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Resumo

Convexification by Averages

Iago Leal de Freitas

Orientador: Bernardo Freitas Paulo da Costa

Essa dissertação é dedicada ao estudo de funções de valor ótimo para pro-
gramas estocásticos não convexos e como estas funções podem ser aproximadas
por cortes exatos. São estudadas duas maneiras de se medir não convexidade:
o gap entre uma função e sua relaxação convexa e a parte negativa da segunda
derivada de uma função. Baseando-nos nas semelhanças destes dois operadores,
introduzimos o conceito de medida de não convexidade. Estas tem a propriedade
de sempre serem reduzidas pela operação de tomar médias. Diversos destes resul-
tados também continuam valendo para o gap ao substituir-se a média por uma
medida de risco coerente qualquer. Esses resultados são aplicados à aproximação
de programas estocásticos multiestágio não convexos por cortes válidos ao consi-
derarmos a diferença entre encontrar um corte médio através de uma formulação
decomposta ou conjunta para os cenários.

Palavras-chave: Stochastic Programming, Cutting-plane method, Convex Anal-
ysis, Theory of Distributions.



Abstract

Convexification by Averages

Iago Leal de Freitas

Advisor: Bernardo Freitas Paulo da Costa

This dissertation is dedicated to the study of optimal value function for non-
convex stochastic programs and how these functions can be approximated by
tight cuts. Two ways to measure non-convexity are studied in this work: the
gap between a function and its convex relaxation, and the negative part of a
function’s second derivative. Influenced by the similarities between these two
operators, we introduce the concept of a non-convexity measure. These have the
property of being reduced by the operation of taking averages. Many of these
results also hold for the gap when considering an arbitrary risk measure instead of
the expected value. Theses results can be applied for approximating non-convex
multi-stage stochastic programs by tighter cuts by considering the difference
between calculating an average cut via a decomposed or a linked formulation for
the scenarios.

Keywords: Stochastic Programming, Cutting-plane method, Convex Analysis,
Theory of Distributions.
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Introduction 1

Convexity plays a major role in optimization. There are significant differences
on the available methods to solve convex or non-convex problems. In fact, many
methods for solving non-convex optimization problems, such as cutting planes
algorithms, consist on iteratively solving finer and finer convex approximations
to the original problem. This discrepancy becomes even larger in the context
of stochastic programming, where decisions must take many possible scenarios
into account. In this case, we minimize the average of the cost for each scenario,
resulting in problems that may be much more complicated to solve.

Although stochastic programs are usually harder to solve than deterministic
ones, we have observed an interesting phenomenon while dealing with non-convex
problems: when we take the pointwise average of non-convex functions, the
wrinkles on their graphs tend to cancel out and the resulting function can be
much less non-convex. As an example consider the two W-shaped functions below,
which are slightly offset.

E

The function on the right is the average between both functions on the left and
is actually convex.

The main goal of of this work consists in rigorously defining what is meant
by a function being less non-convex than another. A natural way to do this is
to consider the gap f ´ f̌ between a function f and the largest convex function
below it, called f ’s convex relaxation or f̌ . In this context, the convexification
can be summarized by saying that if Q is a random function, then the gap of
its average is everywhere below the average of each realization’s gap, or in other
words:

E rQs ´ ~E rQs ď E rQs ´ E rQ̌s . (1.1)
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An analogous result also holds in the risk-averse setting. In this case, instead of
minimizing the expectation of multiple scenarios, the cost is given by a coherent
risk measure ρ applied to the optimal value of all scenarios and the gap also
decreases:

ρpQq ´~ρpQq ď ρpQq ´ ρpQ̌q. (1.2)

Other reasonable way to measure the non-convexity of a function is to look
at its second derivative. A continuous function is convex if and only if its weak
second derivative is non-negative. Therefore, we can measure how non-convex f
is by looking at rf2s´, the negative part of its second derivative. Interestingly, a
result similar to that for the gap holds,

E rrQ2s´s ď rE rQs2s´. (1.3)

Moreover, a parallel can be made between the convexification results for the gap
and those concerning the second derivative, showing that both non-convexity
measures must be equivalent in some sense.

The relation between these two ways to measure the non-convexity is made
clear if we notice that both Equation (1.1) and (1.3) are generalized instances of
Jensen’s inequality and saying that taking averages convexify a random function
amounts to saying that these operators are convex. Thus, we can use the theory of
functions that are convex in relation to a cone to properly define what is expected
of a non-convexity measure. In order to generalize the previous examples and
maintain their important properties, we will say that a non-convexity measure
must satisfy three properties:

• Be zero if and only if the function is convex;

• Be non-negative with respect to a certain cone;

• Be convex with respect to this same cone.

Despite being much more abstract than the other ways we used to measure the
non-convexity of a function, this definition has the advantage of encompassing the
gap and second derivative as well as many other possible non-convexity measures
that are only applicable for some restricted class of functions.

The knowledge of this non-convexity reduction can be used to approximate
the expected cost-to-go of multi-stage non-convex programs through cuts that are
tight for it. In the usual decomposition coming from the dynamic programming
formulation, we calculate a cut for each possible realization of the next stage
uncertainty separately and the average cut is guaranteed to be a valid underap-
proximation of the expected cost-to-go. This procedure has the disadvantage
that even if the cuts are tight for the cost-to-go for each scenario, their average
is at best tight for E rQ̌s, as illustrated in the following figure:
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Cut for Q1 Cut for Q2 Average cut

E

A way to assure that the calculated cuts are tight consists in linking all scenarios
into a single optimization problem that directly calculates the expected cost-to-
go. Then, the usual techniques for calculating cuts for an optimal value function
through its dual problem can be used to calculate cuts that are tight for the
convex relaxation ~E rQs. In the favorable case when the uncertainty actually
turns E rQs into a convex function, these cuts approximate the true expected
cost-to-go as if the original problem was convex.
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This chapter is dedicated to establishing some important results concerning convex
functions that will be widely used in the following chapters.

In Section 2.1, we present the theory of convex sets, which are special subsets
of a real vector space with the property of being “closed by taking averages”.
An emphasis is put on the setwise operations that, when applied to convex sets,
also result in a convex set. These sets play an important role in the methods of
optimization, which are discussed in Chapter 3.

In Section 2.2, we introduce extended real functions and discuss the advan-
tages of allowing the functions considered to take the values of ˘8. Then, we
introduce convex functions as those functions whose graph is always below their
secants. The operations that preserve convexity are studied in Section 2.2.1.
Section 2.2.2 introduces one of the most thoroughly used concepts in this work,
the convex relaxation of a function f . It is denoted f̌ and is defined as the largest
convex function that is everywhere below f . This concept forms the base for ap-
proximations by cuts in Chapters 3 and 7 and will be fundamental in Chapters 5
and 6 when we discuss convexification. In Section 2.2.3, we study the conver-
gence of convex functions and introduce lower semi-continuous functions. Later,
in Section 2.2.4, we discuss some elements of duality theory and the conjugate of
a function.

Section 2.3 is dedicated to a special type of convex set called a convex cone.
Each cone induces an order compatible with the vector space structure, called
a conic inequality, that can be used to extend the notions of convexity and
monotonicity to functions whose image is not the real line, but an arbitrary
vector space. These will allow us some flexibility in Chapter 3 when representing
constraints of optimization problems and can be used to show that some familiar
operators such as the Hahn-Jordan decomposition in Chapter 4 can be regarded
as convex. Convexity in relation to a cone will a fundamental aspect of non-
convexity measures in Section 5.4.

With the exception of Sections 2.2.3 and 2.2.4, dealing with convergence, we
will mostly phrase this chapter’s results in terms of an abstract vector space V
instead of Rn. We do this because in many occasions we will need to consider
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convex operators whose domain is an infinite-dimensional function space.

This chapter is mainly intended as a reference to later chapters and its content
is denser than the rest of this work. The most important notions that the reader
must know from here are the definitions of convex set and convex function as being
“well-behaved” in relation to taking averages and the fact that a convex, proper
and lower semi-continuous function can always be represented as the supremum
of the affine functions everywhere less than it.

2.1 Convex sets
One of the fundamental objects in linear algebra are the subspaces of a vec-
tor space. These are characterized by the fact that they are closed by linear
combinations. That is, for any two elements x, y of a subspace W of V ,

αx` βy P W, @α, β P R. (2.1)

Working with subspaces is, in general, too restrictive because Equation (2.1)
requires that they pass through the origin. In what follows, we will consider
translations of subspaces, called affine sets.

Definition 2.1 (Affine set). A subset A of a vector space V is affine if there is
a subspace W of V and a point b P V such that

A “ b`W :“ tb` w | w P W u .

Remark 2.1. While a subspace W can be represented as the solution set of a
homogeneous linear system Tx “ 0, the affine sets act as their inhomogeneous
counterparts. That is, a set A is affine if and only if it is the solution set of a
linear system Tx “ b, for some fixed b P V .

Affine sets can also be characterized by a geometric property similar to Equa-
tion (2.1). Given two points x, y in a vector space, we can form the line passing
through them by

tαx` βy | α ` β “ 1u (2.2)

and a set A is affine if and only if it contains every line passing through its
points. This is the same as the definition of a linear subspace with the additional
constraint that the coefficients must sum to 1. Noticing that we could write
β “ 1 ´ α in Equation (2.2), we obtain another, more typical, characterization
of an affine set.

Theorem 2.2. A subset A of a vector space is affine if and only if it contains
the line passing through each pair of points in it. In other words, given x, y P A,
the point λx` p1´ λqy is also in A for every λ P R.

The collection of affine sets is too restrictive for many applications. For that
reason, we will mostly work with convex sets, which are the sets that contain the
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Figure 2.1: Example of an affine set.

line segment between each pair of points in it. A convex and a non-convex set
are illustrated in Figure 2.2.

Definition 2.3 (Convex set). A subset C of a vector space V is convex if the
line segment between any two points x, y P C is entirely contained in C. That
is, given x and y P C, the point λx` p1´ λqy is also in C for every λ P r0, 1s.

Any point of the form λx`p1´λqy with λ P r0, 1s is called a convex combination
of x and y. In general, we can consider a convex combination with any finite
amount of terms as long as the coefficients are non-negative and sum to one.
Using this, we can define the convex hull of an arbitrary set X to be the set of
all convex combinations of its elements. As expected, a set equals its convex hull
if and only if it is convex.

Definition 2.4 (Convex hull). The convex hull of a subset X of a vector space
is the set of all finite convex combinations of its elements,

convpXq “
#

kÿ

i“1
λixi | k P N, λi ě 0,

kÿ

i“1
λi “ 1

+

2.1.1 Convexity-preserving operations
In this section, we summarize some operations that preserve the convexity of sets.
The first of these is the intersection of a family of convex sets.

Theorem 2.5 (Intersection of convex sets). If Ci is a family of convex sets
indexed by i P I, then their intersection

C “
č

iPI

Ci

is also a convex set.
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x

y

(a) Convex set.

x

y

(b) Non-convex set.

Figure 2.2: Examples of convex and non-convex sets.

Proof. If x, y P C, then they are in Ci for every i P I. Since each Ci is convex,
the line segment between x and y is also contained in each Ci. Therefore, it is
contained in C. This implies that C is convex.

Remark 2.2. Although the intersection of convex sets is also convex, the same
cannot always be said of the union of convex sets. An example where A and B
are convex sets but AYB is not can be seen in Figure 2.4.

Using Theorem 2.5, we can properly talk about the smallest convex set con-
taining a set. This allows us to give an alternative representation of the convex
hull of X as the smallest set containing it,

convX “
č 

C | C is convex, X Ă C
(
. (2.3)

This definition is equivalent to the one given before in 2.4 and a proof can be
found at [Lucchetti, 2005].

X

conv(X)

Figure 2.3: Example of a non-convex set and its convex hull.
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A
B

Figure 2.4: Union and intersection of convex sets.

The cartesian product of a family of vector spaces is also a vector space via
componentwise addition and scalar multiplication. If we take a convex set in
each of these vector spaces, their cartesian product will also be a convex set on
the product space.

Theorem 2.6 (Cartesian product of convex sets). If Ci is a family of convex
sets indexed by i P I, then their Cartesian product

C “
ź

iPI

Ci

is also a convex set.

Proof. As each component of C is convex and convex combinations are taken
componentwisely, C is convex.

Other operations which also preserve convexity are setwise addition and scalar
multiplication, defined shortly.

Definition 2.7 (Minkowski sum of sets). The Minkowski sum of two subsets A
and B of a vector space is defined by

A`B “ ta` b | a P A, b P Bu .

Definition 2.8 (Multiplication by scalar for sets). The multiplication of a set
X by a scalar λ is the set

λX “ tλx | x P Xu .

Remark 2.3. Although the notation of the definitions above is made to resem-
ble the notation for addition and scalar multiplication of vectors, these setwise
operations do not possess the same properties.

One of the main properties of the Minkowski sum is that it commutes with
convex hulls, that is,

convpA`Bq “ convpAq ` convpBq. (2.4)
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If we take A and B to be convex on the equation above, we have that they are
equal to their convex hulls, which implies

A`B “ convpA`Bq.
Therefore the sum of convex sets is also convex.

In a similar manner, the scalar multiplication of a set satisfies
convpλXq “ λ convpXq,

which implies that λX is convex whenever X is.

Now we consider the image of sets by functions that preserve convexity. Taking
a linear transformation T : V Ñ W and a point b P W , we can define the
function

fpxq “ Tx` b,
called an affine function from T to W . As the following theorems show, both
linear and affine transformations preserve the convexity of sets.

Theorem 2.9 (Image of a convex set by a linear function). If T : V Ñ W is a
linear transformation then its image and pre-image preserve convexity. That is,
for any convex A Ă V ,

T pAq “ tT pxq | x P Au
is convex and for any B Ă W ,

T´1pBq “ tx P V | T pxq P Bu
is also convex.

Proof. For the image, recall that any element of T pAq can be written as Tx, with
x P A. Thus, a convex combination of Tx and Ty satisfies

λTx` p1´ λqTy “ T pλx` p1´ λqyq P T pAq,
since λx` p1´ λqy P A.

For the pre-image, take two elements x, y P V such that T pxq, T pyq P B.
Then any convex combination z :“ λx` p1´ λqy satisfies

T pλx` p1´ λqyq “ λT pxq ` p1´ λqT pyq P B,
since B is convex.

Corollary 2.9.1 (Image of a convex set by an affine function). If f : V Ñ W is an
affine function then its image and pre-image preserve convexity.

Proof. The set fpAq equals T pAq` tbu, which is a Minkowski sum of convex sets,
hence convex.

Similarly,
f´1pBq “ tx P V | Tx` b P Bu “ tx P V | Tx P B ´ tbuu,

which is convex.
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2.2 Convex functions
Throughout this work, it is convenient to allow the functions to take the values
˘8.

Definition 2.10 (Extended real function). An extended real function is a function
f : V Ñ r´8,`8s.

This work focuses on minimization, hence, it will be natural to allow a certain
asymmetry between positive and negative infinite values. In what follows, we
will mostly work with proper functions that are finite for at least some point and
nowhere equal minus infinity.

For maximization problems, the most useful definition requires that we ex-
change the role played by `8 and ´8.

Definition 2.11 (Proper function). An extended real function f : V Ñ r´8,`8s
is proper if fpxq ą ´8 for all x P V and there is at least one point y P V such
that fpyq ă 8.

Definition 2.12 (Domain of a extended real function). The domain of f : V Ñ
r´8,`8s is the set

dompfq “ tx P V | |fpxq| ă `8u .

If C is a non-empty subset of V , every function f : C Ñ R has a unique
extension to a proper extended real function f̃ defined over V such that dompf̃q “
C, given by

f̃pxq “
#
fpxq, x P C
`8, x R C. (2.5)

In view of this, no confusion shall arise if we denote the extension of f by the
same symbol ‘f ’. By considering only extended real functions defined on V ,
the presentation will be cleaner, since we do not need to worry about domain
restrictions.

It will also be useful, hereafter, to consider functions which are everywhere
less than some other. This is a partial order on the set of extended real functions,
and will also be denoted by “ď”.
Definition 2.13 (Functional inequalities). Given functions f : X Ñ r´8,`8s
and g : X Ñ r´8,`8s, we say that f is less or equal than g, denoted by f ď g,
if fpxq ď gpxq, @x P X.

We now proceed to introduce the main theme of this work: convex functions.
These can be intuitively thought as the functions whose graphs are always below
any of their chords, as exemplified in Figure 2.5

Definition 2.14 (Convex function). A function f : V Ñ r´8,`8s is said to be
convex if its domain is a convex set and for any pair of points x, y on its domain
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x

f(x)

y

f(y)

λx+ (1− λ)y

f
(
λx+ (1− λ)y

)

λf(x) + (1− λ)f(y)

Figure 2.5: Graph of a typical convex function.

and any parameter λ P r0, 1s,
fpλx` p1´ λqyq ď λfpxq ` p1´ λqfpyq.

If ´f is a convex function, we say that f is a concave function. Since max f “
´min´f , most of what we will develop for the minima of convex functions has
an equivalent formulation for the maxima of concave functions.

The definition of a convex function only depends on how it behaves when
restricted to each line intersecting its domain, so we obtain the following charac-
terization of convex functions:

Theorem 2.15. A function f : V Ñ r´8,`8s is convex if and only if for each
x P dompfq and all v P V , the unidimensional function g : RÑ r´8,`8s, given
by

gptq “ fpx` tvq,
is convex.

The defining property of a convex function is called Jensen’s inequality. We
can think about the fact that fpλx` p1´ λqyq ď λfpxq ` p1´ λqfpyq as saying
that if z is a weighted average with parameter λ between x and y, that is, z lies
on the line between x and y, a convex function evaluated at z will always be less
than this same weighted average applied to fpxq and fpyq. Geometrically, this
means that any secant to a convex function lies above its graph, as illustrated
on Figure 2.5. A remarkable fact is that this property can be extended for any
probability distribution defined on V .

Theorem 2.16 (Jensen’s inequality). A function f is convex if and only if it
satisfies

fpE rXsq ď E rfpXqs
for any random variable X whose support is contained on dompfq.
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epi(f)

(a) Convex function.

epi(g)

(b) Non-convex function.

Figure 2.6: The epigraph of a function is the set of points above its graph.

Affine and linear functions can be characterized by their graphs being respec-
tively affine or linear subspaces of V ˆ R. The graph of a convex function is
generally not convex but a similar characterization can be made in terms of the
set of points above its graph, called its epigraph.

Definition 2.17 (Epigraph). The epigraph of a function f : V Ñ r´8,`8s is
the subset of V ˆ R defined by

epipfq “ tpx, tq P V ˆ R | fpxq ď tu .

Theorem 2.18 (Epigraph of convex function). A function f : V Ñ r´8,`8s
is convex if and only if its epigraph is a convex set.

For a function f we can define its α-sublevel set as the set where the value of
f is below α:

Sf,α “ tx P V | fpxq ď αu.
Any sublevel set of a convex function f is convex, since it is the projection on V
of intersection between epipfq and the set tpx, tq P V ˆ R | t “ au.

The converse is not true. There are non-convex functions whose all sublevel
sets are convex. An example is given by any non-convex increasing function from
R to R such as tanhpxq, for which all sublevels are of the form p´8, f´1pαqs.
Remark 2.4. Notice that a function being less than another also has an interpre-
tation in terms of their epigraphs:

f ď g ðñ epipgq Ă epipfq.

Remark 2.5. A proper function also has a characterization in terms of its epigraph.
In this case, saying that f is proper is equivalent to saying that its epigraph is
non-empty nor contains any vertical line.
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Local minima of convex functions In the case of vector spaces with some
norm ‖¨‖, we consider the concept of a local minima and maxima of a func-
tion.

Definition 2.19 (Local minimum). If pV, ‖¨‖q is a normed vector space, a point
y P V is called a local minimum of a function f from V to R if there is some
ε ą 0 such that fpyq ď fpy ` vq for every v with ‖v‖ ă ε.

A local maximum is analogously defined as the point for which fpyq ě fpy`vq
for every v in some ball around the origin.

Convex functions have an important property which says that if y is a local
minimum, then it is in fact a global minimum.

Theorem 2.20 (Local minima of convex functions are global). If f is convex
and y is a local minimum, then

fpyq ď fpxq, @x.

Proof. Fix some point x. If ‖x´ y‖ ă ε, the result follows from the definition
of local minimum. If ‖x´ y‖ ě ε, we can find a convex combination of x and y
which lies inside the ball of radius ε around y by choosing λ “ ε{p2 ‖x´ y‖q ď 1.

ε
y

λx` p1´ λqy

x

Rewriting λx` p1´ λqy as y ` λpx´ yq, we can apply f to get

fpy ` λpx´ yqq “ fpλx` p1´ λqyq ď λfpxq ` p1´ λqfpyq.
Since ‖λpx´ yq‖ ă ε, the fact that y is a local minimum implies that

fpyq ď fpy ` λpx´ yqq ď λfpxq ` p1´ λqfpyq.
Which implies fpyq ď fpxq. Since x was arbitrary, the proof is complete.

2.2.1 Convexity-preserving operations
Here we discuss some operations on families of convex functions that result in
a function that is also convex. Some of these are direct consequences of the
results on Section 2.1.1 about convexity-preserving operations on convex sets
when applied to the epigraphs of the functions while others, such as the rules for
addition and composition, only have an interpretation for functions.
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Theorem 2.21 (Sum of convex functions). If f and g are convex functions, so
is αf ` βg for any α, β ě 0.

Corollary 2.21.1. For any finite collection of convex functions fi and non-negative
scalars λi, the function

řm
i“1 λifi is convex.

Remark 2.6. The above theorem implies that the set of convex functions is itself
a convex set. As we will see in Section 2.3, it is in fact a special type of convex
set called a convex cone.

For the composition, we have in fact two different results. Theorem 2.22 says
that first passing through an affine function and then through a convex function
is a convex operation and Theorem 2.23 says that the composition of two convex
functions is convex as long as the second one is non-decreasing.

Theorem 2.22 (Composition of convex and affine function). If f is a convex
function, then gpxq “ fpAx ` bq is also convex for any linear operator A and
vector b.

Theorem 2.23 (Composition of convex functions). If f : V Ñ p´8,`8s is
convex and g : RÑ p´8,`8s is convex and non-decreasing, with the convention
that gp`8q “ `8, then the composition g ˝ f : V Ñ p´8,`8s is convex.

Proof. From the convexity of f , for any points x, y and λ P r0, 1s,

fpλx` p1´ λqyq ď λfpxq ` p1´ λqfpyq.

Since g is non-decreasing, it preserves the inequality above

gpfpλx` p1´ λqyqq ď gpλfpxq ` p1´ λqfpyqq.

and the convexity of g implies that

gpλfpxq ` p1´ λqfpyqq ď λgpfpxqq ` p1´ λqgpfpyqq.

Taking it all together, we see that g ˝ f is convex.

Now we see how a convex functions behaves with respect to partial maxi-
mization or minimization. As we will see, the maximum of any family of convex
functions is always convex while the minimum is only convex when certain special
conditions are met.

Theorem 2.24 (Supremum of convex functions). If fα is an arbitrary collec-
tion of convex functions indexed by α P A, their pointwise supremum gpxq “
supαPA fαpxq is also convex.
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Proof. The epigraph of g is the set
epipgq “ tpx, tq | sup

αPA
fαpxq ď tu

“ tpx, tq | fαpxq ď t, @α P Au
“

č

αPA

tpx, tq | fαpxq ď tu

“
č

αPA

epipfαq,

which is the intersection of convex sets and therefore also convex.

The supremum of convex functions is convex because the intersection of convex
epigraphs is also a convex set. On the other side, the epigraph of hpxq “ infα fαpxq
is the union of convex sets and, therefore, not convex in general. A special case
is when we do the partial minimization of a convex function over some convex
set. In this case, as we will see in Theorem 2.25, the infimum of convex functions
can be in fact convex.

Theorem 2.25 (Infimum of convex functions). Suppose f : X ˆ Y Ñ r´8,`8s
is a proper convex function and C is a non-empty convex set. Then the function

hpxq “ inf
yPC

fpx, yq
is convex provided that hpxq ą ´8 for all x P X.

A proof to this fact can be found at [Boyd and Vandenberghe, 2004].

2.2.2 Convex relaxation
As seen on Section 2.1, any set X has a convex hull convpXq defined as the
smallest convex set containing X. If we apply this operation to the epigraph of
a function f , we obtain a convex set which is the epigraph of the largest convex
function below f , called its convex relaxation.

Definition 2.26 (Convex relaxation of a function). The convex relaxation of
a function f , denoted by convpfq or f̌ , is the largest convex function which is
always below f .

We have that
epipf̌q “ conv epipfq

and, since the set on the right can be written as the intersection of all convex sets
containing epipfq, it can be seen as the intersection of the epigraphs of all convex
functions that are underneath f . This allows us to write f̌pxq as the maximum
value a convex function everywhere less than f can attain at the point x. That
is,

f̌pxq “ sup
g

gpxq
s.t. gpyq ď fpyq, @y P V,

g convex.

(2.6)



2.2 Convex functions 17

´0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Convex Relaxation

f

f̌

Figure 2.7: Example of a function f and its convex relaxation f̌ .

This representation can be further refined to consider only affine functions be-
low f . For this, we need an equivalent version of the Hahn-Banach theorem, which
can be found as proposition (HB4) in Section 12.31 of [Schechter, 1997].

Theorem 2.27 (Hahn-Banach Convex Support Theorem). Any finite valued
convex function f : V Ñ R is the pointwise maximum of the affine functions
below it. That is, for each x0 P V there exists an affine functional φ such that
φpxq ď fpxq for all x P V and φpx0q “ fpx0q.

For any function f , an affine function which is everywhere below f is called
a feasible cut to f and a feasible cut that equals f on at least a point is called
a subgradient to f . Theorem 2.27 says that a convex function has a subgradient
at any point. Although this result requires f to be convex, we will see in The-
orem 2.39 that the same holds for a extended real function provided that it is
lower semi-continuous.

Representing a convex function via its feasible cuts is an important method
in convex optimization as we will discuss in Chapter 3. Now, we see that a
non-convex function cannot be represented only by feasible cuts. The best we
can do is represent its convex relaxation via cuts.

Since affine functionals are convex and f̌ is the largest convex function below
f , for any affine function φ,

φ ď f ðñ φ ď f̌ .

Using this, we can represent the convex relaxation of a function f as the pointwise
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maximum of affine functions which are everywhere below f .

f̌pxq “ sup
a,b

xa, xy ` b
s.t. xa, yy ` b ď fpyq, @y P V,

a P V ‹, b P R.

(2.7)

2.2.3 Modes of convergence
In this section we discuss modes of convergence for some classes of functions, with
an special emphasis on how convexity and infima behave in relation to these. We
start by the concept of pointwise convergence, that is, fn Ñ f if for each point
x, the evaluations fnpxq converge to fpxq.
Definition 2.28 (Pointwise convergence). A sequence fn of functions is said to
converge pointwisely to a function f on a set C if for each fixed x P C,

lim
nÑ8

fnpxq “ fpxq.

The set of convex functions is closed with relation to pointwise convergence,
that is, pointwise limits of sequences of convex functions are also convex.

Theorem 2.29. Let fn be a sequence of convex functions which converges point-
wisely to f . Then f is also convex.

Proof. Fix points x and y and some λ P r0, 1s. From the convexity of fn,

fnpλx` p1´ λqyq ď λfnpxq ` p1´ λqfnpyq.
Since limits preserve inequalities and limnÑ8 fnpaq “ fpaq for each point,

fpλx` p1´ λqyq “ lim
nÑ8

fnpλx` p1´ λqyq
ď lim

nÑ8
λfnpxq ` p1´ λqfnpyq

“ λ lim
nÑ8

fnpxq ` p1´ λq lim
nÑ8

fnpyq
“ λfpxq ` p1´ λqfpyq.

Therefore f is convex.

Although it preserves convexity, pointwise convergence is not well suited to
work with optimization problems because, if fn Ñ f pointwisely, we cannot
guarantee that inf fn Ñ inf f .

A notion of convergence that works well with optimal values is that of uniform
convergence.

Definition 2.30 (Uniform Convergence). A sequence of functions fn is said to
converge uniformly to a function f on a set C if

lim
nÑ8

sup
xPC

|fnpxq ´ fpxq| “ 0.
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Uniform convergence has the property that any space of continuous functions
is closed in relation to it. Additionally, it is stronger than pointwise convergence
it the sense that if a sequence fn converges uniformly to f , it also converges
pointwisely. If the functions fn are all convex and defined on an open subset of
Rn, an almost converse result holds; if a sequence of convex functions converges
pointwisely on an open convex subset Ω of Rn, then it converges uniformly when
restricted to any compact subset of Ω.

Theorem 2.31 (Pointwise convergence of convex functions is uniform on compact
sets). Let Ω be a open convex subset of Rn and let fn be a sequence of convex
functions converging pointwisely to f on Ω. Then, for every compact subset K
of Ω, fn converges uniformly to f on K.

A proof to this theorem can be found at Theorem 10.8 of [Rockafellar,
1996].

An important consequence of uniform convergence is that the supremum and
the infimum of a uniformly convergent sequence converge to the supremum and
infimum of the limit.

Theorem 2.32 (Optima of uniformly convergent sequence). Suppose fn con-
verges uniformly to f on a set K. Then

inf
xPK

fnpxq Ñ inf x P Kfpxq (2.8)

sup
xPK

fnpxq Ñ sup
xPK

fpxq. (2.9)

Albeit these nice properties, uniform converge is too restrictive when working
with possibly infinite-valued functions. In this case, if f equals 8 at a single
point, no sequence of finite valued functions can converge uniformly to f . A
similar problem happens with continuous functions because a function f cannot
be continuous outside of its domain.

On the following, we introduce weaker notions of continuity and convergence
that are more appropriate to work with extended real functions. First, we will
discuss lower semi-continuous functions, which are precisely those functions whose
epigraph is closed. Then, we will discuss the notion of epi-convergence, that can
be seem as a weaker form of uniform convergence that also preserves infima.

2.2.3.1 Lower semi-continuity

Convex functions on Rn have the property that they are continuous on the interior
of their domains, a result whose proof can be found at Corollary 2.1.3 of [Lucchetti,
2005].

Theorem 2.33 (Continuity of convex functions). Any proper convex function f
is continuous on the interior of its domain.

This theorem guarantees that a finite valued convex function is everywhere
continuous. When working with extended value functions, we also must consider
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epi(f)

(a) Lower semi-continuous function.

epi(g)

(b) Non lower semi-continuous function.

Figure 2.8: A function is lower semi-continuous if and only if its epigraph is a
closed set.

what happens at the boundary points of the function’s domain. Asking for
continuity at these points is too strong for if f is infinite at any point, it cannot be
continuous. A solution arises by separating continuity in two different properties:
lower and upper semi-continuity. Here we will focus only on the lower, since, as we
will shortly see, if f is lower semi-continuous, ´f is upper semicontinuous.

