



#### GEOMETRIA DE FOLHEAÇÕES PARTICULARES DE GRAU DOIS EM $\mathbb{P}^2$

#### Lucas das Dores

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Matemáticada Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Matemática.

Orientador: Severino Collier Coutinho

Rio de Janeiro Janeiro de 2016

### GEOMETRIA DE FOLHEAÇÕES PARTICULARES DE GRAU DOIS EM $\mathbb{P}^2$

#### Lucas das Dores

Dissertação submetida ao corpo docente do programa de Pós-Graduação do Instituto de Matemática da Universidade Federal do Rio de Janeiro como parte dos requisitos necessários para a obtenção do grau de Mestre em Matemática.

| Examinada por: |                                                         |
|----------------|---------------------------------------------------------|
|                |                                                         |
|                |                                                         |
|                | Prof. Severino Collier Coutinho, Doutorado (presidente) |
|                |                                                         |
|                | Prof. Nicolas Paul André Puignau, Doutorado             |
|                |                                                         |
|                | Prof. Viviana Ferrer Cuadrado, Doutorado                |

RIO DE JANEIRO, RJ – BRASIL JANEIRO DE 2016 das Dores, Lucas

Geometria de folheações particulares de grau dois em  $\mathbb{P}^2/\text{Lucas}$  das Dores. – Rio de Janeiro: UFRJ, 2016.

XI, 72 p. 29,7cm.

Orientador: Severino Collier Coutinho

Dissertação (mestrado) – UFRJ/Programa de Pós-Graduação em Matemática, 2016.

Referências Bibliográficas: p. 71 - 72.

Fluxos.
 Singularidades.
 Formas.
 Órbitas.
 Folheações.
 Coutinho, Severino Collier.
 Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Matemática.
 Título.

Genuinamente, ao estudante, ao curioso e a ti.

## Agradecimentos

Primeiramente, à Margarida Rosa, minha avó-flor formosa, pelo modelo de amor que sempre foi.

À Denise Silva de Souza das Dores, minha mãe, a quem devo grande parte de minhas virtudes.

Aos amigos, pela força e estímulo e insistência e paciência e os muitos mais atos de carinho dispensados. Em especial, a Daniel Chaves que, além de requisitar expressamente participação nesta seção, prestou grande assistência em minhas atribulações com o sistema Linux.

A meu orientador, Severino Collier Coutinho, pela infinda paciência e dedicação que tomo hoje como qualidades essenciais de um bom educador.

#### GEOMETRIA DE FOLHEAÇÕES PARTICULARES DE GRAU DOIS EM №

#### Lucas das Dores

Orientador: Severino Collier Coutinho

#### Resumo

Seja  $\mathscr{F}(2,2)$  o conjunto de folheações de grau 2 em  $\mathbb{P}^2$  identificado com um aberto Zariski em  $\mathbb{P}^{14}$ . Classificamos, a menos de mudança de coordenadas, todas as folheações deste conjunto contendo apenas uma singularidade. A saber, existem 4 folheações deste tipo. Enquanto três possuem dinâmica bem descrita por integrais primeiras, a quarta foge deste padrão.

Em um segundo momento deduzimos informações geométricas da ação de  $PGL_3(\mathbb{C})$  em  $\mathscr{F}(2,2)$  e concluímos que, a menos de automorfismo, existem apenas duas folheações que possuem órbitas com dimensão minimal. Uma delas possuindo uma única singularidade, e portanto dentro de nossa primeira classificação, e a segunda com duas singularidades.

# Sumário

| Li | Lista de Figuras    |                                                        |    |  |  |  |  |  |  |  |  |  |  |  |
|----|---------------------|--------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|--|--|
| Li | sta d               | le Símbolos                                            | x  |  |  |  |  |  |  |  |  |  |  |  |
| 1  | Geometria em Formas |                                                        |    |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.1                 | Multiplicidade e Índice de Interseção                  | 2  |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.2                 | Formas e Campos Afins                                  | 4  |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.3                 | Formas e Campos Projetivos                             | 8  |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.4                 | Número de Milnor                                       | 12 |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.5                 | Folheações de grau 2 com uma singularidade             | 14 |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.6                 | Caso Nilpotente                                        | 15 |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.7                 | Caso Sela-nó                                           | 17 |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.8                 | Caso em que o 1-jato é nulo                            | 20 |  |  |  |  |  |  |  |  |  |  |  |
|    | 1.9                 | Teorema de Classificação                               | 24 |  |  |  |  |  |  |  |  |  |  |  |
| 2  | Inte                | erstício Teórico                                       | 25 |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.1                 | Grupos algébricos e suas ações                         | 25 |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.2                 | Álgebras de Lie em $\mathbb{P}^2$                      | 28 |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.3                 | Representações de $\mathrm{SL}_2(\mathbb{C})$          | 32 |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.4                 | Teorema de Lie                                         | 33 |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.5                 | Álgebras de Lie de dimensão 2                          | 35 |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.6                 | Simetrias e Derivadas de Lie                           | 35 |  |  |  |  |  |  |  |  |  |  |  |
| 3  | Órk                 | pitas sob a ação de $\operatorname{PGL}_3(\mathbb{C})$ | 41 |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.1                 | Dimensão das Órbitas                                   | 41 |  |  |  |  |  |  |  |  |  |  |  |
|    | 3.2                 | Casos de dimensão minimal em $\mathscr{F}(2,n)$        | 46 |  |  |  |  |  |  |  |  |  |  |  |
| A  | Pla                 | nos de Fase Reais                                      | 55 |  |  |  |  |  |  |  |  |  |  |  |
| В  | Mé                  | todos Computacionais                                   | 58 |  |  |  |  |  |  |  |  |  |  |  |
|    | B.1                 | Proposição 1.7.5                                       | 58 |  |  |  |  |  |  |  |  |  |  |  |

| Refer | ências Bibliográficas            | 71 |
|-------|----------------------------------|----|
| B.6   | Proposição 3.2.2                 | 67 |
| B.5   | Proposição 3.1.2                 | 64 |
| B.4   | Integrais Primeiras              | 62 |
| B.3   | Hiperplanos em $\mathbb{P}^{29}$ | 61 |
| B.2   | Proposição 1.8.5                 | 60 |

# Lista de Figuras

| A.1 | $\mathcal{F}_1$ na carta | afim A | $\mathbb{A}^2_z$ . |   |   |  |   |  |      |   |  |  |  |  |  |  |  | 55 |
|-----|--------------------------|--------|--------------------|---|---|--|---|--|------|---|--|--|--|--|--|--|--|----|
| A.2 | $\mathcal{F}_2$ na carta | afim A | $\mathbb{A}^2_z$ . |   |   |  |   |  | <br> |   |  |  |  |  |  |  |  | 56 |
| A.3 | $\mathcal{F}_3$ na carta | afim A | $\mathbb{A}^2_z$ . | ٠ | • |  | • |  |      | • |  |  |  |  |  |  |  | 56 |
| A.4 | $\mathcal{F}_4$ na carta | afim A | $\mathbb{A}^2_z$ . |   |   |  |   |  | <br> |   |  |  |  |  |  |  |  | 56 |
| A.5 | $\mathcal{F}_5$ na carta | afim A | $\mathbb{A}^2_z$ . |   |   |  |   |  | <br> |   |  |  |  |  |  |  |  | 57 |
| A.6 | $\mathcal{F}_5$ na carta | afim A | $\mathbb{A}^2_x$   |   | • |  |   |  | <br> |   |  |  |  |  |  |  |  | 57 |

# Lista de Símbolos

| $C_f$                                             | Curva em $\mathbb{P}^2$ gerada pelo anulamento de $f$ , p. $2$                                 |
|---------------------------------------------------|------------------------------------------------------------------------------------------------|
| $m_p(f)$                                          | Multiplicidade do ponto $p$ na curva $C_f$ , p. 2                                              |
| $\mathbb{C}[f]$                                   | Anel de coordenadas da curva $C_f$ , p. 2                                                      |
| G                                                 | Grupo abstrato ou grupo algébrico, p. 25                                                       |
| $L_{\mathcal{X}}\mathcal{Y}$                      | Derivada de Lie de ${\mathcal Y}$ em relação a ${\mathcal X}$ , p. $35$                        |
| $L_{\mathcal{X}}\omega$                           | Derivada de Lie da forma $\omega$ em relação ao campo $\mathcal{X}$ , p. 36                    |
| $M_n(\mathbb{C})$                                 | Matrizes $n \times n$ com entradas em $\mathbb{C}$ , p. 25                                     |
| TX                                                | Fibrado tangente da variedade $X$ , p. 5                                                       |
| $T_pX$                                            | Espaço tangente de $X$ em $p$ , p. 5                                                           |
| $\mathbb{A}^2_x, \mathbb{A}^2_y, \mathbb{A}^2_z$  | Cartas afins de $\mathbb{P}^2$ , p. 13                                                         |
| ${\cal F}$                                        | Folheação de codimensão 1 e grau $n$ , p. 12                                                   |
| $\operatorname{Sing}(\mathcal{F})$                | Conjunto de singularidades de $\mathcal{F}$ , p. 12                                            |
| $\chi(\mathbb{P}^2)$                              | Subálgebra de Lie dos campos representados por matrizes de traço nulo em $\mathbb{P}^2,$ p. 31 |
| $\exp(t\mathcal{X})p$                             | Exponencial (fluxo) de um campo $X$ em $p$ , p. 6                                              |
| $(C_f \cdot C_g)_p$                               | Índice de interseção das curvas $C_f$ e $C_g$ no ponto $p$ , p. 3                              |
| $\iota_{\mathcal{X}}(\omega),\omega(\mathcal{X})$ | Produto interior do campo $\mathcal X$ com a forma $\omega,$ p. 7, 9                           |
| $\Psi(t,p), \Psi_t(p)$                            | Fluxo de um campo por um ponto $p$ , p. 6                                                      |
| $\mathcal{C}_{\omega}$                            | Cone tangente relativo a forma $\omega$ , p. 20                                                |
| $\mathcal{O}_p(f)$                                | Anel local da curva $C_f$ no ponto $p$ , p. 3                                                  |

- $\mathfrak{g}$  Álgebra de Lie de um grupo algébrico G, p. 29
- $A_n(\mathbb{C})$  Grupo de transformações afins de *n*-espaços, p. 26
- $\mathrm{GL}_n(\mathbb{C})$  Grupo linear geral sobre  $\mathbb{C}$ , p. 25
- $\operatorname{PGL}_{n+1}(\mathbb{C})$  Grupo de automorfismos de  $\mathbb{P}^n$ , p. 26
  - $\mathrm{SL}_n(\mathbb{C})$  Grupo linear especial sobre  $\mathbb{C}$ , p. 26
  - Vec(X) Álgebra de Lie dos campos de vetores sobre X, p. 28
  - iso( $\mathcal{F}$ ) Grupo de isotropia de  $\mathcal{F}$ , p. 41
  - $\mathscr{F}(2,n)$  Conjunto de folheações de codimensão 1 e grau n em  $\mathbb{P}^2$ , p. 41
    - $\mathcal{O}_{\mathcal{F}}$  Órbita de  $\mathcal{F}$  em relação a ação de  $\operatorname{PGL}_3(\mathbb{C})$ , p. 41
      - $\rho$  Representação de um grupo algébrico ou álgebra de lie, p. 32
    - $\underline{\mathbf{m}}_p(f)$  Ideal maximal de  $\mathcal{O}_p(f)$ , p. 3
  - GL(V) Grupo linear do espaço vetorial V, p. 26
  - $\mu(\mathcal{F}, p)$  Número de Milnor da folheação  $\mathcal{F}$  no ponto p, p. 13

## Introdução

Usamos como referência principal o trabalho de Cervau, Déserti, Garba Belko e Meziani [1] no intuito de explorar seus resultados desenvolvendo uma teoria mínima para sua compreensão, seja através de alguns resultados da literatura ou reinterpretações dos mesmos.

O Capítulo 1 inicia-se com resultados essenciais da teoria de interseção de curvas algébricas, focando no conceito de índice de interseção e Teorema de Bézout, como apresentado no trabalho de Fulton [3].

Apresentamos, também, a definição de folheação e a relação entre folheações e formas. Dotados estes conceitos já é possível demonstrar um dos principais resultados do trabalho, a saber a classificação de folheações de grau dois em  $\mathbb{P}^2$  com uma única singularidade, a menos de automorfismo. Uma folheação deste tipo é representada por uma das seguintes formas em carta afim:

(a) 
$$\omega_1 = x^2 dx + y^2 (x dy - y dx)$$

(b) 
$$\omega_2 = x^2 dx + (x + y^2)(x dy - y dx)$$

(c) 
$$\omega_3 = xy dx + (x^2 + y^2)(x dy - y dx)$$

(d) 
$$\omega_4 = (x + y^2 - x^2 y) dy + x(x + y^2) dx$$
.

Esta classificação dá sequência às já conhecidas classificações de folheações de grau 0 e 1 em  $\mathbb{P}^2$  apresentadas por Jouanolou [2]. Para estes casos é possível associar canonicamente uma matriz  $3 \times 3$  a cada folheação e, assim, é possível criar uma especificação das mesmas através da forma canônica de Jordan da matriz associada.

Uma vez estabelecido este resultado, nossa discussão perpassa proposições elementares sobre grupos algébricos e álgebras de Lie no Capítulo 2, com o intuito de nos munir de teoria essencial usada no Capítulo 3, no qual analisamos as órbitas de uma folheação genérica  $\mathcal{F}$  sob a ação do grupo de automorfismos Aut( $\mathbb{P}^2$ ). Descobrimos, então, que a dimensão minimal dessas órbitas é 6 e é atingida na órbita da folheação  $\mathcal{F}_1$  (representada por  $\omega_1$ ) e a outra na órbita da folheação com 2 singularidades representada pela forma  $\omega_5 = x^2 dy + y^2 (x dy - y dx)$ .

## Capítulo 1

## Geometria em Formas

## 1.1 Multiplicidade e Índice de Interseção

Seja  $f \in \mathbb{C}[x,y]$  um polinômio não constante, dizemos que o anulamento de  $f, C_f := \{f = 0\}$ , é uma **curva algébrica** em  $\mathbb{A}^2$ . Se f é irredutível  $C_f$  é uma variedade. Seja  $p = (p_1, p_2) \in C_f$ , dizemos que p é **ponto simples de**  $C_f$  se pelo menos uma das derivadas  $f_x$  ou  $f_y$  é não nula em p. Um ponto que não é simples será chamado de **múltiplo** ou **singular** e uma curva que só possua pontos simples será chamada **curva não singular**.

Considere o ponto p=(0,0) em  $C_f$ , podemos escrever  $f=f_m+f_{m+1}+\cdots+f_n$  em que  $f_i$  é um polinômio homogêneo não nulo de grau i. Definimos, então, o número m como a **multiplicidade de**  $C_f$  em p=(0,0) e denotamos m por  $m_p(f)$ . Note que  $p\in C_f$  se, e somente se,  $m_p(f)>0$  e que p é simples se, e somente se,  $m_p(f)=1$ , p é duplo se m=2, triplo se m=3 e segue nomenclaturas similares para  $m\geq 3$ .

Podemos escrever  $f_m$  como produto de polinômios lineares, em outras palavras  $f_m = \prod r_i^{e_i}$ . As curvas  $C_{r_i}$  são chamadas **retas tangentes** a  $C_f$  em p = (0,0) e  $e_i$  é chamada **multiplicidade** da tangente. A reta  $C_{r_i}$  é uma tangente simples (resp. dupla, tripla, etc.) se  $e_i = 1$  (resp. 2,3, etc.). Considerando  $f = \prod g_i^{s_i}$  a fatoração em componentes irredutíveis de f temos  $m_p(f) = \sum s_i m_p(g_i)$ .

Para estender essas definições para um ponto  $p = (p_1, p_2) \neq (0, 0)$ , definimos

$$m_p(f(x,y)) = m_0(f(x+p_1,y+p_2)).$$

Considere, agora, f irredutível e  $p \in C_f$ . Podemos compreender a multiplicidade de p em  $C_f$  através de seu anel local. Lembramos que o anel de coordenadas de  $C_f$  é dado por  $\mathbb{C}[f] = \mathbb{C}[x,y]/(f)$  e o anel local de um ponto p na variedade  $C_f$  é o conjunto de funções racionais em  $C_f$  regulares no ponto p, i.e.

 $\{g/h \mid g, h \in \mathbb{C}[f], h(p) \neq 0\}$ . Denotamos este último anel por  $\mathcal{O}_p(C_f)$  ou, mais simplesmente,  $\mathcal{O}_p(f)$  e seu ideal maximal por  $\underline{\mathfrak{m}}_p(f) := \{g \in \mathcal{O}_p(f) \mid g(p) = 0\}$ .

Munidos das notações anteriores, podemos definir o **índice de interseção** de duas curvas  $C_f$  e  $C_g$  num ponto p, denotado  $(C_f \cdot C_g)_p$ . Intuitivamente este índice mede o "número de vezes" que as curvas se intersectam neste ponto. Listaremos brevemente as propriedades que desejamos deste índice, estas nos darão um processo algorítmico para determiná-lo.

Dizemos que  $C_f$  e  $C_g$  se intersectam propriamente em p se não possuem componente comum que passa por p e dizemos que se intersectam transversalmente se p é simples em ambas as curvas com tangentes distintas em cada uma. Enumeramos:

- P1.  $(C_f \cdot C_g)_p$  é um inteiro não negativo se  $C_f$  e  $C_g$  possuem interseção própria em p e  $(C_f \cdot C_g)_p = \infty$  caso contrário.
- P2.  $(C_f \cdot C_g)_p = 0$  se, e somente se,  $p \notin C_f \cap C_g$ . Isto implica que  $(C_f \cdot C_g)_p$  depende apenas dos componentes de f e g que se anulam em p.
- P3. Se T é uma mudança de coordenadas em  $\mathbb{A}^2$ , então  $(C_f \cdot C_g)_p = (T(C_f) \cdot T(C_g))_{T(p)}$ .
- P4.  $(C_f \cdot C_g)_p = (C_g \cdot C_f)_p$ .
- P5.  $(C_f \cdot C_g)_p \ge m_p(f)m_p(g)$ , com igualdade ocorrendo se, e somente se,  $C_f$  e  $C_g$  não possuem tangentes comuns em p. Em particular, se as curvas se intersectam transversalmente  $(C_f \cdot C_g)_p = 1$ .
- P6. Se  $f = \prod_i f_i^{r_i}$  e  $g = \prod_j g_j^{s_j}$ , então  $(C_f \cdot C_g)_p = \sum_{i,j} r_i s_j (C_{f_i} \cdot C_{g_j})_p$  em outras palavras, se as curvas  $C_f$  e  $C_g$  são uniões de curvas, então seu índice em p é a soma dos índices em cada curva que as compõem em p, contados com multiplicidades.
- P7. Para todo  $h \in \mathbb{C}[x,y]$  temos  $(C_f \cdot C_{g+hf})_p = (C_f \cdot C_g)_p$ . Em particular, se f é irredutível, o índice depende apenas de f e da imagem de g em  $\mathbb{C}[x,y]/(f)$ .

A existência e unicidade de tal número é dado pelo teorema abaixo, cuja demonstração pode ser encontrada na seção 3.3 de [3].

**Teorema 1.1.1.** Existe um único número  $(C_f \cdot C_g)_p$  definido para todas as curvas  $C_f$  e  $C_g$  e todos os pontos  $p \in \mathbb{A}^2$ , satisfazendo as propriedades acima, que é dado pela fórmula

$$(C_f \cdot C_g)_p = \dim_{\mathbb{C}} \left( \frac{\mathcal{O}_p(\mathbb{A}^2)}{(f,g)_{\underline{\mathfrak{m}}_p}} \right).$$

Podemos estender a noção de número de interseção para curvas projetivas em  $\mathbb{P}^2$ , lembramos que uma curva projetiva  $C_f$  é uma hipersuperfície em  $\mathbb{P}^2$  definida pelo anulamento de uma classe de equivalência de um polinômio homogêneo  $f \in \mathbb{C}[x,y,z]$ , em que f e g são equivalentes se existe  $\lambda \in \mathbb{C}^*$  tal que  $f = \lambda g$ .

As notações usadas para curvas afins se mantêm para curvas projetivas. Como  $\mathbb{P}^2$  é coberto pelos abertos principais  $\{x \neq 0\}, \{y \neq 0\}$  e  $\{z \neq 0\}$  definimos a multiplicidade de um ponto p da seguinte forma  $m_p(f) := m_p(f_*)$  em que  $f_*$  é a desomogeneização de f em um aberto principal ao qual p pertence. Desta forma se  $p \in \mathbb{P}^2$  definimos o número de interseção de duas curvas projetivas por  $(C_f \cdot C_g)_p := (C_{f_*} \cdot C_{g_*})_{p_*}$  em que  $f_*$ ,  $g_*$  são as desomogeneizações em um certo aberto principal de f e g e  $p_*$  é o ponto que corresponde a p neste aberto. Note que se f for irredutível, então  $\mathcal{O}_p(C_f)$  é isomorfo a  $\mathcal{O}_{p_*}(C_{f_*})$ , de modo que o índice de interseção independe do aberto considerado.

Visto isso, enunciamos um conhecido teorema que será útil na próxima seção e cuja demonstração pode ser encontrada na seção 5.3 de [3].

**Teorema 1.1.2.** (Teorema de Bézout) Sejam  $C_f$  e  $C_g$  curvas projetivas em  $\mathbb{P}^2$  de graus m e n respectivamente e  $S = C_f \cap C_g$ . Se f e g não possuem componente comum, então

$$\sum_{p \in S} (C_f \cdot C_g)_p = mn.$$

#### 1.2 Formas e Campos Afins

Introduzimos, agora, a noção de campo vetorial algébrico em  $\mathbb{A}^n$  com coordenadas  $x_1, \ldots, x_n$ , fundamental para o resto do texto.

Começamos relembrando uma das definições de espaço tangente de uma variedade. Seja X a variedade algébrica em  $\mathbb{A}^n$ , definida pelo ideal I do anel de polinômios  $\mathbb{C}[x_1,\ldots,x_n]$  e seja R uma  $\mathbb{C}$ -álgebra. Definimos  $X(R)=\{(a_1,\ldots,a_n)\in R^n\mid f(a_1,\ldots,a_n)=0, \forall f\in I\}$ . Em particular,  $X(\mathbb{C})=X$ . Note que, se existe um homomorfismo de  $\mathbb{C}$ -álgebras  $R\to S$  isto define uma aplicação  $X(R)\to X(S)$ . Também definimos  $\mathbb{C}[\varepsilon]=\mathbb{C}[t]/(t^2)=\mathbb{C}\oplus\mathbb{C}\varepsilon$ , um  $\mathbb{C}$ -módulo finitamente gerado com multiplicação dada por

$$(a_1 + a_2\varepsilon)(b_1 + b_2\varepsilon) = a_1b_1 + (a_1b_2 + a_2b_1)\varepsilon.$$

Note que existe um homomorfismo natural de  $\mathbb{C}$ -álgebras  $\mathbb{C}[\varepsilon] \to \mathbb{C}$  que leva  $\varepsilon$  em 0.

**Definição 1.2.1.** Seja p um ponto na variedade X sobre  $\mathbb{C}$ . O **espaço tangente** de X em p é definido por

$$T_pX = \{ p' \in X(\mathbb{C}[\varepsilon]) \mid p' \mapsto p \ por \ X(\mathbb{C}[\varepsilon]) \to X \}$$

Lembramos também que a união disjunta dos espaços tangentes  $TX = \bigsqcup_{x \in X} T_x X$  é um **fibrado tangente** de X, munido de uma projeção natural  $\pi: TX \to X$  que leva cada elemento de um espaço tangente  $T_x X$  no ponto x. Uma **seção**  $\mathcal{X}: X \to TX$  de TX é uma aplicação que satisfaz  $\pi \circ \mathcal{X} = \operatorname{Id}_X$ .

Para cada ponto p de X, seu espaço tangente  $T_p\mathbb{A}^n$  é isomorfo a  $D_p(\mathbb{C}[x_1,\ldots,x_n])$ , o espaço das derivações de  $\mathbb{C}[x_1,\ldots,x_n]$  em p, cuja base é  $\left\{\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\right\}$ , também denotada de maneira mais simples por  $\{\partial_{x_1},\ldots,\partial_{x_n}\}$ . Para uma discussão detalhada sobre esse isomorfismo veja Lee [4], Cap. 3, Proposição 3.2, pág. 64. Com esta observação uma seção do fibrado tangente é um campo vetorial sobre a variedade X. Se  $\mathcal{X}=A_1\partial_{x_1}+\cdots+A_n\partial_{x_n}$ , a ação de  $\mathcal{X}$  em um polinômio f de  $\mathbb{C}[x_1,\ldots,x_n]$  é dada por:

$$\mathcal{X}(f) = A_0 \frac{\partial f}{\partial x_0} + \dots + A_n \frac{\partial f}{\partial x_n}.$$

**Definição 1.2.2.** Sejam X uma variedade  $e \mathbb{C}[X]$  seu anel de coordenadas. Um campo de vetores algébrico de uma variedade X é uma seção contínua  $\mathcal{X}: X \to TX$  tal que  $\mathcal{X}(f) \in \mathbb{C}[X]$  para todo  $f \in \mathbb{C}[X]$ . O espaço de todos os campos de vetores algébricos sobre a variedade X é denotado Vec(X).

Considere, agora,  $\varphi: X \to Y$  um morfismo entre variedades e p um ponto em X. Através deste morfismo podemos definir um morfismo entre os espaços tangentes  $\varphi_*: T_pX \to T_{\varphi(p)}Y$  por  $\varphi_*(\mathcal{X})(f) = \mathcal{X}(f \circ \varphi), \ \forall f \in \mathbb{C}[Y]$ , chamado **pushforward** associado a  $\varphi$ . Note que se  $\varphi$  é morfismo no sentido algébrico então  $f \circ \varphi \in \mathbb{C}[X]$  também o é. Logo, a definição faz sentido.

Note, também, que se  $\varphi_1: X \to Y$  e  $\varphi_2: Y \to Z$  são morfismos e se a aplicação  $\varphi_2 \circ \varphi_1: X \to Z$  está bem definida como morfismo, então, segue da definição que  $(\varphi_2 \circ \varphi_1)_* = (\varphi_2)_* \circ (\varphi_1)_*$ . Logo, se  $\varphi: X \to Y$  for isomorfismo então  $T_pX \simeq T_{\varphi(p)}Y$ . Com efeito,  $id = \varphi \circ \varphi^{-1}$ , portanto,  $id = id_* = \varphi_* \circ (\varphi^{-1})_*$ . Concluímos que  $(\varphi_*)^{-1} = (\varphi^{-1})_*$ .

Voltamos agora nossa atenção a campos em  $\mathbb{A}^2$  e lembramos ainda que um campo  $\mathcal{X}=A\partial_x+B\partial_y$  pode ser associado ao sistema de equações diferenciais

$$\begin{cases}
\frac{\mathrm{d}x}{\mathrm{d}t} = A(x,y), \\
\frac{\mathrm{d}y}{\mathrm{d}t} = B(x,y).
\end{cases} (1.1)$$

**Definição 1.2.3.** Uma curva integral de um campo  $\mathcal{X}$  é uma curva parametrizada  $\alpha(t) = (\alpha_1(t), \alpha_2(t))$  que é uma solução para o sistema (1.1) i.e.  $\dot{\alpha}_1 = A \circ \alpha$  e  $\dot{\alpha}_2 = B \circ \alpha$ , em que a notação  $\dot{\alpha}$  representa a derivada em relação a t.

Portanto, dado um campo  $\mathcal{X}$  e um ponto p de  $\mathbb{A}^2$ , segue do Teorema de Existência e Unicidade de sistemas de EDO's que existe uma única curva integral maximal  $\alpha(t)$  tal que  $\alpha(0) = p$ . Aqui, maximal se refere a não estar estritamente contida em nenhuma outra curva integral.

