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“Number Theory, among the mathematical disciplines, occupies an idealized po-
sition, similar to the one that mathematics holds among the sciences. Under no
obligation to serve needs that do not originate within itself, it is essentially auto-
nomous in setling its goals, and thus manages to protect its undisturbed harmony.
The possibility of formulating its basic problems simply, the peculiar clarity of its
statements, the arcane touch in its laws, be they discovered or undiscovered, merely
divined; last but not least, the charm of its particularly satisfactory ways of reaso-
ning - all these features have at all times attracted to number theory a community
of dedicated followers. ”

Jurgen Neukirch
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Abstract

The purpose of this thesis is to give a proof of a theorem of F. Thaine [Tha]
about annihilators of class groups of real abelian number fields. An improvement of
R. Kucera |Kuc| is also treated.

First, we summarize some basic facts, including Algebraic Number Theory. In
the first chapter, we develop Global Class Field Theory ,according to N. Childress’
book [Chi|]. In the second chapter, we give a proof of Thaine’s theorem for odd
primes. The third chapter gives an extension of R. Kucera of Thaine’s theorem for
p = 2. Finally, an outline of the proof of Catalan’s Conjecture shows an application
of the main result of this thesis. The last chapter is based on an article of T. Met-

sankyla|Met].

Keywords: Thaine’s theorem, annihilators, real number field, ideal class groups.



Resumo

O proposito desta dissertacao é provar um teorema de F. Thaine [Tha| sobre
anuladores de grupos de classes de corpos numéricos abelianos reais. Um aperfeico-
amento de R. Kucera [Kuc| também ¢é tratado.

Primeiramente, nos sumarizamos alguns fatos bésicos, incluindo a teoria dos ni-
meros algébricos. No primeiro capitulos, nos desenvolvemos a teoria dos corpos de
classe globais, seguindo o livro da N. Childress [Chi]. No segundo capitulo, nos
provamos o teorema de Thaine para primos impares. No terceiro capitulo é dada a
extencao de R. Kucera do teorema de Thaine para p = 2. Finalmente, um resumo da
prova da conjectura de Catalan mostra uma aplicacao do principal resultado desta

dissertagao. O tltimo capitulo é baseado em um artigo de T. Metsankyla|Met|.

Palavras-clave: Theorema de Thaine, anuladores, corpos numeéricos reais, grupos

de classes ideais.
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Basic Results

0.1 Algebraic Number Theory

A number field is a finite algebraic extension of Q. If F'is a number field, denote
the ring of algebraic integers of F' by Op. It is well-known that Op is a Dedekind
domain, so that any ideal of O has a unique factorization into a product of prime
ideals. A fractional ideal of F' is a non-zero finitely generated Op-submodule of F,
which forms a group Zr under multiplication. The principal fractional ideals of F'
form a normal subgroup of Zr, denoted Pr. The quotient group Cr = Zp/Pr is
called the ideal class group of F'. It is a finite group. Its order is the class number
of F', denoted hp.

The ideal classes in Op are generated as a group by prime ideals p with norm
N(p) < Bk, where
Bi = [[ D_lo(e
o:FC i=1

for some choice of Z-basis {e;, -+ ,e,} of Op. As an example, we will show that
Q(v/—5) has only two ideal classes. Let {ej,ea} = {1,/—5}. Since

B = (le1] + |e2])(Jex] + [ea]) = (1 4+ V=5)* =~ 104,

we have that Cg,/=5) is generated by primes p with N(p) < 10. Then p divides
(2),(3),(5), or (7). These primes decompose as

(2) =93, (3) = psps, (5) = (V=5), (7) = prpy.

In Cy(,/=5) principal ideals become trivial, so

03] =1, [ps]lps] = 1, [psllp7] = 1.

Thus Cy (/=5 is generated by po, either prime ideal of norm 3, and either prime ideal

of norm 7. Since (1++/—5) = paps and (3++/—5) = pap7, we have that [ps] and [p7]

both equal [po] ™. Thus Cqo(,/=5) = ([p2]). Since p, is not principal and its square is

principal, [ps] has order 2 and thus Cg(,/=5) = %.

1
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Given a finite extension K/F of number fields, let p be a non-zero prime ideal

of Op. Using unique factorization of ideals in Ok, we have

POK = Pt B,

where the 3, are distinct prime ideals of Ok, g and e; are positive integers. We call
e; = e(*PB;/p) the ramification index of P, /p. If K/F is a Galois extension, then the
Galois group permutes the 3; transitively, so that e; = --- = ¢, = ¢, say.

Since every non-zero prime ideal is maximal in a Dedekind domain, the quotients
Fy, = Ok /B, and F, = Op/p are fields, called residue fields. We may view [, as a
subfield of Fys.. The inertia degree is

F(B;/p) = [Fy, - .

If K/F is a Galois extension, then f(By/p) =--- = f(B,/p) = [, say.
In general, we have Ze(‘Bj/p)f(‘Bj/p) =[K:F]
j=1

If K/F is a finite extension of number fields, we say that the prime p is unramified
if e(PB;/p) = 1,Vj, p is totally ramified if there is a unique prime 9 above p with
e(P/p) = [K : F|, p remains inert if pOy is prime in O, and p splits completely if
g=|[K:F)|.

Theorem 0.1. (Dedekind-Kummer): Let K/F be an extension of number fields
and suppose Ok = Oplal. Let f(X) = Irrp(a, X), and let p be a prime ideal of
F. PutF, = Op/p, and denote the image of f(X) in Fy[X] by f(X). If f(X) =
m(X) - pg (X)), where the p;(X) are distinct monic irreducible polynomials in
Fy[X], then pOr = P+ - - - Py, with the P, distinct prime ideals of Ok.

Let {vy,...,v,} be a F-basis of K, define the discriminant of this basis as
d(vy, ..., v,) = det[o;(v;)]?,

where o1, ..., 0, : K < FA8 are F-monomorphisms. Note that different F-bases for
K need not have the same discriminant. Hence the discriminant of the extension
must be defined in terms of all possible basis for K.

Suppose M is a non-zero Op-submodule of K and M contains an F-basis for K.
We let d(M) be the Op-module generated by all d(vy, ...,v,) where {vq,...,v,} CM
varies through the F-basis for K contained in M. The discriminant of the extension
K/F is dgjp = d(Ok), where O is considered as a finitely generated Op-module.
This makes di/r an ideal of Op. For a prime ideal p of Op, we have that p is

ramified in K/F if and only if p|d/p.
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Let p and P be prime ideals of Op and Og,respectively, such that P|pOk.
Define the norm of P as Nk, B = pfmp). Now extend N/, to fractional ideals of
K multiplicatively, i.e.,

Nigp(BE - PBy’) = Ngyp(P1)™ - - Niyp(PBg)®.

Note that if K/F is Galois, then Ni/p(0)0x = [[ o). f FCEC K are
oceGal(K/F)
number fields, then Ng/r = Ng/p o Nk/E.

Supposing K/F Galois, we can define the decomposition group

Z(B/p) = {0 € G;0(B) =B}

Note that Z(/p) acts on Fy, and fixes the subfield F, elementwise, so there is a

natural homomorphism of groups

Z(B/p) = Gal(Fy/Fy).

Theorem 0.2. Let K/F be Galois and p be a prime ideal of Op.
(i) G acts transitively on the set of prime ideals B of Op that divide pOg whence

(G Z(B/p)] =g

Also, if P1, P2 are prime ideals of Ok above p, then Z(P1/p) and Z(Po/p) are
G-conjugate;

(it)Np = #F,, NB = #Fy, and Gal(Fy/F,) is cyclic, generated by the Frobenius
automorphism oy : x +— z™P;

(iii) The homomorphism Z(B/p) — Gal(Fy/Fy) is surjective; its kernel is called
the inertia subgroup, denoted T'(P/p). Note that [Z(B/p):T(PB/p)| = [ and

#T'(B/p) =e.
Theorem 0.3. Let KZ =Inv(Z(B/p)) = {x € K; o(x) =z, Yo € Z(P/p)} and
KT =Inv(T(B/p)). If K/F is abelian, then p splits completely in KZ/F. The

primes above p remain inert in KT /K? and ramify totally in K/KT.

Proposition 0.4. Let K; and Ky be two extensions of a number field F. If a prime
tdeal p of F' splits completely in both Ky and Ky, then p splits completely in KiK.

If e(P/p) =1, then Z(P/p) = Gal(Fy/Fy), hence 3l o € Z(P/p) that corresponds

to ¢, under the natural isomorphism. This element o is called the Frobenius element

at .
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Proposition 0.5. Let K/F be Galois, p be a prime ideal of Op unramified in K/F
and B prime ideal of Ok above p. Then the Frobenius element at B is the unique
element 0 € Gal(K/F) that satisfies o(a) = o¥* mod B,Va € Op. If K/F is

abelian, then the Frobenius element does not depend on the choice of B.

Theorem 0.6. (Consistency Property): Let F C L C K, F C E C K be number
fields and suppose K/F is Galois. Let p be a prime ideal of O that is unramified
in K/F and let Bx be a prime ideal of Ok that divides p. Let P = LN Pk, Pr =

ENPk. Then (&) —<SBL)f where f = f(Br/p)
K- K/E)|, \L/F)’ = JUe/b)

K P
| |
LE
\ VRN
E Br Br
/ %

RN

N
|
F p

Proposition 0.7. The prime p splits completely in Q((,) if and only if

p=1 mod m.

