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Abstract

In this thesis, we prove theorems that relate some units of an abelian num-
ber with annihilators of its class group. In first part we prove Thaine’s
Theorem and in the second part we prove a more general result from Ru-
bin.

Keywords: Algebraic Number Theory, Number Field, Class Field, Class

Group, annihilators.



Resumo

Nesta dissertacdo nés provamos teoremas que relacionam determinadas
unidades de corpos de nimeros abelianos com os anuladores de seu grupo
de classe. Na primeira parte provamos o Teorema de Thaine e na segunda
parte provamos um resultado mais genérico devido ao Rubin.
Palavras-chaves: Teoria Algebrica dos Ntumeros, Corpos de Ntumeros,

Corpos de Classe, Grupo de Classe, anuladores.
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Introduction

Given a number field K, we have an important structure associated with
K, its ideal class group CI(K). The ideal class group is defined as quotient
group of fractional ideals of Oy, over its principal ideals. Therefore, to find
annihilators for class group is to study how a fractional ideals become
principal ideals.

A basic result from Algebraic Number Theory states that K is a unique
factorization domain if, and only if, the cardinality of C L(K) is one. This
result illustrates some of the importance of this kind of annihilators.

An important result about annihilators of class group is known as Stick-
elberger’s Theorem and states:

Let F' be an abelian number field. Then, the Stickelberger’s ideal of F annihi-
lates the class group of F, where the Stickelberger’s Ideal is Z|G] N 0Z|G] with
G=Ga(F/Q)and 0 =3, . {mto,’

In 1988, Thaine created a method to create annihilators of the class
group of real abelian number fields from cyclotomic units. For exam-
ple, an elementary proof of the following theorem, that is now known as
Thaine’s Theorem, is obtained by his method.

Let p be an odd prime number, and Q((,)" the real subfield of Q((,). Let
U, Ueye and A the global units, cyclotomic units and the p-part of the ideal class
group, respectively, of Q((,)*. Then, for any non-trivial even Dirichlet character
x modulo p, |(U /Ueyet)X| annihilates AX.

In this thesis, we prove Thaine’s theorem and study the generalization
of Thaine’s method presented by Rubin in his paper Global units and ideal
class groups.

The application of the results presented in this thesis allow us to deter-



mine the order of the Shafarevic-Tate Group. This result is very deep and
strong, and is showed in the paper “Tate-Shafarevich groups and L-functions
of elliptic curves with complex multiplication”. However, it is beyond the
scope of this thesis.

This thesis is organized in 3 chapters.

In the first chapter, we review number theory and algebra.

In the second chapter, we prove Thaine’s theorem with Thaine’s method.

In the third chapter, we fix notation and state the main theorem. In the
second section, we use Kummer Theory to obtain lemmas that are very
useful. In the third, fourth and sixth sections, we apply our main result in
a different context. Finally, in section 5, we give a complete proof of our

main theorem.



Chapter 1

Brief Review

This section is a quick review of some concepts and results that will be

useful in this thesis.

1.1 Basic Algebraic Number Theory
Every theorem and its proof can be found in any book of Algebraic Num-
ber Theory e.g. [3] or [4].

Definition 1. We define a number field as a finite field extension of Q. In
particular, an abelian number field F'is a number field such that Gal(F'/Q)

is abelian.

Definition 2. Let K be a number field. We define O the set of z € K such
that x is a root of some monic polynomial of Z[X]. This set is well-known

to be a ring which is called the ring of integers of K
Theorem 1. Oy is a Dedekind domain.
Proof. See[4], theorem 14, page 56 O

Remark: 1. Dedekind domain is an integral domain that is noetherian,

every prime is maximal and integrally closed.

In consequence, we have:
Corollary 2. Every ideal of O has a unique decomposition in prime ideals.

Proof. (See[4], theorem 16, page 59) O



This corollary is very important, because if we lose unique factoriza-
tion by number, we receive information about ideals.

From algebra, we have that:

Proposition 3. A Dedekind domain R is a unique factorization domain < R is

a principal domain.
Proof. See[4], theorem 18, page 62. O

Let P be a prime in Ok and let F' be a finite field extension of K. Sup-
pose that P splits in F'as POr = [[", Q;*. By the corollary, this decom-
position is unique. Then we said that (); is a prime lying above P. Of
course, P is prime above some rational prime, i.e., P N Z = p for some

prime number p.

Definition 3. In the same situation as above, we say that P ramifies in F,
if any of e; is bigger than 1. Otherwise, we say that P is unramified. In

addition, we define the ramification degree ¢(Q;|P) = e;.
Definition 4. We also define the inertia degree of (); thatis f; = [Or/Q; : Ok/P).

This definition makes sense since Or/Q); is a finite extension of O /P
and both are finite fields with characteristic p = PN Z.
We also say that P splits completely if e; = f; = 1 for all «.

Proposition 4. Suppose that F'/K is a Galois extension of number fields. The
Galois group G = Gal(F/K) acts transitively on the set of all prime ideal ();

lying above P, i.e., these prime ideals are conjugates of each other.
Proof. See[4], theorem 23, page 70 O

Theorem 5. If F// K is Galois extension of number fields and let P be a prime of
Oxand P =1]7_, Q7 in Op, then [K : L] =n=>"7_ e f:

Proof. See[4], theorem 21, page 65 O

Definition 5. Let K be a number field of degree n over Q. Let {b1, ..., b,}
be a basis of O as Z — module. Then we define disc(K/Q) = (det(o;(b;)))?

We have a great information about what primes ramify in some exten-

sion.



Theorem 6. Let p be a prime number. Then p ramifies in K/Q <= p |
disc(K/Q).
Proof. See[4], theorem 24, page 72. O

Definition 6. If ) € O and Q N O = P, we define the norm of () as
Nr/x(Q) = P/(@/P). This norm is multiplicative, so we can extend for

arbitrary ideals. Furthermore, Nr/x = Ng/x © Np/g.
Definition 7. We define the decomposition group of P € O over K as
Go ={0 € Glo(Q) = Q}

The fixed field associated with G is called the decomposition field
Zg.

We conclude immediately that if () is lying above P, then:
1. Go ={ld} < Zg=F <= Pis totally split.
2. Gg =G < Zg={ld} < P isnonsplit.

We also have that if 0 € G, then o acts on Fy = Op/Q fixing Fp =

Ok /P, where () lies over P. Actually, we have this strong proposition:

Proposition 7. The homomorphism Go — Gal(Fq/Fp) is surjective. Also, the

extension Fq /F p is normal.
Proof. See[3] proposition 9.4, page 56. O

Definition 8. We define the kernel of the homomorphism Gg — Gal(Fgo/Fp)
is called the Inertia group, and its associated fixed field is called inertia
field.

We have the following exact sequence:
1 —=1Ip— Gg— Gal(Fg/Fp) — 1
Observe that if G = Gal(Fg/Fp), then e(Q/P) = 1 and G, is cyclic
with order f.

Definition 9. In this case, we called the generator of G, the Frobenius
element at Q).

We denote o = (+2-) = (Q, F/K).

F/K
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Proposition 8. The Frobenius element at () is the unique element of Gal(F/K)
that satisfies (o) = o™ mod Q Va € O.

Proof. Suppose that o(a) = o7 mod Q Va € Ok, then ¢(Q) C Q =
0(Q) =Q .. 0 € Gg. By isomorphism, we have the result. O

Proposition 9. If Gal(F/K) is abelian, then the Frobenius map (F%) depends
only of P.

Proof. Suppose that @ and @’ are prime ideals lying above P. Then write
o and ¢’ for their respective Frobenius maps. By proposition 4, there is 7
such that 7(Q) = 7(Q’).

Now 7(c(a)) = 7(a?) = 7(a)V mod @’

But Gal(F/K) is abelian. Then, we have that o7 = 70. It implies in
o(t(a)) = 7(a)M mod Q'

However, 7 is bijective, then o(a) = o Va € Op. O

Theorem 10. Let K /L be an abelian extension. We define L'e to be the inertial
field and LP< to be the decomposition field. Then, P splits completely in LP /L.
The primes above P remain inert in L'/ LP and totally ramify in K/L.

Proof. See [4], theorem 28, page 100. O

Definition 10. A fractional ideal of Oy is a Og-submodule I such that

dI = {dm|m € I} is contained in O for some d € K.

Proposition 11. The set of fractional ideals of Ok, 1d(K), is a free abelian group

on the set of nonzero prime ideals.
Proof. See[4], theorem 3.20, page 53. O

Definition 11. We define the class group of K, CI(K), as the quotient
group [d(K)/P(K), where P(K) is the group of principal ideals.

Theorem 12. If K is a number field, then |C1(K)| is finite
Proof. See[3], theorem 6.3, page 36. O

From Proposition 3, we have that O is UFD <= |CIl(K)| = 1. Then,
in some sense, the size of class group measures what is the distance of the

ring of integers from being a unique factorization domain.
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The following sequence is exact:
1 — 0 — K"— P(K) — ClI(K) —1

Remark: 2. Actually, the Class Group of some number field K is the Picard
Group of Ok. The Picard Group is a more generic definition than the

Class Group.

Remember that if G is a finitely generated abelian group, then G =
Giors @ Z' for some ¢t where G is the finite group of torsion elements and ¢

is called the rank of G.

Theorem 13. (Dirichlet’s Unit Theorem) The groups of units in a number field
K is finitely generated with rank equal to r 4+ s — 1 where r is the number of
real embedding of a number field K and 2s is the number of non-real complex

embeddings.
Proof. See [4] theorem 38, page 142. O

Definition 12. A Dirichlet series is any serie with the following form

f(s) = Ziil (:L_n

These series have many properties. One important particular cases is
the Riemann Zeta function ((s) = L.

We are more interested in Dedekind Zeta Function. Let K be an alge-
braic number field and 7 vary through the nonzero integral ideals. The

Dedekind Zeta Function of K is

Ck(s) = ZI #
Definition 13. Let S be any set of primes. If

Zpespis _
log(s&5) 0

limg_,1+

exists, then we call § the Dirichlet density of S. It’s clear that a finite
set has density 0.

One important theorem that will be useful for us is

12



Theorem 14. (Chebotarev Density Theorem). Let K C L be galois extension,
and let C C G = Gal(L/K) bea conjugacy class. Then{I : I a prime of K, 11
disc(L/K),o; = oFrobio~" € C} has Dirichlet density |C|/|G|.

