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Orientador: Prof. Fabio Antônio Tavares Ramos.
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Resumo

Boosted Variational Inference via Bayesian Monte Carlo

Danilo de Freitas Naiff

Resumo da dissertação de Mestrado apresentada ao Programa de Pós-graduação
em Matemática, Instituto de Matemática da Universidade Federal do Rio de Janeiro
(UFRJ), como parte dos requisitos necessários à obtenção do t́ıtulo de Mestre em
Matemática.

Resumo: A maioria dos problemas importantes em aprendizado
de máquina são caros computacionalmente, em particular aqueles
que envolvem inferência Bayesiana. Muitas das técnicas Bayesianas
atuais requerem um alto número de avaliações de verossimilhança,
o que pode ser inviável em alguns casos. Nessa dissertação, propo-
mos um algoritmo de inferência aproximada, baseado em trabal-
hos recentes sobre inferência variacional e processos Gaussianos.
Este algoŕıtmo, nomeado pelo autor Boosted Variational Bayesian
Monte Carlo, é construido de forma que poucas avaliações de
verossimilhança sejam necessárias. O algoritmo, seu pacote as-
sociado, e a teoria por trás dele são apresentados neste trabalho.
Tambem ilustramos o algoritmo através de sua implementação em
alguns toy examples, e em um problema de fonte de contaminação.

Palavras–chave. Inferência Bayesiana, Inferência variacional, Processos gaus-
sianos, Bayesian Monte Carlo.
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Abstract

Boosted Variational Inference via Bayesian Monte Carlo

Danilo de Freitas Naiff

Abstract da dissertação de Mestrado apresentada ao Programa de Pós-graduação
em Matemática, Instituto de Matemática da Universidade Federal do Rio de Janeiro
(UFRJ), como parte dos requisitos necessários à obtenção do t́ıtulo de Mestre em
Matemática.

Abstract: Most of the important problems in machine learning
are computationally expensive, in particular the ones involving
Bayesian inference. Many of the current Bayesian techniques re-
quires a large number of likelihood evaluations, which may be in-
feasible for some cases. In this dissertation, we propose an approx-
imate inference algorithm, based on recent works on variational
inference and Gaussian processes. This algorithm, named by the
author Boosted Variational Bayesian Monte Carlo, is designed so
that few likelihood evaluations are needed. The algorithm, its as-
sociated package, and the theory behind it are presented in this
work. We also illustrate the algorithm by implementing it in some
toy examples, and in a contamination source problem.

Keywords. Bayesian inference, variational inference, Gaussian processes, Bayesian
Monte Carlo.
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1 SUMMARY

The Bayesian framework for inference and learning is conceptually simple,

while having good properties related to normative reasoning [40]. However, behind

its simplicity lies the computational challenge of sampling and integration, which

drives much of research on the field. Methods such as Markov Chain Monte Carlo

and variational inference have undergone major advances in the recent decades,

driving Bayesian methods back to popularity.

In general those methods assume that evaluation of a likelihood function

l(θ) = p(D|θ) is computationally cheap enough to be done tens or hundred thousand

of times, at least. However, in some cases this may not be true, as for example in

cases where l(θ) must come from a computationally expensive simulation. This work

presents a variational approximation method, using Gaussian process regression,

that is adapted from [2, 45], in order to deal with cases where θ is a continuous

random variable, and l(θ) can be evaluated only tens, hundreds, or thousands of

times. The current algorithm is suited for low and medium dimensional problems

(around 10 dimensions at most).

A Python package for deploying this method was developed, built mainly

on top of PyTorch, and we test it in some cases. Currently, the package lacks

complete documentation and unit testing, but an alpha version is already available

in https://github.com/DFNaiff/BVBMC. Since this package may undergo changes

in the future, all code used in the present work may be found in https://github.

com/DFNaiff/Dissertation.

Next, we presented a brief summary of each chapter of this dissertation.

https://github.com/DFNaiff/BVBMC
https://github.com/DFNaiff/Dissertation
https://github.com/DFNaiff/Dissertation
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In Chapter 2, Bayesian theory is briefly reviewed, along with some approx-

imate inference methods. Moreover, approaches to expensive or intractable likeli-

hoods are discussed.

In Chapter 3, the Gaussian process regression method is reviewed, while in

Chapter 4, Bayesian Monte Carlo, a Gaussian process based integration method, is

discussed.

In Chapter 5, variational inference is reviewed, first in general, then focusing

on the case where approximation is made by mixtures of Gaussian distributions,

using the boosting approach found in [45]. Moreover, a recent method presented in

[2], using variational inference via Bayesian Monte Carlo, called Variational Bayesian

Monte Carlo, is presented.

In Chapter 6, we propose an adaptation of Variational Bayesian Monte Carlo,

incorporating other ideas presented in chapter 2 and 3, particularly the boosting

approach in [45]. This results in a new algorithm, which we call Boosted Variational

Bayesian Monte Carlo. A small discussion on implementation follows, focused on

backpropagation, which is the reason the developed package was built on PyTorch.

In Chapter 7, the corresponding Python package is applied in a few toy examples,

and in a contamination source problem.

The work is concluded in Chapter 8, where we discuss future directions for

both scaling the presented method to higher dimension and to increase its accuracy.

In the appendix, among other things, there is an extended discussion on Sparse

Gaussian Process, a technique that the author tried to use in order to extend the

present method to higher dimensions and greater number of evaluations, although

with limited success.
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2 BAYESIAN INFERENCE AND LEARNING

2.1 Learning described as Bayesian inference

The central problem of learning from data can be verbalized as: given that

some agent have access to data D, what knowledge can the learner extract from

it? One way to approach this problem is by assuming that learning does not take

place in a vacuum, but in a world that the learner has uncertain knowledge about,

translated into beliefs. The fact that those beliefs are uncertain is important, given

that if the learner knew exactly everything he should know about the world, access

to data D could not teach him nothing more.

Given this general framework of ”informed uncertainty”, one natural way

to describe it, mathematically, is by using probability theory for describing the

problem. More specifically, it is used the Bayesian viewpoint of probability, where

degrees of uncertainty about quantities are mapped into probabilities about those

[66, 55].

In this interpretation, probability theory does not just deal with random

events, but with anything that an agent is uncertain about. So, given some propo-

sition A, and given that the learner knows I about the world, P (A|I) represents

what he knows about A. Thus A|I becomes a random variable, even if A is not a

random event. Cox’s theorem [55],[25] says that, under some certain common sense

assumptions about how the learner should ideally reason about beliefs, the rules of

probability theory holds, as an extension to logic.

In a simplification of this setting, when learning from the data D, and pre-
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vious information I, the learner must have some set of hypothesis (assuming finite

for now) H = {H1, . . . , Ht}, such that the learner assumes one and only one of then

is true, and with each of them associated with a probability P (Hk) such that∑
Hk∈H

P (Hk|I) = 1.

Furthermore, each hypothesis Hk should say something about how likely it is for

the data to be generated, given Hk is true, and this information is encoded in

P (D|Hk, I). In this case, Bayes’ theorem says that it is possible to obtain the

updated probabilities (thus degree of beliefs) P (Hk|D, I) by Bayes’ rule:

P (Hk|D, I) =
P (D|Hk, I)

P (D|I)
P (Hk|I), (2.1)

with p(D|I) being available by marginalization

P (D|I) =
∑
Hk∈H

P (D|Hk, I)P (Hk|I). (2.2)

In practice, usually hypothesis does not comes in discrete chunks, but one

assumes a model M . The model is usually endowed with free parameters θ ∈ Θ ⊂
RD, so that, assuming those to be continuous1, the hypotheses are encoded by those

parameter through a probability density function p(θ|M). Then, given the data D,

one seeks the posterior density function p(θ|D,M). In this case, we also have a

version of Bayes’ theorem for the densities

p(θ|D,M) =
p(D|θ,M)

p(D|M)
p(θ|M), (2.3)

with

p(D|M) =

∫
Θ

p(D|θ′,M)p(θ′|M)dθ′. (2.4)

In the Bayesian framework, the problem of learning is reduced to one of

inference about θ, in a manner that if a specific parameter θ is sufficient to make a

prediction Q|θ,M , with density p(Q|θ,M), then the learner has access to Q|D,M

1This is not necessary at all, but it simplifies the notation
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by marginalization

p(Q|D,M) =

∫
Θ

p(Q|θ,M)p(θ|D,M)dθ. (2.5)

Thus, there is no fundamental difference between learning and inference from a

Bayesian point of view.

2.2 Decision theory

Following the Bayesian procedure, an agent can learn something about the

world. However, ultimately what one wants to do with beliefs about the world is

to convert those into actions. This can be formalized in Bayesian decision theory

[91], where the components required for belief updating are combined with a loss

function L : Θ×A → R+, with L(θ, a) being the cost of taking action a when the

state of the world is θ 2. Then, the action that minimizes the expected loss, given

the posterior distribution p(θ|D,M),

a∗ = arg min
a∈A

∫
Θ

L(θ, a)p(θ|D,M)dθ, (2.6)

is the Bayes-optimal decision for the agent to make [91].

From this point of view, parameter estimation is simply when the action

taken is choosing a parameter, that is, A = Θ. In this setting, we have that, for

some loss functions L(θ, θ̃), one can find the desired Bayes estimator,

θ̂ = arg min
θ̃

∫
L(θ, θ̃)p(θ|D,M)dθ, (2.7)

by calculating the minimum analytically:

• The l2 (quadratic) loss L(θ, θ̃) = ||θ − θ̃||22, for which θ̂ = E[θ|D,M ]

2This language refers back to the continuously parameterized model setting described above,
and this will be assumed through the text. However, one can refer also to a more general setting,
mutatis mutandis
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• The l1 (absolute) loss L(θ, θ̃) = ||θ − θ̃||1, for which, at each coordinate i,

θ̂i = median(θi|D,M).

However, loss functions can be much more general, allowing, for example, to

encode asymmetry in the gravity of mistakes. For instance, if θ is the maximum

load of some structural component, underestimating it may result in a bigger waste

of resources, while overestimating it may result in collapse.

One way of choosing θ̂ that does not exactly enter the framework above, at

least for continuous parameters, are either by the maximum a posteriori MAP of

the probability density function

θ̂MAP = arg max
θ

p(θ|D,M) = arg max
θ

p(D|θ,M)p(θ|M). (2.8)

The MAP estimation can be regarded however as a limit of minimizers of loss func-

tions of the form

Lc(θ, θ̃) =

{
0, if ||θ − θ̃|| < c

1, otherwise,
(2.9)

so that 3

θ̂MAP = lim
c→0

arg min
θ̃

∫
Lc(θ, θ̃)p(θ|D,M)dθ (2.10)

Related to the MAP estimator is the maximum likelihood estimate (MLE), which

can be seem as a modification of the MAP that doesn’t take in account prior belief

θ̂MLE = arg max
θ

p(D|θ,M). (2.11)

The MAP (and MLE) estimation suffers from some drawbacks for continuous

distributions:

• The MAP estimation does not take in account any true loss function, just limits

3Provided some conditions. See [8] for a counterexample of the general result.
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of loss functions. Specially in applications that has an intrinsic asymmetric

loss, this may result in grave mistakes.

• The MAP estimation is in general an untypical point for the distribution, in

the sense that the probability of the parameter to be near the MAP is low. In

particular, in high dimensions that MAP will be very untypical (see [9]).

• The MAP estimation is not invariant under reparameterizations. To illustrate,

assume that θ is a one-dimensional parameter representing some phenomena

F , and let φ = g−1(θ), where g is diffeomorphic 4. Clearly, φ is also a valid pa-

rameterization of F . Assuming g′(φ) > 0 for simplicity, let fθ(θ) := p(θ|D,M).

Then, we have, letting fφ(φ) := p(φ|D,M), that fφ(φ) = fθ(g(φ))g′(φ). This

implies that:

f ′(φ) = g′′(φ)fθ(g(φ)) + (g′(φ))2f ′θ(g(φ)). (2.12)

Now, being θ̂MAP the MAP estimator for θ, we have f ′θ(θ̂MAP) = 0. However,

letting φ̂ := g−1(θ̂MAP), we have that f ′(φ̂) = g′′(φ̂)fθ(g(φ̂)), which does not

equal to 0 unless g′′(φ̂) = 0. Hence, φ̂ cannot be the MAP estimator for φ.

But, since θ and φ are both valid parameterizations for phenomena F , this lack

of invariance implies that the MAP estimation has no meaning in estimating

F .

Still, the MAP estimator is relatively straightforward to calculate, since it requires

the optimization of p(D|θ)p(θ), which is in general a simpler problem than integra-

tion. Thus, it is widely used.

4In order to exclude some special conditions, assume both θ and φ are supported in R
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2.3 Model selection

In the previous discussion, the model M was assumed to be fixed, with only

its parameters being unknown. In practice, we have a set of models M from which

we choose M . This raises the question on how to make this choice of M .

The standard Bayesian solution for the problem would be placing a prior

distribution P (M) for the models, and then computing the posterior distribution

for them, given the data, by Bayes’ rule

P (M |D) =
P (D|M)P (M)∑

M ′∈M P (D|M ′)P (M ′)
, (2.13)

with the model likelihood, in this setting being called marginal likelihood or evidence,

given by

p(D|M) =

∫
ΘM

p(D|θM ,M)p(θM |M)dθM , (2.14)

emphasizing that the parameter space ΘM depends on the model. Then, one can

choose M by MAP estimation

M̂ = arg max
M∈M

p(D|M)p(M), (2.15)

or, in prediction settings, carrying the full posterior model distribution for doing

model averaging. Still, choosing a prior for models may not be a trivial task, as

discussed in [91]. To circumvent this, one can instead forget about the prior (or

assume an uniform prior), and choose the model with maximum likelihood

M̂ = arg max
M∈M

p(D|M) = arg max
M∈M

∫
p(D|θM ,M)p(θM |M)dθM . (2.16)

The choice of models by maximization of evidence results in the Bayesian

Occam’s razor [66, 67, 88], named after the Occam’s razor principle that says, given

a choice between models, we should select the simplest models that still explains the

data. We say that some model is simpler or more complex than another if it can
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explain few or more data. To see how Occam’s razor works in Bayesian setting, it

suffices to realize that, between all possible datasets, probabilities must sum to one.

For illustration, assume that D comes from a finite set of possible datasets. Then,

we need ∑
D′

p(D′|M) = 1. (2.17)

Now, compare three models, M1, M2 and M3. M1 can explain only very few datasets

well, so few that it cannot explain D. M2 can explain more datasets, including D,

but not so much as M3 explains, which is a vast number of datasets. We have

then that p(D|M1) must be very low, given that M1 does not explain D. The two

other models, that explains the data, have higher values of p(D|M2) and p(D|M3).

But, since p(D|M3) ”shares” probability mass with more datasets than p(D|M2), by

conservation of probability mass, we find that p(D|M2) is higher. Hence we have

the order

p(D|M2) > p(D|M3) > p(D|M1). (2.18)

Hence, we find that M2 is simple enough to be desirable, but not so simple as to not

be able to explain D, thus obeying the Occam’s razor principle.

The model setM itself does not need to be discrete or enumerable. IfM can

be parametrized by a set Λ, then one can change M for Λ, and find the maximum

of evidence by:

λML−II = arg max
λ∈Λ

p(D|M(λ)). (2.19)

This estimator is called type II maximum likelihood estimator. By setting an prior

over Λ, we would have instead a type II maximum a posteriori estimator

λMAP−II = arg max
λ∈Λ

p(D|M(λ))p(M(λ)). (2.20)
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2.4 Approximate inference

Computationally, Bayesian inference suffers from two major issues:

• Because in the posterior density (2.3), the normalizing term p(D) 5 is to be

determined by the integral (2.4), a closed-form solution of the posterior den-

sity is often unavailable, even though the unnormalized density Zp(θ|D) =

p(D|θ)p(θ) = p(θ,D) usually is.

• A more grave problem is that, even with the normalized posterior density at

hand, for an arbitrary function f(θ), the expectation
∫
f(θ)p(θ|D)dθ is not

trivial to calculate. And, as seen in Section 2.2, what one wants in the end

with posterior distribution is to calculate expectations. Thus, computational

methods for dealing with those problems are needed.

In this section, Monte Carlo methods are quickly reviewed, along with Laplace’s

approximation. Discussion on variational inference, another important approximate

method, is postponed to Chapter 3, since it is a main subject of this work.

2.4.1 Monte Carlo integration methods

Consider back the expectation

µ := Eθ∼p(θ|D)[f(θ)] =

∫
f(θ)p(θ|D)dθ. (2.21)

5From now on we omit the dependence on the model M .
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Assuming this expectation exists, if one can sample θ1, . . . , θN from θ|D, indepen-

dently, then the estimator

µ̂ :=
1

N

N∑
i=1

f(θi), (2.22)

is such that, as N →∞, µ̂→ µ almost surely, by the law of large numbers. More-

over, if the variance of f(θ) is finite, then the convergence rate is O
(√

Var(f(θ))
N

)
,

by the central limit theorem. Hence, the challenge of Monte Carlo methods is how

to get, from an unnormalized posterior distribution p(θ,D), independent or ”inde-

pendent enough” samples from this distribution.

2.4.1.1 Importance sampling

The importance sampling algorithm [92] is a relatively simple algorithm for

sampling from unnormalized posteriors. Let q(θ) be some proposal distribution,

such that one can sample easily from q(θ), having samples θ1, . . . , θN ∼ q(θ). Finally,

assume an unnormalized density q̄(θ) = Zqq(θ) is known. Then, rewrite (2.21) as

µ̂ =

∫
f(θ)p(θ|D)dθ =

Zq
Z

∫
f(θ)

p(θ,D)

q̄(θ)
q(θ)dθ, (2.23)

which can be estimated as

Zq
Z

∫
f(θ)

p(θ,D)

q̄(θ)
q(θ)dθ ≈ 1

Z/Zq

1

N

N∑
i=1

w̃if(θi), w̃i :=
p(θi,D)

q̄(θi)
. (2.24)

The ratio Z/Zq can himself be estimated, using the same samples, as

Z

Zq
=

1

Zq

∫
p(θ,D)dθ =

∫
p(θ,D)

q̄(θ)
q(θ)dθ ≈ 1

N

N∑
i=1

w̃i. (2.25)

Then, joining (2.24) and (2.25), we have an estimate for (2.21)

µ̂ =

∫
f(θ)p(θ|D)dθ ≈

N∑
i=1

wif(θi), wi =
w̃i∑N
j=1 w̃j

, ∀i. (2.26)



12

2.4.1.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods uses Markov chains to sample

from the desired distribution [92, 20]. MCMC is arguably the most popular method

in Bayesian statistics, due to their ability to sample efficiently from relatively high

dimensional distributions, with only unnormalized density available. As such, the

number of MCMC methods is enormous. Here a basic method, Metropolis-Hastings,

is reviewed in passing.

Markov chains are sequences of random variables X0, X1, . . ., with the prop-

erty that the conditional distribution Xi|X0, . . . , Xi−1 is the same as Xi|Xi−1. Thus,

a Markov chain is completely defined by the distribution of the initial random vari-

able X0, and the transition probability distribution, p(xi+1|xi). If p(xi+1|xi) is inde-

pendent of i, is called a stationary transition, and those kinds of chains are of most

interest in MCMC methods.

Markov chains becomes interesting when their transitions have some unique

distribution π(x), called a stationary distribution, such that

π(x′) =

∫
p(x′|x)π(x)dx, (2.27)

that is, when the initial random variable X0 of a Markov chain is distributed ac-

cording to π(x), under the transition p(x′|x), every Xi is distributed according to

pi(x). One of the conditions that suffices (although is not necessary)for π(x) being

a stationary distribution is that it satisfies the detailed balance condition

p(x′|x)π(x) = p(x|x′)π(x′). (2.28)

With the stationary distribution, under some technical conditions (see [92]), we have

for a Markov chain with transition probability p(x′|x), such that X0 = x0 and xi is
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sampled from p(xi|xi−1), for i ≥ 1, that, as N →∞,

1

N

N∑
i=1

f(x)→ EX∼π[f(X)]. (2.29)

Moreover, the convergence follows a version of the central limit theorem.

Assume first that X0 ∼ π. Then, we have that the central limit theorem holds, with

(??) being substituted for

O

(√
Var(f(X1)) + 2

∑∞
k=1 Cov(f(X1), f(X1+k))

N

)
, (2.30)

when i large enough [38]. More generally (and realistically), any Markov chain

(modulo a technical conditions) for which the transition p(x′|x) has stationary dis-

tribution π(x) follows the central limit theorem, with asymptotic rate of convergence

being the same as when X0 ∼ π. 6

These results gives rise to the following procedure: construct a randomized

algorithm such that, starting with some θi ∈ Θ, θi+1 ∈ Θ is generated such that

p(θi+1|θi) has stationary distribution p(θ|D).

The Metropolis-Hastings algorithm is one manner of doing this for a general

distribution. Given a (possibly unnormalized) conditional distribution g(θ′|θ) (a

proposal distribution), and θt, t ≥ 0, one samples a proposal θ̃t+1 from g(θ′|θt), and

then, letting

α(θ̃t+1, θt) = min

(
1,
p(θ̃t+1|D)g(θt|θ̃t+1)

p(θt|D)g(θ̃t+1|θt)

)
, (2.31)

be the acceptance probability, then let θt+1 = θ̃t+1 with probability α(θ̃t+1, θt), else let

θt+1 = θt. One key observation is that the ratio p(θ̃t+1|D)/p(θt|D) is independent of

the normalization constant, thus it can be substituted for p(D|θ̃t+1)p(θ̃t+1)/p(D|θt)p(θt),

6This results in the important notion of effective sample size (ESS), where (2.30) is substituted

for O
(√

Var(f(X))
Neff

)
, with Neff = N/ (1 + 2

∑∞
k=1 corr(f(Xi), f(Xi+k)), when i is large enough.
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avoiding the need for the normalized posterior.

For continuous distributions, one standard proposal distribution is g(θ′|θ) =

N (θ′|θ, ε2I), with ε being the step size, resulting in the Random Walk Metropolis al-

gorithm. In particular, with this proposal distribution g(θ′|θ) = g(θ′|θ), simplifying

the acceptance probability to

α(θ̃t+1, θt) = min

(
1,
p(θ̃t+1|D)

p(θt|D)

)
, (2.32)

2.4.2 Laplace’s approximation

Laplace’s approximation [12] is arguably the simplest technique from a class

of methods that tries to approximate the density p(θ|D) by some other density q(θ),

using p(θ,D), and work with the approximation. Another technique that belongs

to this class of methods is variational inference, the subject of Chapter 5.