Definition 2.34 (Lower semi-continuity). A function f is lower semi-continuous
at a point x if

fpxq ď lim inf
kÑ8

fpxkq
for every sequence xk which converges to x. We say that f is lower semi-continuous
if it is lower semi-continuous for every point in its domain.

Analogously, we say that a function is upper semi-continuous at x if

fpxq ě lim sup
kÑ8

fpxkq

for every sequence xk which converges to x.

Since a continuous function takes sequences to sequences, it is always lower
and upper semi-continuous. A converse result also holds.

Theorem 2.35. A function f is continuous if and only if it is both lower and
upper semi-continuous.

Similarly to properness and convexity, lower semi-continuity also has an in-
terpretation in terms of the epigraph of f .

Theorem 2.36 (Epigraph of lower semi-continuous function). A function f : X Ñ
r´8,`8s is lower semi-continuous if and only if its epigraph is a closed set in
X ˆ R.
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Notice that since the intersection of closed sets is also closed, we have an analo-
gous to Theorem 2.24 for the supremum of lower semi-continuous functions.

Theorem 2.37. If fα is an arbitrary collection of lower semi-continuous func-
tions indexed by α P A, their pointwise supremum gpxq “ supαPA fαpxq is also
lower semi-continuous.

The closure of a subset A of Rn is the smallest closed set containing it, defined
by

clpAq “
č
tC | C is closed, A Ă Cu . (2.10)

This definition is similar to the characterization of the convex hull of a set
given in Equation (2.3). In the same manner of Definition 2.26, we can apply
it to the convex hull of a function to obtain the largest lower semi-continuous
function below it.

Definition 2.38 (Lower semi-continuous regularization). Given a function f , its
lower semi-continuous regularization, denoted clpfq, is the function defined by

clpfqpxq “ inf ta P R | px, aq P epipfqu .

It is possible to check that clpfq is in fact lower semi-continuous and its
epigraph is given by

epi clpfq “ cl epipfq.

We are mostly interested on functions that are proper, lower-semicontinuous
and convex. That is, functions whose epigraphs are non-empty, closed, convex
and do not contain vertical lines. For these, some results regarding continuity
and approximation by cuts exist, including a sharper version of Equation (2.7)
which does not requires f to be finite valued.

In Theorem 2.27, we saw that any finite valued convex function can be rep-
resented as the maximum of its feasible cuts. The same result also holds for
extended valued functions that besides being convex are also proper and lower
semi-continuous.

Theorem 2.39 (Representation by cuts). If f is a convex, proper and lower
semi-continuous function, then it can be represented as the supremum of the
continuous affine functionals that are everywhere less than f . That is,

fpxq “ sup
a,b

xa, xy ` b
s.t. xa, yy ` b ď fpyq, @y P V,

a P Rn, b P R.

A proof to this theorem is out of scope and can be found at 2.2.8 and Theo-
rem 2.2.21 of [Lucchetti, 2005].
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2.2.3.2 Epi-convergence

Now we introduce the notion of epi-convergence of functions. This can be intu-
itively thought as the epigraph of fn converging to the epigraph of f . That last
statement can, in fact, be made precise using convergence of sets but pursuing
that would go out of the scope of this work. More about epi-convergence and
convergences of sets can be found at Chapter 7 of [Rockafellar and Wets, 2011] for
functions over Rn or at [Lucchetti, 2005], [Artstein and Wets, 1995] and [Attouch,
1984] for infinite-dimensional or topological spaces.

Definition 2.40 (Epi-convergence). A sequence fn of functions epi-converges to
f if for all x P Rn,

1. For each sequence xn Ñ x, lim inf fnpxnq ě fpxq;
2. There is at least one sequence yn Ñ x such that lim fnpynq “ fpxq.
An important consequence of the definition above is that if fn epi-converges

to f , then f must be lower semi-continuous. Furthermore, we can guarantee a
result similar to 2.28 saying that a sequence of convex functions can only converge
to a convex function.

Theorem 2.41 (Epi-limit of convex functions). If a sequence fn of convex func-
tions epi-converges to a function f , then f is also convex.

Previously, we said that epi-convergence can be seem as a weaker form of
uniform convergence. This comes from the fact that, a uniformly convergent
sequence of lower semi-continuous functions also epi-converges.

Theorem 2.42 (Uniform and epi-convergence). If a sequence fn of lower semi-
continuous functions converges uniformly to f , it also epi-converges to f .

With respect to minimization, the following theorem says that under some
regularity conditions epi-convergence implies in convergence of the infimum. The
proof to this can be found at Theorem 7.33 of [Rockafellar and Wets, 2011].

Theorem 2.43 (Epi-convergence and infimum). Suppose fn is a sequence of
proper lower semi-continuous functions such that eventually the its subsets Sαpfnq
are bounded. If fn epi-converges to a proper lower-semicontinuous function f ,
then

inf fnpxq Ñ inf fpxq.

2.2.4 Fenchel conjugate
In this section, we discuss some elements of duality theory for extended real
functions over Rn. This will be important on Chapter 3 when we discuss the
Lagrangian relaxations of optimal value functions. As we will see, for a function
f , there is a deep relation between the convex relaxation f̌ and its biconjugate
f˚˚.
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−f∗(y)

x

Figure 2.9: The conjugate f˚ represents the vertical axis intercept of the largest
affine function that is everywhere less than f .

Definition 2.44 (Fenchel conjugate). The Fenchel conjugate of a function f is
the function f˚ defined by

f˚pyq “ sup
xPRn

txy, xy ´ fpxqu .

For each point x, y ÞÑ xy, x,´yfpxq is a continuous linear function on y. Since
linear functions are convex, their supremum is a convex function by Theorem 2.24.
Moreover, the supremum of lower semi-continuous functions is also lower semi-
continuous by Theorem 2.37. This implies that f˚ is always convex and lower
semi-continuous.

For an arbitrary function f , its conjugate may be rewritten as

f˚pyq “ ´ sup
 
b | b` xy, xy ď fpxq, @x P X(

(2.11)

which means, geometrically, that ´f˚pyq is the maximum intercept with the
vertical axis such that an affine function with inclination y is everywhere less
than f as illustrated in Figure 2.9. Notice that f˚pyq “ 8 means that no cut
with inclination y is valid for f . This interpretation will be useful again in
Section 3.2.2 where we will use affine functions to underapproximate optimal
value functions.

Hereby, we summarize some properties of the conjugate function.

1. The value of f˚ at zero is minus the infimum of f .

2. Conjugation reverses inequalities, that is, if f ď g then f˚ ě g˚.

3. The conjugate of an infimum is the supremum of the conjugates:

pinf
ν
fνq˚ “ sup

ν
f˚ν .



24 Chapter 2. Fundamentals of Convex Analysis

4. But the conjugate of a supremum is only less than the infimum of the
conjugate:

psup
ν
fνq˚ ď inf

ν
f˚ν .

5. Summed constants leave the conjugate with reversed sign. That is, if c P R,
pf ` cq˚ “ f˚ ´ c.

6. Scaling by k ą 0 becomes applying a perspective function:

pkfq˚pyq “ kf˚
´y
k

¯
.

7. Argument translations is the sum of a linear function. That is, if gpxq “
fpx´ aq,

g˚pyq “ f˚pyq ` xy, a, .y

The definition of conjugate function also implies the following inequality
relating f to its conjugate:

fpxq ` f˚pyq ě xy, xy (2.12)

for any x P X and y P X 1. This is known as Fenchel’s inequality and is useful for
taking estimates about f based on its conjugate.

2.2.4.1 The biconjugate

The conjugate function can be taken again with respect to f˚ to get a new
function f˚˚.

Definition 2.45 (Biconjugate). The biconjugate of a function f is the function
f˚˚ defined by

f˚˚pxq “ sup
yPRn

txy, xy ´ f˚pyqu “ sup
yPRn

inf
zPRn

tfpzq ` xy, x´ zyu .

It always holds that
f˚˚ ď f, (2.13)

since, by Fenchel’s inequality (2.12), xy, xy ´ f˚pyq ď fpxq and f˚˚ is the supre-
mum of the left-hand side over y.

If f is convex, proper and lower semi-continuous, we have that, in fact, f “ f˚˚.
This is known as the Fenchel-Moreau theorem.

Theorem 2.46 (Fenchel-Moreau). A function f equals its biconjugate f˚˚ if and
only if one of the following is true:

1. f is convex, proper and lower semi-continuous,
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2. f is identically equal to `8, or

3. f is identically equal to ´8.

Additionally, under mildly regularly conditions, we can guarantee that when
f is not convex, its biconjugate f˚˚ is the largest convex lower semi-continuous
function everywhere less than f .

Theorem 2.47 (Biconjugate and convex relaxation). If f̌ is proper, then

epipf˚˚q “ cl conv epipfq.

In other words,
f˚˚ “ clpf̌q.

2.3 Cones and inequalities
Although we can define linear or affine operators between any two vector spaces,
the notion of convex function depends on its codomain being the real line R. In
this section, we use a special type of convex set called a convex cone to induce
a partial order on a vector space. Thus, fixing cones on vector spaces allows us
to extend the definitions of monotone and convex functions with respect to their
induced orders.

Definition 2.48. A subset K of a vector space V is a convex cone if it is closed
under non-negative linear combinations. That is, if x, y P K and t, s ě 0 imply
that tx` sy P K.

Notice the similarity with the definition of a convex set. The difference in
here is that the linear combinations can be made using any non-negative scalars,
without the requirement of summing one. Of course, any convex cone is a convex
set.

Remark 2.7. In most of literature, the term cone refers to a non-negative homo-
geneous set, that is, to a set K such that for any λ ě 0,

x P K ùñ λx P K

and a convex cone is a cone that is also convex. Since only convex cones appear
throughout this work, no confusion shall arise if we refer to them simply as cones.
Therefore, in what follows, a cone will always mean a convex cone.

Definition 2.49. A convex cone K is pointed if it does not contain any line. In
other words, K is pointed if for any non-zero x P K, its negative ´x R K.

Some examples of convex cones include

1. Any subspace is a cone, since it is closed by arbitrary linear combinations.

2. The cone Rn
` of vectors in Rn whose components are non-negative.
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Figure 2.10: Example of a cone.

3. More generally, if V is a function space, the set V` of non-negative functions
in V is a pointed convex cone.

4. Also, the set of convex functions in a function space V is a convex cone.
Notice that it is not necessarily pointed, since it may contain affine functions
(which are both convex and concave).

5. The set of n ˆ n symmetric matrices is a vector space. An example of
pointed convex cone on it is the set of all positive semi-definite matrices.

Some of the convexity-preserving operations from Section 2.1.1 also preserve
a set being a cone.

1. The cartesian product K1 ˆK2 of two cones is also a cone.

2. The intersection K1 XK2 of two cones is also a cone.

3. The Minkowski sum K1 `K2 of two cones is also a cone.

4. The image and preimage via a linear operator T are also cones.

The cartesian product and intersection also preserve being pointed.

A cone K on a vector space V induces a preorder on V by

x ďK y ðñ x´ y P K. (2.14)
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Notice that if K is the cone of positive real numbers, this is the usual order on
the reals. Analogously to case in R, the vectors greater than zero are precisely
those in K:

x ěK 0 ðñ x P K.
This preorder has some nice properties, summarized on Theorem 2.50 including
the fact that ďK is a partial order if and only if K is pointed.

Theorem 2.50. A preorder ďK induced by a cone K Ă V satisfies

1. x ďK x for all x P V .

2. If x ďK y and y ďK z then x ďK z.

3. If x ďK y then ´x ěK y.

4. If λ ě 0 and x ďK y then λx ďK λy.

5. If x ďK y and v ďK w then x` v ďK y ` w.
Additionally, if K is pointed, ďK is antisymmetric. That is, x ďK y and y ďK x
implies x “ y.

More information about conic inequalities can be found at [Rockafellar and
Wets, 2011] and [Boyd and Vandenberghe, 2004], including the converse to The-
orem 2.50 which says that any order satisfying these properties must arise from
some cone.

2.3.1 Convexity in relation to a cone
We can use the orders generated by cones to extend the definitions of monotone
and convex functions to maps between two vector spaces endued with cones.

Definition 2.51. Given two cones K Ă V and L Ă W , a function f : V Ñ W
is said to be pK,Lq-monotone or monotone in relation to K and L if

x ďK y ùñ fpxq ďL fpyq.

If a function f : V Ñ R is monotone in relation to K and R` we will simply
say that it is K-monotone.

Definition 2.52. Given a cone K Ă W , a function f : X Ñ W whose domain
is a convex set is K-convex or convex in relation to K if for any pair of point x,
y P V and λ P r0, 1s:

fpλx` p1´ λqyq ďK λfpxq ` p1´ λqfpyq.

Remark 2.8. A function is convex in the usual sense if it is convex in relation to
the cone R` of non-negative real numbers.
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Dually to Definition 2.52, we say that a function f is K-concave if ´f is
K-convex.

A curious example is the map f ÞÑ f̌ , which is itself concave in relation to the
cone of non-negative functions. To see this, consider two functions f , g and some
λ P r0, 1s. The function λf̌ ` p1´ λqǧ is convex and always below λf ` p1´ λqg.
Therefore, the definition of convex relaxation implies that

convpλf ` p1´ λqgq ě λ convpfq ` p1´ λq convpgq. (2.15)

Remember that convexity of a function f : X Ñ R can be characterized by the
convexity of its epigraph. Similarly, we can associate to each function f : X Ñ W
its K-epigraph in X ˆW . This set is convex if and only if f is K-convex.

Definition 2.53. The K-epigraph of a function f : X Ñ W is the set
epiKpfq “ tpx, tq P V ˆW | fpxq ďK tu.

Theorem 2.54. A function f is K-convex if and only if epiKpfq is a convex set.

Proof. If f is K-convex then it is always true that
fpλx` p1´ λqyq ďK λfpxq ` p1´ λqfpyq

and if px, tq, py, sq are elements of epiKpfq,
λfpxq ` p1´ λqfpyq ďK λt` p1´ λqs.

These two inequalities imply that for any λ P r0, 1s, λpx, tq ` p1´ λqpy, sq is also
in epiKpfq. In other words: it is a convex set.

Now assume that epiKpfq is a convex set. As the points px, fpxqq and py, fpyqq
are always elements of it, the convexity tells us that any convex combination

λpx, fpxqq ` p1´ λqpy, fpyqq “ pλx` p1´ λqy, λfpyq ` p1´ λqfpyqq
is also an element of epiKpfq. Which is equivalent to say that

fpλx` p1´ λqyq ďK λfpxq ` p1´ λqfpyq
for any x, y P V and λ P r0, 1s, which is the Definition of K-convexity.

2.3.1.1 Composition of K-convex functions

As in the scalar case, the K-convex functions are closed by addition and multi-
plication by non-negative scalars. Therefore they also constitute a cone.

Theorem 2.55. If K is a cone in W and V an arbitrary vector space, the set
t f : V Ñ W | f is K-convex u is a cone.

We can also generalize Theorem 2.23 about composition of convex functions
to deal with compositions of conic convex functions.

Theorem 2.56. If f : X Ñ Y is K-convex and g : Y Ñ Z is L-convex and
monotone with respect to K and L, then the composition g ˝ f is L-convex.
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x

Figure 2.11: Any valid cut for a non-decreasing (R`-monotone) convex function
has non-negative slope.

2.3.1.2 Dual cones and K-monotone functions

Here, we give a characterization of K-monotone functions via the inclinations
of their valid cuts. This theorem is a generalization of a theorem needed at
Section 3.4, where we will prove an almost Jensen’s inequality for convex monotone
functions and coherent risk measures. In Figure 2.11, we see an example applied
to a 1-dimensional function.

Definition 2.57. If K is a cone in V , there is a cone K‹ in its dual space V ˚
defined by

K˚ “ tω P V ˚ | xω, xy ě 0, @x P Ku
and called the dual cone to K.

Theorem 2.58. Let f be a real valued convex function. Then f is K-monotone
if and only if any of its valid cuts xa, xy ` b satisfies a P K‹.

Proof. First, assume that f is K-monotone. Since f is convex, we may use
Theorem 2.27 and assume without loss of generality that this cut equals f at
some point x0,

xa, xy ` b “ xa, x´ x0y ` fpx0q.
Given an element k P K, this cut satisfies

fpx0 ´ kq ě fpx0q ` xa,´ky
and the K-monotonicity of f implies that

x0 ´ k ďK x0 ùñ fpx0 ´ kq ď fpx0q.
Taking both of those inequalities together,

xa, ky ě fpx0q ´ fpx0 ´ kq ě 0.
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Since k P K was arbitrary, we conclude that a P K˚.

Now assume that all valid cuts to f have inclination a P K˚. Taking a tight
cut at the point x, we have for all y that

fpyq ě fpxq ` xa, y ´ xy.
If y ěK x, the inner product on the previous expression is non-negative and the
left-hand side is greater than fpxq,

y ěK x ùñ fpyq ě fpxq ` xa, y ´ xy ě fpxq.
Therefore, f is K-monotone.

2.3.1.3 Valid cuts for K-convex functions

In this section, we show that if the order ďK satisfies some regularity properties,
there is an analogous of theorem 2.27 for K-convex functions. The theorem in
this section is a consequence of the Hahn-Banach theorem and a proof to it can
be found as proposition (VHB4) in Section 12.34 of [Schechter, 1997]. We begin
with some definitions.

Definition 2.59. A non-empty subset A of V is bounded above in ďk if there is
a y P V such that for all x P A, x ďK y.

Definition 2.60. The order in V induced by a pointed convex coneK is Dedekind
complete if any non-empty subset A of V which is bounded above has a least
upper bound. In other words, there exists a w P V such that if x ďK y for all
x P A then w ďK y.

If the order induced by a cone is Dedekind complete, any K-convex function
can be written as the pointwise maximum (in relation to this order) of the affine
functionals that are everywhere less than it.

Theorem 2.61 (K-convex Support Theorem). Suppose ďK is a Dedekind com-
plete order on W . If f : V Ñ W is K-convex, for each point x0 P V there exists
an affine functional φ such that φpxq ďK fpxq for all x P V and φpx0q “ fpx0q.
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In this chapter we study many forms of optimization problems in a general setting.
Despite this generality, most of the motivation for the techniques described here
comes from mixed integer programs and is readily applicable to these problems.
Hence, the reader is welcome to think about these problems as being composed of
a finite number of real or integer decision variables, and that most of the structure
of the problem’s constraints is linear or convex.

As we will see, the theory of convex sets and functions, developed in Chapter 2,
will play a major role in the way we solve optimization problems. This happens
because convex functions are “easy” to minimize when compared to the general
case, thanks to results like Theorem 2.20, which ensures that every local minimum
of a convex function is global; or Theorem 2.27, which says that they can be
approximated by affine functions that lie below them.

We start in Section 3.1 by defining and studying the properties of both gen-
eral and convex optimization problems. In Section 3.2 we study parameterized
optimization problems and their optimal value functions, which give the optimal
value of the problem as a function of the parameters. We begin by developing the
properties in a general setting and proceed to deduce finer results in the special
cases with the most importance. In Section 3.3 we look at the properties of
multi-stage optimization problems, which deal with sequences of problems where
each one depends on the optimal value functions of the previous. In Section 3.4
we study what happens when we consider that some parameters of our problems
are random. It is composed of a study of uncertainty in two-stage problems as
well as a discussion about risk averse optimization.

Through this entire chapter, a strong emphasis is put into approximating
optimal value functions by affine underestimators, called valid cuts. We do this
because many important algorithms to solve multistage and stochastic programs
rely on iteratively approximating the cost-to-go functions by cuts. For examples,
the interested reader can see Benders Decomposition for mixed integer problems
in [Benders, 1962], Stochastic Dual Dynamic Programming (SDDP) for convex
multi-stage stochastic programs in [Pereira and Pinto, 1991] or Stochastic Dual
Dynamic integer Programming (SDDiP) for mixed integer multi-stage stochastic
programs in [Zou et al., 2018].
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3.1 Optimization problems
Definition 3.1. An optimization problem consists of minimizing a function c
subject to its arguments being inside a set X. Throughout this work, these
problems will be denoted as

min
x

cpxq
s.t. x P X.

The function c is called the problem’s objective function and the set X its
feasible set, while any point x P X is a feasible point. Sometimes, the expression
x P X itself will be called a constraint for the problem. The term “min” on a
optimization problem stands for minimize and “s.t.” is an abbreviation for subject
to, meaning that an optimization problem is read as “minimize cpxq subject to
x P X. A problem’s optimal value, often denoted p˚, corresponds the infimum of
cpxq on the set X,

p˚ “ inf
xPX

cpxq.
On the following, specially when dealing with parameterized optimization prob-
lems, we will write the optimization problem as denoting its optimal value. No
confusion should arise from this but it is important to notice that despite writ-
ing minimize, the optimal value is the problem’s infimum and may not be at-
tained.

If X “ H, the problem is called infeasible and we will apply the usual
convention of setting infxPH cpxq “ `8 no matter the objective function c.

An analogous definition could be made for maximization problems by exchang-
ing minimize for maximize and defining the optimal value to be the problem’s
supremum. Since max c “ ´min´c, the theory can be entirely developed for
minimization without loss of generality.

When minimizing a convex function over a convex set, the problem in Defini-
tion 3.1 is called a convex optimization problem.

Defining the indicator function of a set X,

IXpxq “
#

0, x P X
`8, x R X, (3.1)

any optimization problem can be written as an unconstrained one, since

min
x

cpxq ` IXpxq “ min
x

cpxq
s.t. x P X

(3.2)

and the minimum is attained at the same point x‹. Notice that the function IX
is convex if and only if the set X is convex.

In practice, the constraint set in Definition 3.1 may be too abstract to work
with. Thus, we will generally restrict ourselves to constraints which are sublevel
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or level sets of some function. That is, problems in the form

min
x

cpxq
s.t. gpxq ďK 0

hpxq “ 0

(3.3)

where K is some cone, as defined in Section 2.3. An important case is when K
is the non-negative cone on Rl, denoted Rl

`. Then, g ďRl
`

0 means that each
component gi of g is less or equal than zero and the problem can be equivalently
formulated as

min
x

cpxq
s.t. gipxq ď 0, for i “ 1, . . . , l

hipxq “ 0, for i “ 1, . . . , k
If g is aK-convex function and h is an affine function, they constrain the problem’s
decision variable to be inside a convex set and, therefore, problem (3.3) is convex
if the objective function is convex.

Remark 3.1. Notice that x P X if and only if IXpxq ď 0. Thus, without loss
of generality, any optimization problem can be written using only sublevel con-
straints.

3.1.1 Lagrangian relaxation
On Equation (3.2), we showed a way in which an optimization problem’s con-
straints can be written as part of the objective function. This method may have
some problems, such as the objective function c being everywhere differentiable
but the function c` IX not.

Other problem that may arise is that the constraints may be described via
inequalities, such as in Equation (3.3), which are infeasible. In this case, it is
better to substitute the constraint by a term that approximates the problem
by a another, which is feasible. When we substitute an equality or inequality
constraint by a linear term on the objective, it is called a Lagrangian relaxation
of the problem.

Definition 3.2 (Lagrangian Relaxation). A Lagrangian relaxation to an opti-
mization problem with the form

min
x

cpxq
s.t. gpxq ďK 0

hpxq “ 0
x P X

is another optimization problem

min
x

cpxq ` xλ, gpxqy ` xν, hpxqy
s.t. x P X

where λ P K˚, that is, xλ, ky ě 0 for all k P K.
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The function

Lpx, λ, νq “ cpxq ` xλ, gpxqy ` xν, hpxqy (3.4)

is called the problem’s Lagrangian and the parameters λ and ν, the Lagrange
multipliers. Notice that since xν, hpxqy “ 0 and xλ, gpxqy ď 0, the Lagrangian
always satisfies

Lpx, λ, νq ď cpxq ` ItgpxqďK0u ` Ithpxq“0u. (3.5)

In particular, for each feasible point x of the original problem, Lpx, λ, νq ď
cpxq.

The name Lagrangian relaxation comes from the fact that the Lagrangian is
an underapproximation of the original objective function on the original feasible
points but is well-defined on a larger feasible set.

When forming the Lagrangian relaxation of an optimization problem, we get
different results according to the parameters we choose. This means that we can
define a function

dpλ, νq “
#

infxPX Lpx, λ, νq, λ ěK˚ 0
´8, λ­ěK˚0

(3.6)

called the problem’s dual function. The function dual function d gives the value
of the relaxed problem as a function of the Lagrange multipliers; this an instance
of an optimal value function as we will study in Section 3.2. Notice that the
dual function is concave, by Theorem 2.24, since the Lagrangian is linear on the
Lagrange multipliers and, therefore, d is the minimum of linear functions.

By calling p˚ the optimal value of a minimization problem,

p˚ “ min
x

cpxq
s.t. gpxq ďK 0

hpxq “ 0
x P X,

(3.7)

the dual function to this problem will always be below it for any value of λ,
ν,

dpλ, νq ď p˚. (3.8)

This means that we can construct a maximization problem in terms of the dual
function which is always below the original problem’s optimal value, called the
dual problem.

Definition 3.3 (Dual problem). Given an optimization problem such as in (3.7),
we define its dual problem as the maximum of all its Lagrangian relaxations,

d˚ “ max
λ,ν

dpλ, νq
λ ěK˚ 0.
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Remark 3.2. Notice that the dual problem is always a convex problem, even if
the original problem is not.

By taking the supremum on inequality 3.8, we always have that

d˚ ď p˚,

a property known as weak duality. In terms of the Lagrangian, weak duality says
that

sup
λPK˚

inf
xPX

Lpx, λ, νq ď inf
xPX

sup
λPK˚

Lpx, λ, νq,
which is an usual property of infima and suprema.

When d˚ “ p˚, we say that strong duality holds and the difference p˚ ´ d˚ is
called the problem’s duality gap. There are conditions on the objective function
and constraints of the primal problem that guarantee strong duality. One such
condition is Slater’s condition, whose proof can be found at Chapter 5 of [Boyd
and Vandenberghe, 2004].

Theorem 3.4 (Slater’s condition). Given a convex optimization problem

min
x

cpxq
s.t. gipxq ďK 0, for i “ 1, . . . , k

Ax “ b,

and suppose that there is a feasible point y such that gipyq ăKi
0 whenever gi is

not affine. That is, ´gipyq is in the interior of Ki for all non-affine gi. Then
strong duality holds for this problem.

In practical applications, this condition is enough to imply that in a convex
optimization problem, strong duality normally holds. Furthermore, Slater’s con-
dition is equivalent to the problem being feasible if all its constraints are affine
such as in a linear program.

Corollary 3.4.1. If an optimization problem

min
x

cpxq
s.t. Gx ď h,

Ax “ b,

has at least one feasible point, then strong duality holds for it.

Thereafter we shall always assume that strong duality holds for convex prob-
lems, but not for non-convex problems.

3.2 Optimal value functions
It is common for us to want to solve not a single optimization problem, but a
family of related problems in which we change certain parameters, as the right-
hand side of constraints or the objective function. In this section we study the



36 Chapter 3. Optimization

properties of the so called optimal value function of a parameterized family of
optimization problems. This function tells us how the problem’s optimal value
changes when we modify the problem’s parameters.

We begin in Section 3.2.1 by studying some regularity and characterization
results for optimal value functions. First, we show that the optimal value of any
optimization problem is convex with respect to varying its objective function.
Afterwards, we proceed to study optimal value functions that vary the right-hand
side of equality and inequality constraints. We will begin by showing that the
optimal value functions of convex problems are also convex functions. Then
we will particularize for linear programs and, subsequently, use these results to
characterize the optimal value functions of mixed integer problems.

In Section 3.2.2, we use the tools from Section 3.1.1 to study ways to ap-
proximate an optimal value function by collection of affine functions that are
everywhere below it. These are called cuts and will be of great importance in
Chapter 7.

3.2.1 Characterizations of optimal value functions
Depending on the structure of a parameterized optimization problem, its optimal
value function may posses some simple characterization or can be even guaranteed
to be convex. This section discusses some special cases of parameterized problems
whose optimal value functions are either convex or piecewise convex. References to
these results include [Fiacco and Kyparisis, 1986] for a compendium of convexity
properties and [Hassanzadeh and Ralphs, 2014; Bank et al., 1984] for mixed
integer problems.

As a first case, let us consider a fixed feasible set X. Then, given a set of
functions, we may look at the optimal value function fpcq “ infxPX cpxq which,
for each objective function c, returns the smallest value of c over X. Theorem 3.5,
proved shortly, says that independently of our choice for the set X or the function
space where c lies, this function is always concave.

Theorem 3.5. For any fixed set X, the function defined by

fpcq “ min
x

cpxq
s.t. x P X

is concave in c.

Proof. For each fixed x P X, the function fxpcq “ cpxq is linear in c. The result
follows from the fact that the infimum of linear functions is concave.

An example of this result was the dual function to an optimization problem,
from Equation (3.6). This function is always concave, no matter the original
problem. As a corollary to Theorem 3.5, the optimal value function which varies
the objective function of a maximization problem is always convex.
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Corollary 3.5.1. For any fixed set X, the function defined by

fpcq “ max
x

cpxq
s.t. x P X

is convex in c.

We now proceed to study the optimal value functions that vary the right-hand
side of the problem’s constraints. That is, functions with the form

fpa, bq “ min
x

cpxq
s.t. gpxq ďK a

hpxq “ b
x P X.

(3.9)

Theorem 3.6 (Optimal value function for a convex problem). Let f be the
optimal value function defined by (3.9) and suppose that the represented problems
are convex, that is, c is convex, g is K-convex, h is affine, and X is a convex set.
Then f is a convex function.

Proof. We will show that f satisfies the Jensen’s inequality for any λ P r0, 1s. If
the problem represented by f is infeasible at some point pa, bq, the inequality
follows directly. Then, we can consider only the case when fpa, bq has at least a
feasible point.

Suppose x1 is feasible for the problem fpa1, b1q and x2 is feasible for the
problem fpa2, b2). Then, for any λ P r0, 1s, the point λx1 ` p1´ λqx2 is feasible
for the problem with the average parameters, fpλa1 ` p1´ λqa2, λb1 ` p1´ λqb2q,
because

gpλx1 ` p1´ λqx2q ďK λgpx1q ` p1´ λqgpx2q ďK λa1 ` p1´ λqa2,

hpλx1 ` p1´ λqx2q “ λhpx1q ` p1´ λqhpx2q “ λb1 ` p1´ λqb2.

Using the convexity of the objective function,

cpλx1 ` p1´ λqx2q ď λcpx1q ` p1´ λqcpx2q.