Denotamos  $\Psi(t,p)$  ou  $\Psi_t(p)$  a curva integral maximal com respeito a  $\mathcal{X}$  que passa por p. Dizemos que  $\Psi$  é o fluxo gerado por  $\mathcal{X}$ . Logo, para cada t fixado em um disco  $U_x$  contendo 0, segue-se que  $\Psi_t(p)$  é um ponto na curva integral passando por p. Também é comum se referir ao fluxo gerado por um campo (isto é, o conjunto de soluções do sistema de EDO's) como a **exponencial** do campo. Utilizaremos também a notação  $\exp(t\mathcal{X})p = \Psi_t(p)$ . Dessa definição e notação deduzimos três propriedades básicas:

- 1.  $\Psi_{t_1}(\Psi_{t_2}(p)) = \Psi_{t_1+t_2}(p), p \in \mathbb{A}^2$  sempre que ambos os lados estão definidos, ou equivalentemente,  $\exp(t_1\mathcal{X}) \exp(t_2\mathcal{X})p = \exp((t_1+t_2)\mathcal{X})p$ .
- 2.  $\Psi_0(p) = p$  ou  $\exp(0\mathcal{X})p = p$ .
- 3.  $\frac{\mathrm{d}}{\mathrm{d}t}(\Psi_t(p)) = \mathcal{X}|_{\Psi_t(p)} \ \forall t \text{ em que } \Psi_t(p) \text{ está definido}$  ou  $\frac{\mathrm{d}}{\mathrm{d}t}[\exp(t\mathcal{X})] p = \mathcal{X}|_{\exp(t\mathcal{X})p}.$

**Exemplo 1.2.4.** Considere  $\mathbb{A}^1$ , p um ponto e o campo  $\mathcal{X} = \partial_x$ , então  $\exp(t\partial_x)p = t + p$ .

**Exemplo 1.2.5.** Se 
$$\mathcal{Z}_R = \sum_{i=1}^n x_i \partial_{x_i}$$
 é o campo radial em  $\mathbb{A}^n$  então  $\exp(t\mathcal{X}_R)p = e^t p$ .

Enunciamos um resultado que nos fornece informação sobre a natureza local de sistemas do tipo (1.1) sobre os complexos. Mais geralmente, dois sistemas  $\dot{\mathbf{x}} = f(t, \mathbf{x})$  e  $\dot{\mathbf{x}}' = f'(t', \mathbf{x}')$ , com  $(t, \mathbf{x}) \in U$ ,  $(t', \mathbf{x}') \in U'$  e  $U, U' \subset \mathbb{C} \times \mathbb{C}^n$  são ditos **conjugados** pelo bi-holomorfismo  $H: U \to U'$  (a **conjugação**) se H envia uma curva integral do primeiro sistema a uma curva integral do segundo. A demonstração do teorema a seguir pode ser encontrada em [5], pág. 8.

**Teorema 1.2.6.** (Vizinhança Tubular) Dado um sistema holomorfo  $\dot{\mathbf{x}} = f(t, \mathbf{x})$ , com  $\mathbf{x} \in \mathbb{C}^n$ , e um ponto, existe uma conjugação bi-holomorfa

$$H:(t,\mathbf{x})\mapsto (t,h(t,\mathbf{x})),$$

definida numa vizinhança suficientemente pequena do ponto, entre o sistema original e o sistema  $\dot{\mathbf{x}}'=0$ .

Exploraremos, agora, a relação entre campos e formas polinomiais em  $\mathbb{C}^2$ . Primeiramente nos restringiremos ao caso de retas em  $\mathbb{C}^2$ . Seja L uma reta em  $\mathbb{C}^2$  na direção de um vetor  $w_0$  e seja  $v_0$  um vetor ortogonal a  $w_0$ . Nestas condições, se  $\omega(w)$  denota o produto interno  $v_0 \cdot w$ , então podemos descrever a reta L na forma

$$L = \{ w \in \mathbb{C}^2 \mid w \perp v_0 \} = \{ w \in \mathbb{C}^2 \mid \omega(w) = 0 \}.$$

Note que, pela linearidade do produto interno, se  $\{e_1, e_2\}$  é a base canônica de  $\mathbb{C}^2$ , então  $w = a_1e_1 + a_2e_2$  com  $a_1, a_2$  coeficientes complexos. Além disso,  $\omega(w) = a_1\omega(e_1) + a_2\omega(e_2)$ , donde o produto interno fica unicamente determinado pela sua ação na base. Definimos aplicações auxiliares dx e dy que capturam, respectivamente, a primeira e segunda coordenada de um vetor w. Isto é, d $x(w) = a_1$  e d $y(w) = a_2$ , de modo que podemos escrever  $\omega = \omega(e_1) dx + \omega(e_2) dy$ .

Voltamos a considerar campos algébricos em  $\mathbb{C}^2$ . No espírito da discussão acima, procuramos objetos duais a estes campos. Veremos que 1-formas polinomiais são objetos adequados para este tipo de situação.

**Definição 1.2.7.** Uma 1-forma polinomial  $\omega$  é uma aplicação

$$\omega: \mathbb{C}^2 \times \mathbb{C}^2 \longrightarrow \mathbb{C}$$

$$(p, w) \longmapsto \omega(p, w)$$

que satisfaz:  $\omega(p,\cdot)$  é linear (na  $2^a$  coordenada) e  $\omega(\cdot,w)$  é polinomial (na  $1^a$  coordenada).

Ao longo do texto vamos nos referir a 1-formas polinomiais apenas como 1-formas. Como na discussão anterior, a linearidade de  $\omega(p,\cdot)$  implica que, se  $w=a_1e_1+a_2e_2$ , então  $\omega(p,w)=a_1\omega(p,e_1)+a_2\omega(p,e_2)$  e definimos da mesma maneira as aplicações dx e dy, de modo que podemos escrever  $\omega(p,\cdot)=\omega(p,e_1)\mathrm{d}x+\omega(p,e_2)\mathrm{d}y$ . Por fim, denotando  $b_1(p)=\omega(p,e_1)$  e  $b_2(p)=\omega(p,e_2)$ , a 1-forma  $\omega$  pode ser escrita como

$$\omega(p,v) = b_1(p)dx(v) + b_2(p)dy(v) \text{ ou } \omega = b_1dx + b_2dy.$$

Sejam  $\omega = b_1 dx + b_2 dy$  uma 1-forma e  $\mathcal{X} = \alpha_1 \partial_x + \alpha_2 \partial_y$  um campo em  $\mathbb{C}^2$ . Definimos o **produto interior** de  $\omega$  por  $\mathcal{X}$  como

$$\iota_{\mathcal{X}}\omega = \alpha_1b_1 + \alpha_2b_2 .$$

Diremos que  $\omega$  é a **forma dual** do campo  $\mathcal{X}$  se  $\iota_{\mathcal{X}}\omega = 0$ . Quando não houver risco de ambiguidade na notação utilizaremos  $\iota_{\mathcal{X}}\omega = \omega(\mathcal{X})$ . Note que da definição de  $\mathrm{d}x$ , temos que  $\mathrm{d}x(\mathcal{X}) = \mathrm{d}x(\alpha_1\partial_x + \alpha_2\partial_y)$ . Como a base  $\{\partial_x, \partial_y\}$  se identifica de forma natural com a base  $\{e_1, e_2\}$  do espaço tangente, então  $\mathrm{d}x(\mathcal{X}) = \alpha_1$ . Deste modo, vemos que o produto interior é linear, como esperado. Além disso, valem as igualdades  $\mathrm{d}x(\partial_x) = 1$ ,  $\mathrm{d}x(\partial_y) = 0$  e igualdades similares para  $\mathrm{d}y$ .

Obtemos, portanto, uma maneira de relacionar campos e formas. Se  $\mathcal{X} = -Q(x,y)\partial_x + P(x,y)\partial_y$  é um campo algébrico, sua forma dual é dada por  $\omega = P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$ .

### 1.3 Formas e Campos Projetivos

Vimos, até aqui, a relação entre campos e formas em  $\mathbb{A}^2$ . Voltamos nossa atenção, agora, para formas em  $\mathbb{P}^2$  e como relacioná-las a campos para introduzirmos, por fim, nossos objetos de estudo. Associaremos a cada ponto  $q = (q_0 : q_1 : q_2) \in \mathbb{P}^2$  uma reta que passa por q, dada por

$$P(q)x + Q(q)y + R(q)z = 0,$$

em que  $P(q), Q(q), R(q) \in \mathbb{C}$ . Observe que, como estamos supondo que q é um dos pontos da reta, devemos ter que

$$P(q)q_0 + Q(q)q_1 + R(q)q_2 = 0.$$

Portanto, se  $P,Q,R\in\mathbb{C}[x,y,z]$  são polinômios homogêneos de mesmo grau que satisfazem

$$xP + yQ + zR = 0, (1.2)$$

então a aplicação

$$\Omega: \mathbb{P}^2 \times \mathbb{P}^2 \longrightarrow \mathbb{C}$$

$$(q_0: q_1: q_2) \times (p_0: p_1: p_2) \longmapsto P(q)p_0 + Q(q)p_1 + R(q)p_2$$

define um campo de retas em  $\mathbb{P}^2$ , em que a reta que passa por  $q=(q_0:q_1:q_2)$  é dada pelo anulamento de

$$\Omega_q = P(q)x + Q(q)y + R(q)z.$$

Usando a linguagem de formas diferenciais introduzida anteriormente, podemos associar ao campo de retas  $\Omega$  a forma

$$\Omega = Pdx + Qdy + Rdz.$$

de modo que a reta por  $q \in \mathbb{P}^2$  corresponde ao núcleo da transformação linear

$$P(q)dx + Q(q)dy + R(q)dz$$
.

De agora em diante identificaremos o campo de retas  $\Omega$  com a forma Pdx + Qdy + Rdz.

Visto que estamos trabalhando com o plano projetivo  $\mathbb{P}^2$  duas formas  $\Omega$  e  $\Omega'$  definem a mesma reta pelo ponto p se  $\Omega(p) = \lambda \Omega'(p)$  para algum  $\lambda \in \mathbb{C}^*$ . Além disto, em muitas situações será útil passar às cartas afins que denotaremos  $\mathbb{A}_x, \mathbb{A}_y, \mathbb{A}_z$  para  $\{x \neq 0\}, \{y \neq 0\}, \{z \neq 0\}$  e também fazer o processo inverso. Para que não haja dúvidas sobre este tipo de questão, descreveremos brevemente o processo de afinização e homogeneização de formas.

Considere uma forma  $\omega = P dx + Q dy$  em  $\mathbb{A}_z$  e seja  $\varphi(x, y, z) = \left(\frac{x}{z}, \frac{y}{z}\right)$ . A forma homogeneizada de  $\omega$  é dada por

$$\Omega = z^{k} \left( \varphi^{*} \omega \right) = z^{k} \left( P\left(\frac{x}{z}, \frac{y}{z}\right) d\left(\frac{x}{z}\right) + Q\left(\frac{x}{z}, \frac{y}{z}\right) d\left(\frac{y}{z}\right) \right)$$

$$= z^{k} \left( P\left(\frac{x}{z}, \frac{y}{z}\right) \left(\frac{1}{z} dx - \frac{x}{z^{2}} dz\right) + Q\left(\frac{x}{z}, \frac{y}{z}\right) \left(\frac{1}{z} dy - \frac{y}{z^{2}} dz\right) \right),$$

com k sendo o menor inteiro tal que  $\Omega$  seja uma 1-forma polinomial.

Por outro lado, se  $\Omega = Pdx + Qdy + Rdz$  é uma 1-forma homogênea, a forma

$$\omega = P(x, y, 1)dx + Q(x, y, 1)dy + R(x, y, 1)d(1) = P(x, y)dx + Q(x, y)dy$$

é a forma afinizada de  $\Omega$  em  $\mathbb{A}_z$ .

Desejamos definir o campo de retas em  $\mathbb{P}^2$  associado a uma forma  $\omega$  de maneira explícita. Antes disto se faz necessário apresentar uma generalização do produto interior para d-formas em n variáveis.

Sejam  $\omega = w_1 dx_1 + \cdots + w_n dx_n$  uma 1-forma polinomial e  $\mathcal{X} = \alpha_1 \partial_{x_1} + \cdots + \alpha_n \partial_{x_n}$  campo em  $\mathbb{C}^{n+1}$ . Definimos o **produto interior** de  $\omega$  por  $\mathcal{X}$  similarmente ao caso anterior como

$$\iota_{\mathcal{X}}\omega = \alpha_1 w_1 + \cdots + \alpha_n w_n$$
.

Um caso particular interessante se dá quando  $\omega=\mathrm{d}f,$  em que f é um polinômio em n+1 variáveis. Neste caso

$$\iota_{\mathcal{X}} df = \alpha_1 f_{x_1} + \dots + \alpha_n f_{x_n} = \mathcal{X}(f),$$

em que  $f_{x_i} = \partial f/\partial x_i$ . Seja  $\Lambda^d$  o  $\mathbb{C}$ -espaço vetorial das d-formas em n variáveis. Generalizamos a construção do produto interior para d-formas da seguinte maneira: se  $\omega_1, \ldots, \omega_d$  são 1-formas então definimos  $\iota_{\mathcal{X}} : \Lambda^d \longrightarrow \Lambda^{d-1}$  por

$$\iota_{\mathcal{X}}(\omega_1 \wedge \dots \wedge \omega_d) = \sum_{j=1}^d (-1)^{j-1} \omega_1 \wedge \dots \wedge \iota_{\mathcal{X}} \omega_j \wedge \dots \wedge \omega_d.$$
 (1.3)

Voltamos nossa atenção ao caso de três variáveis, em que obtemos  $\Lambda^d$  definido para  $0 \le d \le 3$  em que  $\Lambda^0 = \mathbb{C}[x,y,z]$  é o espaço dos polinômios em três variáveis. Além disso, neste momento, restringiremos o produto interior ao campo  $\mathcal{Z}_R = x\partial_x + y\partial_y + z\partial_z$  (o campo radial) e denotaremos  $\iota_{\mathcal{Z}_R} = \iota$ .

Neste caso, se  $\omega = \sum_{\mathbf{j}} P_{\mathbf{j}} dx_{j_1} \wedge \cdots \wedge dx_{j_d}$ , em que  $P_{\mathbf{j}}$  são polinômios homogêneos de mesmo grau, então

$$\iota(\omega) = \sum_{i} \left( (-1)^{j_i+1} x_{j_i} \sum_{\mathbf{j}} P_{\mathbf{j}} dx_{j_1} \wedge \dots \wedge dx_{j_{i-1}} \wedge dx_{j_{i+1}} \wedge \dots \wedge dx_{j_d} \right).$$

Definição 1.3.1. A sequência

$$0 \longrightarrow \Lambda^3 \stackrel{\iota}{\longrightarrow} \Lambda^2 \stackrel{\iota}{\longrightarrow} \Lambda^1 \stackrel{\iota}{\longrightarrow} \mathbb{C}[x,y,z]$$

é chamada Sequência de Koszul.

Proposição 1.3.2. A sequência de Koszul é exata.

Dem. Considere  $\omega = P dx \wedge dy + Q dx \wedge dz + R dy \wedge dz \in \Lambda^2$ , em que P, Q, R são polinômios homogêneos de grau N. Provaremos que  $\iota^2(\omega) = 0$ . Com efeito

$$\iota(\omega) = P(xdy - ydx) + Q(xdz - zdx) + R(ydz - zdy),$$

de modo que

$$\iota^{2}(\omega) = P(xy - yx) + Q(xz - zx) + R(yz - zy) = 0.$$

Logo,  $\operatorname{Im}(\iota) \subset \ker(\iota)$ . Reciprocamente se  $\omega = P dx + Q dy + R dz$  pertence a  $\ker(\iota) \subset \Lambda^1$ , então P, Q, R satisfazem

$$Px + Qy + Rz = 0. (1.4)$$

Consequentemente satisfazem as relações

$$P + P_x x + Q_x y + R_x z = 0,$$

$$Q + P_y x + Q_y y + R_y z = 0,$$

$$R + P_z x + Q_z y + R_z z = 0,$$
(1.5)

obtidas derivando (1.4). Afirmamos que  $\iota\left(\mathrm{d}\left(\frac{\omega}{N+1}\right)\right) = \omega$ . Com efeito, note que

$$d\omega = (Q_x - P_y)dx \wedge dy + (R_x - P_z)dx \wedge dz + (R_y - Q_z)dy \wedge dz$$

Logo,

$$\iota(d\omega) = (-(R_x - P_z)z - (Q_x - P_y)y)dx + ((Q_x - P_y)x - (R_y - Q_z)z)dy + ((R_x - P_z)x + (R_y - Q_z)y)dz = (P_yy + P_zz - (R_xz + Q_xy))dx + (Q_xx + Q_zz - (P_yx + R_yz))dy + (R_xx + R_yy - (P_zx + Q_zy))dz$$

Substituindo as relações (1.5) nesta equação e lembrando que se P é polinômio homogêneo de grau N nas variáveis  $x_i$ , então  $\sum_i x_i P_{x_i} = NP$ , obtemos que

$$\iota(\mathrm{d}\omega) = (P_x x + P_y y + P_z z + P)\mathrm{d}x + (Q_x x + Q_y y + Q_z z + Q)\mathrm{d}y + (R_x x + R_y y + R_z z + R)\mathrm{d}z = (N+1)\omega.$$

Portanto  $\ker(\iota) \subset \operatorname{Im}(\iota)$ .

O argumento é similar para  $\omega=A\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z\in\Lambda^3$ . Concluímos portanto que a sequência de Koszul é exata.  $\Box$ 

Note que se  $\Omega = P \mathrm{d} x + Q \mathrm{d} y + R \mathrm{d} z$  é uma 1-forma polinomial com P,Q,R homogêneos de grau n+1 que satisfaz a identidade de Euler Px+Qy+Rz=0, então  $\Omega \in \ker(\iota) \subset \Lambda^1$ . Visto que a sequência de Koszul é exata, concluímos que a forma pode ser escrita como

$$\Omega = A(zdx - xdz) + B(ydz - zdy) + \phi(xdy - ydx),$$

ou

$$\Omega = (Az - \phi y)dx + (\phi x - Bz)dy + (By - Ax)dz, \tag{1.6}$$

em que  $A, B, \phi$  são polinômios homogêneos de grau n que definem a forma  $\Omega$ .

Note que é possível escolher  $\phi$  como sendo um polinômio apenas nas variáveis x e y. De fato, podemos escrever

$$\phi = \phi_0 + z\phi_1$$

em que  $\phi_0 = \phi_0(x, y)$  e  $\phi_1 = \phi_1(x, y, z)$  são homogêneos de graus n e n-1, respectivamente. Logo

$$Az - \phi y = (A - \phi_1 y)z - \phi_0 y \text{ e}$$
  
$$\phi x - Bz = -(B - \phi_1 x)z + \phi_0 x.$$

Logo, se tomarmos

$$\hat{A} = (A - \phi_1 y) \ e \ \hat{B} = (B - \phi_1 x)$$

teremos que

$$\Omega = (\hat{A}z - \phi_0 y) dx + (\phi_0 x - \hat{B}z) dy + (\hat{B}y - \hat{A}x) dz.$$

Assim podemos supor  $\phi \in \mathbb{C}[x,y]$ . Neste caso, vemos que o campo  $B\partial_x + A\partial_y + \phi\partial_z$ , é um campo vetorial em  $\mathbb{C}^3$  dual a  $\Omega$ , i.e., o campo pertence ao núcleo de  $\Omega$ , que, por sua vez, induz um campo de direções em  $\mathbb{P}^2$ . Suponha que  $(A', B', \phi')$  fosse uma tripla que definisse  $\Omega$  da mesma forma que a anterior. Disto obteríamos as relações:

$$(A' - A)z - (\phi' - \phi)y = (\phi' - \phi)x - (B' - B)z = (B' - B)y - (A' - A)x = 0$$

donde segue que existe um polinômio homogêneo h de grau n-2 tal que

$$B' = B + hx;$$
  

$$A' = A + hy;$$
  

$$\phi' = \phi + hz.$$

Reciprocamente, uma família  $(A', B', \phi')$  do tipo acima define a mesma forma que  $(A, B, \phi)$ . Portanto, o campo  $\mathcal{X} = B\partial_x + A\partial_y + \phi\partial_z + h\mathcal{Z}_R$  é equivalente ao campo original  $\mathcal{X}$ . Resumimos a discussão no seguinte resultado:

**Proposição 1.3.3.** Sejam  $\mathcal{X}$  e  $\mathcal{Y}$  campos de vetores em  $\mathbb{C}^3$ . Então  $\mathcal{X}$  define o mesmo campo de direções que  $\mathcal{Y}$  em  $\mathbb{P}^2$  se, e somente se,  $\mathcal{Y} = \mathcal{X} + h\mathcal{Z}_R$ , com h polinômio e  $\mathcal{Z}_R = x\partial_x + y\partial_y + z\partial_z$ .

**Definição 1.3.4.** Uma folheação  $\mathcal{F}$  de codimensão 1 e grau n sobre  $\mathbb{P}^2$  é o campo de retas dual definido por uma 1-forma

$$\omega = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz$$

em que P,Q e R são polinômios homogêneos de grau n+1 sem componente comum e satisfazem Px+Qy+Rz=0.

#### 1.4 Número de Milnor

**Definição 1.4.1.** Seja  $\mathcal{F}$  uma folheação representada pela forma  $\omega = P dx + Q dy + R dz$ . Dizemos que  $\mathcal{F}$  possui uma **singularidade** no ponto  $p = (p_0 : p_1 : p_2)$  se  $P(p_0, p_1, p_2) = Q(p_0, p_1, p_2) = R(p_0, p_1, p_2) = 0$ .

Em outras palavras, p é uma singularidade de  $\mathcal{F}$  se a forma  $\omega$  se anula no ponto p. O conjunto de singularidades de  $\mathcal{F}$  é denotado por  $Sing(\mathcal{F})$ .

Podemos também nos restringir à carta afim  $\mathbb{A}^2_z=\{z\neq 0\}$  e com isto escrever

$$\omega = Adx + Bdy + \phi(xdy - ydx) \tag{1.7}$$

em que A, B são polinômios de grau no máximo n e  $\phi$  é nulo ou tem grau exatamente n nas variáveis x e y.

Se p é uma singularidade de  $\mathcal{F}$ , podemos utilizar uma mudança de coordenadas para identificar p a (0,0) na carta afim  $\mathbb{A}^2_z$ .

**Definição 1.4.2.** Seja  $\mathcal{F}$  uma folheação descrita em carta afim pela forma Pdx + Qdy e p uma singularidade de  $\mathcal{F}$  então

$$\mu(\mathcal{F}, p) = (C_P \cdot C_Q)_p$$

é chamado de **Número de Milnor** da folheação  $\mathcal{F}$  em p.

**Teorema 1.4.3.** Se  $\mathcal{F}$  é uma folheação homogênea de grau n em  $\mathbb{P}^2$  com singularidades isoladas então

$$\sum_{p \in \operatorname{Sing}(\mathcal{F})} \mu(\mathcal{F}, p) = n^2 + n + 1.$$

Dem. Seja

$$\omega = A(zdx - xdz) + B(ydz - zdy) + \phi(xdy - ydx)$$
$$= (zA - y\phi)dx + (x\phi - zB)dy + (yB - xA)dz$$

a forma que descreve a folheação com  $A, B, \phi$  polinômios homogêneos de grau n. Visto que as singularidades são isoladas, podemos aplicar uma mudança de coordenadas tal que  $\mathrm{Sing}(\mathcal{F}) \subset \mathbb{A}^2_z$ . Note que sob estas condições  $\mathrm{Sing}(\mathcal{F}) = V(zA - y\phi, x\phi - zB) \cap \mathbb{A}^2_z$  em que  $V(\cdot)$  representa a variedade induzida pelo anulamento de polinômios em  $\mathbb{P}^2$ . Denotamos  $M := zA - y\phi$ ,  $N := x\phi - zB$ , note que

$$C_M \cap C_N \cap C_z = C_{\phi(x,y,0)} \cap C_z.$$

Visto que  $\phi(x, y, 0)$  é polinômio homogêneo de grau n, o Teorema de Bézout nos garante que  $|C_{\phi(x,y,0)} \cap C_z| = |V(zA - y\phi, x\phi - zB, z)| = n$ . Aplicando novamente o Teorema de Bézout, obtemos

$$(n+1)^2 = \sum_{p \in C_M \cap C_N} (C_M \cdot C_N)_p = \sum_{p \in C_M \cap C_N \cap \mathbb{A}_z^2} (C_M \cdot C_N)_p + \sum_{p \in C_M \cap C_N \cap C_z} (C_M \cdot C_N)_p$$
$$= \sum_{p \in \operatorname{Sing}(\mathcal{F})} (C_M \cdot C_N)_p + n$$

de onde podemos concluir

$$\sum_{p \in \text{Sing}(\mathcal{F})} \mu(\mathcal{F}, p) = (n+1)^2 - n = n^2 + n + 1.$$

**Observação 1.4.4.** Segue imediatamente deste teorema que não existem folheações homogêneas em  $\mathbb{P}^2$  sem singularidades.

### 1.5 Folheações de grau 2 com uma singularidade

Graças ao resultado da seção anterior, podemos começar a investigar o teorema de classificação de folheações de grau dois com uma singularidade presente no artigo de Cerveau, Déserti, Meziani e Garba Belko [1].

Seja  $\mathcal{F}$  é uma folheação homogênea de grau 2 com uma única singularidade em  $\mathbb{P}^2$ , que podemos assumir ser no ponto 0=(0,0) na carta afim  $\mathbb{A}^2_z$ , descrita pela forma  $\omega=P\mathrm{d}x+Q\mathrm{d}y$ . O Teorema 1.4.3 nos dá

$$\mu(\mathcal{F}, 0) = (C_P \cdot C_Q)_0 = 7. \tag{1.8}$$

Portanto as multiplicidades do ponto singular em  $C_P$  e  $C_Q$  satisfazem  $m_0(P)m_0(Q) \leq 7$ .

Note que não podemos ter  $m_0(P) = m_0(Q) = 1$ , pois sendo 0 a única singularidade,  $C_P$  e  $C_Q$  teriam tangentes distintas em 0, o que implicaria que  $\mu(\mathcal{F},0) = (C_P \cdot C_Q)_0 = 1$ , uma contradição. Neste caso, a menos de mudanças de coordenadas, restam-nos três possibilidades:

- 1.  $m_0(Q) = 1$  e  $m_0(P) \ge 2$ , logo  $\omega = y dy + \text{termos de grau} \ge 2$ , chamado caso nilpotente.
- 2.  $m_0(P)=1$  e  $m_0(Q)\geq 2$ , logo  $\omega=y\mathrm{d}x+\mathrm{termos}$  de grau  $\geq 2$ , chamado caso sela-nó.
- 3.  $m_0(P), m_0(Q) \ge 2$ , logo  $\omega$  não possui termos lineares, chamado caso de 1-jato nulo.

Observação 1.5.1. As nomenclaturas utilizadas acima descrevem o comportamento das Jacobianas do campo associado à forma  $\omega$  no ponto 0. Por exemplo o caso nilpotente tem campo associado  $\mathcal{X} = -y\partial_x + termos$  de grau  $\geq 2$  donde

$$J_{\mathcal{X}}(0,0) = \left(\begin{array}{cc} 0 & -1\\ 0 & 0 \end{array}\right)$$

é nilpotente.

Um estudo mais detalhado de cada caso nos proverá uma classificação dos possíveis tipos de folheação. Utilizando a fórmula (1.7) obtemos a forma geral para as folheações que estudamos:  $\omega = Adx + Bdy + \phi(xdy - ydx)$ , em que

$$A = a_{10}x + a_{01}y + a_{20}x^{2} + a_{11}xy + a_{02}y^{2}$$

$$B = b_{10}x + b_{01}y + b_{20}x^{2} + b_{11}xy + b_{02}y^{2}$$

$$\phi = \phi_{20}x^{2} + \phi_{11}xy + \phi_{02}y^{2}$$

 $a_{ij}, b_{ij}, \phi_{ij} \in \mathbb{C}$  e se, como antes,  $\omega = P dx + Q dy$  obtemos  $P = A - y \phi$  e  $Q = B + x \phi$ . Além da classificação em carta afim, analisamos também o comportamento de possíveis integrais primeiras das folheações.