Consider Θ = RD, p(θ|D) to be smooth, and θ∗ = θ̂MAP be the MAP of

p(θ|D) = p(θ,D)/Z. Then, doing a second order Taylor approximation on l(θ) =

log p(θ,D) = log p(θ|D) + log p(D), around θ∗, and noticing ∇θl(θ
∗) = 0,

l(θ) ≈ l(θ∗) +
1

2
(θ − θ∗)THθ∗(l)(θ − θ∗), (2.33)

where Hθ∗(l) is the Hessian matrix of l(θ) on θ∗ 7. Then, letting Σ = −H−1
θ∗ (l) and

µ = θ∗, taking the exponential on both sides

p(θ,D) ≈ exp(l(θ∗)) exp

(
−1

2
(θ − µ)TΣ−1(θ − µ)

)
. (2.34)

The second side is just the unnormalized density of N (θ|µ,Σ). Hence, normalizing

back, we arrive at the Laplace’s approximation for p(θ|D)

p(θ|D) ≈ N
(
θ; θ∗,−H−1

θ∗ (l)
)
. (2.35)

7The negative of the Hessian matrix −Hθ(l) is the same as Fisher information matrix I(θ).
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The Laplace’ approximation needs optimization of l(θ) and access to second

derivatives, which for many cases may be cheaply available. However, since the

approximation is only local, it may diverge sharply from the actual posterior. More-

over, in higher dimensions, calculating and inverting the Hessian matrix may be too

costly.

2.4.2.1 Remark on approximation

It is important to consider a possible advantage of using an approximate

density q(θ) over sampling from p(θ|D). Assume q(θ) simple enough so that there

is no need for advanced sampling techniques for Markov Chain Monte Carlo. Then,

consider the general loss minimization problem (2.6), and substitute p(θ|D) for q(θ),

yielding the minimization objective for a ∈ A.

Fq(a) =

∫
Θ

L(θ, a)q(θ)dθ. (2.36)

If A is a subset of Rk, then one can sample N samples from q(θ) and get a stochastic

estimation of ∇Fq(a)

∇Fq(a) ≈ 1

N

∑
θi∼q(θ)

∇aL(θi, a), (2.37)

allowing the application of stochastic gradient descent, and related techniques, for

minimizing Fq(a). However, sampling from q(θ) is easy, so the bottleneck mostly

belongs in the evaluation of ∇aL(θ, a). If samples from p(θ|D) were made from

some more advanced sampling technique instead, the bottleneck would be in the

sampling algorithm performance, which may be not quite as fast. Since q(θ) must

be discovered only once, then approximation may be more feasible.

The drawback is that of course q(θ) must be a good approximation of p(θ|D)

to begin with, which may not be easy to ensure (as discussed, this is one drawback

from Laplace’s approximation).
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2.5 Expensive and intractable likelihoods

In general, Monte Carlo techniques assumes that p(θ,D) = p(D|θ)p(θ) can

be evaluated cheaply. Since usually the prior p(θ) is chosen in a manner that it

is very simple, whether p(θ,D) is hard to evaluate depends on p(D|θ). In many

cases, likelihood evaluation is in fact cheap, but in some cases it may be expensive

or intractable, requiring specific techniques for approximate inference.

2.5.1 Pseudo-marginals

One case of intractable likelihood is when the likelihood model depends on

some unobserved variable, that must be marginalize. To illustrate, consider that

D = y1 is a noisy observation of a phenomena z1, whose dependence on a parameter

θ is modeled as p(z1|θ). The noise model p(y1|z1) is also available. Then, the

likelihood p(y1|θ) comes from marginalization

p(y1|θ) =

∫
p(y1|z1)p(z1|θ)dθ.

As a general case, consider a likelihood dependent on a latent variable

p(D|θ) =

∫
p(D|ω, θ)p(ω|θ)dω. (2.38)

Assume the integral in (2.38) is not available analytically, hence so is not p(D|θ).
Usually what is available are Monte Carlo estimates of p(D|θ), say by i.i.d. samples

of w|θ,

p̂(D|θ) =
1

N

∑
ωi∼p(ω|θ)

p(D|ωi, θ), (2.39)

or by importance sampling. In this case, [5] shows that when using an unbiased

and positive estimate p̂(D|θ) at each step of the Metropolis-Hastings algorithm,

resulting in an unbiased estimate of the unnormalized posterior p̂(D|θ)p(θ), the



17

resulting stationary distribution is p(D|θ). The result does not give an answer on

whether Metropolis-Hastings using p̂(D|θ) is efficient, and how to make so. This

itself is a current topic of research (some examples can be found in [4, 100]).

2.5.2 Approximate Bayesian computation

Now consider a model that p(D|θ) is not readily available, but for each fixed

θ ∈ Θ, one can sample the random variable D|θ with ease. For clarity, we will refer

to this random variable as D′|θ, while keeping D denoting the fixed data.

As an example, consider the data D consists of observation point xN of a long

Markov chain, with known transition probability distribution p(xi+1|xi), and one

wants to infer the point x0 where the chain was initiated. The likelihood p(xN |x0)

is given by

p(xN |x0) =

∫
. . .

∫
p(xN |xN−1) . . . p(x1|x0)dx1 . . . dxN−1, (2.40)

which is hard to even compute some pseudo-marginal. However, given some x0,

sampling xN is just a question of simulating the chain for N steps, with transition

p(xi+1|xi). Some other examples of models whose likelihood is hard to evaluate, but

sampling is easy, are found in evolutionary genetics [83, 1].

In approximate Bayesian computation (ABC) [30, 1], one wishes to construct

an artificial likelihood pABC(D|θ), in such a way that for each θ, when the simulated

data D′|θ is ”similar” to D, pABC(D|θ) is higher than when D′|θ is not. For doing

this, one takes:

• a function S that takes a (simulated or real) dataset D and return some d-

dimensional statistics of it. For example, if D = {y1, . . . , yN}, the statistics
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may be the first d empirical moments of D, or simply D, making S the identity

function (in this case d = N).

• A function k : Rd → R, integrating to one, such that k achieves its maximum

at 0. For instance, k(x) = N (x; 0, h2I) can be used.

With those, one defines the ABC approximation for the likelihood

pABC(D|θ) =

∫
1

h
k

(
S(D)− S(D′)

h

)
p(D′|θ)dD′. (2.41)

To see why this is an approximation of the true likelihood p(D|θ), assume that

S(D) = S(D′) if and only if D = D′, and consider k(x) = N (x; 0, h2I). Then, as

h → 0, h−1k((S(D) − S(D′))/h) goes to the Dirac delta function δ(D − D′). But,

we have that ∫
δ(D −D′)p(D′|θ)dD′ = p(D|θ) (2.42)

, so pABC(D|θ) goes to p(D|θ) when h goes to 0.

With the approximate likelihood (2.41), one has the corresponding approxi-

mate ABC posterior

pABC(θ|D) ∝ pABC(D|θ)p(θ). (2.43)

Notice the ABC likelihood still is not analytically available. However, since samples

from p(D′|θ) are available, one can use the pseudo-marginal technique presented in

previous section to sample from the approximate ABC posterior. The question on

how to choose appropriate summary statistics is addressed for example in [30].

2.5.3 Expensive likelihoods

In some cases, the likelihood p(D|θ) is expensive to evaluate but not in-

tractable, such that one can have tens or hundreds of evaluations in limited time,
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but not much more. Moreover, unlike the previously presented case, sampling from

the model is just as expensive, if not more, than evaluating p(D|θ). Such likeli-

hoods arise, for example, in Bayesian inverse problems [108], where the mapping

from parameters to observations is done by expensive simulations.

An approach is, given a limited number of likelihood evaluations ΩN =

{(θi, p(D|θi)}, construct an approximate model p̂N(θ|D) of p(θ|D), and inference is

performed with the approximation, usually with MCMC. This model should, given

new evaluations of the likelihood ΩN ′ , be able to incorporate those in an online

manner.

Gaussian processes, presented in next chapter, are particularly suitable for

this task, and are used in [89, 114, 10, 59, 24], using Monte Carlo methods on

the approximation. Other approximations include GRIMA [15] and polynomial

approximations [68]. The work presented here falls in the contest of expensive

likelihoods methods, using Gaussian processes for approximation, and variational

inference for approximate inference, as in [2].
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3 GAUSSIAN PROCESSES

3.1 Parametric and nonparametric regression

Consider the standard regression problem: given D = {(xi, yi)}Ni=1, with

xi ∈ X and yi ∈ R, one wants, for a x∗ ∈ X , find p(y∗|x∗). If we assume a model

M for y|x, for all x ∈ X , parameterized by θ, then by the Bayesian view one should

marginalize over θ resulting in

p(y∗|x∗,M,D) =

∫
Θ

p(y∗|x∗, θ,M,D)p(θ|D)dθ, (3.1)

reducing the problem to one of posterior inference in θ, discussed in the previous

chapter (equation (2.5)).

Since the model M is parameterized, in a sense the model will be always

limited, since there cannot be a mapping from finite parameters to all distributions.

Nonparametric models by contrast are models that cannot be parameterized by a

finite set of parameters, and Bayesian nonparametric regression is when a nonpara-

metric model is used in the Bayesian setting [39, 49].

3.2 Gaussian process regression

Bayesian nonparametric regression seems to be an impossible task, since it re-

quires working with distributions in infinite-dimensional spaces. However, Gaussian

process regression [87] does this, by choosing a suitable model, given by a Gaussian

process

Definition 3.2.1. A Gaussian process (GP) is a distribution over the space of func-
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tions from X to R such that, for each x = (x1, ..., xN) ∈ XN , f := (f(x1), ..., f(xN))

follows a multivariate normal distribution [87].

A GP is completely specified by a mean function

m : X → R

and a covariance function

k : X × X → R,

in such a way that, for x = (x1, . . . , xN), letting

m(x) := (m(x1), ...,m(xN))T K(x,x′) =

(
k(xi, x

′
j)

)
i,j

, (3.2)

then f(x) ∼ N (m(x), K(x,x)).

Notice that this requires the function k to be a positive-semidefinite (PSD)

function, that is, for any N ∈ N, for any x = (x1, ..., xN) ∈ XN , the matrix K(x,x)

defined by (K(x,x))i,j = k(xi, xj) is PSD. Conversely, any pair (m, k), with k PSD

defines a GP [26], thus ensuring a correspondence between GPs and (m, k) pairs as

above. In the context of GPs, k is also called an kernel. 1

A Gaussian process regression is done, with D = {(xi, yi)}Ni=1, by using the

model M that says, for each x, p(y|x,M) = p(y|f(x),M), with the prior for f

being distributed as GP (m, k). To see that this prior is attractive, assume for now

y = f(x). By letting x = (x1, . . . , xN) 2 and y = (y1, . . . , yN)T , and assuming

K(x,x) to be non-singular, one can find the posterior distribution for y∗|x∗,D,M

1PSD functions have the property that, for x, x′ ∈ X , k(x, x′) = 〈Φ(x),Φ(x′)〉H, where Φ : X →
H is a map from X to a Hilbert space H [99]. In this context, k is called a kernel function, and
machine learning techniques that uses them are called kernel methods [99]. Hence, in the context
of GPs, the terms kernel function and covariance function are used interchangeably.

2Usually, xi ∈ RD, and x is written as a matrix whose i-th row is xi. In this case, we may use
X to denote this matrix instead, and reserve x to denote each point in RD. We will however use
a more general notation.
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without resorting to Bayes’ rule, which is important since, in infinite-dimensional

spaces, Bayes’ rule is more involved, and may not result in a computable expression

by itself [58]. 3

Too see why is this, notice that, by the definition of a GP, for any other

x? ∈ XM , [
f(x)
f(x∗)

]
∼ N

([
m(x)
m(x∗)

]
,

[
K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
. (3.3)

Hence, by conditioning on f(x), by Appendix B.3:

f(x∗)|x?,D,M = f∗|f ,M ∼ N (µ?,Σ∗)

µ? = m(x?) +K(x?,x)K(x,x)−1(f(x)−m(x))

Σ? = K(x?,x?)−K(x?,x)K(x,x)−1K(x,x?).

(3.4)

Since x∗ was chosen arbitrarily, this implies that f |D,M itself follows a GP, with

mean function and covariance functions given by:

mD(x) = µ∗(x) = m(x) +K(x,x)K(x,x)−1(f(x)−m(x))

kD(x, x′) = k(x, x′)−K(x,x)K(x,x)−1K(x, x′).
(3.5)

Since y∗ = f(x∗) and y = f(x∗), y∗|x∗,D,M ∼ N (mD(x∗), kD(x∗, x∗)). An illustra-

tion of GP regression is shown if Figure 3.1.

3.2.1 Gaussian noise

This equation can be generalized by assuming p(y|x,M) = N (y|f(x), σ2
n).

Then, letting ε ∼ N (0, σ2
n), y = f(x), y∗ = f(x∗) and[

y
y∗

]
∼ N

([
m(x)
m(x∗)

]
,

[
K(x,x) + σ2

nI K(x,x∗)
K(x∗,x) K(x∗,x∗) + σ2

nI

])
. (3.6)

3For a derivation of Bayes’ rule for infinite-dimensional spaces (which involves measure theory),
see [107], Section 6.6.
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(a) GP prior (b) GP posterior

Figure 3.1: Gaussian process regression of f(x) = sin(πx). In (a), it is shown the
prior space distribution, with samples path in blue and confidence interval in red. In
(b), the posterior space distribution, after 4 measurements (in green) of f(x) (black).
Generating code can be found in https://github.com/DFNaiff/Dissertation/

blob/master/illustrations_dissertation/gp_prior_posterior.

Conditioning y∗ on y and, letting Kσ(x,x) := K(x,x) + σnI, we have

y∗|x?,D,M = y∗|y,M ∼ N (µ?,Σ∗)

µ? = m(x?) +K(x?,x)Kσ(x,x)−1(y −m(x))

Σ? = K(x?,x?)−K(x?,x)Kσ(x,x)−1K(x?,x) + σnI.

(3.7)

Notice (3.7) reduces to (3.4) when σ2
n = 0.

3.2.2 General noise

In the general case where p(y|x,M) = p(y|f(x)), there is not a closed form

solution and one must resort to explicit marginalization and Bayes’ rule:

p(y∗|x∗,D) =

=

∫
p(y∗|f(x∗))p(f(x∗)|x∗,x,y)df(x∗)

=

∫
p(y∗|f(x∗))

∫
p(f(x∗)|x∗, f(x),x)p(f(x)|x,y)df(x)df(x∗)

∝
∫
p(y∗|f(x∗))

∫
p(f(x∗)|x∗, f(x),x)p(y|f(x))p(f(x)|x)df(x)df(x∗).

(3.8)

https://github.com/DFNaiff/Dissertation/blob/master/illustrations_dissertation/gp_prior_posterior
https://github.com/DFNaiff/Dissertation/blob/master/illustrations_dissertation/gp_prior_posterior
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Since p(f(x)|x) = N (f(x)|m(x), K(x,x)) and p(f(x∗)|x∗, f(x),x) is given by (3.4),

these two terms may be joined together by (B.3). However, this still leaves a double

integral, that must be treated by approximate inference methods.

3.2.3 Mean function

Usually, the mean function m is set to zero, letting the covariance function

determine the whole structure of the regression. This is a reasonable assumption

since, for any f ∼ GP (m, k), due to the sum of a Gaussian distribution and a

constant being itself Gaussian with the constant added to its mean, we have f−m ∼
GP (0, k). Thus, fixed the model (m, k), one can then do the GP regression on f−m
and then later add m. This is particularly useful if it is assumed that f is modeled

by some function m that is known to be an incomplete model, thus complementing

the regression by modeling this incompleteness by a zero mean GP.

3.3 Covariance functions

As said in the previous section, covariance functions k must be PSD. This

raises the question on which kind of functions are PSD, thus able to define a GP. A

few functions can be easily shown to be PSD directly by their definitions, such as:

• The constant function k(x, x′) = c ≥ 0, since the matrix Ki,j = c is PSD, for

all c ≥ 0

• k(x, x′) = Ix=x′ , since the corresponding matrix K is the identity matrix

• If X = {x1, ..., xN} is a finite set of size N , and k is such that, for x =

(x1, ..., xN), K(x,x) is PSD, then k is PSD, since for any other subset of X ,
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the corresponding kernel matrix will be a subset of K, thus also PSD [51].

• If we have an explicit feature map Φ : X → RN , then k(x, x′) = 〈Φ(x),Φ(x′)〉
is PSD [99]. For instance, if X = R and Φ(x) = (x, x2, . . . , xN), then k(x, x′) =∑N

i=1(xx′)i is PSD.

However, for many covariance functions, direct proof of being PSD is infeasible.

However, there are some covariance functions that can be shown to be PSD in a

indirect way, as shown below.

3.3.0.1 Stationary covariance functions

Definition 3.3.1. Let X = Rd. An covariance function is stationary if k(x, x′) =

k(x− x′) , for k : Rd → R 4. Conversely, k is a autocovariance function if k(x, x′) =

k(x− x′) is a covariance function.

For this class of functions, we can reduce the analysis of k to that of k. In

particular, the next theorem says that one can analyze the Fourier transform of k to

check if it is an autocovariance function, thus k being a covariance function (here,

it is conveniente to consider k as a function into C).

Theorem 3.3.2 (Bochner’s Theorem). A function k : Rd → C, continuous at 0, is

an autocovariance function if and only if

k(τ) =

∫
RD
e2πisT τdµ(s), (3.9)

where µ is a positive finite measure [106, 87]. If µ has a density S, then S an k are

4Here we overload the notation, letting the reader infer whether k refers to a covariance function
or an autocavariance function by the number of its arguments.
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Fourier duals of each other [23].

k(τ) =

∫
RD
e2πisT τS(s)ds

S(s) =

∫
RD
e−2πisT τk(τ)dτ.

In this case, S is called the spectral density corresponding to k.

One particular case of stationary functions are isotropic functions, in which

k(τ) is a function of r = ||τ ||2. In this case, S(s) is a function of s = ||s||2 [3]. For

simplicity, those will also be referred as k ans S. We show here some examples of

isotropic covariance functions, along with their spectral densities (many others can

be found in [87]):

• The squared exponential (SQE) kernel, also called RBF kernel

kSQE(r; l) = exp

(
−r

2

l2

)
, (3.10)

whose spectral density is given by a normal distribution

S(s; l) = (2πl2)D/2 exp(−2π2l2s2) (3.11)

The squared exponential kernel is the most widely used in the field of Gaussian

process, and kernel methods in general. However, the squared exponential

kernel generates functions that are infinitely differentiable, thus being far too

smooth for some applications. Moreover, the resulting kernel matrix tends to

be very ill-conditioned, which results in numerical issues in applications with

low noise.

• The Matérn class of kernels, parameterized by ν > 0, given by

kMatern,ν(r; l) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
, (3.12)

where Kν is the modified Bessel function of second kind. The corresponding
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spectral density is a 2ν-degreed multivariate t-distribution

Sν(s; l) = 2DπD/2
Γ(ν +D/2)(2ν)ν

Γ(ν)l2ν

(
2ν

l2
+ 4π2s2

)−(2ν+D)/2

. (3.13)

If ν is a half-integer, the kernel formula is simplified to a product of a polyno-

mial of order ν − 1/2 and an exponential. The most commonly used values of

ν are:

– ν = 1/2, giving kMatern,1/2(s; l) = exp(−r/l).

– ν = 3/2, giving kMatern,3/2(s; l) =
(
1 +
√

3r/l
)

exp(−
√

3r/l).

– ν = 5/2, giving kMatern,5/2(s; l) =
(
1 +
√

5r/l + 5r2/l2
)

exp(−
√

5r/l).

In the limit ν → ∞, the Matern kernel converges to the squared exponential

kernel [106]. In practice, for values of ν ≥ 7/2, the Matern kernel is similar

enough to the squared exponential kernel to be of use, thus in practice only

the three values of ν shown above are used.

• The spectral mixture kernel [117]

kSM(τ) =

Q∑
q=1

wq

D∏
d=1

exp(−2π2τ 2
d v

(d)
q ) cos(2πτ (d)µ(d)

q ), (3.14)

which is constructed explicitly as the Fourier dual of mixtures of multivari-

ate normal densities. In [117], it is argued that the spectral mixture kernel

approximates many of the kernels in [87], given enough mixtures Q.

3.3.1 Derived kernels

Although PSD functions are relatively hard to find, even with the use of

Bochner’s Theorem, one can prove that many compositions of base PSD functions

are themselves PSD, thus providing many new classes of kernels. Given X an arbi-

trary set, k1,k2 PSD functions on X , and k3 a PSD function on a set Y , we have:
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• k(x, x′) := k1(x, x′) + k2(x, x′) is a PSD function, since, for x = (x1, ..., xN) ∈
XN , K(x,x) = K1(x,x) + K2(x,x), the sum of two PSD matrices, hence a

PSD matrix. Similarly, k(x, x′) := k1(x, x′)k2(x, x′) is a PSD function, since

K(x,x) = K1(x,x)�K2(x,x) (where A� B denotes the Hadamard product

between A and B), and, according to Schur product theorem [51], K(x,x) is

also PSD as the Hadamard product of two PSD matrices.

• k([x, y], [x′, y′]) = k1(x, x′)+k3(y, y′) is a PSD function, and so is k([x, y], [x′, y′]) =

k1(x, x′)k3(y, y′). This follows from the fact that both sum and Hadamard

product of PSD matrices are PSD.

• For a map f : Y → X , k(y, y′) = k1(f(x), f(x′)) is aPSD. This follows directly

from the fact that if yi = f(xi), i = 1, ..., n, K(y,y) = K1(f(x), f(x′)).

This property allows us to construct non-stationary kernels from stationary

kernels, by using input warping functions. Moreover, this implies that we can

substitute r = ||x− x′||2 for r =
√

(x− x)TA−1(x− x), where A is a positive

definite matrix, by setting f(x) = A−1/2x

The last item allows us to construct kernels with general outputscale and lengthscale

from stationary kernels. That is, if k0 is an autocovariance function such that

k0(0) = 1, then

k(x− x′) = θk

(
x1 − x′1
l1

, . . . ,
xD − x′D

lD

)
(3.15)

is a kernel with outputscale θ and lengthscales l1, . . . , lD. We call such kernels

anisotropic (although strictly speaking, every non-isotropic kernel is anisotropic).
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3.4 Model selection

In the above discussion, the model M = (m, k) was assumed to be fixed.

