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Resumo
O deslocamento de Bernoulli é um dos exemplos mais importantes em sistemas dinâmicos,
a classe de automorfismos isomórficos ao deslocamento é chamada de automorfismo
de Bernoulli, possuindo as mesmas propriedades que a ergodicidade, a mistura. Mas
Kolmogorov define uma classe de automorfismo entre os Mixing e os Bernoulli, chamados
automorfismos de Kolmogorov. Tais sistemas também eram caóticos e uma das questões
em que todo o automorfismo de Kolmogorov era Bernoulli.

Neste trabalho, mostraremos um exemplo dado por Ornstein de um automorfismo de
Kolmogorov que não é Bernoulli, como as técnicas para encontrar partições geradoras de
Bernoulli muito fraco para obter Bernoullicidade.

Terminando com um caso parcialmente hiperbólico quando um automorfismo de Kol-
mogorov implica Bernoulli.

Palavras-chave: Kolmogorov automorfismo, sistema Bernoulli, parcialmente hiperbolico





Abstract
The Bernoulli shift is one of the more important examples in dynamical systems, the class
of automorphisms isomorphic to the shift are called the Bernoulli automorphism, having
the same properties as ergodicity, mixing. But Kolmogorov define a class of automorphism
between the Mixing and the Bernoulli called the Kolmogorov automorphisms. Such systems
were chaotic as well and one of the question where if all the kolmogorov automorphism
were Bernoulli.

In this work we will show an example given by Ornstein of a Kolmogorov automorphism
that is not Bernoulli, as the techniques to find generating partitions very weak Bernoulli
to obtain Bernoullicity.

Finishing with a partially hyperbolic case when a Kolmogorov automorphism implies
Bernoulli.

Keywords: Kolmogorov automorphism, Bernoulli property, Partially hyperbolic diffeo-
morphism.
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1 Introduction

The main subject in dynamical system is to analyze what happened in the future
of such system or how much "chaotic" an orbit is.

For example we can analyze the behavior of the roll of a dice in the future. That
kind of system is the motivation for the Bernoulli shift, one of the more important systems
in dynamical systems because of the chaotic properties.

In 1958-59 ([7], [8]) Kolmogorov introduced the concept of entropy in dynamical
systems, which is an invariant under isomorphisms. Because of that a natural question was
if two systems with the same entropy could be isomorphic or which condition is needed to
obtain such characteristic.

In 1970 Donald Ornstein [11] proved that in the case of the Bernoulli shift the
equality of entropies determines if these systems are isomorphic or not.

Theorem 1.0.1. Let T : X −→ X and S : Y −→ Y two Bernoulli shifts. If they have the
same entropy they would be isomorphic.

Such analysis brought us a powerful technique to determine if system is a candidate
to be isomorphic to a Bernoulli shift or not.

Knowing that entropy, ergodicity and mixing properties are preserved under iso-
morphism we can have some candidates that could be isomorphic with the Bernoulli shift.
Such systems isomorphic with the Bernoulli shift are called Bernoulli automorphisms.

However there is a class of systems between the Bernoulli automorphisms and such
with the mixing property called the Kolmogorov automorphisms.

It can be proved that Bernoulli automorphism are Kolmogorov automorphism,
but in 1973 Ornstein [12] give and example of a Kolmogorov automorphism that is not
Bernoulli.

So, there remains a question: what are the conditions to ensure that a Kolmogorov
automorphism would be isomorphic to a Bernoulli shift.

Thanks to Ornstein Theory, we can answer the question for some systems as mixing
Markov chain, automorphisms of Tn, Volume preserving Anosov Diffeomorphism and many
others.

The technique used to prove that an automorphism in the bi torus is Bernoulli relies
heavily on the fact that such automorphisms are Anosov. Motivated by this example, Pesin
[17] extend the result to Anosov Diffeomorphisms in a compact Riemannian Manifold.
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The following question would be how to attack in the Partially Hyperbolic case.

In 2018, Ponce et al. [20] proves that under some conditions in the center foliations
in an derived from an Anosov Diffeomorphism f . If f is Kolmogorov implies that f is a
Bernoulli automorphism. More exactly:

Theorem 1.0.2. Let f : T3 → T3 be a C2 volume preserving derived from Anosov
diffeomorphism with linearization A : T3 → T3. Assume that f is Kolmogorov and one of
the following occurs:

1. λcA < 0 and F cs is absolutely continuous, or

2. λcA > 0 and F cu is absolutely continuous.

Then f is Bernoulli

So in this work, we would show the isomorphism theorem given by Ornstein
[11], present the technique given in [12]. Using it to show an example of a Bernoulli
automorphism in a smooth field.

Ending with a brief comment about the proof of Ponce et al [20].



19

2 Preliminares

2.1 Ergodic Theory
In this chapter, we will remember some definitions and results of ergodic theory

that we will use throughout the following chapters such as partitions, entropy and gadgets.
We begin by remembering some definitions about measure theory.

Let X be a set. A σ-algebra of subsets of X is a collection B of subsets of X
satisfying the following three conditions:

• X ∈ B,

• if A ∈ B then X \ A ∈ B,

• if Bn ∈ B for n ≥ 1 then ⋃∞n=1Bn ∈ B.

We call the pair (X,B) a measurable space.

Definition 2.1.1. A sub σ-algebra K of B is a σ-algebra that is contained in B, we will
denote it as K ⊂ B

We would like to transmit the sense of measure volume for this abstract set. A
measure on (X,B) is a function µ : B −→ R+ satisfying

• µ(∅) = 0

• µ (⋃∞n=1Bn) = ∑∞
n=1 µ(Bn)

whenever (Bn) , n ≥ 1 is a sequence of measurable sets pairwise disjoint subsets of X. A
measure space is a triple (X,B, µ) where (X,B) is a measurable space. When µ(X) = 1,
we say that (X,B, µ) is a probability space.

Definition 2.1.2. If C ,D are sub-σ-algebras of B we write C .= D if for every C ∈ C

there exists D ∈ D with µ(D4 C) = 0 and if for every D ∈ D there exists C ∈ C with
µ(D4 C) = 0

Definition 2.1.3. Suppose (X,A, µ), (Y,B, ν) are probability spaces.

1. A transformation T : X −→ Y is measurable if T−1(B) ∈ A where B belongs to B.
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2. A transformation T : X −→ Y is measure-preserving if T is measurable and
µ(T−1(A)) = ν(A) where A belongs to B.

3. we say that T : X −→ Y is an invertible measure-preserving transformation if T is
measure-preserving, bijective and T−1 is also measure-preserving.

With the motivation to work on a set that is preserved over iterations, we define
the following:

Definition 2.1.4. Let (X,B, µ) be a probability space and T : X −→ X be a measure
preserving transformation. We say that B measurable set is T -invariant if T−1B = B.

Definition 2.1.5. Let (X,B, µ) be a probability space. A measure-preserving transfor-
mation T of (X,B, µ) is called ergodic if the only members B of B T -invariant satisfy
µ(B) = 0 or µ(B) = 1.

There are several way to characterize the ergodicity condition and we present some
of them in the next theorem.

Theorem 2.1.6. If T : X −→ X is a measure-preserving transformation of the probability
space (X,B,m) then the following statements are equivalent:

1. T is ergodic.

2. The only members B of B with m(T−1(B)∆B) = 0 are those with m(B) = 0 or
m(B) = 1.

3. For every A ∈ B with m(A) > 0 we have m(⋃∞n=1 T
−nA) = 1.

4. Whenever f is measurable and (f ◦ T )(x) = f(x) almost everywhere then f is
constant almost everywhere.

Observation: We say that X has the P property almost everywhere(a.e.) if X \A
has the P property where µ(A) = 0.

Theorem 2.1.7. (Birkhoff’s Ergodic Theorem) Suppose T : (X,B,m) −→ (X,B,m) is
measure-preserving and f ∈ L1(m). Then

lim
n→∞

1
n

n−1∑
i=0

f(T i(x)) = f ∗ a.e.

where f ∗ ∈ L1(m). Also f ∗ ◦ T = f ∗ a.e. and if m(X) <∞, then
∫
f ∗dm =

∫
fdm.

The solutions of these theorem can be found on [28].
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Definition 2.1.8. Let T be a measure-preserving transformation of a probability space
(X,B,m). We say that T is strong mixing (or have the strong mixing property) if for every
A,B in B

lim
n→∞

m(T−nA ∩B) = m(A) ·m(B).

2.2 Shifts and partitions
One of the classic and more powerful examples in ergodic theory is the Bernoulli

shift, is defined as follows:

Let π = (p1, ..., pn) be the probability vector such that pi > 0 and ∑ pi = 1. Define
the alphabet {1, 2, .., k} as a set of symbols. We will consider Σk as the set of all doubly
infinite sequence of the symbols 1, 2, ..., k that is:

Σk = {(xn) : xn ∈ {1, ..., k}, n ∈ Z}

The σ-algebra B defined on Σk it would be generated by finite unions of cylinder
sets where a cylinder set is a subset of Σk determined by a finite number of values, such
that:

A = {(xn) : xi = ti,−m ≤ i ≤ n}

where ti is any fixed symbol in the alphabet. Therefore there exist a unique measure
µ such that if A is a cylinder set, then µ(A) = ∏n

i=−m pti .

The transformation T defined by

(Tx)n = xn+1, n ∈ Z,

is an invertible µ-preserving transformation called Bernoulli shift.

The measure space (Σk,B, µ, Tπ), will be called the Bernoulli shift space with
distribution π.

There are many ways to determine the space Σk i.e. it has many isomorphisms, so
a given Benoulli shift can be described in many other ways.

For example, for the case when π = (1/2, 1/2). For convenience we shall use the
indexing {0, 1} instead of {1, 2}; that is Σ2 will be the set of all doubly infinite sequences
of zeros and ones.

An isomorphism φ of (X,A, µ) onto (Y,B, ν) is a mapping φ : X −→ Y such that
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φ(A) ⊂ B, φ−1(B) ⊂ A

ν(φ(A)) = µ(A), A ∈ A ; µ(φ−1(B)) = ν(B), B ∈ B

also φ is one-to-one and onto (mod0), that is, there are sets X̃ ⊂ X and Ỹ ⊂ Y

such that µ(X̃) = µ(X), ν(Ỹ ) = ν(Y ) and φ is a one-to-one map of X̃ onto Ỹ .

We say that X is a Lebesgue space if X is isomorphic to the unit interval with
Lebesgue measure.

Some systems that are Lebesgue space are the Bernoulli shift, the irrational rotation,
tent function, etc.

A collection ξ ⊂ B separates X if there is a set E ∈ B, µ(E) = 0, such that if
x, y /∈ E, there is a set A ∈ ξ such that x ∈ A, y /∈ A or x /∈ A, y ∈ A

There is a class of automorphism isomorphic to a shift Bernoulli called Bernoulli
automorphism (or with the Bernoulli property) and in this dissertation we will talk a lot
about it.

If π and π are given distributions, when will Tπ and Tπ are isomorphic? The
Kolmogorov-Ornstein isomorphism theorem answer this question.

Two Bernoulli shifts Tπ, Tπ are isomorphic if and only if

k∑
i=1

pi log pi =
k∑
i=1

pi log pi (2.1)

where π = (p1, p2, ..., pk), π = (p1, p2, ..., pk).

The necessity of the condition (2.1) was established by Kolmogorov, while Ornstein
prove its sufficiency. In this section, we explain the ideas behind Ornstein’s result.

A basic tool that will help us to describe Bernoulli shifts are the partitions.

Let (X,B, µ, T ) be a dynamical system, we say that P is a partition of X if it is
an ordered disjoint collection of measurable sets(called the atoms of P) whose union is X.
The partitions could be enumerable but in this work we assume finite partitions. We will
denote the number of atoms in P by |P|.

If P and Q are partitions of X, then P refines Q if each atom in P is in some atom
in Q, from that we can see that each atom Q could be seen as a union of atoms in P . If P
refines Q, we write Q ≺ P .

If P and Q are partitions, their join is
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P ∨Q = {Pi ∩Qj : Pi ∈ P , Qj ∈ Q}

with lexicographic ordering. Clearly P ∨Q is the least partition that refines P and
Q.

For sequence of partitions Pi, 1 ≤ i ≤ n, we use the notation

n∨
i=1
Pi = P1 ∨ P2 ∨ ... ∨ Pn

We can characterize the path of every point through the partition in the following way. Let
P = {P 1, P 2, ..., P k} a partition of X. The P-name of x will denote the sequence {αi}∞−∞;
where αi = j if T ix ∈ P j

The P-n-name of x will be {αi}n−1
0

The P-name of an atom A ∈
n∨
0
T−iP will be the P-n-name of the x ∈ A

A partition P determines a σ-algebra B(P) which is just the set of all unions of
members of P . Note that

P � Q iff B(P) ⊃ B(Q),

The distribution of P or dist(P ) will be the vector (µ(P 1), µ(P 2), ..., µ(P k)). If E

is a measurable set, dist(P/E) will denote µ(P 1 ∩ E)
µ(E) , ...,

µ(P k ∩ E)
µ(E) .

Let T be a transformation and P is a partition, then TP = {TP i : P i ∈ P}, for
example:

n∨
0
T iP = P ∨ TP ∨ ... ∨ T nP .

We say that P is a generator for T , if ∨∞−∞ T iP = B, where ∨∞−∞ T iP is the
σ-algebra generated by the atoms in ∨k−k T iP for every k ∈ N.

Example

If a A is a sub-σ-algebra of (X, σ,m) and P a partition of (X, σ,m) we will say
that A ⊃ε P if there is a P̂ , measurable with respect to A, and |P − P̂ | < ε. If P is
measurable with respect to A, we will write A ⊃ P

We will write P ⊂ε ∨K−K T iQ assuming that ∨K−K T iQ is denoted as the algebra of
sets generated by the partition ∨K−K T iQ.

Lemma 2.2.1. A partition P is a generator for T if and only if, for each partition Q and
each ε > 0, there is an n such hat Q ⊂ε ∨n−n T iP .
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We say that two partitions P and Q are independent if

µ(P i ∩Qj) = µ(P i)µ(Qj), P i ∈ P , Qj ∈ Q

This say that P partitions each atom in Q in the same proportion as it partitions
the entire space.

We say that the sequence of partitions (Pn), n ∈ N, is an independent sequence, if
for each n > 1, Pn and ∨n−1

1 Pi are independent.

We can characterize a Bernoulli shift with some especial partition

Theorem 2.2.2. A transformation T is isomorphic to a Bernoulli shift Tπ with distribution
π = (p1, p2, ..., pk) if and only if there is a partition P = {P1, P2, ..., Pk} such that

1. distP = π,

2. P is a generator for T ,

3. T nP, n ≥ 1 is an independent sequence.

These remarks can be generalized to yield the following theorem

Theorem 2.2.3. The transformations T and T are isomorphic if and only if there are
partitions P and P which are generators for T and T , respectively, such that

dist
n∨
0
T iP = dist

n∨
0
T
iP , n = 0, 1, 2, ...

The proofs of Theorems 2.2.2 and 2.2.3 appears in [26].

2.3 Stack

The key to an understanding of Ornstein’s proof of the isomorphism theorem and
to a number of other results is a simple geometric representation of a transformation.

Theorem 2.3.1. (Rohlin [6]) If T is ergodic, n is a positive integer, and ε a positive
number, then there is a set F such that F, TF, T 2F, ..., T n−1F is a disjoint sequence, such
that, µ

(⋃n−1
i=0 T

iF
)
≥ 1− ε

We will show the proof for n = 2.
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Sketch of the proof: Take B a small measurable set with positive measure
(µ(B) < ε). Since T is ergodic exists points in B such that its image does not belong in B.

B̃ = {x ∈ B : Tx /∈ B}. (2.2)

We can picture B and TB̃ as sets with TB̃ above B̃.

Now put B1 = TB̃ and let B̃1 = {xßB1 : Tx /∈ B}. Note that if x ∈ B̃1, Tx /∈ B1,
hence we can picture TB̃1 as a set above B̃1. By continuing this process by iteration we
obtain that T maps Bi directly upwards into Bi+1 or into B.

Since T is ergodic, the set B ⋃∞i=1Bi = X(mod0), it follows from he invariance of
the union and can not have measure 0.

Figure 1 – Return of T 4x to B

We now define

F = T−1B1 ∪ T−1B3 ∪ T−1B5 ∪ ...

Thus, F is made of pieces of B,B2, B4, ... and TF is made up of B1, B3, B5, ... so
clearly F and TF are disjoint.

The complement of them is formed by the union of C0 = V − T−1B1 and Ci =
B2i − T−1B2i+1 for i ≥ 1.
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It follows that:

µ

( ∞⋃
i=0

Ci

)
=
∞∑
i=0

µ(Ci) =
∞∑
i=0

µ(Di) (2.3)

where Di = T−2iCi. Since the Di are disjoint and contained in B, we have

µ(F ∪ TF ) ≥ 1− µ(B). (2.4)

Observation: For n > 2 just depend of the choice of F .

Theorem 2.3.2. [Rohlin(Strong form)] If T is ergodic, n is a positive integer, ε a positive
number, and P a partition, then there is a set F such that F, TF, T 2F, ..., T n−1F is a
disjoint sequence, µ

(⋃n−1
i=0 T

iF
)
≥ 1− ε such that

dist(P/F ) = dist(P )

2.4 Gadgets

We introduce the terminology used in [11]. A gadget is a quadruple (T, F, n, P ),
where T is a transformation, F a set such that F, Tf, ..., T n−1F is a disjoint sequence, and

a partition P of
n−1⋃

0
T iF . We will call F the base of F and T n(F ) the top of the gadget.

We shall say that (T, F, n, P ) is isomorphic to (T , F , n, P ) if

dist
(
n−1∨

0
T−iP/F

)
= dist

(
n−1∨

0
T
−i
P/F

)

that is, P -n-names partition F in the same proportions as corresponding P -n-
names partition F . It is implicit in this definition that the two gadgets have the same
height, and that P and P have the same number of sets.

It is easy to see that (T, F, n, P ) is isomorphic to (T , F , n, P ) if and only if there is
an invertible map S : F −→ F such that, for all measurable set A ⊂ F and A ⊂ F , we
have

µ(A)/µ(F ) = µ(SA)/µ(F )

µ(S−1A)/µ(F ) = µ(A)/µ(F )
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and for x ∈ F , the P -n-name of x and the P -n-name of Sx are the same. In other
words, except for a possible change of scale, two gadgets are isomorphic if one cannot
distinguish between them by examining their column structures.

The statement that two gadgets are isomorphic says very little about their respective
transformations, for Rohlin’s Theorem and a simple construction combine to give the
following result.

Lemma 2.4.1. If (T, F, n, P ) is any gadget and T is any ergodic transformation, then for
any ε > 0, there is a set F and a partition P such that (T , F , n, P ) is a gadget isomorphic
to (T, F, n, P ) and µ(⋃n−1

i=0 T
i
F ) ≥ 1− ε.

Lemma 2.4.2. Suppose (T, F, n, P ) is isomorphic to (T , F , n, P ) and Q is a partition of⋃n−1
0 T iF . Then there is a partition Q of ⋃n−1

0 T
i
F such that (T, F, n, P ∨Q) is isomorphic

to (T , F , n, P ∨Q).

2.5 Metrics in partitions

The first of these is the distribution distance given by

| dist(P )− dist(Q)| =
k∑
i=1
|µ(Pi)− µ(Qi)|. (2.5)

where the partitions P and Q each have k atoms. Note that is not required that
the partitions belongs the same space.

In the case that | dist(P )− dist(Q)| = 0, P and Q have the same distribution.

A stronger form of closeness is the partition distance

|P −Q| =
k∑
i=1
|µ(Pi∆Qi)|, (2.6)

where P and Q have k atoms and are in the same space.

In the case when |P −Q| = 0 we have µ(Pi∆Qi) = 0, 1 ≤ i ≤ k, that is P .= Q, P
and Q agree except on a set of measure zero.

If P and Q are in the same partition, then

| dist(P )− dist(Q)| ≤ |P −Q|.
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Let T and T be transformations defined X, X respectively, and with respective
partitions P and P . The process distance is defined by

d((T, P ), (T , P )) = sup
n

inf
S∈Γ

1
n+ 1

n∑
i=0
|T iP − ST iP |, (2.7)

where Γ is the class of isomorphisms of X onto X.

We will mention some properties of the process metric.

Note that the supremum in (2.7) is actually a limit. This follows from the fact that,
if infS∈Γ 1/n∑n−1

i=0 |T iP − ST
i
P | = α, hen, for all r, infS∈Γ 1/nr∑nr−1

i=0 |T iP − ST
i
P | ≥ α.

We also observe that

Proposition 2.5.1. Let P and P are generators for T and T . If d((T, P ), (T , P )) = 0,
then T is isomorphic to T .

The proof is as follows: The condition that d((T, P ), (T , P )) = 0 implies that, for
each n,

inf
S∈Γ

1
n

n−1∑
i=0
|T iP − ST iP | = 0,

and hence that dist∨n−1
0 T iP = dist∨n−1

0 T
i
P , n = 1, 2, .... Then, using Theorem

2.2.3, the proposition follows.

There is another equivalence in the process metric that we shall use and it is when
we helps us for another space that would be as intermediary.

Let Y be a fixed nonatomic probability space, and let Γ denote the class of all
isomorphisms of the T -space onto Y , and let Γ denote the class of all isomorphisms of the
T -space onto Y . We then have

d((T, P ), (T , P )) = sup
n

inf
S∈Γ,S∈Γ

1
n

n−1∑
i=0
|ST iP − ST iP |. (2.8)

Lemma 2.5.2. If d((T, P ), (T , P )) < ε2, then for each n, there is an isomorphism Sn

from X to X such that the set of points x ∈ X for which the P -n-name of x and the
P -n-name of S−1

n x differ in more than εn places has measure less than ε.

2.6 independence and ε-independence
Recall, two partitions P and Q are independent if

µ(P i ∩Qj) = µ(P i)µ(Qj), P i ∈ P, Qj ∈ Q
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we can redefined it as dist(P/Qj) = dist(P ), Qj ∈ Q which tell us that P partitions
each set in Q in the same proportions that P partitions X.

The definition of approximate independence we shall use merely asserts that P
partitions most sets in Q in almost the same way that P partitions X. To be precise, we
say that P is ε-independent of Q or P ⊥ε Q if there is a collection C of atoms Q such that

• m(C) > 1− ε,

• if A ∈ C then |distP/A− distP | < ε.