Proof. See [3],theorem 13.4, page 545 O

Corollary 15. Let L/ K be Galois. Define S = {P € Ok|P splits completely in L/K}.
Then 5(S) 1

= [L:K]

1.2 Class Field Theory

Class Field Theory provides many important results, especially a descrip-
tion of abelian extensions. In this section, we will see some of these re-

sults.

Definition 14. Let o be an element of some number field K. If o(a) > 0
for every real embedding o, we say that « is totally positive and write

a >> 0.

Definition 15. We define P, as the subgroup of Pr generated by {(a)|a €
Ok,a = 1 mod p} where p is a non-zero ideal of Ok. In fact, we can
define P, = {{a)|a =1 mod Prer® vP|u}

Another important set is I (1) = {m € Id(K)|ord,m =0 VP | u},
where Id(K) is the set of integral ideals of K.

Definition 16. We define the ray class group of K for pasRp, = Ir(1)/ Pk -

For example, the ray class group for Q and p = (Z/nZ) is isomorphic
to (Z/mZ)/{£1}

Definition 17. Let K /F be Galois extension and 1 be an integral ideal of
Or and let H be a subgroup of Ir-(y) such that P, < H < Ip(u).

We say that K is the class field over F' of H if the set of prime ideals
that splits completely in K /F differs of primes ideals in H by a set with

Dirichlet density zero.

Theorem 16. If the class field K of H exists, then it is unique.

13



Proof. We know that 67 (Sk/r) = 725-
Define K = K; K, where K; and K, are two classes fields for H.
Now, we have that Sx/r = Sk, /r} N Sk,yr = {P € H}.
Then, [K; : F| = [Ky: F] = [K : F] O

We state the following results without proofs.

Theorem 17. For any H, with P;f . < M < Ip(p), there is a class field K

associated to H
Proof. See [15], theorem 2.7, page 245. O

Theorem 18. For any abelian extension K /F, there is some jw and some H such

that K is the class field over F' of H.
Proof. O

One important theorem that can be prove using class field is the Kronecker-

Weber theorem:

Theorem 19. (Kronecker-Weber) If K is abelian number field, then exist m such
that K C Q((n)-

Proof. See [15], theorem 3.8, page 153. O

Definition 18. Let K be an abelian number field. The maximal unramified

abelian extension of K is called the Hilbert Class Field of K.

Theorem 20. If H is the Hilbert Class Field of K, then Gal(H/K) = Cl(K).
In particular, |CI(K)| = |Gal(H/K)| and the maximal unramified abelian

extension is a finite extension.
In fact, this theorem is the consequence of more a general theorem:

Theorem 21. If F is the Class Field over K of H and P < H < Ir,, then
Gal(F/K) = I () /H.

Proof. The proof follows from one the major results in Algebraic Number

Theory that is Artin Reciprocity [

14



Theorem 22. (Artin Reciprocity) Let K/F be an abelian extension of number
fields, and assume yi is an ideal of Op, divisible by all the ramifying primes. Let
G = Gal(K/F). Then

1. A:Ip(u) — G given by Q — (KL/F) is surjective.

2. the ideal 1 of Op can be chosen so that is divisible only by the ramified
primes and satisfies P, C ker(A)

3. Ngsp(p) C ker A, where Ng p(p) = {I € Ip(n)|I = Ngp(U),U €
Idg ).

1.3 Representation Theory

Definition 19. Let G be a group and R a ring. We define the elements
of R|G] as the formal sum ) r,g = o, where r, are elements of R and g
elements of G.

In this set, we define a sum of two elements as (3 r,9) + (3>_759) =
> (15 +14)g. And their product (3 749).(>_79") = > rery g9’

With these operators, we call R[G] the group ring of G over R. If R is

commutative, R[G] is also called group algebra of G over R.

Definition 20. The homomorphism: f : R[G] — Rgivenby > r,g+— > r,
is called the augmentation map and its kernel is called the augmentation

ideal.
Proposition 23. The set {g — 1|g # 1 € G} generates the augmentation ideal.

Proof. If &« = > r,g € ker(f), then > r, = 0. Therefore, « — 0 = ) r,g —
dorg=2_14(g—1).
On the other hand, is clear that all o generated by this set is contained

in the augmentation ideal. O

Definition 21. Let G be a group , R a commutative ring and V' a free R-
module of finite rank. A representation of G is a group homomorphism
p: G — GL(V), where GL(V) is the set of invertible matrices with entries
in V. The rank of V' is called the degree of the representation p. In our

case, we consider V' a finite-dimensional vector space.
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Definition 22. Let p : G — GL(V) be a linear representation. p is irre-
ducible if V' is not 0 and V' has no submodule stable under ¢G. In other
words, there isnota W C V such that p,(W) = W forall g € G. Of course

any one-dimensional representation is irreducible.

Definition 23. Let V. = W @ W’ be a decomposition of V. The map p
which sends each = € V to its components w € W is called projection of

V onto W.

Theorem 24. Let p : G — GL(V) be a linear representation of a finite group
G in V and let W be a vector subspace of V' stable under G. Then there exists a
complement W° of W in V which is stable under G.

Proof. Let W' be an arbitrary complement of W in V' and let p be the pro-
jection of V into W.

Define p° = ﬁ > pgppy

Let z € W. p, preserves I, and as p,'(z) € W, we see p(p, ' (z)) =
Py (x), pppg*(x) = z and p°z = .

Thus p° is a projection of V onto W corresponding to some complement

WO of W. Furthermore, p,p = pp,.

Now, pgp’p;" = & Xsec PopsPPy ' pit =P’
0

If 2 € WYand g € G, we have p’z = 0 and p°p,(z) = p,p’z = 0.
Therefore, p,(z) € WP. It means that W is stable under G. O

Theorem 25. Every representation of finite group is a direct sum of irreducible

representations.

Proof. We give a proof with G finite. If dim V' = 0, the theorem is obvious.
Suppose dim(V') > 1. If V' is irreducible, the we are done.

If V is reducible: By the last theorem, we can write V' = W & W’ where
dim(W) < n — 1 and dim(W’) < n — 1, then we apply the induction
hypothesis. O

Corollary 26. Every representation of a finite group G over a field F with charac-

teristic not dividing the order of G is a direct sum of irreducible representations.

16



The next theorem will allow us to for each decomposition into irre-
ducible over a finite field with characteristic p to find a correspondent

decomposition in Z,,.

Theorem 27. Let A = A/N, where N is a two-side ideal of A contained in
radical of A. Assume that either

1. A s left artinian or

2. Ais an R-algebra, finitely generated as R-module, where R is a commuta-

tive complete local noetherian ring.

Then A is complete in the N-adic topology and each decomposition A = Ae;®
... ® Ae, into indecomposable left ideals {Ae;}7_, of A yelds a decomposition
A=4e1 ® ... ® Ae,

Conversely, each such decomposition of A comes from a decomposition of A.

Furthermore, Ae; = Ae; +—= Ae; = Ag;
Proof. See [9] Theorem 6.8, page 124. O

Definition 24. Let p : G — GL(V) be a linear representation of finite
group G and V finite-dimensional vector space. For each o € G, we define

Xo(0) =Tr(p(g)). x, is called character of the representation p.

17



Chapter 2

Thaine’s Method

Thaine’s method shows a relation between the group of units and the
ideal class group of real abelian number fields.

Other results, such as Stickelberger’s Theorem, do not give specific in-
formation about annihilators of totally real abelian fields.

Since we want to show a relation between certain units and the ideal

class group, we begin with definition related with units.
Definition 25. C;(X) = {f(X) = £ [, [I15 (X7 =k )@
K(X) and f(1)€ O} =FE}

C = Ux,C(1) is defined as circular units. Sinnot in [16] defines also

A € Z,f(X) €

circular, but his definition is different, however Gunter Lettil in [5] proved
that these sets are equal. Also, Sinnot proves that this set has finite index
in the group of units. Furthermore, since Ok is noetherian, there exists [

such that C' = U!_,

The aim of this chapter is to prove the following theorem:

Let K be a real abelian field and E its unit group, C' its group of circular
units, CI(K) its class field group. Let p be a prime such that p { [K : Q|. Define
W =E/C. Let (W), and (Cl(K)), be the p-sylow subgroups of these groups. If
0 € Z|Gal(K/Q)] is such that 6 annihilates (W), then 20 annihilates (Cl(K)),.

18



2.1 Obtaining principal ideals

In the rest of this chapter, we will consider K to be a real abelian number
field. C,![ as in the previous section. Let ¢ be a prime such that ¢ > [
and ¢ splits completely in K. We define L = K((,). We will denote G =
Gal(L/K). When necessary some order in K we will fix some embedding
of K into R and |z| = sup{z, —z}.

By the Kronecker-Weber theorem, we have that exists a minimal m € Z

such that K C Q((n)-

Proposition 28. If f(X) € C)(X) then N/1(f(()) = 1.

Proof. Nijx(f(Ge)) = Noyre (T TR (G — Gh)e)-

From Galois Theory, we know that Gal(L/K) ~ Gal(Q((,)/Q).

In the order hand, ¢ 1 m since ¢ splits completely in K, so (m,q) =
1, where (m, ¢) means the greatest common divisor of m and ¢. Then,
Gal(Q(Cmg)/ L) = Gal(Q(Gn)/ K) and Gal(Q(Gmg) /Q(Gm) ~ Gal(Q(¢,)/Q)-

Neyie(f(6)) = T TR Notua/atenn(Gi=Gh)e) = Tz TS (28 ) =
fymt

o, is the Frobenius map for ¢ in Gal(Q((,)/Q). Since ¢ splits com-
pletely, then o,/ is identity. Thus, we have the result. O

Let Q € K be a prime above g and B the only above () in L.
Proposition 29. If f(X) € Cy(X), then there is o # 0 € L such that T7(a) =
(&) In addition, for any such element o, we have that

()=1 [ o'®B)" 2.1)

o€Gal(L/Q(¢q))
where I is the lift of some ideal of K prime to q and r, € Z.

Moreover, s = o(f(1)) mod @, where s is some primitive root of Z/qZ.

