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Matemática, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
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Elias Ferraz Rego

Orientador: Alexander Eduardo Arbieto Mendoza

Resumo

Nesta dissertação abordamos dois problemas relacionados à dinâmica topológica.
O primeiro é enunciado na seguinte forma. ”Se uma sequencia fn de aplicações
contı́nuas possuem uma propriedade dinâmica (P) e convergem uniformemente para
uma aplicação f , é verdade que f também satisfaz (P)? Caso contrário, como caracterizar
as sequências de aplicações para as quais a pergunta acima tem resposta satisfatória?

O segundo problema versa sobre a possibilidade de redefinir propriedades dinâmicas
globais em termos pontuais. Além do mais é possı́vel recuperar a propriedade global
em termos das locais? Finalmente, quais são as consequências dinâmicas dadas por
estas novas definições?

Neste trabalho, discutiremos resultados existentes sobre ambas as questões e também
apresentamos novos resultados relacionados a elas. De fato, mostramos que se uma
sequência possui sombreamento uniforme então o limite possui sombreamento. Além
disso mostramos que a existência de um ponto não-errante, não periódico, expansivo e
sombreável garante que a entropia topológica é positiva. Mais resultados relacionados
serão apresentados.
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Elias Ferraz Rego

Advisor: Alexander Eduardo Arbieto Mendoza

Abstract

In this thesis we deal with two questions related to topological dynamics. The first
one can be stated as follows. ”Let fn be a sequence of continuous maps possessing a
dynamical property (P) and which converges uniformly to a map f , is it true that f
possess property (P)? If not, is it possible to characterize the sequences for which the
answer of the previous question is affirmative?

The second one deals with the possibility of to redefine global dynamical properties
in a pointwise manner. Moreover, is it possible to recover the global property from the
local ones? Finally, what are the consequences of these new definitions?

In this work, we will discuss the existent results concerning the two above questions
and we will present new results about them. Actually, we show that if a sequence posses
uniform shadowing then the limit has the shadowing property. Moreover, we show
that the existence of a non-wandering, non-periodic, expansive and shadowable point
implies the the positiveness of the topological entropy. More related results will be
presented.
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Introduction

In this work we deal with the topological theory of dynamical systems. By topological
dynamics we mean to study dynamical systems in the framework of general topology.
Our initial wondering is the following question:

”If a sequence fn of continuous systems possessing some property (P) converges uniformly
to a system f , is it true that the limit system f inherits the property (P)?”

Since our very first undergraduate courses in real analysis, we have faced this
question. Indeed, it is well know that the uniform limit of continuous maps is a
continuous map. The same is true when (P) is integrability, or even differentiability
(assuming that the derivatives converges too). However, we are interested in this
question when (P) is a dynamical property.

Is that true that the limit map of a sequence of maps inherits their dynamical properties?

As we will see, this question is too general and its answer is no.

Actually, if (P) is topological transitivity, it is not difficult to see that the answer is no.
Just take irrational rotations converging to the identity. We were very surprised which
the fact that some authors wrote articles claiming that the answer is yes. Likewise,
in 2005 Abu-Saris an Al-Hami claimed this ([1]). Later, in 2006 Roman-Flores noticed
that Abu-Saris and Al-Hami were wrong, giving a counter example to their claiming.
Furthermore, he impose extra conditions to the sequence of maps, in order to assure
the transitivity of the limit map.

The proof was correct. However, we can notice that the hypothesis are so strong
such that it does not use the transitivity of the sequence maps in the proof. That is,
he gave conditions to assure the transitivity of the limit, independent of the sequence
maps be transitive or not. One of the goals of this work is to present the proof of these
results in their original forms and discuss those issues about the proofs.

Pointwise dynamics deals with the study of dynamical properties generated by
points. Likewise, it is well known that the existence of a point with dense orbit is
enough to guarantees the transitivity of the system. Not too well known, is the fact
that a point such that the closure of its orbit is minimal is syndetically recurrent (for
instance, see chapter 3).

Since then many articles deals with such ideas. Like, X. Ye in 2007 ([13]), where
entropy points and full entropy points were defined and used to understand the topo-
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logical entropy of a system, for instance they used it to show upper semicontinuity
of the entropy map. Also, Morales in 2016 ([7]), the notion of shadowable points is
given and the author discuss its consequences for distal and equicontinuous maps.
Moothathu in 2011 ([11]), use the notion of entropy points and minimal points to give
results on the positiveness of the topological entropy. Actually, some of new results are
based in some of his ideas.

The second goal of this work is to present some of the results mentioned before and
to give new results, some of them generalizes some of the previous results (see chapter
4 for more details).

This thesis is organized as follows. In chapter one we discuss all the above facts in
detail, as well as, we discuss some properties of chaotic systems.

In chapter two we gave the main tools of topological dynamical systems, in order
to furnishes a theory background to the reader understand the chapters three and four.

In chapter three we begin to study pointwise dynamics. We aim to give pointwise
versions of the tools defined in chapter two. We begin defining minimal points and in
the sequence we define shadowable points. Next we define the sensitive points and the
entropy points. Next we show some consequences of these definitions( e.g. we give
conditions to a map possesses positive entropy).

In the last chapter we pose our results concerning the initial question and the
advances we obtained about pointwise dynamics. Our first main theorem is about the
shadowing property for uniform limits. This result generalizes proposition 9 in [5].

Theorem A. Let X be a compact metric space and fn : X→ X be a sequence of continuous
functions which converges uniformly to a function f . Suppose that fn has the uniform shadowing
property. Then f has the shadowing property.

As a consequence of the previous theorem we can give positive answers to our
initial questions for topologically transitive, topologically mixing and now-wandering
maps.

Our second main theorem is about pointwise dynamics and it gives conditions for
a continuous maps possesses positive topological entropy.

Theorem I. Let X be a compact metric space and let (X, f ) be a TDS. If there exists a
non-periodic point x which is non-isolated, shadowable, expansive and non-wandering then f
has positive topological entropy.

We end this work with some consequences of theorem I. The first one is a generaliza-
tion of it. The second one is a consequence of its proof which states that any positively
expansive map with the shadowing property and a infinite number of periodic points,
must to have positive topological entropy.

The reading of this work requires a previous knowledge about general topology and
the topology of metric spaces. We recommend to the reader without these requisites,
the reading of [8] and [6]
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Chapter 1

Dynamical Behavior of Uniform Limits

In this chapter we investigate the works concerning uniform limits dynamics, as well,
as we give the basic tools to understand them.

1.1 Some Basic Definitions

We call a topological dynamical system (TDS) a pair (X, f ) where X is a topological
space and f : X→ X is a continuous function. Let f n denote the n-fold composition of
f with itself, f 0 denote the identity map on X and if f is invertible, let f −n denote ( f −1)n.

Intuitively fixing some point x in X after applying the transformation f on x, f (x)
represents the state of x after one unity of time. Similarly f 2(x) represents the state
of x after two units of time and so forth. Following this idea we have the following
definition.

Definition 1.1.1. Let f : X→ X be a topological dynamical system.

• For each x ∈ X the set O+(x) = { f n(x); n ∈N} is called the forward orbit of the point x.

• If f is invertible, we define the backward orbit of x by O−(x) = { f −n(x); n ∈ N} and the
orbit of x by O(x) = { f −n(x); n ∈ Z}

One of the main purposes of the study of dynamical systems is to understand how
the systems evolves over time. We can do this trying to understand the asymptotic
behavior of the orbits of the system. In the following examples this behavior is quite
simple to describe.

Example 1.1.2. Let X be a topological space and consider the TDS f : X → X defined by
f (x) = x. It is clear that O(x) = {x} for every x ∈ X.

The next example displays a more complicated behavior, but it is easy give a com-
plete asymptotic description of its orbits anyway.
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Example 1.1.3. Consider the dynamical system f : R→ R defined by f (x) = 2x(1 − x).

First we notice that if we solve the equation

x = f (x) = 2x(1 − x)

we will find that f (0) = 0 and f ( 1
2 ) = 1

2 . Furthermore f (1) = 0.

Let x < 0. Thus f (x) = 2x(1 − x) < x and therefore f n(x) < f n−1 < ... < f (x) < x. This
implies that the sequence ( f n(x))n∈N is strictly decreasing. If there exists p such that f n(x)→ p,
then p = lim f n+1(x) = f (p) < p a contradiction. Therefore f n(x) → −∞. If x > 1 then
f (x) = 2x(1 − x) < 0 and therefore f n(x)→ −∞ by an analogous argument.

Next we will use the mean value theorem from calculus to study the orbits of points in (0, 1).
We begin computing the derivative of f . Since f ′(x) = −4x+2 and f is a C1 map there are ε > 0
and C < 1 such that we have | f ′(x)| < C if x ∈ ( 1

2 − ε,
1
2 + ε). Now take a point x ∈ (1

2 − ε,
1
2 + ε)

then
| f (x) − f (

1
2

)| = | f (x) −
1
2
| ≤ sup

y∈( 1
2−ε,

1
2 +ε)

| f ′(y)||x −
1
2
| < |x −

1
2
|

Inductively, we obtain | f n(x) − f (1
2 )| < Cn

|x − 1
2 | and therefore f n(x)→ 1

2 .

Finally, if x ∈ (0, 1)\ ( 1
2 −ε,

1
2 +ε), there exists k such that f k(x) ∈ ( 1

2 −ε,
1
2 +ε) and therefore

f n(x)→ 1
2 .

The map of the previous example is often called logistic map.

Figure 1.1: The graphics of the logistic map. The sequence yn represents the iterates
of a negative point y0 and the sequence xn represents the iterates of the point x0 which
belongs to the interval [0, 1]. The points p0 and p1 represents the repelling and the
attracting fixed point respectively.
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In figure 1.1 we illustrate an useful technique to get some intuition on the asymptotic
behavior of a orbit. We begin choosing a point x0, then we project vertically this point
on the graphics of f to obtain the point x1. Next we project this point horizontally on
the graphics of identity map. We continue projecting vertically on the graphics of f to
obtain the point x2 and so forth. Thus xn = f n(x0). Even this method can get us some
intuition, we alert that it is not a rigorous mathematical proof as the one wrote in the
example.

The previous examples evidence the existence of special types of orbits and motivate
the following definitions.

Definition 1.1.4. Let f : X→ X be a topological dynamical system.

• A point x ∈ X is called a periodic point for f if there exists a natural number n such that
f k(x) = x. The period of x is the lowest natural n satisfying this condition. Let Per( f )
denote the the sets of periodic points of Per( f )

• A point x ∈ X is called a fixed point for f if it is periodic and has period 1. Let Per( f )
denote the the sets of periodic points of f .

• A point x ∈ X is called eventually periodic for f if there exists a natural number k such
that f k(x) is a periodic point.

In example 1.1.2 all the points are fixed. On the other hand, on example 1.1.3 only
the points 0 and 1

2 are fixed, while 1 is a eventually periodic point.

It would be amazing if all dynamical systems exhibit behaviors as simple as the
ones in previous examples. Indeed, a lot of physical, chemical, climate phenomena,
can be modeled by dynamical systems. Thus it would be easy work on such models.
However a great number of this models displays complicated dynamical behavior.

1.2 Circle Rotations

Our next aiming is to give a example of map which is quite simple, but can exhibit a
more complicate dynamical behavior, namely, the circle rotations.

Define on R the following equivalence relation:

x ∼ y if and only if (x − y) ∈ Z

LetR/Z denote the quotient ofR by the above relation. We endow it with the quotient
topology. We can also identifyR/Zwith the circle S1 = {x ∈ C; |x| = 1} by the application

Φ : R/Z→ S1,Φ(x) = e2πix

We first remark that Φ is well defined. Indeed, let x1, x2 be two members of an
equivalence class [x]. Then e2πix1 = e2πix2 , since (x1 − x2) ∈ Z. Furthermore, it is easily
checked that Φ is a homeomorphism.

5



We can turn R/Z an abelian group with the operation [x] + [y] = [x + y]. It folows
then that Φ is a group isomorphism. Indeed, Φ([x]+ [y]) = e(x+y)i = exieyi = Φ([x]) ·Φ([x]).

Actually, the topology can be recovered by a metric d in R/Z defined as follows:

d([x], [y]) = |x − y| mod Z

One can easily check that d is a metric on S1, turning it a compact metric space.
Geometrically, in S1, the induced metric between two points in the circle is the geometric
arc length (up to multiple by 2π).

Now, we are able to define the circle rotations.

Definition 1.2.1. Let θ ∈ R, the application Rθ : R/Z→ R/Z defined by Rθ([x]) = [x + θ]
is called the θ-rotation of S1.

Figure 1.2: The Circle Rotation

In order to understand the dynamical behavior of the circle rotations, we shall
proceed by separating them in to particular cases depending on the rationality of θ.

First supposeθ is rational. We claim that every orbit of Rθ is periodic. Indeed, we can
writeθ =

p
q with p and q integers. Then for any x ∈ S1, Rq

θ([x]) = [x]+[ qp
p ] = [x]+[p] = [x].

On the other hand, if θ is a irrational number, the behavior of the orbits is quite
different.

Proposition 1.2.2. If θ is irrational there exists x ∈ S1 such that O+(x) is dense in S1.

Proof. Fix [x] ∈ R/Z and m,n ∈ N. Then Rm
θ ([x]) = Rn

θ([x]) if and only if (m − n)θ ∈ Z.
In this case we must to have m = n. Thus, O+(x) cannot be a finite set. Hence, since S1

is compact, there exist a convergent subsequence Rkn
θ (x).

Now, fix ε > 0 and let m < n such that d(Rkm
θ ([x]),Rkn

θ ([x])) < ε. Thus

ε > d(Rm
θ ([x]),Rn

θ([x])) = |x + mθ − x − nθ| mod Z =

= |x + (m − n)θ − x| mod (Z) = d(Rn−m
θ ([x]), x).

Let k = m − n, then the arcs connecting x,Rl
θ([x]),R2l

θ ([x]), ... form a cover to S1. Since ε
is arbitrary, O+(x) is dense in S1. �
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1.3 Transitivity and Minimality

Irrational rotations motivate us to define an important dynamical property called topo-
logical transitivity.

Definition 1.3.1. Let (X, f ) be discrete dynamical system and let U,V ⊂ X be any two non-
empty sets. We defineN(U,V) = {n ∈N; f n(U)∩V , ∅}.A system (X, f ) is called topologically
transitive if for every pair of open subsets U and V of X,N(U,V) , ∅.

Next we shall show that in presence of separability and completeness, topological
transitivity is equivalent to the existence of a dense orbit. In particular this holds for
compact spaces.

Theorem 1.3.2. Let X be a complete separable topological space without isolated points and
(X, f ) be a TDS. Then f is transitive if and only if the set of points in X whose orbit is dense is
non-empty.

Proof. Suppose f has a point x with dense orbit and let U and V be non-empty subsets
of X. Then there exist m′,n′ ∈ N such that f m′(x) ∈ U and f n′(x) ∈ V. If m′ < n′

then f n′−m′(U) ∩ V , ∅. Suppose n′ < m′. Since X has no isolated points, the set
U \ {x, f (x), f 2(x), ..., f m′(x)} is open. Then there exists n > m′ such that f n(x) ∈ V and
therefore f n−m′(U) ∩ V , ∅.

Conversely, suppose that f is transitive. Since X is separable, let {Uk}k∈N be a
countable basis for the topology of X. Consider the set A = ∩k∈N

⋃
∞

i=0 f −i(Uk) and
suppose that exists a point x ∈ A. Thus for each k there exists n such that f n(x) ∈ Uk.
Hence x must to have dense orbit.

Now, since f is transitive, for each k,
⋃
∞

i=0 f −i(Uk) is dense in X. By continuity this
set is also open. By completeness of X, we can use Baire’s theorem and conclude that
A is a dense set, since it is a countable intersection of dense open sets. In particular A
is non-empty and therefore there exists a point x whose orbit is dense. �

We call x a transitive point of f if the orbit of x under f is dense on the space X. Let
Tr( f ) denote the set of transitive points of f . As a remark on the proof of the previous
theorem, one can notice that Tr( f ) is more than an non-empty set. Indeed, Tr( f ) is a
residual subset of X.

The previous result shows that irrational rotations are topologically transitive since
every orbit is dense. On the other hand, there are dynamical systems which are
topologically transitive but tr( f ) , X.

Example 1.3.3. Consider the TDS f : [0, 1]→ [0, 1] defined by

f(x) =

{
2x if x ∈ [0,−1

2 ]
−2x + 2 if x ∈ [ 1

2 , 1]

This map is frequently called the tent map.

7



Figure 1.3: The tent map

First we will show that f is transitive. To do this, consider a natural n and the intervals
[ k

2n ,
k+1
2n ], k = 0, 1, 2, ..., 2n−1. Then f n maps each interval in [0, 1]. Now, let U,V be open sets

and choose n, k ∈ N such that [ k
2n ,

k+1
2n ] ∈ U. Then f n(U) = [0, 1]. Thus f n(U) ∩ V , ∅ and f

is transitive.

On the other hand, the same argument shows that the graph of f n
|[ k

2n ,
k+1
2n ] needs to intersect

the graph of the identity map on [0, 1]. Therefore Per f ( f ) is dense in [0, 1].

Figure 1.4: This is the graph of the 4-th iterate of f to illustrate the claim made before.

