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Introduction

The subject of this master thesis is the Hilbert Property. This property was �rst
introduced by Colliot-Thélène and Sansuc in their 1987 article "Principal homoge-
neous spaces under �asque tori: applications" [2], but to tell the motivation for this
property, we have to go back to the end of 19th century.

Almost a hundred years before the introduction of the Hilbert Property, in 1892,
Hilbert proved Hilbert's Irreducibility Theorem [1], stated bellow.

Theorem 0.0.1 (Hilbert's Irreducibility Theorem). For any irreducible polynomial
f ∈ Q[X1, . . . , Xs, Y1, . . . , Yr] of degree ≥ 1 in Y1, . . . , Yr, there exist in�nitely many
b ∈ Qs such that f(b1, . . . , bs, Y1, . . . , Yr) ∈ Q[Y1, . . . , Yr] is irreducible.

This theorem is celebrated for its numerous applications, for example, it is used
as a step in Andrew Wiles' proof of Fermat's Last Theorem, done in 1994. However,
Hilbert's original motivation was to show that if a �nite group G can be realized as a
Galois group of an extension over Q(X1, . . . , Xn), it can also be realized as a Galois
group of an extension over Q. A particular case of the Inverse Galois Problem that
can be proved using this strategy is the case when G is a symmetric group.

In 1917, Emmy Noether tried to apply this same strategy for an arbitrary
�nite group G. She conjectured that Q(X1, . . . , Xn)G, the �eld of elements of
Q(X1, . . . , Xn) �xed by G, would be rational for every �nite group G, and that
would solve the Inverse Galois Problem. However, this conjecture was shown to be
false in 1969, by a counterexample given by Swan [11].

We can reformulate this problem in a more geometric way, looking at the variety
An/G over Q instead of looking at the �eld Q(X1, . . . , Xn)G since Q(X1, . . . , Xn)G

is the function �eld of An/G. Translating the above results to this geometric per-
spective, we arrive that if An/G is rational over Q, G is realizable over Q. However,
is there a less restrictive condition that we can impose over An/G that guarantees
the same result? Searching for such a condition, Colliot-Thélène and Sansuc de�ned
the Hilbert Property in 1987.

This property also permits to look to the Inverse Galois Problem over other
�elds and asking if An over K has the Hilbert Property is the same of asking if the
statement of Hilbert's Irreducibility Theorem is still true if we replace Q by K.

Colliot-Thèlene and Sansuc also conjectured that, for a number �eldK, everyK-
unirational variety has the Hilbert Property and showed that this conjecture implies
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an a�rmative response to the Inverse Galois Problem.
By the above motivation, the Hilbert Property might appear only to convey

arithmetical information about a variety. However, in 2016, Zannier and Corvaja
gave the �rst example of a non-unirational variety that holds the Hilbert Property
on their article "On the Hilbert Property and the Fundamental Group of Algebraic
Varieties" [21]. In this same article, they presented other similarities between non-
unirational and unirational that hold the Hilbert Property. In fact, they showed
that this property is also intrinsically related to topological aspects of a variety.

We think that all these associations to di�erent branchs of Mathematics make
this property a worthy theme of study.

In what follows we give a description of the content of each chapter of this
dissertation.

The �rst two chapters of this work are dedicated to review basic concepts of
Galois Theory and Classical Algebraic Geometry that are crucial for the development
of our theme.

The third chapter contains the core of this work. We describe it in detail below.
On section 3.1, we reconstruct the path that leaded to the de�nition of the Hilbert

Property, giving the demonstrations of some results mentioned in this introduction.
We also present Hilbertian �elds along with some examples and non-examples.

On section 3.2, we de�ne thin sets. We remark that non-thin subsets of the set
of rational points of a variety could be interpreted as sets having a "strengthened"
Zariski dense condition. From this concept, we de�ne the Hilbert Property for
varieties in general. We also present some examples of varieties that bear the Hilbert
Property as well as varieties that lack it.

On section 3.3, we see how the Hilbert Property is connected to the resolution
of the Inverse Galois Problem, giving the proof that the conjecture stablished by
Colliot-Thèléne and Sansuc implies that the Inverse Galois Problem is true.

On section 3.4, we explain the relation of the Hilbert Property with algebraic
topology.

Finally, we conclude this work presenting, in section 3.5, some conjectures made
by Zannier and Corvaja in their 2016 article [21].
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Chapter 1

A Brief Review of Galois Theory

1.1 First De�nitions about Field Extensions

Throughout this dissertation, we use a collection of de�nitions and theorems of
Galois Theory. The intention of our �rst chapter is to recall these de�nitions and
results and give the reference needed when appropriated.

We start by introducing the concept of �eld extensions and some basic de�nitions
related to it.

Let F and K be �elds, such that F ⊂ K. Then K is called a �eld extension of
F , this relation will be denoted by K/F .

De�nition 1.1.1 (Degree of K/F and Finite extension). The degree of K/F , de-
noted by [K : F ], is the dimension of K as a F -vector space. We say that K/F is a
�nite extension if it has �nite degree.

De�nition 1.1.2 (Algebraic extension). Given α ∈ K, we say that α is algebraic
over F if there is a nonzero polynomial f(x) ∈ F [x] such that f(α) = 0. If every
element of K is algebraic over F , we say that K/F is an algebraic extension.

De�nition 1.1.3 (Generators of a �eld). Consider an extension K/F . If X is a
subset of K, we de�ne the ring generated by F and X, denoted by F [X], as the
intersection of all subrings of K that contain F and X. The �eld F (X) generated
by F and X is the intersection of all sub�elds of K that contain F and X. We say
that a �eld extension L is �nitely generated over F if L = F (a1, . . . , an).

Theorem 1.1.4. Let K be an extension of F . We have that K is a �nite extension
of F if and only if K is algebraic and �nitely generated over F .

Proof. The proof of this theorem can be found in Lemma 1.19, Proposition 1.20 and
Proposition 1.21 of [3].
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1.2 Normal Extensions, Algebraic Closure and Sep-

arable Extensions

In this section, we see some ways of relating polynomials f of F with �nite exten-
sions K of F , so that K/F hold some interesting properties. We start this section
presenting a special type of extension K of F , one that is associated to the roots of
a polynomial (or a set of polynomials) in F [x]. They are the normal extensions.

But �rst, we introduce some terminology. We say that a polynomial f ∈ F [x]
splits over K if f factors completely into linear factors in K[x]. Given f ∈ F [x],
there is always a �nite extension of F over which f splits (see Theorem 3.3 of [3]).

De�nition 1.2.1 (Splitting �eld). Let K be an extension �eld of F .

� If f ∈ F [x], then K is a splitting �eld of f over F if f splits over K and
K = F (a1, . . . , an), where a1, . . . , an are the roots of f .

� If S is a set of non-constant polynomials over F , then K is a splitting �eld of
S over F if each f ∈ S splits over K and K = F (X), where X is the set of all
roots of all f ∈ S.

De�nition 1.2.2 (Normal Extension). Given K/F a �eld extension, we say that
K is normal over F if K is a splitting �eld of a set of polynomials over F .

Normal extensions have a very interesting property that is described in the next
proposition.

Proposition 1.2.3. If K is an algebraic extension of F , then the following state-
ments are equivalent:

� The �eld K is normal over F .

� For any irreducible polynomial f ∈ F [x], if f has a root in K, then f splits
over K.

Proof. See Proposition 3.28 in [3].

Thanks to the Fundamental Theorem of Algebra (Theorem 5.15 in [3]), we know
that every polynomial in C[x] splits over C. We want to characterize other �elds
with this same property.

Proposition 1.2.4. If K is a �eld, the following statements are equivalents:

� There are no algebraic extensions of K other than K itself.

� There are no �nite extensions of K other than K itself.
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� Every f ∈ K[x] splits over K.

Proof. See Lemma 3.10 in [3].

De�nition 1.2.5 (Algebraically closed). If K satis�es the equivalent conditions of
the previous proposition, we say that K is algebraically closed. If K is an algebraic
extension of F that is algebraically closed, we say that K is an algebraic closure of
F .

Remark 1.2.6. It can be shown that every �eld F has an algebraic closure and
that it is unique up to an isomorphism that �xes F . For this reason, we denote by
F , the algebraic closure of F . These results can be found in chapter 3 of [3].

The next de�nitions introduce another special type of algebraic extension.

De�nition 1.2.7 (Separable polynomials). An irreducible polynomial f ∈ F [x] is
said to be separable over a �eld F if its roots are all distinct in any splitting �eld.
A polynomial g ∈ F [x] is said to be separable over F if all irreducible factors of g
are separable.

In order to relate separable polynomials over F to what will be the separable
extensions of F , we need to relate the polynomials with elements of extensions of
F . For this, we introduce the minimal polynomials.

De�nition 1.2.8 (Minimal polynomial). Given α ∈ K, an algebraic element over
F , the irreducible monic polynomial f such that f(α) = 0 is called the minimal
polynomial of α in F and it is denoted by Min(F, α).

De�nition 1.2.9 (Separable extension). Given α ∈ K, an algebraic element over
F , we say that α is separable over F if Min(F, α) is a separable polynomial. An
extension K/F is separable if every α ∈ K is separable over F .

Proposition 1.2.10. Let f ∈ F [x] be an irreducible polynomial, if char(F ) = 0,
then f is separable over F . As a consequence, if char(F ) = 0, every algebraic
extension of F is separable.

Proof. The proof can be found in [3], Proposition 4.6.

Fields that have this same property have a special name as we see in the next
de�nition.

De�nition 1.2.11 (Perfect �eld). A �eld F is said to be perfect if every algebraic
extension of F is separable.

As we have seen, every �eld F with char(F ) = 0 is perfect. When char(F ) 6= 0,
the following proposition gives us a criterion to determine whether F is perfect or
not.

7



Proposition 1.2.12. Let F be a �eld of characteristic p. Then F is perfect if and
only if F p = F .

Proof. See Theorem 4.13 in [3].

We conclude this section with two examples. To start, we see that extensions
can be separable despite not being normal.

Example 1.2.13. The extension Q( 3
√

2)/Q is not normal because the minimal poly-
nomial of 3

√
2, x3−2, does not split over Q( 3

√
2). However, this extension is separable

because this same polynomial is separable.

On the next section, we will see the importance of extensions that are both
separable and normal, so here is an example of one.

Example 1.2.14. The extension Q(
√

2)/Q is normal and separable because the
minimal polynomial of

√
2 is x2−2, which is a separable polynomial that splits over

Q(
√

2).

1.3 Galois Groups, Galois Extensions and the Fun-

damental Theorem of Galois theory

In this section, we �nally introduce the Galois group of a �eld extension and the
concept of a Galois extension. We see that these extensions are special because of
the relation that we can establish between them and their Galois groups. We also
see how the properties de�ned in the last section will help us to determine when a
�eld extension is Galois.

The group of automorphisms of a �eld K, denoted by Aut(K), is formed by the
isomorphisms (as a ring) from K to itself. When studying Galois theory, we want
to look at a special subgroup of this group.

De�nition 1.3.1 (Galois group). Given a �eld extension K over a �eld F . We
de�ne the Galois group of K/F , denoted by Gal(K/F ), as:

Gal(K/F ) := {σ ∈ Aut(K)| σ|F = Id}.

Let S be a subset of Aut(K), we set

KS = {x ∈ K| σ(x) = x for all σ ∈ S}.

KS is a sub�eld of K, called the �eld �xed by S.

The elements of Gal(K/F ) have some interesting properties as the one in next
proposition.
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Proposition 1.3.2. Consider σ ∈ Gal(K/F ) and α ∈ K, algebraic over F . Given
a polynomial f ∈ F [x], such that f(α) = 0, we have that f(σ(α)) = 0. Therefore, σ
permutes the roots of Min(F, α).

Proof. See Lemma 2.3 in [3].

De�nition 1.3.3 (Galois extension). Let K be an algebraic extension of F . Then
K is said to be Galois over F if F = KGal(K/F ).

Proposition 1.3.4. Let G be a �nite group of Aut(K) with F = KG. Then |G| =
[K : F ], and so G = Gal(K/F ).

Proof. The proof can be found in [3], Proposition 2.14.

Proposition 1.3.5. Let K be a �nite extension of F . Then K is Galois over F if
and only if |Gal(K/F )| = [K : F ].

Proof. The proof can be found in [3], Corollary 2.16.

There are other criteria to verify if a �eld extension is Galois. The next theorem
relates Galois extensions with normal and separable ones.

Theorem 1.3.6. Let K be an algebraic extension of F , then the following statements
are equivalent:

� K/F is Galois.

� K/F is normal and separable.

� K is a splitting �eld for a set of separable polynomials over F .

Proof. This theorem and its proof can be found in [3], Theorem 4.9.

A �eld L with F ⊆ L ⊆ K is called an intermediate �eld of the extension
K/F . Galois �eld extensions are special because we can establish a 1-1 correspon-
dence between its intermediate �elds and the subgroups of Gal(K/F ), allowing us
to translate Field Theory problems to Group Theory problems, and vice-versa. This
result is called the Fundamental Theorem of Galois Theory and it is stated in detail
bellow:

Theorem 1.3.7 (Fundamental Theorem of Galois Theory). Let K be a �nite Galois
extension of F , and let G = Gal(K/F ). There is a bijection between the intermediate
�elds of K/F and the subgroups of G, given by:

L 7→ Gal(K/L)

H 7→ KH .

If the �eld L and subgroup H are correspondent to each other by this bijection,
then [K : L] = |H| and [L : F ] = [G : H].
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Proof. See Theorem 5.1 in [3].

To conclude this section, we present some examples of Galois extensions and of
the relation stated in the Fundamental Theorem of Galois Theory.

Example 1.3.8. As we have already seen the extension Q(
√

2)/Q is normal and
separable, therefore it is Galois. The elements of Gal(Q(

√
2)/Q) are:

id :
√

2 7→
√

2

σ :
√

2 7→ −
√

2.

The subgroups of Gal(Q(
√

2)/Q) are < id > and itself.
The correspondent intermediate �elds are: Q(

√
2) and Q.