Proof. We know from Hilbert’s Theorem 90 that if « is such that N(a) =1
and Gal(A/B) is cyclic generated by 7, then a = @ for some 5 € A.
Applying to the last proposition, we have that there is « such that o(a) =

f(¢g)a
Since f((,) is an unit, then (7(«)) = (). Thus the ideal generated by «

is fixed by Gal(L/K). We can conclude as desired.
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Now, we define v = = Note that we have (G101 = 1, ecur/oe,
Then, if v is the valuation associated with B, we have that v(v) = 0. Thus,
there are \, u € Oy, with both non-divisible by ¢~!(B) such that v = ﬁ

Note that Gal(K(¢,)/K) is cyclic. Let 7 be the generator of Gal(L/K)
and ¢ € Gal(L/Q(¢,)). Then we have that 7(\) = X and 7(u) = u
mod o~ (B).

a =7 — 1" = 7(a) = 7(7)(¢; — 1), where s is some primitive
root of Z/qZ, but 7(a) = f(¢)a. Then, f(()a = 7(7)(¢; — 1) = (¢ —
1) f(¢q) = 7(0)(¢GG = D).

Therefore, 5=y = (31 )7(y) = f(C)7 = f(1)y mod o~ '(B).

Cg—1
Concluding that s = o(f(1)) mod B andsince f(1) € K also mod Q.
L
It implies that
Nyg(e)=1" J[ o'@ (2.2)
oceGal(K/Q)

Definition 26. Let b be a positive integer and let C be an ideal class of K,
we define P(C, b) as the set of primes () € C above rational primes ¢ such

that ¢ splits completely in K and ¢ =1 mod b.

Proposition 30. Let f(X) € C)(X), 6 = f(1) € C and o € G. Then for each
Q € P(C,b) exists B € Z such that o(5) = 3, mod Q where g is completely
defined by o(9) and b.

Proof. By the last results, if P(C, b) is nonempty, then for each () € P(C,b)
exists Rq such that R} [, .. 0-1(@)7«? is principal and sg? =o(J) mod Q
for some primitive root of Z/qZ. Let g be the greatest common divisor of

band r?, and define 3o = Sgg/ 9. O

So we want that P(C,b) # (), because with this condition we have a
way to obtain a principal ideal. The next proposition gives a condition for

it happens.

Proposition 31. Fix an embedding of K into R. Let H be the Hilbert Class
Field of K. Define ¢ € Gal(H/K) the homomorphism corresponding to C by

20
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the isomorphism map between Gal(H/K) and CI(K). Then, P(C,b) # 0 <
restriction of ¢ to K((,) N H is identity map.

Proof. = If Q € P(C,b) # (. We have that Q splits completely in K ()
since ¢ = 1 mod b. Furthermore, ¢ is the frobenius map for ), then the
restriction to K () N H is identity.

(<) J = K({) N H. We have that ¢|; = Id, then we can extend ¢
to automorphism ¢’ of H((,) ¢ where ¢'((;) = (. We know that there
are infinitely many prime ideals P of H((,) that are unramified over Q
and P N Z # 2 such that the Frobenius map ¢p for H((,)/K(() is ¢’ and
P" € K((») below P has absolute degree 1(Ok,)/P" = Z/qZ). For each
P, op|lp = ¢ is the Frobenius map for ) = P N Ok. Then € C. Since
P is unramified over Q, then () is unramified. Therefore ¢ = QQ N 7Z is

congruent to 1 modulus b. It implies that () € P(C,b). O
Corollary 32. If P(C,b) # 0. Then this set is an infinite set.

Corollary 33. If K is abelian and the order of C is prime to [K : Q|, then P(C, b)

is nonempty.

Proof. We define J = K((,) N H. J is abelian over Q and unramified over
K. Ifp|[J: K],butpt[K : Q) then there is unramified extension of Q
with degree p, which it is impossible. Therefore, if C is prime to [K : Q],
then it is prime to [J : Q]. Since the order of ¢ is equal to the order of C,

we have that p; = Id. Now, it follows from the proposition. O

Corollary 34. If K C Q((,r) and b = p™ with r, n positive integers, then P(C, b)

is nonempty.

Proof. When this condition is satisfied, we have that K () C Q((pn+r).
Hence J = K((,) N H is totally ramified and unramified over K,so J = K.
Thus, ¢|; = Id. Now, we apply the proposition. O

2.2 Annihilators of ideals classes

With these results, we can find annihilators under some conditions.
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Equation (2.2) implies that for all ) € P(C,b) exists Dg € CI(K) such
that
Dy [[e @)@ =1 (2.3)

oeG

Theorem 35. Let p™ be an exponent of (CI(K)),. If C € (Cl(K)), Q €
P(C,p") and r, = 1,(Q), 0 € G, then X = \g = Y., r,(Q)o~" annihilates
C.

Proof. Note that p" | ¢ — 1. C € (CI(K)), = C?" = 1. Then (2.3) holds for
b =p". (Cl(K)), is closed under conjugation, then D’g; € (Cl(K)),. So,
Dg € (Clk),, thus Dgn = 1. Therefore C* = 1. O

By the last corollaries in the last section, we have that P(C, p") is nonempty
whenever p { [K : Q] or K C Q({,r). Then, in these cases we found anni-

hilators for C.

Definition 27. g = g(6,C,b,0), g is the greatest common divisor between

b and all 7,(Q). Note that this is the same g that is used in proposition 25.

Proposition 36. Suppose that P(C, b) is nonempty. Let v € O and ¢ > 0,c¢ | b.
For almost every Q € P(C,b) there exists 3 € Ok such that v = 35 mod Q.
Then v = 3¢ if c is odd and v = 3/ if ¢ is even, for some 3 € Ok.

Proof. Let 2 = /¢ be the positive c-th root of 7. Consider L the galois
closure of K(z) over K. Then, L is the splitting field of the minimal poly-
nomial of z over K, p(x). Then p(x)|X¢ — . Thus, L = K(z, ().

Claim: It’s enough to prove that L C H((,), where H is the Hilbert
Class Field of K.

Proof: Suppose that this condition holds. Then, L/K and K(z)/K are
abelian. So they are normal. K(z) = L, then (; need to be real, (; = £1.
Thus p(z) = X — zorp(z) = X? — 2%

So, now we will prove that L C H(()

Let @ € P(C, b) be such that () does not divide v and does not belong to
the finite set of prime ideals that are exceptions, then (@) splits completely
in K(z), because p(X) reduced modulo @ splits completely over O /Q

and (@) does not divide the discriminant of z over K.
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Define M = LH((;) and ¢ € Gal(H/K) corresponding to C. By the hy-
pothesis and other propositions, we know that ¢|x(,)nz = Id. Therefore,
we can extend ¢ to automorphism ¢ of M such that ¢(¢;) = (p.

Now consider f € pGal(M/H((,)). We know that there are infinitely
primes P € M such that P is unramified and do not divide 2, such that
P" = PN Ok, has inertia degree 1 and frobenius map at P,¢p, for
M/K(G)is f.

Therefore, we have that ¢p|y = f|g = ¢ is the Frobenius map for
Q) = P N Ok with respect to H/K. Thus, () € C. We have that P’ is
unramified and absolute degree 1, hence Y NZ = g and ¢ = 1 mod b.
Therefore, @ € P(C,b).

There are infinitely many of these P, so we can choose P to avoid
the finite set of prime that 37, is not congruent to v modulo Q. It im-
plies, that () obtain in last paragraph splits completely in L. So, we have
flo = ¢p|lr = Id, then f € Gal(M/L). But f € ¢Gal(M/H(()) =
Gal(M/H(()) € Gal(M/L). Hence, L C H (). O

Definition 28. For each unite # +1, ¢ € Of. We define &(¢) as the greatest

integer k such that e = 2* for some = € K.

Theorem 37. Let 6 € C'\ {1} and P(C,b) as above and let g = ¢(6,C,b,0).
Then:

1. If bis odd, then g = (9(9),b)
2. Ifbiseven and o(6) > 0, then g = (©(9),b) or g = 2(P(0), b).

3. ifbiseven and o(0) < 0, then g divides (4/(2,b/9))(P(|0]), b) and is divis-
ible by (9(6), ).
Proof. We need the following lemma:

Lemma 38. Let § be as in the last theorem. If § = ¢ with § € K, then ¢ | ©(06).

Proof: Let v € K be such that § = v?. Letd = (¢, ®) and x,y € Z such
that xc + y® = d. Then § = (v°3Y)l*?], where [c, @] is lem of ¢ and ®. By
definition of @, we have that [c, | < @, hence ¢ | . O

Now, we will prove the theorem 37:
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Let § = u®® for some € K. Then ¢(8) = o(u)®?. Hence, we have
that sg’(Q) = o(p)®® mod Q.
On the other hand, we have that o(¢) = n mod @ for some n, since

5@ =n?0 mod Qand mod g.

has f;/, = 1(absolute degree 1). So, s
Claim: (¢(9),b) | g

Let d = (©(5),b), then ®(delta) = dc and b = dt. We also have that

blg — 1, then ¢ — 1 = di. Now we have that sg’(Q)lt = nY =1 mod q.

r.(Q)lt = multiple of ¢ — 1, which is a multiple of d. Butd t lt, so d | 7,(Q).
We proved that for all Q € P(C,b) there exists g € Z such that o(d) =
3% mod Q. This implies that 0(5?) = 85 mod Q.
Define ¢ = (2g,b). By the last proposition, o(§) = 79 or o(§) = ~9/2 if
o(8) > 0. Also 0(6%) = " if cis odd, and o (§?) = 7'/? if c is even.

1. If bis odd, then g = c and divides (?(§),b) = ($(6?%,b)). It implies that
g = (9(3),b).

2. If bis even and o(d) > 0, then g | 2(®(d),b). Then g = (#(d),b) or
g = 2®(3),b).

3. In all cases, ¢ = (2¢,b) divides 26(6%) = 49(|d]). Therefore, ¢ =
9(2,6/9) | 4((0]), b)-
L

Now we can find more annihilators for some ideal class of (CI(K)),

Proposition 39. Let p" be an exponent of (Cl(K)),. Suppose that for all o €
G = Gal(K/Q) there exists integer c,, non-divisible by p, such that

o(6) =8 mod E" (2.4)
Let C € (CI(K),) and denote " _ c,o™' € Z|G] by w, then:
1. If pis odd, then (©(6), p™)w annihilates C
2. If p=2,2(9(|0]),2")w annihilates C.