The fact of Per( f ) , ∅ for the tent map shows the existence of a topologically
transitive map such that not all orbits are dense, in contrast with irrational rotations.
However, systems which all orbits are dense have important properties and it motivates
the definition of minimal systems.

Definition 1.3.4. A topological dynamical system (X, f ) is called minimal if the orbit of every
point is dense in X.

Next we will give other characterization of minimal dynamical systems based on
invariant sets.

Definition 1.3.5. Let (X, f ) be a TDS.

• A set A ⊂ X is called f -positively invariant if f (A) ⊂ A

8



• A set A ⊂ X is called f -negatively invariant if f −1(A) ⊂ A

• A set A ⊂ X is called f -invariant if f (A) = A

One can notice that if a set A is f -invariant, then f n(A) = A for every n ∈ N. Also
The respective results for positively and negatively invariant are valid.

Proposition 1.3.6. Let X be a separable topological space, and let f : X → X be a continuous
map. If A is f -positively (respectively negative) invariant, then A is f -positively (respectively
negative) invariant.

Proof. Let A be a f -positively invariant set and take y ∈ f (A). Then there exists a point
x ∈ A such that f (x) = y. Since X is separable, there exists a sequence (xn) ∈ A such that
xn → x. Since A is positively invariant, then f (xn) ∈ A, and since f is continuous, then
f (xn)→ y. Thus y ∈ A and Ā is f -positively invariant. �

As a direct consequence of the above proposition we obtain that if A is an invariant
set, then A is invariant.

The next theorem shows the connection between minimal systems and invariant
subsets.

Theorem 1.3.7. f is a minimal system if and only if the only f -positively-invariant non-empty
closed subset of X is X.

Proof. If there exists a non-empty closed f -positively invariant proper subset U o X we
can choose x ∈ U. Now f (O+(x)) ⊂ U , X. Then the orbit of x can not be dense in X
and therefore Tr( f ) , X.

Conversely,if we prove O+(x) is positively invariant we are done. Let y ∈ O+(x).
Then there exists a sequence nk such that f nk(x)→ y. By continuity f nk+1(x)→ f (y) and
therefore O+(x) is invariant. Then it must to be X. �

The previous theorem gives a justification to the term minimal. Roughly speaking,
if f is a minimal system we cannot divide the map f in subsystems and study them
individually. In other words, X is the smallest set we can consider to try understand
the system evolution.

1.4 Devaney Chaotic Systems

We have seen that there exists examples of dynamical systems displaying orbits with
complicate behavior. Devaney in [4] gave a definition of chaotic maps. He realized
that a chaotic map should exhibit some kind of unpredictability

9



Definition 1.4.1. A TDS (X,f) is said to have sensitive dependence on initial condition if there
exists δ > 0 such that for every x ∈ X and every open neighborhood U of x, there exists y ∈ V
such that d( f n(x), f n(y)) > δ for some n ∈N

The constant δ on previous definition is called the sensitive constant of f .

Definition 1.4.2. A TDS (X,f) is called a chaotic dynamical system in the sense of Devaney if :

• f is topologically transitive

• Per( f ) is dense in X

• f has sensitive dependence on the initial conditions.

Example 1.4.3. The tent map defined on the example 1.3.3 is chaotic in the sense of Devaney.
Indeed, we just need to prove that f has sensitive dependence on initial conditions.

To do this let δ = 1
4 , x ∈ [0, 1] and let U be an open neighborhood of x. Then there exists

n, k ∈ N such that [ k
2n ,

k+1
2n ] ⊂ U. Since f n

|[ k
2n ,

k+1
2n ] = [0, 1], there exists y ∈ U such that

d(x, y) > δ. Then f has sensitive dependence and therefore is chaotic on Devaney’s sense.

Unfortunately, in [3] the authors noticed a redundancy on Devaney’s definition.
More precisely we have the following theorem

Theorem 1.4.4. Let X be an infinite metric space and (X, f ) be a TDS. If f is topologically
transitive and Per( f ) is dense in X, then f is chaotic in the Devaney’s sense.

Proof. Since X is infinite we can take p1 and p2 be two distinct periodic points with
disjoint orbits. Let ρ be the distance between the orbits of p1 and p2. Let x be any point
of X. Then

ρ = d(O(p1),O(p2)) ≤ d(O(p1), x) + d(x,O(p2))

Then x is at least a distance ρ
2 from p1 or p2

Let δ =
ρ
8 . Let x be a point in X. Since the periodic points of f are dense on X, there

exists a periodic point p ∈ Bδ(x). Let n denote the period of p. Now let q be a periodic
point with orbit at least a distance 4δ from x. Define V =

⋂n
i=0 f −i(Bδ( f i(q))).

Since f is transitive and V is a non-empty open set, there exists y ∈ Bδ(x) such that
f k(y) ∈ V. Let j be the integer part of k

n + 1. Then we have

f nj(y) = f nj−k( f k(y)) ∈ f nj−k(V) ⊆ Bδ f nj−k(q)

Since f nj(p) = p, we have

d( f nj(p), f nj(y)) = d(p, f nj(y)) ≥ d(x, f nj−k(q)) − d( f nj−k(q), f nj(y)) − d(p, x)

Note that since p ∈ Bδ(p)) and f nj(y) ∈ Bδ( f nj−k(q)) then d( f nj(p), f nj(y)) > 2δ. Finally,
using the triangle inequality we obtain that d( f nj(x), f nj(y)) > δ or d( f nj(p), f nj(x)) > δ.
Therefore, f has sensitive dependence on initial condition with sensitive constant δ. �
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Later in [12] the authors noticed that for interval maps, topologically transitivity
implies the denseness of periodic points. Thus in order to prove that an interval map
is chaotic on the sense of Devaney, one can just prove its transitivity .

Theorem 1.4.5. Let [a, b] be a compact interval and ([a, b], f ) be a TDS. If f is topologically
transitive, then Per( f ) = X.

Proof. Otherwise, there would exist an interval J ⊂ [a, b] without periodic points. Since
f is transitive there exists x ∈ J such that x, f m(x), f n(x) ∈ J with m < n. In this scenario,
we asserts that x < f m(x) < f n(x) or x > f m(x) > f n(x). Indeed, if not, we could have
x < f m(x) and f m(x) > f n(x) or x > f m(x) and f m(x) < f n(x). We will proceed in the first
case, the another one is quite analogous.

Define g = f m. Then x < g(x). We claim that for ever k ≥ 1 we have x < g(x) < gk+1(x).
To prove the claiming we proceed by induction.

Consider k = 1. If g2(x) < g(x), then setting h(z) = g(z) − z we have h(z) =< 0 when
z = x and h(z) > 0 when z = g(x). This intermediate value theorem gives a fixed point
x0 ∈ [x, g(x)] for h and therefore a periodic point for f . Therefore our claiming holds for
k = 1.

Now suppose the claiming holds for k = n. If gn+1(x) < gn(x), then setting h(z) =
gn(z) − z we have h(z) > 0 when z = x and h(z) < 0 when z = g(x). Again the
intermediate value theorem implies the existence of a periodic point for f in [x, g(x)]
and it is a contradiction. Thus our claiming holds for every k.

Thus we have x < gk(x) for every k. Set k = n − m and define h = f n−m. Then we
have x < hm(x) and by assumption h( f m(x)) > f n(x). Now we claiming that hk( f m(x)) <
h( f m(x)) < f m(x). In order to prove that we use an induction argument which is totally
analogous to one used in the previous claiming. We just need to replace x by f m(x) and
g by h.

Since x < hm(x) and hm( f m(x)) < f m(x), if we define s(z) = hm(z) − z, then the
intermediate value theorem gives us a point x1 ∈ [x, f m(x)] which is fixed for s and
therefore is periodic for f . This is a contradiction, since x1 ∈ J and J has not periodic
points. This proves our assertion.

Since f is transitive there exists a point x whose orbit is dense in I. Thus there
exists m such that f m(x) ∈ J. Let J′ = J ∩ ( f m(x), b]. Since O+(x) is dense in I, O+(x) \
{x, f (x), ..., f m(x)} is also. Thus there exists n such that f n(x) ∈ J′. Now consider J′′ =
( f m(x), f n(x)), the denseness of O+(x) again implies that there exists o > n such that
f o(x) ∈ J′′. This contradicts our claiming if we set z = f m(x). Therefore Per( f ) = I.

�
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1.5 Uniform Limits

In this section we ask if the uniform limit of a sequence of topological dynamical
systems possessing a property (P), also posses (P). With the theory developed in the
previous sections, we can easily see that it is not true when (P) is topological transitivity.
Indeed, the next example shows that.

Example 1.5.1. Let θn be a sequence of positive irrationals converging to 0. We claim that
{Rθn} converges uniformly to the identity on S1. Indeed, fix 0 < ε < 1 and choose n ∈ N such
that |θn − 0| < ε. Then d(Rθn(x), x) = |x + θn − x|mod(Z) = 2|θn|mod(Z) = |θn| < ε for every
x ∈ S1. Now each Rθn is topologically transitive, but the identity trivially is not topologically
transitive.

As we just see, only uniform convergence is not enough to ensure the transitivity
of limit map. We were very surprised which the fact that some authors wrote articles
claiming that it is possible to assure the transitivity of the limit map without extra
conditions. Likewise, in 2005, Abu-Saris an Al-Hami claimed this ([1]). Before to
continue, we will reproduce ipsis-litteris the proof given by Abu-Saris. In the sequence,
we will analyze their proof in order to discover why it does not work.

Ipsis-litteris proof

Let U,V be two nonempty open subsets of X. Since f n is topologically transitive on X,
there exists a positive integer ln such that f ln

n (U) ∩ V , ∅. Choose a point y0 ∈ f ln
n (U) ∩ V

and let us have x0 such that y0 = f ln
n (x0). Since V is open there is an ε > 0 such that

Bε(y0) = {y ∈ X : d(y, y0) < ε} ⊆ V. But, by Lemma 3.1, one can take n sufficiently large that
f ln(x0) ∈ Bε(y0) ∈ V. Hence, f ln(x0) ∈ f ln(U) ∩ V. This completes the proof.

We remark that lemma 3.1 cited in the proof states that if fn → f , then f l
n → f l, for

any positive integer i.

If we do a careful analysis on the previous proof, we can notice that the missed
point is the fact that the point x0 obtained above depends on the map fn as well as ln

and ε. Therefore we can not make n grow without changes in x, ln and ε and that is the
reason that their attempt of proof fail.

We will now discuss Roman-Flores work in [10]. He assumed stronger hypothesis
concerning the convergence in order to obtain an positive answer to Abu-Saris question.

Define the metric d∞( f , g) = supx∈X{d( f (x), g(x))}, where d denotes the metric on X.
Clearly, d∞ is a metric on the space C0(X) of the continuous self-transformations of X.

The first attempt to correct the wrong points of Abu-Saris and Al-Hami proof
consisted of two steps. The first was assume that x and the ε obtained on their proof
were uniform and the second one was try to control the speed of convergence of the
iterates f n

n . More precisely, they assumed lim
n→∞

d∞( f n
n , f n) = 0.

Unfortunately, this hypothesis alone is not enough as we can see exploring more
carefully the example of irrational rotations.
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Example 1.5.2. Let λ ∈ [0, 1] be a irrational number and define the sequence λn = λ
n2 . Then

d( f n
n (x), f n(x)) = |nλn|mod(Z) = |λn |mod(Z) wich converges to 0. Furthermore, λn → 0, and

therefore Rλn → Id uniformly.

The previous example shows us that we need more conditions to answer our ques-
tion. The next lemma, two theorems and proofs are ipsis-litteris writing of the ones
found in [10]. They give sufficient conditions to guarantee the transitivity of the limit
map.

Lemma 1. Let X be a perfect metric space and consider U ⊂ X a nonempty open set. If (xn)
is a dense sequence in X and xn0 ∈ U, then there exists n1 > n0 such that xn1 ∈ U.

Proof. It is sufficient to observe that U \ {x1; x2; ...; xn0} is a nonempty open set.

Theorem 2. Let (X, d) be a perfect metric space, and let fn : X → X be a sequence
of continuous and topologically transitive functions such that ( fn) converges uniformly to a
function f . Additionally, suppose that

(T1) d∞( f n
n , f n)→ 0 as n→∞,

(T2) { f n
n (x)} is dense in X, for some x ∈ X.

Then f is topologically transitive.

Proof. Let U,V be two nonempty open subsets of X. Then, due to (T2), there exists
x0 ∈ X such that { f n

n (x0)} is dense in X. Thus, by Lemma 1 and condition (T1), we obtain
that the sequence

{ f n(x0)} is also dense in X

Thus, there exists p ∈N such that

z = f p(x0) ∈ U.

Now, consider the set G = \{ f (x0), ..., f p(x0)}. Then, because X is a perfect metric
space, G is a nonempty open set. Thus, due to denseness of { f n(x0)}, there exists q > p
such that f q(x0) ∈ G ⊂ V, which implies that

f q(x0) = f q−p( f p(x0)) = f q−p(z) ∈ f q−p(U) ∩ V

And consequently f q−p(U) ∩ V is nonempty and f is topologically transitive. This
completes the proof.

With a very similar argument the author prove that if we suppose conditions (T1),
then (T2) is equivalent to the limit possesses transitivity.

However, exploring the previous proof one can notice that in any time the authors
used the fact that the maps fn are topologically. Then we conclude that they did not
answered the original question and what they proved can be correctly expressed by
the next theorem.

Theorem 1.5.3. Let fn ∈ C0(X) a sequence of maps converging uniformly to f . In addition,
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suppose that d∞( f n
n , f n)→ 0. Then f is transitive if and only if { f n

n (x)} is dense in X, for some
x.

Corollary 1.5.4. Let I be an interval and Let fn ∈ C0(I) be a sequence of maps converging
uniformly to f . In addition, suppose that d∞( f n

n , f ) → 0. The f is chaotic on Devaney’s sense
if and only if { f n

n (x)} is dense in I, for some x.

As a corollary of the proof of the previous theorem we can obtain

Corollary 1.5.5. Let { fn} be a sequence of continuous maps converging to on C0(X) to f . In
Addition, suppose:

lim
n→∞

d∞( f n
n , f n) = 0

Then f is minimal if and only if { f n
n (x)} is dense in X, for every x ∈ X.

Proof. The same argument used in the proof of the theorem works here. We just use it
for every point in X. �

In the definition of topological transitivity we have that for any pair of open sets
U and V, U meets V at some time. But one could ask how many times U meets V.
Since topological transitivity is equivalent to the existence of a dense orbit we can
imagine the following situation. Take U and V non-empty open sets and let x be a
point with dense orbit. Then there are m < n such that f m(x) ∈ U and f n(x) ∈ V. Since
O+(x) \ {x, f (x), ..., f n(x)} in X there exists o > n such that f o(x) ∈ V. Now we can keep
proceeding in this way and therefore we conclude that U meets V in an infinite number
of times.

Example 1.5.6. Let I = [−1, 1] and consider the TDS (I, f ) defined by

f(x) =


2x + 2 if x ∈ [−1,− 1

2 ]
−2x if x ∈ [−1

2 , 0]
−x if x ∈ [0, 1]

We notice that f fixes the point 0, f ([−1, 0]) = [0, 1] and f ([0, 1]) = [−1, 0]. moreover

f 2(x) =


−2x − 2 if x ∈ [−1,−1

2 ]
2x if x ∈ [−1

2 ,
1
2 ]

−2x − 2 if x ∈ [0, 1]

We have that f 2 is the tent map on [0, 1] and it is the product of the tent map with the
constant map g(x) = −1 on [−1, 0].

Now, let U be an open subset of I. If U ∩ [−1, 0] , ∅, there is k such that f 2k(U) ⊃ [−1, 0]
and f 2k+1(U) ⊃ [0, 1]. If we use a similar argument, we can deduce the same if U ∩ [0, 1] , ∅.
Therefore I = f k(U)∪ f 2k+1(U) and f must to be transitive. We remark that for every n > k is an
open set then f n(U) ⊃ [−1, 0] if n is even or f n(U) ⊃ [0, 1] if n is odd. Then f k+2 j(U) ∩ V , ∅
or f k+1+2 j(U) ∩ V , ∅, for every j ∈N and any non-empty open set V.
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Figure 1.5: The graphics of f (left) and f 2 (right).

In the last example we had a transitive map such that for every pair of open sets
there exists a bounded amount of time that the sets need to wait until they meet again,
once they have already met. This motivates the following definition.

Definition 1.5.7. A subset F ∈ N is syndetic when it has bounded gaps. That is, there exists
an integer N such that the maximum length of any sequence of consecutive integers inN \ F is
N.

Definition 1.5.8. A map is called syndetically transitive if for every open subsets U,V of X,
N(U,V) is syndetic.

Following the ideas of Roman-Flores, Risong-Li proved in [9] the following results.

Theorem 1.5.9. Let X be a metric space with metric d, and let fn : X → X be a sequence of
continuous functions such that ( fn) converges uniformly to a function f . Additionally, suppose
that

lim
n→∞

d∞( f n
n , f n) = 0

Then f is syndetically transitive if and only if for every non-empty U,V ⊂ X the set
{n| f n

n (U) ∩ V , ∅} is syndetic.