Example 1.3.9. The extension Q(
√

2,
√

3)/Q is clearly separable, since char(Q) =
0. It is also normal because it is the splitting �eld for the polynomials {x2−2, x2−3}.
Therefore, it is a Galois extension. Since [Q(

√
2,
√

3) : Q] = 4, its Galois group G
is given by the four following elements:

id :
√

2 7→
√

2,
√

3 7→
√

3

σ :
√

2 7→
√

2,
√

3 7→ −
√

3

τ :
√

2 7→ −
√

2,
√

3 7→
√

3

στ :
√

2 7→ −
√

2,
√

3 7→ −
√

3.

The subgroups of G are: < id >,< σ >,< τ >,< στ >,G.
The correspondent intermediate �elds are: Q(

√
2,
√

3),Q(
√

2),Q(
√

3),Q(
√

6),Q.

1.4 Simple Extensions

An extension K/F is called simple if there is an element α ∈ K such that K can be
written as F (α). We present now some special properties of simple extensions that
help us doing some calculations.

Proposition 1.4.1. Given a �nite simple extension F (α)/F , we have that

[F (α) : F ] = deg(Min(F, α)).

Proof. See [3], Proposition 1.15.

As a consequence of the above theorem, we have the following examples:

Example 1.4.2. Every extension with degree 2 is a simple normal extension. If
[K : F ] = 2, then we have that K = F (α), where α is a root of an irreducible
polynomial p of degree 2. Hence, p(x) = (x − α)g(x), then g must have degree 1,
therefore K is a splitting �eld for p.
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Example 1.4.3. The extension F2(
√
t)/F2(t) is normal, however it is not separable.

This extension is normal because [F2(
√
t) : F2(t)] = 2, however, the polynomial

X2 − t has only one root in F2(
√
t) that is

√
t.

Proposition 1.4.4. Let deg(Min(F, α)) = n. The simple extension F (α)/F is Ga-
lois if and only ifMin(F, α) have n distinct roots in F (α). Furthermore, Gal(F (α)/F )
have n elements and each element of the group takes α to a di�erent root ofMin(F, α).

Proof. If F (α)/F is Galois, then Min(F, α) splits over F (α) because F (α)/F is
normal, and Min(F, α) have n di�erent roots because F (α)/F is separable.

On the other hand, if Min(F, α) have n distinct roots in F (α), then F (α) is
a splitting �eld for the separable polynomial Min(F, α), and therefore F (α)/F is
Galois, by Theorem 1.3.6.

The last part of the proposition is a direct consequence of the Propositions 1.3.2
and 1.3.5.

Another reason to focus on simple extensions is that every �nite extension over
a �eld with characteristic zero is a simple extension. This is a consequence of the
next theorem.

Theorem 1.4.5 (Primitive element theorem). Let K/F be a separable extension of
�nite degree. Then K/F is a simple extension.

Proof. See Corollary 5.7 in [3].

We give now some examples of simple extensions:

Example 1.4.6. The extension C/R is a classic example of a simple extension. We
can write C = R(i).

Example 1.4.7. Every �nite extension over Q is simple. For example the extension
Q(
√

3,
√

7)/Q can be rewritten as Q(
√

3 +
√

7)/Q.

We have seen that given a �nite Galois extension we can �nd a �nite group that is
associated to it. But is the converse true, i.e., �xed a �eld F and given a �nite group
G, is there any �nite extension K of F such that G = Gal(K/F )? This problem is
known as Inverse Galois Problem, and it will be one of the motivations behind
the property at the core of this dissertation: The Hilbert Property.
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Chapter 2

Preliminaries on Classical Algebraic

Geometry

2.1 Algebraic Varieties

On this second chapter, we introduce some concepts from classical algebraic geome-
try that are used through the dissertation. Let k be an algebraically closed �eld. We
denote by Ank (or simply An) the a�ne space kn. We start by introducing a topology
for this space that connects its closed sets with ideals in k[x1, . . . , xn]. This topology
is called Zariski topology.

De�nition 2.1.1 (Zariski Closed set of An). Let A = k[x1, . . . , xn] be the ring
of polynomials in n variables with coe�cients in the �eld k. Given a family T of
polynomials in A, we denote by Z(T ) = {x ∈ An|f(x) = 0 for every f ∈ T}. We say
that X ⊆ Ank is a Zariski closed set if X = Z(T ) for some family T of polynomials
in A.

Remark 2.1.2. Given a family of polynomials T in k[x1, . . . , xn], Z(T ) = Z(A),
where A is the ideal generated by the polynomials of T . Also, since k[x1, . . . , xn]
is noetherian, every ideal A ⊂ k[x1, . . . , xn] is �nitely generated, thus Z(T ) can be
expressed as a common zero of a �nite family of polynomials.

In what follows we verify that this de�nition of closed set endows indeed the
a�ne space with a topology.

Proposition 2.1.3.

� Any �nite union of closed sets is also a closed set.

� Any arbitrary intersection of closed sets is a closed set.

� The empty set and An are closed sets.
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Therefore, calling τ the collection of complements of the closed sets (open sets), we
have that the pair (An, τ) is a topological space.

Proof. See Proposition 1.1, chapter I of [4].

In our study, we want to look to a special class of closed sets. This is why we
introduce the next de�nition.

De�nition 2.1.4 (Irreducible set). A non-empty set Y of a topological space is said
to be irreducible if it cannot be written as the union of two proper subsets that are
closed in Y .

Example 2.1.5. The closed set de�ned by Z(x2 + 1) is not an irreducible set over
C because it can be written as Z(x− i) ∪ Z(x+ i).

De�nition 2.1.6 (A�ne Variety). A closed irreducible set of An (with the induced
topology) is called an a�ne variety.

Example 2.1.7. Consider f ∈ k[x1, . . . , xn], f is an irreducible polynomial. Then,
Z(f) is an a�ne variety. Moreover, varieties of this type have a special name. They
are called hypersurfaces of An.

We have just seen that we can associate every closed set to an ideal in k[x1, . . . , xn].
We see now that we can reverse the direction.

Given Y ⊆ An, we de�ne I(Y ) the ideal of Y in k[x1, . . . , xn] as:

I(Y ) = {f ∈ k[x1, . . . , xn]|f(x) = 0, for all x ∈ Y }.

In fact, there is a bijection between the closed sets and some of the ideals of
k[x1, . . . , xn]. The next de�nition will be important to establish this correspondence.

De�nition 2.1.8 (Radical Ideal). An ideal I of the commutative ring A is a radical
ideal if I =

√
I, where

√
I = {a ∈ A|an ∈ I for some n ∈ N}.

The next result is a very famous theorem called the Nullstellensatz. It was proven
by David Hilbert in 1893, and it lies in the core of algebraic geometry because it
gives us a "dictionary" between algebraic objects and geometric ones.

Theorem 2.1.9 (Nullstellensatz). Let k be an algebraically closed �eld, and A an
ideal of k[x1, . . . , xn]. Consider f a polynomial in k[x1, . . . , xn] such that f(a) = 0
for every a ∈ Z(A), then f r ∈ A for some integer r.

Proof. See Corollary of Proposition A.9 in [5].

We have the following corollary.
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Corollary 2.1.10. For any ideal A ⊂ k[x1, . . . , xn], I(Z(A)) =
√
A. Therefore,

there is a bijection between the Zariski closed subsets and the radical ideals of
k[x1, . . . , xn]. This happens by associating a closed set Y to I(Y ) and a radical ideal
A to Z(A). Moreover, a closed set is irreducible if and only if its associated ideal is
prime.

Proof. See Corollary 1.4 of chapter I in [4].

The fact that k is algebraically closed is essential to theorem as we can see in
the next example:

Example 2.1.11. Consider the ideal J = (x2 + 1) in R[x]. We have that Z(J) = ∅,
and then I(Z(J)) = I(∅) = R[x]. However,

√
J = J 6= R[x].

Consider Y an a�ne variety. Given f and p polynomials in k[x1, . . . , xn], if
f − p ∈ I(Y ), we have that f(y) = p(y) for every y ∈ Y. This is the motivation to
introduce the concept of a�ne coordinate ring.

De�nition 2.1.12 (A�ne coordinate ring). If Y ⊆ An is closed set, we de�ne the
a�ne coordinate ring A(Y ) of Y to be k[x1, . . . , xn]/I(Y ). When Y is an algebraic
variety, we have that I(Y ) is prime, and so A(Y ) is a domain.

We also want to study the open sets of a�ne varieties.

De�nition 2.1.13 (Quasi-a�ne Varieties). The open set of an a�ne variety is
called quasi-a�ne variety. We de�ne the Zariski topology of quasi-a�ne varieties
as the topology induced by Zariski topology on a�ne varieties.

Example 2.1.14. Since every point is a closed set of An, An\{0} is a quasi-a�ne
variety.

Now, we look at varieties in the projective space. For that purpose, let us �rst
recall the de�nition of projective space.

De�nition 2.1.15 (Projective Space). Let k be a �eld. Consider the equivalence
relation in An+1\{0} given by: (a0, . . . , an) ∼ (λa0, . . . , λan) for all λ ∈ k, λ 6= 0.
We de�ne the projective space of dimension n, denoted by Pn, as the quotient of
An+1\{0} under the above equivalence relation. We represent the elements of Pn as
(a0 : · · · : an).

We want to de�ne the closed sets of Pn in a similar way that we have de�ned for
An. However, we want to choose polynomials f such that f(P ) = 0 for any choice
of coordinates. Hence, f needs to be homogeneous.

De�nition 2.1.16 (Zariski Closed set of Pn). A subset Y ⊆ Pn is said to be a
Zariski closed set if Y = Z(T ), where T is a set of homogeneous polynomials in
k[x0, . . . , xn].
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A version of the Proposition 2.1.3 can be shown for the closed sets of Pn, allowing
us to de�ne a topology for Pn.

De�nition 2.1.17 (Projective and Quasi-Projective Varieties). An irreducible closed
set of Pn is called a projective variety. An open set of a projective variety is called
a quasi-projective variety.

We also have a relation between the closed sets of the projective space Pn and
certain ideals of k[x0, . . . , xn]. However, now we have to look to the homogeneous
ideals of k[x0, . . . , xn], ideals that can be generated by homogeneous elements.

In this case, given Y ⊆ Pn, we de�ne

I(Y ) = {f ∈ k[x0, . . . , xn] and homogeneous |f(x) = 0 for all x ∈ Y }.

We can de�ne the homogeneous coordinate ring of Y , which we denote by S(Y ), to
be k[x0, . . . , xn]/I(Y ).

Then, we can state an analogous version of Corollary 2.1.10:

Proposition 2.1.18. Let k be an algebraically closed �eld. There is a bijection
between the closed sets of Pn and the radical homogeneous ideals of k[x0, . . . , xn],
except for the ideal (x0, . . . , xn). This happens by associating a closed set Y 7→ I(Y )
and a radical homogeneous ideal A 7→ Z(A). Moreover, a closed set is irreducible if
and only if its associated ideal is prime.

This relation between ideals and closed sets and the fact that k[x1, . . . , xn] is a
noetherian ring permit us to conclude the following result:

Theorem 2.1.19. Every closed set X can be written in a unique way as a �nite
union of irreducible closed subsets.

Proof. See Theorems 1.4 and 1.5 in [5], Section 3.1, chapter 1.

The irreducible closed subsets mentioned in the above theorem are called the
irreducible components of X.

To conclude this section, we show that every projective variety can be written
as a �nite union of open sets that are homeomorphic to a�ne varieties.

Let us consider the following injection:

φ0 : An → U0 := Pn\Z(x0)

(x1, . . . , xn) 7→ (1 : x1 : · · · : xn)

and its inverse:

ψ0 : U0 → An

(x0 : x1 : · · · : xn) 7→ (
x1

x0

, . . . ,
xn
x0

).
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These two functions are homeomorphisms with respect to the Zariski topology.
Furthermore, we can write Pn =

⋃n
i=0 Ui, where Ui = Pn\Z(xi). Given a projective

variety (a closed and irreducible set) Y ⊆ Pn, we can write Y =
⋃n
i=0(Y ∩ Ui),

showing what we claimed.

2.2 Morphisms

When studying algebra, we are not just interested in the objects, but also on the
relations between them that preserve some kind of structure, namely the morphisms.
In what follows, we de�ne morphisms of algebraic varieties. However, in order to do
it, we need �rst to introduce the concept of regular functions.

De�nition 2.2.1 (Regular function for a quasi-a�ne variety). Let Y ⊆ An be a
quasi-a�ne variety. A function f : Y → k is regular at a point P if there is an open
neighbourhood U , P ∈ U ⊆ Y and polynomials g and h, such that h is nowhere
zero on U , and f = g/h on U . We say that f is regular on Y if it is regular at every
point of Y .

De�nition 2.2.2 (Regular function for a quasi-projective variety). Let X ⊆ Pn be
a quasi-projective variety. A function f : X → k is regular at a point P if there is
an open neighbourhood U , P ∈ U ⊆ X, and homogeneous polynomials F and G
with the same degree, such that G is nowhere zero on U, and f = F/G on U . We
say that f is regular on X if it is regular at every point of X.

From now on, we use the word variety when referring to any a�ne, quasi-a�ne,
projective or quasi-projective variety.

Remark 2.2.3.

1. We denote by O(X), the set of regular functions of a variety X, which is a
k-algebra.

2. When X is an a�ne variety, O(X) = A(X) (the coordinate ring of X). (See
Theorem 3.2 in [4]).

3. When X is a projective variety O(X) = k (see Theorem 5.2 in [5]).

De�nition 2.2.4 (Morphisms). If X and Y are two varieties, a map φ : X → Y is
said to be a morphism if:

1. φ is continuous.

2. For every open set V ⊂ Y and for every regular function f : V → k, the
function f ◦ φ : φ−1(V )→ k is regular.
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We say that a morphism φ is an isomorphism if its inverse is also a morphism.

We see an example.

