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Resumo

An overview on the Boltzmann equation and renormalized solutions

Tiago dos Santos Domingues

Resumo da dissertação de Mestrado submetida ao Programa de Pós-graduação em Matemática Apli-
cada, Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos
requisitos necessários à obtenção do título de Mestre em Matemática Aplicada.

Resumo:

Apesar do mundo ser constituído por átomos, no mundo macroscópico, temos a impressão de
que o mundo é contínuo. A área que serve de ponte entre essas duas descrições é por excelência
a mecânica estatística. A dedução do comportamento macroscópico da matéria a partir de seus
constituintes microscópicos fundamentais permanece sendo um dos grandes desa�os da física,
com já algum sucesso, especialmente na descrição de materiais em equilíbrio termodinâmico.
Entretanto, no tratamento de objetos fora de equilíbrio, ainda há lacunas tanto do ponto de
vista teórico quanto do ponto de vista prático que di�cultam uma descrição mais detalhada,
que leve em conta informações microscópicas em vez de apenas fenomenológicas.

Uma das primeiras modelagens de sistemas fora de equilíbrio foi a equação de Boltzmann, de
1872, que conseguiu com sucesso reproduzir as equações da mecânica do contínuo e modelar a
irreversibilidade macroscópica de certos fenômenos, partindo de uma descrição probabilística
de interações microscópicas.

Embora não seja um modelo novo, a equação de Boltzmann ainda serve de partida para mode-
los mais so�sticados em mecânica estatística, e ainda é um tópico ativo de análise matemática,
tendo inspirado técnicas de uso corrente em sistemas de leis de conservação. Nesse texto, são
discutidas tanto a origem física desse modelo quanto a teoria de existência de solução da
equação de Boltzmann, com um foco especial na teoria de renormalização de Ron Diperna e
Pierre L. Lions.

Palavras�chave. Análise, Análise Funcional, Equações Diferenciais Parciais, Teoria da Medida, Mecâ-
nica estatística, Teoria Cinética, Equação de Boltzmann, Mecânica dos Fluidos, Mecânica do Contínuo.

Rio de Janeiro
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Abstract

An overview on the Boltzmann equation and renormalized solutions

Tiago dos Santos Domingues

Abstract da dissertaçao de Mestrado submetida ao Programa de Pós-graduação em Matemática Apli-
cada, Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos
requisitos necessários à obtenção do título de Mestre em Matemática Aplicada.

Abstract:

Despite the fact that the world is made of atmos, in the macroscopic world, we have the
impression that the world is a continuum. The area that serves as a bridge between these two
description is prominently statistical mechanics. The derivation of the macroscopic behavior
of matter from its microscopic constituents remains one of the great challenges of physics, with
considerable success, in the description of materials in thermodynamic equilirbium. Howe-
ver, in the treatment of objects outside of equilibrium, there are still important gaps in our
undestanding from both theoretical and practical perspectives which hinder any description
that takes into account not only phenomenological, but microscopic information.

One of the �rst attempts at modelling systems out of equilibrium was Boltzmann's equation
of 1872k which successfully reproduced macroscopic balance laws of continuum mechanics mo-
delling some of the macroscopic irreversibility, while starting from a probabilistic description
of microscopic interactions.

Although this modelling is not new, Boltzmann's equation still serves as a starting point for
more sophisticated models in statistical mechanics, and still is an active topic in mathema-
tical analysis, having inspired current techniques in the theory of conservation laws. In this
text, borh the physical origins as well as the existence thory for the Boltzmann equation are
discussed, with special focus o the theory of renormalization of Ron Diperna and Pierre. L.
Lions.

Keywords. Analysis, Functional Analysis, Partial Di�erential Equations, Meaure theory, Statistical
mechanics, Kinetic theory, Boltzmann equation, Fluid mechanics, Continuum mechanics.

Rio de Janeiro
Agosto de 2017



viii



Contents

1 Introduction and Physical motivation 1
1.1 A brief chronology of the kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A Heuristic derivation of Boltzmann's equation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Basic de�nition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 The Collision operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Summational invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Macroscopic balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Boundary conditions in kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The H-Theorem and its consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 The Liouville Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 The BBGKY hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5.2 Lanford's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Solvability of the Cauchy problem for the Boltzmann equation 41
2.1 Diperna-Lions Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Solution types and main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.2 Step 1 -Approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.3 Step 2 - Weak compactness results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.4 Step 3 - Averaging lemmas and strong compactness . . . . . . . . . . . . . . . . . . 62
2.1.5 Step 4- Exponentially Mild solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.1.6 Other properties of a renormalized solution . . . . . . . . . . . . . . . . . . . . . . 72

2.2 Extensions and other remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Conclusion 85

A Introduction Theorems 89
A.1 Existence of the total collision operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Boltzmann-Gronwall Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3 The encounter problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.4 Derivation of the BBGKY hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 Factorization property of equilibrium probability distributions in the limit of large N . . . 108

B Section 1.1 Theorems 111
B.1 Equivalence lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Renormalized collision lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.3 Dunford-Pettis and De-la-Valéé-Poussin's Lemmas . . . . . . . . . . . . . . . . . . . . . . 115
B.4 Averaging lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.5 Product limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

ix



x CONTENTS



Chapter 1

Introduction and Physical motivation

If, in some cataclysm, all of scienti�c knowledge were to be destroyed, and only one sentence passed on to the next
generations of creatures, what statement would contain the most information in the fewest words? I believe it is the

atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms�little particles
that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon

being squeezed into one another. In that one sentence, you will see, there is an enormous amount of information about the
world, if just a little imagination and thinking are applied... Richard P. Feynman in [16]

Usually in mechanics and engineering, when one models the static or dynamic behavior of a material
subject to stress and external forces, it is treated as a continuum. This means that some portion of the
material is identi�ed with a subset Ω of R3, and we assign functions f : Ω −→ Rk that return, for each
point, the value of measurable properties of the material (e.g. pressure, velocity) around it.

Then, continuum mechanics provides balance laws, which predict the evolution of these properties
over time. In order to e�ectively solve the equations corresponding to each balance law, one chooses con-
stitutive relations to "close" our system of equations, by de�ning how the values of di�erent macroscopic
properties are linked to each other.

Constitutive relations may respect some universal requirements, such as the principle of material
frame-indi�erence (that is, their structure must not depend on the particular inertial reference frame we
use), symmetry and thermodynamic considerations, however, the latter are rarely, if ever, su�cient to
uniquely determine the former. Rather, experiments must be made to determine their exact form, and so
constitutive relations act as a property intrinsic to the material, making the dynamics of each material
(e.g. water and steel) work di�erently.

The continuum mechanics description is elegant and highly successful, but as is the case with any
model, it ignores part of the physical setting, as it is common knowledge that at the microscopic level,
no material is truly a continuum. The task of obtaining material properties from atomic and molecular
interactions remains a challenge to this day, with both fundamental and practical interest.

The �eld of equilibrium statistical mechanics, created by Josiah W. Gibbs (1839-1903), James Clerk
Maxwell (1831-1879) and Ludwig Boltzmann (1844-1906) was a major milestone in that direction. It is
a staple subject for any physics student, providing a detailed description of the thermodynamic behavior
of gases, conductance-band electrons in a metal, Bose-Einstein condensates, phase transitions, and many
other phenomena [24].

Whereas in the equilibrium setting we have a single framework describing all the above situations,
with few unanswered questions regarding its interpretation (e.g. the role of entropy maximization in
statistical mechanics, the role of the Ergodic hypothesis, whether the obtained probabilities are Bayesian
or frequentist), in the non-equilibrium setting most bets are o�. There are a number of successful models
in non-equilibrium statistical mechanics (e.g. Langevin equations for Brownian motion, Master equations,
Ising models for magnetisation, Spin glasses, etc), but there isn't yet a uni�ed framework from which to
derive these results.

Historically, the �rst attempt to model a material system out of equilibrium taking into account its
microscopic behavior was the Kinetic theory of gases from Maxwell and Boltzmann. Its most important

1



2 CHAPTER 1. INTRODUCTION AND PHYSICAL MOTIVATION

idea (in fact, the central idea behind statistical mechanics in general) was that in order to include
microscopic information into the macroscopic description of a material, it is not necessary to know the
full dynamics of each atom within the material, which is practically impossible to obtain even in a classical
description.

To see why this is the case, consider the (classical) equations of motion for a system composed of
N ≈ 1023 particles (the atoms in a gas) encased in a solid vessel, which we identify with Ω ⊆ R3 open
with smooth boundary and compact closure. Since we assume our particles are modeled according to
classical mechanics, where the state of a particle is uniquely determined by its position and velocity,
de�ne ΓN = {γ ∈ ΩN × R3N} as the phase space for the system. Then each i = 1, . . . , N we haveẋi(t) = vi = ∇viH,

v̇i(t) = Fi(x) = −∇xiH,
(1.0.1)

supplemented by the initial data x(0) = x0, v(0) = v0, where xi = (xi,1, xi,2, xi,3), vi are respectively
the positions and velocities of each particle, H : R6N −→ R is the system's hamiltonian, and F is the
total force per unit mass acting on particle i, de�ned as

F (xi) = −∇xiH = −∇xi

V (xi) +
∑
i 6=j

φij(xi, xj)

 . (1.0.2)

Where V describes an external potential, and φij the potential energy contribution from particles i and
j (if all particles in this system are of the same kind, then φij will be independent of the indices) . To
introduce some notation, de�ne the function U : N× {1, 2, 3} → N, given by U(i, j) = 3(i− 1) + j.Since
U is a bijection, We can introduce then state vector in ΓN

γk =

{
xU−1(k) k ≤ 3N

vU−1(k−3N) k > 3N
,

we see that the previous equations can be regarded as

d

dt
γ = A∇H(γ(t)), γ(0) = γ0 ∈ ΓN = ΩN × R3N , (1.0.3)

where

Aij =


1 i ≤ 3N, j > 3N,

−1 i > 3N, j ≤ 3N,

0 otherwise.

The solution for this system, if it exists, can be written as

γ(t) = X(t, γ0)1, (1.0.4)

where X(t, y) : R+ × ΓN −→ R6N is the �ow associated with equation 1.0.3. Summarizing the argument
given by by [7], we can say that for this system:

(1) Acquiring initial data for 1023 particles simultaneously is impossible in practice. Similarly, writing
down this initial data on any numerical solver you choose to approximately solve this system is also
impossible (since there are less than 108 seconds in a year, assuming that one can write the six data for
each particle in one second, the total time need to write down the initial data would be greater than 1015

years).

(2) Initial data cannot be in�nitely accurate. By choosing to work with a certain number of decimal

1X(t, γ0) induces the semi-group: γ(t+ s) = X(s, γ(t))
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places, one indroduces truncation errors in the initial data, even in the absence of measurement errors,
which can be magni�ed by the numerical methods used to solve these equations.

(3) Even if we could work with in�nitely many decimal places and supposing measurements were
perfect, unless we include all forces and particles in the universe in our simulation, there will always be
round-o� and truncation errors, which will be important due to the number of equations we need to
solve simultaneously. To quote [7], if we consider the total force acting on a closed system of particles:
"the displacement of 1 gramme of matter by 1cm on a not too distant star (say, Sirius) would produce a
change of force larger than 10−100 times a typical force acting on a molecule". Therefore the error of not
including very distant particles manifests itself if we work with many decimal places, and is magni�ed by
numerical solutions; since the solution is strongly sensitive to changes in the initial conditions.

The above argument suggests that we would need to solve (1.0.1) for an ensemble of systems, each
with a slightly di�erent initial condition, compatible with the amount of errors we are introducing by
simplifying our description and the amount of uncertainty in the initial data [9]. All this can be swiftly
accomplished by assigning a probability distribution for the initial data of our system. The domain of
this distribution will be the phase space ΓN .

The idea is that, given the overwhelming magnitude of the number of atoms inside any macroscopic
object, the motions of individual atoms have little in�uence to any observations we make. Only the
collective behavior as measured by statistics should matter for any material property, and most material
properties would emerge as averages of corresponding microscopic properties.

A central equation in the Kinetic theory of gases (considering gases out of equilibrium) is Boltzmann's
transport equation, of 1872:{

∂f
∂t + v · ∇xf +W · ∇vf = Q(f, f),

[Q(f, f)] (t, x, v) =
´
R3

s
S2 (f ′f ′∗ − ff∗)B(ω, v∗ − v) dH2(α) dv∗,

where: f : Ω×R3 → R+ is a probability density over the phase space of a single particle; B(ω, v∗−v)
is called the collision kernel, which takes into account interparticle interaction; dHd−1 is the Hausdor�
measure of the surface, denoting a surface integral over the unit sphere; f ′, f ′∗, f∗ are shorthand for
f(t, x, v′), f(t, x, v′∗), f(t, x, v∗) respectively; and the pairs (v, v∗) and (v′, v′∗) are respectively the velocities
of 2 particles before and after a binary collision, which are related by the expression{

v′ = v + 〈w,α〉α,
v′∗ = v∗ − 〈w,α〉α.

Many further models of non-equilibrium statistical mechanics were inspired by this equation, and
it still �nds applications today in the �elds of aerodynamics, �uid mechanics, cosmology, and nuclear
reactor design [28],[7]. The goal of this dissertation is to be an introduction to the mathematical theory
of the Boltzmann equation, focusing in its existence theorems. Speci�cally, we cover in detail the theory
of renormalized solutions to the Boltzmann equation, as de�ned by [12].

1.1 A brief chronology of the kinetic theory

The forefather of the kinetic theory of gases was the prominent swiss mathematician Daniel Bernoulli
(1700-1782). In his modelling, gases were made of hard spheres colliding according to classical mechanics.
He identi�ed the sphere's kinetic energy with the notion of macroscopic tempreature, and the momentum
transfer of particles colliding with the wall as the gases's pressure, obtaining an approiximate derivation
to the empirical law of Boyle-Mariotte for dilute gases, which had been demonstrated a century before,
[17], i.e.

PV = g(T )

From conservation of energy he deduced that temperature increases at constant volume would lead to
pressure increases, and de�ned an equivalent expression for the mean free path of a gas a century before



4 CHAPTER 1. INTRODUCTION AND PHYSICAL MOTIVATION

Rudolph Clausius made the de�nition popular. Daniel Bernoulli also gave major contributions to other
areas, such as �uid mechanics, writing the �rst book on the subject (inventing the term 'hydrodynamics').

Sadly, his work on kinetic theory was largely ignored by the scienti�c community of his time [17].
The reason for this was that, at the time, most scientists believed in the so-called 'calloric hypothesis',
according to which heat was a �uid, �owing between solid bodies. The 'density' of that �uid would
amount to macroscopic temperature, with warmer bodies having a denser calloric �uid, and heat would
�ow from warm to cold bodies due to di�erences in the calloric density. It was believed at the time that
dynamic theories of heat (where heat is a subproduct of motion) couldn't explain the latent heat of boiling
of materials, as well as how the heat generated by the sun could reach the earth traversing the vacuum
of space [30]. Among notable adherents of the calloric hypothesis, we �nd Lord Kelvin (1824-1907) and
Pierre Simon de Laplace (1749-1827).

It was only after the death of Laplace, and with a better understanding of heat transfer by radiation,
that the calloric hypothesis started to lose momentum. In 1820, John Herapath derived the Boyle-
Mariotte relationship based on the kinetic theory of gases, which was not accepted for publishing at
the Royal Academy of Science [17], but which was read by James Prescott Joule (1818-1889) [17] . In
1847, Joule publicou published his celebrated result establishing the equivalence of mechanical energy and
thermal energy, strengthening the idea that heat would be just another form of energy, paving the way for
the de�nition of the First Law of thermodynamicss. Since the fundamental work of Sadi Carnot (1796-
1832) was written considering the calloric hypothesis, the convertibility between heat and mechanical
energy was not immediately accepted. Reconciliation between the works of Joule and Carnot marked the
downfall of the calloric hypothesis [30].

Kinetic theory gained credibility when Clausius (1822-1888), famous for his de�nition of the Second
Law of thermodynamics, started publishing on the subject citing te works of Herapath and Joule, in 1858.

James Clerk Maxwell (1831-1879), widely known for his synthesis of equations of classical electromag-
netism, published 3 major papers on the subject of kinetic theory. In 1860, considering a monoatomic gas
in a closed system in thermodynamic equilibrium, derived using only symmetry arguments the equilibrium
velocity distribution of a gas

f : Ω× R3 → R+; f(x, v) =
n(x)

V

(
m

2πkBT

) 3
2

e
−m||v||

2

2kBT ,

where n is the number density of particles, m, is a particles's mass, T its temperature in kelvin and kB

the Boltzmann constant (using modern notation).
Ludwig Boltzmann (1844-1906) earned his PhD under the supervision of Josef Stefan in 1866, and

from the outset of his career (already in his �rst paper), his avowed goal was to derive the Second Law
of thermodynamic from mechanical considerations [38]. He wrestled with this problem through his entire
career, and his ideas on the precise relationship between thermodynamical properties of macroscopic
bodies and their microscopic constitution, and the role of probability in this relationship changed sharply
over time [38]. Today there are a few di�erent approaches and con�icting positions regarding the foun-
dations of statistical physics (e.g. the role of the Ergodic hypothesis), but all of today's approaches were
pioneered in some way in the works of Boltzmann [38], due to the many di�erent lines of reasoning he
used to tackle the problem of the Second law. His equation of 1872, which is the central object of this
dissertation, is one of these approaches.

1.2 A Heuristic derivation of Boltzmann's equation

This heuristic relies on 4 assumptions, which we outline below:

1. External forces are negligible when compared to interaction between particles in the moment of
collisions (that is, ‖Fexternal(tcol)|| � ‖Finternal(tcol)‖), and the opposite is true when particles are
streaming.
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2. The time scale of a typical collision is much smaller than the average time elapsed between collisions
τcollision � τstreaming. This also means that changes in position of the order of a characteristic
distance σ leave the value of the distribution f approximately unchanged, where σ measures how
far apart can 2 particles be while still interacting . This establishes a separation of time scales in
the problem.

3. The gas is considered to be rare�ed. This means that only binary collisions will be considered (all
collisions involving more particles are considered rare and statistically irrelevant).

4. (Stoβzahlansatz ) The state of each particle is an independent identically distributed random vari-
able, with density function f , i.e. γ ∼ f(t, x, v). Likewise, if we select s particles at random
from our system; their joint distribution in the phase space ΓN will have density P (s)(t, xij , vij) =
s∏
i=1

f(t, xij , vij). This allows us to construct an evolution equation only for the phase space of a

single particle. This condition enforces a certain independence between particles, which can hold
approximately only if particles interact very weakly. Therefore, this modelling will be justi�ed only
for gases, where attractive forces play a small role since the average distance between particles is
large.

From Liouville's equation, it is also possible to show that any conservative system of classical
particles in equilibrium satis�es this property in the limit when N → ∞ [7]. What distinguishes
the Stoβzahlansatz is that we assume that this condition holds out of equilibrium at all times for a
time dependent probability density, and for a �nite number of particles N .

The argument goes as follows [23]:

If there were no collisions (or interaction) between particles, they would only be subject to external
force �elds, and their trajectories would be solutions to problem (1.0.1), considering only external forcing.
Therefore, their distributions, as functions de�ned in the phase space; should be �carried� with the �ow.
This amounts to say

d

dt
f(X(t, z0)) = 0 (∀z0 ∈ Γ),

where Γ = Ω × Rd is the phase space of a single particle, Ω ⊆ Rd is an open set, and X(t, z0) is
the �ow in phase space given by equation (1.0.4). In the absence of inter-particle forces, the trajectories
generated by the �ow X(t, z0) in phase space are called extrinsic trajectories.

However, according to hypothesis (1), interactions are signi�cant only in the moment of a collision (e.g.
potential energy greater than a given threshold, which means both particles are very close to each other);
and according to (2), collisions appear instantaneous when compared to the time scale of streaming.

Therefore, collisions (or interaction between particles) cannot continuously alter the extrinsic trajec-
tory that particles follow. Collisions can only instantantly change the velocity of the pair of particles
involved (hypothesis (3)); generating new initial conditions for the streaming problem (I). That is,
collisions make particles swap trajectories, but do not generate new trajectories.

If we restrict ourselves to one extrinsic trajectory, the perceived e�ect of collisions will be an in-
crease/decrease in the number of particles following it. De�ning the rate of change in probability due to
creation of particles in state (t,x,v) as Q(f, f)(t, x, v); this corresponds to the equation

d

dt
f(X(t, z0)) = Q(f, f)(X(t, z0)), ∀z0 ∈ Γ

Formally, we can use the chain rule to obtain:
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d

dt
f(X(t, z0)) = ∇f · d

dt
X(t, z0) = ∇f · (1, A∇H)

=
∂f

∂t
+∇vH · ∇xf −

1

m
∇xH · ∇vf.

Then, since our hamiltonian tracks only the external forces, we de�ne W (t, x, v) = − 1
m∇xH as �eld of

acceleration induced by external forces (e.g. gravitational acceleration). With this notation,

∂f

∂t
+ v · ∇xf +W (t, x, v) · ∇vf = Q(f)(t, x, v), (1.2.1)

(1.2.1) is the classical Boltzmann equation, if we de�ne the operator on the right-hand side accord-
ingly (aptly named the collision operator), which requires us to understand the e�ect that collisions (or
interactions) have on the probability distribution f .

1.3 Basic de�nition and properties

Representations and the Encounter problem

In order to reach a closed expression of the collision operator, we must be able express how collisions
a�ect the velocities of individual particles, and then translate this into changes in the function f . In
Appendix A.3, we treat in detail the problem of a binary collision in classical mechanics and obtain the
results shown in this section. Denoting x1, x2 as the positions of the two particles, we reach then the
conclusion that the following limits exist:

lim
t−→∞

dx1

dt
:= v′, lim

t−→−∞

dx1

dt
:= v, lim

t−→∞

dx2

dt
:= v′∗ lim

t−→−∞

dx2

dt
:= v∗.

These velocities are called asymptotic velocities of particles 1 and 2. Assuming the interparticle force
to be conservative, these velocities must satisfy

(B)

{
m1v +m2v∗ = m1v

′ +m2v
′
∗ (momentumconservation)

m1‖v‖2 +m2‖v∗‖2 = m1‖v′‖2 +m2‖v′∗‖2 (energy conservation)

Since τcollision � τstreaming was among our assumptions, all that matters to us are the asymptotic
velocities, as collisions are assumed to be instantaneous.

We notice that if x1, x2 ∈ Rd, the above system contains d+ 1 equations, and 2d unknowns (since we
assume v, v∗ as known), so we cannot guarantee uniqueness of solutions. Rather, de�ne G : R2d −→ Rd+1

as G(v′, v′∗) = (m1v
′ + m2v

′
∗,m1‖v′‖2 + m2‖v′∗‖2). Using the Inverse Function Theorem, the pre-image

of (m1v + m2v∗,m1‖v‖2 + m2‖v∗‖2) will be a d − 1 dimensional manifoldMv,v∗ in Rd. For �xed v, v∗,
any function that takes arguments inMv,v∗ and associates them to the corresponding output velocities
v′, v′∗ is said to be a representation of a solution to (B). In the case of equal masses m1 = m2 and
d = 3, two popular representations are the α representation,{

v′ = v + 〈w,α〉α,
v′∗ = v∗ − 〈w,α〉α,

and the σ representation {
v′ = v+v∗

2 + ‖v∗−v‖
2 σ,

v′∗ = v+v∗
2 + ‖v∗−v‖

2 σ,

where α, σ are unit vectors in R3, w = v∗ − v is the relative velocity between particles. The �rst one will
be prefered throughout this text, and a derivation for it can be found in Appendix A.3. Although the
second representation has the advantage of showing clearly that in generalMv,v∗ is a sphere in Rd with
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diameter ‖v − v∗‖ and centered at v+v∗
2 .

Figure 1.3.1: This diagram shows how pre and post-collisional velocities are related, as well as the
manifoldMv,v∗ . This image was taken from [36]

Since α is a unit vector, it will be parametrized by spherical coordinates

α = e(θ, ϕ) = (cosϕ sin θ) ξ + (sinϕ sin θ) η + (cos θ) ŵ, where ŵ = w/‖w‖, and {η, ξ, ŵ} form a
positively oriented basis in R3 and (θ, φ) ∈ [0, π/2) × [0, 2π). The physical signi�cance of α is that
knowing the velocities v, v∗ does not determine uniquely v′, v′∗ if we don't know the orientation of the
collision (e.g. thinking in terms of billiards, the �nal velocities after a collision depend not only on the
initial velocities, but also on the angle with which the collision occured). Physically the vector α is a unit
vector in the direction x1−x2 when the particles are at their minimal distance during a collision (if they
interact as hard spheres, that is precisely when they collide).

1.3.1 The Collision operator

Here we use the notation and properties of a binary collision problem described in Appendix A.3. Consider
again 2 particles in the moment of a collision, with velocities (v, v∗), with a reference frame centered in
particle 1. De�ne w = v∗−v as their relative velocity, and de�ne Π2 as the plane orthogonal to ŵ = w

||w|| .

As was shown in the Appendix, all motion of one particle relative to the other happens on a �xed
plane Π1. If particle 2 passes su�ciently close to 1 in Π2, interaction takes place. So there is an open set
A ⊆ Π2 containing the origin that accounts for the range of interaction for both particles. Choose ξ, η in
Π2 so as to render {ξ, η, ŵ} a positively oriented orthonormal basis set in R3. Then, parametrize ∂A by:
re = b(ϕ) [cos(ϕ)ξ + sin(ϕ)η] ; ϕ ∈ (0, 2π).

The above de�nitions can be summarized in the picture below.
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Figure 1.3.2: A picture detailing the relative motion during a binary collision. In this picture, the plane
P corresponds to our de�nition of Π2. This image was taken from [36]

In our case, since the potential for interaction is assumed to be spherically symmetric, the border of
A should not depend on ϕ. Therefore, b(ϕ) = R, and so A ⊆ Π2 is a disk centered on particle 1.

We will factor the rate of change of probability associated with the state (t, x, v) ∈ Γ as:

Q(f, f) =
(
Rate of increase ≡ Q+(f, f)

)
−
(
Rate of decrease ≡ Q−(f, f)

)
� Rate of Decrease: Assuming w �xed, the volume (in the phase space) that crosses the cross-section
A per unit time is given by:

R =

¨

A

wdS.

It is clear that the rate of decrease Q−(f, f) will be given by the �ux of probability across A. The
joint probability distribution of 2 particles with states (x, v), (x∗, v∗) is de�ned as the pair distribution,
and denoted by P (2)(t, x, x∗, v, v∗); Since we want the rate for a given state (x, v) and any (x∗, v∗), the
correct expression for a given w will be

Q−(f, f)(t, x, v) =

¨

A

P (2)(t, x, x∗, v, v∗) ||w‖dS∗.

Invoking the second part of hypothesis (2), we see that σ can be taken as the radius of the disk A,
such that when |x− x∗| < σ, P (2)(t, x, x∗, v, v∗) = P (2)(t, x, x, v, v∗). Letting the incoming velocity of the
second particle vary, and using the Stosszahlansatz, we have

P (2)(t, x, x∗, v, v∗) = f(t, x, v)f(t, x, v∗), (1.3.1)

Q−(f, f)(t, x, v) =

¨

R3×A

P (2)(t, x, x, v, v∗) ‖w‖dS∗dv∗ =

¨

R3×A

f(t, x, v)f(t, x, v∗) ‖w‖dS∗dv∗. (1.3.2)
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� Rate of Increase: We apply the same idea, except that in this case we must consider particles
whose collision will generate the state (t,x,v). Since collisions are reversible, we see that those are
precisely the states resulting from a collision between particles where one of them was at state
(t,x,v). Therefore, we expect that:

Q+(f, f)(t, x, v) =

¨

R3×A

P (2)(t, x, x, v′, v′∗) ‖w‖dS∗dv∗ =

¨

R3×A

f(t, x, v′)f(t, x, v′∗) ‖w‖dS∗dv∗ (1.3.3)

In many cases, both of these integrals are divergent. However, one can combine them into a single
integral:

Q(f, f)(t, x, v) =

¨

R3×A

(f(t, x, v′)f(t, x, v′∗)− f(t, x, v)f(t, x, v∗)) ‖w‖dS∗dv∗

which can be shown to be �nite for some choices of interaction potential (e.g. for inverse power law
potentials of the form 1/rk, κ > 3) [36]. This is the full collision operator, whose properties will be
further examined in the next section. Meanwhile, writing the integral over A in polar coordinates, we
see that the distance in Π2 between particles 1 and 2 (The o�set between trajectories once their relative
velocity is already set) is exactly the de�nition of the impact parameter. Then, writing in terms of polar
coordinates, we have

Q(f, f)(t, x, v) =

ˆ

R3

2πˆ

0

σ̂

0

(f (t, x, v′(θ, ϕ)) f (t, x, v′∗(θ, ϕ))− f (t, x, v) f (t, x, v∗)) ‖v∗ − v‖b db dϕdv∗. (1.3.4)

Here, a cuto� assumption is used, meaning we assumed φ to have a compact support. If the support
of φ is unbounded, we postulate the same expression for Q(f, f)(t, x, v), only passing the limit of σ →∞.
Thus, if we can both correctly parametrize θ in terms of (b, ϕ) and express post-collisional velocities
starting from pre-collisional ones, then Q(f, f) will be well de�ned. One can show (see Appendix A.3)
that the correct way to relate the deviation angle in a collision and the impact parameters is given by
the Orbital equation

θ =

smaxˆ
b
σ

1√
1− s2 − 2φ(b/s)

µ‖w‖2

ds+ arcsin

(
b

σ

)
. (1.3.5)

This completes our description of the collision operator. For shorthand, we use the notation

Q(f, f)(t, x, v) =

ˆ

R3

¨

A

(f ′f ′∗ − ff∗) ‖w‖dAd3v∗.

There are a few cases in which the expression for the potential φ is simple enough to allow analytical
calculations for the kernel B. These are:

� The hard sphere potential, where φ is a dirac mass. Then one can show explicitly that the kernel
B is simply a contant times the relative velocity ‖w‖ = ‖v∗ − v‖.

� The coulomb potential φ = 1
r , for which one obtains the rutherford scattering kernel: B(|v−v∗|, p) =

K 1
‖v−v∗‖3sin4(p/2). , where K = e2

4πε0m
.

� The inverse power law potential, where

φ =
1

rs−1
.
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Although explicit expressions are not available for this model, one can factorize B in this case as B(‖v∗−
v‖, p) = f(cos(p)) ‖v∗ − v‖γ , where γ = s−(2N−1)

s−1. . In R3, where the de�nition for gamma reads γ = s−5
s−1 ,

the following terminology is commonly used:
s > 5⇒ γ > 0, φ is called ahardpotential

s = 5⇒ γ = 0 the particles are said to beMaxwellian

s < 5⇒ γ < 0 φ is called a soft potential

Spherical description

Geometrically, the angle θ corresponds to the �re�ection angle� for the relative velocity w, as seen from the
frame of the particle with velocity v. Therefore, the de�ection angle can be easily obtained as p = π−2θ.
The orbital equation can be seen as a function, such that θ = f(b), and therefore a relationship between
the de�ection angle and the impact parameter. Since p ∈ [0, π], one can use the orbital equation to
de�ne a mapping ψ : [0, π]× [0, 2π] −→ [0,∞)× [0, 2π], such that ψ(p, ϕ) = (b, ϕ), where b = f−1(θ), the
jacobian of this transformation being simply

db

dp
=

1

−2dθdb
.

Then, take φ1as the parametrization of the shock cross section A using cylindrical coordinates, and φ2 as
the parametrization of the unit sphere using spherical coordinates. De�ne Ψ : S2 −→ A; Ψ = φ1◦ψ◦φ−1

2 .
Pulling back by Ψ our area form, we can obtain an integral over the unit sphere

¨

A

(f ′f ′∗ − ff∗) ‖w‖dA =

¨

	(S2)

(f ′f ′∗ − ff∗) ‖w‖dA =

¨

S2

Ψ∗ [(f ′f ′∗ − ff∗) ‖w‖dA] ,

which by the chain rule will be given by

¨

S2

Ψ∗ (f ′f ′∗ − ff∗)
‖w‖b
sin(p)

db

dp
dA′,

where dA' is the area form of the unit sphere. Then, one may de�ne B(p, ‖w‖) = ‖w‖b
sin(p)

db
dp as the collision

kernel2, and rewrite the collision operator as

Q(f, f)(t, x, v) =

ˆ

R3

¨

S2

(f ′f ′∗ − ff∗)B(p, ‖w‖) dAdv∗.

Now, no reference has to be made to the orbital equation, as its information is contained in the collision
kernel B. This form of the equation is best suited for the analysis of properties of the collision operator,
and will be used for most proofs in this thesis.

2In most physics textbooks of classical scattering theory, the term b
sin(p)

db
dp

is named the di�erential scattering cross-

section. In the study of the Boltzmann equation, however, since the scattering kernel usually appears multiplied by ‖w‖,
we de�ne this term as the 'collision kernel', a nomenclature frequently used in the mathematics community.
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1.3.2 Summational invariants

The equation of transfer

Once a solution f(t, x, v) to the Boltzmann equation is available, we can make a few de�nitions. First,
taking the marginal of f with respect to the variable v, we obtain

ρ(t, x) =

ˆ
R3

f(t, x, v)dv ≥ 0. (1.3.6)

Multiplying ρ by the total mass of gas in a vessel and integrating in position over a bounded open set
B ⊆ Ω, one obtains the mass of gas in B at a given time. Therefore, ρ is indeed the macroscopic density
of the gas, up to a constant multiplicative factor. De�ne the random variables V and X as the velocity
and position of a particle, respectively; with (X,V ) ∼ ft(x, v), X ∼ ρ. Let ψx(v, t) denote a conditional
probability density such that V |X ∼ ψx,t(v):

ψt,x(v) =
f(t, x, v)´

R3 f(t, x, v)dv
=
f(t, x, v)

ρ(t, x)
, (1.3.7)

which is well de�ned for x and t belonging to the essential support of ρ. The conditional expectation of
V is what we de�ne as the macroscopic velocity �eld u:

u(x, t) := E[V |X = x] =

ˆ
R3

vψx(t, v)dv =
1

ρ(t, x)

ˆ
R3

vf(t, x, v)dv (1.3.8)

Therefore, if g : Γ −→ Rn is a property associated with a particle, its average value the point (x,t)
will generally be given by:

G(x, t) =

ˆ

R3

g(x, v)f(t, x, v)dv = ρ(t, x)

ˆ

R3

g(x, v)ψt,x(v)dv = ρ(t, x)g(x, t), (1.3.9)

Where G(t, x), g(x, t) are the macroscopic properties corresponding to g, where the former is per unit
volume, and the latter is written per unit mass.

If we multiply both sides of Boltzmann's equation by g and perform the above integration, we will
have the following:

ˆ
R3

∂

∂t
[g(x, v)f ] dv +

ˆ
R3

v · ∇x (f) g(x, v) dv +

ˆ
R3

W (t, x, v) · ∇vfg(x, v)dv =

ˆ

R3

g(x, v)Q(f, f)(t, x, v)dv (1.3.10)

Notice that the �rst term of this equation can be cast as

∂

∂t

ˆ
ftg(x, v)dv =

∂

∂t
G(t, x),

so that this equation (after further simpli�cations) may provide an evolution equation for the macroscopic
property G. De�ne

´
R3 g(x, v)Q(f, f)(t, x, v)dv ≡ Qfg(t, x) (the right hand side of this expression), which

is named the total collision operator 3.

Now performing the following splitting: c(t, x, v) = v−u(t, x) and using some vector calculus identities,

3total in the sense that it averages the e�ect of collisions for all possible velocities; taking into account a reference
distribution f
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we can say that

v · ∇x (f) g(x, v) = v · ∇x (fg(x, v))− v · ∇x (g(x, v)) f

= ∇x · (g(x, v)⊗ vf)− v · ∇x (g(x, v)) f

= ∇x · (g(x, v)⊗ u(t, x)f) +∇x · (g(x, v)⊗ cf)− v · ∇x (g(x, v)) f,

(where ⊗ denotes the Kroenecker or tensor product). Therefore

ˆ
R3

v · ∇x (f) g(x, v) dv = ∇x ·
[ˆ

R3

fg(x, v) dv ⊗ u(t, x)

]
+∇x ·

ˆ
R3

g(x, v)⊗ cf dv

−
ˆ
R3

v · ∇x (g(x, v)) f dv,

and likewise,

ˆ
R3

(W (t, x, v) · ∇vf)g(x, v)dv =

ˆ
R3

W (t, x, v) · ∇v(fg(x, v))dv −
ˆ
R3

(W (t, x, v) · ∇vg(x, v))f dv.

If we further assume that the external force �eld W is independent of the particle's velocity (e.g. not
a magnetic force �eld) and use the divergence theorem, this can be simpli�ed even further to give us

ˆ
R3

W (t, x, v) · (∇vf)g(x, v)dv =

ˆ
R3

∇v · (fg(x, v)⊗W (t, x))dv −
[ˆ

R3

f∇vg(x, v)dv

]
W (t, x)

= lim
R→∞

˛
∂BR

(f(·, ·, v)g(·, v)⊗W (·, ·, v)) · n̂(v) dH2(v)−
[ˆ

R3

f∇vg(x, v)dv

]
W (t, x),

where BR ⊆ R3 is a ball centered at the origin with radius R > 0. With su�cient decay conditions
on f(t, x, v),W (t, x, v), g(x, v) when v → ∞, we may hope that the �rst term of the right hand side
disappears. Inserting all of the above identities on equation (1.3.10), we �nd the following expressions:

∂

∂t

[ˆ
R3

g(x, v)f dv

]
+∇x ·

[ˆ
R3

fg(x, v) dv ⊗ u(t, x)

]

= −∇x ·
ˆ
R3

g(x, v)⊗ cf dv +

ˆ
R3

W (t, x, v) · (∇vf)g(x, v)− v · ∇x (g(x, v)) fdv +Qfg(t, x) (1.3.11)

using the following de�nitions{
σ =
´
R3 c⊗ g(x, v)f(t, x, v) dv,

F =
´
R3 W (t, x, v) · (∇vf)g(x, v)− v · ∇x (g(x, v)) fdv,

And recalling our de�nitions of G(t, x) and g(t, x), the above can be rewritten as

∂

∂t
G(t, x) +∇x · [G⊗ u(t, x)] = −∇x · σ − F +Qfg(t, x), (1.3.12)

in the general case. And, if the force term is velocity independent, then we �nd

∂

∂t
G(t, x) +∇x · [G⊗ u(t, x)] = −∇x · σ + FW +Qfg(t, x) + r, (1.3.13)
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where we used the following de�nitions
σ =
´
R3 c⊗ g(x, v)f(t, x, v) dv,

FW =
´
R3 [W (t, x) · ∇vg(x, v) + v · ∇xg(x, v)] f(t, x, v)dv,

r = limR→∞
¸
∂BR

(f(·, ·, v)g(·, v)⊗W (·, ·)) · n̂(v) dH(v).

If we write the equation in terms of g, then we �nd that

∂

∂t
[ρ(t, x)g] +∇x · [ρ(t, x)u(t, x)⊗ g] = −∇x · σ + FW +Qfg(t, x) + r (1.3.14)

Further simpli�cations can be made if we assume that the property g(t, x, v) depends only on the
velocity. Equations (1.3.12), (1.3.13), (1.3.14) are called equations of transfer, and they can be seen
as macroscopic balance laws for the properties G, g (if the remainder term r is well de�ned). It roughly
states that the rate of change of property g is a sum of 4 components: convective transport of g by
the �uid's bulk velocity (second term on the left hand side), a convective transport term involving the
deviation of the velocity v from the bulk velocity u (σ), production of g by external forces (FW ), and
Qfg(t, x), which by employing the collision operator is the production of g by internal forces (collisions).

However, for that approach to be fruitful in obatining macroscopic equations, we need to be able to
give de�nite results for Qfg. In order to simplify the total collisions operator, de�ne the Bilinear form4

Q[f, h](t, x, v) =
1

2

¨

R3×S2

(f ′h′∗ + h′f ′∗ − fh∗ − hf∗) B(w,α)dH2(α)dv∗. (1.3.15)

We see that trivially Q[f, f ](t, x, v) =
˜

R3×S2 (f ′f ′∗ − ff∗) B(w,α)dH2(α), and that it is symmetric,
but not positive de�nite (therefore not exactly an inner product). We de�ne the total bilinear form in
the same fashion

ˆ

R3

g(x, v)Q[f, h](t, x, v)dv ≡ Qf,hg(t, x).

Denote by g∗, g
′
∗, g
′ the function g(x, v) when the v variable has been replaced by v∗, v

′
∗, v
′ respectively.

Expanding the de�nition of Qf,hg(t, x), we have:

Qf,hg(t, x) =
1

2

ˆ

R3

¨

R3×S2

(f ′h′∗ + h′f ′∗ − fh∗ − hf∗) g B(w,α)dH2(α)dv∗ dv (1.3.16)

The changes of variables G1(v, v∗, v
′, v′∗) = (v∗, v, v

′
∗, v
′) and (v, v∗, v

′, v′∗) = (v′, v′∗, v, v∗) have unit ja-
cobian, and so does G2 ◦ G1. Also, elastic collisions preserve the absolute value of the relative velocity
‖v − v∗‖ = ‖v′ − v′∗‖. From these simple observations, performing the above change of variable induced
by G2 one can show that

Qf,hg(t, x) =
1

2

ˆ

R3

¨

R3×S2

(fh∗ + hf∗ − f ′h′∗ − h′f ′∗) g′B(w,α)dH2(α)dv∗ dv

= −1

2

ˆ

R3

¨

R3×S2

(f ′h′∗ + h′f ′∗ − fh∗ − hf∗) g′B(w,α)dH2(α)dv∗ dv

= −Qf,hg′(t, x)

4The bilinear form is useful when generalizing the Boltzmann equation to describe a gas with multiple components. In
this case, f, h can be seen as the probability densities of 2 gases, and the bilinear form would be the way to generalize the
collision operator, to account for collisions between di�erent particles.
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For G2 ◦G1 we also �nd:

Qf,hg(t, x) =
1

2

ˆ

R3

¨

R3×S2

(f∗h+ h∗f − f ′∗h′ − h′∗f ′) g∗B(w,α)dH2(α)dv∗ dv

= Qf,hg∗(t, x) = −Qf,hg′∗(t, x)

Since we have many ways to represent the total collision Qf,hg(t, x), we can do the following trick:

Qf,hg(t, x) =
Qf,hg(t, x) +Qf,hg∗(t, x)−Qf,hg′(t, x)−Qf,hg′∗(t, x)

4

=
1

4
Qf,h [g + g∗ − g′ − g′∗] (t, x),

or expanding it,

Qf,hg(t, x) =
1

8

ˆ

R3

¨

R3×S2

(f ′h′∗ + h′f ′∗ − fh∗ − hf∗) [g + g∗ − g′ − g′∗] B(w,α)dH2(α)dv∗ dv. (1.3.17)

This can be separated into two integrals:

Qf,hg(t, x) =
1

8

ˆ

R3

¨

R3×S2

(f ′h′∗ + h′f ′∗) [g + g∗ − g′ − g′∗]B(w,α)dH2(α)dv∗ dv

−1

8

ˆ

R3

¨

R3×S2

(fh∗ + hf∗) [g + g∗ − g′ − g′∗]B(w,α)dH2(α)dv∗ dv

Performing the same procedure on the second integral, of changing variables using G2 (unpriming
primed functions and vice-versa, changing sign) actually shows both are equal, so we end with:

Qf,hg(t, x) =
1

4

ˆ

R3

¨

R3×S2

(fh∗ + hf∗) ‖w‖ [g′ + g′∗ − g − g∗] B(w,α)dH2(α)dv∗ dv (1.3.18)

Remark 1.3.1. This last step is only possible if both of the above integrals are convergent, which does
not generally follow even if our original integral for the total collision operator did. Here we present a
few of the classical results that guarantee that the collision operator and the total collision operator are
well de�ned. All of the results below are su�cient, but not necessary conditions for Q to be well-de�ned.

For particles interacting through a potential with cuto�, we have the

Theorem 1.3.1. Let A be a disk. If (1+‖v‖)f, (1+‖v‖)h ∈ L1(Ω×Rd), then Q[f, h](t, x, v) is well de�ned,
and is integrable (Q[f, h] ∈ L1

x,v for a.e. t > 0). As a corollary, Q+(f, f), Q−(f, f) are well de�ned.

Theorem 1.3.2. Let A be a disk, and g(v) : Rd −→ R be a function satisfying the condition

|g| ≤ C(1 + ‖v‖)n

If (1 + ‖v‖)n+1f, (1 + ‖v‖)n+1h ∈ L1(Ω×Rd), then Qf,hg(t, x) is well de�ned, and equations 1.3.17 and
1.3.18 are valid.

For particles interacting through a potential without cuto�, the relevant condition is

ˆ
S2

(π
2
− p
)
B(p, ‖w‖)‖w‖ dH < C(1 + ‖v‖)2(1 + ‖v∗‖)2 (1.3.19)

Theorem 1.3.3. Let B be a collision kernel satisfying equation 1.3.19. If f, h are C1 with respect to the
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velocity variable, and (1 + ‖v‖)2K ∈ L1(Ω×Rd) for K = f, h, ‖∇vf‖, ‖∇vh‖, then Q[f, h](t, x, v) is well
de�ned, and is integrable (Q[f, h] ∈ L1

x,v for a.e. t > 0).