**Definição 1.5.2.** Seja  $\omega$  uma 1-forma. Se existe aberto U de  $\mathbb{C}^2$  e uma função holomorfa  $F: U \to \mathbb{C}$  tal que  $\omega \wedge dF = 0$ , então dizemos que  $\omega$  possui uma **integral** primeira F. Também, dizemos que uma 1-forma  $\omega$  é **fechada** se  $d\omega = 0$ .

Lembramos que, em termos do campo dual,  $\mathcal{X} = -Q\partial_x + P\partial_y$  associado a  $\omega = Pdx + Qdy$ , uma integral primeira é uma função F tal que  $F(\alpha(t)) = c$  constante para toda curva integral  $\alpha(t)$  do fluxo  $\exp(t\mathcal{X})$ .

Observação 1.5.3. Se  $\omega$  é fechada, então  $\partial P/\partial y = -\partial Q/\partial x$ . Dado que as singularidades de  $\omega$  são isoladas, existe U aberto tal que  $\mathcal{X}$  é conservativo com função potencial  $F = \int P dx + Q dy$ , que será uma integral primeira da forma, cf. [6] Cap. 1.1 Exemplo 2.

Observação 1.5.4. Se g é uma função holomorfa e F é uma integral primeira de uma forma  $\omega$ , então F é claramente integral primeira de  $g\omega$ .

### 1.6 Caso Nilpotente

**Proposição 1.6.1.** Seja  $\mathcal{F}$  uma folheação de grau 2 com uma única singularidade descrita em carta afim por uma 1-forma  $\omega$ . A parte linear de  $\omega$  não pode ser conjugada a ydy. Em outras palavras, não existem folheações deste tipo com singularidade nilpotente.

Dem. Suponha que  $\mathcal{F}$  é nilpotente, então aplicando uma mudança de coordenadas, a forma que descreve a folheação  $\omega = Pdx + Qdy$  será tal que

$$P = a_{20}x^{2} + a_{11}xy + a_{02}y^{2} - y(\phi_{20}x^{2} + \phi_{11}xy + \phi_{02}y^{2})$$

$$Q = y + b_{20}x^{2} + b_{11}xy + b_{02}y^{2} + x(\phi_{20}x^{2} + \phi_{11}xy + \phi_{02}y^{2})$$

Afirmamos que  $a_{20} = 0$ . Com efeito, se assim não fosse, teríamos

$$Q - \left(\frac{b_{20}}{a_{20}} + \frac{\phi_{20}}{a_{20}}x\right)P = y + b_{20}x^2 + b_{11}xy + b_{02}y^2 + x(\phi_{20}x^2 + \phi_{11}xy + \phi_{02}y^2) - (b_{20}x^2 + yP_1) - (\phi_{20}x^3 + yP_2) = yQ_1$$

com  $P_1, P_2, Q_1$  sendo polinômios de grau 2 e  $Q_1 = 1 + (\text{termos de grau maior})$  sendo inversível no anel local  $\mathcal{O}_0(\mathbb{A}^2)$ . Disto segue que  $y \in (P, Q)_{\underline{\mathfrak{m}}_0}$  e concluímos que  $(P, Q)_{\underline{\mathfrak{m}}_0} = (y, x^2)_{\underline{\mathfrak{m}}_0}$ . Mas isto implicaria  $\mu(\mathcal{F}, 0) = 2$ , que é uma contradição com (1.8).

Portanto  $P=y\widetilde{P}$ , com  $\widetilde{P}=a_{11}x+a_{02}y-(\phi_{20}x^2+\phi_{11}xy+\phi_{02}y^2)$ . Também como 0 é singularidade isolada, Q não é divisível por y e assim  $b_{20}$  e  $\phi_{20}$  não são simultaneamente nulos. Logo

$$\mu(\mathcal{F},0) = \left(C_P \cdot C_Q\right)_0 = \left(C_y \cdot C_Q\right)_0 + \left(C_{\widetilde{P}} \cdot C_Q\right)_0.$$

Notemos que  $(C_y \cdot C_Q)_0$  vale 2 ou 3. Se  $a_{11}$  é não nulo,  $C_{\tilde{P}}$  é transversal a  $C_Q$  e  $(C_{\tilde{P}} \cdot C_Q)_0 = 1$ . Consequentemente  $\mu(\mathcal{F}, 0) \leq 4$ , contradição com (1.8). Concluímos que  $a_{11} = 0$ .

Quando  $p=(p_1,0)$ , com  $p_1\neq 0$ , é ponto da reta  $C_y=\{y=0\}$  a 1-forma  $\omega_p$  se escreve  $p_1^2(b_{20}+\phi_{20}p_1)\mathrm{d}y$ . Se  $b_{20}\phi_{20}\neq 0$  o ponto  $p'=\left(-\frac{b_{20}}{\phi_{20}},0\right)$  é uma singularidade de  $\omega$  distinta de 0, o que é impossível, por hipótese. Portanto  $b_{20}\phi_{20}=0$ . Mostraremos, por contradição, que  $\phi_{20}\neq 0$ . Se  $\phi_{20}=0$  vimos anteriormente que  $b_{20}\neq 0$  e que

$$\omega = (y + b_{20}x^2 + b_{02}y^2 + b_{11}xy + x(\phi_{02}y^2 + \phi_{11}xy)) dy + y^2(a_{02} - \phi_{02}x - \phi_{11}y) dx.$$

Se  $a_{02}$  é diferente de 0, então  $a_{02} - \phi_{02}x - \phi_{11}y$  é inversível no anel local  $\mathcal{O}_0(\mathbb{A}^2)$ , de modo que  $\mu(\mathcal{F},0) = 2(C_Q \cdot C_y)_0 = 4$ , o que é absurdo. Logo  $a_{02} = 0$  e

$$\omega = (y + b_{20}x^2 + b_{02}y^2 + b_{11}xy + x(\phi_{02}y^2 + \phi_{11}xy)) dy - y^2(\phi_{02}x + \phi_{11}y) dx$$

Se  $\phi_{02} \neq 0$ , conseguimos  $\mu(\mathcal{F},0) = 2(C_Q \cdot C_y)_0 + (C_Q \cdot C_{\phi_{02}x+\phi_{11}y})_0$ . Mas a reta  $C_{\phi_{02}x+\phi_{11}y}$  é transversal à reta tangente a 0 em  $C_Q$ , logo  $\mu(\mathcal{F},0) = 4+1=5$ . Se  $\phi_{02} = 0$  temos  $\mu(\mathcal{F},0) = 2(C_Q \cdot C_y)_0 + (C_Q \cdot C_{\phi_{11}y})_0 = 2(C_Q \cdot C_y)_0 + (C_{x^2} \cdot C_y)_0 = 6$  e não podemos ter nenhum destes casos. Logo, concluímos que  $\phi_{20} \neq 0$ . Finalmente,

$$\omega = (y + b_{02}y^2 + b_{11}xy + x(\phi_{20}x^2 + \phi_{02}y^2 + \phi_{11}xy)) dy + y(a_{02}y - (\phi_{20}x^2 + \phi_{02}y^2 + \phi_{11}xy)) dx,$$

com  $\phi_{20} \neq 0$ . Disto temos  $\mu(\mathcal{F}, 0) = (C_y \cdot C_Q)_0 + (C_{\widetilde{P}} \cdot C_Q)_0$  em que  $\widetilde{P} = a_{02}y - (\phi_{20}x^2 + \phi_{02}y^2 + \phi_{11}xy)$ . Sabemos que  $(C_y \cdot C_Q)_0 = 3$  e, no anel local  $\mathcal{O}_0(\mathbb{A}^2)$ ,

$$\begin{aligned} (Q,\widetilde{P})_{\underline{\mathfrak{m}}_{0}} &= (Q + x\widetilde{P},\widetilde{P})_{\underline{\mathfrak{m}}_{0}} = (y + b_{02}y^{2} + (a_{02} + b_{11})xy,\widetilde{P})_{\underline{\mathfrak{m}}_{0}} \\ &= (y(1 + b_{02}y + (a_{02} + b_{11})x),\widetilde{P})_{\underline{\mathfrak{m}}_{0}} = (y, a_{02}y - (\phi_{20}x^{2} + \phi_{02}y^{2} + \phi_{11}xy))_{\underline{\mathfrak{m}}_{0}} \\ &= (y, x^{2})_{\mathfrak{m}_{0}}, \end{aligned}$$

do que deduzimos  $\mu(\mathcal{F},0) = 3 + 2 = 5$ , absurdo. Portanto não existe folheação de grau dois em  $\mathbb{P}^2$  com singularidade do tipo nilpotente.

#### 1.7 Caso Sela-nó

Na Seção 1.2 definimos curvas integrais de um campo. Estamos interessados em curvas algébricas, portanto, apresentamos, a seguir, a definição equivalente em termos de curvas algébricas:

**Definição 1.7.1.** Seja  $\alpha: U \subset \mathbb{C} \to \mathbb{C}^2$  uma solução do sistema (1.1). Dizemos que  $\alpha$  é uma **solução algébrica** se existe um polinômio não nulo  $f \in \mathbb{C}[x,y]$  tal que  $f(\alpha(t)) = 0$  para todo t em U.

**Definição 1.7.2.** Seja f polinômio não nulo em  $\mathbb{C}[x,y]$ . Dizemos que a curva algébrica  $C_f$   $\acute{e}$  invariante por (1.1) se para toda solução  $\alpha: U \to \mathbb{C}^2$ , em que U  $\acute{e}$  um disco centrado em 0, satisfazendo  $f(\alpha(0)) = 0$  então temos que  $f(\alpha(t)) = 0$  para todo t em U.

**Proposição 1.7.3.** Se  $\mathcal{F}$  é uma folheação descrita em carta afim pela forma  $\omega$ , a curva algébrica  $C_f$  é invariante por  $\mathcal{F}$  se, e somente se,  $\omega \wedge df = f\Theta$  com  $\Theta$  uma 2-forma polinomial.

Dem. Suponha  $\omega = -B dx + A dy$  a forma associada ao sistema (1.1) e a curva  $C_f$  invariante, então para toda solução  $\alpha(t) : U \to \mathbb{C}^2$  do sistema contida em  $C_f$  vale  $(\omega \wedge df)(\alpha(t)) = 0$  para todo t em U. Pelo Teorema de Zeros de Hilbert f divide o coeficiente de  $dx \wedge dy$  em  $\omega \wedge df$ , portanto  $\omega \wedge df = f\Theta$ .

Reciprocamente, suponha que existe uma 2-forma polinomial  $\Theta$  tal que  $\omega \wedge df = f\Theta$ . Seja  $\alpha(t): U \to \mathbb{C}^2$  solução do sistema tal que  $\alpha(0)$  é ponto não singular e  $f(\alpha(0)) = 0$ . Os pontos de  $C_f$  anulam  $\omega \wedge df$  e, portanto, contêm soluções para o sistema que passam por  $\alpha(0)$ . Pela unicidade de soluções,  $\alpha(t): U \to \mathbb{C}^2$  está contida em  $C_f$  e é solução algébrica de (1.1).

Observação 1.7.4. É também comum se referir às curvas algébricas invariantes como folhas algébricas de uma folheação.

Note, também, que, se uma curva  $C_f$  não é invariante pela folheação  $\mathcal{F}$ , então  $\mathcal{F}$  é tangente a  $C_f$  em um número finito de pontos. Com efeito, um ponto de tangência  $p \in C_f$  é tal que  $(Af_y - Bf_x)(p) = 0$ . Isto é, os pontos de tangência formam um conjunto próprio de Zariski da curva  $C_f$  e, portanto, consistem numa quantidade finita de pontos.

**Proposição 1.7.5.** Seja  $\mathcal{F}$  uma folheação de grau 2 com única singularidade em  $\mathbb{P}^2$ . Se a singularidade de  $\mathcal{F}$  for do tipo sela-nó então, a menos de mudança de variáveis,  $\mathcal{F}$  é descrita em carta afim pela forma

$$\omega_4 = (x + y^2 - x^2 y) dy + x(x + y^2) dx$$

Dem. Como anteriormente, suporemos que 0 é a única singularidade de  $\mathcal{F}$ . Uma vez mais, considere  $\omega = Pdx + Qdy$  em que:

$$P = a_{20}x^2 + a_{11}xy + a_{02}y^2 - y(\phi_{20}x^2 + \phi_{11}xy + \phi_{02}y^2)$$
e
$$Q = x + b_{20}x^2 + b_{11}xy + b_{02}y^2 + x(\phi_{20}x^2 + \phi_{11}xy + \phi_{02}y^2).$$

Primeiramente, mostraremos, por contradição, que o eixo  $C_x$  não é invariante por  $\mathcal{F}$ . Se assim fosse, teríamos Q = xg, com  $g \in \mathbb{C}[x,y]$ ; donde concluiríamos que  $b_{02}$  é nulo e g é inversível em  $\mathcal{O}_0(\mathbb{A}^2)$ . Como 0 é singularidade isolada, vemos que  $a_{02}$  e  $\phi_{02}$  não poderiam ser simultaneamente nulos. Portanto,

$$(P,Q)_{\underline{\mathfrak{m}}_0} = (a_{02}y^2 - \phi_{02}y^3, x)_{\underline{\mathfrak{m}}_0},$$

o que nos conduziria a  $\mu(\mathcal{F}, 0) \leq 3$ , contradição com (1.8).

Seja  $p_0 = (0: y_0: 1)$  um ponto genérico de  $C_x$  e  $C_t$  a tangente à folha de  $\mathcal{F}$  passando por  $p_0$  com equação t = ax + by + cz. Pelo discutido acima podemos supor que esta tangente é distinta do eixo  $C_x$ , do contrário basta tomarmos outro ponto. Consideramos, agora, a homogeneização  $\Omega = P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz$  da forma  $\omega$  e aplicamos a mudança de coordenadas  $\varphi(x,y,z) = (x,y,ax+by+cz)$  em  $\mathbb{P}^2$  que envia  $p_0 = (0:y_0:1)$  ao ponto no infinito (0:1:0), preservando  $C_x$  e  $C_y$  e enviando  $C_t$  na reta no infinito  $C_z = \{z=0\}$ . A condição de tangência no ponto (0:1:0) nos diz que  $\phi_{02} = 0$ . Podemos então aplicar uma nova transformação linear  $x = b_{02}x'$ , o que nos dá, em carta afim,  $Q = b_{02}Q'$  em que

$$Q' = x' + b_{20}x'^2 + b_{11}x'y + y^2 + x'(\phi_{20}x'^2 + \phi_{11}x'y),$$

de onde podemos utilizar a normalização  $b_{02} = 1$ . Também vemos que  $(\partial Q'/\partial x')(0,0) = 1$ . Portanto o Teorema da Função Implícita nos garante que a curva Q' = 0 é um gráfico de função numa vizinhança de 0. Logo, podemos escrever x' localmente como uma série de potências em y, através do método de Newton (expansão de Puiseux); ver Seção 1 de Willis [7]. Fazemos isto utilizando o sistema de computação algébrica Singular e determinamos que

$$x' = x'(y) = -y^{2} + b_{11}y^{3} - (b_{11}^{2} + b_{20})y^{4} + (3b_{20}b_{11} - \phi_{11} + b_{11}^{3})y^{5} + (\phi_{20} - b_{11}^{4} + 3\phi_{11}b_{11} - 2b_{20}^{2} - 6b_{20}b_{11}^{2})y^{6} + (10b_{20}^{2}b_{11} -4b_{20}\phi_{11} + 10b_{20}b_{11}^{3} - 4\phi_{20}b_{11} - 6\phi_{11}b_{11}^{2} + b_{11}^{5})y^{7} \text{ mod } y^{8}.$$

$$(1.9)$$

Detalhamos este processo de expansão no apêndice B.1. Portanto, a condição  $\mu(\mathcal{F},0) = 7$  se traduz pelo fato de P(x(y),y) ter ordem exatamente 7; isto é, o menor grau possível entre os monômios de P em y deve ser 7. Escrevendo esta condição explicitamente obtemos as seguintes relações (ver apêndice B.1)

$$\phi_{11} + a_{20} = 0$$
,  $\phi_{20} + a_{20}b_{11} = 0$ ,  $a_{02} = 0$ ,  $a_{11} = 0$ ,  $a_{20}b_{20} = 0$ ,  $-a_{20}^2 \neq 0$ ;

de onde concluímos  $b_{20} = 0$  e  $a_{20} \neq 0$ . Finalmente, normalizando  $a_{20} = 1$ ,

$$\omega = (x + y^2 + b_{11}xy - x^2(b_{11}x + y)) dy + x (x + y(b_{11}x + y)) dx$$
 (1.10)

que possui forma homogênea

$$\Omega = (xz^2 + y^2z + b_{11}xyz - x^2(b_{11}x + y)) dy + x (xz + y(b_{11}x + y)) dx - (xyz + y^3 + b_{11}xy^2 + x^3) dz.$$

Aplicamos a mudança de variáveis homogênea  $(x, y, z - b_{11}y)$  e obtemos

$$\Omega = (xz^2 + y^2z - x^2y) \, dy + (x^2z + xy^2) \, dx - (xy(z - b_{11}y) + y^3 + b_{11}xy^2 + x^3) \, dz,$$
que assume a forma  $\omega_4$  do enunciado na carta afim  $\{z = 1\}$ . Equivalentemente poderíamos considerar  $\omega_4 = \varphi^*\omega$  com  $\varphi(x,y) = \left(\frac{x}{1-b_{11}y}, \frac{y}{1-b_{11}y}\right)$  e  $\omega$  da equação (1.10).

A folheação  $\mathcal{F}_4$  definida por  $\omega_4$  apresenta um comportamento mais misterioso se comparada às demais folheações. A saber  $\omega_4$  não possui integral primeira racional e suas curvas invariantes não são algébricas. Isto decorre de uma afirmação mais geral:  $\mathcal{F}_4$  não apresenta estrutura "transversalmente projetiva". Tal conceito é discutido no capítulo 6 de Lins Neto [8] e na Proposição 1.3 de Cerveau et al [1]. Este comportamento drasticamente distinto já pode ser observado no retrato de fase real da folheação próximo singularidade na Figura A.4 na página 56.

#### 1.8 Caso em que o 1-jato é nulo

**Definição 1.8.1.** Seja  $\mathcal{F}$  uma folheação descrita em carta afim por uma forma  $\omega = \omega_m + \omega_{m+1} + \cdots + \omega_n$  em que  $\omega_i = P_i dx + Q_i dy$  e  $P_i$ ,  $Q_i$  são polinômios homogêneos de grau i, o **cone tangente** de  $\mathcal{F}$  em 0 é definido por  $\mathcal{C}_{\omega} := V(xP_m + yQ_m)$ .

As folheações do caso de 1-jato nulo são descritas por formas  $\omega = A dx + B dy + \phi(x dy - y dx)$  em que  $A, B, \phi \in \mathbb{C}[x, y]$  são homogêneos de grau 2. Investigaremos o comportamento dos possíveis cones tangentes dados por  $\mathcal{C}_{\omega} = V(Ax + By)$ .

Note que a equação de  $C_{\omega}$  não pode ser identicamente nula, do contrário  $y \mid A$  e  $x \mid B$  i.e. A = Cy e B = -Cx, donde Adx + Bdy = C(xdy - ydx) e, finalmente,  $\omega = (\phi + C)(xdy - ydx)$  o que é absurdo pois  $\omega$  possui apenas uma singularidade.

Da mesma forma,  $\phi$  não pode ser identicamente nulo, pois se assim fosse, a forma homogênea de  $\omega(x, y, 1) = Adx + Bdy$  seria dada por

$$\omega(x, y, z) = A(x, y)(zdx - xdz) + B(x, y)(zdy - ydz)$$
$$= zAdx + zBdy - (Ax + By)dz$$

e disto concluímos que há singularidades no eixo  $\{z=0\}$  o que não é possível.

**Lema 1.8.2.** Se o cone tangente  $C_{\omega}$ ,

(a) é constítuido por três retas distintas então

$$Adx + Bdy = xy(y-x)\left(\lambda_1 \frac{dx}{x} + \lambda_2 \frac{dy}{y} + \lambda_3 \frac{d(y-x)}{y-x}\right)$$

(b) é constituido por duas retas distintas então

$$Adx + Bdy = x^{2}y \left(\lambda_{1} \frac{dx}{x} + \lambda_{2} \frac{dy}{y} + \lambda_{3}d\left(\frac{y}{x}\right)\right)$$

(c) é constituido por uma reta então

$$Adx + Bdy = x^{3} \left( \lambda_{1} \frac{dx}{x} + d \left( \frac{\lambda_{2}xy + \lambda_{3}y^{2}}{x^{2}} \right) \right)$$

a menos de mudança de váriaveis, com  $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ 

Dem.

(a) A menos de mudança de variáveis podemos supor que as retas são  $\{x=0\}$ ,  $\{y=0\}$  e  $\{y-x=0\}$ . Neste caso xy(y-x) divide Ax+By. Escrevendo

$$A = a_1 x^2 + a_2 xy + a_3 y^2$$
 e  
 $B = b_1 x^2 + b_2 xy + b_3 y^2$ 

temos,

$$Ax + By = a_1x^3 + (a_2 + b_1)x^2y + (a_3 + b_2)xy^2 + b_3y^3 = cxy(y - x)$$

com c constante. Disto concluímos que  $a_1 = b_3 = 0$ ,  $a_2 + b_1 = c$  e  $a_3 + b_2 = -c$ . Substituindo estes resultados obtemos:

$$Adx + Bdy = ((c - b_1)xy - (c + b_2)y^2)dx + (b_1x^2 + b_2xy)dy$$

$$= xy\left((c - b_1) - (c + b_2)\frac{y}{x}\right)dx + xy\left(b_1\frac{x}{y} + b_2\right)dy$$

$$= xy\left(cdx - b_1dx - c\frac{y}{x}dx - b_2\frac{y}{x}dx + b_1\frac{x}{y}dy + b_2dy\right)$$

$$= xy\left(\frac{cx - cy}{x}dx - b_1dx + (b_1dy - b_1dy) + b_1\frac{x}{y}dy + b_2dy + (b_2dx - b_2dx) - b_2\frac{y}{x}dx\right)$$

$$= xy\left(-c(y - x)\frac{dx}{x} - b_1(y - x)\frac{dy}{y} - b_2(y - x)\frac{dx}{x} + (b_2 - b_1)(-dx + dy)\right)$$

$$= xy(y - x)\left((-c - b_2)\frac{dx}{x} - b_1\frac{dy}{y} + (b_2 - b_1)\frac{d(y - x)}{y - x}\right),$$

que é a expressão desejada de forma explícita com  $\lambda_1=-c-b_2,\ \lambda_2=-b_1$  e  $\lambda_3=b_2-b_1.$ 

(b) e (c) são obtidas por manipulações similares fazendo as adaptações necessárias.  $\Box$ 

**Lema 1.8.3.** O cone tangente  $C_{\omega}$  não pode ser a união de três retas distintas.

Dem. Por contradição, suponha que assim fosse. Pelo Lema 1.8.2 segue-se que

$$\omega = xy(y-x) \left( \lambda_1 \frac{\mathrm{d}x}{x} + \lambda_2 \frac{\mathrm{d}y}{y} + \lambda_3 \frac{d(y-x)}{y-x} \right) + (\phi_{20}x^2 + \phi_{11}xy + \phi_{02}y^2)(y\mathrm{d}x - x\mathrm{d}y).$$

Nos pontos da reta  $\{x=0\}$  temos que  $\omega=(\lambda_1+\phi_{02}y)y^2\mathrm{d}x$ . Visto que 0 é a única singularidade de  $\mathcal{F}$ , é necessário que  $\lambda_1$  ou  $\phi_{02}$  seja nulo. Procurando de maneira semelhante para as outras retas obtemos

$$\lambda_2 \phi_{20} = \lambda_3 (\phi_{20} + \phi_{11} + \phi_{02}) = 0.$$

Porém, homogeneizando a forma  $\omega$ , obtemos

$$\omega = xy(y-x) \left( \lambda_1 \frac{z dx - x dz}{x} + \lambda_2 \frac{z dy - y dz}{y} + \lambda_3 \frac{z d(y-x) - (y-x) dz}{y-x} \right) + (\phi_{20}x^2 + \phi_{11}xy + \phi_{02}y^2)(y dx - x dy).$$

disto, como (0:1:0), (1:0:0) e (1:1:0) são não singulares,  $\phi_{02}, \phi_{20}$  e  $(\phi_{20} + \phi_{11} + \phi_{02})$  não podem ser nulos. Portanto  $\lambda_1 = \lambda_2 = \lambda_3 = 0$  e o cone tangente é nulo, absurdo.

Lema 1.8.4. Se  $\mathcal{C}_{\omega}$  é composto de duas retas distintas então  $\mathcal{F}$  é descrita pela forma

$$\omega_3 = xy dx + (x^2 + y^2)(x dy - y dx)$$

a menos de mudança de coordenadas.

Dem. Pelo Lema 1.8.2 podemos escrever

$$\omega = x^2 y \left( \lambda_1 \frac{\mathrm{d}x}{x} + \lambda_2 \frac{\mathrm{d}y}{y} + \lambda_3 d \left( \frac{y}{x} \right) \right) + (\phi_{20} x^2 + \phi_{11} x y + \phi_{02} y^2) (y \mathrm{d}x - x \mathrm{d}y).$$

De maneira análoga ao Lema anterior, calculamos a forma nos pontos das retas  $\{x=0\}$  e  $\{y=0\}$ , para concluirmos que

$$\lambda_2 \phi_{20} = \lambda_3 \phi_{02} = 0.$$

Como (1 : 0 : 0), (0 : 1 : 0) são não singulares,  $\phi_{20}, \phi_{02} \neq 0$  e, portanto,  $\lambda_2 = \lambda_3 = 0$ . Como a equação de  $\mathcal{C}_{\omega}$  não pode ser nula,  $\lambda_1 \neq 0$  donde podemos supor  $\lambda_1 = 1$ . Logo

$$\frac{\omega}{x^3y} = \frac{dx}{x^2} + \frac{\phi_{20}x^2 + \phi_{11}xy + \phi_{02}y^2}{x^2} \left(\frac{d(x/y)}{(x/y)}\right).$$

Aplicando a transformação linear  $(\phi_{20}^{-1}x, (\phi_{20}\phi_{02})^{-\frac{1}{2}}y)$  obtemos

$$(\phi_{20})^{\frac{9}{2}}(\phi_{02})^{\frac{1}{2}}\omega = xydx + (x^2 + \phi_{11}(\phi_{20}\phi_{02})^{-\frac{1}{2}}xy + y^2)(ydx - xdy).$$

Logo, podemos supor  $\phi_{20}=\phi_{02}=1$  e aplicar um raciocínio similar ao passo final da Proposição 1.7.5, ou simplesmente considerar o difeomorfismo  $\varphi=\left(\frac{x}{1+\phi_{11}y},\frac{y}{1+\phi_{11}y}\right)$  e calcular  $\varphi^*\omega$ , donde a forma pode ser escrita como no enunciado.

Note que  $\frac{\omega_3}{x^3y}$  é fechada. De fato,

$$\frac{\omega_3}{x^3y} = \frac{dx}{x^2} + \frac{dy}{y} - \frac{dx}{x} + \frac{y}{x^2}dy - \frac{y^2}{x^3}dx.$$

Logo,

$$d\left(\frac{\omega_3}{x^3y}\right) = -2\frac{y}{x^3}dx \wedge dy - 2\frac{y}{x^3}dy \wedge dx = 0.$$

Das observações 1.5.3 e 1.5.4 podemos, então, calcular uma integral primeira para  $\omega_3$  (ver detalhes na seção B.4 do Apêndice), obtendo

$$F = \frac{y}{x} \exp\left(\frac{y^2}{2x^2} - \frac{1}{x}\right).$$

**Lema 1.8.5.** Se  $C_{\omega}$  é composto de uma única reta então  $\mathcal{F}$  é descrita por uma das seguintes formas

$$\omega_1 = x^2 dx + y^2 (x dy - y dx);$$
  

$$\omega_2 = x^2 dx + (x + y^2) (x dy - y dx).$$

a menos de mudança de coordenadas.

