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Del rigor en la ciencia

En aquel Imperio, el Arte de la Cartografía logró tal Perfección que el Mapa de una sola Provincia ocupaba toda
una Ciudad, y el Mapa del Imperio, toda una Provincia. Con el tiempo, estos Mapas Desmesurados no satis�cieron
y los Colegios de Cartógrafos levantaron un Mapa del Imperio, que tenía el Tamaño del Imperio y coincidía
puntualmente con él. Menos Adictas al Estudio de la Cartografía, las Generaciones Siguientes entendieron que
ese dilatado Mapa era Inútil y no sin Impiedad lo entregaron a las Inclemencias del Sol y los Inviernos. En los
Desiertos del Oeste perduran despedazadas Ruinas del Mapa, habitadas por Animales y por Mendigos; en todo
el País no hay otra reliquia de las Disciplinas Geográ�cas.

Suárez Miranda: Viajes de varones prudentes
Libro Cuarto, cap. XLV, Lérida, 1658. In [Borges '60].
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�All that you touch
All that you see
All that you taste
All you feel.
All that you love
All that you hate
All you distrust
All you save.
All that you give
All that you deal
All that you buy,
beg, borrow or steal.
All you create
All you destroy
All that you do
All that you say.
All that you eat
And everyone you meet
All that you slight
And everyone you �ght.
All that is now
All that is gone
All that's to come and everything
under the sun is in tune but the
sun is eclipsed by the moon.

"There is no dark side of the
moon really.
Matter of fact it's all dark." ."

Eclipse
Roger Waters - Pink Floyd
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Resumo

Compressive Sensing

Claudio Mayrink Verdun

Resumo da dissertação de Mestrado submetida ao Programa de Pós-graduação em Matemática Aplicada,
Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos requisitos necessários
à obtenção do título de Mestre em Matemática Aplicada.

Resumo: Vivemos em um mundo digital. Os aparelhos ao nosso redor interpretam e processam bits
a todo instante. Para isso ser possível, a conversão de sinais analógicos para o domínio discreto se faz
necessária. Ela se dá por meio dos processos de amostragem, quantização e codi�cação. Através de
tais etapas, é possível processar e armazenar os sinais em dispositivos digitais. O paradigma clássico
do Processamento Digital de Sinais nos diz que devemos realizar uma etapa de amostragem e, em
seguida, uma etapa de compressão, por meio da quantização e codi�cação, para a aquisição de sinais.
Entretanto, realizado desta forma, este processo pode ser custoso ou desnecessário, devido a uma
alta taxa de amostragem ou a uma grande perda de dados na etapa de compressão. A partir desta
observação, coloca-se a seguinte questão:

É possível realizar o processo de aquisição e compressão simultaneamente de forma a obter o mínimo
de informação necessária para a reconstrução de um dado sinal?

Os trabalhos seminais de David Donoho, Emmanuel Candès, Justin Romberg e Terence Tao mostram
que a resposta para esta pergunta é a�rmativa em muitas situações envolvendo sinais naturais ou gera-
dos pelo ser humano. O presente trabalho tem como objetivo estudar a área denominada Compressive
Sensing, termo sem tradução que se refere à resposta positiva a esta pergunta, isto é, ao procedimento
de realizar uma aquisição compressiva de dados. Esta dissertação é um guia do mochileiro para esta
área que está em rápido crescimento. Os teoremas que a fundamentam são apresentados com detalhe
e rigor. Do ponto de vista matemático, ela é uma interseção das áreas de Otimização, Probabilidade,
Geometria de Espaços de Banach, Análise Harmônica e Álgebra Linear Numérica. Aqui são discuti-
das técnicas de Teoria de Frames, Matrizes Aleatórias e aproximações ótimas em espaços de Banach
para demonstrar a viabilidade deste novo paradigma em Processamento de Sinais.

Palavras�chave. Compressive Sensing, Compressive Sampling, Compressed Sensing, Esparsidade, Represen-
tação Esparsa, Redundância, Teoria de Frames, Análise Harmônica Aplicada, Matrizes Aleatórias, Princípio da
Incerteza, Processamento de Sinais.

Rio de Janeiro
Dezembro de 2016



xii

Abstract

Compressive Sensing

Claudio Mayrink Verdun

Abstract da dissertaçao de Mestrado submetida ao Programa de Pós-graduação em Matemática Aplicada,
Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos requisitos necessários
à obtenção do título de Mestre em Matemática Aplicada.

Abstract: We live in a digital world. The devices around us interpret and process bits all the time.
For this to be possible, a conversion of analog signals into the discrete domain is necessary. It hap-
pens through the processes of sampling, quantization and coding. Through such steps, it is viable to
process and store such signals in digital devices. The classical paradigm of Digital Signal Process-
ing for signal acquisition is a sampling step followed by a compression step, through quantization
and coding. However, this way, the process can be costly or unnecessary due to a high sampling rate
or a large loss of data in the compression stage. From this observation, the following question is posed:

Is it possible to perform the acquisition and compression process simultaneously in order to obtain the
minimum information for the reconstruction of a given signal?

The seminal works of David Donoho, Emmanuel Candès, Justin Romberg and Terence Tao show
that the answer to this question is a�rmative in many circumstances involving natural or man-made
signals. The present work aims to study the area called Compressive Sensing, which is a procedure to
perform data acquisition and compression at the same time. This dissertation is a hitchhiker's guide
to this rapidly growing �eld. The fundamental theorems will be explored with detail and rigor. From
the mathematical point of view, it is an intersection of the Optimization, Probability, Geometry of
Banach Spaces, Harmonic Analysis and Numerical Linear Algebra. Here we discuss the techniques of
Frame Theory, Random Matrices and approximation in Banach Spaces to demonstrate the feasibility
of this new paradigm in Signal Processing.

Keywords. Compressive Sensing, Compressive Sampling, Compressed Sensing, Sparsity, Sparse Representa-
tion, Redundance, Frame Theory, Applied Harmonic Analyis, Random Matrices, Uncertainty Principle, Signal
Processing.

Rio de Janeiro
December of 2016



Contents

1 Sparse Solutions of Linear Systems 5

1.1 The What, Why and How of Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 A Little (Pre)History of Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Sparse and Compressible Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 How Many Measurements Are Necessary? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Computational Complexity of Sparse Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Some De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Some Algorithms and Ideas 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Thresholding Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 The Search For the Perfect Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The Null Space Property 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The Null Space Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Recovery via Nonconvex Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Stable Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Robust Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Low-Rank Matrix Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Complexity Issues of the NSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 The Coherence Property 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 A Case Study: Two Orthogonal Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Uniqueness Analysis for the General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Coherence for General Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Properties and Generalizations of Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Constructing Matrices with Small Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8 A Glimpse of Frame Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8.1 History and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8.3 De�nition and Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8.4 Constraints for Equiangular Tight Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Analysis of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.10 The Quadratic Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1



CONTENTS

5 Restricted Isometry Property 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 The RIP Constant and its Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 The Quadratic Bottleneck Reloaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Breaking the Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Analysis of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 RIP Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Interlude: Non-asymptotic Probability 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Subgaussian and Subexponential Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Nonasymptotic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Comparison of Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 Concentration of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6 Covering and Packing Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Matrices Which Satisfy The RIP 129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 RIP for Subgaussian Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3 Universal Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4 The Curious Case of Gaussian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.5 Johnson-Lindenstrauss Embeddings and the RIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Optimality in the Number of Measurements 147

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 n-Widths in Approximation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.3 Compressive Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.4 Optimal Number of Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5 The Theorem of Kashin, Garnaev and Gluskin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.6 Connections Between Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.7 Instance Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 165

2



Preface

Measure what can be measured, and make measurable what cannot be measured.
Attributed to Galileo Galilei

Measure what should be measured.
Compressive Sensing version by Thomas Strohmer

In this dissertation we will explore one of the fascinating connections that emerged over the last 20
years among the communities of Applied Mathematics, Electrical Engineering and Statistics. It deals
with several relevant ideas that have arisen about data acquisition and how we perform measurements.

We live in an era where data and information are spread everywhere and it is a major challenge getting
them in the most economical way. Two studies sponsored by EMC corporation, [Gantz & Reinsel '10]
and [Gantz & Reinsel '12], measured all digital data created, replicated, and consumed in a single year,
and also did a projection of the digital universe size for the end of the decade. They argued that at the
end of 2020, there will be 40000 exabytes or 40 trillion gigabytes of data in the world. They say �From
now (2012) until 2020, the digital universe will about double every two years�. Also, it can be expensive
in terms of time, money or (in case of, say, Computed Tomography) damage done to the object from
which information is being acquired.

Based on these facts, more than ever, we need e�cient ways to represent, store and manipulate data.
The question of how to sample and compress datasets is of major importance. In the last twenty years,
many researchers asked if there are classes of signals that can be encoded using just few informations
about them without much perceptual loss.

Simultaneously, they realized that many signals seems to have few degrees of freedom, despite the
fact that they �live�, in principle, in high-dimensional spaces. Knowing this, one can potentially design
e�cient sampling and storage protocols that take the useful information content embedded in a signal
and condense it into a small amount of data. For example, [Candès, Romberg & Tao I '06] performed
an impressive numerical experiment and showed that a 512 × 512 pixel test image, known in the Image
Processing community as the Logan-Shepp phantom, can be reconstructed from 512 Fourier coe�cients
sampled along 22 radial lines. In other words, more than 95% of the relevant data is missing yet a very
e�cient compression and reconstruction scheme was found.

At the same year, [Donoho '06] realized that these compressed data acquisition protocols are, in
his own words �nonadaptive and parallelizable�. They do not require any prior knowledge of the data
other than the fact that data has a parsimonious representation with few coe�cients. Furthermore, the
measurements can be performed all at the same time. He called this new simultaneous acquisition and
compression process Compressed Sensing.

These two fundamental papers were followed by the works [Candès & Tao I '06], [Candès & Tao II '06]
and [Candès, Romberg & Tao II '06]. These three works, in turn,have further developed the results and
disseminate them in the communities of Statistics, Signal Processing and Mathematics.

Since these �ve founding papers were published, ten years ago, there was an explosion in the theory
and applications of Compressive Sensing. Therefore it is important to highlight that ideas which emerged
from the notions of sparsity, incoherence and randomness and that now permeate the world of data
science will not be transient.

In Brazil, the emergence of Compressive Sensing was in 2009, in a course at the 27◦ Brazilian Mathe-
matical Colloquium through the book [Schulz, da Silva & Velho '09]. I attended the classes and despite
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the fact that I was in the �rst year of college, the impressions recorded in my mind were that it would
be interesting to put together Mathematics, Signal Processing, computation and statistical skills and try
to solve a real-life problem.

After I spent two years studying Fourier Analysis and Inverse Problems and also working on math-
ematical problems from medical images, I decided that I would dedicate myself to this subject and its
new developments.

Now, a little over ten years after the articles that founded the theory have been published, there are
some excellent books that are partially or entirely dedicated to it. See [Elad '10], [Damelin & Miller '12]
[Eldar & Kutyniok '12], [Rish & Grabarnik '14] and [Eldar '15]. However, up to now, the comprehensive
book about the subject is [Rauhut & Foucart '13]. It is the main reference of this dissertation, my
companion in the last three years and most of the main ideas and proofs were extracted from it. Despite
this, the in�uence of the other �ve books is also present in several passages of this text.

There are some excellent reviews and surveys about Compressive Sensing. See [Candès '06], [Holtz '08],
[Baraniuk '07], [Romberg '08], [Strohmer '12], [Candès & Wakin '08], [Jacques & Vandergheynst '11]. In
addition, the success of this theory has been described in four issues of important journals entirely de-
voted to the subject. The articles in these four issues served as a source of inspiration and clari�cation
on some obscure and hard points of the theory.

• IEEE Signal Processing Magazine, Vol. 25, No. 2, Mar 2008.

• IEEE Journal on Selected Topics in Signal Processing, Vol. 4, No. 2, Apr 2010.

• Proceedings of the IEEE, Vol. 98, No. 6, Jun 2010.

• IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 2, No. 3, Sep 2010.

Unfortunately, I did not solve a real problem in the last three years, as was my initial desire. Instead,
I studied Compressive Sensing theory carefully. It is essential to say that in each chapter I have outlined
important open problems connected to Compressive Sensing. The purpose of this dissertation is to
state Compressive Sensing as a new paradigm in Signal Processing and to develop the main techniques
necessary to completely understand it from the mathematical viewpoint. I hope the next three years
will be enough to solve or, at least, to understand a real problem using the knowledge acquired from the
study of these techniques.
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Chapter 1

Sparse Solutions of Linear Systems

Is there anything of which one might say, �See this, it is new�? Already it has existed for ages Which were before us.
Ecclesiastes 1:10

1.1 The What, Why and How of Compressive Sensing

In the last century, we have witnessed the deployment of a wide variety of sensors that acquire measure-
ments to represent the physical world. Microphones, telescopes, anemometers, gyroscopes, transducers,
radars, thermometers, GPS, seismometers, microscopes, hydrometers, etc are everywhere. The purpose of
all these instruments is to directly acquire measures in order to capture the meaning of the world around
us. Besides, a world without digital photos, videos and sounds being stored or shared is unimaginable
nowadays.

The increase in technology has allowed us to obtain more and more data in a short time. To deduce
the state or structure of a system from this data is a fundamental task throughout the sciences and
engineering. The �rst step to acquire the data is sampling. We need to sample the signals obtained from
the real world in order to convert them from the analogical domain to a sequence of bits in the digital
domain. The second step is compression, which involves encoding information using fewer bits than the
original representation. Both steps are necessary to store, manipulate, process, transmit and interpret
data.

However, in many situations it is di�cult and costly to obtain a massive amount of data or even
slow, such as medical image acquisition. Moreover, nowadays, in many analog-digital (A/D) converters,
after the signal is sampled, signi�cant computations are expended on lossy compression algorithms. A
representative example of this paradigm is the digital camera of any smartphone. It acquires millions of
measurements each time a picture is taken and most of the data is discarded after the acquistion through
the application of an image compression algorithm. Therefore, when the signal is decoded, typically only
an approximation of the original one is produced. The main question that motivates this text is

Can both operations, sampling and compression, be combined?

That is, instead of high-rate sampling followed by computationally expensive compression, is it possible
to reduce to number of samples and produce a compressed signal directly? The classical sampling theory
does not exploit the structure or any prior knowledge about the signal being sampled. All we need to
know is its frequency information and use this to determine the sample rate.

The objective of this dissertation is the study of Compressive Sensing, also known as Compressed
Sensing or Compressive Sampling. It takes its name from the fact that data acquisition and compres-
sion can be performed simultaneously in such a way that the reconstruction algorithms will exploit the
structure of the data. This technique is, nowadays, an essential underpinning of data analysis.

We have two basic hypotheses behind the theory: sparsity and incoherence. The �rst one is related to
the objects we are acquiring, i.e, we will use few measurements in order to capture signals by exploiting
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1.1. THE WHAT, WHY AND HOW OF COMPRESSIVE SENSING

their parsimonious representation in some basis. The second one is related to the measurement system.
It extends the duality between time and frequency and the idea behind it is that an object that has sparse
representation in a given basis must be spread out in any other basis, such as the one which represents the
acquisition domain. We wil also see that randomness plays a key role in the design of optimal incoherent
system. Thus, it can be considered as a third ingredient of the theory.

From a mathematical viewpoint, Compressive Sensing can be seen as a chapter of contemporary Linear
Algebra since it deals with the pursuit of sparse solution of underdetermined linear systems. Nevertheless,
mathematical techniques behind it are very sophisticated, going from Probability Theory, passing through
Harmonic Analysis and Optimization and arriving at the Geometry of Banach Spaces. From the applied
viewpoint, it is a fecund intersection of many areas from Electrical Engineering, Computer Science,
Statistics and Physics.

Through the use of Compressive Sensing, we can not only provide theoretical guarantees for the
minimal number of measurements but also e�cient algorithms for practical reconstruction. And all this
is based on a simple principle of parsimony, which was enunciated many times, but divulged by the
medieval philosopher William of Ockham: �Pluralitas non est ponenda sine neccesitate�, i.e., entities
should not be multiplied unnecessarily.

It is interesting to note that ideas of Compressive Sensing ideas spontaneously occur in nature due to
natural selection: the mammalian visual system has been shown to behave using sparse and redundant
representation of sensory input. Some researches, starting from the works of Barlow (great-grandson of
Charles Darwin), Hubel and Wiesel argued that a dramatic reduction occurs from the information that
hits the retina to the information present in the visual cortex. Typically, a neuron in the retina responds
simply to whatever contrast is present at that point in space, whereas a neuron in the cortex would respond
only to a speci�c spatial con�guration of light intensities. This leads to an optimal representation of the
visual information in the brain and is known nowadays in the �eld of Neuroscience as Sparse Coding. See
[Olshausen & Field '04] and [Huang & Rao '11].

The �rst application of Compressive Sensing was in pediatric magnetic resonance imaging (MRI). See
[Vasanawala, Alley, Hargreaves, Barth, Pauly & Lustig '10] and the blog post [Ellenberg - 02/22/10]. It
enables a sevenfold speedup while preserving diagnostic quality and resolution. In this imaging modality,
the traditional approaches to produce high-resolution imagines relies on Shannon Sampling Theorem
(Theorem 1.2 demonstrated below), and may take several minutes. For a heart patient imaging, one
cannot hold his breath for too long and the arti�cial induction of a cardiac arrest can be dangerous and
irreversible, depending on the health of the patient. Thus, to get images without blurring is a di�cult
task. See [Lustig, Donoho & Pauly '07] for the problem statement and the use of Compressive Sensing.

After the launch of these preprints, Compressive Sensing appeared as a noticeable improvement,
gaining the attention of the media and of several research groups interested in improving the performance
of signal reconstruction. Nowadays, besides medical imaging, it leads to important contributions in Radar
Technology, Error Correction Codes, Systems Recommendation, Wireless Communications, Learning
Algorithms, DNA Microarrays, etc. See Section 1.2 of [Rauhut & Foucart '13] and references therein for
these and more examples.

In mathematical terms, the problem of acquiring and compressing simultaneously the signal x ∈ CN
of interest is modeled by a (fat and short) matrix measurement, converting x to y = Ax. After, we need
to reconstruct it using the underdetermined linear system

Ax = y,

where the measurement fat and short1 matrix A ∈ Cm×N models the information acquisition process
and y ∈ Cm is the observed data. Since we are in a compression regime, we expect (or impose) that
m� N . At a �rst moment, this system has an in�nite number solutions. But the role played by sparsity
will allow us to reduce it to a unique solution and despite a seeming lack of su�cient information in the
acquisition, we will see that recovery algorithms have a wondrous performance. Therefore we must start
by understanding what sparsity is and how and when it leads to unique solutions of underdetermined
linear systems. It is important to note that linear measurements are, in principle, not necessary and

1For this name and other ideas, one should consult the blog by Dustin Mixon: https://dustingmixon.wordpress.com/.
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CHAPTER 1. SPARSE SOLUTIONS OF LINEAR SYSTEMS

we could develop a theory for non-linear measurements. Nevertheless, linear sensing is widely used and
simpler than non-linear one and we study this framework throughout the text.

In this dissertation we begin with basic de�nitions of sparse and compressible vectors. Then, we will
explore the algorithms that solve e�ciently the problem of the recovery of sparse vectors. They are divided
in three main families: optimization algorithms, greedy algorithms and thresholding algorithms. After
this, we will discuss the three most important properties in the study of indeterminate linear systems: the
nullspace property, the coherence property and the restricted isometry property. Later, we will proceed to
the study of non-asymptotic probability techniques, specially the concentration of measure phenomena,
and how to use them to design e�cient measurement matrices with an optimal number of measurements.
Finally, the Geometry of Banach Spaces will play a special role to understand the minimal amount of
information to recover sparse signals and it will appear as the main tool to provide sharper general
results for even more general reconstruction methods than those presented in the previous chapters. The
�owchart of ideas developed through this dissertation can be seen in Figure 1.1 below.

Figure 1.1: Flowchart of the dissertation

The core of this diagram is the �equivalence� between Basis Pursuit, an algorithm from convex opti-
mization, and sparse recovery, a combinatorial problem. We will see that the Nullspace Property (NSP)
plays a fundamental role in this equivalence. More speci�cally, Basis Pursuit allows sparse recovery if and
only if the measurement matrix satis�es this property, as will be seen in Chapter 3. Since it is very hard
to establish this property, we will replace it by two di�erent su�cient conditions: the Coherence Property
and the Restricted Isometry Property (RIP). This will be done in Chapters 4 and 5, respectively. The
second will lead to better results in the number of measurements through the use of probability tech-
niques, such as the concentration of measure. Therefore, in Chapters 6 and 7 we will explore probabilistic
tools and how to use then in the Compressive Sensing framework. Finally, in Chapter 8 we introduce
some concepts of the Geometry of Banach Spaces in order to establish the optimality of Basis Pursuit
and other methods of sparse recovery discussed through this dissertation.
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1.2. A LITTLE (PRE)HISTORY OF COMPRESSIVE SENSING

1.2 A Little (Pre)History of Compressive Sensing

Compressive Sensing has a long history. The �rst ideas of sparse estimation can be traced back to Gaspard
Riche de Prony, a French mathematician and engineer. In 1795, he proposed an algorithm to estimate
the parameters associated with a small number of complex exponentials sampled in the presence of noise.
See Theorem 2.15 of [Rauhut & Foucart '13] and Section 15.2 of [Eldar '15].

After, in the �rst half of the 20th century, the works of Constantin Caratheodory, Arne Beurling and
Benjamin Logan in Harmonic Analysis showed that it was possible to recover certain sinusoids and pieces
of Fourier Transform by exploiting the notion of minimal extrapolation, which nowadays we recognize as
`1-minimization. See [Donoho '10]. This will be further discussed in Chapter 2.

During World War II, the technique of combinatorial group testing was introduced. It was a time
when there were many people infected with syphilis and the problem was to discover who was infected
and who was not by using e�cient testing schemes, considering that resources were scarce. The US
Public Health Service did not want ill men serving in the military but it was not possible to test all
individuals, hundreds of thousands of people, in order to identify the small proportion of infected people.
Then, instead of test single individuals, the blood was combined in an e�cient way to reveal that one
person in this combination had the disease. Therefore the task was to identify all individuals with syphilis
while minimizing the number of tests and again the parsimony principle applies. See [Dorfman '43] and
[Gilbert, Iwen & Strauss '08].

In the late seventies and early eighties, researchers from Geology and Geophysics communities showed
that the structure of the layered format in the earth's interior could be explored to increase the accuracy of
seismic signal recovery. [Taylor, Banks & McCoy '79], [Levy & Fullagar '81] and [Walker & Ulrych '83],
showed that very incomplete measurements can be used to recover a full wideband seismic signal, despite
that no low-frequency can be acquired due to the nature of the seismic measurements. Also, the �rst
paper to explicit state the use of `1-norm for signal reconstruction was written by people working on
Geophysical Inverse Problems: [Santosa & Symes '86].

After these contributions, the Magnetic Resonance Spectroscopy and Radio Astronomy communities
started to use sparsity concepts in the signal recovery. In particular, methods exploiting this parsimonious
representation of data were faster and more e�cient than the classical method of Maximum Entropy
Inversion [Donoho, Johnstone, Stern & Hoch '92].

Essentially at the same time, the �Wavelets explosion� appeared through the works of Daubechies,
Meyer, Mallat, Coifman, Wickerhauser and others. From their ideas, it became typical to describe e�ec-
tive media representation, such as image and video, by using Wavelets. Afterwards, Wavelets became part
of the standard techniques in Signal Processing and standard technologies such as �ngerprint databases.
See [Daubechies '92] and [Burrus, Gopinath & Guo '97].

The �rst works that showed the general algorithmic principles which are used in compressive sensing
were [Mallat & Zhang '93] and [Chen & Donoho '94]. In these papers, a systematic study was performed
in order to develop a general theory of sparse representations of signals and to understand how this can
be done in a e�cient way.

Hitching on the paper [Chen & Donoho '94], it is important to point out that a large part of the
history and evolution of ideas before Compressive Sensing, in the nineties, can be understood from the
point of view of the works of David Donoho and his collaborators. Donoho, a very proli�c mathemati-
cian, paved the way until to founding papers of Compressive Sensing. It starts with seminal paper
[Donoho & Stark '89], where important ideas about the relation between the uncertainty principle and
the acquisition of information from a signal where showed. After this, many of his works contained funda-
mental ideas in Statistics and Signal Processing that culminated in Compressive Sensing. One important
example is [Donoho & Huo '01]. The goal of this paper was to establish the connections between convex
optimization problems and optimal parsimonious representations of signals by using very few coe�cients,
what they called an Ideal Atomic Decomposition.

Parallel to advances in signal processing, similar ideas have emerged in the Statistics community. The
development of LASSO by [Tibshirani '96], a linear regression that uses `1-norm as a regularizer, started
a new era in Statistics and Machine Learning where many problems, previously intractable, could be
solved.
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Finally, the foundation of Compressive Sensing can be credited to [Donoho '06], [Candès & Tao I '06],
[Candès & Tao II '06], [Candès, Romberg & Tao I '06] and [Candès, Romberg & Tao II '06]. They com-
bined deep techniques from Probability Theory, Approximation Theory and Banach Spaces Geometry in
order to achieve a theoretical breakthrough: they showed how to exponentially decrease the number of
measurements for an accurate and computationally e�cient recovery of signals, provided that they are
sparse. These �ve works revolutionized the way we think about Signal Processing. Now, according to
Google Scholar, they have now more than 52000 citations together.

Subsequently, Compressive Sensing turned into a rapidly growing �eld. Since 2006, many sharper
theorems, more e�cient algorithms, dedicated hardware and generalizations of the theory emerged. It
will probably take a few more years for all contributions to be properly organized so we can tell the story
of new ideas, developments and breakthroughs of the �eld in the last twenty years. Before we start with
it, we need to come back to the fundamentals of sampling, specially to the classical Sampling Theorem.

1.3 Sampling Theory

Sampling lies at the core of Signal Processing and is the �rst step of analog to digital conversion. It
is the gate between the discrete and the continuous world. Other two important steps are quantization
and coding. The former is the reduction of the sample values from their continuous range to a discrete
set. The latter generates a digital bitstream as the �nal representation of the continuous time signal.
This dissertation is about sampling. We start by looking at the celebrated Shannon-Nyquist-Kotelnikov-
Whittaker Theorem2. First, we need a de�nition.

De�nition 1.1. The Paley-Wiener Space PWΩ(R) is the subspace of L2(R) consisting of all functions
with Fourier transforms supported on �nite intervals symmetric around the origin. More precisely,

PWΩ(R) =
{
f ∈ L2(R) : f̂(ξ) = 0 for |ξ| ≥ Ω

}
.

As [Mishali & Eldar '11] points out, �The band-limited signal model is a natural choice to describe
physical properties that are encountered in many applications. For example, a physical communication
medium often dictates the maximal frequency that can be reliably transferred. Thus, material, length,
dielectric properties, shielding and other electrical parameters de�ne the maximal frequency Ω. Often,
bandlimitedness is enforced by a lowpass �lter with cuto� Ω, whose purpose is to reject thermal noise
beyond frequencies of interest�.

Theorem 1.2. (Theorem 13 of [Shannon '48]): Let f(t) ∈ PWΩ(R). Then f(t) is completely determined
by its samples at the points {tn = nπ/Ω}n∈Z. Also, the following reconstruction formula holds

f(t) =
∑
n∈Z

f

(
nπ

Ω

)
sin(Ωt− nπ)

Ωt− nπ ,

where the series above converge in the L2 sense and uniformly.

Remark 1. Here we provide a proof of Sampling Theorem because it is di�cult to �nd a rigorous one in
the literature. For a proof in a abstract framework, with more general interpolation functions than sin t

t ,
see Theorem 2.7 of [Güntürk '00]. Also, for an engineering interpretation of Theorem 1.2 as �sampling
by modulation�, see Section 4.2.2 of [Eldar '15].

Proof. Since f(t) ∈ L2(R), then f̂(ξ) ∈ L2(R). Also, as a consequence of the Paley-Wiener Theorem (see
Section 4.3 from [Stein & Shakarchi '05]), f(t) is the restriction to the real line of an analytic function. We
can write the Fourier Series of f̂(ξ) in the interval [−Ω,Ω] since the complex exponentials {einπξ/Ω}n∈Z
form an orthogonal basis for L2(−Ω,Ω). In particular, the coe�cients will be given by

2In the literature of Approximation Theory, it is known as the cardinal theorem of interpolation. See [Higgins '85].
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cn =
1

2Ω

∫ Ω

−Ω

f̂(ξ)e−inπξ/Ωdξ.

By hypothesis, f̂(ξ) = 0 for all |ξ| ≥ Ω. This yields, for all x ∈ Z,

c−n =
1

2Ω

∫ Ω

−Ω

f̂(ξ)einπξ/Ωdξ =
1

2Ω

∫ ∞
−∞

f̂(ξ)einπξ/Ωdξ =
π

Ω

1

2π

∫ ∞
−∞

f̂(ξ)eiξ
nπ
Ω dξ =

π

Ω
f

(
nπ

Ω

)
,

where we used the Inversion Formula for the Fourier Transform in the last equality. Thus, we obtain

f̂(ξ) =
π

Ω

∞∑
n=−∞

f

(
nπ

Ω

)
e−iξ

nπ
Ω = lim

N→∞

N∑
n=−N

π

Ω
f

(
nπ

Ω

)
e−iξ

nπ
Ω . (1.1)

The convergence above is in the L2(−Ω,Ω) sense. We have also that

||f̂ ||1 =

∫ Ω

−Ω

|f̂(ξ)|dx =

∫ Ω

−Ω

1 · |f̂(ξ)|dx ≤ ||1||2||f̂ ||2 =
√

2Ω||f̂ ||2.

This leads to the fact that f̂(ξ) ∈ L1(R) and that the convergence in L2(R) implies convergence in
L1(R). Using that f̂(ξ) = 0 for |ξ| ≥ Ω, we can multiply Equation (1.1) on both sides by χ[−Ω,Ω](ξ), the
characteristic function of the interval [−Ω,Ω]. This yields∣∣∣∣∣∣∣∣f̂(ξ)− π

Ω

N∑
n=−N

f

(
nπ

Ω

)
e−iξ

nπ
Ω χ

[−Ω,Ω](ξ)

∣∣∣∣∣∣∣∣
p

−−−−→
N→∞

0.

for p = 1 and p = 2. We known, by Parseval's Theorem, that the Inverse Fourier Transform is a bounded
continuous operator F−1 : L2(R) → L2(R). Also, From Riemann-Lebesgue Theorem, it is a bounded
continuous operator from L1(R) to C0(R), the space of continuous functions vanishing at in�nity equipped
with the supremum norm. Therefore we conclude

f = F−1(f̂) = F−1

(
lim
N→∞

π

Ω

N∑
n=−N

f

(
nπ

Ω

)
e−iξ

nπ
Ω χ

[−Ω,Ω](ξ)

)

= lim
N→∞

π

Ω

N∑
n=−N

f

(
nπ

Ω

)
F−1

(
e−iξ

nπ
Ω χ

[−Ω,Ω](ξ)
)
,

where the convergence occurs both in the L2(R) norm and in C0(R). To �nish, note that

F−1
(
e−iξ

nπ
Ω χ

[−Ω,Ω](ξ)
)

=
1

2π

∫ ∞
−∞

e−iξ
nπ
Ω χ

[−Ω,Ω](ξ)e
iξtdξ =

1

2π

∫ Ω

−Ω

e−iξ
nπ
Ω eiξtdξ

=
1

2π

∫ Ω

−Ω

e−ξt−iξ
nπ
Ω dξ =

Ω

π

sin(Ωt− nπ)

Ωt− nπ .

This is a modern translation of the theorem. We can compare it with the original words of Shannon:
�If a function f(t) contains no frequencies higher than Ω cycles-per-second, it is completely determined
by giving its ordinates at a series of points spaced 1/2Ω seconds apart�.

He also wrote �it is a fact which is common knowledge in the communication art..but in spite of its
evident importance it seems not to have appeared explicitly in the literature of communication theory�.

Many signals of interest are modeled as bandlimited functions, i.e., real valued functions on the real line
with compactly supported Fourier transforms. Then Theorem 1.2 tells us that it is possible to reconstruct

10
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a band-limited function using uniform samples. It says that an enumerable amount of information is
su�cient to reconstruct any (band-limited) function on the continuum. The heuristic behind it is that
band-limited functions have limited time variation, and can therefore be perfectly reconstructed from
equalispaced samples with a rate at least Ω/π, its maximum frequency, called the Nyquist rate.

Remark 2. Theorem 1.2 has a long and proli�c history. It is a striking case of multiple discoveries and
many names beyond Shannon, Nyquist, Kotelnikov and Whittaker are associated with it. Also, it forms
the basis of Signal Processing. See [Jerri '77], [Unser '00], [Meijering '02], [Ferreira & Higgins '11] and
references therein. Also, many generalizations, including results for not necessarily band-limited functions
or nonuniform sampling can be found in the literature. See [Butzer & Stens '92] and [Marvasti '01].

Although it forms the basis of modern Signal Processing, Theorem 1.2 has two major drawbacks. The
�rst one is that not all signals of the real world are band-limited. The second is that if the bandwidth is
too large, then we must have too many samples in order to perform the acquisition of the signal. Since,
in many situations, it is very di�cult to sample at high rate, some alternatives began to be considered.
These alternatives are known as sub-Nyquist sampling strategies.

Incredibly, the �rst overcoming of the Sampling Theorem occurred before its existence. It was proved
in [Carathéodory 1911] that if a signal is a positive linear combination of any N sinusoids, it is uniquely
determined by its value at t = 0 and any other 2N points. Depending on the highest frequency sinusoid
in the signal, this can be much better than Nyquist rate. While the number of samples in the Nyquist
rate increases with Ω, in Caratheodory's argument it increases with N .

Among all sub-Nyquist sampling alternatives, Compressive Sensing is one of the most important
[Mishali & Eldar '11]. It focuses on e�ciently measuring a discrete signal through a measurement matrix
A ∈ Cm×N with fewer measurements than the ambient dimension. Although it is a theory for discrete
signals, recently some researches generalized ideas from Compressive Sensing to analog signals. See
[Tropp, Laska, Duarte, Romberg & Baraniuk '10] and [Adcock, Hansen, Roman & Teschke '13].

This sensing with fewer measurements is only possible (and useful) because many natural signals
are sparse or compressible. Using this priori information will allow us to design e�cient reconstruction
schemes. These, in turn, will be able to recover the vectors as the unique solution of some optimization
problems.

1.4 Sparse and Compressible Vectors

In this section we de�ne the main objects of our study: sparse and compressible vectors. The fundamental
hypothesis we will explore is that many real-world signals have most of their components being zero (or
approximately zero).

De�nition 1.3. The support of a vector x ∈ CN is the index set of its nonzero entries, i.e.,

supp(x) = {j ∈ [N ] : xj 6= 0}.
A vector x ∈ CN is called s-sparse if at most s of its entries are nonzero, i. e., if ||x||0 = #(supp(x)) ≤ s.
The set of all s-sparse signals is denoted by Σs = {x : ||x||0 ≤ s}.

Despite ||x||0 not being a norm, it is abusively called this way throughout the literature on Sparse
Recovery, Signal Processing or Computational and Applied Harmonic Analysis. It can be seen as the
limit of `p-quasinorms as p decreases to zero through the following observation.

||x||pp =

N∑
j=1

|xj |p p→0−−−→
N∑
j=1

1{xj 6=0} = #{j ∈ [N ] : xj 6= 0}.

Remark 3. Sparsity has no linear structure. Given any x, y ∈ Σs, we do not necessarily have x+y ∈ Σs,
although we do have x+ y ∈ Σ2s. The set Σs consists in the union of all possible

(
N
s

)
canonical subspaces

of CN .
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As discussed in Section 1.3.2 of [Eldar & Kutyniok '12], in certain applications it is possible to
have more concise models by restricting the feasible signal supports to a small subset of the possi-
ble

(
N
s

)
selection of nonzero coe�cient. This leads to the concept of sparse union of subspaces. See

[Duarte & Eldar '11].
In the Signal Processing community, it is said that we can model the sparse signal x ∈ Cm as the

linear combination of N elements, called atoms, that is

x = Φα =

N∑
i=1

αiϕi,

where αi are the representation coe�cients of x in the dictionary Φ = [ϕ1, . . . , ϕN ]. We will require
that the elements of the dictionary {ϕ}Ni=1 span the entire signal space. Here it will be Cm but in other
situations it can be some speci�c subset or proper subspace of Cm. This representation is often redundant
since we allow N > m. Due to redundancy, this representation is not unique, but we typically consider
(or look for) the one with the smallest number of terms. A signal may be not sparse in a �rst moment
but it may be �sparsi�ed� just by using a speci�c dictionary.

What is behind the concept of sparsity is the philosophy of Occam's razor : when we are faced with
many possible ways to represent a signal, the simplest choice is best one. This is so because there is a cost
to describe the basis we are using for this representation. However, sparsity is a theoretical abstraction.
In the real world, one does not seek for sparse vectors but, instead, for approximately sparse vectors.
Even more, we want to measure how close our signals of interest are to a true sparse one. This measure
is given by the next concept.

De�nition 1.4. For p > 0, the `p-error of best s-term approximation to a vector x ∈ CN is de�ned by

σs(x)p = inf{||x− z||p, z ∈ CN is s-sparse}.
Remark 4. The in�mum in De�nition 1.4 will always be achieved by an s-sparse vector z ∈ CN whose
nonzero entries are equal to the s largest absolute entries of x. There is no reason for this vector to be
unique. Nevertheless, when it attains the in�mum, it occurs independently of p > 0.

The concept of approximately sparse or compressible vector is a little more ingenious and realistic.
Instead of asking for the number of nonzero component to be small, we ask for the error of its best s-term
approximation to decay fast in s.

This can be modeled in two di�erent ways. The �rst one is by using `p balls for some small p > 0.
The second one is by exploring the concept of signi�cant components of a vector itself. This will lead to
the concept of weak `p-spaces.

Proposition 1.5 tells us that discrete signals which belong to the unit ball in some `p-norm, for some
small p > 0 are good models for compressible vectors. Here we will denote the nonconvex ball in RN
equipped with `p-norm by BNp = {z ∈ CN : ||z||p ≤ 1}.

Proposition 1.5. For any q > p > 0 and any x ∈ CN ,

σs(x)q ≤
1

s1/p−1/q
||x||p.

De�nition 1.6. The nonincreasing rearrangement of the vector x ∈ CN is the vector x∗ ∈ RN for which

x∗1 ≥ x∗2 ≥ · · · ≥ x∗N ≥ 0.

and there is a permutation π : [N ]→ [N ] with x∗j = |xπ(j)| for all j ∈ [N ].

Proof. (of Proposition 1.5): x∗ ∈ RN+ , the nonincreasing rearrangement of x ∈ CN , yields

σs(x)qq =

N∑
j=s+1

(x∗j )
q ≤ (x∗s)

q−p
N∑

j=s+1

(x∗j )
p ≤

(
1

s

s∑
j=1

(x∗j )
p

) q−p
p
( N∑
j=s+1

(x∗j )
p

)

12
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≤
(

1

s
||x||pp

) q−p
p

||x||pp =
1

sq/p−1
||x||qp.

The next result is a stronger version, with optimal constant, of Proposition 1.5. Its importance relies
on the fact that sharp results on error reconstruction analysis depends on it. Also, the method for proving
it appears many times in the Compressive Sensing literature. We use optimization ideas to prove some
inequalities with sharp constant. This technique will be invoked again in Lemma 4.25 and Lemma 5.21.

Theorem 1.7. For any q > p > 0 and any x ∈ CN , the inequality

σs(x)q ≤
cp,q

s1/p−1/q
||x||p

holds with

cp,q =

[(
p

q

)p/q(
1− p

q

)1−p/q]1/p

≤ 1.

Proof. Let x∗ ∈ RN+ be the nonincreasing rearrangement of x ∈ CN . If we set αj = (x∗j )
p, we will

transform the problem into a equivalent one given by{
α1 ≥ α2 ≥ · · · ≥ αN ≥ 0
α1 + α2 + · · ·+ αN ≤ 1

=⇒ a
q/p
s+1 + a

q/p
s+2 + · · ·+ a

q/p
s+N ≤

cqp,q
sq/p−1

.

Therefore, using r = q/p > 1, we need to maximize the convex function

f(α1, α2, . . . , αN ) = αrs+1 + αrs+s + · · ·+ αrN ,

over the convex polytope C = {(α1, . . . , αN ) ∈ RN : α1 ≥ · · · ≥ αN ≥ 0 and α1 + · · · + αN ≤ 1}.
As any point of C is a convex combination of its vertices and because the function f is convex, the
maximum is attained at a vertex of C (see Theorem B.16 from [Rauhut & Foucart '13] or Theorem 2.65
from [Ruszczynski]). Besides, the vertices are intersections of N hyperplanes when we force N of the
N + 1 inequalities to become equalities. From this we obtain the following possibilities:

1. If α1 = · · · = αN = 0, then f(α1, α2, . . . , αN ) = 0.

2. If α1 + · · ·+ αN = 1 and α1 = · · · = αk > αk+1 = · · · = αN = 0 for some 1 ≤ k ≤ s, then one has
f(α1, α2, . . . , αN ) = 0.

3. If α1 + · · ·+ αN = 1 and α1 = · · · = αk > αk+1 = · · · = αN = 0 for some s+ 1 ≤ k ≤ N then one
has α1 = · · · = αk = 1/k, and consequently f(α1, α2, . . . , αN ) = (k − s)/kr.

Thus we have obtained

max
(α1,...,αs)∈C

f(α1, α2, . . . , αs) = max
s+1≤k≤N

k − s
kr

.

Now, consider f(k) as a function of a continuous variable k, we observe that the function g(k) = (k−s)/kr
is increasing until the critical point k∗ = (r/(r − 1))s and decreasing thereafter. Using this information
yields

max
(α1,...,αs)∈C

f(α1, α2, . . . , αs) ≤ g(k∗) =
1

r

(
1− 1

r

)r−1
1

sr−1
=

cqp,q
sq/p−1

.

The other way of reasoning about compressible vectors is to require that the number of its signi�cant
components be small. This can be done with the introduction of the weak `p-spaces.
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De�nition 1.8. For p > 0, the weak `p space w`Np denotes the space CN equipped with the quasinorm

||x||p,∞ = inf
{
M ≥ 0 : #{j ∈ [N ] : |xj | ≥ t} ≤

Mp

tp
for all t > 0

}
.

Remark 5. In the de�nition above, the quaisnorm comes from the fact that a constant appears in the
triangular inequality: ||x+ y||p,∞ ≤ 2max{1,1/p}(||x||p,∞ + ||y||p,∞). For de�nitions, see Section 1.7.

There is an alternative expression for the weak `p-quasinorm of a vector x ∈ CN .

Proposition 1.9. For p > 0, the weak `p-quasinorm of a vector x ∈ CN can be expressed as

||x||p,∞ = max
k∈[N ]

k1/px∗k,

where x∗ ∈ RN+ denotes the noincreasing rearrangement of x ∈ CN .

Proof. Given x ∈ CN , we clearly have ||x||p,∞ = ||x∗||p,∞. Then we need to prove that ||x|| :=
maxk∈[N ] k

1/px∗k equals ||x∗||p,∞. For t > 0 we have two possibilities:

{j ∈ [N ] : x∗j ≥ t} = [k] for some k ∈ [N ] or {j ∈ [N ] : x∗j ≥ t} = ∅.

In the �rst case, t ≤ x∗j ≤ ||x||/k1/p. This implies #{j ∈ [N ] : x∗j ≥ t} = k ≤ ||x||p/tp. Note that
this inequality holds trivially in the case that {j ∈ [N ] : x∗j ≥ t} = ∅. By the de�nition of the weak `p-
quasinorm, this leads to ||x∗||p,∞ ≤ ||x||. Now, suppose that ||x|| > ||x∗||p,∞, so that ||x|| ≥ (1+ε)||x∗||p,∞
for some ε > 0. This can be translate into k1/px∗k ≥ (1 + ε)||x∗||p,∞ for some k ∈ [N ]. Therefore we have
the inclusion

[k] ⊂ {j ∈ [N ] : x∗j ≥ (1 + ε)||x∗||p,∞/k1/p}.
Again, by the de�nition of the weak `p-quasinorm, we obtain

k ≤ ||x∗||pp,∞(
(1 + ε)||x∗||p,∞/k1/p

)p =
k

(1 + ε)p
,

which is a contradiction. We conclude that ||x|| = ||x∗||p,∞.

With the alternative expression of the weak `p-quasinorm, we can establish a proposition similar to
Proposition 1.5.

Proposition 1.10. For any q > p > 0 and x ∈ CN , we have the inequality

σs(x)q ≤
(

p

q − p

)
1

s1/p−1/q
||x||p,∞.

Proof. Without loss of generality, we assume that ||x||p,∞ ≤ 1, so that x∗k ≤ 1/k1/p for all k ∈ [N ]. This
yields

σs(x)pp =

N∑
k=s+1

(x∗k)q ≤
N∑

k=s+!

1

kq/p
≤
∫ ∞
s

1

tq/p
dt = − 1

q/p− 1

1

tq/p−1

∣∣∣∣∣
t=N

t=s

≤ p

q − p
1

sq/p−1
.

Taking the power 1/q leads to the desired inequality.

Proposition 1.5 and Proposition 1.10 show that if we have vectors x ∈ CN for which ||x||p ≤ 1 or
||x||p,∞ ≤ 1 for small p > 0, than they will be compressible vectors in the sense that their errors of best
s-term approximation decay quickly with s.
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1.5 How Many Measurements Are Necessary?

The fundamental problem in Compressive Sensing is to reconstruct an s-sparse vectors from few measure-
ments. In mathematical terms, this is represented by solving the linear system Ax = y, where x ∈ CN is
the s-sparse signal being acquired, A ∈ Cm×N represents the measurement matrix and y ∈ Cm represents
the acquired information.

Since we want to acquire the signal in a compressible fashion, we have fewer measurements than the
ambient dimension, i.e., m < N . This results in an underdetermined system, which has, without any
other assumption, an in�nite number of solutions. As described in Section 1.3, it is natural to assume
that the signals are sparse in some basis. With this regularization assumption, we expect to identify the
original vector x. Thus, the recovery of sparse signals has two meanings:

1. Uniform recovery : the reconstruction of all s-sparse vectors x ∈ CN simultaneously.

2. Nonuniform recovery : the reconstruction of an speci�c s-sparse vector x ∈ CN .

In case we are dealing with measurements matrices described by stochastic models, we can translate
conditions above by �nding a lower bound of the form

1. Uniform recovery : P(∀s-sparse x, recovery of x is successful using A) ≥ 1− ε.

2. Nonuniform recovery : ∀ s-sparse, P(recovery of x is successful using A) ≥ 1− ε.

In both cases, the probability is over the random draw of A, described by a certain model. In this
dissertation we will deal with the �rst case. We will answer when it is possible to recover all signals from
few measurements, provided that all of them have some sparsity and that we have access to the acquired
vector y (this acquired vector will be di�erent for every signal x). For the nonuniform case, see Sections
12.2 and 14.2 of [Rauhut & Foucart '13] and the discussion in [Candès & Plan '11].

Remark 6. For a matrix A ∈ Cm×N and a subset S ⊂ [N ], we denote by AS the column submatrix of A
consisting of the columns indexed by S. For a vector x ∈ CN , we denote by xS the vector in CS consisting
of the entries indexed by S or the vector in CN which coincides with x on the entries in S and is zero on
the entries outside S. It will be clear from the context which one of the two options we are dealing with.

The way we recover signals is by supposing that they are as sparse as possible. Therefore, an algorith-
mic approach for recovering them is through `0-minimization. In other words, we search for the sparsest
vector consistent with the measured data y = Ax.

min
z∈CN

||z||0 subject to Az = y. (P0)

In case that measurements are corrupted by noise or are slightly inaccurate, the natural generalization
is given by

min
z∈CN

||z||0 subject to ||Az − y||2 ≤ η. (P0,η)

The main point about Compressive Sensing is that we can recover compressible signals corrupted
by noise. Then, this problem has stability and robustness. See Sections 3.4 and 3.5. Therefore, in
real situations, we will deal with the problem (P0,η). We can understand the recovery of sparse vectors
through the properties of the measurement matrix A as shown in the next theorem.

Theorem 1.11. Given A ∈ Cm×N , the following properties are equivalent

a) Every s-sparse vector x ∈ CN is the unique s-sparse solution of Az = Ax, that is, if Ax = Az and
both x and z are s-sparse, then x = z.
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b) The null space kerA does not contain any 2s-sparse vector other than the zero vector, that is,
kerA ∩ {z ∈ CN : ||z||0 ≤ 2s} = {0}.

c) Every set of 2s columns of A is linearly independent.

d) For every S ⊂ [N ] with #S ≤ 2s, the submatrix AS is an injective map from CS to Cm and the
Gram matrix A∗SAS is invertible.

Proof. a) =⇒ b): Assume that for every vector x ∈ CN , we have {z ∈ CN : Az = Ax, ||z||0 ≤ s} = {x}.
Let v ∈ kerA be 2s-sparse. We write v = x− z for s-sparse vectors x, z with supp x ∩ supp z = ∅. Then
Ax = Az and by assumption x = z. Since the supports of x and z are disjoint, it follows that z = x = 0
and v = 0.

b) =⇒ c): Let S be a set of indexes 1 ≤ i1 < i2 < · · · < i2s ≤ N with #S = 2s and let x ∈ CN such
that supp(x) ⊂ S. If Ax =

∑2s
`=1 ai`xi` = 0, then x = 0. Thus the 2s columns vectors indexed by S must

be linearly independent.
c) =⇒ d): If every set of 2s columns of A is linearly independent then every set of s columns is also

linearly independent. Thus, clearly, AS is injective as a map from CS to Cm. Also, consider S and x as
in the previous case. We have

〈x,A∗SASx〉 = 〈ASx,ASx〉 =

∣∣∣∣∣∣∣∣ 2s∑
s,t=1

xisais

∣∣∣∣∣∣∣∣2
2

> 0,

since, by c), the 2s column vectors ais are linearly independent. Also, the matrix A∗SAS is self-adjoint,
therefore all of its eigenvalues are real and they will be positive if and only if the quadratic form 〈x,A∗SASx〉
is positive. Furthermore, a matrix with all positive eigenvalues is invertible.

d) =⇒ a): Suppose that x1 and x2 are two s-sparse vectors satisfying Ax1 = Ax2 = Az. Setting
x = x1 − x2 we have that it is 2s-sparse and also that Ax = Ax1 − Ax2 = Az − Az = 0. Let S be the
index set {is} for the support of x. Since x is in the kernel of A, we have

〈x,A∗SASx〉 =

∣∣∣∣∣∣∣∣ 2s∑
s,t=1

xisais

∣∣∣∣∣∣∣∣2
2

.

Since A∗SAS in invertible, the last sum vanishes only if x = 0. This implies x1 = x2.

From Theorem 1.11, we conclude that if it is possible to reconstruct every s-sparse, so that the
statement c) above holds, then we have rank(A) ≥ 2s. On the other hand, since A ∈ Cm×N , rank(A) ≤ m.
We conclude that the number of measurements necessary to reconstruct every s-sparse vector satis�es
m ≥ 2s. The next theorem shows that m = 2s measurements su�ce. After, we will discuss why this
bound is a theoretical one and typically not stable for practical implementation. In particular, due to a
lack of knowledge about the location of the support, in Chapter 8 we will see that, in fact, a few more
than 2s measurements will be necessary.

Theorem 1.12. For any integer N ≥ 2s, there exists a measurements matrix A ∈ Cm×N with m = 2s
rows such that every s-sparse vector x ∈ CN can be recovered from its measurement vector y = Ax ∈ Cm
as a solution of (P0).

Proof. For �xed tn > · · · > t2 > t1 > 0, we can de�ne the matrix A ∈ Cm×N with m = 2s as

A =


1 1 . . . 1
t1 t2 . . . tN
...

... . . .
...

t2s−1
1 t2s−1

2 . . . t2s−1
N

 .
Let S = {j1 < · · · < j2s} be an index set of cardinality 2s. De�ne the square matrix AS ∈ C2s×2s. It will
be the transpose of a Vandermonde matrix. It is well known that det(AS) =

∏
k<`(tj` − tjk) > 0. This
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shows that AS is invertible and, in particular, injective. The hypotheses of Theorem 1.11 are ful�lled,
thus every s-sparse vector x ∈ CN is the unique s-sparse vector satisfying Az = Ax. Therefore it can be
recovered as the solution of (P0).

Remark 7. As discussed in Section 2.2 of [Rauhut & Foucart '13], it is interesting to note that many
matrices ful�ll the hypotheses of Theorem 1.11. We can take any matrix M ∈ RN×N that is totally
positive, i.e., that satis�es det(MI,J) > 0 for any sets I, J,⊂ [N ] with same cardinality, where MI,J

represents the submatrix of M with rows indexed by I and columns indexed by J . After, we select any
m = 2s rows of M , indexed by a set I, to form the measurement matrix A.
Since the original matrix M is totally positive, for any index S ⊂ [N ] with #S = 2s, the matrix AS is the
same as MI,S, hence it is invertible and we can apply Theorem 1.11. In particular, the partial Discrete
Fourier Transform

A =


1 1 1 1 . . . 1
1 e2πi/N e2πi2/N . . . e2πi(N−1)/N

...
...

...
...

...
1 e2πi(2s−1)/N e2πi(2s−1)2/N . . . e2πi(2s−1)(N−1)/N

 ,
allows for the reconstruction of every s-sparse vector x ∈ CN from y = Ax ∈ C2s.

The reasoning above can be generalized and we can prove that, from a measure-theoretical viewpoint,
the set of matrices that can not recovery s-sparse vector is small.

Theorem 1.13. The set of 2s × N matrices such that det(AS) = 0 for some S ⊂ [N ] with #S ≤ 2s
has Lebesgue measure zero. Therefore, most 2s ×N matrices allow the reconstruction of every s-sparse
vector x ∈ CN from y = Ax ∈ C2s.

Theorem 1.13 is a simples consequence of Sard's Theorem3 and tells us that we can draw a matrix at
random and it will be, in principle, a good measurement matrix. However, we do not address the problem
of robustness to error measurements and stability for compressible vectors recovery. These points will be
further discussed in Chapter 3 and Chapter 8. In the latter, we will prove that any stable reconstruction
for s-sparse vectors requires at least m = Cs ln(eN/s) linear measurements, for a constant C > 0. From
this perspective, matrices such as the Vandermonde matrix from Theorem 1.12 are not adequate as
measurement matrices.

1.6 Computational Complexity of Sparse Recovery

In this section we focus on a brief digression about computational complexity theory. This is a branch
of mathematics/computer science where one tries to quantify the amount of computational resources
required to solve a given task. We do not intend to be rigorous here. For a rigorous treatment, see the
classical [Garey & Johnson '79] or the modern [Arora & Barak '07].

For example, if one tries to solve a linear system, the classic Gaussian elimination algorithm uses
essentially n3 basic arithmetic operations to solve n equations over n variables. However, in 1960s, a
more e�cient algorithm was created, see [Strassen '69]. The latter is a highly nonintuitive algorithm.

Therefore one might ask if, in some cases, there are more e�cient (but nonintuitive) algorithms than
the ones used for many years. In the �eld of computational complexity, researchers try to answer such
questions and prove that, sometimes, there is no better algorithm than the existing ones. Even more, for
some problems they try to prove that there is no e�cient algorithm.

Computational complexity starts with the work [Hartmanis & Stearns '65]. For an historical account,
see [Fortnow & Homer '03]. It is philosophically similar to taxonomy, where typically one tries to establish
patterns and group problems into classes according to its inherent di�culty, in the same way naturalists

3For a proof of this theorem, see pages 205-207 of [Guillemin & Pollack].
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1.6. COMPUTATIONAL COMPLEXITY OF SPARSE RECOVERY

try to classify the living beings according to physiological properties. After, they relate those classes
to each other. In this classi�cation, a problem is regarded as inherently di�cult if its solution requires
signi�cant resources, whatever the algorithm used.

A polynomial/exponential-time algorithm is an algorithm performing its tasks in a number of steps
bounded by a polynomial/exponential expression in the size of the input. The �rst distinction between
polynomial-time and exponential-time algorithm was given by [von Neumann '53]. It is standard in com-
plexity theory to identify polynomial-time with feasible. Clearly, this is not always true, as pointed by
[Cook]. He says: �for example, a computer program requiring n100 steps could never be executed on an
input even as small as n = 10.� Even so, let us assume that this is the case and let us consider the
Feasibility Thesis:

�A natural problem has a feasible algorithm if and only if it has a polynomial-time algorithm.�

There is a classi�cation of computational problems: they are divided in decision problems, search
problems, counting problems, optimization problems and function problems. See [Goldreich '08]. Here
we are interested in decision and optimization problems. A decision problem is a question in some formal
system with a yes-or-no answer, depending on the values of some input parameters. An optimization
problem asks to �nd the �best possible� solution among the set of all feasible solutions. Every optimization
problem can be transformed into a decision problem just by asking if the best possible solution exists or
not. Now we introduce some terminology following [Rauhut & Foucart '13]. For rigorous de�nitions, see
De�nitions 1.13, 2.1 and 2.7 from [Arora & Barak '07].

De�nition 1.14. We have four basic complexity classes:

• The class P of P-problems consists of all decision problems for which there exists a polynomial-time
algorithm �nding a solution.

• The class NP of NP-problems consists of all decision problems for which there exists a polynomial-
time algorithm certifying a solution.

• The class NP-hard of NP-hard problems consist of all problems (not necessarily decision problems)
for which a solving algorithm could be transformed in polynomial time into a polynomial time
solving algorithm for any NP-problem. Roughly speaking, this is the class of problems at least as
hard as any NP-problem.

• The class NP-complete of NP-complete problems consist of all problems that are both NP and NP-
hard; in other words, it consists of all the NP-problems at least as hard as any other NP-problem.

Note that the class P is contained in the class NP. One can ask if the converse is also true. This is
the important conjecture P = NP, see [Cook]. If this conjecture is shown to be false, which is widely
believed, then there will exist problems for which potential solutions can be certi�ed, but no solution can
be found in polynomial time.

Figure 1.2: Relation between the four main complexity classes.
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As [Arora & Barak '07] points out, Recognizing the correctness of an answer is often much easier than
coming up with the answer. Appreciating a Beethoven sonata is far easier than composing the sonata;
verifying the solidity of a design for a suspension bridge is easier (to a civil engineer anyway!) than
coming up with a good design; verifying the proof of a theorem is easier than coming up with a proof
itself.

Since nowadays we know that there are many NP-complete problems, these problems are probably
intrinsically intractable. Some of the �rst examples were given by a list of 21 problems described in
[Karp '72]. He says �In this paper we give theorems that suggest, but do not imply, that these problems, as
well as many others, will remain intractable perpetually�. In particular, we are interested in the fourteenth
problem of the list.

Remark 8. (Exact cover by 3-sets problem or X3C problem): Given a collection {Ci, i ∈ [N ]} of 3-
element subsets of [m], does there exist an exact cover (or a partition) of [m], i.e., a set J ⊂ [N ] such
that ∪j∈JCj = [m] and Cj ∩ Ck = ∅ for all j, k ∈ J with j 6= k?

Clearly we see that m must be a multiple of 3. Let us use one example in order to understand.
Suppose we have [m], i.e., [m] = {1, 2, 3, 4, 5, 6}. If we have the collection of 3-sets elements given by
{{1, 2, 3}, {2, 3, 4}, {1, 2, 5}, {2, 5, 6}, {1, 5, 6}} = {C1, C2, C3, C4, C5} then we could choose {C2, C5} =
{{2, 3, 4}, {1, 5, 6}} as an exact cover because each element in [m] appears exactly once.

If instead, the collection of 3-sets was given by {{1, 2, 3}, {2, 4, 5}, {2, 5, 6}}, then any subcover from
this that we choose will not be an exact cover (we need all 3 subsets to cover all elements in [m] at least
once, but then the element 2 appears three times).

In Section 1.5 we stated the main problem of Compressive Sensing: the optimization problem of
sparse recovery. The straightforward approach for solving it is to solve every square linear system given
by A∗SASu = A∗Sy for u ∈ CS where S runs though all possible subsets of [N ] with size s. In this brute
force approach, one needs to solve a number of linear systems of order

(
N
s

)
.

Example 1.15. As described in Section 2.3 of [Rauhut & Foucart '13], suppose that we have a small size
problem of sparse recovery with N = 1000 and s = 10. We would have to solve

(
1000
10

)
≥ ( 1000

10 )10 = 1020

linear systems of size 10× 10. If each linear system require 10−10 seconds to be solved, the time required
for solving (P0) will be 1010 seconds, i.e., more than 300 years.

The heuristic of Example 1.15 will be con�rmed by Theorem 1.16, i.e., this problem is in fact in-
tractable for any possible approach. We will prove that (P0) belongs to the NP-hard class, i.e., assuming
that the exact cover by 3-sets problem is NP-complete, we can now prove that the main Compressive
Sensing problem is as hard as this one.

Theorem 1.16. (Theorem 1 of [Natarajan '96]): For any η ≥ 0, the `0-minimization problem (P0,η) for
general A ∈ Cm×N and y ∈ Cm is NP-hard.

Proof. Without loss of generality, we may assume that η < 1, by a rescaling argument. Using that the
exact cover by 3-sets problem is NP-complete, we will reduce it, in polynomial time, to our `0-minimization
problem. Let us consider {Ci : i ∈ [N ]}, the collection of 3-element subsets of [m]. Using this collection,
we de�ne vectors a1, . . . ,an ∈ Cm by

(ai)j =

{
1 if j ∈ Ci,
0 if j /∈ Ci.