Theorem 1.3.4. Let B be a collision kernel satisfying equation 1.3.19, and g(v) : Rd −→ R be a C1

function satisfying
|g| ≤ C1(1 + ‖v‖)n, ‖∇g‖ ≤ C1(1 + ‖v‖)n−1.

If f, h are C1 with respect to the velocity variable, and (1+‖v‖)n+2K ∈ L1(Ω×Rd) for K = f, h, ‖∇vf‖, ‖∇vh‖,
then Qf,hg(t, x) is well de�ned, and equations 1.3.17 and 1.3.18 are valid.

Theorem 1.3.2 is proven in the Appendix A.1; for the demonstration of the other theorems, refer to
[36] page 309.

Then, we see that if the property g satis�es the equation

g′ + g′∗ = g + g∗ (1.3.20)

The total e�ect of collisions is zero. These functions are called summational invariants. It follows
from (1.3.18)5 that any scalar continuous g(x, v) is a summational invariant ⇔ Qf,hg(t, x) = 0 for all
f, h probability densities on the phase space Γ of a single particle. The �rst examples of summational
invariants that come to mind are energy and momentum; indeed by their conservation laws:

(B)

{
v + v∗ = v′ + v′∗
‖v‖2 + ‖v∗‖2 = ‖v′‖2 + ‖v′∗‖2

(1.3.21)

Another trivial (but not so immediate) summational invariant is any constant function of (x,v). We
can thus ask ourselves: are there any other physically signi�cant summational invariants of the collision
operator? The answer for this question is, in a sense, negative:

Theorem 1.3.5 (Boltzmann-Gronwall). Let g : R+ × Γ −→ Rn be a measurable function with respect to
the lebesgue measure (L). g satis�es condition 1.3.20, where v′, v′∗ are solutions to the system 1.3.21 of
algebraic equations for a given pair (v, v∗), if and only if g is a second order polynomial in v:

g(x, v) = a(x)‖v‖2 + 〈b(x), v〉+ c(x),

where a(x), c(x) : Ω −→ Rn; b(x) : Ω −→ GL(Rn;Rn) are continuous functions.

Corollary 1.3.1. If g(t, x, v) satis�es the above conditions, but also belongs in C0
t,x, then the functions

a(x), c(x) : Ω −→ Rn; b(x) : Ω −→ GL(Rn;Rn) in the above theorem will be continuous.

Proof. See Appendix A.2.1

In classical mechanics, it is known that systems with n particles in 3 dimensions can have at most 2n+1
constants of motion (conserved quantities). However, it can be shown that the only time-independent
additive conserved quantities are mass, energy, momentum and angular momentum [24], [31], and this
theorem is a manisfestation of that fact.

Summational invariants are essential in the theory of the boltzmann equation, for they allow us to
obtain macroscopic balance laws that do not depend on the complicated structure of the collision operator.
This is precisely what we'll do in the next section.

1.3.3 Macroscopic balance laws

We recall now equation (1.3.14) (the equation of transfer), in the case where the external force �eld W
does not depend on the particles's velocities:

∂

∂t
[ρ(t, x)g] +∇x · [ρ(t, x)g ⊗ u(t, x)] = −∇x · σ + FW +Qfg(t, x) + r (1.3.22)

5See [36] page 100
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Where we use the notation
σ(t, x) =

´
R3 c⊗ g(x, v)f(t, x, v) dv,

FW (t, x) =
´
R3 [W (t, x) · ∇vg(x, v) + v · ∇xg(x, v)] f(t, x, v)dv,

r(t, x) = limR→∞
¸
∂BR

(f(t, x, v)g(x, v)) [W (t, x) · n̂(v)] dH(v),

G(x, t) =
´
R3 g(x, v)f(t, x, v)dv = ρ(t, x)

´
R3 g(x, v)ψt,x(v)dv = ρ(t, x)g(x, t),

and u, ρ are given by equations 1.3.6, 1.3.8. Then, if we restrict ourselves to the case when g(x, v) is a
summational invariant, the term Qfg(t, x) will be identically 0. Taking g(x, v) = 1, for instance, we �nd

that: σ = FW = ~0, G = ρ(t, x)⇒ g = 1. So our equation then reads

∂

∂t
[ρ(t, x)] +∇x · [ρ(t, x)u(t, x)] = r. (1.3.23)

Finally, if we analyze the error term r

‖r‖ =

∥∥∥∥ lim
R→∞

˛
∂BR

(f(t, x, v)g(x, v)) [W (t, x) · n̂(v)] dH(v)

∥∥∥∥
=

∥∥∥∥[ lim
R→∞

˛
∂BR

f(t, x, v)(g(x, v)⊗ n̂(v)) dH(v)

]
W (t, x)

∥∥∥∥ ..
Since we are interested in estimating r for the choices g = 1, g = v and g = ‖v‖2, we see that in these 3
cases it is su�cient that f be an even function of velocity (radially symmetric) or W ≡ 0 for this term to
vanish. If neither of these conditions is met, one can use the Cauchy-Schwartz and triangle inequalities
to conclude that

‖r‖ ≤ ‖W (t, x)‖ lim
R→∞

˛
∂BR

f(t, x, v)‖g(x, v)‖ dH(v). (1.3.24)

In the case when g = 1, we have that

0 ≤ |r| ≤ ‖W (t, x)‖ lim
R→∞

˛
∂BR

f(t, x, v) dH(v)

Then If f ≤ A/‖v‖2+ε for some A ≥ 0 and any ε > 0, then r = 0 (if v, x ∈ Rd, then the restriction
becomes f ≤ A/‖v‖d−1+ε). in these conditions, it follows that the gas obeys the continuity equation
from continuum mechanics,

∂

∂t
[ρ(t, x)] +∇x · [ρ(t, x)u(t, x)] = 0. (1.3.25)

Next, choose g(x, v) = v. Then, we get that
σ(t, x) =

´
R3 c⊗ vf(t, x, v) dv,

FW (t, x) =
´
R3 [W (t, x) · ∇vv + v · ∇xv] f(t, x, v)dv =

´
R3 W (t, x)f(t, x, v) dv = ρ(t, x)W (t, x)

r(t, x) = limR→∞
¸
∂BR

(f(t, x, v)v) [W (t, x) · n̂(v)] dH(v),

G(x, t) =
´
R3 vf(t, x, v)dv = ρ(t, x)

´
R3 vψt,x(v)dv = ρ(t, x)u(t, x).

From which we get g = u(t, x), and we can further decompose σ as

σ(t, x) =

ˆ
R3

(c⊗ v)f(t, x, v) dv

=

ˆ
R3

(c⊗ c)f(t, x, v) dv + ρ

[ˆ
R3

(v − u(t, x))ψx(t, v) dv

]
⊗ u(t, x).

In the last equation, by de�nition of average velocity, we can say that the second term on the right hand
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side vanishes. Denote the �rst term in the above decompostion of σ as M(t, x) =
´
R3(c⊗ c)f(t, x, v) dv.

Inserting the above expressions, equation 1.3.14 then becomes

∂

∂t
[ρ(t, x)u(t, x)] +∇x · [ρ(t, x)u(t, x)⊗ u(t, x)] = −∇ ·M + ρ(t, x)W (t, x) + r. (1.3.26)

We proceed then to estimate r using 1.3.24:

0 ≤ |r| ≤ ‖W (t, x)‖ lim
R→∞

˛
∂BR

f(t, x, v)‖v‖ dH(v)

If f is neither even, nor W ≡ 0, it is su�cient to demand that f ≤ A/‖v‖3+ε, for some choice of A, ε > 0
for the last term to vanish (in the d dimensional case, the restriction for f becomes f ≤ A/‖v‖d+ε). Then
we are left with

∂

∂t
[ρ(t, x)u(t, x)] +∇x · [ρ(t, x)u(t, x)⊗ u(t, x)] = −∇ ·M + ρ(t, x)W (t, x), (1.3.27)

which is simply the balance of linear momentum for the gas, where M plays the role of the Cauchy
stress tensor. Thus, the mechanical pressure can be found by taking

p =
1

3
Trace(M) =

ˆ
R3

‖c‖2

3
f(t, x, v) dv.

Finally, notice that the following identity holds

ˆ

R3

‖v‖2f(t, x, v)dv = ρ

ˆ

R3

‖v‖2ψx(t, v)dv = ρE(‖V ‖2) = ρ[Trace(Cov(V )) + ‖E(V )‖2]

= ρ

ˆ
R3

‖c‖2ψx(t, v)dv + ‖u(t, x)‖2
 .

So if we choose g(x, v) = ‖v‖2
2 , we will have that

G(x, t) =

ˆ

R3

‖v‖2

2
f(t, x, v)dv = ρ

ˆ

R3

‖c‖2

2
ψx(t, v)dv +

ρ‖u(t, x)‖2

2
(1.3.28)

for this choice of g, G will be the total kinetic energy density (per unit volume) for the gas. We see that
it can be decomposed into 2 terms: the second term is the kinetic energy associated with the average
drift velocity, and the second is a kinetic energy associated with a deviation from the average velocity,
which we de�ne as the internal energy U at that point:

U(x, t) =
ρ(x, t)

2

ˆ

R3

‖v − u‖2ψt,x(v)dv.

U is an extensive quantity measuring energy per unit volume. We now de�ne an intensive quantity ε by
the equation ρ(x, t)ε(t, x) = U(x, t), measuring the internal energy per particle (or per mass):

ε(t, x) =
1

2

ˆ

R3

‖v − u‖2ψt,x(v)dv.

With the above notation in place, this means that g = ‖u(t,x)‖2
2 + ε(t, x). Inserting g = v2

2 into our
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de�nitions, we �nd 
σ(t, x) =

´
R3 c

‖v‖2
2 f(t, x, v) dv,

FW (t, x) =
´
R3

[
W (t, x) · ∇v ‖v‖

2

2 + v · ∇x ‖v‖
2

2

]
f(t, x, v)dv,

r(t, x) = limR→∞
¸
∂BR

(f(t, x, v)‖v‖
2

2 ) [W (t, x) · n̂(v)] dH(v),

Then, the following simpli�cations can be made, separating v = c(t, x, v) + u(t, x) whenever possible:

FW (t, x) =

ˆ
R3

W (t, x) · vf(t, x, v) dv = ρu(t, x) ·W (t, x),

σ(t, x) =

ˆ
R3

c
‖c‖2

2
f(t, x, v) dv +

‖u‖2

2

ˆ
R3

cf(t, x, v) dv +

ˆ
R3

c(c · u)f(t, x, v) dv

=

ˆ
R3

c
‖c‖2

2
f(t, x, v) dv +

[ˆ
R3

c⊗ cf(t, x, v) dv

]
u(t, x)

The �rst term in the previous equation our expression is a vector along the direction of c, the random
velocity deviation from the mean, multiplied by a factor ‖c‖2ψt,x(v) which gives e upon integration. We
can interpret it then as a 'di�usion' of internal energy; which we'll denote as a heat �ux q(t, x). So our
previous equation reads

σ(t, x) = q(t, x) + [M(t, x)]u(t, x)

And equation 1.3.14 becomes

∂

∂t

[
ρ(t, x)

(
‖u(t, x)‖2

2
+ ε(t, x)

)]
+∇x ·

[(
‖u(t, x)‖2

2
+ ε(t, x)

)
u(t, x)

]
= −∇ · (q +Mu(t, x)) + ρ(t, x)u(t, x) ·W (t, x) + r. (1.3.29)

Finally, we can bound the error term r by using again equation 1.3.24

0 ≤ |r| ≤ 1

2
‖W (t, x)‖ lim

R→∞

˛
∂BR

f(t, x, v)‖v‖2 dH(v),

and so r vanishes if f is neither rarially symmetric nor W ≡ 0, r will still vanish if we guarantee that
f ≤ A/‖v‖4+ε, for some choice of A, ε > 0 (in the d dimensional case, the restriction for f becomes
f ≤ A/‖v‖d+1+ε). We can thus write

∂

∂t

[
ρ(x, t)

(
ε+
‖u‖2

2

)]
+∇ ·

[
ρ(x, t)u(t, x)

(
ε+
‖u‖2

2

)]
= ρ(x, t) 〈W (x, t), u〉 − ∇ · (q +Mu) , (1.3.30)

which is a macroscopic energy balance for our gas.

With this, we have just derived the balance laws of continuum mechanics from the Boltzmann equation
(we have restricted ourselves to the physical case where x, v ∈ R3, however we can reach the exact same
expressions if x, v ∈ Rd, d > 3 ∈ N). For the case with external forcing, we made assumptions on the
decay of f(t, x, v) as ‖(x, v)‖ → ∞ in order to derive the previous equations, but these assumptions
are generally satis�ed if the distribution f is close to equilibrium, and therefore are not very restrictive.
However, these equations do not form a closed system yet, due to the absence of constitutive relations to
de�ne the relationship between quantities such as the Cauchy stress tensor and the heat �ux vector. So
far, we can only determine their form if we solve the Boltzmann equation �rst, which would make them
unnecessary. Therefore these equations serve only as a plausibility argument for the Boltzmann equation,
con�rming that it is consistent with macroscopic continuum mechanics [36],[7].

The problem of determining which constitutive relations are obeyed by a gas described by special
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classes of solutions to the Boltzmann equation, and potentially recover well-known equations (e.g. Navier-
Stokes-Fourier system) from the Boltzmann equation is called the 'hydrodynamic limit' problem.

Remark 1.3.2. Let Ω ⊆ Rd be a bounded open set. Any Boltzmann gas whose probability distribution
f : R+ × Ω× Rd → R+ satis�es

ˆ
Ω×Rd

f(t, x, v)(1 + ‖v‖2) dxdv <∞ for a.e. t > 0

must also satisfy the following relation

p(t, x) =
2

3
ρ(t, x)ε(t, x). (1.3.31)

since, by de�nition

p(t, x) =
ρ(x, t)

3

ˆ

R3

‖v − u‖2ψt,x(v)dv =
2

3
U(t, x) =

2

3
ρ(t, x)ε(t, x).

Now, for p to be a real measure of pressure of the gas (and for it to be dimensionally consistent),
we must multiply its de�nition by the total mass of gas in the vessel, M = Nm, where N is the total
number of particles and m the mass of a single particle. We de�ne then: p̃ = pNm, ẽ = mε, ρ̃ = Nρ.
Multiplication by mN on both sides of the previous equation yields

p̃(t, x) =
2

3
ρ̃(t, x)ẽ(t, x),

where ρ̃ now denotes the number density of the gas. Integrating over the position variable, and
de�ning the mean values

|Ω| = V,

P̄ (t) = 1
V

´
Ω
p̃(t, x) dx,

ē(t) = 1´
Ω
ρ̃(t,x) dx

´
Ω
ρ̃ẽ(t, x) dx = 1

N

´
Ω
ρ̃ẽ(t, x) dx,

we arrive at

P (t)V =
2N

3
ē(t). (1.3.32)

If the particles that compose the gas are assumed to be point masses with no internal degrees of freedom,
and the system is assumed to be in equilibrium (meaning we omit the time dependence in the above
equation), then by the equipartition theorem from classical statistical mechanics, ē = 3

2kBT (actually,
this can be applied to ẽ(x, t) in order to have a local de�nition of temperature). Since N = nNav (where
Nav=6.022×1023 is the avogadro number, n the number of moles of particles) and the constant of idea
gase R is related to the Boltzmann constant by R = NavkB , we �nally arrive at

PV =
2N

3

3

2
kBT = nNavkBT = nRT. (1.3.33)

Therefore, the Boltzmann equation when restricted to a gas of point particles describes a classical
ideal gas, with the advantage of modelling its behavior of convergence to equilibrium. We notice however,
that the equipartition theorem makes restrictions on the form of the hamiltonian of this system. If these
restrictions are not met, the internal energy may depend on other factors aside from temperature, and so
the gas described by Boltzmann equation may not be necessarily ideal in this case. The only restriction
imposed by Boltzmann equation is 1.3.32.
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The balance laws just derived can be cast in an integral form, becoming
d
dt

´
Ω×Rd f(t, x, v) dxdv = −

´
∂Ω
ρ(t, x)u(t, x) · n̂, dHd−1(x)

d
dt

´
Ω×Rd vf(t, x, v) dxdv =

´
Ω×RdW (t, x)f(t, x, v) dxdv −

´
∂Ω

[ρu⊗ u+M ] n̂ dHd−1(x),
d
dt

´
Ω×Rd

‖v‖2
2 f(t, x, v) dxdv =

´
Ω×Rd(W (t, x) · v)f(t, x, v) dxdv

−
´
∂Ω

[
q +Mu+ ρu

(
ε+ ‖u‖2

2

)]
· n̂ dHd−1(x).

(1.3.34)

In the case when W ≡ 0 and the domain Ω = Rd, the right hand side of all of hte above equations
vanishes, so that we have:

´
Ω×Rd f(t, x, v) dxdv =

´
Ω×Rd f0(x, v) dxdv´

Ω×Rd vf0(x, v) dxdv =
´

Ω×Rd vf(t, x, v) dxdv,´
Ω×Rd

‖v‖2
2 f(t, x, v) dxdv =

´
Ω×Rd

‖v‖2
2 f0(x, v) dxdv.

(1.3.35)

This last form of the system of balance laws will be useful for us in the next chapter.

1.3.4 Boundary conditions in kinetic theory

For completeness, we will brie�y review important kinds of boundary conditions in kinetic theory. Since
in kinetic theory all of the material's behavior is encoded in the probability distribution f(t, x, v), any
imposed boundary condition should be a particular form of the distribution at the wall. Speci�cally, the
boundary condition should take the form of a relationship between the distribution of particles coming
outward from the wall and incoming particles before interacting with the wall.

This can be realized by splitting the distribution function in the following manner:

f(t, x, v) =

{
f i(t, x, v) x ∈ ∂Ω, (v − uw(x, t)) · n̂(x, t) > 0,

fo(t, x, v) x ∈ ∂Ω, (v − uw(x, t)) · n̂(x, t) ≤ 0,
(1.3.36)

where n̂(x, t) is the unit inward-pointing normal vetor to the surface ∂Ω, and uw is the velocity of the
boundary if it is not �xed (we also assume Ω is a bounded open set with an orientable Lipschitz boundary,
and that f has enough regularity so that the restriction to the boundary is well de�ned). The superscripts
'i' and 'o' mean incoming and outbound relative to the wall, respectively.

Therefore boundary conditions should generally be of the form

fo(t, x, v) = G(f i(t, x, v)), (1.3.37)

where G is some operator, to be determined and properly de�ned later. The simplest boundary condition
in kinetic theory is the specular re�ection. It assumes that colliding particles are re�ected as light in a
mirror, reversing the velocity component normal to the wall. This means that

fo(t, x, v) = f i(t, x, v − 2n̂(n̂ · v)). (1.3.38)

This condition assumes that the wall is ideally smooth, so that particles experience no friction as they
interact with the wall. This can be seen if we attempt to compute the stress at the wall (following the
argument made in [36])

p = Mn̂ = m

ˆ
f(t, x, v)(c⊗ c)n̂ dv = m

ˆ
f(t, x, v)c(c · n̂) dv

De�ning (1− n̂⊗ n̂)c
.
= ct, c = (1− n̂⊗ n̂+ n̂⊗ n̂)c = (n̂ · c)n̂+ ct, so we have that

m

ˆ
f(t, x, v)c(c · n̂) dv = m

[ˆ
f(t, x, v)(c · n̂)2 dv

]
n̂+m

ˆ
f(t, x, v)ct(c · n̂) dv.
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The last integral can be split as

m

ˆ
f(t, x, v)ct(c · n̂) dv = m

ˆ
v·n̂>0

f(t, x, v)ct(c · n̂) dv +m

ˆ
v·n̂≤0

f(t, x, v)ct(c · n̂) dv (1.3.39)

Performing the change of variables r = v−2n̂(n̂ ·v) on the �rst term of the right hand side, one can show
that

m

ˆ
f(t, x, v)ct(c · n̂) dv = 0⇒ p = m

[ˆ
f(t, x, v)(c · n̂)2 dv

]
n̂

In this way, the specular re�ection boundary condition only allows stresses to be perpendicular to the the
wall's surface [36]. Since real gases can cause stresses that are not perpendicular to the wall's surface,
this boundary condition is not used frequently; it is used mainly to impose 'full-slip' boundary conditions
on the gas. This can be seen in a simple calculation

n̂ · ρu = mn̂ ·
ˆ
f(t, x, v)v dv = m

ˆ
f(t, x, v)(n̂ · v) dv,

and performing the same splitting as in equation 1.3.39 we see that the last integral is 0, so that the gas
may have a velocity component tangent to the wall.

A variation of the above is the bounceback boundary condition, which can be written as

fo(t, x, v) = f i(t, x,−v). (1.3.40)

It is a non-physical boundary condition in which particle velocities are reversed as they reach the wall.
Despite that, if we denote u(t, x) as the bulk �uid velocity, this boundary condition implies that u(t, x) =
0 if x ∈ ∂Ω, and therefore serves as a 'no-slip' Dirichlet boundary condition for the gas �ow.

Another signi�cant boundary condition, �rst proposed by Maxwell, is the so called ideally rough
wall: he considered the wall as an array of packed hard spheres agains which gas particles collided [36],
and reasoned that the outgoing distribution should not be equal or even similar to the distribution of
the incoming particles. Rather, since the impact with the wall will produce scattering, he proposed the
following expression

fo(t, x, v) = fw(t, x, v) = aw(t, x)e−
3‖v−uw(t,x)‖2

4ew(t,x) , (1.3.41)

where aw is a normalization constant for the probability distribution, ew is directly proportional to the
local temperature at the wall Tw, and uw is the wall's velocity if it is not �xed. The de�nition of ew
allows us to enforce a wall with �xed temperature, which can be di�erent from the temperature of the
�uid at that point of the wall (if not in equilibrium). Finally, an intermediate condition between specular
re�ection (ideally smooth wall) and an ideally rough wall is the Maxwell's boundary condition, which is
simply a convex combination of the above conditions:

fo(t, x, v) = mfoideally smooth(t, x, v) + (1−m)foideally rough(t, x, v),

where m ∈ [0, 1] is the accomodation coe�cient. This boundary condition is su�cient for a qualitative
treatment of gases and interpretation of experiments, but does not yield accurate results [36].

All previous conditions can be regarded as special cases of the so called linear boundary conditions, in
which the mapping between the inbound and outbound parts of the distribution are related by a linear
map, which usually takes the form

− fo(t, x, v)(n̂ · c) =

ˆ
{n̂·c′>0}

f i(t, x, v′)(n̂ · c′) dµv(v′). (1.3.42)

where the measure µ must satisfy a few generic properties:

� µ ≥ 0 for almost every v, v′,

�

´
{c·n̂<0} dµv(t, v

′)dv = dv′ for a.e. t > 0,
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� there is a distribution which is left unchanged by the operator G, which is de�ned as the distribution
of the wall. This means that if the gas has the wall distribution it is left unchanged by interacting
with the wall:

− fw(t, x, v)(n̂ · c) =

ˆ
{n̂·c′>0}

fw(t, x, v′)(n̂ · c′) dµv(v′). (1.3.43)

Notice that the condition n̂ · c′ > 0 is equivalent to n̂ · v > n̂ · u(t, x), and that the �uid's average velocity
at the wall should match the wall's velocity, and so n̂ ·c′ > 0⇔ n̂ ·v > n̂ ·uw(t, x). This means we restrict
our domain in order to integrate only the incoming distribution.

Linear boundary conditions are suitable descriptions for a gas in case there is no adsorption of gas
particles on the wall and the gas is su�ciently dilute, so that there is no gas-gas interaction at the wall
[9]. Other restrictions will depend on the particular modelling of the wall-�uid interaction for any given
problem. Comments about the meaning of this last property will be made in the next section: for now,
we use the above properties to prove a lemma which will be very useful for us in the near future:

Lemma 1.3.1. Let F : [0,∞) −→ R be a convex function, f(t, x, v) : R+ ×Ω×Rd −→ R+ be a classical
solution to the Boltzmann equation, and Ω ⊆ Rd a bounded open set with smooth boundary. If x ∈ ∂Ω,
and f(t, x, v) has linear boundary conditions at the wall, then

ˆ
Rd

(c · n̂)fw(t, x, v)F

(
f(t, x, v)

fw(t, x, v)

)
dv ≥ 0

Proof. The main tool in this proof will be Jensen's inequality. In order to use it, we will construct a
suitable probability measure ν and a non-negative measurable function g from our hypotheses. De�ne

g(·, ·, v) =
f(·, ·, v)

fw(·, ·, v)
=

{
f i(·, ·, v)/fw(·, ·, v) if c · n̂ > 0,

fo(·, ·, v)/fw(·, ·, v) if c · n̂ ≤ 0,

dνv(·, ·, v′) =

{
−(c′·n̂)fw(·,·,v′)

(c·n̂)fw(·,·,v) dµv(v
′) if c′ · n̂ > 0,

0 if c′ · n̂ ≤ 0.

Then, g is clearly non negative, as is the measure ν. �nally from equation 1.3.43, dividing through by
the right hand side, one can show:

ˆ
Rd

dνv(v
′) =

ˆ
{c·n̂>0}

dνv(v
′) = 1

So that ν is indeed a probability measure. Also, if we multiply and divide equation 1.3.42 by fw:

−(n̂ · c)fw(t, x, v)
fo(t, x, v)

fw(t, x, v)
=

ˆ
{n̂·c′>0}

(n̂ · c′)fw(t, x, v′)
f i(t, x, v′)

fw(t, x, v′)
dµv(v

′).

⇒ g(·, ·, v) =

ˆ
{c·n̂>0}

g(·, ·, v′) dνv(v′) =

ˆ
Rd
g(·, ·, v′) dνv(v′).

So that g is integrable. By Jensen's inequality:

F

(ˆ
Rd
g(·, ·, v′) dνv(v′)

)
≤
ˆ
Rd
F (g(·, ·, v′)) dνv(v′) =

ˆ
{c′·n̂>0}

F (g(·, ·, v′)) dνv(v′)

Multiplying through by (c · n̂)fw(t, x, v), restricting ourselves to the domain where (c · n̂) < 0, we have
that

(c · n̂)fw(t, x, v)F (g(·, ·, v)) ≥ −
ˆ
{c′·n̂>0}

(c′ · n̂)fw(t, x, v′)F (g(·, ·, v′)) dµv(v′).

Integrating over {c · n̂ < 0} on the v variable, and using Fubini's theorem and the second property of the
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measure µ: ˆ
{c·n̂<0}

(c · n̂)fw(t, x, v)F (g(·, ·, v)) dv

≥ −
ˆ
{c·n̂<0}

ˆ
{c′·n̂>0}

(c′ · n̂)fw(t, x, v′)F (g(·, ·, v′)) dµv(v′)dv

= −
ˆ
{c′·n̂>0}

ˆ
{c·n̂<0}

(c′ · n̂)fw(t, x, v′)F (g(·, ·, v′)) dµv(v′)dv

= −
ˆ
{c′·n̂>0}

(c′ · n̂)fw(t, x, v′)F (g(·, ·, v′)) dv′.

Finally,

ˆ
{c·n̂<0}

(c · n̂)fw(t, x, v)F (g(·, ·, v)) dv ≥ −
ˆ
{c′·n̂>0}

(c′ · n̂)fw(t, x, v′)F (g(·, ·, v′)) dv′,

ˆ
Rd

(c · n̂)fw(t, x, v)F (g(·, ·, v)) dv =

ˆ
Rd

(c · n̂)fw(t, x, v)F

(
f(t, x, v)

fw(t, x, v)

)
dv ≥ 0,

and the proof is complete.

For further details on this topic, we recommend the reading of [7], [9] and [36].

1.4 The H-Theorem and its consequences

Consider now the microscopic property

g(t, x, v) =

{
log(f(t, x, v)) if (t, x, v) ∈ ess supp(f)

0 otherwise

We wish now to derive a macroscopic balance equation for a macroscopic property associated with g, as
we did in subsection 1.3.3. We have 2 problems to consider in this case: �rst, g is time dependent, so there
will be extra terms in our transfer equation, and chie�y, g is not continuous at ∂ supp(f). This makes
some of the manipulations we made in subsection 1.3.2 incorrect, so a little more care must be taken in
order to derive this particular transfer equation. The procedure multiplying the Boltzmann equation by
the property g and integrating remains unchanged, which gives us

ˆ
R3

∂

∂t
(f)g(t, x, v) dv +

ˆ
R3

v · ∇x (f) g(t, x, v) dv +

ˆ
R3

W (t, x, v) · ∇v(f)g(t, x, v)dv

=

ˆ

R3

g(x, v)Q(f, f)(t, x, v)dv

In this entire subsection, we consider only points (t, x, v) where (x, t) ∈ ess supp(ρ). Notice that, when
outside ess supp(f), these integrals are all 0 since g is 0, therefore we can restrict the domains of the above
integrals accordingly (here we also assume that ∂ supp(f) has measure 0). We can derive an equation of
the form:

∂

∂t
G(t, x) +∇x · [u(t, x)G] = −∇x · σ + FW +Qfg(t, x) + r,
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where now the de�nitions read
σ =
´
{f>0} c log(f(t, x, v))f(t, x, v) dv,

FW =
´
{f>0}

[
W (t, x) · ∇vg(x, v) + v · ∇xg(x, v) + ∂

∂tg
]
f(t, x, v)dv

r = limR→∞
¸
∂(BR∩{f>0})(f(·, ·, v)g(·, v)W (·, ·)) · n̂(v) dH2(v).

De�ne D as the material derivative operator, given by

Dg =
∂

∂t
g + v · ∇xg(x, v) +W (t, x) · ∇vg(x, v).

Then, or de�nition of FW can be written as

FW =

ˆ

R3

fDg dv.

Notice that, in the support of f , we have that Dg = 1
fDf , so that in general fDg = Df . On the

other hand, we also derived in subsection 1.3.3 that

ˆ

{f>0}

Dfdv =

ˆ

R3

Dfdv =

ˆ
R3

∂

∂t
f dv +

ˆ
R3

v · ∇xf dv +

ˆ
R3

W (t, x, v) · ∇vfdv

= Qf1 = 0 (Summational Invariant!)

Now, restricting to the case when the external potential is 0, we have that r = 0. In order to introduce a
more standard notation for the subject, we will change the names of a few variables: for this particular
choice of g(t, x), de�ne{

h(t, x) =
´
R3 f(t, x, v) log(f(t, x, v)) dv,= G(t, x)

H(t, x) =
´
R3 f(t, x, v) log(f(t, x, v))c(t, x, v) dv = σ(t, x).

(1.4.1)

Then, equation 1.3.13 becomes:

∂

∂t
h(t, x) +∇x · (u(t, x)h(t, x)) = −∇x · H(t, x) +Qf log(f). (1.4.2)

Recalling a property we established in section 1.3.2 (equation 1.3.17)

Qf,hg(t, x) =
1

8

ˆ

R3

¨

R3×S2

(f ′h′∗ + h′f ′∗ − fh∗ − hf∗) [g + g∗ − g′ − g′∗] B(w,α)dH2(α)dv∗ dv,

we can apply this to our particular choice of g, which gives us the following expression

Qf log(f)(t, x) =

−1

4

ˆ

R3

¨

R3×S2

(f ′f ′∗ − ff∗) [log(f ′) + log(f ′∗)− log(f)− log(f∗)] B(w,α)dH2(α)dv∗ dv

=
−1

4

ˆ

R3

¨

R3×S2

(f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
B(w,α)dH2(α)dv∗ dv. (1.4.3)
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For simplicity of notation, from now on we will use the following de�nition
D[f ] =

−1

4

¨

R3×S2

(f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
B(w,α)dH2(α)dv∗, (1.4.4a)

Qf log(f)(t, x) =

ˆ

R3

D[f ] dv. (1.4.4b)

Or, if x, v ∈ Rd, 
D[f ] =

−1

4

¨

Rd×Sd−1

(f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
B(w,α)dHd−1(α)dv∗, (1.4.5a)

Qf log(f)(t, x) =

ˆ

Rd

D[f ] dv. (1.4.5b)

From the structure of D[f ] we can derive the following

Proposition 1.4.1. Let f ∈ L1
+(Ω× Rd) be a probability density function such that

¨

Ω×Rd

D[f ] dxdv <∞.

Then,

1.
D[f ] ≤ 0.

2. ˆ
Rd
D[f ](t, x, v) dv = 0 ⇔ f(t, x, v) =

ρ(t, x)√
4π
d ε(t, x)

d
e−

d‖v−u(t,x)‖2
4ε(t,x)

where u(t, x) : Ω× Rd −→ Rd, ρ(t, x) : Ω× Rd −→ R+, ε(t, x) : Ω× Rd −→ R+ are respectively: the bulk
velocity �eld, the density, and internal energy per particle of the gas, as de�ned in subsection 1.3.3.

Proof. For the �rst item, notice that for any 2 positive numbers x, y ∈ R the following inequality holds
trivially

(x− y) log

(
x

y

)
≥ 0.

Therefore, choosing x = f ′f ′∗, y = ff∗, we see that the integrand in the de�nition of D[f ] is non-negative,
and the minus factor in equation 1.4.5a means that D[f ] ≤ 0.

For the second item, notice that

ˆ
Rd
D[f ](t, x, v) dv = Qf log(f)(t, x) = 0

⇔ log(f)(t, x, v) is a summational invariant!

Then, invoking theorem 1.3.5, this happens if and only if

log(f)(t, x, v) = a(t, x)‖v‖2 + b(t, x) · v + c(t, x)

⇔ f(t, x, v) = ea(t,x)‖v‖2+b(t,x)·v+c(t,x)
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Finally, a, b, c can be written in terms of the �rst and second moments of the distribution of ψt,x(v),
the conditional distribution obtained from f :

a(t, x)‖v‖2 + b(t, x) · v + c(t, x) = a

∥∥∥∥v +
b

2a

∥∥∥∥2

+ c− ‖b‖
2

4a
,

⇒ f(t, x, v) = ec−
‖b‖2
4a ea‖v+ b

2a‖2

ρ(t, x) =

ˆ
Rd
f(t, x, v) dv = ec−

‖b‖2
4a

√
π

|a|

d

⇒ ec−
‖b‖2
4a = ρ(t, x)

√
π

|a|

−d

ρ(t, x)u(t, x) =

ˆ
Rd
vf(t, x, v) dv = ρ(t, x)

ˆ
Rd
v

√
π

|a|

−d
ea‖v+ b

2a‖2 dv = −ρ b
2a
⇒ − b

2a
= u(t, x)

Finally,

ρ(t, x)ε(t, x) =
d

2

ˆ
Rd
‖v − u‖2f(t, x, v) dv = ρ(t, x)a⇒ a =

2ε(t, x)

d

Replacing a, b, c by ρ, ε(t, x), u(t, x) in the above expression completes the proof.

Distributions of the form

f(t, x, v) =
ρ(t, x)√
4π
d ε(t, x)

d
e−

d‖v−u(t,x)‖2
4ε(t,x) (1.4.6)

are called local Maxwellian distributions, and will be denoted byMρ,u,ε(t, x, v) (in standard prob-

ability notation, V |X ∼ N
(
u(t, x), 2ε(t,x)

d

)
). If we impose the additional requirement that f(t, x, v) =

f(t, x,−v), then ρ = 1
|Ω| , ε(t, x) = Const. and u(t, x) = 0, such that f becomes time-independent, and

identical to the classical Maxwell-Boltzmann dustribution of ideal gases in equilibrium.

With this de�nition in hand, we can go back to the topic of the previous section: when discussing
the boundary condition of linear walls, we said that a probability distribution was associated to the wall
(the so-called wall distribution), and the linear operator relating incoming and outbound distributions
had this distribution as a �xed point (equation 1.3.43). This distribution is usually set as a maxwellian
distribution:

fw(t, x, v) =
ρ(t, x)√

4π
d ew(t, x)

d
e−

d‖v−uw(t,x)‖2
4ew(t,x) . (1.4.7)

Since the second moment of the probability distribution f(t, x, v) was associated with internal energy
and temperature in subsection 1.3.3, this allows us to prescribe a temperature to the wall, and consider
problems in which the gas is subjected to a heat bath. Likewise, uw is identi�ed as the wall's velocity.

Integrating equation 1.4.2 with respect to the position variable over the domain Ω, we �nd

d

dt

ˆ
Ω

h(t, x) dx+

ˆ
Ω

∇x · (u(t, x)h(t, x)) dx+

ˆ
Ω

∇x · H(t, x) dx =
x

Ω×Rd
D[f ] dxdv. (1.4.8)

De�ne

H(t) =

ˆ
Ω

h(t, x) dx. (1.4.9)

The previous remarks and de�nitions allowed Boltzmann to prove his celebrated

Theorem 1.4.1 (Formal H-Theorem). Let f(t, x, v) ∈ L∞loc([0,∞), L1(Ω × Rd) be a smooth solution to
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the initial value problem 2.1.1 (Boltzmann equation), which satis�es

ˆ
Ω×Rd

f(t, x, v)
(
1 + ‖v‖2 + log(f(t, x, v))

)
dxdv <∞

and ˆ
Ω

H dx <∞.

Then, using the de�nitions for h(t, x), H(t, x) as stated in equation 1.4.1, it follows that for every t ∈
[0,∞):

1. if Ω ⊆ Rd is an open set with a smooth and orientable boundary

d

dt

x

Ω×Rd−1

f(t, x, v) log(f(t, x, v)) dxdv =
d

dt
H(t) ≤ −

ˆ
∂Ω

H(t, x) · n̂ dHd−1(x), (1.4.10)

where n̂ denotes the outward-pointing unit normal vector at ∂Ω.

2. if Ω = Rd, then
d

dt

x

Ω×Rd−1

f(t, x, v) log(f(t, x, v)) dxdv =
d

dt
H(t) ≤ 0. (1.4.11)

3. Inequalities 1.4.10 and 1.4.11 will become equalities if and only if

f(t, x, v) = Mρ,u,ε(t, x, v),

for some choice of u(t, x) : Ω × Rd −→ Rd, ρ(t, x) : Ω × Rd −→ R+, ε(t, x) : Ω × Rd −→ R+

compatible with the initial data f0(x, v).

Proof. This is only formal, as we haven't yet proven existence of solutions for the Boltzmann equation,
nor de�ned how smooth do we need the solution to be. Starting from equation 1.4.8:

d

dt
H(t) = −

ˆ
Ω

∇x · H(t, x) dx+

¨

Ω×Rd

D[f ] dxdv ≤ −
ˆ

Ω

∇x · H(t, x) dx,

where we used the fact that D ≤ 0 (item 1 of proposition 1.4.1). For item 1, we use the divergence
theorem, and equation 1.4.10 is satis�ed. For item 2, simply write

−
ˆ
Rd
∇x · H(t, x) dx = lim

R→∞
−
ˆ
BR

∇x · H(t, x) dx = lim
R→∞

−
ˆ
∂BR

H(t, x) · n̂ dHd−1(x) = 0

where we used again the divergence theorem, and the integrability assumption on H(t, x). For item 3, we
simply apply item 3 of proposition 1.4.1.

For the unbounded case, when Ω = Rd, we see in the demonstration above that one can write that

d

dt
H(t) =

¨

R2d

D[f ] dxdv,

or integrating in the variable t

ˆ
Ω×Rd

f(t, x, v) log(f(t, x, v)) dvdx =

ˆ
Ω×Rd

f0(x, v) log(f0(x, v)) dvdx+

ˆ t

0

¨

R2d

D[f ] dxdv ds (1.4.12)
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Now in the bounded case, we would like to see if the boundary term
´
∂Ω

H(t, x)·n̂ dH2(x) can be simpli�ed
somehow, or related to other, more physically signi�cant expressions. In the case of linear walls, we can
prove the following important corollary

Corollary 1.4.1. Suppose that f(t, x, v) ∈ L∞([0,∞)loc, L
1(Ω×Rd) satis�es a linear boundary condition

aside from the other conditions imposed in theorem 1.4.1. Then, de�ning the heat �ux vector, internal
energy and bulk velocity as we de�ned in subsection 1.3.3:

q(t, x) = ρ(x, t)

ˆ
Rd

‖v − u‖2

2
(v − u)ψx(v, t) dv, U(x, t) =

ρ(x, t)

2

ˆ

R3

‖v − u‖2ψt,x(v)dv.

u(t, x) =

ˆ

R3

vψt,x(v)dv.

Then, the following inequality holds

H(t, x) · n̂ ≥ −q(t, x) · n̂
2ew(t, x)

(1.4.13)

with equality if and only if H(t, x) = q(t, x) = 0.

Proof. we apply lemma 1.3.1 in the case when fw is a maxwellian distribution (equation 1.4.7). For any
convex function F : [0,∞) −→ R, we have that

ˆ
Rd

(c · n̂)fw(t, x, v)F

(
f(t, x, v)

fw(t, x, v)

)
dv ≥ 0.

Choose

F (x) =

{
x log(x) if x > 0,

0 if x = 0.

The above equation then becomes

ˆ
Rd

(c · n̂)f(t, x, v) log

(
f(t, x, v)

fw(t, x, v)

)
dv ≥ 0.

Separating the logarithm,

ˆ
Rd

(c · n̂)f(t, x, v) log (f(t, x, v)) dv ≥
ˆ
Rd

(c · n̂)f(t, x, v) log (fw(t, x, v)) dv

=

ˆ
Rd

(c · n̂)f(t, x, v)

[
log

(
ρ(t, x)√

4πew(t, x)
d

)
− ‖v − uw(t, x)‖2

4ew(t, x)

]
dv

=
−1

2ew(t, x)
n̂ ·
[ˆ

Rd
f(t, x, v)

‖c‖2

2
c dv

]
= −q(t, x) · n̂

2ew(t, x)
,

therefore, ˆ
Rd

(c · n̂)f(t, x, v) log (f(t, x, v)) dv = H(t, x) · n̂ ≥ −q(t, x) · n̂
2ew(t, x)

.

Corollary 1.4.2 (Formal narrow H-Theorem). Let Ω ⊆ Rd be a bounded open set with an orientable
smooth boundary. Suppose that f(t, x, v) ∈ L∞([0,∞)loc, L

1(Ω×Rd) satis�es a linear boundary condition
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aside from the other conditions imposed in theorem 1.4.1. Then, it follows that

d

dt
H(t) ≤

ˆ
∂Ω

q(t, x) · n̂
2ew(t, x)

dHd−1(x). (1.4.14)

If there is no heat �ux through the wall, then d
dtH(t) ≤ 0.

Proof. Simply take the equation 1.4.10 and use the previous corollary. One �nds

d

dt
H(t) ≤ −

ˆ
∂Ω

H(t, x) · n̂ dS ≤
ˆ
∂Ω

q(t, x) · n̂
2ew(t, x)

dH2(x).

The results of these theorems are striking and have a strong analogy with classical thermodynamics:
If we recall that ew is proportional to the temperature at the wall, equation 1.4.146 is a kinetic analogue
of the Clausius-Duhem inequality of classical thermodynamics, which states that the entropy change of
a gas in a vessel is related to the heat �ux at the boundary by an inequality. And, by this interpretation,
H should be a measure of entropy of the gas!

Remarks on the H-theorems

Boltzmann's paper in 1872 marks the �rst explicit mathematical connection between entropy and prob-
ability. In light of the information theory developed by Claude Shannon in the XXth century, some of
the previous equations have another interesting interpretation: H is the symmetric of the information
entropy of a continuous probability distribution, and if we look at equation 1.4.8

d

dt

ˆ
Ω

h(t, x) dx = −
ˆ

Ω

∇x · (u(t, x)h(t, x)) dx−
ˆ

Ω

∇x · H(t, x) dx+
x

Ω×Rd
D[f ] dxdv,

we see that: the �rst and second terms on the left hand side amount to rates of change in entropy due
to convection (the �rst from material entering through the boundary and the second from heat coming
through the boundary). The only term unrelated to convection is the last term, which can be negative
even if the system is isolated, and must be related to entropy production inside the region Ω. If we
inspect it further

x

Ω×Rd
D[f ] dxdv =

−1

4

¨

Ω×Rd

ˆ
R3×S2

(f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
B(w,α)dHd−1(α) dv∗ dxdv

=
−1

4

¨

Ω×Rd

ˆ
R3×S2

f ′f ′∗ log

(
f ′f ′∗
ff∗

)
B(w,α)dHd−1(α)dv∗ dxdv

+
−1

4

x

Ω×Rd

ˆ
R3×S2

ff∗ log

(
ff∗
f ′f ′∗

)
B(w,α)dHd−1(α)dv∗ dxdv

In order to have a qualitative understanding of this term, we make the following de�nition:

De�nition 1.4.1. Let (Ω ⊆ RN ,Σ) be a measurable space, and let P,Q be two random variables
de�ned over Ω with probability density functions p(x), q(x) respectively. We de�ne the Kullback-Leibler

6The Clausius-Duhem inequality is one of the classical statements of the second law of thermodynamics: it states that
the entropy increase of a closed system is related to the heat �ux at the boundary, such that

dS ≥
d∗Q

T
,

with equality if the system undergoes a reversible transformation.
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divergence or relative entropy between the distributions as

D(p‖q) =

ˆ
Ω

p(x) log

(
p(x)

q(x)

)
dx.