2.7 Entropy

Let P = {P 1, P 2, ..., P k} a partition of X. We say that H(P ) is The entropy of T
relative to P is

H(P ) = −
∑
i

µ(P i) log µ(P i). (2.9)

Let P and Q finite partitions. The conditional entropy of P and Q is defined as

H(P |Q) = H(P ∨Q)−H(Q)

An easy calculation establish that

H(P |Q) = −
∑
j

µ(Qj)
∑
i

µ(P i ∩Qj)
µ(Qj) log µ(P i ∩Qj)

µ(Qj) (2.10)

The entropy of T relative to P is

H(T, P ) = lim
n

1
n
H(

n∨
1
T iP ). (2.11)

Theorem 2.7.1. (Shannon-McMillan-Breiman) If T is ergodic and P a finite partition ,
then given ε we can find an N such that if n > N , then there is a collection C of atoms

of
n−1∨

0
T iP such that m(C) > 1 − ε, and if A ∈ C, then the measure of A is between

1
2

(H(P,T )+ε)n
and 1

2
(H(P,T )−ε)n

.

The proof of this theorem can be found in Billingsley [1].
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The number H(T, P ) depends upon the partition P . To obtain a invariant for T ,
we define the entropy of T as

H(T ) = sup{H(T, P ) : P is a finite partition}. (2.12)

Is not difficult to see that the entropy is invariant upon isomorphism i.e. if S is
isomorphic to T , then H(S) = H(T ).

We end up this subsection with a mean for calculating T given by Kolmogorov and
Sinai, a proof of these theorem appears in [10] or in [28].

Theorem 2.7.2. (Kolmogorov-Sinai) If P is a generator for T and Q is any partition,
then H(T, P ) ≥ H(T,Q). In particular H(T ) = H(T, P ) for any generator P .

We will say that (P, T ) is finitely determined if given ε > 0 there is an δ > 0 and
an integer n such that if P , T satisfies

1. |P | = |P |

2. |H(P , T )−H(P, T )| < δ

3. |
n∨
0
T iP − dist

n∨
0
T
i
P | < δ

Then d((P, T ), (P , T )) < ε
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3 Ornstein Theory

3.1 Isomorphism Theorem
Part of the importance of the shift resides in that some diffeomorphism have in his

dynamics, transformations of this type i.e. a diffeomorphism f under a manifold contents
a subset Λ compact invariant such that f restricted to Λ is "equivalent" to a certain shift.

It follows from the independence of two partitions P and Q of a probability
space that H(P ∨Q) = H(P ) + H(Q). The following lemma states a relation between
ε-independence with this property.

Lemma 3.1.1. Given ε > 0 and an integer k, there is a δ(ε, k) > 0 such that if P has k
atoms and if |H(P ∨Q)−H(P )−H(Q)| < δ(ε, k), then P ⊥ε Q

Proof. If P is not ε−independent of Q, then for every collection C of atoms Q there is an
Qi ∈ C such that |distP/Qi − distP | ≥ ε.

There is an atom P ′ of P such that |m(P ′ ∩Qi)
m(Qi) −m(P ′)| ≥ |m(P j ∩Qi)

m(Qi) −m(P j)|
for every j = 1, ..., k

Then

k

∣∣∣∣∣m(P ′ ∩Qi)
m(Qi) −m(P ′)

∣∣∣∣∣ ≥ |distP/Qi − distP | ≥ ε.

Let Q a partition with three atoms:

• Complement of union of the Qi in C

• The Qi in C, m(P ′ ∩Qi)/m(Qi)−m(P ′) > 0

• The Qi in C, m(P ′ ∩Qi)/m(Qi)−m(P ′) < 0

Denote Q = {P , P1, P2}.

If P ⊥ε/(2k) Q then P ⊥ε/(k) Q.

Let C a collection of atoms of Q. Clearly C 6= P because m(P ) < 1− ε/k.

If Pi ∈ C then riε/k < |distP/Qi − distP | ≥ ε/k where ri would be the number of
atoms de Q in Pi , i = {1, 2}.

Remember that H(P ∨Q)−H(Q) could be seen as an application with 3k variables
(Because is determinated by the measure of the partitions and P ∨Q has 3k atoms).
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F (ε, k) = {(m(P i ∪ Qj)) i∈{1,...,k}
j∈{1,2,3}

, P is not ε/(2k)independent ofQ} is compact in
R3k because is limited and closed because the definition of P ⊥ε/2k Q.

|H(P ∨Q)−H(Q)−H(P )| 6= 0 in F (ε, k) because P and Q are not independent.

Therefore there is an δ(ε,k) > 0 such that |H(P ∨ Q) − H(Q) − H(P )| > δ(ε,k)

(because is the minimum of that function in F (ε, k)).

By using that H(P ∨ Q) − H(Q) ≤ H(P ) and Q refines Q then |H(P ∨ Q) −
H(Q)−H(P )| ≤ |H(P ∨Q)−H(Q)−H(P )|.

We get that P is not ε−independent of Q then |H(P ∨Q)−H(Q)−H(P )| > δ(ε,k)

We would like to know under which properties the process (Q,S) would be close
in the d metric with a process (P, T ) such that T iP are independent. The next lemma
answer this question.

Lemma 3.1.2. If T iP are independent then let ε > 0, exist δ > 0 such that:

• |Q| = |P |

• |H(Q,S)−H(P, T )| < δ

• |distP − distQ| < δ

then d((P, T ), (Q,S)) < ε

Proof. Let |P | = k. Using Lemma 3.1.1, if |H(Q,S)−H(Q)| < δ(ε,k) then SnQ ⊥ε
n−1∨

0
SjQ

for all n.

Because limn→∞ |H(
n∨
0
SiQ)−H(

n−1∨
0
SiQ)−H(SnQ)| = H(Q,S)−H(Q) < δ(ε, k).

If |distP−distQ| < ε, T iP are independent and SnQ ⊥ε
n−1∨

0
SjQ then d((Q,S), (P, T )) <

3ε

We will prove it for each n find two sequences of partitions {Pi}n1 , {Qi}n1 of the

same space Z such that: dist
n∨
1
Qi = dist

n∨
1
SiQ and

n∨
1
Pi = dist

n∨
1
T iP .

To prove it we will do it by induction. Suppose we have already Pi and Qi,
1 ≤ i ≤ n− 1. Take Pn and Qn as follows:

• Take Pn such that dist(Pn/A) = distP , for each atom A ∈
n−1∨

1
Qi ∨ Pi. This will

ensure that dist
n∨
1
Pi = dist

n∨
1
T iP because T iP are independent.
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• Take Qn such that if A ∈
n−1∨

1
Pi ∨Qi, A ∈

n−1∨
1
Qi that contains A and Ã ∈

n−1∨
1
SiQ

the atoms corresponding to A, then dist(Qn/A) = dist(SnQ/Ã). This will insure

that dist
n∨
1
Qi = dist

n∨
1
SiQ

Because of SnQ ⊥ε
n−1∨

1
SiQ we have that there is a collection of atoms C of

n−1∨
1
SiQ

such that m(C) < ε and if Ã /∈ C then | distSnQ/Ã− distQ| < ε because the definition of
ε−independent and S preserves measure.

If Qn is chosen as above, there is a collection C1 of atoms of
n−1∨

1
Pi ∨Qi such that

m(C1) < ε if A /∈ C1 then | distQn/A− distQ| < ε, because of the definition of C and Qn.

Because | distP −distQ| < ε, we get that if A /∈ C1, then | distQn/A−distP | < 2ε.

Hence A is not in C1 we can choose Pn and Qn so that on A, Pn and Qn differ on
a set of measure < 2εm(A).

This implies that we can choose Pn and Qn such that |Pn−Qn| < 3ε. Once founded
Pi, Qi ⊂ Z / |Pi −Qi| < 3ε.

We can form ϕ and ψ such that Pi = ϕ(T iP ), Qi = ψ(SiQ) where:

|Pi −Qi| = |ϕ(T iP )− ψ(SiQ)| < 3ε then
n∑
i=1
|ϕ(T iP )− ψ(SiQ)| < 3nε.

Because the definition of dϕ,ψ and taking limit, we obtain that d((P, T ), (Q,S)) ≤ 3ε

Corollary 3.1.3. If T iP are independent then P, T is finitely determined

Lemma 3.1.4. Let R, S be finitely determined and H(R, S) ≤ H(T ). Then given δ > 0,
there exist a partition P ′ such that

d((R, S), (P ′, T )) < δ (3.1)

Proof. Since R, S is finitely determined, given δ and u we need to find P ′ such that

∣∣∣∣∣dist
u∨
0
T iP ′ − dist

u∨
0
SiR

∣∣∣∣∣ < δ, (3.2)

and

|H(P ′, T )−H(R, S)| < δ. (3.3)
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Choose Q such that H(R, S)−H(Q, T ) = β > 0 where β < δ

100 .

Because the definition of entropy we can choose γ < δ such that |Q′ − Q| < γ

implies that H(Q′, T ) ≥ H(Q, T )− γ

100 .

We will call an atom in ∨n
0 T
−iQ a good Q-n-atom if its measure is between(1

2

)[H(Q,T )±β/100]·n
.

We will call an atom in ∨n
0 S
−iR a good R-n-atom if its measure is between(1

2

)[H(R,S)±β/100]·n
, and if its n-name has the property that the distribution of names of

length u in it is within δ of the distribution of R-u-names under S(the atoms in ∨u0 S−iR).
Because of the Shannon-McMillan-Breinman theorem and the Birkhoff ergodic

theorem we can choose n large enough such that the measure of the union of atoms in∨n
0 T
−iQ and ∨u0 S−iR that are not good is less than γ/100.

We can also choose n so large such that

u

n
<

γ

100 and −
[ 1
n

log 1
n

+
(

1− 1
n

)
log

(
1− 1

n

)]
<

γ

100 . (3.4)

We can see that there are more good R-n-atoms than there are good Q-n-atoms.
Therefore, we can assign to each good Q-n-atom a good R-n-atom.

We can now apply the R-K theorem to obtain a set F such the T iF 0 ≤ i ≤ n are
disjoint,

m

(
n⋃
0
T iF

)
> 1− γ

100 and dist
n∨
0
T−iQ/F = dist

n∨
0
T−iQ. (3.5)

Call the atoms in ∨n0 T−iQ/F that are contained in good Q-n-atoms, good Q-n-F -
atoms, we will do the same thing to the atoms in R-n-atoms and call it Q-n-F -atoms.

We are ready to define P ′, and we will do it over ⋃n0 T iF where F is the union of
the good Q-n-F -atoms.

If g is a good Q-n-F -atom, then T jg will lie in (P ′)i(the ith atom in P ′) where i is
the jth term in the R-n-name of the R-n-atom assigned to g.

Thus if g is a good Q-n-F -atom, then the P ′-n-name of x ∈ g will be the same as
the R-n-name of the R-n-atom assigned to g.

It does not matter how to define P ′ in the rest of X.

Let F̃ be the partition consisting of F and its complement.

We have that ∨n−n T i(P ′ ∨ F̃ ), restricted to ⋃n0 T iF , refines Q.
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By the definition of Q-n-F -atoms we have that if g is a Q-n-F atom and 0 ≤ j ≤ n,
then T jg is entirely contained in one atom of Q. Because of each Q-n-F -atom in F was
assigned a different R-n-atom we have that ∨n0 T−iP ′, restricted to F , is exactly the
partition of F into Q-n-F -atoms. Therefore ∨n−n T i(P ′∨ F̃ ) contains all the T ig, 0 ≤ i ≤ n,
g being Q-n-F -atom in F .

Because the measure of the union of good Q-n-atoms is bigger than 1 − γ/100,
m(⋃n0 T iF ) > 1− γ/100, because of our choice of γ, and because H(F̃ ) < γ/100 (because
(3.4)) we get that H(P ′, T ) > H(R, S)− γ.

Since the names of the good R-n-atoms have the property that the u-names in
them are distributed well we get

| dist
u∨
0
T iP ′ − dist

u∨
0
SiR| < δ.

The following lemma and its corollary will be used to get the full generality of
Lemma 3.1.7 , one of the main lemmas of this section.

Lemma 3.1.5. Assume R, S and P, T are such that d((P, T ), (R, S)) < γ. Then given u
and δ we can find P such that: |P | = |P |, |P − P | < 2γ and

|dist(
u∨
0
T iP )− dist(

u∨
0
T iP )| < δ

Proof. We can assume that δ < γ

Pick n such that u
n
<

1
100δ

Apply the R-K theorem, because T is ergodic, to find F so that:

1. T iF, 0 ≤ i < n are disjoint.

2. m(
n−1⋃
i=0

T iF ) > 1− 1
100δ.

3. dist
n∨
0
T−iP/F = dist

n∨
0
T−iP

Because d((P, T ), (R, S)) < γ, and the definition of d, we can find partitions Ri of
F such that:

dist
n−1∨

0
Ri/F = dist

n−1∨
0
S−iR (3.6)
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1
n

∑
|Ri/F − T−iP/F | < γ (3.7)

Define P such that on T iF , P and T iRi agree, it does not matter how to define it
in the rest of the space because the definition of the gadget.

Because of (2) from the definition of the gadget and (3.7) we get |P − P | < 2γ,
since m(X \ ⋃T−iF ) < δ

100 .

It is easy to see, by (3.6) and (2) from the R-K theorem, that if 0 ≤ i ≤ n − u
then:

dist
u∨
0
T−jP/T iF = dist

u∨
0
S−jR. (3.8)

Because of the choose of n, the definition of F and (3.8) imply the conclusions of
our lemma.

Corollary 3.1.6. Let R, S and P, T satisfy: |R| = |P |, R, S is finitely determined and
d((P, T ), (R, S)) < γ. Then given δ we can find P such that |P | = |P |, |P − P | < 2γ and
either H(P , T ) < H(R, S) or d((P , T ), (R, S)) < δ

Proof. Because R, S is finitely determined, there exists u1 and δ1 so that if |P | = |P |,∣∣∣∣∣dist
u1∨
0
T iP − dist

u1∨
0
SiR

∣∣∣∣∣ < δ1 (3.9)

and |H(R, S)−H(P , T )| < δ1 then d((P , T ), (R, S)) < δ.

Afterwards, let k be an integer, such that u = ku1, if we have δ̂ > 0 such that
δ̂ < δ1, then if P satisfied

∣∣∣∣∣dist
u∨
0
T iP − dist

u∨
0
SiR

∣∣∣∣∣ < δ̂ (3.10)

then P would also satisfy (3.9).

Since,

∣∣∣∣∣dist
u1∨
0
T iP − dist

u1∨
0
SiR

∣∣∣∣∣ ≤
∣∣∣∣∣dist

u∨
0
T iP − dist

u∨
0
SiR

∣∣∣∣∣ < δ̂ < δ1 (3.11)

Because the definition of H(R, S) we can choose appropriately u (big enough) and
δ̂ so that (3.10) implies H(P , T )−H(R, S) < δ1.
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Applying the previous lemma to get P such that |P | = |P |, |P − P | < 2δ and
satisfies (3.10).

Then if does not satisfy H(P , T ) < H(R, S) it will satisfy d((P , T ), (R, S)) < δ

Lemma 3.1.7. Let R, S and P, T satisfy the following: |R| = |P |, R, S is finitely deter-
mined , H(R, S) ≤ H(T ) and d((P, T ), (R, S)) < ( ε

100)2. Then given δ > 0 we can find
P ′ such that

d((P ′, T ), (R, S)) < δ (3.12)

and |P − P ′| < ε

Proof. By the previous corollary we can assume thatH(P, T ) < H(R, S), and d((R, S), (P, T )) <
ε2

100 (otherwise our problem is solved). Because S,R is finitely determined, it will be enough
to show that given δ and u we can find P ′ satisfying:

|dist
u∨
0
T iP ′ − dist

u∨
0
SiR| < δ, |H(P ′, T )−H(R, S)| < δ and |P − P ′| < ε

Since H(P, T ) < H(R, S) we can choose a refinement Q of P such that H(R, S)−

H(Q, T ) = β > 0 where β < δ

100 .

Because the nature of the function −x log x we can deform Q short enough to get

a partition Q′ such that the difference between its entropies is less than δ

100 i.e. we can

choose γ ≤ min(δ, ε) such that |Q′ −Q| < ε implies that H(Q′, T ) ≥ H(Q, T )− δ

100 .

We denote an atom in ∨n
0 T
−iQ as good (or good Q-n atoms) if its measure is

between (1
2)[H(Q,T )±β/100]n.

Denote an atom in ∨n0 S−iR as good (or good R-n atoms) if its measure is between
(1
2)[H(R,S)±β/100]n and if its n-name have the property that the distribution of u-names in
it is within δ of dist∨u0 S−iR i.e. for each good R− n atom we have:

∣∣∣∣∣dist
u∨
0
S−iR/A− dist

u∨
0
S−iR

∣∣∣∣∣ < δ.

Because of the Shannon-McMillan-Breiman theorem and the ergodic theorem we
can choose n so large that the measure of the union of atoms in ∨n0 T−iQ and ∨n0 S−iR
that are not good is less than γ

100 . We can also choose n so large that: u
n
<

δ

100 , nβ > 100

and m(A) < 1
n

implies that −[m(A) logm(A) + (1−m(A)) log(1−m(A))] < δ

100 .
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Because R, S and P, T are close in the d metric we can choose partitions Ri, and
0 ≤ i ≤ n, such that dist∨n0 Ri = dist∨n0 S−iR, and 1

n+ 1
∑n
i=0 |Ri − T−iP | <

ε2

100 .

The good atoms in ∨n
0 Ri will be those that correspond to the good atoms in∨n

0 S
−iR and we will call these as good R-n-atoms.

The R-n-name of x will be defined with respect to ∨n0 Ri (the ith term being the
atom of Ri that contains x).

We will pick out a subset of the good Q-n-atoms which we will call very good
Q-n-atoms.

Let E be the set of x whose R-n-name is good and differs from its P -n-name in
< εn places. We will call g a very good Q-n-atoms, if g is good and more than half of g
(>1

2 measure of g) lies in E.

Because 1
n+ 1

∑n
i=0 |Ri − T−iP | <

ε2

100 , we get that m(E) > 1− ε and hence the

measure of the union of very good Q− n-atoms is > 1− ε

2 since the definition of the very
good Q− n-atoms.

Because the measure of a good Q-n-atom is greater than two times the measure
of a good R-n-atom, we have that any ` very good Q-n-atoms intersect at least ` good
R-n-atoms in E.

Applying the marriage lemma we can assign to each every good Q-n-atom a good
R-n-atom which intersects it in E. Assign to each very good Q-n-atom, g, a good R-n-atom
whose R-n-name agrees with the P -n-name of any point in g, in more than (1 − ε

n
)n

places.

Because there are more good R-n-atoms than there are good Q-n-atoms, we can
extend the above assignment so that each good Q-n-atom is assigned a good R-n-atom.

Apply the R-K theorem to obtain a set F such that T iF , 0 ≤ i ≤ n are disjoint
and m(∪n0T iF ) > 1− γ

100 and dist∨n0 T−iQ/F = dist∨n0 T−iQ.

Call the atoms in ∨n0 T−iQ/F that are contained in good and very good Q-n-atoms,
good and very good Q-n-F -atoms, we can therefore carry over our assignment of good
R-n-atoms to Q-n-F -atoms.

Define P ′ on ∪n0T iF where F is the union of the good Q-n-F -atoms such as if g
is a good Q-n-F -atom, then T jg will lie in (P ′)i where i is the jth term in the R-n-atom
assigned to g. where (P ′)i is the ith atom of P ′, in the rest of the space we can define it in
any way we want .

From the definition of P ′ we can see that every name in any atom A on P ′ is the
same as the R-name of the R-n-atom assigned to A.
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It does not matter how to define P ′ on the rest of X.

Let F̃ be the partition consisting of F and its complement. Because each Q-n-F -
atom in F was assigned a different R-n-atom, we have that ∨n−n T i(P ′ ∨ F̃ ) restricted to
∪n0T iF refines Q.

Because the measure of the union of goodQ-n-atoms is> 1− γ

100 ,m(∪n0T iF ) > γ

100 ,
because of our choice of γ and H(F ) < δ/100, we get that H(P ′, T ) > H(R, S)− δ.

Because the names of the good R-n-atoms have the property that the u-names in
them are distributed well, we get∣∣∣∣∣dist

u∨
0
T iP ′ − dist

u∨
0
SiR

∣∣∣∣∣ < δ

from the definition of P ′.

Finally, since each every good Q-n-atom, g, has the property that the P -n-name
of any point in g and the R-n-name of the R-n-atom assigned to g differ in less than
ε

2n-places, and since the measure of the union of the very good Q-n-atoms is > 1 − ε

2
we have |P ′ − P | < ε. (Note that the P -n-name of x in g ∩ F is the R-n-name of the
R-n-atom assigned to g).

The following two propositions are consequences from the previous lemma that
will be vital to our main subject, it will provided us a partition close enough to a process
finitely determined.

Proposition 3.1.8. Let R, S and P, T satisfy the following: |R| = |P |, R, S is finitely
determined H(R, S) ≤ H(T ) and d((R, S), (P, T )) < ( ε

100)2, then we can find a P ′ such
that |P ′ − P | < ε and P ′, T ∼ R, S.

It follows immediately, by applying Lemma 3.1.7 a countable number of times.

Proposition 3.1.9. Let R, S be finitely determined then given ε there is a δ and u such
that if P, T satisfies H(R, S) ≤ H(T ), |P | = |R|,

|dist(
u∨
0
T iP )− dist(

u∨
0
SiR)| < δ (3.13)

and

|H(P, T )−H(R, S)| < δ, (3.14)

then there exists a P ′ such that |P − P ′| < ε and P ′, T ∼ R, S
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Proof. Because of the definition of finitely determined we can find δ and u so that |P | = |R| ,
(3.13) and (3.14) imply d[(R, S), (P, T )] < ( ε

100)2. We can now apply Proposition 3.1.8.

