A Propriedade de Dunford-Pettis

Celso Marques da Silva Junior

Dissertação de Mestrado apresentada ao Programa de Pós-graduação do Instituto de Matemática, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Matemática.

Orientadora: Luiza Amália de Moraes

Rio de Janeiro Novembro de 2009

A Propriedade de Dunford-Pettis

Celso Marques da Silva Junior Orientadora: Luiza Amália de Moraes

Dissertação de Mestrado submetida ao Programa de Pós-graduação do Instituto de Matemática, da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Matemática.

Aprovada por:
Presidente, Professora Luiza Amália de Moraes - IM/UFR.
Professor Antônio Roberto da Silva - IM/UFRJ
Professor Dinamérico Pereira Pombo Junior - UFF

Rio de Janeiro Novembro de 2009

Aos meus pais Olivia e Celso (in memorian), minha avó Adelina e minha irmã Viviane.

Agradecimentos

À minha orientadora, Professora Luiza Amália de Moraes, pela sugestão do tema e por todo seu apoio na elaboração deste trabalho.

Ao meu pai, por tudo que me ensinou.

À minha mãe, avó e irmã, por terem me incentivado e ajudado em todos os momentos de dificuldade.

Ao CNPq pelo apoio financeiro na realização deste trabalho.

Ficha Catalográfica

Silva Junior, Celso Marques.

S586p A propriedade de Dunford-Pettis. / Celso Marques da Silva Junior. – Rio de Janeiro: UFRJ/IM, 2009.

viii, 109f.: 30 cm.

Dissertação (mestrado) - UFRJ/ IM. Programa de Pósgraduação em Matemática, 2010.

Orientadora: Luiza Amália de Moraes

Referências: f.108-9.

Espaços de Banach - Tese.
 Operadores compactos.
 Propriedades Dunford-Pettis de espaços de Banach I. Moraes,
 Amália de. II. Universidade Federal do Rio de Janeiro.

Instituto de Matemática. III. Título.

A Propriedade de Dunford-Pettis

Celso Marques da Silva Junior

Orientadora: Luiza Amália de Moraes

Um espaço de Banach X possui a Propriedade de Dunford-Pettis se todo operador linear

fracamente compacto definido em X e com valores num espaço de Banach arbitrário leva

sequências fracamente convergentes em sequências convergentes em norma. Além disso,

dizemos que um espaço de Banach X possui a Propriedade de Dunford-Pettis hereditária se

todos os seus subespaços fechados possuem a Propriedade de Dunford-Pettis.

O objetivo deste trabalho é fazer um estudo dos espaços de Banach com a propriedade de

Dunford-Pettis. Apresentaremos exemplos de espaços que gozam e de espaços que não gozam

desta propriedade além de exibir diversas condições necessárias e suficientes para que um

dado espaço de Banach possua a Propriedade de Dunford-Pettis. Finalizaremos este trabalho

apresentando uma demonstração de que dado um espaço de Banach E então o espaço $\ell_1(E)$,

das sequências absolutamente somáveis, possui a Propriedade de Dunford-Pettis hereditária

se, e somente se, E também possui esta propriedade.

vi

A propriedade de Dunford-Pettis.

Celso Marques da Silva Junior

Supervisor: Luiza Amália de Moraes

A Banach space X has the Dunford-Pettis Property if every weakly compact linear operator defined by X and with values in an arbitrary Banach space takes weakly convergent sequences into norm convergent sequences. Besides, it is also said that a Banach space X

has the hereditary Dunford-Pettis Property if all its closed subspaces has the Dunford-Pettis

Property.

The aim of this work is to study the Banach spaces that have the Dunford-Pettis property.

Examples of spaces with and without that property will be presented moreover it will be

showed different necessary and sufficient conditions so that a given Banach space has the

Dunford-Pettis Property. This work will be finished demonstrating that a given Banach

space E, so the space $l_1(E)$, of the absolutely summable sequences, has the hereditary

Dunford-Pettis Property if, and only if, E has this property also.

vii

Sumário

1	Def	inições e Resultados Preliminares	4
	1.1	Análise Funcional	4
	1.2	Bases Schauder	25
	1.3	Desigualdade de Khintchine	31
	1.4	Teoria de Integração	33
2	Оре	eradores Compactos e Fracamente Compactos	42
	2.1	Operadores Adjuntos	42
	2.2	Operadores Compactos	44
	2.3	Operadores Fracamente Compactos	48
3	$\mathbf{A}\mathbf{s}$	Propriedades de Dunford-Pettis e de Dunford-Pettis Hereditária	55
	3.1	A Propriedade de Dunford-Pettis	56
	3 2	A Propriedade de Dunford-Pettis Hereditária	90

Introdução

Um espaço de Banach X possui a Propriedade de Dunford-Pettis se todo operador linear fracamente compacto definido em X e com valores num espaço de Banach arbitrário leva sequências fracamente convergentes em sequências convergentes em norma.

Um clássico resultado de N. Dunford e B.J.Pettis publicado em 1940 (cf. [12]) mostrou que o espaço $L_1(\mu)$ das funções integráveis num espaço de medida arbitrário goza desta propriedade. Mas, foi só em 1953 que Grothendieck isolou e estudou esta propriedade, tendo dado a ela o nome de Propriedade de Dunford-Pettis. Em [15] Grothendieck estabeleceu condições necessárias e suficientes para que um espaço de Banach tenha a Propriedade de Dunford-Pettis e mostrou que se K é um espaço de Hausdorff compacto então C(K) possui a Propriedade de Dunford-Pettis. Ele mostrou também que se X é um espaço de Banach cujo dual possui a Propriedade de Dunford-Pettis então X possui a Propriedade de Dunford-Pettis. Por quase vinte anos o problema de decidir se o dual de um espaço com a Propriedade de Dunford-Pettis também possui a Propriedade de Dunford-Pettis ficou em aberto. Foi só em 1972 que Stegall deu o primeiro exemplo de um espaço de Banach X com a Propriedade de Dunford-Pettis mas cujo o dual não possui a Propriedade de Dunford-Pettis (ver [23]). O problema de caracterizar quando o fato de um espaço de Banach possuir a Propriedade de Dunford-Pettis garante que seu dual possui a Propriedade de Dunford-Pettis continua em aberto. Decidir se um espaço de Banach possui a Propriedade de Dunford-Pettis é sempre um problema difícil. Alguns espaços importantes não gozam desta propriedade. Por exemplo, os espaços reflexivos de dimensão infinita não podem possuir a Propriedade de Dunford-Pettis (ver Corolário 3.1.17). Em particular, $L_p(\mu)$ para 1 não possui a Propriedade deDunford-Pettis.

Nosso objetivo neste trabalho é apresentar um estudo dos espaços de Banach com a Propriedade de Dunford-Pettis. Nosso trabalho está organizado da seguinte forma:

No primeiro capítulo, dividido em quatro sessões, apresentaremos definições e enunciaremos, sem demonstração, resultados que serão importantes para a compreensão deste trabalho e que podem ser encontrados nos textos básicos dos referidos assuntos. Faremos uma primeira seção com resultados básicos de Análise Funcional. A segunda seção conterá resultados relacionados a Bases de Schauder. Em seguida, faremos uma seção onde apresentaremos a Desigualdade de Khintchine e a quarta e última seção será dedicada à Teoria de Integração.

No segundo capítulo introduziremos alguns tipos especiais de operadores lineares, como o operador adjunto, o operador compacto, o operador fracamente compacto e o operador quase fracamente compacto. O objetivo deste capítulo não é o de desenvolver uma teoria completa de tais operadores, mas sim o de abordar resultados necessários para estudarmos a Propriedade de Dunford-Pettis. Dentre os resultados abordados, destacamos o Teorema de Schauder que diz que um operador linear T é compacto se e somente se seu adjunto T^* é compacto, o teorema que diz que um operador T é fracamente compacto se, e somente se, T^* é fracamente compacto e o Teorema de Šmulian que garante que se K é um subconjunto fracamente compacto de um espaço normado, então toda sequência em K admite uma subsequência fracamente convergente.

No terceiro capítulo, na primeira seção, definiremos a Propriedade de Dunford-Pettis bem como apresentaremos exemplos de espaços que possuem e de espaços que não possuem esta propriedade. Diversas condições necessárias e suficientes para que um espaço de Banach possua a Propriedade de Dunford-Pettis serão estabelecidas. Apresentaremos demonstrações dos resultados anteriormente mencionados, ou seja, do fato do espaço $L_1(\mu)$, das funções integráveis num espaço de medida arbitrário e do espaço C(K), onde K é um espaço de Hausdorff compacto, gozarem da Propriedade de Dunford-Pettis (ver Corolário 3.1.30 e Teorema 3.1.8 respectivamente). Além disso, apresentaremos o exemplo construído por Stegall de um espaço de Banach que possui a Propriedade de Dunford-Pettis, sem que seu dual possua (ver Exemplo 3.1.23). Em relação ao problema de estabelecer condições sob as quais X^* possua

a Propriedade de Dunford-Pettis, apresentaremos a demonstração de que se um espaço de Banach X possui a Propriedade de Dunford-Pettis e $\ell_1 \not\hookrightarrow X$, então X^* possui a Propriedade de Dunford-Pettis (ver Proposição 3.1.25). Um estudo associando a Propriedade de Schur à Propriedade de Dunford-Pettis será feito. Este estudo incluirá um resultado mostrando que todo espaço que possui a Propriedade de Schur possui a Propriedade de Dunford-Pettis e um resultado estabelecendo condições suficientes para que um espaço que possua Propriedade de Dunford-Pettis possua a Propriedade de Schur. Na segunda seção, abordaremos a Propriedade de Dunford-Pettis Hereditária. Um espaço de Banach possui tal propriedade quando todos os seus subespaços fechados possuem a Propriedade de Dunford-Pettis. Começaremos a seção apresentando algumas condições necessárias e suficientes para que um espaço possua a Propriedade de Dunford-Pettis Hereditária e incluiremos uma demonstração de que o espaço c_0 possui tal propriedade. Finalizaremos nosso trabalho com a demonstração de um resultado devido a P. Cembranos (ver [4]) que estabelece que se E é um espaço de Banach, então o espaço $\ell_1(E)$ possui a Propriedade de Dunford-Pettis Hereditária se, e somente se, E possui a Propriedade de Dunford-Pettis Hereditária (ver respectivamente os Teoremas 3.2.3 e 3.2.12).

Capítulo 1

Definições e Resultados Preliminares

O objetivo deste capítulo é apresentar uma coleção de definições e resultados da Análise Funcional e Teoria de Integração que serão necessários para o desenvolver deste trabalho. Neste ponto, não incluiremos demonstrações, mas sempre daremos referência de onde encontrá-las.

Embora a maioria dos resultados sejam válidos para espaços vetoriais complexos, consideraremos sempre X e Y espaços vetoriais sobre \mathbb{R} . Para resultados de topologia geral, referimos a [17].

1.1 Análise Funcional

Iniciaremos esta seção definindo os espaços c_0 e ℓ_p , onde $1 \le p \le \infty$. As seguintes desigualdades serão úteis:

Proposição 1.1.1. (Desigualdade de Hölder) $Se \ x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$ então

$$\sum_{k=1}^{n} |x_i y_i| \le \left(\sum_{k=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}},$$

onde p,q>1 são tais que $\frac{1}{p}+\frac{1}{q}=1$.

Demonstração. Veja [14], Teorema 1.5, p.3.

Proposição 1.1.2. (Desigualdade de Minkowski) $Se \ x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$ então

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}},$$

onde $p \geq 1$.

Demonstração. Veja [14], Teorema 1.7, p.4.

Se $x = (x_n)_n$ e $y = (y_n)_n$ são sequências em \mathbb{R} e $\lambda \in \mathbb{R}$, definimos a soma usual x + y e o produto usual λx por $x + y = (x_n + y_n)_n$ e $\lambda x = (\lambda x_n)_n$.

Se $1 \leq p < \infty$ é um número real fixado, definimos ℓ_p como sendo o conjunto de todas as seqüências $x = (x_n)_n$ em \mathbb{R} tais que $\sum_{n=1}^{\infty} |x_n|^p < \infty$. Usando a desigualdade de Minkowski mostra-se que ℓ_p é um espaço vetorial e que

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$$

define uma norma em ℓ_p .

Definição 1.1.3. Seja $1 \leq p < \infty$. O espaço $\left(\ell_p, \|.\|_p\right)$ ou, simplesmente ℓ_p , é o espaço vetorial ℓ_p munido da norma $\|.\|_p$.

Definimos ℓ_{∞} como sendo o conjunto de todas as seqüências $(x_n)_n$ de números reais tais que

$$\sup_{n} |x_n| < \infty.$$

Usando a desigualdade de Minkowski mostra-se que ℓ_{∞} é um espaço vetorial e que

$$||x||_{\infty} = \sup_{n} |x_n|$$

define uma norma em ℓ_{∞} .

Definição 1.1.4. O espaço $(\ell_{\infty}, \|.\|_{\infty})$ ou, simplesmente ℓ_{∞} , \acute{e} o espaço vetorial ℓ_{∞} munido da norma $\|.\|_{\infty}$.

Verifica-se que ℓ_p , para $1 \leq p \leq \infty$ é um espaço de Banach. (ver [14], Proposição 1.11, p.6.)

Denotaremos por c_0 o subespaço de ℓ_{∞} consistindo de todas as sequências $x = (x_n)_n$ tais que $\lim_n x_n = 0$. É fácil verificar que c_0 é subespaço fechado de ℓ_{∞} e, portanto, também é um espaço Banach.

O seguinte lema será útil muitas vezes neste trabalho:

Lema 1.1.5. Se $x = (x_n)_n \in c_0$ então existe $k \in \mathbb{N}$ tal que x assume sua norma em alguma de suas k primeiras coordenadas.

Demonstração. Como o resultado é óbvio para x=0, suponha $x\neq 0$. Se $x\in c_0$, então $x_n\to 0$. Logo, existe k>0 tal que

$$|x_n| < \frac{\|x\|}{2}$$

sempre que $n \ge k$ e portanto x assume sua norma em uma de suas k primeiras coordenadas.

Vale ainda introduzir outro espaço de Banach que será usado neste trabalho. Tratase de C(K), onde K é um espaço topológico compacto. Definimos C(K) como sendo o conjunto das funções contínuas $f:K\longrightarrow \mathbb{R}$. Tornamos C(K) um espaço vetorial com as operações usuais de soma e produto por escalar. Definindo $||f||_K = \sup_{x\in K} |f(x)|$, mostra-se que $C(K) = (C(K), ||\cdot||_K)$ é um espaço de Banach.

Lembramos que, se X e Y são espaços normados, uma aplicação $T: X \longrightarrow Y$ é dita um operador linear quando para todos $u, v \in X$ e $\lambda \in \mathbb{R}$, $T(u + \lambda v) = Tu + \lambda Tv$. Um funcional linear definido em X é um operador linear $T: X \to \mathbb{R}$.

A rigor deveríamos escrever $||\cdot||_X$ e $||\cdot||_Y$ para indicarmos normas em X e Y, respectivamente. A menos de quando for necesário para maior clareza do assunto explorado, para não sobrecarregarmos a notação, iremos usar a mesma notação $||\cdot||$ para indicar as normas em X e Y.

Ao longo deste trabalho, denotaremos por B_X a bola fechada em X de centro na origem e raio 1 e por S_X a esfera em X de centro na origem e raio 1, isto é, $B_X = \{x \in X; ||x|| \le 1\}$ e $S_X = \{x \in X; ||x|| = 1\}$. A seguir veremos um lema que permite uma caracterização dos espaços normados de dimensão infinita.

Lema 1.1.6. (Riesz) Seja X um espaço normado. Se Y é um subespaço próprio e fechado de X, então para todo $\epsilon > 0$ existe $x \in S_X$ tal que $dist(x, Y) > 1 - \epsilon$.

Demonstração. Ver [14], Lema 1.23, p.13.
$$\Box$$

Segue do Lema de Riesz que se X é espaço normado de dimensão infinita, então existe $(x_n)_n \subset S_X$ tal que $||x_n - x_m|| > \frac{1}{2}$, sempre que $m \neq n$. Este fato será útil no Capítulo 3 e também nos permite obter a seguinte caracterização:

Teorema 1.1.7. (Teorema de Riesz) Seja X um espaço normado. Então B_X é compacta se, e somente se a dimensão de X é finita.

$$Demonstração$$
. Veja [14], Teorema 1.24, p.14.

Definição 1.1.8. Um subconjunto A de um espaço vetorial é convexo se dados quaisquer $x, y \in A$ o segmento de reta que liga estes dois pontos está em A, isto é, $tx + (1 - t)y \in A$ para todo $t \in [0, 1]$.

Como a interseção arbitrária de conjuntos convexos é um conjunto convexo, dado um espaço normado X e $A \subset X$, subconjunto qualquer, podemos falar no menor subconjunto convexo que contém A. Este conjunto será obtido pela interseção de todos os conjuntos convexos que contêm A. Assim, definimos:

Definição 1.1.9. A envoltória convexa de um subconjunto A de X é o menor conjunto convexo que contém A. Tal conjunto será denotado por $\Gamma(A)$.

Como consequência imediata da definição de operador linear e da definição de conjunto convexo temos:

Proposição 1.1.10. Sejam X, Y espaços vetoriais. Se T é uma aplicação linear de X em Y e A é um subconjunto convexo de X então T(A) é convexo em Y.

Definição 1.1.11. Um subconjunto A de um espaço vetorial é absolutamente convexo se dados quaisquer $\alpha, \beta \in \mathbb{R}$ tais que $|\alpha| + |\beta| \le 1$ e $x, y \in A$ então $\alpha x + \beta y \in A$.

Novamente, como a interseção arbitrária de conjuntos absolutamente convexos é um conjunto absolutamente convexo, podemos definir:

Definição 1.1.12. A envoltória absolutamente convexa de um subconjunto A de X é o menor conjunto absolutamente convexo que contém A. Tal conjunto será denotado por A_b .

Observação 1.1.13. É fácil verificar que A_b é a imagem de $[-1,1] \times \Gamma(A)$ pela aplicação produto

$$p : \mathbb{R} \times X \longrightarrow X$$
$$(\lambda, x) \longmapsto \lambda x$$

Proposição 1.1.14. Sejam X e Y espaços normados, e seja T um operador linear de X em Y. São equivalentes:

- (i) T é contínua em X
- (ii) T é contínua na origem
- (iii) Existe C > 0 tal que $||T(x)|| \le C ||x||$ para todo $x \in X$.

- (iv) T é Lipschitz
- (v) $T(B_X)$ é um conjunto limitado em Y.

Demonstração. Veja [14], Proposição 1.17, p.10.

Definição 1.1.15. Sejam X e Y espaços normados. Um operador linear $T: X \longrightarrow Y$ é limitado se $T(B_X)$ é limitado em Y.

Observação 1.1.16. A Proposição 1.1.14 garante que um operador é limitado se e somente se é contínuo.

Além disso, dado qualquer operador linear $T: X \to Y$ temos que:

$$\sup_{||x|| \le 1} ||T(x)|| = \sup_{x \ne 0} \frac{||T(x)||}{||x||} = \sup_{||x|| = 1} ||Tx||.$$

Mais ainda, no caso de T ser contínuo, temos que

$$\sup_{\|x\|=1} ||Tx|| = \inf \{C > 0 : \|T(x)\| \le C \|x\| \text{ para todo } x \in X\}$$

e denotamos este valor por ||T||.

Definição 1.1.17. Sejam X e Y espaços normados. Denotamos por $\mathcal{L}(X,Y)$ o espaço vetorial de todos os operadores lineares $T: X \longrightarrow Y$ que são limitados, munido da norma

$$||T|| = \sup \{||T(x)||_{Y} : x \in B_X\}$$

e das operações usuais de soma e produto por escalar em espaços de funções.

A norma acima definida é dita a norma usual em $\mathcal{L}(X,Y)$

Definição 1.1.18. Seja X um espaço vetorial. Uma aplicação linear $P: X \to X$ é chamada uma projeção sobre um subespaço Y de X se P(X) = Y e P(y) = y para todo $y \in Y$ ou, equivalentemente, se P(X) = Y e $P^2 = P$.

Definição 1.1.19. Um subespaço Y de um espaço de Banach X é dito complementado em X se existe uma projeção linear limitada de X sobre Y.

Observação 1.1.20. Note que se Y é um subespaço complementado de um espaço de Banach X, então Y é fechado. De fato, neste caso, existe $P: X \to Y$ projeção linear limitada. Assim, se $(y_n)_n \subset Y$ converge para $z \in X$, utilizando o fato de P ser limitada e de $P(y_n) = y_n$ para todo $n \in \mathbb{N}$ obtemos que

$$P(z) = P(\lim_{n} y_n) = \lim_{n} P(y_n) = \lim_{n} y_n = z$$

 $e, portanto, z \in Y$.

Definição 1.1.21. Sejam X e Y espaços normados. Dizemos que X e Y são isomorfos se existe um operador linear bijetivo contínuo $T: X \longrightarrow Y$. Neste caso, denotaremos $X \cong Y$. Se, além disso, T for uma isometria (isto é, ||T(x)|| = ||x|| para todo $x \in X$) então diremos que X e Y são isometricamente isomorfos. Neste caso, escreveremos muitas vezes X = Y.

Lembramos que uma função contínua inversível com inversa também contínua é dita um homeomorfismo.

Definição 1.1.22. Seja X um espaço normado. O dual topológico de X, denotado por X^* , \acute{e} o conjunto dos funcionais lineares contínuos de X em \mathbb{R} munido da norma usual, isto \acute{e} , $X^* = \mathcal{L}(X, \mathbb{R})$.

Vejamos alguns exemplos de duais topológicos que serão importantes no Capítulo 3.

Exemplo 1.1.23. $(c_0)^* = \ell_1$, a menos de um isomorfismo isométrico. Com efeito, dado $\xi = (\xi_n)_n \in \ell_1$, seja $T_{\xi} : c_0 \longrightarrow \mathbb{R}$ definido por $T_{\xi}(x) = \sum_{n=1}^{\infty} \xi_n x_n$ para todo $x = (x_n)_n \in c_0$. A aplicação $T : \ell_1 \longrightarrow (c_0)^*$ definida por $T(\xi) = T_{\xi}$ estabelece um isomorfismo isométrico entre $(c_0)^*$ e ℓ_1 (ver [14], Proposição 2.14, p.44).

Exemplo 1.1.24. $(\ell_1)^* = \ell_\infty$ a menos de um isomorfismo isométrico. Com efeito, dado $\xi = (\xi_n)_n \in \ell_\infty$, seja $T_{\xi} : \ell_1 \longrightarrow \mathbb{R}$ definido por $T_{\xi}(x) = \sum_{n=1}^{\infty} \xi_n x_n$ para todo $x = (x_n)_n \in \ell_1$. A aplicação $T : \ell_\infty \longrightarrow (\ell_1)^*$ definida por $T(\xi) = T_{\xi}$ estabelece um isomorfismo isométrico entre $(\ell_1)^*$ e ℓ_∞ (ver [14], Proposição 2.15, p.44).

Exemplo 1.1.25. $(\ell_p)^* = \ell_q$ a menos de um isomorfismo isométrico, onde 1 e <math>q é tal que $\frac{1}{p} + \frac{1}{q} = 1$. Dado $\xi = (\xi_n)_n \in \ell_q$, seja $T_{\xi} : \ell_p \longrightarrow \mathbb{R}$ definido por $T_{\xi}(x) = \sum_{n=1}^{\infty} \xi_n x_n$ para todo $x = (x_n)_n \in \ell_p$. A aplicação $T : \ell_q \longrightarrow (\ell_p)^*$ definida por $T(\xi) = T_{\xi}$ estabelece um isomorfismo isométrico entre $(\ell_p)^*$ e ℓ_q (ver [14], Proposição 2.16, p.44).

A partir daqui, em todo este trabalho, para cada $n \in \mathbb{N}$, e_n indicará a sequência em \mathbb{R} cuja n-ésima coordenada é a unidade e todas as outras coordenadas são nulas. É claro que $\{e_n : n \in \mathbb{N}\}$ está contido em c_0 e em $\ell_p (1 \le p \le \infty)$.

Teorema 1.1.26. Sejam X um espaço normado e Y um espaço de Banach. Então $\mathcal{L}(X,Y)$ é um espaço de Banach. Em particular, X^* é um espaço de Banach.

Demonstração. Veja [14], Proposição 1.19, p.11.

Seja Y um subespaço fechado de um espaço normado X. Para $x \in X$, consideramos a classe de equivalência \hat{x} em relação a Y,

$$\hat{x} = \{ z \in X : (x - z) \in Y \} = \{ x + y : y \in Y \}.$$

O espaço $X/Y = \{\hat{x} : x \in X\}$ de todas as classes de equivalência, munido das operações canônicas de adição e multiplicação por escalar, é claramente um espaço vetorial. Além disso, verifica-se que $\|\hat{x}\| = \inf\{\|y\| : y \in \hat{x}\}$ torna X/Y um espaço vetorial normado.

Definição 1.1.27. Seja Y um subespaço fechado de um espaço normado X. O espaço X/Y munido da norma $\|\hat{x}\| = \inf\{\|y\| : y \in \hat{x}\}$ é chamado o espaço quociente de X com relação a Y.

Proposição 1.1.28. Seja Y um subespaço fechado de um espaço de Banach X. Então X/Y é espaço de Banach.

Demonstração. Veja [14], Proposição 1.21, p.12.

Relembramos que um subconjunto M de um espaço topológico X é dito denso em X se o fecho \overline{M} de M é igual a X

Definição 1.1.29. Seja X um espaço topológico. Dizemos que X é separável se existe uma sequência $(x_n)_n$ em X que é densa em X.

Como exemplos de espaços separáveis, temos os espaços l_p , onde $1 \le p < \infty$ e c_0 . Por outro lado, l_∞ não é separável. Para detalhes, veja [14], Proposição 1.26, p.14.

Definição 1.1.30. Se X é um espaço vetorial e $A \subset X$, então o espaço vetorial gerado por A, será denotado por [A] e é por definição a interseção de todos os subespaços de X que contêm A. É claro que [A] é um espaço vetorial.

Lema 1.1.31. Seja $(x_n)_n$ uma sequência arbitrária em um espaço vetorial X. Então $\overline{[\{x_n\}_n]}$ é separável.

Demonstração. Veja [13], Lema 5, p.50.

A seguir, enunciaremos o Teorema de Hahn-Banach e alguns de seus corolários.

Teorema 1.1.32. (Teorema de Hahn-Banach) Sejam X um espaço normado e M um subespaço de X. Se $f: M \longrightarrow \mathbb{R}$ é linear e contínua, então existe $\widetilde{f} \in X^*$ tal que $\widetilde{f}(x) = f(x)$ para todo $x \in M$ e $||\widetilde{f}|| = ||f||$.

Demonstração. Veja [14], Teorema 2.4, p.40.

Como consequências imediatas do teorema de Hahn-Banach temos:

Corolário 1.1.33. Sejam X um espaço normado e $x \in X$, $x \neq 0$. Então existe $f \in X^*$ tal que ||f|| = 1 e f(x) = ||x||.

Corolário 1.1.34. Seja X um espaço normado. Se f(x) = 0 para toda $f \in X^*$, então x = 0.

Corolário 1.1.35. Seja X um espaço normado. Para todo $x \in X$ tem-se

$$||x|| = \sup_{\substack{f \in X^* \\ ||f||_{X^*} = 1}} |f(x)| = \sup_{\substack{f \in X^* \\ ||f||_{X^*} \le 1}} |f(x)|$$

Teorema 1.1.36. (Teorema de Banach-Steinhaus) Sejam X um espaço de Banach e Y um espaço normado. Seja $(T_{\alpha})_{\alpha \in I} \subset \mathcal{L}(X,Y)$ tal que $\sup_{\alpha \in I} ||T_{\alpha}x||$ é finito para cada $x \in X$. Então tem-se que $\sup_{\alpha \in I} ||T_{\alpha}||$ é finito.

Demonstração. Veja [14], Teorema 3.12, p.68.

Definição 1.1.37. Sejam X e Y espaços normados. Uma aplicação $T: X \longrightarrow Y$ é dita aberta se T(A) é aberto em Y para todo $A \subset X$ tal que A é aberto.

Teorema 1.1.38. (Teorema da Aplicação Aberta) Sejam X, Y são espaços de Banach. Se $T: X \longrightarrow Y$ é uma aplicação linear contínua de X sobre Y, então T é aberta.

Demonstração. Veja [14], Teorema 2.24, p.50.

O próximo Corolário segue como consequência imediata do Teorema da Aplicação Aberta.

Corolário 1.1.39. (Teorema da Aplicação Inversa) Sob as mesmas condições do teorema anterior se T for injetiva então T^{-1} é contínua.

Demonstração. Veja [14], Corolário 2.25, p.50. □

Definição 1.1.40. Consideremos um espaço de Banach X. Se Y é um subconjunto de X, definimos seu anulador por

$$Y^{\perp} = \{ f \in X^* : f(y) = 0 \text{ para todo } y \in Y \}.$$

Note que Y^{\perp} é um subespaço fechado de X^* .

Teorema 1.1.41. (Forma Geométrica do Teorema de Hahn-Banach) Sejam X um espaço normado sobre \mathbb{R} , A e B subconjuntos convexos não vazios de X, tais que $A \cap B = \emptyset$. Suponhamos que A é aberto. Então existem $\lambda \in \mathbb{R}$ e $f \in X^*$, $f \neq 0$ tais que $f(a) < \lambda$ para todo $a \in A$ e $f(b) \geq \lambda$ para todo $b \in B$.

Segue como consequência dos Teoremas de Hahn-Banach e da Aplicação Aberta:

Proposição 1.1.42. Seja Y um subespaço fechado de um espaço de Banach X. Então Y^* é isometricamente isomorfo a X^*/Y^{\perp}

Observação 1.1.43. Representamos por X^{**} o dual topológico de X^* , onde X é um espaço normado. Definimos $J: X \longrightarrow X^{**}$ por $Jx = \widehat{x}$ para todo $x \in X$, onde $\widehat{x}: X^* \longrightarrow \mathbb{R}$ é tal que $\widehat{x}(f) = f(x)$ para toda $f \in X^*$. A aplicação J é chamada a aplicação canônica de X em X^{**} . É fácil ver que J está bem definida, é linear e ||Jx|| = ||x|| para todo $x \in X$. Portanto X é isometricamente isomorfo a $J(X) \subset X^{**}$.

Apresentaremos agora duas topologias que serão amplamente utilizadas neste trabalho.