The Kullback-Leibler divergence can almost be regarded as a distance function from the theory of
metric spaces, (it satis�es the triangle inequality and is non-negative, being 0 if and only if f = g a.e.),
but is not symmetric. However, the expression

d(p, q) = [D(p‖q) +D(q‖p)] (1.4.15)

is clearly symmetric, de�ning a true distance between distributions p, q. with this de�nition, we can go
back to our expression and say that

x

Ω×Rd
D[f ] dxdv =

−1

4

ˆ
Sd−1

[Dα(f ′f ′∗‖ff∗) +Dα(ff∗‖f ′f ′∗)] dHd−1(α), (1.4.16)

where Dα is a weighted Kullback-leibler divergence, given by

Dα(p‖q)(·) =

ˆ
R2d

p(·, x, v, v∗, α) log

(
p(·, x, v, v∗, α)

q(·, x, v, v∗, α)

)
B(v∗ − v, α) dxdvdv∗.

We recall from equation 1.3.1 that ff∗ and f
′f ′∗ are the pair distributions of particles before and after

a collision, respectively. Then, equation 1.4.16 states that the rate of entropy production is a negative
constant times the distance between the pair distributions of particles pre- and -post collision, integrated
over all possible collision orientations; hence a non-positive quantity. The rate of production can then be
0 if and only if

f ′f ′∗ = ff∗ almost everywhere.

Item 3 of theorem 1.4.10 then implies the above expression holds if and only if f is a local Maxwellian.

Local Maxwellians can also be viewed in a new light after the H-theorem: since they make the entropy
constant, yet they may not be equilibrium distributions (may be time dependent and inhomogeneous),
they �t precisely with the concept of local thermodynamic equilibrium. If we inspect them further to
see what is the macroscopic behavior of a gas whose distribution is Mρ(t,x) u(t,x) ε(t,x), we �nd that, using
the notation from subsection 1.3.3:


M(t, x) =

´
R3(c⊗ c) ρ(t,x)√

4πε(t,x)
3 e
− ‖c‖2

4ε(t,x) dv = I 2
3ρε(t, x) = Ip(t, x)

q(t, x) =
´
R3 c

‖c‖2
2

ρ(t,x)√
4π
3 ε(t,x)

3 e
− 3‖c‖2

4ε(t,x) dv = 0

where I is the identity matrix. Then, the 'parameters' {ρ(t, x) u(t, x) ε(t, x)} for our local maxwellian
will satisfy the system of balance laws derived in subsection 1.3.3, which then becomes:

∂
∂t [ρ(t, x)] +∇x · [ρ(t, x)u(t, x)] = 0,
∂
∂t [ρ(t, x)u(t, x)] +∇x · [ρ(t, x)u(t, x)⊗ u(t, x)] = −∇p(t, x) + ρ(t, x)W (t, x),
∂
∂t

[
ρ(x, t)

(
ε+ ‖u‖2

2

)]
+∇ · ρ(x, t)

(
ε+ ‖u‖2

2

)
= ρ(x, t) 〈W (x, t), u〉 − ∇ · (p(t, x)u) .

These are the compressible Euler equations for a perfect �uid in continuum mechanics! Therefore,
at least for a monoatomic gas (i.e. where each particle has no internal degrees of freedom) of classical
particles described by the Boltzmann equation, local thermodynamic equilibrium implies the macroscopic
behavior of a perfect �uid. Any deviation from this behavior (e.g. viscous dissipation) implies then
deviations from the local equilibrium assumption for the distribution f .
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Since H is dimensionless and entropy has units of energy
temperature

, Boltzmann proposed that

S ∝ H

with a negative proportionality constant bearing the appropriate dimensions, so that S grows when H
diminishes. This proportionality constant is precisely −kB , where kB is the Boltzmann constant of the
gas.

In this way, the Clausius-Duhem inequality would be now 'proven', and H is non-increasing for
isolated systems, which would imply S is increasing. Finally, by theorem 1.4.10 item 3, if S stops
increasing, the distribution f must be a local Maxwellian, closely related to the Maxwell-Boltzmann
distribution of a gas at equilibrium. All of these conclusions seem to point at a proof of the Second law
of thermodynamics, with the Boltzmann equation as a starting point (indeed, Boltzmann's avowed goal
when introducing his equation was to �nd a proof of the Second law of thermodynamics starting from
microscopic considerations).

Among historians of science, there is a discussion about what was Boltzmann's original interpretation
on the H-theorem as it was �rst published in 1872.

Boltzmann proved the theorem �rst for homogeneous gases (i.e. gases where the probability ditribution
f was a function of (t, v) alone), and then extended the proof to the inhomogeneous case. It thus seem that
although he imagined there could be exceptions to his theorem for inhomogeneous gases, he considered his
theorem a valid justi�cation for the second law of thermodynamics for homogeneous ideal gases, stating
that: "(...)because of the atomic movement in systems consisting of arbitrarily many material points,
there always exists a quantity which, due to these atomic movements, cannot increase" .

The desired interpretation would then be: From any initial con�guration of a system of N classical
particles, one can construct an initial distribution f0(t, x, v) accounting for uncertainty on their position
and momentum. Then, letting it evolve according to Boltzmann equation with a linear boundary condi-
tion, its functional H will decrease if the system is isolated. After a su�ciently long time has passed, H
will be close to its absolute minimum, and this would imply that its instantaneous distribution f(t, x, v)
becomes arbitrarily close to the equilibrium Maxwell-Boltzmann distribution.

There are, however, many physical and mathematical problems with this claim. From the mathemat-
ical viewpoint, the main issues are related to convergence to equilibrium:

� We have yet to provide an existence theorem for the Boltzmann equation (we will do so in the
next chapter). We need the solution to be su�ciently regular so that the above calculations make
sense, and have a su�ciently fast decay as ‖(x, y)‖ → ∞ so that moments of order 0,1, and 2 of the
distribution are �nite, and H(t) is �nite. The solution must be de�ned globally in time in order to
have any result of convergence to equilibrium.

� Let f(t, x, v) be a solution of the Boltzmann equation describing a gas an adiabatic vessel with a
linear boundary condition. Local Maxwellians are stationary points for H(t), where H(t) hasn't
yet reached its minimum value. For convergence to equilibrium to happen, H must reach its global
minimum, and not become 'stuck' at these stationary points. If f becomes a local Maxwellian
at any time and remains a local maxwellian, H(t) will become constant (therefore not reaching its
minimum value) and f would not reach equilibrium. This can be avoided with a uniqueness theorem.
Nevertheless, as noted �rst by H. Grad [36], in order to have convergence to equilibrium, one has to
guarantee that all local Maxwellian solutions are not "attractors" except for the equilibriumMaxwel-
Boltzmann distribution (in other words, f must be su�ciently "far" from any local maxwellian at
all times, unless it started o� as a local Maxwellian).

� De�ne the operator H[ft] =
s

Ω×R3 ft(x, v) log(ft(x, v)) dxdv. It does not follow in general that

lim
t→∞

H[ft] = H(g(x, v))⇒ lim
t→∞

ft = g(x, v).

in any mode of convergence.
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� It is possible to choose initial and boundary conditions such that a gas exhibits behaviors forbidden
by continuum mechanics (e.g. a gas being deformed and giving out work instead of consuming it)
[36].

All of the above problems suggest that the conclusions of theorems (1.4.10),(1.4.11) may still be valid,
but only for a special class of solutions. The physical objections are more subtle. The H-theorem caused
great debate among physicists of his time, and was met with 2 famous objections, labeled in the literature
as 'paradoxes'.

The �rst one comes from a letter written by Loschimdt in 1877, in response to a paper from Boltzmann
in 1875 further extending his results. Loschimdt argued that, for any con�guration of gas molecules which
started with a low value for H0 and evolved in time to another con�guration with H ′ < H, one can reverse
the velocities (essentially "play the �lm backwards") and have H grow as a consequence of dynamics.

The second one was given by Zermelo in 1896, and was known as the recurrence paradox. Zermelo's
argument is based on a theorem by Henri Poincaré about dynamical systems, which we state below:

Theorem 1.4.2 (Recurrence theorem). Let (Γ,Σ, µ) be a measure space with µ(Γ) <∞ and T : R+×Γ→
Γ be a �ow on Γ (inducing a continuous-time dynamical system). Let A ∈ Σ be any measurable set and
τ > 0 be an arbitrary time. Let

RA,τ := {x ∈ A ⊆ Γ : ∀t ≥ τ, Tt(x) /∈ A}. (1.4.17)

Then,
µ(RA,τ ) = 0.

The hamiltonian equations of motion induce a �ow phase space 1.0.4, which is itself unbounded, but
if the system has a de�nite energy then it lies on a bounded submanifold in R6N with �nite Lebesgue
measure, and so the theorem applies to a gas of classical particles. This theorem implies that aside from
a set of measure 0, all points from the domain Γ (in our case a submanifold in phase space) will return
arbitrarily close to their starting positions after a �nite time as a consequence of dynamics.

This, Zermelo argued, would mean that H would have to return arbitrarily close to its initial value
after a �nite time, thus creating a fundamental con�ict between the H-theorem and classical mechanics.
His argument is similar to the one given by Poincaré when discussing other kinetic theories. Poincaré
stated that

[t]he world tends at �rst towards a state where it remains for a long time without apparent
change; and this is consistent with experience; but it does not remain that way forever, it the
theorem cited above is not violated; it merely stays there for an enormously long time, a time
which is longer the more numerous are the molecules. This state will not be the �nal death
of the universe but a sort of slumber, from which it will awake after millions and millions of
centuries. According to this theory, to see heat pass from a cold body into a warm one, it will
not be necessary to have the acute vision, the intelligence and the dexterity of Maxwell"�" s
demon; it will su�ce to have a little patience (Brush 2003, p.380).

Boltzmann's reply to Loschmidt was based on the idea that Loschmidt's initial state was not typical.
He conceded that any attempt to prove the second law of thermodynamics from microscopic interactions
for arbitrary initial conditions would be "in vain" 1.4, but argued that there are 'in�nitely many' more
initial states in which H diminishes than states in which H increases for a real gas (though he did not
provide a direct proof to this claim).

This can be seen in the de�nition of the Stosszahlansatz : in the heuristic derivation of the Boltzmann
equation, we assumed velocities of particles before a collision were uncorrelated. Loschmidt's initial
condition corresponds conversely to a particular correlation between the particle's initial velocities (as
they were obtained by reversing post-collisional velocities), and therefore the Boltzmann equation (and
the H-theorem) will not correctly describe this dynamics.

The reply to Zermelo even included a diagram of a typical 'H-curve' for an isolated gas contained in
a vessel (we reproduce here a version similar to the original):
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Consistently with the recurrence theorem (1.4.2), Boltzmann concedes the gas will spontaneously
�uctuate out of equilibrium, and in this situation corresponds to 'peaks' in the H-curve (where H is far
from its minimum). He argues then that the higher the peak, the less likely likely it is to happen (or to
observe the system in this state), and at a given time instant the gas can be either

1. with H close to Hmin, which will be by far the most common situation,

2. at a maximum, which means H will decrease,

3. at one of the ascending or descending sides of a 'peak', with equal probability.

Only one out of these 3 situations (being at the ascending side of a 'peak') actually contradicts the H-
theorem, so most of the time it is satis�ed (or putting it di�erently, for most initial conditions that can
be chosen from this curve, H will decrease for a �nite time interval shortly afterwards).

Finally, although recurrence does happen, Boltzmann argued that the recurrence time τ is too large
to be observed in practice. In a back-of-the-envelope calculation, Boltzmann estimated that, for a sample
of 109 molecules in a reservoir of about 1cm3, there would be at least 10109

possible ways to arrange these
molecules in macrostates (since the number of states that a system can occupy in classical mechanics is
in�nite, he employed a discretization of phase space in order to have a de�nite answer). If the system has
to pass through all other macrostates before recurring, assuming it visits 1027 macrostates per second,
it would take 10109−27 ≈ 10109

seconds for it to exhibit recurrence behavior, a time scale much greater
than the age of the universe and beyond the validity of his equation [37].

He did not, however, provide a justi�cation for assuming the system would pass through all other
macrostates before recurring. If we assume the Ergodic hypothesis is valid, then it is conceivable that
the system could exhibit this behavior, although it is not required to do so.

These arguments seem to point out that Boltzmann may have changed his interpretation of the H-
theorem and his equation over time [37]. Rather than being fundamental, they would re�ect only the
most probable behavior to be observed in a gas, and their validity should be restricted to certain time-
scales and initial conditions [7]. However, no formal mathematical proof of this 'statistical interpretation
of the H-theorem' was given [36].

It would take nearly a century for a more complete resolution for this apparent con�ict between
classical mechanics and the H-theorem to appear.

1.5 The Liouville Equation

Since our goal in this chapter is to highlight the physical origin of the Boltzmann equation before pre-
senting analytical results, we will not present proofs for lemmas and theorems in this section.
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It is clear that, in order to have a better grasp at the limitations and meaning of the Boltzmann
equation and theorem 1.4.10, one would need to understand what are the implications of the hypotheses
made in subsection 1.2. Here, we present a formal argument and a theorem to achieve this goal.

Since the underlying mechanical system evolves in time according to classical mechanics, it seems
reasonable that an evolution law for a probability density could be derived directly from it. De�ne a
probability density PN over ΓN (the phase space of all particles). Given B ⊆ ΓN , we consider the
following balance law for PN

d

dt

ˆ
B

PN (t, x, v) dxdv = −
ˆ
∂B

PN (t, x, v) γ̇(t) · dS,

where γ̇ = (ẋ, v̇) is the drift term in phase space, and the dynamics of the system carries probability along
the phase space much as a �uid carries momentum or heat. In writing the balance law, we implicitly
assume that no probability is produced, in the sense that no state in the phase space can be created -
every state must come from a pre-existing one, which means probability must be transported across ΓN .
In di�erential form, this yields the classical continuity equation

∂ρ

∂t
+∇ · (γ̇ρ) = 0. (1.5.1)

Taking into account the fact that our dynamics is classical, we can use Hamilton's equations of motion
for the drift term:

˙γij =

[
ẋ3i+j

ṗ3i+j

]
=

[
∂H

∂p3i+j

− ∂H
∂x3i+j

]
=

[
ṗ3i+j

Fj(x3i+1, x3i+2, x3i+2)

]
= j

Hence

∇ · j =

N∑
i=1

3∑
j=1

∂

∂x3i+j

∂H

∂p3i+j
− ∂

∂p3i+j

∂H

∂x3i+j
= 0

Where i and j run over all the particles and each particle's coordinate components, respectively. This
is proves the Liouville Theorem for classical mechanics, which states that volume in the phase space is
preserved by the dynamics (the '�ow' of probability in phase space is incompressible). Our equation now
reads

∂PN

∂t
+∇PN · γ̇ = 0 (1.5.2)

Or, inserting our expression for γ̇:

∇PN · γ̇ =

N∑
i=1

3∑
j=1

∂PN

∂x3i+j
ẋ3i+j +

∂PN

∂p3i+j
ṗ3i+j

=

N∑
i=1

3∑
j=1

∂PN

∂x3i+j

∂H

∂p3i+j
− ∂PN

∂p3i+j

∂H

∂x3i+j
≡
{
PN , H

}
(1.5.3)

where {PN , H} is what's commonly de�ned as the Poisson Bracket operator. Our equation then reads

∂PN

∂t
+

N∑
i=1

3∑
j=1

∂PN

∂x3i+j

∂H

∂p3i+j
− ∂PN

∂p3i+j

∂H

∂x3i+j
=
∂PN

∂t
+
{
PN , H

}
= 0

Mathematically, this corresponds to the companion transport equation to the ODE system 1.0.3.

In this second form, the equation is usually called the Liouville equation; and it provides the correct
way to let PN evolve in time classicaly. Though certainly better than solving the problem of the motion
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of individual particles, the solution to the Liouville equation will be a function of N ∼ 1024 coordinates,
which is still impractical to solve.

1.5.1 The BBGKY hierarchy

It is possible to �nd a more rigorous derivation to the Boltzmann Equation than the one presented
previously, taking the Liouville Equation as a starting point. First, de�ne for s 6 N

P (s)(x1, v1, x2, v2, ..., xs, vs) =

¨

(Ω×R3)N−s

PN (x1, v1, x2, v2, ..., xN , vN )

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

P (s) : Γs −→ R+ is called a reduced density of order s, and is obtained simply by marginalizing the
positions and velocities of particles having with an index greater than s 7.

De�nition 1.5.1. We de�ne the operator Es : L1(ΓN ) −→ L1(Γs) as the operation connecting PN and
P (s), that is, given φ(x1, v1, x2, v2, ..., xN , vN ) ∈ L1(ΓN ):

Es[φ](x1, v1, x2, v2, ..., xs, vs) =

¨

(Ω×R3)N−s

φ(x1, v1, x2, v2, ..., xN , vN )

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j ,

Es[P
N ] = P (s)(x1, v1, x2, v2, ..., xs, vs).

We see that, if we take s = 1, this becomes the probability density distribution of a single typical
particle in the gas, which is what the Boltzmann equation attempts to model. If this connection is indeed
valid (that we can replace P (1) = f , where f is the unknown in Boltzmann's equation), then we have two
evolution laws at our disposal: the Liouville equation for PN , and the Boltzmann equation for P (1).

Now, assume we are given an initial condition PN0 to Liouville's equation in ΓN = R2dN , and an
initial condition f0 to the Boltzmann equation in R2d (in the physical case, d = 3). Suppose further that
both initial conditions are compatible: E1[PN0 ] = f0. We can let both initial conditions evolve according
to their respective equations up to some time t, yielding PNt and ft, respectively. Now we pose ourselves
the question that motivated Lanford's original investigation: are they still compatible after time elapses,
i.e. E1[PNt ] = ft? This would mean that the following diagram commutes:

PN0 f0

PNt ft

E1

Liouville Boltzmann

E1

This is, as with most optimistic guesses, false in general. Understanding which conditions would make
this diagram commute is our goal in this section. What Lanford proposed was a weaker version of the
above diagram: if we introduce a distance d in the set of probability measures, assume that d(f0, E1(PN0 ))
is small. In this case, can we conclude that d(ft, E1(PNt )) is small in a sense? this question too has a
negative answer, as a consequence of Loschmidt's paradox [38]. What Lanford discovered is the following

Proposition 1.5.1. (Idea) Let PN0 ∈ L1(R2dN ;R+) be an initial condition to the Liouville equation,
and f0 ∈ L1(R2d;R+) an initial condition to the Boltzmann equation. Then, given a certain distance
in L1(R2d;R+), if f0 and PN0 are compatible with respect to that distance (in a sense which will be

7we assume our probability density PN is symmetric with respect to permutation of particle indices,i.e., that particles are
indistinguishable. Therefore, when integrating over all indices greater than s, we do not need to consider the combinatorial
problem of choosing s particles among the total N .
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made precise later), then there is a constant τ > 0 such that for each t ∈ [0, τ ], with overwhelming

probability PNt and ft are compatible (in the sense that d(E1(PNt ), ft) is small).

We now wish to make the above proposition mathematically precise. From the Liouville equation, we
can �nd an evolution equation for the reduced density P (s), which could reduce the complexity of solving
the full Liouville equation by giving us a reduced description of the behavior of s typical particles in our
gas, moving through a system of N particles.

If we apply this integral operator Es to both sides of the Liouville equation, the result is the following
system of coupled partial di�erential equations:

∂P (s)

∂t
+ {P (s), H}s = −(N − s)

3∑
j=1

∂

∂p3(s+1)+j

¨

Ω×R3

F i s+1
j (xi,xs+1)P (s+1) dx3(s+1)+jdp3(s+1)+j (1.5.4)

for s 6 N (see [23] for a derivation of this result). This is known as the BBGKY Hierarchy of
equations8. Its connection to the Boltzmann equation is more readily seen in the case when the particle
interaction is modelled as elastic collisions between hard spheres. In this case, the above hierarchy
becomes,

∂P (s)

∂t
+ {P (s), H}s

= (N − s)σ2
s∑
i=1

ˆ

S2×R3

[
P (s+1)′ − P (s+1)

]
|(vi − vs+1) · α|dH2(α)dv∗; (1.5.5)

which, for s = 1 has an uncanny resemblance to the Boltzmann equation, if we recall that one of our
assumptions when establishing the heuristic derivation of Boltzmann's equation was the Stosszahlansatz,
that P (2)(t, x, v, x, v∗) = f(t, x, v)f(t, x, v∗) (see section 1.2). Notice that in this case, the phase space
occupied by the particles is given by

Γσ 6=N = {γ ∈ (Ω× Rd)N s.t. ‖xi − xj‖ ≥ σ for each 1 ≤ i, j ≤ N}.

Therefore, the naive connection that E1(PN ) is the unknown in Boltzmann's equation is false, as
the evolution equation E1(PN ) obeys is not (1.2.1), but rather a system of coupled PDEs, and in the
case the Stosszahlansatz holds, the �rst equation of this system 'decouples' from the rest, becoming the
Boltzmann equation.

Instead of simply imposing the Stosszahlansatz in the system (1.5.5), we would like to present a more
physical condition implying this factorization. In the case of a system with negligible internal forces in
thermodynamic equilibrium, in the limit of large N , the Stosszahlansatz can be veri�ed to hold, as done
in Appendix A.5. This signals that the right condition to impose should come from an analysis of the
behavior of the BBGKY hierarchy in the limit when N →∞, in which case we may hope that the �rst
equation in this hierarchy approximates the Boltzmann equation.

Another way to justify the thermodynamic limit N → ∞ would be the following: the Boltzmann
equation has a built-in irreversibility (manifested in the H-theorem) that is incompatible with the re-
versibility of Liouville equation. The latter reversibility appears in the fact that the Hamiltonian �ow in
ΓN preserves the Lebesgue measure (Liouville's theorem). So in order to obtain Boltzmann's equation
from the hierarchy 1.5.5 (which is equivalent to Liouville's equation), one has to go to a limiting regime in
which Liouville's theorem 'fails', and one way to accomplish this is to take the limit N →∞ of P (1)(notice
that in this limit, phase-space volume loses meaning [7]).

In this limit, however, for the volume occupied by the particles to be �nite, we must also have the
particle diameter σ → 0. Then, we can break this limit in a few cases:

8named after 5 scientists: Nikolay Nikolaevich Bogolyubov (1909�1996) Russian mathematician and physicist; Max Born
(1882 � 1970) German physicist; Herbert Sydney Green (1920 � 1999) British physicist; John Gamble Kirkwood (1907 �
1959) American chemist and physicist; and Jacques Yvon, French scientist.
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� If If Nσ3 9 0, then the total volume occupied by the particles is not negligible, so the gas cannot
be considered ideal (consider for instance the Wan der Waals equation of state, which describes a
non-ideal gas by including in its expression an "exclusion volume" occupied by the molecules).

� From the Maxwellian distribution for gases in equilibrium, we can calculate the average thermal
relative velocity |wT | from the standard deviation of the distribution. Then, if we construct a
cylinder of radius σ and height |wT |, this will describe the volume a particle traverses on average
per unit time relative to the others. By multiplying this by the number density of particles, one
�nds the average number of particles a single particle collides with per unit time, which is the
collision frequency νT [23]:

νT = |wT |πσ2n

The average relative velocity |wT | is related to the average thermal speed |vt| by |wT | =
√

2|vt|, so
we can �nd the mean free path of the particles as

λT =
|vT |
νT

=
|vT |

|wT |πσ2n
=

V√
2πσ2N

.

If Nσ2 → 0, then collisions are negligible, since that would make the mean free path between
collisions λT →∞.

Therfore, if we hope to describe a gas in which the occupied volume is negligible (so that it can still
be considered ideal), but collisions are not negligible as a limit from the BBGKY hierarchy, we have to
consider the case in which

Nσ2 = κ, N →∞, (1.5.6)

this limit is called the Boltzmann-Grad limit.

De�nition 1.5.2. Let {f (n)
0 ∈ L1(R2n;R+)}{n∈N} be a sequence of functions. The sequence {f (n) ∈

L1([0, τ ]×R2n;R+)}{n∈N} is said to be a weak solution to the Boltzmann Hierarchy with initial condition

{f (n)
0 }{n∈N} if for each n ∈ N f (n)(0, ·) = f

(n)
0 (·), and {f (n)}{n∈N} solves the following (in�nite) system

of di�erential equations in the weak sense:

∂f (s)

∂t
+ {f (s), H}s

= κ

s∑
i=1

ˆ

S2×R3

[
f

(s+1)′

i − f (s+1)
]
|(vi − vs+1) · α|dH2(α)dv∗; (1.5.7)

where {
f

(s+1)′

i = f(x,v1, x2, v2, ..., xi, v
′
i, ..., xs+1, v

′
s+1),

f (s+1) = f(x,v1, x2, v2, ..., xi, vi, ..., xs+1, vs+1),

and primed (post-collisional) velocities are to unpimed (pre-collisional) velocities by{
v′i = vi + 〈vs+1 − vi, α〉α,
v′s+1 = vs+1 − 〈w,α〉α,

Lemma 1.5.1. Let f(t, x, v) ∈ C((0, T ) × L1(R2d) be a weak solution to the Boltzmann equation 2.1.1
with initial datum f0 ∈ L1(R2d), for the hard-sphere collision kernel (B(v∗− v, α) = |〈v∗− v, α〉|). Then,
the functions

f (s)(t, x1, x2, ..., xs, v1, v2, ..., vs) =

s∏
i=1

f(t, xi, vi)
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are weak solutions to the Boltzmann hierarchy with initial data

f
(s)
0 (x1, x2, ..., xs, v1, v2, ..., vs) =

s∏
i=1

f0(xi, vi)

and κ = 1.

In the next chapter, we will focus on the existence theory for the Boltzmann equation, and we
will prove a theorem (2.1.1) that guarantees the existence of weak solutions. Therefore, by the above
lemma, we will also have weak solutions to the Boltzmann hierarchy de�ned above. If we can prove
that in the Boltzmann-Grad limit, solutions to the BBGKY hierarchy are 'close' to solutions to the
Boltzmann Hierarchy, proposition 1.5.1 will be complete, and we will have a robust justi�cation for using
the Boltzmann equation.

1.5.2 Lanford's Theorem

The derivation of the theorems in this subsection is delicate, and exceeds the scope of this dissertation.
For a comprehensive review on this topic, we recommend the reading of [18] and [40]. We start by
presenting some de�nitions:

De�nition 1.5.3. The following norms will be used in this subsection: given ε ≥ 0,β > 0, for gs(z) :
Γσ 6=s −→ R+, de�ne

‖gs‖ε,β = sup
z∈Γσ 6=s

|gs(z)eβHε(z)|,

where Hε(z) is the system's hamiltonian, given by

Hε(x1, v1, x2, v2, ..., xs, vs) =

s∑
i=1

‖vi‖2

2
+

1

ε

s∑
i=1

∑
j 6=i

F

(
xi − xj

ε

)
.

The case when ε = 0 corresponds to the free hamiltonian case.

De�nition 1.5.4. For p ∈ R2d, let ∆(p) = {x ∈ R2d : xi ≤ pi, i ∈ (1, 2, ..., 2d)}. Given a probability
measure ν de�ned over B × Rd, where B ⊆ Rd is an open set, the cumulative distribution of ν is given
by Fν : B × Rd −→ [0, 1], Fν(p) = ν(∆(p)).

Let ν, µ be 2 probability measures over the measurable set (B × Rd,A) (where A denotes the Borel
σ-algebra). The discrepancy between ν, µ is a metric over the set of probability measures, given by

d(ν, µ) = sup
p∈B×Rd

|Fν(p)− Fµ(p)| = ‖Fµ − Fν‖L∞(B×Rd)

content

Lemma 1.5.2. With the same notation as in the above de�nition, let {µn}n∈N be a sequence of probability
measures over B×Rd, and µ be an absolutely continuous probability measure with respect to the Lebesgue
measure over B × Rd. Then

µn
∗
⇀ µ⇔ lim

n→∞
d(µn, µ) = 0

De�nition 1.5.5. A sequence of probability measures {P (N)}N∈N over Γσ 6=N approximates f ∈ L1(R2d;R+)
in discrepancy if for each ε > 0

lim
N→
BG
∞
PN

(
z ∈ Γσ 6=N : d(ωN (z), f) > ε

)
= 0,

where

ωN (z) =
1

N

N∑
i=1

δ{xi, vi}
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is the empirical distribution at the point z = (x1, v1, ..., xN , vN ).

The empirical distribution has its name for the fact that it would be the real one-particle distribution of
a gas, were the positions and momenta of the total N particles exactly known. Its cumulative distribution
is piecewise constant, so that it is a discrete probability distribution, with distribution function

FωN (z)(x) =
1

N

N∑
i=1

χ{zi≤xi}.

combining lemma 1.5.2 with the previous de�nition, one can conclude that

Lemma 1.5.3. The family {P (N)}N∈N of probability measures over Γσ 6=N approximates f ∈ L1(R2d;R+)
in discrepancy if and only if

P (s)(x1, v1, x2, v2, ..., xs, vs)
s

Π
i=1
dxidvi = Es[P

N ]
s

Π
i=1
dxidvi

∗
⇀

N→
BG
∞

s

Π
i=1
f(xi, vi)dxidvi for all s ∈ N

(weak convergence of in the sense of measures).

Theorem 1.5.1 (Lanford (1975)). Let {P (N)
0 }N∈N be a sequence of probability densities over Γσ 6=N , and

{f (s)
0 (x1, v1, ..., xs, vs)}s∈N =

s

Π
i=1
f0(xi, vi) a sequence of factored initial data for the Boltzmann hierarchy,

where f0 ∈ L1(R2d;R+). Assume that the following holds

1. for some b, C, β > 0:
‖PN0 ‖0,β ≤ CbN

2. {P (N)
0 }N∈N is continuous, and

P
(s)
0 → f

(s)
0

as N →∞ in L∞loc(Γ
σ 6=
s ) for each s ∈ N, σ > 0.

Then, if {P (N)
0 }N∈N approximates f0 in discrepancy, there is a constant τ > 0 such that, for each

t ∈ (0, τ), the weak solution to the BBGKY hierarchy {P (s)
t }s∈N exists and is unique, and approximates

a weak solution to the Boltzmann equation ft in discrepancy.

The (much) more intrincate case of when particles interact through a short range potential instead
of hard collisions, known as King's theorem (1983) is done in great detail in [18]. Currently there is no
similar result for long range potentials (potentials which are not truncated at a �nite distance from the
origin). This theorem guarantees that if the initial data for the BBGKY hierarchy converges weakly to a
factorized distribution, there is a short time-scale in which the time evolution of the BBGKY hierarchy
(which is the true system of equations followed by the system) still factorizes in the Boltzmann-Grad limit,
and this limit is exactly the time evolution of the Boltzmann equation. This means that the factorization
property of the distribution (Stosszahlansatz ) is preserved under the time evolution for short times (a
property known as 'propagation of chaos' in the literature).

Since the N → ∞ limit is never attained, the weak convergence can be translated as such: Take
an initial condition to the Boltzmann equation f0, and a sequence of initial conditions to the Liouville
equation {PN}{N∈N}. Assume that the sequence satis�es the following property:

� for each ε > 0, there is an N0 such that, if N > N0, for any set As in the phase space Γs, the

di�erence P
(s)
0 (As) − f (s)

0 (As) can be no larger than ε in absolute value. P
(s)
0 = Es(P

N ) and Es

and f
(s)
0 are de�ned as previously, in 1.5.1 and 1.5.1.

Then, there is a short time scale τ > 0 such that the same property holds between ft and P
N
t (which

are the time evolutions of f0 by the Boltzmann equation and PN0 by the Liouville equation, respectivelly).
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The theorem can be equivalently phrased in terms of the empirical distribution function: given that
the initial data follows the above property, let d(ωNz , ft) be the discrepancy between the solution to the
Boltzmann equation and an empirical one-particle distribution, where the particles are located at the
state z, and z is distributed according to PNt . For each δ > 0 and ε > 0, there is N0 ∈ N such that,
the probability of the event (d(ωNz , ft) is larger than ε) is bounded by δ. In other words, it is possible to
replace the true empirical distribution by ft, and the error of doing so (discrepancy) will be small with
high probability, if the same error was small in the initial condition, and the total number of particles N
is large enough. Thus, the theorem captures Boltzmann's intuition that his equation measures the 'most
probable' behavior observed in the gas.

This theorem shows that rather than being a toy model used to describe gases, the Boltzmann equation
is indeed a limiting behavior of the time evolution of the one particle distribution, whose evolution can be
found exactly from the Liouville equation. Therefore, conclusions taken from the Boltzmann equation,
such as the H-theorem and the macroscopic balance laws, hold approximately for P (1)(t, x, v) for short
times, vindicating Boltzmann's statistical reading of the H-theorem [37].

The theorem has several limitations, however, the main ones being:

� The lack of control of the limit: N is usually a �xed quantity rather than a variable parameter.
Although large, it would be necessary to know how fast the limit converges as N →∞, in order to
know if typical system sizes are enough for this approximation to be reasonable,

� the restriction to short range interparticle potentials,

� the restriction for short times: it is posible to estimate the time scale τ during which the theorem
holds, as being roughly 2

5 of the mean free time of the gas [37]. For gases at standard pressure and
room temperature, this time scale is of the order of microseconds.

With this, we conclude our survey on the physical meaning and properties of the Boltzmann equation,
and move to the mathematical study of its existence theorems.



Chapter 2

Solvability of the Cauchy problem for

the Boltzmann equation

Boundary conditions, like �eld equations, are proposed by theorists who dare to represent nature by mathematical
hypotheses (...) In framing boundary conditions, just as in framing �eld equations, the theorist outlines Nature as best he
can from what little of herself she lets him see through the fogs with which she covers her sincerity. To do so, he follows

the forms and practices that his masters, the great theorists of old, have taught him by example (...) Like his great
forebears, he runs the risk that solutions of the kind he analyses may not exist: that all his labor may be spent on

describing one of the countless attributes of the null set. Cli�ord Truesdell in [36]

2.1 Diperna-Lions Theory

In this chapter, we will review some a known result about the existence theory of the Boltzmann equation
by [12]. Although there are many other existence results for the Boltzmann equation, the class of
renormalized solutions de�ned by [12] is the only result which guarantees existence of solutions globally
in time and for a broad class of initial conditions, which sets this result apart in the theory [39]. Given its
importance, we will give a proof of this theorem below, and further results will be mentioned at the end
of the text. Consider the following initial value problem (Boltzmann equation without external forcing)
with the unknown f : R+ × R2d −→ R+:{

∂f
∂t + v · ∇xf = Q(f, f) in R+ × R2d

f(0, x, v) = f0(x, v) in R2d (2.1.1)

whereQ(f, f)(t, x, v) =
s

Rd×Sd−1 (f ′f ′∗ − ff∗)B(α, v∗−v) dHd−1(α) dv∗.f
′, f ′∗, f∗ are shorthand for f(t, x, v′),

f(t, x, v′∗), f(t, x, v∗) respectively, and the pairs (v, v∗) and (v′, v′∗) are respectively the velocities of 2 par-
ticles before and after a binary collision, which are related by the expression{

v′ = v + 〈w,α〉α,
v′∗ = v∗ − 〈w,α〉α,

α ∈ Sd−1. The collision Kernel B(α, v∗ − v) is a smooth non-negative function, which takes into account
the interparticle interaction potential. Restrictions on the integrability of B are needed in order to derive
any existence results for this problem.

2.1.1 Solution types and main theorem

First we wish to de�ne and classify a few concepts of solution to the above initial value problem.

De�nition 2.1.1. A function f is said to be a weak (or distributional) solution to equation 2.1.1 with

41
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initial datum f0 ∈ L1(R2d) if, for every φ ∈ C∞0 ([0,∞)× Rd) the following holds:

ˆ T

0

ˆ
R2d

−f
[
∂φ

∂t
+ v · ∇xφ

]
dxdvdt−

ˆ
R2d

f0(x, v)φ(0, x, v) dxdv =

ˆ T

0

ˆ
R2d

φQ(f, f) dxdvdt, (2.1.2)

where we also require Q(f, f) ∈ L1
loc([0,∞)× R2d) so that it is well de�ned.

This is not, however, the main type of solution we'll concern ourselves with. A very useful type of
solution, described by the �rst time in [12], is the following

De�nition 2.1.2 (Renormalized solution). Let β ∈ C1(R+,R+), β(0) = 0 be a function satisfying, for
any C > 0,

0 < β′(x) ≤ C

1 + x
.

f ∈ L1
loc([0,∞);L1(R2d)) is called a renormalized solution to problem 2.1.1 with initial condition f0 ∈

L1(R2d) if it solves the following equation in the sense of distributions

∂β(f)

∂t
+ v · ∇xβ(f) = β′(f)Q(f, f), (2.1.3)

Q(f, f)

1 + f
∈ L1

loc([0,∞)× R2d).

The prototypical choices for β are βδ(t) = 1
δ log(1 + δt) and βδ(t) = t

1+δt , for some δ > 0.

The next solution concept comes from Duhamel's principle: from the characteristic map w = x− vt,
one can de�ne for any g : R× R2d −→ R the composition g#(t, w, v) = g(t, w + vt, v), and notice that

d

dt
f#(t, w, v) =

[
∂

∂t
+ v · ∇x

]
f(t, w + vt, v).

As we remarked in section 1.2, this means that along characteristics the equation reads

d

dt
f#(t, w, v) = Q#(f, f)(r, x, v),

and so we de�ne

De�nition 2.1.3 (Mild solution). Let f : R+ × R2d −→ R+,f0 : R2d −→ R+ be measurable functions.
f is a mild solution if for almost every (x, ξ)

f#(t, x, ξ)− f#
0 (x, ξ) =

ˆ t

0

Q#(f, f)(r, x, ξ) dr (for each 0 < t <∞), (2.1.4)

where Q#(f, f)(r, x, ξ) ∈ L1(0, T ) (∀T > 0).

In order to justify the next de�nition, we now perform a formal calculation. The collision operator
has a natural decomposition into a 'gain' term and a 'loss' term (recall equations 1.3.2, 1.3.3), denoted
respectively by Q+(f, f) and Q−(f, f), and de�ned by

Q+(f, f)(t, x, v) =
x

Rd×Sd−1

f ′f ′∗B(α, v∗ − v) dHd−1(α) dv∗. (2.1.5a)

Q−(f, f)(t, x, v) =
x

Rd×Sd−1

ff∗B(α, v∗ − v) dHd−1(α) dv∗. (2.1.5b)

In the loss term, since none of the integrations is performed over the v variable, we can take f outside
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the integral, which gives us:

Q−(f, f)(t, x, v) = f

ˆ
Rd
f∗

[ˆ
Sd−1

B(α, v∗ − v) dHd−1(α)

]
dv∗.

De�ning A(v) as the term in square brackets, that is

A(v) =

ˆ
Sd−1

B(α,−v) dHd−1(α), (2.1.6)

This can be arranged as

Q−(f, f)(t, x, v) = f

ˆ
Rd
f(t, x, v∗)A(v − v∗) dv∗ = f(A ∗ f). (2.1.7)

This can only be done if B has su�cient integrability conditions. Inserting this expression in the Boltz-
mann equation and

∂f

∂t
+ v · ∇xf = Q(f, f) = Q+(f, f)−Q−(f, f),

i.e.
∂f

∂t
+ v · ∇xf + f(A ∗ f) = Q+(f, f).

Using the characteristic map w = x− vt,

d

dt
f#(t, w, v) + f#(A ∗ f)#(t, w, v) = Q+(f, f)#(t, w, v).

By the product rule
d

dt
f#e

´ t
0

(A∗f)#(r,w,v) dr = Q+(f, f)#e
´ t
0

(A∗f)#(r,w,v) dr,

where e
´ t
0

(A∗f)#(r,w,v) dr plays the role of an integrating factor. Integrating on both sides, we reach the
expression

f#(t, w, v)e
´ t
0

(A∗f)#(r,w,v) dr − f#(s, w, v)e
´ s
0

(A∗f)#(r,w,v) dr

=

ˆ t

s

Q+(f, f)#(l, w, v)e
´ l
0
(A∗f)#(r,w,v) dr dl. (2.1.8)

For simplicity of notation, we de�ne

Of (g)(t, w, v) = ge(x,w, v) = g#(t, w, v)eF
#(t,w,v),

where F#(t, x, v) =
´ t

0
(A ∗ f)#t(r, x, v) dr. Then from equation 2.1.8 we can make the following

De�nition 2.1.4. Let f : R+×R2d → R+ be a measurable function, such that A∗f , Q+
e (f, f) ∈ L1(0, T )

for a.e. (w, v) ∈ R2d. Then, f is said to be an exponentially mild solution if the following equation holds

fe(t, w, v)− fe(s, w, v) =

ˆ t

s

Q+
e (f, f)(l, w, v) dl, (2.1.9)

for a.e. (w, v) ∈ R2d and for each t, s ∈ R such that 0 ≤ s < t < T (recall that for s = 0, fe(0, w, v) =
f0(w, v)).

This is de�ned as a exponential multiplier form of the Boltzmann equation, and the 'exponentially
mild' nomenclature comes from the similarity of this de�nition with that of a mild solution.

We have the following lemma to connect these de�nitions:
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Lemma 2.1.1. Let f ∈ L1
loc((0,∞) × R2d) be a non-negative function. Then the following conditions

hold:
(i) If Q±(f, f) ∈ L1

loc((0,∞) × R2d), then f is a weak (or distributional) solution to the Boltzmann
equation if and only if f is a mild solution.

(ii) If f satis�es the de�nition 2.2.4 at least for the particular choice of β(x) = log(1 + x), x > 0,
then it is a mild solution.

(iii) If f is a mild solution and Q±(f, f)β′(f) are both in L1
loc((0,∞)× Rd × Rd), then f is a renor-

malized solution.

(iv)If Q−(f, f) ∈ L1
t (0, T ) for a.e. x, v, and f is an exponentially mild solution, then f is a mild

solution.

Proof. See Appendix B.1.

This lemma shows that, in the important case when Q±(f, f) ∈ L1
loc((0, T ) × R2d), renormalized

solutions are weak solutions.
Although mild and weak solutions are common in the study of conservation laws, the need for a

di�erent solution concept (renormalized solution) might not be apparent at �rst. The reason for de�ning
renormalized solutions comes from observing that the collision operator has no integrals in the position
variable [19]. This means that in the position variable, it acts as a pointwise multiplication of ff∗, f

′f ′∗,
and as we will see in a short while, the Boltzmann equation has no a priori estimates that guarantee that
f ∈ L2 with respect to position. If f ∈ L1 (as is our case), f2 may fail to be locally integrable[33], and
so we cannot guarantee that Q(f, f) ∈ L1

loc(R2d
x,v), a necessary condition for the weak solution de�ned

previously to be meaningful. However, formally if we divide both sides of the Boltzmann equation by
1 + f , we see that the negative part of the collision operator becomes

f

1 + f
A ∗ f ≤ A ∗ f,

which is better suitable for analysis with the estimates at our disposition. We present now the following
estimate, due to [33], in order to clarify the above reasoning.

Lemma 2.1.2. Assume that f : R+ × R2d → R+ is a measurable function such that

� x

R2d

f(t, x, v)(1 + ‖v‖2) dxdv < C1,

� ˆ T

0

¨

R2d

|D[f ]|(t, x, v) dxdv dt < C2(T ),

where we use the de�nition

D[f ] =
−1

4

¨

R3×S2

(f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
B(w,α)dH2(α)dv∗.

If B(w,α) satis�es
0 ≤ A(w) ≤ C3(1 + ‖w‖2),

Then it follows that ˆ
(0,T )×Rd×{‖v‖≤R}

|Q(f, f)|
1 + f

dtdxdv <∞,
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and an upper bound can be found explicitly in terms of C1, C2, C3.

Therefore, if the above requirements are met, we can expect that the equation

∂ log(f)

∂t
+ v · ∇x log(f) =

Q(f, f)

1 + f

may have a well de�ned weak solution, which in turn would imply that f was a renormalized solution.

Proof. Notice that

|f ′f ′∗ − ff∗| =
∣∣∣√f ′f ′∗ −√ff∗∣∣∣ (√f ′f ′∗ +

√
ff∗

)
≤
∣∣∣√f ′f ′∗ −√ff∗∣∣∣2 + 2

√
ff∗

∣∣∣√f ′f ′∗ −√ff∗∣∣∣
So that,

ˆ
(0,T )×Rd×{‖v‖≤R}

|Q(f, f)|
1 + f

dtdxdv ≤
ˆ

(0,T )×Rd×{‖v‖≤R}

ˆ
Rd×Sd−1

1

1 + f
|f ′f ′∗−ff∗|B(v−v∗, α) dHd−1(α)dv∗dvdxdt

Using the fact that 1
1+f ≤ 1 and the previous inequality, we �nd

≤
ˆ

(0,T )×R2d

ˆ
Rd×Sd−1

∣∣∣√f ′f ′∗ −√ff∗∣∣∣2B(v − v∗, α) dHd−1(α)dv∗dvdxdt

+

ˆ
(0,T )×Rd×{‖v‖≤R}

ˆ
Rd×Sd−1

2
√
ff∗

1 + f

∣∣∣√f ′f ′∗ −√ff∗∣∣∣B(v − v∗, α) dHd−1(α)dv∗dvdxdt.