By minimizing the left-hand side over all the feasible points for the average
parameters,

fpλa1 ` p1´ λqa2, λb1 ` p1´ λqb2q ď λcpx1q ` p1´ λqcpx2q,

and by minimizing the right-hand side over all x1 feasible for pa1, b1q and all x2
feasible for pa2, b2q:

fpλa1 ` p1´ λqa2, λb1 ` p1´ λqb2q ď λfpa1, b1q ` p1´ λqfpa2, b2q.
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We now proceed to discuss optimal value functions of linear programs, that
is, problems of the form

fpa, bq “ min
x

xc, xy
s.t. Dx ď a

Ax “ b

(3.10)

where c is a vector and A,D are matrices. Since linear functions are convex,
a linear problem is always convex. Furthermore, the only condition for strong
duality to hold for a linear problem it that it or its dual must be feasible.

Any linear program can be put into a standard form where all decision variables
are non-negative and the only restriction is of the form Ax “ b, as can be found
in [Dantzig, 1963, sec 3-8, pg 60]. This means that we can restrict our attentions
to problems of the form

min
x

xc, xy
s.t. Ax “ b

x ě 0.

(3.11)

The optimal value function that varies the right-hand side of the equality con-
straint on standard form linear programs can be characterized as a polyhedral
function, that is, a convex piecewise linear function, as can be found in [Hassan-
zadeh and Ralphs, 2014, prop 1, pg 6] or [Blair and Jeroslow, 1977, prop 3.1, pg
131].

Theorem 3.7 (Optimal value function for a linear program). The optimal value
function of a standard form linear program, defined by

fpbq “ min
x

xc, xy
s.t. Ax “ b,

x ě 0

is a polyhedral function.

Remark 3.3. Notice that in Theorem 3.6, the optimal value function fpa, bq varied
the right-hand side of both the inequality and equality constraints while in the
Theorem 3.7 only the equality constraints are being varied by fpbq.

These results can be used to characterize the optimal value functions of a
class of non-convex problems called mixed integer linear programs, or MILP for
short. These are linear programs with the additional constraint that some of its
decision variables must be integer. In standard form:

min
x,z

xc1, xy ` xc2, zy
s.t. Ax`Bz “ b,

x, z ě 0,
x P Rn, z P Zk.

(3.12)
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Theorem 3.8 (Optimal value function for a mixed integer linear program). As-
sume that A, B are matrices with rational coefficients. The optimal value function
of a mixed integer linear program defined by

fpbq “ min
x,z

xc1, xy ` xc2, zy
s.t. Ax`Bz “ b,

x, z ě 0,
x P Rn, z P Zk.

is a piecewise polyhedral function.

See [Hassanzadeh and Ralphs, 2014] for further discussion of this type of
optimal value function. Moreover, we can give a further characterization of this
function as the minimum of a countable collection of translations of a polyhedral
function φ. To do this, let f be as in Theorem 3.8 and set φ to be its restriction
to continuous variables,

φpbq “ min
x,z

xc1, xy
s.t. Ax “ b,

x ě 0.
That is, φ represents the same problem as f when the integer decision variables
are all zero. Then, f is the minimum of a countable amount of translations of φ,
which is polyhedral,

fpbq “ min
x,z

xc1, xy ` xc2, zy
s.t. Ax`Bz “ b,

x, z ě 0,
x P Rn, z P Zk

“ min
zě0
zPZk

$
&
%

xc2, zy ` min
x

xc1, xy
s.t. Ax “ b´Bz,

x ě 0

,
.
-

“ min
zě0,
zPZk

xc2, zy ` φpb´Bzq.

(3.13)
On the equation above, the minimum is taken over all possible integer values
that the decision variable z can take. In [Hassanzadeh and Ralphs, 2014], it is
shown that this minimum can be taken over a smaller family of integer points
and this minimal family is studied thoroughly.

This same idea can be applied to study the optimal value functions of opti-
mization problems that are convex except for some variables being integer. Before
proceeding, we notice that any optimization problem is equivalent to another one
with a linear objective function. This is done by going from the objective c to its
epigraph:

min
x

cpxq
s.t. x P X

“ min
x,t

t

s.t. px, tq P epipcq
x P X

“ min
x,t

t

s.t. cpxq ď t
x P X.

(3.14)

By virtue of this, we will consider only the case with linear objective functions
on the following theorem.
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Theorem 3.9 (Optimal value function for a mixed integer convex program).
Given a convex set X a compact subset Z of Zk, and rational matrices A and B,
the optimal value function

fpbq “ min
x,z

xc1, xy ` xc2, zy
s.t. Ax`Bz “ b,

x P X, z P Z
is piecewise convex.

Proof. The convex restriction

φpbq “ min
x,z

xc1, xy
s.t. Ax “ b,

x P X
is a convex function, by Theorem 3.6. The function f can be written as the
minimum over translations of φ by

fpbq “ min
x,z

xc1, xy ` xc2, zy
s.t. Ax`Bz “ b,

x P X, z P Z

“ min
zPZ

xc2, zy ` min
x

xc1, xy
s.t. Ax “ b´Bz,

x P X
“ min

zPZ
xc2, zy ` φpb´Bzq.

3.2.2 Approximation by cuts
An affine function ψ everywhere less than f is called a valid cut for f , and this cut
is said to be tight for f if there is at least one point a where ψpaq “ fpaq.

Remember from formula (2.7) that the convex relaxation of a function f can
be calculated as the maximum of all affine functions everywhere less than it. If f
is an optimal value function, we can use the duality theory from Section 3.1.1 to
estimate valid cuts for f̌ from the optimal Lagrange multipliers of the problem
represented by f . As we will see, in this context, strong duality is equivalent to
these cuts being tight for f at some point.

This way to underapproximate an optimal value function is an essential part
of many algorithms to solve multi-stage stochastic programs such as [Pereira
and Pinto, 1991] for convex problems or [Zou et al., 2018] for mixed integer
problems and will be important in Chapter 7 where we will apply the theoretical
results from Chapters 5 and 6 to better estimate cuts for stochastic optimization
problems.

In this section, we will always consider an optimal value function f that varies
the constraints of a problem, as defined in Equation (3.9). We will assume that
both this optimal value function and its convex relaxation f̌ are proper and
lower semi-continuous. In this context, properness amounts to saying that there
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is at least one parameter pa, bq such that the problem represented by fpa, bq is
feasible and that for all parameters the objective function c is bounded below
on the feasible set. The lower semi-continuity assumptions will be important to
guarantee some results related to duality, as we will shortly see.

We can form the Lagrangian relaxation of the problem represented by fpa, bq,

da,bpλ, νq “
#

inf
xPX

cpxq ` xλ, gpxq ´ ay ` xν, hpxq ´ by , λ ěK˚ 0
´8 , λ ğK˚ 0

(3.15)

and the dual optimal value function

dpa, bq “ max
λ,ν

da,bpλ, νq
s.t. λ ěK˚ 0.

(3.16)

is, by weak duality, always below the original optimal value function,

dpa, bq ď fpa, bq. (3.17)

The duality gap for optimal value functions is a function gappfq “ f ´ d of
the parameters. Supposing that the maximum is attained in the dual prob-
lem, we can also define the optimal Lagrange multipliers λ˚a,b and ν˚a,b satisfying
da,bpλ˚a,b, ν˚a,bq “ dpa, bq.

The dual functions have an interpretation in terms of the Fenchel conjugate,
from Section 2.2.4, of the optimal value function f . In fact, the optimal dual
function d equals the biconjugate of f . To see this, we must write the Lagrangian
relaxation in a slightly different way. By adding decision variables ā and b̄, the
optimal value f can be equivalently formulated as

fpa, bq “ min
x,ā,b̄

cpxq
s.t. gpxq ďK ā

hpxq “ b̄

a “ ā, b “ b̄
x P X.

Relaxing only the constraints a “ ā, b “ b̄, we get another formulation of the
dual function that is, nevertheless, equivalent to the one at (3.15):

da,bpλ, νq “ min
x,ā,b̄

cpxq ` xλ, ā´ ay ` xν, b̄´ by
s.t. gpxq ďK ā

hpxq “ b̄
x P X.

(3.18)

Separating the terms that depend on x or ā, b̄, this expression can be rewritten



42 Chapter 3. Optimization

using the conjugate of f as

da,bpλ, νq “ inf
ā,b̄

¨
˚̊
˝

min
x

cpxq
s.t. gpxq ďK ā

hpxq “ b̄
x P X.

˛
‹‹‚

` xλ, ā´ ay ` xν, b̄´ by

“ inf
ā,b̄

 
fpā, b̄q ` xλ, ā´ ay ` xν, b̄´ by(

“ inf
ā,b̄

 
fpā, b̄q ` xλ, āy ` xν, b̄y(´ xλ, ay ´ xν, by

“ ´ sup
ā,b̄

 x´λ, āy ` x´ν, b̄y ´ fpā, b̄q(´ xλ, ay ´ xν, by

“ ´f˚p´λ,´νq ´ xλ, ay ´ xν, by.
Finally, we can take the supremum over all possible Lagrange multipliers to
get the dual optimal value function. Notice that, by construction, da,bpλ, νq
equals ´8 when λ ğK˚ 0, therefore the supremum will not be attained at these
points,

dpa, bq “ sup
λěK˚ 0, ν

da,bpλ, νq “ sup
λ, ν

da,bpλ, νq

“ sup
λ, ν

 ´ f˚p´λ,´νq ´ xλ, ay ´ xν, by(

“ f˚˚pa, bq.

Under our hypotheses of the convex relaxation f̌ being proper and lower
semi-continuous, it follows from Theorem 2.47 that

d “ f˚˚ “ f̌ . (3.19)

Therefore, weak duality always holds because the convex relaxation of a function
is everywhere below it. The points pa, bq where strong duality holds are precisely
the points where the optimal value function f equals its convex relaxation and
the duality gap may be written as gappfq “ f´ f̌ . On what follows, equation 3.19
will be extensively use. In particular, we will always denote the optimal dual
value by f̌ .

Since f̌ is convex and lower semi-continuous, it can be written as the supremum
of the affine functions that are everywhere below it, from Theorem 2.39. If strong
duality holds at a point pα, βq, f̌pα, βq “ fpα, βq, and the dual problem’s optimal
Lagrange multipliers represent cuts to f that are tight at the point pα, βq.
Theorem 3.10 (Cuts from strong duality). Let f be an optimal value function
with the form (3.9) and pα, βq a point where strong duality holds, that is, f̌pα, βq “
fpα, βq. Then for all pa, bq,

fpa, bq ě fpα, βq ´ xλ˚α,β, a´ αy ´ xν˚α,β, b´ βy.
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Proof. By strong duality and the definition of the dual problem,

fpα, βq “ f̌pα, βq “ dα,βpλ˚α,β, ν˚α,βq
ď cpxq ` xλ˚α,β, gpxq ´ αy ` xν˚α,β, hpxq ´ βy.

Taking a point x that is feasible for the problem represented by fpa, bq, we have
gpxq ď a and hpxq ď b. Therefore, it follows from λ˚α,β ěK˚ 0 that

fpα, βq ď cpxq ` xλ˚α,β, a´ αy ` xν˚α,β, b´ βy.

Taking the infimum on the feasible set for fpa, bq we get that

fpα, βq ď fpa, bq ` xλ˚α,β, a´ αy ` xν˚α,β, b´ βy.

The result follows from reorganizing this expression.

The cut constructed in this theorem is a global minimizer of the function f .
Hence, it can be used to estimate how much the optimal value f varies as the
parameters pa, bq are changed. This argument can be made rigorous by relating
the optimal Lagrange multipliers to the derivatives of f .

Theorem 3.11. Let f be an optimal value function with the form (3.9) and
assume that f is differentiable at pα, βq. Then,

∇afpα, βq “ ´λ˚α,β, ∇bfpα, βq “ ´ν˚α,β.

Proof. Let v be a unit vector and t P R. Theorem 3.10 implies that

fpα ` tv, βq ě fpα, βq ´ xλ˚α,β, tvy.

If t ą 0, this expression may be reorganized as

fpα ` tv, βq ´ fpα, βq
t

ě x´λ˚α,β, vy

and taking the limit as t Ñ 0 we get that ∇afpα, βq ě x´λ˚α,β, vy. Similarly, if
t ă 0, we have the opposite inequality

fpα ` tv, βq ´ fpα, βq
t

ď x´λ˚α,β, vy

implying that in the limit as tÑ 0, ∇afpα, βq ď x´λ˚α,β, vy. Taking both these
results together we get to the desired result,

∇afpα, βq “ x´λ˚α,β, vy.

The proof for the other multipliers is equivalent.
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Notice that the cut constructed in Theorem 3.10 is equal to the original func-
tion on the point pα, βq. This is a consequence of the strong duality assumption,
which is unusual to hold when the optimization problems considered are non-
convex, since in these cases the optimal value function f is not necessarily convex.
Hereupon, we study some methods to calculate cuts for mixed integer problems,
which are problems with convex structure besides the fact that some variables
are constrained to be integer, as in Theorem 3.9. These cuts will be constructed
by applying Theorem 3.10 to some convex approximation to the problem in ques-
tion. For convex problems, all these methods should be equivalent as long as f
equals f̌ .

3.2.2.1 Benders cuts

Suppose f is the optimal value function of a mixed integer linear program

fpbq “ min
x,z

cpx, zq
s.t. Ax`Bz “ b

px, zq P X
x P Rn, z P Zk.

A simple and generally inexpensive way to underapproximate f by a convex
function fc is by relaxing the integrality constraints to allow the decision variable
z to take any real value.

fcpbq “ min
x,z

cpx, zq
s.t. Ax`Bz “ b

px, zq P X
x P Rn, z P Rk

This is called the continuous relaxation of f and is a convex function, by Theo-
rem 3.6. Since the feasible set of the relaxed problem always contains that of the
original problem, it satisfies fc ď f .

Since, for all b, the constraints of the problem represented by fcpbq are all
linear, Slater’s condition (Theorem 3.4) says that strong duality holds for it
whenever fc is not infinite. Then, we can use Theorem 3.10 to calculate cuts for
fc. Given a right-hand side β, let νB be an optimal Lagrange multiplier for the
problem fcpβq. Then

fcpbq ě fcpβq ´ xµB, b´ βy, @b.

Using that f is always greater than fc, we can apply this same cut for f and
obtain

fpbq ě fcpβq ´ xµB, b´ βy, @b. (3.20)

This is called a Benders cut for f .
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b b

f(b)

f̌(b)

fc(b)

f fc f̌ Benders cut

Figure 3.1: A non-convex optimal value function f , its relaxation fc and a Benders
cut.

Notice that although the Benders cuts are valid for f , they are not necessarily
tight at any given point, since it is possible that fpbq ą fcpbq and the cut obtained
is everywhere strictly below f . This is exemplified in Figure 3.1.

The procedure to calculate Benders cuts can be generalized to the optimal
value functions of any convex problem with integrality constraints. That is,
suppose

fpa, bq “ min
x

cpxq
s.t. gpxq ďK a

hpxq “ b
x P X
x P Rn ˆ Zk

(3.21)

where c is convex, g is K-convex, h is affine and X is convex. We can again
define a continuous relaxation of f by removing the integrality constraints.

Definition 3.12 (Continuous relaxation). The continuous relaxation of an opti-
mal value function as in Equation (3.21) is the optimal value function

fcpa, bq “ min
x

cpxq
s.t. gpxq ďK a

hpxq “ b
x P X
x P Rn ˆ Rk.

By Theorem 3.6, the continuous relaxation is a convex function and, by
definition, it always satisfies

fc ď f̌ ď f. (3.22)
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Since fc is convex, it is easier for strong duality to hold at a given point pα, βq in
view of Equation (3.19). A Benders cut for f is again a cut for the continuous
relaxation fc applied to f .

Definition 3.13 (Benders cut). Let f be an optimal value function as in Equa-
tion (3.21). Calculating a Benders cut for f at a point pα, βq consists in solving
the convex relaxation fcpα, βq to get optimal Lagrange multipliers λB and νB.
Assuming that strong duality holds, these Lagrange multipliers satisfy

fcpa, bq ě fcpα, βq ´ xλ˚α,β, a´ αy ´ xν˚α,β, b´ βy, @pa, bq
by virtue of Theorem 3.10. Since f ě fc, this cut can be applied to f resulting in

fpa, bq ě fcpα, βq ´ xλ˚α,β, a´ αy ´ xν˚α,β, b´ βy, @pa, bq.

As discussed before, these cuts in most cases do not touch the graph f at any
given point. Nevertheless, calculating Benders cuts consists in a way to find under-
approximations to a non-convex optimal value function f whose computational
cost is much less expensive than the other methods we will present.

3.2.2.2 Strengthened Benders cuts

After calculating a Benders cut for an optimal value function f , we can use the
Lagrangian relaxation of f to strengthen this cut. That is, to find another cut
that is parallel to the Benders one but that is guaranteed to be tight for f̌ . We
begin by showing the procedure to strengthen an arbitrary valid cut for f . Later,
in Definition 3.14, we apply this method to Benders cuts to get what we call a
strengthened Benders cut to f .

Suppose f is the optimal value function

fpa, bq “ min
x

cpxq
s.t. gpxq ďK a

hpxq “ b
x P X

and that we have a valid cut for f given by

fpa, bq ě γ ´ xλ, a´ αy ´ xν, b´ βy, @pa, bq.
Knowing that a valid cut exists, we can define the set

Cλ,ν “
 
q | fpa, bq ě q ´ xλ, a´ αy ´ xν, b´ βy, @pa, bq(

of all intercepts with the same inclination that still give a valid cut. As we
assumed f to be proper, this is a bounded subset of R, because if we choose any
parameters pa, bq P dompfq, it holds for all q P Cλ,ν that

q ď fpa, bq ` xλ, a´ αy ` xν, b´ βy.
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b b

f(b)

f̌(b)
db(λ)

f f̌ Benders cut Strenghtened Benders cut

Figure 3.2: The strengthened Benders cut is parallel to the Benders cut but tight
for f̌ at some point.

This means that the supremum of Cλ,ν is finite. Denoting by q‹ “ supCλ,ν , we
have that this is the largest intercept such that a cut with inclination pλ, νq is
still valid for f . Notice that this cut must be tight for f̌ , by maximality.

The optimal intercept q˚ can be calculated using the Lagrangian relaxation
of fpα, βq. First notice that for all pa, bq,

q˚ ď fpa, bq ` xλ, a´ αy ` xν, b´ βy “ min
x

cpxq ` xλ, a´ αy ` xν, b´ βy
s.t. gpxq ďK a

hpxq “ b
x P X.

The right-hand side of the above inequality is formulation 3.18 for the dual prob-
lem of an optimal value function on pα, βq. Therefore the Lagrangian relaxation
is an upper bound for q˚, that is,

q˚ ď dα,βpλ, νq.

Now we proceed to show that this is in fact an equality.

Consider the usual definition of the Lagrangian relaxation,

dα,βpλ, νq “ inf
xPX

cpxq ` xλ, gpxq ´ αy ` xν, hpxq ´ βy.

By rearranging all terms that are independent of the variable x to the left-hand
side,

dα,βpλ, νq ´ xλ,´αy ´ xν,´βy “ inf
xPX

cpxq ` xλ, gpxqy ` xν, hpxqy.
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For any parameters pa, bq, we can sum xλ, ay` xν, by to both sides and reorganize
the inner products to obtain

dα,βpλ, νq ´ xλ, a´ αy ´ xν, b´ βy “ inf
xPX

cpxq ` xλ, gpxq ´ ay ` xν, hpxq ´ by
“ da,bpλ, νq.

We can maximize the right-hand side over all possible Lagrange multipliers and
obtain a valid cut for the dual function

dα,βpλ, νq ´ xλ, a´ αy ´ xν, b´ βy ď max
λ,ν

da,bpλ, νq “ f̌pa, bq ď fpa, bq.

Since q˚ was the supremum of all intercepts for which the cut was still valid, this
means that q˚ ě dα,βpλ, νq. Therefore, we conclude that the optimal intercept is
attained on the Lagrangian relaxation

q˚ “ dα,βpλ, νq.

The above discussion means that there is a point pã, b̃q for which pλ, νq is dual
optimal and the cut obtained is tight for the convex relaxation of f ,

dα,βpλ, νq ´ xλ, ã´ αy ´ xν, b̃´ βy “ dã,b̃pλ, νq “ f̌pa, bq.
Notice that this point pã, b̃q may differ from the original point pα, βq. Therefore,
we can only guarantee that a strengthened cut is tight somewhere but not on the
point we were originally considering.

Definition 3.14 (Strenghtened Benders cut). Calculating a strengthened Benders
cut for an optimal value function f at pα, β) consists of two steps:

1. Calculating a Benders cut for the relaxation fcpα, βq to get the Benders
optimal Lagrange multipliers pλB, νBq;

2. Solving the Lagrangian relaxation

dα,βpλB, νBq “ inf
xPX

cpxq ` xλB, gpxq ´ αy ` xνB, hpxq ´ βy
to get a new intercept with the same inclination.

The strengthened Benders cut for f is then

fpa, bq ě dα,βpλB, νBq ´ xλB, a´ αy ´ xνB, b´ βy.

Finding a strengthened Benders cut for an optimal value function f requires
solving a convex optimization problem to find the Lagrange multipliers and,
afterwards, a non-convex problem to find the optimal value of the Lagrangian
relaxation. In virtue of this second step, strengthening a Benders cut can take
reasonably longer than only finding a Benders cut. Nevertheless, the fact that
strengthened cuts are tight for the convex relaxation f̌ makes them much more
effective. This difference will be crucial on Chapter 7 where we will calculate
cuts for stochastic programs.
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b b

f(b)

f̌(b)

f f̌ Lagrangian cut

Figure 3.3: A Lagrangian cut is as tight as possible at the chosen point.

3.2.2.3 Lagrangian cuts

When calculating a strengthened Benders cut, we cannot choose in which point
it will be tight. In the following, we show how, given a point pα, βq, we can use
the fact that f̌pα, βq equals the dual optimal value to calculate a cut for f̌ that
is tight at pα, βq. This is called a Lagrangian cut.

Consider an optimal value function f with the same form as before and
suppose that at the point pα, βq its dual optimal is attained. That is, by solving
the dual problem max dα,βpλ, νq we get optimal Lagrange multipliers pλ˚α,β, ν˚α,βq
satisfying

f̌pα, βq “ inf
xPX

cpxq ` xλ˚α,β, gpxq ´ αy ` xν˚α,β, hpxq ´ βy.

The terms independent of the variable x can be all passed to the left-hand
side,

f̌pα, βq ´ xλ˚α,β,´αy ´ xν˚α,β,´βy “ inf
xPX

cpxq ` xλ˚α,β, gpxqy ` xν˚α,β, hpxqy

and by summing xλ˚α,β, ay ` xν˚α,β, by to both sides and reorganizing the inner
products we get

f̌pα, βq´xλ˚α,β, a´αy´xν˚α,β, b´βy “ inf
xPX

cpxq`xλ˚α,β, gpxq´ay`xν˚α,β, hpxq´by.

By maximizing the right-hand side with respect to all feasible Lagrange multipli-
ers, we retrieve the dual optimal value function evaluated at pa, bq,
f̌pα, βq ´ xλ˚α,β, a´ αy ´ xν˚α,β, b´ βy ď sup

λPK˚,
ν

inf
xPX

cpxq ` xλ, gpxq ´ ay ` xν, hpxq ´ by

“ f̌pa, bq ď fpa, bq.
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b

Benders cut

b

Strenghtened Benders cut

b

Lagrangian cut

f f̌ Benders cut Strenghtened Benders cut Lagrangian cut

Figure 3.4: The three types of cuts calculated for the same optimal value func-
tion f at a chosen point b.

From this, we get a cut for f that is tight at its convex relaxation at the chosen
point pα, βq.
Definition 3.15 (Lagrangian Cut). Calculating a Lagrangian cut for an optimal
value function f at a point pα, βq consists of solving the dual problem

f̌pα, βq “ sup
λPK˚,
ν

inf
xPX

cpxq ` xλ, gpxq ´ ay ` xν, hpxq ´ by

to get optimal Lagrange multipliers pλ˚α,β, ν˚α,βq. The Lagrangian cut is the affine
function

fpa, bq ě f̌pα, βq ´ xλ˚α,β, a´ αy ´ xν˚α,β, b´ βy, @pa, bq,
which is tight for f̌ at the chosen point pα, βq.

Although the Lagrangian cuts are the most precise type of cut, their com-
putational cost is, in general, extremely expensive. Since, for fixed pα, βq, the
Lagrangian relaxation dα,β is a concave function, maximizing it is a convex
optimization problem. However, each evaluation dα,βpλ, νq requires solving a
non-convex optimization problem and any iterative method to solve the dual
problem will require successive evaluations of the Lagrangian relaxation.

3.2.2.4 Comparison between cut types

If the optimization problems represented by f are all convex, the continuous
relaxation fc from Definition (3.12) and the convex relaxation f̌ are both equal
to f ,

f “ fc “ f̌ .

Therefore, for convex problems, the three types of cuts previously described are
equal and equivalent to the cut obtained in Theorem 3.10. Particularly, they
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are all tight for f at the point in which they are being calculated. This means
that there is no advantage in using the more computationally expensive cuts to
approximate the optimal value function of a convex problem.

When the problems represented by f are not convex, there is a trade-off
between computational cost and precision for each type of cut. This is summarized
in Table 3.1.

Table 3.1: Comparison between the different kinds of cuts for non-convex prob-
lems.

Cut type Computational cost Tight for f̌?
Benders Solve one convex problem Not in general
Strengthened Benders Solve one convex and

one non-convex problem
Yes, at an arbitrary point

Lagrangian Repeatedly solve
a non-convex problem

Yes, at the chosen point

3.3 Multi-stage optimization
Many real world problems require taking not a single decision but a series of
sequential decisions over time. Although these problems can be modeled as a
single optimization problem, this is, in general, not computationally efficient.
In this section we formulate a multi-stage optimization problem as a control
problem; that is, as a series of optimization problems linked together.

Let’s consider a concrete example of a two-stage problem which will be useful
to fix notation and give some intuition before we properly define two-stage prob-
lems in Definition 3.16. On what follows we will model a simple hydrothermal
scheduling problem for a two months schedule.

In a hydrothermal schedule, energy generation is has two sources: hydroelec-
tric and thermoelectric power plants. Our problem is to minimize the cost of
energy generation subject to attending the energy demand and respecting the
physical constraints such as non-negativity and maximum energy generation. We
will begin by considering the schedule for a single month.

Let us denote by x1 the decision variable saying how much energy was came
from hydroelectric power plants and by u1 the decision variable saying how
much energy came from thermoelectric power plants. Let cH denote the cost
of producing one unit of energy at a hydroelectric and cT denote the cost of
producing one unit of energy at a thermoelectric power plant. The demand
will be denoted by d1, the maximum thermoelectric generation by MT and the
maximum hydroelectric generation, which equals the total stored energy at the
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hydroelectric power plants, by MH . This optimization problem is
min
x1,u1

cHx1 ` cTu1

s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1.

To extend this problem to two-stages, we must notice that the total stored
energy on the second stage is no longer MH but Mh ´ x1. Writing x2 and u2 for
the second stage decision variables and d2 for the demand at the second stage,
the two month decision schedule is

min
x1,u1,x2,u2

cHx1 ` cTu1 ` cHx2 ` cTu2

s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1
0 ď x2 ďMT ´ x1
0 ď u2 ďMT

x2 ` u2 “ d2.

By noting that most of the variables from the first and second stage are decoupled,
this problem can be rewritten as

min
x1,u1

cHx1 ` cTu1 ` min
x2,u2

cHx2 ` cTu2

s.t. 0 ď x2 ďMT ´ x1
0 ď u2 ďMT

x2 ` u2 “ d2

s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1

The second minimum can be represented as an optimal value function that
gives the optimal cost of the second stage depending on how much stored energy
is left from the first stage,

Qpx1q “ min
x2,u2

cHx2 ` cTu2

s.t. 0 ď x2 ďMT ´ x1
0 ď u2 ďMT

x2 ` u2 “ d2,

and the original problem can be expressed as depending only on the first stage
variables as

min
x1,u1

cHx1 ` cTu1 `Qpx1q
s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1.

The function Q is called the problem’s cost-to-go and depends, directly, only on
the first stage’s hydroelectric generation x1.

Mimicking this example, we get to the general definition of a two-stage prob-
lem.
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3.3.1 Two-stage problems
Definition 3.16 (Two-stage optimization problem). A two-stage optimization
problem is an optimization problem with the form

min
x1,u1

c1px1, u1q `Qpx1q
s.t. px1, u1q P X1

where Q is the optimal value function

min
x2,u2

c2px2, u2q
s.t. px1, x2, u2q P X2.

Letting t “ 1, 2, the variables xt are called the problem’s state variables
because they describe the problems state as one goes from a stage to another and
the variables ut are the problem’s local or control variables since they are only
“seem” in their respective stages. The functions ct are the problem’s present costs
and the optimal value function Q is the problem’s cost-to-go.

When solving a two-stage problem, each evaluation of the objective function
requires solving another optimization problem to evaluate Qpx1q. Since most
computational methods to solve optimization problems iteratively evaluate the
objective function, this can become inefficient.

A solution to this problem is to approximate Q by cuts using the methods
of Section 3.2.2 and incorporate these approximations as restrictions of the first-
stage problem. This will give an underapproximation to the original problem
that becomes increasingly more precise as more cuts are added.

Let us start with an example using a single cut

Qpx1q ě q ´ xλ, x1y
and denote by p˚ the problem’s solution,

p˚ “ min
x1,u1

c1px1, u1q `Qpx1q
s.t. px1, u1q P X1

“ min
x1,u1,α

c1px1, u1q ` α
s.t. px1, u1q P X1

Qpx1q ď α,

where the second equality comes from passing the function Q to epigraph form
as in Equation (3.14). Since the cut is everywhere less than Q,

Qpx1q ď α ùñ q ´ xλ, x1y ď α

and we can form another less constrained problem

p̃ “ min
x1,u1,α

c1px1, u1q ` α
s.t. px1, u1q P X1

q ´ xλ, x1y ď α.
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It always holds that p̃ ď p˚.

If instead of a single cut we have a family of cuts satisfying

Qpx1q ě qi ´ xλi, x1y, @i
we can take its maximum over any finite set of k cuts to obtain a polyhedral
underapproximation to Q,

Qpkqpx1q “ max
i“1,...,k

 
qi ´ xλi, x1y

(
, (3.23)

and produce the optimization problem

ppkq “ min
x1,u1,α

c1px1, u1q ` α
s.t. px1, u1q P X1

Qpkqpx1q ď α,

“ min
x1,u1,α

c1px1, u1q ` α
s.t. px1, u1q P X1

qi ´ xλi, x1y ď α for i “ 1, . . . , k.

