
Universidade Federal do Rio de Janeiro

Gabriel Castor de Azevedo

Cluster Analysis in High Dimensions

Rio de Janeiro

Junho 2017

Gabriel castor de Azevedo

Cluster Analysis in High Dimensions

Dissertação de mestrado apresentada ao Pro-
grama de Pós-graduação do Instituto de
Matemática, da Universidade Federal do Rio
de Janeiro, como parte dos requisitos necessários
à obtenção do grau de Mestre em Matemática.

Orientador: Fabio Tavares Ramos Doutor em
Matemática - Universidade Federal do Rio de
janeiro

Rio de Janeiro

Junho 2017

CIP - Catalogação na Publicação

Elaborado pelo Sistema de Geração Automática da UFRJ com os
dados fornecidos pelo(a) autor(a).

d354c
de Azevedo, Gabriel Castor
 Cluster Analysis in High Dimensions / Gabriel
Castor de Azevedo. -- Rio de Janeiro, 2017.
 149 f.

 Orientador: Fabio Antônio Tavares Ramos.
 Dissertação (mestrado) - Universidade Federal do
Rio de Janeiro, Instituto de Matemática, Programa
de Pós-Graduação em Matemática, 2017.

 1. Cluster Analysis. 2. Unsupervised Learning.
3. High Dimensions. I. Ramos, Fabio Antônio Tavares,
orient. II. Título.

Gabriel Castor de Azevedo

Cluster Analysis in High Dimensions

Dissertação de mestrado apresentada ao Programa de Pós-graduação do Instituto de
Matemática, da Universidade Federal do Rio de Janeiro, como parte dos requisitos
necessários à obtenção do grau de Mestre em Matemática.

Aprovada em

Presidente, Prof. Fabio Antônio Tavares Ramos, IM, UFRJ

Prof. Glaydston Mattos Ribeiro, PET, COPPE-UFRJ

Prof. Heudson Tosta Mirandola, IM, UFRJ

Prof. Yuri Fahham Saporito, EMAp, FGV-Rio

Rio de Janeiro

Junho 2017

This thesis is dedicated to my dear wife Laura.

This work was the result of a three year masters which would not have been possible without

the support in every aspect of my dear wife Laura. Laura, I am grateful for your help, pa-

tience, insights, discussions and everything else we lived together all these years around this

work. I might say we have met in an outlier event and we keep - for good - outside the cluster

of normality.

I thank my advisor Fabio Ramos who introduced me to this new exciting world of Data Sci-

ence and Machihne Learning. It opened new horizons and gave new perspectives. Thank you

Fabio for pushing me forward by always chalenging me, giving me autonomy to think, making

me face true mathematics through real world problems!

I give special thanks to Yuri Saporito who played a major role in my academic and profes-

sional development by giving me the opportunity to study two trimesters at Fundação Getúlio

Vargas. There I have learnt all the programming tools I needed for this work, otherwise it

wouldn’t be possible.

I want to thank as well the good discussions I had with Heudson Mirandola. Though we did

not encountered many times to talk about cluster analysis and our results (shame on me) I

might say that many important insights were essential to this work and for my understanding

of the topic.

It is extremely important to mention that the Departamento Nacional de Infraestrutura de

Transportes (DNIT) allowed us to use the traffic count data of brazilian main roads, so I’m

thankful to our partners in DNIT.

I thank also all the researchers, staff members, teachers and students who keep this University

alive.

Abstract

In this work we review some important clustering methods, namely the K-Means and the soft

K-Means in a probability framework, combined with optimization techniques. We give an overview

of the main concepts and obstacles in unsupervised Learning with special emphasis on the

overfitting challenge in high dimension which relates to the curse of dimensionality. We also

present some recent techniques to overcome this phenomenon such as the ORCLUS algorithm.

We present several illustrations of some of these clustering techniques (implemented in Python)

and we also present some rigorous mathematical examples clarifying some obstacles for the

clustering analysis in high dimension. We end this work with some applications to traffic count-

ing real data from the Departamento Nacional de Infraestrutura e Transporte.

Keywords: Cluster Analysis, High Dimension, Unsupervised Learning, K-Means, ORCLUS

Contents

1 Supervised × Unsupervised Learning 4

1.1 Supervised Learning Overview . 4

1.2 Our first Supervised Learning tool: Linear Regression 7

1.3 The kernel trick . 10

1.4 Overfitting . 11

1.5 A probabilistic context to Linear Regression . 14

2 Unsupervised Learning 18

2.1 What is “learning”? . 18

2.2 The K-Means Algorithm . 20

2.2.1 Behind the algorithm convergence . 23

2.3 Soft K-Means . 27

3 A probabilistic framework for clustering 38

3.1 General Mixture Models and Cluster Analysis background 38

3.1.1 A trivial example . 39

3.1.2 The full Mixture Model . 39

3.2 Mixture Model is a type of Soft Clustering . 40

3.3 Expectation Maximization . 41

3.3.1 The E step . 42

3.3.2 The M step . 44

3.4 A word on the EM convergence . 46

3.5 Soft K-Means explained . 47

3.6 The soft K-Means β parameter . 50

3.7 Gaussian Mixture Models . 51

3.7.1 K-Means as a Gaussian Mixture Model limit 54

3.7.2 A Fatal Flaw of GMM Clustering . 57

4 A detailed study of K-Means 60

4.1 Clustering as an optimization program . 60

4.2 The special case for the K-Means . 61

1

5 Clustering in high dimensions 76

5.1 An example of concentration of measure . 78

5.2 The Curse of Dimensionality . 83

5.3 Can we defeat it? . 83

5.4 Principal Component Analysis . 83

5.5 PCA + K-Means . 87

5.6 ORCLUS . 87

5.7 An Application . 97

5.8 Validating the results . 103

A K-Means Python implementation 114

A.1 Hard K-Means . 114

A.2 Soft K-Means . 115

A.2.1 Zangwill’s Global Convergence Theorem 118

B 2 122

B.1 Jensen Inequality . 122

C 4 124

C.1 A short introduction to Optimization . 124

C.2 Unconstrained Optimization . 124

C.3 A special case of Constrained Optimization . 127

C.4 Optimization with equality constraints . 129

C.5 Optimization with equality and inequality constraints 131

D 6 135

D.1 A Measure Concentration conjecture . 135

D.2 A Pythonic ORCLUS implementation . 137

Bibliography 141

2

Introduction

3

Chapter 1

Supervised × Unsupervised
Learning

1.1 Supervised Learning Overview

Say that we have a machine, A, generating random values in R2 and a line dividing the plane

in two regions, H+, the upper half of the plane, and H−, the lower half. Now, let us suppose

that every time the machine produces a value ~X ∈ H+, it is marked as red, and green when
~X ∈ H−. Next, we drop the line and send the data set generated to another machine, B.

These two data sets are pictured below.

Figure 1.1: The points belonging to a cut of the plane by a linear function. On the left, the separator used by
machine A, on the right the data how B receives.

If this machine B receives a newly generated random value, will it be able to decide if it is red

4

or green?

Humans are very likely to distinguish two spatial regions, check to which region a new data

point is closest and mark it accordingly. However, this is not satisfactory, as one could argue

that it is subjective and not reproducible. The aim of Machine Learning is to automate this

kind of decision/labelling procedures, as objective and universal as possible, in such a way that

computers are able to ascertain the right decisions or labellings to a good accuracy level.

There is a clear difference between human learning and machine learning: the former is much

less complex, but more objective. Machines can perform rudimentary tasks, such as summa-

tions, multiplications or divisions, at a striking speed, but need to be told exactly how to do

them. Therefore, in order to ‘learn’, a procedure to devise the special regions treated above,

the programmer has to design the rules of label assignments. If a programmer working on ma-

chine B knew in advance that the initial data points were labelled according to a given line

dividing the plane, that is, if they knew the specific model that generated the data, predicting

new values would be a lot easier. The problem would size down to find a line that fits well the

original division of colored points. What would be crucial is that the programmer has at hands

a full set of data points already classified.

The a priori information set the model for the classification procedure: given a line r = {αx +

β, x ∈ R} with parameters α and β ∈ R, the classification reduces to find a decision function Y

that fits best with the observed empirical data. In this case the decision function is defined as

Y : R2 → {red, green}
x 7→ Y (x)

Y (x) =

{
red if αx+ β < x

green if αx+ β > x

Y has parameters α and β. We will make use of Machine Learning methods to ‘learn’ what

are the best estimates α̂ and β̂ (for α and β respectively) that will allow us to predict newly

generated data. This is different from finding the fittest estimates that best describes the ob-

served data, a typical task of Statistical Inference. In fact, these two branchs go along together,

as many algorithm like the Expectation Maximization discussed in chapter 3 perform a two

step iteration alternating between an inference step and a learning step. We stress that Ma-

chine Learning deals with prediction of new data by classifying the state space points into dis-

tinct regions or by assigning them labels.

Back to our problem, the job of the programmer is to craft clever ways to automate the search

for these parameters estimates. We should take into account what the machine “sees” and

which operations can perform: it “sees” only data at memory and is able to perform few sim-

ple operations. A first rather naive method for making these estimates would be to randomly

select α and β and scoring it according to a rule like counting the number of mistakes made. A

more effective method would be the famous Perceptron Algorithm as described in [9].

These Learning algorithms normally start with an initial guess for the parameters estimators

θ̂0 and iteratively update it to values θ̂1, θ̂2, · · · θ̂n until convergence (or a programmed stop).

5

It is important to guarantee convergence, but not always possible, and even when it does stop,

rarely the optimal solution is achieved (as we will see in chapter 4 in the discussion of conver-

gence towards local minima of the objective function of K-Means). For instance, consider if in

our original problem data was labeled wrong, by mistake or deliberately, as in the Figure be-

low.

Figure 1.2: The picture contais the same data set but with some added noise around the separation region,
such that it does not exist a perfect cut dividing the two regions.

Even though it is clear for a human analyst that there are two special regions, it will be im-

possible for the machine to arrive to a consistent conclusion through the Perceptron algorithm,

as now convergence is not guaranteed. In other words, it is not possible any longer to divide

the plane without committing assignment mistakes.

Another situation where perceptron fails is pictured in Figure 1.3. Fortunately, by performing

a change of coordinates we can “linearize” the problem, i.e., to transform it in a simpler solv-

able problem.

6

Figure 1.3: On the left we see points divided in two concentric regions. Clearly, the perceptron cannot divide
the plane in two. However, a transformation to polar coordinates is enough to project the points in a space
where two separable regions can be identified, as shown on the right.

Other methods project the data points into higher dimensional spaces, and, as we will see later

in the Curse of Dimensionality in Chapter 5, the high dimensionality makes the distributed

points more sparse and equidistributed, allowing to easily cut the space in two regions like H+

and H−.

All methods described here are deterministic in nature - a point is either red or green - mean-

ing that the algorithm will not work properly if data is not originally shaped in deterministic

terms.

Even after the coordinate transformation, there are points remaining outside the natural bunches

expected (assuming this data is similar to the previous one). We should take care when consid-

ering generation of data that is deterministic against probabilistic in nature. Our model should

account for fluctuations - for example, when scoring, we could simply count the mistaken val-

ues associated to a plane division by the line r = αx+ β and select those values for α and β

that minimize this mistakes scoring. One way we can learn from data and naturally account

for probabilistic errors is through Linear Regression which is described in the next section.

1.2 Our first Supervised Learning tool: Linear Regres-
sion

Linear Regression is arguably the first Machine Learning tool a data scientist is introduced to.

Suppose there is a quantity y that is related to another quantity x, and suppose we are given

the empiric observations of pairs x × y values {(x1, y1), (x2, y2), · · · }. Ideally, one would hope

7

there is a law relating y’s to x’s, that could be expressed as a function x 7→ y(x), such that

y(xi) = yi. Let’s start assuming this relation is linear. Then

y(x) = αx+ β (1.1)

for some two parameters that we aim to infer. In a perfect world, if the data had such a per-

fectly linear correlation, we would observe that for each i = 1, 2, · · ·n, yi = αxi + β, but we

observe instead

yi 6= αxi + β

⇒ yi = αxi + β + εi

where εi = yi − αxi − β is the error observed in relation to the ‘true’ value yi = αxi + β.

We need to estimate α and β, whose estimators we denote α̂ and β̂ respectively. We build an

inference model assuming the hypothesis that the most probable values for α and β are those

which make the error as small as possible. But how to measure the total error commited given

two guesses for α and β?

We could define the total error as the length of the vector ~ε = (ε1, ε2, · · · εn). Then (α̂, β̂) solves

a problem of the form:

min
α,β
‖ ~ε ‖L2 = min

α,β
‖ ~ε ‖2L2

Therefore, the estimators are calculated via

(α̂, β̂) = argmin
α,β

‖ ~ε ‖2L2 = argmin
α,β

n∑
i=1

(yi − αxi − β)
2

An example of a linear regression is presented in figure 1.2

Figure 1.4: A random sample fitted by a linear curve. Despite the apparent correlation between x’s and y’s,
the linear model does not sound a good fit for this sample.

8

Now assume we have a more complex phenomenon described by a quantity y depending on N

features, described by the quantities x(1), x(2), · · ·x(N). We say y is a dependent variable which

is measured as a ‘response’ to the N independent variables xi. We assume again the linearity

hypothesis

y(x) = ω0 + ω1x
(1) + ω2x

(2) + · · ·+ ωNx
(N) (1.2)

The empirical observations are given by the set

D =
{(
x

(1)
1 , x

(2)
1 , · · ·x(N)

1 ; y1

)
,
(
x

(1)
2 , x

(2)
2 , · · ·x(N)

2 ; y2

)
, · · · ,

(
x(1)
n , x(2)

n , · · ·x(N)
n ; yn

)}
Again we define the error of each observation as

εi = yi − ω0 − ω1x
(1)
i − ω2x

(2)
i − · · · − ωNx

(N)
i

and calculate the total error commited at each observation as the quantity ‖ ~ε ‖L2 . This model

has more parameters, succinctly denoted ω = (ω1, ω2, · · ·ωN). We suppose once more that

the coefficients ωi are such to minimize the observed total error. So the estimate for ω is the

solution of the problem

min
ω
‖ ~ε ‖2L2

whose solution is

(ω̂1, ω̂2, · · · ω̂N) = argmin
ω̂1,ω̂2,···ω̂N

‖ ~ε ‖2L2 =

= argmin
ω̂1,ω̂2,···ω̂N

n∑
i=1

(
yi − ω0 − ω1x

(1)
i − ω2x

(2)
i − · · · − ωNx

(N)
i

)2

The quantity

E(ω) =

n∑
i=1

(
yi − ω0 − ω1x

(1)
i − ω2x

(2)
i − · · · − ωNx

(N)
i

)2

is said to be the total squared error which we seek to minimize.

The observed values {x(j)
i }

j=1,2,···N
i=1,2,···n and their responses {yi} can be represented respectively by

the following matrix and vector

X =


1

...
... x

(j)
i

1
...

 , y = (y1, y2, · · · yn)

for i = 0, 1, 2, · · ·n and j = 1, 2, · · ·N . The first columns full of 1’s is needed to multiply the

parameter ω0. In this notation E and the values for ω̂j thus read

E(ω) = ‖y −Xω‖2L2

(ω̂0, ω̂1, · · · ω̂N) = argmin
ω̂1,ω̂2,··· ,ω̂N

‖y −Xω‖2L2

(1.3)

9

1.3 The kernel trick

We will calculate explicitly the solution to problem 1.3 further in the next section. Now we go

back to the starting point of last section: we are given the set D = {(x1, y1), (x2, y2), · · · (xn, yn)}
and we want to model it so that ideally y depends on the observed variables through the rela-

tion y = y(x). If we find such a relation we would be able to predict how y would behave in

relation to newly observed x’s. The linear model in general gives a very poor estimate of the

data, because it assumes a linear correlation between x and y. It does so because there are few

parameters to account for shapes peculiarities. Think of the following: assuming y = y(x) is

differentiable, then if we expand it in Taylor series we find

y(x) = y(0) + y′(0)x+
1

2
y′′(0)x2 +

1

3!
y′′′(0)x3 + · · · 1

n!
y(n)(0)xn + r(xn+1)

If the derivatives are all bounded above a certain n0, we would expect that at some point, say

at the mth derivative, m! is big enough to make the derivative f (m)(0) irrelevant (the same

applying for l ≥ m), thus we discover that the function y could be truncated at m. So we have

m coefficients to discover. Whatever model we choose to predict y = y(x) given the observed

pairs (xi, yi), it is very likely to possess more than two parameters, and there is a chance that

no more than m parameters will be needed.

The linear model 1.2 describes the function y = y(x) with N + 1 parameters ωj but assumes

y is a function of N features x(1), x(2), · · ·x(N), but notice that nothing is said about whether

these features are independent or not. So we use a clever trick in order to insert more parame-

ters to the model describing y: we fix a N and construct artificially the tuple of observations(
x

(0)
i , x

(1)
i , x

(2)
i , · · ·x(N)

i ; yi

)
:=
(

1, xi, (xi)
2, · · · (xi)N ; yi

)
for i = 1, 2, · · ·n . Notice that we considered the 1’s that appeared in the matrix X a new

feature x(0) thus making the former be rewritten as

X =
[
x

(j)
i

]
=
[

(xi)
j
]

for i = 1, 2, · · ·n and j = 0, 1, 2, · · ·N . What we have done was to lift the feature represented

by the variable x ≡ x(1) to a higher dimensional space of N + 1 features x(0), x(1), x(2), · · ·x(N)

, through the function

φ(x(1)) =
(
φ0(x(1)), φ1(x(1)), φ2(x(1)), · · · , φN (x(1))

)
with

φj

(
x(1)

)
=
(
x(1)

)j
Each φj is said to be a kernel function. There are more kernels that could be used to lift the

feature x(1), like φσ,µ(x) ∝ exp((x− µ)2/2σ2), so in general we expect to generate the matrix

Φ =
[
x

(j)
i

]
=
[
φj(x

(1)
i)

]
(1.4)

10

instead of X, thus producing the total squared error

E(ω) = ‖y − Φω‖2L2

that we seek to minimize in order to find

(ω̂0, ω̂1, · · · ω̂N) = argmin
ω1,ω2,··· ,ωN

E(ω)

This clever trick of lifting the data set to a higher dimensional feature space making use of ker-

nels φj is called the kernel trick. It works because in higher dimensions the transformed data

points in general become distributed in a sparse manner, making it easy to find hyperplanes

which describes well the data - it is like there was more space to accomodate them optimaly.

On Chapter 5 we will discuss in depth this phenomenon called the curse of dimensionality (in

this case it is a bless!). Further details and calculations on regression linear techniques can be

seem at [8].

1.4 Overfitting

Let’s test the kernel trick with the linear regression using the kernels φj(x) = xj . This combi-

nation gives the technique known as polynomial regression or polynomial fit. Find below some

regressions performed with increasing numbers of parameters, namely N = 0, 1, 3, 9. One could

think that the more parameters we have at disposal the better we could fit the data, and in

fact yes, as verified for N = 9. However, once we are told that the points were sampled from a

sinus with noise we could not say the linear regression with N = 9 is a good model choice.

Figure 1.5: Four regressions with increasing number N of parameters, as indicated. The original curve which
generated these points was a sinus with some added noise. Notice that N = 9 gives a very bad prediction of
y = y(x) while N = 3 is very accurate in predicting a sinus.

11

Figure 1.6: We investigate more carefully if N > 3 performs better. Notice that the best fit seems to be
N = 5 while for N = 6 the regression has performs badly. The original curve is displayed in pink

The problem is that when there are too many parameters in comparison to the number of

samples and the underlying complexity of their distribution, the model begins to accomodate

all the points in its fit, giving unrealistic solutions that incorporates noise as they were gen-

uinely inherent of the sample generation process. These solutions fit very well the data points

but lack predictive power, as we evidentiate in the botton of the last column of Figure 1.5 or

in the first column Figure 1.7 . This phenomenon of fitting the errors due to presence of many

parameters is named overfitting. In Figure 1.6 we investigate for what values for N the regres-

sion becomes overtfitted.

Now, there is a way to take benefit from having many parameters at disposal while signifi-

cantly reducing the overfitting. We do it by regularizating the squared error function by adding

a new term which will penalize coefficients ωj associated to a high degree of overfitting. Typi-

cally the overfitting solutions are associated to very large polynomial coefficients ωj , so we can

simply add a term proportional to ‖ω‖2L2 , which leads to the problem

min
ω

{
‖y − Φω‖2L2 +

λ

2
‖ω‖2L2

}
The aforementioned problem constitutes the so-called ridge linear regression with one penalty

term λ. We test this technique on the second and third columns of figure 1.7 for crescent val-

ues of N and two values of λ, against the pure linear regression on the frst column. It was

tested for many other values of λ and many N ’s, and it was concluded that until N = 29 to

small values of λ like 0.1, 10−3 and even 10−15 it corresponds perfect fit like those pictured

for N = 25 (notice that the original curve which generated the samples is drawn in the back-

grond).

12

Figure 1.7: Ridge rgression is tested against normal linear regression. On the second column we test it with
λ = 0.1, on the third, λ = 109.

In this work we will pay close attention to the overfitting of data points. Our goal is to study

Cluster Analysis in high dimensions. In this regime the data becomes naturally sparse - mak-

ing it very difficult to measure distance between two points - due to the already mentioned

phenomenon called curse of dimensionality. Hence we are naturally led to to Machine Learn-

ing methods that either possess many parameters or have low predictive power due to this in-

herent noise on the data. We proceed further developing a solution to the problem

E(ω) = ‖y −Xω‖2L2

(ω̂0, ω̂1, · · · ω̂N) = argmin
ω̂1,ω̂2,··· ,ω̂N

‖y −Xω‖2L2

after placing the least squares principle in a probabilistic framework.

13

1.5 A probabilistic context to Linear Regression

In Linear Regression, for each x, there is a corresponding value y(x) that could only be mea-

sured in a total absence of pertubations to the measurement process. As this is impossible, we

add an error variable to y measurement on x. In this way, our measurement over x becomes a

random variable Yx = y(x) + εx, where εx is a random variable following a gaussian distribu-

tion ρ(s) = e−s
2/2σ2

√
2πσ2

. The variable εx can be thought as a noise added to the actual value for

y = f(x) by any random (or unknown) process. We assume independency between Y ’s mea-

sured at different x’s, i.e., the added noises are uncorrelated.

These are strong assumptions, but making them has the big payoff of simplicity. A good prac-

tice in computing applications is to first start with the simpler approaches, and gradually, if

needed, move to more complicated ones. Moreover, we should point out that it is very com-

mon to observe statistical fluctuations following a gaussian pattern, in agreement with the

Central Limit Theorem, which justifies our first hypothesis. The independency assumption is

also well justified in systems where the measurement of y at point x does not depend on, or

does not have memory of, what was measured in a previous point x′.

We assume y = y(x) is a polinomial, so we can write Y as Yx =
∑N
k=0 ωkx

k+εx. Now, Yx has a

gaussian distribution centered at y(x), and the parameters to be set here are the ω coefficients

and σ. Thus the probability density of Yx is

p(Yx = y | ω, σ) =
1√

2πσ2
e−(y−y(x))2/2σ2

Where ω = (ω1, ω2, · · ·ωN), y(x) =
∑N
k=0 ωkx

k, N is the degree of the polinomial we chose in

advance. Notice that N is not a probabilistic parameter - it cannot be inferred by statistical

methods as those described below. N should be fixed by hand, and can be chosen so to mini-

mize the bias-variance trade off. We refer to [33] for further detail, but for us N is just a fixed

parameter for our model.

Give the observed data D = {(x1, y1), (x2, y2), · · · }, we have the probability of occuring D:

p(D | ω, σ) = p(Yx1
= y1, Yx2

= y2, · · ·YxN = yN | ω, σ) =

N∏
k=0

p(Yxk = yk | ω, σ)

Where p(Yxk = yk | ω, σ) = 1√
2πσ2

e−(yk−y(xk))2/2σ2

and y(xk) =
∑N
i=0 ωix

i
k.

Now, we need to define estimators ω̂ and σ̂ for their respective parameters. We are going to

look for the values of σ and ω that maximize the probability of occuring D, i.e., those param-

eters that characterize a universe where D is the least rare possibility, and where we assume

we live in. So we define the Maximum Likehood Estimator (MLE) for the parameters as the

values σ̂MLE and ω̂MLE maximizing the likehood funtion

L(D)(ω, σ) = p(D | ω, σ)

or equivalently, those maximizing the logarithmic of L(D):

14

l(D)(ω, σ) = ln

(
N∏
k=0

p(Yxk = yk | ω, σ)

)
=

N∑
k=0

− (yk − y(xk))2

2σ2
− ln

√
2π − lnσ

Thus giving

l(P)(ω, σ) = −(N + 1) ln
√

2π − (N + 1) lnσ − 1

2σ2

N∑
k=0

ε2xk

So, we define our estimators as

ω̂MLE = argmax
ω

l(D)(ω, σ)

σ̂MLE = argmax
σ

l(D)(ω, σ)
(1.5)

Now,

argmax
ω

l(D)(ω, σ) = argmax
ω

{
− 1

2σ2

N∑
k=0

ε2xk

}
= argmin

ω

{
N∑
k=0

ε2xk

}

argmax
σ

l(D)(ω, σ) = argmax
σ

{
−(N + 1) lnσ − 1

2σ2

N∑
k=0

ε2xk

}
=

= argmax
σ

{
(N + 1) lnσ +

1

2σ2

N∑
k=0

ε2xk

}

Finally, we derive the expressions inside the braces and set them equal to zero and solve for

our MLE estimators. We begin with the σ:

0 =
∂

∂σ

{
(N + 1) lnσ +

1

2σ2

N∑
k=0

ε2xk

}
=
N + 1

σ
− 1

σ3

N∑
k=0

ε2xk

∴ σ2 =
1

N + 1

N∑
k=0

ε2xk

We notice that

σ2 =

(
N

N + 1

)
1

N

N∑
k=0

(yk − y(xk))2 ≈
(

N

N + 1

)
s2

where s2 is the empirical variance.

Let’s solve now for each ωi ∈ ω:

15

0 =
∂

∂ωi


N∑
k=0

yk − N∑
j=0

ωjxk
j

2
 =

N∑
k=0

−2

yk − N∑
j=0

ωjxk
j

 N∑
j=0

∂ωj
∂ωi

xk
j


0 =

N∑
k=0

yk − N∑
j=0

ωjxk
j

xk
i

∴
N∑
k=0

xk
i

 N∑
j=0

xk
jωj

 =

N∑
k=0

xk
iyk ∀i = 0, 1, · · ·N

If we define the matrix X by Xij = xi
j (xi’s are the positions of the measurements, which are

exponentiated by each j), then the above relation reads:

(XTX)ω̂MLE = XTy

where y = (y0, y1, · · · yN) is the vector of observations of quantity y. Now, the measure of the

set {(x0, x1, · · ·xN) | det(XTX) = 0} is zero, meaning that almost surely (“a.s.”) one can

invert the matrix in question, thus giving us:

ω̂MLE = (XTX)−1XTy a.s. (1.6)

This is the classical problem of the least squares in Linear Algebra. In turns out that we trans-

formed a probabilistic problem into a pseudo-inverse calculation of a matrix X. Computation-

ally, there is no much effort in calculating it as long as the dimensionality, dictated by N , is

not too high. It is worth noting that all the calculations above remain the same if we use dif-

ferent kernels than φj(x) = xj , but only replacing X by Φ (defined in 1.4).

Is this really Machine Learning? Or is it simply another Statistical Inference method? It de-

pends on how we define “learning” and to what extent we look for a division between these

two subjects. Despite a discussion on their difference goes beyond the scope of this thesis,

stress that Machine Learning methods frequently involve a loop of calculations of a sequence

of estimators, until their convergence - and this process is not something that could be easily

done with a calculator, instead this is typically a computer application. Hence, we can think

of Machine Learning as a set of tools and applied statistics knowledge designed especially for

computers and machines alike. Also, Machine Learning is deeply concerned in predicting pat-

terns assocated to newly generated pieces of data, based on some training set.

Why do we say the Maximum Likehood Estimator method is “supervised”? Because we were

told how the xi’s related to their respective yi’s. This is already a lot of information. Super-

vised Learning means that we know something about the inner structure of the different pieces

of data. Suppose that instead of the pairs of D, we were only given the two sets X = {x0, x1, · · ·xN}
and Y = {y0, y1, · · · yN} but no one told us how to associate them in pairs (as the labellings

suggest...). Now, not only we have to predict what shape the fitting curve should have, but we

should infer the most probable configuration of pairs (xi, yj) among X × Y.

16

So, Unsupervised Learning is concerned with finding structure in apparently unstructured data

by relying mainly on the data itself, or in other words, is concerned with finding any kind of

pattern that can be understood as the a priori structure existing in the data. The main dif-

ficulty of these methods is to validate them properly, as we do not have classified in advance

data to compare with, and actually, in most situations we do not even have an intuition of the

possible classification. Therefore, they heavily rely on strong assumptions about the shape of

the data. For example, we will see in the next chapter that the K-Means algorithm assumes

implicitly that the distribution of data points in Rd is approximately in spherical blobs, all

with the same radius.

Classification of the data can be an expensive process - for example, imagine how a Telecom

company could classify each one of its millions of users. Because of it, Unsupervised Learning

methods are becoming increasingly important to find patterns in data sets which is the first

step for most data analysis.

In the next chapter, we discuss the K-Means algorithm, one of the most important tool for Un-

supervised Learning for its simplicity and speed of convergence.

17

Chapter 2

Unsupervised Learning

2.1 What is “learning”?

In the previous chapter we introduced ideas and language of Supervised Learning methods to

prepare the ground for the topic of this thesis, namely, Unsupervised Learning. The typical

problem of Unsupervised Learning is classification. There are: (i) a state space of all accessible

data points; (ii) labels to classify these points, i.e., a proper division of this space into sub-

spaces one for each label; and (iii) the observed empirical data points to be classified.

For example, consider a data set in a spreadsheet format (like a ‘.csv ’ or a ‘.xml ’) where each

row represents a costumer of a certain company, and each column is a feature of this costumer,

like “age”,“gender”, “civil status” and “credit status”. Suppose that we are working with only

“age”, “gender” and “credit status”. The feature “age” can be treated as a natural number

variable; “gender” as a categorical variable with values of “M” (male) or “F”(female); “credit

status” as a real number that is the total debt or credit.

