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Orientador: Prof. Wladimir Augusto das Neves

Coorientador: Prof. Hugo Tremonte de Carvalho

Rio de Janeiro

Maio de 2020



iii

Universidade Federal do Rio de Janeiro

The Johnson-Lindenstrauss Lemma

Felipe Pagginelli Patŕıcio
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Resumo

The Johnson-Lindenstrauss Lemma

Felipe Pagginelli Patŕıcio

Resumo da dissertação de Mestrado apresentada ao Programa de Pós-graduação em Matemática,
Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos
requisitos necessários à obtenção do t́ıtulo de Mestre em Matemática.

Resumo: Os métodos usuais para análise e tomada de decisão são baseados no
processamento de informações. Esse campo de estudo, no entanto, tem mudado
dramaticamente com o advento dos dados de alta dimensão. O rápido desen-
volvimento das tecnologias de armazenamento e aquisição de dados tem possi-
bilitado que dispositivos tomem milhares – ou mesmo milhões – de medições
simultaneamente. Os dados em alta dimensão resultam justamente desse tipo
de aferição, sendo encontrados comumente em áreas como: processamento de
imagens, aprendizado de máquina, reconhecimento de padrões, extração de car-
acteŕısticas, análise de grafos, dentre outros. Entretanto, lidar com esse tipo de
informação é muito problemático por vários motivos, em particular, armazena-
mento e complexidade computacional. Felizmente, dados frequentes em aplicações
costumam concentrar-se em estruturas cuja dimensão intŕınseca é inferior a que
nos é apresentada. Dado isso, podemos nos valer de métodos de pré-processamento
para lidar com esse cenário de forma mais palatável. Nesta dissertação, apresen-
tamos um método para redução de dimensão, o Lema de Johnson-Lindenstrauss.
Esse resultado surpreendente nos permite projetar um conjunto de dados de M

pontos em RN quase isometricamente (a menos de um erro pré-fixado), em um
subspaço cuja dimensão m possui ordem logM. No mais, m independe da di-
mensão N do conjunto de dados original.

Palavras–chave. Lema de Johnson-Lindenstrauss, Concentração de Medida, Redução de
Dimensão, Alta Dimensionalidade, Ciência de Dados, Projeções Aleatórias, Estat́ıstica em
Alta Dimensão.

Rio de Janeiro
Maio de 2020
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Abstract

The Johnson-Lindenstrauss Lemma

Felipe Pagginelli Patŕıcio

Abstract da dissertação de Mestrado apresentada ao Programa de Pós-graduação em Matemática,
Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos
requisitos necessários à obtenção do t́ıtulo de Mestre em Matemática.

Abstract: Usual methods for data analysis and decision making are based on
information processing. However, this field of study has changed dramatically
with the advent of high-dimensional data. The fast development of data stor-
age and acquisition technologies has enabled devices to take thousands – or even
millions – of measurements simultaneously. High-dimensional data results pre-
cisely from this kind of measurements and are commonly found in fields such
as: image processing, machine learning, pattern recognition, feature extraction,
graph theory and data streaming, among others. However, dealing with this
kind of information is very problematic for several reasons, in particular, stor-
age and computational complexity. Fortunately, datasets that are frequent in
applications are usually concentrated in structures whose intrinsic dimension is
smaller than the one that we are presented. Therefore, we can use preprocessing
methods to deal with this setting in a more reasonable way. In this dissertation,
we present a method for dimensionality reduction, the Johnson-Lindenstrauss
Lemma. This amazing result allows us to project a dataset of M points in RN

quasi-isometrically (except for a prefixed error), onto a subspace whose dimen-
sion m is of order logM. Moreover, m is independent of the dimension N of the
original dataset.

Keywords. Johnson-Lindenstrauss Lemma, Concentration of Measure, Dimensionality Re-
duction, High-dimensionality, Data science, Random Projections, Statistics in High Dimen-
sions.

Rio de Janeiro
Maio de 2020



Notation & Terminology

Along this text, we shall use the following notations and concepts.

Notation. Let N ∈ N. We denote

[N ] := {1, . . . , N}.

Definition (ℓp normed space). For p ∈ [1,∞), we define the normed space ℓp as the sequences
x = {xi}∞i=1 ⊂ R for which the sum

∑∞
i=1 |xi|p converges. The norm in this space is defined as

‖x‖p :=

( ∞∑

i=1

|xi|p
) 1

p

.

We also define the normed space ℓ∞ as the sequences x = {xi}∞i=1 ⊂ R for which sup
i≥1

|xi| < ∞.

Moreover, the norm in this space is given by

‖x‖∞ := sup
i≥1

|xi|.

Notation. We denote the Euclidean space Rn provided with the norm ℓp as ℓnp . In particular,
a set X ⊂ Rn endowed with the metric ℓp will be represented as (X, ℓp).

In the present text, we will represent the set of (m× n)-matrices over a field K by
Mm×n(K). In particular, when it comes to the field of Real Numbers, we will denote it
just as Mn×m.

Definition (Frobenius norm of a matrix). Let A = (aij) be a matrix in Rm×n. We define its
Frobenius norm as

‖A‖F :=

(
m∑

i=1

n∑

j=1

|aij|2
)1/2

.

Definition (Lpq matrix norm). Let A be a matrix representing a linear transformation
ℓnp 7→ ℓmq , with p, q ≥ 1. We define the norm Lpq of the matrix A as

‖A‖p→q := sup
‖x‖p=1

‖Ax‖q.

vii
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Definition (Big-O notation). We say that a quantity g(n) is O (f(n)) if, for all N ∋ n ≥ n0,

we have
|g(n)| ≤ k|f(n)|,

for some positive constant k.

In the same way we have defined the Big-O notation to deal with upper asymptotic
bounds, we will define Big-Ω notation to deal with lower asymptotic bounds.

Definition (Big-Ω notation). We say that a quantity g(n) is Ω(f(n)) if, for all N ∋ n ≥ n0,

we have:
|g(n)| ≥ k|f(n)|,

for some positive constant k.

Finally, the following notation will be useful throughout the text.

Notation. Let ξ, x ∈ R and ε > 0. The expression

ξ ∈ [x± ε]

means ξ is a quantity in the interval [x− ε, x+ ε]. The notation for other kinds of intervals
is made in an analogous fashion.
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Chapter 1

Dimension reduction

1.1 High-dimensional data

Usual procedures for analysis and decision making are based on data analysis. However,
this field of study has been changing dramatically with the advent of high-dimensional data.
Over the last twenty years, the great development of data storage and acquisition technologies
has enabled devices to take thousands (or even millions) of measurements simultaneously.
High-dimensional data results from such kind of measurements, and images are a basic
example of how this kind of data is ubiquitous in our everyday life. For instance, a 300× 300

image, that is quite small, is represented by a 90,000-dimensional vector.
Dealing with such wide arrays of data is very problematic since they require high storage,

and operating with them leads to unbearable computational burden. Also, methods from
Classical Statistics are too limited in their capacity to deal effectively with contemporary
datasets. Namely, most of Statistics developed during the 20th century focused on data whose
number M of experimental units is large compared to the number N of unknown features.
Accordingly, most of the classical theory provides results for the asymptotic setting for N

fixed and M going to infinity. This approach is very useful for the usual cases, i.e., “large
M” and “small N”, but it can be seriously misleading for the “large N” case, requiring
then a new statistical paradigm. This has led to a new branch of Statistics referred to as
high-dimensional data analysis [Don2000].

Recently, the efforts of data analysis community have been dealing with these problems
by taking advantage of underlying structures of datasets in order to reduce the effective
dimension of the original problem. An example is exploring the sparsity property, i.e., taking
advantage from the fact that usual datasets hold a large number of irrelevant and redundant
variables. Another possibility for simplification comes from the fact that high-dimensional
data are not usually spread “uniformly” in the Euclidean space, but rather concentrated
around some low-dimensional structures.

As a consequence of these simpler settings, a good first step in the analysis of a high-
dimensional dataset is to reduce its dimension somehow. A classical statistical approach
to dimensionality reduction is the principal component analysis (PCA), that projects the
dataset in a subspace that maximizes the variance of the projected data. Intuitively, the
PCA tries to preserve the global aspect of the original dataset. On the other hand, we

4



CHAPTER 1. DIMENSION REDUCTION 5

have the method that motivates the present work based on the The Johnson-Lindenstrauss
Lemma, whose application aims to preserve only the pairwise distances instead of the entire
disposition of points in the dataset.

It is important to remark that these two are not the only dimensionality reduction tech-
niques available, and we direct the interested reader to [Bsp2006] for more details. Before
we present a little more deeply the PCA and the multi-dimensional scaling, let us briefly
discuss the phenomenon of the “curse of dimensionality”.

1.2 Curse of dimensionality

There is no formal definition of what the curse of dimensionality is. In the literature,
this term is used to describe a myriad of unexpected or undesirable events that might occur
when dealing with high-dimensional problems and its presentation is usually made through
examples [Bsp2006, Gir2014].

According to [Gir2014], the impacts of high-dimensionality can be subdivided in four
groups: the first, high-dimensional spaces are vast and data points are isolated in their
immensity ; second, the accumulation of small noises in many different directions can produce
a large global noise; third, an event that is an accumulation of rare events may not be rare;
finally, numerical computations in high-dimensional spaces can be intractable. The first one
is discussed in Section 1.2.1 and the others in Section 1.2.2, both based on [Gir2014].

1.2.1 Geometrical issues of high-dimensionality

• Volume of a N -dimensional ball

We will point out some counterintuitive geometrical characteristics of the N -dimensional
ball when N is high. Firstly, note that high-dimensional balls with a fixed radius have
a vanishing volume.

From Multivariate Calculus, we know that the volume of a N -dimensional ball of
radius r > 0 is equal to

VN(r) =
πN/2

Γ(1 + N/2)
rN ,

with Γ being the Gamma function Γ(x) =
∫∞
0 tx−1e−tdt for x > 0. Furthermore, by ap-

plying the Stirling approximation

Γ(α) = αα−1/2e−α
√

2π{1 + O
(
α−1
)
} for α → +∞,

we conclude

VN(r)
N→∞∼

(
2πer2

N

)N/2

(N π)−1/2. (1.2.1)

Note that, for any r > 0, this volume goes to zero faster than exponentially with the
dimension N. Such behavior in depicted in the plot of N 7→ VN (1) in Figure 1.4 from
[Gir2014]. Note that for N = 20 the volume of the unit ball is almost zero.
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As a consequence of this geometrical fact, follows one of the features that charac-
terizes the curse of dimensionality: a vast space consisting of isolated points. Namely,
suppose we intend to take enough samples X1, . . . , XM from the uniform distribution
over the set [0, 1]N such that for any Xi there is another point Xj whose distance to
Xi is at most 1. How many points X1, . . . , XM we need to take in this box in order to
achieve this goal?

This question can be reformulated as: “how many unit balls centered in [0, 1]N are
necessary to cover this set?” If unit balls centered in X1, . . . , XM ∈ [0, 1]N cover this
hypercube, we have

[0, 1]N ⊂
M⋃

i=1

BN(Xi, 1),

with BN (x, r) ∈ RN being the open ball centered in x with radius r > 0. Consequently,

1 = Volume([0, 1]N)

≤ Volume

{
M⋃

i=1

BN(Xi, 1)

}

≤
M∑

i=1

Volume{BN(Xi, 1)} = M VN(1),

that yields

M ≥ 1

VN(1)
=

Γ(1 + N/2)

πN/2
.

Finally, by making N sufficiently large, we conclude

M ≥
(

N

2πe

)N/2 √
N π,

from the Stirling approximation.

We thus arrive at an astonishing result: the number of unit balls necessary to cover
the cube [0, 1]N grows more than exponentially fast with the dimension N . To clarify
how unrealistic obtaining these samples can be, we exhibit Table 1.1.

N 20 30 50 100 150 200

M 39 45630 5.7 1012 4.2 1040 1.28 1072

larger than the estimated
number of particles

in the observable universe

Table 1.1: Lower bound on the number of unitary balls required for covering the hypercube
[0, 1]N (from Table 1.1 in [Gir2014]).

Another interesting fact about the volume of N -dimensional balls is that the volume
of a high-dimensional ball is concentrated in its “crust”. Indeed, we informally consider
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as the “crust” of a N -ball BN (0, r), r > 0, the set CN (r) obtained by removing some
sufficient inner part of this ball, say

CN(r) := BN(0, r) − BN(0, 0.99 r).

We than have that

Volume{CN(r)}
Volume{BN(0, r)} =

Volume{BN(0, r)} − Volume{BN(0, 0.99 r)}
Volume{BN(0, r)}

=
VN(r) − VN(0.99 r)

VN(r)
= 1 − 0.99N ,

which goes exponentially fast to 1, as seen in the plot of N 7→ 1− 0.99N in Figure 1.5
from [Gir2014].

• Pairwise distances in a high dimensional spaces

Let X = (Xn)n∈[N ], Y = (Yn)n∈[N ] ∈ RN be i.i.d. random variables uniformly dis-
tributed in the hypercube [0, 1]N . The mean squared distance between this pair of
points is given by

E{‖Y −X‖22} =
N∑

n=1

E
{

(Yn −Xn)2
}

= N E{(Y1 −X1)
2} = N/6.

That is, the mean squared pairwise distance between points uniformly sampled in
[0, 1]N grows linearly with the dimension N.

We had already exhibited the immensity of high-dimensional spaces in the previous
example in which we tried to cover the N -dimensional unit cube. Now, we have seen
that the higher is the dimension from which the data points are uniformly chosen,
larger are their pairwise distances is this space.

On the other hand, the standard deviation of this pairwise distance will be

√
Var{‖Y −X‖22} =

√√√√
N∑

n=1

Var{(Yn −Xn)2} ≈ 0.2
√
N.

That is, even though the standard deviation also grows with the dimension, it does
not increase as fast as the mean distance. More precisely, the scaled deviation

√
Var{‖Y −X‖22}
E{‖Y −X‖22}

shrinks like 1/
√
N. Therefore, for high dimensional settings, uniformly chosen data

points have similar pairwise distances. As we will show next, these unexpected behavior
of high dimensional spaces will make some methods from Classical Statistics harder or
even impossible, to be applied.
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• High dimensional k-Nearest Neighbors estimator

Consider a dataset of M i.i.d. observations {(Yi, X(i))}i∈[M ] from random variables
Y and X such that Y ∈ R is a response variable by N covariate variables X1, . . . , XN ∈
[0, 1]. Moreover, assuming the Xk’s are i.i.d with uniform distribution on [0, 1], we can
define a random vector X = (X1, . . . , XN ) ∈ [0, 1]N with uniform distribution on the
hypercube [0, 1]N .

We describe the relation between X and Y by the classical regression model

Yi = f(X(i)) + εi, i ∈ [M ],

with f : [0, 1]N → R and ε1, . . . , εM being pairwise independent and centered. Now, as-
suming that f is continuous, it is natural to estimate f(x) by some average of the Yi’s
associated to Xi’s in some vicinity of x ∈ RN . The simplest version of this idea is the
k-Nearest Neighbors estimator. It is obtained by estimating f(x) through the mean of
the Yi’s associated to the k points Xi nearest from x.

We now recall from our discussion of pairwise distances in high-dimensions that
points sampled uniformly in [0, 1]N will have approximately the same pairwise distances.
Consequently, the notion of “nearest points” vanishes. This phenomenon is illustrated
in Figure 1.3 from [Gir2014], where we have plotted the histograms of the distribution
of the pairwise distances {‖X(i) −X(j)‖2 : 1 ≤ i < j ≤ M} for M = 100 and dimensions
N = 2, 10, 100 and 1000.

1.2.2 Probability and Statistics in high dimensions

• Tails of High-Dimensional Gaussian Distribution

Gaussian distributions are known to have very thin tails. Indeed, the density

gN(x) = (2π)−N/2 exp{−‖x‖2/2}

of a standard Gaussian distribution N (0, IN ) in RN decreases exponentially fast with
the square norm of x. Yet, when N is large, most of the mass of the standard Gaussian
distribution lies in its tails.

First, we will show that the Gaussian distribution in high dimensions is much flatter
than in lower ones, losing the characteristic bell-like shape. In fact, the maximum
value of this PDF is gN (0) = (2π)−N/2, which decreases exponentially fast toward 0 as
N increases.

Given this result, we expect that the mass around the origin will vanish for high-
dimensional settings. More precisely, let δ > 0 be a small positive real number and
write the “bell” set as

BN,δ = {x ∈ RN : gN(x) ≥ δ gN(0)}.

Our intuition from the one and two-dimensional cases (N ∈ {1, 2}) is that a small value
of δ would imply that the probability of a standard Gaussian variable being in the bell
set BN,δ is close to one.
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Indeed, our intuition of the exponentially decreasing tails on the one and two-
dimensional particular cases implies that most of the points will have density much
smaller than gN (0) (and even than δgN (0)). On the other hand, we will show that
this intuition does not lead to similar conclusions for high-dimensional settings. More
precisely, the probability mass in the bell set decreases exponentially on N as we can
see in Figure 1.7 from [Gir2014].

We shall prove this result through the

Theorem 1.2.1 (Markov inequality). Let X be a random variable that is non-negative
and integrable (EX exists and is well-defined). Then, the following upper bound on its
tail holds:

P{X ≥ a} ≤ EX

a
, ∀a > 0.

Actually, from Markov inequality, we have

P{X ∈ BN,δ} = P

{
exp

(
−‖X‖22

2

)
≥ δ

}

≤ 1

δ
E

{
exp

(
−‖X‖22

2

)}

=
1

δ

∫

x∈RN

(2π)−N/2 e−‖x‖22 dx =
1

δ
2−N/2,

concluding the result. So, if we want to have P{X ∈ BN,δ} ≥ 1/2 for instance, we must
choose δ ≤ 21−N/2, which is exponentially small.

• Noise Accumulation

It is usual to elaborate random models as some parametrized function plus a random
variable representing noise (measuring errors and model imprecision in general). Such
random variable is named additive noise. Clearly, it is interesting for the random noise
in the model to be “small” in some sense such as zero mean and small variance. The
problem we intend to shed light on is that, in high dimensions, the accumulation in
many different directions even of “small” noises can produce a large global noise.

Assume that we intend to evaluate a function F at some point θ1 ∈ R. However, we
have only access to a noisy observation of θ1, denoted by X1 = θ1 + ε1, with E{ε1} = 0

and Var{ε1} = σ2. If F is 1-Lipschitz, then the mean squared error of such approxima-
tion is given by

E{‖F (X1) − F (θ1)‖22} ≤ E{|ε1|2} = σ2.

Consequently, a small variance yields a small mean squared error.

Regarding the high-dimensional setting, assume now that we intend to evaluate
F (θ1, . . . , θN ) from noisy observations Xj = θj + εj of θj , j ∈ [N ]. Also, assume that the
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noise variables are all centered and have variance σ2. Again, endowed with the 1-
Lipschitz regularity condition, we have

E{‖F (X1, . . . , XN) − F (θ1, . . . , θN)‖22} ≤ E{‖(ε1, . . . , εN)‖22}

=
N∑

j=1

E{ε2j} = Nσ2.

Notice that, for a large N ∈ N, the upper bound above gives no guarantee of small error
even for a small variance. Furthermore, if F satisfies ‖F (x+ h)− F (x)‖2 ≥ C‖h‖2 for
some C > 0, then the mean squared error will have C Nσ2 as a lower bound assuring
that it will not necessarily be small for larger dimensions. A central example of such
situation arises in the linear regression model with high dimensional covariates, that
we exhibit next.

• High dimensional linear regression

Assume that we have M pairs of observations {
(
Yi, x

(i)
)
}i∈[M ], with Yi = 〈x(i) : β∗〉+ εi,

being the response with additive noise to the covariates vector x(i) ∈ RN . Moreover,
we consider ε1, . . . , εM to be i.i.d centered, with variance σ2. Our goal is to estimate
β∗ ∈ RN .

Writing

Y =



Y1
...

YM


 ∈ RM , X =




(x(1))T

...
(x(M))T


 ∈ RM×N and ε =



ε1
...
εM


 ∈ RM ,

we have Y = Xβ∗ + ε. Such random model is a particular case of the classical regression
already mentioned, called linear regression.

A classical estimator of β∗ is the least-square estimator

β̂ ∈ arg min
β∈RN

‖Y −Xβ‖22,

which is uniquely defined when the rank of X is N. We shall focus on this case, that
yields β̂ = (XTX)−1XTY as the unique solution. Now, we will prove that

E{‖β̂ − β∗‖22} = Cσ2,

with C ∈ R being a constant that equals N for the particular case when X is orthogonal.

Indeed,

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ∗ + ε)

= (XTX)−1(XTX)β∗ + (XTX)−1XT ε

= β∗ + (XTX)−1XT ε.
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Consequently,
E{‖β̂ − β∗‖22} = E{‖(XTX)−1XT ε‖22}.

Finally, using that,

E{‖Aε‖22} = σ2 tr{ATA}, ∀A ∈ RN×M ,

we conclude

E{‖β̂ − β∗‖22} = σ2 tr
{

[(XTX)−1XT ]T [(XTX)−1XT ]
}

= σ2 tr
{
X(XTX)−1(XTX)−1XT

}

= σ2 tr
{

(XTX)−1
}
.

Therefore, the higher is the dimension of the covariates, the larger is the mean squared
error.

• An accumulation of rare events may not be rare

Consider we have access to an observation Z1 of a quantity θ1 through the following
model

Z1 = θ1 + ε1,

with ε1 ∼ N (0, 1) being a Gaussian noise. Also, consider the following result:

Lemma 1.2.1 (Tails of the Gaussian distribution). Let Z be a standard Gaussian
random variable. For any x ≥ 0, we have

P{|Z| ≥ x} ≤ e−x2/2.

Proof. Define a function φ : [0,∞) → R such that

φ(x) = e−x2/2 − P{|Z| ≥ x}.
At first, note that φ(0) = 0. Furthermore,

φ(x) = e−x2/2 −
√

2

π

∫ ∞

x

e−t2/2 dt

from what
φ′(x) =

(√
2/π − x

)
e−x2/2,

which is a non-negative value for x ≤
√

2/π. Consequently, φ(x) is non-negative on
[0,
√
2/π].

Finally, for x ≥
√

2/π,
√

2

π

∫ ∞

x

e−t2/2 dt ≤
∫ ∞

x

te−t2/2 dt = e−x2/2,

concluding the proof that φ is non-negative on R+.
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Now, from Lemma 1.2.1, we have

P{|ε1| ≤ x} = 1 − P{|ε1| ≥ x} ≥ 1 − e−x2/2, x > 0.

It follows that, with probability at least 1− α, the noise ε1 has an absolute value smaller
than

√
2 log(1/α).

Regarding the high-dimensional setting, consider we are observing N quantities
θ1, . . . , θN blurred by ε1, . . . , εN ∼ N (0, 1) i.i.d. We have that

P

{
max
j∈[N ]

|εj| ≥ x

}
= 1 −

∏

j∈[N ]

(1 − P{|εj| ≥ x}) = 1 − (1 − P{|ε1| ≥ x})N .

We now recall that

lim
x→0

(1 + x)r

1 + rx
= 1

for any r ∈ R fixed. It follows that (1 + x)r approaches 1 + rx for arbitrarily small
values of x and, since Lemma 1.2.1 yields P{|ε1| ≥ x} → 0 as x → 0, we have

(1 − P{|ε1| ≥ x})N ∼ 1 −N P{|ε1| ≥ x},

concluding then

P

{
max
j∈[N ]

|εj| ≥ x

}
∼ N P{|ε1| ≥ x}. (1.2.2)

Therefore,

P

{
max
j∈[N ]

|εj| ≤ x

}
∼ 1 −N P{|ε1| ≥ x} ≥ 1 −Ne−x2/2.

Thus, if we want to bound simultaneously the absolute values |ε1|, . . . , |εN | with proba-
bility 1− α, we can only guarantee that maxj∈[N ] |εj | is smaller than

√
2 log(N/α). This

extra log(N) factor can be a serious issue for large N as illustrated in the example
“False Discoveries” in Chapter 1 of [Gir2014].

1.3 Dimensionality reduction

Before presenting dimensionality reduction as a paradigm to overcome the curse of di-
mensionality, we briefly discuss some points about dimension itself. However, since this is
not the main subject of this text, we direct the interested reader to [LV2007] for more details.

1.3.1 What is dimension?

The main goal of statistical inference is to collect data and develop models that may be
used to make claims about a population of interest. Mathematically, a dataset consisting of
M observations, each characterized by N covariates, will be represented by an M ×N matrix
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X. That is, X is viewed as a collection of M points in RN and we call N the dimension of
this data, saying that it is N -dimensional.

As said earlier, we can often reduce the dimension of the data from its original recording,
called extrinsic dimensionality to a smaller one called intrinsic dimensionality.

