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RESUMO

O objetivo deste trabalho é caracterizar os sistemas dinâmicos, ou seja, se eles são
ergódicos, mistos ou exatos, através do operador Frobenius Perron. Vamos também
fazer uma conexão com a segunda lei da termodinâmica

Palavras-chave: Palavrachave1. Palavrachave2. Palavrachave3.



ABSTRACT

The objective of this work is to characterize the dynamic systems, that is, if they
are ergodic, mixing or exact, through the Frobenius Perron operator. Also make a
connection with the second law of thermodynamics

Keywords: Keyword1. Keyword2. Keyword3.
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1 INTRODUCTION

In this work, we are going to study an important Markov operator in the study

of the dynamics of density functions, the Frobenius-Perron operator. This operator

allows us to study the evolution of the density functions under a dynamical system.

This operator takes a density function in an arbitrary system state and gives us

a new density function, according to the system’s dynamics . For example if the

system tends to accumulate all the orbits at a point in space, then the operator

of Frobenius-Perron, close to makes all the densities evolve to a density such that

it has a maximum that point, since it is at that point we should have the greatest

probability of finding particles in a sufficiently large time. In the case that the system

tends to disperse all orbits throughout the space evenly, then the Frobenius-Perron

operator will make all densities at a constant density. On the other hand, knowing

how densities evolve gives us information about the behavior of all the orbits of the

system.

Next we will give a brief summary of what we will see in each chapte.

In chapter one, we will introduce Markov’s operators, especially the Frobenius-

Perron operator and its adjoint operator, the Koopman operator.

In chapter two, we will consider three types of dynamical systems; the ergodico-

nes, the mixting ones and the exact ones. In the main theorem of this chapter shows

the equivalence of the three types of systems mentioned above with the convergence

modes of the Frobenius-Perron operator sequence.

In chapter three, we will study sufficient conditions for the existence of fixed

points for Markov operators, we will call these fixed points stationary densities.

In the chapter chapter, we will study the behavior of the entropy of Bolzmann-

Gibbs in relation to the dynamic behavior of the Markov operators, in particular

when the Markov operator is the Frobenius-Perron operator. We end with a theorem

that establishes a condition for the accuracy of the system, in relation to the entropy

of Bolzmann-Gibbs.



12

In chapter five, we will give an interpretation of the results seen in the pre-

sent work in the context of thermodynamics, in particular with the second law of

thermodynamics.
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2 THE FROBENIUS-PERRON OPERATOR

In this chapter we introduce Markov operator, with the objective of study the

dynamics of a density within a dynamical system or to characterize the associated

dynamical system itself, the Frobenius-Perron operator, also known as the transfer

operator.

2.1 THE MARKOV OPERATOR

We will start by defining what is a Markov operator.

Definition 1 Let (X ,A, µ) be measure space. Any linear operator P : L1 → L1

satisfying for all f ∈ L1 such that f ≥ 0 :

1. Pf ≥ 0,

2. ‖Pf‖ = ‖f‖

is called a Markov Operator

The Markov Operator have the following property if f, g ∈ L1 then Pf(x) ≥ Pg(x)

whenver f(x) ≥ g(x). Indeed (f(x) − g(x)) ≥ 0 implies that P (f(x) − g(x)) ≥ 0

and by items 1 of the Definition 2.1 of P .

To demonstrate further inequalities, we offer the following Proposition:

Proposition 2 Let (X ,A, µ) be measure space and P is Markov operator, then for

every f ∈ L1:

1. (Pf(x))+ ≤ P (f(x)+),

2. (Pf(x))− ≤ P (f(x)−),

3. |Pf(x)| ≤ P |f(x)|,
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4. ‖Pf(x)‖ ≤ ‖f(x)‖.

Proof Note that from Definition of f+ and f−, it following that:

(Pf)+ = (Pf+ − Pf−)+ = Max{0, Pf+ − Pf−} ≤Max{0, Pf+} = Pf+.

Analogous is the proof for Pf−. The inequality 3 following from 1 and 2, namely:

|Pf | = (Pf)+ + (PF )− ≤ P (f+) + P (F )− = P (f+ = Pf−) = P |f | .

Finally, by integrating 3 over X , we obtain:

‖Pf‖ =

∫
X
|Pf(x)|dµ ≤

∫
X
P |f(x)|dµ = ‖f‖,

which confirms 4.

The inequality 4 is very important, any operator P that satisfies it is called a

contraction.

Definition 3 Support of function g we simply mean the set of all x such that g(x) 6=

0, thar is:

Supp(g) = {x; g(x) 6= 0} .

This is not the customary Definition of the support of a function, which is

closure{x; g(x) 6= 0}, but, because the customary Definition requires the intro-

duction of topological notions not used elsewhere.

Proposition 4 Let P is Markov operator, then ‖Pf(x)‖ = P‖f(x)‖ if and only if

P (f(x)+) and P (f(x)−) have disjoint supports.

Proof : We start from the inequality:

|Pf+ − Pf−| ≤ |Pf+|+ |Pf−|.
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Clearly the inequality will be strong if both Pf+ > 0 and Pf− > 0, while the

inequality holds if Pf+ = 0 or Pf− = 0. thus, by integrating over the space X , we

obtain: ∫
X
|Pf+ − Pf−|dµ =

∫
X
|Pf+|dµ+

∫
X
|Pf−|dµ

if and only if there is not A ∈ A with µ(A) > 0 such that Pf+ > 0 and Pf− > 0

for x ∈ A, that is Pf+ and Pf− have disjoint support. Since f = f+ − f−, the

left-hand integral is simply ‖Pf‖. Further, the right-hand side is ‖Pf+‖+‖Pf−‖ =

‖f+‖+ ‖f+‖ = ‖f‖, so the Proposition is proved.

Definition 5 If P is Markov operator and, for some f ∈ L1 we have that Pf = f ,

then f is called a fixed point of P .

Proposition 6 Let P be a Markov operator and f ∈ L1, then if Pf = f , then

Pf+ = f+ and Pf− = f−.

Proof : Note that from Pf = f , we obtain:

f+ = (Pf)+ ≤ Pf+ and f− = (Pf)− ≤ Pf−

Hence∫
X

(Pf+ − f+)dµ+

∫
X

(Pf− − f−)dµ =

∫
X

(Pf+ − Pf−)dµ−
∫
X

(f+ − f−)dµ

=

∫
X
Pfdµ+

∫
X
fdµ = ‖P |f |‖ − ‖f‖

however, by the contractive property of P we know that:

‖P |f |‖ − ‖f‖ ≤ 0.

Since both the integrands (Pf+ − f+) and (Pf− − f−) are non-negative thus last

inequality is possible only if:

Pf+ = f+ and Pf− = f−
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Definition 7 Let (X ,A, µ) be measure space and the set

D(X ,A, µ) = {f ∈ L1(X ,A, µ); f ≥ 0, ‖f‖ = 1}.

Any function f ∈ D(X ,A, µ) is called a density.

Definition 8 Let (X ,A, µ) a measure space, if f ∈ L1(X ,A, µ) and f ≥ 0 then the

measur said to be absolutely continuous with respect to µ if can be written like:

µf (A) =

∫
A

f(x)dµ

and f is called the Radon-Nikodym derivative of µf with respect to µ.

Definition 9 Let (X ,A, µ) be measure space and P be a Markov operator. Any

f ∈ D that satisfies Pf = f is called a stationary density of P .

2.2 THE FROBENIUS-PERRON OPERATOR

Before formally defining the Frobenius-Perron operator of a dynamical system,

let’s see an intuitive construction proposed by Gora and Boyasky in [7]

Let us take a dynamical system S : X → X and A a subset of X , now consider a

random variable x and a function of density f , we can calculate the probability that

the random variable x belongs to A, simply calculating the integral.∫
A

fdµ

where µ is the normalized measure of lebesgue in X .

Let’s imagine we need to know, what is the probability that the random varia-

ble x belongs to S(A)? an innocent answer would be to calculate it in the same

way using the same probability density, but we have bad news, the density in most

of the times will also be affected by the dynamics of the dynamical system, then
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the problem is reduced to determine (if it is possible) the new state of the density

function. Then we try to deduce what is the new state of the density function or

at least to determine an equation (as a function of the initial density f and the

dynamical system S), that allows us to define and guarantee their existence and

unity.

Let’s start by trying to calculate the probability that S(x) belongs to A.

Prob{S(x) ∈ A} = Prob{x ∈ S−1(A)} =

∫
S−1(A)

fdµ

To obtain a probability density function for S(x), we have to write this last integral

as ∫
A

ϕdµ

for some function ϕ. let’s say the measure of the probability that S(x) ∈ A is λ(A),

then

λ(A) =

∫
S−1(A)

fdµ

Only up to this point, we can arrive with the few demands that we have asked

S and f . We need to add some more condition, to be able to use some theorem,

that guarantees us the existence and uniqueness of the evolution of our density

function. Let us test with the following condition that the measure ( all about µ) of

the inverse image of a set with null measure is null. Let’s analyze what consequences

this condition would have.

If µ(A) = 0 this implies that µ(S−1(A)) = 0 which in turn implies that λ(A) = 0.

In the other words λ << µ Then, by the Radon-Nikodym Theorem, there exists a

ϕ ∈ L1 such that for all measurable sets A such that

λ(A) =

∫
A

ϕdµ

and ϕ is unique a.e., and depends on S and f . Set ϕ = Pf . Thus, the probability

density function f has been transformed to a new probability density function Pf .

We will call to P the Frobenius-Perron Operator corresponding to S and in addition

we will call all function that satisfies the condition that we proposed above of no-

sigular. After all this introduction, I will give the formal Definition of the Frobenius-

Perron operator
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Definition 10 Let (X ,A, µ) be measure space. A measurable transformation S :

X → X is non-singular if:

µ(S−1(A)) = 0 for all A ∈ A such that µ(A) = 0.

Definition 11 Let (X ,A, µ) be measure space, if S : X → X is a non-singular

transformation the unique operator P : L1 → L1 defined by equation:

∫
A

Pf(x)dµ =

∫
S−1(A)

f(x)dµ for A ∈ A

is called the Frobenius-Perron Operator corresponding to S.

Proposition 12 Let (X ,A, µ) be measure space, and S : X → X is a non-singular

transformation, let P the associated Frobenius-Perron operator to S, then

1. P (λ1f1 + λ2f2) = λ1Pf1 + λ2Pf2, for f1, f2 ∈ L1 and λ1, λ2 ∈ R

2. Pf ≥ 0 if f ≥ 0, for f ∈ L1,

3.
∫
X
Pfdµ =

∫
X
fdµ, for f ∈ L1,

4. if Sn =

n︷ ︸︸ ︷
S ◦ · · · ◦ S and Pn is the Frobenius-Perron operator corresponding to

S, then Pn = P n, where P is the Frobenius-Perron operator corresponding to

S.

Proof Let f1, f2, f ∈ L1, A ∈ A and λ1, λ2 ∈ R, then from the Definition of the

Frobenius-Perron operator we obtain:

1.
∫
A

P (λ1f1 + λ2f2)dµ = λ1

∫
S−1(A)

f1dµ+ λ2

∫
S−1(A)

(f2)dµ

=

∫
A

λ1Pf1 + λ2Pf2dµ. Therefore P (λ1f1 + λ2f2) = λ1Pf1 + λ2Pf2.

2.
∫
A

Pfdµ =

∫
S−1(A)

fdµ ≥ 0. Since f ≥ 0.

3. Obvious since S−1(X ) = X .
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4.
∫
A

Pnfdµ =

∫
S−n(A)

fdµ =

∫
S1−n(A)

Pfdµ = · · · =
∫
A

P nfdµ.

Remark: From points 2 and 3, we can see that the Frobenius-Perron operator

is a Markov operator.

Proposition 13 The Frobenius-Perron operator is a contraction.

Proof Let f ∈ L1. Let f+ = max(f, 0) and f− = −min(0, f), then f+, f− ∈ L1,

f = f+ − f− and |f | = f+ − f−. By linearity, we have

Pf = P (f+ − f−) = Pf+ − Pf−.

Hence,

|Pf | ≤ |Pf+|+ |Pf−| = Pf+ + Pf− = P |f |

and

‖Pf‖ =

∫
X
|Pf |dµ ≤

∫
X
P |f |dµ =

∫
X
|f |dµ = ‖f‖

Corollary 13.1 The Frobenius-Perron operator is an continuous operator.