Definição 1.1.44. Seja X um espaço normado. A topologia fraca de X, denotada por $\sigma(X, X^*)$, é a topologia que tem como sub-base a coleção

$$S = \{ \varphi^{-1}(A); \ \varphi \in X^*, \ A \subset \mathbb{R} \ aberto \ \}.$$

Similarmente, a topologia fraca estrela de X^* , denotada por $\sigma(X^*, X)$, é a topologia que tem como sub-base a coleção

$$\mathcal{S} = \{ \varphi^{-1}(A); \varphi \in J(X) \subset X^{**}, A \subset \mathbb{R} \ aberto \ \} = \{ \hat{x}^{-1}(A); x \in X, A \subset \mathbb{R} \ aberto \ \}.$$

É claro
$$\sigma(X^*, X) \subset \sigma(X^*, X^{**})$$
.

Dizemos que a topologia da norma é a topologia forte de X. Escreveremos $(X, \|.\|)$ para denotar o espaço X munido da topologia forte. A partir da definição, é fácil ver que a topologia fraca está contida na topologia forte.

Da definição de topologia fraca, resulta que a coleção

$$\mathcal{O} = \{ x \in X; |f_i(x - x_0)| < \epsilon \text{ para } i = 1, \dots, n \}$$

para todas as escolhas de $x_0 \in X$, $f_1, \ldots, f_n \in X^*$ e $\epsilon > 0$, forma uma sub-base para a topologia fraca de X. Além disso, da definição de topologia fraca-estrela resulta que a coleção

$$\mathcal{O}^* = \{ f \in X^*; |(f - f_0)(x_i)| < \epsilon \text{ para } i = 1, \dots, n \}$$

para todas as escolhas de $f_0 \in X^*$, $x_1, \ldots, x_n \in X$ e $\epsilon > 0$ é uma sub-base para a topologia fraca-estrela.

Sendo assim, uma sequência $(x_n)_n \subset X$ converge a x_0 na topologia fraca, se e somente se $f(x_n) \to x_0$ para todo $f \in X^*$ e que $(f_n)_n \subset X^*$ converge a $f_0 \in X^*$ na topologia fraca-estrela se, e somente se, $f_n(x) \to f_0(x)$ para todo $x \in X$. Denotaremos $x_n \stackrel{w}{\to} x_0$ e $f_n \stackrel{w^*}{\to} f_0$ quando as convergências ocorrerem nas topologias fraca e fraca estrela respectivamente. Quando se tornar necessário, explicitaremos o espaço e a topologia onde ocorre a convergência, utilizando, por exemplo $x_n \stackrel{\sigma(X,X^*)}{\to} x_0$ para denotar que esta ocorre no espaço vetorial X, munido com a topologia fraca.

Chamaremos uma sequência de fracamente convergente se ela convergir na topologia fraca e a chamaremos de fracamente nula se o seu limite fraco for o zero. Além disso, diremos que uma sequência $(x_n) \subset X$ é fracamente Cauchy se $(f(x_n))_n$ for sequência de Cauchy para todo $f \in X^*$. Analogamente definimos uma sequência fraca-estrela Cauchy.

Segue do Teorema de Banach-Steinhaus (Teorema 1.1.36) que toda sequência convergente na topologia fraca estrela é limitada. Consequentemente, toda sequência que converge na topologia fraca também é limitada.

É claro que a topologia fraca estrela é de Hausdorff. E, como consequência do Teorema de Hahn-Banach geométrico (Teorema 1.1.41), a topologia fraca também é de Hausdorff. Note que tal fato nos garante, por exemplo, que conjuntos compactos em tais topologias são fechados. Iremos utilizar isto ao longo deste trabalho, sem relembrarmos o tempo todo que a validade deste resultado se deve a estes espaços topológicos serem Hausdorff.

Vale o seguinte resultado para espaços de dimensão finita:

Proposição 1.1.45. Se um espaço normado X é de dimensão finita, então a topologia fraca de X coincide com a topologia da norma de X, e a topologia fraca estrela de X^* coincide com a topologia da norma de X^*

$$Demonstração$$
. Veja [14], Prop. 3.8, p.66.

Observação 1.1.46. É claro que, dado qualquer $x_0 \in X$, vale a igualdade entre os conjuntos

$$x_0 + \{x \in X : |f_i(x)| < \epsilon \text{ para } i = 1, \dots, n\}$$

e

$$\{x \in X : |f_i(x - x_0)| < \epsilon \text{ para } i = 1, \dots, n\}.$$

Consequentemente, um operador linear $T: X \to Y \notin \sigma(X, X^*)$ -contínuo em X se, e só se, é $\sigma(X, X^*)$ -contínuo na origem e uma sequência $(x_n)_n \subset X$ converge fracamente para $x_0 \in X$ se, e só se, $(x_n - x_0)_n$ converge fracamente para zero. Analogamente se mostra

que um operador linear $A: X^* \to Y^*$ é $\sigma(X^*, X)$ -contínuo em X^* se, e só se, é $\sigma(X^*, X)$ -contínuo na origem e que uma sequência $(\varphi_n)_n \subset X^*$ converge para $\varphi_0 \in X^*$ na topologia $\sigma(X^*, X)$ se, e só se, $(\varphi_n - \varphi_0)_n$ converge para zero na topologia $\sigma(X^*, X)$.

Teorema 1.1.47. Sejam X e Y espaços de Banach. Então $T \in \mathcal{L}(X,Y)$ se e somente se T é $\sigma(X,X^*)$ - $\sigma(Y,Y^*)$ contínuo.

Demonstração. Veja [13], Teorema 15, p.422.

Como a aplicação canônica J de X em X^{**} é limitada, então será $\sigma(X, X^*) - \sigma(X, X^{**})$ contínua e portanto $\hat{x}_n \stackrel{w}{\to} \hat{x}$ se $(x_n)_n \subset X$ é fracamente convergente para x. Temos assim:

Corolário 1.1.48. Seja X um espaço normado e $(x_n)_n \subset X$ sequência fracamente convergente para $x \in X$. Então, $\hat{x}_n \stackrel{w}{\to} 0$ em X^{**} .

Dado um subconjunto K de um espaço normado X, denotaremos por \overline{K} o fecho de K na topologia da norma, por \overline{K}^w o fecho de K na topologia fraca. Se $K \subset X^*$, denotaremos por \overline{K}^{w^*} o fecho de K na topologia fraca estrela. Em geral, $\overline{K} \subsetneq \overline{K}^w$. O seguinte resultado é uma conseqüência do teorema de Hahn-Banach geométrico:

Teorema 1.1.49. Sejam X um espaço normado e K um subconjunto convexo de X. Então $\overline{K}^w = \overline{K}$.

Demonstração. Veja [14], Teorema 3.19, p.70.

Em espaços de dimensão infinita, de forma geral, $x_n \stackrel{w}{\to} x$ não implica na convergência em norma. Basta tomar como exemplo as bases canônicas em c_0 ou ℓ_p . Apesar disto, temos o seguinte resultado como Corolário do último teorema.

Corolário 1.1.50. Seja X espaço de Banach, $x \in X$ e $(x_n)_n \subset X$ tais que $x_n \stackrel{w}{\to} x$. Então existem combinações convexas y_k de $\{x_n : n \in \mathbb{N}\}$ tais que $y_k \to x$.

Demonstração. Veja [14], Corolário 3.20, p.71.

Se τ é uma topologia em X, diremos que $K \subset X$ é τ -compacto se K é compacto em (K, τ) . Quando τ é a topologia da norma, dizemos simplesmente que K é compacto.

Proposição 1.1.51. Seja X espaço normado $e(x_n)_n \subset X$ uma sequência que converge fracamente em X. Se $E = \{x_n : n \in \mathbb{N}\}$, então o fecho $\overline{\Gamma(E)}$ da envoltória convexa de E é $\sigma(X, X^*)$ -compacto.

Demonstração. Ver [14], Teorema 3.58, p.85. \Box

Teorema 1.1.52. (Banach-Alaoglu) Seja X um espaço normado. Então B_{X^*} é $\sigma(X^*, X)$ compacto.

Demonstração. Veja [14], Teorema 3.21, p.71. \Box

Definição 1.1.53. Um espaço vetorial topológico é um espaço vetorial X munido de uma topologia τ tal que as operações de adição e produto por escalar que fazem de X um espaço vetorial são contínuas de $(X,\tau)\times(X,\tau)$ em (X,τ) e de $\mathbb{R}\times(X,\tau)$ em (X,τ) , respectivamente.

Definição 1.1.54. Um espaço localmente convexo é um espaço vetorial topológico X tal que cada $x \in X$ tem uma base de vizinhanças convexas (ou, equivalentemente, cada vizinhança do zero contém uma vizinhança convexa do zero.).

Se p é uma seminorma definida em um espaço vetorial X, dado qualquer $\epsilon > 0$ é fácil verificar que o conjunto $V^p_{\epsilon} = \{x \in X : p(x) < \epsilon\}$ é absolutamente convexo e, para cada $x_0 \in X$, o conjunto $x_0 + V^p_{\epsilon}$ é convexo.

Seja P um conjunto de seminormas definidas em X. Dizemos que P separa os pontos de X se a cada $0 \neq x \in X$ corresponde pelo menos uma $p \in P$ tal que $p(x) \neq 0$. Podemos definir em P uma semi-ordem da seguinte maneira: $p, q \in P$, $p \leq q \Leftrightarrow p(x) \leq q(x)$ para todo $x \in X$.

Neste caso, dizemos que P é uma família dirigida de seminormas se dadas quaisquer $p_1, p_2 \in P$ existir $p_3 \in P$ tal que $p_1 \leq p_3$ e $p_2 \leq p_3$.

Dados um espaço vetorial X e uma família P dirigida de seminormas definidas em X, podemos considerar em X a menor topologia τ_P para a qual todos os elementos de P são contínuos. Dizemos que esta topologia é gerada pela família P de seminormas. Temos então:

Teorema 1.1.55. Seja P uma família dirigida de seminormas definidas num espaço vetorial X e seja τ_P a topologia definida acima. Então:

- (a) (X, τ_P) é um espaço localmente convexo;
- (b) (X, τ_P) é um espaço de Hausdorff se, e só se, P separa os pontos de X;
- (c) Uma base de vizinhanças do zero para τ_P é dada por $\{V_{\epsilon}^p : p \in P\}$.

Demonstração. Ver [21], (6.4.1), p.105.

Observe que é fácil verificar que, dado $x_0 \in X$, uma base de vizinhanças de x_0 para τ_P é dada por $\{x_0 + V_{\epsilon}^p : p \in P\}$ (caso P seja dirigida).

Exemplo 1.1.56. Todo espaço normado é um espaço localmente convexo de Hausdorff.

Exemplo 1.1.57. $(X, \sigma(X, X^*))$ é um espaço localmente convexo de Hausdorff. Com efeito, para cada $f \in X^*$, a função $p_f : X \to \mathbb{R}$ definida por $p_f(x) = |f(x)|$ é uma seminorma em X e é fácil verificar que $P = \{p_f : f \in X^*\}$ é uma família dirigida de seminormas em X que separa os pontos de X. Além disso, é claro que $\tau_P = \sigma(X, X^*)$.

Exemplo 1.1.58. $(X, \sigma(X^*, X))$ é um espaço localmente convexo de Hausdorff. Com efeito, para cada $x \in X$, a função $q_x : X^* \to \mathbb{R}$ definida por $q_x(f) = |f(x)|$ é uma seminorma em X^* e, como no primeiro exemplo, $\sigma(X^*, X) = \tau_Q$, onde $Q = \{q_x : x \in X\}$.

Teorema 1.1.59. Seja P uma família dirigida enumerável de seminormas em um espaço vetorial X que separa os pontos de X. Então o espaço localmente convexo (X, τ_P) é metrizável, isto é, τ_P é definida por uma métrica.

$$Demonstração$$
. Ver [6], Proposição 2.1, p.109.

Definição 1.1.60. Um subconjunto A de um espaço vetorial X é dito absorvente se dado qualquer $x \in X$ existe $\lambda_0 > 0$ tal que $\lambda x \in A$ para todo $|\lambda| \leq \lambda_0$.

Usando a continuidade do produto por escalar, é fácil verificar que toda vizinhança de zero num espaço vetorial topológico é absorvente.

Definição 1.1.61. Se A é um subconjunto absorvente de um espaço vetorial X, a função $m_A: X \to \mathbb{R}$ definida por

$$m_A(x) = \inf \{ \rho > 0 : x \in \rho A \}$$

é chamada de funcional de Minkowski de A.

Proposição 1.1.62. Seja X um espaço vetorial e seja A um subconjunto absolutamente convexo e absorvente de X. Então:

(1) m_A é uma seminorma em X;

(2)
$$\{x \in X : m_A(x) < 1\} \subset A \subset \{x \in X : m_A(x) \le 1\}.$$

É possível mostrar que se X é um espaço vetorial e τ é uma topologia invariante por translação em X que tem uma base de vizinhanças \mathcal{U} de zero formada por conjuntos absolutamente convexos então (X,τ) é um espaço localmente convexo e, mais que isto, usando a Proposição 1.1.62, mostra-se que a topologia τ coincide com a topologia τ_P , onde $P = \{m_U : U \in \mathcal{U}\}$. (Ver, por exemplo, [21], p.106).

Como P é uma família dirigida de seminormas (já que \mathcal{U} é base de vizinhanças do zero), segue que pelo Teorema 1.1.55 que (X, τ_P) é um espaço localmente convexo e, se P separa os pontos de X, então (X, τ_P) é um espaço localmente convexo de Hausdorff. Se, além disso, P é enumerável, segue pelo Teorema 1.1.59 que (X, τ_P) é metrizável.

Teorema 1.1.63. Seja X um espaço de Banach. Então, B_{X^*} é metrizável para $\sigma(X^*, X)$ se, e somente se, X é separável.

Demonstração. Veja [14], Proposição 3.24, p.72. □

Teorema 1.1.64. (Goldstine) Seja X um espaço de Banach. Então, o fecho de $J(B_X)$ na topologia $\sigma(X^{**}, X^*)$ é $B_{X^{**}}$.

Demonstração. Veja [14], Teorema 3.27, p.73.

O espaço ℓ_1 possui a propriedade de que toda sequência fracamente convergente também converge na topologia forte. Isto é o que nos garante o seguinte Teorema:.

Teorema 1.1.65. (Teorema de Schur) Seja $(x_n)_n$ uma sequência em ℓ_1 . Se $(x_n)_n$ é fracamente Cauchy, então $(x_n)_n$ converge em norma em ℓ_1 .

Demonstração. Veja [14], Teorema 5.19, p.146.

Este teorema motivou a seguinte definição:

Definição 1.1.66. Seja X um espaço de Banach. Dizemos que X possui a propriedade de Schur se toda sequência em X fracamente convergente for convergente em norma.

Exemplo 1.1.67. ℓ_1 possui a propriedade de Schur.

A demonstração do próximo lema é simples, mas a incluiremos neste texto pois não a encontramos na literatura.

Lema 1.1.68. Se X não possui a propriedade de Schur então existe $(x_n)_n \subset X$ tal que $||x_n|| = 1$ para todo $n \in \mathbb{N}$, $x_n \stackrel{w}{\to} 0$ mas $(x_n)_n$ não converge a zero na topologia forte.

Demonstração. Como X não possui a propriedade de Schur, existem $(x_n)_n \subset X$ e $x \in X$ tais que $(x_n)_n$ converge para x na topologia fraca, mas não converge na topologia forte. Consideremos então $y_n = x_n - x$ para todo $n \in \mathbb{N}$. Assim, $(y_n)_n$ é sequência fracamente nula e existe $\epsilon > 0$ tal que, passando a subsequência se necessário, podemos supor $||y_n|| \ge \epsilon$ para todo $n \in \mathbb{N}$, já que $(y_n)_n$ não converge a zero na topologia forte.

Agora, basta considerarmos

$$\left(\frac{y_n}{\|y_n\|}\right)_n \subset X$$

para que os elementos da sequência tenham norma unitária e para que dado $x^* \in X^*$ valha

$$\left| x^* \left(\frac{y_n}{\|y_n\|} \right) \right| = \frac{|x^*(y_n)|}{\|y_n\|} \le \frac{|x^*(y_n)|}{\epsilon}$$

o que implica em $\left(x^*\left(\frac{y_n}{\|y_n\|}\right)\right)_n$ convergir a zero, já que $(y_n)_n$ é fracamente nula.

Um resultado importante envolvendo espaços de Banach que contenham ℓ_1 é o seguinte:

Teorema 1.1.69. (Teorema ℓ_1 de Rosenthal-Dor) Seja $(x_n)_n$ uma sequência limitada em um espaço de Banach X. Então $(x_n)_n$ admite uma subsequência $(x_{n_k})_k$ satisfazendo uma das sequintes alternativas que se excluem mutuamente.

- i) $(x_{n_k})_k$ é uma sequência fracamente Cauchy.
- ii) $(x_{n_k})_k$ é equivalente à base canônica de ℓ_1 .

Demonstração. Veja [10], p.209.

Definição 1.1.70. Dizemos que um espaço de Banach X é reflexivo se a aplicação J definida na Observação 1.1.43 é sobrejetora. Neste caso, X e X^{**} são isometricamente isomorfos.

Os espaços l_p , $1 são reflexivos. De fato, se <math>\frac{1}{p} + \frac{1}{q} = 1$, segue do exemplo 1.1.25 que $l_p = l_q^* = l_p^{**}$ (ver [14], p.74, para detalhes). Por outro lado, c_0 não é reflexivo já que, pelo exemplo 1.1.23, temos que $c_0^{**} = l_\infty$, mas c_0 é separável e l_∞ não. Seguem algumas condições necessárias e suficientes para que um espaço de Banach seja reflexivo :

Teorema 1.1.71. Seja X um espaço de Banach. Então X é reflexivo se, e somente se B_X é compacta pela topologia fraca de X.

Teorema 1.1.72. Seja X um espaço de Banach. Então X é reflexivo se, e somente se X^* é reflexivo.

$$Demonstração$$
. Veja [14], Proposição 3.32, p.75.

Do Teorema acima e do fato de c_0 não ser espaço reflexivo, concluímos que $\ell_1=c_0^*$ também não é reflexivo.

Proposição 1.1.73. Seja X um espaço de Banach reflexivo. Se Y é um subespaço vetorial fechado de X então Y é um espaço de Banach reflexivo.

Introduziremos agora o conceito de sequência generalizada, que será muito usado quando trabalharmos com espaços topológicos arbitrários. As sequências generalizadas desempenham, nos espaços topológicos, papel análogo ao das sequências nos espaços métricos.

Definição 1.1.74. Um conjunto \mathcal{D} é dito dirigido se existe uma relação binária, denotada por \leq , em \mathcal{D} que satisfaz:

i) $d \leq d$ para todo $d \in \mathcal{D}$.

- ii) se $a \leq b$ e $b \leq c$ então $a \leq c$ para todos $a, b, c \in \mathcal{D}$.
- iii) dados $a, b \in \mathcal{D}$ existe $d \in \mathcal{D}$ tal que $a \leq d$ e $b \leq d$.

Definição 1.1.75. Seja X um espaço topológico. Uma sequência generalizada em X é uma aplicação $x: \mathcal{D} \longrightarrow X$, onde \mathcal{D} é um conjunto dirigido. Denotamos esta sequência generalizada por $(x_{\alpha})_{\alpha \in \mathcal{D}}$. Dizemos que uma sequência generalizada $(x_{\alpha})_{\alpha \in \mathcal{D}}$ converge para $x \in X$ se, para toda vizinhança U de x em X, existe $\alpha_0 \in \mathcal{D}$ tal que $x_{\alpha} \in U$ se $\alpha_0 \leq \alpha$. Neste caso, diremos que x é limite de $(x_{\alpha})_{\alpha \in I}$ e denotaremos $x_{\alpha} \to x$.

Ao trabalharmos com sequências generalizadas, iremos utilizar notações análogas as já apresentadas para sequências.

Proposição 1.1.76. Sejam (X, Γ_1) , (Y, Γ_2) espaços topológicos e seja $f: X \longrightarrow Y$. Uma condição necessária e suficiente para que f seja contínua em x é que para toda sequência generalizada $(x_{\alpha})_{\alpha \in D} \subset X$ tal que $x_{\alpha} \xrightarrow{\Gamma_1} x$ temos $f(x_{\alpha}) \xrightarrow{\Gamma_2} f(x)$.

$$Demonstração$$
. Veja [13], Lema 4, p.27.

Definição 1.1.77. Dizemos que um espaço de Banach X possui a propriedade de Radon-Nikodym (PRN) se toda função $f:[0,1]\to X$ de variação limitada é diferenciável em quase toda parte.

Para outras definições equivalentes da PRN indicamos [11], Proposição 2.28, p.111.

Para espaços duais que possuam (PRN), vale a seguinte equivalência:

Proposição 1.1.78. Para qualquer espaço de Banach X, são equivalentes:

- i) X^* possui (PRN).
- ii) Se Y é um subespaço fechado e separável de X, então Y* é separável.

Demonstração. Veja [9], Corolário 1, p.245.

1.2 Bases Schauder

Definição 1.2.1. Seja X um espaço vetorial normado de dimensão infinita sobre \mathbb{R} . Uma sequência $(x_i)_i$ em X é chamada de base de Schauder de X se para todo $x \in X$ existir uma única sequência de escalares $(a_i)_{i=1}^{\infty}$ em \mathbb{R} , tal que $x = \sum_{i=1}^{\infty} a_i x_i$. Dizemos que, neste caso, os escalares a_i $(i \in \mathbb{N})$ são as coordenadas de x.

É imediato da definição que $(x_i)_i$ é um conjunto linearmente independente. Com efeito, se $I \subset \mathbb{N}$ é finito e $(a_i)_{i \in J}$ é uma família finita de escalares tal que $\sum_{i \in J} a_i x_i = 0$, então $a_i = 0$ para todo $i \in J$.

Além disso, se X tem dimensão finita, então a noção de base de Schauder de X coincide com a de base algébrica de X.

Exemplo 1.2.2. Se $X = c_0$ ou $X = \ell_p$ para $1 \le p < \infty$, então a sequência $(e_n)_n$ forma uma base de Schauder para X. Neste caso, dizemos que esta é a base canônica de X.

Se (x_i) é uma base de Schauder de um espaço normado X, definimos as projeções canônicas $P_n: X \to X$ para $n \in \mathbb{N}$ por $P_n(\sum_{i=1}^\infty a_i x_i) = \sum_{i=1}^n a_i x_i$. Note que, de fato, para cada $n \in \mathbb{N}$ fixado, P_n é uma projeção de X sobre $[\{x_i\}_{i=1}^n]$ já que $(x_i)_{i=1}^n$ é linearmente independente.

Proposição 1.2.3. Seja (x_i) uma base de Schauder do espaço normado X. As projeções canônicas P_n satisfazem:

i)
$$dim(P_n(X)) = n$$

ii)
$$P_n P_m = P_m P_n = P_{min(m,n)}$$

iii)
$$P_n(x) \to x \ em \ X \ para \ todo \ x \in X$$
.

Reciprocamente, se projeções lineares limitadas em um espaço normado X satisfazem de (i) à (iii), então P_n são projeções canônicas associadas a alguma base de Schauder X.

$$Demonstração$$
. Ver [14], Lema 6.2, p.161.

Corolário 1.2.4. As projeções canônicas associadas a alguma base de Schauder de um espaço normado são pontualmente limitadas.

Demonstração. Segue imediatamente da proposição anterior.

Note que se X é um espaço normado com base de Schauder $(x_i)_i$, pelo item (iii) da Proposição 1.2.3, para cada $x \in X$, $\sup_n \|P_n(x)\| < \infty$

Sendo assim, podemos definir a seguinte norma, |||.||| em X:

Lema 1.2.5. Seja $(x_i)_i$ uma base de Schauder de um espaço de Banach $(X, \|.\|)$. Seja $\|\cdot\|$ definida em X por $\|\cdot\|$ $\|\cdot\|$ = $\sup_n \|\sum_{i=1}^n a_i x_i\|$ = $\sup_n \|P_n(x)\|$ para $x = \sum_{i=1}^\infty a_i x_i$. Então:

- 1) |||.||| é uma norma em X, $(x_i)_i$ é base de Schauder de (X, |||.|||) e a sequência $(P_n)_n$ das projeções canônicas vistas como aplicações lineares de (X, |||.|||) em (X, |||.|||) é uniformemente limitada por 1.
- 2) |||.||| é equivalente a ||.|| em X.

Demonstração. Ver [14], Lema 6.4, p.162. \Box

Seja $|||P_n||| = \sup_{|||x||| \le 1} |||P_n(x)|||$ para todo $n \in \mathbb{N}$. Pelo Lema 1.2.5-(1) $\sup_n |||P_n||| \le 1$. Como, pelo Lema 1.2.5-(2) as normas |||.||| e ||.|| são equivalentes em X, é fácil verificar que existe M>0 tal que $\sup_n \|P_n\| \le M$. Temos, assim, o seguinte resultado:

Corolário 1.2.6. Se $(x_i)_i$ é uma base de Schauder de um espaço normado (X, ||.||), então a sequência $(P_n)_n$ das projeções canônicas associadas à base $(x_i)_i$ é uniformemente limitada.

Chamamos constante básica de $(x_i)_i$ ao número $bc(x_i) = \sup_n ||P_n||$, onde $(P_n)_n$ é a sequência de projeções associada a $(x_i)_i$.

Sejam $(X, \|.\|)$ um espaço de Banach e $(x_i)_i$ uma base de Schauder de X. Dizemos que $(x_i)_i$ é normalizada se $\|x_i\|=1$ para todo $i\in\mathbb{N}$. Além disso, para $j\in\mathbb{N}$ e $x=\sum_{i=1}^\infty a_ix_i$ denotemos $f_j(x)=a_j$. Então

$$||P_i(x) - P_{i-1}(x)|| = |f_i(x)| ||x_i||$$

e portanto, para cada $x \in B_X$,

$$|f_j(x)| = ||f_j(x)x_j|| ||x_j||^{-1} \le 2\sup_n ||P_n|| ||x_j||^{-1}$$

o que mostra que $f_j \in X^*$. Os funcionais f_j são chamados de funcionais coordenados de $(x_i)_i$, e evidentemente temos $x = \sum_{i=1}^{\infty} f_i(x) x_i$.

Definição 1.2.7. Uma sequência $(x_i)_i$ em um espaço de Banach X é chamada uma sequência básica se $(x_i)_i$ é uma base de Schauder para $\overline{[\{x_i\}_i]}$, onde $[\{x_i\}_i]$ denota o espaço vetorial gerado por $\{x_i: i \in \mathbb{N}\}$

Temos a seguinte caracterização de sequências básicas:

Proposição 1.2.8. Seja $(x_i)_i$ uma sequência em um espaço de Banach X. Então $(x_i)_i$ é uma sequência básica se e somente se existe K > 0 tal que para todo n < m e escalares a_1, \dots, a_m temos $\left\|\sum_{i=1}^n a_i x_i\right\| \le K \left\|\sum_{i=1}^m a_i x_i\right\|$. Além disso, o menor K com tal propriedade é igual a $bc(x_i)$.

Demonstração. Veja [14], Proposição 6.13, p.169.

Definição 1.2.9. Sejam $(x_i)_i$ e $(y_i)_i$ bases de Schauder de X e de Y, respectivamente. Dizemos que $(x_i)_i$ é equivalente a $(y_i)_i$ se existe um isomorfismo $T: X \to Y$ tal que $T(x_i) = y_i$ para todo $i \in \mathbb{N}$.

Apresentaremos agora resultados que nos fornecerão condições necessárias e suficientes para que duas sequências básicas sejam equivalentes.

Proposição 1.2.10. Seja $(x_i)_i$ uma sequência básica em um espaço de Banach X, e seja $(f_i)_i$ uma sequência em um espaço de Banach Y. São equivalentes:

- i) $(f_i)_i$ é uma sequência básica equivalente a $(x_i)_i$
- ii) Para todas as sequências de escalares $(a_i)_i$, $\sum a_i x_i$ converge se e somente se $\sum a_i f_i$ converge.
- iii) Existem constantes $C_1, C_2 > 0$ tais que para todos os escalares a_1, \ldots, a_n temos

$$\frac{1}{C_1} \left\| \sum_{i=1}^n a_i x_i \right\|_X \le \left\| \sum_{i=1}^n a_i f_i \right\|_Y \le C_2 \left\| \sum_{i=1}^n a_i x_i \right\|_X$$

Demonstração. Veja [14], Fato 6.17, p.170.

Ao trabalharmos com a base unitária de c_0 , temos o seguinte resultado, que é um exercício em [10], p.52.

Proposição 1.2.11. Uma sequência normalizada básica $(x_n)_n$ é equivalente à base unitária de c_0 se, e somente se, existe uma constante K > 0 tal que

$$\left\| \sum_{i=1}^{n} c_i x_i \right\| \le K \sup_{1 \le i \le n} |c_i|$$

para todo $n \in \mathbb{N}$ e quaiquer escalares c_1, \ldots, c_n .

Observação 1.2.12. Se $(y_n)_n$ é uma sequência equivalente a base unitária de c_0 e $(x_n)_n$ é sequência tal que $\lim_n ||x_n - y_n|| = 0$ então $(x_n)_n$ também é equivalente a base unitária de c_0 . De fato, existe uma constante $K_1 > 0$ tal que

$$\left\| \sum_{n=1}^{r} a_n y_n \right\| \le K_1 \sup_{1 \le n \le r} |a_n| \tag{1.1}$$

para todo $r \in \mathbb{N}$ e quaisquer escalares a_1, \ldots, a_r . Se $(x_n)_n$ é uma sequência tal que

$$\lim_{n} \|x_n - y_n\| = 0$$

então existe uma constante $K_2 > 0$ tal que

$$\left\| \sum_{n=1}^{r} a_n x_n \right\| \le K_2 \sup_{1 \le n \le r} |a_n|$$

para todo $r \in \mathbb{N}$ e quaisquer escalares a_1, \ldots, a_r .