With these vectors, we can de�ne a matrix A ∈ Cm×N and a vector y ∈ Cm by

A =

 a1 a2 . . . aN

 , y = [1, 1, . . . , 1].

It is possible to make this construction in polynomial time since, by construction, we have N ≤
(
m
3

)
.

Using the vector y de�ned above, for any z ∈ CN satisfying ||Az − y|| ≤ η, we have that any of its
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components must be distant to 1 at most by η. Hence, these components are nonzero and ||Az||0 = m.
On the other hand, by de�nition, each ai has exactly 3 nonzero components and then Az =

∑N
j=1 zjaj

has at most 3||z||0 nonzero components, i.e., ||Az||0 ≤ 3||z||0.
Therefore, we conclude that if a vector satis�es ||Az−y||2 ≤ η then it must satisfy ||z||0 ≥ m/3. Suppose
that we ran the `0-problem and that it returned x ∈ CN as the output. We have two possibilities.

1. If ||x||0 = m/3, then suppose the collection {Cj , j ∈ supp(x)} is not an exact cover of [m]. In this
case, the m components of Ax =

∑N
j=1 xjaj would not be all be nonzero. Since this is impossible, we

conclude that in this case the exact cover exists. Therefore we can answer positively the question about
the existence of an exact cover of [m] using the solution of (P0,η).

2. If ||x||0 > m/3, suppose that an exact cover of [m] exists, i.e., we can cover the set [m] with a
partition {Cj , j ∈ J}. In this case, we can de�ne a vector z ∈ CN by zj = 1 if j ∈ J and zj = 0 if zj /∈ J .
This vector satis�es Az =

∑N
j=1 zjaj =

∑
j∈J aj = y and ||z||0 = m/3. This is a contradiction, since

in this case x would be no more the solution of (P0,η). Thus, in the case ||x||0 > m/3, we can answer
negatively about the existence of an exact cover by using the solution of (P0,η).

In both cases, we showed that through the solution of the `0-minimization problem we can solve the
exact cover by the 3-sets problem.

It is important to highlight what this theorem is and what it is not. It concerns the intractability
in the general case. This means that for a general matrix A and a general vector y, we cannot have a
smart strategy to solve (P0), in other words, no algorithm is able to solve the problem for any choice of
A and y. This does not mean that for special choices of A and y we do not have tractable algorithms
for sparse recovery. This will be the content of Chapter 2. Also, as we shall see in Theorem 3.30, that
`q-minimization, for q < 1, is also an NP-hard problem.

1.7 Some De�nitions

In this section we give a pot-pourri of de�nitions used along this dissertation.

De�nition 1.17. A nonnegative function ||.|| : X → [0,∞) on a vector space X is called a norm if

(a) ||x|| = 0 if and only if x = 0.
(b) ||λx|| = |λ|||x|| for all scalars λ and all vectors x ∈ X.
(c) ||x+ y|| ≤ ||x||+ ||y||.

If only (b) and (c) hold,so that ||x|| = 0 does not necessarily imply x = 0, then ||.|| is called a seminorm.
If (a) and (b) hold, but (c) is replacedby the weaker quasitriangular inequality

||x+ y|| ≤ C(||x||+ ||y||)
for some C ≥ 1, then ||.|| is called a quasinorm. The smallest constant C is called its quasinorm constant.

De�nition 1.18. Let ||.|| be a norm on Rn or Cn. Its dual norm ||.||∗ is de�ned by

||x||∗ = sup
||y||≤1

|〈x, y〉|.

In the real case we have
||x||∗ = sup

y∈Rn,||y||≤1

〈x, y〉.

In the complex case, we have
||x||∗ = sup

y∈Rn,||y||≤1

Re〈x, y〉.
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The dual of the dual norm ||.||∗ is the norm ||.|| itself. In particular, we have

||x|| = sup
||y||∗≤1

|〈x, y〉| = sup
||y||∗≤1

Re〈x, y〉

De�nition 1.19. Let A : X → Y be a linear map between two normed vector spaces X, ||.|| and (Y, |||.|||)
with possible di�erent norms. The operator norm of A is de�ned as

||A|| = sup
||x||≤1

|||Ax||| = sup
||x||=1

|||Ax|||.

In particular, for a matrix A ∈ Cm×n and 1 ≤ p, q ≤ ∞, we de�ne the matrix norm (or operator
norm) between `np and `mq as

||A||p→q = sup
||x||p≤1

||Ax||q = sup
||x||p=1

||Ax||q.

De�nition 1.20. We say that two functions f, g ∈ R are comparable if there exists absolute constants
c1, c2 > 0 such that c1f(t) ≤ g(t) ≤ c2Af(t) for all t. We denote it by f � g.

We have a notational convention for asymptotic analysis. It was introduced by Paul Bachmann in
1894 and popularized in subsequent years by Edmund Landau in the �eld of Number Theory.

De�nition 1.21. i.) (Big O): We say that f(x) = O(g(x)) if there exists a constant C > 0 such that

|f(x)| ≤ C|g(x)| for all x. (1.2)

and when O(g(x)) stands in the middle of a formula it represents a function f(x) that satis�es Equation
(1.2). This notation is typically used in the asymptotic context, specially when x is not integer. See
Chapter 9 of [Graham, Knuth & Patashnik '94].

ii.) (Big Omega) : For lower bounds, we say that f(x) = Ω(g(x)) if there exists a constant C > 0
such that

|f(x)| ≥ C|g(x)| for all x. (1.3)

We have f(x) = Ω(g(x)) if and only if g(x) = O(f(x)).

iii.) (Big Theta): To specify an exact order of growth, we have the Big Theta notation. We denote
by f(x) = Θ(g(x)) if the following statements hold

f(x) = O(g(x)) and f(x) = Ω(g(x)). (1.4)

Big Theta de�nition equivalent to De�nition 1.20. We emphasize it here due to the fact that Computa-
tional Complexity community uses it while Approximation Theory community uses f � g. Both of them
will be used along this text.
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Chapter 2

Some Algorithms and Ideas

All models are wrong, some are useful.
George E. P. Box in [Box '79].

2.1 Introduction

For general measurement matrices A and vectors y, the problem (P0) of recovering sparse vectors is
NP-hard, as Theorem 1.16 shows. Then there is no hope of solving it in a computationally e�cient way.
However, in the last twenty years a lot of e�cient algorithms were developed to deal with this problem.
Techniques from Convex Optimization and from Approximation Theory were combined in order to �nd
heuristics that solve the problem, at least for particular instances.

The early development of Compressive Sensing was based on the assumption that the solution to the
`1-minimization problem provides the recovery of the correct sparse vector, serving as a proxy to (P0),
and also that it is feasible to solve this problem with a computer. We will see why this is true but also
that a lot of work has been done in order to �nd alternative algorithms that are faster or give superior
reconstruction performance in some situations.

The purpose of this chapter is to present the three most popular classes of algorithms used for sparse
vectors recovery: optimization methods, greedy methods and thresholding methods. Here we will not
analyze any of them. This will be postponed to later chapters, after we introduce the Coherence Property
and the Restricted Isometry Property. We do not intend to be exhaustive in the description of these classes
of algorithms and our goal now is just to give some intuitive explanation and to develop some ideas about
the computational aspects of Compressive Sensing.

After presenting the three major classes of algorithms in Sections 2.2 to 2.4, we will brie�y discuss
the problem of choosing an algorithm for a particular application in Section 2.5, along with a review of
recent numerical work related to this issue.

2.2 Basis Pursuit

Basis Pursuit is the main strategy for solving P0 we will deal with along this dissertation. It was introduced
by [Chen '95] as part of his Ph.D. thesis and was fully explored by [Chen, Donoho & Saunders '01]. Since
then, it has been widely used by the Signal Processing, Statistics and Machine Learning communities.
As this strategy belongs to the optimization methods family, we need to start by de�ning what is an
optimization problem. It is not our intention to be encyclopedic because Mathematical Programming
is a vast and deep subject, see [Ruszczynski], [Boyd & Vanderberghe '04] or [Bertsekas '16]1 for further

1There is a whole volume of Documenta Mathematica dedicated to the history of Optimization: https://www.math.

uni-bielefeld.de/documenta/vol-ismp/vol-ismp.html for some references. Also, the book [Gass & Assad '04] has some
interesting historical notes.
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information. For the use in Machine Learning of Optimization ideas related to Compressive Sensing, see
[Sra, Nowozin & Wright '11].

De�nition 2.1. An optimization problem is described by

minimize F0(x) subject to Fi(x) ≤ bi, i = 1, 2, . . . (2.1)

where the function F0 : RN → (−∞,∞] is the objective function and the functions F1, . . . , Fn : RN →
(−∞,∞] are the constraint functions. A point x ∈ RN is called feasible if it satis�es the constraints. A
feasible point x# for which the minimum is attained, that is, F0(x#) ≤ F0(x) for all feasible point x is
called an optimal point and F0(x#), an optimal value. If F0, F1, . . . , Fn are all convex (linear) functions,
this is called a convex (linear) optimization problem.

Remark 9. This framework, only with inequality constraints, is the most general one and encompasses
equality constraints too. Every time we have some constraint of the form Fi(x) = ci, we can write the
equivalent inequalities Fi(x) ≤ ci and −Fi(x) ≤ −ci.

In our setting, the measurement constraint Ax = y must be satis�ed, therefore some of the inequalities
will be given by Fj(x) := 〈Aj , x〉 ≤ yj and −Fj(x) := −〈Aj , x〉 ≤ −yj , where Aj ∈ RN is the jth row of
A. Here, we will distinguish the measurement constraint as a special constraint. Also, when modeling
some signals of interest, other constraints Fj(x) may appear, thus we will describe the set of feasible
points by

K = {x ∈ RN | Ax = y, Fj(x) ≤ bj , j ∈ [M ]}. (2.2)

Therefore, we are interested in problems of the form

min
x∈K

F0(x). (2.3)

Another important class of optimization problems is the class of conic problem. This kind of problem
will appear in the context of complex vectors recovery. Here is the formal de�nition:

De�nition 2.2. A conic optimization problem is of the form

min
x∈RN

F0(x) subject to x ∈ K and Fi(x) ≤ bi, i ∈ [n],

where K is a convex cone and all Fi are convex functions. If K =
{
x ∈ RN+1 :

√∑N
j=1 x

2
j ≤ xN+1

}
,

then we have a second-order cone problem and if K is the cone of positive semide�nite matrices, we have
a semide�nite program.

The study of many optimization problems is carried on through the notion of duality. As sometimes
it is hard to �nd the minimum of a problem, we transform it into another (hopefully easier) problem
and maximize the new one. This new problem, called the dual problem, will provide a bound for the
optimal value of the original problem, called primal problem. If we are lucky enough, the solution of both
problems will agree. In order to describe the dual problem, we need another de�nition.

De�nition 2.3. The Lagrange function of an optimization problem given by (2.2) is de�ned for x ∈
RN , ξ ∈ Rm, v ∈ RM with v` ≥ 0 for all ` ∈ [M ], by

L(x, ξ, v) = F0(x) + 〈ξ, Ax− y〉+

M∑
`=1

v`(F`(x)− b`).

The variables ξ and v are called Lagrange Multipliers. Here, we will denote that v` ≥ 0 for all ` ∈ [M ]
by v < 0. The Lagrange dual function is de�ned by

H(ξ, v) = inf
x∈RN

L(x, ξ, v), ξ ∈ Rm, v ∈ RM , v < 0.
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If x 7→ L(x, ξ, v) is unbounded from below, we set H(ξ, v) = −∞. Also, if there are no inequality
constraints, then

H(ξ) = inf
x∈RN

L(x, ξ) = inf
x∈RN

{F0(x) + 〈ξ, Ax− y〉}, ξ ∈ Rm. (2.4)

The dual function provides a bound on the optimal value of F0(x#) for the minimization problem
describe by the feasible set (2.2), that is, H(ξ, v) ≤ F0(x#) for all ξ ∈ Rm, v ∈ RM , v < 0. To see why,
taking x as a feasible point for (2.3), then Ax− y = 0 and F`(x)− b` ≤ 0 for all ` ∈ [M ], so we have, for
all ξ ∈ Rm and v < 0, that

〈ξ, Ax− y〉+

M∑
`=1

v`(F`(x)− b`) ≤ 0.

And then

L(x, ξ, v) = F0(x) + 〈ξ, Ax− y〉+

M∑
`=1

v`(F`(x)− b`) ≤ F0(x).

Using that H(ξ, v) ≤ L(x, ξ, v) and taking the minimum over all feasible points x ∈ RN , we obtain a
lower bound for the primal problem. This leads to the new optimization problem

max
ξ∈Rm, v∈RM

H(ξ, v) subject to v < 0. (2.5)

The main point of this transformation is that H(ξ, v) is always concave, even if the original function is
not convex. Therefore the dual problem is equivalent to minimizing −H, a convex function, subject to
v < 0. A feasible maximizer of (2.5) is called a dual optimal. We always have H(ξ#, v#) ≤ F (x#) and
this is what we call weak duality. In case of equality, we have strong duality. We can interpret Lagrange
duality via a saddle-point argument.

Remark 10. (Saddle-point interpretation): We will consider here the problem

minimize F0(x) subject to Ax = y, (2.6)

that is, for the sake of simplicity we will consider the original problem without inequality constraints.
The general case with inequality constraints (or for conic programs) has a similar derivation. Using the
de�nition of Lagrange function yields

sup
ξ∈Rm

L(x, ξ) = sup
ξ∈Rm

F0(x) + 〈ξ, Ax− y〉 =

{
F0(x) if Ax = y,

∞ otherwise.

Therefore, is x is not feasible, than the above supremum is in�nite. On one hand, a feasible minimizer
of the primal problem will satis�es F0(x#) = infx∈RN supξ∈Rm L(x, ξ) On the other hand, a dual optimal
satis�es H(ξ#) = supξ∈Rm infx∈RN L(x, ξ) by de�nition of the Lagrange dual function. Hence, weak
duality reads as

sup
ξ∈Rm

inf
x∈RN

L(x, ξ) ≤ inf
x∈RN

sup
ξ∈Rm

L(x, ξ),

whereas the same reasoning holds for strong duality with equality instead of inequality. This tells us
that we can change maximization and minimization if strong duality holds. This is the saddle-point

property. This is the same as says that for a primal-dual optimal pair (x#, ξ#) holds that

L(x#, ξ) ≤ L(x#, ξ#) ≤ L(x, ξ#) for all x ∈ RN , ξ ∈ Rm.
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Saddle-property says that it is equivalent to �nding a saddle point of the Lagrange function or to jointly
optimize primal and dual problems, provided that strong duality holds. We will use it in Theorem 2.5.
The next Theorem, stated here in a simpli�ed version and known as the Slater condition, provides a
su�cient condition for strong duality to hold, for a proof see Section 5.3 of [Boyd & Vanderberghe '04].

Theorem 2.4. ([Slater '50]): Assume that F0, F1, . . . , FM are convex functions with dom(F0) = RN .
If there exists x ∈ RN such that Ax = y and F`(x) < b` for all ` ∈ [M ], strong duality holds for the
optimization problem (2.3). In the absence of inequality constraints, strong duality holds if there exists
x ∈ RN with Ax = y.

Remark 11. Duality theory for conic problems is more involved, see Section 4.3 of [Ruszczynski].

After this digression about optimization, we need to state what is the main strategy for solving the
problem of �nding the sparsest vector satisfying the linear system of measurements. This is called Basis
Pursuit or `1-minimization and is interpreted as the convex relaxation of (P0).

Basis Pursuit (BP)

Input: measurement matrix A, measurement vector y.
Instructions:

x# = argmin ||z||1 subject to Az = y. (P1)

Output: the vector x#.

Note we called Basis Pursuit a strategy and not an algorithm because we did not say how to implement
the strategy above. In fact, there are many ways of doing that. Basis Pursuit is a linear program in the
real case and a second-order cone program in the complex case, as we will show below. Therefore general
purpose optimization algorithms can be used such as the Simplex Method or Interior-Point Methods.
In particular, [Chen & Donoho '94] points out that �Basis Pursuit is only thinkable because of recent
advances in linear programming via "interior point" methods�. We refer to [Nesterov & Nemirovskii '94]2

for details about this technique and to [Kim, Koh, Lustig, Boyd & Gorinevsky '08] for its applications to
`1-minimization and sparse recovery.

We also have speci�cally design algorithms developed for `1-minimization. There is a discussion
in the community about how faster they are compared to general purpose algorithms. We can cite
the Homotopy Method, developed by [Donoho & Tsaig, '08]3, Iteratively Reweighted Least Squares,
developed by [Daubechies, DeVore, Fornasier & Güntürk '10] or Primal-Dual Algorithms, developed by
[Chambolle & Pock '11] among many other direct or iterative methods. These three main algorithms are
described in Chapter 15 of [Rauhut & Foucart '13].

Besides, it is important to note that now there are many solvers available for Basis Pursuit. One can
cite [`1-MAGIC], [YALL1], [Fast `1], [NESTA], [GPSR] and [L1-LS]4. A user-friendly package for Convex
Optimization in Python is [CVXPY], where many of the techniques mentioned above are implemented.
The work [Lorenz, Pfetsch & Tillmann '15] studies and compares some solvers and heuristics for Basis
Pursuit.

When we have measurement errors, we replace Ax = y by ||Ax− y||2 ≤ η and then the problem

min
z∈CN

||z||1 subject to ||Az − y||2 ≤ η, (P1,η)

2The papers [Wright '04] and [Gondzio '12] are very interesting for a historical perspective about Interior-Point Methods.
3In the Statistics community, this algorithm was independently developed by [Efron, Hastie, Johnstone & Tibshirani '04]

and is known as Least Angle Regression (or LARS).
4The most complete (albeit not up-to-date and disorganized) list of `1-minimization solvers can be found at Section 4

of https://sites.google.com/site/igorcarron2/cs.

26

https://sites.google.com/site/igorcarron2/cs


CHAPTER 2. SOME ALGORITHMS AND IDEAS

is known as Quadratically Constrained Basis Pursuit. There are also two very relevant, related problems.
The �rst one is Basis Pursuit Denoising(BPDN), which consists in solving, for some parameter λ ≥ 0,

min
z∈CN

λ||z||1 + ||Az − y||22. (2.7)

The second one is LASSO, the Least Absolute Shrinkage and Selection Operator, which consists in solving
for some parameter τ ≥ 0,

min
z∈CN

||Az − y||2 subject to ||z||1 ≤ τ. (2.8)

Basic Pursuit Denoising was introduced in [Chen & Donoho '94] and LASSO in [Tibshirani '96]. These
three problems are related, as the next Theorem shows. For a uni�ed treatment of them, one can see
[Hastie, Tibshirani & Wainwright '15].

Theorem 2.5. We have an equivalence between LASSO, Basis Pursuit Denoising and Quadratically
Constrained Basis Pursuit as the following three statements show.

i. If x is a minimizer of the Basis Pursuit Denoising with λ > 0, then there exists η = η(x) such that
x is a minimizer of the Quadratically Constrained Basis Pursuit.

ii. If x is a unique minimizer of the Quadratically Constrained Basis Pursuit with η ≥ 0, then there
exists τ = τ(x) ≥ 0 such that x is a unique minimizer of the LASSO.

iii. If x is a unique minimizer of the LASSO with τ > 0, then there exists λ = λ(x) ≥ 0 such that x is
a minimizer of the Basis Pursuit Denoising.

Proof. i.) Let η = ||Ax− y||2 and consider z ∈ CN such that ||Az − y||2 ≤ η. Using the fact that x is a
minimizer of (2.7), we have

λ||x||1 + ||Ax− y||22 ≤ λ||z||1 + ||Az − y||22 ≤ λ||z||1 + ||Ax− y||22.
After some simpli�cations, we obtain ||x||1 ≤ ||z||1 and then x is a minimizer of the Quadratically Con-
strained Basis Pursuit.

ii.) Set τ = ||x||1 and consider z ∈ CN , z 6= x such that ||z||1 ≤ τ . Since x is, by hypothesis,
the unique minimizer of Quadratically Constrained Basis Pursuit, this implies that z cannot satisfy the
constraint of (P1,η). Hence, ||Az − y||2 > η > ||Ax− y||2. This shows that x is the unique minimizer of
(2.8).

iii.) This part is more elaborate and we will prove a more general result, where we replace the `2-norm
by any other norm. The Theorem will be proved for the real case but it also holds for the complex setting
just by interpreting CN as R2N .

Let ||.|| be a norm on Rm and |||.||| a norm on RN . For A ∈ Rm×N , y ∈ Rm and τ > 0, the general
LASSO is given by

min
x∈RN

||Ax− y|| subject to |||x||| ≤ τ, (2.9)

while the general Basis Pursuit Denoising is given by

min
x∈RN

λ|||x|||+ ||Ax− y||2. (2.10)

Therefore we will prove that if x# is a minimizer of the general LASSO, then there exists λ = λ(x) ≥ 0
such that x is a minimizer of the general Basis Pursuit Denoising. First of all, the general LASSO is
obviously equivalent to
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min
x∈RN

||Ax− y||2 subject to |||x||| ≤ τ. (2.11)

The Lagrange function for this problem is given by

L(x, ξ) = ||Ax− y||2 + ξ
(
|||x||| − τ

)
(2.12)

For τ > 0, there exist vectors x with |||x||| < τ . Then, by Theorem 2.4, we have strong duality for
(2.9), so we guarantee the existence of a dual optimal ξ# ≥ 0. The saddle-point property ensures that
L(x#, ξ#) ≤ L(x, ξ#) for all x ∈ RN . Therefore x# is also a minimizer of x 7→ L(x, ξ#). Since the
constant term −ξ#τ does not a�ect the minimizer, x# is also a minimizer of ||Ax − y||2 + ξ#|||x||| and
the conclusion follows with λ = ξ#.

The parameters η, λ and τ can be seen as regularization parameters for the solution of the linear
system. Theorem 2.5 shows that the transformation of the parameters depends on the minimizer. There-
fore we need to solve the optimization problems before we come to know them. For this reason, this
equivalence is useless for practical purposes. Finding appropriate parameters is a highly nontrivial task
and the topic is widely discussed in the literature, see [Yu & Feng '14] and references therein. Also,
problems related to how this kind of optimization technique can lead to false discoveries are discussed in
[Su, Bogdan & Candès '15].

Basis Pursuit is a linear program in the real case and a second-order cone program in the complex
case. For the real case, let us introduce the variables x+, x− ∈ RN . For x ∈ RN , let

x+
j =

{
xj if xj > 0

0 if xj ≤ 0
and x−j =

{
0 if xj > 0

−xj if xj ≤ 0.

Hence, problem (P1) is equivalent to the following linear optimization problem for the variables x+, x− ∈
RN

min
x+,x−∈RN

N∑
i=1

(x+ + x−) subject to [A| −A]

[
x+

x−

]
= y,

[
x+

x−

]
≥ 0. (P ′1)

With a solution (x+)#, (x−)# of this problem in hand, we get the solution of the original problem (P1)
just by taking x# = (x+)# − (x−)#. This consideration allows us to conclude that we have, in fact, a
linear problem.

In the complex setting, we will be looking, instead, to the more general Quadratically Constrained
Basis Pursuit. Then, given a vector z ∈ CN , we need to introduce its real and imaginary parts u, v ∈ RN

and also a vector c ∈ RN such that cj ≥ |zj | =
√
u2
j + v2

j for all j ∈ [N ]. The problem P1,η will be

equivalent to the following optimization problem with variables c, u, v ∈ RN :

min
c,u,v,∈RN

N∑
j=1

cj subject to


∣∣∣∣∣
∣∣∣∣∣
[
Re(A) −Im(A)
Im(A) Re(A)

] [
u
v

]
−
[
Re(y)
Im(y)

] ∣∣∣∣∣
∣∣∣∣∣
2

≤ η

√
u2

1 + v2
1 ≤ c1, . . . ,

√
u2
N + v2

N ≤ cN .

(P ′1,τ )

This is a second-order cone problem. Then given a solution (c#, u#, v#), the solution of the original
problem is x# = u# + iv#. When we take η = 0, we recover the solution of (P1) in the complex case.

Why is Basis Pursuit good alternative to the original combinatorial problem (P0)? Because in the
real case `1-minimizers are sparse, as we will show now. In Chapter 3 this will by fully explored through
the notion of the Null Space Property for measurement matrices.

Theorem 2.6. Let A ∈ Rm×N be a measurement matrix with columns a1, . . . , aN . Assuming the unique-
ness of a minimizer x# of
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min
x∈RN

||x||1 subject to Ax = y,

then the set {aj , j ∈ supp(x#)} is linearly independent, and in particular ||x#||0 = #(supp(x#)) ≤ m.

Proof. Suppose, by contradiction, that the set {aj , j ∈ S} is linearly dependent, where S = supp(x#).
This means that there exists a nonzero vector v ∈ RN supported on S such that Av = 0. By uniqueness
of x#, for any t 6= 0,

||x#||1 < ||x# + tv||1 =
∑
j∈S
|x#
j + tvj | =

∑
j∈S

sgn(x#
j + tvj)(x

#
j + tvj).

Now, we need to understand what happens with a sign of a number when we add another number to it.
If |b| < |a| the sgn(a+ b) = sgn(a). Therefore, when |t| < minj∈S |xj |#/||v||∞, we have

sgn(x#
j + tvj) = sgn(x#

j ) for all j ∈ S.
It follows that, for t 6= 0 with |t| < minj∈S |xj |#/||v||∞,

||x#||1 <
∑
j∈S

sgn(x#
j + tvj)(x

#
j + tvj) =

∑
j∈S

sgn(x#
j )(x#

j + tvj) =
∑
j∈S

sgn(x#
j )x#

j + t
∑
j∈S

sgn(x#
j )vj

= ||x#
j ||1 + t

∑
j∈S

sgn(x#
j )vj .

This is a contradiction because we can always take a very small t 6= 0 such that t
∑
j∈S sgn(x#

j )vj ≤ 0.

Remark 12. In the complex case, the situation is more delicate. Consider the vector x = [1, ei2π/3, ei4π/3]
and the measurement matrix described by

A =

[
1 0 −1
0 1 −1

]
.

This vector is the unique minimizer of the problem minz∈C3 ||z||1 subject to Az = Ax. See Section 3.1
of [Rauhut & Foucart '13]. Hence, in the complex setting, `1-minimization does not necessarily provides
m-sparse solutions, where m is the number of measurements. In order to better understand when this
occurs, we need the theory of the next chapters, such as the Null Space Property.

Quadratically Constrained Basis Pursuit relies on ||Ax− y||2 ≤ η, that is, the noise is bounded in the
`2-norm regardless of structure or prior information about it. So, in the case of Gaussian noise, which is
unbounded, the error in sparse vector recovery typically does not decay as the number of measurement
increases, see pages 29 and 30 of [Boche et at. '15]. In order to deal which this problem, another type
of `1-minimization algorithm was proposed by [Candès & Tao III, 06], called Dantzig Selector5. It is
described by

min
z∈CN

||z||1 subject to ||A∗(Az − y)||∞ ≤ τ. (DS)

The heuristics of this method is based on the fact that the residual r = Az − y should have
small correlation with all columns aj of the matrix A. Indeed, the constraint is ||A∗(Az − y)||∞ =
maxj∈[N ] |〈r, aj〉|. There is a theory for the Dantzig Selector similar to the one developed through
this dissertation for Basis Pursuit, which is sometimes more complicated, see Chapter 8 in [Elad '10],
[Hastie, Tibshirani & Wainwright '15], [Meinshausen, Rocha & Yu '07], [James, Radchenko & Lv '09],
[Lv & Fan '09], [Zhang '09] and [Bickel, Ritov & Tsybakov '09].

5As Tao points out in [Tao's Blog - 22/03/2008], �we called the Dantzig selector, due to its reliance on the linear
programming methods to which George Dantzig, who had died as we were �nishing our paper, had contributed so much to�.
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2.3 Greedy Algorithms

The basic idea of a greedy algorithm in Compressive Sensing is to update the target vector in such a way
that in each iteration, the algorithm adds one index to the target support and then �nds the vector that
best �ts the measurements with this given support. This kind of strategy justi�es the name of such class
of algorithms.

The most famous algorithm in this context is called the Orthogonal Matching Pursuit, sometimes
called Orthogonal Greedy Algorithm. This algorithm has been rediscovered many times in di�erent
�elds. We can trace its origins back to [Chen, Billings & Luo '89], in the context of system identi�cation
in Control Theory. Independently, it was introduced and analyzed in the context of Time-Frequency
Analysis by [Davies, Mallat & Zhang '94] and [Pati, Rezaiifar & Krishnaprasad '93]. Here is the formal
description of the algorithm.

Orthogonal Matching Pursuit (OMP)

Input: measurement matrix A, measurement vector y.
Initialization: S0 = ∅, x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n:

Sn+1 = Sn ∪ {jn+1}, jn+1 = argmax
j∈[N ]

{|(A∗(y −Axn))j |}, (OMP1)

xn+1 = argmin
z∈CN

{||y −Az||2, supp(z) ⊂ Sn+1}. (OMP2)

Output: the n-sparse vector x# = xn.

To identify the signal x, we need to determine which columns of A participate in the measurement
vector. Informally speaking, OMP is a greedy algorithm that selects at each step the column that is most
correlated with the current residuals. This column is then included into the set of selected columns. The
algorithm updates the residuals by projecting the observation onto the linear subspace spanned by the
columns that have already been selected and the algorithm then iterates.

The main goal of the introduction of this algorithm was to improve the already existing Matching
Pursuit6 by forcing it to converge, for �nite-dimensional signals, in a �nite number of steps, which does not
happen for the original (Nonorthogonal) Matching Pursuit, as Theorem 4.1 of [DeVore & Temlyakov '96]
and the discussion in Section 2.3.2 of [Chen, Donoho & Saunders '01] show. In general, the residuals
of the Orthogonal MP decrease faster than the Nonorthogonal MP. However, this improvement possess
some disadvantages, as, for example, orthogonal projection procedure can yield unstable expansions by
selecting ill-conditioned elements through the running of the algorithm. Moreover, Orthogonal MP also
requires much more operations than Nonorthogonal Pursuits due to the Gram-Schmidt orthogonalization
process.

Remark 13. [Davies, Mallat & Avellaneda '97] showed exponential convergence and made a detailed
comparison of both greedy algorithms in terms of theoretical complexity and practical performance. For a
proof and discussion of the decay rate, see Chapter 3 of [Elad '10].

It is important to note that the connection between sparse approximation and greedy algorithms was
�rst done by [Tropp '04]. His results showed that under some conditions on the coherence of the matrix
(see Theorem 4.41), OMP works for sparse recovery in the noiseless case. [Cai, Wang & Xu III '10] proved
that this condition is sharp and the performance of OMP on noisy case was analyzed by [Cai & Wang '11].

6This algorithm was introduced by [Mallat & Zhang '93] in the Signal Processing community and by
[Friedman & Stuetzle '81] in the Statistics community under the name Projection Pursuit Regression.
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As we can see in the description of OMP, the costlier part is the projection step (OMP2). Typ-
ically a QR-decomposition of ASn is used in each step and then e�cient methods for updating the
QR-decomposition when a column is added to the matrix are used, see Section 3.2 of [Björck '96]. More-
over, fast vector-matrix multiplication via FFT can be performed in (OMP1) for the computation of
A∗(y − Axn). We will brie�y describe how this is done for a general least-square problem. For any
matrix A ∈ Cm×n with m ≥ n, there exists a unitary matrix Q ∈ Cm×m and an upper triangular matrix
R ∈ Cn×n such that

A = Q

(
R

0

)
.

So, for a general least-squares problem of minimizing ||Ax− y||2 for all x ∈ Cn, using that Q is unitary,
we have the following

||Ax− y||2 = ||Q∗Ax−Q∗y||2 =

∣∣∣∣∣∣∣∣(R0
)
x−Q∗y

∣∣∣∣∣∣∣∣
2

. (2.13)

Partitioning b = (b1, b2) = Q∗y with b1 ∈ Cn, the right-hand side of (2.13) will be minimized when we
solve the triangular system Rx = b1 and this can be done with a simple backward elimination. Therefore,
at each iteration of OMP, we need to solve a least-square problem with a new added column to the matrix
A.

We discuss now the choice of the index jn+1, as stated in (OMP1). It is given by a greedy strategy
where the objective is to reduce the `2-norm of the residual y−Axn as much as possible at each iteration.
Lemma 2.7 explains why an index j maximizing |(A∗(y − Axn))j | is a good candidate for this large
decrease of the residual. We just need to apply it to S = Sn and v = xn.

Lemma 2.7. Let A ∈ Cm×N be a matrix with `2-normalized columns. Given S ⊂ [N ], v supported on S
and j ∈ [N ], if

w = argmin
z∈CN

{||y −Az||2, supp(z) ⊂ S ∪ {j}},

then

||y −Aw||22 ≤ ||y −Av||22 − |(A∗(y −Av))j |2.

Proof. Note that any vector v+ tej , with t ∈ C, is supported on S ∪{j}. By the de�nition of w, we have

||y −Aw||22 ≤ min
t∈C
||y −A(v + tej)||22.

The idea is then to work in polar coordinates and choose proper radial and angular numbers to represent
t. Indeed, writing t = ρeiθ, with ρ ≥ 0 and θ ∈ [0, 2π), we estimate

||y −A(v + tej)||22 = ||y −Av − tAej ||22 = ||y −Av||22 + |t|2||Aej ||22 − 2Re
(
t〈y −Av,Aej〉

)
= ||y −Av||22 + ρ2 − 2Re

(
ρe−iθ(A∗(y −Av))j

)
≥ ||y −Av||22 + ρ2 − 2ρ|(A∗(y −Av))j |

with equality for a properly chosen θ. The right-hand side of this inequality is a quadratic polynomial in
ρ and this expression is minimized when ρ = |(A∗(y −Au))j |. Therefore this leads to

min
t∈C
||y −A(v + tej)||22 ≤ ||y −Av||22 − |(A∗(y −Av))j |2

which concludes the proof.
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Another interesting point is that (OMP2) is equivalent to solving the normal equations of least squares.
In fact, it also reads as xn+1

Sn+1 = (A∗Sn+1ASn+1)−1A∗Sn+1y = A†Sn+1y, where x
n+1
Sn+1 denotes the restriction

of xn+1 to the support set Sn+1. This is justi�ed by the following lemma.

Lemma 2.8. Given an index set S ⊂ [N ], if

v = argmin
z∈CN

{||y −Az||2, supp(z) ⊂ S},

then

(A∗(y −Av))S = 0.

Proof. The de�nition of v tells us that the vector Av is the orthogonal projection of y onto the space
{Az, supp(z) ⊂ S}. This means that

〈y −Av,Az〉 = 0 for all z ∈ CN with supp(z) ⊂ S.
The orthogonality condition is equivalent to 〈A∗(y −Av), z〉 = 0 for all z ∈ CN with supp(z) ⊂ S which
is the same as (A∗(y −Av))S = 0.

Lemma 2.8 is important as it may be useful for solving normal equations instead of using QR decom-
position. In this case, a direct method, such as Cholesky decomposition, or an iterative method, such as
Conjugate Gradient method, may be used. For details of when the use of such methods has advantages,
see Chapters 6 and 7 of [Björck '96].

The most natural stopping criterion for OMP is Axn̄ = y. In applications, where we have measurement
and rounding errors, this needs to be changed to ||y−Axn̄||2 ≤ ε or ||A∗(y−Axn̄)||∞ ≤ ε for some tolerance
parameter ε > 0.

If we have a priori estimates for the sparsity of the signals, we can use this information to provide
n̄ = s as a stopping criterion because the target vector xn̄ is n-sparse. In fact, in the case where A is
an orthogonal matrix, this forces the algorithm to successfully recover the sparse x ∈ CN from y = Ax.
Indeed, from xnSn = A†Sny, we see that the vector x

n will be the n-sparse vector consisting of the n largest
entries of x. In the general case, the success of OMP for recovering s-sparse vectors using s iterations is
given by the following theorem.

Theorem 2.9. Given a matrix A ∈ Cm×N , every nonzero vector x ∈ CN supported on a set S of size
s is recovered from y = Ax after at most s iterations of orthogonal matching pursuit if and only if the
matrix AS is injective and

max
j∈S
|(A∗r)j | > max

`∈S
|(A∗r)`|, (2.14)

for all nonzero r ∈ {Az, supp(z) ⊂ S}.

Proof. First, we will assume that the OMP works and recovers every vector supported on a set S in at
most s = #S iterations. Therefore, any two vectors x1, x2 having S as support and the same measurement
vector y = Ax1 = Ax2 must be the same. This implies that AS is injective. Moreover, we saw that an
index chosen at the �rst iteration will always remain in the target support and then, if y = Ax for
some x ∈ CN exactly supported on S, then an index ` ∈ S cannot be chosen at the �rst iteration and
maxj∈S |(A∗y)j | > |(A∗y)`|. We use this to conclude

max
j∈S
|(A∗y)j | > max

`∈S
|(A∗y)`| for all nonzero y ∈ {Az, supp(z) ⊂ S}.

We established the two necessary conditions. Now, we proceed to prove that they are also su�cient.
Assume that Ax1 6= y, . . . , Axs−1 6= y, because otherwise there is nothing to do. We need to prove
that Sn is a subset of S of size n for any 0 ≤ n ≤ s and from this we will deduce that Ss = S.
Using this with Axs = y =: Ax, given by (OMP2), allows us to conclude that x = xs because AS is
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injective by hypothesis. Therefore we need to establish our claim by using (2.14). We will prove by
induction that Sn ⊂ S. We begin with S0 = ∅ ⊂ S. Given 0 ≤ n ≤ s − 1, we see that Sn ⊂ S yields
rn = y − Axn ∈ {Az, supp(z) ⊂ S}. Then, by equation (2.14), the index jn+1 must lie in S. Hence,
Sn+1 = Sn ∪ {jn+1} ⊂ S. This proves that Sn ⊂ S for an 0 ≤ n ≤ s.

Now, for 1 ≤ n ≤ s − 1, Lemma 2.8 implies that (A∗rn)nS = 0. If {jn+1} ⊂ Sn, then A∗rn = 0 and
by equation (2.14) we could conclude that rn = 0, since the strict inequality must occur for any nonzero
vector. This cannot happen since we assumed Ax1 6= y, . . . , Axs−1 6= y. Therefore {jn+1} 6⊂ Sn, that is,
in each iteration, a new index, di�erent from all previous indexes is added to the target support. This
inductively proves that Sn is a set of size n.

As discussed by [Chen, Donoho & Saunders '01], �because the algorithm is myopic, one expects that, in
certain cases, it might choose wrongly in the �rst few iterations and, in such cases, end up spending most
of its time correcting for any mistakes made in the �rst few terms. In fact this does seem to happen.�.
This phenomenon will be illustrated in Section 5.5, after Theorem 5.22.

Despite these pathological negative results, there is theoretical evidence and empirical results which
suggest that OMP can recover an s-sparse signal when the number of measurements m is nearly propor-
tional to s, as the next Theorem shows.

Theorem 2.10. (Theorem 2 of [Tropp & Gilbert '07]): Fix δ ∈ (0, 0.36) and choose m > Cs log(n/δ).
Assume that x ∈ RN is s-sparse and let A ∈ Rm×N have i.i.d entries from the Gaussian distribution
N(0, 1/m). Then, given the data y = Ax, orthogonal matching pursuit can reconstruct the signal x with
probability exceeding 1− 2δ. The constant C satis�es C ≤ 20. For large s it can be shown that C ≈ 4 is
enough.

These are not the unique greedy algorithms for sparse approximation. Many corrections and mod-
i�cations were proposed and we can cite Subspace Pursuit [Dai & Milenkovic '09], Gradient Pursuit
[Blumensath & Davies '08], Stagewise Orthogonal Matching Pursuit [Donoho, Tsaig, Drori & Starck '12]
and Compressive Sampling Matching Pursuit, known as CoSaMP [Needell & Tropp '08]. There is a whole
monograph devoted to topic of greedy approximations and algorithms, see [Temlyakov '11], specially
Chapter 5, where the problem of Compressive Sensing is treated.

2.4 Thresholding Algorithms

In order to recover sparse vectors, we need to understand the action of the measurement matrix on them.
Thresholding algorithms rely on the fact that we will approximate the inversion of the action of A onto
sparse vectors by the action of its adjoint A∗. Thus, the basic thresholding strategy is to determine the
support of the s-sparse vector x ∈ CN to be recovered from y = Ax ∈ Cm as the indices of s largest
absolute entries of A∗. After �nding the support, we perform some least-square technique in order to
�nd the vector having this support that best �ts the measurements. To describe the strategy, we need to
introduce two operators. The �rst one denotes the best s-term approximation of a vector and the second
denotes the support of this approximation,

Hs(z) = zLs(z) (2.15)

Ls(z) = index set of s largest absolute entries of z ∈ CN (2.16)

Next, we have the strategy using this cut-o� idea.
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Basic Thresholding Strategy

Input: measurement matrix A, measurement vector y, sparsity level s.
Instruction:

S# = Ls(A
∗y). (BT1)

x# = argmin
z∈CN

{||y −Az||2, supp(z) ⊂ S#}. (BT2)

Output: the s-sparse vector x# = xn.

As Theorem 2.9 for greedy strategy, we have a necessary and su�cient condition for the recovery of
s-sparse vectors through the use of Thresholding strategy.

Proposition 2.11. A vector x ∈ CN supported on a set S is recovered from y = Ax via Basic Thresh-
olding Strategy if and only if minj∈S |(A∗y)j | > max`∈S |(A∗y)`|.

Proof. The vector x will be recovered if and only if the index set S# de�ned in the iteration of the
strategy coincides with the set S and this happens if and only if any entry of A∗y on S is greater than
any entry of A∗y on S.

This strategy seems too simple to have any chance of working. We can reformulate it and solve the
system Az = y using the prior information that the solution is s-sparse for some s. Actually, we will not
solve the fat and short linear system Az = y but instead we will solve the square system A∗Az = A∗y.
This system can be reformulated as the �xed-point equation z = (Id− A∗A)z + A∗y. This, in turn, can
be solved by using the iteration xn+1 = (Id−A∗A)xn +A∗y.

The thresholding strategy, applied at this �xed-point iteration, tells us to keep the s largest absolute
entries of (Id−A∗A)xn +A∗y = xn +A∗(y−Axn). If the s largest entries are not uniquely de�ned, this
algorithm selects the smallest possible indices. Formally, that is the content of the next algorithm. It
was developed by [Blumensath & Davies II '08] and analyzed in [Blumensath & Davies '09]. Its analysis
relies on the fact that the matrix A∗A behaves like the identity when its domain and range are restricted
to small support sets (as we shall see in Chapter 5) and then xn+1 = xn+A∗A(x−xn) ≈ xn+x−xn = x.

The authors of the algorithm argue that it has many good features such as robustness to observation
noise, near-optimal error guarantees, the requirement of a �xed number of iterations depending only on
the logarithm of a form of signal to noise ratio of the signal, a memory requirement which is linear in the
problem size, among others.

Iterative Hard Thresholding (IHT)

Input: measurement matrix A, measurement vector y, sparsity level s.
Initialization: s-sparse vector x0, typically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n:

xn+1 = Hs(x
n +A∗(y −Axn)). (IHT)

Output: the s-sparse vector x# = xn.

In the class of greedy algorithms, the di�erence between Matching Pursuit and Orthogonal Matching
Pursuit is that in the later we decide to pay the price for an orthogonal projection. Here, we can do
the same and look, at each iteration, to the vector with the same support of xn+1 that best �ts the
measurements. This idea was explored by [Foucart '11], where the Hard Thresholding Pursuit was devel-
oped as a fusion of IHT and the greedy algorithm CoSaMP. In fact, this work did more and created a
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family of thresholding algorithms indexed by an integer k. There, Iterative Hard Thresholding and Hard
Thresholding Pursuit correspond to the cases k = 0 and k =∞, respectively.

Hard Thresholding Pursuit(HTP)

Input: measurement matrix A, measurement vector y, sparsity level s.
Initialization: s-sparse vector x0, tipically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n:

Sn+1 = Ls(x
n +A∗(y −Axn)), . (HTP1)

xn+1 = argmin
z∈CN

{||y −Az||2, supp(z) ⊂ Sn+1}. (HTP2)

Output: the s-sparse vector x# = xn.

Recently, some theoretical results concerning HTP have been proved. [Bouchot, Foucart & Hitczenko '16],
for example, proved that the number of iterations can be estimated independently of the shape of x and
it is at most proportional to the sparsity s. For a precise statement, see Theorem 5 in that article. Also,
it provided some benchmarks for HTP: in terms of success rate, its performance is roughly similar to
OMP, however, in terms of number of iterations HTP does perform best, owing to the fact that we have
prior knowledge of the sparsity s.

Clearly, in these thresholding algorithms we need an estimate of vector sparsity. The Soft Thresholding
Algorithms class of algorithms was developed to deal with situations in which we have no such estimates.
There, we substitute the hard thresholding operator by the soft thresholding operator with threshold
τ > 0. This operator maps each entry zj of a vector z ∈ CN to

Sτ (zj) =

{
sgn(zj)(|zj | − τ), if |zj | ≥ τ,
0, otherwise.

One can cite as an example of such algorithms, the Iterative Shrinkage-Thresholding Algorithm developed
by [Daubechies, Defrise & De Mol '04]. This is a variation of the classical Landweber iteration, well-
known to the Inverse Problems community, see section 2.3 of [Kirsch '11]. It is typically used in the context
of image restoration and in this context, we are able to use it to deal with non-di�erentiable regularizers
such as total-variation regularization and wavelet-based regularization [Bioucas-Dias & Figueiredo '07].

2.5 The Search For the Perfect Algorithm

Unfortunately, there is little guidance available on
choosing a good technique for a given parameter regime.

[Tropp & Gilbert '07]

After presenting these three major classes of algorithms, we should ask which of them is better suited
for a certain application. In other words, we need to answer the following question: Given the sparsity
level s, the number of measurements m and the ambient dimension N , which algorithm should we use?
In Compressive Sensing we seek for uniform recovery results, that is, we aim to reconstruct every sparse
vector with the same measurement matrix. Thus, if we have some prior information about the signals we
are looking for, that is, if we have more structure beyond sparsity, can we take advantage of it in order
to carefully select the algorithms?

These questions have not been not fully answered yet. The number of articles related to numer-
ical issues of sparse recovery is small compared to the development of theoretical guarantees. Im-
portant references in this area are [Elad '10], which is devoted to numerical investigations in Com-
pressive Sensing, as well as [Pope '09], [Maleki & Donoho '10], [Lorenz, Pfetsch & Tillmann '15] and
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[Blanchard & Tanner '15]. This last one was the �rst to perform large-scale empirical testing with more
realistic, application sized problems, typically with ambient dimension N = 218 or N = 220. This is
particularly important in evaluating the behavior of algorithms in the extreme undersampling regime of
m� N .

These analysis are out of the scope of this dissertation. Even so, we can provide some elementary
rules of thumb. For small sparsity s, OMP is typically the fastest option because its speed depends on
the number of iterations, which will be equal to s if the algorithm succeeds. For mild sparsity (compared
to N) thresholding algorithms are preferred because its runtime is typically not a�ected by the sparsity
level. Assigning rules of thumb for Basis Pursuit is more di�cult because it depends of how we implement
this strategy.

Due to the lack of a comprehensive numerical study, the following project remains open.

Open Project: Provide a computational investigation for worst and average case behavior of all al-
gorithms in the three major classes: optimization methods, greedy methods and thresholding methods.
Identify the regions of the problem size where these algorithms are able to reliably recover the sparsest
solution. Construct phase transition diagrams to the probability of recovery for a given algorithm. Per-
form all the tests with matrices drawn from some probability distribution like Gaussian or Bernoulli and
also with deterministic matrices.
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Chapter 3

The Null Space Property

It is the hallmark of any deep truth that its negation is also a deep truth.1.
Niels Bohr

3.1 Introduction

As discussed in Chapter 2, in this dissertation we are interested in the solution of fat and short linear
systems. This is so because they model the simultaneous acquisition and (high) compression of data. As
the matrices of these systems have nontrivial kernel, we must de�ne a proper notion of solution, i.e., we
must specify what properties this solution should have. This is the same as saying that �nd a unique
solution of an underdetermined linear system is impossible unless some additional information about
the solution is given. Therefore, after this regularization procedure, there is hope in �nding a unique
(regularized) solution. As we are looking for parsimonious representation of signals, the natural approach
is to look for the sparsest solution. In previous chapters, we argued that this approach makes sense, since
many natural signals contain little information, as they are a combination of only a handful of vector
from an appropriate basis.

In mathematical terms, we need to recover a sparse vector x ∈ CN from its measurements y = Ax ∈
Cm, where m < N . In order to do so, we need to solve the following optimization problem:

min
x∈CN

||z||0 subject to Az = y. (P0)

This combinatorial problem is NP-hard, as Theorem 1.16 shows, so we need to develop some smart
strategies in order to solve it. The most popular strategy is Basis Pursuit, or `1-minimization, presented
in Chapter 2. Therefore, our approach will be to solve the problem

min
x∈CN

||z||1 subject to Az = y. (P1)

This chapter is devoted to understanding one property the matrix A must have in order to guarantee
that solutions from problem (P1) are solutions of the problem (P0). It is the null space property (NSP),
a necessary and su�cient condition for exact reconstruction of a sparse vector x from its measurements
y = Ax, which we present in the next section. Even more, we will de�ne two further criteria which
we expect from a recovery algorithm, namely Stability and Robustness and show that NSP also works
for stable reconstruction with respect to sparsity defect and that it is robust to measurement error.
Then, the problem of low-rank matrix recovery will be explored. This can be seen as a variation of
the Compressive Sensing problem and a generalization of the null space property will appear during the
analysis of low-rank matrix recovery.

1Quoted by Max Delbruck, �Mind from Matter? An Essay on Evolutionary Epistemology", Blackwell Scienti�c Publi-
cations, Palo Alto, CA, 1986; page 167.
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3.2 The Null Space Property

As we are interested in recovering the sparsest solution, we need to know when, i.e., for which matrices,
this can be done. Moreover, we also need to know when we have uniqueness of the recovered solution.
However, �nding a property of the matrix A that implies that a solution to the (P1) problem is a solution
of the (P0) problem was a nontrivial task. This took a little more than a decade, from the beginning
of Basis Pursuit studies in the Thesis [Chen '95], until the formal de�nition of the Null Space Property
in the paper [Cohen, Dahmen & DeVore '09]. It is important to mention that this property had already
implicitly appeared in [Donoho & Huo '01], [Elad & Bruckstein '02] and [Donoho & Elad ' 03]. The �rst
place where this property was isolated is in Lemma 1 of [Gribonval & Nielsen '03].

De�nition 3.1. A matrix A ∈ Km×N is said to satisfy the null space property2 relative to a set S ⊂ [N ]
if

||vS ||1 < ||vS ||1 ∀v ∈ kerA\{0} (NSP)

It is said to satisfy the null space property of order s if it satis�es the null space property relative to any
set S ⊂ [N ] with #S = s.

Remark 14. This property tells us how the null space of the matrix A should be oriented in order to
touch the `1-ball in just one point. This geometric interpretation will be explored in Theorem 3.12 and
can be seen in Figure 3.1 below.

Figure 3.1: Proper null space of A for uniqueness in the reconstruction of sparse vector.

First of all, it is important to observe that if this condition holds for the index set S of s largest (in
absolute value) entries of v, then it holds for any other set S with #S ≤ s. Also, we can reformulate this
de�nition of the null space property in two ways. The �rst one is by adding ||vS ||1 to both sides of the
inequality in the de�nition. Then, the null space relative to a set S become

2||vS ||1 < ||v||1 ∀v ∈ kerA\{0}. (3.1)

For the second, one can add ||vS ||1 to both sides of the inequality. Thus, the null space property of order
s will be

||v||1 < 2 σs(v)1 = 2 inf
||z||0≤s

||x− z||p ∀v ∈ kerA\{0}

2[Cohen, Dahmen & DeVore '09] de�ned NSP as a slightly more general property, namely, ||v||1 ≤ Cσs(x)1 for all
v ∈ kerA, where C ≥ 1 in an unspeci�ed constant.
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We can now state the main Theorem concerning the NSP, which is a necessary and su�cient condition
for exact recovery of sparse vectors through `1-norm minimization. The statement given here is a small
modi�cation form the original reference.

Theorem 3.2. (Essentially Theorem 3.2 of [Cohen, Dahmen & DeVore '09]): Given a matrix A ∈
Km×N , every vector x ∈ KN supported on a set S is the unique solution of (P1) with Ax = y if and only
if A satis�es the null space property relative to S.

Proof. Suppose that every vector x ∈ Km×N supported on S is the unique minimizer of ||z||1 subject
to Az = Ax. Thus, for any v ∈ kerA\{0}, the vector vS is the unique minimizer of ||z||1 subject to
Az = AvS . But, as we have Av = 0, then A(vS + vS) = Av = 0 and so A(−vS) = AvS . Furthermore, as
v 6= 0, we must have −vS 6= vS . Then, we conclude that ||vS ||1 < ||vS ||1.

Conversely, assume that the null space property relative to S holds. For a given vector x ∈ Km×N
supported on S and a vector z ∈ Km×N , with z 6= x and satisfying Az = Ax, we consider the vector
v = x− z ∈ kerA\{0}. Due to the null space property, we have

||x||1 ≤ ||x− zS ||1 + ||zS ||1 = ||vS ||1 + ||zS ||1 < ||vS ||1 + ||zS ||1 = || − zS ||1 + ||zS ||1 = ||z||1.

Now, if we let the set S vary, we obtain as a obvious consequence the following result.

Theorem 3.3. Given a matrix A ∈ Km×N , every s-sparse vector x ∈ A ∈ KN is the unique solution of
(P1) if and only if A satis�es the null space property of order s.

This impressive and simple theorem tells us that if we have a sparse vector x and a measurement
vector y = Ax, Basis Pursuit actually solves (P0), provided that the NSP holds for the matrix A. In fact,
suppose that we are able to recover the vector x via `1-norm minimization from y = Ax. Then, let x̃ be
the minimizer of (P0) with y = Ax. Therefore, of course, we have ||x̃||0 ≤ ||x||0 and so x̃ is also s-sparse,
since by hypothesis we have that x is s-sparse. Since every s-sparse vector is the unique `1-minimizer, it
follows that x̃ = x.

The Null Space Property has an interesting feature: it is preserved if we rescale and reshu�e the
measurements or even if some new measurements were added. From a mathematical point of view, this
is the same as replacing the measurement matrix A

A1 = GA, where A is some invertible m×m matrix.

A2 =

[
A
B

]
, where B is some m′ ×N matrix.

In the second case, A2 is represented as a block matrix and B represents the additional measurements.
This is reasonable because the measurement process should not get worse if: new information is acquired;
if the order in which the measurements are obtained changes; or if we change the scale of all measurements
of the signal. The justi�cation for such facts is simple, note that kerA1 = kerA and kerA2 ⊂ kerA hence
A1 and A2 have the NSP property if A does.

In the de�nition of NSP, K could be either R or C. However, when the system has real coe�cients,
sparse solutions can be considered either as real or complex vectors, leading to two apparently distinct
null space properties. This is so because there is a distinction between the real null space kerRA and the
complex null space kerCA = kerRA + i kerRA. Nevertheless, the real and complex NSP are equivalent,
as proved by [Foucart & Gribonval '10]. While the original proof links it with a problem about convex
polygons in the real plane, in Theorem 3.4, we prove this equivalence following the elementary argument
of [Lai & Liu '11].
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Theorem 3.4. (Theorem 1 of [Foucart & Gribonval '10]): Given a matrix A ∈ Rm×N , the real null
space property relative to a set S, that is,∑

j∈S
|vj | <

∑
i∈S

|vi| ∀v ∈ kerRA, v 6= 0. (3.2)

is equivalent to the complex null space property relative to this set S, that is,∑
j∈S

√
v2
j + w2

j <
∑
i∈S

√
v2
i + w2

i ∀v, w ∈ kerRA, (v, w) 6= (0, 0). (3.3)

In particular, the real null space property of order s is equivalent to the complex null space property of
order s.

As [Foucart & Gribonval '10] notes, �Before stating the theorem, we point out that, for a real mea-
surement matrix, one may also recover separately the real and imaginary parts of a complex vector using
two real `1-minimizations - which are linear programs - rather than recovering the vector directly using
one complex `1-minimization - which is a second order cone program.�.

Proof. Clearly equation (3.2) follows from equation (3.3) when we set w = 0. Then we need to prove the
converse. Assume that (3.2) holds and consider v, w in kerRA with (v, w) 6= (0, 0). Suppose �rst that v
and w are linearly dependent, e.g. w = kv for some k ∈ C. Therefore, equation (3.3) is deduced from

∑
j∈S
|vj | <

∑
i∈S

|vi| ⇒
∑
j∈S

√
k2 + 1|vj | <

∑
i∈S

√
k2 + 1|vi| ⇒

∑
j∈S

√
k2v2

j + v2
j <

∑
i∈S

√
k2v2

i + v2
i

⇒
∑
j∈S

√
w2
j + v2

j <
∑
i∈S

√
w2
i + v2

i .

Now assume u and v are independent. In this case, u = v cos θ + w sin θ ∈ kerRA will be nonzero. So,
the real null space property (3.2) leads, for any θ ∈ R, to∑

j∈S
|vj cos θ + wj sin θ| <

∑
i∈S

|vi cos θ + wi sin θ|. (3.4)

If we de�ne, for each k ∈ [N ], θk ∈ [−π, π] through the equations

cos θk =
vk√

v2
k + w2

k

, sin θk =
wk√
v2
k + w2

k

.

Equation (3.4) can be reformulate as∑
j∈S

√
v2
j + w2

j | cos(θ − θj)| <
∑
i∈S

√
v2
i + w2

i | cos(θ − θi)|.

We can integrate over θ ∈ [−π, π] and obtain∑
j∈S

√
v2
j + w2

j

∫ π

−π
| cos(θ − θj)|dθ <

∑
i∈S

√
v2
i + w2

i

∫ π

−π
| cos(θ − θi)|dθ.

Since
∫ π
−π | cos(θ−θj)|dθ = 4 is independent of θi we have the desired inequality. Then the real null space

property implies the complex null space property.

Sometimes it makes sense to use `q-norm minimization, for 0 < q < 1 instead of `1-norm minimiza-
tion. In order to analyze this case, the Null Space Property should be generalized. This was done by
[Gribonval & Nielsen '07], see also [Gao, Peng, Yue & Zhao '15]. The same problem of the equivalence
between real and complex Null Space Property arises in this nonconvex case. The proof that they are
indeed equivalent notions was given by [Lai & Liu '11].
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3.3 Recovery via Nonconvex Minimization

The `q-quasinorm of a vector can be used to approximate the number of nonzero entries of a vector, as

N∑
j=1

|xi|q q→0−−−→
N∑
i=1

1{xi 6=0} = ||x||0.

Therefore, we would like to know whether we can obtain results for sparse recovery using `q-norm mini-
mization, with 0 < q < 1. Similarly to the other cases, let us call the problem of minimizing ||x||q subject
to Ax = y of (Pq). Despite being a nonconvex problem, it can be shown that exact reconstruction is
possible with substantially fewer measurements while maintaining robustness to noise and stability to
signal non-sparsity, see [Chartrand '07] for numerical experiments and [Saab, Chartrand & Yilmaz '08]
for the robustness analysis in the nonconvex case.

We will prove that the problem (Pq) does not provide a worse approximation to (P0) when we make
q smaller. In order to do this, we need to show an equivalence similar to Theorem 3.3 between sparse
recovery with the `q-norm and some form of the Null Space Property.

Theorem 3.5. Given a matrix A ∈ Cm×N and 0 < q ≤ 1, every s-sparse vector x ∈ CN is the unique
solution of (Pq) with y = Ax in and only if, for any S ⊂ [N ] with #S ≤ s,

||vS ||q < ||vS ||q ∀v ∈ kerA\{0}.

The proof of this theorem is analogous to that of Theorem 3.2. We just need to use the fact that the qth
power of the `q-quasinorm satis�es the triangular inequality. Using Theorem 3.5, [Gribonval & Nielsen '07]
were able to establish that sparse recovery via `q-minimization implies sparse recovery via `p-minimization
for 0 < p < q ≤ 1.

Theorem 3.6. ([Gribonval & Nielsen '07]): Given a matrix A ∈ Cm×N and 0 < p < q ≤ 1, if every
s-sparse vector x ∈ CN is the unique solution of (Pq) with y = Ax, then x ∈ CN is also the unique
solution of (Pp) with y = Ax.

Proof. Due to Theorem 3.5, we just need to prove that, if v ∈ kerA\{0} and if S is an index set of s
largest absolute entries of v, then ∑

i∈S
|vi|p <

∑
i∈S

|vi|p. (3.5)

We have, by hypothesis, that the same inequality is valid with q in place of p. Then we have vS 6= 0 since
S is an index set of the largest absolute entries and v 6= 0. So we can rewrite (3.5) dividing by

∑
i∈S |vi|p.

So, the inequality we want to prove is equivalent to

f(p) :=
∑
i∈S

1∑
j∈S(|vj |/|vi|)p

< 1. (3.6)

Clearly we have that |vj |/|vi| ≤ 1 for j ∈ S and i ∈ S. So, f(p) is a nondecreasing function of p. Hence,
for p < q, we have f(p) ≤ f(q). By hypothesis, we have f(q) < 1 and this implies the result.