Theorem 0.8. (Dirichlet Unit Theorem) Denote OF by Ur. Let F' be a number field
and let r1 and ro represent the number of real embeddings and the number of conju-
gate pairs of imaginary embeddings of F', respectively. Then 3 &1, & 4p—1 € Up
such that

Up = Wp X (1) X -+ X (Eri4m-1),

where Wr is the group of roots of unity in F. The ¢; are called a fundamental

system of units of F.

For the proofs, see [Mar].

0.2 Inverse Limits

A sequence (E,, ¢n)n>0 of sets and maps ¢, : E,4; — E, is called an inverse
system. A set E together with maps ¢, : £ — E,, such that v¢,, = ¢, 0,1 is called
an inverse limit of the sequence (E,, ¢, )n>o if the following condition is satisfied:
For each set X and maps f, : X — F, satisfying f, = @, o f,11 there is a unique
factorization f of f,, through the set F: f, =¢,o0f: X — E — E,.
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Theorem 0.9. For every inverse system (E,,, ©n)n>0 of sets, there is a inverse limit

E = l&nEn C H E,, with maps 1, giwen by restriction of projections. Moreover, if
n>0
(D,W,) is another inverse system of the same sequence, there is a unique bijection

f:D — E such that V,, =, o f.

Corollary 0.10. When all the maps @, are surjective, then the inverse limit (E, (1))

also has surjective projections 1, and in particular, the set E is not empty.

Example: The ring of p-adic integers Z, = @Z/ (p"Z).
For proofs, see [Rob| pag 29.

0.3 Semisimple Rings

A ring R is said to be semisimple if it is a direct sum of a finite number of minimal
right ideals.

Example: Let M, (D) denote the full ring of n xn matrices over a division ring D. Set

- - - D-
0 --- 0 00 --- D

Ly=1{. . . |, Lla=
DO --- 0 00 --- D

We have that L; is a minimal right ideal of M, (D) and M, (D) = L1 @ -+ @ L,.
Thus M, (D) is semisimple.

Theorem 0.11. A ring R is semisimple if and only if every right ideal I of R is of

the form I = eR, where e € R is an idempotent( i.e. € = ¢).

Theorem 0.12. Let R = ®Y ,I; be a decomposition of a semisimple ring as a direct

sum of minimal right ideals. Then there exists a set {e1,--- ,en} of idempotents of
R such that

(1) If i # j, then e;.e; = 0;

(i) 1l =e1+---+en;

(iii) e; cannot be written as a sum of two other orthogonal idempotents.
Conversely, if there ezists a set of idempotents {ey, - ,en} satisfying the conditions

above, then the right ideals I; = e;.R are minimal and R = ®N I,

Theorem 0.13. Let R = R/I, where I is a two-sided ideal of R contained in
Rad(R). Assume either
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(i) R is right artinian;
(ii) R is an Ri-algebra, finitely generated as Ry-module, where Ry is a commutative
complete local noetherian ring.
Then each decomposition of R into indecomposable right ideals e; R, yields a decom-
position R =e1R® --- ® €, R into indecomposable right ideals &R.

Conversely, each decomposition of R comes from a decomposition of R.

Furthermore, for 1 <1i,7 <n, we have ¢,R = ¢;R < @R e_j}_%.

Proof. See [CR], pag 125. O

0.4 Group Rings and Maschke’s Theorem

Let G be a group (not necessarily finite) and R a ring. We denote by R[G] the

set of all formal linear combinations of the form

a = Zagg,

geG

where a, € R and a, = 0 almost everywhere. We define the sum of two elements in

R[G] componentwise

{Z%g} + { Zbgg} = Z{% +bg}g.

geG geG geq

Also, given two elements o = Y a,g and =Y b,g in R[G] we define their product

by
af = Z c,u, where ¢, = Z agbp,.

ue@ gh=u
It is easy to verify that, with the operations above, R[G] is a ring, which has unity,
namely, the element 1 = ) u,.g where the coefficient corresponding to the unit
element of the group is equal to 1 and u, = 0 otherwise.

We can also define a product of elements in R[G] by elements A € R as

M Z ag.g} = Z{/\ag}g.

The set R[G], with the operations above, is called the group ring of G over R.

The homomorphism ¢ : R[G] — R given by £(>_a,g9) = > a, is called the
augmentation mapping of R[G]| and its kernel is called the augmentation ideal of
R[G].
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Theorem 0.14. (Maschke) The group ring R[G] is semisimple if and only if the
following conditions hold

(i) R is a semisimple ring;

(i1) G is finite;

(11i) #G is invertible in R.

Corollary 0.15. Let G be a finite group and let F' be a field. Then F|G| is semisim-
ple if and only if char(F) t #G.

For the proofs, see [MS| chapter 3.

0.5 Group Representations and Characters

A representation of a group G is a homomorphism ¢ : G —GL(V) for some finite
dimensional vector space V over a field F'. A subspace W C V is G-invariant if, for
all g € G and w € W, one has ¢(g)w € W. If the only G-invariant subspaces of V/
are {0} and V, we say that ¢ is irreducible.

Example: The function ¢ : Z/(4Z) — C given by p(m) = i™ is a representation
The character p of G afforded by the representation ¢ is the mapping p : G — F
given by p(g) =Tr(p(g)). If ¢ is irreducible, then the character p is called an

irreducible character.

Theorem 0.16. The elements e, = (#G)™! Zp(l)p(g_l)g, where p is any irre-

geG
ducible character, have the following relations:

(A) 62 = ep;'

(B) €p€py = 0 4f p1 # pa;

(C)1=2,¢p

(D) If M is a module over F|G|, then we may write M = @epM.
p



Chapter 1

Class Field Theory

1.1 Universal Norm Index Inequality

Let F' be a number field. If an element o € F satisfies o(a) > 0 for every real
embedding o of F', we say that « is totally positive, and write o > 0. Let m be a

non-zero integral ideal of Op. Define

Zp(m) ={a € Zp;ordy(a) = 0,Vp | m}
+ o4 @
Prn =130 5

The strict ray class group of F' for m, is

> 0; o, € Op prime tom; « = mod m}.

,R’;,m =1r (m) /’P}—;—,m
Example: Let F' = Q, m = mZ, where m >1. If (r) € Zp(m), then we may suppose
r > 1 and r = a/b, where (a,m) = (b,m) = 1. The map
Zp(m) — (Z/mZ)~
(ry — ab™' mod m
has kernel {(r) : v > 0,7 = a/b, (a,m) = (b,m) = 1,a = b mod m} = Py,. Hence
Rom = (Z/mZ)*, for m = mZ.
Proposition 1.1. Ry, is a finite group.

If 8 is a set of prime ideals of Op, and

lim —ZPES Ve

s—1y log(ﬁ)

=0, exists,

then we say that 8§ has Dirichlet density § = §p(8).

8
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Proposition 1.2. Let K/F be Galois, and let Sx/p = { Prime ideals p that split
completely in K/F}. Then 0p(Sk/p) = ﬁ

Let 8, T be two sets of prime ideals of Op. We write § &~ T to mean dp(8\ T) =
dp(T\8) =0.

If m is a non-zero integral ideal of Op, and H satisfies P} < H < Zp(m), then
we say K is the class field of F' over H if K/F is Galois and 8x,p =~ { Prime ideals
pof Op; p C H}.

Example: For F' = Q and m = mZ, we have

{pZ:pZ e P§,} ={pZ:p=1 modm, p>0}
= {pZ : pZ splits completely in Q((,,)/Q}
= 8Q(tm)/Q
Thus Q((,,) is the class field over Q of P@ﬁm.

Theorem 1.3. If the class field K of H exists, then it is unique.

Theorem 1.4. Suppose K/F is Galois, Pp,, < M < Ip(m), and 3T C { Prime
ideals p that split completely in K/F} with Sk/p = T. Then [Zp(m): H| < [K : F).

Define NK/p(m) = NK/F<IK) ﬂIF(m)

Theorem 1.5. (Universal Norm Index Inequality) Let K/F be Galois and H =
Pl oNg/p(m). Then [Zp(m) : H] < [K : F].

Proof. If p € 8 r and Plp, where P is a prime ideal of Ox. Then Nk, pP = p.
Hence 8x/p \ { Prime ideals p of Op;p|m} C Nk p(m) € H. By the previous
theorem, [Zp(m) : H] < [K : F]. O

1.2 Cyclic Norm Index Equality

Let F' be a number field. An absolute value on F'is a mapping ||.|| : ' — [0, 00)
that satisfies ||0|| = 0, whose restriction to F'* is a homomorphism of multiplicative
groups F* — RZ, and that satisfies |1 +z| < ¢ whenever ||z|| < 1, for some
c¢ > 1. An absolute value induces a metric topology on F' via fundamental systems

of neighbourhoods of the form

{reF:|lz—al| <e},e>0.
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We say that two absolute values are equivalent if they induce the same topology.

A place of F'is an equivalence class of non-trivial absolute values on F'. Denote
the set of places of I’ by Vg. By Ostrowski’s Theorem, each of the places of F' falls
into one of the following categories:

(1) Places that contain one of the p-adic absolute values given by
afl, = Np=od(@) for p a prime ideal of Op. These are the finite places of F.