Proof. Let Q € P(C,p") and ¢, s,7,(Q) = r, as before. We have that A =
> .cc o0 " annihilates C.

On the other hand, we have that s’ = § mod @ for some d € Z7.
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Fixed ¢ € G. By hypothesis, we have that o(d) = ¢,0% for some ¢, €
EP",

Now, s = o(§) = 6% = s "t mod Q. Hence s~ (d+r") = |
mod (). s is primitive root by choice, so ¢ — 1|r, — (dc, + p"t) or r, =
dc, 4+ p"t.

We know that p"|q — 1, then r, = dc¢, mod g and also mod p". There-
fore A\ = d(Q) >, ;¢ mod p"

Since C*" = C* = 1, we have that ¢y ), ¢,0 " annihilates C, where
g0 = (p",d(Q))-

Look at gop. We know 7, = dc, mod p". We need to have ¢, prime to
p". So gy is also the ged of (rg,p"). So g from the last theorem is exact go.

Now, we apply the last theorem for (1). For (2), we observe that |

satisfies (2.4) whenever p = 2. m

2.3 Annihilators of the p-part of the Ideal Class Group

We have obtained of ideal class, but we want annihilators for (CI(K)),.
Given x : G — Z,™ a representation of G. We can associate x to e, =
G o x(@)o

ey has the following properties:

2.1=>"¢e
3. eyo = x(0)ey

Proposition 40. Suppose that p t [K : Q]. Let p* be an exponent of (W),, x :
G — Z,; anon-trivial p-adic valued Dirichlet character, e, = ﬁ > gecXx(o)ot e
Z,|G| the corresponding idempotent and p* the exact exponent of the x-component
ex(W), of (W),. Then, there exists 6 € C such that p**' { &(8) and such that
o(8) = X mod E”" forall o € G.

Proof. For k = 0, the result is trivial.

pk
(W), = E/Eka, so we have e, (W), = €X(E/Eka) ~ exe(ﬁﬁ/cb;E;k)'
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By the isomorphism, n € E such that nC' € e, (W), are the same 7 such
that nE*" € ey(E/ E*"). For these 7, we have "¢ € C, for some ¢ prime to
pand o(n) = nX©) mod E¥".

Claim: 3 7 such that n ¢ EP

Proof: Suppose thatally € E**. Then, e, (E/EP") C EP/EP" = (E/EP")P.
It implies that

ex(E/EP") C ex(EJEP )Y C ... C ey (E/EP Y =1

Therefore e, (E/E"") = 1. Thus, since j > k

kN~ E/EP"Y \ ~ ey (E/EY
ex(B/EP) = ey((mr) & s

we have e, (F/E”) = 1Vj > 1.
Let E be the inverse limit l&n(E /EP). For above equality e, (E) = 1.

Now we need a lemma

Lemma 41. There exists ¢ € E such that the subgroup {)\ € Z|G]} has a

finite index in E

Proof of the lemma: Consider o, € G forall0 < k <r = |G| — 1 and
¢ € E. We will prove that det[ln(c;0;(€)] # 0.

Determinant is a polynomial function. We will consider f(Xj, ..., X,) =
det(X, jy) where p(i, j) is defined by 0,0} = 0p(; ;) and Xo = =X, —...— X,.

f(1,...,1) = |G|II=2, s0 f is not identically to 0.

Now, consider ¢, ..., €, be a fundamental system of units and define
91, yr) = Q25 In(oi(€ej)yr D25, Inlor(e;)]y;). That's the same to
look for all € = €}"...€¥ where y; € Z.

Now, suppose that g is 0 for all this (y;) € Z". So, if we fix w € Z"1,
then ¢(y, w) will have infinite solutions. Therefore, g is the polynomial 0.

However, we f # 0 and In|o;(e;) is invertible(det[In(o;(e;)] # 0. O

For this ¢, consider the function ¢ : Z, — E defined by A — .

The ker(yp) is generated by e,, But e, € ker(y), then y = x,. Contra-
diction!

So, there is 77 such that ¢ E”. Let c be a prime to p, such that § = n*" €
C.

Claim: ¢ satisfies the conditions of proposition.
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pt®(n) = p* t &(6) and § = 6¥©) mod EP". Furthermore, x forces p
be odd.
L

Theorem 42. Let p be a prime such that p { [K : Q], x : G — Z;, be a non-
trivial p-adic valued Dirichlet character, e, the corresponding idempotent. If p*

is the exact exponent of e, (W),, then p* annihilates e, (Cl(K)),.

Proof. First, note that the conditions on y force p to be odd. For each o €
G, there is an integer ¢, such that ¢, = x(o) mod p". Then, " _,c,0™" =
|Gle, mod p". (1)

By the last proposition, there is 6 € C such that p**! { #(d) and o(9)
§X(9) = §¢% mod EP"

Let C € (CI(K)),. We have seen that ($(4),p") >, . c,0 ' annihilates
C. Now, observe that (#(d),p") | p*. Therefore, p*Y"__, c,0~ " annihilates

C.

Multiplying (1) by p®, we have that p* > _.c,0~! = p®|Gle, mod p".
However, p 1 |G|, so p®e, annihilates C. As we have taken any C, we have

p® annihilates e, (Cl(K)),. O

Corollary 43. Let p be an odd prime. If K C Q((y) N R, then every annihilator
of (W), (in Z[G]) is also annihilator of (CI(K)),.

Proof. Let )~ . ¢,0 ' be an annihilator of (IV),. x any non-trivial p-adic
valued Dirichlet character of G.

We have that (3 .. c,0)ey = Y, o coX(0)ey. Therefore, > . cox(0)
annihilates e, (17),,.

If p*0) is the order of this group, then >°__. ¢ox(0) =0 mod p*™)

K C Q(¢), we have that ) e, = 1, where x runs over all p-adic-
valued Dirichlet characters.

We canwrite Y o c,0 =3 a0 66 =2 D ,cqCox(0)es.

By last theorem, ) __. c,x(o) annihilates e, (W), then > __. cox(0)es
annihilates (CI(K)), for all x. Therefore ) __.c,0 is an annihilator of

(CU(K)),. O
Now, we need to prove Thaine’s theorem:
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To prove it we will extend the idea from the last proof to character with

more than one dimension.

Proposition 44. Let p { [K : Q], and p™ > 4 be an exponent of (Cl(F)), and
(W),. Then, 2p* annihilates (Cl(K)),.

Proof. Let C € (CIl(K)),. We have that P(C,p") is nonempty. Now we
consider @, q, s, r, as before.

Define pq : C/CNEY" — “H[GIby d — 3, om0

We have already seen that C¥2(®) =1 forall § € .C/C' N EP"

Now, we can written Z,|G] = ®,¢,Z,, where e, are the idempotents of
Z,. 1t is possible, because we already know that ®e, [, correspond to the
above decomposition by theorem 27.

Let p be an irreducible non-trivial character of GG into F},. We can restrict
P to ) 1 e,(C/CNEP") — ep]%[(}’].

The proposition 40 follows true in general case.So, let p* = p® be the
exact exponent of e,(1V), . Exists ¢ € e,(C'/C' N E?") such that p*™ { &(§).

For such ¢, it follows from Theorem 37 that ¢(¢,C, p",id) divides 2p°.
Hence, there exist Q € P(C,p") such that

06 (0) #0 mod pt!, if pis odd
0o Z0 mod 272, if p = 2

For this ) we define o' be a minimal such that ¢f,(§) #Z 0 mod p? L
Therefore p~* v (0) is non-zero in e,F,[G].

e,F, is irreducible, so p~'¢{)(6) generate it as F,[G] module.

We know that Z/p"Z is a local ring with maximal ideal pZ/p"Z and
residue field IF,,. The Z/p"Z- module e, (Z/pZ)[G] has the elements p~*¢, (6) o,
o € G. Sincep™® v (0) generate it as I, [G] module, the image of p~*¢, (0)o
in e,F,[G] form a basis of this [F,-vector space.

We need a lemma from commutative algebra:

Lemma 45. Let x; be elements of M whose images in M /mM form a basis of

this vector space. Then x; generate M.

Proof: See [17], proposition 2.8.
Applying to our situation, we have that p~¢(, (6)(Z/p"Z)|G] = e,(Z/p"Z)[G].
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It implies that 2p®e,(Z/p"Z) C pa/gog(é)ep(Z/p”Z) C Image(p).
Therefore, 2p®e,(Z/p™7Z) annihilates C. Since C is arbitrary, we have that
2p®e, annihilates (Cl(K)),. O

Now we can prove Thaine’s Theorem

Theorem 46. Let K be a real abelian field and E its unit group, C' its group of
circular units, CI(K) its class field group. Define W = E/C. Let (W), and
(CU(K)), be the p-sylow subgroups of these groups. If § € Z|Gal(K /Q)] is such
that 6 annihilates (W), then 20 annihilates (Cl(K)),.

Proof. Let 0 € Z,|G] be an annihilator of (1¥),. Let p be a irreducible
character G — [, and ¢, the idempotent associated to p.

We have that fe, annihilates e,(W),. Let p* be a maximal power of p
dividing fe,. We use the same argument of the last proposition, to prove
be,(Z/p"2)[G) = pe, (G

In particular, exists v such that fe,y = p°e,. Therefore, p* annihilates
e,(W),. Itimplies thatb > a,, and p* | fe,, where p® is the exact exponent
of (W),, hence 20e, annihilates (CI(K)),.

20 = 3_,20e,, thus we have that 26 annihilates (CI(K)),.
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Chapter 3

Generalization of Thaine’s

Method

3.1 Notation and main theorem

In this chapter, we will fix the notation that will be used in the others
chapters and state the main theorem of this thesis.

Given any number field £, we denote by Oy, its ring of integers.

Fix K a number field and F' an abelian extension of K containing the
Hilbert class Field of K denoted by K. We write G = Gal(F/K).

So, we have the following diagram:

F

Q

For any prime ¢ of K, we define:

K (q) the ray class field of K modulo q.
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F(q) = composition of K(¢) and F

E(q) ={ue O;(q)|NF(q)/F(U) =1}

w(q) = the order of O in (Ok/q)*
¢ = product of prime above q.