In these results about sparse recovery via convex (and also nonconvex) optimization problem, nothing
is said about the computational tractability of the Null Space Property. In Section 3.7 we will study some
computational complexity issues related to `q-norm minimization for 0 < q ≤ 1. We �rst need to analyze
what happen if the measurements are corrupted or if we have vectors which are not, in fact, sparse, but
approximately sparse.
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3.4 Stable Measurements

In idealized situations, all the vectors we deal with are sparse. This may not be the case in more realistic
scenarios. Instead, we can have approximately sparse vectors and we want to recover them with an error
controlled by its distance to the closest sparse vector. This is called stability of the reconstruction with
respect to sparsity defect. In this section, we will prove that Basis Pursuit is stable. In order to do
this, we need a stronger Null Space Property that allow to encompass these defects into the kernel of the
measurement matrix.

De�nition 3.7. A matrix A ∈ Cm×N is said to satisfy the stable null space property with constant
0 < ρ < 1 relative to a set S ⊂ [N ] if

||vS ||1 ≤ ρ||vS ||1 ∀v ∈ kerA.. (NSPρ)

We say that A satis�es the stable null space property of order s with constant 0 < ρ < 1 if it satis�es the
stable null space property with constant 0 < ρ < 1 relative to any set S ⊂ [N ] with #S ≤ s.

We now can generalize Theorem 3.3 to the stable case.

Theorem 3.8. Suppose that a matrix A ∈ Cm×N satis�es the stable null space property of order s with
constant 0 < ρ < 1. Then, for any x ∈ CN , a solution x# of (P1) with y = Ax approximates the vector
x with `1-error

||x− x#||1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1. (3.7)

Remark 15. It is interesting to note that Theorem 3.8 does not guarantee uniqueness for the `1-
minimization. However, without explaining why, [Rauhut & Foucart '13] argue that nonuniqueness is
rather pathological.

Albeit there is nonuniqueness, the content of Theorem 3.8 is that every solution x# of (P1) with
y = Ax satis�es (3.7). We will prove, in fact, a stronger result, namely Theorem 3.9. The key point is to
look for any vector z ∈ CN satisfying Az = Ax and establish that, under the stable null space property
relative to a set S, the distance between a vector x ∈ CN supported on S and a vector z ∈ CN satisfying
Az = Ax can be controlled by the di�erence of their norms. Theorem 3.8 will follow as a corollary.

Theorem 3.9. The matrix A ∈ Cm×N satis�es the stable null space with constant 0 < ρ < 1 relative to
S if and only if

||z − x||1 ≤
1 + ρ

1− ρ (||z||1 − ||x||1 + 2||xS ||1), (3.8)

for all vectors x, z ∈ CN with Az = Ax.

In order to prove this result, we need the following simple observation.

Lemma 3.10. Given a set S ⊂ [N ] and vectors x, z ∈ CN , the following inequality holds

||(x− z)S ||1 ≤ ||z||1 − ||x||1 + ||(x− z)S ||1 + 2||xS ||1.

Proof. We need to separate a vector x ∈ CN into two parts, one relative to the set S and other relative
to the complementary set S. So, given a set S ⊂ [N ] and vectors x, z ∈ CN , we have

||x||1 = ||xS ||1 + ||xS ||1 ≤ ||xS ||1 + ||(x− z)S ||1 + ||zS ||1,
and also

||(x− z)S ||1 ≤ ||xS ||1 + ||zS ||1.
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We sum these two inequality to conclude

||x||1 + ||(x− z)S ||1 ≤ 2||xS ||1 + ||(x− z)S ||1 + ||z||1.

Proof. (of Theorem 3.9): We will assume that the matrix A satis�es (3.8) for all vectors x, z ∈ C with
Az = Ax. For v ∈ kerA, A(vS + vS) = Av = 0 and so A(−vS) = AvS . From (3.8) applied to x = −vS
and z = vS we obtain

||v||1 ≤
1 + ρ

1− ρ
(
||vS ||1 − ||vS ||1

)
,

which is equivalent to

(1− ρ)
(
||vS ||1 + ||vS ||1

)
≤ (1 + ρ)

(
||vS ||1 − ||vS ||1

)
.

After rearranging, we have ||vS ||1 ≤ ρ||vS ||1 and this is the stable null space property with constant
0 < ρ < 1 relative to the set S. Conversely, assume that the matrix A satis�es this property. For
x, z ∈ CN with Az = Ax, since v = z − x ∈ kerA, the stable null space property yields ||vS ||1 ≤ ρ||vS ||1.
Then Lemma 3.10 leads to

||vS ||1 ≤ ||z||1 − ||x||1 + ||vS ||1 + 2||xS ||1. (3.9)

Putting the de�nition of the stable null space property into (3.9), we obtain

||vS ||1 ≤ ||z||1 − ||x||1 + ρ||vS ||1 + 2||xS ||1,

and since ρ < 1, this is the same as

||vS ||1 ≤
1

1− ρ
(
||z||1 − ||x||1 + 2||xS ||1

)
.

Using the de�nition of the stable null space property again, we conclude

||v||1 = ||vS ||1 + ||vS ||1 ≤ (1 + ρ)||vS ||1 ≤
1 + ρ

1− ρ
(
||z||1 − ||x||1 + 2||xS ||1

)
.

In [Rauhut & Foucart '13] it was pointed out that if sparse vectors are exactly recovered then the
stability is obtained at no cost. To see how, let us consider for each index set s ⊂ [N ] with #S ≤ s, the
operator Rs de�ned on kerA by Rs(v) = vs. So we have the following equivalence for the de�nition of
null space property,

2||vS ||1 < ||v||1 ∀v ∈ kerA\{0} ⇐⇒ µ := max{||RS ||1→1 : S ⊂ [N ],#S ≤ s} < 1/2.

It then follows that A satis�es NSPρ with constant ρ = µ/(1−µ) ≤ 1. Then, we have stability. However,
note that the constant 2(1 + ρ)/(1− ρ) in (3.7) can be very large as ρ→ 1.

Now, we can deduce Theorem 3.8 as a Corollary.

Proof. (of Theorem 3.8): We just need to prove that 1+ρ
1−ρ (||z||1 − ||x||1 + 2||xS ||1) can be dominated

by 2(1+ρ)
(1−ρ) σs(x)1. In order to do this, we take S as the set of s largest absolute coe�cients of x, so

||xS ||1 = σs(x)1. Also, if x# is a minimizer of (P1), then ||x#||1 ≤ ||x||1 and Ax# = Ax. Therefore we
just need to consider z = x# and this concludes the proof.
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Sometimes we can deal with a �xed sparse vector rather than all vectors with a given sparsity. This
will be the case in the next two theorems, where we give a geometric characterization for the uniqueness
of the `1-minimization problem.

[Chandrasekaran, Recht, Parrilo & Willsky '12] introduced a general geometric theory for the recovery
of �simple� objects, in their own words, from few measurements. They analyzed the connections between
the recovery, from limited linear measurements, of objects with some structure and the convex hull of
the set of these objects. This was inspired by the fact that the convex hull of (unit Euclidean-norm) one-
sparse vectors is the unit ball of the `1-norm and, similarly, the convex hull of the (unit Euclidean-norm)
rank-one matrices is the nuclear norm ball, as we will discuss in Section 3.6.

De�nition 3.11. For a vector x ∈ RN , the descent convex cone is given by

T (x) = cone{z − x : z ∈ RN , ||z||1 ≤ ||x||1},

where cone means the conic hull of a set.

Theorem 3.12. (Proposition 2.1 of [Chandrasekaran, Recht, Parrilo & Willsky '12]): For A ∈ Rm×N ,
a vector x ∈ RN is the unique minimizer of ||z||1 subject to Az = Ax if and only if kerA ∩ T (x) = {0}.

Proof. Suppose that kerA ∩ T (x) = {0}. Let x# be an `1-minimizer. So we have ||x#||1 ≤ ||x||1 and
Ax# = Ax. And then v = x# − x must belong to T (x) ∩ kerA = {0}. Therefore, x# = x. Then x is the
unique `1-minimizer.

Now assume that x is the unique `1-minimizer. Every vector v ∈ T (x)\{0} can be written as v =∑
αi(zi−x) with αi ≥ 0 (see Lemma 2.6 of [Ruszczynski]) and ||zi||1 ≤ ||x||1. As v 6= 0, we have

∑
αi > 0

and so we can take the normalized coe�cients α′i = αi/
∑
αi. If v ∈ kerA, we have A(

∑
α′izi) = Ax

and also ||∑α′izi||1 ≤
∑
α′i||zi||1 ≤ ||x||1. By uniqueness of the `1-minimizer,

∑
α′izi = x and so v = 0,

which is a contradiction. Therefore we have (T (x)\{0}) ∩ kerA = ∅ and then T (x) ∩ kerA = {0}.

This theorem shows us that we can rewrite exact recovery from `1-minimization purely in terms of
convex geometry. A proper null space for x will be oriented in such a way that its shift by x will touch
T (x) uniquely at x. Also, this geometric characterization can be extended to robust recovery as the
following theorem shows.

Theorem 3.13. (Proposition 2.2 of [Chandrasekaran, Recht, Parrilo & Willsky '12]): For A ∈ Rm×N ,
let x ∈ RN and y = Ax+ e ∈ Rm with ||e||2 ≤ η. If

inf
v∈T (x),||v||2=1

||Av||2 ≥ τ

for some τ > 0, then a minimizer x# of ||z||1, subject to ||Az − y||2 ≤ η satis�es

||x− x#||2 ≤
2η

τ
.

Proof. We may assume that x# − x 6= 0, since otherwise the result is trivial. As x# is a minimizer of
||z||1. we have ||x#||1 ≤ ||x||1 and this leads to fact that v = (x#− x)/||x#− x||2 belongs to T (x). Since
||v||2 = 1 and v ∈ T (x), our hypothesis says that ||Av||2 ≥ τ . Using this and the triangular inequality,
we have

||x# − x||2 ≤
1

τ
||A(x# − x)||2 ≤

1

τ

(
||Ax# − y||2 + ||Ax− y||2

)
≤ 2η

τ
.
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3.5 Robust Measurements

Due to physical limitations there is no hope to measure a signal x ∈ CN with in�nite precision. Hence
the measurement vector y ∈ Cm will be always an approximation to the vector Ax ∈ Cm. We want to
model our problem in such a way that we can control the error of this approximation by

||Ax− y|| ≤ η,
for some η ≥ 0 and some norm ||.|| on Cm. Typically we will require �nite energy of this di�erence
which, in mathematical terms, means that will we work with the `2-norm. Then, the output of our
reconstruction technique cannot be x, but will be x∗ ∈ CN whose distance to the original vector x ∈ CN
must be controlled by η ≥ 0. This is called the robustness of the reconstruction scheme with respect to
the measurement error. Let us then substitute the original basis pursuit (P1) by the following convex
problem

min
z∈CN

||z||1 subject to ||Az − y|| ≤ η, . (P1,η)

where the norm in ||Az − y|| is a properly chosen norm for the measurement error.

De�nition 3.14. The matrix A ∈ Cm×N is said to satisfy the robust null space property (with respect
to the norm ||.||) with constants 0 < ρ < 1 and τ > 0 relative to a set S ⊂ [N ] if

||vS ||1 ≤ ρ||vS ||1 + τ ||Av|| ∀v ∈ Cn. (NSPρ,τ )

Likewise in the de�nition of the stable null space property, we say that a matrix A satis�es the robust
null space property of order s with constants 0 < ρ < 1 and τ > 0 if it satis�es the robust null space
property with constants ρ, τ to any set S ⊂ [N ] with #S ≤ s.

Remark 16. In this de�nition we do not ask for v to be in kerA. Note that if v ∈ kerA, then the term
||Av|| vanishes and we recover the stable null space property.

We can now generalize Theorem 3.8 to the case η 6= 0.

Theorem 3.15. Suppose that a matrix A ∈ Cm×N satis�es the robust null space property of order s with
constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CN , a solution x# of (P1,η) with y = Ax + e and
||e|| ≤ η satis�es

||x− x#||1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1 +

4τ

1− ρη.

As in Section 3.4, we will prove a stronger statement valid for any index set S and obtain Theorem 3.15
as a particular case.

Theorem 3.16. The matrix A ∈ Cm×N satis�es the robust null space property with constants 0 < ρ < 1
and τ > 0 relative to S if and only if

||z − x|| ≤ (1 + ρ)

(1− ρ)
(||z||1 − ||x||1 + 2||xS ||1) +

2τ

1− ρ ||A(z − x)||, (3.10)

for all vectors x, z ∈ C.

Proof. The idea of the proof, mutatis mutandis, is same from Theorem 3.9. Let us �rst assume that the
matrix A satis�es (3.10) for all x, z ∈ CN . Then, for any v ∈ CN , we can take x = −vS and z = vS . This
leads to

||v||1 ≤
1 + ρ

1− ρ (||vS ||1 − ||vS ||1) +
2τ

1− ρ ||Av||.
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After rearranging, we obtain (1 − ρ) (||vS ||1 + ||vS ||1) ≤ (1 + ρ) (||vS ||1 − ||vS ||1) + 2τ ||Av||, and this is
the same as ||vS ||1 ≤ ρ||vS ||1 + τ ||Av||. This is exactly the robust null space property with constants
0 < ρ < 1 and τ > 0 relative to S.

Conversely, assume that the matrix A satis�es the robust null space property with constant 0 < ρ < 1
and τ > 0 relative to S. For x, z ∈ CN , we set v = z − x and then, using NSPρ,τ and Lemma 3.10 yields

||vS ||1 ≤ ρ||vS ||1 + τ ||Av||,
||vS ||1 ≤ ||z||1 − ||x||1 + ||vS ||1 + 2||xS ||1.

Combining both inequalities we have

||vS ||1 ≤
1

1− ρ (||z||1 − ||x||1 + 2||xS ||1 + τ ||Av||) .

Using NSPρ,τ once more, we obtain

||v||1 = ||vS ||1 + ||vS ||1 ≤ (1 + ρ)||vS ||1 + τ ||Av|| ≤ 1 + ρ

1− ρ (||z||1 − ||x||1 + 2||xS ||1) +
2τ

1− ρ ||Av||.

We will now establish a result where the `1-error estimate is replaced by a general `p-error estimate
for p ≥ 1. This means that, from now on, we have other error reconstruction rates available. In order
to do this, we need to change and strength the null space property to include other norms than the `1.
Now we will directly de�ne the property of order s instead of de�ne it for a �xed set S ⊂ [N ] �rst.

De�nition 3.17. Given q ≥ 1, the matrix A ∈ Cm×N is said to satisfy the `q-robust null space property
of order s (with respect to the norm ||.||) with constants 0 < ρ < 1 and τ > 0 if, for any set S ⊂ [N ] with
#S ≤ s,

||vS ||q ≤
ρ

s1−1/q
||vS ||1 + τ ||Av|| ∀v ∈ Cn. (NSPq,ρ,τ )

Remark 17. Note that with the aid of the inequality ||vS ||p ≤ s1/p−1/q||vS ||q valid for 1 ≤ p ≤ q we can
prove that the `q-robust null space property with constants 0 < ρ < 1 and τ > 0 implies that, for any set
S ⊂ [N ] with #S ≤ s,

||vS ||p ≤
ρ

s1−1/p
||vS ||1 + τs1/p−1/q||Av|| ∀v ∈ Cn.

Hence, if we change the norm ||.|| by the new norm s1/p−1/q||.||, the `q-robust null space property implies
the `q-robust null space property with the same constants for any 1 ≤ p ≤ q. Therefore, De�nition 3.17
is a natural strengthening of the robust null space property for the `1 norm.

We will now show that quadratically constrained basis pursuit works for matrices satisfying NSP2,ρ,τ .
The precise statement is as follows.

Theorem 3.18. Suppose that the matrix A ∈ Cm×N sati�es the `2-robust null space property of order s
with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CN , a solution x# of (P1,η) with ||.|| = ||.||2,
y = Ax+ e, and ||e||2 ≤ η approximates the vector x with `p-error

||x− x#||p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2η, 1 ≤ p ≤ 2, (3.11)

Consequently, if there is a way to characterize which matrices satisfy this property or, at least, �nd
a useful set of matrices for which this property is valid, we can then ensure the recovery of approxi-
mately sparse vectors with controlled error rates. In Section 5.5, in particular Theorem 5.19, proved
by [Andersson & Strömberg '14], says that this is the case for matrices with su�ciently small restricted

46



CHAPTER 3. THE NULL SPACE PROPERTY

isometry constants. Nonetheless, it is important to note that the �rst result of stability and robustness
of sparse reconstruction via Basis Pursuit was obtained by [Candès, Romberg & Tao I '06].

Next, we will prove a more general result from which Theorem 3.18 follows by choosing q = 2, taking
z = x# and observing that since x# is solution of minz∈CN ||z||1, we necessarily have ||x#||1 − ||x||1 ≤ 0.

Theorem 3.19. Given 1 ≤ p ≤ q, suppose that the matrix A ∈ Cm×N satis�es the `q-robust null space
property of order s with constants 0 < ρ < 1 and τ > 0. Then, for any x, z ∈ CN ,

||z − x||p ≤
C

s1−1/p

(
||z||1 − ||x||1 + 2σs(x)1

)
+Ds1/p−1/q||A(z − x)||,

where C = (1 + ρ)2/(1− ρ) and D = (3 + ρ)τ/(1− ρ).

Proof. Recall that the `q-robust null space property implies the `1-robust null space property and `p-
robust null space property for p ≤ q. These two statements can be written as follows

||vS ||1 ≤ ρ||vS ||1 + τs1−1/q||Av||. (3.12)

||vS ||p ≤
ρ

s1−1/p
||vS ||1 + τs1/p−1/q||Av||. (3.13)

for all v ∈ CN and all S ⊂ [N ] with #S ≤ s. Thus, considering (3.12) and using Theorem 3.16 with S
chosen as an index set of s largest (in absolute value) entries of x we obtain

||z − x||1 ≤
1 + ρ

1− ρ (||z||1 − ||x||1 + 2σs(x)1) +
2τ

1− ρs
1−1/q||A(z − x)||. (3.14)

Now, considering (3.13) and choosing S as an index set of s largest (in absolute value) entries of z − x,
we can estimate the `p-norm by the `1-norm and obtain

||z − x||p ≤ ||(z − x)S ||p + ||(z − x)S ||p ≤
1

s1−1/p
||z − x||1 + ||(z − x)S ||p

≤ 1

s1−1/p
||z−x||1 +

ρ

s1−1/p
||(z−x)S ||1 + τs1/p−1/q||A(z−x)|| ≤ 1 + ρ

s1−1/p
||(z−x)||1 + τs1/p−1/q||A(z−x)||

(3.8)

≤ (1 + ρ)2

(1− ρ)

1

s1−1/p

(
||z||1 − ||x||1 + 2σs(x)1

)
+

(3 + ρ)τ

(1− ρ)
s1/p−1/q||A(z − x)||.

Returning to Theorem 3.18, let us analyze the extremal cases p = 1 and p = 2. Then , we have the
estimates

||x− x#||1 ≤ Cσs(x)1 +D
√
sη and ||x− x#||2 ≤

C√
s
σs(x)1 +Dη.

It is interesting to note that in the �rst case, the coe�cient of σs(x)1 is constant while in the second one
is proportional to 1/

√
s. Also, the coe�cient of η scales like

√
s for p = 1 while it is constant for p = 2.

Another curious point to note is that regardless of the chosen norm in which we seek for error estimates,
the error σs(x)1 always appears on the right-hand side. So, for example, in the case p = 2, one may
inquire why σs(x)2 does not appear, since we have an `2-error estimate, but instead σs(x)1/

√
s appears

in its place.
In Chapter 8 we will see that such kind of estimate, with σs(x)2, is impossible in the parameters

regime we are looking for. In order to acquire information in a compressible fashion, m must be much
smaller than N . After developing some techniques on Geometry of Banach Spaces, we will prove in
Theorem 8.21 a curious condition. Namely, if we want estimates with σs(x)2, then necessarily m ≥ cN
for some positive constant c, so this `2 estimates are useless for our purposes.

Lastly, we saw on Chapter 1 that unit `1-balls with q < 1 can model compressible vectors in a
satisfactory way. Indeed, by Proposition 1.5, if ||x||1 ≤ 1 for q < 1, then, for p ≥ 1, we have σs(x)p ≤
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s1/p−1/q. On the other hand, taking η = 0 on Equation (3.11), which is the same as consider measurements
without error, we have

||x− x#||p ≤
C

s1−1/p
σs(x)1 ≤

C

s1−1/p
s1−1/q = Cs1/p−1/q, 1 ≤ p ≤ 2.

Hence, we have the same decay error rate for the reconstruction error in `p and the best s-term approx-
imation, provided that p ∈ [1, 2]. Therefore the terms σs(x)1/s

1−1/p and σs(x)1 are comparable and the
appearance of σs(x)1 on the right-hand side makes sense, see the comments after De�nition 8.19.

3.6 Low-Rank Matrix Recovery

In this dissertation, we will be interested in the problem of sparse vector recovery. However, the recov-
ery/reconstruction of higher dimensional structures like matrices and higher order tensors is also possible
from few observations. The matrix case is specially important in many practical problems. Consider,
for example, a survey data containing the responses of various individuals to speci�c questions. We can
make a table with individuals in the rows and questions in the columns. In any quiz, many questions are
left unanswered and the aim is to provide a good estimate for the missing answers. Even more, typically
many questions will be left with no answer, so we want to recover a matrix from very few measurements.

Matrix-completion problems arise in a natural way into �elds where questions about dimensionality or
complexity are present. Typically we can model these as a problem about the rank of some appropriate
matrix. The main point is that in these cases, the matrix we wish to recover is known to be structured
in the sense that it is low-rank or approximately low-rank.

Some applications of the techniques of low-rank matrix recovery are: phase retrieval of di�racted
waves in crystallographic and astronomical imaging [Candès, Eldar, Strohmer & Voroninski '13]; low-
dimensional embedding of data and the connectivity structure of graphs which arise in the study of
social networks [Linial, London & Rabinovich '15]; distance matrices which represents wireless sensor net-
work localization [So & Ye '07] and multi-task learning and recommendation systems in machine learning
[Rohde & Tsybakov '11], just to name a few. This last one became very famous after the Net�ix Problem3,
where some techniques related to low-rank matrix recovery were used.

Solving all of these problems e�ciently is particularly important in view of the massive size of actual
datasets. Even more, it would be impossible to fully observe the matrices arising in those applications.
As [Davenport & Romberg '16] points out, �it can be prohibitively expensive to fully sample the entire
output of a sensor array; we might only be able to measure the strength of a few connections in a graph;
and any particular user of a recommendation system will provide only a few ratings".

In this section, we brie�y explore the connection between the problem of Low-Rank Matrix Recovery
and Compressive Sensing. More speci�cally, we will see that one problem can be realized as a par-
ticular instance of the other, when we change the `1-norm minimization by the nuclear norm, de�ned
below. This connection was �rst explored by [Candès & Recht '09]; important contributions were made
by [Recht, Fazel & Parrilo '10], [Candès & Tao '10] and [Keshavan, Montanari & Oh '10].

Suppose that a matrix A ∈ Cn1×n2 of rank at most r is observed via linear measurements described
by

A : Rn1×n2 → Rm, X 7→
m∑
j=1

〈X,Aj〉ej =

m∑
j=1

tr(XA∗j )ej

where A1, . . . , An are suitable n1 × n2 matrices and e1, . . . , em is the standard basis in Rm. If we have
noise, then our measurements will be described by y = A(X) + e, where e ∈ Rm denotes the additive
noise. Like the vectorial case, our problem here is given by

min
X∈Cn1×n2

rank(X) subject to A(X) = y (NSPrank)

3See the websites http://www.netflixprize.com/ and https://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html for
the problem description and more information about the solution.
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Note that the rank of X is the `0-norm of the vector [σ1(X), . . . , σn(X)] of singular values of X. When
the matrix is diagonal, this problem reduces to the (P0) problem and then it is also NP-hard. Therefore,
we need a good relaxation strategy. To solve the problem we will, instead of pursuing rank minimization,
try to obtain nuclear norm minimization. This norm, also known by the names Schatten 1-norm and
Ky-Fan norm, is de�ned by ||X||∗ =

∑n
j=1 σj(X) with n = min{n1, n2}. Let us �rst recall the following

de�nition.

De�nition 3.20. Let C be a convex set. The convex envelope of a (possible nonconvex) function
f : C → R is de�ned as the largest convex function g such that g(x) ≤ f(x) for all x ∈ C. More
precisely,

conv f(x) = sup{g(x) | g convex, g ≤ f}.

Remark 18. From this de�nition we see that, among all convex functions that bound f(x) from below,
g is the best approximation and so instead of minimizing f , we can try to e�ciently minimize g.

Now we state a result about the convex envelope of the matrix rank.

Theorem 3.21. (Theorem 1 of [Fazel, Hindi & Boyd '01]): The convex envelope of the function φ(X) =
rank(X) on C = {X ∈ Rm×n

∣∣||X||2→2 ≤ 1} is φenv(X) = ||X||∗
[Fazel, Hindi & Boyd '01] proposed the heuristic of the nuclear norm minimization (three years before

the �rst preprint about Compressive Sensing was released and therefore, without the analogy with sparse
recovery and basis pursuit) and this was fully explored in the thesis [Fazel '02].

min
X∈Cn1×n2

||X||∗ subject to A(X) = y (Pnuclear)

This is a convex optimization problem, and therefore, at least in principle, easily solvable. If the matrix
variable X is symmetric and positive semide�nite, then its singular values are the same as its eigenvalues
and the problem (NSPnuc) reduces to the trace minimization. Moreover, this norm is the `1-norm of the
singular values of X and then we can try to import the de�nitions and techniques from the vector case
to this case. First of all, we have a matrix version of the null space property. Second, the success of
the nuclear norm minimization for the recovery of low-rank matrices is also equivalent to matrix NSP as
state in the next theorem.

Theorem 3.22. ([Recht, Xu & Hassibi '08]): Give a linear map A from Cn1×n2 to Cm, every matrix
X ∈ Cn1×n2 of rank r is the unique solution of (Pnuclear) with y = A(X) if and only if, for all M ∈
kerA\{0} with singular values σ1(M) · · · ≥ σn(M) ≥ 0, n = min{n1, n2},

r∑
j=1

σj(M) <

n∑
j=r+1

σj(M).

In order to prove this result, we need the classical variational characterization of the singular values.
Here, we present the proof given by [Rauhut & Foucart '13].

Theorem 3.23. (Courant-Fischer Minimax Theorem): For a self-adjoint matrix A ∈ Cm×n, the eigen-
values of A are obtained through

λk(A) = max
M⊂Cn

dimM=k

min
x∈M
||x|2=1

〈Ax, x〉. (3.15)

As a consequence, the singular values σ1(A) ≥ · · · ≥ σmin{m,n} ≥ 0 of a matrix A ∈ Cm×n can be
described by

σk(A) = max
M⊂Cn

dimM=k

min
x∈M
||x|2=1

||Ax||2
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Proof. Let us �rst prove that λk(A) is not larger than the right-hand side of Equation (3.15). Taking
{u1, . . . , un} as an orthonormal basis andM = span(u1, . . . , un), for x =

∑k
j=1 αjuj ∈M with unit norm

we have

〈Ax, x〉 =

k∑
j=1

λj(A)α2
i ≥ λk(A)

k∑
j=1

α2
i = λk(A)||x||22 = λk(A).

Now, we need to prove the converse inequality for λk(A). So, given a k-dimensional subspace M of Cn,
we choose a vector x ∈ M ∩ Span{uk, . . . , un} with ||x||2 = 1 in such a way that x =

∑k
j=1 αjuj . This

leads to

〈Ax, x〉 =

n∑
j=k

λj(A)α2
i ≤ λj(A)

n∑
j=k

α2
i = λk(A)||x||22 = λk(A)

Let λ(X) = (λ1(X), . . . , λn(X)) be the spectrum of any matrix X, considered as a vector, instead of
a set. In the short note [Lidskii '50], it was proved that for Hermitian matrices A and B, λ(A+B)−λ(A)
is in the convex hull spanned by Pλ(B), where P is a permutation matrix. The Birkho�-von Neumann
Theorem states that the set of doubly stochastic matrices, which is a convex polytope, is the convex hull
of the set of permutation matrices. So Lidskii's result is equivalent to λ(A + B) − λ(A) = Oλ(B) for
some doubly stochastic matrix O and this, in turn, is equivalent to the following inequality.

Lemma 3.24. ([Lidskii '50] and [Wielandt '55]): Let A,B ∈ Cn×n be two self-adjoint matrices, and
let (λj(A))j∈[n], (λj(B))j∈[n], (λj(A + B))j∈[n] denote the eigenvalues of A, B, and A + B arranged in
nonincreasing order. For any 1 ≤ i1 < · · · < ik ≤ n,

k∑
i=1

λij (A+B) ≤
k∑
i=1

λij (A) +

k∑
i=1

λi(B).

Proof. Note that the inequality is invariant under the change B → B − αId, for a given constant α
and so, without loss of generality, we may assume that we have translated the spectrum in such a way
that λk+1(B) = 0. Therefore all the vectors λk+2(B), λk+3(B), . . . are negative. Let us use the spectral
decomposition for B and de�ne the positive semide�nite matrix B+ ∈ Cn×n as

B = Udiag[λ1(B), . . . , λk(B), λk+1(B), . . . , λn(B)]U∗,

B+ = Udiag[λ1(B), . . . , λk(B), 0, . . . , 0]U∗.
(3.16)

Using the fact that the eigenvalues λk+2(B), λk+3(B), . . . are negative, we have that B+ − B < 0, i.e.,
B+ −B is positive semide�nite. Then, we have that A+B+ < A+B and also that A+B+ < A. Using
the variational characterization (3.15), we have λi(A+B) ≤ λi(A+B+) and λi(A) ≤ λi(A+B+). This
leads to

k∑
j=1

(
λij (A+B)− λij (A)

)
≤

k∑
j=1

(
λij (A+B+)− λij (A)

)
≤

n∑
j=1

(
λi(A+B+)− λij (A)

)

= tr(A+B+)− tr(A) = tr(B+) =

k∑
i=1

λi(B).
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This result is more than an upper bound for the k smallest eigenvalues of A + B, because we can
take any k eigenvalues of A+B, arranged in nonincreasing order and bound them from above by taking
the sum eigenvalues of A and B with the same indexes. For more information about inequalities for
eigenvalues of Hermitian matrices, see [Tao's Blog - 01/12/2010]. Lemma 3.24 can be used to derive an
inequality about singular values as stated in the next Lemma.

Lemma 3.25. If the matrices X ∈ Cm×n and Y ∈ Cm×n have singular values σ1(X) ≥ · · · ≥ σl(X) ≥ 0
and σ1(Y ) ≥ · · · ≥ σl(Y ) ≥ 0, where l = min{m,n} the, for any k ∈ [l],

k∑
j=1

|σj(X)− σj(Y )| ≤
k∑
j=1

σj(X − Y ).

Proof. Consider the self-adjoint dilatation matrices S(X), S(Y ) ∈ C(m+n)×(m+n) de�ned by

S(X) =

[
0 X
X∗ 0

]
and S(Y ) =

[
0 Y
Y ∗ 0

]
.

Their eigenvalues obey the inequalities

σ1(X) ≥ · · · ≥ σl(X) ≥ 0 = · · · = 0 ≥ −σl(X) ≥ · · · ≥ −σ1(X),

σ1(Y ) ≥ · · · ≥ σl(Y ) ≥ 0 = · · · = 0 ≥ −σl(Y ) ≥ · · · ≥ −σ1(Y ).
(3.17)

In order to see this, let us compute S2(X).

S2(X) = S(X)S(X) =

[
XX∗ 0

0 X∗X

]
.

Let σ be any singular values of X. Then σ2 is an eigenvalue of XX∗ (and X∗X). Hence σ2 will be an
eigenvalue for S2(X) for a given eigenvector v, that is,

S2(X)v =

[
XX∗ 0

0 X∗X

]
v = σ2v.

Therefore, we can �nally conclude that ±σ is an eigenvalue for S(X). Then, for j ∈ [l], there exists a
subset Ik of [m+ n] with size k such that

k∑
j=1

|σj(X)− σj(Y )| =
∑
j∈Ik

(
λj(S(X))− λj(S(Y ))

)
.

So, using Lemma 3.24, with A = S(Y ), B = S(X − Y ) and A+B = S(X) leads to

k∑
j=1

|σj(X)− σj(Y )| =
k∑
j=1

λj(S(X − Y )) =

k∑
j=1

σj(X − Y ).

We can now �nally prove that if a matrix satis�es the nullspace property it can recovered through
the minimization of the nuclear norm.

Proof. (of Theorem 3.22): Assume that every matrix X ∈ Cn1×n2 of rank r is the unique solution of
(Pnuclear) with y = A(X). Consider the singular value decomposition of a matrix M ∈ kerA\{0}, which
we will denote by M = Udiag(σ1, . . . , σn)V ∗ for σ1 ≥ . . . σn ≥ 0 and U ∈ Cn1×n1 , V ∈ Cn2×n2 unitary
matrices. So we can threshold M and cut o� some singular values in order to de�ne two new matrices

M1 = Udiag(σ1, . . . , σr, 0, . . . , 0)V ∗ and M2 = Udiag(0, . . . , 0,−σr+1, . . . ,−σn)V ∗,
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3.6. LOW-RANK MATRIX RECOVERY

in such a way that M = M1 −M2. Then we translate the condition A(M) = 0 into A(M1) = A(M2).
Since the rank of M1 is at most r, its nuclear norm must be smaller than the nuclear norm of M2. This
is the same as saying that

||M1||∗ = σ1(M) + · · ·+ σr(M) < ||M2||∗ = σr+1(M) + · · ·+ σn(M).

In order to prove the converse, let us suppose that
∑r
j=1 σj(M) <

∑n
j=r+1 σj(M) for everyM ∈ kerA\{0}

with singular values σ1(M) ≥ · · · ≥ σn(M) ≥ 0. Let us take a matrix X ∈ Cn1×n2 of rank r and a matrix
Y ∈ Cn1×n2 , with X 6= Y and satisfying A(Y ) = A(X). We will prove that ||X||∗ > ||Y ||∗. Let us de�ne
M = X − Y ∈ kerA\{0}. Lemma 3.24, with A = X −M and B = M , implies that

||Y ||∗ =

n∑
j=1

σj(X −M) ≥
n∑
j=1

|σj(X)− σj(M)|

For j ∈ [r], we have |σj(X)−σj(M)| ≥ σj(X)−σj(M) and for the smallest singular values, r+1 ≤ j ≤ n,
we clearly have |σj(X)− σj(M)| = σj(M). So, using our hypothesis, we have

||Y ||∗ ≥
r∑
j=1

σj(X)−
r∑
j=1

σj(M) +

n∑
j=r+1

σj(M) ≥
r∑
j=1

σj(X) = ||X||∗

Recently, [Kabanava, Kueng, Rauhut & Terstiege '16] generalized Theorem 3.22 and established the
stable and robust reconstruction of the low-rank matrices through the introduction of the robust null
space property for the matrix case. They proved the following theorem.

Theorem 3.26. (Theorem 11 of [Kabanava, Kueng, Rauhut & Terstiege '16]): Let A : Cn1×n2 → Cm
be any linear measurement map, let n = min{n1, n2} and ||.|| be any norm on Cm. Assume that for any
matrix X ∈ Cn1×n2 , our measurement vector is given by y = A(X) + e with ||e||2 ≤ η, for some η ≥ 0.
Suppose that the measurement A satis�es the robust rank null space property of order r (with respect to
the norm ||.||) with constants 0 < ρ < 1 and τ > 0, that is

r∑
i=1

σi(M) ≤ ρ
n∑

i=r+1

σi(M) + τ ||A(M)||, ∀M ∈ Cn1×n2 .

Then, for any matrices X,Z ∈ Cn1×n2 , we have

||X − Z||∗ ≤
1 + ρ

1− ρ

(
||Z||∗ − ||X||∗ + 2

n∑
i=r+1

σi(M)

)
.

Also, if A satis�es the Frobenius robust rank null space property of order r, i.e., for all M ∈ kerA\{0},(
r∑
i=1

σi(M)2

)1/2

≤ ρ√
r

n∑
i=r+1

σi(M) + τ ||A(M)||,

then, for X#, a solution of the quadratically constrained nuclear norm minimization problem,

min
X∈Cn1×n2

||Z||∗ subject to ||A(Z)− y||2 ≤ η, (3.18)

we have the following error estimate in the Frobenius norm,

||X −X#||F ≤
2(1 + ρ)2

1− ρ
1√
r

n∑
i=r+1

σi(X) +
2τ(3 + ρ)

1− ρ η.
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As a corollary of Theorem 3.26, we obtain that if X ∈ Cn1×n2 is a matrix of rank at most r and the
measurements are noiseless, i.e., η = 0, then the Frobenius robust null space property implies that X is
the unique solution of (Pnuclear).

This section showed that the heuristic of replacing the (nonconvex) rank objective function by the
sum of the singular values works, provided that the measurement A satis�es the null space property.
But until now, nothing was said about how to minimize the nuclear norm in an e�cient form. This was
done by [Vandenberghe & Boyd '96] and highlighted by [Fazel, Hindi & Boyd '01], where they expressed
the problem as a Semide�nite Programming (SDP) problem with constrains given by a linear matrix
inequality. They argue that for this kind of problem, a lot of solvers are available to e�ciently solve it.
In particular, they proved the following theorem:

Theorem 3.27. (Lemma 1 of [Fazel, Hindi & Boyd '01]): The problem (NSPnuc) is equivalent to the
following semide�nite programming problem:

min
X∈Cn1×n2 ,Y ∈Cn1×n1

Z∈Cn2×n2

tr Y + tr Z subject to A(X) = y and M =

[
Y X
X∗ Z

]
< 0.

To �nish this discussion, let us point out that low-rank matrix recovery has a lot of application. One
can cite camera calibration, removal of shadows and specularities from face images, reconstruction of
urban structures from low-rank textures and so on. These and many other applications can be found at
Low-Rank Matrix Recovery and Completion via Convex Optimization, a website maintained by Professor
Yi Ma, from the University of Illinois. The URL is http://perception.csl.illinois.edu/matrix-

rank/references.html.

3.7 Complexity Issues of the NSP

In this chapter, we saw the null space property as a necessary and su�cient condition for the equivalence
between (P1) and (P0). However, in this section we will state an odd result related to the computational
complexity of the null space property. More precisely, we will state a recent theorem which says that the
computation of the null space constant is intractable from a computational point of view. In order to do
this, we must remember one of the three equivalent conditions for NSP given in the beginning of Section
3.2, more precisely, the one given by Equation (3.1). This equation tells us that the null space property
relative to a set S is

2||vS ||1 < ||v||1 ⇐⇒ ||vS ||1 <
1

2
||v||1 ∀v ∈ kerA\{0}.

So taking S to be the index set S of s largest (in absolute value) entries of v, we can generalize the
inequality above and de�ne the null space constant.

De�nition 3.28. For a given matrix A ∈ Cm×N , the null space constant αs is de�ned as the smallest
constant such that the NSP of order s holds with this constant, that is

αs = minα such that ||vS ||1 ≤ α||v||1 ∀v ∈ kerA\{0}.

or equivalently,

αs = max ||vS ||1 such that Av = 0, ||v||1 = 1, S ⊆ [N ], #S ≤ s.

So, clearly, by Equation (3.1) and Theorem 3.2, sparse recovery is ensured by (P1) if and only if
αs < 1/2. Therefore, one can ask how to compute αs or to decide whether a given matrix A ∈ Cm×N
there exists αs < 1. The next theorem states that there is no polynomial time algorithm that computes
the null space constant for all matrices A and all sparsity levels s.
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Theorem 3.29. (Theorem 5 of [Tillmann & Pfetsch '14]): Given a matrix A ∈ Qm×N and a positive
integer s, the problem to decide whether A satis�es the NSP of order s with some constant αs < 1 is
coNP-complete.

It is su�cient to prove this theorem for a rational matrix because in �oating-point arithmetics there is
only the representation of rational numbers. Theorem 3.29 provides a justi�cation to investigate su�cient
conditions to Basis Pursuit, instead of relying only on necessary and su�cient condition as NSP. In
Chapter 4 and Chapter 5 we will analyze the two most important su�cient conditions in Compressive
Sensing literature: Coherence Property and Restricted Isometry Property.

Based on Section 3.3, we could ask why the nonconvex approach is not used instead of Basis Pursuit.
The main point is that the null space property for the `q-norm, with q < 1, has also theoretical drawbacks,
as the next theorem shows.

Theorem 3.30. (Theorem 1 of [Ge, Jiang & Ye '11]): For any 0 < q < 1, the problem (Pq) is NP-hard.

Therefore, the `1-minimization approach, a convex strategy, remains as the most widely used approach
to �nd sparse (or compressible) solutions of linear systems. We �nish this chapter with an open theoret-
ical problem related to NSP which was stated in the last section of the work [Tillmann & Pfetsch '14].

Open Problem: Prove that the computation of the null space constant is strongly NP-hard, that is,
prove that cannot exist a fully polynomial time approximation scheme (FPTAS), i.e., an algorithm that
solves the minimization problem within a factor of (1 + ε) of the optimal value in polynomial time with
respect to the input size and to 1/ε.
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Chapter 4

The Coherence Property

There's no unique criterion for coherence, but you have to be sensitive to incoherence.
And as we've said, the test for incoherence is whether you're getting the results you don't want.

David Bohm (1917-1992)1

4.1 Introduction

Until now, we gave a panorama of some strategies to solve the `0-minimization problem, like thresholding
and greedy algorithms. However, our main focus on this dissertation is Basis Pursuit working as a proxy
for the initial combinatorial problem. With this in mind, our investigation relies in �nding conditions
in the matrix A which ensure exact or approximate reconstruction of the original sparse or compressible
vector. A fundamental point in the analysis of the algorithms is whether we are able to prove that some
speci�c matrices arising in applications satisfy the conditions that we examine in this chapter. This
question is not so well understood, and will return later in this dissertation.

In Theorem 3.3 we proved that the Null Space Property is a necessary and su�cient condition for the
solution of (P0) via `1-minimization. At the same time, the results about the computational complexity
of NSP show us that we must look in other directions to �nd alternative su�cient ways to solve the
problem - the question of necessity will be proven much harder - even if these alternatives are not sharp.

The seminal paper [Candès, Romberg & Tao I '06] de�ned the Restricted Isometry Property2 in 2004,
which will be explored in Chapter 5, whereas [Cohen, Dahmen & DeVore '09] de�ned NSP in 2009. His-
torically, other su�cient conditions for sparse recovery appeared before RIP and NSP. Along this chapter,
we follow the path taken by Donoho and collaborators to �nd su�cient conditions for Basis Pursuit.

We will also begin to explore the suitability of matrices that are present in Compressive Sensing and
applications in order to guarantee uniqueness of the (sparse) solution. This analysis leads to su�cient
conditions under the names Spark and Coherence of the matrix. We begin this investigation with a
new point of view for a very general and ubiquitous principle of physics, which is also a metatheorem in
mathematics: the uncertainty principle.

4.2 Uncertainty Principle

In the twenties, Quantum Mechanics changed the physical understanding of the world. One of its deepest
results is the Uncertainty Principle3, which dates back to [Heisenberg '27]. The papers [Kennard '27]

1In David Bohm, �Thought as a System", Routledge, 1994. pp. 59.
2These authors originally called it the Uniform Uncertainty Principle. Also, despite the publication date, the original

preprint appeared in ArXiv at 2004.
3For the history of quantum mechanics, one can consult the 6 volumes (and more than 5000 pages) of

[Mehra & Rechenberg '01], the most comprehensive work undertaken by anyone on one of the vastest and most impor-
tant development in the history of science.
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and [Weyl '28] quanti�ed and proved it4.
The signal analysis community probably came to know and to re�ect on it after the fundamental

work of Gabor [Gabor '46] in 1946. Then this principle evolved throughout the century and we can cite
the extensions made by Landau, Pollack and Slepian [Slepian & Pollack '61], [Landau & Pollack '61] and
later by Donoho and Stark [Donoho & Stark '89]. Furthermore, there are deep connections with other
areas such as Partial Di�erential Equations [Fe�erman '83] and Mathematical Analysis in general, see
[Havin & Jöricke '94]. A particularly clear description of the philosophy of the Uncertainty Principle in
Mathematics is given by Terence Tao in [Tao's Blog - 06/25/2010]:

�A recurring theme in mathematics is that of duality: a mathematical object X can either be described
internally (or in physical space, or locally), by describing what X physically consists of (or what kind
of maps exist into X), or externally (or in frequency space, or globally), by describing what X globally
interacts or resonates with (or what kind of maps exist out of X). These two fundamentally opposed
perspectives on the object X are often dual to each other in various ways: performing an operation on
X may transform it one way in physical space, but in a dual way in frequency space, with the frequency
space description often being a �inversion" of the physical space description. In several important cases,
one is fortunate enough to have some sort of fundamental theorem connecting the internal and external
perspectives[...]the uncertainty principle, that describes the dual relationship between physical space and
frequency space. There are various concrete formalisations of this principle, most famously the Heisenberg
uncertainty principle and the Hardy uncertainty principle - but in many situations, it is the heuristic
formulation of the principle that is more useful and insightful than any particular rigorous theorem that
attempts to capture that principle. Unfortunately, it is a bit tricky to formulate this heuristic in a succinct
way that covers all the various applications of that principle; the Heisenberg inequality ∆x ·∆ξ & 1 is a
good start, but it only captures a portion of what the principle tells us.�

As we are interested in sparsity, we follow [Donoho & Stark '89] and [Donoho & Huo '01] in order to
see what the Uncertainty Principle represents to us, namely, that a signal cannot be sparsely represented
both in time and in frequency. Suppose we have a non-zero vector v ∈ Rn and two orthonormal basis,
Ψ and Φ. So we can represent v in two ways: as a linear combination of columns of Ψ or as a linear
combination of columns of Φ

v = Ψx = Φy.

Let us suppose, as an important case, that Ψ is the identity matrix and Φ is the matrix of Discrete Fourier
Transform. We then have the time-domain representation and the frequency-domain representation. Now,
any kind of uncertainty principle for the representation in both basis at the same time must take into
account some distance between Ψ and Φ, since if we have Ψ = Φ, we can de�ne v as one of the columns
of Ψ and get the smallest possible cardinality (1 in both x and y).

One of the most important notions of distance between basis was de�ned by [Donoho & Huo '01],
although it appeared in a heuristic way in [Mallat & Zhang '93].

De�nition 4.1. Let Ψ and Φ be orthonormal (in the `2-norm) bases for some �nite dimensional vector
space V with dim V = n. We de�ne the mutual coherence between two bases as

µ(Ψ,Φ) = sup{|〈ψ, φ〉| : ψ ∈ Ψ, φ ∈ Φ}.

Proposition 4.2. Let Ψ and Φ be orthonormal bases for some �nite dimensional vector space V with
dim V = n. Then the mutual coherence satis�es 1√

n
≤ µ(Ψ,Φ) ≤ 1.

Proof. The upper bound is just Cauchy-Schwarz inequality. For the lower bound, note that (ΨTΦ)T (ΨTΦ)
= ΦTΨΨTΦ = Id, so ΨTΦ is also orthonormal and the sum of squares of its entries in each column is
equal to 1. If all of these entries are less than 1√

n
, the sum of their squares is less than 1, which is

impossible. To �nish, note that this lower bound is achieved by the identity matrix and the Discrete
Fourier Transform matrix, for example.

4See also the contributions of von Neumann in [Székely & Rizzo '07].
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The �rst version of an uncertainty principle in this context was proved in [Donoho & Stark '89] for
the particular case where the representation is given by the identity matrix and the DFT matrix. The
following more general version was proved in [Donoho & Huo '01].

Theorem 4.3. ([Donoho & Huo '01]): For an arbitrary pair of orthogonal bases Ψ, Φ, with mutual
coherence µ(Ψ,Φ), and for a non-zero vector v ∈ Rn with representations x and y respectively

||x||0 + ||y||0 ≥
(

1 +
1

µ(Ψ,Φ)

)
.

In fact we will prove an improved and stronger version, which resembles the original result in
[Donoho & Stark '89].

Theorem 4.4. ([Elad & Bruckstein '02]): For an arbitrary pair of orthogonal bases Ψ, Φ, with mutual
coherence µ(Ψ,Φ), and for a non-zero vector v ∈ Rn with representations x and y respectively,

||x||0 + ||y||0 ≥
2

µ(Ψ,Φ)
.

Remark 19. To see the di�erence between them, note that

2

µ(Ψ,Φ)
=

1

µ(Ψ,Φ)
+

1

µ(Ψ,Φ)
≥ 1 +

1

µ(Ψ,Φ)
,

since µ(Ψ,Φ) ≤ 1.

Remark 20. Here we present two proofs of Theorem 4.4

Proof. Assume w.l.o.g. that ||v||2 = 1. Since v = Ψx = Φy, we have

1 = ||v||22 = 〈v, v〉 = 〈Ψx,Φy〉 =

n∑
i=1

n∑
j=1

xiyj〈φi, ψj〉 ≤ µ(Ψ,Φ)

n∑
i=1

n∑
j=1

|xi||yj |

= µ(Ψ,Φ)||x||1||y||1. (4.1)

Through the arithmetic-geometric mean inequality we obtain

||x||1||y||1 ≥
1

µ(Ψ,Φ)
=⇒ ||x||1 + ||y||1 ≥

2√
µ(Ψ,Φ)

, (4.2)

which is a kind of uncertainty principle for the `1-norm. For the (P0) problem, the problem of �nding a
representation for x with the greatest `1-norm satisfying ||x||2 = 1 and have k non-zeros (i.e. ||x||0 = k)
leads to the optimization problem

max
x
||x||1 subject to ||x||22 = 1 and ||x||0 = k. (4.3)

Assume we obtain a solution to this problem of the form f(k) = f(||x||0). Similarly, suppose we have
a solution for the analogous problem for y as f(B) = f(||y||0). From Equation (4.2), we obtain

1

µ(Ψ,Φ)
≤ ||x||1||y||1 ≤ f(||x||0)f(||y||0). (4.4)

If we �nd the solution to the optimization problem (4.3), we can replace it in Equation (4.4), and this
will give us the inequality we are looking for. Assume w.l.o.g. that the k non-zeros in x are the �rst
entries and that all of these entries are strictly positive (since we are considering only absolute values in
this problem). Using Lagrange multipliers, the `0 constraint vanishes, and we obtain

L(x) =

k∑
i=1

xi + λ

(
1−

k∑
i=1

x2
i

)
.
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Setting the derivatives equal to zero

∂L(x)

∂xi
= 1− 2λxi = 0,

from which we obtain the optimal value xi = 1
2λ . Using the `2 constraint, we have xi = 1√

k
and thus

g(k) = k√
k

=
√
k, the maximal `1-norm of the vector x. Using an analogous result for y, we have

1

µ(Ψ,Φ)
≤ ||x||1||y||1 ≤ f(||x||0)f(||y||0) =

√
||x||0||y||0.

With the help of the arithmetic-geometric mean inequality, we obtain

1

µ(Ψ,Φ)
≤
√
||x||0||y||0 ≤

1

2
(||x||0 + ||y||0) (4.5)

As [Elad '10] points out, Allan Pinkus found a simpler proof of Theorem 4.4.

Proof. Since Ψ and Φ are unitary matrices, we have that ||v||2 = ||x||2 = ||y||2. Let us denote the suport
of x by I. From v = Ψx =

∑
i∈I xiψi we have

|yj |2 = |〈v, φj〉|2 =

∣∣∣∣∣∑
i∈I

xi〈ψi, φj〉
∣∣∣∣∣
2

≤ ||x||22

∣∣∣∣∣∑
i∈I

(〈ψi, φj〉)2

∣∣∣∣∣ ≤ ||v||22 |I| µ(Ψ,Φ).

Summing the above for all j ∈ J , the support of y, we obtain∑
j∈J
|yj |2 = ||v||22 ≤ ||v||22 |I| |J ||µ(Ψ,Φ) =⇒ 1

µ(Ψ,Φ)
≤
√
|I| |J | =

√
||x||0||y||0.

Remark 21. Regardless of their locations, this theorem gives us a lower bound on the number of nonzeros
and tells us that, if the mutual coherence of two basis is small, then it cannot be that representations of the
same vector in both basis are simultaneously sparse. This has a resemblance with the classical uncertainty
principle of quantum mechanics.

Example 4.5. Take Ψ = Id and Φ = DFT . Remember that the Discrete Fourier Transform is the
unitary matrix F ∈ Cn×n given by

Fik =
1√
n
e2πi(i−1)(k−1)/n, i, k ∈ [n].

We have µ(Ψ,Φ) = 1√
n
, by the de�nition of the Discrete Fourier Transform. It follows that a signal cannot

have fewer than 2
√
n nonzeros entries in both time and frequency domains. This is a tight relationship.

To see it, suppose that n = N2 is a square and consider the signal5

IIIk =

{
1 k = 1 mod

√
n,

0 otherwise.

This signal has, of course,
√
n coordinates di�erent from zero. The same happens with its Fourier

transform, as the next computation shows. By the de�nition of Fourier transform, we have

5This function, sometimes called picked fence and sometimes called chá, has this symbol and the second name as a
homage to the 26th letter of Russian alphabet.
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ÎIIj =
1

N

N2∑
`=1

III`e2πi(`−1)(j−1)/N2

=
1

N

N∑
k=1

e2πi(`−1)(j−1)/N =

{
1 j = 1 mod N,

0 otherwise.

This shows that ÎII = III and that ||III||0 = ||ÎII||0 = N =
√
n. This implies the sharpness of Theorem 4.4

with the right-hand side given by 2
√
N nonzeros if the bases are given by the identity and the DFT.

4.3 A Case Study: Two Orthogonal Basis

Our main goal in this dissertation is to understand when linear systems Ax = b have sparse solutions and
how to �nd them. The discussion in this section indicates that we can analyze a toy model �rst. This
model will have the matrix A formed by the concatenation of two orthogonal basis placed side by side, i.e.
A = [Ψ,Φ]. In this case, a connection with the uncertainty principle arises. Donoho and collaborators
found that the study of the solutions of this kind of linear system can be performed by just considering
representation in bases Ψ,Φ simultaneously. After showing this, we pass to the general case.

In this particular representation problem, an overcomplete set of vectors (a dictionary) could lead
to multiple representations of the same signal. This has some advantages. We can, for example, design
better compression schemes for the signals we are working with or �nd natural sparse representations
among multiple choices. Due to the idea that natural signals have parsimonious representation, in many
situations it is desirable to work with multiple (but sparse) representations instead of a unique but dense
representation of a signal.

Therefore, we can state the �rst consequence from the overcomplete representation idea and from
Theorem 4.4. It is the second uncertainty principle for `0-norm, which says that just one solution of our
linear system, given by a concatenation of basis, can be su�ciently sparse.

Theorem 4.6. Let x1 and x2 be two di�erent solutions of the linear system Ax = [Ψ,Φ]x = b. Then

||x1||0 + ||x2||0 ≥
2

µ(Ψ,Φ)
,

i.e. both solutions cannot be very sparse simultaneously.

Proof. Let v = x1 − x2 be the di�erence between the two solutions, then v ∈ ker(A). We now partition
v into �rst n entries and last n entries, respectively vψ and vφ. Then Av = 0 implies Ψvψ + Φvφ = 0, so

Ψvψ = Φvφ = y 6= 0, (4.6)

where y 6= 0 because Ψ and Φ are nonsingular. From (4.6) we see that vψ is the representation of v in
the basis Ψ and that vφ is the representation of v in the basis Φ. From Theorem 4.4, we have

||v||0 = ||vψ||0 + ||vφ||0 ≥
2

µ(Ψ,Φ)
.

Since v = x1 − x2 , this turns into

||x1||0 + ||x2||0 ≥ ||x1 − x2||0 = ||v||0 ≥
2

µ(Ψ,Φ)
,

where the last step is just triangular inequality for the `0-norm.

An immediate consequence of Theorem 4.6 is the following uniqueness result for linear systems.
Henceforward we will denote the coherence of a concatenation of basis by µ(A) instead of µ(Ψ,Φ).
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Corollary 4.7. Let x be one solution of Ax = [Ψ,Φ]x = b. Suppose that it satis�es

||x||0 ≤ 1/µ(A).

Then it is necessarily the sparsest one and any other solution y must have ||y||0 > 1/µ(A), that is, we
have the uniqueness of sparsest solutions of the linear system.

The importance of Corollary 4.7 relies on the fact that, while usually in non-convex optimization
problem we can only verify local optimality, for systems of the form Ax = [Ψ,Φ]x = b we have not only
uniqueness but also global optimality, provided the the solution is su�ciently sparse.

4.4 Uniqueness Analysis for the General Case

The question now is how to pass from the concatenation of basis to the general case. Many important
ideas related to it were already presented in the work [Rao & Gorodnistsky '97], including, in a hidden
form, the next de�nition. However, it was just after [Donoho & Elad ' 03] that the connection between
the `0-norm and the kernel of the matrix A appeared. This is given through the following de�nition.

De�nition 4.8. The spark6 of a general matrix A is the smallest number of columns from A that are
linearly-dependent. In other words, the spark of A is the in�mum of the set {||x||0 | Ax = 0}.

The resemblance and connection between spark and rank seems obvious. The latter measures the
maximal number of columns thar are linearly independent while the former measures the minimal number
of columns that are linearly dependent. However it is much more di�cult to compute the spark of a matrix
than its rank, as it needs a combinatorial search over all possible subsets of columns of the matrix.

Example 4.9. [Tillmann & Pfetsch '14] Consider the matrix1 1 0 0
1 1 0 1
0 0 1 1


Clearly spark(A) = 2. But it is very important to point out that generally, spark(A) ≤ k does not
guarantee the existence of a vector with k nonzeros entries in the nullspace of A. Just take k = 3 in this
example. On the other hand, a nullspace vector with support size k does not yield spark(A) = k but only
spark(A) ≤ k.

We list now some simple properties of the spark.

Proposition 4.10. For a matrix A ∈ Cm×n we have:

I. spark(A) ∈ {1, . . . , n} ∪ {∞};

II. spark(A) =∞ if and only if rank(A) = n;

III. spark(A) =1 if and only if A has a zero column;

IV. If spark(A) 6=∞, then spark(A) ≤ rank(A) + 1.

With this new de�nition, we can prove a simple but general result.

Theorem 4.11. ([Rao & Gorodnistsky '97]): If a system of linear equations Ax = b has a solution which
satis�es

||x||0 < spark(A)/2,

then this solution is necessarily the sparsest one.
6Fusion of the words sparse and rank.

60



CHAPTER 4. THE COHERENCE PROPERTY

Proof. Let y be another solution of this linear system, Ay = b. This implies A(x − y) = 0. Now, any
vector γ ∈ ker(A) must satisfy ||γ||0 ≥ spark(A), since Aγ = 0 is a linear combination of the columns of
A and by the de�nition of spark we must have at least as many columns as spark(A). By the triangular
inequality for the `0-norm

||x||0 + ||y||0 ≥ ||x− y||0 ≥ spark(A).

Since by hypothesis ||x||0 < spark(A)/2, any other solution y must have ||y||0 ≥ spark(A)/2.

Theorem 4.12. ([Donoho & Elad ' 03]): Conversely, if x, the sparsest solution of the linear system
Ay = b, is unique then

||x||0 < spark(A)/2.

Proof. Suppose, by contradiction, that spark(A) ≤ 2||x||0. This means that there exists a set of at most
2k columns that are linearly dependent, which in turn implies that there exists an h ∈ kerA such that
||h||0 ≤ 2k. Since we have this limitation for the sparsity of h, we can write h = x− x̃ with ||x||0 ≤ k and
||x̃||0 ≤ k and x 6= x̃. Then we have Ah = A(x − x̃) = 0 so that Ax = Ax̃. But this is a contradiction
with the assumption that there exists a unique sparsest solution of Ax = b.

Although we have a nice uniqueness result for the general case, the spark actually requires calculations
with all possible subsets of columns of size up to spark(A) + 1. This heuristic indicates that the its
computational complexity can make the use of spark an inadequate practical choice for �nding sparsest
solutions of linear systems. Therefore we must try to �nd another, possibly non-sharp, guarantee of
uniqueness.

However, it is important to point out that in some situations, using random matrices, it can be easy
to estimate the spark. If we consider a matrix A ∈ Rm×n with m ≤ n and entries given by i.i.d. random
variables (random matrices will be explored in Chapter 7), then with probability one, any submatrix of
size m×m has maximal rank m and hence spark(A) = m+1 with probability 1. See [Feng & Zhang '07].

The question about computational tractability of the spark was addressed by [Tillmann & Pfetsch '14].
They con�rm the heuristics mentioned above. This work considers the spark as a particular case of a
circuit and proves the NP-completeness for the decision problem of the existence of a circuit in a matrix
by reducing it to the k-Clique Problem. See Section 3.1.3 of [Garey & Johnson '79] for the k-Clique
Problem.

De�nition 4.13. For a given matrix A ∈ Rm×n, a circuit is a set C ⊆ {1, . . . , n} of column indices
such that ACx = 0 has a nonzero solution but every proper subset of C does not have this property, i.e.,
rank(AC) = |C| − 1 = rank(AC\{j}), ∀j ∈ C. The spark of A is the size of its smallest circuit.

The most important theorem from [Tillmann & Pfetsch '14] is the following.

Theorem 4.14. Given a matrix A ∈ Qm×n and a positive integer k, the problem of deciding whether
there exists a circuit of A of size at most k is NP-complete.

To end this section, just note that there exists a circuit of size at most k if and only if the spark is at
most k. This proves that computing spark(A) is NP-hard.

4.5 Coherence for General Matrices

A clever way of overcoming the di�culty in computing the spark was proposed by [Donoho & Elad ' 03].
They look at the mutual coherence, de�ned in Section 4.2 for the two-orthogonal case, in a di�erent way.
This de�nition can be seen as the maximal o�-diagonal entry (in absolute value) of the Gram matrix:

ATA =

[
Id ΨTΦ

ΦTΨ Id

]
.
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Inspired by it, we are able to de�ne the concept of coherence for a general matrix. We stress, again,
that, without loss of generality, the columns of the matrix are always implicitly understood to be `2
normalized.