Notice that since Qpkq ď Qpk`1q ď Q, it also holds that ppkq ď ppk`1q ď p˚. In
particular, if Q is itself polyhedral, as is the case for the optimal value functions
of linear problems (Theorem 3.7), there exists a finite family of cuts such that
the approximation Q equals Q.

3.3.2 Multi-stage problems
In the Definition 3.16, it is possible that the cost-to-go is itself the optimal
value function of another two-stage problem. In fact, we could have T linked
optimization problems.

Definition 3.17 (Multi-stage optimization problem). An optimization problem
with T -stages is a problem of the form

min
x1,u1,...,xn,yn

řT
i“1 ctpxt, utq

s.t. px1, u1q P X1
pxt´1, xt, utq P Xi, for i “ 1, . . . , T.

Alternatively, a T -stage problem can be written in dynamic programming
formulation as

Qtpxt´1q “ min
xt,ut

ctpxt, utq `Qt`1pxtq
s.t. pxt´1, xt, utq P Xt,

(3.24)

where Qt “ 0 when t equals T and we assume that x0 is constant. In this
formulation, the function Qt is the cost-to-go function from the pt´ 1q-th stage
to the t-th stage.

For large problems, it is in general computationally more efficient to solve
a multi-stage problem using formulation (3.24). Notice also that, although the
first stage problem looks exactly the same to the two-stage formulation in Defini-
tion 3.16, in that case the cost-to-go function Q was an arbitrary optimal value
function while in the multi-stage case it is the optimal value function of a problem
with T ´ 1 stages.
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3.4 Optimization under uncertainty
When modeling the hydrothermal scheduling example in the beginning of Sec-
tion 3.3, there is a detail that we glossed over: we cannot predict the future with
certainty. More specifically, when passing from the first to the second stage, the
total amount of stored energy should not beMH´x1, the initial amount of energy
minus how much hydroelectric energy was produced.

To make a more realistic model, it is necessary to consider how much rain
occurred between the two stages producing a certain gain on the total stored
energy. That is, if we denote by ξ the random variable representing the energy
gain that occurred between both stages because of rainfall, the total stored energy
at the second stage is MH ´ x1 ` ξ and the problem can be written as

min
x1,u1

cHx1 ` cTu1 `Qpx1, ξq
s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1

, Qpx1, ξq “ min
x2,u2

cHx2 ` cTu2

s.t. 0 ď x2 ďMT ´ x1 ` ξ
0 ď u2 ďMT

x2 ` u2 “ d2.

A stochastic program is a optimization problem where the cost-to-go functions
depends on a random variable. This makes the first-stage optimal value itself a
random variable

p˚pξq “ min
x1,u1

c1px1, u1q `Qpx1, ξq
s.t. px1, u1q P X1.

(3.25)

To find a solution to this problem, we would need to know in advance what the
random variable’s realization will be. In practice, it is better to minimize the
cost-to-go’s average, E rQpx1, ξqs, over all possible scenarios or even another risk
measure applied to the cost-to-go Q.

In Section 3.4.1 we will fix some notation that will make the presentation
of random functions cleaner. Then, in Section 3.4.2 we will present risk neu-
tral stochastic programs, were we use expected cost-to-go to solve optimization
problems. In Section 3.4.3, we introduce coherent risk measures and show how
can they be used in place of the expected value to model risk averse stochastic
programs.

In this section, we will only cover the necessary concepts to motivate and ex-
plain the later results of Chapters 5, 6 and 7. A much more thorough explanation
of stochastic programming can be found in the book [Shapiro et al., 2014].

3.4.1 Notation for random functions
Consider a probability space pΩ,F ,Pq, a random variable ξ and a function Qpx, ξq.
We can think of Q as a function x ÞÑ Qpx, ξq that for each value x returns a
random variable. In this case, we can speak of the expected value of Q as the
function

E rQs pxq “ Eξ rQpx, ξqs , (3.26)
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which is a (non-random) function of only x.

Alternatively, we could think ofQ as random variable on the space of functions.
That is, for each realization of ξ, we have a function Qξpxq “ Qpx, ξq. In this
case, we define the convex relaxation of Q as acting on the function Qξ for each
realization of ξ,

Q̌px, ξq “ Q̌ξpxq (3.27)

and, similarly, the Fenchel conjugate of Q as the function

Q˚px, ξq “ Qξ
˚pxq. (3.28)

During the remainder of this work, we will many times use an operator acting
on a random function as acting on only one of its variables. If this operator acts on
random variables, the definition will always be the same as that of equation (3.26)
and if the operator acts on functions, the definition will always be the same as
that of equation (3.27).

It is important to notice that in general the order we take these operations
do not commute. In fact, much of Chapter 5 can be thought as studying the
difference between the functions E rQ̌s and ~E rQs.

3.4.2 Risk-neutral optimization
In this section we formulate stochastic programs in a manner that is neutral
towards risk. This is done by optimizing the expected valued of the cost-to-go
function instead of considering the cost-to-go as a random variable function.

Definition 3.18 (Two-stage stochastic program). A two-stage stochastic program
is an optimization problem with the form

min
x1,u1

c1px1, u1q ` E rQpx1, ξqs
s.t. px1, u1q P X1

where Qpx1, ξq is the optimization problem

min
x2,u2

c2pξqpx2, u2q
s.t. px1, x2, u2q P X2pξq.

That is Q is a random optimal value function on x1 with both the objective
function c2 and the feasible set depending on the realization of the random
variable ξ.

The function E rQs is called the problem’s expected cost-to-go. It depends only
on the first stage state variable x1 and is, therefore, not random. Each possible
outcome ξ “ ξi from the random variable is called a scenario for the problem.
The function that takes Qp¨, ξiq is the cost-to-go for scenario the ξi.
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We now proceed to discuss the methods to evaluate the expected cost-to-go
of a stochastic program and how to calculate valid cuts for it. For simplicity,
we will assume that the uncertainty ξ has finite support. That is, there exists a
finite number of scenarios ξ1, . . . , ξN and numbers pi such that

Ppξ “ ξiq “ pi.

Each scenario ξi stands for a objective function ci2 and a feasible set X i. To
help unclutter notation, we we will sometimes write Qipx1q “ Qpx1, ξ

iq for the
cost-to-go of scenario ξi. In this setting the expected cost-to-go can be written
as a convex combination of the cost-to-go of each scenario

E rQpx1, ξqs “
Nÿ

i“1
piQ

ipx1q. (3.29)

This sum can be evaluated via a decomposed formulation or via a linked formu-
lation. On the following, we discuss the advantages and disadvantages of each
one.

3.4.2.1 Decomposed formulation

Definition 3.19 (Decomposed formulation). The decomposed formulation of
the expected cost-to-go consists in solving the N optimization problems Qipx1q
separately and, afterwards, evaluating the sum in Equation (3.29) to get the
value of E rQpx1, ξqs.

The decomposed formulation can also be used to calculate cuts for the ex-
pected cost-to-go from cuts obtained for each scenario. To do this, suppose we
calculated cuts at the point x1 “ y for each scenario using any of the methods in
Section 3.2.2. This gives us N affine functions satisfying

Qipx1q ě qi ´ xλi, x1 ´ yy, @i.
By taking the averages of the qi and λi, we get an average cut that is valid for
the expected cost-to-go,

Nÿ

i“1
piQ

ipx1q ě
Nÿ

i“1
pi
`
qi ´ xλi, x1 ´ yy

˘ “
Nÿ

i“1
piq

i ´ x
Nÿ

i“1
piλ

i, x1 ´ yy.

Setting

q̄ “
Nÿ

i“1
piq

i, λ̄ “
Nÿ

i“1
piλ

i (3.30)

we get an expression for the average cut as

E rQpx1, ξqs ě q̄ ´ xλ̄, x1 ´ yy. (3.31)

A question that may arise is if tightness of the cuts is preserved by this
procedure. For convex problems, the answer is in general affirmative. As we will
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shortly see, this requires the cut to be tight for the cost-to-go of all scenarios
at the same point, something that is normally not possible when the cost-to-go
functions are non-convex.

Theorem 3.20 (Tightness of average cut). Suppose that we have cuts

Qipx1q ě qi ´ xλi, x1 ´ yy
that are tight for each Qi at the point x1 “ y. That is, qi “ Qipx1q. Then the
average cut from Equation (3.30) is also tight at x1 “ y,

q̄ “ E rQpy, ξqs .

Proof. By evaluating the average cut at x1 “ y, we get

q̄ “
Nÿ

i“1
piq

i “
Nÿ

i“1
piQ

ipx1q “ E rQpy, ξqs .

An important thing to notice about this theorem is that it requires the cuts to
be tight for the cost-to-go functions Qi of each scenario, not only for their convex
relaxations Q̌i. In other words, the average cut is only guaranteed to be tight at
y if strong duality holds for the cost-to-go functions of all scenarios.

When solving a non-convex stochastic program, this requirement is rather
impractical because the best cuts we can calculate are only tight for Q̌i. To see
this, suppose that we have calculated a cut for each scenario that is tight on Q̌i

at the point x1 “ y. This could be done via Lagrangian cuts (Definition 3.15), for
example. Then we can use the fact that the convex relaxation is itself a concave
function with respect to the cone of non-negative functions to obtain

q̄ “
Nÿ

i“1
piQ̌ipyq “ E rQ̌py, ξqs ď ­E rQpy, ξqs.

This means that although in each scenario there was no gap between the cut and
the convex relaxation of the cost-to-go, the process of taking the averages may
produce a gap between the average cut and the expected cost-to-go.

3.4.2.2 Linked formulation

To calculate cuts that are tight for ~E rQs, we must formulate the expected cost-
to-go in such a way that all scenarios are linked in a single optimization problem.
We begin by writing the decision variables of the scenario ξi as pxi2, ui2q and the
cost-to-go as

Qipx1q “ min xi2, ui2 ci2pxi2, ui2q
s.t. px1, x

i
2, u

i
2q P X i.

The expected cost-to-go the average of these optimization problems. Considering
the decision variables to be different when the scenarios are different, the expect
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E

Figure 3.5: For non-convex problems, the average of cuts that are tight for each
scenario may not be tight for the expected cost-to-go.

cost-to-go can be written as a single optimization with all the variables at the
same time. This works because the sum of minima over different variables can
always be written as the minimum of the sum over all variables,

E rQpx1, ξqs “
Nÿ

i“1
piQ

ipx1q “
Nÿ

i“1
pi
˜

min
xi

2,u
i
2

ci2pxi2, ui2q
s.t. px1, x

i
2, u

i
2q P X i

¸

“ min
xi

2,u
i
2

for i“1,...,N

řN
i“1 pi c

i
2pxi2, ui2q

s.t. px1, x
i
2, u

i
2q P X i, for i “ 1, . . . , N.

(3.32)

This allows us to write the expected cost-to-go as a single optimal value function
considers all scenarios at the same time.

Definition 3.21 (Linked Formulation). The linked formulation for the expected
cost-to-go consists of the optimization problem

E rQpx1, ξqs “ min
xi

2,u
i
2

for i“1,...,N

řN
i“1 pi c

i
2pxi2, ui2q

s.t. px1, x
i
2, u

i
2q P X i, for i “ 1, . . . , N.

To evaluate the expected cost-to-go using the decomposed formulation amounts
to solving N separate optimization problems while the linked formulation requires
solving a single problems with N times the number of variables. Since solving
an optimization problems generally requires a computational cost that is above
liner on the number of variables, the decomposed formulation is faster to calcu-
late.

Nevertheless, the advantage of the linked formulation lies in the fact that it
can be used to calculate better cuts when the expected cost-to-go is non-convex.
This occurs because we are representing the expected cost-to-go as a single
optimal value function and, therefore, strengthened Benders and Lagrangian
cuts calculated for the linked formulation problem will always be tight for the
convex relaxation ~E rQs, while they were in general not tight when calculated
via the decomposed formulation. As occurred for the different types of cuts in
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Section 3.2.2, we again have a trade-off between computational cost and precision
when choosing a formulation for the expected cost-to-go.

We close this section with an important remark regarding Benders cuts.As we
will shortly see, there is no difference between taking the continuous relaxation
of the linked formulation problem and making the linked formulation of the
continuous relaxation for each scenario. As a consequence, calculating a Benders
cut using the decomposed or the linked formulation is the same. This means that,
for computational reasons, it is always better to calculate Benders cuts via the
decomposed formulation.

Theorem 3.22 (Linked formulation of continuous relaxation). Suppose the cost-
to-go for each scenario Qi is a convex problem except for some integrality con-
straints. Then, the linked formulation satisfies

E rQcs “ E rQsc .

Proof. Instead of separating the variables in state and control, let us separate
them in continuous and integer. That is, call yi the continuous variables and zi
the integer variables in scenario ξi and write the cost-to-go and its continuous
relaxation as

Qipx1q “ min
yi,zi

ci2pyi, ziq
s.t. px1, y

i, ziq P X i

yi P Rni , zi P Zki

, Qi
cpx1q “ min

yi,zi
ci2pyi, ziq

s.t. px1, y
i, ziq P X i

yi P Rni , zi P Rki .

The linked formulation for the expected cost-to-go is the optimal value function

E rQs px1q “ min
yi,zi

řN
i“1 pic

i
2pyi, ziq

s.t. px1, y
i, ziq P X i, for i “ 1, . . . , N

yi P Rni , zi P Zki , for i “ 1, . . . , N

whose continuous relaxation is the optimal value function obtained by relaxing
all integrality constraints

E rQsc px1q “ min
yi,zi

řN
i“1 pic

i
2pyi, ziq

s.t. px1, y
i, ziq P X i, fori “ 1, . . . , N

yi P Rni , zi P Rki , fori “ 1, . . . , N.

But looking at it, we see that it is the same optimal value function we would
obtain by writing the linked formulation for the continuous relaxations of the
cost-to-go Qi for each scenario.

Corollary 3.22.1. It is equivalent to calculate a Benders cut using the linked or
the decomposed formulation.
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Proof. The functions Qi
c are convex, meaning that we can calculate cuts that are

tight for them at a point x1. By Theorem 3.20, these cuts are tight for E rQcs
at x1. Using Theorem 3.22, these cuts will also be tight at x1 for the continuous
relaxation of the linked formulation E rQsc, meaning that they are Benders cuts
for the linked formulation.

3.4.3 Risk-averse optimization
In this section we extend the notion of stochastic program to also encompass
risk measures different from the average value applied to the cost-to-go func-
tions. We will introduce coherent risk measures, firstly introduced in [Artzner
et al., 1999], which are functionals over random variables that generalize concepts
such as the average and the supremum still maintaining most of their important
properties.

A risk-averse stochastic program, definition 3.27, is the same as a risk neutral
stochastic program where we exchange all the averages by another coherent risk
measure.

To motivate this new concept, consider again the hydrothermal scheduling
example viewed as a stochastic program. In this case the cost-to-go is a random
function depending on the rainfall ξ between the stages and the first-stage problem
is

min
x1,u1

cHx1 ` cTu1 ` E rQpx1, ξqs
s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1.

This problem makes the first stage decision considering the expected cost-to-go
as the second stage’s cost.

Suppose now that we are rather paranoid and do no think the expected cost-
to-go represents well the second stage. Instead, we want to take a first stage
decision considering that the worst case scenario will happen in the second stage.
That is, considering that the second stage’s cost is supξ Qpx1, ξq. In this case, the
problem becomes

min
x1,u1

cHx1 ` cTu1 ` supξ Qpx1, ξq
s.t. 0 ď x1 ďMH

0 ď u1 ďMT

x1 ` u1 “ d1.

This problem can be see as another formulation of our example stochastic program
that is much more averse to risk.

3.4.3.1 Coherent risk measures

Both the expected value E and the supremum over all scenarios supξ are examples
of coherent risk measures. These permit us to model stochastic programs with
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different degrees of risk aversion, what explains why in Section 3.4.2 we called
optimization using the expected cost-to-go risk-neutral. The formulation we use
throughout this book is based on that found in [Shapiro et al., 2014], with the
definition of coherent risk measures coming from [Artzner et al., 1999].

Definition 3.23. A function ρ : V Ñ r´8,`8s is called a coherent risk measure
if it satisfies

1. Monotonicity: If X ď Y , then ρpXq ď ρpY q;
2. Translation equivariance: For any a P R, ρpX ` aq “ ρpXq ` a;
3. Convexity: The risk measure ρ is convex. That is, for any λ P r0, 1s,

ρpλX ` p1´ λqY q ď λρpXq ` p1´ λqρpY q;

4. Positive homogeneity: If t ě 0, then ρptXq “ tρpXq.
If V is a space of random variables, both the expected value and the supremum

over all realizations satisfy the properties in Definition 3.23.

Theorem 3.24. Let V be a space of random variables. Then X ÞÑ E rXs and
X ÞÑ supX are coherent risk measures.

When using coherent risk measures instead of the expected value, a natural
question to ask is how it relates to convex functions. As we will shortly prove,
any convex non-decreasing function satisfies an analogous of Jensen’s inequality
in relation to any coherent risk measure.

Theorem 3.25 (Almost Jensen’s inequality). Let g : R Ñ R be a convex and
non-decreasing function and ρ a coherent risk measure. Then, for any random
variable X:

gpρpXqq ď ρpgpXqq.

Proof. Denote by c “ ρpXq. Since g is convex, Theorem 2.27 says that there
exists an a P R such that for all values of X

gpXq ě gpcq ` apX ´ cq.
This is a tight cut for g and as a consequence of Theorem 2.58, the multiplier a
must be non-negative because g is non-decreasing.

From the monotonicity of the risk measure ρ,

ρpgpxqq ě ρ
`
gpcq ` apX ´ cq˘

and we can use the positive homogeneity and translation equivariance to rewrite
this last expression as

ρpgpxqq ě gpcq ` a`ρpXq ´ c˘

ρpgpxqq ě gpρpXqq ` a`ρpXq ´ ρpXq˘ “ gpρpXqq.
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x

Figure 3.6: Any valid cut for a convex non-decreasing function has non-negative
slope.

If we select a family of probabilities P , taking the expected value of a random
variable with respect to each of them and choosing their supremum defines a
coherent risk measure

ρpXq “ sup
µPP

Eµ rXs .
As we will see, in fact any coherent risk measure that is proper and lower semi-
continuous can be represented in such a manner.

Theorem 3.26 (Dual representation of coherent risk measures). Any coherent
risk measure ρ, defined over a space V of random variables, that is proper and
lower semi-continuous may be written as

ρpXq “ sup
µPP

Eµ rXs

where the supremum is taken over the convex set

P “ tµ is a probability | Eµ rXs ď ρpXq, @X P V u.

3.4.3.2 Risk-averse stochastic programs

Definition 3.27 (Two-stage risk-averse stochastic program). Let ρ be a coherent
risk measure, a risk-averse stochastic program with respect to ρ is an optimization
problem with the form

min
x1,u1

c1px1, u1q ` ρpQpx1, ξqq
s.t. px1, u1q P X1

where Qpx1, ξq is the optimization problem

min
x2,u2

c2pξqpx2, u2q
s.t. px1, x2, u2q P X2pξq.
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That is Q is a random optimal value function on x1 with both the objective
function c2 and the feasible set depending on the realization of the random
variable ξ.

Notice that this is the same as Definition 3.18 if we take ρ to be the expected
value E. The function ρpQq is the problem’s risk-averse cost-to-go or ρCTG, for
short.

The optimization of coherent risk measures is a rich topic and will not be
pursued in depth in here. In what follows, we will restrict ourselves to the
differences between the decomposed and linked formulation for the risk-averse
cost-to-go and its consequences for calculating ρpQqpx1q and valid cuts for it. The
reader who is interested in the details theory’s details can find them in Chapter 6
of [Shapiro et al., 2014].

Suppose, as in Section 3.4.2 that the sample space is finite. That is, given a
random variable ξ there is only a finite number of possible outcomes ξ1, . . . , ξN .
Remember also the notation Qipx1q “ Qpx1, ξiq. In this context, the risk measure
ρ can be seem as a function from RN to R. Assuming that it is finite valued,
the fact that it is convex implies that it is also lower semi-continuous. Therefore,
writing p “ pp1, . . . , pNq for a vector of probabilities, the dual representation
becomes

ρpQqpx1q “ sup
pPP

Nÿ

i“1
piQ

ipx1q (3.33)

where the set P is a subset of the probability simples on Rn which uniquely deter-
mines the risk measure ρ. From this, we can write the decomposed formulation
for the risk-averse cost-to-go.

Decomposed formulation

Definition 3.28 (Decomposed formulation for ρCTG). The decomposed formula-
tion for the risk-averse cost-to-go consists in solving the N optimization problems
Qipx1q separately and, afterwards, evaluating the risk measure applied to the vec-
tor pQipx1q, . . . , QNpx1qq P RN using the optimization problem of Equation (3.33)
to get the value of ρpQqpx1q.

Similarly to the risk-neutral case, the decomposed formulation can be used to
calculate a valid cut for ρpQq from cuts defined for each scenario. Assume that
we have calculated cuts at the point x1 “ y for each scenario and, therefore, have
N affine functions satisfying

Qipx1q ě qi ´ xλi, x1 ´ yy.
Assume also that the maximum is attained when calculating ρpQqpyq using the
decomposed formulation. That is, there is a probability vector p˚ “ pp˚1 , . . . , p˚Nq
such that

ρpQqpyq “ sup
pPP

Nÿ

i“1
piQ

ipyq “
Nÿ

i“1
p˚iQ

ipyq.
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Notice that p˚ is feasible for calculating ρpQqpx1q for any value of the variable
x1. Hence, we get a valid cut for the risk-averse cost-to-go by

ρpQqpx1q ě
Nÿ

i“1
p˚iQ

ipx1q ě
Nÿ

i“1
p˚i

`
qi ´ xλi, x1 ´ yy

˘ “
Nÿ

i“1
p˚i q

i´ x
Nÿ

i“1
p˚i λ

i, x1´ yy.

Setting

q̄ “
Nÿ

i“1
p˚i q

i, λ̄ “
Nÿ

i“1
p˚i λ

i (3.34)

we get can express this new cut as

ρpQqpx1q ě q̄ ´ xλ̄, x1 ´ yy. (3.35)

An equivalent result to Theorem 3.20 holds for the risk-averse cost-to-go. That
is, we the cuts are tight for each scenario at x1 “ y, the cut constructed above
we also be tight for the risk-averse cost-to-go at this same point.

Theorem 3.29 (Tightness of average cut). Suppose that we have cuts

Qipx1q ě qi ´ xλi, x1 ´ yy

that are tight for each Qi at the point x1 “ y. That is, qi “ Qipx1q. Then the cut
constructed in Equation (3.34) is also tight at x1 “ y,

q̄ “ ρpQqpyq.

Proof. By evaluating the average cut at x1 “ y, we get

q̄ “
Nÿ

i“1
p˚i q

i “
Nÿ

i“1
p˚iQ

ipx1q “ sup
pPP

Nÿ

i“1
p˚iQ

ipx1q “ ρpQqpx1q.

In Section 3.4.2, we discussed the fact that this tightness result requires that
in each scenario the cuts are tight for Qi. It is, in general, no sufficient to have
cuts that are tight for the convex relaxations Q̌i. The same happens for risk-
averse problems. To see this, notice that the function x1 ÞÑ pQ̌1px1q, . . . , Q̌Npx1qq
is convex in relation to the non-negative cone and that ρ is convex and non-
decreasing, by the definition of coherent risk measure. Thus, the map x1 ÞÑ
ρpQ̌qpx1q is a convex function. By monotonicity, we know that Q̌ ď Q ùñ
ρpQ̌q ď ρpQq. But ρpQ̌q is a convex function below ρpQq and by the definition of
convex relaxation,

ρpQ̌q ď ~ρpQq ď ρpQq. (3.36)

Therefore, calculating cuts that are tight for Q̌i is not enough to calculate cuts
that are tight for the convex relaxation of the entire risk-averse cost-to-go.
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Linked formulation Remember from Equation (3.32) that we can write the
average of all scenarios as single minimization problem. Since a coherent risk mea-
sure is representable by the maximum of a set of averages the linked formulation
for risk-averse problems consists in solving this maxmin problem.

Definition 3.30 (Linked formulation for ρCTG). The linked formulation for the
risk-averse cost-to-go consists of the optimization problem

ρpQqpx1q “ max
pPP

min
xi

2,u
i
2

for i“1,...,N

řN
i“1 pi c

i
2pxi2, ui2q

s.t. px1, x
i
2, u

i
2q P X i, for i “ 1, . . . , N.

For an arbitrary risk measure, this linked formulation may be a rather compli-
cated problem. If the cost-to-go functions are convex, the minimization for each
fixed p is a convex problem and the maximization is taken for a concave function
of p over a convex set, therefore is also a convex problem. This problem can be
used to calculate cuts that are tight for the convex relaxation ~ρpQq.

We give next an example of a coherent risk measure that can be written as a
minimization problem and, hence, whose linked formulation can be written as a
single optimal value function.

3.4.3.3 Conditional value-at-risk

The first example of coherent risk measure that we introduced consisted in the
maximum of a random variable. A middle ground between it and the risk-neutral
approach is given by the conditional value at risk, defined using the formulation
from [Rockafellar and Uryasev, 2000, thm. 1, pg. 5].

Definition 3.31 (Conditional Value-at-Risk). The α conditional value-at-risk is
the function defined by

CVaRαrXs “ inf
zPR

z ` 1
1´ αE

“rX ´ zs`
‰

where rxs` “ maxtx, 0u is the positive part of x.

The CVaRα is a coherent risk measure [Shapiro et al., 2014, ex 6.16, pg 272]
that is always between the expected value and the supremum for any α. Moreover
it approaches the supremum when α Ñ 0 and approaches the expected value
when αÑ 1. In order to express a linked formulation for the CVaRα of a cost-to-go
function, we will use the formulation given below.

Supposing that the random variable X has finite support, the conditional
value-at-risk can be rewritten as the optimal value function of a linear program.
To see this, call PrX “ xis “ pi. Then the formulation may be rewritten as

CVaRαrXs “ min
zPR

z ` 1
1´ α

Nÿ

i“1
pirxi ´ zs`.
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By rewriting each term rxi ´ zs` of the sum in epigraph form, this yields

CVaRαrXs “ min
z,t

z ` 1
1´α

řN
i“1 piti

s.t. maxtxi ´ z, 0u ď ti,
z P R

“ min
z,t

z ` 1
1´α

řN
i“1 piti

s.t. xi ď ti ` z,
t ě 0, z P R,

(3.37)

which is the optimal value function of a linear program.

The representation (3.37) for the conditional value-at-risk can be used instead
of Definition 3.30 to express the linked formulation for CVaRα in a manner that
is more suitable for computational applications. To do that, recall that the
cost-to-go for scenario ξi is

Qipx1q “ min
xi

2,u
i
2

cipxi2, ui2q
s.t. px1, x

i
2, u

i
2q P X i.

Since for each value x1, the cost-to-go is a random variable whose possible real-
izations are Qipx1q for i “ 1, . . . , N , the linked formulation for CVaRαrQspx1q can
be written as

CVaRαrQspx1q “ min
z,t

z ` 1
1´α

řN
i“1 piti

s.t. Qipx1q ď ti ` z, for i “ 1, . . . , N
t ě 0, z P R.

(3.38)

If we introduce additional variables xi2, ui2, the expression above may be equiva-
lently rewritten as

CVaRαrQspx1q “ min
z,t,x2,u2

z ` 1
1´α

řN
i“1 piti

s.t. cipxi2, ui2q ď ti ` z, for i “ 1, . . . , N
px1, x

i
2, u

i
2q P X i, for i “ 1, . . . , N

t ě 0, z P R.

(3.39)

This optimal value function is the linked formulation for CVaRαrQs.
To see that in fact the problems in Equations (3.38) and (3.39) are equivalent,

fix x1 and let z˚, t˚ be optimal solutions of (3.38) and pxi2˚, ui2˚q be optimal
solutions for the cost-to-go Qipx1q for each stage. Then the point pz˚, t˚, x˚2 , u˚2q
is feasible for the problem in (3.39). Furthermore, since cipx˚2 , u˚2q “ Qipx1q is the
minimum possible value that ci may attain at a feasible point, this problem has
the same optimal value as (3.38) and, therefore, also equals CVaRαrQspx1q.

3.4.4 Multi-stage stochastic programming
So far, we have only discussed two-stage stochastic programs, but multi-stage
problems from Section 3.17 can also be stochastic. For a T -stage problem, the
uncertainty is given by a stochastic process ξt with t “ 2, . . . , T and the problem at
stage t is assumed to depend on the entire past but not on the future realizations of
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the uncertainty. In this work, multi-stage stochastic programs will only reappear
in Chapter 7 with the assumption that ξ is stagewise independent. That is, the
random variable ξt is independent of all previous uncertainties ξ2, . . . , ξt´1.

Definition 3.32 (Multi-stage stochastic program). A multi-stage stochastic pro-
gram is an optimization problem with the form

min
px1,u1qPX1

c1px1, u1q ` ρ2

˜
min

px1,x2,u2qPX2
c2px2, u2q ` ρ3

´
min

px3,x3,u3qPX3
c3px3, u3q ` ¨ ¨ ¨

¨ ¨ ¨ ` ρT
`

min
pxT ´1,xT ,uT qPXT

cT pxT , uT q
˘¯

¸

where ξt is a stochastic process and ρt are coherent risk measures.

In the most common case where all ρt equal the expected value E, the problem
is said to be risk-neutral.

Suppose that the uncertainty ξ is stagewise independent. Then, this problem
may be given a dynamic programming formulation similar to Equation (3.24)
as

Qtpxt´1, ξtq “ min
xt,ut

ctpxt, utq ` Q̄t`1pxtq
s.t. pxt´1, xt, utq P Xt

(3.40)

where pct, Xtq are the random data representing the random variable ξt and the
function

Q̄t`1pxtq “
#
ρt`1

`
Qt`1pxt, ξt`1q

˘
, t “ 1, . . . , T ´ 1

0, t “ T
(3.41)

is the expected cost-to-go for stage t` 1. Since we supposed the uncertainty to
be stagewise independent, this formulation is indeed equivalent to Definition 3.32
because the expected cost-to-go for stage t`1 is independent from the realizations
of the uncertainty at the previous stages and we can rewrite this expression as a
sum over all stages. For a deeper discussion of the formulations for multi-stage
stochastic programs, see [Shapiro et al., 2014, sec 3.1].
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For smooth functions on some open subset Ω of Rn, the usual definition of
convexity is equivalent to saying that its Hessian is always positive semidefinite.
That is,

f is convex in Ω ðñ D2fpxq ě 0, @x P Ω. (4.1)

Remembering from Theorem 2.33 that a convex function on Rn is always con-
tinuous in the interior of its domain, a question arises: Is there an analogous of
Equation (4.1) for functions which are only continuous?