Clq) ={e € OF|Fu € &(¢)s.tu=€"D( mod §)}

We define £ the set of primes of K of absolute degree 1 which split
completely in F. Define C the group of special units of F//K to be

C={ecOflecC(q) for all but finitely many q}

We know that O} is finitely-generated, then C is also finitely-generated.
Moreover, note that C(q) is stable under G, therefore C is also stable.

Fix N € N. We define
1. a G — module V of O /(OF)N
2. a G —module map o : V — (Z/NZ)|G]| which is trivial on O NV

3. G — module quotient A of CI(F)/NCI(F'), where CI(F) is the ideal
class group of F. We identify A with Gal(H4/F), where H, is the
subfield of the Hilbert Class Field of F', F'y.

Define H' = Ha N F(uy, (kera)YN, (O)YN) and A’ = Gal(Ha/H') C
A.

The main result of this thesis is the following.

MAIN THEOREM: Let N, V, o, A and C as above. If 4 t N or iy C F, then
a(C NV) annihilates A'. In general, 2o.(C N'V') annihilates A’

We also define:
1. Fy = F(lunm(r)), where m(F) is the number of roots of unity in F.
2. Fy = Fy((ker a)'/V)

3. Fy = Fy,((O%)YN)

Therefore, each H, is a subfield of H4 and F;. Furthermore, H4 is a
subfield of the Hilbert Class Field of I, so each H; is abelian over F' and

unramified. Moreover, H' C Hs.
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Note that if Z C Z[G] annihilates Gal(H3/F') then Z annihilates A/A’.
Furthermore by our main theorem Zo(C N'V') (or 2Za(C N'V')) annihilates
A.

3.2 Kummer Theory and useful lemmas
In this chapter, we will use Kummer Theory. For this purpose, we will do
a quick review of Kummer Theory.

Definition 29. Let G be a finite group and M a G — module. The 0 coho-
mology of the G — module M, which is denoted by M ¢ or H°(G, M) is the

set
H(G, M) ={m € M|m° = mVo € G}
Given an exact sequence of G — modules
0O—=N—-M-—=L—0
It is easy to see that G' — invariants imply the following exact sequence
0— NY— M%— L¢
Definition 30. Let M be a G —module. The group of 1 — cochain is defined
by
CYG,M) = {maps f:G— M}
The group of 1 — cocycles is defined by
ZUG, M) ={f € CUG M)|for = 7 + [+}
The group of 1-coboundaries is defined by
BYG,M)={feC'G, M) ImeM st. f,=m’—mVoeG}

Definition 31. The 1 cohomology group of the G — module M is the

quotient group

ZY(G,M
HY(G,M) = BléG,Mg

Suppose that G acts trivially on M, then H°(G, M) = M and H' (G, M) =
Hom(G, M)
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Proposition 47. (Hilbert’s 90 Theorem) Let LT be any finite Galois extension
of fields. Then H'(Gal(L/T),L*) = 0.

Proof. Suppose f : Gal(L/T) — L* is 1 — cocycle. For any ¢ € L, consider

b= ZJGGal(L/T) f(o)o(c).
If bis O for all ¢, then the elements will be linearly depend, but we know

from Artin’s theorem that is not true.[See 18].

Therefore, 7(b) = 3_,cqur T(f(0))To(c) = 32, f(o) ' flo)oT(c) =
fl@)7H®).

Thus, f is a coboundary. O

Theorem 48. Let L/T be a finite Galois extension with Galois Group H and
suppose that p, C T. Then, (T N (L*)")/(T*)" = Hom(H, 1,,).

Proof. We have the following exact sequence:
0— pp = L* = (L))" —0
It gives the long exact sequence
0— pf — (L7 - (L))" — HY(H, pu,) — H' (H,L*) — ...
By the last proposition, H'(H, L*) = 0. Moreover, H acts trivially on
fin, 80 H'(H, p1,,) = Hom(H, j1,,) Therefore, we can rewrite the sequence as

0— pp =T =>T*N(L*)" = Hom(H, p,) — 0

n

Thus, we have the isomorphism % = Hom(H, ii,) O

Definition 32. A finite Galois extension L /T is callled n — Kummer ex-

tension when 7' contains an n — primitive root of unity and Gal(L/T) is

abelian with exponent n.

Definition 33. Let G; and G, be an abelian groups. A bilinear pairing is a

map B : G; x Gy — C, where C'is another abelian group, such that

B(g191, 92) = B(g1,92)B(g4, 92)
B(g1, 9295) = B(91,92)B(91.95)

The pairing is said to be non-degenerate when for any g1 # 1 € Gy

there exist g» € G5 such that B(g¢, ¢2) # 1.
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Proposition 49. Suppose B : Gy x Gy — p, a bilinear pairing with order
of n divisible by the exponent of G, and Gs. If Gy or G, is finite, then G, =
Hom(Gs, C = py,), G = Hom(G, py,) and G = Go.

Proof. Define G; — Hom(Ga, pn) as g1 — B(g1,—). Since B é is non-
degenerate, we have it is injective.
Suppose that G, is finite, then |G;| < |Hom(Ga, pi,)| = |Gal.
We can reapply the argument replacing G; with G5. Therefore, |G| =
|G2| and G = Hom/(Ga, i)
O

In particular, we want to take 7//L a n — Kummer extension, G; =

Gal(T/L) and Gy = % G and G, form a non-degenerate bilinear

pairing. This pair is called a Kummer pairing and is defined by B(o,a) =

o( ¥/a)

Ve where a is the class of a in G5 and {/a is any n-th root of a in 7T'.

Theorem 50. The Kummer pairing as defined above is well-defined, bilinear and

nondegenerate.
= o 7 — 4 pn - _ oC¥a) _ (Vah _ ¢o(Va)f
Proof. If @ = «/, then a = d'h". B(o,a) = Ve T (Wah = Vet
o (V)
T

Therefore the Kummer Pairing is well defined.

Linearity in the first coordinate:

B(oT,a) = ”;}g) — T((Mﬁ) 7(7\;//65)
Since, our galois group is abelian, we have

since U(n—\;‘/g) e L.

Linearity in the second coordinate:

—7 o(ab o(a) o(b

Non-degenerate

o7(a)

v — (9

Suppose o € Gal(T/L) is such that B(c,a) = 1 for all a. This means
that o fixes all a, therefore o = Id.

Suppose that there is @ such that B(o,a) = 1Yo € Gal(T/L). Therefore,
Vaa is fixed by Gal(T/L). {/a € L. O

Corollary 51. Let T, L and H as in the theorem 2. Then H = H om(%, fn)
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Theorem 52. Let n > 1, and let L be a field containing a primitive n — th root
of unity. Fix an algebraic closure of L of L. There exists a one-to-one, order
preserving correspondence between n — Kummer extension T /L contained in L
and the finite subgroups of L* /(L*)". The correspondence maps T/ L to L-0L=",
and maps A C L*/L*™ to L[/a]. Moreover, when T/ L and A correspond each

other, then Gal(T/L) and A related by the Kummer Pairing.

Proof. Let f(A) = L[{/a], where A is subgroup of L*/L*" and a € A, and
g(T/L) = L*NT*"/L*™but g(f(A)) = A by the last theorem.
We know that any 7'/L is of the form f(A) for some A. Therefore

Fg(K/F) = f(9(f(A))) = f(A) =T/L -

Now, we will prove some useful lemmas using the fixed notation. These
lemmas are useful because we can use annihilators of Gal(H,/F'), Gal(Hy/Hy)

and Gal(Hs/H») to find an annihilator of Gal(H;/F'). Recall G = Gal(K/F)
Lemma53. 1. Forallo € G, (6 —1)Gal(H,/F) = 0.
2. m(F)Gal(H3/Hy) =0
Proof. 1. We have the following exact sequence 0 — Gal(H,/F) — Gal(H,/K) —
Gal(F/K) — 0.
I is abelian over K, therefore H, is also abelian over K. Hence G
acts trivially on Gal(H,/F)
2. Define L = H3(pinm(r)) = H3Fy. Then, L C F3 C Fy((F*)YN).
Using Kummer Theory, we have that Gal(L/Fy) = Hom(W, p1,,), where

F><

W is some Subgroup of W

On the other hand, L is abelian over F, so Gal(F}/F) acts trivially on
Gal(L/Fy).

From the isomorphism and the action, Gal(L/F;) = Hom(W, u,, )/ F) =
Hom(W, i, N pur). Therefore, m(F)Gal(L/Fy) = 0.

By Galois Theory, we have Gal(L/Fy) = Gal(H3/H;) So we have
proved (2).
O]
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Let x : G — (Z/m(F)Z)* denote the character giving the action of G
on up. For any divisor d of m(F'), define an involution v of (Z/dZ)[G] by

v(o) = x(o)o".

Lemma 54. Let A be the annihilator in (Z/NZ)|G] of #Fkgigm. Then, v(A
mod (m(F'), N)) annihilates Gal(H2/H1)

Proof. Again, we use Kummer Theory to obtain that Gal(Fy/Fy) = Hom(X, uy),
where X is a quotient of ker(a)/(ur N (ker(ar))).

We also know that there is a natural surjection of Gal(F»/Fy) — Gal(Hy/H,).
Therefore, Gal(Hy/H,) = Hom(Y, uy), for some submodule Y of X.

By the last lemma, m(F)Gal(Hy/H,) = 0, then Gal(Hy/Hy) = Hom(Y, pupN

[F)-
Now, take r € A. Then, r = ) r,0. By definition of A, r annihilates Y.
The isomorphism implies that Y x(o)r,0™" = v(r mod (m(F),N)). O

Lemma55. 1. Forallo € G, (0 — x(0))Gal(H3/Hs) =0
2. If O is finite or O (OF)N /(OF)N C V, then Hy = H,.

Proof. 1. The same argument used before gives Gal(H3/Hy) = Hom(Y, pr),
where Y is a some quotient of O.
Now, G acts trivially on Y and G acts on Gal(Hs/H, ) via x. Therefore,
we have (1).
2. If O% is finite, then (O%)/N C F. Therefore, F, = F}

Since « is trivial on V, hence it is trivial on O (O;)N /(OF)N. There-

fore (05N C F

In both cases, Hs = Hs.