Dem. Pelo Lema 1.8.2 podemos escrever

$$\omega = x^3 \left( \lambda_1 \frac{\mathrm{d}x}{x} + \mathrm{d} \left( \frac{\lambda_2 xy + \lambda_3 y^2}{x^2} \right) \right) + (\phi_{20} x^2 + \phi_{11} xy + \phi_{02} y^2) (y \mathrm{d}x - x \mathrm{d}y).$$

Mais uma vez calculamos a forma nos pontos de  $\{x=0\}$  e concluímos  $\lambda_3\phi_{02}=0$ . Como (0:1:0) é não singular,  $\phi_{02}\neq 0$  e, portanto,  $\lambda_3=0$ . Mas,

$$\omega = x^3 \left( \lambda_1 \frac{\mathrm{d}x}{x} + \mathrm{d}\left(\frac{\lambda_2 y}{x}\right) \right) = \lambda_1 x^2 \mathrm{d}x + \lambda_2 x (x \mathrm{d}y - y \mathrm{d}x).$$

Como a folheação representada por  $\omega$  é de grau dois, não pode ser escrita como  $\omega = f(xdy - ydx)$ , com f polinomial e, portanto,  $\lambda_1 \neq 0$  donde podemos supor  $\lambda_1 = 1$ . Se aplicarmos a mudança de coordenadas  $\left(\phi_{02}^{1/2}x,y\right)$  poderemos supor  $\phi_{02} = 1$  e  $\lambda_2 = \lambda$ . Portanto,

$$\omega = x^{2} dx + (\lambda x + \phi_{20} x^{2} + \phi_{11} xy + y^{2})(x dy - y dx).$$
(1.11)

A mudança de variáveis  $(x, y - \frac{\phi_{11}}{2}x)$  nos permite supor também que  $\phi_{11} = 0$ . Por fim, utilizamos uma argumentação similar às Proposições 1.7.5 e 1.8.4. Consideramos a 1-forma homogênea

$$\Omega = ((-\lambda xy + x^2)z - y^3 - \phi_{20}x^2y)dx + (xy^2 + \phi_{20}x^3)dy - x^3dz.$$

Caso  $\lambda$  seja nulo, aplicamos a mudança de coordenadas homogênea  $\varphi=(x,y,z+\phi_{20}y)$ e obtemos

$$\varphi^* \Omega = (x^2 (z + \phi_{20} y) - y^3 - \phi_{20} x^2 y) dx + (xy^2 + \phi_{20} x^3) dy - x^3 (dz + \phi_{20} dy)$$
$$= (x^2 z - y^3) dx + xy^2 dy - x^3 dz.$$

Esta forma possui a configuração de  $\omega_1$  na carta afim  $\mathbb{A}_z^2$ . Caso  $\lambda \neq 0$ , então, a título de diversidade na argumentação, consideramos a transformação afim  $\varphi = (x/(1-\phi_{20}\lambda^{-1}x), y/(1-\phi_{20}\lambda^{-1}x))$  aplicada na forma  $\omega$  e obtemos, assim,

$$\varphi^*\omega = (-\lambda^4 y^3 - \lambda^5 xy + \lambda^4 x^2) dx + (\lambda^4 xy^2 + \lambda^5 x^2) dy.$$

Calculamos esta transformação explicitamente no apêndice B.2. À forma acima aplicamos a mundança de coordenadas  $(\lambda^3 x, \lambda^2 y)$  para obtermos uma forma equivalente a  $\lambda^{13}\omega_2$ , em outras palavras,  $\omega$  em (1.11) é conjugada a  $\omega_2$ .

Podemos também calcular integrais primeiras para  $\omega_1$  e  $\omega_2$  dadas respectivamente por:

$$\frac{1}{3} \left( \frac{y}{x} \right)^3 - \frac{1}{x} + \frac{2}{3} \qquad e \qquad \left( 2 + \frac{1}{x} + 2 \left( \frac{y}{x} \right) + \left( \frac{y}{x} \right)^2 \right) \exp\left( -\frac{y}{x} \right),$$

devidamente calculadas em B.4 no Apêndice.

#### 1.9 Teorema de Classificação

Unificando os resultados das subseções anteriores, a saber a Proposição 1.7.5 e os Lemas 1.8.3, 1.8.4 e 1.8.5 deduzimos o seguinte resultado crucial:

**Teorema 1.9.1.** A menos de automorfismo de  $\mathbb{P}^2$ , uma folheação  $\mathcal{F}$  de grau dois em  $\mathbb{P}^2$  com uma única singularidade assume uma das disposições  $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$  ou  $\mathcal{F}_4$  descritas em carta afim respectivamente pelas formas

(a) 
$$\omega_1 = x^2 dx + y^2 (x dy - y dx)$$

(b) 
$$\omega_2 = x^2 dx + (x + y^2)(x dy - y dx)$$

(c) 
$$\omega_3 = xy dx + (x^2 + y^2)(x dy - y dx)$$

(d) 
$$\omega_4 = (x + y^2 - x^2 y) dy + x(x + y^2) dx$$
.

## Capítulo 2

## Interstício Teórico

Uma vez que temos em mãos a classificação das folheações com uma singularidade, gostaríamos de extrair algumas propriedades de folheações que admitem mais singularidades em  $\mathbb{P}^2$ . Porém, antes de nos lançarmos nesta empreitada, se faz necessária a discussão terminológica e teórica que apresentamos neste capítulo.

### 2.1 Grupos algébricos e suas ações

**Definição 2.1.1.** Seja G uma variedade (irredutível ou não) munida de uma estrutura de grupo multiplicativo. Se as duas aplicações  $\mu: G \times G \to G$  em que  $\mu(x,y) = xy$  e  $\iota: G \to G$  em que  $\iota(x) = x^{-1}$  são morfismos de variedades, dizemos que G é um grupo algébrico.

Um isomorfismo de grupos algébricos é um isomorfismo de variedades que é simultaneamente um isomorfismo de grupos.

 $Um \ automorfismo \ de \ G \ \'e \ um \ isomorfismo \ de \ G \ em \ G.$ 

Exemplo 2.1.2. O grupo aditivo  $G_+$  é a reta afim  $\mathbb{A}^1$  munida da lei  $\mu(x,y) = x+y$  (com  $\iota(x) = -x$  e neutro e = 0). O grupo multiplicativo  $G_\times$  é o aberto afim  $\mathbb{C}^* \subset \mathbb{A}^1$  munido da lei  $\mu(x,y) = xy$  (com  $\iota(x) = x^{-1}$  e neutro e = 1).

**Exemplo 2.1.3.** O grupo linear geral notado  $GL_n(\mathbb{C})$  é o conjunto de matrizes  $n \times n$  invertíveis com entradas em  $\mathbb{C}$ .

Note que  $M_n(\mathbb{C})$  o conjunto de matrizes  $n \times n$  sobre  $\mathbb{C}$  pode ser identificado com  $\mathbb{A}^{n^2}$  e  $\mathrm{GL}_n(\mathbb{C})$  é o aberto principal definido pelo não anulamento do determinante. Relembramos que se A e B são matrizes invertíveis, então

$$\det(AB) = \det(A)\det(B),$$
  

$$\det(A^{-1}) = 1/\det(A).$$
(2.1)

Estas fórmulas implicam que a multiplicação de matrizes e a inversão de matrizes são morfismos de variedades e, portanto,  $GL_n(\mathbb{C})$  é grupo algébrico.

Exemplo 2.1.4. O grupo de transformações afins  $A_n(\mathbb{C})$  é o conjunto das aplicações  $\mathbf{x} \mapsto B\mathbf{x} + \mathbf{b}$ , com  $\mathbf{x}, \mathbf{b} \in \mathbb{C}^n$ ,  $B \in GL_n(\mathbb{C})$  com a operação de composição. Denotaremos uma tal aplicação por  $(B, \mathbf{b})$ .

Dadas duas aplicações  $(B, \mathbf{b})$  e  $(C, \mathbf{c})$  de  $A_n(\mathbb{C})$ , sua composição pode ser escrita da forma

$$(B, \mathbf{b}) \cdot (C, \mathbf{c}) = (BC, \mathbf{b} + B\mathbf{c}),$$

donde  $A_n(\mathbb{C})$  pode ser entendido como subgrupo de  $GL_{n+1}(\mathbb{C})$  ao associarmos cada  $(B, \mathbf{b})$  à matriz  $\begin{pmatrix} B & \mathbf{b} \\ 0 & 1 \end{pmatrix}$ .

**Exemplo 2.1.5.** O grupo linear especial notado  $SL_n(\mathbb{C})$  é o conjunto de matrizes  $n \times n$  com determinante 1 e entradas em  $\mathbb{C}$ .

Note que  $\operatorname{SL}_n(\mathbb{C})$  é fechado em  $\mathbb{A}^{n^2}$  pois é o conjunto de zeros do polinômio  $\det(X) - 1$ , em que X é a matriz que tem como entradas as variáveis  $x_{ij}$  com  $1 \leq i, j \leq n$ . Mais uma vez, pelas propriedades (2.1) vemos que este objeto é um grupo algébrico. Além disso, como é o anulamento de um único polinômio, temos uma hipersuperfície em  $\mathbb{A}^{n^2}$ . Portanto  $\operatorname{SL}_n(\mathbb{C})$  tem dimensão  $n^2 - 1$ .

Exemplo 2.1.6. Seja V um espaço vetorial, o **grupo linear de** V, notado GL(V) é o conjunto de todos os isomorfismos lineares de V (em outras palavras todas as transformações lineares bijetivas de V em si próprio) munido da composição como operação de grupo.

Se V possui dimensão finita n sobre  $\mathbb{C}$  então  $\mathrm{GL}(V) \simeq \mathrm{GL}_n(\mathbb{C})$ . De fato, fixada uma base de V, a transformação  $T_A \in \mathrm{GL}(V)$  é dada por uma matriz  $A \in \mathrm{GL}_n(\mathbb{C})$ . Além disso,  $A \mapsto T_A$  é um isomorfismo entre  $\mathrm{GL}(V)$  e  $\mathrm{GL}_n(\mathbb{C})$ .

**Exemplo 2.1.7.** O conjunto de automorfismos de  $\mathbb{P}^n$ , é um grupo algébrico que age em  $\mathbb{P}^n$ , chamado grupo linear geral projetivo.

Lembramos que automorfismos de  $\mathbb{P}^n$  são transformações lineares representadas por matrizes invertíveis  $(n+1) \times (n+1)$ . Também, em espaços projetivos, temos que duas transformações são equivalentes se uma é múltipla da outra por um fator constante não nulo. Chamamos esta equivalência de  $\sim$  e notamos que o grupo de automorfismos de  $\mathbb{P}^n$  é dado por  $\operatorname{Aut}(\mathbb{P}^n) = (\operatorname{GL}_{n+1}(\mathbb{C})/\sim)$ . Denotaremos este grupo  $\operatorname{PGL}_{n+1}(\mathbb{C})$ .

Da estrutura extra de grupos em uma variedade provém uma série de resultados interessantes. Por exemplo, um grupo algébrico é sempre não-singular. De fato, sejam  $x, y \in G$  com x um ponto não-singular de G. Como a multiplicação por elementos de G é morfismo inversível de G, então vimos na página 5 que o espaço tangente  $T_yG$  do ponto  $y = (yx^{-1})x$  é isomorfo ao espaço tangente  $T_xG$ . Logo, y é um ponto não-singular.

Outra propriedade interessante se manifesta ao notarmos que existe um único componente irredutível de G que passa por e, a identidade. Com efeito, sejam  $G_1, \ldots, G_s$  os componentes irredutíveis que passam por e e considere a imagem  $G_1 \cdots G_s$  da variedade irredutível  $G_1 \times \cdots \times G_s$  sob o morfismo do produto, i.e.  $(g_1, \ldots, g_s) \mapsto g_1 \cdots g_s$ . Esta imagem é também irredutível e passa por e. Portanto, está contida em algum  $G_i$ . Da definição dos  $G_j$  temos  $G_j \subseteq G_1 \cdots G_s \subseteq G_i$  logo s = 1. Chamamos o componente  $G_i$  de **componente neutro** de G e o denotamos  $G^{\circ}$ .

**Definição 2.1.8.** Seja G um grupo (abstrato) com identidade e. Dizemos que G age sobre um conjunto A se existe uma aplicação  $\varphi: G \times A \to A$ , chamada ação de G em A e abreviada  $\varphi(x, a) = xa$ , tal que:

(a) 
$$x_1(x_2a) = (x_1x_2)a, \forall x_i \in G, a \in A$$

(b) 
$$ea = a, \forall a \in A$$

Considere, então, que G age em A. Dizemos que  $Ga = \{ga \mid g \in G\}$  é a **órbita** do elemento a. Note que as diferentes órbitas formam uma partição de A. Dizemos que G age **transitivamente** em A se Ga = A para qualquer  $a \in A$ ; isto é, A é composto de uma única órbita. O conjunto  $A^G$  é chamado conjunto de **pontos fixos** de A pela ação de G e consiste no conjunto de elementos  $a \in A$  tais que Ga = a. Definimos o **grupo de isotropia** ou **estabilizador** de um elemento a como  $G_a = \{x \in G \mid xa = a\}$ , note que  $G_a$  é subgrupo de G.

**Exemplo 2.1.9.** Um grupo algébrico G pode agir sobre si próprio com translação à esquerda (ou à direita) dada por  $y \mapsto xy$  (ou  $y \mapsto yx^{-1}$ ). Essa ação é transitiva e seu grupo de isotropia é trivial.

Usaremos o seguinte resultado da Seção 8.3 de Humphreys [9].

Proposição 2.1.10. Seja G grupo algébrico que age na variedade não vazia X. Então cada órbita da ação é lisa e é um conjunto localmente fechado (interseção de um fechado e um aberto) de X, cuja fronteira é a união de órbitas de dimensão estritamente menor. Em particular, órbitas de dimensão minimal são fechadas.

## 2.2 Álgebras de Lie em $\mathbb{P}^2$

**Definição 2.2.1.** Uma álgebra de Lie é um espaço vetorial V imbuído de uma operação bilinear alternada  $[\cdot,\cdot]:V\times V\to V$  que satisfaz a identidade de Jacobi:

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0$$
 para todo  $a, b, c \in V$ .

**Exemplo 2.2.2.** Uma álgebra associativa A com colchete de Lie definido por [a, b] = ab - ba é uma álgebra de Lie.

Note que a operação é claramente bilinear e alternada, e a identidade de Jacobi pode ser verificada de maneira explícita.

**Exemplo 2.2.3.** O conjunto de campos de vetores Vec(X) em uma variedade X é uma álgebra de Lie com colchete definido por  $[\alpha, \beta] = \alpha \circ \beta - \beta \circ \alpha$ .

Com efeito, da definição de campo de vetores algébrico,  $[\alpha, \beta]$  é um campo,  $[\cdot, \cdot]$  é claramente bilinear e simétrica e a identidade de Jacobi é verificada de maneira similar ao caso de álgebras associativas. A título de exemplo, seja  $X = \mathbb{A}^2$ , calculemos:

$$[x\partial_y, y\partial_x] = x\partial_y(y\partial_x) - y\partial_x(x\partial_y)$$
$$= x\left(\partial_x + y\frac{\partial^2}{\partial x\partial y}\right) - y\left(\partial_y + x\frac{\partial^2}{\partial x\partial y}\right) = x\partial_x - y\partial_y.$$

Voltamos, agora, nossa atenção aos grupos algébricos. Como já vimos, um grupo algébrico G é não-singular e, se  $x \in G$ , o morfismo produto induz um isomorfismo entre  $T_eG$  e  $T_xG$ . Logo, podemos concentrar nossos esforços em analisar o espaço tangente de um grupo algébrico na identidade e.

Queremos também imbuir nosso espaço tangente com a estrutura de álgebra de Lie. A princípio isto pode ser confuso porém calcularemos o comportamento explicitamente para os grupos algébricos cruciais do texto subsequente.

Para isto recorremos à definição do objeto X(R) para X variedade e R uma  $\mathbb{C}$ -álgebra e de espaço tangente, ambas no início da seção 1.2.

Considere G um grupo algébrico. Além disso, seja  $\mathbb{C}[\varepsilon][\eta] = \mathbb{C}[\varepsilon][t]/(t^2) = \mathbb{C}[\varepsilon] \oplus \mathbb{C}[\varepsilon]\eta$  e a aplicação

$$ad: G(\mathbb{C}[\varepsilon]) \longrightarrow \operatorname{Aut}(T_eG(\mathbb{C}[\varepsilon]))$$

definida por  $ad(g)(x) = i(g) \cdot x \cdot i(g)^{-1}$ , em que  $g \in G(\mathbb{C}[\varepsilon])$ , i é a inclusão natural  $G(\mathbb{C}[\varepsilon]) \to G(\mathbb{C}[\varepsilon][\eta])$  e x pertence ao espaço tangente  $T_eG(\mathbb{C}[\varepsilon])$  de  $G(\mathbb{C}[\varepsilon])$  na identidade. Em outras palavras,  $x \in \ker(G(\mathbb{C}[\varepsilon][\eta]) \to G(\mathbb{C}[\varepsilon]))$ , ver página 5.

**Definição 2.2.4.** A álgebra de Lie  $\mathfrak{g}$  de um grupo algébrico G é o espaço tangente na identidade  $T_eG$ , munido da operação de colchete [x,y] := ad(x)(y),  $x,y \in \mathfrak{g}$ .

Exemplo 2.2.5. A álgebra linear geral  $\mathfrak{gl}_n(\mathbb{C})$  é a álgebra de Lie de  $\mathrm{GL}_n(\mathbb{C})$  e é isomorfa a  $\mathrm{M}_n(\mathbb{C})$  o conjunto de matrizes  $n \times n$  com entradas em  $\mathbb{C}$  e seu colchete é dado por [A, B] = AB - BA com  $A, B \in \mathrm{M}_n(\mathbb{C})$ 

Primeiramente note que se I é a identidade e  $A \in M_n(\mathbb{C})$  então  $I + \varepsilon A$  é inversível com inversa  $I - \varepsilon A$  e portanto pertence a  $GL_n(\mathbb{C}[\varepsilon])$ . Logo

$$\mathfrak{gl}_n(\mathbb{C}) = \{ A \in \mathrm{GL}_n(\mathbb{C}[\varepsilon]) \mid A \mapsto I \text{ em } \mathrm{GL}_n(\mathbb{C}[\varepsilon]) \to \mathrm{GL}_n(\mathbb{C}) \}$$
$$= \{ I + \varepsilon A' \mid A' \in \mathrm{M}_n(\mathbb{C}) \} \simeq \mathrm{M}_n(\mathbb{C}).$$

Para provar o comportamento do colchete considere o homomorfismo de grupos

$$Ad: \mathrm{GL}_n(\mathbb{C}) \longrightarrow \mathrm{Aut}(\mathfrak{gl}_n(\mathbb{C}))$$

definido por

$$Ad(B)(I + \varepsilon A) = i(B) \cdot (I + \varepsilon A) \cdot i(B)^{-1}$$

em que  $i(B) = B + \varepsilon 0$ . Assim

$$Ad(B)(I + \varepsilon A) = B \cdot (I + \varepsilon A) \cdot B^{-1} = I + \varepsilon BAB^{-1}.$$

Denotaremos também a álgebra de Lie de um grupo G por Lie(G). Com esta notação temos Lie $(\operatorname{GL}_n(\mathbb{C})) \simeq \mathfrak{gl}_n(\mathbb{C})$ , porém, ao curso do raciocínio que se segue, denotaremos  $I + \eta A$  como elemento de Lie $(\operatorname{GL}_n(\mathbb{C}))$  e  $I + \varepsilon A$  como elemento de  $\mathfrak{gl}_n(\mathbb{C})$ .

Procuramos um homomorfismo de álgebras de Lie

$$ad : \operatorname{Lie}(\operatorname{GL}_n(\mathbb{C})) \longrightarrow \operatorname{Lie}(\operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C}))).$$

Para isto usamos o seguinte diagrama comutativo

$$\operatorname{Lie}(\operatorname{GL}_n(\mathbb{C})) \xrightarrow{ad} \operatorname{Lie}(\operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C}))) .$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{GL}_n(\mathbb{C}[\eta]) \xrightarrow{\varphi} \operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C})[\eta])$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{GL}_n(\mathbb{C}) \xrightarrow{Ad} \operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C}))$$

A aplicação ad é induzida pela aplicação  $\varphi$  que por sua vez é induzida por Ad. Porém, os elementos de Lie( $\operatorname{GL}_n(\mathbb{C})$ ) são da forma  $I + \eta A$  com  $A \in \operatorname{M}_n(\mathbb{C})$  e  $\eta^2 = 0$ . Então  $\varphi(I + \eta A)$  é automorfismo de

$$\mathfrak{gl}_n(\mathbb{C})[\eta] = \{I + \varepsilon B + \eta(I + \varepsilon C) \mid B, C \in M_n(\mathbb{C})\}.$$

Contudo, podemos escrever

$$I + \varepsilon B + \eta (I + \varepsilon C) = (1 + \eta)I + \varepsilon B + \eta \varepsilon C$$
$$= (1 + \eta)I + \varepsilon (B + \eta C)$$

Multiplicando por  $(1 - \eta)$ ,

$$I + (1 - \eta)\varepsilon(B + \eta C) = I + \varepsilon(B + \eta(C - B))$$

Desta forma podemos reformular nossa notação e considerar que os elementos de  $\mathfrak{gl}_n(\mathbb{C})[\eta]$  são da forma  $I + \varepsilon(B + \eta C)$ . O que corresponde dizer que existe um homomorfismo natural entre  $\mathfrak{gl}_n(\mathbb{C})[\eta]$  e  $\mathfrak{gl}_n(\mathbb{C}[\eta])$ .

Com isso,

$$\varphi(I + \eta A)(I + \varepsilon(B + \eta C)) = (I + \eta A)(I + \varepsilon(B + \eta C))(I - \eta A)$$

$$= (I + \eta A)(I - \eta A) + \varepsilon(I + \eta A)(B + \eta C)(I - \eta A)$$

$$= I + \varepsilon(B + \eta(AB + C))(I - \eta A)$$

$$= I + \varepsilon(B + \eta(-BA + AB + C))$$

$$= I + \varepsilon(B + \eta C + \eta[A, B]).$$

Logo, se identificarmos  $\mathfrak{gl}_n(\mathbb{C}[\eta])$  com  $M_n(\mathbb{C}[\eta])$  temos

$$\varphi(I + \eta A)(B + \eta C) = (B + \eta C) + \eta [A, B].$$

Portanto, com esta convenção  $\varphi(I + \eta A) = id + \alpha(A) \in \operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C}))$ , em que  $\alpha(A)$  é a aplicação que leva X em [A, X].

Com isso, obtemos a aplicação

$$\operatorname{Lie}(\operatorname{GL}_n(\mathbb{C})) \longrightarrow \operatorname{Lie}(\operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C})))$$
  
 $I + \eta A \longmapsto id + \alpha(A).$ 

Mas Lie( $\mathrm{GL}_n(\mathbb{C})$ )  $\simeq \mathrm{M}_n(\mathbb{C}) \simeq \mathrm{End}(\mathbb{C}^n)$  identificando  $I + \eta A$  com A, ao passo que

$$\operatorname{Lie}(\operatorname{Aut}(\mathfrak{gl}_n(\mathbb{C}))) \xrightarrow{\sim} \operatorname{End}(\mathfrak{gl}_n(\mathbb{C})) \ .$$
 
$$id + \eta \alpha(A) \longmapsto \alpha(A)$$

Definimos então, para  $I + \eta A, I + \eta B \in \text{Lie}(GL_n(\mathbb{C}))$ :

$$[I + \eta A, I + \eta B] := ad(A)(B) = \alpha(A)(B) = [A, B],$$

donde obtemos o colchete desejado para o exemplo 2.2.5.

Exemplo 2.2.6. A álgebra linear especial  $\mathfrak{sl}_n(\mathbb{C})$  é a álgebra de Lie de  $\mathrm{SL}_n(\mathbb{C})$  e é isomorfa ao conjunto de matrizes  $n \times n$  com traço nulo.

O raciocínio é análogo ao do exemplo anterior, com o adendo da seguinte observação: o determinante de  $I + \varepsilon A$  em ambas situações é igual a 1, o que ocorre se e somente se tr(A) = 0. De fato, como  $\varepsilon^2 = 0$ , o determinante de uma matriz dessa forma é dado por  $1 + \varepsilon tr(A)$ .

Restringimo-nos ao caso particular de  $\mathfrak{sl}_3(\mathbb{C})$  por um momento. Seja

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

uma matriz em  $\mathfrak{sl}_3(\mathbb{C})$ . Podemos associar esta matriz ao campo linear

$$\mathcal{X}_A = (a_1x + a_2y + a_3z)\partial_x + (b_1x + b_2y + b_3z)\partial_y + (c_1x + c_2y + c_3z)\partial_z$$
$$= L\partial_x + M\partial_y + N\partial_z$$

em  $\text{Vec}(\mathbb{P}^2)$ . Além disso a condição de A possuir traço nulo é equivalente a

$$a_1 + b_2 + c_3 = \frac{\partial L}{\partial x} + \frac{\partial M}{\partial y} + \frac{\partial N}{\partial z} = 0.$$
 (2.2)

Fato 2.2.7. O subconjunto de campos de  $Vec(\mathbb{P}^2)$  tais que a relação (2.2) é satisfeita é uma subálgebra de Lie denotada  $\chi(\mathbb{P}^2)$ , que por sua vez é isomorfa a  $\mathfrak{sl}_3(\mathbb{C})$  a menos de inversão da ordem do colchete.

Com efeito, mostramos que a operação de colchete em  $\chi(\mathbb{P}^2)$  é fechada no conjunto. Sejam  $\mathcal{X} = L\partial_x + M\partial_y + N\partial_z$  e  $\mathcal{Y} = L'\partial_x + M'\partial_y + N'\partial_z$  em  $\chi(\mathbb{P}^2)$ , logo  $[\mathcal{X}, \mathcal{Y}] = \widetilde{L}\partial_x + \widetilde{M}\partial_y + \widetilde{N}\partial_z$  onde

$$\widetilde{L} = LL'_x + ML'_y + NL'_z - L'L_x - M'L_y - N'L_z$$

$$\widetilde{M} = LM'_x + MM'_y + NM'_z - L'M_x - M'M_y - N'M_z$$

$$\widetilde{N} = LN'_x + MN'_y + NN'_z - L'N_x - M'N_y - N'N_z$$

sendo L, M, N, L', M', N' polinômios lineares, podemos verificar explicitamente que  $\widetilde{L}, \widetilde{M}, \widetilde{N}$  são lineares e satisfazem (2.2).

Considere ainda a aplicação  $\mathfrak{sl}_3(\mathbb{C}) \ni A \mapsto \mathcal{X}_A \in \chi(\mathbb{P}^2)$ . Note que esta aplicação é um anti-isomorfismo de álgebras de Lie. De fato, ela é claramente bijetiva e

$$\mathcal{X}_{[A,B]}\big|_{p} = (AB - BA)p = \mathcal{X}_{A}\big|_{Bp} - \mathcal{X}_{B}\big|_{Ap}$$
$$= \mathcal{X}_{B} \circ \mathcal{X}_{A}\big|_{p} - \mathcal{X}_{A} \circ \mathcal{X}_{B}\big|_{p} = [\mathcal{X}_{B}, \mathcal{X}_{A}]_{p}.$$

# 2.3 Representações de $SL_2(\mathbb{C})$

Incluímos nesta seção material básico sobre teoria de representações de grupos algébricos e enunciamos como classificar completamente as representações de  $SL_2(\mathbb{C})$ , que utilizaremos em resultados posteriores.