So, in this example, our state space is X = N × {“M”, “F”} × R . Now, if we want to classify

the costumers into creditors or debtors, according to whether they have positive value in their

accounts or not, we look at the “credit status” variable and check if it is positive or negative.

This is equivalent to dividing X in two disjoint regions, X+ = {(n, g, d) ∈ X | d > 0} and

X− = {(n, g, d) ∈ X | d < 0}.
So, given a table of data points where each row represents a costumer status, one can classify

them as a debtor or as a creditor. Denoting the observed data set as D = {x1, x2, · · ·xN} ⊂ X ,

where xi = (ni, gi, di) is the ith row of the spreadsheet, these data points can be clustered in

two groups: C+ = {xi ∈ D | di > 0} and C− = {xi ∈ D | di < 0}
We can equivalently define a classification function Y : X → {0, 1} , where 0 means ‘debtor’

and 1 means ‘creditor’, as

Y (n, g, d) =

{
1 if d > 0
0 if d < 0

So that the two regions of X are the inverse images of Y :

X+ = Y −1(1) and X− = Y −1(0)

18

And the clusters are simply:

C+ = Y −1(1) ∩D and C− = Y −1(0) ∩D

As the reader might have noticed, this is a trivial case. We defined Y = 1 for costumers with

positive credit status, and Y = 0 for those with debts, negative credit status. There is nothing

to be learnt here.

The process of learning comes into place when we do not know for certain the criteria for data

classification, or in other words, we do not know the Y function with precision. Back to our

example, we could consider the following criteria: (i) the costumer that always has positive

credit status; (ii) the costumer who has a negative credit status but it looks like a temporary

situation, for example the costumer forgot to pay the bill; (iii) the costumer always has nega-

tive credit status.

We could divide clients into N categories corresponding to N segments {[ai, bi)}i=0,1,···N−1 of

the variable d ∈ R. Therefore, the new classification function would be

Y (n, g, d) = i , if d ∈ [ai, bi)

Here, ‘learning’ consists in finding the best fit classification function Y based on the data set

itself. In the example, this is equivalent to find the suprema and infima {ai, bi}i=0,1,···N that

best describe the segment groups of costumers.

In Supervised Learning methods, we know in advance the classification for a (small) part of

the costumers (for example, in credit companies, the data scientists rely on previous experi-

ences recorded in old databases, back then the selection of good clients, worthy of granting

credit, was made by hand by the human analysts), we have some good examples we can trust,

and we use them to infer somehow the classification of the remainng data. We seek to predict

the class the data belong to, but the premise is that we know what the classes are!

For Unsupervised problems, on the opposite, there are no past examples, no already classified

data we can rely on. The aim is to recognize patterns from scratch! Or at least from weaker as-

sumptions. For this example, one could look for dense regions on the line, and set boundaries

to these regions, using some criteria that maximize the density for each (so-called) cluster.

In the end what matters are the clusters themselves rather than the classification function.

Unsupervised Learning deals mainly with Cluster Analysis and its implementations, many

of which are extensions or generalizations of the object of study of the present thesis, the K-

Means. Therefore, as we will see, many of these methods will translate into a non-linear opti-

mization problem.

Given some data points D = {x1, x2, · · · , xN}, where each xi is an element of the state space

X , we can preliminiraily define a Clustering of D as a partition {C1, C2, · · · , CM} such that

∪̇Mi=1Ci = D, in which by ‘cluster’ we mean each of the subsets Ci.

As in our definition the union is disjoint, one can classify data according to its belonging to

the ith cluster Ci. This definition actually stands for a Hard Clustering of D. We will see that

a more general definition is to define the rate of belonging of each point to each one of k classes,

that we will call a Soft Clustering. This object will be defined in Chapter 3.

19

In the next section, to make things concrete we analyse a first tool in Cluster Analysis, the K-

Means algorithm.

2.2 The K-Means Algorithm

The first unsupervised learning tool we present is the K-Means algorithm. The K-Means is a

two-step iterative algorithm. The first step consists in dividing the data in clusters according

to their closeness to reference vectors, called centroids, representing each cluster. In the second

step we update the centroids to new cluster representatives, based on the previous classifica-

tion.

Let us consider the set of data points D = {x1,x2, · · ·xN} and assume there exists a distance

function, or metric, (x,y) 7→ d(x,y) defined over Rd indicating how ‘close’ two data points are

from each other. The algorithm is initialized with k-tuple of centroids denoted by

M(0) = (m
(0)
1 ,m

(0)
2 , · · ·m(0)

k) ∈ Rd × Rd × · · · × Rd

The first step consists in assigning the nearest centroid to each data point xi ∈ D using the

classification function

Y : Rd → {1, 2, · · · k}

Y (x) = argmin
j∈{1,2,···k}

d(x,m
(0)
j)

Remark. Notice that the above definition is unclear when x is equidistant to two centroids as

they both minimize the function d(x,ml). So we redefine the argmin function as

argmin
j∈{1,2,···k}

d(x,mj) = min{j | d(x,mj) ≤ d(x,ml) ∀ l}

We acknowledge that this choice is arbitrary, however we notice that the data points that are

equidistant from two centroids belong to the border of the so-called Voronoi sets, which have

zero measure in Rd. Therefore data points satisfying this property are quite rare.

We use the definition above to define the k clusters

Ci = Y −1(i) = {x ∈ D | argmin
j∈{1,2,···k}

d(x,m
(0)
j) = i}

for i=1,2,· · · k
These are the sets of points that lie closest to the ith centroid.

In the second step we average over each cluster to construct the next k-tuple M(1) by updat-

ing the centroids to

m
(1)
i =

1

|Ci|
∑
x∈Ci

x for i = 1, 2, · · · k (2.1)

20

This brings us back to the first step, where we re-evaluate for every x ∈ D its closest centroid

m
(1)
i of M(1) and assign for it the label i. Then we continue the iteration similarly to pro-

duce M(2),M(3), · · · . We will prove in the next section, 2.2.1, that for some iteration n ∈ N,

M(n+1) = M(n), so the centroids reach a fixed position and further iterations do not change

the clusters. The basic algorithm (nth) iteration is summarized as

Assign: For every x ∈ D and the current centroids m
(n)
i for i = 1, 2, · · · k, calculate the dis-

tances d(x,m
(n)
i) and group the points into k clusters C

(n)
i according to the assignment

i = argmin
j∈{1,2,···k}

d(x,mj) (2.2)

Update: Update the centroids from m
(n)
i to:

m
(n+1)
i =

1

|C(n)
i |

∑
x∈C(n)

i

x for i = 1, 2, · · · k (2.3)

Now, we rewrite expression 2.3 in a less elusive form by defining below the so called respon-

sibility function associated to each point x ∈ D. The responsibility function gives a more

friendly notation for the assignment step of cluster points at the nth iteration, and allows to

write the expression for m
(n+1)
i in a cleaner way so to suggest a generalization to be discussed

later in Section 2.3. The responsibility function at nth iteration is

r(n)
x (i) = δ(i, Y (x)) =


1, if argmin

j∈{1,2,···k}
d(x,m

(n)
j) = i

0, if argmin
j∈{1,2,···k}

d(x,m
(n)
j) 6= i

(2.4)

Notice that at each iteration, Y (x) is updated taking into account the values of the centroids

m
(n)
i . Therefore, r is a function that depends on n as indicated by the “(n)” superscript.

The responsibility r = r
(n)
x (i) is an indicator function and gives 1 when x’s nearest centroid

has index i, and 0 otherwise. Therefore x ∈ Ci if and only if r
(n)
x (i) = 1 and for every point

x /∈ Ci, r(n)
x (i) = 0, so we infer the relations

∑
x∈D

r(n)
x (i) =

∑
x∈Ci

1 = |Ci|

∑
x∈D

r(n)
x (i) x =

∑
x∈Ci

x

We can re-express the Update step that produces the new centroids in 2.3 as

Update: Update the centroids from m
(n)
i to:

m
(n+1)
i =

∑
x∈D

r
(n)
x (i) x∑

x∈D
r

(n)
x (i)

for i = 1, 2, · · · k (2.5)

21

As the responsibility function takes only 0 or 1 values, the K-means method we described is

said to be a ‘hard clustering ’. Later in the thesis, we will generalize the responsibility function

and the centroid expressions to the soft clustering case. K-means is an algorithm that pro-

duces a sequence of tuples M(n) up to a fixed point satisfying M(n+1) = M(n). In the next

section we describe convergence. The following pseudocode summarizes the algorithm.

Algorithm 2.2.1: K-Means(k,D)

for i← 1 to k

do m
(0)
i ← random value

M(0) ← (m
(0)
1 , · · ·m(0)

k)

M(1) ← (0, · · ·0)

(l1, l2, · · · lN)← (0, 0, · · · 0)

while M(1) 6= M(0)

do



comment: calculate each Y (xi)

for each xi ∈ D

do



s← d(xi,m
(0)
1)

for j ← 1 to k

do


if d(xi,m

(0)
k) < s

then

{
s← d(xi,m

(0)
k)

li = j

comment: update centroids

for j ← 1 to k

do



comment: jth cluster mean value

s← 0
n← 0
for i← 1 to N

do

if li = j

then

{
s = s+ xi
n = n+ 1

m
(1)
j = s/n

return (l1, l2, · · · lN)

It is worth mentioning that the K-Means converges incredibly fast. This is one of the reasons

why it is so popular, aside its simplicity. The algorithm can be cast as a Newton-Raphson-like

algorithm and a calculation of its hessian shows that its convergence is practically superlinear

- what forbids it to be so are the discontinuities of the energy function E. An intuitive argu-

22

ment observed superlinear convergence can be seen at [10], some solid results about the worst-

case running time are demonstrated on [4], [15].

We remind that once the data set is assumed to have n points to be grouped into k clusters,

there would have kn possibilities for cluster configurations (including empty clusters), although

it is a finite number, it gets huge already for small k and n, hence it is unpractical to search

for every clustering possibility to find the global minimum of E is reached. As a matter of fact,

this search problem is NP-hard [23], so we do not expect to solve it in polinomial time. One

could design a stochastic algorithm that makes this search randomly and selects the best re-

sult. Even this strategy does not sound sensible, and the reason lies in the loss of memory be-

tween two iterations - the K-Means delivers good results because it minimizes the cost function

gradually, so that even if the inital centroids are randomly selected, during the course of the

algorithm the updates for the centroids capture the natural structure associated to the data

set. As a drawback, the K-Means does not guarantee to find the global minimum, but we can

get around it partially by running the algorithm many times and selecting the best clustering

(i.e., that with the smaller energy E) and also selecting carefully the initial centroids [5]

2.2.1 Behind the algorithm convergence

We can rewrite Equation 2.4 for the centroids at the (n + 1)th iteration step in a way that

makes explicit their dependence on the centroid at the previous iteration step. For this sake we

define the function ϕ = (ϕ1, ϕ2, · · ·ϕk) by the relation

m
(n+1)
i =

∑
x∈D

r
(n)
x (i) x∑

x∈D
r

(n)
x (i)

=: ϕi(m
(n)
1 , · · · ,m(n)

k)

for i = 1, 2, · · · k

In this notation the iterative procedure is actually the calculation of a sequence starting at

M(0) and recursively given by the relation

M(n+1) = ϕ
(
M(n)

)

ϕ(M(n)) =
(
ϕ1

(
m

(n)
1 , · · · ,m(n)

k

)
, · · · , ϕk

(
m

(n)
1 , · · · ,m(n)

k

)) (2.6)

We aim to show that associated to the Sequence 2.6 there is a function E = E(M) such that

E(ϕ(M(n+1))) ≤ E(M(n)) for all n. Such a function is said to be a descent of the sequence

{M(n)} and will be taken as the objective function that the K-Means seeks to minimize. Con-

sider a k-tuple of centroids M = (m1,m2, · · ·mk). We define the classification function for this

configuration of centroids as

Y (x) = argmin
j∈{1,2,···k}

‖x−mj‖L2

23

Then, we define the descent function, also called the “energy” or the “cost function”, as a

function E : M 7→ R given by

E =
∑
x∈D
‖x−mY (x)‖

2

L2 (2.7)

(where we have omitted the argument “M” in E(M)).

The clusters for this specific k-tuple of centroids are

Ci = {x ∈ D | Y (x) = i}

in a way that

Y (x) = i ⇐⇒ x ∈ Ci

therefore, the objective function can be rewritten as

E =

k∑
i=1

∑
x∈Ci

‖x−mi‖2L2 (2.8)

The Expression 2.8 suggests us to define the function ECi(z) =
∑

x∈Ci
‖x− z‖2L2 that we mini-

mize by equating its partial derivatives to zero:

0 =
∂ECi(z)

∂zi
=
∑
x∈Ci

∂

∂zi

d∑
j=1

(xj − zj)2 =
∑
x∈Ci

−2(xi − zi)

∴
∑
x∈Ci

xi =
∑
x∈Ci

zi = |Ci|zi

This proves the following lemma

Lemma 2.2.1. Given a cluster C (or any other set of points), the minimum of the function

EC(z) =
∑
x∈C
‖x− z‖2L2 is reached at

z =
1

|C|
∑
x∈C

x

That is the reason why the centroid in the second step of each iteration of the original K-

Means algorithm is the cluster mean vector.

Let us prove the following

Lemma 2.2.2. During the course of the K-Means algorithm, the energy function monotoni-

cally decreases.

24

Proof. Let m
(n)
1 ,m

(n)
2 , · · ·m(n)

k , C
(n)
1 , C

(n)
2 , · · ·C(n)

k denote the centroids and the clusters at the

start of the nth iteration.

The first step of the nth iteration assigns each data point to its closest centroid through the

classification function Y (x) = argmin
j∈{1,2,···k}

‖x−m
(n)
j ‖L2 and we update the clusters

C
(n+1)
i = {x ∈ D | Y (x) = i}

A point x belongs to C
(n)
i if only if in the previous iteration ‖x−m

(n−1)
i ‖L2 ≤ ‖x−m

(n−1)
j ‖L2

for every j = 1, 2, · · · k. Because Y seeks to minimize the L2 distances, we have

‖x−m
(n)
Y (x)‖

2

L2
≤ ‖x−m

(n)
i ‖

2

L2

Every x ∈ D belongs to only one cluster C
(n)
i at each iteration step, therefore summing the

above relation over all data points in D gives

∑
x∈D
‖x−m

(n)
Y (x))‖

2

L2
≤

k∑
j=1

∑
x∈C(n)

j

‖x−m
(n)
j ‖

2

L2

For the above calculation, we partitioned the summation on the right as D = ∪j C(n)
j . Now we

partition the left summation as D = ∪j C(n+1)
j , implying

k∑
j=1

∑
x∈C(n+1)

j

‖x−m
(n)
j ‖

2

L2
≤

k∑
j=1

∑
x∈C(n)

j

‖x−m
(n)
j ‖

2

L2
(2.9)

Finally, using Lemma 2.2.1, m
(n+1)
i is by definition the minimum of the function

E
C

(n+1)
j

(z) =
∑

x∈C(n+1)
j

‖x− z‖2L2

hence for each j, E
C

(n+1)
j

(m(n+1)) ≤ E
C

(n+1)
j

(m(n)) which in combination with Equation 2.9

gives

k∑
j=1

∑
x∈C(n+1)

j

‖x−m
(n+1)
j ‖

2

L2
≤

k∑
j=1

∑
x∈C(n)

j

‖x−m
(n)
j ‖

2

L2

which we can restate concisely as

E(M(n+1)) ≤ E(M(n))

25

We say the sequence (M(n))n=0,1,2,··· defined by 2.6 enters an r-cycle starting at n if M(n+r) =

M(n) and M(i) 6= M(j) ∀ n ≤ i < j < n+ r.

As a consequence of the last lemma we have the

Corollary 2.2.2.1. If the sequence (M(n))n=0,1,2,··· enters an r-cycle at n, then E(M(i)) =

E(M(n)) ∀ i ≥ n.

Proof. If this is not the case, then, there is a i > n such that E(M(i)) 6= E(M(n)). As i be-

longs to a cycle which is equal to the first one, we can consider that n < i < n+ r.

And using the lemma above we have

E(M(n)) < E(M(i)) ≤ E(M(n+r)) = E(M(n))

which gives in turn E(M(n)) < E(M(n)), namely a contradiction.

We now state a first, simpler convergence theorem for the Sequence 2.6.

Theorem 2.2.3. Given a sequence (M(n))0,1,2,···, if E(M) 6= E(N) ∀ M,N ∈ {M(n) , n =

0, 1, · · · }, then, the sequence defined by 2.6 will reach a fixed point in finite time.

Remark. Clearly if a fixed point is reached at the nth iterarion,

M(n+1) = ϕ(M(n)) = M(n) ∴ M(n+2) = ϕ(M(n+1)) = ϕ(M(n)) = M(n)

And by the induction principle,

M(n+p) = M(n) ∀ p ≥ 0

Proof. The data set is D = {x1,x2, · · ·xN} and at each step k clusters are formed, so that

there are kN possible clustering configurations, meaning that there are only kN different values

for the M(n)’s. Though that usually gives a huge number, it is finite.

By hypothesis, and using Lemma 2.2.2, the objective function is strictly decreasing, thus there

are no r-cycles with r > 1, because if this was the case we would have the contradiction

E(M(n)) = E(M(n+r)) < E(M(n))

As the value for M(n+1) depends only on the M(n) (through the function ϕ), if at some point

the iteration gives M(n) = M(n+r), this would necessarily incur in a r-cycle, and by the previ-

ous observation, r should be necessarily 1. Thus there are no repetitions for two non-consecutive

values for M(.).

If each new value for M(n) makes the objective function decrease strictly and there cannot be

any non-consecutive repetitions, then, at some n equal at most to kN there should be a consec-

utive repetition (a 1-cycle), i.e.,

M(n+1) = ϕ(M(n)) = M(n)

26

This result only accounts for when the centroids generated by each iteration follow the strict

inequality for the energy function. We could guess if there are situations where two differ-

ent clusterings have the same energy. The geometric intuition says that this would be an odd

event, so we conjecture that the set of configurations D = (x1,x2, · · ·xN) which verifies this

odd situation has null measure.

Conjecture 2.2.1. Given N and k, consider the set RdN of all possible configurations for

data points D = (x1,x2, · · ·xN), and for each such configuration, consider the set of all its

clusterings, represented by their centroids. We conjecture that the set of configurations D ∈
RdN such that there are at least two clusterings M and M′ with E(M) = E(M′) has zero

Lebesgue measure. If we define this set as

A = {D = (x1,x2, · · ·xN) ∈ RdN | E(M) = E(M′) for some two clusterings of D}

then, m(A) = 0, where m is the standard Lebesgue measure defined for RdN .

The proposed conjecture was stated for the sake of completeness of this chapter. In fact there

is no need to try proving it because a complete proof of convergence is given in chapter 4, in

an optimization framework.

2.3 Soft K-Means

The K-Means algorithm, despite its simplicity, has the drawback of not being able to detect

shape peculiarities of clusters, like cigar shapes, or huge radius differences. Of course, data sets

possessing such special characteristics will make the algorithm perform badly, as is displayed in

2.1.

27

Figure 2.1: The two cigar-shaped clusters are so alongated that the K-means cannot locate properly the clus-
ters’ centers thus producing a bad clustering.

In order to deal with these kind of data, which are by no means rare, we need to enhance our

algorithms, by introducing ‘new degrees of freedom’ on their shape detection capabilities. We

will see further on chapter 3 section 3.7.1 that the K-Means is a limit of a mixture of gaus-

sians all sharing the same radius,thus performing poorly when the actual data presents natural

clusters of varying shapes and highly distinct sizes. The root of the presented K-Means draw-

back lies in its ‘hardness’, hence it is natural to modify the original algorithm by introducing

probability concepts in the assignment of labels. In the following we discuss one enhancement

for the K-Means, the soft K-Means which will introduce a new parameter and will allow to

capture some subtle shape peculiarities (for a nice discussion see Mackay, [21]). Despite intro-

ducing another degree of flexibility for shape detection, the soft K-Means still will not be able

to detect reliably extreme shapes like those in 2.1. However will motivate a rich framework to

work on, which is developed in chapter 3.

Let us recall the definition 2.4 for the responsibility function, omitting for simplicity the super-

script (n) (r should be recalculated at every iteration):

28

rx(i) = δ(i, Y (x)) =


1, if argmin

j∈{1,2,···k}
d(x,mj) = i

0, if argmin
j∈{1,2,···k}

d(x,mj) 6= i

Where Y is the classification function Y (x) = argmin
j∈{1,2,···k}

d(x,mj).

So, given a point x, there is one and only one possible label for it, among {1, 2, · · · k}. Also,

given a set of centroids (m1,m2, · · ·mk), the state space can be divided into regions

Si = {x ∈ Rd | Y (x) = i} for i = 1, 2, · · · k

The Si regions are known as Voronoi sets. As pictured in Figure 2.2, the K-Means makes a

geometric assignment for each data point, dividing the plane into clear-cut non-overlapping

regions for each label. In this sense, K-Means is said to be a hard clustering algorithm, and

this hardness is reflected in the straight line boundaries of each Voronoi set.

Figure 2.2: Geometric regions delimited by clusters boundaries, so-called Voronoi sets. The white crosses are
the clusters centroids. Notice that the plane is divided into four more or less equal sized regions, but the cen-
tral cluster is huge in comparison to the smaller just below, clearly this affected the result, because the smaller
cluster centroid is shifted from its ‘real’ center.

The K-Means hardness entails a certain inability to detect properly cigar-shaped clusters, or

uneven sized clusters. Also, K-Means tends to group the points in equally sized clusters (the

reason for that will be understood at Chapter 3). Figures 2.3 and 2.4 give examples where the

hard K-Means fails to properly classify the data points.

29

Figure 2.3: Two alongated clusters are displayed, their closeness makes it difficult for the k-means to adjust
the Voronoi sets properly.

Figure 2.4: The Voronoi sets are displayed together with the clusters centers (whote crosses). The hardness
of the assignments reflects in the polygonal geometry for the Voronoi sets, which makes difficult to fit too close
cigar-shaped blobs.

30

A criticism to K-Means is that it does not leave space for a probabilistic analysis of the clas-

sification problem we are dealing with. A probabilistic analysis entails a richer framework for

algorithm design. And most importantly, a probabilistic analysis better reflects the empirical

nature of data: there is always some degree of imprecision related to the data classification

into k different labels, often data points are difficult to distinguish, for example, when they lie

next to the borders of the Voronoi sets. Consider the example discussed in Section 2.1 at the

beginning of the chapter, where we had two distinct groups of clients, the creditors and the

debtors. There could exist some situations where clients could easily move to the other cluster

- as for example critical creditors who actually are quite close to a negative credit status. We

might want to identify these clients with high cluster mobility in order to evaluate risk expo-

sure. On the contrary K-Means would classify them in such a hard, strict, way that we would

not realize they are in a risky situation, that is, they lie next to the border of a Voronoi set.

The K-means could be modified by specifying at every data point x its varying degrees of be-

longing to the each cluster, through a set of probabilities p1, p2, · · · pk where pi stands for the

probability of x to fall in Ci. So instead of classifying each point with one label only - through

a {0, 1} responsibility function - we could now give a probability distribution over all the la-

bels, softly classifying the points. Thus, the responsibility function can be modified in a gen-

eral way as

rx(i) = pi(x,M, D)

Where pi(x,M, D) takes values in the interval [0, 1] and is seen as the probability of x being

labelled by i given the centroids M and the others data points D. Of course, the generality of

the the pi’s choice allows us to design better clustring methods regarding the clusters shape

pecularities detection, once we can introduce new parameters to capture and fit such data local

behaviours. But on the other side, introducing many new parameters could produce an over-

fitting of data, an issue we postpone for later in chapter 3. For now we propose - perhaps a bit

out of the blue - the following choice for pi:

rx(i) = pi(x,M, D) =
e−βd(x,mi)∑
j

e−βd(x,mj)
(2.10)

Readers familiar with statistical physics will recognize the Gibbs sample assignment of prob-

abilities in 2.10. In this framework, β would be the inverse of the temperature - but what is

‘temperature’ in this system? Here we will not analyse this new algorithm from the analogy

with statistical physics, such a development can be seen at [20]. We include a dedicated sec-

tion for the soft K-Means motivating its definition and detail its convergence analysis in the

next chapter.

We design a modified version of the hard K-Means by retaining the iterative procedures i. and

ii. in 2.2, 2.5, respectively, but making use of this new responsibility function, thus the pro-

posed algorithm will run the same as for the K-Means with the difference that the centroids

are updated to a weighted sum over all data points in D. So we alternate at each iteration the

two steps:

31

Assign: for each x ∈ D, assign the new probabilities:

p
(n+1)
i = pi(x,M

(n), D) =
e
−βd

(
x,m

(n)
i

)
∑
j

e
−βd

(
x,m

(n)
j

)

Update: Update centroids m
(n)
i to:

m
(n+1)
i =

∑
x∈D

r
(n)
x (i) x∑

x∈D
r

(n)
x (i)

=

∑
x∈D

p
(n+1)
i x∑

x∈D
p

(n+1)
i

for i = 1, 2, · · ·

A pseudocode of the soft K-Means is presented below. And a Python implementation is given

in the appendix A.2.

32

Algorithm 2.3.1: K-Means(k,D, ε)

for i← 1 to k

do m
(0)
i ← random value

M(0) ← (m
(0)
1 , · · ·m(0)

k)

M(1) ← (0, · · ·0)

(l1, l2, · · · lN)← (0, 0, · · · 0)

while ‖M(1) −M(0)‖ > ε

do



comment: calculate each Y (xi)

for each xi ∈ D

do



(pi1, · · · , pik)←
(

e
−βd

(
xi,m

(0)
1

)
, · · · , e−βd

(
xi,m

(0)
k

))
s← 0
for j ← 1 to k

do s← s+ pij

(pi1, · · · , pik)← (pi1/s, · · · , pik/s)

comment: update centroids

for j ← 1 to k

do



comment: jth cluster mean value

s← 0

m
(1)
j ← 0

for i← 1 to N

do

{
s← s+ pij

m
(1)
j ←m

(1)
j + pijxi

m
(1)
j ←m

(1)
j /s

return (p1,p2 · · ·pN)

(In the returned output above, pi = (pi1, pi2, · · · pik) for each i = 1, 2, · · ·N . In the input, ε is

a tolerance value for the stop criteria: the code stops when the difference (in a suitable matrix

norm, for example, the Frobenius norm) between the matrices M(1) and M(0) becomes negli-

gible, less than ε. Also, it could be necessary to begin with the first loop outside the WHILE

statement, as happens in the Python implementation proposed in the appendix A).

Figure 2.5 ilustrates a soft k-Means Clustering accompanied to its Voronoi-like regions, whose

borders are blurred (or, fuzzy) regions coloured in a varying mixture of each cluster’s represen-

tative colour. In fact the Voronoi-like regions are not really much different than that of hard

33

K-Means, but the probabilistic framework gives us much more information about the data

points than the purely geometric framework, specially in the blurred borders, also, this frame-

work intuitively (as seen in the figure below) seems more natural to fit the data.

Figure 2.5: There are above four uneven sized clusters whose original centers are marked as round white cir-
cles, while the estimated centroids are marked in white ‘X’.

Figures 2.6 and 2.7 give evidence that soft K-Means work better than the hard K-means. It is

presented a set of points with alongated clusters some of which lying very close to each other.

On the second set of points (with four natural clusters) the hard K-Means becomes unstable

and group two natural cluster into one sole cluster, while divides another in two clusters. On

the second set of images, we see that even the configuration where the K-Means worked well

before, now it got stuck a bad clustering configuration, and in the set with 4 natural clusters

the algorithm performed poorly. The soft K-Means instead appears to be unaffected, thus ex-

hibiting greater stability than the hard K-Means.

34

Figure 2.6: On the top a k = 3 clustering, below, k = 4, comparing as indicated, the hard versus soft K-
Means. Evidence shows that the soft version of the algorithm is more robust against exotic configuratios like
that verified in the bottom right, by running it many times.

35

Figure 2.7: Above we see a very dramatic event on the top, two clusters are merged, and another on the bot-
tom, three of them are assembled together, while the remaining one is divided by three. It is verified that soft
K-Means is quite robust against this pathology, exactly because it accounts the varying degrees of belonging to
each cluster.

The parameter β needs to be tuned. Different values for β are tested for the following data

set in Figure 2.8, which also compares the results to a hard K-Means clustering. We notice

that when β grows, the Voronoi-like sets become less blurred in its ‘borders’, and become very

similar to the hard K-Means true Voronoi sets.

36

Figure 2.8: Different values for β are tested. Later we will interpret it as the inverse of the cluster radius,
therefore, when it is small, like when β = 0.3, the three natural clusters coalesce (under the soft K-Means as-
signments) into three big clusters centered almost at the same location (so the mix of colors assume an uniform
aspect). Notice as well that we recover the aspect of a Voronoi set when β gets big, here, above ∼ 10.

Although the insertion of a new parameter β permits to identify more complex cluster shapes,

or at least make the algorithm more robust to ‘exotic’ patterns, as shown in Figures 2.6 and

2.7, it is still not sufficient to account for the inner structure of each cluster separately. This

issue is adressed in the next chapter where discuss another popular Clustering method, the

Gaussian Mixture Model, which models a cluster as a Gaussian distribution around its cen-

troid whose covariance specifies its shape, thus bringing more precision in the identification of

clusters shapes. In the following figure we apply a Gaussian Mixture Model and compare its

Voronoi-like region to both the hard and soft K-Means.

Figure 2.9: Comparison between three different methods - Soft K-Means, Gaussian Mixture, Hard K-Means.
Notice that the Voronoi-like regions of Gaussian Mixture appear more suitable to the nature of clusters, notice
also that the borders are blurred, though with good contrast.

37

Chapter 3

A probabilistic framework for
clustering

3.1 General Mixture Models and Cluster Analysis back-
ground

A Clustering of a finite set D = {x1, x2, · · ·xN} is generally defined as a partition of the data

set into k disjoint subsets {C1, C2, · · ·Ck} (then
⋃̇k
i=1Ci = D). A Clustering procedure is any

process which returns as output one particular Clustering configuration. We interpret the ele-

ments belonging to a cluster Ci as ‘similar’ (where similarity can be represented by a distance

metric d(·, ·)), and elements belonging to different clusters as ‘dissimilar’.