In some special case equation of the Definition 11 allows us to obtain an explicit

form for Pf . If X = [a, b] and A = [a, x] whit a ≤ x ≤ b, then

∫ x

a

Pf(s)ds =

∫
S−1([a,x])

f(s)ds

and differentiating

Pf(x) =
d

dx

∫
S−1([a,x])

f(s)ds.

It is important to note in the special case where the transformation S is differentiable

and invertible then S must be monotone.

Suppose S is an increasing function and S−1 has a continuous derivative, then:



20

S−1([a, x]) = [S−1(a), S−1(x)]

and from

Pf(x) =
d

dx

∫
S−1([a,x])

f(s)ds = f(S−1(x))
d

dx
(S−1(x)).

If S is decreasing, then the sing of the right-hand side is reversed. Thus, in the

general one-dimensional case, for S differentiable and invertible with continuous
dS−1(x)

dx
,

Pf(x) = f(S−1(x))

∣∣∣∣ ddxS−1(x)

∣∣∣∣ .

Example 14 Let S : R→ R given by S(x) = exp(x), then the associated Frobenius-

Perron operator to S is

Pf(x) =
1

x
f(log(x)).

Consider what happens to an initial f given by

f(x) =
1

2
1[−1,1]

under the action of P , the function f is carried into

Pf(x) =
1

2x
1[e−1,e](x)

Now applying the operator again, we have

P 2f(x) =
1

2x2
1[ee−1 ,ee](x)

Example 15 Let S : [0, 1]→ [0, 1] given by S(x) = 4x(1− x) on the measure space

([0, 1],B, µ) where B is σ-algebra and µ is the Borel measure. First we calculate the

inverse image of the interval with x belongs to the interval [0, 1]

S−1([0, x]) =

[
0,

1

2
− 1

2

√
1− x

]
∪
[

1

2
+

1

2

√
1− x, 1

]
.
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Now we calculate the Frobenius-Perron operator associated with S

Pf(x) =
d

dx

∫ 1
2
− 1

2

√
1−x

0

f(u)du+
d

dx

∫ 1

1
2
+ 1

2

√
1−x

f(u)du

and computing the integral, we have

Pf(x) =
1

4
√

1− x

[
f

(
1

2
− 1

2

√
1− x

)
+ f

(
1

2
+

1

2

√
1− x

)]

Example 16 Let S : [0, 1] → [0, 1] given by S(x) = rx mod 1 where r > 1 is an

integer, on the measure space ([0, 1],B, µ) where B is σ-algebra and µ is the Borel

measure, then we have S−1([0, x]) is

r−1⋃
i=0

[
i

r
,
i

r
+
x

r

]
and the Frobenius-Perron operator is

Pf(x) =
d

dx

r−1∑
i=0

∫ i
r
+x
r

i
r

f(u)du =
1

r

r−1∑
i=0

f

(
i

r
+
x

r

)

Proposition 17 Let (X ,A, µ) be measure space and S : X → X be a non-singular

transformation and P the associated Frobenius-Perron operator to S. Assume that

an f ≥ 0 and f ∈ L1 is given then:

Supp(f) ⊂ S−1(Supp(Pf))

and, more generally, for every set A ∈ A the following equivalence holds:

Pf = 0 for x ∈ A if and only if f(x) = 0 for x ∈ S−1(A)

Proof : By the Definition of the Frobenius-Perron operator, we obtain:

∫
A

Pf(x)dµ =

∫
S−1

f(x)dµ

or

∫
X

1APf(x)dµ =

∫
X

1S−1(A)f(x)dµ.
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Thus Pf(x) = 0 on A implies, by property of the Lebesgue integral, that f(x) = 0

for x ∈ S−1(A) and vice versa. Now setting A = X \ Supp(Pf) we obtain Pf = 0

for x ∈ A, consequently f(x) = 0 for x ∈ S−1(A). Which means that Supp(f) ⊂

X \ S−1(A) since S−1(A) = X \ S−1(Supp(Pf)), then

Supp(f) ⊂ X \ (X \ S−1(Supp(Pf))) if and only if Supp(f) = S−1(Supp(Pf))

�

In the case of arbitrary f ∈ L1, then in Proposition 17 we only have if f(x) = 0 for

all x ∈ S−1(A), then Pf(X) = 0 for all x ∈ A.

Theorem 18 Let (X ,A, µ) be measure space, S : X → X a non-singular transfor-

mation, and f : X → X measurable function such that, f ◦ g ∈ L1(X ,A, µ) then for

every A ∈ A:

∫
S−1(A)

f(S(x))dµ =

∫
A

f(x)dµS−1 =

∫
A

f(x)J−1dx.

Where µS−1 denote the measure:

µS−1(B) = µ(S−1(B)) for B ∈ A.

and J−1 is the density of µS−1 with respect to µ, that is:

µ(S−1(B)) =

∫
B

J−1dx for B ∈ A.

We use the notation J−1(x) to draw the connection with differentiable invertible

trasformation on Rd, in which case J(x) is the determinant of jacobian matrix:

J(x) = det

(
dS(x)

dx

)
and J−1(x) = det

(
dS−1(x)

dx

)
Proof Of Theorem 18 To prove this change of variables theorem, and fist take:

f(x) = 1B(x)
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so that f(S(x)) = 1B(S(x)) = 1S−1(B)(x) and, hence,∫
S−1(A)

f(S(x))dµ =

∫
X

1S−1(A)f(s)dµ

=

∫
X

1S−1(A)1S−1(B)dµ

= µ(S−1(A) ∩ S−1(B))

= µ(S−1(A ∩B))

The second integral of Theorem may be written as:∫
A

f(x)dµS−1 =

∫
X

1A1BdµS
−1

= µ(S−1(A ∩B)).

Where the third and last integral has the form:∫
A

f(x)J−1dx =

∫
A

1BJ
−1dx

=

∫
A∩B

J−1dx

= µ(S−1(A ∩B)).

And by linearity of the integral of the Lebesgue, we proved Theorem.

�

Corollary 18.1 Let (X ,A, µ) be measure space, S : X → X an invertible non-

singular transformation (S−1 non-singular) and P the associated Frobenius-Perron

operator, then for every f ∈ L1:

Pf(x) = f(S−1(x))J−1(x).

Proof : By the Definition of P , for A ∈ A we obtain:∫
A

Pfdµ =

∫
S−1

f(x)dµ.

changer the variable in the right hand integral with y = S(x) so that:∫
S−1

f(x)dµ =

∫
A

f(S−1(y))J−1(x)dµ
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By theorem 18 thus we obtain:∫
A

Pfdµ =

∫
A

f(S−1(x))J−1(x)dµ

with the result that:

Pf(x) = f(S−1(x))J−1(x).

�

2.3 THE KOOPMAN OPERATOR

To finish this chapter, we will briefly study the Koopman operator and will

limit to analyzing some of its properties. In the following chapters, we will analyze

theorems and Propositions related to this operator. For this section we will use

the following notation defined in Walter Rudin’s functional analysis book. It will

be convenient to designate elements of the dual space X ∗ of X by x∗ and to write

〈x, x∗〉 in place of x∗(x).

Theorem 19 Let X and Y normed space. To each T ∈ B(X ,Y) corresponds a

unique T ∗ ∈ B(Y∗,X ∗) that satisfies

〈Tx, y∗〉 = 〈x, T ∗y∗〉

for all x ∈ X and all y∗ ∈ Y∗. Moreover T ∗ satisfies

‖ T ∗ ‖=‖ T ‖

In several books of functional analysis define the dual of a linear transformation in

a Banach space using the following notation

y∗(Tx) = T ∗y∗(x)

Taking advantage of Rudin’s notation, we can define with abuse of notation, the

scalar product between functions and functions of its dual
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Definition 20 Let f ∈ Lp and g ∈ Lp∗, we define the scalar product of two functions

by

〈f, g〉 =

∫
X
fgdµ.

in usual notation this Definition would be equivalent to saying

g(f) :=

∫
X
fgdµ = 〈f, g〉

An important relation we often use is the Cauchy-Hölder inequality. Thus, if f ∈ Lp

and g ∈ Lp∗ , then

|〈f, g〉| ≤ ‖f‖LP ‖g‖LP∗

We will briefly study the Koopman operator and will limit ourselves to analyzing

some of its properties.

Definition 21 Let (X ,A, µ) be measure space, S : X → X a non-singular trans-

formation and f ∈ L∞, the operator U : L∞ → L∞ defined by Uf(x) = f(S(x)) is

called the Koopman Operator with respect to S

The operator U has some important properties:

1. U(λ1f1 + λ2f2) = λ1U(f1) + λ2U(f2) for all f1, f2 ∈ L∞ and λ1, λ2 ∈ R,

2. for every f ∈ L∞, we obtain ‖Uf‖L∞ ≤ ‖f‖L∞ ,

3. for f ∈ L1 and g ∈ L∞, we obtain:

〈Pf, g〉 = 〈f, Ug〉.

Next we will give a demonstration of the properties of the Kooman operator:

1. Trivially for f1, f2 ∈ L∞ and λ1, λ2 ∈ R. We have

U(λ1f1 +λ1f2) = (λ1f1 +λ1f2)(S(x)) = λ1f1(S(x)) +λ1f2(S(x)) = λ1U(f1) +

λ1U(f2).
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2. Follows immediately from the Definition of the norm. Since |f(x)| ≤ ‖f‖L∞

a.e. implies that

|f(S)| ≤ ‖f‖L∞

the latter inequality gives the equation. Since by U(f(x)) = f(S(x)).

3. We first check it with g = 1A, then the left-hand side, becomes

〈Pf, g〉 =

∫
X
Pf1Adµ =

∫
A

Pfdµ.

The right-hand side becomes

〈f, Ug〉 =

∫
X
fU1Adµ =

∫
X
f1A(S)dµ =

∫
S−1(A)

f(x)dµ

thus item 3 is equivalent to∫
A

Pfdµ =

∫
S−1(A)

fdµ

by the linearity we conclude property 3.
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3 STUDYING CHAOS WITH DENSITIES

In this chapter we will study three types of transformations and how they can

be characterized through the type of convergence of the sequence {P nf} whereP

is the operator of Frobenius-Perron with respect to the transformation and f is a

probability density.

3.1 INVARIANT MEASURE AND MEASURE-PRESERVING TRANSFORMA-

TIONS

We begin this section with the Definition that a transformation S measure pre-

serving. The dynamic behavior of measure preserving transformations that is the

theme of ergodic theory.

Definition 22 Let (X ,A, µ) be measure space, S : X → X a measurable transfor-

mation, then S is said to be measure preserving if:

µ(S−1(A)) = µ(A) for all A ∈ A.

We will alternately say that the measure µ is invariant under S if S is measure

preserving. We observe that every transformation that preserves the measure is also

a non-singular transformation.

In the previous chapter we saw that the Frobenius-Perron operator associated with

a transformation gives us the evolution of the probability density within the dyna-

mics of the dynamical system, but there are cases in which this density does not

change over time, but rather it is keeps fixed, invariant. The following theorem tells

us that this happens if and only if the dynamical system is a measure preserving

transformation.

Theorem 23 Let (X ,A, µ) be measure space, S : X → X a non-singular trans-

formation, and P the Frobenius-Perron operator associated with S. Consider a
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non-negative f ∈ L1, then a measure µf given by:

µf (A) =

∫
A

f(x)dµ

is invariant if and only if f is a fixed point of P .

Proof Fist we show the “only if” portion. Assume µf is invariant, then by the

Definition of an invariant measure:

µf (A) = µf (S
−1(A)) for all A ∈ A

or

∫
A

f(x)dµ =

∫
S−1(A)

f(x)dµ for all A ∈ A.

However, by the Definition of the Frobenius-Perron operator, we obtain∫
S−1(A)

f(x)dµ =

∫
A

Pfdµ,

comparing, we immediately have:∫
A

Pf(x)dµ =

∫
S−1(A)

f(x)dµ =

∫
A

f(x)dµ,

then ∫
A

Pf(x)dµ =

∫
A

f(x)dµ for allA⇒ Pf(x) = f(x).

Conversely, if Pf(x) = f(x) for some f ∈ L1 and f ≥ 0, then from Definition of

Frobenius-Perron operator, we obtain:∫
S−1(A)

f(x)dµ =

∫
A

Pf(x)dµ =

∫
A

f(x)dµ,

then µf (S−1(A)) = µf (A).