3.3 Cyclotomic Units and Cyclotomic Fields

In this chapter, we will use the main theorem of this thesis and the result

from previous chapter to obtain theorem related with Thaine’s theorem.
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Let F' = Q(py)" the maximal real subfield of the field of m'" roots of
units. Define the group &, of cyclotomic numbers of F to be the group

generated by {(1 — {)(1 — ¢ H|¢ € pum, ¢ # 1}, and define the cyclotomic
units by

gcycli - 5/ycl N O;

C

Theorem 56. &, C C.

Proof. From Class Field Theory, for any odd prime ¢ such that ¢ = £1(
mod m) splits completely.

We know that the ray class group of the field E for m( m is a non-zero
principal ideal of F) is Zp(m)/Pgm, where Ip 7 = {a € Ipm|ordia = 0Vt |
m} and Pgr = {principal ideals in ZIg}.

Now, the ray class group for Q and ¢ is Ro; = (Z/qZ)* /{£1}. There-
fore the Ray Class field is Q(y,)". According to the notation already es-
tablished F'(q) = FQ(u,)"

Let ¢ be any m-th root of unity. We definee = (1 —¢)(1 = (). € € Eyeni
by definition.

Define u = (1 — ¢¢;)(1 = CG)(1— ¢¢ ) (1= ¢71¢,).

Npgyr(u) = (1= ¢9)(1 —-¢ /(1 —¢)(1 —¢ ') = 1. Therefore u is a

global unit in F(q)

On the other hand, ¢ = (1—¢?)(1—¢(?) = €2 modulus any prime above
q.

Now, by definitions, &, C C. O

The next theorem is related to Thaine’s theorem.

Theorem 57. Let F' = Q(p)*. If oo : O — Z|Gal(F/Q)] is any Gal(F/Q)—equivariant
map then 4o(E.yq) annihilates the ideal class group of F.

Proof. To apply result from the last section, take K = Q, arbitrary N, V' =
O /(OF)N, A= CIUF)/NCI(F).

ay : Op — Z/(NZ)[Gal(F/Q)] the map induced by a.

Since K = Q, O = £1. m(F) = 2 since F is real. Furthermore, by last

theorem, &, C C.
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Claim: H; = F. It means that F} does not have non-trivial everywhere-
unramified extension of F'.

Proof: Recall that F; = Q(u,,) with n divisible by m. Since H, = F1NH 4,
we need to show that F' there is no non-trivial everywhere unramified
extension in Fj.

First, note that Gal(F,/F) = {a € (Z/nZ)*|a = £1 mod m}.

Remember from Algebraic Number Theory that the order of inertia
group is the ramification degree and that primes ramify completely over
the field fixed by inertia group.

Therefore, for each p prime, we have the inertia group of p in F;/F is
{a € (Z/nZ*)|a = £1mod(m), a =1 mod (n/p")} where ¢ is the exactly
power that divides n. Applying the Chinese remainder theorem and the
fact that abelian group are products of cyclic groups, we have that inertia
groups generate Gal(Fy/F). Any subfield L, F C L C F; is ramified
because this field corresponds to some subgroup that is contained or has
subgroup contained in inertia group of some p.

We know from previous lemmas that m(F)Gal(Hs/H,) = 0, therefore
2Gal(H3/F) = 0.

Note that if J € Z[G] annihilates Gal(H3/F'), then J annihilates A/A’.

Now, VNC = &, By our main theorem, 4a/(&,,qi) annihilates C1(F)/NCI(F).
Since N is arbitrary, we have the result.

]

3.4 Specializations of the main theorem

In this section, we will prove two theorems that can be more useful in
practice. For example, in [19] these two theorems are used.

Fix a rational prime p and let E be an intermediate number field, K C
E C F with H = Gal(F/E) of order prime to p.

Let p: H = GLi(Z,) be an irreducible representation.

Let M be a Z[H]— module and M = Jm M /p"M the p-adic completion
of M. We define M* = e,M, the p-eigenspace, where e, € Z[H] is the

idempotent ﬁ S>Tr(p(c™'))o. Moreover, we write p = p(c~!).

38



If pi, C F, we will write w for the Z valued character giving the action
of H on /.

Remember that for any ring R, the augmentation ideal of R[G] is the

ideal generated by {o — 1|c € G}. Or equivalently it is the kernel of
R[G] — Rwith ) rg — > r by proposition 23.
Theorem 58. Suppose p is a rational prime, p a non-trivial irreducible Z,-
representation of H, and W a submodule of (O.)? such that (Oy)?/W has no
Z,-torsion. Suppose 1 < n < oo and either p # 2, orn =1, 0or uy C F.

Let o : W — (Z,/p"Z,)|G]* be any G — module map. Then

1. m(F)a(C? N W) annihilates CI(F)? /p"CI(F)?

2. If p, C F, Of is finite, and p # p ® w, then o(C’ N W) annihilates
CU(F)?/p"CI(F).

3. If u, C F, p+# w,and p # pRuw, then a(C’NW ) annihilates C1(F)* [p"CIl(F)P.

4. Ifp =2, n > 2and puy C F, then the first three assertion hold with
a(CP N W) replaced by 2a(CP N W).

Proof. We will separate the proof in cases:

1. n finite and either p # 2, orn = 1, or uy C F and fix N = p™.
By hypothesis, (O )?/W is torsion-free. So, W/W¥ injects into O} /(OF)N.
We would like to apply lemmas from section 2, hence we set I =
W/WH¥, ay : V — (Z/NZ)|G] the induced map and A = (CI(F))?/NCI(F)".
Since, p # 1 and p is Z,—representation, e, = ﬁ S x(c71o. Now,

note that 7 >~ x(07!) = 0.

Therefore (Z/NZ)|G]? is contained in the augmentation ideal, thus it

is contained in the ideal generated by {o — 1|0 € G}.

Applying lemma 53, (Z/NZ)|G|*Gal(H,/F) = 0and m(F)Gal(Hs/Hy) =

0. Therefore, m(F)(Z/NZ)|G|*Gal(H3/F) = 0.

Now, combining the main theorem with last sentence, we have m(F')(Z/NZ)|G])’a(CPN
W)A = 0.

On the other hand, (Z/NZ)|G]?A = A? = A since p is idempotent.

Thus, we have (1)
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2. Now suppose in addition that y, C F. Let x be the (Z/m(F)Z)
character of the action of G on pp. This character is related to w by
X|m = w( mod (m(F)Z,))

If p # w or if O is finite, then, we have (Z/N7Z)|G]*Gal(H;/Hs) = 0.
If, in addition, p # p ® w, then (Z/NZ)[G]*** annihilates V. Apply-
ing lemma 54, v(((Z/N'Z)|G]? annihilates Gal(H2/H;), where N’ =
ged(N,m(F)). We also have that v((Z/N'Z)|G]?*¥) = (Z/N'Z)|G)’.
Hence, (Z/NZ)|G|*Gal(H2/H,y) = 0.

Therefore, we have (Z/NZ)[G]*Gal(H,/F) = (Z/NZ)|G|’Gal(H3/ Hy) =
(Z/NZ)|G)PGal(Hy/H,) = 0. And since, ((Z/NZ)|G]*)? = Z/NZ|G]*,
(Z/N7Z)|G]*Gal(H3/F) = 0.

So, by our main theorem, a(C’ NW)A = o(C°NW )(Z/NZ)|G]?A = 0.

3. If n = oo, the result is immediate since C(F)” is finite.

4. Ifp = 2,n > 2,y ¢ F is proved exactly the same way using the

factor of 2 in our main theorem.
O

Let S be a finite set of rational primes. We define Mg = l&nM /nM,
where n are the integers divisible only by primes in S.
In particular, if M is a finite abelian group, then Mg is the product over

p € S of the p — Sylow subgroups of M. Also, Zs =[] . Z

peS “p*

Lemma 59. Fix a set S of rational primes and let W be a Zs[G] — module
which contains a cyclic Zg submodule of finite index. Let o : W — Zg[G] be
any G — homomorphism and for any positive integer N let oy : W/NW —
(Zs/NZg)|G] be the inducted map. Then for every N, (W) annihilates (keran)/Wiors,

where W,,,.s denotes the Z-torsion in W.

Proof. Fix w € W and n € Z* such that nW C Zg[GJw. Also fix N a
positive integer. Choose x € W and y € o} (NZgs[G])

We want to show that a(z)y € Wi, + NW.

We can find f and g € Zg[G] such that nx = fw and ny = gw. Then
na(x)ny = a(nz)gw = a(fw)gw = a(gw)fw = na(y)nz. Thus, a(x)y —
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Oé(y)J] € Wtors-
Therefore a(x)y € Wiprs + a(y)W C Wigps + NW. O

Fix a finite set S of rational primes and write J for the augmentation
ideal of Zs[G]. We have already defined v the involution of (Zs/m(F')Zs)|G],
then for any ideal Z of Zg[G] containing m(F')Zs[G] we write v(Z) for the
lift of v(Zmod(m(F))) from (Zgs/m(F)Zs) to Zs|G].

Theorem 60. Suppose W is a G — submodule of (O}.)g such that
(a) W contains a submodule of finite index which is cyclic over Zg|G]|
(b) (Of)s/W has no Z-torsion, and

(c) (0%)s C Wanda : W — Zg|G] is a G—homomorphism which is trivial
on (Ox)s. Then,

1. If2 ¢ Sorpy € F, then Jy(a(W) + m(F)Zs|G])a(Cs N W) annihilates
CIU(F)s.
2. In general, 2Jv(a(W) + m(F)Zs[G])a(Cs N W) annihilates C1(F)s.
Proof. 1. Set N a positive integer such that N is divisible only by prime
in S. By (b), W N (05)Y = WY, To apply result from section 2,

consider V.= W/WV < O3/(O)N,ay : V — (Zs/NZs)|G] and
A= CI(F)s/NCI(F)s.

J annihilates Gal(H;/F) since J is generated by {c — 1|0 € G}.

Lemma 55 shows that H, = Hs;. Combining lemma 59 with Lemma

54, we obtain y(a(W) mod (m(F'), N)) annihilates Gal(Hy/H,).
If 2 ¢ S or uy C F, applying our main theorem, we have
Jy(a(W) 4+ m(F)Zs[G])a(Cs " W)CI(F)s € NCI(F)s

Now, we choose N = |CI(F)| to obtain (1).

(2) is proved the exact same way using the factor 2 from theorem.