De�nition 4.15. Let A ∈ Cm×N be a matrix with `2-normalized columns a1, . . . ,aN for all i ∈ [N ].
The coherence µ = µ(A) of a matrix A is de�ned as

µ(A) := max
1≤i 6=j≤N

|〈ai,aj〉|. (4.7)

Remark 22. Many authors call the quantity in the previous de�nition mutual coherence. Here we
will emphasize that coherence refers to a matrix A and mutual coherence to a pair of basis, like the
two-orthogonal case.

The coherence is easier to compute than the spark. Also, it provides a lower bound for the spark,
which, as we pointed out above, is in general hard to compute. In order to prove this statement, we �rst
state and prove a well-known theorem in Linear Algebra. This result will reappear later when discussing
the relation between the number of measurements and the ambient space dimension of the signals of
interest.

Theorem 4.16. ([Gershgorin '31]): Let λ be an eigenvalue of a matrix A ∈ Cn×n. There exists an index
j ∈ [n] such that

|λ−Aj,j | ≤
∑

l∈[n]\{j}

|Aj,l|.

Proof. Let v ∈ Cn\{0} be an eigenvector associated with λ, and let j ∈ [n] such that |vj | is maximal, i.e.,
|vj | = ||v||∞. Then

∑
l∈[n]Aj,lvl = λvj , and separating the jth coordinate, we have

∑
l∈[n]\{j}Aj,lvl =

λvj −Aj,jvj . By the triangle inequality

|λ−Aj,j ||vj | ≤
∑

l∈[n]\{j}

|Aj,l||vl| ≤ ||v||∞
∑

l∈[n]\{j}

|Aj,l| = |vj |
∑

l∈[n]\{j}

|Aj,l|.

Dividing by |vj | > 0 yields the desired statement.

As a result of Theorem 4.16, every eigenvalue of a matrix lies within at least one of the Gershgorin
discs, which are the discs centered at one of the diagonal entries with radius

∑
l∈[n]\{j} |Aj,l|. It has many

applications, such as matrix preconditioning. When we try to solve Ax = b for A with a large condition
number, we instead precondition and solve PAx = Pb where P ≈ A−1. Since PA ≈ Id, the eigenvalues
of PA should all be close to 1 and we can use Theorem 4.16 to estimate how good is our choice of P .
For more details on Gershgorin's Theorem and its applications, see [Varga '04]. Now we can state the
relation between spark(A) and the coherence.

Lemma 4.17. (Theorem 5 of [Donoho & Elad ' 03]): For any matrix A ∈ Rn×m,

spark(A) ≥ 1 +
1

µ(A)
.

Proof. The Spark and the coherence of a matrix do not change when we `2-normalize its columns, therefore
without loss of generality, we will consider a column normalized matrix. Let spark(A) = k be the smallest
number of dependent columns of A and let K be the set of such columns. Consider the matrix AK given
by the restriction of A to its columns in K. The Gram matrix G = ATKAK is singular, since the original
Ak is singular too. Therefore, the spectrum of G contains 0. Applying Theorem 4.16 to the eigenvalue
λ = 0, we obtain

|λ− gii| = |1− 0| ≤
∑
i6=j

|gij | =
∑
i 6=j

〈ai, aj〉 ≤ (k − 1)µ(A) = (spark(A)− 1)µ(A).
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Now we have another uniqueness corollary, this time based on the coherence.

Theorem 4.18. ([Donoho & Huo '01]): If a system of linear equations Ax = b has a solution which
satis�es

||x||0 <
1

2

(
1 +

1

µ(A)

)
,

this solution is necessarily the sparsest one.

The di�erence between Theorem 4.11 and Theorem 4.18 is that while the �rst one is sharp, the second
one just gives a lower bound. Coherence can never be smaller than 1/

√
n and therefore the cardinality

bound in the second case in never larger than
√
n/2. However, the spark can be as large as n, so the �rst

theorem gives a bound for the cardinality as large as n/2.
Theorem 4.18 provides a su�cient condition for linear systems to have a unique solution. Albeit it is

not sharp, it is easier to be estimated. See Section 2.3 of [Elad '10]. Now, it is interesting to explore this
property and �nd out what it can tell us about the solution of linear systems.

4.6 Properties and Generalizations of Coherence

The de�nition of coherence is a way to represent the dependence between columns of the matrix A.
It was generalized in many di�erent ways in order to characterize sharper degrees of dependence. As
[Kutyniok '12] pointed out, it is interesting to note that di�erent variations of coherence have appeared
in the literature, for example structured p-Babel function [Borup, Gribonval & Nielsen '08], Babel func-
tion [Donoho & Elad ' 03], cluster coherence [Donoho & Kutyniok '13], cumulative coherence function
[Tropp '04], and fusion coherence [Boufounos, Kutyniok & Rauhut '11].

Following Tropp, we will introduce a generalization of coherence which he called cumulative coherence
function. However, as in [Rauhut & Foucart '13], we call it `1-coherence function.

De�nition 4.19. Let A ∈ Cm×N be a matrix with `2-normalized columns a1, . . . ,aN . The `1-coherence
function µ1 of a matrix A is de�ned for s ∈ [N − 1] by

µ1(s) := max
i∈[N ]

max

∑
j∈S
|〈ai,aj〉|, S ⊂ [N ], card(S) = s, i /∈ S

 . (4.8)

Remark 23. Note that for s = 1, the `1-coherence function is the coherence of a matrix.

Remark 24. The `1-coherence function can be generalized in a straightforward way for p > 0, to the
`p-coherence function, that is

µp(s) := max
i∈[N ]

max


∑
j∈S
|〈ai,aj〉|p

1/p

, S ⊂ [N ], card(S) = s, i /∈ S

 .

Now we will state the �rst properties that follow from the de�nition of µ(A).

Proposition 4.20. For 1 ≤ s ≤ N − 1 we have

µ ≤ µ1(s) ≤ sµ. (4.9)

More generally, for 1 ≤ s, t ≤ N − 1 with s+ t ≤ N − 1, we have

max{µ1(s), µ1(t)} ≤ µ1(s+ t) ≤ µ1(s) + µ1(t). (4.10)
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A very important property of matrices with small coherence is that column submatrices of moderate
size are well conditioned. This is the content of Theorem 4.21, which is the reason behind the motto
�matrices with small coherence are great for sensing�. Let us recall that AS denotes the matrix formed
by the columns of A ∈ Cm×N indexed by a subset S of [N ].

Theorem 4.21. Let A ∈ Cm×N be a matrix with `2-normalized columns and let s ∈ [N ]. For all s-sparse
vectors x ∈ CN

(1− µ1(s− 1))||x||22 ≤ ||Ax||22 ≤ (1 + µ1(s− 1))||x||22,
or equivalently, for each set S ⊂ [N ] with card(S) ≤ s, the eigenvalues of the matrix A∗SAS lie in the
interval [1− µ1(s− 1), 1 + µ1(s− 1)]. In particular, if µ1(s− 1) < 1, then A∗SAS is invertible.

Proof. Note that for a �xed set S ⊂ [N ] with card(S) ≤ s, the matrix A∗SAS is positive semide�nite,
so it has an orthonormal basis of eigenvectors associated with real positive eigenvalues. Note also that
Ax = ASxS for any x ∈ Cn supported on S. Due to normalization, i.e. ||aj ||2 = 1 for all j ∈ [N ],
the diagonal entries of A∗A are all equal to one. By Gershgorin's theorem, the eigenvalues of A∗A are
contained in the union of the disks centered at 1 with radii

rj =
∑

l∈S,l 6=j

|(A∗A)j,l| =
∑

l∈S,l 6=j

|〈al, aj〉| ≤ µ1(s− 1) j ∈ S.

Since the eigenvalues are real, they must lie in [1 − µ1(s − 1), 1 + µ1(s − 1)]. This is equivalent to the
�rst inequality in the Theorem's statement, which follows from the fact that the Rayleigh-Ritz quotient

RA∗A(x) =
〈x,A∗Ax〉
〈x, x〉

attain its maximum and minimum λmax and λmin at their associated eigenvectors, respectively x = vmax

and y = vmin.

Corollary 4.22. Given a matrix A ∈ Cm×N with `2-normalized columns and an integer s ≥ 1, if

µ1(s) + µ1(s− 1) < 1

then, for each set S ⊂ [N ] with card(S) ≤ 2s, the matrix A∗SAS is invertible and the matrix AS is
injective. In particular, the conclusion holds if

µ <
1

2s− 1
. (4.11)

Proof. Using Equation (4.10), the condition µ1(s) + µ1(s− 1) < 1 implies that µ1(2s− 1) < 1. For a set
S ⊂ [N ] with card(S) ≤ 2s, from the previous Theorem we deduce that the smallest eigenvalue of the
matrix A∗A satis�es λmin ≥ 1− µ1(2s− 1) > 0 which shows that A∗A is invertible. To prove that A is
injective, observe that ASz = 0 leads to A∗Az = 0 and so z = 0. Now, the second statement follows from
(4.9), because µ1(s) + µ1(s− 1) ≤ sµ+ (s− 1)µ = (2s− 1)µ < 1 if µ < 1/(2s− 1).

Corollary 4.22 is a reformulation of Theorem 4.18. This theorem tells us what kind of vectors we
can retrieve from the solution of the linear system, that is, with what degree of sparsity we can deal
with. Clearly, with any reasonable method, we expect to recover not only 1-sparse or 2-sparse vectors
but maybe 10000-sparse vectors. From Equation 4.11, we have that the coherence must be as small as
possible. Therefore it is important to know what properties a matrix with small coherence has or, at
least, how to construct them.
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4.7 Constructing Matrices with Small Coherence

Matrices with small coherence are important because they are well behaved, in the sense that A∗SAS is
invertible. Now we address this question of how to construct this type of matrices A ∈ Km×N with
m� N . We �rst note that if m = N , µ(A) = 0 for an orthogonal matrix A. In the m� N framework,
we expect to have some lower bound. This is the content of the following theorem.

Theorem 4.23. ([Welch '74]): The coherence of a matrix A ∈ Km×N with `2-normalized colums satis�es

µ ≥
√

N −m
m(N − 1)

. (4.12)

Equality holds if and only if the columns a1, . . . ,aN of the matrix A form an equiangular tight frame.

Remark 25. Frames will be introduced in the next section. We postpone until then to understand what
it means the equality in Theorem 4.23 to hold. Anyway, we exhibit the proof here.

Proof. Consider the Gram matrix G = A∗A ∈ KN×N , with entries given by

Gi,j = 〈ai,aj〉 = 〈aj ,ai〉, i, j ∈ [N ]

and the matrix H = AA∗ ∈ KN×N . As the columns (a1, . . . ,aN ) are `2-normalized, we have

tr(G) =

N∑
i=1

||ai||22 = N. (4.13)

From the Cauchy-Schwarz inequality we obtain

tr(H) = 〈H, Idm〉F ≤ ||H||F ||Idm||F =
√
m
√
tr(HH∗). (4.14)

Now observe that

tr(HH∗) = tr(A∗AA∗A) = tr(GG∗) =

N∑
i,j=1

|〈ai,aj〉|2 =

N∑
i=1

||ai||22 +

N∑
i,j=1,i6=j

|〈ai,aj〉|2 = N +

N∑
i,j=1,i6=j

|〈ai,aj〉|2.
(4.15)

Combining the three equations above with the fact that tr(H) = tr(G), yields

N2 ≤ m

N +

N∑
i,j=1,i6=j

|〈ai,aj〉|2
 . (4.16)

Since

|〈ai,aj〉| ≤ µ for all i, j ∈ [N ], i 6= j (4.17)

we obtain N2 ≤ m(N + (N2 −N)µ2) which leads to µ ≥
√

N−m
m(N−1) .

Equality holds in Equation (4.12) exactly when it holds in Equations (4.14) and (4.17). Equality in
(4.14) implies that H = λIdm for some nonnegative constant λ. In the next section we will see that this
is exactly the case when the system (a1, . . . ,aN ) is a tight frame and that equality in (4.17) means that
this system is equiangular.

We can extend the Welch bound to the `1-coherence function for small values of its argument.
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Theorem 4.24. The `1-coherence of a matrix A ∈ Km×N with `2-normalized columns satis�es

µ1(s) ≥ s
√

N −m
m(N − 1)

whenever s <
√
N − 1. (4.18)

Equality holds if and only if the colums a1, . . . ,aN of the matrix A form an equiangular tight frame.

In order to prove this theorem, we will need a lemma. The reader may note the similarity in the proof
of this lemma with the proof of Theorem 1.7 via optimization techniques.

Lemma 4.25. For k <
√
n, if the �nite sequence (α1, α2, . . . , αn) satis�es

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 and α2
1 + α2

2 + · · ·+ α2
n ≥

n

k2

then
α1 + α2 + · · ·+ αk ≥ 1

with equality if and only if α1 = α2 = · · · = αn = 1/k.

Proof. The �rst thing to note is that the lemma is equivalent to the statement{
α1 ≥ α2 ≥ . . . αn ≥ 0
α1 + α2 + . . . αk ≤ 1

which implies α2
1 +α2

2 + . . . α2
n ≤ n

k2 , with equality if and only if α1 = α2 = · · · = αn = 1
k . To prove this,

we can look at the problem of maximizing the convex function f(α1, α2, . . . , αn) := α2
1 +α2

2 + . . . α2
n over

the convex polygon

C := {(α1, . . . , αn) ∈ Rn : α1 ≥ α2 ≥ . . . αn ≥ 0 and α1 + α2 + . . . αk ≤ 1}.
As the function f is convex and C is a convex combination of its vertices, it follows that the the maximum
is attained at a vertex of C (see Theorem B.16 from [Rauhut & Foucart '13] or Theorem 2.65 from
[Ruszczynski]). The vertices of C are obtained as intersections of n hyperplanes arising when we turn n
of the n+ 1 inequality constrains into equalities. Thus, these are the possibilities we have:

1. If α1 = α2 = · · · = αn = 0, then f(α1, α2, . . . , αn) = 0,

2. If α1 + α2 + · · · + αk = 1 and α1 = · · · = αl > αl+1 = · · · = αn = 0 for 1 ≤ l ≤ k then
α1 = α2 = · · · = αl = 1/l, and consequently f(α1, α2, . . . , αn) = 1/l,

3. If α1 + α2 + · · · + αk = 1 and α1 = · · · = αl > αl+1 = · · · = αn = 0 for k ≤ l ≤ n then
α1 = α2 = · · · = αl = 1/k, and consequently f(α1, α2, . . . , αn) = l/k2.

Given that k <
√
n, it follows that

max
(α1,...,αn)∈C

f(α1, α2, . . . , αn) = max

{
max

1≤l≤k

1

l
, max
k≤l≤n

l

k2

}
= max

{
1,
n

k2

}
=

n

k2

with equality only in the case l = n where α1 = α2 = · · · = αn = 1/k

Proof. (of Theorem 4.24) From equation (4.16), we have

N∑
i,j=1,i6=j

|〈ai,aj〉|2 ≥
N2

m
−N =

N(N −m)

m
,

which yields
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max
i∈[N ]

N∑
j=1,i6=j

|〈ai,aj〉|2 ≥
1

N

N∑
i,j=1,i6=j

|〈ai,aj〉|2 ≥
N −m
m

.

Let i∗ ∈ [N ] be the index at which the maximum is achieved. If we reorder our sequence {|〈a∗i ,aj〉|}Nj=1,j 6=i∗
in such way that |〈a∗i ,a1〉| ≥ |〈a∗i ,a2〉| ≥ · · · ≥ |〈a∗i ,aN−1〉| ≥ 0, we have

|〈a∗i ,a1〉|2 + |〈a∗i ,a2〉|2 + · · ·+ |〈a∗i ,aN−1〉|2 ≥
N −m
m

.

Lemma 4.25 with n = N−1, k = s and αl := (
√
m(N − 1)/(N −m)/s)|〈a∗i ,al〉| leads to α1+· · ·+αs ≥ 1.

It then follows that

µ1(s) ≥ |〈a∗i ,a1〉|+ |〈a∗i ,a2〉|+ · · ·+ |〈a∗i ,as〉| ≥ s
√

N −m
m(N − 1)

.

Let us assume now that equality holds in (4.18), which implies that all previous inequalities are in
fact equalities. As in the proof of the Welch bound for coherence, equality in (4.16) implies that the
system (a1, . . . ,aN ) is a tight frame. Besides that, the case of equality in Lemma 4.25 implies that
|〈a∗i ,aj〉| = (

√
(N − 1)/m(N −m)) for all j ∈ [N ], j 6= i∗. Since the index i∗ can be arbitrarily chosen

from [N ], the system (a1, . . . ,aN ) is also equiangular. Conversely, the proof that equiangular tight frames
yield equality in (4.18) follows easily from Theorem 4.23 and (4.9).

The content of Theorem 4.23 tells us that �equality holds if and only if the columns a1, . . . ,aN of the
matrix A form an equiangular tight frame.� Then, in order to achieve the lower bound for coherence and
construct good sensing matrices, we need to understand what is an equiangular tight frame.

4.8 A Glimpse of Frame Theory

4.8.1 History and Motivation

Along this dissertation we emphasized the important question of what are the building blocks of our
signals of interest and how to represent them in a sparse way. In this context the concept of basis can
be a bit restrictive because of the requirements of linear independence and uniqueness of coe�cients in
the decomposition of a vector. If we relax some of these conditions we can introduce the idea of frames,
which are intuitively �basis with extra elements�.

Fourier Transform is a major tool in Analysis, with connections to many other areas of Mathematics.
However, it has some shortcomings when used in signal analysis. For example, from Fourier Analysis
alone we cannot know the moment of emission and duration of a signal, because this information is hidden
in the phase. Consider for example an orchestra with a very high-pitch piccolo and a low-pitched tuba.
The Fourier Transform gives us that the piccolo and the tuba are present in the music but it cannot give
us the information about when one of the instruments starts to play or the other one ceases.

The situation about this kind of analysis started changing in 1946, when Dennis Gabor formulated
a fundamental approach to signal decomposition in terms of some elementary signals, introducing the
concept of localization in the frequency space that quickly became a paradigm for spectral analysis and
is, nowadays, central for many areas such as image and audio processing. See [Cohen '94].

Frames were introduced in 1952 by [Du�n & Schae�er '52], who used Gabor's ideas in the study
of nonharmonic Fourier series. In their work, they used highly overcomplete families of exponential
functions (in their terminology, a �Hilbert space frame�) and found a very e�cient way to compute the
coe�cients in these families. Their work is considered seminal in the �eld of Time-Frequency Analysis. See
[Gröchenig '01] for a book with mathematical orientation and [Cohen '94] for a book with a more applied
approach. Early on, their ideas did not achieve general interest outside of nonharmonic Fourier series

67



4.8. A GLIMPSE OF FRAME THEORY

studies (one might look at [Young '80]). After the initial work of Gabor, Frame Theory became popular
in the area of Signal Processing just in 1985, due to the work [Daubechies, Grossman & Meyer '85].

The importance of Frames relies on the fact that they provide a great approach to deal with redundant,
yet stable, representations of data dealing with noise, erasures and quantization e�ects. Frames still have
the property that they can be constructed to �t a particular problem in a way not possible by a set
of linearly independent vectors, so today frames provide an extensive framework for the analysis and
decomposition accompanied by various reconstruction procedures of signals. Besides the great scope of
applications that go beyond signal processing, data compression and sampling theory we can also cite
optics, �lterbanks, signal detection just to name a few subjects. Nowadays, it is also a highly proli�c
area for mathematicians, with connections with Besov Spaces, Geometry of Banach Spaces and Random
Matrices.

In this Section we follow [Casazza '00] closely, which is a great introduction to the history and the
theory of frames. Other good references on this area are [Christensen '08] and [Casazza & Kutyniok '13].

4.8.2 An Example

The following example, which gives a clear picture of the di�erences between basis and frames, is taken
from [Han et al. '07]. Consider two �nite sequences of vectors in the plane R2:

A = {(1, 0), (0, 1)} and B =

{√
2

3
(1, 0),

√
2

3

(
− 1

2
,

√
3

2

)
,

√
2

3

(
− 1

2
,−
√

3

2

)}
.

Let us compare the two sequences:

1. Both A and B are spanning sets for R2.

2. The vectors in A are linearly independent, so the coe�cients in the linear expansion are unique,
while the vectors in B are not linearly independent, so a linear expansion is not unique;

3. Vectors in A are normalized. Vectors in B all have length
√

2
3 ;

4. Vectors in A are orthogonal. Vectors in B are not orthogonal;

5. Both A and B satisfy Parseval's identity for orthonormal bases:

||x||2 =

2∑
i=1

c2i =

3∑
i=1

d2
i

where ci and di are the coe�cients in the expansion in the sequence A and B respectively;

6. The coe�cients for a linear expansion of some vector x in the sequence A can be computed easily
using the dot product, as A is an orthonormal basis. One way to write x as a linear combination
of the vectors in B is to use the coe�cients formed by taking dot products also, so even without
being orthogonal or linearly independent, the set B maintains one of the extremely useful features
of an orthonormal basis.

We will later see that both sequences A and B are examples of a particular type of frame, called a
Parseval frame. Sequence B has many of the properties of an orthonormal basis. This is exactly the
motivation behind the study of frames.

In some situations, the properties of uniqueness of coe�cients and orthogonality of vectors are not
necessary. If you are sending your side of a phone conversation or a photo, what matters is quickly
computing a working set of expansion coe�cients, not whether those coe�cients are unique. What if one
of the coe�cients representing a vector gets lost in transmission? That piece of information cannot be
reconstructed. It is lost. Perhaps we would like our system to have some redundancy, such that if one
piece gets lost, the information can be pieced together from what does get through.
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4.8.3 De�nition and Basic Facts

De�nition 4.26. Let V be a vector space. A countable family of elements {ak}k∈I in V is a frame for
V if there exist constants A,B > 0 such that

A||x||2 ≤
∑
k∈I

|〈x, ak〉|2 ≤ B||x||2 ∀x ∈ V.

The numbers A, B are called frame bounds. The optimal lower frame bound is the supremum over all
lower frame bounds, and the optimal upper frame bound is the in�mum over all upper frame bounds.
When A = B we will say that the frame is a tight frame. When A = B = 1, we call it a Parseval frame.
We also say that we have a Uniform Frame when all vectors in it have equal norm.

A practical way to characterize frames in a equivalent manner is given by the following proposition.

Proposition 4.27. For a system of vectors a1, . . . , aN in Km that is a tight frame, the following three
statements are equivalent:

i.) ||x||22 = A
∑N
j=1 |〈x, aj〉|2, ∀x ∈ Km;

ii.) x = A
∑N
j=1〈x, aj〉aj , ∀x ∈ Km;

iii.) ΦΦ∗ = 1
A Idm where Φ is the matrix with columns a1, . . . , aN .

Let {ak}Nk=1 be a sequence in V . By Cauchy-Schwarz' inequality we have that

N∑
k=1

|〈x, ak〉|2 ≤
N∑
k=1

||ak||2||x||2 ∀x ∈ V,

so choosing B =
∑N
k=1 ||ak||2 we prove that this sequence is a frame. The quest is to �nd a smaller upper

bound than this one. Now, in order to �nd lower bounds, it is necessary that span{ak}Nk=1 = V . This
condition is also su�cient.

Proposition 4.28. Let F = {ak}Nk=1 be a sequence in V . Then F is a frame for V if and only if
spanF = V .

Proof. We can assume that not all ak are zero. We know that B =
∑N
k=1 ||ak||2 is an upper bound. Now

consider the continuos mapping

φ : V → R, φ(x) =

N∑
k=1

|〈x, ak〉|2.

The unit ball in V is compact, so we can �nd y ∈ V with ||y|| = 1 such that

A :=

N∑
k=1

|〈y, ak〉|2 = inf

{
N∑
k=1

|〈x, ak〉|2 : x ∈ V, ||x|| = 1

}
.

Clearly A > 0, because if A = 0, y would be orthogonal to all ak, thus contradicting the fact that
V = span{ak}Nk=1. Now given x ∈ V with x 6= 0, we have

N∑
k=1

|〈x, ak〉|2 =

N∑
k=1

|〈 x

||x|| , ak〉|
2||x||2 ≥ A||x||2,

therefore F is a frame. We will now prove the converse. Assume that {ak}Nk=1 does not span V. Then,
there exists a vector x in the orthogonal complement W⊥ of the subspace W = span{ak}Nk=1. Since x
is orthogonal to each ai, the sum

∑k
i=1 |〈x, ai〉|2 = 0, the lower frame bound would not exist and this

collection would not be a frame.
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Remark 26. From Proposition 4.28, we see that a frame might contain more elements than needed to
be a basis. In particular, if {ak}Nk=1 is a frame for V and {gk}Nk=1 is an arbitrary �nite collection of
vectors in V , then {ak}Nk=1 ∪ {gk}Nk=1 is also a frame for V . A frame which is not a basis is said to be
overcomplete or redundant.

We want to use frames to reconstruct vectors with redundance. Proposition 4.27 tells us how to do
this with tight frames. For general frames, we need the concept of dual frames, given by the following
proposition:

Proposition 4.29. Let {ak}Nk=1 be a frame for V . Then there exists a frame {bk}Nk=1 such that every
x ∈ V can be reconstructed through the formula

x =

k∑
i=1

〈x, bi〉ai =

k∑
i=1

〈x, ai〉bi.

Remark 27. Such frame {bk}Nk=1 is called a dual frame.

Proof. Let T : V → Ck be de�ned by

Tx = (〈x, a1〉, 〈x, a2〉, . . . , 〈x, an〉).

Note that T is linear and also injective, because Tx = 0 implies 〈x, ai〉 = 0 ∀i ∈ {1, . . . , k}. Since
{ak}Nk=1 spans V , we conclude that x = 0. We also conclude that the operator given by S = T ∗T : V → V
is invertible. The operator S is called the frame operator for {ak}Nk=1. Now, for {ei}ki=1 the canonical
basis of Ck, we have Tx =

∑k
i=1〈x, ai〉ei, and for each x ∈ V ,

〈x, T ∗ej〉 = 〈Tx, ej〉 = 〈
k∑
i=1

〈x, ai〉ei, ej〉 = 〈x, aj〉,

thus T ∗ej = aj . This implies, for every x ∈ V

Sx = T ∗Tx = T ∗

(
k∑
i=1

〈x, ai〉ei
)

=

k∑
i=1

〈x, ai〉T ∗ei =

k∑
i=1

〈x, ai〉ai.

De�ne bi = S−1ai for i = 1, . . . k. Then, we have

x = S−1Sx = S−1
k∑
i=1

〈x, ai〉ai =

k∑
i=1

〈x, ai〉S−1ai =

k∑
i=1

〈x, ai〉bi.

Now note that S (and S−1) are self-adjoint, as

x = SS−1x =

k∑
i=1

〈S−1x, ai〉ai =

k∑
i=1

〈x, S−1ai〉ai =

k∑
i=1

〈x, bi〉ai.

It remains to be proved that {bk}Nk=1 is a frame. Let A and B be the lower and upper frame bounds for
the frame {ak}Nk=1. Then

A

||S||2 ||x||
2 ≤ A||S−1x||2 ≤

k∑
i=1

|〈S−1x, ai〉|2 =

k∑
i=1

|〈x, S−1ai〉|2 ≤ B||S−1x||2 ≤ B||S−1||2||x||2,

which implies

Ã||x||2 ≤
k∑
i=1

|〈x, bi〉|2 ≤ B̃||x||2
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with

Ã =
A

||S||2 and B̃ = B||S−1||2.

Frames plays a fundamental role in the reconstruction of quantized vectors. In this context, the
concept of Sobolev frames arises. See Chapter 8 of [Casazza & Kutyniok '13] and references therein. Due
to the Welch Bound, a set of vectors having the same angle between any two of them is very important.
This motivates the next de�nition.

De�nition 4.30. A system of `2-normalized vectors a1, . . . ,aN in Km×N is called equiangular if there
is a constant c ≥ 0 such that

|〈ai,aj〉| = c ∀i, j ∈ [N ], i 6= j.

Example 4.31. The following examples are important in order to understand properties of equiangular
tight frames.

1. An orthonormal basis is an equiangular tight frame for N = m;

2. A regular simplex is an equiangular tight frame for N = m + 1. For a simple construction of this
example, take N−1 rows from an N×N Discrete Fourier Transform matrix. The resulting columns,
after being scaled to have unit norm, form an equiangular tight frame;

3. When m = 1, any unit norm frame amounts to a list of scalars of unit modulus, and such frames
are necessarily equiangular and tight.

Remark 28. It is important to cite that in the literature equiangular tight frames also appear under
the names Maximum Welch-Bound-Equality Sequences, optimal Grassmannian frames and two-uniform
frames.

4.8.4 Constraints for Equiangular Tight Frames

In the context of Compressive Sensing, we have the trade o� between small coherence and the discrepancy
between the number of rows and the number of columns, since we expect that, form×N matrices, N � m.
This is the same as saying that we expect to have much fewer measurements than the ambient space.
Therefore it is impossible to meet the Welch's bound. Indeed, the next result shows that an equiangular
set cannot be arbitrarily large.

Theorem 4.32. The cardinality N of an equiangular set of `2-normalized vectors a1, . . . ,aN in Km
satis�es

N ≤ m(m+ 1)

2
when K = R,

N ≤ m2 when K = C.

If there is equality, then this set of vectors is also a tight frame.

Remark 29. Is important to note that it is a one way theorem, i.e. if there is equality, then we have
a equiangular tight frame, but this is not a necessary condition. We can have equiangular tight frames
without having N = m(m+ 1)/2 or N = m2. This will be very signi�cant in the subsequent discussion.

To prove this Theorem, we need the following Lemma.
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Lemma 4.33. For any z ∈ C, the n× n matrix
1 z z . . . z
z 1 z . . . z
...

. . .
. . .

. . .
...

z . . . z 1 z
z . . . z z 1


has 1 + (n− 1)z as a single eigenvalue and 1− z as a multiple eigenvalue of multiplicity n− 1.

Proof. Sum the elements in each line and note that the vector (1, . . . , 1) is an eigenvector for the eigenvalue
1 + (n − 1)z. Now, subtracting from the �rst column each one of the others, we see that the (n − 1)
linearly independent vectors (1,−1, 0, . . . , 0), (1, 0,−1, 0, . . . , 0), . . . , (1, 0, . . . , 0,−1) are eigenvectors for
the eigenvalue 1− z.

Proof. (of Theorem 4.32): The main idea in this proof is to associate, to every ai in the equiangular
set, a projection operator from Km to Km, which will be symmetric, in the real case, or hermitian, in
the complex case. This association is a linear map, which preserves the inner product when using the
Frobenius inner product in the space of linear maps.
As a consequence of Lemma 4.33, the Gram matrix of these operators is invertible, hence they are linearly
independent. In the real case, symmetric operators form a subspace of dimension m(m + 1)/2, and the
result follows. In the complex case, hermitian operators do not form a subspace and the minimal subspace
that contais them is the whole space, which has dimension m2. Therefore, in the complex case we need
to consider the space of all operators on Cm.
Let us de�ne the orthogonal projectors P1, . . . , PN onto the lines spanned by a1, . . . , aN . These operators
are:

Pi : Km → Km, Pi(v) = 〈v, ai〉ai,
which verify P 2

i = Pi = P ∗i . Endowing B (Km,Km), the space of operators in Km, with the Frobenius
inner product

〈P,Q〉F = tr(PQ∗),

and using that the vectors ai are equiangular, we obtain that

〈Pi, Pi〉F = tr(PiP ∗i ) = tr(Pi) =

m∑
k=1

〈Pi(ek), ek〉 =

m∑
k=1

〈ek, ai〉〈ai, ek〉 =

m∑
k=1

|〈ai, ek〉|2 = ||ai||2 = 1,

〈Pi, Pj〉F = tr(PiP ∗j ) = tr(PiPj) =

m∑
k=1

〈PiPj(ek), ek〉 =

m∑
k=1

〈Pj(ek), Pi(ek)〉 =

m∑
k=1

〈ek, aj〉〈ek, ai〉〈aj , ai〉 =

〈ai, aj〉
〈

m∑
k=1

〈ai, ek〉ek, aj
〉

= 〈ai, aj〉〈ai, aj〉 = |〈ai, aj〉|2 = c2,

where we used the canonical basis {ei} in Km. The Gram matrix for these projectors is
1 c2 c2 . . . c2

c2 1 c2 . . . c2

...
. . .

. . .
. . .

...
c2 . . . c2 1 c2

c2 . . . c2 c2 1

 ,
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so as 0 ≤ c < 1, Lemma 4.33 implies that this Gram matrix is invertible (as all of its eigenvalues are
positive) and this means that the system P1, . . . , PN is linearly independent. Thus the theorem follows.
Now assume that equality holds. If we concatenate the identity operator to this system, this new one
Idm, P1, . . . , PN , will be linearly dependent, then the determinant of its Gram matrix vanishes. This
translates into ∣∣∣∣∣∣∣∣∣∣∣∣∣

m 1 1 1 . . . 1
1 1 c2 c2 . . . c2

1 c2 1 c2 . . . c2

...
...

. . .
. . .

. . .
...

1 c2 . . . c2 1 c2

1 c2 . . . c2 c2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

After dividing the �rst row by m and substracting from all the other rows and then expanding the
determinant with respect to the �rst column, we obtain an N − 1×N − 1 matrix such that∣∣∣∣∣∣∣∣∣∣∣

1−m−1 c2 −m−1 c2 −m−1 . . . c2 −m−1

c2 −m−1 1−m−1 c2 −m−1 . . . c2 −m−1

...
. . .

. . .
. . .

...
c2 −m−1 . . . c2 −m−1 1−m−1 c2 −m−1

c2 −m−1 . . . c2 −m−1 c2 −m−1 1−m−1

∣∣∣∣∣∣∣∣∣∣∣
= 0

Multiplying each of the entries by m
m−1 , which does not alter the determinant, since it is zero, we obtain∣∣∣∣∣∣∣∣∣∣∣

1 z z . . . z
z 1 z . . . z
...

. . .
. . .

. . .
...

z . . . z 1 z
z . . . z z 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 where z :=

mc2 − 1

m− 1

As the determinant is zero, at least one the eigenvalues of this matrix must be zero. Since 1 − z =
m(1− c2)(m− 1) 6= 0, Lemma 4.33 implies that 1 + (N − 1)z = 0, which leads to

c2 =
N −m
m(N − 1)

.

Then, the `2-normalized system a1, . . . , aN meets the Welch bound and therefore it is an equiangular
tight frame.

Now we address the question of whether this upper bound is sharp. The answer is yes, as seen from
the four examples given below (two in the real case and two in the complex case).

Example 4.34. (m = 3 and m(m+ 1)/2 = 6)
Let c = (

√
5− 1)/2. The following vectors form a system of 6 equiangular vectors in R3:

(1, c, 0), (0, 1, c), (c, 0, 1), (1,−c, 0), (0, 1,−c), (−c, 0, 1).

Example 4.35. (m = 7 and m(m+ 1)/2 = 28)
Let the vectors obtained by unit cyclic shifts of the following four vectors:

(1, 1, 0, 1, 0, 0, 0), (1,−1, 0, 1, 0, 0, 0), (1, 1, 0,−1, 0, 0, 0), (1,−1, 0,−1, 0, 0, 0).

They form an equiangular system of 28 vectors in R7.
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Example 4.36. (m = 2 and m2 = 4)
Let c = e

iπ
4

√
2−
√

3. The following vectors form a system of 4 equiangular vectors in C2:

(1, c), (c, 1), (1,−c), (−c, 1).

Example 4.37. (m = 3 and m2 = 9)
Let c = e

i2π
3

√
2−
√

3. The following vectors form a system of 9 equiangular vectors in C3:

(−2, 1, 1), (1,−2, 1), (1, 1,−2), (−2, c, c2), (c2,−2, c), (c, c2,−2), (−2, c2, c), (c,−2, c2), (c2, c,−2).

Remark 30. From now on we use the abbreviations RETF(m,N) for an equiangular tight frame with
N vectors in Rm and CETF(m,N), for the analogous frame in Cm.

The question of whether there exist equiangular frames in every dimension or if there is some kind of
rigidity property about them, has been addressed in many articles. Zauner [Zauner '99] made important
numerical studies in this area. More information about these computational studies can be found at his
website www.gerhardzauner.at/sicfiducialsd.html. [Holmes & Paulsen ' 04] and [Sustik et al. '07]
are also good references on this topic. In particular, the following Theorem is important.

Theorem 4.38. (Theorem A of [Sustik et al. '07]): Suppose N 6= 2m and m > 3. The existence of a
RETF(m,N) implies that √

m(N − 1)

N −m and

√
(N −m)(N − 1)

m
,

are both odd integers. In particular, N is an even number and if N = m(m+1)/2, then m+2 is necessarily
the square of an odd integer. Furthermore, if there exists an RETF(m,2m), then m is an odd number
and 2m− 1 is the sum of two squares.

The proof of this theorem relies on �eld theory arguments as in Theorem A of [Sustik et al. '07] and
on strongly regular graphs arguments as in Corollary 5.8 of [Waldron '09]. We will prove here, following
[Rauhut & Foucart '13], that �if N = m(m+ 1)/2, then m+2 is necessarily the square of an odd integer"
and the obvious consequence that �m is an odd number". The assertion �2m−1 is the sum of two squares"
follows from a theorem of Euler which states that a natural number is the sum of two squares if and only
if each prime factor having the form 4k + 3 occurs in the prime factorization with an even power. More
details can be found in [Sustik et al. '07].

Proof. Let a1, . . . , aN be a system with N = m(m + 1)/2 equiangular `2-normalized vectors. From
Theorem 4.23 we know that this system is a tight frame and by the equivalences in Proposition 4.27, the
matrix A with columns a1, . . . , aN satis�es AA∗ = λIdm for some λ > 0. As the matrix A∗A has the
same nonzero eigenvalues as AA∗, then zero is an eigenvalue of multiplicity N −m for A∗A. Moreover,
since A∗A is the Gram matrix of the vectors a1, . . . , aN , its diagonal entries are all equal to one, while
its o�-diagonal entries have the same absolute value c. Then B = 1

c (A∗A− IdN ) is

B =


0 b1,2 . . . b1,N

b2,1 0
. . .

...
...

. . .
. . . bN−1,N

bN,1 . . . bN,N−1 0

 ,

where bi,j = ±1. This matrix has (λ− 1)/c as an eigenvalue of multiplicity m and −1/c as an eigenvalue
of multiplicity N −m. Since the characteristic polynomial of a integer matrix has integer coe�cients, we
can write it as

PB(x) :=

N∑
k=0

βk(−x)k with βN = 1.
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Using Welch's bound and N = m(m+ 1)/2,, we have

c =

√
N −m
m(N − 1)

=

√
(m+ 1)/2− 1

m(m+ 1)/2− 1
=

√
m− 1

m2 +m− 2
=

1√
m+ 2

,

so − 1
c = −

√
m+ 2. Then PB(−1/c) = PB(−

√
m+ 2) = 0, i.e., ∑

0≤k≤N/2

β2k(m+ 2)k

+
√
m+ 2

 ∑
0≤k≤(N−1/2)

β2k+1(m+ 2)k

 = 0.

We notice that these sums, now denoted by Σ1 and Σ2, are integers, due to the fact that βi are integer
coe�cients of the characteristic polynomial. We then obtain the equality Σ2

1 = (m+ 2)Σ2
2, which implies

that m+ 2 is a square, since any prime factor of m+ 2 must necessarily appear an even number of times
in its prime factorization.

To �nish the proof, it remains to be show that γ =
√
m+ 2 is odd. Let JN×N be the matrix with all

entries equal to one. Its kernel has dimension N − 1 (since its rank is 1), then it intersects the (N −m)-
dimensional eigenspace of B corresponding to the eigenvalue −1/c = −n, since due to our hypothesis
m ≥ 3 implies that N = m(m + 1)/2 > m + 1, hence N − 1 + N − m > N, resulting in a nontrivial
intersection because the sum of the dimensions of two subspaces is greater then the ambient space. So,
with an argument analogous to the one in �rst part of the proof, the matrix C := (B − Idn + JN×N )/2
has −(n+ 1)/2 as an eigenvalue.

As the diagonal elements of C are zero, while its o�-diagonal entries are all equal to one or zero, its
characteristic polynomial can be written as

PC(x) =

N∑
k=0

ck(−x)k with cN = 1 and ci ∈ Z.

It vanishes at x = −(n+ 1)/2 and we can rewrite the equality PC(−(n+ 1)/2) = 0 as

(n+ 1)N = −
N−1∑
k=0

2N−kck(n+ 1)k.

This shows that (n + 1)N is an even integer, hence so is n + 1 and we conclude that n =
√
m+ 2 is an

odd integer.

Now, we address some interesting questions concerning equiangular tight frames. [Fickus & Mixon '15]
gives an �account for recent and future developments in the construction or impossibility of ETFs in var-
ious dimensions�. They remark that despite ETF having a functional nature (as an equality in the
Welch's bound, for example), every known way to construct in�nite families of ETF is based on some
kind of combinatorial techniques such as strongly regular graphs, di�erence sets and Steiner systems. The
conference paper [Casazza, Redmond & Tremain '08] also discusses the problem of frame classi�cation.
In the complex case, [Zauner '99] made the following conjecture, that is still open today.

Open Problem: For every m ≥ 2, there exists CETF(m,m2).

[Scott & Grassl '10] proved that if m ≤ 17 or M ∈ {19, 24, 35, 48} then there exist CETF(m,m2) and
provided numerical tests indicating that, up to machine precision, there are CETF(m,m2) for m ≤ 67,
suggesting that Zauner's conjecture should be true. If this conjecture were true, there would existm×m2

matrices with the lowest possible coherence, i.e. µ = 1/
√
m+ 1. This would be of great importance not

only for sparse recovery but in many questions in Coding Theory. See [Bodmann & Kutyniok '09] and
references therein.
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We now focus on the existence of matrices with small coherence. For example, [Temlyakov '11]
constructed p× pk matrices (p > k being a prime number) with coherence bounded above by (k− 1)/

√
p.

We present here a construction from [Strohmer & Heath '03], based on ideas of [Alltop '80], of an explicit
m × m2 matrix with coherence equal to 1/

√
m. Note that this is the limit of the Welch bound when

N →∞.

Proposition 4.39. For each prime number m ≥ 5, there is an explicit m × m2 complex matrix with
coherence µ = 1/

√
m

Proof. Let us identify the set [m] with Z/mZ = Zm and introduce, for k, ` ∈ Zm, the translation and
modulation operators Tk and Ml, de�ned, for z ∈ CZm and j ∈ Zm, by

(Tkz)j = zj−k, (M`z)j = e2πi`j/mzj .

These operators are isometries of `2(Zm). Let x ∈ CZm , be the `2-normalized Alltop vector, with compo-
nents

xj =
1√
m
e2πij3/m, j ∈ Zm.

We claim that the m×m2 matrix constructed with columns M`Tkx for k, ` ∈ Zm, i.e., the matrix

(M1T1x| . . . |M1Tmx|M2T1x| . . . | . . . |MmT1x| . . . |MmTmx)

has coherence µ = 1/
√
m. To prove this, we need to calculate the inner product between two columns.

Taking indices (k, `) and the one indexed by (k′, `′), we have

〈M`Tkx,M`′Tk′x〉 =
∑
j∈Zm

(M`Tkx)j(M`′Tk′x)j =

∑
j∈Zm

e2πi`j/mxj−ke
−2πi`′j/mxj−k′ =

1

m

∑
j∈Zm

e2πi(`−`′)j/me2πi((j−k)3−(j−k′)3/m.

Set a = `− ` and b = k − k′, so that (a, b) 6= (0, 0). Change the summation index to h = j − k′ and we
obtain

|〈M`Tkx,M`′Tk′x〉| =
1

m

∣∣∣∣∣e2πiak′/m
∑
h∈Zm

e2πiah/me2πi((h−b)3−h3)/m

∣∣∣∣∣
=

1

m

∣∣∣∣∣ ∑
h∈Zm

e2πiah/me2πi(−3bh2+3b2h−b3)/m

∣∣∣∣∣ =
1

m

∣∣∣∣∣ ∑
h∈Zm

e2πi(−3bh2+(a+3b2)h/m)

∣∣∣∣∣ .
Now setting c = −3b and d = a+ 3b2, we compute

|〈M`Tkx,M`′Tk′x〉|2 =
1

m2

∑
h∈Zm

e2πi(ch2+dh)/m
∑
h′∈Zm

e2πi(ch′2+dh′)/m =
1

m2

∑
h,h′∈Zm

e2πi(h−h′)(c(h+h′)+d)/m

=
1

m2

∑
h,h′′∈Zm

e2πih′′(c(h′′+2h′)+d)/m =
1

m2

∑
h′′∈Zm

e2πih′′(ch′′+d)/m

( ∑
h′∈Zm

e4πich′′h′/m

)
.

The analysis of the last sum, for each h′′ ∈ Zm, leads to∑
h′∈Zm

e4πich′′h′/m =

{
m if 2ch′′ = 0 mod m
0 if 2ch′ 6= 0 mod m

.

We now study the two cases:
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1. c = 0 mod m. From the de�nition of c, we have c = −3b and since 3 6= 0 mod m, we must have
b = 0 mod m. Hence, d = a+ 3b2 6= 0 mod m because a = `− `′ 6= 0 mod m, so

|〈M`Tkx,M`′Tk′x〉| =
1

m

∑
h′′∈Zm

e2πidh′/m = 0.

2. c 6= 0 mod m. Since 2 6= 0 mod m, the equality 2ch′′ = 0 can only occur when h′′ = 0 mod m,
so that

|〈M`Tkx,M`′Tk′x〉| =
1

m
.

Then we conclude that the coherence of this matrix is equal to µ = 1/
√
m.

Remark 31. A good reference concerning Frames is the homepage of the Frame Research Center at
the University of Missouri: http: // www. framerc. org/ , where up-to-date references and information
concerning frames can be found.

4.9 Analysis of Algorithms

In Chapter 3 we saw that to solve (P0) is equivalent to ensure the null space property for the matrix A.
Also, it is di�cult to determine if the matrix satis�es this property or not. Therefore, one of our quests
is to �nd su�cient conditions that imply the Null Space Property.

However, it is important to stress that the �rst guarantees for the working sparse recovery techniques,
like Basis Pursuit, were discovered before NSP was invented. Using mutual coherence, for the two or-
thogonal case, and using the spark, for the general case, many researchers were able to directly provide
these guarantees.

The coherence property, studied in this chapter, is one of the su�cient conditions we can use to
guarantee the success of the algorithms described in Chapter 2. It was used before NSP, but we can
restate the result in a modern language by using the Null Space Property.

We will now prove that Basis Pursuit works under some conditions on the coherence, i.e., small
coherence implies NSP of order s and, consequently, s-sparse recovery by Theorem 3.3. After, we comment
similar results for greedy and threshold algorithms.

Theorem 4.40. ([Tropp '04]): Let A ∈ Cm×N be a matrix with `2-normalized columns. If

µ1(s) + µ1(s− 1) < 1,

then every s-sparse vector x ∈ CN is exactly recovered from the measurement vector y = Ax via Basis
Pursuit.

Proof. It is necessary and su�cient to prove that the matrix A satis�es the NSPs, which is

||vS ||1 < ||vS ||1 ∀ v ∈ kerA\{0} and ∀S ⊂ [N ] with |S| = s.

Let a1, . . . , an denote the columns of A. Then the condition v ∈ kerA is the same as
∑N
j=1 vjaj = 0.

What we have to do is take the inner product with ai and isolate the term vi to obtain

vi = vi〈ai, ai〉 = −
N∑

j=1,j 6=i

vj〈aj , ai〉 = −
∑
`∈S

v`〈a`, ai〉 −
∑

j∈S,j 6=i

vj〈aj , ai〉.

This implies

http://www.framerc.org/
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|vi| ≤
∑
`∈S

|v`||〈a`, ai〉|+
∑

j∈S,j 6=i

|vj ||〈aj , ai〉|.

Summing all over i and interchanging the two �nite summations yields

||vS ||1 =
∑
i∈S
|vi| ≤

∑
`∈S

|v`|
∑
i∈S
|〈a`, ai〉|+

∑
j∈S
|vj |

∑
i∈S,i 6=j

|〈aj , ai〉|

≤
∑
`∈S

|v`|µ1(s) +
∑
j∈S
|vj |µ1(s− 1) = µ1(s)||vS ||1 + µ1(s− 1)||vS ||1.

Rearranging this last expression leads to

(1− µ1(s− 1))||vS ||1 ≤ µ1(s)||vS ||1.

And this implies the NSPs because µ1(s) < 1− µ1(s− 1), that is

µ1(s)||vS ||1 < (1− µ1(s− 1))||vS ||1 ≤ µ1(s)||vS ||1 =⇒ ||vS ||1 < ||vS ||1

We have similar results for the Orthogonal Matching Pursuit and for the Hard Thresholding Pursuit.
Their proofs can be found at [Rauhut & Foucart '13] on pages 123 and 127 respectively:

Theorem 4.41. Let A ∈ Cm×N be a matrix with `2-normalized columns. If

µ1(s) + µ1(s− 1) < 1

then every s-sparse vector x ∈ CN is exactly recovered from the measurement vector y = Ax after at
most s iterations of Orthogonal Matching Pursuit.

Theorem 4.42. Let A ∈ Cm×N be a matrix with `2-normalized columns. If

2µ1(s) + µ1(s− 1) < 1

then every s-sparse vector x ∈ CN is exactly recovered from the measurement vector y = Ax after at
most s iterations of Hard Thresholding Pursuit.

We should mention that all the results derived in this chapter are the worst-case scenarios, implying
that the kind of guarantees we obtain can be over-pessimistic, as they are supposed to hold for all signals,
and for all possible supports of a given cardinality. Average-case analysis is also available and typically
outstrips the worst-case behavior by a large margin. These analysis are available at [Tropp '05] and
[Schnass & Vandergheynst '07].

4.10 The Quadratic Bottleneck

In Section 4.9 we proved that in linear systems formed by matrices having small coherence, unique sparse
recovery can be performed. However, until now, we do not address the question about the relation
between N , the ambient space dimension, and m, the number of measurements. Since we are trying to
recover s-sparse vectors we ideally expected, in a �rst moment, to have a close relation between m and s,
that is, it is presumed that the number of measurement can scale with the sparsity. Reformulating this
reasoning, we expect that m = Cs, for some C > 0.

Despite the fact that the coherence property is a su�cient condition the main algorithms of sparse
recovery to work, we will see in this section that, when using it, we cannot guarantee a linear scale
between m and s. On one hand, Theorem 4.41 and Theorem 4.40 state that the recovery of s-sparse
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vectors is guaranteed via BP or OMP if (2s − 1)µ < 1 is satis�ed. On the other hand, we can choose a
matrix A ∈ Cm×N with small coherence µ ≈ c/

√
m (for instance, using Proposition 4.39). For matrices

with coherence that behaves this way, the condition (2s− 1)µ < 1 holds only if

m ≥ Cs2,

for some C > 0. This estimate for the number of measurements is too pessimistic, especially if we are in
a context of large s.

It is not possible to overcome this estimate in the context of coherence and we will explain why.
Instead of working with the condition (2s − 1)µ < 1, let us use the more general condition stated in
Theorem 4.41 and Theorem 4.40,

µ1(s) + µ1(s− 1) < 1. (4.19)

Suppose, by contradiction, that Equation (4.19) holds with m ≤ (2s− 1)2 and say, s <
√
N − 1. This

choice of parameters was made only to facilitate calculations. Provided that N is large, say N ≥ 2m then
we use Welch's bound for the `1-coherence, Theorem 4.24, and obtain

1 > µ1(s) + µ1(s− 1) ≥ s
√

N −m
m(N − 1)

+ (s− 1)

√
N −m
m(N − 1)

= (2s− 1)

√
N −m
m(N − 1)

≥ s
√

2(N −m)

m(N − 1)
≥
√

N

N − 1
.

This is clearly a contradiction. Therefore, it is not possible to combine coherence estimates with
a linear scale between m and s. This is known as the quadratic bottleneck problem. The real reason
behind it is related to Gershgorin's Theorem. All known estimates of coherence require this theorem and
therefore this bottleneck will always appear.

In fact, the relation between Gershgorin's Theorem and the estimation of the coherence is through
the proof of Theorem 4.21. If one looks carefully, it states that the eigenvalues of the matrix A∗SAS lie in
the interval [1− µ1(s− 1), 1 + µ1(s− 1)] and we know from Theorem 1.11 that sparse recovery is related
to invertibility of A∗SAS .

Thus, despite the fact that coherence is a su�cient condition for sparse recovery and is easy to compute
compared, e.g., to NSP, it gives us a poor scale between the sparsity and the number of measurements.
Particularly, coherence is a local property, because it deals with only two vectors at the same time. In
order to circumvent it, new ideas of su�cient conditions for sparse recovery are necessary. Notably, some
approach that tries to handle all column vectors of the measurement matrix at the same time. From the
development of a new path, we will see in Chapter 7 that it is possible to have an almost linear scale
between m and s.
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Chapter 5

Restricted Isometry Property

Respect nature. There's no guarantee she will respect you back.
66◦North1 advertising in Reykjavík, Iceland, 2011.

5.1 Introduction

From a practical point of view, coherence is a useful measure of how suitable the matrix A is for the
problem of �nding sparse solutions of linear systems. However we saw that the lower bound from The-
orem 4.23 implies a quadractic bottleneck, which limits the performance of recovery for rather small
sparsity levels, as the number of measurementsm is of the order of the square of the sparsity s. There
can be no linear scale between sparsity and the number of measurements due to estimates relying in
Gershgorin's Theorem, as showed in Section 4.10.

On a closer analysis, coherence only depends on pairs of columns. Maybe some properties which
depend on larger sets of columns at the same time can be found to give us a �ner criterion for sparse
recovery. This was the inspiration of Candès and Tao when they de�ned the uniform uncertainty principle,
nowadays known as restricted isometry property [Candès & Tao II '06]. It became the widely used tool
by the signal processing community to analyze the measurement performance of encoder/decoder pairs
[Blanchard, Cartis & Tanner '11].

This new property overcomes the limitation mentioned above and its advantage is twofold. First,
up to a logarithmic factor, we can get an almost linear scaling between sparsity and the number of
measurements. Besides, we will grasp the potential of probabilistic analysis in this framework through
the use of powerful results as the concentration of measure inequality and Gordon's Lemma. These results
will help us to �nd families of good measurement matrices in the optimal regime. This notion of optimality
will be made precise along the chapter.

The purpose of this chapter is to study the Restricted Isometry Property. We will prove that is is a
su�cient condition for the Null Space Property, and therefore for Basis Pursuit, by Theorem 3.3. Then, we
will show how its introduction allows us to bypass the constrains which appear if we're limited by coherence
methods. Later, we will explore a deep result of [Bourgain, Dilworth, Ford, Konyagin & Kutzarova '11]
about breaking the quadratic bottleneck with deterministic matrices. We will also establish the success
of sparse recovery under di�erent reconstruction methods from some conditions on this property. More
speci�cally, after the introduction of restricted isometry constants, we will show how we can use them to
prove the suitability of thresholding and greedy methods for sparse recovery. We close the chapter with
some limitations on this property and some attempts to �x it.

1One of the oldest Icelandic manufacturing companies: www.66north.is
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5.2 The RIP Constant and its Properties

As we described in the introduction, the idea is to create a �ner property for the matrix recovery analysis,
involving many columns at the same time. The restricted isometry constant of order s involves all s-tuples
of columns simultaneously and measures how close to an isometry, for sparse vectors, the matrix is.

De�nition 5.1. The s-th restricted isometry constant δs = δs(A) of a matrix A ∈ Cm×N is the smallest
δ ≥ 0 such that

(1− δ)||x||22 ≤ ||Ax||22 ≤ (1 + δ)||x||22, (5.1)

for all s-sparse vectors x ∈ CN . Equivalently, it is given by

δs = max
S⊂[N ], #S≤s

||A∗SAS − IdS ||2→2.

The idea behind this de�nition is that A∗SAS , a projection onto a given subspace of s-sparse vectors,
will behave almost as an orthogonal transformation. In the literature, it is common to say �this matrix
A satis�es RIP�. It means that δs(A) is small for reasonably large s. What is understood by large s and
small δs will be made precise after some discussion. See discussion after Proposition 5.4.

Proposition 5.2. The two de�nitions of the restricted isometry property are indeed equivalent.

Proof. One can start by noticing the equivalence between

(1− δ)||x||22 ≤ ||Ax||22 ≤ (1 + δ)||x||22 ∀ x ∈ CNs-sparse.

and

|||ASx||22 − ||x||22| ≤ δ||x||22 ∀ S ⊂ [N ], #S ≤ s and ∀x ∈ CS . (5.2)

Then, ∀x ∈ Cs,

||ASx||22 − ||x||22 = 〈ASx,ASx〉 − 〈x, x〉 = 〈(A∗SAS − Id)x, x〉.
Now, the matrix A∗SAS − Id is hermitian. So we have

max
x∈Cs\{0}

〈(A∗SAS − Id)x, x〉
||x||22

= ||A∗SAS − Id||2→2.

Due to (5.2), (5.1) is equivalent to

max
S⊂[N ], #S≤s

||A∗sAs − Id||2→2 ≤ δ.

Since δs is the smallest such δ and the 2-norm of a matrix is equal to its largest singular value, we have
the equality.

This characterization will be useful when comparing the restricted isometry constants of a matrix and
its coherence. First of all, note that the sequence of such constants is nondecreasing

δ1 ≤ δ2 ≤ · · · ≤ δs ≤ δs+1 ≤ · · · ≤ δN .
This follows immediately from the de�nition of RIP, since every (s− 1)-sparse vector is also an s-sparse
vector. The de�nition of RIP, given above, can be exceedingly restrictive. There is some asymmetry
between the in�uence of the lower and the upper inequality in the context of sparse recovery. Therefore,
we could de�ne the asymmetrical RIP.
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De�nition 5.3. The s-th lower restricted isometry constant δLs = δLs (A) of a matrix A ∈ Cm×N is the
smallest δ ≥ 0 such that

(1− δ)||x||22 ≤ ||Ax||22 ∀x such that ||x||0 ≤ s. (5.3)

Also, the s-th upper restricted isometry constant δUs = δUs (A) is the smallest δ ≥ 0 such that

(1 + δ)||x||22 ≥ ||Ax||22 ∀x such that ||x||0 ≤ s (5.4)

Both the smallest and largest eigenvalues of the Gram matrix A∗SAS a�ect the stability of the recon-
struction algorithms. However, it is the smaller eigenvalue which allows to distinguish between sparse
vectors from their measurement by A. Clearly, δLS < 1 implies that A injective and so it is a su�cient
condition to ensure that no two s-sparse vectors have the same measurements.

The asymmetric RIP also plays an important role in the context of high-dimensional statistics, for
example in the study of LASSO and Dantzig Selector. For the recovery of sparse vectors from noisy
measurements, the asymmetric RIP appears as a crucial generalization. It is connected to the so-called
restricted eigenvalue conditions, see Section 5 of [Oliveira '13], [Bickel, Ritov & Tsybakov '09] for some
discussion. Also, Figure 1 of [van de Geer & Buhlmann '09] is especially instructive in order to under-
stand the zoo of concepts related to RIP.

The asymmetric de�nition is especially important in the context of Gaussian matrices. In Chapter 7
we will develop the connections between random matrices and Compressive Sensing. For now, we just
need the following remark from [Blanchard, Cartis & Tanner '11]:

Remark 32. If A is a Gaussian matrix (see De�nition 7.1) then A∗A follows a Wishart distribution.
Thus, in order to understand RIP of Gaussian matrices, it is important to analyze the empirical distribu-
tion of the eigenvalues from a Wishart matrix. If the expected value of the largest and the smallest eigen-
values were asymmetric with respect to some value then the investigation of δUs and δLs separately could
give better results in RIP estimation. Figure 5.1 shows this asymmetry since Eλmax(A∗SAS) = (1 +

√
ρ)2

and Eλmin(A∗SAS) = (1−√ρ)2. See [Silverstein '85] and [Geman '80] for more details on these asymp-
totic formulas.

Figure 5.1: For a given m×N matrix A and S ⊂ [N ] such that #S = s, this �gure shows a plot of the expected values
of the largest and smallest eigenvalues of a Wishart matrix A∗

SAS . The blue curve represents Eλmax(A∗
SAS) whereas the

red curve represents Eλmin(A
∗
SAS). Note the asymmetry with respect to the constant line equal to 1.

Besides [Blanchard, Cartis & Tanner '11], also the work [Bah & Tanner '10] showed the advantages
of the asymmetric de�nition for sharper results related to RIP for Gaussian matrices.
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In this work we are more interested in the signal processing problem than in the statistical problem.
Paraphrasing [Oliveira '13], in the former we think about the measurement vector as controlled by the
experimenter whereas in the latter, the vectors are generated by a random process. Accordingly, our
focus is on the most common de�nitions historically related to compressive sensing and used by the Signal
Processing community: coherence and symmetrical RIP. Now, �nally, the proposition which compares
both of them.

Proposition 5.4. If a matrix A has `2-normalized columns a1, . . . , aN , then

δ1 = 0, δ2 = µ δs ≤ µ1(s− 1) ≤ (s− 1)µ for s ≥ 2,

where µ and µ1(s− 1) are the coherence and coherence function from De�nition 4.15 and De�nition 4.19
respectively.

Proof. By hypothesis, the columns are `2-normalized, this means that ||Aej ||22 = ||ej ||22 for all j ∈ [N ].
This is the same as δ1 = 0 as ej is 1-sparse. By the equivalence proved above, we have

δ2 = max
1≤i6=j≤N

||A∗i,jAi,j − Id||2→2 with A∗i,jAi,j =

[
1 〈aj , ai〉

〈ai, aj〉 1

]
.