(2) Places that contain one of the absolute values ||a|, = |o(a)|g, for some real
embedding o : F' — R. These are the finite real places of F'

(3) Places that contain one of the absolute values |||, = |o(a)|%, for some
imaginary embedding o : F' < C. These are the infinite imaginary places of F'.

The completion of a number field F' with respect to the absolute value |.| is
{Cauchy sequences in F'} /{Null sequences in F'}

If |.| = |.|p for some p prime ideal of Op, then denote the completion of F' by F,. If
|.| = |.|, for some o : F' < C, then the completion of F' is isomorphic either to R or
C, according as o(F) C R or not.

Let O, = {z € F,;|z|, < 1} be the ring of p-adic integers. It has a unique
maximal ideal P, = {z € F};|z|, < 1}, we also have P, = pO, and

Oy /Py = Or/p

Choose 7 € p \ p? and view 7 as an element of F,. Observe that P, = (), we say
that = is an uniformizer for F,. Every xz € F, may be written as « = en’, where
t€Zande €Oy,

An idéle is an element a = (--+ ,a,, ) € H F) such that ||a,|, # 1 only

vEVR
for finitely many places. They form a multiplicative group, denoted Jr. Let &p =

H U,, clearly a subgroup of Jr. We may give £ the product topology, where each

veVER
U, has its metric topology.

Example: Jgp = Q* x R x HZ;.

p
We want to put a topology on Jp that will make it a locally compact topological
group. To do so, we require ar to be an open subset of Jp, V a € Jg, and also

require that the map £ — a&p be a multiplicative homeomorphism Va € Jg.
Proposition 1.6. A basis of open sets for Jr is given by
{aA: a € Jp,and A is an open subset of Ep}.

Proposition 1.7. Jr with this topology is a locally compact topological group.
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Proposition 1.8. Jr/Ep = Tp.

We may view a € F* as an idéle (...,¢y(),...), where ¢, : F — F, is an
embedding of F' into its completion at v. This gives an embedding, called the

diagonal embedding,

L F — Jp, where (o) = (..., 1,(0), ...).
Usually we shall identify o and «(«), writing F* when we really mean «(F).
Proposition 1.9. Jp/(F*Er) = Ir/Pr.

Proposition 1.10. Let m be a non-zero integral ideal of Op, and define
Jim=1a€ Jp:a, >0 for all real v, and a, =1 ( mod po" ™™y wp,[m}
Epm = Jim NER.

Then JF/(FXS}fm) = RJFr’m

Corollary 1.11. The set of subgroups H of Jr, with Fxé’;m C H for some m,

corresponds to the set of open subgroups of Jp that contain F*.

Define Ng,p : Jx — Jp by Ng/p(..., G, ...) = (...,Hw‘v Nk, /p,(aw), ...).

Let G be a finite cyclic group, say G = (o), and let A be a Z|G]-module. Define
s(G) =140 +---+ 0" where n = #G. Considering the map ¢ — 1 on A, we
have ker(c — 1) = {a € A : o(a) = a} = AY. Note that s(G)A C A% and (0 — 1) C
kers(G).

We define

Qa(A) = [AC : s(G)A]/[ker s(G) : (0 — 1)A],

when these indices are finite. The number Qg(A) is called the Herbrand quotient
of A for the group G.
Example: Let G = (o) be cyclic of order n and let A = Z, with G acting trivially
on A. Then AY = Z and s(G)A = nZ. Also, kers(G) = {0} = (0 — 1)A. We get
Qu(A) = [Z : nZ] = n.

Let K/F be a Galois extension of number fields, 0 € G =Gal(K/F), and a =
(-, Qu, ) € Jg. For a place w of K, define the place ocw by

ldlow = llo™ (@)l

Note that 7(cw) = (7o)w. We have that G transitively permutes the places of K
above some place of I, and (K, ||.||,) is isomorphic to (K, ||.||sw) via 0. Thus o

induces an isomorphism between the completions that we also denote by o:

o: Ky — Kuy.
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We may now define for each v € Vg
U(' oy Ay, )w|v = ( e 7bwa T )w|vaWhere bw - U(aaflw)

This gives an action of o on Jg with J¢ = Jp. If G is cyclic, then

NK/F(a) = H a(a).

oeG

Lemma 1.12. Let Cx = Jx/K*, and Cp = Jp/F*. The embedding Jpr — Jk

induces an embedding Cr — Cgk. Furthermore, C’g =Cp.
Proposition 1.13. Qq(Ck) = [K : F].

Proposition 1.14. For an abelian extension K/F of number fields, let H = F* Nk pJk.
Then

(i) H is open in Jp, and 5;:,::1 C H, for some m divisible only by the primes that
ramify in K/F,

(ii) Jp/H = Ip(m)/(Pf N/ r(m))

Theorem 1.15. (Cyclic Norm Index Equality) If K/F is a cyclic extension of
number fields, and m is an integral ideal of O that is divisible by sufficiently high

power of every ramified prime in K/F, then
(Tr(m) : PN r(m)] = [ - F].
Proof. By Proposition 1.13,
CS : 8(G)C] = K« Flkerc, s(G) : (0 — 1)C].

But also [C¢ : s(G)Ck] = [CF : NkpCk| = [Jp/F* : Ng/pJx/(F*Ng/pdi)] =
[Jp : F*Ng/pJg] = [Zrp(m) : Ph Ni/r(m)], whenever m satisfies £ € F* Ng/pJx.
Thus [K : F] < [Zp(m) : Plf{m./\/}(/p(m)].

On the other hand, the Universal Norm Index Inequality gives
[Zp(m) : PEmNK/F(m)] <[K:F]. ]

1.3 Artin Reciprocity

Let K/F be a Galois extension of number fields with abelian Galois group G.

Let p be a prime ideal of O that is unramified in K/F. Then the decomposition

p

group G, = Z(p) must be cyclic with a canonical generator o, = K—/F

> , the Artin

automorphism.
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Let m be an ideal of O that is divisible by all primes that ramify in the extension

K/F and no others. The map p — o, induces a homomorphism A = Ag/p :

Zr(m) — G given by a — o, = > where, for a = Hp"" € Zr(m), we set

L
K/F :

1;[ 0y". The map A is called the Artin map and (K/F
Example: Let F = Q, and K = Q((,,) where (,, is a primitive m'™ root of unity.

) is the Artin symbol.

7
Let pZ be a prime of Z, where (p,m) = 1. Then (%) =0y G — B If

a € Zy,say a=pi---pgr with (p;,m) =1, then

T

T

Y/
([?/F)ZH eJ_Ua CmHga

j=1

Theorem 1.16. (Artin Reciprocity) Let K/F be an abelian extension of number
fields, let G =Gal(K/F), and assume m is an ideal of Op, divisible by all the
ramifying primes. Then

(i) A:ZIp(m) — G is surjective,

(i1) The ideal m can be chosen so that it is divisible only by the ramified primes and
satisfies Pr.,, C ker(A),

(iii) Ni p(m) C ker(A).

Choosing m as in (ii), we have a well-defined epimorphism

Zr(m)/ (P Niyp(m)) — G. Since # (Ip(m)/(P;{mNK/F(m))) < [K : F] =#G

by the Universal Norm Index Inequality, in fact we have

Ir(m)/(Pg N p(m) = G

Proposition 1.17. Let K/F be an abelian extension of number fields. If m is an
tdeal of Op such that Slffm C Ni/r€k, then m satisfies Artin Reciprocity.

Proposition 1.18. (Completeness Theorem) Let K/F be an abelian extension of
number fields. If the ideal m of Of satisfies Artin Reciprocity, then K is the class
field over F' of Py Ni/p(m).

A proof of the next result can be found in [Sch|, chapter 15.

Theorem 1.19. (Chebotarev Density) Let K/F be an Galois extension of number
fields with Gal(K/F) = G. Let o0 € G,[o]g = {ror™' : 7 € G}. Define

P

S, = {unramified primes p of Op : (K—/F

) € [o]g for PlpOx}.

#lola
[K/F]

Then 6p(8,) =
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If m satisfies £, C F*Ng/pJg, then we have

Zr(m)/(PionNk/r(m)) 2 G, by Artin Reciprocity;
Jr/(F*Ng/pJi) = Ip(m)/(Ph Nk p(m)), by Proposition 1.14;
Jp = Jp/(F* Nk rJk), by the canonical surjection.

Let pr/r : Jr — G be the composition of the above functions. It is surjective with
kernel F* Ny pJix. We say K is the class field over I of F* Nk, ,pJx and we call
pi/r the idélic Artin map.

1.4 The Existence Theorem
Theorem 1.20. (Ordering Theorem) Let
O : {finite abelian extensions K of F'} — {open subgroups H of Jr that contain F*}
be given by ®(K) = F*Ng/pJr. Then:
K, C Ky = 0(Ky) C o(K)).

Corollary 1.21. Suppose K 1is the class field to the open subgroup H of Jr, where
F* CH, and let H1 O H be an open subgroup of Jp. Then Hi has a class field over
F.

Proposition 1.22. (Reduction Lemma) Let K/F be a cyclic extension of number
fields and suppose H is an open subgroup of Jp that contains F*. If NI;/IF('H) has
a class field over K, then H has a class field over F'.