Using the fact that
√
f

1+f ≤ 1 and factoring B =
√
B
√
B, we can say that

≤
ˆ

(0,T )×R2d

ˆ
Rd×Sd−1

∣∣∣√f ′f ′∗ −√ff∗∣∣∣2B(v − v∗, α) dHd−1(α)dv∗dvdxdt

+

ˆ
(0,T )×Rd×{‖v‖≤R}

ˆ
Rd×Sd−1

(
2
√
f∗
√
B(v − v∗, α)

)(∣∣∣√f ′f ′∗ −√ff∗∣∣∣√B(v − v∗, α)
)
dHd−1(α)dv∗dvdxdt.

Finally, using the Cauchy-Schwartz inequality,

≤M(R, T ) + 2
√
M(R, T )

(ˆ
(0,T )×Rd×{‖v‖≤R}

ˆ
Rd×Sd−1

f∗B(v − v∗, α) dHd−1(α)dv∗dvdxdt

) 1
2

= M(R, T ) + 2
√
M(R, T )

(ˆ
(0,T )×Rd×{‖v‖≤R}

ˆ
Rd
f∗A(v − v∗) dv∗dvdxdt

) 1
2

≤M(R, T ) + 2
√
C3M(R, T )

(ˆ
(0,T )×Rd×{‖v‖≤R}

ˆ
Rd
f∗
(
1 + ‖v − v∗‖2

)
dv∗dvdxdt

) 1
2

where M(R, T ) is given by

M(R, T ) =

ˆ
(0,T )×R2d

ˆ
Rd×Sd−1

∣∣∣√f ′f ′∗ −√ff∗∣∣∣2B(v − v∗, α) dHd−1(α)dv∗dvdxdt.
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We also see that since ‖v − v∗‖2 ≤ 2‖v‖2 + 2‖v∗‖2,
¨

R2d

f∗
(
1 + ‖v − v∗‖2

)
dv∗dx ≤ 2

¨

R2d

f∗‖v‖2 dv∗dx+ 2

¨

R2d

f∗
(
1 + ‖v∗‖2

)
dv∗dx ≤ 2C1(1 + ‖v‖2).

Therefore, coming back to our main argument, we can say that

ˆ
(0,T )×Rd×{‖v‖≤R}

|Q(f, f)|
1 + f

dtdxdv ≤M(R, T ) + 2
√
C3M(R, T )

(ˆ
(0,T )×{‖v‖≤R}

2C1(1 + ‖v‖2) dvdt

) 1
2

.

Finally, notice that the following inequality holds for any a, b > 0:

|
√
a−
√
b|2 ≤ 1

4
(a− b)(log(a)− log(b)),

since, if a > b, one can use the Cauchy-Schwartz inequality, �nding

|
√
a−
√
b|2 =

(ˆ a

b

1

2
√
x
dx

)2

≤ 1

4

(ˆ a

b

1 dx

)(ˆ a

b

1

x
dx

)
.

So choosing a = f ′f ′∗, b = ff∗, we get that∣∣∣√f ′f ′∗ −√ff∗∣∣∣2 ≤ 1

4
(f ′f ′∗ − ff∗)(log(f ′f ′∗)− log(ff∗)),

and also the estimate

M(R, T ) ≤ 1

4

ˆ
(0,T )×R2d

ˆ
Rd×Sd−1

(f ′f ′∗ − ff∗)(log(f ′f ′∗)− log(ff∗))B(v − v∗, α) dHd−1(α)dv∗dvdxdt

=

ˆ T

0

¨

R2d

|D[f ]|(t, x, v) dxdv dt < C2(T ).

Therefore,

ˆ
(0,T )×Rd×{‖v‖≤R}

|Q(f, f)|
1 + f

dtdxdv < C2(T ) + 2
√

2TC1C2(T )C3

(ˆ
{‖v‖≤R}

(1 + ‖v‖2) dv

) 1
2

<∞.

From the above, we can already see some of the requirements we will need for our main existence
theorem, so as to make renormalized solutions viable. With all de�nitions set, we can now state the main
results about global existence of weak solutions to the Boltzmann equation. The theorem we wish to
prove is the following:

Theorem 2.1.1 (Main Theorem). Let B : Rd×Sd−1 −→ R+ be a smooth function, and f0 : R2d −→ R+

be a measurable function such that

� ˆ
R2d

f0(1 + |v|2 + |x|2 + | ln f0|) dxdv <∞, (2.1.10)

� B depends only on |z|, |〈z, w〉|,
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�

A ∈ L1
loc(Rd), lim

|v|→∞

1

(1 + v2)

ˆ
|v∗|<R

A(v∗ − v) dv∗ = 0 ∀R > 0. (2.1.11)

where A(w) is de�ned as in equation (2.1.6). Then, for all T,R > 0, there exists f ∈ C([0, T ];L1(Rd×Rd))
that is a renormalized solution to problem 2.1.1, such that f |t=0 = f0 and the following conditions hold

A ∗ f ∈ L∞(0,∞;L1(Rd ×BR)), (2.1.12a)

1

1 + f
Q−(f, f) ∈ L∞(0,∞;L1(Rd ×BR)), (2.1.12b)

1

1 + f
Q+(f, f) ∈ L1(0,∞;L1(Rd ×BR)), (2.1.12c)

f ≥ 0; sup
t≥0

x

R2d

f(1 + |x− vt|2 + |v|2 + | ln f |) dvdx <∞. (2.1.12d)

The proof will be divided in 4 steps. In make the proof more easily readable, we provide the following
�owchart, listing the the main ingredients and milestones of each step of the proof.

Figure 2.1.1: Steps of the proof and main tools used.

In Step 1, we construct a sequence of problems that approximate the original Boltzmann equation
and we know how to solve, producing a sequence of approximate solutions {fn}n∈N. In Step 2, we prove
that the weak limit of this sequence of solutions exists, fn ⇀ f . Our goal then is to prove that this limit
f is a renormalized solution for the Boltzmann equation as speci�ed in the theorem. In Step 3 we prove
some important lemmas and estimates, and then in Step 4 we use those estimates to accomplish our
goal, �nishing the proof. In this proof, the decay of A(v) as ‖v‖ → ∞ will be decisive to establish some
estimates; in the next section we will mention how to weaken this hypothesis. Most of the steps are done
following derivations contained in either [21], [33], or [12].

2.1.2 Step 1 -Approximate solutions

Unless our gas is composed of maxwellian molecules, the collision kernel has sigularities for: (a) large
relative velocities and (b) small deviation angles in the unit sphere. Another di�culty with the original
Boltzmann equation is that the collision operator is quadratic in the function f , and for the method we'll
use to prove existence, we need a 'slower growth' of the right hand side with f . To solve problem (a), we
begin by truncating and smoothing our initial condition, by de�ning



48CHAPTER 2. SOLVABILITY OF THE CAUCHY PROBLEM FOR THE BOLTZMANN EQUATION

� a monotonically decreasing sequence {δn} with 0 ≤ δn ≤ 1, and δn → 0.

� A smoothed sequence f̃n0 (x, v), constructed by mollifying our initial data after truncating it appro-
priately:

f̃n0 (x, v) =
1

δ2d
n

ρ

(
x

δn
,
v

δn

)
∗
[
χ{|x|< 1

δn
}f0(x, v)

]
,

where ρ is a standard molli�er in R2d (e.g. ρ ∈ C∞0 and nonnegative). By construction, f̃n0 (x, v) is
non-negative, and f̃n0 ∈ C∞0 (R2d).

De�ne
fn0 (x, v) = f̃n0 (x, v) + δne

−1
2 (|x|2+|v|2),

such that now fn0 > 0. This will provide us with a control on how fast the solution decays to 0 as
‖(x, v)‖ → ∞, which will be useful later since we will need to make estimates involving log(f(x, v)). It
can be shown that, for each n ∈ N

�

fn0 ∈ C∞(R2d), sup
(x,v)∈Rd×Rd

‖(x, v)‖α(Dβfn0 ) <∞,

for any pair of multi-indices α, β (This de�nes fn0 as a Schwartz function. In fact f ∈ Sx,v(R2d)
if and only if the above conditions are met).

�

sup
n>0

ˆ
R2d

fn0 | log(fn0 )| dxdv <∞.

Then, we introduce a truncation of the original collision operator, to avoid the angular singularity
(b). De�ne, for each n ∈ N

Bn(v∗ − v, α) :=

{
0 if 〈(v − v∗), α〉 < δn,

B(v∗ − v, α), otherwise.

Recall from subsection 1.3 that α ∈ Rd is a unit vector in the direction of the displacement vector x2−x1

in the moment of a collision, and therefore the above restriction forbids "grazing" collisions, in which the
relative velocity between the particles doesn't change signi�cantly in direction.

Finally, for the last di�culty, de�ne a normalized collision operator as

Qn(f, f) =
1

1 + δn
´
Rn fdv

ˆ
Rd

ˆ
Sd−1

(f ′f ′∗ − ff∗)Bn(α, v∗ − v) dHd−1(α) dv∗, (2.1.13)

where dHd−1 denotes the Hausdor� measure of the surface, which, since the surface is smooth, will
become simply the Lebesgue measure in d − 1 dimensions after introducing a parametrization of S2.
Then, the approximate problem we will solve is

∂fn
∂t

+ v · ∇xfn = Qn(fn, fn). (2.1.14)

Remark 2.1.1. Notice that, for each �xed n ∈ N, a solution fn to the Boltzmann equation with initial
condition fn0 would have to be a solution to the equation

∂fn
∂t

+ v · ∇xfn = Q(fn, fn),

in the appropriate sense (weak, renormalized, mild or classical), instead of equation 2.1.14. What we are
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doing essentially is to say that the Boltzmann equation is equivalent to

∂fn
∂t

+ v · ∇xfn +W · ∇vfn = Qn(fn, fn) + [Q(fn, fn)−Qn(fn, fn)] ,

and treating the term in square brackets as an 'error' term rn = [Q(fn, fn)−Qn(fn, fn)], which will later
be shown to converge to 0.

We see that equation 2.1.14 can be cast as

d

dt
fn(t, w + vt, v) = Qn(fn, fn),

where we introduce w = x − vt as the characteristic equation for the �ow in phase space with drift v.
Integrating from 0 to t, we get an integral equation similar to a solution based on Duhamel's principle:

fn(t, w, v)# = f0(w, v) +

ˆ t

0

[Qn(fn, fn)]#(s, w, v)ds, (2.1.15)

where g(s, x, v)# = g(s, x+vt, v) is just g restricted to a characteristic. Reverting the original x variable,
this means:

fn(t, x, v) = f0(x− vt, v) +

ˆ t

0

[Qn(fn, fn)]#(s, x− v(t− s), v)ds.

If Qn(fn, fn) were replaced by a prescribed function g(t, x, v) in the right hand side of equation 2.1.15,
it would be the correct solution for a transport equation with a source term, and our problem would be
�nished. However, since the righ-hand side depends on fn itself, equation 2.1.15 instead is an integral
equation for fn, which we will not assume a priori that has a solution. De�ne then the operator Gn :
L∞loc(R+;L1

x,v(R2d)) −→ L∞loc(R+;L1
x,v(R2d)) such that

Gn[f#](t, x, v) = fn0 (x, v) +

ˆ t

0

[Qn(f, f)]#(s, x, v)ds.

We claim that this operator is a contraction on the L1 norm for t ∈ [0, τ ] for some choice of τ > 0.
To prove that, we use the following

Lemma 2.1.3. Given f, g ∈ L1
v(Rd), for almost every t, x in R×Rd, there exists a constant C(n, d) > 0

such that
‖Qn(f, f)−Qn(g, g)‖L1(Rdv) ≤ C(n, d)‖f − g‖L1(Rdv).

Whose proof is detailed in the Appendix B.2. Using this result, we see that for each t ∈ (0, τ),

‖Gn[f#](t)−Gn[g](t)‖L1
x,v(R2d) =

∥∥∥∥ˆ t

0

[Qn(f, f)]#(s, x, v)− [Qn(g, g)]#(s, x, v) ds

∥∥∥∥
L1(R2d

x,v)

≤
ˆ t

0

∥∥[Qn(f, f)]#(s, x, v)− [Qn(g, g)]#(s, x, v)
∥∥
L1(R2d

x,v)
ds

≤ C(n, d)

ˆ t

0

∥∥f#(s, x, v)− g#(s, x, v)
∥∥
L1(R2d

x,v)
ds

≤ C(n, d)τ sup
s∈[0,τ ]

‖f#(s, ·, ·)− g#(s, ·, ·)‖L1(R2d
x,v).

Therefore,

sup
t∈[0,τ ]

‖Gn[f#](t)−Gn[g#](t)‖L1(R2d
x,v) ≤ C(n, d)τ sup

s∈[0,τ ]

‖f#(s, x, v)− g#(s, x, v)‖L1(R2d
x,v).
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Thus, we can choose τ such that C(n, d)τ < 1, and Gn is a contraction, and �nally, by Banach's Fixed
Point Theorem, for every �xed n there is a unique �xed point f#

n for Gn[f#].

We now claim that if f ∈ Sx,v(R2d), then Gn[f ] ∈ Sx,v(R2d). Since the collision operator has no
integrals over the position variable x, we see that

� Since we assume f ∈ Sx,v(R2d), we can use the Leibniz rule for di�erentiating 'under the integral',
and conclude that xαDβ

xGn[f ] is still integrable for any multi-indices β, α (restricting our derivatives
to the x variable).

� For the v variable, we have to be more cautious, since the collision kernel depends on v. By theorem
1.3.2, vαGn[f ] is integrable for any multi-index α if f ∈ Sx,v(R2d). Also, since the collision Kernel
is piecewise smooth and has no singularities, we can again use the Leibniz rule and conclude that
Dβ
vGn[f ] is integrable for any multi-index β.

� in all of the above, it is necessary that f0 ∈ Sx,v(R2d).

Also, because of the integration with respect to the time variable, we see that [Gn[f ](t, x, v) is continuous
with respect to the variable t.

Since fn is the �xed point, it solves our approximate problem for t ∈ [0, τ ]. However, since none of
our estimates depended on the initial condition f0, we can choose a time in [0, τ ], say t = τ/2 and de�ne
f1(x, v) = fn(τ/2, x, v). Then we can repeat the process above using f1(x, v) as an initial condition, and
guarantee existence for another time interval of length τ , such that our approximate problem with initial
condition f0 now has a solution for t ∈ [0, 3τ

2 ]. Recursively, we can show that this problem has a solution
for t ∈ [0, τ + nτ

2 ] for each n ∈ N, which means that the solution exists for all t ∈ [0, T ] ∀T > 0.

A priori estimates

We now establish some properties that this solution must posess.

Proposition 2.1.1. For any T>0, Let f ∈ C
(
[0, T ];Sx,v(R2d)

)
be solution to the Boltzmann equation

(2.1.1)with initial datum f0(x, v). Also assume that | log(f)| grows at most polynomially as a function
of (x, v), and B ∈ L∞loc(Rd × Rd × Sd−1) is a non-negative, measurable function. If f0 ∈ Sx,v(R2d), and
satis�es ˆ

R2d

f0(1 + |x|2 + |v|2 + | log(f0)|) dxdv <∞,

then the following hold:

(1) ˆ
R2d

f(t, x, v) dxdv =

ˆ
R2d

f0(x, v) dxdv (mass conservation),

(2) ˆ
R2d

|v|2f(t, x, v) dxdv =

ˆ
R2d

|v|2f0(x, v) dxdv (energy conservation),

(3) ˆ
R2d

|x− tv|2f(t, x, v) dxdv =

ˆ
R2d

|x|2f0(x, v) dxdv,

(4) ˆ
R2d

log(f)f(t, x, v) dxdv −
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds =

ˆ
R2d

log(f0)f0(x, v) dxdv.

where D is de�ned as in 1.4.5a.
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Corollary 2.1.1. Let {fn}n∈N ∈ C
(
[0, T ];Sx,v(R2d)

)
be a a sequence of solutions to the approximate

problem (2.1.14), with corresponding initial data fn0 (x, v), satisfying

ˆ
R2d

fn0 (1 + |x|2 + |v|2 + | log(fn0 )|) dxdv <∞ ∀n ∈ N,

and any other conditions in the previous proposition, replacing f with fn, B with Bn(α,w) and f0 with
fn0 . Then, the same conclusions hold.

Proof. (Corollary) Notice that for �xed n, the only di�erence between fn being a solution to 2.1.1 and
being a solution to the aproximate problem 2.1.14 is in the collision kernel, which does not play a role in
the derivation of these equations. Also notice that, since fn0 ≥ δne

−1
2 (|x|2+|v|2), we Therefore, all results

derived in proposition 2.1.1 will be useful to our case.

Proof. For the proof of of the proposition itself, Items (1) and (2) were already proven in equation 1.3.35,
subsection 1.3.3, and item (4) was proven in equation 1.4.12, subsection 1.4. For item (3), the idea is to
show that |x− tv|2 is a summational invariant. In fact,

|x− tv′∗|2 + |x− tv′|2 = 2|x|2 − 2tx · (v′∗ + v′) + t2(|v′∗|2 + |v′|2)

= 2|x|2 − 2tx · (v∗ + v) + t2(|v∗|2 + |v|2) = |x− tv∗|2 + |x− tv|2

Therefore,
´
R2d |x− tv|2f(t, x, v) dxdv is a conserved quantity, and

´
Rd |x− tv|

2f(t, x, v) dv obeys a con-
servation law that can be derived from the Boltzmann equation in a similar way as the conservation of
energy and momentum.

With this proposition in hand, one can derive a few estimates. Using the fact that |x|2 = |x−vt+vt|2 ≤
(|x− vt|+ t|v|)2 ≤ 2(|x− vt|2 + t2|v|2), and combining with items 1,2,3 gives us the following estimate

ˆ
R2d

|x|2f(t, x, v) dxdv ≤
ˆ
R2d

2(|x− vt|2 + t2|v|2)f(t, x, v) dxdv

= 2

ˆ
R2d

(|x|2 + t2|v|2)f0(x, v) dxdv. (2.1.16)

Finally, from item (4) we can derive another inequality using the following

Lemma 2.1.4. Let g ∈ L1(R2d) be a positive function, such that
´
R2d g| log(g)| dxdv <∞. Then

ˆ
R2d

g| log(g)| dxdv =

ˆ
R2d

g log(g) dxdv + 2

ˆ
R2d

g(|x|2 + |v|2) dxdv + C(d).

Using the above lemma for g = f(t, x+ vt, v), we get

ˆ
R2d

f(t, x+ vt, v)| log(f(t, x+ vt, v))| dxdv =

ˆ
R2d

f(t, x+ vt, v) log(f(t, x+ vt, v)) dxdv

+2

ˆ
R2d

f(t, x+ vt, v)(|x|2 + |v|2) dxdv + C(d),

making the change of variables w = x+ vt:

ˆ
R2d

f(t, w, v)| log(f(t, w, v))| dwdv =

ˆ
R2d

f(t, w, v) log(f(t, w, v)) dwdv

+2

ˆ
R2d

f(t, w, v)(|w − vt|2 + |v|2) dwdv + C(d).
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Now, using estimates 3 and 4, the previous expression can be rewritten as

ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds+

ˆ
R2d

log(f0)f0 dxdv + 2

ˆ
R2d

f0(w, v)(|w|2 + |v|2) dwdv + C(d),

therefore ˆ
R2d

f(t, w, v)| log(f(t, w, v))| dwdv −
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds

≤
ˆ
R2d

(2|w|2 + 2|v|2 + | log(f0)|)f0(w, v) dwdv + C(d). (2.1.17)

These last inequalities can be combined, which gives us

ˆ
R2d

f(t, x, v)(| log(f(t, x, v))|+ |x|2 + |v|2 + 1) dxdv −
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds ≤

ˆ
R2d

(4|x|2 + (2t2 + 3)|v|2 + | log(f0)|+ 1)f0(x, v) dxdv + C(d), (2.1.18)

≤ 4(1 + t2)

ˆ
R2d

(|x|2 + |v|2 + | log(f0)|+ 1)f0(x, v) dxdv + C(d).

Therefore, it follows that

ˆ
R2d

f(t, x, v)(| log(f(t, x, v))|+ |x|2 + |v|2 +1) dxdv−
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds ≤ C0(1+ t2), (2.1.19)

where

C0 = max

{
C(d), 4

ˆ
R2d

(|x|2 + |v|2 + | log(f0)|+ 1)f0(x, v) dxdv

}
.

Before moving to the next section, we present a proof for lemma 2.1.4

Proof. First, we decompose the domain in regions where the logarithm has a de�nite sign:

ˆ
R2d

g| log(g)| dxdv =

ˆ
g≤1

g| log(g)| dxdv
ˆ
g≥1

g| log(g)| dxdv

= −
ˆ
g≤1

g log(g) dxdv

ˆ
g≥1

g log(g) dxdv

= −2

ˆ
g≤1

g log(g) dxdv +

ˆ
g≤1

g log(g) dxdv +

ˆ
g≥1

g log(g) dxdv = −2

ˆ
g≤1

g log(g) dxdv

+

ˆ
R2d

g log(g) dxdv.

The �rst integral on the right hand side can be further broken into 2 pieces

ˆ
g≤1

g log(g) dxdv =

ˆ
g≤e−(|x|2+|v|2)

g log(g) dxdv +

ˆ
e−(|x|2+|v|2)≤g≤1

g log(g) dxdv

=

ˆ
g≤e−(|x|2+|v|2)

g log(g) dxdv +

ˆ
−(|x|2+|v|2)≤log(g)≤0

g log(g) dxdv

≥
ˆ
g≤e−(|x|2+|v|2)

g log(g) dxdv −
ˆ
−(|x|2+|v|2)≤log(g)≤0

g(|x|2 + |v|2) dxdv.
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Inserting back in the previous expression:

ˆ
R2d

g| log(g)| dxdv = −2

ˆ
g≤1

g log(g) dxdv +

ˆ
R2d

g log(g) dxdv

≤ 2

ˆ
g≤e−(|x|2+|v|2)

−g log(g) dxdv + 2

ˆ
−(|x|2+|v|2)≤log(g)≤0

g(|x|2 + |v|2) dxdv

≤ 2

ˆ
g≤e−(|x|2+|v|2)

−g log(g) dxdv + 2

ˆ
R2d

g(|x|2 + |v|2) dxdv.

Finally, since −t log(t) ≤ A
√
t ∀t ∈ [0, 1], we can say that

ˆ
g≤e−(|x|2+|v|2)

−g log(g) dxdv ≤
ˆ
g≤e−(|x|2+|v|2)

A
√
g dxdv ≤

ˆ
g≤e−(|x|2+|v|2)

Ae
−(|x|2+|v|2)

2 dxdv

≤
ˆ
R2d

Ae
−(|x|2+|v|2)

2 dxdv ≡ C(d),

concluding the proof.

2.1.3 Step 2 - Weak compactness results

We now wish to prove that the sequence of solutions derived from our approximate problems converges
as n→∞. From the inequality 2.1.18 and other estimates from the last section, we see that

ˆ
R2d

fn(| log(fn)|+ |x|2 + |v|2 + 1) dxdv < C(t) ∀n > 0.

So that a uniform bound can be chosen if t ∈ [0, T ] for a given T > 0. A uniform bound on the norm of
this sequence hints that a compactness argument may allow us to take the limit. However, since L1(dµ) is
not a re�exive space, we wouldn't expect in principle that common tools for proving compactness would
work in this setting. However, the fact that f log(f) is integrable formally means that our sequence fn
has a slightly stronger integrability than L1 functions, and so we can hope that a weak convergence result
can be found. This result comes from 2 lemmas, whose proofs are detailed in Appendix B.3.

De�nition 2.1.5. Let µ be a Radon measure in RN . A bounded subset F ⊆ L1(dµ) is said to be
uniformly integrable if any of the following equivalent conditions is true

�

lim
R→∞

sup
f∈F

ˆ
f≥R

f dµ = 0.

� for each ε > 0 there exists δ > 0 s.t.

µ(A) < δ ⇒ sup
f∈F

ˆ
A

f dµ < ε.

Lemma 2.1.5 (Dunford-Pettis). Let µ be a Radon measure in RN . A bounded subset F ⊆ L1(dµ) is
weakly relatively compact if and only if F is uniformly integrable and tight, the last condition meaning
that, for each ε > 0 there is compact set Kε ⊆ RN such that

sup
f∈F

ˆ
RN−Kε

f dµ ≤ ε.

Lemma 2.1.6 (De-la-Valeé-Poussin). Let µ be a Radon measure in RN and Ω ⊆ RN be a Borel set. A
family F ⊆ L1(Ω, dµ) is uniformly integrable if and only if there is a nonnegative nondecreasing function
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G : [0,∞) −→ [0,∞) such that:

lim
t→∞

G(t)

t
=∞ sup

f∈F

ˆ
G(|f |) dµ(y) <∞

Ee see that our family F = fn obeys the conditions of the second lemma. Let G(t) = t log+(t), where
log+(t) = max{log(t), 0}. G(t) is convex, nondecreasing, non-negative, and

lim
t→∞

t log+(t)

t
= lim
t→∞

log+(t) =∞.

Finally,

sup
n>0

ˆ
R2d

G(|fn|) dxdv ≤
ˆ
R2d

fn(| log(fn)|+ |x|2 + |v|2 + 1) dxdv,

which is bounded, using the estimates derived in the previous subsection. Next, we show that the sequence

fn is tight. For R > 0, notice that ‖x‖2 + ‖v‖2 > R2 ⇔ 1 < ‖x‖2+‖v‖2
R2 , so that

sup
n

¨

{‖x‖2+‖v‖2>R2}

fn dxdv ≤ sup
n

¨

{‖x‖2+‖v‖2>R2}

fn
‖x‖2 + ‖v‖2

R2
dxdv

≤ 1

R2
sup
n

¨

R2d

fn(1 + ‖x‖2 + ‖v‖2) dxdv ≤ C1

R2

where in the last inequality the estimate 2.1.18 was used. This implies

lim
R→∞

sup
n

¨

{‖x‖2+‖v‖2>R2}

fn dxdv = 0,

as claimed. Therefore, combining the two lemmas above, we verify that fn is weakly compact, such that
up to passing to a subsequence, there exists f satisfying the same bounds, that is:

ˆ
R2d

f(| log(f)|+ |x|2 + |v|2 + 1) dxdv <∞

and such that fnk ⇀ f ∈ L1
x,v as k →∞ (we use the symbol⇀ to denote weak convergence). The lemmas

2.1.6 and 2.1.5 will be standard tools in the proof of theorem 2.1.1, to prove the weak compactness of
many sequences of functions.

Proposition 2.1.2. The sequence of functions Zn de�ned by

Zn(t, x, v) =
Qn(fn, fn)

1 + fn
(∀n ≥ 1)

is also weakly compact in L1(R2d,R)

Remark 2.1.2. This means that, taking our previous subsequence fnk which converged weakly, we can
pass to another subsequence such that fnj ⇀ f,

Qnj (fnj ,fnj )

1+fnj
⇀ g.

One observes that, it does not follow necessarily that g = Q(f,f)
1+f , but in the next step of the proof of the

main theorem, we will establish this result.
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Proof. First, we consider the case in which ‖An‖L1 = an and supn>0 an <∞, then generalize it to more

general collision kernels (recall the de�nition of A in equation 2.1.6). The idea is to show that Qn(fn,fn)
1+fn

satis�es the conditions on the Dunford-Pettis lemma. We will use the standard decomposition on the
collision operator into 'gain' and 'loss' terms (recalling equations 2.1.5b, 2.1.5a),

Zn = −Q
−
n (fn, fn)

1 + fn
+
Q+
n (fn, fn)

1 + fn
,

and prove the convergence of each term in the right nad side of the equation above separately. Beginning
with the loss term, we have

Q−n (fn, fn)

1 + fn
=

fn
1 + fn

1

1 + δn
´
Rd fn dv

An ∗ fn ≤ An ∗ fn,

where ∗ denotes the convolution operator. If we can show that An ∗ fn is

� uniformly bounded in L1
x,v(R2d),

� Tight, as in the de�nition stated before,

� Uniformly integrable, using any of the 3 equivalent conditions,

then it will be weakly compact, and so will be
Q−n (fn,fn)

1+fn
. To show that it is uniformly bounded in L1, it

su�ces to use the Young inequality for convolutions:

‖An ∗ fn‖L1(R2d) ≤ ‖An‖L1(Rd)‖fn‖L1(R2d) = an‖f0,n‖.

Next, we prove uniform integrability using De-la-Valée-Poussin's lemma. Consider the function φ(s) =
s log+(s). Notice that, for a, s > 0,

s log(s) = s log
( s
a
a
)

= s log(a) + s log
( s
a

)
.

De�ne the positive and negative parts of the logarithm in the usual manner, as log+(x) = max{log(x), 0},
log−(x) = max{− log(x), 0}. If we split the above equation using this de�nition, we �nd:

s log+(s)− s log−(s) = s log+(a)− s log−(a) + s log+
( s
a

)
− s log−

( s
a

)
,

then, adding and subtracting (s log−(a)) to the right hand side,

s log+(s) = s| log(a)|+ s log+
( s
a

)
− s

[
2 log−(a) + log−

( s
a

)
− log−(s)

]
.

We claim that the term in square brackets is always non-negative. Thus

s log+(s) ≤ s| log(a)|+ s log+
( s
a

)
⇒ φ(s) ≤ s| log(a)|+ aφ

( s
a

)
. (2.1.20)

To show this, we consider the 3 possible cases: s > a, s < 1 < a and s, a < 1

1. If s > a, then 2 log−(a)− log−(s) ≥ 0, since log−(x) is non-increasing and non-negative.

2. If s < a < 1, then all properties of the logarithm hold, and[
2 log−(a) + log−

( s
a

)
− log−(s)

]
= log−(a) ≥ 0.
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3. If s < 1 < a, then log−(a) = 0 and s
a < s, so our term in brackets becomes[

log−
( s
a

)
− log−(s)

]
≥ 0,

again since log−(s) is non-increasing.

Using inequality 2.1.20 taking a = an = ‖An‖L1 and s = An ∗ fn, we get that
ˆ
R2d

φ(An ∗ fn) dxdv ≤ an
ˆ
R2d

φ

(
An ∗ fn
an

)
dxdv +

ˆ
R2d

An ∗ fn| log(an)| dxdv,

and using Young's convolution inequality on the second term of the right hand side,

≤ an
ˆ
R2d

φ

(
An ∗ fn
an

)
dxdv + an| log(an)|

ˆ
R2d

fn dxdv.

Finally, since φ(x) is a convex function and An
an

is a probability density (as gn = An
an
≥ 0 and

´
Rd gn dv = 1),

we may use Jensen's Inequality to deduce that

φ

(
An ∗ fn
an

)
= φ

(ˆ
Rd

An(v∗)

an
fn(v − v∗) dv∗

)
≤
ˆ
Rd

An(v∗)

an
φ(fn(v − v∗)) dv∗,

⇒
ˆ
R2d

φ(An ∗ fn) dxdv ≤ an
ˆ
R2d

An ∗ φ(fn)

an
dxdv + an| log(an)|

ˆ
R2d

fn dxdv

≤ an
ˆ
R2d

[
fn log+(fn) + | log(an)|fn

]
dxdv,

which is bounded, using our estimates for the solution derived in Step 1. Finally, all we need to prove is
that the sequence fn is tight. To show that, for �xed R > 0, consider the following expression

ˆ
Rd

ˆ
|v|>R

An ∗ fn dxdv =

ˆ
Rd×Rd

ˆ
|v|>R

An(v − v∗)fn(t, x, v∗) dxdvdv∗

=
y

Rd×Rd×Rd
An(v − v∗)fn(t, x, v∗)χ|v|>R(v)[χ|v∗|≥R/2(v∗) + χ|v∗|≤R/2(v∗)] dxdvdv∗

≤
y

Rd×Rd×Rd
An(v − v∗)fn(t, x, v∗)χ|v∗|≥R/2(v∗) dxdvdv∗

+
y

Rd×Rd×Rd
An(v − v∗)fn(t, x, v∗)χ|v|>R(v)χ|v∗|≤R/2(v∗) dxdvdv∗.

For the �rst integral after the inequality sign, we have that |v∗| ≥ R/2⇔ 1 ≤ 4v2
∗

R2 , so we can create this
term inside the �rst integral, and get the following inequality

y

Rd×Rd×Rd
An(v − v∗)fn(t, x, v∗)χ|v∗|≥R/2(v∗) dxdvdv∗ ≤

ˆ
R2d

An ∗
[

4v2

R2
fn

]
dxdv

≤ 4an
R2

ˆ
R2d

v2fn dxdv.

For the second integral, de�ne z = v∗ − v. We remark that, if |v| ≥ R, |v∗| ≤ R/2, then |v| = |v∗ − z| ≤
|v∗|+ |z| ≤ |z|+R/, thus |z| ≥ R/2, such that

{(v, v∗) ∈ R2d||v| ≥ R, |v∗| ≤ R/2} ⊆ {(v, v∗) ∈ R2d||v − v∗| = |z| ≥ R/2}.
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Therefore, since the integrand is non-negative, we can write

y

Rd×Rd×Rd
An(v − v∗)fn(t, x, v∗)χ|v|>R(v)χ|v∗|≤R/2(v∗) dxdvdv∗

≤
y

Rd×Rd×Rd
An(v − v∗)fn(t, x, v∗)χ|v|>R(v)χ|z|≥R/2(v − v∗) dxdzdv∗

= ‖Anχ|z|≥R/2 ∗ fn‖L1(x,v) ≤ ‖fn‖L1(x,v)

ˆ
|z|≥R/2

A(z) dz.

Combining both, we �nally arrive at the expression

ˆ
Rd

ˆ
|v|>R

An ∗ fn dxdv ≤ ‖fn‖L1(x,v)

ˆ
|z|≥R/2

A(z) dz +
4an
R2

ˆ
R2d

v2fn dxdv

Since we have bounds for
´
R2d(1 + v2)fn dxdv that are uniform in time, from the above inequality we get

that

lim
R→∞

sup
t∈[0,T ]

ˆ
Rd

ˆ
|v|>R

An ∗ fn dxdv = 0.

Thus we get the tightness property, and from it follows that
Q−n (fn,fn)

1+fn
(t, x, v) is weakly compact in

L∞((0, T );L1(R2d)).

Remark 2.1.3. Since (0, T ) is bounded, for all �xed 0 < T <∞:

Q−n (fn, fn)

1 + fn
(t, x, v) ∈ L∞((0, T );L1(R2d))⇒ Q−n (fn, fn)

1 + fn
(t, x, v) ∈ L1((0, T )× L1(R2d))

And so
Q−n (fn,fn)

1+fn
(t, x, v) is weakly compact in L1((0, T )× L1(R2d)).

Next, we wisth to prove that
Q+
n (fn,fn)
1+fn

(t, x, v) is weakly compact in L1((0, T ) × R2d) for any 0 <
T <∞. For that, we introduce another important estimate of this demonstration, the so called entropy
inequality:

Q±n (fn, fn) ≤ Q∓n (fn, fn) +
1

logK
En(fn), (2.1.21)

for all K > 1, where En = −4Dn, and

Dn(fn) =
−1

4

x

Rd×Sd−1

[f ′nf
′
∗,n − fnfn,∗] log

(
f ′nf

′
∗,n

fnfn,∗

)
Bn(v − v∗, α) dHd−1(α)dv∗,

(Notice that Dn is exactly the entropy production functional D[f ] de�ned in equation 1.4.5a, with the
collision kernel Bn).Then, from this remarkable inequality the weak compactness of the 'gain' part of the
collision operator (Q+)follows from the weak compactness of the 'loss' part (Q−). To see this, notice that
it implies uniform L1 boundedness, as∥∥∥∥Q+

n (fn, fn)

1 + fn

∥∥∥∥
L1
x,v

≤
∥∥∥∥Q−n (fn, fn)

1 + fn

∥∥∥∥
L1
x,v

+
1

log(K)

∥∥∥∥En(fn)

1 + fn

∥∥∥∥
L1
x,v

.

Notice that
∥∥∥En(fn)

1+fn

∥∥∥
L1
x,v

< 4 ‖Dn(fn)‖L1
x,v

and we have the following estimate derived in proposition

2.1.1, that ˆ
R2d

f(t, w, v)| log(f(t, w, v))| dwdv +

ˆ t

0

‖D[f ](s, x, v)‖L1
x,v
ds
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≤
ˆ
R2d

(2|w|2 + 2|v|2 + | log(f0)|)f0(w, v) dwdv + C(d),

Applying this to our case,

ˆ T

0

‖Dn[fn](s, x, v)‖L1
x,v
ds ≤

ˆ
R2d

(2|w|2 + 2|v|2 + | log(fn0 )|)fn0 (w, v) dwdv + C(d)

≤M + C(d),

which shows that ‖En(fn)‖L1
x,v

is uniformly bounded in L1((0, T )×R2d).Next, we wish to show that for

every ε > 0 there is a δ > 0 and M > 0 such that for any borel set A ∈ R2d with L(A) < δ and any
R > M , we have

sup
n

ˆ T

0

ˆ
R2d

Q+
n (fn, fn)

1 + fn

[
χA(x, v) + χ‖(x,v)‖>R

]
dxdvdt < ε,

which is equivalent to tightness and uniform integrability. To show this, given that we have already
proven the above condition for Q−, for each K > 1 we can always choose A and R > 0 such that

sup
n

ˆ T

0

ˆ
R2d

Q−n (fn, fn)

1 + fn

[
χA(x, v) + χ‖(x,v)‖>R

]
dxdvdt <

ε

2K
.

Then, using the entropy inequality:

sup
n

ˆ T

0

ˆ
R2d

Q+
n (fn, fn)

1 + fn
[χA(x, v) + χ‖(x,v)‖>R] dxdvdt

≤ K sup
n

ˆ T

0

ˆ
R2d

Q−n (fn, fn)

1 + fn
[χA(x, v) + χ‖(x,v)‖>R] dxdvdt

+
1

log(K)
sup
n

ˆ T

0

ˆ
R2d

En(fn)

1 + fn
[χA(x, v) + χ‖(x,v)‖>R] dxdvdt

<
ε

2
+

1

log(K)
sup
n

ˆ T

0

ˆ
R2d

En(fn)

1 + fn
[χA(x, v) + χ‖(x,v)‖>R] dxdvdt

<
ε

2
+

4

log(K)
sup
n

ˆ T

0

ˆ
R2d

−Dn[fn] dxdvdt <
ε

2
+ 4

(M + C(d))

log(K)
,

where M > 0 is a constant coming from our choice of initial data, and we used again estimate (4) from

proposition2.1.1. Finally, since K > 1 is arbitrary, for each ε > 0 we can pick K = e
2(M+C(d))

ε , and
conclude that, for every ε > 0 we always choose A and R such that

sup
n

ˆ T

0

ˆ
R2d

Q+
n (fn, fn)

1 + fn

[
χA(x, v) + χ‖(x,v)‖>R

]
dxdvdt <

ε

2
+
ε

2
= ε,

and so we �nish the proof. By the Dunford-Pettis lemma, the positive part of the collision operator is
also weakly compact in L1((0, T )×R2d). All that remains to prove in this case is the entropy inequality
(equation 2.1.21).

Proof. (Entropy Inequality) To simplify notation, in the following demonstration n ∈ N is �xed, and we
drop the n dependence of fn. Following a proof by [12], de�ne AK = {(v, v∗, α) : f ′f ′∗ ≥ Kff∗}. Then,
in the case when Q+ is on the left hand side, we can see that

Q+
n (fn, fn) =

ˆ
Rd×Sd−1

f ′f ′∗Bn(α, v∗ − v)[χAK (v, v∗, α) + χAcK,n(v, v∗, α)] dHd−1(α) dv∗
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=

ˆ
Rd×Sd−1

f ′f ′∗Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗

+

ˆ
Rd×Sd−1

[f ′f ′∗ − ff∗]Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

+

ˆ
Rd×Sd−1

ff∗Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗.

In the set AK , by de�nition
f ′f ′∗
ff∗

≥ K ⇔ 1 ≤ 1

log(K)
log

(
f ′f ′∗
ff∗

)
,

so we can manipulate the second term of the r.h.s. as follows

ˆ
Rd×Sd−1

[f ′f ′∗ − ff∗]Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

≤ 1

log(K)

ˆ
Rd×Sd−1

[f ′f ′∗ − ff∗] log

(
f ′f ′∗
ff∗

)
Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

≤ 1

log(K)
En(f),

since the integrand is non-negative. Then by de�nition of AcK,n,

ˆ
Rd×Sd−1

f ′f ′∗Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗

+

ˆ
Rd×Sd−1

[f ′f ′∗ − ff∗]Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

+

ˆ
Rd×Sd−1

ff∗Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

≤ K
ˆ
Rd×Sd−1

ff∗Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗ +
1

log(K)
En(f)

+K

ˆ
Rd×Sd−1

ff∗Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗ = KQ−n (f, f) +
1

log(K)
En(f).

In the case we start with Q− on the right hand side, the argument is entirely analogous. Take K < 1
and split Q− as

Q−n (f, f) =

ˆ
Rd×Sd−1

f ′f ′∗Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗

+

ˆ
Rd×Sd−1

ff∗Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

+

ˆ
Rd×Sd−1

[ff∗ − f ′f ′∗]Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗.

For the second term on the second term of the r.h.s., we have ff∗ ≤ 1
K f
′f ′∗, and for the third term,

f ′f ′∗
ff∗

≤ K ⇔ 1 ≤ 1

log(1/K)
log

(
ff∗
f ′f ′∗

)
,
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so we �nd that

Q−n (fn, fn) ≤ 1

K

ˆ
Rd×Sd−1

f ′f ′∗Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗

+
1

K

ˆ
Rd×Sd−1

f ′f ′∗Bn(α, v∗ − v)χAK (v, v∗, α) dHd−1(α) dv∗

+
1

log(1/K)

ˆ
Rd×Sd−1

[ff∗ − f ′f ′∗] log

(
ff∗
f ′f ′∗

)
Bn(α, v∗ − v)χAcK,n(v, v∗, α) dHd−1(α) dv∗,

=
1

K
Q+(f, f) +

1

log(1/K)
En(f).

Then, de�ning K ′ = 1
K , this means

Q−n (f, f) ≤ K ′Q+(f, f) +
1

log(K ′)
En(f).

We have concluded our proof of weak compactness of the collision operator in the case where An ∈ L1.
However, this case is highly non-physical: we can understand truncation in the interaction potential ϕ in
the collision operator (Bn) as a plausible approximation, since it will be small if particles are far apart,
which allows us to de�ne An (as in equation 2.1.6). But there is no reason to assume that An(v) is
integrable (in fact, ‖An‖ should increase as ‖v‖ increases), unless we introduce a non-physical cuto� in
the velocity variable. Now we wish to relax this hypothesis before going further. The assumption we'll
make on the collision kernel will be that

lim
|v|→∞

1

(1 + |v|2)

ˆ
|v∗|<R

An(v − v∗) dv∗ = 0 ∀R > 0.

De�ne AR,n(v) =
´
|v∗|<RAn(v − v∗) dv∗. Then the above condition means that for a given ε > 0, there

is an M such that
AR,n(v) ≤ ε(1 + |v|2) if |v| > M.

Since the closed ball de�ned by |v| ≤ R is a compact set and AR,n is continuous, there is an upper bound
Cε to the value of AR,n(v) in this set, depending on the chosen ε. Therefore, one can always say that for
any R, ε > 0, there is a Cε such that

An(v) ≤ ε(1 + |v|2) + Cε ∀v ∈ Rd. (2.1.22)

We do not, however, let go on all assumptions of integrability of An: we still require that An ∈ L1
loc. Let

An,K(z) = An(z)χ|z|<K . Then An,K is compactly supported and therefore integrable, such that all of
the above reasoning used to prove weak compactness holds. What we want to show is that

Lemma 2.1.7.
lim
K→∞

sup
n
‖An,K ∗ fn −An ∗ fn‖L∞(0,T ;L1(Rd×BR)) = 0.

If this is true, then suppose An,K ∗ fn converges weakly to gK after taking a convenient subsequence,
and ψ ∈ C∞0 (R2d). Then

lim
K→∞

ˆ
R2d

gKψ dxdv = lim
K→∞

lim
n→∞

ˆ
R2d

An,K ∗ fnψ dxdv

= lim
n→∞

ˆ
R2d

An ∗ fnψ dxdv + lim
K→∞

lim
n→∞

ˆ
R2d

[An,K −An] ∗ fnψ dxdv.
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But,

lim
K→∞

lim
n→∞

∣∣∣∣ˆ
R2d

[An,K −An] ∗ fnψ dxdv
∣∣∣∣ ≤ lim

K→∞
lim
n→∞

ˆ
R2d

|An,K ∗ fn −An ∗ fn|ψ dxdv

≤ ‖ψ‖L∞ lim
K→∞

lim
n→∞

ˆ
Rd×BR

|An,K ∗ fn −An ∗ fn| dxdv

≤ ‖ψ‖L∞ lim
K→∞

sup
n
‖An,K ∗ fn −An ∗ fn‖L1(Rd×BR) = 0.

Therefore, the fact that the proposition speci�es a limit uniform in n makes it possible to 'commute'
the two limits and conclude that An ∗ fn is weakly compact if An,K is. Then, one can conclude that
Q−n (fn.fn)/(1 + fn) is also weakly compact, and �nally using again the entropy inequality one concludes

that Q±

1+fn
is weakly compact (respectively in L∞((0, T );L1(R2d)), and L1((0, T )×R2d)). With this, our

claim of the weak L1 compactnes of the collision operator is established.