**Definição 2.3.1.** Seja G um grupo algébrico (ou  $\mathfrak{g}$  uma álgebra de Lie) e V um espaço vetorial de dimensão finita. Um homomorfismo  $\rho: G \to \mathrm{GL}(V)$  (ou  $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ ) é uma representação de G (ou  $\mathfrak{g}$ ).

Uma representação  $\rho: G \to \mathrm{GL}_n(\mathbb{C})$  é também é chamada **representação** matricial de G.

Duas representações  $\rho: G \to \operatorname{GL}(V)$  e  $\mu: G \to \operatorname{GL}(W)$  são **equivalentes** se existe isomorfismo linear  $\varphi: V \xrightarrow{\sim} W$  tal que  $\varphi(\rho(g)(v)) = \mu(g)\varphi(v)$  para todo  $g \in G$  e  $v \in V$ .

**Exemplo 2.3.2.** Toda representação  $\rho: G \to \operatorname{GL}(V)$  define uma ação linear de G em V e vice-versa.

De fato, se  $\rho$  é homomorfismo basta considerar a ação  $\mu: \operatorname{GL}(V) \times V \to V$ ,  $(g,v) \mapsto \rho(g)v$ . Reciprocamente se  $\mu$  é uma ação linear, então  $\mu_g: V \to V, \ v \mapsto gv$  é linear para todo  $g \in G$  e  $\rho: G \to \operatorname{GL}(V), \ g \mapsto \mu_g$  é uma representação de G.

**Definição 2.3.3.** Uma representação  $\rho: G \to \operatorname{GL}(V)$  é dita **irredutível** se  $\{0\}$  e V são os únicos subespaços de V que são estáveis sob a ação de G. Caso contrário a representação é dita **redutível**.

Seja  $\mathbb{C}[x,y]$  o anel de polinômios em duas variáveis, denotamos  $W_d = \langle x^d, x^{d-1}y, \dots, xy^{d-1}, y^d \rangle \subset \mathbb{C}[x,y]$  o espaço vetorial de dimensão d+1 gerado pelos monômios de grau d. Note que  $\mathrm{SL}_2(\mathbb{C})$  age sobre  $W_d$  da seguinte maneira: se  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C})$  e  $x^i y^j \in W_d$ , então  $A(x^i y^j) = (ax + by)^i (cx + dy)^j$ .

Os subespaços  $W_d$  nos permitem dar uma caracterização completa das possíveis representações de  $SL_2(\mathbb{C})$  num espaço vetorial de dimensão finita através do teorema abaixo, cuja prova é assunto do Capítulo 3 das notas de Neunhöffer [12].

**Teorema 2.3.4.** Seja V espaço vetorial de dimensão finita sobre  $\mathbb{C}$  e  $\rho : \mathrm{SL}_2(\mathbb{C}) \to \mathrm{GL}(V)$  uma representação. Então, existem s subrepresentações irredutíveis  $\rho_i : \mathrm{SL}_2(\mathbb{C}) \to V_i$  e números  $d_1, \ldots, d_s$  tais que  $V = V_1 \oplus \cdots \oplus V_s$  e  $V_i \cong W_{d_i}$ .

A título de exemplo, explicitamos uma propriedade das representações irredutíveis de  $\mathrm{SL}_2(\mathbb{C})$  em  $\mathbb{C}^3$ . Primeiramente, note que se  $\rho$  é uma representação que satisfaz estas condições, então  $\rho: \mathrm{SL}_2(\mathbb{C}) \to W_d$ , com  $W_d \simeq \mathbb{C}^3$ . Com isto, concluímos que d=2.

Fato 2.3.5. Se  $\rho$  é irredutível, então sua ação induzida não admite nenhum conjunto finito invariante diferente de  $\{0\}$ .

Suponha que assim não fosse. Da discussão anterior podemos considerar apenas a ação induzida em  $W_2 = \langle x^2, xy, y^2 \rangle$ . Seja  $S \subset W_2$  um conjunto finito de polinômios invariante pela ação de  $\mathrm{SL}_2(\mathbb{C})$ ; isto é, se  $0 \neq P \in S$  e  $A \in \mathrm{SL}_2(\mathbb{C})$  então  $A(P) \in S$ . Se A é um elemento de ordem infinita, como S é finito então existe n > 0 tal que  $A^n(P) = P$ .

Seja, então,  $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$  e  $P=ax^2+bxy+cy^2$ . Concluímos que  $A^n(P)=ax^2+(2an+b)xy+(an^2+bn+c)y^2=P$  se, e só se,

$$a = a, 2an + b = b an^2 + bn + c = c$$

ou, equivalentemente, a=b=0 e  $P=cy^2$ , com  $c\in\mathbb{C}.$ 

Considere agora  $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$  e o mesmo  $P = ax^2 + bxy + cy^2$ . Neste caso as relações implicam b = c = 0 e  $P = ax^2$  com  $a \in \mathbb{C}$ . Donde concluiríamos  $P \equiv 0$ , contradição. Logo S não pode ser invariante pela ação de  $\mathrm{SL}_2(\mathbb{C})$ .

#### 2.4 Teorema de Lie

Se  $\mathfrak{g}$  é uma álgebra de Lie podemos definir o subespaço

$$[\mathfrak{g},\mathfrak{g}] = \{[x,y] \mid x,y \in \mathfrak{g}\}$$

chamado comutador de g e a série derivada de g consistindo nos subconjuntos

$$D^0\mathfrak{g}\supset D^1\mathfrak{g}\supset D^2\mathfrak{g}\supset\dots$$

tais que  $D^0\mathfrak{g} = \mathfrak{g}$  e  $D^{i+1}\mathfrak{g} = [D^i\mathfrak{g}, D^i\mathfrak{g}]$ . Dizemos que uma álgebra de Lie é **solúvel** se existe n tal que  $D^n\mathfrak{g} = 0$ .

Lema 2.4.1. Seja  $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$  uma representação de uma álgebra de Lie solúvel em um espaço vetorial de dimensão finita. Então existe um vetor v de V tal que  $\rho(x)v = \lambda_x v$  para todo x em  $\mathfrak{g}$ , isto é, v é autovetor para todo operador  $\rho(x)$ .

Dem. A demonstração segue por indução na dimensão de  $\mathfrak{g}$ . Como  $\mathfrak{g}$  é solúvel,  $[\mathfrak{g},\mathfrak{g}]\neq \mathfrak{g}$  e, visto que  $[\mathfrak{g},\mathfrak{g}]$  é subespaço de  $\mathfrak{g}$ , existe  $\mathfrak{g}'$  subespaço de codimensão 1 tal que  $\mathfrak{g}\supsetneq \mathfrak{g}'\supseteq [\mathfrak{g},\mathfrak{g}]$ . Como  $[\mathfrak{g}',\mathfrak{g}']\subset [\mathfrak{g},\mathfrak{g}]\subseteq \mathfrak{g}'$ , temos que  $\mathfrak{g}'$  é subálgebra de Lie de  $\mathfrak{g}$ . Portanto,  $\mathfrak{g}'$  é solúvel. Note que, da definição,  $[g,h]\in \mathfrak{g}'$  para quaisquer  $g,h\in \mathfrak{g}$  e também como  $\mathfrak{g}'$  é de codimensão 1 existe elemento  $g\in \mathfrak{g}$  tal que  $\mathfrak{g}=\mathfrak{g}'\oplus \mathbb{C}g$ .

Segue da hipótese de indução que existe um vetor  $v \in V$ , que é autovetor de  $\rho(h)$  para todo  $h \in \mathfrak{g}'$ ; isto é,  $\rho(h)v = \lambda_h v$ .

Considere o espaço vetorial W gerado por  $v_0 := v, v_1 := \rho(g)v, v_2 := \rho^2(g)v, \dots$ Afirmamos que W é estável sob a ação de qualquer  $h \in \mathfrak{g}'$ . Mais especificamente

$$\rho(h)v_k = \lambda_h v_k + \sum_{l < k} a_l(h)v_l, \ a_l(h) \in \mathbb{C}.$$

A prova da afirmação segue por indução. O caso de  $v_0$  é trivial e

$$\rho(h)v_k = \rho(h)\rho(g)v_{k-1} = \rho(g)\rho(h)v_{k-1} + \rho([h,g])v_{k-1} = \lambda_h v_k + \lambda_{[h,g]}v_{k-1} + \dots$$

Portanto, W é estável sob a ação de  $\mathfrak{g}'$ . Como possui W dimensão finita existe um inteiro n tal que  $v_0, \ldots, v_n$  formam uma base para W. Vemos que, nesta base, e restrita a este espaço, a matriz de  $\rho(h)$  é triangular superior com  $\lambda_h$  nas posições da diagonal. Em particular,  $\operatorname{tr}_W \rho(h) = (n+1)\lambda_h$ . Lembrando que  $\operatorname{tr}_W[\rho(h), \rho(g)] = 0$ , isto implica que  $\lambda_{[h,g]} = 0$  para todo h em  $\mathfrak{g}'$ . Portanto, a fórmula acima se reescreve na forma  $\rho(h)v_k = \lambda_h v_k$ . Concluímos que todo vetor  $w \in W$  é autovetor para  $\rho(h)$  para todo h em  $\mathfrak{g}'$ . Escolhamos w autovetor de  $\rho(g)$  em W. Como  $\mathfrak{g} = \mathfrak{g}' \oplus \mathbb{C}g$ , então  $\rho(h+ag)w = \rho(h)w + a\rho(g)w = (\lambda_h + a\lambda_g)w$ .

**Teorema 2.4.2.** (Lie) Seja  $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$  uma representação de uma álgebra de Lie solúvel em um espaço vetorial de dimensão finita. Então, existe uma base de V tal que  $\rho(x)$  é triangular superior para todo  $x \in \mathfrak{g}$ .

Dem. Aplicamos indução sobre a dimensão n de V. Pelo Lema anterior, existe  $v \in V$  autovetor de  $\rho(x)$ , para todo  $x \in \mathfrak{g}$ . Seja  $\langle v \rangle$  o subespaço gerado por v e considere  $W = V/\langle v \rangle$ . Pela hipótese de indução, existe uma base  $v_1, v_2, \ldots, v_{n-1}$  de W, tal que a ação de  $\mathfrak{g}$  nessa base de W é triangular superior, escolhamos uma pré-imagem  $\widetilde{v}_i$  em V para cada vetor da base, então é claro que a ação de  $\rho$  na base  $v, \widetilde{v}_1, \ldots, \widetilde{v}_n$  é triangular superior.

As demonstrações do Lema e do Teorema anteriores tomam o seguinte sentido: se  $\mathfrak{g}$  é uma álgebra de Lie solúvel, uma representação de  $\mathfrak{g}$  num espaço de dimensão finita V induz uma ação de  $\mathfrak{g}$  em V. Esta ação, por sua vez, mantém uma reta de V invariante (a reta na direção do autovetor). Uma vez que garantimos a existência de uma reta invariante sob a ação de  $\rho$ , a aplicação sucessiva do Lema em espaços quocientes nos garante a existência de uma sequência de subespaços  $V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V$  invariantes sob a ação de  $\rho$  com dim  $V_d = d$ .

### 2.5 Álgebras de Lie de dimensão 2

No trabalho de Fulton e Harris [13], pág. 134, encontramos uma classificação de grupos algébricos simplesmente conexos que possuem álgebra de Lie  $\mathfrak{g}$  com dimensão até três. Comentamos a classificação no caso de álgebras de Lie de dimensão dois sem entrar em detalhes técnicos. Tal classificação se ramifica se  $\mathfrak{g}$  é abeliana ou não.

Uma álgebra de Lie  $\mathfrak{g}$  é dita **abeliana** se [x,y]=0, para todo  $x,y\in\mathfrak{g}$  (em particular,  $\mathfrak{g}$  é solúvel).

Os grupos do caso abeliano se reduzem a  $\mathbb{C}^2$  com a operação de adição e quocientes de  $\mathbb{C}^2$  por subgrupos discretos, também munidos da operação de adição.

O único grupo do caso não abeliano é dado por

$$G = \left\{ \left( \begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) \middle| a \in \mathbb{C}^*, b \in \mathbb{C} \right\}.$$

Note que este grupo é o grupo de transformações afins da reta  $A_1(\mathbb{C})$  já discutido no exemplo 2.1.4.

### 2.6 Simetrias e Derivadas de Lie

Seja  $\mathcal{F}$  uma folheação em  $\mathbb{P}^2$  e  $\mathcal{X}$  um campo em  $\chi(\mathbb{P}^2)$ , diremos que  $\mathcal{X}$  é uma **simetria** da folheação se o fluxo desse campo coincide com o fluxo do campo associado à folheação. Tornemos esta definição mais precisa: se  $\mathcal{F}$  é descrita em carta afim pela forma  $\omega$ , diremos que  $\mathcal{X}$  é simetria de  $\mathcal{F}$  se o fluxo  $\exp(t\mathcal{X}) = \Psi_t$  satisfaz a igualdade  $\Psi_t^*(\omega) = \lambda_t \omega$  com  $\lambda_t \in \mathbb{C}$  para todo t.

Uma forma de identificar simetrias é utilizando o conceito de derivada de Lie de um campo, em relação a um segundo campo. A grosso modo, a derivada de Lie de  $\mathcal{Y}$  em relação a  $\mathcal{X}$  faz o papel de uma derivada direcional em relação ao campo  $\mathcal{X}$  e nos diz o quão "alinhados" estão os campos.

**Definição 2.6.1.** Sejam  $\mathcal{X}, \mathcal{Y}$  campos em uma variedade e p um ponto. A **derivada de Lie** de  $\mathcal{Y}$  com respeito a  $\mathcal{X}$  no ponto p é definida por

$$(L_{\mathcal{X}}\mathcal{Y})_{p} = \frac{\mathrm{d}}{\mathrm{d}t} \left| (\mathbf{\Psi}_{-t})_{*}(\mathcal{Y}|_{\mathbf{\Psi}_{t}(p)}) = \lim_{t \to 0} \frac{(\mathbf{\Psi}_{-t})_{*}(\mathcal{Y}|_{\mathbf{\Psi}_{t}(p)}) - \mathcal{Y}|_{p}}{t} \right|$$

em que  $(\Psi_{-t})_*$  é o pushforward pelo fluxo de  $\mathcal{X}$  em -t.

**Exemplo 2.6.2.**  $(L_{\mathcal{X}}\mathcal{X})_p = 0$  para todo p. Isso decorre simplesmente de  $(\Psi_{-t})_*(\mathcal{X}|_{\Psi_t(p)}) = \mathcal{X}|_{\Psi_0(p)} = \mathcal{X}|_p$  e da definição.

Observamos também que a derivada de Lie está relacionada a uma conhecida estrutura, a saber a estrutura do colchete de Lie:

Proposição 2.6.3. Sejam  $\mathcal{X}, \mathcal{Y}$  campos em  $\mathbb{P}^2$ , então  $L_{\mathcal{X}}\mathcal{Y} = [\mathcal{X}, \mathcal{Y}]$ .

Dem. Suponha, inicialmente, que p é um ponto não singular de  $\mathbb{P}^2$  em ambos campos. Nesse caso podemos usar o Teorema da Vizinhança Tubular 1.2.6 e encontrar uma vizinhança de p tal que  $\mathcal{X} = \partial_x$ . Com isso, seu fluxo é dado por  $\Psi_t(p) = (p_1 + t, p_2)$  e  $\mathcal{Y} = Y_1 \partial_x + Y_2 \partial_y$ . A Jacobiana de  $\Psi_t(p)$  relativamente a x e y, nestas coordenadas, é a identidade. Portanto,

$$(\Psi_{-t}(p))_* ((Y_1 \partial_x)|_{\Psi_t(p)} + (Y_2 \partial_y)|_{\Psi_t(p)}) = Y_1(p_1 + t, p_2)\partial_x|_p + Y_2(p_1 + t, p_2)\partial_y|_p.$$

Lembrando que

$$\lim_{t \to 0} \frac{(Y_1(p_1 + t, p_2) - Y_1(p_1, p_2))}{t} = \frac{\partial Y_1}{\partial x}(p_1, p_2)$$

e que vale uma igualdade similar para a outra coordenada, obtemos da definição de derivada de Lie

$$(L_{\mathcal{X}}\mathcal{Y})_{p} = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (\Psi_{-t})_{*}(\mathcal{Y}|_{\Psi_{t}(p)})$$

$$= \lim_{t \to 0} \frac{(\Psi_{-t})_{*}(\mathcal{Y}|_{\Psi_{t}(p)}) - \mathcal{Y}|_{p}}{t}$$

$$= \lim_{t \to 0} \frac{(Y_{1}(p_{1} + t, p_{2}) - Y_{1}(p_{1}, p_{2}))}{t} \partial_{x}|_{p} + \lim_{t \to 0} \frac{(Y_{2}(p_{1} + t, p_{2}) - Y_{2}(p_{1}, p_{2}))}{t} \partial_{y}|_{p}$$

$$= \frac{\partial Y_{1}}{\partial x}(p_{1}, p_{2})\partial_{x}|_{p} + \frac{\partial Y_{2}}{\partial x}(p_{1}, p_{2})\partial_{y}|_{p}$$

$$= [\mathcal{X}, \mathcal{Y}]_{p}$$

como desejávamos. Além disso, visto que as singularidades dos campos são isoladas, pelo Teorema de Extensão de Hartogs (ver [11], Cap. VI, Teorema 4.2), podemos estender continuamente  $[\mathcal{X}, \mathcal{Y}]$  para tais pontos e a igualdade é satisfeita em todo ponto de  $\mathbb{P}^2$ .

Similarmente a campos podemos definir a derivada de Lie para formas da seguinte maneira:

Definição 2.6.4. A derivada de Lie de uma forma  $\omega$ , com respeito ao campo  $\mathcal{X}$ , num ponto p, é definida por

$$L_{\mathcal{X}}\omega = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \mathbf{\Psi}_{t}^{*}(\omega) = \lim_{t \to 0} \frac{\mathbf{\Psi}_{t}^{*}(\omega|_{\mathbf{\Psi}_{t}(p)}) - \omega|_{p}}{t}$$

em que  $\Psi_t^*$  é o pullback do fluxo com respeito a  $\mathcal{X}$ .

Sejam  $\omega = w_0 dx_0 + \cdots + w_n dx_n$  uma 1-forma polinomial e  $\mathcal{X} = \alpha_0 \partial_{x_0} + \cdots + \alpha_n \partial_{x_n}$  um campo em  $\mathbb{C}^{n+1}$ . Utilizamos o produto interior de  $\omega$  por  $\mathcal{X}$  (definido na página 9):

$$\iota_{\mathcal{X}}\omega = \alpha_0 w_0 + \dots + \alpha_n w_n.$$

Um caso particular interessante se dá quando  $\omega=\mathrm{d}f$ , em que f é uma função holomorfa em n+1 variáveis. Neste caso

$$\iota_{\mathcal{X}} df = \alpha_0 f_{x_0} + \dots + \alpha_n f_{x_n} = \mathcal{X}(f),$$

em que  $f_{x_i} = \partial f/\partial x_i$ . Generalizamos a construção para d-formas da seguinte maneira: se  $\omega_1, \ldots, \omega_d$  são 1-formas então

$$\iota_{\mathcal{X}}(\omega_1 \wedge \cdots \wedge \omega_d) = \sum_{j=1}^d (-1)^{j-1} \omega_1 \wedge \cdots \wedge \iota_{\mathcal{X}} \omega_j \wedge \cdots \wedge \omega_d,$$

Destas regras  $\iota_{\mathcal{X}}\omega$  está bem definido para toda d-forma em n variáveis. Quando não houver risco de ambiguidade na notação utilizaremos  $\iota_{\mathcal{X}}\omega = \omega(\mathcal{X})$ .

Note que as propriedades do pullback  $d\varphi^*(\omega) = \varphi^*(d\omega)$  e  $\varphi^*(\omega_1 \wedge \omega_2) = \varphi^*(\omega_1) \wedge \varphi^*(\omega_2)$  implicam respectivamente

$$dL_{\mathcal{X}}\omega = L_{\mathcal{X}}d\omega$$

$$L_{\mathcal{X}}(\omega_1 \wedge \omega_2) = L_{\mathcal{X}}\omega_1 \wedge \omega_2 + \omega_1 \wedge L_{\mathcal{X}}\omega_2.$$
(2.3)

Para detalhes, ver [10], pág. 61. Em particular, se f é uma função holomorfa  $L_{\mathcal{X}}(f\omega) = L_{\mathcal{X}}(f)\omega + fL_{\mathcal{X}}(\omega)$ . Usamos estas propriedades para demonstrar:

Proposição 2.6.5. (Fórmula Mágica de Cartan) Seja  $\omega$  uma 1-forma e  $\mathcal{X}$  um campo em  $\mathbb{C}^{n+1}$  então  $L_{\mathcal{X}}\omega = \iota_{\mathcal{X}}d\omega + d(\iota_{\mathcal{X}}\omega)$ .

Dem. Note, primeiramente, que vale uma igualdade equivalente para polinômios homogêneos f em n+1 variáveis, isto é  $L_{\mathcal{X}}f = \iota_{\mathcal{X}}\mathrm{d}f$ . Com efeito, se  $p \in \mathbb{P}^n$  e  $\alpha(t) = (\alpha_0(t), \ldots, \alpha_n(t))$  é a curva integral de  $\mathcal{X}$  tal que  $\alpha(0) = p$ , então

$$(L_{\mathcal{X}}f)_{p} = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \Psi_{t}^{*}f = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (f \circ \alpha)$$
$$= f_{x_{0}}(p)\alpha_{0}'(0) + \dots + f_{x_{n}}(p)\alpha_{n}'(0) = \mathrm{d}f(\mathcal{X})|_{p}.$$

Suponha, então, que  $\omega$  é uma 1-forma. Pela linearidade da derivada de Lie, basta provar a igualdade quando  $\omega = f dx_0$ , com f polinômio. Mas,

$$L_{\mathcal{X}}\omega = (L_{\mathcal{X}}f)\mathrm{d}x_0 + fL_{\mathcal{X}}(\mathrm{d}x_0) = (\iota_{\mathcal{X}}\mathrm{d}f)\mathrm{d}x_0 + f\mathrm{d}(\iota_{\mathcal{X}}\mathrm{d}x_0).$$

Por outro lado,

$$\iota_{\mathcal{X}}(\mathrm{d}\omega) + \mathrm{d}(\iota_{\mathcal{X}}\omega) = \iota_{\mathcal{X}}(\mathrm{d}(f\mathrm{d}x_0)) + \mathrm{d}(\iota_{\mathcal{X}}(f\mathrm{d}x_0)) = \iota_{\mathcal{X}}(\mathrm{d}f \wedge \mathrm{d}x_0) + \mathrm{d}(f(\iota_{\mathcal{X}}\mathrm{d}x_0))$$
$$= (\iota_{\mathcal{X}}\mathrm{d}f)\mathrm{d}x_0 - \mathrm{d}f(\iota_{\mathcal{X}}\mathrm{d}x_0) + \mathrm{d}f(\iota_{\mathcal{X}}\mathrm{d}x_0) + f\mathrm{d}(\iota_{\mathcal{X}}\mathrm{d}x_0) = L_{\mathcal{X}}\omega.$$

Observação 2.6.6. O argumento acima pode ser generalizado para d-formas por indução.

Podemos observar agora o comportamento da derivada de Lie em presença de simetrias de acordo com a seguinte proposição:

**Proposição 2.6.7.** Sejam  $\mathcal{X}, \mathcal{Y}$  campos em um aberto de  $\mathbb{C}^2$  e seja  $\omega$  a forma dual de  $\mathcal{Y}$ . Então  $\mathcal{X}$  é simetria de  $\mathcal{Y}$  se, e somente se, existe uma função holomorfa g tal que  $L_{\mathcal{X}}\mathcal{Y} = g\mathcal{Y}$ , ou equivalentemente,  $L_{\mathcal{X}}\omega = g\omega$ .

Dem. Suponha que  $\mathcal{X}$  é simetria de  $\mathcal{Y}$ . Podemos utilizar as definições de derivada de Lie e simetria para formas nos pontos não singulares de  $\mathcal{X}$  para obtermos

$$L_{\mathcal{X}}\omega = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \Psi_t^*(\omega) = \left(\frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \lambda_t\right) \omega.$$

Resta-nos provar que  $g = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \lambda_t$  é holomorfa. De fato, seja  $\mathcal{Z} = L_{\mathcal{X}}\mathcal{Y}$ , a igualdade acima pode ser reescrita como  $\mathcal{Z} = g\mathcal{Y}$ . Sejam  $Y_i$  e  $Z_i$  funções polinomiais da i-ésima coordenada de  $\mathcal{Y}$  e  $\mathcal{Z}$  respectivamente. Então  $g = Z_i/Y_i$  para cada i nos pontos em que  $Y_i$  é diferente de 0. Mas, nestes pontos, g é holomorfa, e como as singularidades dos campos são isoladas, o Teorema de Extensão de Hartogs, garante que podemos estender g de forma que g seja holomorfa em  $\mathbb{P}^2$ .

Reciprocamente, suponha que  $L_{\mathcal{X}}\omega = g\omega$ . Pelo Teorema da Vizinhança Tubular, 1.2.6, existem coordenadas locais (x,y) tais que  $\mathcal{X} = \partial_x$ . Neste caso,  $\Psi_t(p) = (p_0 + t, p_1)$ . Seja  $\omega = A dx + B dy$  com A, B funções holomorfas. Da fórmula de Cartan temos

$$g\omega = L_{\partial_x}\omega = \iota_{\partial_x}d\omega + d(\iota_{\partial_x}\omega) = A_xdx + B_xdy,$$

que induz o sistema

$$\begin{cases} A_x = gA \\ B_x = gB. \end{cases}$$

Podemos, então, calcular soluções explícitas para obter os coeficientes A e B gerais da forma

$$\omega = \widetilde{A}(y, z) \exp\left(\int_{0}^{x} g ds\right) dx + \widetilde{B}(y, z) \exp\left(\int_{0}^{x} g ds\right) dy.$$

Concluímos que  $\Psi_t^*(\omega) = \exp\left(\int_x^{x+t} g ds\right) \omega = G_t \omega$  para cada t, em outras palavras, o campo  $\mathcal{X} = \partial_x$  é simetria de  $\mathcal{Y}$ .

Corolário 2.6.8. O campo polinomial  $\mathcal{X}$  é simetria do campo polinomial  $\mathcal{Y}$  em  $\mathbb{C}^2$  se, e somente se, existe função polinomial g em  $\mathbb{C}^2$  tal que  $[\mathcal{X}, \mathcal{Y}] = g\mathcal{Y}$ .

Dem. De acordo com a proposição anterior, existe uma função holomorfa g em  $\mathbb{C}^2$  tal que  $[\mathcal{X}, \mathcal{Y}] = g\mathcal{Y}$ . Como  $\mathcal{X}$  e  $\mathcal{Y}$  são polinomiais, então

$$[\mathcal{X},\mathcal{Y}] = \mathcal{X} \circ \mathcal{Y} - \mathcal{Y} \circ \mathcal{X}$$

também é polinomial, logo g é racional e pode ser escrita  $g_1/g_2$  com  $g_1$  e  $g_2$  polinomiais. Por outro lado, g é holomorfa em todo  $\mathbb{C}^2$  e, portanto,

$$g = g_1/g_2 = \sum_{i+j \ge 0} s_{ij} x^i y^j = S.$$

Como  $g_1 = g_2 S$  é polinomial então S é uma soma finita, portanto, polinomial e  $g_2$  é constante. Concluímos, assim, que g é polinomial.

**Lema 2.6.9.** Seja  $\mathcal{F}$  uma folheação definida pela 1-forma  $\omega$ . Se  $\mathcal{X}$  e  $\mathcal{Y}$  são duas simetrias de  $\mathcal{F}$ , independentes sobre  $\mathbb{C}$ , então  $\frac{\omega(\mathcal{X})}{\omega(\mathcal{Y})}$  é uma integral primeira racional não constante de  $\mathcal{F}$ .