Let n be a positive integer. An abelian group G is said to have exponent n if
g" =1, Vg € G. Similarly, an abelian extension K/F' is said to have exponent n if
the abelian group Gal(K/F') has exponent n.

Let F' be an number field. Let 8 be a finite set of places of F' and assume {infinite
places of F'} = 8., C 8. Define

JF75 = HFUX X HZ/{U

vES e
Fy = Jps N FX.

Lemma 1.23. There is a finite set of places 8 O 8 such that Jp = F* Jpg.
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Theorem 1.24. Let F be a number field that contains all the n'* roots of unity.
Let 8 be a finite set of places of F' containing S, the places v such that p,|n, and
sufficiently many finite places so that Jp = F*Jpg. Let

B =[] = [[th-

vES vegS
Then F*B has class field F(Fsl/n) over F.

Theorem 1.25. (Ezistence Theorem) Let F be a number field. Let H be an open
subgroup of Jg with F* C H. Then there is a finite abelian extension K of F' such
that H = FXNK/FJK

Proof. Suppose that Jp/H has exponent n. Assume that I contains the n'® roots
of unity. Find a set § as in Lemma 1.24, then enlarge it further to contain all v such
that U, ¢ H. For this enlarged 8, we get B C H. By Theorem 1.25, F*B has a
class field and ‘H = HF>* O F*B. By Corollary 1.22, ‘H has a class field too.

In the general case, consider the extension F((,)/F. We can find a tower of

intermediate fields:
F=FRCF C---CF, =F(),

such that each Gal(F; 1/ F;)is cyclic. Let H; = N;l/FH Note that H; = NJ;il/Fi,lHi—l-
We know that H,; has a class field. Applying the Reduction Lemma to the cyclic
extension F;/F;_1, we conclude that H;_; has a class field too. Continuing in a finite

number of steps, we get that H, has a class field. n

Theorem 1.26. (Kronecker-Weber) Every finite abelian extension F of Q satisfies
F C Q(C) for some root of unity (.

Proof. F'is the class field of Q* Ng/gJp. By Corollary 1.11, ng&mz C Q*NpoJF,
for some m € Z. We know that Q(¢) is the class field of Q*&F ;. By the Ordering
Theorem,

F =" (Q"NpoJr) € 2 H(Q*EG z) = QUm)-
[l
Proposition 1.27. Let F be a number field. Fy, = & Y(F*Er) is the mazimal

unramified abelian extension of F(It is called the Hilbert Class Field of F) and
Gal(F\/F) ~ Cp via the Artin map.



Chapter 2

Thaine’s Theorem for odd primes

2.1 Factorization of certain principal ideals

Let F' # Q be a real abelian number field and (,, a primitive m-th root of unity,
where m is the least positive integer such that F' C Q((,,) (We call m the conductor
of the field F'). Let G = Gal(F/Q). For j > 1 we define

Oy(X) = {f(X) = T TLO0 — o) o € 2, () € F(X), (1) € uF} ,

=1 k=1

where X is an indeterminate.
Let C' = U32,C5(1) be the group of cyclotomic units. Since U is a noetherian
Z-module, there exists [ > 1 such that C' = Cj(1).

Proposition 2.1. We have that #W < oo, where W = Ur/C.

Proof. Sinnott|Sin| showed that a subgroup of the cyclotomic units has finite index
in the full group of units. It was shown by G. Lettl[Let| that these two groups

coincide. O

In this section ¢ is an odd prime greater than [, that splits completely in F', ¢,
is a primitive ¢g-th root of unity, and K = F((,).

16
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Proposition 2.2. f(X) € Ci(X) = Ng/r(f({)) =1

Proof. f(X) e F(X)= f(¢,) € F(¢,) = K. By Galois Theory,
Gal(K/F) ~ Gal(Q(¢;)/Q) = Gal(Q(Gng) /Q(Gor).

Q(Cmg)
_—
Q(Cm) K
NN
F Q(¢y)
NS
Q

Then

,_.

I m—

Nic/e(FC) =TT TT Notmaraen (G — )"

J=1
!

11 — ()

7j=1

—_

ol
—_

3
-

B
Il
—
..
Il
—

l

11

]:

3

qk:

Ty = f(

I
—
o
Il
—_
}_\ >—‘

where (m) =04 (m — CL. Since ¢ splits completely in F,
N q
r \F/Q
Let £ be a prime ideal of F' above ¢ and B the only prime ideal of K above
Q. Choose an integer s such that (s) = (Z/(¢Z))* (We call s a primitive root
modulo ¢). Let 7 € Gal(K/F), such that 7(¢,) = ¢;. Then (7) = Gal(K/F'). Let

H = Gal(K/Q(G,)).

g

>id; hence Nk p(f(¢)) = 1. O

q

Proposition 2.3. If f(X) € Ci(X), then there exists o € K* such that () =

f(¢,)a. For any such «,
o) =D [[ o),

cceH

where D is the lift of an ideal of F' and the r, are integers such that
s = f(1)° mod Q.

Proof. From Hilbert’s Theorem 90 and from Proposition 2.2, we conclude that if
f(X) € Ci(X), then there exists o € K* such that 7(a)) = f((,)a.
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We have the following prime ideal decompositions:

qOp = H o(9Q)
oeG
(—1)0k =[] (B
ocEH
QO =BI71,
qOk = H o(B)r !
oceH
Then
=D[[o '),
ocH

where D is the lift of an ideal of F' relatively prime to ¢ and the r, are integers.

Let 0 € H and «,7, be as above, define v = a/((; — 1)"*. Then ord,—1(s)(7) =
0, which implies that there exists A\, u € Ok, non-divisible by ¢~!(28), such that
v = A p. Since #T(c7(B)/o7(Q)) = ¢ — 1 = #Gal(K/F) = #(1), we have
that 7 € T(o7*(B)/c1(Q)). Then 7(\) = X and 7(u) = ¢ mod o '(B). Hence
7(v) =7 #0 mod o7 (B).

If 7(a) = £(¢,)a, then (G — /(¢ — 1))'*7(3) = £(¢,)r. On the other hand,
0<d<p=(¢- )/(Cq—l) is an unit = (¢¢—1) = ((,—1) =[[o7'(B) = ¢ =1

mod o~ }( :>S_ZCZ_ (G —1)/(¢—1) mod ¢~ (B) = 5" = ((¢ -1/~
1)) mod o '(B). Therefore
v=((¢ = D/(G =) T(y) =[Gy = f(1)y mod o' (B).

This implies that s = f(1) mod ¢~ '(B), hence s = o(f(1)) mod B and also
mod £, since f(1) € K. O

Taking norms we conclude that

(NK/F = D7 1HO' U,

oelG

for some ideal D of F.

2.2 Ideal classes and units. A local-global theorem

Fix an embedding of F into R, and define |z| = sup{z, —z}. Given an ideal class
C of F and a positive integer b, we define P(C,b) as the set of all prime ideals Q € C
above odd primes g > [, splitting completely in F' and such that ¢ = 1 mod 0.
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Let 0 € C, C an ideal class and b a positive integer. From Proposition 2.3 we
conclude that for all Q € P(C,b) there exists a non-zero ideal Rq of F' such that
RY H o 1(Q)""™ is a principal ideal, where the integers r, (Q) satisfy sg’(g) = 0(9)

oeG

mod Q.
Suppose that P(C,b) is non-empty. Let 0 € G be fixed. We define the number

g =9(3,C,b,0) as the greatest common divisor of b and of all the r,(Q) such that
Qe P(C,D).

Proposition 2.4. P(C,b) # 0 = VQ € P(C,b) 3 fq € Z such that o(0) = 53
mod Q.

Proposition 2.5. Let F' be any real number field.

(A) If P(C,b) # 0, then it is an infinity set;

(B) If F is abelian and the order of C is prime to [F : Q], then P(C,b) # 0;
(C) If F C Q((yr) and b= p"™ with p prime and r,n positive integers, then
P(C,b) # 0;

Proof. Let F; be the Hilbert Class Field of F. We know that Gal(F}/F) ~ Cr via
the Artin map. Let ¢ € Gal(F;/F) corresponding to C. Suppose P(C,b) # () and

let 9 € P(C,b), then ¢ = (F—/F . Since ¢ = 1 mod b, we have that ¢ splits
1

completely in Q((p), then g splits completely in F'((), hence the same is true for Q.

_ (2| (2
Let J = FiNF(). Thenng—(Fl/F) ; (J/F> id.
F1(G)
7N
F(G) Fy

NS
J
|
F

By Galois Theory, Gal(F;/J) ~ Gal(F1(()/F(()). Then we can extend ¢ to an
automorphism ® €Gal(Fi(¢)/F(¢p)). By the Chebotarev Density Theorem,

1
[F1(G) : F(G)]

Since dp(,)(p € Sa; f(p/(PNZ)) > 1) = 0, we have that dpc,)(p € 8a; f(p/(PNZ)) =
1) > 0, then the set {p € So; f(p/(PNZ)) =1 =e(p/(pNZ)),p does not divide 2} is

infinite. For any p in the above set, we can use the Consistency Property of the Artin

0r(e)(Se) =
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_(—F =, where Q = x. Hence .
map to get (F1/F)_(F1(Cb)/F((b)) R ¢, where Q = pNOk. H el
If f(p/(pNZ)) =1=e(p/(pNZ)), then f(Q/(QANZ)) =1=e(Q/(QNZ)) and

the prime g € Z above 9 splits completely in Q((;), then Q € P(C,b). Therefore
P(C,b) is an infinite set.