Com efeito, dados quaisquer a_1, \ldots, a_r temos

$$\left\| \sum_{n=1}^{r} a_n x_n \right\| \leq \left\| \sum_{n=1}^{r} a_n (x_n - y_n) \right\| + \left\| \sum_{n=1}^{r} a_n y_n \right\|$$

$$\leq \left\| \sum_{n=1}^{r} a_n (x_n - y_n) \right\| + K_1 \sup_{1 \leq n \leq r} |a_n|$$
(1.2)

Por outro lado, $\left\| \sum_{n=1}^{r} a_n (x_n - y_n) \right\| \le \sum_{n=1}^{r} |a_n| \|x_n - y_n\| e$

$$\lim_{n} \|x_n - y_n\| = 0 \Rightarrow \begin{cases} \exists \quad N \in \mathbb{N} : \quad \|x_n - y_n\| < \frac{1}{r} \quad \forall \quad n > N \\ \exists \quad K \in \mathbb{N} : \quad \|x_n - y_n\| < K \quad \forall \quad n \in \mathbb{N} \end{cases}$$
(1.3)

Daí temos, se r > N

$$\sum_{n=1}^{r} |a_n| \|x_n - y_n\| = \sum_{n=1}^{N} |a_n| \|x_n - y_n\| + \sum_{n=N+1}^{r} |a_n| \|x_n - y_n\|$$

$$\leq (NK+1) \sup_{1 \le n \le r} |a_n|.$$

Se $r \leq N$, temos

$$\sum_{n=1}^{r} |a_n| \|x_n - y_n\| < rK \sup_{1 \le n \le r} |a_n| < NK \sup_{1 \le n \le r} |a_n|$$

Logo, em qualquer caso temos

$$\sum_{n=1}^{r} |a_n| \|x_n - y_n\| < (NK + 1) \sup_{1 \le n \le r} |a_n|$$

onde K e N não dependem da escolha de $r \in \mathbb{N}$ e dos escalares a_1, \ldots, a_r .

Disto, e de (1.2) temos

$$\left\| \sum_{n=1}^{r} a_n x_n \right\| \le (NK + 1 + K_1) \sup_{1 \le n \le r} |a_n|$$

para todo $r \in \mathbb{N}$ e quaisquer escalares a_1, \ldots, a_r .

É fácil mostrar o seguinte resultado útil:

Proposição 1.2.13. Se $(x_n)_n$ é uma sequência básica, então $(x_n)_n$ é equivalente à sequência básica normalizada $\left(\frac{x_n}{\|x_n\|}\right)_n$ se existem m > 0 e M > 0 tais que $m \le \|x_n\| \le M$ para todo $n \in \mathbb{N}$.

Teorema 1.2.14. Seja $(x_i)_i$ uma sequência básica em um espaço de Banach X, e seja $(x_i^*)_i$ a sequência de funcionais coeficientes da base $(x_i)_i$ de $\overline{[\{x_i\}_i]}$. Assuma que $(f_i)_i$ é uma sequência em X tal que $\sum_{i=1}^{\infty} \|x_i - f_i\| \|x_i^*\| = C < 1$. Então $(f_i)_i$ é uma sequência básica equivalente a $(x_i)_i$.

Demonstração. Veja [14], Teorema 6.18, p.171.

Definição 1.2.15. Seja $(x_i)_i$ uma sequência básica em um espaço de Banach X. Uma sequência de vetores não nulos $(u_j)_j$ em X da forma $u_j = \sum_{i=p_j+1}^{p_{j+1}} a_i x_i$ com escalares a_i e $p_1 < p_2 < \dots$ é chamada uma sequência de blocos de $(x_i)_i$.

Note que, se $(u_j)_j$ é uma sequência de blocos de $(x_i)_i$, então $(u_j)_j$ é uma sequência básica.

Com efeito, se $k, l \in \mathbb{N}$, com $k \leq l$, temos:

$$\left\| \sum_{j=1}^{k} \alpha_{j} u_{j} \right\| = \left\| \sum_{j=1}^{k} \sum_{i=p_{j}+1}^{p_{j+1}} \alpha_{j} a_{i} x_{i} \right\|^{(1.2.8)} \le bc(x_{i}) \left\| \sum_{j=1}^{l} \sum_{i=p_{j}+1}^{p_{j+1}} \alpha_{j} a_{i} x_{i} \right\|$$

$$= bc(x_{i}) \left\| \sum_{j=1}^{l} \alpha_{j} u_{j} \right\|$$

e, novamente pela Proposição 1.2.8, concluímos que $(u_j)_j$ é uma sequência básica.

Teorema 1.2.16. (Princípio da Seleção de Bessaga-Pelczyński) $Seja(x_i)_i$ uma seqüência normalizada de elementos de um espaço de Banach X tal que $x_i \stackrel{w}{\to} 0$. Então $(x_i)_i$ admite uma subseqüência básica $(y_i)_i$.

$$Demonstração$$
. Veja [10], p.42.

Proposição 1.2.17. Seja $X = c_0$ ou ℓ_p , $1 \le p < \infty$. Se $(u_j)_j$ é uma sequência de blocos normalizada de $(e_i)_i$ então:

- 1) $(u_j)_j$ é equivalente $a(e_i)_i$.
- 2) Existe uma projeção de norma 1 de X sobre $\overline{[\{u_j\}\,j]}$.

Demonstração. Veja [14], Proposição 6.22, p.173.

1.3 Desigualdade de Khintchine

Vamos começar esta seção introduzindo um sistema ortonormal de funções em [0,1]. As funções de Rademacher $(r_n)_n$ são definidas por

$$r_n(t) = sign(sen(2^n \pi t))$$
 para todo $t \in [0,1]$ e $n \in \mathbb{N}$.

Em particular, $r_1(t) = 1$ se $t \in [0, \frac{1}{2})$, $r_1(t) = -1$ se $t \in [\frac{1}{2}, 1)$, $r_2(t) = 1$ se $t \in [0, \frac{1}{4}) \cup [\frac{1}{2}, \frac{3}{4})$, $r_2(t) = -1$ se $t \in [\frac{1}{4}, \frac{1}{2}) \cup [\frac{3}{4}, 1)$, etc.

Para maior detalhes, ver [20], Capítulo 16.

Proposição 1.3.1. Dados inteiros positivos $n_1 < n_2 < \ldots < n_k \ e \ m_1, \ldots, m_k$, tem-se que

$$\int_{0}^{1} r_{n_{1}}^{m_{1}}(t) \dots r_{n_{k}}^{m_{k}}(t)dt = 1 \quad se \ cada \quad m_{j} \ \'e \ par,$$

$$\int_{0}^{1} r_{n_{1}}^{m_{1}}(t) \dots r_{n_{k}}^{m_{k}}(t)dt = 0 \quad se \ algum \quad m_{j} \ \'e \ \'mpar.$$

Demonstração. Veja [20], Proposição 16.2, p.76.

Corolário 1.3.2. (a) $(r_n)_n$ é uma sequência ortonormal em $L_2[0,1]$.

(b) Para cada sequência $(\lambda_n)_n \in \ell_2$ tem-se que

$$\left\| \sum_{n=1}^{m} \lambda_{n} r_{n}(t) \right\|_{L_{2}[0,1]} = \left(\int_{0}^{1} \left| \sum_{n=1}^{\infty} \lambda_{n} r_{n}(t) \right|^{2} dt \right)^{\frac{1}{2}}$$
$$= \left(\sum_{n=1}^{\infty} \left| \lambda_{n} \right|^{2} \right)^{\frac{1}{2}} = \left\| (\lambda_{n})_{n} \right\|_{2}$$

Observe que o corolário acima, junto com o Teorema 1.2.10, nos garante que $(r_n)_n$ é uma sequência básica em $L_2[0,1]$ equivalente à base canônica de ℓ_2 (com constante 1).

Teorema 1.3.3. (Designal dade de Khintchine) Para todo $p \in [1, \infty)$ existem constantes positivas A_p e B_p tais que, para todo $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$

$$A_{p} \left(\sum_{n=1}^{m} \left| \lambda_{n} \right|^{2} \right)^{\frac{1}{2}} \leq \left(\int_{0}^{1} \left| \sum_{n=1}^{m} \lambda_{n} r_{n}(t) \right|^{p} dt \right)^{\frac{1}{p}} \leq B_{p} \left(\sum_{n=1}^{m} \left| \lambda_{n} \right|^{2} \right)^{\frac{1}{2}}$$

onde A_p e B_p denotam as melhores constantes possíveis.

Demonstração. Ver [20], Teorema 16.4, p.77.

Observe que, no teorema acima, temos $A_2 = B_2 = 1$.

1.4 Teoria de Integração

Definição 1.4.1. Seja X um conjunto não-vazio arbitrário. Uma σ -álgebra em X é uma coleção $A \subset \mathcal{P}(X)$, onde $\mathcal{P}(X)$ denota o conjunto das partes de X, que satisfaz as seguintes condições:

- (i) $\emptyset, X \in \mathcal{A}$.
- (ii) se $A \in \mathcal{A}$, então $X \setminus A \in \mathcal{A}$.
- (iii) se $A_n \in \mathcal{A}$ para todo $n \in \mathbb{N}$, então $\bigcup_n A_n \in \mathcal{A}$.

Se \mathcal{A} é uma σ -álgebra em X, então (X, \mathcal{A}) é dito um espaço mensurável e dizemos que os elementos de \mathcal{A} são os conjuntos mensuráveis em X.

Note que, dado um conjunto X e $A \subset \mathcal{P}(X)$, segue da definição de σ -álgebra que existe uma menor σ -álgebra, $\sigma(A)$, em X que contém A. Ela é obtida pela interseção de todas as σ -álgebras que contém A e dizemos que esta é a σ -álgebra gerada por A. Quando X é um espaço topológico e A é o conjunto de todos os subconjuntos abertos de X, os elementos de $\sigma(A)$ são chamados conjuntos de Borel de X e $\sigma(A)$ é a σ -álgebra de Borel em X.

Definição 1.4.2. Seja (X, A) um espaço mensurável. Uma medida sobre X é uma função $\mu: A \longrightarrow [0, +\infty]$ que satisfaz:

- (i) $\mu(\emptyset) = 0$.
- (ii) $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mu(A_{i})$ sempre que $\{A_{i};i\in\mathbb{N}\}$ é uma família enumerável de elementos de \mathcal{A} dois a dois disjuntos.

Uma função $\lambda:\mathcal{A}\longrightarrow\mathbb{R}$ que satisfaz as propriedades (i) e (ii) acima é dita uma carga em X.

Uma medida de Borel em um espaço topológico compacto X é uma medida $\mu: \mathcal{A} \to [0, \infty]$ onde \mathcal{A} é a σ -álgebra de Borel.

Uma medida finita em X é uma medida em X tal que $\mu(X)$ é finito.

Definição 1.4.3. Uma medida de Borel é regular se para todo conjunto de Borel E se tem:

- i) $\mu(E) = \inf \{ \mu(V) : E \subset V, \ V \ aberto \}$
- ii) $\mu(E) = \inf \{ \mu(K) : K \subset E, K \text{ compacto} \}$

Definição 1.4.4. Um espaço de medida é um espaço mensurável (X, A) que tem uma medida μ definida na σ -álgebra A de seus conjuntos mensuráveis. Denotamos estes espaços como triplas (X, A, μ) .

Definição 1.4.5. Se (X, \mathcal{A}) é um espaço mensurável e (Y, \mathcal{F}) é outro espaço mensurável, então uma função $f: X \longrightarrow Y$ é dita mensurável se $f^{-1}(V) \in \mathcal{A}$ para todo $V \in \mathcal{F}$.

Quando $Y = \mathbb{R}$ e \mathcal{F} é a σ -álgebra gerada pelos abertos (a,b) de \mathbb{R} temos que f é mensurável se para todo $\alpha \in \mathbb{R}$ temos que $\{x \in X : f(x) > \alpha\} \in \mathcal{A}$. Neste caso é fácil ver que se $f: X \to \mathbb{R}$ é mensurável então $\varphi \circ f$ é mensurável sempre que φ é uma função contínua de f(X) em \mathbb{R} . Como consequência temos que se $f: X \to \mathbb{R}$ é mensurável, então |f| e $|f|^p$ $(1 \le p < \infty)$ são mensuráveis.

Nas definições a seguir, iremos sempre considerar \mathcal{A} uma σ -álgebra num conjunto X qualquer e μ uma medida definida em \mathcal{A} . Além disso, denotaremos por $M^+ = M^+(X, \mathcal{A})$ o conjunto de todas as funções não-negativas e mensuráveis de X em $[0, +\infty]$.

Definição 1.4.6. Uma função $\varphi: X \longrightarrow [0, +\infty)$ é uma função simples se ela assume apenas um número finito de valores. Neste caso φ é da forma $\varphi = \sum_{j=1}^{n} a_j \chi_{E_j}$, onde $a_j \in \mathbb{R}$

e χ_{E_i} representa a função característica do conjunto E_j , isto é,

$$\chi_{E_j}(x) = \begin{cases} 1 & se \quad x \in E_j \\ 0 & se \quad x \notin E_j. \end{cases}$$

Note que uma função simples sempre pode ser representada de forma que os coeficientes a_j sejam distintos e os E_j disjuntos. Basta tomar a_1, \ldots, a_n os valores distintos que φ assume e fazer $E_j = \{x \in X : \varphi(x) = a_j\}$. Tal representação é dita a representação canônica e cada função simples pode ser escrita de forma única em sua representação canônica. Salvo quando dito o contrário, sempre representaremos funções simples pela forma canônica.

Definição 1.4.7. Se $\varphi \in M^+(X, \mathcal{A})$ é uma função simples cuja forma canônica é $\sum_{j=1}^n a_j \chi_{E_j}$, definimos a integral de φ sobre E como sendo

$$\int_{E} \varphi \, d\mu = \sum_{j=1}^{n} a_{j} \mu(E_{j}).$$

Quando E=X escreveremos $\int \varphi \, d\mu$ em lugar de $\int_E \varphi \, d\mu.$

Observação 1.4.8. Convencionamos que $0(+\infty) = 0$. Dessa forma, tendo o espaço de medida finita ou infinita, a integral da função identicamente nula sobre este espaço será sempre zero.

Definição 1.4.9. Se $f \in M^+$ definimos a integral de f com respeito a μ como sendo o elemento de $\overline{\mathbb{R}}$ dado por

$$\int f d\mu = \sup \int u \, d\mu,$$

onde o supremo é tomado sobre todas as funções simples $\varphi \in M^+$ tais que $0 \le \varphi(x) \le f(x)$ para todo $x \in X$. Se $f \in M^+$ e $E \in \mathcal{A}$, então $f\chi_E \in M^+$ e definimos a integral de f sobre E por

$$\int_{E} f d\mu = \int f \chi_E \, d\mu,$$

A cada $f:X\longrightarrow \mathbb{R}$, podemos associar duas funções não negativas f^+ e f^- do seguinte modo

$$f^{+}(x) = (f \vee 0)(x) = \max\{f(x), 0\},\$$

$$f^{-}(x) = -(f \wedge 0)(x) = -\min\{f(x), 0\}.$$

Dizemos que f^+ e f^- são, respectivamente, a parte positiva de f e a parte negativa de f. É fácil ver que $f = f^+ - f^-$ e que $|f| = f^+ + f^-$. Dessa forma, podemos definir função integrável (com respeito a μ) da seguinte maneira:

Definição 1.4.10. Uma função $f: X \to \mathbb{R}$ é integrável com respeito a μ (ou, simplesmente integrável) se f é mensurável e as integrais de f^+ e f^- com respeito a μ são ambas finitas. Neste caso, dado $E \in \mathcal{A}$ definimos a integral de f sobre E com respeito a μ como

$$\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu$$

.

Indicaremos por $L(X, \mathcal{A}, \mu)$, ou simplesmente por L quando for claro o espaço de medida considerado, o conjunto das funções $f: X \to \mathbb{R}$ que são integráveis com respeito a μ .

Quando E=X escreveremos $\int \varphi \, d\mu$ em lugar de $\int_E \varphi \, d\mu$.

Proposição 1.4.11. Se f, g são funcões em $L(X, \mathcal{A}, \mu)$ e $\alpha \in \mathbb{R}$, então as funções αf e f+g pertencem a $L(X, \mathcal{A}, \mu)$ e

$$\int \alpha f d\mu = \alpha \int f d\mu \quad e \quad \int (f+g) d\mu = \int f d\mu + \int g d\mu$$

Demonstração. Veja [2], Teorema 5.5, p.43.

Introduziremos agora os espaços $L_p(X, \mathcal{A}, \mu)$, onde $1 \leq p \leq \infty$ mas, para isto, será necessário definir o que significa uma propriedade valer em quase todo ponto.

Definição 1.4.12. Dizemos que uma propriedade vale em quase todo ponto (q.t.p.) se existe um subconjunto $N \in \mathcal{A}$ tal que $\mu(N) = 0$ e tal que a propriedade em questão vale no complementar de N.

Por exemplo, duas funções $f,g:X\longrightarrow\mathbb{R}$ são ditas iguais em quase todo ponto se existir um subconjunto $N\in\mathcal{A}$ tal que $\mu(N)=0$ e f(x)=g(x) sempre que $x\notin N$. Nesse caso, escreveremos f=g q.t.p.. Quando necessário explicitar a medida considerada dizemos μ -quase todo ponto em lugar de quase todo ponto.

Definição 1.4.13. Duas funções em $L(X, \mathcal{A}, \mu)$ são ditas μ -equivalentes se elas são iguais q.t.p.. A classe de equivalência de f em L determinada por esta relação de equivalência é denotada por [f].

Definição 1.4.14. Se $1 \leq p < \infty$, o espaço $L_p = L_p(X, \mathcal{A}, \mu)$ consiste de todas as classes de μ -equivalência [f] das funções mensuráveis f para os quais $|f|^p$ tem uma integral finita sobre X com respeito a μ .

É possível verificar que L_p é um espaço vetorial, que

$$||f||_p = \left\{ \int |f|^p d\mu \right\}^{1/p}$$
 para todo $f \in L_p$,

define uma norma em L_p e que $(L_p, \|.\|_p)$ é um espaço de Banach. (ver [2], Teorema 6.14, p.59). A partir de agora, L_p ou $L_p(X, \mathcal{A}, \mu)$ denota este espaço normado.

Definição 1.4.15. O espaço $L_{\infty} = L_{\infty}(X, \mathcal{A}, \mu)$ consiste de todas as classes de μ -equivalência [f] das funções f que são limitadas q.t.p. em X. Se $f \in L_{\infty}$ e $N \in \mathcal{A}$ é tal que $\mu(N) = 0$, definimos

$$S(N) = \sup \{ |f(x)| : x \notin N \}$$

e

$$||f||_{\infty} = \inf \left\{ S(N) : N \in \mathcal{A}, \mu(N) = 0 \right\}$$

É possível verificar que L_{∞} é um espaço vetorial, que $\|.\|_{\infty}$ define uma norma em L_{∞} e que $(L_{\infty}, \|.\|)$ é um espaço de Banach. (ver [2], Teorema 6.16, p.61)

Observação 1.4.16. Os espaços ℓ_p para $1 \leq p \leq \infty$, introduzidos na seção anterior, são um caso particular de $L_p(X, \mathcal{A}, \mu)$, bastando para isso tomar $X = \mathbb{N}$, \mathcal{A} como o conjunto das partes de \mathbb{N} e $\mu(A)$ igual ao cardinal de A, para todo $A \in \mathcal{A}$.

Teorema 1.4.17. Se $1 e <math>\frac{1}{p} + \frac{1}{q} = 1$, então existe um isomorfismo isométrico entre $L_p^*(X, \mathcal{A}, \mu)$ e $L_q(X, \mathcal{A}, \mu)$ onde $x^* \in L_p^*(X, \mathcal{A}, \mu)$ e $g \in L_q(X, \mathcal{A}, \mu)$ são relacionados por

$$x^*(f) = \int_X gf d\mu \quad para \ toda \quad f \in L_p(X, \mathcal{A}, \mu)$$

Demonstração. Ver [13], Teorema 1, p. 286.

Corolário 1.4.18. Se $1 , então o espaço <math>L_p(X, \mathcal{A}, \mu)$ é reflexivo.

Demonstração. Ver [13], Corolário 2, p.288.

Definição 1.4.19. Seja (X, A) um espaço mensurável e seja $\lambda : A \to \mathbb{R}$ uma carga em X. Para todo $E \in A$, a variação total de μ em E, denotada por $|\lambda|(E)$, é definida por

$$|\lambda|(E) = \sup \sum_{i=1}^{n} |\mu(E_i)|$$

onde o supremo é tomado sobre todas as famílias finitas $(E_i)_{i=1}^n \subset \mathcal{A}$ tais que $E_i \cap E_j = \emptyset$ se $i \neq j$ e $E_i \subset E$ para todo $i \in \{1, \ldots, n\}$.

Em particular, se $\lambda(A) \subset [0, \infty)$ então $|\lambda| = \lambda$. Este é o caso das medidas positivas finitas.

Usando o Teorema da Decomposição de Hahn (veja [13], Teorema 10, p.12) podemos mostrar o seguinte:

Teorema 1.4.20. (Teorema da Decomposição de Jordan) Seja (X, A) um espaço mensurável e seja $\lambda : A \to \mathbb{R}$ uma carga em X. Então existe um único par de medidas finitas λ^+ e λ^- tais que

$$\lambda = \lambda^+ - \lambda^- \ e \ |\lambda| = \lambda^+ + \lambda^-.$$

Demonstração. Veja [13], Corolário 11, p.130 e observação logo após o corolário.

Definição 1.4.21. Seja $(f_n)_n$ uma sequência de funções reais mensuráveis em X e seja f uma função real mensurável em X. Dizemos que $(f_n)_n$ converge quase uniformemente para f se existe um conjunto $N \subset X$ tal que $\mu(N) = 0$ e f_n converge uniformemente para f em $X \setminus N$.

Definição 1.4.22. Seja $(f_n)_n$ uma sequência de funções reais mensuráveis em X e seja f uma função real mensurável em X. Dizemos que $(f_n)_n$ converge em medida para f se

$$\lim_{n} \mu(\{x \in X : |f_n(x) - f(x)| \ge \alpha\}) = 0$$

para cada $\alpha > 0$.

Teorema 1.4.23. (Teorema de Egoroff) Suponha que $\mu(X) < \infty$ e que $(f_n)_n$ seja uma sequência de funções reais mensuráveis que converge em quase todo ponto em X para uma função real mensurável f. Então, a sequência $(f_n)_n$ converge quase uniformemente para f e converge em medida para f.

$$Demonstração$$
. Veja [2], Teo. 7.12, p.74.

Teorema 1.4.24. Seja (X, \mathcal{A}, μ) um espaço de medida. Então existe um espaço compacto de Hausdorff K e uma isometria entre $L_{\infty}(X, \mathcal{A}, \mu)$ e C(K).

$$Demonstração$$
. Veja [13], Teo. 11, p.445.

Teorema 1.4.25. Se $p \in (1, \infty)$ então $L_p[0, 1]$ contém um subespaço complementado isomorfo a ℓ_2 . Além disso, $L_1[0, 1]$ contém um subespaço isomorfo a ℓ_2 .

Demonstração. Veja [14], Teorema 6.28, p.177.

Teorema 1.4.26. (Teorema de Representação de Riesz): Seja K um espaço compacto de Hausdorff e seja φ um funcional linear contínuo positivo sobre C(K). Então existe uma única medida de Borel regular finita μ sobre K tal que

$$\varphi(f) = \int_{K} f d\mu$$

para cada $f \in C(K)$.

Demonstração. Veja [5], Teorema 7.28, p.209.

Observação 1.4.27. Se μ é uma medida de Borel regular finita sobre um espaço compacto K é fácil verificar que a função $\varphi: C(K) \to \mathbb{R}$ definida por $\varphi(f) = \int f d\mu$ é um funcional linear contínuo em C(K) tal que $\varphi(f) \geq 0$ sempre que $f \geq 0$.

Além disso, se M(K) denota o espaço das medidas de Borel regulares finitas sobre K, podemos definir $\|\mu\| = \mu(K) = |\mu|(K)$ para todo $\mu \in M(K)$. É fácil verificar que $\|.\|$ é uma norma em M(K). Mais ainda, se φ é um funcional linear positivo sobre C(K) e μ é a medida que representa φ via Teorema de Representação de Riesz, temos que $\|\mu\| = \|\varphi\|$.

Como cada $\varphi \in C(K)^*$ pode ser escrito na forma $\varphi = \varphi^+ - \varphi^-$ onde φ^+ e φ^- são funcionais lineares contínuos positivos em C(K), o Teorema de Representação de Riesz estabelece que a cada $\varphi \in C(K)^*$ podemos associar um único par de medidas de Borel finitas μ_1 e μ_2 tais que

$$\varphi(f) = \varphi^+(f) - \varphi^-(f) = \int f d\mu_1 - \int f d\mu_2$$

É claro que $\lambda = \mu_1 - \mu_2$ é uma carga e, pelo Teorema de Decomposição de Jordan, $\mu_1 = \lambda^+, \ \mu_2 = \lambda^- \ e \ |\lambda| = \mu_1 + \mu_2.$

A próxima definição e o próximo Teorema serão necessários para verificarmos que C(K), onde K é espaço de Hausdorff compacto, possui a propriedade de Dunford-Pettis.

Definição 1.4.28. Seja (X, A) espaço mensurável. Um conjunto de medidas F é uniformemente absolutamente contínuo com respeito a uma medida λ se dado $\epsilon > 0$ existe um $\delta > 0$ tal que $\mu(A) < \epsilon$ para todo $\mu \in F$ sempre que $A \in A$ satisfaz $\lambda(A) < \delta$.

O seguinte resultado é um exercício em 3.1.15 (ver exercicio 17, p.340).

Proposição 1.4.29. Seja K um espaço compacto de Hausdorff e $(\mu_n)_n$ é uma sequência em M(K). Então, $(\mu_n)_n$ converge fracamente para $\mu \in M(K)$ se, e somente se, existe uma medida $\lambda \in M(K)$ tal que $(\mu_n)_n$ é uniformemente absolutamente contínua com respeito a λ e

$$\lim_{n \to \infty} \mu_n(E) = \lambda(E)$$

para todo $E \in \mathcal{A}$, onde \mathcal{A} é a σ -álgebra de Borel.

Capítulo 2

Operadores Compactos e Fracamente Compactos

O objetivo deste capítulo é apresentar resultados sobre operadores compactos e fracamente compactos que serão necessários para o estudo da propriedade de Dunford-Pettis. No estudo destas duas classes de operadores precisaremos de alguns resultados básicos sobre operadores adjuntos, que serão apresentados no primeiro parágrafo.

2.1 Operadores Adjuntos

Definição 2.1.1. Sejam X e Y espaços de Banach e $T \in \mathcal{L}(X,Y)$. Definimos o operador adjunto $T^* \in \mathcal{L}(Y^*,X^*)$ como o operador que a cada $f \in Y^*$ associa o elemento $T^*(f)$ de X^* definido por $T^*(f)(x) = f(T(x))$ para todo $x \in X$.

Note que T^* fica bem definido. Com efeito, a linearidade é clara e $T^*(f) = f \circ T$.

Portanto, $T^*(f) \in X^*$ sempre que $f \in Y^*$. Mais ainda, para cada $x \in X$ e $f \in Y^*$ temos:

$$|T^*(f)(x)| = |f(T(x))| \le ||f|| ||T|| ||x||.$$

Segue daí que

$$||T^*(f)|| = \sup_{\|x\|=1} |T^*(f)(x)| \le ||f|| \, ||T||$$

е

$$\sup_{\|f\| \le 1} \|T^*(f)\| \le \|T\| < \infty.$$

Assim, T^* é contínua e $||T^*|| \le ||T||$. De fato, temos:

Proposição 2.1.2. Sejam X e Y espaços de Banach. Se $T \in \mathcal{L}(X,Y)$ então $||T^*|| = ||T||$.

Demonstração. Temos

$$||T^*|| = \sup_{f \in B_{Y^*}} ||T^*(f)||_{X^*} = \sup_{f \in B_{Y^*}} \left\{ \sup_{x \in B_X} |T^*(f)(x)| \right\}$$

$$= \sup_{f \in B_{Y^*}} \left\{ \sup_{x \in B_X} |f(T(x))| \right\} = \sup_{x \in B_X} \left\{ \sup_{f \in B_{Y^*}} |f(T(x))| \right\}$$

$$\stackrel{(1.1.35)}{=} \sup_{x \in B_X} \left\{ ||T(x)||_Y \right\} = ||T||$$

Note que se X,Y e Z são espaços de Banach, $T\in\mathcal{L}(X,Y)$ e $U\in\mathcal{L}(Y,Z)$ então temos que $(ST)^*=T^*S^*$. De fato, dado $x\in X$ e $f\in Z^*$ então

$$(ST)^*(f)(x) = f(ST(x)) = (S^*(f))(T(x)) = (T^*S^*(f)(x).$$

Proposição 2.1.3. O adjunto T^* de um operador $T \in \mathcal{L}(X,Y)$ é uma aplicação $\sigma(Y^*,Y) - \sigma(X^*,X)$ contínua. Em particular T^{**} é uma aplicação $\sigma(X^{**},X^*) - \sigma(Y^{**},Y^*)$ contínua.

Demonstração. Pela observação 1.1.46, basta mostrarmos a $\sigma(Y^*,Y) - \sigma(X^*,X)$ -continuidade de T^* na origem. Seja $\mathcal{O}_{X^*}^* = \{x^* \in X^*; |(x^*)(x_i)| < \epsilon \text{ para } i = 1,\ldots,n\}$ uma $\sigma(X^*,X)$ -vizinhança básica do zero em X^* e tomemos a $\sigma(Y^*,Y)$ -vizinhança básica do zero em Y^* dada por

$$\mathcal{O}_{Y^*}^* = \{ y^* \in Y^*; |y^*(T(x_i))| < \epsilon \text{ para } i = 1, \dots, n \}.$$

Verificaremos que $T^*(\mathcal{O}_{Y^*}^*) \subset \mathcal{O}_{X^*}^*$ o que nos garantirá que T^* é $\sigma(Y^*,Y) - \sigma(X^*,X)$ contínua na origem.

De fato, para cada $y^* \in \mathcal{O}_{V^*}^*$ temos:

$$|(T^*y^*)x_i| = |y^*(T(x_i))| < \epsilon \ i = 1, \dots, n.$$

Isto, junto ao fato de $T^*y^* \in X^*$, garante que $T^*y^* \in \mathcal{O}_{X^*}^*$. Assim T^* é $\sigma(Y^*,Y) - \sigma(X^*,X)$ contínua na origem e temos o resultado.

Proposição 2.1.4. Seja $T \in \mathcal{L}(X,Y)$. O segundo adjunto $T^{**}: X^{**} \longrightarrow Y^{**}$ é uma extensão de T no sentido de que $T^{**}(J(X)) = J(T(X))$ para todo $x \in X$. Se X é reflexivo então $T = T^{**}$.