The answer is affirmative in the context of the Theory of Distributions, de-
veloped by Laurent Schwartz in [Schwartz, 1966], and explained in this work
throughout Section 4.2. In this theory, we consider not just functions in the strict
sense but also other more general objects for which we can extend the notion
of derivative. The main result in this section is theorem 4.27 which says that a
distribution is a convex function if and only if its generalized derivative is positive
semidefinite in a sense that will be analogous to Equation (4.1).

Besides distributions, this chapter also deals with two other topics that are
closely related to it: measures and convolutions. A measure is a special type
of function that generalizes the notions of volume and probability. They are
introduced in Section 4.1 where we discuss decompositions of measures, which
will later be used to study the generalized derivatives of continuous functions.
The development of measure theory will not pursued in any depth and we only
focus on those definitions and results that essential for the later applications. In
particular, we will not discuss integration theory here. The interested reader
may consult [Folland, 1999] for a more thorough presentation of measure theory.
Convolutions are introduced in Section 4.2.3 and are a suitable tool to represent
additive noises, as will be done in Chapter 5. The convolution of two functions is
a kind of product that can be interpreted as a moving average of one function in
relation to the other. It is of great importance thanks to its smoothing properties
and the fact that it preserves convexity.

Throughout this chapter, we put a special emphasis in the role played by
convexity, both of functions and of sets, when dealing with measures and distri-
butions.
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4.1 Measures
The study of collections of measurable sets and measures over them is called
measure theory. Besides generalizing and better explaining the ideas of length,
area, and volume, it is also serves as a foundation to probability and is of great
importance in many applications of analysis.

This section introduces some results from measure theory that will be impor-
tant afterwards. Since this subject is only tangential to the main topics of this
work, the treatment given here is in no way comprehensive. Thus, we recommend
the books [Folland, 1999] and [Tao, 2011] as references on Measure Theory.

Given a set X, we wish to define a proper way to measure its subsets. It is
not always possible to do for every subset of X. Hence, we restrict ourselves to
study families of subsets called σ-algebras, defined below.

Definition 4.1. A σ-algebra on a set X is a subset F of PpXq satisfying
• H P F ,
• Closure under complements. That is, A P F ùñ Ac P F ,
• Closure under countable unions. That is, if A1, A2, . . . is a countable se-

quence of elements in F , then
Ť
nPNAn P F .

The axioms for a σ-algebra also imply that it is closed under countable inter-
sections, since č

nPN
An “

´ď

nPN
Acn

¯c
(4.2)

and that it contains the entire space X, since Hc “ X.

The pair pX,Fq is called measurable space and the elements of F are called
measurable sets. Given some family C of subsets ofX, it is often useful to consider
the smallest σ-algebra containing it, denoted by σpCq. This is always well-defined
since PpXq is a σ-algebra and an arbitrary intersection of σ-algebras is also a
σ-algebra.

Definition 4.2. The σ-algebra generated by a set C Ă PpXq is the intersection
of all the σ-algebras containing C.

One important case of σ-algebra that often arises is the Borel σ-algebra of
a topological space X, which is the σ-algebra generated by the open sets of
that space and denoted BpXq. Thanks to the closure under complements, this
σ-algebra also contains the closed sets as well as every countable union and
intersection of open and closed sets. The example that we will encounter the
most is BpRnq.

After establishing what we can measure (the measurable sets), we want to
establish how we can measure them. This is accomplished via Definition 4.3 of
measures over a σ-algebra.
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Definition 4.3. A measure over a measurable space pX,Fq is a function µ : F Ñ
R satisfying

• µpHq “ 0,

• If A1, A2, . . . is a sequence of disjoint elements of F ,

µ
´ď

nPN
An

¯
“

ÿ

nPN
µpAnq.

Remark 4.1. Definition above is sometimes called a finite signed measure to
distinguish it from the other cases below.

The last property in Definition 4.3 is called countably additivity and is the
distinguishing characteristic of a measure. If we look back at the definition of
σ-algebra, we see that its properties are defined in such a way that a measure is
always well-defined over them. The pair pX,F , µq is called a measure space.

As we did for ordinary functions in Chapter 2, it is also very useful to consider
extended real-valued measures, that is, measures µ : F Ñ r´8,`8s. A difference
in this context is that we can extend the codomain only in one direction, for
additivity implies that if there are disjoint sets P and N such that µpP q “ `8
and µpNq “ ´8, then

µpP YNq “ µpP q ` µpNq “ 8 ´8,

that is an expression from which we cannot make sense. As we already gave some
preference to `8 when dealing with convex functions, we will always assume
that a measure can only take positive infinite values.

An important case consists of the non-negative measures, which, as the name
implies, are measures whose image is always non-negative. In other words, A
non-negative measure over a measurable space pX,Fq is a measure µ : F Ñ r0,8s
which only takes non-negative values. If, besides non-negativity, it also holds
that µpXq “ 1, the measure µ is called a probability which is certainly the most
important kind of measure throughout the remainder of this dissertation.

Notice that the set of signed measures over some measurable space is a vector
space with addition and multiplication by scalar defined pointwisely while the non-
negative measures form a convex cone and probabilities form a convex set.The
cone of non-negative measures induces a natural ordering on the signed measures,
which we will always use thereafter.

Definition 4.4 (Measure Ordering). If µ, ν : F Ñ R are measures, we say that
µ ď ν if

µpAq ď νpAq, @A P F .

An example of measure is the point mass at a a P X. It is well-defined for
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any σ-algebra of X by the formula

δapBq “
#

1, a P B
0, a R B. (4.3)

These measures will play an important role later in this work because they form
a basis for the space of measures with finite support. One consequence of this is
that any probability p with support in tx1, x2, . . . , xNu and assigning ppxkq “ pk
can be written as convex combinations of the δxk

as

p “
Nÿ

k“1
pkδxk

.

Lebesgue measure The main example of a measure is the Lebesgue Measure
on Rn, which generalizes the notions of length, areas and volumes for every set
on the Borel σ-algebra of Rn, and even to a larger collection of sets called the
Lebesgue σ-algebra of Rn and denoted by LpRnq.

It is the only translation invariant measure in Rn which is equivalent to the
usual notion of volume in a cube. Defining the volume of a cube to be the product
of its sides,

Volpra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bnsq “
nź

i“1
|bi ´ ai| ,

the Lebesgue measure of a set A is the smallest “volume” of a cover by open
cubes that a set can have:

λpAq “ inf
!ÿ

kPN
VolpCkq

ˇ̌
ˇC1, C2, . . . such that A Ă

ď

kPN
Ck

)
. (4.4)

The Lebesgue measure of a set always coincides with the volume defined via
Riemann integration or other classical methods, when these are defined for A.
The proof that (4.4) is truly a measure on a σ-algebra containing BpRnq is done
via Carathéodory’s method, which is out of scope for this dissertation but whose
details can be found at [Folland, 1999].
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Figure 4.1: An illustration of Lebesgue measure as a covering by rectangles.

4.1.1 The Hahn-Jordan decomposition
Many times, when dealing with a function f from a set X to R, it is useful to
consider its decomposition into its positive and negative part.

Definition 4.5. The positive part of a function f is defined by

f`pxq “ maxtfpxq, 0u,

and its negative part by

f´pxq “ ´mintfpxq, 0u.

Both f` and f´ are non-negative functions and the function f can be recon-
structed from them as f “ f`´f´. These two functions also satisfy a minimality
property because of their definition as optimal value functions: they are below
any other pair of functions whose difference is f .

Theorem 4.6. If g, h : X Ñ R are non-negative functions such that f “ g ´ h,
then

f` ď g and f´ ď h.

Measures also admit a similar decomposition as a difference of non-negative
measures. It is not as simple as the one in Definition 4.5 since even if µ : F Ñ R
is a measure the function A ÞÑ maxtµpAq, 0u, in general, is not. In what follows
we will construct the Hahn-Jordan decomposition of a measure µ as the difference
of two non-negative measures. We begin with Theorem 4.7, which says that
any measure space can be partitioned into a union of a positive and a negative
set.



74 Chapter 4. Measures and Distributions

Theorem 4.7 (Hahn decomposition). Let F be a σ-algebra of the subsets of X
and µ : F Ñ p´8,8s be an extended measure over F . Then there are disjoint
measurable sets P and N such that X “ P YN and

A Ă P ùñ µpAq ě 0,
B Ă N ùñ µpBq ď 0.

A proof of theorem 4.7 can be found at [Folland, 1999] or [Durrett, 2017].
This decomposition is not unique, since we can transfer any set such that all its
subsets have zero measure from P to N or vice versa. Nevertheless, any such
decomposition can be used to write µ as a difference of two non-negative measures
and the result will be the same.

Definition 4.8. A pair of measures µ1, µ2 : F Ñ p´8,`8s are mutually singular
if it exists a measurable set S such that

A Ă S ùñ µ1pAq “ 0,
A Ă Sc ùñ µ2pAq “ 0.

This definition says that the space X can be decomposed into two sets S and
Sc such that µ1 is zero for any subset of S and µ2 is zero for for any subset of
Sc.

Theorem 4.9 (Hahn-Jordan decomposition). Let µ : F Ñ p´8,`8s be a signed
measure. Then, there exists a unique decomposition

µ “ µ` ´ µ´
where µ` and µ´ are mutually singular non-negative measures.

Similarly to the decomposition of ordinary functions in Definition 4.5, the
Hahn-Jordan decomposition of a measure µ also admits a characterization as a
optimal value function. Furthermore, the fact that they are mutually singular
also provides a minimality property, analogous to Theorem 4.6.

Corollary 4.9.1. If µ : F Ñ R is a finite measure, then the components of its
Hahn-Jordan decomposition satisfy

µ`pAq “ sup µpEq
s.t. E Ă A,

E P F

, µ´pAq “ ´ inf µpEq
s.t. E Ă A,

E P F

Corollary 4.9.2 (Minimality of the Hahn-Jordan decomposition). Any other de-
composition of a signed measure µ has components greater than the ones given
by the Hahn-Jordan decomposition. That is, if there are positive measures λ and
ν such that µ “ λ´ ν then

λ ě µ`, ν ě µ´.
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A proof to both of these corollaries can be found at [Fischer, 2012]. In the
subsequent sections, we will denote by r¨s` and r¨s´, the functions that take a
measure to its positive or negative part. An interesting fact, that will be used in
Section 5.3, is that both these functions are convex with relation to the cone of
non-negative measures.

Theorem 4.10. Both r¨s` and r¨s´ are convex in relation to the cone of non-
negative measures. That is, if µ and ν are measures, then for any t P r0, 1s:

rtµ` p1´ τqνs` ď trµs` ` p1´ tqrνs`,
rtµ` p1´ τqνs´ ď trµs´ ` p1´ tqrνs´.

Proof. From Corollary 4.9.1, for each fixed A P F , we can represent µ ÞÑ rµs`pAq
as the optimal value function that varies the objective function of a maximization
problem. As we saw in Theorem 3.5, this is a convex function in the measure µ.
Therefore,

rtµ` p1´ tqνs`pAq ď trµs`pAq ` p1´ tqrνs`, @A P F .
The same argument holds for µ ÞÑ rµs´.

4.1.1.1 Total variation norm

The Hahn-Jordan decomposition permits us to write any measure as µ “ µ`´µ´.
If we sum these components, we get a non-negative measure called the total
variation of µ.

Definition 4.11. The total variation of a measure µ is the non-negative measure

|µ| “ µ` ` µ´,
where µ` and µ´ are the components of the Hahn-Jordan decomposition of µ.

As the notation hints, the total variation of a measure plays an analogous
role to the absolute value of a function. As an example, it always holds that
µ ď |µ| and the function µ ÞÑ |µ| is convex in relation to the cone of non-negative
measures.

On a measurable space pX,Fq, the set of all measures such that |µ| pXq is
finite forms a vector space. Moreover, the total variation applied to X is a norm
which turns it into a Banach space.

Theorem 4.12. Given a measurable space pX,Fq, the set of all measures such
that |µ| pXq is finite is a Banach space with norm ‖µ‖ “ |µ| pXq.
Remark 4.2. Notice that, since |µ| is non-negative, additivity says that

A Ă B ùñ µpBq “ µpAq ` µpBzAq ě µpAq.
Therefore the maximum of |µ| is attained when it is applied to the entire X:

|µ| pXq “ sup
EPF

|µ| pEq.
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4.1.2 Vector and matrix valued measures
The countably additivity property of measures only requires that we can sum
elements of the measure’s codomain and that there is some notion of convergence
on these elements. Therefore, it is possible to extend this notion to a finite-
dimensional real vector space.

Definition 4.13. Given a measurable space pX,Fq, a vector measure is a function
µ : F Ñ Rn satisfying

• µpHq “ 0,

• If A1, A2, . . . is a sequence of disjoint elements of F ,

µ
´ď

nPN
An

¯
“

ÿ

nPN
µpAnq.

Vector measures will be useful in Section 4.2, where we will see that they can
be used to represent the gradient and Hessian of a continuous function.

The interested reader can find the theory of vector measures in the books
[Diestel and Uhl, 1977] and [Rao, 2011] as well as the article [Robertson and
Rosenberg, 1968], where the theory of matrix-valued measures is studied.

4.2 Distributions
A classical result for smooth functions, as can be found in [Boyd and Vanden-
berghe, 2004], says that f P C2pRnq is convex if and only if its Hessian is always
positive semi-definite.

The aim of this section is to build a generalization to this theorem for a
general convex function whose domain is open. To achieve this, we will define
distributions as the continuous linear functionals over the space of infinitely
differentiable, compactly supported functions which is a space “large” enough to
contain all the locally integrable functions as well as sufficiently regular measures.
Then, we show that the notion of derivative can be properly generalized to any
distribution in a way that is compatible with the usual sense when applied to a
differentiable function. In fact, theorem 4.19 says that, in this generalized sense,
any distribution has infinitely many derivatives.

In Section 4.2.2 we present some regularity results concerning the derivatives
of distributions. That is, theorems saying that if a distribution’s derivative is
regular enough then the distribution is indeed a function. Specially, theorem 4.27
says that a distribution is a convex function if and only if its generalized Hessian
is a positive semi-definite measure, in the sense of Section 4.1.2.

Later, in Section 4.2.3, we present some results regarding convolutions of
distributions, which will be a useful tool in order to represent additive noises
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throughout Chapter 5. The notion of convexity will also reappear in this context
through Titchmarsh theorem, which says that

conv supppf ˚ gq “ conv supppfq ` conv supppgq. (4.5)

More thorough treatments of these subjects can be found on the original trea-
tise [Schwartz, 1966] or on a more modern language in [Hörmander, 2003].

4.2.1 Distributions
Our main motivation to work with distributions is to extend the algebraic rules
of calculus that work well for smooth functions to more general objects. This can
be done via duality on a suitable space of test functions. One of the most regular
classes of functions is that of infinitely differentiable functions whose support is
a compact set. These will be our test functions.

Throughout what follows, we will work with functions defined on some open
subset Ω of Rn.

Definition 4.14. The support of a function f : Ω Ñ R is the closure of the set
where it does not equal zero,

supppfq “ cltx P Ω | fpxq ‰ 0u.

Definition 4.15 (Test functions). a test function on Ω is an element of C8c pΩq,
the space of infinitely differentiable functions with compact support on Ω.

As an example of a test function on Rn, we can define

fpxq “
#

exp
´

1
1´‖x‖2

2

¯
, ‖x‖2 ď 1

0, otherwise

where ‖x‖2 “
ařn

i“1 x
2
i is the usual euclidean norm on Rn.

In order to better handle the notation of multiple derivatives, we will use
throughout this section the multi-index notation.

Definition 4.16 (Multi-index notation). If α “ pα1, . . . , αnq P Nn is a tuple of
non-negative integers, we write

|α| “
nÿ

i“1
αi, Bαf “ B|α|f

Bxα1
1 . . . Bxαn

n

.

A distribution is then defined to be a linear functional over the test functions
satisfying some regularity conditions.
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Definition 4.17 (Distributions). A distribution f in Ω is a linear function over
C8c pΩq such that for each fixed compact subset K of Ω there are constants C and
l such that for all φ P C8c pΩq,

|fpφq| ď C
ÿ

|α|ďl

sup
xPΩ

|Bαφpxq| .

Although Definition 4.17 is rather technical, it can be seem as the condition
that the distribution must be continuous for a certain topology on the test
functions. This point of view will not be pursued here but can be found by the
interested reader at [Schwartz, 1966].

We now proceed to present some examples of distributions, showing that the
definition applies to a large family of objects.

• Any locally integrable function defines a distribution. That is, if f is a
function such that

ş
K
|f | is finite for every compact set K, then we can

define a distribution Tf by

Tf pφq “
ż
fpxqφpxq dx.

This class of functions encompasses all LppΩq functions as well as the con-
tinuous functions, including the test function themselves.

• Any measure µ on the Borel sets of Rn which is finite on every compact set
defines a distribution Tµ by the formula

Tµpφq “
ż
φ dµ.

• The linear functionals δα defined by

δαpφq “ Bαφp0q.

On the previous examples, we saw that functions and measures can be used to
defined distributions through integration. Since this representation is well-defined
and injective, no confusion shall arise if we talk about a distribution being a func-
tion or a measure. In other words, we will refer to f and Tf interchangeably.

In order to define the derivative of a distribution, notice that any single
variable test function ψ defines a distribution and that its derivative ψ1 is also a
test function. Thus, we can consider ψ1 as a distribution and apply it to another
test function φ. From integration by parts and the fact that the support of φ is
compact:

ż
ψ1pxqφpxq dx “ rψφs`8´8 ´

ż
ψpxqφ1pxq dx “ ´

ż
ψpxqφ1pxq dx.
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Thus, we get that ψ1pφq “ ´ψpφ1q. If we iterate this process, we get a formula
to the k-th derivative by ψpkqpφq “ p´1qkψpφpkqq. This process can be used to
define the partial derivatives of an arbitrary distribution.

Definition 4.18 (Distributional derivative). If T is a distribution and α some
multi-index, we define the α-th distributional derivative of T as

B|α|T pφq “ p´1qαT pBαφq.

The derivative of a distribution is also a linear functional over the test functions
satisfying the conditions of definition 4.17. Therefore, it is also a distribution.
From this we see that every distribution is infinitely differentiable on the sense of
definition 4.18. Furthermore, it can be proved that if f is actually a differentiable
function, its distributional derivative equals the usual one These facts are proved
in [Hörmander, 2003].

Theorem 4.19. For any distribution f , Bαf is also a distribution. Furthermore,
if f is a differentiable function, its distributional derivative coincides with its
usual one.

4.2.1.1 Jump formula

We proceed to derive formulas for the derivatives of single variable piecewise
smooth functions. The main interest of this procedure is that the optimal value
functions of mixed integer linear programs are piecewise linear. We give the name
of jump formula to these results.

Here, two distributions will play a major role. The point mass measures from
Equation (4.3), which when viewed as distributions act as

δapφq “ φpaq, (4.6)

and the Heaviside function, defined shortly.

Definition 4.20. The Heaviside function H is defined by

Hpxq “
#

1, x ą 0
0, x ă 0.

The Heaviside function is constant by parts with a jump on zero. Its derivative
is a point mass at zero as proved in [Schwartz, 1966]:

H 1 “ δ0. (4.7)

This result can be seem as saying that H has zero derivative at all its points
of differentiability while the “jump” at zero is represented by the δ0 on the
derivative.

This same intuition can be applied to an arbitrary piecewise smooth function
wielding the general jump formula.
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Theorem 4.21 (Jump formula). Let f1 and f2 be differentiable functions and
define, for a P R, the function

fpxq “ f1pxq ¨Hpx´ aq ` f2pxq ¨Hpa´ xq “
#
f1pxq, x ă a

f2pxq, x ě a
.

Then the distributional derivative of f is

f 1 “ f 11 ¨Hpx´ aq ` f 12 ¨Hpa´ xq ` rf2pa`q ´ f1pa´qsδa.

This theorem can be interpreted as saying that if f is differentiable in all
point except for a, then its distributional derivative is the expected one at these
points and at a it is a point mass proportional to the jump of f at this point.
As an example, we will apply this formula to the absolute value |x|, which is
differentiable except when x “ 0. Since |0`| “ |0´|,

|x|1 “
#

1, x ě 0
´1, x ă 0

.

Theorem 4.21 can also be extended to when f is a function whose points of
non-differentiability are all isolated.

Corollary 4.21.1. Let f “ ř
fi ¨1pai´1,aiq where each fi is differentiable in pai´1, aiq.

The its derivative is given by
f 1 “

ÿ

i

f 1i ¨ 1pai´1,aiq `
ÿ

i

“
fi`1pa`i q ´ fipa´i q

‰
δai
.

We can also specialize this result to the optimal value functions of mixed
integer programs. These are the minimum of convex functions, which can be
represented as piecewise convex functions.

Corollary 4.21.2 (Minimum of convex functions). Let f “ mini fi where each fi is
a convex function. The function f is continuous and there are intervals pai´1, aiq
such that

f “
ÿ

i

fi ¨ 1pai´1,aiq.

The first and second derivatives of f are
f 1 “

ÿ

i

f 1i ¨ 1pai´1,aiq,

f2 “
ÿ

i

f2i ¨ 1pai´1,aiq ´
ÿ

i

“
f 1ipa´i q ´ f 1i`1pa`i q

‰
δai
,

where each f2i is a non-negative measure (by Theorem 4.27.1) and each jump is
non-positive.

If the fi on Corollary 4.21.2 are polyhedral, their second derivatives are non-
negative linear combinations of point masses. In this case, f2 is a sum of point
masses which are positive in the points of differentiability of each fi and negative
on the points where the minimum changes from one fi to another.
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4.2.2 Regularity results
In this section we discuss some regularity results concerning distributions. That
is, theorems saying that if a distribution f satisfies some given property, then it
must be a measure or a function.

Our first result is that the only distributions whose derivatives are continuous
functions are the continuously differentiable functions.

Theorem 4.22. A distribution f is a continuously differentiable function if and
only if Bif is a continuous function for each i from 1 to n.

Analogous results exist for when the partial derivatives of a distribution are
locally continuous functions or measures. Together, these theorems show that
the distributional derivative reduces the regularity in a similar way to the usual
definition of derivative, taking differentiable to continuous functions, continuous
to locally integrable functions and locally integrable functions to measures.

Theorem 4.23. A distribution f is a continuous function if and only if Bif is a
locally integrable function for each i from 1 to n.

Theorem 4.24. A distribution f is a locally integrable function if and only if
Bif is a measure for each i from 1 to n.

Proofs to Theorems 4.22, 4.23, and 4.24 can be respectively found at theo-
rem VII of Chapter II and theorem XVIII of Chapter VI of [Schwartz, 1966].

Since distributions are linear functionals over C8c pΩq, we can define the cone
of non-negative distributions as the dual cone to the non-negative test func-
tions.

Definition 4.25. A distribution f on Ω is non-negative if for all φ P C8c pΩq such
that φ ě 0,

fpφq ě 0.

An important aspect of this cone is that it coincides with the cone of non-
negative measures.

Theorem 4.26. If f is a non-negative distribution, it is in fact a non-negative
measure.

A proof to this theorem can be found at theorem 2.1.7 of [Hörmander,
2003].

The main result of this section is Theorem 4.27 together with its Corol-
lary 4.27.1, which characterize convex functions in terms of their second deriva-
tives.

Given a distribution f , we can write its distributional Hessian as the ma-
trix

pD2fqij “ BiBjf
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whose components are the second partial derivatives of f . This generalizes the
usual notion of a function’s Hessian and defines a quadratic form from Rn to
the distributions. That is, if a and b are vectors in Rn, they give a distribution
by

xa, pD2fqby “
ÿ

i,j

aibjBiBjf.

The next theorem says that a distribution is a convex function if and only if its
Hessian defines a positive semi-definite quadratic form.

Theorem 4.27. A distribution f is a convex function if and only if

xc, pD2fqcy “
ÿ

i,j

cicjBiBjf ě 0

for any choice of c P Rn.

The proof to this theorem can be found at Theorem 4.1.7 of [Hörmander,
2003].

From Theorems 4.23 and 4.24 we see that a distribution f is a continuous
function if and only if BiBjf is a measure for each i, j “ 1, . . . , n. Thus, the
distributional Hessian of f ,

pD2fqij “ BiBjf,

is a symmetric matrix measure. Remembering that a convex function is always
continuous on the interior of its domain, theorem 4.27.1 says that f is convex if
and only if D2f is positive semi-definite.

Corollary 4.27.1. A distribution f is a convex function if and only if its distribu-
tional Hessian D2f is a positive semi-definite matrix measure. That is, for each
Borel set A, D2fpAq is a positive semi-definite matrix.

Proof. If f is a convex function, Theorems 4.23 and 4.24 imply that BiBjf are all
measures. By Theorem 4.27, for each vector c P Rn, xc, pD2fqcy is non-negative.
Thus D2f is positive semi-definite.

If D2f is a positive semi-definite matrix measure, then for each vector c P Rn,
xc, pD2fqcy is a non-negative measure and Theorem 4.27.1 says that f is a convex
function.

Remark 4.3. Notice that for distributions over R, the theorems above are equiva-
lent to saying that f is a convex function if and only if rf2s´ “ 0, where r¨s´ is
the negative part of the Hahn-Jordan decomposition 4.9. This point of view will
be retaken in Section 5.3 where use rf2s´ as a way to measure the non-convexity
of a continuous function f .
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4.2.3 Convolution of distributions
Definition 4.28. Given test functions f, g P C8c pRnq, their convolution is the
function

pf ˚ gqpxq “
ż
fpx´ yqgpyq dy.

The convolution of two test functions is also a test function. Furthermore,
it satisfy some properties that turn it into a “product” on the space of test
functions.

Theorem 4.29. The convolution between test functions satisfies

• Commutativity: f ˚ g “ g ˚ f ;
• Associativity: f ˚ pg ˚ hq “ pf ˚ gq ˚ h;
• Linearity: For all λ P R, pλf ` gq ˚ h “ λpf ˚ hq ` g ˚ h.
Unlike the usual product of functions, when taking the derivative of a convo-

lution, we can chose which term we want to derive.

Theorem 4.30. The derivatives of the convolution f ˚ g satisfy

Bαpf ˚ gq “ pBαfq ˚ g “ f ˚ pBαgq.

Analogously to the derivative, definition 4.28 can be extended to distributions
by observing what happens when we look at the convolution of test functions
φ ˚ ψ as a distribution and apply it to another test function h.

pφ ˚ ψqphq “
ż
pφ ˚ ψqpxqhpxq dx “

ż ˆż
φpyqψpx´ yq dy

˙
hpxq dx.

From Fubini’s theorem, we can exchange the order of integration,

pφ ˚ ψqphq “
ż
φpyq

ˆż
ψpx´ yqhpxq dx

˙
dy “ φpψ̃ ˚ hq

where ψ̃pxq “ ψp´xq.
Thus, we can define the convolution of a distribution with a test function in

this way.

Definition 4.31. Let f be a distribution and ψ a test function. Its convolution
is the distribution f ˚ ψ defined by

pf ˚ ψqpφq “ fpψ̃ ˚ φq
where ψ̃pxq “ ψp´xq.

Notice that the convolution between a distribution and a test function is
well-defined because ψ̃ ˚ φ is always an element of C8c pRnq.
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Theorem 4.32. If f is a distribution and ψ a test function, their convolution
f ˚ ψ is an infinitely differentiable function.

Now we proceed to extend the convolution to the case when both terms
are distributions. Before doing this we first need to define the support of a
distribution.

We say that a distribution f vanishes at an open set Ω if supppφq Ă Ω implies
that fpφq “ 0. That is, if when restricted to C8c pΩq, f equals zero. In a way
analogous to Definition 4.14 for functions, we define the support of a distribution
as the complement of the largest open set where it vanishes.

Definition 4.33. The support of a distribution f is the complement of the largest
open set Ω such that f vanishes at Ω.

Notice that if f is a function, definitions 4.14 and 4.33 coincide.

From Theorem 4.32, the convolution of a distribution g with a test function
ψ is an infinitely differentiable function. This function also has compact support
whenever f is compactly supported. Thus, if we define g̃ by g̃pφq “ gpφ̃q, we
can extend the convolution to compactly supported distributions in a way that
is compatible with Definition 4.31 when g is a test function.

Definition 4.34 (Convolution of distributions). If f and g are distributions and
at least one of them is compactly supported, their convolution is the distribution
defined by

pf ˚ gqpφq “ fpg̃ ˚ φq

Although this rather complicated definition, the intuition of Definition 4.28
must be kept in mind. When we use convolutions of distributions in Chapter 5,
it should always be seem as a moving average.

The convolution of distributions can also be defined in some cases when
neither of the distributions is compactly supported. An interesting example, as
can be found in page 104 of [Hörmander, 2003], is that if the supports of both f
and g are contained in a closed pointed convex cone K, their convolution f ˚ g is
well-defined and its support is also contained in K.

Both Theorem 4.29 and Theorem 4.30 are also valid for the convolution of
distributions. We also have some results saying that the support of the convolution
f ˚ g is contained in the sum of the supports of f and g.

Theorem 4.35. If f and g are distributions such that f ˚ g is well-defined, then

supppf ˚ gq Ă supppfq ` supppgq.

When both f and g are compactly supported, equality is attained in Theo-
rem 4.35 if instead of the supports, we consider their convex hulls.
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Theorem 4.36 (Titchmarsch theorem). If f and g are compactly supported
distributions,

conv supppf ˚ gq “ conv supppfq ` conv supppgq.

The proof to this theorem can be found at the original article [Lions, 1951]
or at Theorem 4.3.3 of [Hörmander, 2003].

4.2.3.1 Convolutions and convexity

We end this section with a result saying that the convolution of a convex function
f with a non-negative distribution µ is also a convex function.

Remembering that every non-negative distribution is in fact a non-negative
measure, it is useful to think about the case when µ is a probability to gain some
intuition about this result. In this case, the convolution f ˚ µ can be thought
as exchanging the value of fpxq by the average of f around x with respect to µ.
Thus, theorem 4.37 says that taking these averages preserves the convexity of
f .

In Chapter 5, we define ways to measure the non-convexity of a function g
and the theorems from Sections 5.2.2 and 5.3.1 can be viewed as extensions of
Theorem 4.37 which say that g ˚ µ is always less non-convex than g.

Theorem 4.37. Let f be a convex function and µ non-negative. Then f ˚ µ is
also convex.

Proof. We begin by showing that if µ ě 0 and ν ě 0, then ν ˚ µ ě 0. To do this,
notice that for any distribution h,

h ě 0 ðñ h̃ ě 0

and that if φ and ψ are non-negative test functions, then Definition 4.28 implies
that their convolution φ ˚ ψ is also non-negative.