The eigenvalues of the matrix A∗i,jAi,j − Id are |〈ai, aj〉| and −|〈ai, aj〉|, so its (2→ 2)-norm is |〈ai, aj〉|,
and taking the maximum over 1 ≤ i 6= j ≤ N yields the equality δ2 = µ. For s > 2, we know from
Theorem 4.21 that (1−µ1(s− 1))||x||22 ≤ ||Ax||22 ≤ (1 +µ1(s− 1))||x||22. Since δs is the smallest constant
to attain this kind of inequality, the theorem follows.

This theorem allows us to prove the existence of m×m2 matrices with δs < 1 for s ≤ √m, since we
know that matrices with coherence equal 1/

√
m exists. This is just a simples calculation:

δs ≤ µ1(s− 1) ≤ (s− 1)µ < sµ =
s√
m
≤ 1 for all s ≤ √m.

The main point about using random matrices is that we can establish a much better relation between
s and m. In fact, we will show that, given δ < 1, there exist m × N matrices with δs ≤ δ for s ≤
cm/ ln(eN/m) with c depending only on δ. Even more surprisingly, this relation cannot be improved, see
Chapter 8.

Now we can �nally say �How large s and how small δs should be�. Matrices that have the small
restricted isometry constant of this optimal order are said to satisfy the restricted isometry property or
just RIP. From now we will make no distinction between the words �property� and �constant�.

The next simple proposition, taken from [Candès & Tao II '06], is of great importance.

Proposition 5.5. Let u, v ∈ CN be vectors with ||u||0 ≤ s and ||v||0 ≤ t. If their supports do not
intersect, i.e., supp(u) ∩ supp(v) = ∅, then

|〈Au,Av〉| ≤ δs+t||u||2||v||2
Proof. Let S = supp(u) ∪ supp(v) and let uS and vS be the restrictions of u and v to S, respectively, so
that Au = ASuS and Av = ASvS . Since supp(u) ∩ supp(v) = ∅, 〈uS , vS〉 = 0, and this yields

|〈Au,Av〉| = |〈ASus, ASvs〉 − 〈uS , vS〉| = |〈(A∗SAS − Id)uS , vS〉| ≤ ||(A∗SAS − Id)uS ||2||vS ||2

≤ ||(A∗SAS − Id)||2||uS ||2||vS ||2.
Now, observe that ||uS ||2 = ||u||2 and ||vS ||2 = ||v||2. Using the alternative de�nition for δs+t, the
conclusion follows.
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We de�ne now a quantity that allows us to estimate RIP and prove some important inequalities.

De�nition 5.6. The (s, t)-restricted orthogonality constant (or just ROC) θs,t = θs,t(A) of a matrix
A ∈ Cm×N is the smallest θ ≥ 0 such that

|〈Au,Av〉| ≤ θ||u||2||v||2
for all disjointly supported s-sparse and t-sparse vectors u, v ∈ CN .

Similarly to the case of the coherence and RIP constants, we can give an equivalent de�nition (which
has the same proof of equivalence as above):

θs,t = max{||A∗TAS ||2→2, S ∩ T = ∅, card(S) ≤ s, card(T ) ≤ t}

Finally we can relate the two constants by the following Proposition.

Proposition 5.7. Restricted isometry contants and restricted orthogonality constants are related by the
inequalities.

θs,t ≤ δs+t ≤
1

s+ t
(sδs + tδt + 2

√
stθs,t).

The special case s = t gives

θs,s ≤ δ2s ≤ δs + θs,s.

Proof. The �rst inequality follows from Proposition 5.5 and the de�nition of ROC. For the second one,
we need to show that given an (s+ t)-sparse vector x ∈ CN with ||x||2 = 1, we have∣∣∣||Ax||22 − ||x||22∣∣∣ ≤ 1

s+ t
(sδs + tδt + 2

√
stθs,t).

In order to do this, let us separate the vector x into two disjointly supported vectors u and v such that
u is s-sparse and v is t-sparse. Then

||Ax||22 = 〈A(u+ v), A(u+ v))〉 = ||Av||22 + ||Au||22 + 2Re〈Au,Av〉.
As u and v are disjointly supported, we have ||x||22 = ||u||22 + ||v||22 and so∣∣∣||Ax||22 − ||x||22∣∣∣ ≤ ∣∣∣||Au||22 − ||u||22∣∣∣+

∣∣∣||Av||22 − ||v||22∣∣∣+ 2|〈Au,Av〉|

≤ δs||u||22 + δt||v||22 + 2θs,t||u||2||v||2 = f(||u||22),

where we have, for k ∈ [0, 1]

f(k) = δsk + δt(1− k) + 2θs,t
√
k(1− k).

Taking the derivative and equating it to zero, we have

f ′(k) = δs − δt + θs,t(1− 2k)
(
k(1− k)

)−1/2
= 0.

Therefore, the critical points are the solutions of the equation

(δs − δt)
(
k(1− k)

)1/2
+ θs,t(1− 2k) = 0.

Making the substitution 1− 2k = A, yields

(δs − δt)
2

[
(1−A2)(1 +A2)

]1/2
+ θs,tA

2 = 0.
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After solving this equation for A and substituting for the original variable k, we discover that one of the
roots is

k∗ =
1

2
− 1

2
(δs − δt)

(
4θ2
s,t + (δs − δt)2

)−1/2
.

It can be proved, after simple calculations, that it lies in [0, 1]. Besides, the function f(k) is nondecreasing
on [0, k∗] and nonincreasing on [k∗, 1]. Depending on the location of k∗ with respect to s/(s + t), the
function f is either nondecreasing on [0, s/(s+ t)] or nonincreasing on [s/(s+ t), 1]. There is freedom to
choose u. So, without loss of generality, we will assume that ||u||22 is in one of these intervals. Taking
u having the s smallest absolute entries of x and v having the t largest absolute entries of x, we have
ui ≤ vj ∀i, j, thus

||u||22
s
≤ ||v||

2
2

t
=

1− ||u||22
t

and then ||u||22 ≤
s

s+ t
.

In the other case, where u belongs to the other interval and u had the s largest absolute entries of x,
then we would likewise have ||u||22 ≥ s/(s+ t). We conclude that∣∣∣||Ax||22 − ||x||22∣∣∣ = f(||u||22) ≤ f

(
s

s+ t

)
= δs

s

s+ t
+ δt

t

s+ t
+ 2θs,t

√
st

s+ t
.

Sometimes, when proving convergence of the algorithms, some su�cient conditions based on δks (for
very large k) can be found. For example, in Table 5.5 below, we will see an example that needs δ8s < 1,
provided by [Zhou, Kong & Xiu '13]. So it is important to know how to control the restricted isometry
constants and restricted orthogonality constant of high order by those of lower order.

Proposition 5.8. For integers r, s, t ≥ 1 with t ≥ s,

θt,r ≤
√
t

s
θs,r and δt ≤

t− d
s

δ2s +
d

s
δs,

where d = gcd(s, t), where gcd denotes the great common divisor. The special case t = cs leads to

δcs ≤ cδ2s
Proof. From the de�nitions of these constants, we need to show that, given a t-sparse vector u and a
r-sparse vector v with disjoin support, we have

|〈Au,Av〉| ≤
√
t

s
θs,r||u||2||v||2 (5.5)

∣∣∣||Au||22 − ||u||22∣∣∣ ≤ ( t− ds δ2s +
d

s
δs

)
||u||22 (5.6)

As d is the great common divisor of s and t, we can write s = kd and t = nd for some integers k, n.
Denoting the support of u by T = {j1, j2, . . . , jt}, we will partition it in n subsets S1, S2, . . . , Sn ⊂ T of
size s de�ned by

Si = {j(i−1)d+1, j(i−1)d+2, . . . , j(i−1)d+s}
with indexes meant modulo t. In this trick partition, each j ∈ T belongs to exactly s/d = k sets Si,
which gives

u =
1

k

n∑
i=1

uSi and ||u||22 =
1

k

n∑
i=1

||uSi ||22
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Let us see through an example why this partitioning makes sense. Suppose that t = 10 = 2 × 5 and
s = 8 = 2× 4, with d = gcd(10, 8) = 2. So, we have T = {j1, j2, . . . , j10}, which we will partition into 5
sets with 8 elements:

S1 = {j1, . . . , j8},
S2 = {j2+1, . . . , j2+8} = {j3, . . . , j10},
S3 = {j2×2+1, . . . , j2×2+8} = {j5, . . . , j10, j1, j2},
S4 = {j3×2+1, . . . , j3×2+8} = {j7, . . . , j10, j1, . . . , j4},
S5 = {j4×2+1, . . . , j4×2+8} = {j9, j10, j1, . . . , j6}.

Now it is easy to verify that each ji is contained in only 4 of these 5 sets and that the decomposition of
u made above, dividing by k to take repetition into account, holds.

Back to the proof, to prove (5.5) we do the following calculations

|〈Au,Av〉| ≤ 1

k

n∑
i=1

|〈AuSi , Av〉| ≤
1

k

n∑
i=1

θs,r||uSi ||2||v||2

≤ θs,r
√
n

k

(
n∑
i=1

||uSi ||22

)1/2

||v||2 = θs,r

√
n

k
||u||2||v||2 = θs,r

√
t/d

s/d
||u||2||v||2.

And inequality (5.6) follows from

|||Au||22 − ||u||22| = |〈(A∗A− Id)u, u〉| ≤ 1

k2

n∑
i=1

n∑
j=1

|〈(A∗A− Id)uSi , uSj 〉|

=
1

k2

 ∑
1≤i 6=j≤n

|〈(A∗Si∪SjASi∪Sj − Id)uSi , uSj 〉|+
n∑
i=1

|〈(A∗SiASi − Id)uSi , uSi〉|



≤ 1

k2

 ∑
1≤i6=j≤n

δ2s||uSi ||2||uSj ||2 +

n∑
i=1

δs||uSi ||22

 =
δ2s
k2

(
n∑
i=1

||uSi ||2
)2

− δ2s − δs
k2

n∑
i=1

||uSi ||22

≤
(
δ2sn

k2
− δ2s − δs

k2

) n∑
i=1

||uSi ||22 =

(
n

k
δ2s −

1

k
(δ2s − δs)

)
||u||22

=

(
t

s
δ2s −

1

k
(δ2s − δs)

)
||u||22 =

(
t− d
s

δ2s +
d

s
δs

)
||u||22.

As in the coherence case, it is important to know how the scaling between the number of measurements
m and the sparsity s a�ects RIP. We will prove now that δs ≥ c

√
s/m. For s = 2, this can be interpreted

as δ2 = µ ≥ c̃/√m, which reminds us of the Welch bound, Theorem 4.23.

Theorem 5.9. For A ∈ Cm×N and 2 ≤ s ≤ N , there exists constants c, C and δ∗ such that for N ≥ C,
δs ≤ δ∗ one has

m ≥ c s
δ2
s

For instance, we could choose c = 1/162, C = 30 and δ∗ = 2/3.
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Proof. We start by noticing that the theorem cannot be valid for s = 1, as δ1 = 0 if all the columns of
A have `2-norm equal to 1. If we set t = bs/2c ≥ 1, then we will decompose the matrix A into blocks of
size m× t (the last block could have less columns)

A = [ A1 | A2 | . . . | An ], N ≤ nt.
From Proposition 5.2, we can use the alternative de�nition of the restricted isometry constant and also
the de�nition of the restricted orthogonality constant. So we have, for all i, j ∈ [n], i 6= j, that

||A∗iAi − Id||2→2 ≤ δt ≤ δs and ||A∗iAj ||2→2 ≤ θt,t ≤ δ2t ≤ δs.
Then we conclude that the eingenvalues of A∗iAi and the singular values of A∗iAj satisfy

1− δs ≤ λk(A∗iAi) ≤ 1 + δs,

Now, we de�ne the matrices H = AA∗ ∈ Cm×m and G = A∗A = [A∗iAj ]1≤i,j≤n ∈ CN×N . First we
deduce the estimate

tr(H) = tr(G) =

n∑
i=1

tr(A∗iAi) =

n∑
i=1

t∑
k=1

λk(A∗iAi) ≥ nt(1− δs). (5.7)

Then, using the Frobenius inner product 〈M1,M2〉F = tr(M∗2M1), we deduce

tr2(H) = 〈Idm, H〉2F ≤ ||Id||2F ||H||2F = m tr(H∗H) = m tr(AA∗AA∗) = m tr(A∗AA∗A) =

m tr(GG∗) = m

n∑
i=1

tr
( m∑
j=1

A∗iAjA
∗
jAi

)
= m

[ ∑
1≤i 6=j≤n

t∑
k=1

σk(A∗iAj)
2 +

n∑
i=1

t∑
k=1

λk(A∗iAi)
2

]

≤ m
[
n(n− 1)tδ2

s + nt(1 + δs)
2
]

= mnt
[
(n− 1)δ2

s + (1 + δs)
2
]
. (5.8)

From (5.7) and (5.8), we derive

m ≥ nt(1− δs)2

(n− 1)δ2
s + (1 + δs)2

.

If (n− 1)δ2
s < (1 + δs)

2/5, we would obtain, using δs ≤ 2/3,

m >
nt(1− δs)2

6(1 + δ2
s)/5

≥ 5(1− δs)2

6(1 + δs)2
N ≥ 1

30
N.

This is a contradiction since we assumed that N ≥ 30m. Therefore we have (n − 1)δ2
s ≥ (1 + δs)

2/5.
Hence, using again δs ≤ 2/3 and s ≤ 3t, we conclude

m ≥ nt(1− δs)2

6(n− 1)δ2
s

≥ 1

54

t

δ2
s

≥ 1

162

s

δ2
s

= c
s

δ2
s

.

5.3 The Quadratic Bottleneck Reloaded

Theorem 5.9 helps us estimate how small the restricted isometry constant can be. Even more, we can
compare the scaling between s, the sparsity of the signals we want to recover, and m, the number of
measurements which guarantees the smallness of δs.

We will see that there is a great di�erence between the two su�cient conditions we are working in this
dissertation: coherence and RIP. The former provides a quadratic scale between m and s while the latter
provides, using probabilistic techniques, an almost linear scale. Also, until recently, the typical technique
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to estimate RIP was through coherence and then the phenomenon of a bottleneck appears again. Let us
see precisely what all of this means.

Theorem 5.9 provides a linear scaling between s and m

m ≥ Cδ−2
s s

On the other hand, if we choose a matrix A with an optimal coherence µ = C/
√
m then Theorem 5.4

implies that δs ≤ (s− 1)µ ≤ cs/√m, which leads to

C1
s√
m
≥ δs ≥ C2

√
s

m
, (5.9)

for some universal constants C1 and C2. Note that the right-hand side is valid for all matrices. Meanwhile,
for the left-hand side we know how to prove that an explicit family of matrices indeed attain this optimal
order of coherence and, consequently, this scale for RIP.

Then, the quadratic scale m ≥ Cs2 is a su�cient condition for δs to be small. Also, the right side of
the inequality (5.9) shows that m ≥ C̃s is a necessary condition. There is a signi�cant gap between both
of them and up to this point in this dissertation we are unable to show if this second condition is also
su�cient for small RIP constant or not.

In Chapter 7 we will exhibit certain random matrices satisfying δs ≤ δ with high probability provided

m ≥ Cδ−2s ln(eN/s). (5.10)

This will prove that there exists some (actually, many!) matrices A with small RIP in an asymptotic
regime much closer to linear than quadratic. Additionally, in Chapter 8 we will prove that δs ≤ δ requires
that m ≥ Cδs ln(eN/s) for a certain constant Cδ depending on δ. In the literature it is usually said that
in order to obtain small RIP constant, linear scale is optimal up to logarithm factors.

All the constructions of matrices in the optimal regime involve powerful probabilistic arguments
like concentration of measure inequalities. Despite this, it is common in applications to have �xed
and deterministic sensing matrices. So we have a problem of constructing (or of guaranteeing that)
deterministic matrices satisfying RIP in the optimal regime. On the left hand side of (5.9), setting
δs = δ∗, we have s ≥ C−1

1 δ∗
√
m which could be reformulated as s = Ω(m1/2). This is the regime in which

we know how to guarantee small RIP constant through coherence techniques. However, ideally we would
like to improve this and increase the exponent from 1/2 to 1/2 + ε, i.e. break the bottleneck. Then, it
will be great to make ε→ 1/2, and provide small RIP in a suitable scale for applications. This will shows
the existence of deterministic matrices with RIP property in an almost linear regime. Summarizing this,
and following [Mixon '15], we provide the following de�nition.

De�nition 5.10. For any z > 0, ExRIP[z] denote the following statement:
There exists an explicit family ofM ×N matrices with arbitrarily large aspect ratio N/M which have

restricted isometry property of order s with constant δ and s = Ω(Mz−ε) for all ε > 0 and δ < 1/3.2

The main point is that with the aid of coherence, it is straightforward to prove ExRIP[1/2]. One
can use the construction of Proposition 4.39, for example, and the argument above which estimate RIP
through coherence. The latter, in its turn, is estimated through Gershgorin's Theorem. This was the
only technique to estimate RIP until 2011.

The next step is to prove ExRIP[1/2+ε0] for some ε0 > 0. That is, we need to construct of an explicit
family of matrices Ai such that for C > 0, we have si > Cm

1/2−ε
i for ε > 0. Here si denotes the sparsity

level and mi the number of rows of matrix Ai.
This important problem was solved by [Bourgain, Dilworth, Ford, Konyagin & Kutzarova '11]. The

authors created a new technique bypassing Gershgorin's Thereom through additive combinatorics argu-
ments to construct a family of matrices in this regime. This will be the subject of the next section.
Despite this major theoretical breakthrough, this is the only known explicit construction which breaks

2In section 5.5 the number 1/3 will become clear. Essentially, we can guarantee that with δs < 1/3, basis pursuit works
to recover sparse vectors. This was proved by [Cai & Zhang '13].
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the bottleneck. Besides, for practical purpose, this constant is not useful and does not help im improving
computational time, in �nding a better measurement scheme or in a suitable scale for practical purposes.
In [Mixon's Blog - 12/02/2013], this constant was estimated to be ε0 ≈ 5.5169× 10−28. Recently, in four
blog posts, Dustin Mixon and Afonso Bandeira3 optimized the constant to ε0 ≈ 4.4466× 10−24.

It is a major problem to go further and prove this in the optimal (linear up to logarithm factor) regime:

Open Problem: Construct deterministic (or constructible in polynomial time) matrices with δs ≤ δ in
the optimal regime m ≥ Cδ−2s ln(eN/s)

.

Therefore, until now there is no way to guarantee that deterministic families of matrices coming
from applications have small RIP constant in the optimal regime. This makes it impossible to use RIP
as a su�cient condition for compressive sensing with deterministic matrices. In spite of the lack of
guarantees, applied researchers continue to prefer deterministic matrices as sensing matrices due to well
known constructions.

5.4 Breaking the Bottleneck

In this section we brie�y describe the problem of estimating RIP via coherence and provide a big picture
of the techniques used by Bourgain et al. [Bourgain, Dilworth, Ford, Konyagin & Kutzarova '11], now
known as BDFKK restricted isometry machine [Mixon '15].

Let S be a set with #S = s. For a matrix A satisfying RIP with δs constant, the eigenvalues of
A∗SAS lie in [1− δs, 1 + δs]. Therefore we can prove that a matrix has small RIP constant by estimate its
eigenvalues. From Theorem 4.21, we known that a matriz A always satis�es RIP with constant (s− 1)µ,
where µ is it coherence. But the Welch's bound, Theorem 4.23, says that coherence cannot be too small.
For N ≥ cM , µ ≥ Ω(M−1/2) and then, for δ < 1/3 as in De�nition 5.10, we have s = O(M1/2). This
was a variation of what we presented on the last section and it is the standard technique to prove RIP.
One should consult [DeVore '07] and [Applebaum, Howard, Searle & Calderbank '09] for examples of this
kind of construction.

The problem with this technique is that it relies on Gershgorin Theorem. When estimating the
eigenvalues of the Gram matrix A∗SAS , this theorem only takes into account their magnitude. Bourgain
et al realized that their signs should also be considered and then some more sophisticated combinatorial
techniques must be used in order to �cancelate� these signs. So, the initial idea was to convert the
RIP statement, about all s-sparse vectors simultaneously, into a statement about �nitely many vectors.
Toward this, they introduced the following de�nition.

De�nition 5.11. Let A = [ a1 | . . . | aN ] ∈ Cm×N be a matrix with {ai}i∈[N ] being its column vectors.
We say that A satis�es θs-�at restricted isometry property (or �at-RIP of order s and constant θ) if for
every disjoint I, J ⊆ [N ] with #I,#J ≤ s∣∣∣∣〈∑

i∈I
ai,
∑
j∈J

aj

〉∣∣∣∣ ≤ θ√#I#J

Note that A has �at-RIP by taking u and v to be the characteristic function χI and χJ into the
De�nition 5.6. So it is also called the �at-ROC property, after [Bandeira et al. '13]. With this de�nition
in hands we can change the estimation of RIP by the estimation of �at-RIP with the following Theorem:

Theorem 5.12. If A has the �at restricted isometry property with constant θs and has unit-norm columns
then A has RIP (for s-sparse vectors) with constant 150θ log s.

This theorem was proved in [Bourgain, Dilworth, Ford, Konyagin & Kutzarova '11] for s ≥ 210 and it
was stated there not as here, but in a similar way. The proof for all s as well as the statement like the
one the give here appeared in [Bandeira et al. '13]. The former also de�ned the following:

3The progress of this constant optimization was described in the Math Research Wiki
[Wiki - Deterministic RIP Matrices].
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De�nition 5.13. We say that A = [ a1 | . . . | aN ] ∈ Cm×N satis�es the θ′s-weak �at RIP if for every
disjoint I, J ⊆ [N ] with #I,#J ≤ s, ∣∣∣∣〈∑

i∈I
ai,
∑
j∈J

aj

〉∣∣∣∣ ≤ θ′s.
And so the following connection between weak �at-RIP and �at-RIP can be proved:

Lemma 5.14. (Essentially Lemma 1 from [Bourgain, Dilworth, Ford, Konyagin & Kutzarova '11]): If A
satis�es the θ′s-weak �at RIP and has coherence µ ≤ 1/s, then A has �at RIP of order s with constant√
θ′.

Proof. By triangle inequality, we have∣∣∣∣〈∑
i∈I

ai,
∑
j∈J

aj

〉∣∣∣∣ ≤∑
i∈I

∑
j∈J
|〈ai, aj〉| ≤ µ#I#J ≤ #I#J

s
.

Also, A satis�es the weak �at RIP, so∣∣∣∣〈∑
i∈I

ai,
∑
j∈J

aj

〉∣∣∣∣ ≤ min{θ′s,#I#J/s} ≤
√
θ′#I#J.

The following lemma, presented here without proof, is of fundamental importance in order to break
the bottleneck.

Lemma 5.15. (Essentially Lemma 3 from [Bourgain, Dilworth, Ford, Konyagin & Kutzarova '11]): If
A satis�es RIP of order s with constant δs then A satis�es RIP of order αs with constant 2αδs for all
α ≥ 1.

These three results together allow us to convert results with modest s and tiny δs into large s and
modest δs. To see how, we will denote a matrix which satis�es RIP of order s with constant δs by
(s, δs)-RIP, one which satis�es �at-RIP of order s with constant δs by (s, δs)-fRIP and one which satis�es
weak �at-RIP by (s, δs)-wfRIP. Given this notation, with the aid of Theorem 5.12 and Lemmas 5.14 and
5.15, the following chain of implications can be proved:

(2, [δs/(2s150 log s)]2)-wfRIP =⇒ (2, δs/(2s150 log s))-fRIP =⇒ (2, δs/s)-RIP =⇒ (s, δs)-RIP.

Due to the combinatorial nature of RIP, it is better to get results for 2-sparse vectors then for s-sparse
vectors for large s. Instead of constructing matrices with a certain RIP, they construct matrices with
appropriate weak �at-RIP. For these, the sign cancellation can be performed. The columns of these
matrices where based on complex exponentials knows as chirps.

De�nition 5.16. Let p be a prime number and Fp be the �eld of size p. We de�ne the chirp as a complex
exponential of the form

ua,b =
1√
p

(e2πi(ax2+bx)/p)x∈Fp .

These exponentials were used as entries of the Gram matrix A∗A because their inner product has
some interesting properties. If a1 = a2, then 〈ua1,b1 , u12,b2〉 = 1 if b1 = b2 and 0 if b1 6= b2. Otherwise,
the inner product is

〈ua1,b1 , u12,b2〉 =
1

p

∑
x∈Fp

e2πi
(

(a1−a2)x2+(b1−b2)x
)
/p.
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This expression can be manipulated with the aid of Legendre symbols4 and then it is possible to perform
the cancellation in the signs and, consequently, improve the estimates of RIP. Since we want these
expressions in the Gram matrix A∗A, the columns of A must be {ua,b}(a,b)∈A×B for some well-designed
sets A,B ⊆ Fp. Bourgain et at. constructed two set A and B with low additive energy, in the sense of
additive combinatorics [Mixon '15]. This construction is the highly technical part of the paper.

After de�ning such set, it was proved that for su�ciently large p, the p × #(A)#(B) matrix with
columns ua,b, for a ∈ A and b ∈ B satis�es (p1/2+ε0−ε, δ)-RIP for any ε > 0 and δ <

√
2 − 1, thereby

implying ExRIP[1/2 + ε0]. This leads to the natural question of how much these techniques could be
improved in order to give 1/2 + ε0 → 1/2 + 1/2.

5.5 Analysis of Algorithms

In Chapter 4 we analyzed Basis Pursuit and proved that when coherence is small, the algorithm works and
recovers all s-sparse solutions of the linear system. In this section we provide two analogous results for the
RIP. We provide two results. The �rst one is simple and natural while the second is more sophisticated
and involved. The philosophy behind both of them is the same: when RIP is smaller than some constant,
then the algorithm must work.

Theorem 5.17. Suppose that the 2s-th restricted isometry constant of the matrix A ∈ Cm×N satis�es

δ2s <
1

3
.

Then every s-sparse vector x ∈ CN is the unique solution of

min
z∈CN

||z||1 subject to Az = Ax.

The following Lemma will be used many times in our proof.

Lemma 5.18. Given q > p > 0, if u ∈ Cs and v ∈ Ct satisfy

max
i∈[s]
|ui| ≤ min

j∈[t]
|vj |,

then

||u||q ≤
s1/q

t1/p
||v||p.

The special case p = 1, q = 2 and t = s leads to

||u||2 ≤
1√
s
||v||1.

Proof. Notice that

||u||q
s1/q

=

[
1

s

s∑
i=1

|ui|q
]1/q

≤ max
i∈[s]
|ui| ≤ min

j∈[t]
|vj | ≤

[
1

t

t∑
j=1

|vj |p
]1/p

≤ ||v||p
t1/p

.

4The Legendre symbol is a multiplicative function in Number Theory with values 1, −1, 0 that is a quadratic character
modulo a prime number p: its value on a (nonzero) quadratic residue mod p is 1 and on a non-quadratic residue (non-residue)
is −1. Its value on zero is 0.
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Proof. (of Theorem 5.17). By Theorem 3.3, it is enough to prove that the matrix A satis�es the null
space property of order s, that is

||vS ||1 <
1

2
||v||1 ∀v ∈ kerA\{0} and all S ⊂ [N ] with #(S) = s.

In fact, we will prove a stronger statement

||vS ||2 ≤
ρ

2
√
s
||v||1 ∀v ∈ kerA and all S ⊂ [N ] with #(S) = s,

where ρ = 2δ2s
1−δ2s satis�es ρ < 1 whenever δ2s < 1/3. It is clear that we need to consider just the index

set S := S0 of the s largest absolute entries of v. So let us partition the complement S0 of S0 in [N ] as
S0 = S1 ∪ S2 ∪ . . . where

• S1 is the index set of the s largest absolute entries of v in S0

• S2 is the index set of the s largest absolute entries of v in S0 ∪ S1

and so on. As v ∈ kerA, then Av = 0 and so A
(∑

i=0 vSi
)

= 0 which implies A(vS0
) = A(−vS1

−vS2
−. . . ).

This leads to

||vS0
||22 ≤

1

1− δ2s
||A(vS0

)||22 =
1

1− δ2s
〈A(vS0

), A(vS0
)〉

=
1

1− δ2s
〈A(vS0

), A(−vS1
) +A(−vS2

) + . . . 〉 =
1

1− δ2s
∑
k≥1

〈A(vS0
), A(−vSk)〉. (5.11)

From Proposition 5.5, we obtain

〈A(vS0
), A(−vSk)〉 ≤ δ2s||vS0

||2||vSk ||2.
Putting this into (5.11) we obtain

||vS0 ||2 ≤
δ2s

1− δ2s
∑
k≥1

||vSk ||2 =
∑
k≥1

ρ

2
||vSk ||2.

We de�ned vSk in a decreasing way, Hence, for k ≥ 1, the s absolute entries of vSk do not exceed any of
the s absolute entries of vSk−1

and Lemma 5.18 yields

||vSk ||2 ≤
1√
s
||vSk−1

||1,

which gives

||vS0
||2 ≤

ρ

2
√
s

∑
k≥1

||vSk−1
||1 ≤

ρ

2
√
s
||v||1.

This implies NSP for matrix A and concludes the proof that basis pursuit works under δ2s < 1/3.

In (5.11), we interpreted the vector vS0
as being 2s-sparse. In fact, it is an s-sparse vector. So a better

bound ||vS0
||22 ≤ ||A(vS0

)||22/(1 − δs) can be used. This will turn into a su�cient condition based on δs
instead of δ2s. There are many such su�cient conditions involving the constants δs. One can cite, for
example, the works of [Cai, Wang & Xu I '10] and [Cai & Zhang '13]. The �rst proved that basis pursuit
performs sparse recovery if δs < 0.307. The latter, that basis pursuit works under δs < 1/3. This is the
best known result involving δs.

In any case, the condition based on δ2s is more natural since it is known, after [Candès & Tao II '06],
that an algorithm recovering all s-sparse vectors x from the measurements y = Ax exists if and only if
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Estimate Numerical Approx. Paper
δ2s + δ3s < 1 ��� [Candès & Tao II '06]
δ3s + 3δ4s < 2 ��� [Candès, Romberg & Tao II '06]
δ2s <

√
2− 1 0.4142 [Candès '08]

δ2s < 2(3−
√

2)/7 0.4531 [Foucart & Lai '10]
δ2s < 3/(4 +

√
6) 0.4651 [Foucart '10]

δ2s < 1/(1 +
√

1.25) 0.4721 [Cai, Wang & Xu I '10]
δ2s < 4/(6 +

√
6) 0.4734 [Foucart II '10]5

δ2s < 0.4931 0.4931 [Mo & Li '11]
δ2s < 1/2 0.5000 [Cai & Zhang '13]
δ2s < 3/2− (1 +

√
41)/8 0.5746 [Zhou, Kong & Xiu '13]6

δ2s < 4/
√

41 0.6246 [Andersson & Strömberg '14]

Table 5.1: Historical Improvements on RIP Bounds

δ2s < 1. In table 5.5 we present the historical improvements in bounding RIP. We will now prove the last
result from this list. This is the best known bound on δ2s so far.

Theorem 5.19. ([Andersson & Strömberg '14])7: Suppose that the 2s-th restricted isometry constant of
the matrix A ∈ Cm×N satis�es

δ2s <
4√
41
≈ 0.6246. (5.12)

Then, for any x ∈ CN and y ∈ Cm with ||Ax− y||2 ≤ η, a solution x̃ of

min
z∈CN

||z||1 subject to ||Az − y||2 ≤ η,

approximates the vector x with errors

||x− x̃||1 ≤ Cσs(x)1 +D
√
sη and ||x− x̃||2 ≤

C√
s
σs(x)1 +Dη,

where the constants C,D > 0 depend only on δ2s.

This theorem is not only the best known bound on RIP but it also incorporates stability and robustness
for basis pursuit. From Theorem 3.18, we just need to prove that the matrix A satis�es NSP2,ρ,τ .
Precisely, we are going to prove the following.

Theorem 5.20. If the 2s-th restricted isometry constant of A ∈ Cm×N obeys (5.12), then the matrix A
satis�es the `2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0 depending only
on δ2s.

For this, we need a lemma called square root lifting inequality. It is a kind of a counterpart of the
inequality ||v||1 ≤

√
s||v||2 for v ∈ Cs. It is important to note that this inequality, together with shifting

inequality [Cai, Wang & Xu I '10], are the main techniques used in all the papers in Table 5.5 to improve
δ2s. The proof of both results can be found in [Cai, Wang & Xu I '10] and [Cai, Wang & Xu II '10].

Lemma 5.21. ([Cai, Wang & Xu I '10]): For a1 ≥ a2 ≥ · · · ≥ as ≥ 0,√
a2

1 + · · ·+ a2
s ≤

a1 + · · ·+ as√
s

+

√
s

4
(a1 − as).

5Valid for large s. It needs some limit arguments when s→∞.
6This result needs also a technical condition δ8s < 1. All the other results do not need supplementary conditions to hold.
7The theorem appeared in the literature for the �rst time on the book [Rauhut & Foucart '13], published on 2013. It

was based on a preprint version of the paper [Andersson & Strömberg '14] from 2012.
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Proof. Let us start by noting that the lemma is equivalent to the following statement{
a1 ≥ a2 ≥ · · · ≥ as ≥ 0

(a1 + · · ·+ as)/
√
s+

√
s

4 a1 ≤ 1
=⇒

√
a2

1 + · · ·+ a2
s +

√
s

4
as ≤ 1.

Therefore, we need to maximize the convex function

f(a1, a2, . . . , as) =
√
a2

1 + · · ·+ a2
s +

√
s

4
as,

over the convex polytope

C =

{
(a1, . . . , as) ∈ Rs : a1 ≥ · · · ≥ as ≥ 0 and

a1 + · · ·+ as√
s

+

√
s

4
as ≤ 1

}
.

As any point of C is a convex combination of its vertices and because the function f is convex, the
maximum is attained at a vertex of C. Besides, the vertices are intersections of s hyperplanes when we
force s of the s+ 1 inequalities to become equality. From this we obtain following possibilities:

1. If a1 = · · · = as = 0, then f(a1, a2, . . . , as) = 0.

2. If (a1 + · · ·+ as)/
√
s+

√
s

4 a1 = 1 and a1 = · · · = ak > ak+1 = · · · = as = 0 for some 1 ≤ k ≤ s− 1,
then one has a1 = · · · = ak = 4

√
s/(4k+s), and consequently f(a1, a2, . . . , as) = 4

√
ks/(4k+s) ≤ 1

by the AM-GM inequality with the pair (4k, s).

3. If (a1 + · · ·+ as)/
√
s+

√
s

4 a1 = 1 and a1 = · · · = as > 0 then one has a1 = · · · = as = 4/(5
√
s), and

consequently f(a1, a2, . . . , as) = 4/5 + 1/5 = 1.

Thus we have obtained

max
(a1,...,as)∈C

f(a1, a2, . . . , as) = 1,

and this concludes the proof.

Proof. (of Theorem 5.19): We need to prove NSP2,ρ,τ , that is, we need to �nd constants 0 < ρ < 1 and
τ > 0 such that, for any v ∈ CN and any S ⊂ [N ] with #(S) = s,

||vS ||2 ≤
ρ√
s
||vS ||1 + τ ||Av||2.

Again it is enough to consider an index set S =: S0 of s largest absolute entries of v. The same construction
of Theorem 5.17 works here, that is we partition the complement S0 of S0 in [N ] as S0 = S1 ∪ S2 ∪ . . .
where

• S1 is the index set of the s largest absolute entries of v in S0.

• S2 is the index set of the s largest absolute entries of v in S0 ∪ S1.

etc. Now, in contrast to Theorem 5.17 where we interpreted the vector vS0 as being 2s-sparse, we think
of it it as being s-sparse and then we can write

||AvS0 ||22 = (1 + t)||vS0 ||22 with |t| ≤ δs.
The �rst estimate we need to establish is that, for any k ≥ 1,

∣∣〈AvS0
, AvSk〉

∣∣ ≤√δ2
2s − t2||vS0

||2||vSk ||2. (5.13)
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In order to do it, we will �rst normalize the vectors vS0 and vSk by de�ning u = vS0/||vS0 ||2 and
w = eiθvSk/||vSk ||2 with θ being chosen to give |〈Au,Aw〉| = Re〈Au,Aw〉. For real numbers α, β ≥ 0 to
be chosen later, we have

2|〈Au,Aw〉| = 1

α+ β

[
||A(αu+ w)||22 − ||A(βu− w)||22 − (α2 − β2)||Au||22

]
≤ 1

α+ β

[
(1 + δ2s)||αu+ w||22 − (1− δ2s)||βu− w||22 − (α2 − β2)(1 + t)||u||22

]
=

1

α+ β

[
(1 + δ2s)(α

2 + 1)− (1− δ2s)(β2 + 1)− (α2 − β2)(1 + t)
]

=
1

α+ β

[
α2(δ2s − t) + β2(δ2s + t) + 2δ2s

]
.

Setting α = (δ2s + t)/
√
δ2
2s − t2 and β = (δ2s − t)/

√
δ2
2s − t2 we can derive

2|〈Au,Aw〉| ≤
√
δ2
2s − t2
2δ2s

[
δ2s + t+ δ2s − t+ 2δ2s

]
= 2
√
δ2
2s − t2,

which is the same as the equation (5.13) we wanted to prove. After this, one observes that

||AvS0 ||22 =

〈
AvS0 , A

(
v −

∑
k≥1

vSk

)〉
= 〈AvS0 , Av〉 −

∑
k≥1

〈AvS0 , AvSk〉

≤ ||AvS0
||2||Av||2 +

∑
k≥1

√
δ2
2s − t2||vS0

||2||vSk ||2

= ||vS0
||2
(√

1 + t||Av||2 +
√
δ2
2s − t2

∑
k≥1

||vSk ||2
)
. (5.14)

For each k ≥ 1, let us denote by v−k and v+
k the smallest and the largest absolute entries of v on Sk.

Using Lemma 5.21, we obtain

∑
k≥1

||vSk ||2 ≤
∑
k≥1

(
1√
s
||vSk ||1 +

√
s

4
(v+
k − v−k )

)
≤ 1√

s
||vS0
||1 +

√
s

4
v+

1 ≤
1√
s
||vS0
||1 +

1

4
||vS0
||2.

Using this last inequality in the right-hand side of (5.14) while changing ||AvS0 ||22 by (1 + t)||vS0 ||22 on its
remote left-hand side, and canceling one ||vS0

|| factor we conclude that

(1 + t)||vS0 ||2 ≤
√

1 + t||Av||2 +

√
δ2
2s − t2√
s

||vS0
||1 +

√
δ2
2s − t2
4

||vS0
||2

≤ (1 + t)

(
1√

1 + t
||Av||2 +

δ2s√
s
√

1− δ2s2
||vS0
||1 +

δ2s

4
√

1− δ2
2s

||vS0 ||2
)
,

where we used
√
δ2
2s − t2/(1 + t) ≤ δ2s/

√
1− δ2s. Then, dividing by 1 + t, using 1/

√
1 + t ≤

√
1− δ2s

and rearranging, the last expression leads to

||vS0
||2 ≤

δ2s√
1− δ2

2s − δ2s/4
||vS0
||1√
s

+

√
1 + δ2s√

1− δ2
2s − δ2s/4

||Av||2.

This is exactly the NSPρ,τ if
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ρ :=
δ2s√

1− δ2
2s − δ2s/4

< 1,

namely, if 5δ2s/4 <
√

1− δ2
2s or δ2s < 4/

√
41. Then, if this condition is satis�ed, we have NSPρ,τ and

therefore stable and robust reconstruction of compressible vectors.

We have related results for thresholding and greedy algorithms. All the proofs can be found in Sections
6.3 and 6.4 of [Rauhut & Foucart '13]. There are two standard thresholding algorithms: iterative hard
threshold and hard threshold pursuit. In the second one, for example, we have a sequence de�ned
inductively by

Sn+1 = Ls(x
n +A∗(y −Axn)). (HTP1)

xn+1 = argmin{||y −Az||2, supp(z) ⊂ Sn+1}, (HTP2)

where Ls(z) denotes the index set of s largest absolute entries of a vector z ∈ CN . The success of hard
thresholding pursuit is guaranteed by the following theorem8

Theorem 5.22. (Theorem 3.8 in [Foucart '11]): Suppose that the 3s-th restricted isometry constant of
the matrix A ∈ Cm×N satis�es

δ3s <
1√
3
≈ 0.5773.

Then, for x ∈ CN , e ∈ Cm, and S ⊂ [N ] with #(S) = s, the sequence xn de�ned by (HTP1) and (HTP2)
with y = Ax+ e satis�es, for any n ≥ 0,

||xn − xS ||2 ≤ ρn||x0 − xS ||2 + τ ||AxS + e||2. (5.15)

where ρ =
√
δ2
3s/(1− δ2

2s) < 1 and τ ≤ 5.15/(1− ρ).

It is important to note what occurs with threshold algorithms in general. If we take the limit n→∞,
iteration (5.15) yields ||x# − xS ||2 ≤ τ ||AxS + e||2 if x# ∈ CN is the limit of the sequence xn or at least
one of its accumulation points. The proof of this Theorem does not guarantee the existence of such limit.
However, the boundedness of ||xn|| is ensured by (5.15). Then we have, by the triangle inequality, that
||x − x#||2 ≤ ||xS ||2 + ||xS − x#||2, so choosing S as an index set of the s largest absolute entries of x
gives

||x− x#||2 ≤ σs(x)2 + τ ||AxS + e||2.
This is a very interesting estimate which di�ers from the one available for basis pursuit due to the fact that
we have now σs(x)2 instead of σs(x)1. This is exclusive for threshold algorithms. But the classical error
estimates as in the `1-minimization are also available. We just need to make the replacement s→ 2s, and
then, instead of a hypothesis based on δ3s, we have one based on δ6s. This is described in the following
result

Theorem 5.23. Suppose that the 6s-th order restricted isometry constant of the matrix A ∈ Cm×N
satis�es δ6s < 1/

√
3. Then, for all x ∈ CN and e ∈ Cm, the sequence xn de�ned by (HTP1) and (HTP2)

with y = Ax+ e, x0 = 0 and s replaced by 2s satis�es, for any n ≥ 0,

||x− xn||1 ≤ Cσs(x)1 +D
√
s||e||2 + 2ρn

√
s||x||2,

||x− xn||2 ≤
C√
s
σs(x)1 +D||e||2 + 2ρn||x||2,

8[Foucart '11] established results about the analysis for a family of thresholding algorithms indexed by an integer k.
There, iterative hard thresholding and hard thresholding pursuit correspond to the cases k = 0 and k =∞, respectively, as
described in Section 2.3.
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where the constants C,D > 0 and 0 < ρ < 1 depend only on δ6s. In particular, if the sequence xn clusters
around some x# ∈ CN , then

||x− x#||1 ≤ Cσs(x)1 +D
√
s||e||2, and ||x− x#||2 ≤

C√
s
σs(x)1 +D||e||2.

For greedy algorithms, we will state results for the orthogonal matching pursuit despite the existence of
results for other algorithms, such as CoSaMP. See, for example, the original paper [Needell & Tropp '08],
where stability and robustness were stated under the condition δ4s ≤ 0.1, or the improved Theorem
6.27 of [Rauhut & Foucart '13], where the condition δ4s ≤ 0.17157 does the job. For OMP, a curious
phenomenon occurs. It was noticed in Theorem 3.2 of [Mo & Shen '12] that standard RIP arguments
are not enough to establish the recovery of all s-sparse vectors in at most s iterations. Here we present
a modi�ed version which appears in [Rauhut & Foucart '13] but follows the same ideas. We take a �xed
1 ≤ η < √s and consider the (s+ 1)× (s+ 1) matrix with `2-normalized columns de�ned by

A =


η
s

Id
...
η
s

0 . . . 0
√

s−η2

s

 .
In order to estimate RIP, we need to compute

A∗A− Id =


η
s

0
...
η
s

η
s . . . η

s 0

 .
This matrix has eigenvalues −η/√s, η/√s and 0 with multiplicity s− 1. Then,

δs+1 = ||A∗A− Id||2→2 = η/
√
s.

However, consider the s-sparse vector x = [1, . . . , 1, 0]. It is not recovered from y = Ax after s iterations.
To see why, just note that the s+ 1 index is wrongly picked at the �rst iteration. Indeed

A∗(y −Ax0) = A∗Ax =


η
s

Id
...
η
s

η
s . . . η

s 1




1
...
1
0

 =


1
...
1
η

 .
Since OMP chooses one index in each iteration, we conclude that OMP fails to recover this speci�c vector
in s iterations for this given matrix. This is what the naive greedy algorithm does. As [Rauhut & Foucart '13]
points out, there are two ways for circumvent this. Perform more than s iterations or �nd a way to reject
the wrong indices by modifying the OMP. However in both cases the sparse recovery can be established
if the restricted isometry constant is su�ciently small.

Now, in order to state the result about OMP convergence, we consider a more general greedy algorithm
which starts with an index set S0, x0 = argmin{||y −Az||, supp(z) ⊂ S0} and iterating scheme

Sn+1 = Sn ∪ L1(A∗(y −Axn)) (OMP1)

xn+1 = argmin{||y −Az||2, supp(z) ⊂ Sn+1}. (OMP2)

Note that the usual OMP algorithm corresponds to the choice S0 = ∅ and x0 = 0. The following theorem
was �rst established in [Zhang '11] but restated and generalized in [Rauhut & Foucart '13].
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Theorem 5.24. (Theorem 6.25 in [Rauhut & Foucart '13]): Suppose that A ∈ Cm×N has restricted
isometry constant

δ13s <
1

6
.

Then there is a constant C > 0 depending only on δ13s, such that, for all x ∈ CN and e ∈ Cm, the
sequence xn de�ned by (OMP1) and (OMP2) with y = Ax+ e satis�es

||y −Ax12s||2 ≤ C||AxS + e||2,
for any S ⊂ [N ] with #S = s. Furthermore, if δ26s < 1/6, then there are constants C,D > 0 depending
only on δ26s, such that, for all x ∈ CN and e ∈ Cm, the sequence xn de�ned by (OMP1) and (OMP2)
with y = Ax+ e satis�es

||y −Ax12s||2 ≤ C||AxS + e||2
for any S ⊂ [N ] with #S = s. Furthermore, if δ26s < 1/6, then there are constants C,D > 0 depending
only on δ26s < 1/6, such that, for all x ∈ CN and e ∈ Cm, the sequence xn de�ned by (OMP1) and
(OMP2) with y = Ax+ e satis�es, for any 1 ≤ p ≤ 2

||x− x24s||p ≤
c

s1−1/p
σs(x)1 +Ds1/p−1/2||e||2.

Nowadays there are many variations on greedy algorithm for sparse recovery. We could also cite
stagewise OMP, regularized OMP and CoSaMP. A comparison between them can be found in the survey
[Blanchard & Tanner '15].

5.6 RIP Limitations

We saw that with RIP we could guarantee the convergence of all the main algorithms used for sparse
recovery. We just need to ensure the existence of matrices with small RIP constant in the right regime
of sparsity. Even more, RIP gives better scale measurements than coherence. However, the restricted
isometry property has some limitations.

For example, we could ask if it is possible to increase the bound on δs (or δks for some k), making
δs → 1 and continue to ensure the recovery of sparse vectors for matrices with RIP constant su�ciently
close to 1. This would be the ideal situation. If that was true, taking any matrix A, the linear systems
Ax = b it would be generically solvable, i.e., would be possible to �nd sparse solution for this system.

Unfortunately this is not the case. We have two counterexamples, one for δs and another for δ2s, that
show there is little hope to improve RIP constant inde�nitely.

Theorem 5.25. (Theorem 4.1 in [Cai, Wang & Xu II '10]): Let s be a positive integer. Then there exists
a (2s− 1)× 2s matrix A with restricted isometry constant δs = (s− 1)/(2s− 1) and two nonzero s-sparse
vectors β1 and β2 with disjoint supports such that Aβ1 = Aβ2. As a corollary, there exists a matrix with
δs < 1/2 such that it is impossible to recover sparse vectors.

While this �rst counterexample is simple and direct, the second one, which is based on δ2s, is a little
more sophisticated. We �rst need the following de�nition

De�nition 5.26. Given a matrix Φ ∈ Rm×N with unit spectral norm ||Φ||2→2 = 1, we de�ne the
asymmetric RIC σ2

k as

σ2
k(Φ) = min

xΩ
#Ω≤k

||ΦxΩ||22
||xΩ||22

Remark 33. As the maximum of a singular value of any squared submatrix is bounded by 1, a matrix
Φ with unit spectral norm with given σ2

k implies the existence of a rescaled matrix Ak = (2/(1 + σ2
k))1/2Φ

with restricted isometry constant satisfying
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δk(Ak) ≤ 1− σ2
k(Φ)

1 + σ2
k(Φ)

. (5.16)

Theorem 5.27. (Theorem 3 of [Davies & Gribonval '09]): Consider 0 < p ≤ 1 and let 0 < ηp < 1 be the

unique positive solution to η2/p
p + 1 = 2

p (1− ηp). Then

1. If Φ ∈ Rm×N is a unit spectral matrix, 2s ≤ m < N and

σ2
2s(Φ) > 1− 2

2− pηp, (5.17)

then all s-sparse vectors can be uniquely recovered by basis pursuit

2. For every ε > 0 there exists integers s ≥ 1, N ≥ 2s+ 1 and a matrix Φ ∈ R(n−1)×N with

σ2
2s(Φ) > 1− 2

2− pηp − ε

for which there exists a s-sparse vector which cannot be uniquely recovered via basis pursuit.

For p = 1 we have η2
1 + 2η1 − 1 = 0, hence η1 =

√
2− 1 and the right-hand side in (5.17) is 3− 2

√
2.

In terms of the standard RIC for the rescaled matrix Ak, with k = 2s, this means that, using (5.16), that
for any ε > 0, there exists a matrix A with δ2s < 1/

√
2 + ε where `1-recovery can fail. Therefore there is

no hope in the improvement of RIP constant beyond 1/
√

2 ≈ 0.707. What remains is to close the gap.
In the case of δs, from 1/3 to 1/2, and in the case of δ2s, from 0.6246 to 0.707.

Up until now we have said nothing about the di�culty in the combinatorial nature of the calculation
of RIP. Evaluating RIP, namely, computing the constant δs for some matrix A and a level of sparsity s is a
di�cult problem. The intractability comes from the fact that any brute-force method would have to look
at all submatrices with column subsets of size up to s. Despite a lot of computational evidence, this was
an open problem in complexity theory until the end of 2013. It was solved by [Tillmann & Pfetsch '14].

Theorem 5.28. Given a matrix A ∈ Qm×N and a positive integer s, the problem to decide whether
there exists some rational constant δs < 1 such that A satis�es RIP of order s with constant δs is
coNP-complete.

Corollary 5.29. For a given matrix A ∈ Qm×N and a positive integer s, it is NP-hard to compute the
restricted isometry constant δs.

It is important to note that the result above is for the case δ = 1, i.e., it does not imply the result for
every �xed constant δ < 1.

Also, we can ask whether a matrix A satis�es RIP with given order s and given constant δs ∈ (0, 1).
This is known as the RIP certi�cation problem. It was also solved in [Tillmann & Pfetsch '14], although
[Bandeira, Dobriban, Mixon & Sawin '13] derived the result independently. The result is a little weaker
than the previous one.

Theorem 5.30. Given a matrix A ∈ Qm×N , a positive integer s and some constant δs ∈ (0, 1), it is
coNP-hard to decide whether A satis�es the RIP of order s with constant δs.

It remains to be shown that the problem is also in the coNP class of complexity. Remark 5 in
[Tillmann & Pfetsch '14] explicitly asks:

Open Problem: Prove that the RIP certi�cation problem is coNP-complete.

This kind of complexity results open a branch of investigation on approximation algorithms to compute
bounds on δs instead of searching for exact polynomial time algorithms.
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We saw, after Theorem 3.3, that sparse recovery is guaranteed if we take the measurements matrix
and rescale, reshu�e or add some new measurement. This will not change the NSP property, but these
operations will corrupt the RIP property.

Reshu�ing a measurement matrix is the same as multiplying it by a permutation matrix, but
δs(UA) = δs(A) for any unitary matrix U , so in this case the RIP remains unchanged. However, if
we rescale the measurements, replacing the measurement matrix A ∈ Cm×N by DA, with D ∈ Cm×m as
a diagonal matrix, we can increase the restricted isometry constant. Even worse, we may have trouble
with the scalar rescaling, where we replace the matrix A by λA for some λ ∈ C. For a very simple
example of this deterioration, suppose that we have a matrix A with δS(A) < 3/5. Recalling that
δs = maxS⊂[N ], #S≤s ||A∗SAS − Id||2→2, we can estimate the restricted isometry constant of 2A as

δs(2A) = max
S⊂[N ], #S≤s

||(2AS)∗(2AS)− Id||2→2 ≥ ||(2AS)∗(2AS)− Id||2→2 = ||4A∗SAS − 4Id + 3Id||2→2

= ||4(A∗SAS− Id) + 3Id||2→2 = max
||x||2=1

〈
x,
(

3Id+ 4(A∗SAS− Id)
)
x
〉

= 3 + 4||A∗SAS− Id||2→2 ≥ 3−4δs(A)

> δs(A).

In case we add some new measurements, and therefore more information, the RIP could also be
perturbed. Consider a matrix with δs(A) < 1 and let δ > δs(A). Let us append a new row [0 . . . 0

√
1 + δ]

and call the new matrix Ã. With the aid of the vector x = [0 . . . 0 1] we conclude that ||Ax||22 ≥ 1 + δ.
This implies δS(Ã) > δs(A).

Therefore, RIP is a su�cient condition for sparse recovery but can be, sometimes, a poor su�-
cient condition. It does not capture some operations that can be done with the measurement ma-
trix. Also, some works argue that it does not capture the essence of the structure of sparsity, see
[Adcock, Hansen & Roman '15] and references therein.
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Chapter 6

Interlude: Non-asymptotic Probability

�There is a tendency in teaching to reduce probability problems to pure analysis as soon
as possible and to forget the speci�c characteristics of probability theory itself. Such treatments

are based on a poorly de�ned notion of random variables usually introduced at the outset."
William Feller in An Introduction to Probability Theory and Its Applications Vol. 1

6.1 Introduction

The purpose of this chapter is to take an interlude on Compressive Sensing theory and introduce some
modern concepts related to Probability theory. Probability theory is concerned with obtaining informa-
tion from the data being generated by some well-known data generating process. For example, one could
ask when (and if) the surname �Montgomery� will disappear from families in USA or UK. For this, we
can compute the expected number of Montgomery's births if one has a model for birth and death process
and a model for the choice of names.

The original purpose of Probability was to calculate odds in games of chance. It was the Theory
of Chance. For example, the gambler's ruin was in several circles of intellectual discussions during the
Enlightenment. Most of the modern ideas in Probability arose at that time. Some historical account of
Probability can be found at [Stigler '90], [Hacking '06], [Fischer '11] and [von Plato '98].

As Feller points out in his legendary book [Feller '68], in the forties �few mathematicians outside
the Soviet Union recognized probability as a legitimate branch of mathematics. Applications were limited
in scope, and the treatment of individual problems often led to incredible complications�. In fact, a
tipping point happened when Kolmogorov published his seminal work axiomatizing Probability. He and
his collaborators/students Khinchin, Gnedenko, Prokhorov, Dynkin, Shiryaev, etc have had a profound
in�uence on making Probability a prestigious and intense �eld of research. Also, we should mention Levy,
von Mises, Cramer, von Neumann, Je�reys, Savage, de Finetti, Doob and Feller among many others as
being part of this �revolution�.

Nowadays probability is a very important branch of mathematics with lots of rami�cations and ap-
plications to the real world. It pervades all the sciences and thoughts about uncertainty are fundamental
in the modeling of any phenomena. Close to the subject of this dissertation, the techniques developed in
Machine Learning and Statistical Signal Processing con�rm this fact.

Through this chapter we will adopt the non-asymptotic point of view, generalize the Bernoulli and
Gaussian distributions through the subgaussian distribution and state some important inequalities such
as Gordon's Lemma and the concentration of Gaussian measure for Lipschitz functions. All of this will be
done in order to use some probabilistic tools in Compressive Sensing. Then we will prove the suitability
of random matrices in the optimal regime, as discussed in the Chapter 5, for sparse vector recovery.

The reader should have in mind that many of the major breakthroughs in Compressive Sensing, and
also in many of modern Data Science subareas, relies on probabilistic arguments. Hence we spend some
time collecting and demonstrating tools which will help us to understand the rest of this dissertation.
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We will not focus on basic concepts of Probability. Instead, the reader should consult [Resnick '13] or
[Durrett '10] for essentials from Probability. The book [Feller '68] should always be consulted.

6.2 Subgaussian and Subexponential Random Variables

�Many years ago (in 1893) I called the Laplace-Gaussian curve the normal curve, which name,
while it avoids an international question of priority, has the disadvantage of leading people to believe

that all other distributions of frequency are in one sense or another �abnormal�.
Karl Pearson in [Pearson '20]

The most renowned probability distribution is the Gaussian distribution. The richness of its prop-
erties, on one side, and his simplicity on the other side turn it ubiquitous. From the Bean Machine
developed by Francis Galton to the Central Limit Theorem, passing by the maximization of entropy and
least squares, science changed since its introduction. An account of its ubiquitous use can be seen at
[Kim & Shevlyakov '08] and references therein.

De�nition 6.1. A Gaussian random variable or normal random variable has probability density function

ψ(t) =
1√

2πσ2
e−(t−µ)2/(2σ2).

It has mean EX = µ and variance E(X−µ)2 = σ2. A standard Gaussian variable g is a Gaussian random
variable satisfying Eg = 0 and Eg2 = 1.

Proposition 6.2. Let g be a standard Gaussian random variable. Then, for all u > 0,

P(|g| ≥ u) ≤ min

{
1,

√
2

π

1

u

}
exp(−u2/2). (6.1)

P(|g| ≥ u) ≥ max

{√
2

π

1

u

(
1− 1

u2

)
,

(
1−

√
2

π
u

)}
exp(−u2/2). (6.2)

Proof. Using the de�nition of the probability density function of the Gaussian distribution, we have

P(|g| ≥ u) =
√

2
2π

∫∞
u
e−t

2/2dt. Then, a change of variables yields∫ ∞
u

e−t
2/2dt =

∫ ∞
0

e−(t+u)2/2dt = e−u
2/2

∫ ∞
0

e−tue−t
2/2dt. (6.3)

For the upper bound, on the one hand, we can use that e−tu ≤ 1 for t, u ≥ 0. Hence∫ ∞
u

e−t
2/2dt ≤ e−u2/2

∫ ∞
0

e−t
2/2dt =

√
π

2
e−u

2/2.

On the other hand, we can use that e−t
2/2 ≤ 1 and this leads to∫ ∞

u

e−t
2/2dt ≤ e−u2/2

∫ ∞
0

e−tudt =
1

u
e−u

2/2.

For the lower bound, we use the estimates e−t
2/2 ≥ 1− t2/2 and e−tu ≥ 1− tu in Equation (6.3) and this

yields, respectively, ∫ ∞
u

e−t
2/2dt ≥ e−u2/2

∫ ∞
0

(
1− t2

2

)
e−tudt = e−u

2/2

(
1

u
− 1

u3

)
,

and ∫ ∞
u

e−t
2/2dt ≥ e−u2/2

∫ ∞
0

e−t
2/2(1− ut)dt = e−u

2/2

(√
π

2
− u
)
.



6.2. SUBGAUSSIAN AND SUBEXPONENTIAL RANDOM VARIABLES 105

Besides tail estimates, another useful fact is the expression for the moment-generating function of the
Gaussian random variable.

Proposition 6.3. Let X be a Gaussian random variable. Then, for θ ∈ R, we have E(eθX) = eθ
2/2 and,

more generally, for θ ∈ R and a < 1/2,

E(eaX
2+θX) =

1√
1− 2a

exp

(
θ2

2(1− 2a)

)
.

As a consequence, the moments of the Gaussian distribution are given by EX2n+1 = 0 and EX2n =
(2n)!/(2nn!).

Proof. See Section 5.6 of [DeGroot & Schervish '11].

Inspired by the tails and all of the remarkable properties of Gaussian distribution, one might try to
�nd other distributions with similar tails (and, consequently, some similar properties). This leads to the
concept of subgaussian random variables.

De�nition 6.4. A random variable X is called subgaussian1 if there exists constants β, κ > 0 such that

P(|X| ≥ t) ≤ βe−κt2 for all t > 0.

By Proposition 6.2, a standard Gaussian random variable is subgaussian with β = 1 and κ = 1/2.
Other examples of subgaussian random variables include Rademacher random variables, with distribution
P{X = −1} = P{X = 1} = 1/2, and bounded random variables, which satisfy |X| < M almost surely
for some M .

Despite the fact that the class of subgaussian variables is quite wide, it does not encompass some
important distributions which have heavier tails than the Gaussian distribution. An example is the
exponential distribution, which satis�es P(|X| ≥ t) ≤ e−t for all t > 0. Because of this we need to de�ne
the class of subexponential random variables.

De�nition 6.5. A random variable X is called subexponential if there exists constants β, κ > 0 such
that

P(|X| ≥ t) ≤ βe−κt for all t > 0.

It follows immediately from this de�nition that that any subgaussian variable is also subexponential.
One can ask if the converse is also true, that is, if any subexponential variable is also subgaussian.
After developing some equivalent conditions for a random variable being subgaussian, we will see a
counterexample.