Demonstração. Sejam $x \in X$ e $y^* \in Y^*$. Então

$$T^{**}(J(x))(y^*) = J(x)(T^*(y^*)) = J(x)(y^* \circ T)$$
$$= (y^* \circ T)(x) = J(T(x))(y^*)$$

A segunda parte da Proposição segue de forma imediata, já que se X é reflexivo então $J(X) = X^{**}$.

2.2 Operadores Compactos

Definição 2.2.1. Sejam X e Y espaços de Banach. Dizemos que $T: X \to Y$ é compacto se $\overline{T(B_X)}$ é compacto em Y.

Observação 2.2.2. Note que todo operador compacto é limitado. Basta observar que $T(B_X)$ é limitado, já que $T(B_X) \subset \overline{T(B_X)}$ compacto e, portanto, limitado. De fato, pode-se verificar que o conjunto dos operadores compactos munido da norma induzida por $\mathcal{L}(X,Y)$ é subespaço vetorial fechado de $\mathcal{L}(X,Y)$. Tal subespaço será denotado por $\mathcal{K}(X,Y)$ (veja [14] Proposição 7.2, p. 203).

Proposição 2.2.3. Sejam X, Y espaços de Banach e $T \in \mathcal{K}(X,Y)$. Se $x_n \stackrel{w}{\to} x$ em X, então $T(x_n) \to T(x)$ em Y.

Demonstração. Se $x_n \stackrel{w}{\to} x$, então $(x_n)_n$ é limitada e podemos supor que $x \in B_X$ e $x_n \in B_X$ para todo $n \in \mathbb{N}$. Como T é limitado, T é $\sigma(X, X^*) - \sigma(Y, Y^*)$ contínuo o que implica em $T(x_n) \stackrel{w}{\to} T(x)$. Além disso, como $\overline{T(B_X)}$ é um espaço compacto na topologia da norma, e a topologia fraca é mais fraca e Hausdorff, obtemos que estas duas topologias coincidem em $\overline{T(B_X)}$. Logo, $T(x_n) \to T(x)$.

A propriedade apresentada acima motiva a próxima definição.

Definição 2.2.4. Sejam X e Y espaços de Banach. Um operador linear $T: X \to Y$ é completamente contínuo se $T(x_n) \to T(x)$ em Y sempre que $x_n \stackrel{w}{\to} x$.

Observação 2.2.5. É imediato da definição e da Proposição 2.2.3 que todo operador completamente contínuo é contínuo e que todo operador compacto é completamente contínuo.

Proposição 2.2.6. Sejam X, Y espaços de Banach e $T \in \mathcal{L}(X,Y)$. Então T é completamente contínuo se e somente se T leva conjuntos fracamente compactos sobre conjuntos fortemente compactos.

Demonstração. Seja $T \in \mathcal{L}(X,Y)$ e suponha que este leve conjuntos fracamente compactos em conjuntos fortemente compatos. Dada $(x_n)_n \subset X$ tal que $x_n \stackrel{w}{\to} x$, afirmamos que

 $T(x_n) \to T(x)$. Com efeito, $E = \{x_n : n \in \mathbb{N}\} \cup \{x\}$ é fracamente compacto e, utilizando a hipótese, obtemos que $T(E) = \{T(x_n) : n \in \mathbb{N}\} \cup \{T(x)\}$ é compacto. Mostraremos que toda subsequência de $(T(x_n))_n$ admite subsequência que converge para T(x) o que nos garantirá que $T(x_n) \to T(x)$. Seja então $(T(x_{n_k}))_k$ subsequência arbitrária de $(T(x_n))_n$. Como T(E) é compacto, $(T(x_{n_k}))_k$ admite subsequência $(T(x_{n_{k_j}}))_j$ convergente para $y \in T(E)$. Mas, como T é limitado, será $\sigma(X, X^*) - \sigma(Y, Y^*)$ -contínuo e, do fato de $x_{n_{k_j}} \overset{w}{\to} x$ obtemos que $T(x_{n_{k_j}}) \overset{w}{\to} T(x)$ o que garante que y = T(x).

Reciprocamente, suponha que T seja completamente contínuo, tomemos $A \subset X$ conjunto fracamente compacto e $(T(x_n))_n \subset T(A)$. Como $(x_n)_n \subset A$, conjunto fracamente compacto, pelo Teorema de Šmulian (Teorema 2.3.7) existe $x_0 \in A$ e subsequência $(x_{n_k})_k$ tal que $x_{n_k} \stackrel{w}{\to} x_0$. Como T é completamente contínuo, concluímos que $T(x_{n_k}) \to T(x_0) \in T(A)$ e portanto T(A) é compacto.

Proposição 2.2.7. Todo operador linear completamente contínuo de um espaço de Banach reflexivo em um espaço de Banach é compacto

Demonstração. Sejam X espaço de Banach reflexivo, Y espaço de Banach e $T: X \to Y$ operador linear completamente contínuo. Como X é reflexivo então B_X é fracamente compacto. Como T é completamente contínuo, pela Proposição 2.2.6, $T(B_X)$ é compacto. Logo, $\overline{T(B_X)} = T(B_X)$ é compacto. \Box

O próximo teorema nos garante que um operador $T: X \to Y$ é compacto se, e somente se, seu adjunto também é compacto. Para demonstrarmos tal resultado, enunciaremos antes o Teorema de Arzelá-Ascoli.

Teorema 2.2.8. Se K é espaço compacto, então um subconjunto de C(K) é relativamente compacto se, e somente se, é limitado e equicontínuo.

Demonstração. Ver [13], Teorema 7, p.266.

Teorema 2.2.9. (Teorema de Schauder)Um operador linear de X em Y é compacto se, e somente se, seu adjunto é compacto.

Demonstração. Seja $T: X \to Y$ operador compacto e (φ_n) uma sequência arbitrária em B_{Y^*} . Afirmamos que existe subsequência $(\varphi_{n_k})_k$ de (φ_n) tal que $(T^*(\varphi_{n_k}))_k$ é convergente. Com efeito, consideremos as φ_n restritas a $\overline{T(B_X)}$. Por simplicidade ainda denotaremos tais restrições por φ_n .

Então,

$$|\varphi_n(y) - \varphi_n(z)| \le ||\varphi_n|| \, ||y - z|| \le ||y - z||$$

para todo $y, z \in \overline{T(B_X)}$. Logo, a família de funções $\{\varphi_n : n \in \mathbb{N}\}$ restritas ao conjunto $\overline{T(B_X)}$ é limitada e equicontínua. Pelo Teorema de Arzelá-Ascoli segue que existe $(\varphi_{n_k})_k$ subsequência de $(\varphi_n)_n$ que converge uniformemente em $\overline{T(B_X)}$. Logo, dado $\epsilon > 0$ existe $k_0 \in \mathbb{N}$ tal que

$$|\varphi_{n_k}(T(x)) - \varphi_{n_l}(T(x))| < \epsilon$$

para todo $k, l \ge k_0$ e para todo $x \in B_X$. Então

$$|(T^*(\varphi_{n_k}) - T^*(\varphi_{n_l}))(x)| < \epsilon$$

para todo $k, l \ge k_0$ e para todo $x \in B_X$ o que mostra que

$$||T^*(\varphi_{n_k}) - T^*(\varphi_{n_l})|| < \epsilon \text{ para todo } k, l \ge k_0.$$

Assim, $(T^*(\varphi_{n_k}))_k$ é uma sequência de Cauchy em X^* , que é completo e, consequentemente converge em $\overline{T^*(B_Y^*)}$.

Reciprocamente, seja $T \in \mathcal{L}(X,Y)$ tal que $T^*:Y^* \to X^*$ seja compacto. Pela implicação anterior, já sabemos que $T^{**}:X^{**} \to Y^{**}$ é compacto.

Note que, como $\overline{T^{**}(B_{X^{**}})}$ é compacto e como $\overline{T^{**}(J(B_X))} \subset \overline{T^{**}(B_{X^{**}})}$, então $\overline{T^{**}(J(B_X))}$ é compacto.

Da Proposição 2.1.4, temos que $T^{**}(J(B_X)) = J(T(B_X))$. Assim $\overline{J(T(B_X))} = J(\overline{T(B_X)})$ é compacto e, portanto, $\overline{T(B_X)}$ é compacto.

2.3 Operadores Fracamente Compactos

fracamente compactos é um subconjunto de $\mathcal{L}(X,Y)$.

Definição 2.3.1. Sejam X e Y espaços de Banach, e $T: X \to Y$ operador linear. Diremos que T é fracamente compacto se $\overline{T(B_X)}$ é fracamente compacto em Y.

Observação 2.3.2. Se $T: X \longrightarrow Y$ é fracamente compacto então $T \in \mathcal{L}(X,Y)$. Com efeito, se para cada $y^* \in Y^*$ fixado, definimos

$$U_{n,y^*} = \{ y \in Y; |y^*(y)| < n \}$$

onde $n \in \mathbb{N}$, da definição da topologia fraca segue que cada U_{n,y^*} é fracamente aberto. Como cada y^* é limitado, obtemos também que $Y = \bigcup_{n \in \mathbb{N}} U_{n,y^*}$ e, de T ser fracamente compacto segue que para cada y^* existe $n_0 \in \mathbb{N}$ tal que $T(B_X) \subset U_{n_0,y^*}$. Assim $y^*(T(B_X))$ é limitado para todo $y^* \in Y^*$. Do Teorema de Banach-Steinhaus (Teorema 1.1.36) segue que $T(B_X)$ é limitado, ou seja, $T \in \mathcal{L}(X,Y)$. Dessa forma vemos que o conjunto dos operadores

Proposição 2.3.3. Sejam X um espaço de Banach reflexivo e Y um espaço de Banach. Se $T \in \mathcal{L}(X,Y)$ então T é fracamente compacto.

Demonstração. Como X é reflexivo, então B_X é $\sigma(X, X^*)$ -compacto e como T é limitado, T é $\sigma(X, X^*) - \sigma(Y, Y^*)$ contínuo, garantindo que $T(B_X)$ é $\sigma(Y, Y^*)$ -compacto. Dessa forma, $T(B_X)$ é $\sigma(Y, Y^*)$ -fechado e convexo o que implica em $\overline{T(B_X)} = \overline{T(B_X)}^w = T(B_X)$ ser fracamente compacto.

Teorema 2.3.4. Sejam X e Y espaços de Banach e $T: X \to Y$ um operador linear e limitado. São equivalentes:

- a) T é fracamente compacto.
- b) $T^{**}(X^{**}) \subset J(Y)$.
- c) $T: Y^* \to X^* \notin \sigma(Y^*, Y) \sigma(X^*, X^{**})$ continuo.
- d) T^* é fracamente compacto.

Demonstração. (a \Rightarrow b)

Suponhamos que T seja fracamente compacto. Então $\overline{T(B_X)}$ é $\sigma(Y,Y^*)$ -compacto. Como J é $\sigma(Y,Y^*)-\sigma(Y^{**},Y^{***})$ -contínuo e a topologia $\sigma(Y^{**},Y^*)$ é menos fina do que $\sigma(Y^{**},Y^{***})$ então J é $\sigma(Y,Y^*)-\sigma(Y^{**},Y^*)$ -contínuo o que nos fornece

$$\overline{J(T(B_X))}^{\sigma(Y^{**},Y^{*})} \subset \overline{J(\overline{T(B_X)})}^{\sigma(Y^{**},Y^{*})} = J(\overline{T(B_X)}) \subset J(Y)$$
(2.1)

Por outro lado, pelo Teorema de Goldstine, temos que $J(B_X)$ é $\sigma(X^{**}, X^*)$ -denso em $B_{X^{**}}$. Logo, $T^{**}(B_{X^{**}}) = T^{**}(\overline{J(B_X)}^{\sigma(X^{**}, X^*)})$ e, da $\sigma(X^{**}, X^*) - \sigma(Y^{**}, Y^*)$ continuidade de T^{**} (Proposição 2.1.3) obtemos

$$T^{**}(B_{X^{**}}) = T^{**}\left(\overline{J(B_X)}^{\sigma(X^{**}, X^{*})}\right) \subset \overline{T^{**}(J(B_X))}^{\sigma(Y^{**}, Y^{*})}$$

Logo, utilizando a Proposição 2.1.4, concluímos que

$$T^{**}(B_{X^{**}}) \subset \overline{J(T(B_X))}^{\sigma(Y^{**},Y^{*})} \subset J(Y),$$

provando o desejado.

(b \Rightarrow c) Seja $(y_{\alpha}^*)_{\alpha} \subset Y^*$ uma sequência generalizada tal que $y_{\alpha}^* \stackrel{\sigma(Y^*,Y)}{\longrightarrow} y^* \in Y^*$. Dado qualquer $x^{**} \in X^{**}$, por (b) existe $y \in Y$ tal que $T^{**}(x^{**}) = J(y)$. Assim,

$$T^{**}(x^{**})(y^*_\alpha) = J(y)(y^*_\alpha) = y^*_\alpha(y) \to y^*(y) = J(y)(y^*) = T^{**}(x^{**})(y^*)$$

Isto significa que

$$x^{**}(T^*(y_\alpha^*)) \to x^{**}(T^*(y^*))$$

para todo $x^{**} \in X^{**}$, ou seja, $T^*(y^*_{\alpha}) \stackrel{\sigma(X^*, X^{**})}{\longrightarrow} T^*(y^*)$.

Consequentemente, T^* é $\sigma(Y^*,Y) - \sigma(X^*,X^{**})$ -contínuo.

(c \Rightarrow d) Por Banach-Alaoglu (Teorema 1.1.52) B_{Y^*} é $\sigma(Y^*, Y)$ -compacto e daí, usando (c) temos que $T^*(B_{Y^*})$ é $\sigma(X^*, X^{**})$ -compacto, ou seja,

$$\overline{T^*(B_{Y^*})}^w = T^*(B_{Y^*})$$

é $\sigma(X^*,X^{**})\text{-compacto.}$ Segue da
í que T^* é fracamente compacto.

 $(d \Rightarrow a)$ Note que se T^* é fracamente compacto então T^{**} também é fracamente compacto já que $(a \Rightarrow d)$. Logo, $\overline{T^{**}(B_{X^{**}})}$ é $\sigma(Y^{**}, Y^{***})$ -compacto.

Mas, $J:Y\to Y^{**}$ é um isomorfismo isométrico entre Y e J(Y) e, pela Proposição 2.1.4, temos

$$J(T(B_X)) = T^{**}(J(B_X)).$$

Então,

$$\overline{J(T(B_X))} = \overline{T^{**}(J(B_X))} \subset \overline{T^{**}(B_{X^{**}})}.$$

e como $\overline{J(T(B_X))} = \overline{J(T(B_X))}^{\sigma(Y^{**},Y^{***})}$, temos que $\overline{J(T(B_X))}$ é $\sigma(Y^{**},Y^{***})$ -compacto. Consequentemente $\overline{J(T(B_X))}$ é $\sigma(Y^{**},Y^{*})$ -compacto.

Mas

$$J(\overline{T(B_X)}) = \overline{J(T(B_X))} \subset \overline{J(Y)} = J(Y),$$

de modo que $J(\overline{T(B_X)})$ é $\sigma(Y^{**},Y^*)|_{J(Y)}\text{-compacto}$

Identificando $J(\overline{T(B_X)})$ e J(Y) com suas imagens isométricas $\overline{T(B_X)}$ e Y, respectivamente, e observando que $\sigma(Y^{**},Y^*)|_{J(Y)}=\sigma(Y,Y^*)$, obtemos que $\overline{T(B_X)}$ é $\sigma(Y,Y^*)$ -compacto.

Sabemos que dado um conjunto compacto K em um espaço normado X, cada sequência neste conjunto admite uma subsequência que converge em K. Apresentaremos a seguir o

Teorema de Šmulian, que garante que tal resultado continua válido na topologia fraca, isto é, que se K é um conjunto fracamente compacto, então cada sequência em K admite uma subsequência que converge fracamente em K.

Proposição 2.3.5. Seja X um espaço normado separável, e seja K um subconjunto fracamente compacto de X. Então $(K, \sigma(X, X^*))$ é metrizável.

Para provar este teorema, utilizaremos o resultado seguinte.

Proposição 2.3.6. Seja X um espaço normado separável. Então existe uma sequência $(\phi_n)_n$ normalizada tal que o operador

$$T: x \in X \to (\phi_n(x))_n \in \ell_\infty$$

é um isomorfismo isométrico sobre sua imagem. Em particular, a sequência $(\phi_n)_n$ separa os pontos de X, isto é, dados $x, y \in X$ tais que $x \neq y$ existe $n \in \mathbb{N}$ tal que $\phi_n(x) \neq \phi_n(y)$.

Demonstração. Como X é um espaço normado separável, existe (x_n) subconjunto enumerável denso em X. Pelo Teorema de Hahn-Banach (Corolário 1.1.33) existe uma sequência $(\phi_n)_n$ em X^* tal que

$$\phi_n(x_n) = ||x_n|| \text{ e } ||\phi_n|| = 1 \text{ para cada } n \in \mathbb{N}.$$
 (2.2)

Seja $T: E \to \ell_{\infty}$ que para cada $x \in X$ associa $T(x) = (\phi_n(x))_n$.

Utilizando o fato de $(\phi_n)_n$ ser normalizada, segue que T fica bem definida. Além disso, claramente T é operador linear e como $\|\phi_n\| = 1$ para cada $n \in \mathbb{N}$ então, para cada $x \in X$

$$||T(x)||_{\infty} = \sup_{n} |\phi_n(x)| \le \sup_{n} ||\phi_n|| ||x|| \le ||x||.$$

Isto, junto a (2.2), nos garante que

$$||T(x_n)||_{\infty} = ||x_n||$$
 para todo $n \in \mathbb{N}$.

Por fim, utilizando o fato de $(x_n)_n$ ser denso em X, concluímos que dado $x \in X$ existe $(x_{n_k})_k$ tal que $x_{n_k} \to x$ e portanto

$$||T(x)||_{\infty} = \lim_{k} ||T(x_{n_k})||_{\infty} = \lim_{k} ||x_{n_k}|| = ||x||.$$

Segue daí que T é injetiva (portanto $(\phi_n)_n$ separa os pontos de X) e na verdade é um isomorfismo isométrico de X sobre T(X).

Passemos à demonstração da Proposição 2.3.5:

Demonstração. Seja X um espaço normado separável. Pela Proposição 2.3.6 existe um conjunto enumerável $D = \{\phi_n : n \in \mathbb{N}\}$ em X^* que separa os pontos de X. Seja $\sigma(X, D)$ a topologia em X que admite como base de vizinhanças de zero os conjuntos da forma

$$U_n = \left\{ x \in X : \sup_{1 \le j \le n} |\phi_j(x)| \le \frac{1}{n} \right\}.$$

É fácil verificar que U_n é absolutamente convexo e absorvente. Além disso, como D separa os pontos de X é fácil ver que $P = \{m_{U_n} : n \in \mathbb{N}\}$ separa os pontos de X. Como P é enumerável, pelo Teorema 1.1.59, $\sigma(X, D)$ é uma topologia localmente convexa metrizável e como $D \subset X$ então $\sigma(X, D) \subset \sigma(X, X^*)$.

Notemos que, no caso de K ser subconjunto $\sigma(X, X^*)$ -compacto, então as topologias $\sigma(X, D)$ e $\sigma(X, X^*)$ coincidem em K. Com efeito, consideremos a aplicação contínua

$$I: (K, \sigma(X, X^*)) \rightarrow (X, \sigma(X, D))$$

 $x \mapsto x$

Como K é $\sigma(X, X^*)$ -compacto, por um fato conhecido sobre compacidade obtemos que I^{-1} é contínua. Consequentemente, $\sigma(X, D)$ e $\sigma(X, X^*)$ coincidem em K.

Portanto, como a topologia $\sigma(X, D)$ é metrizável, segue que $(K, \sigma(X, X^*))$ é metrizável.

Teorema 2.3.7. (Šmulian) $Seja\ K\ um\ subconjunto\ fracamente\ compacto\ de\ um\ espaço\ normado\ X.$ $Então,\ cada\ sequência\ em\ K\ admite\ uma\ subsequência\ que\ converge\ fracamente\ a\ um\ ponto\ de\ K.$

Demonstração. Suponhamos primeiro que X seja espaço normado separável e K um subconjunto fracamente compacto . Segue da Proposição 2.3.6 que $(K, \sigma(X, X^*))$ é metrizável. Logo, cada sequência em K admite uma subsequência que converge fracamente a um ponto de K.

No caso de X ser espaço normado qualquer, seja $(x_n)_n$ uma sequência em K e considere $E = \overline{[\{x_n\}_n]}$. Pelo Lema 1.1.31, E é separável. Pelo caso anterior, $(x_n)_n$ admite uma subsequência que converge a um ponto de K na topologia $\sigma(E, E^*)$ restrita a K e, pelo Teorema de Hahn-Banach converge na topologia $\sigma(X, X^*)$.

Proposição 2.3.8. Se E contém uma cópia isomorfa de ℓ_1 , então existe um operador linear completamente contínuo e não compacto $S: E \to \ell_2$ tal que S leva en ℓ_2 a cópia isomorfa de ℓ_1 .

Demonstração. Ver a primeira parte da demonstração do Teorema em [1].

Por fim, definimos o que são operadores quase fracamente compactos.

Definição 2.3.9. Sejam X e Y espaços normados. Um operador linear $T: X \to Y$ é dito quase fracamente compacto se para toda sequência $(x_n)_n \subset B_X$, a sequência $(T(x_n))_n$ contém uma subsequência fracamente Cauchy.

Observação 2.3.10. Note que todo operador linear quase fracamente compacto é limitado. Com efeito, se T é quase fracamente compacto, então qualquer $(x_n)_n \subset B_X$ admite uma subsequência $(x_{n_k})_k$ tal que $(T(x_{n_k}))_k$ é uma sequência fracamente de Cauchy em Y^* . Isto significa que, dada qualquer $\varphi \in Y^*$, a sequência $(\varphi(T(x_{n_k})))_k$ é de Cauchy em \mathbb{R} e, consequentemente, é limitada. Mas, se T não é limitado, $T(B_X)$ não é fracamente limitado. Assim, existe $\varphi \in Y^*$ tal que

$$\sup \{ |\varphi(T(x))| : x \in B_X \} = \infty.$$

Segue daí que existe $(x_n)_n \in B_X$ tal que $|\varphi(T(x_n))| > n$ para todo $n \in \mathbb{N}$. É claro que, para esta $(x_n)_n$, $(T(x_n))_n$ não admite subsequência fracamente de Cauchy.

Observação 2.3.11. Segue da definição de operador quase fracamente compacto e do Teorema de Šmulian que todo operador fracamente compacto é quase fracamente compacto. Com efeito, se $T: X \to Y$ é operador fracamente compacto, então $\overline{T(B_X)}$ é fracamente compacto. Assim, dada $(x_n)_n \subset B_X$, pelo Teorema de Šmulian, $(T(x_n))_n$ admite subsequência que converge fracamente em $\overline{T(B_X)}$ sendo, portanto, fracamente Cauchy.

Capítulo 3

As Propriedades de Dunford-Pettis e de Dunford-Pettis Hereditária

O objetivo deste capítulo é definir a propriedade de Dunford-Pettis e fazer um estudo dos espaços de Banach com esta propriedade. Neste estudo apresentaremos um grande número de condições equivalentes sob as quais um espaço de Banach X tem a propriedade de Dunford-Pettis. Estas condições evidenciam a importância destes espaços. Além disso, apresentaremos exemplos importantes de espaços de Banach satisfazendo a propriedade de Dunford-Pettis. No último parágrafo, abordaremos a Propriedade de Dunford-Pettis Hereditária apresentando algumas condições necessárias e suficientes para que um espaço possua a Propriedade de Dunford-Pettis Hereditária e exemplos de espaços que possuem esta propriedade.

Ao longo deste capítulo, X representará sempre um espaço de Banach, salvo quando mencionado explicitamente o contrário.

3.1 A Propriedade de Dunford-Pettis

Definição 3.1.1. Dizemos que X possui a propriedade de Dunford-Pettis se $x_n^*(x_n) \to 0$ sempre que $(x_n)_n$ e $(x_n^*)_n$ são sequências em X e X^* respectivamente, tais que $x_n \stackrel{w}{\to} 0$ e $x_n^* \stackrel{w}{\to} 0$. Nesse caso, por simplicidade, escreveremos que X possui (DP).

Muito do interesse na propriedade de Dunford-Pettis resulta da importância dos espaços que a possuem. Um primeiro exemplo de espaço com tal propriedade é ℓ_1 .

Exemplo 3.1.2. ℓ_1 possui (DP) pois se $x_n \stackrel{w}{\to} 0$ em ℓ_1 então $x_n \to 0$ já que ℓ_1 possui a propriedade de Schur. Além disso, se $x_n^* \stackrel{w}{\to} 0$ em $(\ell_1)^*$ então existe C > 0 tal que $||x_n^*|| \le C$ para todo $n \in \mathbb{N}$. Assim,

$$|x_n^*(x_n)| \le ||x_n^*|| \, ||x_n|| \le C \, ||x_n||$$

 $e\ como\ x_n \to 0\ temos\ o\ resultado.$

Note que, o fato determinante para que ℓ_1 possua (DP) é tal espaço possuir a propriedade de Schur. Sendo assim, o mesmo argumento usado acima pode ser usado para mostrar:

Proposição 3.1.3. Se X possui a propriedade de Schur então X possui (DP)

Corolário 3.1.4. Se X é espaço de dimensão finita, então X possui (DP).

Demonstração. Imediato da Proposição anterior já que, se $\dim(X) < \infty$ então as topologias fraca e forte de X coincidem, garantindo que X possui a propriedade de Schur.

Exemplo 3.1.5. ℓ_2 não possui (DP). De fato, considere $(e_n)_n \subset \ell_2$, a sequência formada pelos vetores da base canônica de ℓ_2 . Note que $e_n \stackrel{w}{\to} 0$ já que, pelo exemplo 1.1.25, para cada $f \in X^*$ existe único $x_f = (x_f^1, x_f^2, \cdots) \in (\ell_2)^* \cong \ell_2$ tal que $f(x) = \langle x, x_f \rangle$ para todo x em ℓ_2 . Sendo assim, $|f(e_n)| = |x_f^n| \to 0$ pois $x_f \in \ell_2$. Desta forma, para cada $f \in X^*$, $f(e_n) \to 0$ o que mostra que $(e_n)_n$ é fracamente nula. Além disso, tomando $(e_n^*)_n \subset (\ell_2)^*$,

novamente os vetores da base canônica, teremos que $(e_n^*)_n$ e $(e_n)_n$ são sequências fracamente nulas, mas $e_n^*(e_n) = 1$ para todo $n \in \mathbb{N}$ e portanto ℓ_2 não possui (DP).

A próxima proposição nos dará uma condição suficiente para que X possua (DP).

Proposição 3.1.6. Se X^* possui (DP) então X possui (DP).

Demonstração. Sejam $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente. Pela Proposição 1.1.48 $\hat{x}_n \stackrel{w}{\to} 0$ em X^{**} . Dessa forma, $(\hat{x}_n)_n \subset X^{**}$ e $(x_n^*)_n \subset X^*$ são sequências fracamente nulas. Como X^* possui (DP), por hipótese, então $(\hat{x}_n)(x_n^*) \to 0$, isto é, $x_n^*(x_n) \to 0$ e portanto X possui (DP).

Com isto, obtemos de forma quase que imediata um segundo exemplo de espaço com (DP).

Corolário 3.1.7. c_0 possui (DP).

Demonstração. Como já visto, ℓ_1 possui (DP) e portanto basta utilizar a Proposição 3.1.6 com $X = c_0$ e o fato de que $(c_0)^* = \ell_1$.

Note que, pela Proposição 3.1.3, se X possui a propriedade de Schur, então X possui (DP). Como acabamos de ver, c_0 possui (DP) porém não possui a propriedade de Schur uma vez que $e_n \stackrel{w}{\to} 0$ em c_0 e $||e_n|| = 1$ para todo $n \in \mathbb{N}$. Assim, a recíproca da Proposição 3.1.3 não é válida.

Além disso, após enunciada a Proposição 3.1.6, é natural nos perguntarmos se a recíproca é verdadeira, isto é, se X possuir (DP) implica em X^* possuir (DP). Mais à frente, construiremos um contra-exemplo para verificar que tal fato não valerá sempre. Ver exemplo 3.1.23.

Teorema 3.1.8. Seja K um espaço de Hausdorff compacto. Então C(K) possui (DP).

Demonstração. Sejam $(f_n)_n$ e $(F_n)_n$ sequências fracamente nulas em C(K) e $C(K)^*$ respectivamente e $\epsilon > 0$ arbitrário. Afirmamos que $F_n(f_n) \to 0$.

Como $f_n \stackrel{w}{\to} 0$ e $F_n \stackrel{w}{\to} 0$, pelo Teorema de Banach-Steinhaus (Teorema 1.1.36) temos que $A = \sup_n \|f_n\| < \infty$ e $B = \sup_n \|F_n\| < \infty$.

Agora, para cada $n \in \mathbb{N}$, podemos escrever $F_n = F_n^+ - F_n^-$, onde F_n^+ e F_n^- são funcionais lineares positivos contínuos. Usando o Teorema de Representação de Riesz (Teorema 1.4.26) podemos identificar cada F_n com uma carga λ_n em K e, pelo Teorema de Decomposição de Jordan (Teorema 1.4.20), cada λ_n pode ser identificada com um par de medidas finitas λ_n^+ e λ_n^- tais que $\lambda_n = \lambda_n^+ - \lambda_n^-$ e $|\lambda_n| = \lambda_n^+ + \lambda_n^-$.

Como $F_n^+(f_n) \to 0$ e $F_n^-(f_n) \to 0$ implica em $F_n(f_n) \to 0$, sem perda de generalidade podemos supor que os F_n são todos positivos. Consideremos, para cada $n \in \mathbb{N}$, a medida μ_n de Borel regular finita identificada com F_n pelo Teorema de Representação de Riesz (Teorema 1.4.26). Então

$$F_n(f_n) = \int f_n d\mu_n$$
 e $||F_n|| = \mu_n(K)$ para todo $n \in \mathbb{N}$.

Desta forma, como $(F_n)_n$ é fracamente nula, $\mu_n \stackrel{w}{\to} 0$ em M(K) e, pela Proposição 1.4.29, existe uma medida finita μ sobre K tal que a sequência $(\mu_n)_n$ de medidas é equiabsolutamente contínua com respeito a μ , isto é, dado $\epsilon > 0$, existe $\delta > 0$ tal que

$$|\mu_n(U)| < \epsilon \text{ para todo } n \in \mathbb{N}, \text{ sempre que } U \subset \mathcal{A} \text{ e } \mu(U) < \delta,$$
 (3.1)

onde \mathcal{A} representa a σ -álgebra de Borel.