�

Remark: Note that the original measure µ is invariant if and only if P1 = 1.
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There is a very important result, regarding the invariant measures, if we have a

dynamical system S : X → X , where S is a measurable function and we have that

the µ measure is finite and invariant with respect to S, then we can guarantee that

at some point almost every points that departed from a set with arbitrary positive

measure, at some point large enough they will return to the set from which they

left, this result is known as Poncaré recurrence theorem, see in [6] Theorem 1.2.1

page 4.

Now we will give some examples of measures that are invariant and other measures

that are not invariant.

Example 24 Consider the r-adic transformation the example 16

S(x) = rx mod 1

where we calculate the Frobenius-Perron operator associated to S is

Pf(x) =
1

r

r−1∑
i=0

f

(
1

r
+
x

r

)
thus

P1 =
1

r

r−1∑
i=0

1 =
1

r
(1 + . . .+ 1︸ ︷︷ ︸

r

) = 1

and by our previous, the Borel measure is invariant under the r-adic transformation.

Example 25 Again consider the measure space ([0, 1],B, µ) where µ is the Borel

measure. Let S : [0, 1] → [0, 1] defined by S(x) = 4x(1 − x) in example 15 we saw

that your Frobenius-Perron associate operator is

Pf(x) =
1

4
√

1− x

[
f

(
1

2
− 1

2

√
1− x

)
+ f

(
1

2
+

1

2

√
1− x

)]
then

P1 =
1

2
√

1− x

so that the Borel measure µ is not invariant under S ,to find the invariant measure,

we have to calculate a function that is Frobenius-Perron’s fixed point operator or
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equivalently solve

f(x) =
1

4
√

1− x

[
f

(
1

2
− 1

2

√
1− x

)
+ f

(
1

2
+

1

2

√
1− x

)]
This problem was first solved by Ulam and von Neumann [1947] who showed that

the solution is given by

f∗(x) =
1

π
√
x(1− x)

so by Theorem 23 the invariant measure by S corresponds to

µ∗(A) =

∫
A

dx

π
√
x(1− x)

Example 26 Now let X be the unit square in a plane, which we denote by X =

[0, 1]× [0, 1]. The σ−algebra B is now generated by all possible rectangles of the form

[0, a]× [0, b] and the Borel measure µ is the unique measure on B such that

µ([0, a]× [0, b]) = ab.

We define the Baker transformation S : X → X by

S(x, y) =

(2x, 1
2
y) if 0 ≥ x < 1

2
and 0 ≤ y ≤ 1

(2x− 1, 1
2
y + 1

2
) if1

2
≤ x ≤ 1 and 0 ≤ y ≤ 1

Now we calculate the Frobenius-Perron operator for the Baker transformation.

S−1([0, x]× [0, y]) =

[
0,

1

2
x

]
× [0, 2y]

so from equation

Pf(x, y) =
∂2

∂x∂y

∫ x
2

0

∫ 2y

0

f(s, t)dsdt = f

(
1

2
x, 2y

)
, with 0 ≤ y <

1

2

In the second case, form 1
2
≤ y ≤ 1, we find that

S−1([0, x]× [0, y]) =

([
0,

1

2
x

])
∪
([

1

2
,
1

2
+

1

2

]
× [0, 2y − 1]

)
hence

Pf(x, y) =
∂2

∂x∂y

[∫ x
2

0

∫ 1

0

f(s, t)dsdt+

∫ 1
2
+x

2

1
2

∫ 2y−1

0

f(s, t)dsdt

]

= f

(
1

2
+

1

2
x, 2y − 1

)
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with 1
2
≤ y ≤ 1. Thus, finally

Pf(x, y) =

f
(
1
2
x, 2y

)
if 0 ≤ y < 1

2

f
(
1
2

+ 1
2
x, 2y − 1

)
if 1

2
≤ y ≤ 1

so that P1 = 1, and the Borel measure is, therefore, invariant under the Baker

transformation.

Example 27 The Baker transformation is the previous example may be considered

to be prototype of very important class of transformations originally introduced by

Anosov [1963]. On of the simplest of the the Anosov diffeomorphims is given by

S(x, y) = (x+ y, x+ 2y) mod 1

S−1(x, y) = (2x− y, y − x) mod 1

and thus

Pf(x, y) = f(2x− 1, y − x)

is clear that P1 = 1, which corresponds to the fact that S preserves the Borel mea-

sure.

3.2 ERGODIC, MIXING, AND EXACT TRANSFORMATIONS

In this section we will study three types of dynamical systems, the ergodic, mi-

xining and exact and their relationship with the Frobenius-Perron operator.

We start studying ergodic systems. The word ergodic comes from the Greek er-

gos which means work and edos which in turn means path, was introduced by the

Austrian physicist Ludwig Boltzmann in his work on the kinetic theory of gases.

Bolzmann thought that the orbits cover the entire energy hyper surface constant,

that is, there is only one orbit. Later they baptized this hypothesis as an ergo-

dic hypothesis, later in 1913 Michel Plancherel and Artur Rosenthal in [5] they
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demonstrate the impossibility of ergodic hypothesis based on the argument that a

continuous curve that does not self-cross cannot fill a hypersurface of dimension gre-

ater than one. This led physicists to formulate a weaker condition at that Boltzman

had formulated, which they called a quasi-ergodic hypothesis which was the orbits

are distributed densely on the hyper surface of constant energy. So it’s not like there

is only one orbit, but any orbit has as adhesion to all the hi-surface energy constant

All these concerns called the attention of the mathematicians Poincaré, Birkhoff

and Neumann, who began to formulate and prove a series of theorems that we now

know as Birkhoff’s ergodic theorem and Neumann’s ergodic theorem, ergodic theory

began to take its first steps.

Next we will give the Definition of an ergodic system.

Definition 28 Let (X ,A, µ) be measure space, S : X → X a non-singular trans-

formation, then S is called ergodic if every invariant set A ∈ A is either µ(A) = 0

or µ(X \ A) = 0.

We can interpret ergodic systems, as systems where there is no subset with positive

measure that are still during the evolution of the system.

The following result is an equivalence of the ergodic systems, which will be used

later in the demonstration of Theorem 39.

Theorem 29 Let (X ,A, µ) be measure space, S : X → X a non-singular transfor-

mation. S is ergodic if and only if for every measure function f : X → R:

f(S(x)) = f(x)

for almost all x ∈ X , implies that f is constant almost everywhere.

Proof : We first show that ergodicty implies that f is constant. we obtain a function

f satisfying f(S(x)) = f(x) for almost all x ∈ X , which is not constant almost

everywhere, and that S is ergodic. Then there is some r ∈ R such that the sets
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A = {x ∈ X ; f(x) ≤ r} and B = {x ∈ X ; f(x) > r}, have positive measure. These

sets are also invariant because:

S−1(A) = {x ∈ X ;S(x) ∈ A}

= {x ∈ X ; f(S(x)) ≤ r}

= {x ∈ X ; f(x) ≤ r} = A

and similarly for B, then S is not ergodic, which is a contradiction, thus, every f

satisfying f(S(x)) = f(x) for almost all x ∈ X , must be constant.

To prove the converse, assume that S is not ergodic, then by Definition 28, there

is a nontrivial set A ∈ A that is invariant. Let f(x) = 1A, and since A is nontrivial,

f is not a constant function. Moreover, since A = S−1(A) we obtain:

f(S(x)) = 1A(S(x)) = 1S−1(A)(x) = 1A = f(x) a.e

and f(S(x)) = f(x) for almost all x ∈ X is satisfied by a non constant function.

�

We may reformulate the previous theorem in term of the Koopman operator, as

Corollary 29.1 Let (X ,A, µ) be measure space, S : X → X a non-singular, and

U the Koopman operator with respect yo S, then S is ergodic if and only if all fixed

points of U are constant functions.

Theorem 30 Let (X ,A, µ) be measure space, S : X → X a non-singular trans-

formation, and P the Frobenius-Perron operator associated with S. If S is ergodic,

then there is at most one stationary density f∗ of P . Further, if there is a unique

stationary density f∗ of P and f∗(x) > 0 a.e then S is ergodic.

Proof : To prove the first part of Theorem assume that S is ergodic and f1 and f2

are different stationary densities of P . Let g = f1 − f2 so:

Pg = P (f1 − f2) = Pf1 − Pf2 = f1 − f2 = g

by Proposition 4
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Pg+ = g+ and Pg− = g−.

Since by assumption, f1 and f2 are not only different but are also densities we obtain

g+ 6= 0 and g− 6= 0

Let A = Supp(g+) = {x ∈ X ; g+(x) > 0} and B = Supp(g−) = {x ∈ X ; g−(x) > 0}

it is evident that A and B are disjoint set and both have positive measure. By

g+ 6= 0 and g− 6= 0 and Proposition 17 we obtain

A ⊂ S−1(A) and B ⊂ S−1(B)

The sets S−1(A) and S−1(A) are disjoint, since:

A ∩B = ∅ ⇒ S−1(A) ∩ S−1(B) = ∅.

By induction, therefore, we obtain

A ⊂ S−1(A) ⊂ S−2(A) ⊂ · · · ⊂ S−n(A)

and

B ⊂ S−1(B) ⊂ S−2(B) ⊂ · · · ⊂ S−n(B)

Where S−1(A) ∩ S−1(B) are also disjoint for all n. Now define two set by

Â =
⋃∞
n=0 S

−n(A) and B̂ =
⋃∞
n=0 S

−n(B)

these two sets Â and B̂ also disjoint and, furthermore they are invariant, because

S−1(Â) = S−1

(
∞⋃
n=0

S−n(A)

)
=
∞⋃
n=1

S−n(A) =
∞⋃
n=0

S−n(A) = Â,

analogy with B̂. Neither Â and B̂ are of measure zero since A and B are not measure

zero. Thus Â and B̂ are nontrivial invariant sets, which contradicts the ergodicty of

S. Thus first portion of Theorem is proved.

To prove the second portion of Theorem, assume that f∗ > 0 is the unique density

satisfying Pf∗ = f∗, but that S is not ergodic. If S is not ergodic then there exist



35

a nontrivial set A such that S−1(A) = A and with B = X \ A where S−1(B) = B,

with these two set A and B we may white

f∗ = 1Af∗ + 1Bf∗

so that

1Af∗ + 1Bf∗ = P (1Af∗) + P (1Bf∗).

The function 1Bf∗ is equal to zero in the set X \ B = A = S−1(A). Thus by

Proposition 18 P (1Bf∗) = 0 in A = X \B, and likewise P (1Af∗) = 0 in B = X \A,

thus 1Af∗ + 1Bf∗ = P (1Af∗) + P (1Bf∗) implies that 1Af∗ = P (1Af∗) and 1Bf∗ =

P (1Bf∗). Since f∗ is positive on A and B, we may replace 1Af∗ by

fA =
1Af∗
‖1Af∗‖

then

P (fA) = P

(
1Af∗
‖1Af∗‖

)
=

1

‖1Af∗‖
P (1Af∗) =

1Af∗
‖1Af∗‖

= fA.

and 1Bf∗ by

fB =
1Bf∗
‖1Bf∗‖

then

P (fB) = P

(
1Bf∗
‖1Bf∗‖

)
=

1

‖1Bf∗‖
P (1Bf∗) =

1Bf∗
‖1Bf∗‖

= fB.

this implies that there exist two stationary densities of P , which is in contradiction

to our assumption. Thus, if there is a unique positive stationary density f∗ of P ,

then S is ergodic. The following result is known as Birkhoff’s ergodic theorem. This

result can be obtained as a particular case of the subadditive ergodic theorem, see

Theorem 3.3.3 of [6] page 78.

Theorem 31 Let (X ,A, µ) be measure space, S : X → X a measurable transfor-

mation, and f : X → R an integrable function, if the measure µ is invariant, then

there exist an integrable function f ∗ such that:

f ∗(x) = lim
n→∞

1

n

n−1∑
k=0

f(Sk(x))
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for almost all x ∈ X . Moreover, the function f ∗ defined in this way is integrable

and satisfies ∫
f ∗(x)dµ =

∫
f(x)dµ.

With the notion of ergodicity we may derive an important and often quoted extension

of the Birkhoff pointwise ergodic theorem.