Such dimensionality reduction can be made since the data is not completely random
but reflects underlying structures that generates them. For instance, pixel intensity signals
contain information about the image they compose; marketing data consider social structures
in a population, and so on. Indeed, in many cases, the data have an intrinsic low complexity
and, when the low complexity structures are known, our problem might become solvable by
classical statistical methods. The major issue in Statistics in high dimensions is that these
structures are usually unknown.

Therefore, our main task is to identify these structures, at least approximately. There are
a number of statistical approaches to dimensionality reduction like the Principal Component
Analysis (PCA) and the Multidimensional Scaling (MDS), and despite being not the main
subject of the text, both methods will be briefly discussed.

1.3.2 Principal Component Analysis - PCA

Principal component analysis (PCA) (or Karhunen-Loève transform in Signal Processing)
is a widely used technique for dimension reduction of a dataset consisting of a large number of
interrelated variables, while retaining as much as possible of the “information” present in the
dataset. This technique was invented in 1901 by Karl Pearson [KP1901] and independently
derived in 1933 by Harold Hotelling [Htl1933]. There are two commonly used definitions of
PCA that generate the same algorithm.

The first stands for an orthogonal projection of a centered dataset in a lower dimensional
linear space such that the variances of the projected data is maximized among all choices of
subspaces of this fixed dimension [Htl1933]. This subspace is known as principal subspace,
and this is made as follows: we determine the direction whose variance of the projected
data is the largest, and such direction is called the first principal component ; each further
component is chosen in order to have the largest projected variance constrained that it is
orthogonal to the preceding ones.

Alternatively, it can be defined as the linear projection of such dataset that minimizes the
average projection cost [KP1901]. More precisely, let PN,m represent the set of the rank m

projections P : RN → RN . This second definition yields the following optimization problem:

P ∗ = arg min
P ∈PN,m

‖PX −X‖22→2.

This is illustrated by the figures in [KP1901]).

• Motivation

As said before, several problems of decision-making are solved by means of the
analysis of a dataset represented by a matrix X ∈ RM×N whose each of its M rows,
x1, . . . , xM , represents an N -dimensional data vector, i.e., an N -covariate observation.
A possible scheme towards such problems consists in describing the data cloud by the
variance of its components and the correlations between them.
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Consequently, this setup requires the analysis of M variances and M(M − 1)/2 cor-
relations of N dimensional vectors, i.e, MN scalar variances and N2M(M − 1)/2 scalar
correlations. Not only these operations will be unbearable for high-dimensional prob-
lems but also these descriptive statistics might give little information about the dataset
itself. As an example of such behavior, we have the Ascombe Datasets [Asc1973], that
consists of four quite different datasets with essentially identical descriptive statistics.
Such problems motivate the usage of techniques to reduce dimensionality from N to
m ≪ N.

• Intuition

In order to project the data while maximizing the variance on the projected space,
we make a change of coordinates. The first element of the new basis will have the
direction of the greatest data variance and will be known as first principal component.
The further principal components will be defined analogously with a decreasing order
of variance for the projected data.

• Mathematical model

Let X ∈ RM×N be the data matrix with N -dimensional rows x1, . . . , xM . We intend
to project the data onto a space with dimensionality m ≪ N while maximizing the
variance of the projected data. For the moment, we shall assume that dimension m is
given.

• Deriving the principal components from maximum variance formulation

We begin obtaining the first principal component, i.e., the direction of a unit vector
u1 that maximizes the variance of the projected data. The mean of the projected data
in this direction is given by uT1 x̄, with x̄ being the sample mean

x̄ :=
1

M

M∑

k=1

xk.

Also, the variance of the projected data in this direction is

1

M

M∑

k=1

(uT
1 xk − uT

1 x̄)2 = uT
1Su1, (1.3.1)

with S being the data covariance matrix defined by

S :=
1

M

M∑

k=1

(xk − x̄)(xk − x̄)T .

Now, the first principal component will result from the following constrained optimiza-
tion problem.

max
u1∈RN

{
uT
1Su1

}
s.t. ‖u1‖2 = 1.
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Aiming to solve it, we shall use the Lagrange multipliers method. Namely, we will
maximize

uT
1Su1 + λ1(1 − uT

1 u1),

with λ1 ∈ R.

At first, we make
∂

∂u1

{
uT
1Su1 + λ1(1 − uT

1 u1)
}

= 0,

from which we obtain
Su1 = λ1u1,

which says that u1 must be an eigenvector of S. Finally, we multiply both sides of the
equation above by uT1 , which yields

uT
1Su1 = λ1,

concluding λ1 will be the largest eigenvalue of S associated to u1 and that it will also
be the largest value for the variance of projected data.

The further principal components will be derived by applying the reasoning above
recursively. That is, we maximize the variance regarding the directions that are or-
thogonal to those already considered. Indeed, we roughly sketched the proof of the
following result:

Theorem 1.3.1 (Maximum variance formulation of PCA). The m principal compo-
nents of a dataset x1, . . . , xM with M ≥ m with correlation matrix S will be given by the
orthonormal subset of eigenvectors of S, u1, . . . , um, that are respectively associated to
eigenvalues such that

λ1 ≥ . . . ≥ λm.

For completeness, we also state without proof the minimum-error formulation of
the PCA:

Theorem 1.3.2 (Minimum-error formulation of PCA). Let

J =
N∑

i=m+1

uT
i Sui

be the mean squared error between the dataset and its projection onto the subspace
generated by m elements, u1, . . . , um, from an orthonormal basis {u1, . . . , uN} ⊂ RN .
Such error is minimized when u1, . . . , um are eigenvectors of the dataset correlation
matrix, S, respectively associated to its m highest eigenvalues.
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1.3.3 Multidimensional Scaling - MDS

Multidimensional Scaling (MDS) is a technique of data visualization and non-linear
dimensionality reduction. Namely, given the pairwise distances among a set of M ∈ N

objects on which a distance function is defined, the MDS intends to translate this
information into a configuration of M points in a m-dimensional Euclidean space, for a
prefixed m, that preserves as much as possible these pairwise distances. In particular,
for m ∈ {1, 2, 3}, the resulting points can be visualized on a scatter plot.

More precisely, let di,j , for i, j ∈ [M ], be the pairwise distances among the set of
M ∈ N objects. These distances are the entries of a matrix D = [di,j ] called dissimilarity
matrix. Given the matrix D and a prefixed m, the MDS intends to determine a set of
points {x1, . . . , xM} ∈ Rm such that

‖xi − xj‖ ≈ di,j, with i, j ∈ [M ].

In classical MDS, the norm ‖ · ‖ is the Euclidean distance; in different formulations,
it may be an arbitrary metric. Note that the solution for MDS with the Euclidean
distance is not unique since rigid transformations preserve distances.

Usually, MDS is formulated as an optimization problem and {x1, . . . , xM} is found
as a minimizer of some cost function. For example, the Classical multidimensional
scaling (also known as Principal Coordinates Analysis – PCoA) uses a cost function
called Strain. Namely,

StrainD(x1, . . . , xN) :=

√∑
i,j(bi,j − 〈xi : xj〉)2∑

i,j b
2
i,j

,

with B being the result of applying the double centering to D(2) = [d2i,j ].

1.3.4 Motivation of the JL-Lemma

In modern algorithm design, data is often high dimensional. Thus, one seeks to first
preprocess the data via some dimensionality reduction scheme that preserves geometry
in such a way that is acceptable for particular applications.

So consider a set X = {x1, . . . , xM} in a high dimensional vector space representing
the data (say ℓN2 , usually with N ≫ M). If we intend to derive a result or implement an
algorithm involving the mutual distances among these vectors, we may have problems
by the computational storage and transmission burdens and by the curse of dimension-
ality.

We can, of course, project these vectors isometrically in a M -dimensional vector
space. Namely, it suffices to take span{X}. It, therefore, arises the following question:

“What if we relax the isometry constraint in our claim?
Could we obtain a dimension reduction to ℓm2 with m smaller than M?”
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The idea in such investigation is to transform a high dimensional problem into a lower
dimensional one such that the optimal solution to the lower dimensional problem can
be lifted to a nearly optimal solution to the original problem. For further applications
see [Ind2001, Mat2008, Vem2004].

The following definition will be essential along this text.

Definition 1.3.1 (Quasi-isometry). Let f : X ⊂ ℓN2 → ℓm2 and ε > 0. We say f is a
quasi-isometry if:

∀u, v ∈ X, (1 − ε)‖u− v‖22 ≤ ‖f(u) − f(v)‖22 ≤ (1 + ε)‖u− v‖22.

Remark. In the literature, the equation above is also read by saying that “X is em-
bedded in ℓm2 with a distortion of at most ε”.

Provided with this definition, we ask a further question:

“How small can we make m by accepting a bigger ε (i.e., by worsening the
quasi-isometry)?”

The goal of the present work is to exhibit the answers given so far to these ques-
tionings and how they have been improved. More precisely, we shall discuss the
Johnson-Lindenstrauss Lemma, that claims that if we relax the isometry constraint
to a quasi-isometry, the m as above will not only be smaller than M, but it will have
its logarithmic order.



Chapter 2

The outset of JL-Lemma

2.1 Introduction

The goals of this Chapter are: present the original statement of the JL-Lemma, introduce
some of key concepts and reproduce its first proof due to W. B. Johnson and J. Lindenstrauss
in their work [JL1984]. Finally, we discuss the limitations of this pioneering version to
applications, that motivates further developments of the Lemma that will be discussed in
Chapter 3. A non-comprehensive discussion about technical points related to the random
projection argument used within the proof are presented in Appendix A.

2.2 Origin

Since the JL-Lemma has been discussed in a myriad of fields along its history, this
text is also an attempt to make a linkage between these approaches. Indeed, we start this
section by presenting the JL-Lemma as it was stated in [JL1984]. In that paper, the result
was presented merely as a tool to prove a result about extension of Lipschitz maps into
Hilbert spaces. Consequently, the authors did not present it in a manner that is suitable for
applications. Finally, we briefly motivate the usage of the JL-Lemma in [JL1984] and relate
it to its modern intuition.

2.2.1 Main result

The JL-Lemma was first proved in a 1984 paper [JL1984] by William B. Johnson and
Joram Lindenstrauss. At that point, the Lemma was viewed as a tool to prove a result about
Lipschitz’ extensions of functions into a Hilbert space.

Namely, let (X, d1) and (Y, d2) be metric spaces. We say that a function f : X → Y is
Lipschitz when there is a K > 0 such that

d2{f(y), f(x)} ≤ Kd1(y, x), ∀x 6= y ∈ X.

Moreover, the least such K satisfying the equation above is called Lipschitz constant of f

18
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and it is denoted by

‖f‖lip = inf
{
K > 0 : d2{f(y), f(x)} ≤ Kd1(y, x), ∀x 6= y ∈ X

}

= sup
x 6=y∈X

d2{f(y), f(x)}
d1(y, x)

.

Remark (Is the Lipschitz constant a norm?). The answer is clearly no, since the metrics
d1 and d2 not necessarily satisfy ‖λf‖lip = |λ | ‖f‖lip for any real λ. On the other hand, even
for the simplest case, with d1 and d2 being the Euclidean norm, the answer is still no, since
the Lipschitz norm of any constant function is zero even when it is not the null function.

For instance, any function over a finite domain is Lipschitz. More precisely, let (X, d) be
a metric space and A = {x1, . . . , xN} a finite subset of X. Any function

f : A → ℓN2

is Lipschitz with constant

‖f‖lip = max
x 6=y∈A

‖f(y) − f(x)‖2
d(y, x)

.

The Lipschitz extension problem consists in determining the smallest L = L(X,N) such
that, for any such f, there exists a Lipschitz extension f̃ : X → ℓN2 of f satisfying:

‖f̃‖lip ≤ L‖f‖lip.

Intuitively, we intend to determine a Lipschitz map whose “distance distortions” in all X

are as similar as possible to the ones made by f in the set {x1, . . . , xN}. The main result of
Johnson and Lindenstrauss’ work is that, for any metric space X,

L ≤ C
√

logN,

for some constant C ≥ 0 and the JL-Lemma is a tool to achieving this result.

2.2.2 Role of the JL-Lemma

The JL-Lemma deals with a particular case of the main result of [JL1984] for which
X = ℓN2 and f({x1, . . . , xN}) lies in an m-dimensional subspace of ℓN2 , which we will hence-
forth denote as ℓm2 . In this case, not only the extension f̃ : ℓN2 → ℓm2 yields a distortion that
is comparable to ‖f‖lip but also f̃ will be a quasi-isometry, i.e., there will be K, K̃ > 0 such
that

1

K̃
‖y − x‖2 ≤ ‖f̃(y) − f̃(x)‖2 ≤ K‖y − x‖2, ∀x 6= y ∈ ℓN2 . (2.2.1)

As we have also mentioned, the least K that satisfies the right hand side of Equation 2.2.1
is the Lipschitz constant ‖f̃‖lip. In a analogous fashion, we shall make an abuse of notation
(since f̃ is not necessarily bijective) and denote the least K̃ in the left hand side of Equation

2.2.1 as ‖f̃−1‖lip, obtaining the equation below:

1

‖f̃−1‖lip
‖y − x‖2 ≤ ‖f̃(y) − f̃(x)‖2 ≤ ‖f̃‖lip‖y − x‖2, ∀x 6= y ∈ ℓN2 . (2.2.2)
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Moreover, the distortion of this quasi-isometry can be quantified as follows. Given
A = {x1, . . . , xN} ⊂ (X, d) and ε ∈ (0, 1), the JL-Lemma guarantees that any map f : A → ℓm2
has a Lipschitz extension f̃ : ℓN2 → ℓm2 such that

‖f̃‖lip‖f̃−1‖lip ≤
1 + ε

1 − ε

since m ≥ floor(m0 logN), with m0 > 0 depending only on ε.

The inequality above means that there exists a positive constant M > 0 such that

M(1 − ε)‖y − x‖2 ≤ ‖f̃(y) − f̃(x)‖2 ≤ (1 + ε)M‖y − x‖2, ∀x 6= y ∈ ℓN2 .

More precisely, it suffices to take

M =
1

(1 − ε)‖f̃−1‖lip
.

The map f̃ : ℓN2 → ℓm2 satisfies a special kind of quasi-isometry with distortion ε > 0. These
maps will be henceforth called ε-isometries.

We end the present subsection with the JL-Lemma as it was originally stated by Johnson
and Lindenstrauss in [JL1984].

Theorem 2.2.1 (Lemma 1 of [JL1984]). For each 0 < ε < 1, there is an expression m0(ε) > 0

depending only on ε so that, if A ⊂ ℓN2 and #A = N for some N > 2, then there is a mapping
f : A → ℓm2 , with m = floor {m0(ε) logN} which satisfies

‖f̃‖lip‖f̃−1‖lip ≤
1 + ε

1 − ε
. (2.2.3)

2.2.3 The turnaround

As discussed in the previous subsection, from the JL-Lemma, we conclude that any set
A = {x1, . . . , xN} ⊂ ℓN2 , can be quasi-isometrically projected into a subspace whose dimension
is of order logN. Also, for a fixed N , the dimension of the subspace depends only of the
quasi-isometry’s distortion ε ∈ (0, 1) and not of the set A being projected.

What Johnson and Lindenstrauss might not have noticed in 1984 was that this Lemma
yields a tool to reduce dimensionality that is very suitable for applications involving high-
dimensional data. Indeed, it allows us to project a dataset into a space whose dimension
is of logarithmic order of its cardinality. Consequently, the JL-Lemma is nowadays being
used in a wide range of applications such as: genetic algorithms ([BV2005]), data streaming
([JW2013]), nearest neighbor search ([AlCh2006, DeBm2006, DeBm2007, IndMot1998]) and
compressed sensing ([BDDW2006, Ward2008, Don2006, CT2005]).

Such powerful result might suggest a fearful proof and an even worse construction. Both
of these problems are brilliantly avoided due to a probabilistic argument used by Johnson
and Lindenstrauss called random projection.

Briefly, the random projection argument goes as follows. Instead of defining a general
map f and extending it to a ε-isometric projection, we make a guess of f̃ as a rank m linear
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projection. As one might argue, there is no reason for such map to satisfy the JL-Lemma.
Here is where the randomness comes in. We select at random an m-dimensional subspace
of ℓN2 and take f̃ as the projection into such space. Through a concentration of measure
result, Johnson and Lindenstrauss proved that for a m ∈ N, with m ≥ floor{m0(ε) logN}, this
random f̃ will satisfy the Lemma with positive probability. Furthermore, as m gets larger,
this probability approaches 1 exponentially fast.

Finally, we still need to formalize what does it mean to select a random subspace and to
explain what is concentration of measure. The next sections of the present Chapter will be
dedicated to formalize these concepts that will be necessary to prove the JL-Lemma.

2.3 Concentration of measure

Some finite dimensional objects such as convex sets may present an unexpected behavior
when the dimension of its ambient space is large or tends to infinity, i.e., in a asymptotic
setting. For instance, a key result towards the proof of the JL-Lemma is that, as the dimen-
sion N grows, the relative surface area of the N -sphere becomes exponentially concentrated
around any of its equatorial strips. The study of the geometrical properties of sets in a high
dimensionality setting motivates a field called Asymptotic Geometric Analysis. As illustrated
by our main result, a key concept in this field is one of these unexpected properties called
concentration of measure.

The phenomenon of concentration of measure started receiving attention around the end
of the 60’s and the beginning of the 70’s and is a key concept in Asymptotic Geometric
Analysis. It may be informally described by the tendency of functions depending on a
sufficiently large number of variables, under very weak assumptions, to concentrate around
its mean or median. The concentration of measure can be thought as a generalization of the
Law of Large Numbers and will be the keystone to our random projection argument towards
the JL-Lemma.

2.3.1 A brief on concentration of measure

We start the present subsection by defining a main concept to the concentration of
measure theory.

Definition 2.3.1 (External set). Let (X, d) be a metric space endowed with a Borel measure
µ, with µ(X) = 1. For any Borel subset A ⊂ X, we define its ε-extension, ε-neighborhood, ε-
external set or ε-blowup as

Aε := {x ∈ X : d(x,A) < ε}.

Intuitively, we say that (X, d) has a concentration of measure when there is a value (often 1/2)
such that, for any A ⊂ X, with µ(A) ≥ 1/2, its ε-blowup Aε is measurable and concentrates
most of the measure of X for any ε > 0.

In particular, to prove the JL-Lemma, we will need a concentration of measure result for
the Haar measure µN−1 on the sphere (SN−1, ρ) endowed with its geodesic distance ρ (see
Appendix B for more details). In this case, we shall prove that, any Borel set A ⊂ SN−1 with
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µN−1(A) ≥ 1/2, satisfies
µN−1(Aε) ≥ 1 − C exp{−cNε2},

with C and c being positive universal constants, i.e., they are independent of the Borelian
A ⊂ SN−1, of the perturbation ε > 0 and of the dimension N > 2. As we shall see next, this
inequality follows from an important result called isoperimetric inequality on the sphere.

2.3.2 The isoperimetric inequality on the sphere

The origin of the isoperimetric problem and also of its name goes back to Antiquity,
one of its first versions being the Dido’s Problem, which intends to determine the shape of
a figure with maximum area given its perimeter. Roughly speaking, the three-dimensional
isoperimetric problem consists in determining the figure that minimizes the surface area
given a fixed volume. For higher dimensions, stating the problem is a bit more complicated.
Indeed, there are many definitions of surface area, each of them being more suited for a
particular purpose. In this text, we will choose the one of Minkowski content. We shall not
discuss on the good properties that motivate this choice and we direct the interested reader
to [Fdr1996] or [MiApAv2015].

Provided with this choice, we may generalize the isoperimetric problem for a metric space
(X, d) endowed with a measure µ. In particular, [MiApAv2015] argues that this generalization
yields the following:

Definition 2.3.2 (Isoperimetric problem on the sphere). Let (SN−1, ρ) be the sphere endowed
with its geodesic metric and its unique rotation invariant measure µN−1. Now, fix α ∈ (0, 1).

Among all Borel sets that satisfy µN−1(A) ≥ α, we intend to determine the ones for which
µN−1(Aε) is minimal for all ε > 0.

This problem is solved by the Lévy-Schmidt isoperimetric inequality on the sphere below.
Such inequality claims that, for a fixed volume, the spherical caps are the sets that solve the
isoperimetric problem for the sphere.

Notation. Throughout this Chapter, we shall represent a spherical cap centered in z ∈ SN−1

with angle φ ∈ [0, π] as KN−1(z, φ). Moreover, when it is not necessary, its center may be
omitted. For more details, see Appendix B.

Theorem 2.3.1 (Lévy-Schmidt). Let α ∈ (0, 1) and KN−1(φ) ⊂ SN−1 be the spherical cap
with polar angle φ ∈ [0, π] whose measure is µN−1{KN−1(φ)} = α. Then, for every A ⊂ SN−1

with this same measure µN−1(A) = α and every ε > 0, we have

µN−1(Aε) ≥ µN−1{[KN−1(φ)]ε} = µN−1{KN−1(φ + ε)}.

We shall not prove this Theorem, but we direct the interested reader to [FLM1977].
This result is specially useful since we may bound the measure of any Borel set by a
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spherical cap, whose measure, as shown in Appendix B, can be easily calculated:

µN−1{KN−1(φ)} : = γN

∫ φ

0

sinN−2 θ dθ

=
1√
π

Γ(N/2)

Γ{(N − 1)/2}

∫ φ

0

sinN−2 θ dθ (φ ∈ [0, π/2]).

2.3.3 Concentration of measure on SN−1

The concentration of measure inequality on the sphere that will be used to prove the JL-
Lemma follows directly from Equation 2.3.4. Indeed, what we will prove is that, for a high
dimensional setting, the measure of any spherical cap KN−1(φ) with φ > π/2 will approach
the total measure of SN−1 exponentially on the dimension N as φ increases.

In order to exhibit the concentration phenomenon for the sphere, we need a lower bound
on the measure of a spherical caps that approaches 1 exponentially. The following results
shall be useful.

Lemma 2.3.1. For any N > 2, we have

γ−1
N :=

∫ π

0

sinN−2 θ dθ =
√
π

Γ{(N − 1)/2}
Γ(N/2)

≥
√

2π

N − 1
.

Proof. This result is a direct consequence of the following recurrence relation of the Gamma
function:

Γ(z + 1) = zΓ(z), R(z) > 0; (2.3.1)

and of the fact that Γ, when restricted to positive real numbers, is a strictly logarithmically
convex function, i.e., for any pair of positive numbers, x1, x2, we have

Γ{(1 − t)x1 + tx2} ≤ Γ1−t(x1)Γ
t(x2), ∀t ∈ [0, 1],

with the inequality being strict for t ∈ (0, 1). In particular, for t = 1/2,

Γ{AM(x1, x2)} ≤
√

Γ(x1)Γ(x2), (2.3.2)

with AM standing for arithmetic mean.

Now, since
N

2
= AM

{
N − 1

2
,
N + 1

2

}
,

we conclude that

Γ

(
N

2

)
≤

√
Γ

(
N − 1

2

)
Γ

(
N + 1

2

)

=

√
Γ

(
N − 1

2

)
N − 1

2
Γ

(
N − 1

2

)
= Γ

(
N − 1

2

)√
N − 1

2
,
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from Equations 2.3.2 and 2.3.1.

Finally, we apply the inequality above to conclude that

Γ{(N − 1)/2}
Γ(N/2)

≥
√

2

N − 1
,

from what

γ−1
N ≥

√
2π

N − 1
,

as desired.

Lemma 2.3.2. Let ε be a positive number. We have that

∫ π/2

ε

cosN−2 θ dθ ≤
√

π

2(N − 2)
exp

{
−(N − 2)ε2

2

}
.

Proof. Consider a function f : R → R such that

f(θ) = eθ
2/2 cos θ.

This function decreases for θ ∈ [0, π/2]. Furthermore, f(0) = 1 and f(θ) ≥ 0, for θ ∈ [0, π/2].

It follows that
f(θ) = cos θ eθ

2/2 ≤ 1, ∀θ ∈ [0, π/2];

and, equivalently, that
cos θ ≤ e−θ2/2, ∀θ ∈ [0, π/2].

We may apply this result to prove the present Lemma as follows. For any N > 2, we have
that

cosN−2 θ ≤ exp

{
−(N − 2)θ2

2

}
, ∀θ ∈ [0, π/2].

Thus, for ε ∈ [0, π/2]

∫ π/2

ε

cosN−2 dθ ≤
∫ π/2

ε

exp

{
−(N − 2)θ2

2

}
dθ

=

∫ π/2−ε

0

exp

{
−(N − 2)(θ + ε)2

2

}
dθ

≤ exp

{
−(N − 2)ε2

2

}∫ π/2−ε

0

exp

{
−(N − 2)θ2

2

}
dθ, (2.3.3)

with the last inequality being justified by the fact that

exp
{
− (N − 2)θε

}
≤ 1, ∀θ ≥ 0.