Then if µ is a non-negative distribution, µ ˚ φ is also non-negative for any
non-negative test function φ because,

pµ ˚ φqpψq “ gpφ̃ ˚ ψq ě 0,

for any ψ ě 0.

If ν is another non-negative distribution,

pν ˚ µqpφq “ νpµ̃ ˚ φq ě 0

for any φ ě 0. Therefore,

µ ě 0 and ν ě 0 ùñ µ ˚ ν ě 0
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Now suppose f is a convex function and µ is non-negative. From Theorem 4.27,
for any c P Rn, the derivatives of f satisfy

ÿ

i,j

cicjBiBjf ě 0.

By the linearity of the convolution,
ÿ

i,j

cicjpBiBjfq ˚ µ ě 0.

Since, by Theorem 4.30, pBiBjfq ˚ µ “ BiBjpf ˚ µq, we get that f ˚ µ is a convex
function.

As a corollary, we see that if f is a possible non-convex function and there
is a distribution µ that convexifies f , that is, f ˚ µ is convex. Then there is an
infinite family of distributions that convexify f .

Corollary 4.37.1. Let f be a function and µ a non-negative distribution such that
f ˚ µ is convex. Then, for every other non-negative distribution ν, f ˚ pµ ˚ νq is
also convex.

Proof. By the associativity of the convolution, f ˚ pµ ˚ νq “ pf ˚µq ˚ ν. Since f ˚µ
is convex and ν is non-negative, the result follows from Theorem 4.37.
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When solving a non-convex stochastic program, it is possible that the expected
cost-to-go is much less non-convex than the cost-to-go for each stage. This chapter
is dedicated to study this process of convexification and to rigorously define what
we mean by a function being less non-convex than another. As we will see,
there are many different ways to measure the non-convexity of a function that,
nevertheless, share some important properties, including the fact that they are
reduced by the operation of taking averages.

Since these notions work not just for cost-to-go functions but for any ran-
dom function, we will mostly discuss ways of measuring the non-convexity of an
arbitrary function. Nevertheless, the intuition of optimal value functions and
their polyhedral approximations should be often invoked and will act as a guide
throughout this chapter.

We open this chapter in Section 5.1 with some illustrations of families of
non-convex functions that become convex when averaged.

Section 5.2 introduces the gap of a function, a concept closely related to the
duality gap from Section 3.2.2, and demonstrate how it can be naturally used to
measure a function’s non-convexity. This section’s main result is Theorem 5.3,
stating that for a random function Q, the gap of the average E rQs is always
the average of the gap on all scenarios. Then these concepts are applied for the
special case of additive noises where sharper results can be estimated.

In Section 5.3, we remember the results of Chapter 4 to introduce another
natural way to measure a continuous function’s non-convexity: the negative part
of its second distributional derivative. It is noted that an interesting similarity
exists between the results in this section and those already deduced for the
gap.

Section 5.4 is dedicated to the similarities between the two ways to mea-
sure a function’s non-convexity that were previously introduced. It is shown
that both are examples of a certain type of cone convex functions that we will
call non-convexity measures. From this generalized point of view, the results
from the previous sections can be seem as applications of the convexity of these
operators.
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Figure 5.1: The functionW and its decomposition as minimum of absolute values.

5.1 A pictorial discussion
In this section, we illustrate how a non-convex unidimensional function can
become convex when subject to noise. The approach is rather informal and focus
on visualizing the functions. For now, every time we say that a function becomes
less non-convex, it is should be interpreted as saying that its graph resembles
more that of a convex function. Afterwards, we will rigorously define how to
measure the non-convexity of a function and explain everything that is illustrated
here.

For this discussion, we will work with the function

W pxq “ min
 |x` 1| , |x´ 1| ( (5.1)

that is represented in Figure 5.1 and could also be realized as the optimal value
function of a mixed integer linear program as

W pxq “ min
z,y,t

t

s.t. y “ 2z ` x´ 1
y ď t
´y ď t
z P t0, 1u.

The noise considered will be a random variable ξ which represents the fact that
we may not know the argument with certainty. Thus, we will look at a random
cost-to-go function

Qpx, ξq “ W px´ ξq “ min
z,y,t

t

s.t. y “ 2z ` x´ ξ ´ 1
y ď t
´y ď t
z P t0, 1u

(5.2)

that for each realization of ξ, translates the argument of the function W .
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Figure 5.2: On the left, the function W and the expected function when the
uncertainty is ξ „ Up´1, 1q and, on the right, the expected function when the
uncertainty is ξ „ Np0, 1q.

As a first example, let us consider that ξ is uniformly distributed in the interval
r´1, 1s. In this case, the expected cost-to-go E rQs pxq equals the average of the
function W on the interval rx´ 1, x` 1s,

E rQpx, ξqs “ E rW px´ ξqs “ 1
2

ż x`1

x´1
W pyq dy.

The non-convexities cancel out and the expected function is convex. This is
illustrated on the left image of Figure 5.2. Informally, we can think that by
taking this average, the peak at x “ 0 is lowered while the valleys at x “ ˘1 rise
in such a way that the region of non-convexity of the functionW disappears.

Another typical uncertainty to consider is when the random variable is dis-
tributed as standard normal, ξ „ Np0, 1q. Again, the convexification is total.
The expected cost-to-go is a infinitely differentiable convex function, as seem on
the right image of Figure 5.2.

Of course, it is not guaranteed that an arbitrary uncertainty can convexify
a function. As we will see throughout this chapter, there is a certain relation
between how “disperse” is the distribution of ξ and how much it convexifies when
averaged over. This is illustrated in Figures 5.3 and 5.4, where we progressively
augment the uncertainty for a family of uniformly and normally distributed
random variables, respectively. In both these pictures, we see that distributions
that are too concentrated will reduce the function’s non-convexity but do not
totally convexify it, while distributions that are disperse enough tend to generate
for a better convexification.

Finally, in Figure 5.5, we show how the average over a discrete distribution
supported on the interval r´1, 1s gets less non-convex as these distributions
become denser.
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Figure 5.3: Example of convexification for different uniform distributions.
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Figure 5.4: Example of convexification for different Normal distributions.
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Figure 5.5: Example of convexification for different discrete distributions, approx-
imating a uniform on the interval r´1, 1s.
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5.2 The gap as a measure of non-convexity
For any extended real function f , we may consider the gap between it and its
convex relaxation. Besides its pictorial interpretation as epi f̌z epi f , we may look
at it as the deviation of fpxq from f̌pxq for each fixed point f . This motivates
the definition of the gap as

gappfq “ f ´ f̌ .
Although it works when both f and f̌ are finite, this expression is ill-defined if
both f̌ and f are ˘8 at the same time. Since in this case both functions are
equal, the geometrical interpretation of the gap prompts us to consider the gap
to be zero at these points. This may be intuitively thought as “focalizing” in the
region where f and f̌ differ. Definition 5.1 takes this technicality into account
for defining the gap of a function.

Definition 5.1. The gap of f is the function defined by

gappfqpxq “
#
fpxq ´ f̌pxq, if fpxq ‰ f̌pxq
0, otherwise.

The gap has two rather simple yet useful properties that turn it into a good
metric to measure the non-convexity of a function. One is that gappfq is zero if
and only if f is a convex function, by the very definition of the convex relaxation.
The other is that for any function f , gappfq is a non-negative function, since f̌
is always below f .

Definition 5.2. We shall say that a function f is less non-convex than a func-
tion g if

gappfq ď gappgq.

For a function f to be less non-convex than a function g, it must be closer
to its convex relaxation than g for each fixed point on their domain. Figure 5.7
shows an example where a function f is less non-convex than g together with
their respective gaps.
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Consider a random function Q. In Section 3.4.1, we introduced the notation
Q̌ to be the random function whose realizations are the convex relaxation of
each realization of Q and the notation E rQs to be the function x ÞÑ Eξ rQpx, ξqs.
These notations will be thoroughly used in this chapter.

Recall the discussion from Section 3.4.2 about the distinction between the
decomposed and the linked formulation for the expected cost-to-go of a stochastic
program. Theorem 5.3 is a version of it for an arbitrary random function. When
calculation cuts, the difference difference of the two formulations lies in the fact
that decomposed cuts are at best tight for E rQ̌s while linked cuts can be tight
for ~E rQs.
Theorem 5.3. For any random function Q, the following functional inequality
holds:

E rQs ´ ~E rQs ď E rQs ´ E rQ̌s.

Proof. Notice that since for each value ξ,

Q̌p¨, ξq ď Qp¨, ξq,

the average preserves this inequality:

ErQ̌s ď E rQs .

The average of convex functions is again a convex function, hence ErQ̌s is convex.
By the Definition 2.26 of the convex relaxation, ~E rQs is greater than every convex
function below E rQs, including E rQ̌s. That is,

E rQ̌s ď ~E rQs ď E rQs ,

which implies
E rQs ´ ~E rQs ď E rQs ´ E rQ̌s .
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Figure 5.8: Comparison between E rQ̌s and ~E rQs as underapproximations of
E rQs. The functionQ is the that from (5.2) with an uncertainty ξ „ Up´0.5, 0.5q.

In terms of the gap function, the result of this theorem is expressed as

gappE rQsq ď E rgappQqs . (5.3)

That is, the gap of the average of random functions is below the average of the
gap of all possible realizations.

Notice that this form of the theorem says that the gap is a convex function in
relation to the cone of non-negative functions. Now that we have this in mind, we
may give another equivalent proof of Theorem 5.3 which is much more succinct,
though more abstract.

We begin by remembering that the function f ÞÑ f̌ is concave in relation
to the non-negative cone, which we will denote by K. As the product of cones
is itself a cone, this means that the function f ÞÑ pf,´f̌q is K2-convex. The
gap may be decomposed as p`q ˝ pf ÞÑ pf,´f̌qq, which is the composition of
a K2-convex function with an affine and pK2, Kq-monotone function, therefore
K-convex.

5.2.1 Quantifying the non-convexity
Equation (5.3) tells us that the gap of the average function is below the average
gap for each fixed argument. This is a pointwise theorem about convexification.
In general, pointwise comparisons as that of Definition (5.2) are too rigid, since
they must hold for every point, which implies that many functions may not be
comparable, even if one is intuitively more convex than the other.

To solve this problem, we need a way to globally quantify how much non-
convex a given function is. That is, we have to project the gap of a function on a
totally ordered set in a manner that is compatible with the local inequalities. A
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way to accomplish this is by considering monotone functionals. In what follows
we will use monotone norms as a way to project the non-convexity of a function
into the non-negative real numbers.

Definition 5.4. A function norm ‖¨‖ is said to be monotone if for any pair of
non-negative functions g, h ě 0,

g ď h ùñ ‖g‖ ď ‖h‖ .

Remark 5.1. When working with norms there is a technical aspect we must
consider: the gap function is well-defined and non-negative for any arbitrary
function f but, generally, the norm ‖¨‖ is only defined on some smaller subspace,
on which gappfq may not lie on. This may occur because of measurability or
boundedness issues, for example. In this case we will say that ‖gappfqq‖ “ 8. In
applications, we generally work with smaller function spaces, such as continuous
or integrable functions. Since the intersection of the non-negative cone with a
function space is the non-negative cone in that space, no problems related to
‖gappfq‖ being infinite should occur.

Since monotone norms respect functional inequalities between non-negative
functions, that is,

gappfq ď gappgq ùñ ‖gappfq‖ ď ‖gap pgq‖ , (5.4)

they preserve our previous notion, from Definition 5.2, of a function being more
non-convex than another.

A special application is to project the result of Theorem 5.3, which tells us
that for any monotone norm∥∥∥E rQs ´ ~E rQs

∥∥∥ ď ‖E rQs ´ E rQ̌s‖ . (5.5)

As we will see below, there are geometrical relations between the graphs of E rQs,
~E rQs and E rQ̌s which may be interpreted as applications of these norms.
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Figure 5.10: An illustration of ‖gappfq‖1 and ‖gappfq‖
8
.

When properly applicable, we may use monotone norms to represent certain
characteristics of the region between the graphs of two functions. The first
example is when we have a function f and some lower approximation h ď f .
Then, the volume of the region epiphqz epipfq may be calculated as

Volpepiphqz epipfqq “
ż
|fpxq ´ hpxq| dx “ ‖f ´ h‖1 (5.6)

provided that the function f ´ h is integrable, of course. This is a monotone
norm on the space of integrable functions and, therefore, preserves functional
inequalities as well as theorem 5.3. In this context, we have that E rQ̌s is the
convex under-approximation closest to E rQs and, consequently, the one which
minimizes the volume of the region between them both.

The norm ‖¨‖1 is a special case of the Lp-norms, defined by

‖f‖p :“
ˆż

|fpxq|p dx
˙ 1

p

, p P r1,`8q. (5.7)

All these are monotone norms and play a significant role in many results and
applications of functional analysis.

Another monotone norm that is useful to consider is the uniform norm, defined
by

‖g‖
8

:“ sup
x
|gpxq| . (5.8)

If h ď f is a lower approximation of f , we can interpret ‖f ´ h‖
8

as the worst
error h commits on their entire domain.

In general a norm which depends only on the evaluations of f at given points
will be monotone. An example of a non-monotone norm is given by the C1 norm,
defined by

‖f‖ “ ‖f‖
8
` ‖f 1‖

8
,

which equals the supremum of a function added to the supremum of its derivative.
Since a function may be arbitrarily small while its derivative is arbitrarily large,
this norm is not monotone.
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5.2.2 Additive noise
Until now, we had no major hypothesis on the manner the uncertainty operated
upon our random function. In what follows, we will focus our attention on the
case where we have some base function and the uncertainty acts as translations
of its argument. In other words, there is a function f and a random variable ξ
such that

Qpx, ξq “ fpx´ ξq. (5.9)
For these problems, some finer results may be deduced.

To properly take advantage of the structure implied by equation (5.9) we will
make one more assumption about the way we quantify the non-convexity of a
function. In conjunction with monotonicity, we will also require that the ‖¨‖ is
translation invariant, as we define shortly in 5.6. Notice that all the Lp-norms
of (5.7) are translation invariant, as well as the uniform norm in (5.8)

Definition 5.5. The translation operator by a is the function τa that takes a
function f and returns its shift by a, that is,

pτafqpxq “ fpx´ aq.

Definition 5.6. A function norm ‖¨‖ is said to be translation invariant if for
any function f : V Ñ r´8,`8s and any a P V ,

‖f‖ “ ‖τaf‖ .

Since the gap function does not change by the addition of a constant,

gappf ` aq “ pf ` aq ´ ~f ` a “ f ` a´ pf̌ ` aq “ gappfq,
we already have translation invariance on the function’s image. This gives an
interesting geometrical interpretation to the norm of the gap function. If ‖¨‖ is
translation invariant, ‖gappfq‖ is a way to quantify the non-convexity of f that
only depends on the geometric properties of the set convpepipfqqz epi f and not
on where in the space it is, which agrees with an intuitive idea about determining
how non-convex a function is. Figure 5.11 illustrates this. Notice that this
reasoning only applies to translations of the region, because since the epigraphs
have a special direction, rotations and other transformations should not preserve
how non-convex a function is considered to be.

This section’s main result is Theorem 5.7 below, which says that if we consider
a function f subjected to additive noise, then the gap of its average E rf s is always
less than or equal to the original gap when quantified through a translation
invariant monotone norm.

Theorem 5.7. Let ‖¨‖ be a translation invariant monotone norm. Then, for any
function f subjected to an additive noise ξ,∥∥∥E rτξf s ´ ­E rτξf s

∥∥∥ ď ‖E rτξf s ´ E rτξf̌ s‖ ď ‖f ´ f̌‖ .
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In other words, if Q is a random function of the form Qpx, ξq “ fpx ´ ξq,
then ∥∥∥E rQs ´ ~E rQs

∥∥∥ ď ‖E rQs ´ E rQ̌s‖ ď ‖f ´ f̌‖ .

Proof. Since ‖¨‖ is monotone and ~τξpfq “ τξf̌ , the first inequality is a special
case of Theorem 5.3 and Equation (5.5). The second inequality will follow as
a consequence of the norm’s translation invariance. For this, notice that, by
linearity of E and τξ,

‖E rτξf s ´ E rτξf̌ s‖ “ ‖E rτξpf ´ f̌qs‖ .
Since any norm is a convex function, the norm of the average is always below the
average of the norm by Jensen’s inequality (Theorem 2.18). Therefore,

‖E rτξpf ´ f̌qs‖ ď E r‖τξpf ´ f̌q‖s “ E r‖f ´ f̌‖s “ ‖f ´ f̌‖ .
Putting all the inequalities together, we conclude the theorem.

Representing additive noise through convolutions Given a random vari-
able ξ, call µ its probability density. We can characterize the average function
E rτξf s as the convolution between f and µ.

Recall the results from Section 4.2.3. We may look at both the function f
and the measure µ as distributions. Using that taking the average of a function
of random variable ξ consists of integrating it with respect to the probability
density µ, which gives precisely the expression of a convolution,

E rfpx´ ξqs “
ż
fpx´ yqdµpyq “ f ˚ µpxq. (5.10)

As a first use, we will rewrite the result of Theorem 5.7 in terms of convolutions.
That is, given a function f : V Ñ r´8,`8s and a probability measure µ over V ,
the following inequalities hold for any translation invariant monotone norm:∥∥∥f ˚ µ´~f ˚ µ

∥∥∥ ď ‖f ˚ µ´ f̌ ˚ µ‖ ď ‖f ´ f̌‖ . (5.11)
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5.2.2.1 Uniform norm and asymptotic behavior

A question that arises about the inequalities in theorem 5.7 is whether they
are strict for a given probability distribution µ. The answer depends on which
norm we choose to quantify the non-convexity but is affirmative when we use the
uniform norm ‖¨‖

8
, under some assumptions on µ.

As a counterexample, we begin with the integral norm ‖¨‖1. In this case, the
second inequality in Theorem 5.7 is always an equality for any integrable function
f , no matter the distribution µ,

‖f ˚ µ´ f̌ ˚ µ‖1 “ ‖f ´ f̌‖1 . (5.12)

To see this, let’s develop the expression for the norm on the left:

‖f ˚ µ´ f̌ ˚ µ‖1 “
ż
pf ´ f̌q ˚ µpxq dx “

ż ż
fpx´ yq ´ f̌px´ yq dµpyq dx.

By Fubini’s theorem we may change the order of the integrals on the right. From
this and the fact that f ´ f̌ is non-negative:

‖f ˚ µ´ f̌ ˚ µ‖1 “
ż ż

fpx´ yq ´ f̌px´ yq dx dµpyq

“
ż ˆż

|fpxq ´ f̌pxq| dx
˙
dµpyq

“
ż
‖f ´ f̌‖1 dµpyq

“ ‖f ´ f̌‖1 .

Remark 5.2. Even though Equation (5.12) says that the second inequality in The-
orem 5.7 is in fact an equality, convexification may still occur due to Theorem 5.3.

For the uniform norm ‖¨‖, the result of Theorem 5.8 below tells us that there
is a better bound on theorem 5.7 when the image of the random function ξ is
sparse enough in relation to the support of the gap function.

Theorem 5.8. Let f be a function subject to an additive noise with probability
density µ. If we call K “ supppf ´ f̌q (the region where f ´ f̌ is not zero) and
let

κ “ sup
xPV

µpx´Kq ď 1,

then ∥∥∥f ˚ µ´~f ˚ µ
∥∥∥
8
ď ‖f ˚ µ´ f̌ ˚ µ‖

8
ď κ ‖f ´ f̌‖

8
.

Proof. Because of the definition of support, the function f´ f̌ is equal to pf´ f̌q ¨
1K . This means that integrating f ´ f̌ on the entire space is equal to integrating
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it only on K. Therefore, for any point x fixed,

pf ´ f̌q ˚ µpxq “
ż
fpyq ´ f̌pyq dµpx´ yq “

ż
pfpyq ´ f̌pyqq ¨ 1Kpyq dµpx´ yq

“
ż

K

fpyq ´ f̌pyq dµpx´ yq

ď
ż

K

‖f ´ f̌‖
8
dµpx´ yq “ ‖f ´ f̌‖

8

ż

K

dµpx´ yq
ď ‖f ´ f̌‖

8
sup
xPV

µpx´Kq.

Since f ´ f̌ is non-negative, ‖f ´ f̌‖
8
equals the supremum of f ´ f̌ . This proves

the theorem, for

‖pf ´ f̌q ˚ µ‖
8
ď ‖f ´ f̌‖

8
sup
xPV

µpx´Kq.

Theorem 5.8 is specially useful when f only differs from its convex relaxation
inside of a compact set. In this case, any probability distribution whose support
is sparse enough will have an associated κ smaller than one, since no translation
of supp f ´ f̌ is going to have total probability.

If we have a sequence of probabilities µn that are representable by bounded
functions, we can use Hölder’s inequality to deduce uniform bounds on the non-
convexity on f ˚ µn as n tends to infinity. This is the content of Theorem 5.9,
together with its corollaries, which apply this idea to some commonly found
distributions.

Theorem 5.9. Suppose µk P L8pRnq for each k P N and f : Rn Ñ r´8,`8s is
a function whose gap is integrable. Then

‖f ˚ µk ´ f̌ ˚ µk‖8 ď ‖f ´ f̌‖1 ‖µk‖8

and gappf ˚ µkq converges uniformly to zero if ‖µk‖8 Ñ 0.

Proof. For each fixed x P Rn,

gappfq ˚ µkpxq “
ż

Rn

pf ´ f̌qpyqµkpx´ yq dy.

Applying Hölder’s inequality to the integral on the right,

gappfq ˚ µkpxq ď ‖f ´ f̌‖1 ‖µk‖8 .

Since the uniform norm of a non-negative function is its supremum, the equation
above gives a uniform bound:

‖gappfq ˚ µk‖8 ď ‖f ´ f̌‖1 ‖µk‖8 .
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Furthermore, if ‖µk‖8 converges to zero, this equation together with the gap
inequality from Theorem 5.3 says that

0 ď lim
kÑ8
‖gappf ˚ µkq‖8 ď lim

kÑ8
‖gappfq ˚ µk‖8 ď 0.

This proves the uniform convergence.

Corollary 5.9.1. Let µk be the uniform distributions on a sequence Ck of subsets
of Rn such that VolpCkq converges to infinity. Then, if f is a function whose gap
is integrable, the sequence gappf ˚ µkq converges uniformly to zero.

Proof. We have ‖µk‖8 “ VolpCkq´1, which converges to zero.

Corollary 5.9.2. Let ξk be a sequence of gaussian random variables with density
µk and covariance matrix Σk. Then, if f : Rn Ñ r´8,`8s is a function with
integrable gap,

‖f ˚ µk ´ f̌ ˚ µk‖8 ď
1

p2πqn{2?det Σk

‖f ´ f̌‖1 .

In special, if det Σk converges to infinity, gappf ˚ µkq converges uniformly to zero.

Proof. The density of a multivariate Gaussian with mean mk and covariance
matrix Σk is

µkpxq “ 1
p2πqn{2?det Σk

exp
ˆ
´1

2px´mkqJΣk
´1px´mkq

˙
.

Its maximum is attained when x “ mk and equals

‖µk‖8 “ µkpmkq “ 1
p2πqn{2?det Σk

.

The remnant follows from Theorem 5.9.

At first it may seem that the results of theorem 5.9 and its corollaries could
be applied for both f and f̌ separately, implying that the gap converges to zero
because both f ˚ µk and f̌ ˚ µk converge to zero. However, it is possible for the
gap of f to be integrable while both f and f̌ are not.

Since a convex function is integrable on the entire Rn if and only if it is
constant, the function f̌ , in general, cannot be integrated. If the gap of f is finite
and compactly supported, f and f̌ differ only in a compact set and, therefore, f
also cannot be integrated while gappfq is certainly integrable. If we look back to
the graphics in Figure 5.6, we see an example of a non-integrable function whose
gap is integrable.
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5.3 Second derivative’s negative part
Throughout Section 5.2, we measured the non-convexity of a function f via its
gap function gappfq “ f ´ f̌ . Since the convex relaxation is well-defined for any
function, the results in that section are appropriate in the general case.

In this section, we restrict ourselves to consider only the space C0pRq of
continuous functions of a single real variable. This restriction allows us to take
another route about how to measure the non-convexity of a function: the negative
part of its second derivative. Initially, it may seem too restrictive to work only with
single variable functions but the importance of this section lies in the analogies
between the theorems in here and those of Section 5.2. As we will see, every
theorem we proved for gappfq has a corresponding one for the negative part of
f2. Later, in Section 5.4, we will explain the relation of between the gap and the
second derivative’s negative part, which will lead to the definition of a general
non-convexity measure. In that section we will also show equivalent results for
the Hessian of a multivariate function.

We start by recalling some theorems from Chapter 4. Theorems 4.23 and 4.24
said that a distribution f is a continuous function if and only if its second deriva-
tive f2 (in the distributional sense) is represented by a measure and Theorem 4.27
says that f is in fact a convex function if and only if f2 is a non-negative measure.
Finally, the Hahn-Jordan decomposition from Theorem 4.9 allows us to write the
second derivative of any continuous function as a difference between two singular
non-negative measures:

f2 “ rf2s` ´ rf2s´. (5.13)
Since f2 is a non-negative measure if and only if its negative part is zero, we see
that

f is convex ðñ rf2s´ “ 0.

The discussion above motivates us to look at rf2s´ as a tool to evaluate how
non-convex a continuous function is. Interestingly, our main result is theorem 5.10,
which says that for any random continuous function, the negative part of the
second derivative of its average is always below the average of the negative part
of each realization’s second derivative. Notice the parallel between this and
Theorem 5.3, which states the same for the gap function.

Theorem 5.10. Let Q : R ˆ Ω Ñ R be a continuous random function. Then,
the following measure inequality holds:

“
E rQs2‰

´
ď E rrQ2s´s

Proof. For each fixed ω, Qp¨, ωq is a continuous function, which implies that its
second derivative is a measure. This means that Q2 is a random measure and,
for each fixed ω, we may apply Theorem 4.9 and write Q2p¨, ωq as its Hahn-
Jordan decomposition. That is, as differences of mutually singular non-negative
measures. Besides that, the function Eω rQp¨, ωqs is also continuous so its second
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derivative admits a Hahn-Jordan decomposition of its own. We write each of
these decompositions as

Qp¨, ωq2 “ λ`pωq ´ λ´pωq, ω P Ω
E rQs2 “ ν` ´ ν´.

Besides these, we can find another decomposition for E rQs2 passing the derivative
inside the expectation

E rQs2 “ E rQ2s “ E rλ` ´ λ´s “ E rλ`s ´ E rλ´s .
By the minimality property of the Hahn-Jordan decomposition (Theorem 4.9.2),
the measures ν` and ν´ are smaller than the components of any other decompo-
sition of E rQs2. In particular,

ν´ ď E rλ´s .
That is, “

E rQs2‰
´
ď E rrQ2s´s.

Remark 5.3. Since the objects we deal with in here are not ordinary functions
from R to R, the inequality of Theorem 5.10 can be interpreted in two different
but equivalent ways. As a measure inequality, it says that for any Borel subset
B of R, “

E rQs2‰
´
pBq ď E rrQ2s´s pBq. (5.14)

As a distributional inequality, it says that for any positive, infinitely differentiable
and compactly supported function φ,

x“E rQs2‰
´
, φy ď xE rrQ2s´s , φy. (5.15)

Even though these inequalities are equivalent, they are defined with respect to
the non-negative cones of different spaces.

Remember Definition 4.11 where we saw that there is a natural norm for
signed measures which turns the set of all finite signed measures into a Banach
space. It is called the total variation norm and given by

‖µ‖1 “ |µ| pRq. (5.16)

Notice that, if µ has a density which is a function, this norm is equal to the
integral norm of (5.6). The norm in Equation (5.16) is monotone and therefore
preserves the inequality of Theorem 5.10. In the general case, any monotone
norm will preserve that inequality (Corollary 5.10.1 below), thus if we know any
additional information about rQ2s´, it may be more suitable to consider other
norms.

Corollary 5.10.1. Let ‖¨‖ be monotone in relation to the cone of non-negative
measures (or distributions). Then, for any random function Q:∥∥∥“E rQs2‰

´

∥∥∥ ď ‖E rrQ2s´s‖ .
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5.3.1 Additive noise
Continuing our parallel with the results of Section 5.2, we will consider the
case of additive noise, in the manner of Section 5.2.2. In what follows, the
random function will always be of the form Qpx, ωq “ fpx´ ξpωqq, for some fixed
continuous function f and random variable ξ.

Here, as we are working with measures and distributions, it is natural to use
the notation of (5.10) to represent an additive noise as a convolution with the
probability density of the random variable. We start to use it on Theorem 5.11
below, which, analogously to Theorem 5.7, says that the negative part of pf ˚µq2
is always below that of f2, when quantified via a translation invariant norm.

Theorem 5.11. Let ‖¨‖ be a translation invariant monotone norm, f : R Ñ R
a continuous function and µ a probability measure over R. Then∥∥∥rpf ˚ µq2s

´

∥∥∥ ď ‖rf2s´ ˚ µ‖ ď ‖rf2s´‖ .
Proof. The monotonicity of the norm ‖¨‖ implies we can use Theorem 5.10.1 to
get the first inequality. The invariance by translation, together with the fact that
µ is a probability measure, gives

‖rf2s´ ˚ µ‖ “
∥∥∥Eξ rτξrf2s´s∥∥∥ ď Eξ r‖τξrf2s´‖s “ Eξ r‖rf2s´‖s “ ‖rf2s´‖ .

Putting the inequalities together, we conclude the theorem.

Based on our previous analogies between rf2s´ and f ´ f̌ , it is expected
that if we follow the same path of Section 5.2 and consider the uniform norm
as a way of quantifying the non-convexity of a function, a result sharper than
Theorem 5.11 is possible. As envisioned, theorem 5.12 below is a quantitative
version of the second inequality in theorem 5.7 with the exact same constant
found in Theorem 5.8.

Theorem 5.12. Let f : RÑ R be a continuous function such that the negative
part of its second derivative rf2s´ is an essentially bounded function, that is,
‖rf2s´‖8 ă 8, and call K “ supp rf2s´. Then, for any probability measure µ
we define

κ “ sup
xPR

µpx´Kq ď 1,

which gives the bound∥∥∥rpf ˚ µq2s
´

∥∥∥
8
ď ‖rf2s´ ˚ µ‖8 ď κ ‖rf2s´‖8 .

Proof. Analogous to that of Theorem 5.8 exchanging f ´ f̌ with rf2s´.