Lemma 3.1.10. Let T be a transformation and P and Q partitions such that P generates
H(P, T ) = H(Q, T ) and P, T and Q, T are both finitely determined Then given ε we can
find Q such that Q, T ∼ Q, T , |Q−Q| < ε, and ∨∞−∞ T iQ ⊃ε P .
Proof. Claim:

There is a P such that

1. P ⊂ ∨∞−∞ T iQ.

2. P , T ∼ P, T .

3. There is aK and operator L such that

∣∣∣∣∣∣L
 K∨
−K

T iP

−Q
∣∣∣∣∣∣ < ε

2 and

∣∣∣∣∣∣L
 K∨
−K

T iP

−Q
∣∣∣∣∣∣ <

ε

2

Because P generates, we can approximate Q long enough by a partition made by
union of atoms such that its refinement is some ∨K−K T iP i.e. there is a K and L such that

∣∣∣∣∣∣L
 K∨
−K

T iP

−Q
∣∣∣∣∣∣ < ε

100 (3.15)

Applying Proposition 3.1.9 to T acting on XQ = (X,∨∞−∞ T iQ,m), we get u and
δ such that if P ′ satisfies |P ′| = |P |, | dist∨u0 T iP ′ − dist∨u0 T iP | < δ and |H(P ′, T ) −
H(P, T )| < δ (H(T ) > H(P, T ) is automatically by definition), then there is a P such
that P ⊂ ∨∞−∞ T iQ, |P − P ′| < ε/(300K) and P , T ∼ P, T .

Choose ε such that ε < δ, ε < ε, and if |Q∗| = |Q| and |Q∗ − Q| < ε, then
|H(Q∗, T ) − H(Q, T )| < δ/100. Thus if P ′ is any partition such that ∨∞−∞ T iP ′ ⊃ε Q,
there is a partition Q′ ⊂ ∨∞−∞ T iP ′ such that |Q′ −Q| < ε, since there exist a refinement
of Q′ ≺ ∨S−S T iP ′ it follows that |H(P ′, T )−H(Q, T )| < δ.

We now choose K1 such that (K1 > K and K1 > u), Then

K1∨
−K1

T iP ⊃ε/2 Q. (3.16)

Choose N so that K1 <
ε

100N .

Apply the R-K theorem to find a set F such that T iF , 0 ≤ i ≤ N are disjoint, and
m(⋃N0 T iF ) > 1− ε/100, and F ⊂ ∨∞−∞ T iQ.
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Let G1 be the gadget ⋃N0 T iF, P ∨Q, T . Choose P ′ such that P ′ ⊂ ∨∞−∞ T iQ and
G2 = ⋃N

0 T
iF, P ′∨Q, T is isomorphic to G1 because of Lemma 2.4.2 (extend the definition

of P ′ to the rest of X in some arbitrary way).

Since G1 ∼ G2, we get (from (3.15) and (3.16)).

∣∣∣∣∣∣L
 K∨
−K

T iP ′

−Q
∣∣∣∣∣∣ < 2ε

100 (3.17)

and

K1∨
−K1

T iP ′ ⊃ε Q. (3.18)

We get (3.17) and (3.18) as follows:

|L(∨K−K T iP )−Q| is the measure of the set of x such that x is in ith atom of Q,
and its −K to K name {αi}K−K lies in the jth atom of L and i 6= j. (Here αi = k if T ix
lies in the kth atom of P ).

Because G1 ∼ G2, the contribution to |L(∨k−K T iP ′)−Q| coming from ⋃N−K
k T iF

is less than ε/100.

Since ⋃N−Kk T iF is most of the space we get (3.17). The same argument gives
(3.18).

It follows from G1 ∼ G2 that |dist∨u0 T iP ′ − dist∨u0 T iP | ≤ ε ≤ δ. It follows from
3.18 and the choice of ε, that |H(P ′, T )−H(Q, T )| < δ.

From the definition of δ and u we get:

P ⊂
∞∨
−∞

T iQ, (3.19)

P , T ∼ P, T (3.20)

and

|P − P ′| < ε

100K . (3.21)

From (3.21) and (3.17) we get

∣∣∣∣∣∣L
 K∨
−K

T iP

−Q
∣∣∣∣∣∣ < ε (3.22)

as we want it.
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Because of (3.19), (3.20) and (3.22) we get our Claim.

From now on u, δ, ε, N, F,G1 and G2 will have different values but we will still use
the same notation, the symbols ε, K and L remains with the same meaning.

Due to P is a subset from ∨∞
−∞ T

iQ, we can find M such that

M∨
−M

T iQ ⊃
ε

100 P . (3.23)

As before, apply Proposition 3.1.9 to get a δ and u, such that if Q′ satisfies
|Q′| = |Q|, | dist∨u0 T iQ′ − dist∨u0 T iQ| < δ and |H(Q′, T )−H(Q, T )| < δ, then there is
a Q satisfying |Q−Q′| < ε/(300M), and Q, T ∼ Q, T .

Choose ε so that if ∨∞−∞ T iQ′ ⊃ε P , then |H(Q′, T )−H(P, T )| < δ.

Now choose M1 so that (M1 > M,M1 > u)

M1∨
−M1

T iQ ⊃ε/2 P . (3.24)

Choose N so that M1 < (εN)/100.

We now apply the R-K Theorem to find F such that T iF are disjoint 0 ≤ i ≤ N ,
m
(⋃N

0 T
iF
)
> 1− ε/100 and

dist
(
N∨
0
T i(P ∨Q ∨ F )

)
= dist

(
N∨
0
T i(P ∨Q ∨ P )

)
. (3.25)

Let G1 be the gadget,
⋃N

0 T
iF, P∨Q. Define Q′ so that the gadget G2 = ⋃N

0 T
iF, P∨

Q′ is isomorphic to G1. (This can be done because the gadgets ⋃N0 T iF, P and ⋃N0 T iF, P
are isomorphic by (3.25), and the fact that P , T ∼ P, T ).

Since G1 ∼ G2, (3.23) and (3.24) imply

M∨
−M

T iQ′ ⊃ε/5 P (3.26)

and

M1∨
−M1

T iQ′ ⊃ε P. (3.27)

Because G1 ∼ G2, | dist∨u0 T iQ′ − dist∨u0 T iQ| < δ

because of (3.27) and our choice of ε, |H(Q′, T )−H(P, T )| < δ.
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Because of our choice of δ and u we can find a Q satisfying

|Q−Q′| < ε

30M (3.28)

and Q, T ∼ Q, T .

Because of (3.26) and (3.28) we get:

M∨
−M

T iQ ⊃ε P. (3.29)

Since G1 ∼ G2 and |L
(∨K
−K T

iP
)
− Q| < ε/100 (from our Claim), we get that

|L
(∨K
−K T

iP
)
−Q| < (2ε)/100, and because |Q′ −Q| < ε/(30M), we get

∣∣∣L (K−KT iP)−Q∣∣∣ < ε

2 (3.30)

However

∣∣∣∣∣∣L
 K∨
−K

T iP

−Q
∣∣∣∣∣∣ < ε

2 (3.31)

(see the Claim )

Because of (3.30) and (3.31) we have:

|Q−Q| < ε. (3.32)

Our lemma follows from the fact that Q, T ∼ Q, T ,(3.29) and (3.32).

Proposition 3.1.11. Let T be a transformation and P and Q partitions such that P
generates, H(P, T ) = H(Q, T ) and (P, T ) and (Q, T ) are finitely determined Then given ε
there is a Q such that |Q−Q| < ε, Q generates and Q, T ∼ Q, T

Proof. It follows from the previous lemma. Form Q1 by the previous lemma so that:
Q1, T ∼ Q, T , |Q1 −Q| < ε1 and ∨N1

−N1 T
iQ1 ⊃ε1 P . We apply the lemma again to obtain

Q2, where |Q2−Q1| < ε2, and ε2 is so small hat ∨N1
−N1 T

iQ2 ⊃
(1+

1
2 )ε1

P and ∨N2
−N2 T

iQ2 ⊃ε2

P . Applying the lemma once more, we get Q3 such that ∨N1
−N1 T

iQ3 ⊃
(1+

1
2+

1
22 )ε1

P ,

∨N2
−N2 T

iQ3 ⊃
(1+

1
2 )ε2

P and ∨N3
−N3 T

iQ3 ⊃ε3 P .
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Continuing in this way we get that if εi are chosen as above and εi <
1
2i , then Qi

converge to Q and Q, T ∼ Q, T . Furthermore:

N1∨
−N1

T iQ ⊃2ε1 P,
N2∨
−N2

T iQ ⊃2ε2 P, ...

Therefore, Q will generate.

Theorem 3.1.12. If H(T ) = H(S) and if T and S have finite partitions which generate
and are finitely determined, then T is isomorphic to S

Proof. Let Q be such partition that generates and Q,S are finitely determined.Given
ε > 0, since H(T ) = H(Q,S) we have from the lemma 3.1.4 a partition P ′ such that
d((Q,S), (P ′, T )) < (ε/100)2.

It follows from Proposition 3.1.8 that we can find a partition P1 such that |P1−P ′| <
ε and

P1, T ∼ Q,S (3.33)

Therefore, because of (3.33) and the fact that Q,S is finitely determined it follows
that P1, T is finitely determined.

Let P be such partition that generates and P, T are finitely determined. We have
that H(P1, T ) = H(Q,S) because of (3.33) then using Proposition 3.1.11 there is a
partition P that generates and

P , T ∼ P1, T (3.34)

It follows from (3.33) and (3.34) that P , T ∼ Q,S. Thus, because of Theorem 2.2.3
S and T are isomorphic in the measure sense.

Theorem 3.1.13. Two Beroulli shifts with the same entropy are isomorphic

Proof. This is a particular case of the previous theorem because of Corollary 3.1.3 and
since the definition of Bernoulli shift the spaces involved are Lebesgue spaces.

The Isomorphism theorem gives us information about Bernoulli shift like:

Corollary 3.1.14. Bernoulli shifts have roots of all orders.
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Proof. Let T be a Bernoulli shift. Let T1 be a Bernoulli shift such that H(T1) = 1
n
H(T ).

It is easy to see by the definition of entropy that H(T k1 ) = kH(T1).

Hence T k1 ∼ T . Hence T has a kth root.

3.2 Factors of Shift Bernoulli
In this section we will show that if T is Bernoulli, then for any partition P , P, T

is finitely determined, then acting in ∨∞−∞ T iP is Bernoulli shift. This will imply that
factors of a Bernoulli shift are Bernoulli shifts. Additionally roots of Bernoulli shift will be
Bernoulli.

We say that P, T is a factor of Bernoulli shift, when P is a partition of the space
which is supported T and T is a Bernoulli shift.

Lemma 3.2.1. Let T be a Bernoulli shift and P a finite partition such that H(P, T ) =
H(T ). Then given ε, there is a δ and n such that if P, T satisfies, T is ergodic, H(T ) ≥
H(T ), |P | = |P |

|H(P , T )−H(P, T )| < δ, (3.35)

and

∣∣∣∣∣dist
n∨
0
T iP − dist

n∨
0
T
i
P

∣∣∣∣∣ < δ. (3.36)

Then there is a P̂ such that |P̂ − P | < ε and P̂ , T ∼ P, T

Proof. Let B be a finite partition such that T iB are independent and generate.

Since B generate, because of Lemma 2.2.1 we can pick K so the ∨K−K T iB ⊃ε/10 P .
Let L be as in the above definition and such that

∣∣∣L (∨K−K T iB)− P ∣∣∣ < ε/10.

Choose δ′ (using corollary 3.1.3 and proposition 3.1.9) such that if |B′| = |B|,
|H(B′, T ) − H(B, T )| < δ′, and | distB′ − distB| < δ′, then there is a B such that
|B − B′| < ε/(100K), distB = distB. Since B is independent and they have the same
distribution we will get that T iB are independent.

Now take γ, γ < ε/100, and γ < δ′/100 such that if |P1| = |P | and |P1 − P | < γ,
then |H(P1, T )−H(P , T )| < δ′/10.

Select K ′ > K , so that ∨K′−K′ T iB ⊃γ/10 P ,and n such that K
′

n
<

γ

100 and

∣∣∣∣ 1n log 1
n

+ (1− 1
n

) log(1− 1
n

)
∣∣∣∣ < δ′

10 (3.37)
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Note that so far our choice of n and γ depend only on T, P and B. We now choose
δ so that δ < ω

100 . Having chosen n and δ we will now assume that we have P , T satisfying
hypothesis |P | = |P |,(3.35) and (3.36).

Now apply the R-K-Theorem to find a set F such that T iF, 0 ≤ i ≤ n − 1 are
disjoint, and m

(
X \ ⋃n−1

i=0 T
iF
)
< γ/100 (X is the space on which T acts) and

dist
n−1∨

0
T−i(P ∨B)/F = dist

n−1∨
0
T−i(P ∨B). (3.38)

Applying the Rochlin’s theorem again, we can find a set F such that T iF , 0 ≤ i ≤
n− 1, are disjoint m

(
X \ ⋃n−1

i=0 T
i
F
)
< γ/100, and

dist
n−1∨

0
T
−i
P/F = dist

n−1∨
0
T
−i
P . (3.39)

Now because of our hypotheses (3.36) and our choice of n and δ, we could (by
removing a set with measure less than δm(F ) from F ) assume that we have instead of
(3.39) the following:

dist
n−1∨

0
T
−i
P/F = dist

n−1∨
0
T−iP. (3.40)

If we let G be the gadget formed by partitioning T iF by P , and G the gadget
formed by partitioning the T iF by P , then because of (3.38) and (3.40) it follows that G
and G are isomorphic.

Let G′ be the gadget formed by partitioning T iF by P ∨B.

Since G and G are isomorphic using Theorem ****, we can take a partition B′ of⋃n−1
i=0 T

i
F such that if we form the gadget G′ by partitioning the T iF by P ∨B′, then G′

is isomorphic to G′.(Now extend B′ to the rest of the space in any way).

Because G′ and G′ are isomorphic and fill up must of the space, because K
n
<

γ

10 ,
and because |L(∨K−K T iB)− P | < ε/10 we get that

∣∣∣∣∣∣L
 K∨
−K

T
i
B′

− P
∣∣∣∣∣∣ < 2ε

10 (3.41)

We also have ∨K′−K′ T iB′ ⊃(2γ)/10 P , and hence by our choice of γ.

|H(B′, T )−H(P , T )| < δ′

10 (3.42)
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Furthermore, since G′ and G′ are isomorphic and fill up must of the space, we get
that

| distB′ − distB| < δ′ (3.43)

Since B is generator and H(T ) = H(P, T ) = H(B, T )(because Kolmogorov-Sinai
Theorem) using hypothesis (3.35) we have that |H(P , T )−H(B, T )| < δ < δ′

Using this fact, (3.43) , (3.42) and our choice of δ′ imply that there is a B such
that:

|B −B′| < ε

100K (3.44)

and

B, T ∼ B, T (3.45)

Because of (3.41) and (3.44), we get that

∣∣∣∣∣∣L
 K∨
−K

T
i
B

− P
∣∣∣∣∣∣ < 2ε

10 (3.46)

Because of (3.45) and the Theorem 3.1.12, T acting on ∨∞−∞ T iB is isomorphic to
T under an isomorphism ϕ, of the measure algebras which takes B on B. Let P̂ be ϕ(P ).

Then P, T ∼ P̂ , T . Again, because of the isomorphism, and because L was defined
so that |L(∨K−K T iB)− P | < ε/10 we get that

∣∣∣∣∣∣L
 K∨
−K

T
i
B − P̂

∣∣∣∣∣∣ < ε

10 . (3.47)

(3.46) and (3.47) imply |P − P̂ | < ε.

We will now modify the proof of the previous lemma to cover the case where
H(P, T ) ≤ H(T ).

Theorem 3.2.2. Let T be a Bernoulli shift, and let P be a finite partition. Then (P, T )
is finitely determined

Proof. We will show that P, T is finitely determined by proving the following:
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Claim:Let T̂ be a Bernoulli shift acting on X̂ satisfying H(T̂ ) > H(T ), then given
ε there is a δ and an n such that if T is ergodic and acts on X, and if |P | = |P |,

|H(P , T )−H(P, T )| < δ, (3.48)

| dist
n∨
0
T
i
P − dist

n∨
0
T iP | < δ (3.49)

then there is a partition P̃ ofX×X̂ such that (P̃ , T×T̂ ) ∼ P, T and |P̂−(P×X̂)| <
ε. (See that P × X̂ is the partition of X × X̂ formed by partitioning the X coordinate by
P . Thus P × X̂, T × T̂ ∼ P , T ).

We will now prove it.

Since T is a Bernoulli shift there exist B an independent generator for T . Pick K
so that ∨K−K T iB ⊃ε/10 P . Define L so that |L(∨K−K T iB)− P | < ε/10.

Choose δ1 (using corollary 3.1.3 and proposition 3.1.9) so that if T1 is ergodic,
H(T1) ≥ H(T ) and |B1| = |B|, |H(B1, T1) −H(B, T )| < δ1, and | distB1 − distB| < δ1,
then there is B such that B, T1 ∼ B, T and |B −B1| < ε/(100K).

Take γ such that γ < ε/100 and γ < δ1/100, and if P2 and P3 are any two partitions
of the same space such that |P2| ≤ |P ||B|, |P3| ≤ |P ||B| and |P2 − P3| < γ, then there is
an R such that H(R) < δ1/100 and P2 ∨R ⊃ P3. Select K ′ such that ∨K′−K′ T iB ⊃γ/10 P .

Let T̂ be a Bernoulli shift such that H(T̂ ) > H(T ). Choose Q̂ an independent
partition under T̂ such that |Q̂| ≤ |B|, and

H(T )− δ1

10 < H(Q̂) +H(P, T ) < H(T )− δ1

100 . (3.50)

If n is large enough, then Shannon-McMillan-Brieman theorem implies that there
is a collection C1 of atoms of ∨0

−n+1 T̂
iQ̂, a collection C2 of atoms of ∨0

−n+1 T
i(P ∨B) and

a collection C2 of atoms of ∨0
−n+1 T

iP such that

• m(C1) > 1− γ

100 ,m(C2) > 1− γ

100 ,m(C2) > 1− γ

100 .

• – If A2 ∈ C2, then m(A2) > 1
2

[
H(P,T )+

δ1

1000

]
·n

– If A1 ∈ C1, then m(A1) > 1
2

[
H(T̂ )+

δ1

1000

]
·n

,

– If A2 ∈ C2, then m(A2) < 1
2

[
H(T )−

δ1

1000

]
·n

,
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Clearly any atom in C2 is contained in an atom in C2. Thus if n is large enough
we will have

γ

100m(A1)m(A2) > m(A2). (3.51)

Pick an n so large, that in addition to the above conditions we have K
′

n
<

γ

100 and

∣∣∣∣ 1n log 1
n

+
(

1− 1
n

)
log

(
1− 1

n

)∣∣∣∣ < γ1

100 . (3.52)

Choose δ < γ

100 . We have now chosen δ and n. Let us now assume we have a P , T
satisfying the conditions in the Claim. Apply the R-K theorem to obtain an F such that
T iF, 0 ≤ i ≤ n− 1 are disjoint and fill up X to within γ

100 and

dist
0∨

−n+1
T i(P ∨B) = dist

0∨
−n+1

T i(P ∨B)/F (3.53)

Applying the R-K theorem again and using (3.49) we get F such that T iF , 0 ≤
i ≤ n− 1 are disjoint and fill up X to within γ

100 and

dist
0∨

−n+1
T
i
P/F = dist

0∨
−n+1

T iP (3.54)

Let P1 = P × X̂, F1 = F × X̂ and let T1 = T × T̂ , X1 = X × X̂ and Q1 = X × Q̂.
We thus have: T i1F1, 0 ≤ i ≤ n− 1 are disjoint and fill up X1 to within γ

100 and

dist
0∨

−n+1
T i1P1/F1 = dist

0∨
−n+1

T iP. (3.55)

Let G be the gadget ⋃n−1
i=0 T

iF partitioned by P and G, and ⋃n−1
i=0 T

iF partitioned
by P ∨B. Let G1 be the gadget ∨n−1

0 T i1F1 partitioned by P1.

Since G ∼ G1,because of (3.53) and (3.55), we can find B1 such that if G1 is formed
by ⋃n−1

0 T i1F1 partitioned by P1 ∨ B1, then G ∼ G1,due the Theorem ***. All that is
involved in checking that G ∼ G1 is the measure of atoms of ∨0

−n+1 T
i
1(B1∨P1)/F1. We are

still free to arrange the atoms of ∨0
−n+1 T

i
1(B1∨P1)/F1 within the atoms of ∨0

−n+1 T
i
1(P1)/F1

in any way we want.

We will now show that B1 could have been chosen with the additional property
that

n∨
−n
T i1(B1 ∨ P1 ∨ F1) ⊃γ/10 Q1. (3.56)
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Here F1 denotes the partition consisting of F1 and its complement. Because of the definitions
of C2 and C2 we have that if A1 is in ∨0

−n+1 T
i
1Q1/F1 and corresponds to an atom in C1,

and A2 is an atom in ∨0
−n+1 T

i
1(P1 ∨ B1)/F1 and corresponds to an atom in C2 and A2,

the atom of ∨0
−n+1 T

i
1P1/F1 containing A2, then

γ

100m(A1 ∩ A2) > m(A2). (3.57)

This means that we can change B1 so that all but γ

50 of the atoms of ∨0
−n+1 T

i
1(P1∨B1)/F1

that correspond to atoms in C2 lie inside an atom of ∨0
−n+1 T

i
1Q1/F1.

Because m(C2) > 1− γ

100 we get that

n∨
−n
T i1(B1 ∨ P1 ∨ F1) ⊃γ/10 Q1. (3.58)

Since G ∼ G1 we could define B1 off ⋃n−1
0 T i1F1 so that distB = distB1.

We will now show that |H(B1, T1) − H(B, T )| < γ1. (Since H(B, T ) = H(B) =
H(B1) ≥ H(B1, T1), it is enough to show that H(B1, T1) ≥ H(B, T )− γ1).

Because G1 ∼ G, ∨K′−K′ T iB ⊃γ/10 P , and G and G1 fill up most of X and X1, we
get that ∨K′−K′ T i1B1 ⊃γ P1.

Because of our choice of γ, there is a partition R, H(R) <
γ1

100 , such that∨K′
−K′ T

i
1(B1 ∨R) ⊃ P1.

Thus ∨n−n T i1(B1 ∨ P1 ∨ F1) ⊃γ/10 Q1, we have ∨∞−∞ T i1(B1 ∨R ∨ F1) ⊃ P1 ∨Q1.