In practice, since we have many different kernel functions, each parameterized by a

continuous set of parameters (called hyperparameters), we need a way to choose the

correct model. In the noisy measurement case, we also need to deal with the noise

distribution parameters. Fortunately, the Bayesian framework gives a natural way

to choose the model.

Assume p(y|f(x)) = N (f(x), σ2
n). Then,

D|M,σn = y|x,M, σn ∼ N (m(x), K(x,x) + σnI).

Therefore, the likelihood for the model is given by

log p(D|M,σn) =− 1

2
(y −m(x))T (K(x,x) + σnI)−1(y −m(x))+

− 1

2
log det(K(x,x) + σnI)− 1

2
N log(2π).

(3.16)

The important thing to notice is that the likelihood above is actually a marginal

likelihood, since

p(D|M,σn) = Ef∼GP (m,k) [p(D|f, σn)] . (3.17)

Hence, it should display the Occam’s razor effect. In fact, the log-determinant term

does exactly this, acting as a sort of regularizer. However, this does not mean that

GP regression is protected from overfitting (see [71]). Moreover, since the objective

function is non-convex, there may be local optima that returns spurious results.

A fully Bayesian approach to GP regression is desirable in order to incor-

porate fully the hyperparameter knowledge. However, when the number of data is

considerably large, Monte Carlo methods becomes inefficient (although it can be

used still, see for example [74, 80]). In [76], an approach based on Bayesian Monte

Carlo (to be presented in Chapter 4) is also explored. However, efficient marginal-
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ization of hyperparameters remains an open problem.

3.5 Computational issues

3.5.1 Jittering

If the noise σ2
n is zero, the matrix K(x,x) may be ill-conditioned, which

is usually the case for the SQE kernel. One way to mitigate this problem is to

force the existence of an ”artificial noise” on K(x,x), that is, one substitute it for

K(x,x) +σ2
j I, where σ2

j is not a real noise parameter now, but just an stabilizer. In

this case, the error caused by the addition of artificial noise is considerably smaller

than the error of numerical operations in ill-conditioned matrices, if they are able

to be performed at all. The Cholesky decomposition (described below) also helps

with the stability of inverse matrix operations.

3.5.2 Scaling with data

The main issue with GP regression is that, given N training points, for a

fixed covariance function the evaluations in (3.7) requires at least one operation

with the inverse of a N ×N matrix K(x,x + σnI), whose computational cost is of

order O(N3). The problem is worsened in the case of training a model, since this

operation has to be done for each evaluation of log p(D|M,σn, θ) while training.

Since K(x,x) + σnI is a positive definite matrix, one can try to mitigate the

computational cost by computing the Cholesky decomposition

K(x,x) + σnI = LLT .
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Then, given the decomposition, the inverse operations involve inverses of triangular

matrices, whose operations costs are of order O(N2), while the determinant term

in log p(D|M,σn, θ) can be calculated as log det(LLT ) = 2
∑

i logLii. However,

Cholesky decomposition, although faster than other methods like the LU decom-

position, still has a computational cost of O(N3), hence the scaling problem still

exists.

3.6 Online learning

One interesting aspect of GPs is its ability to accumulate online data in a

relatively simple manner, provided we do not change its hyperparameters. Consider

fixed an initial data D = {(xi, yi)}Ni=1, and a GP model (m, k), if we have a kernel

matrix KD, and its Cholesky factor LD, resulting in a readily accessible posterior

mean function mD(x) and covariance function kD(x, x′). Now, suppose some new

data D′ = {(x′j, y′j)}Mj=1 is available, and the practitioner wants to incorporate into

a new posterior mean mD∪D′(x, x
′) and covariance kD∪D′(x, x

′). A naive manner

for doing this would be constructing a new kernel matrix KD∪D′ from scratch, and

compute its Cholesky factor LD∪D′ , resulting in a operation cost O((M + N)3).

Fortunately, there is a clever way to obtain LD∪D′ from LD with O(M3 +MN2) cost

(assuming KD∪D′ stays positive-definite). The following argument is adapted from

[75], where it is considered the upper Cholesky factor.

To see this, consider xN = (xi)
N
i=1, xM = (x′j)

M
j=1 and x = xN ∪ xM (here ∪

denotes concatenation). Then, noting KD = K(xN ,xN), we have

KD∪D′ =

[
K(xN ,xN) K(xN ,xM)
K(xM ,xN) K(xM ,xM)

]
. (3.18)

Then LD∪D′ must be of the form

LD∪D′ =

[
LD 0

S L̃

]
, (3.19)
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with L̃ being lower triangular. This is because

LD∪D′L
T
D∪D′ =

[
LD 0

S L̃

] [
LTD ST

0 L̃T

]
=

[
LDL

T
D LDS

T

SLTD SST + L̃L̃T

]
=

[
K(xN ,xN) K(xN ,xM)
K(xM ,xN) K(xM ,xM)

]
= KD∪D′ .

(3.20)

This readily shows not only that LD∪D′ must be of the format in (3.19), but it gives

a way to get S and L̃: calculate S =
(
L−1
D K(xN ,xM)

)T
, and L̃ is the lower Cholesky

factor of K(xM ,xM)− SST , whose operations are of cost O(N2M) and O(M3).
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4 BAYESIAN MONTE CARLO

Consider the integral

Z =

∫
RD
f(x)p(x)dx. (4.1)

In the following discussion, we drop RD from the integral symbol, for simplicity.

If p(x) is a distribution whose sampling is easy, the bottleneck for a simple Monte

Carlo method for estimating Z would be the evaluation cost of f . If evaluating f is

costly then, a naive Monte Carlo method often becomes infeasible. In this section,

we present a GP-based method that tries to circumvent this bottleneck.

4.1 GP approximation for the integrand

In Bayesian Monte Carlo (BMC), or Bayesian quadrature [41, 77] 1, f itself

is treated as a random function, and a GP prior GP (m, k) is put on f . Therefore,

given a set D = {(xi, f(xi))}Ni=1 of N evaluations, the posterior random function fD

is also distributed according to a GP. In particular, since linear maps of GPs are

themselves GPs [87, 46], this implies that the random variable

ZD =

∫
fD(x)p(x)dx (4.2)

is a Gaussian random variable. Since we can find the mean by

E[ZD] = E
[∫

fD(x)p(x)dx

]
=

∫
E[fD(x)]p(x)dx, (4.3)

1The original name Bayesian quadrature describes more accurately the method, however the
name Bayesian Monte Carlo will be used in this text. At the literature, both names can be found
in roughly equal proportion
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and the variance by,

Var(ZD) = E[(ZD − E[ZD])2]

= E

[(∫
(fD(x)− E[fD(x)])p(x)dx

)2
]

=

∫ ∫
E [(fD(x)− E[fD(x)])(fD(x′)− E[fD(x′)])] p(x)p(x′)dxdx′

=

∫ ∫
Cov(fD(x), fD(x′))p(x)p(x′)dxdx′.

(4.4)

We have a complete description of the distribution of ZD. Now, by substituting

(3.7) in (4.3) and (4.4), we have

E[ZD] =

∫
m(x)p(x)dx− zTK−1(f −m(x))

Var[ZD] = Γ− zTK−1z,

(4.5)

where z = (z1, ..., zN)T , with

zi =

∫
k(x, xi)p(x)dx, (4.6)

and

Γ =

∫ ∫
k(x, x′)p(x)p(x′)dxdx′. (4.7)

In general, a good estimate of ZD is its mean, although if there is an asymmetric

loss function associated with estimating ZD, its variance should be taken in account.

An illustration of the Bayesian Monte Carlo approach to integration is shown

in Figure 4.1. There, the distribution is p(x) = N (x|0, 0.5), and f(x) = −x2. The

true value of the integral, and BMC estimation are shown. Notice that, in this exam-

ple, for |x| > 2 the GP estimate mD(x) of f(x) becomes very inaccurate. However,

since low probability mass is assigned outside the interval, the BMC estimation is

still close to the target.
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Figure 4.1: Illustration of Bayesian Monte Carlo integration. Here, dash-dot black
is f(x), whose value is on the left-axis, while in blue is it’s GP mean (dark), and
covariance (light), given 5 evaluations (blue circles). In red is p(x), whose value is
on the right axis. The true value of the integral, the BMC mean and variance are
shown on the top right.

4.1.1 Philosophical remark

At first one may find strange to consider f as a random function, in order to

give a prior for it. After all, f is a known, fixed function. However, notice that f

is only actually known in so far as one can evaluate it, and if evaluations for f are

limited, so is the knowledge of it. And by the discussion in Chapter 1, any object

the learner has limited knowledge about should be considered a random variable,

independent of the fact that the object is actually random or not.

If this philosophical approach is not convincing, maybe it is better to just

think of the BMC method as an artificial way to integrate functions, and follow the

famous dictum in quantum mechanics: ”Shut up and calculate” [69].
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4.2 Kernel-distribution combinations

In general, neither (4.6) nor (4.7) are analytically available, just like the

original integral (4.1). However, evaluating the kernel function is in general cheap,

so if evaluation of f is expensive, there may be still computational gains in using

BMC. For some particular distributions p(x), combined with some suitable kernel

choices, (4.6) nor (4.7) does lend analytical solutions, or can be treated in a relatively

cheap manner. In the following, m(x) = 0 for simplicity, thus omitting the term.

4.2.1 SQE kernel with Gaussian distributions

Assume p(x) = N (x|µ,Σ), and k is a anisotropic squared exponential kernel,

with vertical scale θ and length scales l = (l1, ..., lD). Notice then that, by letting

A := diag(l21, ..., l
2
D), we have

k(x, x′) = θ exp

(
−1

2
(x− x′)TA−1(x− x′)

)
= det(2πA)N (x′|x,A) =

det(2πA)N (x|x′, A).

(4.8)

Then, by (B.3):

k(x, x′)N (x|µ,Σ) = C(x′)N (x|µ̃x′ , Σ̃)

C(x′) =
θ

det(I + A−1Σ)1/2
exp

(
−1

2
(x′ − µ)T (A+ Σ)−1(x′ − µ)

)
µ̃x′ = (A−1 + Σ−1)−1(A−1x′ + Σ−1µ)

Σ̃ = (A−1 + Σ−1)−1,

(4.9)

and

k(x, x′)N (x|µ,Σ)N (x′|µ,Σ) = ĈN (x|µ̃x′ , Σ̃)N (x′|µ̃x, Σ̃)

Ĉ =
θ

det(I + 2A−1Σ)1/2
.

(4.10)
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Hence, by substituting (4.9) and (4.10) into (4.6) and (4.7), we find

zi =
θ

det(I + A−1Σ)1/2
exp

(
−1

2
(xi − µ)T (A+ Σ)−1(x′i − µ)

)
Γ =

θ

det(I + 2A−1Σ)1/2
.

(4.11)

Substituting in (4.5) we find the desired result:

E[ZD] = zTK−1f

Var[ZD] =
θ

det(I + 2A−1Σ)1/2
− zTK−1z

zi =
θ

det(I + A−1Σ)1/2
exp

(
−1

2
(xi − µ)T (A+ Σ)−1(x′i − µ)

)
Γ =

θ

det(I + 2A−1Σ)1/2
.

(4.12)

4.2.2 Mixture distributions

Consider taking expectations in respect to a mixture distribution

p(x) =
M∑
i=1

αipi(x). (4.13)

From (4.6) and (4.7), it is straightforward to see that in this case

zi =
M∑
i=1

αi

∫
k(x, xi)pi(x)dx

Γ =
M∑
i=1

M∑
j=1

αiαj

∫ ∫
k(x, x′)pi(x)pj(x

′)dxdx′.

(4.14)

Then, provided it is possible to calculate the integrals above for each component

pi(x), one can easily use mixture distributions from these coefficients.

An important case is considering mixtures of normal distributions p(x) =∑M
j=1 αjN (x|µj,Σj), and the squared-exponential kernel. Then, by substituting in

(4.6) and (4.7), and considering the results for normal distributions in (4.11), we
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find

zi =
M∑
j=1

αjzi,j

zi,j =
θ

det(I + A−1Σj)1/2
exp

(
−1

2
(xi − µj)T (A+ Σj)

−1(x′i − µj)
)

Γ =
M∑
j=1

M∑
m=1

αjαmΓj,m,

Γj,m =
θ

det(I + A−1(Σj + Σm))1/2
exp

(
−1

2
(µj − µm)T (A+ Σj + Σm)−1(µj − µm)

)
.

(4.15)

4.2.3 Tensor product kernels and diagonal-covariance Gaussian distri-

butions

Consider tensor product kernels in RD of the form

k(x, x′) =
D∏
d=1

kd(xd, x
′
d), (4.16)

and a Gaussian distribution p(x) = N (x|µ,Σ) with diagonal covariance Σ = diag(σ2
1, . . . , σ

d
D),

so that p(x) =
∏D

d=1N (xd|µd, σ2
d). Then,

zi =

∫ D∏
d=1

kd(xd, xi,d)
D∏
d=1

N (xd|µd, σ2
d)dx

=
D∏
d=1

∫
kd(x, xi,d)N (x|µd, σ2

d)dx,

(4.17)

and

Γ =

∫ ∫ D∏
d=1

kd(xd, x
′
d)

D∏
d=1

N (xd|µd, σ2
d)

D∏
d=1

N (x′d|µd, σ2
d)dxdx

′ =

=
D∏
d=1

∫ ∫
kd(x, x

′)N (x|µd, σ2
d)N (x′|µd, σ2

d)dxdx
′.

(4.18)
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Consider each individual component in (4.17). Even with none of then being analyti-

cally computable, they can easily be approximated using Gauss-Hermite quadrature,

that approximates∫
f(x)N (x|µ, σ2)dx ≈ 1√

π

K∑
k=1

wkf(
√

2σxk + µ), (4.19)

where xi are the roots of the physicists’ Hermite polynomial

HK(x) = (−1)Nex
2 dK

dxK
e−x

2

, (4.20)

and wk are the associated weights

wk =
2K−1K!

√
π

K2(HK−1(xk))2
. (4.21)

An analysis of this approximation can be found in [64]. It is important to notice

that for each K, {(xk, wk)}Kk=1 are fixed, unlike standard Monte Carlo methods that

would require sampling from N (x|µ, σ2). Applying (4.19) to (4.17), one finds that

zi ≈
D∏
d=1

1√
π

K∑
k=1

wkkd(
√

2σdxk + µd, xi,d), (4.22)

and that

Γ ≈
D∏
d=1

1

π

K∑
k,k′=1

wkwk′kd(
√

2σdxk + µd,
√

2σdxk′ + µd). (4.23)

By the discussion in section 4.2.2, one can easily extend this to mixtures

of Gaussians with diagonal covariance. Therefore, one is free to use more flexible

kernels than the squared exponential one, provided they are tensor product kernels.

The trade-off is that p(x) is a more restrictive distribution, but, as discussed next,

this is not an insurmountable restriction. Moreover, the techniques presented in

chapters 4 and 5 uses exactly those kinds of distributions as approximations.
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4.2.4 Importance reweighting for Bayesian Monte Carlo

One can use the above results for doing integral estimations for general dis-

tributions using squared exponential kernels, without Monte Carlo integration of

kernels, by an importance re-weighting trick∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx, (4.24)

where q(x) may be either a normal distribution or a mixture of normals. This

becomes interesting because since mixtures of normals can approximate continu-

ous densities arbitrarily close as the number of mixtures goes to infinity [28], thus

providing good re-weighting distributions.

4.3 Bayesian Monte Carlo for positive integrands

For many cases the integral we are interested is one arising from marginal-

ization:

p(D) =

∫
L(x)p(x)dx =

∫
p(D|x)p(x)dx. (4.25)

In particular, in this case L(x) must be a positive function. However, applying the

BMC method naively can result in rather inaccurate evaluations, due to the fact

that in general, GP regression can predict negative means even when all function

evaluations are positive. This way, the positivity of the GP mean for L(x) is not

guaranteed, resulting in possibly pathological predictions [41].

In [75], it is proposed to make a GP regression by putting an prior over

logL(x) ∼ GP (m, k). However, this means that for predictive distribution in the

original space, L(x|xD) ∼ Lognormal(mD(x), kD(x, x)), which results in

E
[∫

L(x|xD)p(x)dx

]
=

∫
emD(x)+ 1

2
kD(x,x)p(x)dx, (4.26)
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which is still non-tractable integral, requiring further approximations. It is proposed

in [78] a somehow complicated heuristic to circumvent this problem, relying in a

number of approximations whose accuracy is questionable, and an inner application

of BMC.

In [44], the transformation used is the square-root transformation, so the prior

for GP regression is over L̃(x) =
√

2L(x)− α, with α being a small positive scalar,

resulting in L(x|xD) = α + 1
2
L̃(x|xD)2. However, this way we have E[L(x|xD)] =

α+ kD(x,x)
2

(1 +mD(x)2), hence, just like (4.26), we can’t arrive at a tractable mean.

In order to circunvent this, in [44] two approaches are proposed. The first is a

linearization of α + 1
2
L̃(x|xD)2 around mD(x), resulting in

L(x|xD) ≈ LL(x|xD) = α− 1

2
mD(x)2 +mD(x)L̃(x), (4.27)

which, since it is a affine transformation of L̃(x), results an approximate GP distri-

bution for L(·|xD):

LL(·|xD) ∼ GP (mLD(x), kLD(x))

mLD(x) = α +
1

2
mD(x)

kLD(x, x′) = mD(x)kD(x, x′)mD(x).

(4.28)

The second proposal is to approximate L(·|xD) by a random GP-distributed function

LM(·|xD) = GP (mMD , k
M
D ), where mMD (x) and kMD (x) are chosen so that LM(·|xD)

is moment-matched with L(·|xD), that is, mMD (x) = E[L(x|xD)] and kMD (x, x′) =

Cov(L(x|xD), L(x′|xD)). This results in the approximation

LM(·|xD) ∼ GP (mMD (x), kMD (x))

mMD (x) = α +
1

2
(mD(x) + kD(x, x))

kMD (x, x′) =
1

2
kD(x, x′)2 +mD(x)kD(x, x′)mD(x).

(4.29)

In particular, both approaches results in tractable integrals for gaussian distributions

and SQE kernels.

The idea of moment-matching is extended to a general setting in [22], where it
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is considered the integral (4.1), where f is now a function from RD to a strict subset

Y of R. In the case presented previously, Y = (0,∞), while another important

case is Y = (0, 1). Considering an bijective map ε : R → Y , it is placed a GP

prior GP (m, k) over g = ε−1 ◦ f . Then, the posterior distribution for f(·|xD is

approximated by a moment-matched GP with mean mMD (x) = E[ε(g(x|xD))] and

kMD (x, x′) = Cov(ε(g(x|xD)), ε(g(x′|xD))). In particular, for ε−1(x) = log(x), the

same warping considered in [75], the moment matched mean and covariance becomes

mMD (x) = emD(x)+ 1
2
kD(x,x)

kMD (x, x′) = emD(x)+ 1
2
kD(x,x)emD(x′)+ 1

2
kD(x′,x′)

(
ekD(x,x′) − 1

)
.

(4.30)

However, when integrated this GP does not result in a integrable mean or

variance. One further proposal of [22] is to do a Taylor expansion of mMD (x),

mMD (x) ≈ 1 +mD(x) +
1

2
kD(x, x) +

1

2

(
mD(x) +

1

2
kD(x, x)

)2

+ . . . , (4.31)

and of kMD (x, x′),

kMD (x, x′) ≈ 1 + kD(x, x′) +
1

2
kD(x, x′)2

+ kD(x, x′)

(
mD(x) +

1

2
kD(x, x) +mD(x′) +

1

2
kD(x′, x′)

)2

+ . . .

,

(4.32)

which, depending on the mean function and kernel function (for instance, zero mean

and SQE kernel), is integrable when truncated [22].

The use of function warping raises a question on how to choose the GP hy-

perparameters. In [22], it is argued that for the moment-matched procedure, one

should choose the hyperparameters considering the approximated GP distribution

for f , GP (mM, kM(x, x′)) and the data (x, f(x)), as opposed to the exact GP dis-

tribution for g, where it is considered GP (m, k) and the data (x, g(x)). The authors

of [22] call the first approach f -space optimization, and the second one g-space op-
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timization, and it is argued that empirically, f -space optimization results in better

integral estimations for their test cases. 2

4.4 Choosing evaluation points

The integral estimate variance Var[ZD] yields a natural metric for choosing

a set of evaluation points XD = {x1, ..., xN}. Namely, since Var[ZD] does not de-

pend on the evaluation values {f(x1), . . . , f(xN)}, one can, given a budget of N

evaluations, minimize the function αOBQ : RdN → R given by

αOBQ(XD) = Var[ZD](XD) = Γ(XD)− z(XD)TK(XD)−1z(XD) (4.33)

However, the evaluation of this function has a O(N3) cost, due to the need for

matrix inversion, is not necessarily convex, and is defined on a very high dimensional

space, so its minimization will be feasible only in specific cases. An easier way

would be to take a greedy approach, that is, given XDm = {x1, ..., xm} previously

chosen evaluation points, with m < n, we choose xm+1 such that the variance of

ZDm∪{xm+1,f(xm+1)} is minimized, that is, we are looking to minimize the objective

function

αmSBQ(xm+1) = αmOBQ(xm+1;x1, . . . , xm) (4.34)

αmSBQ : Rd → R, xm+1 → Var[ZDm∪{xm+1,f(xm+1)}](xm+1), (4.35)

This algorithm is referred as Sequential Bayesian Quadrature (SBQ) in [18], while

in the same work the first objective is referred as Optimal Bayesian Quadrature

(OBQ). Notice that the kernel matrix Cholesky decomposition can be updated in

O(N2) by the discussion in Section 3.6, and that this operation is differentiable,

2Tests with f -space optimization in this work weren’t successful.
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since the Cholesky decomposition is differentiable [102, 73].

One can simplify this objective function, by substituting it for an heuristic

of finding the point of maximum variance of the integrand, that is, substituting

arg min
xm+1

∫
fD∪{xm+1}(x)p(x) (4.36)

for

arg max
xm+1

Var[fD(xm+1)p(xm+1)] = arg max
xm+1

kD(xm+1, xm+1)p(x)2 (4.37)

This maximization objective

αmUS(xm+1) = kD(xm+1, xm+1)p(x)2, (4.38)

in referred as uncertainty sampling (US).