Theorem 32 Let (X ,A, µ) be measure space, S : X → X be ergodic transforma-

tion. Then for any intergrable f , the average of f along the trajectory of S is equal

almost everywhere to average of f over the space X , that is:

lim
n→∞

1

n

n−1∑
k=0

f(Sk(x)) =
1

µ(X )

∫
X
f(x)dµ.

Proof From f ∗(x) = f ∗(S(x)) for almost all x ∈ X and theorem 29 it follows that

f ∗ is constant almost everywhere. Hence, from, when µ(X ) <∞:∫
X
f ∗(x)dµ =

∫
X
f(x)dµ.

we obtain: ∫
X
f ∗(x)dµ = f ∗

∫
X
dµ = f ∗µ(X ) =

∫
X
fdµ,

so that:

f ∗(x) =
1

µ(X )

∫
X
f(x)dµ a.e

�

Now we will study mixing systems, as in the case of ergodic systems, this concept

also comes from physics. Before giving the Definition, let’s see an intuitive idea of

these systems.

The following example is based on the introductory example on page 34 [3] page 19
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Suppose we are at a party after having had an ergodic theory test, and for fun

we want to mix coke with some rum. While we look at the glass we see how the

alcohol of the rum is mixed with the coke and we ask ourselves, given a portion B

of coke in this glass, which is the weight of rum that will have the portion B, while

we are mixing everything with a spoon? consider that this phenomenon is modeled

a by discrete dynamical system S : glass→glass, and also suppose that all the rum

starts from an initial portion (initial set) that we will call A, then considering a

measure of probability µ, we have the percentage of rum particles in B, it is given

by

µ(A ∩ S−n(B))

µ(B)

where A ∩ S−n(B) corresponds to the starting points x ∈ A such that Sn(x) ∈ B.

As expected within a time large enough, that the rum is mixed evenly throughout

the coke, that is, if we had an initial percentage of 20% rum in relation to the whole

mixture and we drink a little of this mixture, we will have that 20% of that mixture

corresponds to rum. This means that

µ(A ∩ S−n(B))

µ(B)
→ µ(A) as n→∞

or equivalent

lim
n→∞

µ(A ∩ S−n(B)) = µ(A)µ(B).

that is to say, that the measure of the points that start from B and reach A, tends

to the product of the measure of A and B. This last result corresponds to the

Definition of a mixing system. Now we will give the formal Definition.

Definition 33 Let (X ,A, µ) be a normalized measure space and S : X → X a

measure-preserving transformation. S is called mixing if

lim
n→∞

µ(A ∩ S−n(B)) = µ(A)µ(B)

for all A,B ∈ A.

The mixing dynamic systems, are actually a special type of ergodic dynamical sys-

tems. This fact can be demonstrated from the Corollary 3.3.2 of [7] page 48. Howe-

ver, this fact can also be observed later with Theorem 39.
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Now we are going to study another type of dynamical system. Imagine that

now we want to study, the probability of finding a particle of a red gas inside a

sealed container, to study its evolution we will take a series of successive photos in

regular times. We will assume that in principle the gas starts to expand from a small

region A within this container, for the initial state, the probability of finding a gas

particle outside region A is zero, but as time goes by passing the gas is expanding

throughout the container, and for a time that is sufficiently large, we will have the

probability of finding a particle anywhere is 1, taking this idea as a base we will

define the exact dynamical systems, let’s consider the Definition given by Rochlin

in Exact endomorphisms of Lebesgue spaces, Amer. Math. Soc. Transl. 2 (1964),

1-36.

Definition 34 Let (X ,A, µ) be a normalized measure space and S : X → X a

measure-preserving transformation such that S(A) ∈ A for each A ∈ A. if

lim
n→∞

µ(Sn(A)) = 1

for every A ∈ A and µ(A) > 0, then S is called exact.

A first observation that we can make about the exact systems, is that, this sys-

tem cannot be invertible, in fact, if we assume otherwise, we would have the fol-

lowing, for any invetible measure preserving transformation S, we have µ(S(A)) =

µ(S−1(S(A))) = µ(A) and by induction µ(Sn(A)) = µ(A), which violate Definition

34.

Proposition 35 Let (X ,A, µ) let a normalized measure space and let S : X → X

be measure preserving. Then S is exact if and only if

AT =
∞⋂
n=0

S−n(A)

Consist of the set of measure 0 or 1.
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Proof Let us assume that A ∈ AT , with 0 < µ(A) < 1 and let An ∈ A be such

that A = S−n(An) for n = 1, 2, . . .. Since S preserve µ, we have µ(An) = µ(A) for

n = 1, 2, . . .. We also have Sn(A) = S(S−nAn) ⊂ An. Hence, µ(Sn(A)) ≤ µ(A) < 1

for n = 1, 2, . . ., which contradicts the exactness of S.

Let A ∈ A and µ(A) > 0. If limn→∞ µ(SnA) < 1, we may assume that for some

a < 1, we have

µ(SnA) ≤ a < 1, for n = 1, 2, . . . .

For any n ≥ 0 we have S−n(SnA) ⊂ S−(n+1)(Sn+1A). Thus, the setB =
∞⋃
n=0

S−n(Sn(A))

belongs to AT . Since A ⊂ B, and < 0µ(A) ≤ µ(B) = 1. On the other hand,

µ(B) = lim
n→∞

µ(S−n(SnA) = lim
n→∞

µ(Sn(A)) ≤ a < 1

�

Then we will give the Definition of three forms of convergence, which will be used

in Theorem 39.

Definition 36 A sequence of functions {fn} with fn ∈ Lp, 1 ≤ p < ∞ is (weakly)

cesàro convergent to f ∈ Lp if

lim
n→∞

1

n

n∑
k=1

〈fk; g〉 = 〈f ; g〉 for all g ∈ Lp∗ .

Definition 37 A sequence of functions {fn} with fn ∈ Lp, 1 ≤ p < ∞ is weakly

convergent to f ∈ Lp if

lim
n→∞
〈fn; g〉 = 〈f ; g〉 for all g ∈ Lp∗ .

Definition 38 A sequence of functions {fn} with fn ∈ Lp, 1 ≤ p < ∞ is strongly

convergent to f ∈ Lp if

lim
n→∞

‖fn − f‖ = 0
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The following theorem characterizes the type of transformation S : X → X (ergodic,

mixing or exact) through the convergence mode (Cesàro, weak or strong) of the

sequence {P nf} for any density function f , where P is the operator of Frobenius-

Perron associated with the transformation S.

Theorem 39 Let (X ,A, µ) be a normalized measure space and S : X → X a

measure-preserving transformation, and P the Frobenius-Perron operator correspon-

ding to S. then

1. S is ergodic if and only if the sequence {P nf} is Cesàro convergent to 1 for

all f ∈ D,

2. S is mixing if and only if {P nf} is weakly convergent to 1 for all f ∈ D,

3. S is exact if and only if {P nf} is strongly convergent to 1 for all f ∈ D.

Proof

1. Let S is ergodic, then by Theorem 32 we have:

1

n

n−1∑
k=0

〈P kf, g〉 =
1

n

n−1∑
k=0

〈f, Ukg〉 = 〈f, 1

n

n−1∑
k=0

Ukg〉

take n→∞ we obtain:

lim
n→∞

1

n

n−1∑
k=0

〈P kf, g〉 = 〈f,
∫
X
gdµ〉 = 〈f, 1〉〈1, g〉 = 〈1, g〉.

We’re going to take a fixed point from the Koopman operator and we’re going

to show that this point is a constant function, which will finally prove that S

is ergodic by Corollary 29.1. Let g an fixed point of the Koopman operator,

then:
1

n

n−1∑
k=0

〈P nf, g〉 =
1

n

n−1∑
k=0

〈f, Ung〉 =
1

n

n−1∑
k=0

〈f, g〉 = 〈f, g〉.

Then we obtain the following equation:

〈f, g〉 = 〈f, 1〉〈1, g〉, ∀f ∈ D, g ∈ L∞.
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let’s show now, that the last equation above implies that S is ergodic. Rewri-

ting the equation, we obtain:∫
X
fgdµ =

∫
X
gdµ, ∀f ∈ D, and g ∈ L∞

Let f =
ϕ∫

X ϕdµ
with

∫
X
ϕdµ 6= 0, then∫

X
ϕgdµ =

∫
X
ϕdµ

∫
X
gdµ, ∀ϕ ∈ L1 with

∫
X
ϕdµ 6= 0 and , g ∈ L∞

Let ϕ = 1A, then: ∫
A

gdµ = µ(A)

∫
X
gdµ, g ∈ L∞

Consider the following set A =

{
x ∈ X ; g(x) =

∫
X
gdµ

}
. We suppose that

µ(A) < 1, then

µ(A)

∫
A

gdµ <

∫
A

gdµ = µ(A)

∫
X
gdµ = µ(A)g(x)

then

µ(A)

∫
A

gdµ < µ(A)g(x)⇒
∫
A

gdµ < g(x)

That is a contradiction to the Definition of our set A, then µ(A) = 1 and

g(x) =
∫
X gdµ q.t.p., therefore g is constant q.t.p. of this last result we

conclude by lemma 29.1 that S is ergodic.

2. Assume S is mixing, which by Definition, means

lim
n→∞

µ(A ∩ S−n(B)) = µ(A)µ(B)

for all A,B ∈ A, we can be rewritten in integral form as

lim
n→∞

∫
X

1A1B(Sn(x))dµ =

∫
X

1Adµ

∫
X

1Bdµ.

By applying the Definition of the Koopman operator and the scalar product

to this equation, we obtain

lim
n→∞
〈1A, Un1B〉 = 〈1A, 1〉〈1, 1B〉.

Since the Koopman operator is adjoin to Frobenius-Perron operator the equa-

tion above may be rewritten as

lim
n→∞
〈P n1A, 1B〉 = 〈1A, 1〉〈1, 1B〉.
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or

lim
n→∞
〈P nf, 1B〉 = 〈f, 1〉〈1, g〉.

for f = 1A and g = 1B. Since this relation holds for characteristic function it

must also hold for the simple functions

f =
∑
i

λi1Ai and g =
∑
i

σ1bi .

Further, every function g ∈ L∞ is the uniform limit of simple functions gk ∈

L∞, and every function f ∈ L1 is the strong (in L1 norm) limit of a sequence

of simple function fk ∈ L1. Obviously,

|〈P nf, g〉 − 〈f, 1〉〈1, g〉| ≤ |〈P nf, g〉 − 〈P nfk, gk〉|+ |〈P nfk, gk〉 − 〈fk, 1〉〈1, gk〉|

+ |〈fk, 1〉〈1, gk〉 − 〈f, 1〉〈1, g〉|

If ‖fk − f‖ ≤ ε and ‖gk − g‖L∞ ≤ ε, then the fist and last terms on the

right-hand side the equation above satisfy:

|〈P nf, g〉 − 〈P nfk, gk〉| ≤ |〈P nf, g〉 − 〈P nfk, g〉|+ |〈P nfk, g〉 − 〈P nfk, gk〉|

= |〈P nf − P nfk, g〉|+ |〈P nfk, g − gk〉|

=

∣∣∣∣∫
X

(P nf − P nfk)gdµ

∣∣∣∣+

∣∣∣∣∫
X
P nfk(g − gk)dµ

∣∣∣∣
=

∫
X
|P nf − P nfk||g|dµ+

∫
X
|P nfk|g − gk|dµ

≤‖ P nf − P nfk ‖‖ g ‖L∞ + ‖ P nfk ‖‖ g − gk ‖L∞

≤ ε ‖ g ‖L∞ +ε‖fk‖ ≤ ε(‖ g ‖L∞ +‖f‖+ ε)

and analogously

|〈fk, 1〉〈1, gk〉 − 〈f, 1〉〈1, g〉| ≤ ε(‖ g ‖L∞ +‖f‖+ ε).

Thus these terms are arbitrary small ε. Finally, for fixed k the middle term

|〈P nfk, gk〉 − 〈fk, 1〉〈1, gk〉|

converges to zero as n→∞ Remember that fk, gk are simple functions, which

shows that the right-hand side of inequality can be as small as we wish for large
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n. This completes the proof that mixing implies the convergence of 〈P n, g〉 to

〈f, 1〉〈1, g〉 = 〈1, g〉 for all f ∈ D and g ∈ L∞. Conversely, this convergence

implies the mixing condition. As for all f ∈ D and g ∈ L∞ we have

{P nf} w→ 1 if and only if lim
n→∞
〈P nf, g〉 = 〈1, g〉

Set f =
1A
µ(A)

and g = 1B, then

lim
n→∞
〈P n 1A

µ(A)
, 1B〉 = µ(A) lim

n→∞
〈P n1A, 1B〉

then

lim
n→∞
〈P n1A, 1B〉 = µ(A)〈1, g〉 = µ(A)µ(B).