Proof. Let U and v be non-empty open sets. Let x ∈ V and ε > 0 Such that B2ε(x) ⊂ V.
Suppose f is syndetically transitive, thus N(U,Bε(x)) is syndetic. On the other hand,
since d∞( f n

n (x), f n(x)) → 0 there is N such that d( f n
n (x), f n(x)) < ε for ever n ≥ N. Since

N(U,Bε(x)) is syndetic then A = N(U,Bε(x)) ∩ {N,N + 1,N + 2, ...} is also. Thus for each
natural j ∈ A there is x j ∈ U such that f J(x j) ∈ Bε(x). Then d( f j

j (x j), x) ≤ d( f j
j (x j), f j(x j)) +

d( f j(x j), x) < 2ε and therefore f j
j (x) ∈ V for every j ∈ A, i.e. {n| f n

n (U)∩V , ∅} is syndetic.
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Conversely suppose {n| f n
n (U) ∩ V , ∅} is syndetic for every open setes U and V.

Since d∞( f n
n (x), f n(x)) → 0 there is N such that d( f n

n (x), f n(x)) < ε for ever n ≥ N. Since
{n| f n

n (U) ∩ Bε(x) , ∅} is syndetic then A = {n| f n
n (U) ∩ Bε(x) , ∅} ∩ {N,N + 1,N + 2, ...}

is also. Thus for each natural j ∈ A there is x j ∈ U such that f J
j (x j) ∈ Bε(x). Then

d( f j(x j), x) ≤ d( f j(x j), f j
j (x j)) + d( f j

j (x j), x) < 2ε and therefore f j(x) ∈ V for every j ∈ A,
i.e. N(U,V) is syndetic. �

Let us look again to the example 1.3.3. When we proved that the tent is transitive,
we have gone further. We have shown that for every open set, there is a natural number
k such that f k(U) = I. Thus f i(U) = I for every i ≥ K and therefore there exists a time
k such that U meets any open set V for a time greater than k. This motivates us the
following definition

Definition 1.5.10. A subset K ofN is co-finite whenN \ K is finite .

Definition 1.5.11. A map is called topologically mixing if for every open subsets U,V of X,
N(U,V) is co-finite.

Evidently every topologically mixing map is syndetically transitive and every syn-
detically transitive map is topologically transitive. However, example 1.5.6 shows a
map which is syndetically transitive but not topologically mixing. In chapter two we
will investigate some connections between transitive and topologically mixing maps.

Theorem 1.5.12. Let X be a metric space with metric d, and let fn : X → X be a sequence of
continuous functions such that ( fn) converges uniformly to a function f . Additionally, suppose
that

lim
n→∞

d∞( f n
n , f n) = 0

Then f is topologically mixing if and only if for every non-empty U,V ⊂ X the set {n| f n
n (U)∩

V , ∅} is co-finite.

Proof. Let U and V be non-empty open sets. Let x ∈ V and ε > 0 Such that B2ε(x) ⊂ V.
Suppose f is topologically mixing, thus N(U,Bε(x)) is co-finite. On the other hand,
since d∞( f n

n (x), f n(x)) → 0 there is N such that d( f n
n (x), f n(x)) < ε for ever n ≥ N. Since

N(U,Bε(x)) is co-finite then A = N(U,Bε(x)) ∩ {N,N + 1,N + 2, ...} is also. Thus for each
natural j ∈ A there is x j ∈ U such that f j(x j) ∈ Bε(x). Then d( f j

j (x j), x) ≤ d( f j
j (x j), f j(x j)) +

d( f j(x j), x) < 2ε and therefore f j
j (x) ∈ V for every j ∈ A, i.e. {n| f n

n (U)∩V , ∅} is co-finite.

Conversely suppose {n| f n
n (U) ∩ V , ∅} is co-finite for every open sets U and V.

Since d∞( f n
n (x), f n(x)) → 0 there is N such that d( f n

n (x), f n(x)) < ε for ever n ≥ N. Since
{n| f n

n (U) ∩ Bε(x) , ∅} is co-finite then A = {n| f n
n (U) ∩ Bε(x) , ∅} ∩ {N,N + 1,N + 2, ...}

is also. Thus for each natural j ∈ A there is x j ∈ U such that f J
j (x j) ∈ Bε(x). Then

d( f j(x j), x) ≤ d( f j(x j), f j
j (x j)) + d( f j

j (x j), x) < 2ε and therefore f j(x) ∈ V for every j ∈ A,
i.e. N(U,V) is co-finite. �
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Chapter 2

Topological Dynamics

Our objective in this chapter is to establish some important results concerning topo-
logical dynamical systems that will be used in our main results. We begin defining
properties which very often arises on topological dynamical systems. Next we establish
conditions to guarantee when a systems has such properties. Finally, we establish some
relations between them. For the remainder of this chapter, X will denote a compact
metric space and f will denote a continuous self-map of X.

2.1 Topological Conjugacy

In this section we are going to spend some time discussing what we mean by a dynam-
ical property. Suppose we have two systems that in some sense are equivalent. Then
one can expect that their dynamical properties are the same. Next we will to turn this
notion of equivalence more precise.

Definition 2.1.1. Let (X, f ) and (Y, g) be TDS. We say that f and g are topologically conjugated
if there is h : X → Y a homeomorphism such that h ◦ f = g ◦ h. In this case we denote f � g
and the map h is called a conjugacy homeomorphism

Topological conjugation is an equivalence relation. Indeed, f is always conjugated
to itself if we take Id : X → X as a topological conjugacy. If f and g are topological
conjugated by h, then h−1

◦ g = f ◦ h−1. Thus g is conjugated to f . In order to prove
the transitivity of �, suppose f : X → X is conjugated to g : Y → Y by h1 and g is
conjugated to t : Z→ Z by h2. Therefore h2 ◦ h1 ◦ f = h2 ◦ g ◦ h1 = t ◦ h2 ◦ h1. Therefore
f is conjugated to t.

Remark: Let x ∈ X. If h is an conjugacy between f and g, then h( f (x)) = g(h(x)). Thus
h( f 2(x)) = h( f ( f (x))) = g(h( f (x))) = g2(h(x)). If we keep proceeding this way, we will
find h( f n(x)) = gn(h(x)) for every n. Therefore we conclude that h carries orbits of f into
orbits of g.

Since we have an natural identification between the orbit of f and g, we expect
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that their dynamical behavior are the same. This is why we call properties which are
preserved by topological conjugacy topological dynamical properties.

The first one we shall analyze is the persistence of periodic orbits by topological
conjugacy. Namely, we have

Proposition 2.1.2. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g.
Then

1. h(Fix( f )) = Fix(g)

2. h(Per( f )) = Per(g).

Proof. 1. If y ∈ h(Fix( f )), then there exists x ∈ Fix( f ) such that h(x) = y. Thus
h(x) = h( f (x)) = g(h(x)) and therefore y ∈ Fix(g).

If y ∈ Fix(g), since h is a homeomorphism, there exists an unique x such that
h−1(y) = x. Thus

x = h−1(y) = h−1(g(y)) = h−1(g(h(x)) = h−1h( f (x)) = f (x)

and thus x ∈ Fix( f ). Therefore y ∈ h(Fix( f )).

2. If x ∈ Per( f ), then there exists n such that f n(x) = (x). Thus h(x) = h( f n(x)) =
gn(h(x)) and therefore h(x) ∈ Per(g).

If y ∈ Per(g), there exists n such that gn(y) = y. Since there exists a unique x such
that h−1(y) = x, we have

x = h−1(y) = h−1(gn(y)) = h−1(gn(h(x)) = h−1h( f n(x)) = f n(x)

and thus x ∈ Per( f ). Therefore y ∈ h(Per( f )). Notice that m must to be smaller or
equal than n.

�

Remark: If f � g and x is a periodic point of period n for f , then h(x) is a periodic
point of period n for g. Indeed, suppose that the periods of x and h(x) are n and m
respectively. Thus m ≤ n. If m < n, h(x) = gm(h((x)) = h( f m(x)). But this implies
f m(x) = x, since h is an homeomorphism. Therefore the period of x must to be m and
that is a contradiction.

I view of previous result we have that the density of periodic orbits is a dynamical
property.

Theorem 2.1.3. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g. If
Per( f ) = X then Per(g) = Y.

Proof. Suppose that Per( f ) = X and let U ⊂ Y be a non-empty open set. Since h is a
homeomorphism h−1(U) ⊂ X is a non-empty open set. Thus we can take a periodic
point x in h−1(U). By the previous proposition, h(x) must to be a periodic point which
lies in U. That is, Per(g) = Y. �
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Example 2.1.4. Let R1 be a rational rotation and R2 be an irrational rotation. Since every point
is periodic R1 and R2 does not admits periodic points, then R1 and R2 cannot be topologically
conjugated.

In chapter one we defined sensitive dependence on initial conditions. Now we will
prove that it is a dynamical property.

Theorem 2.1.5. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g. If f
has sensitive dependence on initial conditions then g has it also.

Proof. Let C be the sensitive constant of f . Let dX and dY denote the metrics on X and
Y respectively. Since Y is compact h−1 is uniformly continuous. Thus there exists δ > 0
such that dY(x, y) < δ implies dX(h−1(x), h−1(y)) < C.

Now suppose g has not sensitive dependence on initial conditions. Thus if for every
K > 0 there is an y and an open neighborhood U of y such that dY(gn(x), gn(y)) < K for
every n. In particular, we can take K < δ. Set U′ = U ∩ BY

δ (y). Thus h−1(U′) ⊂ BX
C(h−1(y))

and it is an open neighborhood of h−1(y). If x ∈ U′ then dY(gn(x), gn(y)) < K for every n
and therefore

dX(h−1(gn(x)), (h−1(gn(y))) = dX(( f n(h−1(x)), ( f n(h−1(y)))) < C for every n

But this implies that f has not sensitive dependence on initial conditions which is a
contradiction. �

In topological conjugation we require the conjugacy map be a homemorphism. But
sometimes it can be hard to find such homeomorphism. So, in the next definition we
present a weaker form of topological conjugacy.

Definition 2.1.6. Let (X, f ) and (Y, g) be TDS. We say that f is semi-conjugated to g if there is
a continuous surjection h : X→ Y such that h ◦ f = g ◦ h. In this case we say that f and g are
semi-conjugated or sometimes that g is a factor of f . The map h is called the semi-conjugation
map or the factor map.

Semi-conjugacy is a weaker form of topological conjugation. One of the conse-
quences of admit h be only a continuous surjection is that, in contrast of conjugacy,
semi-conjugacy is not a equivalence relation. Moreover, properties which are preserved
by conjugacy can be preserved by semi-conjugacy, but not with the same ”precision”
as in conjugacy. To be more explicit let us analyze the changes in the proposition 2.1.2
if we accept h be a semi-conjugacy.

One can reproduce the argument of proposition 2.1.2 step by step with no failure,
but the remark of end of proposition cannot be reproduced. Indeed, if h is only a
surjection we can only guarantee that is x is a periodic point of f then h(x) is a periodic
point of g whose period is not necessarily equal to the period of x.
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2.2 Transitive, Weakly Mixing and Mixing Systems

In this section we continue the discussion started in chapter one about transitivity and
topologically mixing. We begin defining an intermediate property between topological
transitivity and topological mixing.

Definition 2.2.1. Let (x, f ) be a TDS. We say that f is a topologically weakly mixing map if
f × f is transitive in X2.

Let us explain what we mean by ”intermediate property”. We first notice that every
topologically mixing map is a weakly mixing map. Indeed, let U,V ⊂ X2 be open sets
and consider U1 ×U2 ⊂ U and V1 × V2 ⊂ V be basic open sets. Since f is topologically
mixing there are n1 and n2 such that f i(U1)∩V1 , ∅ and f j(U2)∩V2 , ∅ for every i ≥ n1

and j ≥ n2. If we take N = max{n1,n2}, we have ( f × f )N(U) ∩ V , ∅. That is, f weakly
mixing.

On the other hand, weakly mixing implies transitivity. Indeed, let U,V be non-
empty open subsets of X. Since the f is weakly mixing there is a natural n such that
( f × f )n(U ×U) ∩ V × V , ∅. ThusN(U,V) , ∅ and f is transitive.

In our previous discussion we proved that weakly mixing implies transitivity. But
it is not the only consequence of weakly mixing. Indeed, weakly mixing implies a
property stronger than transitivity, namely, total transitivity.

Definition 2.2.2. A TDS (X, f ) is called totally transitive if f n is topologically transitive for
every n.

Example 2.2.3. Let θ be a irrational number. Then the irrational rotation Rθ is totally
transitive. Indeed, if n is any natural number, then Rn

θ(x) = x + nθ, for any x ∈ S1. Thus
Rn
θ = Rnθ. Since nθ is a irrational number, Rθ is totally transitive.

Remark: The previous example evidences the existence of transitive map which is
not topologically mixing. Indeed, let U, V and W be open intervals of S1 with length
1
8 which are equidistribuited on S1. Since Rθ is transitive, then U must to meets V and
W, but since Rθ is an isometry, it cannot happen simultaneously. Therefore Rθ cannot
be topologically mixing.

Actually, the previous example displays a map which is not weakly mixing. To see
that, we need to keep in mind that S1

×S1 is the torus T2 and that every orbit of Rθ ×Rθ

lies on line which rational slope. Thus Rθ × Rθ cannot be transitive, since lines with
rational slope are not dense on T2

Proposition 2.2.4. Let (X, f ) be a TDS. If f is weakly mixing, then n-product f × .... × f is
topologically transitive, for every n.

Proof. Let U1,U2,V1,V2 be non empty open subsets of X. Since f × f is transitive, there
exists n ∈ N(U1,U2) ∩N(V1,V2). Define U := U1 ∩ f −n(U2) and V := V1 ∩ f −n(V2). The
sets U and V are non-empty open sets. Now, since f is also transitive, there exists k
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such that U∩ f −k(V) , ∅. That is U1∩ f −n(U2)∩ f −k(V1)∩ f −n−k(V2) , ∅. But this implies
N(U,V) ⊂ N(U1,V1) ⊂ N(U1,V2).

Using a induction method we can prove that for every n, if U1, ...,Un,V1, ...,Vn are
non-empty open sets, there exists U,V such thatN(U,V) ⊂ N(U1,V1) ⊂ ... ⊂ N(Un,Vn).
This is enough to prove that the n product f × ... × f is topologically transitive, since
N(U,V) is always non-empty. �

Corollary 2.2.5. A weakly mixing TDS is totally transitive.

Proof. Let f be a weakly mixing map. Let U1,U2,V1,V2 be non empty subsets of X and
fix n > 0. Consider the sets

U = U1 × f −1(U1) × ... × f −n+1(U1) × V1 × f −1(V1) × ... × f −n+1(V1)

and
V = U2 × ... ×U2 × V2 × ... × V2

where we have n products of U2 and n products of V2.

Since f is weakly mixing then f is transitive and this implies that for every point
open set U, f −1(U) , ∅. Indeed, this is guaranteed by the existence of a point with
dense orbit. Thus U is a non-empty subset of X2n.

The previous proposition implies that the 2n product of f is transitive. Then there is
k such that f k+i(V1)∩V2 , set f k+i(U1)∩U2 , set for every i = 0, ...,n. Choose i such that
k + i = np for some natural p. Then ( f × f )np(U1,U2) ∩ (V1,V2) , ∅. Thus f n is weakly
mixing and therefore f n is transitive. �

The next proposition will be useful in future to prove one of the mains theorems of
chapter three. Therefore we shall give a proof for it now.

Proposition 2.2.6. Let (X, f ) be a TDS. If for every U,V non-empty sets we have N(U,U) ∩
N(U,V) , ∅ then f is topologically weakly mixing.

Proof. Let U1,U2,V1,V2 be non-empty subsets of X. Since N(U,V) , ∅ for every U,V
then f is transitive. Thus, choose n, k such that U := U1 ∩ f −n(U2) ∩ f −k(V1) , ∅ and
define V = f −n−k(V2).

Then if m ∈ N(U,U) ∩N(U,V) we have that m + k ∈ N(U1,V1) ∩N(U2,V2) and this
implies f is weakly mixing. �

We end this section proving that transitivity, weakly mixing, mixing, and minimality
are dynamical properties.

Theorem 2.2.7. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g. If f is
transitive, then g is transitive.
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Proof. Let x be a transitive point for f . We claim that h(x) is a transitive point of g.
Indeed, let U be an non-empty subset of Y. Since h is a homeomorphism, then h−1(U)
is a non-empty open set. Since x has dense orbit, there exists n such that f n(x) ∈ h−1(U).
Thus h( f n(x)) = gn(h(x)) ∈ U. Therefore g is transitive. �

Theorem 2.2.8. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g. If f is
weakly mixing, then g is weakly mixing.

Proof. In order to prove this this theorem we consider h′ = h×h, f ′ = f × f and g′ = g×g.
Since h is a homeomorphism, the h′ is also. Furthermore, if (x1, x2) ∈ X × X then

h′( f ′(x1, x2)) = (h( f (x1)), h( f (x2))) = (g(h(x1)), g(h(x2))) = g′(h′(x1, x2))

This shows that h′ is a topological conjugacy between f ′ and g′. Thus we just need to
apply the previous result to f ′ and g′. �

In the proof of theorem 2.2.7, we saw that topological conjugacy carries the dense
orbits of f into dense orbits of g. This implies the following result

Theorem 2.2.9. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g. If f is
minimal, then g is minimal.

Theorem 2.2.10. Let (X, f ) and (Y, g) be TDS and let h be a conjugacy between f and g. If f
is topologically mixing, then g is topologically mixing.

