 1,

hence the nonlinear case is proved.

Let us look to the Example 6.4.2 with this perspective.

Example 6.6.1. Let Y = θ + X, where X is a standard Gaussian noise. Suppose we
want to estimate θ from an independent sample Y1, ..., YN ∼ Y . We can look this as a
problem of recovering a signal x ∈ RN such that Y = Idx + Z, where Z is a standard
Gaussian vector and we know, by the prior information, that x = (θ, ..., θ). The best
unbiased estimation is

T (Y1, ..., YN) = 1
N

N∑
i=1

Yi,

since

Var[T (Y1, ..., Yn)] = 1
N

Var[Yi] = 1
N

= 1
NJ(X) ,

and J(X) = 1, by Example 3.4.6. Similarly, according to the perspective of the recovery
problem, we have that

θ∗ = argminx=(θ,...,θ)‖Y − Idx‖2,
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therefore

2
n∑
i=1

(Yi − θ∗) = 0,

hence

θ∗ := T (Y1, ..., YN) = 1
N

n∑
i=1

Yi

is also the best solution of the recovery problem.

We can get a higher dimensional version of this result.

Corollary 6.6.1. Let Y = θ +X, where X is a standard Gaussian noise and a sample
Y1, ..., YN ∼ Y . Let also

T (Y1, ..., YN) = 1
N

N∑
i=1

Yi,

hence

P
(
|T (Y1, ..., YN)− θ| ≥ t

)
≤ 2 exp

(
−Nt2/2

)
.

Proof. Notice that T (Y1, ..., YN ) is a Gaussian random variable with mean θ and variance
1/N , which means that T (Y1, ..., YN) is equal in distribution to

f(X) := θ + 1√
N
X

where X is a standard Gaussian r.v. Since f is a Lipschitz function with constant 1/
√
N ,

we have the desired result applying Theorem 6.4.1.

Because of this, to guarantee an error ε, with probability, say, at least 0.99, we
just have to take

2 exp
(
−Nε2/2

)
≤ 0.01,

that is, N ≥ 10
ε2 is enough.

Notice that the Crámer-Rao Bound is about the inequality

σ2(X) ≥ 1
J(X) ,

for all random variables with variance σ2, therefore, we can strengthen this inequality
using the Strong Log-Sobolev Inequality in Theorem 6.3.2 and get the following theorem.
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Theorem 6.6.2 (Crámer-Rao’s Inequality). Let X be a random vector in Rn with covari-
ance matrix Σ(X) and Fisher Matrix J(X), then

|Σ(X)| ≥ 1
|J(X)| .

In fact, we can obtain a Matrix Inequality Σ(X) � J−1(X), where � is the partial
order defined by the cone of Positive Semidefinite Matrices. Let us just state this, without
proving it.

Theorem 6.6.3. Let X be a random vector with covariance matrix Σ(X) and Fisher
Matrix J(X) and let � be the partial order defined by the Positive Semidefinite Cone of
Matrices n× n. Then

Σ(X) � J−1(X).

6.7 Application IV: The Uncertainty Principle
Perhaps the most surprising result comes from the relation between the Uncertainty

Principle and Corollary 4.2.1.

First, some notation: let

L2 := {f : R→ C : ‖φ‖ =
∫
R
|φ|2 dx <∞},

be the space of square integrable complex value functions. Let F : L2 → L2 be the Fourier
Transform: (

F(f)
)

(u) :=
∫
R
f(x)e−2πixu dx.

And let, for simplify the notation, f̂ = F(f).

Definition 6.7.1. Let ψ ∈ L2, ‖ψ‖ = 1, and X be a random variable with density |ψ|2.
Let φ = ψ̂, then |φ|2 is also a density, say, of Y . We say that X and Y are associated
random variables and ψ and φ are associated densities.

The following theorem was proved recently in Dembo (1990) and before in Stam
(1959).

Theorem 6.7.1. Let X and Y be associated random variables with finite variances Var(X)
and Var(Y ). Then

16π2Var(X)Var(Y ) ≥ 1.

Remark 6.7.1. This is known as an Uncertainty Principle.
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Proof. From Corollary 4.2.1 we obtain

Var(X)J(X) ≥ N(X)J(X) ≥ 1. (6.4)

Let us now compute J(X). Let u0 ∈ R, then |e−2πixu0 | = 1 for all x ∈ R, hence

J(X) = 4
∫
R

( d
dx |ψ(x)e−2πixu0|

)2
dx. (6.5)

To compute the derivative, notice that for a complex-valued function f(x) = reiθ we have

f ′(x) = r′(x)eiθ + riθ′(x)eiθ = r′eiθ + iθ′f,

and

f
′(x) = r′e−iθ − riθ′e−iθ = r′e−iθ − iθ′f.