Dem. O lema segue da seguinte observação: se g e h são funções racionais tais que  $h \neq 0$ ,  $g \neq ch$ , para todo  $c \in \mathbb{C}$ , e, além disso,  $g\omega$  e  $h\omega$  são formas fechadas então g/h é uma integral primeira racional não constante de  $\omega$ . Esta afirmação, por sua vez, segue da definição de integral primeira e da regra de Leibniz para diferenciais.

Primeiramente, note que se  $\mathcal{X}$  é simetria de  $\mathcal{F}$  então  $\omega(\mathcal{X})$  é fator integrante, isto é  $\frac{\omega}{\omega(\mathcal{X})}$  é fechada. De fato, o numerador de d $\left(\frac{\omega}{\omega(\mathcal{X})}\right)$  é dado por

$$\iota_{\mathcal{X}}(\omega)d\omega - \omega \wedge d(\iota_{\mathcal{X}}\omega).$$

Como  $\mathcal{X}$  é simetria vale  $L_{\mathcal{X}}\omega = \iota_{\mathcal{X}}d\omega + d(\iota_{\mathcal{X}}\omega) = g\omega$ . Com isso, a expressão acima se torna

$$\iota_{\mathcal{X}}(\omega)d\omega - \omega \wedge (g\omega - d(\iota_{\mathcal{X}}\omega)) = (\iota_{\mathcal{X}}\omega)d\omega + \omega \wedge d(\iota_{\mathcal{X}}\omega).$$

Podemos supor, sem perda de generalidade, que  $\omega = a_0 dx_0$ . Seja  $\mathcal{X} = \sum_{i=0}^n A_i \partial_{x_i}$ . Portanto,  $\iota_{\mathcal{X}} \omega = A_0 a_0$ ,  $d\omega = -\sum_{i=1}^n \frac{\partial a_0}{\partial x_i} (dx_0 \wedge dx_i)$  e  $\iota_{\mathcal{X}} d\omega = \sum_{i=1}^n \frac{\partial a_0}{\partial x_i} (A_0 dx_i - A_i dx_0)$ .

Com isto, obtemos,

$$\iota_{\mathcal{X}}(\omega)d\omega + \omega \wedge d(\iota_{\mathcal{X}}\omega)$$

$$= -A_0 a_0 \sum_{i=1}^n \frac{\partial a_0}{\partial x_i} (dx_0 \wedge dx_i) + (a_0 dx_0) \wedge \sum_{i=1}^n \frac{\partial a_0}{\partial x_i} (A_0 dx_i - A_i dx_0)$$

$$= -A_0 a_0 \sum_{i=1}^n \frac{\partial a_0}{\partial x_i} (dx_0 \wedge dx_i) + A_0 a_0 \sum_{i=1}^n \frac{\partial a_0}{\partial x_i} (dx_0 \wedge dx_i) = 0.$$

Logo, podemos concluir que o numerador de d $\left(\frac{\omega}{\omega(\mathcal{X})}\right)$ é nulo, o que prova o resultado desejado.

# Capítulo 3

# Órbitas sob a ação de $PGL_3(\mathbb{C})$

Estamos agora prontos para analisar o efeito de automorfismos de  $\mathbb{P}^2$  nas folheações classificadas anteriormente e em folheações de grau dois mais gerais. Primeiramente, vemos o efeito da ação do grupo de automorfismos  $\operatorname{Aut}(\mathbb{P}^2)$  nas órbitas dessas folheações para determinar suas dimensões.

## 3.1 Dimensão das Órbitas

Lembramos que vimos que  $\operatorname{Aut}(\mathbb{P}^n) = \operatorname{PGL}_{n+1}(\mathbb{C})$  no exemplo 2.1.7 da página 26. Nos restringimos à ação de  $\operatorname{PGL}_3(\mathbb{C})$  em  $\mathbb{P}^2$ , que também age em particular em  $\mathscr{F}(2,n)$ , o conjunto de folheações de codimensão 1 e grau n em  $\mathbb{P}^2$ . Denotaremos o grupo de isotropia de uma folheação  $\mathcal{F} \in \mathscr{F}(2,n)$  por iso $(\mathcal{F})$  e sua órbita sob a ação de  $\operatorname{PGL}_3(\mathbb{C})$  por  $\mathcal{O}_{\mathcal{F}}$ .

Fato 3.1.1. O conjunto  $\mathcal{F}(2,n)$  é um aberto Zariski num espaço projetivo.

Tal conjunto pode ser representado como o conjunto das 1-formas de grau n nas variáveis  $x, y \in z$ , com P, Q, R polinômios homogêneos de grau n+1 sem componente comum que satisfazem a identidade de Euler Px+Qy+Rz=0 (ver Definição 1.3.4).

Seja  $\Omega_d$  o espaço das 1-formas polinomiais de grau d em x, y, z, satisfazendo a identidade de Euler em  $\mathbb{P}^2$  e  $S_k$  o conjunto de polinômios homogêneos de grau k em três variáveis. Considere agora a aplicação:

$$\pi_k : \mathbb{P}(S_k) \times \mathbb{P}(\Omega_{n+1-k}) \longrightarrow \mathbb{P}(\Omega_{n+1})$$

$$[f] \times [\omega] \longmapsto [f\omega]$$

Desta forma, a imagem de  $\pi_k$  consiste nas formas Pdx + Qdy + Rdz satisfazendo a identidade de Euler tais que P, Q, R são divisíveis por um polinômio de grau k. Provemos que esta imagem é fechada: note que a aplicação não estaria definida

apenas se  $[f\omega]=0$ , o que ocorreria se, e somente se, [f]=0 ou  $[\omega]=0$ , o que é impossível. Logo,  $\pi_k$  é um morfismo regular, cujo domínio é uma variedade projetiva. Isto implica que sua imagem é fechada. Concluímos que  $\mathscr{F}(2,n)=\Omega_{n+1}\setminus\bigcup_{k=1}^{n+1}\mathrm{Im}(\pi_k)$  é aberto.

Por outro lado,  $\mathscr{F}(2,n)$  está contido no espaço projetivo parametrizado pelos coeficientes de P,Q e R. Ademais, a identidade de Euler impõe condições lineares neste espaço projetivo. Portanto, o conjunto  $\mathscr{F}(2,n)$  é isomorfo a um aberto de um  $\mathbb{P}^N$ .

Em particular, no caso de  $\mathscr{F}(2,2)$ , P,Q e R são polinômios homogêneos em x,y,z de grau 3. Portanto, a quantidade de monômios destes três polinômios é dada por  $3\binom{5}{3}=30$  e a identidade de Euler induz 15 hiperplanos em  $\mathbb{P}^{29}$  (ver B.3 no apêndice), concluímos que  $\mathscr{F}(2,2)$  é um aberto em  $\mathbb{P}^{14}$ .

Proposição 3.1.2. As dimensões de  $\mathcal{O}_{\mathcal{F}_i}$  são

$$\dim \mathcal{O}_{\mathcal{F}_1}=6, \dim \mathcal{O}_{\mathcal{F}_2}=7, \dim \mathcal{O}_{\mathcal{F}_3}=7, \dim \mathcal{O}_{\mathcal{F}_4}=8.$$

Mais precisamente, os grupos iso $(\mathcal{F}_i)$  são dados por

(a) 
$$iso(\mathcal{F}_1) = \{(a^3x : a^2y : z + bx) \mid a \in \mathbb{C}^*, b \in \mathbb{C}\}\$$

(b) 
$$iso(\mathcal{F}_2) = \{(x : ax + y : -a(a+2)x - 2ay + z) \mid a \in \mathbb{C}\}\$$

(c) 
$$\operatorname{iso}(\mathcal{F}_3) = \{(x : \pm y : z + ax) \mid a \in \mathbb{C}\}\$$

(d) iso(
$$\mathcal{F}_4$$
) =  $\{id, (jx:j^2y:z), (j^2x:jy:z) \mid j = e^{2\pi i/3}\}$ 

Dem. Conseguimos determinar os grupos de isotropia na lista de modo computacional. Para acompanhar o método nos referimos à Seção B.5 no Apêndice. Disto segue que dim iso( $\mathcal{F}_1$ ) = 2, dim iso( $\mathcal{F}_2$ ) = dim iso( $\mathcal{F}_3$ ) = 1 e dim iso( $\mathcal{F}_4$ ) = 0.

Quanto à dimensão das órbitas, seja  $\varphi : \operatorname{PGL}_3(\mathbb{C}) \to \mathcal{O}_{\mathcal{F}_i}$ . Pelo Teorema de Dimensão das Fibras (ver Shafarevich [14], Cap. I, Seção 6.3., Teorema 7) existe um aberto  $W \subset \mathcal{O}_{\mathcal{F}_i}$  tal que dim  $\mathcal{O}_{\mathcal{F}_i} = \dim \operatorname{PGL}_3(\mathbb{C}) - \dim \varphi^{-1}(\omega)$  para todo  $\omega \in W$ .

Note, porém, que todo  $\omega \in \mathcal{O}_{\mathcal{F}_i}$  é da forma  $\omega = g\omega_i$ , em que  $\omega_i$  é a forma que descreve a folheação  $\mathcal{F}_i$  e  $g \in \mathrm{PGL}_3(\mathbb{C})$ . Portanto,

$$\varphi^{-1}(\omega) = \varphi^{-1}(g\omega_i) = \{ h \in \operatorname{PGL}_3(\mathbb{C}) \mid h\omega_i = g\omega_i \}$$
$$= \{ h \in \operatorname{PGL}_3(\mathbb{C}) \mid g^{-1}h\omega_i = \omega_i \} \simeq \operatorname{iso}(\mathcal{F}_i).$$

Como dim  $PGL_3(\mathbb{C}) = 8$ , segue-se o resultado desejado.

Voltamos nossa atenção à integral primeira racional F de uma 1-forma  $\omega$  que descreve a folheação  $\mathcal{F}$ . É possível definir uma aplicação de  $\operatorname{PGL}_2(\mathbb{C})$  no conjunto de integrais primeiras racionais de  $\mathcal{F}$ . Para isto basta considerar F = f/g,

$$A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \in \operatorname{PGL}_2(\mathbb{C})$$

e a aplicação  $A \mapsto F_A = \frac{a_1 f + a_2 g}{b_1 f + b_2 g}$ . Note que

$$dF_A = \frac{(a_1 df + a_2 dg)(b_1 f + b_2 g) - (b_1 df + b_2 dg)(a_1 f + a_2 g)}{(cf + dg)^2}$$
$$= \frac{(a_1 b_2 - a_2 b_1)}{(cf + dg)^2} (g df - f dg).$$

Como F é integral primeira de  $\mathcal{F}$  então  $F_A$  também o é.

No que segue, faremos uso de um teorema cuja demonstração pode ser encontrada no trabalho de Cerveau e Mattei [15], pág.137.

**Teorema 3.1.3.** Seja  $\omega$  um germe em  $0 \in \mathbb{C}^n$  de uma 1-forma holomorfa integrável possuindo integral primeira meromorfa pura. Então existe um germe de função meromorfa  $\widetilde{F}$ , única, a menos de composição à esquerda com a aplicação definida acima, tal que o conjunto de integrais primeiras meromorfas de  $\omega$  é  $\mathbb{C}(\widetilde{F}) = \{R \circ \widetilde{F} \mid R \in \mathbb{C}(x)\}$ . Diremos neste caso que  $\widetilde{F}$  é minimal.

Com isto, estamos prontos para minorar a dimensão das órbitas de  $\mathscr{F}(2,n)$  sob ação de  $\mathrm{PGL}_3(\mathbb{C})$  através da

**Proposição 3.1.4.** Seja  $n \geq 2$  e  $\mathcal{F} \in \mathcal{F}(2,n)$ . Então dim  $\mathcal{O}_{\mathcal{F}} \geq 6$ .

Dem. Suponha, por contradição, que dim $\mathcal{O}_{\mathcal{F}} \leq 6$ . Pelo Teorema de dimensão das fibras temos

$$\dim \mathcal{O}_{\mathcal{F}} + \dim \mathrm{iso}(\mathcal{F}) = \dim \mathrm{PGL}_3(\mathbb{C}) = \dim \chi(\mathbb{P}^2) = 8.$$

Portanto, dim iso $(\mathcal{F}) = \dim \mathfrak{iso}(\mathcal{F}) \geq 2$ . Logo, existem campos  $\mathcal{X}, \mathcal{Y} \in \mathfrak{iso}(\mathcal{F})$  tais que  $\mathcal{X} \neq c\mathcal{Y}$  para todo  $c \in \mathbb{C}^*$ . Mas isto implica, pelo Lema 2.6.9, que  $\mathcal{F}$  admite integral primeira racional não constante, digamos F = f/g. Pelo Teorema acima, podemos escolher  $\widetilde{F}$  minimal para  $\mathcal{F}$ . Note que, se  $\varphi \in \mathfrak{iso}(\mathcal{F})$ , então  $\widetilde{F} \circ \varphi = \varphi^* \widetilde{F}$  é integral primeira minimal de  $\varphi^*(\mathcal{F}) = \mathcal{F}$ . Portanto, a afirmação sobre unicidade no Teorema anterior nos garante que  $\varphi^* \widetilde{F} = \tau_{\varphi}(\widetilde{F})$  com  $\tau_{\varphi}$  em PGL<sub>2</sub>( $\mathbb{C}$ ). Desta forma escrevemos o morfismo de grupos algébricos

$$\tau : \mathrm{iso}(\mathcal{F}) \longrightarrow \mathrm{PGL}_2(\mathbb{C})$$

$$\varphi \longmapsto \tau_{\varphi}.$$

Demonstraremos, por contradição, que o núcleo de  $\tau$  é um subgrupo discreto de iso( $\mathcal{F}$ ). Suponha que a dim(ker  $\tau$ ) fosse maior ou igual a 1. Poderíamos, então, tomar um subgrupo parametrizado  $\{\varphi_t\} \subseteq \ker \tau$  tal que  $f \circ \varphi_t = f$  para todo t. Em outras palavras, dado  $p \in \mathbb{P}^2$ :

$$(f \circ \varphi_t)(p) = f(p) = c \text{ ou } \varphi_t(p) \subset f^{-1}(c).$$

Portanto, a curva  $\varphi_t(p)$  está contida numa folha de  $\mathcal{F}$ , de modo que  $\Psi(t,p) = \varphi_t(p)$  define um fluxo que coincide com o fluxo da folheação  $\mathcal{F}$ . Porém,  $\varphi_t \in \mathrm{iso}(\mathcal{F}) \subset \mathrm{PGL}_3(\mathbb{C})$ , donde  $\varphi_t = A(t)$ , em que A(t) é uma matriz  $3 \times 3$ . Logo,  $\Psi(t,p) = A(t)p$  depende linearmente de p. Absurdo, pois supomos que o campo associado a  $\mathcal{F}$  tem grau  $\geq 2$ .

Disto concluímos que a aplicação entre espaços tangentes

$$d_{id}\tau:\mathfrak{iso}(\mathcal{F})\to\mathfrak{sl}_2(\mathbb{C})$$

é injetiva. Logo,  $\dim \mathrm{iso}(\mathcal{F}) = \dim \mathfrak{iso}(\mathcal{F}) \leq \dim \mathfrak{sl}_2(\mathbb{C}) = 3.$ 

Suponhamos que dim  $\mathfrak{iso}(\mathcal{F}) = 3$ . Neste caso  $\mathfrak{iso}(\mathcal{F}) \simeq \mathfrak{sl}_2(\mathbb{C})$ . Considere  $\mathfrak{iso}^{\circ}(\mathcal{F})$  o componente neutro de  $\mathfrak{iso}(\mathcal{F})$ . Como  $\mathfrak{iso}(\mathcal{F}) = \mathfrak{sl}_2(\mathbb{C})$  e  $\mathfrak{iso}^{\circ}(\mathcal{F})$  é irredutível, obteremos a menos de isomorfismo  $\mathfrak{iso}^{\circ}(\mathcal{F}) = \mathrm{SL}_2(\mathbb{C})$  ou  $\mathfrak{iso}^{\circ}(\mathcal{F}) = \mathrm{PGL}_2(\mathbb{C})$ , pois estes são os únicos grupos algébricos irredutíveis com tal álgebra de Lie (ver Teorema 1 da seção "Lie Group-Lie Algebra Correspondence" de [16]).

Visto que podemos encarar  $\operatorname{PGL}_2(\mathbb{C})$  como o grupo quociente  $\operatorname{SL}_2(\mathbb{C})/\{1,-1\}$ , em ambas as situações existe uma ação  $\rho$  de  $\operatorname{SL}_2(\mathbb{C})$  sobre  $\mathbb{P}^2$ . Restam-nos, portanto, dois casos a analisar:

Caso 1:  $\rho$  é irredutível. Logo  $\rho$  é a projeção da ação irredutível  $\tilde{\rho}$  de  $SL_2(\mathbb{C})$  em  $\mathbb{C}^3$  que não admite a existência de folheação invariante  $\mathcal{F}$  de grau maior ou igual a dois. De fato, se  $\mathcal{F}$  fosse invariante, seu conjunto finito de singularidades  $Sing(\mathcal{F})$  também o seria, o que contradiz o Fato 2.3.5.

Caso 2:  $\rho$  é redutível. Dessa forma a ação se decompõe em  $\mathbb{C}^3$  como uma ação em  $\mathbb{C}^2$  e uma ação em  $\mathbb{C}$ , que será necessariamente trivial. Assim, é possivel escolher um sistema de coordenadas (x, y, z) tal que a ação pode ser escrita da forma

$$\operatorname{SL}_3(\mathbb{C}) \times \mathbb{C}^3 \ni \begin{pmatrix} a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (x, y, z) \longmapsto (a_1 x + a_2 y, b_1 x + b_2 y, z).$$

Como a ação em z é trivial podemos nos restringir à ação em x, y, y

$$\begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}, (x,y) \longmapsto (a_1x + a_2y, b_1x + b_2y). \tag{3.1}$$

**Afirmação:** Esta ação preserva apenas a folheação radial, cujo campo é  $\mathcal{Z}_R = x\partial_x + y\partial_y$  e possui grau zero.

Provamos esta afirmação separadamente no Lema seguinte. Logo, pela impossibilidade de ambos os casos com dimiso( $\mathcal{F}$ ) = 3, segue-se que dimiso( $\mathcal{F}$ )  $\leq$  2 e, portanto, dim  $\mathcal{O}_{\mathcal{F}} \geq 6$ .

A demonstração da proposição torna-se completa ao demonstrarmos o:

**Lema 3.1.5.** A ação (3.1) preserva apenas a folheação radial  $\mathcal{Z}_R = x\partial_x + y\partial_y$ .

Dem. Primeiramente, denotamos um elemento da ação (3.1) por A e a forma dual de  $\mathcal{Z}_R$  por  $\omega_R = x dy - y dx$ . Assim, obtemos,

$$A(\omega_R) = (a_1x + a_2y)(b_1dx + b_2dy) - (b_1x + b_2y)(a_1dx + a_2dy)$$
$$= (a_1b_2 - a_2b_1)(xdy - ydx) = (a_1b_2 - a_2b_1)\omega_R$$

Como  $a_1b_2 - a_2b_1 \neq 0$  a folheação  $\mathcal{Z}_R$  é invariante sob (3.1). Suponha que existe uma folheação não radial, determinada por um campo  $\mathcal{X}$ , invariante por esta ação. Então existe um ponto genérico p tal que a tangente à folha  $\exp(t\mathcal{X})p$  que passa por p não passa pela origem (do contrário a folheação seria radial). Podemos aplicar uma mudança de coordenadas para supor p = (1,0). Considere o subgrupo

$$H = \{(x + a_2 y, b_2 y) \mid a_2 \in \mathbb{C}, b_2 \in \mathbb{C}^*\} \subset \operatorname{SL}_2(\mathbb{C})$$

e note que ele fixa p. Além disso, como H fixa a folheação em questão, a folha  $\exp(t\mathcal{X})p$  também permanece fixa. Concluímos, então, que a tangente à folha em p permanece fixa. Mas isto é impossível pois, se a tangente é dada pela equação

$$c_1x + c_2y + c_3 = 0$$
, com  $c_i \in \mathbb{C}$ 

então, aplicando um elemento de H a esta equação, obteríamos que a equação da tangente possuiria a configuração

$$c_1x + (c_2b_2 + c_1a_2)y + c_3 = 0$$

donde  $c_2 = c_2b_2 + c_1a_2$  para todo  $b_2 \in \mathbb{C}^*$  e  $a_2 \in \mathbb{C}$ , absurdo.

Com isto, demonstramos a Proposição 3.1.4 e uma aplicação direta nos dá o seguinte resultado:

Corolário 3.1.6. A folheação  $\mathcal{F}_1$  realiza a dimensão minimal de órbitas em  $\mathscr{F}(2,2)$ .

## 3.2 Casos de dimensão minimal em $\mathcal{F}(2,n)$

Na última seção descobrimos a dimensão minimal para órbitas de  $\mathcal{F}$  e, simultaneamente, a dimensão máxima de  $\mathfrak{iso}(\mathcal{F})$ . Através desta dimensão é possível entender melhor o comportamento da álgebra de Lie  $\mathfrak{iso}(\mathcal{F})$ , que expomos na proposição seguinte.

Proposição 3.2.1. Seja  $\mathcal{F}$  uma folheação de grau n em  $\mathbb{P}^2$ . Se dim  $\mathfrak{iso}(\mathcal{F})=2$ , então  $\mathfrak{iso}(\mathcal{F})$  é isomorfa à álgebra de Lie de  $A_1(\mathbb{C})$ , o grupo de transformações afins da reta.

Dem. Recorremos à discussão da Seção 2.5. A partir da mesma, basta mostrar que  $\mathfrak{iso}(\mathcal{F})$  não é abeliana. Supomos, por contradição, que esse seja o caso.

Sejam  $\mathcal{X}$  e  $\mathcal{Y}$  geradores de  $\mathfrak{iso}(\mathcal{F})$ . Segue do Teorema de Lie 2.4.2 que existe uma reta em  $\mathbb{P}^2$  invariante por  $\mathcal{X}$  e  $\mathcal{Y}$ . Podemos supô-la a reta no infinito  $C_z$  e que  $\mathcal{X}$  e  $\mathcal{Y}$  são afins numa carta. Nesta mesma carta descreveremos  $\mathcal{F}$  pelo campo  $\mathcal{Z}$ .

Provaremos que os colchetes  $[\mathcal{X}, \mathcal{Z}]$  e  $[\mathcal{Y}, \mathcal{Z}]$  possuem um bom comportamento. Para tanto, considere  $\mathcal{V}$  um elemento arbitrário de  $\mathfrak{iso}(\mathcal{F})$ . Lembramos que este campo é linear. Em todo ponto não singular, temos que  $[\mathcal{V}, \mathcal{Z}]$  é múltiplo de  $\mathcal{Z}$ . Segundo o Corolário 2.6.8, existe uma função polinomial g em  $\mathbb{C}^2$  tal que  $[\mathcal{V}, \mathcal{Z}] = g\mathcal{Z}$ . Como  $\mathcal{V}$  é um campo linear afim, então possui grau 1. Logo,  $\mathcal{V} \circ \mathcal{Z} - \mathcal{Z} \circ \mathcal{V}$  possui grau menor ou igual a  $\mathcal{Z}$ , i.e., grau  $[\mathcal{V}, \mathcal{Z}] \leq \operatorname{grau} \mathcal{Z}$ . Portanto, g é constante. Aplicando esta observação aos campos  $\mathcal{X}$  e  $\mathcal{Y}$  temos

$$[\mathcal{X}, \mathcal{Z}] = p\mathcal{Z} \qquad [\mathcal{Y}, \mathcal{Z}] = q\mathcal{Z}$$

com p,q em  $\mathbb{C}$ . Da bilinearidade do colchete de Lie e a menos de substituir  $\mathcal{X}$  por uma combinação linear apropriada de  $\mathcal{X}$  e  $\mathcal{Y}$  podemos supor

$$[\mathcal{X}, \mathcal{Z}] = 0 \qquad [\mathcal{Y}, \mathcal{Z}] = q\mathcal{Z}$$

com  $q \in \mathbb{C}$ . Analisamos, agora, a transversalidade dos campos. Suponhamos, primeiramente, que  $\mathcal{X}$  e  $\mathcal{Y}$  são transversais. Neste caso, dado um ponto p não singular para  $\mathcal{X}$  e  $\mathcal{Y}$ , podemos aplicar o Teorema da Vizinhança Tubular (teorema 1.2.6) para obter uma vizinhança U de p e coordenadas x e y em U de modo que  $\mathcal{X} = \partial_x$  e  $\mathcal{Y} = \partial_y$ . Expressando  $\mathcal{Z}$  nestas coordenadas, obtemos

$$\mathcal{Z} = \alpha(x, y)\partial_x + \beta(x, y)\partial_y.$$

com  $\alpha, \beta \in \mathbb{C}\{x, y\}$ , onde  $\mathbb{C}\{x, y\}$  é o anel de séries de potência convergentes nas variáveis  $x \in y$ . Mas, a igualdade

$$0 = [\mathcal{X}, \mathcal{Z}] = \alpha_x \partial_x + \beta_x \partial_y$$

implica que  $\alpha$  e  $\beta$  são independentes de x. Por outro lado, de

$$q\mathcal{Z} = [\mathcal{Y}, \mathcal{Z}] = \alpha_y \partial_x + \beta_y \partial_y$$

obtemos

$$\alpha_y = q\alpha \ e \ \beta_y = q\beta. \tag{3.2}$$

Como  $\alpha$  e  $\beta$  são independentes de x, temos de (3.2) que  $\alpha = re^{qy}$  e  $\beta = se^{qy}$  para alguma escolha de  $r, s \in \mathbb{C}$ . Disto concluímos que

$$\mathcal{Z} = e^{qy}(r\partial_x + s\partial_y) = e^{qy}(r\mathcal{X} + s\mathcal{Y}).$$

Deduziremos que os campos  $\mathcal{Z}$  e  $\mathcal{W} = r\mathcal{X} + s\mathcal{Y}$  são campos paralelos em  $\mathbb{C}^2$ . Suponha que  $\mathcal{Z}$  e  $\mathcal{W}$  são paralelos em abertos  $U_1$  e  $U_2$  que se intersectam, então podemos estender esta relação a  $U_1 \cup U_2$  por extensão analítica. Concluímos que  $\mathcal{Z}$  e  $\mathcal{W}$  são paralelos em  $\mathbb{C}^2 \setminus (\operatorname{Sing}(\mathcal{Z}) \cap \operatorname{Sing}(\mathcal{W}))$ . Podemos utilizar novamente o Teorema de Extensão de Hartogs (já utilizado na Proposição 2.6.7) para concluir que  $\mathcal{Z}$  é paralelo a  $\mathcal{W}$  em todo  $\mathbb{C}^2$ . Donde a folheação  $\mathcal{F}$  definida por  $\mathcal{Z}$  é linear. Contradição.

Supomos, então, que  $\mathcal{X}$  e  $\mathcal{Y}$  são sempre colineares (porém não  $\mathbb{C}$ -colineares). Logo, em um ponto genérico uma nova aplicação do Teorema da Vizinhança Tubular nos permite encontrar coordenadas tais que

$$\mathcal{X} = \partial_r$$
 e  $\mathcal{Y} = \delta \partial_r$ 

com  $\delta \in \mathbb{C}\{x,y\}$ . Mas, por hipótese,  $\mathfrak{iso}(\mathcal{F})$  é abeliana. Logo,  $[\mathcal{X},\mathcal{Y}] = 0$  e disto obtemos  $\delta_x = 0$ . Em outras palavras,  $\delta = \delta(y) \in \mathbb{C}\{y\}$ . Como  $\mathcal{X}$  e  $\mathcal{Y}$  não podem ser  $\mathbb{C}$ -colineares,  $\delta(y)$  não pode ser constante e de  $[\mathcal{X},\mathcal{Z}] = 0$  obtemos novamente

$$\mathcal{Z} = \alpha(y)\partial_x + \beta(y)\partial_y$$

com  $\alpha, \beta \in \mathbb{C}\{y\}$ . Observe que  $\beta \not\equiv 0$ , caso contrário  $\mathcal{Z}$  seria colinear a  $\mathcal{X}$ . A igualdade  $[\mathcal{Y}, \mathcal{Z}] = q\mathcal{Z}$  implica  $q\alpha(y) = 0$  e  $\beta(y)(q + \delta_y) = 0$  e portanto  $\alpha \equiv 0$  e  $\delta_y = -q \neq 0$ , ou seja

$$\mathcal{X} = \partial_x, \qquad \mathcal{Y} = (-qy + r)\partial_x, \qquad \mathcal{Z} = \beta(y)\partial_y$$

com  $q, r \in \mathbb{C}, q \neq 0$  e  $\beta \in \mathbb{C}\{y\}$ .