This class of subgaussian random variables was introduced by [Kahane '60] in order to establish
a su�cient condition for the almost sure uniform convergence of certain random series of functions.
Nowadays these variables have been proved to be fundamental not only for the study of series but also
in the Geometry of Banach Spaces and for Random Matrices. They shown to be very important in the
context of Compressive Sensing, as we will see in Chapter 7. More information and discussion about
them can be found at [Buldygin & Kozachenko '98].

Now we proceed to the �rst equivalence. It relies on a general relations between moments and tails
of a random variable. We will see two other ways to characterize them.

Theorem 6.6. Suppose that X is a random variable satisfying

(E|X|p)1/p ≤ αβ1/pp1/γ for all p ∈ [p0, p1],

for some constants α, β, γ, p1 > 0, p0 > 0. Then

P(|X| ≥ e1/γαu) ≤ βe−uγ/γ ,
1Subgaussian is the free translation of the French sous-gaussienne coined in the work [Kahane '60].
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for all u ∈ [p
1/γ
0 , p

1/γ
1 ]. Conversely, suppose that a random variable X satis�es, for some γ > 0,

P(|X| ≥ e1/γαu) ≤ βe−uγ/γ for all u > 0,

then, for p > 0,

E|X|p ≤ βαp(eγ)p/γΓ

(
p

γ
+ 1

)
. (6.4)

As a consequence, for p ≥ 1,

(E|X|p)1/p ≤ C1α(C2,γβ)1/pp1/γ for all p ≥ 1, (6.5)

where C1 = e1/(2e) ≈ 1.2019 and C2,γ =
√

2π/γeγ/12. In particular, C2,1 ≈ 2.7245 and C2,2 ≈ 2.0939.

Proof. For the �rst part, for an arbitrary κ > 0, we use Markov's inequalityfor |X|p (for some p to be
�xed later) and obtain

P(|X| ≥ eκαu) ≤ E|X|p
(eκαu)p

≤ β
(
αp1/γ

eκαu

)p
.

The choice p = uγ and κ = 1/γ yields the result. For the converse part, we have

E|X|p =

∫
Ω

|X|pdP =

∫
Ω

∫ |X|p
0

1 dxdP =

∫
Ω

∫ ∞
0

I{|X|p≥x}dxdP =

∫ ∞
0

∫
Ω

I{|X|p≥x}dPdx

=

∫ ∞
0

P(|X|p ≥ x)dx = p

∫ ∞
0

P(|X|p ≥ tp)tp−1dt = p

∫ ∞
0

P(|X| ≥ t)tp−1dt

= pαpep/γ
∫ ∞

0

P(|X| ≥ e1/γαu)up−1du ≤ pαpep/γ
∫ ∞

0

βe−u
γ/γup−1du

= pβαpep/γ
∫ ∞

0

e−v(γv)p/γ−1dv = βαp(eγ)p/γ
p

γ
Γ

(
p

γ

)
= βαp(eγ)p/γΓ

(
p

γ
+ 1

)
.

Now, in order to prove (6.5), we just use Stirling's formula for the Gamma function. It states that,
for x > 0, Γ(x) =

√
2πxx−1/2e−x exp (θ(x)/12x) with 0 ≤ θ(x) ≤ 1 (the proof of this fact can be found

in many references, e.g., [Jameson '15]2). Applying this formula to the Gamma function in the equation
above yields

E|X|p ≤ βαp(eγ)p/γ
√

2π

(
p

γ

)p/γ+1/2

e−p/γeγ/(12p) =
√

2πβαpeγ/(12p)pp/γ+1/2γ−1/2.

Under the assumption p ≥ 1, we obtain

(E|X|p)1/p ≤
(√

2πeγ/12

√
γ

β

)1/p

αp1/γp1/(2p).

Lastly, the maximum value of p1/(2p) is attained for p = e and so p1/(2p) ≤ e1/(2e). This concludes the
proof of Theorem 6.6.

2For historical references about Stirling's formula, one can look at [Fowler '00] and [Tweddle '84]. Also, sixteen variations
on the theme can be found at [Dominici '08].
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Particularizing Theorem 6.6 for Subgaussian variables with α = (2eκ)−1/2 and γ = 2 shows that its
moments satisfy (E|X|p)1/p ≤ C̃κ−1/2β1/pp1/2 = O(

√
p) for all p ≥ 1. Also, for a Subexponential variable

X, setting α = (eκ)−1 and γ = 1, Theorem 6.6 leads to (E|X|p)1/p ≤ Cκ−1β1/pp = O(p) for all p ≥ 1.
We have another equivalence for Subgaussian variables. This is sometimes called super-exponential

moment equivalence.

Proposition 6.7. A random variable X is Subgaussian, i.e., P(|X| ≥ t) ≤ Ce−ct
2

, if and only if there
exist constants c > 0 and C ≥ 1 such that E[exp(cX2)] ≤ C.

Proof. First, let us proof the only if part. Using Theorem 6.6, (more precisely, the moment estimate
(6.4)) with κ = 1/(2eα2), we have EX2n ≤ βκ−nn!. Using the Taylor series of the exponential function
and Fubini's theorem leads to

E[exp(cX2)] = 1 +

∞∑
n=1

cnE[X2n]

n!
≤ 1 + β

∞∑
n=1

cnκ−nn!

n!
= 1 +

βcκ−1

1− cκ−1
,

provided c < κ. Now, in order to prove the if part, we just use Markov's inequality. It leads to

P(|X| ≥ t) = P
(

exp(cX2) ≥ exp(ct2)
)
≤ E[exp(cX2)]e−ct

2 ≤ Ce−ct2 .

The study of deviation inequalities for the tail bounds of a random variable can be done through
the moment-generating function. This is the content Cramér-Cherno� theorem below. Therefore, an
equivalent de�nition for subgaussian variables will be given via moment-generating function. We begin
with a de�nition.

De�nition 6.8. The cumulant-generating function of a real-valued random variable is de�ned as the
logarithm of the moment-generating function, that is,

CX(θ) = lnE exp(θX).

We now present the general deviation bound.

Theorem 6.9. Let X1, . . . , XM be a sequence of independent (real-valued) random variables with cumulant-
generating functions CXi , i ∈ [M ]. Then, for t > 0,

P
( M∑
i=1

Xi ≥ t
)
≤ exp

(
inf
θ>0

{
− θt+

M∑
i=1

CXi(θ)
})

.

Proof. For θ > 0, Markov's inequality and independence yield

P

(
M∑
i=1

Xi ≥ t
)

= P

(
exp

(
θ

M∑
i=1

Xi

)
≥ exp(tθ)

)
≤ e−θtE

[
exp(θ

M∑
i=1

Xi)

]
= e−θtE

[
M∏
i=1

exp(θXi)

]

= e−θt
M∏
i=1

E[exp(θXi)] = e−θt
M∏
i=1

exp(CXi(θ)) = exp

(
− θt+

M∑
i=1

CXi(θ)

)
.

Taking the in�mum over θ > 0 concludes the proof.

Thus, another important equivalent de�nition of a (zero mean) Subgaussian variable is given in terms
of the moment-generating function as the following theorem shows.
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Theorem 6.10. Let X be a random variable.

i.) If X is Subgaussian with EX = 0, then there exists a constant c (depending only on β and κ) such
that

E[exp(θX)] ≤ exp(cθ2) for all θ ∈ R. (6.6)

ii.) Conversely, if (6.6) holds, then EX = 0 and X is Subgaussian with parameters β = 2 and
κ = 1/(4c).

Proof. First, we will proceed with the proof of ii. Taking t, θ > 0 and applying Markov inequality yields

P(X ≥ t) = P(exp(θX) ≥ exp(θt)) ≤ E[exp(θX)]e−θt ≤ ecθ2−θt.

Choosing the optimal parameter θ = t/(2c) on the right-hand side leads to P(X ≥ t) ≤ e−t2/(4c), and
the same computation above with −X instead of X shows that P(−X ≥ t) ≤ e−t

2/(4c). So, the union
bound yields what we want, that is,

P(|X| ≥ t) ≤ 2e−t
2/(4c).

Now, it remains to deduce thatX has zero mean. Using that 1+θX ≤ exp(θX) and taking the expectation
on both sides leads, for |θ| < 1, to

1 + θE(X) ≤ E[exp(θX)] ≤ exp(cθ2) ≤ 1 + (c/2)θ2 +O(θ4).

Taking θ → 0 yields EX ≤ 0. Making the same calculations with −X instead of X shows that EX ≥ 0.
Therefore, EX = 0. Now, to prove the �rst part, it is enough to prove it for θ ≥ 0 because the theorem
for θ < 0 follows just by substituting X by −X. As in the proof of Proposition 6.7, using the Taylor
series for the exponential function and Fubini's theorem yields

E[exp(θX)] = 1 + θE(x) +

∞∑
n=2

θnEXn

n!
= 1 +

∞∑
n=2

θnE|X|n
n!

,

since E(X) = 0 by hypothesis. Let us consider, for a moment, that 0 ≤ θ ≤ θ0 for some θ0 to be chosen
later. Using the moment estimate (E|X|p)1/p ≤ C̃κ−1/2β1/pp1/2 from Theorem 6.6, and Stirling's formula
in its version n! ≥

√
2πnne−n leads to

E[exp(θX)] ≤ 1 + β

∞∑
n=2

θnC̃nκ−n/2nn/2

n!
≤ 1 +

β√
2π

∞∑
n=2

θnC̃nκ−n/2nn/2

nne−n

≤ 1 + θ2 β(C̃e)2

√
2πκ

∞∑
n=0

(C̃eθ0κ
−1/2)n = 1 + θ2 β(C̃e)2

√
2πκ

1

1− C̃eθ0κ−1/2
= 1 + c1θ

2 ≤ exp(c1θ
2),

provided that C̃eθ0κ
−1/2 < 1. Therefore, if we choose θ0 = (2C̃e)−1

√
κ, we have the result for c1 =√

2βκ−1
(
(C̃e)2/

√
π
)
.

It remains to prove the result when θ > θ0. Actually, we will reformulate it and our goal will be to
prove E[exp(θX)] ≤ exp[(c2θ

2)] for some constant c2 > 0. First, observe that:

θX − c2θ2 = −
(√

c2θ −
X

2
√
c2

)2

+
X2

4c2
≤ X2

4c2
.

Using the constant c > 0 and C ≥ 1 from Proposition 6.7 and choosing c2 = 1/(4c) yields the following
estimate

E[exp(θX − c2θ2)] ≤ E
[

exp
(
X2/(4c2)

)]
= E

[
exp

(
cX2)

)]
≤ C.

Finally, we need again to use θ0 somehow. De�ning K = ln(C)θ−2
0 leads to
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E[exp(θX)] ≤ C exp(c2θ
2) = C exp(−Kθ2) exp

(
(c2 +K)θ2

)
≤ C exp(−Kθ2

0) exp((c2 +K)θ2)

≤ exp
(
(c2 +K)θ2

)
.

We divided the proof in two cases, setting c3 = max{c1, c2 +K} completes the proof.

This result tells us that the moment-generating function of a subgaussian variable exists for allθ ∈ R.
As [Rudelson '14] points out, here we have a subtle di�erence from subexponential variables. For the
latter, the bound for the moment-generating function only holds in a neighborhood of zero. This comes
from the fact the moment-generating function of the exponential random variable with parameter 1 does
not exist for θ ≥ 1.

Another interesting result is that the sum of zero mean subgaussian variables is also subgaussian as the
next theorem shows. It is important to note that there is also a version of this theorem for subexponential
variables, i.e, the subexponential property is also preserved under summation in the case of independent
subexponential random variables.

Remark 34. Equation 6.8 below is sometimes called Hoe�ding inequality for subgaussian variables.

Theorem 6.11. Let X1, . . . , XM be a sequence of independent zero mean subgaussian random variables
with subgaussian parameter c in (6.6) . For a = (α1, . . . , αM ) ∈ RM , the random variable X =

∑M
i=1 αiXi

is Subgaussian, i. e.,

E exp(θX) ≤ exp(c||a||22θ2). (6.7)

In particular, by Theorem 6.10,

P

(∣∣∣∣∣
M∑
i=1

αiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

4c||a||22

)
for all t > 0. (6.8)

Proof. Using the independence of X1, . . . , XM , we have

E exp

(
θ

M∑
i=1

αiXi

)
= E

M∏
i=1

exp(θαiXi) =

M∏
i=1

E exp(θαiXi) ≤
M∏
i=1

exp(cθ2α2
i ) = exp(c||a||22θ2).

This proves the �rst inequality. For the second, we just need to use part ii.) of Theorem 6.10.

The discussion of Theorem 6.6, Proposition 6.7 and Theorem 6.10 tells us that we have four equivalent
ways of de�nining a subgaussian random variable. Using the tail of the distribution, the moments' bounds,
super-exponential moment equivalence or, in the case of zero mean variables, the moment-generating
function. Even more, the class of Subgaussian variables in a given probability space forms a normed
space through the following de�nition.

De�nition 6.12. The subgaussian norm of X, denoted by ||X||ψ2
is de�ned by

||X||ψ2
= sup

p≥1
p−1/2(E|X|p)1/p.

In the discussion about a Subgaussian variable X, it is not necessary for X to have mean zero. This
is done only to simplify the notation in proofs. Anyway, X always can be transformed into a zero-mean
variables just by observing that if X is Subgaussian then so is X − EX. Moreover, by the triangle
inequality ||X −EX||ψ2 ≤ ||X||ψ2 + ||EX||ψ2 and the simple estimate ||EX||ψ2 = |EX| ≤ E|X| ≤ ||X||ψ2 ,
we have ||X − EX||ψ2 ≤ 2||X||ψ2 . For the subexponential case, we have:
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De�nition 6.13. The subexponential norm of X, denoted by ||X||ψ1 is de�ned by

||X||ψ1 = sup
p≥1

p−1(E|X|p)1/p.

The normed space equipped with any of these two norms can be viewed as a particular cases of a
Birnbaum-Orlicz space. Some details of this generalization can be found in Section 4 of [Rivasplata '12]
or in the notes of Chapter 8 from [Rauhut & Foucart '13]. Finally, we can exemplify why Rademacher
and bounded variables are subgaussian variables and give an example of a subexponential which is not
subgaussian.

Example 6.14. (Rademacher variables): Let us compute the moment-generating function of Rademacher
variables, that is, variables which satis�es P{X = −1} = P{X = 1} = 1/2.

E[eθX ] =
1

2

(
e−θ + eθ

)
=

1

2

( ∞∑
k=0

(−θ)k
k!

+

∞∑
k=0

θk

k!

)
=

∞∑
k=0

θ2k

(2k)!
≤ 1 +

∞∑
k=1

θ2k

2kk!
= eθ

2/2.

This tells us that Rademacher variables are subgaussian.

Example 6.15. (Bounded variables): Let X be mean zero random variable contained in some interval
[a, b]. Let X̃ be an independent copy of X. Here we will use a technique called symmetrization, where
after the introduction of this new variable, we use a symmetry argument with the aid of a Rademacher
variable. A di�erent argument can be found in Theorem 2.5 of [Rivasplata '12]. Now it will be necessary
to denote by EX the expected value with respect to the variable X.

EX [eθX ] = EX
[

exp
(
θ
(
X − EX̃ [X̃]

))]
=

∫ b

a

eθXe−θEX̃ [X̃]p(x)dx ≤
∫ b

a

eθXEX̃ [e−θX̃ ]p(x)dx =

EX [eθX ]EX̃ [e−θX̃ ] = EX,X̃
[
eθ(X−X̃)

]
.

where we used the convexity of the exponential and Jensen's inequality. Now, denoting by Z a Rademacher
variable, we have that the distribution of Z(X − X̃) is the same as X − X̃. This yields

EX,X̃
[
eθ(X−X̃)

]
= EX,X̃

[
EZ [eθZ(X−X̃)]

]
≤ EX,X̃

[
e
θ2(X−X̃)2

2

]
≤ e θ

2(b−a)2

2 .

There the penultimate inequality follows from applying the calculations of Example 6.14 conditionally,
using that (X, X̃) is �xed, and the last inequality follows from |X−X̃| ≤ b−a. This proves that bounded
variables are subgaussian.

The main di�erence between subgaussian and subexponential variables can be described in terms of
the moment-generating function. In particular, we can cite the following theorem that can be found in
Lemma 5.15 from [Vershynin '12].

Theorem 6.16. Let X be a mean zero subexponential random variable. Then, for t such that |t| ≤
c/||X||ψ1 , one has E exp(tX) ≤ exp(Ct2||X||2ψ1

), where C, c > 0 are absolute constants.

While, by Theorem 6.10, the moment-generating function of subgaussian variables exists for all θ ∈
R, this is not the case for subexponential variables. Therefore, if we �nd a subexponential variable
with a moment generating function that does not exists for all θ, we will have found an example of a
subexponential variable which is not subgaussian. This is shown in the next example.

Example 6.17. Consider the random variable Y = X2, where X has a standard normal distribution.
This variables is called χ2 random variable. Since its mean is 1, we calculate the moment-generating
function of Y − 1. Thus, for θ < 1/2 we have

E[eθ(Y−1)] =
1√
2π

∫
R
eθ

2(z2−1)e−z
2/2dz =

e−θ√
1− 2θ

.
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For θ > 1/2, the moment-generating function of Y − 1 does not exist. Therefore, the one for Y also does
not exist. This shows that Y cannot be subgaussian. On the other side, we have

e−θ√
1− 2θ

≤ e2θ2

= e4θ2/2.

for |θ| < 1/4. Thus, this shows that Y = X2 is subexponential.

6.3 Nonasymptotic Inequalities

�Yet, moving beyond this terra �rma, one quickly
encounters examples where classical methods are brittle�.

Joel Tropp in [Tropp '15]

In the �rst part of the last century, researches of Probability Theory were mainly concerned with the
asymptotic behavior of random variables. See [Feller '45]. After many e�orts, the two most important
theorem of Probability, The Law of Large Numbers and the Central Limit Theorem, got a de�nitive
shape. Here we state them not in the general but instead, in a pleasant form.

Theorem 6.18. (Law of Large Numbers): Let X1, X2, . . . be a sequence of independent, identically
distributed random variables with mean µ. Consider the sum Sn = X1 + · · ·+Xn. Then, as n→∞,

Sn
n
→ µ almost surely.

Theorem 6.19. (Central Limit Theorem): Let X1, X2, . . . be a sequence of independent, identically
distributed random variables with mean µ and variance σ2. Consider the sum Sn = X1 + · · · + Xn and
normalize it to obtain a random variable with zero mean and unit variance as follows

Zn =
Sn − E[Sn]√

Var(Sn)
=

1

σ
√
N

n∑
i=1

(Xi − µ).

We denote the normal distribution by g ∼ N(0, 1). Then, as n→∞,

P(Zn ≥ t)→ P(g ≥ t) =
1√
2π

∫ ∞
t

e−x
2/2dx, ∀t ∈ R.

For a historical account, see [Seneta '13] and [Fischer '11]. As one can note there is no mention to
the rate of convergence. Thus, the �rst question is how to give a bound on the maximal error of the
approximation between the normal distribution and the true distribution of the scaled sample mean. In
the case of Theorem 6.19, we have the following answer, called the Barry-Esseen Theorem. For a proof,
see Section XVI.5 of [Feller '72].

Theorem 6.20. (Barry-Esseen Theorem): In the setting of Theorem 6.19, for every n and every t ∈ R,
we have

∣∣P(Zn ≥ t)− P(g ≥ t)
∣∣ ≤ 3ρ√

n
.

Here ρ = E|X1 − µ|3/σ3 and g ∼ N(0, 1).

Despite the fact that this theorem provides a quantitative version for the error, this decays to zero
very slowly, even slower than linear in n. Since we are dealing with the normal distribution and we saw
in Proposition 6.2 that its distribution has an exponential decay tail, we expect to �nd better estimates.

This is the purpose of Nonasymptotic Probability: derive quantitative �nite versions of limit of sums of
random variables with a typically exponential decay. It is a very rich and active research �eld, specially
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important for computational purposes, such as in Monte Carlo methods and modern Data Science in
general.

These concentration inequalities will provide bounds on how a random variable deviates from some
value. Most often this value will be its expected value. In Section 6.2 we came across an example in
Theorem 6.11. This example is a particular case of a very general statement. Also, in Theorem 6.9, we
saw that if we know how to compute the cumulant-generating function of a family of random variables,
then an exponential decay for the tail appears naturally. Before we move forward, let us look at an
example from [Vershynin '15].

Example 6.21. If we toss a coin N times, what is the probability that we get at least 3N/4 heads?
Denoting the Bernoulli variables, i.e., variables which satisfy P(Xi = 0) = P(Xi = 1) = 1/2, by Xi,
we model our problem through the binomial random variable SN =

∑N
i=1Xi. It is well known that

ESN = N/2 and Var(SN ) = N/4. Then, Chebyshev's inequality leads to

P
(
SN ≥ 3N/4

)
≤ P

(
|SN −N/2| ≥ N/4

)
≤ 4/N.

This is a linear decay. The main point here is that, for su�ciently large N , we can use a naive estimate
from the Central Limit Theorem and then we should expect the following

P
(
SN ≥ 3N/4

)
≤ P

(
SN −N/2√

N/4
≥
√
N/4

)
≈ P(g ≥

√
N/4) =

1√
2π
e−N/8.

The comparison between the two decay rates is shocking. However it is not possible to make the reasoning
above rigorous. New techniques, such as Theorem 6.9, were invented in order to deduce such kind of
estimates.

The literature of concentration inequalities is vast and has many results. It is important to cite the
contributions of Hoe�ding, Bernstein. Cramer, Cherno�, Azuma, McDiarmid [Ledoux '01]. This kind
of techniques, where there is solely a �nite number of variables, is fundamental for Data-Science and
Machine Learning. In this scenario, N typically corresponds to the sample size of the dataset.

We saw in Theorem 6.11 that a concentration inequality is valid for subgaussian variables. For the
subexponential case, we could ask if a similar inequality is available. In this case, we must proceed more
carefully, since the tails of sub-exponential distributions may not decay fast enough to make the moment-
generating function �nite everywhere, as Theorem 6.16 shows. The inequality for this case must take into
account moments of higher orders. The next theorem, known as Bernstein's inequality, quanti�es these
informations. Also, if the variance is small, then it can be a large improvement on Theorem 6.11.

Theorem 6.22. Let X1, . . . , XM be independent zero mean random variables such that, for all integers
n ≥ 2,

E|Xi|n ≤ n!Rn−2σ2
i /2 for all i ∈ [M ] (6.9)

for some constants R > 0 and σi > 0, i ∈ [M ]. Then, for all t > 0,

P

(∣∣∣∣∣
M∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2/2

σ2 +Rt

)
, where σ2 =

M∑
i=1

σ2
i . (6.10)

Proof. Let us estimate the moment-generating function of Xi. This will allows us to use Theorem 6.9.
Again, using Taylor series of exponential and Fubini's theorem, we have

E[exp(θXi)] = 1 + θE[Xi] +

∞∑
n=2

θnE[Xn
i ]

n!
= 1 +

θ2σ2
i

2

∞∑
n=2

θn−2E[Xn
i ]

n!σ2
i /2

.

If we de�ne Fi(θ) =
∑∞
n=2

θn−2E[Xni ]

n!σ2
i /2

, then we have E[exp(θXi)] = 1 + θ2σ2
i Fi(θ)/2 ≤ exp(θ2σ2

i Fi(θ)/2).

Thus, introducing F (θ) = maxi∈[M ] Fi(θ) and remembering that σ2 =
∑M
i=1 σ

2
i , Theorem 6.9 yields
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P
( M∑
i=1

Xi ≥ t
)
≤ inf
θ>0

exp(θ2σ2F (θ)/2− θt) ≤ inf
0<Rθ<1

exp(θ2σ2F (θ)/2− θt).

Since we have E[Xn
i ] ≤ E[|Xi|n], our hypothesis 6.9 leads to

Fi(θ) ≤
∞∑
n=2

θn−2E[|Xi|n]

n!σ2
i /2

≤
∞∑
n=2

(Rθ)n−2 =
1

1−Rθ ,

provided that Rθ < 1. Thus, we derive that F (θ) ≤ (1−Rθ)−1 and obtain that

P
( M∑
i=1

Xi ≥ t
)
≤ inf

0<θR<1
exp

(
θ2σ2

2(1−Rθ) − θt
)
. (6.11)

Notice that the choice θ = t/(σ2 +Rt) satis�es Rθ < 1. Plugging into Equation 6.11 allows us to conclude

P
( M∑
i=1

Xi ≥ t
)
≤ exp

(
t2σ2

2(σ2 +Rt)2

1

1− Rt
σ2+Rt

− t2

σ2 +Rt

)
= exp

(
− t2/2

σ2 +Rt

)
.

The same estimate could be derived for −Xi in place of Xi. Applying the union bound concludes the
proof.

From Theorem 6.22 we easily derive a Bernstein inequality type for subexponential variables.

Theorem 6.23. Let X1, . . . , XM be independent zero mean subexponential random variables, i.e., P(|Xi| ≥
t) ≤ βe−κt for some constants β, κ > 0 for all t > 0, i ∈ [M ]. Then

P

(∣∣∣∣∣
M∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− −(κt)2/2

2βM + κt

)
. (6.12)

Proof. As in the proof of Theorem 6.6, we will estimate the high moments. So, for n ≥ 2 ∈ N,

E|Xi|n = n

∫ ∞
0

P(|Xi| ≥ t)tn−1dt ≤ βn
∫ ∞

0

e−κttn−1dt =

βnκ−n
∫ ∞

0

e−xxn−1dx = βnΓ(n− 1)κ−n = n!κ−(n−2) 2βκ−2

2
.

Therefore, condition 6.9 holds with R = κ−1 and σ2
i = 2βκ−2. Thus, according to Theorem 6.22, the

theorem follows.

Bernstein's inequality could be generalized for matrices. One can show that there are exponential
concentration inequalities for the spectral norm of a sum of independent random matrices. This is
fundamental for, among other things, problems of blind deconvolution in Signal Processing and problems
of covariance matrix estimation in Statistics. See the fantastic book [Tropp '15]. The next theorem is a
large deviation inequality for Rademacher chaos. It tells us that a homogeneous Rademacher chaos can
be controlled by a mix of subexponential and subgaussian tails. Such estimates are known by the name
of Hanson-Wright inequalities.

De�nition 6.24. Let ε = (ε1, . . . , εM ) be a Rademacher vector. For a self-adjoint matrix A ∈ CM×M
with zero diagonal we de�ne the homogeneous Rademacher chaos by

X = ε∗Aε =
∑
j 6=k

εjεkAjk (6.13)

Remark 35. Since A is self-adjoint, X will be real-valued even when A is a complex matrix. this allows
us to reduce the study to real-valued symmetric matrices A ∈ RM×M .
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Theorem 6.25. Let A ∈ RM×M be a symmetric matrix with zero diagonal and let ε be a Rademacher
vector. Then the homogeneous Rademacher chaos X de�ned in Equation (6.13) satis�es, for t > 0

P(|X| ≥ t) ≤ 2 exp

(
−min

{
3t2

128||A||2F
,

t

32||A||2→2

})
=


2 exp

(
− 3t2

128||A||2F

)
if 0 < t ≤ 4||A||2F

3||A||2→2
,

2 exp

(
− t

32||A||2→2

)
if t > 4||A||2F

3||A||2→2
.

(6.14)

In order to prove it, we need a powerful technique, called decoupling, that reduces stochastic dependen-
cies of variables such as Rademacher chaos. For a proof of this fact, see Theorem 6.1.1 of [Vershynin '15]
or Theorem 8.11 of [Rauhut & Foucart '13].

Theorem 6.26. Let X = (X1, . . . , Xn) be a sequence of independet random variables with E[Xi] = 0 for
all i ∈ [M ]. Let αjk with j, k ∈ [n], be a double sequence of elements in a �nite-dimensional vector space
V . If F : V → R is a convex functions, then

E

[
F

( n∑
j,k=1
j 6=k

αj,kXjXk

)]
≤ E

[
F

(
4

n∑
j,k=1
j 6=k

αj,kXjX
′
k

)]
,

where X ′ denotes an independent copy of X.

Proof. (of Theorem 6.25): Inspired by the ideas of Theorem 6.9, we will estimate the moment-generating
function of X. For θ > 0, using the convexity of f(x) = exp(θx) and Theorem 6.26 leads to

E exp(θX) = E exp

(
θ
∑
j 6=k

εjεkAjk

)
≤ E exp

(
4θ
∑
j,k

εjε
′
kAjk

)

EεEε′ exp

(
4θ
∑
k

ε′k
∑
j

εjAjk

)
≤ E exp

(
8θ2

∑
k

(∑
j

εjAjk

))
, (6.15)

where in the last step we used Theorem 6.11 conditionally on ε and the fact that the subgaussian
parameter for Rademacher is c = 1/2, as calculated in Example 6.14. By the symmetry of A, we have,∑

k

(∑
j

εjAjk

)2

=
∑
k

∑
j

εjAjk
∑
`

ε`A`k =
∑
j,`

εjε`
∑
k

AjkAk` = ε∗A2ε.

Set B = A2. We can estimate the moment-generatng function of the positive semide�nite chaos ε∗Bε by

E
[

exp(λε∗A2ε)
]

= E
[

exp
(
λ
∑
j

Bjj + λ
∑
j 6=k

εjεkBjk

)]
≤ eλtr(B)E

[
exp

(
4λ
∑
j,k

εjε
′
kBjk

)]

≤ eλtr(B)E
[

exp
(

8λ2
∑
k

(∑
j

εjBjk

)2)]
.

Again we have applied Theorem 6.11 conditionally on ε and Theorem 6.26. Since B is positive semide�-
nite, its square-root exists and then∑

k

(∑
j

εjBjk

)2

= ε∗Bε = (B1/2ε)∗B(B1/2ε) ≤ ||B||2→2ε
∗Bε.

In the case 8λ||B||2→2 < 1, Jensen's inequality yields
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E exp(λε∗Bε) ≤ exp(λtr(B))E
[

exp(8λ2||B||2→2ε
∗Bε)

]
≤ exp(λtr(B))

(
E
[

exp(λε∗Bε)
])8λ||B||2→2

.

Rearranging this expression leads to

E
[

exp(λε∗Bε)
]
≤ exp

(
λtr(B)

1− 8λ||B||2→2

)
, 0 < λ < (8||B||2→2)−1. (6.16)

After setting λ = 8θ2 we have, for 0 < θ < (16||A||2→2)−1,

E exp(θX) ≤ exp

(
8θ2tr(A2)

1− 64θ2||A2||2→2

)
= exp

(
8θ2||A||2F

1− 64θ2||A||22→2

)
.

Using Markov's inequality, for 0 < θ ≤ (16||A||2→2)−1, we obtain

P(X ≥ t) = P(eθX ≥ eθt) ≤ e−θtE
[
eθX

]
≤ exp

(
− θt+

8θ2||A||2f
1− 64θ2||A||22→2

)
≤ exp

(
− θt+

8θ2||A||2F
1− 1/4

)
≤ exp(−θt+ 32θ2||A||2F /3).

If t ≤ 4||A||2F /(3||A||2→2), the optimal choice θ = 3t/(64||A||2F ) satis�es θ ≤ (16||A||2→2)−1. For t given
by this inequality, we therefore obtain

P(X ≥ t) ≤ exp

(
− 3t2

128||A||2F

)
.

Now, we must look to the complementary inequality, namely t > 4||A||2F /(3||A||2→2). In this case, setting
θ = (16||A||2→2)−1 leads to

P(X ≥ t) ≤ exp(−θt+ 32θ2||A||2F /3) ≤ exp(−θt+ θt/2) = exp(−θt/2) = exp(−t/(32||A||2→2)),

since in this case we have θ < 3t/(64||A||2F ). To �nish, see that X has the same distribution of −X and
we can derive the same bounds for P(X ≤ −t). Taking the union bound yields the theorem.

This kind os estimate can be generalized to quadratic forms involving more general subgaussian
random vectors, see [Hanson & Wright '71]. Speci�cally in the Gaussian case, see [Bechar '09].

6.4 Comparison of Gaussian Processes

�Tout le monde croit que les erreurs suivent une loi normale,
me disait un jour M. Lippmann, car les expérimentateurs car ils pensen qu'il s'agit
d'un théorème, et les mathématiciens que pensent que c'est un fait expérimental.�3

Henri Poincaré in Calcul des Probabilités, p.171

In many situations one wishes to compare two families of random variables (Xt)
n
t=1 and (Yt)

n
t=1 in

order to extract some information about one of them using the other. There are many reasons for that
but typically we choose the latter as having more tractable properties than the former. Thus we wish to
provide an upper bound on (Xt)

n
t=1 just by knowing that (Yt)

n
t=1 is larger in some sense.

This is remarkable in the case of Gaussian variables. In the inconspicuous report [Slepian '62], David
Slepian realized that the covariance structure can be regarded as an indicator of how Gaussian variables
behave jointly. Therefore, using its correlation we can quantify how much the variables in each of the

3A free translation of Poincarés' quote is �Everybody believes that the errors follow a normal law, said one day to me M.
Lippmann, because the experimenters think that it is a theorem, and the mathematicians think that it is an experimental
fact.�
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families maintain similar expected magnitudes. Then, if we want to compare functions of two families
of Gaussian random variables, it is a good ideia to compare their covariances. This is con�rmed by
Theorem 6.29, due to Slepian and Fernique. Before we state it, let us make some de�nitions.

De�nition 6.27. A stochastic process is a collection Xt, t ∈ T of random variables indexed by some set
T . It is said to be centered if EXt = 0 for all t ∈ T . A process is called centered Gaussian if for each
�nite collection t1, . . . , tn ∈ T , the random vector (Xt1 , . . . , Xtn) is a zero mean Gaussian random vector.

A typical Gaussian Process is given by Xt =
∑M
i=1 gixi(t), where g = (g1, . . . , gM ) is a standard

Gaussian random vector and xj : T → R, are arbitrary functions. It is interesting to note that Gaussian
process are receiving increasing attention in the Machine Learning community and leading to new solu-
tions for a wide class of regression and classi�cation problems. One can see [Rasmussen & Williams '05]
for details of how to deal with them in a computational fashion. As in the �nite case, Gaussian processes
can be generalized to the concept of subgaussian processes.

De�nition 6.28. Given a stochastic process, we de�ne the pseudometric (two distinct points can have
zero distance)

d(s, t) = (E|Xs −Xt|2)1/2, s, t ∈ T.
A centered stochastic process Xt is called subgaussian if

E exp(θ(Xs −Xt)) ≤ exp(θ2d(s, t)2/2), s, t ∈ T, θ > 0. (6.17)

Now, the comparison lemma.

Theorem 6.29. Let X,Y be zero mean Gaussian random vectors on Rm. If

E|Xi −Xj |2 ≤ E|Yi − Yj |2 ∀i, j ∈ [m],

then
E max
j∈[m]

Xj ≤ E max
j∈[m]

Yj .

Since we have E|Xi−Xj |2 = EX2
i −2EXiXj+EX2

j , if we have the additional assumption EX2
i = EY 2

i ,
then the hypothesis of the Slepian-Fernique Comparison Lemma is, actually, EXiXj ≥ EYiYj . Therefore,
as we said in the beginning of this section, the comparison of covariance implies in the comparison of
expected maxima of Gaussian vectors. This theorem has a deep generalization for min-max of Gaussian
variables disposed in a retangular array. It was proved in [Gordon '85] and restated in [Gordon '88].

Theorem 6.30. (Theorem A of [Gordon '88]): Let Xij , Yij, i ∈ [n], j ∈ [m] be two families of zero mean
Gaussian random variables. If

E|Xij −Xkl|2 ≤ E|Yij − Ykl|2 ∀i 6= k and j, l,

E|Xij −Xil|2 ≥ E|Yij − Yil|2 ∀i, j, l,
then

E min
i∈[n]

max
j∈[m]

Xij ≥ E min
i∈[n]

max
j∈[m]

Yij .

This comparison lemma was generalized even more. One should look at [Kahane'86] and [Vitale '00]
for some generalizations. Also, [Tong '80] is a whole monograph dedicated to inequalities for multivariate
distributions. There, some interesting comments related to comparisons lemmas can be found.

Theorem 6.29 also generalizes to Gaussian processes indexed by in�nite sets. If we have that X =
(Xt)t∈T and Y = (Yt)t∈T are Gaussian processes and if E|Xs −Xt|2 ≤ E|Ys − Yt|2 for all s, t ∈ T , then
it also holds that

E sup
t∈T

Xt ≤ E sup
t∈T

Yt,
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where E supt∈T Xt, in this case, is de�ned by E supt∈T Xt = sup{E supt∈F Xt, F ⊂ T, F �nite}. This is
called lattice supremum and is used in order to avoid problems with nonmensurable sets. Theorem 6.30
generalizes in a similar way, using double index Gaussian processes.

Despite the intrinsic interest on the comparison theorems, in the �eld of Compressive Sensing we are
highly interested in some of their geometric corollaries. Before that, we need a notion about how to
measure the width of a set. It is a measure of the size of a set T in the sense that how well, on average,
the vectors in the set T can align with a randomly chosen direction.

De�nition 6.31. For a set T ⊂ RN , we de�ne its Gaussian width by

`(T ) = E sup
x∈T
〈g, x〉,

where g ∈ RN is a standard Gaussian variable.

With the aid of this de�nition and denoting, for a Gaussian vector g ∈ Rm, the mean of its `2-norm by
E||g||2 = Em, we have the celebrated Gordon's escape through the mesh theorem, consequence of Gordon's
Comparison Lemma.

Theorem 6.32. Let A ∈ Rm×N be a Gaussian random variable and T be a subset of the unit sphere
SN−1 = {x ∈ RN , ||x||2 = 1}. Then, for t > 0,

P
(

inf
x∈T
||Ax||2 ≤ Em − `(T )− t

)
≤ e−t2/2. (6.18)

Its proof can be found in Theorem 9.21 of [Rauhut & Foucart '13]. It relies on the comparison between
two well chosen Gaussian processes and on the use ofTheorem 6.30. The �rst process is, for x ∈ T and
y ∈ Sm−1, Xx,y = 〈Ax, y〉 while the second is Yx,y = 〈g, x〉+ 〈h, x〉, for g ∈ RN and h ∈ Rm independent
standard Gaussian vectors. A very similar argument will be developed in Theorem 7.12.

In this dissertation, we aim to understand when a measurement matrix is good in the sense that we
can use it to recover the unique sparsest vector it �captures�. Next chapter will deal with random matrices
as sensing matrices. In order to determine how good a random matrix is, thinking in terms of the Null
Space Property, good matrices will be the ones that avoids certain subsets. This is what Gordon called
�escapes a mesh�. For this to happen, of course, these subsets must be small in some sense. The precise
sense is given exactly by the concept of Gaussian width. A consequence of Theorem 6.32 that really
deserves to be called a escape through the mesh theorem is the next one.

Its uses for the problem of sparse recovery were �rst done by [Rudelson & Vershynin '08] and general-
ized for other convex problems by [Chandrasekaran, Recht, Parrilo & Willsky '12]. We start by de�ning
what is a Grassmanian.

De�nition 6.33. Let V be a �nite-dimensional vector space over a �eld K. The Grassmannian Gk(V )
is the set of all k-dimensional linear subspaces of V . If V has dimension d, then the Grassmannian is also
denoted Gk(d).

The following useful description is used for the Grassmanian. First, we need some de�nitions.

De�nition 6.34. For E ∈ Gk(d), we denote by PE the orthogonal projection onto E. We denote by
M(d,R) the set of all d× d real matrices endowed with the Frobenius norm. Also, we de�ne the set

G(d, k) = {P ∈M(d,R) | P 2 = P, P ∗ = P, rank(P ) = k}.

Proposition 6.35. The function f : Gk(V ) → G(d, k), E 7→ PE is a bijection. The set G(d, k) is a
compact metric space.

With a little more work, this identi�cation allows us to represent Gk(V ) as a submanifold of the
space of symmetrical matrices. Therefore, we can study all the interesting properties of the Grassmanian
through G(d, k) and then transfer the results by using the function f : Gk(V )→ G(d, k). Finally, we can
state the geometrical version of the Gordon's Escape Through the Mesh Theorem.
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Theorem 6.36. (Theorem 3.3 and Corollary 3.4 in [Gordon '88]): Take a closed subset T of the unit
sphere SN−1 = {x ∈ RN , ||x||2 = 1} and let Bε = {x ∈ RN : ||x||2 ≤ ε}. If `(T ) < (1 − ε)Em − εEN ,
then an (N −m)-dimensional subspace Y drawn uniformly from the Grassmannian GN−m(N) satis�es

P
(
Y ∩ (S +Bε) = ∅

)
≥ 1− 7

2
exp

(
− 1

2

(
(1− ε)Em − εEN − `(T )

3 + ε+ εEN/Em

)2)
.

In particular, with ε = 0, we have that if `(S) < Em, then an (N −m)-dimensional subspace Y drawn
uniformly from the Grassmannian GN−m(N) satis�es

P
(
Y ∩ S = ∅

)
≥ 1− 7

2
exp

(
− 1

18

(
Em − `(S)

)2
)
.

The main idea of its proof consists in making the identi�cation of the random subspace Y with the null
space of a certainm×N random matrix A with Gaussian entries. After, we change the original problem of
estimating P

(
null(A)∩(S+Bε) = ∅

)
into an estimative on P

(
‖A‖2 ≥ (1+δ)E‖A‖2

)
. This last probability

is, in turn, controlled by the concentration of measure inequality that we will develop in the next section.
The complete proof (with nice intuitive explanations) can be found at [Mixon's Blog - 02/08/2014].

6.5 Concentration of Measure

�Now only after Fourier and then by Paul Levy
Is rendered easy such a proof;

Without their tools perhaps, dear listener,
You'd demonstrate it as a tour de force;

I've tried without success.�
Excerpt of �de Moivre�, a poem by Richard Dudley in [Dudley '75].

The roots of concentration of measure phenomena can be traced back to the works of Émile Borel and
Paul Lévy. However, it was not before Vitali Milman's work on Geometric Banach Space Theory that
modern concepts and theorems related to the phenomena emerged. There, he revisited proofs of theorems
and provides deep analysis related to spherical sections of convex sets into high dimension normed spaces.
The understanding of this phenomena is a deep achievement, as Michel Talagrand points out: �The idea
of concentration of measure, which was discovered by Vitali Milman, is unarguably one of the greatest
ideas of analysis in our times� [Ledoux - Lecture II].

The quotes' author is another important character in the history of concentration of measure. In the
nineties he established connections between isoperimetric inequalities and concentration inequalities. See
section 1.2 of [Boucheron, Lugosi & Massart '13] for this connection. After these contributions, he was
able to solve many open problems on summation of random variables.

Loosely speaking, if we have a large number of random variables X1, . . . , Xn, one might ask what
happens with their sum assuming that they are bounded in average. This phenomenon essentially tells
us that if we have su�cient independence between them, this sum will be highly concentrated in a
much narrower range than the one expected by the classical convergence theorems of Probability. We can
quantify this by proving large deviation inequalities, that is, exponential upper bounds for the probability
of the sum (or more general functions) of random variables deviates from its mean.

This hypothesis of high degree of independence is fundamental. The idea is that since the random
variables are independent, it is di�cult for them to be �synchronized� in order to deviate its sum too far
from its mean.

There exist monographs entirely dedicated to this theme such as [Boucheron, Lugosi & Massart '13]
and [Ledoux '01]. Once again, Terence Tao's blog entries have elementary and pedagogical insights about
the subject [Tao's Blog - 01/03/2010]. Also, the book [Dubhashi & Panconesi '12] shows applications of
the theory and starts the discussion about the concentration phenomena from scratch.

Despite the generality of concentration of measure, in this dissertation, it will have a very special
meaning, namely, the guarantees that any L-Lipschitz function of a standard Gaussian random vector,
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regardless of the dimension, exhibits concentration like a scalar Gaussian variable with variance L2. It
was �rst proved by [Tsirelson, Ibragimov & Sudakov '76] using arguments based on stochastic calculus.

Theorem 6.37. Let f : Rn → R be a Lipschitz function with constant L > 0, i.e.

|f(x)− f(y)| ≤ L||x− y||2 ∀x, y ∈ Rn,

and g be a standard Gaussian random vector. Then, for all t > 0

P
(
f(g)− E

[
f(g)

]
≥ t
)
≤ exp

(
− t2

2L2

)
,

and consequently

P
(∣∣∣f(g)− E

[
f(g)

]∣∣∣ ≥ t) ≤ 2 exp

(
− t2

2L2

)
.

Before we develop all the required tools to prove this theorem, we must say that the constant 2 inside
the exponential is optimal. This follows from the case n = 1, f(x) = x and the lower tail bound for the
standard Gaussian stated in Proposition 6.2.

Remark 36. It is important to note that without any additional structure for the function f (such as
convexity), dimension-free concentration for Lipschitz functions need not hold for an arbitrary subgaussian
distribution. One can consult [Ledoux '01] for further results.

The original proof uses the idea of symmetrization, explored in Example 6.15 and Laplace transform
method, that is, to bound φ(θ) = E exp(θ(f(X)−E[f(X)])). It is less laborious than the approach adopted
here, but is has the disadvantage that it does not provide optimal constants for concentration. Instead,
we will rely on information theory methods, known as Herbst argument after [Davies & Simon '84]. First,
we need the de�nition of entropy of a random variable.

De�nition 6.38. For a nonnegative random variable X, we de�ne its entropy as

E(X) = E[φ(X)]− φ(E(X)) = E[X lnX]− E(X) ln(E(X)),

where φ is de�ned, for x > 0, as φ(x) = x ln(x) and extends continuously to x = 0 by φ(0) = 0. If the
�rst term in in�nite, then we set E(X) =∞.

It follows from the convexity of φ and by Jensen inequality that E(X) ≥ 0. Also, entropy of a random
variable is homogeneous of zeroth order, E(tX) = tE(X), by de�nition. Now, we are able to explain the
entropy method for obtaining concentration inequalities.

Remark 37. (Herbst Argument): We have a method, attributed to Ira Herbst4 to derive concentration
inequalities using information theory ideas. It is also called entropy method and it became highly pop-
ular after the work of Michel Ledoux on Talagrand's inequalities. See [Tao's Blog - 09/06/2009] and
[Ledoux '01]. The idea is to derive a bound on the entropy of eθX , for θ > 0 of the form E(eθX) ≤
g(θ)E[eθX ], for some function g. If we de�ne F (θ) = E[eθX ], this inequality will be equivalent to

E(eθX) ≤ θF ′(θ)− F (θ) lnF (θ) ≤ g(θ)F (θ). (6.19)

Also, if we set G(θ) = θ−1 lnF (θ), then Equation (6.19) reduces to G′(θ) ≤ θ−2g(θ). Moreover, we can
note that G(0) = limθ→0 θ

−1 lnF (θ) = F ′(0)/F (0) = E[X]. Therefore, integrating on both sides yields

G(θ)−G(0) = G(θ)− E[X] =

∫ θ

0

G′(t)dt ≤
∫ θ

0

t−2g(t)dt,

4This argument about how to derive concentration inequalities from Logarithm Sobolev Inequalities appeared for the
�rst time in Appendix A of [Davies & Simon '84].
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which implies that

E[eθ(X−E[X])] = eθ[G(θ)−E(x)] ≤ exp

(
θ

∫ θ

0

t−2g(t)dt

)
, θ > 0.

To conclude, we simply uses Markov's inequality to derive tail bounds for X − E[X].

Herbst argument together with logarithmic Sobolev inequality for Gaussian vectors are the main core
of our proof of measure concentration. Before we turn to it, we need to develop some information theory
results, such as the dual characterization of entropy. Let us begin with a basic convex inequality.

Lemma 6.39. For a given function f : RN → (−∞,∞] we have

〈x, y〉 ≤ f(x) + f∗(y) for all x, y ∈ RN ,

where f∗ : RN → (−∞,∞] is the convex conjugate of f de�ned by f∗(y) = supx∈RN {〈x, y〉 − F (x)}. For
the particular case f(x) = exp(x), it reads xy ≤ ex + y ln y − y for all x ∈ R, y > 0.

Proof. The inequality is obvious from the de�nition. For the particular case of f(x) = ex, we have that
the function x 7→ xy − exp(x) takes its maximum at x = ln y if y > 0 and this gives

f∗(y) = sup
x∈R
{xy − ex} =


y ln y − y if y > 0,

0 if y = 0,

∞ if y < 0.

From this convex conjugate, the inequality follows immediately.

Using this inequality, we are able to prove a dual characterization for entropy which will be very useful

Lemma 6.40. Let X be a nonnegative random variable satisfying E[X] <∞. Then

E(X) = sup{E[XY ] : E[exp(Y )] ≤ 1}.

Proof. Let us prove, �rst, the case of a strictly positive random variable X. We may assume that EX = 1
due to the homogeneity of the entropy. By Lemma 6.39, for a random variable Y satisfying E[exp(Y )] ≤ 1,
we have

E[XY ] ≤ E[exp(Y )] + E[X lnX]− E[X] ≤ E[X lnX] = E(X).

The next step is to prove the converse direction, that is, that E(X) ≤ E[XY ] for some Y . In order
to do this, we just simple choose Y = lnX − ln(EX). By the de�nition of E , this choice satis�es
E(X) = E[XY ] and also E exp(Y ) = E[X] exp(− ln(EX)) = 1. Therefore we have attained the supremum
and this concludes the theorem for positive variables. For the general nonnegative case, we just use an
approximation argument and the continuity of φ(x) = x lnx.

We have two useful consequences of the above dual characterization. Another characterization using
positive random variables and the subadditivity of entropy.

Corollary 6.41. For a nonnegative variable X, we have

E(X) = sup{E[X ln(Z)]− E[X] ln(E[Z]) : Z > 0}.

Also, for two nonnegative random variables X and Y , we have E(X + Y ) ≤ E(X) + E(Y ).

Proof. For the �rst part, we just make the substitution Y = ln(Z/E(Z)) for a positive random variable
Z. The second part follows from the properties of supremum and expected value.



6.5. CONCENTRATION OF MEASURE 121

It is time to introduce some notation. For a sequence of random variables X = (X1, . . . , Xn) and any
index i ∈ [n], we de�ne Xi = (X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xn) = (X1, . . . , Xi−1, Xi+1, . . . , Xn), that is,
we have the exclusion of the variable Xi from our sequence. Also, for a function f of X, we will write

EXif(X) = EXi [f(X1, . . . , Xi, . . . , Xn)] = E[f(X|Xi)].

for the conditional expectation. As one can note, this is a function of X1, . . . Xi−1, Xi+1, . . . , Xn but
it is constant with respect to the variable Xi. From this, we can de�ne the conditional entropy.

De�nition 6.42. For a vector X = (X1, . . . , Xn) and a function f(X) of this vector, the conditional
entropy is de�ned by

EXi(f(X)) = E
(
f(X|Xi)

)
= EXi(φ(f(X)))− φ(EXi(f(X)))

= EXi [f(X) ln f(X)]− EXi [f(X)] ln(EXi [f(X)]).

Now we have developed all the basic tools in order to start the laborious series of theorems that will
�nally lead to Theorem 6.37. The �rst theorem we will prove is called tensorization inequality. It enables
us to bound the entropy of a function of several variables by the sum of the entropies of this function in
terms of the individual variables.

Theorem 6.43. Let X = (X1, . . . , Xn) be a vector of independent random variables and let f be a
nonnegative function satisfying E[f(X)] <∞. Then

E(f(X)) ≤ E
[ n∑
i=1

EXi(f(X))

]
.

Proof. We will prove the theorem for strictly positive f . As in Lemma 6.40, for the general case we
just use that function φ is continuous at 0 and use an approximation argument. Let us de�ne the
conditional expectation operator Ei given by Ei[f(X)] = EX1,...,Xi−1 [f(X)] = E[X|Xi, . . . , Xn]. This
operator integrates out the dependence on the �rst i− 1 variables. Of course we have E1[f(X)] = f(X)
and En+1[f(X)] = E[f(X)]. Next, a smart telescopic decomposition leads to

ln(f(X))− ln(E[f(X)]) =

n∑
i=1

(ln(Ei[f(X)])− (ln(Ei+1[f(X)])). (6.20)

Now we use the characterization given by Corollary 6.41 with X = f(X), Z = Ei[f(X)] > 0 and E = EXi .

EXi
[
f(X)

(
ln(Ei[f(X)])− ln

(
EXi [Ei[f(X)]]

))]
≤ EXi(f(X)).

Using the independence and Fubini's theorem to interchange the order of integration yields

EXi [E[f(X)]] = EXiEX1,...,Xi−1
[f(X)] = Ei+1[f(X)].

To �nish, just take Equation (6.20), multiply it by f(X) and take expectation on both sides. This �nally
leads to

E(f(X)) = E
[
f(X)

(
ln(f(X))− ln(E[f(X)])

)]
=

n∑
i=1

E
[
EXi

[
f(X)

(
ln(Ei[f(X)])− ln(EXi [Ei[f(X)]])

)]]
≤

n∑
i=1

E[EXi(f(X))].
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There is a deep connection between concentration of measures and functional inequalities such as the
logarithmic Sobolev inequality. These inequalities are ubiquitous in many areas such as Partial Di�erential
Equations, Information Theory and Optimal Transport among others beyond, of course, Probability
Theory. In the latter, it has many connections, not only with concentration inequalities but also with
mixing times of Markov Chains. It is interesting to mention that in Information Theory, this type of
inequality shows a relation between entropy and Fisher information [Kitsos & Tavoularis '09]. They were
also used for the celebrated proof of Poincaré's Conjecture by G. Perelman. See [Tao's Blog - 24/04/2008]
for further information. The next theorem is an example of a log-Sobolev inequality for the case of
Rademacher vectors.

Theorem 6.44. Let f : {−1, 1}n → R be a real-valued function and ε be an n-dimensional Rademacher
vector. Then

E(f2(ε)) ≤ 1

2
E
[ n∑
i=1

(f(ε)− f(ε(i))2

]
, (6.21)

where ε(i) = (ε1, . . . , εi−1,−εi, εi+1, . . . , εn) is obtained from ε by �ipping the ith entry.

Proof. By Theorem 6.43, we have E(f2(ε)) ≤ E
[∑n

i=1 Eεi(f2(ε))
]
. Therefore, we just need to prove that,

for each i ∈ [n],

Eεi
(
f2(ε)

)
≤ 1

2
Eεi
[
f(ε)− f(ε(i))2

]
. (6.22)

For any realization of (ε1, . . . , εi−1, εi+1, . . . , εn), f(ε) and f(ε(i)) can only have two possible values. These
values will be denoted by a and b ∈ R, respectively. Using the de�nition of entropy, inequality (6.22) is
the same as the following scalar inequality

1

2

(
a2 ln(a2) + b2 ln(b2)

)
− a2 + b2

2
ln

(
a2 + b2

2

)
≤ 1

2
(a− b)2.

Thus, it remains to prove this elementary inequality. In order to do this, let us de�ne, for a �xed b, the
function

H(a) =
1

2

(
a2 ln(a2) + b2 ln(b2)

)
− a2 + b2

2
ln

(
a2 + b2

2

)
− 1

2
(a− b)2.

A tedious computation shows that the �rst and the second derivative of H(a) are given by

H ′(a) = a ln

(
2a2

a2 + b2

)
− (a− b) and H ′′(a) = ln

(
2a2

a2 + b2

)
+ 1− 2a2

a2 + b2
.

The �rst thing to note is that H(b) = 0 and H ′(b) = 0. Also, since lnx ≤ x − 1, we obtain H ′′(a) ≤ 0
for all a ∈ R. This implies that H is concave and then H(a) ≤ 0 for all a ∈ R. This establishes the
theorem.

The right-hand side of equation (6.21) can be interpreted as a gradient in a discrete version. If we
try to prove a similar inequality for continuous variables, such as Gaussian variables, then an authentic
gradient appears. This is the content of the Gaussian logarithm Sobolev inequality, proved by [Gross '75].
As pointed by [Ledoux - Lecture I], nowadays we have more than 15 di�erent proofs of this inequality.

Theorem 6.45. (Essentially Corollary 4.2 of [Gross '75]): Let f : Rn → R be a continuously di�erentiable
function satisfying E[φ(f2(g))] <∞ for a standard Gaussian vector g on Rn. Then

E(f2(g)) ≤ 2E
[
||∇f(g)||2

]
.
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Proof. The initial step is to prove the theorem for n = 1 and g being a standard Gaussian random
variable. After, we will prove a general version. Even more, we will start by taking f with compact
support. Since f ′ is uniformly continuous, its modulus of continuity ω(f ′, δ) = sup|t−s|≤δ |f ′(t) − f ′(s)|
satis�es ω(f ′, δ)→ 0 as δ → 0. Let ε = (ε1, . . . , εm) be a Rademacher vector and set

Sm =
1√
m

m∑
j=1

εj .

The idea is to use the Theorem 6.44, for Rademacher vectors, and the fact that Sm converges in distri-
bution to a standard normal random variable by the Central Limit Theorem. Equation (6.21) yields

E(f2(Sm)) ≤ 1

2
E
[ n∑
i=1

(f(ε)− f(ε(i))2

]
=

1

2
E
[ n∑
i=1

(
f(Sm)− f

(
Sm −

2εi√
m

))2]
.

Notices that for each i ∈ [m] we have∣∣∣∣f(Sm)− f
(
Sm −

2εi√
m

)∣∣∣∣ =

∣∣∣∣ 2εi√
m
f ′(Sm) +

∫ S

Sm−2εi/
√
m

(f ′(t)− f ′(Sm))dt

∣∣∣∣
≤ 2√

m
|f ′(Sm)|+ 2√

m
ω
(
f ′,

2√
m

)
.

It follows that

m∑
i=1

(
f(Sm)− f

(
Sm −

2εi√
m

))2

≤ 4

(
f ′(Sm)2 + 2|f ′(Sm)|ω

(
f ′,

2√
m

)
+ ω

(
f ′,

2√
m

)2
)
.

Using the boundedness of f and f ′, the central limit theorem implies that E[f ′(Sm)2] → E[f ′(g)2] and
E [f ′(Sm)2]→ E [f ′(g)2] as m→∞. Therefore, we conclude the inequality

E(f2(Sm)) ≤ 2E[f ′(g)2].

Now we turn to the general case where f does not have compact support. For a small ε > 0 given, the
hypothesis E[φ(f2(g))] <∞ ensure the existence of T > 0 such that for any subset I of R\[−T, T ],

1√
2π

∫
I

|φ(f(t)2)|e−t2/2dt ≤ ε and
1√
2π

∫
I

e−t
2/2dt ≤ ε.

Considering a continuously di�erentiable function h satisfying 0 ≤ h(t) ≤ 1 for all t ∈ R, h(t) = 1 for all
t ∈ [−T, T ] and h(t) = 0 for t 6∈ [−T − 1, T + 1]. We then set f̃(t) = f(t)h(t). This is a continuously
di�erentiable function with compact support. The result just proved above applies to this new function
and then gives

E(f̃2(g)) ≤ 2E[f̃ ′(g)2]. (6.23)

The subadditivity of the entropy, Corollary 6.41, provides

E(f2(g)) = E
(
f̃2(g) + f2(g)(1− h2(g))

)
≤ E(f̃2(g)) + E(f2(g)(1− h2(g)).

Introducing the sets I1 = {t ∈ R : |t| ≥ T, f(t)2 < e} and I2 = {t ∈ R : |t| ≥ T, f(t)2 ≥ e}, we can
estimate the second term of the right hand side after some calculations

E[f2(g)(1− h2(g))] =
1√
2π

∫
R\[−T,T ]

f2(t)(1− h2(t))e−t
2

dt ≤ 1√
2π

∫
I1

f2(t)e−t
2

dt+
1√
2π

∫
I2

f2(t)e−t
2

dt
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≤ e√
2π

∫
I1

e−t
2

dt+
1√
2π

∫
I2

φ(f2(t))e−t
2

dt ≤ (e+ 1)ε. (6.24)

For su�ciently small x, e.g., x < 1/e, the function |φ(x)| = |x lnx| is increasing. Applying |φ| to both sides
of Equation 6.24 leads to

∣∣φ(E[f2(g)
(
1−h2(g)

)])∣∣ ≤ ∣∣φ((1+e)ε)
∣∣ for a su�ciently small ε. With the aid of

the auxiliary sets I3 = {t ∈ R : |t| ≥ T, f2(t)(1−h2(t)) < e} and I4 = {t ∈ R : |t| ≥ T, f2(t)(1−h2(t)) ≥ e}
and denoting κ = maxt∈[0,e] |φ(t)| = e−1, we have∣∣E[φ(f2(g)(1− h2(g)))]

∣∣ ≤ κ√
2π

∫
I3

e−t
2/2dt+

1√
2π

∫
I4

φ(f2(g)(1− h2(g)))e−t
2/2dt ≤

κε+
1√
2π

∫
I4

φ(f2(g))e−t
2/2dt ≤ (κ+ 1)ε.

The triangular inequality in the de�nition of entropy leads to

E
(
f2(g)(1− h2(g))

)
≤
∣∣φ(E[f2(g)(1− h2(g))

])∣∣+
∣∣E[φ(f2(g)(1− h2(g))

)]∣∣ ≤ |φ((e+ 1)ε)|+ (κ+ 1)ε.

And using Equation (6.23), we derive E
(
f2(g)) ≤ E[f̃ ′(g)2] + (1 + κ)ε + |φ((1 + e)ε)|. Besides, applying

again the triangular inequality, we obtain

E[f̃ ′(g)2]1/2 = E[(f ′h+ fh′)(g)2]1/2 ≤ E[(f ′h)(g)2]1/2 + E[(fh′)(g)2]1/2.