Proof. (lemma) To prove the above lemma, writing it down explicitly,

‖An,K ∗ fn −An ∗ fn‖L1(Rd×BR) =

ˆ
BR

ˆ
R2d

An(v − v∗)χ|v−v∗|≥R(v∗)fn(v∗) dxdv∗dv.

Notice that if K > R, then |v∗| = |v∗ − v + v| ≥ |v∗ − v| − |v| ≥ K −R. Therefore,
ˆ
BR

ˆ
R2d

An(v − v∗)χ|v−v∗|≥R(v∗)fn(t, x, v∗) dxdv∗dv

≤
ˆ
BR

ˆ
R2d

An(v − v∗)χ|v∗|≥K−R(v∗)fn(t, x, v∗) dxdv∗dv

=

ˆ
R2d

An,R(v − v∗)χ|v∗|≥K−R(v∗)fn(t, x, v∗) dxdv∗

≤ ε
ˆ
R2d

χ|v∗|≥K−R(v∗)(1 + |v∗|2)fn(t, x, v∗) dxdv∗ + Cε

ˆ
R2d

χ|v∗|≥K−R(v∗)fn(t, x, v∗) dxdv∗.

Finally, since |v∗| ≥ K −R⇔ 1 ≤ |v∗|2
(K−R)2 ,

≤ ε
ˆ
R2d

(1 + |v∗|2)fn(t, x, v∗) dxdv∗ +
Cε

(K −R)2

ˆ
R2d

|v∗|2fn(t, x, v∗) dxdv∗

≤
[
ε+

Cε
(K −R)2

]ˆ
R2d

(1 + |v∗|2)fn(t, x, v∗) dxdv∗ ≤MT

[
ε+

Cε
(K −R)2

]
.

Notice that our bound is independent of n, t, so we can say

‖An,K ∗ fn −An ∗ fn‖L∞(0,T ;L1(Rd×BR)) ≤MT

[
ε+

Cε
(K −R)2

]
,

and taking the limit,

lim
K→∞

sup
n
‖An,K ∗ fn −An ∗ fn‖L∞(0,T ;L1(Rd×BR)) ≤MT ε,

which can be made arbitrarily small for any value of R.
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2.1.4 Step 3 - Averaging lemmas and strong compactness

The goal of this step of the proof is to use the weak compactness results from the previous section, and
obtain strong compactness, allowing us to have L1 convergence instead of weak convergence. The main
tools for this task will be what's known in the literature as 'averaging lemmas'.

De�nition 2.1.6. Throught this and the next sections, to reduce notation, we use the symbol D to
denote the material derivative, as it was de�ned in section 1.4:{

D = ∂
∂t +

∑d
i=1 vi

∂
∂xi

, Df(t, x, v) = d
dtf

#(t, w, v),

w = x− vt (Characteristic equation)

The lemma which we are interested in proving is the following

Proposition 2.1.3. Let fn be a weakly compact sequence in L1((0, T ) × R2d) and f be a limit point of
fn, and let gnδ = βδ(fn), where βδ(x) = 1

δ log(1+δx). For all φ ∈ L∞((0, T )×R2d) with compact support,
passing to a subsequence if necessary, we have that

1. ˆ
Rd
fn dv →

ˆ
Rd
f dv in L1((0, T )× Rd), (2.1.23)

2. ˆ
Rd
gnδ dv →

ˆ
Rd
gδ dv in L1((0, T )× Rd), (2.1.24)

3.
An ∗ fn → A ∗ f in L1((0, T )× Rd ×BR(0)), (2.1.25)

4. ˆ
Rd
Q±n (fn, fn)φdv →

ˆ
Rd
Q±(f, f)φdv in L1((0, T )× Rd). (2.1.26)

The proof of this proposition uses mainly the following theorems

Theorem 2.1.2. Let (fn) ⊆ L1((0, T )× Rd × Rd) be a weakly compact subset.
Assume that Dfn is also weakly compact in L1

loc((0, T )× Rd × Rd). Let (ψn) be a uniformly bounded
sequence in L∞((0, T )× Rd × Rd) converging almost everywhere to ψ. Then the sequence

(Ψn(t, x)) =

ˆ
Rd
fn(t, x, v)ψn(t, x, v) dv

forms a strongly compact subset of L1((0, T )× Rd)

Corollary 2.1.2. If fn ⇀ f ∈ L1((0, T )× Rd × Rd), then

Ψn(t, x) =

ˆ
Rd
fnψn dv →

ˆ
Rd
fψ dv = Ψ(t, x)

strongly in L1((0, T )× Rd).

Theorem 2.1.3 (Vector valued averaging lemma). Let (fn) ⊆ L1((0, T )×Rd×Rd) be a weakly compact
subset.

Assume that Dfn is also weakly compact in L1
loc((0, T )×Rd×Rd), but this time, let (ψn) be a uniformly

bounded sequence converging almost everywhere to ψ, both in L∞((0, T ) × Rd × Rd;L1(Rd)) . Then the
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sequence

(Ψn(t, x)) =

ˆ
Rd
fn(t, x, v)ψn(t, x, v) dv

forms a strongly compact subset of L1((0, T )× Rd × Rd)

The second one is a simple extension of the �rst one to the vector-valued case, whose proof we will
omit. We give a proof to the �rst theorem in Appendix B.4.

We are now ready to prove our main proposition

Proof. (proposition 2.1.3) Proving the �rst is simply an application of lemma 2.1.2, as we checked be-
forehand that all hypotheses for them hold. Taking ψn ≡ 1 gets us the desired result. For the second
item,

gnδ (t, x, v) =
1

δ
log(1 + δfn),

and by the chain rule, gnδ solves the equation

Dgnδ =
1

1 + δfn
Qn(fn, fn)

where the right-hand side is weakly compact in L1, as was shown in Step 2. So we again apply lemma
2.1.2, and �nd the desired result. For the third item,

‖An ∗ fn −A ∗ f‖L1 ≤ ‖An,K ∗ fn −An ∗ fn‖L1 + ‖An,K −AK ∗ f‖L1 + ‖AK ∗ f −A ∗ f‖L1 . (2.1.27)

For the �rst term

‖An,K ∗ fn −An ∗ fn‖ =

ˆ T

0

ˆ ˆ
|v|>K

An ∗ fn dtdxdv ≤ ε
ˆ T

0

ˆ ˆ
|v|>K

(1 + |v|2)fn dtdxdv ≤ εCT .

For the second term, notice that An,K = ψn(t, x, v, v∗) ∈ L∞((0, T )×Rd×Rd;L1(BR)). So applying the
vector valued version of the averaging lemmas 2.1.3 gives us

ˆ
BR

An,K(v − v∗)fn(v∗) dv∗ →
ˆ
BR

AK(v − v∗)f(v∗) dv∗

strongly in L1((0, T ) × Rd × BR) ∀R > 0 upon passing to a subsequence; so the second term on the
right hand side of 2.1.27 can become arbitrarily small. Finally, letting K →∞ allows us to conclude that
‖AK −A ∗ f‖ → 0, concluding the proof.

For the fourth item, we'll consider the gain and loss parts of the collision operator separately (recall
equations 2.1.5a, 2.1.7). For the loss term, de�ne

ψ−n =
An ∗ fn

1 + δn
´
Rd fn dv

ϕ,

for any compactly supported ϕ ∈ L∞((0, T )×Rd ×Rd) whose support is contained in BR(0) for a given
R > 0. From the L1 compactness, we know that there are subsequences such that An ∗ fn → A ∗ f a.e.,´
Rd fn dv →

´
Rd f dv a.e.. Therefore we know that

An ∗ fn
1 + δn

´
Rd fn dv

ϕ→ (A ∗ f)ϕ a.e.

Also, by Young's convolution inequality we have that

‖An ∗ fn‖L∞((0,T )×Rdx×BR) ≤ ‖An‖L∞((0,T )×Rdx×BR)‖fn‖L∞((0,T );L1(Rdx×BR) ≤ CT,R,
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uniformly in n. Therefore, the sequence ψ−n de�ned this way almost everywhere convergent and
ψ−n ∈ L∞((0, T )× Rd × Rd), so we can use again lemma 2.1.2 and say that

ˆ
Rd
Q−n (fn, fn)ϕdv =

ˆ
Rd
fnψ

−
n dv →

ˆ
Rd
f(A ∗ f)ϕdv =

ˆ
Rd
Q−(f, f)ϕdv.

For the positive part of the collision operator, we start by using a standard change of variables (labeled
previously as G2), used when studying the properties of the collision operator in subsection 1.3.2. Then,
it can be expressed as

ˆ
Rd
Q+(f, f)ϕdv =

˚

Rd×Rd×Sd−1

ff∗Bn(v − v∗, α)ϕ′ dHd−1(α)dvdv∗,

where ϕ′ = ϕ(t, x, v′). De�ne then the functions

Ãn(t, x, v, v∗) =

ˆ
Sd−1

Bn(v − v∗, α)ϕ′ dHd−1(α).

L′n(f)(t, x, v) =

ˆ
Rd
Ãn(t, x, v, v∗)f(t, x, v∗) dv∗.

For the 'gain' term of our approximate collision operator, we can then say

ˆ
Rd
Q+
n (fn, fn)ϕdv =

ˆ
Rd
fn

L′n(fn)

1 + δn
´
Rd fn dv

dv =

ˆ
Rd
fnψ

+
n dv,

where ψ+
n =

L′n(fn)

1+δn
´
Rd f dv

, a structure which is very similar to the previous case. Since ∃M > 0 such that

‖ϕ′‖L∞ ≤M , Ãn ≤MAn, which implies that Ãn ∈ L∞((0, T )×Rd×Rd;L1
loc(Rd)) (since ψ′ is compactly

supported we can actually drop the locality restriction and say Ãn ∈ L∞((0, T ) × Rd × Rd;L1(Rd))).
Therefore, again using lemma 2.1.3

L′n(fn)(t, x, v) =

ˆ
Rd
Ãn(t, x, v, v∗)fn(t, x, v∗) dv∗

−→
n→∞

ˆ
Rd

ˆ
Sd−1

B(v − v∗, α)ϕ′f(t, x, v∗) dHd−1(α)dv∗ = L′(f)

strongly in L1((0, T )×Rd×Rd) after passing to a subsequence, which implies convergence almost every-
where. Finally, we can say that

ψ+
n =

L′n(fn)

1 + δn
´
Rd fn dv

∈ L∞((0, T )× Rd × Rd),

and converges almost everywhere to L′(f). Finally then, by lemma 2.1.2,

ˆ
Rd
Q+
n (fn, fn)ϕright), dv =

ˆ
Rd
fnψ

+
n dv →

ˆ
Rd
fL′(f) dv =

ˆ
Rd
Q+(f, f)ϕdv,

which concludes the proof.

In fact, we can generalize proposition 4 in the following way:

Proposition 2.1.4. Let β ∈ L∞([0, T );R) be a Lipschitz function, with |β′(x)| ≤ C/(1 + x) for some
C > 0, β(0) = 0. Then, for all T > 0, ϕ ∈ L∞((0, T )× Rd × Rd), and fn satisfying the same conditions
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as above. Then: ˆ
RN

Q±(β(fn), β(fn))ϕ(x, v) dv →
ˆ
RN

Q±(β(f), β(f))ϕ(x, v) dv (2.1.28)

strongly in L1((0, T )× Rd) as n→∞.

Proof. we simply perform the same steps as before. �rst we note by using the chain rule that

Dβ(fn) = β′(fn)Qn(fn, fn) ≤ CQn(fn, fn)

1 + fn
,

and

β′(x) ≤ C 1

1 + x
⇒
ˆ x

0

β′(t) dt ≤ C
ˆ x

0

1

1 + t
dt ∴ β(fn) ≤ C log(1 + fn) ≤ Cfn.

Since the right-hand sides of both inequalities
(
C Qn(fn,fn)

1+fn
, Cfn

)
are weakly convergent in L1, as we

established before, their left hand side will be as well. Let fβ be the weak limit of β(fn). Using the fact
that

‖An ∗ β(fn)‖L∞((0,T )×Rd×BR) ≤ ‖An‖L∞((0,T )×Rd×BR)‖β(fn)‖L1((0,T )×Rd×BR) ≤MCT,R,

we can de�ne as in the proof of proposition 2.1.3

ψ−n =
An ∗ β(fn)

1 + δn
´
Rd β(fn) dv

ϕ ∈ L∞((0, T )× Rd × Rd),

ψ+
n =

L′n(β(fn))

1 + δn
´
Rd β(fn) dv

∈ L∞((0, T )× Rd × Rd),

and �nally conclude that

ˆ
Rd
Q±(β(fn), β(fn))ϕdv =

ˆ
Rd
β(fn)ψ±n dv →

ˆ
Rd
Q±(fβ , fβ)ϕdv,

where in this case we replaced fn by β(fn) in the de�nition of L′n whenever possible.

2.1.5 Step 4- Exponentially Mild solutions

In this section, we prove that every limit function f of the sequence fnn∈N is indeed a renormalized
solution to the Boltzmann equation. We start by proving that it satis�es an exponential multiplier form

Proposition 2.1.5. For each T > 0, any limit function f satis�es the following equation for almost
every (x, v) ∈ R2d

fe(t, x, v) = f0(x, v) +

ˆ t

0

Q+
e (f, f)#(l, x, v) dl θ ∈ (0, T ), (2.1.29)

with Q+
e (f, f)# and A ∗ f in L1

t (0, T ), where we use the de�nitions

ge(t, w, v) = g#(t, w, v)eF
#(t,w,v), F#(t, x, v) =

ˆ t

0

(A ∗ f)#(r, x, v) dr,

and A(z) =

ˆ
Sn−1

B(z, α) dHd−1(α).
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Proof. of lemma 2.1.5 Dropping some of the heavier notation, what we wish to prove is that

f# = e−F
#

(
f0 +

ˆ t

0

Q+(f, f)#eF
#

dl

)
To do this, we split this equality into

�

f# ≤ e−F
#

(
f0 +

ˆ t

0

Q+(f, f)#eF
#

dl

)
, (2.1.30)

�

f# ≥ e−F
#

(
f0 +

ˆ t

0

Q+(f, f)#eF
#

dl

)
, (2.1.31)

and proving each inequality separately gives us the desired result. In the original derivation of the
existence theorem by [12], the authors used these inequalities to say that f was both a supersolution and
a subsolution to the Boltzmann equation. To prove the �rst one, we �rst perform a computation similar
to the one used when deriving equation 2.1.9. We consider again the sequence gnδ = 1

δ log(1 + δfn) We
know that this function satis�es from the chain rule, for every �xed n

Dgnδ =
1

1 + δfn
Qn(fn, fn).

Separate the collision term in 'gain' and 'loss' parts. This gives us

Dgnδ =
1

1 + δfn
Q+
n (fn, fn)− (An ∗ fn)

(1 + δn
´
Rd fn dv)(1 + δfn)

fn.

Adding (An∗fn)
(1+δn

´
Rd fn dv)

gnδ to both sides of this equation and passing to the characteristic map x = w+ vt,

we get

d

dt
gn,#δ +

(An ∗ fn)

(1 + δn
´
Rd fn dv)

gn,#δ =
1

1 + δf#
n

Q+,#
n (fn, fn)− (An ∗ fn)#

(1 + δn
´
Rd f

#
n dv)

[
gn,#δ − f#

n

(1 + δf#
n )

]
.

Solving this using an integrating factor, we get that

d

dt

[
eF

#
n gn,#δ

]
= eF

#
n

(
1

1 + δf#
n

Q+,#
n (fn, fn) +

(An ∗ fn)#

(1 + δn
´
Rd f

#
n dv)

[
gn,#δ − f#

n

(1 + δf#
n )

])
,

or in integral form

eF
#
n gn,#δ = gn,#δ,0 +

ˆ t

0

eF
#
n

(
1

1 + δf#
n

Q+,#
n (fn, fn) +

(An ∗ fn)#

(1 + δn
´
Rd f

#
n dv)

[
gn,#δ − f#

n

(1 + δf#
n )

])
(r, w, v) dr,

(2.1.32)

where gnδ,0 = 1
δ log(1 + δfn,0), and Fn is de�ned as

F#
n (t, w, v) =

ˆ t

0

(An ∗ fn)#

(1 + δn
´
Rd f

#
n dv)

(r, w, v) dr.
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Thus, if we de�ne TFn [g]#(t, w, v) = e−F
#
n

´ t
0
eF

#
n g#(r, w, v) dr, equation 2.1.32 can be rewritten as

gn,#δ = e−F
#
n gn,#δ,0 + TFn

[
1

1 + δfn
Q+
n (fn, fn)

]#

+ TFn

[
(An ∗ fn)

(1 + δn
´
Rd fn dv)

[
gnδ −

fn
(1 + δfn)

]]#

. (2.1.33)

The exact same reasoning can be applied to the equation

Dfn = Qn(fn, fn)

Leading to a similar (but simpler) expression

f#
n = e−F

#
n fn,#0 + TFn

[
Q+
n (fn, fn)

]#
, (2.1.34)

which will be used when proving the inequality 2.1.31.

We wish to let n→∞ in equation 2.1.33. From previous sections we know that both gnδ and Qn(fn,fn)
1+δfn

are weakly compact sequences, so that upon passing to a subsequence, gnδ ⇀ gδ and Qn(fn,fn)
1+δfn

⇀ Q+
δ .

Consider now the sequence

lnδ =
fn

1 + δfn
,

which appears in the right-hand side of equation 2.1.33. Clearly lnδ < fn ∀δ > 0, so that by Dunford-
pettis lemma, lnδ is also weakly convergent, and lnδ ⇀ lδ. We also remark that the added sequence

(An∗fn)
(1+δn

´
Rd fn dv)

gnδ is weakly compact, since gnδ ≤ fn and Q−n (fn, fn) is weakly convergent, as shown previ-

ously. Therefore The sequence

(An ∗ fn)

(1 + δn
´
Rd fn dv)

[
gnδ −

fn
(1 + δfn)

]
is weakly compact. Then we introduce the following

Lemma 2.1.8. Fix T > 0. for each t ∈ (0, T ) let gn(t, x, v) be a weakly convergent sequence in
L1(Rd;L1

loc(Rd)), gn ⇀ g. Then TFn [gn]# → TF [g]# in L1(Rd;L1
loc(Rd)), where TF [g]#(t, w, v) =

e−F
# ´ t

0
eF

#

g#(r, w, v) dr and

F#(t, w, v) =

ˆ t

0

(A ∗ f)#(r, w, v) dr.

Proof.

TFn [gn]#(t, w, v) =

ˆ t

0

e−
´ t
r
An∗fn(l,w+vl,v) dlg#

n (r, w, v) dr.

Let un = e−
´ t
r
An∗fn(l,w+vl,v) dl. Since 0 < r < t, we know the exponent is always negative, such that

un ≤ 1. Also from the previous section, we �nd that An ∗ fn converges almost everywhere, and so by
continuity so does un. We use then the following lemma, whose proof is in Appendix B.5

Lemma 2.1.9. let un be uniformly bounded in L∞(Ω) and un → u a.e. Let vn ⇀ v ∈ L1(Ω). Then

unvn ⇀ uv ∈ L1(Ω).

Taking Ω = R2d, this means
TFn [gn] ⇀ TF [g],

so we are guaranteed that the right hand side of equation 2.1.33 converges.
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Remark 2.1.4. Now it is more apparent why the exponential multiplier form of the solution is convenient
for the proof of existence: inside the operator TFn(gn), the sequence Fn converges strongly, so we have
a product between the weakly converging sequences we constructed previously(generically labeled as gn)
and eFn , and we are able to prove the convergence of this product.

From the velocity averaging results in the previous section, we know that (An∗fn)
(1+δn

´
Rd fn dv)

→ A ∗ f
almost everywhere in L1((0, T )× Rd ×BR) ∀R > 0 after passing to a subsequence. We claim that∥∥∥∥ (An ∗ fn)

(1 + δn
´
Rd fn dv)

∥∥∥∥
L∞((0,T )×Rd×BR)

≤ C ∀n,R > 0.

This comes from our main bound on An, namely that ∀ε > 0,

An(v) ≤ ε(1 + |v|2) + Cε ∀v ∈ Rd.

Then, using Jensen's inequality and the triangle inequality, one can conclude that

[An ∗ fn](t, w, v) ≤ (2|v|2 + Cε + 1)

ˆ
Rd
fn(t, w, y) dy + 2

ˆ
Rd
|y|2fn(t, w, y) dy,

and the right hand side is bounded L∞((0, T )×Rd×BR) uniformly in n (since we can bound the integrals
using the initial data). Finally, using again lemma 2.1.9 taking Ω = ((0, T )×Rd ×BR), we can conclude
that after passing to a subsequence

(An ∗ fn)

(1 + δn
´
Rd fn dv)

[
gnδ −

fn
(1 + δfn)

]
⇀ A ∗ f [gδ − lδ] ∈ L1((0, T )× Rd ×BR),

and �nally, passing to a subsequence and taking n→∞ in equation 2.1.33:

g#
δ = e−F

#

gδ,0 + TF [Q+
δ ]# + TF [A ∗ f [gδ − lδ]]#.

Next, we want to take the limit of this expression when δ → 0. For this, we introduce the following

Lemma 2.1.10. Let fn be a weakly convergent sequence in L1(R2d), and take βδ(x) : R+ → R+ to be
either βδ(x) = 1

δ log(1 + δx) or βδ(x) = x
1+δx . Then, we have

lim
δ→0

sup
n
‖βδ(fn)− fn‖L1(R2d) = 0.

Proof. for βδ(x) = x
1+δx , we have that

sup
n
‖βδ(fn)− fn‖L1(R2d) = δ sup

n,t∈(0,T )

ˆ
R2d

f2
n

1 + δfn
dxdv

Notice that we can say that, for each M > 0

t
δt

1 + δt
χ(M,∞)(t) + δt

t

1 + δt
χ[0,M ](t) ≤ tχ(M,∞)(t) + δt2χ[0,M ](t) ≤ tχ(M,∞)(t) + δtM

⇒ δt2

1 + δt
≤ tχ(M,∞)(t) + δtM ∀t > 0,

therefore,

sup
n

ˆ
R2d

δf2
n

1 + δfn
dxdv ≤ sup

n

ˆ
{fn>M}

fn dxdv +Mδ sup
n

ˆ
R2d

fn dxdv.

By de�nition of uni�orm integrability, for each ε > 0 one can always �nd M > 0 such that the �rst term
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is less than ε/2. Then, for this particular choice of M , since we have a bound for supn
´
R2d fn dxdv using

the initial data, we can say that there is C > 0 such that

sup
n

ˆ
R2d

δf2
n

1 + δfn
dxdv <

ε

2
+ CMδ.

Then, taking δ < ε
2CM makes the right hand side less than ε, proving the assertion. For βδ(x) =

1
δ log(1 + δx), since d

dxβδ(x) = 1
1+δx , then βδ(x) ≥ x

1+δx ≥ 0. So for any M > 0, we can establish the
bound

(x− βδ(x)) = (x− βδ(x))χ|x|≤M + (x− βδ(x))χ|x|>M

≤ (x− x

1 + δx
)χ|x|≤M + xχ|x|>M ≤ δ

x2

1 + δx
+ xχ|x|>M .

Therefore,

sup
n
‖βδ(fn)− fn‖L1(R2d) ≤ δ sup

n

ˆ
R2d

f2
n

1 + δfn
dxdv + sup

n

ˆ
R2d

fnχfn>M dxdv,

and by uniform integrability, the last term on the right hand side can be made arbitrarily small, such
that

≤ ε+ δ sup
n

ˆ
R2d

f2
n

1 + δfn
dxdv.

Then the conclusion follows by the same reasoning as in the previous case.

Corollary 2.1.3. The lemma still holds for any βδ(x) ∈ C∞(R+;R+) that satis�es 0 ≤ d
dxβδ(x) ≤ A

1+δx
for some A > 0.

Proof. For this class of non-linearities, we can still bound βδ(x) ≤ Ax
1+δx and use the same splitting as

before.

Notice that in this lemma, the limit is uniform with respect to n, which allows us to say that

lim
n→∞

lim
δ→0

βδ(fn) = lim
δ→0

lim
n→∞

βδ(fn)

weakly for both choices of βδ(x), namely for βδ(fn) = gnδ , βδ(fn) = lnδ . This allows us to conclude that
limδ→0 gδ = limδ→0 lδ = f , and by continuity

TF [A ∗ f [gδ − lδ]]# → TF [A ∗ f [f − f ]]# = 0,

in L1(R2d). It would be tempting at this point to search for a similar lemma for the sequence Qn(fn,fn)
1+δfn

which would allow us to swap the order of the limits. Due to the absence of such lemma, instead we'll
bound Q+

δ using the averaging lemmas from the previous section. What we would like to show is that

Proposition 2.1.6.
Q+
δ ≤ Q

+(f, f).

Then, it follows that

e−F
#

ˆ t

0

eF
#

Q+,#
δ (r, w, v) dr ≤ e−F

#

ˆ t

0

eF
#

Q+,#(f, f)(r, w, v) dr,
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which means one can write

g#
δ = e−F

#

g#
δ,0 + TF [Q+

δ ]# + TF [A ∗ f [gδ − lδ]]#

≤ e−F
#

g#
δ,0 + TF [Q+(f, f)]# + TF [A ∗ f [gδ − lδ]]#.

(2.1.35)

Now proving our desired assertion: for any non-negative ϕ ∈ L∞((0, T )×R2d) with compact support,
we can say ˆ

Rd

Q+
n (fn, fn)

1 + δfn
ϕdv ≤

ˆ
Rd
Q+
n (fn, fn)ϕdv ∀δ > 0.

From the averaging lemmas, we know that the right hand side converges strongly in L1, while the left
hand side integrand is weakly convergent, so that

ˆ
R2d

Q+
δ ϕdxdv ≤

ˆ
R2d

Q+(f, f)ϕdxdv.

Since this is true for any ϕ, we reach our desired conclusion. Returning to equation 2.1.35, taking the
limit as δ → 0,

f# ≤ e−F
#

lim
δ→0

g#
δ,0 + TF [Q+(f, f)]#,

and
lim
δ→0

gδ,0 = lim
δ→0

log(1 + δf0)
1
δ = log ef0 = f0.

pointwise. Thus we have that

f# ≤ e−F
#

(
f0 +

ˆ t

0

Q+(f, f)#eF
#

dr

)
as promised.

Remark 2.1.5. The above limit implies that

ˆ t

0

Q+(f, f)#(r, x, v)e[F
#(r,x,v)−F#(t,x,v)] dr <∞,

for a.e. (x, v) ∈ R2d. A ∗ f ≥ 0⇒ F (t, x, v) ≥ 0, which means that eF
#(r,x,v) ≥ 1, and so we �nd that

e−F
#(t,x,v)

ˆ t

0

Q+(f, f)#(r, x, v) dr <∞

and
Q+(f, f)#(r, x, v) ∈ L1((0, T )) for a.e. (x, v) ∈ R2d.

For the opposite inequality, consider the sequence hnδ (t, x, v) = min{fn(t, x, v), 1
δ }. Recalling equation

2.1.34,

f#
n = e−F

#
n fn,#0 + TFn

[
Q+
n (fn, fn)

]# ≥ e−F#
n fn,#0 + TFn

[
Q+
n (hnδ , h

n
δ )
]#
. (2.1.36)

Since hnδ ≤ fn, by using lemmas 2.1.5 and 2.1.6 (Dunford-Pettis's and De-la-Valée-Poussin's lemma), we
know that hnδ is weakly convergent in L1 to some function hδ. Now, by using proposition 2.1.4, we have

ˆ
Rd
Q+
n (hnδ , h

n
δ )ϕdv →

ˆ
Rd
Q+(hδ, hδ)ϕdv,

for �xed δ > 0 and ϕ ∈ L∞((0, T )×Rd×Rd) with compact support. This also means that Q+
n (hnδ , h

n
δ ) ⇀

Q+(hδ, hδ) in L1. Therefore, we can safely take the limit n → ∞ (upon passing to a subsequence) on
equation 2.1.36, and conclude that
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f# ≥ e−F
#

f#
0 + TF

[
Q+(hδ, hδ)

]#
.

Finally, one can prove a lemma similar to the previous case to allow the interchange of iterated limits on
the sequence hnδ :

Lemma 2.1.11. Let fn be a weakly compact sequence in L1(R2d). Then, it follows that

lim
δ→0

sup
n>0

∥∥∥∥fn −min

{
fn(x, v),

1

δ

}∥∥∥∥
L1(R2d)

= 0.

Proof. ∥∥∥∥fn −min

{
fn(x, v),

1

δ

}∥∥∥∥
L1(R2d)

=

ˆ
{fn> 1

δ }

∣∣∣∣fn − 1

δ

∣∣∣∣ dxdv
≤
ˆ
{fn> 1

δ }
fn dxdv +

1

δ

ˆ
{fn> 1

δ }
1 dxdv

≤ 2

ˆ
{fn> 1

δ }
fn dxdv,

where we used Chebyshev's inequality to estimate the second term on the right hand side. Finally taking
the supremum,

sup
n>0

∥∥∥∥fn −min

{
fn(x, v),

1

δ

}∥∥∥∥
L1(R2d)

≤ 2 sup
n>0

ˆ
{fn> 1

δ }
fn dxdv,

this term can be made arbitrarily small by uniform integrability, so we have our desired assertion.

So we have that hδ ⇀ f . Since this convergence is monotonic, we �nd that Q+(hδ, hδ) ↑ Q+(f, f),
we can conclude by the monotone convergence theorem, by taking δ → 0,

f# ≥ e−F
#

f#
0 + TF

[
Q+(f, f)

]#
.

Now, what we wish to say is that

Proposition 2.1.7. f constructed in this way is a renormalized solution satisfying all conditions in
theorem 2.1.1

Proof. Notice that from the above results, Q+
e , (A∗f) ∈ L1(0, T ), and by which means that f satis�es an

exponential multiplier form. We will �rst collect the estimates that we need, and then by applying the
lemma 2.1.1, we will be able to show that f is indeed a renormalized solution. Starting from the entropy
inequality (2.1.21) for fn, for any K > 1

Q±n (fn, fn) ≤ KQ∓n (fn, fn) +
1

logK
En(fn).

Divide both sides by 1 + δ
´
Rd fn dv, and multiply both sides by a non-negative, compactly supported

ϕ ∈ L∞((0, T )× R2d):

Q±n (fn, fn)

1 + δ
´
Rd fn dv

ϕ ≤ K Q∓n (fn, fn)

1 + δ
´
Rd fn dv

ϕ+
1

logK

En(fn)

1 + δ
´
Rd fn dv

ϕ.

By the averaging lemmas, we can integrate and take limits, concluding that

´
Q±(f, f)ϕdv

1 + δ
´
Rd f dv

≤ K
´
Q∓(f, f)ϕdv

1 + δ
´
Rd f dv

+
1

logK
lim
n→∞

´
Rd En(fn)ϕdv

1 + δ
´
Rd fn dv

.
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En(fn) is a uniformly bounded sequence in L1((0, T )×R2d). Therefore, it will converge to some measure
µ, such that ´

Q±(f, f)ϕdv

1 + δ
´
Rd f dv

≤ K
´
Q∓(f, f)ϕdv

1 + δ
´
Rd f dv

+
1

logK

´
Rd ϕdµ

1 + δ
´
Rd f dv

.

Since Q±dv are absolutely continuous measures, we can consider only the absolutely continuous part of
the measure µ, and denoting its density by e ∈ L1((0, T )× R2d), this means

Q±(f, f) ≤ KQ∓(f, f) +
1

logK
e, (2.1.37)

almost everywhere. This allows to prove that

� Q−(f, f) ∈ L1(0, T ) for a.e. x, v ∈ Rd. Using the above inequality, taking the − sign on the left
hand side, all we need to show is that Q+(f, f) ∈ L1(0, T ) for a.e. x, v ∈ Rd, which we showed in
remark 2.1.5. Therefore, from item (iii) of lemma (2.1.1), f is also a mild solution.

�

Q±(f,f)
1+f ∈ L1((0, T )×Rd;L1

loc(Rd)). For
Q−(f,f)

1+f , we know that since An ∗fn → A∗f in L1((0, T )×
Rd ×BR) for each R > 0,

Q−(f, f)

1 + f
=

(A ∗ f)f

1 + f
≤ A ∗ f ∈ L1((0, T )× Rd ×BR).

Therefore Q−(f,f)
1+f ∈ L1((0, T )×Rd;L1

loc(Rd)). For
Q+(f,f)

1+f , dividing inequality (2.1.37) by 1 + f we
can say,

Q+(f, f)

1 + f
≤ KQ−(f, f)

1 + f
+

1

logK

e

1 + f
≤ KQ−(f, f)

1 + f
+

1

logK
e,

which implies that Q+(f,f)
1+f ∈ L1((0, T )× Rd;L1

loc(Rd)).

Therefore, f is a renormalized solution as promised, using item (ii) of theorem 2.1.1.

2.1.6 Other properties of a renormalized solution

1. Time continuity We can show that in fact, the limit f(·, x, v) is continuous a.e. From the fact that
f is a mild solution, for a.e. (x, v) ∈ R2d and every h, T ∈ R+ such that t, t+ h ∈ (0, T ), we have

|f(t+ h, x, v)− f(t, x, v)| =

∣∣∣∣∣
ˆ t+h

t

Q(f, f)(s, x, v) ds

∣∣∣∣∣ ≤
ˆ t+h

t

|Q(f, f)(s, x, v)| ds.

Since Q(f, f) ∈ L1
t ((0, T )), for all ε > 0 we can always �nd h > 0 such that

|f(t+ h, x, v)− f(t, x, v)| < ε,

and we have continuity of our solution.

2. Conservation laws Firstly, we can assert that the renormalized solution f must also satisfy the same
bounds as fn, namely, for any T > 0, t ∈ (0, T ),

ˆ
Rd

(1 + ‖x− vt‖2 + ‖v‖2)f dv < C(d, T )

To prove this, from the weak convergence of fn, we can take φ(t, x, v) = (1 + ‖x − vt‖2 +
‖v‖2)χBR(0)(v) ∈ L∞((0, T )× R2d), and conclude that

ˆ
R2d

fnφ(t, x, v) dxdv →
ˆ
R2d

fφ(t, x, v) dxdv,
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and for fn we have the estimate

ˆ
R2d

fnφ(t, x, v) dv ≤
ˆ
R2d

fn(1 + ‖x− vt‖2 + ‖v‖2) dxdv =

ˆ
R2d

fn0 (1 + ‖x‖2 + ‖v‖2) dxdv

−→
n→∞

ˆ
R2d

f0(1 + ‖x‖2 + ‖v‖2) dxdv

(recall that we constructed the sequence fn0 in order for this last convergence to hold). Finally, this
means that for each R > 0

ˆ
R2d

f(1 + ‖x− vt‖2 + ‖v‖2)χBR(0)(v) dxdv ≤
ˆ
R2d

f0(1 + ‖x‖2 + ‖v‖2) dxdv,

and since the estimate is independent of R,

ˆ
R2d

f(1 + ‖x− vt‖2 + ‖v‖2) dxdv ≤
ˆ
R2d

f0(1 + ‖x‖2 + ‖v‖2) dxdv <∞, (2.1.38)

and proceeding as in the proof of proposition 2.1.1, we �nd that for some C > 0,

ˆ
R2d

f(1 + ‖x‖2 + ‖v‖2) dxdv ≤
ˆ
R2d

f0(1 + ‖x‖2 + ‖v‖2) dxdv < C(1 + t2). (2.1.39)

This also allows us to conclude that renormalized solutions may not conserve energy, although we
guarantee that energy cannot increase, that is

ˆ
R2d

f(t, x, v)
‖v‖2

2
dxdv ≤

ˆ
R2d

f0(x, v)
‖v‖2

2
dxdv, (2.1.40)

and a similar reasoning as given above shows that

ˆ
R2d

f(t, x, v)v dxdv ≤
ˆ
R2d

f0(x, v)v dxdv. (2.1.41)

In order to understand why there may not be equalities in these 2 cases, we perform the next
calculations, following a proof by [32].

For any φ ∈ C1
c ((0, T )× R2d) with subquadratic growth at in�nity, i.e.

lim
‖v‖→∞

φ(v)

1 + ‖v‖2
= 0

we have that ˆ
Rd
gnδ φ(v) dv →

ˆ
Rd
gδφ(v) dv

from the averaging lemmas, where gnδ = 1
δ log(1 + δfn) (modulo passing to a subsequence). Then,

it is possible to show that [33] ˆ
Rd
gnδ v dv →

ˆ
Rd
gδv dv,

and in the limit when δ → 0+ we recover thatˆ
Rd
fnv dv →

ˆ
Rd
fv dv.
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This allows us to conclude that the total momentum is actually conserved, i.e.

ˆ
R2d

f(t, x, v)v dxdv =

ˆ
R2d

f(t, x, v)v dxdv. (2.1.42)

Remark 2.1.6. Since
∂

∂t

ˆ
Rd
fn dv +∇x ·

ˆ
Rd
vfn dv = 0

holds in the classical sense, it is also a solution in the weak sense, such that for each φ ∈ C1
c ((0, T )×

Rd) : ˆ T

0

ˆ
Rd

[
−∂φ
∂t

(ˆ
Rd
fn dv

)
−
(ˆ

Rd
vfn dv

)
∇xφ

]
dtdx = 0.

So from the above results and item (1) of proposition 2.1.3, taking the limit of a converging subse-
quence, this converges to

ˆ T

0

ˆ
Rd

[
−∂φ
∂t

(ˆ
Rd
fv dv

)
−
(ˆ

Rd
vf dv

)
∇xφ

]
dtdx = 0,

which is a weak version of the continuity equation.

In the quadratic case, this does not hold. What we can say in this case is that, for any i, j ∈
{1, 2, ..., d} and for a.e. (x, t) ∈ Rd × R+:∣∣∣∣ˆ

Rd
vivjfn dv

∣∣∣∣ ≤ ˆ
Rd

1

2
‖v‖2fn dv =

ˆ
Rd

1

2
‖v‖2fn0 dv,

which is uniformly bounded. Therefore, we have that

ˆ
Rd
vivjfn dv ⇀

w−∗
µij

however, if we truncate the integrand, by the averaging lemmas, we �nd

ˆ
Rd
vivjχBR(0)(v)fn dv →

ˆ
Rd
vivjχBR(0)(v)f dv.

Then, de�ne the measure

mR
ij =

[
µij −

ˆ
Rd
vivjχBR(0)(v)f dv

]
. (2.1.43)

Notice that both µij and mR
ij are symmetric with respect to permutation of indices. For any

nonnegative g(t, x) ∈ Cc((0, T )× Rd) and a �xed vector r ∈ Rd, we have that

i,j=d∑
i,j=1

ˆ T

0

ˆ
Rd
grirj dm

R
ij = lim

n→∞

i,j=d∑
i,j=1

ˆ T

0

ˆ
Rd
g

ˆ
Rd
‖v · r‖2χ‖v‖≥R(v) dv dxdt ≥ 0.

Using the monotone convergence theorem, we can take the limit of R→∞ on the right hand side
and say that

i,j=d∑
i,j=1

ˆ T

0

ˆ
Rd
grirj dmij ≥ 0,

where

mij =

[
µij −

ˆ
Rd
vivjf dv

]
⇔ µij = mij +

ˆ
Rd
vivjf dv, (2.1.44)
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and therefore ˆ
Rd
vivjfn dv ⇀

w−∗
mij +

ˆ
Rd
vivjf dv (2.1.45)

where mij ∈ L∞(R+;M(Rd)) forms a symmetric, nonnegative de�nite matrix. If this matrix is
identically 0, then we will have energy conservation. To see this, simply take the trace of equation
(2.1.45) to conclude that

ˆ
Rd

‖v‖2

2
f0 dv =

Tr(m)

2
+

ˆ
Rd

‖v‖2

2
f dv.

Remark 2.1.7. Since
∂

∂t

ˆ
Rd
fnv dv +∇x ·

ˆ
Rd
v ⊗ vfn dv = 0

holds in the classical sense, it is also a solution in the weak sense, such that for each φ ∈ C1
c ((0, T )×

Rd) : ˆ T

0

ˆ
Rd

[
−∂φ
∂t

(ˆ
Rd
fnv dv

)
−
(ˆ

Rd
v ⊗ vfn dv

)
∇xφ

]
dtdx = 0

then, taking the limit of a converging subsequence, from equation (2.1.45) and item (1) of proposition
2.1.3 this converges to

ˆ T

0

ˆ
Rd

[
−∂φ
∂t

(ˆ
Rd
fv dv

)
−
(ˆ

Rd
v ⊗ vf dv

)
∇xφ

]
dtdx =

ˆ T

0

ˆ
Rd
∇xφdm(t, x).

In this sense only, we can say that the following balance law holds for momentum

∂

∂t

ˆ
Rd
fv dv +∇x ·

ˆ
Rd
v ⊗ vf dv +∇x ·m = 0.

3. Entropy production we remark that, since x log(x) is a convex function, we must have that, under
weak convergence ˆ

R2d

f log(f) dxdv ≤ lim
n→∞

ˆ
R2d

fn log(fn) dxdv ≤

= lim
n→∞

ˆ t

0

ˆ
R2d

Dn[fn](s, x, v) dxdv ds+

ˆ
R2d

log(fn0 )fn0 (x, v) dxdv (2.1.46)

≤ lim
n→∞

ˆ
R2d

log(fn0 )fn0 (x, v) dxdv < M,

where we used that the entropy of fn0 was uniformly bounded by assumption. Finally, using lemma
2.1.4, we can conclude that:

ˆ
R2d

f | log(f)| dxdv ≤ C(d) + 2

ˆ
R2d

f(|x− vt|2 + |v|2) dxdv +

ˆ
R2d

f log(f) dxdv

< C(d) +M + 2

ˆ
R2d

f0|v|2 dxdv + 2

ˆ
R2d

f |x− vt|2 dxdv.

Finally, from the weak convergence of fn (upon passing to a subsequence):

ˆ
R2d

fn|x− vt|2χ‖(x,v)‖<R(x, v) dxdv →
ˆ
R2d

f |x− vt|2χ‖(x,v)‖<R(x, v) dxdv,

ˆ
R2d

fn|x− vt|2χ‖(x,v)‖<R(x, v) dxdv ≤
ˆ
R2d

fn|x− vt|2 dxdv =

ˆ
R2d

fn0 |x|2 dxdv
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From the above results, we �nd that

ˆ
R2d

f |x− vt|2χ‖(x,v)‖<R(x, v) dxdv ≤
ˆ
R2d

f0|x|2 dxdv.

Finally, taking the limit as R→∞, from the monotone convergence theorem, we �nd

ˆ
R2d

f |x− vt|2 dxdv ≤
ˆ
R2d

f0|x|2 dxdv,

and therefore,

ˆ
R2d

f(t, x, v)| log(f(t, x, v))| dxdv ≤ C(d) +M + 2

ˆ
R2d

f0(x, v)
[
|x|2 + |v|2

]
dxdv (2.1.47)

So that the entropy always remains bounded.

Remark 2.1.8. l As was shown in [13], this result can be improved upon, if we recall that the function

f(x, v) : R+ × R+ −→ R+, f(x, y) = (x− y) log(x/y) is convex. Then, if we establish that

fn(·, ·, v)fn(·, ·, v∗)
Bn(v − v∗, α)

1 + δn
´
Rd fn(·, ·, ξ) dξ

⇀ f(·, ·, v)f(·, ·, v∗)B(v − v∗, α) (2.1.48)

fn(·, ·, v′)fn(·, ·, v′∗)
Bn(v − v∗, α)

1 + δn
´
Rd fn(·, ·, ξ) dξ

⇀ f(t, x, v′)f(t, x, v′∗)B(v − v∗, α) (2.1.49)

in L1
loc(Rd × Rd × Sd−1) for a.e. (t, x) ∈ [0, T ]× Rd, we will be able to say that

−
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds ≤ lim
n→∞

−
ˆ t

0

ˆ
R2d

Dn[fn](s, x, v) dxdv ds

where D is de�ned in equation (1.4.5a). Finally, this implies that

ˆ
R2d

f log(f) dxdv −
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds

≤ lim
n→∞

[ˆ
R2d

fn log(fn) dxdv −
ˆ t

0

ˆ
R2d

Dn[fn](s, x, v) dxdv ds

]
= lim
n→∞

ˆ
R2d

log(fn0 )fn0 (x, v) dxdv =

ˆ
R2d

log(f0)f0(x, v) dxdv,

and therefore, f satis�es estimate (4) from proposition 2.1.1:

ˆ
R2d

f log(f) dxdv −
ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds ≤
ˆ
R2d

log(f0)f0(x, v) dxdv. (2.1.50)

and from this, we conclude that

ˆ t

0

ˆ
R2d

D[f ](s, x, v) dxdv ds ≤
ˆ
R2d

log(f0)f0(x, v) dxdv −
ˆ
R2d

f log(f) dxdv

≤
ˆ
R2d

log(f0)f0(x, v) dxdv +

ˆ
R2d

f | log(f)| dxdv
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≤ C(d) + 2M + 2

ˆ
R2d

f0(x, v)
[
|x|2 + |v|2

]
dxdv = B(d)

⇒
ˆ T

0

ˆ
R2d

D[f ](s, x, v) dxdv ds < B(d) (∀T > 0), (2.1.51)

so that the entropy production always remains �nite. Finally, we prove the desired convergence results.
Starting from (2.1.48), taking R ∈ L∞(Rd × Rd × Sd−1), what we wish to say is that

˚

Rd×Rd×Sd−1

fn(·, ·, v)fn(·, ·, v∗)
Bn(v − v∗, α)

1 + δn
´
Rd fn(·, ·, ξ) dξ

R(v, v∗, α) dvdv∗dHd−1(α)

Converges upon passing to a subsequence. Denoting the above integral as In, we see that it must be
�nite, as if R < C for some C > 0, then In ≤ CQ−n (fn, fn). Then, we are able to apply Fubini's theorem,
and de�ne {

AR,n(v, v∗) =
´
Sd−1 Bn(v − v∗, α)R(v, v∗, α) dHd−1(α),

LR,n(fn) =
´
Rd AR,n(v, v∗)fn(t, x, v) dv∗.