Example 2.2.5. The functions φ0 and ψ0 de�ned in the end of the last section are
morphisms. Therefore, the open sets Ui = Pn\Z(xi) are isomorphic to An.

We notice that since An is isomorphic to a open set of Pn, every a�ne and
quasi-a�ne varieties can be seen as quasi-projective varieties.

This example also gives the cue for our next de�nition.

De�nition 2.2.6 (A�ne open set). An open U of a quasi-projective variety is called
a�ne open set if it is isomorphic to an a�ne variety.

We can rewrite the result of the of the last section by saying that every projective
variety has a cover of a�ne open sets. In fact, this is true for every quasi-projective
variety (See Lemma 1.3, section 4.2, chapter 1 in [5]). This a�ne open cover is, in
fact, a �nite one, since Pn with Zariski topology is a noetherian topological space,
i.e., every ascending chain of open sets is stationary.

We see now the importance of the second condition of the de�nition of morphism.
Given a morphism φ : X → Y , we can de�ne a homomorphism φ∗ : O(Y ) → O(X)
between k-algebras, where φ∗(f) = f ◦ φ. We say that φ∗ is the pullback of φ.
The correspondence φ → φ∗ is functorial, in particular, if X and Y are isomorphic
as algebraic varieties, then O(X) and O(Y ) are isomorphic as k-algebras. The
reciprocal is not generally true, however it is in the case that both X and Y are
a�ne (see Corollary 3.7 in [4]).

We conclude this section with examples of morphisms and of the pullback ho-
momorphisms induced by them.

Example 2.2.7. Consider X = A1 and Y = Z(y − x2) ⊂ A2. The function

f : Y → X

(x, y) 7→ x

is an isomorphism.
Its inverse is given by the following morphism

g : X → Y

t 7→ (t, t2).

The pullbacks of f and g are de�ned bellow

f ∗ : O(X) = k[t]→ O(Y )

t 7→ t
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g∗ : O(Y ) =→ O(X)

φ(x̄, ȳ) 7→ φ(t, t2)

Therefore, we conclude that O(X) ' O(Y ) = k[t].

Example 2.2.8. Consider X = A1\{0} and Y = Z(xy − 1) ⊂ A2. The function

f : Y → X

(x, y) 7→ x

is a morphism and its inverse g is de�ned bellow

g : X → Y

t 7→ (t, 1/t).

In the same way we did in the previous example, we conclude that

O(Y ) ' O(X) = k[x, 1/x].

2.3 Function Fields and Rational maps

In this section, we introduce an essential concept: function �elds. We also discuss
the relation that exists between two varieties that have the same function �eld.

De�nition 2.3.1 (Function �eld). Let X be a variety. We de�ne the function �eld
of X, denoted by k(X), by de�ning its elements, the rational functions. A rational
function is an equivalence class of pairs (U, fU), where U is a non-empty open set
and fU ∈ O(U). Two pairs (U, fU) and (V, fV ) are equivalent if fU = fV on U ∩ V .

Remark 2.3.2. Notice that given U ⊂ X an open set, k(U) = k(X).

We are interested now in studying transformations between varieties that are
not necessarily de�ned on the entire domain. This is the motivation for the next
de�nition.

De�nition 2.3.3 (Rational map). Consider the varieties X and Y . A rational map
φ : X 99K Y is an equivalence class of pairs (U, φU), where U is a non-empty open
set and φU : U → Y is a morphism. Two pairs (U, φU) and (V, φV ) are equivalent if
φU = φV on U ∩ V .
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The domain of de�nition of φ is the biggest open set U ⊂ X such that it exists
a representative of φ with the form (U, φU).

The composition of two rational maps is not necessarily well-de�ned. For this
reason, we will be interested on dominant rational maps, de�ned as bellow:

De�nition 2.3.4 (Dominant rational map). A rational map φ : X 99K Y is said to
be dominant if there is a representative (U, φU) such that φU(U) is dense in Y .

De�nition 2.3.5 (Birational map). A dominant rational map φ : X 99K Y is said
to be birational if it has an inverse that is also a dominant rational map. In this
case, we say that X and Y are birationally equivalent.

Birational maps preserve some properties between varieties, and for that reason,
it is natural to give a special attention to varieties that are birationally equivalent
to An or to Pn.

De�nition 2.3.6 (Rational Variety). A variety X is called rational if it is bira-
tionally equivalent to An or Pn for some n.

Let φ : X 99K Y be a dominant rational map, we can verify that given f ∈
k(Y ), then f ◦ φ ∈ k(X). This allows us to de�ne φ∗ : k(Y ) → k(X) a injective
homomorphism between function �elds over k (φ∗ is injective because φ is dominant).

The next theorem gives us more relations between two birationally equivalent
varieties and their function �elds.

Theorem 2.3.7. Consider the varieties X and Y . Then the following conditions
are equivalent:

� X and Y are birationally equivalent.

� There are non-empty open sets U ⊆ X and V ⊆ Y such that U and V are
isomorphic.

� k(X) is isomorphic to k(Y ) as k-algebras.

Proof. See Corollary 4.5 in [4].

Remark 2.3.8. An interesting particular case happens when X is a non-singular
projective curve. In this case, X can be uniquely determined by its function �eld
k(X). This result can found in [7], Corollary of Theorem 3, chapter 7.

Another special type of variety that will have a fundamental role in our study
are the unirational varieties.

De�nition 2.3.9 (Unirational Variety). We say that a variety X is unirational if
there is a dominant rational map φ : Pn 99K X.
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A unirational variety has also the following properties:

Theorem 2.3.10. Let X be a variety over k. The following are equivalent:

� X is unirational.

� k(X), the function �eld of X, is contained in a purely transcendental �eld
extension of k.

� There is a �nite extension of k(X) which is a purely transcendental �eld ex-
tension of k.

Proof. The proof can be found in Lemma 7.8 in [6].

Remark 2.3.11. We can ask ourselves: Is every unirational variety also rational?
This question is known as the Lüroth Problem, and although it is true for one and
two dimensional varieties over algebraically closed �elds with characteristic zero, we
can �nd some counterexamples in dimension 3, see [8].

To conclude this section, we introduce a de�nition that is very useful when we
study local properties of a variety X, the local ring of X at a point x. We start
giving two de�nitions of commutative algebra.

De�nition 2.3.12 (Local ring and residue �eld). A ring A is said to be local if A
has only one maximal ideal m. The �eld A/m is called the residue �eld of A.

De�nition 2.3.13 (Localization at a prime ideal). Consider an integral domain A
and P a prime ideal of A. The localization of A at P is denoted by AP and given
by

AP =
{f
g
|f, g ∈ A and g /∈ P

}
.

De�nition 2.3.14 (Local ring at a point). Consider a variety X and a point x ∈ X.
The local ring of X at x is denoted by Ox,X and it is de�ned in the following way

Ox,X =
{
f ∈ K(X)|f is regular at x, i.e. there is an open set U such that x ∈ U and f ∈ O(U)

}
.

The following remarks are immediate consequences of the de�nition.

Remark 2.3.15.

1. Ox,X is a local ring with maximal ideal mx = {f ∈ Ox,X |f(x) = 0}.

2. The residue �eld of Ox,X is isomorphic to k.

3. If U is an open set, x ∈ U , then Ox,U ' Ox,X .
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2.4 Finite Morphisms

In this section, we introduce the �nite morphisms. We start with a basic concept of
commutative algebra, necessary for the de�nition of �nite morphisms.

De�nition 2.4.1 (Integral Extension of a ring). Let A and B be commutative rings
such that A ⊂ B. We say that an element b ∈ B is integral over A if it is the root
of a monic polynomial in A[x]. We say that B is integral over A if every element of
B is integral over A.

Remark 2.4.2. If B is �nitely generated as an A-algebra, B is integral over A if
and only if B is a �nite A-module (See [9], Proposition 5.1 and Corollary 5.2).

Remark 2.4.3. If x and y are integral over A, then x+ y and xy are also integral
over A.(See [9], Corollary 5.3).

We �rst de�ne �nite morphisms between a�ne varieties.

De�nition 2.4.4 (Finite morphisms of a�ne varieties). Let X and Y be a�ne
varieties and f : X → Y a dominant morphism. Since f is a dominant morphism,
f ∗ : O(Y ) → O(X) is injective. We say that f is �nite if O(X) is integral over
f ∗(O(Y )).

Example 2.4.5. Let Y = Z(y2 − x3) ⊂ A2. Consider the morphism

ψ : A1 → Y

t 7→ (t2, t3).

Notice that O(Y ) = k[t2, t3] and that ψ∗ is the inclusion of k[t2, t3] in k[t] = O(A1).
It is easy to see that t is integral over k[t2, t3], hence ψ is �nite.

Example 2.4.6. Let Y = Z(xy − 1) ⊂ A2. Consider the morphism φ

φ : Y → A1

(x, y) 7→ x.

φ is not �nite. In fact, we have that φ∗ is the inclusion of k[t] in k[t, 1/t] = O(Y )
and k[t, 1/t] is not a �nite k[t]-module.

We now see some properties of �nite morphisms.

Theorem 2.4.7. Let X and Y be a�ne varieties and f : X → Y a �nite map .
Then f holds the following properties:

1. For every y ∈ Y , f−1(y) is a �nite set.
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2. f is surjective.

3. f is a closed map, i.e, takes closed sets to closed sets.

Proof. The proof of these three properties can be found in page 61, section 5.3 of
[5].

When X is a�ne, k(X) is isomorphic to the quotient �eld of O(X) (see Theorem
3.2 in [4]). Therefore, an injective homomorphism f ∗ : O(Y ) → O(X) induces a
injective homomorphism f̂ : k(Y ) → k(X), f̂(a/b) = f ∗(a)/f ∗(b). We see that the
existence of a �nite morphism between X and Y give us some information about
the extension k(X)/k(Y ).

Theorem 2.4.8. Let X and Y be a�ne varieties and f : X → Y a �nite morphism.
Then, k(X)/f̂(k(Y )) is a �nite �eld extension.

Proof. We have that k(X) is �nitely generated as a �eld over k, since k(X) is the
fraction �eld of the �nitely generated k-algebra k[x1, . . . , xn]/I(X). Hence k(X) is
clearly �nitely generated as a �eld over f̂(k(Y )). Hence, to show that k(X)/f̂(k(Y ))
is a �nite extension, it is enough to prove that k(X) is algebraic over f̂(k(Y )).

Since f is �nite, O(X) is algebraic over f̂(k(Y )). Since the elements that are
algebraic over a �eld form a subring, to complete the proof, we only need to show
that 1/b is algebraic over f̂(k(Y )), for every b ∈ O(X). Since b is integral over
f ∗(O(Y )), there are a0, . . . , ak−1 ∈ f ∗(O(Y )) such that

bk + anb
k−1 + · · ·+ a0 = 0.

Multiplying this expression by 1/bk, we obtain

1 + an/b+ · · ·+ a0/b
k = 0

and so 1/b is algebraic over f̂(k(Y )).

This last theorem motivates another de�nition.

De�nition 2.4.9 (Degree of a �nite morphism). Given X and Y two a�ne varieties
and f : X → Y a �nite morphism. Then, we de�ne the degree of f , denoted by deg f
as

deg f = [k(X) : f̂(k(Y ))].

We can extend this de�nition for a general quasi-projective variety as we see
now.

De�nition 2.4.10 (Finite morphims for quasi-projective varieties). Let f : X → Y
be a dominant morphism between quasi-projective varieties. We say that f is �nite
if every y ∈ Y has an a�ne neighbourhood V such that the set U = f−1(V ) is a�ne
and f |U : U → V is �nite.
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An a�ne variety is a particular case of quasi-projective variety, and so we must
verify that this de�nition of �nite morphisms for quasi-projective varieties is com-
patible with the original one. We see this in the next theorem.

Theorem 2.4.11. Let f : X → Y be a dominant morphism between a�ne varieties.
Suppose that every y ∈ Y has an a�ne neighbourhood V such that the set U =
f−1(V ) is a�ne and f |U : U → V is �nite. Then, f is a �nite morphism according
to the de�nition 2.4.4.

Theorems 2.4.7 and 2.4.8 still hold for �nite morphisms between quasi-projective
varieties. We can also de�ne the degree of a �nite morphism between quasi-projective
varieties in the same way we have done for the a�ne case.

The next two theorems give us some motivation for de�ning a dimension of
projective varieties, the topic of the next section. The �rst one is a geometric
version of a famous theorem in commutative algebra, called Noether's Normalisation
Theorem.

Theorem 2.4.12 (Noether's Normalisation Theorem). Let X be a projective vari-
ety. Then, for some n ∈ N, there exists a �nite morphism f : X → Pn.

Proof. The proof can be found in [5], Theorem 1.17, section 5.3, chapter 1.

Theorem 2.4.13. Let Y be an a�ne variety. Then, for some m ∈ N, there exists
a �nite morphism φ : Y → Am.

Proof. The proof can be found in [5], Theorem 1.18, section 5.3, chapter 1.

2.5 Dimension

In this section, we introduce the notion of dimension for quasi-projective varieties.
Before giving a de�nition, we discuss some properties that this de�nition must sat-
isfy.

First, we expect the dimensions of Pn and of An to be equal n (1). Since every
non-empty open set U of a variety X is dense, we also expect the dimension of U to
be equal the dimension of X (2). Classical algebraic geometry was in many aspects
inspired by di�erential geometry, thus it is also natural to demand that, given two
varieties X and Y , the dimension of X × Y is equal to the sum of dimensions of
X and Y , in the same way that occurs with manifolds (3). Given F an irreducible
homogeneous polynomial in k[x0, . . . , xn], we also want Z(F ) ⊂ Pn to have the same
dimension as the hypersurfaces of di�erential geometry, that is dimZ(F ) = n − 1
(4).