It follows from (3.50) that

H(B1 ∨R ∨ F1, T1) ≥ H(Q̂, T̂ ) +H(P , T )− δ1

10 ≥ H(T )− 2δ1

10 . (3.59)

Hence H(B1, T1) ≥ H(T )− δ1.

Because of our choice of δ1 there is a B such that |B−B1| <
ε

100K and B, T1 ∼ B, T .
Let ϕ be the isomorphism between T1 acting on ∨∞−∞ T iB and T acting on ∨∞−∞ T iB that
takes B onto B. Let P̃ = ϕ(P ). It follows that P̃ , T1 ∼ P, T .

Since G ∼ G1, and
∣∣∣L (∨K−K T iB)− P ∣∣∣ < ε

10 , we get
∣∣∣L (∨K−K T i1B1

)
− P1

∣∣∣ < 2ε
10

and because |B1 −B| <
ε

100K , we get
∣∣∣L (∨K−K T i1B)− P1

∣∣∣ < 3ε
10 .

On the other hand, ∣∣∣∣∣∣L
 K∨
−K

T i1B

− P̃
∣∣∣∣∣∣ < ε

10

(since ϕ(B) = B and ϕ(P ) = P̃ ). Thus |P1 − P̃ | < ε and the Claim follows (recall that
P1 = P × X̂ and T1 = T × T̂ ).
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It follows directly from |P̂−(P×X̂)| < ε, P×X̂, T× T̂ ∼ P , T and P×X̂, T× T̂ ∼
P , T that d((P, T ), (P , T )) < ε.

A direct consequence of this theorem is the following corollary.

Corollary 3.2.3. Factors of Bernoulli shifts are Bernoulli shifts

We can restated as: Let T be a Bernoulli shift such that H(T ) is finite. Let P
be a finite partition. Then there is a finite partition B in ∨∞−∞ T iP such that T iB are
independent and ∨∞−∞ T iB = ∨∞

−∞ T
iP .

As a application of the finitely determined characterization of arbitrary partitions
under a Bernoulli shift we have:

Theorem 3.2.4. If T k is a Bernoulli shift then T is a Bernoulli shift

Proof. Let P be a finite generator for T k, and hence for T .

We must show that given ε we can find δ and u such that if |P | = |P |,

|dist(
kn∨
1
T
i
P )− dist(

kn∨
1
T iP )| < δ (3.60)

and

|H(P, T )−H(P , T )| < δ, (3.61)

then d[(P, T ), (P , T )] < ε.

We have

|dist(
n∨
1

(T k)i(
k∨
1
T
j
P ))− dist(

n∨
1

(T k)i(
k∨
1
T jP ))| = |dist(

kn∨
1
T
i
P )− dist(

kn∨
1
T iP )| < δ

(3.62)

and (3.61) implies

|H((
k∨
1

(T jP ), T k)−H((
k∨
1
T jP ), T k)| < kδ (3.63)

Because T k is Bernoulli, we have ∨k1 T iP, T k is finitely determined Thus δ and u can
be chosen so that if P , T is such that (3.62) and (3.63) are satisfied (and |P | = |P |)then

d((
k∨
1
T iP, T k), (

k∨
1
T
i
P , T

k)) < ε. (3.64)
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This implies d[(P, T ), (P , T )] < ε

Definition 3.2.5. Let T be a Bernoulli shift and P an arbitrary partition. We say that
the process (P, T ) is a Bernoulli process or B-process.

The following Theorem show us that the Bernoulli property is preserved under
approximations in the d metric over a sequence of Bernoulli process.

Theorem 3.2.6. Let Pi, Ti and P, T processes such that: Ti are Bernoulli shifts, limi→∞ d((Pi, Ti), (P, T )) =
0. Then acting on ∨∞−∞ T iP is a Bernoulli shift.

Proof. By Theorem 3.2.2, we get that Pi, Ti are finitely determined. (We can also assume
that |Pi| = |P |.)

Let T be a Bernoulli shift such that H(T ) ≥ supH(Pi, Ti).

The proof will consist of showing that there is a P such that P , T ∼ P, T .

By taking a subsequence of the Pi, Ti, we can assume that
∞∑
1

[d((Pi, Ti), (P, T ))]1/2 <
∞

Because P1, T1 is finitely determined and H(T ) ≥ H(P1, T1), there is (by Lemma
3.1.8 and Proposition 3.1.4) a partition P1 such that P1, T ∼ P1, T1. Since P2, T2 is finitely
determined, we can apply proposition 3.1.8 to get P2 such that

|P1 − P2| < 100[d((P1, T1), (P2, T2))]1/2, and P2, T ∼ P2, T2. (3.65)

In general, if we have Pi such that Pi, T ∼ Pi, Ti, then we can find P i+1 such that

|Pi − Pi+1| < 100[d((Pi, Ti), (Pi+1, Ti+1))]1/2, and P i+1, T ∼ Pi+1, Ti+1. (3.66)

Since limi→∞ d((Pi, Ti), (P, T )) = 0. Given ε > 0 we can find n0 such that
d((Pi, Ti), (P, T )) < ε for i ≥ n0.

It follows:

d((P i, T i), (P, T )) ≤ d((P i, T i), (Pi, Ti)) + d((Pi, Ti), (P, T )) < ε (3.67)

It is now easy to see that the Pi will converge to a partition P such tha P , T ∼ P, T

(i.e. d((P , T ), (P, T )) = 0).



3.3. Very Weak Bernoulli 53

The next section introduce us a new class of systems derived of the Bernoulli
property that was introduced by Ornstein in [13]. This property is one of the most
powerful methods to find whether a automorphism is Bernoulli or not.

3.3 Very Weak Bernoulli
The next subsection introduce us a new class of systems derived of the Bernoulli

property that Ornstein used as a tool to know some cases when a system have the Bernoulli
property.

Definition 3.3.1. P, T is very weak Bernoulli. If given ε, then: There is an n such that
for all m we can find a collection Cm of atoms of ∨0

−m T
iP such that m(Cm) > 1− ε and

if A ∈ Cm, then d({T iP}n1 , {T iP \ A}n1 ) < ε.

The following lemma show us that if a process is sufficiently close in measure and
entropy to a very weak Bernoulli process then it will be preserved the very weak Bernoulli
property.

Lemma 3.3.2. Assume P, T is very weak Bernoulli Then given ε, there is a u and δ such
that if P , T satisfies: |P | = |P |,

|dist(
u∨
0
T iP )− dist(

u∨
0
T
i
P )| < δ (3.68)

and

|H(P, T )−H(P , T )| < δ, (3.69)

then: There is an n and for all m there is a collection Cm of atoms of ∨0
−m T

i
P , m(Cm) >

1− ε, and if A ⊂ Cm, then d({T iP}n1 , T
i
P \ A}n1 ) < ε.

Proof. Pick n from the very weak Bernoulli definition holds for (P, T ).

By Lemma 3.1.1 we can pick δ1 such that if |Q| = |∨n1 T iP |, and if |H(Q/Q1)−
H(Q)| < δ1 then Q ⊥ε2 Q1.

Pick ` so that

∣∣∣∣∣∣H
 n∨

1
T iP/

0∨
−`
T iP

− nH(P, T )

∣∣∣∣∣∣ < δ1

2 . (3.70)

Let u = n+ `.

If δ is small enough, then (3.70) and the hypotheses |P | = |P |, (3.68) and (3.69)
imply
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∣∣∣∣∣∣H
 n∨

1
T
i
P/

0∨
−`
T
i
P

− nH(P , T )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣H

 n∨
1
T
i
P/

0∨
−`
T
i
P

−H
 n∨

1
T iP/

0∨
−`
T iP

∣∣∣∣∣∣
+

∣∣∣∣∣∣H
 n∨

1
T iP/

0∨
−`
T iP

− nH(P, T )

∣∣∣∣∣∣
+ |nH(T, P )− nH(P , T )|

such that
∣∣∣H (∨n

1 T
i
P/

∨0
−` T

i
P
)
− nH(P , T )

∣∣∣ < δ1. This inequality can be restated
as: for all ` > 0

∣∣∣∣∣∣H
 n∨

1
T
i
P/

0∨
−`
T
i
P

−H
 n∨

1
T
i
P/

0∨
−`−`

T
i
P

∣∣∣∣∣∣ < δ1. (3.71)

Pick δ so small that the hypotheses of very weak Bernoulli, P and P have the same
number of atoms and (3.68) imply there is a collection C` of atoms of ∨0

−`T
i
P such that

m(C`) > 1− 2ε, and if A ∈ C`, then

d({T iP}n1 , {T
i
P/A}n1 ) < 2ε. (3.72)

Because of the definition of δ1 and (3.71), we have that for all ` > 0 there is a
collection C` of atoms of ∨0

−` T
i
P , m(C`) < ε, and if A ⊂ C`, then

∨n
1 T

i
P restricted to A.

The lemma follows from this and (3.72).

Proposition 3.3.3. If P, T is very weak Bernoulli then P, T is finitely determined.

Proof. We must show that given ε there is a u and a δ such that if

1. |P | = |P |.

2. | dist∨u0 T iP − dist∨u0 T iP | < δ.

3. |H(P, T )−H(P , T )| < δ

then d((P, T ), (P , T )) < ε.

Choose u and δ by Lemma 3.1.1 so that the hypotheses (1),(2) and (3) imply that
there is an n such for allm there is a collection Cm of atoms of ∨0

−m T
i
P ,m(Cm) > 1−ε/10,

and if A ⊂ Cm, then

d({T iP}n1 , {T
i
P/A}n1 ) < ε/10. (3.73)
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Because of these we can assume that the hypotheses (1),(2) and (3) imply

d({T iP}n1 , {T
i
P}n1 ) < ε

10 (3.74)

To show that d((P, T ), (P , T )) < ε, we must, for each k, find sequences {Pi}k1, {P i}k1
of partitions of the same space such that

dist
k∨
1
Pi = dist

k∨
1
T iP, dist

k∨
1
Pi = dist

k∨
1
T
i
P and 1

k

∑
|Pi − Pi| < ε. (3.75)

We will prove it inductively. Assume we have found the first k partitions. We will
now define {Pi}k+n

k+1 , {Pi}k+n
k+1 .

Let A be an atom of ∨k1 Pi, A an atom of ∨k1 Pi, and let A1 and A1 be the atoms in∨k
1 T

iP and ∨k1 T iP corresponding to A and A.

We will define {Pi}k+1k+n on A ∩ A so that the distribution of ∨k+n
k+1 Pi on A ∩ 0A

is the same distribution of ∨k+n
k+a T

iP on A. This will insure that

dist
k+n∨

1
Pi = dist

k+n∨
1
T iP.

We will define {Pi}k+n
k+1T

iP on A ∩ A in the analogous way.

Because of the definition of u and δ we have that there is a collection C of atoms
of ∨k1(Pi ∨ Pi),m(C ) > 1− 2ε/10 and if A ∩ A ⊂ C , then

d({Pi}k+n
k+1 , {Pi/(A ∩ A)}k+n

k+1 ) < ε

10 and d({Pi}k+n
k+1 , {Pi/(A ∩ A)}k+n

k+1 ) < ε

10 (3.76)

Thus by (3.73) we have d({Pi/(A ∩ A)}k+n
k+1 , {Pi/(A ∩ A)}k+n

k+1 ) < 3ε
10 .

This last inequality implies, that on A ∩ A, {Pi}k+n
k+1 and {Pi}k+n

k+1 can be chosen so
that

1
n

k+n∑
i=k+1

|Pi/(A ∩ A)− Pi/(A ∩ A)| < 3ε
10 (3.77)

This in turn implies 1
n

k+n∑
i=k+1

|Pi − Pi| < ε.

Which proves (3.75), and the proposition follows.
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3.4 Some criterion for Bernoulli shifts
The main object of this section is to proof that an increasing sequence of Bernoulli

process implies the Bernoulli property in the whole space.

Lemma 3.4.1. Let T be a Bernoulli shift of finite entropy, and P a finite partition such
that H(P, T ) < H(T ), and T iP are independent. Then given ε there are P ′ and R′ such
that P ′, T ∼ P, T , |P − P ′| < ε, P ′ ∨ R′ generates and the σ-algebras ∨∞−∞ T iP ′ and∨∞
−∞ T

iR′ are independent and T iR′ are independent.

Remark R′ can be chosen to have any distribution whose entropy equals H(T )−
H(P, T ). This follows from the isomorphism theorem for Bernoulli shifts.

Proof. Let α = H(T )−H(P, T ). Because of the isomorphism theorem we can find T a
Bernoulli shift with independent generator P ∨R where P ⊥ R and distP = distP and
H(R) = α. Then H(T ) = H(T ).

Since T iR is independent, because of corollary 3.1.3, P, T is finitely determined.
Using proposition 3.1.10 and proposition 3.1.11 , there is a δ such that if R is a partition
satisfying |R| = |R|

|H(R ∨ P, T )−H(R ∨ P , T )| < δ (3.78)

and

| distR ∨ P1 − distR ∨ P | < δ (3.79)

then there are partitions R1 and P1 such that |R1 ∨P1−R∨P | <
ε

2 , R1 ∨P1, T ∼
R ∨ P , T , and R1 ∨ P1 generate.

We can find a δ1 < δ such that if

|H(R ∨ P, T )−H(R ∨ P , T )| < δ1 (3.80)

and

| distR− distR| < δ1 (3.81)

then

distR ∨ P − distR ∨ P | < 2δ. (3.82)
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We can see this as follows: Using (3.80) we get H(R ∨ P ) ≥ H(R ∨ P, T ) ≥
H(T )− δ1 ≥ H(P ) +H(R)− δ1.

Th equation (3.81) implies that if δ1 is small enough, H(R ∨ P ) is so close to
H(P ) +H(R) that R must be δ

10 independent of P (because of Lemma 3.1.1). This and
(3.81) implies | distR ∨ P − distR ∨ P | < 2δ

The rest of the proof will be devoted to finding an R satisfying |R| = |R|,(3.80)
and (3.81).

Let Q be a refinement of P such that:

H(T )− γ1

100 < H(Q, T ) < H(T ). (3.83)

Define β = H(T )−H(Q, T ).

Pick γ < δ1 so that if |Q1 −Q| < γ, then

|H(Q1, T )−H(Q, T )| < δ1

100 . (3.84)

Call an atom of ∨0
−n+1 T

iP a good P -n-atom if its measure is between 1
2

(H(P,T )−β/100)n
.

Call an atom of ∨0
−n+1 T

i
R a good R-n-atom if its measure is between 1

2
(H(R,T )±β/100)n

,

and if the distribution of its R-n-name is within γ1

100 of the distribution of R. (That is:
each atom of ∨0

−n+1 T
iR = ⋂0

−n+1 T
iRf (i) when the Rf (i) are atoms of R. We are requiring

that the number of f (i) that equal j divided by n be close to the measure of Rj).

Call a good P -n-atom very good if more than 1 − γ

100 of it is covered by good
Q-n-atoms.

Call the good Q-n-atoms in a very good P -n-atom very good. The Shannon-
McMillan-Brieman theorem implies that if n is large enough, then: All but 1− γ

100 of the
Q-n-atoms are very good. It also implies that:

Each very good P -n-atom contains fewer very good Q-n-atoms than there are good
R atoms (We can see this, since: If n is large enough, the number of good R-n-atoms are
greater than 2(H(R,T )−β/100)n which is equal to 2H(T )−(H(P,T )+β/100)n. The number of very
good Q-n-atoms in a very good P -n-atom is smaller than 2(E(Q,T )−H(P,T )+(2β)/100)n ).

Because of that we can assign to each very good Q-n-atom in a fixed very good
P -n-atom a good R-n-atom (so that no 2 Q-n-atoms in the same P -n-atom are assigned
the same R-n-atom).

Using the R-K theorem we can find a set F such that T iF, 0 ≤ i ≤ n − 1 are
disjoint and m

(⋃n−1
i=0 T

iF
)
≥ 1− γ

100 , and such that
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dist
 0∨
−n+1

T iQ/F

 = dist
0∨

−n+1
T iQ

Call the part of Q-n-atom that lies in F a Q-n-F -atom. Make the same definition
for good and very good Q-n-atoms and P -n-atoms.

We will now define R as follows: Let A be a very good Q-n-F -atom.

Let ⋂0
−n+1 T

i
Rf (i) be the good R-n-atom assigned to A. Then T iA will be in Rf (i).

(Thus the R-n-name of points in A will be the same as the R-n-name of points in the
R-n-atoms assigned to A).

Let F1 be the union of the very good Q-n-F -atoms. We have defined R on ⋃n−1
0 T iF1.

Because of the definition of the very good Q-n-atoms we have that

m(F1) > (1− γ

100)m(F ).

Afterwards, R satisfies that |R| = |R| and (3.81) i.e. has good distribution, because
the distribution of the R-n-name of each point in F1 will itself have a distribution within
δ1

100 of the distR. This shows that

| distR− distR| < δ1, (3.85)

because m
(⋃n−1

0 T iF
)
> 1− γ

100 and m(F1) >
(

1− γ

100

)
m(F ).

Also R∨P satisfies (3.80) because ∨n−n T i(R∨P ∨F ) refines Q on ⋂n−1
0 T iF1 (here

F denotes the partition consisting on F and its complement).

Thus ∨n−n T i(R ∨ P ∨ F ) ⊂γ Q. By the choice of γ and (3.83)

H(R ∨ P ∨ F, T ) > H(Q, T )− δ1

100 ≥ H(T )− 2δ1

100 .

Since H(F ) < δ1

100(by the choice of n), and the definition of P ∨R we get that

H(R ∨ P, T ) ≥ H(T )− δ1 = H(R ∨ P , T )− δ1,

and hence using (3.85) and the independence of T i(R ∨ P ),

|H(R ∨ P, T )−H(R ∨ P , T )| < δ1. (3.86)

Because of (3.82), we can use the first part of the proof to find R′ and P ′ such that

R′ ∨ P ′, T ∼ R ∨ P , T (3.87)
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|R′ ∨ P ′ −R ∨ P | < ε

2 (3.88)

and

R′ ∨ P ′ generate. (3.89)

Finally because of (3.87), (3.88) and (3.89) together with the properties of P , R
and T imply that P ′ and R′ satisfy the conclusions of the lemma.

Definition 3.4.2. We say that T is an increasing union of Bernoulli shifts if there is
an increasing sequence of invariant σ-algebras σi such that T restricted to each σi is a
Bernoulli shift of finite entropy, and the smallest σ-algebra containing all the σi is the
entire σ-algebra.

Lemma 3.4.3. Let T and T be increasing unions of Bernoulli shifts with invariant σ-
algebras σi and σi respectively. We will assume that the entropy of T restricted to σi is the
same as the entropy of T restricted to σi. Then T and T are isomorphic(in the measure
algebra sense, and if T and T act on Lebesgue space and ⋃σi and ⋃σi separate points,
then T and T are isomorphic in the pointwise sense.)

Proof. Because of the isomorphism theorem for Bernoulli shifts we can pick P1,1 and P 1,1

such that P1,1, T ∼ P 1,1, T , P1,1 generates σ1, and P 1,1 generates σ1.

We now apply the previous lemma to σ2 and σ2 to get:

Given ε1 there exist P1,2, P2,2 and P 1,2, P 2,2 satisfying

|P1,2 − P1,1| < ε1 and |P 1,2 − P 1,1| < ε1.

P1,2 ∨ P2,2 generates σ2 and P 1,2 ∨ P 2,2 generates σ2.

We will also have: ∨∞−∞ T i(P1,2) ⊥
∨∞
−∞ T

i(P2,2),
∨∞
−∞ T

i(P 1,2) ⊥
∨∞
−∞ T

i(P 2,2)
and P1,2, T ∼ P 1,2, T , P1,1, T ∼ P 1,1, T , P2,2, T ∼ P 2,2, T . Thus we get (P1,2 ∨ P2,2), T ∼
(P 1,2 ∨ P 2,2), T .

If we repeat this process once more we get P1,3, P2,3, P3,3 and P 1,3, P 2,3, P 3,3 satis-
fying

|P1,3 ∨ P2,3 − P1,2 ∨ P2,2| < ε2
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( 3∨
i=1

Pi,3

)
generate σ3 and

( 3∨
i=1

P i,3

)
generate σ3

and

( 3∨
i=1

Pi,3

)
, T ∼

( 3∨
i=1

P i,3

)
, T .

Continuing in this way we get Pi,n and P i,n , 1 ≤ i ≤ n satisfying

∣∣∣∣∣
(
n−1∨
i=1

Pi,n−1

)
−
(
n−1∨
i=1

Pi,n

)∣∣∣∣∣ < εn−1,

∣∣∣∣∣
(
n−1∨
i=1

P i,n−1

)
−
(
n−1∨
i=1

Pi,n

)∣∣∣∣∣ < εn−1 (3.90)

.

n∨
i=1

Pi,n generate σn and
n∨
i=1

P i,n generate σn

(
n∨
i=1

Pi,n

)
, T ∼

(
n∨
i=1

P i,n

)
, T . (3.91)

If the εi are chosen small enough, Pi,n converge (as n −→∞, i fixed) to Pi, and it
is clear that (∨ni=1 Pi) , T ∼

(∨n
i=1 P i

)
, T .

We will be finished if we show that ∨∞1 Pi and
∨∞

1 P i generate.

We will do this as follows: Let Qn be a generator for σn such that Qn+1 refines Qn.

Thus ∨∞−∞ T i (∨nj=1 Pj,n
)
⊃ Qn and for some Kn

∨Kn
−Kn T

i
(∨n

j=1 Pj,n
)
⊃ Qn.

If we choose εn, εn+1, etc. Properly, we get that ∨Kn−Kn T i (∨nj=1 Pj
)
⊃1/(2n−1) Qn.

This shows that ∨∞1 Pi generates, because of Lemma 2.2.1. The same argument
works for T .

Theorem 3.4.4. If H(T ) <∞ and T is an increasing union of Bernoulli shifts, then T
is a Bernoulli shift(i.e. has a finite independent generator).

Observation: The above theorem allows us to prove that a transformation is
Bernoulli without first finding a generator.

Proof. The theorem follows from our previous lemma and the following:
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1. If T is a Bernoulli shift and if ri are numbers such that ri+1 > ri and sup ri = H(T ),
then we can find invariant σ-algebra σi such that T restricted to σi is a Bernoulli
shift of entropy ri.