Notice that this is a possible - not the only - definition for clustering, and we can use many

clustering procedures for studying the same data set. Besides, there exists a confusion between

clustering and clustering procedure. The clustering algorithm generates as output a partition

of the data, this is what generally people define as clustering. However, the partition in itself

does not tell much about the nature of the data. Which clustering procedure works best on a

specific data set depends on our prior information and assumptions about its intrinsic nature.

As a consequence, there is no single universal tool for unsupervised learning, and we consider

definition for clustering that depend on the nature of the data.

In this thesis we are going to define clustering as a component of a mixture model. We make

the assumption that our data points are generated by random processes, in such a way we are

dealing with problems that are probabilistic in nature. Clearly, this is one standpoint and it is

not universal. However, it has the benefit of making sense of many algorithms, for example, we

anticipate that we understand K-Means as a “limit” of the, so called, Gaussian Mixture Model.

In the next subsection we analyze a general probabilistic Clustering procedure, the Mixture

Model, with special attention to the particular case of Gaussian Mixture Model, simply called

‘GMM’. Later on, we analyze how K-Means can be viewed as a limit case of a GMM. Finally,

we analyse Clustering procedures as approximations to Mixture Models.

38

3.1.1 A trivial example

A mixture model is a weighted superposition of simpler probability distributions, representing

our models. A random variable X can be generated by many possible models, each one having

its own probability of generating the values of X.

For example, suppose a scientist wants to measure the weight of the participants of an experi-

ment. Say that among them 65% are from São Paulo (SP) and the remaining 35% come from

Rio de Janeiro (RJ). Now, we expect some differences over the distribution of weights, which

we suppose is well approximated to a Gaussian, among citizens of these two Brazilian states.

It might be that people in Rio are fatter than in São Paulo, and that the Gaussian for Rio

population has a higher variance σ and higher mean µ.

As the scientist samples the participants, there will be at a time 35% of chance of selecting a

‘carioca’ (from Rio), in which case, he will verify a ‘fatter’ and broader gaussian in comparison

to São Paulo, and 65% of observing a ‘paulista’ (from São Paulo), so observing the conditional

probabilities  p(weight = x|“carioca”) = 1√
2πσ2

RJ

exp(−(x− µRJ)2/2σ2
RJ)

p(weight = x|“paulista”) = 1√
2πσ2

SP

exp(−(x− µSP)2/2σ2
SP)

With the priors given by {
P (“carioca”) = 35%
P (“paulista”) = 65%

The probability (density) of finding a value x ∈ R for the weight, i.e., the probability that a

randomly chosen participant of the experiment weights x (kg), is given by

p(weight = x) ≡ p(x) = p(x|“carioca”)P (“carioca”) + p(x|“paulista”)P (“paulista”)

p(x) = 0.35.
1√

2πσ2
RJ

exp(−(x− µRJ)2/2σ2
RJ) + 0.65.

1√
2πσ2

SP

exp(−(x− µSP)2/2σ2
SP)

where for brevity we omitted the ‘weight =’.

3.1.2 The full Mixture Model

Starting from this trivial example let us construct a more general mixture model. In the exam-

ple, the random variable could have been generated by two different mechanisms or models -

like a gaussian characterizing weights of Rio inhabitants and a different function for weight in

São Paulo - each with their specific probabilities.

Let us consider a random variable X generated by k different mechanisms, each one mod-

elled by a probability density ρ(x|θi), where θi , i = 1, 2, · · · k are the parameters of the

chosen models. At a time, the random choice of the generation mechanism is described by an

auxiliary random variable denoted M (standing for ‘mechanism’) taking values in {1, 2, · · · k}

39

and distributed according to a priori given probabilities {π1, π2, · · ·πk}, thus, every time X is

sorted, the probality of it being produced by ith mechanism is given by P (M = i) = πi.

A mixture model describes the random variable X that produces the observed outcomes x1, x2, · · ·xn
making use of the unobserved auxiliary variable M that indicates the mechanism by which

X is generated at a time. In general, the probability that an outcome of X belongs to a set

A ⊂ Rd and was generated by mechanism i is computed as

P (X ∈ A, M = i) = P (M = i)P (X ∈ A | M = i) = P (M = i)

∫
A

ρ(x|θi)dx

Where P (X ∈ A | M = i) =
∫
A
ρ(x|θi)dx is the probability that X values fall into A, once it

is sorted by the ith generation mechanism. We aim to calculate the probability distribution for

X, so we compute

P (X ∈ A) =

k∑
i

P (X ∈ A, M = i) =

k∑
i=1

P (M = i)P (X ∈ A | M = i) =

=

k∑
i=1

πi

∫
A

ρ(x|θi)dx =

∫
A

k∑
i=1

πiρ(x|θi) ≡
∫
A

ρ(x)dx

The above equation tells us that X is distributed according to the probability distribution

function, pdf, ρ(x) =
∑k
i=1 πiρ(x|θi).

Because the mixture of models is defined through the parameters θi and πi, we change slightly

the notation to emphasize this fact and write ρ(x) = ρ(x|θ, π) (the number of components of

this model is itself a parameter, but is represented in this notation by the sizes of θ and π).

Often, the models and the number of components are inferred a priori, however the weights of

each model, the values of πi, are generally not known and have to be inferred. We will discuss

a procedure for inference of the weights called the Expectation Maximization algorithm.

A special case of a mixture of models is when each component ρ(x|θi) is a gaussian distribu-

tion. This model is called Gaussian Mixture Model (GMM) and is widely used as an approxi-

mation for the actual pdf of a given random variable X.

3.2 Mixture Model is a type of Soft Clustering

In this section we explore Mixture Models in depth. Suppose we are observing the outcomes

of a random variable X, which compose our data D = {x1, x2, · · ·xn}, where xi ∈ Rd, and

let us consider the case where the generation of X is best explained by a mixture model of k

components, and assume that both π and θ values were already inferred. Thus, X is modeled

by the pdf

ρ(x) =

k∑
i=1

πiρ(x|θi)

We denote p(x|i) := ρ(x|θi), p(x) := ρ(x), p(x, i) := P (X = x, M = i) (an abuse of notation, p

is the compound probability associated to the pair (X,M), and satisfies

P (X ∈ A, M ∈ B) =
∑
i∈B

∫
A

p(x, i)dx

40

Similarly p(i|x) ≡ P (M = i|X = x). We calculate

p(i|x) =
p(x, i)

p(x)
=
p(x|i)p(i)
p(x)

=
p(x|i)p(i)∑k
l=1 p(x|l)p(l)

=
πiρ(x|θi)∑k
l=1 πlρ(x|θl)

(3.1)

p(i|x) is the probability that the mechanism that generated a given x is the ith model ρ(· |θi).∑k
i=1 p(i|x) = 1, thus we interpret the conditional probabilities p(i|x) as soft assignments of la-

bels for every x. Having this in mind, one can view a mixture model as defining a soft cluster-

ing for every data set D = {x1, x2, · · ·xn}. Hence, if we estimate somehow the parameters that

best fit the data D, we can calculate such soft assignment. The advantage of using Mixture

Models to cluster data is that we introduce the parameters θi, i = 1, 2, · · · k that can be tuned

to fit specifically every cluster special shape. But how do we estimate π and θ? One method is

the Expectation Maximization, which is described in the next subsection.

3.3 Expectation Maximization

The algorithm for expectation maximization relies heavily on the Jensen inequality, for which

the proof and definitions are left to the Appendix B:

Theorem 3.3.1. Let f be a convex function, and let X be a random variable. Then:

E[f(X)] ≥ f(E[X]) (3.2)

Moreover, if f is strictly convex, then E[f(X)] = f(E[X]) holds true if and only if P (X =

E[X]) = 1 (i.e., X = E[X] except for a set of null measure).

Our approach is very similar (but with different notations) to the excellent references [25]. The

background is the following: we have two variables, X and M , and two sets of parameters, π =

(π1, π2, · · ·πk) and θ = (θ1, θ2, · · · θk), which we denote collectively as φ = (π, θ). Recall that

our goal is to find the mixture model that best fits the data set D = {x1, x2, · · ·xn}. We make

use of the MLE estimators (already discussed in Chapter 1, Section 1.5) to find the best fit of

φ, therefore we calculate

φMLE = argmax
φ

p(D|φ) = argmax
φ

l(φ) (3.3)

Where

p(D|φ) = ρ(X1 = x1, X2 = x2, · · · , Xn = xn|φ) =

n∏
i=1

p(xi|φ)

l(φ) = ln p(D|φ) = ln

n∏
i=1

p(xi|φ) =

n∑
i=1

ln p(xi|φ)

The maximization is over the observed values for the x’s, while the values for M are unob-

served and remain implicit in the definition for l - they are said to be latent variables. We

make the unobserved latent variables explicit in the above formula:

41

l(φ) =

n∑
i=1

ln

k∑
z=1

p(xi, z|φ) (3.4)

Where p(xi, z) = P (X = x,M = z). We also assumed M take values in {1, 2, · · · k} motivated

by the K-Means application, but the following discussion need not to be restrict solely on finite

discrete latent variables, thus we assume z could take values in a continuum as well, and for

coherence we substitute the summation symbol
∑k
z=1 by the more general

∑
z meaning that

we integrate through the (conditional) probability measure associated to M (in the case of a

discrete variable it is simply the summation of probabilities, for continuous latent variables,∑
z =

∫
dp(z)).

In general we do not expect to solve Equation 3.3 analytically, hence we would better find

an approximate solution through algorithmic procedures. In a classic 1977 paper by Arthur

Dempster, Nan laird and Donald Rubin [1], the referred authors proposed an iterative method

called Expectation-Maximization (EM), for finding the maximimum likehood estimates of gen-

eral statistical models possessing unobserved random variables. The EM method produces a

sequence of estimates {φ(t)}t=0,1,··· that makes { l(φ(t)) }t=0,1,··· to be a monotonic increasing

sequence

l(φ(0)) ≤ l(φ(1)) ≤ · · · ≤ l(φ(t)) ≤ l(φ(t+1)) ≤ l(φMLE)

through iterations that alternate between performing an expectation (E) step and a maximiza-

tion step (M). At the E step the expectation of the likelihood 3.4 is evaluated using the cur-

rent estimate φ(t) for the parameters, following the maximization (M) step, which updates φ(t)

to φ(t+1) maximizing the expected likelihood found on the E step. Then φ(t+1) is used to de-

termine the distribution of the latent variables in the next E step. We study in detail these

two steps further.

The EM is advantageous when knowledge of the latent variable facilitates the calculation of

l(φ) in terms of the observed variables and vice-versa. The algorithm maximizes l(φ) by re-

peatedly constructing a lower bound for max{l(φ)} = l(φMLE) with the previous estimate for

φ fixed (the E -step) and then optimizes that lower bound, assuming that the M (the latent

variable) was observed. We proceed detailing each of the two steps.

3.3.1 The E step

At the beginning of every iteration, for each observation xi, we will calculate a new special

set of auxiliary distributions Qi : z 7→ Qi(z) over the range of M using the parameters from

the previous step. This distributions will help us to bound below the maximum likelihood. In

order to understand why we calculate this set of distributions {Qi}i=1,2,···n and what values

should they assume we reason as follows.

Assume we are given such set of auxiliary distributions Qi corresponding to each xi ∈ D. By

defnition of distribution we must have
∑
z Qi(z) = 1. Then we construct for every i a new

probability space associated to a random variable Yi taking for each z the values

42

Yi(z) =
p(xi, z|φ)

Qi(z)

and distributed according to Qi(z) (i.e., PQi(Yi = y) = Qi(z) whenever y = p(xi,z|φ)
Qi(z)

). In this

new space the expectation of Yi is

EQi [Yi] =
∑
z

Qi(z)
p(xi, z|φ)

Qi(z)

We will make use of the Jensen Inequality 3.2 applied to the concave function f(x) = ln(x)

(whose second derivative is f ′′(x) = −1/x2), which gives

EQi [lnYi] ≤ ln (EQi [Yi])

And the equality will hold if and only if

Yi ≡ constant (with probability 1)

The random variable Yi lives in this new probability space constructed over the given distri-

bution Qi - do not confuse with the probability space of (X,M) - and it was created only to

allow us to use the Jensen inequality for {Qi}i = 1, 2, · · ·n. Now, once we fixed this set of dis-

tributions, we make the following calculations:

l(φ) =

n∑
i=1

ln p(xi|φ) =

n∑
i=1

ln

(∑
z

p(xi, z|φ)

)
=

=

n∑
i=1

ln

(∑
z

Qi(z)
p(xi, z|φ)

Qi(z)

)
=

n∑
i=1

ln (EQi [Yi]) ≥

≥
n∑
i=1

EQi [lnYi] =

n∑
i=1

∑
z

Qi(z) ln

(
p(xi, z|φ)

Qi(z)

)
(3.5)

The above calculations are valid for arbitrary distributions hence for each distribution Qi over

z values and for every φ, it is verified the inequality

l(φ) ≥
n∑
i=1

∑
z

Qi(z) ln

(
p(xi, z|φ)

Qi(z)

)
(3.6)

which constitutes a lower bound for l(φ) given the set {Qi}i=0,1,··· and the current guess for

φ at the iteration considered. Still using the theorem of Jensen inequality, we could make the

inequality hold with equality sign in 3.5 and 3.6 by plugging in a distribution such that Yi be-

comes constant (with probability 1), i.e., by requiring that

Yi = c ⇔ p(xi, z|φ)

Qi(z)
= c , ∀ z

43

for some c not depending on z.

Therefore, among all the possible distributions Qi we pick the only one satisfying the condition

Qi(z) ∝ p(xi, z|φ), and the constraint
∑
z Qi(z) = 1 gives the proportionality factor as the

inverse of
∑
z p(xi, z|φ) and hence

Qi(z) =
p(xi, z|φ)∑
z
p(xi, z|φ)

=
p(xi, z|φ)

p(xi|φ)
= p(z|xi, φ)

Qi is the only distribution that makes the following condition true:

l(φ) =

n∑
i=1

∑
z

Qi(z) ln

(
p(xi, z|φ)

Qi(z)

)
(3.7)

Notice that the values of Qi(z) depend on the current guess φ so suppose at the tth iteration

the guess for φ was calculated at the previous iteration to be φ(t−1). We define the E-step as

the assignment of the distributions Qi’s relying upon φ(t−1) for every i = 1, 2, · · ·n then we fix

Qi(z) and determine the function L(φ) =
∑n
i=1

∑
z Qi(z) ln p(xi,z|φ)

Qi(z)
, that we will maximize at

the M step. We summarize:

E step: . For each i = 1, 2, · · ·n, calculate and assign the values

Qi(z) = p(z|xi, φ(t−1));

. Determine the function

L(φ) =
n∑
i=1

∑
z
Qi(z) ln p(xi,z|φ)

Qi(z)

3.3.2 The M step

In the E step we calculated for every xi the only distribution Qi that makes 3.5 to hold the

equality in condition 3.7, Qi is exactly the conditional distribution p(z|xi, φ(t−1)). Likewise the

E step, at the M-step we maximize 3.7 and update the new guess for φ:

M step: . Update the parameters from φ(t−1) to φ(t) by maximizing L(φ):

φ(t) = argmax
φ

{∑n
i=1

∑
z Qi(z) ln p(xi,z|φ)

Qi(z)

}
If l is bonded (at least locally), then by construction, t − th iteration makes l(φ(t)) closer to

l(φMLE) as verified below using inequality 3.5:

l(φ(t−1)) =

n∑
i=1

∑
z

Qi(z) ln
p(xi, z|φ(t−1))

Qi(z)
≤

n∑
i=1

∑
z

Qi(z) ln
p(xi, z|φ(t))

Qi(z)
≤ l(φ(t)) ≤ l(φMLE)

⇒ l(φ(t−1)) ≤ l(φ(t)) ≤ l(φMLE)

Through these iterations, the successive values for φ(t) produce the bounded monotone increas-

ing sequence

44

l(φ(0)) ≤ l(φ(1)) ≤ · · · ≤ l(φ(t)) ≤ l(φ(t+1)) ≤ · · · ≤ l(φMLE)

So, convergence for some value l∗ = limt→∞ φ(t) is guaranteed, though not necessarily to global

maximum, which is a drawback of this method, if we aim the exact MLE estimator. Although

there are guarantees that l(φ(t)) converges, nothing is said about the parameters φ(t) them-

selves, and even when they converge, we must know how fast they do, as the implementation

should stop at finite time. We adress this discussion to the next section.

Finally we summarize the EM below and implement it next as a pseudo-code in 3.3.1 :

E step: assign Qi(z) = p(z|xi, φ(t−1));

M step: update φ from φ(t−1) to φ(t) = argmax
φ

{∑n
i=1

∑
z Qi(z) ln p(xi,z|φ)

Qi(z)

}
A pseudocode for the EM algorithm is summarized next.

Algorithm 3.3.1: ExpectationMaximization(D, ε)

φ0 ← random value

l0 ←
n∑
i

ln p(xi|φ0)

∆← 2ε

while ∆ > ε

do



comment: E-step

for each xi ∈ D
do Qi(z)← p(z|xi, φ0)

comment: M-step

φ1 ← argmax
φ

{
n∑
i=1

∑
z
Qi(z) ln p(xi,z|φ)

Qi(z)

}

l1 ←
n∑
i

ln p(xi|φ1)

∆← l1 − l0
l0 ← l1
φ0 ← φ1

return (φ)

45

3.4 A word on the EM convergence

We start noticing that the M step tries to maximize the expression

L(φ) =

n∑
i=1

∑
z

Qi(z) ln
p(xi, z|φ)

Qi(z)
(3.8)

given the newly set parameters Qi in the previous E step. Assume that φ lies in a set Ω ⊂ Rm.

We maximize L over Ω, but there are in general many local maxima. Therefore, having set a

given φ(t−1) ∈ Ω along with its L function (that depends on the newly calculated coefficients

Qi(z)) there can be many choices for φ(t) in the M step. A good way to represent this set of

choices is through a point-to-set map which associates to every φ ∈ Ω (corresponding to φ(t−1))

the set of every possible updates φ′ ∈ Ω (corresponding to φ(t)) as defined below:

Φ: Ω → P(Ω)
φ 7→ Φ(φ)

Φ(φ) = {φ′ ∈ Ω | L(φ′) ≥ L(x), ∀ x ∈ B(φ′, ε)}

Where L is calculated using Qi(z) = p(z|xi, φ) for i = 1, 2, · · · , n and B(φ′, ε) is a ball where

φ′ is a local maximum. With this definition, every sequence {φ(0), φ(1), · · · , φ(t), φ(t+1), · · · }
generated by the EM algorithm satisfies

φ(t) ∈ Φ
(
φ(t−1)

)
We state conditions to guarantee the convergence of {φ(t)} towards local maxima in what fol-

lows. We rely on the following result by Zangwill [37], [3] which is proven in the appendix

A.2.1. We will need the

Definition 3.4.1. A point-to-set function Φ is closed at x ∈ Ω if whenever xn → x and yn →
y with yn ∈ Φ(xn) implies y ∈ Φ(x). We say Φ is closed in the set S ⊂ Ω if it is closed at

every x ∈ S.

Theorem 3.4.1 (Zangwill Global Convergence Theorem). Let the sequence {xn}n∈N∗ be gen-

erated by the point-to-set function Φ: Ω → P(Ω) through the rule xn+1 ∈ Φ(xn) and an initial

guess x0. Let a solution set Γ ⊂ Ω be given and suppose that:

i. All points xn are contained in a compact set S ⊂ Ω;

ii. Φ is closed for every x ∈ Ω/Γ;

iii. There is a continuous function E : Ω→ R such that

(a) If x /∈ Γ, E(y) > E(x) for all y ∈ Φ(x);

(b) If x ∈ Γ, E(y) ≥ E(x) for all y ∈ Φ(x).

46

Then all the limit points of {xn}n∈N∗ are in the solution set Γ and E(xn) converges monotoni-

cally to E(x) for some x ∈ Γ.

A function E satisfying the properties iii.(a) and iii.(b) is called a descent function. In gen-

eral a so-called descent method implements an algorithm described by a point-to-set function

that is specially designed to make a descent function E satisfy conditions iii.(a) and iii.(b). A

classical example is the gradient descent [26]. K-Means itself is another example of a descent

method.

Notice that the theorem does not garantee the existence of limit points to the sequence {xn}n∈N∗ ,
but in case the latter is bounded, there will be a subsequence converging to a solution x ∈ Γ.

Back to the Expectation Maximization algorithm, the likelihood l(φ) = ln{p(D | φ)} is the

descent function, and the solution set Γ is

Γ = {φ′ ∈ Ω | l(φ′) ≥ l(x), ∀ x ∈ B(φ′, ε)}

That is, Γ is the set of local maxima for l = l(φ) in Ω. By construction of the algorithm,

l(φ(t)) ≤ l(φ(t+1)) for all t - this guarantees satisfaction of condition iii.(b) and we assume

the boundness, which can be verified through some condition like l(φ) ≤ l(φMLE), ∀ φ ∈ Ω or

the condition

Ωφ0 = {φ ∈ Ω | l(φ) ≥ l(φ0)} is compact for any φ0

The difficulty in the application of Zangwill’s theorem is to show that the inequality l(φ(t)) ≤
l(φ(t+1)) can be made strict when φ(t) is not a local maximum - this would amount for satis-

faction of condition iii.(a) - and that the point-to-set function Φ is closed in Ω/Γ - condition

ii.. Now, for each t, φ(t+1) maximizes L(φ). If φ(t) is not a maximum (i.e., it does not belong

to Γ), then if the condition φ(t+1) > φ(t) is not satisfied, this would imply that the latter is in

fact a local maximum (if not, there would be a direction in the manifold Ω where to maximize

it strictly). The closedness property of Φ is normally associated to the continuity of L(φ), and

depends on which case we are dealing.

This brief note is only to account that the sequence {φ(t)}t∈N∗ EM does indeed converge in

most of the cases, but we will not focus in detailing this convergence, nor study its speed. For

further details on such convergence properties, see [35]. We proceed next sections studying in

detail the Soft K-Means and the Gaussian Mixture Model.

3.5 Soft K-Means explained

Consider a data point x0 ∈ D which is sorted from a mixture of distributions ρ(· |θi) for

i = 1, 2, · · · k. Each distribution ρ(· |θi) models a cluster. Recall expression 3.1 which gives

the probability of such given x0 having been generated by the ith mechanism, or, in Cluster

Analysis terms, its probability of belonging to the ith cluster:

p(i|x0, φ) =
πiρ(x0|θi)∑k
l=1 πlρ(x0|θl)

(3.9)

47

Where we made explicit the dependence of p(i|x0) on the parameters φ (encompassing θ’s).

Now compare the above expression to the Soft K-Means probability assignments as defined in

2.10

pi(x0,M, D) =
e−βd(x0,mi)∑
j

e−βd(x0,mj) (3.10)

Where M = (m1,m2, · · ·mk) are the representative centroids of each cluster.

This comparison suggests that the k clusters are modeled each by a distribution with parame-

ters β and mi given by

ρ(x0|β,mi) = α e−βd(x0,mi) (3.11)

Where α is a normalization constant and each cluster should have weight πi = 1/k so that

they sum up to 1 and are all equal. Indeed, suppose the data points are generated by the mix-

ture with components like in 3.11 and equal weights

ρ(x|β,M) =

n∑
j=1

1

k
α e−βd(x0,mi)

Then, starting from 3.9 for this mixture we arrive at the soft K-Means probability assignment

3.10:

p(i | x0, β, M) =
1
kα e−βd(x0,mi)∑k
l=1

1
kα e−βd(x0,ml)

=
e−βd(x0,mi)∑
j

e−βd(x0,mj)
= pi(x0, M, D)

This shows that the soft K-Means assignment step is equivalent to the E step of the Expecta-

tion Maximization algorithm. We proceed showing that the soft K-Means update step is also

equivalent to the M step for the special (and most important) case where d(x, y) = ‖x− y‖2L2 .

Let us calculate precisely the E and M steps for this mixture at iteration t. For the E step, we

should calculate the Qi(j)’s for j = 1, 2, · · · k, for each i = 1, 2, · · ·n (i corresponding to the ith

data point), thus we calculate a matrix of coefficients
[
qij] =

[
Qi(j)] defined below:

qij = p
(
j | xi, β, M(t−1)

)
=

e
−βd

(
xi, m

(t−1)
i

)
∑
j

e
−βd

(
xi, m

(t−1)
j

)

For the M step we calculate the following expression with ρ(x|β,mi) = α e−βd(x0,mi) and πj =

48

1/k:

n∑
i=1

k∑
j=1

Qi(j) ln

{
p(xi, j | β,M)

Qi(j)

}
=

n∑
i=1

k∑
j=1

qij ln

{
p(j)ρ(xi|β,mj)

qij

}
=

=

n∑
i=1

k∑
j=1

qij ln

{
1/k α

qij
e−βd(xi,mj)

}
=

n∑
i=1

k∑
j=1

qij {lnα− ln(k qij)− β d(xi,mj)} =

=


n∑
i=1

k∑
j=1

qij ln α− β
n∑
i=1

k∑
j=1

qij d(xi,mj)

+ constant ≡

≡ f(β,M, (qij)) + constant

(3.12)

We aim to maximize expression

n∑
i=1

k∑
j=1

Qi(j) ln

{
p(xi, j | β,M)

Qi(j)

}
= f(β,M, (qij)) + constant

which is done by equating to zero the derivatives in mi of f :

0 = ∇ml
f(β,M(t), (qij)) = −β

n∑
i=1

k∑
j=1

qij ∇ml
d
(
xi,m

(t)
j

)
Notice that we need to make assumptions about the dissimilarity d(·, ·) used to cluster the

points in order to calculate ∇mi
d(x0,mj). We take the special case where d(·, ·) is the squared

euclidean norm, which is the most important for the soft K-Means:

d(x, y) = ‖x− y‖2L2

∴ ∇ml
d(xi,m

(t)
j) = −2δlj(xi −m

(t)
j)

And we get

0 = β

n∑
i=1

k∑
j=1

qij 2δlj(xi −m
(t)
j) = 2β

n∑
i=1

qil (xi −m
(t)
l)

⇒ m
(t)
l =

n∑
i=1

qil xi

n∑
i=1

qil

Which coincides with the update step for the soft K-Means when d is the squared euclidean

norm, according to the calculated value for qij in 3.5. We summarize these two steps:

49

E step: Assign qij = e
−β‖xi−m

(t−1)
i ‖2

L2∑
j

e
−β‖xi−m

(t−1)
j ‖2

L2

M step: Update the mi’s from m
(t−1)
l to m

(t)
l =

∑n
i=1 qil xi∑n
i=1 qil

Remark. We proved that the soft K-Means is equivalent to the EM algorithm only for the spe-

cial case when d(x, y) = ‖x− y‖2L2 . If d(·, ·) assumes another form, it generates two completely

different algorithms, for the soft K-Means, the update step continues to be

ii. Update the mi’s from m
(t−1)
l to m

(t)
l =

∑n
i=1 qil xi∑n
i=1 qil

(where qil = pl(xi, M(t−1), D))

While for the EM algorithm the update step (M step) is

ii.’ (M step) Update the ml’s from m
(t−1)
l to m

(t)
l , the only solution of

0 = ∇ml
f(β,M(t), (qij)) = −β

n∑
i=1

k∑
j=1

qij ∇ml
d
(
xi,m

(t)
j

)

3.6 The soft K-Means β parameter

In the previous section we showed that the soft K-Means is equivalent to the Expectation Max-

imization algorithm when d(x, y) = ‖x − y‖2L2 , therefore, its convergence is guaranteed, ac-

cording to the results in [35]. We explore a bit more the mixture model viewpoint to under-

stand the role of the β parameter. Recall Expression 3.11 for the ith model, here adapted to

the squared L2 norm:

ρ(x0|β,mi) = α e−β‖x0−mi‖2L2

Noticing that β‖x0 −mi‖2L2 = (x0 −mi)
T (1

β I)
−1(x0 −mi) we can rewrite the soft K-Means

pdf as

ρ(x|β,M) =

n∑
j=1

1

k
α e−(x0−mi)

T (1
β I)
−1(x0−mi)

Each model in the mixture has the same weight πj = 1
k and is distributed as a gaussian with

covariance matrix 1
β I, also, the normalization constant is α = 1/(2π)n/2| 1β I|

1/2 = (β/2π)n/2.

The covariance matrix is diagonal with eigenvalues 1
β , threfore, the mean-squared distance

from the center is r = 1
β . This allows us an interpretation of the clusters shape geometry: they

are gaussian ‘blobs’ centered at each mi with radius r = 1
β , all the same size (ideally, they

have the same proportion of points).

The soft K-Means has more flexibility to detect clusters’ round shapes and can fit better the

mean-squared radius if they all share the same radius. Still we can go on trouble if the clusters

are not equal sized, do not have similar mean-squared radius nor have spherical shape. If we

need to capture this peculiarities, it is needed to add more parameters to our model, a task we

do next section with the Gaussian Mixture Models.

50

3.7 Gaussian Mixture Models

A gaussian mixture model (GMM) is a mixture for a random variable X whose components

are gaussian distributions centered at µi and possessing covariance matrix Σi, and have sizes

πi, for i = 1, 2, · · · k. Hence, X is distributed according to the pdf

ρ(x) =

k∑
i=1

πi
e−

1
2 (x−µi)TΣ−1

i (x−µi)

(2π)n/2|Σi|1/2
(3.13)

Making explicit each component distribution:

ρ(x|µi,Σi) =
e−

1
2 (x−µi)TΣ−1

i (x−µi)

(2π)n/2|Σi|1/2
(3.14)

The parameters are φ = (πi, µi,Σi)i=1,2,···k ≡ (π, µ,Σ) and clearly the latent variable M spans

values j ∈ {1, 2, · · · k}. For simplicity, we assume that the Σ’s are known in advance (they

won’t be taken as free parameters to estimate).