On the other hand 〈P n1A, 1B〉 = 〈1A, Un1B〉 = µ(A ∩ Sn(B)). Hence

lim
n→∞

µ(A ∩ Sn(B)) = µ(A)µ(B)

that is to say that S is a mixing.

3. Lastly, Assume S is exact. The σ−algebras S−n(A) form a decreasing sequence

of σ−algebras. Since S is exact, the σ−algebra AT =
⋂∞
n=1 S

−n(A) consist of

sets of measure 0 or 1. By Proposition and Proposition

P nf ◦ Sn = E(f |S−n(A))→ E(f |S−n(AT ))

in L1 as n→∞. SinceAT consists of sets of measure 0 or 1, then E(f |S−n(BT )) =∫
fdµ = 1. Thus, we have∫

X
|P nf ◦ Sn − 1|dµ→ 0 as n→∞.

But ∫
X
|P nf ◦ Sn − 1|dµ =

∫
X
|P nf ◦ Sn − 1 ◦ Sn|dµ =

∫
X
|P nf − 1|dµ

Thus P nf → 1 in L1 as n→∞.

We show that strong convergence of P nf
s→ 1 for all f ∈ D implies exactness,



44

let’s start with µ(Sn(A)) with µ(A) > 0 as the space is normalized, then

0 ≤ µ(Sn(A)) ≤ 1, Let f =
1A
µ(A)

∈ D then

µ(Sn(A)) =

∫
Sn(A)

1dµ ≥
∣∣∣∣∫
Sn(A)

P nfdµ

∣∣∣∣− ∣∣∣∣∫
Sn(A)

P nf − 1dµ

∣∣∣∣
≥
∣∣∣∣∫
Sn(A)

P nfdµ

∣∣∣∣− ‖P nf − 1‖

≥ 1− ‖P nf − 1‖

Since
∫
Sn(A)

P nfdµ =

∫
S−n(Sn(A))

P nfdµ =

∫
A

fdµ =
1

µ(A)

∫
A

1Adµ =
µ(A)

µ(A)
=

1. Hence take n→∞ we have µ(Sn(A))→ 1.

�

Note that, since P is linear, convergence of {P nf} to 1 for f ∈ D is equivalent to

the convergence of {P nf} to 〈, f〉 for every f ∈ L1. This observation is, of course,

valid for all types of convergence: Cesaro, weak, and strong. Thus we may restate

Theorem 39 in the equivalent form.

Theorem 40 Under the assumptions of Theorem 39, the following equivalence hold:

1. S is ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

〈P kf, g〉 = 〈f, 1〉〈1, g〉, for f ∈ L1, g ∈ L∞,

2. S is mixing if and only if

lim
n→∞
〈P kf, g〉 = 〈f, 1〉〈1, g〉, for f ∈ L1, g ∈ L∞,

3. S is exact if and only if

lim
n→∞

‖P kf − 〈f, 1〉‖ = 0, for f ∈ L1.

Next, we will give three examples of dynamical systems and use Theorem 39 to say

if they are ergodic, mixing or exact.
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Example 41 One of the first examples given during the course of ergodic theory

corresponds to the rotation of the unit circle, there are many ways to write this

function of rotation with angle φ, but in particular we will define it as follows. Let

S : [0, 2π)→ [0, 2π) defined by

S(x) = x+ φ mod 2π

when φ
2π

is rational, we have that S is not ergodic, because if we consider a rotation

angle for example φ = 3 and consider a small arc of the unit cycle, which obviously

has a positive measure, when we iterate S three times, we will get the same Initial

set and passing we have obtained two sets with positive measure, let’s call A1, A2 and

A3 those sets. Now consider a new set that will be the union of the three previous

sets, as we can see when we apply S on this new set, we will have all the points of

A1 pass to A2, all the points of A2 pass to A3 and all points of A3 pass to A1, which

means that after this process we have obtained the same set, that is, that the set

formed by the union of these three sets, is invariant and not only does that also have

positive measure, and in a way analogous to any φ such that φ
2π

is rational. From

this we conclude that when φ
2π

is rational S is not ergodic.

Here we proved that it is ergodic when φ
2π

is irrational. It is straightforward to show

that S preserves the Borel measure µ and the normalized measure µ
2π
. We take as our

linearly dense set in Lp([0, 2π]), that consisting of the functions {sin(kx), cos(lx); k, l =

0, 1, . . .}. We will show that, for each function g belonging to this set, GIO

lim
n→∞

1

n

n−1∑
k=0

Ukg(x) = 1

uniformly for all x, thus implying by theorem 39. To simplify the calculations, note

that

sin kx =
eikx − e−ikx

2i
, cos kx =

eikx + e−ikx

2

where i =
√
−1. Consequently, it is sufficient to verify only for g(x) = exp(ikx)

with k an arbitrary (not necessary positive) integer.

We have, for k 6= 0,

U lg(x) = g(Sl(x)) = eik(x+lφ),
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so that

un(X) =
1

n

n−1∑
l=0

U lg(x),

obeys

un(x) =
1

n

n−1∑
l=0

eik(x+lφ)

=
1

n
eikx

einkφ − 1

eikφ − 1

and

‖un‖L2 ≤
1

n(eikφ − 1)

(∫ 2π

0

|eikx(einkφ − 1)|2dx
2π

) 1
2

≤ 2

n(eikφ − 1)
.

Thus un(x) converges in L2 to zero. Also, however, with our choice of g(x),

〈1, g〉 =

∫ 2π

0

eikx
dx

2π
=

1

ik
(e2πik − 1) = 0

and condition of Theorem 39 for ergodicity is satisfied with k 6= 0. When k = 0 the

calculation is even simpler, sin g(x) = 1 and thus un = 1. Noting also that

〈1, g〉 =

∫ 2π

0

dx

2π
= 1

we have again that un(x) converge to 〈1, g〉.

Example 42 We demonstrate the exactness of the r−adic transformation, that we

saw in the example 16

S(x) = rx mod 1

It sufficient to demonstrate that {P nf} converge strongly to 1 with f ∈ D, then

Pf(x) =
1

r

r−1∑
i=0

f

(
i

r
+
x

r

)
.

and thus by induction

P nf(x) =
1

rn

rn−1∑
i=0

f

(
i

rn
+

x

rn

)
.
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However, in the limit as n→∞, the right-hand side of this equation approaches the

Riemann integral of f over [0, 1], that is

lim
n→∞

P nf(x) =

∫ 1

0

f(s)ds = 1, uniformly in x.

Example 43 Here we show that the Anosov diffeomorphism

S(x, y) = (x+ y, x+ 2y) mod 1

is mixing, it is sufficient to show that Ung(x, y) = g(Sn(x, y)) converges weakly to

1, for g in linearly dense set in Lp([0, 1]× [0, 1]).

Observe that for g(x, y) periodic in x and y with period 1, g(S(x, y)) = g(x+ y, x+

2y), g(S2(x, y)) = g(2x+ 3y, 3x+ 5y), and so on. By induction we easily find that

Ung(x, y) = g(a2n−2x+ a2n−1y, a2n−1x+ a2ny)

where the an are the Fibonacci numbers given by a0 = a1 = 1 an+1 = an + an−1.

Thus, if take g(x, y) = exp[2πi(kx+ ly)] and f(x, y) = exp[−2πi(px+ qy)], then we

have

〈f, Ung〉 =

∫ 1

0

∫ 1

0

exp[2πi(ka2n−1 + la2n−1 − p)x+ (ka2n−1 + la2n − q)]dsdy

and it is straightforward to show that

〈f, U g〉 =

1 if (ka2n−2 + la2n−1 − p) = (ka2n−1 + la2n − q) = 0

0 if otherwise

Now we show that for large n either

ka2n−2 + la2n−1 − p or ka2n−1 + la2n − q

is different from zero if at least one of k, l, p, q is different from zero. If k = l = 0

but p 6= 0 or q 6= 0 this obvious. We may suppose that either k or l is not zero.

Assume k 6= 0 and that ka2n−2 + la2n−1 − p = 0 for infinitely many n. Thus

k
a2n−2
a2n−1

+ l − p

a2n−1
= 0
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It is well known that

lim
n→∞

a2n−2
a2n−1

=
2

1 +
√

5

and

lim
n→∞

an =∞

hence

lim
n→∞

(
k
a2n−2
a2n−1

+ l − p

a2n−1

)
=

2k

1 +
√

5
+ l.

However, this limit can never be zero because k and l are integers. Thus ka2n−2 +

la2n−1 − p 6= 0 for large n. Therefore, for large n,

〈f, Un〉 =

1 if k = p = q = 0

0 otherwise

〈1, g〉 =

∫ 1

0

∫ 1

0

exp[2π(kx+ ly)]dxdy

=

1 if k = l = 0

0 if k 6= 0 or l 6= 0

so that

〈f, 1〉〈1, g〉 =

∫ 1

0

∫ 1

0

〈1, g〉 exp[−2π(px+ qy)]dxdy

=

〈1, g〉 if p = q = 0

0 if p 6= 0 or q 6= 0

=

1 if k = l = p = q = 0

0 if otherwise

Thus

〈f, Ung〉 = 〈f, 1〉〈1, g〉

for large n, as a consequence, {Ung} converge weakly to 〈1, g〉. Therefore, mixing of

the Anosov diffeomorphism is demonstrated.
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4 THE ASYMPTOTIC PROPERTIES OF DENSITIES

In this chapter we are going to study sufficient conditions for the existence of sta-

tionary densities for Markov operators and we will also study a special type of mar-

kov operators that we call contrustives, and we will use the spectral decomposition

theorem for constructive markov operators, to demonstrate that all Construction

markov operators have a stationary density.

4.1 WEAK PRECOMPACTNESS

In this section we are going to introduce the weak precompacts or also called

weak sequancially compacts and we will just mention some results, which will be

occupied in the next sections of this chapter.

Definition 44 The set F called weakly precompact if every sequence of functions

{fn} with fn ∈ F , contains a weakly convergence subsequence {fan} that converges

to an f ∈ Lp.

Proposition 45 A set of function F ⊂ F1, µ(X ) < ∞, is weakly precompact if

and only if:

1. There is an M <∞ such that ‖f‖ ≤M for all f ∈ F , and

2. For every ε > 0 there is a δ > 0 such that∫
A

|f(x)|dµ < ε, if µ(A) < δ and f ∈ F .

Proof See Corollary 11 page 294 of Theorem 7 of the page 291 of [8].

Corollary 45.1 Let g ∈ L1 be a nonnegative function and µ(§) <∞. Then the set

of all functions f ∈ L1 such that

|f(x)| ≤ g(x) for x ∈ X a.e

is weakly precompact in L1.
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Corollary 45.2 Let M > 0 be a positive number and p > 1 be given. If µ(§) <∞,

then the set of all function f ∈ L1 such that

‖f‖Lp ≤M

is weakly precompact in L1.

4.2 PROPERTIES OF THE AVERAGES ANF

We will start this part by defining the average function and assume, for simplicity,

that we are always working on a measure space (X ,A, µ), whether P : L1 → L1 is

a Markov operator, then defined the Cesàro average of P by

Anf =
1

n

n−1∑
k=0

P kf

We will show that every Markov operator whose average sequence is weakly pre-

compact, has a fixed point, we will see later that this is simply a consequence of

the Hans-Banach theorem. To demonstrate this, let’s start with one with some

Propositions.

Proposition 46 Let P : L1 → L1 an Markov operator, then for all f ∈ L1, we

have

lim
n→∞

‖Anf − AnPf‖ = 0

Proof Let’s start the demonstration by first calculating for an f ∈ L1 fix

Anf − AnPf =
1

n

n−1∑
k=0

P kf − 1

n

n−1∑
k=0

P k+1f =
1

n
(f − P nf)

and thus

‖Anf − AnPf‖ ≤
1

n
(‖f‖+ ‖P n‖) ≤ 2

n
‖f‖

since P is a Markov operator and we saw in Proposition 2 of chapter 1 that for an

arbitrary function in L1 we have that ‖P nf‖ ≤ ‖f‖ taking n→∞ in the inequality

above, we have

‖Anf − Anf‖ ≤
2

n
‖f‖ → 0
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�

Proposition 47 Let P an linear operator in L1, if, for f ∈ L1, there is a subse-

quence {Aan} of sequence {An} that converges weakly to f∗ ∈ L1, then Pf∗ = f∗.