Once more we see that if rf2s´ has compact support, sparser probability
distributions will guarantee a better convexification. Still, these bounds are
too conservative and may not reflect how much a function is really convexified.
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Fortunately, in this simpler context of single variable functions, we can explicitly
describe the probabilities µ for which f ˚ µ is a convex function. As we will see
below, the problem of finding a probability distribution that convexifies a fixed
function f can be written as linear feasibility problem in the space of signed
measures.

5.3.2 Optimal convexification
In the course of Section 5.1 we saw examples of uncertainties that not only reduced
the non-convexity of the function but actually made E rf s convex. In our context
of additive noises of C0pRq functions, this is equivalent to

pf ˚ µq2 ě 0,

which is a conic inequality in the space of measures and, therefore, describes a
convex set.

Theorem 5.13. For any function f P C0pRq, the set of probability measures µ
which make f ˚ µ a convex function is a convex set defined by the system

$
’&
’%

µ ě 0,
µpRq “ 1,
f2 ˚ µ ě 0.

Proof. Considering the space of all signed measures, the condition that µ : F Ñ
r´8,`8s is a probability consists of being non-negative,

µpBq ě 0, @B P F ,
and having total variation equal to one, which for non-negative measures is
equivalent to µpRq “ 1.

For the last inequality, remember that f ˚ µ is convex if and only if its second
derivative is a non-negative measure. From Theorem 4.30, we know that taking
the derivative of the convolution is the same as taking the derivative of the first
term and the making the convolution,

f2 ˚ µ “ pf ˚ µq2 ě 0.

This can be interpreted as set of linear inequalities on µ that must hold for any
borelian of R.

Since this set is described only by linear equalities and inequalities on µ, it is
convex.

As an example of these tools, we will use Theorem 5.13 to find a description of
the probabilities that convexify a minimum of two translated quadratics, defined
by

gpxq “ min
 px´ a1q2, px´ a2q2

(
, a1 ‰ a2,
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Figure 5.12: Graph of the minimum of two quadratic functions.

which is a piecewise convex function, illustrated in Figure 5.12.

Since the minimum is symmetric in its arguments, we may assume a1 ă a2
without loss of generality. Then, an alternative description of this function is

gpxq “
#
px´ a1q2, x ă a1`a2

2
px´ a2q2, x ě a1`a2

2 .

Or, with the help of the Heaviside function 4.20,

gpxq “ px´ a1q2 ¨H
´a1 ` a2

2 ´ x
¯
` px´ a2q2 ¨H

´
x´ a1 ` a2

2

¯
.

Applying the jump formula (Theorem 4.21), we have a closed expression for both
the first and second derivatives of g:

g1pxq “ 2px´ a1q ¨H
´a1 ` a2

2 ´ x
¯
` 2px´ a2q ¨H

´
x´ a1 ` a2

2

¯

g2pxq “ 2´ 2pa2 ´ a1qδa1`a2
2
.

Therefore, if µ is a measure over R, the condition for convexification is

g2 ˚ µ “ 2 ˚ µ´ 2pa2 ´ a1qδa1`a2
2
˚ µ “

ż
2 dµ´ 2pa2 ´ a1qτa1`a2

2
µ ě 0

ðñ τa1`a2
2
µ ď 1

a2 ´ a1
.

Since this is a distributional inequality, this bound must hold for any positive,
smooth, compactly supported function. This means that the translation on the
left hand side is irrelevant, because the any such function can be written as the
translation of another one. Thus, the condition for convexification is

µ ď 1
a2 ´ a1

,
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where the right hand side must be interpreted as the measure B ÞÑ ş
B

1
a2´a1

dλ,
where λ is the Lebesgue measure. This means that the set of probabilities that
convexify g is described by

#
0 ď µ ď 1

a2´a1
¨ λ,

µpRq “ 1.
(5.17)

To satisfy these constraints, the measure µ cannot be too concentrated, which is
in accordance with the result of Theorems 5.8 and 5.12.

We can narrow this description even more by noticing that (5.17) implies that
µ must be representable by a bounded function. This follows from the fact that
for any integrable function h,

ż
h dµ ď 1

a2 ´ a1

ż
|h| pxq dλ ď 1

a2 ´ a1
‖h‖1 ,

which means that µ defines a continuous functional on L1pRq and is consequently
representable by an element of L8pRq. In view of this, the condition for convexi-
fication becomes

µ P L8pRq and ‖µ‖
8
ď 1
a2 ´ a1

.

This allows us to restrict (5.17) to the space of bounded functions:
#

0 ď µpxq ď 1
a2´a1

, @x P R,ş
µpxqdx “ 1.

(5.18)

Let’s apply constraints (5.18) for two elucidating examples: a uniform and a
gaussian distribution. If µ is the uniform distribution in a bounded set B these
constraints imply that f ˚ µ is convex if and only if

‖µ‖
8
“ 1
λpBq ď

1
a2 ´ a1

ðñ λpBq ě a2 ´ a1.

Compare this result with the one of Theorem 5.12. In there we only knew that
the uniform distribution in B reduces the non-convexity of f in proportion to the
length of B. Here, even if only for this example, we know that if λpBq is large
enough, the function g ˚ µ is in fact convex.

In the case of a gaussian distribution with mean y and variance σ2, its maxi-
mum is attained at µpyq, thus

‖µ‖
8
“ µpyq “ 1?

2πσ
ď 1
a2 ´ a2

ðñ σ ě a2 ´ a1?
2π

.

This conditions says that if the standard deviation of a gaussian distribution µ
is large enough, the function g ˚ µ is convex.
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E

Figure 5.13: A discrete noise can totally convexify a polyhedral function.

An important property of this example is that total convexification is only
attained when the additive noise has a probability distribution which is abso-
lutely continuous in relation to Lebesgue measure. This is not a coincidence, as
we will see in Theorem 5.14. If f is the minimum of a finite number of convex
differentiable functions, there is no discrete probability which can totally con-
vexify f . This contrasts with the polyhedral case, where the finite minimum of
polyhedral functions (in particular, the optimal value functions of mixed integer
linear problems) can be convexified by discrete noises. Although it was already
shown in Section 5.1, we will calculate below the second derivative of

W pxq “ min t|x` 1| , |x´ 1|u
subject to an uncertainty given by a Bernoulli distribution. The density of this
random variable is expressible using the Dirac delta functions from Equation (4.3)
as

µ “ 1
2δ0 ` 1

2δ1.

The second derivative W 2 equals 2δ´1 ´ 2δ0 ` 2δ1, and its convolution with µ
is

pW ˚ µq2 “ W 2 ˚ µ “ p2δ´1 ´ 2δ0 ` 2δ1q ˚
ˆ

1
2δ0 ` 1

2δ1

˙

“ pδ´1 ˚ δ0 ` δ´1 ˚ δ1q ´ pδ0 ˚ δ0 ` δ0 ˚ δ1q ` pδ1 ˚ δ0 ` δ1 ˚ δ1q
“ δ´1 ` δ0 ´ δ0 ´ δ1 ` δ1 ` δ2

“ δ1 ` δ2 ě 0.

Hence, the function W ˚ µ is convex.

Despite the unpleasant algebra of the derivation above, this example can
be thought geometrically as is illustrated in Figure 5.13. Looking at it, we
see that the convexification happens because the noise perfectly aligns the non-
convexities such that they cancel each other. This is a special property of this
tailored example, since, in practice, it is really hard that such a simple noise can
convexify the function.

As a last theorem, we will show that there are minima of convex functions
that cannot be convexified by using discrete noise. For this, let fj be convex
functions and define fpxq “ minj fjpxq. We will suppose that, as in the previous
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examples, this function has only a finite number of components. That is, there
is a finite collection of points a1, . . . , aN´1 such that

f “
Nÿ

i“1
fi ¨ 1pai´1,aiq, (5.19)

with fi ‰ fi`1. On the expression above, we denote a0 “ ´8, aN “ `8 and
1pai´1,aiq is zero-one indicator of the open interval pai´1, aiq. In Theorem 5.14, we
will prove that if the fi are differentiable, no discrete probability is capable of
convexifying such a function.

Theorem 5.14. Let f be as in Equation (5.19) and suppose that all fi P C1pRq.
If f is not convex, there is no discrete probability µ “ ř

cjδxj
for which pf ˚µq2 ě

0.

Proof. Notice that f is continuous, because it is the minimum of continuous
functions. From this we can use the jump formula 4.21 to express the derivatives
of f in terms of the fi. Since f is continuous, its first derivative is representable
by a discontinuous function and its second derivative is a sum of functions and
point masses:

f 1 “
ÿ

f 1i ¨ 1pai´1,aiq

f2 “
ÿ

f2i ¨ 1pai´1,aiq ´
ÿ“

f 1ipa´i q ´ f 1i`1pa`i q
‰ ¨ δai

where the f2i are locally integrable functions, as a consequence of Theorems 4.22
and 4.23 and non-negative because the fi are all convex. Under our assumptions,
we also have that the coefficients

“
f 1ipa´i q ´ f 1i`1pa`i q

‰
multiplying the δai

are all
non-negative because any point of discontinuity ai is a point where the piecewise
representation changes from one fi to fi`1. That is, fipaiq “ fi`1paiq and there
is εi ą 0 such that for all 0 ă ε ă εi,

fipai ´ εq ď fi`1pai ´ εq (5.20)
fipai ` εq ě fi`1pai ` εq. (5.21)

Since the functions are differentiable, this implies that f 1ipaiq ě f 1i`1paiq. Thus,
for any discrete probability µ “ ř

cjδxj
,

pf ˚ µq2 “ f2 ˚ µ “
ÿ

f2i ¨ 1pai´1,aiq ˚ µ`
´ÿ“

f 1ipa´i q ´ f 1i`1pa`i q
‰ ¨ δai

¯
˚ µ

“
ÿ

f2i ¨ 1pai´1,aiq ˚
´ÿ

cjδxj

¯
`
´ÿ“

f 1ipa´i q ´ f 1i`1pa`i q
‰ ¨ δai

¯
˚
´ÿ

cjδxj

¯

“
ÿ

i,j

τxj
f2i ¨ 1pai´1`xj ,ai`xjq

loooooooooooooomoooooooooooooon
integrable part

´
ÿ

i,j

cj
“
f 1ipa´i q ´ f 1i`1pa`i q

‰ ¨ δai`xj

loooooooooooooooooooomoooooooooooooooooooon
discrete part

In the last line of the expression above, the second derivative pf ˚ µq2 is decom-
posed as a difference between an integrable and a discrete part. Since each fi
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is convex, their second derivatives f2i are non-negative functions, meaning that
the integrable part defines a non-negative measure. Similarly, by the previous
discussion and the fact that cj ě 0, every term on the discrete part must be non-
negative. Furthermore, integrable and discrete measures are mutually singular,
implying that the expression above is the Hahn-Jordan decomposition of pf ˚µq2.
This means that if we take the negative part of the expression above, only the
discrete part remains,

rpf ˚ µq2s´ “
ÿ

i,j

cj
“
f 1ipa´i q ´ f 1i`1pa`i q

‰ ¨ δai`xj
.

As we assumed that f is not convex, there must be at least one index k such
that f 1kpakq ă f 1k`1pakq strictly. Therefore, we can apply the negative part of
pf ˚ µq2 to the set tak ` x1u and the result must be strictly positive, since a sum
of non-negative terms is greater than any of its individual terms,

rpf ˚ µq2s´ptak ` x1uq “
ÿ

i,j

cj
“
f 1ipa´i q ´ f 1i`1pa`i q

‰ ¨ δai`xj
ptak ` x1uq

ě c1
“
f 1kpa´k q ´ f 1k`1pa`k q

‰ ¨ δak`x1ptak ` x1uq ą 0

From this, we conclude that f ˚ µ is not convex.

It is instructive to graphically compare the result of this theorem with the
polyhedral function in Figure 5.13. In that figure, an average between discrete
shifts could be convex because the function had hard corners pointing both up and
down, yielding δ’s with positive and negative coefficients in its second derivative.
Therefore a discrete noise was capable of aligning these points in a way that made
the second derivative non-negative. On the other side, for a minimum of convex
differentiable functions, all hard corners are pointing up and a discrete noise may
scatter these corners but is incapable of smoothing them out. See Figure 5.14 for
an example.
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Figure 5.14: A discrete noise can only spread the corners of a minimum of convex
functions, without totally convexifying it.
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5.4 Non-convexity measures
In Section 5.2, the first method we encountered to measure the non-convexity
of a function was its gap function, gappfq “ f ´ f̌ , which is well-defined for
any function over a vector space and whose image is contained in the set of non-
negative functions. Afterwards, in Section 5.3 we restricted ourselves to the study
of non-convexity of single variable continuous functions. In this case, our tool
to measure the non-convexity of a function was the negative part of its second
derivative, rf2s´, which maps a continuous function into a non-negative measure.
Interestingly enough, most of the theorems of Section 5.2 have some equivalent
formulation in the context of Section 5.3.

The present section analyzes the commonalities between these two ways of
measuring non-convexity, generalizing them so that this chapter’s previous theo-
rems still hold.

Definition 5.15. A non-convexity measure on a convex set of functions X is a
functionM : X Ñ K satisfying

1. K is a convex cone,

2. Mpfq “ 0 if and only if f is convex,

3. M is convex in relation to K.

Notice that the definition of K-convex function requires that the set X must
be convex. Notice also that from the discussion in the previous sections, we know
that both the gap function satisfies these properties with respect to the cone of
non-negative functions and the second derivative’s negative part satisfies with
respect to the cone of non-negative measures.

From this point of view, theorems 5.3 and 5.10 are particular cases of Theo-
rem 5.16 below. This tells us that these theorems, which at first seemed compli-
cated functional equations, are in fact simple applications of Jensen’s inequality
for the operators gap and f ÞÑ rf2s´.
Theorem 5.16 (Jensen’s inequality). Given a random function Q, any non-
convexity measureM satisfies

MpE rQsq ďK E rMpQqs .

Proof. BecauseM is K-convex, it satisfies Jensen’s inequality for any probability
measure.

Calling to mind the discussion of Section 5.2.1, we remember that the way we
found to globally quantify the non-convexity of a function was through projecting
via monotone norms, since it preserved functional inequalities. As we found out,
this was specially helpful, for these norms preserved the result of theorem 5.3. As
we expose in Theorem 5.17, this happens because for any non-convexity measure
M, ‖¨‖ ˝M is also a non-convexity measure if the norm is K-monotone.
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Theorem 5.17. If M : X Ñ K is a non-convexity measure and ‖¨‖ is a K-
monotone norm, then ‖¨‖ ˝M : X Ñ r0,8s is also a non-convexity measure on
the set X.

Proof. We prove that ‖¨‖ ˝M satisfies all the properties of Definition 5.15.

1. The set r0,8s is closed for sums and multiplication by positive scalars,
therefore it is a cone.

2. Since the norm of a vector is zero if and only if it is zero, we have for a
function f that

‖Mpfq‖ “ 0 ðñ Mpfq “ 0 ðñ f is convex.

3. The functionM isK-convex and the norm ‖¨‖ is convex (by the definition of
a norm) andK-monotone. Thus, their composition is a convex function.

The results of Sections 5.2.2 and 5.3.1 depend on an additional hypothesis:
that M is translation invariant. Notice that in the previous sections we were
using translation invariant norms because both the gap and the negative part of
the second derivative are only translation equivariant, that is, they commute with
translation operators, so we needed some translation invariant way to project
them on the non-negative reals.

In general, we may consider non-convexity measures which satisfy

Mpτafq “Mpfq (5.22)

for any f and a. These are translation invariant non-convexity measures and
satisfy Theorem 5.18 for any additive noise.

Theorem 5.18. If a non-convexity measureM : X Ñ K is translation invariant,
then for any function f P X and any random variable ξ,

MpE rτξf sq ďK E rMpτξfqs ďK Mpfq.

Proof. From Jensen’s inequality (Theorem 5.16), we get that

MpE rτξf sq ďK E rMpτξfqs
and from the translation invariance ofM:

E rMpτξfqs “ E rMpfqs “Mpfq.

In the alternative notation with convolutions, we wrote E rτξf s as f ˚µ, where
µ is the probability density of the random variable ξ. Using this, theorem 5.18
may be written in a rather elegant form:

Mpf ˚ µq ďK Mpfq ˚ µ ďK Mpfq. (5.23)
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The results of Section 5.2.2.1 deal with asymptotic convexification on the
uniform norm. To generalize these theorems, the only thing we must ask ofM is
that its image must be contained in a set of measurable functions, such that we
can make sense of both integration and the essential supremum forMpfq. The
following theorems recall classical results regarding convolutions, such as Hölder’s
inequality, adapted to the context of non-convexity measures.

Theorem 5.19. LetM : X Ñ K be a non-convexity measure and suppose that
K is contained in the set of measurable functions. Then, for any probability
measure µ,

‖Mpfq ˚ µ‖
8
ď γ ‖Mpfq‖

8
,

where

γ :“ sup
x

P
“
x´ ξ P suppMpfq‰ “ sup

x
µ
`
x´ suppMpfq˘ ď 1.

Proof. Any function is equal to itself multiplied by the indicator of its support,
thusMpfq “Mpfq ¨1S, where we denoted the support ofMpfq by S. Therefore,
for any point x fixed,

|Mpfq ˚ µpxq| “
ˇ̌
ˇ̌
ż
Mpfqpyq dµpx´ yq

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż
Mpfqpyq ¨ 1Spyq dµpx´ yq

ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ż

S

Mpfqpyq dµpx´ yq
ˇ̌
ˇ̌ ď

ż

S

|Mpfqpyq| dµpx´ yq

ď
ż

S

‖Mpfq‖
8
dµpx´ yq “ ‖Mpfq‖

8

ż

S

dµpx´ yq
ď ‖Mpfq‖

8
sup
x
µpx´ Sq.

Since the bound on the last equation is uniform, it is also valid for the supremum.
Hence,

‖Mpfq ˚ µ‖
8
“ sup

x
|Mpfq ˚ µpxq| ď ‖Mpfq‖

8
sup
x
µpx´ Sq.

Theorem 5.20. Let M : X Ñ K be a non-convexity measure such that K is
contained in the set of measurable functions. Then, if µn is a sequence of bounded
functions,

‖Mpf ˚ µnq‖8 ď ‖µn‖8 ‖Mpfq‖1

andMpf ˚ µnq converges uniformly to zero if ‖Mpfq‖1 is finite and ‖µn‖8 con-
verges to zero.

Proof. For each fixed x, we write

|Mpf ˚ µnqpxq| “
ˇ̌
ˇ̌
ż
Mpfqpyqµnpx´ yq dy

ˇ̌
ˇ̌ ď

ż
|Mpfqpyq|µnpx´ yq dy.
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By Hölder’s inequality, the right-hand side is below the product of the norms in
its integrand. Therefore,

|Mpf ˚ µnqpxq| ď ‖Mpfq‖1 ‖µn‖8 .

Taking the supremum on both sides gives the uniform norm bound,

‖Mpf ˚ µnq‖8 ď ‖Mpfq‖1 ‖µn‖8 .

The uniform convergence is then a consequence of the above equation.

5.4.1 Other examples of non-convexity measures
Now we present two other examples of non-convexity measures satisfying the
properties on Definition 5.15. The first example generalizes the second derivative’
negative part discussed in 5.3 for multivariate functions while the second example
gives a non-convexity measure appropriate for the study of piecewise linear or
non-convex Lipschitz functions.

We begin by generalizing the second derivative’s negative part from Section 5.3
to multivariate functions. If Ω is an open subset of Rn, call

X “ t f : Rn Ñ p´8,8s | dompfq “ Ω, f continuous on Ω u
the set of functions whose domain equals Ω. The setX is a convex set of functions
that can be seen as a subset of the distributions in Ω. From Theorem 4.27.1,
an element f P X is a convex function if and only if its distributional Hessian
D2f defines a positive semi-definite matrix measure. That is, the components
BiBjf of D2f are all measures and for all vectors v P Rn, the measure

ř
vivjBiBjf

is non-negative. Using the notation from Chapter 4, we write this condition
as

xv, pD2fqvy ě 0, @v P Rn. (5.24)
A natural way to measure the non-convexity of a function in X is by considering
how negative this expression can be if the argument v is a unit vector,

Λpfq “ inf
‖v‖2“1

xv, pD2fqvy. (5.25)

Notice that by the expression above we mean that Λpfq is the function that for
each Borel subset B of Ω, applies this expression for the matrix pD2fqpBq.

Since we want our non-convexity measure to be non-negative, we will consider
the negative part of Λpfq, using the variational characterization for the Hahn-
Jordan decomposition in Theorem 4.9.1:

Rpfq “ rΛpfqs´. (5.26)

Notice that Λpfq is not guaranteed to be a measure and the operator r¨s´ above
uses the same definition but may not maintain the same properties from the
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Hahn-Jordan decomposition for measures. Using that both the negative part and
Λ are optimal value functions, we can find a more suitable expression for R in
terms of the negative parts of a family of measures. For each Borel set A, we use
the fact that infima commute to get

RpfqpAq “ ´ inf
EĂA

EPBpΩq

inf
‖v‖2“1

xv, pD2fpEqq vy

“ ´ inf
‖v‖2“1

inf
EĂA

EPBpΩq

xv, pD2fpEqq vy

“ sup
‖v‖2“1

!
´ inf

EĂA
EPBpΩq

xv, pD2fpEqq vy
)

“ sup
‖v‖2“1

!
rxv, pD2fq vys´pAq

)

Since for each v P Rn the inner products xv, pD2fq vy are indeed measures, this
characterizes Rpfq as the largest value that the negative part of the quadratic
form induced by the Hessian of f may attain for a unit vector. For unidimensional
functions, R is precisely the non-convexity measure f ÞÑ rf2s´ from Section 5.3.
We now proceed to show that R is a non-convexity measure on X.

Remark 5.4. A famous result [Lax, 1997, thm 10, pg 116] says that the expression
for Λpfq is in fact a characterization of the smallest eigenvalue of the matrix
D2f . Since this is a function, the non-convexity measure Rpfq may be seen as
returning the negative part of the smallest eigenvalue of D2f .

Theorem 5.21 (Negative part of the Hessian’s smallest eigenvalue). Let Ω be
an open subset of Rn, X be the set of continuous functions on Ω, and K “
tT : BpΩq Ñ r0,`8s u the cone of non-negative functions over the Borel sets
of Ω. Then the operator R : X Ñ K defined by

Rpfq “ sup
‖v‖2“1

rxv, pD2fq vys´
is a non-convexity measure.

Proof. We will show thatR satisfies the three properties on Definition 5.15. That
K is a convex cone follows from the fact that the sum and non-negative scalar
multiplication of non-negative functions is also a non-negative function.

To show that Rpfq equals zero if and only if f is convex, we notice that the
following propositions are equivalent

f is convex ðñ xv, pD2fq vy ě 0, @v P Rn

ðñ rxv, pD2fq vys´ “ 0, @v P Rn

ðñ Rpfq “ 0.

To show that R is convex in relation to K, we notice that for each fixed Borel
set A, the function

RpfqpAq “ sup
‖v‖2“1

!
rxv, pD2fq vys´pAq

)
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is an optimal value function varying the objective. From Theorem 3.5.1, we know
that it is convex. Since this function is convex for each fixed argument and K
is a cone of non-negative functions, it follows by definition that R is convex in
relation to K. This concludes the proof.

Another non-convexity measure arises from the reverse norm cuts from [Ahmed
et al., 2019]. From Theorem 2.39, a proper lower semi-continuous convex function
can always be underapproximated by affine functions, which we previously called
valid cuts. An extension to this setting consists in considering cuts that also have
a reverse norm component,

fpyq ě fpxq ` xµx, y ´ xy ´ L ‖y ´ x‖ , @y, (5.27)

where ‖¨‖ is some norm and L is non-negative. Notice that if f is a convex
function, the constant L in 5.27 may be taken to be zero and for each x P Rn

there is an inclination µx such that the inequality still holds. For simplicity,

Let X be the set of all Lipschitz functions over Rn,

X “ tf : Rn Ñ R | DL ě 0 such that |fpyq ´ fpxq| ď L ‖y ´ x‖u.

Notice that Lipschitz functions are finite valued and everywhere continuous and,
therefore, are proper lower semi-continuous functions. As a way to measure
the non-convexity of f P X, we will take the smallest constant L such that for
all x P Rn, there is an inclination µx such that inequality (5.27) holds. More
formally,

Lpfq “ min
L

L

s.t. @x, Dµx, @y, fpyq ě fpxq ` xµx, y ´ xy ´ L ‖y ´ x‖
L ě 0.

(5.28)

Theorem 5.22 (Minimum Lipschitz constant). Let X be the set of Lipschitz
functions on Rn. Then the operator L : X Ñ r0,8s defined in (5.28) is a non-
convexity measure.

Proof. The set K “ r0,8s is a convex cone, since it is closed by addition and
multiplication.

If f P X is a convex function, since it finite everywhere, it equals the supremum
of its valid cuts and Equation (5.27) still holds with L “ 0. Thus, Lpfq “ 0.
Conversely, if Lpfq “ 0, we have that for all x there is an inclination µx such that

fpyq ě fpxq ` xµx, y ´ xy.

Since these are tight cuts, it follows that f “ f̌ , which implies that f is convex.
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To prove that L is convex, we will explicitly show that it satisfies Jensen’s
inequality. Let f , g P X. Then for each x P Rn there are inclinations µf,x and
µg,x such that

fpyq ě fpxq ` xµf,x, y ´ xy ´ Lpfq ‖y ´ x‖ , @y,
gpyq ě gpxq ` xµg,x, y ´ xy ´ Lpgq ‖y ´ x‖ , @y.

By taking any λ P r0, 1s, call µx “ λµf,x`p1´λqµg,x. Then, for all x, the convex
combination λf ` p1´ λqg satisfies, for all y,
`
λf`p1´λqg˘pyq ě `

λf`p1´λqg˘pxq`xµx, y´xy´
`
λLpfq`p1´λqLpgq˘ ‖y ´ x‖ .

This means that λLpfq ` p1 ´ λqLpgq is a feasible point for the optimization
represented by Lpλf ` p1´ λqgq. Since it is the smallest feasible constant,

Lpλf ` p1´ λqgq ď λLpfq ` p1´ λqLpgq,
concluding the proof.
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In Section 5.2 we defined the gap of a function f , gappfq “ f ´ f̌ , as a measure
of its non-convexity and saw that the gap of an average of functions is always
less than the average gap,

gappE rQsq ď E rgappQqs . (6.1)

This result can be readily applied to risk-neutral stochastic programs since it says
that the gap of the expected cost-to-go is always below the average of the gap of
all scenarios.

The concept of gap function was later generalized in Section 5.4 to a larger
family of operators called non-convexity measures that also satisfy an inequality
similar to (6.1).

In this chapter, we take another route and see how the gap behaves when we
substitute the average value E by an arbitrary coherent risk measure ρ. As we
will shortly see, some assertions still hold. Results such as Theorem 6.1 ensure
that an analogous result still holds, that is, ~ρpQq is closer to ρpQq than ρpQ̌q.
This means that in risk-averse optimization problems, calculating cuts using ~ρpQq
gives us sharper results than the usual approach.

6.1 Gap function and risk measures
An important characteristic of the expectation is its linearity. Distinctively, it
means that we can write the expectation of the gap in two equivalent ways,

E rQ´ Q̌s “ E rQs ´ E rQ̌s .
Since, for an arbitrary risk measure ρ, ρpQ´ Q̌q in general dos not coincide with
ρpQq ´ ρpQ̌q, we must choose which of these expressions we want to generalize.
These two formulations are related, as will be shown in Theorem 6.3.

We begin with a slightly more general result. Let G be any operator that
takes a random function and returns a deterministic function. If G is monotone
and preserves convexity, a result equivalent to Theorem 5.3 holds.
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Theorem 6.1. Let G be a monotone operator that takes take convex random
functions to convex functions. Then, for any random function Q,

GpQq ´ ~GpQq ď GpQq ´GpQ̌q.

Proof. As G preserves convexity, the function GpQ̌q is convex. From the mono-
tonicity of G,

Q̌p¨, ωq ď Qp¨, ωq ùñ GpQ̌q ď GpQq.
Using that the convex relaxation ~GpQq is above any other convex function
bounded by GpQq,

GpQ̌q ď ~GpQq ď GpQq
which implies the desired result:

GpQq ´ ~GpQq ď GpQq ´GpQ̌q.

Any coherent risk measure is monotone and preserves convexity, therefore an
important corollary to Theorem 6.1 is that it may be applied to any coherent
risk measure. A special case which deserves to be highlighted is when the risk
measure is the supremum of Q over some set.

Corollary 6.1.1. Let Q be a random function and ρ a coherent risk measure. Then

ρpQq ´~ρpQq ď ρpQq ´ ρpQ̌q.

Corollary 6.1.2. Let Q be a random function. Then

sup
ξ
Qpx, ξq ´ convpsup

ξ
Qpx, ξqq ď sup

ξ
Qpx, ξq ´ sup

ξ
Q̌px, ξq, @x.

The importance of Corollary 6.1.1 for risk-averse optimization problems lies
in the fact that we can calculate cuts for both ρpQ̌q or ~ρpQq. From the corollary
we see that for any random function,

ρpQ̌q ď ~ρpQq ď ρpQq. (6.2)

Therefore sharper results can be obtained if we calculate cuts to ~ρpQq.
Previously, we argued that since a coherent risk measure is not necessarily

linear, there is a difference between taking the gap of the risk or the risk of
the gap. Theorem 6.2 says how these notions are related when we change this
order.

Theorem 6.2. If ρ is a coherent risk measure,

ρpQq ´ ρpQ̌q ď ρpQ´ Q̌q.



6.2 Additive noise 121

Proof. From the subadditivity of ρ, we have that

ρpQq “ ρpQ´ Q̌` Q̌q ď ρpQ´ Q̌q ` ρpQ̌q.
Reorganizing the terms, we get that

ρpQq ´ ρpQ̌q ď ρpQ´ Q̌q.

Combining the previous results, we can relate what happens when we change
the order of evaluating the risk measure ρ and the convexification.

Theorem 6.3. Let ρ a coherent risk measure. For any random function Q,

ρpQq ´~ρpQq ď ρpQq ´ ρpQ̌q ď ρpQ´ Q̌q.

Proof. Follows directly by combining Theorems 6.1.1 and 6.2.

6.2 Additive noise
In the same manner of Section 5.2.2, we restrict our attention to random functions
of the form

Qpx, ξq “ pτξfqpxq “ fpx´ ξq.
The main result of that section was theorem 5.7 which said that for any translation
invariant monotone norm ‖¨‖,

‖E rτξpf ´ f̌qs‖ ď ‖f ´ f̌‖ .
When working with an arbitrary coherent risk measure ρ, however, there is no
analogous result encompassing all translation invariant monotone norms.