In the approaches above, since the variance of fD(x) and ZD is independent of

evaluation values, there is no active selection for evaluation points, and in principle

one can choose then beforehand. This is not true anymore if one optimizes the GP

hyperparameters as the evaluation points are selected, or if one considers one of the

approaches to treat positive integrands, as shown in previous sections. However,

the heuristic motivating the maximization of (4.38) can be extended for warped

approaches, as proposed in [44]. For the model (4.28), this returns the maximization

objective 3

αmWSABI-L(xm+1) = kLDm(x, x)p(x)2 = kDm(x, x)mDm(x)2p(x)2, (4.39)

while for (4.29),

αmWSABI-M(xm+1) = kMDm(x, x)p(x)2 =
(
kDm(x, x)2kDm(x, x)mDm(x)2

)
p(x)2. (4.40)

Finally, for the model (4.30) proposed in [22], we arrive at:

αmMMLT1
(xm+1) = e2mD(x)+kD(x,x)

(
ekD(x,x′) − 1

)
p(x)2. (4.41)

3In these functions, WSABI refers to warped sequential active Bayesian integration, with the
letter L standing for linearization and M for moment-matched, and MMLT stands for moment-
matched log transform
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Recent work [57] analyzes jointly those methods under the umbrella term

adaptive Bayesian quadrature, where their convergence rates are studied. In partic-

ular, there it is considered a version of (4.41) without the p(x) term, resulting in

the maximization objective

αmMMLT2
(xm+1) = e2mD(x)+kD(x,x)

(
ekD(x,x′) − 1

)
. (4.42)

In the spirit of Bayesian optimization (discussed below), the maximization

objectives presented, and others will be called acquisition functions, nomenclature

that implies they are criteria for acquiring new information.

4.5 Bayesian Monte Carlo and Bayesian Optimization

Bayesian Monte Carlo belongs to the general family of surrogate model or

response surface methods, that are popular in engineering [16, 56, 7]. Namely,

surrogate models tries to approximate a function f of hard evaluation by a function

f̂ that is easy to evaluate, and try to work with it. Gaussian processes are popular

as surrogate models 4, since they offer a measure of uncertainty, are flexible, and

since the original function evaluation is hard, relatively few data will be available,

which mitigates the scaling problem of GPs.

In particular, an important GP-based surrogate method is Bayesian opti-

mization [98, 19, 105], which tries to optimize an expensive function, usually without

gradient information. The idea is, from function evaluations DN = {(xi, f(xi)}Ni=1,

to construct a GP model f̂N , and with it, sequentially use some criteria αf to choose

the xN+1 evaluation. Such functions αf are called acquisition functions in the con-

text. Bayesian optimization in particular is a popular method in machine learning,

4In engineering literature they are often called kriging
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to tune training parameters of learning algorithms.
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5 VARIATIONAL INFERENCE

5.1 Variational inference

Variational inference [12, 14, 72, 119] is an approximate inference technique

that, as Laplace’s approximation, tries to approximate a density g(θ) by some density

q(θ), using the unnormalized density ḡ(θ) = Zg(θ). In the context of variational

inference, this q(θ) will be called the variational approximation. Usually in the

context of Bayesian inference, g(θ) = p(θ|D) and ḡ(θ) = p(D|θ)p(θ).

Unlike Laplace’s approximation, variational inference is concerned in choos-

ing q(θ) by minimizing a global measure of dissimilarity between the distributions

q(θ) and g(θ), called a divergence. A divergence D on a space S of probability

densities with the same support is a function D(·||·) : S × S → R such that:

D(q||p) ≥ 0, p, q ∈ S

D(q||p) = 0 ⇐⇒ p = q.
(5.1)

Thus divergences are a weaker form of a distance, and in general most important

classes of divergences do not satisfy neither symmetry nor the triangle inequality.

The objective of variational inference is then, given the target distribution g, and

a set of candidate distributions Q, to use a divergence D to find an approximation

q∗ ∈ D for g such that

q∗ = arg min
q∈Q

D(q||g). (5.2)

If g ∈ Q, then obviously q∗ = g. However, Q is a set of distributions chosen

so that its elements are easy to work with, and this is not in general the case for

g. Usually Q is parameterized by a set of continuous parameters Λ ⊂ Rm, such
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that q(θ) = q(θ;λ). Then, the problem of minimizing (5.2) becomes a continuous

optimization problem

λ∗ = arg min
λ∈Λ

D(q(·;λ)||g), (5.3)

and q∗(θ) = q(θ;λ∗)

5.1.1 KL divergence and evidence lower bound

Arguably the most important divergence between probability distributions,

widely used in information theory, is the Kullback-Leibner (KL) divergence DKL,

given by 1

DKL(q||p) = −Eθ∼q(θ)
[
log

p(θ)

q(θ)

]
. (5.4)

Variational inference has in general the minimization objective DKL(q||g), although

some recent methods have been concerned with other divergence objectives [48, 62,

113] 2. Notice that, since DKL(q||g) 6= DKL(g||q), minimizing DKL(q||g) is different

from minimizing DKL(g||q). In fact, the later minimization objective ends up with

the related expectation propagation technique for approximate inference [12]. In this

work we are mainly concerned with the variational inference DKL(q||g) objective.

Since g(θ) = ḡ(θ)/Z, DKL(q||g) can be rewritten as:

DKL(q||g) = −
(
Eθ∼q(θ)[log ḡ(θ)]− Eθ∼q(θ)[log q(θ)]

)
+ logZ, (5.5)

The quantity inside parenthesis is called the evidence lower bound (ELBO)

Lḡ(q) = Eθ∼q(θ)[log ḡ(θ)] +H(q), (5.6)

where H(q) := −Eθ∼q(θ)[log(q(θ))] is the differential entropy of q.

1The KL divergence has origins in information theory, and for discrete distributions, it can
be interpreted as the average additional information one has to transmit a receiver when you are
modeling a random variable distributed according to q by p [72]

2Some authors reserve the term variational inference just for the objective DKL(q||g)
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In general, the dependence on ḡ will be omitted until Section 5.5, and the

ELBO will be denoted as L(q). Minimizing DKL(q||g) is equivalent to maximizing

L(q). This way, there is no need to calculate the normalization factor Z, thus

markedly improving the flexibility of the method, and the goal becomes

q∗ = arg max
q∈Q

L(q). (5.7)

The ELBO is so called because, considering again p(θ|D), we have that

log p(D) = logEθ∼p(θ)[p(D|θ)]

= logEθ∼q(θ)
[
p(D|θ)p(θ)

q(θ)

]
≥ Eθ∼q(θ)

[
log

p(D|θ)p(θ)
q(θ)

]
= L(q).

(5.8)

So the ELBO provides a lower bound for the evidence of the model. This means

that, when doing model selection between various models M1,. . . ,Mt, one can find

their corresponding variational distributions q∗M1
, . . . , q∗Mt

and L(q∗Mt
), . . . ,L(q∗Mt

),

and then choose the model M with the maximum L(q∗M), as a proxy for (2.16). No-

tice that this is a heuristic, and there is no guarantee that the model with maximum

ELBO is actually the one with maximum evidence.

5.1.1.1 Qualitative interpretations

One possible interpretation for maximizing the ELBO is that maximizing the

first ELBO term

Eθ∼q(θ)[log ḡ(θ)], (5.9)

is the algorithm “trying” to make q have a high probability density wherever ḡ has

a high unnormalized density, while maximizing the second ELBO term,

H(q) = −Eθ∼q(θ)[log q(θ)], (5.10)



50

(a) DKL(q||g) (b) DKL(g||q)

Figure 5.1: Difference of behavior when minimizing DKL(q||g) (a) and
when minimizing DKL(g||q) (b). Here the true distribution (in blue) is
approximated by a multivariate normal distribution with diagonal covari-
ance (in red). Example inspired by [12]. Generating code can be found
in https://github.com/DFNaiff/Dissertation/blob/master/illustrations_

dissertation/kl_illustrative_2.py.

acts as a sort of regularizer preventing q to degenerate to a point mass at the

maximum of ḡ.

It is informative to understand qualitatively which kind of approximations of

g variational inference will seek. Suppose some algorithm minimizes DKL(q||g) for

q ∈ Q. Since the algorithm “wants” to make the integrand q(θ)(log q(θ)− log g(θ))

small, where g(θ) is close to zero, the − log g(θ) term will quickly become large,

unless q(θ) is also close to zero there. However, where g(θ) is reasonable far away

from zero, the algorithm will not “feel” as much pressure to match q(θ) to the

same value, provided that the algorithm assign large values for q(θ) where g(θ) is

already large. Then, variational inference will tend to underestimate the region

where g(θ) is large. By contrast, expectation propagation will have the reverse

behavior, overestimating the region where g(θ) is far from zero [12]. This is shown

in Figure 5.1.

https://github.com/DFNaiff/Dissertation/blob/master/illustrations_dissertation/kl_illustrative_2.py
https://github.com/DFNaiff/Dissertation/blob/master/illustrations_dissertation/kl_illustrative_2.py
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5.2 Mean field variational inference

Traditionally, variational inference has mainly been concerned with factor-

ized variational approximations of the form q(θ;λ) =
∏D

i=1 qi(θi;λi), called mean

field approximation. The use of such variational posterior greatly simplifies the

optimization of ELBO by coordinate descent.

To see this, consider a single term j of the variational approximation q(θ) =∏D
i=1 qi(θ). The ELBO for q(θ) is:

L(q) =

∫
log ḡ(θ)

D∏
i=1

qi(θi)dθ −
∫ ( D∑

j=1

log qi(θi)

)
D∏
i=1

qi(θi)dθ

=

∫
qj(θj)

(∫
log ḡ(θ)

∏
i 6=j

qi(θi)dθi

)
dθj +

D∑
i=1

H(qi)

=

∫
qj(θj) log φj(θj)dθj +H(qj) +

∑
i 6=j

H(qi),

(5.11)

With

log φj(θj) :=

∫
log(ḡ(θ))q−j(θ−j)dθ−j = Eθ−j∼q−j [log ḡ(θ)],

using the notation q−j(θ−j) =
∏

i 6=j qi(θi). Now, assuming exp(log φj(θj)) to be

integrable over the support of g(θ), fix every qi for i 6= j, so that the only term

to be maximized is qj. Then, maximizing (5.11) in respect to qj is equivalent to

maximizing the ELBO between qj and exp (log φj(θj)). Since there are not any

constraints in the choice for qj

q∗j (θj; q−j) ∝ expEθ−j∼q−j [log ḡ(θ)]. (5.12)

This readily gives an algorithm to find q∗ =
∏
q∗j : initialize q1, . . . , qD in a appro-

priate manner, and then optimize cyclically (5.12).

Convergence is guaranteed due to the convexity of the bound with respect

to each factor [12, 17]. This algorithm interacts well with target densities whose
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conditional distributions g(θj|θ−j) belongs to the exponential family, that is,

g(θj|θ−j) = h(θj) exp
(
ηj(θ−j)

T t(θj)− a(ηj(θ−j))
)
, (5.13)

(5.12) reduces to [14]

q∗j (θj; q−j) ∝ h(θj) exp
(
Eθj∼q−j [ηj(θ−j)]T t(θ−j)

)
, (5.14)

thus if νj = Eθ−j∼q−j [ηj(θ−j)]T is available analytically, the coordinate descent be-

comes relatively simple.

Research to extend mean field variational inference to large datasets or dimen-

sionality exists [47, 50, 119], however factorized limitations are limited, particularly

in its independence assumption. Moreover, many distributions are not in the expo-

nential family, which is the focus of the mean field method, so more generic methods

are desirable.

5.3 Generic variational inference

Some recent advances in variational inference [119] are concerned with ex-

panding both the set of possible variational approximations Q and approximating

general classes of posterior distributions g(θ).

Considering again Q to be parameterized by a continuous set of parameters

Λ, and using the overloaded notation L(λ) = L(q(·;λ)), return to the optimization

problem

λ∗ = arg max
λ∈Λ

L(λ) = arg max
λ∈Λ

(
Eθ∼q(θ;λ)[log ḡ(θ)] +H(q(·;λ))

)
= arg max

λ∈Λ
Eθ∼q(θ;λ)

[
log

(
ḡ(θ)

q(θ;λ)

)] (5.15)

In general the expectations involved cannot be calculated analytically. However,

if one represents ∇L(λ) as expectations, then by using Monte Carlo methods it is
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possible to use stochastic gradients methods [90, 60, 84, 93] to maximize L(λ) 3.

5.3.1 REINFORCE

One proposal for doing this is given in [118] and [86], where∇L(λ) is rewritten

as 4

∇L(λ) = Eθ∼q(θ;λ)

[
log

ḡ(θ)

q(θ;λ)
∇λ log q(θ;λ)

]
, (5.16)

and is approximated with its Monte Carlo estimator

∇L(λ) ≈ 1

K

∑
i∈[K],θi∼q(θ;λ)

log
ḡ(θi)

q(θi;λ)
∇λ log q(θi;λ), (5.17)

where [K] = {1, . . . , K}. In practice, this estimation suffers from high variance,

which may hinder optimization. In [118], (5.16) is substituted for

∇L(λ) = Eθ∼q(θ;λ)

[(
log

(
ḡ(θ)

q(θ;λ)

)
+ C

)
∇λ log q(θ;λ)

]
, (5.18)

where C is an arbitrary constant, which is adjusted to control variance 5. In [86], the

variance is controlled by Rao-Blackwellization and control variates instead. Other

variance reduction methods for this gradient formulation are proposed in [111] and

[94].

5.3.2 Reparameterization trick

An alternative to calculate the gradient of L(λ) as an expectation is known

as the reparameterization trick [61], which is a general technique for calculating

3In this aspect, modern variational inference research benefits greatly from deep learning re-
search, the later relying heavily on stochastic gradient descent, driving much of the recent devel-
opment of these algorithms.

4A quick derivation of this approximation is done in the Appendix ??.
5The reason that this constant can be added is because

∫
C∇λ log q(θ;λ)q(θ;λ)dθ =

C
∫
∇λp(θ;λ)dθ = C∇λ

∫
p(θ;λ)dθ = 0.
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gradients of expectations of continuous random variables.

To explain the general ideia, assume Xλ is a continuous random variable

distributed according to f(x;λ), and one wants to calculate the gradient (in relation

to λ) of

EXλ [h(Xλ)] =

∫
h(x)f(x;λ)dx. (5.19)

We approximate (5.19) by Monte Carlo

EXλ [h(Xλ)] ≈
N∑
i=1

h(xi,λ), xi,λ ∼ f(x;λ). (5.20)

Now suppose that there is some random variable Y , not depending on λ, with density

r(y), such that Xλ = s(Y ;λ) (for instance, if Xµ,σ ∼ N (µ, σ2), then being Y ∼
N (0, 1), we have that Xµ,σ = s(Y ;µ, σ) = σY + µ). In this case, the Monte Carlo

estimator (5.20) is rewritten as

EXλ [h(Xλ)] ≈
N∑
i=1

h(s(yi, λ)), yi ∼ r(y), (5.21)

which is an expression whose gradient in relation to λ can be taken, and is the Monte

Carlo estimator of ∫
h(s(y;λ))r(y)dy = EY [h(s(Y ;λ))] (5.22)

Formally, by letting A be the support of Y and Bλ be the support of Xλ, if

s(y;λ) if bijective with injective derivative:

EXλ∼f(x;λ)[h(x)] =

∫
Bλ

h(x)q(x;λ)dx

=

∫
A

h(s(y;λ))q(s(y;λ);λ)|det(s′(y;λ))|dy

=

∫
A

h(s(y;λ))r(y)dy = EY∼r(y)[h(s(y;λ))],

(5.23)

which shows that the reparameterization trick is valid.
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To apply this to L(λ), assume θλ ∼ q(θ;λ) is such that θλ = s(ε;λ), with

ε ∼ r(ε). Then, applying reparameterization, we have

∇L(λ) = ∇
(
Eθ∼q(θ;λ)

[
log

ḡ(θ)

q(θ;λ)

])
= ∇

(
Eε∼r(ε)

[
log

ḡ(s(ε;λ))

q(s(ε;λ);λ)

])

≈ ∇λ

 1

K

∑
i∈[K],εi∼r(ε)

log
ḡ(s(εi;λ))

q(s(εi;λ);λ)


(5.24)

In [119], it is argued that the observed lower variance of this estimation methods, if

compared to the one given by (5.16), may be due to the fact that reparameterization

trick takes in account the gradient of the target distribution, instead of just the

gradient of the variational distribution as in (5.16). Moreover, in cases that the

entropy of q(·;λ) can be estimated analytically, the reparameterization trick can be

applied only to ḡ(θ), leading to lower variance. Finally, it is important to notice that

this format is more readily integrated in an automatic differentiation package, since

it suffices to calculate the sum inside the gradient and backpropagate it in relation

to λ.

5.4 Mixtures of gaussians for variational approximations

The idea of using mixture distributions for variational inference dates back

to the late 90s [13, 53], originally developed for a limited number of target distri-

butions, and later is explored for approximating general distributions in [37, 95],

leading to recent work in it [2, 6, 45, 54, 70]. The technique presented here uses the

reparameterization trick, in a vein similar to the one presented in [70]. In general,

the mixture distribution considered is one of Gaussian distributions (as it is in this

work), although many of those extends to more general mixtures.
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More formally, consider as the set of candidate proposals

Qk :=

{
k∑
i=1

wif(·;λi)

∣∣∣∣∣f(·;λi) ∈ Q1, 1 ≤ i ≤ k; (w1, ..., wk) ∈ ∆k ⊂ Rk

}
, (5.25)

wher ∆k denotes the probability simplex {(x1, . . . , xk) ∈ R+k|
∑k

i=1 xk = 1}, and

Q1 = {f(·;λ)|λ ∈ Λ ⊂ Rm} is a parameterized set of distributions. In the mixture

of multivariate normals case,

Q1 := {f(·;µ,Σ) = N (·;µ,Σ)|µ ∈ Rd,Σ ∈ Rd×d,Σ ≥ 0} (5.26)

is the set of multivariate normal distributions. In many cases, it is interesting to

restrict Q1 further so that Σ is diagonal. Mixtures of distributions are interesting

as variational approximations since their expectations are easily available

EX∼∑i wifi
[h(X)] =

∑
i

wiEXi∼fi [h(Xi)], (5.27)

as well as their covariances

CovX∼∑i wifi
(X) =

∑
i

wi
(
Σi + µiµ

T
i

)
− µµT ,

Σi = CovXi∼fi(Xi), µi = EXi∼fi [X], µ = EX∼∑i wifi
[X].

(5.28)

Furthermore, samples of mixtures can be easily generated from the base distribu-

tions, by choosing mixture i with probability wi, and then sampling X from f(·;λi)
6. Furthermore, letting Q∞ = ∪∞i=1Qi and Q1 be these set of Gaussian distributions,

Q∞ is dense in the set of continuous distributions [28], so in this case any continuous

distribution can be approximated arbitrarily close, in principle.

Considering mixtures of Gaussians, for fixed k, in order to find the parameters

λ = (w1, µ1,Σ1, . . . , wk, µk,Σk)

of

q∗k = arg max
qk∈Qk

L(qk), (5.29)

6Batching this process in order to sample many variables, escaping loops in interpreted languages
with support for numerical operations (such as Python with Numpy) requires some care, but it is
possible in few lines.
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one needs first to find suitable parameterizations for Σi and w := (w1, ..., wk). For

the covariance matrix, one can either consider only diagonal matrices

Σi = diag(σ2
i,1, . . . , σ

2
i,D), (5.30)

or consider matrices of the form

Σi = uiu
T
i + diag(σ2

i,1, . . . , σ
2
i,D),

or use more advanced parameterizations such as the ones found in [82]. Let σi be

the parameters for Σi, so that Σi = Σi(σi). For w, using some monotone bijective

differentiable function φ : R → R+ (for example, φ = exp), one can then consider

the corresponding differentiable map Φ : Rk → ∆k as

Φ(νi) =
φ(νi)∑k
i=1 φ(νk)

= wi(νi). (5.31)

The parameter of interest λ becomes (ν1, µ1, σ1, . . . , νk, µk, σk), and

qk(θ) =
k∑
i=1

wi(νi)fN (µi,Σ(σi))(θ). (5.32)

Thus, the ELBO objective becomes

L(λ) =

∫
log ḡ(θ)qk(θ)dθ −

∫
log(qk(θ))qk(θ)dθ

=
k∑
i=1

wi(νi)Eθi∼N (µi;Σ(σi))

[
log

ḡ(θi)

qk(θi;λ)

]
.

(5.33)

One can adapt the reparameterization trick to rewrite L(λ) in a manner

suitable to stochastic gradient optimization. First notice that any gaussian random

variable X ∼ N (µ,Σ) can be written as X = µ + AZ, where Z ∼ N (0, I) and A

is some matrix such that Σ = AAT . For instance, A can be the lower Cholesky

factor of Σ, if the parameterization of Σ only supports positive-definite matrices.

Then A(σ) is differentiable [102, 73], and s(ε;µi, σi) = µi + A(σ)ε, and (5.33) is
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approximated by Monte Carlo,

L(λ) =
k∑
i=1

wi(νi)Eε∼N (0,I)

[
log

ḡ(s(ε;µi, σi))

qk(s(ε;µi, σi);λ)

]

≈
k∑
i=1

wi(νi)

 1

Ki

∑
k∈[Ki],εi,j∼N (0,I)

log
ḡ(s(εi,j;µi, σi))

qk(s(εi,j;µi, σi);λ)

 ,

(5.34)

which is an expression that can be differentiated to find an approximation for∇L(λ).

In principle there is no way to know how many mixtures are necessary to

return a good approximation. However, one can,for each i ∈ N, starting with

i = 1, sequentially find q∗i close to arg maxqi∈Qi L(q), and go to sequentially from

Qi to Qi+1 ⊃ Qi, until the variational approximation is good enough. However,

this procedure runs into computational issues, namely the number of optimization

parameters scale linearly with the number of mixtures k, in a non-convex problem

with non-trivial gradient evaluation, whose cost also scales linearly with k. Hence,

the cost of improving the mixtures this way quickly becomes rather large. We next

present an approach that mitigates this problem, at the cost of making a greedy

approximation, thus potentially more inefficient in the number of mixtures.