We see two equivalent de�nitions for dimension, the motivation for the �rst one
comes from the end of the last section. We have seen that given an a�ne variety
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X, there is always a �nite morphism f : X → An, for some n ∈ N. We could de�ne
the dimension of X to be equal to n in this case, however is this de�nition well-
de�ned? In fact, by Theorem 2.4.8, the existence of the �nite morphism f implies
that k(X)/f̂(k(x1, . . . , xn)) is a �nite extension, hence the transcendence degree of
k(X)/k is equal to n. This leads to our �rst de�nition of dimension.

De�nition 2.5.1 (First de�nition of dimension). LetX be a quasi-projective variety
such that k(X)/k is a �nitely generated extension. We de�ne the dimension of X,
denoted by dimX, to be equal the transcendence degree of the extension k(X)/k.
The dimension of a closed set Y ⊂ Pn is the maximum of the dimension of its
irreducible components.

From this de�nition, it is immediate to see that the dimension is invariant by
birational equivalence, and that the properties (1) and (2) are satis�ed. We also
notice that if there is a �nite morphism between two varieties, they have the same
dimension. The proof of property (3) can be found in [5], example 1.33 of section
6.1, chapter 1. We now present property (4) and other interesting related results.

Proposition 2.5.2. Consider X and Y quasi-projective varieties, such that X ⊆ Y ,
then dimX ≤ dimY . If X is a closed set and dimX = dimY , then X = Y .

Proof. See Theorem 1.19 in [5], section 6.1, chapter 1.

Theorem 2.5.3. Given a non-constant polynomial f ∈ k[x1, . . . , xn], the dimension
of Z(f) ⊂ An is equal to n− 1.

Proof. See Theorem 1.20 in [5], section 6.1, chapter 1.

The reciprocal result is also true:

Theorem 2.5.4. Let X ⊂ An be an a�ne variety with dimension equal to n − 1.
Then, there is an irreducible polynomial f ∈ k[x1, . . . , xn] such that Z(f) = n− 1.

Proof. See Theorem 1.21 in [5], section 6.1, chapter 1.

Theorem 2.5.3 can be generalized for an arbitrary projective variety as we see
bellow:

Theorem 2.5.5. Let X ⊂ Pn be a projective variety of dimension n and F be a
homogeneous polynomial in k[x0, . . . , xn] such that F /∈ I(X). Then every irreducible
component of X ∩ Z(F ) has dimension equal to n− 1.

Proof. See Theorem 1.22 in [5], section 6.2, chapter 1.

This last theorem will allow us to formulate another de�nition of dimension, a
topological one.
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De�nition 2.5.6 (Second de�nition of dimension). Let X be a topological noethe-
rian space, i.e. every descending chain of closed sets of X is stationary. The topolog-
ical dimension of X, denoted by dimtopX, is de�ned as the supremum of all integers
n for which there exists a strictly decreasing chain X = X0 ) X1 ) . . . Xn 6= ∅ of
length n of subvarieties of X.

Proposition 2.5.7. Given a quasi-projective variety X, dimX = dimtopX.

Proof. We can consider, without loss of generality, that X is a projective variety.
Suppose dimtopX = n, then there is a strictly decreasing chain of varieties

X = X0 ) X1 ) · · · ) Xn 6= ∅.

By Proposition 2.5.2, dimX > dimX1 > · · · > dimXn, hence dimX ≥ n =
dimtopX. On the other hand, if dimX = r, Theorem 2.5.5 enable us to construct a
strictly decreasing chain of varieties

X = Y0 ) Y1 ) · · · ) Yr 6= ∅

such that dimYi = n− i, and so dimtopX ≥ r. Therefore, dimX = dimtopX.

Remark 2.5.8. In commutative algebra, we de�ne the height of a prime ideal p as
the supremum of all integers n such that there exists a strictly ascending chain of
prime ideals p0 ( p1 ( · · · ( pn = p. The Krull dimension of a ring A, denoted
by dimKrullA, is the supremum of the heights of all prime ideals in A. As we have
already seen the Nullstellensatz establishes a bijection between prime ideals and
a�ne varieties. From this bijection, we conclude that for an a�ne variety X, the
dimtopX = dimKrullO(X).

2.6 Normal Varieties

In the section 2.4, we introduced the concept of integral extension of a ring. In this
section, we introduce a related concept, the de�nition of integrally closed rings. In
fact, we are interested in studying varieties X that for every point x ∈ X, the local
ring Ox,X is integrally closed.

De�nition 2.6.1 (Integrally closed ring). Consider A and B commutative rings
such that A ⊂ B. The integral closure of A in B is a ring formed by elements of B
that are integral over A. A domain A is integrally closed if every element of its �eld
of fraction K that is integral over A is in A, i.e. if is the integral closure of A in K
is equal to A.

De�nition 2.6.2 (Normal Variety). An a�ne variety X is said to be normal if
O(X) is a integrally closed ring. A quasi-projective variety is normal if every point
x ∈ X has a normal a�ne neighbourhood.
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Remark 2.6.3. From commutative algebra, we have that for an integral domain A
to be integrally closed is equivalent to the localization Am be integrally closed for
each maximal ideal m (see this result in [9], Proposition 5.13). Therefore, a variety
X is normal if and only if Ox,X is integrally closed for every x ∈ X.

There are several examples of normal varieties. For instance, An and Pn, since
k[x1, . . . , xn] is integrally closed over k(x1, . . . , xn). We see now an example of a
non-normal variety.

Example 2.6.4. Consider the variety X = Z(y2 − x3) ⊂ A2. The coordinate ring
O(X) = k[x, y]/(y2 − x3) is isomorphic to k[t2, t3]. The fraction �eld of k[t2, t3] is
k(t), hence X is not a normal variety, since the integral closure of k[t2, t3] in k(t) is
k[t].

Even though X is not normal, there is a normal variety associated to k[t] and a
�nite morphism between this normal variety and X, the morphism f de�ned bellow

f : A1 → X

t 7→ (t2, t3).

We say that A1 and f in the above example form the normalization of X. In
what follows, we de�ne this concept properly.

De�nition 2.6.5. The normalization of a variety X is a normal variety Xν together
with a �nite birational morphism ν : Xν → X.

This de�nition lead us to the next theorem.

Proposition 2.6.6. Every quasi-projective variety has a unique normalization. If
X is a�ne, then Xν is a�ne. If X is projective, then Xν is also projective.

Proof. See Theorem 7.17 in [16].

Remark 2.6.7. For an a�ne variety X, the normalization of X, Xν , is such that
O(Xν) is the integral closure of O(X) in its fraction �eld. This construction can be
found at the proof of Theorem 2.20, section 5.2, chapter II, [5].

We give an example of the normalization of a projective variety.

Example 2.6.8. The variety X in P2 is given by Z(zy2 − x3 − zx2) is called the
nodal curve. We show that the morphism

f : P1 → X

(t : u) 7→ (u(t2 − u2) : t(t2 − u2) : u3)

26



is a �nite birational map and hence P1 and f are the normalization of X.
First, we have that

g : X 99K P1

(x : y : z) 7→ (y/x : 1)

is the inverse of f , therefore f is birational.
In fact, if we denote by U1 = P1\Z(t) and by V1 = X\Z(z), we have that f : U1 →

V1 induces an isomorphism f ∗ between O(V1) and O(U1), hence the restriction
f : U1 → V1 is a �nite morphism.

In an analogous manner, if we denote by U2 = P1\Z(u) and by V2 = X\Z(y),
we conclude that the restriction f : U2 → V2 is a �nite morphism. Hence, since
X = V1 ∪ V2, f is a �nite morphism.

We conclude this chapter introducing a particular case of the de�nition of rami-
�cation point. This de�nition will be used in section 3.3 and it will be fundamental
in section 3.4 to connect the Hilbert Property with Algebraic Topology.

De�nition 2.6.9 (Rami�cation point). Given a �nite map f : X → Y between
irreducible quasi-projective varieties X and Y such that Y is a normal variety,
we say that f is rami�ed at y, or equivalently y is a rami�cation point of f , if
|f−1(y)| < deg f . Otherwise, |f−1(y)| = deg f and we say that f is unrami�ed at y.
The set of the rami�cation points of f is often called the rami�cation locus of f .

Remark 2.6.10. This de�nition of being rami�ed or unrami�ed is only valid when
the codomain Y of f : X → Y is normal. Otherwise, it might exist an y ∈ Y such
that |f−1(y)| > deg f . We can see this in the example 2.6.8, the morphism f has
degree 1, however |f−1([0 : 0 : 1])| = 2.

Theorem 2.6.11. Given f : X → Y a morphism between quasi-projective varieties,
where Y is a normal variety. If f ∗(k(Y )) ⊂ k(X) is a separable �eld extension, the
rami�cation locus of f is a proper closed set in Y .

Proof. See Theorem 2.29 in section 6.3, chapter II of [5].

27



Chapter 3

The Hilbert Property and some of its

connections

3.1 Historical Motivation

As we have seen in Chapter 1, in Galois theory, when a �nite �eld extension K/F
is Galois, we can establish a bijection between the subgroups of Gal(K/F ) and its
intermediate �elds. A natural question is if the converse is still true, that is, given
a �nite group G, and a �eld F , is there some Galois �eld extension K/F such that
G is its Galois group? This problem is known as the Inverse Galois Problem (IGP),
and we say that G is realizable over F if such a �eld K exists.

It seems reasonable to study this problem for a �xed �eld F . David Hilbert did
that during the 19th century, choosing F as Q, the �eld of rational numbers. Since
the problem was already solved for �nite abelian groups (to see the resolution of this
particular case, read chapter 3 of [14]), Hilbert decided to focus on the case of �nite
symmetric groups Sn. In fact, this is an interesting case, specially because we know
that every �nite group is isomorphic to a subgroup of some Sn (Cayley's Theorem).
The Symmetric groups have the following property:

Proposition 3.1.1. The group Sn can be realized over Q(T0, . . . , Tn−1), a purely
transcendental extension of Q with transcendence degree n.

Before proving this proposition, let us recall a tool that is important for the
proof, namely, the elementary symmetric polynomials. We denote by ei(X1, . . . , Xn)
the elementary symmetric polynomial in n variables X1, . . . , Xn of degree i. We
have that:
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e0(X1, X2, . . . , Xn) = 1,

e1(X1, X2, . . . , Xn) =
∑

1≤j≤n

Xj,

e2(X1, X2, . . . , Xn) =
∑

1≤j<k≤n

XjXk.

More generally

ek(X1, X2, . . . , Xn) =
∑

1≤j1<j2<···<jk≤n

Xj1 · · ·Xjk .

Proof of the Proposition 3.1.1. Denote byK the �eld of rational functionsQ(X1, . . . , Xn).
Consider Sn acting on K by permuting the set {X1, . . . , Xn} and �xing Q. We de-
note by KSn the sub�eld of K �xed by Sn, as we did in the preliminary part. Let
us consider the �eld Q(T0, . . . , Tn−1), where Ti = (−1)n−ien−i(X1, . . . , Xn) and ei are
the above mentioned symmetric polynomials. This �eld is a purely transcendental
extension of Q with transcendence degree n.

We start by proving that K/Q(T0, . . . , Tn−1) is Galois.
Consider f(x) =

∏n
i=1(x − Xi). We can develop the product and rewrite f in

the following way

f(x) = xn + Tn−1x
n−1 + · · ·+ T1x+ T0.

Then, f ∈ Q(T0, . . . , Tn−1)[x]. As K is a splitting �eld for f and f is a separable
polynomial, we have that K/Q(T0, . . . , Tn−1) is Galois by Theorem 1.3.6.

We prove in what follows that Gal(K/Q(T0, . . . , Tn−1)) = Sn.
The elementary symmetric polynomials are �xed by every permutation in Sn,

thus Ti ∈ KSn for every 0 ≤ i ≤ n−1. As a consequence, Sn ⊆ Gal(K/Q(T0, . . . , Tn−1)).
To show the other inclusion, consider g ∈ Gal(K/Q(T0, . . . , Tn−1)). By Proposition
1.3.2, we know that g(Xi) must be another root of f , so g must permute the set
{X1, . . . , Xn}, i.e g ∈ Sn. Therefore, Gal(K/Q(T0, . . . , Tn−1)) = Sn.

�
This motivates another question: given a �nite group G that can be realized over

a �eld of the form Q(X1, . . . , Xn), can it also be realized over Q? The answer to this
question is positive. This is a consequence of the celebrated Hilbert's Irreducibility
Theorem, which is stated bellow.

Theorem 3.1.2 (Hilbert's Irreducibility Theorem). For any irreducible polynomial
f ∈ Q[X1, . . . , Xs, Y1, . . . , Yr] of degree ≥ 1 in Y1, . . . , Yr, there exist in�nitely many
b ∈ Qs such that f(b1, . . . , bs, Y1, . . . , Yr) ∈ Q[Y1, . . . , Yr] is irreducible.
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Proof. There are several proofs for this theorem. The original proof in german can
be found at [1]. An explanation in english of this proof can be found at [13].

We now demonstrate that a �nite group G that is realizable over Q(X1, . . . , Xn),
the �eld of rational functions with n variables over Q, is also realizable over Q. The
ideas of the proofs follow the ideas presented in chapter 1 of [27].

We start by de�ning the specialization of a polynomial. Let K be an in�nite
�eld. Suppose that f ∈ K(X)[Y ], with X representing a �nite set of variables,
|X| = n and Y just a single variable. We can write f = g/h, where g ∈ K[X][Y ]
and h ∈ K[X]\{0}, the least common denominator of the coe�cients of f .

De�nition 3.1.3 (Specialized polynomial). For every b ∈ Kn such that h(b) 6= 0,
we can de�ne fb(Y ) := f(b, Y ) = g(b, Y )/h(b), called the specialized polynomial in
b.

On the next lemma, we see that there are in�nitely many ways of specializing a
polynomial such that it maintains certain of its original properties.

Lemma 3.1.4. Consider a �nite collection of polynomials w0, . . . , wr ∈ Q(X)[Y ].
Suppose that w0 is irreducible and separable, then there are in�nitely many points
b ∈ Qn such that all wi(b, Y ) are de�ned, and w0(b, Y ) is irreducible, separable and
of the same degree as w0(X, Y ) in Y .