]

Corollary 61. Let W and o be as in last theorem. Let B any subquotient of
CI(F)g satisfying JB = B. Then:
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1. If py C For2 ¢ Sthen y(a(W)+m(F)Zs[G])a(Cs N W) annihilates B.
2. In general, 2y(a(W) + m(F)Zs|G])a(Cs N W) annihilates B.

Proof. Direct from the theorem 60. O

3.5 Proof of Main Theorem

The proof of the main theorem will be a consequence of two other theo-
rems.

For any finite extension M of F' we define
€ ={u e Oy|Nyyp(u) =1}

This first theorem was almost done in the first section of previous chap-
ter.

We will need the following lemma:

Lemma 62. If any prime p is totally tamely ramified in M /F, then Gal(M/F) is

cyclic

Proof. Since p is totally ramified its decomposition group is isomorphic to
its inertia group and isomorphic to Gal(M/F).

Now, we need to remember some definitions and properties of ramifi-
cation groups:

The ramification groups of G relative to p for our case are:
Gi={se€Ga(M/F)| s(x)=z mod p*}

G| is the inertia group and G is trivial since p is tamely ramified. From
local field theory, G/G1 is always cyclic, but since G, is trivial, we have
that G is cyclic.

O

Remember the fixed notation in the beginning of the chapter. G' =

Gal(K/F).

Theorem 63. Let q be a prime of K that splits completely in F. Let M be a

finite extension of F', abelian over K, such that in M /F all primes above q are
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totally tamely ramified and no others primes ramify. Write gy, for the product of
all primes of M above q, and let A be the annihilator in (Z/(N(q) — 1)Z)[G] of

the cokernel of the reduction map
v E(M) = (Om/qu)*

Define w = (N(q) — 1)/[M : F] Then A C w(Z/(N(q) — 1)Z)|G] and
for every prime g above q, w™ A annihilates the ideal class of g in CI(F)/[M :
FICU(F).

Remark: 3. Remember that tamely ramified means that the ramification

index is prime to the residue field characteristic.

(Om/am)*
Image of reduction map

Also, cokernely’ =

Proof. All primes of F' above ¢ totally ramify in M /F, so G actson (O /qum) ™

and on the set of primes of M above g.

1. Primes above ¢ in K are ¢° for all o € G.
2. Primes above g in M are [¢]? forall 0 € G

Fix any prime g above ¢q. Choose an element 7 € M such that 7 has

order 1 at [g]. It means that 7 = [g]y. We define

p: Gal(M/F) — (Om/[q])

w9
[

As 7 totally tamely ramifies in M/ F, then ¢ is injective.

Now, take 7 € Gal(M/F') such that 7 generates Gal(M/F).(It is possi-
ble due to the last lemma). Therefore, =~ has order [M : F]in (O /[q])*.

Choose u € (Onr/qu)* such that

=T, mod [q]
u=1, mod [q]” Vo #1
Note that it implies that order of v is N(¢q) — 1.
Since A annihilates the cokernel of reduction map, then exist § € A
such that

v =¢ mod qy (3.1)

for some € € E(M).
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By Hilbert Theorem 90 there exists &« € M* such that &~ = €. So,

(a™) = («). Since only primes above ¢ ramify in A//F we have that
(@) = 10y [T aslq]”.
where [ is an ideal prime to q. Applying Nj;/r, we have that

NM/F(Oz) = [[M:K]qzaga and
=% = 0in CI(F)/[M : FCI(F)

ay = ordjge(a). For any o € G, we can extend o to & € Gal(M/K).
ordigem = 1, 50 we can write a = 3(77)%, where (3 is a unit at [¢]”.
7 belongs to inertia group of [¢]?, then 57 = § mod [q]°. Therefore we
have B
ar BT T

= (Z)% mod [g)? (3.2)

a  [roe s

Using the conditions of u, we obtain
e=ul"2% mod g, (3.3)

On the other hand, we can use (3.1) and the fact that annihilator of u in

Z|G]is (N(q) — 1)Z|G] to obtain:

0=w Z azo mod (N(q) —1) (3.4)

Therefore, A C w(Z/N(q) — 1Z).
Since §-%° = 0 in CI(F)/[M : F]CI(F) and (3.4) we have that w4
annihilates g in CI(F')/[M : F|CI(F). O

Again, remember the definition from first section.

Now define
H' = HA N F(/ubNa Vl/N’ (O;;)l/]\f) D H’

Also, A” = Gal(Hs/H") C A = Gal(Has/H') C A.
For the next theorem, we will need a definition from Commutative

Algebra.

Definition 34. A R — module M is injective if given R — modules X and

Y, f: X — Y an injective module homomorphism and g : X — M is

44



an arbitrary module homomorphism, then there is & : Y — M such that
hof=g.
Theorem 64. Fix N, V and A as in the first section of this chapter.

Suppose o : V. — (Z/NZ)|G] is a G — module trivial on [O;(Or N
(F(un)*)M)] N V. Then there is a Z|G]-generator Cy of A’'JA" such that for
any C' € A" which projects to Cy modulo A", there are infinitely many primes g
of F of absolute degree one satisfying

1. [q] = C, where |q] is the projection of the ideal class G on A

2. N|(N(q) —1)/w(q)

3. There is a map ¢ : (Op/qOr) — (Z/(N(q) — 1)Z)|G] such that the fol-
lowing diagram commutes:

v % (Z/NZIG))

/i

(Or/qOF)* @ (Z/NZ[G])

Proof. Define the following tower of fields:

P = F/(Vl/N)

F' = F(py, (ker a)'/N, (le()l/N)

Define Gy = Gal(F(un)/K). Applying Kummer theory, we obtain Gal(F" /F") =
Hom(B, uy) as Gy modules, where
B = V/(ker(a))[Ox(OF N (F(pn))™)NV)
=V/Ker(a)
=~ I'mage(a) C (Z/NZ)|G]
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It implies that Gal(F"/F’) is cyclic over (Z/NZ)[G y]

Since Gal(F" /F') is cyclic over Gy we can take y a generator of Gal(F" /F").

Now, note that Gal(F”/F') maps subjectively to Gal(H"/H'), then if
we restrict v to H” we obtain Cj such that C generates Gal(H"/H') =
A'/A" over Gy. The action of Gy on A factors through to G, then Cj
generates A’'/A” over G.

Let C' be any element of A’ such that the class of C'in A'/A" is C. Let /3
be an element of Gal(F"H 4/ H) such that

B |F”: 7
B |HA: C

The choice of this 5 is possible because 7v|y» = Cy = C|g».

Now, let g be any prime of inertia degree one, not dividing N, whose
Frobenius lies in the conjugacy class of 5. The Chebotarev density theo-
rem guarantees the existence of this element. ¢ = K Ng

Claim: g satisfies 1,2 and 3.

Proof:

1) [¢] is the Frobenius of § in Gal(H4/F) = A. But g by construction is
in the same conjugacy of 3, therefore [¢] = §|n, = C.

2) B|lpn = v = B|r = 1. Therefore, ¢ splits completely in F'/K.

q does not divide N, so ¢ splits completely in K (uy)/K. Therefore,
N||Ok/a)* = N(q) — 1.

Since ¢ splits completely in K ((O})'/"), then the reduction map of O}
to (Ok/q)* is contained in ((Of /q)*)". Therefore, N|(N(q) — 1)/w(q).

3) Let ¢ be the map from V to (Or/qOp)* ® (Z/NZ). Let z € V,

z € ker(y)) <= zisan N — th power modulo g’ forall ¢ € G.

On other hand, z is N — th power modulo ¢” forall 0 € G <= ¢°
splits completely in F(2'/N)/F.

But, g7 splits completely in F(:'/V)/F forall 0 € G <= 7 splits
completely in F'(2!/") <= 47 is trivial on F'(2'/V) forall 0 € Gy

But v fixes I, s0 77 is trivial on F'(z'/V) forallo € Gy «= 2'/N ¢ F'.

By definition of F/, 2'/" € F <= 2 € Ker(a).
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Since, (Z/NZ)|G| is injective over itself, thereisamap ¢ : (Op/qOr)* ®
(Z/NZ) — (Z/NZ)|G] such that « = @ o 7).
v = (Z/NZ[G))

/i

(Or/qOr)* ® (Z/NZ|G])

We need to lift ¢ to ¢ : (Op/qOr)* — (Z/(N(q) — 1)Z).
(Or/qOr)* is free of rank one over (Z/(N(q) — 1)Z)(u defined in theo-

rem 63 is an example of generator). Then, we can do this lift.
O

Lemma 65. Suppose N is a prime power, then
1. If4Y Nor uy C F, then F* N (F(ux)*)" = (F*)N
2.If4| Norus € F, then [F* 0 (F(un) )N : (F)N] <2

Proof. Define G = Gal(F(pun)/F).

We have the following exact sequence:
0= i3 = Flyu)* 5 (Fl) )Y = 0.
It gives the long exact sequence

0 —= puoN = F(un) = (F(py))N)Y — H'(Gn, pn) —
HY Gy, F(un)*) — 0

We can rewrite as

0 = py = F* = F* 0 (Fun) )N/ (F*)N = H (G, i)
Therefore, we have the following isomorphism:
(F> 0 (F(pn))™)/(F)Y = H(Gal(F(ux)/F), py) = HY(X, Z/NZ)
where X C (Z/NZ)*.

1. If 41 N or puy C F, then X is cyclic. It is due to the fact that (Z/p"Z)*
is cyclic for p odd. In this case, H'(X,Z/NZ) = 0
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2.1f4 | Norus, ¢ F, there are two possible cases due to (Z/2VZ). X

cyclic or not

If X is cyclic, then |H'(X,Z/NZ)| < 21f X isnot cyclic, X = {+1}xY
with Y C 1+ 4(Z/NZ). Now, by inflation-restriction sequence, we

have
0 — H'({*1},(Z/NZ)¥) - HY(X,Z/NZ) — H'(Y,Z/NZ) = 0
O

Using the same notation of the first section of this chapter. Now we

can prove our main theorem:

Theorem 66. Let N,V, o, A and C as described in the first section. If 4 1 N or
pa C F, then o(C N'V) annihilates A'. In general, 2a(C N V') annihilates A’

Proof. Without loss of generality we will assume that IV is a prime power.
We can do it because the general case follows by splitting N, V,« and A
into their p-primary parts.