Multiplying these equalities, we obtain

f ′(x)f ′(x) = (r′)2 + (θ′)2|f |2.

Therefore ( d
dx |f |

)2
= df

dx
df
dx − |f |

2
(
arg f

)2
≤ df

dx
df
dx. (6.6)

Let f(x) = ψ(x)e−2πixu0 , then
( d
dx |ψ(x)e−2πixu0|

)2
≤ dψ(x)e−2πixu0

dx
dψ(x)e2πixu0

dx .

Now, let us take a look at the following expression:

A =
∫
R
(u− u0)2|φ(u)|2 du

=
∫
R
v2|φ(v + u0)|2 dv.

The fourth property stated at Lemma 2.6.5 implies that

φ(v + u0) =
(
F(e−2πixu0ψ(x))

)
(v).

Since f(x) = ψ(x)e−2πixu0 , we have that

A =
∫
R

∣∣∣∣vF [f ](v)
∣∣∣∣2 dv.

Because of the tenth property at Lemma 2.6.5, we have that

vF [f ](v) = 1
2πiF [f ′](v),
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then

A = 1
4π2

∫
R
|F [f ′](v)|2 dv.

Since F is an isometry, we obtain

A = 1
4π2

∫
R
|f ′(x)|2 dx = 1

4π2

∫
R

df
dx

df
dx dx.

Replacing this in Inequality 6.6 and using it in Equation 6.5, we obtain

J(X) ≤ 16π2A.

Of course, setting u0 = E[Y ] gives that A = Var(Y), then

J(X) ≤ 16π2Var(Y ).

Finally, replacing this bound in Inequality 6.4 gives the uncertainty principle.





211

Bibliography

C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and
G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthéses, 2000.

D. Bakry. On sobolev and logarithmic sobolev inequalities for markov semigroups. New
trends in stochastic analysis (Charingworth, 1994), pages 43–75, 1997.

K. Ball et al. An elementary introduction to modern convex geometry, 1997.

P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2013.

N. Blachman. The convolution inequality for entropy powers. IEEE Transactions on
Information Theory, 11(2):267–271, 1965.

S. G. Bobkov and P. Tetali. Modified logarithmic sobolev inequalities in discrete settings.
Journal of Theoretical Probability, 19(2):289–336, 2006.

S. G. Bobkov, C. Houdré, and P. Tetali. The subgaussian constant and concentration
inequalities. Israel Journal of Mathematics, 156(1):255–283, 2006.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic
theory of independence. Oxford University Press, 2013.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

P. Brémaud. Markov chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer,
2013.

P. Brémaud. Fourier Analysis and Stochastic Processes. Springer, 2014.

L. A. Caffarelli. Monotonicity properties of optimal transportation and the fkg and related
inequalities. Communications in Mathematical Physics, 214(3):547–563, 2000.



212 Bibliography

D. Chafai and J. Lehec. On poincare and logarithmic sobolev inequalities for a class of
singular gibbs measures, 2018.

J. B. Conway. A Course in Functional Analysis. Springer, 2010.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,
2012.

A. Dembo. Information inequalities and uncertainty principles. Dept. Statistics, Stanford
Univ., Stanford, CA, Tech. Rep, 75, 1990.

F. Den Hollander. Large Deviations. American Mathematical Soc., 2008.

P. Diaconis, L. Saloff-Coste, et al. Logarithmic sobolev inequalities for finite markov
chains. The Annals of Applied Probability, 6(3):695–750, 1996.

M. D. Donsker and S. S. Varadhan. Asymptotic evaluation of certain markov process
expectations for large time, i. Communications on Pure and Applied Mathematics, 28
(1):1–47, 1975.

P. Dupuis and R. S. Ellis. A Weak Convergence Approach to the Theory of Large Deviations.
John Wiley & Sons, 2011.

R. Durrett. Probability: Theory and Examples. Cambridge University Press, 2019.

M. Fathi, N. Gozlan, and M. Prodhomme. A proof of the caffarelli contraction theorem
via entropic regularization, 2019.

G. B. Folland. Real Analysis: Modern Techniques and Their Applications. John Wiley &
Sons, 2013.

C. Giraud. Introduction to High-Dimensional Statistics. CRC Press, 2014.

E. F. M. F. L. Gross and C. K. M. R. D. WStroock. Dirichlet Forms. Springer, 1993.

A. Guionnet and B. Zegarlinksi. Lectures on logarithmic sobolev inequalities. In Séminaire
de probabilités XXXVI, pages 1–134. Springer, 2003.