Now, since the exponential map is positive over its entire domain, we have

∫ π/2−ε

0

exp

{
−(N − 2)θ2

2

}
dθ ≤

∫ ∞

0

exp

{
−(N − 2)θ2

2

}
dθ =

√
π

2(N − 2)
.
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Consequently, we conclude from Equation 2.3.3 that
∫ π/2

ε

cosN−2 dθ ≤
√

π

2(N − 2)
exp

{
−(N − 2)ε2

2

}
.

Theorem 2.3.2. Let (SN−1, ρ) be the sphere endowed with the geodesic metric ρ and the
Haar measure µN−1. Given a natural N > 2 and ε ∈ (0, π/2], we have

µN−1

{
KN−1

(π
2

+ ε
)}

≥ 1 − 1

2

√
N − 1

N − 2
exp{ε2} exp

{
−Nε2

2

}
.

In particular, when ε ∈ (0, 1],

µN−1

{
KN−1

(π
2

+ ε
)}

≥ 1 − 2 exp

{
−Nε2

2

}
.

That is, the ε-neighborhood of any hemisphere concentrates all but a exponentially small
measure of the sphere.

Proof. Indeed,

µN−1

{
KN−1

(π
2

+ ε
)}

= γN

∫ π/2+ε

0

sinN−2 θ dθ

= γN

∫ ε

−π/2

cosN−2(θ) dθ

= γN

{∫ π/2

−π/2

cosN−2(θ) dθ −
∫ π/2

ε

cosN−2(θ) dθ

}

= γN

{∫ π

0

sinN−2(θ) dθ −
∫ π/2

ε

cosN−2(θ) dθ

}

= 1 − γN

∫ π/2

ε

cosN−2(θ) dθ.

Finally, using the Lemmas 2.3.1 and 2.3.2, we conclude that

µN−1

{
KN−1

(π
2

+ ε
)}

≥ 1 −
√

N − 1

2π

√
π

2(N − 2)
exp

{
−(N − 2)ε2

2

}

= 1 − 1

2

√
N − 1

N − 2
exp

{
−(N − 2)ε2

2

}

= 1 − 1

2

√
N − 1

N − 2
exp{ε2} exp

{
−Nε2

2

}
.

Also, when ε ≤ 1, √
N − 1

N − 2
exp{ε2} ≤

√
2e ≤ 4,

concluding the result.



CHAPTER 2. THE OUTSET OF JL-LEMMA 26

Finally, we can now directly exhibit the concentration of measure on the sphere.

Corollary 2.3.1 (Concentration of measure on the sphere). Any equatorial strip of SN−1

with convex opening angle of 2ε ∈ (0, 2], here denoted as Eq (2ε), will concentrate all but an
exponentially small measure of the sphere. More precisely,

µN−1{Eq(2ε)} ≥ 1 − 4 exp

{
−Nε2

2

}
.

Proof. Indeed, let z ∈ SN−1. The referred equatorial strip can be written as

Eq(2ε) = KN−1

(
z,

π

2
+ ε
)
∩KN−1

(
−z,

π

2
+ ε
)
.

From Theorem 2.3.2, both caps in the intersection above have a measure of at least

1 − 2 exp

{
−Nε2

2

}
.

Consequently,

µN−1 {[Eq(2ε)]c} = µN−1

{[
KN−1

(
z,

π

2
+ ε
)
∩KN−1

(
−z,

π

2
+ ε
)]c}

= µN−1

{[
KN−1

(
z,

π

2
+ ε
)]c

∪
[
KN−1

(
−z,

π

2
+ ε
)]c}

≤ µN−1

{[
KN−1

(
z,

π

2
+ ε
)]c}

+ µN−1

{[
KN−1

(
−z,

π

2
+ ε
)]c}

≤ 4 exp

{
−Nε2

2

}
.

2.3.4 Concentration of Lipschitz maps on SN−1

An important consequence of the concentration of measure and the isoperimetric inequal-
ity on the sphere is that any Lipschitz map f : SN−1 → R (relative to the geodesic distance)
concentrates most of its measure about a number Mf ∈ R called median or Lévy’s mean of
f. That is, for any ε > 0, we have the following concentration of measure inequality:

µN−1

{
x ∈ SN−1 : |f(x) −Mf | ≤ ε‖f‖lip

}
≥ 1 − C exp

{
−cNε2

}
,

with C and c being positive universal constants, i.e., they are independent of the perturbation
ε > 0 and of the dimension N > 2. This result is essential to the proof of JL-Lemma and will
be discussed in more details.

Definition 2.3.3 (Lévy’s mean). Let (X, d) be a metric space endowed with a measure µ.

A median, also called Lévy’s mean of a measurable function f : X → R is a real number Mf

such that

µ{x ∈ X : f(x) ≥ Mf} ≥ 1/2 and µ{x ∈ X : f(x) ≤ Mf} ≥ 1/2.
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Now, to simplify the notation, let us name the following sets:

Af
+ := {x ∈ X : f(x) ≥ Mf},

Af
− := {x ∈ X : f(x) ≤ Mf},

Af := {x ∈ X : f(x) = Mf} = Af
+ ∩ Af

−.

That being settled, when (X, d) is SN−1 with the geodesic metric, we have:

µN−1{Af
+}, µN−1{Af

−} ≥ 1/2 = µN−1{KN−1(π/2)},

with KN−1(π/2) being an hemisphere of SN−1. Moreover, for any ε > 0, the isoperimetric
inequality for the sphere (Theorem 2.3.1) yields

µN−1{(Af
+)ε}, µN−1{(Af

−)ε} ≥ µN−1{KN−1(π/2 + ε)}. (2.3.4)

Equation 2.3.4 above provides us with a lower bound on the measures of (Af
+)ε and (Af

−)ε
that is dependent of the measure of a spherical cap. It is specially useful since we may use
the concentration of measure from Theorem 2.3.2 to conclude that

µN−1{(Af
+)ε}, µN−1{(Af

−)ε} ≥ 1 − 2 exp

{
−Nε2

2

}
, ∀ε ∈ (0, 1). (2.3.5)

The concentration of a Lipschitz map about its median follows from Equation 2.3.5 above.
However, in order to prove it we will need the following result:

Lemma 2.3.3. Let f : (SN−1, ρ) → R be a Lipschitz function and Mf be the Lévy mean of f.
We have that, for any ε > 0,

(Af
+)ε ∩ (Af

−)ε = (Af )ε.

We shall not prove this result and we direct the interested reader to [FLM1977].

Theorem 2.3.3. Let f : (SN−1, ρ) → R be a Lipschitz function and Mf be the Lévy mean of
f. We have, for any ε > 0, that

µN−1

{
(Af )ε

}
= µN−1

{
|f(x) −Mf | ≤ ε‖f‖lip

}
≥ 1 − 4 exp

{
−Nε2

2

}
.

Proof. We have, from Lemma 2.3.3, that

(Af )ε = (Af
+)ε ∩ (Af

−)ε, ∀ε > 0.

Equivalently,

{SN−1 \ (Af )ε} = {SN−1 \ (Af
+)ε} ∪ {SN−1 \ (Af

−)ε}, ∀ε > 0.

By applying the subadditive property of the measure µN−1 to these sets, we have

µN−1{SN−1 \ (Af )ε} ≤ µN−1{SN−1 \ (Af
+)ε} + µN−1{SN−1 \ (Af

−)ε}, ∀ε > 0.
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Thus,

1 − µN−1{(Af )ε} ≤ (1 − µN−1{(Af
+)ε}) + (1 − µN−1{(Af

−)ε}), ∀ε > 0,

from what
µN−1{(Af )ε} ≥ µN−1{(Af

+)ε} + µN−1{(Af
−)ε} − 1, ∀ε > 0. (2.3.6)

At this point of the proof, we could handle the problem of bounding the measure of (Af )ε from
µN−1{(Af

+)ε}, µN−1{(Af
−)ε} ≥ 1/2. However, this results in nothing more than µN−1{(Af )ε} ≥ 0.

It becomes clear that we need a better approximation. Such goal will be achieved through
the application of the isoperimetric inequality for the sphere (Theorem 2.3.1).

Namely, since µN−1(A
f
+), µN−1(A

f
−) ≥ 1/2, the isoperimetric inequality implies that the spher-

ical cap, or more precisely, the hemisphere KN−1(π/2) is such that

µN−1{(Af
+)ε}, µN−1{(Af

−)ε} ≥ µN−1{[KN−1(π/2)]ε}

= µN−1{KN−1(π/2 + ε)}

≥ 1 − 2 exp

{
−Nε2

2

}
, ∀ε ∈ (0, 1),

with the last inequality being due to the concentration of measure from Theorem 2.3.2, as
done in Equation 2.3.5. Now, by substitution in Equation 2.3.6, we conclude the desired
result.

2.4 Random projections

2.4.1 Introduction

Random projection refers to the technique of projecting a set of points from a high-
dimensional space, say ℓN2 , into a randomly chosen m-dimensional subspace, with m < N as
small as possible. However, we still need to define precisely what we mean by “choosing a
random subspace” or “choosing a random projection”.

As we shall recall in this section, any rank m linear projection in the canonical basis has
the matrix form U tQmU , with U ∈ O(N); and Q ∈ MN×N being the matrix that vanishes
all but the first m coordinates of a vector. Consequently, a first approach to define a random
projections would be define a probability measure σ on O(N) and selecting U tQmU accord-
ingly to it. Such measure need to satisfy some conditions to yield an intuitive and useful
model of randomness.

Namely, we would like this probability measure σ to be “uniform” in the Borel subsets
of (O(N), ‖ · ‖F ), with the Frobenius norm, in the following sense. For any Borel subset
S ⊂ (O(N), ‖ · ‖F ), we have

σ(S) = σ(TS), ∀T ∈ O(N).
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That is, such measure is invariant by left translations of the group O(N), being intuitively,
uniform in O(N). From now on, we endow O(n) with the Haar measure.

In Appendix A, we present an important result called Haar Theorem. Such Theorem
claims that there is a unique probability measure that satisfy the lattus sensu uniformity
that we motivated previously, called (normalized) Haar measure. Moreover, that measure is
Radon, countably summable and finite on compact subsets of O(N).

2.4.2 Remarks from Linear Algebra

In the present subsection, we intend to formalize the characterization of any rank m

linear projection as matrix product in the canonical basis. By definition, a rank m linear
projection is an idempotent map P ∈ L(ℓN2 , ℓN2 ) such that P (ℓN2 ) is a m-dimensional vector
subspace of ℓN2 . Consequently, ℓN2 may be represented by the following direct sum:

ℓN2 = P (ℓN2 ) ⊕ Ker(P ),

with Ker(P ) being the kernel of P.
Furthermore, if P is an orthonormal projection and α and β are orthonormal ordered

bases of P (ℓN2 ) and Ker(P ) respectively, we may define an orthonormal ordered basis α ∪ β

of ℓN2 such that the elements of P (ℓN2 ) and Ker(P ) have, respectively, its last N −m and its
first m coordinates equal to zero. Also, in this basis, P will be represented by the rank m

matrix Qm ∈ MN×N that vanishes all but the first m coordinates of any x ∈ RN . We shall
henceforth refer to such ordered basis as ξ = {ξi}i∈[N ] and to the canonical basis of RN as
e = {ei}i∈[N ].

Now, let U ∈ MN×N be the matrix that changes the basis e into the basis ξ, that is,

ξi = Uei, ∀i ∈ [N ].

Note that U is an orthogonal matrix since it transforms an orthonormal basis to another
one. Therefore, we conclude that the linear projection P is represented by the rank m matrix
UTQmU ∈ MN×N in the canonical basis. Conversely, this matrix product is clearly a rank
m projection.

2.4.3 Uniformly distributed random projection

Finally, from the discussion made so far in this section, P : RN → RN is a rank m pro-
jection if, and only if, it has a matrix representation of the form U tQmU in the canonical
basis. Consequently, we have the following

Definition 2.4.1 (Uniformly distributed rank m random projection). We say that a random
rank m projection P : RN → RN is uniformly distributed if its matrix form representation in
the canonical basis is U tQmU with U being uniformly distributed in O(N).

Theorem 2.4.1. The random variable ‖Px‖2 has the same distribution in both following
cases:

1. P : RN → RN is a fixed rank m projection, and x is uniformly distributed on SN−1;
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2. x ∈ SN−1 is fixed, and the random rank m projection P : RN → RN is uniformly dis-
tributed.

That is, for any Borel set S ⊂ R,

µN−1{x ∈ SN−1 : ‖U tQmUx‖2 ∈ S} = σ{U ∈ O(N) : ‖U tQmUx‖2 ∈ S}.

Proof. Indeed, let S ⊂ R be a Borel set. Also, the continuous map

f : SN−1 → R, with f(x) = ‖Qmx‖2

will be useful. Also, we have that

‖U t
0QmU 0x‖2 = ‖QmU 0x‖2

since orthogonal maps do not change the norm of a vector. Consequently,

µN−1{x ∈ SN−1 : ‖U t
0QmU 0x‖2 ∈ S} = µN−1{x ∈ SN−1 : ‖QmU 0x‖2 ∈ S}.

Moreover, the rotation invariance of µN−1 yields

µN−1{x ∈ SN−1 : ‖QmU 0x‖2 ∈ S} = µN−1{U 0x ∈ SN−1 : ‖Qm(U 0x)‖2 ∈ S}
= µN−1{y ∈ SN−1 : ‖Qmy‖2 ∈ S}
= µN−1{y ∈ SN−1 : f(y) ∈ S}
= µN−1{f−1(S)}. (2.4.1)

In Appendix B, we proved that, for any fixed x0 ∈ SN−1, µN−1 is the push-forward of the
(normalized) Haar measure σ in O(N) through the map

g : O(N) → SN−1, with g(U ) = Ux0.

That is, for any Borel set A ⊂ SN−1,

µN−1(A) = σ{g−1(A)}.

Applying this result to Equation 2.4.1, we get

µN−1{f−1(S)} = σ{g−1[f−1(S)]}.

Finally,

σ{g−1[f−1(S)]} = σ{U ∈ O(N) : g(U ) ∈ f−1(S)}
= σ{U ∈ O(N) : f(Ux0) ∈ S}
= σ{U ∈ O(N) : ‖QmUx0‖2 ∈ S}
= σ{U ∈ O(N) : ‖U tQmUx0‖2 ∈ S},

concluding the proof.
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2.5 The original proof of the JL-Lemma

2.5.1 Introduction

We start by recalling the main result that we wish to prove. Consider a N -point set
A = {x1, . . . , xN} ⊂ ℓN2 and a pre-fixed quasi-isometry distortion ε ∈ (0, 1). There is a positive
number m0(ε) such that any m ≥ floor{m0(ε) logN} yields a rank m random linear projection
f : ℓN2 → ℓN2 satisfying

M(1 − ε)‖v − u‖2 ≤ ‖f(v) − f(u)‖2 ≤ M(1 + ε)‖v − u‖2, ∀u 6= v ∈ A,

with positive probability, and with M ∈ R being a positive constant. This result will be a
consequence of the concentration of a Lipschitz function on the sphere about its Lévy mean,
as discussed next.

More precisely, we introduce the following map

F : (O(N), σ) → L(ℓN2 , ℓ
N
2 )

U 7→ UTQmU .

As previously discussed, the random matrix F (U) determines the notion of rank m random
projection. Also, we claim that the map f = F (U) will satisfy the JL-Lemma with positive
probability.

2.5.2 The induced concentration of measure on O(N)

In the present subsection, we intend to show that the concentration of Lipschitz maps on
SN−1 induces a concentration of the Haar measure σ on O(N). Indeed, since our choice of f –
and consequently its Lipschitz extension, f̃ – is linear, we may represent its quasi-isometric
property as a norm distortion of a new set B ⊂ ℓN2 of unit vectors such that

B :=

{
u− v

‖u− v‖2
: u, v ∈ A and u 6= v

}
⊂ SN−1.

In this setting, our goal is to select U ∈ O(N) such that

M(1 − ε) ≤ ‖U tQmUz‖2 ≤ M(1 + ε), ∀z ∈ B, (2.5.1)

for some constant M > 0.

Next, define a map rm : SN−1 → R such that

rm(x) :=
√
N

√√√√
m∑

i=1

x2
i =

√
N ‖Qmx‖2.

Since any orthogonal matrix is norm preserving, we may rewrite Equation 2.5.1 as

M(1 − ε) ≤ ‖QmUz‖2 ≤ M(1 + ε), ∀z ∈ B,
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and, consequently, to prove the JL-Lemma, it suffices to choose U ∈ O(N) such that

M
√
N (1 − ε) ≤ rm(Uz) ≤ M

√
N (1 + ε), ∀z ∈ B. (2.5.2)

Our goal is to prove Equation 2.5.2 through a probabilistic argument. Namely, we show
that, for a sufficiently large rank m,

σ
{
U ∈ O(N) : M

√
N (1 − ε) ≤ rm(Uz) ≤ M

√
N (1 + ε), ∀z ∈ B

}
> 0.

That is, that the probability of a U selected from the uniform (normalized Haar) distribution
on O(N) satisfy Equation 2.5.2 is strictly positive.

More precisely, we have shown previously in this Chapter (Theorem 2.4.1) that the dis-
tribution of ‖U tQUx‖2 is the same for: a constant U ∈ O(N) and a uniformly distributed
x ∈ SN−1; a constant x ∈ SN−1 and a uniformly distributed U ∈ O(N). Thus, the same holds
for rm(Uz). Consequently, for any fixed y ∈ SN−1, the measure

σ
{
U ∈ O(N) : M

√
N (1 − ε) ≤ rm(Uy) ≤ M

√
N (1 + ε)

}

is equal to

µN−1

{
x ∈ SN−1 : M

√
N (1 − ε) ≤ rm(Ux) ≤ M

√
N (1 + ε)

}
,

for a fixed U ∈ O(N).

Now, since x 7→ rm(Ux) is a
√
N -Lipschitz map, the concentration of measure on the

sphere (Theorem 2.3.3) guarantees that rm concentrates about its median, Mr > 0. That is,
for a fixed U ∈ O(N) and ξ ∈ (0, 1),

µN−1

{
x ∈ SN−1 : |rm(U x) −Mr| ≤

√
N ξ
}
≥ 1 − 4 exp

{
−Nξ2

2

}
.

Therefore, the interchangeability between the measures µN−1 and σ, yields, for each fixed
x ∈ SN−1 and ξ ∈ (0, 1), that

σ
{
U ∈ O(N) : |rm(Ux) −Mr| ≤

√
N ξ
}
≥ 1 − 4 exp

{
−Nξ2

2

}
,

that is a concentration of measure inequality on O(N). Now, applying the union bound
relative to z ∈ B in the inequality above, we conclude that

σ
{
U ∈ O(N) : |rm(Uz) −Mr| ≤

√
N ξ, ∀z ∈ B

}
≥ 1− 2N(N − 1) exp

{
−Nξ2

2

}
, (2.5.3)

since #B =
(
N
2

)
. For a fixed N > 2, this probability is positive when

ξ >

√
2

N
log{2N(N − 1)}. (2.5.4)
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In order to conclude the JL-Lemma’s proof, we need to determine a sufficiently small ε
so that Equation 2.5.2 is satisfied with positive probability. That is, a small enough ξ such
that

[Mr −
√
Nξ,Mr +

√
Nξ] ⊂ [M

√
N (1 − ε),M

√
N (1 + ε)],

for a constant M > 0.

As in the paper [JL1984], this will be done following [FLM1977]. That is, in the next
subsection, we shall present a result from [FLM1977] that bounds the median Mr of rm in
terms of its mean

ESN−1{rm(x)} =

∫

SN−1

rm(x) dµN−1(x).

This is an uncommon approach since the calculation of the median is usually simpler than
the mean. However, we are not interested in calculating ESN−1{rm(x)} directly. We instead
present a technique used in [JL1984] to bound the mean of rm on SN−1 through the Khintchine
inequality.

2.5.3 Approximating the mean by the median on the sphere

The paper [FLM1977] presents an important result that allows us to approximate the
mean of ‖ · ‖2 on the sphere by its Lévy mean, med{‖ · ‖2}. This result is very convenient
since, in general, the median of a function on SN−1 is more easily calculated than its mean.
Namely, we have the following:

Lemma 2.5.1. Let ‖ · ‖ be a norm in a N-dimensional Banach space X and ||| · ||| be an
inner product norm on X such that

a|||x||| ≤ ‖x‖ ≤ b|||x|||, ∀x ∈ X,

for suitable 0 < a ≤ b < ∞. There is an absolute constant c > 0 so that whenever the equation
above holds with b ≤

√
N, with N = dimX, then

∣∣∣∣
∫

|||x|||=1

‖x‖ dµN−1(x) −med{‖ · ‖}
∣∣∣∣ < c.

Moreover, in the proof of such result, it was stated that

c =
∞∑

m=1

4(m + 1)e−m2/2 .
20

3
.

In particular, we may apply this result to rm since

‖Qmx‖2 ≤ ‖x‖2, ∀x ∈ SN−1.

from what
rm(x) =

√
N ‖Qmx‖2 ≤

√
N ‖x‖2 =

√
N, ∀x ∈ SN−1.

Consequently, we obtain
∣∣∣∣
∫

SN−1

rm(z) dµN−1(z) −Mr

∣∣∣∣ ≤
20

3
.
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Or equivalently,

−20

3
+

∫

SN−1

rm(z) dµN−1(z) ≤ Mr ≤
20

3
+

∫

SN−1

rm(z) dµN−1(z). (2.5.5)

In the next subsection, we present a classical method to bound the mean of ‖ · ‖2, and
consequently of rm(·), on SN−1. From this result, we may find bounds on the median Mr

depending only on the rank m > 0 of the random projection. Finally, we show that for a
sufficiently large m, the JL-Lemma will be satisfied.

2.5.4 Bounding the mean through Khintchine’s inequality

In this subsection, we will present a technique to bound the mean

ESN−1{rm(z)} =

∫

SN−1

rm(z) dµN−1(x),

for m ∈ [N ]. Namely, √
m

2
≤
∫

SN−1

rm(z) dµN−1(z) ≤
√

2m.

In order to do so, we need to introduce the following concepts.

Definition 2.5.1 (Rademacher random variable). We say that a discrete random variable
X has the Rademacher distribution iff.

P{X = k} =

{
1/2, k ∈ {−1, 1}
0, otherwise

.

Theorem 2.5.1 (Khintchine inequality). Let η = (η1, . . . , ηN ) ∈ [−1, 1]N be a random vector
whose entries are i.i.d. Rademacher random variables. Then, for 0 < p < ∞ and x ∈ CN ,

we have that
Ap‖x‖2 ≤

(
Eη|〈x : η〉|p

)1/p ≤ Bp‖x‖2,
for some constants Ap, Bp > 0 depending only on p.

Remark (Signal average). It is common in the literature, including [JL1984], to call a
expectation as in the Theorem above of signal average since the randomness comes from the
signal that multiplies each coordinate of x ∈ RN With this terminology, the expectation would
be denoted as

Eη|〈x : η〉|p = Av±

{
N∑

i=1

± xi

}

The sharp values for the constants Ap and Bp were determined by Haagerup (see [Hrup1981])
and are exhibited below

Ap =





21/2−1/p, 0 < p ≤ p0

21/2
[

1√
π
Γ
(
1+p
2

)]1/p
, p0 < p < 2

1, 2 ≤ p < ∞
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and

Bp =





1, 0 < p ≤ 2

21/2
[

1√
π
Γ
(
1+p
2

)]1/p
, 2 < p < ∞,

with p0 ≈ 1.847.

The particular case that is interesting for us is the one for p = 1. In that case, A1 = 1/
√
2

and B1 = 1. Consequently, the Khintchine inequality may be rewritten as

1√
2
‖x‖2 ≤ Eη

{
|〈x : η〉|

}
≤ ‖x‖2. (2.5.6)

From the Equation above, it follows a method to bound the mean of rm on the sphere, i.e.,
the integral ∫

SN−1

rm(z) dµN−1(z).

Indeed, take a natural m ∈ [N ] and a set {η1, . . . , ηm} of independent Rademacher random
variables. Next, fix the canonical basis {e1, . . . , eN} and define the random vector

η =
m∑

i=1

ηiei = (η1, . . . , ηm, 0, . . . , 0) ∈ RN .

Also, we define the following number:

αN =

∫

SN−1

|z1| dµN−1(z),

with z1 being the first coordinate of z ∈ SN−1 in the canonical basis. In order to estimate
the integral of rm on the sphere, we need to prove the following Equation:

√
mαN = Eη

{∫

SN−1

|〈z : η〉| dµN−1(z)

}
. (2.5.7)

Intuitively, Equation 2.5.7 follows from the symmetry of SN and the rotation invariance
of the measure µN−1. From these properties, the integral on SN−1 of x 7→ |〈x : η〉| will depend
only on the norm of the random vector η, whose value is

√
m for any choice of η. More

precisely, the random vector η1e1 has norm 1. Thus, we may take a rotation T ∈ O(N) such
that

η = T (‖η‖2η1e1) =
√
mT (η1e1).