Now it is time to analyze both terms of the right-hand side above. For the �rst one, we simple note that
E[(f ′h)(g)2] = E[f ′(g)2h(g)2] ≤ E[f ′(g)2]. For the second one, using estimate (6.24), it holds that

E[(fh′)(g)2] =
1√
2π

∫ ∞
−∞

f(t)2h′(t)2e−t
2/2dt ≤ ||h

′||2∞√
2π

∫
I1∪I2

f(t)2e−t
2/2dt ≤ (e+ 1)||h′||2∞ε. (6.25)

When we put all these steps together, we conclude that E[f̃ ′(g)2] ≤ E[f ′(g)2]1/2 + ||h′||∞((e + 1)ε)2.
Hence,

E(f2(g)) ≤ 2
(
E[f ′(g)2]1/2 + ||h′||∞((e+ 1)ε)1/2

)2

+ |φ((1 + e)ε)|+ (κ+ 1)ε.

This result is valid for any ε > 0 and since limt→0 φ(t) = φ(0) = 0, we can conclude

E(f2(g)) ≤ E[f ′(g)2].

The next step is to go from the one dimensional case to the general case. This will be done via the
tensorization inequality, Theorem 6.43. With its aid, we obtain

E(f2(g)) ≤ E

[
n∑
i=1

Egi(f2(g))

]
≤ 2E

[
n∑
i=1

(
∂f

∂xi
(g)

)2
]

= 2E
[
||∇f(g)||22

]
.

The main tools are in our hands. After all this e�ort, we can prove the (optimal) celebrated concen-
tration of measure inequality for Lipschitz functions.

Proof. (of Theorem 6.37): First of all, we will assume that the function f is di�erentiable. Since f
is Lipschitz with constant L. by hypothesis, this implies ||∇f(x)||2 ≤ L for all x ∈ Rn. Applying
Theorem 6.45 to eθf/2 leads to

E(eθf(g)/2) ≤ 2E
[∣∣∣∣∇eθf(g)/2/2

∣∣∣∣2
2

]
=
θ2

2
E
[
eθf(g)||∇f(g)||22

]
≤ θ2L2

2
E
[
eθf(g)

]
. (6.26)
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Here we stop for a moment in order to state an important comment. In the hypothesis of Theorem 6.37,
we must have E[φ(f2(g))] < ∞. In our case, this translates to E[φ(e2θf(g))] < ∞. This holds by the
Lipschitz hypothesis, since e2θf(g) ≤ e2θ|f(0)|eLθ||x||2 for all x ∈ Rn. If one looks carefully, Inequality
(6.26) is exactly what you would like to have to apply Herbst argument. This, in turn, implies

E
[
eθ(f(g)−E[f(g)])

]
≤ exp

(
θ

∫ θ

0

t−2g(t)dt

)
= exp(θ2L2/2).

Using Markov's inequality, we conclude

P(f(g)− E[f(g)] ≥ t) ≤ inf
θ>0

exp(−θt)E[eθ(f(g)−E[f(g)])] ≤ inf
θ>0

e−θt+θ
2L2/2 = e−t

2/(2L2).

The last step follows because the in�mum is attained at θ = t/L2. If we replace f by −f , we have the
same bound. Therefore, a union bound argument yields

P
(∣∣∣∣f(g)− E

[
f(g)

]∣∣∣∣ ≥ t) ≤ 2 exp

(
− t2

2L2

)
,

for f di�erentiable. In the general case of not necessarily di�erentiable f , for each ε > 0, we can �nd a
di�erentiable Lipschitz function g with the same Lipschitz constant such that |f(x) − h(x)| ≤ ε for all
x ∈ Rn. A proof of this classical analytical fact can be found at Appendix C of [Rauhut & Foucart '13].

P(f(g)− E[f(g)] ≥ t) ≤ P(h(g)− E[h(g)] ≥ t− 2ε) ≤ e−(t−2ε)2/(4L2).

But since ε > 0 can be made arbitrarily small, we have the result for general f . Again, replacing f by
−f and using a union bound, the theorem follows.

This deep theorem is useful to estimate a lot of things. Also, since all norms in Rn are Lipschitz
functions, we can use it to estimate geometrical notions like the Gaussian width. Here we provide a
simple example.

Example 6.46. Let us understand the concentration of the χ2-distribution. If Xk ∼ N(0, 1) are n
independent standard normal random variables, then Y =

∑n
i=1X

2
i will be a χ2 random variable with n

degrees of freedom (see section 8.2 of [DeGroot & Schervish '11]). We de�ne the variable Z =
√
Y /
√
n =

||(X1, . . . , Xn)||2/
√
n. Since the `2-norm is a 1-Lipschitz function, Theorem 6.37 implies that

P
(
Z ≥ E(Z) + δ

)
≤ e−nδ2/2, ∀δ ≥ 0.

Since the square root function is concave, by Jensen's inequality we have

E(Z) ≤
√

E(Z2) =

(
1

n

n∑
i=1

E(X2
i )

)1/2

= 1.

Now we remember that Z = Y/
√
N to conclude

P
(
Y/n ≥ (1 + δ)2

)
≤ e−nδ2/2, ∀δ ≥ 0.

Since (1 + δ)2 = 1 + 2δ + δ2 ≤ 1 + 3δ for all δ ∈ [0, 1], making the substitution t = 3δ leads to

P
(
Y ≥ n(1 + t)

)
≤ e−nt2/18, ∀t ∈ [0, 3].

The same kind of concentration inequality holds for suprema of Gaussian processes. Its proofs can be
found at Theorem 5.8 of [Boucheron, Lugosi & Massart '13]. To close this section, we state it.

Theorem 6.47. Let (Xt)t∈T be an almost surely continuous centered Gaussian process, that is, with
probability 1, Xt is a continuous function of t, indexed by a totally bounded set T . If σ2 = supt∈T E[X2

t ],
then Z = supt∈T Xt satis�es Var(Z) ≤ σ2, and for all u > 0, we have

P
(∣∣Z − E[Z]

∣∣ ≥ u) ≤ e−u2/(2σ2).



126 CHAPTER 6. INTERLUDE: NON-ASYMPTOTIC PROBABILITY

6.6 Covering and Packing Numbers

�Mit den Grenzen der Wissenschaften gegeneinander verhält es sich ähnlich, wie mit denen der Meere.
Sie sind künstlich und aus praktischen Gründen angenommen. Alles Wissen steht miteinander im Zusammenhange,
und eine Untersuchung abzubrechen, um nicht eine solche Grenze zu überschreiten, wäre nicht zu rechtfertigen.5�

Postcard from Gottlob Frege to Heinrich Rickert in 1 July 1911.

This section has, in a �rst moment, no clear relation with probability. Here we will de�ne two
important notions for metric spaces that will be used in subsequent chapters: covering numbers and
packing numbers. However, in a second moment, these notions - together with probabilistic techniques -
proved to be fundamental to demonstrate important theorems [Pisier '89]. Also, they play a fundamental
role in understanding the behavior of stochastic processes. Usually one wants to infer some properties of a
stochastic process Xt, with t ∈ Λ. Knowing the structure of the set Λ and one might ask the dependence
of Xt on Λ. An example of such phenomenon is Dudley's Theorem in Stochastic Process.

Besides, in many situations, we want to manipulate and quickly compute some properties of a data set.
This set is sometimes modeled as a (compact) metric space and this manipulation could be translated
as the use of �sparse�, typically discrete, object. The role of this object is to approximately capture
the geometry or complexity of a (subset of) a metric space. It is in this context that the concepts of
covering number and packing number arise. They are highly used, for example, in Error-Corrector Coding
[Candès & Randall '08], Quantization [Boufonos '12] and Geometric Functional Analysis [Pisier '89].

De�nition 6.48. Let X be a subset of a metric space (M,d). For t > 0, the covering number Nε =
N(X, d, ε) is the smallest N such that X can be covered with balls of radius ε, that is, we cover X with
balls Bε(x) = {x ∈ M,d(x, xi) ≤ ε}. The logarithm of the covering number is called the metric entropy
of the metric space X.

De�nition 6.49. The packing number P (X, d, ε) is de�ned, for ε > 0, as the maximal integer P such that
there are points xi ∈ X, i = {1, . . . , P} which are ε-separated, i.e., d(xi, xk) > ε for all i, k ∈ {1, . . . , P},
i 6= k.

Proposition 6.50. We have some basic properties for the covering number. The packing number will
also satisfy them.

a.) For arbitrary sets X,Y ⊂M , we have N(X ∪ Y, d, ε) ≤ N(X, d, ε) +N(Y, d, ε).

b.) For any α > 0, we have N(X,αd, ε) = N(X, d, ε/α).

c.) If M = Rn and d is a metric induced by a norm ||.||, then N(αX,αd, ε) = N(X, d, ε/α).

d.) If d̃ is another metric on M that satis�es d̃(x, y) ≤ d(x, y) for all x, y ∈ X, then

N(X, d̃, ε) ≤ N(X, d, ε).

Proof. All of them follow from distance properties such as triangular inequality as well as the de�nition
of the covering/packing number.

The two notions are related, as the next theorem shows.

Theorem 6.51. Let X be a subset of a metric space (M,d) and let t > 0. Then

P (X, d, 2ε) ≤ N(X, d, ε) ≤ P (X, d, ε)

5In a free translation: The boundaries between the disciplines of science are somewhat like those between the seas. They
are arti�cial and adopted for practical purposes. All knowledge is interrelated, and it would be unjusti�able to abort an
investigation in order not to cross such a boundary. The fac simile version of the postcard and more details about it can
be found at [Schlotter & Wehmeier '13].
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Proof. In order to prove the right-hand side, let P = P (X, d, ε). Then there exists P points {x1, . . . , xP }
that are ε-separated in X. By the maximality of P , it follows that any other x ∈ X satis�es d(x, xi) ≤ ε
for some index i. Thus X ⊆ ∪mi=1Bε(xi) and so N(X, d, ε) ≤ P (X, d, ε).

For the left-hand side, we just need to use the pigeonhole principle. Let P = P (X, d, 2ε). Then
there exists P points {x1, . . . , xP } ⊂ X that are 2ε-separated, i.e., d(xi, xj) > 2ε if, i 6= j. Suppose, by
contradiction, that P > N(X, d, ε), then X is covered by fewer than P balls of radius ε. So, at least
two of the P distinct points xi and xj must lie in the same ball Bε(x̃) with a certain center x̃. By the
triangle inequality, we have d(xi, xj) ≤ d(xi, x̃) + d(xj , x̃) But this is a contradiction since xi and xj are
2ε-separated. Therefore P ≤ N(X, d, ε).

The next question one might ask is how to calculate these quantities for certain sets on metric spaces.
Usually this is a di�cult problem and one can just provide some estimates instead of a closed formula.
The set of notes [Wainwright '15] provides many examples and a nice explanation about these quantities
and how to use them. Here, we state just one example that will be useful in the following chapters.

Proposition 6.52. Let ||.|| be some norm on Rn and let U be a subset of the unit ball B = {x ∈
Rn, ||x|| ≤ 1}. Then the packing and the covering numbers satisfy, for ε > 0,

N(U, ||.||, ε) ≤ P (U, ||.||, ε) ≤
(

1 +
2

ε

)n
.

In the case that U = B, we have the lower estimate
(

1
2ε

)n ≤ N(U, ||.||, ε).

Proof. The inequality N(U, ||.||, ε) ≤ P (U, ||.||, ε) is just Theorem 6.51. For the other inequality, let
{x1, . . . , xP } ⊂ U be a maximal ε-packing. This tells us that the balls B(xi, ε/2) have empty intersection
and, even more, they are contained in the ball (1 + ε/2)B. What remains is to compare the Lebesgue
measure (aka volume) of these balls.

vol

(
P⋃
i=1

B(xi, ε/2)

)
=

P∑
i=1

vol(B(xi, ε/2)) = Pvol((ε/2)B) ≤ vol
(
(1 + ε/2)B

)
.

Also, we have the homogeneity of volumes in Rn which tells us that vol(εB) = εnvol(B). Therefore
we conclude that P (ε/2)nvol(B) ≤ (1 + ε/2)nvol(B). Dividing both sides by (ε/2)nvol(B) leads to
P ≤ (1 + 2/ε)n.
Now, for the case U = B, in view of Proposition 6.52, we just need to prove that if P = P (B, ||.||, ε), then
P ≥ (1/ε)n since this implies in N(B, ||.||, ε) ≥ P (B, ||.||, 2ε) ≥ (1/2ε)n. If P = P (B, ||.||, ε), there must
exists P points {x1, . . . , xP } that are ε-separated in B. By the maximality of P , it follows that any point

x ∈ B satis�es d(x, xi) ≤ ε foor some i. Hence, B ⊂ ∪Pj=1vol(Bε(xj)) and
∑P
j=1 vol(Bε(xj)) ≥ vol(B).

By the homogeneity of the volume, we have Pεn ≥ 1. This leads to P ≥ (1/ε)n as we wanted to show.

These de�nitions allow us to reduce the complexity of the calculations of norm operators, for example.
The next theorem illustrates this fact. In order to calculate it, it is necessary to maximize over the whole
sphere Sn−1. Using coverings, we replace by the maximum over a �nite set.

Theorem 6.53. Let A be an N ×m matrix, and let Nε be an ε-covering of Sn−1 for some ε ∈ [0, 1).
Then

sup
x∈Nε

||Ax||2 ≤ ||A||2→2 ≤ (1− ε)−1 sup
x∈Nε

||Ax||2

In the case of a symmetric n× n matrix, we have

||A||2→2 = sup
x∈Sn−1

|〈Ax, x〉| ≤ (1− 2ε)−1 sup
x∈Nε

|〈Ax, x〉|
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Proof. In the �rst case, the lower bound follows from the de�nition of an operator's norm. For the
upper bound, let us �x x ∈ Sn−1 which attains the norm, i.e.,||A||2→2 = ||Ax||2. Now, choose y in the
ε-covering which approximates x as ||x− y||2 ≤ ε. Using the triangle inequality, we have ||Ax−Ay||2 ≤
||A||2→2||x− y||2 ≤ ε||A||2→2. It follows that

||Ay||2 ≥ ||Ax||2 − ||Ax−Ay||2 ≥ ||Ax||2 − ||A||2→2||x− y||2 ≥ ||A||2→2 − ε||A||2→2 = (1− ε)||A||2→2.

Taking the maximum over all y in the ε-covering in this inequality completes the proof. For the second
statement, the proof is quite similar. Take x ∈ Sn−1 for which ||A||2→2 = |〈Ax, x〉| and choose y in the
ε-covering which approximates x as ||x− y||2 ≤ ε. Again, by the triangle inequality we have∣∣〈Ax, x〉 − 〈Ay, y〉∣∣ =

∣∣〈Ax, x− y〉+ 〈A(x− y), y〉
∣∣

≤ ||A|||2→2||x||2||x− y||2 + ||A|||2→2||y||2||x− y||2 ≤ 2ε||A|||2→2.

It follows that |〈Ay, y〉| ≥ |〈Ax, x〉| − 2ε||A|||2→2 = (1− 2ε)||A|||2→2. Taking the maximum over all y in
the ε-covering in this inequality yields the desired result.

For generalizations related to the results of this section, one can consult Chapter 4 of [Pisier '89].



Chapter 7

Matrices Which Satisfy The RIP

The 8P Rule: Proper Prior Planning and Preparation Prevents Piss Poor Performance.
One of the many variations of a US Marine Corps adage

7.1 Introduction

In Chapter 5 we discussed the importance of having matrices that satisfy the restricted isometry prop-
erty. For linear systems associated to these matrices, the search for sparse vectors is successful through
various algorithms, such as BP, IHT, OMP, COSaMP, etc. As a consequence of Lemma 5.21 from
[Cai, Wang & Xu I '10], we deduced, in the case of `1 minimization, that δ2s < 0.6246 su�ces for a
robust and stable reconstruction. However, there is little hope in improving this bound and make δ → 1,
due to Theorem 5.27, proved by [Davies & Gribonval '09]. Nevertheless this quantity is very important
since it can ensure the existence of matrices with the small (and optimal) number of measurements. This
optimality will be explored through this chapter with the aid of probabilistic arguments.

However, as we saw in Section 4.10, so far we can only conclude the existence of matrices satisfying
RIP with a lower bound in the number of rows given by m ≥ Cs2. Considering that the vectors we seek
when solving the linear system have information only in s directions, it was expected that the number of
measurements should vary linearly, and not quadratically, in s, the sparsity.

This is an indication that there could be another way of constructing matrices with δs small enough
but, at the same time, with m signi�cantly smaller than Cs2. In this chapter will use the power of the
probability theorems developed in Chapter 6, such as concentration of measure and Gordon's Lemma, to
prove the existence of such matrices when m ≥ Cδss ln(N/s). This impressive result will be proven to
be sharp in Chapter 8. In the literature it is common to say thatt �m varying linearly with s up to a
logarithmic factor.�

Such kind of probabilistic argument has also played a central role in many �elds. Random matrices and
projections have been important tools in some �elds like asymptotic theory of �nite-dimensional normed
spaces and convex geometry since the seventies. Milman, Schechtman, Szarek, Gluskin, Garnaev, Kashin,
Rudelson and Vershynin can be mentioned in the development of these ideas. It is important to note
that Rudelson and Vershynin introduced a lot of probabilistic techniques into the �eld of Compressive
Sensing. For more on these, see [Schechtman '03], [Artstein-Avidan, Giannopoulos & Milman '15] and
references therein.

Some ideas from these �elds appear in modern Data Science techniques. We can cite the Johnson-
Lindenstrauss Lemma, which essentially states that with high probability, Lipschitz projections do not
disturb the geometry of a point cloud when they are projected onto a space of dimension logarithmic in
the number of points. We will see that ideas from compressive sensing appear, in some hidden form, in
the development of this profound theorem. It will be shown that there exists a deep connection between
the restricted isometry property and dimensionality reduction through the JL Lemma.

Also, we can understand the idea behind the motto random projections act as almost norm preserving

129
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for some subsets of the sphere, used nowadays in the Machine Learning community.
In this chapter, we introduce an ensemble of matrices for which the restricted isometry property holds

with high probability and we show the importance of Johnson-Lindenstrauss' Lemma and its connections
with the Restricted Isometry Property.

7.2 RIP for Subgaussian Ensembles

While developing the probabilistic tools on the last chapter, subgaussian random variables emerged as
a generalization of Gaussian variables, preserving many good properties. We will now consider matrices
A ∈ Rm×N having random variables in each of its entries. These are called random matrices or a random
matrix ensemble.

De�nition 7.1. Let A ∈ Rm×N be a random matrix
[i.] If the entries of A are independent Rademacher variables, A is called a Bernoulli random matrix

[ii.] If the entries of A are independent standard gaussian random variables, A is a Gaussian random
matrix.

[iii.] If the entries of A are independent zero mean subgaussian random variables with variance 1 and
same subgaussian parameters β and κ, i.e.,

P(|Ai,j | ≥ t) ≤ βe−κt
2 ∀t > 0, i ∈ [m], j ∈ [N ],

A is called a subgaussian random matrix.

We showed that Gaussian and Rademacher random variables are particular cases of subgaussian
variables. The same holds for matrices: Gaussian and Bernoulli matrices are subgassian matrices. Besides,
note that entries of a subgassian matrix do not have to be identically distributed.

We are interested in the RIP constant of A. Henceforth we will work with 1√
m
A instead of A because

E

[ ∣∣∣∣∣∣∣∣ 1√
m
Ax

∣∣∣∣∣∣∣∣2
2

]
= ||x||22

for any vector x and a subgaussian matrix A (since all entries have variance 1). This is the same as saying
that the expectation of the squared `2-norm of the columns of A is 1. In this case, the RIP constant δs
is a measure of the deviation of || 1√

m
Ax||22 from its mean, uniformly over all s-sparse vectors x.

Our main result in the �rst part of this chapter, due to [Baraniuk et al. '08] and the seminal work of
[Mendelson, Pajor & Tomczak-Jaegermann '08], is the following.

Theorem 7.2. Let A ∈ Rm×N be a subgaussian random matrix and ε > 0. Suppose

m ≥ Cδ−2(s ln(eN/s) + ln(2ε−1))

for a constant C > 0 (depending only on the subgaussian parameters β, κ). Then, with probability at least
1− ε, δs, the restricted isometry constant of 1√

m
A satis�es δs ≤ δ.

In fact we will prove a more general result. For this, we need some de�nitions.

De�nition 7.3. Let Y be a random vector in RN .
[i.] If E

[
|〈Y, x〉|2

]
= ||x||2 ∀x ∈ RN , then Y is called isotropic.

[ii.] If, ∀x ∈ RN with ||x||2 = 1, the random variable 〈Y, x〉 is subgaussian with a subgaussian
parameter c independent of x, that is,

E
[

exp(θ〈Y, x〉)
]
≤ exp(cθ2), ∀θ ∈ R and ∀x with ||x||2 = 1,

then Y is called a subgaussian random vector.
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We quickly realize that the constant c should ideally be independent of N . But note that if Y is a
randomly selected row or column of an orthogonal matrix, then Y is isotropic and subgaussian but c has
a dependence in N . We now state the more general result we will prove.

Theorem 7.4. Let A ∈ Rm×N be a random matrix with independent, isotropic and subgaussian rows
with the same subgaussian parameter c in the de�nition above. If

m ≥ Cδ−2(s ln(eN/s) + ln(2ε−1)),

where C = 2(4β + 2κ)/3κ2 and β, κ are some parameters depending only on c, then with probability at
least 1− ε, the restricted isometry constant of 1√

m
A satis�es δs ≤ δ.

The proof of this theorem relies on a concentration inequality which, in turn, is a consequence of
Bernstein's inequality for subexponential random variables, proved in the last chapter.

Lemma 7.5. Let A ∈ Rm×N be a random matrix with independent, isotropic, and subgaussian rows with
the same subgaussian parameter c as in De�nition 7.3. Then, ∀x ∈ RN and ∀t ∈ (0, 1),

P
[∣∣∣m−1||Ax||22 − ||x||22

∣∣∣ ≥ t||x||22] ≤ 2 exp(−Kt2m)

where K depends only on c.

Proof. Let x ∈ RN . We may assume that ||x||2 = 1. Denoting the rows of A by Y1, . . . , Ym ∈ RN we can
de�ne the following random variables

Zi = |〈Yi, x〉|2 − ||x||22, i ∈ [m].

By hypothesis, Yi is isotropic, so E[Zi] = 0. Moreover, as 〈Yi, x〉 is subgaussian, Zi is subexponential,
that is, P(|Zi| ≥ r) ≤ β exp(−κr) for all r > 0 and some parameters β, κ depending only on c. Now, after
a simple calculation we obtain

1

m
||Ax||22 − ||x||22 =

1

m

m∑
i=1

(|〈Yi, x〉|2 − ||x||22) =
1

m

m∑
i=1

Zi.

Since the Yi are independent, Zi are also independent, it follows from Bernstein's inequality for subex-
ponential random variables, Theorem 6.23, that

P

(∣∣∣∣ 1

m

m∑
i=1

Zi

∣∣∣∣ ≥ t
)

= P

(∣∣∣∣ m∑
i=1

Zi

∣∣∣∣ ≥ tm
)
≤ 2 exp

(
− κ2m2t2/2

2βm+ κmt

)
≤ 2 exp

(
− κ2

4β + 2κ
t2m

)
,

where we used that t ∈ (0, 1) in the last step. De�ning K = κ2

4β+2κ , the concentration inequality follows.

Now, in order to prove Theorem 7.4, we start by showing that a submatrix of a random matrix is well
conditioned, with high probability, if we make some restriction on its size.

Theorem 7.6. Suppose that a random matrix A ∈ Rm×N is drawn according to a probability distribution
for which the concentration inequality of the lemma above holds, that is, for t ∈ (0, 1),

P
[∣∣∣||Ax||22 − ||x||22∣∣∣ ≥ t||x||22] ≤ 2 exp(−Kt2m) ∀x ∈ RN .

Suppose also that for δ, ε ∈ (0, 1) we have

m ≥ Cδ−2(7s+ 2 ln(2ε−1))

where C = 2/(3K). Then, for S ⊂ [N ] with #S = s, we have

P(||A∗SAS − Id||2→2 < δ) ≥ 1− ε
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Proof. From the combinatorial arguments developed in Theorem 6.51 we know that that for ρ ∈ (0, 1/2),
there exists a �nite subset U from the unit ball BS = {x ∈ RN , supp x ⊂ S, ||x||2 ≤ 1} which satis�es

#U ≤
(

1 +
2

ρ

)s
and min

u∈U
||z − u||2 ≤ ρ ∀z ∈ BS .

Now, using the concentration inequality of the hypothesis, we have, for t ∈ (0, 1) and δ and ρ (they will
be determined later)

P
[∣∣∣||Au||22 − ||u||22∣∣∣ ≥ t||u||22 for some u ∈ U

]
≤
∑
u∈U

P
[∣∣∣|Au||22 − ||u||22∣∣∣ ≥ t||u||22]

≤ 2#U exp(−Kt2m) ≤ 2

(
1 +

2

ρ

)s
exp(−Kt2m).

Suppose, indeed, that the realization of the random matrix A yields the opposite inequality∣∣||Au||22 − ||u||22∣∣ < t||u||22 ∀u ∈ U. (7.1)

The calculations above showed that

P
(∣∣||Au||22 − ||u||22∣∣ < t||u||22 ∀ u ∈ U

)
≥ 1− 2

(
1 +

2

ρ

)s
exp(−Kt2m). (7.2)

We are going to show that, for the right choice of ρ and t, (7.1) implies
∣∣||Ax||22 − ||x||22∣∣ ≤ δ for all

x ∈ BS , i.e., the well conditioning of the submatrices, ||A∗SAS − Id||2→2 ≤ δ. De�ning B = A∗SAS − Id,
the equation (7.1) is the same as |〈Bu, u〉| < t ∀u ∈ U . This happens because∣∣||Au||22 − ||u||22∣∣ < t||u||22 =⇒ |〈Au,Au〉 − 〈u, u〉| < t||u||22

=⇒ |〈A∗Au, u〉 − 〈u, u〉| < t||u||22 =⇒ |〈(A∗A− Id)u, u〉 | < t||u||22 =⇒ |〈Bu, u〉| < t||u||22.
Consider a vector x ∈ BS and choose u ∈ U such that ||x− u||2 ≤ ρ < 1/2. We obtain

|〈Bx, x〉| = |〈Bu, u〉+ 〈B(x+ u), x− u〉| ≤ |〈Bu, u〉|+ |〈B(x+ u), x− u〉|
< t+ ||B||2→2||x+ u||2||x− u||2 ≤ t+ 2ρ||B||2→2.

Taking the maximum over all x ∈ BS , we see that

||B||2→2 < t+ 2ρ||B||2→2, i.e. ||B||2→2 ≤
t

1− 2ρ
.

We would like that ||B||2→2 < δ, so with the choice t = (1− 2ρ)δ the aid of (7.2), we conclude

P (||A∗SAS − Id||2→2 ≤ δ) ≥ 1− 2

(
1 +

2

ρ

)s
exp(−K(1− 2ρ)2δ2m). (7.3)

Now, this probability is at least 1− ε if

ε ≥ 2

(
1 +

2

ρ

)s
exp(−K(1− 2ρ)2δ2m).

And this is the same as

m ≥ 1

K(1− 2ρ)2
δ−2(ln(1 + 2/ρ)s+ ln(2ε−1)).

To �nish, we need to choose the value of ρ. Taking ρ = 2/(e7/2−1) ≈ 0.0623 so that 1/(1−2ρ)2 ≤ 4/3
and ln(1 + 2/ρ)/(1− 2ρ)2 ≤ 14/3, the inequality above will be satis�ed if
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m ≥ 2

3K
δ−2(7s+ 2 ln(2ε−1)).

This estimative concludes the proof.

What remains to be done is to complete the gaps. We �rst need to show that subgaussian matrices
have isotropic and subgaussian rows. After this, we have to prove that matrices drawn from a distribution
that satis�es the concentration inequality have small RIP constant of optimal order. For the �rst part
the following lemma su�ces.

Lemma 7.7. Let Y ∈ RN be a random vector with independent, zero mean and subgaussian entries with
variance 1 and same subgaussian parameter c. Then Y is an isotropic and subgaussian random vector
with the same subgaussian parameter c.

Proof. Let x ∈ RN with ||x||2 = 1. Since Yi are independent, zero mean and have unit variance, we have

E
[
|〈Y, x〉|2

]
=

N∑
i=1

N∑
i′=1

xixi′E
[
YiYi′

]
=

N∑
i=1

x2
i = ||x||22.

This allows us to conclude that Y is isotropic. We need to prove that Z = 〈Y, x〉 =
∑N
i=1 xiYi is

subgaussian. By the hypothesis of independence, we have

E
[

exp (Zθ)
]

= E

[
exp

(
θ

N∑
i=1

xiYi

)]
= E

[
N∏
i=1

exp(θxiYi)

]
=

N∏
i=1

E
[

exp(θxiYi)
]

≤
N∏
i=1

exp(cθ2x2
i ) = exp(c||x||22θ2).

Hence Y is a subgaussian random vector with parameter independent of N .

Finally, we prove that matrices which satisfy the concentration inequality have small RIP of optimal
order in the number of parameters.

Theorem 7.8. Suppose that a random matrix A ∈ Rm×N is drawn according to a probability distribution
for which the concentration inequality holds, that is, for t ∈ (0, 1),

P
[∣∣∣||Ax||22 − ||x||22∣∣∣ ≥ t||x||22] ≤ 2 exp(−Kt2m), ∀x ∈ RN .

Suppose further that, for δ, ε ∈ (0, 1), the number of rows (measurements) satis�es

m ≥ Cδ−2
[
s
(
9 + 2 ln(N/s)

)
+ 2 ln(2ε−1)

]
,

where C = 2/(3K). Then with probability 1− ε, the restricted isometry constant δs of A satis�es δs < δ.

Proof. We start by recalling the equivalent de�nition of the RIC, i.e. δs = supS⊂[N ], #S=s ||A∗SAS −
Id||2→2. So we must analyze all subsets of [N ] with �xed cardinality s. By taking the union bound in all(
N
s

)
subsets S ⊂ [N ] of cardinality s we obtain

P(δs ≥ δ) ≤
∑

S⊂[N ], #S=s

P
[
||A∗SAS − Id||2→2 ≥ δ

]
≤ 2

(
N

s

)(
1 +

2

ρ

)s
exp(−Kδ2(1− 2ρ)2m)

≤ 2

(
eN

s

)s(
1 +

2

ρ

)s
exp(−Kδ2(1− 2ρ)2m).
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Choosing ρ = 2/(e7/2 − 1) ≈ 0.0623 as in Theorem 7.6 yields P(δs < δ) ≥ 1− ε if

m ≥ 1

Cδ2

(
4

3
s ln(eN/s) +

14

3
s+

4

3
ln(2ε−1)

)
=

2

3K
δ−2[s(9 + 2 ln(N/s)) + 2 ln(2ε−1)].

The diagram below shows the chain of ideas developed in this section:

Subgaussian
Matrices

Matrices with
Subgaussian and
Isotropic Rows

Matrices which
satisfy

Concentration
Inequality

Matrices which
satisfy RIP

Lemma 7.7 Lemma 7.5 Theorem 7.8

In all of the previous Theorems above, we can choose the more convenient value of ε. In particular, if
we set ε = 2 exp(−m/2C2) in Theorem 7.8, with probability 1− 2 exp(−m/2C2) all s-sparse vectors will
be recovered via `1-minimization using an m×N subgaussian random matrix for which

m ≥ 2C1s ln(eN/s)

So, at least theoretically, instead of using matrices built with high precision to recover sparse infor-
mation, some coins with a certain subgaussian distribution can be drawn to be used as the entries of the
matrix. This will recover sparse vectors with high probability. Albeit this approach with subgaussian
variables seems very promising and many papers written by mathematicians fully establish this as the
status quo in sparse recovery, in practical terms the implementation is more subtle. This is currently a
very active research area, see for example [Haboba et al. '12], where the relative strengths and weaknesses
of hardware implementation of Gaussian and Bernoulli circuits is discussed.

7.3 Universal Recovery

Usually we need to �nd the right basis to represent signals in a sparse way. But not all sparsity phenomena
occur with respect to the canonical basis. In many situations we need some other (orthonormal) basis
such as discrete Fourier, wavelets, shearlets, curvelets, etc to achieve a compact representation of the
signals. In mathematical terms, this means that the phenomenon we are studying is written as a vector
z = Ux with a orthogonal N×N matrix and a s-sparse vector x ∈ CN . So the act of taking measurements
is represented by

y = Az = AUx.

In order to recover z, we need to recover �rst x and then make z = Ux. In practical terms, this means
that the compressive sensing problem has a measurement matrix of the form Ã = AU . The matrix A, in
this context, is a random m×N matrix while the one changing basis is a �xed and deterministic matrix
U ∈ RN×N . Then we need to adapt the results concerning small RIP constant to this more realistic
situation. This is easily made in the corollary below.

Corollary 7.9. Let U ∈ RN×N be a �xed orthogonal matrix. Suppose that an m×N random matrix A
is drawn according to a probabilistic distribution for which the concentration inequality

P
[∣∣∣||Ax||22 − ||x||22∣∣∣ ≥ t||x||22] ≤ 2 exp(−Kt2m) ∀x ∈ RN

holds for all t ∈ (0, 1) and x ∈ RN . Suppose also that for a given δ, ε ∈ (0, 1) we have
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m ≥ Cδ−2[s(9 + 2 ln(N/s)) + 2 ln(2ε−1)],

for C = 2/(3K). Then, with probability 1− ε, the restricted isometry constant δs of UA satis�es δs < δ.

Proof. As U is an orthogonal matrix, the concentration inequality holds with A replaced by UA. Let
x ∈ RN and x̃ = Ux. We have

P
(∣∣||AUx||22 − ||x||22∣∣ ≥ t||x||22) = P

(∣∣||Ax̃||22 − ||x̃||22∣∣ ≥ t||x̃||22) ≤ 2 exp(−Kt2m).

One can see that the matrix U in this theorem is arbitrary. So we say that sparse recovery with sub-
gaussian matrices is a universal phenomenon regarding the orthogonal basis where signals are represented
in a sparse way. The implication is that since the measurements are taken in the form y = AUx, one does
not need to know the matrix U in advance to perform the sensing (enconding) stage. The knowledge of
U is necessary only when applying the recovery techniques at the decoding stage.

The theorem proved in this section only states that for a �xed matrix U , a random choice of A will
work with high probability. Universality does not mean that one single matrix measurement matrix A
can recover all vectors represented in a sparse way on any basis since all vectors are 1-sparse in some
basis. Of course that for every measurement scheme, we can construct a matrix of basis transform U
such that the recover will fail.

Universality is a very interesting feature which occurs not only here but permeates all of the probability
theory. The excellent post [Tao's Blog - 09/14/2010] gives a glimpse of this search for universality in a
very didactic way.

7.4 The Curious Case of Gaussian Matrices

�Our lives are de�ned by opportunities, even the ones we miss."
Eric Roth in The Curious Case of Benjamin Button by F. Scott Fitzgerald

From a mathematical point of view, the original approach of Candes and Tao in [Candès & Tao I '06]
was very di�erent from the one shown, relying on the condition number estimate for Gaussian matrices.
Since it uses tools as the Gaussian concentration of measure and Slepian-Gordon lemma, Theorem 6.37
and Theorem 6.30 respectively, it has the disadvantage of working only for this particular set of matrices.
On the other hand, it has the advantage of providing better estimates due to a harder analysis.

It is of major importance to �nd better constants and thereby �nd the suitable balance between the
number of measurements and dimension of the signal. The knowledge of these scales is necessary to apply
the techniques of compressive sensing.

To prove the theorem which asserts that Gaussian matrices have small RIP constant with high prob-
ability we need some tools from the area of non-asymptotic theory of random matrices, especially the
estimates for the extremal singular values of Gaussian random matrices. For a great overview of this
area, see [Rudelson & Vershynin '10] and [Rudelson '14]. In order to prove these estimates, we need the
following two lemmas.

Lemma 7.10. For all matrices A and B in Rn×n, their smallest and largest singular values σmin and
σmax satisfy

|σmax(A)−σmax(B)| ≤ ||A−B||2→2 ≤ ||A−B||F and |σmin(A)−σmin(B)| ≤ ||A−B||2→2 ≤ ||A−B||F .

Proof. For the largest singular value, we just need to identify it with the operator norm:

|σmax(A)− σmin(B)| =
∣∣||A||2→2 − ||B||2→2

∣∣ ≤ ||A−B||2→2.

For the smallest singular vales, we have:
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σmin(A) = inf
||x||2=1

||Ax||2 ≤ inf
||x||2=1

(
||Bx||2 + ||(A−B)x||2

)
≤ inf
||x||2=1

(
||Bx||2 + ||(A−B)||2→2

)
= σmin(B) + ||A−B||2→2.

Therefore, we have σmin(A)−σmax(B) ≤ ||A−B||2→2 and the lemma follows from the symmetry between
A and B. The second inequality is just the domination of the operator norm by the Frobenius norm.

Lemma 7.11. For integers n ≥ s ≥ 1,

√
2

Γ((n+ 1)/2)

Γ(n/2)
−
√

2
Γ((s+ 1)/2)

Γ(s/2)
≥ √n−√s.

Proof. It su�ces to show that, for any n ≥ 1,

αn+1 − αn ≥
√
n+ 1−√n where αn =

√
2

Γ((n+ 1)/2)

Γ(n/2)
.

If follows from Γ((n+ 2)/2) = (n/2)Γ(n/2) that αn+1αn = n. Then, multiplying the inequality we want
to prove by αn and rearranging, we see that we need to prove that

α2
m + (

√
m+ 1−√m)αm −m ≤ 0.

So we need to prove that αm does not exceed the positive root of the polynomial z2+(
√
m+ 1−√m)z−m,

i.e. that

αm ≤ βm =
−(
√
m+ 1−√m) +

√
(
√
m+ 1−√m)2 + 4m

2
.

First, we will bound αm from above and then bound βm from below.. For the �rst part, we will use
the Gauss hypergeometric theorem (see Theorem 2.2.2 of [Andrews, Askey & Roy '99]), from which we
obtain that if Re(c− a− b) > 0, then

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) = 2F1(a, b; c; 1),

where 2F1(a, b; c; z) denotes the Gauss hypergeometric function

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

and (x)n is the Pochhammer symbol de�ned by (x)0 = 1 and (x)n = x(x + 1) . . . (x + n − 1) for n ≥ 1.
Hence, choosing a = −1/2, b = −1/2 and c = (m− 1)/2, we derive

α2
m = 2

Γ((m+ 1)/2)2

Γ(m/2)2
= (m− 1)

Γ((m+ 1)/2)Γ((m− 1)/2)

Γ(m/2)2

= (m− 1)

∞∑
n=0

(
(−1/2)(1/2) . . . (−1/2 + n− 1)

)2
((m− 1)/2)((m+ 1)/2) . . . ((m+ 2n− 3)/2)

1

n!

= m− 1

2
+

1

8

1

m+ 1
+

∞∑
n=3

2n−2
(
(1/2) . . . (n− 3/2)

)2
n!(m+ 1)(m+ 3) . . . (m+ 2n− 3)

.

De�ning γm as

γm := (m+ 1)

(
α2
m −m+

1

2
− 1

8

1

m+ 1

)
=

∞∑
n=3

2n−2
(
(1/2) . . . (n− 3/2)

)2
n!(m+ 3) . . . (m+ 2n− 3)

,
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we see that γm decreases with m. Thus, there is an integer m0 (that will be chosen later) such that

α2
m ≤ m−

1

2
+

1

8

1

m+ 1
+

γm0

m+ 1
m ≥ m0. (7.4)

Now, let us bound βm from below. Let

βm ≥
−(
√
m+ 1−√m) +

√
4m

2
=

3
√
m−

√
m− 1

2
= δm.

Expanding
√
m(m+ 1) and using that δ2

m = (10m+ 1− 6
√
m(m+ 1))/4, we have

√
m(m+ 1) = (m+ 1)

√
1− 1

m+ 1
= (m+ 1)

(
1 +

∞∑
n=1

(1/2)(−1/2) . . . (1/2− n+ 1)

n!

( −1

m+ 1

)n)

= m+
1

2
− 1

8

1

m+ 1
− 1

2

∞∑
n=3

(1/2) . . . (1/2− n+ 1)

n!

( −1

m+ 1

)n−1

.

Therefore

δ2
m =

10m+ 1

4
−3

2

√
m(m+ 1) =

10m+ 1

4
−3

2

(
m+

1

2
−1

8

1

m+ 1
−1

2

∞∑
n=3

(1/2) . . . (1/2− n+ 1)

n!

( −1

m+ 1

)n−1
)
.

Thus

β2
m ≥ δ2

m ≥ m−
1

2
+

3

16

1

m+ 1
. (7.5)

Subtracting (7.4) from

β2
m − α2

m ≥
1

16

1

m+ 1
− γm0

m+ 1
m ≥ m0.

To �nish, we choosem0 to be the smallest integer such that γm0 ≤ 1/16, that is, m0 = 3, so that β2
m ≥ α2

m

for all m ≥ 3. The numerical cases m = 1 and m = 2 are straightforward to verify.

We are now able to prove the non-asymptotic estimates of the singular values of a Gaussian matrix.
This result is a consequence of estimates due to Gordon and Slepian1 and was obtained by [Ledoux '01].

Theorem 7.12. Let A ∈ Rm×s be a Gaussian matrix with m > s and let σmin and σmax be the smallest
and largest singular values of the renormalized matrix 1√

m
A. Then, for t > 0,

P(σmax ≥ 1 +
√
s/m+ t) ≤ e−mt2/2 and P(σmin ≤ 1−

√
s/m− t) ≤ e−mt2/2.

Proof. Let us start by using Lemma 7.10 and by noticing that the extremal singular values are 1-Lipschitz
functions with respect to the Frobenius norm. So, by the concentration of measure inequality, Theo-
rem 6.37, we have the following relations between σmax and its expected value,

P
(
σmax ≥ E[σmax] + r

)
≤ e−r2/2. (7.6)

It remains to estimate the expected value above. For this, we use Slepian-Gordon's Lemma, Theorem 6.30.
As

1Asymptotic estimates are know since the eighties, see [Geman '80] and [Yin, Bai & Krishnaiah '88] for σmax and
[Silverstein '85] for σmin. Also, see [Marcenko & Pastur '67].
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σmax = sup
x∈Ss−1

sup
y∈Sm−1

〈Ax, y〉,

we de�ne the following two special Gaussian processes

Xx,y = 〈Ax, y〉 and Yx,y = 〈g, x〉+ 〈h, y〉,
where g ∈ Rs and h ∈ Rm are two independent standard Gaussian vectors. Now we will compare these
two processes. Taking x, x̃ ∈ Ss−1 and y, ỹ ∈ Sm−1 and using that Aij are independent and of variance
1, we obtain

E
∣∣Xx,y−Xx̃,ỹ

∣∣2 = E
∣∣∣∣ m∑
i=1

s∑
j=1

Aij(xjyi− x̃j ỹi)
∣∣∣∣2 =

m∑
i=1

s∑
j=1

(xjyi− x̃j ỹi)2 =

m∑
i=1

s∑
j=1

(x2
jy

2
i −2xj x̃jyiỹi+ x̃

2
j ỹ

2
i )

= ||x||22||y||22 + ||x̃||22||ỹ||22 − 2〈x, x̃〉〈y, ỹ〉 = 2− 2〈x, x̃〉〈y, ỹ〉.
Using independence and isotropy of the standard multivariate Gaussian, we have

E
∣∣Yx,y − Yx̃,ỹ∣∣2 = E|〈g, x− x̃〉+ 〈h, y − ỹ〉|2 = E|〈g, x− x̃〉|2 + E|〈h, y − ỹ〉|2 = ||x− x̃||22 + ||y − ỹ||22

= ||x||22 + ||x̃||22 − 2〈x, x̃〉+ ||y||22 + ||ỹ||22 − 2〈y, ỹ〉 = 4− 2〈x, x̃〉 − 2〈y, ỹ〉.
Therefore we conclude that

E
∣∣Yx,y − Yx̃,ỹ∣∣2 − E

∣∣Xx,y −Xx̃,ỹ

∣∣2 = 2(1− 〈x, x̃〉 − 〈y, ỹ〉+ 〈x, x̃〉〈y, ỹ〉) = 2(1− 〈x, x̃〉)(1− 〈y, ỹ〉) ≥ 0.

In this last inequality we used Cauchy-Schwarz inequality and the fact that the vectors belong to the unit
sphere (so equality holds in and only if 〈y, ỹ〉 = 1 or 〈x, x̃〉 = 1). Thus, we showed that

E
∣∣Xx,y −Xx̃,ỹ

∣∣2 ≤ E
∣∣Yx,y − Yx̃,ỹ∣∣2.

Then, Slepian-Gordon's Lemma implies that

Eσmax = E sup
x∈Ss−1

sup
y∈Sm−1

Xx,y ≤ E sup
x∈Ss−1

sup
y∈Sm−1

Yx,y = E sup
x∈Ss−1

〈g, x〉+ E sup
y∈Sm−1

〈h, y〉

= E||g||2 + E||h||2 ≤
√
E||g||22 +

√
E||h||22 ≤

√
s+
√
m,

where we used Jensen's inequality. Using this in (7.6) we obtain that

P
(
σmax(A) ≥ √s+

√
m+ r

)
≤ e−r2/2.

To �nish, we just need to rescale A by 1√
m
. This gives us a estimate for the largest singular value of A√

m
.

The estimate for σmin(A) = infx∈Ss−1 ||Ax||2 is more intricate. We need to measure the Gaussian width
of Ss−1 and then use Gordon's escape through the mesh, Theorem 6.32. Recall that for a given standard
Gaussian vector g ∈ Rs we have

`(Ss−1) = E
[

sup
x∈Ss−1

〈g, x〉
]

= E||g||2.

If the entries of g are independent, then ||g||22 has χ2 distribution with n degrees of freedom. Then

E||g||2 = E
( n∑
i=1

g2
i

)1/2

=
1

2n/2Γ(n/2)

∫ ∞
0

u1/2u(n/2)−1e−u/2du =
2(n+1)/2

2n/2Γ(n/2)

∫ ∞
0

t(n/2)−1/2e−tdt
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=
√

2
Γ((n+ 1)/2)

Γ(n/2)
.

Let us recall that for g ∈ Rs we introduced the notation E||g||2 = Es. Then, with the aid of Lemma 7.11,
we obtain

Em − `(Ss−1) = Em − Es =
√

2
Γ((m+ 1)/2)

Γ(m/2)
−
√

2
Γ((s+ 1)/2)

Γ(s/2)
≥ √m−√s.

To conclude, using Theorem 6.32 we obtain

P
(
σmin(A) ≤ √m−√s− t

)
≤ P

(
inf

x∈Ss−1
||Ax||2 ≤ Em − `(Ss−1)− t

)
≤ e−t2/2.

Finally, one just needs to rescale A by 1√
m

to �nish the proof.

We can state the main Theorem of this section.

Theorem 7.13. Let A ∈ Rm×N be a Gaussian matrix with m < N . Let η, ε ∈ (0, 1), and assume that

m ≥ 2η−2
(
s ln(eN/s) + ln(2ε−1)

)
.

Then we have

P

[
δs

(
1√
m
A

)
≤ 2

(
1 +

1√
2 ln(eN/s)

)
η +

(
1 +

1√
2 ln(eN/s)

)2

η2

]
≥ 1− ε.

Proof. The proof is very similar to the one for Theorem 7.8. Let S ⊂ [N ] such that #S = s. The
submatrix AS is an m × s Gaussian matrix and the eigenvalues of 1

mA
∗
SAS − Id are inside the interval

[σ2
min−1, σ2

max−1] where σmin and σmax are the extremal singular values of 1√
m
AS . From Theorem 7.12,

we obtain

P
(∣∣∣∣∣∣ 1

m
A∗SAS − Id

∣∣∣∣∣∣
2→2
≤ max

{(
1 +

√
s/m+ η

)2 − 1,
(
1− (

√
s/m+ η)

)2})

= P
(∣∣∣∣∣∣ 1

m
A∗SAS − Id

∣∣∣∣∣∣
2→2
≤ 2(

√
s/m+ η) + (

√
s/m+ η)2

)
≥ 1− 2 exp(−mη2/2).

Again, in view of the de�nition δs = supS⊂[N ], #S=s ||A∗SAS − Id||2→2, we take the union bound over all(
N
s

)
subsets of [N ] with cardinality s:

P
[
δ2 > 2(

√
s/m+ η) + (

√
s/m+ η)2

]
≤ 2

(
N

s

)
e−mη

2/2 ≤ 2

(
eN

s

)s
e−mη

2/2 ≤ ε,

by the hypothesis on the number of rows and the Stirling's formula. This same hypothesis also tells us
that

√
s/m ≤ η√

2 ln(eN/s)
and so

P

[
δs

(
1√
m
A

)
> 2

(
1 +

1√
2 ln(eN/s)

)
η +

(
1 +

1√
2 ln(eN/s)

)2

η2

]

≤ P
[
δ2 > 2(

√
s/m+ η) + (

√
s/m+ η)2

]
< ε.

This concludes the proof.
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The reader should ask why we expend so much e�ort in the Gaussian case, proving even technical
lemma such as Lemma 7.11. The reason is related to the constant C in m ≥ Cs ln(N/s) and here
a di�erence between Theorem 7.2 and Theorem 7.13 appears. In the Gaussian case, the number of
measurements are much less than in the general subgaussian case and in this case we have the best known
constant so far. The reason behind it is related to Theorem 6.32. The reader can consult [Vershynin '15]
for more details on this comparison. Also, the techniques developed for the Gaussian case are so powerful
that we can not only prove that they satisfy the RIP with small constant but we also can directly establish
that they satisfy NSP, rather than relying on RIP and use it as a su�cient condition to NSP. The proof is
even more laborious and appeared in the literature for the �rst time in the book [Rauhut & Foucart '13].

Theorem 7.14. (Theorem 9.29 of [Rauhut & Foucart '13]: Let A ∈ Rm×N be a random drawn of a
Gaussian matrix. Assume that

m2

m+ 1
≥ 2s ln(eN/s)

(
1 + ρ−1 +D(s/N) +

√
ln(ε−1)

s ln(eN/s)

)2

,

where D is a function that satis�es D(α) ≤ 0.92 for all α ∈ (0, 1] and limα→0D(α) = 0. The, with
probability at least 1− ε the matrix A satis�es the stable null space property of order s with constant ρ.

Proof. See Theorem 9.29 and Corollary 9.34 from [Rauhut & Foucart '13].

7.5 Johnson-Lindenstrauss Embeddings and the RIP

Assume we have a cloud of data in a high dimensional space, i.e., M points {x1, . . . , xM} ∈ RN . If
N > M , these points lie in a subspace of dimension M . Then we can consider the projection of these
points into this subspace without distorting their mutual distance, that is, ∀xi, xj we have a projection
f satisfying ||f(xi)− f(xj)||2 = ||xi − xj ||2. This is the same as saying that we have a natural isometry
(only for the data points) into this subspace.

Usually it is computationally expensive to process data when it lies in a high dimensional space.
Moreover the existing algorithms scale very poorly when increasing the dimension of the data. So this
projection must be done to avoid the curse of dimensionality, extremely important in these �Big Data"
days. At the same time, we need to project them while preserving some kind of geometric structure.

Now, consider the situation where we allow a bit of distortion when projecting this cloud of data, that
is, instead of looking for isometric projections, we look for ε-isometries

(1− ε)||xi − xj ||22 ≤ ||f(xi)− f(xj)||22 ≤ (1 + ε)||xi − xj ||22. (7.7)

When we have measurements with errors, it is reasonable to allow this kind to projection. The question
is then the following: provided we have distortion, can we do beter than N = M?, that is, can we project
on a lower dimensional space? [Johnson & Lindenstrauss '84] proved that this is possible.

Theorem 7.15. (Lemma 1 of [Johnson & Lindenstrauss '84]): Let x1, . . . , xM ∈ RN be an arbitrary set
of points and ε > 0. If

m > Kε−2 ln(M),

then there exists a matrix A ∈ Rm×N such that

(1− ε)||xi − xj ||22 ≤ ||A(xi − xj)||22 ≤ (1 + ε)||xi − xj ||22,
for all i, j ∈ [M ]. The constant K > 0 is universal.

Proof. If we look at the set of mutual distances E = {xj − xi : 1 ≤ j ≤ i ≤ M} with cardinality
#E ≤M(M − 1/2), we just need to show the existence of a matrix A such that
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(1− ε)||x||22 ≤ ||Ax||22 ≤ (1 + ε)||x||22, ∀x ∈ E. (7.8)

Take Ã = 1√
m
A ∈ Rm×N , where A is a random drawn of a subgaussian matrix. Then Lemma 7.5 implies

the existence of a constant C such, for any �xed x ∈ E, we have

P
(∣∣∣||Ãx||22 − ||x||22∣∣∣ ≥ ε||x||22∣∣∣) ≤ 2 exp(−Cmε2).

Now, taking the union bound in such a way that Equation (7.8) holds for all x ∈ E

P

( ⋃
x∈E

∣∣∣||ÃX||22 − ||x||22∣∣∣ ≥ ε||x||22∣∣∣
)
≤
∑
x∈E

P

(∣∣∣||ÃX||22 − ||x||22∣∣∣ ≥ ε||x||22∣∣∣
)
≤ 2

M(M − 1)

2
exp(−Cmε2).

And so

P
(

(1− ε)||x||22 ≤ ||Ax||22 ≤ (1 + ε)||x||22 ∀x ∈ E
)
≥ 1−M2e−Cmε

2

As we wantM2e−Cmε
2

smaller than a certain η, we just need to take m ≥ C−1ε−2 ln(M2/η) and then the
inequality above holds with probability 1 − η. We conclude the existence of the Johnson-Lindenstrauss
map when η < 1. Considering the limit η → 1, this gives the claim with K = 2C−1.

This deep theorem tells us that if we relax the condition on the isometry and ask for a quasi-isometry,
we can project our cloud of data in a much lower dimensional space, whose dimension is logarithmic in
the number of vectors and can be controlled by ε, our error relative to geometric structure preservation.
And it is remarkable because the target dimension is independent of the ambient dimension N . Moreover,
the proof presented here is that subgaussian matrices work as this kind of projection.

The Johnson-Lindenstrauss Lemma has a lot of applications and is widely used nowadays to transform
a high-dimensional problem into a low-dimensional one in such a way that the optimal solution to the
problem in low dimension can be lifted to a nearly optimal solution to the high dimensional one. Besides
its connection with compressive sensing, we could cite aplications in combinatorial optimization, data
streams, fast low-rank approximations, nearest neighbor search, etc. For variations on the theme and
applications, see [Matousek '08] and [Vempala '04].

It would be interesting, for computational purposes, to �nd other ensemble of matrices which can be
used as projections, other than the subgaussians ones. The next Theorem, proved in [Krahmer & Ward '12]
shows that given a matrix A satisfying the RIP, a randomization of the column signs of A provides a
Johnson-Lindenstrauss embedding and this will allow fast computational embeddings.

Theorem 7.16. ([Krahmer & Ward '12]): Let E ⊂ RN be a �nite point set such that #E = M . For
ε, η ∈ (0, 1) , let A ∈ Rm×N with RIC satisfying δ2s ≤ ε/4 for some s ≥ 16 ln(4M/η) and let ε =
(ε1, . . . , εN ) be a Rademacher sequence. Also de�ne Dε as the diagonal matrix with ε on the diagonal.
Then with probability at least 1− η

(1− ε)||x||22 ≤ ||ADεx||22 ≤ (1 + ε)||x||22, ∀x ∈ E. (7.9)

Proof. We may assume, without loss of generality, that for all x ∈ E, we have ||x||2 = 1. For a �xed
x ∈ E, we will partition [N ] into blocks of size s as a nonincreasing rearrangement of x. More precisely,
let us take S1 ⊂ [N ] as the index set of the s largest absolute entries of x. Now, take S2 ⊂ [N ]\S1 as the
index set of the s largest absolute entries of x in [N ]\S1 and so on. With this construction, we can write

∣∣∣∣ADεx
∣∣∣∣2

2
=
∣∣∣∣∣∣ADε

∑
j≥1

xSj

∣∣∣∣∣∣2
2

=
∑
j≥1

∣∣∣∣ADεxSj
∣∣∣∣2

2
+ 2
〈
ADεxS1

, ADεxS1

〉
+
∑
j,l≥2
j 6=l

〈
ADεxSj , ADεxSl

〉
.
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By hypothesis, A satis�es RIP with δs ≤ δ2s ≤ ε/4 and since ||DεxSj || = ||xSj ||2 we can estimate the
�rst term by

(1− ε/4)||x||22 = (1− ε/4)
∑
j≥1

||xSj ||22 ≤
∑
j≥1

∣∣∣∣ADεxSj
∣∣∣∣2

2
≤ (1 + ε/4)||x||22.

To estimate the second term, we use the fact that Dεx = Dxε. Considering the random variable

X =
〈
ADεxS1

, ADεxS1

〉
=
〈
ADxS1

ε, ADxS1
ε
〉

=
〈
DxS1

A∗xS1
AS1

DxS1
εS1

, εS1

〉
=
〈
v, εS1

〉
=
∑
i 6=S1

εivi,

where v ∈ RS1 is given by
v = DxS1

A∗xS1
AS1DxS1

εS1 .

Now, note that v and εS1
are independent because one of them just depends on S1 and the other just

on S1. Our goal is to estimate this second term by the Hoe�ding's inequality for Rademacher variables,
Equation (6.8), that says

P
( M∑
i=1

εivi ≥ ||v||2u
)
≤ 2 exp(−u2/2).

Therefore we need to estimate the 2-norm of the vector v, so

||v||2 = sup
||z||2≤1

〈v, z〉 = sup
||z||2≤1

∑
i≥2

〈
zSi , DxSi

A∗SiAS1
DxS1

εS1

〉
= sup
||z||2≤1

∑
i≥2

〈
zSi , DxSi

A∗SiAS1
DεS1

xS1

〉
≤ sup
||z||2≤1

∑
i≥2

||zSi ||2||DxSi
A∗SiAS1

DεS1
||2→2||xS1

||2

≤ sup
||z||2≤1

∑
i≥2

||zSi ||2||DxSi
||2→2||A∗SiAS1 ||2→2||DεS1

||2→2||xS1 ||2

≤ sup
||z||2≤1

∑
i≥2

||zSi ||2||xSi ||∞||A∗SiAS1
||2→2||xS1

||2.

Here we have used that ||DxSi
||2→2 = ||xSi ||∞ and that ||DεS1

||2→2 = ||εS1
||∞ = 1. Moreover, from the

way we construct S1, S2, . . . , etc, it follows from Lemma 5.18 that ||xSi ||∞ ≤ s−1/2||xSi−1 ||2. Besides
that, ||xS1

||2 ≤ ||x||2 = 1 and from Proposition 5.5 we have, for i ≥ 2, that ||A∗SiAS1
||2→2 ≤ δ2s. It then

follows that

||v||2 ≤
δ2s√
s

sup
||z||2≤1

∑
i≥2

||zSi ||2||xSi−1
||2 ≤

δ2s√
s

sup
||z||2≤1

∑
i≥2

1

2

(
||zSi ||22 + ||xSi−1

||22
)
≤ δ2s√

s
, (7.10)

where we have used the geometric-arithmetic mean inequality and that
∑
j≥2 ||xSj ||22 ≤ ||x||22 = 1. Now,

Hoe�ding's inequality, Equation (6.8), conditionally on εS1
yields, for t > 0

P
(
|X| ≥ ||v||2u

)
= P

( M∑
i=1

εivi ≥ ||v||2u
)
≤ 2 exp(−u2/2),

which, using Equation (7.10), δ2s ≤ ε/4 and ||v||2u = t, is the same as

P
(
|X| ≥ t

)
≤ exp(−t2/2||v||22) ≤ exp(−t2s/2δ2

2s) ≤ exp(−8st2/ε). (7.11)

To �nish the proof, we need to estimate the third term. In order to do it, let us consider the random
variable Y de�ne by
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Y =
∑
j,l≥2
j 6=l

〈
ADεxSj , ADεxSl

〉
=

N∑
j,l=s+1

εjεlBj,l = ε∗Bε,

where B ∈ RN×N is a symmetric matrix with zero diagonal given by

Bj,l =

{
xja

∗
jalxl if j, l ∈ S1 and j, l belong to di�erent blocks Sk

0 otherwise

We will bound the tail of this Rademacher chaos using Theorem 6.25. Therefore, we need now to estimate
the Frobenius and the spectral norms of B. As it is symmetric, its spectral norm can be estimated by

||B||2→2 = sup
||z||2≤1

〈Bz, z〉 = sup
||z||2≤1

∑
j,l≥2
j 6=l

〈
zSj , DxSj

A∗SjASlDxS1
zSl

〉

≤ sup
||z||2≤1

∑
j,l≥2
j 6=l

||zSj ||2||zSl ||2||xSj ||∞||xSl ||∞||A∗SjASl ||2→2

≤ δ2s sup
||z||2≤1

∑
j,l≥2
j 6=l

||zSj ||2||zSl ||2s−1/2||xSj−1
||2s−1/2||xSl−1

||2

≤ δ2s
4s

sup
||z||2≤1

∑
j,l≥2
j 6=l

(
||xSj−1 ||22 + ||zSj ||22

)(
||xSl−1

||22 + ||zSl ||22
)
≤ δ2s

s
.