Além disso, como $(f_n)_n$ é sequência fracamente nula em $L(K, \mathcal{A}, \mu)$ e $\mu(K) < \infty$, pelo Teorema de Egoroff (Teorema 1.4.23) $(f_n)_n$ converge quase uniformemente para zero, isto é, existe U_0 em \mathcal{A} tal que $\mu(U_0) = 0$ e $(f_n)_n$ converge uniformemente a zero em $K \setminus U_0$. Desta convergência uniforme obtemos a existência de $n_0 \in \mathbb{N}$ tal que

$$|f_n(t)| < \epsilon$$
 para todo $n \ge n_0$ e $t \in K \setminus U_0$. (3.2)

e, de (3.1), obtemos também que

$$|\mu_n(U_0)| < \epsilon \text{ para todo } n \in \mathbb{N}.$$
 (3.3)

Lembramos que $A = \sup_{n} ||f_n||$ e, pelo Teorema de Representação de Riesz

$$\sup_{n} \mu_n(K \setminus U_0) \le \sup_{n} \mu_n(K) = \sup_{n} ||F_n|| = B,$$

de modo que para todo $n \ge n_0$ temos

$$|F_n(f_n)| = \left| \int_K f_n d\mu_n \right| \le \int_{U_0} ||f_n|| d\mu_n + \int_{K \setminus U_0} ||f_n|| d\mu_n$$

$$\le A\mu_n(U_0) + B \sup \{|f_n(t)| : t \in K \setminus U_0\}\} < A\epsilon + B\epsilon$$

mostrando que $F_n(f_n) \to 0$.

Corolário 3.1.9. Seja (X, \mathcal{A}, μ) um espaço de medida. Então $L_{\infty}(X, \mathcal{A}, \mu)$ possui (DP).

Demonstração. Basta notar que, pelo Teorema 1.4.24, existe um espaço de Hausdorff K e um isomorfismo entre $L_{\infty}(X, \mathcal{A}, \mu)$ e C(K) e, pela última proposição, este possui (DP). \square

Em particular, da Observação 1.4.16, segue que ℓ_{∞} possui (DP).

Corolário 3.1.10. Seja (X, \mathcal{A}, μ) um espaço de medida. Então $L_1(X, \mathcal{A}, \mu)$ possui (DP).

Demonstração. Pelo Corolário anterior, $L_{\infty}(X, \mathcal{A}, \mu)$ possui (DP). Como $(L_1(X, \mathcal{A}, \mu))^*$ é isometricamente isomorfo a $L_{\infty}(X, \mathcal{A}, \mu)$, então $(L_1(X, \mathcal{A}, \mu))^*$ possui (DP) e segue da Proposição 3.1.6 o resultado.

Proposição 3.1.11. Se X possui (DP) e Y é um subespaço complementado de X, então Y possui (DP).

Demonstração. Seja X espaço que possui (DP) e Y um subespaço complementado de X. Logo, existe $P: X \to Y$ projeção linear limitada. Como Y é subespaço complementado, pela observação 1.1.20~Y é fechado e portanto é espaço de Banach. Resta mostrar que se $(y_n)_n$ e $(y_n^*)_n$ são sequências fracamente nulas em Y e Y^* respectivamente, então $y_n^*(y_n) \to 0$. Consideremos então sequências com tais propriedades. Como $y_n \overset{\sigma(Y,Y^*)}{\to} 0$ então $y_n \overset{\sigma(X,X^*)}{\to} 0$ já que se $f \in X^*$ então $f|_Y \in Y^*$. Além disso, observe que $P^*(y_n^*)$ converge fracamente a zero em X^* pois, como P é limitado, segue que seu adjunto P^* também o é, sendo portanto $\sigma(Y,Y^*)$ - $\sigma(X,X^*)$ -contínua e levando sequências fracamente nulas em fracamente nulas. Assim, $(P^*(y_n^*))_n$ e $(y_n)_n$ são sequências fracamente nulas em X e X^* respectivamente e, como X possui (DP) então $P^*(y_n^*)(y_n) \to 0$, isto é, $y_n^*(P(y_n)) \to 0$. Como P é projeção de X sobre Y, então P(y) = y para todo $y \in Y$ e portanto $y_n^*((y_n)) \to 0$, o que garante que Y também possui (DP).

Corolário 3.1.12. Se $Y = \overline{[\{r_n\}_n]}$, onde r_n denotam as funções de Rademacher, então Y é subespaço complementado de $L_p[0,1]$ para 1 , mas <math>Y não é complementado em $L_1[0,1]$.

Demonstração. Fixemos $1 e definamos a aplicação linear <math>T_p: \ell_2 \to Y \hookrightarrow L_p[0,1]$ por

$$T_p((a_n)_n) = \sum_{i=1}^{\infty} a_n r_n.$$

Note que, pela desigualdade de Khintchine (Teorema 1.3.3), existem constantes positivas A_p, B_p tais que

$$A_p \left(\sum_{n=1}^N |a_n|^2 \right)^{\frac{1}{2}} \le \left\| \sum_{n=1}^N a_n r_n \right\|_p \le B_p \left(\sum_{n=1}^N |a_n|^2 \right)^{\frac{1}{2}}$$

e, como $(a_n)_n \in \ell_2$, fazendo $n \to \infty$ obtemos que

$$A_p \|(a_n)_n\|_2 \le \|T((a_n)_n)\|_p \le B_p \|(a_n)_n\|_2$$

o que mostra que $Y \hookrightarrow L_p[0,1]$ é isomorfo a ℓ_2 .

Mas, pelo Teorema 1.4.25, temos que $\ell_2 \hookrightarrow L_p[0,1]$ é complementado. Como $Y \cong \ell_2$, obtemos que Y é complementado em $L_p[0,1]$. Por outro lado, observe que Y não é complementado em $L_1[0,1]$. De fato, pela Proposição 3.1.10, $L_1[0,1]$ possui (DP) e se Y fosse complementado, também a possuiria. Mas, neste caso, $\ell_2 \cong Y$ possuiria (DP), o que não ocorre pelo exemplo 3.1.5.

O próximo teorema nos dará algumas condições que são equivalentes a um espaço possuir (DP). Para mostrar duas implicações, necessitaremos das seguintes proposições:

Proposição 3.1.13. Seja X um espaço normado $e(x_n)_n \subset X$ uma sequência que converge fracamente em X. Se $E = \{x_n : n \in \mathbb{N}\}$, então o fecho \overline{E}_b da envoltória absolutamente convexa de E é fracamente compacto.

Demonstração. Pela Proposição 1.1.51 temos que o fecho $\overline{\Gamma(E)}$ da envoltória convexa de E é fracamente compacto. Por outro lado, pela Observação 1.1.13 temos que

$$E_b = p([-1,1] \times \Gamma(E))$$

onde $p: \mathbb{R} \times X \to X$ é a aplicação produto $p((\lambda, x)) = \lambda x$. É fácil verificar que

$$p: \mathbb{R} \times (X, \sigma(X, X^*)) \to (X, \sigma(X, X^*))$$

é contínua. Assim, $p([-1,1] \times \overline{\Gamma(E)})$ é um subconjunto fracamente compacto de X e, consequentemente, $E_b = p([-1,1] \times \Gamma(E))$ é relativamente fracamente compacto, ou seja, \overline{E}_b é fracamente compacto.

Proposição 3.1.14. Se K é um subconjunto compacto de um espaço de Banach X, então existe um espaço de Banach reflexivo R e um operador linear $T: R \to X$ tal que $K \subseteq T(B_R)$.

Teorema 3.1.15. São equivalentes:

- i) X possui (DP).
- ii) Para todo espaço de Banach Y, todo operador linear fracamente compacto de X em Y leva conjuntos fracamente compactos de X sobre conjuntos fortemente compactos de Y.

- iii) Para todo espaço de Banach Y, todo operador linear fracamente compacto de X em Y é completamente contínuo.
- iv) A condição (iii) é satisfeita para $Y = c_0$.
- v) Para todo espaço de Banach Y, todo operador linear fracamente compacto de X em Y leva sequências fracamente de Cauchy em sequências de Cauchy.
- vi) A condição (v) é satisfeita para $Y = c_0$.
- vii) Se $(x_n)_n$ é uma sequência fracamente Cauchy em X e $(x_n^*)_n$ é uma sequência fracamente nula em X^* então $\lim_n x_n^*(x_n) = 0$.
- viii) Se $(x_n)_n$ é uma sequência fracamente nula em X e $(x_n^*)_n$ é uma sequência fracamente Cauchy em X^* então $\lim_n x_n^*(x_n) = 0$.
 - ix) Se $(x_n)_n$ e $(x_n^*)_n$ são sequências fracamente Cauchy em X e X^* respectivamente, então $x_n^*(x_n)$ é convergente.
 - x) Para todo espaço de Banach Y, todo operador $T \in \mathcal{L}(X,Y)$ com adjunto quase fracamente compacto é completamente contínuo.
 - xi) A condição (x) é satisfeita para $Y = c_0$
- xii) Para todo espaço de Banach Y, todo operador linear quase fracamente compacto $T:Y\to X\ tem\ adjunto\ completamente\ contínuo.$
- xiii) A condição (xii) é satisfeita para Y espaço de Banach reflexivo.

 $Demonstração.~(i \Rightarrow iii)$ Seja X espaço que possua (DP), tome Y espaço de Banach e $T: X \to Y$ operador linear fracamente compacto. Basta mostrarmos que dada $(x_n)_n \subset X$ tal que $x_n \stackrel{w}{\to} 0$ então $T(x_n) \to 0$. Suponha que isto não ocorra. Nesse caso, existe $\delta > 0$ tal que, passando a uma subsequência se necessário, temos

$$||T(x_n)|| \ge \delta$$
 para todo $n \in \mathbb{N}$.

Pelo Corolário 1.1.33 de Hahn-Banach para cada $n \in \mathbb{N}$ existe $y_n^* \in Y^*$ tal que $||y_n^*|| = 1$ e $y_n^*(T(x_n)) = ||T(x_n)|| \ge \delta$. Como T é fracamente compacto, pelo Teorema 2.3.4, T^* é fracamente compacto e portanto $\overline{T^*(B_{Y^*})}$ é fracamente compacto. Assim, como a sequência $(T^*(y_n^*))_n$ está contida em $\overline{T^*(B_{Y^*})}^w$, novamente passando a subsequência se necessário, pelo Teorema de Šmulian (Teorema 2.3.7) existe $x_0^* \in \overline{T^*(B_{Y^*})}$ tal que $T(y_n^*) \xrightarrow{w} x_0^*$. Mas então, $(T(y_n^*) - x_0^*) \xrightarrow{w} 0$ em X^* e $x_n \xrightarrow{w} 0$ em X o que nos dá

$$\lim_{n} ((T(y_n^*) - x_0^*)(x_n)) = \lim_{n} (y_n^*(T(x_n)) - x_0^*(x_n)) = 0$$
(3.4)

já que X possui (DP). Além disso, como $x_n \stackrel{w}{\to} 0$ então $x_0^*(x_n) \to 0$ e escrevendo

$$y_n^*(T(x_n)) = (y_n^*(T(x_n)) - x_0^*(x_n)) + x_0^*(x_n)$$

concluímos, passando ao limite em ambos os lados da igualdade e usando (3.4), que

$$\lim_{n} y_n^*(T(x_n)) = 0,$$

o que contradiz o fato de $||T(x_n)|| \ge \delta$ para todo $n \in \mathbb{N}$.

Logo, $T(x_n) \to 0$ e T é completamente contínuo.

 $(iii \Rightarrow iv)$ Basta fazer $Y = c_0$, já que este é espaço de Banach.

 $(iv \Rightarrow i)$ Seja X espaço com a propriedade (iv). Tomemos (x_n) e (x_n^*) sequências fracamente nulas em X e X^* respectivamente e considere

$$T: X \longrightarrow c_0$$

$$x \longmapsto (x_n^*(x))_n.$$

T fica bem definida pois como $x_n^* \stackrel{w}{\to} 0$ então $x_n^*(x) \to 0$ para todo $x \in X$. Além disso, T claramente é linear, e é limitada pois se $x \in X$ então

$$||T(x)|| = \sup_{n} |x_n^*(x)| \le \sup_{n} ||x_n^*|| \, ||x|| \le c \, ||x||$$

já que, como (x_n^*) é fracamente nula, é limitada.

Afirmamos que T é fracamente compacto. Para isso, mostraremos que $T^{**}(X^{**}) \subset J(c_0)$ e usaremos o Teorema 2.3.4. Com efeito, como c_0^* é isometricamente isomorfo a ℓ_1 temos

$$T^*: \qquad \ell_1 \longrightarrow \qquad X^*$$

$$\xi = (\lambda_n)_n \longmapsto \quad \xi \circ T$$

onde, para cada $x \in X$,

$$T^*(\xi)(x) = \xi(T(x)) = \xi((x_n^*(x))_n) = \sum_{n=1}^{\infty} (\lambda_n x_n^*)(x).$$

Logo,
$$T^*(\xi) = \sum_{n=1}^{\infty} \lambda_n x_n^*$$
, para todo $\xi = (\lambda_n)_n \in \ell_1$.

Além disso,

$$T^{**}: X^{**} \longrightarrow c_0^{**}$$
$$x^{**} \longmapsto x^{**} \circ T^*$$

e, para cada $\xi = (\lambda_n)_n \in \ell_1$ temos

$$T^{**}(x^{**})(\xi) = x^{**}(T^{*}(\xi)) = x^{**}(\sum_{n=1}^{\infty} (\lambda_{n} x_{n}^{*})) = x^{**}(\lim_{k} \sum_{n=1}^{k} (\lambda_{n} x_{n}^{*}))$$

$$\stackrel{(*)}{=} \lim_{k} \sum_{n=1}^{k} \lambda_{n}(x^{**}(x_{n}^{*})) = \sum_{n=1}^{\infty} \lambda_{n} x^{**}(x_{n}^{*}) = \xi(x^{**}((x_{n}^{*})_{n}))$$

$$= J((x^{**}(x_{n}^{*}))_{n})(\xi)$$

onde em (*) foi utilizado o fato de x^{**} ser linear e limitado.

Assim, $T^{**}(x^{**}) = J((x^{**}(x_n^*))_n)$ e como $((x^{**}(x_n^*)))_n \in c_0$, já que $(x_n^*)_n$ é fracamente nula, então $T^{**}(x^{**}) \in J(c_0)$. Pelo Teorema 2.3.4 T é fracamente compacto e pela hipótese será completamente contínuo. Logo, como $(x_n)_n$ é fracamente nula, $T(x_n) \to 0$, o que fornece

$$\lim_{m} ||T(x_m)|| = \lim_{m} \sup_{n} |x_n^*(x_m)| = 0$$
(3.5)

Mas,

$$0 \le |x_m^*(x_m)| \le \sup_{x} |x_n^*(x_m)| \tag{3.6}$$

para todo $m \in \mathbb{N}$. Isto, junto a (3.5), permite concluirmos que $x_m^*(x_m) \to 0$, mostrando que X possui (DP).

 $(ii \Leftrightarrow iii)$ Basta observar que, por definição, todo operador linear fracamente compacto é limitado e utilizar a Proposição 2.2.6.

 $(v \Leftrightarrow iii)$ Suponhamos que X possua a propriedade (iii). Sejam Y um espaço de Banach, $T: X \to Y$ um operador linear fracamente compacto e $(x_n)_n \subset X$ uma sequência fracamente Cauchy. Então, para cada $x^* \in X^*$, $(x^*(x_n))_n \subset \mathbb{R}$ é Cauchy e portanto

$$\lim_{k} (x^*(x_{n_k}) - x^*(x_{n'_k})) = \lim_{k} (x^*(x_{n_k} - x_{n'_k})) = 0$$

sempre que $(x_{n_k})_k$ e $(x_{n_k'})_k$ são subsequências de $(x_n)_n$. Assim, $(x_{n_k} - x_{n_k'})_k$ é fracamente nula e como T é completamente contínuo então $T(x_{n_k} - x_{n_k'}) \to 0$. Como T é linear e $(x_{n_k})_k$ e $(x_{n_k'})_k$ são subsequências arbitrárias de $(x_n)_n$, concluímos que $(T(x_n))_n$ é Cauchy.

Reciprocamente, suponhamos que X é um espaço com a propriedade (v). Sejam Y um espaço de Banach, $T: X \to Y$ um operador linear fracamente compacto e $(x_n)_n \subset X$ uma sequência fracamente nula. É claro que $(x_n)_n$ é fracamente Cauchy e, por hipótese, $(T(x_n))_n$ também é Cauchy, sendo portanto convergente, já que Y é espaço de Banach. Além disso, como $(x_n)_n$ converge fracamente a zero e T é $\sigma(X, X^*)$ - $\sigma(Y, Y^*)$ contínuo (já que é limitado) obtemos que $T(x_n)$ converge fracamente a zero donde concluímos, utilizando o fato de $T(x_n)$ ser convergente, que $T(x_n) \to 0$, o que mostra que T é completamente contínuo.

 $(vi \Leftrightarrow iv)$ Basta tomar $Y = c_0$ na demonstração acima.

 $(i\Rightarrow vii)$ Suponhamos que X possui (DP) e tomemos uma sequência fracamente Cauchy $(x_n)_n\subset X$ e uma sequência fracamente nula $(x_n^*)\subset X^*$. Afirmamos que $x_n^*(x_n)\to 0$. Suponha que isto não ocorra. Neste caso, existe $\delta>0$ tal que, passando a subsequência se necessário, podemos supor

$$|x_n^*(x_n)| \ge \delta$$
 para todo $n \in \mathbb{N}$. (3.7)

Agora, como $(x_n^*)_n$ é fracamente nula então, para cada $k \in \mathbb{N}$ fixado, $\lim_n x_n^*(x_k) = 0$. Assim, para cada $k \in \mathbb{N}$ existe um $n_k \in \mathbb{N}$ tal que

$$\left|x_{n_k}^*(x_k)\right| \le \frac{\delta}{2}.\tag{3.8}$$

Consideremos então a subsequência fracamente nula $(x_{n_k}^*)_k$ de (x_n^*) . Como $(x_n)_n$ é fracamente Cauchy resulta que $(x_{n_k} - x_k)_k$ é fracamente nula e como, por hipótese, X possui (DP), então $\lim_k x_{n_k}^*(x_{n_k} - x_k) = 0$ e portanto existe $k_0 \in \mathbb{N}$ tal que

$$\left|x_{n_k}^*(x_{n_k} - x_k)\right| \le \frac{\delta}{4}$$
 para todo $k \ge k_0$. (3.9)

Mas então, para $k \ge k_0$ temos

$$0 < \delta \stackrel{(3.7)}{\leq} \left| x_{n_k}^*(x_{n_k}) \right| \le \left| x_{n_k}^*(x_{n_k} - x_k) \right| + \left| x_{n_k}^*(x_k) \right| \stackrel{(3.8),(3.9)}{\leq} \frac{3\delta}{4}$$

o que é absurdo. Este absurdo foi gerado por supormos que $(x_n^*(x_n))_n$ não convergia a zero. Logo, $\lim_n x_n^*(x_n) = 0$ e temos o resultado.

 $(vii \Rightarrow xii)$ Suponhamos que X é um espaço com a propriedade (vii). Sejam Y um espaço de Banach arbitrário e $T:Y\to X$ um operador linear quase fracamente compacto. Afirmamos que T^* é completamente contínuo. Com efeito, suponha que exista $(x_n^*)_n\subset X^*$ tal que $x_n^*\stackrel{w}{\to} 0$ mas que $(T^*(x_n^*))\subset Y^*$ não convirja a zero. Neste caso, existe $\delta>0$ tal que, passando a subsequência se necessário, temos $\|T^*(x_n^*)\|\geq \delta$ para todo $n\in\mathbb{N}$. Mas,

$$||T^*(x_n^*)|| = \sup_{y \in B_Y} |(T^*(x_n^*))(y))| > \delta$$

e portanto, usando a definição de supremo, para cada $n \in \mathbb{N}$ podemos exibir $y_n \in B_Y$ tal que

$$|(T^*(x_n^*))(y_n)| = |x_n^*(T(y_n))| > \delta.$$
(3.10)

Agora, como T é quase fracamente compacto e $(y_n)_n$ é uma sequência limitada temos que $(T(y_n))_n$ admite subsequência fracamente Cauchy que, por simplicidade, iremos supor ser a própria $(T(y_n))_n$.

Além disso, T^* é $\sigma(X^*, X^{**}) - \sigma(Y^*, Y^{**})$ contínuo e, como $x_n^* \xrightarrow{w} 0$, $T^*(x_n^*) \xrightarrow{w} 0$ em Y^* e portanto $T^*(x_n^*)(y) \to 0$ para todo $y \in Y$. Em particular, para cada $k \in \mathbb{N}$ fixado

$$\lim_{n} T^*(x_n^*)(y_k) = 0$$

e então, para cada $n \in \mathbb{N}$ existe $n_k \in \mathbb{N}$ tal que

$$|T^*(x_{n_k}^*)(y_k)| < \frac{\delta}{2}.$$
 (3.11)

Assim temos:

$$\begin{aligned} \left| T^*(x_{n_k}^*)(y_{n_k}) \right| &\leq \left| T^*(x_{n_k}^*)(y_{n_k}) - T^*(x_{n_k}^*)(y_k) \right| + \left| T^*(x_{n_k}^*)(y_k) \right| \\ &< \left| (x_{n_k}^*)(T(y_{n_k}) - T(y_k)) \right| + \frac{\delta}{2} \end{aligned}$$

já que vale (3.11).

Mais ainda, como $(T(y_n))_n$ é fracamente Cauchy e $(T(y_{n_k}))_k$ é subsequência de $(T(y_n))_n$ temos que $(T(y_{n_k}) - T(y_k))_k$ converge fracamente a zero. Sendo $(x_n^*)_n$ fracamente nula, e utilizando o fato de X possuir a propriedade (vii) concluímos que

$$\lim_{k} (x_{n_k}^*)(T(y_{n_k}) - T(y_k)) = 0$$

e portanto é possível obter $k_0 \in \mathbb{N}$ tal que

$$\left| T^*(x_{n_k}^*)(y_{n_k}) \right| < \delta$$

sempre que $k \ge k_0$, o que é absurdo de acordo com (3.10). O absurdo foi gerado por supormos que T^* não era completamente contínuo e portanto temos o resultado.

 $(xii \Rightarrow xiii)$ Imediato.

 $(xiii \Rightarrow i)$ Seja X espaço que possua a propriedade (xiii), isto é, tal que se Y é um espaço de Banach reflexivo arbitrário e $T:Y\to X$ é um operador linear quase fracamente compacto então $T^*:X^*\to Y^*$ é completamente contínuo. Afirmamos que X possui (DP). Com efeito, sejam $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente. Seja $E=\{x_n:n\in\mathbb{N}\}$ e considere o operador linear $G:\ell_1\to X$ definido por

$$G((\lambda_n)_n) = \sum_{n=1}^{\infty} \lambda_n x_n$$

.

Note que G fica bem definida já que, como $(x_n)_n$ é uma sequência fracamente convergente então é limitada, digamos por M. Assim, dada $(\lambda_n)_n \in \ell_1$ arbitrária, para cada $k \in \mathbb{N}$, temos que

$$\left\| \sum_{n=1}^{k} \lambda_n x_n \right\| \le M \sum_{n=1}^{k} |\lambda_n|$$

.

Fazendo $k \to \infty$ na desigualdade acima, segue que

$$||G((\lambda_n)_n)|| \leq M ||(\lambda_n)_n||$$

e portanto, G fica bem definida e é limitada.

Além disso, pela Proposição 3.1.13, o fecho \overline{E}_b da envoltória absolutamente convexa de E é fracamente compacto.

Agora, pela Proposição 3.1.14, existe um espaço reflexivo R e um operador $T \in \mathcal{L}(R, X)$ tal que $E_b \subset T(B_R)$. Mas, como $T \in \mathcal{L}(R, X)$ com R reflexivo, pela Proposição 2.3.3

T é fracamente compacto e portanto quase fracamente compacto. Pela hipótese, T^* será completamente contínuo de onde obtemos que $T^*(x_n^*) \to 0$.

Agora, como $E_b \subset T(B_R)$, então para cada $n \in \mathbb{N}$ exite $r_n \in B_R$ tal que $T(r_n) = x_n$. Logo,

$$||T(x_n^*)|| = \sup_{\substack{r \in R \\ ||r||=1}} |(T^*(x_n^*))(r)| \ge |T^*(x_n^*)(r_n)| = |x_n^*(T(r_n))| = |x_n^*(x_n)|$$

e como $T^*(x_n^*) \to 0$, então $x_n^*(x_n) \to 0$.

 $(viii \Leftrightarrow i)$ Se X é um espaço de Banach com a propriedade (viii) então claramente X possui (DP) já que, dadas $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente então $(x_n^*)_n$ é fracamente Cauchy e por (viii) concluímos que $x_n^*(x_n) \to 0$.

Reciprocamente, seja X espaço com (DP). Tomemos $(x_n)_n \subset X$ sequência fracamente nula e $(x_n^*)_n \subset X^*$ sequência fracamente Cauchy. Se $(x_n^*(x_n))_n$ não convergir a zero então existe $\delta > 0$ tal que, passando a subsequência se necessário,

$$|x_n^*(x_n)| \ge \delta \tag{3.12}$$

para todo $n \in \mathbb{N}$. Agora, como $(x_n)_n$ é sequência fracamente nula, por argumento análogo ao feito em $(i \Rightarrow vii)$ obtemos sequência $(x_k^*(x_{n_k}))_k \subset \mathbb{R}$ tal que

$$|x_k^*(x_{n_k})| \le \frac{\delta}{2} \tag{3.13}$$

para todo $k \in \mathbb{N}$.

Além disso, como $(x_n^*)_n$ é fracamente Cauchy, então $(x_{n_k}^* - x_k^*)_k$ é fracamente nula e, utilizando o fato de X possuir (DP) e de $(x_{n_k})_k$ também ser fracamente nula, obtemos $k_0 \in \mathbb{N}$ tal que

$$\left| (x_{n_k}^* - x_k^*)(x_{n_k}) \right| \le \frac{\delta}{4}$$
 (3.14)

para todo $k \ge k_0$. Logo, para $k \ge k_0$ temos:

$$0 < \delta \stackrel{(3.12)}{\leq} \left| x_{n_k}^*(x_{n_k}) \right| \leq \left| (x_{n_k}^* - x_k^*)(x_{n_k}) \right| + \left| x_k^*(x_{n_k}) \right| \stackrel{(3.13),(3.14)}{\leq} \frac{3\delta}{4}$$

o que é absurdo. Este absurdo foi gerado pelo fato de supormos que $(x_n^*(x_n))_n$ não convergia a zero. Logo, $\lim_n x_n^*(x_n) = 0$ e temos o resultado.

 $(ix \Leftrightarrow i)$ Seja X um espaço de Banach com a propriedade (ix) e tomemos $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente. Neste caso, estas também são fracamente Cauchy e, por hipótese, $x_n^*(x_n) \to a$. Afirmamos que a = 0. Com efeito, sejam

$$y_k = \begin{cases} x_n & \text{se } k = 2n \\ 0 & \text{se } k = 2n - 1 \end{cases}$$
, $n \in \mathbb{N}$ e $y_k^* = \begin{cases} x_n^* & \text{se } k = 2n \\ 0 & \text{se } k = 2n - 1 \end{cases}$, $n \in \mathbb{N}$.

Claramente $(y_k)_k$ e $(y_k^*)_k$ convergem fracamente a zero em X e X^* respectivamente e, novamente pela hipótese, $y_k^*(y_k)$ converge. Logo,

$$a = \lim_{n} y_{2n}^*(y_{2n}) = \lim_{n} y_{2n-1}^*(y_{2n-1}) = 0$$

o que mostra que X possui (DP).

Reciprocamente, suponhamos que X possua (DP) e sejam $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente Cauchy em X e X^* respectivamente. Então as sequências $(x_{n_k} - x_{n'_k})_k$ e $(x_{n_k}^* - x_{n'_k}^*)_k$ convergem fracamente a zero, onde $(x_{n_k})_k$ e $(x_{n'_k})_k$ são subsequências arbitrárias de $(x_n)_n$ e $(x_{n_k}^*)_k$ são subsequências arbitrárias de $(x_n^*)_n$. Como $(x_{n_k})_k$ e $(x_{n'_k}^*)_k$ são ainda são fracamente Cauchy, utilizando a hipótese e as implicações, já conhecidas, $(i) \Rightarrow (vii)$ e $(i) \Rightarrow (viii)$ temos que

$$\lim_{k} \left| x_{n'_{k}}^{*} (x_{n_{k}} - x_{n'_{k}}) \right| = 0 \tag{3.15}$$

е

$$\lim_{k} \left| (x_{n_k}^* - x_{n_k'}^*)(x_{n_k}) \right| = 0.$$

Logo, como

$$\left| x_{n_k}^*(x_{n_k}) - x_{n_k'}^*(x_{n_k'}) \right| \le \left| x_{n_k'}^*(x_{n_k} - x_{n_k'}) \right| + \left| (x_{n_k}^* - x_{n_k'}^*)(x_{n_k}) \right|$$

para todo k,

$$\lim_{k} \left| x_{n_k}^*(x_{n_k}) - x_{n_k'}^*(x_{n_k'}) \right| = 0 \tag{3.16}$$

Portanto, $\lim_k \left| x_{n_k}^*(x_{n_k}) - x_{n_k'}^*(x_{n_k'}) \right| = 0$ e como $(x_{n_k}^*(x_{n_k}))_k$ e $(x_{n_k'}^*(x_{n_k'}))_k$ são subsequências arbitrárias de $(x_n^*(x_n))_n$, obtemos que $(x_n^*(x_n))_n$ é sequência de Cauchy. Como $\mathbb R$ é completo, concluímos que $(x_n^*(x_n))_n$ é convergente, o que nos dá o resultado

 $(i \Rightarrow x)$ Sejam X um espaço que possua (DP), Y um espaço de Banach arbitrário e $T: X \to Y$ um operador linear contínuo tal que $T^*: Y^* \to X^*$ é quase fracamente compacto. Para verificar que T é completamente contínuo, tomemos uma sequência fracamente nula $(x_n)_n$ em X. Se $(T(x_n))_n$ não convergir a zero então existe $\delta > 0$ tal que, passando a uma subsequência se necessário, temos $||T(x_n)|| \ge \delta$ para todo $n \in \mathbb{N}$.