Let F be a real abelian number field. By Galois Theory (See Proposition 3.20
of [Mil]), Gal(F({,)/Q) is isomorphic to a subgroup of Gal(F/Q)xGal(Q(¢)/Q),
which implies that J is abelian over Q and unramified over F'. Suppose a prime p
divides [J : F] but does not divide [F : Q]. Let J® be the subfield fixed by the
p-Sylow subgroup of Ga(J/F'), which is also the p-Sylow subgroup of Gal(J/Q),
because
p1[F : Q]. By the structure Theorem of abelian groups, Gal(J/Q) =Gal(J/J®)) x
H. By Galois Theory, Gal(J¥ /Q) ~ Gal(J/Q)/H ~ Gal(J/J®) = p—group.

Let ¢ be any rational prime. Since J/J® is unramified everywhere, we have that
T(J/q)NGal(J/JP) =id, then p { e(J/q). Hence p { e(J7/q), which implies that
e(JH /q) = 1, because T(J¥ /q) is a subgroup of a p-group. Then J¥ is unramified
p-extension of Q, contradiction. Then ged(ord( C) , [F: Q]) = 1 = ged(ord( C)
[J : Q])=1. Since ord(C)=ord(p), we must have | =id; thus P(C,b) # 0.

If FC Q(¢yr) and b= p", then F(() C Q((pr+i). Since p is totally ramified in
Q(¢pr), we have the same in J. Then J is totally ramified and unramified over F,

therefore J = F, ¢| =id. This proves (c). O
J

Proposition 2.6. Let F' be any number field. Let v be a positive element of Op,
and ¢ > 0 a divisor of b. Suppose that P(C,b) # () and that for all, except possibly a
finite set, prime ideals Q € P(C,b) there exists Bq € O such that v = 5§ mod Q.
Then v = ¢ if ¢ is odd and v = B? if ¢ is even, for some B € Ok.

Proof. Let v = /7 be the positive c-th root of v and let L be the Galois closure
of F(v)/F, i.e. the intersection of all Galois extensions of F' that contains F(v).
Let p(X) be the irreducible polynomial of v over F, then p(X)|X¢—~ and L is the
splitting field of p(X) over F. Hence L = F(v,(.) for some e|c.

Suppose L C Fi((). By Galois Theory, Gal(F1((p)/F) is isomorphic to a sub-
group of Gal(F;/F)xGal(Q(()/Q), which implies that Fy((y)/F is abelian, then
L/F and F(v)/F are abelian. Hence L = F(v), (. € F(v) C R, (. = £1. There-
fore p(X) = X —vif cis odd and p(X) = X? — 2 if ¢ is even. In the first case take

$ = v; in the other case take 8 = 12
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We will prove that L C Fy(¢). Let M = LFi(() and ¢ €Gal(Fy/F) cor-
responding to C. Since P(C,b) # 0, we have that ¢| =id. By Galois Theory,

Gal(Fy/J) ~ Gal(Fi(G)/F(¢)) ~ Gal(M/L(¢)), so WeJ can extend ¢ to an auto-
morphism ® eGal(M/L(()).

N
Fi(G)

/

)
NN
F F
7N S

N

Let f € ®G, where G = Gal(M/F1((;)). By the Chebotarev Density Theorem,
theset {p € Sp; f(p/(pPNZ)) =1=-e(p/(pNZ)),p does not divide 2} is infinite. Fix

: P
p in the above set. Let B|pO,; be such that (— = f.
| M7F(G)
By the Consistency Property and the fact that F/F is abelian,

v () = G|, =

I F

i) QECTHIE/(GND)=1=elp/(rn2)), then (2/(ANZ)) =

/. 1=e(Q/(QNZ)) and the prime g € Z above Q splits completely

F(G) 1 in Q(&), then Q € P(C,b) and we can choose p so as to avoid the
finitely many exceptions and such that Q does not divide 7.

= ¢, where Q = pNOp. Hence

| Any such £ splits completely in L, because p(X), reduced mod

F Q, splits completely over the field Op/Q (p(X) | X —7, X —y =
X

mod 9 and Op/Q contains the c-th roots of unity since ¢ | b

and b | (¢ — 1) = [(Or/Q)*|) and because Q does not divide the

M
discriminant of v over F.By the Dedekind-Kummer Theorem, Q |
splits completely over L. L(G)
AN
L F(G)
N/
By the Consistency Property, f = (i) = F(¢)
. \WFG)) |, |
L
(% =id, because (PNL)[Q0O;. Then @G C Gal(M /L), hence F

¢ €Gal(M/L) and G CGal(M/L). By Galois Theory, L C F;({).
0

For each unit ¢ # +1 of Op we define ¢(c) as the greatest integer k such that
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e = p* for some p € F. We have ¢(co(c)) = ¢(¢),Vo € G. Let (c,d)=gcd(c, d) for
any c,d € Z.

Lemma 2.7. Let § € Up — {Z1}. If § = B¢ with § € K, then c|p(0).

Proof. Let u € F such that § = p?. Let d = (¢, ¢), m=lem(c, ¢), and z,y € Z
such that xc + y¢ = d. Observe that m = c¢/d, then (u=BY)™ = (u®)=e/d(3°)¥¢/d =
§@etve)/d — § Hence m < ¢, therefore c|¢. O

Theorem 2.8. Let 6 € C — {&1}. Suppose P(C,b) # 0, then

(i) If b is odd, then g = (¢(9),b).

(11) If b is even and o(0) > 0, then g = (¢(9),b) or g = 2(4(9),b).
(i1i) If b is even and o(§) < 0, then g divides (4/(2,b/g
by (¢(9),0).

Proof. Let d = (¢(5),b), ¢(6) = md,b = Md, and ¢ — 1 = tb. Let § = p®®, with
pwe K. Qe P(C,b) = In such that o(u) = n mod Q (since % ~ qlz) = Sg’(ﬂ)
o(p)?® = n? mod Q = sg’(g) = n®®) mod ¢ = sg’(ﬂ)Mt = nPOMt = (pthym =
mod ¢ = Jk € N such that r,(Q)Mt = k(¢ — 1) = ktMd = d|r,(Q). Therefore
(¢(0),b) divides g in any case.

By Proposition 2.4, VQ € P(C,b) 36q € Z such that () = S modLQ; hence
o(6%) = BY modQ. Let ¢ = (2g,b); since P(C,b) # (, we have by Proposition 2.6
that o(8) = 79 or o(§) = 792 if 0(§) > 0 and that o(0?) = n° if ¢ is odd and
o(8?) = n/? if c is even, for some v, € K. By the Lemma 2.7 we conclude that:
(i) if b is odd, then g = ¢ divides (¢(6%),b) = (¢(5),b). Therefore g = (¢(4), b).

(ii) If b is even and o(d) > 0, then g|2(¢(6),b). Therefore g = (¢(6),b) or g =
26(5),b).
(iii) In all cases, c divides 2¢(6?) = 4¢(|d]); hence c|4(¢(|d]), D). O

~—
~—
—~
BSE
=
(@9
~—
S
N
[
3
=
.
V>
I
-~
<
.
<
>,
fl
—
D

2.3 A relation between the ideal class group and the

units of F

Let p be an odd prime. Denote the p-Sylow subgroup of a group H by (H),.

Proposition 2.9. Let § € C and let p™ be an exponent of (Cr),. If C € (Cr),,
Q € P(C,p"), then A = \q = ZTU(D)U’l annihilates C, where the r, are the

oceG
integers of Proposition 2.3.
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Proof. By Proposition 2.3, there exists an ideal class Dy such that DY H o (C) =

oeG
1. Since all conjugates of C belong to (Cr),, we have that Dg)’ € (Cp)p. Then
Dg € (Cp), and D% = 1. Therefore C* = 1. O

Proposition 2.10. Let p™ be an exponent of (Cr),. Suppose that § € C is such that

for all 0 € G there exists an integer c,, non-divisible by p, such that
o(6) = 6% mod UL).

Let C € (Cr), be such that P(C,p™) # 0 and denote ana_l € Z|G] by w. Then

ceG
(0(8),p™)w annihilates C.
Proof. Let Q € P(C,p") and let ¢, s,7,,0 € G, be as in Proposition 2.9. Then \q =

Z 74(Q)o ! annihilates C. Let d = d(Q) be a positive integer such that § = s¢ mod
oeqG
9 (Recall that %( ~ qlz). By hypothesis, Je, € Ur such that o(§) = §%eP". Let t

be a positive integer such that ¢, = s mod Q. Then s™ = ¢(§) = §%e?" = gdeotr"t
mod Q. Hence s = s%+P"t mod gq.
Suppose 7, < dc, + p't. If g divides 577 (1 — g% tP"t=77) then sdotr"i=re = 1
mod ¢. Since ord (s mod ¢)=q-1, we have that dc, + p"t = r, mod ¢ — 1 and
also mod p", because p"|q — 1. Then C% = C* = 1, which implies that ordc,C*|go,
where gq is the greatest common divisor of p™ and all the d(Q),Q € P(C,p"), so
gow annihilates C.
Given o € GG, we have that r, = mp"+dc,. If (p, ¢,) = 1, then ord,(r,)=min(n, ord,(d)),
hence gy = ¢(6,C,p",0). By Theorem 2.8, go = (¢(9), p™) when p is odd. ]

Lemma 2.11. 3¢ € Uy such that [Up : {e* )\ € Z|G]}] < <.
Proof. 1t is enough to show that
det[In|oo;(e)[J1<ijr # 0,

for some ¢ € U, where G = {og =id, 04, - ,0.},r = #G — 1. Consider the
polynomial

f(Xa, - X)) = det[ X ) i<ij<rs
where the integers p(i,7),0 < p(i,7) < r, are defined by 0,0, = 0, and Xy =
—X;— - —X,. Let g1,--- ,&, be a fundamental system of units of F. If we had
f(ln|o1(e)],- -+ ,In|o.(e)]) = 0foralle = &}" - - - e¥, with y; € Z, then the polynomial

g(Yr,---,Y,) (Zln|01 )y, Zln|c7r £; |Y>
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would be identically zero (since g(Z") = {0} and a nonzero polynomial has a finite
number of zeros).