Proof. We �rst prove it by induction on |X|. For the case |X| = 1, we write
wi(X, Y ) = gi(X, Y )/hi(X) and for each i, the set of points b ∈ Q such that wi(b, Y )
is not de�ned is equal to Z(hi), the set of zeros of hi, which is a �nite set, since hi
is a one single variable polynomial.

If we call by c(X) the leading coe�cient of w0(X, Y ), we have that the set of
points b ∈ Q such that w0(X, Y ) and w0(b, Y ) do not have the same degree is equal
to Z(c), also a �nite set.

Since w0(X, Y ) is separable, its discriminant, Discw0(X), is not equal to zero,
and the set of points for which w0(b, Y ) is not separable is Z(Discw0), a �nite set.

By Hilbert's Irreducibility Theorem, the set

A = {b ∈ Q|w0(b, Y ) is irreducible.}

is in�nite. Therefore, the set A\
(
∪ri=0 Z(hi)∪Z(c)∪Z(Disc)

)
is in�nite and all its

points satisfy all desired properties.
Suppose the lemma is true for the case |X| = n − 1. To prove it for the case

|X| = n, we just have to �nd a b ∈ Q such that all wi(b,X2, . . . , Xn, Y ) are de�ned,
and w0(b,X2, . . . , Xn, Y ) is irreducible, separable and of the same degree as w0(X, Y )
in Y . Again by Hilbert's Irreducibility Theorem, the set

B = {b ∈ Q|w0(b,X2, . . . , Xn, Y ) is irreducible.}
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is in�nite, and if c(X) or some of hi(X) is not a single variable polynomial in X1, all
points of B satisfy all properties. If c or some of hi is a single variable polynomial
in X1, there are points of B for which at least one of conditions is not satis�ed,
however, these points constitute a �nite set of B, by the same arguments of the �rst
case. Therefore, the lemma is true for the case |X| = n.

Before the next lemma, let us introduce some notation:

Given an irreducible polynomial f ∈ K[Y ], we denote by Kf :=
K[Y ]

(f)
. Note

that Kf ' K[af ], for any af that is a root of f .

Lemma 3.1.5 (Preservation of the Galois group under specialization). Let f be an
irreducible polynomial over Q(X)[Y ], such that Q(X)f/Q(X) is a Galois extension.
Then then are in�nitely many points b in Qn such that fb is de�ned, is irreducible,
separable and has the same degree of f and the extension Qfb/Q is also Galois and
its Galois group is isomorphic to Gal(Q(X)f/Q(X)).

Proof. Given a root af of f , we have that Q(X)f ' Q(X)[af ]. Since Q(X)f/Q(X)
is a Galois extension, f splits over Q(X)[af ], and it has r di�erent roots, where
r = deg f in Y . Therefore we can write

f(X, Y ) = C(X)
r∏
i=1

(Y − wi(X, af )),

where C(X) ∈ Q(X)\{0} and wi(X,Z) are pairwise di�erent polynomials inQ(X)[Z].
For b such that fb is de�ned and irreducible, we can de�ne the �eld Qfb . Given

a root afb of fb, we show that if wi(b, Y ) is de�ned, wi(b, afb) is also a root of fb.
For any arbitrary i, we denote by F (X, Y ) = f(X,wi(X, Y )). Since F (X, af ) =

f(X,wi(X, af )) = 0 and f = Min(Q(X), af ), we have that f |F . Thus, there is a
g ∈ Q(X)[Y ] such that F = gf . Since wi(b, Y ) and f(b, Y ) are de�ned, so is g(b, Y ),
and then

Fb = fbgb ⇒ fb(Y )|f(b, wi(b, Y ))⇒ f(b, wi(b, afb)) = 0

By Lemma 3.1.4, there are in�nitely many b ∈ Qn such that all wi(b, Y ) are
de�ned and fb is de�ned, irreducible, separable, of the same degree as f . From now
on, we consider these b, and for them, we can write

fb(Y ) = C

r∏
i=1

(Y − wi(b, afb)),

where C ∈ Q\{0}.
This allow us to conclude that fb splits over Qfb , and since fb is separable, Qfb/Q

is Galois.
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We denote by Gf = Gal(Q(X)f/Q(X)) and Gfb = Gal(Qfb/Q). These two
Galois groups are isomorphic.

Indeed, since Q(X)f/Q(X) is a simple extension, by Proposition 1.4.4, |Gf | = r
and an element gi ∈ Gf can be uniquely determined if we de�ne gi(af ) = wi(X, af ).
Thus, we have

Gf = {gi|gi is a Q(X)-automorphism and gi(af ) = wi(X, af ), 1 ≤ i ≤ r}.

In an analogous manner,

Gfb = {g̃i|g̃i is a Q-automorphism and g̃i(afb) = wi(b, afb), 1 ≤ i ≤ r}.

Hence, we can de�ne the function

σ : Gf → Gfb

gi 7→ g̃i,

which is clearly an isomorphism.

This lemma allow us to prove the following result:

Theorem 3.1.6. Every �nite group G that can be realized as a Galois group over
Q(X1, . . . , Xn) can be realized as a Galois group over Q.

Proof. Suppose that G is the Galois group of an extension k/Q(X1, . . . , Xn). Since
char(Q(X1, . . . , Xn)) = 0, the extension k/Q(X1, . . . , Xn) is a �nite and separable
and we can apply the Primitive Element Theorem to obtain that k = Q(X1, . . . , Xn)[α].

Consider f(X1, . . . , Xn, Y ) = Min(Q(X1, . . . , Xn), α), then:

Q(X1, . . . , Xn)f ' k.

Then, by Lemma 3.1.5, there are in�nitely many b such that extension Qfb/Q is
de�ned and is Galois with Galois group equal to G. Therefore, G is realizable over
Q.

From Theorem 3.1.6 and Proposition 3.1.1, we obtain the following corollary:

Corollary 3.1.7. Every symmetric group Sn can be realized as a Galois group over
Q.

A very well-known result in Group Theory, Cayley's theorem, states that every
�nite group is isomorphic to a subgroup of some Sn (for a proof of this result,
see Theorem 2.9.1 in [10]). Then, what prevent us for generalizing this idea for
an arbitrary �nite group? In fact, if we could show that every �nite group G is
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realizable over Q(X1, . . . , Xn), by Theorem 3.1.6 we would have that every �nite
group G is realizable over Q.

In 1917, Emmy Noether tried to adapt the proof of Proposition 3.1.1 for any
�nite group G. For this, she considered Sn acting on Q(X1, . . . , Xn) permuting the
set {X1, . . . , Xn} and �xing Q, and G acting on Q(X1, . . . , Xn) as a subgroup of
Sn. As a consequence of Propositions 1.3.4 and 1.3.5, we have that the extension
Q(X1, . . . , Xn)/Q(X1, . . . , Xn)G is Galois with Galois group G. However, in the
general case, we do not know whether Q(X1, . . . , Xn)G is a purely transcendental
extension of Q with transcendence degree n. Emmy Noether raised that problem,
and so it became known as Noether's problem.

Nonetheless, a counterexample was found by Swan in 1969. He proved that
Q(X1, . . . , Xn)G is not rational, i.e. purely transcendental, over Q when G is a
cyclic group of order 47 (this result can be seen in [11]).

This problem can be rewritten in geometric terms, looking to the varieties asso-
ciated to the above function �elds. In that way, Q(X1, . . . , Xn)G not being rational
can be translated into the variety An/G not being Q-rational. We also know that in
the cases that the variety An/G is Q-rational, G can be realized over Q. However,
can we �nd a less restrictive condition for An/G to hold that also guarantees that
G is realizable over Q?

Answering this question, as an attempt to reformulate Noether's strategy, Colliot-
Thélène and Sansuc introduced the Hilbert Property in 1987. They also conjectured
that every unirational variety satisfy this property and have shown that if this con-
jecture is correct, then the Inverse Galois Problem is also true. We will see the
details of this proof in section 3.3.

To conclude this section, we give the de�nition of the Hilbert Property for a �eld
in terms of polynomials. We also give some examples and counterexamples of �elds
satisfying this property.

De�nition 3.1.8 (Hilbert Property for a Field). We say that a �eld K has the
Hilbert property, or equivalently, that K is hilbertian, if for any irreducible polyno-
mial f(X, Y ) ∈ K(X)[Y ], there are in�nitely many b ∈ Kn such that f(b, Y ) is
irreducible.

Remark 3.1.9. In other words, a �eld K is hilbertian if we can replace Q by K in
the statement of Hilbert's Irreducibility Theorem. Therefore, Lemma 3.1.4 is still
true if we substitute a hilbertian �eld K for Q. As a consequence, Lemma 3.1.5 and
Theorem 3.1.6 are also true if we replace Q by any hilbertian �eld.

Example 3.1.10. Finite �elds are immediate non-examples of hilbertian �elds.
Algebraically closed �elds are also easy non-examples. In fact, for any algebraically
closed �eld K, the polynomial Y 2 + Y + X ∈ K(X)[Y ] is irreducible, however,
Y 2 + Y + b is reducible for any b ∈ K.
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In order to construct more examples, we prove that every �nite extension of an
hilbertian �eld is also hilbertian.

In what follows, we denote by Gal(K) := Gal(K̄/K) and by Gal(L) := Gal(K̄/L),
where K̄ is the algebraic closure of K. The action of Gal(K) on K̄ induces a unique
action on K̄(X)[Y ] �xing X and Y . We denote the action of an element g of Gal(K)
on a polynomial f ∈M(X)[Y ] by f g.

The next lemma and theorem are slightly addapted versions of Lemma 12.2.1
and Lemma 12.2.2 presented in [12].

Lemma 3.1.11. Suppose that L is a separable extension of degree d of an in�-
nite �eld K and σ0, . . . , σd−1 are distinct representatives of the cosets of Gal(L) in
Gal(K). Consider f ∈ L[Y ] a non-constant polynomial. Then, there is an element
c ∈ L, such that the f(Y + c)σi, 0 ≤ i ≤ d− 1 are pairwise relatively prime in K̄[Y ].

Proof. Let α be the primitive element of the extension L/K. Consider ti,
0 ≤ i ≤ d− 1, algebraically independent elements. For every i, we de�ne

ui(t) = ui(t0, . . . , td−1) =
d−1∑
j=0

(ασi)jtj.

The determinant of this linear transformation is given by
∏

i<j(α
σj −ασi), which

is di�erent from zero because σi and σj are di�erent representatives of the cosets
of Gal(L) in Gal(K). Therefore, this transformation is invertible and we can write
ti as linear combinations of ui with coe�cients in K̄, which implies that the ui are
algebraically independent over K̄.

We write f = f1 . . . fm, a product of irreducible factors in K̄. We have that
fσiφ (ui)− f

σj
ν (uj) 6= 0, for i 6= j and for each φ and ν, 1 ≤ φ, ν ≤ m, since the ui are

algebraically independent and f is non-constant. Then, we de�ne the polynomial
function

h(t) =
∏
i<j

∏
φ,ν

fσiφ (ui(t))− fσjν (uj(t)) 6= 0.

If we �x a0, . . . , ad−2 ∈ K, we can �nd ad−1 ∈ K, such that h(a0, . . . , ad−1) 6= 0,
since the set of ad−1 such that h(a0, . . . , ad−1) = 0 is �nite and K is an in�nite �eld.
Consider

c =
d−1∑
j=0

ajα
j.

Notice that ui(a0, . . . , ad−1) = cσi . Thus, fφ(c)σi 6= fν(c)
σj for i 6= j. Therefore,

fφ(Y + c)σi 6= fν(Y + c)σj ,

for all i, j, φ, ν with 0 ≤ i < j ≤ d− 1 and 0 ≤ φ, ν ≤ m.
Since f1(Y + c)σi , . . . , fm(Y + c)σi are the irreducible factors of f(Y + c)σi in

K̄[Y ], f(Y + c)σ0 , . . . , f(Y + c)σd−1 are pairwise relatively prime.
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Theorem 3.1.12. If K is hilbertian, any �nite separable extension L of K is also
hilbertian.

Proof. Let S be a set of representatives of all left cosets of Gal(L) in Gal(K). Given
an irreducible polynomial f ∈ L(X)[Y ], we �rst consider the case that fσ, with
σ ∈ S, are pairwise relatively prime in F [Y ], where F is the algebraic closure of
K(X).

Consider p :=
∏

σ∈S f
σ. The idea is to show that p ∈ K(X)[Y ] and is irreducible,

and that for every b ∈ Kn such that pb is irreducible, fb is also irreducible. If K is
hilbertian, there are in�nitely many b such that pb is irreducible, and since f is an
arbitrary irreducible polynomial in L(X)[Y ], this implies that L is also hilbertian.

We start by showing that p ∈ K(X)[Y ]. Given g ∈ Gal(K), we calculate pg =∏
σ∈S f

σg. We notice that {σg}σ∈S is another set of representatives of all left cosets.
We also have that given two di�erent representatives r, s of the same left coset,
r = ls, for some l ∈ Gal(L) and so f r = f ls = f s. Thus, pg = p for every
g ∈ Gal(K). Therefore p ∈ K(X)[Y ].

Consider a factorization of p in irreducible polynomials of K(X)[Y ]. Since f
divides p, and is irreducible in L(X)[Y ] ⊇ K(X)[Y ], f divides at one irreducible
factor q of p in K(X)[Y ]. Then, for every σ ∈ S, fσ divides qσ = q, and since the
fσ are pairwise relatively prime, p divides q. Hence, p is irreducible in K(X)[Y ].

Let b be an element of Kn such that pb is well-de�ned and irreducible. If fb is re-
ducible, we can write fb(Y ) = h(Y )w(Y ), and then pb(Y ) =

∏
σ∈S h(Y )σ

∏
σ∈S w(Y )σ,

which contradicts the irreducibility of pb. Therefore, fb is irreducible as we claimed.
In the general case, we apply Lemma 3.1.11 to �nd c(Y ) ∈ L(X)[Y ] such that

f(X, Y + c(Y ))σ, with σ ∈ S are pairwise relatively prime in F [Y ]. Thus, we
conclude that f(X, Y + c(Y )) is irreducible, which implies on the irreducibility of
f(X, Y ).