We conclude, from the rotation invariance of µN−1, that:
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Eη

{∫

SN−1

|〈z : η〉| dµN−1(z)

}
=

√
mEη

{∫

SN−1

|〈z : T (η1e1)〉| dµN−1(z)

}

=
√
mEη

{∫

SN−1

∣∣〈T tz : η1e1〉
∣∣ dµN−1(z)

}

=
√
mEη

{∫

SN−1

∣∣〈T tz : η1e1〉
∣∣ dµN−1(T

tz)

}

=
√
mEη

{∫

SN−1

|〈z : η1e1〉| dµN−1(z)

}

=
√
mEη

{
| η1 |

∫

SN−1

|z1| dµN−1(z)

}
=

√
mαN ,

concluding then the proof of Equation 2.5.7.
Now, we bound the mean of rm on SN−1 as follows. Apply the Khintchine inequality

(Equation 2.5.6) to Eη {|〈Qmz : η〉|} . Doing so, we obtain

1√
2
‖Qmz‖2 ≤ Eη {|〈Qmz : η〉|} ≤ ‖Qmz‖2, ∀z ∈ SN−1.

Equivalently, we have

1√
2N

rm(z) ≤ Eη {|〈z : η〉|} ≤ 1√
N

rm(z), ∀z ∈ SN−1.

By the monotonicity property for the integral, we have

1√
2N

∫

SN−1

rm(z) dµN−1(z) ≤
∫

SN−1

Eη {|〈z : η〉|} dµN−1(z)

= Eη

{ ∫

SN−1

|〈z : η〉| dµN−1(z)

}

=
√
mαN

≤ 1√
N

∫

SN−1

rm(z) dµN−1(z). (2.5.8)

Note that we can interchange the integral with the expectation above since η is a discrete
random vector.

Finally, by applying Equations 2.5.6 and 2.5.7 to Equation 2.5.8, for any m ∈ [N ], we
have √

NmαN ≤
∫

SN−1

rm(z) dµN−1(z) ≤
√

2NmαN . (2.5.9)

In particular, we may choose m = N, from what

rN(z) =
√
N ‖z‖2 =

√
N
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and ∫

SN−1

rN(z) dµN−1(z) =
√
N.

Applying this result to Equation 2.5.9, we get

1√
2N

≤ αN ≤ 1√
N
.

Thus, for any natural m ∈ [1, N ],

√
m

2
≤
∫

SN−1

rm(z) dµN−1(z) ≤
√

2m.

2.5.5 The lower bound on the rank m

In the previous subsection, we proved that, for any natural 1 ≤ m ≤ N,

√
m

2
≤
∫

SN−1

rm(z) dµN−1(z) ≤
√

2m.

Applying the inequality above to Equation 2.5.5, we conclude the following:

Mr ≥
√

m

2
− 20

3
.

Furthermore, in Equation 2.5.3, we choose

ξ =
ε√
N

(√
m

2
− 20

3

)
≤ ε√

N
Mr,

that yields

σ {U ∈ O(N) : (1 − ε)Mr ≤ rm(Uz) ≤ (1 + ε)Mr, ∀z ∈ B}

≥ 1 − 2N(N − 1) exp

{
−
(√

m

2
− 20

3

)2
ε2

2

}
.

By making M = Mr > 0 in the sufficient condition for the JL-Lemma (Equation 2.5.2), we
conclude the proof since the probability above is positive. From Equation 2.5.4, we know
that it happens when

ξ =
ε√
N

(√
m

2
− 20

3

)
>

√
2

N
log{2N(N − 1)}.

Consequently, the JL-Lemma is satisfied since

m > 2

(
20

3
+

1

ε

√
2 log{2N(N − 1)}

)2

.
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Even though the JL-Lemma is satisfied for the lower bound in the previous equation,
this expression is exaggeratedly large. Moreover, it does not exhibit in a clear manner a key
characteristic of this Lemma: a lower bound that has the logarithmic order of N.

In order to obtain a more pleasant expression, we shall take a rougher value for Mr,

namely,

Mr ≥
√

m

2
− 20

3
>

√
m

3
,

for a sufficiently large m. We shall also make a new choice of ξ to be ε
√

m/3N. In this
setting, we conclude from Equation 2.5.4 that the JL-Lemma will be satisfied with positive
probability when

m >
6

ε2
log{2N(N − 1)}.

Finally, it suffices to prove that there exists a positive number m0(ε) depending only on
ε such that

m0(ε) logN ≥ 6

ε2
log{2N(N − 1)},

or, equivalently,

m0(ε) ≥
6

ε2
log{2N(N − 1)}

logN
.

Indeed, we may take m0(ε) ≥ 18ε−2 since

log{2N(N − 1)}
logN

≤ 3, ∀N > 2,

concluding the proof of the JL-Lemma.

2.6 The parameter space in the JL-Lemma

In the statement of the JL-Lemma, we claimed that, for any dimension N > 2 and any
quasi-isometry distortion ε ∈ (0, 1), there is a sufficiently large natural number 0 < m < N

with the logarithmic order of N such that we may define, with positive probability, a ε-
isometric projection from ℓN2 to ℓm2 by a rank m linear random projection. Along the proof,
however, we made some bounds that may not be valid for the entire parameter domain
described in the JL-Lemma’s statement.

More precisely, most of the bounds used during the proof are valid just for sufficiently
large values of N and ε. If these parameters are not large enough, we may get for example a
lower bound on m that is bigger than N itself. Consequently, we shall dedicate this section
to specify the parameter domain on which the presented proof of the JL-Lemma holds.
On the other hand, we recall the reader that since the JL-Lemma is usually applied in a
high-dimensional setting, it is not a problem to have a lower bound on N bigger than 2.

During the proof, we defined a constant ξ ∈ (0, 1). It was used to obtain a lower bound on
the probability of the

√
N -Lipschitz map rm(Ux) being sufficiently near from its median Mr

on SN−1 for a given x ∈ SN−1 and a uniformly chosen U ∈ O(N). As seen in Equation 2.5.3,
this lower bound is

P = 1 − 2N(N − 1) exp

{
−Nξ2

2

}
.
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From Equation 2.5.4, such probability will be positive iff. ξ is bigger than a ξ such that

ξ :=

√
2

N
log{2N(N − 1)}.

Moreover, since ξ ∈ (ξ, 1), we must have

√
2

N
log{2N(N − 1)} < 1,

which holds for N ≥ 11.

2.6.1 Sharper bounds

In a first moment, we made the following choice for ξ

ξ1 =
ε√
N

(√
m

2
− 20

3

)
.

This value comes from a lower bound on the median of rm on SN−1,

Mr ≥
√

m

2
− 20

3
,

obtained from the Khintchine inequality. During the proof, we concluded that, for ξ = ξ1, the
concentration of rm around its median implies that the JL-Lemma is satisfied with probability
bigger than P. Since this lower bound on the probability is positive just for ξ ∈ (ξ, 1), the
JL-Lemma will be satisfied with positive probability when

ξ < ξ1 < 1,

i.e., for values of the parameters N, m and ε such that
√

2

N
log{2N(N − 1)} <

ε√
N

(√
m

2
− 20

3

)
< 1.

From those inequalities, we obtain the following bounds on m :

2

(
20

3
+

1

ε

√
2 log{2N(N − 1)}

)2

< m < 2

(√
N

ε
+

20

3

)2

.

In particular, we obtain a lower bound m < m such that

m = 2

(
20

3
+

1

ε

√
2 log{2N(N − 1)}

)2

.

This bound is completely useless if it is bigger than N. Consequently, we intend to determine
the parameter values such that m < N. It may be done by solving the following inequality:

2

(
20

3
+

1

ε

√
2 log{2N(N − 1)}

)2

< N.
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Finally, the inequality above yields the following lower bound on ε :

ε :=

√
2 log{2N(N − 1)}√

N
2
− 20

3

.

Since ε ∈ (0, 1), we must have

0 <

√
2 log{2N(N − 1)}√

N
2
− 20

3

< 1,

that holds for any natural N ≥ 267.

In sum, note that the presented proof for the JL-Lemma is not valid for the entire
parameter space N > 2 and ε ∈ (0, 1). Instead, we must have

N ≥ 267 and

√
2 log{2N(N − 1)}√

N
2
− 20

3

< ε < 1.

For these parameter values, the JL-Lemma will be satisfied with a probability bigger than

P1 = 1 − 2N(N − 1) exp

{
−ε2

2

(√
m

2
− 20

3

)2
}
,

that is positive for any natural m > m such that

m = 2

(
20

3
+

1

ε

√
2 log{2N(N − 1)}

)2

.

However, the expression above does not exhibit a clear logarithmic dependence of m on logN,

as stated in the JL-Lemma. This behavior is more evident when we opt for rougher bounds
and, consequently, for a smaller parameter space.

2.6.2 Rougher bounds

In the proof for the JL-Lemma presented in the previous section, we choose a rougher
value

ξ2 := ε

√
m

3N

for ξ, i.e., when m is sufficiently large, we have ξ2 ≤ ξ1. This choice is useful since it provides
us with a easy proof that the lower bound m for m may be presented in the form m0(ε) logN.

Furthermore, along the proof of the JL-Lemma, it was shown that, for ξ = ξ2, the concen-
tration of rm about its median Mr implies that the JL-Lemma is satisfied with a probability
bigger than

P = 1 − 2N(N − 1) exp

{
−Nξ2

2

}
.
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As explained in the previous subsection, the sharper value ξ1 for ξ comes from a lower
bound on Mr obtained from the Kintchine inequality :

Mr ≥
√

m

2
− 20

3
.

On the other hand, the rougher one ξ2 comes from the fact that
√

m

2
− 20

3
≥
√

m

3
(and consequently ξ1 ≥ ξ2),

for a sufficiently large natural m, or more precisely, for any natural m ≥ 2640.

Again, the probability’s lower bound P is positive only if ξ ∈ (ξ, 1). Moreover, when
ξ = ξ2, P is a lower bound on the probability of the JL-Lemma being satisfied. Consequently,
the JL-Lemma will be satisfied with positive probability when

ξ < ξ2 < 1,

i.e., for values of the parameters N, m and ε such that
√

2

N
log{2N(N − 1)} < ε

√
m

3N
< 1.

From these inequalities, we obtain the following bounds on m :

6

ε2
log{2N(N − 1)} < m <

3N

ε2
.

Next, we verify for which parameter values the lower bound on m will be useful, i.e.,

2640 <
6

ε2
log{2N(N − 1)} < N.

These inequalities define the following bounds on ε :

ε =

√
6

N
log{2N(N − 1)} < ε <

√
log{2N(N − 1)}

440
= ε.

Finally, we must determine which N implies (ε, ε) ⊂ (0, 1).

At first, we have ε < ε for any natural N ≥ 2640. Now, differently from the sharper bounds
in the previous section, N is also bounded from above. Indeed, in order to have ε < 1, it
suffices to take any natural N < 2.4× 1095. Fortunately, such a bound is (way) bigger than
the estimated amount of atoms in the universe and will not be a problem in any application.
On the other hand, this value depicts a remarkable characteristic of the interval (ε(N), ε(N)) :

it is way too small for reasonable values of N . For example, it approaches the size of (0, 1/2)
just for N > 1025. Consequently, these rougher bounds, despite of their theoretical usefulness,
are virtually useless for applications.

2.7 Conclusion

In this Chapter we introduced the necessary notation and presented the original proof
of the JL-Lemma. Moreover, we exhibited how limited is this first version of the Lemma
for applications. A discussion about its theoretical improvements is the goal of the next
Chapter.



Chapter 3

Theoretical improvements to the
JL-Lemma

3.1 Introduction

In Chapter 2, we presented the original proof to the Johnson-Lindenstrauss Lemma
[JL1984]. This Lemma gives us a tool for dimensionality reduction through random pro-
jections. Namely, datasets may be almost isometrically projected on a lower dimension with,
for example, the goal of simplifying data analysis, solve computation and storage problems
of algorithms and avoid the curse of dimensionality, previously described in Chapter 1.

However, methods such as PCA intend to project the data such that the resulting dataset
is “similar” to the original one, in the sense that the variance of the projected dataset is
maximized, avoiding then distinct points of the original dataset to collapse. This search
for a similarity in the global conformation of the original dataset is displayed by the fact
that the PCA is adaptive, that is, dependent of the dataset that we intend to project. The
JL-Lemma has a different goal: it projects the data aiming the preservation of the pairwise
distances instead the global conformation of the dataset, and in a non-adaptative fashion.

More precisely, the JL-Lemma is an amazing result that expresses an important property
of random projections. If we substitute the isometry requirement of the projection by an
ε-isometry one, the Lemma yields a projection onto a dimension m(ε) > 0 that is not only
independent from the projected set (non-adaptive), but also has the logarithmic order of the
dimension N. Indeed, m has a lower bound of the form

m ≥ m0(ε) logN.

Even though the JL-Lemma yields a strong property of random projections, there is still
room for theoretical and practical improvements.

3.1.1 What do we mean by improvement?

The first proof of the JL-Lemma was presented in [JL1984] by W. B. Johnson and J.
Lindenstrauss, two analysts that used this result as a tool for achieving a result about ex-
tensions of Lipschitz functions into a Hilbert space. As a consequence, they may not have

42
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noticed it was the inception of a new paradigm towards dimensionality reduction and had
no clear motivation to present the result in a “sharper” form that is more suitable for appli-
cations. More precisely, we may split the historical treatment in two kinds of improvements:
the theoretical and the practical ones, with this first one being the subject of this Chapter.

Firstly, these theoretical results refers to theorems that guarantee a tighter (larger) lower
bound on the projected dimension m. Moreover, since the first proof for the JL-Lemma was
embedded in a more abstract context, it is quite harder than the modern ones, that use
techniques from Statistics and Probability Theory. Indeed, any new proof is usually easier
to follow up than the previous ones. In particular, we cite the one from Dasgupta and Gupta
made in 1999 and published in [DasGup2003], that yields a bound that stayed the sharper
for almost 10 years and that can be understood by any undergraduate student with a first
Probability or Statistics course. Another important point is that the pioneer proof to the JL-
Lemma demonstrated just that we can select the JL-embedding from a certain distribution
with positive probability. In modern statements of the result, the authors gave an explicit
construction of the sampling method to determine the JL-embedding. Beyond computational
and storage improvements, that will not be discussed in the present text, this new form of
the JL-Lemma, named distributional JL-Lemma, guarantees that not only the probability
of building the right JL-transform is positive, but also that it can also be made arbitrarily
close to 1.

Finally, the original statement of the JL-Lemma yields that, for a prefixed A ⊂ RN , with
N > 2 and ε ∈ (0, 1), we may choose a random rank m linear projection P : ℓN2 → ℓm2 that
projects A in ℓm2 ε-isometrically with positive probability as long as

m ≥ m0(ε) logN, with m0(ε) = 18 ε−2.

However, in the transcription of the original proof exhibited in Chapter 2, we discussed how
loose are the bounds used to conclude this result. Consequently, a natural question is if we
can achieve a sharper expression for m0(ε) in order to obtain a tighter (i.e., a larger), and
consequently more precise, lower bound on m.

3.2 The geometric era of the JL-Lemma

We start the present section explaining its very title. Namely, we may split historically
the treatment towards the JL-Lemma in three epochs: the geometric era, the Gaussian era
and the sub-Gaussian era.

In this first period, the JL-projection is not explicitly specified, although it is always
a random linear orthogonal projection. Also, the results were proved through: geometric
arguments, as the concentration of the Haar measure in the unit sphere (or the Grassman-
nians set); direct computations of the Haar measure of subsets of the unit sphere (or the
Grassmannians set); estimations for the Haar integral of certain functions on these sets, and
so on.

As the reader may have noticed, this was the treatment made in the original proof
[JL1984] in 1984; furthermore, as we may explain in deeper details in this section, a very
similar reasoning was made in [FklMae1988] in 1988 in a proof that obtains a sharper bound
and is way simpler than the previous one by a technical detail. The last work based on
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such paradigm of proof was [IndMot1998] in 1998. Although this proof still uses geometrical
arguments and does not improve the bound from [FklMae1988], it gives birth to a new look
on the Lemma as we shall see in the next section.

3.2.1 Original lower bound on m – 1984

In Chapter 2, we presented the first proof of the JL-Lemma from [JL1984]. This proof
is made through the following steps: exhibiting the concentration of measure of the relative
surface area of the sphere SN−1 about its equatorial strips through a geometrical approach;
the use of another geometrical result, the isoperimetric inequality on the sphere to conclude
that any Lipschitz function f : SN−1 → R concentrates about its Lévy’s mean (or median) Mf ;

guessing as a candidate for JL-embedding a random rank m linear projection P : ℓN2 → ℓm2 ;

obtaining an approximation to the median Mr of the following Lipschitz map

rm : SN−1 −→ R

z 7→
√
N ‖Pz‖2

by applying the Lemma 2.7 from [FLM1977], that bounds the difference between the median
and the expectation of rm in SN−1, and the signal average, a widely known technique to esti-
mate ESN−1{rm(z)} using only the Khintchine inequality. Through those steps, we conclude
the JL-Lemma with a lower bound

m = floor(18 ε−2 logN).

Finally, despite of the several loose bounds and approximations made during that proof, in
the pioneering paper [JL1984], Johnson and Lindenstrauss argued that we cannot determine
a JL-projection into a space whose dimension m has a dependence in N that is less than
logarithmic. In fact, they used a result about ε-nets to conclude that in a ball with radius 2

in ℓm2 , there are at most 4m vectors whose pairwise distance is at least 1. Consequently, for a
sufficiently small distortion ε, there is no ε-isometry that projects an orthonormal set with
more than 4m vectors in a m-dimensional subspace of ℓN2 (for more details see [JL1984]).
That being said, the improvements on this lower bound will be done through determining
better expressions on ε > 0 in the definition of m.

3.2.2 Frankl and Maehara’s proof – 1988

In [FklMae1988], P. Frankl and H. Maehara improved the lower bound on m and exhibited
a simplified proof of the JL-Lemma than the one in [JL1984]. Their goal in that work was to
apply this enhanced form of the Lemma to the sphericity problem on graphs [FklMae1986,
Mae1984, HMae1984, Mae1986, HMae1986, Pach1980].

In short, let G = (V,E) be a graph with an N -vertex set V. The adjacency matrix
A(G) ∈ MN×N of this graph determines which vertices are connected by edges in E. More
precisely, for any i, j ∈ [N ],

[A(G)]ij =

{
1, if i 6= j and (vi, vj) ∈ E

0, otherwise.
.
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Consequently, we can describe G = (V,E) by the column set A ⊂ [0, 1]N of this symmetric
matrix. Thus, to simplify the terminology, we shall not make a difference between the points
of V and A.

In this setting, we define the sphericity, spg(G), of this N -vertex graph as the smallest
m ∈ N such that there is an embedding f : A → Rm satisfying 0 < ‖f(x)− f(y)‖2 < 1 if, and
only if, x and y are linked by an edge in E. Recall that this yields a tool to represent
the original graph G = (V,E), or more precisely its vector form A ⊂ RN , through the set
f(A) ⊂ Rm, with m being hopefully way smaller than N.

Provided with this brief introduction, the reader might already have guessed what was
the contribution of the JL-Lemma to the sphericity problem. In fact, the sphericity is
smaller than any dimension m with an embedding of the vertex set into Rm, as previously
exhibited; on the other hand, from [JL1984] the JL-Lemma yields such an embedding for
an m(N, ε) with the form m0(ε) logN, with ε ∈ (0, 1). Therefore, the main result from Frankl
and Maehara in [FklMae1988] was that the sphericity of a graph has an upper bound with
the logarithmic order of the number N of vertices.

Furthermore, they also stated an enhanced version of JL-Lemma that not only has a
tighter lower bound m(N, ε), but also has a simpler proof than the original one. The Frankl
and Maehara’s version of the JL-Lemma is:

Theorem 3.2.1 (Frankl and Maehara – 1988). Given N ∈ N and ε ∈ (0, 1/2), define

m(N, ε) := ceil

{
27

ε2(3 − 2ε)
log(N)

}
+ 1.

If N > m(N, ε)2, then for any N-point set A ⊂ RN , there exists a map f : A → Rm(N,ε) such
that

(1 − ε)‖u− v‖2 < ‖f(u) − f(v)‖2 < (1 − ε)‖u− v‖2, ∀u, v ∈ A.

The proof starts just as in [JL1984]. We assume f to be a rank m linear projection in
the canonical basis, i.e.,

U tQmU ∈ MN×N ,

with U ∈ O(N) and Qm ∈ MN×N , the matrix such that

Qm(x1, . . . , xN) = (x1, . . . , xm, 0, . . . , 0) ∈ RN , ∀x = (x1, . . . , xN) ∈ RN .

Thus, for a fixed ε ∈ (0, 1/2), we intend to choose U ∈ O(N) such that

M(1 − ε)‖v − u‖2 ≤ ‖U tQmUv −U tQmUu‖2 ≤ M(1 + ε)‖v − u‖2, ∀u, v ∈ A,

for some real constant M > 0.

To guarantee that f is indeed a JL-empedding, in both works [JL1984] and [FklMae1988]
this problem was dealt through a technique called random projection. Indeed, we take
the random map f obtained by sampling U from the uniform distribution on O(N). Conse-
quently, it suffices to prove that f is a JL-embedding with positive probability for a dimension
m ≥ m0(ε) logN. This is done through a concentration of measure argument.
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Here is where the modern proof breaks apart. In both works, a key argument was the
fact that the norm ‖f(x)‖2 for any x ∈ SN−1 concentrates with high probability about a fixed
number. However, the proof in [FklMae1988] is way simpler than the original one, because
Johnson and Lindenstrauss had to compute several bounds to conclude the concentration of
‖f(x)‖2 in a useful manner to obtain the required lower bound m(N, ε). On the other hand,
Frankl and Maehara take a shortcut by concluding that the squared norm, ‖f(x)‖22, has a
simpler concentration about m/N. More precisely, they proved the following result:

Proposition 3.2.1. Let z ∈ RN be a unit vector and H ⊂ RN be a random m-dimensional
subspace through the origin. Also, define the random variable X as the squared length of the
projection of z onto H. By choosing ε ∈ (0, 1/2), N > m2, and m > 24 logN + 1, we have

P
{∣∣∣X − m

N

∣∣∣ > ε
m

N

}
< 2

√
m exp

{
−ε2(3 − 2ε)

12
(m− 1)

}
.

Now, for N and m as in the Proposition above and for any previously fixed ε ∈ (0, 1/2)

and z ∈ B, the event
m

N
(1 − ε) ≤ ‖U tQmUz‖22 ≤

m

N
(1 + ε),

occurs with a probability larger than

1 − 2
√
m exp

{
−ε2(3 − 2ε)

12
(m− 1)

}
.

Thus, by applying the union bound relatively to z ∈ B, we conclude that the projection
√

N

m
U tQmU ,

satisfies the JL-Lemma with probability larger than

1 − 2

(
N

2

)√
m exp

{
−ε2(3 − 2ε)

12
(m− 1)

}
.

Finally, note that this probability is positive if

m > 1 +
12

ε2(3 − 2ε)
log{N(N − 1)

√
m}.

Moreover, since N > m2, we have that

N(N − 1)
√
m < N9/4

and, consequently,

m > 1 +
27

ε2(3 − 2ε)
logN.

Remark. We must recall that the proof’s overview here is not historically accurate. As
indicated in the previous proposition, Frankl and Maehara did not directly select a random
rank m linear projection. Instead, they selected a random m-dimensional vector subspace of
RN . However, since these models for random projections are equivalent, yielding the same
proof, we made an analogy with the original proof in Chapter 2, for simplicity.
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For completeness, we must say that Frankl and Maeraha published an improved version
of the Lemma in 1990 [?]. We shall not make a deeper discussion about it, but they used
a result about the fast decay of the tails of the Beta distribution. This new version of the
Lemma dropped the constraint of N > m(N, ε)2 and obtained a lower bound that was only
obtained again in Dasgupta and Gupta’s work in 1998.

3.2.3 Indyk and Motwani’s proof – 1998

In [IndMot1998]1, Piotr Indyk and Rajeev Motwani exhibited a simpler proof to the
Frankl and Maehara’s version of the JL-Lemma, with the goal of addressing the ε-NNS
problem, that we will discuss briefly. This new statement of the Lemma is valid for any
norm ‖ · ‖p, with p ∈ [1, 2]. Moreover, they considered the JL-transform as a Gaussian matrix,
i.e., a matrix T ∈ Mm×N whose entries are are i.i.d random variables following a N (0, 1)

distribution.
More precisely, consider a prefixed M -point dataset X = {X1, . . . , XM} in some metric

space, say the Euclidean space ℓN2 , for simplicity. Now, suppose that we intend to answer
a certain distance dependent query whose options are only the points in X. The nearest
neighbor search (NNS) consists of determining a query point, that is, a point q ∈ M satisfying
the query and then returning as a solution the point X∗ ∈ X with minimal distance to q.