Proof Note that by linearity of P , we have

PAanf = P

(
1

an

an−1∑
k=0

P kf

)
=

1

an

an−1∑
k=0

P kPf = AanPf

thus PAanf = AanPf , from here, we have that AanPf weakly converges to Pf∗.

Since {AanPf} has the same limit as {Anf}, then Pf∗ = f∗

�

The following result is a consequence of the second geometric form of the Hahn-

Banach Theorem

Proposition 48 Let M a closed subspace of a normed space E. Then, for all

x0 ∈ E \M exist a functional ϕ ∈ E∗, such that ϕ(x0) = 1 and ϕ(x) = 0 for all

x ∈M .

Proof See Corollary 3.4.10 page 74 of [1].

Lemma 49 Let P : L1 → L1 a Markov operator. If {Anf} is weakly precompact,

then for every ε > 0, the function f − f∗ can be written as

f − f∗ = Pg − g + r.

Where g ∈ L1 and ‖r‖ < ε.

Proof Suppose that for some ε there does not exist an r such that it suffers the

equation of the lemma. then we have

f − f∗ 6∈ (P − I)L1(X )
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The central idea of this demonstration, is to use one of the consequences, of the

Hanh-Banach theorem that we enunciate above, for this we must first prove that

(P − I)L1(X ) is a linear space.

Let’s prove that (P − I)L1(X ) is a linear space. Indeed, Let u, v ∈ (P − I)L1(X ),

then exist two sequence such that

u = lim
n→∞

(PUn − Un), with Un ∈ L1

v = lim
n→∞

(PVn − Vn), with Vn ∈ L1.

Let λ ∈ R Then

λu+ v =λ lim
n→∞

(PUn − Un) + lim
n→∞

(PVn − Vn)

= lim
n→∞

(PλUn − λUn + PVn − Vn)

= lim
n→∞

(P (λUn + Vn)− (λUn + Vn)) ∈ (P − I)L1(X ).

Since λUn + Vn ∈ L1. Then by 48, there must exist a g0 ∈ L∞ such that

〈f − f∗, g0〉 6= 0

and 〈h, g0〉 = 0 for all h ∈ (P − I)L1(X ). In particular

〈(P − I)P jf, g0〉 = 0.

thus

〈P jf, g0〉 = 〈P jf, g0〉 for j = 0, 1, . . .

and by induction we must, therefore, have

〈P jf, g0〉 = 〈f, g0〉.

As a consequence

1

n

n−1∑
j=0

〈P jf, g0〉 =
1

n

n−1∑
j=0

〈f, g0〉 = 〈f, g0〉

or

〈Anf, g0〉 = 〈f, g0〉.
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Let {Aan} a subsequece of {An} such that converge weakly to f∗, we have

lim
n→∞
〈Aanf, g0〉 = 〈f∗, g0〉

joining this result with the one above we have

〈f, g0〉 = 〈f∗, g0〉

which gives

〈f − f∗, g0〉 = 0

what is a contradiction, then, then for every ε > 0, the function f − f∗ can be

written as

f − f∗ = Pg − g + r.

Where g ∈ L1 and ‖r‖ < ε.

Theorem 50 Let (X ,A, µ) be a measure space and P : L1 → L1 a Markov operator.

If for a given f ∈ L1, the sequence {Anf} is weakly precompact, then it converges

strongly to some f∗ ∈ L1 that is a fixed point of P , namely Pf∗ = f∗. Furthermore,

if f ∈ D, then f∗ ∈ D, so that f∗ is stationary density.

Proof Because {Anf} is weakly precompact by assumption, there exists a subse-

quence {Aan} that converges weakly to some f∗ ∈ L1. Further, by Proposition 47,

we know Pf∗ = f∗. Write f ∈ L1 in the form

f = (f − f∗) + f∗

for lemma 49 we have, for every ε > 0 exist g ∈ L1 and ‖r‖ < ε such that, the

function f − f∗ can be written as

f − f∗ = Pg − g + r.

or equivalent

f = Pg − g + r + f∗
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Applying the average in the expression above

Anf = An(Pg − g) + Anr + Anf∗

Then estimating the following expression through triangular inequality

‖Anf − f∗‖ = ‖An(f − f∗)‖ ≤ ‖An(Pg − g)‖+ ‖Anr‖.

By Proposition 46 we know that ‖An(Pg − g)‖ is strongly convergent to zero as

n→∞ and by our assumption ‖Anr‖ ≤ ‖r‖ < ε

‖Anr‖ = ‖ 1

n

n−1∑
k=0

P kr‖ ≤ 1

n

n−1∑
k=0

‖P kr‖ ≤ 1

n

n−1∑
k=0

‖r‖ = ‖r‖.

Thus, for sufficiently large n, we must have

‖Anf − f∗‖ ≤ ε

Since ε is arbitrary, this proves that {Anf} is strongly convergence to f∗. To show

that if f ∈ D, then f∗ ∈ D. By Definition the densities we have f ≥ 0 and ‖f‖ = 1,

then by Definition the Markov operator we have Pf ≥ 0 and ‖Pf‖ = 1, so that

P nf ≥ 0 and ‖P nf‖ = 1. As consequence Anf ≥ 0 and

‖Anf‖ =

∫
X
|Anf |dµ =

∫
X
Anfdµ =

1

n

n−1∑
k=0

∫
X
P nfdµ = 1

And, since {Anf} is strongly convergent to f∗, we must have f∗ ∈ D. This complete

the proof.

�

Corollary 50.1 Let (X ,A, µ) be a measure space and P : L1 → L1 a Markov

operator, If, for some f ∈ D there is a g ∈ L1 such that

P nf ≤ g

for all n, then there is an f∗ ∈ D such that Pf∗ = f∗, that is, f∗ is a stationary

density.



55

Proof By assumption P nf ≤ g so that

0 ≤ Anf =
1

n

n−1∑
k=0

PKf ≤ g

and, thus, |Anf | ≤ g. By applying our first criterion for weak precompactness, we

know that {Anf} is weakly precompact. Then Theorem 50 completes the argument.

�

Corollary 50.2 Again let (X ,A, µ) be a measure space and P : L1 → L1 a Markov

operator, If, for some f ∈ D there is M > 0 and p > 1 such that

‖P nf‖Lp ≤M

for all n, then there is an f∗ ∈ D such that Pf∗ = f∗.

Proof We have

‖Anf‖Lp = ‖ 1

n

n−1∑
k=0

P kf‖Lp ≤
1

n

n−1∑
k=0

‖P kf‖Lp ≤
1

n
(nM) = M.

Hence, by our second criterion for weak precompactness, {Anf} is weakly precom-

pact, and again Theorem 50 completes the proof.

�

Theorem 51 Let (X ,A, µ) be a measure space and P : L1 → L1 a Markov operator

with a unique stationary f∗. If f∗(x) > 0 for all x ∈ X , then

lim
n→∞

Anf = f∗ for all f ∈ D

Proof First assume
f

f∗
is bounded. By setting c = sup

(
f

f∗

)
, we have

P nf ≤ P ncf∗ = cP nf∗ = cf∗

and

Anf ≤ cAnf∗ = cf∗
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thus the sequence {Anf} is weakly precompact and, by Theorem 50, is convergent

to a stationary density. Since f∗ is the unique stationary density, then {Anf} must

converge to f∗. Thus Theorem is proved when
f

f∗
is bounded.

In the general case, write fc = min(f, cf∗), We then have

f =
1

‖fc‖
fc + rc

where

rc =

(
1− 1

‖fc‖

)
fc + f − fc.

Since f∗(x) > 0, exist any c ∈ R for each x such that

f(x) ≤ cf∗(x)

thus lim
n→∞

fc(x) = f(x). By Definition of fc, we have fc ≤ f , thus by the Lebesgue

dominated convergence theorem, ‖fc − f‖ → 0 and ‖fc‖ → ‖f‖ = 1 as c → ∞.

Thus we have that

‖rc‖ = ‖
(

1− 1

‖fc‖

)
fc + f − fc‖ = ‖f − fc

‖fc‖
‖ → 0 as c→∞

that is to say that ‖rc‖ converges strongly to zero as c→∞. By choosing ε > 0 we

can find a value c such that ‖rc‖ <
ε

2
, so for this fixed value of c, we have

‖Anrc‖ = ‖ 1

n

n−1∑
k=0

P krc‖ ≤ ‖rc‖ <
ε

2

However, since fc
‖fc‖ is a density bounded by cfc

‖fc‖ . according to the first part of the

proof,

‖An
(

1

‖fc‖
fc

)
− f∗‖ ≤

ε

2

for sufficiently large n. Obtain

‖Anf − f∗‖ ≤ ε

for sufficiently large n.
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Corollary 51.1 Let (X ,A, µ) be a normalized measure space, S : X → X a mea-

sure preserving transformation, and P the corresponding Frobenius-Perron operator.

Then S is ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

P kf = 1 for every f ∈ D

Proof The proof is immediate. Since S is measure preserving, we have P1 = 1.

If S is ergodic, then by Theorem , f∗(x) = 1 is the unique stationary density of P

and, by Theorem 51, the convergence of follows. Conversely, it the convergence of

holds, applying to stationary density f gives f = 1. Thus f∗(x) = 1 is the unique

stationary density of P and again, by Theorem , the transformation S is ergodic

�

4.3 ASYMTOTIC PERIODICITY OF {PNF}

Definition 52 Let (X ,A, µ) be a finite measure space. A Markov operator P is

called constructive if there exist a δ > 0 and κ < 1 such that for every f ∈ D there

is an integer n0(f) for which∫
E

P ndµ ≤ κ for n ≥ n0(f) and µ(E) ≤ δ

Note that for every density f the integral in inequality is bounded above by one.

Thus condition for constrictiveness means the eventually (n ≤ n0(f)) this integral

cannot be close to one for sufficiently small set E. This clearly indicates that cons-

trictiveness rules out the possibility that P f is eventually concentrated on a set very

small or vanishing measure.

In [4] in the remark 5.1.3, mentions an interesting equivalence, relating to com-

pact set. A markov operator P : L1 → L1 is contrictive if and only if there exists a

compact set F ⊂ L1 such that

lim
n→∞

dist(P nf,F) = 0
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for any f ∈ D.

If the space X is not finite, we wish to have a Definition of constrictivess that

also prevents P nf from begin dispersed throughout the entire space. To accomplish

this we extend Definition

Definition 53 Let (X ,A, µ) be a σ-finite measure space. A Markov operator P is

called constrictive if there exists δ > 0, and κ < 1 and a measurable set B of finite

measure, such that for every density f there is an integer n0(f) for which∫
(X\B)∪E

P nfdµ ≤ κ for n ≤ n0(f) and µ(E) ≤ δ.

From the Definition, one might think that verifying constrictiveness is difficult since

it is required to find two constants δ and κ as well as a set B with rather specific

properties. Howevwe, it is often rather easy ti verify constrictiveness using one the

two following Propositions.

Proposition 54 Let (X ,A, µ) be a finite measure space and P : L1 → L1 be a

Markov operator. Assume there is a P > 1 and K > 0 such that for every density

f ∈ D we have P nf ∈ Lp for sufficiently large n, and

lim sup
n→∞

‖P nf‖Lp ≤ K.

Then P is constrictive.

Proof From lim sup
n→∞

‖P nf‖Lp ≤ K, there is an integer n0(f) such that

‖P nf‖Lp ≤ K + 1 for n ≥ n0(f).

Thus, by criteria 2 the family {P nf}, for n ≥ n0(f), f ∈ D, is weakly precompact.

Finally, for fixed ε ∈ (0, 1), criteria 3, implies there is δ > 0 such that∫
E

P nf(x)dµ < ε if µ(E) < δ

Thus P is constrictiveness.
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Our next Proposition may be even more useful in demonstrated the contrictiveness

of an operator P

Proposition 55 Let (X ,A, µ) be a σ−finite measure space and P : L1 → L1 be a

Markov operator. If there exist an h ∈ L1 and λ < 1 such that

lim sup
n→∞

‖(P nf − h)+‖ ≤ λ for f ∈ D,

then P is constrictive.