Example 3.1.13. The �eld of real numbers R is not hilbertian. Since C/R is a
�nite extension, if R were hilbertian, C would also be hilbertian, which lead us to
an contradiction, since we have already seen that algebraically closed �elds cannot
be hilbertian.

Example 3.1.14. A Global �eld is a �eld that is either a number �eld, i.e., a �eld
that is �nite extensions of Q, or a �eld that is a �nite extension of Fp(T ), the �eld
of the rational functions in one variable over a �nite �eld with p elements. Both
cases of global �elds are examples of hilbertian �elds.

When de�ning this property for varieties, we are interested in a more geometrical
way of formulating it. For this reason, we introduce in the next section the concept
of thin sets.
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3.2 Thin Sets and the Hilbert Property

In the last section, we have seen that given an irreducible polynomial f ∈ Q(X)[Y ]
such that the �eld extensionQ(X)f/Q(X) is Galois, there are in�nitely many b ∈ Qn

such that the specialization into a polynomial fb preserves the property of Qfb/Q
being Galois and the Galois group of the extension.

In this section, we study thin sets and we see that the set of points that constitute
the exception for the above mentioned property is an example of them. Also, we
use the de�nition of thin sets to extend the Hilbert property de�nition for varieties.

From now on, we deal with algebraic varieties over non-algebraically closed �elds.
We start formally de�ning them as well as de�ning another important concept of
non-algebraically closed algebraic geometry: the rational points. For us, K is a �eld
of characteristic 0 we denote by K̄ the algebraic closure of K, which has in�nite
transcendence degree over K. We denote by simply An and Pn, the a�ne space An

K̄
,

and the projective space Pn
K̄
, respectively.

De�nition 3.2.1 (K-closed set). Given a set of polynomials S in K[X1, . . . , Xn],
we de�ne the a�ne closed set

Z(S) = {x ∈ An|f(x) = 0 for all f ∈ S}

A K-projective closed set can be de�ned in an analogous manner and we can
verify they form a K- Zariski topology. We also can de�ne morphisms, dimen-
sion, function �elds and all the concepts introduced in chapter 2 for varieties over
a non-algebraically closed �eld, the major di�erence is that we always consider
K[X1, . . . , Xn] instead of K̄[X1, . . . , Xn] to de�ne them. From the de�nition, we
also notice that a K-closed set can be view as L-closed set, where L is a �eld
extension of K, however not every L-closed set can be viewed as K-closed set.

Another remark is that, despite of K-closed sets being de�ned by polynomials
in K[X1, . . . , Xn], not all of its points have coordinates in K. This is our reason to
introduce K-rational points.

De�nition 3.2.2. We say a point P = (p1, . . . , pn) of a K-variety is a K-rational
point if its coordinates p1, . . . , pn belong toK. It is equivalent to say that the residue
�eld of P , OP,V /mP , is equal to K. We denote the set of K-rational points of a
variety V by V (K).

We are now �nally prepared to de�ne thin sets. In the de�nitions bellow, V is an
irreducible variety over K, where char(K) = 0 and K is non-algebraically closed.

De�nition 3.2.3 (Type C1 set). A subset A ⊆ V (K) is of type C1 if A is not
Zariski dense in V .

De�nition 3.2.4 (Type C2 set). A subset A ⊆ V (K) is of type C2 if there is an
irreducible variety V ′ over K, dimV= dimV ′ and a dominant morphism π : V ′ → V
of degree ≥ 2 with A ⊆ π(V ′(K)).
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De�nition 3.2.5 (Thin Sets). A subset A ⊆ V (K) is called thin if it is contained
in a �nite union of sets of type C1 or C2.

Sets of type C1 are sets contained in some closed set. Sets of C2 can be a little
less intuitive. We give some examples bellow.

Example 3.2.6. Let d ≥ 2 be an integer. The subset Kd = {xd, x ∈ K} ⊂ A1(K)
is a set of type C2. We can take A1 as V ′ and consider the morphism π : V ′ → A1

de�ned by π(x) = xd.

Example 3.2.7. Consider the elliptic curve E de�ned by the equation x2 = t3+2t+1
in A2. We de�ne the morphism

π : E → A1

(x, t) 7→ (x).

The set π(E(K)) is a type C2 set.

We say that a K-variety V is absolutely irreducible if V remains irreducible over
every extension of K. In the next proposition, we see that we can consider V ′ to
be absolutely irreducible in the de�nition of type C2. However, we give an example
and a non-example of absolutely irreducible variety before.

Example 3.2.8. The curve de�ned by x2 + y2 − 1 = 0 in A2 is an absolutely irre-
ducible variety over Q. The polynomial x2 + y2− 1 is still an irreducible polynomial
over C the ideal generated by this polynomial is still a prime ideal in C[x, y].

Example 3.2.9. The curve C de�ned by x2 + y2 = 0 in A2 is an irreducible variety
over Q, however it is not absolutely irreducible. Indeed, this polynomial can be
factored as (x− iy)(x+ iy), hence, C has two irreducible components when looked
over C.

Also, since (x/y)2 = −1, we can embed the �eld Q(i) into Q(C) by taking i into
x/y.

Proposition 3.2.10. Consider V ′ and π as in the de�nition of type C2 set. Then,
if V ′ is not absolutely irreducible over K, then π(V ′(K)) is a type C1 set.

Proof. If V ′ is not absolutely irreducible, the ideal I(V ′) is not prime over K̄[X1, . . . , Xn].
As a consequence, the function �eld of V ′, K(V ′), contains a �eld L that is a �nite
extension of K. L is algebraic over K, therefore L is integral over K, hence is L
integral over Ox,V ′ for every x ∈ V ′.

Given a point x ∈ V ′(K), we have that L is not containedOx,V ′ , sinceOx,V ′/mx =
K, therefore there are points in K(V ′) that are integral over Ox,V ′ , but are not con-
tained on it, i.e, Ox,V ′ is not integrally closed for every x ∈ V ′(K).
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We use the fact that Ox,V ′ is integrally closed when x is non-singular to conclude
that V ′(K) is contained in the set of singular points of V ′, a closed set (The results
about singular points can be found at [5], chapter II, section 2, Theorem 2.11 and
Corollary of Theorem 2.9).

Therefore, since π is a �nite map, thus a closed map by Theorem 2.4.7, π(V ′(K))
is a type C1 set.

We bring the de�nitions of sets of type C1 and C2 to An(K) to gain more in-
tuition about them. This discussion is based on the discussion presented in section
9.1 of [19].

Polynomial Interpretation

If A ⊂ A(K)n is a type C1 set, it means that there is a non-zero polynomial
G ∈ K[X1, . . . , Xn] such that G(x) = 0 for every x ∈ A.

In order to understand the general form of type C2 sets, we �rst verify that given
a polynomial F ∈ K(X1, . . . , Xn)[Y ], such that F has degree at least two in Y and
F is irreducible in K̄(X1, . . . , Xn)[Y ], the set

ΩF =
{
t ∈ An(K)| t is not a pole of the coe�cients of F and F (t, Y ) has a root in K

}
is a thin set of type C2.

We can write F = f/h, where f ∈ K[X1, . . . , Xn][Y ] with the gcd of the coe�-
cients of f is 1 and h ∈ K[X1, . . . , Xn]. Therefore, by Gauss' lemma, f is irreducible
and we can consider the quasi-a�ne variety V ′ = Z(f)\Z(h).

Then, we de�ne the following morphism

φ : V ′ ⊂ An+1 → An

(x1, . . . , xn, Y ) 7→ (x1, . . . , xn)

φ is a dominant morphism, and by Proposition 2.5.3, the dimension of Z(f) is
equal n, and since V ′ is an open set of Z(f), dimV ′ = n = dimAn.

We also have that

K(V ′) = K(Z(f)) =
{ l
g
| l, g ∈ K[X1, . . . , Xn, Y ], g /∈ (f)

}
' K(X1, . . . , Xn)[Y ]

(f)
.

The degree of φ is equal to [K(V ′) : K(X1, . . . , Xn)], that is the degree of f in
Y (that is equal the degree of F in Y ) thus it is greater or equal than two. Therefore,
ΩF = φ(V ′(K)) satis�es all the necessary conditions to be a thin set of type C2.

We see now that a general type C2 in An(K) is contained in a �nite union of
type C1 sets and sets of the form ΩF .

Given A ⊂ A(K)n, a type C2 set, from the de�nition, we can write A as π(V (K))
where V is an absolutely irreducible variety with dim V = n and π : V → An is a
dominant morphism of degree d ≥ 2.
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Thus, [K(V ) : K(X1, . . . , Xn)] = d, and since K(V )/K(X1, . . . , Xn) is a �nite
separable extension, we can apply the Primitive Element Theorem to obtain that
K(V ) = K(X1, . . . , Xn)[α], where Min(K(X1, . . . , Xn), α) = F , and the degree of
F in Y is equal to d. We can consider F to be an irreducible polynomial over
K̄(X1, . . . , X)[Y ], otherwise, by Proposition 3.2.10, π(V (K)) is contained in a type
C1 set.

We can use this F to de�ne a variety V ′ as we did above. The following commu-
tative diagram summarize the relations between K(V ), K(V ′) and K(X1, . . . , Xn).

K(V ′) K(V )

K(X1, . . . , Xn)

ψ

ψ−1

φ̂
π̂

Where φ̂ and π̂ are injective, since φ and π are dominant morphisms. Also ψ is a
ring isomorphism and ψ−1 its inverse.

Therefore, V ′ and V are birational varieties and by Theorem 2.3.7, there are
non-empty open sets UV ⊆ V and UV ⊆ V ′ such that UV and U ′V are isomorphic.
Hence, the above diagram induces the following one.

UV ′ UV

An

α−1

φ

α

π

Where α̂ = ψ. We have then that

π(UV (K)) = φ(α(UV ))(K)) ⊆ φ(V ′(K)) = ΩF .

We denote by Z the closed set V \UV and conclude that if A = π(V (K)) is a
thin set of type C2 in An(K),

A ⊆ π(Z) ∪ ΩF ,

where π(Z) is a closed set, since π is a �nite morphism.
The result of the next proposition give us another example of thin set. This

proposition is an adapted version of Lemma 1.9, presented at [27].

Proposition 3.2.11. Let f be an irreducible polynomial in K(X)[Y ]. There is a
thin set A ⊂ An(K) such that if b /∈ A, then fb is irreducible.

Proof. The idea of the proof is to show that there exists a �nite collection of irre-
ducible polynomials p1, . . . , pm ∈ K(X)[Y ] and a closed set Z such that if b /∈ Z,
then the following holds

If fb is reducible, then one of p1,b, . . . , pm,b has a root in K.
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If this is true, we can construct A = (∪mi=1Ωpi) ∪ Z, where
Ωpi =

{
t ∈ An(K)| t is not a pole of the coe�cients of pi and pi(t, Y ) has a root in K

}
.

Thus A is clearly a thin set and for every b /∈ A, fb is irreducible.
We prove the above statement. Without loss of generality, we can assume f to

be monic. In the splitting �eld of f , we have

f =
∏
i∈I

(Y − wi).

Since f is irreducible, for each non-empty set J ⊂ I, one of the coe�cients of
the polynomial

FJ =
∏
i∈J

(Y − wi)

does not lie in K(X).
If we develop the above product, we realize that the coe�cients of FJ are sym-

metric polynomials sJ ∈ K(X)[{Zi}i∈J ] evaluated at {Zi 7→ wi}i∈J .
Let pJ = Min(K(X), sJ({wi}i∈J)). We show that the polynomials {pJ}∅6=J⊂I

have the desired property.
We only consider the b such that all pJ,b and f are de�ned, fb is separable and of

the same degree as f . We use the same reasoning of the �rst part of Lemma 3.1.4
to conclude that there is a closed set Z ⊂ An(K) such that for all b /∈ Z, the above
properties are satis�ed.

Since we consider b such that fb is separable and of the same degree as f , in
some extension of K fb can be factored as

fb =
∏
i∈I

(Y − vi).

In fact, we can de�ne a K-algebra homomorphism

φ : K[X,w1, . . . wr]→ K[v1, . . . , vr]

X 7→ b

wi 7→ vi.

Suppose fb is reducible over K. Then for some non-empty J ⊂ I, the polynomial∏
i∈J(Y −wi) lies inK[Y ]. This means that for some non-empty J ⊂ I, sJ({vi}i∈J) ∈

K. Since pJ(sJ({wi}i∈J)) = 0,

pJ,b(sJ({vi}i∈J))) = φ(pJ(sJ({wi}i∈J))) = 0,

which proves our claim.

As a corollary, we can reformulate the result of 3.1.5 in the following way:
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Proposition 3.2.12. Let f be an irreducible polynomial over K(X), such that
K(X)f/K(X) is a Galois extension. Then, there is a thin set A ⊂ An(K) such that
if b /∈ A, fb is de�ned, is irreducible, separable, has the same degree of f and the
extension Kfb/K is also Galois with Galois group isomorphic to Gal(K(X)f/K(X)).

From Proposition 3.2.11, we conclude that a �eld K satisfy Hilbert's irreducibil-
ity Theorem, i.e. K be hilbertian, is equivalent to An(K) not to be thin for every
n ∈ N. In fact, this is our motivation to de�ne Hilbert Property for a general variety.

De�nition 3.2.13 (Hilbert Property). A variety V overK has the Hilbert Property
if V (K) is not thin.

Before giving examples and non-examples, we see that the Hilbert Property is a
birational invariant.

Proposition 3.2.14. The Hilbert Property is preserved by birational maps.

Proof. Given two birationally equivalent varieties X and Y over K , from Theorem
2.3.7, there are non-empty open sets UX ⊂ X and UY ⊂ Y such that UX and UY are
isomorphic. Suppose X has the Hilbert Property over K, then UX(K) is not thin,
otherwise X(K) would also be, since X(K) = (X\UX)(K) ∪ UX(K). Hence Y (K)
contains a non-thin set, therefore Y has also the Hilbert Property over K.