Define
a if 4¢N or p CF

/

2a,, otherwise

ais trivial on O NV. The last lemma applied to [O % (OFN(F (un)*)N)]
gives us that o/ is trivial on [O% (O N (F(un)*)M)|NV.

It means that « satisfies the last theorem. Therefore we can choose C
the Z[G]-generator of A’/A” as in the last theorem and can choose g of F'
of absolute degree one satisfying the last theorem and such that C C C(q),
where ¢ =g N K.

The Hilbert Class Field of K is contained in F, then any extension F” D
F is ramified over K. Now, letbe F'(q) = K(q)F. F(q)/F is totally, tamely
ramified at all primes of F' above ¢ and unramified everywhere else and

[F(g) : F] = 5=

w(q)

Now, we will apply the last theorem with M = F(q).

Let ¢ be the map that satisfies the last theorem and define

G : OF . — (Or)/D)* = (0p/q0r)* % (Z/(N(q) — 1)Z)
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Note that (Op(y)/7)* = (Or/qOr)* because ¢ has absolute degree 1.

Again, define A the annihilator in (Z/(N(q) — 1)Z)|G] of the cokernel
of the map £(q) = (Opy)/7)*-

(Or/qOr)* is free-rank one over (Z/(N(q) — 1)Z), therefore ®(E(q)) C
A.

On the other hand, ®(C*9) C &(£(q)). So, w(q)®(C) C A. Applying
theorem 63, ¢(C) annihilates the class of g in CI(F)/([N(q) — 1]/w(q))Z.

Theorem 64 implies that N | N,L(Uq(zz;l
in CI(F)/NCI(F). Thus ¢(C) annihilates [¢] = C'in A and by theorem 64

o/(C N'V) annihilates C in A.

, so @(C) annihilates the class of §

It holds for every C in Cy. Cj is an A” coset contained in A’. Since C
generates A’/A” over G, then the elements of this coset generate A’ over
G. Therefore o/(C N V') annihilates A’.

O

3.6 Iwasawa Theory

This section is very technical, so we will give a sketch of the proofs and
indicate where to find every details.

For this section we will need to fix some notation.

Fix p a rational prime and K a number field. Let K., = UK, be
an abelian extension containing the Hilbert Class Field of K such that
Gal(Kw/K) = Z% x H and Gal(K,/K) = (Z/p"Z)* x H, where H is a
finite group with order prime to p and d is a positive integer.

For each n, let A,, denote the p — primary part of the ideal class group
of K,,, &, the group of global units of K,,, and C,, the group of special units
of K,,/K.

& =lim_(E./(E)).
€ =lim, (Ca/CE")
Also, Ay, = @n A, and £, = l&nn E, (inverse limits with respect to

the norm maps) and Coo{(tn) € Exs| n € C,Vn}

Write A for the Iwasawa algebra
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A = Z,[[Gal(K o/ K)]) = lim Z,[Gal (K, /K)]

Before we begin with statements about that relates Iwasawa Theory
with our theorems, we will review concepts from Group Cohomology.

The group of n-cochains is the abelian group C"(G, A) := Maps(G", A)
of maps of sets f : G — A under pointwise addition.

The n — th coboundary map d" : C"(G, A) — C""(G, A) is the homo-
morphism of the abelian group defined by

d"(f)(90s s gn) == 9o f (91, s Gu)— f (G091, G2: s 91)+f (go: G192 s Gn) -+
(=1)"f(g0s s G2+ gn-19n) + (=1)" " f(go, -+ Gn-1)-

The group C(G, A) contains subgroups of n—cocycles and n—boundaries
defined by

Z"(G, A) :==kerd" and B"(G, A) := Imd"!

Definition 35. The nth cohomology group of GG with coeficients in A is
the abelian group

H"(G, A) := Z7(G, A)/B"(G, A)

Definition 36. The i — th homology group H;(G, A) of a group G with
coefficients in a G — module A is defined to be the i-th homology group
H;(G,A) =kerd;/Im(d;4;) in the complex

. — Z[GS] Qz[a] A i2—> Z[G2] Qz[a] A il—) Z[G] Qz[a] A io_> 0

where d; = (go, .-+, 9:) = 2o (=1)(g0s -1 G515 Gy, -+ 95)
Definition 37. The norm of element in Z[G] is Ng = > g. It induces a
morphism Ng : Ag — A% where Ag = A /1A with I; the augmentation
ideal of G.

We define Hy(G, A) = ker Ni; and H® = coker Ng.

Definition 38. Let G be a finite group and A a G — module. For any i € Z,
we define the ith Tate cohomology group by

((H_, 1(G,A) if i< -2
Ho(G,A), if i=-1
HY(G,A) if i=0

| HY(G,A) if i>1
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Theorem 67. Let K., = UK, be as above. Fix an irreducible Z,-representation
p # 1 of H and suppose that there are integers r and s such that for all pairs of in-
tegers m > n, p" HO(Gal(K,,/K,),E.) = 0 and p H Y (Gal(K,,/K,),E) =

0. Suppose in addition at least one of the following conditions is satisfied:
1. p, € Ko or
2. pip C Kooy p # p @ w, and either p # w or Oy is finite; or
3. the number m,(K ) of p-power roots of unity in K., is finite

Define t by t = r if (1) or (2) holds, and otherwise p' = p"m,(K). If

a: &L — AP isany A — module map, then p'a(CE,) annihilates AP,

Proof. Let n be large enough so that K, contains the Hilbert Class Field of
K.

Define J,, be the ideal generated by {y — 1|y € Gal(K«/K,)}. There-
fore, \/ J,, = Z,|G(Kw/K,)]?

From «a, we can define an equivariant Gal(K,,/ K)—map o, : €L/ J,EL —
Zy|Gal(K,/K)]’.

There is a natural projection from &, to &, that induces a map 7
EP [, EL — EP.

The map ~ fits into an exact sequence

0— lim H Y (Gal(K /Ky, EL)) — 2./ JE0. 5 £ —

lim  Ho(Gal(K,/Kn),Ef) = 0,
p® kills kernel of 7w and p" annihilates cokernel of 7. Thus p"«,, induces
a well-defined map from &7 to Z,|Gal(K,,/K)].
Therefore Theorem 58 implies that p’«,,(C?) annihilates A?”.
Since, it holds for all n large enough, we have p'«(Cf,) annihilates A%..

[]

Corollary 68. Suppose Gal(K/Ky) = Z,, ranks.EL > 0and p and K,/ K
satisfy the conditions of the last theorem. Define A as the annihilator in A of
EP /CE.. Then there is an integer k such that p* A annihilates A7,

Sketch of proof: £7, is finitely generated A”-module.
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AP = (Z,[H])[[Gal (Ko / Ko)l] = O[]

where O is the ring of integers of the unramified extension of Q, of degree
dim(p).

On the other hand, by the structure theorem for O[[T]]-modules, since
ranks».EL, > 0, there is a map: o : £, — A” with finite cokernel.

Now, the last theorem implies that p'a/(C~,) annihilates A”_.

Choose j such that p/ annihilates the cokernel of o. Therefore p/ A C
Aa(E2) C a(Cr). This concludes that p'™7 A annihilates A”_. O

The next proposition is a variant of a theorem due to Iwasawa.

Proposition 69. Suppose Gal(K../Ky) = Z,. Let p be an irreducible rep-
resentation of H such that for every prime p of K which ramified in K /K,
the restriction of p to the decomposition group of p in H is non-trivial. Then
#H(Gal(K,,/K,),E0) and #H Y (Gal(K,,/K,),EP) are bounded indepen-
dently of m and n.

Proof. Let S = {primes p of K| p ramifies in K/Ko}.
Let &, be the group of S — units of K,,, i.e. elements of K,, which are
units at all primes not lying above primes of S.

For each p € S, we have the following exact sequence
0—¢&, — E;n — @pES Rm<p)

where R,,(p) is the free abelian group generated by primes p above p
in K, and the map &, = @,c5 Rm(p) sends u — > ord;(u)p.

Denote by D H,, the decomposition group of pin H. DH, acts trivially
on R,(p). On the other hand, p |py, is non-trivial, thus R,,(p)” = 0.

Since R,,(p)” = 0 for every p, we have &, = (£],)".

It is possible to prove that #H ' (Gal(K,,/K,),£.,) is bounded inde-
pendently of m, n. See for example [12].

Since

H Y Gal(K,/K,),E) = H Y (Gal(K,,/K,), (£, )") =
H Y (Gal(Kn/K,), En)”

we have that H(Gal(K,,/K,), Ey)” is bounded.
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Z, has no element of order 2, then every infinite place of K splits com-
pletely in K.

Now, we will not prove, but from [12] we know that for any m,n, £,
contains a subgroup of finite index which is free over Z,[Gal(K,,/K,)].

From it follows that the Herbrand quotient
#H(Gal(K,,/K,),E)/H Y (Gal(K,, ) K,),E) = 1
. S0, #H°(Gal(K,,/ K,,), £, is bounded independently of m and n. O
Define U,, for the local 1-units of K, above p, i.e., the local units of

Ky ® K, congruent to 1 modulo primes above p and U = lim ;..

Now we will give a theorem with weaker hypothesis than theorem 67.

Theorem 70. Supppose that the decomposition group of p has finite index in
Gal(Kw/K). Fix an irreducible representation p of H whose restriction to the
decomposition group of p in H is non-trivial. Let o : UL, — AP be any A —

module map.
1. If m,(K) is finite, then m,(K)a(CE,) annihilates A?_
2. If p, C K, O is finite, and p # p @ w, then a(C?,) annihilates A?_
3. If iy, C Koo, p # wand p # p @ w, then a(CL,) annihilates A?.

Proof. Choose n be large enough such that Gal(K/K,) is contained in
the decomposition group of p and K, contains the Hilbert Class Field of
K.

Let J,, be the ideal generated by {7y — 1|y € Gal(K«/K,)}.

Using [14] and [13] is possible to prove that 22 /.J, U2 = U.

a induces oy, : UL [ J,UE = UL — N[ J, AP = Z,[Gal(K,/K)]".

Now, we want to apply theorem 58. Therefore, we restrict o, to ££. We

obtain
1. If (1) is satisfied then m,, (K« ), (C?) annihilates A”
2. or (3) are satisfied, then «(C?) annihilates A?.

Since (1),(2),(3) are for n large enough, then the theorem follows. O
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