5.4.1 Boosting mixtures of gaussians

Boosting [33, 34, 35] is a standard technique in machine learning, usually

used in classification problems, which tries to combine slighty better than chance

algorithms, or weak learners in a reliable, accurate algorithm (a strong learner). The

general framework is transferred to the problem of variational inference in concurrent

works by [70] and [45], using increasing mixtures distributions.

In this setting, start first with some distribution q1 ∈ Q1. Then, recursively,
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given a proposal q∗i−1, it is considered the proposal set

Qi = Qi(qi−1) = {(1− wi)qi−1 + wif(·;µi,Σi)|

wi ∈ [0, 1], µi ∈ Rd,Σi ∈ Rd×d,Σi ≥ 0},
(5.35)

and then some qi is chosen fromQi, in a manner that L(qi) is reasonably greater than

the previous value L(qi−1). One straightforward approach is to seek λi(w
∗
i , µ

∗
i ,Σ

∗
i )

such as the maximization objective becomes

Li(λi) := L((1− wi)qi−1 + wif(·;µi,Σi)), (5.36)

which is the procedure proposed in [70]. In [45], it is shown that the KL divergence

satisfies the conditions estabilished by [120] that ensures if

L((1− wi)i− 1 + wifi) ≥ sup
f∈Q1,w∈[0,1]

L((1− w)qi−1 + wf)− εi, (5.37)

as εi → 0, then

lim
i→∞

sup
q∈Q∞

L(q)− L(qi) = 0, (5.38)

provided that every q ∈ Q1 is bounded from below. In [45], it is shown that the KL

divergence satisfies those two conditions, if every q ∈ Q1 is assumed to be bounded

from below by a positive constant. Although this is not the case for Gaussian

distributions, it is argued that since in actual implementations the practitioner works

with a bounded set of interest, the result holds in practice.

5.4.2 Gradient boosting mixture of gaussians

Another boosting proposal, due to [45], is to instead of trying to optimize

jointly (w∗i , µ
∗
i ,Σ

∗
i ) at each step, choosing first fi = f(·;µi,Σi), and then choose wi

as to maximize:

Li(wi) := L((1− wi)qi−1 + wifi)

=

∫
log

ḡ(θ)

(1− wi)qi−1(θ) + wifi(θ)
((1− wi)qi−1(θ) + wifi(θ))dθ.

(5.39)
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Since the KL divergence is convex in q, the ELBO is concave, so minimizing w is

easy, provided we can easily calculated L′i(wi). Since we have

L′i(wi) =

∫
∂

∂wi

(
log

ḡ(θ)

(1− wi)qi−1(θ) + wifi(θ)
((1− wi)qi−1(θ) + wifi(θ))

)
dθ

=

∫
log(ḡ(θ))(fi(θ)− qi−1(θ))dθ−∫

log((1− wi)qi−1(θ) + wifi(θ))(fi(θ)− qi−1(θ))dθ,

,

(5.40)

we can then approximate the derivative by Monte Carlo

L′i(wi) =
1

J

∑
j∈[J ]θj∼fi

(log(ḡ(θj))− log((1− wi)qi−1(θj) + wifi(θj)))

− 1

K

∑
θk∈[K],θk∼qi−1

(log(ḡ(θk))− log((1− wi)qi−1(θk) + wifi(θk))) ,

(5.41)

and using it to maximize L′i(wi).

The question becomes then how to choose fi. In [45], the technique of gra-

dient boosting [36] is borrowed for this purpose, so that fi is chosen as to minimize

∇DKL(qi−1||g) · f , where ∇DKL(q||g) is the functional derivative of DKL(q||g) as

a function of q. For DKL(q||p), we can use Taylor expansion to find the functional

derivative

DKL(q + δh||p) =

∫
(q + δh) log

q + δh

p

=

∫
q

(
log

q

p
+
δh/p

q/p
+O(δ2)

)
+ δ

∫
h log

q

p
+O(δ2)

= D(q||p) + δ

∫ (
1 + log

q

p

)
h+O(δ2).

(5.42)

Here the argument θ is omitted to simplify the expression. Hence

fi = arg min
f
∇DKL(qi−1||g) · f = arg min

f

∫ (
1 + log

qi−1(θ)

g(θ)

)
f(θ)dθ =

= arg min
f

∫
log

qi−1(θ)

g(θ)
f(θ)dθ.

(5.43)
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Since the parameterization for fi(θ) allows degeneration to a point mass at

arg minθ log(qi−1(θ)/g(θ)), and this point mass optimizes (5.43), further constraints

over fi(θ) are needed for getting a non-degenerate new basis function. In [45] (5.43)

is regularized by the logarithm of the L2 norm of fi(θ)

fi = arg min
f

(∫
log

qi−1(θ)

g(θ)
f(θ)dθ +

λ

2
log ||f ||22

)
(5.44)

while in [65], (5.43) is regularized by negative of the entropy of f , as a proxy for the

regularization of its L∞ norm. Since for f(θ) = N (θ|µ,Σ), log ||f ||22 = −1
2

log |Σ| −
1
2

log(2π) and −H(f) = −1
2

log |Σ| − 1
2

log(2πe), both approaches are equivalent for

mixture of Gaussians, yielding the maximization objective in relation to µi,Σi:

RELBO(µi,Σi) =

∫
log(ḡ(θ))N (θ|µ,Σ)dθ −

∫
log(qi−1(θ))N (θ|µ,Σ)dθ+

λ

4
log |Σ|,

(5.45)

where λ is a regularization constant (the name RELBO comes from [65]). This

constant may be set either as a fixed value or decaying as i increases, as to permit

increasingly narrower distributions as the algorithm runs. For example, in [65] λ

is set as 1/
√
i+ 1. 7. Finally, the gradients of (5.45) in relation to µi,Σi can be

estimated by the reparameterization trick.

The resulting pseudo-algorithm is shown in Figure 1.

5.5 Using Bayesian Monte Carlo in Variational Inference

All the approaches previously presented suffers from one major flaw: the

need for a large number of evaluations of the unnormalized posterior ḡ by Monte

7In [45] it is argued that this objective is still somewhat hard to maximize, so it is proposed an
heuristic based on a local Laplace approximation. This heuristic was previously explored by the
author of this work, however it ran into implementation issues, and moreover, it does not exactly
attend the desiderata in this work, namely as few function evaluations as possible
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1: procedure VariationalBoosting(log ḡ, µ0,Σ0)
2: . µ0,Σ0 the are initial boosting values
3: w0 := 1.0
4: for t = 1, ..., T do
5: µt,Σt := arg maxRELBO(µt,Σt) . Using reparameterization
6: wt := arg maxLi(wi) . Using L′t(wt) for gradient descent
7: for j = 0, ..., t− 1 do
8: wj ← (1− wt)wj
9: end for

10: end for
11: return {(µt,Σt, wt)}Tt=1

12: end procedure

Algorithm 1: Variational boosting algorithm.

Carlo methods, in order to have a good estimation of the gradient. This is the same

problem of integration that Bayesian Monte Carlo tries to solve, so one can try to

use this technique when ḡ is expensive to evaluate. In [2], it is developed a method

called Variational Bayesian Monte Carlo (VBMC) that hinges on exactly this idea.

Consider a parameterized variational proposal q(θ;λ), and the corresponding

ELBO for ḡ(θ):

L(λ) = Lḡ(λ) =

∫
log ḡ(θ)q(θ;λ)dθ −

∫
log(q(θ;λ))q(θ;λ)dθ.

As in Chapter 4, setting as prior for log ḡ(θ) the Gaussian process GP (m, k), and

given set of evaluations D0 = {(xi, f(xi))}Ni=1, Lḡ(λ) can be replaced by the Gaussian

distributed random variable

LD(λ) := LḡD(λ) := ZD(λ)−
∫

log(q(θ;λ))q(θ;λ)dθ,

ZD(λ) :=

∫
log ḡD(θ)q(θ;λ)dθ,

(5.46)
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with mean

L̄D(λ) := E [Llog ḡD(λ)] = E[ZD(λ)]−
∫

log(q(θ;λ))q(θ;λ)dθ

=

∫
E[log ḡD(θ)]q(θ;λ)dθ −

∫
log(q(θ;λ))q(θ;λ)dθ

= LE[log ḡD](λ),

(5.47)

and variance

Var(LD(λ)) = Var(ZD(λ)), (5.48)

and E[ZD(λ)] and Var[ZD(λ)] being given by (4.5). This approach enjoy the same

benefits as the BMC approach:

• If the evaluation of ḡ is expensive, it is not feasible to perform a Monte Carlo

estimation of
∫

log ḡ(θ)q(θ;λ)dθ at each step in optimizing the ELBO.

• The function ḡ does not need to be differentiable, and its evaluations may be

noisy (although this last case is not considered in this work, the extension is

straightforward).

In case q(θ;λ) is a mixture of i Gaussians qi(θ;λ), as in [2], the methods presented in

5.4 and the one in Chapter 4, by the discussion in Section 4.2, given a suitable kernel

k, E[ZD(λ)] and Var[ZD(λ)] can be easily treated. In [2], k is the SQE kernel (3.10)

with outputscale r0 and lengthscales l1, . . . , lD, which by (4.15) makes E[ZD(λ)] and

Var[ZD(λ)] both analytical.

The entropy term −
∫

log(q(θ;λ))q(θ;λ)dθ does not have in general a closed

form, and must still be treated. Approximating − log(q(θ;λ)) by BMC is possible,

but since this term changes with λ, this will be costly. However, since log q(θ;λ) is

easy to evaluate, by construction, the entropy term can be treated with the repa-

rameterization trick without much additional cost. Other possible approach to deal

with this term, when using mixture of Gaussians, is to use one of the approximations
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proposed in [52].

An important point is that, since, by in the first equation of (4.5), only z

and
∫
m(θ)q(θ;λ)dθ depends on q(θ;λ), one can rewrite∫

E[log ḡD(θ)]qk(θ;λ)dθ = M(λ) + zTw

w = K−1y

M(λ) =

∫
m(θ)q(θ;λ)dθ

zi =

∫
k(x, xi)q(θ;λ)dx.

(5.49)

This way, with w being previously computed, the computation of L̄D(λ) can be

calculated in O(N) time for each λ, while Var(LD(λ)) can be calculated in O(N2).

The new variational objective becomes then simply L̄D(λ).

5.5.1 Quadratic mean function

With the objective L̄D(λ), the actual distribution that is being approximated

by mixture of Gaussians is proportional to expE[log ḡD(θ)]. From the variational

inference approximation’s point of view, the only information that it has on the

original distribution ḡ is by its GP approximation.

This raises some issues: if the mean function of the GP prior m(θ) is either

zero or a constant, and the kernel is one that decays to zero as |x − x′| goes to

infinity, such as (3.10), (3.12) or (3.14), then expE[log ḡD(θ)] is not integrable, so it

cannot define an unnormalized probability distribution. Hence, care must be taken

with the mean function m(θ).

One approach is to simply let m(θ) have a very low value, so that in practice

it resembles enough a probability distribution so that, for a reasonable number of
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mixtures k, convergence issues does not appear. This is the default approach used

in the developed algorithm presented in Chapter 4. An alternative approach, used

in [2], is to change the mean function so that exp(m(θ)), thus exp logE[log ḡD(θ)] is

an unnormalized probability distribution, while having the integral
∫
m(θ)qk(θ)dθ

being analytically tractable. In [2], the following mean function is proposed:

mQ(θ; l, c) = −1

2

D∑
i=1

(θi − ci)2

l2i
, (5.50)

which then both makes exp(mQ(θ; l, c)) integrable and yields, for qi(θ) being a mix-

ture of Gaussians,∫
mQ(θ; l, c)qk(θ)dθ = −1

2

k∑
j=1

D∑
i=1

[
(ci − µk,i)2

l2i
+

Σk,i,i

l2i

]
. (5.51)

This comes immediately from the expectation of quadratic forms of normal distri-

bution formula [81].

5.5.2 Remarks on acquisition functions for VBMC

As in Bayesian Monte Carlo, a question that arises is one of active sampling.

Notice that, fixed evaluations D, and assuming a fixed set of mixtures of k Gaussians

Qk, associated with a fixed set of parameters Λk, and letting

λ∗(D) = arg min
λ
LD(λ), (5.52)

the final ELBO is a random variable LD(λ∗(D)), which is normally distributed with

variance Var(ZD(λ∗)). Since we want to have a high degree of certainty about the

variational approximation’s quality, one wants the final ELBO objective to have as

lower variance as possible, since it is a measure of its uncertainty.

In this setting, one option would be, in a greedy approach, to choose xN+1, so

that, expanding D to D′(x, log ḡ(θN+1)) = D ∪ {(xN+1, log ḡ(θN+1))}, it minimizes

the variance of LD′(λ∗(D′)). Since log ḡ(θN+1) is not known in advance, one could
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substitute this instead for

ED′ [Var(ZD′(λ
∗(D′))]

D′ = D ∪ {(θN+1, log ḡD(θN+1))}.
(5.53)

However, it is not clear how to work with this random variable, and minimize a

measure of its uncertainty. However, this intuition helps with constructing heuristic

acquisition functions to seek θN+1.

5.5.2.1 Uncertainty sampling and prospective prediction

One option in order to tackle this problem is to consider the current varia-

tional proposal qk(θ;λ) fixed, and consider the minimization objective

αDVR(θN+1) = Var
(
ZD′(θN+1)(λ)

)
. (5.54)

However, since this is an expensive minimization objective, a proxy for this approach

is to consider the integrand of ∫
log ḡD(θ)qk(θ;λ)dθ,

and seek the integrand maximum variance instead, resulting in the uncertainty sam-

pling maximization objective

αDUS(θN+1) = kD(θN+1, θN+1)qk(θN+1;λ)2. (5.55)

The above objective puts much weight in the current variational proposal,

which may hinder exploration. Considering that future proposals will seek regions

with high posterior density, the other objective proposed in [2] is formed by multiply-

ing αDUS(θN+1) by an exploration factor for high posterior denstiies exp(mD(θN+1)).

This result in the prospective prediction maximization objective,

αDPROP(θN+1) = kD(θN+1, θN+1) exp(mD(θN+1))qk(θN+1;λ)2. (5.56)

It is reported in [2] that the prospective prediction objective results in better ap-
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proximations than the uncertainty sampling one. The objectives (5.55) and (5.56),

along with some newly proposed ones ((6.13),(6.14) and (6.15)), are used in the

algorithm developed in this work, to be shown in the next chapter.



68

6 BOOSTED VARIATIONAL BAYESIAN MONTE
CARLO

In this chapter, it is presented a modification of the Variational Bayesian

Monte Carlo approach presented in Section 5.5, using ideas of boosting presented in

5.4.1, along with some other minor modifications of the previous approach.

6.1 Boosting Variational Bayesian Monte Carlo

The idea underlying this approach is rather simple: instead of using a GP

surrogate model for doing variational inference with mixtures of Gaussians as in

5.5, use it for variational inference with the gradient boosting approach discussed in

section 5.4.1.

To expand on this, consider again the algorithm in Figure 1. In line 5, the

objective (5.45) (here called f -step) consists of three terms

RELBO(µi,Σi) =

∫
log(ḡ(θ))N (θ|µ,Σ)dθ

−
∫

log(qi−1(θ))N (θ|µ,Σ)dθ

+
λ

4
log |Σ|,

while in line 6, for the objective (5.39) (here called w-step), the gradient L′i(wi)
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consists of

L′i(wi) =

∫
log(ḡ(θ))fi(θ)

−
∫

log(ḡ(θ))qi−1(θ)

+

∫
log((1− wi)qi−1(θ) + wifi(θ))(fi(θ)− qi−1(θ))dθ

Then, in the same vein of the VBMC method, set a GP (m, k) prior for log ḡ,

and given evaluations D0 = {(xi, f(xi))}Ni=1, substitute log ḡ for E log ḡD. Since all

the terms involving log ḡ are expectations of either Gaussian distributions or mixture

of Gaussian distributions, then one can approximate those by Bayesian Monte Carlo,

as seen in (4.12) and (4.15), resulting in the maximization objective for the f -step:

RELBOD(µi,Σi) =

∫
E[log ḡD(θ)]N (θ|µi,Σi)dθ−∫
log(qi−1(θ))N (θ|µi,Σi)dθ +

λ

4
log |Σi|,

(6.1)

and the maximization objective for the w-step

Li,D(w) =

∫
log ḡD(θ)((1− wi)qi−1(θ) + wifi(θ))dθ−∫
log((1− wi)qi−1(θ) + wifi(θ))((1− wi)qi−1(θ) + wifi(θ))dθ

(6.2)

with gradient

L′i,D(w) =

∫
E[log ḡD(θ)]fi(θ)−

∫
E[log ḡD(θ)]qi−1(θ)+∫

log((1− wi)qi−1(θ) + wifi(θ))(fi(θ)− qi−1(θ))dθ,

(6.3)

where

fi(θ) = N (θ|µi,Σi), qi−1(θ) =
i−1∑
k=0

wkN (θ|µk,Σk) (6.4)

The integrals not involving log ḡD can be easily approximated by the reparameteri-

zation trick, while log |Σ| is trivial to compute. This readily results in an algorithm

for variational inference, given fixed evaluations points {xn}Nn=1, shown in Figure 2.

Here it is named Naive Boosted Variational Bayesian Monte Carlo (Naive BVBMC).
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1: procedure NaiveBVBMC(log ḡ, µ0,Σ0,{x}Nn=1)
2: . µ0,Σ0 the are initial boosting values
3: for n = 1, ..., N do
4: yn := log ḡ(xn)
5: end for
6: D := {(xn, yn)}Ni=1

7: GPModel := PosteriorGP(m,kRBF ,D)
8: GPModel.MaximizeLogLikelihood() . Using (3.16)
9: E[log ḡD(θ)] := GPModel.mD

10: w0 := 1.0
11: for t = 1, ..., T do
12: . Using BMC and reparameterization
13: µt,Σt := arg maxRELBOD(µt,Σt)
14: wt := arg maxLt,D(wi) . Using L′t,D(wt) for gradient descent
15: for j = 0, ..., t− 1 do
16: wj ← (1− wt)wj
17: end for
18: end for
19: return {(µt,Σt, wt)}Tt=1

20: end procedure

Algorithm 2: Naive boosted variational bayesian monte carlo

6.1.1 Practical issues

The algorithm in Figure 2 run into some practical issues, described below,

that requires fixes of an heuristic nature. Here we present the heuristics that were

used to make the algorithm stable. The resulting algorithm in found in 3.
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6.1.1.1 RELBO stabilization

By letting rD(θ) := expE logD(θ), consider again the maximization objective

(6.1), rewritten as

RELBOD(µi,Σi) =

∫
log

(
rD(θ)

qi−1(θ)

)
N (θ;µi,Σi)dθ + log |Σi|. (6.5)

Assume Σi fixed for now, so that the only term being optimized is µi. Then, what

the maximizer ”wants” to do is set µi in a place that N (θ;µi,Σi) allocates prob-

ability mass where log rD(θ)/qi−1(θ) is large. Now, consider the tail behavior of

this quantity. We have that qi−1(θ) ≈ C1 exp(−||A1(θ − c1)||22) on the tail, while

either rD(θ) ≈ exp(−C), if m(θ) = −C, or rD(θ) ≈ exp(−||A2(θ− c2)||22), in case of

m(θ) = −||A2(θ − c2)||22. In the first case, then log rD(θ)/qi−1(θ) → ∞ as θ → ∞,

while in the second case, whether this happens depends on the relation between A1

and A2. However, if log rD(θ)/qi−1(θ)→∞ as θ →∞, then the maximizer will try

to get µi to∞, thus resulting in bad proposals, that ends up with negligible weights

wi.

One approach to deal with this problem is to replace the term log rD/qi−1(θ)

by log rD/(qi−1(θ) + δD), where δD is a small positive constant. This approach

is similar to the one in [45], where a regularizer is added to both numerator and

denominator, although it is done in the approximate heuristic proposed there. Thus,

the f -step maximization objective becomes

RELBOδD
D (µi,Σi) =

∫
log

(
rD(θ)

qi−1(θ) + δD

)
N (θ;µi,Σi)dθ + log |Σi|. (6.6)

In the current work, δD = e−20 by default.
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6.1.1.2 Output scaling

One issue that arises with unnormalized log-densities is that one has no con-

trol on its scale. Fortunately, scaling the output can be done easily. Given data

D = {(xi, yi)}Ni=1, suppose one makes a linear transformation ỹi = yi−b
a

, and, let-

ting D̃ = {xi, ỹi}, consider the GP posterior fD̃ ∼ GP (mD̃, kD̃). Then, the random

function afD̃ + b is GP distributed, and∫
(afD̃ + b)(x)p(x)dx (6.7)

is a GP random variable, with

E
[∫

(afD̃ + b)(x)p(x)dx

]
= aE

[∫
fD̃(x)p(x)dx

]
+ b, (6.8)

and variance

Var

(∫
(afD̃ + b)(x)p(x)dx

)
= a2Var

(∫
fD̃(x)p(x)dx

)
. (6.9)

This implies that one can do BMC, hence also VBMC and BVBMC using affinely

scaled output variables, without difficulty.

Two heuristic for scaling were implemented, the normalize heuristic, given

by

• Letting yi = log g(xi), calculating the sample mean my = 1
N

∑N
i=1 yi and the

(unbiased) sample standard deviation σy =
√

1
N−1

∑N
i=1(yi −my).

• Transforming the output ỹi = (yi −my)/σy.

• Train a GP (along with hyperparameters) on D̃ = {xi, ỹi}Ni=1.

• Substituting, when needed, log gD(x) (and their integrals) for σy log gD̃(x)+µy

and the zeromax heuristic, where
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• Letting yi = log g(xi), calculating the sample maximum my = max{yi}Ni=1 and

making σy = 1.

• Do the other steps as in normalize heuristic.

In toy problems presented in the next section, both heuristics worked well, but for

more complex problems the zeromax heuristic was found to be more stable.

6.1.1.3 Component initialization

A question that still wasn’t addressed is on how to choose the first boosting

component. Two options were tested:

• Initializing the first mixture component with zero mean and a large covariance.

• Choosing the first component by maximizing the ELBO between the compo-

nent and GP surrogate.

In general, the second method was chosen in this work, although performance in

both cases was comparable.

6.1.1.4 Component pruning

When running the BVBMC algorithm, many mixture components may end

up with negligible weights. This may both increase the computational cost of the

algorithm, and hinder the performance of joint parameter updating (explained in

6.1.1.6). In order to diminish this problem, an weight threshold β may be estab-

lished, so that, if (w1, . . . , wN) are the current mixture weights, every i-th mixture
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components with wi < β is removed, with the remainder weights being renormalized

to one. This pruning may be done either every iteration, or only when doing joint

parameter updating (for which pruning proved necessary).