For the E step, we should calculate the Qi(j)’s for j = 1, 2, · · · k, for each i = 1, 2, · · ·n (i

corresponding to the ith data point), so let us we calculate the matrix of coefficients
[
qij] =[

Qi(j)] similarly to what was done in Section 3.5:

qij = p(M = j|xi, φ) =

= α−1 πj exp

(
−1

2
(xi − µj)TΣ−1

j (xi − µj)
)
/
{

(2π)n/2|Σj |1/2
}

Where α =

k∑
l=1

πl exp

(
−1

2
(xi − µl)TΣ−1

l (xi − µl)
)
/
{

(2π)n/2|Σl|1/2
}

(3.15)

Next in the M-step, we should maximize the expression

n∑
i=1

k∑
z=1

Qi(z) ln
p(xi, z|φ)

Qi(z)
=

n∑
i=1

k∑
j=1

qij ln

{
p(M = j|φ)p(xi|M = j, φ)

qij

}
=

=
n∑
i=1

k∑
j=1

qij ln

{
πj(2π)−n/2|Σj |−1/2exp

(
−1

2
(xi − µj)TΣ−1

j (xi − µj)
)
/qij

}
=

=


n∑
i=1

k∑
j=1

qij lnπj −
qij
2

(xi − µj)TΣ−1
j (xi − µj)−

qij
2

ln |Σj |

+ constant ≡

≡ f(π, µ,Σ, (qij)) + constant

(3.16)

51

Equating to zero the derivatives of this final expression we obtain

0 = ∇µlf (π, µ,Σ, (qij)) = −
n∑
i=1

k∑
j=1

qij
2
∇µl{ (xi − µj)TΣ−1

j (xi − µj) } =

=

n∑
i=1

qil
2
∇µl

(
2µTl Σ−1

l xi − µTl Σ−1
l µl

)
=

n∑
i=1

qil(Σ
−1
l xi − Σ−1

l µl) =

=

n∑
i=1

qilΣ
−1
l (xi − µl)

Considering that Σ−1
l is invertible and self-adjoint, we have that

0 =

n∑
i=1

qilΣ
−1
l (xi − µl) = Σ−1

l

{
n∑
i=1

qil(xi − µl)

}
∀ l ⇔

⇔ 0 =

n∑
i=1

qil(xi − µl) , ∀ l ⇔

⇔ µl =

∑n
i=1 qilxi∑n
i=1 qil

(3.17)

Now we look for the optimal value for π. We look simply for the terms in f(π, µ,Σ, (qij)) that

depend on the πj ’s. Fortunately, the parameters are not mixed together in the function f ,

therefore we deal only with the optimization of its term
∑n
i=1

∑k
j=1 qij lnπj . So we are look-

ing for

π(t) = argmax∑
πj=1

{ f(π, µ,Σ, (qij)) } = argmax∑
πj=1


n∑
i=1

k∑
j=1

qij lnπj


For this problem, as indicated, we should perform a constraint optimization over the constraint∑k
i=1 πi = 1. To deal with this constraint we construct the lagrangian

L(π) =

n∑
i=1

k∑
j=1

qij lnπj + λ

 k∑
j=1

πj − 1


We derive it and set it equal to zero

52

0 =
∂L
∂πj

(π) =

n∑
i=1

qij
πj

+ λ =

∑n
i=1 qij
πj

+ λ

⇒ πj = −

(
n∑
i=1

qij

)
/λ

And we apply the constraint for calculation of λ:

1 =

k∑
j=1

πj =

k∑
j=1

n∑
i=1

qij/(−λ) =

 n∑
i=1

k∑
j=1

qij

/(−λ)

∴ −λ =

n∑
i=1

k∑
j=1

qij =

n∑
i=1

1 = n

⇒ πj =
1

n

n∑
i=1

qij

(3.18)

If we took the optimization over Σ as well, the calculations would become more involved but

the final result would give the empirical covariance as the estimate. We can summarize the EM

steps adapted to this particular model as:

E step: assign qij = α−1
∑k
l=1 πl exp

(
− 1

2

(
xi − µ(t−1)

l

)T
Σ−1
l

(
xi − µ(t−1)

l

))
/
{

(2π)n/2|Σl|1/2
}

where α =
∑k
l=1 πl exp

(
− 1

2

(
xi − µ(t−1)

l

)T
Σ−1
l

(
xi − µ(t−1)

l

))
/
{

(2π)n/2|Σl|1/2
}

M step: update πj and µj from π
(t−1)
j , µ

(t−1)
j to π

(t)
j = 1

n

n∑
i=1

qij and µ
(t)
j =

∑n
i=1 qijxi/

∑n
i=1 qij

Below we apply the Gaussian Mixture Model to detect three clusters, plotting the calculated

covariances through the ellipsoids Si = {y | y = Σi x, ‖x‖ = 1}.

53

Figure 3.1: Ellipses are displayed together with the estimated centroids (’X’ white marks) and the original
centers (white dotted.)

3.7.1 K-Means as a Gaussian Mixture Model limit

Now we are able to prove that we can recover the hard K-Means algorithm from a GMM with

all its Σ’s equal to εI in the limit of ε → 0. Hence, assume we have a Gaussian Mixture whose

components are modeled by

ρ(x|µj , ε) =
exp(− 1

2 (xi − µj)T (εI)−1(xi − µj))
(2π)n/2|εI|1/2

Now,

(2π)n/2|εI|1/2 = (2πε)−n/2

and

(xi − µj)T (εI)−1(xi − µj) =
1

2ε
‖xi − µl‖2

Thus Equation 3.15 simplifies to

54

qij(ε) = p(M = j|xi, φ) =

=

{
πj

exp(− 1
2 (xi − µj)T (εI)−1(xi − µj))

(2π)n/2|εI|1/2

}
/

{
k∑
l=1

πl
exp(− 1

2 (xi − µl)T (εI)−1(xi − µl))
(2π)n/2|εI|1/2

}
=

=

{
πjexp(− 1

2ε
‖xi − µj‖2)(2πε)−n/2

}
/

{
k∑
l=1

πlexp(− 1

2ε
‖xi − µl‖2)(2πε)−n/2

}
(3.19)

Now we prove that in the limit where ε → 0, qij(ε) → rij , where rij is the hard K-Means

responsibility function.

Let us write

δj ≡ ‖xi − µj‖2

δmin = min
j
‖xi − µj‖2

So we get

qij(ε) =

{
πj exp

(
− 1

2ε
δj

)
exp

(
1

2ε
δmin

)}/{(
k∑
l=1

πl exp

(
− 1

2ε
δl

))
exp

(
1

2ε
δmin

)}
=

= πj exp

(
δmin − δj

2ε

)/{
k∑
l=1

πl exp

(
δmin − δl

2ε

)}
(3.20)

Now, consider l∗ = argmin
l

δl. Clearly, δl∗ = δmin, hence

k∑
l=1

πl exp

(
δmin − δl

2ε

)
≥ πl∗ exp

(
δmin − δl∗

2ε

)
= πl∗

⇒ πj exp

(
δmin − δj

2ε

)/{
k∑
l=1

πl exp

(
δmin − δl

2ε

)}
≤

≤ πj exp

(
δmin − δj

2ε

)
/πl∗

(3.21)

So, for j 6= l∗, we use 3.21 in 3.20, gaining

qij(ε) ≤
πj
πl∗

exp

(
δmin − δj

2ε

)
≡ c exp(−∆/ε) (3.22)

55

Where ∆ :=
δmin−δj

2 > 0 for j 6= l∗ and c :=
πj
πl∗

.

We notice that

lim
ε→0

c exp(−∆/ε) = 0

For the case j = l∗, exp(δmin−δl∗2ε) = 1 , ∀ ε > 0, thus we have

qil∗(ε) = πl∗ exp

(
δmin − δl∗

2ε

)
/

{
k∑
l=1

πl exp

(
δmin − δl

2ε

)}
=

=
πl∗

πl∗ +
∑
l 6=l∗

πlexp(δmin−δl2ε)
=

=
1

1 +
∑
l 6=l∗

πl
πl∗

exp(δmin−δl2ε)

ε→0−→ 1

(3.23)

Because

lim
ε→0

∑
l 6=l∗

πl
πl∗

exp

(
δmin − δl

2ε

) = 0

when δmin − δl < 0 (i.e. ∀ l 6= l∗).

Therefore, we see that the limit of qij(ε) satisfies

lim
ε→0

qij(ε) =

{
1 if j = argmin

l
‖xi − µl‖2

0 otherwise

As we announced this is exactly the hard assignment of data points xi to their closest centers

µl we saw in the K-Means algorithm. Thus, in the limit where ε goes to zero, the EM algo-

rithm coincides with the Hard K-Means. Notice that when ε gets small, the covariance matri-

ces of the gaussian mixture, which are all equal, make each distribution sharpen around the

centers, and in the limit, this mixture becomes a weighted sum of Dirac Pics centered at the

µl’s.

The above result has an intuitive interpretation: imagine the covariances Σi = ε I assume an

extremely small value for ε. Hence, the distribution of points become a gaussian very concen-

trated around its center. Now suppose a data point x ∈ D lies between two clusters’ centroids.

Very likely the distances from x to the centroids differ several orders of magnetude in compar-

ison to ε (assuming it is really really small), so that even tiny differences in the distances make

the probability of x to belong to one cluster instead of the other become extremely big, spe-

cially because the probability decays proportionaly to e−d
2/ε.

56

3.7.2 A Fatal Flaw of GMM Clustering

The Gaussian Mixture Model allows us to fit nicely some simple data sets, because it gives us

too many parameters to work on. Consider in particular the case where we update not only

the π’s and the µ’s but also all the covariance components (Σij)i,j=1,···n, then we will have

m = k + dk + kd2 parameters to fit the data if they are all independent. It happens that data

points are normally generated by a set of distributions whose total number of parameters do

not exceed a number linear in both d and k (assuming k is a good candidate for the total num-

ber of clusters), so that the squared term d2 contributes to the overfitting of data discussed in

Chapter 1, by making m big.

Remember that the overfitting of data happens when there are so many parameters that we

start fitting the errors, by fitting ‘perfectly’ the data observed at the cost of losing predictive

power for newly generated samples. Find next an insightful example of overfitting in Super-

vised Learning, from Wikipedia [34]. In Figure 3.2 we see the ‘wiggly’ line fitting very well

the data division between red and blue points, but this prediction do not sound realistic (a

cross validation could account to a measure of how bad this solution is). The model behind

the green line fit must have too many parameters so that it is heavily affected by the noise in

the threshold between the two regions. The model behind the black line fit instead is robust

against this noise. We investigate next a similar sitation but in the context of Unsupervised

Learning.

Figure 3.2: From Wikipedia - ‘The green line represents an overfitted model and the black line represents a
regularised model. While the green line best follows the training data, it is too dependent on it and it is likely
to have a higher error rate on new unseen data, compared to the black line.’

To show how the GMM overfitting of data could affect the detection of clusters, consider the

two clustered data sets in Figure 3.3 differing by only a small set of points which constitute a

noise. The noise is small enough to be considered as an outlier observation, meaning that it is

57

not expected this noise to be considered as a whole new cluster. Then one might expect from a

good clustering algorithm to detect it as part of a bigger cluster nearby. We verify instead that

the GMM clustering classifies the noisy points as a whole ‘new’ cluster, while forces two big

important clusters to merge. That is an anomally typical of overfitting estimations, where the

parameters start to fit erros. This is an issue of the Gaussian Mixture model not fully known.

Some explanations of it for special cases can be checked in [21] and [16]

Evidence shows that when one can place a gaussian distribution with very small radius around

the noisy points, then the likelihood normally goes huge. This is a fatal flaw for the Gaussian

Mixture Model, because when the dimension grows we verify the so-called Curse of Dimen-

sionality : the sampled points become sparse, in such a way that it becomes increasingly dif-

ficult to distinguish what is an outlier (a noise) from what is not, because more or less every

point seems to be isolated. The discussion about this curious (and awkward) phenomenon is

postponed to Chapter 5, where we present some important examples and some special results

of Concentration of Measure that make clear the concept and how to deal with (or not).

Figure 3.3: Here K = 3. On the left three clusters are represented together with the GMM Voronoi-like sets.
In the middle a noise is added at coordinates (16, 14), therefore very far from the original centroids, with radius
∼ 0.001. This noise is what one would call an outlier, because there are very few points to justify classification
of it as a whole new cluster. On the right we see the zoomed noise. Notice that because k = 3, the two clusters
on the left are merged, and the small noise is taken as a whole cluster

Although the Expectation Maximization seems to be a nice clustering algorithm, it will not be

effective against isolated noisy points that naturally occurs high dimension. We will need ro-

bust methods that can perform clustering despite the imense amount of apparent noise result-

58

ing from the intrinsic high-dimensional data sparsity. Again in Chapter 5 we reach this goal

presenting an algorithm proposed by Charu Aggarwal in [2] named ORCLUS whose underly-

ing idea is to project each cluster into the relevant directions, thus reducing locally in the data

the dimension.

Before addressing the discussion on high dimensional data, we break and take a step back-

wards to a more technical chapter on the proof of K-Means convergence.

59

Chapter 4

A detailed study of K-Means

4.1 Clustering as an optimization program

As we have seen earlier, the K-Means clustering method produces a sequence of centroids by

iterating two steps at the time, namely, the assignment step and the centroid update step,

much like in the EM steps. These steps reduce the ‘energy’ or ‘cost function’ E = E(M), in

terms of (new) optimal Cluster’s centers.

In this chapter we prove in detail the convergence of the K-Means algorithm exploring the idea

of minimizing a cost-function in a Constrained Optimization framework. A brief introduction

to this framework is presented in the appendix. We will restate the Clustering methods as an

optimization program, and solve it following the article entitled ‘K-Means-Type Algorithms:

A Generalized Convergence Theorem and Characterization of Local Optimality’ (1984) by Is-

mael and Selim [32]. The author of this thesis points out his contribution in making clear the

referred article which has some obscure steps.

This chapter is very technical and is only concerned in delve into the details of the convergence

properties of the K-Means algorithm. Despite its apparent simplicity, the K-Means hardness

entails rich mathematical techniques, specially because it envolves the minimization of a bi-

convex function on a discrete domain. It is worth noting that although the K-Means first ap-

pearence dates back to 1957 in the work of Loyd [19] and popularized through the work of

Macqueen [22] in 1967, only in 1984 Ismael and Selim gave a complete proof of convergence

and characterization of local optimality of the K-Means [32] and still nowadays the algorithm

and its variants poses many open questions to the mathematical community (see [27]). One

of the thesis author’s goal with this work was to provide a rigorous, clear and self-contained

source of material about the mathematics surrounding the K-Means, running away from tradi-

tional approaches which avoid hard though apparent simple details or neglect the mathemati-

cal difficulties - with a consequent loss in the richness of Cluster Analysis theory.

60

4.2 The special case for the K-Means

We have seen in chapter 2, through equations 2.2 to 2.3, that K-Means is an algorithm that

aims to reduce the Energy function

E(M) =
∑
x∈D
‖x−mY (x)‖

2

L2

Remember the definition of the responsibility function, in Equation 2.4

r(n)
x (i) = δ(i, Y (x)) =


1, if argmin

j∈{1,2,···k}
d(x,m

(n)
j) = i

0, if argmin
j∈{1,2,···k}

d(x,m
(n)
j) 6= i

as we have seen we can rewrite the energy function as

E(M) =
∑
x∈D

k∑
i=1

r(n)
x (i) ‖x−mi‖2L2

which suggests a generalization to the special cases of Soft K-Means:

E(M) =
∑
x∈D

k∑
i=1

pi(x,M, D) ‖x−mi‖2L2

Different modelings for the shape of pi(x,M, D) lead to new clustering methods, for example,

the soft K-Means algorithm with pi(x,M, D) ∝ e−βd(x, mi). In this section we are going to

study the clustering procedures associated to a family of Energy functions which give rise to

the hard K-Means algorithms.

In the above formula there are two special features: the probabilities assignments for each x ∈
D and a notion of distance of x from the centers mi, which can be generically thought of a

metric evaluation d(x,mi). Denoting the elements of D by x1,x2, · · ·xn we could define the

matrix of probabilities assignments as

P =
[
pij

]
:=
[
pi(xj ,M, D)

]
∈Mk×n(R)

A first generalization would be thinking that the pij ’s have no functional dependency on M

and D, meaning that they are real variables subject to the constraints

k∑
i=1

pij = 1 for j = 1, 2, · · ·n

And for the distances between x’s and the centers mi, we could define a matrix of values d(xj ,mi).

However, instead of considering any metric, we use the notion of a dissimilarity measure, which

is a function of

61

D : X × X → R

(x, y) 7→ D(x, y)

satisfying the following properties:

i. D(x, y) ≥ 0 ;

ii. D(x, y) = D(y, x) ;

iii. D(x, y) = 0⇔ x = y.

It is desirable, but not necessarily true, that the dissimilarity measures satisfy

iv. D(x, z) +D(z, y) ≥ D(x, y); for every x, y, z ∈ X
When the last condition is satisfied D is a metric for the subset X ⊂ Rd.

As our primary focus is the euclidean distance, D(·, ·) in all facts is a metric d(·, ·). However,

often in real computational problems one can solely rely on the data points x1,x2, · · ·xn, and

at most combinations of them like the clusters means mi. It might be the case that the notion

of distance works only for the restricted sets of the state space Rd. We warn the reader that

we are using the same notation D both for the dissimilarity measure and for indicating the set

of data points D = {x1, · · ·xn}. The symbol D was chosen to maintain resemblance to d(·, ·),
apart from being the first letter of ‘Dissimilarity’. We are confident that identification of which

D we are considering is easy in context.

Now, established the notion of dissimilarity, let us define the matrix

D =
[
Dij

]
:=
[
D(xi,mj)

]
∈Mn×k(R)

Given this, we extend our energy function to the family of objective functions

f(P,M) =

n∑
i=1

k∑
j=1

pji D(xi,mj)

Notice that the previous can be cast in a matrix notation as f(P,M) = tr (PTD). This dis-

similarity matrix can be seen as a function D = D(M). Now, we cast our clustering problem

as the program 

minimize f(P,M)

subject to

k∑
j=1

pij = 1 , i = 1, 2, · · ·n

pij = 0 or 1 , i = 1, 2, · · ·n
j = 1, 2, · · · k

(4.1)

For the special case in which D(xi,mj) = ‖xi −mj‖2L2 , the objective function of 4.1 becomes

biconvex. But in a general framework, the minimization algorithm will work in two successive

steps: minimization of P given a fixed M, then minimization in M.

62

At this point, we give a proof for the convergence of K-Means using the techniques depicted in

the reference [32].

We need first to understand how to handle the constraint pij ∈ {0, 1}, as it cannot be put in

the form g(P,M) = 0 with g differentiable. Defining the set

S = {P ∈Mk×n(R) |
k∑
i=1

pij = 1 ∀ j = 1, 2, · · ·n}

and then transforming the original problem to an equivalent one, we will check that for the

former, its solutions should necessarily lie in the extremes of S, which are composed of 0’s and

1’s.

We begin proving the

Theorem 4.2.1. The extreme points of S under the supremum norm for matrices satisfy the

constraints of the problem 4.1

Proof. Definition P is an extreme point of the convex set S if it doesn’t lie in any open seg-

ment joining two points of S.

Suppose its j − th column does not lie in the canonical basis. Then it should have at least two

positive non-zero components, say pi1j = α and p12j = β.

Defining ∆ = (α+β)/2, one can construct two new matrices, P1 and P2, differing of P, respec-

tively, only by the components p1i1j = α+∆ , p1i2j = β−∆ and p2i1j = α−∆ , p2i2j = β+∆.

By this construction, is easy to see that P should lie in the line between P1 and P2, whuch

contradicts the extreme point hypothesis.

Therefore, each of its columns should be a vector of 0’s or 1’s, adding up to 1.

Next we define a new related problem and prove its equivalence to the original one. In order to

that, we need the

Definition 4.2.1. The reduction function associated to problem 4.1 is

F (P) = min {f(P,M) | M ∈Md×k(R)}

Lemma 4.2.2. The reduced function F is concave.

Proof. Consider two arbitrary points P1 and P2, and a scalar t ∈ [0, 1]. As f(P,M) = tr (PTD)

(where D = D(M)), the linearity of the trace implies

f((1− t)P1 + tP2,M) = tr (((1− t)P1 + tP2)TD) =

= (1− t) tr (PT
1 D) + t tr (PT

2 D) =

= (1− t)f(P1,M) + tf(P2,M)

Then

63

F ((1− t)P1 + tP2) = min {f((1− t)P1 + tP2,M) | M ∈Md×k(R)} =

= min
M
{(1− t)f(P1,M) + tf(P2,M)} ≥

≥ (1− t) min
M
{f(P1,M)}+ t min

M
{f(P2,M) =

= (1− t) F (P1) + t F (P2)

(Notice there was a change in notation from ‘min{ · | M ∈ Md×k(R)}’ to the cleaner form

‘min
M
{ · }’)

Hence F is concave.

Finally, we have the following definition and theorem:

Definition 4.2.2. The Reduced Problem for 4.1 is the optimization program:{
minimize F (P)

subject to P ∈ S
(4.2)

Lemma 4.2.3. Problems 4.1 and 4.2 are equivalent.

Proof. Suppose there exists a solution P0 for problem 4.2. Then it should be an extreme point

of S or it can be displaced to another solution P1 which has this property, if not, there would

exist two other points P1 and P2 such that P0 = (1− t)P1 + tP2 for some t ∈ (0, 1).

If F (P1) < F (P2), then F (P1) < F (P1) + t(F (P2)− F (P1)), hence, by the concavity of F ,

F (P0) ≤ F (P1) < (1− t)F (P1) + tF (P2) ≤ F ((1− t)P1 + tP2) = F (P0)

If F (P1) > F (P2), the proof goes all the same of the last part.

For the case in which F (P1) = F (P2),

(λ− 1)F (P1) + λF (P2) = F (P1) = F (P2) ∀ λ ∈ (0, 1)

Then

F (P1) = (t− 1)F (P1) + tF (P2) ≤ F ((1− t)P1 + tP2) = F (P0) ≤ F (P1)

Hence F (P0) = F (P1). A similar reasoning applies to F (P2), and in fact we could prove

that applies for the whole line between P1 and P2. Now, if one of these endpoints are extreme

points of S, we’re done, else, consider the set

A = {t ≥ 0 | P1 + t(P2 −P1) ∈ S}

The condition
∑k
i=1 pij = 1 implies that S is bounded in whatever matrix norm we consider,

so should A be bounded as well. Also, it is easy to see that S is closed. Hence the supremum

α = supA exists and P̂0 := P1 + α(P2 −P1) ∈ S.

64

By repeating the arguments above, it is easy to show that F (P̂0) = F (P0). Finally, P̂0 should

be an extreme point, else, one could find a t > α such that P1 + t(P2 − P1), a contradiction.

Therefore, we can displace P0 to another minimum P̂0 (connected by a straight which keeps F

constant) which is an extreme point of S.

Now, given such an extreme point P0 ∈ S, as it is a solution for problem 4.2, it satisfies

F (P0) ≤ min{f(P,M) | M ∈Mk×d(R)} ≤ f(P,M)

∀ P ∈ S and M ∈Mk×d(R)

F (P0) = min{f(P0,M) | M ∈Mk×d(R)} = f(P0,Mmin)

Where Mmin ∈Mk×d(R) is such that f(P0,Mmin) ≤ f(P0,M) for all M. Therefore, (P0,Mmin)

is a solution for problem 4.1 as P0 is a matrix of 0’s and 1’s with rows summing up to 1 and

f(P0,Mmin) ≤ f(P,M) for all P and M.

Clearly, we should be able to find an explicit expression for Mmin while computing the minima

for P0. The proposed algorithm (next) will naturally do that, through iteration of two steps.

Now, the converse. If (P0,M0) is a solution for problem 4.2, then f(P0,M0) ≤ f(P,M) for all

M and P. Thus, for every fixed P,

f(P0,M0) ≤ f(P,M) ∀ M

⇒ f(P0,M0) ≤ min
M

f(P,M) = F (P) ∀ P

Now, F (P0) = min
M

f(P0,M) ≤ f(P0,M0) ≤ F (P) ∀ P.

Thus, P0 is an extreme point of S satisfying

F (P0) ≤ F (P) ∀ P ∈ S

i.e., P0 is a solution for the problem 4.2

Later on, we will go back to the funtion F . Now, we continue to the problem 4.1 but taking

values in S (i.e., forgetting the condition pij ∈ {0, 1}, as it is necessarily satisfied). Defining

the vector of ones as E = (1, 1, · · · 1), and treating the columns of the matrix P as n variables

(p1,p2, · · ·pn), we can redefine S in the following terms:

S = {P ≡ (p1,p2, · · ·pn) | 〈E,pi〉 = 1 , pi ≥ 0 ; ∀ i = 1, 2, · · ·n}

Because of the equivalence of the problems 4.1 and 4.2, necessarily an optimal solution should

be an extreme point of S, hence automatically satisfying the condition pij ∈ {0, 1}. Thus, we

can disregard this condition in 4.1 and recast it as the program
minimize f(p1,p2, · · ·pn; M)

subject to hi(pi) = 0 , i = 1, 2, · · ·n
gi(pi) ≤ 0 , i = 1, 2, · · ·n

(4.3)

65

Where

{
hi(pi) = 〈E,pi〉 − 1 ⇒ ∇hi(pi) = E
gi(pi) = −pi ⇒ ∇pigi(pi) = −I

This way, the KKT points should satisfy:
0 = ∇pif(P,M) + uTi ∇pigi(pi) + vi∇pihi(pi) = ∇pif(P,M)− uTi + viE
0 = ∇mi

f(P,M) + uTi ∇mi
gi(pi) + vi∇mi

hi(pi) = ∇mi
f(P,M)

0 = (ui)
j · gji (pi) = ujipji (⇔ ui ⊗ gi = 0)

Therefore, we should look for points satisfying

i. 〈E,pi〉 = 1

ii. ∇mi
f(P,M) = 0

iii. ∇pif(P,M) + viE = uTi ≥ 0

iv. (∇pif(P,M) + viE)⊗ pi = 0

In the following we will define the notion of a partial optimal solution, and prove that it satis-

fies the KKT conditions (i)-(iv), then we are going to construct an algorithm which generates

a convergent sequence to such a solution. This algorithm is the K-Means, for when D(x,m) =

‖x−m‖2L2 .

Definition 4.2.3. A point (P0,M0) is a partial optimal solution for problem 4.2 if

f(P0,M0) ≤ f(P,M0) ∀ P ∈ S
and

f(P0,M0) ≤ f(P0,M) ∀ M ∈Md×k(R)

Associated to a partial optimal solution, there are the two following problems:

Problem P1 : given M̂ , minimize f(P; M̂) subject to P ∈ S
Problem P2 : given P̂ , minimize f(P̂; M) subject to M ∈Md×k(R)

For problem P1, because M̂ is fixed, its KKT points must satisfy conditions (i), (iii) and (iv).

For problem P2, the KKT conditions reduce to only (ii). With this in mind we are ready to

prove the

Theorem 4.2.4. Given a point (P0,M0), suppose f = f(P0,M) is differentiable at M0

(which is the same as to say that D = D(xi,m) is differentiable function of m, for every xi).

If (P0,M0) is a partial optimal solution of problem 4.2 then it is a Karush-Kuhn-Tukker point

for the same problem.

66

Proof. The Karush-Kuhn-Tuker conditions for 4.2 are given by (i) to (iv). If (P0,M0) is a

partial optimal solution for 4.2 then it solves P1 and P2, simultaneously, given P̂ = P0 and

M̂ = M0, by its very definition.

Therefore, given the fixed value M0, P0 is a minimum for problem P1 and necessarily satisfy

its KKT conditions which coincides with (i), (iii) and (iv) for M = M0, and for fixed P0,

M0 is a minimum for problem P2, thus, together with the differentiability condition, it should

satisfy the KKT conditions which in turn reduces to (ii) with P = P0.

Finally we can devise a generic restatement of the K-Means algorithm based on the following

steps:

Algorithm 4.2.1.

i. Select an initial point M0 ∈ Rnk, solve P1 for M = M0. Then select an optimal solution

P0 of P1. Set r = 0.

ii. Define Mr+1 as a solution of P2 with P = Pr. If f(Pr,Mr+1) = f(Pr,Mr), stop; set

(Pmin,Mmin) = (Pr,Mr+1); otherwise go to step (iii) .

iii. Define Pr+1 as a solution of P1 with M = Mr+1. If f(Pr+1,Mr+1) = f(Pr,Mr+1) stop;

set (Pmin,Mmin) = (Pr+1,Mr+1); otherwise let r = r + 1 and go to step (ii) .

The above algorithm is almost the same as the one shown previously in Section 2.3.1 with the

difference that it is designed to only continue if it detects a strict decrease of f , hence, by de-

sign, it cannot make f decrease infinitely, as proved in the

Theorem 4.2.5. The algorithm 4.2.1 converges to a partial optimal solution of problem 4.1 in

a finite number of iterations.

Proof. First we prove that, an extreme point of the set S can be visited at most once by the

algorithm before it stops, for suppose not. Then it would mean that there exists r1 6= r2 such

that Pr1 = Pr2 .

The step (ii) assures that Mr1+1 and Mr2+1 are optimal solutions of P2 for M = Mr1 and

M = Mr2 , respectively, then

f(Pr1 ,Mr1+1) ≤ f(Pr1 ,Mr2+1) = f(Pr2 ,Mr2+1)

f(Pr2 ,Mr2+1) ≤ f(Pr2 ,Mr1+1) = f(Pr1 ,Mr1+1)

So we conclude that f(Pr1 ,Mr1+1) = f(Pr2 ,Mr2+1) a contradiction, as the sequence of f ’s is

strictly decreasing.

By a similar reasoning to that in lemma 4.2.3, the solution for P1 necessarily lies on the ex-

treme points of S, and taking in consideration that the extreme points of S form a finite set,

we conclude that a partial optimal solution should be reached in a finite number of iterations

(if not, the set of extreme points of S would be infinite).

67

Remark. A solution for P1 is straightforward, given a fixed M. For instance, for each j, by

setting prj = 1 if D(xr,pj) ≤ D(xs,pj) for s = 1, 2, · · · k and psj = 0 for s 6= r. It is readily

seen that this is a minimum.