We will get (1) immediately from the theorem that factors of Bernoulli shifts are
Bernoulli shifts and from:

2. Let T be a Bernoulli shift and let σ1 be an invariant σ-algebra such that the entropy
of T restricted to σ1 (denoted by H(σ1)) is strictly less than H(T ), then given r,
H(σ1) < r < H(T ) we can find an invariant σ-algebra σ2 such that σ2 ⊃ σ1 and
H(σ2) = r.

We get (2) as follows: Let P1 be a generator for T acting on σ1 and P2 a generator
for T . Deform P2 continuously, through P t, into a partition with only one atom. Then
H(P1 ∨ P t, T ) will go continuously from H(T ) to H(σ1).

3.5 Estimating distances between partition

Let (X,B, µ) a probability space, ϕ : X −→ X an invertible measure-preserving
transformation. Let α = {A1, A2..., Aa} and β = {B1, B2, ..., Bb} partitions of X. Remem-
bering the metric defined in the preliminaries 2.5 we will use the metric

d(α, β) =
∑
i

µ(Ai∆Bi).

In the case when the partitions αi = {A(i)
1 , ..., A

(i)
ai
} and βi = {B(i)

1 , ..., B
(i)
bi
},

1 ≤ i ≤ n are on different spaces we could compare their distributions, we will write
{αi}n1 ∼ {βi}n1 , if for all ki, 1 ≤ i ≤ n

µ(∩n1A
(i)
ki

) = ν(∩n1B
(i)
ki

)

where µ and ν are the measures on the spaces X and Y respectively.

With this we can reformulate our metric d between partitions αi in X and βi in Y .

We will write d((αi)n1 , (βi)n1 ) ≤ ε if there are partitions αi, βi partitions on the same
space such that (αi)n1 ∼ (αi)n1 and (βi)n1 ∼ (βi)n1 and

1
n

n∑
1
d(αi, βi) ≤ ε.
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In the last two sections we showed two strong methods: the Corollary ?? and
Theorem 3.4.4 to determine if an automorphism is Bernoulli. We can reformulate it in the
following way.

Theorem 3.5.1. If α is very weak Bernoulli, then (X,∨∞−∞ ϕnα, µϕ) is a B-shift.

Theorem 3.5.2. If A1 ⊂ A2 ⊂ ... are an increasing sequence of ϕ-invariant σ-algebras∨∞
1 An = B and for each n (X,An, µ, ϕ) is a B-shift, then (X,B, µ, ϕ) is a B-shift.

To apply theorem 3.5.1 we need a method for showing that partitions are close in
the d-metric, and we devote the rest of the section to this point.

The {αi}n1 -name of x is the sequence `i = `i(x) determined by x ∈ A
(i)
`i
, αi =

{Ai1, Ai2, ....Aiai}.

Definition 3.5.3. We say that a transformation θ : (X,µ) −→ (Y, ν) between Lebesgue
spaces ε-preserves measure if there is a set E ⊂ X such that µ(E) ≤ ε and for every
measurable set A ⊂ X \ E,

∣∣∣∣∣ν(θ(A))
µ(A) − 1

∣∣∣∣∣ ≤ ε.

Define a function e : N −→ {0, 1} defined by e(0) = 0 and e(n) = 1 when n > 0.

Lemma 3.5.4. Let α and β two finite partitions defined in X with the names `(x) and
m(x) respectively. Consider f : X −→ {0, 1} defined by:

f(x) = 1, if `(x) 6= m(x)

f(x) = 0, if `(x) = m(x).

Then

d(α, β) = 2
∫
f(x)dµ(x).

Proof. Since the metric of the partitions α and β are defined as

d(α, β) =
k∑
j=1

µ(Aj∆Bj)

where k is the number of atoms in α and β.

Dividing Aj∆Bj we get:
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• If x ∈ Aj ∩Bj then f(x) = 0, since `(x) = j = m(x),

• If x ∈ Aj \Bj then f(x) = 1, since `(x) = j 6= m(x),

• If x ∈ Bj \ Aj then f(x) = 1, since `(x) 6= j = m(x),

Furthermore:

∫
Aj
f(x)dµ+

∫
Bj
f(x)dµ =

∫
Aj\Bj

f(x)dµ+ 2 ·
∫
Aj∩Bj

f(x)dµ+
∫
Bj\Aj

f(x)dµ

=
∫
Aj\Bj

1dµ+ 2 · 0 +
∫
Bj\Aj

1dµ

= µ(Aj \Bj) + u(Bj \ Aj)

= µ(Aj∆Bj).

Then,

d(α, β) =
k∑
j=1

µ(Aj∆Bj) =
k∑
j=1

∫
Bj
f(x)dµ+

k∑
j=1

∫
Aj
f(x)dµ

=
∫⋃n

j=1 Aj
f(x)dµ+

∫⋃n

j=1 Bj
f(x)dµ = 2

∫
f(x)dµ

Lemma 3.5.5. Let {αi}n1 be partitions of X with name functions `i(x) and {βi}n1 partitions
of Y with name functions mi(y). If there is a measure-preserving mapping θ : X → Y such
that

1. µ(E) ≤ ε and

2. 1
n

n∑
i=1

e(`i(x)−mi(θx)) ≤ ε, x ∈ X \ E

then
d({αi}n1 , {βi}n1 ) ≤ 4ε.

Proof. Let αi := θαi and βi = βi partitions of Y , since θ is measure-preserving, we have

{θαi}n1 ∼ {αi}n1 ,

then



64 Chapter 3. Ornstein Theory

{αi}n1 ∼ {αi}n1 .

Define:

fi(y) := e(`i(θ−1(y))−mi(y)). (3.92)

If the αi-name of y is different from βi-name of y then fi(y) = 1. Otherwise
fi(y) = 1. Because of the previous lemma, we have

d(αi, βi) = 2 ·
∫
e(`i(θ−1(y))−mi(y))dµ

This gives

1
n

n∑
i=1

d(αi, βi) = 2
n

n∑
i=1

∫
e(`i(θ−1(y))−mi(y))dµ

= 2
∫
X\E

1
n

n∑
i=1

e(`i(θ−1(y))−mi(y))dµ+
∫
E

1
n

n∑
i=1

e(`i(θ−1(y))−mi(y))dµ

≤ 2
∫
X\E

εdµ+ 2
∫
E

1dµ

≤ 2 · ε+ 2ε = 4 · ε.

Furthermore, we conclude:

d({αi}n1 , {βi}n1 ) ≤ 4ε.

Lemma 3.5.6. If θ : X → Y is ε-measure-preserving and α = {A1, ..., Ak} is a partition
of X, there is a mapping θ : X → Y such that

{θα} ∼ {α} (3.93)

and

µ({x : θx 6= θx}) ≤ 8 · ε. (3.94)

Proof. Since θ is ε-measure-preserving, there exist an E2 such that for every measurable
set A ⊂ X, denote A such that A = A \ E2,
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∣∣∣∣∣ν(θ(A))
µ(A)

− 1
∣∣∣∣∣ ≤ ε.

It follows,

∑
j

ν(θ(Aj)) < 1 + ε, (3.95)

and

ν(
⋃
j

θ(Aj)) > 1− 2ε. (3.96)

From (3.95) and (3.96) we have

∑
j

ν(θ(Aj))− ν(
⋃
j

θ(Aj)) < 1 + ε− 1 + e · ε = 3 · ε. (3.97)

Define B := θ−1(⋃i 6=j(θ(Ai) ∩ θ(Aj))) as the points which have the same images in
different atoms.

Note that

ν(
⋃
i 6=j

(θ(Ai) ∩ θ(Aj))) =
∑
j

ν(θ(Aj))− ν(
⋃
j

θ(Aj)),

which concludes

ν(
⋃
i 6=j

(θ(Ai) ∩ θ(Aj))) < 3 · ε.

Since θ is ε-measure-preserving:

µ(B) < 3 · ε · (1 + ε) < 6 · ε

Now, consider Ãj = Aj \ (B ∪ E2). Since Ãj ∩ B = ∅ we have θ(Ãi) ∩ θ(Ãj) = ∅,
for every i 6= j. Thus,

µ(
⋃
j

Ãj) = µ((
⋃
j

Aj) \ (B ∩ E2)) = 1− µ(B ∪ E2) > 1− 7 · ε. (3.98)

We will construct θ in the following way: we will modify θ in a little portion of Ãj
in order to get the same measure between the image of Aj and itself, there are no common
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points between the image of Ãi and the image of Ãj, such that i 6= j. Finally we will map
B ∪ E2 in the rest of Y preserving measure.

First Step: If ν(θ(Ãj)) > µ(Ãj), consider Gj ⊂ Ãj such that

ν(θ(Gj)) = µ(Ãj). (3.99)

we can do that since the space is non-atomic. It follows:

µ(Gj) > (1− ε)ν(θ(Gj)) = (1− ε)µ(Ãj). (3.100)

Take any set of null measure as Pj ⊂ Y and choose an arbitrary point pj ∈ Y .
Define θ(x) := θ(x) for every x ∈ Gj and define θ(x) := pj for every x ∈ Ãj \Gj.

Ir follows from the definition of θ and (3.99) that θ preserve the measure of Ãj and
is different from θ in a subset of Ãj with relative measure less than ε.

Now, in the case when ν(θ(Ãj)) < µ(Ãj), consider a set Gj ⊂ Ãj such that its
measure is bigger than (1− ε) ·µ(Ãj). Define θ(x) := θ(x) when x ∈ Gj and such way that
θ(Ãj \Gj) = µ(Ãj)− ν(θ(Gj)) and dose not intersect any image of other Ãj’s.

Second Step: All that it rest to define is θ in B ∪E2. From the first step, we have

ν
(
θ
(⋃

Aj \ (B ∪ E2)
))

= µ
(⋃

Aj \ (B ∪ E2)
)
,

because θ preserves the measure of n any set Ãj , 1 ≤ j ≤ k and the images of them
are mutually disjoint.

Because of (3.5) all that it rest in Y to use is a subset of the same measure as
B ∪ E2. Hence, we can define θ in B ∪ E2 in such a way that it would be injective and
send B ∪ E2 to the rest set of Y .

Furthermore, it follows from the definition of θ and (3.5) that {θα} ∼ {α}

It follows from the definition of Gj and using (3.100) we get:

µ(Ãj \Gj) < ε · µ(Ãj)

for every 1 ≤ j ≤ k.

This and (3.98) give µ({x : θx 6= θx}) ≤ 8 · ε.

Note that in general, θ, can’t be chosen to satisfy (3.93) and (3.94) for "all" α
simultaneously. Now for the strengthening of lemma 3.5.5.
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Lemma 3.5.7 (Ornstein-Weiss). Let {αi}n1 be partitions of X with name functions `i(x)
and {βi}n1 partitions of Y with name functions mi(y). If there is an ε-measure-preserving
mapping θ : X → Y such that

1
n

n∑
i=1

e(`i(x)−mi(θx)) ≤ ε, x ∈ X \ E

µ(E) ≤ ε

(3.101)

where E is some subset of X then d({αi}n1 , {βi}n1 ) ≤ 36 · ε.

Proof. Take α := ∨n
1 αi and using Lemma 3.5.6 we get

{θαi} ∼ {αi}

and

µ({x : θx 6= θx}) ≤ 8 · ε.

It follows from (3.101) and (3.5) that µ(E ′) ≤ 9 · ε and

1
n

n∑
i=1

e(`i(x)−mi(θx)) ≤ 9 · ε, x ∈ X \ E ′ (3.102)

where E ′ is the union of E with the set formed by the points which θ and θ differs.

Using Lemma 3.5.5, we have

d({αi}n1 , {βi}n1 ) ≤ 36 · ε
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4 Kolmogorov automorphisms

Remembering the first chapter, we have that Bernoulli automorphisms have strong
mixing property. A natural question appears: Between the Bernoulli property and the
strong mixing property is there another class of transformations? Introduced by Andrei
Kolmogorov in his article "A new metric invariant of transient dynamical systems and
automorphisms in Lebesgue spaces". That class is formed by the Kolmogorov automorphisms
or K-systems.

Definition 4.0.1. An invertible measure preserving transformation T of a probability
space (X,B,m) is a Kolmogorov automorphism (K-automorphism) if there exists a sub
σ-algebra K of B such that:

• K ⊂ TK .

• ∨∞n=0T
nK

.= B.

• ∩∞n=0T
−nK

.= N = {X, ∅}.

Obs: If a system is a K-automorphism we say that the system has the K property

This definition tell us that K have a good behavior under iterations of the dynamic,
that the collection of its iterations generates B and that our system is very chaotic, they
have a massive loss of memory.

Theorem 4.0.2. Let (X,B,m) a probability space and T : (X,m) −→ (X,m) be a measure
preserving transformation. T is a K-automorphism iff there is a finite partition P such
that:

1. {T iP}∞0 generates B.

2. Given K and ε there is an N > 0 such that ∨K−K T iP is ε-independent of ∨N+m
N T iP

for all m > 0.

From the definition of Kolmogorov automorphism we have that such automorphisms
have the strong mixing property. The proof of this claim appears in [28].

There is another characterization of the Kolmogorov property with the entropy of
the system, we just stated the statement of the theorem for further reading could see [22]

Theorem 4.0.3. (Rohlin and Sinai) Let (X,B,m) be a Lebesgue space and let T : X −→ X

be an invertible measure-preserving transformation.
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Then T is a Kolmogorov automorphism iff H(T,A) > 0 for all finite non trivial
partition A.

We can see from Theorem 4.0.2 that Bernoulli automorphism are Kolmogorov,
since taking the cylinders [i], i ∈ {1, ..., n} as the partition we have that for an N big
enough ∨K−K T iP is independent of ∨N+m

N T iP for all m > 0.

Another way to proof that is with Rohlin and Sinai’s theorem, because every
non-trivial partition give us a positive entropy.

Therefore, we have:

Corollary 4.0.4. Every Bernoulli automorphism is a Kolmogorov automorphism.

Remark: It is quite obvious that the K property is an isomorphism invariant. Just
need to take ψ(K ) as the sub σ-algebra generated from the conjugated function ψ and
the sub σ-algebra K from the K property.

The following results show that the class of Kolmogorov automorphisms does not
share all the properties the class of Bernoulli automorphisms enjoys. The proofs are given
in the reference cited.

Theorem 4.0.5.

1. There are uncountably many non-conjugate Kolmogorov automorphisms with the
same entropy(Ornstein and Shields [16]).

2. There is a Kolmogorov automorphism T not conjugate to its inverse T−1 (Ornstein
and Shields [16]).

3. There is a Kolmogorov automorphism which has no n-th roots for any n ≥ 2 (Clark
[4]).

4. There are non-conjugate Kolmogorov automorphisms T, S with T 2 = S2 (Rudolf
[25]).

5. There are two non-conjugate Kolmogorov automorphisms each of which is a factor
of the other (Polit [19] and Rudolf [25]).

In the next section we will give an example of a Bernoulli automorphism in a
manifold, in order to do that, we state the following theorem

Theorem 4.0.6. (Rokhlin [23], Yuzvinskii [29]) Let G be a compact topological group and
ϕ : G −→ G an ergodic automorphism, then ϕ is a Kolmogorov automorphism.

Corollary 4.0.7. Ergodic automorphism of the bi-torus are Kolmogorov
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Proof. Since the ergodic automorphisms of T2 are induced by matrices 2× 2 with integer
entries and no unitary eigenvalues. Because of the previous theorem this corollary follows.

4.1 Ergodic automorphisms of T2 are Bernoulli
Let f be an ergodic automorphism induced by the integer matrix A with non

unitary eigenvalues.

Define λ1 and λ2 as the eigenvalues of A such that

|λ1| < 1 < |λ2|

Let F s and F u(in R2) be the lines associated to λ1 and λ2 respectively.

Since |λ1| < 1, F s have a contraction behavior , this is given x, y ∈ F s, we have:

d(Ax,Ay) = |λ1|d(x, y).

The same thing happens with F s having an expansive behavior with a |λ2| factor.

When x ∈ R2 we can define the lines F s(x) and F u(x) as:

F s(x) = x+ F s,

F u(x) = x+ F u.

Let π : R2 −→ T2 the natural projection, define F s(x) and Fu(x) as the projections
of F s(x) and F u(x) respectively in the 2-torus, this is:

F s(x) = π ◦ F s(x),

Fu(x) = π ◦ F u(x).

Notation: Given a set J , denote for F s(x) ∩ J a connected component of the
intersection F s(x) ∩ J which have the point x. Similar for Fu(x) ∩ J .

Definition 4.1.1. A set Π will be called a parallelogram if satisfies the following conditions:

• Π it is connected,

• Π = Int(Π),
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• for every x, y ∈ Π we get

(F s(x) ∩ Π) ∩ (Fu(y) ∩ Π) = z ∈ Π.

b

b
x

y

R

Fs(x)

Fu(y)

0

Fu(0)

Fs(0)

b

b

y

x

Figure 2 – Sketch of a parallelogram set

Definition 4.1.2. Let α = {A1, A2, ..., Ak} a partition in T2. We say that α is piecewise
smooth if

• The frontier of each atom Ai is a union of finite number of smooth curves,

• Ai = Int(Ai).

Definition 4.1.3. Let Π be a parallelogram. Given a set E ⊂ T2, we say that E intersects
Π in a u-tubular if for every x ∈ Π ∩ E we have Fu(x) ∩ Π ⊂ E ∩ Π.

Lemma 4.1.4. Suppose that α is a piecewise smooth partition, Π is a parallelogram, and
δ > 0 is given. There exists N1 such that for any N ′ > N ≥ N1 and δ−almost every atom
A ∈ ∨N ′N fkα there is a subset E ⊂ A with

m(E)
m(A) > 1− δ, (4.1)

and

E intersects Π in a u-tubular subset. (4.2)

Proof. Notice that since Fu is invariant for f the property u-tubular for sets is not affected
by iterations of f .

Let the set Gk be the intersection not tubular of Π with fk(A):
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Gk = {y ∈ Π ∩ fk(A) : Fu(y) ∩ Π 6⊂ Π ∩ fk(A)}.

To estimate the size of Gk, it is convenient to apply f−k.

We want to proof that Gk have small measure. The next lemma show that the bad
elements(elements in Gk) are close from the frontier

Lemma: For a certain constant C > 0, given any y ∈ f−k(Gk) we have

d(y, ∂A) ≤ C · |λ2|−k.

Proof: Consider y ∈ f−k(Gk). Since y is not an intersection u-tubular, we have
Fu(y) ∩ f−k(Π) 6⊂ f−k(Π) ∩ A.

As A is connected and y belongs to A it follows that Fu(y) intersects ∂A in a point
that we called z, it also intersects f−k(Π) in a point, that we called w such that

d(y, w) = d(y, z) + d(z, w)

because the intersection is not tubular and the foliations are lines. Since Π is a
parallelogram, and the foliation Fu contracts exponentially with negative powers of f we
have

d(y, w) ≤ d(fk(y), fk(w)) · |λ2|−k ≤ diam(Π) · |λ2|−k.

Taking C = diam(Π), with this we conclude the proof of our lemma.

Since the boundary of A is smooth it follows that

m(Gk) ≤ C · |λ2|−k (4.3)

Choosing N1 big enough, in order to

m(G) ≤
∞∑

k=N1

m(Gk) ≤ δ2,

where G := ⋃∞
k=N1 Gk. Consider

Ω :=

B ∈
N ′∨
N

fkα : m(B ∩G)
m(B) > δ


and take
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Lemma(Bad atoms with small measure in proportion): Given Ω as stated
before. Define:

L :=
⋃
B∈Ω

B.

Then m(L) < δ.

Proof. If m(L) > δ. Since L is a disjoint union of sets

m(L) =
∑
B∈Ω

m(B).

Furthermore

δ2 > m(G) ≥ m(G ∩ L) =
∑
B∈Ω

m(G ∩B) >
∑
B∈Ω

δ ·m(B) = δ ·m(L) > δ2,

which give us a contradiction.

This means δ-almost every atom B ∈ ∨N ′N fkα intersects G in a set of relative
measure at most δ.

For each atom A ∈ ∨N ′N fkα that does not belong to Ω, take E = A ∩Gc. Clearly
E is tubular, since every intersection not tubular is in G, also

m(E)
m(A) > 1− δ

because A /∈ Ω, thus we have

m(A ∩G)
m(A) ≤ δ ⇒ m(A ∩Gc)

m(A) > 1− δ

The following lemma is key since is here where we construct the map θ that is
fundamental in the Ornstein technique in order to proof that our system is Bernoulli. The
construction of this map is based initially in build an bijective map between an stable
foliation in an u-tubular set and all of it in a parallelogram, such map will be normalized
measure preserving over the two foliations. Finally obtaining the desired map composing
the previous map with parallel projections.
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Lemma 4.1.5. Given δ1 > 0 there is a δ2 > 0 such that if Π is a parallelogram of
diameter less than δ2, and E is an u-tubular subset of Π, there is a one-to-one, onto
mapping θ : E → Π such that

1. θ is measure preserving

2. d(fkθx, fkx) < δ1,

for all k > 0, x ∈ E

Proof. If δ2 is small enough, the second item will be satisfied provided that θ(x) ∈ F s ∩Π,
since distances contract as f operates on F s. Fix x0 an interior point of Π.

Consider the segments of lines E ∩ F s(x) ∩ Π and F s(x0) ∩ Π.

Define θ0 : E ∩ F s(x) ∩ Π −→ F s(x0) ∩ Π a bijective linear map between these
lines, taking extremes into extremes of the lines.

As it is defined, this map preserve the normalized Lebesgue measure. We will define
θ from θ0.

Let x ∈ Π define πx0,x : F s(x0) ∩ Π −→ F s(x) ∩ Π as follows

πx0,x(y) = (Fu(y) ∩ Π) ∩ (F s(x0) ∩ Π).

This transformation is just a parallel projection, that preserves Lebesgue measure.
Now, define θ in the following way: for each x ∈ E and given y ∈ F s(x) ∩ Π,define

Figure 3 – Construction of the map θ.

θ(y) := πx0,x · θ0 · π−1
x0,x(y). (4.4)
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This definition is possible, since E is an u-tubular set in Π. By Fubini’s Theorem
the mapping θ defined in E ∩ Π is measure preserving.