6.1.1.5 Mean functions

As discussed in Section 5.5.1, one option for the mean function set m(θ) =

mQ(θ; l, c) as in (5.50). However, one issue that arose in this work is that optimizing

l, c by maximizing the log-likelihood often resulted in very large values (in absolute

value) for l and c, destabilizing the algorithm.

In this light, a different approach for the mean is proposed, by letting

mF (θ) = C (6.10)

where C is a large negative constant, that is fixed before hyperparameter optimiza-

tion. Strictly speaking, in this case expE[log ḡD(θ)] is not anymore a probability

distribution. However, if C is sufficiently low, it resembles a probability distribution

enough so that the algorithm works well in practice.

Since C is not set by optimizing the log-likelihood, one must decide on how

to set it. If the data was scaled beforehand using zeromax, some good options that

worked well in practice were C = −10,−20,−30. For scaling using normalize, the

following way to set C is proposed:

C = ỹmin −KC(ỹmax − ỹmin), (6.11)

where ỹmax and ỹmin are the maximum and minimum of the normalized output

values, and KC > 0 is a constant. In this work, KC = 1 was found to be a good

choice.



75

6.1.1.6 Periodic joint parameter updating

Sometimes, boosting may get “stuck”, in the sense that the variational pro-

posal takes too long to improve. In that case, one may desire to periodically update

all variational parameters in the sense of the original VBMC algorithm. However,

since this optimization is expensive, it should be used sparsely, for example every 10

boosting steps, or every 3 steps when boosting does not show improvement, when

checking the ELBO.

6.1.1.7 Other kernel functions

As discussed in Section 4.2.3, tensor product of one-dimensional kernels can

be easily integrated with Bayesian Monte Carlo with diagonal covariance Gaussian

distributions. In this light, by letting kMatern,ν(|x− x′|; l) be the 1-d Matérn kernel,

the product of Matérn kernels is defined

kPMat,ν(x, x
′; θ, l) = θ

D∏
d=1

kMatern,ν(|xi − x′i|; ld). (6.12)

It must be noted that the product of Matérn kernels is not the Matérn kernel for

d > 1, although it is a stationary kernel.

In experiments, the product of Matérn kernels tended to be more stable than

the squared exponential kernel, particularly for ν = 1/2, 3/2, although for ν = 5/2

the cases where it became unstable were rare. This may be due to the fact that

the squared exponential kernels assumes far too much smoothness in its defined

GP, hence estimating large oscillations outside the domain of interest, resulting in

spurious multimodality.
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6.1.2 Other acquisition functions for active evaluation

One problem that may arises in prospective prediction is that the term

exp(mD(θN+1)) may become unstable for high values. Hence, one change proposed

in this work is to substitute exp for the function softplus(x) = log(1 + exp(x)),

resulting in the soft prospective prediction

αDPP (θN+1) = kD(θN+1, θN+1)softplus(mD(θN+1))qk(θN+1;λ)2. (6.13)

Another option is to disregard the current proposal altogether, and instead noticing

that, ideally, the proposal is going to approximate the unnormalized posterior ḡ =

exp log ḡ. Hence, one can take as an inspiration the warping approach in Section 4.3

and use the moment-matched log transform objective

αmMMLT (xm+1) = e2mD(x)+kD(x,x)
(
ekD(x,x′) − 1

)
. (6.14)

Finally, one can adapt the uncertainty sampling approach to the warped approach,

resulting in the prospective moment-matched log transform objective

αmMMLTP
(xm+1) = e2mD(x)+kD(x,x)

(
ekD(x,x′) − 1

)
qk(θN+1;λ)2. (6.15)

In general, the best performing acquisition functions were (5.56) and (6.14), and best

results were obtained alternating between the two, either cyclically or randomly.

6.2 Implementation

The algorithm was implemented in Python, mainly using the PyTorch pack-

age [79]. The reason for using PyTorch is that it combines strong automatic differ-

entiation capabilities, allowing to avoid computing derivatives by hand, with easy

usability when compared to other packages with similar strenghts such as Tensor-

Flow. Since derivatives are necessary for the many inner optimization procedures in

the algorithm,automatic differentiation greatly facilitated development.
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Code can be found in https://github.com/DFNaiff/BVBMC. An example

usage of the package is shown in Figure 6.1, with associated densities shown in 6.2.

1

6.2.1 Backpropagation

Usually, in an algorithm with so many optimization steps, one would either

have to worry about carefully keeping control of gradients, or resort to gradient free

optimization. However, backpropagation [43], a technique from the class of auto-

matic differentiation algorithms, allows the computer to provide arbitrary derivatives

of functions, provided the forward history of the function is tracked.

A formal discussion on backpropagation is beyond the scope of this work. A

good reference can be found in [43]. Greatly simplifying, backpropagation hinges on

the fact that almost every function in a computer comes from composition, so the

chain rule can be applied. So, if the forward history of the composition is stored

in a suitable data structure (a computational graph), then, given the derivatives of

those unit compositions, chain rule can be applied to get any derivative, without

ever needing for then to being calculated by hand.

Backpropagation is ubiquitous in deep learning , and almost all packages

dealing with neural networks implement some form of it. In fact, most of then are

backpropagation packages, in which neural networks are build on top of it. Some

of the most popular are Theano [109], TensorFlow [29] and PyTorch [79]. Of those,

PyTorch is the one with easiest usability, so it was chosen to implement the BVBMC

package.

1The author intends to change the package name used in development, variational boosting bmc,
to something akin to bvbmc, but the change wasn’t made at this document writing.

https://github.com/DFNaiff/BVBMC
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#Import necessary packages

import torch #PyTorch package

from variational_boosting_bmc import VariationalBoosting #BVBMC package

#Approximating unnormalized 2-d Cauchy

def logjoint(theta):

return torch.sum(-torch.log(1+theta**2))

#Set up parameters

dim=2 #Dimension of problem

samples = torch.randn(20,dim) #Initial samples

mu0 = torch.zeros(dim) #Initial mean

cov0 = 20.0*torch.ones(dim) #Initial covariance

acquisition = "prospective" #Acquisition function

#Initialize algorithm

vb = VariationalBoosting(dim,logjoint,samples,mu0,cov0)

vb.optimize_bmc_model() #Optimize GP model

vb.update_full() #Fit first component

#Training loop

for i in range(100):

_ = vb.update() #Choose new boosting component

vb.update_bmcmodel(acquisition=acquisition) #Choose new evaluation

vb.cutweights(1e-3) #Weights prunning

if ((i+1)%20) == 0:

vb.update_full(cutoff=1e-3) #Joint parameter updating

vb.save_distrib("finaldistrib") #Save distribution

Figure 6.1: Usage of the BVBMC Python package, approximating a product of
Cauchy distributions.
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(a) True density (b) Estimated density

Figure 6.2: True density (left) and estimated density (right), found by running code
in Figure 6.1. Generating code can be found in https://github.com/DFNaiff/

Dissertation/blob/master/illustrations_dissertation/examplebvbmc.py.

The usefulness of backpropagation and their related packages in general es-

capes the community outside deep learning. An important exception is in develop-

ment of probability programming languages (PPL), whose many are built on top of

deep learning packages, as in PyMC3 [96], Edward [112] and Pyro [11], built on top

of Theano, TensorFlow and PyTorch, respectively.

https://github.com/DFNaiff/Dissertation/blob/master/illustrations_dissertation/examplebvbmc.py
https://github.com/DFNaiff/Dissertation/blob/master/illustrations_dissertation/examplebvbmc.py
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1: procedure BoostedVBMC0(log ḡ, µ0,Σ0,{x}Nn=1,δD)
2: . µ0,Σ0 the are initial boosting values
3: for n = 1, ..., N do
4: yn := log ḡ(xn)
5: end for
6: D0 := {(xn, yn)}Ni=1

7: Make D̃ from D. Hold my and σy. . Section 6.1.1.2
8: GPModel := PosteriorGP(m,k,D)
9: GPModel.MaximizeLogLikelihood() . Using (3.16)

10: E[log ḡD(θ)] := GPModel.mD
11: α0 := 1.0
12: (µ0,Σ0) ← arg maxLD(λ) . Section 6.1.1.2
13: for t = 1, ..., T do
14: x′ := arg maxαm(x) . Some acquisition function
15: y′ = log ḡ(x′)
16: ỹ′ = y−my

σy

17: D̃ ← D̃ ∪ {(x′, ỹ′)}
18: . Using BMC and reparameterization
19: µt,Σt := arg maxRELBOδD

D (µt,Σt)
20: wt := arg maxLt,D(wi) . Using L′t,D(wt) for gradient descent
21: for j = 0, ..., t− 1 do
22: wj ← (1− wt)wj
23: end for
24: if conditions met then
25: λ = {(µj,Σj, wj)}tj=1 ← arg maxLD(λ) . Section 6.1.1.6
26: end if
27: end for
28: return {(µt,Σt, wt)}Tt=1

29: end procedure

Algorithm 3: Boosted Variational Bayesian Monte Carlo
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7 EXPERIMENTS

In this chapter, BVBMC is applied in a number of examples, as to show

the algorithm behavior in different scenarios. The examples consists of estimating

continuous probability densities in up to 10 dimensions 1.

7.1 1-d Mixture of Gaussians

As a showcase example, a one-dimensional mixture of Gaussians is considered

f(x) =
12∑
i=1

wiN (x;µi, σ
2
i ),

with wi = 1
12

, µi ∼ N (0,
√

5) and σ2
i = 1. This results in a many-peaked distribution,

with mean µ0 = −1.6585 and variance σ2
0 = 25.0316, whose density is shown in

Figure 7.1.

In each example, the quality of the approximation by the BVBMC algo-

rithm is measured, by calculating both the difference between the estimated mean

µ and the true mean µ0, in log10 |µ− µ0|, and the difference between the estimated

variance σ2 and the true variance σ2
0, in log10(|σ2 − σ2

0|/|σ2
0|). Code for this sec-

tion can be found in https://github.com/DFNaiff/Dissertation/tree/master/

tests_dissertation/illustrative.

1In more than 10 dimensions, performance was very poor. What was seen is that the algorithm
got “stuck” in its first component proposal, and could not find new components to be proposed
with acceptable weights.

https://github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/illustrative
https://github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/illustrative
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Figure 7.1: Target distribution.

7.1.1 Passive evaluation

In the first two examples, the target evaluations of log f(x) were done in a

uniform grid from −20 to 20 with 51 points, resulting in the GP replicating almost

exactly the target distribution. This is done to illustrate the algorithm’s capacity

to generate good approximate distributions, if the GP approximates closely the

(unnormalized) target distribution. Output scaling was done by normalizing, as

discussed in Section 6.1.1.2. The GP mean was chosen to be constant, setting it

with the heuristic corresponding to the normalize scaling, as discussed in Section

6.1.1.5.

7.1.1.1 Influence of kernel in approximation

It was tested the kernel influence on the final approximation. For this, the

tested kernels were kPMat,1/2, kPMat,2/2, kPMat,5/2 and kSQE. The algorithm was run

for 50 iterations, with joint parameter updating done every 10 steps. The results
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are shown in Figure 7.2.

There is an interesting behavior to be seen, in that the GP approximation for

the kernels kPMat,1/2 and kPMat,3/2 were considerably more accurate than with kernels

kPMat,5/2 and kSQE. However, this accuracy in the GP approximation does not reflect

in a better posterior approximation, that are seen with kPMat,5/2 and kSQE. This may

be due to the fact that the first two kernels makes for GP approximations that are

too rough, making it difficult to be approximated by the BVBMC algorithm.

7.1.1.2 Influence of training routine in approximation

Next, it was tested the difference that the training routine makes on both

accuracy and algorithm running time. For this, using the same setting as above

with kernel kPMat,5/2, three training routines were tested:

• Running the algorithm for 50 iterations, with joint parameter updating done

every step (training routine A).

• Running the boosting algorithm for 50 iterations, with joint parameter updat-

ing done every 10 steps (training routine B).

• Running the boosting algorithm for 50 iterations, with no joint parameter

updating (training routine C).

The results are shown in Figure 7.3. It can be seen that training routine B

performs considerably better than routine A and routine C, while training routine A

and training routine B has comparable final performance, with routine A converging

in fewer iterations. As of running time, it can be see that for training routine A

it increases quadratically in relation to the number of iterations, while for training
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(a) kPMat,1/2, moments. (b) kPMat,1/2, final result.

(c) kPMat,3/2, moments. (d) kPMat,3/2, final result.

(e) kPMat,5/2, moments. (f) kPMat,5/2, final result.

(g) kSQE, moments. (h) kSQE, final result.

Figure 7.2: Accuracy analysis for different kernels. Each row corresponding to one
kernel, in order being kPMat,1/2, kPMat,2/2, kPMat,5/2 and kSQE. The first column (MC)
shows the accuracy of mean (blue), and variance (red), while the second column
shows the the predicted density, the true density and the GP approximation of the
density.
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routine C it increases linearly. As for training routine B, the running time increases

linearly except to jumps corresponding to joint parameter updating, with each jump

size growing with the iteration.

It is interesting to pause and consider the behavior of training routine B,

since in the next set of examples this were the routine used, with some differences of

number of iterations and intervals between joint parameter updating. Notice that

boosting improves considerably accuracy up to the first joint parameter updating,

in 10 iterations, and after this many intervals between two joint parameter updating

essentially shows no improvements. This suggests that a smarter training routine,

involving boosting only in the initial steps may be desirable. This idea was not

explored further in this dissertation.

7.1.2 Active evaluation

In this example, it is considered how BVBMC performs with active eval-

uation. For all examples, 5 initial evaluation points are sampled randomly, with

distribution N (0,
√

10). Subsequently, at each iteration an evaluation point is cho-

sen according to the running acquisition function. Four acquisition functions were

tested: uncertainty sampling (US, (5.55)), prospective prediction (PROP, (5.56)),

moment-matched log transform (MMLT, (6.14)), and prospective moment-matched

log transform (MMLTP , (6.15)). The results are shown in Figure 7.4. There it can

be seen that all acquisition function performed well, although the GP approximation

is better for the PROP and MMLT acquisitions.
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(a) Routine A, moments (b) Routine A, final result. (c) Routine A, running time.

(d) Routine B,moments. (e) Routine B, final result. (f) Routine B, running time.

(g) Routine C, moments. (h) Routine C, final result. (i) Routine C, running time.

Figure 7.3: Accuracy analysis for different training routines. Each row correspond-
ing to training routine A, B and C, respectively. The first column shows the accuracy
of mean (blue) and (red), the second column show the difference between the pre-
dicted density, the true density and the GP approximation of the density, and the
third column shows the algorithm running time at each step.
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(a) US, moments. (b) US, final result. (c) US, sampling.

(d) PROP, moments. (e) PROP, final result. (f) PROP, sampling.

(g) MMLT, moments. (h) MMLT, final result. (i) MMLT, sampling.

(j) MMLTP , moments. (k) MMLTP , final result. (l) MMLTP , sampling.

Figure 7.4: Convergence analysis for different acquisition function. Each row cor-
responds to acquisitions US, PROP, MMLT and MMLTP , respectively. The first
column shows the accuracy of mean and covariance, the second column show the
difference between the predicted density, the true density and the GP approxima-
tion of the density, and the third column shows the places where the function was
evaluated.
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7.2 N-d toy examples

In this section, we consider the algorithm performance on a set of toy exam-

ples, the same ones considered in [2]. Code for this section can be found in https:

//github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/toy.

Three classes of test cases were considered:

• Lumpy, a mixture of multivariate Gaussians

f(x) =
12∑
i=1

wiN (x;µi,Σi), (7.1)

with (w1, . . . , w12) ∼ Dir(1, . . . , 1), µi ∼ Unif([0, 1]D) and Σ = diag(σ2
1, . . . , σ

2
n),

with σ2
i ∼ Unif(0.2, 0.6). This distribution tests the algorithm performance in

presence of possible multimodalities.

• Cigar, a anisotropic Gaussian distribution

f(x) = N (x; 0,Σ), (7.2)

where Σ = QΛQT , with Λ = (10.0, 0.1, . . . , 0.1), and Q sampled from the

uniform measure in the special orthogonal group. This distribution tests the

algorithm performance in presence of large anisotropy.

• Student-t, a product of t distributions

f(x) =
D∏
d=1

T (xi; νi), (7.3)

with νi ∼ Unif(2.5, 2 + 0.5D). This distribution tests the algorithm perfor-

mance in presence of heavy tails 2 3.

2For both Cigar and Student-t, BVBMC was applied to an unnormalized density.
3Originally, νi = 2.5 for every i, which assured reasonably heavy tails at every dimension.

However, for comparison with [2], this later case is not shown here

https://github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/toy
https://github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/toy
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For each case, dimensions D = 2, 6, 10 where tested, and the BVBMC al-

gorithm was run for 100 iterations, with 10D initial samples. The GP kernel used

were kPMat,ν=2.5, with active evaluation at each iteration, according to an acquisi-

tion function randomly chosen between the pair (αPROP, αMMLT). Every 20 steps,

joint parameter updating was done, and pruning was done at each iteration, with

β = 10−3.

The algorithm performance was compared by checking the divergence be-

tween the true mean µ0 and the estimated mean µ, in log10 ||µ− µ0||2, and between

the true covariance Σ0 and estimated covariance Σ, in log10 ||Σ−Σ0||F/||Σ0||F , where

|| · ||F denotes the Frobenius norm. The results are shown in Figure 7.5. For compar-

ison with results given by the VBMC algorithm, shown in [2], the ”Gaussianized”

symmetric KL divergence (gsKL) between the true distribution and estimated dis-

tribution is computed, which is defined as the symmetric KL divergence between two

multivariate distributions with mean and covariance equals to the true distribution

and the estimated distribution, respectively 4. The results are shown in Table 7.1.

There it can be seen that, in general performance between BVBMC and VBMC was

comparable, excluding the experiment with the Cigar distribution with D = 10,

in which VBMC performed much better, and D = 2, in which BVBMC performed

better. 5

4In [2], what is done are 15 evaluations for each case, and the median is taken. A better
approach here would be doing the same thing for BVBMC, however due to time constraints this
couldn’t be done.

5It should be noted that the BVBMC algorithm have used fewer evaluations, namely 120,160
and 200 for D = 2, 6, 10, respectively, than the VBMC algorithm, which used 200,400,600, for
D = 2, 6, 10. In this toy example this doesn’t make a large computational difference, however in
applications where likelihood evaluation is expensive it does.
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(a) Lumpy, means accuracy. (b) Lumpy, covariances accuracy.

(c) Cigar, means accuracy. (d) Cigar, covariances accuracy.

(e) Student-t, means accuracy. (f) Student-t, covariances accuracy.

Figure 7.5: Accuracy analysis for different N-d examples. Each row corresponding
to Lumpy, Cigar and Student-t, respectively. The first column shows the accuracy
of means, while the second column shows the accuracy of covariances.
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Lumpy Cigar Student-t
BVBMC VBMC BVBMC VBMC BVBMC VBMC

D=2 3.12× 10−3 6.5× 10−4 8.12× 10−3 2.1× 10−1 2.9× 10−1 2.0× 10−3

D=6 6.59× 10−2 3.5× 10−2 5.56× 10−1 1.07× 10−1 1.14× 10−1 2.3× 10−1

D=10 1.19× 10−1 4.2× 10−1 1.29 1.0× 10−1 2.56× 10−1 2.7× 10−1

Table 7.1: gsKL divergence between true distribution and estimated distribution.
The values for VBMC were taken from the graphs in [2].

7.3 Contamination source estimation

In this example, a contamination source location problem was considered,

inspired by a problem in [10]. This problem is a toy example of an actual inverse

problem, that is, given some sensor measurements of a contaminated field (the con-

tamination may be, for instance, radiation), find where the contaminant as located,

as well as its nature. Code for this section can be found in https://github.com/

DFNaiff/Dissertation/tree/master/tests_dissertation/source1d.

The example consider a one-dimensional domain B = [0, 1], in which a con-

tamination source q(x, t) is inserted from t = 0 to t = ts. This source is modeled as

q(x, t) = q0 exp

(
−(x− x0)2

2ρ2

)
1[0,ts)(t). (7.4)

The contaminant itself is assumed to follow the diffusion equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) + q(x, t), x ∈ intB. (7.5)

Moreover, the initial contamination is considered to be 0, while the walls are con-

sidered insulated, resulting in the boundary and initial value conditions

u(x, 0) = 0,
∂

∂x
u(0, t) =

∂

∂x
u(1, t) = 0. (7.6)

It must be noticed that, for general domain length L and diffusion coefficient k,

using adimensionalization one can reduce the general problem to the above.

https://github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/source1d
https://github.com/DFNaiff/Dissertation/tree/master/tests_dissertation/source1d
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In this setting, at each wall x = 0, 1, four measurements of u are made, for

tm ∈ Tm = {0.075, 0.15, 0.225, 0.3, 0.4}, resulting in the data

D = {û(xm, tm)}xm∈{0,1},tm∈Tm .

Moreover, the measurements are assumed to be noisy, with û(xm, tm) = u(xm, tm)+ε,

ε ∼ N (0, σ2). The noise parameter σ2 is assumed to follow a prior InvGamma(α, β).

This allows us to marginalize out σ2, letting û(xm, tm) be distributed according to

the generalized t-distribution 6 with 2α degrees of freedom T (u(xm, tm), β/α, 2α).

The setting above results in a 4-dimensional inference problem, for the vari-

ables (x0, ts, q0, ρ), with likelihood

p(D|x0, ts, q0, ρ) =
∏

xm∈{0,1},tm∈TM

T (û(xm, tm);u(xm, tm), β/α, 2α). (7.7)

Given priors for x0,ts,q0 and ρ, the associated posterior distribution for the param-

eters becomes

p(x0, q0, ts, ρ|D) ∝ p(D|x0, q0, Ts, ρ)p(x0)p(q0)p(ρ)p(ts). (7.8)

A synthetic data D was generated, with the parameters given in Table 7.2,

first row. The measurement noise was σ2 = 10−2, and the equation was simulated

using a finite differences routine. The priors for the values to be inferred were set

as 7

p(x0) = Unif(x0; 0, 1)

p(ts) = Unif(ts; 0, 0.4)

p(q0) = HalfCauchy(q0; 10)

p(ρ) = HalfCauchy(ρ; 0.1)

(7.9)

In (7.8), u(x, t) is also calculated by finite differences.