So far, we have seen that partial optimal solutions are attained in the final iteration of algo-

rithm 4.2.1. But not necessarily these points are local minima. In the following we investigate

under what conditions one can guarantee that the result of the algorithm is in fact a local min-

imum, and apply this analysis for the special cases when D(·, ·) is the euclidean norm and in

general the Lp norm.

We will need from now on to assume that M assumes values from a compact set V . For the

K-Means, the centers are selected from convex combinations of some data points (by the very

definition of center of a cluster), therefore each mi take values at least in the set of all convex

combinations of data points xi, which is the convex hull of the data set D (the convex hull is

compact).

In what follows, a series of results are proven, showing that in the end, everything will reduce

to check if the set A(P) defined below is singleton:

Definition 4.2.4. A(P) = {Mmin | Mmin minimizes f(P,M) , M ∈ V }

Hence M̄ ∈ A(P) if and only if f(P, M̄) ≤ f(P,M) for all M ∈ V .

We start stating the well established result of convex analysis, by Danskin. A general state-

ment and proof can be found in the appendix, and more references can be seen at [18] (S. Las-

don, chapter 8, page 420). Another good reference is [29]

Theorem 4.2.6 (Danskin’s). Let f = f(P,M) be defined for P ∈ Rnk and M ∈ V , where V

is compact.

Define A(P) as above (definition 4.2.4) and the function

F (P) = min{f(P,M) | M ∈ V }

Also, let the one-sided directional derivative of F at P in the direction d be given as

DF (P; d) = lim
α→0+

F (P + αd)− F (P)

α

If f and the partial derivatives ∂f/∂pij are continuous, then DF (P; d) exists for any d at any

point P and is given by

DF (P; d) = min{〈∇Pf(P,M),d〉 | M ∈ A(P)}

Remark. In the above, 〈∇Pf(P,M),d〉 =
∑
i,j

∂f/∂pij dij

Now we restate the optimality conditions for problem 4.2 in terms of one-sided directional

derivatives through the

Lemma 4.2.7. Consider problem min{F (P) | P ∈ S} (4.2) with S a convex set. A point P̄ is

a local minimum if and only if DF (P; d) ≥ 0, for each feasible direction d at P̄.

68

This result is quite involved and a proof is found at [30] (theorem 27.1, item (ii))

Next we characterize the local optimality condition through the

Theorem 4.2.8. Let (P̄, M̄) be a point such that P̄ is an extreme of the set S (as defined

above) and M̄ ∈ A(P̄). Then P̄ is a local minimum of problem 4.2 if and only if

F (P̄) = f(P̄, M̄) ≤ min{f(P,M) | (P,M) ∈ S ×A(P̄)} (4.4)

Proof. Assume condition 4.4 holds. For every M̂ ∈ A(P̂), by definition of A(P̄) and the as-

sumption restricted to S × {M̂},

f(P̄, M̂) ≤ f(P̄, M̄) ≤ min{f(P, M̂) | P ∈ S}

Which implies that P̄ is a local minimum for f(·, M̂),thus for any feasible direction d,

〈∇Pf(P̄, M̂),d〉 ≥ 0

This works for every M̂ ∈ A(P̄), so we have

DF (P̄; d) = min{〈∇Pf(P̄,M),d〉 | M ∈ A(P̄)} ≥ 0

Hence by lemma 4.2.7, P̄ is a local minimum for problem 4.2.

Now assume P̄ is a local minimum of F . Then for any feasible direction d, DF (P̄; d) ≥ 0. By

Danskin’s theorem, this means that

〈∇Pf(P̄,M),d〉 ≥ 0 for all M ∈ A(P̄)

Fix a value for M̂ ∈ A(P̄). The function f is linear on P and as S is convex, given any point

P ∈ S, the vector d = P − P̄ becomes a feasible direction for the interval (0, 1). Hence we

compute

f(P, M̂) = f(P̄, M̂) + 〈∇Pf(P̄, M̂),d〉 ≥ f(P̄, M̂) (4.5)

But by definition of A(P̄), F (P̄) = f(P̄,M), for all M ∈ A(P̄). So condition ii. together with

the arbitrariness of M̂ gives us

F (P̄) =f(P̄, M̂) ≤ f(P, M̂) for all P ∈ S and M̂ ∈ A(P̄)

⇒ F (P̄) ≤ min{f(P,M) | (P,M) ∈ S ×A(P̄)}

Finally we can connect the characterization of minimum points with partial optimal solutions,

under the condition that A(P̄) is singleton:

Theorem 4.2.9. If A(P̄) is singleton and (P̄, M̄) is a partial optimal solution of problem 4.1,

then P̄ is a local minimum for problem 4.2

69

Remark. Ideally, it is desirable that P̄ is the global minimum of F , in this case, by the equiv-

alence between 4.1 and 4.2, the pair P̄ and M̄ ∈ A(P̄) would be the global minimum for f . The

previous result is the best we can do, and a possible improvement of the K-Means algorithm

would be to run it many times and get the result that makes f smaller.

Proof. If (P̄, M̄) is a partial optimal solution, then

f(P̄, M̄) ≤ min{f(P, M̄) | P ∈ S} = min{f(P, M̄) | (P,M) ∈ S × {M̄}}

But A(P̄) = {M̄} because it is singleton, therefore

f(P̄, M̄) ≤ min{f(P, M̄) | (P,M) ∈ S ×A(P̄)}

Which is exactly the condition for the local optimality of theorem 4.2.8, thus, (P̄, M̄) is a local

minimum for F .

Given this last result, we can analyse under which circumstances A(P̄) is singleton. We will

restrict our analyses to the special cases when D(·, ·) is the squared euclidean norm (D(x,y) =

‖x− y‖2L2) and when it is generally the Lp norm (D(x,y) = ‖x− y‖Lp - notice that ‖ · ‖ is not

squared).

We will decompose f as a sum of k simpler functions, and define k sets Aj(P̄j), one for each

column of P. This we will find conditions regarding whether each Aj(P̄j) is singleton or not,

which is related to the singleness of A(P̄). So we define for each j = 1, 2, · · · k

fj(pj ,mj) =

n∑
i=1

(pj)iD(xi,mj)

Hence

f(P,M) =

n∑
i=1

k∑
j=1

pji D(xi,mj) =

k∑
i=1

fj(pj ,mj)

Where pj = (pj1, pj2, · · · pjn) and mj are both the j − th column of P and M respectively.

For each j = 1, 2, · · · k, mj lies in the set of all convex combinations of the xi’s (the convex

hull of the data set D), and more specifically, given a value for P ∈ S in an extreme of S, mj

can be restricted to lie in the convex hull of Ci = {xl | pil = 1}. So, we can assume that pj ∈
Vj , a compact set.

In these conditions we can define Aj(pj):

Definition 4.2.5. Aj(pj) = {mj ∈ Rd | fj(pj ,mj) ≤ fj(pj ,m) ∀ m ∈ Vj}

Theorem 4.2.10. Let P̄ = (p1,p2, · · · k)T . Then A(P̄) is singleton if and only if each Aj(pj)

is singleton

70

Proof. For each j, pick a value m̂j ∈ Aj(pj). By definition, fj(pj ,mj) ≤ fj(pj ,m) for all

m ∈ Rd, so we must have

f(P̄, (m̂1, m̂2, · · · m̂k)) =

k∑
j=1

fj(pj , m̂j) ≤
k∑
j=1

fj(pj ,mj) = f(P̄,M)

for all M = (m1,m2, · · ·mk) ∈Mn×k(R)

(4.6)

Hence (m̂1, m̂2, · · · m̂k) ∈ A(P̄).

If any Aj(pj) has more than one element, pick two of them m̂j and m̂′j . Thus, we could de-

fine

M = (m̂1, · · · m̂j · · · m̂k)

M′ = (m̂1, · · · m̂′j · · · m̂k)

Both satisfy condition 4.4 hence A(P̄) has at least these two different elements. This proves

the assertion.

Finally we are prepared to analyse the partial optimal solutions for when D(·, ·) is the Lp norm

and the squared euclidean norm, through the following two theorems:

Theorem 4.2.11. If (P̄, M̄) is a partial optimal solution of problem 4.1 for the case when

D(x,y) = ‖x− y‖2L2 , then it is a local minimum point.

Proof. Decomposing f in k functions we will prove that each Aj(p̄j) is singleton:

f(P̄, M̄) =

k∑
j=1

fj(p̄j , m̄j)

where fj(pj ,mj) =

n∑
i=1

pji‖xi −mj‖2L2

The norm L2 is strictly convex (because the second derivative of the function h(z) = ‖z‖2L2 is

strictly positive definite), hence for every j = 1, 2, · · · k, t ∈ (0, 1) and m, n ∈ Rd we have:

fj(pj , tm + (1− t)n) =

n∑
i=1

pji‖(txi + (1− t)xi)− (tm + (1− t)n)‖2L2 =

=

n∑
i=1

pji‖t(xi −m) + (1− t)(xi − n)‖2L2 <

<

n∑
i=1

pji(t‖xi −m‖2L2 + (1− t)‖xi − n‖2L2 =

= t(

n∑
i=1

pji‖xi −m‖2L2) + (1− t)(
n∑
i=1

pji‖xi − n‖2L2) =

= tfj(pj ,m) + (1− t)fj(pj ,n)

71

Which means that fj is strictly convex on the second argument. Now, given a fixed value p̄j ,

we show that there can be only one minimum, for suppose there exists two values m1 6= m2

such that both satisfy

fj(p̄j ,ml) ≤ fj(p̄j ,m) for all m ∈ Rd and l = 1, 2 (4.7)

Clearly,

fj(p̄j ,m1) ≤ fj(p̄j ,m2) ≤ fj(p̄j ,m1)⇒ fj(p̄j ,m2) = fj(p̄j ,m2)

So that combining 4.7 and the strict convexity we conclude a contradiction

fj(p̄j ,m1) ≤ fj(p̄j , (1− t)m1 + tm2) < (1− t)fj(p̄j ,m1) + tfj(p̄j ,m2) =

= fj(p̄j ,m1) + t(fj(p̄j ,m2)− fj(p̄j ,m1)) = fj(p̄j ,m1)

Thus, there can exist only one minimum for m, given a fixed p̄j .

Let’s calculate the first and second derivatives for fj at (p̄j , m̄j):

fj(p̄j ,m) =

n∑
i=1

p̄ji

d∑
l=1

(xil −ml)
2

⇒


∂fj
∂ml

(p̄j ,m) = −2
n∑
i=1

p̄ji(xil −ml)

∂2fj
∂ml∂ml′

(p̄j ,m) = 2(
n∑
i=1

p̄ji)δ(l, l
′)

So, the hessian of fj is strictly convex:

H(p̄j ,m) = 2(

n∑
i=1

p̄ji)I > 0

Which means that equating to zero the derivative gives the minimum of fj , giving:

0 =
∂fj
∂ml

(p̄j ,m) =

n∑
i=1

p̄ji(xil −ml)

⇒mmin =

∑n
i=1 p̄jixi∑n
i=1 p̄ji

But this is the unique minimum, hence m̄j = mmin ∈ Aj(pj) and each Aj(p̄j) is singleton, so

the assertion is proven, considering theorem 2.6.16.

Finally we do a similar analysis for when D(·, ·) is given by the Lp norm:

Theorem 4.2.12. Consider the norm Lp a point P̄ made of 0’s and 1’s, and Aj(p̄j). Then

Aj(p̄j) is non-singleton if and only if the following conditions hold simultaneouly:

i. The points xi are all collinear;

72

ii.
k∑
l=1

plj is even.

Proof. Assume both conditions (i) and (ii) holds. Then, by condition (i), there exists a, b,

and ti’s such that xi = a + tib for i = 1, 2, · · ·n. Aj(p̄j) is the set of values m that minimize fj

given the fixed value p̄j , which has the expression

fj(p̄j ,m) =

n∑
i=1

pij‖a + tib−m‖Lp (4.8)

mmin lies in the convex hull formed by the collinear vectors a + tib, so we should find a mini-

mum through the points of the form a + sb. We can simplify the problem 4.8 to minimization

of the function

h(s) = fj(p̄j ,a + sb) =

n∑
i=1

pij‖b‖Lp |ti − s|

⇒ h(s) ≡
n∑
i=1

αi|s− ti| =

=

i−1∑
l=1

αl(s− tl) +

n∑
l=i

αl(tl − s) , if s ∈ (ti−1, ti)

(4.9)

Where αi := pij‖b‖Lp .

By 4.9, if s ∈ (ti−1, ti),

dh

ds
(s) =

i−1∑
l=1

αl −
n∑
l=i

αl ≡ di

We extend this definition for when s ∈ (−∞, t1) and s ∈ (tn,∞) respectively:

d1 = −
n∑
l=1

αl and dn+1 =

n∑
l=1

αl

It is readily seen that d1 < 0, dn > 0 and di+1 = di + 2αi ≥ di, for each i, hence there exists a

i0 such that

di0 ≤ 0 < di0+1 or di0 < 0 ≤ di0+1 (4.10)

As each di is the slope of a linear function connecting h(ti−1) and h(ti), which is a continuous

function, hence ti0 is a minimum of h.

Therefore, a solution of 4.8 is

mmin = a + ti0b

73

Where i0 some only index that satisfies 4.10, which is the same as to satisfy one of the follow-

ing conditions

i0−1∑
l=1

plj <

n∑
l=i0

plj and

i0∑
l=1

plj ≥
n∑

i0+1

plj

or

i0−1∑
l=1

plj ≤
n∑
l=i0

plj and

i0∑
l=1

plj <

n∑
i0+1

plj

(4.11)

(the minimum of this function on the line a + tb is called the geometric median)

Here pij ∈ {0, 1}, and by condition (ii),
∑n
i=1 pij = 2N . Consider

m0 = min

{
m

∣∣∣∣∣
m∑
i=1

pij = N + 1

}

Then

dm0
= ‖b‖Lp

(
m0−1∑
i=1

pij −
n∑

i=m0

pij

)
= ‖b‖Lp(N − (2N −N)) = 0

dm0+1 = ‖b‖Lp
(
m0∑
i=1

pij −
n∑

i=m0+1

pij

)
= ‖b‖Lp(N + 1− (2N − (N + 1))) = 2‖b‖Lp

Hence

dm0
≤ 0 < dm0+1

Now consider

n0 = min

{
m

∣∣∣∣∣
m∑
i=1

pij = N

}

Then

dn0
= ‖b‖Lp

(
n0−1∑
i=1

pij −
n∑

i=n0

pij

)
= ‖b‖Lp(N − 1− (2N − (N − 1))) = −2‖b‖Lp

dn0+1 = ‖b‖Lp
(

n0∑
i=1

pij −
n∑

i=n0+1

pij

)
= ‖b‖Lp(N − (2N −N)) = 0

Which proves that n0 6= m0 and

dn0 < 0 ≤ dn0+1

Therefore a + btm0 and a + btn0 are two minima of the function f(p̄j , ·) on V thus belonging

to A(p̄j), making it non-singleton.

74

On the converse, assume A(p̄j) is non-singleton. If (i) is not valid and (ii) is true, then one

can define n0 as

n0 = max{m |
m∑
i=1

pij = N + 1}

and check that by the oddity of the above sum, this is the only index satisfying condition 4.11,

thus making A(p̄j) singleton, a contradiction.

Whenever (i) is not valid then at least one xi escapes the collinear condition, so that what-

ever two points m1 and m2 we select from the convex hull V formed by {x1,x2, · · ·xn}, there

will always have at least one xi not belonging to the line connecting these two selected points.

Therefore the interior of V cannot be empty.

Suppose m1 and m2, with m1 6= m2, lie within the interior of V so that these are not collinear

with any of the xi’s. Now, the triangle inequality for ‖ · ‖Lp can be made strict, so we have

D(xi, (1− t)m1 + tm2) = ‖xi − (1− t)m1 − tm2‖Lp

= ‖(1− t)(xi −m1) + t(xi −m2)‖Lp <
< |1− t|‖xi −m1‖Lp + |t|‖xi −m2‖Lp =

= (1− t)D(xi,m1) + tD(xi,m2)

Hence for every i such that pij = 1, D(xi, ·) is strictly concave, making fi strictly concave in

the interior of V . Now, if there is a minimum for fi, it cannot lie in the border ∂V (because

of the strict concavity condition proven above), so it belongs necessarily to the interior of V ,

and by the strict inequality, it should be unique, contradicting the hypothesis that Ai(p̄i) is

non-singleton.

75

Chapter 5

Clustering in high dimensions

Until now we analyzed in detail the K-Means algorithm, which will be the core of the final ap-

plication of this thesis. But this algorithm relies heavily on the measurement of the distance

between a point and its closest updated cluster center, i.e., on the quantities ‖x −mi‖Lp and

more generally D(x,mi) for any specific dissimilarity measure. Many other cluster techniques

like agglomerative clustering, density based methods, many hierarchical models, graph cluster-

ing rely on the calculation of distances between data points. In fact many Supervised Learning

methods rely heavily as well on the calculation of distance between pairs of points, like the

very popular k-nearest neighbours algorithm.

The choice of the good norms or dissimilarities is surely an important problem that will not be

treated here, but once one such distance notion is chosen, quite often we have to handle with

a troublesome phenomenon in computing: the concentration of measure. We illustrate it with

some known simple examples and then discuss why it can endanger the effectiveness of our

algorithms.

We start with a classical example of concentration of measure, the

Lemma 5.0.1 (Hoeffding’s inequality). Let X1, X2, · · ·Xn be independent variables such that

ai ≤ Xi ≤ bi. Then

P

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− E

[
X1 +X2 + · · ·+Xn

n

]∣∣∣∣ ≥ ε) ≤ 2e
−2ε2n2/

n∑
i=1

(bi−ai)2

Basically it says that as n→∞, X1+X2+···+Xn
n → E[X1+X2+···+Xn

n] in probability.

One can think of an n-dimensional random variable Y = (X1, X2, · · · , Xn) and the function

ϕ(Y) = X1+X2+···+Xn
n so that the result can be recast as

P (|ϕ(Y)− E[ϕ(Y)]| ≥ ε) n→∞−→ 0 ∀ ε > 0

This result can be extended for general 1-Lipschitz functions in product measure spaces see

reference [11].

To picture how the consequences of this lemma could naturally arise in a computational prob-

lem, suppose there are data points which are the outcomes of a random variable X ∈ [−1, 1]d

76

uniformly distributed over each interval [−1, 1]. Define the new variable Y = (X2
1 , X

2
2 , · · ·X2

d)

and the function ϕ as before, and calculate

E[ϕ(Y)] =
1

d

d∑
i=1

E
[
X2
i

]
=

1

d

d∑
i=1

∫ 1

−1

x2

2
dx =

1

d

(
d

3

)
Noticing that ϕ(Y) = ‖X‖2L2/d, we apply the Hoeffding’s inequality lemma:

P (|ϕ(Y)− E[ϕ(Y)]| ≥ ε) = P (|‖X‖2L2 − d/3| ≥ εd) ≤ 2e
−2ε2d2/

d∑
i=1

(1−0)2

= 2e−2ε2d

Now, we will work with d = 100 and ε = 0.1. Then

P (|‖X‖2L2 − 100/3| ≥ 10) ≤ 2e−2 ≈ 0.27

Hence

P (|‖X‖2L2 − 100/3| < 10) = P (100/3− 10 < ‖X‖2L2 < 100/3 + 10) ≈

≈ P (23 < ‖X‖2L2 < 43) = P (
√

23 < ‖X‖L2 <
√

43) ≈ 0.73

This means that in approximately 73% of the data lies in the interval (4.8, 6.6), if compared to√
E[‖X‖2L2] =

√
100/3 ≈ 5.8, this fact can dramatically affect distance measurements between

pairs of points - most of the points will be approximately equidistant so that the clustering

algorithms will not be effective to separate them in special clearly separated regions.

In Data Science a typical data set can have tenths of features, and quite often we have to tackle

data points which are represented as vectors with dimensions up to d = 100 or even d = 1000.

Let’s imagine this terrible scenario of d = 1000 and ε = 0.1 in which case a small calculation

would give

P (|‖X‖2L2 − 1000/3| ≥ 1) ≤ 2e−20 ≈ 4× 10−9

Therefore

P (
√

332 < ‖X‖L2 <
√

334) ≈ 1− 4× 10−9

Now we ilustrate concentration of measure phenomenon with an experiment: we generate ran-

dom vectors of crescent dimensions - here we will see d = 2, 7, 30, 60 and 120 - then we plot the

histogram of the L2 distances between all the pairs of points in a sample of 1000 points, shown

in Figure 5.1. These points were generated using a gaussian distribution with covariance val-

ues selected randomly between 0 and 10, and mean (15, 15, · · ·) (these parameters were chosen

arbitrarily). After the calculation of theses distances, they were normalized to have mean zero

and variance one (by subtracting the actual mean and then dividing by the actual variance) -

this is necessary in order to compare the different cases in the same plot. Also the histograms

were normalized to represent actual probability density functions.

77

Figure 5.1: Histogram for the distance between all pairs of points in a sample
of 1000 randomly generated vectors n dimensions d = 2, 7, 15, 60, 120. Notice that
for d = 60 and 120 the histograms have almost the same shape.

In this image it can be seen that the histogram has a broaden aspect when the dimension d

is small and gets sharper as dimension d grows, also we notice that there is practically no dif-

ference between the cases d = 60 and d = 120. This means that when d is small it can be

distinguished a broad range of values for the distance between pairs of points, while when it

grows, the range o possible values gets narrower so that in probability the distances are ap-

proximately all equal.

Let’s put this observation on solid grounds by proving some interesting results about concen-

tration of measures in the context of measuring distances using Lp norms. Next we state and

prove some ilustrative results concentration of measure and give some empirical evidence for it

through images 5.1, 5.2, 5.3.

5.1 An example of concentration of measure

We present some results that ilustrate the phenomenon of concentration of measure due to

Gérard Biau and David M. Mason in [7].We start with the

Proposition 5.1.1. Let {Yd}d≥1 be a sequence of random variables such that Yd
P−→ a (Yd

converges in probability to a constant a), and let ϕ be a real-valued measurable function which

78

is continuous at a. Assume that the following conditions hold:

i. ϕ is bounded on [−M,M] for some M > |a|;

ii. E[|ϕ(Yd)|] <∞ for all d ≥ 1.

Then,

lim
d→∞

E[ϕ(Yd)] = ϕ(a) if, and only if, lim
d→∞

E[ϕ(Yd)I[|Yd|>M]] = 0 (5.1)

.

(IA is the indicator function for the set A, defined by IA(x) =

{
1 if x ∈ A
0 if x /∈ A).

Proof. Define the random variables Xd = ϕ(Yd)I[|Yd|≤M]. By continuity of ϕ at a and condi-

tion i., Xd
P−→ ϕ(a) and |Xd| ≤ K for some k that bounds ϕ on [−M,M], so the variables Xd

fulfill the conditions for the dominated convergence theorem (see [31]), which gives us

lim
d→∞

E[Xd] = lim
d→∞

E[ϕ(Yd)I[|Yd|≤M]] = ϕ(a)

Now the result follow easily from equality

E[ϕ(Yd)] = E
[
ϕ(Yd)I[|Yd|>M]

]
+ E

[
ϕ(Yd) I[|Yd|≤M]

]

Our interest is to investigate what happens with the expectation and variance of

‖X‖Lp = p

√√√√ n∑
i=1

|Xi|p = p
√
n p

√√√√ n∑
i=1

|Xi|p =: p
√
n ϕ

(
n∑
i=1

|Xi|p
)

Therefore, we are interested in applying the previous result for the random variables

Yd =
1

n

d∑
i=d

Wi

Where W1,W2, · · ·Wd are d independent identically distributed (iid) random variables with

finite mean E[Wi] = µ and d is the dimension of the state space where data points W =

(W1,W2, · · ·Wd) are taken from. By the Law of Large Numbers (see [31]), as E[Wi] = µ, then

Yd
P−→µ. Now let’s check when condition 5.1 holds:

Lemma 5.1.1. Let ϕ be real-valued measurable function, W1,W2, · · ·Wd iid with the same

distribution of a random variable W (say, W1), and assume one of the following conditions

hold:

i. the function |ϕ| is convex on R and E[|ϕ(W)|] <∞.

ii. For some s > 1, lim sup
d→∞

E[|ϕ(Yd)|s] <∞.

79

Then 5.1 is satisfied for {Yd = 1
n

d∑
i=d

Wi}d=1,2,··· with a = µ and M > |µ|.

Proof. If i. is satisfied, by the convexity assumption, |ϕ(1
n

∑d
i=1Wi)| ≤

∑d
i=1

1
n |ϕ(Wi)|, there-

fore

E[|ϕ(Yd)|I[|Yd|>M]] ≤ 1

d
E[|ϕ(Wi)|I[|Yd|>M]] = E[|ϕ(W)|I[|Yd|>M]]

But Yd
P−→ µ and |M | > µ, I[|Yd|>M]

P−→ 0 so it holds the hypothesis for the dominated

convergence theorem:

|ϕ(W)|I[|Yd|>M]
P−→ 0 and |ϕ(W)|I[|Yd|>M] ≤ |ϕ(W)|

Hence, E |ϕ(W)|I[|Yd|>M]]→ 0.

Assume now that ii. is satisfied. We use Holder’s inequality for 1/r + 1/s = 1 with variables

ϕ(Yd) and I[|Yd|>M]. Noticing that |I[|Yd|>M]|r = I[|Yd|>M] we arrive at the inequality

E[|ϕ(Yd)|I[|Yd|>M]] ≤ (E[|ϕ(Yd)
s|])1/s(E[I[|Yd|>M]])1/r =

= (E[|ϕ(Yd)
s|])1/sP ([|Yd| > M])

1/r

But P ([|Yd| > M])
d→∞−→ 0, which makes condition 5.1 true when combined with the above

inequality plus the assumption ii..

Corollary 5.1.1.1. For fixed p > 0 and r > 0, consider for each d, the random vector ~X =

(X1, X2, · · ·Xd) where the Xi’s are iid distributed as a random variable X (say, X1).

i. If r/p < 1 and E[|X|p] <∞, then

E[‖ ~X‖rLp]

dr/p
d→∞−→ E[|X|p]r/p

ii. If r/p ≥ 1 and E[|X|r] <∞, then

E[‖ ~X‖rLp]

dr/p
d→∞−→ E[|X|p]r/p

Proof. We shall apply proposition 3.01 and lemma 3.02 to Wi = |Xi|p, which are distributed as

W = |X|p, and ϕ(u) = |u|r/p.
For i., with s = p/r > 1 and Yd = 1

d

∑d
i=1 |Xi|p),

E[|ϕ(Yd)|s] = E[(|Yd|r/p)p/r] = E

[
1

d

d∑
i=1

|Xi|p)

]
= E[|X|p] <∞

Therefore, condition ii. of lemma 3.0.2 is satisfied giving in turn the result of proposition 3.0.1:

E[‖ ~X‖rLp]

dr/p
= E[(

1

d

d∑
i=1

|Xi|p)r/p] = E[ϕ(Yd)]
d→∞−→ ϕ(E[|X|p]) = E[|X|p]r/p

80

For ii., defining ϕ(u) = |u|r/p, because r/p ≥ 1, so it is a convex function. Let’s calculate

E[|ϕ(Yd)|] = E

[
ϕ

(
d∑
i=1

1

d
|Xi|p

)]
≤ E

[
d∑
i=1

1

d
ϕ(|Xi|p)

]
=

=
1

d

d∑
i=1

E[|Xi|r] = E[|X|r] <∞

(5.2)

and also

E[|ϕ(|X|p)|] = E[|X|r] <∞ (5.3)

The inequality 5.2 shows that the conditions of proposition 3.0.1 are fully satisfied and 5.3

shows that the condition i. of lemma 3.0.2 is satisfied, therefore, we conclude that

E[‖ ~X‖rLp]

dr/p
= E

 (1

d

d∑
i=1

|Xi|p
)r/p  = E[ϕ(Yd)]

d→∞−→ ϕ(E[|X|p]) = E[|X|p]r/p

Now, let’s apply this last result for p > 0 and r = 1, 2, and let’s take for granted that 0 <

E[|X|m] <∞ for m = p, 1, 2. So we conclude:

E[‖ ~X‖Lp]

d1/p

d→∞−→ E[|X|p]1/p ≡ α

and

E[‖ ~X‖2Lp]

d2/p

d→∞−→ E[|X|p]2/p ≡ α2

∴

√
V ar[‖ ~X‖Lp]

E[‖ ~X‖Lp]
=

√
E[‖ ~X‖2Lp]− E2[‖ ~X‖Lp]

E[‖ ~X‖Lp]
=

=

√
d2/p{(E[‖ ~X‖2Lp]/d2/p)− (E[‖ ~X‖Lp]/d1/p)2}

d1/p(E[‖ ~X‖Lp]/d1/p)
=

=

√
(E[‖ ~X‖2Lp]/d2/p)− (E[‖ ~X‖Lp]/d1/p)2

(E[‖ ~X‖Lp]/d1/p)

d→∞−→

d→∞−→
√
α2 − α2

α
= 0

81

Thus we have concluded that

√
V ar[‖ ~X‖Lp]

E[‖ ~X‖Lp]

d→∞−→ 0, which combined with Chebyshev’s inequal-

ity gives us finally

P

(∣∣∣∣∣ ‖ ~X‖Lp
E[‖ ~X‖Lp]

− 1

∣∣∣∣∣ ≥ ε
)

= P
(∣∣∣‖ ~X‖Lp − E[‖ ~X‖Lp]

∣∣∣ ≥ εE[‖ ~X‖Lp]
)
≤

≤ V ar[‖ ~X‖Lp]

ε2E2[‖ ~X‖Lp]

d→∞−→ 0

This means that for small ε and sufficiently big d, the quantity ‖ ~X‖Lp/E[‖ ~X‖Lp] fluctuates

above ε with very small probability, almost zero, i.e., the vector’s lengths ‖ ~X‖Lp measure more

or less the same.

This result was proven for a special case where each component of the vector ~X is an iid vari-

able. Below we check another experiment with vectors generated with the uniform distribution

over the range from 0 to 1000 for each Xi, and then a thousand of these were selected for cal-

culation of the relative distances using the L2 norm. Below we display the histogram of these

pairwise distances for dimensions d = 2, 7, 15, 30, 60, 120.