Example 3.2.15. As we have seen, for K hilbertian, as in the case of number �elds,
An(K) has the Hilbert Property for every n ∈ N. In fact, by the previous proposition,
for a hilbertian �eld K, all K-rational varieties have the Hilbert Property.

However, even for K hilbertian, there are varieties over K that do not have the
Hilbert Property. We see this in the next example.

Example 3.2.16. Elliptic curves over a number �eld K do not have the Hilbert
Property. Given an elliptic curve E over K, we can de�ne the following morphism:

[n] : E → E

P 7→ nP

where nP = P + P + · · · + P (n terms), + represent the group operation on an
elliptic curve. (To see more about the group law of an elliptic curve see [15], sections
3.2 and 3.3, chapter III)

[n] is a �nite dominant morphism with degree n2 (See [15], Theorem 3.6, Corol-
lary 5.4 and Theorem 6.2, chapter III).

We also have that, by weak Mordell-Weil Theorem (See [15], Theorem 1.1, Chap-
ter VI), the group E(K)/nE(K) is �nite for any n ∈ Z. Hence, let g1, . . . , gm be
the representatives of the cosets of E(K), we can de�ne
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φi : E(K)→ E(K)

P 7→ gi + [n]P

Therefore,

E(K) =
m⋃
i=1

φi(E(K))

and hence E(K) is thin.

We have already seen that all K-rational varieties over a number �eld K have
the Hilbert Property. However, for curves over K, a stronger statement can be
applied: to have the Hilbert Property is equivalent to be a K-rational variety. In
other words, every non-rational curve is an example of a curve that does not possess
the Hilbert Property. We see this in the next proposition.

Proposition 3.2.17. Non-rational curves over a number �eld K do not have the
Hilbert Property.

Proof. For the proof, we use a numerical invariant of a curve called genus, denoted
here by g, the number g is a non-negative integer. Since a curve X is rational if
and only if g = 0, we are interested in showing that when g is positive, X(K) is
thin. For g ≥ 2, we obtain this as a immediate consequence of Falting's Theorem
[23]: If X is an algebraic curve over a number �eld K of genus g ≥ 2, then the set
X(K) of K-rational points is �nite. For g = 1, if X(K) is non-empty, then X is
an elliptic curve, and as we have seen in the example 3.2.16, it does not have the
Hilbert Property (an explanation about genus and some of its properties used here
can be found at section 8.3 of [7]).

Example 3.2.18. The Fermat curve is an algebraic curve C de�ned by xn+yn−zn =
0 in P2, where n ∈ N. The genus of this curve is given by the following expression

g =
(n− 1)(n− 2)

2
,

therefore for n > 2, the Fermat curve is not rational. Also, for n > 2, Fermat's Last
Theorem guarantees that the only rational points in C are the trivial ones, i.e., have
xyz 6= 0.

Remark 3.2.19. Proposition 3.2.17 cannot be generalized for higher dimensions. In
fact, Corvaja and Zannier showed in [21] that the Fermat Surface, a quartic smooth
surface de�ned in P3 by the equation

x4 + y4 = z4 + w4,

has the Hilbert Property. This is the �rst example of a non-rational surface that has
the Hilbert Property, Although we metioned the importance of K-unirational vari-
eties in the study of the Hilbert Property, the referred surface is also non-unirational.
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When we �rst hear about the Hilbert Property, it might sound as an improved
version of having a Zariski dense set of K-rational points. This is why we consider
the example that ends this section an interesting one: a variety that has a Zariski-
dense set of rational points, however it does not have the Hilbert Property. This
example was extracted from section 3.2 of [21].

Example 3.2.20. Our example is the Enriques surface S de�ned in P3 by the
following equation

x0x
4
2 + x1x

4
3 = x2

0x
3
1 + x3

0x
2
1.

To prove that S(Q) is a Zariski-dense set, we see that there is a dominant rational
map from the Fermat quartic smooth surface F de�ned in P3 by x4 + y4 = z4 + w4

to S. We de�ne this dominant rational map in the following way

x0 = x4, x1 = y4, x2 = xy2z, x3 = x2yw.

Since F (Q) is Zariski dense in F , as proved by Swinnerton-Dyer in [24], S(Q) is also
Zariski dense in S.

We see now that S(Q) is contained in the union of two sets of type C2, which
permits us to conclude that S does not have the Hilbert Property. We de�ne in P4

the following projective varieties

V + = Z(x0x
4
2 + x1x

4
3 − x2

0x
3
1 + x3

0x
2
1, x0x1 − x2

4)

V − = Z(x0x
4
2 + x1x

4
3 − x2

0x
3
1 + x3

0x
2
1, x0x1 + x2

4).

We denote by π the projection (x0 : x1 : x2 : x3 : x4) 7→ (x0 : x1 : x2 : x3). We start
by showing that S(Q) ⊂ π(V +)(Q) ∪ π(V −)(Q).

Consider (a0 : a1 : a2 : a3) ∈ S(Q), we can suppose that a0, a1, a2, a3 are integers
and gcd(a0, a1, a2, a3) = 1. To prove our assertive is enough to show that either a0a1

ou −a0a1 is a square, where we can assume that a0a1 6= 0. Given p a prime number,
we denote by ei the p-adic order of ai. Suppose by contradiction that e0 + e1 is odd.
This implies that the numbers e0 + 4e2, e1 + 4e3, 2e0 + 3e1, 3e0 + 2e1 are pairwise
distinct because they are congruent modulo 4 to e0, e1, e1 + 2, e0 + 2. But these
numbers are the p-adic orders of the terms of the equation de�ning S, therefore
thus lead us to a contradiction. Hence, the p-adic order of every prime dividing a0a1

is even, as we claimed.
We only need to verify that π(V +)(Q) is a set of type C2, the same reasoning can

be applied to π(V −)(Q). We �rst observe that since S is a hypersurface in P3 and
V + is the intersection of two hypersurfaces in P4, both are two-dimensional closed
sets.

We denote by S ′ the set Z(x0x
4
2 + x1x

4
3 − x2

0x
3
1 + x3

0x
2
1) in P4. We take the open

set (x0 6= 0) of S ′ and denote it by U0. We have that

C(S ′) = C(U0) =
C(x1, x3)[x2, x4]

(x4
2 + x1x4

3 − x3
1 + x2

1)
.
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Since V + = S ′ ∩ Z(x2
4 − x1), and x2

4 − x1 is a irreducible polynomial in C(S ′),
V + is an irreducible variety. We can also write

C(V +) =
C(S)[x4]

(x1 − x2
4)

to conclude that the degree of π : V + → S over Q is equal or greater than two.
Therefore, π(V +) is indeed a type C2 set.

3.3 Unirational Varieties and the Inverse Galois Prob-

lem

In the same year they introduced the de�nition of the Hilbert Property, Colliot-
Thélène and Sansuc conjectured that for a number �eld K, every unirational variety
over K has the Hilbert Property. As we have already mentioned in section 3.1, this
conjecture implies that Galois inverse problem is true. In the present section, we
show how these two results connect. We start seeing a special example of a�ne
variety.

Let G be a �nite subgroup of the group of automorphisms of an a�ne K-variety
W . We can de�ne the action of an element g ∈ G on an element f ∈ O(W ) in
following way

gf(x) = f(g(x)), for every x ∈ W .

The algebra O(W )G is then a �nite algebra with no nilpotent elements (see
Proposition A.6 in the appendix of [5]), thus there is an a�ne variety V such that
O(V ) = O(W )G. V is called the quotient variety of W by the action of G and we
denote it by W/G.

The name quotient is due to the following fact: the inclusion of O(W/G) in
O(W ) induces a dominant morphism π : W → W/G and given two points x1, x2 of
W, π(x1) = π(x2) if and only if there is a g ∈ G such that x1 = gx2 (to see this
proof, look at [5] Example 1.21 in chapter one, section 2.3). In other words, V is
the quotient of the action of G on W.

We also notice that the morphism π is �nite (see Example 1.29 in [5], chapter
one, section 5.4) and that deg π = |G|, since the �eld extension K(W )/K(V ) is
Galois with Galois group equal to G. We see that for certain points of V (K), we
can construct a �eld KP such that KP/K is also Galois with the same Galois group
G. This is the cue to next de�nition and the next lemma.

De�nition 3.3.1 (Inert point). Given a morphism between K-varieties π : X → Y ,
we say that P ∈ Y (K) is inert if |π−1(P )| = deg π and GK = Gal(K̄/K) acts
transitively on π−1(P ).
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Lemma 3.3.2. Consider W an a�ne K-irreducible variety, V = W/G, where G
acts faithfully on W . Let π : W → V be the natural projection. If P ∈ V (K) is
Inert, then KP = O(W )/I(π−1(P )) is a �eld, and KP/K is a Galois extension with
Galois group G.

Proof. We �rst show that I(π−1(P )) is a maximal ideal of O(W ), and thus KP is a
�eld. Given a point a ∈ π−1(P ), we can write a = (a1, . . . , an), where each ai ∈ K̄,
since W ⊂ An for some n. The ideal I(a) ⊂ O(W ) is a maximal ideal since

O(W )

I(a)
' K(a1, . . . , an).

We show that I(π−1(P )) = I(a). First, since a ∈ π−1(P )

I(π−1(P )) ⊂ I(a).

On the other side, P is inert, thus we can write any element y ∈ π−1(P ) as
y = αa, for some α ∈ GK . Hence, for any f̄ ∈ I(a), we can take a representative
f ∈ K[X1, . . . , Xn]

0 = α(f(a)) = f(α(a)) = f(y).

Thus, f̄(y) = 0 for every y ∈ π−1(P ), hence f̄ ∈ I(π−1(P )), and so I(π−1(P )) =
I(a) .
To show the second part, we �rst see that the action of G on O(W ) induces a well
de�ned action on KP , thus G ⊂ Aut(KP/K).

From the de�nition of inert point, P ∈ V (K), thus {P} is a closed set and
π−1(P ) is also a closed set. This implies that Z(I(π−1(P ))) = π−1(P ), and so we
can see KP as the quotient set of the following equivalence relation

KP = O(W )�∼,where f1 ∼ f2 i� f1(x) = f2(x) for every x ∈ π−1(P ).

For every x ∈ π−1(P ),

gf1(x) = f1(g(x)) = f2(g(x)) = gf2(x).

Hence, if f1 ∼ f2, then gf1 ∼ gf2 and the action of G on KP is in fact well
de�ned.

We show that KG
P = K. Given a = (a1, . . . , an) ∈ π−1(P ), since KP '

K(a1, . . . , an), KP ⊂ K̄.
Also for an element γ ∈ KG

P , we can choose a representative f ∈ K[X1, . . . , Xn]
of γ, γ = f(a). Since P ∈ V (K), for every α ∈ GK , α(a) ∈ π−1(P ), therefore

α(γ) = α(f(a))⇒ α(γ) = f(α(a)) = γ.

Hence, γ ∈ K and thus KG
P = K. We conclude then that KP/K is a Galois

extension with Galois group equal to G.
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The next proposition is crucial in the proof of our �nal result. It is a more
detailed version of Propositiom 3.3.1 presented at [17].

Proposition 3.3.3. Consider W an a�ne K-irreducible variety, V = W/G, where
G acts faithfully on W . Let π : W → V be the natural projection. If V has Hilbert
property, then there is a Galois extension of K with Galois group G.

Proof. From Lemma 3.3.2, it is enough to show that there is a thin set A ⊂ V (K),
such that if P /∈ A, P is inert. We consider just the points outside of the rami�-
cation locus of π because G acts freely on these points. By Theorem 2.6.11, since
K(W )/K(V ) is a separable extension, the rami�cation locus is just a closed set of V .
We denote by Σ the set of proper groups H of G. We consider W/H, the quotient
of W by H, and πH the natural projection of W/H onto V . Then, we de�ne A

A =
⋃
H∈Σ

πH(W/H)(K).

We verify that A is thin set. First, as we have seen in the beginning of this
section the projection of W onto a quotient by a �nite group is �nite morphism,
therefore

dimV = dimW = dimW/H.

Also,

deg πH =
[K(W ) : K(V )]

[K(W ) : K(W/H)]
=
|G|
|H|

> 1.

Since Gal(K(W )/K(V )) = G and Gal(K(W )/K(W/H)) = H. Thus, A is a �nite
union of type C2 sets, a thin set.

To conclude we only have to verify that if P /∈ A, GK acts transitively on π−1(P ).
We can lift P to a point P̄ ∈ W (K̄). Consider the following subgroup

H = {g ∈ G|gP̄ = αP̄ , for some α ∈ GK}.

Since P /∈ A, H = G. In fact, if H were a proper group of G, the image of P̄ in
W/H would be rational, since given a point in the same orbit of P̄ , αP̄ , for every
γ ∈ GK , the point γαP̄ would still be on the orbit of P̄ . Therefore P would be in
A.

Remark 3.3.4. Notice that since K(W )/π̂(K(V )) is a �nite separable extension,
we can write K(W ) ' π̂(K(V ))[X]/(π̂(F )), where F is an irreducible polynomial in

¯K(V )[X], G acts transitively on the roots of F . As a matter of fact, Lemma 3.3.2 is
a more general version of Lemma 3.1.5, where we are looking for the points P such
that the specialization of F in π(P ) satis�es the statement of Lemma 3.1.5.

Finally, we connect the conjecture of Colliot-Thélène and Sansuc with the Galois
inverse problem.
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Theorem 3.3.5. If every K-unirational variety has the Hilbert property, given a
�nite group G, there is a Galois extension of K is with Galois group G.

Proof. Given a �nite group G, consider n such that G is isomorphic to a subgroup
of Sn. We consider G acting on K[X1, . . . , Xn] permuting the set {X1, . . . , Xn} as a
subgroup of Sn and �xing K. Hence, the quotient variety of An by the action of G,
An/G, is a unirational variety, sinceK(An/G) = K(X1, . . . , Xn)G ⊂ K(X1, . . . , Xn).
We can apply Proposition 3.3.3 to obtain the desired result.