6If T0 follows a (standardized) t-distribution, with nu degrees of freedom, then T = σT0 + µ
follows a generalized t-distribution denoted by T (µ, σ2, ν)

7The Half-Cauchy distribution was used here as to represent a non-informative prior.
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x0 ts q0 ρ
True 0.230 0.300 6.366 0.050
BVBMC mean 0.328 0.213 5.435 0.140
EMCEE mean 0.352 0.206 10.228 0.218
BVBMC HDP 70% (1.1 · 10−4, 0.43) (0.12, 0.36) (1.0, 6.7) (2.7 · 10−3, 0.1)
EMCEE HDP 70% (3.4 · 10−4, 0.45) (0.08, 0.33) (0.4, 10.3) (2.1 · 10−3, 0.1)

Table 7.2: Comparison of the true parameter of the problem (first row), the esti-
mated means using BVBMC (second row) and EMCEE (third row), and 70% highest
posterior density interval for BVBMC and EMCEE.

The BVBMC algorithm assumes that the distribution to be estimated has

support in RD. This is not the case for the problem above, since x0 and ts have

both bounded support, while q0 and ρ have positive support. In order to apply the

BVBMC algorithm, inference was made on the warped variables x̃0, t̃s, q̃0, ρ̃, all of

them with support in R, such that 8:

x0 = sigmoid(x̃0)

ts = 0.4× sigmoid(t̃s)

q0 = exp(q̃0)

ρ = exp(ρ̃),

(7.10)

with

sigmoid(x) =
1

1 + e−x
. (7.11)

This results in the posterior distribution for the warped variables

p(x̃0, t̃s, q̃0, ρ̃|D) ∝ p(x0, q0, ts, ρ|D)sigmoid′(x̃0)sigmoid′(t̃s) exp(q̃0) exp(ρ̃) (7.12)

The BVBMC algorithm was applied to the problem, with the following setup:

• The kernel used was kPMat,3/2 (both kPMat,5/2 and kSQE were also tested, with

mixed results).

8The 0.4 factor here is due to the fact that ts lies between 0 and 0.4.
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• The algorithm was initialized with 40 samples from the prior. After this,

before the training loop, 40 more evaluations points were chosen by using the

αMMLT acquisition function.

• The algorithm was then run for 100 iterations, with an evaluation point cho-

sen at each iteration, with the acquisition function chosen randomly between

αMMLT and αPROP. At each 20 iterations, the parameters were jointly opti-

mized.

The predicted mean is shown in Table 7.2, second row. It can be seen that

the estimated source location was relatively accurate, compared to the original one,

while estimates for ρ and q0 where reasonable, and the estimate for ts did not

deviate far from the prior mean. The resulting marginal univariate and bivariate

distributions are shown in Figure 7.6.

For comparison, the EMCEE algorithm [31], which is a MCMC algorithm

usually used for problems in astrophysics, was also tested. The EMCEE ran with

10 walkers and 10000 steps for each walker, using burn-in in the first 1000 steps.

The resulting estimated means is shown in Table 7.2, third row. It can be seem

that in general the estimates were in the BVBMC algorithm, except for q0, in which

BVBMC seems to be more precise. The resulting marginal univariate and bivariate

distributions are shown in Figure 7.6, showing some resemblance with the results

found in BVBMC.

7.4 Checking performance

In practice, one does not know the true posterior for doing comparison, and

there must be some way to check whether BVBMC arrived at a good posterior.
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Figure 7.6: KDE plots of estimated marginals with BVBMC. On diagonal, marginal
univariate distributions for x0,ts,q0 and ρ are shown, while off-diagonal, the corre-
sponding bivariate marginals for each pair is shown.
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Figure 7.7: KDE plots of estimated marginals with EMCEE. On diagonal, marginal
univariate distributions for x0,ts,q0 and ρ are shown, while off-diagonal, the corre-
sponding bivariate marginals for each pair is shown.
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Two sources of error may arise in the BVBMC estimate and the true poste-

rior: Whether the variational proposal does not approximate well the GP surrogate

model, or the GP surrogate model does not approximate well the true unnormalized

posterior. The first case may be checked using some rough estimate of the KL diver-

gence between the variational proposal and the surrogate model, and is implemented

in the method kl vb bmc of the associated package.

Checking whether the GP surrogate model resembles the true model may be

harder. One option is to use leave-one-out testing [87], but one must consider that

one does not care about accuracy in places where the unnormalized posterior does

not contribute in probability mass. A heuristic to address this problem was not

developed by the author.
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8 FUTURE CHALLENGES AND CONCLUSION

Here, we present some possible directions to extend the presented method to

other applications.

8.1 Reparameterization trick with Gaussian Processes

The Bayesian Monte Carlo approach for approximating the integral terms∫
E[log(ḡD(θ))]qi(θ)

suffers from the fact that the GP kernel and the distribution qi are limited, since∫
k(θ, θi)qi(θ)dθ

must be tractable. One manner to circumvent this is by abandoning the BMC

approach to integration, and insteading using the reparameterization trick presented

in Section 5.3.2, turning the BVBMC approach closer in spirit to the one in 5.4.2.

One disadvantage is that evaluations of Gaussian Process, although cheap,

are not extremely cheap, specially for large datasets, so reparameterization may be

considerably slower.

8.2 Extending BVBMC to pseudo-marginal likelihoods

Consider that, as in Section 2.5.1, that ḡ(θ) = Zp(θ|D) = p(D|θ)p(θ) is

truly unavailable, and even the pseudo-marginals ˆ̄g(θ) = Zp̂(θ|D) are expensive to
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calculate.

Gaussian processes accommodates, for evaluation points {θi}Ni=1, the noisy

estimates {ˆ̄g(θi)}Ni=1 of {ḡ(θi)}Ni=1. If one were doing GP regression on ḡ(θ), one

could assume that p(ˆ̄g|ḡ) is roughly Gaussian, due to the central limit theorem, and

use (3.7) as surrogate model.

However, in BVBMC (and VBMC), one uses the GP surrogate model on

log ḡ(θ). This implies that, letting ε = ˆ̄g(θ)− ḡ(θ) be the noise random variable, one

have the model for log ¯̄g(θ)

log ¯̄g(θ) = log
(
elog ḡ(θ) + ε

)
, (8.1)

which is a complicated noise model, to be treated as in (3.8). Furthermore, one

cannot even assume this noise term to be controlled, since, by doing a rough Taylor

expansion:

log ¯̄g(θ) = log ḡ(θ) + e− log ḡ(θ)ε (8.2)

which results in a very large noise for low values of − log ḡ(θ). One future work

could be on how to address this problem.

8.3 Scaling BVBMC to a larger number of evaluations

Given the scaling problems of GP discussed in Section 3.5.2, for unnormalized

posteriors ḡ(θ) that can be evaluated in tens of thousands, but that evaluations in

hundred of thousands or millions is hard, naive use of BVBMC runs into problems.

A possibility is two use sparse Gaussian Processes, that are briefly reviewed

in the Appendix A. However, their integration with BVBMC ran into problems, so

further research would be needed.
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Of course, one could drop the use of GPs and use other surrogate function

methods as done in [15, 68]. However, it should be noted that local approximation

methods may not work with variational inference, because of its global approxima-

tion nature.

8.4 Conclusion

The method presented in this work, although still immature, has shown

promise for use in Bayesian inference, where the likelihood function is expensive

of evaluate, that are common in inverse problems.

The associated package in https://github.com/DFNaiff/BVBMC, built on

top of PyTorch, is intended to be easy to use, so a practitioner can quickly employ

it in their own problems, if they wish so.

https://github.com/DFNaiff/BVBMC
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den, 10–15 Jul 2018. PMLR.

[7] M. J. Asher, B. F. W. Croke, A. J. Jakeman, and L. J. M. Peeters. A review

of surrogate models and their application to groundwater modeling. Water

Resources Research, 51(8):5957–5973, Aug 2015.

[8] Robert Bassett and Julio Deride. Maximum a posteriori estimators as a limit

of bayes estimators. Mathematical Programming, 174(1-2):129–144, Jan 2018.



102

[9] Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo.

arXiv e-prints, page arXiv:1701.02434, Jan 2017.

[10] I Bilionis and N Zabaras. Solution of inverse problems with limited forward

solver evaluations: a bayesian perspective. Inverse Problems, 30(1):015004,

dec 2013.

[11] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj

Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and

Noah D. Goodman. Pyro: Deep Universal Probabilistic Programming. arXiv

e-prints, page arXiv:1810.09538, Oct 2018.

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer, 1 edition, 2007.

[13] Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, and Michael I.

Jordan. Approximating posterior distributions in belief networks using mix-

tures. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in

Neural Information Processing Systems 10, pages 416–422. MIT Press, 1998.

[14] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference:

A review for statisticians. Journal of the American Statistical Association,

112(518):859–877, Feb 2017.

[15] Nikolay Bliznyuk, David Ruppert, and Christine A. Shoemaker. Local

derivative-free approximation of computationally expensive posterior densi-

ties. Journal of Computational and Graphical Statistics, 21(2):476–495, Apr

2012.

[16] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and

M. W. Trosset. A rigorous framework for optimization of expensive functions

by surrogates. Structural optimization, 17(1):1–13, Feb 1999.

[17] Stephen Boyd and Lieven Vandenberghe. Convex optimization. 2004.



103

[18] François-Xavier Briol, Chris J. Oates, Mark Girolami, and Michael A. Os-

borne. Frank-wolfe bayesian quadrature: Probabilistic integration with the-

oretical guarantees. In Proceedings of the 28th International Conference on

Neural Information Processing Systems - Volume 1, NIPS’15, pages 1162–

1170, Cambridge, MA, USA, 2015. MIT Press.

[19] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian opti-

mization of expensive cost functions, with application to active user modeling

and hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010.

[20] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of

Markov Chain Monte Carlo. CRC press, 2011.

[21] Thang D. Bui, Josiah Yan, and Richard E. Turner. A Unifying Framework

for Gaussian Process Pseudo-Point Approximations using Power Expectation

Propagation. arXiv e-prints, page arXiv:1605.07066, May 2016.

[22] Henry R. Chai and Roman Garnett. Improving quadrature for constrained

integrands. In Proceedings of Machine Learning Research, volume 89 of Pro-

ceedings of Machine Learning Research, pages 2751–2759. PMLR, 16–18 Apr

2019.

[23] Chris Chatfield. The analysis of time series: an introduction. CRC Press,

Florida, US, 6th edition, 2004.

[24] Patrick R. Conrad, Youssef M. Marzouk, Natesh S. Pillai, and Aaron Smith.

Accelerating asymptotically exact mcmc for computationally intensive models

via local approximations. Journal of the American Statistical Association,

111(516):1591–1607, 2016.

[25] Richard T. Cox and E. T. Jaynes. The algebra of probable inference. American

Journal of Physics, 31(1):66–67, Jan 1963.

[26] R. M. Dudley. Real analysis and probability. 2002.



104

[27] Carl Eckart and Gale Young. The approximation of one matrix by another of

lower rank. Psychometrika, 1(3):211–218, Sep 1936.

[28] V. A. Epanechnikov. Non-parametric estimation of a multivariate probability

density. Theory of Probability and Its Applications, 14(1):153–158, Jan 1969.

[29] Mart́ın Abadi et al. TensorFlow: Large-scale machine learning on heteroge-

neous systems, 2015. Software available from tensorflow.org.

[30] Paul Fearnhead and Dennis Prangle. Constructing summary statistics for ap-

proximate bayesian computation: semi-automatic approximate bayesian com-

putation. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 74(3):419–474, May 2012.

[31] Daniel Foreman-Mackey, David W. Hogg, Dustin Lang, and Jonathan Good-

man. emcee: The mcmc hammer. Publications of the Astronomical Society of

the Pacific, 125(925):306–312, Mar 2013.

[32] C. Fowlkes, S. Belongie, Fan Chung, and J. Malik. Spectral grouping using

the nystrom method. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(2):214–225, Feb 2004.

[33] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of Computer and

System Sciences, 55(1):119 – 139, 1997.

[34] Yoav Freund and Robert E. Schapire. A short introduction to boosting. In

In Proceedings of the Sixteenth International Joint Conference on Artificial

Intelligence, pages 1401–1406. Morgan Kaufmann, 1999.

[35] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic

regression: a statistical view of boosting (with discussion and a rejoinder by

the authors). Ann. Statist., 28(2):337–407, 04 2000.



105

[36] Jerome H. Friedman. Greedy function approximation: A gradient boosting

machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[37] Samuel Gershman, Matt Hoffman, and David Blei. Nonparametric variational

inference. arXiv e-prints, page arXiv:1206.4665, Jun 2012.

[38] C. J. Geyer. Introduction to markov chain monte carlo. In G. Jones A. Gelman,

S. Brooks and X. L. Meng, editors, Handbook of Markov Chain Monte Carlo:

Methods and Applications. CRC Press, London, 2004.

[39] Zoubin Ghahramani. Bayesian non-parametrics and the probabilistic approach

to modelling. Philosophical Transactions of the Royal Society A: Mathemati-

cal, Physical and Engineering Sciences, 371(1984):20110553, Feb 2013.

[40] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence.

Nature, 521(7553):452–459, May 2015.

[41] Zoubin Ghahramani and Carl E. Rasmussen. Bayesian monte carlo. In

S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Infor-

mation Processing Systems 15, pages 505–512. MIT Press, 2003.

[42] Alex Gittens. The spectral norm error of the naive Nystrom extension. arXiv

e-prints, page arXiv:1110.5305, Oct 2011.

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[44] T. Gunter, M. Osborne, R. Garnett, P. Hennig, and S. Roberts. Sampling for

inference in probabilistic models with fast bayesian quadrature. In Advances

in Neural Information Processing Systems 27, pages 2789–2797. Curran Asso-

ciates, Inc., 2014.



106

[45] Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David B. Dun-

son. Boosting Variational Inference. arXiv e-prints, page arXiv:1611.05559,

Nov 2016.

[46] P. Hennig and M. Kiefel. Quasi-newton methods – a new direction. In Int.

Conf. on Machine Learning (ICML), volume 29, 2012.

[47] James Hensman, Magnus Rattray, and Neil D. Lawrence. Fast variational

inference in the conjugate exponential family. In Proceedings of the 25th In-

ternational Conference on Neural Information Processing Systems - Volume

2, NIPS’12, pages 2888–2896, USA, 2012. Curran Associates Inc.
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APPENDIX A SPARSE GAUSSIAN PROCESSES

Given the scaling problem of GP methods, many sparsifications proposals

were proposed, and the subject is a very fruitful area of research. We present below

some of those approaches, although there are many other (for a recent review, see

[63]). In the following, σn > 0, for reasons that will be clear.

A.1 Nystrom extension

One approach is to simply approximate the matrix Kδ(x,x) = K(x,x) +

δnI in an manner that the matrix inversion (or Cholesky decomposition) becomes

cheaper. One approach is to find an low-rank approximation of K(x,x) = UWUT ,

where U is n×m and W m×m, and m� n. Then, one can find both the inverse

and Cholesky decomposition of VWV T +δnI with O(m3) computational cost (B.1).

The optimal m-rank approximation of K(x,x), in both spectral norm and

Frobenius norm is given by

K̃ :=
l∑

i=1

λiviv
T
i = VlΛlV

T
l ,

where λ1 ≥ . . . ≥ λm ≥ λm+1 ≥ . . . ≥ λn are the eigenvalues of K(x,x), and

v1, . . .vn are the corresponding eigenvalues ([27], coupled with the fact that for

positive-semidefinite matrices the eigenvalue an singular value decomposition are

the same). Then, ||K(x,x)−K̃||2 = λm+1. Unfortunately, this optimal low-rank ap-

proximation itself requires calculating the spectral decomposition of K(x,x), which

by itself has O(N3) cost. So one has instead to find some cheap method to calculate

a reasonable low-rank approximation of m.
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The technique of Nystrom extensions was first introduced in [116], and has

found applications in kernel methods, as seen in [32], [115]. A m-rank Nystrom

extension of a matrix A n × n is formed by selecting m (ordered) sub-indices from

{1, . . . , n} (call it I), and then by letting C be the n×m matrix formed by selecting

the corresponding columns of A and W be the m ×m matrix formed by selecting

the intersection between the corresponding columns and corresponding rows of A,

that is,

Ci,j = Ai,Ij , Wi,j = AIi,Ij .

Then the corresponding Nystrom extension Ã of A is given by A = CW †CT , where

W † is the pseudo-inverse of W . The simplest Nystrom extension technique is the

naive Nystrom extension, where the m sub-indices randomly without replacement

from {1, . . . ,m}. With high probability, the optimal rank k approximation of A

can be obtained by choosing m = O(k log k) [42]. In particular, if the spectrum

of A decays quickly, the naive Nystrom extension will result in a good low-rank

approximation. This is usually the case for the kernel matrix K(x,x), thus making

this technique an attractive choice at first. However, when applied to GP regression,

one problem is that the predicive variance is not guaranteed to be positive, thus

making the use of the Nystrom extension problematic [85]. Still, many sparsification

techniques such as the ones shown below, end up using a version of it, with some

correction ensuring that the posterior prediction is a valid distribution.

A.2 Prior approximations

The idea of prior approximations for sparsification of Gaussian Process is

an unified view given by [85] that includes previous approaches offered in [103, 97,

104] To understand it, first note that one can over (dropping M for convenience)

an alternative derivation of the distribution for p(f∗|y) given in section 2.1, by
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expanding:

p(f∗|y) =

∫
p(f , f∗|y)df =

1

p(y)

∫
p(y|f)p(f , f∗)df . (A.1)

With the prior p(f , f∗) given by (3.3), assuming m = 0 for simplicity. Then, as shown

in C, one arrives at the exact same equation in (3.7). Then, since the matrix Kf,f

comes from p(f , f), one approach to reduce the costs of its inverse is to approximate

it.

To construct those approximations, first consider some new fictitious evalua-

tion points, called inducing points xu = (xu,1, . . . , xu,m), that may or may not include

the training points, and the corresponding evaluations u = (f(xu,1), ..., f(xu,m))T .

Now, given the inducing points, one can write

p(f , f∗) =

∫
p(f , f∗|u)p(u)du, (A.2)

where p(u) = N (u|0, Ku,u). Now, it is made the assumption that f and f∗ are

independent given u, thus p(f , f∗|u) ≈ p(f |u)p(f∗|u). Without using further ap-

proximations for p(f |u) and p(f∗|u):

p(f |u) = N (f |Kf,uK
−1
u,uu, Kf,f −Kf,uK

−1
u,uKu,f )

p(f∗|u) = N (f∗|K∗,uK−1
u,uu, K∗,∗ −K∗,uK−1

u,uKu,∗).
(A.3)

Using the notation Qa,b := Ka,uK
−1
u,uKu,b and K(f,∗),u := K((x,x∗),u):[

f
f∗

]
|u ∼ N

([
K(f,∗),u(Ku,u + σ2I)−1u

]
,

[
Kf,f −Qf,f 0

0 K∗,∗ −Q∗,∗

])
.

(A.4)

By using the equation B.4, we then find:[
f
f∗

]
∼N

(
0,

[
Kf,f −Qf,f 0

0 K∗,∗ −Q∗,∗

]
+K(f,∗),uK

−1
u,uK

T
(f,∗),u

)
.

N
(

0,

[
Kf,f −Qf,f +Qf,f Qf,∗

Q∗,f K∗,∗ −Q∗,∗ +Q∗,∗

])
.

(A.5)
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By using (A.5) in (A.1), we get:

f∗|y ≈ N (f |Q∗,f (Kf,f + σ2I)−1y, K∗,∗ −Q∗,f (Kf,f + σ2I)−1Qf,∗). (A.6)

Nothing is really gained by considering the exact posteriors p(f |u) and p(f∗|u),

since still have the inverse of Kf,f +σ2I. Thus, there is need for further approxima-

tions, in turn to simplify the covariance matrix of f |u, thus simplifying Kf,f + σ2I

into something manageable for inversion. The main approximations of this kind are

shown below. Notice that if the inducing points xu are a subset of x, then Qf,f is

in fact a Nystrom extension of Kf,f .

A.2.0.1 Subset of regressors

The subset of regressors approximation for GPs was first proposed in [103],

adapting an idea from [101]. It originally considered the generative model for any

f∗ (including the training values f):

f∗ = K∗,uwu, wu ∼ N (0, K−1
u,u). (A.7)

In particular, this implies that u = Ku,uwu, hence, within the prior approximation

framework, the SoR technique approximates f |u and f∗|u by deterministic functions

of their means, that is:

p(f |u) ≈ qSoR(f |u) = N (f |Kf,uK
−1
u,uu, 0)

p(f |u) ≈ qSoR(f∗|u) = N (f∗|K∗,uK−1
u,uu, 0).

(A.8)

Then:

qSoR(f , f∗) = N
(

0,

[
Qf,f Qf,∗
Q∗,f Q∗,∗

])
, (A.9)

which results in the approximation p(f |y) ≈ qSOR(f |y):

qSOR(f∗|y) = N (f |Q∗,f (Qf,f + σ2I)−1y, Q∗,∗ −Q∗,f (Qf,f + σ2I)−1Qf,∗). (A.10)
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Since the marginal distribution of f is approximated by Qf ,f , there is also an

approximation for the likelihood of D:

log p(D|M) ≈ log p(y|MSoR,xu) = logN (y|0, Qf,f + σ2I). (A.11)

Notice that, since the matrix Qf,f = Kf,uK
−1
u,uKu,f has low rank, one can use the

matrix inversion lemma B.1 to calculate the inverse of Qf,f + σ2I with O(m3) com-

putational cost. If m� n, this gives a considerable gain in computation.

As noted in [103] subset of regressors approximation suffers from overcon-

fident predictive variances, since the prior approximations for both training and

testing points are degenerate, so caution must be taken with those.