Figure 5.2: Superposed histograms showing the distribution of L4 distance
between random pairs vectors composed of d = 2, 7, 15, 30, 60, 120 iid components
generated by a beta distribution

82

5.2 The Curse of Dimensionality

Clustering in high dimensions is problematic when the dimension d becomes big, because the

quantity ‖ ~X‖Lp becomes meaningless, i.e., it cannot account well for devising which points are

closer to a given cluster center, as more or less, every vector lies in a sphere of radius [| ~X‖Lp].

This phenomenon is intrinsic of the space and is reported in many computational situations,

and it is blamed to be a “Curse of Dimensionality”.

This curse is not always intractable, but a warning should be done: there are some miscon-

ceptions of the consequences of this phenomenon as well as how different norms behave - for

example, here the L2 and L1 norms are more robust in capturing distances as can be seen in

the histogram pictured in Figure 5.3, for these cases the above result is still true though for

d enormously large. Also, the results stated in the previous subsection are by no means the

broader scenario, as they assume that the random vectors components are iid, which general

is not true - in fact we expect that in general there are correlations between the different Xi’s

that we hope to capture through a redefinition of the features by an axis change through the

so-called Principal Component Analysis.

For a good survey on these issues, refer to Zimek in [39].

5.3 Can we defeat it?

We cannot defeat it completely but some techniques are worth trying: reduction of dimension

by disregarding non-informative components (like many iid Xi’s which just add noise to the

measurements); defining new variables from highly correlated Xi’s which capture better the

information in a smaller dimension; use of more robust distances if available; use of more ex-

ternal information and computing power to infer more complex relations among data points.

In this thesis two approaches were tried to takle these high dimensional issues: data dimension

reduction through Principal Component Analysis (PCA) and implementation of a clustering

algorithm called ORCLUS (by Charu Aggarwal) [2]. We describe these two methods in what

follows along with results.

5.4 Principal Component Analysis

Consider a random variable X : Ω→ Rd and its d components X = (X1, X2, · · ·Xd). Given two

such variables, Xi and Xj , their joint covariance is

cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])] = E[XiXj]− E[Xi]E[Xj]

Working with Z = X − E[X],

Cov[X] = E[(X − E[X])T (X − E[X])] = E[ZTZ]

83

Figure 5.3: Superposed histograms showing the distribution of L2 distance
between random pairs vectors composed of d = 2, 7, 15, 30, 60, 120 iid components
generated by a beta distribution. Notice that these histograms are more robust
than those for L4.

Suppose we change coordinates through a linear transformation Z 7→ PZ. We check

E[(PZ)TPZ] =

[
E[(

d∑
l=1

PilZl)(
d∑
l′
Pjl′Zl′)]

]
i,j=1,2,···d

=

=

[
d∑
l=1

d∑
l′=1

PilE[ZlZl′)]Pjl′

]
i,j=1,2,···d

=

= PE[ZTZ]PT = P Cov[X] PT

∴ Cov[X] = PTE[(PZ)TPZ]P

(5.4)

We could think of a new set of variables Y = PZ and a transformation P which diagonalizes

84

the covariance matrix, so that in combination with 5.4,

Cov[X] = PT diag(λ1, λ2, · · ·λd) P = PT E[Y TY] P

∴ Cov[Y] = E[Y TY] = diag(λ1, λ2, · · ·λd)

(5.5)

The new set of variables Yi =
∑
j PijZj have null joint covariance - in rough terms, for every

realization ~y = (y1, y2 · · · yd) of Y , if yiyj > 0 (< 0) this will be balanced at some point by

others realizations so to cancel it on average.

Each eigenvector ~ui of Cov[X] is a P row, i.e., ~ui = PT~ei and it is assumed that the λ’s are

decreasing. It is important to interpret them: according to 5.6, λi = V ar[Yi], so that the big-

ger the i-th eigenvalue is, the more X fluctuates around the mean in the direction ~ui. There-

fore one could look for this fluctuation around the most relevant eigenvalues instead of consid-

ering the whole data variatoin trhough all of its d dimensions. This motivates the construction

of a projector-like operator P (m) next.

Select the m < d bigger eigenvalues and define the projector operator

P (m)(~v) =

m∑
l=1

〈~v, PT~el〉 ~el

and the reduced diagonal matrix

D(m) = diag(λ1, λ2, · · ·λm)

The matrix P (m) is not exactly a projection operator, what it does instead is the following:

Let ~v be expanded in the eigenvectors basis {PT~e1, P
T~e2, · · ·PT~ed}, then P (m) sends ~v to

the m first coefficients vector (a projector would instead send ~v to its truncation). In matrix

terms, P (m) is composed of the first m lines of P .

We assert that the matrix P (m)TD(m)P (m) is the best approximation for Cov[X] in the Frobe-

nius norm. For instance,

P (m)TD(m)P (m) =


~u1 ~u2 · · · ~um




λ1

λ2

. . .

λm




~u1

~u2

...
~um

 =

85

=


~u1 ~u2 · · · ~um · · · ~ud





λ1

λ2

. . .

λm
0

. . .

0





~u1

~u2

...
~um
...
~ud


=

= PT diag(λ1, λ2, · · ·λm, 0, · · · 0)P

∴ ‖ PTDP − P (m)TD(m)P (m) ‖F = ‖ PT diag(0, · · · 0, λm+1 · · ·λd)P ‖F =
√
λ2
m+1 + · · ·+ λ2

d

(The Frobenius norm is defined as ‖A‖F =
√∑

i

∑
j |aij |2 =

√
tr(ATA) =

√∑
i σi(A)2

where the σi(A)’s are the eigenvalues of A)

Hence 
‖Cov[X]− P (m)TD(m)P (m)‖ =

√
λ2
m+1 + · · ·+ λ2

d

P (m)TD(m)P (m) = PT diag(λ1, λ2, · · ·λm, 0, · · · 0)P

minλ = λd ≤ λd−1 · · · ≤ λm+1

(5.6)

5.6 tells that the matrix P (m) maps d-dimensional vectors into Rm minimizing the loss of in-

formation of P (m)TD(m)P (m) in relation to Cov[X], in the sense that the first m most impor-

tant eigenvectors are kept, while the remaining d−m smallest eigenvalues are reset to zero.

Now, how is it applied in the actual data set? We use the matrix P (m) to project each realiza-

tion ~x into a smaller m-dimensional vector P (m)~x. But Cov[X] is replaced to the resized em-

pirical covariance matrix. Assume the data set has mean zero (by subtracting the actual mean

if necessary), and group realizations in a n× d matrix, with n = #D:

X =


~x1

~x2

...
~xn


The empirical covariance is proportional to XTX, so we perform an Singular Value Decompo-

sition (SVD) that should give:

XTX = PTDP

And we define the ‘empirical’ P (m) as the truncation of P up to m rows. Another possibility is

to perform an SVD on X, in which case the composition becomes UTΣP , where P is the same

as above (but this is not a good option if n is huge).

86

Once P (m) is learnt, one can apply it on the full d-dimensional realizations to reduce their

components, a process of which is called reduction of dimensionality - we keep the relevant

dimensions of a properly rotated axis (eigenvectors) and discard those which only add noise

(i.e., have low variance). The calculation of SVD in order to truncate the matrix P which di-

agonalizes XTX, in turn, reducing the dimensionality associated to the data is called Principal

Component Analysis (PCA).

5.5 PCA + K-Means

We provided evidence that K-Means and any algorithm which relies on distance metrics can

be highly affected by the curse of dimensionality. We can use PCA to reduce dimensionality

and apply these algorithms for the new data in the relevant dimensions, i.e., the realizations

components around most relevant eigenvectors. As a matter of fact it is a standard procedure

to preprocess the data set through a Principal Component Analysis, which almost always leads

to better results in Machine Learning methods.

This technique is widely employed in Data Science, namely for information retrieval systems,

where unstructured data sets like text files are transformed into vectors to be ‘rotated’ through

PCA giving rise to new vector representations whose most important components are remark-

ably interpretated as the main covered topics. Also in Genetic Biology PCA is largely em-

ployed in order to point out the relevant correlations among the hundreds or thousands gene

features to a DNA sequence, see [36]. For good references on advanced PCA techniques see

the classical book [17]. The K-Means and the PCA are closely interconnected techniques as re-

ported in [13] hence their combined use leads to excelent results in clustering data. But as will

be seem at Section 5.7, this technique is not robust enough to fight the curse of dimentionality

nor the overfitting of clusters around small sets of noisy points so-called outliers.

5.6 ORCLUS

The dimension reduction provided by PCA is generally very effective. But consider the fol-

lowing two examples of data sets in Figure 5.4. It displays two very characteristic clusters, one

whose points are very correlated in the x×y plane, another in the z direction (both planes x×z
and y × z fit well). A SVD was applied and the directions are shown, the least relevant being

that pointing downwards in z. If we cut it, we will see dimension reduced points very similar

to the projection x× y displayed at the bottom left - basically, the right cluster will collapse to

a region with a tiny radius, losing a lot of relevant information (the different heights along z).

A similar situation will happen for points in Figure 5.6. The clusters have very special shapes,

and are fully described at different hiperplanes - the left in x × z and the right in x × y. Even

though PCA could reduce dimension and then K-Means could find these clusters, once they

are relatively simple, on more complex data sets this loss of information described for Figure

5.4 can bring some difficulty in finding the natural clusters, for instance, consider the clusters

in Figure 5.6. There, if the less relevant direction points downwards and it is cut, we will not

be able to identify the two similar clusters on the right.

87

Figure 5.4: Two cross sections of the same set of points. The x × y cross section shows a left set collapsed
to very small circular region, while the x × z shows it spread along the z direction. On the top right the SVD
eigenvectors are displayed. The vector pointing downwards in zdirection is the least relevant direction. Cutting
it means to lose the natural structure of the cluster on the right.

88

Figure 5.5: Two clusters living close to two different subdimensions. A full dimensional clustering procedure
would incur in considerable loss of information.

89

Figure 5.6: On the left the original cluster drawn in figure 3.4 was divided in
two smaller ones. Now, by cutting the irrelevant dimension pointing downwards
will make impossible to identify these two clusters.

The previous situations show that correlations among data points may depend on the locality

of data. In probabilistic terms, assume the distribution is given by a mixture model

ρ(x) =

k∑
i=1

πiρ(x|i)

Each model ρ(·|i) has its specific conditional covariance Cov[X| i] = E[(X − µi)
T (X −

µi) | i] =: Σi where µi = E[X | i], and associated to each one there is a PCA matrix P
(m)
i

whose rows are the first m < d eigenvectors of Cov[X| i].

Assume Σi and µi, are parameters for each model, so that ρ(x|i) = ρ(x|Σi, µi, θi) where θi

is any other parameter not depending on the dimension d. If ρ(·|i) describes a good cluster,

it should be well localized around µi, so that ‖Σi‖F is not too big compared to others i’s and

Cov[X], also, if its eigenvalues are similar in value, whatever projection we choose may catch

well the characteristics of the cluster. If that is not the case, Σi may have very disparate (sparse)

eigenvalues, and a (local) PCA would capture more precisely the relevant dimensions for this

cluster locality. Complementary considerations are made in the appendix, where some affirma-

90

tives are made - though not rigorous, they shed light on when and why local PCA would be a

nice escaping from the curse of dimensionality.

So, a possible ‘cure’ to the curse could be a local principal component analysis around dense

data localities. There is a nice algorithm by Charu Aggarwal described in [2] which aims to

implement analysis combining Clustering with local projections to principal components, the

ORCLUS algorithm. In what follows we describe it. After we apply it and compare to the

classic K-Means and K-Means + PCA schemes, with excellent results. In the appendix a python

implementation is at disposal.

ORCLUS combines a PCA-like scheme while clusters in an hybrid iterative algorithm between

K-Means and hierarchical clustering. It is designed to start with k0 clusters and to gradually

reduce their numbers until reach the desired k final clusters. The initial k0 > k centroids ci are

selected among the data set D, and every centroid (cluster representative) is always associated

to a special reduced vector space Vi of relevant (i-th cluster) dimensions, whose dimension at

iterate n is l(n). The initial vector spaces are the whole Rd, and the algorithm gradually cuts

down the dimensionality of these vector spaces Vi (which we shall call ‘subspaces’) towards the

desired l(nfinal) = l. At each iterate three steps are performed:

i. Assignment: projects every x ∈ D and every ci to the special subspace associated to the

latter, then calculates the distance dVi(x, ci) in this dimension reduced space, where dVi
is a given a choice of distance metric in Vi. Then we assign x ∈ D to ci if and only if

i = argminj dVj (x, cj). Finally, the centroids are updated to the centers of the newly

formed subsets Ci = {x | argminj dVj (x, cj) = i};

ii. Local PCA: Once D is partitioned in subsets Ci, a PCA is performed at each of them,

and the special subspaces Vi are updated by extraction of the l(n) most relevant dimen-

sions among Ci points. The n-th iteration lowers the previous dimension l(n−1) in such a

way that the first iteration begins with l(0) = d (the full space Rd) and the last finishes

with l(nfinal) = l. The exact proportions among l(n−1) and l(n) are discussed below;

iii. Merge: reduces the number of clusters from k(n−1) to k ≤ k(n) < k(n−1) by merging

them one at a time according to the following routine.

It computes for every pair i 6= j, with i = 1, 2, · · · k(n−1), the l(n) dimensional subspace

Vij associated to Ci ∪ Cj by performing a PCA, then computes the value of the objective

function rij =
∑
Ci∪Cj dVij (x, cij)

2/|Ci ∪Cj | where again dVij (·, ·) is the distance function

in the projected subspace Vij .

Finally the pair for which rij is minimal is merged reducing the number of clusters by

1 and relabeling the indices so this routine can be repeated t times until k(n−1) − t =

k(n). When the last routine is performed (the desired K(n) is reached), the centroids are

updated and newly calculated subspaces Vi′ = Vij (after relabeling) are associated to

the newly formed clusters Ci′ = Ci ∪ Cj (the untouched Vi’s for non-merged clusters are

clearly maintained).

If k(n) = k the algorithm finishes. Else, we update the l and k values from l(n) to l(n+1)

and k(n) to k(n+1), and iterate steps 1), 2) and 3).

91

The pseudocode is shown next. A Python implementation is shown in the appendix. It is a

working code which amounts for excelent results as displayed in Figure 5.7, however, it should

be enhanced by parallelizing its core procedure named ‘merge’. In the figure (its visualization

will be explained in detail later on), 96-dimensional vectors are represented as horizontal strips

in a heat map. The colors intensities reflect the magnetude of each one of the 96 features.

For now what is important is to verify the coherent patterns in each clustered group of data

points; the robustness of detection amidst many noisy vectors (the lines breaking the beautiful

patterns, specially in the clusters composed by 32 and 23 days); and the balance of the clus-

ters sizes - there are no overfitted clusters with few points nor supersized clusters (which would

reflect a method inability to distinguish well the patterns).

Figure 5.7: a sample of traffic counting data clustered by the ORCLUS algorithm. The days are displayed as
96-dimensional vectors along the horizontal axis, while the vertical axis are the different days. Although each
cluster has a different number of clustered days, they have all the same height.

The parameter α is a reduction factor of the number of clusters at each iteration, so it should

be between 0 and 1. Each iteration reduces the previous k(n−1) to k(n) = max{k, bα k(n−1)c}.
A typical value for it is α = 0.5. Associated to it there is the β parameter, the reduction factor

of the subspaces dimensions so that l(n) = max{l, β l(n−1)c}. β should be tuned so that the al-

gorithm starts with (k(0), l(0)) = (k0, l0) and finishes at iteration nfinal with (k(nfinal), l(nfinal)) =

(k, l). Thus we must have

(k, l) = (αnfinalk0, β
nfinal l0)

∴
ln (k/k0)

lnα
= nfinal =

ln (l/l0)

lnβ

⇒ β = elnα ln(l/l0) ln(k0/k)

92

The pseudocode has a main procedure, named ‘ORCLUS’, and the three associated procedures

‘Assign’, ‘FindVectors’, ‘Merge’, written as the three separate algorithms 5.6.1, 5.6.2, 5.6.3 and

5.6.4.

93

Algorithm 5.6.1: ORCLUS(k, l, k0, d, α)

main

(c1, c2, · · · ck0)← randomly selected
kc ← k0

lc ← d
β ← elnα ln(l/l0) ln(k0/k)

for each i ∈ {1, 2, · · · k0}
do Pi ← I

comment: at each iteration, k(n) = kc and l(n) = lc

while (kc > k)

do



(C1, C2, · · ·Ckc)← Assign(c1, c2, · · · ckc , P1, P2, · · ·Pkc)

for i← 0 to kc
do Pi ← FindVectors(Ci, lc)

knew = max{k, bαkcc}; lnew = max{l, bβlcc}

(c1, · · · cknew , C1, · · ·Cknew , P1, · · ·Pknew)←Merge(C1, · · ·Ckc , knew, lnew)

kc = knew; lc = lnew

(C1, C2, · · ·Ck)← Assign(c1, c2, · · · ck, P1, P2, · · ·Pk)

return (C1, C2, · · ·Ck)

94

Algorithm 5.6.2: Assign(c1, c2, · · · ckc , P1, P2, · · ·Pkc)

for each x ∈ D
do ind(x)← argmin

j=1,···kc
dPi(x, cj)

comment: dPi(·, ·) is the distance function in the space projected by Pi

for i← 0 to kc
do Ci ← {x ∈ D | ind(x) = i}

return (C1, C2, · · ·Ckc)

Algorithm 5.6.3: FindVectors(C, lc)

comment: C is a cluster, X is a matrix whose rows are elements of C

X← C

Cov[X]← (X− µ)T (X− µ)

U, S, V ← svd(X)

P ← [~v1, ~v2, · · · ~vlc]T

comment: µ is the empirical mean, P is the first lc rows of V

return (P)

95

Algorithm 5.6.4: Merge(C1, · · ·Ckc , knew, lnew)

for each i < j ∈ {1, 2, · · · kc}

do


Pij ← FindVectors(Ci ∪ Cj , lnew)
cij ← µ(Ci ∪ Cj)
rij ←

∑
x∈Ci∪Cj

dVij (x, cij)
2/|Ci ∪ Cj |

comment: µ(C) is the cluster mean, Vij space associated to Pij

while kc > knew

do



(i′, j′)← argmin
i<j

{rij}

Ci′ ← Ci′ ∪ Cj′
ci′ ← ci′j′

Pi′ ← Pi′j′

comment: discard j′ and relabel indices

for j ← j′ to kc

do

{
j ← j − 1
(i, j)← (i, j − 1)

for each j 6= i′ ∈ {1, 2, · · · kc − 1}

do


Pi′j ← FindVectors(Ci′ ∪ Cj , lnew)
ci′j ← µ(Ci′ ∪ Cj)
ri′j ←

∑
x∈Ci′∪Cj

dVi′j (x, ci′j)
2/|Ci′ ∪ Cj |

kc ← kc − 1

return (c1, · · · cknew , C1, · · ·Cknew , P1, · · ·Pknew)

96

5.7 An Application

In what follows it is presented an application of the high dimensional clustering tools discussed

in this chapter for the detection of patterns in traffic counting data from the Departamento

Nacional de Infraestrutura de Transporte (DNIT). The data set is a temporal series like in

Figure 5.8 where each day is divided in 96 intervals of 15 minutes.

Figure 5.8: A typical timeseries of the DNIT data set.

In order to cluster this series into groups of days, we divide the long time series into small se-

ries representing a 24 hours day, divided in 96 intervals of 15 minutes. So, each day in the se-

ries is represented by a 96-dimensional vector (c1, c2, · · · c96) ∈ N96
∗ . We will visualize the clus-

ters data through heat maps, an example of which is given in Figure 5.9.

97

Figure 5.9: Four days were picked and displayed as a heat map above, and below is displayed as a time se-
ries of a 96-dimensional vector. The lighter the color, the closer to zero is the traffic counting, the darker the
color, the higher the count of cars passing by during the corresponding 15 minute interval. Notice the series (in
purple) with a bunch of zero countings between the 17th and the 36th intervals.

Each interval of fifteen minutes has a color, the lighter it is, the closer to zero is the counting,

while the darker it is, the bigger the counting is. The dimension d = 96 can be considered to

be high, but let’s first apply the K-Means, in Figure 5.10, to start digging some insights.

Figure 5.10: K-Means clustering with k = 9

Later on we will discuss why k = 9 was a good choice of parameter. K-Means performs poorly

because it catches two clusters with too few points (3,5 and 13 days respectively) while it forms

clusters with too many data points (the one with 172 days). The former observation is an ev-

98

idence of the overfitting problem: in high dimensions, it is easy to find some small groups of

points quite far from all the others - the so-called outliers. Now the latter observation is an ev-

idence of the inherent sparsity of data points in high dimensions: more or less all the points

are equidistant among themselves thus making it difficult to differentiate the data points, so a

bad clustering procedure will tend to put a good part of the data under one big cluster.

We apply the K-Means + PCA scheme to this same set of data points, the result given in Fig-

ure 5.11. It does not perform really better than the K-Means. Still there is a big cluster of 166

days,two small clusters with 13 days and one last with only 4 days. This means that proba-

bly the good clusters have their own special directions (as explained in the last chapter), so

that a global PCA is not enough to reduce dimensionality without losing essential descriptive

data. We appel to the ORCLUS technique in Figure 5.12. We notice that (i) the ORCLUS

does not capture clusters with few isolated points; (ii) it forms well balanced clusters, the big-

ger one possessing 86 days. This means that the ORCLUS is able to detect subtle peculiarities

of the high dimensional vectors thus not forming big clusters, and it is robust against outliers

which naturaly occurs when the dimension is high, meaning that it will not isolate them in

small clusters.

Figure 5.11: K-Means performed after a reduction of dimension by Principal Component Analysis.

99

Figure 5.12: ORCLUS technique. Notice that the clusters’ sizes are balanced.

We show another clustering performed over a new data set of the same kind. We only display

the commented Figures 5.13, 5.14 and 5.15.

Figure 5.13: K-Means. Notice one very small cluster with only 5 days and others three with around 30 days.
By contrast a huge cluster composed of 324 days, comprising almost one third of the data, which sounds awk-
ward. But a quick inspection make us believe the big cluster is reliable - indeed, when we have so many fea-
tures to distinguish between two vectors, we lose the notion of what ‘to be different’ means - this inability to
distinguish well the data points is just a manifestation of the curse of dimensionality.

100

Figure 5.14: K-Means performed after a reduction of dimension by Principal Component Analysis. We notice
a better balance in the clusters sizes though it persists a very small cluster and a huge one with 280 days (but
less than 324), as well a second huge cluster with 199 days.

Figure 5.15: ORCLUS. We can see balanced clusters sizes and cluster with an appealing aspect of a certain
coherence of their shapes. Notice specially the cluster with 81days. The ORCLUS was able to group many
vectors with missing data together with clean data points, and a quick visual inspection makes clear that the
group is coherent. Notice also that the clusters seems to be more ‘noisy’. The ORCLUS identifies subtle dif-
ferences among high dimensional vectors in the relevant dimensions, but it could well be that in the remaining
subdmensions, the vectors diverge by a huge difference, so we see this ‘noisy’ aspect. In the previous schemes,
these ‘noisy’ points probably were all collected in a sole big cluster.

Once we cluster the data, we can study the clusters’ profiles, like in Figure 5.16. Grouping the

101

points gives us insights from the data set, uncover patterns from which we could take deci-

sions, or even try to predict events, or can make us improve statistics calculations. For the for-

mer application, take as example the mentioned figure. The first cluster has mean countings

close to zero - probably this cluster caught the majority of null counting outliers - while the

next two clusters show similar mean counting but have different variances - the second cluster

shows greater variability of counting profiles, the third presents a more uniform aspect. Have

not we clustered the data set before analysing these statistics then we would have mixed the

different profiles of days in a single non-informative mean-variance statistics.

102

Figure 5.16: We see the profile of three typical clusters. The blue line represents the median of the counts for
each 15 minutes interval, i.e., it represents the typical traffic count profile for days belonging to such cluster.
The median of each cluster was plotted together with actual realizations of that cluster, displayed in yellow
dots. Although these realizations were not distinguished among themselves, they give an idea of the typical
statistical fluctuations one can see inside each cluster. For example, in the first we can see many yellow dots
marking null countings, so many of them that they pushed down the median statistics towards 0; in the second
cluster, we notice a huge variance around the median statistics.

5.8 Validating the results

In order to cluster the data, we need to specify some parameters. In the former application,

these parameters were the predefined number of clusters, k, for both ORCLUS and K-Means;

the reduced dimension of the principal component analysis, denoted here as dim; the subdi-

103

mension l associated to the PROCLUS projections over the relevant dimensions around the

data cluster localities. We need some criteria to tune these parameters, and tunning them well

will result in better clustering performance and clusters quality.

Ideally, two clusters should be well separated groups points in space - otherwise we could not

distinguish them clearly thus making no sense declaring them as two different clusters instead

of one single bigger cluster. Also, inside the cluster, we would expect the variability not to be

so high, otherwise, the points would be so different among themselves that it would have no

sense in declaring them similar. So these two properties, separation and ‘intra-similarity ’ are

key to identify quantitatively what a good cluster should be. A cluster validation index is de-

fined as a quantity measured over the data which quantifies somehow these characteristics, and

give a scale of how far or how close we are from ideal clustering configurations.

In the probabilistic framework we represent the underlying generation mechanism of the data

by a pdf ρ = ρ(x), so that each data point is the realization of a variable Xi : Ω → Rd dis-

tributed according with Xi ∼ ρ(x). Then a hard clustering that classifies n realizations X1, X2, · · ·Xn

into any one of the labels belonging to the target space Y can be represented by a function of

the realizations

C(n) ≡ Cρ(X1, · · · , Xn)

Defined like

C(n) : Ω → Yn

ω 7→ C(n)(ω)

An index score for n data realizations is a function

I(n) : Rd×n × Yn → R

(X,y) 7→ I(n)(X,y)

Where X = (x1, x2, · · ·xn) ∈ Rd×n is the matrix of data realizations and

y = (y1, y2, · · · yn) ∈ Yn is the vector of labels in the target space Y, (this notation eludes the

framework of supervised learning discussed in Chapter 1).

An index score measures how ‘good’ the label assignments yi given to every realization xi are,

in the sense of producing very compact and well separated groups of points in Rd. We combine

I(n) and C(n) in a composite-like function

I(n) ◦ C(n) = I(n)(X1, X2, · · · , Xn;Cρ(X1, X2, · · · , Xn))

We call the function R(n) := I(n) ◦ C(n) the index validity of the clustering C(n) associated to

I(n). For the validation of our results we use the following validation indices:

SSB:

R
(n)
SSB(X1, X2, · · ·Xn) =

n∑
i=1

‖Xi −myi‖2

104

where yi ∈ {1, 2, · · · k} is the Xi assignment, mj is the ith cluster center. Notice that

mj = (X1, · · ·Xn), the limit value of a cluster algorithm.

SSW:

R
(n)
SSW (X1, X2, · · ·Xn) =

k∑
j=1

nj‖cj − X̄‖2

where ni = |Ci| is the cluster size and X̂ = 1
n

∑n
i=1Xi.

Calinski-Harabasz:

R
(n)
SSW

RCH/(n− 1)

RSSW /(n− k)

(we omitted the ‘(n)’)

Dunn:

R
(n)
Dunn =

min
j=1,···k

{
min
j′ 6=j

d(mj ,mj′)

}
max
j=1,···k

diam(Cj)

Davies-Bouldin:

R
(n)
DB =

1

k

k∑
j=1

Rj

where Ri = maxj 6=j′
Sj+Sj′

d(mj ,mj′)
,

and Sj = 1
|Cj |

∑
Xi∈Cj

d(Xi,mj)

C index:

R
(n)
C =

S − Smin
Smax − Smin

Where S =
k∑
j=1

∑
x6=x′∈Cj

d(x, x′) ; Smin =
NW∑
s=1

ds ; Smin =
n∑

s=n−NW
ds

with {d1 < d2 < · · · dn−1 < dn} = {d(x, x′) | x, x′ ∈ ∪jCj}andNW =
k∑
j=1

nj(nj−1)
2

Silhouette:

R
(n)
S =

1

n

n∑
i=1

(
b(i)− a(i)

max{a(i), b(i)}

)

Where a(i) = 1
nj−1

(∑
x∈Cj/{xi}

‖x− xi‖2
)

is the intra-cluster mean distance to xi ∈ Cj

and b(i) = min
l 6=j

{
1
|Cl|

(∑
x∈Cl ‖x− xi‖

2
) }

is the minimum inter-cluster mean distance

from xi ∈ Cj to Cl, l 6= j

105

For interpretations of the geometric meaning of these indices, see [38],[12]. These indices must

all be as high as possible to indicate a good clustering configuration, with the exception of the

Davies-Bouldin index, which should be ideally as biggest as possible.

In the following we test three of these indices with four clustering configurations (they were

clustered in order to calculate the indices but the clustering result is not displayed to avoid vi-

sual pollution), the first is at the top left, and it was modified in order to: (i) increase the sep-

aration at the bottom left; (ii) decrease the cluster radius in the top right; (iii) both decrease

the radius and augment the separation. The remaining indices behave similarly as shown be-

low.

Figure 5.17:

106

Figure 5.18:

107

Figure 5.19:

Now we turn to the results obtained in the last section. They were all taken with k = 8 and

PCA dimension around 20. We selected these numbers by checking some cluster validity in-

dices for varying parameters values. For the ORCLUS, as it costs much to perform, we fixed a

subdimension l = 10, after some tentatives which showed that augmenting l costs too much for

small enhancements. So we varied only k from 7 to 10. We display the results for the KMeans+PCA

scheme in Figure 5.20.

108

Figure 5.20:

The Dunn index should ideally be as biggest as possible. For the K-Means + PCA scheme it

tells that the ideal cluster configuration is for k = 5. Notice that it is independent of the di-

mension of the PCA reduction, indicated in the legend as ‘pca’. But for the data used here it

sounds unrealistic, because each point is a day, we we would expect that something around 7

is reliable, one for each day week day. It seems more informative to analyse the other pics. We

see that me most expressive ones are around k = 8, 9, 10. We notice that the blue line seems to

be special, but in fact all these lines behave similarly, which sounds like evidence that we have

some freedom in adjusting the PCA dimension pca. Indeed we can check that trying broader

intervals for pca doens’t affect the overall aspect of the clustering.