Then, AR,n(v, v∗) ≤ CAn(v∗ − v), which implies that

|LR,n(t, x, v)| ≤
ˆ
Rd
|AR,n(v, v∗)|fn(t, x, v) dv∗ ≤ CAn ∗ fn,

and we can write our expression as

˚

Rd×Rd×Sd−1

fn(·, ·, v)fn(·, ·, v∗)
Bn(v − v∗, α)

1 + δn
´
Rd fn(·, ·, ξ) dξ

R(v, v∗, α) dvdv∗dHd−1(α)

=

ˆ
Rd
fn

LR,n(fn)

1 + δn
´
Rd fn(·, ·, ξ) dξ

dv.

De�ne

ψ−R,n =
LR,n(fn)

1 + δn
´
Rd fn(·, ·, ξ) dξ

.

Again from the averaging lemmas we �nd that
´
Rd fnψ

−
R,n dv converges as desired. Applying the exact

same reasoning to the other case allows us to prove 2.1.49

2.2 Extensions and other remarks

Here we wish to draw a few conclusions from the existence result derived in the previous chapter, and we
would like to mention, even if brie�y, recent results about renormalized solutions.

1. Even though theorem 2.1.1 guarantees that under special conditions renormalized and weak solu-
tions are equivalent, the renormalized formulation has the advantage of having to solve equation
2.1.3

∂β(f)

∂t
+ v · ∇xβ(f) = β′(f)Q(f, f),

instead of the original Boltzmann equation. Crucial to this proof was the fact that we were able to

choose β′(f) = 1
1+f , so that our right hand side became Q(f,f)

1+f . Replacing then f by a constructed

sequence fn, the sequence Zn = Q(fn,fn)
1+fn

was shown to be weakly compact in L1, a non-trivial result
since weak convergence is generally not preserved under non-linear operators.

2. The existence theorem is proved in the previous section is not the only celebrated result from the
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Diperna-Lions theory of renormalized solutions: in fact, this demonstration can be adapted in order
to prove a stability result which is more important than the existence result. The theorem goes as
follows.

Theorem 2.2.1. Let (fn0 ) and B be a sequence of initial datum and a collision kernel, respectively,
such that they satisfy hypotheses (2.1.10),(2.1.1),(2.1.11) as in theorem 2.1.1. Let fn be the sequence
of renormalized solutions associated with the initial data fn0 , and assume without loss of generality
that (fn) ⇀ f ∈ Lp((0, T )× L1(R2d)), (1 ≤ p <∞). Then, the following holds

(a) f is a renormalized solution.

(b) fn → f strongly in Lp((0, T )× L1(R2d)), if and only if fn0 → f0 strongly in L1(R2d).

Proof. The proof of item (2) relies crucially in an estimate on the collision operator, called the
collision smoothing property:

Lemma 2.2.1. De�ne Q+(f, g) as the following operator:

Q+(f, g) =

ˆ
Rd×Sd−1

f(v′)g(v′∗)B(v∗ − v, α) dαdv∗,

where B(z, α) ∈ C∞(Rd × Sd−1), f ∈ L1(Rdv) and g ∈ L2(Rdv). If B satis�es the hypotheses in
theorem 2.1.1 along with

� suppB ⊆ {(z, α) s.t. r1 < ‖z‖, k1 < ‖α · z‖ < k2} for some choice of r1 > 0 and k1, k2 ∈
(0, ‖z‖),

� lim‖z‖→∞B(z, α) = 0 uniformly in α,

Then we �nd that,
‖Q+(f, g)‖

H
d−1

2 (Rdv)
≤ ‖f‖L1(Rdv)‖g‖L2(Rdv). (2.2.1)

Proofs of this lemma generally use the theory of pseudo-di�erential operators [25] or properties of
generalized Radon transforms [41], both of which fall beyond the scope of this dissertation. We
direct the reader to the sources [26], [25].

For item (1), the proof strategy is the same as in theorem 2.1.1: for each initial data fn0 we are guar-
anteed that exists a renormalized solution, obeying the estimates (2.1.47), (2.1.50),(2.1.38),(2.1.45).
Then, for step (2) of the demonstration, again from lemmas 2.1.5 and 2.1.6 we can conclude that
fn ⇀ f (as was said in the theorem). All that needs to be shown is that

Zn(t, x, v) =
Q(fn, fn)

1 + fn
(∀n ≥ 1)

is weakly compact. We can again prove the entropy inequality (2.1.21) in this case, again reducing
the weak compactness proof to the Q−(f, f) part. Taking the exact same steps as before, one can
say that

Q−(fn, fn)
1

1 + fn
fn(A ∗ (fn)) ≤ A ∗ (fn)

And using the same truncation argument forA as in step (2) (De�ning forK > 0AK = A(z)χ‖z‖<K(z)),
we �nish the proof. The only di�erence in in the proof this case and theorem 2.1.1 will appear in
Steps (3) and (4). Firstly, in any argument where we used the chain rule of di�erentiation, we
instead use lemma B.1.2. In step (3), since we are using Q instead of Qn, what we prove is that
upon passing to a subsequence, for each δ > 0,

ˆ
Rd
Q±(fn, fn)

1

1 + δ
´
Rd fn(·, ·, ξ) dξ

φ dv →
ˆ
Rd
Q±(f, f)

1

1 + δ
´
Rd f(·, ·, ξ) dξ

φ dv in L1((0, T )×Rd).

(2.2.2)
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For the minus case, again we de�ne ψ−n , this time as

ψ−n (t, x, v) =
A ∗ fn(t, x, v)

1 + δ
´
Rd fn(t, x, ξ) dξ

φ,

so that our integral can be written as

ˆ
Rd
Q±(fn, fn)

1

1 + δ
´
Rd fn(·, ·, ξ) dξ

φ dv =

ˆ
Rd
fnψ

−
n dv.

By Young's convolution inequality we have that, for the v variable

‖A ∗ fn‖L∞(BR) ≤ ‖A‖L∞(BR)‖fn‖L1(BR) ≤ CR
ˆ
BR

fn(·, ·, ξ) dξ,

so that

‖ψ−n (t, x, v)‖L∞((0,T )×Rdx×Rdv) ≤ CR‖φ‖L∞((0,T )×Rdx×Rdv)

´
BR

fn(·, ·, ξ) dξ
1 + δ

´
Rd fn(t, x, ξ) dξ

≤ CT,R.

where CR, CT,R are postive constants depending only on the subscripted variables. For the positive
part, we de�ne as before

Ã(t, x, v, v∗) =

ˆ
Sd−1

B(v − v∗, α)ϕ′ dHd−1(α),

L′(f)(t, x, v) =

ˆ
Rd
Ã(t, x, v, v∗)f(t, x, v∗) dv∗,

ψ+
n =

L′(fn)

1 + δ
´
Rd fn dv

φ.

In both cases we have a.e. convergence of a subsequence, but this time, since we are considering

a �xed δ > 0, the sequences converge to L′(fn)
1+δ

´
Rd fn dv

φ and A∗f(t,x,v)
1+δ

´
Rd f(t,x,ξ) dξ

φ, respectively. So

proceeding as in step (3), we demonstrate that (2.2.2) holds. Finally for step (4), the only change
in the previous reasoning we have to make is in the proof of proposition 2.1.6: for any nonnegative
ψ ∈ L∞((0, T×)Rdx) and ϕ ∈ L∞(Rd), we can say that

ˆ
R2d

Q+(fn, fn)

1 + δfn

ϕψ

1 +
´
Rd fn(·, ·, ξ) dξ

dxdv ≤
ˆ
Rd
ψ

[ˆ
Rd
ϕ

Q+(fn, fn)

1 +
´
Rd fn(·, ·, ξ) dξ

dv

]
dx ∀δ > 0.

from our modi�ed averaging lemmas, we can say that the term in square brackets on the right hand
side converges strongly after passing to a subsequence and taking the limit, so with all the more

reason it converges weakly, and the right hand side will converge. The term Q+(fn,fn)
1+δfn

on the left

hand side is weakly convergent in L1 and 1 +
´
Rd fn(·, ·, ξ) dξ converges strongly from the averaging

lemmas modulo passing to a subsequence, so we have

ˆ
R2d

Q+
δ

ϕψ

1 +
´
Rd f(·, ·, ξ) dξ

dxdv ≤
ˆ
R2d

Q+(f, f)
ϕψ

1 +
´
Rd f(·, ·, ξ) dξ

dxdv ∀δ > 0.

So we still �nd our desired result that Q+
δ ≤ Q+(f, f) a.e. Doing the necessary replacements, one

can follow the same steps in the proof of Step (4), and conclude that f is indeed a renormalized
solution.
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The second item of this theorem is interesting, for one of the main reasons why weakly converging
sequences do not converge strongly is that they may develop oscillations, as seen from the sequence
un(x) = sin(nx), x ∈ R, un ⇀ 0. This theorem then shows that, if oscillations are not already
present in the initial data, they will not be generated at later times [1].

3. The �rst item of theorem 2.2.1, together with remark 2.1.8 allows us to conclude that the long time
behavior of a renormalized solution is a local Maxwellian. To see this, take tn ≥ 0, tn → ∞, f a
renormalized solution in the sense of theorem 2.1.1, and de�ne fn(t, x, v) = f(t+tn, x, v). fn de�ned
this way is a sequence of renormalized solutions, satisfying the estimates (2.1.47), (2.1.50),(2.1.38),
(2.1.45), and (2.1.51). Therefore, upon passing to a subsequence they converge weakly to some
renormalized solution f . Also, notice that, by making the change of variables u = t+ tn

ˆ T

0

¨

R2d

D(fn) dxdvdt =
−1

4

ˆ T

0

˘

Rdx×Rdv×Rdv∗×S
d−1

(
f ′nf

′
n,∗ − fnfn,∗

)
log

(
f ′nf

′
n,∗

fnfn,∗

)
B(w,α)dHd−1(α)dvdxdv∗dt

=
−1

4

ˆ T

tn

˘

Rdx×Rdv×Rdv∗×S
d−1

(f ′f ′∗ − fnf∗) log

(
f ′f ′∗
ff∗

)
B(w,α)dHd−1(α)dvdxdv∗du

→
n→∞

0,

since tn can be arbitrarily large, and we have estimate (2.1.51). Therefore, from the convexity of
f(x, v) : R+ × R+ −→ R+, f(x, y) = (x− y) log(x/y), we �nd again by the same argument used in
remark 2.1.8,

0 ≤ −
ˆ T

0

ˆ
R2d

D[f ](s, x, v) dxdv ds ≤ lim
k→∞

−
ˆ t

0

ˆ
R2d

D[fnk ](s, x, v) dxdv ds = 0.

Since the integrand is non-negative, we �nd that D[f ] = 0 for a.e. (t, x, v) ∈ (0, T ) × R2d, which

implies f
′
f
′
∗ = ff∗ for a.e. (t, x, v, α) ∈ (0, T ) × R2d × Sd−1. Finally, from theorem A.2.1, f is of

the form
f = a(t, x)eb(t,x)‖v−u(t,x)‖2 for a.e. (t, x, v) ∈ (0, T )× R2d

(see Appendix A.2.1, as well as reference [10]). Furthermore, if we impose periodic boundary
conditions [25] (replacing Rd by Td as the domain for the x variable),or consider renormalized
solutions for the Boltzmann equation with bounded domains [32], then it's possible to show that
the limit f is a global maxwellian (equilibrium distribution).

4. Uniqueness and propagation of regularity is still an open problem for this class of solutions. An
improvement that can be easily made to theorem 2.1.1 is to place an extra restriction on the Collision
kernel, which makes the matrix m in equation (2.1.44) null. The requirement is that

ˆ
Sd−1

(1 + cos θ)B(v∗ − v) dH(α) ≥ r
ˆ
Sd−1

B(v∗ − v) dH(α),

for some r > 0 [32].

5. Renormalized solutions are not classical, and so may fail to have all physical properties of the true
physical system (e.g. it may have decreasing total energy even if the gas is isolated). However,
they exist for all times and for all initial data obeying only the minimal restrictions the system
must have (limited energy, momentum and entropy). If we allow ourselves to treat special cases
- in which for instance the initial data satis�es additional restrictions, or the solution holds only
for short times, or for selected kinds of interaction potential - then we can �nd stronger solutions,
indeed even smooth (C∞) solutions, as in [20]. For an extensive list of results in this direction, we
recommend the reading of [36], [8] and [39].
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Renormalized solutions for cross-sections without cuto�

Perhaps the most important generalization of the concept of renormalized solutions in the context of
the Boltzmann equation, was that of renormalized solutions with defect measure ,proposed by [1]. The
need for a generalized notion of renormalized solution �rst appeared when trying to use the theory of
renormalized solutions as de�ned in 2.1.3 in other in other so called kinetic equations (e.g. in the Cauchy
problem for the Vlasov-Poisson equation, and in the hydrodynamic limit problem). The de�nition goes
as follows

De�nition 2.2.1. Let β ∈ C2(R+,R+), β(0) = 0 be a function satisfying, for any C > 0,

0 < β′(x) ≤ C

1 + x
, β′′(x) < 0.

f ∈ L1
loc([0,∞) × R2d) is a renormalized solution with defect measure to equation 2.1.1 with initial

condition f0 ∈ L1(R2d) if it solves the following inequality in the weak sense

∂β(f)

∂t
+ v · ∇xβ(f) ≥ β′(f)Q(f, f),

or explicitly, ∀φ ∈ C∞0 ([0, T )× Rd),
ˆ T

0

ˆ
R2d

−β(f)

[
∂φ

∂t
+ v · ∇xφ

]
dxdvdt−

ˆ
R2d

β(f0(x, v))φ(0, x, v) dxdv (2.2.3)

≥
ˆ T

0

ˆ
R2d

φβ′(f)Q(f, f) dxdvdt, (2.2.4)

along with the following conditions

ˆ
R2d

f(t, x, v) dxdv =

ˆ
R2d

f0(x, v) dxdv;
Q(f, f)

1 + f
∈ L1

loc([0,∞)× R2d).

Remark 2.2.1. Notice that if we assume that the distribution

〈T, φ〉 =

〈
∂β(f)

∂t
+ v · ∇xβ(f)− β′(f)Q(f, f), φ

〉
has a de�nite sign, then it must be a Radon measure [5]. This measure can be formally constructed
by considering the standard parabollic perturbation of the Boltzmann equation: mollify the collision
operator and the initial data by making a convolution with a standard molli�er

ρε =
1

ε2d
ρ
(x
ε
,
v

ε

)
,

where ρ is a non-negative element of C∞0 (R2d). Consider then the following problem{
∂fε
∂t + v · ∇xfε = Qε(fε, fε) + ε∆fε, (t, x, v) ∈ (0, T )× R2d.
fε(0, x, v) = f ε0(x, v) (x, v) ∈ R2d

Formally, by multiplying both sides of the equation by β′(fε) and using the chain rule, gives us

∂β(fε)

∂t
+ v · ∇xβ(fε) = β′(fε)Q

ε(fε, fε) + ε∆β(fε)− εβ′′(fε)‖∇fε‖2.
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From the concavity of β(x) we see that the term −εβ′′(fε)‖∇fε‖2 ≥ 0, so we have

∂β(fε)

∂t
+ v · ∇xβ(fε) ≥ β′(fε)Qε(fε, fε) + ε∆β(fε).

and formally as we let ε → 0, we would reach equation (2.2.3). For a more in depth discussion of the
vanishing viscosity method with the necessary steps to make this argument rigorous, we recommend the
reading of [29].

The theorem 2.1.1, despite its many merits, is still not completely general due to its restrictions on
the form of the collision kernel B(z, α). Throughout the theorem we applied Grad's cuto� assumption,
which is what guarantees that the collision operator can be separated into "gain" and "loss" terms, both
well de�ned [39].To tackle the problem of the Boltzmann equation withoutGrad's cuto� assumption, one
has to analyze the cancellations between the positive and negative parts of the Boltzmann equation.
It was believed on physical grounds that the cuto� assumption was not detrimental to the analysis of
the Boltzmann equation, since the interaction between particles far apart would be almost negligible [1].
However, as was remarked in [7], if we take the limit of the parameter σ →∞, where σ describes the radius
of the shock cross-section, formally it is expected that the Boltzmann equation can be approximated by
a non-linear Fokker-Planck-type equation, of the form

∂

∂t
f + v · ∇xf = ∆v(D(v)f(v)) +∇v · (R(v)f),

where we use the following de�nitions

R(·, ·, v) =

ˆ
R3×S2

(v′ − v)f(·, ·, v∗)B(v − v∗, α) dv∗dH2(α),

D(·, ·, v) =

ˆ
R3×S2

‖v′ − v‖2f(·, ·, v∗)B(v − v∗, α) dv∗dH2(α).

The laplacian on the right hand-side of the equation suggests that this equation, and also perhaps the
full Boltzmann equation without cuto�, may exhibit better regularity properties than the Boltzmann
equation in the cuto� case. This conjecture was proven true by [2], whose main result was an estimate
of the type

‖
√
f‖Hs({‖v‖<R}) ≤ (D(f) + ‖f‖2L1

2(Rdv)),

for each R > 0, where the exponent 0 < s < 2 depends on the particular type of interaction potential
assumed between the particles. Finally, [1] used this estimate to prove a generalized version of theorem
2.1.1, which we state below.

De�nition 2.2.2. We say that a collision kernel is at most borderline singular if it satis�es the following
assumptions

1. For p ∈ [0, 2], k = z
|z| , de�ne

Mp(|z|) =

ˆ
Sd−1

B(z, α)(1− k · α)pdHd−1.

Then, for each R > 0,

lim
|z0|→∞

1

|z0|2−p

ˆ
|z−z0|≤R

Mp(|z|)dz = 0

2. B(z, α) ≥ Φ(|z|)b(k · α), where Φ ∈ C(R+;R+) is a nonnegative function, and

ˆ
Sd−1

b(k · α) dHd−1(α) =∞.
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3. Assume that

B =
β0(α · k)

|z|d
+B1(z, α),

where β0, B1 are measurable functions, and de�ne

µ0 =

ˆ
Sd−1

β0(k · α)(1− k · α) dHd−1, (2.2.5)

M1(|z|) =

ˆ
Sd−1

B1(z, α)(1− k · α) dHd−1, (2.2.6)

M ′(|z|) =

ˆ
Sd−1

B′(z, α)(1− k · α) dHd−1, (2.2.7)

where

B′(z, α) = sup
λ∈(1,

√
2]

|B1(λz, α)−B1(z, α)|
(λ− 1)|z|

. (2.2.8)

We require that µ0 <∞, and M1(|z|),M ′(|z|) ∈ L1
loc(Rd).

Theorem 2.2.2. Assume the collision operator is at most borderline singular, as in de�nition 2.2.2, and
that f0 satis�es.

f0 ≥ 0;

ˆ
Rd
f0(1 + |v|2 + |x|2 + | ln f0|) dv <∞. (2.2.9)

Then, there exists a solution f to 2.1.1 with initial condition f0, valid for all t > 0 in the sense of
de�nition 2.2.1, which satis�es

ˆ
R2d

f(t, x, v)v dxdv =

ˆ
R2d

f(t, x, v)v dxdv,

ˆ
Rd

‖v‖2

2
f0 dv ≥

ˆ
Rd

‖v‖2

2
f dv.

Theorem 2.2.3. Let (fn0 ) and B be a sequence of initial datum and a collision kernel, respectively,
such that they satisfy hypotheses (2.1.10) and 2.2.2 as in theorem 2.1.1. Let fn be the sequence of
renormalized solutions associated with the initial data fn0 , and assume without loss of generality that
(fn) ⇀ f ∈ Lp((0, T )× L1(R2d)), (1 ≤ p <∞). Then, the following holds

1. f is a renormalized solution.

2. fn → f strongly in Lp((0, T )× L1(R2d)).

Notice the di�erence between this theorem and theorem 2.2.1. This theorem implies that any oscilla-
tions in the initial data are smoothed out in time, a behavior remarkably di�erent from the cuto� case
[39]. This smoothing behavior of the non-cuto� collision operator is what allows for existence theorems
of C∞ solutions in this case, as in [20].
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Chapter 3

Conclusion

In this thesis, we presented the basic theory of the Boltzmann equation, covering both its physical origins
with its connection to classical mechanics and thermodynamics, as well as introducing the theory of
renormalized solutions for the Boltzmann equations in reasonable detail. The theorem 2.1.1 was the
�rst existence theorem for the Boltzmann equation capable of handling initial data satisfying only the
natural a priori bounds of limited energy, mass and entropy [19], and the techniques developed in its
construction were instrumental to providing existence theorems for the Vlasov-Poisson system, as well as
the Fokker-Planck-Boltzmann and the Landau equations [39].

For the Boltzmann equation, theorem 2.1.1 guarantees the existence of a solution f ∈ L1(R2d
x,v) that

� is valid for all times (t ∈ (0, T ) for each T > 0), is continuous with respect to the time variable
(f ∈ C

(
(0, T );L1

+(R2d
x,v)
)
) and for all initial data satisfying the natural bounds

f0 ≥ 0;

ˆ
Rd
f0(1 + |v|2 + |x|2 + | ln f0|) dv <∞,

� for some �xed C > 0, obeys the estimates{´
R2d f(1 + ‖x‖2 + ‖v‖2) dxdv ≤

´
R2d f0(1 + ‖x‖2 + ‖v‖2) dxdv < C(1 + t2),´

R2d f log(f) dxdv −
´ t

0

´
R2d D[f ](s, x, v) dxdv ds ≤

´
R2d log(f0)f0(x, v) dxdv,

� has the local and global conservation laws

´
R2d f(t, x, v)v dxdv =

´
R2d f(t, x, v)v dxdv,´

Rd
‖v‖2

2 f0 dv = Tr(m)
2 +

´
Rd
‖v‖2

2 f dv,´ T
0

´
Rd

[
−∂φ∂t

(´
Rd fv dv

)
−
(´

Rd vf dv
)
∇xφ

]
dtdx = 0,´ T

0

´
Rd

[
−∂φ∂t

(´
Rd fv dv

)
−
(´

Rd v ⊗ vf dv
)
∇xφ

]
dtdx =

´ T
0

´
Rd ∇xφdm(t, x),

where m ∈ L∞((0, T )×M(R3×3) is a symmetric matrix, and φ ∈ C1
c ((0, T )× Rdx) is arbitrary.

� converges weakly in L1 for large times to a local maxwellian.

There are many applications of the Boltzmann equation that may be of interest to a reader of this
text. Here, we provide a short description of some of these applications.

One directions in which renormalized solutions can be generalized and applied would be: in the semi-
classical treatment of electrons and other particles usually described by a quantum mechanical formalism,
in which a 'quantum Boltzmann equation' can be derived [35]. In fact, many quantum mechanical versions
of the Boltzmann equation can be derived, starting for instance from the Von Neumann equation of

85
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evolution for mixed quantum states:

∂

∂t
|ψ〉〈ψ| =

[
|ψ〉〈ψ|, Ĥ

]
(3.0.1)

This equation is the quantum mechanical analogue of the Liouville equation, so a similar procedure to
the one applied in section 1.5.2 can be used to �nd a hierarchy of equations alogous to the BBGKY
hierarchy, and from it a quantum mechanical Boltzmann equation could be obtained as a limit. Another
possible application would be to consider the Linear Boltzmann equation, in which the Collision operator
is linearized around a global Maxwellian, acquiring the form

L(φ) =

ˆ

R3

¨

S2

PMPM∗ [φ′ + φ′∗ − φ− φ∗]B(η, ||w||) dH2(α) dv∗. (3.0.2)

This equation shares some similar features with the Boltzmann equation, and is actually a standard
model in neutron transport problems arising in the design and analysis of nuclear reactors [28].

One of the most important problems where renormalized solutions were applied to is the problem of
hydrodynamic limits, which as de�ned before, consists of �nding what are the macroscopic constitutive
relations a solution of the Boltzmann equation must obey.

The �rst attempt to solve this problem was made by David Hilbert (1862-1943), as part of his goal of
making the foundations of physical theories mathematically rigorous (which later would become known
as Hilbert's 6th problem). The starting point for his attempt is the nondimensionalized form of the
Boltzmann equation.

Let l0 be a characteristic macroscopic length scale, and u0 a macroscopic velocity scale. From them,
it is possible to de�ne a macroscopic time scale t0 = l0/u0. It is posible to derive as well the sound speed
of the gas as a microscopic velocity scale, as well as a microscopic lenght scale from the mean free path
λ.

Using the sound speed as a microscopic scale is not a problem, since according to the Maxwell-
Boltzmann distribution for gases in equilibrium, it is related to the average thermal speed by the following

equation
(
c =

√
5π
24 ||ū||MB

)
, and so we can de�ne a microscopic time scale by c/λ, which will be related

to the mean free time by the the same ratio.

The collision kernel has units of [=] 1/t, so it can be made adimensional using the microscopic scales,
by de�ning

B(η, ||w||) =
c

λ
B̃(η, ||w||).

Finally, introduce new non-dimensional variables through the following relationships: t = t0t
′,x = l0x

′,
v = cv′.

From the chain rule, inserting the above expressions on the original Boltzmann equation, we �nd

u0

l0

∂f

∂t′
+
c

l0
v′ · ∇x′f +

u0W
′(t, x, v)

ct0
· ∇v′f =

c

λ
C′(f)(t, x, v)

Multiplying both sides by l0 and dividing by c, we have:

u0

c

∂f

∂t′
+ v′ · ∇x′f +

(u0

c

)2

W ′(t, x, v) · ∇v′f =
l0
λ
C′(f)(t, x, v)

De�ne the Mach numbaer as Ma = u0/c, and the Knudsen number as Kn = λ
l0
. Then, our equation

can be rewritten as:

Kn

(
Ma

∂f

∂t′
+ v′ · ∇x′f +Ma2W ′(t, x, v) · ∇v′f

)
= C′(f)(t, x, v) (3.0.3)



87

The Knudsen number encodes how separated are the microscopic and macroscopic length scales. In
general, for liquids or dense gases, the Knudsen number is very small (for air at room temperature at sea
level, the Knudsen number is of the order of 10−8). Therefore, if the Mach number is not too large so that
all terms on the left hand side can be considered to have the same order of magnitude (subsonic �ows),
one can treat Kn as a perturbation, and 'expand' our solution in powers of Kn: this method is known
as Hilbert's expansion. A more modern version of the method, known as Chapman-Enskog expansion is
used below. In the above equation, if we set Kn = 0, we will �nd that

C′(f)(t, x, v) = 0⇒ f = Mρ,u,ε(t, x, v)

Therefore, in our 'zeroth order' perturbation, the solution of the Boltzmann equation should be a local
maxwellian if the Knudsen number is identically 0, and if we insert f = Mρ,u,ε(t, x, v) in the Boltzmann
equation, we recover the fact that the macroscopic �elds ρ, u, ε obey the following system of equations

∂
∂tρ(x, t) +∇ · (ρ(x, t)u(x, t)) = 0
∂
∂tρ(t, x)u(x, t) +∇ · (ρ(t, x)u⊗ u+ (RT )Id) = 0
∂
∂t

[
ρ(x, t)

(
3
2RT + ||u||2

2

)]
+∇ · ρ(x, t)u

[
5
2RT + ||u||2

2

]
= 0

which describe the gas as a perfect �uid obeying the ideal gas law, with a �xed ratio γ = Cp
Cv = 5

3
between speci�c heats, which characterizes the gas as monatomic (for a derivation of this system of
equations, see section 1.3.3). Indeed, one can relate the Mach and Knudsen numbers by the following
expression:

Kn =
Ma

Re

√
γπ

2
=
Ma

Re

√
5π

6

where Re is the usual Reynolds number. Therefore, assuming Ma ≈ 1 and Kn = 0 implies assuming
that Re→∞, and it is known that in turbulent �ows, the e�ects of viscosity can be neglected away from
the walls. From the above analysis, the CHapman-Enskog method consists in using the ansatz

P = PM

1 +
∑
n>1

(Kn)
n
fn

 (3.0.4)

where fn is the n-th order perturbation correction. using a �rst order perturbation, it is possible
to show (see [14]) that for small Knudsen numbers, the system's macroscopic �elds (ρ, u, ε) obey the
following system of equations


∂
∂tρ(x, t) +∇ · (ρ(x, t)u(x, t)) = 0,
∂
∂tρ(t, x)u(x, t) +∇ · (ρ(t, x)u⊗ u+ (RT )Id) = Kn∇ · (µ(ρ, T )Du) +O(Kn2),
∂
∂t

[
ρ(x, t)

(
3
2RT + ||u||2

2

)]
+∇ · ρ(x, t)u

[
5
2RT + ||u||2

2

]
= Kn∇ · (κ(ρ, T )∇T + µ(ρ, T ) [Du]u) +O(Kn2),

which again corresponds to models a monatomic ideal gas, with �xed γ = Cp
Cv = 5

3 . However, this
time the momentum and energy balances obtained show that the �uid obeys the Navier-Stokes-Fourier
constitutive relationships for strain and heat �ow. Despite this success, higher order perturbations give
us the Burnett equations and super-Burnett equations, which are not necessarily more precise than the
Navier-Stokes-Fourier description.

Although this precise ansatz was not amenable to rigorous mathematical analysis, the heuristic idea
of considering Kn as a perturbative parameter resulted in an extensive program, driven by Bardos, Golse
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and Levermore [4], and later by many other authors [19], [32], [27], to rigorously derive macroscopic
balance laws for energy and momentum from the Boltzmann equation, in the limit as ε → 0. Not only
this allows us to have a better justi�cation for the usage of these balance laws, but the procedure allows
us to associate di�erent conditions on the Boltzmann equation with di�erent macroscopic behaviors.

All of these results are built upon generalizations of the concept of renormalized solution for the
Boltzmann equation, since as shown before, this type of solution exists for all times and with very mild
restrictions on the initial data.

Finally, the fact that the �uid described by the Boltzmann equation satis�es all the usual balance
laws from continuum mechanics suggests that the Boltzmann equation can be used for the purpose
of computational �uid dynamics simulations, which is indeed the case. There is a growing class of
numerical methods known as Lattice-Boltzmann methods [14],[34], which provide an alternative method
of simulating �uids, without trying to simiulate directly the Navier-Stokes-Fourier system of equations
for a liquid, for instance. Lattice Boltzmann methods are easily parallelizable, and may be simpler to
implement than traditional methods for certain situations, such as �ows on porous media.



Appendix A

Introduction Theorems

A.1 Existence of the total collision operator

We wish to prove theorem 1.3.2:

Theorem A.1.1. Let A be a disk, and g(v) : Rd −→ R be a function satisfying the condition

|g| ≤ C(1 + ‖v‖)n

for some n ∈ N and C > 0. If (1 + ‖v‖)n+1f , (1 + ‖v‖)n+1h ∈ L1(Ω × Rd), then Qf,hg(t, x) is well
de�ned, and equations 1.3.17 and 1.3.18 are valid.

Proof. we follow a proof by [36]. If A, it means our cross section is �nite, and our potentials have a
cuto�. Assume that the Hausdor� measure of A isM . Notice that the following simple inequalities holds{

‖w‖ = ‖v − v∗‖ ≤ ‖v‖+ ‖v∗‖ ≤ (1 + ‖v‖)(1 + ‖v∗‖)
1 + ‖v′‖ = 1 + ‖v + (w · α)α‖ ≤ 1 + ‖v‖+ ‖w‖ ≤ 2(1 + ‖v‖)(1 + ‖v∗‖)

and therefore, we can establish the following estimates

‖w‖ff∗g ≤ (1 + ‖v‖)(1 + ‖v∗‖)ff∗g ≤ C
[
(1 + ‖v‖)n+1f

]
[(1 + ‖v∗‖)f∗] ,

and
‖w‖ff∗g′ ≤ (1 + ‖v‖)(1 + ‖v∗‖)ff∗g′ ≤ C(1 + ‖v‖)(1 + ‖v∗‖)ff∗(1 + ‖v′‖)n

≤ 2nC
[
(1 + ‖v‖)n+1f

] [
(1 + ‖v∗‖)n+1f∗

]
.

Finally, since the potential has a cuto�, both the 'gain' and 'loss' parts of the collision operator converge
and can be analyzed separately (see theorem 1.3.1), which gives us

ˆ
R3

Q−(f, f)g dv =

˚

A×R3×R3

f(t, x, v)f(t, x, v∗)g ‖w‖dS∗dv∗dv

≤ C
˚

A×R3×R3

[
(1 + ‖v‖)n+1f

]
[(1 + ‖v∗‖)f∗] dS∗dv∗dv

≤ CM‖(1 + ‖v‖)n+1f‖2L1
v
<∞
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and for Q+ we have

Q−(f, f)g dv =

˚

A×R3×R3

f(t, x, v′)f(t, x, v′∗)g ‖w‖dS∗dv∗dv

performing a change of variables (v, v∗, α) → (v′, v′∗, α
′), which has unit jacobian, this can be rewritten

as

Q−(f, f)g dv =

˚

A×R3×R3

ff∗g
′ ‖w‖dS∗dv∗dv

≤ 2nC

˚

A×R3×R3

[
(1 + ‖v‖)n+1f

] [
(1 + ‖v∗‖)n+1f∗

]
dS∗dv∗dv

≤ 2nCM‖(1 + ‖v‖)n+1f‖2L1
v
<∞

Therefore, Qfg is well de�ned, and a slight modi�cation of the above argument allows us to prove that
Qf,hg is as well.

A.2 Boltzmann-Gronwall Theorem

Theorem A.2.1 ((Boltzmann-Gronwall)). Let g : Γ −→ Rn be a measurable function with respect to L.
g satis�es condition V, namely g(x, v′) + g(x, v′∗) = g(x, v) + g(x, v∗), where v, v∗, v

′, v′∗are solutions to
the following system {

v + v∗ = v′ + v′∗
‖v‖2 + ‖v∗‖2 = ‖v′‖2 + ‖v′∗‖2

if and only if g is a second order polynomial in v:g(x, v) = a(x)‖v‖2 + 〈b(x), v〉+ c(x) for a.e. (x, v).

Proof. To prove this we'll need the following lemma:

Lemma A.2.1. Let f : RN −→ R be an odd function additive on orthogonal pairs, i.e., a function which
satis�es {

f(x1) + f(x2) = f(x1 + x2) whenever x1 · x2 = 0

f(−x) = −f(x) ∀x ∈ RN

Then, if g is measurable w.r.t. the Lebesgue measure, g is also continuous and linear.

Corollary A.2.1. The same result is valid if f is additive in the whole space.

Proof. In this proof, we use a mix of strategies from the proofs of [36] and [23]. The �rst step will be
proving that if f is additive on orthogonal pairs and odd, then it is additive everywhere. To achieve
that, we'll consider the case in which the vectors x1 and x2 are parallel, i.e. x2 = λx1. If λ > 0,
then, take a vector u orthogonal to x1, x2 and satisfying ‖u‖2 = x1 · x2 = λ‖x1‖2. Then, we have that
(x1 + u) · (x2 − u) = x1 · x2 − ‖u‖2 + u · (x2 − x1) = 0. Therefore

f(x1 + x2) = f(x1 + u+ x2 − u) = f(x1 + u) + f(x2 − u)

= f(x1) + f(x2) + f(u) + f(−u) = f(x1) + f(x2).

For the case when λ < 0, we can say at least that the above result is valid for the pair −x2 and x1:

f(x1 − x2) = f(x1) + f(−x2) = f(x1)− f(x2)

⇒ f(x1) = f(x1 − x2) + f(x2) = f((1− λ)x1) + f(λx1)
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De�ne w1 = (1− λ)x1, w2 = λx1; we have then w1 = (1−λ)
λ w2,

(1−λ)
λ < 0, and

f(w1 + w2) = f(w2) + f(w1),

So additivity is established in the parallel case. Finally, consider the case of 2 arbitrary vectors x1, x2.
Decomposing them in an orthonormal basis {e1, e2}:

f(x1 + x2) = f(a11e1 + a21e2 + a12e1 + a22e2)

= (a11 + a12)f(e1) + (a21 + a22)f(e2)

= f(x1) + f(x2),

(A.2.1)

So we have additivity, as claimed. It is clear that if we prove the theorem's main conclusion using
additivity and measurability, then the corollary will be true as well.

Since f is additive, f(0) + f(0) = f(0) ⇒ f(0) = 0. Consider now the set A = [0, 1]N . A is a Borel
set, with L(A) = 1. By Lusin's theorem, for each ε > 0, we can always �nd a compact set K ⊆ A such
that g restricted to K is continuous, and L(A − K) < ε. Moreover, since K is compact, f is actually
uniformly continuous on K, so for every η > 0 there is δ > 0 such that

‖x− y‖ < δ ⇒ |f(x)− f(y)| < η, ∀x, y ∈ K.

since we can choose an arbitrary ε, this means that not all points of K are isolated, otherwise L(A−K) =
L(A) = 1. Take an accumulation point x0 ∈ K, and a sequence {η}n∈N such that ηn → 0. Then, for each
ηn we will �nd a corresponding δn and a sequence yn → x0 such that

0 < ‖x0 − yn‖ < δn ⇒ |f(x0)− f(yn)| = |f(yn − x0)| < ηn

de�ning hn = yn − x0,
0 < ‖hn‖ < δn ⇒ |f(hn)| < ηn

and this would entail that f is continuous at 0, sending n → ∞. However, it must then be continuous
everywhere, since choosing any point z ∈ RN and η > 0, by the continuity at 0 there is δ > 0 such that

0 < ‖h− 0‖ < δ ⇒ |f(h)− f(0)| = |f(h)| < η

Substituting h = z − x means that

0 < ‖z − x‖ < δ ⇒ |f(z − x)| = |f(z)− f(x)| < η,

and so we have continuity at z. For linearity, the proof is rather standard: by induction, one can prove
that for any p ∈ N

f(px) = g

(
p∑
i=1

x

)
=

p∑
i=1

g(x) = pf(x).

Replacing x by x/p:

f(x) = pg

(
x

p

)
; g

(
x

p

)
=

1

p
f(x)

So we can choose any rational number q and have: f(qx) = qf(x); and by density of Q, that will
apply to irrational numbers as well. Therefore, our function is linear (being homogeneous of degree 1 and
additive).

Returning to the proof of A.2.1: �x a given position x. g + g∗ is constant whenever v + v∗and
‖v‖2 + ‖v∗‖2 are. So we can de�ne a function:
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U(v + v∗, ‖v‖2 + ‖v∗‖2) = g + g∗.

If we set v∗ = 0, we �nd from the above equation that U(v, ‖v‖2) = g(v)+g(0), and so the above equation
can be cast as

U(v + v∗, ‖v‖2 + ‖v∗‖2) = U(v, ‖v‖2) + U(v∗, ‖v∗‖2)− 2g(0)

if v, v∗ are orthogonal, then the left hand side becomes U(v+ v∗, ‖v+ v∗‖2), and the function U becomes
additive for orthogonal pairs! Sadly it's not odd, so we can't yet apply our lemma. Setting v∗ = −v in
the above equation, we get that

U(0, 2‖v‖2) = U(v, ‖v‖2) + U(−v, ‖v‖2)− 2g(0)

Then, consider a pair of orthogonal vectors v∗, v. We can say that

U(0, 2‖v + v∗‖2) = U(v + v∗, ‖v + v∗‖2) + U(−v − v∗, ‖v + v∗‖2)− 2g(0)

= U(v + v∗, ‖v‖2 + ‖v∗‖2) + U(−v − v∗, ‖v‖2 + ‖v∗‖2)− 2g(0)

= U(v, ‖v‖2) + U(−v, ‖v‖2) + U(v∗, ‖v∗‖2) + U(−v∗, ‖v∗‖2)− 6g(0)

= U(0, 2‖v‖2) + U(0, 2‖v∗‖2)− 2g(0)

⇒
[
U(0, 2‖v + v∗‖2)− 2g(0)

]
=
[
U(0, 2‖v‖2)− 2g(0)

]
+
[
U(0, 2‖v∗‖2)− 2g(0)

]
Therefore, the function f1(x) = U(0, x)− 2g(0); x > 0 is an additive measurable function, and so by our
lemma: U(0, 2‖v‖2) = 2a‖v‖2 + 2g(0). This implies that

U(0, ‖v‖2) + U(0, ‖v‖2) = U(0, 2‖v‖2) = U(v, ‖v‖2) + U(−v, ‖v‖2)

⇒ 0 =
[
U(v, ‖v‖2)− U(0, ‖v‖2)

]
+
[
U(−v, ‖v‖2)− U(0, ‖v‖2)

]
Therefore, de�ning f2(v) = U(v, ‖v‖2)− U(0, ‖v‖2), the equation above states that

f2(v) + f2(−v) = 0,

so f is odd. Furthermore, notice that, for any pair of orthogonal vectors v, v∗:[
U(v + v∗, ‖v + v∗‖2)− U(0, ‖v + v∗‖2)

]
=
[
U(v + v∗, ‖v‖2 + ‖v∗‖2)− a‖v‖2 − a‖v∗‖2

]
=
[
U(v, ‖v‖2)− U(0, ‖v‖2)

]
+
[
U(v∗, ‖v∗‖2)− U(0, ‖v∗‖2)

]
.

Or, in terms of f2:
f2(v + v∗) = f2(v) + f2(v∗), v · v∗ = 0.

Therefore f2(v) is additive for orthogonal pairs, measurable and odd, so by the previous lemma, it is
linear, with f2(v) = b · v. Finally

f2(v) = U(v, ‖v‖2)− U(0, ‖v‖2) = U(v, ‖v‖2)− f1(‖v‖2)− 2g(0)

= g(v) + g(0)− a‖v‖2 − 2g(0)

⇒ b · v = f2(v) = g(v)− a‖v‖2 − g(0)

g(v) = a‖v‖2 + b · v + g(0).

De�ning c = g(0) �nishes the proof.

In the above proof, any dependence of g on the position variable was omitted, for the sake of simplifying
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notation, but in the end result, if g is a function of (t, x, v), then our result will become

g(t, x, v) = a(t, x)‖v‖2 + b(t, x) · v + c(t, x).

Notice that the functions a, b, c will inherit the regularity of g. At present, they are only measurable
functions, but if one assumes that g is in fact continuous with respect to (t, x) then so are a, b and c. If
g is a function of v alone, then a, b, c are constants.

A.3 The encounter problem

In this section of the Appendix, we solve the problem of a binary collision in classical mechanics, obtaining
a few properties of the collision dynamics that are used throughout the text.

Since the heuristic used to derive Boltzmann's equation is grounded on 4 basic assumptions, we
will concern ourselves only with collisions that match those assumptions. Namely, we will assume that
external forces are negligible in the moment of a collision. We de�ne now some notation to be used
in this Appendix: 

x1, x2 ∈ RN positions of particles 1 and 2

p1, p2 ∈ RN momenta of particles 1 and 2

P = p1 + p2 Total momentum of the system

φ̃(R) : RN −→ R potential energy for particle interaction

R = x2 − x1 relative position of particle 2

‖R‖ = r

From Newton's second law, we have that:

(i)
d

dt
P =

∑
Fexternal ≈ 0 ∴ P = p1 + p2 = constant (Momentum conservation)

We can also write Newton's second law for both particles:


m1

d

dt
x1 = −∇φ̃(R) (A.3.1a)

m2
d

dt
x2 = −∇φ̃(−R) (A.3.1b)

We make the following assumptions on the potential φ̃:

1. Interactions are local, such that lim
‖x‖−→∞

φ̃(x) = lim
‖x‖−→∞

‖∇φ̃(x)‖ = 0; and they have a singularity

at the origin: lim
‖x‖−→0

φ̃(x) =∞ (particles repel each other at close range)

2. Since our gas is assumed in principle to be monoatomic, we can assume that φ̃ is spherically sym-
metric (in the case of non-monoatomic gases, this can be thought as a mean-�eld approximation).