A.2.1 Deterministic Training Conditional

The Deterministic Training Condition approximation, also called Projected

Latent Variables when first proposed by [97], or Projected Process Approximation

in [87], was originally proposed as a likelihood approximation for the training ob-

servations:

p(y|f) ≈ N (Kf,uK
−1
u,uu, σ

2I). (A.12)

In the prior approximation framework, an equivalent formulation can be made

from by making a deterministic approximation the training points f |u, leaving f∗|u
unchanged, unlike the SoR method resulting in:

p(f |u) ≈ qDTC(f |u) = N (f |Kf,uK
−1
u,uu, 0)

p(f |u) ≈ qDTC(f∗|u) = N (f∗|K∗,uK−1
u,uu, K∗,∗ −Q∗,∗),

(A.13)

resulting in the joint prior approximation:

qDTC(f , f∗) = N
(

0,

[
Qf,f Qf,∗
Q∗,f K∗,∗

])
, (A.14)
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which results in the posterior approximation

qDTC(f∗|y) = N (f |Q∗,f (Qf,f + σ2I)−1y, K∗,∗ −Q∗,f (Qf,f + σ2I)−1Qf,∗), (A.15)

and the same data likelihood as in the subset of regressors case.

log p(D|M) ≈ log p(y|MDTC ,xu) = logN (y|0, Qf,f + σ2I) (A.16)

The DTC approximation improves considerably the predictive variances over

the SoR approximation, while retaining the same predictive means. However, it has

an inconsistency property in the fact that, for the training values f , the covariance

between then is computed differently whether they are considered as training values

(in this case being Qf,f ) or as test values on the same points as the training points

(being Kf,f ), hence [85] claiming that it does not correspond exactly to a Gaussian

Process. In practice, the advantage of it in relation of the DTC approximation

compensates for this theoretical issue.

A.2.2 Fully Independent Training Conditional and Fully Independent

Conditional

In the Fully Independent Training Conditional, originally proposed by [104]

with the name Sparse Gaussian Processes using Pseudo-Inputs, there is also an

likelihood approximation as in the original formulations of the DTC approximation:

p(y|f) ≈ N (Kf,uK
−1
u,uu, diag(Kf,f −Qf,f ) + σ2I) (A.17)

In the prior approximation framework, the FITC approximates p(f |u) by the

product of its marginal distributions, thus making an independence approximation
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for the training points, resulting in

p(f |u) ≈ qFITC(f |u) =
∏
i=1

p(fi|u) = N (f |Kf,uK
−1
u,uu, diag(Kf,f −Qf,f )), (A.18)

keeping f |u unchanged as in the DTC approximation, resulting in the joint prior

approximation:

qFITC(f , f∗) = N
(

0,

[
Qf,f + diag(Kf,f −Qf,f ) Qf,∗

Q∗,f K∗,∗

])
, (A.19)

If there is only one evaluation point f∗ = (f1), the FITC approximation can be seen

as a diagonal correction of the DTC approximation for p(f , f∗|u). The FITC results

in the posterior approximation

qFITC(f∗|y) = N (f |Q∗,f (Qf,f +D)−1y, K∗,∗ −Q∗,f (Qf,f +Df )
−1Qf,∗), (A.20)

Where Df := σ2I + diag(Kf,f − Qf,f ). Hence the matrix inversion term is

still tractable by the matrix inversion lemma. Finally, the likelihood approximation

for y is given by:

log p(D|M) ≈ log p(y|MFITC ,xu) = logN (y|0, Qf,f +Df ). (A.21)

The FITC approximation also has the same inconsistency property as the

DTC approximation. In [104] it is proposed instead to approximate also the test

points f∗|u prior by
∏

i p(f
∗
i |u), recovering the consistency property, resulting in the

Fully Independent Conditional (FIC) approximation:

qFIC(f∗|y) = N (f |Q∗,f (Qf,f +D)−1y,

Q∗,∗ +D∗ −Q∗,f (Qf,f +Df )
−1Qf,∗),

(A.22)

where D∗ := diag(K∗,∗−Q∗,∗). For a single test point, the FITC approximation and

the FIC approximation returns exactly the same predictive distribution. In practice,
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the FITC approximation is used far more often than the FIC one.

A.3 Posterior approximation via variational free energy

Another popular approach to sparsification is given in [110], different in spirit

from the ones presented above. To understand the idea of posterior approximations,

consider:

p(f∗|y) =

∫
p(f∗|f)p(f |y)df (A.23)

We have

p(f |y) = N (f |Kf,f (Kf,f + σ2I)−1y, Kf,f −Kf,f (Kf,f + σ2I)−1Kf,f )

= N (f |µ,A),

and

p(f∗|f) = N (f∗|K∗,f (Kf,f + σ2I)−1y, K∗,∗ −K∗,f (Kf,f + σ2I)−1Kf,∗). (A.24)

We then have, by (B.4):

p(f∗|y) := N (f |K∗,fK−1
∗,∗µ,K∗,∗ −K∗,f (K−1

f,f −K
−1
f,fAK

−1
f,f )Kf,∗), (A.25)

which by the definition of µ and A above yields the usual posterior distribution.

Now consider again inducing point xu with corresponding values fu, assuming

that f and f∗ are independent given fu. Notice that this implies f∗ and y independent

given fu, since y only depends on f . Then, marginalizing on the inducing values:

p(f∗|y) ≈ q(f∗) =

∫
p(f∗|fu,y)p(fu|y)dfu =

∫
p(f∗|fu)p(fu|y)dfu. (A.26)

Therefore, changing f for fu, (A.25) still holds. Since the true posterior p(fu|y)

includes the inverse of Kf,f + σ2I, one option is to approximate p(fu|y) by a distri-

bution φ(fu), also Gaussian with mean µ and covariance A, so that

q(f∗) =

∫
p(f∗|fu)φ(fu) =

∫
q(f∗, fu), (A.27)
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in an manner that (A.25) yields an sparse approximation.

One way to do this is to seek approximating the posterior p(f |y) itself by

some distribution q(f), involving φ(fu) on the training evaluations. As a proxy for

this objective, the VFE method seeks to approximate the posterior for training

and inducing values p(f , fu|y) by q(f , fu), which, by (A.27) is of form q(f , fu) =

p(f |fu)φ(fu). Crucially, this augmented posterior depends on the inducing points xu

through p(f |fu), making then parameters of this approximate distribution, but not

of the prior model p(f).

A natural way to find q(f , fu) is by minimizing the Kullback-Leibner diver-

gence between q(f , fu) and p(f , fu|y)

KL(q(f , fu)||p(f , fu|y) = −
∫ ∫

q(f , fu) log
p(f , fu|y)

q(f , fu)
dfdfu,

which is equivalent to maximizing the evidence lower bound, or variational free

energy (using p(f , fu|y) ∝ p(y|f)p(f |fu)p(fu))

FV (q(f , fu)) = FV (xu, φ) =

∫ ∫
p(f |fu)φ(fu) log

p(y|f)p(f |fu)p(fu)
p(f |fu)φ(fu)

dfdfu

=

∫
φ(fu)

(∫
p(f |fu) log p(y|f)df + log

p(fu)

φ(fu)

)
dfm.

(A.28)

This quantity is maximized by maximizing

FV (xu) = logN (y|0, Qf,f + σ2I)− 1

2σ2
tr(Kf,f −Qf,f ), (A.29)

and setting φ(fu) = N (fu|µ†, A†), with

µ† = σ−2Ku,u(Ku,u + σ−2Ku,fKf,u)
−1Ku,fy

A† = Ku,u(Ku,u + σ−2Ku,fKf,u)
−1Ku,u.

(A.30)
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The proof is given in E.1. Substituting back in (A.25), we arrive at

qV FE(f∗|y) := N (f |m∗V FE,Σ∗V FE)

m∗V FE = σ−2K∗,u(Ku,u + σ−2Ku,fKf,u)
−1Ku,fy

Σ∗V FE = K∗,∗ −Q∗,∗ +K∗,u(Ku,u + σ−2Ku,fKf,u)
−1Ku,∗.

(A.31)

It can be show (E.2) that these predictions correspond exactly to the DTC predic-

tion. Thus, the VFE approach differs only in how the inducing points and kernel

hyperparameters are trained, by maximizing (A.29) instead of (A.16). Recent im-

provements of the VFE approach is be found in [21], where an unification of the

VFE and FITC approaches are proposed.

A.3.1 Bayesian Monte Carlo with Sparse Gaussian Processes

The extension for Bayesian Monte Carlo for the inducing points methods for

sparsification presented in the previous section is straightforward. We will consider

here only the FITC and the DTC approximations (being the case for the VFE

approximation exactly the same as the DTC one). Considering D = σ2I in the VFE

approximation and D = σ2I + diag(Kf,f − Qf,f ) in the FITC one, by substituting

the predictive mean and variance of (A.20) and (A.15) in (4.3) and (4.4),

E[ZD] = zuK
−1
u,uKu,f (Qf,f +D)−1y

Var[ZD] = Γ− zTuK
−1
u,uKu,f (Qf,f +D)Kf,uK

−1
u,uzu,

(A.32)

where

zu,i =

∫
k(x, xu,i)p(x)dx, (A.33)

and Γ is the same as given in (4.7).
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A.3.2 VBMC and BVBMC with Sparse Gaussian Processes

One of the techniques that was tried to expand the BVBMC method to wider

applications was to use one of the sparse GP techniques shown here. However, it

was found that, under low noise, the resulting matrices where very unstable, while

when forcing artificially high noise, the results became innacurate.

It should be noted that, in that stage, only the SQE kernel was used, and it

remains to be seen whether this problem still arises when using product of Matern

kernels, which was a later development in this work.
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APPENDIX B RELEVANT GAUSSIAN AND MA-
TRIX IDENTITIES

In the following, it is presented some relevant matrix and Gaussian distribu-

tion identities. All of those identities can be found in [81], except for (B.3), which

is slightly more general and can be found in [85].

B.1 Matrix inversion lemma

If all the relevant inverses exists, then

(Z + UWV T ) = Z−1 − Z−1U(W−1 + V TZ−1U)−1V Z−1. (B.1)

One consequence of the matrix inverse lemma is the formula

(D + A)−1 = (D +DD−1AD−1D)−1 =

= (D −D−1D((D−1AD−1)−1 +DD−1D)DD−1) =

= D−1 − (D +DA−1D)−1.

(B.2)

B.2 Product of Gaussian densities

N (x|a,A)N (Px|b, B) = zcN (x|c, C), (B.3)

where

c = (A−1 + PB−1P T )−1, c = C(A−1a+ P TB−1b),
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and

zc = N (Pa|b, B + P TAP ) = N (b|Pa,B + P TAP ).

In particular, this implies that∫
N (b|Px,B)N (x|a,A)dx = N (b|Pa,B + PAP T ). (B.4)

B.3 Conditional of a Gaussian density

If [
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
. (B.5)

then

x1|x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
. (B.6)
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APPENDIX C ALTERNATIVE DERIVATION OF GP
PREDICTIONS

Consider:

p(f∗|y) =

∫
p(f , f∗|y)df =

1

p(y)

∫
p(y|f)p(f , f∗)df . (C.1)

By letting Pf be the projection (f , f∗) → f , and equivalently for P∗, and letting

K = K((x,x∗), (x,x∗)), then

p((f , f∗|y)) ∝ p(y|f)p(f , f∗) = N (y|f , σ2I)N ((f , f∗)|0, K)

= N (Pf (f , f
∗)|y, σ2I)N ((f , f∗|0, K))

∝ N ((f , f∗)|c, C),

(C.2)

where

C = (K−1 + P T
f σ
−2IPf )

−1, c = CPfσ
−2y. (C.3)

By the matrix inversion lemma

C = K −KP T
f (PfKP

T
f + σ2I)−1PfK. (C.4)

Hence, by (B.4),

p(f∗|y) = N (f |P∗c, P∗CP T
∗ ). (C.5)

We have for the posterior covariance

P∗CP
T
∗ = P∗KP

T
∗ − P∗KP T

f (PfKP
T
f + σ2I)−1PfKP∗

= K∗,∗ −K∗,f (Kf,f + σ2I)Kf,∗,
(C.6)

and for the posterior mean

P∗c = P∗KPfσ
−2y − P∗KP T

f (PfKP
T
f + σ2I)−1PfKP

T
f y

= K∗,f (σ
−2I − (Kf,f + σ2I)−1Kf,fσ

−2I)y

= K∗,f (σ
−2I − (σ2I + σ4K−1

f,f ))y

= K∗,f (Kf,f + σ2I)y.

(C.7)
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where the last inequality comes from (B.2) considering D = σ2I. Thus this deriva-

tion yields the same posterior distribution as in (3.7).
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APPENDIX D SPECTRALMIXTURE KERNELS AND
BAYESIAN MONTE CARLO

A kernel-distribution combination that yields analytical mean and variances

for Bayesian Monte Carlo is the spectral mixture kernel in (3.14) combined with a

Gaussian distribution p(x) = N (x|µ,Σ) with diagonal covariance Σ = diag(σ2
1, . . . , σ

d
D),

yielding

zi =

Q∑
q=1

wq

D∏
d=1

[
(2πv(d)

q )−0.5 cos
(
2πC(d)

q µ(d)
q (xi,d −md)

)
e−π(C

(d)
q )2µ

(d)
q

N (xi,d|md, (4π
2v(d)
q )−1 + σ2

d)

]
Γ =

Q∑
q=1

wq

D∏
d=1

[
(2πv(d)

q )−0.5e−π(C
(d)
q )2µ

(d)
q exp

(
−1

2
(A(d)

q bq,d)
2

)
(2π(ν2

q,d + σ2
d))
−0.5

]
where C(d)

q = (4πv(d)
q + σ−2

d )−1, bq,d = 2πC(d)
q µ(d)

q ,

ν2
q,d = (4π2v(d)

q )−1 + σ2
d, A

(d)
q = (ν−2

q,d + σ−2
d )−1.

(D.1)

This combination interesting because the spectral mixture kernel is far more flexible

than the squared exponential one, thus enabling using Bayesian Monte Carlo to

calculate expectations of more complex functions. Next it is shown the derivation

for those formulas.

We will need first the result:∫
cos(b(x−m))N (x|m, ν2)N (x|µ, σ2)dx

= cos(Cb(m− µ)) exp

(
−1

2
C2b2

)
N (m|µ, v2 + σ2)

where C = (ν−2 + σ−2)−1.

(D.2)
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To get it, use (B.3) in the integral, so it equals to:

N (m|µ, ν2 + σ2)

∫
cos(b(x−m))N (x|c, C)dx =

N (m|µ, ν2 + σ2)<
[∫

eib(x−m)N (x|c, C)dx

]
=

N (m|µ, ν2 + σ2)<
[
e−ibm

∫
eibxN (x|c, C)

]
=

N (m|µ, v2 + σ2)<
[
e−ibmeibc−

1
2
C2b2

]
=

N (m|µ, ν2 + σ2)e−
1
2
C2b2 cos(b(c−m)),

where c = C(ν−2m+ σ−2µ).

From the third to the fourth line above, we use the formula for the characteristic

function of a Gaussian distribution. Finally, since c−m = C(ν−2m+σ−2µ−C−1m) =

Cσ−2(µ−m), and using the symmetry of cosine, the equality follows.

Letting p(x) = N (x|b, diag(σ2
1, . . . , σ

2
D)) and k(x, xi) = kSM(x− xi):∫

kSM(x− xi)N (x|m, diag(σ2
1, . . . , σ

2
D))dx

=

Q∑
q=1

wq

∫ [ D∏
d=1

e−2π2(xd−xi,d)2v
(d)
q cos(2π(xd − xi,d)µ(d)

q )
D∏
d=1

N (xd|md, σ
2
d)dxd

]

=

Q∑
q=1

wq

D∏
d=1

∫
e−2π2(xd−xi,d)2v

(d)
q cos(2π(xd − xi,d)µ(d)

q )N (xd|md, σ
2
d)dxd

=

Q∑
q=1

wq

D∏
d=1

(2πv)−0.5

∫
cos(2πµ(d)

q (xd − xi,d))N (xd|xi,d, (4π2v)−1)N (xd|md, σ
2
d)dxd

=

Q∑
q=1

wq

D∏
d=1

(2πv(d)
q )−0.5

∫
cos(2πµ(d)

q (xd − xi,d))N (xd|xi,d, (4π2v)−1)N (xd|md, σ
2
d)dxd

=

Q∑
q=1

wq

D∏
d=1

(2πv(d)
q )−0.5 cos

(
2πC(d)

q µ(d)
q (xi,d −md)

)
e−π(C

(d)
q )2µ

(d)
q N (xi,d|md, (4π

2v(d)
q )−1 + σ2

d)

where C(d)
q = (4π2v(d)

q + σ−2
d )−1,

(D.3)
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and, letting bq,d = 2πC
(d)
q µ

(d)
q and ν2

q,d = (4π2v
(d)
q )−1 + σ2

d∫ ∫
kSM(xi − xj)N (xi|µ, diag(σ2

1, . . . , σ
2
D))N (xj|µ, diag(σ2

1, . . . , σ
2
D))dxi, dxj

=

Q∑
q=1

wq

D∏
d=1

[
(2πv(d)

q )−0.5e−π(C
(d)
q )2µ

(d)
q

∫
cos (bq,d(xi,d −md))N (xi,d|md, νq,d)N (xj,d|md, σ

2
d)dxj,d

]
=

Q∑
q=1

wq

D∏
d=1

[
(2πv(d)

q )−0.5e−π(C
(d)
q )2µ

(d)
q exp

(
−1

2
(A(d)

q bq,d)
2

)
(2π(ν2

q,d + σ2
d))
−0.5

]
where A(d)

q = (ν−2
q,d + σ−2

d )−1.

(D.4)
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APPENDIX E DERIVATIONS FOR VFE

E.1 Maximizaton of variational free energy

For the integral inside parenthesis in (A.29), letting α = Kf,uKu,uf and M =

Kf,f −Qf,f , p(f |fu) = N (f |α,M):∫
p(f |fu) log p(y|f)df =

∫
p(f |fu)

[
− 1

2σ2
(y − f)T (y − f)− d

2
log(2πσ2)

]
df

= −n
2

log(2πσ2)− Ef |fu

[
tr

(
1

2σ2
(f − y)(f − y)T

)]
= −n

2
log(2πσ2)− 1

2σ2
tr((α− y)(α− y)T + A) =

= logN (y|α, σ2I)− tr(Kf,f −Qf,f ).

Substituing back in (A.29):

FV (xu, φ) =

∫
φ(fu) log

N (y|α, σ2I)p(fu)

φ(fu)
dfu − tr(Kf,f −Qf,f ). (E.1)

For any xu fixed, FV (xu, φ) is then maximized by maximizing the integral term. But

this is just the evidence lower bound between φ and the unnormalized distribution

N (y|α, σ2I)p(fu), relative to fu. Without constraining φ, then we must have:

φ(f) ∝ N (y|α, σ2I)p(fu)

∝ exp

(
− 1

2σ2
(y − α)T (y − α)− 1

2
fTuKu,ufu

)
∝ exp

(
1

σ2
yTKf,uK

−1
u,ufu −

1

2
fTu

(
K−1
u,u +

1

σ2
K−1
u,uKu,fKf,uK

−1
u,u

)
fu

)
.

(E.2)

The quadratic form can be completed relative to fu to find:

A† = (K−1
u,u + σ−2K−1

u,uKu,fKf,uK
−1
u,u)

−1 = Ku,u(Ku,u + σ−2Ku,fKf,u)
−1Ku,u

µ† = σ−2Ku,u(Ku,u + σ−2Ku,fKf,u)
−1Ku,fy.

(E.3)

Since φ is itself Gaussian, the unconstrained optimum is the same as for the con-

strained one. Finally, since φ(f) = 1
Z
N (y|α, σ2I)p(fu), with Z =

∫
N (y|α, σ2I)p(fu)dfu,
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substituting back into (E.1), we find the objective function for xu,

FV (xu) = log

∫
N (y|Kf,uKu,uf , σ

2I)N (0, Ku,u)dfu − tr(Kf,f −Qf,f )

= logN (y|0, Qf,f + σ2I)− tr(Kf,f −Qf,f ).

(E.4)

E.2 Equivalence between VFE and DTC prediction

Starting with (A.31), for the covariance, we use the matrix inversion lemma,

by letting ∆ = σ2I:

K∗,u(Ku,u +Ku,f∆
−1Kf,u)

−1Ku,∗ =

K∗,u(K
−1
u,u −K−1

u,uKu,f (Kf,uK
−1
u,uKu,f + ∆)−1Kf,uK

−1
u,u)Ku,∗ =

Q∗,∗ −Q∗,f (Qf,f + ∆)−1Qf,∗.

Substituting in the covariance term for (A.31), we find the same covariance as in

(A.15). For the mean term, using again the matrix inversion lemma, we find:

K∗,u(Ku,u +Ku,f∆
−1Kf,u)

−1Ku,f∆
−1y =

K∗,u(K
−1
u,u −K−1

u,uKu,f (Kf,uK
−1
u,uKu,f + ∆)−1Kf,uK

−1
u,u)Ku,f∆

−1y =

(Q∗,f −Q∗,f (Qf,f + ∆)−1Qf,f )∆
−1y =

Q∗,f (∆
−1 − (Qf,f + ∆)−1Qf,f∆

−1)y =

Q∗,f (∆
−1 − (∆Q−1

f,f )(Qf,f + ∆))−1y =

Q∗,f (∆
−1 − (∆ + ∆Q−1

f,f∆)−1)y =

Q∗,f (Qf,f + ∆)−1y,

where in the last equality it was used (B.2). This is the same mean term as in

(A.15), thus proving the equality.



135

APPENDIX F REINFORCE GRADIENT

We have that

∇Eq(θ;λ)

[
log

(
ḡ(θ)

q(θ;λ)

)]
= ∇

∫
log

(
ḡ(θ)

q(θ;λ)

)
q(θ;λ)dθ

=

∫
∇λ

(
log

(
ḡ(θ)

q(θ;λ)

)
q(θ;λ)

)
dθ

=

∫
q(θ;λ)∇λ log q(θ;λ)dθ +

∫
log

(
ḡ(θ)

q(θ;λ)

)
∇λq(θ;λ)dθ

. (F.1)

The first term in the sum equals to∫
q(θ;λ)∇λ log q(θ;λ)dθ =

∫
q(θ;λ)

∇λq(θ;λ)

q(θ;λ)
dθ

= ∇
∫
q(θ;λ)dθ

= ∇1 = 0,

(F.2)

while the second term equals to∫
log

(
ḡ(θ)

q(θ;λ)

)
∇λq(θ;λ)dθ

=

∫
log

(
ḡ(θ)

q(θ;λ)

)
∇λ(log q(θ;λ))q(θ;λ)dθ

= Eq(θ;λ)

[
log

ḡ(θ)

q(θ;λ)
∇λ log q(θ;λ)

] (F.3)

Joining the two terms, we arrive at (5.16).
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