Let’s check now the Silhouette index, Figure 5.21, which should be ideally as big as possible.

We see descending curves, a common pic at k = 5, which we ignore, and reliable pics running

between k = 8 to k = 10, specially for pca = 17, 19, 21. The yellow curve pca = 21 seems very

special, and indicates a good clustering at k = 8.

109

Figure 5.21:

The Calinski-Harabaz index, in Figure 5.22 gave very characteristic results: highly similar de-

scending curves. Ideally, this index should be as biggest as possible, therefore, it tells us to

chose the smaller k possible, and that the choice for pca does not affect the overall clustering

result.

110

Figure 5.22:

Hence we can trust that the chosen parameters k = 8 and pca = 20 used in the previous im-

ages are good parameters.

Now we present a table of tests performed for the ORCLUS. It is a heavy algorithm, so we

tried only a small range for k, specially because the previous empirical calculations gave us

k = 8.

Figure 5.23:

Looking the table we check that the bigger results are for k = 9. Also, we notice the simi-

lar behaviour among all the indices. Its an interesting information, and it should be empha-

sized that the ORCLUS is able to catch more underlying important features of the data than

111

the other methods, thus resulting in better validation evaluations. Therefore we perform a last

comparative clustering with k = 9, l = 10, pca = 20.

112

Conclusions

The main goal of this work was to put on solid grounds the mathematical understanding of the

problem of overfitting and the Curse of Dimensionality phenomenon. We had as field test the

data set provided by the Departamento Nacional de Infraestrutura e Transportes, which was

composed of 96-dimensional vectors representing traffic counting data over a day. We has also

the desire to offer an extensive review of some classical methods in Cluster Analysis, namely,

the K-Means which was studied in depth; the soft K-Means, which was understood in a Mix-

ture Model context; and the Gaussian Mixture Model itself.

These objectives were achieved: we developed an understanding of Supervised Learning from a

probabilistic point of view; we analysed in great detail the Mixture Model and its applications;

we made rigorous (by depicting the article by Ismael and Selim) the proof of convergence of

the hard K-Means in the context of Discrete Optimization; We developed insights about the

overfitting problem and how it naturally occurs in high-dimensional regimes; thus we tried to

ilustrate both mathematically and empirically the Curse of Dimensionality in the context of

Concentration of Measure; and implemented, tested and validated the ORCLUS algorithm by

Charu Aggarwal, in an attempt to fight the curse of dimensinality while avoiding the overfit-

ting problem.

The field of Unsupervised Learning lies in the frontier of recent the developments in Machine

Learning. Therefore it is natural to have a multitude of techniques being developed without a

proper mathematical analysis background, and a myriad of articles with important results are

being produced, most of them relying on heuristics assumptions - the author stress his belief

that paving the way to clear rigorous mathematics is essential to the maintain this develop-

ment by giving insights on new techniques, by bringing to the surface old results often ignored

(like why the hard K-Means converge?) and by creating a pool of accessible scientific material

which allows anyone interested in Machine Learning to participate in this promising field.

Still there is much to discover, and specially, to implement, as every day the volume of com-

plex data grows astonishingly. The typical dimensionality of data generated by our smart-

phones, computers, sensors, cameras, and alike is only growing in a fast pace, so one cannot

expect all this data will be supervised, and even if it does, there is much information hidden

inside all these bytes which Supervised Learning techniques will uncover!

113

Appendix A

K-Means Python implementation

A.1 Hard K-Means

1 class KMeans ():

2

3 def __init__(self ,X,k,c=None ,max_iter =80,sel):

4 # X = n_samples x n_features numpy array ,

5 # X = [x1,x2,x3, ...] , xi = [xi1 ,xi2 , ...]

6 # c = k numpy array of centroids , c = [c1,c2, ... , ck]

7 # max_iter limits the maximum number of iterations

8 self.X = X

9 self.k = k

10 self.d = X.shape [1]

11 self.n = X.shape [0]

12 self.max_iter = max_iter

13

14 def kmeans(self ,c=None):

15

16 self.it=0 #iteration number

17 # randomly selects initial centroids , chosen among X values

18 if c is None:

19 self.c = X[random.sample(range(self.n),self.k)]

20 else:

21 self.c = c

22

23 # the first iteration we start outside the loop

24 self.it += 1

25 # in order to calculate all the distances in a single

26 #operation , we stack k copies of X

27 S = np.vstack ([self.X]*self.k)

28 # computes the difference (x_i - c_j) for each x_i in X,

29 # for every centroid c_j , and stacks everything in a big

30 # d x k x n matrix , then computation of distances is

31 # optimally performed and finally we arrive at k x n matrix

32 # from which we select the arguments where $|xi - cj|$

114

33 # is minimal , resulting in the labels ’ vector named (self.)’

colors ’

34

35 l = []

36 # computes label assignments

37 for i in range(self.d):

38 #stacks n copies of the i-th centroid to

39 #subtract it from each xi in X

40 C = np.outer(np.ones(self.n),self.c[:,i])

41 x = C.T.flatten () - S[:,i]

42 l.append(x.reshape(x.shape [0],1))

43 D = np.array(l).reshape(self.d,self.k,self.n)

44 distances = np.linalg.norm(D,axis =0)

45 #colors = clusters ’ labels

46 self.colors = np.argmin(distances ,axis =0)

47 #update centroids

48 self.c_new = np.array([self.X[self.colors ==i].mean(axis =0) for

i in range(self.k)])

49

50 # we enter the while loop. ’np.allclose ’ evaluates if the new

51 # centroids are close within a specified tolerance e (\ epsilon

).

52 # Here , it is automatically pre -setted by numpy by the value e

= 1e-5

53 while (np.allclose(self.c,self.c_new)==False)&(self.it<self.

max_iter):

54 self.c=copy.deepcopy(self.c_new)

55 self.it += 1

56 S = np.vstack ([self.X]*self.k)

57 l = []

58 for i in range(self.d):

59 C = np.ones(self.n),self.c[:,i])

60 x = np.outer(C.T.flatten () - S[:,i]

61 l.append(x.reshape(x.shape [0],1))

62 D = np.array(l).reshape(self.d,self.k,self.n)

63 distances = np.linalg.norm(D,axis =0)

64 #colors = clusters ’ labels

65 self.colors = np.argmin(distances ,axis =0)

66 self.c_new = np.array([self.X[self.colors ==i].mean(axis =0)

for i in range(self.k)])

A.2 Soft K-Means

1 class SoftKMeans ():

2

3 def __init__(self ,X,k,max_iter =80):

4 # X = n_samples x n_features numpy array , X = [x1,x2,x3, ...]

, xi = [xi1 ,xi2 , ...]

5 # c = centroids

115

6 self.X = X

7 self.k = k

8 self.d = X.shape [1]

9 self.n = X.shape [0]

10 self.max_iter = max_iter

11

12 def softKmeans(self ,b,c=None):

13

14 self.b = float(b)

15 self.it = 0 #iteration number

16 if c is None:

17 self.c = X[random.sample(range(self.n),self.k)]

18 else:

19 self.c = c

20

21 self.it += 1

22

23 S = np.vstack ([self.X]*self.k)

24 l = []

25 for i in range(self.d):

26 x = np.outer(np.ones(self.n),self.c[:,i]).T.flatten () - S[:,

i]

27 l.append(x.reshape(x.shape [0],1))

28 distances = np.linalg.norm(np.array(l).reshape(self.d,self.k,

self.n),axis =0)

29 z = np.exp(-b*distances)

30 self.colors = (z/z.sum(axis =0)).T

31 self.c_new = (X.T.dot(self.colors)/self.colors.sum(axis =0)).T

32

33 while (np.allclose(self.c,self.c_new)==False)&(self.it<self.

max_iter):

34 self.it += 1

35 self.c = copy.deepcopy(self.c_new)

36

37 S = np.vstack ([self.X]*self.k)

38 l = []

39 for i in range(self.d):

40 x = np.outer(np.ones(self.n),self.c[:,i]).T.flatten () - S

[:,i]

41 l.append(x.reshape(x.shape [0],1))

42 distances = np.linalg.norm(np.array(l).reshape(self.d,self.k

,self.n),axis =0)

43 z = np.exp(-b*distances)

44 self.colors = (z/z.sum(axis =0)).T

45 self.c_new = (X.T.dot(self.colors)/self.colors.sum(axis =0)).

T

46

47 self.means = copy.deepcopy(self.c_new)

48 self.covariances = np.array([np.diag ((.1/ self.b)*np.ones(self.

116

d)) for i in range(self.k)])

49

50 def softProbs(self ,Y):

51

52 n = Y.shape [0]

53 S = np.vstack ([Y]*self.k)

54 l = []

55 for i in range(self.d):

56 x = np.outer(np.ones(n),self.c[:,i]).T.flatten () - S[:,i]

57 l.append(x.reshape(x.shape [0],1))

58 distances = np.linalg.norm(np.array(l).reshape(self.d,self.k,n

),axis =0)

59 z = np.exp(-self.b*distances)

60

61 return (z/z.sum(axis =0)).T

117

A.2.1 Zangwill’s Global Convergence Theorem

So far we have only studied in depth the convergence of the hard K-Means and a generaliza-

tion for different dissimilarity matrices. For most algorithms, the exact convergence for an op-

timal solution is difficult to guarantee - even for the simple cases when D(·, ·) is the squared

euclidean norm or the Lp norm, some involved results were needed.

But often an algorithm converging towards a partial optimal solution or something similar to

it is the best one can have, and sometimes even that returns effective results. For these situa-

tions, there is a very general result by Zangwill [37],[6],[14], which states a general convergence

proof (in some special sense) for classes of algorithms characterized by the so-called point-to-

set mapping. A concise overview of this very interesting result is given in [?].

Zangwill’s argument generalizes those arguments used in the convergence theorems for the al-

gorithms highlighted in the previous section and of section 2.?, also, it will appear once again

in the Fuzzy K-Means convergence theorem by Bezdek [?]. So, by its importance and constant

use here, we’d better state it in all its generality.

Zangwill’s theory involves the concept of point-to-set mapping, or a set-valued function:

Definition A.2.1. Given two sets, X and Y , a point-to-set mapping from X to Y is a set-

valued mapping Φ: X → P(Y) which assigns to each x ∈ X a subset Φ(x) ⊂ Y , i.e., an

element of the power set of Y .

One can see this as a generalization of the notion of a function from X to Y , as one such func-

tion φ : X → Y could be redefined as a point-to-set mapping Φ(x) = {φ(x)}.
Let’s begin our analysis with a general definition of an iterative algorithm.

Definition A.2.2. Let X be a set and x0 ∈ X. An iterative algorithm A with initial point

x0 is a point-to-set mapping A : X → P(X) associated to the family of iterative sequences

{xn}n=0,1,2,··· starting at x0 and generated according to

xn+1 ∈ A(xn)

Remark. Each iterative sequence {xn}n=0,1,2,··· is the result of a particular method for the

implementation of the iterative algorithm A. Hence A represents a class of algorithms or im-

plementations.

Take as example the function ϕ defined in section 2.?. Clearly the definition of ϕ depends on

the data set D = {x1,x2, · · ·xn}, so let’s denote ϕ by the new notation ϕ = ϕ{x1,x2,···xn}(M).

Now one can define for each M = (m1,m2, · · ·mn) the set

A(M) = {ϕ{x1,x2,···xn}(M) | xi ∈ Rd and n ∈ N}

i.e., it is the set of possible values for ϕ(M) given all configurations for the data sets D and

n = #D.

Now we define the notion of a descent function:

Definition A.2.3. Given a subset Γ ⊂ X and an iterative algorithm A, a continuous real-

valued function E : X → R is called a descent function if it satisfies:

118

i. if x /∈ Γ and y ∈ A(x), E(y) < E(x)

ii. if x ∈ Γ and y ∈ A(x), E(y) ≤ E(x)

We call Γ the solution set, because in practice it represents a set of solutions we aim to reach

through the iterations of the algorithm. The idea behind the definition of a descent function is

to have an energy function such that it always decrease strictly when we haven’t reach an op-

timal solution and in case we have reached such a point, at most the energy remains constant

through posterior iterations of the algorithm.

Typically one designs the iterative algorithm to make a certain energy or objective function to

become a descent, for example, if we want to solve the program

minimize
x

f(x)

subject to x ∈ Ω
(A.1)

Then we can design an iterative algorithm A : Ω → P(Ω) such that the sequence {xn}0,1, ···n,···
satisfies f(xn+1) < f(xn) if xn is not an optimal solution and xn+1 = xn if xn is an optimal

solution. This way, the solution set Γ is the set of optimal solutions (local minima) and the

descent function is f .

For the main result it is needed to find some kind of continuity condition for A. In order for

that we will define the graph of a point-to-set function Φ, inspired by the following proposi-

tion:

Proposition A.2.1. Given two metric spaces X and Y and a function f : X → Y , f is con-

tinuous if and only if Gr(f) ⊂ X × Y is closed in X × Y

(the graph of f is defined as Gr(f) = {(x, y) ⊂ X × Y | y = f(x)})
Therefore whenever xk → x and f(xk) = yk → y, (x, y) = (x, f(x)).

Now we define the graph of a point-to-set function Φ:

Definition A.2.4. Given two metric spaces X and Y and a set-valued function Φ: X →
P(Y), its graph is the set

Gr(Φ) = {(x, y) ∈ X × Y | y ∈ Φ(x)}

The graph is simply the collection Gr(Φ) = ∪{x} × Φ(x).

We are in position to define a notion of continuity of point-to-set mappings, inspired by the

previous proposition:

Definition A.2.5. A point-to-set mapping is closed at x0 if whenever two sequences xk → x0

and yk → y0 such that yk ∈ Φ(xk) ∀ k implies that y0 ∈ Φ(x0).

If Φ is closed for every x ∈ S, we say it is closed on S ⊂ X.

This notion will be crucial for the main result of this section. Also, as many cluster algorithms

are the iterations of two consecutive steps, we need next to analyze under what conditions the

composition of two iterative algorithms are still continuous.

119

Definition A.2.6. Let A : X → P(Y) and B : Y → P(Z) two point-to-set mapping. The

composite map C = B ◦ A : X → P(Z) is defined by

C(x) =
⋃

y∈A(x)

B(y)

Proposition A.2.2. Let A : X → P(Y) and B : Y → P(Z) such that

i. A is closed at x0;

ii. B is closed on A(x0);

iii. For every xk → x0 and yk ∈ A(xk), there is a convergent subsequence ykl → y.

Then C = B ◦ A is closed at x0

Proof. Let xk → x0 and zk → z such that zk ∈ C(xk). By the definition of C, for each k one

can pick a yk ∈ A(xk) such that zk ∈ B(yk).

By iii., there is a convergent subsequence ykl → y. As xkl → x0 and ykl ∈ A(xkl), by i., it

implies that y ∈ A(x0).

By ii., B is closed at y, hence the limits ykl → y and zkl → z with zkl ∈ B(ykl) imply that

z ∈ B(y) ⊂ C(x0)

Corollary A.2.0.1. If A is closed at x0 and B is closed on A(x0), then, if Y is compact, B ◦
A.

Now we finally state the main result of this section:

Theorem A.2.1 (Zangwill Global Convergence Theorem). Let A : X → P(X) be an iterative

algorithm together with x0 and let {xk}k=0,1,2,··· be a sequence satisfying

xk+1 ∈ A(xk)

Also let a solution set Γ ⊂ X be given and suppose that

i. {xk}k=0,1,2,··· ⊂ S for S ⊂ X compact;

ii. There exists a continuous function E which is also a descentfunction for Γ;

iii. A is closed on X/Γ

Then the limit of any convergent subsequence of {xk}0,1,2,··· lies in the solution set Γ.

Proof. Suppose there is a convergent subsequence of {xk}0,1,2,···, such that xkl → x for

some x, a limit point of {xk}. By continuity of E, E(xkl) → E(x). We extend this result

to show that it is valid for the whole sequence.

By ii., E is a descent function thus satisfying E(xk+1) ≤ E(xk). So we have

E(x) = lim
l→∞

E(xkl) ≤ E(xkl)

120

Given ε > 0, there exists a l0 such that, for l ≥ l0,

|E(xkl)− E(x)| = E(xkl)− E(x) < ε

For every k > kl0 , E(xk) ≤ E(xkl), therefore,

E(xk)− E(x) ≤ E(xkl)− E(x) < ε

Now, given such a k, we can select an index l1 with kl1 > k and verify that

0 ≤ E(xkl1)− E(x) ≤ E(xk)− E(x) < ε

Hence we proved that for every ε > 0, there exists a l0 such that if k > kl0 , |E(xk) −
E(x)| = E(xk)− E(x) < ε which is the same as to say

lim
k→∞

E(xk) = E(x)

Now we affirm that x ∈ Γ. For suppose not. The sequence {xkl+1}l=0,1,2,··· has the prop-

erty xkl+1 ∈ A(xkl) and is contained in the compact set S, hence there is a subsequence

{xklm+1} ⊂ {xkl+1}l=0,1,2,··· converging to a x̄ ∈ S. this sequence is essentially different

from {xkl} and they do not necessarily converge to the same value, i.e., not necessarily

x = x̄. Define the sequences

{ym} = {xklm }m=0,1,2,···

{zm} = {xklm+1}m=0,1,2,···

We have that ym → x and zm → x̄ with zm ∈ A(ym). A is closed at X/Γ and by hypoth-

esis x ∈ X/Γ, therefore by continuity, x̄ ∈ A(x) and this implies, by the descent function

property that E(x̄) < E(x).

On the other side, as {E(zm)} ⊂ {E(xk)}, which converges to E(x), and E is continu-

ous,

E(x̄) = E(lim
m→∞

zm) = lim
m→∞

E(zm) = lim
k→∞

E(xk) = E(x)

a contradiction, we conclude that x has to belong to the solution set Γ.

Zangwill’s theorem is very general, so it really doesn’t make it easier to prove the convergence

of general algorithms, once it can be hard to check if conditions i.-iii. are met. The beauty

and elegance of this result is to cast abstract algorithm methods represented by A in a unified

systematic analysis.

121

Appendix B

2

B.1 Jensen Inequality

Consider a function f : R→ R. f is said to be convex if

f(a+ t(b− a)) ≤ f(a) + t(f(b)− f(a)) , ∀t ∈ (0, 1) , a, b ∈ R (B.1)

And we say it is stricly convex if the inequality is strict

We want to prove that if f ′′(x) ≥ 0 ∀ x, then f is convex. First we prove the

Lemma B.1.1. Given a function f : [0, 1] → R, if f ′′(x) ≥ 0 ∀ x, such that f(0) = f(1) = 0

then f is convex.

Proof. By the hypothesis on f ′′, we have that f ′ = f ′(x) is a monotone increasing function.

For the case in which f ≡ constant, it is trivially convex and clearly, f ≡ 0.

For the case f 6≡ constant, we first we show that f ′(0) < 0 and f ′(1) > 0. Now, if f ′(0) ≥ 0,

then, 0 ≤ f ′(0) ≤ f ′(x) ∀ x, thus, f = f(x) is an increasing sequence. If f ′ ≡ 0, f becomes

constant and equal to 0, a contradiction. If f ′(1) ≤ 0, then, f ′(x) ≤ f ′(1) ∀ x, thus, f = f(x)

is an increasing sequence, thus this function. If f ′ ≡ 0, f becomes constant and equal to 0,

which is a degenerate case for us

Theorem B.1.2 (Danskin). Let (x, u) 7→ f(x, u) be the function where x ∈ S and u ∈ Rn.

Suppose S is a compact topological space, and that both f and ∂f/∂ui are continuous. Define

F (u) = min
x∈S

A(u) = { x — x minimizes f(x,u) over S }

Also define the one-sided directional derivative of F in at u in the direction d as

DF (u; d) = lim
α→0+

F (u+ αd)− F (u)

α

122

With these conditions, the one-sided directional derivative exists and is given by

DF (u; s) = min
x∈A(u)

m∑
i=1

si
∂f

∂ui
(x, u)

Proof. Let u be an arbitrary point of Rn, and let {αk}k∈N be a positive sequence tending to

zero. Define

uk = u+ αks

And consider a xk ∈ A(uk) and x ∈ A(u). We calculate

F (uk)− F (u)

αk
=
f(xk, uk)− f(x, u)

αk
=
f(xk, uk)− f(x, uk)

αk
+
f(x, uk)− f(x, u)

αk

As xk ∈ A(uk), f(xk, uk) ≤ f(x, uk), hence f(xk,uk)−f(x,uk)
αk

≤ 0, so that

F (uk)− F (u)

αk
≤ f(x, uk)− f(x, u)

αk
, ∀ x ∈ A(u)

By the mean value theorem,

f(x, uk)− f(x, u)

αk
=

m∑
i=1

(uk)i − ui
αk

∂f

∂ui
(x, u+ θk(uk − u)) , 0 ≤ θk ≤ 1

∴
f(x, uk)− f(x, u)

αk
=

m∑
i=1

dk
∂f

∂ui
(x, u+ θk(uk − u))

And combining this with the previous inequality,

F (uk)− F (u)

αk
≤

m∑
i=1

dk
∂f

∂ui
(x, u+ θk(uk − u))

When k →∞, αk → 0 so that θk(uk − u) = θkαkd→ 0, which gives us

lim
k→∞

m∑
i=1

dk
∂f

∂ui
(x, u+ θk(uk − u)) =

m∑
i=1

dk
∂f

∂ui
(x, u)

Now, given a convergent subsequence {ukl} ⊂ {uk}, in the limit l → ∞ because of the above

inequality, we must have that

lim
l→∞

F (uk)− F (u)

αk
≤

m∑
i=1

dk
∂f

∂ui
(x, u) ∀ x ∈ S

Choosing the special subsequence converging to the lim sup, we thus arrive at the result:

lim sup
F (ukl)− F (u)

αkl
≤

m∑
i=1

dk
∂f

∂ui
(x, u) ∀ x ∈ S

Now we must construct the reverse inequality. Let’s get any subsequence {ukl} converging to

lim inf (F (ukl)− F (u))/αkl .

More can be seen at [18] [ch. 8, pg. 420] .

123

Appendix C

4

C.1 A short introduction to Optimization

In what follows we briefly introduce notions of optimization, very much in the style of the ex-

cellent reference [24].

C.2 Unconstrained Optimization

The most basic optimization program is to find the minimum of a function f : Rd → R, i.e., a

point xmin ∈ Rd such that

f(xmin) ≤ f(x) ∀x ∈ Rd (C.1)

if it exists.

We denote this program by

minimize
x

f(x)

subject to x ∈ Rd
(C.2)

In order to solve this problem, it is needed more knowledge over the structure of f . Normally

it is assumed that it is at least twice differentiable. In practice, this assumption applies well

to a bunch of important problems, but even in these cases, the calculation of the derivatives

might be not straightforward.

Working with this assumption, if the minimum exists, we can infer from condition C.1 that for

every unitary vector u ∈ Rd, f(xmin) ≤ f(xmin + tu). Therefore, if we define the function

h(t) = f(xmin + tu), we get

0 = h′(0) = ∇f(xmin) · u ∀ u ∈ Rd

Hence, ∇f(xmin) = 0. However, this is only a necessary condition for the minimum. Other

points may satisfy this condition, as in the case of a point with the following property

124

Definition C.2.1. x̄ is a local minimum for the function f if there is an open neighborhood

V 3 x̄ such that f(x̄) ≤ f(x), ∀ x ∈ V

For such a point, if we get an ε > 0 such that the open ball B(xmin, ε) ⊂ V , then for every

u ∈ Rd unitary, f(xmin) ≤ f(xmin + tu), for all t ∈ (−ε, ε), and therefore, the conclusion ??

remains valid.

We found a sufficient condition, and if there exists a minimum, which we now call global mini-

mum in opposition to a local minimum, it surely is one among the points which satisfies ∇f(x̄) =

0. There is another situation in which the derivative is zero although the point is not a (local)

minimum: a saddle point. To characterise it we need the following

Definition C.2.2. A unitary vector u is a descent direction for a point x ∈ Rd if there exists

a δ > 0 such that f(x + tu) < f(x), for each t ∈ (0, δ).

Notice that t lies on the open interval (0, δ), not (−δ, δ).
Let us study the behavior of f in a neighborhood of some x with zero derivative by Taylor ex-

panding to the next order, with second derivatives:

f(x + tu) = f(x) +∇f(x)T (tu) +
1

2
〈tu,H(x)(tu)〉+ ‖tu‖2ρx(‖tu‖)

= f(x) +
t2

2
〈u,H(x)u〉+ t2ρx(t)

(C.3)

Where H(x) =
[

∂2f
∂xi∂xj (x)

]
is the Hessian matrix of f and ρx(‖v‖) tends to zero as ‖v‖ →

0. Now, the behavior of f in a vicinity of x depends completely on H(x). Let us diagonalize it

and obtain its eigenvalues:

H(x) = P diag(λ1, λ2 · · ·λd)PT

Suppose that one of these eigenvalues is negative, say, the λi corresponding to the ith normal-

ized eigenvector ui. Plugging it in C.3 we have

f(x + tui) =f(x) +
t2

2
λi〈ui,ui〉+ t2ρx(t)

⇒f(x + tui)− f(x) =
t2

2
(λi + 2ρx(t))

As limt→0 ρx(t) = 0, and t2 > 0, one can choose an ε > 0 such that t2(λi + 2ρx(t)) for each

t ∈ (−ε, ε) (for instance, find an ε > 0 such that |ρx(t)| < |λi|
4 , ∀ |t| < ε), thus,

f(x + tui) < f(x) ∀ t ∈ (−ε, ε)

We conclude that, even though ∇f(x) = 0, depending on the existence of negative eigenvalues

of H(x), it could be possible to find a descent direction for x. Let’s state two theorems below,

one for a necessary condition, another for a sufficient condition for local minima:

125

Theorem C.2.1. Suppose f : Rd → R is twice differentiable. If x is a local minimum, then,

∇f(x) = 0 and H(x) is positive semidefinite.

Remark. A matrix H is semidefinite if 〈u,Hu〉 ≥ 0 ∀ u ∈ Rd. We say it is definite if this

condition can be made strict.

Proof. It was already proved that ∇f(x) = 0, now we consider the Taylor expansion C.3 for an

arbitrary unitary direction u, and divide everything by t2, giving us

f(x + tu)− f(x)

t2
=

1

2
〈u,H(x)u〉+ ρx(t)

By the local minimum condition, there is an ε > 0 such that for every |t| < ε, the left side of

the equation above is positive. Therefore, in the limit t→ 0, we have

1

2
〈u,H(x)u〉 = lim

t→0

(
1

2
〈u,H(x)u〉+ ρx(t)

)
=

lim
t→0

f(x + tu)− f(x)

t2
≥ 0 , ∀ u ∈ Rd , unitary

For a general v 6= 0, denoting the unitary direction of v by v̂ = v/‖v‖, we conclude

〈v,H(x)v〉 = 〈‖v‖v̂,H(x)(‖v‖v̂)〉 = ‖v‖2〈v̂,H(x)v̂〉 > 0

Theorem C.2.2. Suppose f : Rd → R is twice differentiable. If ∇f(x) = 0 and H(x) is

positive definite, then x is a local strict minimum.

Proof. Expanding f in Taylor series, we get

f(y) = f(x) +
1

2
〈(y − x),H(x)(y − x)〉+ ‖y − x‖2ρx(‖y − x‖) (C.4)

The proof goes by contradiction: suppose that x is not a local minimum. Then, for every ε >

0, we can find a x′ such that f(x′) ≤ f(x) and ‖x′ − x‖ < ε. So, we can construct a sequence

{xk}k=1,2,··· converging to x with f(xk) ≤ f(x) and xk 6= xk′ , for every k and k′.

Define a new sequence by introducing

dk =
xk − x

‖xk − x‖

As ‖dk‖ = 1 , ∀ k, by compactness of the sphere, there exists a subsequence {dkl} ⊂ {dk} and

a d such that lim
l→∞

dkl = d.

Now, substitute in equation C.4 the values xkl − x = ‖xkl − x‖dkl and divide everything by

‖xkl − x‖ forming

126

f(xkl)− f(x)

‖xkl − x‖2
=

1

2
〈dkl ,H(x)dkl〉+ ρx(‖xkl − x‖)

As xkl → x and dkl → d when l→∞,
f(xkl)−f(x)

‖xkl−x‖
2 ≥ 0, by construction, then

0 ≥ lim
l→∞

f(xkl)− f(x)

‖xkl − x‖2
=

= lim
l→∞

(
1

2
〈dkl,H(x)dkl〉+ ρx(‖xkl − x‖)

)
=

1

2
〈d,H(x)d〉

Thus, reaching a contradiction, once by hypothesis 〈d,H(x)d〉 > 0. Therefore, the initial asser-

tion is true.

Basically, we characterized completely a local minimum point by the properties f should sat-

isfy at it. Whether a local minimum is also a global minimum or not, will depend on the global

properties of the function. For example, if it is convex, there will be only one local minimum

which is clearly global. More details of special cases can be found in reference [24].

Next, we discuss a more complex case where the optimization program is done over a restricted

set of points.

C.3 A special case of Constrained Optimization

The previous result was easily achieved because the set of points is the whole Rd. The most

general minimization program can be stated restricting the set of points to a subset of Rd:

minimize
x

f(x)

subject to x ∈ Ω
(C.5)

In general, this is a too broad of a program. So, we restrict ourselves to the special case

Ω = {x ∈ Rd | g(x) = α} ≡ g−1(α)

Where g : : U → R is some function defined over an open U ⊂ R and α ∈ R.

This subsection is pretty much in the spirit of the classical reference [28].

In order to solve it, we are going to transform this problem, at least locally, in an unconstrained

problem. Suppose x̄ is an optimal solution for C.5, and that ∇g(x̄) 6= 0. Without loss of gen-

erality, suppose that ∂g
∂xn (x̄) 6= 0, and let us decompose x̄ in the form x̄ = (xmin, ymin) with

xmin ∈ Rd−1 and ymin ∈ R. Then by the Implicit Function Theorem, there exists a function

ξ : V → R where V is an open neighborhood of xmin in Rd−1, and there exists an open set

W ⊂ Rd such that

x ∈ g−1(α) ∩W ⇔ x = (x, ξ(x))

127

So, at least locally in V , we can simplify our problem to the following program:

minimize
x

h(x) = f(x, ξ(x))

subject to x ∈ V

The legitimity of this transformation depends on the existence x̄ and knowledge of V and ξ.