O Lema 2.6.9 afirma que  $\mathcal{F}$  possui uma integral primeira racional não constante F e de  $\mathcal{Z}(F)=0$  segue-se F=F(x). Além disso, o fluxo de  $\mathcal{Y}$  é dado por  $\Psi_t(x,y)=(x+t\delta(y),y)$ . Visto que  $\mathcal{Y}$  é simetria de  $\mathcal{F}$ ,  $\Psi_t^*(F)=F(x+t\delta(y))$  ainda é integral primeira de  $\mathcal{F}$ . Portanto,

$$0 = \mathcal{Z}(F(x + t\delta(y))) = \beta F_x(x + t\delta(y))\delta_y(y)$$

Como  $\beta \not\equiv 0$ , isto implica que  $\delta_y(y) = 0$ , contradição com  $\delta_y(y) = -q \neq 0$  que deduzimos anteriormente.

Uma vez que sabemos mais sobre a estrutura de  $\mathfrak{iso}(\mathcal{F})$ , é possível determinar com mais precisão o lugar geométrico das singularidades de  $\mathcal{F}$  através do:

**Lema 3.2.2.** Seja  $\mathcal{F}$  uma folheação de grau dois em  $\mathbb{P}^2$ . Suponha que a álgebra de Lie  $\mathfrak{iso}(\mathcal{F})$  é gerada por dois campos de vetores  $\mathcal{X}$  e  $\mathcal{Y}$  tais que  $[\mathcal{X}, \mathcal{Y}] = \mathcal{Y}$ . Então existe uma reta em  $\mathbb{P}^2$ , invariante pelos campos  $\mathcal{X}$  e  $\mathcal{Y}$ , à qual pertencem todos os pontos singulares de  $\mathcal{F}$ .

Dem. Primeiramente, denotamos  $\mathfrak{g} = \mathfrak{iso}(\mathcal{F})$  e afirmamos que, nas condições do enunciado, esta álgebra é solúvel. De fato,  $D\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$  é gerada por  $\mathcal{Y}$ . Como  $[\mathcal{Y}, \mathcal{Y}] = 0$ , temos  $D^2\mathfrak{g} = [D\mathfrak{g}, D\mathfrak{g}] = 0$ . Logo, pelo Teorema de Lie, existe uma reta em  $\mathbb{P}^2$  invariante por  $\mathcal{X}$  e  $\mathcal{Y}$ . Fazendo uma mudança de coordenadas, se necessário, podemos supor que esta reta é  $C_z$ . Novamente nos restringimos à carta  $\mathbb{A}^2_z$ . Seja  $\mathcal{Z}$  o campo que determina a folheação  $\mathcal{F}$ . Repetindo um argumento da Proposição anterior, obtemos

$$[\mathcal{X}, \mathcal{Z}] = p\mathcal{Z}$$
 e  $[\mathcal{Y}, \mathcal{Z}] = q\mathcal{Z}$ 

com  $p, q \in \mathbb{C}$ . Da identidade de Jacobi

$$0 = [\mathcal{X}, [\mathcal{Y}, \mathcal{Z}]] + [\mathcal{Y}, [\mathcal{Z}, \mathcal{X}]] + [\mathcal{Z}, [\mathcal{X}, \mathcal{Y}]]$$
$$= [\mathcal{X}, q\mathcal{Z}] + [\mathcal{Y}, -p\mathcal{Z}] + [\mathcal{Z}, \mathcal{Y}] = pq\mathcal{Z} - pq\mathcal{Z} - q\mathcal{Z} = -q\mathcal{Z}$$

deduzimos q = 0.

Se as singularidades de  $\mathcal{F}$  estão todas em  $C_z$  o lema está demonstrado. Caso contrário, existe um ponto p singular de  $\mathcal{F}$  na carta  $\mathbb{A}^2_z$ . Em particular, note que p é ponto singular de  $\mathcal{X}$  e  $\mathcal{Y}$ . Com efeito, como p é singularidade, então p permanece fixo sob ação de qualquer elemento de iso $(\mathcal{F})$ , o que por sua vez implica que os campos de  $\mathfrak{iso}(\mathcal{F})$  são nulos em p.

Recorremos a uma mudança de coordenadas afim para supor p = (0,0) e  $\mathcal{Y} = y\partial_x$  (ver Apêndice B.6). Como  $\mathcal{X}$  e  $\mathcal{Y}$  são lineares (pertencem a  $\mathfrak{iso}(\mathcal{F})$ ), temos que  $\mathcal{X} = (a_1x + a_2y)\partial_x + (a_3x + a_4y)\partial_y$ , para uma escolha de  $a_i$  em  $\mathbb{C}$ . Porém,

$$y\partial_x = \mathcal{Y} = [\mathcal{X}, \mathcal{Y}] = (a_3x + (a_4 - a_1)y)\partial_x - a_3y\partial_y.$$

Portanto, denotando  $a_3 = a$  e considerando  $\mathcal{X} - a_2 \mathcal{Y}$  podemos supor

$$\mathcal{X} = -(1+a)x\partial_x - ay\partial_y$$
 e  $\mathcal{Y} = y\partial_x$ .

Por sua vez,  $\mathcal{Z}$  pode ser escrito como  $\mathcal{Z}_1 + \mathcal{Z}_2 + \phi \mathcal{Z}_R$  com  $\mathcal{Z}_i$  campos de grau  $i, \phi$  polinômio homogêneo quadrático e  $\mathcal{Z}_R = x\partial_x + y\partial_y$  o campo radial. De  $[\mathcal{Y}, \mathcal{Z}] = 0$ , obtemos, ao considerar os graus,

$$[\mathcal{Y}, \mathcal{Z}_1] = [\mathcal{Y}, \mathcal{Z}_2] = 0$$
 e  $[\mathcal{Y}, \phi \mathcal{Z}_R] = \mathcal{Y}(\phi) \mathcal{Z}_R = 0$ 

Mas,  $\mathcal{Y}(\phi) = 0$  implica que  $\phi = by^2$ , com  $b \in \mathbb{C}$ . Das igualdades anteriores segue-se também que

$$\mathcal{Z}_1 = (cx + ey)\partial_x + cy\partial_y$$
  $\mathcal{Z}_2 = (fy^2 + gxy)\partial_x + gy^2\partial_y$ 

com  $c, e, f, g \in \mathbb{C}$ . Observe que, se c = 0, então  $\mathcal{Z}$  é divisível por y e, portanto, não descreve uma folheação com conjunto singular finito. Disto resulta que  $c \neq 0$  e, recorrendo a  $[\mathcal{X}, \mathcal{Z}] = p\mathcal{Z}$ , obtemos

$$p(cx + ey)\partial_x + pcy\partial_y = p\mathcal{Z}_1 = [\mathcal{X}, \mathcal{Z}_1] = e(1+a)y\partial_x + aey\partial_y$$

de modo que pc = 0. Como  $c \neq 0$ , temos que p = 0. Escrevendo explicitamente as outras parcelas de  $[\mathcal{X}, \mathcal{Z}] = 0$ , obtemos

$$[\mathcal{X}, \mathcal{Z}_2] = ((1-a)fy^2 - agxy)\partial_x - agy^2\partial_y$$
$$[\mathcal{X}, \phi\mathcal{Z}_R] = -ab(2y^2x\partial_x + 2y^3\partial_x).$$

Logo, valem as relações

$$e = ab = aq = f(a - 1) = 0.$$

Se f for nulo,  $\mathcal{Z}$  é colinear ao campo radial e seu conjunto singular não será finito. Concluímos, portanto, que a=1 e b=g=0; donde  $\mathcal{Z}=c\mathcal{Z}_R+ey^2\partial_x$ . Podemos normalizar estes dois coeficientes a 1 (basta aplicar a mudança  $(c^{-1}e^{\frac{1}{3}}x,e^{-\frac{1}{3}}y))$  o que faz com que o campo descreva a folheação dada por  $y\mathrm{d}x-x\mathrm{d}y-y^2\mathrm{d}y$  que possui integral primeira  $\frac{x}{y}-y$  (ver algoritmo em B.4). Os pontos singulares desta folheação são (1:0:0) e (0:0:1) e a reta  $\{y=0\}$  satisfaz o enunciado.

**Proposição 3.2.3.** Seja  $\mathcal{F} \in \mathscr{F}(2,2)$  uma folheação e suponha que a álgebra de Lie  $\mathfrak{iso}(\mathcal{F})$  seja de dimensão 2, então  $\mathcal{F}$  é, a menos de ação de automorfismo de  $\mathbb{P}^2$ , definida em carta afim por uma das seguintes 1-formas:

(a) 
$$\omega_1 = x^2 dx + y^2 (x dy - y dx),$$

(b) 
$$\omega_5 = x^2 dy + y^2 (x dy - y dx)$$
.

Em outras palavras, as órbitas associadas a estas formas são as únicas de dimensão 6 e são fechadas em  $\mathcal{F}(2,2)$ . Os grupos de isotropia destas folheações são descritos em carta afim por:

$$iso(\mathcal{F}_1) = \left\{ (a^3 x, a^2 y), \left( \frac{x}{1 + bx}, \frac{y}{1 + bx} \right) \middle| a \in \mathbb{C}^*, b \in \mathbb{C} \right\},$$
$$iso(\mathcal{F}_5) = \left\{ (a^2 x, ay), \left( \frac{x}{1 + by}, \frac{y}{1 + by} \right) \middle| a \in \mathbb{C}^*, b \in \mathbb{C} \right\}.$$

Dem. Primeiramente, o Lema 3.2.1 nos indica que  $\mathfrak{iso}(\mathcal{F})$  é gerada por simetrias  $\mathcal{X}$  e  $\mathcal{Y}$  tais que  $[\mathcal{X}, \mathcal{Y}] = \mathcal{Y}$ . Do Lema 3.2.2 estas duas simetrias preservam uma reta, que suporemos ser  $C_y$ , contendo  $\mathrm{Sing}(\mathcal{F})$ .

Caso  $\mathcal{F}$  possua apenas um ponto singular, sabemos, do Teorema de classificação e da Proposição 3.1.2, que  $\mathcal{F}$  é conjugada a  $\mathcal{F}_1$ . Consideremos, portanto, o caso em que  $\mathrm{Sing}(\mathcal{F})$  possui dois pontos singulares distintos, que poderemos supor serem (1:0:0) e (0:0:1), a menos de automorfismo. Notemos que, em particular,  $\mathcal{X}$  e  $\mathcal{Y}$  são singulares nestes pontos por pertencerem a  $\mathfrak{iso}(\mathcal{F})$ , como na proposição anterior.

Utilizamos a identidade  $[\mathcal{X}, \mathcal{Y}] = \mathcal{Y}$  para deduzirmos

$$\mathcal{X} = (r_1 x + r_2 y)\partial_x + r_3 y \partial_y + \alpha y \mathcal{Z}_R \qquad \text{e} \qquad \mathcal{Y} = sy\partial_x + \beta y \mathcal{Z}_R \qquad (3.3)$$

com  $r_i, s, \alpha, \beta \in \mathbb{C}$  satisfazendo as relações

$$(r_3 - r_1)s = s \in r_3\beta = \beta \tag{3.4}$$

e  $\mathcal{Z}_R$  o campo radial. Como na proposição anterior, seja  $\mathcal{Z}$  um campo que descreve a folheação  $\mathcal{F}$  na carta afim  $\mathbb{A}^2_z$  escrito da forma  $\mathcal{Z}_1 + \mathcal{Z}_2 + \phi \mathcal{Z}_R$  com  $\mathcal{Z}_i$  campos de grau i e  $\phi$  polinômio homogêneo quadrático.

Podemos supor que  $C_z$  não é invariante por  $\mathcal{F}$  a menos de mudança de coordenadas. Isto por sua vez implica que  $\phi$  não é identicamente nulo. Uma vez que  $\mathcal{F}$  é singular em (1:0:0) segue-se que  $\phi = \phi_{11}xy + \phi_{02}y^2$ .

Sabendo que  $\mathcal{X}$  e  $\mathcal{Y}$  são simetrias segue novamente, do Corolário 2.6.8 e da argumentação usada na proposição anterior, que

$$L_{\mathcal{X}}\mathcal{Z} = [\mathcal{X}, \mathcal{Z}] = P_1 \mathcal{Z} \tag{3.5}$$

$$L_{\mathcal{Y}}\mathcal{Z} = [\mathcal{Y}, \mathcal{Z}] = P_2 \mathcal{Z} \tag{3.6}$$

com  $P_i$  polinômios lineares em  $\mathbb{C}$ .

Tendo em vista que, se  $\mathcal{X}$  e  $\mathcal{Y}$  são campos afins e P é polinômio linear, vale a relação

$$[\mathcal{X}, P\mathcal{Y}] = \mathcal{X}(P)\mathcal{Y} + P[\mathcal{X}, \mathcal{Y}],$$

consideramos novamente a identidade de Jacobi

$$0 = [\mathcal{X}, [\mathcal{Y}, \mathcal{Z}]] + [\mathcal{Y}, [\mathcal{Z}, \mathcal{X}]] + [\mathcal{Z}, [\mathcal{X}, \mathcal{Y}]]$$

$$= [\mathcal{X}, P_2 \mathcal{Z}] + [\mathcal{Y}, -P_1 \mathcal{Z}] + [\mathcal{Z}, \mathcal{Y}]$$

$$= \mathcal{X}(P_2)\mathcal{Z} + P_2[\mathcal{X}, \mathcal{Z}] + \mathcal{Y}(-P_1)\mathcal{Z} - P_1[\mathcal{Y}, \mathcal{Z}] - P_2 \mathcal{Z}$$

$$= \mathcal{X}(P_2)\mathcal{Z} + P_1 P_2 \mathcal{Z} - \mathcal{Y}(P_1)\mathcal{Z} - P_1 P_2 \mathcal{Z} - P_2 \mathcal{Z}$$

da qual decorre

$$\mathcal{X}(P_2) - \mathcal{Y}(P_1) = P_2.$$

Além disso, escrevendo de maneira mais explícita  $P_i = a_i + b_i x + c_i y$ , a relação acima se reescreve da seguinte maneira

$$b_2(r_1x + r_2y) + c_2r_3y + \alpha y(b_2x + c_2y) - b_1sy - \beta y(b_1x + c_1y) = a_2 + b_2x + c_2y.$$

Comparando os monômios obtemos que  $a_2 = 0$  e também

$$\alpha(b_2x + c_2y) = \beta(b_1x + c_1y).$$

A comparação dos termos de maior grau em (3.5) implica que  $[\alpha y \mathcal{Z}_R, \phi \mathcal{Z}_R] = (b_1 x + c_1 y) \phi \mathcal{Z}_R$ . Mas, uma vez que  $\phi$  é não nulo, obtemos  $\alpha y = b_1 x + c_1 y$  e a comparação análoga em (3.6) nos dá  $\beta y = b_2 x + c_2 y$ . Disto obtemos as relações:

$$b_1 = b_2 = 0, \qquad \qquad \alpha = c_1 \qquad \qquad \beta = c_2.$$

A argumentação se bifurca de acordo com o anulamento ou não do coeficiente s: caso s seja nulo, argumentamos que a folheação  $\mathcal{F}$  é conjugada a  $\mathcal{F}_5$  descrita pela segunda 1-forma no enunciado; caso  $s \neq 0$  demonstramos que esta configuração é impossível e isto conclui a demonstração da proposição. A título de organização e coerência tratamos cada caso separadamente em forma de lemas apresentados abaixo.

Note também que os grupos de isotropia são dados pelas afinizações dos grupos de  $\omega_1$  e  $\omega_5$  calculados em B.5.

**Lema 3.2.4.** Sob as hipóteses da Proposição 3.2.3, supondo que (1:0:0), (0:0:1) pertencem a  $Sing(\mathcal{F})$  e que s=0 nas relações (3.3), então  $\mathcal{F}$  é descrita em carta afim por  $\omega_5 = x^2 dy + y^2 (x dy - y dx)$ .

Dem. Sob estas condições podemos supor  $\beta = 1$  em (3.3) e fazer uma combinação linear conveniente das simetrias para obter  $\alpha = 0$ . Reescrevemos  $[\mathcal{X}, \mathcal{Y}] = \mathcal{Y}$  e constatamos que  $r_3 = 1$ , além de obtermos as novas relações

$$\mathcal{X} = (r_1 x + r_2 y)\partial_x + y\partial_y \qquad e \qquad \mathcal{Y} = y\mathcal{Z}_R. \tag{3.7}$$

Disto, (3.5) e (3.6) se simplificam para

$$[\mathcal{X}, \mathcal{Z}] = a_1 \mathcal{Z}$$
  $e$   $[\mathcal{Y}, \mathcal{Z}] = y \mathcal{Z}$ 

Esta última equação nos fornece

$$y(\mathcal{Z}_1 + \mathcal{Z}_2 + \phi \mathcal{Z}_R) = [y\mathcal{Z}_R, \mathcal{Z}_1] + [y\mathcal{Z}_R, \mathcal{Z}_2] + [y\mathcal{Z}_R, \phi \mathcal{Z}_R]$$
$$= -\mathcal{Z}_1(y)\mathcal{Z}_R + y\mathcal{Z}_2 - \mathcal{Z}_2(y)\mathcal{Z}_R + y\phi \mathcal{Z}_R$$

donde, igualando os campos de mesmo grau,  $\mathcal{Z}_2(y) = 0$  e  $-\mathcal{Z}_1(y)\mathcal{Z}_R = y\mathcal{Z}_1$ . Mas esta última igualdade implica  $\mathcal{Z}_1 \equiv 0$ . Portanto, segue-se que  $\mathcal{Z} = Q\partial_x + \phi\mathcal{Z}_R$ , com  $Q = q_{20}x^2 + q_{11}xy + q_{02}y^2$  polinômio quadrático tal que  $\phi$  e Q não possuam componentes comuns e sejam ambos não nulos (o que implica em particular  $q_{20} \neq 0$ ).

A identidade  $[\mathcal{X}, \mathcal{Z}] = a_1 \mathcal{Z}$  nos direciona ao sistema

$$\begin{cases} (r_1 x + r_2 y) \frac{\partial Q}{\partial x} + y \frac{\partial Q}{\partial y} = (a_1 + r_1) Q, \\ (r_1 x + r_2 y) \frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} = a_1 \phi. \end{cases}$$
(3.8)

Provaremos que podemos supor que  $r_2 = 0$ . Com efeito, encaremos  $\mathcal{X}$  como operador linear no espaço  $W_2$  dos polinômios homogêneos de grau dois. As equações acima nos indicam que Q e  $\phi$  são autovetores do operador com autovalores  $(a_1 + r_1)$  e  $a_1$  respectivamente. A matriz do operador  $\mathcal{X} = (r_1x + r_2y)\partial_x + y\partial_y$  na base  $\{x^2, xy, y^2\}$  de  $W_2$  é

$$\mathcal{X} = \begin{pmatrix} 2r_1 & 0 & 0\\ 2r_2 & r_1 + 1 & 0\\ 0 & r_2 & 2 \end{pmatrix}$$

Se  $r_1 = 1$ ,  $\mathcal{X}$  tem autovalor 2 com multiplicidade 3 e a primeira equação do sistema (3.8) no conduz a

$$2q_{20}x^2 = (a_1 + 1)q_{20}x^2$$
 e  $(2q_{20}r_2 + 2q_{11})xy = (a_1 + 1)q_{11}xy$ .

Como  $q_{20} \neq 0$ , a primeira relação implica que  $a_1 = 1$  e, consequentemente, a segunda relação nos dá  $r_2 = 0$ . Se  $r_1 \neq 1$ ,  $\mathcal{X}$  possui autovalores distintos e é, portanto, diagonalizável. O vetor  $\phi = \phi_{11}xy + \phi_{02}y^2$  se escreve  $\phi = \phi'_{11}xy + \phi'_{02}y^2$  na base de autovetores, ou seja, a diagonalização do operador não afeta o formato de  $\phi$  ou de Q e portanto podemos supor  $r_2 = 0$ .

Por conseguinte, o sistema é dado pelas relações

$$0 = (r_1 - a_1)q_{20} = (1 - a_1)q_{11} = (2 - r_1 - a_1)q_{02}$$
$$= (r_1 + 1 - a_1)\phi_{11} = (2 - a_1)\phi_{02}.$$

Levando em conta  $q_{20} \neq 0$ , teremos que  $r_1 = a_1$  e  $\phi_{11} = 0$ , que por sua vez implica  $\phi_{02} \neq 0$  visto que  $\phi$  é não trivial. Portanto  $r_1 = a_1 = 2$  e  $q_{11} = q_{02} = 0$ .

Assim sendo, o campo que descreve a folheação é  $\mathcal{Z} = q_{20}x^2\partial_x + \phi_{02}y^2\mathcal{Z}_R$ . Usando uma mudança de coordenadas conveniente podemos normalizar  $q_{20} = \phi_{02} = 1$  e  $\mathcal{Z}$  é o campo associado a forma  $\omega_5$ .

**Lema 3.2.5.** Sob as hipóteses da Proposição 3.2.3 e supondo que (1:0:0), (0:0:1) pertencem a  $Sing(\mathcal{F})$ , e que  $s \neq 0$  nas relações (3.3), então  $\mathcal{F}$  ainda é descrita em carta afim por  $\omega_5 = x^2 dy + y^2 (x dy - y dx)$ .

Dem. Suponha que  $s \neq 0$ . Neste caso podemos normalizar ao caso s = 1. Disto a relação  $(r_3 - r_1)s = s$  em (3.4) se torna  $r_3 = r_1 + 1$ . Considerando uma combinação linear conveniente  $\mathcal{X} - r_2 \mathcal{Y}$  no lugar de  $\mathcal{X}$ , podemos reescrever (3.3) como

$$\mathcal{X} = r_1 x \partial_x + (r_1 + 1) y \partial_y + \alpha y \mathcal{Z}_R \qquad \text{e} \qquad \mathcal{Y} = y \partial_x + \beta y \mathcal{Z}_R. \tag{3.9}$$

Considere as igualdades  $[\mathcal{X}, \mathcal{Z}] = (a_1 + \alpha y)\mathcal{Z}$  e  $[\mathcal{Y}, \mathcal{Z}] = \beta y\mathcal{Z}$ , a identidade de Jacobi nos diz que

$$[\mathcal{X}, \beta y \mathcal{Z}] + [\mathcal{Y}, -(a_1 + \alpha y)\mathcal{Z}] - \beta y \mathcal{Z} = 0,$$

o que resulta em  $\beta r_1 = 0$ .

Caso  $\beta = 0$ : note que o campo  $\mathcal{Y} = y\partial_x$  possui forma dual ydy, cuja homogeneização é y(zdy - ydz). Aplicando a mudança de coordenadas projetiva  $\varphi(x,y,z) = (z,y,x)$ , esta última forma se torna y(xdy - ydx) a homogeneização da forma afim y(xdy - ydx) dual a  $y\mathcal{Z}_R$  e os pontos singulares (1:0:0) e (0:0:1) trocam de papel. Podemos, portanto, supor  $\mathcal{Y} = y\mathcal{Z}_R$ . Fazendo uma combinação linear conveniente de  $\mathcal{X}$  e  $\mathcal{Y}$  recaímos no sistema (3.7) do Lema anterior, caso este já tratado.

Caso  $r_1 = 0$ : caso seja necessário, podemos aplicar a mudança  $x = \beta^{-1}x$ , de modo que podemos supor  $\beta = 1$ . Substituindo  $\mathcal{X}$  por  $\mathcal{X} - \alpha \mathcal{Y}$  podemos também supor que

$$\mathcal{X} = -\alpha y \partial_x + y \partial_y \qquad \qquad e \qquad \qquad \mathcal{Y} = y \partial_x + y \mathcal{Z}_R. \tag{3.10}$$

Que possuem formas duais  $ydx + \alpha ydy$  e -ydx + y(xdy - ydx) respectivamente. Utilizando a transformação linear  $(x,y) \mapsto (x - \alpha y,y)$  transformamos a primeira forma em ydx e mantemos a segunda invariante, em outras palavras, podemos supor  $\mathcal{X} = \mathcal{Z}_R$  e o campo  $\mathcal{Y}$  permanece o mesmo. Note que esta simplificação implica que  $[\mathcal{X}, \mathcal{Z}] = a_1 \mathcal{Z}$  que, por sua vez, nos conduz novamente a um sistema como (3.8) (neste caso  $r_1 = r_2 = 0$ ). Lembrando que  $\mathcal{Z} = Q\partial_x + \phi \mathcal{Z}_R$ , em que  $Q = q_{20}x^2 + q_{11}xy + q_{02}y^2$  e  $\phi = \phi_{11}xy + \phi_{02}y^2$ . A segunda equação de (3.8) implica

$$\phi_{11}xy + 2\phi_{02}y^2 = a_1\phi_{11}xy + a_1\phi_{02}y^2$$

donde podemos extrair as relações  $\phi_{11}(1-a_1) = \phi_{02}(2-a_1) = 0$ , resultando em  $a_1 = 1$  ou  $a_1 = 2$ . Se  $a_1 = 1$ , então  $\phi_{02} = 0$  e, portanto,  $\mathcal{Z}$  é divisível por y e, consequentemente, não possui uma quantidade finita de pontos singulares.

Se  $a_1=2$ , então  $\phi_{11}=0$ . Portanto, levando em consideração a igualdade  $[\mathcal{X},\mathcal{Z}]=a_1\mathcal{Z}$ , temos que  $\mathcal{Z}$  ainda é divisível por y. Concluímos, portanto, que o único caso em que  $s\neq 0$  é o caso do Lema anterior, no qual a folheação  $\mathcal{F}$  é descrita por  $\omega_5$ .

Com isto, terminamos a exposição dos teoremas que concernem a geometria de folheações de grau 2. A seguir, apresentamos nos apêndices retratos de fase reais das principais folheações do texto e métodos computacionais utilizados em diversas proposições até aqui.

# Apêndice A

# Planos de Fase Reais

Apresentamos alguns planos de fase obtidos com o auxílio do aplicativo pplane.jar que pode ser obtido no endereço http://math.rice.edu/~dfield/dfpp.html.