Proof. Let U and V be non-empty subset of Y. Chose y ∈ U and y′ ∈ V and ε > 0 such
that BY

ε (y) ∈ U and BY
ε (y′) ∈ V. Since h is uniformly continuous chose δ > 0 such that

h(BX
δ (h−1(y)) ⊂ BY

ε (y) and h(BX
δ (h−1(y′)) ⊂ BY

ε (y′)

Since f is topologically mixing there exists N such that for every n ≥ N there is a
point xn ∈ BX

δ (h−1(y)) such that f n(xn) ∈ BX
δ (h−1(y′)). But this implies h(xn) ∈ BY

ε (y) and
h( f n(xn) = gn(h(xn)) ∈ BY

ε ((y′)) for every N ≥ n. Thus g is topologically mixing. �

2.3 Expansive Systems

In this section we will define expansive systems. Roughly speaking an expansive
system is a system that every pair of different points must to move away some time.

Definition 2.3.1. Let f be a TDS.

• We say that f is positively expansive if there exists a positive constant e such that for
every different points x and y we have d( f i(x), f i(y)) > e for some positive integer i.

• If f is a homeomorphism, We say that f is negatively expansive if there exists a positive
constant e such that for every different points x and y we have d( f i(x), f i(y)) > e for some
negative integer i.
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• If f is a homeomorphism, We say that f is expansive if there exists a positive constant e
such that for every different points x and y we have d( f i(x), f i(y)) > e for some integer i.

The constant e is called expansive constant of f .

Example 2.3.2. Let C > 1. The map f : S1
→ S1 defined by f (x) = Cx is an positively

expansive map. Indeed, take e = 1
8 . If d(x, y) > 0 then d( f n(x), f n(y)) = Cnd(x, y) > e for some

n. Then f is expansive.

Notice that expansiveness looks very similar to sensitive dependence. But they are
not the same property.

Theorem 2.3.3. Let X be a compact metric space without isolated points and let (X, f ) be a
TDS. If f is positively expansive, then it has sensitive dependence on initial conditions.

Proof. Let e be the expansive constant of f . We claim that it is a suitable sensitive
constant for f . Since f has no isolated points every neighborhood of x has a point y
different from x. Then the positive expansiveness of f implies that there is a natural i
such that d( f i(x), f i(y)) > e and that is the condition for sensitivity. �

On the other hand, the next example shows a map which is sensitive, but it is not
positively expansive.

Example 2.3.4. Let X = [0, 1] and let {xi}i∈Z be a sequence of points such that lim
i→∞

xi = 1 and

lim
i→−∞

xi = 0. Let Ii be the interval [xi, xi+1]. We define a map f from X to X as follows. For each

Ii define fi : Ii → Ii−1 ∪ Ii ∪ Ii+1 such that

fi(xi) = xi, fi(xi+1) = xi+1, f (
2xi + xi+1

3
) = xi+2 and f (

xi + 2xi+1

3
) = xi−1

Let fi be linear between the whose it is already defined. Now define f by parts, setting f |Ii = fi.

Figure 2.1: The Graphics of f
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Since f is piecewise linear, it must to be continuous and therefore f (0) = 0. Now, if we take
any e > 0, there exists a fixed point xk ∈ (0, e) and therefore f cannot be expansive.

To see that f is sensitive, we notice that the length of any open sub-interval of Ii grows to
the length Ii at some time. This implies the sensitivity of f .

The next theorem is a property of positively expansive maps whose we will enun-
ciate without proof. In chapter four we will prove a pointwise version, which trivially
implies it. Their proofs can be found in [2] anyway. We remark that there are similar
results and proofs if f is negatively expansive or expansive homeomorphism.

Theorem 2.3.5. f is positively (resp. negatively) expansive if, and only if, for every f k is
positively (resp. negatively) expansive for every k.

Proof. [2] Theorem 2.2.4, pag.38 �

Expansiveness is a dynamical property as we can see in next theorem.

Theorem 2.3.6. Let (X, f ) and (Y, g) be TDS. Let h be a topological conjugacy between f and g.
If f is positively (reps. negatively) expansive, then g is positively (reps. negatively) expansive.

Proof. We shall prove for the case of f be a positively expansive map. The proof for the
negatively expansive case is quite analogous. Let e be the constant of expansiveness
of f . Let dX and dY denote the metrics on X and Y respectively. Since Y is compact,
h−1 is uniformly continuous. Thus there exists δ > 0 such that dY(x, y) < δ implies
dX(h−1(x), h−1(y)) < e.

Now suppose g is not positively expansive. Thus if 0 < e′ < δ there are different
point y, y′ ∈ Y such that dY(gn(y), gn(y′)) < e′ for every n ≥ 0. Thus

dX( f n(h−1(y)), f n(h−1(y′))) = dX(h−1(gn(y)), h−1(gn(y′))) < e, for every n ∈N

But this implies that f is not positively expansive, since h−1(y) , h−1(y′) and this is a
contradiction. �

Example 2.3.7. If f is the expansive map of example 2.3.2, then it is not conjugated to a
rotation Rθ. Indeed, otherwise the rotation could be expansive systems. But this cannot be
true, because for every e > 0 and x, y ∈ S1 different point such that d(x, y) = c < e, we have
d(Rθ(x),Rθ(y)) = c < e.

The next theorem shows that if a system is expansive, then any of its subsystems is
also expansive.

Theorem 2.3.8. Let (X, f ) be a TDS. If f is positively (resp. negatively) expansive and Y ⊂ X
is a closed invariant subset, then (Y, f |Y) is positively (resp. negatively) expansive.

Proof. Suppose f is positively expansive and let e be the constant of expansiveness of
f . If x and y are different points of Y, then they are different points of X. Since Y is
invariant then every iterated of x and y belongs to Y. Now since f is expansive there
exists an integer i such that d( f i(x), f i(y)) > e. Therefore (Y, f |Y) is expansive. The proof
for the negatively expansive case is analogous. �
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The product of positively expansive maps is positively expansive too.

Theorem 2.3.9. Let (X, f ) and (Y, g) be TDS. If f and g are positive expansive, then the
product f × g is positive expansive in the space X × Y endowed with the product metric
d((x1, y1), (x2, y2)) = max{dX(x1, x2), dY(y1, y2)}.

Proof. Let e f and eg be the constants of expansiveness of f and g respectively. Set
e = min{e f , eg}. If (x1, y1) and (x2, y2) are different points of X×Y, then x1 , x2 or y1 , y2.
In the first case there is i such that dX( f i(x1), f i(x2)) > e1 > e then

d(( f i(x1), gi(y1)), ( f i(x2), gi(y2)) > e

In the second case there is j such that dY(g j(y1), g j(y2)) > e1 > e. Thus

d(( f j(x1), g j(y1)), ( f j(x2), g j(y2)) > e

and this concludes the proof. �

2.4 Shadowing Property

In this section we are aiming to study the shadowing property for topological dynamical
systems. For a moment, suppose we have a topological dynamical system. In addition,
suppose we need to compute some orbits with a specific behavior, but the complexity
of the system does not allow us do it directly. It could be a tragic scene. In despite of it,
suppose that we can compute a set which is somewhat similar to the orbits that we need
to compute. Would it be reasonable expect the existence of real orbits approximating
this set? For some kind of systems we can get a positive answer to the above question.
The property which allow us to do this approximations is called shadowing property.

To define the systems whose dynamical behavior includes this property, we begin
defining a kind sets which is not a real orbit, but has a similar behavior. If xn = f n(x)n∈N
is an orbit of some point x, we have f (xn−1) = xn, which is equivalent to d( f (xn−1), xn) = 0.
Instead of it, we shall admit a weaker condition on {xn}n∈N.

Definition 2.4.1. A sequence of points (xn) ∈ X is called a δ-pseudo orbit of a map f if
d( f (xn−1), xn) < δ for every index n.

δ-pseudo orbits are sets which are somehow similar to orbits. Next we shall give
the meaning of an orbit of f ”approximate” a pseudo-orbit.

Definition 2.4.2. We say that a point x ∈ X ε-shadows the δ-pseudo orbit (xn) if d( f n(x), xn) < ε
for every n.

Finally, we define the property that we are looking for in the above discussion.

Definition 2.4.3. A TDS (X, f ) is said to have the shadowing property if for every ε > 0, there
exists δ > 0 such that every δ-pseudo orbit of f is ε-shadowed by some point in X.
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Remark: In literature shadowing property is often called pseudo-orbit trancing
property, or abbreviating, P.O.T.P.

Remark: If f is a homeomorphism, then in order to define the shadowing property
for f we just need change toZ the index set of the pseudo-orbits and imitate the above
definitions.

Remark: Suppose for a moment that f is a homeomorphism. We claim that in order
to assure that f the shadowing property, we just need to proof that for every ε > 0 there
exists δ > 0 such that every {xn; n ≥ 0} δ-pseudo orbit is ε shadowed by some point in
X. Indeed, let ε > 0 and δ > such that every δ-pseudo-orbit is ε

2 -shadowed. Let {xi}i∈Z

be a δ-pseudo-orbit. For each n, define yi
n = xn−i for every i ≥ 0. Let yn be a point that ε

shadows {yi
n}. Since X is compact, we can suppose yn → y, up to a sub-sequence. now,

d( f j(y), f j(xi)) < d( f j(y), f j(yi
n)) + d( f j(yi

n), f j(xi)) for every j. Then for any j we can take
n large enough, to conclude d( f j(y), f j(xi)) < ε. This proves our claiming.

One can wonder if there exists maps with the shadowing property. The next theo-
rems shows us that the simplest map ever can have the shadowing property depending
on the space where it is defined.

Theorem 2.4.4. Let X be a compact metric space with more that one point. Then the identity
map on X has the shadowing property if, and only if, X is totally disconnected.

Proof. Suppose X is totally disconnected. Let ε > 0 , then there exists a finite cover
U1, ...,Un of X such that Ui ∩ U j = ∅ if i , j and every UI has diameter smaller than ε.
Now chose δ < min{d(Ui), (U j); i , j}. Then every δ-pseudo orbit is entirely contained
in some Ui. and therefore any point of Ui ε-shadows it.

Conversely if X is not totally disconnected there exists x0 ∈ X such that its connected
component C(x0) has more that one point. Let ε′ be the diameter of C(x0). Since X is
compact, there exist points x and y in C(X) such that d(x, y) = ε′. Let ε = ε′

4 .Now, for
every δ > 0 we can cover C(x0) with a finite number of open sets U1, ...,Unδ with diameter
δ. Since C(x0) is connected then we can assume x ∈ U1, y ∈ Unδ and C(x)∩Ui ∩Ui+1 , ∅
for every i, reordering the U′i s if necessary.

Let δ < ε. The set {x, x1, ..., xnδ−1, y}where xi is any point of C(x)∩Ui∩Ui+1 is clearly a
δ-pseudo-orbit. But it cannot be ε-shadowed for any point in X, by the choice of δ. �

Now let us explore some properties of maps with the shadowing property. We
remark that the next theorems are trivial consequences of the pointwise versions of
them. These will be stated and proved in chapter three. Thus in this chapter we will
not give a proof for the following theorems. However, we point out that the proofs can
be found in [2].

Lemma 2.4.5. Let (X, f ) be a TDS and let k be a positive integer. Then for every ε > 0 there
exists δ > 0 such that every {xn}

k
n=0 finite δ-pseudo orbit for f is ε-traced by x0.

Proof. In chapter three we will present a proof for a pointwise version of this theorem
which trivially will imply it. �
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Theorem 2.4.6. Let (X, f ) be a TDS and let k be a positive integer. Then f has the shadowing
property if and only if f k has the shadowing property.

Proof. [2]Theorem 2.3.3 pag. 80. �

Theorem 2.4.7. Let (X, f ) be a TDS. If f is a homeomorphism and has the shadowing property,
then f 1 has the shadowing property.

Proof. [2]Theorem 2.3.4 pag. 80. �

We now will prove that f is dynamical invariant.

Theorem 2.4.8. Let (X, f ) and (Y, g) be TDS. If f and g are conjugated and f has the shadowing
property, then g has the shadowing property.

Proof. Let ε > 0 and let h : X → Y be the conjugation between f and g. Since X is
compact, there exists η > 0 such that h(x1, x2) < δ if d(x1, x2) < η. let η′ > 0 be given by
the η-shadowing of f . Since Y is compact, there exists δ > 0 such that h−1(y1, y2) < η′ if
d(y1, y2) < δ.

If {yn}n∈N is an δ-pseudo-orbit of g then d(g(yn), yn+1) < δ for every n and therefore

d(h−1(g(yn)), h−1(yn+1)) = d( f (h−1(yn)), h−1(yn+1)) < η′.

Thus {h(yn)}n∈N is a η′-pseudo-orbit of f . Then there exists x such that d( f n(x), h−1(yn)) <
η for every n. Thus d(h( f n(x)), yn) = d(gn(h(x)), yn) < ε for every n. Therefore g has the
shadowing property. �

We end this section proving two facts that will reveal to be useful to us in the next
chapters.

Definition 2.4.9. Let (X, f ) be a TDS.

• f is called a chain-transitive map if for every ε > 0 and any pair x, y of points of X, there
exists {xi}

n
i=0 an ε-pseudo-orbit of f such that x0 = x and xn = y

• f is called a chain-mixing map if for every ε > 0 and any pair x, y of points of X, there
exists K0 such the for every k ≥ K − 0 the exists {xi}

k
i=0 an ε-pseudo-orbit of f such that

x0 = x and xk = y.

Proposition 2.4.10. Let (X, f ) be a TDS.

1. If f is topologically transitive, then f is chain-transitive

2. If f is topologically mixing, then f is chain-mixing
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Proof. 1. Suppose f is transitive. Let ε > 0 and take x, y ∈ X. By uniform continuity
let 0 < δ < eps such that d(z, z′) < δ then d( f (z), f (z′)) < ε. Since f is transitive,
there exists n and a point p ∈ Bδ(x) such that f n(xn) ∈ Bδ(y). Now, d( f (xn), f (xn)) < ε
and therefore the set {x, f (xn), f 2(xn), ..., f n−1(xn), y} is ε-pseudo-orbit from x to y.
Thus f is chain-transitive.

2. To prove 2, we repeat the previous argument noticing that since f is topologically
mixing, there exists K such that for every n ≥ K there exists a xn as in the proof of
1.

�

Next we will show that the converse for the previous proposition holds if we assume
that f has the shadowing property.

Theorem 2.4.11. Let (X, f ) be a TDS with the shadowing property.

1. If f is chain-transitive, then f is topologically transitive

2. If f is chain-mixing, then f is topologically mixing.

Proof. 1. Let U and V be non-empty open subsets of X. Let x ∈ U, x ∈ V and ε > 0
such that Bε(x) ⊂ U and Bε(y) ⊂ V. Let 0 < δ < ε be given by shadowableness
of f . Since f is chain-transitive, there exists {x0 = x, x1, ..., xn = y a δ-pseudo-orbit
of f . Since f has the shadowing property, there exists p such that d( f i(p), xi), ε for
i = 0, ...,n. Thus p ∈ U and f n(p) ∈ V and therefore f is topologically mixing.

2. To prove 2, we proceed as in the previous proof noticing that since f is chain-
mixing there exists k such that if n ≥ K there exists {x0, ..., xn} a δ-pseudo orbit of
f .

�

2.5 Topological Entropy

In this section we will deal with another dynamical property which is called topological
entropy. Roughly speaking, topological entropy is a number which measures in average
how the number of orbits that move away grows exponentially. In order to turn the its
meaning more natural, we shall define topological entropy in steps.

First we define the dynamical balls. Let f be a TDS and fix n. Define

dn, f (x, y) = max
0≤i≤n
{d( f i(x), f i(y))}

When there is no confusion about the map f , we simplify the notation writing only
dn. We first remark that dn is a metric. Indeed dn(x, y) = 0 if, and only if, d(x, y) = 0 and
if, and only if, x = y. The symmetry of dn is obvious from the symmetry of d.
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To prove the triangular inequality we notice that for every x, y, z ∈ X and every i

d( f i(x), f i(z)) ≤ d( f i(x), f i(y)) + d( f i(y), f i(z))

therefore
max
0≤i≤n

d( f i(x), f i(z)) ≤ max
0≤i≤n

d( f i(x), f i(y)) + max
0≤i≤n

d( f i(y), f i(z))

and this completes the proof.

The metrics dn and d are equivalents. Indeed, Let Bn
ε(x) denote the open ball of

radius ε in the metric dn. Since y ∈ Bn
ε(x) implies d(x, y) < ε then Bn

ε(x) ⊂ Bε(x). On the
other hand, since f is uniformly continuous, f i is also, for every i. Thus there exists
δ > 0 such that if d(x, y) then d( f i(x), f i(y)) < ε for every 0 ≤ i ≤ n. Then Bδ(x) ⊂ Bn

ε(x).
This proves that the d and dn are equivalents.

The balls Bn
ε(x) is called the n-dynamical ball centered in x with radius ε.

Definition 2.5.1. Let (X, f ) be a TDS.

• We say that a subset F is a (n, ε)-generator for X, if {Bn
ε(x); x ∈ F} form a covering for X.

• We say that a subset of E is (n, ε)-separated if Bn
ε(x) ∩ (F \ {x}) = ∅ for every x ∈ F.

Let rn(ε) denote the minimal cardinality of the (n, ε)-generators of X and let sn(ε)
denote maximal cardinality of the (n, ε)-separated subsets of X. Since X is a compact
space with the metric dn these numbers are aways finite.