This program is almost the same as the unconstrained program C.2 but for a smaller open re-

gion. Therefore, the solution is expected to be the same as with the whole Rd. By studying

only the critical points xc for which ∇h(xc) = 0, we discover a relation between ∇f(x̄) and

∇g(x̄):

0 =
∂h

∂xi
(xc) =

∂f

∂xi
(xc, yc) +

∂f

∂y
(xc)

∂ξ

∂xi
(xc, yc)

On the other side, by the definition of ξ,

g(x, ξ(x)) = α ∀ x ∈ V

⇒ ∂g

∂xi
(x) +

∂g

∂y
(x)

∂ξ

∂xi
(x) = 0

xc ∈ V ⇒
∂ξ

∂xi
(xc) = −

∂g
∂xi (xc)
∂g
∂y (xc)

Therefore,

∂f

∂xi
(xc, yc)− (

∂f

∂y
(xc)/

∂g

∂y
(xc))

∂g

∂xi
(xc) = 0

Defining λ = ∂f
∂y (xc)/

∂g
∂y (xc), we have the following relations:


∂f
∂y (xc) = λ∂g∂y (xc)

∂f
∂xi (xc, yc) = λ ∂g

∂xi (xc)

Finally, we conclude that the following necessary condition relating f and g through their first

derivatives holds:

∇f(x̄) = λ∇g(x̄)

Geometrically, this means that the gradient of f at the minimum over the surface Ω = g−1(α)

is normal to its tangent surface at x̄ (as Ω is a level surface of g, ∇g points in the normal di-

rection out of it).

128

C.4 Optimization with equality constraints

We now extend the last result to the more complex program where x is restricted to m con-

straints:

minimize
x

f(x)

subject to gi(x) = αi , i = 1, 2, · · ·m
(C.6)

We do so by proving the

Theorem C.4.1. Let the constraints gi : Rd → R, i = 0, 1, · · ·m (m < d), be continu-

ously differentiable functions and let x̄ be a minimum of the problem C.6. If the derivatives

∇gi(x̄) , i = 1, 2, · · ·m are linearly independent, then there exists constants λ1, λ2, · · ·λm such

that

∇f(x̄) = λ1∇g1(x̄) + λ2∇g2(x̄) + · · ·+ λm∇gm(x̄)

Remark. Defining the function F : Rd → Rm by F (x) = (g1(x), g2(x), · · · gm(x)) and the vec-

tor α = (α1, α2, · · ·αm), the restriction of C.6 can be seen as the (d −m)-dimensional surface

Ω = F−1(α).

The linear independence of the set {∇g1(x̄),∇g2(x̄), · · · ∇gm(x̄)} is equivalent to say that the

rank of the jacobian matrix DF (x̄) =
[

∂gi
∂xj (x̄)

]
is m.

Proof. By the remark, the rank of
[

∂gi
∂xj (x̄)

]
is m, and by re-labelling the coordinates if nec-

essary, we can assume that the sub-matrix
[

∂gi
∂xj (x̄)

]
, 1 ≤ i, j ≤ m is non-singular. By the

implicit function theorem, there exists an open neighborhood W for x̄, an open set V ⊂ Rd−m

and a function ξ : V → Rm such that

gi(x) = αi , i = 1, 2, · · ·m and x ∈W

If and only if

xj = ξj(xm+1, · · · xd) , j = 1, 2, · · · m
and (xm+1, · · · xd) ∈ V

for x = (x1, · · · xm;xm+1, · · · xd)

Define u = (xm+1, xm+2, · · · xd) and w = (x1, x2, · · · xm). So ξ satisfies

gi(ξ(u), u) = gi(ξ
1(u), · · · ξm(u);u) = αi

for i = 1, 2, · · · m and ∀ u ∈ V
(C.7)

Then, the optimal decision can be written as x̄ = (w̄, ū) = (ξ(ū), ū) and is a solution of the

transformed problem

minimize
u

h(u) = f(ξ(u), u)

subject to u ∈ V

129

As ξ and f are differentiable (by hypothesis and the Implicit Function Theorem), then the op-

timal solution satisfies

0 =
∂h

∂ui
(ū) =

∂f

∂ui
(x̄) +

m∑
j=1

∂f

∂wj
(x̄)

∂ξj

∂ui
(ū) ∀ i = 1, 2, · · · m

Differentiating expression C.6 we get

∂gj
∂ui

(ξ(ū), ū) =
∂gj
∂ui

(x̄) +

m∑
k=1

∂gj
∂wk

(x̄)
∂ξk

∂ui
(ū) =

∂αj
∂ui

= 0

for 1 ≤ j ≤ m and m+ 1 ≤ i ≤ d

Adopting the matrix notations

DuF (x̄) =
[

∂gj
∂ui (x̄)

]
, DwF (x̄) =

[
∂gj
∂wk

(x̄)
]
, Dξ(ū) =

[
∂ξj

∂ui (ū)
]

We restate the above equalities in a more compact form:

∇uf(x̄) +Dξ(ū) · ∇wf(x̄) = 0 (1)

DuF (x̄) +Dξ(ū) ·DwF (x̄) = 0 (2)

By the condition (2), and on the non-singularity hypothesis of DwF (x̄), inverting it we arrive

at an expression for the a priori unknown matrix Dξ(ū):

Dξ(ū) = −DuF (x̄) ·DwF (x̄)−1

Hence, by applying this on the previous result in condition (1),

∇uf(x̄)−DuF (x̄) ·DwF (x̄)−1 · ∇wf(x̄) = 0

⇒ ∇uf(x̄)T ≡ DuF (x̄)T · λ

Where we defined λT = (λ1, λ2, · · · λm) = (DwF (x̄)−1 · ∇wf(x̄))T . Noticing that

DuF (x̄)T =
[
∇ug1(x̄)T · · · ∇ugm(x̄)T

]
We conclude the first part of our assertion:

∇uf(x̄) = λ1∇ug1(x̄) + · · ·+ λm∇ugm(x̄)

The second part (for the derivatives in w) comes from the very definition of λ:

λT = (DwF (x̄)−1 · ∇wf(x̄))T

⇒∇wf(x̄)T = (DwF (x̄)T)−1 · λ
⇔ ∇wf(x̄) = λ1∇wg1(x̄) + · · ·+ λm∇wgm(x̄)

Which proves the assertion

∇f(x̄) = λ1∇g1(x̄) + · · ·+ λm∇gm(x̄)

130

Geometrically this result means that the derivative of f at x̄ should be perpendicular to the

tangent planes of every surface level g−1
i (αi), meaning that the only decreasing directions could

be pointing out of these surfaces.

C.5 Optimization with equality and inequality constraints

Finally we analyse the more general optimization program

minimize
x

f(x)

subject to gi(x) ≤ 0 , i = 1, 2, · · ·m
hj(x) = 0 , j = 1, 2, · · · l

(C.8)

We derive next a set of necessary conditions for an optimal solution for C.8, in which case we

say it is a Karush-Kuhn-Tucker (KKT) point.

Of course, for a complete optimization analysis, one should look for sufficient conditions for a

minimium. In our case, looking for KKT points will suffice, as the functions under consider-

ation satisfies some convexity properties that single out the global minimum from the set of

solutions for the KKT conditions.

Before proceeding, we’ll make use of two important theorems: the Hyperplane Separation The-

orem and the Gordan’s Theorem, stated below.

Theorem C.5.1 (Hyperplane Separation). Let A and B ne two disjoint nonempty convex sets

of Rd. Then there exists a nonzero vector v and a real number c such that

〈x,v〉 ≥ c and 〈y,v〉 ≤ c

for all x ∈ A and y ∈ B.

Theorem C.5.2 (Gordan’s). Exactly one of the following systems has a solution:

(1) AT y > 0 for some y ∈ Rd

(2) Ax = 0 , x ≥ 0 for some non-zero x ∈ Rd

First we prove the

Lemma C.5.3. Consider problem C.8, and a local optimal solution x̄ for it.

I(x̄) = {i ∈ {1, 2, · · ·m} | gi(x̄) = 0}
F0 = {d ∈ Rd | 〈∇f(x̄),d〉 < 0}
G0 = {d ∈ Rd | 〈∇gi(x̄),d〉 < 0 for i ∈ I(x̄)}
H0 = {d ∈ Rd | 〈∇hj(x̄),d〉 = 0 for j = 1, 2, · · · l}

If ∇hj(x̄) j = 1, 2, · · · l are a linear independent, then

F0 ∩G0 ∩H0 = ∅

131

Proof. Because of the conditions hj(x̄) = 0, this lemma becomes a bit hash to prove.

Suppose, by contradiction that there exists a vector y ∈ Rd such that 〈∇f(x̄),y〉 < 0 ;

〈∇gi(x̄),y〉 < 0, for all i ∈ I(x̄) ; and 〈∇hj(x̄),y〉 = 0 for all j = 1, 2, · · · l.
For a given x ∈ Rd consider the jacobian DH(x) =

[
∇h1(x)T · · · ∇hl(x)T

]T
(the rows

are the gradients of hj) and the projection operator P (x) : Rd → NDH(x) where NDH(x) is the

null space for DH(x).

Define a curve α : s 7→ α(s) ∈ Rd as the solution of the following differential equation with

boundary condition: 
dα
ds (s) = P (α(s))y

α(0) = x̄

This equation is well defined for sufficiently small s, because P (x) can be shown to be continu-

ous at x̄ (from the differentiability of the hj ’s and the linear independence of the ∇hj ’s).
The idea is to prove that for sufficiently small s, α(s) is a feasible point, and that f(α(s)) <

f(x̄), a contradiction.

By the chain rule, we get, for every i ∈ I(x̄):

∂(gi ◦ α)

∂s
(s) = ∇gi(α(s)) · α′(s) =

= ∇gi(α(s)) · P (α(s))y

Specially for s = 0, P (α(0))y = P (x̄)y = y, because y lies in the null space of DH(x̄), hence

(∂gi ◦ α/∂s)(0) = ∇gi(x̄)y < 0, so that for sufficiently small s it implies that

gi(α(s)) < 0

And for i /∈ I(x̄), as gi(x̄) < 0, the same result follows by continuity of gi and α.

Now for the hj ’s we apply again the chain rule, for sufficiently small s:

∂hj ◦ α
∂s

(s) = ∇hj(α) · α′(s) =

= ∇hj(α) · P (α(s))y = 0 (by definition of P)

⇒ hj ◦ α(s) = const. = hj ◦ α(0) = hj(x̄) = 0

For each j = 1, 2, · · · l , hj(α(s)) = 0, and together with the previous result for the gi’s, consid-

ering sufficiently small s, we see that every point α(s) is a feasible point to problem C.8.

Next we calculate

∂f ◦ α
∂s

(s) = ∇f(α(s)) · α′(s) =

= ∇f(α(s)) · P (α(s))y

For s = 0, P (α(0))y = P (x̄)y = y, then (∂f ◦ α/∂s)(0) = ∇f(x̄)y < 0. Therefore, for

sufficiently small s, we have

f(α(s)) < f(α(0)) = f(x̄)

132

But by definition of an optimal point, we arrive further at the contradiction

f(α(s)) < f(x̄) ≤ f(α(s))

Hence, our original assertion is proven

Now we can proceed and prove the

Theorem C.5.4 (Karush-Kuhn-Tucker Necessary Conditions).

Let x̄ be a feasible solution for C.8. Suppose that f and gi for i ∈ I(x̄) are differentiable at x̄;

that for i /∈ I(x̄) gi is continuous; and that each hj for j = 1, 2, · · · l is continuously differen-

tiable at x̄. Further, suppose that ∇gi(x̄) , i ∈ I(x̄) and ∇hj(x̄) , j = 1, 2, · · · l are linearly

independent vectors.

If x̄ is a local optimal solution of C.8 then there exists unique scalars ui for i ∈ I(x̄) and vj for

j = 1, 2, · · · l such that

∇f(x̄) +
∑
i∈I(x̄)

ui∇gi(x̄) +

l∑
j=1

vj∇hj(x̄) = 0

ui ≥ 0

Proof. Define the matrices

A1 =
[
∇f(x̄)T ∇gi1(x̄)T · · · ∇gik(x̄)T

]T
ij∈I(x̄)

A2 =
[
∇h1(x̄)T · · · ∇hm(x̄)T

]T
(for each matrix, the gradients compose its rows)

By the previous lemma, the system

A1d < 0 , A2d = 0

has no solution. Consider the two sets

S1 = {(z1, z2) | z1 = A1y and z2 = A2y for y ∈ Rd}
S2 = {(z1, z2) | z1 < 0 and z2 = 0}

It is straightforward to check that they are convex, that 0 ∈ S̄1 ∩ S̄2, and clearly S1 ∩ S2 =

∅ (otherwise the system above would have solution). Hence, by the Hyperplane Separation

Theorem, there exists a non-zero vector (p1,p2) such that

〈p1, A1y〉+ 〈p2, A2y〉 ≥ 〈p1, z1〉+ 〈p2, z2〉
∀ y ∈ Rd , (z1, z2) ∈ S̄2

(C.9)

Choosing y = 0 and remembering that z2 = 0, we have the inequality 0 ≥ 〈p1, z1〉. As z1 can

be an arbitrarily large negative vector, it thus implies that p1 ≥ 0. Making z1 = 0 and z2 = 0

in C.9 we can rewrite it as

〈AT1 p1 +AT2 p2,y〉 ≥ 0 , ∀ y

133

Inserting y = −(AT1 p1 +AT2 p2), we arrive at −‖AT1 p1 +AT2 p2‖2 ≥ 0, thus

AT1 p1 +AT2 p2 = 0

Naming the components of the p’s as

(p1,p2) ≡ (û0, ûi1 , · · · ûik ; v̂1, v̂2, · · · v̂l) , where ij ∈ I(x̄)

the above result can be stated explicitly as

û0∇f(x̄) +
∑
i∈I(x̄)

ûi∇gi(x̄) +

l∑
j=1

v̂j∇hj(x̄) = 0 (C.10)

Now, if û0 = 0, then, by the linear independence of {∇gi(x̄);∇hj(x̄)}i∈I(x̄),j=1,···l, the values

for ûi and v̂j would be zero, thus making (p1,p2) = (0,0), a contradiction. So û0 > 0. Now,

define ui = ûi/û0 and vj = v̂j/v̂0. Of course, ui ≥ 0. Dividing C.10 by û0 we conclude

∇f(x̄) +
∑
i∈I(x̄)

ui∇gi(x̄) +

l∑
j=1

vj∇hj(x̄) = 0

ui ≥ 0

The above necessary condition can be restated in a nicer form. If for each i /∈ I(x̄), gi is con-

tinuous at x̄, then defining for each of these indices ui := 0, we see that these coefficients must

satisfy the conditions

∇f(x̄) +

m∑
i=1

ui∇gi(x̄) +

l∑
j=1

vj∇hj(x̄) = 0

uigi(x̄) = 0 , ui ≥ 0

for i = 1, 2, · · ·m

(C.11)

From now on, we will refer to C.11 as the Karush-Kuhn-Tukker (KKT) necessary conditions.

Before designing any algorithm for an optimization program , we’ll first look to its KKT points,

i.e., the points for which C.11 has a solution. In special cases like when f is convex, and when

gi and hj satisfy similar conditions, it can be shown that if x̄ satisfy the KKT conditions, it

should be a global optimum solution for the program.

134

Appendix D

6

D.1 A Measure Concentration conjecture

We develop with more depth the brief statement made at section 3.0.2.3, ‘ORCLUS’. The OR-

CLUS algorithm is designed to capture the relevant dimensions at each cluster locality. In this

appendix we will try to put on solid grounds the following idea: at high dimensions, the σi

eigenvalues of distributions like ρ(x|i) = ρ(x|Σi, µi, θi) tend to be sparse.

An important theorem of concentration of measure is the generalization of Hoeffiding’s inequal-

ity :

Theorem D.1.1 (Lévi - concentration of Lipschitz functions). Let Sd−1 ⊂ Rd be the unit

sphere, f : Sd−1 → R be a λ-Lipschitz function in the L2 norm and µ the uniform distribution

over the sphere. Then,

µ([f ≥ med(f) + ε]) ≤ 4e−ε
2d/2λ2

Where med(f) is the median of f (µ([f ≤ med(f)]) = 1
2µ(Sd−1)).

Now, let’s work with the possibility of a similar result for our purposes. Here we deal with

formal guesses of nice possibilities - so, we are not dealing with solid, rigorous mathematics,

though these suggestions might shed some light on the necessity of an algorithm like PRO-

CLUS.

Assume we are given a distribution with parameters Σ, µ and θ, the last one independent of

the dimension d, and µ = E[X], Σ = E[(X − µ)T (X − µ)]. Consider the set

S(r) = {A ∈Mn(R) | ‖A‖F = r}

In the equivalence Md(R) ∼= Rd2 , ‖ · ‖F corresponds to ‖ · ‖2L. Now, define the function

f : S(r) → R
A 7→ f(A) = det (A)

Let’s admit that f satisfies the

135

Conjecture D.1.1. Let µ be the uniform metric over S(r) and f(A) = det (A). Then,

µ([|f −med(f)| ≥ ε]) ≤ O(εm, dn, r)

For some O of ε, d and r such that O
d→∞−→ 0.

The previous assertion may not be true, but we could wonder when and how something similar

would be possible. But concentration of measure phenomena is so common and general, that

it is not difficult to imagine that conjecture D.1.1 could be true. Assume this is the case. Then

for large d, det (A) ≈ const(r). On the other side, det(A) = λ1λ2 · · ·λd, so we have

λ1λ2 · · ·λd ≈ const(r)

Define (at least locally for A) a function h : A → h(A) = (λ1(A), λ2(A), · · ·λd(A)), where

λi(A) is the i-th eigenvalue for A (h needs to be defined exactly to do not create ambiguity

with enumeration of eienvalues in the locality of A).

The region {λ1λ2 · · ·λd = const(r)} has the aspect of figure ?? (for a 2-d cut), which shows

that in general the eigenvalues are sparse in the sense that h(A) assumes values close to 0 and

some very high eigenvalues. Conjecture D.1.1 says, in rough terms

µ(h−1({λ1λ2 · · ·λd ∈ (const(r)− δ, const(r) + δ)})) ≈ O(εm, dn, r)

Empiric evidence is provided to show that indeed the determinant concentrates on the sphere.

136

D.2 A Pythonic ORCLUS implementation

1 class OrClus(object):

2 # self.c ; self.E ; self.S ; self.alpha ; self.delta

3 def __init__(self ,X,k,l,alpha =0.7):

4 # X = n_samples x n_features numpy array ,

5 # X = [x1,x2,x3, ...] , xi = [xi1 ,xi2 , ...]

6 self.k = k

7 self.l = l

8 self.alpha=alpha

9 self.dist = dist

10

11 def OrClus(self ,X=None ,k=None ,l=None ,delta =10):

12

13 ################## main ##########################

14

15 if (X==None)&(k==None)&(l==None):

16 # delta should be > 1! Ensuring that k0 > k.

17 # initial k0 is delta times bigger than k

18 self.k0 = int(np.ceil(delta*self.k))

19 # initial l0 is equal to full dimension d

20 self.l0 = len(self.X[0])

21 # alpha

22 a = self.alpha

23 # calculates beta

24 b = math.log(self.l0/self.l)*math.log(1/a)

25 b/=math.log(self.k0/self.k)

26 b = math.exp(-b)

27 n = self.X.shape [0]

137

28 # selects k0 random centroids among the data set X

29 sample = random.sample(range(n),self.k0)

30

31 # start with the selected centroids and identity matrices

32 self.S = dict()

33 self.E = dict()

34 for i in range(len(sample)):

35 self.S[i+1] = self.X[sample[i]]

36 self.E[i+1] = np.eye(self.l0)

37

38 # starts while loop

39 while self.k0 > self.k:

40 # skip further to assign method for comments

41 self.Assign ()

42

43 #calculates the projected space using FindVectors method

44 for i in range(self.k0):

45 C = self.X[self.c==i+1]

46 # checks if there are more than one vectors

47 # (else we cannot calculate a covariance matrix)

48 if C.shape [0]==1:

49 self.E[i+1] = self.E[i+1]

50 elif C.shape [0] >1:

51 self.E[i+1] = self.FindVectors(C,self.l0)

52 else:

53 print("Empty Cluster!")

54

55 # updates k (k(t)) to k_new (k(t+1))

56 k_new = max(self.k,int(np.floor(a*self.k0)))

57 # updates l (l(t)) to l_new (l(t+1))

58 l_new = max(self.l,int(np.floor(b*self.l0)))

59 # merges the clusters which minimizes the most the

60 # ’projected energy ’ cost function , until k and l

61 # reduce to k_new and l_new.

62 self.Merge(k_new ,l_new)

63 self.l0 = l_new

64

65 # finally the last assignment

66 self.Assign ()

67

68 ############# end main ###########################

69 ############# procedures #########################

70

71 def Merge(self ,k_new ,l_new):

72 n = len(self.c)

73 while self.k0 > k_new:

74 # starts merging the first two clusters

75 # to initialize the loop minimization of

76 # the ’projected energy ’ r

138

77 C = self.X[(self.c==1)|(self.c==2)]

78 # recalculates the projected space

79 E = self.FindVectors(C,l_new)

80 # calclates the associated ’projected energy ’ cost function

81 C -= C.mean(axis =0)

82 s = np.linalg.norm(E.dot(C.T),axis =0).mean()

83 t = (1,2)

84 # starts merging iteration process. This piece of code

85 # is highly paralellizable , as each such iteration in

86 # the FOR loop can be calculated separately (only the

87 # minimization of r should be performed quickly thereafter)

88 for i,j in itertools.combinations(range(self.k0) ,2):

89 C = self.X[(self.c==i+1)|(self.c==j+1)]

90 E = self.FindVectors(C,l_new)

91 C -= C.mean(axis =0)

92 # projected energy

93 r = np.linalg.norm(E.dot(C.T),axis =0).mean()

94 # checks if the prejected energy gets lower ,

95 # updates the minimum index in this case

96 t = (i+1,j+1) if r < s else t

97 s = r if r < s else s

98

99 # updates the clusters ’ labels to the last

100 # occurrence of t = (i_min ,j_min), corresponding

101 # to r_min. because we exclude the j_min - th

102 self.c[self.c==t[1]]=t[0]

103 self.c[self.c>t[1]] -= 1

104

105 # updates centroids (excludes the j_min - th)

106 # updates the projected spaces

107 for j in range(t[1],self.k0):

108 self.S[j] = self.S[j+1]

109 self.E[j] = self.E[j+1]

110 del self.E[self.k0],self.S[self.k0]

111

112 # recalculates the projected space and centroid

113 # of the newly merged cluster C_i’ = C_i_min U C_j_min

114 self.E[t[0]] = self.FindVectors(self.X[self.c==t[0]], l_new)

115 self.S[t[0]] = np.mean(self.X[self.c==t[0]], axis =0)

116

117 self.k0 -= 1

118

119 def FindVectors(self ,C,l):

120 # FindVectors returns a matrix E whose rows are the l least

121 # eigenvalued eigenvectors of the covariance matrix

122 # of the Cluster inputed (as another matrix)

123 U,S,V = np.linalg.svd(np.cov(C.T))

124 #scipy.sparse.linalg.svds(np.cov(C.T))

125 return V[-l:]

139

126

127 def Assign(self):

128 # self.S = {1:s_1 ,2:s_2 ,3:s_3 , ... }

129 # self.E = {1:E_1 ,2E_2 ,3:E_3 , ... }

130 # where s_i the i-th centroid and E_i is the i-th matrix whose

131 # rows are eigenvectors of each cluster If dist!=’Euclid ’, then

132 # it should be given as dist = lambda x,y : dist_function(x - y)

133 # or something similar (dist = dist(x,y))

134

135 dist = np.linalg.norm

136 colors = []

137 for x in self.X:

138 z = np.array ([dist(self.E[i].dot(x - self.S[i])) for i in

iter(self.S)])

139 # color = cluster labels vector

140 color = np.argmin(z)+1

141 colors.append(color)

142 self.c = np.array(colors)

143 # After the first iteration , it starts to appear sometimes

144 # empty clusters. sample2 will be needed if they happen to

appear

145 sample2 = random.sample(range(self.X.shape [0]),len(self.S))

146 for i in iter(self.S):

147 A = self.X[self.c==i]

148 # when it happens to appear empty clusters , we force

149 # them not to be so by randomly choosing one centroid

150 if A.shape [0]==0:

151 j = sample2[i-1]

152 self.S[i] = self.X[j]

153 self.c[j] = i

154 elif A.shape [0] > 0:

155 self.S[i] = np.mean(A,axis =0)

156 else:

157 print(’strange thing happening , X.shape not 0 nor > 0 !’)

158

159 ################ end procedures ############

140

Bibliography

[1] N. M. Laird A. P. Dempster and D. B. Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statistical Society: Series B, 39(1):1–38, 1977.

[2] Charu C. Aggarwal and Philip S. Yu. Finding generalized projected clusters in high di-

mensional spaces. SIGMOD Rec., 29(2):70–81, May 2000.

[3] Tom Angell.

[4] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings

of the Twenty-second Annual Symposium on Computational Geometry, SCG ’06, pages

144–153, New York, NY, USA, 2006. ACM.

[5] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding.

In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Ap-

plied Mathematics.

[6] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Advanced

Applications in Pattern Recognition. Springer US, 2013.

[7] Gérard Biau and David DM Mason. High-dimensional p-norms. arXiv preprint

arXiv:1311.0587, 2013.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[9] Avrim Blum. 15-859(b) machine learning theory, January 2010.

[10] Léon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In

Advances in Neural Information Processing Systems 7, pages 585–592. MIT Press, 1995.

[11] Sanjoy Dasgupta. Lecture 1 — Measure concentration, set 2006.

[12] Bernard Desgraupes.

[13] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In

Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04,

pages 29–, New York, NY, USA, 2004. ACM.

141

[14] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer Inter-

national Publishing.

[15] Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? In SODA, pages

877–885. SIAM, 2005.

[16] Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and Michael Jor-

dan. Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and

Algorithmic Consequences, September 2016.

[17] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[18] Leon S Lasdon. Optimization theory for large systems. Dover Books on Mathematics.

Dover, Mineola, NY, 2011.

[19] S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor., 28(2):129–137,

September 2006.

[20] Guojun Gan; Chaoqun Ma; and Jianhong Wu. Data Clustering: Theory, Algorithms, and

Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Society for

Industrial and Applied Mathematics, 2007.

[21] David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge

University Press, New York, NY, USA, 2002.

[22] J. MacQueen. Some methods for classification and analysis of multivariate observations.

In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-

ity, Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of California

Press.

[23] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means

problem is np-hard. In Proceedings of the 3rd International Workshop on Algorithms and

Computation, WALCOM ’09, pages 274–285, Berlin, Heidelberg, 2009. Springer-Verlag.

[24] C. M. Shetty Mokhtar S. Bazaraa, Hanif D. Sherali. Nonlinear Programming: Theory and

Algorithms. Wiley-Interscience, 3rd edition, 2006.

[25] Andrew Ng. Stanford university cs229 lecture notes, November 2012.

[26] Andrew Ng. Stanford university cs229 lecture notes, November 2012.

[27] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The ef-

fectiveness of lloyd-type methods for the k-means problem. J. ACM, 59(6):28:1–28:22,

January 2013.

[28] Varaiya P. Lecture Notes on Optimization. 1998.

[29] Dimitri Panteli Bertsekas. Control of uncertain systems with a set-membership description

of the uncertainty. PhD thesis, Massachusetts Institute of Technology, 1971.

142

[30] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series. Princeton Univer-

sity Press, Princeton, N. J., 1970.

[31] Jeffrey S. Rosenthal. A first look at rigorous probability theory. World Scientific, Singapore

[u.a.], 2. ed edition, 2006.

[32] Shokri Z. Selim and M. A. Ismail. K-means-type algorithms: A generalized convergence

theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. In-

tell., 6(1):81–87, January 1984.

[33] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer

Publishing Company, Incorporated, 2010.

[34] Wikipedia. Overfitting, 2017. [Online; accessed 12-june-2017].

[35] C. F. Jeff Wu. On the convergence properties of the em algorithm. The Annals of Statis-

tics, 11(1):95–103, 1983.

[36] K. Yeung and W. Ruzzo. An empirical study on principal component analysis for cluster-

ing gene expression data, 2001.

[37] W.I. Zangwill. Nonlinear programming: a unified approach. Prentice-Hall international

series in management. Prentice-Hall, 1969.

[38] QINPEI ZHAO. Cluster Validity in Clustering Methods. PhD thesis, University of Eastern

Finland, 2012.

[39] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised out-

lier detection in high-dimensional numerical data. Stat. Anal. Data Min., 5(5):363–387,

October 2012.

143

	Supervised Unsupervised Learning
	Supervised Learning Overview
	Our first Supervised Learning tool: Linear Regression
	The kernel trick
	Overfitting
	A probabilistic context to Linear Regression

	Unsupervised Learning
	What is ``learning''?
	The K-Means Algorithm
	Behind the algorithm convergence

	Soft K-Means

	A probabilistic framework for clustering
	General Mixture Models and Cluster Analysis background
	A trivial example
	The full Mixture Model

	Mixture Model is a type of Soft Clustering
	Expectation Maximization
	The E step
	The M step

	A word on the EM convergence
	Soft K-Means explained
	The soft K-Means parameter
	Gaussian Mixture Models
	K-Means as a Gaussian Mixture Model limit
	A Fatal Flaw of GMM Clustering

	A detailed study of K-Means
	Clustering as an optimization program
	The special case for the K-Means

	Clustering in high dimensions
	An example of concentration of measure
	The Curse of Dimensionality
	Can we defeat it?
	Principal Component Analysis
	PCA + K-Means
	ORCLUS
	An Application
	Validating the results

	K-Means Python implementation
	Hard K-Means
	Soft K-Means
	Zangwill's Global Convergence Theorem

	2
	Jensen Inequality

	4
	A short introduction to Optimization
	Unconstrained Optimization
	A special case of Constrained Optimization
	Optimization with equality constraints
	Optimization with equality and inequality constraints

	6
	A Measure Concentration conjecture
	A Pythonic ORCLUS implementation

	Bibliography