Assim, pelo Corolário 1.1.33 de Hahn-Banach, para cada $n\in\mathbb{N}$ existe $y_n^*\in Y^*$ tal que $\|y_n^*\|=1$ e

$$y_n^*(T(x_n)) = ||T(x_n)|| \ge \delta.$$
 (3.17)

Agora, como $(y_n^*)_n \subset B_{Y^*}$ e T^* é quase fracamente compacto então $(T^*(y_n^*))$ admite subsequência fracamente Cauchy que, por simplicidade, assumiremos sendo a própria sequência.

Além disso, como $(x_n)_n$ é fracamente nula e T, sendo limitado, é $\sigma(X, X^*) - \sigma(Y, Y^*)$ contínuo, então $(T(x_n))_n \subset Y$ também é fracamente nula o que implica em

$$\lim_{n} (y_k^*(T(x_n))) = 0 \text{ para todo } k \in \mathbb{N}.$$

Assim, para cada $k \in \mathbb{N}$ fixado, existe $n_k \in \mathbb{N}$ tal que

$$|y_k^*(T(x_{n_k}))| = |T^*(y_k^*)(x_{n_k})| < \frac{\delta}{2}.$$
 (3.18)

Desta forma, obtemos que

$$\begin{aligned}
|T^*(y_{n_k}^*)(x_{n_k})| &\leq |T^*(y_{n_k}^* - y_k^*)(x_{n_k})| + |T^*(y_k^*)(x_{n_k})| \\
&\leq |T^*(y_{n_k}^* - y_k^*)(x_{n_k})| + \frac{\delta}{2}.
\end{aligned} (3.18)$$

Mas, como $(x_{n_k})_k$ é fracamente nula e $(T^*(y_{n_k}^* - y_k^*))_k$ também o é, já que $(T^*(y_n^*))_n$ é fracamente Cauchy, do fato de X possuir (DP) concluímos que existe $k_0 \in \mathbb{N}$ tal que para todo $k \geq k_0$

$$\left| T^*(y_{n_k}^* - y_k^*)(x_{n_k}) \right| < \frac{\delta}{2}.$$

Isto, junto a (3.19), resulta em

$$|T^*(y_{n_k}^*)(x_{n_k})| = |y_{n_k}^*(T(x_{n_k}))| < \delta$$

para todo $k \ge k_0$, o que é absurdo por 3.17. Tal absurdo foi gerado por supormos que T não é completamente contínuo e portanto temos o resultado.

 $(x \Rightarrow xi)$ Basta fazer $Y = c_0$, já que c_0 é espaço de Banach.

 $(xi \Rightarrow i)$ Seja X um espaço tal que todo operador $T \in \mathcal{L}(X, c_0)$ com adjunto quase fracamente compacto seja completamente contínuo. Tomemos $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente e definamos

$$T: X \longrightarrow c_0$$

$$x \longmapsto (x_n^*(x))_n.$$

Da demonstração de $(iv \Rightarrow i)$ sabemos que T fica bem definido e que T é fracamente compacto. Dessa forma, pelo Teorema 2.3.4, T^* também é fracamente compacto e então, por hipótese, T é completamente contínuo. Por fim, como $x_n \stackrel{w}{\to} 0$ então $T(x_n) = x_n^*(x_n) \to 0$, mostrando que X possui (DP).

Corolário 3.1.16. Seja X espaço que possua (DP). Se Y_1 , Y_2 são espaços de Banach e $T_1: Y_1 \to X$, $T_2: X \to Y_2$ são operadores lineares fracamente compactos, então $T_2 \circ T_1$ é operador linear compacto.

Demonstração. Como $\overline{T(B_{Y_1})}$ é fracamente compacto e como, pelo Teorema 3.1.15-(ii), o operador T_2 leva conjuntos fracamente compactos em compactos (já que X possui (DP))

então $T_2(\overline{T_1(B_X)})$ é compacto, e portanto fechado. Assim,

$$\overline{T_2(T_1(B_X))} \subset \overline{T_2(\overline{T_1(B_X)})} = T_2(\overline{T_1(B_X)})$$

e segue que $\overline{(T_2 \circ T_1)(B_X)}$ é compacto, já que é subconjunto fechado de compacto. \square

Observe que, a partir deste Corolário, resulta de forma imediata que se X possui (DP) e $T: X \to X$ é operador linear fracamente compacto, entao $T^2 = T \circ T$ é compacto. Este resultado será útil no próximo Corolário.

Corolário 3.1.17. Um espaço de Banach reflexivo X possui (DP) se, e somente se, X tem dimensão finita.

Demonstração. Tomemos X espaço reflexivo que possua (DP). Consideremos a aplicação identidade de X, denotada por I_X . Pela Proposição 2.3.3, I_X é fracamente compacto já que X é reflexivo e, pela última observação, $I_X = I_X \circ I_X$ é compacto. Logo, pelo Teorema 1.1.7, X tem dimensão finita.

A recíproca já foi demonstrada (ver Corolário 3.1.4).

Observe que a recíproca do último resultado vale sem a hipótese de X ser reflexivo.

Como consequência imediata do Corolário 3.1.17, obtemos o seguinte exemplo:

Exemplo 3.1.18. Se $X = L_p(X, \mathcal{A}, \mu)$ com 1 , então <math>X não possui (DP).

Da observação 1.4.16 segue que, em particular, ℓ_p não possui (DP) quando 1 .

Corolário 3.1.19. Se Y é um subespaço complementado reflexivo de C[0,1], então Y tem dimensão finita.

Demonstração. Pelo Teorema 3.1.8, C[0,1] possui (DP) e, pela Proposição 3.1.11, Y também possui (DP). Logo, Y é reflexivo e possui (DP) e utilizando o corolário anterior concluímos que Y tem dimensão finita.

Corolário 3.1.20. Se Y é um subespaço complementado reflexivo de $L_1(X, \mathcal{A}, \mu)$, onde (X, \mathcal{A}, μ) é um espaço de medida, então Y tem dimensão finita.

Demonstração. Segue de forma análoga ao corolário anterior, utilizando agora o Teorema 3.1.10, que garante que $L_1(X, \mathcal{A}, \mu)$ possui (DP).

Já verificamos que se X^* possui (DP) então X também o possui. Apresentaremos agora um exemplo de espaço que possui (DP), sem que seu dual o possua. Para isto, utilizaremos o Princípio da Seleção Local. A demonstração do Princípio da Seleção Local será omitida uma vez que utiliza recursos que fogem muito do assunto de nosso trabalho.

Teorema 3.1.21. (Princípio da Seleção Local) Seja T um operador linear limitado de X em Y e seja $(F_{\alpha})_{\alpha \in D}$ uma sequência generalizada de subespaços de Y, direcionados por inclusão, com $Y_0 = \bigcup F_{\alpha}$ sendo um conjunto denso em Y. Assuma que, para cada α , exista um operador linear $L_{\alpha}: F_{\alpha} \to X$ tal que

$$T \circ L_{\alpha} = Id_{F_{\alpha}} \quad e \quad \limsup_{\alpha} ||L_{\alpha}|| \le \lambda < \infty.$$

Então, T^* é um isomorfismo de Y^* em X^* com inversa S, satisfazendo $||S|| \leq \lambda$; e existe uma projeção P de X^* sobre $T^*(Y^*)$ com $||P|| \leq \lambda ||T||$.

Demonstração. Veja, [16], Proposição 1, p.302.

Observação 3.1.22. Do teorema acima, segue de forma imediata que $T^*(Y^*)$ é complementado em X^* . Este fato será útil no exemplo que seque.

Exemplo 3.1.23. Seja $X = (\bigoplus_{n=1}^{\infty} \ell_2^n)_1$ onde, para cada $n \in \mathbb{N}$, ℓ_2^n representa o espaço vetorial \mathbb{R}^n com a norma euclidiana e, se $x \in X$, então $x = (x_n)_n$ com $x_n = (x_n^1, x_n^2, \dots, x_n^n) \in \ell_2^n$ e

$$||x||_1 = \sum_{n=1}^{\infty} ||x_n||_2 = \sum_{n=1}^{\infty} \left(\sum_{i=1}^n (x_n^i)^2\right)^{\frac{1}{2}} < \infty$$

Segue de forma análoga ao feito para os espaços l_p , $1 \le p < \infty$, que X é espaço de Banach. Afirmamos que X possui (DP) e, para verificar tal fato, exibiremos um isomorfismo entre X e um subespaço de ℓ_1 . Para isto, consideremos os conjuntos

$$D_1 = \{1, -1\}, D_2 = \{(1, -1), (-1, 1), (1, 1), (-1, -1)\}, \cdots,$$

$$D_n = \{(a_1, ..., a_n) : a_1, \cdots, a_n \in \{1, -1\}\}$$

e, para cada $n \in \mathbb{N}$, denotemos os elementos de D_n por ϵ_n^k , onde $k = 1, \dots, 2^n$.

Definimos então a aplicação $T_1: X \to \ell_1$ por

$$T_{1}(x) = T_{1}((x_{n})_{n}) = \left(\frac{1}{2}\left\langle \epsilon_{1}^{1}, x_{1} \right\rangle, \frac{1}{2}\left\langle \epsilon_{1}^{2}, x_{1} \right\rangle, \frac{1}{2^{2}\sqrt{2}}\left\langle \epsilon_{2}^{1}, x_{2} \right\rangle, \frac{1}{2^{2}\sqrt{2}}\left\langle \epsilon_{2}^{2}, x_{2} \right\rangle, \frac{1}{2^{2}\sqrt{2}}\left\langle \epsilon_{2}^{3}, x_{2} \right\rangle, \frac{1}{2^{2}\sqrt{2}}\left\langle \epsilon_{2}^{4}, x_{2} \right\rangle, \frac{1}{2^{3}\sqrt{3}}\left\langle \epsilon_{3}^{1}, x_{3} \right\rangle, \cdots\right)$$

onde $\langle \epsilon_n^k, x_n \rangle$ representa o produto interno em ℓ_2^n .

Pela desigualdade de Cauchy-Schwarz,

$$\left|\left\langle \epsilon_{n}^{k}, x_{n} \right\rangle\right| \leq \left\|\epsilon_{n}^{k}\right\|_{2} \left\|x_{n}\right\|_{2} = \sqrt{n} \left\|x_{n}\right\|_{2} \ para \ todo \ n, k \in \mathbb{N}$$

e portanto

$$\frac{1}{2^{n}\sqrt{n}} \sum_{k=1}^{2^{n}} \left| \left\langle \epsilon_{n}^{k}, x_{n} \right\rangle \right| \leq \frac{1}{2^{n}\sqrt{n}} 2^{n} \sqrt{n} \left\| x_{n} \right\|_{2} = \left\| x_{n} \right\|_{2}.$$

Logo, $T_1(x) \in \ell_1$ para todo $x \in (\bigoplus_{n=1}^{\infty} \ell_2^n)_1$.

Por outro lado T_1 claramente é linear (segue das propriedades de produto escalar em ℓ_2^n). Como $T_1(x) = 0$ se, e só se, $\langle \epsilon_n^k, x_n \rangle = 0$ para todo $n, k \in \mathbb{N}$, é fácil verificar que $T_1(x) = 0$ se, e só se, x = 0 e, assim, temos que T_1 é um isomorfismo de X sobre sua imagem. Logo, X é um espaço de Banach isomorfo a um subespaço de ℓ_1 , o que faz com que X possua a propriedade de Schur. Segue da Proposição 3.1.3 que X possui (DP). Resta mostrar que X^* não possui (DP). Definamos a aplicação linear $T_2: X \to \ell_2$ por

$$T_{2}(x) = \left(\sum_{i=n}^{\infty} x_{i}^{n}\right)_{n} = (x_{1}^{1} + x_{2}^{1} + x_{3}^{1} + \cdots, x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + \cdots, \cdots, \underbrace{x_{n}^{n} + x_{n+1}^{n} + x_{n+2}^{n} + \cdots, \cdots}_{n-\acute{e}simo}, \cdots)$$

$$(3.20)$$

É claro que T_2 é linear e $T_2(X) \subset \ell_2$ pois se $T_2(x) = (y_n)_n$ então, fixado $n \in \mathbb{N}$, temos que $\|(y_1, y_2, \dots, y_n)\|_2$ é dada por

$$|| (x_1^1, 0, \cdots) + (x_2^1, x_2^2, 0 \cdots) + (x_3^1, x_3^2, x_3^3, 0, \cdots) + \dots + (x_n^1, x_n^2, \cdots, x_n^n, 0, \cdots) + (x_{n+1}^1, x_{n+1}^2, \cdots, x_{n+1}^n, 0, \cdots) + (x_{n+2}^1, x_{n+2}^2, \cdots, x_{n+2}^n, 0, \cdots) + (x_{n+3}^1, x_{n+3}^2, \cdots, x_{n+3}^n, 0, \cdots) + \cdots ||_2.$$

Portanto,

$$\|(y_1, y_2, \cdots, y_n)\|_2 \le \|x_1\|_2 + \|x_2\|_2 + \|x_3\|_2 + \dots = \|x\|_1$$

e, fazendo $n \to \infty$ na desigualdade acima, concluímos que $T_2(x) \in \ell_2$ com $||T_2(x)||_2 \le ||x||_1$ para todo $x \in X$, o que também garante que T_2 é limitado (ver observação 3.1.22).

Verificaremos agora que $T_2^*(\ell_2)$ é um subespaço complementado de X^* utilizando o Princípio da Seleção Local (Teorema 3.1.21). Para cada $i \in \mathbb{N}$, seja $Y_i = [e_1, \cdots, e_i]$, onde e_i é o i-ésimo vetor da base canônica de ℓ_2 . Claramente, temos

$$Y_1 \subset Y_2 \subset \dots Y_n \subset \dots \quad e \quad \bigcup_{n=1}^{\infty} Y_n = \ell_2.$$

Consideremos agora, para cada $i \in N$, a aplicação linear $S_i: Y_i \to X$ definida por

$$S_i(\alpha_1 e_1 + \ldots + \alpha_i e_i) = (0, (0, 0), (0, 0, 0), \ldots, (\alpha_1, \ldots, \alpha_i), (0, \ldots, 0), \ldots), \tag{3.21}$$

para todo $(\alpha_1 e_1 + \ldots + \alpha_i e_i) \in Y_i$.

Note que, para todo $(\alpha_1 e_1 + \ldots + \alpha_i e_i) \in Y_i$ e $i \in \mathbb{N}$ temos que

$$T_2 \circ S_i((\alpha_1 e_1 + \ldots + \alpha_i e_i)) = T_2(S_i(\alpha_1 e_1 + \ldots + \alpha_i e_i))$$

$$\stackrel{(3.20),(3.21)}{=} (\alpha_1, \cdots, \alpha_i, 0, \ldots) = \alpha_1 e_1 + \ldots + \alpha_i e_i$$

e portanto, $T_2 \circ S_i = Id_{Y_i}$.

Além disso, pela forma como é definida a norma em X, segue que

$$||S_i|| = \sup \{||S_i(\alpha_1 e_1 + \ldots + \alpha_i e_i)||_1 : ||(\alpha_1 e_1 + \ldots + \alpha_i e_i)||_2 \le 1\}$$

com

$$||S_i(\alpha_1 e_1 + \ldots + \alpha_i e_i)||_1 = ||(0, (0, 0), (0, 0, 0), \ldots, (\alpha_1, \ldots, \alpha_i), (0, \ldots, 0), \ldots)||_1$$
$$= ||(\alpha_1, \ldots, \alpha_n)||_2$$

 $Logo, ||S_i|| = 1 \ para \ todo \ i \in \mathbb{N} \ donde \ segue \ que$

$$\sup_{i} ||S_i|| = 1 < \infty.$$

Desta forma, estamos nas hipóteses do Teorema 3.1.21, o Princípio da Seleção Local, de onde concluímos que T_2^* é um isomorfismo sobre sua imagem, que $T_2^*(\ell_2)$ é complementado em X^* (ver Observação 3.1.22).

Por fim, obtemos que X^* não pode possuir (DP) pois, se este a possuísse, teríamos que $T_2^*(\ell_2)$ também a possuiria, por ser subespaço complementado de X^* (Proposição 3.1.11). Mas, neste caso, $\ell_2 \cong T_2^*(\ell_2)$ possuiria (DP), o que não ocorre, como visto no Exemplo 3.1.5.

Proposição 3.1.24. Seja X espaço de Banach. O espaço X^* possui (DP) se e somente se para todo espaço de Banach Y e operador linear fracamente compacto $T: X \to Y$, o biadjunto de T é completamente contínuo.

Demonstração. Seja X espaço de Banach tal que X^* possua (DP). Tomemos Y espaço de Banach arbitrário e $T:X\to Y$ operador fracamente compacto. Pelo Teorema 2.3.4, $T^*:Y^*\to X^*$ também é fracamente compacto e, portanto, quase fracamente compacto. Como X^* possui (DP), resulta do Teorema 3.1.15-(xii) que o adjunto de T^* é completamente contínuo, isto é, que T^{**} é completamente contínuo.

Reciprocamente, seja X espaço de Banach com a propriedade de que para todo espaço de Banach Y e operador fracamente compacto $T: X \to Y$, tenhamos $T^{**}: X^{**} \to Y^{**}$ completamente contínuo. Tomemos $(x_n^*)_n$ e $(x_n^{**})_n$ sequências fracamente nulas em X^* e X^{**} respectivamente e definamos

$$T: X \longrightarrow c_0$$

$$x \longmapsto (x_n^*(x))_n.$$

Pela demonstração de $(iv \Rightarrow i)$ no Teorema 3.1.15, sabemos que T é fracamente compacto e que $T^{**}(x^{**}) = J((x_n^{**}(x_n))_n)$ para todo x^{**} onde J é a inclusão natural de c_0 em c_0^{**} . Pela hipótese, T^{**} será completamente contínuo e portanto

$$T^{**}(x_n^{**}) = J((x_n^{**}(x_n^*))_n) \to 0.$$

Como J é isometria linear, concluímos que $(x_n^{**}(x_n^*))_n$ converge a zero e portanto X^* possui (DP).

Teorema 3.1.25. Seja X espaço de Banach. Se X possui possui (DP) e não contém cópia de ℓ_1 , então X^* possui a Propriedade de Schur.

Demonstração. Suponhamos que X^* não possui a Propriedade de Schur.

Seja $(x_n^*)_n \subset X^*$ tal que sequência fracamente nula que não converge a zero na topologia forte e tal que $||x_n^*|| = 1$ para todo $n \in \mathbb{N}$. Mais ainda, podemos tomar $(x_n)_n \subset X$ sequência

de norma unitária tal que

$$|x_n^*(x_n)| > \frac{1}{2}. (3.22)$$

para todo $n \in \mathbb{N}$. Com efeito, para cada $n \in \mathbb{N}$ fixado

$$||x_n^*|| = 1 \Rightarrow \sup_{\substack{x \in X \\ ||x|| = 1}} |x_n^*(x)| = 1$$

e, usando a definição de supremo, fica clara a existência de tal sequência.

Além disso, pelo Teorema ℓ_1 de Rosenthal-Dor (Teorema 1.1.69), como X não contém cópia de ℓ_1 , $(x_n)_n$ admite uma subsequência $(x_{n_k})_k$ fracamente Cauchy. Como $(x_{n_k}^*)_k$ é fracamente nula e como X possui (DP), utilizando o Teorema 3.1.15-(vii), obtemos

$$\lim_{k} (x_{n_k}^*(x_{n_k})) = 0$$

o que é absurdo, de acordo com (3.22). Logo, X^* possui a propriedade de Schur e portanto possui (DP).

Como consequência temos:

Teorema 3.1.26. Seja X um espaço de Banach. Então X^* possui (DP) se, e somente se, X possui (DP) e não contém cópia de ℓ_1 .

Demonstração. Pelo Teorema 3.1.25, se X possui (DP) e não contém cópia de ℓ_1 então X^* possui a propriedade de Schur e, pela Proposição 3.1.3, X^* possui (DP).

Reciprocamente, suponha que X^* possua (DP). Pela Proposição 3.1.6, X possui (DP), restando verificar que $\ell_1 \not\hookrightarrow X$. Se $\ell_1 \hookrightarrow X$, pela Proposição 2.3.8, existe operador linear completamente contínuo e não compacto $S: E \to \ell_2$ tal que S leva em ℓ_2 a cópia isomorfa de ℓ_1 .

Seja $(z_n^*)_n \subset S^*(B_{\ell_2})$ qualquer. Logo, existe $(y_n^*)_n \subset B_{\ell_2}$ tal que $S^*(y_n^*) = z_n^*$ para todo $n \in \mathbb{N}$. Agora, como l_2 é reflexivo, então B_{ℓ_2} é fracamente compacto e, de S^* ser contínuo obtemos que $S^*(B_{\ell_2})$ é fracamente compacto. Do Teorema de Šmulian (Teorema 2.3.7) obtemos que existe subsequência $(S^*(y_{n_k}))_k$ que converge fracamente para um ponto $x^* \in S^*(B_{\ell_2})$. Agora, por hipótese, X^* tem a propriedade de Schur o que nos garante que, de fato, $S^*(y_{n_k}) \to x^*$.

Portanto, existe subsequência $(z_{n_k}^*)$ tal que $z_{n_k}^* \to x^* \in S^*(B_{\ell_2})$, o que garante que $S^*(B_{\ell_2})$ é compacto e, portanto, que S^* é operador linear compacto. Pelo Teorema de Schauder (Teorema 2.2.9) segue que S é operador linear compacto, o que é absurdo pois, por hipótese, S é não compacto. Logo, $\ell_1 \not\hookrightarrow X$ e temos o resultado.

Proposição 3.1.27. Seja X espaço normado $e(x_n)_n \subset X$ tal que $x_n \xrightarrow{w} x$ em X. Então existe $(w_n)_n \subset X$, onde cada w_n é combinação convexa dos elementos de $\{x_j : k_n + 1 \leq j \leq k_{n+1}\}$ e $w_n \to x$.

Demonstração. De fato, pela Proposição 1.1.50, como $(x_n)_n$ converge fracamente a x, então existe $(w_i^1)_i \subset conv(\{x_n\}_n)$ tal que $w_i^1 \to x$. Assim, podemos tomar $i_1 \in \mathbb{N}$ tal que

$$\|w_{i_1}^1 - x\| < 1$$
 , $w_{i_1}^1 = \sum_{j=1}^{k_2} \lambda_j x_j$ e $\sum_{j=1}^{k_2} |\lambda_j| = 1$. (3.23)

Além disso, como $(x_n)_{n>k_2}$ também converge fracamente a x, por motivo análogo ao anterior, existe $(w_i^2)_i \subset conv(\{x_n\}_{n\geq k_2})$ e índice $i_1 < i_2 \in \mathbb{N}$ tal que

$$||w_{i_2}^2 - x|| < \frac{1}{2}$$
, $w_{i_2}^2 = \sum_{j=k_2+1}^{k_3} \lambda_j x_j$ e $\sum_{j=k_2+1}^{k_3} |\lambda_j| = 1.$ (3.24)

De modo geral, dado $p \in \mathbb{N}$ arbitrário, podemos considerar a sequência $(x_n)_{n>k_p}$ que converge fracamente a x e obter índice i_p tal que

$$\|w_{i_p}^p - x\| < \frac{1}{p}$$
, $w_{i_p}^p = \sum_{j=k_p+1}^{k_{p+1}} \lambda_j x_j$ e $\sum_{j=k_p+1}^{k_{p+1}} |\lambda_j| = 1.$ (3.25)

Logo, a sequência $(w_{i_p}^p)_p$ tem a propriedade procurada.

Lema 3.1.28. Seja Y um subespaço fechado de X e suponha que $\ell_1 \not\hookrightarrow Y$. Então cada sequência fracamente Cauchy em X/Y tem uma subsequência que é a imagem de uma sequência fracamente Cauchy em X pela aplicação quociente natural.

Demonstração. Suponha que exista sequência fracamente Cauchy $(z_n)_n \subset X/Y$ que não admita subsequência que seja imagem de uma sequência fracamente Cauchy em X, pela aplicação quociente Q. Logo, se $(x_n)_n \in X$ é tal que $Q(x_n) = z_n$ temos que $(x_n)_n$ não possui subsequência fracamente Cauchy. Note que, por $(z_n)_n$ ser limitada e como a aplicação quociente é limitada, então podemos supor, sem perda de generalidade, $(x_n)_n$ também limitada. Assim, pelo Teorema ℓ_1 de Rosenthal-Dor (Teorema1.1.69), $(x_n)_n$ possui subsequência equivalente a base canônica de ℓ_1 . Por simplicidade, vamos supor que seja a própria $(x_n)_n$. Note que podemos supor tal sequência normalizada e equivalente a base unitária de ℓ_1 . De fato, pela Proposição 1.2.10-(iii), cada x_n é não nulo e, ao normalizarmos tal sequência, ela continua sendo equivalente a base unitária de ℓ_1

Consideremos então a sequência, fracamente nula, $(z_{2n}-z_{2n-1})_n$. Pela Proposição 3.1.27, existe sequência $(w_n)_n \subset X/Y$ convergente a zero e tal que cada

$$w_n \in \Gamma(\{z_{2j} - z_{2j-1} : k_n + 1 \le j \le k_{n+1}\})$$

e, portanto,

$$w_n = \sum_{j=k_n+1}^{k_{n+1}} \lambda_j (z_{2j} - z_{2j-1})$$

onde $(\lambda_j)_j$ é sequência de escalares tais que $\sum_{j=k_n+1}^{k_n+1} |\lambda_j| = 1$. Seja $(v_n)_n \subset X$ tal que, para cada $n \in \mathbb{N}$,

$$v_n = \sum_{j=k_n+1}^{k_{n+1}} \lambda_j (x_{2j} - x_{2j-1})$$

isto é, $(v_n)_n$ é uma sequência tal que $Q(v_n)=w_n$. Observe que se

$$u_n = \sum_{j=k_n+1}^{k_{n+1}} \lambda_j (e_{2j} - e_{2j-1})$$

temos que para toda família finita de escalares a_1, \dots, a_p vale

$$\left\| \sum_{l=1}^{p} a_{l} u_{l} \right\|_{1} = \left\| \sum_{i=1}^{p} a_{l} \sum_{j=k_{n}+1}^{k_{n+1}} \lambda_{j} (e_{2j} - e_{2j-1}) \right\|_{1} = \sum_{l=1}^{p} |a_{l}| \sum_{j=k_{n}+1}^{k_{n+1}} |\lambda_{j}|$$

$$= \sum_{l=1}^{p} |a_{l}| = \left\| \sum_{l=1}^{p} a_{l} e_{l} \right\|_{1}$$

de modo que $(u_n)_n$ é equivalente à base canônica de ℓ_1 . Por outro lado, é fácil verificar $(u_n)_n$ é equivalente a $(v_n)_n$ de modo que podemos afirmar que $(v_n)_n$ é equivalente à base canônica de ℓ_1 . Assim, existe C > 0 tal que

$$\left\| \sum_{l=1}^{p} a_{l} v_{l} \right\| \ge C \left\| \sum_{l=1}^{p} a_{l} e_{l} \right\|_{1} = C \sum_{l=1}^{p} |a_{l}|$$

e segue daí que para todo $n \in \mathbb{N}$ temos $||v_n^*|| \leq \frac{1}{C}$ (onde $(v_n^*)_n$ é a sequência dos funcionais coordenadas de $(v_n)_n$.

Agora, como $(w_n)_n$ converge a zero, passando a uma subsequência se necessário, podemos supor que

$$\|w_n\|_{X/Y} = \|Q(v_n)\|_{X/Y} \le \frac{C}{2^{n+2}}$$

 $\|y_n - v_n\| \le \frac{C}{2^{n+1}}$

Daí,

$$\sum_{n=1}^{\infty} \|y_n - v_n\| \|v_n^*\| \le \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2} < 1$$

e, pelo Teorema 1.2.14 $(y_n)_n$ é uma sequência básica equivalente à $(v_n)_n$. Como $(v_n)_n$ é equivalente à base canônica de ℓ_1 , segue que $(y_n)_n$ também é equivalente à base canônica de ℓ_1 , o que é absurdo já que, por hipótese, $\ell_1 \not\hookrightarrow Y$.

Teorema 3.1.29. Seja X espaço que possui (DP) e Y um subespaço fechado de X tal que $\ell_1 \not\hookrightarrow Y$. Então X/Y possui (DP).

Demonstração. Suponhamos que existam $(z_n)_n$ e $(z_n^*)_n$ sequências fracamente nulas em X/Y e $(X/Y)^*$ respectivamente tais que que $z_n^*(z_n) \not\to 0$. Passando a subsequência, se necessário podemos supor que

$$\lim_{n} z_n^*(z_n) = k \neq 0,$$

já que $(z_n^*(z_n))_n$ é sequência limitada.

Pelo Lema 3.1.28, como $(z_n)_n$ é fracamente nula e portanto fracamente Cauchy, existe sequência fracamente Cauchy $(x_{n_k})_k \subset X$ tal que $Q(x_{n_k}) = z_{n_k}$, onde Q é a aplicação quociente de X em X/Y. Além disso, $Q^*(z_n^*)_n$ é fracamente nula pois, como Q é limitado, segue da definição de adjunto que Q^* também o é, sendo portanto $\sigma(X/Y, (X/Y)^*) - \sigma(X, X^*)$ contínuo. Portanto, utilizando o fato de que X possui (DP) e o Teorema 3.1.15-(vii) segue que

$$0 = \lim_{k} Q^*(z_{n_k}^*)(x_{n_k}) = \lim_{k} z_{n_k}^*(Q(x_{n_k})) = \lim_{k} z_{n_k}^*(z_{n_k}) = k.$$

Chegamos a uma contradição. Portanto, X/Y possui (DP).

Corolário 3.1.30. Se X é subespaço reflexivo de $L_1(X, \mathcal{A}, \mu)$, onde (X, \mathcal{A}, μ) é espaço de medida positiva, então o espaço quociente $L_1(X, \mathcal{A}, \mu)/X$ possui (DP).

Demonstração. Pelo Teorema 3.1.10, $L_1(X, \mathcal{A}, \mu)$ possui (DP) e, como X é reflexivo, X é fechado. Além disso, como subsespaços fechados de espaços reflexivos também são reflexivos (Proposição 1.1.73), temos que $\ell_1 \not\hookrightarrow X$ (porque ℓ_1 não é reflexivo e ℓ_1 é fechado). O resultado, portanto, segue imediatamente a partir do Teorema 3.1.29.