Now we define r(ε) := lim sup
n→∞

1
n log rn(ε) and s(ε) := lim sup

n→∞

1
n log sn(ε).

Let us say a few words about the last definition. Roughly speaking r(ε) computes in
exponential average the minimum amount of orbits needed to go along with any orbit
of the system within a distance ε. On the other hand, s(ε) computes in exponential
average the maximum amount of orbits which are at least ε alway from each other.

Proposition 2.5.2. Let (X, f ) be a TDS. Then r(ε) ≤ s(ε) ≤ r( ε2 ) for every ε > 0.

Proof. Fix ε > 0 and n. Let E be a (n, ε)-separated of maximal cardinality. If E is not a
(n, ε)-generator of X then there is a point x ∈ X such that dn(x, y) > ε, contradicting the
maximality of E. Then r(ε) ≤ s(ε).

On the other hand, let F be a (n, ε2 )-generator of X and E be a (n, ε)-separated subset
of X. For each x ∈ E chose a point y ∈ F such that dn(x, y) < ε

2 . For each x, we can find y
such as all y are different. Therefore #E ≤ #F and this implies sn(ε) ≤ rn( ε2 ).

Thus we have
rn(ε) ≤ sn(ε) ≤ rn(

ε
2

)

Therefore if we take the superior limits in the previous inequality we conclude the
proposition. �
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Finally we are able to define the topological entropy of a map f . We only need to
remove the error ε in the previous amounts.

Definition 2.5.3. Let (X, f ) be a TDS. The amount h( f ) defined by

h( f ) = lim
ε→0

r(ε) = lim
ε→0

s(ε)

is called the topological entropy of f .

A remark on the definition is that the previous limit is increasing, then it always
exists and it can be infinity.

Example 2.5.4. Let X be a compact metric space and consider the identity map Id : X → X.
Let us calculate the topological entropy of Id. Fix ε > 0 and a natural n. Since f n(x) = x for
every x ∈ X then dn(x, y) = d(x, y) for every x, y ∈ X. Thus sn(ε) has the same value for every
n. Therefore s(ε) = lim sup

n→∞

1
nsn(ε) = 0 for every ε > 0. Therefore h(id) = 0.

More generally, we have the following result.

Theorem 2.5.5. Let (X, f ) be a TDS. If f is a isometry, that is, d(x, y) = d( f (x), f (y)) for every
x, y ∈ X, then h( f ) = 0.

Proof. In order to proof this theorem we only notice that dn(x, y) = d(x, y) for every
x, y ∈ X since f is an isometry. Therefore we just need to repeat the argument in the
previous example. �

In the same way, we can prove that the entropy of f is independent of the choice of
equivalent metrics for X.

Theorem 2.5.6. Let (X, f ) be a TDS. If d′ is a metric equivalent to the metric d. Then the
entropy of (X′, f ) is equal to the entropy of (X, f ). Here X′ denotes the space (X, d′).

The previous proof is quite analogous to the proof of the theorem 2.5

Next we will discuss some properties of topological entropy which will be very
useful to us in the next chapters.

Theorem 2.5.7. Let (X, f ) be a TDS. If Y ∈ X is a closed invariant subset, then h( f |Y) ≤ h( f ).

Proof. Fix ε > 0 and a natural n. Let E be a (n, ε)-separated subset of Y with maximum
cardinality. Then F is a (n, ε)-separated subset of X. Thus sn(ε) ≤ s′n(ε) where s′n(ε) is the
maximal cardinality (n, ε)-separated subsets o X. Then r(ε) ≤ r′(ε) for every ε > 0 and
therefore h( f |Y) ≤ h( f ). �

The next theorems gives a useful tool to calculate the topological entropy of some
systems.

Theorem 2.5.8. Let (X, f ) be a TDS. Then h( f n) = nh( f ), for any n > 0.
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Proof. before to start the proof let us fix some notation. Here, the prefix (n, ε, g) will
denote the (n, ε)-generator (or separated) subsets of X with respect to g.

Let ε > 0 and let F be a (nm, ε, f )-generator set for X with minimal cardinality. Then
for every x ∈ X there exists x′ ∈ F such that d( f i(x), f i(x′) < ε for every i = 1, ...,nm. Thus
E is (m, ε, f n)-generator for X and this implies rm( f n, ε) ≤ rnm( f , ε). Therefore

r(ε, f n) = lim sup
m→∞

1
n

log rn(ε) ≤ n lim sup
m→∞

1
mn

log ≤ n lim sup
m→∞

1
m

log rm(ε) = nr( f , ε)

Therefore h( f n) ≤ nh( f ).

Now since f is uniformly continuous there exists 0 < δ ≤ ε such that for every
d( f i(x), f i(y)) < ε for every i = 0, ...,n. Thus a (m, δ, f n)-generator set for X with minimal
cardinality must to be (nm, ε, f )-generator for X. Thus mrn( f , δ) ≤ rm( f n, ε) and therefore
nr(δ, f ) ≤ r(ε, f n). This implies the contrary inequality. �

Next we will prove that topological entropy is a dynamical property.

Theorem 2.5.9. Let (X, f ) and (Y, g) be TDS. If f and g are topologically conjugated then
h( f ) = h(g).

Proof. Let h be the conjugacy map between f and g and fix ε > 0. Since X is compact
then h is uniformly continuous. Thus there exists 0 < δ < ε such that if dY(h(x), h(x′)) < ε
when dX(x, x′) < δ. Let F be a (n, δ2 )-generator of X with minimal cardinality. Since h is
bijective for every y ∈ Y there is x ∈ X such that h(x) = y. Since F is a generator for X there
is x′ ∈ F such that d( f i(x), f i(x′)) < δ

2 for every 0 ≤ i ≤ n. Thus dY(h( f i(x)), h( f i(x′))) =
dY(gi(h(x)), gi(h(x′))) < ε for every 0 ≤ i ≤ n. In other words h(F) is an (n, ε)-generator
for Y. Therefore rn(ε, g) ≤ rn( δ2 , f ) for every n. Since δ

2 → 0 when ε → 0 we conclude
that h(g) ≤ h( f ).

The contrary inequality is proved in a totally analogous way. �

Notice that in the previous proof if the conjugacy is only a surjection we can prove
only one of the inclusions. Indeed, the proof of the previous theorem gives the following
corollary.

Corollary 2.5.10. Let (X, f ) and (Y, g) be TDS. If f is semi-conjugated to g then h(g) ≤ h( f ).

2.6 The Shift Map

We finalize this chapter with an example of map with positive topological entropy
which will be used in one of the main theorems of this work. However this maps
presents a very rich dynamical behavior. For that reason we will pays special attention
to it.
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Let Σ be set of all functions from the non-negative integers to the set {0, 1}. We can
visualize this set as the set of the unilateral infinite sequences of zeros and ones.

Σ = {(si)∞i=0; si ∈ {0, 1}}

Consider the following map d : Σ × Σ → [0,∞] defined by d(s, t) = Σ∞i=0
1

2i+1 |si − ti|.
Notice that for every s, t we have that d(s, t) is majored by the geometric series Σ∞i=0

[1]
2ii+1

whose sum is 1 and therefore d(s, t) is always well defined.

We claim that d is a metric in Σ. Indeed, the symmetry of d is obvious. If d(t, s) = 0
then all the coordinates of s and t must to be equal and then t = s. If s = t then si = ti for
every i and therefore d(t, s) = 0. In order to prove the triangle inequality we fix n and
notice that is r, s, t ∈ Σ then

Σn
i=0

1
2i+1 |ri − ti| ≤ Σn

i=0
1

2i+1 |ri − si| + Σn
i=0

1
2i+1 |si − ti|

and this implies the triangle inequality when n grows to infinity.

Let us make some remarks on (Σ, d). If we use the classical Cantor’s diagonal
argument, we can prove that Σ is a non-enumerable space. Σ is a compact metric
space since it is a product of compact metric spaces. If d(t, s) < 1

2n therefore the n first
coordinates must to be equal. This implies that Σ has not isolated point. Indeed, let
s ∈ Σ and ε > 0. Then there is a natural n such that 1

2n < ε. So if t is a sequence such
that ti = si for every 0 ≤ i ≤ n and tn+1 , sn+1 we have that t is ε-close to s and t , s.

Definition 2.6.1. The map σ : Σ→ Σ defined by σ((si)) = (si+1) is called the shift map.

As we have said the shift map has a very complex dynamical behavior.

Theorem 2.6.2. Per( f ) = Σ

Proof. A periodic point of σ with period n must to satisfies σn(s) = s. This implies
(sn+i = si) for every i ≥ 0. Thus let s ∈ Σ and ε > 1

2n . If t = (ti) where ti+n = ti and ti = si

for i = 0, ...,n then t is periodic point ε-close to s. This proves that the periodic points
of σ are dense in Σ. �

Next we will prove that σ is transitive.

Theorem 2.6.3. σ is a topologically transitive map.

Proof. Let t be the point of Σ defined as follows. The first coordinates of t are 0 and 1.
The next are all the possibles combinations of 0’s and 1” with two digits. The next are
are all the possibles combinations of 0’s and 1” with three digits and so forth. Thus for
any s ∈ Σ we can make σn(t) be so close as we want making n great. Therefore the orbit
of t is dense in Σ anf σ is transitive. �

We end this chapter proving that the shift map has positive entropy.
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Theorem 2.6.4. The entropy of the shift map is log 2

Proof. Fix ε < 1 and n > 0. Let k > 0 such that 1
2k+1 ≤ ε ≤

1
2k . Let us compute the maximal

cardinality of (n, ε)-generator sets for Σ. Fix a point x ∈ Σ. If y ∈ Bn
ε(x) then the k first

coordinates of σi(x) and σi(y) must to coincide for every i = 1, ...,n. This implies that the
n+k first coordinates of x and y must to coincide. Now, with combinatorial analysis we
can conclude that there are 2n+k different possible combinations of the n + k coordinates
for a point in x ∈ Σ.

We have that there exists 2n+k balls Bn
ε(x) covering Σ where each x has one of the

2n+k possibilities of such combinations. Moreover it is the minimum number of such
balls. Indeed, if there are a smaller number, one of the possibilities would be not
contemplated and therefore these ball cannot form a cover for Σ.

Then

r(ε) = lim sup
n→∞

1
n

log rn(ε) = lim sup
n→∞

1
n

log 2n+k = lim sup
n→∞

1
n

(n + k) log 2 = log 2

Thus we conclude that h(σ) = lim
ε→0

r(ε) = log 2. �

Our previous discussion was entirely focused on the shift map of two symbols. But
we remark that we can make modifications on Σ admitting that it is the set of sequences
of any finite collection of symbols instead of zeros and ones. The previous properties
are still valid with very similar proofs, except the entropy which now assume the value
log p, where p is the number of symbols.

On the other, hand we can make modifications on Σ to define the two-sided shift
map. To do this we need define Σ as the sequence of bilateral sequences of zeros and
ones and make a little adaptation on the metric on Σ. Thus the shift now become a
homeomorphism and again all the properties are still valid.

33



Chapter 3

Pointwise Dynamics

In this chapter we begin to deal with pointwise dynamics. We are aiming to rewrite
some properties that we defined globally into local ones. To clarify ideas, let us recall
an example. In chapter one, when we defined what is a topologically transitive map,
we gave the definitions in terms of a global property. Namely, we said that a map is
transitive if for any pair of open sets the iterates of one set meets the other set in some
time. On the other hand, we proved an equivalence for that definition in therms of a
pointwise property, namely, the existence of a dense orbit. We called transitive point, a
point whose orbit is a dense set. Thus, the definition of transitivity cold be rephrased
as ”A map is topologically transitive if its set of transitive points is non-empty”.

We are going to follow this direction. We will define what are minimal points,
sensitive points, shadowable points, entropy points and others and give the relations
between their sets and topological dynamical properties.

We notice that the definitions and results here can be found in [11] and [13]. For the
remainder of this chapter by a topological dynamical system we mean a continuous
self-map of a compact metric space.

3.1 Minimal Points

In this section we spend some time discussing the meaning of minimal point. We begin
with its definition.

Definition 3.1.1. Let (X, f ) be a TDS. A point x ∈ X is called minimal if O+(x) is a minimal
set. Let M( f ) denote the set of minimal points of f .

It follows immediately from the definition that x if is a minimal point, then f |O+(X) is
a minimal subsystem of f . This makes clear why the use of the term minimal point.

If f is a minimal system, then for every x ∈ X we have O+(x) = X and therefore
every point is a minimal point. The converse does not hold as we can see in the next
example.
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Example 3.1.2. Let f be any compact metric space and let f be the identity map on X. Since
every point in X is a fixed point then it must to be a minimal point for f

As in the case of fixed points, we have that periodic points are always minimal
points. Indeed, if x is a periodic point, then O+(x) is a finite f -invariant subset of X.
Thus O+(x) = O+(x) and for every point y ∈ O+(x) we have O+(y) = O+(x). This implies
that x is a minimal point.

Proposition 3.1.3. Let (X, f ) be a TDS. Then x ∈ M( f ) if, and only if, x ∈ O+(y) for every
y ∈ O+(x).

Proof. If x is minimal point of f , then f |O+(x) is a minimal system. Thus the orbit of y is

dense in O+(x), for every y ∈ O+(x). Therefore x ∈ O+(y) = O+(x), for every y ∈ O+(x)

Conversely, suppose x ∈ O+(y). If y ∈ O+(x), then O+(x) ⊂ O+(y) since the orbit of
y is closed invariant set. On the other hand, we have trivially the contrary inclusion.
Thus the orbit of y is dense on O+(x) an this proves the minimality of x. �

Since the restriction of f to the closure of the orbit of a minimal point is a minimal
system, in particular, this point needs to meet each of its neighborhoods in some time.
A point satisfying this condition is called a recurrent point.

Definition 3.1.4. Let (X, f ) be a TDS. A point x is called a recurrent point of f if

N(x,U) := {n ∈N; f n(x) ∈ U} , ∅

for every open neighborhood U of x. Let R( f ) denote the recurrent points of f .

As examples of recurrent points we have periodic points and transitive points.
Minimal point are also recurrent points. Indeed, the next theorem shows that minimal
points are syndetically recurrent points.

Theorem 3.1.5. Let (X, f ) be a TDS. Then x ∈ M( f ) if, and only if, N(x,U) if is syndetic for
every neighborhood U of x.

Proof. Suppose x is a minimal point and let U be a neighborhood of x. If N(x,U)
is not syndetic, then for every k there exists an integer nk such that f i(x) < U for
every i = nk, ...,nk + k. Since X is compact we can suppose that the sequence f nK(x)
converges to a point y, when k tends to infinity. Since U is open then y < U. Fix i > 0,
f i(y) = lim

k→∞
f nk+i(x) for every i. Thus f i(y) < U. Then x < O+(y) and this contradicts the

previous proposition.

Conversely, suppose N(x,U) is syndetic for every U. Fix ε > 0 and let k be a
limitation for gaps ofN(x,Bε(x)). Take y ∈ O+(x). Since f is uniformly continuous there
exists δ > 0 such that f i(Bδ(z)) ⊂ Bε( f (z)) for every z ∈ X and j = 1, ..k. Since y ∈ O+(x)
there exists N such that d( f N(x), y) < δ. Thus d( f N+i(x), f i(y)) < ε for every i = 1, ..., k. But
the triangle inequality implies d(x, f i(y)) ≤ d(x, f N+i(x)) + d( f N+i(x), f i(y)) < 2ε for some i
between 1 and k. This implies x ∈ O+(y) and by the previous proposition x ∈M( f ). �
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Corollary 3.1.6. Every minimal systems is syndetically transitive

Proof. Let U and V be non-empty open sets. Since every orbit is is dense, for any x ∈ U
there exist N such that f N(x) ∈ V. Now, Since V is an open neighborhood of f N(x)
and f N(x) is a minimal point, then N( f N(x),V) is a syndetic set. But this implies that
N(U,V) is a syndetic set. Therefore f is syndetically transitive. �

In chapter one we gave an example of map which if transitive but not minimal. In
this case,N(U,U) , ∅, for every open set U, since f is transitive, but we cannot assume
that every point in U is recurrent. Indeed, there exists a larger class of points, namely,
non-wandering points.

Definition 3.1.7. Let (X, f ) be a TDS. A point x is called a non-wandering point ifN(U,U) , ∅
for every open neighborhood U of x. Let Ω( f ) denote the set of non-wandering points of f .

We have an trivial hierarchy between the classes of points we have studied until
now, namely, Fix( f ) ⊂ Per( f ) ⊂M( f ) ⊂ R( f ) ⊂ Ω( f ).

The next theorem tells us that the set of non-wandering is well-behaved topologi-
cally and dynamically.

Theorem 3.1.8. Ω( f ) is closed positively f -invariant set.

Proof. To show that Ω( f ) is closed, let x0 ∈ Ω( f ). Let ε > 0, then there exists y ∈
Bε(x0) ∩Ω( f ). Thus let δ > 0 such that Bδ(y) ⊂ Bε(x0). Then there exists x ∈ Bδ(y) and k
such that f k(x) ∈ Bδ(y). Therefore x0 ∈ Ω( f ).

Now, let x ∈ Ω( f ) and fix ε > 0. Since f is uniformly continuous there is a δ > 0
such that f (Bδ(x)) ⊂ Bε( f (x)). Since x is non-wandering, there exists y ∈ Bδ(x) and k
such that f K(y) ∈ Bδ(x). Thus f (y) ∈ Bε( f (x)) and f k+1(y) ∈ Bε( f (x)). Therefore f (x) is a
non-wandering point. �

We end this section with two results similar to the lasts theorems of the previous
chapter.