Proposition 4.1.6. Let ε, ε′ > 0 and α a partition piecewise smooth. Then there is an N ,
such that for all N ′ ≥ N , and for ε-almost every atom A ∈ ∨N ′N fkα there is a set E ⊂ A,
and a one-to-one mapping θ of E onto T2 such that

1. m(E)
m(A) > 1− ε,

2. θ is D · ε-measure preserving,

3. d(fkθx, fkx) < ε′, for any k ≥ 0 , x ∈ E.

Proof. Given ε′ > 0 fixed, applying the previous lemma (for δ1 := ε′), there exists δ2 > 0
such that Π is a parallelogram with diameter less than δ2 and E is a subset u-tubular
of Π, there is an bijective map θ : E −→ Π that satisfies (1) and (2) from the previous
lemma. We can take a partition β = {Π0, ...,Πb} of T2 where Π1, ...,Πb are parallelograms
with diameter not bigger than δ2 and m(Π0) < ε/10, where Π0 is the bad set from the
lemma 4.1.4.

Consider:

γ := ε · b−1 ·min{m(Πi) : 1 ≤ i ≤ b}.

Because lemma 4.1.4, for each 1 ≤ i ≤ b we can find N i
1 > 0 big enough such that

for every N > N ′ ≥ N i
1 and for every γ-almost every atom A of ∨N ′N fkα, there exist a set

E ⊂ A such that

m(E)
m(A) > 1− γ > 1− ε

such that E intersects Πi in u-tubular way. Taking N1 = max{N i
1 : 1 ≤ i ≤ b}

we have that for ε-almost every atom A of ∨N ′N fkα, for every 1 ≤ i ≤ b there exist a set
Ei ⊂ A such that

m(Ei)
m(A) > 1− γ > 1− ε

and Ei intersects Πi in u-tubular way for every 1 ≤ i ≤ b. Define

E =
⋃

(Ei ∩ Πi) ⊂ A. (4.5)
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It is clear that E intersects each Πi for 1 ≤ i ≤ b since Ei intersects Πi in a
µ-tubular way and each Πi are disjoint, since E is defined for i ≥ 1 does not have points
in common with Π0 and since

m(Ec
i ∩ A)

m(A) < γ

we have that

m(Ec
i ∩ A ∩ Πi)
m(A) <

γ

b

Furthermore

m(E)
m(A) > 1− γ > 1− ε.

Also, since E ⊂ A, we have:

∣∣∣∣∣m(E ∩ Πi))
m(E) −m(Πi)

∣∣∣∣∣ =
∣∣∣∣∣
[
m(A ∩ Πi)
m(A) −m(Πi)

]
m(A)
m(E) +m(Πi)

(
m(A)
m(E) − 1

)∣∣∣∣∣
<

1
1− ε

∣∣∣∣∣m(A ∩ Πi)m(Πi)
m(A) −m(Πi)

∣∣∣∣∣+ 1
1− ε − 1.

Now, because the theorem 4.0.6, we know that f is Kolmogorov. Moreover, it
follows from lemma 4.0.3 that each finite partition, in particular α is Kolmogorov.

Because the definition of Kolmogorov partition, it follows: for each 1 ≤ i ≤ b, given
ξi > 0 there exist N i

0 > 0 such that for every N ′ > N ≥ N i
0 and ξ-almost every atom

A ∈ ∨N ′k=N f
kα we have

∣∣∣∣∣m(A ∩ Πi)
m(A) −m(Πi)

∣∣∣∣∣ ≤ ξi. (4.6)

Let C > 0, be a constant such that:

C(1− ε) ·min{m(Πi) : 1 ≤ i ≤ b} > 1

Take:

ξi < ε · (C(1− ε) ·min{m(Πi) : 1 ≤ i ≤ b} − 1), 1 ≤ i ≤ b

and N0 = max{N i
0 : 1 ≤ i ≤ b}. Taking ξi small enough, we have that for each

N ′ > N ≥ N0 and γ-almost every atom A ∈ ∨N ′k=N f
kα we have a set E ⊂ A intersecting

each Πi in a u-tubular way, who satisfies
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m(E)
m(A) > 1− γ > 1− ε

and, for each 1 ≤ i ≤ b we have

∣∣∣∣∣m(E ∩ Πi)
m(E) −m(Πi)

∣∣∣∣∣ < 1
1− ε · ξi + 1

1− ε − 1

<
1

1− ε(ε · (C(1− ε) ·min{m(Πi) : 1 ≤ i ≤ b} − 1) + 1)− 1

= C · εmin{m(Πi) : 1 ≤ i ≤ b} ≤ C · ε ·m(Πi).

In particular we have:

∣∣∣∣∣m(E)m(Πi)
m(Ei ∩ Πi)

− 1
∣∣∣∣∣ ≤ C · ε

1− C · ε. (4.7)

For each 1 ≤ i ≤ b define Ei := E ∩ Πi. It follows from the previous lemma that
for each 1 ≤ i ≤ b we can define a bijective map that is measure-preserving

θi : Ei −→ T2

satisfying

d(fk(θi(x)), fk(x)) < ε (4.8)

for each x ∈ Ei, k ≥ 0.

Define θ : E −→ T2 such that

θ(x) = θi(x) if x ∈ Ei.

The item (3) is clearly satisfied because of (4.8). Item (1) is a consequence of the
definition of E.

Take B ⊂ E a measurable set. Since θi : Ei −→ Πi is measure-preserving, we have:

m(θ(B) ∩ Πi)
m(Πi)

= m(B ∩ Πi)
m(E ∩ Πi)

Also, we have:
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∣∣∣∣∣m(θi(Bi))m(E)
m(Bi)

− 1
∣∣∣∣∣ =

∣∣∣∣∣m(θi(Bi))m(Ei)
m(Bi)m(Πi)

− 1 + m(θi(Bi))m(Ei)
m(Bi)m(Πi)

(
m(E)m(Πi)
m(Ei)

− 1
)∣∣∣∣∣

=
∣∣∣∣∣m(E)m(Πi)

m(Ei)
− 1

∣∣∣∣∣ .
where Bi : B ∩ Πi.

Because of 4.7 and the previous equality we have:

∣∣∣∣∣m(θ(B))m(E)
m(B) − 1

∣∣∣∣∣ =
∣∣∣∣∣
∑b
i=1m(θi(Bi))m(E)

m(B) − 1
∣∣∣∣∣

=
∣∣∣∣∣
b∑
i=1

[
m(θi(Bi))m(E)

m(Bi)
− 1

]
· m(Bi)
m(B)

∣∣∣∣∣
≤

b∑
i=1

m(Bi)
m(B) ·

∣∣∣∣∣m(E)m(Πi)
m(Ei ∩ Πi)

− 1
∣∣∣∣∣

≤
b∑
i=1

m(Bi)
m(B) ·

C · ε
1− C · ε

= C · ε
1− C · ε < D · ε,

for a certain constant D > 0. Thus, θ is D · ε-measure preserving as we wanted.

By Theorems 3.5.1 and 3.5.2 to prove that an ergodic automorphism on the bitorus
is Bernoulli it is sufficient to find a sequence of increasing of very weak Bernoulli partitions
α1 < α2 < ... such that ∨∞i=1 αi = Bwhere B is the Borel σ-algebra. For example we can
choose (αi)n1 a sequence of partition of [0, 1]2 by 22i rectangles whose sizes have length
1/2i, then (αi)n1 is a decreasing sequence of partitions such that generates B.

Then it is sufficient to prove that such partitions are very weak Bernoulli, in fact
Ornstein proves a more general statement. Any finite piecewise smooth partition of T2 is
very weak Bernoulli for f .

Lemma 4.1.7. Given a partition α with the property piecewise smooth and an ε > 0,
there is an N such that for all N ′ ≥ N and ε-a.e. atom A of ∨N ′N fkα,

d({f−iα|A}n1 , {f−iα}n1 ) ≤ ε

for all n ≥ 1. In other words, any partition piecewise smooth is very weak Bernoulli.

Proof. Fix ε > 0 such that ε > ε′ > 0 and choose N2 as N in the previous lemma, let Y
the exception set from the previous lemma where θ is not defined, this is:
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m(Y ) ≤ D · ε, Y = union of atoms in
N ′∨
k=N

fkα,

where N ′ > N ≥ N2. Take an atom A ∈ ∨N ′k=N f
kα. Consider E ⊂ A and θ : E −→

T2 as we constructed in the previous lemma.

Take a point y0 in the atom A and define θ : A −→ T2 as

θ(x) = θ(x) if x ∈ E

θ(x) = y0 if x /∈ E

for every k ≤ 0. Remember that m(A \ E) < 2ε. If x ∈ E, then from the previous
lemma we have

d(fkθx, fkx) < ε′ (4.9)

Afterwards, if e(li(x)−mi(θ(x))) = 1 then f i(x) and f i(θ(x)) are in different atoms
of α, which implies

f i(x) ∈ Bε′(∂Ali(x)),

where Bε′(∂Ali(x)) is an ε′-neighborhood of ∂Ali(x)).

Define

Bε′ :=
k⋃
i=1

Bε′(∂Ai).

From the definition of the function e, if x ∈ E then

1
n

n∑
i=1

e(li(x)−mi(θ(x))) ≤ 1
n

n∑
i=1

χBε′ (f
i(x)).

Since f is ergodic, it follows from the Birkhoff’s Ergodic Theorem

1
n

n∑
i=1

e(li(x)−mi(θ(x))) ≤ 1
n

n∑
i=1

χBε′ (f
i(x))→ m(Bε′).

in almost every point x ∈ E.

By the piecewise smooth property of α we know that

lim
ε′→0

m(Bε′) = 0 (4.10)
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Taking ε′ arbitrarily small we can assure that in almost every point x ∈ E that

1
n

n∑
i=1

e(li(x)−mi(θ(x))) ≤ d · ε

for some constant d > 0 From lemma 3.5.7 we get

d({f−iα|A}n1 , {f−iα}n1 ) ≤ d · ε

Since ε is arbitrary we get that α is very weak Bernoulli. Using Theorems 3.5.1
and 3.5.2 we have that (T2,m) is a Bernoulli automorphism.

4.2 A Kolmogorov automorphism that is not Bernoulli
Since 1958 when Kolmogorov introduced the definition of Kolmogorov automor-

phisms in [7], a natural question appears: The Kolmogorov automorphisms are the same as
the Bernoulli automorphisms? It was until 1973 that Ornstein [14] construct an example
(not natural) were the system were Kolmogorov automorphism an not Bernoulli.

In this subsection we will present such example.

Before that, the following corollary is a direct consequence of Lemma 3.2.1 and we
will use it in order to proof that next example is not Bernoulli.

Corollary 4.2.1. Let T acting on ∨∞−∞ T iP is not a Bernoulli transformation if we can
find an ε1 > 0 and a sequence of ergodic transformations Ti and partitions Pi such that:

1. H(Ti) ≥ H(T );

2. limi→∞ |H(Pi, Ti)−H(P, T )| = 0;

3. limi→∞ | dist(∨uij=0T
jP )− dist(∨uij=0T

j
i Pi)| = 0 and limi→∞ ui =∞;

4. There are arbitrarily large i such that it is impossible to find a partition P i such that
dist(∨nj=0T

j
i P

i) = dist(∨nj=0T
jP ) for all n and |P i − Pi| < ε1.

4.2.1 Definition of (T,P)

Let (X,B,m) where X is a measurable set in the real line, B the σ-algebra of Borel
and m the Lebesgue measure.

We define our transformation F and partition P in a constructive way trough
gadgets i.e. T will be defined in stages and at each stage we will extend the definition of
T to a larger part of the measure space. Moreover P will have four sets: P0, Pe, Pf , Ps.
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Notation:

At stage n we will have the following situation: We will have a set Fn, T i, 0 ≤
i ≤ h(n)− 1 will be defined on F , and the T iF , will all be disjoint. P will be defined on⋃h(n)−1
i=0 T iFn. We thus have a gadget.

If the gadget G = ⋃r−1
i=0 T

iB, then we will call r the height of G and denote it by
h(G). Thus h(Gn) = h(n). If x is in a gadget G, then only some elements of the name will
be defined and we will call these the name of x in G. Remembering that a name of a point
x is a sequence (αi)i where αi is in 0, e, f or s according to whether T ix is in P0, Pe, Pf or
Ps.

If G is a gadget, we will define a slice as follows:

Partition the base B according to the name (in G) of the points in B. If J is an
atom in this partition, we will call ⋃h(G)−1

i=0 T iJ partitioned by P a slice.

4.2.1.1 Construction of (T,P)

• If the gadget at stage 2n is defined, we will get the stage 2n+ 1 as follows:

Divide F2n into f(2n)− 1 (f(2n) will equal 2n) disjoint sets of equal measure F2n,i,
1 ≤ i ≤ f(2n) − 1 such that the gadget ⋃h(2n)−1

j=0 T jF2n,i, partitioned by P (which
will be defined along the way) is isomorphic to ⋃h(2n)−1

j=0 T jF2n partitioned by P .

For each F2n,i pick f(2n) disjoint sets F2n,i,j, 1 ≤ j ≤ f(2n) not in ⋃h(2n)−1
j=0 T jF2n

and define T on these (except for F2n,i,f(2n)) so that

T (F2n,i,i) = F2n,i , T (T h(2n)−1F2n,i) = F2n,i,i+1

and

T (F2n,i,j) = F2n,i,j+1 if j 6= i, j 6= f(2n)

Extend the definition of P so that F2n,i,j , j ≥ i are in Pf and F2n,i,j , j > i are in Pe.

This defines the gadget at stage 2n+ 1, F2n+1 = ⋃f(2n)
i=1 F2n,i,1.

To obtain the height of the gadget G2n+1 we will sum the previous gadget G2n and
the number of sets added f(2n). In other words:

h(2n+ 1) = h(2n) + f(2n). (4.11)

Observation: We will begin our construction with G2 of height h(2). (h(2) will be
determined later). The gadget G2 is a subset of P0 (in fact G2 will turn out to equal
P0).
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F2n

F2n,i

G2n

F2n,i,i+1
F2n,i,iF2n,i,1

F2n,i,f(2n)

Figure 4 – Construction of the gadget G2n+1.

Before continuing with our construction, we will define the "joint" of two gadgets.

Suppose we have two gadgets G1 and G2 where Gi, i = 1, 2, is the union of T jJi,
0 ≤ j ≤ ri, partitioned by some partition Q. We also assume that the measure of J1

is the same as the measure of J2 and G1and G2 are disjoint.

We will now define T from T r1J1 onto J2 (this will give us a new gadget G1 ∗ G2,
consisting of ⋃r1+r2

0 T jJ1 partitioned by P ).

Partition J1 according to the r1-name of its points. Let I` be an atom in this partition
and let I ′` = T r1I` (⋃r1

j=0 T
jI` is a slice). Partition J2 into sets E` in such a way that

for each E` the gadget ⋃r2
j=0 T

jE` is isomorphic to G2 and m(E`) = m(I ′`). Define
T (I ′`) = E`.

• We will now use the above construction to define the gadget at stage 2n+ 2, given
the gadget at stage 2n+ 1 partition F2n+1 into 22n+1 disjoint sets of equal measure
such that each of them is the base of a gadget isomorphic to the gadget at stage
2n + 1. We call these gadgets G1, G2, ..., G22n+1 . For each Gi pick a collection of
i · s(2n+ 1) (let s(2n+ 1) be a number to be determined later) disjoint sets which
will be in Ps (not in the gadget at stage 2n+ 1!) all having the same measure as the
base of Gi.

Define T so that it maps the first of these sets onto the second, the second onto
the third, etc., and the last onto the base of Gi. Call the resulting gadget Gi. Form



84 Chapter 4. Kolmogorov automorphisms

G2n+1

s(2n+ 1) sets

G
1

G
2n+1

...

...

Figure 5 – Construction of the gadget Gi.

((...((G1 ∗G2) ∗G3)...) ∗G2n+1). Now take s(2n + 1) intervals and map the top of
G

2n+1 onto the first of these, the first onto the second, etc. This resulting gadget
will be G2n+2.

· · ·

s(2n+ 1)

G1

2s(2n+ 1)

G2

3s(2n+ 1) s(2n+ 1)22n+1s(2n+ 1)

G22n+1G22n+1−1

Figure 6 – Construction of the gadget G2n+2.

It follows from the construction that the height of G2n+2 is obtained by the addition
of 22n+1 times the height of G2n+1 and the number of sets add in the construction s(2n+1),
2s(2n+ 1),...,22n+1s(2n+ 1). Therefore:

h(2n+ 2) = s(2n+ 1)(1 + 22n(22n+1 + 1)) + h(2n+ 1)22n+1 (4.12)

4.2.2 Choice of f(n) and s(n)

Let f(n) = n and let s(n) = 100n3 (we will only use f(n) for n even and s(n) for
n odd).

we will have:

1. s(n) > 100
n∑
i=1

f(i).

2. s(n) < 1
2

10n
h(n)

The first item is obvious. For the second one we just need to prove

s(n) <
(1

2

)10n+2
h(n) (4.13)
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for n even.

We can take h(2) big enough such that (4.13) holds for n ≤ 20 Assuming that
(4.13) holds for n, we will prove it for n+ 2.

Choose ε, 0 < ε < 1 such that s(n+ 1) < s(n)(1 + ε) in the following way:

Since s(n) = 100n3 it follows

s(n+ 2)
s(n) = 1 +

( 6
n

+ 12
n2 + 8

n3

)
< 1 + ε (4.14)

for n > 20 we can take an ε that satisfies (4.13)

It follows that

s(n+2) < s(n)(1+ε) <
(1

2

)10n+2
(1+ε)h(n) <

(1
2

)10n+2
(2)h(n) <

(1
2

)10n+2
(2)h(n)

(1
2

)20
2n

This follows from the fact that n > 20. This gives:

s(n+ 2) <
(1

2

)10(n+2)+2
2n+1h(n) <

(1
2

)10(n+2)+2
h(n+ 2) (4.15)

which follows from the definition of h(n+ 2):

h(n+ 2) = s(n+ 1)(1 + 2n(2n+1 + 1)) + h(n)2n+1 + n2n+1.

For n odd we do the exact same thing, and the item (2) is proved.

We can see from this that sup{m(Gn)} is finite, thus T is supported in a set of
finite measure, we can assume the total measure as 1. Since at stage n, when n is odd, the
measure of the Ps that we add is less than

m(Gn) · s(n)
h(n) ·

(2n + 1
2 + 1

2n
)
<
m(Gn) · s(n)

h(n) · 22n+2 < m(Gn)
(1

2

)8n

Because f(n) < s(n) the measure of the Pj ∪ Pe added at stage n, n even is less
than

f(n)
h(n) ·m(Gn) < s(n)

h(n) ·m(Gn) <
(1

2

)10n
m(Gn)

Because of that we can assume that our space is a probability space where the
partition is formed by P = {P0, Ps, Pe, Pf} defined in an iterative way.
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We will define Tn, Pn in the same way as T, P except that at stage 2n+ 1 we will
form G2n+2 by taking

((...((G2n+1 ∗G2n) ∗G2n−1)...) ∗G1) instead of ((...((G1 ∗G2) ∗G3)...) ∗G2n+1) i.e.
we put the Ps’s in the reversed order.

· · ·

s(2n+ 1)

G1

2s(2n+ 1)

G2

3s(2n+ 1) s(2n+ 1)22n+1s(2n+ 1)

G22n+1 G3

Figure 7 – Rearrangement of the gadget G2n+2.

Lemma 4.2.2. If we are given the name of x we can, for each Fn, determine which T ix
are in Fn.

Proof. We will do it by induction and showing that if we are given more than h(n)
consecutive terms in the name of x, we can tell which of the T ix’s are in Fn.

It is obvious for n = 2 since we know that each T iF2 is in P0, 0 ≤ i ≤ h(2) we just
need to take the first term in each group of h(2) consecutive 0’s.

If the lemma holds for n even, it obviously holds for n+ 1, we just see the position
of the first of the f ’s in front of each term in Fn such that the numbers of f ’s and e’s that
we have after h(n) positions is the same.

If it holds for n odd, we get for n+ 1 as follows:

Find the term in Fn with exactly s(n) · s-terms in front of it. The first of these s’s
will be in Fn+1.

Definition 4.2.3. Let G be a gadget with base J . We define a rectangle R in G as follows:

Let E be a set in some T iJ and let k > i be an integer smaller that the height of
G. Then ⋃k−il=0 T

lE will be called a rectangle, and E its base.

We will say that R is pure below if each of the sets T lE, −i ≤ l ≤ 0 is contained
in some atom of P .

J T iJ T kJ

E

Figure 8 – Definition of rectangle.

Lemma 4.2.4. If n is less than m, then Gm contains disjoint rectangles such that
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1. Each of these rectangles is isomorphic (as a gadget partitioned by P ) to Gn.

2. Each rectangle is pure below.

3. The union of the rectangles in Gm is equal to Gn ∩Gm = Gn and the union of bases
of the rectangles in Gm is equal to Fn ∩Gm = Fn.

Proof. We will fix n and induct on m. We know that in the case of m = n the lemma
holds automatically.

If m is greater than n, we have:

If m is even and the lemma holds for it, we can take ∪h(m)
j=1 F

j
2n,i, 1 ≤ i ≤ h(h(n)) as

the rectangles we need in Gm+1. Clearly this rectangles holds the items of the lemma.

In the case that m is odd, we must see if G1 and G2 are gadgets that fulfil the
consequences of the lemma, taking the union of its rectangles G1 ∗G2 also holds.

Then noting that taking Gi as the rectangle of Gi, Gi holds. Consequently (...(G1 ∗
G

2) ∗ ... ∗G2n+1) holds too.

The iteration of this map is similar to the translation map, such that the only
invariant measurable set will have zero measure or total measure.

In order to proof the ergodicity of the map we suppose that exist an invariant
measurable set with positive measure different from 1.

We can find a gadget big enough such that intersects E almost completely so
that the rectangles which intersect E will have the same relative measure, reaching to
a contradiction with the invariance, because in order to E be invariant With positive
measure the gadget Gn should be getting bigger which contradict the fixed measure of E.

Lemma 4.2.5. T is ergodic.

Proof. Assume there is a measurable set E, µ(E) = α, 0 < α < 1 and T (E) = E.