Therefore, expanding −∇φ̃(R) in spherical coordinates, we have:

−∇φ̃(R) = −
[
∂

∂r
φ̃(R)

]
R̂; where R̂ =

R

r

Again from spherical symmetry, we can de�ne uniquelyφ : R+ −→ R as φ(r) = φ̃(rα); for any unit
vector α. So we can rewrite our equations as:
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
m1

d2

dt2
x1 =

[
∂

∂r
φ(r)

]
R

r
; (A.3.2a)

m2
d2

dt2
x2 = −

[
∂

∂r
φ(r)

]
R

r
, (A.3.2b)

(A.3.2c)

where t ∈ R;x1, x2 ∈ C3
t (R;Rn), and with the boundary conditions: lim

t−→±∞
‖x2 − x1‖ = ∞. Adding

both equations one recovers conservation of momentum, as stated in (i). Diving (A.3.2a) by m1 and
(A.3.2b) by m2 and subtracting both equations, one recovers:

d2

dt2
(x2 − x1) = −

(
1

m2
+

1

m1

)[
∂

∂r
φ(r)

]
R

r

De�ning the reduced massµ as twice the harmonic mean of the particle masses: 1
µ =

(
1
m2

+ 1
m1

)
; one

�nds the equation for the relative motion between particles:

µ
d2

dt2
R = −

[
∂

∂r
φ(r)

]
R

r
(A.3.3)

So that the problem can be analyzed as a single particle with mass µ moving according to the central
potential φ. From this we can use the standard procedure to de�ne energy equations:



m1

〈
d

dt
x1,

d2

dt2
x1

〉
=

[
∂

∂r
φ(r)

]〈
d

dt
x1,

R

r

〉
(A.3.4a)

m2

〈
d

dt
x2,

d2

dt2
x2

〉
= −

[
∂

∂r
φ(r)

]〈
d

dt
x2,

R

r

〉
(A.3.4b)

µ

〈
d

dt
R,

d2

dt2
R

〉
=

[
∂

∂r
φ(r)

]〈
d

dt
R,

R

r

〉
(A.3.4c)

Adding the �rst 2 equations; and noting that〈
d

dt
xi,

d2

dt2
xi

〉
=

1

2

d

dt

∥∥∥∥ ddtxi
∥∥∥∥2

; i = {1, 2}

we get

m1
1

2

d

dt

∥∥∥∥ ddtxi
∥∥∥∥2

+m2
1

2

d

dt

∥∥∥∥ ddtx2

∥∥∥∥2

= −
[
∂

∂r
φ(r)

]〈
d

dt
(x2 − x1),

R

r

〉
So summing up, we have

d

dt

(
m1

2

∥∥∥∥ ddtxi
∥∥∥∥2

+
m2

2

∥∥∥∥ ddtx2

∥∥∥∥2
)

= −
[
∂

∂r
φ(r)

]〈
d

dt
(x2 − x1),

R

r

〉
(A.3.5a)

d

dt

µ

2

∥∥∥∥ ddtR
∥∥∥∥2

= −
[
∂

∂r
φ(r)

]〈
d

dt
R,

R

r

〉
(A.3.5b)

We note that the right hand sides of both equations are indeed the same, recalling that (x2−x1) ≡ R.
Examining it further, we �nd:
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[
∂

∂r
φ(r)

]〈
d

dt
R,

R

r

〉
=

1

r

[
∂

∂r
φ(r)

]〈
d

dt
R,R

〉
=

1

2r

[
∂

∂r
φ(r)

]
d

dt
r2

=

[
∂

∂r
φ(r)

]
dr

dt
=

d

dt
φ (r(t))

Finally, eliminating the time derivatives, we get:


(
m1

2
‖ d
dt
xi‖2 +

m2

2
‖ d
dt
x2‖2 + φ (r(t))

)
= E (A.3.6a)

µ

2
‖ d
dt
R‖2 + φ (r(t)) = E (A.3.6b)

Fix a value E ≥ 0. Then, taking advantage that lim
x−→∞

φ(x) = 0, one �nds from (A.3.6b) that

lim
t−→±∞

‖ ddtR‖ =
√

2E
µ . In fact, reversing this one can say:

E =
µ

2
‖w‖2, where ‖w‖ = lim

t−→±∞
‖ d
dt
R‖

Consider now the Frénét Trihedron centered in the trajectory R(t). One can then �nd the following
decompositions:



d

dt
R = uT (A.3.7a)

d2

dt2
R =

du

dt
T + ku2N (A.3.7b)

B = T ×N =
d
dtR×

d2

dt2R

‖ ddtR×
d2

dt2R‖
(A.3.7c)

Where k(t) is the scalar curvature of R(t), T is the unit tangent vector, N the principal normal vector
and B the binormal vector (de�ned wherever k 6= 0), and u = ‖ ddtR‖.

Taking now equation (A.3.3), we see that:

lim
t−→±∞

µ

∥∥∥∥ d2

dt2
R

∥∥∥∥ = lim
t−→±∞

∣∣∣∣ ∂∂rφ(r(t))

∣∣∣∣ = 0

Using the following

Lemma A.3.1. Let f ∈ C1(R,Rn). Then,
∣∣ d
dx‖f‖

∣∣ ≤ ∥∥ d
dxf

∥∥;
Inserting f = d

dtR, we can deduce that:

lim
t−→±∞

∣∣∣∣dwdt
∣∣∣∣ ≤ lim

t−→±∞

∥∥∥∥ d2

dt2
R

∥∥∥∥ = 0.

Therefore, we can use decomposition (A.3.7b) in the left-hand side of equation (A.3.3), and obtain
the expression:

kw2N =
dw

dt
T −

[
∂

∂r
φ(r)

]
R

r
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Finally:
lim

t−→±∞

∥∥kw2N
∥∥ = lim

t−→±∞
kw2

≤ lim
t−→±∞

∥∥∥∥dwdt T
∥∥∥∥+

∥∥∥∥[ ∂∂rφ(r)

]
R

r

∥∥∥∥
= lim
t−→±∞

∣∣∣∣dwdt
∣∣∣∣+

∣∣∣∣ ∂∂rφ(r(t))

∣∣∣∣ = 0

Proof. To prove said lemma, notice that :∣∣∣∣‖f(t+ x)‖ − ‖f(x)‖
h

∣∣∣∣ =
1

|h|
|‖f(h+ x)‖ − ‖f(x)‖| ≤ 1

|h|
‖f(h+ x)− f(x)‖ =

∥∥∥∥f(h+ x)− f(x)

h

∥∥∥∥
And take the limit as h→ 0

We can conlude then that lim
t−→±∞

k(t) = 0; so that trajectories behave approximately as straight lines

in the limit. From this, we can deduce that

∃ lim
t−→±∞

T , thus: ∃ lim
t−→±∞

d
dtR = lim

t−→±∞
wT .

So,

Remark A.3.1.

∃ lim
t−→±∞

dxi
dt

= lim
t−→±∞

P + (−1)
i d
dtR

2
i = {1, 2}

(Recalling the de�nitions of P and R). We can then introduce the following

De�nition A.3.1. The following limits:

lim
t−→∞

dx1

dt
:= v′, lim

t−→−∞

dx1

dt
:= v, lim

t−→∞

dx2

dt
:= v′∗ lim

t−→−∞

dx2

dt
:= v∗

Are said to be the asymptotic velocities of particles 1 and 2.

Since P is constant, we must have that m1v +m2v∗ = P = m1v
′ +m2v

′
∗

Taking the limit as t→ ±∞ in equation (A.3.6a) then produces the following system of equations for
the asymptotic velocities:

(B)

{
m1v +m2v∗ = m1v

′ +m2v
′
∗ Momentum conservation

m1‖v‖2 +m2‖v∗‖2 = m1‖v′‖2 +m2‖v′∗‖2 Energy conservation

Assuming (v, v∗) as known.
This system captures the essential features of a collision. Indeed, since we used that τcollision �

τstreaming among our assumptions when deriving the Boltzmann equation, all that matters to us is the
asymptotic behavior of a binary collision, since collisions were assumed to be instantaneous. Any solution
to the system (B) is said to be a solution to the Encounter problem, which is a system of algebraic
equations.

Recalling the reasoning given in section 1.3, the knowledge of v, v∗ does not determine v′, v′∗ uniquely.
Rather, there are N − 1 degrees of freedom in the system (B), so we expect that there is a family of
parameters k such that: {

∃F : RN × RN ×M −→ RN × RN

(v, v∗, k) 7−→ (v′, v′∗)
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Where k takes values in a N-1 dimensional Manifold M in Rn; each choice of k indexes a unique
possible solution. From the �rst equation of (B) , we can de�ne:

m1(v′ − v) = −m2(v′∗ − v∗) ≡ g

Such that {
v′ = v + 1

m1
g

v′∗ = v∗ − 1
m2
g

Inserting in the left hand side of the conservation of energy equation:

m1‖v′‖2 +m2‖v′∗‖2 = m1

〈
v +

1

m1
g, v +

1

m1
g

〉
+m2

〈
v∗ −

1

m2
g, v′∗ −

1

m2
g

〉
= m1‖v‖2 +m2‖v∗‖2 + 2 〈g, v〉 − 2 〈g, v∗〉+

(
1

m1
+

1

m2

)
‖g‖2 = m1‖v‖2 +m2‖v∗‖2

∴

(
1

m1
+

1

m2

)
‖g‖2 = 2 〈g, v∗ − v〉

Recalling the de�nition of µ, and de�ning w = v∗ − v; w′ = v′∗ − v′ α = g
‖g‖ , this reads

1

µ
‖g‖ = 2 〈α,w〉

And inserting back, we have:


v′ = v +

1

m1
2µ 〈α,w〉α (A.3.8a)

v′∗ = v∗ −
1

m2
2µ 〈α,w〉α (A.3.8b)

Subtracting (A.3.8a) from (A.3.8b) yields:

w′ = w − 2 〈α,w〉α (A.3.9)

Looking at equations (A.3.8a) and (A.3.8b), we see that if α is taken as a parameter this corresponds
exactly to a solution to the encounter problem. Being a unit vector, the parameter α belongs to a N − 1
dimensional sphere, which ful�lls our requirements. We will now focus in the more classical case where
particles move in 3-D space.

The spherical parametrization for α would be in terms of polar angles (spherical coordinates), and
that is the form most used in this text. Another parametrization common in physics textbooks is given
in terms of the impact parameter, which will be de�ned below.

From this point onward, we consider only the relative motion of the particles, so the only equations
that will concern us will be (A.3.4c), (A.3.6b) and (A.3.9).

We make the following remarks about (A.3.9):

1. ‖w′‖ = ‖w‖

2. The motion of particle 2 in this frame (relative to 1) is constrained to a plane

3. α bissects the angle between −w and w′
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Proof. First, ‖w′‖2 = 〈w − 2 〈α,w〉α, w − 2 〈α,w〉α〉 = ‖w‖2 + 4 〈α,w〉2 − 4 〈α,w〉2 = ‖w‖2.

Now, to prove the second assertion, multiply vectorially equation (A.3.3) by R(t), one �nds that:

µ

(
d2

dt2
R

)
×R =

d

dt

[
µ

(
d

dt
R

)
×R

]
= −

[
∂

∂r
φ(r)

]
R×R
r

= 0

Therefore, comparing the second and third terms, we see that a derivative vanishes, such that:

µ

(
d

dt
R

)
×R = ~C1 (Constant angularmomentum!)

This is su�cient to guarantee the motion is restricted to a plane Π1 orthogonal to ~C1. Indeed,
multiplying vectorially equation III this time by d

dtR, and recalling the de�nition of the Binormal vector
for this trajectory:

µ

(
d2

dt2
R

)
× d

dt
R = µ

∥∥∥∥( d2

dt2
R

)
× d

dt
R

∥∥∥∥B =
1

r

[
∂

∂r
φ(r)

]
d

dt
R×R =

1

µr

[
∂

∂r
φ(r)

]
~C1

Which means the Binormal vector always has the direction ~C1. By de�nition the other vectors from the
Frénét Frame T,N lie in the plane Π1, and so do the �rst 2 derivatives of R(t), being linear combinations
of T and N .

To prove the third, multiply scalarly (A.3.9) by α. One �nds:

〈α,w′〉 = 〈α,w〉 − 2 〈α,w〉 = 〈α,−w〉. De�ning: 〈α,−w〉 = cos(θ), 〈α,w′〉 = cos(θ′), θ′, θ ∈ [0, π]; the
equation means that θ′ = θ.

So, a typical trajectory should have the aspect described below, with the parameter α accounting for the
amount of angular de�ection in the trajectory through the angle θ: (Imagem).

Now, take equation (A.3.3) along with a Frénet Frame associated to its trajectory, and decompose
R(t) in this frame. We �nd that:

R(t) = a(t)T (t) + b(t)N(t)

Where T and N belong to the plane Π1. Taking the cross product with d
dtR yields:(

d

dt
R

)
×R =

~C1

µ
=

(
d

dt
R

)
× [a(t)T (t) + b(t)N(t)]

= b(t)

(
d

dt
R

)
×N(t)

= b(t)u(t) [T (t)×N(t)] .

Since The binormal vector has a �xed direction and unit norm, it is in fact constant. Taking norms
on both sides, we can say: ∥∥∥ ~C1

∥∥∥
µ

= b(t)u(t)

Since the left-hand side of this equation is constant, we can say that:

lim
t−→∞

|b(t)|u(t) ≡ b‖w′‖ = lim
t−→−∞

|b(t)|u(t) ≡ b̃‖w‖

Since ‖w′‖ = ‖w‖, we �nd that : b̃ = b. This allows us to �nd a closed expression for the angular
momentum:

~C1 = lim
t−→∞

µ

(
d

dt
R

)
×R = µb‖w‖B



A.3. THE ENCOUNTER PROBLEM 99

where B is a constant unit vector.
So b is a quantity conserved across a collision, if we consider only the asymptotic behavior. Since

α determines uniquely the asymptotic outcome of a collision, we guess that there may be a way to
parametrize α using b. b determines how aligned the collision is: b=0 means R(t) is always in the
direction of its tangent vector; and therefore collision is frontal. b is thus named the impact parameter.

The Orbital equation

Consider again the orthonormal basis set {ξ, η, ŵ}, where ŵ is the unit vector in the direction of w = v∗−v.
Since the angle between our vector α and w is θ, and since ‖α‖ = 1, we can parametrize α by saying:

α = e(θ, ϕ) = (cosϕ sin θ) ξ + (sinϕ sin θ) η + (cos θ) ŵ

where θ ∈ [0, π];ϕ ∈ [0, 2π]
However, since θ measures the angular de�ection due to collisions, intuitively it must be related to

b. Namely, we want to �nd an expression of the form: θ = g(b, ‖w‖). Consider again the equations of
relative motion for our original (time dependent) problem.

µ d2

dt2R = −
[
∂
∂rφ(r)

]
R
r , t ∈ R

lim
t−→±∞

‖R‖ =∞ Boundary conditions

E = µ
2 ‖

d
dtR‖

2 + φ (r(t)) = µ
2 ‖w‖

2 Conservation of energy

µ
(
d
dtR

)
×R = µb‖w‖B Constant Angular momentum

Recalling that our motion is constrained to a plane Π1, we can write it in polar coordinates, de�ning:{
r̂ = (cos θ, sin θ, 0) θ̂ = (− sin θ, cos θ, 0)
dr̂
dθ = θ̂ dθ̂

dθ = −r̂

Writing our solution R(t) = r(t)r̂(θ(t)), we see that:

d

dt
R(t) = r′(t)r̂(θ(t)) + r(t)

dr̂

dθ
θ′(t)

Inserting this expression back on the last 2 equations yields

� Energy
µ

2

[
(r′(t))

2
+ (r(t)θ′(t))

2
]

+ φ (r(t)) =
µ

2
‖w‖2 (A.3.10)

� Angular momentum
Since B ⊥ Π1; ‖B‖ = 1, we can take B = r̂× θ̂. Then:

µ
(
r′(t)r̂(θ(t)) + r(t)θ′(t)θ̂

)
× r(t)r̂(θ(t)) = µb‖w‖r̂× θ̂

(r(t))
2
θ′(t) = b‖w‖ = J/µ (A.3.11)

Or alternatively

θ′(t) =
J

µr(t)2
(A.3.12)

where J is our notation for the total angular momentum (in absolute value). If we compare equations
A.3.10 and A.3.11, we can see that total energy and angular momentum are related by

b2E =
J2

2µ
,
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and using equation A.3.11, equation A.3.10 can be cast as

E =
µ

2

[
(r′(t))

2
+

J2

µ2r(t)2

]
+ φ (r(t))

r′(t) =
1√

2
µ

√
E −

(
φ (r(t)) + J2

2µ(r(t))2

) (A.3.13)

Here we can see a physical interpretation for the second term in brackets in equation A.3.10: when

writing the equations of motion in the reference frame {r̂, θ̂} there appears a �ctitious force term ( J2

2µr2 ),

due to the fact that this frame is not inertial (it is rotating as a function of θ(t)). Therefore we can de�ne

Ve� = φ (r(t)) +
J2

2µ(r(t))2

as an e�ective potential for the particle interaction in this frame. The term ( J2

2µr2 ) is de�ned as the
centrifugal barrier, and acts as a repulsive potential. In order to obtain the total change in θ, one
could integrate directly equation A.3.12, however this would require a direct solution of the equations of
motion. Instead, we can do the following: notice that

dθ

dr
=
θ′(t)

r′(t)
⇒ θ =

ˆ rmin

∞

dθ

dr
dr

If we integrate the following equation from x = ∞(pre − collision) to to the minimal value it achieves
(particle 2 closest to particle 1), the change in the angle θ will correspond to the actual value of the angle
θ between α and w. And then, in order to �nd the total de�ection angle, one can simply do p = π − 2θ.
Calculating the above expression we �nd

θ′(t)

r′(t)
=

J√
2µ

r2

√
E −

(
φ (r(t)) + J2

2µ(r(t))2

)
Or, inserting our relationship between J and E,

=
b

r2

√
E√

E −
(
φ (r) + b2E

r2

) =
b

r2

1√
1−

(
φ(r)
E + b2

r2

) .
Integrating, we �nd

θ =

ˆ rmin

∞

b

r2

1√
1−

(
φ(r)
E + b2

r2

) dr =

ˆ rmin

∞

b

r2

1√
1−

(
2φ(r)
µ‖w‖2 + b2

r2

) dr

Now, de�ne r = b
s ; dr

ds = − b
s2 . When r is minimal, s reaches its maximum, such that: ds

dθ (smax) = 0.
Therefore

s2
max +

2φ (b/smax)

µ‖w‖2
= 1
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and, if φ is a potential with cuto� at r = σ,

θ =

smaxˆ
b
σ

1√
1− s2 − 2φ(b/s)

µ‖w‖2

ds+ arcsin

(
b

σ

)
(A.3.14)

Equation A.3.12 is called the Orbital equation, considering a �nite range potential φ. Should φ
have an unbounded support, it su�ces to pass through the limit when σ →∞.

A.4 Derivation of the BBGKY hierarchy

Throughout this section of the Appendix, Ω denotes a bounded open set in R3 with a su�ciently regular
(e.g. Lipschitz) orientable boundary. The derivation here is for the physical case with 3 spatial dimensions,
but the derivation is the same, mutatis mutandis, when x ∈ Rd. We also assume that PN (or simply P )
is a classical solution to the Liouville equation, in order to use the divergence theorem as done here, but
the spirit of the derivation remains the same if we take PN to be only a weak solution to the Liouville
equation.

We start by applying the operator Es : L1(ΓN ) −→ L1(Γs) as de�ned in section 1.5.1 to both sides
of the Liouville equation. We start by considering the case when particles interact only through hard
collisions. The result would then be:

∂P (s)

∂t
+

¨

Γσ 6=N−s

{P,H}
i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j = 0

Expanding the Poisson bracket, we get:

∂P (s)

∂t
+

¨

Γσ 6=N−s

∑
i6s

3∑
j=1

∂P

∂x3i+j

∂H

∂p3i+j
− ∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

+

¨

Γσ 6=N−s

N∑
i>s

3∑
j=1

∂P

∂x3i+j

∂H

∂p3i+j
− ∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j = 0

Since our summations are �nite, and in this case there is no interparticle potential, we can switch the
order of integration and sum operators, and �nd

∂P (s)

∂t
+
∑
i6s

¨

Γσ 6=N−s

3∑
j=1

∂P

∂x3i+j

∂H

∂p3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

= −
N∑
i>s

¨

Γσ 6=N−s

3∑
j=1

∂P

∂x3i+j

∂H

∂p3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Then, changing variables from momentum to velocity, in vector notation, we �nd

∂P (s)

∂t
+
∑
i6s

¨

Γσ 6=N−s

vi · ∇xiP
j=N∏
j=s+1

dxjdvj +
∑
k>s

¨

Γσ 6=N−s

vk · ∇xkP
j=N∏
j=s+1

dxjdvj = 0 (A.4.1)

Where for each �xed j ≤ N , vj ∈ R3 is a vector, and dvj implies integration with respect to all
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coordinates of vj . We consider each term on the left hand side of equation (A.4.1) separately. For i ≤ s,

¨

Γσ 6=N−s

vi · ∇xiP
j=N∏
j=s+1

dxjdvj =

¨

Γσ 6=N−s

∇xi · (viP )

j=N∏
j=s+1

dxjdvj

Notice that the domain of integration is dependent on xi, so we �nd that we cannot simply take the
divergence "outside" of the integral. rather, de�ne the change of variables: xj = σzj + xi for j 6= i. we
get then

¨

Γσ 6=N−s

∇xi · (viP )

j=N∏
j=s+1

dxjdvj = σ3(N−s)
¨

{‖zj‖≥1}

∇xi · (viP )(σzj + xi, vi)

j=N∏
j=s+1

dzjdvj ,

and from the chain rule

∇xi · (viP )(σzj + xi, vi) = ∇xi · (viP (σzj + xi, vi))−
N∑
k>s

∇xk · (viP )(σzj + xi, vi)

Inserting this onto the last integral, since now the domain of integration is independent from the variable
xi, we �nd that

¨

Γσ 6=N−s

∇xi · (viP )

j=N∏
j=s+1

dxjdvj = ∇xi ·
¨

{‖zj‖≥1}

σ3(N−s)(viP )(σzj + xi, vi)

j=N∏
j=s+1

dzjdvj

−
N∑
k>s

σ3(N−s)
¨

{‖zj‖≥1}

∇xk · (viP )(σzj + xi, vi)

j=N∏
j=s+1

dzjdvj ,

Undoing the change of variables, and using the divergence theorem on the second integral on the right
hand side, , we arrive at the following expression;

¨

Γσ 6=N−s

∇xi · (viP )

j=N∏
j=s+1

dxjdvj = ∇xi ·
¨

{‖zj‖≥1}

(viP )

j=N∏
j=s+1

dxjdvj

−
N∑
k>s

¨

{‖zk‖=1}

(vi · nik)Pdσik

j=N∏
j=s+1,j 6=k

dxj

j=N∏
j=s+1

dvj ,

= ∇xi · (viP (s))−
N∑
k>s

¨

{‖zk‖=1}

(vi · nik)P (s+1)dσikdvk, (A.4.2)

where nik is the unit normal vector to the sphere ‖xi − xk‖ = σ (equivalently, ‖zk‖ = 1), and dσik is
the area element of that sphere.

Proceeding similarly, we now turn to the second term on the left hand side of equation (A.4.1). For
s+ 1 ≤ k ≤ N , we say that

¨

Γσ 6=N−s

vk · ∇xkP
j=N∏
j=s+1

dxjdvj =

¨

Γσ 6=N−s

∇xk · (vkP )

j=N∏
j=s+1

dxjdvj
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Now, since xk is one of the integration variables, we can start by using the Divergence theorem, and turn
the right hand side into an integration over the boundary. The boundary has 2 terms: an integration over
the physical boundary ∂Ω (absent in the case when our domain is unbounded), and a term corresponding
to integrations over the spheres given by the condition ‖xj − xi‖ = σ. This gives us

¨

Γσ 6=N−s

∇xk · (vkP )

j=N∏
j=s+1

dxjdvj =

ˆ

∂Ω×R3

¨

Γσ 6=N−s−1

(vk · n)P

j=N∏
j=s+1,j 6=k

dxjdvj dxkdvk

+

N∑
i=1,i6=k

ˆ

{‖zk‖=1}×R3

 ¨
Γσ 6=N−s−1

(vk · nik)P

j=N∏
j=s+1,j 6=k

dxjdvj

 dσikdvk.
The �rst integral on the right hand side is 0 if we restrict ourselves to the case of closed boundaries. For
the second term on the right hand side, since k > s, we can separate the summation in 2 parts; one for
i ≤ s, and one for s < i ≤ N :

=

s∑
i=1

ˆ

{‖zk‖=1}×R3

 ¨
Γσ 6=N−s−1

(vk · nik)P

j=N∏
j=s+1,j 6=k

dxjdvj

 dσikdvk

+

N∑
i=s+1,i6=k

ˆ

{‖zk‖=1}×R3

 ¨
Γσ 6=N−s−1

(vk · nik)P

j=N∏
j=s+1,j 6=k

dxjdvj

 dσikdvk.
Since in the �rst term of the above expression there is no integration with respect to dxidvi, if we

solve all integrals (in both terms) with respect to variables not containing the indices i or k, we are left
with ¨

Γσ 6=N−s

∇xk · (vkP )

j=N∏
j=s+1

dxjdvj =

s∑
i=1

ˆ

{‖zk‖=1}×R3

(vk · nik)P (s+1) dσikdvk

+

N∑
i=s+1,i6=k

ˆ

{‖zk‖=1}×R3

(vk · nik)P (s+2)dxidvi dσikdvk. (A.4.3)

Next, we wish to combine the results from equations (A.4.2),(A.4.3). We �nd the expression

s∑
i=1

¨

Γσ 6=N−s

vi · ∇xiP
j=N∏
j=s+1

dxjdvj +

N∑
k=s+1

¨

Γσ 6=N−s

∇xk · (vkP )

j=N∏
j=s+1

dxjdvj

=

s∑
i=1

∇xi ·(viP (s))−
s∑
i=1

N∑
k=s+1

¨

{‖zk‖=1}

(vi·nik)P (s+1)dσikdvk+

s∑
i=1

N∑
k=s+1

ˆ

{‖zk‖=1}×R3

(vk·nik)P (s+1)dxidvi dσikdvk

+

N∑
k=s+1

N∑
i=s+1,i6=k

ˆ

{‖zk‖=1}×R3

(vk · nik)P (s+2)dxidvi dσikdvk.

First, we notice that the second and third terms on the right hand side are very similar, so they can be
combined. Also, in the last term of the right hand side, since nik = −nki, most terms of the summation
will disappear. After these simpli�cations, de�ning the variable Vik = vi − vk, we arrive at the the
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expression:
s∑
i=1

¨

Γσ 6=N−s

vi · ∇xiP
j=N∏
j=s+1

dxjdvj +

N∑
k=s+1

¨

Γσ 6=N−s

∇xk · (vkP )

j=N∏
j=s+1

dxjdvj

=

s∑
i=1

∇xi · (viP (s))−
s∑
i=1

N∑
k=s+1

ˆ

{‖zk‖=1}×R3

(Vik · nik)P (s+1) dσikdvk

+
1

2

N∑
i=s+1,i6=k

ˆ

{‖zk‖=1}×R3

(Vki · nik)P (s+2)dxidvi dσikdvk. (A.4.4)

In order to proceed further, we have to make a continuity assumption for the probability distribution
PN :

� we assume that PN is continuous over the boundary, which implies that

PN (x1, v1, ..., xi, vi, ..., xj , vj , ..., xN , vN ) = PN (x1, v1, ..., xi, v
′
i, ..., xj , v

′
j , ..., xN , vN ) (A.4.5)

whenever ‖xi − xj‖ = σ,where v′i, v
′
j denote velocities after a collision.

We argue that using (A.4.5), the last term on the right hand side is identically 0. Introduce the change
of variables (vi, vk, nik) → (v′i, v

′
k,−nik). Since we are integrating over a sphere, separating it into the

hemispheres {Vki ·nik > 0} and {Vki ·nik < 0}, this change of variables takes points from one hemisphere
to the other, and thanks to (A.4.5), P (s+2) has the same value over both hemispheres. Therefore the
integrals over the hemispheres cancel each other. Lastly, using the fact that particles are indistinguishable,
we can disregard one of the summations on the second term on the right hand side of (A.4.4). So we �nd

s∑
i=1

¨

Γσ 6=N−s

vi · ∇xiP
j=N∏
j=s+1

dxjdvj +

N∑
k=s+1

¨

Γσ 6=N−s

∇xk · (vkP )

j=N∏
j=s+1

dxjdvj

=

s∑
i=1

∇xi · (viP (s))− (N − s)
s∑
i=1

ˆ

{‖zk‖=1}×R3

(Vik · nik)P (s+1) dσikdvk. (A.4.6)

Thanks to the indistinguishability, the index k is now �xed, and we can take k = s+ 1. Finally, we can
insert this back onto our �rst expression (A.4.1), yielding

∂P (s)

∂t
+
∑
i6s

¨

Γσ 6=N−s

vi · ∇xiP
j=N∏
j=s+1

dxjdvj +
∑
k>s

¨

Γσ 6=N−s

vk · ∇xkP
j=N∏
j=s+1

dxjdvj

=
∂P (s)

∂t
+

s∑
i=1

∇xi · (viP (s))− (N − s)
s∑
i=1

ˆ

{‖zk‖=1}×R3

(Vik · nik)P (s+1) dσikdvk = 0 (A.4.7)

Again, we separate the last term on the left hand side as integrals over two hemispheres, and recall that
the change of variables (vi, vk, nik) → (v′i, v

′
k,−nik) takes points from one hemisphere to the other. So
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we can convert this into 2 integrals over the same hemisphere:

ˆ

{‖zk‖=1}×R3

(Vik·nik)P (s+1) dσikdvk =

ˆ

{Vki·nik>0}×R3

|Vik·nik|P (s+1) dσikdvk−
ˆ

{Vki·nik<0}×R3

|Vik·nik|P (s+1) dσikdvk

=

ˆ

{Vki·nik>0}×R3

|Vik ·nik|
(
P (s+1)′ − P (s+1)

)
dσikdvk = σ2

ˆ

S2
+×R3

|Vik ·nik|
(
P (s+1)′ − P (s+1)

)
dH(α)dvk

where S2
+ denotes the hemisphere of the unit sphere where Vki · nik > 0. As claimed, we reach the

expression

∂P (s)

∂t
+

s∑
i=1

vi · ∇xiP (s) = (N − s)σ2
s∑
i=1

ˆ

S2
+×R3

|Vik · nik|
(
P (s+1)′ − P (s+1)

)
dH(α)dvk, (A.4.8)

which de�ned the BBGKY hierarchy for hard spheres, for each s 6 N .

Next, we consider the case when particles interact through a short range potential. Starting in the
same way as in the previous case, applying Es to both sides of the Liouville equation, we �nd

∂P (s)

∂t
+

¨

(Ω×R3)N−s

{P,H}
i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j = 0

Expanding the Poisson bracket we get:

∂P (s)

∂t
+

¨

(Ω×R3)N−s

∑
i6s

3∑
j=1

∂P

∂x3i+j

∂H

∂p3i+j
− ∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

+

¨

(Ω×R3)N−s

N∑
i>s

3∑
j=1

∂P

∂x3i+j

∂H

∂p3i+j
− ∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j = 0

Since our summations are �nite, we can switch the order of integration and sum operators

∂P (s)

∂t
+
∑
i6s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂x3i+j

∂H

∂p3i+j
− ∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

= −
N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂x3i+j

∂H

∂p3i+j
− ∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

∂P (s)

∂t
+
∑
i6s

3∑
j=1

p3i+j

¨

(Ω×R3)N−s

∂P

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j−
¨

(Ω×R3)N−s

∂H

∂x3i+j

∂P

∂p3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

= −
N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂x3i+j
p3i+j −

∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Where in the last step, we used the fact that on the left hand side, p3i+j is independent of the
integration coordinates. On the Right hand side, one can use the divergence theorem (assuming Ωto be
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simply connected) to conclude that:

N∑
i>s

¨

(Ω×R3)N−s

3∑
j=1

∂P

∂x3i+j
p3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j =

N∑
i>s

¨

(Ω×R3)N−s

∇xi · (Pp3i)

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

=

N∑
i>s

ˆ

(R3)N−s

ˆ

ΩN−s−1

ˆ
∂Ω

Pp3i dSx

 l=N∏
l=s+1,l 6=i

dx3l+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Assuming our vessel is impermeable to the gas, then P |∂Ω = 0, so this term vanishes.

Also on the left hand side, one can express ∂H
∂x3i+j

as

∂H

∂x3i+j
=
∂V

∂xj
(x3i) +

∑
k 6=i,k6s

F ikj (xi,xk) +
∑

k 6=i,k6s

F ikj (xi,xk)

Therefore, the �rst 2 terms of this sum will not depend on the integration variables for the integral
transformation. Assuming su�cient regularity conditions, one can take ∂

∂x3i+j
out of the integral in the

left hand side, ending with:

∂P (s)

∂t
+
∑
i6s

3∑
j=1

p3i+j
∂P (s)

∂x3i+j
−

 ∂V
∂xj

(x3i) +
∑

k 6=i,k6s

F ikj (xi,xk)

 ¨

(Ω×R3)N−s

∂P

∂p3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

= −
∑
i6s

3∑
j=1

¨

(Ω×R3)N−s

∑
k>s

F ikj (xi,xk)
∂P

∂p3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

−
N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂x3i+j
p3i+j −

∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Which can be rewritten as:

∂P (s)

∂t
+ {P (s), H}s = −

∑
i6s

3∑
j=1

∂

∂p3i+j

∑
k>s

¨

(Ω×R3)N−s

F ikj (xi,xk)P

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

+

N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Assuming indistinguishable particles, the value of
˜

(Ω×R3)N−s
F ikj (xi,xk)P

∏i=N,j=3
i=s+1,j=1 dx3i+jdp3i+j

on the right hand side will not be dependent on k. Therefore, choosing k = s+1, the expression simpli�es
to:

∂P (s)

∂t
+ {P (s), H}s =

−(N − s)
3∑
j=1

∂

∂p3(s+1)+j

¨

Ω×R3

F i s+1
j (xi,xs+1)P dx3(s+1)+jdp3(s+1)+j

i=N,j=3∏
i>s+1,j=1

dx3i+jdp3i+j
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+

N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

On the �rst term on the right hand side, performing the integrals for i > s+ 1, one arrives in:

∂P (s)

∂t
+ {P (s), H}s = −(N − s)

3∑
j=1

∂

∂p3(s+1)+j

¨

Ω×R3

F i s+1
j (xi,xs+1)P (s+1) dx3(s+1)+jdp3(s+1)+j

+

N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Under su�cient decay conditions for P , the term
∑N
i>s

∑3
j=1

˜
(Ω×R3)N−s

∂P
∂p3i+j

∂H
∂x3i+j

∏i=N,j=3
i=s+1,j=1 dx3i+jdp3i+j

vanishes. To prove this claim, we can rearrange the last term as

N∑
i>s

3∑
j=1

¨

(Ω×R3)N−s

∂P

∂p3i+j

∂H

∂x3i+j

i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

=

N∑
i>s

3∑
j=1

ˆ

ΩN−s

∂H

∂x3i+j

 ˆ

(R3)N−s

∂P

∂p3i+j

i=N,j=3∏
i=s+1,j=1

dp3i+j

 i=N,j=3∏
i=s+1,j=1

dx3i+j

Where we used the fact that the forces in this systems (both internal and external) are independent
on the particle's momenta. The following expression equals:

ˆ

ΩN−s

∇xH ·

 ˆ

(R3)N−s

∇pP
i=N,j=3∏
i=s+1,j=1

dp3i+j

 i=N,j=3∏
i=s+1,j=1

dx3i+j

Taking the innermost integral, I =
´

(R3)N−s
∇p
∏i=N,j=3
i=s+1,j=1 dp3i+j , one can see that I = lim

R→∞
I(R),

where:

I(R) =

ˆ

(R3)N−s

∇pP
i=N,j=3∏
i=s+1,j=1

dx3i+jdp3i+j

Using the Gauss's Theorem:

I(R) =

ˆ

∂BR(0)

P n̂ dSp

Where BR(0) =
{
x ∈

(
R3
)N−s | ‖x‖ 6 R

}
. Thus we have:

‖I(R)‖ 6 ω3(N−s)R
3(N−s)−1 sup

‖p‖=R
P

Since
´

(R3)N−s
P
∏i=N,j=3
i=s+1,j=1 dp3i+j is �nite for every x, in spherical coordinates:



108 APPENDIX A. INTRODUCTION THEOREMS

ˆ

(R3)N−s

P

i=N,j=3∏
i=s+1,j=1

dp3i+j =

∞̂

0

r3(N−s)−1

ˆ

∂BR(0)

P dSp dr 6 ω3(N−s)

∞̂

0

r3(N−s)−1 sup
‖p‖=r

P dr 6 C(x)

Therefore, we can say that:

sup
‖p‖=r

P 6 r−3(N−s)−ε

Finally:

‖I(R)‖ 6 ω3(N−s)R
−1−ε ∴ I = lim

R→∞
I(R) = 0

Our expression �nal expression then reads:

∂P (s)

∂t
+{P (s), H}s = −(N−s)

3∑
j=1

∂

∂p3(s+1)+j

¨

Ω×R3

F i s+1
j (xi,xs+1)P (s+1) dx3(s+1)+jdp3(s+1)+j , (A.4.9)

for s 6 N, as claimed.

A.5 Factorization property of equilibrium probability distribu-

tions in the limit of large N

We follow in this part the demonstration given by [7]
Any time independent solution to equation (1.5.2) (Liouville equation) in 3 dimensions will be a

function of the 6N-1 constants of motion of our system. If we know their equilibrium values, we could
say:

P (x, v) = A

6N−1∏
j

δ(Kj(x, v)−K(observed)
j )

If we can assume the dynamics of our system to be ergodic, then the Kj(x, v) can become arbi-
tratily close to the total energy of our system, so that our expression reduces to P (x, v) = Aδ(E(x, v)−
E(observed)). Up to this point, the expressions considered are general for systems of classical particles
(apart from the simpli�cation ergodicity assumption). Assuming now that the potential energy is small
in most regions of the phase space (as particles in a gas are usually very separated), we can approximate
the expression for E(x,y), saying:

P (x, v) = Aδ

 N∑
j=1

mjv
2
j

2
−Ne


Where e is the energy per particle. We now use this expression to obtain a value for A, our normal-

ization constant:

A =
1

´
δ

(
N∑
j=1

mjv2
j

2 −Ne

)∏
dxi

∏
dvi

Since our expression doesn't depend on x (no potential energy), and since we're assuming an ensemble
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at constant volume and energy, integrations in the x coordinate can be factored out. We can also change
variables, setting: wj =

√
(mj/2)vj , which then gives:

A =

N∏
j

m
3
2
j

23N/2VN
´
δ

(
N∑
j=1

w2
j −Ne

)∏
dwj

Where VN is the volume occupied by the system in phase space. Passing to polar coordinates:
N∑
j=1

w2
j = r2, thus

A =

N∏
j

m
3
2
j

23N/2VNWN

´
δ (r2 −Ne) r3N−1dr

=

N∏
j

m
3
2
j

23N/2VNW3N (Ne)
3N−2

2

where we integrated out the angular part, yielding the factor WN (area of the unit sphere in N
dimensions).

This has the following remarkable consequence: suppose we want to have a probability density for a
single particle in the phase space. We must then de�ne:

P 1(x1, v1) =

ˆ
P
∏
i 6=1

dxidvi

which gives us

P 1
N (x1, v1) = A

ˆ
δ

 N∑
j>1

mjv
2
j

2
−
(
Ne− m1v

2
1

2

)∏
j>1

dxjdvj = AW3N−3
VN−1

2
(2Ne−m1v

2
1)(3N−5)/2

N∏
j>1

m
3
2
j

=

N∏
j

m
3
2
j

23N/2VNW3N (Ne)
3N−2

2

W3N−3
VN−1

2
(2Ne−m1v

2
1)(3N−5)/2

N∏
j>1

m
−3
2
j

(The W3N−3 term appears since by subtracting a particle we in fact take away 3 dimensions from our

integral). This becomes after cancellation:

=

(
m1

2Ne

) 3
2

V

(
1− m1v

2
1

2Ne

)(3N−5)/2(
W3N−3

W3N

)
=

(
m1

2Ne

) 3
2

V

((
1− (m1v

2
1/2e)

N

)N)3/2(
W3N−3

W3N

)(
1− m1v

2
1

2Ne

)−5/2

Taking the limit as N →∞, we see that the last term in brackets approaches 0, while for the second
term we have:

lim
N→∞

((
1− (m1v

2
1/2e)

N

)N)3/2

= exp

(
−3m1v

2
1

4e

)
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One can also show that:

lim
N→∞

(
m1

2Ne

) 3
2

V

W3N−3

W3N
=

1

V

(
4πe

3m1

)−3/2

,

Therefore:

lim
N→∞

P 1
N (x1, v1) =

1

V

(
4πe

3m1

)−3/2

exp

(
−3m1v

2
1

4e

)
≡ P (1)(x1, v1)

So in the thermodynamic limit (in�nite number of particles), the probability density approaches a
gaussian distribution! Moreover, if we calculate the 2-particle distribution (probability density of �nding
a pair of particles in a given region of the phase space) by integrating out the other particle's coordinates,
we �nd that:

P 2(x1, x2, v1, v2) =

ˆ
P
∏
i>2

dxidvi = A

ˆ
δ

 N∑
j>2

mjv
2
j

2
−
(
Ne− m1v

2
1

2
− m2v

2
2

2

)∏
j>2

dxjdvj

=

(
1

2Ne

)3
V 2

(m1m2)
3
2

(
1− m1v

2
1 +m2v

2
2

2Ne

)(3N−8)/2(
W3N−6

W3N

)

=

(
1

2Ne

)3
V 2

(m1m2)
3
2

((
1− ((m1v

2
1 +m2v

2
2)/2e)

N

)N)3/2(
W3N−6

W3N

)(
1− m1v

2
1 +m2v

2
2

2Ne

)−8/2

Again from the same limiting procedure, we �nd that:

lim
N→∞

(
1

2eN

)3
W3N−6

W3N
=

(
3

4πe

)3

Therefore:

lim
N→∞

P 2
N (x1, x2, v1, v2) =

1

V 2

(
4πe

3m1m2

)−3

exp

(
−3m1v

2
1

4e

−3m2v
2
2

4e

)

=

[
1

V

(
4πe

3m1

)−3/2

exp

(
−3m1v

2
1

4e

)][
1

V

(
4πe

3m1

)−3/2

exp

(
−3m2v

2
2

4e

)]

= P (1)(x1, v1)P (1)(x2, v2)

Therefore, in the thermodynamic limit, particles become statistically uncorrelated (probability of
�nding a pair of particles in a given state becomes simply the product of the probabilities of each
individual state).



Appendix B

Section 1.1 Theorems

B.1 Equivalence lemma

The lemma we wish to prove is

Lemma B.1.1. Let f ∈ L1
loc([0, T ] × R2d) be an essentially non-negative function. Then the following

conditions hold
(i) If Q±(f, f),∈ L1

loc((0, T )×R2d), then f is a distributional solution to the Boltzmann equation if and
only if f is a mild solution.
(ii) If f satis�es the de�nition 2.2.4 at least for the particular choice of β(x) = log(1 + x), x > 0, then
it is a mild solution.
(iii) If f is a mild solution and Q±(f, f)β′(f) are both in L1

loc((0,∞)×Rd×Rd), then f is a renormalized
solution.
(iv) If Q−(f, f) ∈ L1

t (0, T ) for a.e. x, v, then, if f is an exponentially mild solution, f is also a mild
solution.

Proof. (i): take any ϕ ∈ C∞0 (R2d), ζ(t) ∈ C∞0 ([0, T ]). By de�nition, f is a distributional solution if
−〈f,Dψ〉−〈Q(f, f), ψ〉 = 0 ∀ψ ∈ C∞0 ([0, T ]×R2d). The pairing 〈·, ·〉 becomes an integral over [0, T ]×R2d

in case both arguments are functions in L1
loc, and reduces to 〈Df−Q(f, f), ψ〉 = 0 ∀ψ ∈ C∞0 ([0, T ]×R2d)

if f is regular enough. In particular

−
〈
f,

[
∂

∂t
+ v · ∇

]
ϕ(x− vt, v)ζ(t)(t)

〉
− 〈Q(f, f), ϕ(x− vt, v)ζ(t)(t)〉 = 0

(choosing ψ = ϕ(x− vt, v)ζ(t)). But

−
〈
f,

[
∂

∂t
+ v · ∇

]
ϕ(x− vt, v)ζ(t)

〉
= −

〈
f, ζ(t)

[
∂

∂t
+ v · ∇

]
ϕ(x− vt, v)

〉

−
〈
f, ϕ(x− vt, v)

[
∂

∂t
+ v · ∇

]
ζ(t)

〉
= −〈f, ϕ(x− vt, v)ζ ′(t)〉

Therefore
−〈f, ϕ(x− vt, v)ζ ′(t)〉 = 〈Q(f, f), ϕ(x− vt, v)ζ(t)〉

After performing a change of variables (x′ = x− vt)

−〈f(x′ + vt, v), ϕ(x′, v)ζ ′(t)〉 = 〈Q(f, f)(x′ + vt, v), ϕ(x′, v)ζ(t)〉

111
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Since ϕ is arbitrary and Q±(f, f), f ∈ L1
loc((0, T ) × R2d), we can write down our pairing as an integral,

and for almost every x′, v

−
ˆ T

0

f(x′ + vt)ζ ′(t) dt =

ˆ T

0

Q(f, f)(x′ + vt)ζ(t) dt (B.1.1)

Thus Q(f, f) is a weak derivative of f in this case, and we can use the following theorem, taken from
[6]:

Theorem B.1.1. Let f ∈ W 1,1
loc (I), I ∈ R a bounded open set. Then f has a continuous representative

f̃ which is absolutely continuous in every compact set K ⊆ I, meaning that

f̃ = f a.e., f̃ ∈ C(I)

f̃(t2)− f̃(t1) =

ˆ t2

t1

∂wf dt; [t1, t2] ⊆ I

Where ∂wf denotes the weak derivative of f .