Definition 3.1.9. A map f : X→ X is called a non-wandering map if Ω( f ) = X

Definition 3.1.10. Let (X, f ) be a TDS. A point x ∈ X is called a chain-recurrent point of f if
for every ε > 0, there exists a ε-pseudo-orbit {x0, ..., xn} such that x0 = xn = x. Let CR( f ) denote
the set of chain-recurrent points of f . The map f is called a chain-recurrent map if CR( f ) = X.

Proposition 3.1.11. Let (X, f ) be a TDS. If f is non-wandering, then f is chain-recurrent

Proof. The proof is analogous to the one for transitive systems, the only difference is
that here we need to obtain ε-pseudo-orbits from x to x, for every x ∈ X �

Theorem 3.1.12. Let (X, f ) be a TDS with the shadowing property. If f is chain-recurrent,
then f is non-wandering.

Proof. Again, the proof is analogous to the proof for chain-transitive maps. �
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3.2 Shadowable Points

In this section we will deal with the pointwise definition of shadowing given by C.A.
Morales in [7]. In his work, the author have considered homeomorphisms of compact
metric spaces and defined the notion of shadowable point. Next he proved some
properties that maps possessing such points must to have. We will start defining
shadowable points for homeomorphisms. For the remainder of this section, let f
denote a self-homeomorphism from a compact metric space.

Definition 3.2.1. Let X be a compact metric space and f : X → X be a homeomorphism.
Let A ⊂ X. We say that a sequence {xn}n∈N is a δ-pseudo-orbit of f through A if it is an
δ-pseudo-orbit of f and x0 ∈ A.

Definition 3.2.2. Let X be a compact metric space and f : X → X be a homeomorphism. We
say that a point x ∈ X is a shadowable point for f if for ε > 0 there is δ > 0 such that every
δ-pseudo-orbit through x is ε-shadowed by some point in X.

The idea behind a shadowable point x is that if we take a pseudo-orbit starting
on x there exists a real orbit that goes along the pseudo-orbit within an error. In [7]
the author proved that for a compact metric space, a homeomorphism possesses the
shadowing property is equivalent to all point of X be shadowable.

Theorem 3.2.3. Let X be a compact metric space and f : X → X be a homeomorphism. Then
has the shadowing property if, and only if, Sh( f ) = X.

Proof. [7] �

In chapter four, we will give a direct proof for the previous theorem requiring only
that f be a continuous map.

Next we shall investigate the structure of the set of shadowable points. Since we
are considering homeomorphism we can think in the inverse map. Indeed, the next
result states that if a point is shadowable for a homeomorphism, then it must to be
shadowable for its inverse.

Theorem 3.2.4. If x ∈ Sh( f ) = Sh( f −1).

Proof. Let x ∈ sh( f ) and fix ε > 0. Let δ > 0 such that every δ-pseudo-orbit of f through
{x}, if ε shadowed. Since f is uniformly continuous let δ0 such that d( f (x), f (y)) < ε is
d(x, y)) < δ.

Let {xi} be a δ-pseudo-orbit of f −1 through {x}. Since d( f −1(xi), xi−1) =< δ for every i,
then d(xi, f (xi−1)) < δ0 for every i ∈ Z. Thus {x−i} is a δ0 pseudo orbit of f through {x}.
Then there exists y ∈ X such that d( f i(y), xx−i) < ε and therefore d( f −i(y), xi) < ε. Thus
x ∈ Sh( f −1).

The proof of contrary inclusion is analogous. �
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As a consequence of the previous theorem we have the following

Theorem 3.2.5. Let X be a compact metric space and f : X → X be a homeomorphism. Then
Sh( f ) is an invariant set.

Proof. Let x ∈ Sh( f ) and fix ε1 > 0. Since f uniformly continuous, then there exists
δ1 > 0 Such that d( f (x), f (y)) < ε1, when d(x, y) < δ1. Let 0 < ε2 < δ1 be given by the
δ1-shadowableness through {x} by f −1 . Since f −1(x) is uniformly continuous, then there
exists 0 < δ2 < ε2 such that d( f −1(x), f −1(y)) < ε2 when d(x, y) < δ2.

Now let {xn}n∈Z a δ2-pseudo orbit of f trough f (x). Since d( f (xi), xi+1) < ε2 for every
i ∈ Z, then d( f −1(xi+1), xi) < δ2, for every i ∈ Z. Thus { f −1(x−n)} is a δ2-pseudo-orbit
of f −1 through {x}. Then there exists y ∈ X such that d( f −n(y), f −1(x−n)) < δ1. Thus
d( f n( f (y)), xn) < ε1 for every n and therefore f (x) ∈ Sh( f ).

Analogously, one can proof that f (Sh( f )) ⊂ Sh( f ). �

Theorem 3.2.6. CR( f ) ∩ Sh( f ) ⊂ Ω( f ). Therefore CR( f ) = Ω( f ), if CR( f ) ⊂ Sh( f )

Proof. Let x ∈ CR( f ) ∩ Sh( f ) and let U be an open neighborhood of x. Let ε > 0 such
that Bε(x) ⊂ U and let 0 < δ < ε

2 be given by the ε
2 -shadowing trough {x}.

Since x ∈ CR( f ), then there exists {x0, ...xn} a δ-pseudo-orbit from x to x, which is
obviously through {x}. Then there exists y ∈ B ε

2
(x) ⊂ U. Such that d( f n(y), x) < ε

2 . Then
x ∈ Ω( f ).

For the second part of the statement we have CR( f ) ⊃ Ω( f ) is quite obvious. The
other inclusion is a trivial consequence of the first part. �

Lemma 3.2.7. Let k be an integer number and let x ∈ X. Then for every ε > 0 there is a δ > 0
such that if {xi}

k
i=0 is a δ finite pseudo orbit of f through {x}, then {xi} is ε-shadowed by x0.

Proof. We will proceed by induction. Suppose k = 1 and Let ε > 0. If we make δ = ε
and if {x, x1} is an ε > 0 pseudo orbit through {x}, then d(x, x) = 0 < ε and d( f (x), x1) < ε.

Suppose the statement be true for k and let us prove for k + 1. Fix ε > 0. Since f is
uniformly continuous, there exists 0 < δ′ < ε

2 such that if d(x, y) < δ then d( f (x), f (y)) <
ε
2 .

On the other hand, the induction hypothesis implies that there exists 0 < δ < δ′ such
that if {xi}

k+1
i=0 if a δ-pseudo orbit through x, then d( f i(x), xi) < δ′ for i = 0, 1, ..., k.

Thus, let {xi}
k+1
i=0 be a δ-pseudo orbit through x. Therefore

d( f k+1(x), xk+1) < d( f k+1(x), f (xk)) + d( f (xk), xk+1)

But
d( f k+1(x), f (xk)) = d( f ( f k(x), f (xk) <

ε
2

Since d( f k(x), xk) < δ < δ′. Then d( f i(x), xi) < ε for every i = 0, ..., k + 1 and this proves
the theorem. �
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As in case of shadowing maps in chapter two, we have a pointwise version of the
statement for the powers of f .

Theorem 3.2.8. For every k ∈N we have Sh( f ) = Sh( f k)

Proof. Let x ∈ Sh( f ). If {xn}nZ is a δ pseudo orbit for f k trough {x}, then d( f k(xn), xn+1) < δ,
for every n.

Consider the set

A = {x0 = x, f (x0), ..., f k−1(x0), x1, f (x1), ..., f k−1(x1), x2, ...}.

Then A is clearly a δ-pseudo-orbit of f through {x}. Now, the shadowableness through
{x} by f implies the shadowableness through {x} for f k.

To prove the other inclusion let x ∈ Sh( f k) and fix ε > 0. Since f is uniformly
continuous, there exists ε1 > 0 such that d( f i(x), f i(y)) < ε

2 for every i = 0, 1, ..., k.

On the other hand, by lemma 3.2.7, there exists 0 < δ0 < ε1 such that for every
δ0-pseudo-orbit {xi}

i=k
i=0 of f through {x} is ε1-shadowed by x.

Since x ∈ Sh( f k), take 0 < δ1 < δ0 such that every δ1-pseudo-orbit of f k through {x} is
ε1-shadowed. Let 0 < δ < δ1 such that every finite δ1-pseudo-orbit {xi}

k
i=0 of f through

{x} is δ1-shadowed by x.

Let {zi}i∈N be a δ-pseudo-orbit of f through x. Define xi = zki for every i ∈ Z and fix
i. Since {zki, zki+1, ..., z(k+1)i} is a finite δ-pseudo-orbit of f . Thus, d( f j(zki), zki+ j) < δ1 for
every j = 0, 1, ..., k. In particular d( f k(zki), z(k+1)i) < δ1. Then {xi}ı∈N is a δ1-pseudo-orbit
through {x} for f k. Thus, there exists y ∈ X such that d( f ik(y), xi) < ε

2 , for every i ∈N.

Finally, since d(y, zki) < δ0, we have d( f ki+ j(y)), f ki+ j(zki)) < ε
2 , for ever j = 0, 1, ..., k.

Thus
d( f ki+ j(y)), z jk+i) < d( f ki+ j(y)), f ki+ j(zki)) + d( f ki+ j(zki), zki+ j) < ε,

for every integer i. Then x ∈ Sh( f ). �

Notice that the previous results trivially imply their global versions stated in chapter
two. Indeed, this is a consequence of theorem 3.2.3.

3.3 Sensitive Points

We begin with the definition of a sensitive point.

Definition 3.3.1. Let (X, f ) be a TDS. A point x ∈ X is called a sensitive point for f if there
exists εx > 0 such that, for every open neighborhood V of x, there exists y ∈ V such that
d( f n(x), f n(y)) > εx, for some natural n. We call εx the sensitiveness constant of f on x. Let
Sen( f ) denote the set of the sensitive points of f .
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The idea here is derived from the definition of sensitivity on initial conditions. But
here there is not an uniform constant of sensitivity which works for every point in X.
Notice that if Sen( f ) = X and inf

x∈X
{εx} > 0 then f is sensitive.

Example 3.3.2. Consider the TDS f : I → I where I is the unit interval and f is defined by

f(x) =

{
2x if x ∈ [0, 1

2 ]
1 if x ∈ [ 1

2 , 1]

Clearly the orbit of every positive point converges to 1 then the fixed point 0 is a sensitive
point. On the other hand if x = 1 there exists a neighborhood U of x such that f n(y) = 1 for
every n. Then the fixed point 1 is not a sensitive point.

The previous example exhibits the existence of maps which the sensitive set is not
the entire space. In the other hand, there are maps such that the sensitive sets are empty.
The last ones are characterized in the following. The points which are not sensitive
points are called equicontinuity points.

Definition 3.3.3. A map f : X → X is called an equicontinuous map if for every ε > 0, there
exists δ > 0 such that d( f n(x), f n(y)) < ε, for every n, when d(x, y) < δ.

Proposition 3.3.4. Let X be a compact metric space and (X, f ) a TDS. Then Sen( f ) = ∅ if and
only if f is equicontinuous.

Proof. Suppose Sen( f ) = ∅ and chose ε > 0. Then for every x ∈ X we can choose
a δx > 0 such that d( f n(x), f n(y)) < ε for every n. Since X is compact and {Bδx(x)}

form an open cover for X, there exists an open finite sub-cover B = {Bδxi
}
n
i=1. Now let

δ = min{η, δx1 , δx2 , ..., δxn}, here η is the Lebesgue number of B. Thus, if d(x, y) < δ then
x and y are in some element of the cover B which implies d( f n(x), f n(x)) < ε for every
n. Thus f is equicontinuous.

Conversely, suppose Sen( f ) , ∅. Then there exist x ∈ X and ε > 0 such that if we
chose any δ > 0 , there exists y satisfying d(x, y) < δ, such that d( f n(x), f n(y)) > ε, for
some natural n. Thus f is not equicontinuous. �

Isometries are important examples of equicontinuous maps. Heuristically an isome-
try is a map which does not distorts distances. More specifically, we have the following
definition

Definition 3.3.5. A TDS is called an ismetry if d(x, y) = d( f (x), f (y)) holds for every x, y ∈ X.

Isometries are trivially equicontinuous maps. Circle rotations are our familiar ex-
amples of maps which are isometries. In chapter two we defined them and proved
that they are minimal system whenever the rotation angle theta is irrational. Now we
will use the above concepts to prove a more general fact, namely, every transitive map
must to be a minimal map in presence of equicontinuity.

Theorem 3.3.6. Let (X, f ) be a transitive TDS. If Sen( f ) = ∅, then f is a minimal system.
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Proof. Let y be a point of X and let ε > 0. Let x be a point in X whose orbit is a dense
set and Let x′ be any point of X. Since x′ is an equicontinuity point, there exists δ > 0
such that if d(x′, z) < δ then, d( f n(x′), f n(z)) < ε

2 , for every n.

Since the orbit of x is dense, there exists i such that d( f i(x), x′) < δ. Therefore
d( f n( f i(x)), f n(x′)) < ε

2 , for every n.

Since the orbit o x is dense, there exists j such that d( f j( f i(x)), y) < ε
2 . Then

d( f j(x′), y) ≤ d( f j(x′), f j( f i(x))) + d( f j( f i(x)), y) < ε.

Since y and x′ are arbitrary, the orbit of x′ is dense and this implies the minimality of
f . �

3.4 Entropy Points

Next we will give a pointwise definition for topological entropy. The notion of entropy
points was first introduced by Xiandong Ye and Guohua Zhang in [13]. Now we
present this notion and later we will use it on order to establish when a system having
the shadowing property has positive entropy.

Definition 3.4.1. Let (X, f ) be a TDS.

• We say that x ∈ X is an entropy point if h( f ,U) > 0 for every neighborhood U of x. Let
Ep(X, f ) denote the set of entropy points for f in X. When there is no confusion, we will
write Ep instead of Ep(X, f )

• If h( f ,U) = h( f ) for every open neighborhood U of x, we say that x is a full entropy point
for f . Let EF

p(X, f ) denote the set of full entropy points for f in X. When there is no
confusion, we will write EF

p instead of EF
p(X, f )

It’s an immediate fact from the definition that if Ep , ∅, then h( f ) > 0. Next we will
prove the converse. But, first we need to prove the following lemma.

Lemma 3.4.2. Let (X, f ) be TDS and let U1,U2, ....,Uk be closed subsets of x. Then r(ε,
⋃k

i=1 Ui) =

max1≤i≤k r(ε,U) for every ε > 0. Therefore h( f ,
⋃k

i=1 Ui) = max1≤i≤k h( f ,Ui)

Proof. Since Ui ⊂ X for each i, therefore an (n, ε)-generator for the
⋃k

i=1 Ui with minimal
cardinality is an (n, ε)generator for any Ui. Therefore rn(ε,

⋃k
i=1 Ui) ≥ max1≤i≤k rn(ε,Ui)

for every i. Then

lim sup
n→∞

1
n

log rn(ε,
k⋃

i=1

Ui) ≥ max
1≤i≤k

lim sup
n→∞

1
n

log rn(ε,Ui)
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To prove the other inequality, we first fix n. Now we notice that k(max1≤i≤k rn(ε,Ui) ≥
rn(ε,

⋃k
i=1 Ui)). Thus

lim sup
n→∞

1
n

log rn(ε,
k⋃

i=1

Ui) ≤ lim sup
n→∞

k(max
1≤i≤k

1
n

log rn(ε,Ui)) = lim sup
1
n

k+lim sup
n→∞

max
1≤i≤k

1
n

log

This completes the proof of the lemma. �

Theorem 3.4.3. Let f be a TDS. Suppose that h( f ) > 0. Then EF
p( f ) , ∅.

Proof. Fix γ > 0 and consider the open cover B = {Bγ(x)}x∈X for X. Since X is compact
we can cover X with a finite number of elements of B. Let B0 be such finite sub-cover.
The previous lemma tells us that there exists a member B0 ofB0 such that h( f ) = h( f ,B0).

Now, cover B0 with an finite open cover B1 whose elements are balls of radius γ
2 .

Then there exists an element B1 ofB1 such that h( f ) = h( f ,B1). If we continue proceeding
in the same way, we will find a sequence of balls B0 ⊃ B1 ⊃ .... ⊃ Bn ⊃ .... Such that
h( f ) = h( f ,Bi) for every natural i.

Since the radium of these balls converge to 0, then
⋂
∞

i=0 Bi = {y}. But our construction
implies that y ∈ EF

n( f ). �

Next we show that Ep( f ) and EF
p( f ) are closed invariant sets.

Theorem 3.4.4. Ep( f ) and EF
p( f ) are closed sets.

Proof. Let x ∈ Ep( f ). Thus there exists a point y ∈ U∩EP(y), for every open neighborhood
U of x. Since U is a neighborhood of y, then h( f ,U) > 0. Thus x ∈ Ep( f ). The proof for
the set of full entropy point is analogous. �

Theorem 3.4.5. Let (X, f ) be a TDS. Then f (Ep( f )) ⊂ Ep( f ) and f (EF
p( f ) ⊂ EF

p( f ).