In what follows, we prove Theorem 6.4 which says that for the uniform norm,
an analogue of Theorem 5.7 holds for coherent risk measures. As in Sections 5.2.2
and 5.3.1, the uniform norm again seems to possess stronger bounds for the gap
reduction. Afterwards, we display an example of a combination of a coherent
risk measure ρ and a translation invariant norm ‖¨‖ such that

∥∥∥ρpτξfq ´ ­ρpτξfq
∥∥∥

is strictly greater than ‖f ´ f̌‖.
Theorem 6.4. Let ρ be a proper, lower semi-continuous coherent risk measure.
For any function f subjected to an additive noise ξ,∥∥∥ρpτξfq ´ ­ρpτξfq

∥∥∥
8
ď ‖ρpτξfq ´ ρpτξf̌q‖8 ď ‖ρpτξf ´ τξf̌q‖8 ď ‖f ´ f̌‖8 .

Proof. The first two inequalities come from Theorem 6.3 applied to Qpx, ξq “
fpx´ ξq.

For the last inequality, notice that since f´f̌ is non-negative, the monotonicity
and non-negative homogeneity of ρ imply that

τξpf ´ f̌q ě 0 ùñ ρpτξpf ´ f̌qq ě ρp0q “ 0.



122 Chapter 6. Convexification via Risk Measures

Since the uniform norm of a non-negative function is simply its supremum over
x,

‖ρpτξf ´ τξf̌q‖8 “ sup
x
ρpτξf ´ τξf̌q.

Remember that any proper and lower semi-continuous coherent risk measure
has a dual representation as

ρpξq “ sup
µPP

Eµ rξs

for some family of probabilities P, as seen in Theorem 3.26. Therefore, since
suprema commute,

‖ρpτξf ´ τξf̌q‖8 “ sup
x

sup
µPP

Eµ rτξf ´ τξf̌ s
“ sup

µPP
sup
x

Eµ rτξf ´ τξf̌ s
“ sup

µPP
‖Eµ rτξf ´ τξf̌ s‖8 .

The norm ‖¨‖
8

is convex, which means that we can apply Jensen’s inequality
to the expected value inside it. It is also translation invariant, as discussed in
Section 5.2.2. From these two facts,

‖ρpτξf ´ τξf̌q‖8 ď sup
µPP

Eµ
“
‖τξf ´ τξf̌‖8

‰

“ sup
µPP

Eµ r‖f ´ f̌‖
8
s .

As ‖f ´ f̌‖
8

is a constant,

‖ρpτξf ´ τξf̌q‖8 ď ‖f ´ f̌‖8 .

To prove this theorem we had to restrict ourselves to the uniform norm ‖¨‖
8
.

Now we give an example using the integral norm where an analogous to that
inequality does not hold. For this, choose as a risk measure ρ “ maxξPt´ 1

2 ,
1
2 u

and
define the function

fpxq “ min
 px` 2q2, px´ 2q2( “

#
px` 2q2, x ď 0
px´ 2q2, x ą 0.

(6.3)

This is a continuous, piecewise convex function that can be realized as the optimal
value function of the following mixed integer program with convex objective

fpxq “ min
y,z

y2

s.t. y ´ 4z “ x` 2
x, y P R
z P t0, 1u
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and whose convex relaxation is the function

f̌pxq “

$
’&
’%

px` 2q2, x ă ´2
0, x P p´2, 2q
px´ 2q2, x ą 2.

(6.4)

Applying the risk measure ρ to τξf , we get the following piecewise convex
function as a result

ρpτξfqpxq “ max
ξPt´ 1

2 ,
1
2 u

min
 px´ ξ ` 2q2, px´ ξ ´ 2q2(

“ max
 

mintpx` 2.5q2, px´ 1.5q2u, mintpx` 1.5q2, px´ 2.5q2u(.

After some calculations, the function ρpτξfq can be written piecewisely as

ρpτξfq “

$
’’’’’’’’&
’’’’’’’’%

px` 1.5q2, x ă ´2
px` 2.5q2, x P p´2,´0.5q
px´ 1.5q2, x P p´0.5, 0q
px` 1.5q2, x P p0, 0.5q
px´ 2.5q2, x P p0.5, 2q
px´ 1.5q2, x P x ą 2

(6.5)

and its convex relaxation ­ρpτξfq can be written piecewisely as

­ρpτξfq “

$
’&
’%

px` 1.5q2, x ă ´2
0.25, x P p´2, 2q
px´ 1.5q2, x ą 2.

(6.6)

The graphs of the functions f , f̌ , ρpτξfq and ­ρpτξfq can be visualized in Fig-
ure 6.1.

We now proceed to calculate the integral norm for the gap of both these
functions. For f , the volume of the gap is

‖gappfq‖1 “
ż
f ´ f̌ “

ż 0

´2
px` 2q2 dx`

ż 2

0
px´ 2q2 dx

“ 1
3
`
23 ´ 02˘` 1

3
`
03 ´ p´2q3˘ “ 16

3 .
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ρpτξfq
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Figure 6.1: The left image is the graph of f superimposed over the graph of
its convex relaxation f̌ . The right image is the graph of the supremum ρpτξfq
superimposed over the graph of its convex relaxation ­ρpτξfq. Notice the difference
on their gaps.

For ρpτξfq, the volume of the gap is

‖gappρpτξfqq‖1 “
ż
ρpτxfq ´ ­ρpτξfq “

ż ´ 1
2

´2
px` 2.5q2 ´ 1

4 dx`
ż 0

´ 1
2

px´ 1.5q2 ´ 1
4 dx

`
ż 1

2

0
px` 1.5q2 ´ 1

4 dx`
ż 2

1
2

px´ 2.5q2 ´ 1
4 dx

“ 4
ˆ
´1

4

˙
` 1

3

«
23 ´

ˆ
1
2

˙3

`
ˆ
´3

2

˙3

´ p´2q3 ` 23 ´
ˆ

3
2

˙3

`
ˆ
´1

2

˙3

´ p´2q3
ff

“ ´1` 25
3 “ 22

3

Therefore we see that, for this example,

‖gappρpτξfqq‖1 ą ‖gap f‖1 ,

showing that an analogous of Theorem 6.4 cannot hold for an arbitrary translation
invariant monotone norm.

Remark 6.1. Although this counterexample was constructed for the maximum
over the uncertainty, this also happens for an infinite family of coherent risk
measures. To see this, consider the risk measures defined by

ρε “ max
ξ
`εE.

These are strictly monotone coherent risk measures and, for ε ą 0 small enough,
the inequality in the counterexample still holds.
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A consequence of Theorem 5.3 is that if Q is the cost-to-go function of a stochastic
program,

E rQ̌s ď ~E rQs ď E rQs .
Moreover, it is possible that E rQs is in fact a convex function even if each
realization Qp¨, ξq is non-convex. This means that if our goal is to approximate
E rQs by cuts, there may be a difference in tightness between calculating cuts for
E rQ̌s or directly for ~E rQs.

Remember from Section 3.4.2 that there are two formulations for representing
the expected cost-to-go of a stochastic program. Assume that there exists a finite
number of possible scenarios ξ1, . . . , ξN with probabilities Ppξ “ ξiq “ pi, we
define the cost-to-go functionsQipxq “ Qpx, ξiq for each scenario. The decomposed
formulation for E rQs (Definition 3.19) consists in solving each Qipxq separately
and evaluating the average

E rQs pxq “
Nÿ

i“1
piQ

ipxq.

If we also calculate cuts for each scenario,

Qipxq ě qi ´ xλ, xy,
the average cut gotten by defining q̄ “ E rqis, λ̄ “ E rλis is valid for E rQs but is
at best tight for E rQ̌s.

The linked formulation for E rQs (Definition 3.21) consists in forming a large
problem that considers all scenarios at the same time. This formulation is more
computationally expensive but allows us to directly calculate cuts that are tight
for ~E rQs and, in the possible cases that the uncertainty totally convexifies the
expected cost-to-go, these cuts will also be tight for E rQs. These will be called
ECTG cuts, since they are calculated taking the entire expected cost-to-go into
account.

This chapter is dedicated to make a proof of concept for the advantages and
disadvantages between calculating cuts using the decomposed and the linked for-
mulation for non-convex multi-stage stochastic programs. In Section 7.1, we give



126 Chapter 7. Expected Cost-to-go

a brief description of the Stochastic Dual Dynamic Programming method, used
in the remainder of this chapter to computationally solve multi-stage stochastic
programs. Section 7.2 presents the computational and programming environment
used to solve the problems of the following sections. In Section 7.3, we will solve
a simple multi-stage stochastic program with only one state variable per stage to
allow a better visualization of the cost-to-go functions and their approximation by
cuts using each formulation. This section should be seem as a visual motivation
in a similar manner to Section 5.1. In Section 7.4, we apply both the linked
and decomposed formulation for a hydrothermal operational planning problem
with disjunctive constraints. This is a mixed integer linear program where the
cost-to-go for each scenario is non-convex.

7.1 Stochastic dual dynamic programming
The computational experiments from this chapter were made using the Stochas-
tic Dual Dynamic Programming (SDDP) algorithm, originated in [Pereira and
Pinto, 1991], to solve multi-stage stochastic programs. In this section we briefly
discuss how this method iteratively calculates cuts to construct polyhedral un-
derapproximations to the each stage’s expected cost-to-go. Since our focus is
comparing the different methods for calculating cuts, we in no sense try to give
a detailed explanation of the SDDP algorithm. The interested reader may find it
on the original [Pereira and Pinto, 1991] or in Chapter 4 of [Cabral, 2018]. For a
discussion of this algorithm’s convergence properties, see [Shapiro, 2011].

Recall that a risk-neutral multi-stage stochastic program may be written in
dynamic programming form as

Qtpxt´1, ξtq “ min
xt,ut

ctpxt, utq ` Q̄t`1pxtq
s.t. pxt´1, xt, utq P Xt

(7.1)

where ξt “ pct, Xtq is a stochastic process representing the problem’s random
data and

Q̄t`1pxtq “
#
E rQt`1pxt, ξt`1qs , t “ 1, . . . , T ´ 1
0, t “ T

(7.2)

is the expected cost-to-go for each stage. Throughout this discussion, we assume
that the stochastic process is stagewise independent, that is, the random variable
ξt`1 is independent of all previous uncertainties ξ1, . . . , ξt. As in Section 3.4, we
also assume that each ξt has finite support. The SDDP algorithm consists in
iteratively estimating the functions Q̄t by families of valid cuts.

The procedure of calculating the cuts is called the backward step and is
similar to the approximations discussed in Section 3.3 for deterministic two-stage
problems. At the beginning, it considers the cost-to-go for the last stage

QT pxT´1, ξT q “ min
xT ,uT

cT pxT , uT q
s.t. pxT´1, xT , uT q P XT .
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This may be viewed as the cost-to-go of a two-stage problem and, therefore, any of
the techniques in 3.4 can be applied to calculate a valid cut φp1qT for the expected
cost-to-go Q̄T . Set Qp1q

T “ φ
p1q
T . This yields an approximation for the expected

cost-to-go at the penultimate stage given by

Q̃
p1q
T´1pxT´2q “ E

«
min

xT ´1,uT ´1
cT´1pxT´1, uT´1q `Q

p1q
T pxT´1q

s.t. pxT´2, xT´1, uT´1q P XT´1

ff
(7.3)

which is everywhere below the real expected cost-to-go Q̄T´1, implying that any
valid cut for the approximation Q̃p1qT´1 is also valid for Q̄T´1. Thus, we may use it
to calculate a valid cut φp1qT´1 and set a polyhedral approximation Q

p1q
T´1 “ φ

p1q
T´1

for the penultimate stage problem. This process is repeated backwards until we
have found an approximation φp1q1 for Q̄1 at the first stage.

This same process is repeated iteratively to yield finer and finer approximations
for the expected costs-to-go. On the k-th iteration, we repeat this same procedure
calculating new cuts φpkqt for each stage and setting the polyhedral approximations
to be

Q
pkq
t “ maxtQpk´1q

t , φ
pkq
t u. (7.4)

These can be used to define approximated optimization problems

Q̃
pkq
t pxt´1q “ E

«
min
xt,ut

ctpxt, utq `Q
pkq
t`1pxtq

s.t. pxt´1, xt, utq P Xt

ff
(7.5)

that are used to further calculate valid cuts for the previous stages. Because of
the way that they are defined, these approximations are monotone in the number
of iterations,

Q
pk´1q
t ď Q

pkq
t , Q̃

pk´1q
t ď Q̃

pkq
t .

Besides that, they serve as underapproximations of the true solution, since it
always holds by construction that

Q
pkq
t ď Q̄t and Q̃pkqt ď Q̄t.

The forward step of the SDDP algorithm consists in using the approximations
Q̃t previously calculated to estimate an upper bound for the true solution of the
problem. Begin by considering a realization of the stochastic process ξt “ pct, Xtq
and let x˚t be optimal solutions of the problems

min
xt,ut

ctpxt, utq `Q
pkq
t`1pxtq

s.t. pxt´1, xt, utq P Xt.

Since the solution of each stage depends on the solution of the previous, this
process requires that we solve the problem by going forward from one stage to
the next. The calculated solution x˚ “ px˚1 , . . . , x˚T q satisfies all the constraints
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and is therefore feasible for the real problem given the realization of ξt. This
means that by samplingM realizations of the stochastic process and setting xi to
be the optimal solution for the approximated problem for scenario ξi, the sample
average

1
M

Mÿ

i“1

˜
Tÿ

t“1
citpxitq

¸

gives an upper bound on the true optimal value conditioned to the stochastic
process’ sample. Forward steps may also be used to select the trial points used
for calculating cuts on the backward step. Choosing these points is required to
ensure the algorithm convergence, see [Shapiro, 2011, prop 3.1], [Philpott and
Guan, 2008], [Guigues, 2016]. Therefore, it is usual to alternate between forward
steps with a small sample size and backward steps for a fixed number of iterations
followed by a larger forward step for truly estimating the upper bound.

7.2 Computational environment
All simulations in this chapter were done in a computer consisting in a Intel i7-8700
processor with 6 cores, 12 threads and 4.60 GHz of clock frequency, with 32 GB
of RAM, DDR, 2666 Mhz. The operating system is a Ubuntu Linux 18.04.2. All
models were written in the Julia programming language [Bezanson et al., 2017],
version 1.1.1, using the implementation of the package SDDP.jl [Dowson and
Kapelevich, 2017] for the Stochastic Dual Dynamic Programming method. All
the convex and mixed integer linear programs were solved by Gurobi [Gurobi Op-
timization, 2016], version 8.1.

With the aim of reproducibility, we give in Table 7.1 the version and git
commit number of all Julia packages used while running these simulations. The
packages DisjHTPlan and SDDP_SB were developed in the setting of a technical
collaboration between UFRJ and the Brazilian Independent System Operator
(ONS), for the project IM-21780. They consist, respectively, of an implementation
in Julia of the model for hydrothermal operational planning with disjunctive
constraints described in Section 7.4, and of a module adding the functionality
of strengthened Benders cuts for the package SDDP.jl. The version of SDDP.jl
used is also not the original one but a version edited for compatibility with the
developed packages.
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Table 7.1: Julia packages used for the simulations.

Package Version commit (SHA-1)
DisjHTPlan 0.1.0 5c30496e
SDDP_SB 0.1.0 59a45430
SDDP 0.0.0 f4570300
ConfParser 0.1.0 88353bc9
Revise 2.1.6 295af30f
Documenter 0.22.4 e30172f5
GLPK 0.10.0 60bf3e95
GZip 0.5.0 92fee26a
Gurobi 0.6.0 2e9cd046
JuMP 0.19.2 4076af6c
Libz 1.0.0 2ec943e9
MathOptFormat 0.1.1 f4570300
MathOptInterface 0.8.4 b8f27783
NPZ 0.4.0 15e1cf62
OSQP 0.5.2 ab2f91bb
PyPlot 2.8.1 d330b81b
Libdl 8f399da3
Random 9a3f8284

7.3 Unidimensional control problem
In this section we illustrate the difference between the different formulations for
approximating the expected cost-to-go by cuts. We will consider simple examples
with only a unidimensional state variable per stage. These examples are simple
enough to have their cost-to-go functions analytically calculated and it is easy to
graphically visualize the difference between the different approximations and the
real expected cost-to-go functions. In this sense, these results serve as a “sanity
check” for the more complicated model considered in Section 7.4.

7.3.1 Convex case
We begin by considering a convex multi-stage stochastic program, whose cost-to-
go functions satisfy the dynamic programming relation

Qt´1pxt´1, ξtq “ min
xt,ut

|xt| ` E rQtpxt, ξt`1qs
s.t. xt “ xt´1 ` ut ` ξt

ut P r´1, 1s.

(7.6)

Here, ut denotes the control variable on stage t and can be chosen on the entire
interval r´1, 1s. The state variable xt is constrained to equal the previous state
plus the control and the uncertainty. The uncertainty is supposed to be dis-
crete and stagewise independent with only two scenarios ξt P t´0.5, 0.5u having
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Figure 7.1: Expected cost-to-go for convex problem.

probabilities
Ppξt “ ´0.5q “ 1

2 , Ppξt “ 0.5q “ 1
2 .

Figure 7.1, shows the graph of the expected cost-to-go for the last stage together
with total cost for a given realization of ξT .

Since this problem is convex with only linear constraints, the calculated cuts
are guaranteed to be tight. Therefore, we have

Q
pkq
t pxkt q “ Q̃

pkq
t pxkt q

for each point xkt chosen on the k-th iteration. Notice that at each iteration, these
cuts are only guaranteed to be tight for Q̃k

t and not for the true expected cost-to-
go Q̄t. In Figure 7.2, we present the approximations Qt and Q̃t through different
methods together with the true, analytically calculated, expected cost-to-go func-
tions Q̄t for stages 1, 3, 5 and 7. We denote by Benders and SB the cost-to-go
functions calculated using, respectively, Benders and strengthened Benders with
decomposed formulation. The cuts denoted by ECTG are strengthened Benders
cuts calculated directly for the linked formulation. As expected for a convex
problem, the approximations constructed using the three methods are essentially
equivalent and find the minimum of Q̄t. The Lagrangian cuts were not used
for these simulations because of the huge amount of time needed for calculating
them. Calculating strengthened Benders cuts for the linked formulation already
provides cuts that are tight for the expected cost-to-go.

For a matter of comparison with next section’s plots of non-convex problems,
we also consider the expected cost-to-go of the same problem in equation (7.6) but
with a more complicated uncertainty with four scenarios ξt P t´1.5,´0.5, 0.5, 1.5u
having probabilities

Ppξt “ ´1.5q “ 1
6 , Ppξt “ ´0.5q “ 1

3 , Ppξt “ 0.5q “ 1
3 , Ppξt “ 1.5q “ 1

6 .

The calculated approximations to this problem are shown in Figure 7.3. Since the
problem is convex, the approximations Q̃t built with each method are essentially
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Figure 7.2: Expected cost-to-go for a convex problem with two equally probable
scenarios.
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Figure 7.3: Expected cost-to-go for a convex problem with four scenarios.

the same. Notice that, when t “ 7, the expected cost-to-go is known exactly and
all approximations overlap, but at the previous stages their quality increasingly
decreases.

7.3.2 Non-convex case
Consider the same stochastic program as the one discussed on last section but
with the control variables constrained to only be able to take the values ´1 or
1,

Qt´1pxt´1, ξtq “ min
xt,ut

|xt| ` E rQtpxt, ξt`1qs
s.t. xt “ xt´1 ` ut ` ξt

ut P t´1, 1u.

(7.7)

This is a mixed integer program, meaning that we can only guarantee that
the expected cost-to-go functions are piecewise convex. In this case, the cuts
calculated using the different formulations are expected to behave differently.
Figure 7.4 shows the graph of last stage’s cost given a realization of ξt together
with the expected cost-to-go for the last stage.

In Figure 7.5, we see the approximations calculated by the SDDP algorithm
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Figure 7.4: Expected cost-to-go for non-convex problem.

for the case with two scenarios

Ppξt “ ´0.5q “ 1
2 , Ppξt “ 0.5q “ 1

2 ,

and in Figure 7.6, we see those for the case with four scenarios

Ppξt “ ´1.5q “ 1
6 , Ppξt “ ´0.5q “ 1

3 , Ppξt “ 0.5q “ 1
3 , Ppξt “ 1.5q “ 1

6 .

Notice that in both cases the true expected cost-to-go is in fact convex.

We start analyzing these figures by the seventh stage, since at the last stage
Q̄8 “ 0 and, thus, the true expected cost-to-go Q̄t is calculated exactly when
t “ 7. From the figures for both stages, we see that there is a gap between
the cuts calculated using the decomposed formulation and Q̃ that is absent for
the ECTG cuts calculated using the linked formulation. This happens because
decomposed cuts can be, at best, tight for E rQ̌s while the ECTG cuts can be
tight for the true convexification ~E rQs. In these cases, since the true expected
cost-to-go is convex, we have ~E rQs “ E rQs and the ECTG cuts are tight for
E rQs while the decomposed cuts will always have a gap.

In the other stages, we calculate the cuts only for Q̃t, meaning that the
approximations are worse. The gap between these approximations and the true
expected cost-to-go Q̄t is propagated through the backward step implying in even
worse approximations on the earlier stages. As we can see in the figures, the
approximations Q̃t calculated using Benders cuts for the decomposed formulation
appear to be “frozen” from the first to the fifth stage and those calculated with
decomposed strengthened Benders increase only slightly. In comparison, the
ECTG approximations closely follow the true expected cost-to-go.
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Figure 7.5: Expected cost-to-go for a non-convex problem with two scenarios.
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Figure 7.6: Expected cost-to-go for a non-convex problem with four scenarios.
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7.4 Hydrothermal operational planning
This section presents a simplified long-term hydrothermal operational planning
model with disjunctive constraints and shows approximated solutions to this
problem calculated using the decomposed formulation or the ECTG cuts from
the linked formulation. This model represents a energy planning system with
a fixed number of hydro and thermoelectric subsystems and energy interchange
lines between some of these systems. The objective function is to minimize the
amount of thermal generation as well as the possible energy deficit.

We begin by considering a convex model, whose dynamic programming for-
mulation is

Qtpvt´1, ξtq “ min
vt,qt,st,gt,df t,ft

xc, gty ` xgdf , df ty ` βQ̄t`1pvtq
s.t. vt “ vt´1 ` ξt ´ qt ´ st,

qt `MIgt ` df t `MDft “ dt,
0 ď vt ď v̄, 0 ď qt ď q̄, 0 ď st
0 ď gt ď ḡ, 0 ď ft ď f̄ , 0 ď dft,

(7.8)

where, as usual, the expected cost-to-go is

Q̄t`1pvtq “
#
E rQt`1pvt, ξt`1qs , t “ 1, . . . , T ´ 1
0, t “ T.

In each stage, the decision variable is given by the vector xt “ pvt, qt, st, gt, df t, ftq.
The state variable is the vector vt and represents the stored energy at the equiv-
alent reservoir of each subsystem at the end of stage t. The control variables
are: a vector qt representing the turbined energy during the stage, a vector st
representing the spilled energy during the stage, a vector gt whose components
are the amounts of thermal generation, a vector dft for the amount of deficit on
each subsystem, and a vector ft for the amount of energy interchange between
the subsystems. The uncertainty is the stochastic process ξt, representing the
energy inflows for each subsystem at the beginning of the stage, assumed to be
stagewise independent. All other parameters are deterministic.

Besides the constraints giving the upper and lower bounds for the decision
variables, there are two more equations relating the variables. Equation

vt “ vt´1 ` ξt ´ qt ´ st (7.9)

is called the hydro balance equation and says that the total amount of water at
the end of stage t equals the amount of water at the beginning of the stage plus
the stochastic inflow minus how much water was turbined or spilled during the
stage. The equation

qt `MIgt ` df t `MDft “ dt (7.10)
is the load balance equation and says that the total generated energy must equal
the demand at each stage for all subsystems. The parameter dt is a vector whose
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components are the energy demand at stage t for each subsystem, MI is an
indicator matrix with zeros and ones associating each component of the thermal
generation vector to its corresponding subsystem and, MD is a matrix providing
the correct sign for the energy interchange at stage t, that is, the components
pMDqij equals zero if there is no connection between subsystem i and j and equals
˘1 depending if subsystem i receives or sends energy to subsystem j.

The objective function consists of a vector c with the unitary costs of thermal
generation times the amount gt of thermal generation, the unitary cost of deficit
cdf multiplied by the energy deficit df t for each subsystem and, the expected
cost-to-go Q̄ correct by a discount factor β.

Since the model discussed above is convex, all the previously introduced
ways to calculate cuts are equivalent. Therefore, we will add some non-convex
constraints that model the policy of minimum stored operational energy using the
technique of disjunctive constraints [Balas, 2011]. This is done by establishing
a vector vMinOp representing a desired minimum value for the stored energy of
each subsystem. If a component of vt is below the same component of vMinOp, we
say that the corresponding reservoir is below the operational minimum and at
least a given amount g0 of thermal generation must be dispatched. This “if-else”
constraint cannot be modeled using only convex equalities and inequalities but
can be written as linear constraints involving binary decision variables:

vt ě p1´ ztq vMinOp
gt ě zt g0
zt P t0, 1un,

where n denotes the number of subsystems. The values vMinOp and g0 are param-
eters of the model while the zt are binary decision variables. We arrived at the
non-convex model for hydrothermal planning, defined by

Qtpvt´1, ξtq “ min
vt,qt,st,gt,df t,ft,zt

xc, gty ` xgdf , df ty ` βQ̄t`1pvtq
s.t. vt “ vt´1 ` ξt ´ qt ´ st,

qt `MIgt ` df t `MDft “ dt,
0 ď vt ď v̄, 0 ď qt ď q̄, 0 ď st
0 ď gt ď ḡ, 0 ď ft ď f̄ , 0 ď dft,

vt ě p1´ ztq vMinOp,
gt ě zt g0,
zt P t0, 1un.

(7.11)

7.4.1 Computational simulations with 2 subsystems
This section is dedicated to compare the solutions obtained for the convex model
in Equation (7.8) using the SDDP algorithm with different cut types. This models
consists of two subsystems with one interchange line between them and three
thermal power plants. A total of 500 valid cuts were constructed for a planning
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horizon of 12 stages, were each stage consists of a month. This took 500 backward
and forward iterations of the SDDP algorithm.

The simulations were run for decomposed Benders and strengthened Benders
cuts as well as for ECTG cuts, that is, strengthened Benders cuts for the linked
formulation. Table 7.2 summarizes, for each cut type, the total time andmaximum
RAM memory needed for calculating the 500 cuts, which may be viewed as
measures of computational cost. It also contains the total calculated cost, a lower
bound for the true policy cost calculated from the polyhedral approximations
during the optimization process and the simulated cost, an upper bound estimate,
calculated through 500 simulations after the policy was decided. These two values
give an estimative of the problem’s duality gap, which is also given on the table
as the ratio between the absolute gap and the smaller simulated cost for all cut
types.

Table 7.2: Results for the convex model with 2 subsystems.

Cut types
Benders SB ECTG

Time (seconds) 30 142 758
Memory (GB) 0.394 0.396 1.005
Calculated cost (Bi R$) 8.668 8.671 8.670
Simulated cost (Bi R$) 9.135 9.153 9.128
Gap (%) 5.04 5.01 5.02

Both the calculated and simulated costs are approximately the same for all
cut types. An implication is that all methods find almost the same estimative
for the gap. This is expected for a convex problem, since, besides for numerical
reasons, all methods should calculate a cut that is tight for the expected cost-to-
go at a chosen point. Nevertheless, the computational cost for the Benders cuts
is drastically smaller than these of the other types of cuts, probably due to the
simplicity of this method. The time required by the ECTG cuts is more than 5
times larger than that of the Benders cuts, showing that there is no advantage
in using the linked formulation if the problem is convex.

Now we proceed to compare the results obtained by the SDDP algorithm for
the non-convex model in Equation (7.11). Besides the addition of the disjunctive
constraints for the minimum stored operational energy, everything is as in the
previous section, including the 500 scenarios used for calculating the simulated
cost. The results are summarized in Table 7.3.

Since this problem contains binary variables, there is a visible difference
between the different cut types. The calculated cost for the ECTG cuts is about
10% higher in relation to both decomposed Benders and strengthened Benders
cuts. This means that while the relative gap using the decomposed formulation
is no less than 14.44%, the linked formulation can reduce the gap to 8.19%.
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Table 7.3: Results for the non-convex model with 2 subsystems.

Cut types
Benders SB ECTG

Time (seconds) 41 759 16854
Memory (GB) 0.422 0.418 1.089
Calculated cost (Bi R$) 10.222 10.410 11.170
Simulated cost (Bi R$) 12.231 12.227 12.209
Gap (%) 15.98 14.44 8.19

This is analogous to the phenomenon observed in Figures 7.5 and 7.6, where
the decomposed cuts could not “touch” the real expected cost-to-go everywhere.
Concerning the computational cost, the memory usage is about the same of the
convex case but there huge differences on the elapsed time. The decomposed
Benders cuts required a little more time, probably due to the need of solving
a mixed integer program during the forward step. The time required by the
decomposed strengthened Benders cuts was about 5 times higher than the convex
case because for calculating tight cuts, we also need to solve the Lagrangian
relaxation of mixed integer programs during the backward steps. Despite this
increase in the required time, these cuts provide an increase in the lower bound
given by the calculated cost in comparison to the Benders cuts, provoking a
reduction of about 1.5% on the estimated gap. The ECTG cuts take about
22 times longer to calculate in the mixed integer setting than for the convex
problem because it requires solving a large mixed integer program during all
backward steps. In comparison with the other cut types, the ECTG cuts take
about 400 times longer than the Benders cuts and 22 times longer than the
decomposed strengthened Benders cuts. This increase in computational cost is
counterbalanced by a large reduction on the estimated gap.

Since calculating cuts with the linked formulation takes much longer than
with the decomposed formulation, a question that may arise is how much the
gap could be reduced if we let the algorithm calculate decomposed cuts for the
same time required to calculate 500 ECTG cuts. In Table 7.4, we show the result
of calculating 4000 decomposed strengthened Benders cuts, which takes a little
longer than the 500 ECTG cuts.

As we can see, the additional 3500 decomposed cuts do not make a great
difference for the estimated gap, reducing it by only 0.85%. Nonetheless, the
ECTG were capable, with the same amount of time, of reducing the estimated
gap by 6.25% with respect to the original 500 strengthened Benders cuts.
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Table 7.4: Comparison between decomposed and linked strengthened Benders
cuts for approximately the same running time.

Cut types
SB ECTG

Time (seconds) 18154 16854
Memory (GB) 0.474 1.089
Calculated cost (Bi R$) 10.498 11.170
Simulated cost (Bi R$) 12.141 12.209
Gap (%) 13.79 8.19
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