An intuitive approach to this problem is through the brute force algorithm that stands to a
myriad of näıve problem solution methods. In this context, it means the exhaustive distance
calculation between the points in X and the query point in order to determine which yields
the smaller distance. Obviously, this strategy becomes impractical as the dimension N or
number M of points increase.

As an alternative approach, we may preprocess the set X in order to efficiently solve the
NNS problem. Indeed, the low dimensional case was already solved [Herb1987], however,
the preprocessing itself has a high computational cost. Consequently, despite of decades of
effort, the solutions to the NNS problem were far from satisfactory in theory or in practice
until the publication of [IndMot1998]. Indeed, for high values of N or M, those solutions
provided little improvement over the brute force algorithm. As a consequence to the failure
in addressing the NNS, a relaxed version of this problem took place: the approximate or ε-
approximate nearest neighbors problem (ε-NNS). In this new setting, given a prefixed ε > 0,

we intend to preprocess X in order to efficiently find a point in X∗ ∈ X whose distance to
a query point q ∈ M is the least one, up to a (1 + ε) multiplicative constant. That is, for a
fixed ε > 0, we want to find X∗ ∈ X such that

d(X∗, q) ≤ (1 + ε) d(Xj, q) ∀j ∈ [M ].

The introduction of the ε-NNS yielded a significant improvement with respect to the algo-
rithms known until 1998 for the classical NNS problem. Indeed, they were of two kinds: low
preprocessing cost, but linear query time in M and N ; sublinear query time in M and polyno-
mial in N, but exponential preprocessing cost MN . On the other hand, in [IndMot1998], two
algorithms were presented to address the ε-NNS problem. The first one preprocess X with
polynomial cost in N and M and a query search time that is truly sublinear in N and M,

1This paper was republished later, in 2012 [IndMot2012].
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more precisely, for ε > 1, it has time O{(M1+1/ε +NM) poly(logM)}. The second one has a
mildly exponential preprocessing cost O(M logM)×O(ε−N ) for ε ∈ (0, 1) and a query time
polynomial in logM and N, i.e., O (N logM) . In this setting, the use of the Frankl and
Maehara’s JL-Lemma [FklMae1988] in the preprocessing phase of the second algorithm for
(M, d) = ℓNp , with p ∈ [1, 2], resulted in the best of both worlds: the first known algorithm
with preprocessing and query time polynomial in N and logM. Namely, they proved the
following:

Theorem 3.2.2 (Proposition 3 from [IndMot1998]). For any ε > 0, there is an algorithm
for the ε-NNS in ℓNp , with p ∈ [1, 2], whose preprocessing time is (NM)O(1) and requires a
O{Mpoly(logN)} query time.

Remark. A more direct treatment of how the JL-Lemma is applied to the preprocessing
phase of the ε-NNS is way too technical and will not be exhibited in this text. Hence, we
direct the interested reader to the paper [IndMot1998].

Finally, the statement of the JL-Lemma due to Indyk and Motwani was the following:

Theorem 3.2.3 (Indyk and Motwani – 1998). For any p ∈ [1, 2], any M-point set S ⊂ ℓNp ,

and any ε > 0, there exists a map f : S → ℓm2 with m = O (logM) such that for all u, v ∈ S,

(1 − ε)‖u− v‖p <
N

m
‖f(u) − f(v)‖22 < (1 + ε)‖u− v‖p.

Note that this is the first result towards generalizing the JL-Lemma for other norms than
just ‖ · ‖2. In this regard, they have also proved that the JL-Lemma does not apply for the
ℓ∞ norm2.

3.3 The Gaussian era of the JL-Lemma

3.3.1 Revisiting Indyk and Motwani’s work

Beyond presenting a new proof for the JL-Lemma, it was also proved in [IndMot1998]
a result that is the keystone to the Dasgupta and Gupta’s proof [DasGup2003] and the
inception of a new paradigm of proof that is still used nowadays. Namely,

Lemma 3.3.1 (Lemma 7 from [IndMot1998]). Let u be a unit vector in RN . For any even
positive integer m, let U1, . . . , Um be random vectors chosen independently from the standard
N-dimensional Gaussian distribution (i.e., each of its components is N (0, 1)). Now, define

W = W (u) = (X1, . . . , Xm), with Xi = 〈u : Ui〉;

and L(u) = ‖W‖22. Then, for any β > 1,

1. E(L) = m,

2See the Theorem 6 from [IndMot1998].
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2. P{L ≥ βm} < O (m) exp
{
−k

2 (β − 1− log β)
}

3. P{L ≤ m/β} < O (m) exp
{
−k

2 (
1
β − 1 + log β)

}
.

Sketch of the proof. Recall that each Xi is distributed as N (0, 1). Now, for i ∈ [m/2], define

Yi = X2
2i−1 + X2

2i.

Each Yi follows the exponential distribution with parameter λ = 1/2 [Feller1991]. Thus,

E(L) =

m/2∑

i=1

E(Yi) =
m

2
× 2 = m;

also L follows the Gamma distribution with parameters α = 1/2 and υ = m/2 [Feller1991].
Since this distribution is dual to the Poisson, we have that

P{L ≥ βm} = P{P 1/2
βm ≤ υ − 1},

with Pα
t being a random variable following the Poisson distribution with parameter αt.

Bounding the later quantity is a matter of simple calculation.

It is important to note that the assumption of the projection in the JL-Lemma as a ran-
dom linear orthogonal projection that was made in previous results ([JL1984, FklMae1988])
is dropped. It is proved instead that random (N ×m)-matrices whose columns are ran-
dom Gaussian vectors {U1, . . . , Um} ⊂ RN satisfy the ε-isometry with high probability, which
justifies the name of this section.

3.3.2 Dasgupta and Gupta’s proof of JL-Lemma – 2003

In 2003, it was the turn of Dasgupta and Gupta to make further improvements in the
JL-Lemma [DasGup2003]. The lower bound on m derived by them remained as the best one
known until Matoušek’s 2008 work [Mat2008]. Surprisingly, this proof is simpler than the
previous ones, maybe the simplest proof for the JL-Lemma.

Theorem 3.3.1 (Dasgupta and Gupta – 2003). Given a set V of M points in RN , for some
M, N ∈ N, choosing ε ∈ (0, 1) and m ≥ floor {24 (3ε2 − 2ε3)−1 logM} yields a linear map
T : RN → Rm satisfying

(1 − ε)‖u− v‖22 ≤ ‖T (u) − T (v)‖22 ≤ (1 + ε)‖u− v‖22, ∀u, v ∈ X.

In order to prove this version of the JL-Lemma, we shall present the Lemma 3.3.1 from
Indyk and Motwani as it was stated by Dasgupta and Gupta in their work. To be accurate,
this analogous result is stronger than its previous version since that one yields a lower bound
on m that is larger by an additive factor of roughly O (log logM) .

At first, let X1, . . . , XN be independent standard Gaussian random variables and define
the Gaussian random vector X = (X1, . . . , XN ) ∈ RN . Next, let πm(X) ∈ Rm be the projection
of X on its first m coordinates and define

Z =
πm(X)

‖X‖2
∈ Rm

and denote L = ‖Z‖22. Now, we have the following:
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Proposition 3.3.1. With the notation presented so far, we have that

E(L) =
m

N
.

Proof. In fact,

1 = E(1) = E

{‖X‖22
‖X‖22

}
= N E

{
X2

1

‖X‖22

}
,

with this last equality being justified by the linearity of the expectation and by the {Xi}i∈[N ]

being an i.i.d. set. Consequently,

E

{
X2

1

‖X‖22

}
=

1

N
.

Finally,

E(L) = E

{∑m
i=1 X

2
i

‖X‖22

}
= mE

{
X2

1

‖X‖22

}
=

m

N
,

concluding the proof.

Now, we are able to state the Dasgupta and Gupta’s version of Lemma 3.3.1. Such result
states that not only E(L) = m/N, but also that L is tight concentrated around its mean.

Lemma 3.3.2. Let m < N. Then:

1. if β < 1,

P

{
L ≤ βm

N

}
≤ βm/2

(
1 + m

1 − β

N −m

)(N−m)/2

≤ exp
{m

2
(1 − β + log β)

}
; (3.3.1)

2. if β > 1,

P

{
L ≥ βm

N

}
≤ βm/2

(
1 + m

1 − β

N −m

)(N−m)/2

≤ exp
{m

2
(1 − β + log β)

}
. (3.3.2)

Proof of the Lemma 3.3.2. Let us start proving Equation 3.3.1; more precisely, that

P

{
L ≤ βm

N

}
≤ βm/2

(
1 + m

1 − β

N −m

)(N−m)/2

. (3.3.3)

In fact,

P

{
L ≤ βm

N

}
≤ P {NL ≤ βm}

= P

{
N‖Z‖22 ≤

‖X‖22
‖X‖22

βm

}

= P{N(X2
1 + . . . + X2

m) ≤ (X2
1 + . . . + X2

N)mβ}.
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Moreover,

P{(X2
1 + . . . + X2

m)N ≤ (X2
1 + . . . + X2

N)mβ}

= P{(X2
1 + . . . + X2

N)mβ − (X2
1 + . . . + X2

m)N ≥ 0},

which is equal to

P{exp{t[(X2
1 + . . . + X2

N)mβ − (X2
1 + . . . + X2

m)N ]} ≥ 1}, (3.3.4)

for t > 0.

Next, we apply Markov’s inequality to Equation 3.3.4, concluding that

P

{
L ≤ βm

N

}
≤ E

{
exp{t[(X2

1 + . . . + X2
N)mβ − (X2

1 + . . . + X2
m)N ]}

}
.

Now, note that for X ∼ N (0, 1), we have

E
{

exp{t[(X2
1 + . . . + X2

N)mβ − (X2
1 + . . . + X2

m)N ]}
}

= E
{
etmβX2

}(N−m)

E
{
et(mβ−N)X2

}m

.

We now use the easily proved fact that if X ∼ N (0, 1), then

E exp{sX2} =
1√

1 − 2s
(−∞ < s < 1/2).

Consequently,

E
{
etmβX2

}(N−m)

E
{
et(mβ−N)X2

}m

= (1 − 2tmβ)−(N−m)/2[1 − 2t(mβ −N)]−m/2. (3.3.5)

We now set the right hand side of Equation 3.3.5 as

g(t) := (1 − 2tmβ)−(N−m)/2[1 − 2t(mβ −N)]−m/2.

This is a positive expression since the left hand side of Equation 3.3.5 is the product of
positive numbers. From this fact, this expression gives us two additional constraints

tmβ < 1/2 and t(mβ −N) < 1/2,

with this later being included in the former since t ≥ 0, yielding t ∈ (0, 1
2mβ ).

Now, to minimize g(t), we maximize

f(t) := (1 − 2tmβ)(N−m)[1 − 2t(mβ −N)]m
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for t ∈ (0, 1
2mβ ). Differentiating f, we get that the maximum is achieved at

t0 =
(1 − β)

2β(N −mβ)
,

which lies in the allowed range. Hence, we have

f(t0) =

(
N −m

N −mβ

)N−m(
1

β

)m

;

and the fact that g(t0) = 1/
√

f(t0) proves Equation 3.3.3. Finally,

g(t0) = βm/2

(
1 + m

1 − β

N −m

)(N−m)/2

= exp

{[
βm/2

(
1 + m

1 − β

N −m

)(N−m)/2
]}

= exp

{
m

2
log β +

(
N −m

2

)
log

(
1 + m

1 − β

N −m

)}

≤ exp

{
m

2
log β +

(
N −m

2

)[
m

1 − β

N −m
− m2

2

(
1 − β

N −m

)2
]}

,

since, for all x ≥ 0,

log(1 + x) ≤ x− x2

2
. (3.3.6)

Consequently,

βm/2

(
1 + m

1 − β

N −m

)(N−m)/2

≤ exp
{

m
2

(1 − β + log β)
}

exp
{

m2

4
(1−β2)
(N−m)

}

≤ exp
{m

2
(1 − β + log β)

}
,

proving the first part of Lemma 3.3.2.

Regarding Equation 3.3.2, the proof is almost exactly the same as that of Equation 3.3.1.
In fact, the same calculations will show that

P
{
N(X2

1 + . . . + X2
m) ≤ mβ(X2

1+ . . . + X2
N)
}

≤ (1 + 2tmβ)−(N−m)/2[1 + 2t(mβ −N)]−m/2

for t ∈
(
0, 1

2(N−mβ)

)
. Also, the right hand side of the inequality above is minimized at −t0,

with t0 defined as previously. This value does lie in the desired range
(
0, 1

2(N−mβ)

)
for β > 1,

which yields

P{N(X2
1 + . . . + X2

m) ≤ mβ(X2
1 + . . . + X2

N)} ≤ βm/2

(
1 + m

1 − β

N −m

)(N−m)/2

and the proof of Equation 3.3.2 follows in an analogous fashion.
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We now recall a central result used to prove the JL-Lemma in Chapter 2: if we randomly
choose a point x ∈ SN−1 and a fixed rank m linear orthogonal projection P : ℓN2 → ℓN2 , the
distribution of the norm of Px ∈ ℓN2 would be the same as if we have chosen a fixed x ∈ SN−1

and a uniformly chosen projection P .
Our next step is Theorem 3.3.2, which claims that the normalization of a N -standard

Gaussian vector has an uniform distribution on the sphere. As a consequence, L ∈ R will
have the same distribution of the norm of the projection on a fixed m-subspace of ℓN2 of a
uniformly chosen point in SN−1. Finally, by the result in the paragraph above, L will also
have the same distribution of the norm of a fixed point in SN−1 projected on a uniformly
chosen m-subspace of ℓN2 . Namely,

Theorem 3.3.2. Let we represent a Gaussian vector g ∈ RN in polar form as

g = rθ,

where r = ‖g‖2 is the length and θ = g/‖g‖2 is the direction of g. We have that r and θ are
independent random variables. Moreover, θ is uniformly distributed on the unit sphere SN−1.

We are now able to present the following proof:

Proof of the Theorem 3.3.1. If N ≤ m, the result follows directly. Else, take a random m-
dimensional subspace S ∈ RN and let v′i ∈ S be the projection of vi ∈ V into S. Then, by the
discussion motivated by Theorem 3.3.2, L has the same distribution of ‖v′i − v′j‖22. Moreover,
by setting β = 1− ε and µ = (m/N)‖vi − vj‖22 and applying Equation 3.3.1 from Lemma 3.3.2,
we get

P{‖v′i − v′j‖22 ≤ (1 − ε)µ} = P{L ≤ (1 − ε)µ}
≤ exp

{m
2

[1 − (1 − ε) + log(1 − ε)]
}

≤ exp

{
m

2

[
ε−

(
ε +

ε2

2

)]}
= exp

{
−mε2

4

}

≤ exp{−2 logM} = 1/M2,

by applying the fact that

log(1 − x) ≤ −x− x2

2
, (3.3.7)

for 0 ≤ x < 1, in the second line.

Similarly, we can apply Equations 3.3.2 and 3.3.6 to get

P{L ≥ (1 + ε)µ} ≤ exp
{m

2
[1 − (1 + ε) + log(1 + ε)]

}

≤ exp

{
m

2

[
−ε +

(
ε− ε2

2
+

ε3

3

)]}

= exp

{
−mε2(3 − 2ε)

12

}

= exp{−2 logM} =
1

M2
.
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Now, set the map f(vi) =
√

N/mv′i. By the above calculations, for some fixed pair (i, j), the
chance that the distortion

‖f(vi) − f(vj)‖22
‖vi − vj‖22

does not lie in the range [1− ε, 1 + ε] is at most 2/M2. Using the trivial union bound, the
chance that some pair of points suffers a large distortion is at most

(
M

2

)
× 2/M2 = 1 − 1/M.

Hence, f has the desired properties with probability at least 1/M.

Recall that during their proof Dasgupta and Gupta used the Markov inequality. This
yields a loose bound and will give room to an improved version of this proof that will be
presented in 2010 by Javier Rojo and Tuan S. Nguyen [RojNg2010].

3.3.3 Rojo and Nguyen – 2010

In this next work, Rojo and Nguyen [RojNg2010] revisit the proof presented by Dasgupta
and Gupta [DasGup2003]. Namely, they noticed that even though this previous work was
based on the the assumption of a Gaussian random matrix, the proof uses a loose bound
on the probability for the JL-Lemma to hold since it uses the Markov inequality. Rojo
and Nguyen avoid this by working directly over the distribution of the squared norm of the
projected vectors.

Moreover, we must say that Rojo and Nguyen further investigated, also in [RojNg2010],
a version of the JL-Lemma that projects ℓN2 to ℓm1 . However, we shall not make a deeper
discussion about it in this text.

Regarding the Rojo and Nguyen’s version of the JL-Lemma, it is based on the following
results:

Lemma 3.3.3 (Lemma 3.1 from [RojNg2010]). Let m be an even integer, and 0 < ε < 1. Let
λ1 = m(1 + ε)/2 and d = m/2. Then,

g(m, ε) := e−λ1
λd−1
1

(d− 1)!

is a decreasing function in m for a fixed ε.

Theorem 3.3.3 (Theorem 3.3 from [RojNg2010]). Let d be a positive integer.

1. Let 1 ≤ d < λ1. Then,
d−1∑

k=0

λk
1

k!
=

(
λ1

λ1 − d

){
λd−1
1

(d− 1)!

}
.

2. Let 0 < λ2 < d. Then,
∞∑

k=d

λk
2

k!
=

(
λ2

d− λ2

){
λd−1
2

(d− 1)!

}
.
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We’re now in the position of stating and proving the Rojo and Nguyen version of the
JL-Lemma.

Theorem 3.3.4. For any 0 < ε < 1 and integer M, let m be the smallest even integer satis-
fying

1 + ε

ε
g(m, ε) ≤ 1

M2
.

Then, for any set V of M points in RN , we may choose a linear map f : RN → Rm such that

(1 − ε)‖u− v‖22 ≤ ‖f(u) − f(v)‖22 ≤ (1 + ε)‖u− v‖22, ∀ u, v ∈ V (3.3.8)

with a probability of at least

1 − 2

M2
.

Proof. Firstly, since f is assumed linear, Equation 3.3.8 is equivalent to

P{‖f(z)‖22 ≥ (1 + ε)‖z‖22} + P{‖f(z)‖22 ≤ (1 − ε)‖z‖22} ≤ 2

M2
, (3.3.9)

for z ∈ V − V. Furthermore, the bound in Equation 3.3.9 can be obtained by separately
bounding the left and right tail probabilities. That is, by finding f such that simultaneously

P{‖f(z)‖22 ≥ (1 + ε)‖z‖22} ≤ 1

M2
(3.3.10)

and

P{‖f(z)‖22 ≤ (1 − ε)‖z‖22} ≤ 1

M2
(3.3.11)

holds.
Also, let R be a N ×m random matrix with independent standard Gaussian entries whose
column set will be denoted by {r1, . . . , rm} ⊂ RN . For x in the M -point set V, define

f(x) =
1√
m

xT R and y =
√
m

f(x)

‖x‖2
.

Then, yj = 〈x/‖x‖2 : rj〉 ∼ N (0, 1) and consequently y2j ∼ χ2
1 with E{‖y‖22} = m. Next, recall

that if X ∼ Γ(d, 1) and Y ∼ Poisson(x), we have P{X ≥ x} = P{Y ≤ d− 1}. That is,

∫ ∞

x

1

Γ(d)
zd−1e−z dz =

d−1∑

j=0

xje−x

j!
, (3.3.12)

for d = 1, 2, 3, . . .

Now, let us refer to m(1 + ε) in Equation 3.3.10 as α1 to simplify the notation. Since

‖y‖22 =
m∑

j=1

y2j ∼ χ2
m ≡ Γ(m/2, 2),
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we may apply Equation 3.3.12 to Equation 3.3.10 with d = m/2 and write the right-tail
probability as

P{‖y‖22 ≥ α1} = e−α1/2

d−1∑

j=0

(α1/2)j

j!
. (3.3.13)

In the same fashion, let α2 := m(1− ε) in Equation 3.3.11. Then, the left-tail probability can
be written as

P{‖y‖22 ≤ α2} = e−α2

∞∑

j=d

(α2/2)j

j!
. (3.3.14)

The proof is concluded by applying Theorem 3.3.3 to Equations 3.3.13 and 3.3.14. For
illustration, let us apply it to Equation 3.3.13 with

λ1 = α1/2 = m(1 + ε)/2 and d = m/2.

Indeed, the right-tail probability is bounded as follows:

P{‖y‖22 ≥ α1} = e−λ1

d−1∑

j=0

≤
(

1 + ε

ε

)[
λd−1
1

(d− 1)!

]
e−λ1 .

On the other hand, by setting

λ2 = α2 = m(1 − ε)/2 and d = m/2

in Equation 3.3.14, it follows from Theorem 3.3.3 that

P{‖y‖22 ≤ α2} = e−λ2

∞∑

j=d

λj
2

j!

=

(
1 − ε

ε

)[
λd−1
2

(d− 1)!

]
e−λ2

≤
(

1 + ε

ε

)[
λd−1
1

(d− 1)!

]
e−λ1 ,

with the last inequality being due to the fact that

eλ1−λ2 ≤
(
λ1

λ2

)d

.

Finally, note that the bound on the left-tail probability is the same as the one for the right-tail
probability. Therefore,

P{‖y‖22 ≥ α1} + P{‖y‖22 ≤ α2} ≤ 2

(
1 + ε

ε

)
g(m, ε).

Moreover, we can obtain, for a given ε, the lower bound on m by numerically obtaining the
smallest even integer m such that

(
1 + ε

ε

)
g(m, ε) ≤ 1

M2
,

concluding then the proof.
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3.4 The sub-Gaussian era of the JL-Lemma

3.4.1 Introduction

Before exploring further developments in the JL-Lemma, we have to introduce some new
concepts that justify the name of the present section.

Definition 3.4.1 (Sub-Gaussian tail). Let X be a real random variable with EX = 0. We
say that X has a sub-Gaussian upper tail if there exists a constant a > 0 such that for all
λ > 0,

P{X > λ} ≤ e−aλ2

.

Moreover, we say that X has a sub-Gaussian upper tail up to λ0, if the previous bound holds
for all λ ≤ λ0. Finally, we say that X has a sub-Gaussian tail , if both X and −X have
sub-Gaussian upper tails.

Definition 3.4.2 (Uniform sub-Gaussian tail). Given the previous Definition, we say that a
sequence X1, . . . , XN of random variables has a uniform sub-Gaussian tail when all of them
have sub-Gaussian tails with the same constant.

The next proof we present is based on taking a matrix whose entries are independent
random variables with sub-Gaussian entries. More precisely,

Definition 3.4.3 (Rademacher random variable). Let X be a random variable attaining
values 1 and −1 each with probability 1/2. We say that X is a Rademacher random variable.

Proposition 3.4.1. Rademacher random variables have a sub-Gaussian tail.

Proof. In fact, let X be a Rademacher random variable. Then, EX = 0 and

P{X > λ} =





0, if λ ≥ 1

1/2, if − 1 ≤ λ < 1

1, if λ < −1

.

Consequently, if 0 < λ < 1,

P{X > λ} = 1/2 = e− log 2 ≤ e−aλ2

,

for a = log 2. On the other hand, if λ ≥ 1,

P{X > λ} = 0 ≤ e−aλ2

,

for any a > 0.
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3.4.2 Achlioptas – 2001

In his 2001 work, [Ach2003]3, Achlioptas presented a new sampling method of the random
projection matrix in the JL-Lemma. This new method has a way smaller computational
complexity and it is very easy to implement. Indeed, it drops the assumption of Gaussian
entries by substituting them for independent Rademacher random variables.

Another variant of his result has the entries of the projection matrix attaining value 0

with probability 2/3 and values
√
3 and −

√
3 with probability 1/6 each. This later setting

allows for computing the projection about 3 times faster than the former. This can be
justified since this matrix is sparse, since only about one third of its entries are nonzero.

He also proves that surprisingly this simplification comes without any sacrifice in the
dimensionality reduction of the embedding. In fact, Achlioptas pointed out that the loss of
information is minimal since M vectors chosen uniformly in SN−1 are nearly orthonormal in
a high-dimensional space. Moreover, the random projection matrix is close to orthogonal
in such spaces [Mrk1994]. Finally, for every fixed value N of the original dimension of the
dataset, there is a slightly better bound than all current methods.

The Achlioptas’ version of the JL-Lemma is now presented:

Theorem 3.4.1 (Achlioptas – 2001 [Ach2003]). Let P be an arbitrary set of M points in
RN , represented as an (M ×N)-matrix A. Given ε, β > 0, let

m0 =
12(2 + β)

ε2(3 − 2ε)
logM.