Proof. Take y ∈ f (Ep( f )). Thus there is x ∈ Ep( f ) such that f (x) = y. Fix ε > 0 and
n > 0. Since f is uniformly continuous there exists 0 < δ < ε such that d( f i(x), f i(y)) < ε
for every i = 1, ...n if d(x, y) < δ. Let U be an open neighborhood of y, then f −1(U) is
an open neighborhood for x. If E is an (n, δ)-separated subset of f −1(U) with maximal
cardinality, then f (E) is a (n, ε)-separated subset of U. Then sn(ε,U) ≥ sn(δ, f −1(U)) and
this implies h( f ,U) ≥ h( f −1(U)) > 0. Thus y ∈ Ep( f ).

The proof for EF
p( f ) is quite analogous. �

3.5 Some Consequences

In the following we will turn back to systems with the shadowing property and use
the pointwise properties to obtain global properties for these systems. The following
results can be found in [11]
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Theorem 3.5.1. Let (X, f ) be a TDS. If f has the shadowing property and x ∈ Ω( f ), then for
every neighborhood U of x, there exists k such that kN ⊂ N(U,U).

Proof. Suppose x ∈ Ω( f ) and let U be an open neighborhood of x. Let ε > 0 such that
B ε

2
(x) ⊂ U. Since f has the shadowing property, there exists 0 < δ < ε

2 such that every δ
pseudo orbit of f is ε

2 -shadowed by some point in X.

Since x ∈ Ω( f ), there are y ∈ B δ
2
(x) and k ∈ N such that f k(y) ∈ B δ

2
(x). Thus, the

sequence (y, f (y), ..., f k(y), y, f (y), ..., f k(y), ...) is a δ-pseudo orbit of f . By shadowing,
there exists a point z ∈ X Such that d( f i+kj(z), f i(y)) < ε

2 for every 0 ≤ i ≤ k and
every j ∈ N. Particularly, d( f kj(z), f k(y)) < ε

2 for every j. Therefore d(x, f k(z)) ≤
d(x, f k(y)) + d( f kj(z), f k(y)) < ε. But it implies that kN ⊂ N(U,U).

�

Corollary 3.5.2. Let (X, f ) be a TDS having the shadowing property. Then

1. Ω( f ) = M( f )

2. M( f ×n) = Ω( f )n.

Proof. 1)-Since Ω( f ) is closed and M( f ) ⊂ Ω( f ) therefore M( f ) ⊂ Ω( f ). Now if x ∈ Ω( f )
the previous shows that every open neighborhood U of x has a point y such that
f nk(y) ∈ U for every n and some k. Consider f k and let b ∈ O+

f k(y) be a minimal point.
Therefore b is a minimal point which belongs to U and it concludes the proof.

2)- Fix n > 0 and let x = (x1, ..., xn) ∈ Ω( f )n. Let U be an open neighborhood of
x. Then for each i − 1, ...,n, there is Ui ⊂ X an open neighborhood of xi, such that
U1 × ...×Un ⊂ U. The previous theorem gives us points p1 ∈ Ui, ..., pn ∈ Un and naturals
k1, ..., kn such that f jki(pi) ∈ Ui for every i = 1, ...n and every j ∈N. If we set k = k1k2...Kn,
then f jk(p1, ..., pn) ∈ U for every j ∈ N. Finally, If we proceed in the same way as in the
proof of part 1) to obtain 2). �

Theorem 3.5.3. Let (X, f ) be a TDS having shadowing property. If f is totally transitive, then
f is weakly mixing.

Proof. Let U and V be non-empty open sets. Since f is totally transitive, we have
Ω( f ) = X. Then by theorem 3.5.1 there exists k such that kN ⊂ N(U,U). On the
other hand, f k is transitive, then there exists n such that f kn(U) ∩ V , ∅ and therefore
N(U,U) ∩N(U,V) , ∅ and this implies f is weakly mixing by proposition 2.2.6. �

Theorem 3.5.4. Let (X, f ) be a TDS having the shadowing property. If f is totally transitive,
then f is topologically mixing.

Proof. Let x, y ∈ X and ε > 0. Let 0 < δ ≤ ε such that every δ-pseudo orbit of f is
ε-shadowed for some point in X.
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Write X =
⋃n

i=1 B δ
2
(xi) (Remember it is aways possible, since X is compact). Reorder-

ing if it is necessary, we can assume that x ∈ B δ
2
(x1) and y ∈ B δ

2
(xn).

Since f is topologically weakly mixing, f ×n is transitive. Then there exists pi ∈ B δ
2
(xi)

and k such that pi ∈ f k(B δ
2
(xi)) ∩ B δ

2
(xn)) for every 1 ≤ i ≤ n.

Fix j ∈N. Then f j(x) ∈ B δ
2
(xi)) for some 1 ≤ i ≤ n. Thus, the sequence

(x, f (x), ... f j−1(x), pi, f (pi), ..., f k(pi))

is a δ-pseudo-orbit from x to y, since d( f j(x), pi) < δ.

Since j is arbitrary, we can construct in a similar way a δ-pseudo-orbit from x to y
with any length grater than p. Therefore, f is chain mixing. Finally, since f has the
shadowing property, it is topologically mixing. �

Theorem 3.5.5. Let (X, f ) be a TDS having the shadowing property. If X is connected and f
is non-wandering, then f is topologically mixing.

Proof. Since f is non-wandering and by the part 2) of corollary 3.5.2, we have that
M( f × f ) = X2. Furthermore, since f has the shadowing property, f × f has also. Then
define Y := X2 and g := f × f . Let x, y ∈ Y and ε > 0.

Since X is connected, then Y is also and therefore there are points p0 = x, p1, p2, ..., pn =
y such that d(pi, pi+1) < ε

2 for every 0 ≤ i ≤ n. Let 0 < δ < ε
2 .

Since g is non-wandering, there are ε
3 -pseudo orbits of length ki from pi to pi. If we

set
A = p0, ... f K1−1(p0), ..., pn, ..., f kn−1(pn)}

then A is a ε-pseudo-orbit of g from x to y and therefore g is chain transitive. Since g
has the shadowing property, g is transitive and therefore f is weakly mixing. Then in
order to conclude, we just need to apply the previous theorem. �

The next result gives conditions to a map possesses positive topological entropy.

Theorem 3.5.6. Let (X, f ) be a TDS having the shadowing property. Let Y ⊂ X be a f -
invariant closed set, let g = f |Y, and consider (Y, g). Then z ∈ Ep( f ), if there is z ∈ Sen(g) with
(z, z) ∈ int[R(g × g)].

Proof. Let U be an open neighborhood of z and let ε > 0 such that Bε(z) ⊂ U. Since
z ∈ Sen(g), there exists η > 0 such that for every open neighborhood V in Y of z, there
exists k such that the diameter of gk(V) is bigger than η. If necessary, one can reduce ε
in order to assure that 3ε < η. Choose 0 < δ < ε given by the ε-shadowing of f .

Let V be an open neighborhood of z in Y such that V × V ⊂ int(R(g × g)) such
that diam(V) < δ

2 . Thus there are (a, b) ∈ (V × V) ∩ R(g × g) and k < p such that
d( f k(a), f k(b)) > 3ε, d(gp(a), a) < δ

2 and d(gp(b), b) < δ
2
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We will show that h( f ,U) ≥ log 2
p . To do this, consider A = {a, f (a), ..., f p−1(a)} and

B = {b, f (b), ..., f p−1(b)}. Since the distances between a and b, a and f p−1(a), and between
b and f p−1(b) are smaller than δ

2 , we have that for any n ∈ N any C = {C1, ...,Cn} where
Ci = A or Ci = B for any i, C is a δ-pseudo-orbit of f consisting of np Elements.

For each of such C, let xC ∈ X be a point that ε-shadows C. If y ∈ {A,B} is the first
element of C, then d(z, xC) ≤ d(z, y) + d(y, xc) < δ + ε < 2ε and therefore xC ∈ U. If
C , D, then for some j ∈ {0, 1, 2, ...,np− 1}, the j-th elements of the pseudo-orbits C and
D are at least 3ε apart. Therefore, by triangle inequality d( f j(xC), f j(xD) > ε

2 for some
j ∈ {0, 1, 2, ...,np − 1}. This means that the set {xC : C ∈ {A,B}n} is a (U,np, ε)-separated
subset of U and hence (U,np, β)-separated for f for any β ∈ (0, ε).

On the other hand, #{xC : C ∈ {A,B}n} = 2n. Thus, we notice that the cardinality of
snp( f ,U, β) is bigger than 2n for every β < ε and this implies h( f ,U) ≥ log 2

p > 0. Thus x is
an entropy point and h( f ) > 0

�

One can notice that if (X, f ) has a minimal non-equicontinuous subsystem (Y, g)
then R( f × f ) = Y2, therefore the previous theorem guarantees the positiveness of the
entropy of f . Then proceeding in a similar way, one can derive the following result.

Theorem 3.5.7. Let (X, f ) a TDS having the shadowing property. If R( f ) \M( f ) , ∅ then
h( f ) > 0.

Proof. Suppose that x ∈ R( f ) \M( f ). Let Y be the closure of the orbit of x under f . Then
g = |Y is a minimal subsystem of f . Furthermore Sen(g) , ∅. Then applying theorem
3.5.6 we obtain than h( f ) > 0. �

As a corollary we have the following result

Corollary 3.5.8. Let (X, f ) a TDS having the shadowing property. Suppose that f is non-
wandering. Then Sen( f ) ⊂ Ep( f ).

Proof. Since f is non-wandering and has the shadowing property , then the previous
theorem gives X2 = M( f × f ) ⊂ R( f × f ). Thus if x ∈ Sen( f ) theorem 3.5.6 implies that
x ∈ Ep( f ). �
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Chapter 4

Contributions to the theory

In this chapter we present some of our results about the theory we presented in the
previous chapters.

4.1 Dynamics of Uniform Limits

In this section we will turn back to discuss the main question of chapter one. We were
asking when the uniform limit of a sequences of maps with some dynamical property
(P) inherits (P). In chapter one, we saw that the conditions imposed by Flores and
Risong-Li are too strong. Indeed, these properties forces the limit map to possesses
property (P), even if the sequence maps do not. Next we will investigate this question
when (P) is the shadowing property.

First we remark that without extra conditions the answer to question is negative.
Indeed, the next example shows that.

Example 4.1.1. For any n > 0, let fn : [0, 1]→ [0, 1] defined by fn(x) =

{
(n+1

n )x if x ∈ [0, 1 − n
n+1 ]

1 if x ∈ (1 − n
n+1 , 1]

Fix ε < 1− n
n+1 . If we chose δ′ = ε

n then there exists k ∈N and such that any δ′-pseudo-orbit
is such that xk > 1 − ε

2 . Thus for this k and ε, we can take δ < δ′ given by lemma 2.4.5 such
that x0

ε
2 -shadows {xi}

k
i=0. Now, by the choose of δ and ε then f i(x0) = 1 and xi = 1 for every

i ≥ k. But this implies that x0 ε-shadows {xi}. However, the sequence fn converges uniformly
to the identity map, which has not the shadowing property, since [0, 1] is connected.
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Figure 4.1: Some maps of the sequence fn and the limit map f .

In the previous example, one can notice that the δ’s of fn converges to 0, when n
tends to infinity. Keeping it in mind, we can try to turn the δ’ uniform in order to obtain
the shadowableness of the limit map.

Definition 4.1.2. We say that a sequence fn : X → X has the uniform shadowing property if
every fn has the shadowing property and the functions δn are the same.

The following theorem slightly improves the result in [5] where it is assumed that
δn(ε) = ε for every n.

Theorem A. Let X be a compact metric space and fn : X → X be a sequence of continuous
functions which converges uniformly to a function f . Suppose that fn has the uniform shadowing
property. Then f has the shadowing property.

Proof. Fix ε > 0. Since fn has the uniform shadowing property, chose δ > 0 such that
for every n, we have that every δ-pseudo-orbit of fn is ε

3 -shadowed by some point yn.
We will show that every δ

2 -pseudo orbit for f is ε shadowed.

Let {xi} be a δ
2 -pseudo-orbit of f . We claim that {xi} is a δ-pseudo-orbit for fn if n is

sufficiently large. Indeed, since fn converges uniformly to f , there exists N0 such that
d( fn(x), f (x)) < δ

2 for every x ∈ X and n ≥ N0. Then

d( fn(xi), xi+1) ≤ d( fn(xi), f (xi)) + d( f (xi), xi+1) < δ,

if n ≥ N0.

Uniform shadowing implies that for every n ≥ N0 there exists a point yn such that
d( f i

n(yn), xi) ≤ ε
3 for every i. Let (yn)n≥N0 be the sequence of such points. Since X is

compact we can assume that yn converges for some point y ∈ X. We claim that y
ε-shadows {xi}. Indeed, we have

d( f i(y), xi) ≤ d( f i(y), f i(yn)) + d( f i(yn), f i
n(yn)) + d( f i

n(yn), xi)
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Fix i. Since fn converges to f , then f i
n converges to f i. On the other hand, f i is

continuous. Thus we can make d( f i(y), f i(yn)) ≤ ε
3 and d( f i(yn), f i

n(yn)) ≤ ε
3 if we chose

n sufficiently large. Therefore d( f i(y), xi) ≤ ε, for every i ≥ 0. Therefore f has the
shadowing property.

�

Example 4.1.3. For any n > 0, let fn : [0, 1]→ [0, 1] defined by fn(x) =

{
4(n+1

n+3 )x if x ∈ [0, 1
4

n+3
n+1 ]

1 if x ∈ ( 1
4

n+3
n+1 , 1]

Here, the uniform limit of fn is the map defined by f (x) =

{
4x if x ∈ [0, 1

4 ]
1 if x ∈ (1

4 , 1]

Figure 4.2: Some maps of the sequence fn and the limit map f

Which has the shadowing property as we have already seen. Moreover, if we proceed as in
the previous example we conclude that given any ε > 0, we can chose an uniform δ < ε

4 for the
shadowing of fn, for every n. Thus, fn has the uniform shadowing property.

Remark: Looking the proof of the previous theorem again, one can notice that we
proved that any ε

2 -pseudo-orbit of fn is an ε-pseudo-orbit of f if we take n sufficiently
large. keeping this in mind we can prove the following theorem. The first item of it
was proved by Fedeli and Le Donne in [5].

Theorem 4.1.4. Let X be a compact metric space and let fn : X→ X be a sequence of continuous
maps converging uniformly to f .

1. If fn is chain-transitive for every n, then f is chain-transitive.

2. If fn is chain-mixing for every n, then f is chain-mixing.

3. If fn is chain-recurrent for every n, then f is chain-recurrent.
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Proof. 1) Let x, y ∈ X and fix ε > 0. Since fn is chain-transitive for every n there exists {xn
i }

finite ε
2 -pseudo orbits of fn starting on x and ending on y. Therefore the previous remark

tells us that {xn0
i } is an ε-pseudo orbit of f if we take n0 sufficiently large. Therefore f is

chain-transitive

2) Let x, y ∈ X and fix ε > 0. Since fn is chain-transitive for every n there exists Kn

and a {xn
i }

k
i=0 finite ε

2 -pseudo orbits of fn starting on x and ending on y for every k > kn.
Therefore the previous remark tells us that {xn0

i }
k
i=0 is an ε-pseudo orbit of f for every

k > k0 if we take n0 sufficiently large. Therefore f is chain-mixing.

3) Let x, y ∈ X and fix ε > 0. Since fn is recurrent for every n there exists {xn
i } finite

ε
2 -pseudo orbits of fn starting on x and ending on x. Therefore the previous remark
tells us that {xn0

i } is an ε-pseudo orbit of f if we take n0 sufficiently large. Therefore f is
chain-recurrent. �

Joining the two last theorems, we can give a positive answer to our question when
the property (P) is topological transitivity, topological mixing, or non-wandering.

Theorem B. Let X be a compact metric space and fn : X → X be a sequence o topologically
transitive maps that converges uniformly to a maps f . Suppose that fn has the uniform
shadowing property. Then f is topologically transitive.

Proof. Since each fn is transitive, then it is chain-transitive. Thus theorem 4.1.4 implies
f is chain-transitive. Since theorem A implies f has the shadowing property, then f is
transitive.

�

Theorem C. Let X be a compact metric space and fn : X → X be a sequence o topologically
mixing maps that converges uniformly to a maps f . Suppose that fn has the uniform shadowing
property. The f is topologically mixing.

Proof. Since each fn is topologically, then it is chain-mixing. Thus theorem 4.1.4 implies
f is chain-mixing. Since theorem A implies f has the shadowing property, then f is
topologically mixing.

�

Theorem D. Let X be a compact metric space and fn : X→ X be a sequence of non-wandering
maps that converges uniformly to a maps f . Suppose that fn has the uniform shadowing
property. Then f is non-wandering.

Proof. Since each fn is non-wandering, then it is chain-recurrent. Thus theorem 4.1.4
implies f is chain-recurrent. Since theorem A implies f has the shadowing property,
then f is recurrent. �

We end this section giving conditions to assure the positiveness of the entropy of a
uniform limit map of a sequence of maps (with positive entropy or not).
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Corollary E. Let X be a connected compact metric space and fn : X → X be a sequence of
non-wandering maps that converges uniformly to a maps f . Suppose that fn has the uniform
shadowing property. Then f has positive entropy.