On the other hand, let [a;j]1<; j<, be the inverse matrix of [In|o;(¢;)|]1<i j<r. De-
fine Z; = 377, a;;. We have that Y7 Infoi(e;)|.Z; = >0 Infoy(e5)]- D04y aju =

j=1
> ket 2o nfoi(eg)age = Y Iiw = 1. Then g(Zy,---,Z,) = f(1,---,1) =
+4#G#E=2 £ (0. A contradiction. O

Proposition 2.12. Suppose that p t [F : Q]. Let p* be an exponent of (W),

1
X : G — Z; a non-trivial Dirichlet character, e, = Y Zx(a)a’l € Z,|G]| the
oceG
corresponding idempotent and p* the exact exponent of the x-component e, (W), of

(W),. Then there exists § € C such that p"™ { ¢(0) and such that
o(8) = X mod UYL, Vo € G.

Remark: Raising a number to a p-adic exponent means, when we are working

modulo p*th power, we should take an integer congruent to the exponent mod p*.

Proof. The affirmation is trivial if £ = 0; assume k£ > 1. Since (W), ~ Z/IF/C’Z/{IQIC7

we have

’ e (Up IUP
e (W) == e U jCuty ) = U )
ex(“F C/Ug)

so the elements 1 € U such that nC € e, (W), are the same as the elements n € Up
such that nbl?k € ey (ey (Z/{F/L{fék)). Therefore, for such 7, we have n?*¢ € C, for some
¢ prime to p, and

a(n) = ) mod L{I’}k.

We affirm that there exists some 71 as above such that n ¢ ugi’“. In fact, otherwise

we would have
ex(Ur /UL ) CUBJUE C (Up /UL )P,

which implies that
ex(Up /UL ) C ey Up [UR ) C - C e (Ur/Up ) =1,

That is, eX(Z/{F/L{I@k) = 1. Then, since for j > k

K . ?j o Uy g
ex(uF/ug>gex( Up U ): Up /U2

Ur/UEY ) e (U UE W

we must have that ex(uF/u;ij) =1 forall j > 1. Let Up = Jm up/ugij. For the
above equality, e, (Z//I;) =1.
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By Lemma 2.11, there exists a unit € € Up such that the group {e* : X € Z,[G]}
of Z//{; has finite index in this group. For such ¢, consider the function A — & from
Z,|G] to Up. From what we have show, its kernel is the ideal of Z,|G] generated by
ey, (X0 the trivial character). Since this kernel contains e,, we must have x = xo, a
contradiction.

Therefore there exists some 1 € Up as claimed. Let ¢ be prime to p, such that
§ = nP"¢ € C; then § satisfies the conditions of the proposition. Note that p®*t ¢ ¢(4)

since p 1 ¢(n). O

Theorem 2.13. Let p be a prime such that p { [K : Q],x : G = Z; a non-trivial
Dirichlet character, e, € Z|G] the corresponding idempotent. If p* is the exzact

exponent of e, (W),, then p® annihilates e, (Cp),.

Proof. Let p™ be an exponent of both (W), and (Cr),. For each o € G, let ¢,

be an integer such that ¢, = x(o) mod p"”. Then cha’l = (#G)e, modp".By
oeG
Proposition 2.12, 3§ € C such that p®*! { ¢(§) and such that o(§) = §¥(?) = §mod

U Vo e G.
Let C € (Cr),.- By Proposition 2.5(b), P(C,b) # 0. By Proposition 2.10,
(p(9),p™) Z coo ! annihilates C. If p**! t ¢(6), then (¢(6), p") | p?, then p? Z coo !

ceG ceG
annihilates C. Since p t #G, we have that there exists d € Z such that d#G = 1mod
p". Then p“dz c,0 ' = pe,mod p". Therefore p® annihilates e, (Cr),. ]
celG

Corollary 2.14. If FF C Q(¢,) NR, then every annihilator (in Z[G]) of (W), also

annihilates (Cr)p.

Proof. Let Z byo € Z|G] be an annihilator of (W),. Let x be a non-trivial p-adic-

oeG
valued Dirichlet character of G. Since (Z byo)ey, = Zng(a)ex, we have that
oeG oeG
Zbax(a) annihilates e, (W),. Then p*X) | Zbax(a), where p®X) is the exact
oeqG oeG

exponent of e, (W),. By Theorem 2.13, p®X) annihilates e, (Cr),, so every multiple
of it does the same.

Since F' C Q(¢p), we have that }_ e, = 1, where x runs over all p-adic-valued
Dirichlet characters of G. Then Z byo = Z byo Z ey = Z Z box(0)ey. There-

ceG ceG X X o€G

fore Z byo annihilates (Cr),. O

ceG
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2.4 Annihilators of ideal classes of prime order to
[F: Q)

In order to simplify notation, we identify elements of a given abelian group with its

class modulo a subgroup.

Proposition 2.15. Let p be any irreducible character of A with values in [F,, and

let e, be the idempotent of Z[A] associated to p, i. e.

e, = (#G) Y p(Dp(g g

geA

Then p“e, annihilates (Cr),, where p* is the exact exponent of e,(W),.

Proof. Let p™ be an exponent of both (Cr), and (W),. Let C € (Cr),. By Proposi-
tion 2.5(B), we know that P(C,p") is non-empty.
For each Q € P(C,p") choose a primitive root s modulo ¢ (the rational prime

below ) and define a function
¢ =z
onuy pZL

0 —> Z roo !

ceG

Pa (G]

where the r, are integers such that s™ = ¢(d) mod Q. The pq are well-defined
homomorphisms of Z,[G]-modules. By Proposition 2.9, we have that C*2() =1 for
c
all § € W.
Since p 1 #G, we may decompose (via Maschke’s Theorem)

F,[G] = @%FP[G]»
P
Where p runs through the irreducible (over F,) characters of G with values in

[F,.There is a corresponding decomposition (via Theorem 0.13)

Zy|G] = @ePZP[G]a

Let p be any non-trivial irreducible character of G with values in IF,; since the pq

are homomorphisms of Z,|G]-modules, we have the restriction

Z

Lo, ——— — e,——
enuk P

Pq - [G].
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Let p* = p™ be the exact exponent of e,(1V),. By the same proof of Proposition
2.12, there exists ¢ € epﬁzgn such that p®* t ¢(|d]). For such ¢, it follows from
Theorem 2.8 that ¢(d,C,p", id)= (¢(J),b) divides p®. Hence, there exists Q €
P(C,p"™) such that ¢ () # 0 mod p**!

For 9 as above let ag be minimal such that ¢ (d) #Z 0 mod p®*?, so that ay < a.
Then p~* ¢4 (6) is non-zero in e,F,[G]. Since this is irreducible ([Was] Proposition
15.5), we have that

OGOV [G] = €, [G].

Now, ﬁ is a local ring with maximal 1deal £= and residue field F,. The “_Z
module Gpp%[G] has the elements p “0¢Q(6)0,0 € G, whose images in ¢,F,[G]

form, by the above equality, a basis of this F,-vector space. By an application
of Nakayama’s Lemma (see [AM], Proposition 2.8) we have that these elements

generate e, ”Z[G] that is

p SOQ(‘S)

"
This implies that

Z /
Ve, 161 C b, 16] C image(eh) = (i)

Therefore we have that p®e, annihilates (Cp),. O
Theorem 2.16. (Thaine) If p is an odd prime and p 1 [F : Q|, then
Anngie) (W),) € Annge)((Cr)p)-

Proof. Let 6 € Z,|G] be an annihilator of (IW),; then for any character p, we have
that fe, annihilates e,(1),. Let p® be the maximal power of p dividing fe,. As in

the proof of Proposition 2.15, we find that

Z ,  Z

Oep—— 7 [G]=p Gpﬁ[G]

In particular, there exists ¢ such that 6e, = p’e,. Therefore p® annihilates e,(W),,
so that b > a,. This proves that p®|fe,; hence fe, annihilates (Cr),. Finally, since
6 is the sum, over the irreducible p, of fe, we have that 6 annihilates (Cr),.

]

Remark: The statement of the above Theorem is a consequent of a conjecture of
G. Gras|Gra|, stating that (1¥), and (Cr), have isomorphic composition series as
Z,|G]-modules. This conjecture was shown by R. Greenberg|Gre| to follow from
the Main Conjecture of Iwasawa Theory, which was proved, for odd primes, by B.
Mazur and A. Wiles]MW].