We pick I = [0, T ], and the above theorem tells us that there is a continuous representative, almost
everywhere equal to f, which satis�es

f#(t, x, v)− f#(t, x, v) =

ˆ t

s

Q#(f, f)(r, x, v) dr for a.e.(x, v) ∈ R2d

To prove the converse, we simply follow the argument backwards: Starting from the de�nition of mild
solution, we have that f# has na ordinary derivative almost everywhere which is equal to Q#(f, f).
this means that ∂wf# = Q(f, f)#, which brings us back to equation B.1.1. Then, we multiply by an
arbitrary test function ϕ, and return to our de�nition of distribution, the only thing we have to check
is that any function ψ ∈ C∞0 ([0, T ] × R2d) can be approximated by a product of the form ϕζ where
ϕ(x, v) ∈ C∞0 (R2d), ζ(t) ∈ C∞0 ([0, T ]).

(ii) Suppose that f is a renormalized solution, but only for β(x) = log(1 + x). By de�nition of a
renormalized solution, we have that

−
〈
β(f),

[
∂

∂t
+ v · ∇

]
ψ

〉
− 〈Q(f, f)β′(f), ψ〉 = 0.

For any test function ψ. We wish to show that if this is the case, then f is also a renormalized solution
with another choice of renormalization, namely βδ(x) = 1

δ log(1 + δx). For this, notice that βδ(x) =
1
δβ(δ(eβ(x) − 1)) = gδ(β(x)), with gδ(x) = 1

δβ(δ(ex − 1)). For each �xed δ > 0, the function gδ(x) is

Lipschitz, since g′δ(x) = ex

(1−δ)+δex <
1
δ , and we have the following

Lemma B.1.2. let f , Df ∈ L1
loc(RN+1;R), and g : R −→ R any lipschitz function. Then

Dg(f) = g′(f)Df a.e.⇒ Dg(f) ∈ L1
loc

Therefore, applying the above lemma we have

−
〈
gδ(β(f)),

[
∂

∂t
+ v · ∇

]
ψ

〉
− 〈Q(f, f)g′δ(β(f))β′(f), ψ〉 = 0

Choosing again ψ = ϕ(x − vt, v)ζ(t) and noticing that g′δ(β(f))β′(f) = 1+f
1+δf ∈ L

∞, we can perform
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the exact same steps as before, and arrive that

− 〈βδ(f)#, ϕ(x, v)ζ ′(t)〉 =

〈
Q(f, f)

1 + δf

#

, ϕ(x, v)ζ(t)

〉
(B.1.2)

Since Q(f,f)
1+f ∈ L1

loc, then so is Q(f,f)
1+δf = 1+f

1+δf
Q(f,f)
1+f . Also, since βδ(x) ≤ x, we have that βδ(f) ≤ f ∴

βδ(f) ∈ L1
loc.

−
ˆ T

0

βδ(f)#ζ ′(t) dt =

ˆ T

0

Q(f, f)

1 + δf

#

ζ(t) dt a.e.

∴ βδ(f)#(t, x, v)− βδ(f)#(s, x, v) =

ˆ t

s

Q(f, f)

1 + δf

#

(r, x, v) dr for a.e.(x, v) ∈ R2d (B.1.3)

again using theorem B.1.1. Taking the limit when δ → 0, the left hand side converges to f#(t, x, v)−
f#(s, x, v). Since Q(f,f)

1+δf is decreasing as a function of the parameter δ > 0, we can use the monotone
convergence theorem, so we can conlude that the limit equation is

f#(t, x, v)− f#(s, x, v) =

ˆ t

s

Q(f, f)#(r, x, v) dr for a.e.(x, v) ∈ R2d

which proves that f is indeed a mild solution.

(iii) Let f be a mild solution. Then, β1(f) is also absolutely continuous, and by lemma B.1.2 we can
claim that

β1(f)#(t, x, v)− β1(f)#(s, x, v) =

ˆ t

s

Q(f, f)

1 + f

#

(r, x, v) dr for a.e.(x, v) ∈ R2d

Finally, from item (i) we know that β1(f) is a distributional solution, which proves that f is a renormalized
solution.

(iv) Let f be an exponentially mild solution. Then, this implies Q+
e (f, f), A ∗ f ∈ L1

t (0, T ) for a.e.
x, v, and also by assumption Q−(f, f) ∈ L1

t (0, T ) for a.e. x, v. By de�nition of an exponentially mild
solution, we have that

∂wfe = Q+
e (f, f)

(∂wf#)e
´ t
0

(A∗f)#(r,w,v) dr + f#(A ∗ f)#e
´ t
0

(A∗f)#(r,w,v) dr = Q+(f, f)#e
´ t
0

(A∗f)#(r,w,v) dr

∴ ∂wf# +Q−(f, f)# = Q+(f, f)#

Since Q+
e (f, f) = Q+(f, f)#eF

#

and e−F
# ≤ C, Q+

e (f, f) ∈ L1
t (0, T )⇒ Q+(f, f) ∈ L1

t (0, T ). Also, since
fe was absolutely continuous with respect to t, f# will be as well. Therefore,

∂wf# = Q+(f, f)# −Q−(f, f)# = Q(f, f)# ∈ L1
t (0, T )

Finally then, this means

f(t, x, v)− f0(x, v) =

ˆ t

0

Q(f, f)# dr

And f is a mild solution.

B.2 Renormalized collision lemma

What we wish to prove is that

‖Qn(f, f)−Qn(g, g)‖L1
v(Rd) ≤ C(n, d)‖f − g‖L1

v(Rd)
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Proof. As is often the case in when dealing with the Boltzmann equation, we will deal with the 'gain'
and 'loss' terms on the collision operator separately. Consider the case of the 'loss' term. We have that

‖Q−n (f, f)−Q−n (g, g)‖L1
v

=∣∣∣∣∣
t

R2d×Sd−1

[(
1 + δn

´
Rd g dξ

)
ff∗ −

(
1 + δn

´
Rd f dξ

)
gg∗
]
Bn(v − v∗, α) dHd−1(α)dv∗dv(

1 + δn
´
Rd f dξ

) (
1 + δn

´
Rd g dξ

) ∣∣∣∣∣
=

∣∣∣∣∣
t

R2d×Sd−1

[
ff∗ − gg∗ + δn

(
ff∗
´
Rd g dξ − gg∗

´
Rd f dξ

)]
Bn(v − v∗, α) dHd−1(α)dv∗dv(

1 + δn
´
Rd f dξ

) (
1 + δn

´
Rd g dξ

) ∣∣∣∣∣ (B.2.1)

where for shorthand we ommited the arguments of f, g in the nominator, which can be written explicitly
as (

1 + δn

ˆ
Rd
g(t, x, ξ) dξ

)(
1 + δn

ˆ
Rd
f(t, x, ξ) dξ

)
and in the numerator, ff∗ = f(t, x, v)f(t, x, v∗), gg∗ = g(t, x, v)g(t, x, v∗). Separate the integral in

the numerator into two terms, namely

[I] =
y

R2d×Sd−1

[ff∗ − gg∗]Bn(v − v∗, α) dHd−1(α)dv∗dv

[II] =
y

R2d×Sd−1

(
ff∗

ˆ
Rd
g dξ − gg∗

ˆ
Rd
f dξ

)
Bn(v − v∗, α) dHd−1(α)dv∗dv

=

˘
Rd×Rd×Rd×Sd−1

[f(v)f(v∗)g(ξ)− g(v)g(v∗)f(ξ)]Bn(v − v∗, α) dHd−1(α)dξdvdv∗

ommiting the dependence on (x, t). By construction, Bn(v − v∗, α) is C∞0 for each n. Therefore, let
C ′(n, d) = ‖Bn‖L∞α L(Sd−1), where L is the lebesgue measure. Then, insert ±fg∗ in the �rst integral and
±g(v∗)f(v)g(ξ)± f(v)g(v∗)f(ξ) on the second. Using the triangle inequality one then arrives at

|I| ≤ C ′(n, d)
x

R2d

|ff∗ − fg∗ + fg∗ − gg∗| dv∗dv ≤ C ′(n, d)‖f − g‖L1
v

[
‖f‖L1

v
+ ‖g‖L1

v

]
|II| ≤ C ′(n, d)

y

R3d

|f(v)f(v∗)g(ξ)− g(v∗)f(v)g(ξ)| dξdvdv∗+

+C ′(n, d)

[
y

R3d

|g(v∗)f(v)g(ξ)− f(v)g(v∗)f(ξ)| dξdvdv∗ +
y

R3d

|f(v)g(v∗)f(ξ)− g(v)g(v∗)f(ξ)| dξdvdv∗

]
≤ 3C ′(n, d)

[
‖f‖L1

v
‖g‖L1

v
‖f − g‖L1

v

]
Finally, returning to equation B.2.1 yields

‖Q−n (f, f)−Q−n (g, g)‖L1
v
≤ |I|+ δn|II|(

1 + δn‖f‖L1
v

) (
1 + δn‖g‖L1

v

)
≤
C ′(n, d)‖f − g‖L1

v

[
‖f‖L1

v
+ ‖g‖L1

v
+ 3δn‖f‖L1

v
‖g‖L1

v

][
1 + δn

(
‖f‖L1

v
+ ‖g‖L1

v

)
+ δ2

n‖f‖L1
v
‖g‖L1

v

]
≤

3C ′(n, d)‖f − g‖L1
v

[
δn
(
‖f‖L1

v
+ ‖g‖L1

v

)
+ δ2

n‖f‖L1
v
‖g‖L1

v

]
δn
[
1 + δn

(
‖f‖L1

v
+ ‖g‖L1

v

)
+ δ2

n‖f‖L1
v
‖g‖L1

v

] ≤ C1(n, d)‖f − g‖L1
v
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where C1(n, d) = 3C ′(n, d)/δn, proving the assertion. For the 'gain' term on the collision operator, we
perform the exact same calculations as in equation B.2.1, the only di�erence is that all functions now
appear primed (recall that f ′ = f(t, x, v′), f ′∗ = f(t, x, v′∗)). We de�ne then [I] and [II] in the same way
as before, splitting the numerator. The only di�erence is that in order to establish bounds for [I],[II], we
now need to perform a change of variables. De�ning σ = 〈v − v∗, α〉α and ommiting the dependence on
x, t: y

R2d×Sd−1

f ′g′∗Bn(v − v∗, α) dHd−1(α)dv∗dv

=
y

R2d×Sd−1

f(v − 〈v − v∗, α〉α)g(v∗ + 〈v − v∗, α〉α)Bn(v − v∗, α) dHd−1(α)dv∗dv

=
y

R2d×Sd−1

1

|〈v − v∗, α(σ)〉|d
f(v − σ)g(v∗ + σ)Bn(v − v∗, α(σ)) dσdv∗dv.

Recall now that Bn = 0 if 〈(v − v∗), α〉 < δn, so we can consider only the the case when
〈(v − v∗), α〉 ≥ δn, and claim then that the above expression satis�es

≤ 1

δdn

y

R2d×Sd−1

f(v − σ)g(v∗ + σ)Bn(v − v∗, α(σ)) dσdv∗dv

≤ ‖Bn‖L
∞

δdn

y

R2d×supp(Bn)

f(v − σ)g(v∗ + σ) dσdv∗dv = C∗(n, d)‖f‖L1
v
‖g‖L1

v

Where in the above, we used the fact that the Bn are compactly supported and smooth, therefore
bounded. We also used Fubini's theorem to swap the order of integration, performing �rst the integrals
with respect to v, v∗, which gives us the L1 norms. Setting L(A) as the lebesgue measure, the constant

that appears in this bound is given by C∗(n, d) = ‖Bn‖L∞
δdn

L(supp(Bn)). Performing the exact same

splitting as before, we get
|I| ≤ C∗(n, d)‖f − g‖L1

v

[
‖f‖L1

v
+ ‖g‖L1

v

]
|II| ≤ 3C∗(n, d)

[
‖f‖L1

v
‖g‖L1

v
‖f − g‖L1

v

]
‖Q+

n (f, f)−Q+
n (g, g)‖L1

v
≤ |I|+ δn|II|(

1 + δn‖f‖L1
v

) (
1 + δn‖g‖L1

v

)
≤

3C∗(n, d)‖f − g‖L1
v

[
δn
(
‖f‖L1

v
+ ‖g‖L1

v

)
+ δ2

n‖f‖L1
v
‖g‖L1

v

]
δn
[
1 + δn

(
‖f‖L1

v
+ ‖g‖L1

v

)
+ δ2

n‖f‖L1
v
‖g‖L1

v

] ≤ C2(n, d)‖f−g‖L1
v
, C2(n, d) = 3C∗(n, d)/δn

Finally, de�ning C(n, d) = C1(n, d) +C2(n, d), we get the desired result from the triangle inequality.

B.3 Dunford-Pettis and De-la-Valéé-Poussin's Lemmas

The key ingredients in the theorem of Diperna and Lions for the existence of renormalized solutions are
the averaging lemmas (which we treat in detail in the next subsection) and the lemmas of Dunford-Pettis
and De-la-Valéé-Poussin, which allows us to extract weakly converging subsequences from a bounded
sequence in L1, something which is not possible in general. Although they are not new results, we use
arguments based on them so frequently in the main proof that they deserve a demonstration of their own.
The arguments used here come mainly from [15],[5] and [11].

Theorem B.3.1. Let F ⊆ L1(Ω, dµ)be a uniformly bounded family. Then the following are equivalent

�

lim
R→∞

sup
f∈F

ˆ
f≥R

f dµ = 0



116 APPENDIX B. SECTION 1.1 THEOREMS

� ∀ε > 0 exists δ > 0 such that µ(A) < δ implies

sup
f∈F

ˆ
A

f dµ < ε

� (De-la-Valée-Poussin) there is a continuous, nonnegative, nondecreasing convex function G : [0,∞) −→
[0,∞) such that:

lim
t→∞

G(t)

t
=∞ sup

f∈F

ˆ
G(|f |(y)) dµ(y) <∞

Proof. We will prove that (iii)⇒ (ii)⇒ (i)⇒ (iii). For the �rst step, de�ne

M = sup
f∈F

ˆ
G(|f |) dµ(y)

Then, since limt→∞
G(t)
t = ∞, let t0 be such that G(t)

t > 2M
ε ⇔ t < ε

2MG(t) if t > t0. Let A be a set
with L(A) < δ. Then

ˆ
A

|f(y)| dy =

ˆ
A∩{|f |≤t0}

|f(y)| dy +

ˆ
A∩{|f |>t0}

|f(y)| dy ≤ t0
ˆ
A

dy +

ˆ
A∩{|f |>t0}

|f(y)| dy

For the second integral, since |f | > t0, we have that

|f(y)| < ε

2M
G(|f |)(y)

Therefore

t0

ˆ
A

dy +

ˆ
A∩{|f |>t0}

|f(y)| dy < δt0 +
ε

2M

ˆ
G(|f |(y)) dy = δt0 + +

ε

2

If we choose δ = ε
2t0

, then the conclusion follows.

To prove that (ii)⇒ (i), we use Chebyshev's inequality, and say that

L({|f | > C}) ≤ ‖f‖L
1

C

Then, for every ε > 0 there is C > 0 such that L({|f | > C}) < δ ∀f ∈ F , and therefore

sup
f∈F

ˆ
{|f |>C}

|f(y)| dy < ε.

The last step ((i)⇒ (iii)) is the longest since our proof is contructive: we exhibit a function G satisfying
all properties in the theorem, following the proof given by [5]. By our hypothesis, there is a sequence of
real numbers Cn such that Cn →∞ and

sup
f∈F

ˆ
{|f |>Cn}

|f(y)| dy < 2−n

De�ne Ef : R+ −→ R+, Ef (y) = L({|f(x)| > y}). Ef (y) is trivially decreasing, and is also integrable
since ˆ

f(y) dy =

ˆ ∞
0

Ef (y) dy.

Then ˆ
{|f |>Cn}

|f(y)| dy =

∞∑
i=Cn

ˆ
{i<|f |≤i+1}

|f(y)| dy >
∞∑

i=Cn

i

ˆ
{i<|f |≤i+1}

dy
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=

∞∑
i=Cn

i(Ef (i)− Ef (i+ 1)) =

∞∑
i=Cn

iEf (i)−
∞∑

j=Cn+1

(j − 1)Ef (j) =

∞∑
i=Cn

Ef (i)

∴
∞∑

i=Cn

Ef (i) <

ˆ
{|f |>Cn}

|f(y)| dy ⇒
∞∑
n=1

∞∑
i=Cn

Ef (i) ≤
∞∑
n=1

ˆ
{|f |>Cn}

|f(y)| dy <
∞∑
n=1

2−n = 1

Notice that if we switch the order of summation,

∞∑
n=1

∞∑
i=Cn

Ef (i) =

∞∑
i=C1

max {k:Ck<i}∑
n=1

Ef (i) =

∞∑
i=C1

Ef (i) (max {k : Ck ≤ i})

Then, De�ne the following functions

θi =

{
0, for i < C1

max {k : Ck < i}, for i ≥ C1

g,G : R+ → R+, g(t) =

∞∑
i=1

θiχ[i,i+1)(t), G(t) =

ˆ t

0

g(s) ds

Since g ≥ 0 and G is de�ned by taking an integral of g, we have that G is non-negative, increasing
and continuous (in fact, it is piecewise C∞, and can be made smooth in the whole domain by applying
a molli�er). To prove that it is convex, notice that since g is also non-decreasing, we have for any
t1 < t2 < t3 ∈ R+ ´ t2

t1
g(t) dt

t2 − t1
≤
´ t3
t2
g(t) dt

t3 − t2
∴
G(t2)−G(t1)

t2 − t1
≤ G(t3)−G(t2)

t3 − t2
which implies convexity. Finally, we have that

ˆ
G(|f(y)|) dy =

∞∑
i=0

ˆ
{i<|f |≤i+1}

G(|f(y)|) dy ≤
∞∑
i=0

G(i+ 1)

ˆ
{i<|f |≤i+1}

dy

=

∞∑
i=0

G(i+ 1)(Ef (i)− Ef (i+ 1)) =

∞∑
i=0

G(i+ 1)Ef (i)−
∞∑
j=1

G(j)Ef (j) =

∞∑
i=0

Ef (i)(G(i+ 1)−G(i))

From the de�nition of G, we see that G(i+ 1) =
∑i
j=0 θi, so that

ˆ
G(|f(y)|) dy =

∞∑
i=0

Ef (i)θi =

∞∑
n=1

∞∑
i=Cn

Ef (i) <

∞∑
n=1

2−n = 1

The �nal claim is that limt→∞
G(t)
t = ∞. To prove this, we construct an auxiliary function h by the

following rule: θi de�nes a function θ : N → N. From the well-ordering property of N, de�ne the
increasing sequence: k1 = inf(θ(N)), kn+1 = inf(θ(N)− {k1, k2, ..., kn}). Let xn be a sequence de�ned by
xn = sup(θ−1(kn)). θ de�nes a step function, so that xn de�nes the endpoint of each step. From this
notation, one can reexpress the function g as

g(t) =

∞∑
n=1

kn+1χ[xn,xn+1)(t)

De�ne the auxiliary functions h,H as

h,H : R+ → R+, h(t) =

∞∑
n=1

(
kn+1 − kn
xn+1 − xn

(t− xn) + kn

)
χ[xn,xn+1)(t), H(t) =

ˆ t

0

h(s) ds
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In the de�nition of h, inside the summation sign we have a linear interpolation between kn and kn+1.
Therefore, by the monotonicity of the sequence kn, we have that g(t) ≥ h(t) ∴ G(t) ≥ H(t) ∀t.
The advantage of using the auxiliary function h, is that it is continuous, so that H(t) is everywhere
di�erentiable (Actually, we could take G to be de�ned as H was, instead of how we treated in this
demonstration. G would satisfy all requirements in the theorem and would be everywhere di�erentiable).
Then, we can use l'Hôpital's rule, and say that

lim
t→∞

G(t)

t
≥ lim
t→∞

H(t)

t
= lim
t→∞

h(t) =∞

Since dH(t)/dt = h(t).

Therefore, all de�nitions that we used for uniform integrability are indeed equivalent. All that remains
is to show how uniform integrability and weak L1 compactness are related. We will prove one 'direction'
of the following theorem

Lemma B.3.1 (Dunford-Pettis). Let Ω ⊆ RN be an open set. The bounded subset F ⊆ L1(Ω) is weakly
compact if and only if F is uniformly integrable and tight, the last condition meaning that, for any
sequence Rn →∞,

sup
f∈F

ˆ
{‖x‖>Rn}∩Ω

|f |dx→ 0

Proof. we see that if Ω is bounded, the tightness condition is trivially satis�ed as the domain {‖x‖ >
Rn}∩Ω becomes empty for some n. We will concern ourselves with the unbounded case, as the bounded
case is a corollary. Also, we'll take Ω = RN for convenience; if not, then we can extend the domains of
functions in F to RN , it su�ces to de�ne f̃(x) = f(x), if x ∈ Ω, 0 if x ∈ Ωc.

Construct a sequence fn ∈ F .If fn ∈ L∞((0, T );L1(RN )), then the sequence µn of measures induced
by fn, converges weakly to some µ upon passing to a subsequence. fn uniformly integrable means that
∀ε > 0 exists δ > 0 such that µ(A) < δ implies

sup
n>0

ˆ
A

|fn| dx = sup
n>0

µn(A) < ε

Which means no concentration of the measures µn occurs. Therefore, the limit measure µ is absolutely
continuous, meaning there is a density function f ∈ L1(RN ) associated with it. What we have to show
is that fn ⇀ f upon passing to a subsequence. We take the following demonstration from [15].

Let h ∈ L∞(RN ). h can be approximated by continuous and uniformly bounded functions hj . From
the tightness condition, choose R > 0 such that

sup
n>0

ˆ
{‖x‖>R}

|fn|dx < ε′

Then, ˆ
RN

(fn − f)h dx =

ˆ
{‖x‖>R}

(fn − f)h dx+

ˆ
{‖x‖≤R}

(fn − f)h dx

Since the set BR = {‖x‖ ≤ R} is clearly bounded, by Egorov's theorem, one can �nd a set E of
arbitrarily small measure, such that hj → h uniformly on BR − E. So we write

ˆ
{‖x‖≤R}

(fn − f)h dx =

ˆ
BR−E

(fn − f)hj dx+

ˆ
BR−E

(fn − f)(h− hj) dx+

ˆ
E

(fn − f)h dx

We get then ∣∣∣∣ˆ
RN

(fn − f)h dx

∣∣∣∣ ≤ ˆ
{‖x‖>R}

|fn − f‖h| dx+

ˆ
E

|fn − f‖h| dx
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+

∣∣∣∣ˆ
BR−E

(fnhj − fhj) dx
∣∣∣∣+

ˆ
BR−E

|fn − f ||h− hj | dx

≤ ‖h‖L∞
(ˆ
{‖x‖>R}

|fn| dx+ µn(E) + µ({‖x‖ > R}) + µ(E)

)

+

∣∣∣∣ˆ
BR−E

(fnhj − fhj) dx
∣∣∣∣+

ˆ
BR−E

|fn − f ||h− hj | dx

Since |f | ∈ L1(RN ), by de�nition, µ({‖x‖ > R}) =
´
{‖x‖>R} |f | dx < ε′ for su�ciently large R > 0.

Similarly, since µ is absolutely continuous and L(E) < δ, then we can choose δ such that µ(E) < ε′.
Finally, from uniform integrability, we can choose δ,R > 0 such that the �rst 2 terms inside brackets
are smaller than ε′ uniformly in n. For the fourth term, take j > j0 so that |h − hj | < ε′ by uniform
convergence, and de�ne R = supn∈N

´
BR−E |fn| + |f | dx. with all this in place, the expression above

becomes

< 4ε′|h‖L∞ +Rε′ +

∣∣∣∣ˆ
BR−E

(fnhj − fhj) dx
∣∣∣∣

= 4ε′|h‖L∞ +Rε′ +

∣∣∣∣ˆ
BR−E

hj dµn(x)−
ˆ
BR−E

hj dµ(x)

∣∣∣∣
in which we used the de�nition of the measures µn, µ. Then, by weak convergence of measures, there
is a subsequence µnk such that, for large k, the term in absolute value is small for any j. Let C =
max{4|h‖L∞ , R}. We can bound the above expression as

4ε′|h‖L∞ +Rε′ +

∣∣∣∣ˆ
BR−E

hj dµn(x)−
ˆ
BR−E

hj dµ(x)

∣∣∣∣ < (C + 1)ε′

Choosing ε′ = ε/(C + 1) gives us that, for every ε > 0 there is a subsequence fnk such that, if k > k0,
then ∣∣∣∣ˆ

RN
(fnk − f)h dx

∣∣∣∣ < ε ∀h ∈ L∞(RN )

And our proof is complete. The converse assertion (that weak compactness in L1 implies tightness and
uniform integrability) is not as important for us as the direction we just proved, so we will end our
discussion at this point. For a complete account of the demonstration of the converse, see [3].

Informally, the 'punchline' is that 2 phenomena can make a uniformly bounded family fn ⊆ L1(RN )
not have a weakly converging subsequence:

� the functions can concentrate around a value, and in the limit become a combination of Dirac
masses (which is not forbidden by weak convergence of measures)

� the sequence can have the behavior of a travelling wave, which has always the same integral and
yet doesn't converge to any speci�c function.

Using the �rst de�nition of Uniform integrability given in this Appendix, we see that if a sequence has
this property it avoids concentration around any particular values (�rst item); and tightness ensures the
decay at in�nity of this sequence is uniform, preventing the travelling wave behavior (second item).

B.4 Averaging lemmas

The averaging lemmas are necessary in order to guarantee that Qn(fn, fn) converges when we pass to the
limit n→∞. Since this is one of the most technical parts of the demonstration, and since these lemmas
reappear constantly in the theory of the Boltzmann equation and its hydrodynamic limits, we provide a
proof for them below. Some arguments used in this section are taken from [22] and [32].

The simplest of the average lemmas is the following
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Lemma B.4.1. Let f(x, v) : RN × Rd −→ R be a solution in the sense of distributions to the following
equation

α(v) · ∇xf = g

and let µ be a measure in Rd which satis�es, for a given s > 0 and for all ε > 0 the following restriction

µ({v ∈ Rdsuch that|ζ · α(v)| < ε}) < Mεs (B.4.1)

where ζ is a unit vector in Rd. De�ne
m =

ˆ
Rd
f dµ(v)

If f, g ∈ L2(RN ×BR) for every R > 0, BR ⊆ Rd, then m ∈ Hs(RN ) with s ∈ (0, 1).

We follow here the demonstration in [22]

Proof. Recall that

‖f‖2
Ḣs

=

ˆ
Rd
|ξ|2s|f̂ |2 dξ

The trick of this demonstration, started by BOUCHUT, is the following: add zf to both sides of the
equation, z ∈ R:

zf + α(v) · ∇xf = g + zf

Now taking the fourier transform with respect to the x variable on both sides, we get that

f̂(x, ξ)(z + 2iπξ · α(v)) = zf̂ + ĝ

∴ f̂ =
z

z + 2iπξ · α(v)
f̂ +

1

z + 2iπξ · α(v)
ĝ

Then, we have that

|m̂| =
∣∣∣∣ˆ

Rd
f̂ dµ(v)

∣∣∣∣ ≤ ˆ
Rd
|f̂ | dµ(v)

≤
ˆ
Rd

∣∣∣∣ z

z + 2iπξ · α(v)

∥∥∥∥ f̂ | dµ(v) +

ˆ
Rd

∣∣∣∣ 1

z + 2iπξ · α(v)

∥∥∥∥ ĝ| dµ(v)

By the Cauchy-Schwartz inequality, this gives us

|m̂| ≤ [|z|‖f̂‖L2(dµ) + ‖ĝ‖L2(dµ)]

(ˆ
Rd

1

|z + 2iπξ · α(v)|2
dµ(v)

)1/2

where we see that |z + 2iπξ · α(v)|2 = z2 + 4π2|ξ · α(v)|2. de�ne φ(y) = 1
z2+4π2y2 . Then, the integral

above can be written as ˆ
Rd

1

|z + 2iπξ · α(v)|2
dµ(v) =

ˆ
Rd
φ(|ξ · α(v)|) dµ(v)

De�ne g(v) = |ξ · α(v)|. We use then the following standard trick

ˆ
Rd
φ(g(v)) dµ(v) = −

ˆ
Rd

ˆ ∞
g(v)

φ′(y) dydµ(v) = −
ˆ
Rd

ˆ ∞
0

φ′(y)χ{g(v)<y} dydµ(v)

since g(v) > 0. swapping the order of the integrals by Fubini's theorem, we get that

= −
ˆ ∞

0

φ′(y)

ˆ
Rd
χ{g(v)<y} dµ(v)dy = −

ˆ ∞
0

φ′(y)µ({|ξ · α(v)| < y}) dy
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µ({|ξ · α(v)| < y}) = µ({| ξ|ξ| · α(v)| < y
ξ }), so using the property B.4.1 we stated at the beginning for the

measure µ, we have that µ({| ξ|ξ| ·α(v)| < y
|ξ|}) < M ys

|ξ|s . Trivially φ
′(y) = −8π2y

(z2+4π2y2)2 . Inserting this onto

the expression yields(ˆ
Rd

1

|z + 2iπξ · α(v)|2
dµ(v)

)1/2

≤ 2π
√
M

|ξ|s/2

(ˆ ∞
0

2y1+s

(z2 + 4π2y2)2
dy

)1/2

The integral on the right hand side times
√
A will converge if 1 + s− 4 < −1⇔ s < 2, to a constant we'll

de�ne as Cz,s. De�ne for convenience s = 2k ⇒ k ∈ (0, 1). Inserting back into our expression

|ξ|k|m̂| ≤ 2πCz,2k[|z|‖f̂‖L2(dµ) + ‖ĝ‖L2(dµ)].

Squaring both sides and setting z=1, we get that

|ξ|2k|m̂|2 ≤ 8πC1,2k

[
1

2
‖f̂‖L2(dµ) +

1

2
‖ĝ‖L2(dµ)

]2

≤ 4πC1,2k

(
‖f̂‖2L2(dµ) + ‖ĝ‖2L2(dµ)

)
By Jensen's inequality. Finally, integrating on both sides with respect to the ξ variable, and using
Plancherel's formula on the right hand side, we get

‖m‖2
Ḣk
≤ 4πC1,2k

(
‖f‖2L2

x,dµ(v)
+ ‖g‖2L2

x,dµ(v)

)
and the conclusion follows.

Corollary B.4.1. In the above theorem, let µ be given by

µ(A) =

ˆ
A

ψ dv

where ψ ∈ L∞v (Rd) is a compactly supported function. then de�ne m as above, with f, g ∈ L2(R×Rd×BR)
for every R, T > 0, and f a distributional solution to the following equation

∂tf + v · ∇xf = g (B.4.2)

Then, m ∈ L2
v,t(R× Rd;H1/2

x (Rd))

Proof. Notive that we can always rewrite equation B.4.2, by de�ning new variables as

α(v) · ∇x′f(x′, v) = g(x′, v)

Where x′ = (t, x), α(v) = (1, v) ∈ Rd+1. Then, we can follow exactly the same procedure as above until
the point we have

|m̂|(ξ′) ≤ [|z|‖f̂‖L2(dµ) + ‖ĝ‖L2(dµ)]

(ˆ
Rd

ψ2

|z + 2iπξ′ · α(v)|2
dv

)1/2

Where our transformed variable is given by ξ′ = (τ, ξ).Then we have to show that the measure ν(A) =´
A
ψ2 dv satis�es the restriction B.4.1. For this we have to bound the following integral

ν({|ζ · α(v)| < ε}) = ν({|ξ′ · α(v)| < |ξ′|ε})

= ν({|τ + ξ · v| < |ξ′|ε}) =

ˆ
|τ+ξ·v|<|ξ′|ε

ψ2 dv
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The domain of this integral is a strip contained between 2 hyperplanes, with normal vector ξ and a spacing
between them proportional to ε. Since ψ is compactly supported we know this integral will converge,
and we wish to show that its result is proportional to ε. There are many ways to proceed at this point,
our choice following [22], [32] is to use a change of variables that realigns our axes, such that one of
them coincides with the direction of the normal vector to the hyperplanes. Starting with the vector ξ/|ξ|,
construct an orthornormal basis set in Rd, and decompose the vector v as

v =

(
y − τ

|ξ|

)
ξ

|ξ|
+ v⊥

Where v⊥ denotes the components of v in the orthogonal complement of ξ
|ξ| . Since this basis set is

orthonormal, the change of variables has unit jacobian. with this change of variables

v =

(
y − τ

|ξ|

)
ξ

|ξ|
+ v⊥ ⇔ v · ξ

|ξ|
=

(
y − τ

|ξ|

)
⇔ y|ξ| = τ + ξ · v

So that our integral can be rewritten as

ˆ
|τ+ξ·v|<|ξ′|ε

ψ2 dv =
x

|y|< |ξ
′|
|ξ| ε

ψ2 dydv⊥ ≤ ‖ψ2‖L∞(Rd)

x

|y|< |ξ
′|
|ξ| ε

χsupp(ψ) dydv⊥

(abusing notation, the integral with respect to dv⊥ corresponds to an integral over the coordinates
associated to the orthogonal complement of ξ/|ξ| in the new basis set). Let L > 0 be such that supp(ψ) ⊆
BL ⊆ Rd. Notice that by de�nition

BL = {v ∈ Rd such that y2 + v2
⊥ ≤ L2} ⊆ {v ∈ Rd such that y2 ≤ L2, v2

⊥ ≤ L2} = AL

The set AL is a cylinder in Rd, therefore assuming that |ξ
′|
|ξ| ε < L

x

|y|< |ξ
′|
|ξ| ε

χsupp(ψ) dydv⊥ ≤
x

|y|< |ξ
′|
|ξ| ε

χAL dydv⊥ = A(d)
|ξ′|
|ξ|
εLd−1

Where A(d) = 2ω(d − 1), and ω(d) is the volume of the sphere in dimension d. Therefore, we see that
this measure satis�es our constraint with exponent s = 1. We get then(ˆ

Rd

1

|z + 2iπξ′ · α(v)|2
dµ(v)

)1/2

≤ 2π

|ξ′|1/2

√
A(d)

|ξ′|
|ξ|
Ld−1

(ˆ ∞
0

2y2

(z2 + 4π2y2)2
dy

)1/2

=
2

|ξ|1/2
√
ω(d− 1)Ld−1

(ˆ ∞
0

4πy2

(z2 + 4π2y2)2
dy

)1/2

Then the integral on the right hand side can be computed explicitly using the change of variables y =
z

2π tan(θ). After some calculations, we �nd that

=
2

|ξ|1/2
√
ω(d− 1)Ld−1

(
1

z
arctan

(
2πy

z

)
− 4π2y

z2 + 4πy2

∣∣∣∣∞
0

)1/2

=
C(d, L)

2
√
z|ξ|

Inserting back into our equation, considering z > 0 yields

|m̂|(ξ′) ≤ C(d, L)

2
√
z|ξ|

[|z|‖f̂‖L2
v

+ ‖ĝ‖L2
v
]
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|ξ| 12 |m̂|(τ, ξ) ≤ C(d, L)

[√
z

2
‖f̂‖L2

v
+

1

2
√
z
‖ĝ‖L2

v

]
Again setting z = 1, squaring both sides and using Jensen's inequality, we conclude

|ξ‖m̂|2(τ, ξ) ≤ C(d, L)

2

[
‖f̂‖2L2

v
+ ‖ĝ‖2L2

v

]
∴ ‖m‖2

L2
v,t(R×Rd;Ḣ

1/2
x (Rd))

≤ C(d, L)

2

[
‖f‖2L2

t,x,v
+ ‖g‖2L2

t,x,v

]

Corollary B.4.2. Let fn, gn be uniformly bounded sequences in L2(R × Rd × BR) for every R, T > 0,
and fn distributional solutions to the following problem

∂tfn + v · ∇xfn = gn (B.4.3)

And de�ne the average mn as before

mn =

ˆ
Rd
fnψ dv

where ψ ∈ L∞v (Rd) is a compactly supported function. Then, there is a subsequence fnk such that mnk

converges strongly in L2(R× Rd)

Proof. If fn is uniformly bounded in L2, then we can always extract a convergent subsequence, and mn is

uniformly bounded in L2
v,t(R× Rd;H1/2

x (Rd)). Then, by Rellich-kondrachov, we know that H
1
2 ⊆ H0 =

L2, so that mnk is convergent in L2(R× Rd).

From this fact, we deduce the truly important case to us, the case when fn is weakly convergent in
L1.

Theorem B.4.1. Let (fn) ⊆ L1((0, T )× Rd × Rd) be a weakly compact subset.
Assume that Dfn is also weakly compact in L1

loc((0, T )× Rd × Rd). Let (ψn) be a uniformly bounded
sequence in L∞((0, T )× Rd × Rd) converging almost everywhere to ψ. Then the sequence

(Ψn(t, x)) =

ˆ
Rd
fn(t, x, v)ψn(t, x, v) dv

forms a strongly compact subset of L1((0, T )× Rd)

Corollary B.4.3. If in addition fn ⇀ f ∈ L1((0, T )× Rd × Rd), then

Ψn(t, x) =

ˆ
Rd
fnψn dv →

ˆ
Rd
fψ dv = Ψ(t, x)

strongly in L1((0, T )× Rd)

Before starting the proof, it will be important to have a closed expression for the resolvent of the
operator α(v) · ∇, Rz = (zI + α(v) · ∇)−1. One can obtain it by adding zf to both sides of the equation

zf(x− α(v)t, v) + α(v) · ∇f(x− α(v)t, v) = g(x− α(v)t, v) + zf(x− α(v)t, v) (e−zt)

zf(x− α(v)t, v)e−zt − e−zt d
dt
f(x− α(v)t, v) = −f(x− α(v)t, v)

d

dt
e−zt − e−zt d

dt
f(x− α(v)t, v)

= e−zt[g(x− α(v)t, v) + zf(x− α(v)t, v)]

− d

dt
[e−ztf(x− α(v)t, v)] = e−zt[g(x− α(v)t, v) + zf(x− α(v)t, v)]



124 APPENDIX B. SECTION 1.1 THEOREMS

Or equivalently

f(x, v) =

ˆ ∞
0

e−ztg(x− α(v)t, v) dt+ z

ˆ ∞
0

e−ztf(x− α(v)t, v) dt = Rz(g + zf)

Therefore

Rz(g) =

ˆ ∞
0

e−ztg(x− α(v)t, v) dt, z ∈ C

This operator has the following important property:

‖Rz(g)‖Lpx,v ≤
ˆ
Rd

ˆ ∞
0

e−zt‖g‖Lpx,v dt =
1

z
‖g‖Lpx,v

Now we can prove lemma 2.1.2.

Proof. Starting from equation B.4.2, doing the same trick as before, we know that fn must satisfy

fn = Rz(gn + zfn)

De�ne Gn,z = gn + zfn, and for some choice of M > 0, split this term as

Gn,z = Gn,zχ|Gn,z|≤M +Gn,zχ|Gn,z|>M

Since Rz is a linear operator, this allows us to write

fn = Rz[Gn,zχ|Gn,z|≤M ] +Rz[Gn,zχ|Gn,z|>M ] = f−n + f+
n

where f+
n = Rz[Gn,zχ|Gn,z|>M ], f−n = Rz[Gn,zχ|Gn,z|≤M ]. Crucial to this proof is the following lemma:

Lemma B.4.2. Let H ⊆ V , V Banach space. H is relatively compact if for every ε > 0 ∃Kε compact
set such that H ⊆ Kε +Bε(0)

Then, we can perform the following splitting

ˆ
Rd
fnψn dv =

ˆ
|x′|+|v|≤R

f−n ψn dv +

ˆ
|x′|+|v|>R

f−n ψn dv +

ˆ
Rd
f+
n ψn dv

Since the �rst integral is performed over a compact set, we can use Egorov's theorem, and say that there
is a set E such that L(E) < δ and ψn → ψ uniformly in Ec, so we can further split the �rst term as

ˆ
|x′|+|v|≤R

f−n ψn dv =

ˆ
{|x′|+|v|≤R}∩E

f−n ψn dv +

ˆ
{|x′|+|v|≤R}∩Ec

f−n (ψn − ψ) dv

+

ˆ
{|x′|+|v|≤R}∩Ec

f−n ψ dv

Then, let n > n0 such that |ψn − ψ| < ε/4A, the constant A to be de�ned later. We can safely say that

ˆ
|x′|+|v|≤R

f−n ψn dv < sup
n
‖ψn‖

ˆ
{|x′|+|v|≤R}∩E

f−n dv +
ε

4A

ˆ
Rd
f−n dv +

ˆ
Ec
f−n ψχ{|x′|+|v|≤R} dv

Then, we see that∥∥∥∥ˆ
Rd
fnψn dv −

ˆ
Ec
f−n ψχ{|x′|+|v|≤R} dv

∥∥∥∥
L1
x′,v

< sup
n
‖ψn‖

ˆ ˆ
{|x′|+|v|≤R}∩E

f−n dvdx′
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+
ε

4A

ˆ
(0,T )×Rd

ˆ
Rd
f−n dvdx′ +

ˆ ˆ
|x′|+|v|>R

f−n dvdx′ +

ˆ
(0,T )×R2d

f+
n dvdx

′

Since the fn are uniformly integrable, we can choose δ > 0 such that the �rst integral is less than
ε/(4 supn ‖ψn‖L∞). Since the fn are uniformly bounded in L1, choose A to be that bound. We get that

∥∥∥∥ˆ
Rd
fnψn dv −

ˆ
Ec
f−n ψχ{|x′|+|v|≤R} dv

∥∥∥∥
L1
x′,v

<
ε

4
+
ε

4
+

ˆ ˆ
|x′|+|v|>R

f−n dvdx′ +

ˆ
(0,T )×R2d

f+
n dvdx

′

Recalling that f−n ≤ fn and our property for the Resolvent operator, the right hand side then satis�es

≤ ε

2
+

ˆ ˆ
|x′|+|v|>R

fn dvdx
′ +

1

z

[ˆ
(0,T )×R2d

Gn,zχ|Gn,z|>M dvdx′

]

Finally, by uniform integrability, we can choose R,M > 0 such that the last two terms are each
bounded by ε/4. placing all of this together yields∥∥∥∥ˆ

Rd
fnψn dv −

ˆ
Ec
f−n ψχ{|x′|+|v|≤R} dv

∥∥∥∥
L1
x′,v

<
ε

2
+
ε

4
+
ε

4
= ε

Therefore, if we can say that
´
Ec
f−n ψχ{|x′|+|v|≤R} dv forms a compact set in L1, we are done by the

above lemma. By the property of the resolvent operator,

‖f−n ‖Lp
x′,v
≤ 1

z
‖Gn,zχ|Gn,z|≤M‖Lpx′,v <∞ for p = 2,∞.

Therefore, we can apply corollary B.4.2 and �nish the proof, since
´
Ec
f−n ψχ{|x′|+|v|≤R} dv will be compact

in L2(x′, v), and also in L1(x′, v) by compactness of the support.

B.5 Product limit theorem

Here we provide a proof to a corollary of the well-known Egorov's theorem, which is used in many proofs
in the theory of renormalized solutions to the Boltzmann equation [32]. The theorem goes as follows:

Theorem B.5.1. Let (X,Σ, µ) be a measurable space with �nite measure. Let fn ∈ L1(X), gn ∈ L∞(X)
be sequences of functions, such that fn ⇀ f and gn → g almost everywhere, with gn uniformly bounded.
Then, we have that

gnfn ⇀ fg

in L1(X).

Proof. without loss of generality, we can assume that gn → 0 almost everywhere, and from this follows
the general case. From the Dunford-Pettis lemma, fn is uniformly integrable, so that for any ε > 0, there
exists δ > 0 such that if µ(A) < δ,

sup
n>0

ˆ
A

|fn| dxdv < ε.

Also from Egorov's theorem, we know that for any δ > 0, there exists E ∈ Σ such that gn → g uniformly
in X − E and µ(E) < δ. Then, �x ε > 0, take δ from the uniformly integrability de�nition and �nd the
set E from Egorov's theorem. Then, for any φ ∈ L∞(X) we �nd that∣∣∣∣ˆ

X

fngnφdµ

∣∣∣∣ ≤ ∣∣∣∣ˆ
X−E

fngnφdµ

∣∣∣∣+

∣∣∣∣ˆ
E

fngnφdµ

∣∣∣∣
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≤
ˆ
X−E

|fngnφ| dµ+

ˆ
E

|fngnφ| dµ

≤ ‖φ‖L∞
[
sup
n>0
‖gn‖L∞(X)

ˆ
E

|fn| dµ+ ‖gn‖L∞(X−E)

ˆ
X−E

|fn| dµ
]
.

Then, on the right hand side, the �rst integral is small using the uniform integrability of f , whereas
‖gn‖L∞(X−E) goes to 0 from the uniform convergence of gn. Therefore∣∣∣∣ˆ

X

fngnφdµ

∣∣∣∣ < εφ‖L∞
[
sup
n>0
‖gn‖L∞(X) +

ˆ
X−E

|fn| dµ
]
< Cε,

and fngn ⇀ 0. In case gn converges to g a.e., then gn−g converges to 0, and fngn ⇀ fg ⇔ fn(gn−g) ⇀
0.
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