For a integer m ≥ m0, let R be a N ×m random matrix with [Ri,j ] being independent random
variables from either of the following probability distributions:

[Ri,j] =

{
1, with probability 1/2,

−1, with probability 1/2

or

[Ri,j] =
√

3 ×





1, with probability 1/6,

0, with probability 2/3,

−1, with probability 1/6

.

Let

E =
1√
m
AR

and let f : RN → Rm map the i-th row of A to the i-th row of E. Thus, with probability at
least 1−M−β , for all u, v ∈ P, we have

(1 − ε)‖u− v‖22 ≤ ‖f(u) − f(v)‖22 ≤ (1 + ε)‖u− v‖22.
The work of Achlioptas motivated the further speed up methods for the JL-Lemma

implementation when the projection matrix is sparse. For a matter of brevity we will not
discuss this new branch in the area, that leads to the FJLT (fast Johnson-Lindenstrauss
transform). The interested reader may direct himself to [AilChz2006]4.

3A conference paper on 2001, published in a Journal in 2003.
4This conference paper was later published in a Journal in 2009 [AilChz2009].
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3.4.3 Matoušek – 2008

In his work [Mat2008], Matoušek obtained a very simple proof of the JL-Lemma using
the concept of random variables with sub-Gaussian tails. Moreover, he improved its compu-
tational burden by using a random sparse matrix inspired by the work [AilChz2006], but we
will not discuss these practical results and we direct the interested reader to [Mat2008].

Theorem 3.4.2 (Theorem 3.1 from [Mat2008]). Let ε ∈ (0, 1/2] and δ ∈ (0, 1), and define
m = Cε−2 log δ

2 , with C being a constant. Define a random linear map T : RN → Rm by

[Tx]i =
1√
m

N∑

j=1

[R]i,jxj, i ∈ [m],

with the entries of R being centered random variables with unitary variance and uniform
sub-Gaussian tail. Then, for every x ∈ RN , we have

P{(1 − ε)‖x‖2 ≤ ‖Tx‖2 ≤ (1 − ε)‖x‖2} ≥ 1 − δ.

This version of the Lemma can be easily proved through the following results:

Lemma 3.4.1 (Lemma 2.2 from [Mat2008]). Let X1, . . . , XN be independent random vari-
ables with zero mean, unitary variance and uniform sub-Gaussian tail. Let also α1, . . . , αN

be real coefficients satisfying
α2
1 + . . . + α2

N = 1.

Then the sum
Y = α1X1 + . . . + αNXN

also has zero mean, unitary variance and a sub-Gaussian tail.

Proposition 3.4.2 (Proposition 3.2 from [Mat2008]). Let m ≥ 1 be an integer. Let Y1, . . . , Ym
be independent random variables with zero mean, unitary variance and with uniform sub-
Gaussian tail. Then

Z =
1√
m

(
m∑

i=1

Y 2
i −m

)

has a sub-Gaussian tail up to
√
m.

More precisely, we have that:

Matoušek’s proof for the JL-Lemma. Let x ∈ RN be a fixed unit vector and let us set

Yi =
N∑

j=1

[R]i,jxj.

Then by Lemma 3.4.1, the variables Yi are centered, have unitary variance and uniform
sub-Gaussian tail with constant that we will call a. So Proposition 3.4.2 applies and shows
that

Z =
1√
m

(
m∑

i=1

Y 2
i −m

)
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has a sub-Gaussian tail up to
√
m. We note that for a fixed unitary x, the quantity ‖Tx‖22 − 1

has the same distribution as Z/
√
m. Thus, still with a fixed unitary x,

P{‖Tx‖2 ≥ 1 + ε} ≤ P{‖Tx‖22 ≥ 1 + 2ε} = P{Z ≥ 2ε
√
m}.

Since we assume ε ≤ 1/2, we are in the allowed range and the last probability is at most

exp{−a(2ε
√
m)2} = exp{−4aε2Cε−2 log(2/δ)} ≤ 1/2δ,

for C ≥ 1/(2a). The calculation showing that P{‖Tx‖2 ≤ 1− ε} ≤ 1/2δ is almost the same and
will be omitted.

For brevity, we will not discuss the suitability for applications of the JL-Lemma’s versions
presented so far. However, we must direct the reader to M.Sc. dissertation of John Fedoruk
[Fdk2016]5, that inspired many parts of this text, and discuss in deeper details the practical
aspects of the Matoušek’s JL-Lemma and also present improved versions of the results in
[Mat2008].

3.5 Closing the circle

Let us review what we have presented so far in this Chapter. The pioneering proofs of
the JL-Lemma were based on tough geometrical arguments, namely the concentration of
measure on certain subsets of the unit sphere. Next, many assumption on the JL-embedding
were dropped by selecting its entries from simple probability distributions and the standard
Gaussian one, yielding way easier proofs and better lower bounds on the dimension of the
projected space. Finally, Matoušek present the linkage among such “simple distributions”:
their tails have a sub-Gaussian decay.

We thus finish this Chapter by highlighting the interesting fact that the sub-Gaussian
decay was exactly the core of the geometrical proofs of the JL-Lemma. That is, the first
approaches had already found this underlying idea behind the Lemma, but they were very
difficult and poorly suitable for applications. Then, their successors took a safety distance
from the JL-Lemma’s theoretical aspects, substituting them for simple results from Proba-
bility and Statistics. The circle is closed when a more formal treatment of these probabilistic
ideas direct us back to the same central idea but with a simpler and more practical treatment:
the sub-Gaussian concentration of measure inequalities.

Consequently, we may revisit the past proofs reaching the hard parts through this back-
door of the sub-Gaussian paradigm. Indeed, this is a rough summary of the JL-Lemma due
to one of the main texts that has inspired this one: Vershinyn’s High-Dimensional Probabil-
ity: An Introduction with Applications in Data Science [Vsh2018]. The approach through
sub-Gaussian variables done in that text yields a simple treatment of the results that were
exhibited here and also of some that we will not discuss.

5This text was also published as a paper in 2018 [FSJH2018]



Chapter 4

JL-Lemma optimality

4.1 Introduction

Let us recall some important facts about the JL-Lemma. Firstly presented just as a
secondary result by W. B. Johnson and J. Lindenstrauss in [JL1984], the JL-Lemma is
nowadays a paradigm for dimensionality reduction. In fact, the dimensionality reduction
aims to project an M -point dataset in RN into a subspace of lower dimension Rm so that the
projected data is similar to the original in a certain aspect. A first idea is trying to project
the data isometrically, but it is potentially problematic since not all sets can be isometrically
projected in a lower dimension subspace, for instance, the N -simplex in RN . That being
said, the main idea of the JL-Lemma as a dimensionality reduction paradigm is that, if we
substitute the isometric projection for a quasi-isometric (or ε-isometric, with ε > 0) one, we
may achieve a projection into a subspace whose dimension m has the logarithmic order of
the cardinality of the dataset, M, i.e., m = O

(
ε−2 logM

)
.

Along the third chapter of the present text we exhibited an almost comprehensive se-
quence of versions of the JL-Lemma. Throughout time, these versions resulted in projections
into subspaces whose dimension was smaller than the one of their predecessors, but always
with m = O

(
ε−2 logM

)
. This raises the question if the JL-Lemma yields an optimal projec-

tion or, equivalently, if the dimension m is a sharp, tight or optimal value, i.e, if there is a
dataset X ⊂ RN that attains such m, concluding that m = Ω(ε−2 logM).

In the next section, we shall stress some assumptions made on the JL-embedding along
time that simplified a lot the proof of the JL-Lemma. The outcome of such discussion is
the distinction between the JL-Lemma and the Distributional JL-Lemma, important but
frequently set aside in the literature. In the third section, we explain in more details the
optimality problem for the JL-Lemma and exhibit a noncomprehensive list of the attempts
to solve it along the time from the inception of the JL-Lemma [JL1984] to the proof of its
optimality [LN2017]. We start the fourth section by presenting a brief overview of Larsen
and Nelson’s optimality result for a linear JL-embedding. Later, we present the proof of this
Theorem as in [LN2016]. Finally, in the last section, we make an overview of the Larsen and
Nelson’s optimality result for a non-linear JL-embedding [LN2017]. Since a formal proof
of this result require a lot of concepts that will not be presented in this text like Coding
Theory and the Geometry of Convex Bodies, we shall not present such proof and we direct

61
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the interested reader to the paper of Larsen and Nelson [LN2017].

4.2 Important remarks on the JL-Lemma

Let us recall the JL-Lemma statement.

Theorem 4.2.1 (JL-Lemma). Let X ∈ RN be a M-points dataset. For a fixed ε > 0, and a
natural m = O

(
ε−2 logM

)
, there exists an embedding f : RN → Rm such that

(1 − ε)‖u− v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ε)‖u− v‖2, ∀u, v ∈ X.

This surprising result yields a powerful paradigm towards dimensionality reduction. Al-
though one should expect this result to have a frightening and highly theoretical proof, the
approach to the JL-Lemma, since its first appearance in [JL1984], was always the one of
proving a simpler result that implies it. In this section, we shall discuss these workarounds
more deeply.

4.2.1 Random projection argument

Instead of determining, for any given X ⊂ RN , ε > 0 and m = O
(
ε−2 logM

)
, an ε embed-

ding f : RN → Rm of the vectors in X, all the proofs exhibited in the third chapter of this
text were based in an argument called random projection. In fact, the idea is not to define
an f satisfying the JL-Lemma for given a fixed X, but instead to select f from a probabil-
ity distribution that yields a JL-embedding of X with positive probability, which proves its
existence.

Namely, in [JL1984, FklMae1988, IndMot1998], the embedding f was assumed to be an
orthogonal linear projection into a randomly chosen m-dimensional subspace of RN . Also,
in [DasGup2003, Alo2003], the embedding f ∈ MN×m was assumed to be a random matrix
with standard Gaussian entries, dropping the orthogonality assumption since its columns
are orthogonal with high probability [Mrk1994]. Finally, in [Ach2003, Mat2008], the entries
of f are selected from a probability distribution with sub-Gaussian tails.

4.2.2 On the linearity of JL-embedding

We must recall that all known proofs of JL-Lemma presented in Chapter 3 have made
the assumption that the JL-embedding f : ℓN2 → ℓm2 is linear. However, it does not diminish
its relevance for two main reasons. Firstly, the linearity assumption on f is important in
several applications of the JL-Lemma. We may consider, for example, its application to
Compressed Sensing. In this area, one wishes to (approximately) recover (approximately)
sparse signals using few linear measurements [Don2006, CT2005]. We have that the map
f, representing a fixed set of measurements of the signal, allows good signal recovery if f

satisfies the JL guarantee for the set of all k-sparse vectors, being k ∈ N a fixed constant
[CT2005]. Secondly, in [LN2017], Larsen and Nelson proved that surprisingly the linearity
assumption is not necessary for sharpness.
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4.2.3 Distributional JL-Lemma (DJL-Lemma)

It is common in the literature not to make distinction between JL-Lemma and DJL-
Lemma. However, they are somewhat distinct: in the JL-Lemma, our goal is to determine
a map f : ℓN2 → ℓm2 with m as small as possible such that, given a dataset X ⊂ RN and a
distortion ε > 0, f projects X into ℓm2 ε-isometrically; on the other hand, in the DJL-Lemma,
our goal is to provide a distribution Dε,δ, with δ < 1/2 over the set L(ℓN2 , ℓm2 ) of linear maps
f : ℓN2 → ℓm2 with m as small as possible such that any vector in RN has, with a probability
greater than 1− δ, its norm distorted by a factor of at most 1 + ε.

More precisely, we have the following:

Theorem 4.2.2 (DJL-Lemma). For any N > 1, ε > 0 and δ < 1/2, there is a probability
distribution Dε,δ over L(ℓN2 , ℓm2 ) for some m = O{ε−2 log(1/δ)} such that

P
f∼Dε,δ

{
(1 − ε)‖x‖2 ≤ ‖f(x)‖2 ≤ (1 + ε)‖x‖2

}
> 1 − δ, ∀x ∈ RN .

Also, note that:

Proposition 4.2.1. The JL-Lemma is a particular case of the DJL-Lemma.

Proof. In fact, with the assumption of a linear f : ℓN2 → ℓm2 , the condition of a ε-isometry in
the JL-Lemma, i.e.,

(1 − ε)‖u− v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ε)‖u− v‖2, ∀u, v ∈ X

is equivalent to the norm distortion, i.e.,

(1 − ε)‖x‖2 ≤ ‖f(x)‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ X −X.

To conclude the proof, it suffices to choose a suitable δ < 1/2 so that the original JL-Lemma
holds with positive probability. In order to do so, take δ < 1/2× 1/

(
M
2

)
and then perform a

union bound over all
x ∈ X −X = {u− v : u 6= v ∈ X}.

More precisely, let X = {x1, . . . , xM} ⊂ RN . We have that

P
f∼Dε,δ

{
(1 − ε)‖x‖2 ≤ ‖f(x)‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ X −X

}

= 1 − P
f∼Dε,δ

{
‖f(x)‖2 /∈ ((1 − ε)‖x‖2, (1 + ε)‖x‖2), for some x ∈ X −X

}

≥ 1 −
∑

1≤i<j≤M

P
f∼Dε,δ

{
‖f(xj) − f(xi)‖2 /∈ ((1 − ε)‖xj − xi‖2, (1 + ε)‖xj − xi‖2)

}

> 1 −
(
M

2

)
δ > 0.



CHAPTER 4. JL-LEMMA OPTIMALITY 64

4.3 Past results on tightness of JL-Lemma

4.3.1 Introduction

The problem of tightness of an estimation, by lower or upper bounds, refers to whether
these bounds are attained by some of the variables being estimated. Regarding the JL-
Lemma, in its first appearance in [JL1984], W. B. Johnson and J. Lindenstrauss proved
that m = O

(
ε−2 logM

)
. We will say that the Lemma is tight, sharp or that its result is

optimal if there is some M -size set X ⊂ RN such that any map JL map, f : ℓN2 → ℓm2 must
have m = Ω(ε−2 logM).

The historical approach toward solving JL-Lemma’s tightness problem has been done by
exhibiting examples of sets yielding higher lower bounds on m. In the present section, we
shall exhibit some of these results. However, our exposition is not comprehensive, excluding,
for brevity, some important investigations such as the sharpness when the JL-embedding is
a matrix satisfying the Restricted Isometry Property (RIP) (see [KW2011]).

4.3.2 Johnson and Lindenstrauss – 1984

The first step towards answering the optimality problem of the JL-Lemma was given in its
very inception. In [JL1984], Johnson and Lindenstrauss argued that the projected dimension
cannot have a dependence that is smaller than logarithmic in M, or, more precisely, such
that m = Ω(logM).

For the sake of brevity, we shall just exhibit an overview to the proof of this fact and
direct the interested reader to [JL1984]. Namely, they used a result about ε-nets to conclude
that in a ball with radius 2 in ℓm2 , there are at most 4m vectors whose pairwise distance is at
least 1. Consequently, for a sufficiently small distortion ε, there is no ε-isometry that projects
an orthonormal set with more than 4m vectors in a m-dimensional subspace of ℓN2 .

4.3.3 Noga Alon – 2003

Later, in 2003 [Alo2003], Noga Alon exhibited an example that almost attains a dimension
m = O

(
ε−2 logM

)
. More precisely, he proved the following:

Theorem 4.3.1 (Alon’s bound). If X ⊂ RN is the N-simplex, i.e., X = {0N , e1, . . . , eN}, with
M = N + 1 and ε ∈ (0, 1/2), then any JL-map, f : X → ℓm2 , must satisfy

m = Ω

(
min

{
N, ε−2 log N

log(1/ε)

})
.

Even though the bound m = O
(
ε−2 logM

)
is almost attained in Theorem 4.3.1, the term

log(1/ε) is still not optimal. Furthermore, Alon [Alo2003] proved that this term cannot be
removed for this particular set X, undermining completely the hope of a simplex yielding an
optimal m (see [NNW12] for details).

Alon’s work raises the question if the JL-Lemma is suboptimal for any set, i.e., if there is
no X ⊂ RN that can be projected with m = O

(
ε−2 logM

)
. This was a major open question

in the area of dimensionality reduction that was still unsolved for 30 years until the work of
Larsen and Nelson in [LN2016].
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4.3.4 Larsen & Nelson – 2014

In 2014 [LN2016]1, Larsen and Nelson exhibited an example of a set X ⊂ RN yielding
m = O

(
ε−2 logM

)
when the JL-embedding f : ℓN2 → ℓm2 is linear. More precisely, they proved

the following:

Theorem 4.3.2 (Larsen & Nelson – 2014). For any N > 1 and ε ∈ (0, 1/2), there is an
NO(1)-point X ⊂ RN such that any linear map f : (X, ℓ2) 7→ ℓm2 satisfying the JL-guarantee
must have:

m = Ω(min{N, ε−2 logN}).

Notice this result improves Alon’s [Alo2003] lower bound by getting rid of the log(1/ε)

factor. This result is sharp since the identity map achieves the first term in the minimum
and the JL-Lemma provides

m = O
(
ε−2 logM

)
= O

(
ε−2 logNO(1)

)
= O

(
ε−2 logN

)
.

However, the optimality problem for the JL-Lemma is still unsolved since it may be subop-
timal for non-linear embeddings f.

4.3.5 Larsen & Nelson – 2016

In 2016 [LN2017]2, the problem of JL-Lemma optimality was finally settled for nearly
the full range of ε of interest. The same authors of [LN2016] exhibited an example attaining
m = O

(
ε−2 logM

)
. More precisely, Larsen and Nelson proved the following:

Theorem 4.3.3. For any integers M,N ≥ 2 and ε ∈
(

log0.5001 M√
min{M,N}

, 1

)
, there is a set of points

X ∈ RN of size M, such that any map f : (X, ℓ2) → ℓm2 providing the JL-guarantee must have

m = Ω(ε−2 log(ε2 M)).

4.4 Proof of Larsen & Nelson’s Theorem – 2014

4.4.1 Overview of the proof of Larsen & Nelson’s Theorem – 2014

The main result from Larsen and Nelson presented in [LN2016] claims the existence
of a M -set X ⊂ RN such that the JL-Lemma yields a linear projection, here denoted as
a matrix A ∈ Mm×N , of this set in a subspace whose dimension attains the lower bound
m = O

(
ε−2 logM

)
. The construction of such set is done via a probabilistic argument. More

precisely, X will be the union of the N vectors {e1, . . . , eN} of the canonical basis of RN

together with several independent Gaussian vectors.
At first, we make X = {e1, . . . , eN}. Thus, if A ∈ Mm×N , m ≤ N is a ε-isometry in X, i.e.,

(1 − ε)‖x‖22 ≤ ‖A x‖22 ≤ (1 − ε)‖x‖22, ∀x ∈ X, (4.4.1)

1This paper of 2014 was later published as a conference paper in 2016.
2This paper of 2016 was later published as a conference paper in 2017.
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then its columns must heve nearly unit norm. Then, the results from covering and packing
numbers will imply the existence of a family of matrices

Φ ⊂
N⋃

t=1

Mt×N , with #Φ = exp{O
(
N2 logN

)
}

such that

inf
Â∈Φ∩Mm×N

‖A− Â‖F ≤ 1

NC
, (4.4.2)

with C > 0 being as large as desired. Also, by a Theorem of Lata la [Lat1999], for any Â ∈ Φ

and a random Gaussian vector g ∈ RN , we have that

Pg

{∣∣‖Âg‖22 − tr(Â
t
Â)
∣∣ ≥ Ω{

√
log(1/δ) ‖Ât

Â‖F}
}

≥ δ, (4.4.3)

for any 0 < δ < 1/2.

Next, if follows from the standard Gaussian concentration of measure that a random
Gaussian vector satisfies

Pg

{
|‖g‖22 −N | > C

√
N log(1/δ)

}
< δ/2. (4.4.4)

Thus, by applying a union bound, we can conclude that the events in Equations 4.4.3 and
4.4.4 happen simultaneously with probability Ω(δ). Consequently, if we take N independent
random Gaussian vectors, the probability that the events in Equations 4.4.3 and 4.4.4 never
happen simultaneously for any of these N vectors is at most

{1 − Ω(δ)}N ≈ exp{−Ω(δN)}.

Now, by taking a sufficiently large N and δ = 1/poly(N), it is possible to show through a
union bound over Φ that for every Â ∈ Φ, one of the N Gaussian vectors satisfies the events
in Equations 4.4.3 and 4.4.4 simultaneously. More precisely, there exist M = O

(
N3
)

vectors
{v1, . . . , vM} := V ⊂ RN such that

‖v‖22 = N ±O
(√

N logN
)
, ∀v ∈ V ; (4.4.5)

and, for any Â ∈ Φ, there exists some v ∈ V such that
∣∣∣ ‖Âv‖22 − tr(Â

t
Â)
∣∣∣ = Ω(

√
logN ‖Â‖F). (4.4.6)

The final definition of X is {e1, . . . , eN} ∪ V. Then, using Equations 4.4.1 and 4.4.2, we
show that Equation 4.4.6 implies

tr(Â
t
Â) = N ±O (εN) , (4.4.7)

with ±B representing a value in [−B,B]; and

∣∣ ‖A v‖22 −N
∣∣ = Ω(

√
logN ‖Ât

Â‖F) −O (εN) . (4.4.8)
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Therefore, by the triangle inequality, Equations 4.4.5 and 4.4.1 imply

∣∣ ‖A v‖22 −N
∣∣ ≤

∣∣ ‖A v‖22 − ‖v‖22
∣∣−
∣∣ ‖v‖22 −N

∣∣ = O
(
εN +

√
N logN

)
.

Finally, combining Equations 4.4.7 and 4.4.8, we obtain

tr(Â
t
Â) =

N∑

i=1

λ̂i ≥ {1 −O(ε)}N ;

and

‖Ât
Â‖2F =

N∑

i=1

λ̂2
i = O

(
ε2N2

logN
+ N

)
,

with {λ̂i}i∈[N ] being the eigenvalues of Â
t
Â. With bounds on

∑
i λ̂i and

∑
i λ̂

2
i in hand, a

lower bound on rank(Â
t
Â) ≤ m follows by the Cauchy-Schwarz-Bunyakovsky inequality.

Next, we shall exhibit this proof with more details. Namely, we will present some pre-
liminary results in the Section 4.4.2 and then the proof itself in the Section 4.4.3.

4.4.2 Preliminaries

At first, we exhibit the following result without proving it:

Theorem 4.4.1 (Lata la – 1999 [Lat1999]). There is a universal constant c > 0 such that for
g ∈ RN standard Gaussian random vector and a symmetric matrix A ∈ RN×N with vanishing
diagonal elements, we have:

∀t ≥ 1, Pg

{
|gTAg| > c(

√
t · ‖A‖F + t · ‖A‖2→2)

}
≥ min{c, e−t}

Also, this Theorem implies the following corollary:

Corollary 4.4.1. Let g and A be as in Theorem 4.4.1, except for A being no longer re-
stricted to have zero diagonal. Then there is a universal constant c > 0 such that

∀t ≥ 1, Pg{|gTAg − tr (A)| > c(
√
t · ‖A‖F + t · ‖A‖2→2)} ≥ min{c, e−t}.

Proof of the Corollary. As said before, this Corollary follows from Theorem 4.4.1. However,
we will not apply it directly to matrix A. We will instead construct an auxiliary matrix
and conclude the proof by applying Theorem 4.4.1 and the Law of Large Numbers. The
construction is as follows.

Let M be a positive integer and define

g̃ = (g̃1,1, g̃1,2, . . . , g̃1,M , . . . , g̃N,1, g̃N,2, . . . , g̃N,M),

an MN -standard Gaussian random vector. Then gi is equal in distribution to M−1/2
∑M

j=1 g̃i,j.
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Next, define ÃM as the NM ×NM matrix formed by converting each entry aij of A into an
M ×M block with each entry being aij/M. We now claim that

gTAg − tr (A) and g̃T ÃM g̃ − tr (ÃM )

are equal in distribution.

In fact, tr (A) = tr (ÃM ). Moreover,

gTAg − tr (A) =
N∑

i=1

N∑

j=1

aijgigj − tr (A)

d
=

N∑

i=1

N∑

j=1

M∑

r=1

M∑

s=1

aij
M

g̃i,rg̃j,s − tr (A)

= g̃T ÃM g̃ − tr (ÃM ),

with
d
= denoting the equality in distribution.