Chapter 3
The case p =2

It is not possible to prove Thaine’s Theorem for p = 2 by a modification of the
method of chapter 2. The problem consists in the fact that a fundamental unit of F'
can be a square in the 2-Hilbert class field of F'. For example, one of the two abelian
cubic fields ramified only at 19 and 37 has class number 12 and its 2-Hilbert class
field is obtained by adjoining the square roots of both (totally positive) fundamental

units.

3.1 Reduction to cyclic fields

Let F' be a real abelian number field of odd degree d = [F' : Q] and let G =Gal(F/Q)
be its Galois group. Let us choose and fix a character y : G — Zs[(y]. Let

X(x) = {rox|7 € Gal(Qa(C4)/Q2}

be the Galois orbit of y and let
1 _
=7 > D lo)ot € Zy(G]
YeX(x) o€l

be the corresponding idempotent.

Lemma 3.1. Let € e,Z,|G] satisfy 0 ¢ 2e,Zs|G]. Then there is O € e,Zs[G] such
that 00 = e,.

Proof. Since €2 = e,, we have § = e, and so 0 ¢ 2Z,[G]. Hence the reduction
0 € e,Fo[G] of 6 is nonzero. Then 0,0 € G, generate e,Fo[G] over Z,. By
an application of Nakayama’s Lemma (see |[AM] Proposition 2.8), we have that
08,0 € G, generate e,Z[G] over Zs, so there is o € Zy[G] such that aff = e,. Then
¥ = ey« satisfies the stated properties. n

28
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Since e, form a complete system of orthogonal idempotents, it is enough to show

for each character y that

Anng,(c)(ex(Ur/C)2) € Anng,(c)(ex(Cr)2) (3.1)

Having fixed the character x, let F, be the corresponding cyclic subfield of F', i.e.
Gal(F/F,) = ker x. Let Cpg,_ be the group of circular units of F. Then we have

Lemma 3.2. The following Z[G]-modules are isomorphic

ex(Ur/C)2) = ey (Ur, /Cr,)2),  ex(Cr)2 = ex(Cry)2

Lemma 3.2 gives the following equivalent form of (3.1),

Anng,q)(ex(Ur, /CF,)2) € Anng,q(ey(Cr, )2), (3.2)

If x is the trivial character, then (3.2) is obvious since Cg is trivial. Hence we need
to prove (3.2) for any nontrivial character x on G. This means to prove (3.1) just

in the special case I’ = F), # Q being cyclic and x being any injective character on

G.

3.2 Circular numbers of an abelian field

For a positive integer m let

NEm = No(en)/Frae) (1 — Gm)-

We define the group D of circular number of F' as the Z[G]-submodule of the mul-
tiplicative group F* generated by —1 and by all ng,,, where m > 1 divides the
conductor of F'. Then the group C' of cyclotomic units of F' can be show to be equal
to DNUF (see [Let]). We have the following explicit set of generators of C: it is the
Z|G)-submodule of Up generated by —1, by all ng,,, where m|condF and m is not

a prime power, and by all ;7

7, where a prime power m|condF and o € G.

3.3 Cyclic fields

Let F' be a cyclic number field of odd degree d > 1. We fix a generator v € ¢
and an injective character x : G — Zs[(4]. Let m=cond F and let us fix a positive
integer n large enough to satisfy 2" { #Cp and 2" t 4#URr/C.
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Lemma 3.3. The Zy|G]-module e, (CUE JUE") is cyclic. If m is not a prime power,
then this module is generated by the image of N, while if m is a prime power, then

it is generated by the image of 77};_,,':

Corollary 3.4. The Z[G)-module e, (CUE" JUE") is generated by the image of 0.,
where e =Y (1 —0).

Proof. If m is not a prime power, then Ng/q(nF,) = 1 and so %, = n;lﬁ’m. Since d
is odd, the image of nf, , generates the image of 7, in the module.

If m is a power of a prime p, then Ngq(1pm) = p and so nf,,,, = n#,,,p~", which is
a unit because e belongs to the augmentation ideal of Z[G]. Since (n%, )™ nF(:n V)

and d is odd, we get the statement. O]

3.4 An auxiliary field

Let us fix a prime number ¢ = 1 mod 2" such that ¢ splits completely in F.

Since ¢ is unramified in F/Q and totally ramified in Q(¢,+¢,")/Q, the fields " and
Q(¢, + Cq_l) are linearly disjoint. By Galois Theory,

Gal(F(¢ + ¢, 1)/Q(G + ¢, 1)) = Gal(F/Q)

and e = ) (1 — o) can be applied to nonzero numbers in F((, + (;'). Let

0= @(Cmq)/F Coterh) (Cq Cm)
Since g does not divide m, this is a cyclotomic unit in F'((, +Cq—1). Let us denote

L=Q(Cn+ "¢+ (q_l). A computation gives

N Q(Cmq) /L<C <m) - ﬁ )

where 8 = (n (! — ¢)(n! — ¢ Y)- Since f is real and fixed by the automorphism
of Q(Cmg) determined by Gy = G, G+ (', we have 3 € L. Hence § = k%, where

k= Nyt (B)-
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/\

Q(¢m)

\/\/

m m

\/\
\/

The norm relations satisfied by cyclotomic units give
Nerertyr(0) = Nowng) /7 (S = Gn) = Nogngyr(1 = ¢ 6m) = 1
because F' is real and ¢ splits completely in F. Hence NF(CquCq‘l)/F(”) = =41 and
Neretyr(R) = 1. (3.3)

Let B be a prime ideal of F((, + Cq_l) above ¢ and Q be the prime ideal of
F below B. Hence [] ., %B7 is the principal ideal of F(¢, + (;') generated by

(1 —¢)(1=¢, ). Since
0 = Noten)/Fcorcs (1= Gn) = Nouy/r(l = Gn)? - mod (1—¢)(1 ¢,

we have

Cmq

K* =0 =n}, mod H B, (3.4)
oeG

Let us fix a generator 7 of Gal(F(¢, + ¢;')/F). By Hilbert’s Theorem 90 and
(3.3), there exists a nonzero o € F({;+¢; ") such that a”~' = x°. Since £° is a unit,
the principal ideal («) is fixed by 7 and so there is an ideal I of F' coprime with the
conjugates of Q, whose lift (I) to F(¢, + ¢, ") satisfies

oeG
for suitable 7, € Z, because F'(¢;+(;")/F is unramified outside of the primes above
q. Taking norms gives the following equality of ideals of F’
(q 9] o~ \ro
(NF(gq+<;1)/F(O‘)) I = H(Q )" (3.5)

oeG
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Since 2" !|%* and 2" > #(Cr),, we have that the image of ngG(D‘Fl)TU in
Cr/(Cr)¥" " = (Cp), is trivial.

The fixed generator 7 of Gal(F((, + ¢, ")/ F) gives a positive integer s such that
G+ ¢ =G+

e
For any o € G, the quotient

(L=C)(X =M
the extension F'((, + C;l)/F is totally ramified at primes above ¢, the action of 7 is

. . . -1 .
is coprime with 87 . Since

trivial modulo B7 ', so

T e

(=)A= (=¢)a=¢ e (=)=

akr® _ 1
s7%  mod B .

(1 =G (L =G

« —1
Cancelling by gives s*7 = k° mod B° ", and by (3.4) we get
(1 =G =¢7h)r
sire = g2 = n%em mod %071,
which means
s =% mod Q7 (3.6)

as both sides belong to F'.

3.5 Annihilating the ideal class group

Let us choose a class in e, (Ur/CUE") of maximal order 2% and let us take any
€ € Up belonging to this class. Let us fix €, € Z[G] such that €, — e, € 2"Z,[G]. If

a > 0, then neither € nor —e% is a square in F. Since
2 < dte, (Up/CUE ) < #(Up/C)y < 2772,

we have n > a + 3.
By Corollary 3.4, there are p € Z|G] and £, € U such that

208y __ €8xp 2"
€ = NEm €1

Since igfx is not a square in Ur and n is large enough, we get that neither n°x?
nor —nx* is a 2¢*1th power in Up.

Let us choose and fix C € e,(Cr)2. By Proposition 2.6, there are infinitely many
primes ideals Q € C of absolute degree 1, lying over primes ideals ¢ = 1 mod 2"
such that n?ﬁf is not a 2¢*2th power modulo . For this ¢ and Q we can use the

results of section 3.4.
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Since —1 is not a 2"~ 'th power modulo Q, we have that 73/, is not a 2°*3th
power modulo 9 and (3.6) for o gives that s'™ is not a 2°™3th power modulo Q.
Hence 273 { 4r;, which means 2¢*1 { ;.

Let us concentrate on m =3 __.r,0"' € Z[G]. Let
b=max{j € Z|277 € Z|G]} > 0.

As 2%t § ) we have b < a. Lemma 3.1 for § = 277 gives ¥ € Z,[G] such that
09 = e,, so ) = 2%,. Since we have obtained in (3.5) that the image of Q™ in

(Cr)2 is trivial, we have that
e = =1 (3.7)

in (CF)Q
Let § € Z,[G] be any annihilator of e, (Up/C)z. Since 2" { 4#Up/C, we have
that e, (Ur/C)a = e, (Ur/CUE"), so B is an annihilator of e, (Up/CUE"). Let

c=max{j € Z|277e, 3 € Zy|G]} > 0.