Proof Let ε = 1
4
(1 − λ) and take F = {h}. Since F , which contains only one

element, in evidently weakly precompact (it is also strongly precompact, but this

property is no useful to us here). then bt criterion 3, there exist a δ > 0 such that∫
E

h(x)dµ < ε, for µ(E) < δ.

Furthermore, by there is a measurable set B of finite measure for which∫
X\B

h(x)dµ < ε.

Now fix f ∈ D. From we may choose an integer n0(f) such that

‖(P n − h)+‖ ≤ λ+ ε for n ≥ n0(f),

and, as a consequence, ∫
C

P nf(x)dµ ≤
∫
C

h(x)dµ+ λ+ ε

for an arbitrary set C ∈ A. Setting C = (X \B) ∪ E in and using and we have∫
X\B)∪E

P nf(x)dµ ≤
∫
X\B

+

∫
E

h(x)dµ+ λ+ ε < 3ε+ λ = 1− ε

this completes the proof.

�
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Theorem 56 (spectral decomposition theorem) Let P be a constrictive Mar-

kov operator. Then there is an integer r, two sequence of nonnegative functions

gi ∈ D and κi ∈ L∞, i = 1, . . . , r and an operator Q : L1 → L1 such that for every

f ∈ L1, Pf may be written in the form

Pf(x) =
r∑
i=1

λi(f)g1(x) +Qf(x) (4.1)

where

λi(f) =

∫
X
f(x)ki(x)dµ.

The functions gi and operator Q have the following properties

1. gi(x)gj(x) = 0 for all i 6= j, so that functions gi have disjoint supports.

2. For each integer i there exist an unique integer α(i) such that Pgi = gα(i).

Further α(i) 6= α(j) for i 6= j and thus operator P just serves to permute the

functions gi.

3. ‖P nQf‖ → 0 as n→∞ for every f ∈ L1.

Proof See page 141 of [9].

�

Remark From representation 4.1 of Theorem 56 for Pf , it immediately follows that

the structure of P n+1f is given by

P n+1f(x) =
r∑
i=1

λi(f)gαn(i)(x) +Qnf(x) (4.2)

where Qn = P nQ and αn(i) = α(αn−1) = . . . , and ‖Qnf‖ → 0 as n → ∞. The

terms under the summation in 4.2 are just permuted with each application of P ,

and since r is finite the sequence

r∑
i=1

λi(f)gαn(i)(x)
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must be periodic with a period τ ≤ r!. Since {αn(1), . . . , αn(r)} is simply a permu-

tation of {1, . . . , r}, there is a unique i corresponding to each αn(i). Thus it is clear

that the summation above may be be rewritten as
r∑
i=1

λα−n(i)(f)gi(x),

where {α−n(i)} denote the inverse permutation {αn(i)}.

Rewritten the summation in this form clarifies how sucessive applications od opera-

tor P really work. Since the funcions gi are supported on disjoint sets, each succes-

sive application of operator P leads to a a new set of scaling coefficients λα−n)(f)

associated with each functions gi(x).

A sequence {P n} for witch formula 4.1 is satisfied will be called asymptotically

periodic. Using this notion. Theorem 56 may be rephrased as follows: If P is a

constrictive operator, then {P n} is asymptotically periodic.

It is actually rather easy to obtain an upper bound on the integer r appearing

in equation 4.1 if we can find an upper bound function for P nf . Assume that P is

a Markov operator and there exists a function h ∈ L1 such that

lim
n→∞

‖(P nf − h)+‖ = 0 for f ∈ D

Thus P is constrictive and representation 4.1 is valid. Let τ be the period of sequence

5.1 , so that, from 4.1 and, we have

Lf(x) = lim
n→∞

P nr =
r∑
i=1

λi(f)gi(x) ≤ h(x) for f ∈ D.

Set f = gk so that Lf(x) = gk(x) ≤ h(x). By integrating over the support of gk,

bearing in mind that the supports of the gk are disjoint, and summing from k = 10

to k = r, we have
r∑

k=1

∫
Suppgk

gk(x)dµ ≤
r∑

k=1

∫
Suppgk

h(x)dµ ≤ ‖h‖.

Since gk ∈ D, this reduces to

r ≤ ‖h‖
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which is the desired result.

Now we will use the result above to show that every construction Markov operator

admits a stationary density

Proposition 57 Let (X ,A, µ) be measure space and P : L1 → L1 a constrictive

Markov operator. Then P has a stationary density.

Proof Let a density f be defined by

f(x) =
1

r

r∑
i=1

gi(x),

where r and gi were defined in Theorem 56. Because of property (2) Theorem 56,

Pf(x) =
1

r

∑
i = 1rgα(i)(x)

and thus Pf = f , which completes the proof.

�
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5 ENTROPY

The concept of entropy was first introduced by Clausius and later used in a

different form by Boltzmann in his pioneering work on the kinetic theory of gases

published in 1866. since then, entropy has played a pivotal role in the development

of many areas in physics and chemistry and has had important ramification in er-

godic theory.

In this chapter we will work with the Bolzamann Gibbs entropy defined in the

context of statistical mechanics, we will study their behavior in relation to se-

quence {P nf}, where P is a Markov operators and later when P is an Operators of

Frobenius-Perron for f ∈ D and finally we will study how Bolzamann Gibbs entropy

behavior can say if a dynamical system is exact. Next we will give the Definition.

Definition 58 Letf ≥ 0 and η(f) ∈ L1 where η(u) = −u log u and η(0) = 0, then

the entropy of f is defined by

H(f(x)) =

∫
X
η(f(x))dµ (5.1)

If µ(X ) < ∞, then the integral is always well defined for every f ≤ 0. In fact,

the integral over the positive parts of η(f), (η(f))+ = max(0, η(f)) is always finite,

thus. H(f) is either finite or equal to −∞. Since we take η(0) = 0, the function

η(u) is continuous for all u ≥ 0. Inequality that we will use much in this chapter is

the Gibb’s inequality

u− u log(u) ≤ v − u log(v) for all u, v ≥ 0. (5.2)

If f, g are two densities such that η(f) and f log(g) are integrable, then from Gibb’s

inequality, we obtain

−
∫
X
f(x) log f(x)dµ ≤ −

∫
X
f(x) log g(x)dµ (5.3)

Proposition 59 Let (X ,A, µ) be measure space with µ(X ) < ∞, and consider all

the possible densities f defined on X , then, in the family of all such densities, the



64

maximal entropy occurs for the constant density:

f0(x) =
1

µ(X )
(5.4)

Proof Pick an arbitrary f ∈ D so that entropy of f is given by

H(f) = −
∫
X
f(x) log(f(x))dµ

and inequality

H(f(x)) ≤ −
∫
X
f(x) log(f0(x))dµ

= − log

(
1

µ(X )

)∫
X
f(x)dµ

or

H(f(x)) ≤ − log

(
1

µ(X )

)
However, the entropy of f0 is

H(f0) = −
∫
X

1

µ(X )
log

(
1

µ(X )

)
= − log

(
1

µ(X )

)
.

So H(f) ≤ H(f0) for all f ∈ D.

�

Corollary 59.1 Let (X ,A, µ) be measure space with µ(X ) <∞ and f ∈ L1, then

H(f) ≤ log µ(X ) ≤ 1

e
µ(X ).

Next we will give some examples of maximum entropy of a family of densities.

Example 60 Let X = [0,∞) and consider all possibles densities f such that the

fist moment of f is given by ∫ ∞
0

xf(x)dx =
1

λ
(5.5)
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then the density f0(x) = λe−λx maximizes the entropy.

H(f) ≤ −
∫ ∞
0

f(x) log(λe−λx)dx

= − log λ

∫ ∞
0

f(x)dx+

∫ ∞
0

λxf(x)dx

= − log λ

∫ ∞
0

f(x)dx︸ ︷︷ ︸
1

+ λ
1

λ︸︷︷︸
1

= − log λ+ 1

and the other hand

H(f0) = −
∫ ∞
0

λe−λx log(λe−λx)dx

=
(
e−λx(log λe−λx − 1)

)∞
0

= − log λ+ 1.

Example 61 For our next example take X = (−∞,∞) and consider all possible

densities f ∈ D such that the second moment of f is finite, that is,∫ ∞
−∞

x2f(x)dx = σ2 (5.6)

then the maximal entropy is achieved for the Gaussian density

f0(x) =
1√

2πσ2
e−

x2

2σ2 . (5.7)

As before, we calculate that, for arbitrary f ∈ D satisfying 5.6,

H(f) ≤ −
∫ ∞
−∞

f(x) log

(
1√

2πσ2
e−

x2

2σ2

)
dx

= − log

(
1√

2πσ2

)∫ ∞
−∞

f(x)dx+
1

2σ2

∫ ∞
−∞

x2f(x)dx

=
1

2
− log

(
1√

2πσ2

)
Futher

H(f0) =
1

2
− log

(
1√

2πσ2

)
so that the entropy is maximized with thw Gaussian
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These two examples are simply special case covered by the following simple state-

ment

Proposition 62 Let (X ,A, µ) be a measure space. Assume that a sequence g1, . . . , gm

of measure function is given as well as two sequences of real constants g1, . . . , gm

and ν1, . . . , νm that satisfy

gi =

∫
X
gi exp[−νigi]dµ∫

X

m∏
i=1

exp[−νigi]dµ
(5.8)

where all of the integrals are finite. Then the maximum of the entropy H(f) for all

f ∈ D, subject to the conditions

gi =

∫
X
gif(x)dµ, i = 1, . . . ,m (5.9)

occurs for

f0(x) =

m∏
i=1

exp[−νigi]∫
X

m∏
i=1

exp[−νigi]dµ
(5.10)

Proof For simplicity, set

Z =

∫
X

m∏
i=1

exp[−νigi]dµ

so

f0(x) = Z−1
m∏
i=1

exp[−νigi].

From inequality 5.3, we have

H(f) ≤ −
∫
X
f(x) log f0(x)dµ

= −
∫
X
f(x)

(
− logZ −

m∑
i=1

νigi

)
dµ

= logZ +
m∑
i=1

νi

∫
X
f(x)gidµ

= logZ +
m∑
i=1

νigi
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Furthermore, it easy to show that

H(f0) = logZ +
m∑
i=1

νigi

and thus H(f) ≤ H(f0)

�

Note that if m = 1 and g(x) is identified as the energy of system, then the maximal

entropy occurs for

f0(x) = Z−1e−νg(x),

which is just the Gibbs canonical distribution function, with the partition function

Z given by

Z =

∫
X
e−νg(x)dµ.

Further, the maximal entropy

H(f0) = logZ + νg

is just the thermodynamic entropy. As is well known, all of the results of classical

thermodynamic can derived with the partition function Z and the preceding en-

tropy. Indeed, the contents of Proposition 62 have been extensively used by Jaynes

and Katz in an alternative formulation and development of classical and quantum

statistical mechanics.

5.1 ENTROPY OF PNF WHEN P IS A MARKOV OPERATOR

Theorem 63 Let (X ,A, µ) be finite measure space and P : L1 → L1 a Markov

operator. If P has a constant stationary density (P1=1), then:

H(Pf) ≥ H(f) for all f ≥ 0 and f ∈ L1.
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Proof : integrating jensen’s inequelity over entire spece X .∫
X
η(Pf)dµ ≥

∫
X
Pη(f)dµ =

∫
X
η(f)dµ

Since P preserve the integral. However, the left-most integral is H(Pf) and las

integral is H(f). For a finite measure space, we know that the maximal entropy

Hmax is − log

(
1

µ(X )

)
, so that − log

(
1

µ(X )

)
≥ H(P nf) ≥ H(f).

�

This, in conjunction with theorem 63, tell us that in finite measure space when P

has a constant stationart density, the entropy never decreases and is bounded above

by − log

(
1

µ(X )

)
and if µ(X ) = 1 then Hmax = 0.

In the case of Markov operator without a constant stationary densities, it happen

that the sequence H(P nf) is not increasing as n increases.

5.2 ENTROPY H(PNF ) WHEN P IS A FROBENIUS-PERRON OPERATOR

Theorem 64 Let (X ,A, µ) be finite measure space and S : X → X be an invertible

measure-preserving transformation. If P is the Frobenius-Perron operator corres-

ponding to S. then

H(P nf) = H(f) for all n.