From lemma 4.2.2, we can get Gn big enough such that(except for a set whose
measure is less than ε) E intersects each level in a slice in Gn such that

µ(E ∩ Li)
µ(Li)

> 1− ε (4.16)

or
µ(E ∩ Li)
µ(Li)

< ε (4.17)

in each level of a slice in Gn.
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Since E is T -invariant, the measure of the intersection of E with any two levels in
the same slice is the same.

µ(E ∩ T jJ) = µ(E ∩ T iJ). (4.18)

Affirmation: Let L1 and L2 be levels of different slices in Gn. Then

µ(E ∩ L1)
µ(L1) = µ(E ∩ L2)

µ(L2) (4.19)

Given ε we can find a K and E ′ such that E ′ ⊂ ∨K
−K T

iP and |E − E ′| < ε. For
each m Lemma 4.2.4 implies that Gm is the union of rectangles, Ri (in Gm), each of which
is isomorphic to Gn and pure below.

Therefore ` > h(n) +K, T `E ′ will intersect each slice of Ri in the same proportion,
except in those Ri such that T−`Ri that are not defined in Gm. If we take m large enough,
we can assume that the union of exceptional Ri is arbitrarily small and that T `E ′ intersects
each slice in Gn in almost the same proportion.

Since we can take E ′ sufficiently close as we want from E, T `E ′ is arbitrarily close
to E.

Since we have (4.18) for different slices we have that

µ(E ∩Gn)
µ(Gn) =

∑
i.j

µ(E ∩ T jBi)
µ(T jBi)

≥ h(n)(1− ε) (4.20)

Then µ(E) =
∑
n

µ(E ∩Gn)
µ(Gn) ≥ h(n)(1− ε) that derived us in a contradiction.

Lemma 4.2.6. Given an integer ` and ε > 0, there exists N such that all m > N (N
even) have the following property:

Let {Ji} be the collection of sets of the form T jFm, and 0 ≤ j ≤ h(m). Except for
a collection C of Ji the measure of whose union is less than ε we have that the distribution
of `-names of points in ⋃f(m)

j=0 T jJi is within ε of the distribution of `-names of points in X.

Proof. Since T is ergodic, by the Birkhoff’s Ergodic Theorem given ε > 0 there is an M
such that f(m) > M , then all x, except for x in a set of measure less than ε, have that
the distribution of `-names in ⋃f(m)

0 T i(x) is within ε of the distribution of `-names in X.
Since ε can be taken less than (ε/100)2, which proves our lemma.

Lemma 4.2.7. Given an integer ` and ε > 0, there exists N such that if n > N and n is
odd we have the following: Let {Ji} be the collection T iFn. Except for a collection of Ji
the measure of whose union is less than ε, the distribution of the `-names of points in Ji is
within ε of the distribution of `-names of points in X.
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Proof. Pick m, even, m > N , as in the previous lemma. Let n = m+ 1. We can see from
the construction of the gadget Gm+1 that the base Fm+1 will be the union of disjoint sets
K1, K2, ..., Kf(m) such that T f(m)−iKi = iK is the base of a gadget isomorphic to Gm. If
f(m) + ` < r < h(m+ 1)− f(m)− `, then

T rFm+1 =
f(m)⋃
i=1

T rKi =
f(m)⋃
i=1

T r−f(m)+i
iK (4.21)

Therefore the distribution of the `-names of points in T rFm+1 is the same as the
distribution of `-names of points in ⋃f(m)

i=1 T i(T r−f(m))Fm since the distribution of Ki is
the same as the distribution of Fm and hence from the previous lemma is within ε of the
distribution of `-names in X unless T r−f(m)Fm is in the exceptional set C for the lemma
4.2.6. Since ` is fixed and since f(m)

f(m+ 1) −→ 0 and the lemma follows.

Theorem 4.2.8. The automorphism T is K-automorphism.

Proof. We must show the following: Given `, there is an N such that ∨`0 T iP is ε-
independent of ∨N+r

N T iP for all r > 0.

From lemma 4.2.7 we get that ∨`0 T iP is ε-independent of Q, when Q is the partition
of Gn into levels.

For each m > n, we will define Qm in the following way:

We can take a collection of disjoint rectangles Ri in Gm by lemma 4.2.4, isomorphic
to Gn. If Bi is the base of Ri and T jBi, 0 ≤ j ≤ h(n), the levels of Ri.

The partition Qm will be formed by the levels of the rectangles Ri and X − ∪Ri,
by the lemma 4.2.7, ∨l0 T iP is 2ε-independent of Qm.

Take N = h(n). We have that Qm refines ∨r+NN T iP , since Ri are pure below and
restricted for each Ri ∩

⋃h(m)
i=r+N T

iFm. taking n large enough to make X −Gm sufficiently
small and h(m) large enough compared to r, we get that ∨l0 T iP is

√
3ε-independent of∨N+r

N T iP

Because of lemma 4.2.2 we know for each point in what time intersect the base
of Gn, with this in mind, given the moment these points intersect with Fn, would like to
know how close they are to each other by measuring the time it took to get there, in order
to do that we must define formally sections of the P -names that represents all he path
through Gn and how to measure those sections for different points.
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Definition 4.2.9. The n-block in the P -name (αi)i of x, is by definition a sequence of
h(n) consecutive terms, the first of which is in the base Fn. Lemma 4.2.2 shows that each
n-block is uniquely determined by the P -name of x.

If m > n, we will define the m-order of an n-block as follows:

Each n-block a is contained in a unique m-block b. The m-order of a will be i if a
is the i-th n-block b (note that if n is odd, then the n+ 1 order of an n-block is determined
by the number of s in front of it).

Gm

· · ·Gn Gn Gn Gn Gn Gn

ith n-block

Figure 9 – The m-order of a n-block.

The next definitions will concern two points x and y and their respective P -names
(αi)i and (βi)i.

Let a be an n-block in (αi)i and b an n-block in (βi)i. Let |a−b| denote the absolute
value of the difference of the indices of the first terms of a and b. We will say that a and b
are close if |a− b| < ∑

k<n f(k) (note that if a is also close to an n-block b′, then b′ = b.
This follows from the choice of s(n) and f(n) which imply ∑k<n f(k) < 1

2h(n)).

Let a be an n-block in (αi)i. we will call αj in a bad if αj = 0 and βj 6= 0

In the case when n is odd if two n-blocks of two different P -names of different
points with the same n + 1-order it is almost natural, because the construction of the
gadget Gn+1, that all the n-blocks inside the n + 1-block will be closed to some other
n-block with the same n+ 1-order.

Lemma 4.2.10. Let (αi)i and (βi)i be the P -name of x and y respectively. Let a and b be
the n-blocks in (αi)i and (βi)i, n odd. Assume a and b are close and have the same n+ 1
order. Let a′ and b′ be the n+ 1 blocks containing a and b. Then a′ is close to b′, and every
n-block in a′ is close to an n-block in b′ of the same n+ 1-order.

Proof. Because of the construction of Gn+1 the blocks in a′ are separated by a number of
s-terms which depends only on the n+ 1-order of such block,the same thing happens in b′,
because of that every n-blocks in (αi)i and (βi)i with the same n+ 1-order are close each
other, it follows that a′ and b′ are also close, since the firsts n-blocks in them are close.
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· · ·Gn Gn Gn Gn Gn Gn

a n-block

b n-block

a′

b′Gn Gn Gn Gn Gn Gn· · ·

Figure 10 – Relation between n+ 1-blocks.

In the case when n is even losing that the n− 1-blocks have the same n-order we
can not warranty that the rest of the n− 1-blocks will be closed to some other n− 1-block
with the same n-order as the previous lemma, because of the construction of the gadget
Gn and the size of the added sets to it.

Just when these n− 1-blocks are closed to each other we can warranty that there
is at most another n− 1-block closed to another n− 1-block in the P -name.

Lemma 4.2.11. Let (αi)i and (βi)i be the P -names of x and y. Let a be an n-block in
(αi)i, n even. Let a′ be an n− 1-block in a, and assume that a′ is close to an n− 1-block
b′ whose n-order is different from the n-order of a′. Then there is at most one other
n− 1-block a′′ in a such that a′′ is close to an n− 1 block in {βi}.

Proof. It would be enough to show that if b is an n-block that containing b′, then there is
no other n− 1-block in a b that is close to an n− 1-block in b.

To see that we must check that there is at most one n− 1-block bdifferent from b

which contains an (n− 1)-block b′ close to an n− 1-block in a, a′. From lemma 4.2.2 a′

and b′ must have different n-orders.

Let a′i and b′i be the n− 1-blocks in a and b respectively whose n-order differ from
the n-order of a′ and b′ by 1. That is a′1 would be the next n− 1-block after a′,a′2 would
be the second n− 1-block after a′ and so on.

Because of that and the fact that a′ and b′ have different n-orders we get

|a′i − b′i| ≥ i · s(n− 1)−
∑

k<n−1
f(k)

Since s(n) > 100∑n
1 f(k), a′i and b′i are not close.

Affirmation:

|a′i − b′i| ≤ 2n · 2ns(n− 1) +
∑

k<n−1
f(k) ≤ 1

2h(n− 1). (4.22)
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We can see in |a′1 − b′1| depend mostly of the difference of n-order between a′ and
b′, because of that it increases by at most 2ns(n− 1), the maximum length of a string of s.
since i ≤ 2n we get our first inequality, the second one follows directly from the relation of
s(n) and f(n) with h(n) defined in "choice of f(n) and s(n)".

Lemma 4.2.12. There exist a sequence εn > ε > 0 such that if (αi)i and (βi)i are the
P -names of x and y, and if a is an n-block in (αi)i, then either

1. There is an n-block in (βi)i close to a or

2. There are more then εnh′(n), αi in a are very bad. (h′(n) is the number of 0’s in an
n-block).

Proof. From the definition of G2, for n = 2 is true taking ε2 = (h(2))−1.

We now proceed by induction. Assume the statement is true for n− 1. If n is odd,
by the induction hypothesis a′,the n− 1-block in a, must be close to some n− 1-block b′.
Therefore a most be close to the n-block containing b′.

If n is even, we can assume that there is some n− 1-block a′′ in a that is close to
an n− 1-block b′′. If a′′ and b′′ have the same n-order the lemma 4.2.10 implies that a is
close to the n-block containing b′′. If a′′ and b′′ have different orders, they are the only
n− 1-blocks that are close by lemma 4.2.11. Therefore because our induction hypothesis
this implies that each of these n− 1-blocks have more than εn−1h

′(n− 1) αi’s bad in a.
Hence

εnh
′(n) > (εn−1)h′(n− 1)(2n−1 − 1)

Since h′(n) = 2n−1h′(n− 1) we have

εn > (εn−1)
(

1−
(1

2

)n−1)

Lemma 4.2.13. Let (αi)i be the P -name of x and (βi)i the Pn-name of y under Tn. Let
a be a 2n+ 2-block in (αi)i. Then a contains at most four 2n+ 1-blocks which are close to
2n+ 1-blocks in (βi)i.

Since the gadget in G2n+2 have the same number of initial intervals in the beginning
such as the end of it. If the 2n+ 1-blocks have the same 2n+ 2-order, the blocks at the
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beginning and the end will be close too. For the intermediary case, it follows from the
same analysis in the Lemma 4.2.11.

In the case where the 2n+ 1-blocks are close it follows the same argument as the
Lemma 4.2.11.

Lemma 4.2.14. H(Pn, Tn) = H(P, T ).

Proof. Let mQ = ∨m−1
0 T iP and mQn = ∨m−1

0 T inPn.

Define mQ as follows:

For each x, if x ∈ G2n+2, let i > 0 be the smallest integer such to T−i(x) ∈ F2n+2,
otherwise let i = 0.

If Tm−1(x) ∈ G2n+2, let j be the smallest integer such that j ≥ m − 1 and
T j(x) ∈ T h(2n+2)F2n+2, otherwise, let j = m− 1. Take the P -name of x from T−ix to T jx.
Partition the x according to these names and call tat partition mQ.

Define mQn in the same way, for Pn, Tn.

Define mQ̃ as follows:

For each x, if x ∈ G2n+2, let i > 0 be the smallest integer such that T i(x) ∈
T h(2n+2)F2n+2 otherwise, let i = 0. If Tm−1x ∈ G2n+2, let j be the largest integer such that
j ≤ m− 1 and T j(x) ∈ F2n+2. Otherwise let j = m− 1. Take the name of x from T ix to
T jx and let mQ̃ be the partition of the x according to these names.

Define mQ̃n in an analogous way for Pn, Tn.

Since the construction of Pn, Tn is very similar to P, T , there is a 1-1 correspondence
between the atoms of mQ and mQn that preserves their measure. The same holds for mQ̃

and mQ̃n.

We can see that H(mQ̃) ≤ H(mQ) ≤ H(mQ) and H(mQ̃n) ≤ H(mQn) ≤ H(mQn).

For each fixed ε and m large enough ∨(1+ε)m
0 T iP refines mQ and ∨(1−ε)m

0 T iP is
refined by mQ̃, with this applying the sandwich theorem, we have:

lim
m→∞

1
m
|H(mQ)−H(mQ̃)| = 0 and lim

m→∞

1
m
|H(mQn)−H(mQ̃n)| = 0. (4.23)

Since there is a 1-1 correspondence between the atoms in mQ and mQn we have
that H(Pn, Tn) = H(P, T ).

Theorem 4.2.15. The automorphism T is not a Bernoulli automorphism.
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Proof. From the definition of Pi, Ti and the previous lemma Pi, Ti satisfy the hypotheses
((1)− (3)). We finish if we can show that is impossible to find a partition P i such that
dist

(∨n
0 T

j
i P

i
)

= dist (∨n0 T iP ) for all n and |P i − Pi| <
1
8ε ·m(P0).

This will follow from:

Claim: Fixed i. If K is large enough, then the P -name of x of length K differs
from the Pi-name of y of length K in more than 1

4ε ·m(P0), for all x in a set of measure
more than a half and all y.

Because of Lemmas 4.2.12 and 4.2.13 each 2n+2-block in the P -name of x contains
more than 1

2εh
′(2n+ 2) bad terms.

Therefore, the fraction of bad terms in each 2n+ 2-block is more than 1
2εm(P0).

Taking K large enough, the most x will have the property that the fraction of terms in its
P -name, of length K, belonging to a 2n+ 2-block is greater than 1

2 , the claim follows.

Because of that there is not a partition which every P i-n-Ti-atom have the same
distribution as the P -n-T -atom and at the same time |P i − Pi| <

1
8εm(P0)
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5 Partially Hyperbolic Diffeomorphisms

Motivated by the example given in the first section of Chapter 4 proved by Ornstein
[15], Pesin [17] prove that every volume preserving C1+α Anosov diffeomorphism over a
compact Riemannian Manifold M is a Bernoulli automorphism.

In [20], Ponce et al. show that for a weaker version of hyperbolicity (derived from
Anosov diffeomorphism) preserves the result that Kolmogorov automorphisms have the
Bernoulli property under some hypothesis over the center manifold.

Theorem 5.0.1. (Ponce-Tahzibi-Varão [20]) Let f : T3 → T3 be a C2 volume preserving
derived from Anosov diffeomorphism with linearization A : T3 → T3. Assume that f is
Kolmogorov and one of the following occurs:

1. λcA < 0 and F cs is absolutely continuous, or

2. λcA > 0 and F cu is absolutely continuous.

Then f is Bernoulli

5.1 Preliminaries

We now introduce the class of diffeomorphism, base of this chapter, which will
present in some direction no hyperbolicity.

Definition 5.1.1. Given a smooth compact Riemannian manifold M . A diffeomorphism
f : M →M is called partially hyperbolic if the tangent bundle of the ambient manifold
admits an invariant decomposition TM = Es ⊕ Ec ⊕ Eu, such that all unit vectors
vσ ∈ Eσ

x , σ ∈ {s, c, u} for any x, y, z ∈M

||Dxfv
s|| < ||Dyfv

c|| < ||Dzfv
u||

and ||Dxfv
s|| < 1 < ||Dzfv

u|| where vs, vc and vu belong respectively to Es
x, E

c
y

and Eu
z .

Let f : Tn → Tn partially hyperbolic diffeomorphism. Consider f∗ : Zn → Zn the
action of f on the fundamental group of Tn. The function f∗ can be extended to Rn and
the extension is the lift of a unique linear automorphism A : Tn → Tn
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Definition 5.1.2. Let f : Tn → Tn partially hyperbolic diffeomorphism. The unique
linear automorphism A : Tn → Tn with lift f∗ : Rn → Rn as constructed in the previous
paragraph, is called the linearization of f .

Definition 5.1.3. We say that f : Tn → Tn is a derived from Anosov diffeomorphism or
just a DA diffeomorphism if it is partially hyperbolic and its linearization is a hyperbolic
automorphism (no eigenvalue of norm one).

Theorem 5.1.4. (Oseledets Theorem) Let f : M −→M be a C1 diffeomorphism defined
on a compact Riemannian manifold M . The set of points x ∈M which satisfies:

• There exists a splitting

TxM = E1(x) ⊕ ...⊕ Ek(x);

• DfxEi(x) = Ei(f(x)), k(x) = k(f(x));

• The exist the limits

λi(x) := lim
n→∞

1
n

log ||Dfn(x) · v|| = lim
n→−∞

1
n

log ||Dfn(x) · v||

for all v ∈ Ei(x) \ {0}.

is a set of full measure for any f -invariant probability measure.

Definition 5.1.5. We will call such λi(x) from the Oseledets Theorem as the Lyapunov
exponents of f at x.

Observe from the definition of the Lyapunov exponent that such limit tries to
measure the exponential growth of the function in the directions of the subspace Eix .
Remember that in the Anosov case if we consider the direction on the stable direction it
turns out that λi(x) < 0 even for a time n sufficiently large it preserves some hyperbolicity
but we can not conclude anything when the Lyapunov exponent is zero.

Let (M,µ,B) be a probability space, where M is a compact metric space, µ a
probability measure and B the Borelian σ-algebra. Given a partition P ofM by measurable
sets, we associate the probability space (P , µ̃, B̃) by the following way. Let π : M → P be
the canonical projection, that is π associates to a point x of M the partition element of P
that contains it. Then we define µ̃ := π∗µ and B̃ := π∗B

Definition 5.1.6. Given a partition P. A family {µP}P∈P is a system of conditional
measures for µ (with respect of P) if:



5.1. Preliminaries 97

1. given φ ∈ C0(M), then P 7→
∫
φµP is measurable.

2. µP (P ) = 1 µ̃-a.e.

3. if φ ∈ C0(M), then
∫
M φdµ =

∫
P (
∫
P φdµP )dµ̃

When it is clear which partition we are referring to, we say that the family {µP}
disintegrates the measure µ.

Proposition 5.1.7. Given a partition P, if {µP} and {νP} are conditional measures that
disintegrate µ on P, then µP = νP , µ̃-a.e.

Corollary 5.1.8. If T : M → M preserves a probability µ and the partition P, then
T∗µP = µT (P ), µ̃-a.e.

Definition 5.1.9. We say that a partition P is measurable (or countably generated) with
respect to µ if there exist a measurable family {Ai}i∈N and and a measurable set F of full
measure such that if B ∈ P , then there exists a sequence {Bi}, where Bi ∈ {Ai, Aci} such
that B ∩ F = ⋂

iBi ∩ F .

Theorem 5.1.10 (Rokhlin’s disintegration). Let P be a measurable partition of a com-
pact metric space M and µ a Borelian probability. Then there exists a disintegration by
conditional measures for µ

Definition 5.1.11. We say that a foliation F is absolutely continuous if for any foliated box,
the disintegration of volume on the segment leaves have conditional measures equivalent
to the Lebesgue measure on the leaf.

We know from the previous chapter when we show that ergodic automorphism on
the bitorus are Bernoulli that we depend on the application of Fubini’s Theorem to the
unstable manifolds of the automorphism. Unfortunately the Fubini’s Theorem is not true
for every continuous foliation of a given manifold, therefore to generalize this particular
step in the context of this chapter we rely on the absolute continuity property on the F cs.

Observation: It is known that with our hypothesis the Fu and the F s are abso-
lutely continuous [21].

Definition 5.1.12. We say that a foliation F has atomic disintegration with respect to
a measure µ , or that µ has atomic disintegration along F , if for any foliated box, the
disintegration of µ on the segment leaves have conditional measures which are finite sums
of Dirac measures.

Given a derived from Anosov diffeomorphism, then by results of Franks [5] and
Manning [9] there is a semi-conjugacy h : T3 −→ T3 which we will call the Franks-Manning
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semi-conjugacy, between f and its linearization A, that is, h is a continuous surjection
satisfying

A ◦ h = h ◦ f

Moreover, this semi-conjugacy has the property that there exists a constant K ∈ R
such that if h̃ : R3 → R3 denotes the lift of h to R3 we have ||h̃(x)−x|| ≤ K for all x ∈ R3,
and given two points a, b ∈ R3, there exists a constant Ω > 0 with

h̃(a) = h̃(b)⇔ ||f̃n(a)− f̃n(b)|| < Ω, for all n ∈ Z.

R.Ures [27] proved that h takes center leaves of f onto center leaves of A, that is,

F cA(h(x)) = h(F cf (x))

Given a point x ∈ T3 define the set c(x) ⊂ F c(x) by:

c(x) := h−1({h(x)})

Take:

C :=
⋃

y∈{x∈T 3|c(x) 6={x}}
c(y)

We can see that f(C) = C, for if h(a) = h(b) then by the definition of semiconjugacy
we have:

h(f(a)) = A(h(a)) = A(h(b)) = h(f(b))

and if h(a) 6= h(b), we have:

h(f(a)) = A(h(a)) 6= A(h(b)) = h(f(b))

Definition 5.1.13. An f -invariant measure µ is called virtually hyperbolic if there exists
a full measurable invariant subset Z such that Z intersects each center leaf in at most one
point.

If µ is virtually hyperbolic , then the central foliation is measurable with respect to
µ and conditional measures along center leaves are (mono-atomic) Dirac measures. Indeed
the partition into central leaves is equivalent to the partition into points.
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The main difficulty in the partially hyperbolic case is the lack of hyperbolic behavior
along the center directions. When we restricted ourselves to the derived from Anosov
diffeomorphisms we have the advantage that the center direction in some sense carries
some information from the center foliation of its linearization. If the linearization of a
derived from Anosov diffeomorphism f has negative center exponent for example, then
the center foliation of f has globally the same behavior as the center foliation for the
linearization.