O próximo corolário nos fornece uma condição suficiente sob a qual se X^* possui (DP) podemos garantir que o dual Y^* de um subespaço Y de X possui (DP).

Corolário 3.1.31. Seja X espaço tal que X^* possui (DP) e Y um subespaço de X tal que Y^{\perp} não contém subespaço isomorfo a ℓ_1 . Então Y^* possui (DP).

Demonstração. Pela Proposição 1.1.42, Y^* é isometricamente isomorfo a X^*/Y^{\perp} . Por outro lado, é fácil verificar que Y^{\perp} é um subespaço fechado de X^* . Como por hipótese temos que X^* possui (DP) e $\ell_1 \not\hookrightarrow Y^{\perp}$, pelo Teorema 3.1.29 temos que X^*/Y^{\perp} possui (DP) e, portanto, Y^* também possui.

Apesar de todo espaço com a propriedade de Schur possuir (DP), a recíproca desta afirmação não é verdadeira em geral. Este é o caso de c_0 . Os dois próximos teoremas nos fornecerão condições suficientes para uma espaço com (DP) possuir a propriedade de Schur.

Teorema 3.1.32. Se X possui (DP) e é isomorfo a um subespaço de Y^* , onde $\ell_1 \not\hookrightarrow Y$, então X possui a propriedade de Schur.

Demonstração. Sejam X e Y como nas hipóteses do teorema, $(x_n)_n \subset X$ sequência fracamente nula, e suponhamos que $(x_n)_n$ não convirja a zero. Logo, passando a subsequência se necessário, podemos supor que existe $\delta > 0$ tal que

$$||x_n|| > \delta$$

para todo $n \in \mathbb{N}$

Além disso, como $X \hookrightarrow Y^*$, temos que para cada $n \in \mathbb{N}$,

$$||x_n|| = \sup_{\substack{y \in Y \\ ||y||=1}} ||x_n(y)|| > \delta$$

e portanto, pela definição de supremo, para cada $n \in \mathbb{N}$ podemos obter $y_n \in Y$ tal que $\|y_n\| = 1$ e

$$|x_n(y_n)| \ge \delta.$$

Por outro lado, como $\ell_1 \not\hookrightarrow Y$, pelo Teorema ℓ_1 de Rosenthal-Dor (Teorema 1.1.69), temos que $(y_n)_n$ possui subsequência fracamente Cauchy, digamos $(y_{n_k})_k$. Definamos então a aplicação linear $T: Y \to X^*$ por

$$(T(y))(x) = x(y).$$

T está bem definida, já que $X \hookrightarrow Y^*$. Além disso, T é limitada pois dado $y \in Y$,

$$||T(y)|| = \sup_{\substack{x \in X \\ ||x|| = 1}} |(T(y))(x)| = \sup_{\substack{x \in X \\ ||x|| = 1}} |x(y)| \le \sup_{\substack{y^* \in Y^* \\ ||y^*|| = 1}} ||y^*(y)|| \le ||y||.$$

Portanto, T é $\sigma(Y,Y^*) - \sigma(X^*,X^{**})$ contínuo, garantindo que $(T(y_{n_k}))_k$ é fracamente Cauchy em X^* e, como $(x_{n_k})_k$ é fracamente nula, segue do Teorema 3.1.15-(viii) que

$$\lim_{k \to \infty} (T(y_{n_k}))(x_{n_k}) = \lim_{k \to \infty} x_{n_k}(y_{n_k}) = 0,$$

contradizendo a escolha dos y_n . O absurdo foi gerado por termos suposto que $x_n \not\to 0$ e portanto, X possui a propriedade de Schur.

Antes de enunciar o segundo Teorema, precisamos mostrar a proposição que segue.

Proposição 3.1.33. Seja X um espaço de Banach cujo dual possua (PRN). Então toda sequência limitada em X possui uma subsequências fracamente Cauchy.

Demonstração. Seja $(x_n)_n$ uma sequência limitada em X. Seja $Y = \overline{[\{x_n\}_n]}$. Então Y é subespaço fechado e separável de X pelo Lema 1.1.31. Assumiremos, sem perda de generalidade, que $(x_n)_n \subset B_X$. Como, por hipótese, X^* possui (PRN), segue da equivalência anterior que Y^* é separável.

Por outro lado, como $(x_n)_n \subset B_X$ então $(J(x_n))_n \subset B_{Y^{**}}$, que é $\sigma(Y^{**},Y^*)$ -compacto por Banach-Alaoglu (Teorema 1.1.52). Mais ainda, como a topologia $\sigma(Y^{**},Y^*)$ restrita a $B_{Y^{**}}$ é metrizável (Teorema 1.1.63), então $(J(x_n))_n$ admite subsequência $(J(x_{n_k}))_k$ $\sigma(Y^{**},Y^*)$ -convergente que será, portanto, $\sigma(Y^{**},Y^*)$ -Cauchy. Assim, para toda $\varphi \in Y^*$ temos $J(x_{n_k})_k(\varphi)$

é uma sequência de Cauchy em \mathbb{R} , o que significa que $(\varphi(x_{n_k}))_k$ é uma sequência de Cauchy para toda $\varphi \in Y^*$, ou seja, $(x_{n_k})_k$ é $\sigma(Y, Y^*)$ -Cauchy.

Teorema 3.1.34. Seja X espaço de Banach que possua (DP). Se existe espaço de Banach Y tal que $X \hookrightarrow Y^*$ e Y^* possui (PRN), então X possui a propriedade de Schur.

Demonstração. A demonstração segue de forma análoga à feita no Teorema 3.1.32 sendo que, neste caso, a existência da subsequência Cauchy $(y_{n_k})_k$ deve-se ao fato de que, por hipótese, Y é espaço de Banach cujo dual possui (PRN) e então, pela Proposição anterior, sequências limitadas em Y admitem subsequências fracamente Cauchy.

O resultado que veremos a seguir será útil mais a frente para estabelecermos uma caracterização dos espaços de Banach de dimensão infinita.

Corolário 3.1.35. Seja X espaço de Banach de dimensão infinita que não contém cópia de ℓ_1 . Então existe $(x_n)_n \subset X$, sequência básica, normalizada e fracamente nula.

Demonstração. Seja X espaço de Banach de dimensão infinita e tal que $\ell_1 \not\hookrightarrow X$. Pelo Lema de Riesz (Lema 1.1.6), existe sequência normalizada $(x_n)_n \subset X$ tal que

$$||x_n - x_m|| > \frac{1}{2}$$

sempre que $m \neq n$.

Além disso, do Teorema ℓ_1 de Rosenthal-Dor (Teorema 1.1.69) concluímos que $(x_n)_n$ admite subsequência fracamente Cauchy que, por simplicidade, denotaremos ainda por $(x_n)_n$. Definamos então a sequência $(z_n)_n \subset X$ por

$$z_n = \frac{x_{n+1} - x_n}{\|x_{n+1} - x_n\|} \quad \forall \quad n \in \mathbb{N}.$$

Claramente $(z_n)_n$ é normalizada, além de ser fracamente nula pois, se $x^* \in X^*$ então

$$\left| x^* \left(\frac{x_{n+1} - x_n}{\|x_{n+1} - x_n\|} \right) \right| \le 2 \left| x^* (x_{n+1} - x_n) \right| \to 0$$

já que $(x_n)_n$ é fracamente Cauchy.

Segue de forma imediata, do Princípio da seleção de Bessaga-Pelczynski (Teorema 1.2.16), que $(z_n)_n$ admite subsequência básica que, portanto, possuirá as propriedades que desejávamos.

Corolário 3.1.36. Se X é um espaço de Banach tal que todo subespaço de X que possui base de Schauder possui (DP), então, X possui (DP).

Demonstração. Sejam $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente e suponhamos que $x_n^*(x_n) \not\to 0$. Logo, podemos supor que

$$|x_n^*(x_n)| \ge \delta$$

para algum $\delta > 0$ e para todo $n \in \mathbb{N}$. Note que, neste caso, $(x_n)_n$ não pode convergir a zero. Se isto ocorresse, teríamos

$$|x_n^*(x_n)| \le ||x_n^*|| \, ||x_n||$$

e portanto $(x_n^*(x_n))_n$ convergiria a zero, visto que $(x_n^*)_n$ é limitada por ser fracamente nula. Mais ainda, como $(x_n)_n$ é limitada podemos supor $||x_n|| = 1$.

Pelo Teorema 1.2.16, $(x_n)_n$ admite subsequência $(x_{n_k})_k$ que é sequência básica. Como todo subespaço de X que possui base de Schauder possui (DP), em particular, $\overline{[\{x_{n_k}\}_k]}$ possui (DP) de onde segue que $(x_{n_k}^*(x_{n_k}))_k$ converge a zero, o que contraria a escolha de $(x_n)_n$ e (x_n^*) respectivamente. Desta forma, $x_n^*(x_n) \to 0$ e X possui (DP).

Definição 3.1.37. Dizemos que uma sequência (y_n) satisfaz a propriedade (P) se dada qualquer subsequência $(z_n)_n$ de $(y_n)_n$ e qualquer sequência de escalares $(\alpha_n)_n \notin c_0$ temos

$$\sup_{n} \left\| \sum_{k=1}^{n} \alpha_k z_k \right\| = \infty.$$

A seguinte caracterização da base unitária de c_0 , foi obtida por John Elton em sua tese de doutorado.

Teorema 3.1.38. Se $(x_n)_n$ é uma sequência normalizada fracamente nula e não possui nenhuma subsequência equivalente à base unitária de c_0 , então $(x_n)_n$ possui uma subsequência $(y_n)_n$ com a propriedade (P).

$$Demonstração$$
. Veja [19], Teorema 6.9.6, p. 457.

O próximo Teorema nos fornece uma caracterização de espaços de Banach de dimensão infinita.

Teorema 3.1.39. Seja X espaço de Banach. Então X é de dimensão infinita se, e somente se, X contém um subespaço isomorfo a c_0 ou um subespaço isomorfo a ℓ_1 ou um subespaço que não possui (DP).

Demonstração. Seja X espaço de Banach de dimensão infinita e suponha que $\ell_1 \not\hookrightarrow X$. Pela Proposição 3.1.35, X possui sequência básica normalizada e fracamente nula $(x_n)_n$. Se $(x_n)_n$ possuir subsequência equivalente à base unitária de c_0 , então X possuirá um subespaço isomorfo a c_0 e o teorema ficará provado. Vamos supor, portanto, que isto não ocorra. Neste caso, pelo Teorema 3.1.38, $(x_n)_n$ admite uma subsequência $(x_{n_k})_k$ com a propriedade (P). Além disso, como $(x_{n_k})_k$ é uma sequência normalizada e fracamente nula, pelo Princípio da Seleção de Bessaga-Pelczynski (Teorema 1.2.16), temos que $(x_{n_k})_k$ possui uma subsequência básica (que, é claro, é normalizada e fracamente nula). Assim, sem perda de generalidade, passando a subsequência se necessário, podemos considerar que nossa sequência inicial $(x_n)_n$ é básica e tal que dada qualquer sequência de escalares $(\alpha_n) \not\in c_0$ temos que

$$\sup_{n} \left\| \sum_{k=1}^{n} \alpha_k x_k \right\| = \infty.$$

Consideremos então a sequência $(x_n^*)_n$ dos funcionais coeficientes de $(x_n)_n$. Pelo Corolário

1.2.6, as projeções lineares $P_k: \overline{[\{x_n\}_n]} \to \overline{[\{x_n\}_n]}$ definidas por

$$P_k(\underbrace{\sum_{n} x_n^*(x) x_n}_{x}) = \sum_{n=1}^k x_n^*(x) x_n.$$

são uniformemente limitadas, e portanto existe $\lambda > 0$ tal que $\sup_n \|P_n\| < \lambda$. Além disso, note que dados $x \in \overline{[\{x_n\}_n]}, x^* \in \overline{[\{x_n\}_n]}^*$ e $x^{**} \in \overline{[\{x_n\}_n]}^{**}$, temos

$$P_k^*(x^*)(x) = x^*(P_k(x)) = x^* \left(\sum_{n=1}^k x_n^*(x) x_n \right) = \sum_{n=1}^k x^*(x_n) x_n^*(x), \tag{3.26}$$

e, portanto,

$$P_k^{**}(x^{**})(x^*) = x^{**}(P_k^*(x^*)) \stackrel{(3.26)}{=} \sum_{n=1}^k x^{**}(x^*(x_n)x_n^*) = \sum_{n=1}^k x^{**}(x_n^*)x^*(x_n)$$

o que nos permite concluir que $P_k^{**}(x^{**}) = \left(\sum_{n=1}^k x^{**}(x_n^*)x_n\right)$, onde x_n é visto como elemento de X^{**} , isto é, $x_n(x^*) = x^*(x_n)$. Com isto, para $x^{**} \in \overline{[\{x_n\}_n]}^{**}$ temos

$$\sup_{k} \left\| \sum_{n=1}^{k} x^{**}(x_{n}^{*}) x_{n} \right\| = \sup_{k} \|P_{k}^{**} x^{**}\| \le \sup_{k} \|P_{k}\| \|x^{**}\| \le \lambda \|x^{**}\| < \infty$$

e do Teorema 3.1.38, concluímos que $(x^{**}(x_n^*))_n \in c_0$. Como $x^{**} \in \overline{[\{x_n\}_n]}^{**}$ é arbitrário, então $(x_n^*)_n$ é fracamente nula. Logo, $(x_n)_n$ e $(x_n^*)_n$ são sequências fracamente nulas em $\overline{[\{x_n\}_n]}$ e $\overline{[\{x_n\}_n]}^{**}$ respectivamente. Mas, como

$$x_n^*(x_n) = 1$$
 para todo $n \in \mathbb{N}$,

então $(x_n^*(x_n))_n$ não converge a zero. Segue que $\overline{[\{x_n\}_n]}$ é subespaço de X que não possui (DP).

Reciprocamente, se X espaço de Banach que contém um subespaço isomorfo a c_0 ou um subespaço isomorfo a ℓ_1 então X tem dimensão infinita. Se X possui um subespaço que não possui (DP), pelo Teorema 3.1.4, tal subespaço é de dimensão infinita e, portanto, X também é de dimensão infinita .

3.2 A Propriedade de Dunford-Pettis Hereditária

Como vimos no Teorema 3.1.10, $L_1[0,1]$ possui (DP). Apesar disto, na demonstração do Corolário 3.1.12 verificamos que $Y = \overline{[\{r_n\}_n]}$, onde r_n denotam as funções de Rademacher, é subespaço fechado de $L_1[0,1]$ e não possui (DP).

Definição 3.2.1. Um espaço de Banach X possui a propriedade de Dunford-Pettis hereditária se todos os seus subespaços fechados possuem (DP). Nesse caso, escreveremos que X possui (DPH).

Proposição 3.2.2. Se X possui a propriedade de Schur, então X possui (DPH).

Demonstração. Basta notar que, se X possui a propriedade de Schur, então qualquer subespaço fechado de X também possui propriedade de Schur e, consequentemente, (DP).

Observe que, ao longo deste trabalho, enunciamos alguns resultados que nos forneciam condições para que um dado espaço possua a propriedade de Schur. Todos estes espaços terão, portanto, (DPH). Em particular, ℓ_1 possui (DPH).

Teorema 3.2.3. c_0 possui (DPH).

Demonstração. Seja X subespaço fechado de c_0 e tomemos $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em X e X^* respectivamente. Denotaremos $x_n = (x_m^n)_m$. Se $(x_n^*(x_n))_n$ não converge a zero então existe $\delta > 0$ tal que, passando a subsequência se necessário, podemos supor

$$|x_n^*(x_n)| \ge \delta \tag{3.27}$$

para todo $n \in \mathbb{N}$. Podemos supor $||x_n|| \ge \delta$ para todo $n \in \mathbb{N}$ pois, de (3.27), obtemos que $(x_n)_n$ não pode convergir a zero já que, se isto ocorresse, teríamos

$$|x_n^*(x_n)| \le ||x_n^*|| \, ||x_n||$$

e portanto $(x_n^*(x_n))_n$ convergiria a zero, visto que $(x_n^*)_n$ é limitada por ser fracamente nula. Mais ainda, como $(x_n)_n$ é limitada podemos supor $||x_n|| = 1$.

Como $x_1 \in c_0$, existe $k_1 \in \mathbb{N}$ tal que

$$|x_m^1| \le \frac{\|x_1\|}{2^3} = \frac{1}{2^3}$$
 para todo $m > k_1$.

Como $(x_n)_n$ é fracamente nula, existe $N_1 > 1$ tal que

$$\max\{|x_1^n|,\ldots,|x_{k_1}^n|\}<\frac{\|x_1\|}{2^4}=\frac{1}{2^4}$$
 para todo $n>N_1$.

Com efeito, para cada $i = 1, ..., k_1, P_i(x_n) \to 0$ onde

$$P_i:X\longrightarrow \mathbb{R}$$

$$\alpha = (\alpha_m)_m \longmapsto \alpha_i$$

•

Assim, para cada $i=1,\ldots,k_1$ existe $p_i\in\mathbb{N}$ tal que $|x_i^n|<\frac{1}{2^4}$ para todo $n>p_i$. Tomando $N_1=\max\{p_1,\cdots,p_{k_1}\}$ temos

$$\max\{|x_1^n|,\ldots,|x_{k_1}^n|\}<\frac{1}{2^4} \text{ para todo } n>N_1.$$

Tomemos $n_1=1$ e seja $n_2>N_1$ fixado. Como $x_{n_2}\in c_0$, podemos escolher $k_2\in\mathbb{N}$ tal que $k_2>k_1$ e $\left|x_m^{n_2}\right|<\frac{\left\|x_{n_2}\right\|}{2^4}=\frac{1}{2^4}$ para todo $m>k_2$.

O mesmo argumento usado acima mostra que existe $N_2 \in \mathbb{N}$ tal que $N_2 > n_2$ e

$$\max\{|x_1^n|,\ldots,|x_{k_2}^n|\}<\frac{1}{2^5} \text{ para todo } n>N_2.$$

Observe que, como $n_2 > N_1$,

$$\max\{|x_1^{n_2}|,\ldots,|x_{k_1}^{n_2}|\}<\frac{1}{2^4}<\|x_{n_2}\|$$

e como

$$||x_{n_2}|| = \max\{|x_1^{n_2}|, \dots, |x_{k_2}^{n_2}|\},\$$

é claro que

$$||x_{n_2}|| = \max\{|x_{k_1+1}^{n_2}|, \dots, |x_{k_2}^{n_2}|\}.$$

Fixamos agora $n_3>N_2$ e escolhemos $k_3\in\mathbb{N}$ tal que $k_3>k_2$ e $|x_m^{n_3}|<\frac{\|x_{n_3}\|}{2^5}=\frac{1}{2^5}$ para todo $m>k_3$. Seja $N_3\in\mathbb{N}$ tal que $N_3>n_3$ e

$$\max\{|x_1^n|,\ldots,|x_{k_3}^n|\}<\frac{1}{2^5} \text{ para todo } n>N_3.$$

Observe que, como $n_3 > N_2$,

$$\max\left\{\left|x_{1}^{n_{3}}\right|,\ldots,\left|x_{k_{2}}^{n_{3}}\right|\right\} < \frac{1}{2^{5}} < \|x_{n_{3}}\|$$

e, como

$$||x_{n_3}|| = \max\{|x_1^{n_3}|, \dots, |x_{k_3}^{n_3}|\},\$$

é claro que

$$||x_{n_3}|| = \max\{|x_{k_2+1}^{n_3}|, \dots, |x_{k_3}^{n_3}|\}.$$

Por indução construímos uma subsequência $(x_{n_j})_j$ de $(x_n)_n$ e, fazendo $k_0=1$, uma sequência crescente $(k_j)_{j=0}^{\infty} \subset \mathbb{N}$ tais que

$$||x_{n_j}|| = \max \left\{ \left| x_{k_{j-1}+1}^{n_j} \right|, \dots, \left| x_{k_j}^{n_j} \right| \right\},$$

$$\max \left\{ \left| x_1^{n_j} \right|, \dots, \left| x_{k_{j-1}}^{n_j} \right| \right\} < \frac{1}{2^{j+2}}$$

е

$$\sup \left\{ \left| x_{k_j+1}^{n_j} \right|, \left| x_{k_j+2}^{n_j} \right|, \ldots \right\} < \frac{1}{2^{j+2}}.$$

Para $j = 1, 2, \dots$ seja

$$u_j = \sum_{m=k_{j-1}+1}^{k_j} x_m^{n_j} e_m.$$

É claro que $(u_j)_{j=1}^{\infty}$ é uma sequência de blocos de $(e_i)_i$ tal que

$$||u_j|| = \max\left\{\left|x_{k_{j-1}+1}^{n_j}\right|, \dots, \left|x_{k_j}^{n_j}\right|\right\} = ||x_{n_j}|| = 1$$
 (3.28)

para todo $j \in \mathbb{N}$.

Pela Proposição 1.2.17, $(u_j)_j$ é equivalente a $(e_j)_j$.

Mostraremos agora que $(u_j)_j$ e $(x_{n_j})_j$ também são sequências equivalentes para assim concluir, junto ao último resultado, que $(x_{n_j})_j$ é uma sequência básica equivalente a base unitária de c_0 . Pelo Teorema 1.2.14, basta verificarmos que

$$\sum_{j=1}^{\infty} \|u_j - x_{n_j}\| \|u_j^*\| < 1, \tag{3.29}$$

onde u_j^* são os funcionais coeficientes da sequência básica $(u_j)_j$. Primeiramente, vamos analisar $\|u_j^*\|$. Dado $u = \sum_{j=1}^{\infty} a_j u_j \in \overline{[\{u_j\}_j]}$, para $j \geq 2$ temos

$$|u_j^*(u)| = |a_j| = \frac{1}{\|u_j\|} \left\| \sum_{i=1}^j a_i u_i - \sum_{i=1}^{j-1} a_i u_i \right\|$$

donde se obtém

$$|u_j^*(u)| \le \frac{1}{\|u_j\|} \left(\left\| \sum_{i=1}^j a_i u_i \right\| + \left\| \sum_{i=1}^{j-1} a_i u_i \right\| \right) \le \frac{2\|u\|}{\|u_j\|}$$

e, utilizando a (3.28) concluímos que

$$|u_j^*(u)| = |a_j| \le 2 ||u||.$$
 (3.30)

Como a desigualdade ainda vale para j=1 (argumento análogo, não considerando o segundo somatório) obtemos

$$||u_i^*|| \le 2.$$
 (3.31)

Além disso, observe que para cada $j \in \mathbb{N}$, utilizando as definições de (u_j) e (x_{n_j})

$$||u_j - x_{n_j}|| = \left| \sum_{m=1}^{k_{j-1}} x_m^{n_j} e_m + \sum_{m=k_j+1}^{\infty} x_m^{n_j} e_m \right| \le \frac{1}{2^{j+2}}$$

e então, podemos escrever

$$\sum_{j=1}^{\infty} \|u_j - x_{n_j}\| \|u_j^*\| \le \sum_{j=1}^{\infty} \frac{1}{2^{j+2}} 2 = \frac{1}{2} < 1.$$

Portanto, $(x_{n_j})_j$ e $(u_j)_j$ são sequências básicas equivalentes e, como esta última é equivalente a base unitária de c_0 , então $(x_{n_j})_j$ também o será e, em particular, segue do Teorema 1.2.10 que $\overline{[\{x_{n_j}\}_j]}$ é isomorfo a c_0 .

Dessa forma, as restrições de $x_{n_j}^*$ a $\overline{[\{x_{n_j}\}_j]}$ podem ser vistas como elementos de ℓ_1 e como $x_{n_j}^*$ é fracamente nula, então $x_{n_j}^*|_{\overline{[\{x_{n_j}\}_j]}}$ pode ser vista como uma sequência fracamente nula em ℓ_1 . Como ℓ_1 possui a propriedade de Schur, obtemos que

$$\left\|x_{n_j}^*\right|_{\left[\left\{x_{n_j}\right\}_j\right]}\right\| \to 0.$$

Assim,

$$\left| x_{n_j}^*(x_{n_j}) \right| = \left| x_{n_j}^*|_{\overline{[x_{n_j}]}}(x_{n_j}) \right| \le \left\| x_{n_j}^*|_{\overline{[x_{n_j}]}} \right\| \left\| x_{n_j} \right\|$$

e, utilizando o fato de $(x_{n_j})_j$ ser limitada e $(x_{n_j}^*|_{[x_{n_j}]})_j$ convergir à zero, concluímos que $(x_{n_j}^*(x_{n_j}))_j$ também converge à zero, o que contradiz a hipótese.

Da demonstração do Teorema 3.1.39, segue o seguinte resultado que nos será útil.

Corolário 3.2.4. Se X é espaço de Banach e $(x_n)_n \subset X$ é uma sequência básica, normalizada e fracamente nula que não admite subsequência equivalente a base unitária de c_0 , então existe subsequência $(x_{n_k})_k$ tal que $\overline{[\{x_{n_k}\}_k]}$ não possui (DP) e, portanto, X não possui (DPH).

Anteriormente, definimos a propriedade de Dunford-Pettis hereditária. Apresentaremos agora outras caracterizações e mais um exemplo de espaço que possui tal propriedade.

Proposição 3.2.5. Um espaço de Banach E possui (DPH) se, e somente se, toda sequência normalizada e fracamente nula em E possui uma subsequência que é equivalente à base unitária de c_0 .

Demonstração. Seja E espaço de Banach tal que toda sequência normalizada e fracamente nula em E possui uma subsequência que é equivalente a base unitária de c_0 e seja F um subespaço fechado de E. Afirmamos que F possui (DP). Tomemos $(x_n)_n$ e $(x_n^*)_n$ sequências fracamente nulas em F e F^* respectivamente e suponhamos que $x_n^*(x_n) \not\to 0$. Como no Teorema 3.2.3, podemos supor que

$$||x_n|| = 1$$
 e que existe $\delta > 0$ tal que $||x_n^*(x_n)|| > \delta \ \forall \ n \in \mathbb{N}$. (3.32)

Por hipótese, $(x_n)_n$ admite subsequência $(x_{n_k})_k$ equivalente a base unitária de c_0 e então, $\overline{[\{x_{n_k}\}_k]} = H$ é isomorfo a c_0 , que possui (DP) pelo Corolário 3.1.7. Logo, como $(x_{n_k})_k$ e $(x_{n_k}^*|_H)_k$ são sequências fracamente nulas em H e H^* então

$$x_{n_k}^*|_H(x_{n_k}) \to 0 \implies x_{n_k}^*(x_{n_k}) \to 0.$$

Isto contraria (3.32). Logo, $x_n^*(x_n) \to 0$ e F possui (DP).

Reciprocamente, suponha que E possua (DPH) e seja $(x_n)_n$ sequência normalizada e fracamente nula. Pelo Princípio da Seleção de Bessaga-Pelczynski (Teorema 1.2.16), como $(x_n)_n$ não converge a zero na topologia da norma, $(x_n)_n$ possui subsequência básica $(x_{n_k})_k$. Como E possui (DPH) por hipótese, segue do Corolário 3.2.4 que $(x_{n_k})_k$ possui subsequência equivalente a base unitária de c_0 .

Teorema 3.2.6. Um espaço de Banach X possui (DPH) se, e somente se, existe uma constante C > 0 tal que toda sequência normalizada fracamente nula em X possui uma subsequência que é C-equivalente a base unitária de c_0 .

Demonstração. Veja [18], Teorema 3.1, p. 157.

Já verificamos que ℓ_1 possui (DPH). A seguir definiremos o espaço $\ell_1(E)$ e apresentaremos

algumas de suas propriedades com o objetivo de mostrar que $\ell_1(E)$ possui (DPH) se, e somente se, E também a possui.

Definição 3.2.7. Dado um espaço de Banach E, denotamos por $\ell_1(E)$ o espaço de todas as sequências absolutamente somáveis $x = (x_n)_n$, onde $x_n \in E$ para todo $n \in \mathbb{N}$, munido da norma

$$||x||_1 = \sum_{n=1}^{\infty} ||x_n||$$

Definição 3.2.8. Dado um espaço normado E denotamos por $\ell_{\infty}(E)$ o espaço de todas as sequências limitadas $x = (x_n)_n$, onde $x_n \in E$ para todo $n \in \mathbb{N}$, munido com a norma

$$||x||_{\infty} = \sup_{n} ||x_n||$$

Observamos que $\ell_1(\mathbb{R})$ e $\ell_{\infty}(\mathbb{R})$ são os espaços ℓ_1 e ℓ_{∞} introduzidos na Seção 1.1. Argumentos similares aos usados para mostrar que ℓ_1 e ℓ_{∞} são espaços de Banach servem para mostrar que $\ell_1(E)$ e $\ell_{\infty}(E)$ são espaços de Banach.

Proposição 3.2.9. O espaço dual de $\ell_1(E)$ é isometricamente isomorfo a $\ell_{\infty}(E^*)$.

Demonstração. Dado $x=(x_n)_n\in \ell_1(E)$ e $\varphi=(\varphi_n)_n\in \ell_\infty(E^*)$ definamos o operador linear $T_\varphi:\ell_1(E)\to\mathbb{R}$ por

$$T_{\varphi}(x) = \sum_{n=1}^{\infty} \varphi_n(x_n).$$

É fácil ver que T_{φ} é linear e como para cada $x \in \ell_1(E)$ vale

$$|T_{\varphi}(x)| \le \sum_{n=1}^{\infty} \|\varphi_n\| \|x_n\|_1 \le \sum_{n=1}^{\infty} \sup_{n} \|\varphi_n\| \|x_n\|_1 = \|\varphi\|_{\infty} \|x\|_1 < \infty$$
 (3.33)

temos que T_{φ} está bem definida e é limitada. Portanto $T_{\varphi} \in (\ell_1(E))^*$ e, de (3.33) temos $||T_{\varphi}|| \leq ||\varphi||_{\infty}$.