Consequently, for any ∀t ≥ 1, the probability of

|gTAg − tr (A)| > c(
√
t · ‖A‖F + t · ‖A‖2→2)

equals the probability of

|g̃T ÃM g̃ − tr (ÃM )| > c(
√
t · ‖A‖F + t · ‖A‖2→2). (4.4.9)

This is the first step towards substituting A by ÃM in the statement of the Corollary. We
still have to substitute the terms in A in the right hand side of Equation 4.4.9, but we will
first substitute its left hand side by a simpler expression in ÃM . Namely, we will show, by
the Weak Law of Large Numbers, that

∀λ > 0, lim
M→∞

Pg

(
|g̃T ÃM g̃ − tr (ÃM )| > λ

)
= lim

M→∞
Pg

(
|g̃T (ÃM − D̃M )g̃| > λ

)
, (4.4.10)

with D̃M being a diagonal matrix containing the diagonal elements of ÃM . Indeed, the Law
of Large Numbers yields

M∑

j=1

g̃2ij
M

p→ E

{
M∑

j=1

g̃2ij
M

}

=
M∑

j=1

Eg̃2ij
M

=
M∑

j=1

Var(g̃ij)

M
= 1,
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with this penultimate equality being justified by the fact that

E g̃ij = 0, ∀i ∈ [N ] and ∀j ∈ [M ].

Finally, note that

g̃TD̃M g̃ =
N∑

i=1

(
M∑

j=1

g̃2ij

)
aii
M

=
N∑

i=1

(
M∑

j=1

g̃2ij
M

)
aii

p→
N∑

i=1

aii = tr(A),

which results in Equation 4.4.10. Consequently, for any ∀t ≥ 1,

Pg{|gTAg − tr (A)| > c(
√
t · ‖A‖F + t · ‖A‖2→2)}

equals
lim

M→∞
Pg{|g̃T ÃM g̃ − tr (ÃM )| > c(

√
t · ‖A‖F + t · ‖A‖2→2)}. (4.4.11)

The next step now is to substitute A by ÃM in the right hand side of Equation 4.4.11. In
order to do so, we prove that

lim
M→∞

‖ÃM − D̃M‖2→2 = ‖A‖2→2. (4.4.12)

In fact, since D̃M is diagonal, its non-zero elements are just its singular values, with the
larger one being ‖D̃M‖2→2. This yields

| ‖ÃM − D̃M‖2→2 − ‖A‖2→2 | ≤ ‖D̃M‖2→2 = max
i

|aii|/M

by the triangle inequality. Therefore

lim
M→∞

‖ÃM − D̃M‖2→2 = ‖A‖2→2.

Also, by the equivalence of these matrix norms, the result is also valid for ‖ · ‖F . More
precisely,

lim
M→∞

‖ÃM − D̃M‖F = ‖A‖F .

Consequently, for all t ≥ 1, we may rewrite the right hand side of Equation 4.4.11 as follows:

c(
√
t · ‖A‖F + t · ‖A‖2→2) = c

(√
t · lim

M→∞
‖ÃM − D̃M‖F + t · lim

M→∞
‖ÃM − D̃M‖2→2

)
.



CHAPTER 4. JL-LEMMA OPTIMALITY 70

Finally, for all t ≥ 1, we have

Pg

{
|gTAg − tr (A)| > c(

√
t · ‖A‖F + t · ‖A‖2→2)

}

= Pg̃

{∣∣∣ g̃T ÃM g̃ − tr (ÃM )
∣∣∣ > c

(√
t · lim

M→∞
‖ÃM − D̃M‖F + t · lim

M→∞
‖ÃM − D̃M‖2→2

)}

= lim
M→∞

Pg̃

{∣∣∣ g̃T ÃM g̃ − tr (ÃM )
∣∣∣ > c

(√
t · ‖ÃM − D̃M‖F + t · ‖ÃM − D̃M‖2→2

)}

= lim
M→∞

Pg̃

{∣∣∣ g̃T (ÃM − D̃M )g̃
∣∣∣ > c

(√
t · ‖ÃM − D̃M‖F + t · ‖ÃM − D̃M‖2→2

)}
,

with the interchange of the limit being justified by the fact that g̃T ÃM g̃ − tr (ÃM ) has the
same distribution of gTAg for any natural M. Consequently, the claim in this Corollary is
reduced to the zero diagonal case and we can apply Theorem 4.4.1 to prove the desired
result.

Lemma 4.4.1. For some universal constant c > 0 and g ∈ RN a standard Gaussian random
vector,

∀t > 0, P
{∣∣ ‖g‖22 −N

∣∣ > c
√
Nt
}
< e−t.

We now state and prove a Corollary of this Lemma that will be useful later.

Corollary 4.4.2. For A ∈ Rd×N , let λ1 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of ATA and also
let g(1), . . . , g(M) ∈ RN be independent standard Gaussian random vectors. For some universal
constants c1, c2, δ0 > 0 and any 0 < δ < δ0

P

(
∄j ∈ [M ] :

{∣∣‖Ag(j)‖22 −
N∑

i=1

λi

∣∣ ≥ c1
√

log(1/δ)
( N∑

i=1

λ2
i

)1/2
}

∧
{ ∣∣ ‖g(j)‖22 −N

∣∣ ≤ c2
√

N log(1/δ)

})
≤ e−Mδ. (4.4.13)

Before starting the proof, we state the following Lemma.

Lemma 4.4.2. For any 0 < δ < 1 and M ∈ N, (1− δ)M < e−δM .

Proof of the Lemma. We argue by induction on M. At first, consider the case M = 1 and
take the functions f(δ) = 1− δ and g(δ) = e−δ. Clearly, f(0) = g(0) = 1. Moreover,

g′(δ) = (−1) e−δ > −1 = f ′(δ), ∀δ ∈ (0, 1)

and the result follows.

Finally, we take M ∈ N such that:

(1 − δ)M < e−δM , ∀δ ∈ (0, 1).

Multiplying both sides of this inequality by 1− δ and using the induction basis, yield the
result:

(1 − δ)M+1 < (1 − δ) e−δM < e−δe−δM = e−δ(M+1).
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Proof of the Corollary. We will show that, for any fixed j ∈ [M ], it holds that

P

({∣∣‖Ag(j)‖22 −
N∑

i=1

λi

∣∣ ≤ c1
√

log(1/δ)
( N∑

i=1

λ2
i

)1/2
}

∨
{ ∣∣ ‖g(j)‖22 −N

∣∣ ≥ c2
√

N log(1/δ)

})
< 1 − δ. (4.4.14)

Note that δ have to be less than 1 in order to Equation 4.4.14 make sense. As a consequence
of Equation 4.4.14 and since the gj are independent, we have that

P

({∣∣∣∣‖Ag(j)‖22 −
N∑

i=1

λi

∣∣∣∣ ≤ c1
√

log(1/δ)

( N∑

i=1

λ2
i

)1/2}

∨
{ ∣∣ ‖g(j)‖22 −N

∣∣ ≥ c2
√
N log(1/δ)

}
, ∀j ∈ [M ]

)
< (1 − δ)M < e−δM , (4.4.15)

with this last inequality being resulted from Lemma 4.4.2. Moreover, note that Equation
4.4.15 is equivalent to 4.4.13.

Now, we must prove Equation 4.4.14. It suffices to show that

P





∣∣∣∣∣ ‖A g(j)‖22 −
N∑

i=1

λi

∣∣∣∣∣ ≥ c1
√

log(1/δ)

(
N∑

i=1

λ2
i

)1/2


 >

3

2
δ, (with δ < 2/3) (4.4.16)

and

P
(∣∣ ‖g(j)‖22 −N

∣∣ ≤ c2
√

N log(1/δ)
)
> 1 − 1

2
δ, (4.4.17)

since Equation 4.4.14 would then follow from a union bound.

For Equation 4.4.16, note that

1. ‖A g(j)‖22 = g(j)
T
ATA g(j);

2.
N∑

i=1

λi = tr (ATA);

3.

(
N∑

i=1

λ2
i

)1/2

= ‖ATA‖F .

Then, Equation 4.4.16 follows from Corollary 4.4.1 for δ smaller than some sufficiently small
constant δ0, say δ0 < 2/3.
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Indeed, by applying Corollary 4.4.1 to ATA, we have, for all t ≥ 1,

Pg

{
|g(j)TATA g(j) − tr (ATA)| > c1(

√
t · ‖ATA‖F + t · ‖ATA‖2→2)

}
≥ min{c1, e−t},

with c1 > 0 being a universal constant. Since, for any fixed t ≥ 1, the event above is a subset
of {∣∣∣ g(j)TATA g(j) − tr (ATA)

∣∣∣ > c1
√
t · ‖ATA‖F

}
,

we have that

Pg

{∣∣∣ g(j)TATA g(j) − tr (ATA)
∣∣∣ > c1

√
t · ‖ATA‖F

}
≥ min{c, e−t}, ∀t ≥ 1.

Furthermore, we use the substitution made at the beginning of the present proof:

∀t ≥ 1, Pg





∣∣∣∣∣ ‖Ag(j)‖22 −
∑

i

λi

∣∣∣∣∣ > c1
√
t ·
(∑

i

λ2
i

)1/2


 ≥ min{c1, e−t}.

In particular, for t = log(1/δ
3
2 ), we have

Pg





∣∣∣∣∣ ‖Ag(j)‖22 −
∑

i

λi

∣∣∣∣∣ > c1
√

3/2
√

log(1/δ) ·
(∑

i

λ2
i

)1/2


 ≥ min{c1, e− log(1/δ

3
2 )}

≥ min{c1, e
3
2
log(δ)}

= min{c1, δ
3
2}.

Finally, to make this probability larger than 3 δ/2, requires

min{c1, δ
3
2} >

3δ

2
.

Note that

δ
3
2 <

3δ

2
, ∀δ ∈ (0, 1).

Consequently, we have to choose the constant c1 such that c1 > 3δ/2. This concludes the
proof for

0 < δ < δ0 < min

{
2

3
c1,

2

3

}
.

For a sufficiently large chosen c2, Equation 4.4.17 follows from Lemma 4.4.1. Namely, such
Lemma yields

∀t > 0, P
{∣∣ ‖g(j)‖22 −N

∣∣ ≤ c2
√
Nt
}
> 1 − e−t.

For example, for t = log(2/δ)

P
{∣∣ ‖g(j)‖22 −N

∣∣ ≤ c2
√
N log(2/δ)

}
> 1 − e− log(2/δ)

> 1 − elog(δ/2)

= 1 − δ/2.
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Lemma 4.4.3. For any parameter 0 < α < 1, there is a finite family Φα ⊂ ⋃N
m=1Mm×N of

matrices with the following properties:

1. For any matrix A ∈ ⋃N
m=1Mm×N with all entries bounded in absolute value by 2, there

is a matrix Â ∈ Φα such that A and Â have the same number of rows and B = A− Â

satisfies tr (BTB) ≤ α/100.

2. #Φα = eO(N
2 log(N/α)).

Proof. We construct Φα as follows: for each integer 1 ≤ m ≤ N, consider all m×N -matrices

whose entries are of the form k
√
α

10N for integers k ∈
[
−20N√

α
, 20N√

α

]
∩ Z. Note that adding to such

set of entries the set {−2, 2} we obtain partition of [−2, 2] by intervals of size
√
α

10N .

Now, let Â ∈ Φα be a (m×N)-matrix with entries [Â]ij = kij
√
α

10N . For all i ∈ [m] and j ∈ [N ],

we can choose kij such that ∣∣∣ [A]ij − [Â]ij

∣∣∣ ≤
√
α

10N
.

Then, for any matrix A ∈ ⋃N
m=1Mm×N with all entries bounded in absolute value by 2, there

is Â ∈ Φα with the same number of rows and such that every entry of B = A− Â is bounded
in absolute value by

√
α

10N .

Consequently, every diagonal entry of BTB is bounded by Nα/(100N2) since

[BTB]ii =
N∑

t=1

[B]2tt ≤ N

( √
α

10N

)2

.

Thus, tr (BTB) ≤ α/100.

Finally, we claim that the size of Φα is bounded by N(1 + 40N/
√
α)N

2
= eO{N2 log(N/α)}. To

see this, notice that, for any x > 0,

#{[−x, x] ∩ Z} = 2 floor(x) + 1 ≤ 2x + 1.

It follows that

#

{[−20N√
α

,
20N√

α

]
∩ Z

}
≤ 40N√

α
+ 1.

Now, we prove that the quantity of such (m×N)-matrices (for a fixed m) is bounded by
(40N√

α
+ 1)N

2
. Indeed, there are less that 40N√

α
+ 1 ways to choose any of the mN entries of A.

Then, the number of such matrices is bounded above by

(
40N√

α
+ 1

)mN

≤
(

40N√
α

+ 1

)N2

.

We, therefore, finish the proof by taking the union bound over all m.
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4.4.3 Proof of the main Theorem

Lemma 4.4.4. Let Φα be as in Lemma 4.4.3 with 0 ≤ α < 1. There is a set of M = N3

vectors v1, . . . , vM ∈ RN such that for every matrix A ∈ Φα, there is an index j ∈ [M ] such
that

1.

∣∣∣∣ ‖A vj‖22 −
N∑
i=1

λi

∣∣∣∣ = Ω

(√
(log N)

N∑
i=1

λ2
i

)

(here {λi}i are the eigenvalues of AT A),

2.
∣∣ ‖vj‖22 −N

∣∣ = O
(√

N logN
)
.

Proof. Let g(1), . . . , g(M) ∈ RN be independent standard Gaussian random vectors. We claim
that these vectors satisfy both relations with probability exponentially close to 1.

Indeed, take A ∈ Φα and apply Corollary 4.4.2 with δ = N−1/4 = M−1/12. Thus, with prob-
ability at most e−N3−1/4

no g(j) satisfies (1) and (2) for A. Equivalently, the probability of
one of the g(j) satisfying (1) and (2) for A is at least 1− e−N3−1/4

.

Since #Φα = eO{N2 log(N/α)}, the claim follows by a union bound over all matrices in Φα. More
precisely,

P{(1) ∧ (2), ∀A ∈ Φα} = 1 − P{∼ (1) ∨ ∼ (2) for some A ∈ Φα}

≥ 1 −
∑

A∈Φα

P{∼ (1) ∨ ∼ (2) for A fixed}

= 1 −
∑

A∈Φα

(1 − P{(1) ∧ (2) for A fixed})

= 1 − eO{N2 log(N/α)} +
∑

A∈Φα

P{(1) ∧ (2) for A fixed}

≥ 1 − eO{N2 log(N/α)} + eO{N2 log(N/α)}(1 − e−N3−1/4

)

= 1 − eO{N2 log(N/α)}e−N3−1/4

.

Finally, we claim that this last term will be larger than zero; or more precisely, that

O{N2 log(N/α)} −N3−1/4 < 0.

Indeed, by design,
1

poly(1)
< α < 1.

Consequently,
N2 log(N/α) ≤ N2 log{N2 poly(N)} = O

(
N2 logN

)
, (4.4.18)

from which
N2 log(N/α) ≤ O

(
N2 logN

)
.
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On the other hand,
N3−1/4 > O

(
N2 logN

)

and the result follows.

The proof of Theorem 4.3.2 follows from the next result.

Theorem 4.4.2. For any 0 < ε < 1/2, there is a set V ⊂ RN (N > 4),#V = M = N3 +N, such
that if A is a matrix in Mm×N satisfies

(1 − ε)‖vi‖22 ≤ ‖A vi‖22 ≤ (1 + ε)‖vi‖22, vi ∈ V,

then m = Ω(min{N, ε−2 logM}) = Ω(min{N, ε−2 logN}).

Proof. Since N > 4, we can assume that 1/
√
N < ε < 1/2. In fact, the case ε ≤ 1/

√
N implies

the lower bound m = Ω(N) by [Alo2003, Lemma 9.1]. To construct V, we first invoke Lemma
4.4.4 with α = ε2/N2 to find N3 vectors ω1, . . . , ωN3 such that for all matrices Ã ∈ Φε2/N2 ,

there is an index j ∈ [N3] for which:

1.

∣∣∣∣∣ ‖Ãωj‖22 −
N∑

i=1

λ̃i

∣∣∣∣∣ = Ω



√√√√(log N)

N∑

i=1

λ̃2
i


 ;

2.
∣∣ ‖ωj‖22 −N

∣∣ = O
(√

N (log N)
)
,

with λ̃1 ≥ . . . ≥ λ̃N ≥ 0 being the eigenvalues of ÃT Ã. We let V = {e1, . . . , eN , ω1, . . . , ωN3}
and claim this set of N3 +N vectors satisfies the Theorem.

In order to prove it, let A ∈ Rm×N be the matrix with m ≤ N satisfying

(1 − ε)‖v‖22 ≤ ‖A v‖22 ≤ (1 + ε)‖v‖22, v ∈ V.

Now observe that, since e1, . . . , eN ∈ V, the matrix A satisfies

‖A ei‖22 ∈ ((1 − ε)‖ei‖22, (1 + ε)‖ei‖22) = (1 − ε, 1 + ε), ∀i ∈ [N ]. (4.4.19)

Hence, for all entries aij of A we must have a2ij ≤ 1 + ε < 2 (and, in fact, all columns of A

have ℓ2 norm at most
√
2). This implies that there is an m×N matrix Â ∈ Φε2/N2 such that

B = A− Â = (bij) satisfies tr (BTB) ≤ ε2/(100N2), by Lemma 4.4.3. Since tr (BT B) = ‖B‖2F ,
this also implies ‖B‖F ≤ ε/(10N). Then,

N∑

i=1

λ̂i = tr (Â
T
Â) (4.4.20)

= tr {(A−B)T (A−B)} (4.4.21)

= tr (ATA) + tr (BTB) − tr (ATB) − tr (BTA). (4.4.22)
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At first, we have from Equation 4.4.19 that

tr (ATA) =
N∑

i,j=1

a2ij =
N∑

i=1

‖A ei‖22 ∈ (N ± εN).

Thus,
tr (ATA) + tr (BTB) ∈ (N ±O (εN)).

Also, from Cauchy-Schwarz-Bunyakovsky inequality,

∣∣ tr (ATB)
∣∣ =

∣∣ tr (BTA)
∣∣ ≤

√
tr (ATA) tr (BTB) =

(
N∑

i,j=1

a2ij

)1/2( N∑

i,j=1

b2ij

)1/2

.

Consequently,

∣∣ tr (ATB) + tr (BTA)
∣∣ ≤

∣∣ tr (ATB)
∣∣+
∣∣ tr (BTA)

∣∣

≤ 2

(
N∑

i,j=1

a2ij

)1/2( N∑

i,j=1

b2ij

)1/2

≤ 2

(
N · max

k

N∑

i=1

a2ik

)1/2(
N · max

j

N∑

i=1

b2ij

)1/2

.

Therefore,

−tr (ATB) − tr (BTA) ∈


± 2N · max

j

(
N∑

i=1

b2ij

)1/2

· max
k

(
N∑

i=1

a2ik

)1/2

 .

Finally, by substituting the equations above in Equation 4.4.22, we conclude

N∑

i=1

λ̂i ∈


N ±



O (εN) + 2N · max

j

(∑

i

b2ij

)1/2

· max
k

(∑

i

a2ik

)1/2







⊂
[
N ±

{
O (εN) + 2N · ‖B‖F ·

√
2
}]

= [N ±O (εN)] , (4.4.23)

with the penultimate step being justified by the fact that

max
j

(∑

i

b2ij

)1/2

≤ ‖B‖F .
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Thus, from Lemma 4.4.4, our choice of V yields the existence of a vector v∗ ∈ V such that

∣∣∣ ‖Â v∗‖22 −N
∣∣∣ ≥ Ω



√√√√(log N)

N∑

i=1

λ̂2
i


−O (εN) , (4.4.24)

∣∣ ‖v∗‖22 −N
∣∣ = O

(√
N (log N)

)
. (4.4.25)

Note that
‖B‖2 ≤ ‖B‖2F = tr (BTB) ≤ ε2/(100N2)

and that
‖Â‖22 ≤ ‖Â‖2F ≤ (‖A‖F + ‖B‖F)2 = O (N) ,

with the second inequality above being due to the Cauchy-Schwarz-Bunyakovsky inequality.

Then, we have

∣∣ ‖A v∗‖22 −N
∣∣ =

∣∣∣ ‖Â v∗‖22 + ‖B v∗‖22 + 2
〈
Âv∗ : Bv∗

〉
−N

∣∣∣

≥ | ‖Â v∗‖22 −N | − ‖B v∗‖22 − 2
∣∣∣
〈
Âv∗ : Bv∗

〉 ∣∣∣

≥ Ω



√√√√(log N)

N∑

i=1

λ̂2
i


−O (εN) − ‖B v∗‖22 − 2

∣∣∣
〈
Âv∗ : Bv∗

〉 ∣∣∣

≥ Ω



√√√√(log N)

N∑

i=1

λ̂2
i


−O (εN) − ‖B‖2 · ‖v∗‖22 − 2‖B‖ · ‖A‖ · ‖v∗‖22

= Ω



√√√√(log N)

N∑

i=1

λ̂2
i


−O (εN) , (4.4.26)

with the second inequality above being resulted from Equation 4.4.24.

Also, since A is a JL-embedding, we have | ‖A v∗‖22 − ‖v∗‖22 | = O
(
ε‖v∗‖22

)
= O (εN). Therefore

by Equation 4.4.25,

| ‖A v∗‖22 −N | ≤ | ‖A v∗‖22 − ‖v∗‖22 | + | ‖v∗‖22 −N |
= O

(
εN +

√
N logN

)
, (4.4.27)

which when combined with Equation 4.4.26 implies

N∑

i=1

λ̂2
i = O

(
ε2 N2

log N
+ N

)
. (4.4.28)
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To prove the statement above, note that Equations 4.4.26 and 4.4.27 above imply the exis-
tence of c1, c2, c3 ≥ 0 such that

c1

√√√√(log N)
N∑

i=1

λ̂2
i − c2εN ≤

∣∣ ‖Av∗‖22 −N
∣∣ ≤ c3(εN +

√
N logN).

Consequently, √√√√
N∑

i=1

λ̂2
i ≤

c̃1εN√
logN

+ c̃2
√
N,

with c̃1, c̃2 ≥ 0. By squaring both sides of this inequality, we obtain

N∑

i=1

λ̂2
i ≤

c̃21ε
2N2

logN
+ c̃22N + 2c̃1c̃2

εN3/2

√
logN

≤ (c̃21 + c̃1c̃2)
ε2N2

logN
+ c̃22N,

since logN ≤ N and ε < 1/2, and Equation 4.4.28 follows.

Now we claim that

N2

2
≤
(

N∑

i=1

λ̂i

)2

.

In fact, from Equation 4.4.23, there is c ≥ 0 such that, for sufficiently large N,

N∑

i=1

λ̂i ≥ (1 − c ε)N >
(

1 − c

2

)
N.

Note that we can choose any constant c̃ ≥ c at the expense of tightness in the inequalities
above. Consequently,

(
N∑

i=1

λ̂i

)2

>

(
1 − c +

c2

4

)
N2 ≥ N2

2
,

since we substitute c for c̃ ≥ min{c, 2 +
√
2}.

Also, note that the amount of non-zero λ̂i is exactly rank(Â
T
Â). Furthermore, consider the

vectors ~a := (λ̂1, . . . , λ̂N ) and ~b = (bi)i∈[N ] such that bi = 0 if λ̂i vanishes and bi = 1 otherwise.
Now, by the Cauchy-Schwarz-Bunyakovsky inequality,

(
N∑

i=1

λ̂i

)2

= |〈~a : ~b〉|2 ≤ ‖~a‖22 · ‖~b‖22

=

(
N∑

i=1

λ̂2
i

)
· rank(Â

T
A).
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Finally, the fact rank(Â
T
Â) is at most m since A in an (m×N)-matrix and Equation 4.4.28

together imply (
N∑

i=1

λ̂2
i

)
· rank(Â

T
A) ≤ O

(
ε2 N2

logN
+ N

)
·m.

Additionally, the assembly of the inequalities we have just proven leads to

N2

2
≤
(

N∑

i=1

λ̂i

)2

≤ rank(Â
T
Â)

(
N∑

i=1

λ̂2
i

)
≤ mO

(
ε2 N2

logN
+ N

)
.

We claim that rearranging the terms will give

m = Ω(min{N, ε−2 logN}) = Ω(min{N, ε−2 logM})

as desired. Indeed, we have concluded that

N2

2
≤ mO

(
ε2 N2

logN
+ N

)
.

Consequently, there is c ≥ 0 such that, for a sufficiently large N,

N2

2
≤ mc

(
ε2 N2

logN
+ N

)
.

Equivalently,

m ≥ 1

2c
ε−2 logN

(
1 +

ε−2

N
logN

)−1

.

Now, we have to get rid of that last factor. In order to do so, note that

lim
N→∞

logN

N
= 0.

Thus, there is N0 ∈ N such that

∀N ≥ N0,
logN

N
≤ 1

ε2

that implies

∀N ≥ N0,
1

1 + ε−2

N
logN

≥ 1/2

and the result follows.

4.5 Overview of the proof of Larsen & Nelson’s Theo-

rem – 2016

Let us recall the statement of Larsen and Nelson’s result.