The idea to tackle the problem derived from Anosov diffeomorphisms is to treat
the center foliation as a contracting(or expansive) foliation in "as many points as possible".
Given a derived from Anosov diffeomorphism f with linearization A, we have the semicon-
jugacy h between f and A. Assume that the center Lyapunov exponent of A is negative.
Ponce et al. proved [20] that if a pair of points (a, b) ∈M ×M is such that h(a) 6= h(b)
and b ∈ F cs(a) then their orbits by f behaves, for most of the time, as if they were in a
same contracting foliation, that is, the distance between fn(a) and fn(b) is very small for
most of the natural numbers n.

Therefore, if we restrict our analysis to the set of points x ∈M for which h(x) 6= h(y)
for all y ∈M \ {x}. We can "treat" the center foliation as if it was a contracting foliation.
Although, we do not know how big this set is.

The following Theorem tell us that if this set has zero measure then there exists a
full measure set intersecting almost every center leaf in exactly one point. Since points
in two separate center leaves have distinct images by h then we can restrict our analysis
to the set of atoms and again treat, in some sense, the center foliation as a “contracting
foliation”.

Theorem 5.1.14. (Ponce-Tahzibi-Varão [20]) Let f : T3 → T3 be a C2 volume (m)
preserving derived from Anosov diffeomorphism with h a semi conjugacy to linear Anosov
diffeomorphism. Then, h is m-almost everywhere injective. More precisely, the following
dichotomy is valid:

• Either the set C has zero volume, or

• C has full measure and (f,m) is virtually hyperbolic.

In the latter case (f,m) is Kolmogorov.

Definition 5.1.15. We define the essential injectivity domain X of h as follows: If
m(C) = 0 define

X := T3 \ C.
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Otherwise, define

X := set of atoms.

The following Theorems and Lemmas will be used during the proof of the Theorem
5.0.1:

Lemma 5.1.16 (Pinsker [18], Rokhlin-Sinai [24]). Let f be a K-automorphism of a
Lebesgue space (Y, µ), then every finite partition E of Y is a Kolmogorov partition.

Theorem 5.1.17 (Burns-Wilkinson[2]). Let f ∈ C2, volume-preserving, partially hyper-
bolic and center bunched. If f is essentially accessible, then f is ergodic, and in fact has
the Kolmogorov property.

Corollary 5.1.18 ([2]). Let f be a C1+α volume preserving and partially hyperbolic with
dim(Ec) = 1. If f is essentially accessible, then f is ergodic, and in fact has the Kolmogorov
property.

Proposition 5.1.19. Let M be a compact Riemannian manifold and f : M → M a
volume preserving C1+α partially hyperbolic diffeomorphism and one dimensional center
direction. Thus f is Kolmogorov if, and only if, it is essentially accessible.

5.2 Proof of Theorem 5.0.1
Without loss of generality we can assume that the center Lyapunov exponent

λcA < 0(other wise we work with f−1 which is homotopic to A−1).

From the ergodicity of f it follows that C has either full or zero volume.

In our case the existence of a center foliation requires a fine comprehension of the
disintegration of volume on the center foliation. The Theorem 5.1.14 is the key to overcome
this issue.

5.2.1 Sketch of the proof

Take E to be the partition of T3 by points. Let α be a partition of T3 by measurable
sets such that the boundary of any element in α is piecewise smooth and such that each
atom D ∈ α is an open set with boundary of zero measure. It is easy to construct such
a partition on the 3-torus. We will prove that α is very weak Bernoulli. Then we will
take a sequence of such partitions αn with: α1 ≤ α2 ≤ ... ≤ αn ≤ ... such that αn → E ,
concluding that f is indeed Bernoulli by Theorems 3.5.1 and 3.5.2.

In order to do so, we shall consider some specific partitions with dynamical meaning
which will help us to control the behavior of f iα, i ∈ N .
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Given two points y and z close enough to each other, we know that F cs(y) and
Fu(z) will intersect each other and that the intersection is, locally, a single point. We
denote this point by [y, z]. Sometimes along this section we also write W cs(y) ∩W u(z) to
mean the point [y, z].

Definition 5.2.1. A measurable set Π is called δ-rectangle at a point w if Π ⊂ B(w, δ)
and for any y, z ∈ Π the local intersection belongs to Π, that is

[y, z] ∈ Π

Note that, by the local product structure of the rectangles, we can think of a
rectangle Π as a Cartesian product of Fux ∩ Π and F csz ∩ Π, where x, z ∈ Π.

Let f : M →M be a partially hyperbolic diffeomorphism with absolutely continuous
center-stable foliation. Then we can take, for a typical z,mu

z the measure m conditioned
on Fuz ∩Π and mcs

f the factor measure on the leaf F csz , that is as in Definition 5.1.6 the
partition P = {Fuz ∩ Π}z∈Π, {mu

z} is a system of conditional measures and mcs
f is the

factor measure. From the absolute continuity of the unstable and center-stable foliations
it follows that for a typical z the product measure

mP
R := mu

z ×mcs
f ,

which is defined on Π, satisfies:

mP
R << m.

Definition 5.2.2. Given any ε > 0, an ε-regular covering of M is a finite collection of
disjoint rectangles R = Rε such that:

1. m(∪R∈RR) > 1− ε

2. For every R ∈ R we have

|m
P
R(R)
m(R) − 1| < ε

and moreover, R contains a subset, G with m(G) > (1 − ε)m(R) which has the
property that for all points in G,

|dm
P
R

dm
− 1| < ε
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We will state some Lemmas in order to show briefly the ideas developed in Ponce
et al.’s work. The proof of those Lemmas appears in [20].

Lemma 5.2.3. Given any δ > 0 and any ε > 0, there exist an ε-regular covering of
connected rectangles Rε

Definition 5.2.4. We say that a measurable set A intersects a rectangle Π, leafwise if

Fu(w) ∩ Π ⊂ A ∩ Π, for any w ∈ A ∩ Π

Lemma 5.2.5. If E is a set intersecting a rectangle Π leafwise then the intersection E∩Π
is a rectangle.

Lemma 5.2.6. The set T3 \ C is a u-saturated. In particular, given any rectangle Π, if
X = T3 \ C then X intersects Π leafwise.

Lemma 5.2.7. Given a rectangle Π and β > 0, one can find N1 > 0 such that for any
N ′ ≥ N ≥ N1 and β-almost every element A ∈ ∨N ′N fkα, there exists a subset E ⊂ A,
intersecting Π leafwise, for which:

m(E)
m(A) ≥ 1− β

The proof of this fact in our setting is exactly the same proof as for the non uniformly
hyperbolic case. Therefore we refer the reader to [17] for a detailed demonstration. We
point out that the proof does not need contraction of F cs, but it depends only on the
expansion of Fu,

We now proceed to the most important part of the proof: for N ′ ≥ N big enough
and ε-almost every A ∈ ∨N ′N fkα we will construct a function θ : A → M satisfying the
hypothesis of Lemma 3.5.7 , in particular it should be cε-measure preserving, for some con-
stant c. Such function θ should have the property that for most of the points x, the orbits
of x and of θ(x) have almost the same information (asymptotically) with respect to the par-
tition in question. In particular, if we get good control on the distanced(fn(x), fn(θ(x)))we
can expect that for most points x, fn(x)and fn(θ(x)) belong to the same partition element;
this will be much clearer below. In order to get this control, we need to restrict to a compact
set (where his uniformly continuous) and then use the fact that the center manifold of A
is uniformly contracting and h sends center manifolds to center manifolds. This is what
we do in the next lemma.

Lemma 5.2.8. Given any ε > 0 and any compact set K in the essential injectivity
domain of h(see Definition 5.1.15 ) there exists n0 ∈ N such that for any two points
a ∈ K, b ∈ F cs(a) ∩K, with d(a, b) < 1

2we have
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d(fn(a), fn(b)) < ε

whenever fn(a), fn(b) ∈ K for n ≥ n0

Proof. We split the proof in two cases.

First case: X = T3 \ C.

Consider the lifts to the universal cover Ã, f̃ : R3 → R3 the lift of the conjugacy
such that h̃(0) = 0. We now that

Ãn ◦ h̃ = h̃ ◦ f̃n (5.1)

for all n. Thus

(eλcA)n||h̃(a)− h̃(b)|| ≥ ||Ãn ◦ h̃(a)− Ãn ◦ h̃(b)|| = ||h̃ ◦ f̃n(a)− h̃ ◦ f̃n(b)||.

Since h s a bounded distance from the identity, then if d(a, b) < 1
2 we have:

||Ãn ◦ h̃(a)− Ãn ◦ h̃(b)|| ≤ (eλcA)nD

for a certain constant D > 0. By the uniform continuity of h−1 inside h(K) we can
take n0 big enough so that n ≥ n0 implies:

d(fn(a), fn(b)) < ε

Second case: X =set of atoms.

In this case, we know by Theorem 5.1.14 that each leaf has only one atom, that is,
for almost every x ∈ T3 we have X ∩ F c(x) = {ax} Thus, given any two points a, b ∈ X,
a and b are not collapsed by h (since they do not belong to the same central leaf). Thus
the proof of the first case works for this case as well.

Lemma 5.2.9. For any δ > 0, there exists 0 < δ1 < δ with the following property. Let Π
be a δ1-rectangle and E a set intersecting Π leafwise. Then we can construct a bijective
function θ : E ∩ Π→ Π such that for every measurable set F ⊂ E ∩ Π we have

mP
Π(θ(F ))
mP

Π(Π) = mP
Π(F )

mP
Π(E ∩ Π)
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and for every x ∈ E ∩ Π

θ(x) ∈ F cs(x).

Proof. Since E intersects Π leafwise by Lemma 5.2.5 we know that E ∩ Π is a sub-
rectangle, and since the center stable foliation is absolutely continuous the intersection
F cs(x) ∩ E ∩ Π has positive leaf Lebesgue measure for almost every x ∈ E ∩ Π. Let
z ∈ E ∩ Π be any point such that F cs(z) ∩ E ∩ Π has positive leaf Lebesgue measure. To
construct θ we will first define it in the subset F cs(z) ∩ E ∩ Π of the center-stable leaf
F cs(z) of z and then, using unstable holonomy and leafwise intersection property of E ∩Π,
we will extend it to the whole set E ∩ Π. Because F cs(z) ∩ E ∩ Π and F cs(z) ∩ Π are
both probability Lebesgue spaces with the normalized mcs

f -measures we can construct a
bijection θ0 : F cs(z) ∩ E ∩ Π→ F cs(z) ∩ Π preserving these normalized measures, that is,
for any measurable subset J ⊂ F cs(z) ∩ E ∩ Π we have

mcs
f (θ0(J))
mcs
f (Π) =

mcs
f (J)

mcs
f (F cs(z) ∩ E ∩ Π) (5.2)

Since mP
Π := mu

z ×mcs
f and E ∩ Π is a leafwise intersection we have that mP

Π(Π) =
mcs
f (F cs(z) ∩ Π) and mP

Π(E ∩ Π) = mcs
f (F cs(z) ∩ E ∩ Π), then (5.2) can be rewritten as

mcs
f (θ0(J))
mP

Π(Π) =
mcs
f (J)

mP
Π(E ∩ Π) (5.3)

Now, given any y ∈ E ∩ Π we define (using that the intersection is leafwise and
inside the rectangle) θ(y) ∈ Π by

θ(y) := (πuy,z)−1 ◦ θ0 ◦ πuy,z(y) (5.4)

where πuy,z denotes the local unstable holonomy from an open set of F cs(y) to an
open set of F cs(z).

This θ : E ∩Π→ Π s well defined and θ(y) ∈ F cs(y) ∩Π. Since mP
Π is a product

measure, given a measurable set F ⊂ E ∩ Π we have

mP
Π(F ) =

∫
mcs
f (πuy,z(F cs(y) ∩ F ))dmu

z (y)

Thus,
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mP
Π(θ(F )) =

∫
mcs
f (πuy,z(F cs(y) ∩ θ(F )))dmu

z (y)

=
∫
mcs
f (πuy,z ◦ θ(F cs(y) ∩ F ))dmu

z (y)

=
∫
mcs
f (θ0 ◦ πuy,z(F cs(y) ∩ F ))dmu

z (y)

Substituting (5.3) we have

mP
Π(θ(F )) =

∫
mcs
f (θ0 ◦ πuy,z(F cs(y) ∩ F ))dmu

z (y)

= mP
Π(Π)

mP
Π(E ∩ Π)

∫
mcs
f (πuy,z(F cs(y) ∩ F ))dmu

z (y)

= mP
Π(Π)

mP
Π(E ∩ Π)m

P
Π(F )

as we wanted to show.

The following Lemma together with Theorems 3.5.1 and 3.5.2 concludes the proof
of Theorem 5.0.1.

Lemma 5.2.10. Let α be a finite partition with the property that each atom of α has
piecewise smooth boundary. Then α is very weak Bernoulli.

The proof of this Lemma closely follows from the arguments already used by
Pesin [17] and Chernov–Haskell [3] with the technical difference that, by Lemma 5.2.9,
the function θ, constructed from a tubular intersection to a rectangle containing this
intersection, does not preserve stable manifolds as in [17] and [3]. Instead, θ preserves
center-stable manifolds. Points belonging to the same center-stable manifold do not have
the property of getting exponentially close to each other as we iterate the dynamics,
thus we can not directly say that given ε > a large set of pairs of points on the same
center-stable manifold will asymptotically visit the same atoms.

To overcome this difficulty we use Theorem 5.1.14. It says that either m(C) = 0
and then we have defined X = T3 \C, or m(C) = 1 and then we can take a full measure set
X ⊂ T3 intersecting almost every center-leaf in exactly one point. By Lemma 5.2.8, we can
choose arbitrarily large compact sets K such that any pair of point x, y ∈ K ⊂ X have the
property that if y ∈ F cs(x) then the distance between fn (x) and fn(y) is very small every
time both of them visits the set K simultaneously. The point is that since we can take K
arbitrarily large and f is ergodic, the set of natural numbers {n : fn(x), fn(y) ∈ K} has
arbitrarily large density, this will allow us to conclude that indeed for a large set of points
x ∈ X the Cesaro-mean of Lemma 3.5.7 are indeed arbitrarily small.
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Proof. As explained on the last paragraph of last section, the technical difference of our
case is that we have to restrict ourselves to large compact sets where points on the same
center-stable leaves behave well. Therefore, we will keep notations similar to the notation
used by Chernov–Haskell so that we can omit some calculations, which are equal to the
(nonuniformly) hyperbolic case, and refer the reader to [3] for the detailed estimates.

Let α = {A1, A2, ...Ab} be a finite partition of M where each element has piecewise
smooth boundaries. Thus we can take a D0 such that for any ε > 0 and any i = 1, ..., b,
the ε-neighborhood of ∂Ai , denoted by Oε(Ai), has volume measure less than D0ε.

Let ε > 0 and, as in [3], we take δ = ε4 . Let {R1, ..., Rk} be a δ-regular covering of
M and define the partition π = {R0, R1, ..., Rk} of M by taking

R0 := M \
k⋃
i=1

Ri.

By the definition of δ-regular covering we have m(R0) < δ and, for each 1 ≤ i ≤ k,
we can take a set Gi ⊂ Ri which satisfies condition (2) of Definition 5.2.2. Since f has
the K-property there exists a natural number N such that for all N1 > N0 ≥ N and for
δ-almost every atom A ∈N1

N0 f
iα has the property that for all R ∈ π

∣∣∣∣∣ m(R ∩ A)
m(R)m(A) − 1

∣∣∣∣∣ < δ

that is

∣∣∣∣∣m(R/A)
m(R) − 1

∣∣∣∣∣ < δ (5.5)

where m(./A) denotes the measure m conditioned on A.

Now, fix natural numbers N1 > N0 > N and n > 0. We want to prove that for a
certain constant D > 0, Dε-almost every atom of ∨N0

N0 f
iα satisfies

d({f−iα}n1 , {f−iα|A}n1 ) ≤ Dε

As in [3], the first step is to identify the set of “bad” elements which will have
measure at most Dε.

First bad set B1: Let B1 be the union of all atoms of ∨N1
N0 f

iα which do not satisfy
(5.5).

Second bad set B2: Denote F2 = ⋃k
i=1Ri \Gi. Take B2 to be the union of atoms

A ∈ ∨N1
N0 f

iα such that either
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m(F2/A) > δ1/2

or

k∑
i=1

mP
Ri

(A ∩ F2)
m(A) > δ1/2

It follows that m(B2) < c1 · δ1/2 for some constant c1 > 0 .

Third bad set B3: By Lemma 5.2.7, given a rectangle Π and any β > 0 we can
find Ñ1 such that for all Ñ ′ ≥ Ñ ≥ Ñ1 and β-almost every atom A ∈ ∨Ñ ′Ñ f iα, there exists
a subset E ⊂ A, intersecting the rectangle Π leafwise for which

m(E)
m(A) ≥ 1− β.

Taking β small enough and N big enough, the set F3 of all points x ∈ M \ R0

which lies in a non-leafwise intersection (with respect to the rectangle of π containing x)
satisfies

m(F3) < δ.

Let B3 denote the union of all atoms A of ∨N1
N0 f

iα for which

m(F3/A) > δ1/2.

Then it follows that m(B3) < c1 · δ1/2 .

It follows from the estimates of the bad sets that the union of all atoms on the
complement of B1 ∪B2 ∪B3 is at least 1− c1ε for a certain constant c1 > 0.

Let A be an atom of ∨N1
N0 f

iα which is in the complement of B1, B2 and B3. By
Lemma 5.2.9, for each 1 ≤ i ≤ k with A ∩Ri 6= ∅, we can construct a bijective function
θi : A ∩Ri ∩ F c

3 −→ Ri satisfying

mP
Ri

(θi(B))
mP
Ri

(Ri)
=

mP
Ri

(B)
mP
Ri

(A ∩Ri ∩ F c
3 ) .

for every measurable set B ⊂ A ∩Ri ∩ F c
3 and

θi(x) ∈ F cs(x),

for every x ∈ A ∩ Ri ∩ F c
3 . If we denote µPRi := mP

Ri
(·/Ri) we can rewrite the

previous equality as
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µPRi(B/A ∩ F
c
3 ) = µPRi(θi(B)),

for every measurable set B ⊂ A ∩Ri ∩ F c
3 .

Lemma: There exists a constant c2 > 0 and a measurable set E2 ⊂ T3 with

m(E2) < c2 · ε,

and such that for each 1 ≤ i ≤ k with A ∩Ri 6= ∅ the function θi satisfies

∣∣∣∣∣m(B/A ∩Ri)
m(θi(B)/Ri)

− 1
∣∣∣∣∣ < c2 · ε,

for any B ⊂ A ∩Ri ∩ Ec
2.

In [3] pag. 24 and 25 is a detailed proof of this Lemma.

Now define the function θ : A −→ T3 as θ(x) = θi(x) if x ∈ A ∩Ri ∩ F c
3 for some

1 ≤ i ≤ k, and θ(x) = x otherwise.

Lemma: θ : A −→ T3 is c2 · ε-measure preserving.

Proof. See [3] pag. 26.

We are almost ready to conclude the proof that α is very weak Bernoulli. Remember
that the function θ : A −→ T3 from above has the property of being c2·ε-measure preserving
and

θ(x) ∈ F cs(x) ∩Ri

for any x ∈ A ∩ Ri, 1 ≤ i ≤ k. To use Lemma 3.5.7 and finish the proof we still
need to prove that the Cesaro sum that appears in Lemma 3.5.7 is small for a large set of
points x. Here is where we need to restrict ourselves to a large compact set in order to use
the Lemma 5.2.8 for the current pair of points in this set.

Take an arbitrary ζ < 1 and consider K ⊂ Ec
2∩X (see Definition 5.1.15) a compact

set with

m(K) > ζ ·m(Ec
2).

Take κ the set of points of K such that the past and future Birkhoff averages
coincide and converge to m(K), that is: x ∈ κ if x ∈ K and
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lim
n→−∞

1
n

n−1∑
j=0

χK(f j(x)) = lim
n→∞

1
n

n−1∑
j=0

χK(f j(x)) = m(K).

By Birkhoff’s Theorem we know that m(κ) = m(K). Take P := κ ∩ θ−1(κ). Since
θ is c2ε-measure preserving, taking ζ close enough to one we have that

m(Ec
2 \ P ) ≤ 2c2 · ε.

Observe that by Lemma 5.2.8 we can take n0 ≥ 0 such that for any x ∈ κ we have

d(fn(x), fn(θ(x))) < ε,

for all n ≥ n0 with fn(x), fn(θ(x)) ∈ κ.

Let `i(x) be the name of x with respect to the sequence of partitions ξi := f−iα|A
and mi(x) the name of x with respect to the partitions ηi = f−iα. If x ∈ κ, i ≥ n0 and
e(`i(x)−mi(θ(x))) = 1 then either:

• f i(x) /∈ κ or f i(θ(x)) /∈ κ or

• d(f i(x), f i(θ(x))) < ε and then

d(f i(x), ∂A`i(x)) < ε⇒ f i(x) ∈ Bε(A∂`i(x))).

Take

Bε :=
k⋃
i=1

Bε(∂Ai)

and consider

Jx = {j ∈ N such that f j(x) /∈ κ or f j(θ(x)) /∈ κ},

Jxn := Jx ∩ [1, n].

By the definition of the function e we have:

1
n

n∑
i=1

e(`i(x)−mi(θ(x))) ≤ 1
n

n∑
i=1

χBε(f j(x)) + 1
n

#Jxn

By ergodicity the right side converges to [m(Bε) + dens(Jx)] for almost every x.
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It follows from the fact that we can take K with arbitrarily large measure and
m(Bε) < D0 · ε that there exist a set P̂ ⊂ P with measure m(P̂ ) > 1− c3ε such that for
all x ∈ P̂

1
n

n∑
i=1

e(`i(x)−mi(θ(x))) ≤ c3 · ε,

for a certain constant c3 > 0 and n large. Applying Lemma 3.5.7 we conclude that

d({ξi}n1 , {ηi}n1 ) ≤ c4ε, (5.6)

for some constant c4 > 0 which does not depend on ε. Since ε > 0 is arbitrary it
follows that α is very weak Bernoulli as we wanted to show.
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