Proof If S is invertible and measure preserving, then by equation of lemma 18.1

we have Pf(x) = f(S−1(x)) since J−1 ≡ 1. If P1 is the Frobenius-Perron operator

corresponding to S−1, we also have P1f(x) = f(S(x)). Thus P1Pf = PP1f = f so

P1 = P−1. From Theorem 63 we also have

H(P1Pf) ≥ H(Pf) ≥ H(f),

but, since P1Pf = P−1Pf = f , we conclude that H(Pf) = H(f), so H(P nf) =

H(f) for all n
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Theorem 65 Let (X ,A, µ) be normalized measure space and S : X → X measure-

preserving transformation and P is the Frobenius-Perron operator corresponding to

S. If S is exact then

limn→∞H(P nf) = 0 for all f ∈ D such that H(f) > −∞.

Proof Assume initially that f is bounded, that is, 0 ≤ f ≤ c. Then

0 ≤ P nf ≤ P nc = cP n1 = c.

Without ant loss of generalty, we can assume that c > 1. Further, since η(u) ≤ 0

for u ≥ 1, we have

0 ≤ H(P nf) ≤
∫
An

η(P n(f(x))dµ

where

An = {x : 1 ≤ P nf(x) ≤ c}

Now, by the mean value theorem, we obtain∣∣∣∣∫
An

η(P n(f(x))dµ

∣∣∣∣ =

∫
An

|η(P nf(x)− η(1)|dµ

≤ k

∫
An

|P nf(x)− 1|dµ

≤ k

∫
X
|P nf(x)− 1|dµ = ‖P n − 1‖,

where

k = sup
1≤u≤c

|η′(u)|.

Since S is exact, from Theorem, we have ‖P nf − 1‖ → 0 as n → ∞ for all f ∈ D

and thus

lim
n→∞

∫
An

η(P n(f(x))dµ = 0
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From inequality, it follows thatH(P nf) converges to zero. Now relax the assumption

that f is bounded and write f in the form

f = f1 + f2

where

f1(x) =

0 if f(x) > c

f(x) if 0 ≤ f(x) ≤ c

and f2 = f − f1. Fixing ε > 0, we may choose c sufficiently large so that

‖f2‖ < ε and H(f2) > −ε.

Write P nf in the form

P nf = (1− δ)P n

(
1

1− δ
f1

)
+ δP n

(
1

δ
f2

)
where δ = ‖f2‖. Now

f1
1− δ

is a bounded density, and so from the first part of our

proof we know that for n sufficiently large

H
(
P n

(
1

1− δ
f1

))
> −ε.

Furthermore

δH
(
P n

(
1

δ
f2

))
= H(P nf2)− log

(
1

δ

)∫
X
P nf2dµ

= H(P nf2)− ‖f2‖ log

(
1

δ

)
= H(P nf2) + δ log δ.

Since H(P nf2) ≤ H(f2) > −ε, this last expression becomes

δH
(
P n

(
1

δ
f2

))
≥ −ε+ δ log δ.

Combining these results and inequality, we have

H(P nf) ≥ (1− δ)H
(
P n

(
1

1− δ
f1

))
+ δH

(
P n

(
1

δ
f2

))
≥ −ε(1− δ)− ε+ δ log δ

= −2ε+ δε+ δ log δ.

Since µ(X ) = 1, we have H(P nf) ≤ 0. Further since δ < ε and ε is arbitrary, the

right-hand side of is also arbitrarily small, and Theorem is proved.
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5.3 BEHAVIOR OF PNF FROM H(PNF )

Theorem 66 Let (X ,A, µ) be a measure space µ(X) < ∞, and P : L1 → L1 a

Markov operator such that P1 = 1. If there exists a constant c > 0 such that for

every bounded f ∈ D

H(P nf) ≥ −c for n sufficiently large,

then P is constrictive

Proof Observe that P1 = 1 implies that Pf is bounded for bounded f . Thus, to

proved our theorem, it is sufficient to show that the set F of all bounded f ∈ D

that satisfy

H(f) ≥ −c

is weakly precompact. We will use criterion to demostrate the weak precompacteness

of F . Since ‖f‖ = 1 for all f ∈ D, the fist part of the criterion is satisfied. To check

the second part take ε > 0. Pick l = e−1µ(X ), N = exp
2(c+ l)

ε
and δ = ε

2N
, and

take a set A ⊂ X such that µ(A) < δ. Then∫
A

f(x)dµ =

∫
A1

f(x)dµ+

∫
A2

f(x)dµ

where

A1 = {x ∈ A : f(x) ≤ N}

A2 = {x ∈ A : f(x) > N}.

The fist integral on the right-hand side the above equation clearly satisfies∫
A1

f(x)dµ ≤ Nδ =
ε

2
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In evaluating the second integral, note that from H(f) ≥ −c, it follows that∫
A2

f(x) log f(x)dµ ≤ c−
∫
X\A∈

f(x) log f(x)dµ

≤ c+

∫
X\A∈

ηmaxdµ

≤ c+

(
1

e

)
µ(X ) = c+ l.

Therefore ∫
A2

f(x) logNdµ < x+ l

or ∫
A2

f(x)dµ <
c+ l

logN
=
ε

2

Thus ∫
A

f(x)dµ < ε

and F is weakly precompact. Thus, by Definition, the operator P is constrictive.

�

Theorem 67 Let (X ,A, µ) be a measure space, S : X → X a measure-preserving

transformation, and P the Frobenius-Perron operator corresponding to S. If

lim
n→∞

H(P nf) = 0

for all bounded f ∈ D, then S is exact.

Proof It follows from Theorem 66 that P is constructive. Furthermore since S

is measure preserving, we know that P has a constant stationary density. From

Proposition, we, therefore, have

P n+1f(x) =
r∑
i=1

λα−n(i)(f)1A1(x) +Qnf(x) for f ∈ L1
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If we can demonstrate that r = 1, then form Theorem we will have shown S to be

exact. Pick

f(x) =

[
1

µ(A1)

]
1A1(x)

as an initial f . If τ is the asymptotic period of P nf , then we must have

P nτf(x) =

[
1

µ(A1)

]
1A1(x).

However, by assumption

lim
n→∞

H(P nf) = 0

and, since the sequence {H(P nτf)} is constant sequence, we must have

H
([

1

µ(A1)

]
1A1

)
= 0.

Note that, by Proposition, H(f) = 0 only if

f(x) = 1X (x)

So, clearly, we must have [
1

µ(A1)

]
1A1(x) = 1X (x)

This is possible if and only if A1 is the entire space X, and thus r = 1. Hence S is

exact.

�
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6 THE SECOND LAW OF THERMODYNAMICS

Statistical mechanics studies macroscopic properties such as pressure and tem-

prerature, based on microscopic concepts such as the collision between particles

and the distribution of particle velocities. During the advances of this theory, new

ingredients were incorporated such as entropy (thermodynamics), in this context

entropy measures the complexity of the system, through the Bolzamann formula,

where entropy is a function of the number of configurations that the system can

have, being the most likely configuration that maximizes entropy, this is known

by the name the principle of maximum entropy, even if it seems, in some obvious

contexts such as in the case of water, than at room temperature The configuration

that maximizes entropy is the liquid state and not the solid state, this principle

is nothing more than a postulate. Subsequently, statistical models are created to

be able to predict macroscopic compositions from microscopic data, three of these

models are called microcanonical, canonical and grand canonical, from these models

relationships between thermodynamic variables such as the ideal gas equation can

be demonstrated PV = RTN .

During the development of chapter five we saw the entropy of Bolzmann-Gibbs

and in addition to the existence of a density function that maximizes it, this density

corresponds to a state of maximum entropy for thermodynamic entropy, the Propo-

sition that guarantees the existence of this Density is called the generalized form of

the microcanonic set, the particular case studied in mechanics corresponds to the

Proposition 59.

During the development of thermodynamics, in the context of the industrial re-

volution, they postulated three laws on the behavior of thermodynamical systems,

subsequently a fourth law is added, which establishes a transitivity between the

equilibrium states of three bodies, this law says If two bodies are in thermodynamic

equilibrium, and the second is in thermodynamic equilibrium with a third, then the

first will be in thermodynamic equilibrium with the latter how this principle could

not be deduced from the three laws and because it is such an elementary principle

according to who defined it, it was decided to call it the zero law of thermodynamics.
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We focus on the second law of thermodynamics, which basically states that,an iso-

lated system, that is, it does not share energy or matter with its neighborhood, where

an irreversible process occurs, the entropy of the system must always increase and

only remain costly if the process was reversible.

We will use the version of the second law of thermodynamics in the book Time’s

Arrow: The Origins of Thermodynamic Behavior of Michael C. Mackey [11], in

which it distinguishes from two versions of this law, a weak and a strong one, which

are:

Let STD(t) denote the thermodynamic entropy at time t.

Weak Form of the Second Law

−∞ < STD(t0) ≤ STD(t) ≤ 0 for all times t0 < t and there exist a set of equilibrium

entropies {S∗TD(f)} dependendet on the initial preparation f of the system such that

lim
t→∞

STD(t) = S∗TD(f) ≤ max
f

S∗TD(f).

Thus the case system difference ∆S(t) = STD(t)−maxf S
∗
TD(f) satisfies ∆S(t) ≤ 0

and

lim
t→∞

∆S(t) ≤ 0

In this case system entropy converges to a steady state value S∗TD which may not

be unique. If it is not unique it characterizes a metastable state.

Strong Form of the Second Law

−∞ < STD(t0) ≤ STD(t) ≤ 0 for all times t0 < t and there is a unique limit S∗TD
(independent of the initial system preparation f) such

lim
t→∞

STD = S∗TD

for all initial system preparation f . Under these circumstance,

lim
t→∞

∆S(t) = 0

Due to the temporal aximetry presented by this law, it was considered that this

law defined a sense in the evolution of time itself. It is natural to think that such
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an important postulate should be demonstrable, however, the tools of statistical

mechanics were not able to prove it. But it did not take long to find a theory that

could with this problem, and it was when the ergodic theory, entered the scene, to

study this problem we first have to translate the concepts of statistical mechanics

into the concept of ergodic theory. A thermodynamical system is equivalent to

a measurement space, the equilibrium states correspond to stationary densities,

and instead of working with thermodynamic entropy, we consider the entropy of

Bolzmann Gibbs since stationary densities would correspond to states that maximize

thermodynamic entropy. The first problem we encounter is that the conception

of ergodicity only guaranteed the existence of a stationary density. This is due

to Theorem 39 that establishes an equivalence between ergodicity and the Cesàro

convergence of the {P nf} where P is the operator of frobrenius perron associated

with the system and f ∈ D. But this does not guarantee that the system reaches

the state of maximum thermodynamic entropy.

Consider an even stronger condition, consider mixing systems,remember that a

system is a mixting if

lim
n→∞

µ(A ∩ S−n(B)) = µ(A)µ(B)

for all A,B ∈ A.

now we can guarantee only the maximum entropy but locally, which corresponds

to the weak version of thermodynamics.But it is enough to show the strong version.

We need an even stronger condition, well consider exact system, i.e

lim
n→∞

µ(Sn(A)) = 1

for every A ∈ A and µ(A) > 0.

With this now if we can guarantee that the system reaches the state of maximum

entropy, the problem was solved, or not ?, the truth is that we have complicated

things more, by the following reasons, the first of them, is that at no time have

we considered the dynamic variables such as temperature and pressure, and on the

other hand, a necessary condition for a system to be exact, is that the function that
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generates the dynamics has to be not necessarily invertible, however, the laws of

thermodynamics are reversible and in general those of all physics, except the second

law of thermodynamics, but we can not consider it as it is what we try to demons-

trate. This generates more problems than solution. We have two options, the first

and most pessimistic, is to consider that all the laws of physics are bad formulas, and

that it should be reformulated into irreversible laws. The other option, more with

more hope, is that the phase space, that is, the set of where we define the dynamics,

is not continuous, but that this granulate, in this way, generate restrictions, which

we had not considered. Another operation is that there are hidden variables that are

in the worst case unacceptable to us, and that are playing a decisive role without us

noticing. Whatever the path that responds to this new problem, every day around

us we see the consequences of the second law of thermodynamics, because at the

end of the cases, whenever we put an ice cube on the fire, we will always expect that

This melts.
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GLOSSÁRIO

Palavra Significado da palavra

Palavra 2 Significado da palavra 2
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