Proof. By the previous theorem, f is non-wandering. Since X is connected f is topolog-
ically mixing and therefore is sensitive to initial conditions. Thus f is a non-wandering
map, with shadowing property and a sensitive point. Therefore theorem 3.5.6 implies
that f has positive topological entropy. �

4.2 Pointwise Dynamics

In this section we will present some results concerning pointwise dynamics. We begin
giving a proof for the theorem 3.2.3 of chapter three. We remark that this theorem was
discovered by Morales in [7]. Here, we present a new and shorter proof for it, which
works when the map f is an homeomorphism or not. First we need the following
lemma.

Lemma 4.2.1. A point x ∈ X is shadowable if, and only if, for every ε > 0 there exists δ > 0
such that every δ-pseudo-orbit through Bδ[x] is ε shadowed for some point in X.

Proof. (⇐) Fix ε > 0 and let δ > 0 be as in the hypothesis. Obviously every δ-pseudo-
orbit through x is a δ-pseudo-orbit through Bδ[x] and therefore is ε-shadowed by some
point in x.

(⇒) Now suppose x is shadowable and fix ε > 0. Let δ′ be given by the ε
2 -shadowing

through x. Since f is uniformly continuous there exists δ > 0 such that if d(y, z) < δ
then d( f (y), f (z)) < δ′

2 . We can suppose δ < ε
2 and δ < δ′

2 . Let {xn} be a δ-pseudo-orbit
through Bδ[x]. And define the following sequence:

yn =

xn, n < 0
x, n = 0

We claim that yn is a δ′-pseudo-orbit through x. In fact, we only need to show that
d( f (x), x1) < δ′. This follow immediately by the triangle inequality since d( f (x), x1) ≤
d( f (x), f (x0))+d( f (x0), x1) ≤ δ′

2 + δ′

2 = δ′. Thus there exists y ∈ X such that d( f n(y), yn) < ε
2

for every n ≥ 0. Finally observe that d(y, x0) ≤ d(y, x) + d(x, x0) ≤ ε
2 + ε

2 = ε. This means
that y ε-shadows {xn}. �

Theorem 4.2.2. A continuous map on a X compact metric space has the shadowing property
if, and only if, every point in X is shadowable.

Proof. (⇒) This direction is obvious.

(⇐) Let us consider an arbitrary ε > 0. Then for every x ∈ X there exists δx > 0
such that every δx-pseudo-orbit through Bδx[x] is ε-shadowed by some point in X. Now
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{Bδx(x)}x∈X is an open cover for X and by compacity we can extract a finite subcover
{Bδxi

(xi)}. Let δ = mini{δxi} and consider {yn} any δ-pseudo-orbit of f . Clearly y0 ∈ Bδxi
[xi]

for some i and since δ ≤ δxi {yn} is ε-shadowed by some point in X. �

In the following, we extend the previous theorem for others forms of shadowing
property. The first one is the average shadowing property. The idea behind average
shadowing property is similar to the shadowing property, but it is slightly different.
Indeed, for average shadowing we admits that the pseudo-orbit are similar to real
orbits in average.

Definition 4.2.3. A subset {xi}i∈N is an δ-average-pseudo-orbit if there exist k such that

1
n

Σn
i=0d( f (xi+k), xi+k+1) < δ

for every n ≥ k.

Definition 4.2.4. We say that a δ-average-pseudo-orbit {xi}i∈N is ε-shadowed in average by x
if

lim
n→∞

1
n

Σn
i=0d( f i(x), xi) < ε

.

Next we prove a version of previous result for average shadowing.

Definition 4.2.5. Let A ⊂ X. We say that a sequence {xn}n≥0 is a δ-average-pseudo-orbit
through x if it is a δ-average-pseudo-orbit and x0 ∈ A.

Definition 4.2.6. We say that a point x ∈ X is a average-shadowable point if for ε > 0 there is
δ > 0 such that every δ-average-pseudo-orbit through x is ε-average-shadowed by some point
in X.

Lemma 4.2.7. A point x ∈ X is average-shadowable if, and only if, for every ε > 0 there exists
δ > 0 such that every δ-average-pseudo-orbit through Bδ[x] is ε average-shadowed for some
point in X.

Proof. (⇐) Fix ε > 0 e let δ be as in the hypothesis. Obviously every δ-average-pseudo-
orbit through x is a δ-average-pseudo-orbit through Bδ[x] and therefore is ε-average-
shadowed by some point in x.

(⇒) Now suppose x is average-shadowable and fix ε > 0. Let δ′ be given by the ε
2 -

average-shadowing through x. Proceeding as in the lemma 4.2 chose an δ > 0 satisfying
the same conditions . Now let {xn} be a δ-average-pseudo-orbit through Bδ[x] and define
the following sequence:

yn =

xn, n < 0
x, n = 0
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We clain that yn is a δ′-average-pseudo-orbit through x. Indeed, since xn is an
avererage pseudo orbit there exists an integer N such that

1
n

Σn
i=0d( f (xk+i), xk+i+1) < δ

for every k and n ≥ N. Then 1
nΣn

i=0d( f (yk+i), yk+i+1) < δ
n + δ = δ′ for every integer k and

n ≥ 1. Therefore there exists y ∈ X such that y ε
2 -shadows yn. Finally we observe that

lim sup
1
n

Σ∞n=0d( f n(y), xn) < lim sup
1
n

d(y, x0) + lim sup
1
n

Σ∞n=0d( f n(y), xn) < 0 +
ε
2
< ε

Thus xn is ε-shadowable.

�

Theorem F. A continuous map on a X compact metric space has the average-shadowing
property if, and only if, every point in X is average-shadowable.

Proof. (⇒) This direction is obvious.

(⇐) Let us consider an arbitrary ε > 0. Then for every x ∈ X there exists δx > 0
such that every δx-average-pseudo-orbit through Bδx[x] is ε-average-shadowed by some
point in X. Now {Bδx(x)}x∈X is an open cover for X and by compacity we can extract a
finite subcover {Bδxi

(xi)}. Let δ = mini{δxi} and consider {yn} any δ-average-pseudo-orbit
of f . Clearly y0 ∈ Bδxi

[xi] for some i and since δ ≤ δxi {yn} is εaverage-shadowed by
some point in X. �

We end our discussion about shadowing points noticing that sometimes it makes
no sense try to extend some characterization which works on a specific case, for all
other possible cases. indeed, the next theorem does not add extra information about
the previous knowledge concerning the limit shadowing property.

Definition 4.2.8. We say that a sequence {xi}i∈N is a limit-pseudo-orbit of f if d( f (xi), xi+1)→ 0
when i→∞.

Definition 4.2.9. We say that a limit-pseudo-orbit {xi}i∈N is limit-shadowed by a point x if
di( f i(x), xi)→ 0 when i→∞

The idea behind limit-shadowing property is when i increases the pseudo-orbit
looks more similar to an real orbit. Furthermore, the pseudo orbit is followed by a real
orbit which get closer to it as i grows.

Next we try to obtain a similar theorem for the limit-shadowing property.

Definition 4.2.10. Let x ∈ X. We say that a sequence {xn}n≥0 is a δ-limit-pseudo-orbit through
x if it is a δ-limit-pseudo-orbit and x0 = x.

Definition 4.2.11. We say that a point x ∈ X is a limit-shadowable point if every limit-pseudo-
orbit through x is limit shadowable for some point in x.
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Proposition 4.2.12. A continuous map on a X compact metric space has limit-shadowing
property if, and only if, every point in X is limit-shadowable.

Proof. The proof quite obvious, since the limit shadowing property does not depends
on the point x0. �

As we have seen, the previous theorems does not say anything new to improve our
understanding about limit-shadowing property.

Now we will give a result in the same spirit of 3.5.6 but with a weaker hypothesis
about the shadowing property. Indeed, we will give a pointwise version of it. Before
to start let us define a pointwise version of expansiveness.

Definition 4.2.13. Let (X,F) be a TDS. We say that a point is x is an positively-expansive
point if there are e > 0 and V a neighborhood of x such that for any y, z ∈ V distinct points,
there exists i ∈N such that d( f i(y), f i(z)) > e. Let Ex( f ) denote the set of positively-expansive
points of f .

Now we shall discuss some properties of expansive points.

Proposition G. Let x be a compact metric space and let f : x→ X be a continuous map. Then
f is expansive if, and only, Ex( f ) = X

Proof. If f is positively-expansive then every x is obviously an expansive point.

Conversely, if every point of X is positively-expansive, then for every x there are
Ux an open neighborhood of x and ex an expansiveness constant for f |Ux . Since the sets
Ux form an open covering for X and X is compact, there exists an finite sub-covering
Ux1 , ...,Uxn . set e = min{ex1 , ..., exn , η}, where is the Lebesgue number of the covering.
Therefore if d( f j(y), f j(z)) < e for every j ≥ 0, then y, z ∈ U(xi) for some i = 1, ...,n and
this implies y = z. Therefore f is positively-expansive. �

Proposition H. Let x be a compact metric space and let f : X→ X be a continuous map. Then
f (Ex( f )) ⊂ Ex( f ).

Proof. Let x ∈ f (Ex( f )). Then there exists a point y ∈ Ex( f ) such that f (y) = x. Since y is
an expansive point, there exists e > 0 and an open neighborhood V of y, such that for
each pair of distinct point z1, z2 ∈ V we have d( f i(z1), f i(z2)) > e for some i. Since f is
continuous, then U = f −1(Be(x)) is an open set containing y. Set W = U ∩V. Now, W is
an open set containing x. Thus every pair of distinct points in W must to be e-apart for
some time greater than 1. Therefore y ∈ Ex( f ). �

Now we prove our main theorems on pointwise dynamics.

Theorem I. Let X be a compact metric space and let (X, f ) be a TDS. If there exists a non-
periodic point x which is non-isolated, shadowable, positively-expansive and non-wandering
then f has positive topological entropy.
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Proof. Let x be a non-periodic, non-wandering, positiveli-expansive and shadowable
point. Let U be a neighborhood of x. Since x is expansive, there are e > 0 and an open
neighborhood V of x such that for any pair of points y, z ∈ V there exists l such that
d( f l(x), f l(y)) > e.

Take U′ = U ∩ V. Now let 0 < ε < e
10 such that Bε(x) ⊂ U′ Let 0 < δ < ε

2 be given by
the ε

2 -shadowing through {x}.

Since X is compact, f is uniformly continuous and therefore there is 0 < η < δ such
that d( f (y), f (z)) < δ when d(y, z) < η.

Claim 4.2.14. There are k and two distinct points a, b ∈ U such that f nk(a), f nk(b) ∈ U for
every n.

Since x is a non-periodic non-wandering point, we shall divide the proof of the
claiming in two cases.

1) If x is a recurrent point, then there exists m1 such that f m1(x) ∈ Bη(x). Since X has
not isolated points the set W = Bη(X)\{ f (x), ..., f m1(x)} is an open neighborhood of x and
therefore there exists m2 such that f m2(x) ∈ W. Let xa = f m1(x) and xb = f m2(x). Clearly
xa , xb since xa < W. Since Bη ⊂ V, there exists l such that d( f l(xa), f l(xb)) > e.

Now, W′ = Bη(x) \ { f (x), f 2(x), ..., f m2+l
} is an open neighborhood of x, then there

exists m3 > m2 + l such that f m3(x) ∈W′. From a similar argument we can find m4 > m3

such that f m4(x) , f m3(x) and f m4(x) ∈W′. Set k1 = m3 −m1 and k2 = m4 −m2.

Consider the sets

A = {x, f (xa), ..., f k1−1(xa), f k1(xa)} and B = {x, f (xb), ..., f k2−1(xb), f k2(xb)}

We have d(x, xa), d(x, xb) < η and therefore d( f (x), f (xa)), d( f (x) f (xb)) < δ. Thus the
above sets are δ pseudo orbits through {x}. The shadowableness of x implies that there
exist a and b that ε2 -shadows A and B respectively. Thus d( f nk1(a), x) < ε

2 and d( f nk1(a), x) <
ε
2 for every n. Then if k = k1k2 we have f nk(a), f nk(b) ∈ U for every n. To prove that
a , b we notice that d( f l(xb), f l(b)), d( f l(xa), f l(a)), < ε < e

10 and d( f l(xa), f l(xb)) > e. Thus
f l(a) , f l(b) and therefore a , b.

2) If x is not a recurrent point there are xa ∈ Bη(x) and k1 such that xa , x and
f k1(xa) ∈ Bη(x). Since X has not isolated points the set W = Bη(x) \ {xa, f (xa), ..., f k1(xa)} is
an open neighborhood of x. Thus there are xb and k2 such that f k2(xb) ∈ W. Now we
proceed in the same way as in the case 1) to obtain the points a and b and this proves
our claiming.
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Figure 4.3: An illustration of the main idea of the proof of the claiming.

Let a, b given by the claiming and consider the sets B0 = Bε( f l(a)) and B1 = Bε( f l(b)).
Since ε < e

10 and d( f l(a), f l(b)) > e, then B0 ∩ B1 = ∅ . Let (Σ, ρ) denote the space of the
sequences of zeros and ones endowed with the standard metric. For each s = (si)i∈N ∈ Σ

define the set Ys := {y ∈ Bε(x); f ki
∈ Bε(x) ∧ f ki+l(y) ∈ Bsi ,∀i ∈N}.

We claim that Ys is non empty for every s. indeed, fix s ∈ Σ. Define the following
δ-pseudo-orbit through {x}

As = (Zs1Zs2 ..Zsi ...)

Where Zsi = (x, f (a), ..., f k−1(a)) if si = 0 and Zsi = (x, f (a), ..., f k−1(b)) if s1 = 1. Then the
shadowing through {x} gives a point ys that ε-shadows As and therefore Ys is non-empty.

Fix s ∈ Σ and let (y j) j∈N ∈ Ys be a sequence of points converging to ys. Then for
every i we have f ki(y j) ∈ Bη(x) and f ki+l(y j) ∈ Bsi for every j. The continuity of f ki and
f ki+l implies that f ki(y j) → f ki(y) and f ki+l(y j) → f ki+l(y). Therefore f ki(y) ∈ Bη(x) and
f ki+l(y) ∈ Bsi . Thus Ys is closed for every s ∈ Σ.

Set Y =
⋃

s∈Σ Ys. Let (yn)n∈N ∈ Y be a sequence of points in Y converging to a point
y. Thus for each yn there is an sn such that yn ∈ Ysn . By compacity of Σ we can assume
that sn → s, up to take a subsequence of (sn). Thus y must to belong to Ys and therefore
Y is closed.

Next we are going to show that Y is f k-positively invariant. Indeed, take y ∈ Y.
Then there exists s such that y ∈ Ys. Thus f ki(y) ∈ Bη(x) and f ki+l(y) ∈ Bsi for every i. If
we apply f K on y, we obtain that f k(i+i)(y) ∈ Bη(x) and f k(i+1)+l(y) ∈ Bs(i+1) , for every i.
Then f k(y) ∈ Ys′ where s′i = si+1 and therefore Y is f k-positively invariant.

Now we will construct a semi-conjugation between the subsystem (Y, f k) and the
two symbol shift (Σ, σ). indeed, consider the map Π : Y → Σ defined by Π(y) = s if
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y ∈ Ys. Since Ys is non-empty for every s, Π is a surjection. Furthermore, by the above
discussion Π( f k(y)) = s′ = σ(Π(y)). Thus Π satisfies the conjugation equation. The
continuity of Π follows by an argument analogous to the one used to prove that Y is
closed.

Thus (Y, f k) is semi-conjugated to the two symbol shift and therefore kh( f |Y) =
h( f k
|Y) ≥ h(σ) > 0 and therefore h( f ) ≥ h( f |Y) > 0. �

Next we will argue that we can weaken the hypothesis about the expansiveness of
x.

Definition 4.2.15. Let (X,F) be a TDS. We say that a point is x is an positively n-expansive
point if there are e > 0 and V a neighborhood of x such that for any y ∈ V the cardinality of the
set D(y, e) := {z ∈ X; d( f n(y), f n(z)) < e,∀n ∈N} is smaller or equal than n.

Clearly if x is an expansive point, then it is an n-expansive point for any n. Thus we
can generalize the previous theorem to obtain the following

Theorem J. Let X be a compact metric space without isolated points and let (X, f ) be a
TDS. If there exists a non-periodic point x which is shadowable, positively n-expansive and
non-wandering then f has positive topological entropy.

Proof. The kernel of the proof of theorem I is to find two distinct points points in U
which in sometime be apart, but after this, they return to U. Then if we can do this in
our case, we can reproduce the previous proof straightforward. To obtain these points
we notice that since in x is not an isolated point, we can find any finite amount of points
which behaves in a way similar to the a and b on the previous proof. Now suppose f is
n-expansive and let a1, ..., an+2 ∈ U and k ∈ N such that f nk(ai) ∈ U for every n. Since f
is n-expansive, if we fix ai then at least one a j is such that d( f m(ai), f m(a j)) > e for some
m. Now, we proceed in the same manner as in the proof of J, to prove the theorem. �

We end this work with a corollary of the proof of theorem I.

Corollary K. Let X be a compact metric space and let (X, f ) be a TDS. If f is expansive, f has
the shadowing property and #Per( f ) = ∞, then h( f ) > 0.

Proof. Since X is compact, then the periodic points of f must to accumulate in some
point x. Since f is a expansive map with the shadowing property, then x is shadowable
and expansive. Now f is a non-wandering point since it is accumulated by periodic
points. Here, x can be a periodic point, but it does not matter. Indeed, by the proof of
theorem I we just need to find two distinct points with returns to U, then we can take
two distinct periodic points in U. Hereafter, the proof is analogous to the the proof of
I. �
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