3.4 The Hilbert Property and Algebraic Topology

We have seen the importance of unirational varieties in the study of the Hilbert
Property, that if all unirational varieties hold this property, a positive answer for
Inverse Galois Problem is obtained. However, in section 3.2, we mentioned an
example of a non-unirational variety that bears the Hilbert Property. One might ask
what it means for a non-unirational variety to have the Hilbert Property, what kind
of information it may express in this case and what are the common characteristics
between non-unirational and rational varieties that bear the Hilbert Property.

This question is answered in the Corvaja and Zannier's article, published in 2016,
"On the Hilbert Property and the Fundamental Group of Algebraic Varieties"([21]).
On this article, they expose some topological properties of varieties that possess the
Hilbert Property, considering the complex analytical topology.

The study of relations between Algebraic Geometry and Complex Analytic Topol-
ogy is not so recent though. In 1956, Serre published his celebrated paper "Géométrie
algébrique et géométrie analytique", commonly referred as GAGA. This article con-
tains a series of results that relate algebraic geometry over the complex numbers
to complex analytic geometry. For example, Chow's theorem, that states that ev-
ery closed analytic subspace of a projective algebraic variety is a complex algebraic
variety, is implied by the GAGA principle (See Chapter 6 of [17]).

In this section, we expose some results that can be found at [21], in sections 1.2
and 1.4. We start with the de�nition of algebraically simply connected variety. Also,
in this section, we will often refer to �nite dominant morphisms between algebraic
varieties by covers.

De�nition 3.4.1 (Algebraically simply connected variety). Given a number �eldK,
we say an algebraic variety X over K is algebraically simply connected if considering
Xν , the normalization of X, any cover φ : Y → Xν de�ned over some extension of
K and of degree greater than 1 is rami�ed.

Given a number �eld K and a variety X over K, we can take X(C). This set
carries the complex analytic topology and we can calculate its fundamental group
that we denote here by π1(X).
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The next proposition give us a (complex analytical) topological criterion to de-
termine if a normal variety is algebraically simply connected or not.

Proposition 3.4.2. A normal variety X is algebraically simply connected if and
only if π1(X) has no subgroup of �nite index greater than 1.

Remark 3.4.3. An immediate observation is that if X is a normal variety such
that X(C) is simply connected, then X is algebraically simply connected.

We give some of the main ideas of this proof. However, before doing so, we give
an example that illustrates that the normal condition cannot be omitted.

Example 3.4.4. As we have seen in example 2.6.8, the nodal curve in P2

X = Z(zy2 − x3 − zx2)

is a non-normal variety and its normalization is equal to P1. The projective line is
normal and P1(C) is the Riemann sphere, which is simply connected, therefore P1

and X are algebraically simply connected. However, π1(X) = Z.

We recall that in algebraic topology, for a "su�cient good space" X, there is a
bijection between each subgroup H of π1(X) to a connected covering space of X of
degree [π1(X) : H]. The degree of a covering p : Y → X is the cardinality of p−1(x)
for every x ∈ X (These results can be founded with more details at section 1.3 of
Hatcher [20]).

We also introduce the concept of topologically unibranch at a point that will
help us in the proof of the above proposition.

De�nition 3.4.5 (Topologically Unibranch). A complex variety X is called topo-
logically unibranch at x if for all algebraic subsets Y ⊂ X, there is a fundamental
systems of neighbourhoods of x in classical topology {Un}, such that Un\Y ∩ Un is
connected in classical topology.

Idea of the proof of the Proposition 3.4.2 ⇒ We assume that X is normal and
algebraically simply connected. Suppose there is a subgroup H of index d > 1. We
can �nd a connected covering space Y of X(C) such that p : Y → X(C) is of degree
d. We can endow Y with a unique algebraic structure, and p is a �nite morphism
(in the algebraic sense) considering this structure (See chapter 6 of [17]).

Since K(Y )/p∗(K(X)) is a separable extension, by Theorem 2.6.11, the set of
unrami�ed points is a non-empty open set of X. Then if Y is irreducible, since
p−1(x) = d for every x ∈ X, p is unrami�ed at every point x ∈ X, hence X is not
algebraically simply connected, which leads us to a contradiction.

Notice that we have not used yet the fact that X is a normal variety. We
use it now to show that Y is irreducible. Since X is normal, every point of X is
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topologically unibranch (See Theorem 3.24 in [18]). Since p is a �nite morphism,
from Theorem 2.4.7, p is a closed map with respect to Zariski topology. Therefore, by
Chow's Theorem, p is a homeomorphism considering classical topology, and Y is also
topologically unibranch at every point. Then, we can suppose by contradiction that
Y is reducible and we have that either Y is disconnected regarding complex analytic
topology or that removing the points that are in the intersection of two irreducible
components, a neighbourhood of any of these points will be disconnected. Both
cases contradict Y being topologically unibranch at every point, therefore if X is a
normal and algebraically simply connected variety, π1(X) has no subgroup of �nite
index greater than 1.
⇐ If X is normal and not algebraically simply connected, there is a �nite al-

gebraic cover with no rami�cation and degree greater than 1. This corresponds to
a topological cover, and thus to a subgroup of π1(X) of �nite index greater than 1. �

We see that every variety with the Hilbert Property is algebraically simply con-
nected, which show us that the Hilbert Property reveal not only arithmetically
information about a variety, but also topological information. In our proof, we need
a modi�ed version of the Chevalley-Weil Theorem. We state bellow both the original
and the modi�ed version of the Chevalley-Weil Theorem.

Theorem 3.4.6 (Chevalley-Weil Theorem). Consider π : Y → X an unrami�ed
�nite morphism of projective varieties over the number �eld K. Then, there is a
�nite extension K ′/K such that X(K) ⊂ π(Y (K ′)).

Proof. See section 4.2 of [19].

Theorem 3.4.7 (Modi�ed Chevalley-Weil Theorem). Consider π : Y → X an un-
rami�ed �nite morphism of projective varieties over the number �eld K with degree
> 1. Then, there are �nitely many �nite morphisms πi : Yi → X of degree > 1, such
that X(K) ⊂ ∪iπi(Yi(K)).

The proof of this alternative version of the Chevalley-Weil Theorem comes as a
corollary of the original Chevalley-Weil Theorem and of the following proposition.

Proposition 3.4.8. Consider π : Y → X be a �nite morphism of degree > 1 de�ned
over K. Let K ′/K be a �nite extension and let T ⊂ Y (K ′) be a set of points such
that π(T ) ⊂ X(K). Then there exist �nitely many covers πi : Yi → X, each of degree
> 1, de�ned and irreducible over k, such that π(T ) ⊂ ∪iπi(Yi(K)).

For the proof of this proposition, we use the Weil Restriction Functor. This is
a covariant functor and given a �nite extension K ′/K, it takes a variety X over K ′

into a variety F (X) over K such that the K ′- rational points of X are the K-rational
points of F (X). Also, if [K ′ : K] = d, we have that F (X) is a variety with dimension
equal to d · dimX and is isomorphic over K ′ to Xd. To see a precise de�nition of
this functor and some of its properties, you can see section 4.6 of [22].
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Proof. We can look to the varieties X, Y and to the morphism π : Y → X given
at the statement of the proposition as varieties and morphism de�ned over K ′ and
therefore apply the Weil restriction functor to them. Thus, we can embed X into
F (X) using the diagonal morphism, ∆: X → Xd. In the same way, we can embed
the K-rational points of X into the K-rational points of F (X). We denote by
π̃ : F (Y )→ F (X) the resultant morphism by the application of the Weil functor to
π. Since T ⊂ Y (K ′) ' F (Y )(K), we can lift the points of π(T ) to F (Y )(K). All
this information is summmarized in the following diagram.

X(K) ' ∆X(K) ⊂ F (X)(K)

T ⊂ Y (K ′) ' F (Y )(K)

π π̃

Let Yi be the irreducible components of π̃−1(∆(X)). Then, the maps πi given
by the restriction π̃|Yi give the covers from the statement.

Indeed, they cannot have degree 1, for if they had then ∆X would be birational
to Yi. This means that there is a map σ : U → Yi, where U is an open dense subset
of ∆X, such that σ ◦ πi = IdU . Since X is isomorphic to ∆X, this induces a map
σ′ such that σ′ ◦ π = Id′U . This is organized bellow.

X ⊃ U ′ ' ∆X ⊃ U ⊂ F (X)

Y ' ∆Y ⊂ F (Y )

σ′ σπ π̃

We conclude then that Y is birational to X, contradicting the fact that deg π > 1.

The modi�ed Chevalley-Weil Theorem implies X over K does not have the
Hilbert property if there is an unrami�ed �nite morphism π : X → Y over K with
degree > 1. We use the following proposition to rewrite this result using the concept
of being algebraically simply connected.

Proposition 3.4.9. If A ⊂ V (K ′) is thin with respect to K ′, then V (K) is thin
with respect to K.

Proof. See Proposition 3.2.1 of [17].

Theorem 3.4.10. Consider a projective variety X over K with the Hilbert Property.
Then, X is algebraically simply connected.

Proof. We have seen in the Example 3.2.15, that the Hilbert Property is invariant by
birational maps. Hence, we can take X as a normal projective variety in our proof
without loss of generality. We show that if X is not algebraically simply connected,
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the Hilbert Property fails for X. If X is not algebraically simply connected, there is
a unrami�ed cover of X, π : Y → X with degree > 1, this cover may be de�ned over
a �nite extension of K, K ′. Thus, we use the modi�ed version of Chevalley-Weil
Theorem to show that V (K ′) is thin. By Proposition 3.4.9, we conclude that V (K)
is also thin, in other words, that V does not have the Hilbert Property over K.

This last theorem gave us a necessary condition that a variety must satisfy in
order to have the Hilbert Property, and therefore it permit us to construct some
non-examples.

Example 3.4.11. We have seen in the Example 3.2.16 that elliptic curves do not
have the Hilbert Property. An elliptic curve is a smooth variety, in particular a
normal variety, therefore we can apply Theorem 3.4.2 in order to prove that they are
not algebraically simply connected. Given an elliptic curve E over K, π1(E(C)) =
Z×Z, since elliptic curves over C are isomorphic to the 1-dimensional (as a complex
manifold) complex torus, and so they are not algebraically simply connected, which
con�rms they do not have the Hilbert Property

In fact, this same reasoning can be applied to any abelian variety over a number
�eld K. Since any abelian variety is smooth and since a n-dimensional abelian
variety A is isomorphic to a n-dimensional (as a complex manifold) complex torus
that is also an algebraic variety, π1(A) = Z2n and we conclude that abelian varieties
do not have the Hilbert Property.

3.5 Conclusion: New Directions

After seeing the historical motivation for the Hilbert Property, some examples and
non-examples, its relation with Inverse Galois Problem and Algebraic Topology, we
�nally end this study looking for the future: we present a reformulation of this
property together with some open problems and its implications. The discussion
presented here is based on chapter 2 of Corvaja and Zannier's article [21].

We have seen in Theorem 3.4.10 that a non-algebraically simply connected pro-
jective variety does not have the Hilbert Property. This allows one to reformulate
the de�nition of Hilbert Property for normal varieties, disregarding the cases when
the variety X has an unrami�ed cover. This is the motivation for the de�nition of
Weak Hilbert Property introduce in [21].

De�nition 3.5.1 (Weak Hilbert Property). We say that a normal variety X/K has
the Weak Hilbert Property if, given �nitely many covers πi : Yi → X i = 1, ...,m,
each rami�ed above a non-empty divisor, X(k)\ ∪i πi(Yi(K)) is Zariski-dense in X.

First, we can verify that this new property is equivalent to the Hilbert Property
for algebraically simply connected as we intended.
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To understand the di�erence between these two properties, we may want to
see examples of varieties that satisfy this modi�ed version of the Hilbert Property,
although they did not satisfy the original one. We have seen in Example 3.2.20 that
there are varieties with Zariski-dense set of rational points that do not have the
Hilbert Property. Therefore, one might ask the following question

Question 1. Does every variety with Zariski-dense set of rational points has the
Weak Hilbert Property?

This question is still unanswered, however, there are a few partial results. For
example, for the case of curves, the answer is positive. In fact, by Falting's Theorem
[23], we are just interested in the cases where the genus g of the curve is less than two.
For g = 0, we have the rational curves and since they have the Hilbert Property,
they also have the Weak Hilbert Property. However, the case g = 1 presents a
di�erence. While we have seen the elliptic curves do not have the Hilbert Property
in Example 3.2.16, they do have the Weak Hilbert Property because rami�ed covers
of a curve of genus 1 have genus greater than 1, hence we can apply again Falting's
Theorem to obtain the desired result.

Also motivated by Theorem 3.4.10, we can if its converse is also true, this is if
any algebraically simply connected variety has the Hilbert Property. We add more
conditions that will possibly make our question easier to answer.

Question 2. Is any smooth simply connected projective variety with a Zariski dense
set of rational points has the Hilbert Property over K?

First, we notice that the smooth condition is crucial because we can �nd non-
smooth simply connected varities with a Zariski dense set of rational points that
do not have the Hilbert Property. One example is the Enriques Surface of example
3.2.20.

The answer to the this question is unknown, however, a positive answer would
imply more than an equivalence of the Hilbert Property to a topological aspect
of this class of varieties. In fact, since Serre has proved that any smooth model
of an unirational variety is simply connected [25], this would imply an a�rmative
answer to Colliot-Thélène and Sansuc's conjecture, and therefore for Inverse Galois
Problem.

Another possible way of relating the Hilbert Property to a positive answer to
Inverse Galois Problem is using Manin's Conjecture for singular Fano varieties [26].
This Conjecture might prove the Hilbert Property for the quotients of projective
spaces that are of our interest, reformulating the Noether's approach for Inverse
Galois Problem.

We conclude our study at this point: where the original motivation �nds the
future research perspectives.
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