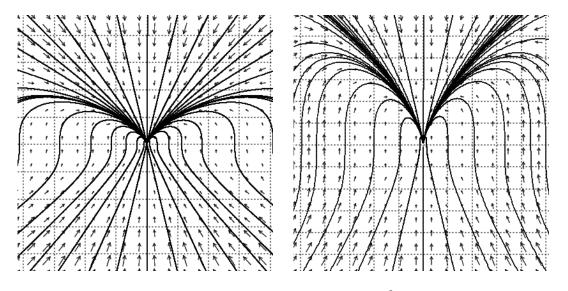


Figura A.1:  $\mathcal{F}_1$  na carta afim  $\mathbb{A}^2_z$ 

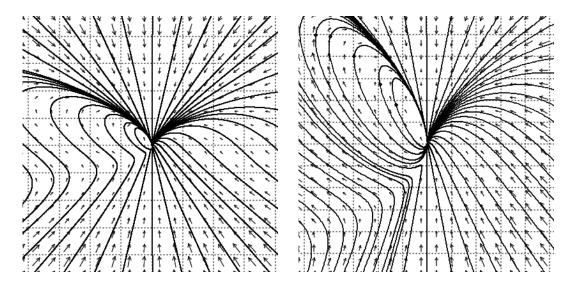


Figura A.2:  $\mathcal{F}_2$  na carta afim  $\mathbb{A}^2_z$ 

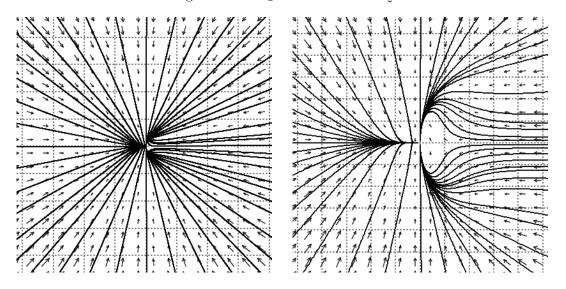


Figura A.3:  $\mathcal{F}_3$  na carta afim  $\mathbb{A}^2_z$ 

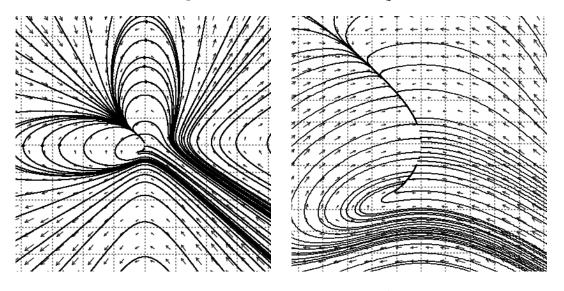


Figura A.4:  $\mathcal{F}_4$  na carta afim  $\mathbb{A}^2_z$ 

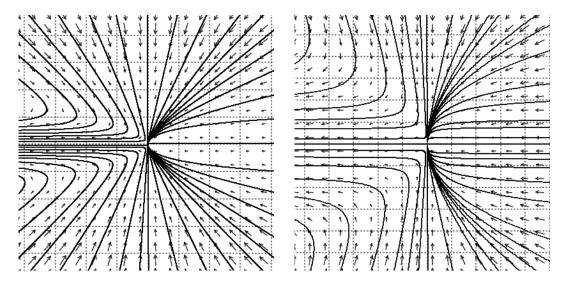


Figura A.5:  $\mathcal{F}_5$  na carta afim  $\mathbb{A}^2_z$ 

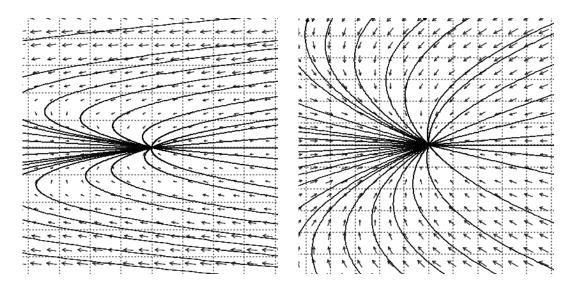


Figura A.6:  $\mathcal{F}_5$  na carta afim  $\mathbb{A}^2_x$ 

# Apêndice B

# Métodos Computacionais

Em algumas proposições do texto fizemos uso de sistemas de computação algébrica para obter nossos resultados. Neste apêndice comentamos os algoritmos utilizados em cada uma dessas situações.

#### B.1 Proposição 1.7.5

Nesta proposição o Teorema da Função implícita nos garante que existe expansão de x em potências de y através da equação

$$Q = x + b_{20}x^2 + b_{11}xy + y^2 + x(\phi_{20}x^2 + \phi_{11}xy) = 0.$$

Para isto poderíamos utilizar diversos métodos de expansão, os mais comuns são a expansão de Newton, ver Christensen [18], e a expansão de Puiseux, ver Winkler [19] ou, a que de fato escolhemos no sistema de computação algébrica Singular, a expansão de Hamburger-Noether. Expandimos pela variável auxiliar t, e adotamos a notação

$$a_{02}=a(0), \qquad a_{11}=a(1), \qquad a_{20}=a(2), \ b_{02}=b(0), \qquad b_{11}=b(1), \qquad b_{20}=b(2), \ \phi_{02}=f(0), \qquad \phi_{11}=f(1), \qquad \phi_{20}=f(2).$$

```
LIB "hnoether.lib";
ring exring=(0,a(0..2),b(0..2),f(0..2)),(x,y,t),ds;
poly Q = x+b(2)*x^2+b(0)*y^2+b(1)*x*y+x*(f(2)*x^2+f(0)*y^2+f(1)*x*y);
list Hne=develop(Q);
list hne_extended=extdevelop(Hne,7);
```

```
list L = param(hne_extended);
poly g = L[1][1];
g = subst(g,f(0),0);
g = subst(g,b(0),1);
e obtemos g:
-t^2+(b(1))*t^3+(-b(1)^2-b(2))*t^4+(b(1)^3+3*b(1)*b(2)-f(1))*t^5+(-b(1)^4-6*b(1)^2*b(2)+3*b(1)*f(1)-2*b(2)^2+f(2))*t^6+(b(1)^5+10*b(1)^3*b(2)-6*b(1)^2*f(1)+10*b(1)*b(2)^2-4*b(1)*f(2)-4*b(2)*f(1))*t^7,
```

que é uma expressão equivalente à fórmula (1.9) na proposição em questão. Resta agora analisar o polinômio  $P = a_{20}x^2 + a_{11}xy + a_{02}y^2 - y(\phi_{20}x^2 + \phi_{11}xy)$  quando esta expansão é aplicada. Dado que sua ordem é 7 as equações determinadas pelos coeficientes de monômios de P de graus menores que 7 devem se anular, enquanto o coeficiente do monômio de grau exatamente 7 deve ser distinto de zero. Obtivemos estas equações com:

```
poly P = a(2)*x^2+a(0)*t^2+a(1)*x*t -t*(f(2)*x^2+f(1)*x*t);
P = subst(P,x,g);
matrix M = coef(P,t);
ideal j = M[2,14], M[2,13], M[2,12], M[2,11], M[2,10];
poly coeficiente = M[2,9];
ring s = 0, (f(0..2), a(0..2), b(0..2)), ds;
ideal j = imap(exring,j);
poly coeficiente = imap(exring, coeficiente);
option(redSB);
j = std(j);
coeficiente= reduce(coeficiente, j);
que nos retorna j e coeficiente:
j[1]=f(1)+a(2)
j[2]=f(2)+a(2)*b(1)
j[3]=a(0)
i[4]=a(1)
j[5]=a(2)*b(2)
-a(2)^2
```

que são as condições requeridas na proposição.

## B.2 Proposição 1.8.5

Nesta proposição desejamos aplicar a mudança de coordenada afim  $\varphi = (x/(1-\phi_{20}\lambda^{-1}x), y/(1-\phi_{20}\lambda^{-1}x))$  na forma

$$\omega = x^{2} dx + (\lambda x + \phi_{20}x^{2} + \phi_{11}xy + y^{2})(xdy - ydx)$$

em que  $\lambda$  é não nulo.

coefRing := Integer

Utilizando o sistema Axiom, definimos o espaço de formas em 2 variáveis e o pullback através de:

```
lv :List Symbol := [x,y]
der := DERHAM(coefRing,lv)

R := Expression coefRing
dx :der := generator(1)
dy :der := generator(2)

pullback2(1:List(R),w:der):der ==
   a1:= coefficient(w,dx)
   a2:= coefficient(w,dy)
   a1:= eval(a1,[x=1.1,y=1.2])
   a2:= eval(a2,[x=1.1,y=1.2])
   w:= a1*totalDifferential(1.1)$der
   w:= w+a2*totalDifferential(1.2)$der
   return(w)
```

Utilizando a notação  $\lambda = \mathbf{s} \in \phi_{02} = \mathbf{f}$  podemos, então, definir

w:der:= 
$$x^2*dx + (s*x + f*x^2 + y^2)*(x*dy - y*dx)$$
  
varphi:= $[x/(1-(f/s)*x),y/(1-(f/s)*x)]$ .

Com estas definições pullback2(varphi, w) retorna

que é a forma equivalente à utilizada na proposição.

# B.3 Hiperplanos em $\mathbb{P}^{29}$

Nosso objetivo é definir quantas condições lineares a identidade de Euler Px + Qy + Rz = 0 impõe nos coeficientes de P, Q, R quando estes são polinômios homogêneos de grau 3 nas variáveis x, y, z. Podemos realizar isto através do sistema Axiom. Primeiramente, definimos polinômios genéricos P, Q, R e o polinômio da identidade de Euler através de

```
genericHomPoly(d:PI,a:Symbol):POLY(INT) ==
  i:NNI:=0
  p:POLY(INT):=0
  contacoef:PI:= 1
  while i <= d repeat
     j:=0
     while j <= d-i repeat
        p:= p+a[contacoef]*x^i*y^j*z^((d-i-j)::NNI)
        contacoef:=contacoef+1
        j := j+1
     i := i+1
  return(p)
P:= genericHomPoly(3,a)
Q:= genericHomPoly(3,b)
R:= genericHomPoly(3,c)
E := x*P+y*Q+z*R
    Vemos agora os coeficientes do polinômio E, que definem as condições lineares já
referidas.
L:=[[[coefficient(E,[x,y,z],[i,j,k]) for i in 0..4] for j in 0..4] for k in 0..4]
L1:=reduce(concat,L)
L2:=reduce(concat,L1)
    A lista L2 é dada por

      + a , c + b + a , c + a , c + b + a , c + b + a , c + a ,

      0 8 9 8 6 8 5 7 6 3 6 5 2 5 1

      + b , c + b , c , b + a , b + a , b + a , b , a ]

      3 3 2 2 1 1 10 9 9 7 7 4 4 10
```

Esta lista consiste em 15 polinômios claramente independentes (nenhuma variável aparece em mais de uma equação), porém podemos calcular o número de elementos que gera a base de Gröbner deste ideal através de

```
G:=groebnerFactorize(L2)
#(G.1)
para recebermos 15, como esperado.
```

### **B.4** Integrais Primeiras

Nesta seção procuramos calcular as integrais primeiras das formas  $\omega_1, \omega_2$  e  $\omega_3$ . Para isto utilizaremos as Observações 1.5.3 e 1.5.4 e uma observação extra: se F é uma integral primeira de uma 1-forma  $\omega$  então  $\exp(F)$  também o é. Isto é claro da definição de integral primeira e do fato de que  $\operatorname{d}(\exp(F)) = \exp(F)\operatorname{d}F$ .

Uma vez que obtemos uma forma fechada basta integrar esta forma ao longo de qualquer caminho. Por exemplo, no segmento que vai de (1,1) a (a,b), e obteremos a integral primeira. Utilizamos o sistema de computação algébrica Axiom e construímos, então, nosso espaço das formas usando o complexo de DeRham, que nos permite diferenciar formas da maneira usual, com a variável auxiliar t e a função que aplica uma transformação à forma.

```
coefRing := FRAC(INT)
lv :List Symbol := [x,y,t]
der := DERHAM(coefRing,lv)
R := Expression coefRing
dx :der := generator(1)
dy :der := generator(2)
dt :der := generator(3)
```

Utilizamos a função criada por S. C. Coutinho para o cálculo do pullback de uma 1-forma por uma transformação dada.

```
pullback(l:List(R),w:der):der ==
  a1:= coefficient(w,dx)
  a2:= coefficient(w,dy)
  a1:= eval(a1,[x=1.1,y=1.2])
  a2:= eval(a2,[x=1.1,y=1.2])
  w:= a1*totalDifferential(1.1)$der
```

w:= w+a2\*totalDifferential(1.2)\$der
return(w)

Podemos, então, criar o algoritmo que tem como entrada uma forma fechada  $\omega$  e tem como saída a integral primeira F. Dada a forma, basta aplicar a transformação que parametriza o segmento de (1,1) a (a,b) pela variável auxiliar t e integrar neste caminho. Segue:

pw:der:=pullback([(1-t)+t\*a,(1-t)+t\*b],w)
f:= coefficient(pw,dt)
F:R:=integrate(f,t)::R
F:= eval(F,[a=x,b=y])
F:= eval(F,t=1)-eval(F,t=0)

Tomamos  $\omega_1=x^2\mathrm{d}x+y^2(x\mathrm{d}y-y\mathrm{d}x)$  e aplicamos o algoritmo na forma fechada  $\frac{\omega_1}{x^4}$ , que nos retorna

que é equivalente a  $F = \frac{1}{3} \left( \frac{y}{x} \right)^3 - \frac{1}{x} + \frac{2}{3}$ , podemos descartar a parte constante, pois não afeta o fato de F ser integral primeira, obtendo, assim, a integral desejada.

Tomando  $\omega_2=x^2\mathrm{d}x+(x+y^2)(x\mathrm{d}y-y\mathrm{d}x)$  vemos que a forma  $\frac{\omega_2}{x^2(2x^2+2xy+x+y^2)}$ é fechada. Aplicando o algoritmo, obtemos

Multiplicando o resultado por -1, exponenciando e, por fim, multiplicando por constante, obtemos

$$F = \left(2 + \frac{1}{x} + 2\left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^2\right) \exp\left(-\frac{y}{x}\right).$$

Se  $\omega_3 = xy dx + (x^2 + y^2)(x dy - y dx)$ , a forma fechada é  $\frac{\omega_3}{x^3y}$ . Aplicando o algoritmo, obtemos

Simplificando e exponenciando esta função, obtemos a integral primeira

$$F = \frac{y}{x} \exp\left(\frac{y^2}{2x^2} - \frac{1}{x}\right).$$

#### B.5 Proposição 3.1.2

Nesta seção buscamos calcular o grupo de isotropia de uma folheação descrita por uma forma já conhecida e permanecemos com o sistema de computação Axiom.

Definimos, similarmente à seção anterior, o complexo de DeRham sobre o anel de polinômios em três variáveis:

```
coefRing := Integer
lv :List Symbol := [x,y,z]
der := DERHAM(coefRing,lv)
R := Expression coefRing
dx :der := generator(1)
dy :der := generator(2)
dz :der := generator(3)
```

Antes de definir o algoritmo utilizado, definimos duas funções auxiliares: a homogeneização de formas em relação à variável z e a aplicação de transformação na forma homogeneizada dada uma lista com as imagens das variáveis x,y e z da seguinte forma:

```
homogenizeForm(w:der):der ==
    a:= coefficient(w,dx)
    b:= coefficient(w,dy)
    da:= totalDegree(a)
    db:= totalDegree(b)
    d:= max(da, db)
    A:= z^(d)*eval(a,[x=x/z,y=y/z])
    B:= z^(d)*eval(b,[x=x/z,y=y/z])
    C:= x*A+y*B
    if zero?(eval(C,z=0)) = true then
        C:= C/z
        W:= A*dx+B*dy-C*dz
    else
        W:= (z*A)$R*dx+(z*B)$R*dy-(C)*dz
    return(W)
```

```
pullback3(l:List(R),w:der):der ==
   a1:= coefficient(w,dx)
   a2:= coefficient(w,dy)
   a3:= coefficient(w,dz)
   a1:= eval(a1,[x=1.1,y=1.2,z=1.3])
   a2:= eval(a2,[x=1.1,y=1.2,z=1.3])
   a3:= eval(a3,[x=1.1,y=1.2,z=1.3])
   w:= a1*totalDifferential(l.1)$der
   w:= w+a2*totalDifferential(l.2)$der
   w:= w+a3*totalDifferential(l.3)$der
   return(w)
```

Podemos, enfim, definir nosso algoritmo que tem como entrada a forma  $\omega$ , na carta afim  $\{z=1\}$ , e tem como saída uma lista com as relações induzidas pela transformação, que precisam ser nulas para que a transformação esteja no grupo de isotropia.

A forma geral de uma mudança de variáveis em  $\mathbb{P}^2$  pode ser representada pela aplicação linear  $\sigma(x,y,z)=(a_1x+b_1y+c_1z:a_2x+b_2y+c_2z:a_3x+b_3y+c_3z)$ . Recordamos que o grupo de isotropia consiste nas aplicações  $\sigma$  que fixam  $\omega$ . Procuramos, então, as aplicações  $\sigma$  tais que  $\sigma^*\omega=t\omega$  com  $t\in\mathbb{C}^*$  ou, equivalentemente,  $\sigma^*\omega-t\omega=0$ .

Primeiramente, procuramos quais relações devem ser nulas. Para tanto, aplicamos o seguinte algoritmo:

```
sigma:= [a1*x+b1*y+c1*z,a2*x+b2*y+c2*z,a3*x+b3*y+c3*z]
W:=homogenizeForm(w)
W1:=pullback3(sigma,W)
W2:=W1-t*W

A:=coefficient(W2,dx)::POLY(INT)
B:=coefficient(W2,dy)::POLY(INT)
C:=coefficient(W2,dz)::POLY(INT)

L1:=reduce(concat,reduce(concat,[[[coefficient(A,[x,y,z],[i,j,k])
for i in 0..3] for j in 0..3] for k in 0..3]))
L2:=reduce(concat,reduce(concat,[[[coefficient(B,[x,y,z],[i,j,k])
for i in 0..3] for j in 0..3] for k in 0..3]))
L3:=reduce(concat,reduce(concat,[[[coefficient(C,[x,y,z],[i,j,k])
```

for i in 0..3] for j in 0..3] for k in 0..3]))

L:=append(L1,L2)

L:=append(L,L3)

Obtemos, assim, o ideal L gerado pelos polinômios que representam as relações que devem se anular. Utilizamos um algoritmo que calcula a base de Gröbner e fatora os polinômios deste ideal para obter as relações mais simples possíveis.

G:=groebnerFactorize(L)

```
G1:List(List(POLY(INT))):=[]
for g in G repeat
  if member?(t,g)=false then
   G1:= cons(g,G1)
```

O último teste nos garante que a relação indesejada t=0 não ocorrerá em nossa lista. Temos, portanto, o algoritmo completo.

Aplicamos o algoritmo para  $\omega_1 = x^2 dx + y^2 (x dy - y dx)$  e recebemos:

O primeiro conjunto de relações pode ser encarado como caso particular do segundo (no qual  $a_3=0$ ). Portanto, como estamos trabalhando com uma transformação projetiva, podemos supor  $c_3=1$ . Tomando  $a_3=b$  e  $b_2=a^2$ , obtemos  $a_1=a^3$  e  $\sigma=(a^3x:a^2y:z+bx)$  com  $b\in\mathbb{C}$  e  $a\in\mathbb{C}^*$ . Também note que  $\sigma^*(\omega)=a^{12}\omega$ , como esperado da primeira relação.

Para  $\omega_2 = x^2 dx + (x + y^2)(x dy - y dx)$  e recebemos:

O primeiro conjunto de relações induz  $\sigma$  da forma  $(a_1x:a_1y:a_1z)$ . Se  $a_1=1$ ,  $\sigma$  é a identidade. Como antes supomos que  $a_1=1$  e chamamos  $a_2=a$  no segundo conjunto, donde  $\sigma$  é da forma (x:ax+y:-a(a+2)x-2ay+z) com  $a\in\mathbb{C}$ . Note que  $\sigma^*(\omega)=\omega=a_1^4\omega$ , como esperado da primeira relação.

Para  $\omega_3 = xydx + (x^2 + y^2)(xdy - ydx)$  recebemos:

Supondo que  $a_1 = 1$  e  $a_3 = a$ , esses conjuntos induzem  $\sigma = (x : \pm y : z + ax)$  com  $a \in \mathbb{C}$ .

Para  $\omega_4 = (x+y^2-x^2y)\mathrm{d}y + x(x+y^2)\mathrm{d}x$  o algoritmo convencional extrapola o tempo computacional aceitável, de modo que precisamos alterar a ordenação monomial para otimizá-lo. Supomos que  $c_3 = 1$  com

$$L:= eval(L,c3=1)$$

$$S:= HDMP([a1,a2,a3,b1,b2,b3,c1,c2,t],INT)$$

#### G:=groebner(LL)

Isto nos retorna uma lista de 333 relações que, simplificadas, ficam reduzidas a  $a_1b_2=1$  e  $b_2^3=1$  donde as isotropias podem ser descritas por

$$\{(x:y:z),(j^2x:jy:z),(jx:j^2y:z)\}$$

 $com j = e^{\frac{2\pi i}{3}}.$ 

O caso de  $\omega_5 = x^2 dy + y^2 (x dy - y dx)$  é similar ao caso de  $\omega_1$  e o algoritmo nos dá as relações

Supondo que  $c_3=1,\ b_2=a$  e  $b_3=b,$  vemos que  $\sigma$  é da forma  $(a^2x:ay:z+by)$  com  $a,b\in\mathbb{C}$  e  $a\neq 0.$ 

Assim, descrevemos por fim todos os grupos de isotropia que desejávamos.

## B.6 Proposição 3.2.2

Nesta proposição consideramos o campo  $\mathcal{Y} = (a_1x + a_2y)\partial_x + (a_3x + a_4y)\partial_y$  e desejamos encontrar uma mudança de coordenadas  $\sigma = (b_1x + b_2y, b_3x + b_4y)$  que transforma  $\mathcal{Y}$  em  $y\partial_x$ , em outras palavras, a mudança transforma a forma dual  $\omega$  de  $\mathcal{Y}$  na forma ydy. Seguimos o método descrito por S. C. Coutinho. Como anteriormente utilizamos o complexo de DeRham e a função pullback:

```
w:der:= (a1*x+a2*y)*dx+(a3*x+a4*y)*dy
sigma:= [b1*x+b2*y,b3*x+b4*y]
pw:= pullback(sigma,w)
```

donde

```
*
(a4 b4 + (a3 + a2)b2 b4 + a1 b2)y

+
((a4 b3 + a3 b1)b4 + a2 b2 b3 + a1 b1 b2)x

*
dy

+
((a4 b3 + a2 b1)b4 + a3 b2 b3 + a1 b1 b2)y

+
(a4 b3 + (a3 + a2)b1 b3 + a1 b1)x

*
dx.
```

Extraímos os coeficientes de dx e dy:

```
A:= coefficient(pw,dx)::POLY(FRAC(INT))
B:= coefficient(pw,dy)::POLY(FRAC(INT)).
```

Para que pw seja conjugada a ydy precisamos que A se anule e B seja puro em y. Portanto devemos obter relações decorrentes do anulamento dos polinômios na lista

```
L:=[coefficient(A,x,1), coefficient(A,y,1), coefficient(B,x,1)].
```

Precisamos, agora, analisar 3 casos. O primeiro  $a_1a_4 \neq 0$ :

[b4,b3,a4,a3 - a2,a1], [b4,a4,a3,a2,a1], [b3,b1,a3 - a2,a1],

[b3,b1,a4,a3 - a2,a1], [b1,a4,a3,a2,a1], [b3,a3,a2,a1], [a4,a3,a2,a1]]

em que a única base viável é a primeira, visto que as outras impõe relações entre os a's. Podemos supor  $b_1b_2 \neq 0$  e, como os polinômios na primeira relação são homogêneos, podemos supor também que  $b_1 = b_2 = 1$ . Resolvemos para  $b_3$  e  $b_4$  com

radicalSolve(eval(G.1,[b1=1,b2=1]),[b3,b4])

que retorna

determinando possibilidades para  $\sigma$  no primeiro caso. Procedemos de maneira similar com o caso  $a_1=0$  mas  $a_4\neq 0$ :

G:= groebnerFactorize(L2)

radicalSolve(eval(G.1,[b1=1,b2=1]),[b3,b4])

que retorna

E também com o caso  $a_1 \neq 0$  mas  $a_4 = 0$ :

L3:=eval(L,a4=0)

G:= groebnerFactorize(L3)

radicalSolve(eval(G.1,[b3=1,b4=1]),[b1,b2])

que retorna

que retorna

O caso  $a_1 = a_4 = 0$  não pode ocorrer pois, se  $\mathcal{X}$  e  $\mathcal{Y}$  são os campos que geram  $\mathfrak{iso}(\mathcal{F})$ , então as condições da proposição nos dão  $[\mathcal{X}, \mathcal{Y}] = \mathcal{Y}$ . Se  $\mathcal{Y} = a_3 x \partial_x - a_2 y \partial_y$  e  $\mathcal{X} = (c_1 x + c_2 y) \partial_x + (c_3 x + c_4 y) \partial_y$  então teríamos

$$(a_3 + a_2)c_2 = a_3x$$
 e  
- $(a_3 + a_2)c_3 = a_2x$ .

Portanto, resultaria  $\mathcal{X} = 0$ , o que é impossível.

# Referências Bibliográficas

- [1] CERVEAU, D., DÉSERTI, J., GARBA BELKO, D., et al. "Géométrie classique de certains feuilletages de degré deux", *Bulletin of the Brazilian Mathematical Society*, v. 41, n. 2, pp. 161–198, 2010.
- [2] JOUANOLOU, J. Equations de Pfaff algébriques. N. 708, Lecture Notes in Mathematics. Berlin and Heidelberg and New York, Springer-Verlag, 1979.
- [3] FULTON, W. Algebraic Curves. 2008. Disponível em: <a href="http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf">http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf</a>>.
- [4] LEE, J. Introduction to Smooth Manifolds. N. 218, Graduate Texts in Mathematics. Springer, 2006.
- [5] ILYASHENKO, Y., YAKOVENKO, S. Lectures on Analytic Differential Equations. N. 86, Graduate Studies in Mathematics. American Mathematical Society, 2008.
- [6] PEREIRA, J. Integrabilidade de Equações Diferenciais no Plano Complexo. Instituto de Matemática y Ciencias Afines, Lima, 2001. Monografia.
- [7] WILLIS, N., DIDIER, A., SONNANBURG, K. "How to Compute a Puiseux Expansion", 2012. arxiv:math/0807.4674.
- [8] LINS NETO, A., SCÁRDUA, B. Introdução à Teoria das Folheações Algébricas Complexas. N. 2, 21º Colóquio Brasileiro de Matemática. IMPA, 1997.
- [9] HUMPHREYS, J. Linear Algebraic Groups. N. 21, Graduate Texts in Mathematics. New York, Springer-Verlag, 1981.
- [10] OLVER, P. Applications of Lie Groups to Differential Equations. N. 107, Graduate Texts in Mathematics. Second edition ed. Berlin and Heidelberg and New York, Springer-Verlag, 1993.

- [11] FISCHER, W., LIEB, I. A Course in Complex Analysis: From Basic Results to Advanced Topics. 1 ed. Berlin, Vieweg+Teubner, 2012.
- [12] NEUNHÖFFER, M. "Lie Algebras", . Lecture Notes, 2010. Disponível em: <a href="http://www-circa.mcs.st-and.ac.uk/~neunhoef">http://www-circa.mcs.st-and.ac.uk/~neunhoef</a>>.
- [13] FULTON, W., HARRIS, J. Representation Theory: A First Course. N. 129, Graduate Texts in Mathematics. Springer-Verlag, 1991.
- [14] SHAFAREVICH, I. Basic Algebraic Geometry I. Second edition ed. Berlin and Heidelberg and New York, Springer-Verlag, 1994.
- [15] CERVEAU, D., MATTEI, J.-F. "Formes intégrables holomorphes singulières", Astérisque, v. 97, 1982.
- [16] VARADAJARAN, V. "Lie theory", . Lecture Notes, 2007. Disponível em: <a href="http://www.math.ucla.edu/~vsv/">http://www.math.ucla.edu/~vsv/</a>.
- [17] PEREIRA, J. "Vector fields, invariant varieties and linear systems", Annales de l'Institut Fourier, v. 51, n. 5, pp. 1385–1405, 2001.
- [18] CHRISTENSEN, C. "Newton's Method for Resolving Affected Equations", The College Mathematics Journal, v. 27, n. 5, pp. 330–340, 1996.
- [19] WINKLER, F. "Local Parametrization and Puiseux Expansion", . Lecture Notes, 2012. Disponível em: <a href="http://www.risc.jku.at/education/courses/ss2012/caag">http://www.risc.jku.at/education/courses/ss2012/caag</a>.
- [20] SILVA, M. *O Lema de Darboux e Aplicações*. Dissertação. Rio de Janeiro, Universidade Federal do Rio de Janeiro, 2011.
- [21] ZAKHERI, S. "Dynamics of Singular Holomorphic Foliations on the Complex Projective Plane"., 1998. arxiv:math/9809099.
- [22] MILNE, J. "Lie Algebras, Algebraic Groups and Lie Groups"., 2013. Disponível em: <a href="http://www.jmilne.org/math/">http://www.jmilne.org/math/</a>>.