The Frobenius norm obeys the same bound,

||B||F =
∑
j,l≥2
j 6=l

∑
i∈Sj

∑
l∈Sk

(xja
∗
jalxl)

2 =
∑
j,l≥2
j 6=l

∑
i∈Sj

x2
i

∣∣∣∣DxSk
A∗Skai

∣∣∣∣2
2

≤
∑
j,l≥2
j 6=l

∑
i∈Sj

x2
i ||xSk ||2∞||A∗Skai||22 ≤ δ2

2s

∑
j,l≥2
j 6=l

||xSj ||22s−1||xSk ||22 ≤
δ2
2s

s
,

where we have used the fact that ||A∗Skai||22 = ||A∗Sk ||2→2 ≤ δs+1 ≤ δ2s. So, by Inequality (6.14), the tail
of the third term can be estimate, for any t > 0, by

P
(
|Y | ≥ t

)
≤ 2 exp

(
−min

{
3t2

128||B||2F
,

t

32||B||2→2

})
≤ 2 exp

(
−min

{
3st2

128δ2s
,
st

32δ2s

})
≤ 2 exp

(
−min

{
3t2

8ε2
,
t

8ε

})
. (7.12)

Choosing t = ε/6 in (7.11) and t = ε/2 in (7.12) and taking into account the bounds for the three terms
simultaneously, we conclude that for a �xed x ∈ E, with probability at least

1− 2 exp(−s/8)− 2 exp(−smin{3/32, 1/16}) ≥ 1− exp(−s/16),

we have

(1− ε)||x||22 ≤ ||ADεx||22 ≤ (1 + ε)||x||22.
Taking the union bound over all x ∈ E and using the hypothesis s ≥ 16 ln(2M/η), we conclude that this
holds for all x ∈ E with probability at least
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1− 4M exp(−s/16) ≥ 1− η.
This concludes the proof.

We note that this theorem allows us to conclude the existence of Johnson-Lindenstrauss embeddings
for other types of matrices. In particular, matrices that satisfy RIP provide such embeddingsm as is
the case of random partial Fourier matrices. It is an open problem to show directly that such type os
matrices are JL embeddings because all the proofs involve, in some way, subgaussian matrices. Without
the randomization of columns, this Theorem is false. To see this, just take the points of E belonging to
the kernel of A then the lower bound cannot hold. Thus the randomization of columns signs ensures that
the probability of the intersection of E and the kernel of ADε not being empty is very small.

Additionally, the question about sharpness of the results emerges, that is, if we could improve the
fact that m = O(ε−2 ln(M)) or, in other words, if there exist some set E such that for any such map f ,
as de�ned in (7.7), we must have m = Ω(ε−2 ln(M)).

In their original paper, [Johnson & Lindenstrauss '84] proved the �rst lower bound of m = Ω(lnN)
when ε is smaller than some constant. This was improved by [Alon '03], who showed that any JL
map must embed into dimension m = Ω(min{N, ε−2 lnN/ ln(1/ε)}), where the �rst term in the min
is achieved by the identity map. This was later improved to m = Ω(ε−2 min{lnN, (lnN/ ln(1/ε))2}).
Finally, [Larsen & Nelson '14] closed the gap by proving the following result.

Theorem 7.17. There exists C > 0 such that for any N > 1 and 0 < ε < 1/2, there is a subset E ⊂ RN
with #E = N +N3 such that any embedding linear f : RN → Rm satisfying

(1− ε)||x||22 ≤ ||f(x)||22 ≤ (1 + ε)||x||22, ∀x ∈ E,
must have m ≥ C min{N, ε−2 ln(N)}. In other words, the JL lemma is optimal in the case where the
projection f is linear.

Proof. Theorem 3 from [Larsen & Nelson '14].

It is very curious that all methods for dimensionality reduction through JL lemma are via linear maps.
Moreover, the sharpness result is also for linear maps. Thus, circumventing the lower bound would require
a fundamentally new approach with nonlinear projections.

To conclude this chapter, we address the subject of the time needed to generate suitable JL projec-
tions. This is known as the search for Fast Johnson-Lindenstrauss Transform(FJLT), a term coined in
[Ailon & Chazelle '06]. They de�ne a probability distribution over a product of matrices through the
following product

AFJLT = PHNDε

where (remembering that we are dealing with vectors E = {x1, . . . , xM} ∈ RN , that is, we haveM vectors
in a space whose dimension is N)

• Dε is a N × N matrix where each Dii is drawn independently from {−1, 1} with probability 1/2,
as in Theorem 7.16. Note that Dε is an isometry for the 2-norm.

• HN is the N ×N Hadamard matrix (we are assuming that N is a power of 2) with entries given by
(Hd)ij = (−1)〈i−1,j−1〉/

√
N where for i, j each in {0, ..., d − 1} we write them in binary and treat

them as log2 d-dimensional vectors. Note that HN is also an isometry for the 2-norm.

• P is a m× t matrix whose elements are independently distributed as follows. With probability 1−η
set Pij as 0, and otherwise (with the remaining probability η) draw Pij from a normal distribution
of expectation 0 and variance η−1. The sparsity constant q is given as

q = min

{
Θ

(
ε−2 logM

t

)
, 1

}
.
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We need to choose t in order to complete the construction. It will be t = ε−2 ln(1/η) ln(N/η), with η
as de�ned above being the probability of failure in the JL lemma. The running time to apply A to some
vector x ∈ RN is

• Dε takes O(N) time.

• Due to the recurrence relation H1 = (1) and HN = 1√
2

(
HN/2 HN/2

HN/2 −HN/2

)
, it takes O(N lnN).

• Applying P takes O(mt) time.

So the total time to apply AFJLT is O
(
N lnN + ε−4 ln2(1/η) ln(N/η)

)
. To complete the argument,

an analysis must be done showing that this is an JL isometry. This is given by the following lemmas:

Lemma 7.18. For any x ∈ RN with ||x||2 = 1, and for any 0 < η < 1/2,

P

[∣∣∣∣∣∣HNDεx
∣∣∣∣∣∣
∞
>

√
ln(N/η)

N

]
< η.

Proof. Lemma 1 from [Ailon & Chazelle '09].

Lemma 7.19. If ||x||2 = 1 has ||x||∞ ≤
√

ln(N/η)/N , then

P
[
1− ε ≤ ||Px||2 ≤ 1 + ε

]
> η.

Proof. Lemma 7 from [Nelson '??]2.

This approach is known as FJLT via Fast Hadamard. For more details and a complete analysis, see
[Ailon & Chazelle '06]. Other methods to obtain similar results include the use of FFT and also Toeplitz
and circulant matrices. Some of them do not need to assume that matrices have dimension N = 2k for
some k, see [Vybiral '11], [Hinrichs & Vybiral '11], [Ailon & Liberty '11], [Dasgupta, Kumar & Sarlós '10],
and references therein. Besides, Jelani Nelson points out the following open question, the most important
in the computational tractability of using JL as a tool for dimension reduction:

Open Problem: Obtain a probability distribution for the JL lemma with embedding time O(N lnm)
(or even O(N lnN)) and the dimension of the target space being m = O(ε−2 ln(N))

.

In this chapter we proved that for matrices for which m ≥ Cδs ln(N/s), RIP holds. It turns out that
subgaussian matrices provide a good ensemble for the algorithms of sparse recovery to work. We also saw
that, roughly speaking, this scale is optimal in order to do dimension reduction via Johnson-Lindenstrauss
lemma.

Now we would like to know whether this scale is optimal and if there are some special situations where
it could be improved. For example, can we design, for some speci�c sparse signals, smart measurement
schemes such that there will be improvement in the art of measurement? In the next Chapter we provide
an answer through ideas based on the work of Kolmogorov and Gelfand in approximation theory.

2It is not indicated in the website of Jelani Nelson, http://people.seas.harvard.edu/~minilek/, when these notes were
written, so we have the interrogation on the reference.

http://people.seas.harvard.edu/~minilek/
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Chapter 8

Optimality in the Number of

Measurements

É estranho que tu, sendo homem do mar, me digas isso, que ja não há ilhas desconhecidas. Homem da terra sou eu,
e não ignoro que todas as ilhas, mesmo as conhecidas, são desconhecidas enquanto não embarcamos nelas.1

José Saramago in O Conto da Ilha Desconhecida

8.1 Introduction

Along this dissertation we developed the theory of Compressive Sensing and showed that it is possible
to sense signals using much fewer measurements than stated by the usual sampling paradigm. In the
introduction of [Donoho '06], he asks �why go to so much e�ort to acquire all the data when most of
what we get will be thrown away? Can't we just directly measure the part that won't end up being thrown
away?�

We saw that this new kind of sensing can be done in a nonadaptive way, that is, we do not require
the knowledge of the signal in advance. We just need to know that data is sparse or compressible
when expressed in some basis. Several techniques were required in order to show when and how this is
possible. We passed through Mathematical Optimization, Nonasymptotic Probability and sophisticated
ideas from Linear Algebra and Harmonic Analysis. This shows us that often circumventing dominant
ideas or breaking paradigms can be a di�cult task.

After many steps, we arrived at a point where it was possible to show how to design (random) sensing
matrices and perform optimal sampling with them. This was a breakthrough introduced by Donoho,
Tao, Candès and Romberg. They discovered that m ≈ s ln(N/s) is a rule of thumb regarding the number
of measurements. In other words, the information acquired is linear in the information content (sparsity
S) and logarithmic in the ambient dimension.

In Section 1.4 of his seminal work2, Donoho says that the estimation of error measurement of com-
pressible objects �concerns the geometry of high-dimensional convex and nonconvex balls...to develop this
geometric viewpoint further, we consider two notions of n-width� and argues that there is an equivalence
between optimal recovery of nonadaptive information and objects in approximation theory.

The purpose of this chapter is to explore this equivalence. Despite the fact that this type of observation
was well known in the Approximation Theory community (see [DeVore '06] and [Micchelli & Rivlin '76]),
it was a new information for people working on Signal Processing. Another fundamental paper of Com-
pressive Sensing concerning this error reconstruction questions is [Cohen, Dahmen & DeVore '09].

In this �nal chapter, we will de�ne the two notions of n-width that Donoho was referring to. In order
to do this, we �rst need to discuss some ideas of Approximation Theory. After, we prove the Theorem

1A free translation of Saramago's quote is: It is strange that you, being a man from the sea, tell me this, that there are
no unknown islands. I am a man from the land, and I am not unaware that all the islands, even the known ones, are
unknown until we land on them.

2According to Google Scholar, it has more than 16500 citations.
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of Kashin-Garnaev-Gluskin in Geometry of Banach Spaces and explain why this deep theorem is funda-
mental for Compressive Sensing. We derive, as its consequence, the optimal number of measurements for
sparse recovery, regardless of the reconstruction scheme.

The �rst part of this chapter was highly inspired by [Gamkrelidze '90] and [Pinkus '85]. The technical
results where extracted from [Rauhut & Foucart '13] and original papers. Also, the historical part was
taken from many papers written by Vladimir Tikhomirov3.

8.2 n-Widths in Approximation Theory

In any computational study where the available memory is �nite, it is necessary to represent functions
using a �nite number of parameters, for example, coe�cients of some truncated series expansion. More-
over, these coe�cients, real numbers, must be transformed into a �nite alphabet and many times this
alphabet will be represented by binary digits. This is the problem of quantization. With the bits obtained
we could use coding techniques to achieve a �nal compression.

Many ideas for this kind of representation (or approximation) came from the Soviet school [Ste�ens '06].
In particular, the abstract notions of metric entropy and widths are linked to the name of Kolmogorov,
who introduced them, and Tikhomirov, one of his students. The latter developed many techniques
related to widths and solved many problems left open by Kolmogorov and collaborators. In this con-
text, the names of Mityagin, Vitushkin, Kashin, Gluskin, Maiorov, Solomyak should also be mentioned
[Pietsch '07].

One of the �rst problems studied in approximation theory is the following: given a point and a subset
in a metric space, �nd the point (or points) in the subset which best approximates the given point. As
well as in the quantization problem, in any approximation problem it is necessary to characterize what
best approximation (or quantization) means. This will measure the accuracy with which an element from
the given set can be recovered. For example, given x ∈ X, where X is a Banach space, and given Xn, an
n-dimensional subspace of X, we wish to �nd the best approximation of x in Xn. Also we would like to
estimate the value of the error, i.e., the measure of the distance between x and its best approximant.

If we denote the distance by

d(x,Xn) = inf{||x− y||X : y ∈ Xn},

we ask if there exists a y∗ ∈ Xn for which d(x,Xn) = ||x− y∗|| and also ask for its characterization and
uniqueness, when possible. Note that as Xn is a �nite dimensional subspace of X, a best approximation
always exist.

Now, instead of a point, we could ask the same for a given subset K ⊂ X, that is, how well one can
approximate K by Xn, an n-dimensional subspace of X. Sometimes this is called the deviation of A
from Xn. We also allow the possibility of varying the n-dimensional subspaces Xn. This was �rst done
by [Kolmogorov '36], despite Uryson in 1922 and Aleksandrov in 1933 having created similar de�nitions
for the study of geometric problems. Geometry was also the motivation behind the theory of widths
developed in the Soviet Union, see Chapter 8 of [Charpentier, Lesne & Nikolski '07].

De�nition 8.1. The Kolmogorov m-width of a subset K of a normed space X is de�ned as

dm(K,X) = inf
Xm

{
sup
x∈K

inf
y∈Xm

||x− y||, Xm subspace of X with dim(Xm) ≤ m
}

As Tikhomirov points out in [Gamkrelidze '90], �undoubtedly, of most importance in approximation
theory is the Kolmogorov width which is the most closely connected with the basic direction of classical
approximation theory�.

He also wrote, �the determination of the entropy4 and widths of function classes can have several
goals, and these were actually all noted by Kolmogorov himself in 1956. Firstly, it can lead to invariants

3The interested reader can consult the page of Tikhomirov at Math-Net: http://www.mathnet.ru/eng/person8555.
4This is a reference to entropy numbers, which are related to the concept of covering numbers de�ned in Section 6.6.

http://www.mathnet.ru/eng/person8555
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enabling us to distinguish function sets of di�erent massiveness. The meaning of the most fundamental
concept of �number of variables� often manifests itself in this way. Secondly, computations of widths and
entropy make it possible to �nd new untraditional methods of approximation and to argue in favour of
their expediency. Thirdly, the exact solution of the corresponding extremal problems makes it possible to
enrich means of analysis by starting from the conviction that what is good does not merely turn out to be
good for a single question, but usually turns out to be useful for other questions. Fourthly, and �nally,
this can be of interest for computational mathematics by giving guidelines for the creation of the most
expedient algorithms for solving practical problems.� [Tikhomirov '83].

Tikhomirov points out that in a discussion with Gel'fand, the former expressed the idea that there
must be a dual to the Kolmogorov width. So this was introduced in 1965 by Tikhomirov through the
following de�nition (it was introduced independently by S. Smolyak and I. Sharygin in the same year).

De�nition 8.2. The Gel'fand m-widht of a subset K of a normed space X is de�ned as

dm(K,X) = inf
Xm

{
sup

x∈K∩Xm
||x||, Xm subspace of X with codim(Xm) ≤ m

}
.

A subspace Xm of X is of codimension at most m in and only if there exists linear functionals λ1, . . . , λm :
X → R in the dual space X∗ such that

Xm = {x ∈ X : λi(x) = 0 for all i ∈ [m]} = kerA,

where A : X → Rm, x 7→ [λ1(x), . . . , λm(x)]. Using A, we have the following alternative de�nition

dm(K,X) = inf
Xm

{
sup

x∈K∩kerA
||x||, A : X → Rm linear

}
.

This means that the width measures the extent to which one can determine x ∈ X, given the value
of m functionals applied on x.

Remark 38. In Compressive Sensing, the Gel'fand widths will be more important than the Kolmogorov
ones, as we will see through this chapter.

The following Theorem establishes the duality of these widths, as suggested by Gel'fand.

Theorem 8.3. For 1 ≤ p, q ≤ ∞, let p∗, q∗ be such that 1/p∗ + 1/p∗ = 1 and 1/q + 1/q∗ = 1. Then

dm(BNp , `
N
q ) = dm(BNq∗ , `

N
p∗)

In order to prove this result, we need the de�nition of a dual norm and a Lemma.

De�nition 8.4. Let ||.|| be a norm on a Banach space. Its dual norm is de�ned by ||x||∗ = sup||y||≤1 |〈x, y〉|.

Lemma 8.5. Let Y be a �nite-dimensional subspace of a normed space X. Given x ∈ X\Y and y∗ ∈ Y ,
the following statements are equivalent:

1. y∗ is a best approximation to x from Y , that is, ||y∗ − x|| ≤ ||y − x||, ∀y ∈ Y .

2. ||x− y∗|| = λ(x) for some linear functional λ vanishing on Y and satisfying ||λ|| ≤ 1.

Proof. Assume that 1) holds. Let us de�ne the linear functional λ̃ on the space Y ⊕ span(x) by

λ̃(y + tx) = t||x− y∗||, ∀ y ∈ Y and t ∈ R,

When setting t = 0, we see that λ̃ vanishes on Y . Furthermore, for y ∈ Y and t 6= 0, we have

|λ̃(y + tx)| = |t| ||x− y∗|| ≤ |t| ||x− (−y/t)|| = ||y + tx||,
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since y∗ is the best approximation to x. Dividing both sides of this inequality (which is obviously valid
for t = 0) by ||y + tx||, we have ||λ̃|| ≤ 1. Using the Hahn-Banach Extension Theorem, the functional
λ : X → R we are looking for is just the extension to X provided by this theorem.

Now assume that 2) holds. First observe that λ(y) = 0, ∀y ∈ Y and so

||x− y∗|| = λ(x) = λ(x− y) ≤ ||λ|| ||x− y|| ≤ ||x− y||, ∀ y ∈ Y.

Now we are able to prove the duality relation between Gel'fand and Kolmogorov widths.

Proof. (Theorem 8.3) Recall that `Nq denotes RN with the ||.||q norm. Given a subspace Xm of `Nq with
dim(Xm) ≤ m and a vector x ∈ BNp , Lemma 8.5 shows that there exists a functional λ : `Nq → R with
||λ||q∗ ≤ 1 and λ(Xm) = 0 such that

inf
z∈Xm

||x−z||q = ||x−z∗||q = λ(x) ≤ ||λ||q∗ ||x||q ≤ ||x||q = sup
||u||q∗=1

〈u, x〉 = sup
u∈BN

q∗

〈u, x〉 = sup
u∈BN

q∗∩X⊥m
〈u, x〉,

where in the last equality we used the fact that the functional satis�es λ(Xm) = 0 and so 〈u, z〉 = 0
∀ z ∈ Xm implies u ∈ X⊥m. For z ∈ Xm, we have

sup
u∈BN

q∗

〈u, x〉 = sup
u∈BN

q∗∩X⊥m
〈u, x− z〉 ≤ sup

u∈BN
q∗∩X⊥m

||u||q∗ ||x− z||q = ||x− z||q.

Therefore we deduce the equality

inf
z∈Xm

||x− z||q = sup
u∈BN

q∗∩X⊥m
〈u, x〉.

It follows that

sup
x∈BNp

inf
z∈Xm

||x− z||q = sup
x∈BNp

sup
u∈BN

q∗∩X⊥m
〈u, x〉 = sup

u∈BN
q∗∩X⊥m

sup
x∈BNp

〈u, x〉 = sup
u∈BN

q∗∩X⊥m
||u||p∗

Now, note that there is a correspondence between the subspaces X⊥m and the subspaces Lm with
codim(Lm) ≤ m. Taking the in�mum over all Xm with dim(Xm) ≤ m yields

dm(BNp , `
N
q ) = dm(BNq∗ , `

N
p∗).

It is di�cult to prove general results about widths. There is essentially only one general result
available. It was proved in [Tikhomirov '66]. All other results are proved for very particular cases.

Theorem 8.6. (Tikhomirov '66): For every sequence {αi}i∈N satisfying α1 > · · · > αn and αn → 0,
there exists a Banach space X and a compact set K ⊂ X such that

dn(K,X) = αn n = 0, 1, . . .

The same holds for the Kolmogorov width dm(K,X).

It is interesting to note that the reference which transformed the theory of widths, a theory previously
studied only in Soviet Union, into a well known �eld in western mathematics was the book [Lorentz '66].
The reason, as described in [Pietsch '07], is that �G.G. Lorentz (1910-2006) emigrated from Leningrad to
the USA. After, Lorentz wrote the book which opened up the concepts of widths and entropy to the �Free
World� and has become a standard reference.�
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8.3 Compressive Widths

The power of the theory of widths enters compressive sensing through the following de�nition, in which
a way of �measuring� the worst-case reconstruction errors is given.

De�nition 8.7. The (non-adaptive) compressive m-width of a subset K of a normed space X is de�ned
as

Em(K,X) = inf

{
sup
x∈K
||x−∆(Ax)||, A : X → Rm linear and ∆ : Rm → X

}
In this de�nition, no assumptions are made on the reconstruction map ∆ : Rm → X: it could be `0-

minimization, a greedy algorithm or even a thresholding algorithm. It also can vary with the measurement
matrix A or be �xed. Moreover, the measurement map A is nonadaptive. It is given by m �xed linear
functionals λ1, . . . , λm, that is, the action of A is Ax = [λ1(x), . . . , λm(x)] . We could also consider an
adaptive map where a choice of a measurement depends on the previous one through a speci�c rule. This
adaptive map F : X → Rm, is represented by

F (x) =
[
λ1(x), λ2;λ1(x), . . . , λm;λ1(x),...,λm−1(x)(x)

]
, (8.1)

that is, the linear functional λj;λ1(x),...,λj−1(x)(x) is allowed to depend on previous λj−1;λ1(x),...,λj−2(x)(x).
With this de�nition in mind, we introduce a notion of width for this kind of measurements.

De�nition 8.8. The adaptive compressive m-widht of a subset K of a normed space X is de�ned as

Emada(K,X) = inf

{
sup
x∈K
||x−∆(Ax)||, A : X → Rm adaptive and ∆ : Rm → X

}
.

Remark 39. As [Rauhut & Foucart '13] points out, intuitively, we expect that the notion of adaptivity
should improve the measurement/reconstruction scheme. However this is false and is a particular case
of the general philosophy from information-based complexity that �adaptivity does not help�. For more
information, see [Novak & Wozniakowski '08].

In their seminal paper [Cohen, Dahmen & DeVore '09], they introduced the notion of null space prop-
erty described in Chapter 4 and proved a result relating adaptive and non-adaptive reconstruction (see
also [Donoho '06], where many similar results are proved). When considering the worst case recon-
struction over K, this theorem shows that adaptive and non-adaptive compressive sensing widths are
equivalent. Even more, under reasonable conditions on K, they are equivalent to the Gel'fand widths.

Theorem 8.9. Let X be a normed space. If K ⊂ X, then

Em
ada

(K,X) ≤ Em(K,X).

If −K = K, then
dm(K,X) ≤ Em

ada
(K,X).

Furthermore, if K +K ⊂ aK for some positive constant a, then

Em(K,X) ≤ a dm(K,X).

Proof. The �rst inequality is obvious, as any linear map A : X → Rm can be considered adaptive. For
the second inequality, assume that we have an adaptive map Aada : X → Rm as described by (8.1) and
a reconstruction map ∆ : Rm → X. We will consider subspaces of X generated by the kernel of a map
A : X → Rm de�ned by A(x) = [λ1(x), λ2;0(x), . . . , λm;0,...,0(x)], so we set Xm = kerA. As

dim(Im(A)) + dim(ker(A)) = dimX and dim(ker(A)) + codim(ker(A)) = dimX,
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then codim(ker(A)) = dim(Im(A)) ≤ m. So, by the de�nition of the Gel'fand widths, we have

dm(K,X) = inf
Xm

{
sup

x∈K∩Xm
||x||, Xm subspace of X with codim(Xm) ≤ m

}
≤ sup
x∈K∩kerA

||x||. (8.2)

For the image of v ∈ kerA, the image of the adaptative map Aada will be zero, because

λ1(v) = 0 =⇒ λ2;λ1(v)(v) = λ2;0(v) = 0 =⇒ · · · =⇒ λm;λ1(v),...,λm−1(v)(v) = λm;0,...,0(v) = 0

=⇒ Aada(v) = 0.

Thus, taking v ∈ K ∩ kerA, we have

||v −∆(0)|| = ||v −∆(Aada(v))|| ≤ sup
x∈K
||x−∆(Aada(x))||.

By the hypothesis, K = −K, which implies −v ∈ K ∩ kerA and then

|| − v −∆(0)|| = || − v −∆(Aada(v))|| ≤ sup
x∈K
||x−∆(Aada(x))||.

Then, for any x ∈ K ∩ kerA,

||x|| =
∣∣∣∣∣∣∣∣12(x−∆(0))− 1

2
(−x−∆(0))

∣∣∣∣∣∣∣∣ ≤ 1

2
||x−∆(0)||+ 1

2
|| − x−∆(0)|| ≤ sup

x∈K
||x−∆(Aada(x))||.

Incorporating this in (8.2), we obtain

dm(K,X) ≤ sup
x∈K
||x−∆(Aada(x))||.

Taking the in�mum over all possible Aada and ∆, we conclude that dm(K,X) ≤ Emada(K,X).
Now let us use the same construction as before, namely, consider a map A : X → Rm and a subspace

of X given by Xm = kerA. We need an appropiate choice of a reconstruction map. De�ne ∆ : Rm → X
such that

∆(y) ∈ K ∩A−1(y) ∀ y ∈ A(K).

This choice implies that

Em(K,X) ≤ sup
x∈K
||x−∆(A(x))|| ≤ sup

x∈K

[
sup

z∈K∩A−1(Ax)

||x− z||
]

Analyzing x − z, for x ∈ K and z ∈ K ∩ A−1(Ax), we see that it belongs to K + (−K) and also to
kerA = Xm. Our hypothesis says that K +K ⊂ aK for some positive constant a, hence we have

Em(K,X) ≤ sup
u∈aK∩Xm

||u|| ≤ sup
v∈K∩Xm

||v||.

Taking the in�mum, this time over Xm, we obtain Em(K,X) ≤ adm(K,X).

Now that we know that the comparison between widths makes sense, the question of which are the
�good� sets K to consider in the context of Compressive Sensing arises. We saw in Proposition 1.5 that
the unit balls BNp in `Np with small p are good models for compressible vectors. Then maybe we should
consider these sets and try to estimate their widths. If it is possible to estimate dm(BNp , `

N
p ) for small p

then, by the Theorem 8.9, we will be able to estimate Em(BNp , `
N
p ). This will provide constrains to the
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quantities involved in the coding/decoding process. Therefore the sharp relation between the number of
measurements and the ambient space of the signals will be established.

In the quest to estimate the Gel'fand widths dm(BNp , `
N
p ) for small p, some di�culties arise when

p < 1, since in this case we do not have a norm, but an `p-quasinorm. Here we will only treat the case
p = 1 and refer to the corresponding literature for the other cases. Nevertheless, the case p = 1 allows us
to establish a sharp relation between the number of measurements and the dimension of the signal.

The estimates of dm(BNp , `
N
1 ) are the content of an important theorem, which will be proved in Section

8.5. It was proved by [Gluskin '84] and [Garnaev & Gluskin '84] following work by [Kashin '77]. In the
latter, the author explored the duality relation and developed some results about Gel'fand widths in the
course of determining the Kolmogorov widths of some Sobolev spaces. Before proving this very important
result, let us analyze what happens if we try to use basis pursuit as a method of sparse recovery.

8.4 Optimal Number of Measurements

In this chapter we are interested in comparing m and N , this is, the relation between the amount of
measured information and the dimension of the signals under the process of measurement and recover.
We start this section by showing a necessary condition of combinatorial �avor for Basis Pursuit.

Theorem 8.10. Given a matrix A ∈ Rm×N , if every 2s-sparse vector x ∈ RN is a minimizer of ||z||1
subject to Az = Ax, then

m ≥ C1s ln

(
N

C2s

)
,

where C1 = 1/ ln 9 and C2 = 4.

In order to prove this result, we need to estimate the amount of sets with a given intersection between
them. This was done in the context of Compressive Sensing by [Foucart, Pajor, Rauhut & Ullrich '10]
and their proof follows [Mendelson, Pajor & Rudelson '05]. However, it seems that this combinatorial
lemma was already known by the community of researchers in combinatorics and complexity theory. See
for example [Graham & Sloane '80] and [Noam & Avi '94].

Lemma 8.11. Given integers s < N , there exist

n ≥
(
N

4s

)s/2
subsets S1, . . . , Sn of [N ] such that each Sj has cardinality s and

#(Si ∩ Sj) <
s

2
for i 6= j.

Proof. Let us assume that s ≤ N/4, because otherwise we have 1 > N
4s and it su�ces to take n = 1

subset of [N ]. Denote by As the family of subsets of [N ] having cardinality s. Let us draw a �xed
element S1 ∈ As and cluster all the sets S ∈ As such that #(S ∩ S1) ≥ s

2 into a family A1s. The
cardinality of this family is estimated by

#(A1s) =

s∑
k=ds/2e

(
s

k

)(
N − s
s− k

)
≤ max
ds/2e≤k≤s

(
N − s
s− k

) s∑
k=ds/2e

(
s

k

)
≤ max
ds/2e≤k≤s

(
N − s
s− k

) s∑
k=0

(
s

k

)

≤ 2s max
ds/2e≤k≤s

(
N − s
s− k

)
= 2s

(
N − s
bs/2c

)
,

where the last equality holds because it is known that a general binomial number attains its maximum
when k = N/2 so, in our case, where s ≤ N/4 the maximum of s − k is s/2, which is still smaller than
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(N − s)/2. Looking to the complement of A1s, it is clear, by de�nition, that any S ∈ As\A1s satis�es
#(S ∩ S1) < s/2, provided the latter is nonempty. Then we take a new element S2 ∈ As\A1s and make
a new cluster by putting together all the sets S ∈ As\A1s such that #(S ∩S2) ≥ s

2 . This new family will
be named A2s. By the same argument, we have

#(A2s) ≤ 2s
(
N − s
bs/2c

)
.

Next, observe that any set S ∈ As\(A1s∪A2s) satis�es #(S ∩S1) < s/2 and #(S ∩S2) < s/2 simultane-
ously. Inductively we repeat this construction and selection of sets S1, S2, . . . , Sn until As\(A1s∪· · ·∪Ans)
is empty. Hence all the constructed sets must satisfy #(Si ∩ Sj) < s/2 for i 6= j. Moreover, this con-
struction was done in such a way that ∪iAis = As and so

∑n
i=1 #Ais ≥ # ∪ (Ais) = #(As). With this

observation in mind, we can estimate the cardinality of As through

#(As) ≤
n∑
i=1

#(Ais) ≤ n
(

max
1≤i≤n

#(Ais)
)
.

Then

n ≥ #(As)
max1≤i≤n #(Ais)

≥
(
N
s

)
2s
(
N−s
bs/2c

)
=

1

2s
N(N − 1) . . . (N − s+ 1)

(N − s)(N − s− 1) . . . (N − s− bs/2c+ 1)

1

s(s− 1) . . . (bs/2c+ 1)

≥ 1

2s
N(N − 1) . . . (N − bs/2c+ 1)

(s)(s− 1) . . . (s− bs/2c+ 1)
≥ 1

2s

(
N

s

)bs/2c
≥
(
N

4s

)s/2
.

Now we are able the prove Theorem 8.10, which says that: �if Basis Pursuit works, then the minimal
number of measurements is given by m ≥ C1s ln

(
N/(C2s)

)
for all s-sparse vectors� or, in other words,

what is the maximum discrepancy between the number of rows and the number of columns when we have
a unique sparse solution of a linear system Ax = b.

Proof. (Theorem 8.10) Consider the quotient space

X = `N1 / kerA = {[x] = x+ kerA, x ∈ RN},
endowed with the norm ||[x]|| = infv∈kerA ||x − v||1. If we have a 2s-sparse vector x ∈ RN , then for
v ∈ kerA and z = x − v, we have Az = A(x − v) = Ax and thus ||[x]|| = ||x||1. Let S1, . . . Sn be sets
as the ones introduced in the Lemma 8.11 and let us de�ne s-sparse vectors x1, . . . , xn ∈ RN with unit
`1-norms by

xik =

{
1/s if k ∈ Si,
0 if k /∈ Si.

As the vector xi − xj is 2s-sparse, we have, for 1 ≤ i 6= j ≤ n, ||[xi] − [xj ]|| = ||[xi − xj ]|| = ||xi − xj ||1
and since |xik − xjk| = 1/s if k ∈ Si∆Sj = (Si ∪ Sj)\(Si ∩ Sj), vanishes otherwise and #(Si∆Sj) > s, we
have ||xi − xj ||1 > 1. This implies∣∣∣∣[xi]− [xj ]

∣∣∣∣ > 1 ∀ 1 ≤ i 6= j ≤ n,
and shows that {[x1], . . . , [xn]} is a 1-separated subset of the unit sphere of X, which has dimension
r = rank(A) ≤ m, since it is isomorphic to the image of A. Theorem 6.51 implies that n ≤ 3r ≤ 3m. By
Lemma 8.11, the number of sets in this construction is at least
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(
N

4s

)s/2
≤ n

and this implies (
N

4s

)s/2
≤ 3m.

The conclusion follows by taking the logarithm on both sides.

8.5 The Theorem of Kashin, Garnaev and Gluskin

An important problem posed by Kolomogorov in 1950s was to compute widths in Sobolev spaces. In
the sixties, Tikhomirov and Babenko solved some of these problems using ideas of duality and Gel'fand
widths. Kashin made important progress when he reduced the width calculation for function spaces to
the �nite-dimensional case of BNp inside `Nq [Tikhomirov '03]. It is important to note that [Kashin '77]
was the one of the �rst papers in which random matrices are explicitly used to study the geometry of
Banach spaces. See [Davidson & Szarek '01]. This motivated many soviet mathematicians like Garnaev,
Gluskin, Temlyakov to work on this type of estimates.

For the width of the `1-ball, Kashin provided only the upper bound in Theorem 8.12 and did not
achieve the best exponent in the logarithm, whereas Garnaev and Gluskin proved the lower bounds and
provided the correct exponent. Kashin's construction of subspaces Xm involves m×N Bernoulli random
matrices with independent entries. On the other hand, the construction of Garnaev and Gluskin for
the lower bound used Gaussian matrices. More recently, [Milman & Pajor '03] realized that Bernoulli
matrices could be used to yield the upper bound and they also generalized the result to an arbitrary
compact and convex body K ⊂ RN .

Theorem 8.12. For 1 < p ≤ 2 and m < N , there exists constants c1, c2 > 0 depending only on p such
that

c1 min

{
1,

ln(eN/m)

m

}1−1/p

≤ dm(BN1 , `
N
p ) ≤ c2 min

{
1,

ln(eN/m)

m

}1−1/p

.

We split the proof of this result into two parts: the upper and the lower bound, and present a modern
version based on Compressive Sensing techniques. In many results in sparse recovery, we �nd estimates
of the form m ≥ cs ln(eN/m). We �rst need a lemma about changing the m inside the logarithm by s.

Lemma 8.13. Let N ≥ m ≥ s be positive integers, and c, d two positive real numbers. If m ≥
cs ln(dN/m) then

1. m ≥ c′s ln(dN/s) with c′ = ec/(e+ c),

2. m ≥ c̃s ln(dN/s) with c̃ = c/(1 + ln(c)) provided c, d ≥ e.

Proof. Rewriting the hypothesis m ≥ cs ln(dN/m) we obtain:

m ≥ cs ln

(
dN

s

)
+ cs ln

( s
m

)
= cs ln

(
dN

m

)
+ cm

s

m
ln
( s
m

)
.

Taking x = s
m , consider f(x) = x ln(x), which is decreasing on (0, 1/e) and increasing on (1/e,+∞) and

has a minimum value of −1/e. We conclude that

m ≥ cs ln

(
dN

m

)
+ cm

s

m
ln
( s
m

)
≥ cs ln

(
dN

m

)
− cm

e
,
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and this implies the �rst inequality

m ≥
(

1 +
c

e

)−1

cs ln

(
dN

s

)
.

From m ≥ cs ln(dN/s), we have

s

m
≤ 1

c ln(dN/m)
≤ 1

c
.

As f(x) = x lnx is a decreasing function on (0, 1/e), this leads to f
(
s
m

)
≥ f

(
1
c

)
= − ln c

c and then

m ≥ cs ln

(
dN

m

)
+ cm

s

m
ln
( s
m

)
= cs ln

(
dN

m

)
+ cmf

( s
m

)
≥ cs ln

(
dN

m

)
− cm ln c

c
.

The result of the second part follows.

Proof. (Upper Bound of Theorem 8.12): For x ∈ RN , when using the inequality ||x||p ≤ ||x||1 in the
de�nition of Gel'fand width, it yields

dm(BN1 , `
N
p ) = inf

Xm

{
sup

x∈BN1 ∩Xm
||x||p, Xm subspace of `Np with codim(Xm) ≤ m

}
≤ d0(B1, `

N
1 ) = 1.

So if m ≤ c ln(eN/m) then

dm(BN1 , `
N
p ) ≤ min

{
1,
c ln(eN/m)

m

}1−1/p

. (8.3)

On the other hand, if m > c ln(eN/m), let us de�ne s ≥ 1 to be the largest integer smaller than
m/(c ln(eN/m)), so that

1

2

m

c ln(eN/m)
≤ s < m

c ln(eN/m)
.

Recall Lemma 8.13 we have that for c > e, m > cs ln(eN/m) implies m > c̃s ln(eN/s), with c̃ =
c/(1 + ln(c)). Choosing c = 1160,

m >
1160

1 + ln(1160)
s ln(eN/s) > 144s ln(eN/s).

Using Theorem 7.13, which says that if m ≥ 2η−2
(
s ln(eN/s) + ln(2ε−1)

)
, then we have

P

[
δs

(
1√
m
A

)
≤ 2

(
1 +

1√
2 ln(eN/s)

)
η +

(
1 +

1√
2 ln(eN/s)

)2

η2

]
≥ 1− ε,

for Gaussian random matrices. So we choose η = 1/6 and ε = 2 exp(−m/144) and our hypothesis (�If
m ≥ cs ln(dN/m) then�) turns into

m ≥ 2 · 36
(
s ln(eN/s) + ln(exp(−m/144)−1)

)
= 72

(
s ln(eN/s) +

m

144

)
.

This implies m ≥ 144s ln(eN/s), by Lemma 8.13. Using the estimate 1 + 1/
√

2 ln(eN/s) ≤ 2 in Theorem
7.13, we can guarantee the existence of a measurement matrix5 B ∈ Rm×N with restricted isometry
constant given by

5In fact, what we guarantee is the existence of a `2-normalized matrix with δs(A/
√
m) ≤ δ. As only the existence is

important, we just take B = A/
√
m.
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δs(B) ≤ δ = 4η + 4η2 =
4

6
+

4

36
=

7

9
.

Now, we split the index set [N ] as a disjoint union S0 ∪S1 ∪S2 ∪ . . . of index sets of size s in such a way
that |xi| ≥ |xj | whenever i ∈ Sk−1, j ∈ Sk and k ≥ 1. By Lemma 5.18 we have ||xSk ||2 ≤ ||xSk−1

||1/
√
s

for all k ≥ 1. Hence, for x ∈ Xm = kerA, we have

||x||p ≤
∑
k≥0

||xSk ||p ≤
∑
k≥0

s1/p−1/2||xSk ||2 ≤
∑
k≥0

s1/p−1/2

√
1− δ

||A(xSk)||2

=
s1/p−1/2

√
1− δ

[∣∣∣∣∣∣∣∣A(−∑
k≥1

xSk

)∣∣∣∣∣∣∣∣
2

+
∑
k≥1

||A(xSk)||2
]
≤ s1/p−1/2

√
1− δ

[
2
∑
k≥1

||A(xSk)||2
]

≤ 2

√
1 + δ

1− δ s
1/p−1/2

∑
k≥1

||xSk ||2 ≤ 2

√
1 + δ

1− δ s
1/p−1/2

∑
k≥1

||xSk−1
||1/
√
s

= 2

√
1 + δ

1− δ
1

s1−1/p

∑
k≥1

||xSk−1
||1 ≤ 2

√
1 + δ

1− δ

(
2c ln(eN/m)

m

)1−1/p

||x||1,

where in the second inequality we used that 1 < p ≤ 2. Choosing δ = 7/9 and using 21−1/p ≤ 2, it follows
that, for all x ∈ BN1 ∩Xm,

||x||p ≤ 8
√

2

(
c ln(eN/m)

m

)1−1/p

.

This shows that, if m > c ln(eN/m), then

dm(BN1 , `
N
p ) ≤ 8

√
2 min

{
1,
c ln(eN/m)

m

}1−1/p

. (8.4)

From 8.3 and 8.4, we conclude that

dm(BN1 , `
N
p ) ≤ C min

{
1,

ln(eN/m)

m

}1−1/p

,

with C = 1160 · 8
√

2 = 9280
√

2.

We now establish the lower bound for the Gel'fand widths of `1-balls in `Np for 1 < p ≤ ∞.

Proof. (Lower Bound of Theorem 8.12): Let c′ = 2/(1 + 4 ln 9). First, we need to understand why it is
su�cient to show that

dm(BN1 , `
N
p ) ≥ 1

22−1/p
min

{
1,
c′ ln(eN/m)

m

}1−1/p

.

Letting K = 1/22−1/p and ϕ := ln(eN/m)
m , we need to see why

dm(BN1 , `
N
p ) ≥ K min{1, c′ϕ}1−1/p,

implies , that there is a positive x such that

dm(BN1 , `
N
p ) ≥ cmin{1, ϕ}1−1/p.
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This is just the following sequence of logical implications:

dm(BN1 , `
N
p ) ≥ K min{1, c′ϕ}1−1/p

implies
dm(BN1 , `

N
p ) ≥ K or dm(BN1 , `

N
p ) ≥ K(c′ϕ)1−1/p

that implies

dm(BN1 , `
N
p ) ≥ min{K,K(c′)1−1/p} or dm(BN1 , `

N
p ) ≥ min{K,K(c′)1−1/p}ϕ1−1/p

which, in turn, implies

dm(BN1 , `
N
p ) ≥ cmin{1, ϕ}1−1/p with c = min{K,K(c′)1−1/p}.

De�ne µ = min
{

1, c
′ ln(eN/m)

m

}
. Now, assume by contradiction that dm(BN1 , `

N
p ) ≤ µ1−1/p/22−1/p. Then

there exists a subspace Xm of RN with codim(Xm) ≤ m such that, for all v ∈ Xm\{0},

||v||p <
µ1−1/p

22−1/p
||v||1.

Again, as in the proof of Theorem 8.9, let us consider a matrix A ∈ Rm×N such that kerA = Xm. Let
s = b1/µc ≥ 1, so that 1/(2µ) < s ≤ 1/µ. So, for all v ∈ kerA\{0},

||v||p <
1

2

(
1

2s

)1−1/p

||v||1.

By the Hölder inequality, we have ||v||1 ≤ N1−1/p||v||p and then 1 < (N/2s)1−1/p. Hence, we can deduce
that 2s < N . Then, again by the Hölder inequality, for S ⊂ [N ] with #S ≤ 2s and for v ∈ kerA\{0}, we
have

||vS ||1 ≤ (2s)1−1/p||vS ||p ≤ (2s)1−1/p||v||p <
1

2
||v||1.

The conclusion is that A has the null space property of order 2s. Due to Theorem 3.3, every 2s-sparse
vector x ∈ RN is uniquely recovered from y = Ax via `1-minimization. By Theorem 8.10, the following
inequality holds:

m ≥ c1s ln

(
N

c2s

)
, with c1 =

1

ln 9
and c2 = 4.

Also we have that m ≥ 2(2s) = 4s = c2s as a consequence of Theorem 1.11. Thus

m ≥ c1s ln

(
N

c2s

)
≥ c1s ln

(
N

m

)
= c1s ln

(
eN

m

)
− c1s >

c1
2µ

ln

(
eN

m

)
− c1

4
m.

Rearranging leads to

m >
2c1

4 + c1

ln(eN/m)

min{1, c′ ln(eN/m)/m} ≥
2c1

4 + c1

ln(eN/m)

c′ ln(eN/m)/m
=

2(ln 9)−1

4 + (ln 9)−1

ln(eN/m)

c′ ln(eN/m)/m
= m.

This is the contradiction we are looking for. So we have the result about the lower estimate of Gel'fand
widths.

This theorem was extended in [Donoho '06] to Gel'fand widths of `p-balls with p < 1. Unfortunately,
his proof of the lower bound contains a gap. In the same paper, he proved the upper bound with log(N)
instead of log(N/m). Then, [Vybiral '08] provided the correct upper bound when p ≤ 1. After this,
[Foucart, Pajor, Rauhut & Ullrich '10] used methods based on compressive sensing techniques (RIP, for
example), to establish the lower bound for the case p ≤ 1. This was shown in Theorem 8.12, where we
exhibited their proof for the case p = 1. The �nal result is the following.
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Theorem 8.14. ([Foucart, Pajor, Rauhut & Ullrich '10]): For 0 < p ≤ 1 and p < q ≤ 2 and m < N ,
there exists constants cp,q, Cp,q > 0 depending only p and q such that

cp,q min

{
1,

ln(eN/m)

m

}1/p−1/q

≤ dm(BNp , `
N
q ) ≤ Cp,q min

{
1,

ln(eN/m)

m

}1/p−1/q

.

Remark 40. For 1 < q < p ≤ ∞, the study of widths is typically divided into four regions. We summarize
here the results known for Gel'fand widths. See Chapter 14 in [Lorentz, von Golitschek & Makovoz '96]
for the proof of these results and more results concerning widths in general.

I

IV

II

III

1 2

2

∞

∞

p

q

I: 1 ≤ q ≤ p ≤ ∞
II: 1 ≤ p ≤ q ≤ 2

III: 2 ≤ p ≤ q ≤ ∞
IV: 1 ≤ p ≤ 2 ≤ q ≤ ∞

Region II: If 1 < p < q ≤ 2

dm(BNp , `
N
q ) � min

{
1,
N1−1/p

m1/2

}
.

Region III: If 2 ≤ p < q ≤ ∞

dm(BNp , `
N
q ) � max

{
1

N1/p−1/q
,
(

1− m

N

) 1/p−1/q
1−2/q

}
.

Region IV: If 1 < p ≤ 2 < q ≤ ∞

dm(BNp , `
N
q ) � min

{
1

N1/p−1/q
,
(

1− m

N

)1/2

min

(
1,
N1−1/p

m1/2

)}
.

8.6 Connections Between Widths

With these estimates in hands, we can relate Gel'fand widths with compressive widths.

Corollary 8.15. For 1 < p ≤ 2 and m < N , the adaptive and nonadaptive compressive widths satisfy

Em
ada

(BN1 , `
N
p ) � Em(BN1 , `

N
p ) � min

{
1,

ln(eN/m)

m

}1−1/p

.

Proof. Since −BN1 = BN1 and BN1 +BN1 ⊂ 2BN1 , Theorem 8.9 implies

dm(BN1 , `
N
p ) ≤ Emada(BN1 , `Np ) ≤ Em(BN1 , `

N
p ) ≤ 2dm(BN1 , `

N
p ).

By the theorem of Kashin, Gluskin and Garnaev, the results follows.
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Proposition 8.16. Let 1 < p ≤ 2. Suppose that there exists a matrix A ∈ Rm×N and a map ∆ : Rm →
RN such that, ∀x ∈ RN ,

||x−∆(Ax)||p ≤
C

s1−1/p
σs(x)1. (8.5)

Then, for some constants c1, c2 > 0 depending only on C, we have

m ≥ c1s ln

(
eN

s

)
,

provided that s > c2. The same statement holds for an adaptive map F : RN → Rm in place of a linear
map A.

Proof. Again, it su�ces to prove the proposition for an adaptive map F : RN → Rm, since every linear
map could be considered adaptive. Hypothesis (8.5) implies

Emada(B
N
1 , `

N
p ) ≤ C

s1−1/p
sup
x∈BN1

σs(x)1 ≤
C

s1−1/p
.

By the Corollary 8.15, there exists a constant c > 0 such that

cmin

{
1,

ln(eN/m)

m

}1−1/p

≤ Emada(BN1 , `Np ) ≤ C

s1−1/p

Hence, there is some constant c̃ > 0 such that

c̃min

{
1,

ln(eN/m)

m

}
≤ 1

s
.

We conclude that either s ≤ 1/c̃ or m ≥ c̃s ln(eN/m). Setting c2 = 1/c̃ < s, we must have the second
case(we will deal with the case s < c2 in Section 8.7 because it is more delicate). To �nish the proof,
we need to prove that m ≥ c̃s ln(eN/m) implies m ≥ c1s ln(eN/s) with c1 = c̃e/(c̃ + e). But this is the
content of Lemma 8.13.

We will remove the restrictions s > c2 and p > 1 in Section 8.7. Now, accepting that this theorem
is true for all values of s and p, we can state the result on the minimal number of measurements for the
best known values which ensures that RIP is satis�ed.

Corollary 8.17. If the 2s-th restricted isometry constant of A ∈ Rm×N satis�es δ2s < 4/
√

41 ≈ 0.6246,
then necessarily

m ≥ cs ln

(
eN

s

)
for some constant c > 0 depending only on δ2s.

Proof. If δ2s < 0.6246 and if ∆ is basis pursuit, i.e., the `1-minimization reconstruction map, we proved
in Theorem 5.19 that

||x−∆(Ax)||2 ≤
C

s1/2
σs(x)1

holds for some constant C depending only on δ2s. By Theorem 8.16, the conclusion follows.
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8.7 Instance Optimality

Suppose that we have a measurement-reconstruction scheme chosen for s-sparse recovery. We will compare
the reconstruction error in `p with the best s-term approximation error in `p. In order to do this, we
de�ne the concept of `p-instance optimality for a pair of measurement matrix and reconstruction map.

De�nition 8.18. Given p ≥ 1, a pair of a measurement matrix A ∈ Cm×N and a reconstruction map
∆ : Cm → CN is `p-instance optimal of order s with constant C > 0 if

||x−∆(Ax)||p ≤ Cσs(x)p for all x ∈ CN .

Some examples of `1-instance optimal pairs were shown in Chapter 6, i.e., a matrix A with restricted
isometry constant δ2s, δ6s or δ26s less than a certain value and a reconstruction map ∆ corresponding to
Basis Pursuit, IHT or OMP respectively.

We can generalize this notion of instance optimality for two di�erent norms, one for the reconstruction
error and another one for the best s-term approximation. This has already appeared in the analysis of
the algorithms in Chapter 6.

De�nition 8.19. Given q ≥ p ≥ 1, a pair of a measurement matrix A ∈ Cm×N and a reconstruction
map ∆ : Cm → CN is mixed (`q, `p)-instance optimal of order s with constant C > 0 if

||x−∆(Ax)||q ≤
C

s1/p−1/q
σs(x)p for all x ∈ CN .

Remark 41. Why does the term s1/p−1/q appears in the de�nition of the mixed instance optimality for
two di�erent norms? Clearly the error of reconstruction ||x−∆(Ax)||q should be comparable to the error
of best approximation σs(x)q for vectors x ∈ BNr with r < 1. Regarding Proposition 1.5 as a �change of
variables�, we have

sup
x∈BNr

σs(x)q �
1

s1/r−1/q
� 1

s1/p−1/q
sup
x∈BNr

σs(x)p.

This justi�es the comparison between ||x−∆(Ax)||q and σs(x)p/s
1/p−1/q.

The next theorem shows that vectors belonging to the kernel of a measurement matrix are controlled
by the best approximation error if and only if the measurement matrix is part of a mixed instance optimal
scheme.

Theorem 8.20. ([Cohen, Dahmen & DeVore '09]): Let q ≥ p ≥ 1 and a measurement matrix A ∈
Cm×N . If there exists a reconstruction map ∆ making the pair (A,∆) a mixed (`q, `p)-instance optimal
of order s with constant C > 0, then

||v||q ≤
C

s1/p−1/q
σ2s(v)p for all v ∈ kerA (8.6)

Conversely, if Equation (8.6) holds, then there exists a reconstruction map ∆ which makes the pair (A,∆)
a mixed (`q, `p)-instance optimal of order s with constant 2C.

Proof. Let us start by assuming that (A,∆) is a mixed (`q, `p)-instance optimal of order s with constant
C. For v ∈ kerA, let S be an index set of s largest absolute entries of v. From the instance optimality,
we have that ||vS − ∆(AvS)||p ≤ Cσs(vS)1 = 0 implies vS − ∆(A(vS)) = 0, which is the same as
−vS = ∆(A(−vS)). Besides, we have that Av = 0 leads to A(vS + vS) = 0, hence A(−vS) = A(vS). We
then deduce that −vS = ∆(A(vS)). With this, Equation (8.6) follows from

||v||q = ||vS + vS ||q = ||vS −∆(A(vS))||q ≤
C

s1/p−1/q
σs(vS)p =

C

s1/p−1/q
σ2s(vS)p.

Now, suppose that (8.6) holds for some measurement matrix A. The reconstruction map we are
looking for is given by
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∆(y) = argmin{σs(z)p subject to Az = y}.

For any x ∈ CN , applying (8.6) to v = x−∆(Ax) ∈ kerA and using the triangular inequality σ2s(u+v)p ≤
σs(u)p + σs(v)p, yields

||x−∆(Ax)||q ≤
C

s1/p−1/q
σ2s(x−∆(Ax))p ≤

C

s1/p−1/q

(
σs(x)p + σ2s(∆(Ax))p

)
≤ 2C

s1/p−1/q
σs(x)p.

This proves that (A,∆) is a mixed (`q, `p)-instance optimal of order s with constant 2C.

The next theorem asserts that `2-instance optimality is not a good concept to work with. More
speci�cally, if we expect this property to hold, then the number m of measurements is comparable to the
dimension N of the signal. This holds even if we ask for instance optimality of order s = 1.

Theorem 8.21. ([Cohen, Dahmen & DeVore '09]): If a pair of measurement matrix A ∈ Cm×N and
reconstruction map ∆ : Cm → CN is `2-instance optimal of order s ≥ 1 with constant C, then

m ≥ cN,

for some constante c depending only on C.

Proof. From Theorem 8.20 we have that the measurement matrix A in the instance optimal pair satis�es

||v||2 ≤ Cσs(v)2 ∀ v ∈ kerA.

Taking s = 1 and using the triangular inequality we obtain

||v||22 ≤ C2(||v||22 − |vj |2), ∀ v ∈ kerA and j ∈ [N ].

If {e1, . . . , eN} represents the canonical basis of CN , the last inequality can be rewritten as

|〈v, ej〉| ≤
√

(C2 − 1)/C2||v||2 ∀ v ∈ kerA and j ∈ [N ].

So, denoting the orthogonal projection onto kerA by P , we have

N −m ≤ dim(kerA) = tr(P ) =

N∑
i=1

〈Pei, ei〉 ≤
N∑
i=1

√
(C2 − 1)/C2||Pei||2 ≤

(√
(C2 − 1)/C2

)
N.

The conclusion follows by taking c = 1−
√

(C2 − 1)/C2.

Theorem 8.21 shows that it is better to abandon ideas related to ordinary least squares and `2-
minimization in some situations involving compression, and instead look for some convex relaxation
like Basis Pursuit. The next theorem con�rms this expectation when looking at `1-instance optimality.
Moreover, we will remove the restrictions imposed in Proposition 8.16, i.e. q > 1 and s larger than some
constant.

Theorem 8.22. ([Foucart, Pajor, Rauhut & Ullrich '10]): If a pair of measurement matrix A ∈ Cm×N
and reconstruction map ∆ : Cm → CN is `1-instance optilmal of order s ≥ 1 with constant C, then

m ≥ cs ln(eN/s),

for some constant c depending only on C.
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Proof. We know from Theorem 8.11 that there exists n ≥ (N/4s)s/2 index sets S1, . . . , Sn os size s
satisfying #(Si ∩ Sj) < s/2 for all 1 ≤ i 6= j ≤ n. Let us consider the same construction of vectors
x1, . . . , xn from Theorem 8.10, i.e.

xik =

{
1/s if k ∈ Si,
0 if k /∈ Si.

First, notice that ||xi||1 = 1 and ||xi − xj ||1 > 1 for all 1 ≤ i 6= j ≤ n. Next, we will prove that if
ρ = 1/(2(C+1)), then {A(xi+ρBN1 )}Ni=1 is a disjoint collection of subsets of A(CN ) which has dimension
d ≤ m. Suppose, by contradiction, that we have two elements from this collection which are equal, that
is, there exist indices i 6= j and vectors z, z̃ ∈ ρBN1 such that A(xi + z) = A(xj + z̃). Then

||xi − xj ||1 =
∣∣∣∣∣∣(xi + z −∆(A(xi + z))

)
−
(
xj + z̃ −∆(A(xj + z̃))

)
− z + z̃

∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣xi + z −∆(A(xi + z))

∣∣∣∣∣∣
1

+
∣∣∣∣∣∣xj + z̃ −∆(A(xj + z̃))

∣∣∣∣∣∣
1

+ ||z||1 + ||z̃||1

≤ Cσs(xi + z)1 + Cσs(x
j + z̃)1 + ||z||1 + ||z̃||1 ≤ C||z||1 + C||z̃||1 + ||z||1 + ||z̃||1 ≤ 2(C + 1)ρ = 1.

Now, using the fact that the collection {A(xi + ρBN1 )}Ni=1 is contained in (1 + ρ)A(BN1 ), we deduce∑
i∈[N ]

vol(A(xi + ρBN1 )) ≤ vol
(

(1 + ρ)A(BN1 )
)
.

We are working on the d-dimensional complex case, which is equivalent to working in the 2d-dimensional
real case. Thus, using the homogeneity and the translation invariance of the volume, we have

nρ2d vol(A(BN1 )) ≤ (1 + ρ)2d vol(A(BN1 )).

This leads to (
N

4s

)s/2
≤ n ≤

(
1 +

1

ρ

)2s

= (2C + 3)2d ≤ (2C + 3)2m.

Taking logarithms, we obtain

m

s
≥ ln(N/4s)

2 ln(2C + 3)
.

Besides, we know by hypothesis that the pair (A,∆) is `1-instance optimal of order s and so it ensures
exact recovery of s-sparse vectors. Based on it, we have m ≥ 2s. Combining both inequalities leads to(

4 ln(2C + 3) + 2

)
m

s
≥ ln(N/4s) + 4 = ln(N/4s) + ln(e4) = ln(e4N/4s) ≥ ln(eN/s).

De�ning c = 1/(4(ln(2C + 3) + 2)), we have the result.

Now we can prove that mixed (`q, `p)-instance optimality is preserved when we decrease q. We will use
this to prove that the same number of measurements is imposed when we have (`q, `1)-instance optimality
for q > 1. Equivalently, no matter in which norm we bound the error of our reconstruction, we can expect
the same number of measurements in all error norms.

Lemma 8.23. Given q ≥ q′ ≥ p ≥ 1, if a pair (A,∆) is mixed (`q, `p)-instance optimal of order s with
constant C, then there is a reconstruction map ∆′ making the pair (A,∆′) mixed (`q′ , `p)-instance optimal
of order s with constant C ′ depending only on C.
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Proof. By hypothesis, the pair (A,∆) is a mixed (`q, `p)-instance optimal of order s with constant C.
Then, for a vector v ∈ kerA, Theorem 8.20 yields

||v||q ≤
C

s1/p−1/q
σ2s(v)p.

If S denotes an index set of the 3s largest entries of v in modulus, we have

||vs||q′ ≤ (3s)1/q′−1/q||vS ||q ≤ (3s)1/q′−1/q||v||q ≤ (3s)1/q′−1/q C

s1/p−1/q
σ2s(v)p

=
31/q′−1/qC

s1/p−1/q′
σ2s(v)p ≤

3C

s1/p−1/q′
σ2s(v)p.

Also, from Proposition 1.5, we have

||vS ||q′ ≤
1

s1/p−1/q′
σ2s(v)p.

Thus,

||v||q′ ≤ ||vS ||q′ + ||vS ||q′ ≤
3C + 1

s1/p−1/q′
σ2s(v)p =

C̃

s1/p−1/q′
σ2s(v)p.

Therefore, by the converse part of Theorem 8.20, the result holds with C̃ = 2(3C + 1).

With the same techniques, we can prove an analogous result for p instead of q, that is, mixed (`q, `p)-
instance optimality is also preserved when we decrease p instead of q. This is the content of the following
Lemma.

Lemma 8.24. For q ≥ p ≥ p′ ≥ 1, if a pair (A,∆) is mixed (`q, `p)-instance optimal of order s with
constant C, then it is also mixed (`q, `p′)-instance optimal of order ds/2e with constant C ′ depending only
on C.

Corollary 8.25. Given q > 1, if a pair of measurement matrix and reconstruction map is mixed (`q, `1)-
instance optimal of order s with constant C, then

m ≥ cs ln(eN/s)

for some constant c depending only on C.

Proof. This is a simple consequence of Theorem 8.22 and Lemma 8.23.

Remark 42. What happens in the case of a mixed (`1, `p)-instance optimal of order s with constant C
for p > 1? Without loss of generality, suppose that we are on the region II described at the end of Section
8.5. So we have

min

{
1,
N1−1/p

m1/2

} 1/p−1/q
1/p−1/2

≤ dm(BNp , `
N
q ) ≤ Em

ada
(BNp , `

N
q ) ≤ C

s1/p−1/q
.

Considering only reasonable values of parameters (i.e. excluding the case where the minimum is 1), we
have

C

s1/p−1/q
≥
{
N1−1/p

m1/2

} 1/p−1/q
1/p−1/2

.

Now, raising both side to 2(1/p− 1/2)/(1/p− 1/q), we obtain

m ≥ C
−2(1/p−1/2)

1/p−1/q s2(1/p−1/2)N2−2/p = C̃s2(1/p−1/2)N2−2/p

So, we can conclude that, for p > 1, a measurement/decoder scheme which is (`q, `p)-instance optimal is
not achievable in the regime m � s ln(eN/m). The same analysis could be done to regions III and IV.
Therefore, we need to look for p ≤ 1 in order to use reasonable techniques for compressive sensing.
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