Lemma 3.1 for § = 2 %, gives © € Z[G] such that #O = e,, and so we have
e, 30 = 2%,. Then 2¢ is an annihilator of e, (Ur/CUZ"). Since 2¢ annihilates also
the class of e, which is of order 2% in e, (Ur/CUF" ), we have ¢ > a, so ¢ > b. Then
(3.7) gives CP® = C** = 1 in (Cp )z, which implies C* = CPex = CP% = 1 in (Cp),.
This proves Theorem 2.16 for p = 2.
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An application: Catalan’s Conjecture

4.1 An outline of the proof

Catalan’s conjecture predicts that 8 and 9 are the only consecutive perfect powers,

i. e. that there are no solutions of the diophantine equation
P —y?=1 (r>0,y>0, p,qdifferent primes)

other then 2P = 32 ¢7 = 23,
The case of ¢ = 2 was solved in 1850 by V.A. Lebesgue |Leb|. For p = 2, Chao
Ko [Ko| gave a proof in 1964. So we can consider p and ¢ odd primes.

Rewrite the diophantine equation as

P —1

—1 = .
(e-1)——F =¥

By considering the identity 2 = ((x—1)41)?, we find that there are two possibilities
for the ged of the two factors on the left hand side: it is either 1 or p. This leads to
case I and case II of the problem, respectively.

In case I, when the gcd equals 1, we obtain the equations

r_1
r—1=al, fc—l:bq’ y =ab

where a and b are coprime and not divisible by p. In 1960, J.W.S. Cassels [Cas]
showed that these equations yield a contradiction.

This means that we are left with case II. In particular, one of the two numbers
P —1

r—1 and contains p just in the first power. But this number cannot be x —1,
x —_

since in that case 2”7 — 1 would only be divisible by p?. Then we have the equations

r_1
* =pb?, y = pab, (4.1)

x—1=p g9
p ) 1

34
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where again a and b are coprime and p does not divide b (but p may divide a).

Analogous equations follow from the factorization of xP into the product of y + 1

T+ 1
Y +1 . In particular, y is divisible by p and x is divisible by gq.

and

Combining equation (4.1) with the observation

p—1

p=[l0-¢,

k=1

we obtain the equation
p—1
T — (Ikg

H1_g;;_bq‘

k=1

Write z — () = (#—1)+ (1 —¢}) and notice that = —1 was found to be divisible by p.
o _ o —

T ?Z are in Z[(,). The principal ideals <1 — CIZ

p P

pairwise coprime. Hence each of them is a g-th power of some ideal. In particular,

z =
p = J?
(=e) ="

where J is a nonzero ideal of Z[(,]. The same is true for the complex conjugate

It follows that the quotients > are

ideal, and multiplying these ideals we get

<($ — ()T —
(1=¢)(1 =

an equation between real ideals. In particular, the ideal class of J.J has order ¢ or
1in Cp, where F = Q(¢,) NR. Then JJ € (Ur),.

In order to use Thaine’s theorem we need to enlarge the group of cyclotomic

)
Gt

> = (JJ)! (4.2)

units defined in chapter 2. Consider the units

sin(in/p) G =G (1=2. - m), wherem=2=1

sin(m/p) /2 — ¢ 2

Together with —1 these units generate a subgroup of Up of finite index. Denote it
by U. We have that [U : C] = 2™~ (cf. [Let]). This difference does not matter here
(since q is odd) and will be ignored in the sequel.

Let G=Gal(F/Q) = {01, -+ , 0} and consider 0 € Z[G] annihilator of Ur/C, so
that U C C. Then Thaine’s theorem implies (as will be shown in the next section)
that 6 annihilates (Cr),. By (4.2), it follows that

-G-GO
((1—<p><1—<p—1>> =€ (43)




Chapter 4. An application: Catalan’s Conjecture 36

where ¢ € Up and v € F'*. Since v is unknown anyway, it is sufficient to consider ¢,
and the units related to it, up to a factor which is a gth power in F*. Since £’ € C,
the unit € in (4.3) can itself be assumed to be in C' (We will prove this step in the
next section).

A trivial but important choice for § above is the norm map N = ) o, or an
integral multiple of it. Indeed, the norm of any unit is =1. For a suitable r» € Z, we
have ((1—()(1—¢,1))?™ € U, and (4.3) then implies that

(2= Gl =)™ en(F )1, ned, (4.4)

Since z = 0 mod ¢?, we find that n = 1 mod ¢* (1 up to a gth power). The cyclotomic
units satisfying this condition are called ¢-primary, they constitute a subgroup of C
denoted by C,.

Let ¥ € Z|G] be a annihilator of C,. It follows from (4.4) that

((z = Gl = ¢ )" e (F)° (4.5)
Now we consider P. Mihailescu’s [Mih] key theorem in his proof of case II,

Theorem 4.1. Assume that 0 = > n.o. € Z[G] and ((x—¢,)(x—¢, 1)) € (F*)2.
If 57" n.=0 mod g, then each n. is divisible by q.

By Theorem 4.1, 69 — r N = qw, where w € Z[G].

Turning now to the group Up we find that every unit ¢ € U satisfies the condition

09 __ _rN+qw

e —¢ N — 1.

=€
Recalling that € € C, this suggests that ¢ in fact annihilates more of C' than C,, in
this way forcing C, to be equal to C'(We will prove it in the next section). Thus we
have that all cyclotomic units should be g-primary. We will see in the last section

that it is impossible.

4.2 Annihilators

As stated in the first section, it is sufficient to replace a unit € € Up by its coset
el} in the group Ur/UE. When a map 0 = > _n.o. € Z|G] operates on the latter
group, it is not the coefficients n. that matter but just their residues modulo g¢.
Thus 0 = ) _n.o. € Fj[G] and the group Up /U}. becomes a cyclic module over the
ring R =F,[G].
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Define
Ay = Am(Up/CUL), Ay = Ann(CUL/CUL), Az = Ann(CUL/UL).

These are ideals of R annihilating cyclic R-modules.
Every cyclic R-module M is (non-canonically) isomorphic to R/Ann(M). This
isomorphism plus some information about the ideals of R enables one to conclude

that the ideals A, Ay, A3 are pairwise coprime and
A1 AsAs = Ann(Up/U}) = RN,

the principal ideal generated by the norm. Here the second equality follows from
the cyclicity of Ur /U}.

Every ideal I of R is idempotent, thus an element of I can always be written
as a product of any number of elements of I. This is a convenient property of
annihilators.

Let us show that every 6§ € A, annihilates (Cr),. Write § = 6, ---6,, where
0; € Ay and z = ord,#(Up/C),. By the definition of Ay, we have Uy’ C CU% and
so UL C CUL . Now let eC € (Up/C),. Then € = ne?” with n € C ey € Up,e,C €
Ur/C),. Tt follows that C' = (£,C)9" = C. Consequently, 6 annihilates the group
(Ur/C),, and the assertion is a consequence of Thaine’s theorem.

Look at the equation (4.3) for 8 € A;. Write 6 = 6,05 with 61,605 in A;. Then

the second hand side of (4.3) assumes the form

(e17])™ = e (N*)" = e,
where 1 € Up,e9 € C, and v1,7 € F*. Hence the unit € in (4.3) can be chosen
from C' as claimed.
Once the reasoning outlined in the first section is carried through in a precise

form, the relation corresponding to (4.5) says that

((z =)z = ¢ e (FX)1
for any 0, € A; and 03 € Az, where r € F, is so chosen that the map 6,03 —
rN = ) _n.o. satisfies the condition ) n., = 0. Theorem 4.1 then tells us that
0105 — rN = 0. Consequently, AjA3 C RN. Noting that RN = A;A;A; and
Ay, Ay, Az are pairwise coprime, we deduce that Ay = (1). Then C' = C,,.

4.3 A contradiction

The equality €' = C, means that every cyclotomic unit in F, when regarded

modulo ¢, is the gth power of some nonzero integer of F.
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We will need the notion of cyclotomic units in the whole field Q(¢,). In this
field, these units make up a subgroup Cj of Z[(,]* generated by C and (,. Since
Cp = C;fq, where d is the inverse modulo p of ¢, we now have that all units in Cy are

qth powers modulo ¢?.

1— (%
In particular, so is the unit 1+ (! = ] gq . This gives us a congruence of
— 5p

the form 1 + ¢! = 7? mod ¢®. A well-know property of binomial coefficients then
implies that (1 + (,)? = n? mod ¢. By means of the Rule of Lifting the Exponent
we therefore obtain

(1+¢)"=1+ ¢ mod 7.

Hence the polynomial

1
f(r) = E((l +T)1—1-T19) € Z[T)]
has ¢, as a zero modulo ¢, and also its conjugates C;f, k=1,---,p—1. Consider f(T)

as a polynomial over the field Z[(,]/Q, where 9 is a prime ideal factor of < ¢ >.
Since this polynomial has p — 1 distinct zeros, its degree ¢ — 1 is at least p — 1. The
primes p and ¢ are assumed different, so that we must have ¢ > p. But p and ¢ can
be interchanged, so the above inequality cannot be true.

For more details, see [Met| or [Sch].
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