K. Itô. Stochastic Processes: lectures given at Aarhus University. Springer, 2013.

Y.-H. Kim and E. Milman. A generalization of caffarelliâĂŹs contraction theorem via
(reverse) heat flow. Mathematische Annalen, 354(3):827–862, 2012.

U. Krengel. Ergodic Theorems. Walter de Gruyter, 2011.

P. D. Lax. Linear Algebra and its Applications. 2007. John Wiley & Sons, 2007.



Bibliography 213

M. Ledoux. Concentration of measure and logarithmic sobolev inequalities. In Seminaire
de probabilites XXXIII, pages 120–216. Springer, 1999.

P. Mörters. Large deviation theory and applications, 2008.

J. Newman. Ergodic theory for semigroups of markov kernels, 2015.

A. Pazy. Semigroups of Linear Operators and aAplications to Partial Differential Equations.
Springer, 2012.

G. E. Pfander. Sampling Theory, a Renaissance: Compressive Sensing and Other Devel-
opments. Springer, 2015.

M. Raginsky, I. Sason, et al. Concentration of measure inequalities in information theory,
communications, and coding. Foundations and Trends R© in Communications and
Information Theory, 10(1-2):1–246, 2013.

G. Royer. An Initiation to Logarithmic Sobolev Inequalities. American Mathematical Soc.,
2007.

C. E. Shannon. A mathematical theory of communication. Bell system technical journal,
27(3):379–423, 1948.

A. N. Shiryaev. Probability-1. Springer, 2016.

A. J. Stam. Some inequalities satisfied by the quantities of information of fisher and
shannon. Information and Control, 2(2):101–112, 1959.

R. van Handel. Probability in high dimension, 2014.

R. Vershynin. High-Dimensional Probability. Cambridge University Press, 2017.

P. Walters. An Introduction to Ergodic Theory. Springer, 2000.


	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	On Dice and Coins
	Introduction
	Probability Spaces
	Carathéodory's Theorem
	Borel, Lebesgue and Kolmogorov

	Random Variables and Random Vectors
	Random Variables and Distribution
	Independence

	Integral and Expected Value
	The Three Steps
	Radon-Nikodym Theorem
	Product Measure and Fubini's Theorem

	Computing Integrals
	Riemann Integral
	Change of Variables
	The Weak Derivative

	The Fourier Transform and Moments
	The Convolution Rule
	Moments
	The Generating Function
	The Fourier Transform and The Characteristic Function

	Inequalities in Probability
	Convex Function and Jensen Inequality
	Markov's Inequality
	Chernoff's Inequality
	Inequalities in Hilbert Space

	Conditional Expectation
	Notions of Convergence and Laws of Large Numbers
	Weak Law and Convergence in Probability
	Almost Surely Convergence and Strong Law
	Convergence in Distribution and Central Limit Theorem

	Markov Chains
	Discrete Time and Countable State Space
	Continuous Time and Countable State Space
	Uncountable State Space


	Information and Its Mysteries
	Introduction
	Shannon Entropy
	Compression and Codes
	Differential Entropy and Information
	Differential Entropy of Shannon
	Maximum Entropy
	Exponential Entropy of Shannon
	Fisher Information according to a parameter
	Fisher Information
	Fisher Matrix
	Fisher and Kullback-Leibler Divergence

	Channel
	Discrete Channel
	Continuous Channel

	Inequalities in Information Theory
	Fisher Information Inequality
	Exponential Entropy Inequality of Shannon


	We won't go into PDEs!
	Introduction
	Semigroups and Generators
	Semigroups
	Heat Semigroup and DeBruijn's Identity
	Ornstein-Uhlenbeck Semigroup
	Discrete and Binary Semigroups

	Functional Entropy
	Convexity and duality formulas
	Evolution of Entropy
	Tensorization

	Poincaré's Inequality
	Spectral Gap Inequality
	Tensorization
	Perturbation
	Concentration

	Log-Sobolev Inequality
	Tensorization and Perturbation
	Concentration and the Herbst Method
	Equivalent Definitions


	Better start with 2 than many!
	Introduction
	Definitions and Properties
	Main Theorem
	Application I: Concentration in the Hamming Cube
	Application II: Rademacher Complexity
	Application IV: Supervised Classification Problem
	Application III: Concentration in Graphs

	Open the way for Gauss!
	Introduction
	Definitions
	Main Theorem
	Application I: Concentration in Gaussian Spaces
	Application II: Gaussian Complexity
	Application III: The Crámer-Rao Inequality
	Application IV: The Uncertainty Principle

	Bibliography