Theorem 4.5.1. For any integers M,N ≥ 2 and ε ∈
(

log0.5001 M√
min{M,N}

, 1

)
, there is a set of points

X ∈ RN of size M, such that any map f : (X, ℓ2) → ℓm2 providing the JL-guarantee must have

m = Ω(ε−2 log(ε2 M)).
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4.5.1 Counting argument

Intuitively, one might ask what prevents our dimension reduction results from embedding
almost isometrically any set of high dimensional vectors in an Euclidean vector space with
arbitrarily small dimension. A näıve answer to this question can be elaborated by noting
that not any set of vectors are equal. Some are said to be very “different” from each other.
That being said, our argument is based on the fact that there are not too many “different”
sets with a big amount of elements in a tiny dimensional space, say Rm.

More precisely, Larsen and Nelson construct a family of very “different” sets of M vectors
P = {P1, P2 . . .} in a high dimensional vector space, say RN . It is then assumed that all point
sets in P can be embedded (not necessarily with the same map) into Rm while preserving all
pairwise distances within 1± ε.

Letting f1(P1), f2(P2), . . . denote the embedded point sets, then it is argued that such
choice of P ensures that any two fi(Pi) and fj(Pj) must be very “different”. Therefore, if m
is too low, this is impossible as there are not enough sufficiently “different” point sets in Rm.

The construction of P is as follows. Let {e1, . . . , eN} denote the canonical basis of RN .

Assume N = M
log(1/ε) and take ε ∈ (0, 1). For any index set S ⊂ [N ] of k = 1

ε2c20
elements (with

c0 > 0 a sufficiently large constant), define the vector yS as

yS :=
∑

j∈S

ej√
k
.

Note that these vectors are such that

〈yS : ej〉 =

{
0, j /∈ S

c0ε, j ∈ S
.

The construction of such vectors starts to shed light on our intuition of what “different
set” means, since vectors yS will be used to construct such sets and there is a gap of c0ε

between the products 〈yS : ej〉 for j being or not an index in S. That is, different choices of
the index set S leads to different vectors yS, following this gap criteria.

Now let f : RN → Rm be a JL-embedding for P = {0N , e1, . . . , eN , yS}. By assuming that
f(0N ) = 0m (what can be made w.l.o.g. since pairwise distances are translation invariant),
one concludes that f must preserve norms of vectors in P with at most 1± ε distortion.
Indeed,

(1 − ε)‖x‖22 = (1 − ε)‖x− 0N‖22
≤ ‖f(x) − f(0N)‖22 (= ‖f(x) − 0m‖22 = ‖f(x)‖22)
≤ (1 + ε)‖x− 0N‖22
= (1 + ε)‖x‖22.

As a consequence of such norm distortion, we claim that f must preserve inner products
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〈ej : yS〉 up to an O (ε) summand. In fact, for x ∈ P :

‖f(ej) − f(ys)‖22 = ‖f(ej)‖22 + ‖f(yS)‖22 − 2〈f(ej) : f(yS)〉 =⇒
2〈f(ej) : f(yS)〉 ∈ [1 ± ε]‖ej‖22 + [1 ± ε]‖yS‖22 − [1 ± ε]‖ej − yS‖22 =⇒
2〈f(ej) : f(yS)〉 ∈ 2〈ej : yS〉 ± ε(‖ej‖22 + ‖yS‖22 + ‖ej − yS‖22) =⇒
〈f(ej) : f(yS)〉 ∈ 〈ej : yS〉 ± 4ε.

Also, note that
〈ej : yS〉 ± 4ε ⊂ [−4ε, c0ε + 4ε].

This means that after applying f, there is a gap of (c0 + 8)ε = Ω(ε) between 〈f(ej) : f(yS)〉
for j being or not an index in S.

Now, we are ready to describe the point sets in P. Namely, let Q = M −N − 1. Then, for
every choice of Q index sets, S1, . . . , SQ ⊂ [N ], each with k elements, we add to P a new point
set P such that

P = {0N , e1, . . . , eN , yS1 , . . . , ySQ
}.

This gives a family P of size
(
N
k

)Q
.

Moreover, it is argued that the JL-embedded sets, f1(P1), f2(P2), . . . have to be quite
“different”. More precisely, it comes from the fact the sets S1, . . . , SQ and consequently
P1, P2, . . . are “different”. This intuition is formalized by proving that these maps uniquely
determine which point set it embeds.

In fact, for a given map, fi, i ∈ N, if suffices to evaluate the inner products

〈fi(ej) : fi(ySℓ
)〉, with j ∈ [N ] and ℓ ∈ [Q].

Given the gaps, it is possible to determine for any j and ℓ if j ∈ Sℓ. Consequently, all Sℓ can
be reconstructed and then all Pi.

The problem now is that there are infinitely many sets of M points in Rm that one can
embed to. Thus it is necessary to discretize Rm in a careful manner and argue that there
are not enough M -sized sets of points in this discretization to uniquely embed each Pi when
m is too low.

4.5.2 Encoding argument

To give a formal proof that there are not enough ways to embed the point sets in P into
Rm when m is too low, it is given an encoding argument. More specifically, it is assumed that
it is possible to embed every point set in P into Rm while preserving pairwise distances to
within 1± ε. Larsen and Nelson then present an algorithm that can take any point set Pi ∈ P
and encode it into a bit string of length O (Mm) . Such encoding will be represented by the
injective mapping g : P → {0, 1}O(Mm) so we can uniquely recover Pi from the bit string.

Since g is injective, one must must have #P ≤ 2O(Mm). But

#P =

(
N

k

)Q

≥
{

ε2M

log(1/ε)

} 1

ε2c20
(M− M

log(1/ε)
−1)
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and it can be concluded that

m = Ω

{
ε−2 log

(
ε2M

log(1/ε)

)}
.

Now, for ε > 1/M0.4999, we get m = Ω(ε−2 logM).



Chapter 5

Conclusion

The main goal of this work was the detalied discussion on the theoretical basis of a
dimensionality reduction method, the Johnson-Lindenstrauss lemma. We motivated the need
of such tools via the presentation of some common problems in the high-dimensional setting.
Overall, the text was organized as follows: the original proof of the Lemma was presented
in Chapter 2; an overview of the historical improvements was discussed in Chapter 3; and
the recent sharpness results were discussed in Chapter 4. Furthermore, in this last Chapter,
we presented in details the sharpness results due to Larsen and Nelson [LN2016, LN2017].

However, for the sake of brevity, some topics were not discussed and we will point them
out now. In Chapter 3, we dealt just with theoretical improvements on the JL-Lemma
and omitted the practical results that improve complexity and storage issues. We did not
discuss, for example, the application of special matrices to construct the JL-embedding
satisfying important properties, like sparsity, Restricted Isometry Property (RIP), circulant
matrices, among others. The Fast Johnson-Lindenstrauss Transform (FJLT), that speeds
up the projections using a Fast Fourier Transform was also ommited from the text. Finally,
we could not discuss several important applications of the Lemma like the ones in Machine
Learning and Compressed Sensing. Also, the interested reader can find further improvements
on the result like its generalization for other norms than ‖ · ‖2 and its application for infinite
sets in Vershnyn’s High-Dimensional Probability: An Introduction with Applications in Data
Science [Vsh2018]. Finally, we have not discussed results obtained from Algorithmic and
Coding Theory, as the proof of the main result in [LN2017], that proves the sharpness of the
JL-Lemma for non-linear embeddings. All these points should be addressed in future studies
about the subject.
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Chapter A

Appendix A

A.1 What is an uniformly chosen matrix on O(N)?

In Chapter 2 of this text we presented the original proof to the Johnson-Lindenstrauss
Lemma through an argument of random projection. More precisely, we selected a random
matrix from an uniform distribution on O(N). However, we still have to explain in more
details what we mean by a uniform distribution on O(N).

The first idea that comes up to our minds when talking about sampling random matrices
is to select its entries from some fixed probability distribution. However, individual entries
of elements of matrix groups such as O(N) do not have a simple characterization, but the
rows or columns of such matrices satisfy simple relations, and also it is possible to infer
geometrical properties the respective linear transformation will satisfy. Consequently, our
sampling problem will be simpler if we give a geometric interpretation to these matrix groups.

The keystone property here is the rotation invariance. For example, assume that our goal
is to select uniformly a point on S1 ⊂ R2. We can think of a point on the circle as z = x+ iy,

with the condition that x2 + y2 = 1, but it does not lead us to any ideas about how to choose
coordinates x and y such that the respective point is a “uniformly chosen random point” on
the circle. However, it makes sense to think about a complex random variable taking values
in S1 ⊂ C, whose distribution is rotation invariant. More precisely, for a Borel set A ⊂ S1,

the probability that our random point lies in A should be the same as the probability that
it lies in eiθA := {eiθa : a ∈ A}.

The reasoning for matrix groups is analogous. In particular, let M be a fixed element
in O(N). If a matrix U is selected from a uniform distribution on O(N), we must have the
following equalities in distribution:

MU
d
= UM

d
= U .

From another point of view, a uniform measure σ on O(N) is such that for any subset
A ⊂ O(N) and any fixed M ∈ O(N), we have

σ(MA) = σ(AM ) = σ(A),

with
MA := {MU : U ∈ A} and AM := {UM : U ∈ A}.
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Fortunately, there is a Theorem called Haar Theorem that guarantees the existence and
uniqueness of such a probability measure on matrix groups, in particular, O(N). This theorem
will be discussed – without proof and in a more general setting – in more details in the next
section.

A.2 Haar Theorem

As explained at the end of the previous section, we shall not prove the Haar Theorem for
the sake of brevity. However, the interested reader may be directed to references [Foll1999]
and [DiSp2014].

The present section goes as follows. We first motivate the Haar Theorem as a generaliza-
tion of the Lebesgue measure on RN for the left translations by a general group G. In order
to do so, we also exhibit some definitions from Group Theory that allow us to reinterpret the
vector translations of RN as left translations of an additive group. We then introduce some
concepts from Measure Theory that are necessary to understand the Haar Theorem (Theo.
A.2.1) and state it in a very general context, without proof. Finally, since the matrix groups
O(N) and SO(N) are very specific cases, it is possible to explicitly construct the desired
measure, and this construction is briefly outlined.

A.2.1 Motivation from the Lebesgue measure

As it is widely known, the Lebesgue measure LN in RN has the translation invariance
property. That is, given a Lebesgue-measurable set E ⊂ RN and c ∈ RN , we have that

c + E := {c + x : x ∈ E}

is also Lebesgue-measurable and

LN(c + E) = LN(E).

Note that such property defines a “uniformity” of this measure on RN since sets that differ
only by translations have the same measure. That is, these “analogous sets” have the same
measure independently of where in RN they are.

That being said, we might ask if we can generalize this invariance of Lebesgue measure
to other measurable spaces under another operation instead of translation. As we shall see,
it is possible to generalize such invariance when our measurable space has the structure of a
group.

A.2.2 Left Haar measures

Since a matrix M ∈ MN×N usually multiplies a vector v ∈ RN by the left, the action of
matrix groups on subsets of RN is done by the left. Thus, we shall focus our discussion on
left invariance for the sake of formality.
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Definition A.2.1 (Left translation). Let S be a subset of a group (G, ·). For a fixed g ∈ G,

we define the left translation g · S or gS of S by g as the set

gS := {g · x : x ∈ G}.

In this new context, it would be desirable to have a measure satisfying the following
property:

Definition A.2.2 (Left translation invariant Borel measure). A Borel measure µ on a group
G is called left translation invariant or G-invariant if, for any Borel subset S ⊂ G and all
g ∈ G, the left translation gS is µ-measurable and

µ(gS) = µ(S).

Fortunately, in a very general setting, the existence and uniqueness of such measure can
be guaranteed:

Theorem A.2.1 (Haar Theorem). Let (G, ·) be a locally compact Hausdorff topological group.
Then, there exists, up to a positive multiplicative constant, a unique left translation invariant
measure. This measure is called the Haar measure over G.

Indeed, matrix groups endowed with the Euclidean topology satisfy the required conditions,
and in the particular case of G being compact this measure is such that

µ(G) < ∞.

Now, as the left Haar measure is unique up to a positive multiplicative constant, a compact
space G yields a unique probability measure via normalization, that we will henceforth denote
as σ.

A.2.3 Explicit construction of the Haar measure on O(N)

The Haar Theorem is indeed very useful to our random projection scheme. However,
its statement by itself does not tell us how to construct the Haar measure in specific cases.
We shall discuss one explicit construction of this measure on O(N), which also allows us to
uniformly select a matrix from this group using a standard Gaussian matrix.

Firstly, we claim that the distribution of a random matrix whose entries were sorted
from a standard Gaussian distribution is invariant under left-multiplication by an orthogonal
matrix. Indeed, let X ∈ MN×N be such matrix. The joint density of the N2 entries of X is
given by

1

(2π)N2

N∏

i,j=1

exp

{
−x2

i,j

2

}
=

1

(2π)N2 exp

{
−1

2

N∑

i,j=1

x2
i,j

}
.

By applying the following change of variables

yi,j := [MX]i,j =
N∑

k=1

[M ]i,k[X]k,j
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it follows that the joint density of the entries of MX is given by

∣∣ det(M−1)
∣∣

(2π)N2 exp

{
−1

2

N∑

i,j

[M−1y]2i,j

}
=

1

(2π)N2 exp

{
−1

2

N∑

i,j

y2i,j

}
,

since M−1 is an isometry.
Nevertheless, that Gaussian matrix is still not what we want since it is not orthogonal.

We can solve this problem by applying the Gram-Schmidt algorithm. In fact, performing
the Gram-Schmidt process commutes with multiplication by a fixed orthogonal matrix M :
applying the algorithm to X and multiplying the result by M yields the same matrix as
applying it directly to MX. Moreover, we recall that MX and X have the same probability
distribution given the discussion made so far.

Now, let {X1, . . . , XN} be the columns of X. Given a column, X1 for example, the Gram-
Schmidt processes will substitute X2 by

X2 −
〈X1 : X2〉
〈X1 : X1〉

X1 (A.2.1)

normalized. On the other hand, doing the same procedure to the matrix MX, whose columns
are

{MX1, . . . ,MXN},
produces, as the new second column, the vector

MX2 −
〈MX1 : MX2〉
〈MX1 : MX1〉

MX1

normalized. Note that it is equal to A.2.1 multiplied on the left side by M , since it is an
isometry.

Finally, the probability measure constructed this way results in a random orthogonal
matrix whose distribution is invariant under left-multiplication by a fixed orthogonal matrix.
In other words, we presented a way to construct the Haar measure on O(N).
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Appendix B

B.1 The sphere

As discussed in Chapter 2, the original proof of the JL-Lemma is done through a concen-
tration of measure argument of its relative surface area. More precisely, in a high dimensional
setting, most of the relative surface area of SN−1 will be concentrated around any of its equa-
tors. Furthermore, if the opening angle of this equatorial strip is 2ε ∈ (0, π/2), its surface
area will be larger than

1 − 4 exp{−Nε2/2}.
Such impressive result is one of the counterintuitive behaviors that motivates the study of
Asymptotic Geometric Analysis.

A direct consequence of the concentration of measure around equatorial strips on the
sphere is that any spherical cap containing a hemisphere concentrates exponentially the
sphere’s relative surface area. A key result, broadly discussed – without proof – in the
Chapter 2 of this text, is the isoperimetric inequality on the sphere. This inequality allows
us to relate the relative area of any such Borel subset with the relative area of a spherical cap.
As a consequence, we may extend the concentration of measure inequality for the sphere to
any Borel subset of SN−1 whose relative area is bigger than 1/2.

The discussion made so far in this introduction motivates the use of the relative surface
area as a probability measure on the sphere. Moreover, the Haar and Weil’s Theorems guar-
antee the existence and uniqueness of the Haar measure on SN−1, but do not exhibit how to
compute it while the surface area can be directly calculated using tools from Multivariable
Calculus. However, we are still interested in the good properties, mainly the rotation invari-
ance, of the Haar measure on SN−1. Consequently, the main goal of this section is to prove
that these probability measures are equivalent, obtaining the best of all worlds.

In sum, this section goes as follows. In the first subsection, we exhibit some formulas for
surface areas on SN−1 that will be useful to prove the concentration of measure on the sphere.
Next, we define the Lebesgue measure on the sphere. In this presentation, such measure will
play just the theoretical role to link the two measures we are really interested in. Namely,
the Lebesgue measure on SN−1 will be resulted from the Lebesgue measure on RN , that is the
Haar measure on RN . Consequently, it will inherit the regularity and invariance properties of
that measure. Finally, we show that, for the sphere, the surface area is equal to the Lebesgue
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measure up to a multiplicative constant, concluding the result.

B.1.1 Surface area of spherical caps

Given the central role of the relative surface area of spherical caps motivated in the
introduction of this section, we will make some considerations on how to calculate it. We
start by remarking the formulas for surface area and volume of the unitary sphere SN−1 :

Vol
{
SN−1

}
=

πN/2

Γ(1 + N/2)
and Area

{
SN−1

}
=

2πN/2

Γ(N/2)
, (B.1.1)

with Γ : C \ (−∞, 0] → C being the Gamma function, that is

Γ(z) :=

∫ ∞

0

xz−1e−x dx, R(z) > 0.

Furthermore, in the present section, we shall discuss about the surface area of spherical
caps. Such sets can be more easily described in terms of the following:

Definition B.1.1 (Geodesic distance on the sphere). Let x, y ∈ SN−1. We define the geodesic
distance ρ(x, y) between these points as the angle x̂Oy ∈ [0, π], i.e., the convex (shortest) angle
between x and y.

Provided with this Definition, we may write the spherical caps as balls of such metric.
Namely, for φ ∈ [0, π], we define the φ-cap centered in x ∈ SN−1 as

KN−1(x, φ) := {z ∈ SN−1 : ρ(x, z) ≤ φ}.

Henceforth, when we are not particularly interested in the center x of the spherical cap
KN−1(x, φ), we shall denote it simply as KN−1(φ).

Now, from [Li2011], we have, for N > 2, that

Area{KN−1(φ)} = Area{SN−2}
∫ φ

0

sinN−2 θ dθ

=
2π(N−1)/2

Γ{(N − 1)/2}

∫ φ

0

sinN−2 θ dθ,

with Area{S1} = 2π. That is, we have an equation that relates the surface area of a subset of
SN−1 with the surface area of SN−2. In particular, for φ = π, we obtain, from the Equation
above, the recursion below:

Area{SN−1} = Area{KN−1(π)}

= Area{SN−2}
∫ π

0

sinN−2 θ dθ

=
2π(N−1)/2

Γ{(N − 1)/2}

∫ π

0

sinN−2 θ dθ,
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Finally, we define a probability measure µN−1(S) on SN−1 as the relative area of the Borel
subset S ⊂ SN−1. That is,

µN−1(S) :=
Area(S)

Area(SN−1)
.

In particular, for spherical caps, we have

µN−1{KN−1(φ)} =

∫ φ

0
sinN−2 θ dθ∫ π

0
sinN−2 θ dθ

= γN

∫ φ

0

sinN−2 θ dθ (φ ∈ [0, π/2]),

naming

γ−1
N =

∫ π

0

sinN−2 θ dθ

to simplify the notation.
In order to prove that the surface area is equivalent to the Haar measure, we shall exhibit

how it is related to the Lebesgue measure, LN , on ℓN2 . As we shall see in the next subsection,
LN is the Haar measure on RN . That being settled, writing the normalized surface area in
terms of LN yields a simple proof that it is indeed the Haar measure on SN−1.

B.1.2 Lebesgue measure on SN−1

We start the present subsection regarding the Lebesgue measure LN on the Euclidean
space RN . Such measure translates our geometrical idea of volume in RN . Moreover, it is a
well known result that the LN is rotation invariant. It give us a clue that Lebesgue measure
is a good starting point in our search for a rotation invariant measure on the sphere. Thus,
we shall briefly discuss of how to determine LN on Borel subset of RN .

Remark. The σ-algebra RN over which the measure LN is defined includes more sets than
just the Borel subsets of RN . However, since we are interested only in defining a Lebesgue
measure on Borel subsets of the sphere, we shall skip such deeper details.

In order to define the Lebesgue measure space (RN ,RN ,LN ), we claim that the N -boxes,
i.e., sets of of the form B =

∏N
k=1 Ik, with Ik, k ∈ [N ] being intervals of R are LN -measurable

sets and its measure are given by

LN(B) :=
N∏

k=1

ℓ(Ik),

with ℓ(Ik) being the length of the interval Ik ⊂ R. More generally, we claim that Borel sets
are still elements of the σ-algebra RN and also that the measure of a Borel set S ⊂ RN is
given by

LN(S) := inf

{∑

i∈N
LN(Bi) : {Bi}i∈N being a covering by N -boxes of S

}
.

Now, we can define the measure space (SN−1,SN−1,ΣN−1) whose measurable sets are
given by the intersection of SN−1 with the elements of RN . In particular, the Borel sets of
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the sphere are the intersection of SN−1 with the Borel sets of RN . Note that this definition
is not arbitrary, it is based in the definition of induced topology on a subset of a topological
space.

Additionally, in order to define the measure of a Borel subset S ⊂ SN−1, we shall relate
it to the following Borel subset C(S) of the Euclidean space RN :

C(S) :=
⋃

r∈[0,1]
r · S,

with
r · S := {rx ∈ RN : x ∈ S}, r ≥ 0.

In particular, C(SN−1) is given by the unit closed ball B(0, 1) ⊂ RN . Also, we remark that
the Cavalieri’s Principle yields

Vol{C(S)} =

∫ 1

0

Area{r · S} dr.

Moreover, for all r ∈ [0, 1],

Area{r · S} = rN−1Area(S),

since S 7→ r · S is the transformation of a (N − 1)-dimensional set by the linear map x 7→ rx.

Consequently,

LN{C(S)} =

∫ 1

0

rN−1Area(S) dr =
1

N
Area(S).

That being said, we define the Lebesgue measure on the sphere as follows.

Definition B.1.2 (Lebesgue measure on Borel subsets of the sphere). Let LN be the Lebesgue
measure on RN . For any Borel set S ⊂ SN−1, we can define its Lebesgue measure ΣN−1 on
the sphere as follows:

ΣN−1(S) := NLN{C(S)}.

The measure ΣN−1 inherits from the Radon regularity, the countable summability and
the finiteness on compact sets from LN . Consequently, to prove that it is the Haar measure
on SN−1, from its uniqueness, it suffices to prove that ΣN−1 is rotation invariant. As we will,
see this is a consequence of the rotation invariance of LN . Namely, recall that, for a Borel
set S ⊂ RN ,

LN {T (S)} = |det(T )| LN(S)

for any matrix T ∈ MN×N . As the determinants of matrices in O(N) and in SO(N) equals
1, the result follows. Finally, we have the following result:

Proposition B.1.1 (Rotation invariance of ΣN−1). The Lebesgue measure on SN−1 is in-
variant by the action of the orthogonal group O(N).

Proof. At first, we claim that, for any T ∈ O(N) and for a Borel set S ⊂ SN−1, we have

TC(S) = C(TS),
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with the notation TX representing the set

TX := {Tx : x ∈ X}.
In fact, from the notation remarked above,

TC(S) = {T z : z ∈ C(S)}
= {T rx : x ∈ S and r ∈ [0, 1]}
= {ry : y ∈ TS and r ∈ [0, 1]} := C(TS).

Finally, we have,

ΣN−1(TS) : = NLN{C(TS)}
= NLN{TC(S)}
= NLN{C(S)} := ΣN−1(S),

concluding that ΣN−1 is rotation invariant and, together with the previously cited conditions,
the Haar measure on SN−1.

As we said before, the Lebesgue/ Haar measure on RN gives us an intuition of uniformity
of the space since it is invariant by translations. Provided with this motivation, we shall
define a uniform probability measure on SN−1 as the one with the normalized Lebesgue
measure µN−1 on SN−1, that is,

µN−1(S) :=
ΣN−1(S)

ΣN−1(SN−1)
,

with S ⊂ SN−1 being a Borel subset of SN−1.

Finally, we finish this section by remarking that the normalized Haar measure µ, the
normalized surface area, and the normalized Lebesgue measure on SN−1 yield the same
probability distribution in SN−1.

B.1.3 The Haar measures on SN−1
and O(N)

We end this section by exhibiting how the uniqueness of the Haar measure provides us
with an way to compute the Haar measure of a set in O(N) (or SO(N)) from the Haar
measure of sets in SN−1, More precisely, we have the following:

Theorem B.1.1. Let σ and µN−1 be the normalized Haar measures on (O(N), ‖ · ‖F ) (or
(SO(N), ‖ · ‖F )) and (SN−1, ‖ · ‖2), respectively. Moreover, let

φ : O(N) × SN−1 → SN−1

(T , x) 7→ Tx.

be a (left) group action of O(N) on SN−1 with the product topology in its domain. For any
fixed Borel S ⊂ SN−1 and x0 ∈ SN−1, we have that

µN−1(S) = {φ(x0)
∗ (σ)}(S).

That is, the orbit map φ(x0) : O(N) → SN−1 pushes the Haar measure on O(N) to the one on
SN−1.
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