Considere agora o operador linear $\psi: \ell_{\infty}(E^*) \to (\ell_1(E))^*$ definido por $\psi(\varphi) = T_{\varphi}$. Afirmamos que, ψ é isomorfismo isométrico sobre $(\ell_1(E))^*$. Com efeito, de (3.33), segue que ψ é limitado com $\|\psi\| \le 1$. Mais ainda, temos $\|\psi\| = 1$. De fato,

$$\|\psi\| = \sup_{\|(\varphi_n)_n\|_{\infty} = 1} \|T_{(\varphi_n)_n}\|.$$

Dado então $x \in E$ tal que ||x|| = 1, pelo Teorema de Hahn-Banach existe $x^* \in E^*$ de norma unitária e tal que $x^*(x) = ||x|| = 1$. Assim, basta considerarmos

$$\varphi = (x^*, 0, 0, \ldots) \in \ell_{\infty}(E^*) \text{ e } x_0 = (x, 0, 0, \ldots) \in \ell_1(E)$$

para concluirmos que $\|\psi\|=1$. Resta portanto verificar que ψ é sobrejetiva e, pelo Teorema 1.1.39, teremos o resultado. Seja $\alpha \in (\ell_1(E))^*$ e, para cada $n \in \mathbb{N}$, consideremos o operador linear $j_n: E \to \ell_1(E)$ definido por

$$j_n(x) = (0, \dots, \underbrace{x}_{j-\text{\'esima}}, 0, \dots).$$

Claramente tal operador linear é limitado e portanto $\varphi_n = (\alpha \circ j_n) \in E^*$. Como $||j_n|| = 1$ para todo $n \in \mathbb{N}$, temos que $\sup_n ||\varphi_n|| \le \sup_n ||\alpha|| \, ||j_n|| \le ||\alpha||$ de modo que $(\varphi_n)_n \in \ell_\infty(E^*)$. Além disso, dado $x = (x_n)_n \in \ell_1(E)$ temos

$$T_{(\varphi_n)_n}(x) = \sum_{n=1}^{\infty} \varphi_n(x_n) = \sum_{n=1}^{\infty} (\alpha \circ j_n)(x) = \lim_k \sum_{n=1}^k \alpha(j_n(x))$$
$$= \lim_k \alpha\left(\sum_{n=1}^k j_n(x)\right)$$

Mas,

$$\sum_{n=1}^{k} j_n(x) = (x_1, 0, \dots) + (0, x_2, 0, \dots) + \dots + (0, \dots, 0, x_k, 0, \dots)$$
$$= (x_1, x_2, \dots, x_k, 0, \dots)$$

e portanto, em ℓ_1 , temos que $\lim_k \sum_{n=1}^k j_n(x) = (x_n)_n$. Utilizando o fato de α ser limitado, segue que

$$T_{(\varphi_n)_n}(x) = \lim_k \alpha \left(\sum_{n=1}^k j_n(x) \right) = \alpha((x_n)_n) = \alpha(x).$$

Logo, $\psi(T_{(\varphi_n)_n})=\alpha$ e concluímos o resultado.

Precisaremos também do seguinte lema, que caracteriza convergências fracas em $\ell_1(E)$:

Lema 3.2.10. Uma sequência $(x^n)_n = ((x_i^n)_i) \subset \ell_1(E)$ é fracamente convergente a zero se, e somente se, as sequintes condições são satisfeitas:

- (i) $(x_i^n)_n$ é fracamente convergente a zero em E para todo $i \in \mathbb{N}$.
- (ii) Para cada $\epsilon > 0$ existe $i_{\epsilon} \in \mathbb{N}$ tal que $\sum_{i=i_{\epsilon}}^{\infty} ||x_i^n|| < \epsilon$ para todo $n \in \mathbb{N}$

Demonstração. Seja $(x^n)_n = ((x_i^n)_i) \subset \ell_1(E)$ sequência fracamente convergente à zero. Dada $f \in E^*$, segue que

$$\varphi = (0, \dots, \underbrace{f}_{i-\text{\'esima}}, 0, \dots) \in (\ell_1(E))^*$$

e que $\varphi((x^n)_n) = f(x_i^n) \stackrel{n}{\to} 0$. Portanto, vale (i).

Se (ii) não ocorrer, então existe $\epsilon_0>0$ tal que para cada $k\in\mathbb{N}$ existe $p_k\in\mathbb{N}$ tal que

$$\sum_{i=k}^{\infty} \|x_i^{p_k}\| > \epsilon_0. \tag{3.34}$$

Tomando k = 1, por (3.34), existe $n_1 = p_1$ tal que

$$\sum_{i=1}^{\infty} ||x_i^{n_1}|| > \epsilon_0.$$

Como $x^{n_1}=(x_i^{n_1})_i\in \ell_1(E)$, temos que existe $r_1>n_1$ tal que $\sum_{i=r_1+1}^{\infty}\|x_i^{n_1}\|<\frac{\epsilon_0}{2}$ de modo que, por (3.34), temos

$$\sum_{i=1}^{r_1} \|x_i^{n_1}\| > \frac{\epsilon_0}{2}.\tag{3.35}$$

Assim, sem perda de generalidade podemos considerar $\sum_{i=r_1+1}^{\infty} ||x_i^{n_1}|| = 0$ ou, equivalentemente, $x_i^{n_1} = 0$ para todo $i > r_1$.

Pelo Teorema de Hahn-Banach (Corolário 1.1.35) podemos tomar $x_1^*,\dots,x_{r_1}^*\in S_{E^*}$ tais que

$$x_i^*(x_i^{n_1}) = ||x_i^{n_1}|| para \text{ todo } 1 \le i \le r_1.$$

Temos então

$$\sum_{i=1}^{r_1} x_i^*(x_i^{n_1}) = \sum_{i=1}^{r_1} ||x_i^{n_1}|| > \frac{\epsilon_0}{2}.$$

Por outro lado, por (i) temos que $x_i^*(x_i^n) \stackrel{n}{\to} 0$ para todo $1 \le i \le r_1$ e consequentemente existe $m_1 > \max\{r_1, n_1\}$ tal que $|x_i^*(x_i^n)| < \frac{\epsilon_0}{4^2 r_1}$ para todo $1 \le i \le r_1$ e para todo $n \ge m_1$. Portanto,

$$\sum_{i=1}^{r_1} |x_i^*(x_i^n)| < \frac{\epsilon_0}{4^2} \text{ para todo } n \ge m_1.$$

Tomando $k = r_1 + 1$, por (3.34) temos que

$$\sum_{i=r_1+1}^{\infty} \left\| x_i^{p_{r_1+1}} \right\| > \epsilon_0. \tag{3.36}$$

Seja $n_2=p_{r_1+1}$. Como $x^{n_2}\in\ell_1(E)$, existe $r_2>\max\{n_2,m_1\}$ (logo, $r_2>n_i$ para i=1,2 e $r_2>m_1>r_1$) tal que $\sum\limits_{i=r_2+1}^{\infty}\|x_i^{n_2}\|<\frac{\epsilon_0}{2}$ de modo que por (3.36) temos $\sum\limits_{i=r_1+1}^{r_2}\|x_i^{n_2}\|>\frac{\epsilon_0}{2}$ e, sem perda de generalidade, podemos supor $x_i^{n_2}=0$ para todo $i>r_2$. Novamente usando o Teorema de Hahn-Banach (Corolário 1.1.35) podemos tomar $x_{r_1+1}^*,\ldots,x_{r_2}^*\in S_{E^*}$ tais que

$$x_i^*(x_i^{n_2}) = ||x_i^{n_2}|| \quad para \text{ todo } r_1 + 1 \le i \le r_2.$$

Além disso, por (i) temos que $x_i^*(x_i^n) \stackrel{n}{\to} 0$ para todo $r_1 + 1 \le i \le r_2$ e consequentemente existe $m_2 > r_2 > \max\{n_2, m_1\}$ (portanto $m_2 > m_1$ e $m_2 > n_i$ para i = 1, 2) tal que $|x_i^*(x_i^n)| < \frac{\epsilon_0}{4^3 r_2}$ para todo $r_1 + 1 \le i \le r_2$ e para todo $n \ge m_2$. Portanto,

$$\sum_{i=r_1+1}^{r_2} |x_i^*(x_i^n)| < \frac{\epsilon_0}{4^3} \text{ para todo } n \ge m_2.$$

Prosseguindo com este processo obtemos sequências estritamente crescentes $(m_j)_j$ e $(r_j)_j$ em \mathbb{N} e, para cada $j \in \mathbb{N}$, $\left\{x_{r_{j-1}+1}^*, \dots, x_{r_j}^*\right\} \subset S_{E^*}$ tais que:

a) $1 < r_1 < m_1 < r_2 < m_2 < \dots$

b)
$$\sum_{i=r_{i-1}+1}^{r_j} x_i^*(x_i^{n_j}) = \sum_{i=r_{i-1}+1}^{r_j} \left\| x_i^{n_j} \right\| > \frac{\epsilon_0}{2} \in x_i^{n_j} = 0 \text{ para todo } i > r_j.$$

c)
$$\sum_{i=r_{i-1}+1}^{r_j} |x_i^*(x_i^n)| < \frac{\epsilon_0}{4^{j+1}}, \text{ para todo } n \geq m_j \text{ e para todo } j \in \mathbb{N}.$$

Definamos $y^* = (y_i^*)_i$ por

$$y_i^* = \begin{cases} x_i^* & \text{se } r_{j-1} + 1 \le i \le r_j \text{ para algum } j \in \mathbb{N} \\ 0 & \text{caso contrário} \end{cases}$$

Como $x_i^* \in S_{E^*}$ para todo $r_{j-1}+1 \le i \le r_j$ e para todo $j \in \mathbb{N}$, então é claro que $y^* \in \ell_\infty(E^*) = (\ell_1(E))^*$.

Lembrando que para cada j temos que $x_i^{n_j}=0$ para todo $i>r_j$, temos:

$$|y^*(x^{n_j})| = \left| \sum_{l=1}^{\infty} y_l^*(x_l^{n_j}) \right| = \left| \sum_{l=1}^{\infty} \sum_{i=r_{l-1}+1}^{r_l} x_i^*(x_i^{n_j}) \right|$$

$$= \left| \sum_{l=1}^{j-1} \sum_{i=r_{l-1}+1}^{r_l} x_i^*(x_i^{n_j}) + \sum_{i=r_{j-1}+1}^{r_j} x_i^*(x_i^{n_j}) \right|$$

$$\geq \sum_{i=r_{j-1}+1}^{r_j} x_i^*(x_i^{n_j}) - \sum_{l=1}^{j-1} \sum_{i=r_{l-1}+1}^{r_l} |x_i^*(x_i^{n_j})|$$

$$\geq \frac{\epsilon_0}{2} - \frac{1}{4} \sum_{l=1}^{j-1} \frac{\epsilon_0}{4^{l+1}} \geq \frac{\epsilon_0}{2} - \frac{1}{4} \frac{\epsilon_0}{12} = \frac{23\epsilon_0}{48}$$

e então $|y^*(x^{n_j})| > \frac{\epsilon_0}{6}$ para todo $j \in \mathbb{N}$.

Como $(x^{n_j})_j$ é subsequência de $(x^n)_n$ e $y^* \in (\ell_1(E))^*$, isto contraria o fato de $(x^n)_n$ ser fracamente nula, o que garante que (ii) ocorre. (Observe que cada x^{n_j} foi obtido a partir de uma x^n da sequência original através de uma perturbação que consistiu em considerar nulos todos os x_i^n para $i \geq i_0$ e esta perturbação não afeta a convergência fraca da sequência $(x^n)_n$).

Reciprocamente, seja $(x^n)_n \subset \ell_1(E)$ sequência com as propriedades (i) e (ii). Afirmamos que $(x^n)_n$ é fracamente nula. Para isso, tomemos $x^* = (x_1^*, \dots, x_n^*, \dots) \in (\ell_1(E))^* = \ell_\infty(E^*)$ e $\epsilon > 0$. Como $x^* \in \ell_\infty(E^*)$, existe M > 0 tal que $\sup_n ||x_n^*|| < M$.

Por (ii), existe $i_{\epsilon} \in \mathbb{N}$ tal que

$$\sum_{i=i_{\epsilon}}^{\infty} \|x_i^n\| < \frac{\epsilon}{2M} \text{ para todo } n \in \mathbb{N}.$$

Além disso, para cada $1 \le i \le i_{\epsilon}$ temos que $(x_i^n)_n$ é fracamente nula e portanto $(x_i^*(x_i^n))_n$ converge a zero. Disto, obtemos índice $n_0 \in \mathbb{N}$ tal que

$$|x_i^*(x_i^n)| < \frac{\epsilon}{2i_\epsilon} \ \text{para todo} \ n \ge n_0 \ \text{e} \ 1 \le i \le i_\epsilon.$$

Logo, para $n \ge n_0$

$$|x^*(x^n)| = \left| \sum_{i=1}^{\infty} x_i^*(x_i^n) \right| \le \left| \sum_{i=1}^{i_{\epsilon}} x_i^*(x_i^n) \right| + \left| \sum_{i=i_{\epsilon}}^{\infty} x_i^*(x_i^n) \right|$$
$$< \frac{\epsilon}{2} + \sum_{i=i_{\epsilon}}^{\infty} ||x_i^*|| \, ||x_i^n|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

o que mostra que $x^*(x^n) \to 0$ e $(x^n)_n$ é fracamente nula em $\ell_1(E)$.

Observação 3.2.11. Note que uma simples adaptação na demonstração feita acima nos permite concluir que, ao trocarmos a convergência fraca em (i) por convergência em norma,

obtemos que se uma sequência $(x^n)_n = ((x_i^n)_i)_n \subset \ell_1(E)$ que satisfaz (ii) e é tal que $(x_i^n)_n$ converge a zero em E para todo $i \in \mathbb{N}$, então esta sequência converge a zero em norma. Tal fato será utilizado no próximo teorema.

Teorema 3.2.12. $\ell_1(E)$ possui (DPH) se, e somente se, E também possui esta propriedade.

Demonstração. Note que, se E não possui (DPH) então $\ell_1(E)$ não pode possuir esta propriedade também, já que E é isomorfo a um subespaço de $\ell_1(E)$. A saber, basta considerar $X = \{(x, 0, 0, \ldots) : x \in E\}.$

Por outro lado, suponhamos que E possua (DPH) e seja C>0 a constante do Teorema 3.2.6. Para verificarmos que $\ell_1(E)$ possui (DPH), utilizaremos a Proposição 3.2.5. Seja $(x^n)_n \subset \ell_1(E)$ uma sequência normalizada e fracamente nula onde $x^n = (x_i^n)_i$, para cada $n \in \mathbb{N}$. Vamos mostrar que $(x^n)_n$ admite subsequência equivalente à base unitária de c_0 . Como $x^n \not\to 0$, pelo lema 3.2.10, existe $i \in \mathbb{N}$ tal que $||x_i^n|| \not\to 0$. De fato, como $(x^n)_n$ é fracamente nula, então esta sequência possui a propriedade (ii) do lema anterior e, caso tivéssemos $||x_i^n|| \to 0$ para todo $i \in \mathbb{N}$, pela Observação 3.2.11 teríamos $(x_n)_n$ convergindo a zero em norma o que contradiz o fato da sequência $(x^n)_n$ ser normalizada. Seja i_1 o menor índice para o qual isto ocorre, isto é, $||x_{i_1}^n|| \not\to 0$ quando $n \to \infty$ e $||x_i^n|| \to 0$ quando $n \to \infty$ para todo $i < i_1$. Passando a subsequência, se necessário, podemos supor que

$$\inf_{n} \left\| x_{i_1}^n \right\| > 0.$$

Neste caso, $(\frac{x_{i_1}^n}{\|x_{i_1}^n\|})_n$ é sequência normalizada e fracamente nula e pelo Teorema 3.2.6 existe subsequência $(x_{i_1}^{\sigma_1(n)})_n$ de $(x_{i_1}^n)_n$ tal que

$$\left\| \sum_{n} a_n \frac{x_{i_1}^{\sigma_1(n)}}{\left\| x_{i_1}^{\sigma_1(n)} \right\|} \right\| \le C \sup_{n} |a_n| \Longrightarrow \left\| \sum_{n} a_n x_{i_1}^{\sigma_1(n)} \right\| \le C \sup_{n} |a_n| \sup_{n} \left\| x_{i_1}^{\sigma_1(n)} \right\|$$

para toda sequência finita de escalares (a_n) . Mais ainda, como $(x_{i_1}^{\sigma_1(n)})_n$ é fracamente nula, então é limitada e portanto, passando a subsequência se necessário, podemos supor que existe $\lim_n \left\| x_{i_1}^{\sigma_1(n)} \right\| > 0$.

Caso $(x_j^{\sigma_1(n)})_n$ não convirja a zero para algum $j > i_1$, tomemos $i_2 > i_1$ o menor índice tal que $\left\|x_{i_2}^{\sigma_1(n)}\right\| \not\to 0$. Por argumento análogo ao anterior, segue que existe subsequência $(x_{i_2}^{\sigma_2(n)})_n$ de $(x_{i_2}^{\sigma_1(n)})_n$ com a propriedade de que

$$\left\| \sum_{n} a_n x_{i_2}^{\sigma_2(n)} \right\| \le C \sup_{n} |a_n| \sup_{n} \left\| x_{i_2}^{\sigma_2(n)} \right\|$$

para toda sequência finita de escalares (a_n) e tal que existe $\lim_{n} \left\| x_{i_2}^{\sigma_2(n)} \right\| > 0$.

Assim, prosseguindo com o processo acima, podemos obter sequência crescente $(i_k)_{k\in J}$ em \mathbb{N} (onde $J=\{1,\ldots,p\}$ para algum $p\in\mathbb{N}$ ou $J=\mathbb{N}$) e uma família de sequências em E, $\left\{(x_{i_k}^{\sigma_k(n)})_n:k\in J\right\}$ satisfazendo as seguintes condições:

- 1. $(x_{i_k}^{\sigma_k(n)})_n$ é uma subsequência de $(x_{i_k}^{\sigma_{k-1}(n)})_n$ para todo $k \in J$ (onde, $\sigma_0 : \mathbb{N} \to \mathbb{N}$ é considerada a aplicação identidade),
- 2. $\left\|\sum_{n} a_n x_{i_k}^{\sigma_k(n)}\right\| \leq C \sup_{n} |a_n| \sup_{n} \left\|x_{i_k}^{\sigma_k(n)}\right\|$ para toda sequência finita de escalares (a_n) e para todo $k \in J$,
- 3. $\lim_{n} \left\| x_{i_k}^{\sigma_k(n)} \right\| > 0$ existe para todo $k \in J$,
- 4. $\lim_{n} ||x_{j}^{\sigma_{k}(n)}|| = 0 \text{ para } j \notin \{i_{k} : k \in J\}.$

Definamos agora sequência $(\bar{y}^n)_n$ da seguinte forma: se J é finito, tomamos $l = \max J$ e fazemos $\bar{y}^n = x^{\sigma_l(n)}$; se J é infinito, façamos $\bar{y}^n = x^{\sigma_n(n)}$. Em ambos os casos, $(\bar{y}^n)_n$ é uma subsequência de (x^n) satisfazendo:

(a) Para cada $k \in \mathbb{N}$ $\left\| \sum_{n \geq k} a_n \bar{y}_{i_k}^n \right\| \leq C \sup_{n \geq k} |a_n| \sup_{n \geq k} \|\bar{y}_{i_k}^n\|$ para toda sequência finita de escalares (a_n) e para todo $k \in J$

- (b) $\lim_{n} \|\bar{y}_{j}^{n}\| = \delta_{j} > 0$ existe para todo $j \in I = \{i_{k} : k \in J\}$ já que, por construção, $(\sigma_{k}(n))_{n}$ é subsequência de $(\sigma_{p}(n))_{n}$ sempre que k > p
- (c) $\lim_{n} \|\bar{y}_{j}^{n}\| = 0$ para todo $j \notin I$ por motivo análogo ao que implicou no item (b).

Consideremos então a sequência $(y^n)_n$ onde, para cada $n \in \mathbb{N}, y^n = (y_1^n, y_2^n, \dots, y_{i_n}^n, 0, 0 \dots)$. Notemos que $(y^n)_n$ satisfaz as condições (b) e (c) apresentadas acima. De fato, dado $j \in I$ temos que $j = i_{n_0}$. Como $y_{i_{n_0}}^n = \bar{y}_{i_{n_0}}^n$ para todo $n \geq i_{n_0}$ temos que $(\bar{y}^n)_n$ satisfaz a condição (b). Dado $j \notin I$, como I é infinito temos que existe $i_{n_0} \in I$ tal que $i_{n_0} > j$. Como $y_j^n = \bar{y}_j^n$ para todo $n \geq i_{n_0}$, temos que $(y^n)_n$ satisfaz (c). Além disso, notemos que, pela construção da sequência $(y^n)_n$, fixado $k \in \mathbb{N}$, obtemos que $y_{i_k}^n = 0$ sempre que n < k e $y_j^n = \bar{y}_j^n$ sempre que $n \geq k$. Assim, para cada $k \in J$ temos

$$\left\| \sum_{n} a_n y_{i_k}^n \right\| = \left\| \sum_{n \ge k} a_n y_{i_k}^n \right\| = \left\| \sum_{n \ge k} a_n \bar{y}_{i_k}^n \right\| \stackrel{(a)}{\leq} C \sup_{n \ge k} |a_n| \sup_{n \ge k} \left\| \bar{y}_{i_k}^n \right\| \le C \sup_{n} |a_n| \sup_{n} \left\| y_{i_k}^n \right\|$$

para toda sequência finita de escalares (a_n) . Portanto, temos que a sequência $(y^n)_n$ satisfaz as propriedades (b) e (c) já citadas acima, e também a propriedade:

(a') $\left\|\sum_{n} a_{n} y_{j}^{n}\right\| \leq C \sup_{n} |a_{n}| \sup_{n} \left\|y_{j}^{(n)}\right\|$ para toda sequência finita de escalares (a_{n}) e para todo $j \in I = \{i_{k} : k \in J\}.$

Note que podemos supor que a sequência $(y^n)_n$ possui a propriedade

(d)
$$\sum_{n=1}^{\infty} ||y_j^n|| < \frac{1}{2^j}$$
 para todo $j \notin I$

Com efeito, no caso de $\mathbb{N}\setminus I$ ser finito, utilizando a propriedade (c), para cada $k\in\mathbb{N}$ obtemos $p_k\in\mathbb{N}$ tal que $p_k>p_{k-1}$ e

$$||y_j^{p_k}|| < \frac{1}{2^k 2^j}$$
 para todo $j \notin I$.

Portanto $(y^{p_k})_k$ é uma subsequência de (y_n) tal que para todo $j \notin I$

$$\sum_{k=1}^{\infty} \|y_j^{p_k}\| < \sum_{k=1}^{\infty} \frac{1}{2^k 2^j} < \frac{1}{2^j}$$

e então, a subsequência $(y^{p_k})_k$ possui a propriedade (d).

No caso de $\mathbb{N}\setminus I$ ser infinito, utilizaremos um processo de diagonalização da seguinte forma: suponhamos $\mathbb{N}\setminus I=\{j_1< j_2< j_3< \ldots\}$. Pela propriedade (c), obtemos subsequência $(y_{j_1}^{n_k^1})_k$ de $(y_{j_1}^n)_n$ tal que

$$\left\|y_{j_1}^{n_k^1}\right\|<\frac{1}{2^k2^{j_1}}\quad\text{para todo}\quad k\in\mathbb{N}.$$

Agora, considerando a subsequência $(y^{n_k^1})_k$ de $(y^n)_n$, como esta ainda possui a propriedade (c), então $\lim_k \left\| y_{j_2}^{n_k^1} \right\| = 0$ e, portanto, podemos novamente obter subsequência $(y^{n_k^2})_k$ de $(y^{n_k^1})_k$ tal que

$$\left\|y_{j_2}^{n_k^2}\right\| < \frac{1}{2^k 2^{j_2}}$$
 para todo $k \in \mathbb{N}$.

Prosseguindo com este processo, obtemos para todo $p \in \mathbb{N}$ subsequência $(y^{n_k^p})_k$ de $(y^{n_k^{p-1}})_k$, (onde $n_k^0 = n_k$) tal que

$$\left\|y_{j_p}^{n_k^p}\right\| < \frac{1}{2^k 2^{j_p}}$$
 para todo $p \in \mathbb{N}$ e para todo $k \in \mathbb{N}$.

Portanto, dado $j\not\in I$ temos que existe $p\in\mathbb{N}$ tal que $j=j_p$ e daí

$$\sum_{k=1}^{\infty} \left\| y_j^{n_k^p} \right\| < \frac{1}{2^{j_p}} = \frac{1}{2^j} \quad \text{para todo} \quad j \notin I$$

Assim, basta considerarmos a subsequência $(y^{n_k^k})_k$ de $(y^n)_n$, que terá a propriedade (d). Assumiremos que tal subsequência é a própria sequência.

Utilizando a propriedade (b) e argumento análogo ao feito acima, agora ao conjunto I, obtemos subsequência $(z^n)_n$ de $(y^n)_n$ tal que

(e)
$$\delta_j - \frac{1}{2^j} < ||z_j^n|| < \delta_j + \frac{1}{2^j}$$
 para todo $n \in \mathbb{N}$ e para todo $j \in I$.

Como $z^n \in \ell_1(E)$ para todo $n \in \mathbb{N}$, então

$$\sum_{j \in I} \|z_j^n\| \le \sum_{j \in \mathbb{N}} \|z_j^n\| < \infty$$

e isto, junto a (e), fornece

$$M_0 = \sum_{j \in I} \delta_j < \infty \tag{3.37}$$

Logo, como por (e),

$$\sup_{n} ||z_{j}^{n}|| \le \delta_{j} + \frac{1}{2^{j}} \text{ para todo } j \in I,$$

é claro que

$$\sum_{j \in I} \sup_{n} \|z_{j}^{n}\| \le \sum_{j \in I} \left(\delta_{j} + \frac{1}{2^{j}}\right) \le M_{0} + 1 = M < \infty.$$
 (3.38)

Por fim, pelo Princípio da Seleção de Bessaga-Pelczynski (Teorema 1.2.16), podemos assumir que $(z^n)_n$ é uma sequência básica. Afirmamos que $(z^n)_n$ é equivalente a base unitária de c_0 . Com efeito, fixemos $r \in \mathbb{N}$ e uma sequência finita $(a_n)_{n=1}^r$ de escalares. Por (a^i) , (d) e (3.38), temos

$$\left\| \sum_{n=1}^{r} a_{n} z^{n} \right\|_{1} = \sum_{j=1}^{\infty} \left\| \sum_{n=1}^{r} a_{n} z_{j}^{n} \right\| = \sum_{j \in I} \left\| \sum_{n=1}^{r} a_{n} z_{j}^{n} \right\| + \sum_{j \notin I} \left\| \sum_{n=1}^{r} a_{n} z_{j}^{n} \right\|$$

$$\leq C \sup_{1 \leq n \leq r} |a_{n}| \sum_{j \in I} \sup_{n} \|z_{j}^{n}\| + \sup_{1 \leq n \leq r} |a_{n}| \sum_{j \notin I} \sum_{n=1}^{r} \sup_{n} \|z_{j}^{n}\|$$

$$\leq CM \sup_{1 \leq n \leq r} |a_{n}| + \sup_{1 \leq n \leq r} |a_{n}| \sum_{j \notin I} \frac{1}{2^{j}}$$

$$\leq (CM + 1) \sup_{1 \leq n \leq r} |a_{n}|$$

Portanto, segue do Teorema 1.2.11 que $(z^n)_n$ é subsequência de $(y^n)_n$ equivalente a base unitária de c_0 . Afirmamos que a correspondente subsequência $(\bar{z}^n)_n$ de $(\bar{y}^n)_n$ também é equivalente a base unitária de c_0 . De fato, pela observação 1.2.12 basta verificarmos que $\lim_n \|\bar{z}_n - z_n\|_1 = 0$. Por construção temos que

$$z_j^n - \bar{z}_j^n = 0 \quad \forall \quad j \le i_n \quad e \quad z_j^n - \bar{z}_j^n = z_j^n \quad \forall \quad j > i_n$$

e, portanto,

$$||y^n - \bar{y}^n||_1 = \sum_{j>i_n} ||y_j^n||.$$

Como $(y_j^n)_j \in \ell_1(E)$, então $\sum_{j=1}^{\infty} \|y_j^n\| < \infty$ e como $(i_n)_n$ é estritamente crescente, temos

$$\lim_{n} \|y^n - \bar{y}^n\|_1 = 0$$

e assim encerramos a demonstração.

Referências Bibliográficas

- [1] R.M. Aron, J. Diestel, A. K. Rajappa Weakly continuous functions on Banach spaces containing ℓ₁. In N. Kalton and E. Saab (edr), Banach Spaces, 1-3. Springer Lecture Notes in Mathemattics 1166, Berlin (1985).
- [2] Bartle, R. The Elements of Integration. John Wiley & Sons. New York, (1966).
- [3] N.L. Carothers, A Short Course on Banach Space Theory, Department of Mathematics and Statistics, Bowling Green State University, (2000).
- [4] P. Cembranos, The hereditary Dunford-Pettis property for $\ell_1(E)$, Proc. Amer. Soc. Math. 108 (1990), 947-950.
- [5] D. Cohn, Measure Theory, Birkhauser Verlag, Boston, (1980).
- [6] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, (1990).
- [7] W. J. Davies, T. Figiel, W. V. Johnson, A. Pelczynski, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327.
- [8] J. Diestel, A Survey of results related to the Dunford-Pettis property, Proc. Conference on Integration. Topology and Geometry in Linear Spaces. W.Graves(ed.). Contemp. Math. vol2. Amer.Math. Soc., Providence, R.I., (1980), 15-60.
- [9] J. Diestel, Geometry of Banach Spaces Selected Topics: Lecture notes in Mathematics, Springer Verlag, (1975).
- [10] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, Berlin, (1984).

- [11] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, New York, 1999.
- [12] N. Dunford and B. J. Pettis, Linear operators on summable functions, Transactions of the American Mathematical Society 47 (1940), 323-392.
- [13] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, (1985).
- [14] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant e V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, Springer-Verlag, New York, (2001).
- [15] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces de type C(K), Canadian J. Math, 5 (1953), 129-173.
- [16] W. B. Johnson, A complementably universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301-310.
- [17] J. L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, 1970.
- [18] H. Knaust and E. Odell, On c_0 sequences in Banach spaces, Israel Journal of Mathematics, Vol. 67, No. 2, (1989), 153-169.
- [19] Lin, Pei-Kee, Köthe Bochner Function Spaces, Department of Mathematics, University of Memphis, (2002).
- [20] J. Mujica, Notas de Espaços de Banach, Notas de Aula, IMECC-UNICAMP, (2006).
- [21] L. Narici and E. Beckenstein, Topological Vector Spaces, Series: Monographs and Textbooks in Pure and Applied Mathematics, Vol. 95.
- [22] P. and H. Thakare, A note on the Dunford-Pettis property and the Schur property, Indiana Univ.J.Math. 27(1978),91-92
- [23] C. Stegall, Duals of certain spaces with the Dunford-Pettis property, Notices Amer. Math. Soc. 19(1972),799.